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QUANTITATIVE FEEDBACK DESIGN AND CONSTRUCTION OF A
TWO BY TWO SYSTEM WITH LARGE DISTURBANCES

Abstract

The quantitative feedback theory (QFT) of Horowitz is theoretically well
developed for multivariable systems but there is not sufficient knowledge on its
application to practical problems. A "flying machine" consisting of an airframe
with two independently controlled sets of wings has been designed and
constructed as a 2—input 2—output control problem. The airframe is constrained
to move vertically on guide wires and to rotate about a pivot. Air flow over the
wings is provided by two 7.5kW fans operated without any attempt at providing
non—turbulent flow. The arrangement of the wings is such that in open loop, the
dynamic behaviour of the airframe from the rear set of wings to the height is
non-minimum phase. Additionally, the airframe is unstable for some flight
conditions. This uncertain, non—linear and highly disturbed plant provides an

ideal practical environment in which to test controller design theory.

The construction, modelling, parameter estimation and simulation of the flying
machine is described. Three different controller structures are discussed, with
actual controller designs arrived at from QFT understanding. The controller
designs for the flying machine take into a(:(:(.)unt parameter uncertainty and trade

off disturbance attenuation against rate and amplitude saturation at the wing

angle inputs.
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CHAPTER 1 —INTRODUCTION

This thesis describes the development of a practical system — a "flying machine" —
on which to test the quantitative feedback theory (QFT) of Horowitz for
multivariable systems. The flying machine has been constructed in the Control
laboratory of the Department of Electrical Engineering, University of
Durban—Westville, Durban. It consists of an airframe with two independently
controlled sets of wings. The airframe is constrained to move vertically on guide
wires and to rotate about a pivot. Air flow over the wings is provided by two
7.5kW fans operated without any attempt at providing non—turbulent flow. The
arrangement of the wings is such that in open loop, the dynamic behaviour of the
airframe from the rear set of wings to the height is non—minimum phase.
Additionally, the airframe is unstable for some flight conditions. This uncertain,
non—linear and highly disturbed plant provides an ideal practical environment in
which to test controller design theory. The controller designs for the flying
machine take into account parameter uncertainty and trade off disturbance
attenuation against rate and amplitude saturation at the wing angle inputs. This
thesis is strongly oriented towards the practical aspects of controller design but
also includes some new results for design with plant input constraints.

The construction, modelling, parameter estimation and simulation of the flying
machine is described in Chapter 2. Chapter 3 introduces some of the ideas from
previously published work on quantitative feedback theory and some new
methodology for design to the plant input for multivariable plants. Three
different controller structures are discussed, with actual controller designs arrived
at from QFT understanding. These designs are presented in Chapters 4, 5 and 6.
The controllers were implemented using analog filters and tested. Each of
Chapters 4, 5 and 6 presents results for the controller designed in that chapter.
Comments on the modern control theory are fashionable in the classical

(quantitative) feedback control literature and these are included as part of the
conclusion, Chapter 7.

All designs (loop shaping) reported in this thesis were executed with the aid of

the CAD package, "DESIGN", written by Professor E Eitelberg and Mr G
Sutcliffe.

Although it may seem out of context to present results in the introduction, it

must be noted at the outset that feedback control has three fundamental
PUIpOSes:



1) To reduce the effects of parameter uncertainty, parameter changes and
non—linearity on the plant response to (quantitatively defined) acceptable levels.
2) To reduce the effect of external disturbances on the plant output to
(quantitatively defined) acceptable levels.

3) To stabilize open—loop unstable plants.

Figure 1.1 shows the height and pitch angle of the flying machine to be described
in this thesis when operated without control (i.e. with the wings fixed). During
the test, for heights outside about [0.7m, 1.2m] and for pitch angles outside about
[-20°, 20°] corrective action was taken to prevent the flying machine from
crashing or flipping over by means of a hand held leash. From Figure 1.1 it is
reasonable to conclude that at least some (and in fact all) of the reasons for

having feedback control are satisfied, justifying what follows.
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Figure 1.1 — Flight test with fixed wings. Larger excursions were prevented by
means of a leash



CHAPTER 2 — CONSTRUCTION, MODELLING AND SIMULATION

Table 2.1 shows the model parameters and symbols which will be used in this and

subsequent chapters.

2.1 Construction

2.1.1 Mechanical Construction

The initial design of the flying machine air frame was started by Prof E Eitelberg
with the help of two University of Durban-Westville undergraduate students,
Mr S Govender and Mr T Naraimsamy. The original design requirements were:

Overall mass not to exceed 2 Kg ]

Ratio of back to front wing areas = 3:1

Length » 1 m :

Ving span 1 m 9 (2.1)
Total wing area » 0.2 m

Ving aspect ratio (length:width) » 2:1

At an early stage in the project the responsibility for the construction was taken
over by the author. The flying machine was constructed by the author and the
Electrical and Mechanical workshops of the University of Durban-Westville, with
the co-operation of Prof E Eitelberg and his research assistant, Mr S K Moodley.
Ad-hoc changes were introduced to the design whenever they were felt necessary.
The "as-built" mechanical construction is shown in Figure 2.1a. Figure 2.1b
shows a detail of the rear wing mount and actuator. Figure 2.1c is a photograph
of the flying machine.

2.1.2 Wing Pivots

As constructed, the wings are pivoted along their geometric centres. In retrospect
this design may have been improved as the aerodynamic centre of a flat,
rectangular plate is theoretically located at the "quarter chord" (0.25 the wing
width (chord) from the leading edge) (Bertin and Smith, 1979, p.114). Had the
wings been pivoted nearer their aerodynamic centres, there would have been less
lift induced moment on the wing actuators, reducing wear and the deadband
which resulted. Pivoting the wings in front of the aerodynamic centres would have
allowed the lift induced moment to act as an anti-deadband device, always
turning the wings towards the no-lift position and allowing the wing actuators to
turn the wings against this moment. This arrangement would result in a gain of



Base model data used in derivation of templates
Term Minimum Maximum Nominal Description

0 ~15° 15° 0° pitch angle!

Vevind 15m/s 20m/s 20m/s wind speed

0 —lrad/s 1rad/s Orad/s rate of change of pitch angle
h —1m/s Im/s Om/s rate of change of height

Variables [ signals
0(s) Pitch an%le (angle of attack) w.r.t ground
Hgs) Height of pivot point (w.r.t. ground)

aofs Front wing angle (w.r.t. body)
O(s Back wing angle (w.r.t.body
E,(s) External torque disturbance (including static moment imbalance)

E[s) External lift disturbance (including static force imbalance)

Derived model parameters
Term Minimum Maximum Nominal Description

J, 0.14 Eq(2.22), Table 2.2 — inertia (Nm?)

m, 1.28 Table 2.2 — mass of airframe (kg)

m, 0.29 Table 2.2 — mass of pivot (kg)

m,, 0.70 Table 2.2 — mass of counter weights (kg)

m 2.27 Table 2.2 — total moving mass (kg)

ut 0.7 1.3 1.2 Eq(2.21), (2.24) — linearised friction coefficient in turning

Iy 10.6 16.8 16.3 [q(2.21), (2.23) — linearised friction coefficient in lift

kt -1.1 30.2 17.9 Eq(2.21) — linearised torque coeff. deternined by body pitch £, 0
k, 95.9 255.8 242.7 Eq(2.21) —lift coeff. determined by body pitch ¢, 0

k¢ 8.5 27.3 25.9 Eq(2.21) — torque coeff. determined by front wing 2 to body, «
kﬁ. 19.9 63.6 60.3 Eq(2.21) —lift coeff. determined by front wing £ to body, «
ky 156 49.1 43.8 Eq(2.21) ~ torque coeff. determined by back wing £ to body, 4
kp o 60.1 192.2 182.4 Eq(2.21) —lift coeff. determined by back wing £ to body, A
A 0.0 Eq(2.21) — small coeff. resulting from linearisation

B 0.0 quz.mg — small coeff. resulting from linearisation

Other design considerations ‘

7 1320 N2 Section 2.3.2 and eq(2.29) for

y 1.9 variance of lift djsturbanc‘e

Wy p 70.0

U% 9.5 N2m? Section 2.3.2 and eq(2.30) for

N 0.14 variance of torque disturbance

xt 70.0 rad/s

p =12 kg/m3 Density of air in Durban

0y =0g= 0.5 rad Section 2.3.3, allowable std deviations of wing

a(.1 = UB = 2.0 rad/s } positions, eq(2.32a) and of wing rates, eq(2.32b)

'Note these are values used in design. Actual values exceed these under some flying conditions.

Table 2.1 — Model parameters and symbols used in this and subsequent chapters
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zero around the zero angle of attack position rather than infinite gain - the

difference is shown in Figure 2.2, along with sketches of -1/N (negative inverse of
nonlinear "describing function") loci indicating why linear design might result in
limit cycles for the existing arrangement. Since the wings are turned about 2° to
4° in steady state, detailed describing function analysis would require sinusoidal
signals with offset. For details of describing function analysis, see Atherton
(1982).

output 1 output 7
input ; input ;
;
Imaginary Imaginary
'—11/'[\1‘: Real” A = 5| ‘ Real
a) Pivot behind c/4 line Pivot in front of ¢/4 line

Figure 2.2 Deadband resulting from attachment of wings and corresponding -1/N
loci on the Nyquist diagram

2.1.3 Selection and Arrancement of fans

A rule of thumb formula for the maximum lift which could be expected was
originally provided by Professor O. Rubin of the University of Pretoria. It is
based on Bernoulli’s principle - the maximum lift is approximately the product of
free stream dynamic pressure (Bertin and Smith, 1979, p.39) and the surface area
of the wings,

Lmax ¥ qm A (2'2)
where,

Lmax = maximum lift

q, = free stream dynamic pressure

1 2 2
Sy Py Ve ®0.Tp N (see Table 2.1)

A = wing area
The free stream dynamic pressure is one half the free stream density, p
. m
(measured far from the wing) and the square of the relative velocity of the wing
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to the free stream, vi. (Dr Rubin’s formula is equivalent: 0.7 x free stream

v .
pressure (p ) x Mach number squared, M2 = [—Wl—ng—} )
@ Vs ound

With a total wing area of 0.2 m? and 2 design mass of 2 Kg, the wind speed

required to just lift the air frame is (with L » 20 N, p = 1.225 Kg/m3),

Voin = V 20/(0.5x1.22x0.2) = 12.8 m/s (2.3)
To achieve in excess of this wind speed over an area 1 m wide and 2 m high, two
fans were purchased from Luft Industries with the following specifications:

a) 1000 mm ¢ fans with 7 blades (30° blade pitch angle).

b) 7.5 kW, 1400 r.p.m. 380 V, 3 phase motors.

c¢) Each fan is rated at 17 m3/s in free air.

Figure 2.3 shows an approximate air flow cross section about 1 m from the fans
from corrected measurements made with a hand held anemometer (which over
read by a factor of 1.38 compared to an alcohol manometer in a wind tunnel - lift
predicted from measurements based on this instrument would therefore be in
error by a factor of nearly 2!).

Ifan centres

[m] 2.0
1.5 21 18 21 |~fan centre
1.0 13 15 13 ‘
0.57 21 18 - 21 |+fan centre
0.0

I I I
0.5 -0.25 0 0.25 0.5 [m]

Figure 2.3 — Very approximate wind speeds - corrected from hand held
anemometer readings

After discussions with Professor L. Roberts (Department of Mechanical
Engineering, University of Natal) it was decided not to try guiding the air stream
in any way. (The same discussion highlighted the importance of fan inlets for
good airflow and high fan efficiency - standard inlet cones were purchased with
the fans.) Apparently badly designed "straighteners" can worsen the free stream
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airflow pattern. During experimentation, a design which flew one day did not fly

the next day due to changed airflow pattern caused by the removal of spare
furniture in the laboratory. The presence of spectators also affected the air flow

pattern. The equipment layout which resulted in the least disturbed airflow
pattern is shown in Figure 2.4 below.

Figure 2.4a shows the general layout of the laboratory area. Figure 2.4b and 2.4c

are photographs of the arrangement of "dirty" and "control" laboratories
respectively.

Control lab| "Dirty" lab

_ _12m
D i 1.7n

computer fans ?6m air
& control ‘__' con.

f
—

T——55m —]

Figure 2.4a Laboratory equipment layout

Figure 2.4b — Layout of laboratory showing position of flying machine and fans
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Figure 2.4c — Layout of control laboratory showing control and measurement
equipment. (Flying machine is next door)

2.1.4 Actuators

Futaba FP-5128 and Sataba FP-S134 model aeroplane servos were selected for
the front and back wing actuators respectively. Specification sheets were available
for only the FP-S128 - it has a rated torque of 0.035 Nm which allows the front
2

)

}

wing to be accelerated at ( = 1.14x10-¢ Kgm

']front wing
&= 0.035 / 1.14x10 = 307 rad/s’, : (2.4)
reaching a terminal velocity of 200° /s in 11 ms.

As supplied, the servos operate via a pulse width modulated input signal which
can easily be interfaced to a model aeroplane radio transmitter. A voltagéto pulse
- width modulator circuit was built based on LM555 timers. Because the
modulator circuit was not sufficiently linear and the holding torque was not
adequate, the drive electronics of the servos were replaced with a push-pull
amplifiers. The actuators have essentially an inner loop feedback which reduces
the uncertainty of the outer loop. This inner loop was closed with large
bandwidth. The wing position signals were brought out of the motor casings.
Circuit diagrams are included in Appendix 1.
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As a result of power supply dependence and the sharing of 0V (Common)
conductors (in order to save weight and keep the wiring harness joining the flying
machine to the instrumentation flexible) some non-minimum phase problems
appeared which limited the achievable loop gain of the local wing controller
feedback circuits severely. These problems were analyzed in a paper in the
Transactions of the South African Institute of Electrical Engineers (Boje and
Eitelberg, 1989) and solved (by increasing the current rating of the power supplies
and separating power and instrumentation supplies and their OV conductors. The
paper is included as Appendix 2.

2.1.5 The Frame

The air frame is constrained to move vertically on guide wires and to rotate about
a pivot. For this purpose, a frame was constructed using mild steel angle and
tubing. The air frame is pivoted and the pivot slides on guide-wires. The pivot is
kept horizontal by means of flexible wires (stainless steel angling tracer wire)
passed around pulleys rather like those of a drawing board rule. See Figure 2.5

o - | pulleys on bearings

pivot arm on
guide wires

frame

Figure 2.5 Frame with guide wires and "parallel arm"
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2.2 Flying Machine - First principles model

2.2.1 Dynamic model

The dynamic model of the flying machine was obtained (after discussion with
Prof. E Eitelberg) by considering the airframe as a rigid body and the

pivot—counterweight system as a second rigid body, joined to the airframe at the
pivot. Applying Newton’s second law (D’Souza and Garg 1984, p95) to each body,

where,

d my,
——=F translational momentum (2.52)
d J.w,
1% = -Mc rotational momentum (2.5b)

m is the mass of the rigid body

. is the translational velocity of the centre of mass of the rigid body

F is the the net external force acting on the rigid body.

J. is the inertia of the rigid body,calculated with respect to the centre of
mass

w, s the angular velocity of the centre of mass of the rigid body

M is the net external moment calculated with respect to the centre of

c
mass, acting on the rigid body

As the flying machine is constrained to move on the vertical slide and to rotate
about the pivot, there are only two degrees of freedom. With reference to Figure
2.6 (which has the x—axis vertically and the y—axis horizontally),

13

Force balance of vertical slide from movement of pivot—counterweight system:

where

(mp+mc)h = —(mp—mc)g — kb =R (2.6a)

m, is the mass of the pivot beam

m,, is the mass of the counterweight

h, h, and h are is the vertical acceleration, velocity and position of the
pivot

g is the acceleration due to gravity

}g, models all the sliding friction

RX is vertical component of reaction force on airframe
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Figure 2.6 — Derivation of model for flying machine

Force balance of airframe with respect to its centre of mass:

m x =-m.g + (lift applied by wings) + R (2.6b)

my=- (drag applied by wings) + Ry (2.6¢)

where

m, is the mass of the airframe
x is the vertical acceleration of the centre of mass of the airframe

y is the horizontal acceleration of the centre of mass of the airframe

Ry is horizontal component of reaction force on airframe

Moment balance of the airframe with respect to its centre of mass:

J.0 = —p, 0 + (torque applied by wings) — (reaction torque of wings) +

14

Ry r.,sin(f) — R, cos(f) (2.6d)

cp cp

where

J. is the moment of inertia of the airframe along its length, calculated

with respect to its centre of mass

8, 0 and 0 are the angular acceleration, velocity and position (pitch angle)
of the airframe with respect to the ground
Mo is the angular friction of the pivot
Tep is the distance between the pivot, P, and the centre of mass, C
(rcp>0 in Figure 2.6)

Because of the constraints imposed by the pivot and guide wire, the following
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geometry can be used to remove the dzpendence on x and y above,

x=h+ Tep sin( ), r=h+ Tep g cos(0)

;c =h+ Tep (6 cos(6)— 0 2 siz{ 6)) (2.6e)
Y =T cos(6), FE-Tg g sin(0)

y =T (6 sin(0) + 0 2 cos(€ ) (2.61)

The equations of motion in terms of h ) and f(t) are therefore,

y = o )
(mp+mc+ma)h =—r1, m_(7cos(f) -0 sin(0)) — (m,+m m,.)g

cp P

— pyh + (lift applieZ by wings) (2.7a)

J 0= —ty o0+ (torque applie: by wings) - (reaction torque of wings) +

rcpsin(ﬂ) {(drag applied by w.ags) —m, I (6 sin(6) + & cos(0))} +

rcpcos(ﬂ) {(lift applied by wizzs) — ma(h+rcp(0c0s(0)—025in(9))) - mag}
(2.7b)
Rearranging and simplifying eq(2.7b).

Jo 0=, 0+ (torque applieZ by wings) - (reaction torque of wings) +

rcp{(drag applied by wings) 2(0) + (lift applied by wings) cos(6)}

~Tep cos(f) m_ (g+h) —m, T g ,
or,

Jp 6 = —u, 0 + (torque applizd by wings w.r.t pivot)

- (reaction torque of wings) - “ep cos(d) m, (g+h) (2.7¢)
where,

Jp is the moment of inertia o7 -he airframe about the pivot, calculated

2

along the length " =
ng the length of the bocr. Jp JC tm, o

The parallel axis theorem (ibid p.88) =25 been used in deriving eq(2.7c). Note that
the torques due to rotational frictioz and wing reaction do not depend on the
point at which the moment balance :: calculated. The system has two degrees of

freedom and the dynamic model, eq(2.7) is consequently fourth order.
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2.2.2 Lift, Drag and Wind vectors
Standard aerodynamic theory (Bertin and Smith, 1979) shows that the lift and
drag produced by an aerofoil is proportional to the so-called free-stream dynamic

pressure, q_ = % P vi, the area of the wing and the wing angle of attack (when
this is small). For a flat plate inclined at o radians, the theoretical section
coefficient of lift, Cl’ is,
Cy=—t—=2ra (2.8)
0.5 o, vy
where £is the lift per unit length per unit chord (width)

Experimental values are found in Section 2.3. The lift and drag are therefore
modelled by, (coefiicient) x (wing area) x (wind speed)2. Using subscript dot (-)
as a generic subscript and subscripts f and b for the front and back wings

respectively, the combined lift force of the front and back wings is given by

F= v% ar {cos(wind £ to ground) cylfront wing £ to wind) +
sin(wind ¢ to ground) ¢qfront wing £ to wind) }

+ v% ay {cos(wind £ to ground) c[b(back wing ¢ to wind) +
sin(wind £ to ground) ¢qp(back wing £ to wind) } (2.9)

where,
F is the total vertical lift force due to the wings
v_ is the wind velocity at the respective wing
a_is the wing area
Cy. is the section lift coefficient
Cq. Is the section drag coefficient ‘

The torque providsd by the wings is,
T = v% ag Iy, {cos(body £ to wind) cﬁ-(front wing ¢ to wind) +
sin(body £ to wind) cqglfront wing £ to wind) }

2 .
- ‘.’b 3, Ty {cos(body < to wind) ¢, (back wing £ to wind) +
sin(body ¢ to wind) ¢ qp(back wing £ to wind) }
— {wing rzaction torque} (2.10)
where,

I is the distance between the wing aerodynamic centre and the pivot
The aerodynamic centre of a flat plate is theoretically at the "quarter chord" 1+ of
width of the wing. measured from the leading edge.



16

The measured wind speed from the fans (at an angle of 0° to the ground) were

initially used for the wind speed, v?, terms. It was observed however that the
rotational friction increased substantially when the fans were on. This was
initially attributed to increased bearing force on the Teflon bushes which is
partially correct but as was pointed out by Prof. E Eitelberg, the simple model
above can account for some of the additional friction if the wind vector is
considered more carefully - see Figures 2.7 and 2.8. The effective wind speed is
calculated as the vector sum of the actual wind speed and model states:

Front wing:
N/
-n
\ Vi eff
- Igp COS )
. f

Figure 2.7 — Front wing wind vector (state dependent terms exaggerated)

2 L o
Vi et = (5~ O1psin(0)” + (-h - rg cos(6))” (2.11)
at an angle (effeciive wind angle to the ground),

“h— § rfpcos( 9)

’)’f = 4arcian . (2.12)
Ve - ﬂrfpsm(ﬂ)
Back wing:
-
-h
g rbpcos(é)

)

Hrbpsin( 9) vy
Figure 2.8 — Back wing wind vector (state dependent terms exaggerated)

2 e . . 9 . .
Yp et = (Vp T OTppsin(0))” + (b + 9rbpcos(9))2 (2.13)
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at an angle (effective wind angle to the ground),

“ho+ O cos(6)
= arctan {———r——bL——] (2.14)

v .
b vy, + 0rbpsm(0)

The model for the flying machine is therefore,
(mp+mc+ma)h + by b+ (ma+mp—mc)g +mro Hcos €2sm
2 .
VT eff 3 {cos() cﬁ(ﬂ-i-a-i-'yf) + sin(7y) cdf(0+a+'yf)} +
vE oip 2p 1008(,) e 0+B+7,) + sin(y) gy (B+6+7,)}

— F(6,0,6,h,h,0) (2.15)

JpB + “toﬂ + marcpcos(ﬂ) (h+g)=
vf off 3 fp{cos(0+'yf cﬁ(0+a+'yf) + sin(0+'yf cdf(0+a+'yf)} -

beff 2, Ty LCos(0+ 1) Cp(B+B+ 1) + sin(B+,) ey (0+6+ 7)) -

(I, a+u a+Jﬂ5+uﬁﬂ Haﬂhhﬂ) (2.16)

The configuration of the flying machine used throughout this work allows the
following simplifications.

2.2.3 Wing reaction torques

For the front wing, after linearisation (Section 2.2.5) the model is,

2
Front Torque = (—J s"-u s + k ¢)a(s) : (2.17)

The reaction torque on the body caused by the turning (friction), o and

acceleration (inertia), Jas2, of the front wing is much smaller than the torque
induced by the wind (ktf)' The resulting numerator is non-minimum phase but

(assuming small values of pa) the right hand plane zero is (for the nominal plant —
see Table 2.1) at

S0l g = /25O TTATAI0S = 476 rad/s (2.18)

about one decade beyond the frequency range in which the model is expected to
be accurate.

For the back wings the model is,



18

Back Wing Torque = —(Jﬁs2+uﬂs+ktb)ﬂ(s) (2.19)

The same as the front wings except the behaviour is minimum phase and has (at
the nominal gain ktbO) a corner frequency,

‘/ ktbO/']ﬂ = J43.8/1.0622x10'3 = 203 rad/s (2.20)
with damping determined by the friction hg Although the corner frequency is
lower than for the front wings, these numerator terms being minimum phase,
should not be a problem and will therefore be neglected.

2.2.4 Co—location of the pivot and centre of mass

All terms resulting from the distance between the centre of mass and the pivot,
Tep = 0.01m (Table 2.2 below) are neglected as the pivot and centre of mass can
be regarded as being co—located. This simplifies the model considerably. These
terms are however included in the non-linear simulation so that other airframe
configurations can be examined. The pivot is also situated approximately 0.01m
above the centre of mass of the airframe. This has been neglected from the start

as it is insignificant.

2.2.5 The linearised model

The linear feedback design is undertaken by considering small signal linearisations
of the non-linear model eq(2.15) and eq(2.16) about all reasonable (not
necessarily steady state) operating points. This means that the design is not
strictly quantitative as it might be if design had utilized the "linear equivalent"
plant set (Horowitz, 1982b). Checking the correctness of this approach to
"quantitative" design by simulation is discussed in Section 2.4. After the
simplifications above, the linearised model is,

Js2+ﬂts+kt As f(s) i k

9 = ] + (2.21)
—(Bs+kZ) ms“+ps | B (s) kpe ko ﬂ(s)J E,(s)
D(s) Y(s) = N(s)  U(s) + E(s)
with signals,
f(s), Hgs; Angle of attack and Height (w.r.t.ground)
afs), (s Front and Back wing angles (w.r.t.body)
B (s), B (s) External Torque and Lift disturbances
and parameters,
J inertia with respect to the pivot
m total moving mass, m,+ mp+ m,
By Ky linearised friction coeffs (turning and 1ift)
kt, kt’ linearised torque and 1ift coefficients (determined

by body £ of attack, 6)
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k.. k linearised zorque and lift coefficients (determined
t ol by front wizg £ to body, a) o _
kb k[b linearised zorque and lift coefficients (determined

by back wirz £ to body, B) _
A'B coefficients with small magnitudes resulting
from linearisation

The linearised coefficients at any sperating point, op., are calculated via,

aT OF
= -0 p, =p, it .
op- op-
ktb:ﬂ A:'ghl
9p op. op.
k=& k=2
60 Op. aa Op.
k[b=@ B =
op op. 96 op.

The equations for these partial Zzrivatives of eg(2.9) and eq(2.10) are presented
in the form of the computer proczam, TEMPLATE, Appendix 3.1.

The minimum, maximum and nc=inal values of the coefficients used in designing
the controllers are given in Tabl: 2.1. (The numerical value of the lift and torque
coefficients depend on the wing's effective) angle of attack and the square of the
(effective) wind speed. The ::ructured relationship existing between the
coefficients is included in the Zzsign by constructing templates bz}sed on the
independent variables.)

2.2.6 External Disturbances

Among the sources of torque anc it (external) disturbances are,
a) The mass of the airframe is r:: balanced by the counter—weights and there is

therefore a steady—state offset :2 lift of about —8N (Table 2.2). There is a
(smaller) torque offset.

b) wind direction is not parallel :: the ground;

¢) air flow over wings is not lami-zr;

d) the wind direction and speed :: affected by the movement of the airframe. (The
resulting disturbances are state ¢ zoendent, invalidating linear plant models.)

The approximate measurement ¢’ she disturbances is treated in Section 2.3.2.
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2.3 Parameter and disturbance identification

2.3.1 Identification of model parameters

The model parameters summarized in Table 2.1 were obtained as follows.

Mass

The mass of the airframe and counter-weights was obtained by measurement and

by czlculation based on the volume of each mechanical component. The centre of

mass of the airframe is located at (¥ myr.)/(% m;) = 0.0lm (in front of pivot),
a a

using data from Table 2.2 below where the sum is over the components of the

airfreme alone.

Ineriia
The inertia of the airframe about the pivot was calculated using the standard
formula,
_ 2
J_?(Ji+miri )
(Inezzia about the pivot equals the sum of the inertia of each component (about

(2.22)

the exds parallel to the pivot and through the centre of mass of that component)
plus :he mass of each component multiplied by the square of the distance between
the centre of mass of that component and the pivot) (Fowles, 1977, p.187,
D’Scaza and Garg, 1984, p.88) and standard tables (Fowles, 1977, p.320) by
Mr & K. Moodley and checked by the author. Table 2.2 below summarizes the
comzonents of the airframe.

4

inertia mass distance
Back wings (Jﬁ) 1.013x10-3  0.4124 —0.240
Back wing servo & bracket 1.297x10-4 0.1234 —0.285
Fror: Wings (J ) 1141x10%  0.1587 40430 | ..
Fror: wing servo & bracket 4.287x10"5  0.1121 —0.400 [frame
Bod~ 5.081x10-2 0.4210  +0.080
Cen::e bracket 1.671x10-5 0.0622 —0.020
Pivc: n.a. 0290 0 Ipivot
Cou-:er weights n.a. 0.698 0 }e.w.

Table 2.2 - Airframe components for calculating inertia (inertia in kg m?2, mass in
kg, Cstance towards front positive)
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Friction coefficients

The friction coefficients at zero wind speed, o and Py Were obtained by means
of model identification:
When the flying machine is dropped with the fans off, it reaches terminal

velocity, ﬁm, and the (assumed linear) friction coefficient for lift is determined by,
by = (ma—}—mp—mc) g/h (2.23)

To measure the friction coefficient for turning, the airframe was allowed to swing
freely as a pendulum, with the height fixed. For small angles, the equation of

motion 1,
J O+, 0+k 0=k, (2.24)

The coefficients k1 and k2 depend on the exact position of the pivot relative to
the centre of mass and were identified rather than analysed (J was pre—specified).
The identification technique used was based on "macro—difference" expressions
(Eitelberg, 1988), using software written by Prof Eitelberg. The algorithms
developed by the author (Boje, 1986 and 1988) were equally applicable but were
not available under the MS—DOS operating system.

Results were, o = 0.11, with a "standard deviation" (as defined in the software)
of 0.01 (k1=0.15:i:0.02, k,=0.4340.04). The coefficient of friction due to relative
movement of the airframe and the airstream is an order of magnitude larger than

Hto
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Lift and drag coefficients

The lift and drag coefficients for the wings were evaluated by means of
wind-tunnel tests on one front wing. Lift and drag measurements were normalised
(to obtain the section lift and drag coefficients) by dividing by the free steam

. 1 2 .
dynamic pressure, 4, =5 P Vv, and by the wing area. Results are presented on

Figures 2.9 and 2.10 respectively. If ¢ is the wing angle relative to the free stream
wind direction,

lift = c i) x -21—pm x (Wind Speed)2 x (Wing Area) (2.25)
1 |
drag = c4(¢) x 5 p_x (Wind Speed)? x (Wing Area) (2.26)

Figure 2.9 and 2.10 show constrained (to obtain necessary symmetry) second
order "least—squares” fits for the data which allow easy calculation of the
coefficients and their derivatives. These curves are given (for ¢ in radians) by,



cfp) = [-5.305(¢+0.011)*+5.006(p+0.011)]sgn(p+0.011)

cylv) = 3.363 p7 + 0.0677

Figure 2.9 also shows the theoretical section lift coefficient, cp=27 (p + 0.011),

from eq(2.8). Note that the wing produces zero lift at ¢ = —0.6°
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(2.27)

(2.28)

wind |wing ., . o . o
speed |angle 0 5 10 15 20
10 0.30 0.77 1.38 1.65 2.07
15 0.45 1.65 2.90 3.70 4.10
18 0.52 2.30 4.10 5.20 5.70
20 0.61 2.90 5.10 6.35 -
22 0.65 3.55 6.50 - -
23 - - 6.80 - -
24 0.75 4.23 - - -
25 0.78 4.58 - - -

Table 2.3a Raw lift data (lift in Newtons, wind speed in m/s)

11ft coefficient

1.2 ! !

0.8

0.6

0.4

lift coefficient

0.2 st

.................

angle [deg]

Figure 2.9 — Section lift coefficient, Cp indicates measured data, solid line is

least squares curve, eq(2.27) and dashed line is theoretical value, eq(2.8)

20



drag coefficient

23

w1nd WJ.ng 0° 5° 10° 15° 20°
speed |angle
10 0.15 0.20 0.40 0.55 0.85
15 0.30 0.43 0.80 1.20 1.75
18 0.38 0.60 1.08 1.70 2.40
20 0.45 0.70 1.35 2.10 -
22 0.55 0.85 1.65 - -
23 - - 1.75 - -
24 0.60 0.95 - - -
25 0.68 1.05 - - —

Table 2.3b Raw drag data (drag in Newtons, wind speed in m/s)

drag coefficient
0.5 ! f ! ! ? !

0.4

0.35

0.3

0.2 b 3 NSRRI

00 2 4 6 8 10 12 14 16 18 20
¢ angle [deg]
Figure 2.10 — Section drag coefficient, Cq- X indicates measured data, solid line is
least squares curve, eq(2.28)

2.3.2 Disturbance Measurement

The equipment used for wind tunnel tests consists of a fulcrum and beam balance.
The whole apparatus is damped in a viscous oil as it designed to give steady-state
values. The same holds for the wind speed measurement device, which has a small
orifice to low-pass filter fluctuations in wind speed. The real experiment has large
ventilation fans operating in a confined space and complicated flow patterns are

developed. To get a feel for the dynamic behaviour of the lift and drag, a "live"
experiment was designed.
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To measure the lift and drag, the airframe was fixed rigidly in airstream of one
fan and the strain in the attachments was measured. It was hoped to measure the
lift and drag in such a manner as to determine the effect one wing had on the
other. This experiment proved to be too complicated for the equipment and time
allocated to it and expectations had to be lowered to measuring the lift and drag
produced by a single wing.

To measure the forces, strain gauges were mounted on steel from a tape measure,
shown diagrammatically in Figure 2.11. These strain gauge bridges were
connected to high gain, dc coupled differential amplifiers (built with LM308
operational amplifiers) followed by an amplifier to set offset and span (gain). The
bridges worked acceptably during calibration, providing linear, repeatable output
with acceptably low noise. The availability of cheap, high precision operational
amplifiers with large gain—bandwidth products makes this direct measurement
approach reasonable. In application it was found that the gauges were very much
more sensitive to bending than pure tension and that it was not possible to
operate them in pure tension in the airstream. As a result, new tension only
gauges were constructed out of nichrome wire, two strands being used as active
gauges and two as dummy gauges to reduce the effect of temperature dependence
in the nichrome wire. These gauges provided acceptable performance at low wind
speeds (up to about 15m/s) but the lift produced at high wind speed was larger
than expected, causing the nichrome wires to yield, giving meaningless results.

K—— Rounting block Ve

188k

K— Steol tepe Polesan/ . In

Terneion

[ Poteson gsuge
galn

l H—- Tenmslon geuge

Figure 2.11 — Strain measuring devices
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The results of two tests are presented in Figure 2.12 (Test R0 — 15m/s wind
speed, wing angle » 2°) and Figure 2.13 (Test R22 — 15m/s wind speed, wing
angle » 20°). At the end of each run, the fan was stopped and a 5N calibration
weight was applied to the drag and lift axes — the test data has been scaled to
show results in Newtons. The second test result, R22, has been used as the
disturbance input in most simulation runs and design calculations which follow (it
could be argued that the low wind speed is very roughly compensated by the high
wind angle). For front wing data, the test data was multiplied the ratio of the
front to back wing areas and reversed in time.

Further analysis of the data in Figure 2.13 (R22) is presented. Figure 2.14 and
2.15 show the magnitude spectra of the lift and torque components of the data
respectively, calculated using 6=0° and nominal gains from Table 2.1. In Section
3.3 1t is shown that some useful design considerations can be obtained if the
disturbance can be modelled as broad band noise and Figures 2.14 and 2.15
present possible broad band disturbance models with the following parameters,

|Efw)| = { m for w=[0,w] (2.29)

0 for w> w
x{

a% =132.0 N2 variance of lift disturbance (N2)
1,=19 N2/(ra.d/s) lift disturbance model power per rad/s
w, = 70.0 rad/s lift disturbance model bandwidth
|Et(w)| :{ [, for w=[0,w] (2.30)
0 for w>w
2 22 .
oy = 9.5 N°m variance of torque disturbance (N=2m2
2 2 .
7, = 0.14 N"m”/(rad/s) torque disturbance model power per rad/s

Wyy = 70.0 rad/s torque disturbance model bandwidth
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50 ‘ : test R!O drag
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...............
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time [s]

Figure 2.12 — Test R0 — Lift and drag measurement, 15m/s wind speed, wing
angle » 2°
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test R22 lift
40

1 | i ! ! !

lift [N]

40 | | | | | |

0 5 10 15 20 25 30 39
time [s]
40 | | tes!t R22 d[rag

drag [N]

0 5) 10 15 20 29 30 35
time [s]

Figure 2.13 — Test R22 — Lift and drag measurement, 15m/s wind speed, wing
angle ~ 20°
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R22 lift spectrum & approx.
! | ! !

lift

60 “x¢ 80 100 120 140

frequency [rad/s]
Figure 2.14 — Magnitude spectrum for total lift disturbance from test R22 and
equivalent broad band model

{5 R22 torque spectrum & approx.
: ! | ! !

torque

i i |

40 60 v, 80 100 120 140

frequency [rad/s]

Figure 2.15 — Magnitude spectrum for total torque disturbance from test R22 and
equivalent broad band model



29

2.3.3 Other Design Constraints

The following constraints are used in the subsequent Chapters

—50° < @< 50.0°, | & < 200° /s (2.31a)

35° < B < 40°, |B] < 200° /s (2.31b)

These values were obtained by direct measurement. As a result the following
rough allowable input standard deviations were defined,

=0p= 2.32a

0,= Uﬁ—0'5 rad ( )

0. =o0.=20rad/s (2.32b)
a P

The wing actuator dynamics were modelled by,

a(s) _ 1 _ _
= y W 170 rad/s, (o704 (2.33)

ofs) (s/w )%42( (s/w, )1

B(s) - 1 , wn5:170 rad/s, C5:0'4 (2.34)

B(s)  (s/uyg) +204(s )1

This model for wing actuator dynamics stems from the fact that each actuator is
essentially an integrator (from applied voltage to the actuator motor to position),
with some high frequency dynamics (due principally to the load and motor
inertias and the inductance of the motor armature). The wing actuator controllers
were closed with proportional controllers, with the gain set at the value which
resulted in the fastest response without too poorly damped oscillations. Thereafter
the wing actuators were considered as part of the plant. In some cases design was
executed using w =~ = 100 rad/s to account for the effect of actuator rate

saturation but in each design, the wing actuator dynamics were regarded as fixed
(i.e. with no uncertainty).
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- 2.4 Simulating the plant and controllers in closed loop using modular simulation
and Modula 2

Simulation is a fast, inexpensive method of:

a) Testing the first principles model of the plant.

b) Obtaining understanding of the behaviour of the plant

¢) Gaining confidence that a controller design will provide satisfactory results
when applied to the non—linear plant. Although the quantitative feedback design
can be based on a "linear equivalent" plant set for the non—linear plant, this is
only possible if every required plant output vector and the unique input vector
corresponding to that output vector is known and is Laplace transformable. In
this practical problem, the quantitative feedback design is based on the linearised
plant set resulting from linearisations about all reasonable operating points. As a
result, the plant uncertainty is state—dependent and the design does not
guarantee performance.

This section will outline the simulation of the flying machine and its feedback
controllers via an existing (modular) simulation method (Eitelverg, 1982),
implemented using the recently developed Modula 2 programming language
(Wirth, 1983; King, 1988). The modular features of Modula 2 allowed the
structure of simulation software to mimic the real plant—controller siructure — As
the real plant and real controllers are separate it makes good sensz to keep the
simulation of the plant and controllers separate. In this way, once the plant
(which is non—linear and uncertain but fixed) has been correctly simulated, no
alteration of the simulation code for the plant is required when the controller
structure is altered.

In explicit simulation of a system the step size must be of the same order as the
shortest time constant in the system. In control problems, there are often far—off
poles in the open—loop system which are (for example) necessary 1o make the
controller realizable and for it to have desirable high frequency proparties. These
poles are of little interest when simulating the response of the closed loop system
to disturbances or inputs but must not make the simulation of a stable system
unstable. It is well known (Eitelberg, 1983) that implicit methods czn be applied
to stiff simulation problems where explicit methods fail.

The simplest implicit method is the implicit Euler:
Given the continuous time system,

x = f(x,t); x(ty) = x, (2.35)
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The implicit Euler solution is given by:
Xy = X+ AIE L ey
= x, + At (f(x, )+3x— (zkH—zk))
Xty
= x + At (I- At 1), (2.36)

(J; is the model Jacobian evaluated at time t; . )
For numerical reasons this is actually programmed as:

a) Solve : (I/At—J,) Ax=f

b) Add =%t Ax (2.37)

For the modular simulation using implicit Euler the following are defined
(directly from Eitelberg, 1982):

"module state differential equation”
x. = f.(x.,u),1=1,...,m (2.38)
e B A L

"module output equation"

Y, = gl(gl,l_ll), i=1,...,m (2.39)
"connection and external input equation"
u = b.(y;,-Xt), i=1,0,m (2.40)
"module Jacobian"
afi ()—(i’gi)
J=—-- (2.41)
Ox.
i
"module input sensitivity" )
F .= a'%(}_("gl) (2.42)
u1 631 )
"coupling sensitivity" (provided there are no algebraic loops)
Ou. Bh 0g. Og. Ou.
1 _ i R (2.43)
Ox; 32 Ox;  Ou; 0K,

The language features available in Modula 2 (and not in older languages such as
FORTRAN) which can enhance the development of such modular simulation
programs are:

a) Dynamic variable definition — allowing very large problems to be solved on
small machines.

b) Separate compilation of Modules — an improvement on Pascal.
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¢) PROCEDURE TYPES - allowing modules to be altered at run—time

d) Concurrency — allowing modules to be solved in parallel

e) Highly structured code with strong variable types (and modern language
support environment) — enhances the development and maintenance of software.

The structure of the Modula 2 simulation program is conceptually:

¢ )

DEFINITION MODULE MatrixUtilities;
TYPE Vector;
TYPE Matrix;
(* All matrix operations are defined here *)
END MatrixUtilities.

(* ")

DEFINITION MODULE LocalModulel;
(* Same structure for each i = 1..m *)
FROM MatrixUtilities IMPORT Vector, Matrix;

PROCEDURE ~ SolveAugmentedSystem (

Input : Vector;
VAR AugmentedState  : Matrix);
(* Solve : @, [x;,X] = [£;, Eu,i,k] for AugmentedState, [6x,,X;] %)

(* Note that the IMPLEMENTATION  MODULE must make its own local
copy of the augmented state vector for use in
UpdateStateVector. This means that the AugmentedState  above
can be modified / discarded by the global program *)

PROCEDURE  UpdateStateVector( ‘

InputIncrement : Vector;
VAR Output : Vector);
(*  Evaluate : Agi = &Ki + gi &gi

Filen) T X" A%

EED LocalModuled.

( %)
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MODULE Global;

FROM MatrixUtilities IMPORT Vector, Matrix ‘
(* and matrix routines *);

IMPORT LocalModulel  (*,...... , LocalModule  [NumberModules]  *);
CONST
NumberModules = 2; (* In this problem ¥)
(* *)
PROCEDURE  SolveGlobalEquation
(AugState : ARRAY O0F Matrix;
VAR ModuleInputIncrements : ARRAY OF Vector);

(* In this PROCEDURE, construct coupling sensitivities and solve
for module input increment vectors.

m Ou. m  Ou.
fu, ~ 3 Lk X by = 3 ik b, i=l.m %)
j=1 0z y j=1 0x; 4
END SolveGlobalEquation;
(* *)
VAR SolveAugSystem  : ARRAY[1..NumberModules] OF

PROCEDURE  ( * Tnput *) Vector,

VAR E* Aug. State *) MNatrix);

VAR UpdateState : ARRAY[1..NumberXodules] OF
PROCEDURE  ( * TInput increment *) Vector,
VAR (* Output *) Vector);

VAR
Input : ARRAY[1..NumberModules 0F Vector;
Output : ARRAY[1..NumberModules 0F Vector;
InputIncr : ARRAY[1..NumberModules 0F Vector;
AugState : ARRAY|1..NumberModules 0F Matrix;
VAR
Module, Step : CARDINAL;
StepSize, Time, StopTime : REAL;
* *)
BEGIN
(* Initialise local module procedures, variables etc *)
SolveAugSystem[1] := Local¥odulel.SolveAugmentedSystem;
?gdateState[l] := Locallodulel.UpdateStateVector;

etc  *)
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size control etc.

k=1,2,..%)

(* IN PARALLEL TIF POSSIBLE
(* OR AS CONCURRENT PROCESSES

(* Do the required simulation — adding step

required - *)

Time := 0.0;

Step := 0;

REPEAT
Step := Step + 1;
Time := Time + StepSize; (*Denoted
FOR Module := 1 TO NumberModules D0

SolveAugSystem  [Module]
(Input[Module],

END;

AugState [Module]

SolveGlobalEquation (AugState, InputIncr);

FOR Module

:= 1 T0 NumberModules DO

(* IN PARALLEL TIF POSSIBLE
(* OR AS CONCURRENT  PROCESSES

UpdateState  [Hodule]

BN (InputIncr|Module], Output [Module]
UNTIL Time »>= StopTime;
END Global.
(*

Figure 2.19 Modula—2 modular program structure

‘The actual programs are included in Appendix 3.

¥ K

¥ K

~——
[
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CHAPTER 3 — QUANTITATIVE FEEDBACK DESIGN
— THEORETICAL CONSIDERATIONS

3.1 Introduction to the principal ideas of Quantitative feedback design for SISO
systems

A two—degree—of—freedom control system is shown in Figure 3.1. The plant is
uncertain and given by the set, # = {P(s)}. There are unknown external
disturbances, & = {E(s)} affecting the plant output via #* = {P*(s)}. Feedback
signals are contaminated by sensor noise, # = {N(s)}. Feedback (via the
controller, G(s)) is only required in order to reduce the effect of plant uncertainty
(and non—linearity) on the plant response, to reduce the effect of disturbance, E,
or to stabilize open—loop unstable systems. The command response of the plant
can be modified by means of the pre~filter, F(s).

G E*(s)
R ps) WT— 6(s) UL pes) to— Al
[]«JFT N(s)

|

Figure 3.1 Two degree of freedom feedback structure

Quantitative feedback design for SISO and MIMO systems, given quantitative
specifications on the plant output, Y(s), is well established (see Horowitz, 1982,
for a list of references). The paper by Horowitz and Sidi (1972) probably gives the

clearest introduction to the design technique. SISO quantitative feedback design
proceeds as follows: ‘

a) Specifications to achieve desired command following

(5) = Y(s)/R(s) = ESIG(IP(s) (3.)

T
Y/R 1 + G(s)P(s)

and modified disturbance, E*(s), rejection

Ty ge(s) = Y(s)/B*(s) = —L (3.2)
of the form, HGG)RG)
A(u) < | Ty jg(w)] < B(w) (33)

and

Ty /gl < Cw) (3.4
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are assumed given. L(s) = P(s) G(s) is the open loop transfer function. Horowitz
(1963, Chapter 9) and many others have treated the problem of obtaining such
specifications from step response specifications, knowledge of the stochastic
properties of the disturbance (see Section 3.3) etc. Magnitude specifications
eq(3.3) and eq(3.4) alone are sufficient for minimum phase systems to achieve
desired time domain behaviour but phase specifications must be included for

non—minimum phase systems.

b) Select a number of discrete frequencies, w,, at which design boundaries will be
checked and an arbitrary nominal plant PO. Note that the choice of the nominal
plant does not affect the outcome of the design. The free choice of nominal plant
1s a very attractive feature of the design as it is a "handle" (by which the plant
set is held) rather than representing a most likely (nominal) operating point. The
freedom of choice of the nominal even allows one to chose a nominal outside the
plant set if the extra conceptual difficulty can be justified by other considerations.
(The idea of a "handle" originated during the writing of the CAD package,
"DESIGN" by Prof E Eitelberg and Mr G Sutcliffe.)

c) Construct plant templates at these frequencies (Z = {|P(jwi)|dB,
Arg(p(jwi))}). At least since Horowitz and Sidi’s 1972 paper, quantitative
feedback design has been most easily executed on the Nichols and inverse Nichols
charts where, 1Llyp = |P|dB +|G|yp and Arg(L) = Arg(P) + Arg(G) (i.e.
G can shift but neither rotate nor change the shape of the templates).

d) From the command response bounds, eq(3.3), construct corresponding bounds
(at each wi) on the nominal open loop transfer function, L0 = PQ G, for the
nominal plant, PO’ by manipulating Z on the Nichols chart to ensure that the
closed loop uncertainty is within acceptable bounds, AJL/(14L)| < B(w)-A(w).
(The final specification, eq(3.3) is achieved using prefilter, F.) Call these
bounds,

By/Ri = {LO : A|L/(1'*‘L)| < B(Wi)*A(wi)} (3.5)

e) From the disturbance rejection bounds, eq(3.4), construct corresponding
bounds (at each wi) on the open loop transfer function, LO’ for the nominal plant,
PO, manipulating the plant template on the inverse Nichols chart. Call these
bounds,

BY/E* i~ {LO : ‘Y(jwi)/E*(jwiH < C(wi)} (3.6)

f) Find a controller, G, so that Ly = G P satisfies both its bounds, BY/Ri and



37

BY/E* ; at each frequency, w,. In the QFT literature usually L0 is shaped (found)
and then G=L,/P, is obtained. This can lead to inconvenient controller
realizations. The package, "DESIGN" allows L, to be shaped by defining L and
selecting and adjusting G.
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3.2 Some additions to SISO QFT — Disturbance entering through part of the
plant and input specifications

The quantitative feedback theory (QFT) presented in the literature has
concentrated on achieving specifications on the plant output. QFT has been
criticized (by Doyle, 1986) for not "explicitly including" input specifications
during the design. Horowitz’s reply (1987) points out that the QFT does provide
a "price list" of the cost of feedback in terms of bandwidth. Quantitative
specifications on the plant input can be included in QFT but there are some
implications of having to meet both input and output specifications (especially in
multivariable control problems). Plant uncertainty reduction and disturbance
rejection are typically achieved at the expense of high loop gain
(|L(s)|=|G(s)P(s)|»1), over a larger frequency range than the frequency range
over which feedback benefits are required. The amplification (to the plant input)
of disturbances, command inputs and sensor noise resulting from high loop gain
may not be acceptable in physical plants due to saturation or wear at the plant
input. As the performance of any control system design is limited by the power
which can be delivered by the plant which is to be controlled, input specifications
should be included in the design of practical controllers. (Plant input saturation is
not always catastrophic if care is taken during the design.)

The plant input is often ignored in practical plants — the ubiquitous PID
controller (or the one mentioned in the Introduction) is expected to provide large
gain at high frequency which will invariably saturate the plant input. Plant
maintenance engineers find that actuators must constantly be replaced unless
they "detune" the derivative gain.

For a fixed plant, fixing the disturbance to output behaviour obviously also fixes
the disturbance to input behaviour, but in ‘uncerta.in design, if the specifications
allow some design freedom, this can be used to select a controller to satisfy both
input and output specifications. This section deals only with disturbance — to —
plant input specifications from which other input specifications follow easily.

SISO plants have disturbance specifications of the form,

Output,
S| PEjw) | 1 1 [P*|| L
|Y/E| = 17[8—05}’ =P |1l = ,(;‘ | |15] € 2(w) (3.7)
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Input,
S Fliow e

Unlike the loci of constant |L/(1+L)| (Nichols chart) and loci of constant
11/(14+L)| (Inverse Nichols chart), loci of constant |U/E| and |Y/E| cannot be
plotted on the rectangular grid of log—magnitude and angle of the open loop
transfer function, L(s). The two forms used for each of the eq(3.7) and eq(3.8)
above highlight the fact that standard QFT design using templates can only be

/B - ~G w)P

5431

. . L . . 1 :
carried out on the Nichols [m] or inverse Nichols [ﬂ] charts. To design
quantitatively requires using the worst case magnitudes and the second form may
then be more economical than the first because of possible cancellation between P
and P*. For example, using eq(3.8) for input specifications, the constraints are,

1 sup |P*| P* :
|G| oI <b/ DF (2 and, —E <b/ (P, P*)e(? #)| 7 respectively.
Neither are able to utilize possible cancellation between P* and (1+L). In most

plants, at least at low frequency (P,P*)e(?, %) is an ordered pair since the
uncertainty is structured. The design should if possible make maximum use of the
structure of the plant. If suitable CAD tools exist to draw bounds on Lo(jwi)

* ®
using H—_Hz{ <a(w) or ‘?—EE‘ gb(wi) directly, over design is avoided in the

drawing of the bounds. One method would be to evaluate the left hand sides and
test the inequalities for each frequency w, of interest, for each (P,P*) of the
plant set (or a representative subset) and over a sufficiently fine grid of
Lo=(1Lq 1, Arg(Lg)). This is the *Afghan method’, because "its effrontery evokes
the Soviet Union’s approach to Afghanistan" (Golubev, 1983).

Note that if it is required that A|L/(1+L)| ~ 0dB then |GP| =~ |1+GP| and
from eq(3.8),
sup p*

. |P*
[U/B] ~ VT‘ $(PPH)e(2, )| P

< b(w) (3.9)
showing that the plant input is unavoidable (and determined by the plant design

alone) at those frequencies where high loop gain is required for other purposes
(sensitivity reduction, disturbance rejection and stability).

Finding bounds on transfer functions like |G|

_17‘ (plant  output
(measurement) noise to plant input) and JG, ‘_T’ (plant input disturbance to
plant output) is easy using standard Nichols and inverse Nichols charts as there is
usually no uncertainty in G and inequalities can be tested along lines of constant
|G| = |L0|/|P0l since IPO(jwi)| is fixed for w,. For a fixed value of |G| the
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template is moved horizontally across the Nichols or inverse Nichols Chart (i.e.
keeping |G| constant) and the region in which the respective inequality is valid
are marked. This process is repeated at as many values of |G’ as are required to

construct an accurate bound.

When input specifications are included, it should be clear tzat it may not be
possible to solve a given problem — the upper and lower bourds on LO(jwi) can
have no intersection. In this sense, specifications resulting from input limits are
like performance specifications on non—minimum phase plani: — they must be
compatible with the plant capability.

If the power at the input is the only limitation, the available irput power must be
divided between sensor noise and disturbance unless the relativ2 phases of sensor
noise and disturbance signals are known.

- The design for sensor noise is very similar to that for distuz>ance and |U/R|
specifications constrain the design of the pre—filter, F(s), after :ae closed loop has
been designed. In some feedback problems, the transfer of the external reference
to the plant input may be severely limited by the disizrbance reduction
requirements of the closed loop. In Horowitz and Liao 12986), non—linear
compensation is proposed for a saturating, unstable plant in -rder to block the
command signal to plant input when all the input power is required to reject
disturbances so that closed loop stability can be maintained.
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3.3 Obtaining Plant Input Specifications for Quantitative Feedback Design

Obtaining frequency domain input specifications from the time domain or from
knowledge of stochastic behaviour of the plant signals is treated in the literature
(Horowitz 1963, Chapter 9). In the case of the flying machine it will be seen that
external disturbances enter the plant such that P*(s) = llzP(s) and input

specifications will be on 11E|L/(1+L)|’ with wide band noise modelling the

disturbances.

Consider a dominantly second order closed—loop system, with the model,

T ( ):G(SQP*(sgz 1 310
U/EY ST H (s k [(s/wn)2 + 2¢s/w + 1] (210)

: : . : 1
(The impulse response of disturbance—to—plant input is tu/e(t)zf {TU/E(S)}.)

If the external disturbance is stationary, zero mean, band limited white noise and
ergodicity is assumed,
&{e(t)} =0 (3.11)

2 .
|E(jw)|“=7n w= [O,wx],wx» W

3.12
=0 w>uw ( )
X

(One sided spectra will be used.) The noise bandwidth is much larger than the
cut—off frequency of TU/E' The external disturbance has a variance of 02 =N w,_.
E X

The resulting plant input is,
%
u(t) = J el elir) dr (3.13)
and expected value is,

#{u(t)} = g{ J Ot ty (") e(t7) dT}

t
- JU ty/o(7) E{e(t~7)} dr

=0 (3.14)
(A pre—condition for exchanging the order of integration and expectation is that
the integral must remain bounded (Cooper and McGillem, 1979, p.179) which

excludes the possibility of a non proper system (i.e. a system with an excess of
zeros over poles).)
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The power spectrum of the plant input ‘is given by,

)12 = 1 w= [0,w]
| Ug(iw)] 2 [(1_(w/wn)2)2 + @fo )] 7 X

= 0 w>w

(3.15)
The variance of the plant input resulting from the zero mean disturbance is given
by the auto—correlation of the power spectral density at zero time separation,

o)} = Ry 0) = [ 0 d

Yy 1
= n dw
(A (/o 2 + (2¢wju )]
% Jo (1~w/w)?) + (2¢w/w,)”
(since jw;'; cdwr 0ifw, > w )
Substituting x= w/u)
g w2 [° d
(7= en 3 Jo (4¢? —2) 21
= w, k%fz (3.17)

If the standard deviation of the input must be small, keep Wy small, k large and

(large. Eq(3.17) shows explicitly what Horowitz has always said that large
bandwidth (and the resulting amplification of sensor noise to the plant input) is
the price paid for feedback benefits.

Consider the variance of the plant input derivative (denoted, subscript dot).
The power spectrum of the plant input derivative is given by,

|U =

(o)D) + (20wfe )]

= 0 w>w
X

dot E(jw)|2 = =[0,w,]

(3.18)
The variance of the plant input derivative resulting from the zero mean

disturbance is given by the auto—correlation of the power spectral density at zero
time separation,
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([0 = n,,0) = J, tooa? av

w 2
| X Y dw
J 0 K [(~(wfw ) + (2<w/wn)2]n
® 2
3 e dw 3.19
5, (1wfw))? + (2Cwfw)’ .

Substituting x=w/w,
)

® 2
2 3 X
&{u(t)"t = w J dx
(e ni%o;7‘+(4<2—2)x2+1
3
- A 510 (3.20)
@ 1 T @ x2 d £(¢)
The integrals, J dx = — and J X =
0 radaler 4c Jo xPrEact-2)xi

(evaluated numerically) are shown as a function of ¢ in Figure 3.2.

The disturbances acting on the flying machine can be regarded as roughly
band-limited white noise (this motivates Section 2.3.2) and the disturbance to
plant input transfer functions will be seen to have the form of eq(3.10). Equations
(3.17) and (3.20) will therefore be useful in the flying machine controller designs,
described in Chapters 4, 5 and 6.

Integrals
3 T T T T T T T T T

o f(zeta)

1.5 |- s

1 ]

0 i 1 ] I !
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 3.2 — Integrals from eq(3.17) (solid line) and eq(3.20) (dashed line) -

1 |
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3.4 MIMO QFT design with disturbances and plant input specifications

3.4.1 General equations for disturbance to input design

Following on what was shown in Section 3.2 for SISO plants, this section shows
how disturbance to output and disturbance to input specifications can be included
in MIMO design.

Consider the n—input, n—output multivariable problem shown in Figure 3.3, with

disturbance to the plant output, IY/E(S)

and dlsturbance to the plant input, XU/E(S),
(I+GP) U/E:'QB* (3.22)

(Iis nxn identity matrix).

disturbance E(s)

*
filtered plant  ——1 2()
reference input output
R (s), i) —— Y X
6(s) > P(s) 2, —>
controller plant

Figure 3.3 — Feedback loop with significant disturbances

The (disturbance) specifications are assumed to have the following form,
Ty (09l < [ = ) (outpur) (3.23)
lVU/E(J“Ul ij° [B(U)]ij = bij(w) (input) (3.24)
The absolute values are taken element by element.

3

There may be other specifications, for example on command response and on
sensor noise to plant input, but these can be incorporated in an obvious way. As
is the case with output specifications, if one attempts to obtain XU B explicitly,
all the entries of G and of P affect each element of XU E Following the ideas of
i/(;rom::e(i&r)iz; liif2lti>zi,tlfor a diagonal controller, G = diag{gy..g}, IY/E and
/E P Y,

-1 ~1

(P + G) /E =P "P*

. IY/E = (Q_ + gd)_l (ng* - Q“n IY/E) (3-25)
(g—l + P) 'YU/E = __E*
Vg = (G + By (B*+ P, Vyy ) (3.26)
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(where the plant has been expressed as the sum of matrices formed by its diagonal
(P d) and non—diagonal (P ) elements, P =P, + P ,Q = 1’__1 =Q4+Q, Q*

= Qd P ~Ip* and [Q] a — the inverse of the elements of the plant inverse).
i
Using eq(3.26) above, quantltative design to the plant input can be undertaken by

substituting the bound, B for XD B when the latter appears on the right hand
side of the equation and designing to one of the following inequalities,

Vgl €L 1GT+R )T IR+, BT < by (3.27)

or,
1 -1

(g Lap,) ¥ L[ (el

2 Pl B 1y < by

> (3.28J)
(depending on whether the design will be undertaken as a G/(14L) or
GP*/(1+L) type design). The advantage of eq(3.25) and eq(3.26) for design is
that only diagonal matrices are inverted (after the plant inverse has been
calculated).

IXU/EIij < \ij d)

A very significant difference between eq(3.25) and eq(3.26) above is that the usual
(output) QFT design equation, eq(3.25), makes use of the inverse of the elements
of the plant inverse, while the input design makes use of entries of the plant
matrix directly. As a result, if design is to be attempted for both input and
output specifications, the plant set is not the same for the two sets of constraints
(unless the plant is diagonal, in which case the problem is n — SISO designs).
There appear to be two possibilities:

i) Draw two sets of boundaries for the input— and output— specifications using a
nominal plant and the inverse of the nominal plant respectively. When the
controller is designed, two nominal open loop transfer functions corresponding to

the two nominal plants must be shaped- simultaneously for their respective
boundaries.

ii) Select a single nominal plant, not necessarily an element of either the plant set
or the set of plant inverses, and draw boundaries for that nominal, based on the
input and output specifications. The loop—shaping then uses the chosen nominal.
This second approach will be especially attractive in a plant with small
off-diagonal elements. This approach has been employed by the author in
tackling the flying machine designs of Chapters 4, 5 and 6.

The QFT improvements of Horowitz (1982b) are incorporated into the design: As
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a controller is designed for a loop, the loop is closed and the problem
re—formulated to make use of the additional information which becomes available.

3.4.2 The case of a 2—by-2 plant
To the 2—by-2 P, with
disturbance~to—output P* and closed loop disturbance to output and input

clarify ideas above, consider a plant,

specifications, eq(3.23) anc =q(3.24) respectively.
If the controller is diagonz: and the first loop (gl) is closed first, the design

problem for the first loop is as follows.
The output specification is.

U T B U SR B PP
Qp | |51 117120 1ayy gy
1 1|7 = o, g (3.29)
S L R P 51 G99
Q91 999 S R 2 I vl o
99 99
*
[tyy] = LU - e [ I 1l 1<
1+q18)  --9y18q g9 21|~ [1+qqq8¢ || T1L1 qqo[ 721} = 711
or,
( ES
1] 91181 |91 | 1
1t (] < |+ = + .| <a (3.30
L0718y || 1*agg8: 1]a3q] |aqp| 721 771 )
and,
q*
Ity - 12 9 1 ¢*. |+ L1, |,
174118y ="3181 dyp 22|~ |Trag g || F121 gy, [722] - 12
or,
r ES
)] 91181 [ |949] | 1
[t o] < |= | + Baa| < a = 3.31
1207 8y || 1ragg8: |44y (Qpg| 22| 7 12 (8:31)

Notice here that although <+

design equations, the use ¢’

a.., instead of the actual t

iy

The input specification is,

Lo .2

er—design can be reduced by selecting one of the two
the Schwartz inequality and the use of specification,

fer function value, tij’ results in over design.

1 N ~ o~
g, V| P11 P2 V11 Vi PI1 P

1] == (3.32)
0 — * *

2| Pog Poz |Vo1 Voo P21 Pag

p* -
v | = |81 81 81 107

11 1+p11g1 :_;llgl 21| - 1+p11g1 p11|+|p12|b21J Sbll
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or,
*
|viq] ¢ Putt 1P, P12 boy| <D (3.33)
10 | Tpyggy ||| [Paa] 21 M
and,
PigB1 P19y 81 [ "
] . Vool ¢ |5 | IPT9l*1P1gIPgg| < byg
V45] Tob, 18, Topy.8; 22| © |Topyqgy| P12 F121722) =
or,
*
vl < P1181 || |P12 . P12 byq| < by (3.34)
12021501481 || |P11] |P11

The first loop is designed to satisfy equations (3.31) to (3.34). This loop is closed
and the design equations become,

95 .
|t2i| = 1731? $ags (i=1,2) — output specification (3.35)
292
Qs
|tosl = qu—lg < ag. (i=1,2) —output specification (3.35)
292
with,
11 91 1

43 " dgg  Gy9d9y 1*04184

* *

o, 1% %i g

21792 |y " a5y Ty g
and,

8P
e i = —i i i 3.36

Vol = Tp3g, <¢bys (i=1,2) —input specification (3.36)

with, ‘

,_ - _P1oPor Py
Py = Poo P11 1*Py18;

p*. = p*. ——p2—1——p11g1 p*.

21 21 P1q 1+p11g1 11
Now, a little algebra or thought indicates that P5 = 45 and Py = qu (since the
whole design has been reduced to an exact SISO problem). In the second stage of

the design, there is a single plant set and the design is very much more simple.

3.4.3 Stability

The poles of det((I + G _E)_l) and of det((I + P Q)_IB G) are identical so that
stability need only be assured using input or output design. (This is analogous to

the SISO case where '1_41-‘5 and % have the same poles).
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PROOF

Let, G(s) = X(s) X(s) " and P(s) = D(s)” N(s)

with X(s), Y(s), D(s) and N(s) non—singular polynomial matrices (Kailath, 1980).
Then,

-1

(3.37)

and,

(3.38)

Equations (3.37) and (3.38) indicate that the right hand plane poles of the closed
loop system are determined by the zeros of det(D Y + N X) (see Nwokah, 1986,
for a polynomial matrix based approach, similar to the above, for achieving

robust stability without using singular—value type robustness measures).

Eq(3.37) shows that right hand plane poles in P (i.e. in det(D)) result in
non—minimum phase behaviour at the plant input.

Eq(3.38) indicates that right hand plane transmission zeros (Kailath, 1980) in P
(or equivalently in N) must appear in the closed loop input—output response since
det (DY + N X) cannot sensibly be designed to cancel such zeros.

An interesting hypothesis which will not be investigated here is as follows. Since
the design method is conservative, if stability alone is required over the plant
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uncertainty set, only the easiest of stability of the input or of the output need be
satisfied. '

The achievement of stability using this design method can be delayed until the
final stage of the design although one would usually try to design (in the 2x2 case)
(1+g,qy¢) and (1+g¢pyy) to be minimum phase so that no additional difficulty is
obtained in the design of the second loop. Doyle’s paper criticizing QFT (1986)
failed to note this point.

An arcwise connected set $={P} is defined such that V P,,P, 67, P, can be
perturbed to P, such that at any point on the path 3 arbitrarily small
neighbourhood in which all points on the path have arbitrarily close pole—zero
structure (Tzafestas, 1984). For each arcwise connected sub—set of the plant set,
stability only needs to be assured for one element (of that subset) to guarantee
stability for the whole subset if there are maximum magnitude bounds and they
are satisfied. In other words,

"t is worth noting that even if the above proof [based on Schauder’s
fixed—point theorem] were not available, it would not be disastrous
for this synthesis theory. It would only be necessary to guarantee that
one me A [set of parameterisations of the plant], the system is stable
and minimum phase. For then, this would be so Vme .4 because by
the continuity of the poles (and zeros) with respect to the
parameters, the right hand side [of the equation of the transfer
function] would have to be infinite (zero) at some w in order that for
some me 4 the system should be unstable (have a right half plane
zero). However this synthesis procedure by definition precludes this."

Horowitz, 1979

3.4.4 Some comments on the designs executed in this thesis

11

In the design of controllers for this research the following general points emerged:

a) At sufficiently low frequencies very great uncertainty reduction, disturbance
rejection and input—output decoupling can be achieved by having sufficient gain
in the loops which are to be closed. The constraint on the loop gain is as a result
of position saturation limits at these frequencies — this limits the maximum
controller roll-off and hence the low frequency gain (Eitelberg and Boje, 1989).

b) At intermediate frequencies (around the gain and phase cross—over frequencies
in single loop designs) there is real design difficulty to achieve stability and large
bandwidth while simultaneously limiting input levels.

c) At high frequency, actuator rate saturation and roll—off due to unmodelled
dynamics cause some theoretical difficulties: Does it matter that the loop gain
goes to zero very rapidly after the phase—ross over frequency? What is the
consequence of the actuators not being able to respond in a linear fashion over the
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bandwidth of the loop transfer function? To avoid such problems one might
modify Horowitz’s "Universal high frequency bound" (UHFB), (Hofowitz and
Sidi, 1972) by making a bound which results from the plant high frequency gain
uncertainty and infinite phase uncertainty. Obviously this latter bound precludes
the achievement of "arbitrarily small sensitivity over arbitrarily large bandwidth"
but such a desire is practically unreasonable (though theoretically interesting).
Figure 3.4 compares the Horowitz UHFB to this bound for a single loop design
with |L/(14+L)| < 3dB and AP(ju) = 10dB.

Figure 3.4 — Universal high frequency bounds with and without phase uncertainty
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CHAPTER 4 — CONTROLLER DESIGN BASED ON DECOUPLING OF THE
DISTURBANCE-TO—OUTPUT BEHAVIOUR

4.1 Design

4.1.1 Introduction and design equations

The first attempt at controlling the flying machine was based on the heuristically
attractive notion of diagonalizing the plant model structure in some way (not
necessarily by canceling the plant matrix by its inverse at the nominal point), so
as to allow independent, single loop controllers to be designed for the height h(t)
and pitch angle, 6(t).

If

)

i) the wing actuators for the front and back wings are fast (a = q, B = f),

ii) the reaction torque on the body induced by the angular acceleration of the
wings in turning can be ignored,

iii) the coefficients ky=kg+ ky andk, =k, -k, and

iv) the terms, A and B in the model are small and can be ignored,

then the model, eq(2.21), can be.written for the wing angles with respect to
ground (implicitly with respect to 4(s)),

s 0 |[06) [k Ky |[el)ras)]  (EyGs)
= +

0 msttus Hs) kg kg |[B6406)]  |BAS)

(4.1)
14
& ANGLE
G X FronT | X 9
0 AOTOR 7
N PLANT
[=]
H . . - A
ref N e B Back | P H JEIGHT
a AQTOR — 7

Figure 4.1 — Disturbance—to—output decoupling controller
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Two single-loop controllers are designed for the problem (shown in Figure 4.1),

Jsz+pts 0 0(s) _ koUg(s) ) Et(s) (42)

0 msteus|[H(s)| [kgUg(s)|  [By(s)

or,
b(s) = P (s) U gls) + Pg(s) E,(s) (4.3)
with,
k
_ 8
PH(S) - JSZ-HLtS
and,
H(s) = Pg(s) Ug(s) + Pg(s) E[(s) (4.4)
with,
k
S
PH(S) msz-l-pes

to achieve disturbance reduction and command following of some sort. k 9 and kg
attempt to model the gain uncertainty in the numerator, N, for quantitative
design by using equivalent plants,

it SR 7 A8
6(2i-1) JS2+# S f(21) Jsz—{—p S
¢ ¢
SR ALY 1Ay S K g1/ % a0
H(2i-1) msz—i—,ugs H(2i) msz—i—,ugs ‘

(i=1,..,NumberOfPlants). This procedure doubles the number of plants in the
plant set and selects the extreme gain deviations away from the nominal plant
while preserving the relationship between derived variables. The plant set of
eq(4.1) is not necessarily a subset of that of eq(4.2) and some approximation has
been made. A large proportion of the gain uncertainty comes from squaring the
uncertain wind speed in the lift and drag equations, eq(2.25) and eq(2.26) and the
procedure above will correctly take this uncertainty into account. The singular
value based "modern" control theory (Doyle and Stein, 1981) uses a more
arbitrary uncertainty parameterisation than the one above. This makes it difficult
to justify using such methods for solving (by design) practical problems.

The multivariable plant is controlled by setting,
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(4.5)

where, ;x(s) and 23(5) are the front and back wing command signals respectively.

Remembering that the feedback path has a sign inversion, the controller with
respect to the input—output behaviour is given by,

1
k... -k g.(s) 0 10
o(s) - [“ef0 Fevo| (B0 .
koo Kepo| |0 &g(®)] |10
1 | ko 89(8)kg Kepo 8x(S) (4.6)
- L .
0
“kpe0 8g(s)tky Kygq 8y(S)
with,
ko=kysok motKenokeo

4.1.2 Right hand plane zeros in G(s)

The equivalent controller G(s) in eq(4.6) has right hand plane transmission zeros
if det(G(s)) = gH(S)[gﬁ(S)_(ktbO_kth)] is non-minimum phase. (Clearly both
gg(s) and gp(s) will be designed stable and therefore G(s) will be stable.) gH(s)
will be designed minimum phase and but [g,(s)-(k, -k, g)] 18 non-minimum
phase if —gg(jw) encircles (-(k; ,-ki),J0) on the Nyquist diagram. For a low
order controller, this condition is equivalent to requiring ga(s) < (ktbo—ktfo) =
17.9 (see Figure 4.2). Limiting the gain of the pitch angle controller avoids a
change in sign of [g(l(s)_(ktbo_ktfo)] between §=0 and s=w, showing via the initial
and final value theorems that the controller is minimum phase (or has an odd

number of right hand plane transmission zeros). This result on non-minimum

phase behaviour is recalled from a publication the title and author of which have
not been traced.

The (2,1) entry of eq(4.6) is non-minimum phase if [ktfo/ko g 4liw) — 1] has a
right hand plane zero, or equivalently if — gé,(jw) has an encirclement of
(_kO/kéfO’ j0). For a low order controller this requirement is go(jO) < kO/kaO =

122. This is a weaker condition than for no right hand plane transmission zeros in
G(s) above.
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Figure 4.2 Conditions on -gs) for [g(5)-(k;pokigo)] to be minimum /

non-minimum phase.

The (1,1) entry of G(s) in eq(4.6) will only be non minimum phase if

[kZbO/kO gg(jw)] encircles (-1,j0) on the Nyquist diagram. For the chosen
nominal and a low order controller, this would require g 9( jw goc) < 40, where w
is the phase cross over frequency. This possibility is unlikely since at the phase
cross-over frequency, a roll-off of about -40dB/decade must have been sustained
for about 1 decade (Horowitz, 1963, Chapter 7), suggesting a steady state gain (of
gg) in excess of 70dB would be required, making it unlikely that this function will
be non minimum phase (see Figure 4.3.).

T Jm
=kmolkg

\ =
<]

Figure 4.3 Conditions on g s) for [k[bo/kogg(jw)—l} to be minimum /
non-minimum phase.

It is not clear what the implications of having a controller with right hand plane
transmission zeros but with minimum phase paths is. Eq(3.38) indicates that the

transmission zeros will appear in the input—output response.

Specifications
In order to have some specifications note that for good disturbance rejection,

/
6 (s)/E,(5)] = "k9 |l ' EZI;) (4.7)
t
P,/k P
[1(s) /E,(s)| = H/H —|H| [ ;Hu> (4.8)
ms +£

must be as small as p0551b1e This is achieved for a low-passing P (s) by ensuring

that }1—%[ 1s small until |P0| becomes small, or equivalently by making the
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open loop bandwidth as large as possible. Three facts prevent the realization of
high (infinite) loop bandwidth (with attendant infinitely good feedback
properties) in this practical problem:

i) The plant has unmodelled dynamics at high frequency and an uncertain excess
of poles over zeros. The plant templates resulting from this uncertainty become
too wide at high frequency to allow the open loop transmission to roll off without
violating the stability constrains if that roll off is initiated at too high a
frequency.

ii) Any non-minimum phase behaviour (from right hand plane zeros or transport
lag) result in so much phase lag at high frequency that stability becomes
unachievable if the bandwidth specified is not compatible with the plant
behaviour.

iii) The high controller gain required to achieve high bandwidth will invariably
cause saturation at the plant input.

2

Examine the inputs, UH and UH

u y(t) _ kie/k o kS | | alt) + ot) (49)

ug(t) k po/ kg kp/kg | | B(t) + 4(t)

The specifications, o = oﬁg 0.5 rad (eq(2.32a)), Ua' = % < 2 rad/s (eq(2.32b))
and 0, < 0.15 rad, for the nominal plant (which has high gain) translate very (!)
roughly to,
% (0.7x0.5)x/ k2. 112  —
oy, (0.7x0.5)xy/ ki gk o = 18.0 (4.10)
o, w(07x2.0)x/ kg 4k2 = TL2 (4.11)
4
~ X X 2 =
Oy (0.7x0.5)xy/ k£f0+k[b§0 = 67.2 (4.12)
0. % (0.72.0)xy/ Ktk o = 269.0 (4.13)
“H

This is based on the variance of the sum of two independent, zero mean random
variables (which o and § are not!), x and v,
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#{(ax+by)?} = 26 (=} + b2g{y2} + 2ab&{xy}
= a2é"{x2} + b2é"{y2} (4.14)

and allows half of the available input power for each output (the factor

0.7 % 1/42).

One could attempt to formally calculate the variance of the modified inputs, for
example,

50} = 80k e+ 8) - k8 0))

1
L2 2 2 2 2 2
= X5 [ktfaa + Kipog + (k) o F

2 2 2 415
2k lke ki) gy - 2k (ki Keg)o 98 2ktbktf"ﬂa_] ( 15)
(if all signals have zero mean), etc. As there is no information on the covanances

g{af}, &{ab} etc, this procedure looks pointless and the guess above will have to
do.

Since the external disturbance to input transfer is given by,

&P o/%p
Tegghy

|U,/E, | = (4.16)

and,

8u’n/ g

| Ug/Eyl = TggPy (4.17)
k=1 from eq(3.10). The bandwidths obtained via eq(3.17) and eq(3.20)for ¢ = 0.4
(corresponding to about 3dB overshoot) and k=1 are

Torque (pitch angle) loop

w, o= min{(324/0.14/1.96), (3 5069/0.14]1.85)} ‘

= 27 rad/s : (4.18)
Lift (height loop) '

w g = min{(4516/1.9/1.96), (3y 7-236<10¢/1.91.85)}
= 27 rad/s (4.19)

In both loops the bandwidth is limited by the input rate specification rather than

the input amplitude specification. The design specifications are:

Pitch angle (4.20)
|L0(jw)] < 0 dB at w=30rad/s - the cut-off frequency of Lg/(1+L0)
|L0/(1+L0)| <3dBY w- "damping factor" of Lg/(1+L0), (g~ 0.4
| 1/(1+Lp)| <3 dBV w - stability margin for all plants
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(4.21)
| Lg(jw)| <0 dB at w=30rad/s - the cut-off frequency of Ly/(1+Lg)
ILH/(1+LH)| < 3dBV w- "damping factor" of Lyy/(1+Ly), (g » 04
|1/(1+Lg)| ¢ 3 dBV w - stability margin for all plants

Height

Using the above considerations, controllers were designed and implemented.

Design of pitch angle loop

Figure 4.4 shows plant (P ) templates and bounds on L go(s) = g4(s) m(s) P po(s),
1 X

(PHO(S) = Js2+”t03 and m(s) accounts for the actuator (motor) dynamics) at

w=1 and w=30 rad/s for the constraints, eq(4.20). Templates at other frequencies
are very similar, having very little phase uncertainty (~ 5°) and about 10dB gain
uncertainty. The controller designed for this loop assumed that the actuator
behaviour, m(s), is dominantly second order with w =170 rad/s and (=0.4. The
resulting ga(s) is,
(s) = 302( s/12 + 1) (4.22)
(s/100)“+2x0.7x(s/100)+1

Figure 4.4 and Figure 4.5 show Lm(jw) on the Nichols chart for w motor = 170

and 100 rad/s respectively.

¢8 '

20

.
.
]
e
R
RN
380 -3k T R -1(')0'. e oT

Figure 4.4 — Templates, bounds and Lm(jw) for pitch angle loop. Y motor=170

rad/s
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_____ »
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_____ »
...-.-.-....;.20
..................................
A : . 0
A R -2 180 -iLg 0 e o«
Figure 4.5 — B:unds and Lm(jw) for pitch angle loop. w . =100 rad/s
Height loop
Figure 4.6 shcws plant (Py) templates and bounds on Lio(s) = gg(s) m(s)
1
Prols), (P S):m52+u£05 and m(s) accounts for the actuator (motor)

dynamics) at -=1 and w=30 rad/s for the constraints, eq(4.21). Templates at
other frequenc::s are very similar, having very little phase uncertainty (~ 5°) and
about 10dB gz:2 uncertainty. The controller designed for this loop agsumed that
the actuator b:aviour, m(s), is dominantly second order with w =170 rad/s and
¢=0.4. The resting gy(s) is,

150 (s/12 + 1)
(5/50)%+2x0.7x (5/50)+1

gH(S) = (4.23)

Figure 4.6 and -igure 4.7 show Lyo(jw) on the Nichols chart for w (motor) = 170
and 100 rad/s :zspectively.
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T T T T Y T —
-380° <340 -300° -260° -220° -180° -140° -100° -60° -0’ 6’

Figure 4.6 — Templates, bounds and LHO(jw) for height loop. W or=170 rad/s
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20 4 . 0

P - , : ‘oony
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-300° 260" 2

Figure 4.7 — Bounds and LHO(jw) for height loop. W, =100 rad/s

motor
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4.2 Results

The Bode magnitude diagrams for the various transfer functions calculated at all
the entries of the plant set used in the design are shown in Figures 4.8
(reference—output), 4.9 (disturbance—output) and 4.10 (disturbance— actual plant
input). These Bode plots include the motor characteristics (with corner frequency
w, =100 rad/s). These are presented as results as they were calculated after the
design.

Although the controller design is decoupled for output behaviour at the nominal
of a simplified plant model, it is coupled with respect to plants in the plant set,
away from the nominal. Figure 4.8, showing the input—output behaviour with no
pre—filter (F=I) highlights the coupling, especially in the ty9 (H ¢~ 0) path.

In the test data presented below all commands were simply filtered using a first
order low—passing filter with a cut—off frequency of 0.7 rad/s. This aspect of the
design was largely ignored in order to concentrate on the feedback controller
design. Notice that the low corner frequency of the pre—filter avoids exciting the
transmission paths at those frequencies where coupling appears to be a problem.

Simulated data for the flying machine with the above controller structure and
design is presented in Figures 4.11 to 4.13:

4.11) Disturbance regulation when measured disturbances are added to the wing
torques and drags (using disturbance data from test R22).

4.12) Response to a step change in height reference of 0.63m.

4.13) Response to a step change in pitch angle reference of 62°.

14

Actual flight data for the flying machine with the above controller structure and
design is presented in Figures 4.14 to 4.17: ‘

4.14) Disturbance regulation with constant height and pitch angle set—points,
Test # Dec3 (c.f. Figure 4.11). Figure 4.14b shows wing rate demands for this
test, obtained by differentiating the measured data numerically.

4.15) Response to a step changes in height error of 0.63m, Test # Dec4 (c.1.
Figure 4.12).

4.16) Response to a step changes in pitch angle error of 62°, Test # Decs (c.1.
Figure 4.13).

4.17) Response after the pitch angle measurement potentiometer failed and gave
momentarily a false reading of —130°, Test # Dec2.
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4.3 Comments and conclusions

1) The simulation data and real test data are optically very similar, increasing
confidence that the physical model, its parameters and the disturbance data

reasonably reflect the true system.

2) Comparing parts (a) (no disturbance) and (b) (disturbance) of Figures 4.12
and 4.13, it is evident that a very significant portion of the control action is

required for disturbance regulation.

3) The recovery of the flying machine during test # Dec2 (Figure 4.17) is
remarkable. (That the failure was detected is also remarkable as the anti—alias
filters on the computer based data acquisition system gently removed all traces of
the glitch — this data comes from an oscilloscope.) The measurement failure is
equivalent to a very large torque disturbance pulse and the recovery after the
pitch angle measurement is restored can attributed to the fact that the controller
structure results in the wings being turned relative to the wind direction. (No
amount of feedback control, be it quantitative, robust, fuzzy, woolly, etc can cope
with such a sensor failures — only feedforward control or sensor redundancy makes
sense in such an eventuality.)

4) It was observed (see the flight data above) that the front wing activity was
larger than that of the back wing, often being in rate and amplitude saturation
(see Figure 4.14b). The third design (Chapter 6) was partially motivated by the
desire to rectify this (share the actuator loads more equally).

5) The non-linearity of the plant response is seen clearly in the pitch angle step
test, Dec5. Amongst other possibilities, this could be due to position dependent

wind speeds or the unmodelled influence of the front wing on the back wing
airflow

6) The controller described in this chapter provided the best results obtained.
This is attributed to the sensible use of the controlling surfaces, derived from
insight into the plant behaviour. The design achieved the specified loop
bandwidths and the wings appear to have been well utilized.
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CHAPTER 5 — (ANTT) DIAGONAL CONTROLLER

5.1 Introduction and design

This chapter describes the design, implementation and testing of a diagonal
controller for the flying machine. The direct application of plant input design
with a diagonal controller and no modification of the input or output
specifications is thus illustrated. Better results were obtained using the other
(non—diagonal) controller structures.

In terms of the plant model, the controller structure chosen is anti—diagonal, the
pitch angle being controlled via the back wing and the height via the front wing.
The motivation for this coupling of outputs to inputs is that,

a) The back wing — to — height transfer function is non minimum phase — to
climb first requires turning the airframe nose up by turning the back wing down.
Notice that although the plant (2,2) element in eq(2.21) (or eq(5.9) below) is
non—minimum phase the simple plant model does not have any right hand plane
transmission zeros. The problem of right hand plane transmission zeros has been
described by Horowitz, Oldak and Yaniv (1986) with the conclusion that only one
row of loop transmissions (input—output behaviour) need suffer from
non—minimum phase restrictions. From their paper it is not obvious however
what the cost of realizing their result is in terms of plant input levels.

b) The pitch angle loop is expected to require higher bandwidth than the height
loop for better attenuation of pitch angle errors. If the pitch angle magnitude is
too large, the design is not valid and there is little chance of recovery. Relatively
larger height errors can be tolerated as the height dynamics does not depend on
height. For the purpose of high bandwidth, the back wing — torque gain is larger
(ktb>ktf)’ requiring less gain in the controller. The pitch angle loop is designed
first. ’

c) Without the back wing, the front—wing to pitch—angle transfer function is
unstable. Without saturation, this would not be a problem but if the front wing
saturates in position, the torque it provides will have the wrong sign to correct
pitch angle errors. A similar effect will occur with front wing rate saturation.

The wing actuators are modelled by M_(s):djag{ma(s),mﬁ(s)}. For small signals
the actuators behave as second order systems with a corner {requency,
w #100rad/s and a damping factor, (x0.4. The actuators exhibited some backlash
due to mechanical play. The actuator dynamics are included with the respective
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controllers to give,

m_ 0 0 g 0 g g
G(S)Z (8 12 — ocH  «a (51)

0 mﬂ 891 0 —gwmﬂ 0

The negative sign is so that the controller, g 0 is implemented with positive low
frequency gain. This is required for stability as can be seen by by a simple
argument in this problem:

a) The nominal plant is open—loop stable.

b) Small positive gains for gw(s) and g p(s) will not change the open loop
stability of the nominal (+ angle error — increase back wing angle; + height
error — decrease front wing angle).

c¢) The stable elements of the plant set (and the plant nominal) form a connected
set, and the closed loop system stability cannot change as the gain and phase of
the controller is adjusted unless the magnitude goes through infinity (Nyquist
point) at some frequency for at least one plant element.

d) If the unstable elements of the plant set are also considered then closed—loop
stability is achieved by sufficiently large, positive low frequency gain.

e) The controller is designed with sufficiently high gain to satisfy (d), without
violating (c)

Output design equations

Consider the design equations for the output,

(B +G) Ty p=N" (52)
with,
2 2 1 1
_ . kpJs“+k, p sk  k ,ms“+k,, p,s _—
ployipoL| & e A I TP
—(k&JS +k£f“ts+k) ktfms +ktfuzs 11
. 991 o9
;
S M TR
TY/ET
Ri(:7
N L
B
TN it
and,
k=lpkyp+kypky

Writing eq(5.2) implicitly element by element,



with,

boy = TII{E [921] [kalk + |q5| 'Hi
tog = mlrbg (d21) |kgel® + q_; tHe
bpg = WI{EQ (419) ¥/ + qu by
b = ﬁTldE (19) [¥ep/k+ qu 27

L gy = 991 8 30 m g~ output pitc%l angle loop transfer fu?ction
LHY =49 8,g M, — output height loop transfer function

After applying the Schwartz inequality and substituting the bound, A (from

eq(3.23)), for elements of Ty appearing on the right hand side of the equations

(eq(3.25)), for gﬁg(s), the design equations are,

1 [ 1 ]
gl <] [da] Rl + (g | 2me| < 2ot
It ,,] < 1 q 'k/k+—1—a\<a
el € | T 5] | %21 Sl gy P < 2
Input design equations
For the input, the specifications are,
— 3
(G +P)Vyp=-P
with,
[ Kot Ry
P = D—lH _ Js§+yts+kt JS§+”tS+kt
2 2 ‘
készs K pphy Sk KapTs™k gy Sk
2 2 2
. (5% seky ) (ms®epgs) - (Js%opr 54k, ) (ms™+pu,s)
an

[ -1
N E— 0
P* =D 1. I +p s+ky
- kf _1
2 2
~(Js *hy S+k ) (ms *4S) ms2+u£s'

Writing eq(5.9) implicitly,

L B o S
e 1+l gy (ke ot " Ky

J

(5.7)

(5.10)
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N (5.11)
vﬂ£'1+l: K— ol
HU klb']s +k£b“ts -k . 2k£
vV, =—
o~ TLgy | g ,dst ke, sk "B keI ok gty K
HU 5.12
:‘FLEE[K (5) gy * Kgl9) (5.12)
2
.o LHU k[b‘]S +k£b“ts -k Js +uts+k
of 1JFLIE[U k@fJ32+k&MtS+k ﬂ kefJS2+kaﬂtS+k
L
Hu 5.13
-~ T [Ky(9) vy K0 (5.12)

with,
= —1 fer function
L(}U = P12 89 Mg m.put Aatt.ack loop transfer fun 1.
Lgy =Po1 8am Mo~ input height loop transfer function

After applying the Schwartz inequality and substituting the bound, B, (from
eq(3.24)) for elements of Vi, appearing on the right hand side of the equations
(equations (3.26), (3 27) and(3.28)), for gﬂe(s), the design equations are,

Lo | [ 1 s
Vo | < <b (5.14)
| ﬂtl 1+L0U { E at} gt
L k
ou | [Kes
Vol < b b (5.15)
Vel €| TT | (K a4 Bt

To get an idea of what the specifications should be, solve eq(5.2) for, the output
specification at steady state,

| Ky “kyg
Kll+gﬂi Kil+gﬂi

ky + kyy 85 Kt kiyogg
kg, (1t+gg) kg, (1+gg)

Ly/p(i0) = (5.16)

with,
8,=84U0), 85=84(10)

The steady state gains of the controllers can be expected to be not more than 1.0
(0dB) : A 10° pitch angle error should result in a back wing position of no more
than 20° with respect to the ground (at which angle the wing starts to stall) and
a height error of 0.1m should result in a front wing deflection of no more than 5°.
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Larger steady state gains could result in position saturation of the wings. In this
case at nominal plant values (Table 2.1), ‘

4.1 18
Tpyo(i0) = x 1073 (5.17)
29. 4.2

with g (10) = g4(j0) = 1

The nominal was chosen at relatively high k  values. For plants with lower
steady state gains (by a factor of about 3), TEY(jO) will have 10 dB larger
magnitude. This means that the plant disturbance rejection is better with high
wind speed (plant gain), which makes physical sense. The sting in the tail is that
the disturbances can be expected to increase in magnitude as the wind speed
increases. This was measured qualitatively in Section 2.3.2

The controller will be designed to be strictly proper (having an excess of poles
over zeros in each channel) and will therefore be open circuit at high enough
frequencies. This means that

-

_tf Tt
lim Tyy(s) = lim P(s) = lim & | J ] (5.18)
S s=jws® (k,p K,y

‘m  m

At nominal values this is,

T ) | [185 313 )
im T s) =1lim = (5.19
o YO e 21 80

Since at low frequencies, the q;. are essentially low—passing, qij/(1+Li') X l/gij in
equations (5.3) to (5.6) and tij are therefore expected to be flat at low frequencies.
For specifications on ‘IEY(jw) the low—pass characteristic with asymptotes,
IEyo(jO)
IEYO(jm) will be used. If the resulting disturbance rejection is unacceptable,
the gain of the controllers will be increased to reduce | Ty | over some (low)

frequency range. The high frequency asymptote is fixed by the plant structure.

+10dB (to allow for low gain plants and some overshoot) and

From eq(5.9), examine the steady—state transfer of disturbance to the plant input
for the nominal plant

; _ 1 kfbmﬁgﬁﬂ + kg ktbmﬂgﬁ{? + kt

Vigo(30) = K(Tomg o) (5.20)
OO | Kymgggy  kymgg

(The infinite steady—state plant gain in the height loop accounts for the absence
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of gaH(jO) above.)

If gﬂg(jo) = 1 as postulated before,

Yygo(i0) = x1073 '
oo [ 4.1 —1.8]

and lower (global) plant gain would reduce the above.

Consider eq(3.17) and eq(3.20) for the position and rate at the input as a result of
disturbances. Allow each disturbance input (torque and lift) to use 1/2 the
available input (power) and let { = 0.4 (allowing about 3dB overshoot in the

disturbance to input transfer functions),

2 o T
0i[2=0.25/2 % wy 1_(%1? (5.22)
2l2 =42 1_(%17% (5.23)

u
(Table 2.1, eq(2.32)) and 7, = 0.14, 7,= 1.9 (Table 2.1, eq(2.30) and eq(2.29)
respectively)

As was the case in the first design (Chapter 4), the bandwidth is limited by the
input rate specification. The cut—off frequencies determined by position are,

'wn a Yn aﬂ ~ (5.4x102 1.9x103 rads (5.2
= x104 1.0x104 :
‘wn At wy i L2.7 104 1.0x10
and by rate are,
(w w (21 31
e o _ 5 5| Tad/s (5.25)
"1 [t n gl |

From considerations of the wing actuator (plant input) rate limits, the input loop
gain cross—over frequencies are therefore,

| Ly (i21)| € 0dB (front wing) (5.26)
and

| L gy (355)| < 0dB (back wing) (5.27)

Another consideration in the input specification is the following. Assume that Vﬂt
and Vg can be designed to be low passing transfer functions without excessive
overshoot as desired. It is not certain whether or not Vot and V0 Can also be
designed to be low—passing as the transfer functions, K,(s), Ko(s), and Ks(s)

from eq(5.12) and eq(5.13) have large overshoot around 30 rad/s. (The
(normalized) transfer functions, [ K ()], i—kkz Ko(s)], and |f—tK3(s)| are shown
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in Figure 5.1 for the nominal plant.) Unless %[%I} starts rolling off before about
10 rad/s, the influence of the terms K;, K, and K, will cause design difficulty.
(Careful attention to possible advantages which might arise from the phase
relationship between the terms could highlight possible cancellations although at
high frequency where unstructured uncertainty and unmodelled dynamics are a
problem, subtraction is not a reliable method for reducing gain).

K1l K2 k3
30 T T T T AL T T T T T T T T

1I5F -

10F -

-5

-10+

—i5L

-20 ! I i IS I R W S 1 1 |
109 101

! L l\y

102

h@quency[rad/s]

Figure 5.1 — Normalized K, (solid), K, (dashed) and K, (dotted) from eq(5.12)
and eq(5.13)

Summary of Specifications
1) It must fly.

2) The actuators must not wear out too quickly and actuator limits must be
avoided.

3) The output loops must have the highest bandwidth possible so that ‘ 1 l

1+]:_Y
<< 0dB until q;; << 0dB

4) To avoid high amplification of disturbances at the plant inputs and outputs,
the simple specifications,
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L
1 .
‘m‘ < 6dB and ‘T-?L_’ < 3dB were chosen for all loops.
5) From the wing actuator (plant input) rate limits, the input loop gain
cross—over frequencies are, |LHU(j20)| < 0dB and lLHU(j55)| < 0dB.

Lyy

6) mﬁ starts rolling off before 10/rad/s.

Clearly the input and output specifications necessitate a compromise.

Design of pitch angle loop

The first loop designed was the pitch angle. Bounds for the Ly. and some
templates are shown in Figure 5.2 (input) and Figure 5.3 (output). The nominal
plant was chosen as Py 19 for input and output loops. As a result the the nominal
for the output loop lies outside the template and may itself violate the output
loop boundaries. This notion of designing the loop transfer function for a
(fictitious) nominal plant, lying outside the (real) plant set was introduced in
Section 3.1 but needs justification for the benefit of those less familiar with
quantitative feedback design. The Nichols chart provides a graphical mapping
from L to L/(1+L), irrespective of what L is — it can be a set, a point or both. If
P0 is displaced from an element of the plant set, Pi by D and the controller, G

satisfies some specification on L/(1+L) for L=P.G, the same controller causes the
original specifications to be satisfied.

31

+ 3
. o P/Z(" )
s
154, F ST T e N e -1
+ +
¥ nomis g L O, : K :
LS U R :
£.25 ] %, 2T R B :
> . Y I A et 22
AR L TE
'.75 MoV AL i -3
o~ N e
2.5 AR
-k .
0.28 -
. AY
1 Pl 15
“ +
.75 ‘ ! -10
1 ;
1 +"’tz"~arwr/lﬂ e
t.i5 # ...............
- . e, ......... :'- :
4 g Lo ‘_____....--“"‘ -20
ras + | '.~_ o
ﬂ_"‘"— ............................. L _, ______ e [ T
] i 220 -0t Trfgee T 90 Cap
Lore T T L 7 T T T L A T T T T 7 —— T
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Figure 5.2 — Templates and bounds for LOU(jw) (input) design
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0.754.
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Figure 5.3 — Templates and bounds for L 5 (jw) (output) design

The controller designed to satisfy the pitch angle loop specifications is,

(s) - (s/1.5+1)(s/30+1) (5.28)
(5/0.65+1) ((s/150)%+(5/150)+1)

859

The nominal input pitch angle loop transfer function resulting from this controller
is shown in Figure 5.4

Design of height loop

The pitch angle loop was closed and templates constructed for the design of the
height loop (following eq(3.35) and eq(3.36)). The templates for this loop are
those for an exact SISO design. The nominal plant selected for the design
execution was py o1 # Pj o Of eq(3.36), which accounts for the nominal again
being outside the template. The templates show that the actual plant has
significantly more phase lag than the nominal and this phase lag makes
achievement of any sort of bandwidth in the height loop impossible with the
(anti) diagonal controller and pitch angle controller fixed by eq(5.28) above.
Figure 5.5 shows the bounds on the nominal input height loop transfer function
and an LHO( jw) (which violates the bounds) corresponding to the controller,

__ 0.5 (s/1+Q(s/3+%) (5.29)

(5/0.21+1)((5/100) “+2(s/100)+1)

«
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Figure 5.5 — Templates and bounds for Ly(Jjw) design and L

g violating bounds
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5.2 Results

The Bode magnitude diagrams for the various transfer functions calculated at all
the entries of the plant set used in the design are shown in Figures 5.6
(reference—output), 5.7 (disturbance—output) and 5.8 (disturbance—input). These
Bode plots include the motor characteristics (with cormer frequency w =100
rad/s).

Simulated data for the flying machine with the above controller structure and
design is presented in Figures 5.9 and 5.10:

5.9) Disturbance regulation when measured disturbances are added to the wing
torques and drags (using disturbance data from test R22).

5.10) Response to a step change in height reference of 0.75m.

Actual flight data for the flying machine with the above controller structure and
design is presented in Figures 5.11 and 5.12:

5.11) Disturbance regulation with constant height and pitch angle set—points,
Test # Diagl. Figure 5.11a was annotated using a video—tape recording of the
flight and shows where the flying machine was held at the beginning of the flight,
and where the pitch angle sensor (potentiometer) failed at the end of the flight.
Figure 5.11b shows a portion (presented in Boje, 1989) of the data record from
Figure 5.11a and can be compared to the simulation result, Figure 5.9. Figure

5.11c shows wing rate demands obtained by differentiating the position demand
signals numerically. ‘

5.12) Attempted height step response test with step changes in height error of
0.75m. It is possible (from viewing video material) that the pitch angle sensor did
not function reliably during this test. The simulation data, Figure 5.10, suggests
better (when compared to Figure 5.12b), although still poor, height regulation
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5.3 Conclusions

1) Figure 5.11c highlights a fundamental problem with this design. Because it was
not possible to achieve the desired bandwidth in the height loop, the front wing is
clearly under—utilized. Because the specifications were not rigorous, the
consequence to the pitch angle loop design of not achieving specifications in the
height loop were not investigated further than the drawing of Bode plots of the
resulting closed loop behaviour.

2) When there are no other problems, qualitatively the pitch angle regulation is
good and the height regulation is rather poor. As the design is approximate due to
the use of linearisations about some operating points and is also conservative due
to the use of the Schwartz inequality, eq(3.27), it was hoped that the flying
machine might still provide reasonable performance despite the violation of design
bounds in the height loop (Figure 5.5). The oscillations in height and angle of
attack (at about 5 rad/s) are not surprising, considering the violation of the
design boundaries but reducing overall gain in the height loop to avoid violation
of the bounds resulted in such poor height regulation that the machine crashed
(physical boundaries were violated!).
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CHAPTER 6 — QUASI DECOUPLING CONTROLLER

6.1 Introduction and design

This chapter describes the design, implementation and testing of a controller
designed by first modifying the plant input so that the (single input single output
dynamic) controllers’ outputs result in the wings being turned in the correct
direction to regulate height and pitch angle errors. As the controller described
here was designed in a very short time, the design is less complete than the
previous two designs. Simulations are not presented, only actual results and
design specifications are based on experience and heuristics rather than via rough
analysis as in the previous designs.

The diagonal controller described in Chapter 5 has closed loop disturbance to
input transfer functions with factors of the form, 1/(wing angle to lift gain) and
1/(wing angle to torque gain), most clearly seen in eq(5.14) and eq(5.15) where
the factor is (1/ktb)' In an attempt to make better use of the plant inputs, a
controller structure which turns the wings at a rate determined by their
maximum rates in the direction to correct errors was investigated. As the rate
limits of the front and back wings are the same (200° /s), for a diagonal controller,
this corresponds to modifying the open loop plant input via the filter,
11

so that the modified plant numerator matrix is,
k, .+k k, .~k Y, —-A
NE-| tf tb “tEeb) | Tt Tt (6.2)
Kepkay Koptkg TRy Iy :

As Ark, and Y ~k, (Appendix 3.1 gives the formulas for evaluating the relevant
the parameters from eq(2.21)),

54 i
J(s) J(s)
P =D 'NE- ) . (6.3)
—(A s +0 gy 5-2k) 3,5 + 2 gpty S
5T H(G5) — IGs) H(s)
and,
~1 L1 1 25“2*25‘%5 At(ms2+“£s)
P ==K "N D= ) . (6.4)
A[]S +AZ“tS—2k Et(ms +u£s)
The elements are labeled, [P’_l} =L
1] qij
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The controller is,

(s) O
6(s) - {gaos gH(S)} (6.5)

and the design proceeds along the lines of the design in Chapter 5. Eq(6.3) and
eq(6.4) potentially ease the QFT design (compared to the corresponding eq(5.2)
and eq(5.9) of Chapter 5) because the elements which require over—design
(off—diagonal in this case and diagonal in Chapter 5) are smaller, relative to the
elements used for the design. Heuristically, this control structure also makes
better use of the available actuator power

Output design
1

-1

(B’_ + Q) IEY = (H H) (6.6)
5,248 s + 2K (s) A (m32+ s) to t ¥, A
¢ e &g t\1S THy ot "0l _|7e "t
2 2
A s+ Ay, 52k Y (ms“rp,s) + 2kgy(s) by tpgl |2 Iy
Writing eq(6.6) implicitly element by element,
(1 1
ty = Y,/(2k) — |—/—| t 6.7
1) (] 0020 = [ (6.7
1 1
ty, = A J(2k) = |—] t 6.8
607 | T+ 4y (941] \ ¢/ (2K) Q| He (6.8)
1 1
ty, = AJ(2k) — |—| t 6.9
it Iﬂf 1y [qzz] ¢ (2K) Q| 0t (6.9)
1 1
tp,= q X, /(2k) — |—]| t 6.10
B |y [422] & G| Lo (6.10)
with, ‘
Ly = 9, 8y m — output angle of attack loop transfer function
q, = 2k
11 2
B,(Js 4 8)
LHY = Qg9 8y M — output height loop transfer function
Qe = 2k
22 2
%, (ms )

After applying the Schwartz inequality and substituting the bound, A (eq(3.23)),

for elements of Ty appearing on the right hand side of the equations (eq(3.25))
for g (s), the design equations are,

H

1 1
1 1
g€ | i m’ Jay, | [At/(2k)+ i a,Hé] (6.12)
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Input design

RS DY el PSS
—1 , —1_
(€7 +P) Ygp=—D " =P* ' (6.13)
1 Zt B At v v,j -1 0
g 4(s) ) J(s) 1t "1 J(s)
2 2 )
J(s) K(s) gg(s)  J(s) H(s) JL'2t 2¢)  J(s)H(s) K(s))

Writing eq(6.13) implicitly,
L A

gu t 1
v/, = vi, — (6.14)
1t Tl (T, "2t B
L A
7’ — gU t 7’
Vit T |, 2 (6.15)
2
2t 1+1:HU ZZ(Jszwts) It ZZ(Jsﬁwts)
2 2 X
o Lag AZ(JS +;Lts)—2k Js"+ps 6.17)
VoUT T 2 V1™ 5 12 (6.
HU %, (Js"+p,s) %,(Js +;zts)‘

with,
L gu = P11 8pm— input <attack loop transfer func.tion
LHU = Pyo 8, M — input height loop transfer function

After applying the Schwartz inequality and substituting a bound, B’ for elements
of -YIIJE appearing on the right hand side of the equations, for g H(S), the design
equations are,

3

| P | B, 6.18) |
U o D s T N (6.18)
At t
L
C | P [ B
VieS |y, S;bze] (6.19)

To get an idea of what the specifications should be, solve eq(6.6) for the output
specification at steady state,

1 B8y
_ K+Y.5 Y g (K, +2.87)
T, (30) = t" 4159 L SR Y (6.20)
A
t 1
AR Yy
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‘with,
gg=8y(30), 848,(i0)

As in the anti diagonal controller of Chapter 5, the steady state gains of the
controllers cannot be expected to be more than 1.0 (=0dB). This gain has the
following implications for this structure: A 10° angle of attack error will result in
a back wing position of 20° with respect to the ground (at which angle the wing
starts to stall) and a front wing position of 0° with respect to the ground. A
height error of 0.1m will result in both wings turning 5° up. Larger steady state
gains could result in position saturation of the wings. In this case at nominal

values,

IEyo(jO) = [

11.4 10.4
x 1073 (6.21)

0.84 4.12
(with g,(i0) = g(0) = 1)

As the nominal is chosen at relatively high k__ values, max(Tpy(j0)) could have

10 dB larger magnitude.

As the controller will be designed to be strictly proper it will be open circuit at
high enough frequencies and,

-

—k

_tf_Tth
lim Tpy(s)=lim P(s) =lim | 3 J (6.22)
‘m m
At nominal values this is,
lim T (5) < 1im ] 185 313
im T s)=1lim = 6.23
S~ jo EY0 's—»jms2 27 80 (6:23)

Since at low frequencies, the Qj; are essentially 1ntegrators q /(1+L ) ¥ 1/g.in
equations (5.3) to (5.6) and t,; are therefore expected to be ﬂat at low ﬁequencjles
For specifications on IEY(Jw) the low—pass characteristic with asymptotes,
Try(i0)|+10dB (to allow for low gain plants and some overshoot) and
IEYO(jm) might be used and this specification modified as a result of tests or

simulation. The high frequency transfer of disturbance to the plant output is fixed
by the plant structure.

One could follow a similar procedure from eq(6.13) to examine the steady—state
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transfer of disturbance to the plant input for the nominal plant. Notice that from
eq(6.13) onwards, the direct control during the design of the plant input has been
lost as a result of the filter, H. (Compare this to the design in Chapter 4).

Specifications for the modified inputs, U’ = ﬂ_l U could be developed and design
using the modified plant P’ from eq(6.3) executed.

A more direct method than the above is to define the following ad—hoc
specifications and modify the final design using the insight obtained via the
design:

Summary of Specifications
1) It must fly.

2) The output loops must have the highest bandwidth possible so that ‘ﬁi—Y‘
<< 0dB until qij << 0dB

3) To avoid high amplification of disturbances at the plant inputs and outputs,
L
1 . :
‘—L_H- ’ < 3dB and ‘HL_‘ < 3dB are required for all loops.

4) To ensure that the controllers can be realized simply, the controllers may not
have more than +20dB/decade roll-up and must roll off around the corner
frequency of the wing actuators.

These specifications are very rough and really only ensure some sort of robust
stability via (3) and (practical) realizability via (4).

Pitch angle loop design

12

Bounds for the Lg_ and some templates are shown in Figure 6.1 (input) and
Figure 6.2 (output). The nominal plant was.chosen as Py 19 for input and output
loops. As a result the the nominal for the output loop lies outside the template
and may itself violate the output loop boundaries. Note that the input and output
bounds are much closer to each other in this design than in the diagonal controller
design of Chapter 5. This justifies the statement made in Section 6.1 that the
controller structure eases the design problem.

The controller designed to satisfy the angle of attack loop specifications is,
_ (s+1)(s/10+1)

(5/0.21+1) ((5/150) 2+2(s/150)+1)

g4(s) (6.24)
The worst case bounds and nominal input angle of attack loop transfer function

resulting from this controller, LHO(jw), with actuator corner frequency of 100
rad/s is shown in Figure 6.3.
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Figure 6.3 — Worst case bounds and nominal input pitch angle loop transfer
function, L p(jw) design

Height loop design

The pitch angle loop was closed and templates constructed for the design of the
height loop. The templates for this loop are those for an exact SISO design but
the numerator terms of the closed loop T have not been evaluated so that the
height design is principally a stability design. The nominal plant selected for the
design execution of this second step was Pgo1 ¥ Pho of eq(3.36), which accounts
for the nominal again being outside the template. This choice of nominal is
Justified by the ease of keeping track of thé second order Py 91 rather than the
high order P{ o Compared to the design of Chapter 5, the nominal is quite close
to the plant templates. Figure 6.4 shows the bounds on the nominal input height
loop transfer function, some relevant templates and a loop transfer function
corresponding to the controller,

(s (s/3+1) (6.25)
(5/0.21+1) ((s/50)“+1.4(s/50)+1)

gH(S) =

Notice that the bounds are more than satisfied. The original design was modified
to give more phase lead around 5 rad/s when some poorly damped oscillations
were observed at that frequency. The final "as implemented" result only is shown.
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motor

6.2 Results

The Bode magnitude diagrams for the various transfer functions calculated at all
the entries of the plant set used in the design are shown in Figures 6.5 (reference—
output), 6.6 (disturbance—output) and 6.7 (disturbance—input). These Bode plots
include the motor characteristics (with corner frequency w =100 rad-/§).

Actual flight data for the flying machine with the above controller structure and
design is presented in Figures 6.8 and 6.9:

6.8) Disturbance regulation with constant height and pitch angle set—points, test
Onel. Figure 6.8a was annotated using a video—tape recording of the flight and
shows where the rear actuator failed at the end of the flight test (the final drive
shaft sheared off at the spline). Figure 6.8b shows a portion of the data record
from Figure 6.8a where the flight was at its best. Figure 6.8c shows wing rate
demands obtained by differentiating the position demand signals numerically.

6.9) Disturbance regulation with constant height and pitch angle set—points, Test
# One2.
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6.3 Conclusions

The dive in height at time t » 7s in Figure 6.8b seemed quite characteristic of this
controller.

The design apparently makes better use of the front wing than the diagonal
controller of Chapter 5 did (Figure 6.8c) but does not utilize the wing turning
capacity (bandwidth) as fully as the design of Chapter 4.

This rapid design highlights the advantages of classical design. Although
quantitative design specifications were virtually non—existent (as they seem to be
in many other practical problems), it was possible to design the single—loop
controllers rapidly once the control structure had been fixed. After design of the
pitch angle loop, the height loop was tuned as indicated above. Other experiments
demonstrated instability when the height loop gain was increased by only 7dB
(the captured data does not show this instability clearly as the flying machine
was held on its leash for most of the test)
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CHAPTER 7 — CONCLUSIONS

This thesis has described the development of a practical problem, a "flying
machine", for testing control theory. The construction, modelling, parameter
estimation and simulation of the flying machine has been described. It has been
shown how plant input specifications can be included in the general QFT
framework. Three controllers with different structures have been designed using
QFT (with input constraints) to take parameter uncertainty into account and
trade off disturbance attenuation against rate and amplitude saturation at the
wing angle actuators. The controllers have been implemented and tested and the
practical results compared to simulations. Defining suitable specifications during
the course of a design has been seen to be very much more demanding than a
direct design—to—specification problem.

This thesis has been strongly oriented towards the practical aspects of controller
design. The application of "modern" control theory (LQG, singular value, Hm and
p synthesis) to the problem stated here would not be a trivial matter and the
outcome of such an exercise is uncertain. As one of the fundamental reasons for
feedback control is uncertainty reduction, modern control is in this instance best
left to academics. (With the elegant linear quadratic regulator and observers etc
being taught as a firm favorite in most universities’ undergraduate courses, the
author, as a graduate engineer attracted to control engineering, did not clearly
understand the fundamental reasons for requiring feedback!) An example of how
academics often are often unaware of practical problems can be found in the paper

of Laughlin, Rivera and Morari (1987) in which a 190 order controller which has
(unrealizable) +20 dB/decade roll-up at high frequency is proposed to robustly
control a plant which does not have the same uncertainties as the specified first
order plant with time delay has. This robustness is optimal in an arbitrarily
defined way! This is not an indictment against the modern robust control research
as there are many open questions in the control of practi'cal systems.

In the designs presented here, strictly quantitative feedback design has been
violated in the following ways:

1) The plant sets used in the design are based on the linearisation of a non—linear
plant model about a number of realistic operating points. Horowitz’s QFT
requires a "linear equivalent" plant set derived by taking the ratio of Laplace
transforms of input and output signals under a number of assumptions. The
linearisations result in state dependent uncertainties and the "QFT" is not
rigorous with respect to such models.
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2) One of the fundamental reasons for requiring feedback in the flying machine
problem is uncertain wind speed and wind direction. This uncertainty is plant
gain uncertainty but wind vector variations disturb the plant and should therefore
be regarded as a source of disturbance — fortunately feedback helps to reduce
parameter uncertainty and disturbances in the same frequency ranges via

(1+L)_1. This duality between disturbance rejection and uncertainty reduction
explains the success of linear quadratic Gaussian regulator (LQG) theory for
solving problems with plant uncertainty if one is able to guess (or find by
exhaustive simulation) suitable weighting matrices (or equivalent disturbance
models). See for example IEEE Automatic Control Transactions, 1971, Special
issue on LQG problems. (The LQG design for disturbance reduction is hoped to
be able to cope with parameter uncertainty.) Horowitz has investigated this
problem (1963, Section 8.15, p.441). Incidentally, separating the parameter
variation and disturbances during system parameter estimation is an open
research problem (Boje, 1986, p.139).

This work has possible neglected theory and rigour because of the large number of
practical problems which have been encountered. It has however been shown that
controller design can formally include input specifications. This and the existing
tools of Horowitz’s Quantitative Feedback Theory have been successfully used to
design and evaluate three controller structures for a practical plant. This plant
requires feedback for each of the three fundamental reasons for having that
feedback, stability, uncertainty reduction and disturbance rejection.
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Appendix 1 — Circuit diagrams for actuators and controllers

POSITION

Al.1 Actuators

The actuators were powered using the push—pull amplifier arrangement shown in
Figure A1.1. The use of an operational amplifier to supply the transistor base
drive is possibly crude but is effective. The diode circuit on the reference input is
to clip demand signals which are in excess of the position saturation limits of the
actuators (this protects the actuator from large currents by preventing position
saturation). The gain of the inner loop was adjusted to get the fastest response
possible without excessive overshoot.

*V [ power)

POSITION

Figure Al.1 — Wing actuator drive electronics

A1.2 Controller implementation

The controllers were all constructed as active analog filters, as a series of first and
second order elements. LM—741 operational amplifiers (or their equivalent) were
used throughout. Figure A1.2 show first order low—pass, first order lead/lag and
second order (with first order numerator) elements. Component values for the
second order sections of controllers in Chapters 4, 5 and 6 are,
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Figure A1.4 Second order strictly proper element

Decoupled controller

8g -

8q -

r1=100kQ; r2=100k2; r3=10k2; r4=10kQ; r5=10kQ2; r6=3.9kQ; 17=22k2;
c1=0.33uF; ¢2=0.33uF

r1=120kQ2; r2=120k2; r3=10kQ2; r4=10kQ; r5=33k(2; r6=15kQ; r7=47kQ;
c1=0.334F; ¢2=0.33uF ‘

Quasi—decoupling controller

8g -

gH:

r1=85k(}; r2=22k2; 13=10kQ2; r4=10kQ; 15=2.2kQ; 16=470Q; r7=10kQ;
cl=1uF; c2=1uF
11=47kQ; 12=47kQ; 13=10kQ; r4=10kQ; r5=82kQ; r6=12kQ; r7=15kQ;
cl=1pF; c2=1uF

Diagonal controller

8p-

Eg*

r1=27kQ; r2=27kQ; 13=10kQ; r4=10kQ; r5=1.8kQ; 16=1.5k); r7=6.8k;
cl=1pF; c2=1uF

r1=330k§}; r2=330kQ; 13=10kQ; r4=10kQ; r5=330Q; r6=330k%;
17=4.7k(Q}; cl=1uF; c2=1uF



ON NON-MINIMUM PHASE BEHAVIOUR IN D.C.SERVO SYSTEMS

Edward Boje
Eduard Eitelberg

stract

eraction between the power circuit and the analog measurement and control circuits
ich can result in unsatisfactory, non—minimum phase behaviour is examined in low power
ect current (d.c.) servo systems. Understanding the cause of this' non—minimum phase
aviour allows the limitations resulting from it either to be avoided or to be included
rously in the system design.

ntroduction

amiliar characteristic of noo—minimum phase systems with one right hand plane zero is
t the step response is initially away from the final value (this holds for all stable systems
h an odd number of right hand plane zeros as can be seen by applying the initial and final
ue theorems). It has long been known (at least to "classical” and applied control
ineers) that there are fundamental limitations on the performance achievable by (linear)
Iback if the plant to be controlled has one or more right hand plane zeros (or dead time)
rowitz, 1963, [1]). A rule of thumb which is sometimes used in systems with one right
d zero (at s = z), is that the loop gain crossover frequency w, should be less than half the
't hand plane zero’s cut—off frequency (mC < z/2). (Horowitz and Liao (1984, [2]) give
e results on performance which can be achieved outside this usual frequency range for
-minimum phase systems and give further references.) In order to obtain high
ormance (with respect to disturbance reduction, command following and model
rrtainty reduction) from a servo system, high loop bandwidth is required. This
Iwidth cannot always be achieved in non—minimum phase systems because the right half
e zeros contribute phase lag (as opposed to a left half plane zero’s lead) and gain to the
transfer function. As economy limits the design of most systems, there is a limit on how
1" components can be. The engineering objective in servo system des;gn is to achieve
fications on performance with the least over—design.

paper considers the application of low power (say less than 10 Watts) d.c. motors for
ion or velocity control, whpre careless design can result in unsatisfactory and possibly
pected behaviour as a result of right hand plane zeros in the open loop system. The
action between the power circuit driving the motor (or any other actuator) and the
g feedback circuit (the sensors and controller) is often the culprit. This note examines
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2
o simple examples of such interaction to give an understanding of the mechanism by

ich non—~minimum phase behaviour can appear.

rdels are developed for the two cases examined, namely ;
the use of common conductors for sensors and motor power circuits (linear example —
tion 2) and,

the use of a power supply with internal resistance (non—linear example — Section 3).

e examples illustrate the need for separating the measurment and feedback circuits from
 power circuit. Once this is understood, obvious design measures will avoid most
blems.

Common conductors for measurement and power signals — linear example

e circuit shown in Figure 1 is of a small servo system where the controller and actuator
cuits are separated by some distance and a single "ground" conductor has been used to
e weight or cost. The design problem in Figure 1 is that the motor armature current, iA‘

cts the measured position, ¢ via resistance of the "ground" conductor, Rg' The use

. meas’
a single wire for "ground" of both signal and power circuits is not recommended
pecially in higher power applications where safety and equipment protection against
rvoltage must be considered) but the control system designer may not be in a position to

T a plant (and wiring) which has been designed to meet other requirements.
del

: symbols in Figure 1 have the following meaning,
ameters:
J — the total inertia of the motor and load (referred to the motor)
¢ — the total rotational friction of the motor and load
Rg — the resistance of the common "ground" wire
R — the resistance of the motor armature and power circuit, including the
"ground" resistance -
L — the armature inductance

als (in the Laplace domain) :
D(s) (= -#{d(t)}) — disturbance torque
V(s) (= #{v(1)}) — applied voltage
E(s) — back e.m.f. of the motor
IA(s) — armature current
&s) — the actual shaft position (not measured explicitly)

0

(s) — the measured (feedback) position signal
meas

(Note that without disturbance, D(s) and/or parameter uncertainty there is no requirement

for using a feedback controller at all.)
Assumptions for a simple linear model are,

E(s) = ko 8 o(s) (back e.m.{. proportional to speed of rotation)

=V(s) = (Ls+ R)I,(s) (1)
T(s) = kg IA(s) (torque proportional to armature current)
= (Is% + us) (s) + D(s) (2)

From eqs (1) and (2), the voltage across the motor as a function of position and disturbance

is,

V(s) = [(Ls + R)

(Js + El"'kemf] So(s)_‘_gLs -’; R!D(s)

T )

When L, R, J, p are small with respect to kT, eq(3) simplifies (as expected) to
V(s) = kemf s s) (motor speed proportional to applied voltage)
(4)

for all frequencies (s = jw) of interest, and a controller with gain alone (no dynamic
elements) may provide the specified (desired) closed Joop behaviour.

If the position is scaled from a measured voltage by means of the circuit shown in Figure 1,
then a component of the measured position is determined by Rg IA(s), say,
gmeas (s) = os) + kmeasIA(S)

k K
— | Cmeas 52 o) 41| As) + 22225 D(s) (5)
Ep (Is“+us) (s) BT

The behaviour of the circuit depends on the sign of kmeas/kT‘ The sign of k ... iS5
determined by the sign of the position potentiometer supply and the sign of k. depends ontd
the electrical connection of the motor. (In Figure 1, kmeas/kT ha..s the same. sx.gn as ?he
position measuring potentiometer supply if the (positive) current ip results in increasing
#(t).) The potentiometer resistance is reasonably assumed >> Rg,



torising the position ((s)) component of eq(5) alone,

0 eas(®) = (s/2 + 1) (s/b + 1) O(s) (8)

2
“*J“_4JkT/kmeas
23

a, b=

single "earth" therefore affects the controller design as follows:

If kmeas/kT is negative, the measurement of 0 results in the open loop transfer
racteristic having a right hand plane zero (situated on the real axis) with the
esponding limitations on achievable closed loop behaviour.

{ kmeas/kT is positive, then one might be tempted to use the numerator terms
oduced into the loop during controller design so as to obtain phase lead without requiring
amic elements in the controller itself. The behaviour of such an arrangement will usually
nacceptable for the following reasons:

oise in the measurement and current signals will be amplified in an undisciplined manner
igh frequency (especially at the motor input)

he location of the zeros is not certain as a result of parameter (J, kT’ kmeas and p)
rtainty

1e zeros will be poorly damped if 4 J ke / kmeas >> 0.

1lts

>hs 1la and Ib show '"before" and "after" results for closed—loop step response in a
tical problem when the controller was simply a gain element. Note that these graphs
* measured position — the open loop plant does not exhibit non—minimum phase
viour, only the measurement. Before separation of common conductors, the motor
ng circuit saturated with all but small command signals.

ywer supply with internal resistance — non-linear example

‘e 2 shows a common problem in which the servo system’s power supply has internal
lance. For simplicity only power supply resistance, RS, is considered here. To
stand the problem, it is assumed that only the measurement (of speed, position, etc) is
ed by the power supply voltage fluctuations although in practice the controller circuit
» vulnerable to power supply variations.

quations are developed as before, except in the time domain:

5
. a?o(v) , Ao 1)
T(t):kT:A(t)=J " + b g + d(t) ‘
(torque proportional to armature current)
The terminal voltage of the supply is given by,
vo() =2V, —R(i (1) + 1p(t)) (8)
The voltage with respect to 0V, measured by the position sensing circuit is,
Ry .
vp(t) =g vo(t) - (Vg— i(t) Rs)
m
1 . . \
= Rm[ 2V, (Ryt) - Rm/2) + R [(Rm—Ro(t)) 1n(t) - R[1) ‘p(t)J]
(9)
Without supply resistance, the position would be scaled as,
R t) — R_/2
)=k, 2V, ——R—”( L (10)
m
@f R,= Rm/2 corresponds to & = 0). The measured position is,
= 1
O neastt) = kv t) (11)

If the current drawn by the control and measurement circuits are small when compared to
iA’ then current only flows in one leg of the supply,
Casel:iA >0,ip:iAandinz0
R Rp(t) (12)
Omeas(t) = 0t) - k0T 1A(t)

Case2:iA <0,ipz0andinz—i/\
Ry (R, —R L))
S m .
meastt) = 001) — kg =21 (1) (13)
boil
. . )
Unlike the previous example, this case is non—linear as both Rp(t) and 1A(t) are functions ofco
(t). The conditions for a con~minimum phase term which can be seen by finding the small
signal linearisation (denoted A#(t)) of eqs (12) and (13) with respect to a steady state
operating condition (denotec subscript *). Eq (12) becomes,



R

k0 RS
Bleas(t) = 80—~

T "m dt

J a2A 09) + 90 0({)J
dt

+ AR,

R
,

dt
(14)

he system moves around rest
)
dt?

|
L= dt !* = 0 and the small signal transfer function

n angle to measured angle is,

k, R. R
_ 0 s Tor (2
Ad . (s) = [I_W (352 + us) J Als) (15)
m
>0)
negative iA(t) the procedure is the same and results in the small signal transfer function,
ks R. (R_-R,,)
_ 0 s /s :
A, (s) = [1- R R [Jsz+uS]J A0(s) (16)
m

zeros of egs (15) and (16) lie on the real axis, one in the left and one in the right half
e. In the Appendix it is shown that if the power supply to the position measuring

ntiometer may be reversed, the resulting behaviour is minimum phase behaviour around
‘est position.

Its

hs 2a, 2b and 2¢ show closed—loop results from a laboratory experiment set up to
Tate the above results — the behaviour had been observed in practical problems but no
was available for presentation. The controller used was a simple gain element. To
ve the results, Rs = 141 resistors were placed in series with a low impedance power
y- The rating of the motor was 12V, 250mA and the armature resistance was 274Q.

b 2a shows the non—minimum phase behaviour predicted by egs (15) and (16). Note the
ent magnitudes of positive and negative edged step responses, predicted by eqs (15) and

1 2b shows the effect of changing the sign of the position measuring circuit (eqs (A4)
45)). Although the measurement the start of the step response is minimum phase, this
shows non—minimum phase measurement around some non—steady state condition
can be interpreted using eq (14).

7
Graph 2c¢ shows the effect of separating the power and measurement circuits using the

technique suggested below, without removing the 12 power supply resistors.

Reducing or eliminating the non~minimum phase problem

The non—minimum phase behaviour caused by interaction between measurement and motor
current can be substantially reduced by a simple isolation circuit such as that shown in
Figure 3. Typically power supply isolation is also required for the feedback circuits — this
latter problem can be analysed in a similar manner to the measurement one above.

As the expense of complete power supply separation may not be warranted in lower
performance systems, note that it is not imperative to remove power supply dependence in
the sensor/control circuits. It is only required to place the non—minimum phase zero at such
high frequency that either it has no effect or the design can cope with the extra phase lag
and gain introduced.

4) Conclusion

The large loop bandwidths required in high performance servo systems, can only be achieved
if the open loop transfer function is minimum phase (at least in the frequency range where
the loop transmission will be larger than unity). This note has shown that the power supply
to the sensors should be isolated from that to the motor armature if problems are to be
avoided. Similar analysis would show that in general the sensors and control circuits should
be as insensitive as possible to supply fluctuations for practical systems to work as expected.
The formulas given here can be used to quantitatively describe the feedback problem if for

some reason the non—minimum phase behaviour cannot be avoided.
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Appendix — Minimum phase case with supply resistance
4<> { The non—linear example (with power supply resistance) is considered for the case when the
terminals of the position sensing circuit are swapped. The voltage with respect to 0V,
measured by the position sensing circuit is then,
Ry .
vlt) =— R vo(t) + (Vg = 1p(t) R))
1 . .
- Rm[ 2V (Ryft) =R /2) + Ry (R —R (1) i (1) = Ryft) 1n(t)]]
(A1)
As before, without supply resistance the position would be scaled as,
R t) — R /2
m
) =kp2 V, —p—— (A2)
m
(if Ry= R /2 corresponds to § = 0). The measured position js,
(A3)

Omeas(t) = —kpvylt)

If the current drawn by the control and measurement circuits are small when compared to

iA, then current only flows in one leg of the supply,
CaselzxA > 0,1pziAandin.~.0

(R —R(t)
0 eas(t) = 0(1) + koi_’“j:m_,A(a) (A4)
Case2:iA<0,iszandinz—iA
R_ R,(t

fmeastt) = 0) + kO_Rm_iA(t)

Linearisation of eqs (A4) and (A5) explains the minimum phase behaviour around rest,

observed in the results.

¢zl
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Appendix 3 — Computer programs

This appendix contains source code in Modula—2 for the following Programs:
PP g

3.1) TEMPLATE — a program for evaluating plant parameters from the base
(independent) parameters in Table 2.1. This program was modified for each
controller structure investigated. The output of this program is compatible with
"DESIGN". "TEMPLATE" gives the formulas (from eq(2.21)) for evaluating,

_ _ 0T _ oF
He=H0 " 5y iy e
0.p. 0.p.
K =0T =0T
Y 1 5a
0.p. 0.p.
Kip = A a=-0
o8 0.D. oh 0.p.
= OF = OF
Y. & 4
0.p. o.p.
6‘3 0.p. ap 0.p.

4

(Note: Since submission and acceptance of this work, Mr S Govender has brought
a sign error in the term ( +/- Vyertica$in(d) + Vhorizontalcos(e)) term (which
occurs a number of times) to the author’s attention. The error is corrected on the
software listings but has not been corrected back into the designs. Fortunately the
error does not affect the results significantly for the small angles (<15°) and low
vertical velocity relative to the wind velocity used to construct templates. The

second term can be expected to be at worst 50 times larger than the first.)



:mplate;
0:

'LEX
Cgmplex, SetComplex, AddComplex, SubtComplex, MultComplex,
DivComplex, ScaleComplex, dB, arg, ReadComplex, WriteComplex;

W§LngReal, RdLngReal, WrStr, RdStr, WrCard, KeyPressed, RdKey, WrLn;
LIB
Sin, Cos, Pow, ATan2 (*X,Y : LONGREAL*), Exp, Log;

14159265358979314;

__________________________________________________________________ * )
sqr {a:LONGREAL) : LONGREAL;
a;
e b bbb * )
LiftDrag{ X : LONGREAL;
VAR cL,dL,cD,dD : LONGREAL);
OCEDURE ABS(y : LONGREAL) : LONGREAL;
GIN
y > 0.0 THEN RETURN ¥
SE RETURN -y; END; .
D ABS;
(-5.3054*x*x + 5.0033*%ABS(x))*0.3%1.2;
(-10.6109*ABS(x) + 3.0053)*0.53%1.2;
(3.53730%x*x + 0.0174)%0.5%1.2;
7.1461*%x*0.5%1.2;
rag;
__________________________________________________________________ * )
0329;
16;
13,
24
2.75; "
t.0;
2.75;
1.0}
= 0.0;
.0

L, 1, ix, iy, ic : CARDINAL;

linv, Miav, kOverdJM, One, Zero, omcyga,
w, mA, mB, 2T, gH, g12, g2l : Complex;

{eta, betaPtheta, k, klf, klb, ktf, ktb, kt, kl, windF, windB,
, vbX, vby, vSRf, vSQb,

ooopx2f, ooopx2b, (* 1/(1+x"2) *)

¢LF, dLF, cLB, dLB, cDF, dDpF, cDB, dDB,
cosT, sinT, A, B,
cosTgf, sinTgf, gammab, cosTgb, sinTgb, cosGf, cosGb, sinGf, sinGb, gammaf,
tdot, hdot, theta, inertia, mass, uturn, ulift,

minarg, maxarg, maxdB, mindB, w, w2 LONGREAL;

ok : BOOLEAN;
InputBuffer, OutputBuffer : ARRAY[l..(1024+FIO.BufferOverhead)] OF BYTE;
[nputFile, OutputFile : FIO.File;
FileName : ARRAY[1..40) OF CHAR;
Reply : CHAR;

index : CARDINAL;

Output, ModArg, ModArgInverse @ ARRAY [1..2) OF ARRAY [0..500] OF LONGREAL;

BEGIN

index := 1;

One := SetComplex(1.0, 0.0);
Zero := SetComplex{(0.0, 0.0});
REPEAT

WwrStr('Enter input file ');
RdStr(FileName);
UNTIL FIO.Exists{FileName);
InputFile := FIO.Open(FileNamel;
FIO.AssignBuffer(InputFile, InputBuffer);
wrStr('Enter w ');

w := RdLngReall();
omega := SetComplex(0.0, w);
w2 1= wku;
FIO.EQOF := FALSE;
WHILE NOT(FIO.EOF) DO
theta = FIO.RdLngReal(InputFile); (* in degrees *)
tdot = FIO.RdLngReal{InputFile); (* in rad/s *)
hdot = FIO.RdLngReal(InputFile}; (* in m/s *)
inertia:= FIO.RdLngReal{InputFile);
mass = FIO.RdLngReal(InputFile);
uturn = FIO0.RdLngReal(InputFile);
ulift = FIO.RdLngReal(InputFile);
alphaPtheta ;= FIO.RdLngReal(InputFile);
windF := FIO.RdLngReal(InputFile);
betaPtheta := FIO.RdLngReal{InputFile);
windB := FIO.RdLngReal(InputFile);
IF FIO.OK AND NOT(FIO.EOF) THEN
theta := theta/180.0%pi;
alphaPtheta := alphaPtheta/180.0%pi;
betaPtheta := betaPtheta/180.0%pi; —
%)
cosT := Cos{theta); ==/
sinT := Sin(thetal;
VEX := windF-tdot*rf*sinT; (* front horizontal *)}
vfY := -{hdot+tdot*rf*cosT); (* front vertical *)
vbX windB+tdot*rb*sinT; (* back horizontal *)

ol

vby -{hdot-tdot*cb*cosT); (* back vertical *)



af 1= ATan2(vfX, vfY);
iab := ATan2(vbX, vbY);

Drag((alphaPtheta+gammaf),cLF,dLF,cDF,dDF);
Drag({betaPthetat+gammab),cLB,dLB,cDB,dDB);

sqri{vfX) + sqr{vfy);
sqr{vbX) + sqr{vby);

o

X2€ := 1.0/(1.0+sqr(vfY/vEX));
x2b := 1.0/(1.0+sqr(vbY/vbX));
gf := Cos(theta+gammaf);

gf := Sin{theta+gammaf);

gb := Cos{thetat+gammab);

gb := Sin{thetatgammab);

f := Cosf{gammaf};

f := Sin(gammaf);

b := Cos{gammab);

b := Sin{gammab);

n = uturn - af¥sqr{rf)x*x{

2.0%¥({-vfX*sinT - vfYxcosT) * {cLF*cosTgf+cDF*sinTf)
+ vSQf * ((dLF+cDF)*cosTgf + (dDF-cLF)*sinTgf) *
ooopx2f * (sinT*vfY -~ cosT*vfX) / sqr(vfX) )

+

ab*sqri{rb)*(

2.0*¥(vbX*sinT + vbY*cosT) * {(cLB*cosTigb+cDB*5inTzb)
+ vS@b * ((dLB+cDBl*cosTgb + (dDB-cLBi*sinTgb)x*
ooopx2b * (-sinT*vbY + cosT*vbX) / sqr{vbX) };

- af*rf*(-2.0*xrfxtdotx*

(vfX*cosT ~ vfY*sinT}) * {(cLF*cosTgf+cDF*sinTgf)

+ vSQf * ((dLF+cDF)*cosTgf + (dJdDF-cLF)*sinTgf)*
(1.0+0coopx2f*tdot*rf*{cosT*vfY + sinT*vfX) / sqri{ivfX) })

+ ab*rb*{ 2.0*tdot*rb*

(vbX*cosT ~ ¥ybY*sinT) * (cLB*cosTgb+cDB*sinTgb)

+ vSQb * ((dLB+cDB)*cosTgb + (dDB-cLB)*sinTgbl*
{1.0-ccopx2b*tdot*rb*{cosT*vbY + sinT*vbX) / sqr{vbX) ));

af*rf*vSQf*{cosTgf*dLF + sinTgf*dDF); -
ab*rb*vSQb*(cosTgb*dLB + sinTzb*dDB};

- af*rf*(-2.0*%xvfY*({cLF*cosTgf+cDF*sinTgf)

+ vSQf * {(({dLF+cDF)*cosTgf + (dDF-cLF)*sinTgf)x*
(-0o0opx2f)/vEX )

+

ab*rb*{-2.0*%vbY*{cLB*cosTgb+cDB*sinTgb)
+ vSQb * ((dLB+cDB)*cosTgb + (dDB-cLBl*sinTgb)x*
(-ooopx2b)/vbX };

t equ ¥*)
= af*vSQf*({cosGf*dLF + sinGf*dDF);
= ab*vSQb*{cosGb*dLB + sinGb*dDB);

kl := afx{-2.0*xrfxtdot*(vfX*cosT - viY*sinT)*
(cLF*cosGf+cDF*sinGf)

+ vSQf*({dLF*cosGf+dDF*sinGf)* ) )
(1.0+ooopx2f*tdot*rf*(cosT*vfY + sinT*vfX) / sqr(vfX))

+ (cDF*cosGf-cLF*sinGf) * ocoopx2f )
¥ tdot*rf*(cosT*vfY + sinT*xvfX) / sqr(vfX]}) )

+ ab*(2.0*rb*tdot*{vbX*cosT + vbY*sinT)*
(cLB*cosGb+cDB*sinGb)

+ vSQb*((dLB*COSGb+dDB*SinGb)* ] ]
(1.0-ocopx2b*tdot*rb*(cosT*vbY — sinT*vbX) / sqr(vbX)}}

+(cDF*cosGf+cLF*sinGf) * ooopx2b
xtdot*rb*{-cosT*vbY - sinT*vbX) / sqr{vbX})) };

B := af*{-2.0%xrf*{vfX*sinT + vfY¥*cosT]} * (cLF*cosGf+cDF*sinGf)
+ vSQf * ((dLF+cDF)*cost+(dDF-cLF)*sint) * (-ooopx2f)
*rfksinT*vfY + cosT*vEX) / sqr{vfX))
+ ab*(2.0*%rb*(vbX*sinT + vbY*cosT) * {(cLB*cosGb+cDBE*sinGb)
+ vSQb * ((dLB+CLF)*COSGb+(dDB—CLB)*SinGb) * ooopx2b
¥rb¥psinT*vbY + cosT*vbX) / sqr{vbX)) ;
ulift := ulift - af*(-2.0%vfYV*(cLF*cosGf+cDF*sinGf) .
+ vSQf * ((dLF+cDF)*cosGf + (dDF-cLF)*sinGf) * (-ooopx2f) / vfX )
- ab*(-2.0*vbY*(cLB*cosGb+cDB*sinGb)
+ vSQb * ({(dLB+cDB)*cosGb + (dNDB-cLB}*sinGb) * {-ooopx2b) / vbX )
k := ktfxklb+ktb*klf;

WrLngReal(A,5,11);
WwrLngReal(B,53,11);
WrLngRealtkl,5,11)
WrLngReal{kt,5,11)
WrlngReal (k1f,5,11
WrLngReal(klb,5,11
WrLngReal(ktf,5,11);
WrLngReal(ktb,5,11);
WrLngReal (ulift,5,11);
WrLngReal(uturn,5,11);
wrln();

s
)i

END;
END;
FIO.Close{InputFile);

161
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3.2) Source code for Program "IFLYNEW" to simulate the disturbance decoupling
controller of Chapter 4.

For the simulation, the plant states are chosen as follows,

( ] 1.97 pitch angle
X0, 6 | pitch rate
Xq h | height
Xy h | vertical velocity
Xg - a front wing position
Xg a | front wing rate
X @ back wing position
Xg [ | back wing rate

and the state differential equation is,

Xg = Xy

. 1 )

x4 = g1 (kg + TotalLift)

X = Xg

Xo = —w? x 2¢ W x
6 ne 5 a na 6
Xy = Xg

3.3) Those MODULES from program "HORFLY" which have been modified from
"IFLYNEW" above, in order to simulate the anti—diagonal controller of Chapter 5.



FlyNew;

‘0 IMPORT RdLngReal, WrLngReal, RdCard, WrLn, WrStr,
WrCard, WrChar;
fatrix IMPORT RealMatrix, allocateMatrix,

deallocateMatrix,

MatrixResult,
makeZeroMatrix,

writeMatrix,
makeIdentityMatrix, Gauss;
(ATHLIB IMPORT Exp;

‘lyStart IMPORT pil, zero, vector;

iriteToF IMPORT WriteToFile, results;

" CONTROLLERS;
PLANTend;

'E Global(VAR PLANTdu, CONTROLdu vector);

» solve du{i] - duli]/dx[ji*X[gl*dulj] = dulil/dx(jl*dx[j] *)
¢ RealMatrix;
, ent2, rank

mpat, temp

: CARDINAL;
LONGREAL;

du/dx*dx(c)
du/dx*dx{p)

-du/dx*X(c)

= b is partitioned : [ I(p)
I({c) .

]
[-du/dx*X{p) i
teMatrix (A, 4, +41;
teMatrix (b, 4, 1);
entityMatrix(A);
= CONTRCLLERS.OrderTheta;
= entl + CONTROLLERS.OrderHeight;

row of A *)
ryl 1.0+Entry(1,1,PLANTend.X}, L1, 1, A);
ry( Entry(1,2,PLANTend.X) , L, 2, A);

= -CONTROLLERS.Kinv(l,l]*Entry(l,entl,CONTROLLERS.X)
-CONTROLLERS.Kinv[l,2]*Entry(l,ent2,CONTROLLERS.X);
vy temp , L, 2, A,

= -CONTROLLERS.Kinv{1l,1]*Entry(2,entl,CONTROLLERS.X)
-CONTROLLERS.Kinv([1l,2|*Entry(2,ent2,CONTROLLERS.X);
ry{ temp y oLy 4, A

row of A *)

rv{ Entry{l,1,PLANTend.X) y 2, L, A,

ry({ 1.0+Entry(1l,2,PLANTend.X), 2, 2, A);

= -CONTROLLERS.Kinv[2,1l]*Entry(l,eatl,CONTROLLERS.X)
-CONTROLLERS.Kinv[2,2]*Entry(l,ent2,CONTROLLERS.X};

rv{ temp , 2, 3, Al

= -~CONTROLLERS.Kinv[2,11*¥Entry(2,entl,CONTROLLERS.X)
-CONTROLLERS.Kinv[2,2*Entry{2,ent2,CONTROLLERS.X);

ry{ temp y 2, by, Ay

row of A *]
cy( Entrcy(Ll,1l,PLANTend. X} , 3,
cyl Entry(l,2,PLANTend.X) y 3,

Entry,

putEnt

*)

EN

BE

(* 4th row of A *)
putEntry( Entry(3,1,PLANTend.X) , 4
putEntry{ Entry{3,2,PLANTend.X) , 4

(* b x)

temp := -PLANTend.dx[1l]

+ CONTROLLERS.Kinv[l,l]*CONTROLLERS.dx[entl]

+ CONTROLLERS.Kinv[l,2]*CONTROLLERS.dx[ent2];

putEntry({ temp , 1, 1, bj;

temp =

-PLANTend.dx(1] + CONTROLLERS.Kinv(2,1]*CONTROLLERS.dx(entl]

+ CONTROLLERS.Kinv[2,2]*CONTROLLERS.dx[ent2];

temp y 2, 1, b
-PLANTend.dx([1] , 3, 1
-PLANTend.dx (3] , 4, 1

putEntry(
putEntry(
putEntry(

b);
b);

)3

Gauss{A, b, rank, incompat, zero};
IF MatrixResult.Error THEN
WrStr('matrix error in Global');
Wrln;
END;
PLANTdu([ 1]
PLANTdu([2]
CONTROLdu([1]} :=
CONTROLdu(2] := Entry{d

Wi

deallocateMatrix{A);
deallocateMatrix(b);

D Global;

PLANTdu, CONTROLdu vector;
nexttick, time, ticklength, deltaT,
theta, height, AplusThat, BplusThat,
ares, bres, hres, tres results;
NumberSteps, step CARDINAL;
tick BOOLEAN;

GIN

tref, href

WeStr('Initialising FlyingMachine’};
wWrln;

WrStr{ 'Enter deltaT ’);
deltaT := RdLngReall();

Wrln;

WrStr{'Enter NumberSteps ’'1};
NumberSteps := RdCard{);
wWrln;

WwrStr{’'Tick length ');
ticklength := RdLngReal();
WrLn;

nexttick
time :=

= 0.0;
0.0;

AplusThat
BplusThat

oo
[oNe)

o

theta := 0.0;
height := 0.0;

LONGREAL;

¢er



2p := 1 TO NumberSteps DO
r{'step ');

rd{step,d4);

:= time + deltaT;

= 0.0;
= 0.0;
:==0.35;
ime > 11.0 THEN
ef 1= -0.5+1.0%(1.0-Exp(~-0.7*%(time-11.0)));

me >= nextticlk THEN

k:=TRUE;

ttick := time+ticklength;

k:=FALSE;

step] := height;

step] := theta*180.0/pi;

step] = (AplusThat-theta)*130.0/pi;
step] := (BplusThat-theta)*180.0/pi;

end.PlantidelcaT, AplusThat-theta, BplusThat-theta,

alep, Lick, TRUE):
OLLERS.Controllers(deliatl, Lref-0.01l7-theta, hretl+0.1l-height);
L{PLANTdA, CONTROLduU);

end.PlantState{ PLANTdu, height, theta);
OLLERS.ControllerState(CONTROLdu, AplusThat, BplusThat);

Height'};
File{hres,NumberSteps};

[HETA ' );
“ile(tres,NumberSteps);

WLPHA '),
"ile(ares,NumberSteps};

BETA ');
‘ile{bres,NumberSteps};

l.EndPlant;
.ERS.EndZontrol;

W

iz}



“ION MODULE Matrix;|

CONST
£ 28.05.1988 MaxCard = 63533,
Eduard Eitelberg & Edward Boje MaxSize = 8183;
LOGITECH MODULA-2/85 (* 8 Bytes per real and 2 Brtes per cardinal = 8183%3+4 = 633516 *)
MaxEVDim = 90; {* 91%91=8281 > 8189=MaxSize *)

MaxSpaceAllocatable = 63520; x)

of real matrix operations, Gaussian elimination, eizgenvalues: CONST

Messagelength = 80,
transp = TRUE;
notransp = FALSE;

ocataMatrix
llocateMatrix

'sOF of TYPE RealMatrix;

umns

IE'.V ) TYPE MessazeTvype = ARRAY [0..(_\1essageLenth-L)] QF CHAR;
Entes TYPE MatrixResultTvpe = RECORD

dMatrisx

- Error: BOOLEAN;
teMatrix

Message: MesszazeType;

eZeroMatrix END {*record*};
eldentityMatrix

S“atftx TYPE ComplexNumber = RECORD

5B}ocA‘_ Real : LONGREAL;
leJaFrLL ‘ Imag : LONGREAL;
metr%:eﬂater END (* racord *);
Matrix ) TYPE EigenValues;

tractMatrix

tiplyMatrix VAR MatrixResult: MatrixResultType;

VAR BlankMessage: MessageTyvpe;

33 NoErrorMessage: MatcixResultTyp=;
ocateBlisVals ‘
llocuteE'Lg\';\Ls (*t**x*;‘f‘*gt***_‘*x***i*ix**:kiki:i:kkix:kxi*iiii\'**i:ixxx*iﬂ(x*xiix*:{(*xx*xk**xtxk***)
ens3ionOf
ELgﬁnysEntry PROCEDURE allocateMatrix (VAR A @ RealMatrix; Rows, Columns : CARDINAL);
ndfjgVal ( x
TulateEisVals Rows*Zolumns of reals and 2 cardinals are allozated {on the heap) for matreix
. ) Vaod it dibmentioan., v entries eannot be be o assamed to have any given o valae,
raves b lared o Lppe KeadMatraa) and coigens i oarray s Gl bared of 1 [tV 13 ool too big and the mewmory i3 available, MatrvisResult.kErroe=FPALSE.
A X . ) Elze nllosnt Matri:y will be left immediately, MatrixResult.Error=TRUE.
Lues) musc be dnitialised in the vser progsrcam with allocatsMatreis and K
r@igtals respectively., This does not guarantes any parcticular numerical
for the matrix or eigenvalue entries, nowever. The uzer is resporsible X o e e e e e e e e e = *)
re2lzase of memory through deallocation with deallscateMatrix and PROCEDURE deallocateMatrix (VAR A : RealMatrix):
wteEigVals, eils2 user progrcam may end with heap and stazk collision. (* No errar messaze here. Memory is released on the heap, 1f A = NIL. *)
matcix size {Rows*Columns=MaxSize) is currently 818% reals {LOGITECH ( fm = o e e e e e *)
ttation limit), leading to 90 as the (theoreticalir " maximum number of PRCCECURE RowsDE(VAR A : RealMatrix) : CARDINAL;
w23 (91*30=8221 would be greater than 3199=MaxSize!. {* No error messaJe here - not needed after successful allocation. *)
el Matp L sult, contains an error indicator of matrix operatisns (€ m o o e e L e e e e i = * )
corresponding message , it is set as a side-efre-t in most procedures. PROCEDURE ColumnsOf(YAR A : RealMatrix) : CARDINAL;
sonsfants, teansp=TRUE and notransp=FALSE, mar be us=d for betrer (* No error message here - not needed after successful allocation. *) Es
.ily in some procedure callis. (Sl
H . . R . i T oty gy e * )
've2r us2 direct matrin assizaments, such as A:=B. This is formally PROCEDURE Entrecw(i,j : CARDINAL; VAR A : RealMatrix) LONGPEAL;
! 3 - 3 Tane ma ‘S 1R LOC N - B - ; DR » B - . PR L -
i leaids to memocry management problems. Us: lnstead the procedure {* i and j must be in the row and column range respectiv=lv. Else errcr
iz, or suchiike. is set and 0.0 i3 returned. ¥}
Qg e x)

constant definitions ace for info only. [her are not exporred PROCEDURE

prEnrori i, @ CARDINAL; VAR A @ RealMazrixy;




ind j must be in the row and column range respectively. Else error

set and nothing done. *)

WRE readMatrix{VAR A: RealMatrix);

s procedure reads ia matrix entiries row by row, from a source opened

or to its call, if A has been allocated succezsfully. Else error is set
A is not read. Most suited for reading from files. Uses ReadReal. *}

URE writeMatrix(VAR A; RealMatrix; Out: CHAR}

5 procgdure writes out matrix entries row by row, to a device/file opened

or Fo its call, if A has been allocated successfully. Else error is set

A is not written. The format is real, 12 positions, 4 digits accuracy,

olumns at a time. )

tead of WriteLn, CR LF is explicitly used, hence output redirection to

nte? via Termbase.AssignWrite and Termbase.UnAssignWrite is possible.

printing, the appropriate (IBM) printer graphics character table has to

activated/selected - see your printer manual.

= d or D nice display/printer format is written. If a file has beesn
opened then this format is output to the file.

= f or any other character number of rows and number of columns aro
followed by the matri: entries. Recommende:d output to file.
This format is compatible to readMatris.

iple of redirection to EEFSON LX-800 print=r:

1OCEDURE  printic: CHAR); (¥ WriteProcedure *)
Y ) (* Must be )
DOSCANLL(3H, 2 (% provided x)
D print; (¥ in the user *)
B done BOOLEAN; {* modrmle. =)
:?i4nhri!c(panL,donc); (¢ Redirect ontpnt to printer. ¥)
rite(33C); Write(l&4C); Write{lC); (% Set character graphlzss table. x|
citeString( 'Matrix A:’};
rite(l3C); wWrite(12C); {* Replace:s universally MODULA-2 Writel,n. *)
. CR . LI, sinee Weiltebhn is not anderstood by the pintoer. )
r}lvﬂulrlx(\,‘l /N {(* Dirsplav-format ontpogt. )
rlte(d330) ) Writel LOOC ), (* Reset printor. #)
nAssignWrite(done}; (* Output Lo screen azain. *)
of enample.
___________________________________________________________________ * )

RE makeZeroMatrix{VAR A: RealMatrix!;

s all A entries 0, if A has been allocated successfully., Else error i
and nothing is done. ¥ "

vi

it makeldentitrMatreix(VAR A: RealMatrind;

syuare matrices, MatrizResult.Error=TAL3E. Else malke [dentLtyMatoin
l2ft immediately with MatrixResult.Ecror=TRCUEZ.

_________________________________________________________ * H

BOOLEZAN VAR B: RealMatrix);

L 2 gosed. Row and columa numbers
mist nob be same, MatrixResuit.Srror=FALSE.

must be compatible and

Else copyMatrix will be left immediately, MatrixResult.Error=TRUE.
*)

PROCEDURE copyBlock{VAR A: RealMatrix;
FromRowA, ToRowA, FromColumndA, ToColumnA: CARDINAL;

VAR B: RealMatrix; FromRowB, FromColumnB: CARDINAL);
{ *
An indicated block of A is copied into B, so that the "upper left corner” of
the block is as indicated in B. A and B can be same. A and B must be big enough
to contain the block as indicated, MatrixResult.Error=FALSE.
Else copyBlock will be left immediately, MatrixResult.Error=TRUE.
*)

PROCEDURE scaleMatrix(VAR A: RealMatrix; x: LONGREAL};
(*®

A= x¥A, 1€ A 1s availaole.

*)

(2 *)
PROCEDURE symmetrizeMatrix(VAR A: RealMatrix);

(*

This forees A to symmetry. Only for square matrizes, MatrixResult.Error=FALSE.
Else syvmmetriczeMatrizs will be left immnediately with MatrixResult.Error=TRUE.
*)

PROCEDURE addMatrix(VAR A: RealMatrix; transposedA: BOOLEAN;

VAR B: Reallatrix; transposeB: BOOLEAN; VAR C: RealMatrix);
(*
C:= A+B, where C, A and B can be same.
A and/or B may be transposed, but then € must be different to the transposed
matrices/matrix, MatrixResult.Error=FALSE. Else addMatrix will be left
immediately, MatrixResult.Error=TRUE.
ALl row and colnumn numbers must be compatible, MatrizResult.Error=FALSE.
Else wmildMatrix will be lelt immediately, MatrixResulht.Error=TRUE.
* )

PROCEDURE subtractMatrix!VAR A: RealMatrix; transposed: BCOLEAN;

VAR B: RealMatrix; transposeB: BOOLEAN,; VAR C: RealMatr
i)
{ *
C:= A-B, where C, A and B can be same.
A and/or B may be transposed, but then C must be different to the transposed
matrices/matrix, MatrixResult.Error=FALSE. Else addMatrix will be left

' inmediately, MatrixResult.Error=TRUE.

(ALl row and column numbecrs must be compatible, MatrixResul:z.Error=FALSE.
Elise addMatrix will be left immediately, MatrixResult.Error=TRUE.

RealMatlrix; transposed: BOOLEAN;

| PROCEDURE muitipleMabrisx(VAR A:
BOOLEAM; VAR C:

VAR B: RealMatrix; transposcB: RealMatr

i
{
C:= A%B, whore C must be different to A and B, A and B can be same.
A and/or B maxy be transpnsed.

[ ALl row and zolumn numbers must be compatible and € must be different to

A and B, MatrisResult.Error=FALSE. Else multiplyMatrix will be left

trmmed i aarelsy MatrivRe=00lt  Frror=TRUE .



PROCEDURE DimensionQf(VAR EV : EigenValues)} : CARDINAL;

*) (*# No error message here - not needed after successful allocation. *) .
____________________________________________________________________ K o e e e e e e e e e
‘RE Gauss{VAR A, B: RealMatrix; VAR RankOfA: CARDINAL; éROCEDCRE ga2tEigValsEntry(i: CARDINAL; VAR EV: EigenValues;

VAR MaxIncomp: LONGREAL; Zero: LONGREAL); VAR EVEntry: ComplexNumber);

(* Error, if i 1Is greater than dimension of EV. Whether the result has
ssumas that A and B are different but have the same number of rows. actually been found through calculation, must be checked with foundEigVal.
not need to be square. « |

(2R SO * )
n reduction i3 done on matrix A, whilst doini the same row operations PROCEDURE foundEighal{i: CARDINAL; VAR EV : EigenValues) : BOOLEAV;
adjacent matrix B. Full pivoting is used. Three permutation vectors of (* Error, if i is greater than dimension of EV. *)
ls are used (allocated temporarily in Gauss). R e L T T TSI ——————— RS *)
lthough both matrices, A and B will be changed, the equati PROCEDURE calculatefigWVals(VAR EV: EigentValues; VAR A: RealMatrix);

AXX=B {(* This co-ordinates the evaluation of the eigenvalues of the matrix A:
qually well before and after Gauss. As :ventual equation A - The matri: whose eigenvalues are required. Must be allocated by the
tibility is not scaled durirg Gauss. user with equal number of rows and columns.

EV' -~ The set of eigenvalues, whose entries EVEntry of tvpe ComplexNumber
ns with: mav be extracted with getEigValsEntry(i, EV, EVEntry), provided
ity, in case of "ill rank square A. foundEigVal(i,EV) is TRUE. Else the corresponding eigenvalue has not
mbar of diagonal 1's ejqual t> its calzulated rank, in cuse A has not been found, since the alzorithm is not gunaranteed to converze.
rows than columns. The othec diagonal entries are 0 (or near-0). EV must be allocated by the user (with allocateEigVals) with the
se of full pivoting, these 1's and 0’s max be intermittent. number of entries equal to the number of A rows.

123 less rows than columns, then the pivot 1's are not {necessarilv! on
Lagonal. Another matrix, of the same size as A, and two single-column matrices,
with as many rows as A, are allocated temporarily during this procedure.
13 with the corresponding fully or partially 'reduced' adjacent matrix. ) :
3P o * )

>sult.Error=TRUE if aa error occurs, set as sjde-eflect together with (

the messuage- in the MatrixResult.dessage. PROCEDURE print{c: CHAR); (* WriteProcedure ¥)

The possible errors are;

al Incompatible matrix sizes. g g g g e *)

b) Not enough memory for temporary ailocation.

¢) Srstem overdetermined (a non-zero value found in any END Matrix.

non-pivot row of B).

s the number of pivot rows of the.matrix A (systen

underdetermined if less than number of A columns).
ol ceturns the absolute largest value in the non-pivot rows of tha

matrix B (=0 => incompafibility, =0 => no lncompatibility .

Note, these rows are not scaled during reduction.

[t is set to O if Ran%OfA equals number of A rows.

is the user-determined vaiue belecw which zero s assumed to esist.
__________________________________________________________________ x
E allocateZigValsi ViR E- Eigentalues; Dimernsion CARDINAL);
! —
ton of reals, Dimension of bool=2ans and | cardinal are allacatedd L)
heap) for eigenvalues EV and its dimension., EV entries cannot be b= ~3
tc have anr given value. [f EV i3 not too biz and the memory is
e, MatrinResult.Error=FALSE. Else allocatefigials will be laCs
21, MatrixPesult.Ecror=TRUE.

T denliocateEizVaisivAF EV @ Eiganvalues);
Cor message here. Memors is released on the




[ MODULE FLyStarg?ﬂ

w

1415925536,
= {.0E-6;

or = ARRAY([1..10] OF LONGREAL;

Start.

STATION MODULE FivStart;]
Start.

DEFINITION MODULE COMPLEX?”

TYPE
Complex = RECORD
Rel, (* Real part *)
{* Imaginary part *) Imag: LONGREAL;
END;
VAR
ComplexDivideResult : BOOLEAN;

PROCEDURE SetComplex(x, y : LONGREAL) : Complex;

PROCEDURE AddComplex{Cl, C2: Complex) : Complex;
{* Procecdure to add two complex numbers *)

PROCEDURE SubtComplex{Cti, C2: Complex) : Complex;
(* Procedure to subtract two complex numbers ¥

PROCEDURE MulttTomplex(CTl, C2: Complex) : Complex;

{* Procedure to multiply two complex numbers *)

FROCEDURE DivComplex(Cl, C2: Complex) : Complex;

(* Provedure to divide two complex numbers and return TRUE *)

{x | f operation is successful, FALSE for division by zero *)

PRICECVRE ScaleComplexi{C : Complex; Scale : LONGREAL) : Complex;
(¥ Scales Complex by Scale %)

PROCEDURE dB{(C : Complex) : LONGREAL;
PROCEDURE arzi{C : Compilex) : LONCREAL;

PROCEDURE ReadComplexi ) @ Complex;
{* Procedure to read complex number *)

PROCEDURE WriteComple:w{CT: Complex (* input *});
(* Procedure to output a complex number #)

END COMPLEX.

8el



_TION MODULE PLANTendLj
tatrix IMPORT Realvatrix;

“lyStart IMPORT w=ctor;

RealMatrix;
veztor;

'URE Plant!d=1taT, AlphaHat, BetaHat : LONGREAL; step : CARDINAL;
tick, disturo : BOOLEAN);
'WRE Plant3State(VAR du : vector;
VAR heigh-, theta : LONGREALI;
(* update plant’s state vector *)

URE EndPlant; {* Must be called before main module ends to
dealliocate memory *)

ANTand.

PEFINITION MODULE CONTROLLERS;][

FROM Matrix I[MPORT RealMatri:x;
FROM FlyStart IMPORT wvector;

VAR
X @ RealMatrix;
dx @ vector;
OrderTheta, Ordertleight : CARDINAL;
Kinv : ARRAY[1..2] OF ARRAY{l..2] OF LONGREAL;

PROCEDURE Controllers{deltaT, theta, height : LONGREAL);
PROCEDURE ControllerState{VAR du : vector;
VAR ApilusThat, BplusThat : LONGREAL);
{* update controllers’ state vector *!
{(* must be called before end of main module to

PROCEDURE EndContrcl;
deallocate memcry *)

END CONTROLLERS.

6el



MENTATION: MODULE PLANTend;”
*)
T FloatExc;

T FIO;
MATHLIB IMPORT Sin, Cos, ATan2;
IO IMPORT
RdLngReal, WrLngReal, RdCard, RdInt, WrlInt,
Wrln, RdStr, WrStr,WrCard, WrChar;
:nOutput, CloseOutput, Openlnput, Closelnput, *)

“lyStart IMPORT vector, pi, zero (*print*});
latrix
JRT RealMatrix, allocateMatrix,

MatrixResult, writeMatrix,

deallocateMatrix,
makeZeroMatrix,

Entry, putEntry,

makeIdentityMatrix, Gauss;

iriteToF

)RT results, WriteToFile;

9.81; (* m/s? *)

ity = 1.2,

aMass = 0.8; (* = 1.5-0.7 = mass - antimass *)
Length = 1000;

nurbance = ARRAY[!..DistLength] OF LONGREAL;

tPosn, FrontRate results;

vector;

LF, distLB, distDF, distDB disturbance;

F,windB LONGREAL; (* Now global to keep wind speed from one to the next
Wind
tia,
Front ,

CARDINAL;
(* Moment of inertia about pivot*)
(* Total area of front wings *)

Back, {(* Total ar=a of back wings m?*)

1, (* Rotational friction *)

Sy (¥ Sliding friction *

10, (* Rotational friction %)

-0, {(* Sliding friction *) -

. (* Kg *)

eToPivot, {* pivot in front of centre of mass *)

.ToPivot, (* m *)

oPivot, (* m *)

\Front, DampingFront, OmegaSqFront, TwoOmegaDFront,

Back, DampingBack, OmegaSqBack, TwoOmegaDBack,

pha, maxAlpha, minBeta, maxBeta, maxAlphaRate, maxBetaRate LONGREAL;
____________________________________________________ x )

RE CoefficientLift(angle LONGREZAL; VAR cL, dL LONGREAL};

PROCEDURE SGN(y LONGREAL) LONGREAL;
BEGIN
IF vy > 0.0 THEN RETURN 1.0 ELSE RETURN -1.0; END;
END SGN;
CONST
rho = 1.2;
BEGIN _ . _
cL := SGN{angle)*(-5.3054%angle*angle + 5.0055%¥ABS(angle) }*0.5%rho;
dL := (-10.6109*ABS(angle) + 5.0055)*0.5*rho;
END CoefficientLift;
et *)
PROCEDURE CoefficientDrag{angle LONGREAL; VAR cD, dD LONGREAL) ;
CONST )
rho = 1.2;
BEGIN _
cDh := (3.5730*angle*angle + 0.0174)*0.5*rho;
dD := T7.146l*angle*0.3*rho;
END CoefficientDrag;
2 gy g x )
PROCEDURE Wwind( ) LONGREAL
CONST
MeanSpeed = 20.0;
NumberWinds = 6;
VAR
temp LONGREAL;
WSpeed ARRAY[1l. .NumberWinds] OF LONGREAL;
BEGIN
RETURN 20.0; (* for the time being *)
END Wind;
(K m mm o m e x)
PROCEDURE Plant(deltaT, AlphaHat, BetaHat LONGREAL; step CARDINAL;
ticlk, disturb BOOLEAN
(* AlphaHat = desired value of alpha *}
VAR
Phi, Fmat RealMatrix;
f : vector;
cosT, sinT LONGREAL;
dLF, dLB, dDF, dDB, cLF, cLB, cDF, cDB LONGREAL;
gammaf, gammab LONGREAL;
(* 1lift etc given by cLF derivative by dLF *)
alpha, beta, theta, tdot, height, hdot LONGREAML;
(3 g g g gy gy x)

PROCEDURE Wings;

VAR temp LONGREAL;
BEGIN

(¥ Wing movements in controller form*)

oyl



front wings *)

oha = x[3];

~Entry (-1.0, 5, 6, Phi};

Entry {OmegaSqFront, 6, 5, Phi};

np := Entry(6,6,Phi);

Entry ((temp + TwoOmegaDFront), 6, 6, Phi);

Entry{OmegaSqFront, 6,2,Fmat};

] 1= x[6]; :

'] := - OmegaSqFront*x[3] - TwoOmegaDFront*x[6] + OmegaSqFront*aAlphaHat;
back wings *)

a = x[7];

Entry (-1.0, 7, 8, Phi};

Entry (OmegaSqBack, 8, 7, Phi);

p = Entry(8,8,Phi);

Entry ({(temp + TwoOmegaDBack), 8, 8, Phi);

Entry{OmegaSqgBack, 8,3,Fmat};

] == x{81;

] := - OmegaSgBack*x[7] - TwoOmegaDBack*x[8] + OmegaSgBack*BetaHat;
gs;
_______________________________________________________________ * )
RE Plantl; {(* calculate some lifts, drags, etc *)

EDURE sqr{a:LONGREAL) LONGREAL;

N

ETURN a*a;

sqr;

rf, af, ab, kt, ktf, ktb, klf, klb, kl, A, B, vfX, vfY¥, vbX, vby,
f, vSQh,
px2!l, ocvopx2b, (* 1/({L+rx"2) %)

I', sinT, cosTgf, sinTgf, cosTgb, sinTgb, cosGf, sinGf, cosGb, sinGb,

» : LONGREAL;

JverT, TotalLift, Torque
, col, 1 CARDINAL;

LONGREAL;

AreaFront;
AreaBack;
FrontToPivot;
BackToPivot;

:k THEN
IF 1= Wind();
IB := Wind(];

0.0, windB:=20.0;

| now for some dangerous stuff *}

*)

IF step>450 THEN windF:=15.0; windB:=15.0;
ELSE windF:=20.0; windB:=20.0;

END;

cosT := Cos(thetal;

2inT := Sin{thetal;

vEX := windF-tdot*rf*sinT; (* front horizontal *)
vfY := -({hdot+tdot*rf*cosT); (* front vertical ¥)
vbX = windB+tdot*rb*sinT; (*#* back horizontal *)
vbY := -(hdot-tdot*rb*cosT); {(* back vertical *)
gammaf := ATan2(v{X, VvEfY);

gammab := ATan2(vbX, vbY);

CoefficientLift({alpha+theta+gammaf),cLF,dLF);
CoefficientLift((betat+theta+gammab),cLB,dLB);
CoefficientDrag((alphattheta+gammaf),cDF,dDF);
CoefficientDrag((beta+theta+gammab),cDB,dDB);

vSQf := sqr{veEX) + sqr(vfY);

vSQb := sqr{vbX) + sqr(vb¥);
ooopx2f := 0/{1.0+sqr(vEY/vEX));
coopx2b := 1.0/(1.0+sqr(vb¥/vbX));
cosTgf := Cos(theta+gammaf);
sinTgf := Sin{theta+gammaf);
cosTyghb = Cos({theta+ganmabl);
sinTgb := Sin{thetat+gammab);

cosGf := Cosl(gammaf);

sinGf := Sin(gammaf);

cosGb := Cos(gammab);

sinGb := Sin{gammab);

uturn := uturnQ - af*sqr(rf)*(

2.0%{-vEX*sinT - vfY*cosT) * {cLF*cosTgf+cDF*sinTgf)
+ vSQf * ((dLF+cDF)*cosTgf + (dDF-cLF)*sinTgf) *
coopx2f * {sinT*vfY - cosT*vfX) / sqr{vfX) )

+

ab*sqr(rb)*(

2,.0¥{vbX*sinT + vbY*cosT) * (cLB*cosTgb+cDB*sinTgb)
+ vSQb * ((dLB+cDB)*cosTgb + ({dDB-cLB)*sinTgb)*
ooopx2b * {(-sinT*vbY + cosT*vbX) / sqr{vbX}) );

kt := - af*xpf*x(-2,0*rf*tdot*
(VEX*cosT ~ vfY*sinT) * (cLF¥cosTgf+cDF*sinTgf}
+ vSQf * ({dLF+cDF)*cosTgf + (dDF-cLF)*sinTgf)x*
(1.0+oocopx2fxtdot*rf*{cosT*vfY + sinT*vEX) / sqr(vEX)

+ ab*rb*( 2.0*tdot*rb*

(vbX*cosT ~- vbY*sinT) * (cLB¥cosTgb+cDB¥sinTygb)

+ vSQb * ((dLB+cDB)*cosTgb + (dDB-cLB)*sinTgbl}*
{1.0-ocoopx2b*tdot*rb*(cosT*vbY + sinT*vbX) / 3qr{vbXl

))

|
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1= af*rf*vSQf*(cosTgf*dLF + sinTgf*dDF); putEntry(-klb/mass, 4, 7, Phi);
= ab*rb*vSQb*{cosTgb*dLB + sinTgb*dDB};
(* Calculate f *)
- af*rf*(—Z.O*VfY*(cLF*coSTgf+cDF*SinTgf)
+ vSQf * ((JLE+cDF)*cosTgf + (dDF-cLF)*sinTgf)* Torque := vSQf*(cLF*cosTgf + cDF*sinTgf) * FrontToPivot * af
(-coopx2f)/vfX ) - vSQb*(cLB*cosTgb + cDB*sinTgb) * BackToPivot * ab
+ + mass*g*CentreToPivot*cosT;
ab*rb*(—2.0*vbY*(cLB*cosTgb+cDB*sinTgb)
+ v5Qb * ((dLB+cDB)*cosTgb + (dDB-cLB)*sinTgb)x* TotalLift := af*vSQf*{(cLF*cosGf+cDF*sinGf)
(~o0opx2b)/vbX ); + ab*vSQb*{cLB*cosGb+cDB*sinGb) - DeltaMass*g;
m lift equ *)
1= af*vSQf*(cosGf*dLF + sinGf*dDF); (%
= ab*vSQb*(cosGb*dLB + sinGb*dDB} ; WrLngReal(Torque,3,11);
WrLngReal(TotalLift,3,11);
= af*(-2.0*rf*tdot*(vfX*cosT — vf¥*sinT)* * )
(cLF*cosGf+cDF*sinGf) [F disturb THEN
I := (step MOD DistLength) + [; )
+ vSQf*{ (dLF*cosGf+dDF*sinGf )* Torque := Torque + {distLF[i]*cosT + diStDF[i]*SLHT)*FrontTOPLVOt
(1.0+o0copx2f*tdot*rf*(cosT*vEY + sinT*vfX) / sqr(vEX)) - (distLB[i]*cosT + distDB{i]*sinT}*BackToPivot;
Totallift := TotalLift + distLF[i] + distLB[1i}];
+ (cDF*cosGf-cLF*sinGf) * ooopx2f END;
* tdot*rf*(cosT*vfY + sinT*vEfX) / sqr(vEx)) )
x
+ ab*(2.0*rb*tdot*(vbX*cosT =~ vbV*sinT)* ( WrlngReal(Entrcy(4,4,Phi),3,11);
(cLB*cosGb+cDB*sinGb) WrlngReal(ulift,3,11);
x
+ vSQb*( (dLB*cosGb+dDB*sinGb ) * )(* Model *) ’
(1.0-0coopx2b*tdot*rb*{cosT*vbY + sinT*vbX) / sqr{vbX)) fl1] = x[2];
‘ fl(2] = 1.0/inertia*{~uturnO*x(2] + Torque);
+{cDF*cosGf+cLF*sinGf) * ooopx2b f(3] = x[4];
*tdot*rb*(-cosT*vbY - sinT*vbX) / sqr(vbX)) J; £l4] := 1.0/mass*(-uliftO*x[4] + TotalLift);
af*(-2.0%rf*(vfX*sinT + viY*cosT) * (cLF*cosGf+cDF*sinGf ) END Plantl!;
+ vSQf «* ({dLF+cDF ) *cosGf+(dDF-cLF ) *sinGf) * (-ooopx2f) ok
*rf*esinT*vEY + cosT*#vEX) / sqr(vEx)) LS ettt diterieriests e )
+ ab*(2.0*%rb*(vbX*sinT + vbY*cosT) * (cLB*cosGb+cDB*sinGb) VAR
* vSQb * ((dLB+cLF)*cosGb+(dDB-cLB)*sinGb) * coopx2b OneOverT, incompat, temp : LONGREAL;
*rb*EsinT*vbY + cosT*vbX) / sqr(vbX)) ; rank, row, col : CARDINAL;
done : BOOLEAN;
t= uliftQ - af*(—2.0*va*(cLF*cost+cDF*sint)
t vSQf * ((dLF+cDF)*cosGf + (dDF-cLF)}*sinGf) * (-ocoopx2f) / vEX ) BEGIN
- ab*(-2.0*vbY*(cLB*cosGb+cDB*sinGb) allocateMatrix(Phi,8,8);
- vSQb * ((dLB+cDB)*cosGb + (dDB-cLB)*sinGb) * (-oo@px2b) / vbX }; makeZeroMatrix{Phi);
allocateMatrix(Fmat,8,3);
tlate I/deltaT - J *) makeZeroMatrix(Fmat);
ry(-1.0, 1, 2, Phi}; (* Calculate I/deltaT *)
.ryl kt/inertia, 2, 1, Phi}; OneOverT := 1.0/deltaT;
= Entry(2,2,Phi); FOR row := 1 TO 8 DO
ry{{temp + uturn/inertia),2, 2, Phi); col := row;
ry{~-ktf/inertia, 2, 5, Phi); putEntry(OneOverT, row,col,Phi);
ry{ ktb/inertia, 2, 7, Phi); END;
ry(~-1.0, 3, 4, Phi);
ry{-kl/mass, 4, 1, Phij}; FrontPosn[step] := x[3];
= Entry(4,4,Phi); FrontRate{step] := x[86];
ry({temp + ulift/mass), 4, 4, Phil; theta := x[1]; tdot := x([2];
ry(~-klf/mass, 4, 3, Phi); height := x[3); hdot := x[4d}];
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S,
tl;

r{’PlantJacobian');

row := 1 TO 8 DO

OJR col := 1 TO 8 DO
WrLngReal (Entry(row,col,Phi},2,9);
D
rln;
>w make Phi*[dx|X] = [£ F]| *)
row = | TO 8 DO putEntry(f{row],row,l,Fmat);

;{Phi, Fmat, rank, incompat, zero);
itrixResult.Error THEN

str('matrix error in Plant’');

n;

're test MatrixResult x*)

w construct [dx|X] =*)

ow = 1 TO 8 DO

[row] := Entry{row,l,Fmat};
mp := Entry(row,2,Fmat};
tEntry(temp,row,1,X};

mp := Entry(row,3,Fmat);
tEntry{temp,row,2,X);

ocateMatrix{Phi};
ocateMatrix(Fmat};

pha+theta > 25.0/180.0*%pi1 THEN
tr{’a+t> ');

sha+theta < -5.0/180.0*pi THEN
sr{tart< ')

ca+ttheta > 25,0/180,0*xpi THEN
e{'bet> )5

tattheta < -5.0/180.0*pi THEN
crf "b+t< )

'E PlantState{VAR du vector;
VAR height, theta
(* update plant's state vector *)

CARDINAL;
.tRateSaturated, FrontAmplitudeSaturated,

LONGREAL) ;

END;

BackRateSaturated, BackAmplitudeSaturated
temp : ARRAY[1l..2] OF LONGREAL;

BEGIN

{ *

{ *

*)

WrLn;
WrStr('PlantState’);

FOR i = 1 TO 8 DO
temp[l] := Entry(i,l,X);
temp[2] := Entry(i,2,X);
x[i] := x[i] + dx[i];
x[i] := x[i) + temp[l]l*dul[l];
x[i] := x{i] + temp(2]*dul[2];
WrLngReal(x[1],2,10); *)}
END;
Wrln;
FOR i := 1 TO 8 DO

WwringReal(dx[1],2,10};
WrlngReal{Entry(i,1,X),2,10};
WrlngReal(Entry(i,2,X),2,10);
wWringReal(du[l},2,10);
WrlngReal(du(2],2,10);
WrLn;

END;

(* Now check for saturation *)
(* front wings *)

IF (x[53] > maxAlpha) THEN

FrontAmplitudeSaturated := TRUE;
x[5] := maxAlpha;
IF (x[6] > 0.0) THEN x[6] := 0.0 END;
ELSIF (x[3] ¢ minAlpha) THEN
FrontAmplitudeSaturated := TRUE;
x[5] := minAlpha;
IF (x[6] < 0.0) THEN x[6] := 0.0 ENDj
ELSE
FrontAmplitudeSaturated := FALSE;
END;
IF (x[6] > maxAlphaRate) THEN
FrontRateSaturated := TRUE;
x[6] := maxAlphaRate;
ELSIF (x[8) < -maxAlphaRate)} THEN
FrontRateSaturated := TRUE;
x[6] := -maxAlphaRate;
ELSE
FrontRateSaturated := FALSE;
END;

(* back wings *]
IF {x[7] > maxBeta} THEN

BackamplitudeSaturated := TRUE;
x[7] := maxBeta;
[F (x[B] > 0.0) THEN x[8] := 0.0 END;

ELSIF (x[7) ¢ minBeta} THEN
BackAamplitudeSaturated := TRUE;

BOOLEAN;
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'7} := minBeta;
“ (x[8] < 0.0) THEN x[8] := 0.0 END;
ickAmplitudeSaturated := FALSE;

x[8] > maxBetaRate) THEN

ickRateSaturated := TRUE;

8] := maxBetaRate;

F (x[8] < -maxBetaRate) THEN
ckRateSaturated := TRUE;

8] := -maxBetaRate;
ckRateSaturated := FALSE;

rontAmplitudeSaturated THEN
rStr ('FAS ),

rontRateSaturated THEN
rStr ('FRS ' );

ackAmplitudeSaturated THEM
rStr {('BAS ');

ackRateSaturated THEN
rStr (’BRS ’);

1t = x[3];

1 1= x[1];

antState;

______________________________________________________________ x )

'RE EndPlant; {* Must be called before main module ends to
deallocate memory *)

ARDINAL;

‘{ "Rate Enter N ');
RdCard( };

ToFile(FrontRate ,N);
{'Posn '},
ToFile{FrontPosn,NJ;

ocateMatrix{X);
Plant;

CARDINAL;

utBuffer : ARRAY[Ll..(1024+FI0.BufferOverhead})] OF BYTE;
utFile : FIO.File;

aName : ARRAY(1..40] OF CHAR;

(* Initialization of MODULE PLANT *)

WrStr('Initialising PLANT');

WrLn;

WrStr('Plant data ');

REPEAT
WrSte({ 'Enter input file '});
RdStr(FileName);

UNTIL FIO.Exists{FileName);

InputFile := FIO.Open(FileName);

FIO.AssignBuffer(InputFile, InputBuffer);

inertia := FIO.RdLngReal (InputFile};
AreaFront := FIO.RdLngReal(InputFile);
AreaBnck := FIO.RdLngReal(InputFile);
uturn0 := FIO.RdLngReal(lnputFile);
ulift0 := FIO.RdLngReal(InputFile);
mass := FIO.RdLngReal(InputFilel;
CentreToPivot := FIO.RdLngReal(InputFile);
FrontToPivot := FIO.RdLngReal(InputFile);
BackToPivot := FIO.RdLngReal({InputFile);
OmegaFront := FIO.RdLngReal(InputFile);
DampingFront := FIO.RdLngReal(InputFile};
OmegaBack := FIO.RdLngReal(InputFile);
DampingBack := FIO.RdLngReal(InputFile);
windF := FIO.RdLngReal(InputFile);
windB := windF;
FOR i := 1 TO 8 DO

x[i] := FIO.RdLngReal(InputFile);
END;
(* Read in degrees and seconds ¥)
minAlpha := FIO.RdLngReal(InputFile); maxAlpha :=
maxAlphaRate := FIO.RdLngReal(InputFilel;
minBeta := FIO.RdLngReal(InputFilel; maxBeta :=
maxBetaRate := FIO.RdLngReal(InputFile);

FIO.Close(InputFile);

{* Do some conversions ¥}

minAlpha := minAlpha/180.0%pi;
maxAlpha := maxAlpha/180.0%pi;

minBeta := minBeta/180.0%*pi;

maxBeta := maxBeta/180.0%*pi;
maxAlphaRate := maxAlphaRate/180.0%*pi;
maxBetaRate := maxBetaRate/180.0%pi;

OmegaSgFront := OmegaFront*OmegzaFront;
TwoOmegaDFront := OmegaFront*DampingFront*2.0;

OmegaSqBack := OmegaBack*OmegaBack;
TwoOmegaDBack := OmegaBack*DampingBack*2.0;

WrStr (’Front 1ift dist ’'};

REPEAT
WrStr{’'Enter input file ');
RdStr(FileName);

UNTIL FIO.Exists{FileNamel;

InputFile := FIO.Open(FileName);

FIO.EOQOF := FALSE;

FIO.AssignBuffer{InputFile, InputBuffer);

FIO.RdLngReal(InputFile);

FIO.RdLngReal({InputFile);
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i := 1 TO DistLength DO NextWind := 1;
[F NOT{FIO.EOF) THEN

distLF[i] := FIO.RdLngReal{InputFile}; : allocateMatrix(X,8,2);
TLSE
distLF[i] := 0.0; END PLANTend.
<ND: * .
iIND; ( Cnertia i= 0.143; (* Moment of inertia about pivot¥)
.Close(InputFile); AreaFront := 0.0529; (* Total area of front vlngs :l
AreaBack := 0.16; (* Total area of.ba?k wings m )
.r ('Front drag dist '); uturn := 0.11; (* ROtaFional_fr%Ctlon *)
‘AT ulift := 6.6; (* Sliding friction * )
‘Str{’'Enter input file '}); mass := 1.5; (* Kg f) . x
IStr(FileName); CentreToPivot := 0.01; (% pivot in front of ceatre of mass ¥)
L FIO.Exists(FileName); FrontToPivot := 0.43; (* m *)
itFile := FIO.Open(FileName); BackToPivot := 0.24; (* m *)
EOF := FALSE;
AgsignBuffer(InputFile, InputBuffer); AlphaOffset := 0.123;
i := 1 TO DistlLength DO BetaOffsect := 0.062;
F NOT(FIO.EOF) THEN * )
distDF[i1] := FIO.RdLnygReal(ILnputFilel;
LSE
distDF[(i]} := 0.0;
ND;

Close(TnputFile);

o Back Tift dbisn Ty

AT .

Str{'Enter input file '};

Str{FileName);

L FIO.Exists{FileName); ¢

tFile := FIO0.Cpen(FileName);

EOF := FALSE; i
AssignBuffer{InputFile, InputBuffer);

i 1= 1 TO DistLength DO

7 NOT(FIO.EQOF) THEN

distLB[i] := FIO.RdLngReal{InputFile};
.SE

distLB{1] := 0.0;

ID;

‘lose{InputFilel;

{'Back drag dist ');
T
tr{’Enter input file ’);
tc(FileName); h
FIO.Exists(FileName};
File := FIO.Open{FileName);
OF := FALSE;
ssignBuffer{InputFile, InputBuffer);
:= 1 TO DistLength DO
NOT(FIO.EQF) THEN

distDB[i] := FIO.RdLngReal(InputFile);
SE

distDB[i] := 0.0;

D;

lose({ InputFile);
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ENTATION MODULE CONTROLLERS'TH

FIO;

J IMPORT RdLngReal, WrLngReal, RdStr, RdCard, Wrln, WrStr;

atrix IMPORT RealMatrix, allocateMatrix, deallocateMatrix,

MatrixResult, writeMatrix,
makeZeroMatrix, makeIdentityMatrix,
(* addMatrix, subtractMatrix, multiplyMatrix, *}

lyStart IMPORT vector, pi, zero;
Order = 3;
‘ameter = ARRAY([O..(MaxOrder-1)] OF LONGREAL;
vector;
bT, aH, bH parameter;
RE Controllers{daltaT, Utheta, Uheight LONGREAL
, Fmat RealMatrix;
vector;
, col, index CARDINAL;
OverT LONGREAL;
ompat LONGREAL;

k : CARDINAL;
e : BOOLEAN;

nteMatrix(Phi,OrderTheta+OrderHeight,OrderTheta+OrderHeightJ;
trixResult.Error THEN
Str{'Failed to allocate PLANT.Phi’);
)teMatrix(Fmat,OrderTheta+OrderHeight,3);
.rixResult.Error THEN

str('Failed to allocate PLANT.Fmat ')

roMatrin(Phi);

rT =

iy o=

[.0/deltaT;

1 TO OrderTheta+OrderHeight DO

IS row; "
intry(OneOverT,row,col,Phi);

troller theta *)

2 TO OrderTheta DO
= row-1l;
ntry(-1.0,row,col,Phi);

W=

w o2 1

Td OrderTheta~] DO
ntry(aT[row—l],row,OrderTheta,Phi);

ry ((Entry(OrderTheta,OrderThetu, Phi}
OrcderTheta,OrderTheta, Phi);

+ aT[OrderTheta-1j},

Entry,

putEntry

Gauss;

( x

*)

{ %

*)

f[1] := -aT[0]*x[OrderTheta] + bT{O0]*Utheta;
FOR row := 2 TO OrderTheta DO

flrow] := x[row=l] - aT{row-1]*x[OrderTheta] + bT[row-1]|*Utheta;
END;

(* Controller height *)

FOR row := OrderTheta+2 TO OrderTheta+OrderHeight DO
col := row-1;
putEntry(-1.0,row,col,Phi);

END;

FOR row := OrderTheta+l TO OrderTheta+OrderHeight-1 DO
index := row-1-OrderTheta;
putEntry(aH([index],row,0OrderTheta+OrderHdeight,Phi);

END;

index := OrderTheta+OrderHeight;

putEntry {({Zntry{index, index, Phi) + aH[OrderHeight-11}),

index, index, Phi);

f[OrderTheta+l] := -aH[O]*x[OrderTheta+OrderHeight] + bH[O]*Uheight;

FOR row := OrderTheta+2 TO OrderTheta+OrderHHeight DO
index := row-1-OrderTheta;
flrow] := x[row-1] - aH[index]*x[OrderTheta+OrderHeight]
+ bH[ index]}*Uheight;
END;

(¥ Now make Phi*[dx,|X] =
makeZeroMatrix(Fmat);

[E1F] *)

FOR row := | TO OrderTheta+OrderHeight DO
putEntry(f[(row],row,l,Fmat);

END;

FOR row := 1 TO OrderTh=ta DO
putEntry(bT[row-1},row,2,Fmat);

END;

FOR row := OrderTheta+l TO OrderTheta+OrderHeight DO
index := row-OrderTheta-1;

putEntry{bH[ index],row,3,Fmat);
END;

AssignWrite(print,done);

WirStr('In controller’});

Wrln;

writeMatrix(Phi,’d’};

writeMatrix{Fmat,’'d’);

UnAssignWrite({done};

Gauss(Phi, Fmat, rank, incompat, zero};

IF MatrixResult.Error THEN
WrStr{'matrix error in Controllers');
WrLn;

END;

AssignWrite(print,done);
writeMatrix(Fmat,'d’});

Wrln;
UnassignWriteldone!);
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v construcﬁ [dx!X] *)
ow := 1 TO OrderTheta+OrderHeight DO
row] := Entry(row,l,Fmat);

ngReal(dx[1},9); *)

Entry{(Entry(rew,2,Fmat),row,1,X);
Entry{(Entry(row,3,Fmat),row,2,X);

;¥ )
cateMatrix{Phi);
cateMatrix(Fmat);

rollers;

E ControllerState(VAR du : vector;
VAR AplusThat, BplusThat : LONGREALJ;
(* update controllers’ state vector %)

CARDINAL;

r{’'ControllerState’);

:= 1 TO OrderTheta+OrderHeizht DO
= x{1] +# dx[1] + Entry(i,l,X)*dull] + Entry(i,2,X)*dul[2];
LngRealis(i],9);

str(’ Ty

po¥)

lat i = SFnV[L,L]*x[OrderTheta] + Kinv[(l,2]#x(0rderTheta+OrderHeight];
nat = Kinv[2,1}*x[OrderTheta] + Kkinv(2,2]*x[0OrderTheta+OrderHeight];

rollerState;

EndControl; (* must be called before end of main module to
deallocate memory *)

teMatrix(XN) g
ntrol;

CARDINAL;
Buffer : ARRAY[1..(1021+FI0.BufferOverhead)] OF BYTE;

File : FIO.File,;

ame : ARRAYI1..10] OF CHAR;
Initialising CONTROLLERS');
Zontroller data ');

{'"Enter input file '};
(FileNamel;

UNTIL FIO.Exists(FileName};

InputFile := FIO.Open(FileName};
FIO.AssignBuffer(InputFile, InputBuffer);
OrderTheta := FIO.RdCard(InputFile);

OrderHeight := FIO.RdCard(InputFile);
FOR i:= 0 TO OrderTheta-1 DO

bT[i] := FIO.RdLngReal(InputFile);
END;
FOR i:= 0 TO OrderTheta-1 DO

aT[i] := FIO.RdLngReal{InputFile);
END;
FOR i:= 0 TO OrderHeight-1 DO

bH[i] := FIO.RdLngReal(InputFile);
END;
FOR i:= O TO OrderHeight-1 DO

aH[i] := FIO.RdLngReal{InputFilel;
END;

FOR i:= 1 TO 2 DO
FOR j:= 1 TO 2 DO

Kinv(i,Jj] := FIO.RdLngReal(InputFile);
END;
END;
FOR i := 1 TO OrderTheta+OrderHeight DO
x[i] := FIO.RdLngReal(InputFile];
EMD;

FIO.Close{lnputlfilel);
ullocnte%nhrlx(K,OrderTheturOrderHeight,2):

END CONTROLLERS.
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1orfly;|[

[ FloatExc;

[ FIO;

[0 IMPORT RdLngReal,
{ATHLIB IMPORT Exp;

{fatrix IMPORT RealMatrix,

MatrixResult,
makeZeroMatrix,
(* addMatrix,

‘lyStart IMPORT pi, zero,

iriteToF I[MPORT W%riteToFfile,

" HorCtl;

* PLANTend; (* The "ead"

CONTROLdu

!E Global (VAR PLANTdu,
) solve duli]
» ¢ RealMatrix;

'heta, entHeight, rank
nmpat, temp LONGREAL ;.

= b is partitioned : [

L-du/dx*xX(p}

teMatrix (A, 4,
teMatrix (b, 4,
entityMatrix(A);
ta := HorCtl.OrderTheta;
ght :=

41}
1);

row of A *)

ry( -Entry(l,entHeight,HorCtl.X)
ry{ -Entry(2,entHeight,HorCtl.X) y

row of A %)

ry{ -Entry{(l,entTheta,HorCtl.X) ,

WrLngReal,

- duli]/dx[j]1*X{jl*du(j] =

RdStr, RdCard, Wrln, WrStr, WrCard;

allocateMatrix, deallocateMatrix, Entry, putEnt
writeMatrix,

makeIldentityMatrix,

subtractMatrix, multiplyMatrix,*} Gauss;
vector;

results;

refers to my tether *)

vector);

du(i]l/dx(jl*dx(j] *)

CARDINAL;

du/dx*dx(c)]
du/dx*dx(p}] *)

-du/dxx*X{c}

I(p} )
I(c) D

entTheta + HorCtl.OrderHeight;

2
ry( -Entry(2,entTheta,HcrCtl.X) y 2, 4, A),

row of A *)
*y( Entry(l,1,PLANTend.X)
*y( Enctry(l,2,PLANTend.X!

row of A *)
*y( Entry(3,1,PLANTend.
5 Entry(3,2,PLANTend.>

i

§
‘y( -HorCtl.dx{entHeight]
'¥{ -HorCtl.dx[entThetal
'yv{ =-PLANTead.dx{1]

‘¥{ -PLANTend.dx(3]

=

Gauss(A, b, rank, incompat, zero);
IF MatrixResult.Error THEN
WrStr('matrix error in Global’};
wWrln;
END;
PLANTdu(1]
PLANTdul(2] :
CONTROLdu(1l]
CONTROLdu(2]

Entry(1,1,b);
Entry(2,1,b);
Entry{(3,1,b);
Entry(4,1,bJ;

deallocateMatrix(Aa);
deallocateMatrix(b};

END Global;
( B o e o o e e e o - = = i = = = T = e = A e e em e e = S
VAR
PLANTdu, CONTROLdu vector;
nexttick, time, ticklength, deltaT,
ffilter, href, tref, theta, height, alphaln, betaln,
CtlThetaOut, CtlHeightOut
ares, bres, hres, tres results;
NumberSteps, step CARDINAL;
tick : BOOLEAN;
BEGIN

weStr{’Initialising FlyingMachine');
Wrln;

wrStr! 'Enter deltaT ');

deltaT := RdLngReal();

Wrln;

wrStr('Enter NumberSteps 'J;
NumberSteps := RdCard(};

wrla;

wWrStr({'Tick length ');

ticklength := RdLngzReal();

Wrln;
nexttick := 0.0;
time := 0.0;
alphaln :=0.
betaln := 0

theta := 0.0
height :=
ffilter :=

FOR step := 1 TO NumberSteps DO
WrStr('step ');
WrCard{step,4):

time := time + deltaT;
IF time >= nexttick THEN
tick:=TRUE;
nexttick := time+tticklength;
ELSE
tick:=FALSE;
END;

hres{step] := height;

LONGREAL;
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{betaln+0.014}), step, tick, TRUE);

7*{time-11.0)));

s[step] := theta*180.0/pi;

s[step] := {alphaln+0.027)*180.0/pi;
s[step] = (betaln+0.014)*%180.0/pi;
tr{ 'Alpha ’'); WrLngReal{alphaln,3,10);
tr{'"Beta ’');WrLngReal{betaln,3,10);WrLn;
NTend .Plant(deltaT, (alphaln+0.027},

f 1= 0.0;

f 1= 0.0;

" 1=0.0;

- ime > 11.0 THEN

iref 1= 0.753%{1.0-Exp(-0.

‘tl.Controllers(deltaT,
al { PLANTdu, CONTROLdu);
i Tend.PlantState{ PLANTdu,

tl.ControllerState{CONTROLduU,
r{ 'Theta °’};

r('Height

aln =
[n =

CtlHeightOut;
CtlTheLaOut;

'Height');
oFile(hres,NumberSteps);

"THETA '),
oFile(tres,NumberSteps};

"ALPHA ')
oFile(ares,NumberSteps);

"BETA ')
oFile(bres,NumberSteps]);

nd.EndPlant;
.EndControl;

lv.

tref-theta,

height,

WrLngReal(CtlThetaOut,3,10);

href-height);

theta);

CtlHeightOut };
WringReal(theta/pi*180.0,3,10)

CtlThetaOut,

');%rLngReal{CtlHeightOut,3,10);WrLn;

DEFINITION MODULE HorCtL;”

FROM Matrix IMPORT RealMatrix;
FROM FlyStart IMPORT vector;

VAR
X : RealMatrix;
dx : vector;
OrderTheta, OrderHeight CARDINAL;
PROCEDURE Controllers{deltaT, Utheta, Uheight LONGREAL);

PROCEDURE ControllerState(VAR du : vector;
. VAR CtlThetaQut, CtlHeightOut LONGREAL);
{* update controllers’ state vector ¥)
(* must be called before end of main module to

PROCEDURE EndControl;
deallocate memory *)

END HorCtl.

6¥1



INTATION MODULE HorCtl;H

FIO;

) IMPORT RdLngReal, WrlLngReal, RdStr, RdCard, Wrln, WrStr;

ttrix IMPORT RealMatrix, allocateMatrix, deallocateMatrix, Entry, putEntry

MatrixResult, writeMatrix,
makeZeroMatrix, makeldentityMatrix,
(* addMatrix, subtractMatrix, multiplyMatrix, *)

vStart IMPORT vector, pi, zero;

Order = 3;
ameter = ARRAY[O..(MaxOrder-1)] OF LONGREAL;

vectcer;
bT, aH, bH parameter;

RE Controllers({deltaT, Utheta, Uheight LONGREAL)

, Fmat RealMatrix;
vector;

, col, index CARDINAL;

OverT LONGREAL;

omput LONGREAL;

k : CARDINAL;
s 1 BOOLEAY;

iteMatrix{Phi,OrderTheta+OrderHeight,OrderTheta+OrderHeizht);
:rixResult.Error THEN
jtr(’'Failed to allocate PLANT.Phi'});

tteMatrix( Fmat,OrderTheta+OrderHeight,3);
rixResult.Error THEN
str{'Failed to allocate PLANT.Fmat');

rroMatrixi{Phi);

rT := 1.0/deltaT;

w 1= | TO OrderTheta+OrderHeight DO
= orow;

ntry{OneODverT,rcw,col,Phi);

troller theta *)

w 1= 2 TO OrderTheta DO
1= row-l;
ntry{-1.0,row,col,Phi};

w := | TO OrderTheta-1 DO
atrviaT[row-1]),row,OrderTheta,Phi);

ry ({Entryv{OrderTheta,OrderTheta, Phi) + aT[OrderTheta-1]),

Gauss;

OrderTheta,OrderTheta,Phi);

f(1] := -aT[O0]*x[OrderTheta] + bT[O]*Utheta;
FOR row := 2 TO OrderTheta DO .
flrow] := xlrow-1] - aT[row-1]*x[OrderTheta] + bT{row-1]*Utheta;
END;
{* Controller height *)
FOR row := OrderTheta+2 TO OrderTheta+OrderHeight DO
col := row-1;
putEntry(-1.0,row,col,Phil;
END;
FOR row OrderTheta+l TO OrderTheta+OrderHeight-1 DO

index := row-1-OrderTheta; . )
putEntry(aH[index],row.OrderTheta+OrderHelght,Phl);
END;
index := OrderTheta+OrderHeight;
putEntry ((Entry{index, index, Phi) + aH[OrderHeight-11]}, .
) index, index, Phil;

f[OrderTheta+l] := —aH[D]*x[OrderTheta+OrderHeight] + bH[ O ]*Uheight;

FOR row := OrderTheta+2 TO OrderTheta+OrderHaight DO
index := row-1-OrderTheta;
flrow] := x{row-1] - aH[index]*x[OrderTheta+OrderHe1ght]

+ bH{index]*Uheight;

END;

(* Now make Phi*{dx|X] = [E1F] *)

makeZeroMatrix(Fmat);

FOR row := | TO OrderThetat+OrderHeight DO
putEntry(f[row],row,l,Fmat);

END;

FOR row := 1 TO OrderTheta DO
putEntry(bT[row—l].row,Z,Fmat);

ENMD;

FOR row := OrderTheta+l TO OrderTheta+OrderHeight DO
index := row-OrderTheta-1;

putEnt;y(bH[indexl,row,3.Fmat);
END;

Gauss{Phi, Fma%t, rank, incompat, zerol;

IF MatrixResult.Error THEN
WeStr('matrix error in Controllers');
Wrln;

END;

(* now construct [dx[X] *)
FOR row := 1 TO OrderTheta+OrderHeigzht DO
dxlrow] := Entry{row,l,Fmat);

putEntry(Entry(row,Z,Fmat),FOW,l,K);
putEntry(Entry{row,3,Fmat}),rov,2,X);
END;
deallocateMatrix{Phil;
deallocateMatrix{Fmat);

EMD Controllers;
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RE ControllerState(VAR du : vector;
VAR CtlThetaOut, CtlHeightOut : LONGREAL);
(* update controllers’ state vechor ¥}

CARDINAL;

tr(’'ControllerState’);
n;

:= 1 TO OrderTheta+OrderHeizht DO
] := x{i] + dx(i] + Entry{(i,l,X)*du{l] + Entry{i,2,X)*du{2];
rLngReal (x{1],9);
rStrel(’ ')

L
>taOut := x[OrderTheta];
ightOut := x[{OrderTheta+OrderHeight];

rollerState;

tE EndControl; (* must be called before end of main module t
deallocate memory *)

cateMatrix{X);
‘ontrol;

CARDINAL;,
tBuffer : ARRAY[1l..(102!+FIO0.BufferOverhead)] OF BYTE;
tFile . FIO.File;
Name : ARRAY{1l..40] OF CHAR;

"Initialising CONTROLLERS');
'Controller data '};
r{’'Enter input file ');

r{(FileName);
FIO.Exists{FileName);

ile := FIO.Open(FileName);

signBuffer(InputFile, InputBuffer}; -
heta := FIO.RdCard{InputFile};

2ight := FIO.RdCard({InputFile);

= 0 TO OrderTheta-1 DO
] 1= FIO.RdLngReal(InputFile);

= 0 TO OrderTheta-1 DO
] 1= FIO.RdLngReal(InputFile);

: 0 TO OrderHeight-1 DO
| := FIO.RdLngReal({Inputfile};

[e]

FOR i:= 0 TO OrderHeight-1 DO

aH[i] := FIO.RdLngReal({InputFile);
END;
FOR i := 1 TO OrderTheta+OrderHeight DO
x[i] := FIO.RdLngReal(InputFile);
END;

F10.Close(InputFile);
allocateMatrix(X,0rderTheta+OrderHeight,2);

END HorCtl.
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