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QUANTITATIVE FEEDBACK DESIGN AND CONSTRUCTION OF A 

TWO BY TWO SYSTEM WITH LARGE DISTURBANCES 

Abstract 

The quantitative feedback theory (QFT) of Horowitz is theoretically well 

developed for multivariable systems but there is not sufficient knowledge on its 

application to practical problems. A "flying machine" consisting of an airframe 

with two independently controlled sets of wings has been designed and 

constructed as a 2-input 2-output control problem. The airframe is constrained 

to move vertically on guide wires and to rotate about a pivot . Air flow over the 

wings is provided by two 7.SkW fans operated without any attempt at providing 

non-turbulent flow . The arrangement of the wings is such that in open loop, the 

dynamic behaviour of the airframe from the rear set of wings to the height is 

non-minimum phase. Additionally, the airframe is unstable for some flight 

conditions. This uncertain, non-linear and highly disturbed plant provides an 

ideal practical environment in which to test controller design theory. 

The construction, modelling, parameter estimation and simulation of the flying 

machine is described. Three different controller structures are disGussed, with 

actual controller designs arrived at from QFT understanding. The controller 

designs for the flying machine take into account parameter uncertainty and trade 

off disturbance attenuation against rate and amplitude saturation at the wing 

angle inputs. 
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CHAPTER 1 - INTRODUCTION 

This thesis describes the development of a practical system - a "flying machine" -

on which to test the quantitative feedback theory (QFT) of Horowitz for 

multi variable systems. The flying machine has been constructed in the Control 

laboratory of the Department of Electrical Engineering, University of 

Durban-Westville, Durban. It consists of an airframe with two independently 

controlled sets of wings. The airframe is constrained to move vertically on guide 

wires and to rotate about a pivot. Air flow over the wings is provided by two 

7.5kW fans operated without any attempt at providing non-turbulent flow . The 

arrangement of the wings is such that in open loop, the dynamic behaviour of the 

airframe from the rear set of wings to the height is non-minimum phase. 

Additionally, the airframe is unstable for some flight conditions. This uncertain, 

non-linear and highly disturbed plant provides an ideal practical environment in 

which to test controller design theory. The controller designs for the flying 

machine take into account parameter uncertainty and trade off disturbance 

attenuation against rate and amplitude saturation at the wing angle inputs. This 

thesis is strongly oriented towards the practical aspects of controller design but 

also includes some new results for design with plant input constraints. 

The construction, modelling, parameter estimation and simulation of the flying 

machine is described in Chapter 2. Chapter 3 introduces some of the ideas from 

previously published work on quantitative feedback theory and some new 

methodology for design to the plant input for multivariable plants. Three 

different controller structures are discussed, with actual controller designs arrived 

at from QFT understanding. These designs are presented in Chapters 4, 5 and 6. 

The controllers were implemented using analog filters and testeti. Each of 

Chapters 4, 5 and 6 presents results for the controller designed in that chapter. 

Comments on the modern control theory are fashionable in the classical 

(quantitative) feedback control literature and these are included as part of the 
conclusion, Chapter 7. 

All designs (loop shaping) reported in this thesis were executed with the aid of 

the CAD package, "DESIGN", written by Professor E Eitelberg and Mr G 
Sutcliffe. 

Although it may seem out of context to present results in the introduction it , 
must be noted at the outset that feedback control has three fundamental 
purposes: 
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1) To reduce the effects of parameter uncertainty, parameter changes and 

non-linearity on the plant response to (quantitatively defined) acceptable levels. 

2) To reduce the effect of external disturbances on the plant output to 

(quantitatively defined) acceptable levels. 

3) To stabilize open-loop unstable plants. 

Figure 1.1 shows the height and pitch angle of the flying machine to be described 

in this thesis when operated without cont rol (i.e. with the wings fixed). During 

the test, for heights outside about [0 .7m, 1.2m] and for pitch angles outside about 

[-20° , 20°] corrective action was taken to prevent the flying machine from 

crashing or flipping over by means of a hand held leash. From Figure 1.1 it is 

reasonable to conel ude that at least some (and in fact all) of the reasons for 

having feedback control are satisfied, justifying what follows . 
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means of a leash 
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CHAPTER 2 CONSTRUCTION, MODELLING AND SIMULATION 

Table 2.1 shows the model parameters and symbols which will be used in this and 

subsequent chapters. 

2.1 Construction 

2.1.1 Mechanical Construction 

The initial design of the flying machine air frame was started by Prof E Eitelberg 

with the help of two University of Durban-Westville undergraduate students, 

Mr S Govender and Mr T Naraimsamy. The original design requirements were: 

Overall mass not 
Ratio of back to 
Length ~ 1 m 
Ving span ~ 1 m 
Total wing area ~ 
Ving aspect ratio 

to exceed 2 Kg 
front wing areas ~ 3:1 

2 0.2 m 
(length:width) ~ 2:1 

(2.1 ) 

At an early stage in the project the responsibility for the construction was taken 

over by the author. The flying machine was constructed by the author and the 

Electrical and Mechanical workshops of the University of Durban-Westville, with 

the co-operation of Prof E Eitelberg and his research assistant, Mr S K Moodley. 

Ad-hoc changes were introduced to the design whenever they were felt necessary. 

The II as-built II mechanical construction is shown in Figure 2.1a. Figure 2.1b 

shows a detail of the rear wing mount and actuator. Figure 2.1c is a photograph 

of the flying machine. 

2.1.2 Wing Pivots 

As constructed, the wings are pivoted along their geometric centres. In retrospect 

this design may have been improved as the aerodynamic centre of a flat, 

rectangular plate is theoretically located at the "quarter chord" (0.25 the wing 

width (chord) from the leading edge) (Bertin and Smith, 1979, p.114). Had the 

wings been pivoted nearer their aerodynamic centres, there would have been less 

lift induced moment on the wing actuators, reducing wear and the deadband 

which resulted. Pivoting the wings in front of the aerodynamic centres would have 

allowed the lift induced moment to act as an anti-deadband device, always 

turning the wings towards the no-lift position and allowing the wing actuators to 

turn the wings against this moment. This arrangement would result in a gain of 



Base model data used ,in derivation of templates 
Term Minimum Maximum Nominal Description 

o _15° 15° 0° pitch angle! 

v 15m/s 20m/s 20m/s wind speed wind 

iJ 

Ii 
-lrad/s 

-lm/s 

1rad/s 

1m/s 

Orad/s 

Om/s 

rate of change of pitch angle 

rate of change of height 

Variables I signals 
O(s) Pitch angle (angle of attack) w.r.t ground 
HlS) Height of pivot point (w.r.t. ground) 
Q: ~ Front wing angle (w.r.t. body) 
f3 s Back wing angle (w.r.t .body) , 
Et s) External torque disturbance (including static moment imbalance) 

E/s) External lift disturbance (including static force imbalance) 

Derived model parameters 
Term Minimum Maximum 

J p 
m a 
m p 
mc 
m 
J.Lt 0.7 1.3 

Nominal 

0.14 

1.28 

0.29 

0.70 

2.27 
1.2 

Description 

Eq(2.22), Table 2.2 - inertia (Nm2) 

Table 2.2 - mass of airframe (kg) 

Table 2.2 - mass of pivot (kg) 

Table 2.2 - mass of counter weights (kg) 

Table 2.2 - total moving mass (kg) 
Eq(2.21), (2.24) -linearised friction coefficient in turning 

4 

J.Le 10.6 

kt -1.1 

ke 95.9 

16.8 

30.2 

255.8 

16.3 

17.9 

242.7 

Eq(2.21), (2.23) -linearised friction coefficient in lift . 

Eq(2.21) -linearised torque coeff. deternined by body pi tch L, 0 

Eq(2.21) -lift coeff. determined by body pitch L, 0 

ktf 8.5 27.3 

kef 19.9 63 .6 

ktb 15.6 49.1 

klb GO.1 192.2 

A 
B 

Other design considerations 
2 2 (J e 132.0 N 

1/e 1.9 
wxl 70.0 

(J; 9.5 N2m2 

1/t 0.14 

xt 70.0 rad/s 

P = 1.2 kg/m3 
w 

(J Q: = (J f3 = 0.5 rad 

(J. = (J. = 2.0 rad/s 
Q: f3 

25.9 

60.3 

43 .8 

182.4 

0.0 
0.0 

Eq(2.21) - torque coeff. determined by front wing L to body, Q: 

Eq(2.21) - lift coeff. determined by front wing L to body, Q: 

Eq(2.21) - torque coeff. determined by back wing L to body, f3 
Eq(2.21) -lift coeff. determined by back wing L to body, f3 
Eq(2.21) - small coeff. resulting from linearisation 
Eq(2.21) - small coeff. resulting from linearisation 

~ Section 2.3.2 and eq(2.29) for 

J variance of lift disturbance 

~ Section 2.3 .2 and eq(2.30) for 

J variance of torqu~ disturbance 

Density of air in Durban 

} 

Section 2.3.3, allowable std deviations of wing 

positions, eq(2.32a) and of wing rates, eq(2.32b) 

!Note these are values used in design. Actual values exceed these under some flying conditions. 

Table 2.1 - Model parameters and symbols used in this and subsequent chapters 
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zero around the zero angle of attack position rather than infinite gain - the 

difference is shown in Figure 2.2, along with sketches of -liN (negative inverse of 

nonlinear "describing function") loci indicating why linear design might result in 

limit cycles for the existing arrangement. Since the wings are turned about 2" to 

4" in steady state, detailed describing function analysis would require sinusoidal 

signals with offset. For details of describing function analysis, see Atherton 

(1982). 

output output 

input input 

/ 
-1/N 

-'-1 ... 

rmaginary 

I 

Imaginary 

I Real -1 Real 
-1/N 

a) Pivot behind c/4line Pivot in front of c/4 line 

Figure 2.2 Deadband resulting from attachment of wings and corresponding -1 IN 
loci on the Nyquist diagram 

2.1.3 Selection and Arrangement of fans 

A rule of thumb formula for the maximum lift which could be expected was 

originally provided by Professor O. Rubin of the University of Pretoria. It is 

based on Bernoulli's principle - the maximum lift is approximately the product of 

free stream dynamic pressure (Bertin and Smith, 1979, p.39) and the surface area 
of the wings, 

where, 

L ~ q A max m 

Lmax = maximum lift 

qm = free stream dynamic pressure 

122 
=2" Pm vm ~ 0.7 Pm M (see Table 2.1) 

A = wing area 

(2.2) 

The free stream dynamic pressure is one half the free stream density, Pm 

(measured far from the wing) and the square of the relative velocity of the wing 
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to the free stream, v2. (Dr Rubin's formula is equivalent: 0.7 x free stream 
w 

pressure (p ) x Mach number squared, M2 = [ :wing J2.) 
W sound 

With a total wing area of 0.2 m2 and a design mass of 2 Kg, the wind speed 

required to just lift the air frame is (with L ~ 20 N, p ~ 1.225 Kg/m3), 
W 

v . =..; 20/(0.5x 1.22xO.2) = 12.8 mls 
mIn 

(2.3) 

To achieve in excess of this wind speed over an area 1 m wide and 2 m high, two 

fans were purchased from Luft Industries with the following specifications: 

a) 1000 rom <t> fans with 7 blades (30" blade pitch angle). 

b) 7.5 kW, 1400 r.p .m. 380 V, 3 phase motors. 

c) Each fan is rated at 17 m 3 I s in free air. 

Figure 2.3 shows an approximate air flow cross section about 1 m from the fans 

from corrected measurements made with a hand held anemometer (which over 

read by a factor of 1.38 compared to an alcohol manometer in a wind tunnel - lift 

predicted from measurements based on this instrument would therefore be in 

error by a factor of nearly 2!). 

[m] 2.0 
Ifan centres 

1.5 21 18 21 .... fan centre 

1.0 13 15 13 

0.5 21 18 21 .... fan centre 

0.0 I 

-0.5 -0.25 6 I 
0.25 0.5 [m] 

Figure 2.3 - Very approximate wind speeds - corrected from hand held 

anemometer readings 

After discussions with Professor L. Roberts (Department of Mechanical 

Engineering, University of Natal) it was decided not to try guiding the air stream 

in any way. (The same discussion highlighted the importance of fan inlets for 

good airflow and high fan efficiency - standard inlet cones were purchased with 

the fans.) Apparently badly designed "straighteners" can worsen the free stream 
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airflow pattern. During experimentation, a design which flew one day did not fly 

the next day due to changed airflow pattern caused by the removal of spare 

furniture in the laboratory. The presence of spectators also affected the air flow 

pattern. The equipment layout which resulted in the least disturbed airflow 

pattern is shown in Figure 2.4 below. 

Figure 2.4a shows the general layout of the laboratory area. Figure 2.4b and 2.4c 

are photographs of the arrangement of "dirty" and "control" laboratories 

respectively. 

Control lab "Dirty" lab 

-t 12 m 

D ~ 

J 
1. 7m 

fans ~ computer 
3.6m ~ & control con. 
~ 

11 5.5 m 11 

Figure 2.4a Laboratory equipment layout 

Figure 2.4b - Layout of laboratory showing position of flying machine and fans 
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Figure 2.4c - Layout of control laboratory showing control and measurement 

equipment. (Flying machine is next door) 

2.1.4 Actuators 

Futaba FP-S128 and Sataba FP-S134 model aeroplane servos were selected for 

the front and back wing actuators respectively. Specification sheets were available 

for only the FP-S128 - it has a rated torque of 0.035 Nm which allows the front 

wing to be accelerated at (Jf t . = 1.14xlO-4 Kg m
2

), ron wmg 

H / / 2 a = 0.035 1.14xlO-4 = 307 rad s , (2.4) 

reaching a terminal velocity of 200· /s in 11 ms. 

As supplied, the servos operate via a pulse width modulated input signal which 

can easily be interfaced to a model aeroplane radio transmitter. A voltage to pulse 

- width modulator circuit was built based on LM555 timers. Because the 

modulator circuit was not sufficiently linear and the holding torque was not 

adequate, the drive electronics of the servos were replaced with a push-pull 

amplifiers. The actuators have essentially an inner loop feedback which reduces 

the uncertainty of the outer loop. This inner loop was closed with large 

bandwidth. The wing position signals were brought out of the motor casings. 

Circuit diagrams are included in Appendix 1. 
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As a result of power supply dependence and the sharing of OV (common) 

conductors (in order to save weight and keep the wiring harness joining the flying 

machine to the instrumentation flexible) some non-minimum phase problems 

appeared which limited the achievable loop gain of the local wing controller 

feedback circuits severely. These problems were analyzed in a paper in the 

Transactions of the South African Institute of Electrical Engineers (Boje and 

Eitelberg, 1989) and solved (by increasing the current rating of the power supplies 

and separating power and instrumentation supplies and their OV conductors. The 

paper is included as Appendix 2. 

2.1.5 The Frame 

The air frame is constrained to move vertically on guide wires and to rotate about 

a pivot. For this purpose, a frame was constructed using mild steel angle and 

tubing. The air frame is pivoted and the pivot slides on guide-wires. The pivot is 

kept horizontal by means of flexible wires (stainless steel angling tracer wire) 

passed around pulleys rather like those of a drawing board rule. See Figure 2.5 

0 0--- -- - __ u __ _ _ u ___ ~ pulleys on bearings 
, , 
, I ' , I 

I I 

b 

pivot arm on 
guide wires 

frame 

Figure 2.5 Frame with guide wires and "parallel arm" 
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2.2 Flying Machine - First principles model 

2.2.1 Dynamic model 
i 

The dynamic model of the flying machine was obtained (after discussion with 

Prof. E Eitelberg) by considering the airframe as a rigid body and the 

pivot-counterweight system as a second rigid body, joined to the airframe at the 

pivot. Applying Newton's second law (D'Souza and Garg 1984, p95) to each body, 

where, 

translational momentum (2.5a) 

rotational momentum (2.5b) 

m is the mass of the rigid body 

Yc is the translational velocity of the centre of mass of the rigid body 

F is the the net external force acting on the rigid body. 

J.
c 

is the inertia of the rigid body,calculated with respect to the centre of 

mass 

~c is the angular velocity of the centre of mass of the rigid body 

M is the net external moment calculated with respect to the centre of -c 
mass, acting on the rigid body 

As the flying machine is constrained to move on the vertical slide and to rotate 

about the pivot, there are only two degrees of freedom. With reference to Figure 

2.6 (which has the x-axis vertically and the y-axis horizontally), 

Force balance of vertical slide from moveme~t of pivot-counterweight system: 

where 

(m +m )h = -{m -m )g - f.L B~h - R pcp c w X 

mp is the mass of the pivot beam 

me is the mass of the counterweight 

(2.6a) 

h, h, and h are is the vertical acceleration, velocity and position of the 

pivot 

g is the acceleration due to gravity 

f.Lfu models all the sliding friction 

Rx is vertical component of reaction force on airframe 
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FigUIe 2.6 - Derivation of model for flying machine 

Force balance of airframe with respect to its centre of mass: 

where 

m x = -m g + (lift applied by wings) + R a a x 

m y = - (drag applied by wings) + R a y 

m is the mass of the airframe a 

x is the vertical acceleration of the centre of mass of the airframe 

Y is the horizontal acceleration of the centre of mass of the airframe 

R is horizontal component of reaction force on airframe 
y 

(2.6b) 

(2.6c) 

Moment balance of the airframe with respect to its centre of mass: 

where 

J c () = -ftto () + (torque applied by wings) - (reaction torque of wings) + 

Ry rcp sin( ()) - Rx rcp cos( ()) (2.6d) 

J c is the moment of inertia of the airframe along its length, calculated 

with respect to its centre of mass 

(), () and () are the angular acceleration, velocity and position (pitch angle) 

of the airframe with respect to the ground 

ftto is the angular friction of the pivot 

rcp is the distance between the pivot, P, and the centre of mass, C 

(rcp>O in Figure 2.6) 

Because of the constraints imposed by the pivot and guide wire, the following 
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geometry can be used to remove the dependence on x and y above, 

x = h + r sine 0) J: = h + r 0 cos( 0) cp' cp 
"" " 2 

x = h + r ( 0 cos( 0) - 0 siI:( 0)) cp 

Y = r cos(O) Y = - r 0 sine 0) cp' "cp 

y = -r cp ("0 sine 0) + B 2 cos( 6,: ) 

(2.6e) 

(2.6f) 

The equations of motion in terms of h ~) and O( t) are therefore, 

(m +m +m )h = - r m (~ cos( 0) - B 2 sine 0)) - (ma +mp-mc)g 
p c a cp a 

- J.Lfuh + (lift applie-: by wings) (2.7a) 

"" " 

J 0 = -J.L B + (torque applie:: by wings) - (reaction torque of wings) + 
c to 

r sine 0) {(drag applied by W:.J.gs) - m r ("0 sine 0) + ; cos( B))} + cp a cp 

r cos(O) {(lift applied by wiI.2:s) -m (h+r ("Ocos(O)-02sin(O))) -mag} cp ~ a cp 
(2. 7b) 

Rearr anging and simplifying eq (2 . 7b ) . 

or, 

where, 

"" " 
J 0 = -J.L

t 
0 + (torque applie:: by wings) - (reaction torque of wings) + 

c 0 
r {(drag applied by wings) E:J.( 0) + (lift applied by wings) cos( O)} 
cp 

- rcp cos( 0) rna (g+h) - rna r~p 0 

J p () = -J.Lto(} + (torque appli :::i by wings w.r.t pivot) 

- (reaction torque of wings) -:: cos(O) m (g+h) cp a 
(2 .7c) 

J p is the moment of inertia 0: :he airframe about the pivot, calculated 

along the length of the boc. -;- . J = J + m r2 . , p c a cp 

The parallel axis theorem (ibid p.88) :'2.S been used in deriving eq(2.7c). Note that 

the torques due to rotational frictio:. and wing reaction do not depend on the 

point at which the moment balance :~ calculated. The system has two degrees of 

freedom and the dynamic model, eq( 2 . ~) is consequently fourth order. 
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2.2.2 Lift, Drag and Wind vectors 

Standard aerodynamic theory (Bertin and Smith, 1979) shows that the lift and 

drag produced by an aerofoil is proportional to the so-called free-stream dynamic 

pressure, q = ~ p v2, the area of the wing and the wing angle of attack (when 
CD "::;JJCD 

this is small). For a flat plate inclined at Q radians, the theoretical section 

coefficient of lift, C t, is, 

l 
C[= 2=27rQ 

0.5 0 v 
(2.8) 

• CD CD 

where lis the lift per unit length per unit chord (width) 

Experimental values are found in Section 2.3. The lift and drag are therefore 

modelled by, (coefficient) x (wing area) x (wind speed)2. Using subscript dot (.) 

as a generic subscript and subscripts f and b for the front and back wings 

respectively, the combined lift force of the front and back wings is given by 

F = v~ af { cos( wind L to ground) c er< front wing L to wind) + 
sin (wind L to ground) cd~front wing L to wind) } 

+ v~ ab {cos( wind L to ground) c [b (back wing L to wind) + 
sin(wind L to ground) cdb(back wing L to wind) } (2.9) 

where, 

F is the tOt al vertical lift force due to the wings 

v. is the wind velocity at the respective wing 

a. is the wing area 

Ct. is the section lift coefficient 

cd. is the section drag coefficient 

The torque provided by the wings is, 

T = v~ af rfp {cos(body L to wind) cer<front wing L to wind) + 
sin (body L to wind) cd~front wing L to wind) } 

where, 

- v~ ab rbp {cos(body L to wind) c[b(back wing L to wind) + 
sin(body L to wind) cdb(back wing L to wind) } 

- {wing reaction torque} (2.10) 

r . p is the distance between the wing aerodynamic <;entre and the pivot 

The aerodynamic centre of a flat plate is theoretically at the "quarter chord" t of 

width of the wing: measured from the leading edge. 
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The measured wind speed from the fans (at an angle of o· to the ground) were 

initially used for the wind speed, v2, terms. It was observed however that the 

rotational friction increased substantially when the fans were on. This was 

initially attributed to increased bearing force on the Teflon bushes which is 

partially correct but as was pointed out by Prof. E Eitelberg, the simple model 

above can account for some of the additional friction if the wind vector is 

considered more carefully - see Figures 2.7 and 2.8. The effective wind speed is 

calculated as the 'Vector sum of the actual wind speed and model states: 

Front wing: 

-h 

-0 rfp cos ': 8) 

Figure 2.7 - From wing wind vector (state dependent terms exaggerated) 

(2.11) 

at an angle (effe~tive wind angle to the ground), 

. . 

If = arc tan . p 
[

-h - 0 rf cos ( 0) 1 
v f - 0 r f psi n ( 0) 

(2.12) 

Back wing: 

-h 

Orbpsin( 0) Vb 

Figure 2.8 - Back wing wind vector (state dependent terms exaggerated) 

(2.13) 
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at an angle (effective wind angle to the ground), 

. . 

[

-h + B rbpcos( B) 1 
'b = arctan . 

Vb + B rbpsin( B) 
(2.14) 

The model for the flying machine is therefore, 

(m +m +m )h + Ji-4~ h + (m +m -m )g + m r ("Bcos( B)-82sin( B)) = 
p caw a p c a cp 

v~ eff af {cos('Yf) ci/B+a+'f) + sin('Yf) cd/B+a+'fn + 

v~ eff ab {cos('Yb) cll/ B+tJ+'b) + sin('Yb) cdb( B+tJ+'bn 

= F(B,a,tJ,h,h,O) (2.15) 

J 0 + Ji-t B + m r cos( B) (h + g) = p 0 a cp 

v~ eff af rfp{cos(B+ lf) ci/O+a+'f) + sin(O+'f) cd/O+a+'f)} -

v~ eff ab rbp { cos( B+ 'b) c lb ( B+ tJ+ 'b) + sin( B+ 'b) c db ( B+ tJ+ Ibn -

(J a~ + Ji-a~ + J 1+ Ji-pf3) = T( B,a,tJ,h,h,B) (2.16) 

The configuration of the flying machine used throughout this work allows the 

following simplifications. 

2.2.3 Wing reaction torques 

For the front wing, after linearisation (Section 2.2.5) the model is, 

Front Torque = (-J i 2
-Ji-aS + ktf)a(s) (2.17) 

The reaction torque on the body caused "by the turning (friction), Ji-aS, and 

acceleration (inertia), J as2, of the front wing is much smaller than the torque 

induced by the wind (ktf). The resulting numerator is non-minimum phase but 

(assuming small values of Ji-a) the right hand plane zero is (for the nominal plant -

see Table 2.1) at 

j ktfO/J a = J 25.9/1.141 x lO-4 = 476 rad/s (2.18) 

about one decade beyond the frequency range in which the model is expected to 

be accurate. 

For the back wings the model is, 
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(2.19) 

The same as the front wings except the behaviour is minimum phase and has (at 

the nominal gain kt bO) a corner frequency, 

j ktbO/J {J = j 43.8/1.0622 x IO-3 = 203 rad/s (2.2~) 
with damping determined by the friction /l{J. Although the corner frequency IS 

lower than for the front wings, these numerator terms being minimum phase, 

should not be a problem and will therefore be neglected. 

2.2.4 Co-location of the pivot and centre of mass 

All terms resulting from the distance between the centre of mass and the pivot, 

r = a.aIm (Table 2.2 below) are neglected as the pivot and centre of mass can cp 
be regarded as being co-located. This simplifies the model considerably. These 

terms are however included in the non-linear simulation so that other airframe 

configurations can be examined. The pivot is also situated approximately a.DIm 

above the centre of mass of the airframe. This has been neglected from the start 

as it is insignificant. 

2.2.5 The linearised model 

The linear feedback design is undertaken by considering small signallinearisations 

of the non-linear model eq(2.I5) and eq(2.I6) about all reasonable (not 

necessarily steady state) operating points. This means that the design is not 

strictly quantitative as it might be if design had utilized the "linear equivalent" 

plant set (Horowitz, I982b). Checking the correctness of this approach to 

"quantitative" design by simulation is discussed in Section 2.4. After the 

simplifications above, the linearised model is, 

[
JS

2
+/lt S+kt As ] [o(S)] [ktf -ktb] [a(s) ] [Et(S)] 

- ( B S + k e) m s 2 + /l t H ( s) = kif· k ib f3 ( s) + E e ( S ) ( 
2 

. 21 ) 

with signals, 
O(s), H(s) 
a(s), (J(s) 
Et(s), E/s) 

and parameters, 
J 
m 

}!(s) X(s) = l!(s) JI(s) + E(s) 

Angle of attack and Height (w.r.t.ground) 
Front and Back wing angles (w.r.t.body) 
External Torque and Lift disturbances 

inertia with respect to the pivot 
total moving mass, m + m + m 

a p c 
linearised friction coeffs (turning and lift) 

linearised torque and lift coefficients (determined 
by body L of attack, 0) 
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linearised :orque and lift coefficients (determined 
by front \i ing L to body., a) . , . 
linearised : orque and 11ft coeffIcIents (determIned 
by back wiq L to body, {J) . . 

A,B coefficients with small magnItudes resultlllg 
from linear :sation 

The linearised coefficients at any ')perating point, op., are calculated via, 

k=_&I' 
t Be 

k - &I' 
tb - B{J 

op. 

op. 

B = B~ 
Be 0 p. 

The equations for these partial :~Iivatives of eq(2.9) and eq(2.10) are presented 

in the form of the computer prof: 2.m, TEMPLATE, Appendix 3.1. 

The minimum, maximum and nc::linal values of the coefficients used in designing 

the controllers are given in Tabl ~ 2.1. (The numerical value of the lift and torque 

coefficients depend on the wing : ~ effective) angle of attack and the square of the 

(effective) wind speed. The ~ : ructured relationship existing between the 

coefficients is included in the ::23ign by constructing templates based on the , 
independent variables .) 

2.2.6 External Disturbances 

Among the sources of torque and :..:ft (external) disturbances are, 

a) The mass of the airframe is r.:: balanced by the counter-weights and there is 

therefore a steady-state offset ::1 lift of about -8N (Table 2.2) . There is a 

(smaller) torque offset. 

b) wind direction is not parallel: : the ground; 

c) air flow over wings is not lami:. 2.I; 

d) the wind direction and speed :~ affected by the movement of the airframe. (The 

resulting disturbances are state c2? endent, invalidating linear plant models.) 

The approximate measurement c: :he disturbances is treated in Section 2.3.2. 
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2.3 Parameter and disturbance identification 

2.3. 1 Identification of model parameters 

The model parameters summarized in Table 2.1 were obtained as follows. 

Mas5 

The mass of the airframe and counter-weights was obtained by measurement and 

by calculation based on the volume of each mechanical component. The centre of 

mass of the airframe is located at (}"; mir)/(}"; mi) = O.Olm (in front of pivot), 
a a 

using data from Table 2.2 below where the sum is over the components of the 

airframe alone. 

Inenia 

The inertia of the airframe about the pivot was calculated using the standard 

form ula, 

2 J = }"; (J. + m. r. ) (2.22) 
. 1 1 1 
1 

(Ine:~ia about the pivot equals the sum of the inertia of each component (about 

the 2...TIS parallel to the pivot and through the centre of mass of that component) 

plus :he mass of each component multiplied by the square of the distance between 

the :entre of mass of that component and the pivot) (Fowles, 1977, p.187, 

D'Sc)"lza and Garg, 1984, p.88) and standard tables (Fowles, 1977, p.320) by 

Mr S.K. Moodley and checked by the author. Table 2.2 below summarizes the 

comp·:ments of the airframe. 

inertia mass distance 
Back wings (J (3) 1.013x l O-3 0.4124 -D.240 
Back wing servo & bracket 1.297xlO-4 0.1234 -D.285 
Fron: Wings (J ) 1.141x 10-4 0.1587 +0.430 air-a 
Fron: wing servo & bracket 4.287x10-5 0.1121 -D.400 frame 
Body 5.081xl0-2 0.4210 +0.080 
Cen~:e bracket 1.671x10-5 0.0522 -D.020 
Pivo: n.a. 0.290 0 pivot 
Cou.:.:er weights n.a. 0.698 0 }c.w-. 

Table 2.2 - Airframe components for calculating inertia (inertia in kg m2, mass in 
kg, c.:stance towards front positive) 
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Friction coefficients 

The friction coefficients at zero wind speed, ILtO and ILfJJ' were obtained by means 

of model identification: 

When the flying machine is dropped with the fans off, it reaches terminal 

velocity n and the (assumed linear) friction coefficient for lift is determined by, , w' 

(2.23) 

To measure the friction coefficient for turning, the airframe was allowed to swing 

freely as a pendulum, with the height fixed. For small angles, the equation of 

motion is, 

(2.24) 

The coefficients k1 and k2 depend on the exact position of the pivot relative to 

the centre of mass and were identified rather than analysed (J was pre-specified). 

The identification technique used was based on "macro-difference" expressions 

(Eitelberg, 1988), using software written by Prof Eitelberg. The algorithms 

developed by the author (Boje, 1986 and 1988) were equally applicable but were 

not available under the MS-DOS operating system. 

Results were, ILtO = 0.11, with a "standard deviation" (as defined in the software) 

of 0.01 (k1 =0.15±0.02, k2=0.43±0.04) . The coefficient of friction due to relative 

movement of the airframe and .the airstream is an order of magnitude larger than 

ILtO 

Lift and drag coefficients 

The lift and drag coefficients for the 'Y'ings were evaluated by means of 

wind-tunnel tests on one front wing. Lift and drag measurements were normalised 

(to obtain the section lift and drag coefficients) by dividing by the free steam 

dynamic pressure, q = k P v
2 

and by the wing area. Results are presented on 
(I) £, (I) (I) 

Figures 2.9 and 2.10 respectively. If cp is the wing angle relative to the free stream 
wind direction, 

lift = cl cp) x i P (I) x (Wind Speed)2 x (Wing Area) 

drag = cd( cp) x i P (I) x (Wind Speed)2 x (Wing Area) 

(2.25) 

(2.26) 

Figure 2.9 and 2.10 show constrained (to obtain necessary symmetry) second 

order "least-squares II fits for the data which allow easy calculation of the 

coefficients and their derivatives. These curves are given (for cp in radians) by, 
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~! cp) = [-5.305( cp+0.Oll)2 +5.006( cp+O.Oll)]sgn( cp+O.Oll) (2.27) 

~ 2 
cd( cp) = 3.363 cp + 0.0677 (2.28) 

Figure 2.9 also shows the theoretical section lift coefficient, cl = 2 7r (cp + 0.011), 

from eq(2.8). Note that the wing produces zero lift at cp = -0.6· 

wind wing o. 5· 10· 15· 20· 
speed angle 

10 0.30 0.77 1.38 1.65 2.07 
15 0.45 1.65 2.90 3.70 4.10 
18 0.52 2.30 4.10 5.20 5.70 
20 0.61 2.90 5.10 6.35 -

22 0.65 3.55 6.50 - -
23 - - 6.80 - -
24 0.75 4.23 - - -
25 0.78 4.58 - - -

Table 2.3a Raw lift data (lift in Newtons, wind speed in m/s) 

lift coefficient 
1.2,---------.---------.---------~------~ 
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I : ~ , 

/'' i ~ ............ : .......... ~>/ .............. ··x············ ······································· .... j .................................................... j .................................... . 
/ : 

/ : 
/ . 

/ 
/ : 

/ : 

•• • •• ~/~ •• u ······················· ·················t· .. ······················ ················ ··········1········ ··· ··· ·································· · ·· ··f ···· ········· ··· ................................ . 

// : i 
O~--------~--------L-________ L-______ ~ 

o 5 10 

angle [deg] 

15 

Figure 2.9 - Section lift coefficient, ct x indicates measured data, solid line is 

least squares curve, eq(2.27) and dashed line is theoretical value, eq(2 .8) 
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wind wing O. 5' 10' 15' 20' speed angle 

10 0.15 0.20 0.40 0.55 0.85 
15 0.30 0.43 0.80 1.20 1. 75 
18 0.38 0.60 1.08 1. 70 2.40 
20 0.45 0.70 1.35 2.10 -
22 0.55 0.85 1.65 - -

23 - - 1. 75 - -

24 0.60 0.95 - - -

25 0.68 1.05 - - -

Table 2.3b Raw drag data (drag in Newtons, wind speed in m/s) 
drag coefficient 
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L----+-: -~ . . ........... ; ........ _ .................. , ................. _ ... .... .L .•... ... .•.............•.. _~ •.••..•...... .•.. ....•.... ~ ...•.•... .•.•.•... _ ... _ 

; 

i I, ,: OL----L----~ __ ~L-__ -L ____ ~ __ ~ ____ -L ____ L_ __ ~ __ ~ 

o 2 4 6 8 10 12 14 16 18 20 

, angle [deg] 

Figure 2.10 - Section drag coefficient, cd. x indicates measured data, solid line is 

least squares curve, eq(2.28) 

2.3.2 Disturbance Measurement 

The equipment used for wind tunnel tests consists of a fulcrum and beam balance. 

The whole apparatus is damped in a viscous oil as it designed to give steady-state 

values. The same holds for the wind speed measurement device, which has a small 

orifice to low-pass filter fluctuations in wind speed. The real experiment has large 

ventilation fans operating in a confined space and complicated flow patterns are 

developed. To get a feel for the dynamic behaviour of the lift and drag, a "live" 
exper,iment was designed. 
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To measure the lift and drag, the airframe was fixed rigidly in airstream of one 

fan and the strain in the attachments was measured. It was hoped to measure the 

lift and drag in such a manner as to determine the effect one wing had on the 

other. This experiment proved to be too complicated for the equipment and time 

allocated to it and expectations had to be lowered to measuring the lift and drag 

produced by a single wing. 

To measure the forces, strain gauges were mounted on steel from a tape measure, 

shown diagrammatically in Figure 2.11. These strain gauge bridges were 

connected to high gain, dc coupled differential amplifiers (built with LM308 

operational amplifiers) followed by an amplifier to set offset and span (gain). The 

bridges worked acceptably during calibration, providing linear, repeatable output 

with acceptably low noise. The availability of cheap, high precision operational 

amplifiers with large gain-bandwidth prod~cts makes this direct measurement 

approach reasonable. In application it was found that the gauges were very much 

more sensitive to bending than pure tension and that it was not possible to 

operate them in pure tension in the airstream. As a result, new tension only 

gauges were constructed out of nichrome wire, two strands being used as active 

gauges and two as dummy gauges to reduce the effect of temperature dependence 

in the nichrome wire. These gauges provided acceptable performance at low wind 

speeds (up to about 15m/ s) but the lift produced at high wind speed was larger 

than expected, causing the nichrome wires to yield, giving meaningless results. 

Y+ 

flounllng block Y+ 

Pol ... on/ Ifl 
11301. 

P01 •• on gouga 
11111< galn 

Ten.len gouge 

10K 

51< 

Y-

v-

Figure 2.11 - Strain measuring devices 
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The results of two tests are presented in Figure 2.12 (Test RO - 15m/s wind 

speed, wing angle ~ 2·) and Figure 2.13 crest R22 - 15m/s wind speed, wing 

angle ~ 20·). At the end of each run, the fan was stopped and a 5N calibration 

weight was applied to the drag and lift axes - the test data has been scaled to 

show results in Newtons. The second test result, R22, has been used as the 

disturbance input in most simulation runs and design calculations which follow (it 

could be argued that the low wind speed is very roughly compensated by the high 

wind angle). For front wing data, the test data was multiplied the ratio of the 

front to back wing areas and reversed in time. 

Further analysis of the data in Figure 2.13 (R22) is presented. Figure 2.14 and 

2.15 show the magnitude spectra of the lift and torque components of the data 

respectively, calculated using 0=0· and nominal gains from Table 2.1. In Section 

3.3 it is shown that some useful design considerations can be obtained if the 

disturbance can be modelled as broad band noise and Figures 2.14 and 2.15 

present possible broad band disturbance models with the following parameters, 

IE/w)1 = {[Til for w = [O,wxlJ 

o for w> wxl 
2 2 

(ll = 132.0 N 

2 
TIl = 1.9 N /(rad/s) 

wxl = 70.0 rad/s 

IEt(w)1 = {[Tit for w = [O,wxtJ 

o for w> wxt 
2 2 2 

(It = 9.5 N m 

2 2 
TIt = 0.14 N m /(rad/s) 

wxt = 70.0 rad/s 

variance of lift disturbance (N2) 

lift disturbance model power per rad/s 

lift disturbance model bandwidth 

(2.29) 

(2 .30) 

variance of torque disturbance (N2m2) 

torque 9isturbance model power per rad/s 

torque disturbance model bandwidth 
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test RO lift 
20~--~----~~~~~~----~--~ 

1 0 L .. .. .................................... ~ .............. + ....... r·······:·+·····h··H····· .. ·················!················· .. ························r ·· ············ .................... ....................... ........................... -1 

o 

-20~~--~~-L~----L-----L-----~--~ 
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time [s] 

test RO drag 
20~----~----~~~~~~~----1I----1 

10 

0 

-10 

-20L------L----~L-____ ~ ______ L_ ____ ~ ____ ~ 

o 5 10 15 

time [s] 

20 25 30 

Figure 2.12 - Test RO - Lift and drag measurement, 15m/s wind speed, wing 
angle ~ 2° 
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test R22 lift 
40~--~---r--~~~~~~----r---1 

20WIUII.·I············ · · · ··· .f ·J~.f··+I···· ttMnl"+III····_ .... -:tl"; 
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test R22 drag 
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Figure 2.13 - Test R22 - Lift and drag measurement, 15mjs wind speed, wing 
angle ~ 20° 
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R22 lift spectrum & approx. 
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Figure 2.14 - Magnitude spectrum for total lift disturbance from test R22 and 

equivalent broad band model 
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R22 torque spectrum & approx. 
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Figure 2.15 - Magnitude spectrum for total torque disturbance from test R22 and 

equivalent broad band model 

140 
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2.3.3 Other Design Constraints 

The following constraints are used in the subsequent Chapters 

-50" ~ a ~ 50.0· , I al ~ 200· Is (2.31a) 

. 
-35· ~ {J ~ 40· , I {JI ~ 200· Is (2.31b) 

These values were obtained by direct measurement. As a result the following 

rough allowable input standard deviations were defined, 

(J a = (J {J = 0.5 rad (2.32a) 

(J. = (J. = 2.0 radls (2.32b) 
a {J 

The wing actuator dynamics were modelled by, 

(2.33) 

(2.34) 

This model for wing actuator dynamics stems from the fact that each actuator is 

essentially an integrator (from applied voltage to the actuator motor to position), 

with some high frequency dynamics (due principally to the load and motor 

inertias and the inductance of the motor armature). The wing actuator controllers 

were closed with proportional controllers, with the gain set at the value which 

resulted in the fastest response without too poorly damped oscillations. Thereafter 

the wing actuators were considered as part of the plant. In some cases design was 

executed using w = 100 radls to account for the effect of actuator rate n· 
saturation but in each design, the wing actuator dynamics were regarded as fixed 

(i.e. with no uncertainty). 
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2.4 Simulating the plant and controllers in closed loop using modular simulation 

and Modula 2 

Simulation is a fast, inexpensive method of: 

a) Testing the first principles model of the plant. 

b) Obtaining understanding of the behaviour of the plant 

c) Gaining confidence that a controller design will provide satisfactory results 

when applied to the non-linear plant. Although the quantitative feedback design 

can be based on a "linear equivalent II plant set for the non-linear plant, this is 

only possible if every required plant output vector and the unique input vector 

corresponding to that output vector is known and is Laplace transformable. In 

this practical problem, the quantitative feedback design is based on the linearised 

plant set resulting from linearisations about all reasonable operating points. As a 

result, the plant uncertainty is state--dependent and the design does not 

guarantee performance. 

This section will outline the simulation of the flying machine and its feedback 

controllers via an existing (modular) simulation method (Eitelberg, 1982), 

implemented using the recently developed Modula 2 programming language 

(Wirth, 1983; King, 1988). The modular features of Modula 2 allowed the 

structure of simulation software to mimic the real plant-controller S'Lructure - As 

the real plant and real controllers are separate it makes good sense to keep the 

simulation of the plant and controllers separate. In this way, once the plant 

(which is non-linear and uncertain but fixed) has been correctly simulated, no 

alteration of the simulation code for the plant is required when the controller 

structure is altered. 

In explicit simulation of a system the step size must be of the same order as the 

shortest time constant in the system. In control problems, there are often far-off 

poles in the open-loop system which are (for example) necessary to make the 

controller realizable and for it to have desirable high frequency properties. These 

poles are of little interest when simulating the response of the closed loop system 

to disturbances or inputs but must not make the simulation of a stable system 

unstable. It is well known (Eitelberg, 1983) that implicit methods C2.n be applied 

to stiff simulation problems where explicit methods fail. 

The simplest implicit method is the implicit Euler: 

Given the continuous time system, 

i = f(;!,t); (2.35) 



The implicit Euler solution is given by: 

~k+1 = ~k + ~t f(~k+1' tk+ 1) 

= ~k + ~t (f(~k' tk) + M--\ (~k+1 - ~k)) 
- ~k,tk 

= ~k + ~t (I - ~t Jk)-1 fk 

(J
k 

is the model Jacobian evaluated at time tk·) 

For numerical reasons this is actually programmed as: 

a) Solve: (II ~t - Jk) ~~ = fk 

b) Add ~k+i = ~k + b.~ 
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(2.36) 

(2.37) 

For the modular simulation using implicit Euler the following are defined 

(directly from Eitelberg, 1982): 

"module state differential equation" 

X. = f.(x.,u.), i=1, ... ,m 
1 111 

"module output equation II 
~ = ~(~,~), i=1, ... ,m 

"connection and external input equation" 
u· = h'(Y1""'Y ,t), i=1, ... ,m 
11m 

"module Jacobian" 
Of. (x.,u.) 

-1 -1-1 
J.=---
1 ax. 

-1 

"module input sensitivity" 
Of. (x.,u.) 

1 -1-1 
F.= . 
-u 1 Bu. 

-1 

"coupling sensitivity II (provided there are no algebraic loops) 

(2.38) 

(2.39) 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

The language features available in Modula 2 (and not in older languages such as 

FORTRAN) which can enhance the development of such modular simulation 

programs are: 

a) Dynamic variable definition - allowing very large problems to be solved on 

small machines. 

b) Separate compilation of Modules - an improvement on Pascal. 
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c) PROCEDURE TYPES - allowing modules to be altered at run-time 

d) Concurrency - allowing modules to be solved in parallel 

e) Highly structured code with strong variable types (and modern language 

support environment) - enhances the development and maintenance of software. 

The structure of the Modula 2 simulation program is conceptually: 

(*-------------------------*) 

DEFINITION MODULE MatrixUtilities; 
TYPE Vector; 
TYPE Matrix; 

(* All matrix operations are defined here *) 
END MatrixUtilities. 
(*-------------------------*) 

DEFINITION MODULE LocalModule1; 
(* Same structure for each i = 1 .. m *) 
FROM MatrixUtilities IMPORT Vector, Matrix; 

PROCEDURE 

(* Solve 

SolveAugmentedSystem 
Input 

VAR AugmentedState 

( 
: Vector; 
: Matrix); 

«Pi [~i,I) = [ii' ~,i,kJ for AugmentedState, [o;;;i,IiJ *) 

(* Note that the IMPLEMENTATION MODULE must make its own local 
copy of the augmented state vector for use in 
UpdateStateVector. This means that the AugmentedState above 
can be modified / discarded by the global program *) 

PROCEDURE UpdateStateVector( 
InputIncrement Vector; 

VA.R Output Vector) ; 
(* Evaluate ~x. = ox. + I. On. 

-1 -1 -1-1 

.!i(k+l) = .!i(k)+ ~.!i *) 

END LocalModule1. 
(*-----------------------*) 
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MODULE Global; 

FROM MatrixUtilities IMPORT Vector, Matrix 
(* and matrix routines *) ; 

IMPORT LocalModule1 (*, ...... , LocalModule [NumberModules] *); 

CONST 
NumberModules = 2; (* In this problem *) 

(* *) 

PROCEDURE SolveGl6balEquation 
(AugState : ARRAY OF Matrix; 

VAR ModuleInputIncrements : ARRAY OF Vector); 
(* In this PROCEDURE, construct coupling sensitivities and solve 

for module input increment vectors. 
m Bu. k m Bu. k ou. - h -1, X. ou. = h -1, Ox . i=1..m *) 

-1 J·=1 ax. k -J -J J·= l ax . k -J 
-J, -J, 

END SolveGlobalEquation; 

(*-------------------------*) 

VAR SolveAugSystem : ARRAY[l .. NumberModules] OF 
PROCEDURE ( (* Input *) Vector, 

VAR (* Aug. State *) Matrix); 

VAR UpdateState : ARRAY[l .. NumberModules] OF 

VAR 
Input 
Output 
Inputlncr 
AugState 

VAR 
Module, 
StepSize, 

PROCEDURE ( (* Input increment *) Vector , 
VAR (* Output *) Vector); 

: ARRAY\l .. NumberModuleS 
: ARRAY 1 .. NumberModules 
: ARRAY 1.. NumberModules 
: ARRAY 1 .. NumberModules 

Step 
Time, 

: CARDINAL; 
StopTime : REAL"j 

OF Vector; 
OF Vector; 
OF Vector; 
OF Matrix; 

(* *) 
BEGIN 
(* Initialise local module procedures, variables etc *) 

SolveAugSystem[l] 
UpdateState [1 ] 
(* . 

:= LocaIModulel.SolveAugmentedSystem; 
. - LocalModule1. UpdateStateVector; 

. etc *) 
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(* Do the required simulation - adding step size control etc. if 
required · *) 

Time := 0.0; 
Step := 0; 
REPEAT 

Step : = Step + 1; 
Time : = Time + StepSize; (*Denoted k=l, 2, .. *) 

FOR Module : = 1 TO 

SolveAugSystem 

END; 

SolveGlobalEquation 

NumberModules DO 
(* IN PARALLEL IF POSSIBLE 

(* OR AS CONCURRENT PROCESSES 
[Module] 

(Input [Module] , AugState[Module] 

(AugState, InputIncr); 

FOR Module . - 1 TO NumberModules DO 

:~ 
) ; 

(* IN PARALLEL IF POSSIBLE :) 
(* OR AS CONCURRENT PROCESSES ) 

UpdateState 

END; 

[Module] 
(InputIncr[Module] , 

UNTIL Time >= StopTime; 

Output [Module] ) ; 

END Global. 
(*-------------------------------------------------*) 

Figure 2.19 Modula-2 modular program structure 

The actual programs are included in Appendix 3. 



CHAPTER 3 - QUANTITATIVE FEEDBACK DESIGN 

- THEORETICAL CONSIDERATIONS 
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3.1 Introduction to the principal ideas of Quantitative feedback design for SISO 

systems 

A two~egree-of-freedom control system is shown in Figure 3.1. The plant is 

uncertain and given by the set , .9' = {P(s)}. There are unknown external 

disturbances, 6 = {E(s)} affecting the plant output via.9'* = {P*(s)}. Feedback 

signals are contaminated by sensor noise, .A' = {N(s)}. Feedback (via the 

controller, G(s)) is only required in order to reduce the effect of plant uncertainty 

(and non-linearity) on the plant response, to reduce the effect of disturbance, E, 

or to stabilize open-loop unstable systems. The command response of the plant 

can be modified by means of the pre-filter, F(s). 

E(s) 
!P*(S) ~E*(S) 

R(s) I F(s) ~or--1 G(s) I U(s) I p(s) ~O + 1+ Y(s) , 

O+--- N(s) 
L-______________________ ~I + 

Figure 3.1 Two degree of freedom feedback structure 

Quantitative feedback design for S1SO and M1MO systems, given quantitative 

specifications on the plant output , Y(s), is well established (see Horowitz, 1982, 

for a list of references). The paper by Horowitz and Sidi (1972) probably gives the 

clearest introduction to the design technique. S1SO quantitative feedback design 
proceeds as follows: ' 

a) Specifications to achieve desired command following 

Ty/R(s) = Y(s)/R(s) = F( s )G(s)P(s) 
1 + G(s)P(s) 

,...r, and modified disturbance, E*(s), rejection 

Ty/E*(s) = Y(s)/E*(s) = 1 

f h 
r 1+G(s)P(s) 

o t e lorm, 

and 
A(w) $ I Ty/R(jw) I $ B(w) 

(3.1) 

(3.2) 

(3.3) 

(3.4) 



36 

are assumed given. L(s) = pes) G(s) is the open loop transfer function. Horowitz 

(1963, Chapter 9) and many others have treated the problem of obtaining such 

specifications from step response specifications, knowledge of the stochastic 

properties of the disturbance (see Section 3.3) etc. Magnitude specifications 

eq(3.3) and eq(3.4) alone are sufficient for minimum phase systems to achieve 

desired time domain behaviour but phase specifications must be included for 

non-minimum phase systems. 

b) Select a number of discrete frequencies, wi' at which design boundaries will be 

checked and an arbitrary nominal plant PO' Note that the choice of the nominal 

plant does not affect the outcome of the design. The free choice of nominal plant 

is a very attractive feature of the design as it is a "handle" (by which the plant 

set is held) rather than representing a most likely (nominal) operating point. The 

freedom of choice of the nominal even allows one to chose a nominal outside the 

plant set if the extra conceptual difficulty can be justified by other considerations. 

(The idea of a "handle" originated during the writing of the CAD package, 

"DESIGN" by Prof E Eitelberg and Mr G Sutcliffe.) 

c) Construct plant templates at these frequencies (~ = {I P(jwi) I dB' 

Arg(p(jwi))})· At least since Horowitz and Sidi's 1972 paper, quantitative 

feedback design has been most easily executed on the Nichols and inverse Nichols 

charts where, 1L1dB = IPl dB + IGl dB and Arg(L) = Arg(P) + Arg(G) (i.e. 

G can shift but neither rotate nor change the shape of the templates). 

d) From the command response bounds, eq(3.3), construct corresponding bounds 

(at ~ach wi) on the nominal open loop transfer function, LO = Po. G, for the 

nommal plant, PO' by manipulating ~ on the Nichols chart to ensure that the 

closed loop uncertainty is within acceptabl~ bounds, .6 IL/(1+L)1 ::; B(w)-A(w). 
(The final specification, eq(3.3) is achieved using pre-filter, F.) Call these 
bounds, 

(3.5) 

e) From the disturbance rejection bounds, eq(3.4), construct corresponding 

bounds (at each w) on the open loop transfer function, La, for the nominal plant, 

PO' manipulating the plant template on the inverse Kichols chart. Call these 
bounds, 

(3.6) 

f) Find a controller, G, so that La = G Po satisfies bot h its bounds B and 
, Y/Ri 
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By / E* i at each frequency, wi' In the QFT literature usually LO is shaped (found) 

and then G=LO/P 0 is obtained. This can lead to inconvenient controller 

realizations. The package, "DESIGN" allows LO to be shaped by defining Po and 

selecting and adjusting G. 



3.2 Some additions to S1S0 OFT - Disturbance entering through part of the 

plant and input specifications 
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The quantitative feedback theory (QFT) presented in the literature has 

concentrated on achieving specifications on the plant output. QFT has been 

criticized (by Doyle, 1986) for not "explicitly including" input specifications 

during the design. Horowitz's reply (1987) points out that the QFT does provide 

a "price list" of the cost of feedback in terms of bandwidth. Quantitative 

specifications on the plant input can be included in QFT but there are some 

implications of having to meet both input and output specifications (especially in 

multivariable control problems). Plant uncertainty reduction and disturbance 

rejection are typically achieved at the expense of high loop gain 

(IL(s)I=IG(s)P(s)l»l), over a larger frequency range than the frequency range 

over which feedback benefits are required. The amplification (to the plant input) 

of disturbances, command inputs and sensor noise resulting from high loop gain 

may not be acceptable in physical plants due to saturation or wear at the plant 

input . As the performance of any control system design is limited by the power 

which can be delivered by the plant which is to be controlled, input specifications 

should be included in the design of practical controllers. (Plant input saturation is 

not always catastrophic if care is taken during the design.) 

The plant input is often ignored in practical plants - the ubiquitous PID 

controller (or the one mentioned in the Introduction) is expected to provide large 

gain at high frequency which will invariably saturate the plant input. Plant 

maintenance engineers find that actuators must constantly be replaced unless 

they "detune" the derivative gain. 

For a fixed plant, fixing the disturbance to output behaviour obviously also fixes 

the disturbance to input behaviour, but in uncertain design, if the specifications 

allow some design freedom, this can be used to select a controller to satisfy both 

input and output specifications. This section deals only with disturbance - to -

plant input specifications from which other input specifications follow easily. 

SISO plants have disturbance specifications of the form, 

Output, 

IYIEI = /l~~f1~j / = IP*I/rh/ = /frll~IIJr/ ~ a(w) (3.7) 
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Input, 

IU/EI = \G(i~t(jMw) \ = IGIIP*I\rh\ = \~IIJr\ ~ b(w) (3.8) 

Unlike the loci of constant I L/(1+L) I (Nichols chart) and loci of constant 

11/(1+L)1 (Inverse Nichols chart), loci of constant IU/EI and IY/EI cannot be 

plotted on the rectangular grid of log-magnitude and angle of the open loop 

transfer function, L(s). The two forms used for each of the eq(3.7) and eq(3.8) 

above highlight the fact that standard QFT design using templates can only be 

carried out on the Nichols [1~d or inverse Nichols [1!d charts. To design 

quantitatively requires using the worst case magnitudes and the second form may 

then be more economical than the first because of possible cancellation between P 

and P*. For example, using eq(3.8) for input specifications, the constraints are, 

IGlll:LI ~ b/[p~~*IP*I] and, 11~LI ~ b/[(P'~~)E(~,~)I~ll respectively. 
Neither are able to utilize possible cancellation between P* and (1+L). In most 

plants, at least at low frequency (P ,P*) E(~ , ~) is an ordered pair since the 

uncertainty is structured. The design should if possible make maximum use of the 

structure of the plant. If suitable CAD tools exist to draw bounds on LO(jw
i
) 

using I~:LI ~ a(wi) or I?~~I ~ b(wi) directly, over design is avoided in the 

drawing of the bounds. One method would be to evaluate the left hand sides and 

test the inequal it i es for each frequency Wi of interest, for each (P ,P*) of the 

plant set (or a representative subset) and over a sufficiently fine grid of 

LO=( I La I, Arg(LO))· This is the' Afghan method', because "its effrontery evokes 

the Soviet Union'S approach to Afghanistan" (Golubev, 1983) . 

Note that if it is required that ~IL/(l+L)1 ~ OdB then IGPI ~ Il+GPI and 
from eq(3.8), 

IU/EI ~ I~I ~ (PJ~)E(~,~)I~I ~ b(w) (3.9) 

showing that the plant input is unavoidable (and determined by the plant design 

alone) at those frequencies where high loop gain is required for other purposes 

(sensitivity reduction, disturbance rejection and stability). 

Finding bounds on transfer functions like I G I 11:L I (plant output 

(measurement? noise to. plant input) and I bill: L I (plant input disturbance to 

plant output) IS easy usmg standard Nichols and inverse Nichols charts as there is 

usually no uncertainty in G and inequalities can be tested along lines of constant 

I G I = I La I I I Pol since I P oUw) I is fixed for Wi . For a fixed value of I G I the 
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template is moved horizontally across the Nichols or inverse ~ichols Chart (i .e. 

keeping I G I constant) and the region in which the respective inequality is valid 

are marked. This process is repeated at as many values of I G ! as are required to 

construct an accurate bound. 

When input specifications are included, it should be clear tr.at it may not be 

possible to solve a given problem - the upper and lower bOULds on LO(jwi) can 

have no intersection. In this sense, specifications resulting fro:n input limits are 

like performance specifications on non-minimum phase plams - they must be 

compatible with the plant capability. 

If the power at the input is the only limitation, the available in:;:mt power must be 

divided between sensor noise and disturbance unless the relati ,~ phases of sensor 

noise and disturbance signals are known. 

, The design for sensor noise is very similar to that for distu:Jance and I U jR I 
specifications constrain the design of the pre-filter, F(s), after :J.e closed loop has 

been designed. In some feedback problems, the transfer of thE external reference 

to the plant input may be severely limited by the disr.:.rbance reduction 

requirements of the closed loop. In Horowitz and Liao ', ~ 986), non-linear 

compensation is proposed for a saturating, unstable plant in :rder to block the 

command signal to plant input when all the input power iE ~equired to reject 

disturbances so that closed loop stability can be maintained. 
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3.3 Obtaining Plant Input Specifications for Quantitative Feedback Design 

Obtaining frequency domain input specifications from the time domain or from . 

knowledge of stochastic behaviour of the plant signals is treated in the literature 

(Horowitz 1963, Chapter 9). In the case of the flying machine ii will be seen. that 

external disturbances enter the plant such that P*(s) = Ie P(s) and mput 

specifications will be on ~ 1 L/(l+L) I, with wide band noise modelling the 

disturbances. 

Consider a dominantly second order closed-loop system, with the model, 
* T (8) - G( s)P (s) - 1 (3.10) 

U/E - 1 + L(s) - k [(s/w )2 + 2(s/w + 1] 
n n 

(The impulse response of disturbance-to-plant input is tu/e(t)=f1{TU/E(s)}.) 

If the external disturbance is stationary, zero mean, band limited white noise and 

ergodicity is assumed, 

6' {e(t)} = 0 

1 E(jw) 12 = 1] w = [O,w ], w »w 
x x n 

= 0 w> w x 

(3.11) 

(3.12) 

(One sided spectra will be used.) The noise bandwidth is much larger than the 

cut-off frequency of T U /E" The external disturbance has a variance of o-i = 'T/ w
x

. 

The resulting plant input is, 
t 

u(t) = J t / (T) e(t-T) dT o u e 

and expected value is, 

.{u(t)} = .{ fo t tu/e(r} e(t-r} dr } 

t 
= fa tu/ e(T)6'{e(t-T)}dT 

(3.13) 

= 0 (3 .14) 
(A pre-condition for exchanging the order of integration and expectation is that 

the integral must remain bounded (Cooper and McGillem, 1979, p.179) which 

excludes the possibility of a non proper system (i.e. a system with an excess of 
zeros over poles) .) 
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The power spectrum of the plant input is given by, 

IU C )1 2 '1 11 W= [O, wxl 
E JW = k2 [(1-(W/Wn)2)2 + (2 (W/Wn)2] 

o W> Wx 

(3.15) 

The variance of the plant input resulting from the zero mean disturbance is given 

by the auto--correlation of the power spectral density at zero time separation, 

6' {u(t)2} = R (0) = J W U
2

(jw) dw 
uu 0 

-",.-------;""'--------..,-- 11 dw J 
Wx 1 

= 0 k2 [(1-( w/ w
n

)2)2 + (2(w/ wn)2] 

J 
W 1 

'" .!L 2 dw 
'" k2 0 (1-(W/Wn)2)2 + (2(w/wn) 

(3.16) 

(since J W • dw ~ 0 if W » W ) 
W x n 

x 

Substituting x=w/ W n, 

2 J W 6' { u( t) } = W .!L2 
n k 0 

-w.!L.!!.... 
- n k2 4( 

(3.17) 

If the standard deviation of the input must be small, keep wn small, k large and 
{ 

(large. Eq(3.17) shows explicitly what Horowitz has always said that large 

bandwidth (and the resulting amplification of sensor noise to the plant input) is 

the price paid for feedback benefits. 

, 
Consider the variance of the plant input derivative (denoted, subscript dot). 

The power spectrum of the plant input deriv.ative is given by, 
2 

IUd (jw)1
2

= W 11 w=[O,wxl 
ot E k2 [(1-(W/wn)2)2 + (2(wjw

n
)2] 

= o w>w x 

(3.18) 

The variance of the plant input derivative resulting from the zero mean 

disturbance is given by the auto--correlation of the power spectral density at zero 

time separation, 



6{u(t)2} = W! ~ J CD 

k 0 

= w3 
.!L2 f( () n k 
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(3.20) 

The integrals, J CD 4 ~ 2 dx = ..!. and J CD 4 ~2 2 dx = f( () 
o x +(4( -2)x +1 4( 0 x +(4( -2)x +1 

(evaluated numerically) are shown as a function of (in Figure 3.2. 

The disturbances acting on the flying machine can be regarded as roughly 

band-limited white noise (this motivates Section 2.3.2) and the disturbance to 

plant input transfer functions will be seen to have the form of eq(3.10). Equations 

(3.17) and (3.20) will therefore be useful in the flying machine controller designs, 

described in Chapters 4, 5 and 6. 
Integrals 

_3,----.-.--.-----.----,----,----.-----.----.---~----~ 
a:S 
~ 

<l) 

N 

2.5 

2 

1.5 

1 

0.5 i ... .............. ......... ...................... ! .... . ............ j ... . 

-------

O~~~--~~~~--~--~----L---~--~----~--~ 
o 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

~ ze~ 
gure 3.2 - Integrals from eq(3.17) (solid line) and eq(3.20) (dashed line) , 
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3.4 MIMO QFT design with disturbances and plant input specifications 

3.4.1 General equations for disturbance to input design 

Following on what was shown in Section 3.2 for S1SO plants, this section shows 

how disturbance to output and disturbance to input specifications can be included 

in M1MO design. 

Consider the n-input, n-output multivariable problem shown in Figure 3.3, with 

disturbance to the plant output, Ty/E(s) 

(! + P G) TY/E = P* (3.21) 

and disturbance to the plant input, VU/E(s), 

(! + G P) VU/E = - G P* (3.22) 

(! is nxn identity matrix). 

filtered 
reference 
R'(s)+ 

disturbance ~(s) 

Figure 3.3 - Feedback loop with significant disturbances 

output 
r( s) 

The (disturbance) specifications are assumed to have the following form, 

ITY/E(jw)lij ~ [A(w)]ij = ai/w) (output) (3.23) 

I VU/E(jw) lij ~ [B(w)]ij = \/w) (input) (3 .24) 
The absolute values are taken element by element. 

There may be other specifications, for example on command response and on 

sensor noise to plant input, but these can be incorporated in an obvious way. As 

is the case with output speCifications, if one attempts to obtain Vu /E explicitly, 

all the entries of G and of P affect each element of V U IE' Following the ideas of 

Horowitz (1982a, 1982b), for a diagonal controller, G = diag{gl .. gn}' TY/E and 
VU/ E are written implicitly, 

(P-1 + G) Ty /E = p-1p* 

and, 
TY/E = (G + Qd)-l (QdQ* - Qn Ty / E) (3 .25) 

(3 .26) 
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(where the plant has been expressed as the sum of matrices formed by its diagonal 

. ' -1 A A* 
(P d) and non-diagonal (~) elements, P = P d + ~, Q = P = Qd + ~n' ~ 
= A-I p-Ip* and [A] .. = ! - the inverse of the elements of the plant inverse). 
~d - - ~lJ q .. 

IJ 
Using eq(3.26) above, quantitative design to the plant input can be undertaken by 

substituting the bound, B for VD/ E when the latter appears on the right hand 

side of the equation and designing to one of the following inequalities, 

(3.27) 

or, 

I I I (G-l P )-lp* I [ I (!!-l+~d)-l~ I B ] < b YU /E ij ~ - + -d - ij + - ij - ij 
(3.28 ) 

(depending on whether the design will be undertaken as a G/(1+1) or 

GP* /(1+1) type design). The advantage of eq(3.25) and eq(3.26) for design is 

that only diagonal matrices are inverted (after the plant inverse has been 

calculated). 

A very significant difference between eq(3.25) and eq(3.26) above is that the usual 

(output) QFT design equation, eq(3 .25), makes use of the inverse of the elements 

of the plant inverse, while the input design makes use of entries of the plant 

matrix directly. As a result, if design is to be attempted for both input and 

output specifications, the plant set is not the same for the two sets of constraints 

(unless the plant is diagonal, in which case the problem is n - SISO designs). 

There appear to be two possibilities: 

i) Draw two sets of boundaries for the input- and output- specifications using a 

nominal plant and the inverse of the nominal plant respectively., When the 

controller is designed, two nominal open loop transfer functions corresponding to 

the two nominal plants must be shaped ' simultaneously for their respective 
boundaries. 

ii) Select a single nominal plant, not necessarily an element of either the plant set 

or the set of plant inverses, and draw boundaries for that nominal, based on the 

input and output specifications. The loop-shaping then uses the chosen nominal. 

This second approach will be especially attractive in a plant with small 

off-diagonal elements. This approach has been employed by the author in 

tackling the flying machine designs of Chapters 4, 5 and 6. 

The QFT improvements of Horowitz (1982b) are incorporated into the design: As 
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a controller is designed ior a loop, the loop is closed and the problem 

re-formulated to make use of the additional information which becomes available. 

3.4.2 The case of a 2-by-2 ulant 

To clarify the ideas above, consider a 2-by-2 plant, P, with 

disturbance-to-output £x and closed loop disturbance to output and input 

specifications, eq(3.23) and eq(3.24) respectively. 

If the controller is diagonal and the first loop (gl) is closed first, the design 

problem for the first loop i5 as follows. 

The output specification is : 

* * 1 1 -~ q11 q12 -- gl 0 t11 t12 - -
q11 q12 q11 q11 

1 1 + = * * (3.29) 
-- 0 g') t21 t22 q21 q22 
q21 q22 ; - -, 

q22 q22 

or, 

(3.30) 

and, 

or, 

(3.31) 

Notice here that although .:~-er-design can be reduced by selecting one of the two 

design equations, the use c: the Schwartz inequality and the use of specification, 

a1·J·, instead of the actual tr=..::.sfer function value t .. results in over design , IJ' . 

The input specification is , 

1.-0 P11 P12 v11 v12 * * gl P11 P12 
1 + = (3.32) 0 P21 P2 2 v21 * * g2 v22 P21 P22 
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or, 

(3.33) 

and, 

or, 

(3.34) 

The first loop is designed to satisfy equations (3.31) to (3.34). This loop is closed 

and the design equations become, 

q*, 
2i It

21
.1 = ~ a

2i 
(i=1,2) - output specification 

1+q2g2 
(3.35) 

q*, 
2i It

21
.1 = ~ a

2i 
(i=1,2) -output specification 

1+q2g2 
(3.35) 

with, 

and, 

g2P2i 
I v I = ~ b21· (i=l, 2) - input specification 

2i 1+P2g2 
(3.36) 

with, 

Now, a little algebra or thought indicates that P2 = q2 and P2i = q2i (since the 

whole design has been reduced to an exact SISO problem). In the second stage of 

the design, there is a single plant set and the design is very much more simple. 

3.4.3 Stability 

The poles of det((! + G p)-l) and of det((! + P G)-lp G) are identical so that 

stability need only be assured using input or output design. (This is analogous to 
1 L 

the S1S0 case where 1+1 and l+L have the same poles). 
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PROOF 

Let, G(s) = X(s) Y(s)-l and P(s) = D(s)-l N(s) 

with X(s), Y(s), D(s) and N(s) non-singular polynomial matrices (Kailath, 1980). 

Then, 

and, 

det( (I + ~ ~)-1) = det( (I + I X-1 !!-1 ~)-1) 

= det ((~-1 (!! X + ~ I) X-1 !!-1 ~)-1) 

det(!!) det(X) det(~) 
=----------------
det(~) det(!! X + ~ I) 

det on det (X) 
=---------

det(!! X + ~ I) 

det((I + ~m-1 ~~) = det((I + !!-1 ~1x-1)-1 !!-1 ~1X-1) 

= det((!!-l(!!X + ~1) 1-1 ~-1 !!)-1) 

det(~) det(1) det(!!) 
= 

det(!!) det(!! X + ~ I) 

det (~) det (I) 
= 

det(!! X + ~ I) 

(3.37) 

(3.38) 

Equations (3 .37) and (3.38) indicate that the right hand plane poles of the closed 

loop system are determined by the zeros of det(D Y + N X) (see Nwokah, 1986, 

for a polynomial matrix based approach, similar to the above, for achieving 

robust stability without using singular-value type robustness measures) . 

Eq(3.37) shows that right hand plane poles in P (i.e. in det(D)) result III 

non-minimum phase behaviour at the plant input . 

Eq(3.38) indicates that right hand plane transmission zeros (Kailath, 1980) in P 

(or equivalently in N) must appear in the closed loop input-output response since 

det (!! X + ~ I) cannot sensibly be designed to cancel such zeros. 

An interesting hypothesis which will not be investigated here is as follows. Since 

the design method is conservative, if stability alone is required over the plant 
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uncertainty set, only the easiest of stability of the input or of the output need be 

satisfied. 

The achievement of stability using this design method can be delayed until the 

final stage of the design although one would usually try to design (in the 2x2 case) 

(l+gl qll) and (1+g1Pn) to be minimum phase so that no additional difficulty is 

obtained in the design of the second loop. Doyle's paper criticizing QFT (1986) 

failed to note this point. 

An arcwise connected set 9={P} is defined such that 'V P l'P 2 &, PI can be 

perturbed to P 2 such that at any point on the path 3 arbitrarily small 

neighbourhood in which all points on the path have arbitrarily close pole-zero 

structure (Tzafestas, 1984). For each arcwise connected sub-set of the plant set, 

stability only needs to be assured for one element (of that subset) to guarantee 

stability for the whole subset if there are maximum magnitude bounds and they 

are satisfied. In other words, 

"It is worth noting that even if the above proof [based on Schauder's 
fixed-point theorem] were not available, it would not be disastrous 
for this synthesis theory. It would only be necessary to guarantee that 
one mE.A( [set of parameterisations of the plant], the system is stable 
and minimum phase. For then, this would be so 'VmE At, because by 
the continuity of the poles (and zeros) with respect to the 
parameters, the right hand side [of the equation of the transfer 
function] would have to be infinite (zero) at some w in order that for 
some mE.A( the system should be unstable (have a right half plane 
zero). However this synthesis procedure by definition precludes this." 

Horowitz, 1979 

3.4.4 Some comments on the designs executed in this thesis , 
In the design of controllers for this research the following general points emerged: 

a) At sufficiently low frequencies yery great uncertainty reduction, disturbance 

rejection and input-output decoupling can be achieved by having sufficient gain 

in the loops which are to be closed. The constraint on the loop gain is as a result 

of position saturation limits at these frequencies - this limits the maximum 

controller roll-off and hence the low frequency gain (Eitelberg and Boje, 1989). 

b) At intermediate frequencies (around the gain and phase cross-over frequencies 

in single loop designs) there is real design difficulty to achieve stability and large 

bandwidth while simultaneously limiting input levels. 

c) At high frequency, actuator rate saturation and roll-off due to unmodelled 

dynamics cause some theoretical difficulties: Does it matter that the loop gain 

goes to zero very rapidly after the phase-cross over frequency? What is the 

consequence of the actuators not being able to respond in a linear fashion over the 



50 

bandwidth of the loop transfer function? To avoid such problems one might 

modify Horowitz 's "Universal high frequency bound" (UHFB), (Ho~owitz and 

Sidi, 1972) by making a bound which results from the plant high frequency gain 

uncertainty and infinite phase uncertainty. Obviously this latter bound precludes 

the achievement of "arbitrarily small sensitivity over arbitrarily large bandwidth" 

but such a desire is practically unreasonable (though theoretically interesting). 

Figure 3.4 compares the Horowitz UHFB to this bound for a single loop design 

with I L/(l+L) I ~ 3dB and ~P(jCD) = 10dB. 
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CHAPTER 4 - CONTROLLER DESIGN BASED ON DECOUPLING OF THE 

DISTURBANCE-TO-OUTPUT BEHAVIOUR 

4.1 Design 

4.1.1 Introduction and design equations 

The first attempt at controlling the flying machine was based on the heuristically 

attractive notion of diagonalizing the plant model structure in some way (not 

necessarily by canceling the plant matrix by its inverse at the nominal point), so 

as to allow independent, single loop controllers to be designed for the height h( t) 

and pitch angle, O( t). 

If, 
A A 

i) the wing actuators for the front and back wings are fast (a = a, (J = (J), 

ii) the reaction torque on the body induced by the angular acceleration of the 

wings in turning can be ignored, 

iii) the coefficients kg = kif + k[b and kt = ktb - ktf' and 

iv) the terms, A and B in the model are small and can be ignored, 

then the model, eq(2.21), can be. written for the wing angles with respect to 

ground (implicitly with respect to 8(s)) , 

o 1 [o(s ) 

ms
2 +Jtt H(s) 

a(s)+O(s) 

(J(s)+O(s) EJs) 
(4.1) 

G ANGLE 

PLANT 

. H + 
r .. f H HEIGHT 

Figure 4.1 - Disturbance-to-output decoupling controller 
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Two single-loop controllers are designed for the problem (shown in Figure 4.1), 

(4.2) 

or, 
(4.3) 

with, 

and, 
( 4.4) 

with, 

to achieve disturbance reduction and command following of some sort. ke and kH 

attempt to model the gain uncertainty in the numerator, N, for quantitative 

design by using equivalent plants, 

ktb/ktbO 
p O(2i-1)(s) = 2 

Js +tLtS 

k lb /k LbO k lf/k [fO 
PH(2i-1)(s) = 2 PH(2i)(s) = 2 

ms +tLlS ms +fJi 
(i=1, .. ,NumberOfFlants). This procedure doubles the number of plants in the 

plant set and selects the extreme gain deviations away from the nominal plant 

while preserving the relationship between derived variables. The plant set of 

eq( 4.1) is not necessarily a subset of that of eq( 4.2) and some approximation has 

been made. A large proportion of the gain uncertainty comes from squaring the 

uncertain wind speed in the lift and drag equations, eq(2.25) and eq(2.26) and the 

procedure above will correctly take this uncertainty into account. The singular 

value based "modern" control theory (Doyle and Stein, 1981) uses a more 

arbitrary uncertainty parameterisation than the one above. This makes it difficult 

to justify using such methods for solving (by design) practical problems. 

The multivariable plant is controlled by setting, 
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l~S)1 = [ktfO -ktbo)-llU 0(s)1- [0(s)1 
{J(s) klfO klbO UH(s) O(s) 

(4.5) 

where, ~(s) and ~(s) are the front and back wing command signals respectively. 

Remembering that the feedback path has a sign inversion, the controller with 

respect to the input-output behaviour is given by, 

with, 

G( s) = + 

[
ktfO -ktbo1-1[go(s) 0 1 [1 01 

- k
lfO 

k
fbO 

0 gH(S) 1 0 

ktbO gH( S)] 
ktfO gn(s) 

4.1.2 Right hand plane zeros in G(s) 

(4.6) 

The equivalent controller G( s) in eq( 4.6) has right hand plane transmission zeros 

if det(G(s)) = gH(s)[gO(s)-(ktbO-ktfO)] is non-minimum phase. (Clearly both 

gls) and gH(s) will be designed stable and therefore G(s) will be stable.) gH(s) 

will be designed minimum phase and but [gO(s)-(ktbO-ktfO)] is non-minimum 

phase if -g O(jw) encircles (- (kt bO - ktfO),jO) on the Nyquist diagram. For a low 

order controller, this condition is equivalent to requiring gls) < (ktbO-ktfO) = 

17.9 (see Figure 4.2) . Limiting the gain of the pitch angle controll'er avoids a 

change in sign of [gJs)-(ktbO-ktfO)] betweer:t 8=0 and S=ro, showing via the initial 

and final value theorems that the controller is minimum phase (or has an odd 

number of right hand plane transmission zeros). This result on non-minimum 

phase behaviour is recalled from a publication the title and author of which have 

not been traced. 

~he (2,1) entry of eq(4.6) is non-minimum phase if [kf[o/kO gO(jw) - 1] has a 

nght hand plane zero, or equivalently if - gJjwJ has an encirclement of 

(-kO/klfO ' jO). For a low order controller this requirement is gO(jO) < ko/kero = 
122. This is a weaker condition than for no right hand plane transmission zeros in 

G(s) above. 
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-go(j w) 

w<o 

Figure 4.2 Conditions on -gls) for [gls)-(ktbO-ktfO)] to be minimum / 

non -minimum phase. 

The (1,1) entry of G(s) in eq(4.6) will only be non minimum phase if 

[klbO/kO go(jw)] encircles (-l,jO) on the Nyquist diagram. For the chosen 

nominal and a low order controller, this would require gljwc.pc) < 40, where Wc.pc 

is the phase cross over frequency. This possibility is unlikely since at the phase 

cross-over frequency, a roll-off of about -40dB/decade must have been sustained 

for about 1 decade (Horowitz, 1963, Chapter 7), suggesting a steady state gain (of 

gO) in excess of 70dB would be required, making it unlikely that this function will 

be non minimum phase (see Figure 4.3.) . 

MP 
)0<: 

Figure 4.3 Conditions on gO(s) for [klbO/kogO(jW)-l] to be minimum / 

non-minimum phase. 

It is not clear what the implications of having a controller with right' hand plane 

transmission zeros but with minimum phase paths is. Eq(3.38) indicates that the 

transmission zeros will appear in the input-Output response. 

Specifications 

In order to have some specifications note that for good disturbance rejection, 

Po Ikg I Po II 1 I kg 
IO(s)/Et(s)1 = l+Pe£!" = I~I I+C (PO 2 ) 

'if '1:1 ~ . 1J J s + Itt S 
(4.7) 

kH 
(PH 2 ) 

ms +ltlS 

must be as small as possible. This is achieved for a low-passing P 's) by ensuring 

that 11~L 01 is small until I Po l becomes small, or equivalently by making the 

(4.8) 
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open loop bandwidth as large as possible. Three facts prevent the realization of 

high (infinite) loop bandwidth (with attendant infinitely good feedback 

properties) in this practical problem: 

i) The plant has unmodelled dynamics at high frequency and an uncertain excess 

of poles over zeros. The plant templates resulting from this uncertainty become 

too wide at high frequency to allow the open loop transmission to roll off without 

violating the stability constrains if that roll off is initiated at too high a 

frequency. 

ii) Any non-minimum phase behaviour (from right hand plane zeros or transport 

lag) result in so much phase lag at high frequency that stability becomes 

unachievable if the bandwidth specified is not compatible with the plant 

behaviour. 

iii) The high controller gain required to achieve high bandwidth will invariably 

cause saturation at the plant input. 
, 

Examine the inputs, U () and U H 

( 4.9) 

The specifications, (J = (J{3 ~ 0.5 rad (eq(2.32a)), (J = (J. ~ 2 rad/s (eq(2.32b)) 
a a {3 

and (J () ~ 0.15 rad, for the nominal plant (which has high gain) translate very (!) 

roughly to, 

(Ju ~ (0. 7xO.5)xj k;fO+k; bO = 18.0 
() 

(J. ~ (0.7 x2.0)xj k;fO+k; bO = 71.2 
u() 

(Ju
H 

~ (0.7 xO.5)xj k~fO+k~o = 67.2 

(J. ~ (0. 7x2.0)xj k~fO+k~bO = 269.0 
uH 

( 4.10) 

(4.11) 

( 4.12) 

( 4.13) 

This is based on the variance of the sum of two independent, zero mean random 

variables (which a and {3 are not!), x and y, 



6'{(ax+by?} = a26'{x2} + b26'{y2} + 2ab6'{xy} 

= a26'{x2} + b26'{y2} 
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( 4.14) 

and allows half of the available input power for each output (the factor 

0.7 ~ 1/1l). 
One could attempt to formally calculate the variance of the modified inputs, for 

example, 

6'{u~(t)} = 6'{(ktf/k/a+O) - ktb/k/(J+0))2} 

1[2222 22 
= ~ ktfO" a + ktbO" (J + (ktCktb) 0"0+ 

2 2 2 ] ) 2kt/ktCktb)0" Oa - 2ktb(ktb-ktf) 0" O(J - 2ktbktfO" (Ja (4.15 
(if all signals have zero mean), etc. As there is no information on the covariances 

6' {a(J}, 6' {aO} etc, this procedure looks pointless and the guess above will have to 

do. 

Since the external disturbance to input transfer is given by, 

gr! O/kO 
I U O/Et I = 1 +g I 0 (4.16) 

and, 

gHPH/kH 
I DR/Ell = 1+g

H
P
H 

(4.17) 

k=l from eq(3.10). The bandwidths obtained via eq(3 .17) and eq(3.20)for (= 0.4 

(corresponding to about 3dB overshoot) and k=l are 

Torque (pitch angle) loop 

wnO = min{(324/0.14/1.96), (3../ 5069/0.14/1.85)} 

= 27 rad/s 

Lift (height loop) 

wnR = min{(4516/1.9/1.96), (3../ 7.236 x 104j1.9/1.85)} 

= 27 rad/s 

( 4.18) 

( 4.19) 

In both loops the bandwidth is limited by the input rate specification rather than 

the input amplitude specification. The design specifications are: 

Pitch angle (4.20) 

I LO(jw) I ~ 0 dB at w=30rad/s - the cut-off frequency of LO/(1+LO) 

I LO/(1+LO) 1 ~ 3 dB V w- "damping factor" of LO/(1+LO)' (O~ 0.4 

11/(1+LO) I ~ 3 dB V w - stability margin for all plants 
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( 4.21) 

I LH(jw) I ~ 0 dB at w=30rad/s - the cut-off frequency of LH/(l+LH) 

I L
H

/(1+L
H

) I ~ 3 dB 'V w - "damping factor" of LH/(l+LH), (H ~ 0.4. 

11/(1+L
H

) I ~ 3 dB 'V w - stability margin for all plants 

Using the above considerations, controllers were designed and implemented. 

Design of pitch angle loop 

Figure 4.4 shows plant (P 0) templates and bounds on Loo(s) = gls) m(s) P oo(s), 
1 \ 

(Poo(s) = J 2+ and m(s) accounts for the actuator (motor) dynamics) at 
s Ji.tOS 

w=1 and w=30 rad/s for the constraints, eq( 4.20) . Templates at other frequencies 

are very similar, having very little phase uncertainty (~ 5·) and about 10dB gain 

uncertainty. The controller designed for this loop assumed that the actuator 

behaviour, m(s), is dominantly second order with wn=170 rad/s and (=0.4. The 

resulting gO(s) is, 

g (s) = 30 (s /12 + 1) 
o (S/100)2+2xO . 7x (s/100)+1 

( 4.22) 

Figure 4.4 and Figure 4.5 show Loo(jw) on the Nichols chart for w = 170 n motor 
and 100 rad/s respectively. 
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Height loop 

Figure 4.6 shc ;;;-s plant (PH) templates and bounds on LHO(s) = gH(s) m(s) 

1 
PHO(s), (P RC 3) = 2+ and m(s) accounts for the actuator (motor) 

ms Il-lOS 
dynamics) at _=1 and w=30 rad/s for the constraints, eq(4.21). Templates at 

other frequenc: ~5 are very similar, having very little phase uncertainty (~ 5°) and 

about 10dB gc..:.J. uncertainty. The controller designed for this loop assumed that 

the actuator b-: i aviour, m(s), is dominantly second order with w
n

=170 rad/s and 

(=0.4. The res ·~ting gH(s) is, . 

g (s) = 150 (s /12 + 1) (4 23) 
H (s/50)2+2 x O.7 x (s/50)+1 . 

Figure 4.6 and ?igure 4.7 show LHO(jw) on the Nichols chart for wn (motor) = 170 

and 100 rad/s :2spectively. 
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4.2 Results 

The Bode magnitude diagrams for the various transfer functions calculated at all 

the entries of the plant set used in the design are shown in Figures 4.8 

(reference-output), 4.9 (disturbanc~utput) and 4.10 (disturbance- actual plant 

input). These Bode plots include the motor characteristics (with corner frequency 

w =100 rad/s). These are presented as results as they were calculated after the 
n 

design. 

Although the controller design is decoupled for output behaviour at the nominal 

of a simplified plant model, it is coupled with respect to plants in the plant set, 

away from the nominal. Figure 4.8, showing the input-output behaviour with no 

pre-filter (F=I) highlights the coupling, especially in the t12 (Href -+ 0) path. 

In the test data presented below all commands were simply filtered using a first 

order low-passing filter with a cut-off frequency of 0.7 rad/s. This aspect of the 

design was largely ignored in order to concentrate on the feedback controller 

design. Notice that the low corner frequency of the pre-filter avoids exciting the 

transmission paths at those frequencies where coupling appears to be a problem. 

Simulated data for the flying machine with the above controller structure and 

design is presented in Figures 4.11 to 4.13: 

4.11) Disturbance regulation when measured disturbances are added to the wing 

torques and drags (using disturbance data from test R22). 

4.12) Response to a step change in height reference of 0.63m. 

4.13) Response to a step change in pitch angle reference of 62° . 

Actual flight data for the flying machine w~th the above controller structure and 

design is presented in Figures 4.14 to 4.17: 

4.14) Disturbance regulation with constant height and pitch angle set-points, 

Test # Dec3 (c.£. Figure 4.11). Figure 4.14b shows wing rate demands for this 

test, obtained by differentiating the measured data numerically. 

4.15) Response to a step changes in height error of 0.63m, Test # Dec4 (c.£. 
Figure 4.12). 

4.16) Response to a step changes in pitch angle error of 62°, Test # Dec5 (c.£. 
Figure 4.13). 

4.17) Response after the pitch angle measurement potentiometer failed and gave 

momentarily a false reading of -130" , Test # Dec2. 
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error of a.83m (with pre-filter) 
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Figure 4.16a - Flight data (Test # Dec5) - response to a step changes in pitch 

angle error of 62° (with pre-filter) 
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measurement potentiometer failed and gave momentarily a false reading of -130· 
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4.3 Comments and conclusions 

1) The simulation data and real test data are optically very similar, increasing 

confidence that the physical model, its parameters and the disturbance data 

reasonably reflect the true system. 

2) Comparing parts (a) (no disturbance) and (b) (disturbance) of Figures 4.12 

and 4.13, it is evident that a very significant portion of the control action is 

required for disturbance regulation. 

3) The recovery of the flying machine during test # Dec2 (Figure 4.17) is 

remarkable. (That the failure was detected is also remarkable as the anti-alias 

filters on the computer based data acquisition system gently removed all traces of 

the glitch - this data comes from an oscilloscope.) The measurement failure is 

equivalent to a very large torque disturbance pulse and the recovery after the 

pitch angle measurement is restored can attributed to the fact that the controller 

structure results in the wings being turned relative to the wind direction. (No 

amount of feedback control, be it quantitative, robust, fuzzy, woolly, etc can cope 

with such a sensor failures - only feedforward control or sensor redundancy makes 

sense in such an eventuality.) 

4) It was observed (see the flight dat a above) that the front wing activity was 

larger than that of the back wing, often being in rate and amplitude saturation 

(see Figure 4.14b). The third design (Chapter 6) was partially motivated by the 

desire to rectify this (share the actuator loads more equally) . 

5) The non-lineari ty of the plant response is seen clearly in the pitch angle step 

test, Dec5. Amongst other possibilities, this could be due to position dependent 

wind speeds or the unmodelled influence of the front wing on the back wing 

airflow 

6) The controller described in this chapter provided the best results obtained. 

This is attributed to the sensible use of the controlling surfaces, derived from 

insight into the plant behaviour. The design achieved the specified loop 

bandwidths and the wings appear to have been well utilized. 
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CHAPTER 5 - (ANTI) DIAGONAL CONTROLLER 

5.1 Introduction and design 

This chapter describes the design, implementation and testing of a diagonal 

controller for the flying machine. The direct application of plant input design 

with a diagonal controller and no modification of the input or output 

specifications is thus illustrated. Better results were obtained using the other 

(non-diagonal) controller structures. 

In terms of the plant model, the controller structure chosen is anti-diagonal, the 

pitch angle being controlled via the back wing and the height via the front wing. 

The motivation for this coupling of outputs to inputs is that, 

a) The back wing - to - height transfer function is non minimum phase - to 

climb first requires turning the airframe nose up by turning the back wing down. 

Notice that although the plant (2,2) element in eq(2.21) (or eq(5.9) below) is 

non-minimum phase the simple plant model does not have any right hand plane 

transmission zeros. The problem of right hand plane transmission zeros has been 

described by Horowitz, Oldak and Yaniv (1986) with the conclusion that only one 

row of loop transmissions (input-output behaviour) need suffer from 

non-minimum phase restrictions. From their paper it is not obvious however 

what the cost of realizing their result is in terms of plant input levels. 

b) The pitch angle loop is expected to require higher bandwidth than the height 

loop for better attenuation of pitch angle errors. If the pitch angle magnitude is 

too large, the design is not valid and there is little chance of recovery. Relatively 

larger height errors can be tolerated as the height dynamics does not depend on 

height. For the purpose of high bandwidth, the back wing - torque gain is larger 

(ktb>ktf), requiring less gain in the controller. The pitch angle loop is designed 
first. . 

c) Without the back wing, the front-wing to pitch-angle transfer function is 

unstable. Without saturation, this would not be a problem but if the front wing 

saturates in position, the torque it provides will have the wrong sign to correct 

pitch angle errors. A similar effect will occur with front wing rate saturation. 

The wing actuators are modelled by M(s)=diag{ma(s),mp(s)} . For small signals 

the actuators behave as second order systems with a corner frequency, 

wn::::100rad/s and a damping factor, (::::0.4. The actuators exhibited some backlash 

due to mechanical play. The actuator dynamics are included with the respective 
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controllers to give, 

(5.1) 

The negative sign is so that the controller, g{JO' is implemented with positive low 

frequency gain. This is required for stability as can be seen by by a simple 

argument in this problem: 

a) The nominal plant is open-loop stable. 

b) Small positive gains for g{Jls) and gaH(s) will not change the open loop 

stability of the nominal (+ angle error --+ increase back wing angle; + height 

error --+ decrease front wing angle) . 

c) The stable elements of the plant set (and the plant nominal) form a connected 

set, and the closed loop system stability cannot change as the gain and phase of 

the controller is adjusted unless the magnitude goes through infinity (Nyquist 

point) at some frequency for at least one plant element. 

d) If the unstable elements of the plant set are also considered then closed-loop 

stability is achieved by sufficiently large, positive low frequency gain. 

e) The controller is designed with sufficiently high gain to satisfy (d), without 

violating (c) 

Output design equations 

Consider the design equations for the output, 

( -1) -1 
P + G TY/E = N 

with, 
(5.2) 

and, 

Writing eq(5.2) implicitly element by element , 



with, 

[q21] kfi/k + 1 
tHt -

q22 
1 

1+L oy 

[q21] ktf/k + 
1 

tHl q22 
1 

l+Loy 

[ q12] klb/k + 
1 

tOt q11 
1 

l+LHy 

[ q12] ktb/k + 
1 

tOl q11 
1 

l+LHy 

Loy = q21 g(JO m(J - output pitch angle loop transfer function 

LHy = q12 gaH rna - output height loop transfer function 
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(5.3) 

(5.4) 

(5.5) 

(5.6) 

After applying the Schwartz inequality and substituting the bound, A (from 

eq(3.23)), for elements of TYE appearing on the right hand side of the equations 

(eq(3.25)), for g(JO(s), the design equations are, 

ItOlI ~ 11!Loyllq211 [kl£lk + q~2 aRt] ~ aOl (5.7) 

Input design equations 

For the input, the specifications are, 

-1 * (G + P) VUE = - P 
with, 

and 

-1 

Writing eq(5.9) implicitly, 

v - LOU [ktf v + 1] 
(Jt -l+LOU ktb at ktb 

a 

- 1 
2 

ms +J.tls 

(5.8) 

(5.9) 

(5.10) 
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Leu [ktf 1 (5.11) 
v f3[ = l+L eu ktb valJ 

LHU [klb
JS2

+klbI-LtS-k k[ 1 
Vat = -l+LHU klfJS2+k[fI-Lts+k Vf3t + klfJs2+klfI-Lt S+k 

= - 1 ~f~u [K1 (s) V,Bt + Kis)] (5.12) 

LHU [klbJS2+klbI-LtS-k JS
2

+I-Lt s+kt 1 
v al= -l+LHU klfJS2+klfI-LtS+k Vf3[+ klfJS2+klfI-L

t S+k 

= -1~f~u [K1(S) Vpl+ K3(S)] (5.13) 

LOU = P12 gf30 mf3 - input Lattack loop transfer function 

LHU = P21 gaH rna - input height loop transfer function 

After applying the Schwartz inequality and substituting the bound, B, (from 

eq(3.24)) for elements of VUE appearing on the right hand side of the equations 

(equations (3.26), (3.27) and(3.28)), for gf31s), the design equations are, 

I I < LOU [1 + ktf b 1 < b (5.14) 
vf3t - l+LOU ktb ktb at - f3t 

(5.15) 

To get an idea of what the specifications should be, solve eq(5.2) for, the output 

specification at steady state, 

with, 

kg + kgb gf3 
kga (1+gf3) 

- k"t f 
k (l+g f3 ) 

kt + k t b gf3 
k g a (1+gf3) 

(5.16) 

The steady state gains of the controllers can be expected to be not more than 1.0 

(OdB) : A 10° pitch angle error should result in a back wing position of no more 

than 20° with respect to the ground (at which angle the wing starts to stall) and 

a height error of O.lm should result in a front wing deflection of no more than 5° . 
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Larger steady state gains could result in position saturation of the wings. In this 

case at nominal plant values (Table 2.1) , 

[
4 .1 -1.8] 

TEYO(jO) = x 10-3 

29. 4.2 
(5.17) 

The nominal was chosen at relatively high k .. values. For plants with lower 

steady state gains (by a factor of about 3), T Ey(jO) will have 10 dB larger 

magnitude. This means that the plant disturbance rejection is better with high 

wind speed (plant gain), which makes physical sense. The sting in the tail is that 

the disturbances can be expected to increase in magnitude as the wind speed 

increases. This was measured qualitatively in Section 2.3.2 

The controller will be designed to be strictly proper (having an excess of poles 

over zeros in each channel) and will therefore be open circuit at high enough 

frequencies. This means that 

ktf 

li~ TEY(s) = li~ P(s) = li~ ~ J 
S-l J (I) S-l J (I) S-l J (I) S k l f 

m 
At nominal values this is, 

. . 1 [185 -313] 
1I~ TEyO(s) = 1I~ 2" 
S-l J (I) S-l J (I) s 27 80 

(5.18) 

(5 .19) 

Since at low frequencies, the q .. are essentially low-passing, q .. /(l+L .. ) ~ l/g .. in 
1J 1J 1J 1J 

equations (5.3) to (5 .6) and tij are therefore expected to be flat at low frequencies. 

For specifications on I TEy(jw) I the low-pass characteristic with asymptotes, 

TEYO(jO) +10dB (to allow for low gain plants and some overshoot) and 

TEYO(j(l)) will be used. If the resulting disturbance rejection is unacceptable, 

the gain of the controllers will be increased to reduce I T EY lover some (low) 

frequency range. The high frequency asymptote is fixed by the plant structure. 

From eq(5.9), examine the steady-state transfer of disturbance to the plant input 
for the nominal plant 

YUEO(JO) - k(l+ffi ) 
. - - 1 [keoffi{3g{30 + kf ktbffi{p{30 + kt ] 

{P{30 -k ff ffi{3g{30 ktfffi{3g{30 
(5 .20) 

. (The infinite steady-state plant gain in the height loop accounts for the absence 
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of gaH(jO) above.) 

If g{3£fjO) = 1 as postulated before, 

y (j0) = [-28.9 -4.2]X10-3 

UEO 4.1 -1.8 
(5.21 ) 

and lower (global) plant gain would reduce the above. 

Consider eq(3.17) and eq(3.20) for the position and rate at the input as a result of 

disturbances. Allow each disturbance input (torque and lift) to use 1/2 the 

available input (power) and let ( = 0.4 (allowing about 3dB overshoot in the 

disturbance to input transfer functions), 

(J2/2=0.25/2~W !l2-h 
u n k ":I:~ 

2 / 3f127r (J /2 = 4 2 ~ W A7 
U n k ":I:~ 

(Table 2.1, eq(2.32)) and 17t = 0.14, 

(5.22) 

(5.23) 

17l = 1.9 (Table 2.1, eq(2.30) and eq(2.29) 

respectively) 

As was the case in the first design (Chapter 4), the bandwidth is limited by the 

input rate specification. The cut-off frequencies determined by position are, 

n w n a - rad s 
[
w ~A- W l] [5.4X 10

2 
1.9x 10

3
] 

Wn {3t Wn {31 - 2.7x1041.0x104 / 

and by rate are, 

[
w at 

W: {3t 
Wn all = [276

1 
3
55

1] rad/ s 
wn {31J 

, 

(5.24) 

(5.25) 

From considerations of the wing actuator (plant input) rate limits, the input loop 

gain cross-over frequencies are therefore, 

I LHU(j21) I ~ OdB (front wing) (5 .26) 

and 

I L eu(j55) I ~ OdB (back wing) (5.27) 

Another consideration in the input specification is the following. Assume that v {3t 

and v (31 can be designed to be low passing transfer functions without excessive 

overshoot as desired. It is not certain whether or not Vat and val can also be 

designed to be low-passing as the transfer functions, K1(s), K2(s), and K3(s) 

from eq(5 .12) and eq(5 .13) have large overshoot around 30 rad/s . (The 

(normalized) transfer functions, IK1(s)\' ~ K2(s)l, and If- K3(s)1 are shown 
l t 
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L 
in Figure 5.1 for the nominal plant.) Unless 1 rU 

starts rolling off before about 
+ HU 

10 rad/s, the influence of the terms K1, K2 and K3 will cause design difficulty. 

(Careful attention to possible advantages which might arise from the phase 

relationship between the terms could highlight possible cancellations although at 

high frequency where unstructured uncertainty and unmodelled dynamics are a 

problem, subtraction is not a reliable method for reducing gain). 

Kl K2 k3 
30 

25 

20 

15 .. ,. l 

10 .! ... j.' .. 

5 

0 - ------------~--------~ - -------

-5 

-10 

-15 

-20 
100 101 102 

fr equency [rad)s] 

Figure 5.1 - Normalized K1 (solid), K2 (d~shed) and K3 (dotted) from eq(5.12) 
and eq(5.13) 

Summary of Specifications 

1) It must fly . 

2) The actuators must not wear out too quickly and actuator limits must be 
avoided. 

3) The output loops must have the highest bandwidth possible so that I 1 I 
l+L.y 

< < OdB until q . . < < OdB 
1J 

4) To avoid high amplification of disturbances at the plant inputs and outputs , 
the simple specifications, 
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L 
\1! L .\ ~ 6dB and \1 + L .\ ~ 3dB were chosen for all loops. 

5) From the wing actuator (plant input) rate limits, the input loop gain 

cross-over frequencies are, I LHU(j20) I ~ OdB and I L OU(j55) I ~ OdB. 

LHU / 
6) 1 L starts rolling off before 10 rad/ s. 

+ HU 

Clearly the input and output specifications necessitate a compromise. 

Design of pitch angle loop 

The first loop designed was the pitch angle. Bounds for the L o. and some 

templates are shown in Figure 5.2 (input) and Figure 5.3 (output). The nominal 

plant was chosen as PO 12 for input and output loops. As a result the the nominal 

for the output loop lies outside the template and may itself violate the output 

loop boundaries. This notion of designing the loop transfer function for a 

(fictitious) nominal plant, lying outside the (real) plant set was introduced in 

Section 3.1 but needs justification for the benefit of those less familiar with 

quantitative feedback design. The Nichols chart provides a graphical mapping 

from L to L/(l+L) , irrespective of what Lis - it can be a set, a point or both. If 

Po is displaced from an element of the plant set , Pi by D and the controller, G 

satisfies some specification on L/(l+ L) for L=P .G, the same controller causes the 
1 

original specifications to be satisfied. 
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The controller designed to satisfy the pitch angle loop specifications is, 

g (8) = (8/1.5+1) (8/ 30+1) (5.28) 
~B (8/0.65+1)((S / 150)2+(S/150)+1) 

The nominal input pitch angle loop transfer function resulting from this controller 
is shown in Figure 5.4 

Design of height loop 

The pitch angle loop was closed and templates constructed for the design of the 

height loop (following eq(3.35) and eq(3.36)) . The templates for this loop are 

those for an exact S1SO design. The nominal plant selected for the design 

execution was PO 21 f Po 2 of eq(3.36), which accounts for the nominal again 

being outside the template. The templates show that the actual plant has 

significantly more phase lag than the nominal and this phase lag makes 

achievement of any sort of bandwidth in the height loop impossible with the 

(anti) diagonal controller and pitch angle controller fixed by eq(5.28) above. 

Figure 5.5 shows the bounds on the nominal input height loop transfer function 

and an LHO(jw) (which violates the bounds) corresponding to the controller, 

g - 0.5 (8/1 +1)(8 / 3+1) (529) 
aH - (8/0.21+1)((8 / 100 )2+2(8/100)+1) . 
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5.2 Results 

The Bode magnitude diagrams for the various transfer functions calculated at all 

the entries of the plant set used in the design are shown in Figures 5.6 

(reference-output), 5.7 (disturbance-output) and 5.8 (disturbance-input). These 

Bode plots include the motor characteristics (with corner frequency wn =100 

rad/s). 

Simulated data for the flying machine with the above controller structure and 

design is presented in Figures 5.9 and 5.10: 

5.9) Disturbance regulation when measured disturbances are added to the wing 

torques and drags (using disturbance data from test R22) . 

5.10) Response to a step change in height reference of 0.75m. 

Actual flight data for the flying machine with the above controller structure and 

design is presented in Figures 5.11 and 5.12: 

5.11) Disturbance regulation with constant height and pitch angle set-points, 

Test # Diagl. Figure 5.11a was annotated using a video-tape recording of the 

flight and shows where the flying machine was held at the beginning of the flight, 

and where the pitch angle sensor (potentiometer) failed at the end of the flight. 

Figure 5.11b shows a portion (presented in Boje, 1989) of the data record from 

Figure 5.11a and can be compared to the simulation result, Figure 5.9. Figure 

5.11c shows wing rate demands obtained by differentiating the position demand 

signals numerically. 
, 

5.12) Attempted height step response test with step changes in height error of 

0.75m. It is possible (from viewing video material) that the pitch angle sensor did 

not function reliably during this test. The simulation data, Figure 5.10, suggests 

better (When compared to Figure 5.12b), although still poor, height regulation 
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Figure 5.11a - Flight data (Test # Diagl) - disturbance regulation with constant 
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5.3 Conclusions 

1) Figure 5.11c highlights a fundamental problem with this design. Because it was 

not possible to achieve the desired bandwidth in the height loop, the front wing is 

clearly under-utilized. Because the specifications were not rigorous, the 

consequence to the pitch angle loop design of not achieving specifications in the 

height loop were not investigated further than the drawing of Bode plots of the 

resulting closed loop behaviour. 

2) When there are no other problems, qualitatively the pitch angle regulation is 

good and the height regulation is rather poor. As the design is approximate due to 

the use of linearisations about some operating points and is also conservative due 

to the use of the Schwartz inequality, eq(3.27), it was hoped that the :£lying 

machine might still provide reasonable p~rformance despite the violation of design 

bounds in the height loop (Figure 5.5). The oscillations in height and angle of 

attack (at about 5 rad/s) are not surprising, considering the violation of the 

design boundaries but reducing overall gain in the height loop to avoid violation 

of the bounds resulted in such poor height regulation that the machine crashed 

(physical boundaries were violated!). 
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CHAPTER 6 - QUASI DECOUPLING CONTROLLER 

6.1 Introduction and design 

This chapter describes the design, implementation and testing of a controller 

designed by first modifying the plant input so that the (single input single output 

dynamic) controllers' outputs result in the wings being turned in the correct 

direction to regulate height and pitch angle errors. As the controller described 

here was designed in a very short time, the design is less complete than the 

previous two designs. Simulations are not presented, only actual results and 

design specifications are based on experience and heuristics rather than via rough 

analysis as in the previous designs. 

The diagonal controller described in Chapter 5 has closed loop disturbance to 

input transfer functions with factors of the form, l/(wing angle to lift gain) and 

l/(wing angle to torque gain), most clearly seen in eq(5.14) and eq(5.15) where 

the factor is (l/ktb). In an attempt to make better use of the plant inputs, a 

controller structure which turns the wings at a rate determined by their 

maximum rates in the direction to correct errors was investigated. As the rate 

limits of the front and back wings are the same (200· /s), for a diagonal controller, 

this corresponds to modifying the open loop plant input via the filter, 

M=[-i iJ (6.1) 

(6.2) 

As b.t~kt and Efkf (Appendix 3.1 gives the formulas for evaluating the relevant 
the parameters from eq(2.21)), 

E
t 

p' = n-1N H = J(S) 
- - -- 2 

-(b.e1 s +b.etLts-2k) 
(6.3) 

and, 
J(s) M(s) 

(6.4) 
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The controller is, 

[
gO(S) 0 1 

~(s) = 0 gH(s) (6.5) 

and the design proceeds along the lines of the design in Chapter 5. Eq(6.3) and 

eq(6.4) potentially ease the QFT design (compared to the corresponding eq(5.2) 

and eq(5.9) of Chapter 5) because the elements which require over-design 

(off-diagonal in this case and diagonal in Chapter 5) are smaller, relative to the 

elements used for the design. Heuristically, this control structure also makes 

better use of the available actuator power 

Output design 

( -1) -1 £ I + ~ :fEY = UU!) (6.6) 

= :: ::1 
Writing eq(6.6) implicitly element by element, 

with, 

tOt = 
1 

[ qll] Etl (2k) - [q~2] tBt 1+10y 

tOl = 
1 

[qll] ~t/(2k) -
1 

tHl 1+10y q12 

tHt = 
1 

[ q22] ~tI (2k) -
1 

tOt 1+1HY q21 

tHl = 
1 

[ q22] Etl (2k) - [q~l] t Ol] 1+1Hy 

L t7Y = q 11 go m - output angle of a~tack loop transfer function 
2k 

qll = 2 
L i J s + J.Lt s ) 

LHy = q22 gH m - output height loop transfer function 
2k 

q22 = 2 
Lt(ms +J.Lt) 

(6.7) 

(6.8) 

(6.9) 

(6.10) 

After applying the Schwartz inequality and substituting the bound, A (eq(3.23)), 

for elements of TYE appearing on the right hand side of the equations (eq(3.25)), 
for g O( s), the design equations are, 

tilt ~ il.£ lIY ilq111 [EtI(2k) + iq~2i 'Bt] (6.11) 
tOl~ i1+i llY ilql1l ['\/(2k) + iq~2i 'Bt] (6.12) 



Vit v' . 
1£ 

v2t v:21 

Writing eq(6.13) implicitly, 

Leu L1t 1 ] 
Vit = l+Loo ~V2t-~ 

Leu L1t ] 
vil= l+Loo ~v2l 

LHU [L1 g( J s2 +J.Lt s )-2k k l 1 
V2t = 1+LHU ~£(JS2+J.LtS) Vlt - ~l(JS2+J.LtS) 

2 2 
LHu [L1g(JS +J.Lt s )-2k Js +J.LtS 1 

V21= ~ 2 Vll- 2 
HU ~ l ( J s + J.Lt s ) ~ l( J s + J.Lt s ) 

with, 

LOU = Ph go m - input Lattack loop transfer function 

LHU = P22 go: m - input height loop transfer function 
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(6.13) 

- 1 0 rrsr 
= 

- kl - 1 
J(s)H(s) 1f(SJ 

(6.14) 

(6.15) 

(6.16) 

(6.17) 

After applying the Schwartz inequality and substituting a bound, B' for elements 

of VUE appearing on the right hand side of the equations, for gO(s), the design 

equations are, 

Vit S 
Leu, tit 1] (6.18) l+Loo, rb2t + ~ 

t t 

vil S 
LOU' tit ] (6.19) 

1+LOU' ~b2l 

To get an idea of what the specifications should be, solve eq(6.6) for the output 
specification at steady state, 

1 

(6.20) 
1 

}; 19H 
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with, 

gn=gn(jO) , go=go(jO) 

As in the anti diagonal controller of Chapter 5, the steady state gains of the 

controllers cannot be expected to be more than 1.0 (=OdB). This gain has the 

following implications for this structure: A 10· angle of attack error will result in 

a back wing position of 20· with respect to the ground (at which angle the wing 

starts to stall) and a front wing position of o· with respect to the ground. A 

height error of O.lm will result in both wings turning 5· up. Larger steady state 

gains could result in position saturation of the wings. In this case at nominal 

values, 

[ 
11.4 10.4] 

TEYO(jO) = x 10-3 

0.84 4.12 
(6 .21) 

As the nominal is chosen at relatively high k .. values, max(TEy(jO)) could have 

10 dB larger magnitude. 

As the controller will be designed to be strictly proper it will be open circuit at 

high enough frequencies and, 

k t f 

li~ TEY(s) = li~ P(s) = li~ 12 J 
S-l J CD S-l J CD S-l J CD s k l f 

m 
At nominal values this is, 

. . 1 [185 -313] 
h~ TEyO(s) = h~ 2" 
S-l J CD -S-l J CD s 27 80 

(6.22) 

(6 .23) 

Since at low frequencies, the q .. are essentially integrators, q .. 1 (1 + L .. ) ~ 1/e: .. in 
. IJ IJ IJ '-1J 

equatIOns (5.3) to (5.6) and tij are therefore expected to be flat at low frequencies. 

For specifications on I TEy(jw) I the low-pass characteristic with asymptotes, 

TEYO(jO) +10dB (to allow for low gain plants and some overshoot) and 

TEYO(jCD) might be used and this specification modified as a result of tests or 

simulation. The high frequency transfer of disturbance to the plant output is fixed 
by the plant structure. 

One could follow a similar procedure from eq(6.13) to examine the steady-state 
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transfer of disturbance to the plant input for the nominal plant. Notice that from 

eq(6.13) onwards, the direct control during the design of the plant input has been 

lost as a result of the filter, H. (Compare this to the design in Chapter 4). 

Specifications for the modified inputs, U' = H-1 U could be developed and design 

using the modified plant Pi from eq(6.3) executed. 

A more direct method than the above is to define the following ad-hoc 

specifications and modify the final design using the insight obtained via the 

design: 

Summary of Specifications 

1) It must fly. 

2) The output loops must have the highest bandwidth possible so that \1+£. y \ 

< < OdB until q .. < < OdB 
IJ 

3) To avoid high amplification of disturbances at the plant inputs and outputs, 

L 
\1! L .\ ~ 3dB and \1 + L .1 ~ 3dB are required for all loops. 

4) To ensure that the controllers can be realized simply, the controllers may not 

have more than +20dB/decade roll-up and must roll off around the corner 

frequency of the wing actuators. 

These specifications are very rough and really only ensure some sort of robust 

stability via (3) and (practical) realizability via (4). 

Pitch angle loop design 

Bounds for the LO. and some templates are shown in Figure 6.1 (input) and 

Figure 6.2 (output). 1'he nominal plant was.chosen as Po 12 for input and output 

loops. As a result the the nominal for the output loop lies outside the template 

and may itself violate the output loop boundaries. Note that the input and output 

bounds are much closer to each other in this design than in the diagonal controller 

design of Chapter 5. This justifies the statement made in Section 6.1 that the 

controller structure eases the design problem. 

The controller designed to satisfy the angle of attack loop specifications is, 

g (s) = (s+1)(s/10+1) (624) 
o (s/0.21+1) ((S/150)2+2(s/150)+1) . 

The worst case bounds and nominal input angle of attack loop transfer function 

resulting from this controller, L OO(jw), with actuator corner frequency of 100 

rad/s is shown in Figure 6.3. 
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Figure 6.1- Templates and bounds for LOU/(jw) (input) design 
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Height loop design 

The pitch angle loop was closed and templates constructed for the design of the 

height loop. The templates for this loop are those for an exact SISO design but 

the numerator terms of the closed loop T have not been evaluated so that the 

height design is principally a stability design. The nominal plant selected for the 

design execution of this second step was PO 21 f PO 2 of eq(3.36), which accounts 

for the nominal again being outside the template. This choice of nominal is 

justified by the ease of keeping track of the second order Po 21 rather than the 

high order PO 2· Compared to the design of Chapter 5, the nominal is quite close 

to the plant templates. Figure 6.4 shows the bounds on the nominal input height 

loop transfer function, some relevant templates and a loop transfer function 
corresponding to the controller, 

gH(s) = (S+1)(sq+1) 
(s/0.21+1)((s/50) +1.4(s/50)+1) 

(6.25) 

Notice that the bounds are more than satisfied. The original design was modified 

to give more phase lead around 5 rad/s when some poorly damped oscillations 

were observed at that frequency. The final "as implemented" result only is shown. 

E2 
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6.2 Results 

The Bode magnitude diagrams for the various transfer functions calculated at all 

the entries of the plant set used in the design are shown in Figures 6.5 (reference­

output), 6.6 (disturbance-output) and 6.7 (disturbance-input). These Bode plots 
, 

include the motor characteristics (with corner frequency wn =100 rad/s). 

Actual flight data for the flying machine with the above controller structure and 

design is presented in Figures 6.8 and 6.9: 

6.8) Disturbance regulation with constant height and pitch angle set-points, test 

Onel. Figure 6.8a was annotated using a video-tape recording of the flight and 

shows where the rear actuator failed at the end of the flight test (the final drive 

shaft sheared off at the spline) . Figure 6.8b shows a portion of the data record 

from Figure 6.8a where the flight was at its best. Figure 6.8c shows wing rate 

demands obtained by differentiating the position demand signals numerically. 

6.9) Disturbance regulation with constant height and pitch angle set-points, Test 
# One2. 

£2 
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Figure 6.8a - Flight data (Test # Onel) - disturbance regulation with constant 
height and pitch angle set-points 
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Figure 6.8b - Detail from Figure 6.8a - disturbance regulation with constant 
height and pitch angle set-points 
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Figure 6.9 - Flight data (Test # One2) - disturbance regulation with constant 
height and pitch angle set-points 
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6.3 Conclusions 

The dive in height at time t :::: 7s in Figure 6.Sb seemed quite characteristic of this 

con troller. 

The design apparently makes better use of the front wing than the diagonal 

controller of Chapter 5 did (Figure 6.Sc) but does not utilize the wing turning 

capacity (bandwidth) as fully as the design of Chapter 4. 

This rapid design highlights the advantages of classical design. Although 

quantitative design specifications were virtually non-existent (as they seem to be 

in many other practical problems), it was possible to design the single-loop 

controllers rapidly once the control structure had been fixed. After design of the 

pitch angle loop, the height loop was tuned as indicated above. Other experiments 

demonstrated instability when the height loop gain was increased by only 7dB 

(the captured data does not show this instability clearly as the flying machine 

was held on its leash for most of the test) 
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CHAPTER 7 - CONCLUSIONS 

This thesis has described the development of a practical problem, a IIflying 

machine II , for testing control theory. The construction, modelling, parameter 

estimation and simulation of the flying machine has been described. It has been 

shown how plant input specifications can be included in the general QFT 

framework. Three controllers with different structures have been designed using 

QFT (with input constraints) to take parameter uncertainty into account and 

trade off disturbance attenuation against rate and amplitude saturation at the 

wing angle actuators. The controllers have been implemented and tested and the 

practical results compared to simulations . Defining suitable specifications during 

the course of a design has been seen to be very much more demanding than a 

direct design-to-specifica tion problem. 

This thesis has been strongly oriented towards the practical aspects of controller 

design. The application of II modern II control theory (LQG, singular value, Hand 
(l) 

Ii synthesis) to the problem stated here would not be a trivial matter and the 

outcome of such an exercise is uncertain. As one of the fundamental reasons for 

feedback control is uncertainty reduction, modern control is in this instance best 

left to academics. (With the elegant linear quadratic regulator and observers etc 

being taught as a firm favorite in most universities' undergraduate courses, the 

author, as a graduate engineer attracted to control engineering, did not clearly 

understand the fundamental reasons for requiring feedback!) An example of how 

academics often are often unaware of practical problems can be found in the paper 

of Laughlin, Rivera and Morari (1987) in which a 19th order controller which has 

(unrealizable) +20 dB / decade roll-up at high frequency is proposed to robustly 
• 

control a plant which does not have the same uncertainties as the specified first 

order plant with time delay has. This robustness is optimal in an arbitrarily 

defined way! This is not an indictment against the modern robust control research 

as there are many open questions in the control of practical systems. 

In the designs presented here, strictly quantitative feedback design has been 

violated in the following ways: 

1) The plant sets used in the design are based on the linearisation of a non-linear 

plarit model about a number of realistic operating points. Horowitz's QFT 

requires a "linear equivalent II plant set derived by taking the ratio of Laplace 

transforms of input and output signals under a number of assumptions. The 

linearisations result in state dependent uncertainties and the "QFT" is not 

rigorous with respect to such models. 
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2) One of the fundamental reasons for requiring feedback in the flying machine 

problem is uncertain wind speed and wind direction. This uncertainty is plant 

gain uncertainty but wind vector variations disturb the plant and should therefore 

be regarded as a source of disturbance - fortunately feedback helps to reduce 

parameter uncertainty and disturbances in the same frequency ranges via 

U+L)-l. This duality between disturbance rejection and uncertainty reduction 

explains the success of linear quadratic Gaussian regulator (LQG) theory for 

solving problems with plant uncertainty !f one is able to guess (or find by 

exhaustive simulation) suitable weighting matrices (or equivalent disturbance 

models). See for example IEEE Automatic Control Transactions, 1971, Special 

issue on LQG problems. (The LQG design for disturbance reduction is hoped to 

be able to cope with parameter uncertainty.) Horowitz has investigated this 

problem (1963, Section 8.15, p.441) . Incidentally, separating the parameter 

variation and disturbances during system parameter estimation is an open 

research problem (Boje, 1986, p.139). 

This work has possible neglected theory and rigour because of the large number of 

practical problems which have been encountered. It has however been shown that 

controller design can formally include input specifications. This and the existing 

tools of Horowitz's Quantitative Feedback Theory have been successfully used to 

design and evaluate three controller structures for a practical plant. This plant 

requires feedback for each of the three fundamental reasons for having that 

feedback, stability, uncertainty reduction and disturbance rejection. 
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Appendix I - Circuit diagrams for actuators and controllers 

Al.I Actuators 

The actuators were powered using the push-pull amplifier arrangement shown in 

Figure Al.l. The use of an operational amplifier to supply the transistor base 

drive is possibly crude but is effective. The diode circuit on the reference input is 

to clip demand signals which are in excess of the position saturation limits of the 

actuators (this protects the actuator from large currents by preventing position 

saturation). The gain of the inner loop was adjusted to get the fastest response 

possible without excessive overshoot. 

.VI~I 

·V 

·VI_I 

Figme A1.1 - Wing actuator drive electronics 

A1.2 Controller implementation 

The controllers were all constructed as active analog filters, as a series of first and 

second order elements. LM-741 operational amplifiers (or their equivalent) were 

used throughout. Figure Al.2 show first order low-pass, first order lead/lag and 

second order (with first order numerator) elements. Component values for the 

second order sections of controllers in Chapters 4, 5 and 6 are, 
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R2 R2 

C C2 

Rl Rl 

t 

Figure A1.2 First order low pass element Figure A1.3 First order lead/lag element 

[1 

R3 
Rl 

R3 

t 

t 

Figure AlA Second order strictly proper element 

Decoupled controller 

R4 

R6 

[2 

y 

gO: rl=lOOkO; r2=100kO; r3=lOkO; r4=lOkO; r5=10kO; r6=3.9kO; r7=22kO; 

cl=O.33fLF; c2=O.33fLF 

gH: rl=120kO; r2=120kO; r3=lOkO; r4=lOkO; r5=33kO; r6=15kO; r7=47kO; 

cl=0.33fLF; c2=O.33fLF 

Quasi-decoupling controller 

gO: rl=85kO; r2=22kO; r3=lOkO; r4=lOkO; r5=2.2kO; r6=4700; r7=lOkO; 

c1=lfLF; c2=lfLF 

gH: rl=47kO; r2=47kO; r3=lOkO; r4=lOkO; r5=82kO; r6=12kO; r7=15kO; 

cl=lfLF; c2=lfLF 

Diagonal controller 

gO: rl=27kO; r2=27kO; r3=lOkO; r4=lOkO; r5=1.8kO; r6=1.5kO; r7=6.8kO; 

cl= IfLF; c2= IfLF 

gO: rl=330kO; r2=330kO; r3=lOkO' , r4=10kO' , r5=3300' , r6=330kO' , 
r7=4.7kO; cl=lfLF; c2=lfLF 
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ON NON-MINIMUM PHASE BEHAVIOUR IN D.C.SERVO SYSTEMS 

Edward Boje 

Eduard Eitelberg 

teraction between the power circuit and the analog measurement and control circuits 

lich can result in unsatisfactory, non-nilnimum phase behaviour is exanilned in low power 

:ect current (d.c.) servo systems. Understanding the cause of this ' non-nilnimum phase 

haviour allows the liniltations resulting from it either to be avoided or to be included 

orously in the system design. 

Introduction 

familiar characteristic of non-minimum phase systems with one right hand plane zero is 

.t the step response is initially away from the final value (this holds for all stable systems 

h an odd number of right hand plane zeros as can be seen by applying the initial and final 

ue theorems). It has long been known (at least to "classical" and applied control 

ineers) that there are fundamental liniltations on the performance achievable by (linear) 

Iback if the plant to be controlled has one or more right hand plane zeros (or dead time) 

Irowitz, 1963, [1]) . A rule of thumb which is sometimes used in systems with one right 

d zero (at s = z), is that the loop gain crossover frequency Wc should be less than half the 

~ t hand plane zero's cut-off frequency (wc $ zj2) . (Horowitz and Liao (1984, [2]) give 

e results on performance which can be achieved outside this usual frequency range for 

- minimum phase systems and give further references.) In order to obtain high 

ormance (with respect to disturbance reduction, command following and model 

!rtainty reduction) from a servo system, high loop bandwidth is required . This 

lwidth cannot always be achieved in non-minimum phase systems because the right half 

e zeros contribute phase lag (as opposed to a left half plane zero's lead) and gain to the 

transfer function . As economy limits the design of most systems, there !s a linilt on how 

11" components can be. The engineering objective in servo system design is to achieve 

jfications on performance with the least over-design. 

paper considers the application of low power (say less than JO Watts) d.c. motors for 

ion or velocity control, wh;re careless design can result in unsatisfactory and possibly 

pected behaviour as a result of right hand plane zeros in the open loop system. The 

action between the power circuit driving the motor (or any other actuator) and the 

Ig feedback circuit (the sensors and controller) is often the culprit . This note examines 
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2 
o simple examples of such interaction to give an understanding of the mechanism by 

'ruch non-minimum phase behaviour can appear. 

!odels are developed for the two cases examined, namely; 

) the use of common conductors for sensors and motor power circuits (linear example _ 
~ction 2) and, 

I the use of a power supply with internal resistance (non-linear example - Section 3). 

lie examples illustrate the need for separating the measurment and feedback circuits from 

e power circuit. Once trus is understood, obvious design measures will avoid most 
oblems. 

Common conductors for measurement and power signals - linear example 

!e circuit shown in Figure 1 is of a small servo system where the controller and actuator 

cuits are separated by some distance and a single "ground" conductor has been used to 

'e weight or cost . The design problem in Figure 1 is that the motor armature current, i
A

, 

~cts the measured pOSition, 0meas' via resistance of the "ground" conductor, R
g

. The use 

a single wire for "gro~nd" of both Signal and power circuits is not recommended 

pecially in higher power applications where safety and equipment protection against 

!rvoltage must be considered) but the control system designer m,ay not be in a position to 

~r a plant (and wiring) wruch has been designed to meet other requirements. 

del 

! symbols in Figure 1 have the follOwing meaning, 
ameters : 

J - the total inertia of the motor and load (referred to the motor) 

p. - the total rotational friction of the motor and load 

Rg - the resistance of the common "ground" wire 

R - the resistance of the motor armature and power circuit, including the 
"ground" resistance 

L - the armature inductance 

als (in the Laplace domain) : 

D(s) (= .t'{d(t)}) - disturbance torque 

V(s) (= .t'{v(t)}) - applied voltage 

E(s) - back e.m.f. of the motor 

IA(s) - armature current 

O(s) - the actual shaft position (not measured expJicitly) 

3 
0meas(s) - the measured (feedback) position signal 

(Note that without disturbance, D(s) and/or parameter uncertainty there is no requirement 

for using a feedback controller at all.) 

Assumptions for a simple linear model are, 

E(s) = kern! s O(s) (back e.m.!. proportional to speed of rotation) 

= V(s) - (L s + R) IA(s) (1) 

T(s) = kT I A (s) (torque proportional to armature current) 

= (J s2 + p. s) O(s) + D(s) (2) 

From eqs (1) and (2), the voltage across the motor as a function of position and disturbance 

is, 

V(s) = [(LS + R~ (Js + p.) + k ] s O(s) + (Ls + R) D(s) 
T emf kT 

(3) 

When L, R, J, p. are small with respect to kT' eq(3) simplifies (as expected) to 

V(s) = kemf s O(s) (motor speed proportional to applied voltage) 

(4) 

for all frequencies (s = jw) of interest, and a controller with gain alone (no dynamic 

elements) may provide the specified (desired) closed loop behaviour. 

If the position is scaled from a measured voltage by means of the circuit shown in Figure 1, 

then a component of the measured position is determined by Rg I A (s), say, 

0meas (s) = O(s) + kmeasI A (s) 

= [kk;as (J s2 + p.s) + 1] O(s) + kk;as D(s) (5) 

The behaviour of the circuit depends on the sign of kmeas/kT" The sign of kmeas isf-' 

determined by the sign of the position potentiometer supply and the sign of kT depends on~ 
the electrical connection of the motor. (In Figure 1, kmeas/kT has the same sign as the 

position measuring potentiometer supply if the (positive) current i A results in increasing 

O(t).) The potentiometer resistance is reasonably assumed » Rg. 



4 
Ictorising the position (O(s)) component of eq(5) alone, 

0meas(s) = (s/a + 1) (sIb + 1) O(s) (6) 

th, 

IJ. ± r-~2 - 4 J kT I k 
a, b = ~ f meas 

2 J 

e single "earth" therefore affects the controller design as follows: 

If kmeas/kT is negative, the measurement of 0 results in the open loop transfer 

.racteristic having a right hand plane zero (situated on the real axis) with the 

responding limitations on achievable closed loop behaviour. 

If kmeas/kT is positive, then one might be tempted to use the numerator terms 

'oduced into the loop during controller design so as to obtain phase lead without requiring 

amic elements in the controller itself. The behaviour of such an arrangement will usually 

macceptable for the following reasons: 

.oise in the measurement and current signals will be amplified in an undisciplined manner 

igh frequency (especially at the motor input) 

he location of the zeros is not certain as a result of parameter (J , kT , kmeas and IJ.) 

!rtainty 

Ie zeros will be poorly damped if 4 J kT I kmeas > > O. 

IltS 

lhs 1a and 1b show "before" and "after" results for closed-loop step response in a 

tical problem when the controller was simply a gain element . Note that these graphs 

. measured position - the open loop plant does not exhibit non-minimum phase 

viour, only the measurement. Before separation of common conductors, the motor 

ng circuit saturated with all but small command signals. 

)wer stlpply with internal resistance - non-linear example 

e 2 shows a common problem in which the servo system's power supply has internal 

jance. For simplicity only power supply resistance, Rs' is considered here. To 

'stand the problem, it is assumed that only the measurement (of speed, position, etc) is 

ed by the power supply voltage fluctuations although in practice the controller circuit 

l vulnerable to power supply variations. 

quations are developed as before, except in the time domain : 

. d 
2 O~ t) d g( t) T( t) = kT I A (t) = J + IJ. t + d( t) 
dt 

(torque proportional to armature current) 

The terminal voltage of the supply is given by, 

vo(t) = 2 Vs - Rs(in(t) + ip(t)) 

The voltage with respect to OV, measured by the position sensing circuit is, 

RO 
v rJt) = ~ vo(t) - (Vs - in(t) Rs) 

= k
m 

[ 2 V s (RrJt) - Rm/2 ) + Rs [(Rm -RO(t)) in(t) - RrJt) ip(t)l] 

Without supply resistance, the position would be scaled as, 

O(t) = k 2 V RrJt) - R 12 o s R m 
m 

(if RO = Rm/2 corresponds to 0 = 0). The measured position is, 

0meas(t) = kO v rf..t) 

5 

(7) 

(8) 

(9) 

(10) 

(11) 

If the current drawn by the control and measurement circuits are small when compared to 

i A' then current only flows in one leg of the supply, 

Case 1 : i A > 0, ip ::: i A and in ::: 0 

R 
0meas(t) = O(t) - kO s 

Case 2 : i A < 0, ip ::: 0 and in ::: - i A 

R O(t) 
.....-iA(t) 

m 

It (It - It .1t)) 
o (t) = O(t) - k 5 mI/' . (t) 
meas 0 Rm IA 

(12) 

(13) 

I-' 

Unlike the previous example, this case is non-linear as both RrJt) and i A (t) are functions of~ 
O(t) . The conditions for a !:On-minimum phase term which can be seen by finding the small 

signal linearisation (denoted ~O(t)) of eqs (12) and (13) with respect to a steady state 

operating condition (denoteC: subscript .). Eq (12) becomes, 



l::.O (t)=t:.O_
kO 

RS[R [Jd2t:.O~t)+Jldt:.o(t)J 
meas ~ (J* dt at 

+ 

(14) 

t:.RO(t)[J d
2 O~t) 
dt 

6 

+ Jl ~]I. ] 
;he system moves around rest, ~ I. = M I. = 0 and the small signal transfer function 

I I 
In angle to measured angle is, 

>0) 
[ 

k R R ] 
t:.0meas(s) = 1 - °kTsR

m 
(J* [Js2 + Jl s) t:.O(s) (15) 

negative i A (t) the procedure is the same and results in the small signal transfer functi on, 

[ 
k R (R -R ) J 

t:.0meas(s) = 1 - 0 k; Rm m (J* [Js2 + Jl s) 1l0(s) (16) 

zeros of eqs (15) and (16) lie on the real axis , one in the left and one in the right half 

e. In the Appendix it is shown that if the power supply to the position measuring 

ntiometer may be reversed, the resulting behaviour is minimum phase behaviour around 
'est posi tion. 

lli 

Ihs 2a, 2b and 2c show closed-loop results from a laboratory experiment set up to 

. rate the above results - the behaviour had been observed in practical problems but no 

was available for presentation. The controller used was a simple gain element. To 

ve the results, Rs = 10 resistors were placed in series with a low impedance power 

y. The rating of the motor was 12V, 250mA and the armature resistance was 270 . 

b 2a shows the non-minimum phase behaviour predicted by eqs (15) and (16) . Note the 

ent magnitudes of positive and negative edged step responses, predicted by eqs (15) and 

1 2b shows the effect of changing the sign of the position measuring circuit (eqs (A4) 

~5» . Although the measurement the start of the step response is minimum phase, this 

shows non-minimum phase measurement around some non-steady state condition 
can be interpreted using eq (14) . 

7 
Graph 2c shows the effect of separating the power and measurement circuits using the 

technique suggested below, without removing the H1 power supply resistors. 

Reducing or eliminating the non-minimum phase problem 

The non-minimum phase behaviour caused by interaction between measurement and motor 

current can be substantially reduced by a simple isolation circuit such as that shown in 

Figure 3. Typically power supply isolation is also required for the feedback circuits - this 

latter problem can be analysed in a similar manner to the measurement one above. 

As the expense of complete power supply separation may not be warranted in lower 

performance systems, note that it is not imperative to remove power supply dependence in 

the sensor/control circuits. It is only required to place the non-minimum phase zero at such 

high frequency that either it has no effect or the design can cope with the extra phase lag 

and gain introduced. 

4) Conclusion 

The large loop bandwidths requireq in high performance servo systems, can only be achieved 

if the open loop transfer function is minimum phase (at least in the frequency range where 

the loop transmission will be larger than unity) . This note has shown that the power supply 

to the sensors should be isolated from that to the motor armature if problems are to be 

avoided . Similar analysis would show that in general the sensors and control circuits should 

be as insensitive as possible to supply fluctuations for practical systems to work as expected. 

The formulas given here can be used to quantitatively describe the feedback problem if for 

some reason the non-minimum phase behaviour cannot be avoided . 
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Appendix - Minimum phase case with supply resistance 

8 

The non-linear example (with power supply resistance) is considered for the case when the 

terminals of the position sensing circuit are swapped. The voltage with respect to OV, 

measured by the position sensing circuit is then, 

RO 
v Jt) = -....- v (t) + (V - i (t) R ) 

ff' !'lm 0 s p s 

= - frm [ 2 V s (RrJt) - Rm/ 2) + Rs [(Rm -RrJt)) ip(t) - RrJt) in(t))] 

(AI) 

As before, without supply resistance the position would be scaled as, 

O(t) = k 2 V RrJt) - R /2 o s R m 
m 

(A2) 

(if RO = Rm/2 corresponds to 0 = 0). The measured position is , 

0meas(t) = - kO v rJt) (A3) 

If the current drawn by the control and measurement circuits are small when compared to 

iA, then current only flows in one leg of the supply, 

Case 1 : i A > 0, ip ::: i A and in ::: 0 

0meas(t) = O(t) + k Rs (Rm-RrJt)) o Rm iA(t) 

Case 2 : i A < 0, ip ::: 0 and in ::: - i A 

0meas(t) = O(t) + k Rs R O(t) o Rm iA(t) 

Linearisation of eqs (A4) and (AS) explains the minimum phase behaviour around rest, 

observed in the results. 

(A4) 

(AS) 

-tv 
C)1 
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.Appendix 3 - Com.puter programs 

This appendix contains source code in Modula-2 for the following Programs: 

3.1) TEMPLATE - a program for evaluating plant parameters from the base 

(independent) parameters in Table 2.1. This program was modified for each 

controller structure investigated. The output of this program is compatible with 

"DESIGN". "TEMPLATE" gives the formulas (from eq(2.21)) for evaluating, 

or aF 
J.Lt = J.LtO - 8& J.Ll = J.LlO - ali 

o.p. o.p. 

k = _ or 
t ao 

o.p. 

or ktf =-
aa 

or A=--
ali 

k - aF 
if--aa 

B = aF 
a& 

o.p. 

o.p. 

o.p. 

o.p. 

(Note: Since submission and acceptance of this work, Mr S Govender has brought 

a sign error in the term (+/-vverticalsin(O) + vhorizontalcos(O)) term (which 

occurs a number of times) to the author's attention. The error is corrected on the 

software listings but has not been corrected back into the designs. Fortunately the 

error does not affect the results significantly for the small angles «ISo) and low 

vertical velocity relative to the wind velocity used to construct templates. The 

second term can be expected to be at worst SO times larger than the first.) 



,mplate ;] 

0; 

'LEX 
Complex, SetComplex, AddComplex, SubtComplex, MultComplex, 
DivComplex, ScaleComplex, dB, arg, ReadComplex, WriteComplex; 

WrLngReal, RdLngReal, WrStr, RdStr, WrCard, KeyPressed, RdKey, WrLn; 
LIB 
Sin, Cos, Pow, ATan2 (*X,Y : LONGREAL*), Exp, Log; 

1~l592653589i931~; 

------------------------------------------------------------------*) 
sqr (a:LONGREAL) LONGREAL; 

a; 

------------------------------------------------------------------*) 
LiftDrag( x: LO~GREAL; 

VAR cL,dL,cD,dD : LONGREAL); 

OCEDCRE ABS(y : LONGREAL) 
GIN 

LONGREAL; 

y > 0.0 THEN RETURN Y 
SE RETURN -y; END; 
DABS; 

(-5.305~*x*x + 5.0055*ABS(x))*0.5*1.2; 
(-10.6109*ABS(x) + 5.0055)*0.5*1.2; 
(3.5i30*x*x + 0.01i4)*0.5*1.2; 
7.1~61*x*0.5*1.2; 

rag; 

------------------------------------------------------------------*) 
0529; 
16; 
43; 
24; 
2. i 5 ; 
1. 0; 
2.i5; 
1. 0; 
= 0.0; 
.0; 

01, i, ix, i:-, ic CARDINAL; 

Jinv. ~(in\ · , kO verJ~t, Qne, Zero, omcg:.'.l, 
ew, mA, mB, gT, gH, g12, g21 Complex; 

heta, betaPth e ta, k, kIf, klb, ktf, ktb, kt, kl, windF, KindS, 
Y, vbX, vbY, vSQf, vSQb, 

ooopx2f, ooopx2b, (* 1/(1+x
A

2) *) 
cLF, dLF, cLB, dLB, cDF, dDF, cOB, dDB, 
cosT, sinT, A, B, 
cosTgf, sinTgf, gammab, cosTgb, sinTgb, cosGf, cosGb, 
tdot, hdot, theta, inertia, mass, uturn, ulift, 

sinGf, sinGb, gammaf, 

minarg, maxarg, maxdB, mindB, w, w2 : LONGREAL; 

ok : BOOLEAN; 
InputBuffer, OutputBuffer : ARRAY[l .. (1024+FIO.BufferOverhead)] OF BYTE; 
InputFile, OutputFile : FIO.File; 
FileName: ARRAY[l .. 40) OF CHAR; 
Reply : CHAR; 
index : CARDINAL; 
Output, ModArg, ModArglnverse : ARRAY [1 .. 2] OF ARRAY [0 .. 500) OF LONGREAL; 

BEGIN 
index := 1; 
One := SetComplex(1.0, 0.0); 
Zero := SetComplex(O.O, 0.0); 

REPEAT 
WrStr( , Enter input file '); 
RdStr(FileName); 

C~TIL F[O.Exists(File~ame); 
InputFile := FIO.Open(FileName); 
FIO.AssignBuffer(InputFile, InputBuffer); 
WrStr( 'Enter w '); 
w : = RdLngReal ( ) ; 
omega := SetComplex(O.O, wI; 
w2 := "'*w; 

FIO.EOF := FALSE; 
WHILE NOT(FIO.EOF) DO 

theta := FIO.RdLngReal(InputFile); 
tdot := FIO.RdLngReal(InputFile); 
hdot := FIO.RdLngReal(InputFile); 
inertia:= FIO.RdLngReal(InputFile); 
mass := FIO.RdLngReal(InputFile); 
uturn := FIO.RdLngReal(InputFile); 
ulift := FIO.RdLngReal(InputFile); 

(* in degrees *) 
(* in rad/s *) 
(* in m/s *) 

alphaPtheta := FIO.RdLngReal(InputFile); 
windF := FIO.RdLngReal(InputFile); 

betaPtheta := FIO.RdLngReal(InputFile); 
windB := FIO.RdLngReal(InputFile); 

IF FIO.OK AND NOT(FIO.EOF) THEN 
theta := theta/180.0*pi; 
alphaPtheta := alphaPtheta/180.0*pi; 
betaPtheta := betaPtheta/180.0*pi; 

cosT := Cos(theta); 
sinT := Sin(theta); 

vfX := windF-tdot*rf*sinT; (* front horizontal *) 
vfY := -(hdot+tdot*rf*cosT); (* front vertical *) 

vbX := windB+tdot*rb*sinT; (* back horizontal *) 
vbf := -(hdot-tdot*rb*cosT); (* back vertical *) 

I--' 
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maf := ATan2(vfX, vfY); 
nab := ATan2(vbX, vbY); 

tDrag( (alphaPtheta+gammaf) ,cLF,dLF,cDF,dDF); 
tDrag( (betaPtheta+gammab) ,cL8,dL8,cD8,dD8); 

sqr(vfX) + sqr(vfY); 
) := sqr(vbX) + sqr(vbY); 

)x2f := l.O/(1.0+sqr(vfY/,-fX)); 
>x2b := l,O/(1.0+sqr(vbY/vbX»); 

'gf := Cos(theta+gammaf); 
"gf := Sin(theta+gammaf); 

"gb , - Cos(theta+gammab); 
'gb , - Sin(theta+gammab) ; 

f , - Cos(gammaf); 
f " - Sin(gammaf) ; 

b := Cos(gammab); 
b := Sin(garnmab); 

n := uturn - af*sqr(rf)*( 
2,O*(-vfX*sinT - vfY~cosT) * (cLF*cosTgf+cDF*sinT~f) 

+ vSQf * «dLF+cDF)*cosTgf + (dDF-cLF)*sinTgf) * 
ooopx2f * (sinT*vfY - cosT*vfX) / sqr(vfX) ) 
+ 
ab*sqr(rb)*( 
2,O*(vbX*sinT + vbY*cosT) * (cLB~cosT~b+cDB*3inT~b) 

+ vSQb * «dL8+cD8)*cosTgb + (dDB-cL8)*sinTgb)* 
ooopx2b * (-sinT*vbY + cosT*vbX) / sqr(vbX) ); 

- af*rf*(-2,O*rf*tdot* 
(vfX*cosT - vfY*sinT) * (cLF*cosTgf+cDF*sinTgf) 
+ vSQf * «dLF+cDF)*cosTgf + (dDF-cLF)*sinTgf)* 
(l,O+ooopx2f*tdot*rf*(cosT*vfY + sinT*vfX) / sqr(v(XI )) 

+ ab*rb*( 2,O*ldot*rb* 
(vbX*cosT - wbY*sinT) * (cL8*cosTgb+cD8*sinTgb) 
+ vSQb * «dL8+cD8)*cosTgb + (dD8-cL8)*sinTgb)* 
(l,O-ooopx2b*tdot*rb*(cosT*vbY + sinT*vbX) / sqr(vbX) I); 

af*rf*vSQf*(cosTgf*dLF + sinTgf*dDF); 
ab*rb*vSQb*(cosTgb*dL8 + sinTgb*dDB); 

- af*rf*(-2,O*vfY*(cLF*cosTgf+cDF*sinTgfl 
+ vSQf * (dLF+cDF)*cosTgf + (dDF-cLFI*sinTgf)* 
(-ooopx2f)/vfX ) 
+ 
ab*rb*(-2,O*vbY*(cLB*cosTgb+cDB*sinTgb) 
+ vSQb * «dL8+cDB)*cosTgb + (dDB-cLB)*sinTgb)* 
(-ooopx2b)/vbX ); 

t equ *) 
af*vSQf*(cosGf*dLF + sinGr*dDF); 
ab*vSQb*(cosGb*dL8 + sinGb*dD8); 

kl := af*(-2,O*rf*tdot*(vfX*cosT - vfY*sinT)* 
(cLF*cosGf+cDF*sinGf) 

B 

+ vSQf*(dLF*cosGf+dDF*sinGf)* 
(l,O+ooopx2f*tdot*rf*(cosT*vfY + sinT*vfX) / sqr(vfX» 

+ (cDF*cosGf-cLF*sinGf) * ooopx2f 
* tdot*rf*(cosT*vfY + sinT*vfX) / sqr(vfX» 

+ ab*(2,O*rb*tdot*(vbX*cosT + vbY*sinT)* 
(cL8*cosGb+cDB*sinGb) 

+ vSQb*«dL8*cosGb+dD8*sinGb)* 
(l,O-ooopx2b*tdot*rb*(cosT*vbY _ sinT*vbX) / sqr(vbX) 

+(cDF*cosGf+cLF*sinGf) * ooopx2b 
*tdot*rb*(-cosT*vbY - sinT*vbX) / sqr(vbX» ); 

af*(-2,O*rf*lvfX*sinT + vfY*cosT) * (cLF*cosGf+cDF*sinCf) 
+ vSQf * «dLF+cDF)*cosGf+(dDF-cLF)*sinGf) * (-ooopx2f) 

*rf*l-sinT*vfY + cosT*vfX) / sqr(vfX») 

+ ab*(2.0*rb*(vbX*sinT + vbY*cosT) * (cLB*cosGb+cD8*sinGb) 
+ vSQb * «dL8+cLF)*cosGb+(dDB-cLB)*sinGb) * ooopx2b 

*rb*l-sinT*,"bY + cosT*vbX) / sqr(vbX») ; 

ulift := ulift - af*(-2,O*vfY*(cLF*cosGf+cDF*sinGf) 
+ vSQf * «dLF+cDF)*cosGf + (dDF-cLF)*sinGf) * (-ooopx2f) / vfX ) 
- ab*(-2.0*vbY*(cL8*cosGb+cD8*sinGb) 
+ vSQb * «dL8+cD8)*cosGb + (dDB-cLB)*sinGb) * (-ooopx2b) / vbX); 

k := ktf*klb+ktb*klf; 

WrLngReal(A,5,11); 
WrLngReal(8,5,ll); 
WrLngReal(kl,5,11); 
WrLngReal(kt,5,ll); 
WrLngReal(klf,5,ll); 
WrLngReal(klb,5,11); 
WrLngReal(ktf,5,ll); 
WrLngReal(ktb,5,ll); 
WrLngReal(ulift,5,ll); 
WrLngReal(uturn,5,11); 
WrLn( ) ; 

END; 
END; 
FIO.Close(InputFile); 

E~D template, 
....... 
W ....... 
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3.2) Source code for Program "IFLYNEV" to simulate the disturbance decoupling 

controller of Chapter 4. 

For the simulation, the plant states are chosen as follows, 

Xi 0 pitch angle . 
x2 0 pitch rate 

x3 h height . 
x4 h vertical velocity 

= front wing position x5 a 

x6 a front wing rate 

x7 {J back wing position 

Xs {J back wing rate 

and the state differential equation is, 

· xl = x2 

~ = j (-ILW + Torque) 

· x3 = x4 

x4 = k (ILiO + TotalLift) 

· 
x5 = x6 
· 2 x6 = -w x5 - 2 (w x6 na a na 
· x7 = Xs 

· 2 Xs = -wn{J x7 - 2 ({Jwn{J Xs 

3.3) Those MODULES from program "HORFLY" which have been modified from 

"IFLYNEV" above, in order to simulate the anti-diagonal controller of Chapter 5. 



IflYNewl 

10 I~PORT RdLngReal, WrLngReal, RdCard, WrLn, WrStr, 
WrCard, WrChar; 

~atrix I~PORT RealHatrix, allocateMatrix, deallocateMatrix, Entry, putEnt 

MatrixResult, writeHatrix, 
makeZeroMatrix, makeldentityMatrix, Gauss; 

1ATHLIB I~PORT Exp; 
'lyStart IMPORT pi, zero, vector; 
~riteToF IMPORT WriteToFile, results; 

CONTROLLERS; 
" PLANTend; 

-------------------------------------------------------------*) 
IE Global(VAR PLANTdu, CO~TROLdu : vectorl; 

) sol v e du[i] - du[i]/dx[j]*X[j]*du[j] du[i]/dx[j]*dx[j] *1 

) : Real~latrix; 

, ent2, rank CARDINAL; 
'mpa t, temp : LONGREAL; 

b is partitioned 

te~latrix (A, 4, 4 I; 
te~la t r ix (b, 4, 1 I ; 
enti ty~latrix( A I; 

[ I (p I 
[-du/dx*X(pl 

CONTROLLERS.OrderTheta; 
= entl + CONTROLLERS.OrderHeight; 

row of A * I 

-du/dx*Xlcl 
I (c I 

ry( 1.0+Entry(l,I,PLA~Tend.XI, I, I, AI; 
ry( Entry(l,2,PLANTend.XI I, 2, AI; 

du/dx*dx(c) ] 
du/dx*dx(pI] 

- CONTROLLERS.Kinv[ I,I]~Entry ( l,ent l ,CONTROLLERS .XI 
- COSTROLLERS.Kin v [I,2]*Entry(I,ent2, CONTRO LLERS.X); 

['j-( temp 1, 3 I A); 

- CONTROLLERS.Kinv[I,l]*Entry(2,entl,CONTROLLERS.XI 
- CONT ROLLERS.Kinv[l,2]*Entry(2,ent2,CONTROLLERS.XI; 

ry( temp 1, -i, A I; 

ro\oo' of A * I 
[',-1 Entry(I,I,PLA~Tend.XI ,2, I, AI; 
ryl 1.0+Entry(I,2,PL.-\NTend.XI, 2, 2, AI; 
= -CO NTROLLERS.Kin v [2,1]*Entry(I,entl, CONTRO LLERS.X I 

-CONTROLLERS.Kinv[2,2]*Entryll,ent2,CONTROLLERS.XI; 
r:,'1 temp ,2,3, AI; 

-CONTROLLERS.Kinv[2,1]*EntryI2,entl,CONTROLLERS.XI 
- CON TROLLERS.Kin v [2,21*Entry(2,ent2,CONTROLLERS.X); 

ryl temp 

ro'" of A *j 
ry ( En t ry ( 1 , 1 , PLANTe nd . X I 
ryl Entryll,2,PLANTend.XI 

2, I, AI 

3, 1, .-\:; 
3, 2, ,\ I; 

*1 

(* 4th row of A *1 
putEntry( Entry(3,I,PLANTend.X) 
putEntry( Entry(3,2,PLANTend.XI 

4, 1, A); 
4, 2, AI; 

(* b * I 
temp := -PLANTend.dx[l] + CONTROLLERS.Kinv[l,I]*CONTROLLERS.dx[entl] 

+ CONTROLLERS.Kinv[1,2]*CONTROLLERS.dx[ent2]; 
putEntry( temp , 1, 1, bl; 
temp := -PLANTend.dx[l] + CONTROLLERS.Kinv[2,1]*CONTROLLERS.dx[ent1] 

+ CONTROLLERS.Kinv[2,2]*CONTROLLERS.dx[ent2]; 
putEntry( temp , 2, 1, b I; 
putEntry( -PLANTend.dx[l] 
putEntry( -PLANTend.dx[3] 

Gauss(A, b, rank, incompat, zero); 
IF MatrixResult.Error THEN 

WrStr( 'matrix error in Global' I; 
WrLn; 

END; 
PLANTdu[l] := Entry(l,I,bl; 
PLANTdu[2] := Entry(2,l,bl; 
CONTROLdu[ 1] : = Entry( 3 ,1, b I; 
CONTROLdu[2] := Entry(4,l,bl; 

deallocateHatrix (A); 
deallocateHatrix(bl; 

, 3, 1, b I ; 
, 4, I, b I; 

END Global; _____________________ *) 
(*--------------------------------------------- , 
VAR 

PLANTdu, CONTROLdu : vector; 
nexttick, time, ticklength, deltaT, 
theta, height, AplusThat, BplusThat, tref, href 
ares, bres, hres, tres : results; 
NumberSteps, step: CARDINAL; 
tick: BOOLEAN; 

BEGIN 

WrStr( 'Initialising FlyingHachine' I; 
WrLn; 
WrStr( 'Enter deltaT '); 
deltaT := RdLngReal(); 
;"rLn; 
WrStr( 'Enter NumberSteps 'I; 
NumberSteps := RdCardl); 
WrLn; 
WrStr( 'Tick length' I; 
ticklength := RdLngReal(); 
WrLn; 

nexttick := 0.0; 
time := 0.0; 

AplusThat := 0.0; 
BplusThat := 0.0; 

theta := 0.0; 
he i g h t : = O. 0 ; 

LONGREAL; 

~ 
W 
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t ep := 1 TO NumberSteps DO 
:r('step 'J; 
lrd(step,4J; 

:= time + del taT; 
: = 0.0; 
:= 0.0; 

:=-0.5; 
ime > 11. 0 THE~ 
ref : = -0 . 5+1.0*(1.0-Exp(-0.7*(time-11.0))); 

ime >= nexttiek THE~ 
ek: =TRL' E; 
xttiek := time+tieklen~th; 

:::k:=I"ALSE; 

[ step] 
:step ] 
: step ] 
: step] 

- height; 
:= theta*1BO.0/pi; 
:= (Ap1usThat-theta)*lBO.0/pi; 
:= (8plusThat -theta)*lBO.0/pi; 

·cnd.PlRnt(deitaT, Ap1usThat-theta, BpiusThat-Lheta, 
,,1."1'. I. j "I,. TRl l F.); 

:()LLERS.Con~rollers(<.lellaT, tref-O.Ult-thela, href+O.ll-height); 

1 ( PL , \ ~T<.lu, CONTHOLdu); 

end.PlantState( PLA~Tdu, height, theta); 
OLLE RS.ControllerState(CONTROLdu, AplusThat, 8plusThat); 

Height'); 
f il e(hres,Numbe rSteps); 

[HETA '); 
~il e(tres ,NumberSteps); 

\LPHA '); 
'ile(ares . ~umberSteps) ; 

8ETA '); 
'i le(bres,NumberSteps); 

I.EndPlant; 

,ERS. EndControl; 

"", 
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TIO N MODULE Hatrix;n 

it: 28.05.1988 
Eduard Eitelberg & Edward Boje 
LOGITECH HODCLA-2 / 86 

y of real matrix operati o ns , Gaussian eliminati o n, eigen~alues: 
=============================================================== 

Loca te~la t r ix 
.llocateHatrix 
<50 f 
.ulnn s Of 
: t'y 
:Entry 
ld~latr L: 
. te~latri~: 
: eZero~latrix. 

:e Iden t i ty~la tr i~: 
ly~lat r LX 
' j'Block 
.le ' latri.': 
Ime tri::e~ta:' rix 
~Ia tr' ix 
tr '. c t~l a tri x 

t ipl:;~la t ri x 

ss 

ocateE i ~ \'a Ls 
11 0 C :..l teE i g \' '-' 1 s 
e n s ionO f 
E igV :l1 sEntr y 
"dE i·~\ · "l 
":' 1,1 :1 t.e E i 5\' .:.11 :5 

l ' i "(O'j (,h: '.: LIl l"''' i u l' L j l )" H ~ : : lL ~l.lLl·l" .. ) ,u II I t.: l~ L" fl "' llq !· . ll' l' : l j'; t.I · · , .. :l, II '! ·t.! u t' 

L II'~3 ' lIlu s t be initi a li sed in th e use r pr o 'Or:111l ",i. t h Hl1 oG n t '~ 'I ,\ t r i .': and 
~E L '5''- als r~ s pec ti \' ei y . Thi.::; d o e s not guar.:lllt e~ a ll Y puc,tL c lllar :lum e ri s :..ll 
f o r th e I(la t rix or ei~ e n "'nlue en t ~i. es , how e,,·er. Th e u s er i s re 3 po ~ s i ~ l e 
re1 e:~s e of me mo,, :: t h :-ollgh d e al lo c a ti o n ", i th de a ll o cate ~latri .': and 

lt ~ Ei~~"als, eL s~ l1 3e c p r o ~ralll may end witt\ hea p and 3ta~ k c oLli3ion. 

ma t ri..': si.:.: e (Ro w s · Co l u IlHls=~l a.': Size) is Cllt·ren t. l" 8 l8 G r e a l s (L') GITEl: H 
,t ati o n 1imLtl, le a din:;l t o gO as the (the oretic~li:: t maximum numb e r of 
_l19 S (91*3l= 8 2 3 1 ~o u Ld be ~reater tha n 8l R 9=~faxSize } . 

) t" : I, ~t tltrLxRe ~ult, c on t~lins nn e rr o r indi c a t or of matri ~ ope r3 t i~n s 
c0 [" r" '! spondin~ mes s u~ ~ it is set as EL side-ef( e~ t in mo s t pro cedur ~s . 
:o ns ta nt s , t~ansp=TRCE a nd notrans?=fALSE, ma y be used f o r be tt e r 
"it ~" in some procedure (:all~. 

!\ ' ~r us e direc~ matr':" :~ aS3i~nme:lt 3 t su c h as "\:=B. This is for:nally 
l!. 1 ~3fj3 to m ell1 0 r ~' man a~e me nt prob l em s " [: S~ in stead the pro c edure 
-i :'\. t Jr ';lI c hl.i.ke . 

(-:'o n ::;t an t d ·:- f l ni r. i o n 3 a l" '~" f ·.J:'~ in :' o o n ly . Th, cy ar t;! no t e"\~PtJ t' ''.~"' .j 

CO~ST 

MaxCard = 65535; 
HaxSize = 8189; 

(* 8 Bytes per real and 2 Bytes per cardinal = 8189*8+~ 
9l*91=828l > 8189=HaxSi=e *) 
65520; *J 

~(axEVDirn = 90; (* 
HaxSpac eAllocatable 

CONST 
MessageLength = 80; 
transp = TRCE; 
notransp = FALSE; 

TYPE Real~atrix; 

TYPE 
TYPE 

HessageType = ARRAY [0 .. (HessageLenl t h-l) I OF CHAR; 
HatrixResultType = RECORD 

Error: BOOLEA~; 
~{essage: ~fes3ageTy?e; 

E:--lD (* re::ord*) ; 

TYPE Cornple x :--lumber RE CORD 
Real : LO~GRE'\L; 

lmag : LO:--lGREAL; 
E ~ D (* record *); 

TYPE EigenValues; 

\ '. \R 
\ ·) .. R 

~a t r i xResult: Mat ri.xR e sultT ype; 
Bl a nk~ e ss a g e : ~es saleType; 
NoEr:-orHessag e : Hatri x Re sultType ; 

65516 *) 

(***********~**~**~**.*****~ .~*¥**********.** ~ *****t~* *************************) 

PROCEDCRE Qll o c8te~ a trix (VAR A RealHatrix; Ro~s. Columns C~RD!S,\L); 

( . 
1l0 h·s " '::o ll.lmn s o f r e al s and 2 ca rdinul s are all oc at e d (on th e he ap) f cl r m:ltr i~: 
\ ; tlld it ; .Jilll'·rI ·~ i l l f1 ·;. \ "lIlr" j r'i ( " ,' UUt .) t. b (' h .... !\ '';';; IIIII,,' d to h : \\ " ~ ( \fl Y q:i \ I'" \ .·\LII,.... 
ll' ,\ i s nu l. t o" bi~ :lfl.! Lh,~ 111< .' 111 0 C·,· i s u ,uil a u1 e , 'la L t'i.': H ~s ,,1t. E r-c· or· =F .\L S E, 
El se all o ~ ~ t~ H a t:-i~ will b e l e ft imm ed ! atel ~ , ~atrixRe sult.Error=TRCE . . ) 
{ *------------------------------------------------------------------------*) 
PROCEDCRE d e H1locate Hatrix (VAR A : RealHatrix); 
(* ~o err ? r messal e here, ~Ielllory is released on the heap, if A; ~IL. *J 

«------------------------------------------------------------------------*) 
PROCEDCRE Ro~sOf(~\R A R e al~atrix): CARDlSAL; 
(* No error messale here - not needed after successful allocation. ~l 

(0------------------------------------------------------------------------*) 
PROCEDL"RE ColumnsOfl VAR A Real~latri~::: CARDI~iAL; 
(* No error' messag e her' e - not needed after suc cessful allocation. *) ~ 

<:ll 

{~- __ --- ____ -------- __ --------------------------------- ___________________ *l 
PROC EDl' IlE Entr::( i.,j CAIlDISAL; V.\R.\ Real'latrix ) LO~iG?E ,\L; 
( * i and j must be in the ro~" and column ran'5 e re 3 p ~c ti·:e l :.· . El s e e~rcr 

iss e t '-' n dO, 0 i s r e t II t· n e J, .. ) 

"---------------- - -------------------------------------------------------*) 
PRO": E[I L" IlE p ,, ~ E tl t,. ::(::: L:)\:' RE.\ L; i .j : C.\ r.D !: ~i.\L; \' .\R..\ R 'e al ~ la t t'ix); 



~nd j mu st be in the r o ~ and column ranle respectively. Elae e r ror 
set and n o thinl done. *) 

- --------------------------------- - --------------~-------------------*1 
)~RE re ad~at rix(VAR A: Real~atr ix l; 
,s procedure r eads in matrix entries ro ~ by r ow , from a source opened 
,o r to its call, if A has been allocated successfully . Else error is set 
I A is not read. Most suited for readinl from files. Uses ReadReal. *) 

-- ------------------------------------------------------------------*1 
' ~RE write~atrix(VAR A: RealMatrix; Out: CHAR I ; 
s procedure ~rites out matrix e n t ri es row by ro~, to a device/file o pened 
or to its call , i f A has bee n allocated successfully . Else error is set 

,-\ is not written . Th e format is re al , 12 positions, -l disits accuracy, 
o lumns at a time. 
tead of WriteLn, CR LF i s ex pli citly used, hence output redirection t o 
nter v i a Termbase . AssignWrite and Te rmbase.CnAssig nWri te i s possible. 
printin~, the appropriate (IBMI printer graphi cs character table h as to 

activated/se lected - see your printer manual . 
d o r D : ni ce display/printer format is !;ritten. If a file has been 

opened then this format is output t o the file. 
f or any othe r character: number of r o~s and number of columns are 

follo"ed by the lOatri :~ ent ries. Reco mmende :j output to file. 
Th is format is compatible to r eadMut ri x . 

npLe of r,!,jire ct i o tl to EPSO~ L\:-800 printer: 

lOCEDI;RE t>rint( c: CHAR I; 
~G r'~ 

DOSC .\LL (51!, c 1 ; 
;D pr' int ; 
IR don€' : Bl)')LE.\'i; 

; ''; i ..; (I tv r' i t ~ ( jJ r i. 1I L • don c ) 

(* ~riteProcedure -I 
(t: ~111 3!. bt! tc:) 

(- pt'o\'ided *1 
(* in the u se r *1 

(* mod ,il e . *1 

r-ite(33CI; \;rite(l6-1CI \'rite(l C ); 
-c RcdLr:ect o llLplt t t.O p l'in tcf'. 

(* Set character g~aphics tabl e. 
riteString( '~I atrix A:' 

rite(l5CI; Writ.ef12CI; (* Repl'lce e< uni',-ers :l!l y ~IODL'L.\-2 \,' ritcLn . 
e ll LF, :.:;illc (~ wrll.eLrl is riaL urlll l:!C'sLuo d l;y tt\f! iJinl.er. 

r·it.I~\I ; '1 r' j ;\. ( \, ' ,I ') ; ( '" DI : ... pl:ly-fr) r'lII :\! o lltlHlt. 
l'it.e( ;j;ft."I; \"'il.,, ( IUO t; 1 
n . ..\.:; s i. .~ n W C' i t e ( don e ) 
of e:~'-'mple. 

(.« I{ po . :.:; (~t. P [' i. n ll.! [" . 

(* OlltP'tt to screen again. 

.. ) 

* I 

* I · ) 
" I ,. 1 

* ) 

-------------------------------------------------------------------*) 
RE makeZero~atrix(VAR A: Rea l~ atrix:; 
3 all .\ entries 0, if A has been allocated successfully. El se er~or is 
~nd no thi ng is done. *1 

-------------------------------------------------------------------*) 
lE makeldentit~Matrix(~AR A: Rea l Matri~); 

.. s '-1 u are matrices, ~L:..ltri::Reslll t. Error=F".\LSE . Else OlD.ke rdenti t::~· f :.\t r-i:: 
l ~ft immediately with ~atrixResu l t.E rror =T R~E . 

._-----------------------------------------------------------------* } 
!E: copy'(atri:; (\'A R A: Re ::d'lat r: ::; tr ,~nst>oae.\: eOOLE.\';;\',\R B: Re al'latrixl 

. ma y boe tr ·u\3t'o:;e r 1. Ra\ .. :.l:ld colltm:1 nU:-:Ibe:-3 mU3:~ be compati.ble and 
m i/ :';~ no t. or:- :';:.Lme , ~1 at:-i. .':Re:5ult..E::' ro:"=F._\LSE. 

Else copy~atri x !;ill be l eft immediately, ~atrixResult.Error=TRUE. 
* ) 
(*------------------------------------------------------------------------*) 
PROCED~RE copy Bl oc k( VAR A: Rea lHatri x; 

FromRowA, To RowA, FromColumnA, ToColumnA: CARDI~AL; 
VAR B : RealMa trix; FromRo wB, FromColumnB : CARDINAL); 

( * 
An indica ted block o f A i s cop ied into B, so that the "upper left corner" of 
the block is as indicated in B. A and B can be same. A and B must be big enough 
to co nt ain the bl ock as indic ated , MatrixResult.Error=FALSE. 
El se copyBlock will be left immedi a t ely , ~atrixResult.Error=TRUE. 

* ) 
(*------------------------------------------------------------------------*) 
PROCED~RE sca leMat ri x(VAR A: RealMatrix; x: LO~GREAL); 

( * 
A:= x*A, if A is ava il ab le. 
* ) 

(~------------------------------------------------------------------------*) 
PROCEDlRE symmetrizeMatrix(V.\R A: Rea l~atrix); 
( .. 
This for c es A to symmetry . Onl y for square matri ces, ~ntri xResult. Err or= FALSE. 
Else symmetri~cMatrix will b e left immediately with HatrixResult.Error=TRUE. 
* ) 
(k-- ------ ------- --------- ----------------------------- ___________________ *) 

PRO~EDCRE add~atrix(VAR A: RealMatrix; transposeA: BOOLEA~; 
\ 'A R B: Real~latrix; transposeB: BOOLEAN; V.\R C: ReaPla tr i x l ; 

( .. 
C: = A+B, !;h ere C , A and B can be same. 
A <uld /o r 13 may be tr'ansposed, but then C must be different to the transposed 
matrices/matrix, ~atrixResult.Error=FALSE. Else add~atrix will b e left 
immediately, HatrixResult.Error=TRCE. 
All row and col.tmn nllmb e rs "'li st be compatible , ~(atri.::Result.Error=FALSE. 
Else ndd~l al.ri,'; .. ill be l e ft immedia te ly, ~latt'ixResult.Error=TRI;E. 

* 1 

(* ----------- -------- ------ -- ---- ---------- --------- --- --- ---- ---------- --*) 
PROCED~RE subtract Matrix(VAR A: RealMatrix; transpose.\: BOOLE~~ ; 

~\ R B: RealMatrix; transposeB: BOOLEA\; VAR C: Rea l~at r 
i :~ ) ; 
( * 
C: = A-B, where C , A and B ca n be same. 

, A and/or B may be tt'ansposed, but then C must be different to the transposed 
~matr i ces/matrix, MatrixRe su l t. Error=FALSE . Else add~atrix will be l e ft 
~ immediatel~, ~ atr ixResult.Error=TR~E. 
" .\11 r o '" and co l umn nttmbers must be compatible , ~l at ri~~Resul~.Error=FALSE. 
El :;" add~l atri'; ~ill be l eft immediately, ~latr~xResult.Err"r=TRL"E. 

* ) 
~ 

"(*-------- -------- ---- ---------------------------------------------------~I 
, prrOCEDI;RE mlti tipl::~Ia!".ri~;(\:,\R .-\: P..eal'(atrix; transpose.-\: BI)O LE.\\; 

~'-\R B: Rea lM att'ix; transt>oscB: BOOLE.-\X; ~AR C : RealMnt r 
t' " \ . .... , 

( * 
C:= .-\*8 , "her'e C m'tst be differ-en t to .-\ and B, .-\ and B can be same . 
.-\ and/or B lO ll;: b e tr',nsposed. 
,\11 r o'" and (;o lll,"n nu mbet's mus : be co mpatible and C must be dif,'er" n t to 
,\ and B , ~btri.':P..csult . Err·or=F._\LSE. El se multipl~-~Iatri~~ ,.- ill be l e ft 
i m m e d i " t, e I \' , '1:\ t r i " R" :;" It , F. r r a r' = T R L' F. , 



._------------------------------------------------------------------*) 
'RE Gauss(VAR A, B: ReQI~at~ix; VAR RankOfA: CARDIXAL; 

VAR ~DxIncomp: LOSGREAL; Ze~o: LO\GREAL); 

S3u mes that A and B a~e diffe~ent but have the same numbe~ of ~o~s. 
not need to be squ a~e. 

n ~eduction is done on mat~ix A, ~hilst doin; the same ~~~ operations 
adjace nt matrix B. Full pivoting is used. Three pe~mutation vecto rs of 
Is a~e used (allocated tempo~a~ily in Gauss). 

Ithoulh both mat~ices, A and B will be chanled, the equati ' 
A*X=8 

qually "ell befo~e and afte~ Gauss. Ar. "'entual equati~n 
tibilit)· is not scaled du~:,g Gauss. 

os ,d th: 
tty, in case of .. til rank square .-\.. 
mbe~ of diagonal l's equ a l t~ its calculated ~ank, in c~se A has not 

r o "' s than colurons. Th e o ther' d:'a;onal ent~ies a~e 0 (u~ ne;J.~-O), 
Ie o f f~ll pivoting, th ese 1'5 an~ 0'5 mQ~ be inte~mittent, 
,<1'; less ~O"S than columns, then the pi\'ot l's are not (necess;J.~:'ly) on 
iago na l. 

,a ~it h the co~responding fully o~ pa~tially '~educed' adjacent matrix , 

,slllt ,E~~ o~=TRL'E if an e~~o~ OCCUI'S, set as s~d e - e f:'ect togethe~ ',ith 
th e message - in the ~'HtrixReslllt.~tessn:; e . 
The possible er~o~ s are: 
a) Inco mpatible matrix si zes . 
b) Sot enou:s h me:nory fo~ tempo~g,r:.· allocati o n, 
c) S y stem overdetermined (a non-ze~o value found in any 

n o n-pi"ot ~o " of B), 

is the numbe~ of pivot ~o"s of the · mat~ix A (system 
underdetermined if l ess than nu~be~ of A columns ) , 

.p ~eturns the absolute largest "alue in the non-pi "o t ~o'.;s of the 
mat rix B (=0 = > incompatibilit~, =0 = > no incompatibilit yl 
:-iote, these ~ o ,,'s a~e not scaled during red·ucti o n. 
It is s et t~ 0 if RankOfA equals number of A ~o"s, 

is the llser-deterlnineJ \"n l lie belc~ ~hich zero ~ s aS3l1me ci to e~. i s t. 

------------------------------------------------------------------* l 
E allocate~iiVals ' V ~ R EV Eigen~alues; Jimen3ion CARDISAL) 

ion of re a l~, Di~enslon of bool~ans and 1 cardinal Q~e allOCAted 
h~a p ) f o ::- eLg~' n""al l les E\' and it3 dimension. E\" ent:-ies cannot be b ~ 
tc ha ':" "flY ;(l "e n \'alue. If E ... · is not too big and the men:OI':: is 
e, 'l at d,:Resul t ,E~~or ="ALSE. El .;e allocate E lg\'als ,.ill be l ~ [t 
~ 1 ::, '1-\ ~ I' i .': Pe suI t , E ~ r") t' ~ T R l' E , 

------------------------------------------------------------------") 
E de~llocateEi~~·ai~(~.\P E~ Ei~ ~ n~a~ue3); 
['~[' me3 gag~ h 0 r ~ . ~ l ern 0 r~ ' i s r el e'3ed on th~ heap, if E\" = ~:~ L. ~ } 

------------------------------------------------------------------, 

PROCEDCRE DimensionOf(VAR EV : EigenValues) : CARDISAL; 
(* No e~~or message he~ e - not needed after successful allocation, *) 
(*------------------------------------------------------------------------*) 
PROCEDCRE getEigValsEnt~y( i: CARDISAL; ~\R EV: EigenValues; 

VAR EVEntry: ComplexSumbe~); 

(* Er~o~, if i is g~eater than dimension of EV. Whethe~ the result has 
actually been found th~oulh calculation, must be checked ~ith foundEigVal, 

* ) 
(*------------------------------------------------------------------------*) 
PROCED~ RE foundEig~Bll i: CARDINAL; VAR EV : EigenValues) : BOOLEAN; 
(* Er~or, if i is greate~ than dimension of E': , *) 

{*------------------------------------------------------------------------*) 

PROCEDlRE calculateEig Va ls(VAR EV: EigenValues; VAR A: Real~at~ix); 

(~ This co -ordinates the evaluation of the eigenvalues of the matri~ A: 
A - The mat~i x whose eigenvalues a~e requi~ed, ~ust be allocated by the 

use~ ~ith equal numbe~ of ro"s and columns. 
E~ - The set of eig en values, whose ent~ies EVEntry of t ype ComplexSumbe~ 

may be ex t ~a c ted "ith getEigValsEntr y (i, E~, E~Ent~y), provided 
fOlindEi~': .:d ( i, E\') is TRL'E, Else the co~responding eigenvalue has not 
been found, since the alio~ithm is not gua~unteed to con\'e~~e. 
E~ must be allo c at e d by the user (wi th allocateEigVdls) with the 
nllmbe ~ of entriea equal to the number of A ~O','s, 

Another ma t rix, o f the snme size as A , and t"o sin~le-column matrices, 
~ith as many ~o~s as A, a~e allocated temporarily during this p~ocedure, .. ) 

(~------------------------------------------------------------------------~) 

PROC ED~RE print lc : CHAR); (* WriteP~ocedu~e *) 

( ~---------------------------------------------------- --------------------*) 

E:-<D ~Iatrix, 

""'" W 
-oJ 



r [0\ ~IODL'LE FlYSt:J.('~:Jl 

3.1-115925336 ; 
= 1.0E-6: 

o r ARR .-\ Y( I .. 10 I O F" L.)\GREAL; 

Start. 

\TATIOS ~OD~LE F"lyStart; 1 
Start. 

DEfINITIO" ~ODL'LE COMPLEX ; Ij 
TYPE 

Comp l ex = RECORD 
Rel, (* Real part *) 

1* Imaginary part *) Imag: LONGREAL: 
END: 

VAR 
ComplexDi~ideResult BOOLE.-\" : 

PROCED~RE SetCo mplexlx, Y LOSGREAL) Complex: 

PROCEDlRE AddComplexlC1 , C2: Complex) Complex; 
1* Procedure to add t~o complex n umbers *) 

P'tOCEDLORE Subt Compl ex lCl, C2: Complex) : Comple ~~ ; 
I * Pl"o ce du("f~ t o sub t r act. thoO comple,-_ numb~rs *) 

PROC EDlRE ~ u lt Co mplex( C1 , C2: Complex) : Complex: 
1* P~oc edure to mult i pl y two co mplex numbers *) 

PROCE DCR E Di"C o mpl ex(C l, C2 : Complex) : Complex; 
(x P"o '; e<iu["e to di,oi d" two complex numbers and return TRUE *) 
( _ if operation is successful, FALSE for division by zero *) 

PR0C ED lR E ScaleComplex l C : Comple x ; Scale LOSGREAL) Complex; 
1* Scales Co mpl ex by Sca l e *) 

P'tCCED~RE dBle Comp l ex) LOSGREAL; 

PROCEDUR E arllC Complex) LOSGREAL; 

PROCEDlRE Re a d Co mpl ex( ) Co mplex; 
1* Procedure t o read co mpl ex numb e r * ) 

PROCED~RE ~riteComplexIC: Complex 1* input *) ) ; 
(* Pr oced ure t o output a complex number * ) 

E'iD CO~fPLE:~ . 

........ 
W 
00 



OlySlart [~PORT vector; 

Real~atrix; 

ve~tor; 

l lRE Plantldelt.T, AlphaHat, BetaHat : LO~GREAL ; step: CARDISAL; 
tick, disturb : BOO LEA~); 

JeR E PIBntSt ate(VAR du : vector; 
VAR heigh t , theta : LO~GREALI; 

(* upda ~e plant's stat e vector *1 

,L'RE EndPl a n t; (* ~ust be ca lled before ma i n module end s to 
deall oca te memory *) 

, ,~STend, 

DEFINITIO~ ~O DlLE CONTROLLERS; II 

FRO~ Matrix IMPORT Real~atrix; 
FROM FlyStart IMPORT vector; 

'fAR 
X : Real~latri x ; 
dx : vector; 
OrderTheta, Orderlleight : CARDINAL; 
Kin\' : ARR,\Y(l .. :n OF ARRAY(t. .~ l OF LONGREAL; 

PROCEDlRE Controllers(deltaT, theta, height : LOSGREAL); 
PROC EDURE ControllerState(VAR du : vector; 

VAR AplusTha t, BplusThat : LO~GREAL); 
(* update controll e rs' state vector *) 

PROCEDlRE EndContrcl ; (* must be called before end of main module to 
deallocate memory *) 

E~D COSTROLLERS, 

J--' 
W 
c.o 



'~jENTAT ION· HODULE PLANTend; II 
* ) 
T FloatExc; 

T frO; 

HATHLIB IMPORT Sin, Cos, ATan2; 

10 IMPORT 
RdLngReal, WrLngReal, RdCard, RdInt, Wrlnt, 
WrLn, RdStr, WrStr,WrCard, WrChar; 

enOutput, CloseOutput, OpenInput, Closelnput, *) 
FlyStart IMPORT vector, pi, zero (*print*); 

~atrix 

)RT RealMatrix, allocateMatrix, deallocateMatrix, Entry, putEntry, 
MatrixResult, writeMatrix, makeZeroHatrix, makeIdentityMatrix, Gauss; 

;riteToF 
lRT results, WriteToFile; 

9.81; (* m/s' *) . 
;ity = 1.2; 
.aMas s = 0.8; (* = 1.5-0.7 = mass - antimass *) 

.Length 10 0 0; 

1Irba nce ARRAY[I .. DistLeng th] OF LONCREAL; 

t Pos n, Fron t Ra te result s ; 

~ector; 

LF, distLB, distDF, distDB : disturbance; 

F,windB : LONGREAL; (* ~ow global to keep wind spe ed from one to the next 

Iv ind 
tia, 
Front, 
Ba ck, 

CARDI~AL; 

(* Moment of inerti a ab o ut pi vot*) 
(* Total area of front wings *) 
(* Total area of back win~s m'*) 

" (* Rotational friction *J 
t , (* Sl iding friction *) 
10, (* Rotational friction *) 
:0, (* Sliding friction *) 

(* Kg *) 
~eToPi~ot, (* pi"ot in front of centre of mass *) 
: ToPi~ot, (* m *) 
~oPi v ot, (* m *) 
,Front, DampingFront, Ome~aSqFront, TwoOmegaDFront, 
,Back, DampingBack, OmegaSqBack, TwoOmegaDBack, 
.phs, maxAlpha, minBet a , max Beta, maxAlphaRate, maxBetaRate 

._--------------------------------------------------*) 

'RE CoefficientLift(angle LOSGREAL; VAR cL, dL LO NGREAL); 

LONGREAL; 

PROCEDURE SGN(y : LONGREAL) : LONGREAL; 
BEGIN 
IF y > 0.0 THEN RETURN 1.0 ELSE RETURN -1.0; END; 
END SGN; 

CONST 
rho = 1.2; 

BEGIN 
cL := SGN(angle)*(-5.3054*angle*angle + 5.0055*ABS(angle) )*0.5*rho; 
dL := (-10.6109*ABS(angle) + 5.0055)*0.5*rho; 

END CoefficientLift; 

(*--------------------------------------------------------*) 
PROCEDURE CoefficientDrag(angle : LONGREAL; VAR cD, dO : LONGREAL); 

CO!'lST 
rho 1.2 ; 

BEGIN 
cD := (3.5730*angle*angle + 0.01(4)*0.5*rho; 
dD:= 7.1461*angle*0.5*rho; 

END CoefficientDrag; 

(*--------------------------------------------------------*) 
PROCEDURE Wind() : LONGREAL 
CONST 

HeanSpeed = 20.0; 
NumberWinds = 6; 

VAR 
t e mp: LONGREAL; 
WSpeed : ARRAY[l .. NumberWinds] OF LONGREAL; 

BEGIN 
RETlRN 20.0; 

END Wind; 
(* for the time being *) 

(*--------------------------------------------------------*) 
PROCEDURE Plant(deltaT, AlphaHat, BetaHat : LO~GREAL; step: CARDINAL; 

tick, disturb: BOOLEAN); 

(* AlphaHat desired value of alpha *) 

~R 

Phi, Fmat : RealMatri~; 

f : vector; 
cosT, sinT : LONGREAL; 
dLF, dLB, dDF, dDB, cLF, cLB, cDF, cOB: LONGREAL; 
gammaf, gammab : LONGREAL; 

(* lift etc gi v en by eLF derivative by dLF *) 

alpha, beta, theta, tdot, height, hdot : LONGREAL; ~ 
~ 

(* ____________________________________________________ ----------------*J C) 

PROCED CRE Wings; 

VAR temp LO!'lGREAL; 

BEGIN 
(* Wing movements in controller form*) 



front wings *) 
pha := x[5]; 
tEntry (-1.0, 
tEntry (Omeg a SqFront, 

p := Entry(6,6,Phi); 

5, 6 I 

6, 5, 

tEntry (temp + Two Ome ;aDFront), 6, 6, Phi) ; 

tEntry(OmegaSqFront, 6,2,Fmat); 

5 J : = x[ 6 J ; 
3J := - Ome~ aSqFront*x[5J - TwoOmegaDFront*x[6J 

back wings *) 
: a : = x[ i J ; 
: En try (-1.0, 
:E ntry (OmegaSqBack, 
IP:= Entr y (8,8,Phi) ; 
.Entr y «(temp + TwoOmegaDBack) , 

.Entry(OmegaSqBack, 8,3, Fmat); 

x[S] ; 

7, 8, 
8, 7 I 

8, 8, Phi); 

Phi) ; 
Phi) ; 

+ OmegaSqFront*AlphaHat; 

Phi); 
Phi) ; 

:= - OmegaSqBack*x[7] - TwoOmegaDBack*x[8J + OmegaSqBack*BetaHat; 
gs; 

---------------------------------------------------------------*) 
RE Pl a ntl; (* calculate some lifts, drags, etc *) 

EDCRE sqr(a:LONGREAL) LO NGREAL; 
~ 

ETURN a *a; 
sqr ; 

rf, af, ab, kt, ktf, ktb, kIf, klb, kl, A, B, vfX, vfY, vbX, vb¥ , 
r, vSQb, 
px:!!" , ooopx2b , ("" 1 /( 1+ ,,- 2) *) 

r, sinT, cosTgf, sinT;:f, cosTgb, sinTgb, cosGf , 
p LO NGREAL; 

)verT , TotalLift, Torque 
, co l, i : CARDINAL; 

AreaFron t ; 
AreaBac k; 
FrontToPivot; 
BackToPivot; 

:k THEN 
IF:=wind l ); 
I B : = wind I ) ; 

: 0 . 0; wind B : = 2 0 . 0 ; 

LO NGREA L; 

I now for some dan; e r ous stuff *) 

sinGf , cosGb, sinGb, 

* ) 

IF step>450 THEN windF:=l5.0; windB:=15.0; 
ELSE windF:=20.0; windB:=20.0; 
E:-<O; 

cosT := Cos(theta); 
sinT := Sin(thetal; 

vfX := windF-tdot*rf*sinT; (* front horizontal *) 
vfY := -(hdot+tdot*rf*cosT); (* front vertical *) 

vbX := windB+tdot*rb*sinT; (* back horizontal *) 
v bY := -lhdot-tdot*rb*cosT); (* back vertical *1 

gammaf := ATan2(vfX, vfY); 
gammab := ATan2( v bX, vbY); 

CoefficientLift«(alpha+theta+gammaf),cLF,dLFI; 
CoefficientLift«beta+theta+gammab),cLB,dLBI; 
CoefficientDrag«(alpha+theta+gammaf) ,cDF,dDF); 
CoefficientDrag«(beta+theta+gammab),cDB,dDB); 

vSQf := sqr( v fX) + sqr(vfY); 
vSQb := sqr(vbX) + sqr( v bY); 

ooopx2f := l.O/( 1.0+sqrlvfY/vfX) I; 
ooopx2b := l.O/(l.O+sqr(vbY/vbX)); 

cosTgf := Cos(theta+gammaf); 
sinTgf := Sin(theta+gammaf); 

c09T~b := Cos (thetu+gammub); 
sinTgb := Sin(theta+gammab); 

c osGf := Cos(gammaf); 
sinGf := Sin(IAmmaf); 

cosGb := Cos(gammab); 
sinGb := Sin(gammabl; 

uturn .- uturnO - af*sqr(rf)*( 
2.0*I-vfX*sinT - vfY*cosT) * ( c LF*cosTgf+cDF*sinTgf) 
+ vSQf * ((dLF+ cO F)* c osTgf + (dDF-cLF)*sinTgf) * 
ooopx2f * (sinT* v fY - cosT*vfX) I sqr(vfX) 
+ 
ab*sqrlrb)*( 
2.0*(vbX*sinT + vbY*cosT) * (cLB*cosTgb+ c DB*sinTgb) 
+ vSQb * «(dLB+cDB)*cosTgb + (dDB-cLB)*sinTgbl* 
ooopx2b * (- s inT*vbY + cosT*vbX) I sqr(vbX) ); 

kt := - af*rf*(-2.0*rf*tdot* 
(vfX"cosT -vfY*sinT) * (cLF*cosTgf+cDF*sinTgf) 
+ vSQf * «dLF+cDF)*cosTgf + (dDF-cLF)*sinTgf)* 
(1.0+ooopx2f*tdot*rf*(cosT*vfY + sinT*vfX) I sqr(vfX) 

+ ab*rb*( 2.0*tdot*rb* 
( v bX*cosT _ vb¥*si nT) * (cLB* cos Tgb+cDB*sinTgb) 

) ) 

+ vSQb * ((dLB+ cDB) *cosTgb + (dDB-cLB)*sinTgb)* 
(1.0-ooopx2b*tdot*rb*(cosT*vbY + sinT*vbX) I sq r( vbX ) I); 

I--' 
~ 
I--' 



af*rf*vSQf*(cosTgf*dLF + sinTgf*dDF); 
:= ab*rb*vSQb*(cosTgb*dLB + sinTgb*dDB); 

- af*rf*(-2.0*vfY*(cLF*cosTgf+cDF*sinTgf) 
+ vSQf * ((dLF+cDF)*cosTgf + (dDF-cLF)*sinTgf)* 
(-ooopx2f)/vfX ) 
+ 
ab*rb*(-2.0*vbY*(cLB*cosTgb+cDB*sinTgb) 
+ vSQb * ((dLB+cDB)*cosTgb + (dDB-cLB)*sinTgb)* 
(-ooopx2b)/vbX ); 

m lift equ *) 
:= af*vSQf*(cosGf*dLF + sinGf*dDF); 
:= ab*vSQb*(cosGb*dLB + sinGb*dDB); 

af*(-2.0*rf*tdot*(vfX*cosT - vfY*sinT)* 
(cLF*cosGf+cDF*sinGf) 

+ vSQf*( (dLF*cosGf+dDF*sinGf)* 
(I.O+ooopx2f*tdot*rf*(cosT*vfY + sinT*vfX) / sqr(vfX)) 

+ (cDF*cosGf-cLF*sinGf) * ooopx2f 
* tdot*rf*(cosT*vfY + sinT*vfX) / sqr(vfX)) 

+ ab*(2.0*rb*tdot*(vbX*cosT- vbY*sinT)* 
(cLB*cosGb+cDB*sinGb) 

+ vSQb*((d LB* co sGb+dDB*sinGb)* 
(I.O-ooopx2b*tdot*rb*(cosT*vbY + sinT*vbX) / sqr(vbX)) 

+( cDF*c osGf+cLF*sinGf) * ooopx2b 
* tdot*rb* (-cosT*vbY - sinT*\' bX) / sqr( \·bX )) ); 

af*(-2.0*rf*(vfX*sinT + vfY*cosT) * (cLF*cosGf+cDF*sinGf) 
+ vSQf * ((dLF+cDF)*cosGf+(dDF-cLF)*sinGf) * (-ooopx2f) 

*rf*~inT*vfY + cosT* v fX) / sqr(vfX)) 

+ ab*(2.0*rb*(vbX*sinT + vbY*cosT) * (cLB*cosGb+cDB*sinGb) 
+ vSQb * ((dLB+cLF)*cosGb+(dDB-cLB)*sinGb) * ooopx2b 

* rb* ~ inT*vbY + cosT* v bX) / sqr( vbX)) ; 

:= uLiftO - af*(-2.0*vfY*(cLF*cosGf+cDF*sinGf) 
+ vSQf * (dLF+cDF)*cosGf + (dDF-cLF)*sinGf) * (-ooopx2f) / vfX ) 
- a b*(-2.0*vbY*(cLB*cosGb+cDB*sinGb) 
+ vSQ b * (dLB+cDB)*cosGb + (dDB-cLB)*sinGb) * (-oo~px2b) / vbX ); 

uLate I/deltaT - J *) 

try(-l.O, I , 2, Phi) ; 
t r y( k t/ inertill, 2, I , Phi) ; 
. - Entry(2,2,Phi); 
try( (t e mp + uturn/inertia) ,2, 2, Phi) ; 
try(-ktf/inertia, 2, :; , Phi) ; 
try( ktb/inertia, 2, 7, Phi) ; 
t r:,-(-l.O, 3, 4, Phi) ; 
try(-kl/mass, 4, 1, Phi' ; 
. - Entry(4,4,Phi); 
try((temp + ulift/mass) , 4, 4, Phi) ; 
try(-klf/mass, 4, :; , Phi) ; 

putEntry(-klb/mass, 4, 7, Phi); 

(* Calculate f *) 

( * 

* ) 

( * 

* ) 

Torque := 

TotalLift 

vSQf*(cLF*cosTgf + cDF*sinTgf) * FrontToPivot * af 
- vSQb*(cLB*cosTgb + cDB*sinTgb) * BackToPivot * ab 
+ mass*g*CentreToPivot*cosT; 

af*vSQf*(cLF*cosGf+cDF*sinGf) 
+ ab*vSQb*(cLB*cosGb+cDB*sinGb) - Delta~ass*g; 

wrLngReal(Torque,3,lIJ; 
WrLngReal(TotalLift,3,ll); 

IF disturb THE:-I 
i := (step MOD DistLength) + 1; 
Torque := Torque + (distLF[i]*cosT + distDF[i]*sinT)*FrontToPivot 

- (distLB[i]*cosT + distDB[i]*sinT)*BackToPivot; 
TotalLift := TotalLift + distLF[i] + distLB[i]; 

DID; 

WrLngReal(Entry(4,4,Phi) ,3, II); 
WrLngReal(ulift,3,ll); 

(* Hodel *) 
f[l] := x[2]; 
f[2] : = 1.0/inertia*(-uturnO*x[2] + Torque); 
f[3] := x[4]; 
f[4] := 1.0/rnass*(-uliftO*x [4] + TotalLift); 

END Plant1; ______________ *} 

(*-------------------------- --------------
VAR 

OneOverT, incompat, temp: LONGREAL; 
rank, row, col CARDINAL; 
done BOOLEAN; 

BEGI:-I 
allocateMatrix(Phi,8,8); 
makeZeroMatrix(Phi); 
allocateMatrix(Fmat,8,3); 
makeZero~atrix(Fmat); 

(* Calculate I/deltaT *) 
OneOverT := 1.0/deltaT; 
FOR row := 1 TO 8 DO 

col := row; 
putEntry(OneOverT,row,col,Phi) ; 

E:-ID; 

FrontPosn[step] 
FrontRate[step] 
theta := x[l]; 
he i g h t : = x [3] ; 

:= x[5] 
:= x[6] 
tdot x[2]; 
hdot := x[4]; 

I--' 
~ 
t-.:l 



s; 
.t 1 ; 

, 
r( 'PlantJacobian'); 

row := 1 TO 8 DO 
OR col := 1 TO 8 DO 

WrLngReal(Entry(row,col,Phi),2,9); 
~D; 

rLn; 

~\; make Phi*[dx:XJ = [CFJ *) 
row := 1 TO 8 DO putEntry(f[row],ro;"l,Fmat); END; 

;(Phi, Fmat, rank, incompat, zero); 
ltrixResult.Error THEN 
itr( 'matrix error in Plant'); 
~n ; 

ore test MatrixResult *) 

w construct [dx:X) *) 
ow := 1 TO 8 DO 
[row) : = Entry(row,l,Fmat); 
mp : = Entry(row,2,Fmat); 
tEntry(temp,row,l,X); 
mp := Entry( row,3,Fmat ); 
tE ntry(temp,row,2,X); 

ocate~atrix(Phi); 

ocateMat rix(Fmat); 

pha+theta > 25.0/180.0*pi THEN 
tr( 'a+t > '); 

?ha +theta < -5.0/180 .0*p i THE~ 
t r( 'a+t < ' ); 

: a+theta > 25.0/180.0*pi THEN 
:r( 'b+t> '); 

:a+theta < -5.0/180.0*pi THEN 
: r('b+t < '); 

It; 

. _-----------------------------------------------------------~) 

!E PlantState(VAR du : vector; 

CARDINAL; 

VAR height, theta: LONGREAL); 
(* update plant's state vector *) 

,tRat e SaturaLed, FrontAm p litudeSaturated, 

BackRateSaturated, BackAmplitudeSaturated 
temp: ARRAY[l .. 2J OF LONGREAL; 

BEGIN 

WrLn; 
WrStr( 'PlantState'); 

FOR i := 1 TO 8 DO 
temp[l) := Entry(i,I,X); 
temp[2J := Entq' (i,2,X); 
x [ i] : = x [ i) + dx [ i ) ; 
x[i] := x[i] + temp[l]*du[l]; 
x[i) := x[iJ + temp[2]*du[2J; 

(* WrLngReal( x [i],2,10); *) 

( * 

END; 

\;rLn; 
FOR i := 1 TO 8 DO 

WrLngReal(dx[i] ,2,10); 
WrLngReal(Entry(i, l,X),2,10); 
WrLngReal(Entry(i,2,X),2,10) ; 
WrLngReal(du[l] ,2,10); 
WrLngReal(du[2] ,2,10); 
WrLn; 

DID; 

* ) 
(* Now check for saturation *) 

(* fr o nt wings *) 

IF (x(5] > maxAl pha) THEN 
FrontAmplitudeS a turated := TRUE; 
x[ 5] : = maxAlpha; 
IF (x[6] > 0.0) THE~ x(6] := 0.0 END; 

ELSIF (x[5] < minAlpha) THEN 
FrontAmplitudeSaturated := TRUE; 
x[5] := minAlpha; 
IF ( x [6] < 0.0) THEN x [6] : = 0 .. 0 END; 

ELSE 
FrontAmplitudeSaturated := FALSE; 

END; 

IF (x[6] > maxAlphaRate) THEN 
FrontRateSaturated := TRUE; 
x[6] := maxAlphaRate; 

ELSIF (x[6] < -maxAlphaRate) THE~ 
FrontRateSaturated := TRUE; 
x[6] := -maxAlphaRate; 

ELSE 
FrontRateSaturated := FALSE; 

END; 

(* back wings *) 
IF (x[7) > maxBeta) THEN 

BockAmplitudeSaturated := TR~E; 
x[ 7] : = maxBeta; 
IF (x [8] > 0.0) THE~ x [8] : = O. 0 E~D; 

ELSIF ( x [7] < minBeta) THEN 
BackAmplitudeSaturated := TRUE; 

BOOLEAN; 
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[7J := minBeta; 
F (x[8J < 0.0) THEN x[8J := 0.0 E:-IO; 
E 
ackAmplitudeSaturated := FALSE; 

(x[8J > maxBetaRate) THE~ 
ackRateSaturated := TRUE; 
[8) := maxBetaRate; 
IF (x[8) < -maxBetaRate) THEN 
IckRateSaturated := TRUE; 
: 81 := -maxBetaRate; 

\c kRa t.eS at.l.rat. ed : = F.\L SE; 

' rontAmplitudeSaturated THEN 
' rStr ('FAS '); 

'rontRateSaturated THE~ 
rS t r (' FRS '); 

ackAmplitudeSaturated THE~ 
rS t r (' BAS '); 

ackRateSaturated THE~ 
rStr ('BRS '); 

'It := x[3); 
~ : = x [ 1) ; 
~ntState; 

----- --- ----------------- _._-----------------------------------*) 
iRE EndPlant; (* ~ust be called before main module ends to 

deallocate memory *) 

:AROINAL; 

. ( 'Rate Enter N '); 
Rd Card ( ) ; 

ToFile(FrontRate,N); 
( 'Posn '); 

T o File(FrontPosn,~); 

ocate~latrix(X) ; 
Pl a nt; 
-------------------------------------------------------------*) 
C'\RDI~AL; 

lltBuffer 
utFile 
e~ame 

ARRAY[ 1 .. (102~+FIO.BllfferOverhead)J OF BYTE; 
FIO.File; 
ARRAY[1 .. ~O) OF CHAR; 

(* Initialization of ~ODCLE PLAST *) 

WrStr(' Initialising PLANT'); 
WrLn; 
WrStr( 'Pl ant data '); 
REPEAT 

WrStr( 'Enter input file'); 
RdStr( FileName); 

UNTIL FIO.Exists(File"'ame); 
InputFile := FIO.Open(FileName); 
FIO.AssignBuffer(InputFile, InplltBuffer); 

inertia := FIO.RdLngReal (InputFile); 
AreaFront := FIO.RdLngReal(InputFile); 
AreaBnc k := FIO.RdLnIRenl(InputFile); 
lltllrnO := F[O.RdLn~ReullInputFile); 
uliftO := FIO.RdLngReal(InputFile); 
mass := FIO.RdLngReal(InputFile); 
CentreToPivot := FIO.RdLngRealllnputFile); 
FrontToPivot := FIO.RdLngReal(InputFile); 
BackToPivot := FIO.RdLngReal(InputFile); 
OmegaFront := FIO.RdLngReal(InputFile); 
DampingFront := FIO.RdLngRealllnputFile); 
OmegaBack := FIO.RdLngReal(InputFile); 
OampingBack := FIO.RdLngReallInputFile); 
windF := FI O.RdLngRealllnputFile); 
windB := ... i.ndF; 
FOR i : = 1 TO 8 DO 

x[ i J : = FlO. RdLngReal( InputFile); 
END; 
(* Re ad in degrees and seconds *) 
minAlpha := FIO.RdLngReal(InplltFile); max.\lpha:= FIO.RdLngReal(InputFile); 
maxAlphaRate := FIO.RdLngReal(InputFile); 
minBeta := FIO . RdLngReallInputFile); maxBeta:= FIO.RdLngReal(InputFile); 
maxBetaRate := FIO.RdLngReal(InputFile); 

FIO.Close(InputFile); 

(* Do some conversions *) 
minAlpha := minAlpha/180.0*pi; 
maxAlpha ;= maxAlpha/180.0*pi; 
minBeta ;= minBeta/180.0*pi; 
ma x Beta ;= maxBeta/180.0*pi; 
maxAlphaRate := maxAlphaRate/180.0*pi; 
maxBetaRate := maxBetaRate/180.0*pi; 

OmegaSqFront := OmegaFront*OmegaFront; 
TwoOmegaDFront : = OmegaFront*OampingFront*2.0; 

OmegaSqBack := OmegaBack*OmegaBack; 
TwoOmegaDBack := OmegaBack*OampingBack*2.0; 

WrStr (' Front lift dist '); 
REPEAT 

WrStr( 'Enter input file'); 
RdS tr( FileName) ; 

UNTIL FIO.Exists(File~ame); 
InputFile ;= FIO.Open(File~ame); 
FIO.EOF ;= FALSE; 
FIO.AssignBufferC InplltFile, InputBuffer); 
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· i : = 1 TO DistLength DO 
IF NOT(FIO.EOF) THE~ 

distLF[i] := FIO.RdLngReal(InputFile); 
ELSE 

distLF(i] := 0.0; 
E:-JD; 

.Close(InputFile); 

tr ('Front drag dist '); 
EAT 
rStr( 'Enter input file'); 
:lStr( File"lame); 
[L FIO.Exists(File"lame); 
ltFile := FIO.Open(File"lame); 
EOF := FALSE; 
AssignBuffer(InputFile, InputBufferl; 
i : = 1 TO DistLength DO 

"F NOT(FIO.EOF) THEN 
di st DF[i) := FIO.RdLngReal(InputFile); 

:LSE 
distDF(i] := 0.0; 

ND; 

C) osc (InplitFil e ); 

I" (. 1I1l" )' I i r I. d i " I. 'I ; 
.n 
Str( 'Enter input file'); 
Str(File:--lame); 
L FIO.Ex ists(FileName); 
tFile := FIO.Open(FileName); 
EOF := FALSE; . 
\ssignBuffer(InputFile, InputBuffer); 
i := 1 TO DistLength DO 
, NOT(FIO.EOF) THE:--I 
distLB[i] := FIO.RdLngReal(InputFile); 

. SE 
distLB[i] := 0.0; 

10; 

: lose( InputFile I; 

('Back dr'ag dist '); 
.T 
tr( 'Enter input file '); 
tr(FileName); 
FIO.Exists(FileName); 

File := FIO.Open(FileName); 
OF := FALSE; 
ssignBuffer( InputFile, InputBuffer); 

:= 1 TO DistLength DO 
:-JOT(FIO.EOF) THEN 

distDB[ i] : = flO. RdLngReal (InputFile) ; 
SE 
distDB[i] := 0.0; 
D; 

lose( InputFile I; 

NextlHnd : = 1; 

allocateMatrix(X,B,2); 

END PLANTend. 
( * inertia := 0.143; (* Moment of inertia about pivot*) 

AreaFront := 0.0529; (* Total area of front wings *) 
AreaBack := 0.16; (* Total area of back wings m'*) 
uturn := 0.11; (* Rotational friction *) 
ulift := 6.6; (* Sliding friction *) 
mass := 1.5; (* Kg *) 
CentreToPivot := 0.01; (* pivot in front of centre of mass *) 
FrontToPivot := 0.43; (* m *) 
BuckToPivot := 0.24; (* m *) 

AlphaOffset := 0.123; 
BetaOffset := 0.062; 

* ) 
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IE:-JTATION' HODL'LE CONTROLLERS; II 
FIO; 

o IMPORT RdLngReal, WrLngReal, RdStr, RdCard, WrLn, WrStr; 

atrix IMPORT RealHatrix, allocateMatrix, deallocateHatrix, Entry, putEntry 

HatrixResult, writeHatrix, 
makeZeroMatrix, makeIdentityMatrix, 
(* addHatrix, subtractMatrix, multiplyHatrix,* ) 

lyStart IMPORT vee tor, pi, zero; 

, Orde r 3 ; 

~ a",et e r ARRAY(O .. (~lax0rd e r-l)] OF LONGRE.\L; 

\"e c to [0; 
bT, aH, bH parameter; 

' RE Controllers(deltaT, Utheta, Cheight 

, Fmat : RealHatrix; 
ve c t o r; 

, c o l, ind e x: CARDINAL; 
OverT: LONGREAL; 
ompat : LONGREAL; 
k CARDINAL; 
e : BOOLEAN ; 

LONGREAL); 

3teMn trixIPhi,OrderTheta+OrderH e ight,Ord erTheta+ OrderHeight); 
trixResult.Error THE~ 
3tr ( 'Failed to allocate PLANT. Phi' ); 

lte~atrix(Fmat,OrderTheta+OrderHei~ht,3); 
: rixResult.Error THEN 
itI'I'Failed to allocate PLA;-';T.Fmat'); 

Gauss; 

f(l] := -aT(O]*x(OrderTheta] + bT(O]*Utheta; 
FOR row := 2 TO OrderTheta DO 

f(row] := x[row-l] - aT[row-I]*x(OrderTheta] 
END; 

(* Controller height *) 

+ bT(row-I]*Utheta; 

FOR row := OrderTheta+2 TO OrderTheta+OrderHeight DO 
col := row-I; 
putEntry(-I.O,row,col,Phi); 

END; 
FOR row := OrderTheta+l TO OrderTheta+OrderHeight -1 DO 

index := row-I-OrderTheta; 
putEntrylaH[index] ,row,OrderThetn+OrderHeight,Phi); 

END; 
index := 
putEntry 

OrderTheta+OrderHeight; 
((Entry(index, index, Phi) + aH(OrderHeight-I]), 

index, index, Phi); 

f[OrderTheta+l] := -aH[O]*x(OrderTheta+OrderHeight] + bH(O]*Uheight; 
FOR row := OrderTheta+2 TO OrderTheta+OrderHeight DO 

index := row-I-OrderTheta; 
f[row] := x[row-I] - aH(index]*x(OrderTheta+OrderHeight] 

+ bH[index]*L'height; 
E~ID ; 

(* :-Jow make Phi*(dx:X] = (f:F] *) 
makeZeroHatrix(Fmat); 
FOR row := 1 TO OrderThet a +OrderHeight DO 

putEntrylf[row],row,I,Fmat); 
END; 
FOR row := I TO OrderTheta DO 

putEntry(bT[row-I],row ,2,Fmat); 
END; 

FOR row := OrderTheta+1 TO OrderTheta+OrderHeight DO 
index := row-OrderTheta-l; 
putEntry(bH[index],row,3,Fmat); 

E:-JD; 

(* AssignWrite(print,done); 

"'o~latri x l Phi) ; Wr'Str( 'In controller' ); 

'rT := I.O/deltaT; 
oW := I TO OrderTheta+OrderHeight DO 
:= ro~; 

:ntry IOneOverT,row,cal,Phi); 

troller theta *) 
w := 2 TO OrderTheta DO 
:= row-I; 
ntryl-I.O,row,col,Phi) ; 

w := I TO OrderTheta-1 DO 
ntrylaT(row-I],row,OrderTheta,Phi); 

ry 1 (Entry(OrderTheta,OrderTheta, Phi) + aT[OI'derTheta-I]), 
OrderThe ta,OrderTheta,Phi) ; 

* ) 

WrLn; 
,;riteMatrixIPhi, 'd'); 
"'rite~fatrix( Fmat, 'd'); 
UnAssignWrite(done); 

Gauss(Phi, Fmnt, rank, incompat, zero); 
IF HatrixResult.Error THEN 

WrStr( 'matrix error in Controllers'); 
lyrLn; 

DID; 

1* AssignWrite(print,done); 

* ) 

wri te~fatrix( Fmat, 'd' ); 
WrLn; 
CnAssignWrite(done) ; 

~ 
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)w construct [dx:Xj *) 
:o w := 1 TO OrderTheta+OrderHeight DO 
;[row] := Entry(row,l,Fmat); 

'LngRealldx[ij,9); *) 

.tEntry(Entrylrow,2,Fmat),row,1,X); 
tEntry(Entrylrow,3,Fmat),row,2,X); 

n; *) 
ocate~atrix(Phi); 

ocateHatrixIFmat); 

trollers; 

-------------------------------------------------------------*) 
~E ControllerState(VAR du : vector; 

VAR AplusThat, BplusThat : LONG REAL); 
(* update controllers' state vector *) 

CARDINAL; 

.rl 'ControllerS tate ' ); 

. - 1 TO Or derTheta+OrderHeisht DO 
:= x [iJ + dx[i] + Entry(i,l,X)"'du[lj + Entry(i,2,X)*du[2J; 

I. m(lle " I ( " [ i J ,9 ) ; 
St t· (' '); 

U~TIL FIO.ExistsIFileName); 
InputFile : = FIO.Open(FileName); 
FIO.AssignBufferllnputFile, InputBuffer); 
OrderTheta := FIO.RdCard(InputFile); 
OrderHeight := FIO.RdCard(InputFile); 
FOR i:= 0 TO OrderTheta-l DO 

bT[i] := FIO.RdLngRealllnputFile); 
END; 
FOR i:= 0 TO OrderTheta-l DO 

aT[i] := FIO.RdLngRealllnputFile); 
END; 

FOR i : = 
bH[i] 

DID; 
FOR i:= 

aH[ij 
E~D; 

o TO OrderHeight-l DO 
:= FIO.RdLngReal(InputFile); 

o TO OrderHeight-1 DO 
:= FIO.RdLngReal(InputFile); 

FOR i:= 1 TO 2 DO 
FOR j:= 1 TO 2 DO 

Kinv[i,j] := FI O. RdLngReal(InputFile); 
END; 

END; 

FOR i := 1 TO OrderTheta+Ord e rH eigh t DO 
xli ] := FIO.RdLngReal(InputFile); 

END; 
F[O.CloC{c(InplltFiI.e) ; 

ullocDte~BLr i x(X , OrderTheta+OrderHe ilh t ,2); 

*) I END CONTROLLERS . 

,at := Kin~[l, l]"'x[OrderTh e taJ + Kinv[l,2J*x[OrderTheta+OrderH e ight]; 
,at := Kinv[2, l]*x[OrderTheta] + Kinv[2,2j*x[OrderTheta+OrderHeightJ; 

:o llerState; ______________________ *1 
--------------------------------------

EndCo n trol; (* must be called be f o re end of mai n module to 
deal l oca Le memory *1 

' :II e'l"trix( XI; 

~:~~=~---------------- -- ------ - ------------------------------ *1 
: CARDI~AL; 
Buffer ARRAY[1 .. (1 0 2 I+FIO . BufferOverhead) ] OF BYTE; 
File FIO .Fil e ; 
a rne : ARRAY[1 .. ~ O] OF CHAR; 

Initiulis i ng CO~;T ROLL ERS ' I; 

:::o ntroller data '); 

( ' Enter inp ut f il e '); 
(!" il e:\ame ) ; 

~ 
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hortlYi'l 

IT FloatExc; 
tT FIOi 
IO IMPORT RdLngReal, WrLngReal, RdStr, RdCard, WrLn, WrStr, WrCardi 

MATHLIB I~PORT Exp; 

Matrix IMPORT Real~atrix, allocate~atrix, deallocate~atrix, Entry, putEnt 

MatrixResult, write~atrix, 
makeZeroMatrix, makeldentityMatrix, 
(* add~atrix, subtract~atrix, multiplyMatrix,*) Gauss; 

FlyStart IMPORT pi, zero, vector; 
writeToF IMPORT writeToFile, results; 

r HorCtl; 
r PLASTend; 1* The "end" refers to my tether *) 

-------------------------------------------------------------*) 
~E Global(VAR PLA~Tdu, COSTROLdu : vector); 

, solve: du[i] - du[i]/dx[J]*X[J]*du[J] = du[i]/dx[J]*dx[J] *) 

I : RealMatrix; 
' heta, entHeight, rank: CARDISAL; 
,mpat, temp : LO~GREAL~ 

b is partitioned 

teMatrix (A, 4, 4); 
teMatrix (b, 4, l); 
entityMatrix( A) ; 

[ lip) 
. [-du/dx*X(p) 

ta := HorCtl.OrderTheta; 

-du/dx*X(c) 
I(c) 

ght := entTheta + HorCtl.OrderHeight; 

row 0 f A * J 
ryl -Entry(l,entHeight,HorCtl.X) 
ry( -Entry(2,entHeight,HorCtl.X) 

ro~ of A *) 
ry( -Entry(l,entTheta,HorCtl.X) 
~y( -Entry(2,entTheta,HcrCtl.XI 

row of A *) 
~y( Entry(l,l,PLA~!end.X) ,3, 
~y( Encry(l,2,PLASTend.XI ,3, 

row of A *J 
~YI Entry(J,l,PLASTend.XI ,4, 
~y( Entry(J,2,PLANTend.X) ,4, 

I 

' r( -HorCtl.dx[entHeight] 
' y( -HorCtl.dx[entTheta] 
'y( -PLASTend.dx[l] 
' y( -PLASTend.dx(J] 

3, 1, 
2, I, 

3, 
4, 

I, 3, A); 
I, 4, A); 

2, 3, A); 
2, 4, AI; 

I, A); 
2, Al i 

I, A); 
2, A); 

b) ; 
b) ; 
I, b); 
I, b); 

du/dx"d~:( c I] 
du/dx *dx(pl] * ) 

GausslA~ b, rank, incompat, zero); 
IF MatrixResult.Error THEN 

WrStr( 'matrix error in Global'); 
WrLn; 

E~D; 
PLA~Tdu[l] := Entry(l,l,b); 
PLASTdu[2] := Entry(2,l,b); 
CONTROLdu[l] := Entry(J,l,b)i 
CONTROLdu[2] := Entry(4,l,b); 

deallocateMatrix(A); 
deallocateMatrix(b); 

E~D Global; ----------------*J (*--------------------------------------------------
,'AR 

PLASTdu, CONTROLdu : vector; 
nexttick, time, ticklength, deltaT, 
ffilter, href, tref, theta, height, alphaln, betaIn, 

CtlThetaOut, CtlHeightOut 
ares, bres, hres, tres : resultsi 
NumberSteps, step: CARDINAL; 
tick : BOOLEA~; 

BEGIN 

WrStrt'Initialising FlyingMachine') i 
wrLn; 
I.'rStr( 'Enter delta! '); 
deltaT := RdLngReal( Ji 
WrLn; 
WrStd 'Enter SumberSteps '); 
SumberSteps := RdCard( I; 
I.'rLn; 
WrStr( 'Tick length'); 
ticklength := RdLnsReal(); 
WrLni 

nexttick := O.Oi 
time := 0.0; 

alphaln :=0.0; 
betaln := 0.0; 

th ta := 0.0; 
he ght := 0.0; 
ff Iter := 0.0; 

FOR step := 1 TO NumberSteps DO 
WrStr( 'step '); 
IoirCard( step,"); 
time := time + deltaT; 
IF time >= nexttick THEN 

tick:=TRt:E; 
nexttick := time+ticklength; 

ELSE 
tick:=FALSE; 

END; 

hres[step} :2 height; 

LOl'iGREAL; 
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s[step] := theta*180.0/pi; 
s[stepj := (alphaln+0.027)*180.0/pi; 
s[stepj := (betaln+0.0141*180.0/pi; 

tr('Alpha 'I; IoirLngReal(alphaln,5,10); 
td 'Beta' I;WrLngReal(betaln,5,10);loirLn; 

IITend.Plant(deltaT , (alphaln+0 .0 2i) , (betaln+O.0141, step, tick, TRUEI; 
f : = 0.0; 
f := 0.0; 

:= 0.0; 
: ime > 11.0 THE ~ 
1ref := 0.75*(1.0-Exp(-0.7* : time-ll.0))); 

: tl. Controllers( del taT, tref-theta, href-height I; 

)al(PLA~Tdu, CO~TROLdu); 

JTend.PlantState(PLA~Tdu, height, thetal; 

:t l.ControllerState(CO~TROLdu, CtlThetaOut , CtlHeightOutl; 
r('Theta 'I; \'irLngReal(CtIThetaOut,3,101; IoirLngReai(theta/ pi*180.0,3,101 

r( ' Height 'I ;\''-rLngReal( CtlHeightOut, 3,10 I; WrLn; 

al n := Ctl Heig htOu t ; 
[n : = r.t 1 ThetaOllt; 

'Height'); 
oFile(hres , NumberSteps); 

'THETA 'I ; 
oFile(tres , NumberStepsl; 

'ALPH.-\ 'I; 
oFile(ares,NumberStepsl; 

'BETA 'I; 
oFile(bres ,~umberStepsl; 

nd.EndPlant; 

.EndCo ntrol; 

1:' . 

DEFI~ITION MODCLE HorCtf;U 

FROM Matrix IMPORT RealMatrix; 
FROM Fl ySta rt IMPORT vector; 

VAR 
X : ReaHfatr-ix; 
dx : vector-; 
Or-derTheta, Order-Height CARD INAL ; 

PROCEDCRE Controller-s(deltaT , Utheta , ~height : LO~GREALI; 

PROCEDURE Contr-oller-State(VAR du : vector-; 
VAR CtlThetaOllt , CtlHeightOut : LONGREAL); 

(* update contr-oller-s' state vector- *1 
PROCEDCRE EndContro l; (* must be call ed befor-e end of main module to 

deallocate memor-y *) 

E~m Ho r C tl. 
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E~TATION MODULE Hor~~i~U 

FlO; 

o IMPORT RdLngReal, WrLngReal, RdStr, RdCard, WrLn, WrStr; 

atrix IMPORT Real~atrix, allocate~atrix, deallocate~atrix, Entr:,', putEntry 

MatrixResult, write~atrix, 
makeZeroMatrix, makeIdentityMatrix, 
(* addMatrix, subtract~atrix, multiplyMatrix,*) 

iyStart IMPORT vector, pi, zero; 

, Order 3; 

-alOe te r ARRAY (0 .. ('laxOrde r-1 I j OF LO~GREAL; 

v e ct o r; 
bT, aH, bH parameter; 

"RE Controllers(deltaT, Uthe:a, Uheight 

FlOat: RealMatrix; 
ve c tor; 

, col, inde~ : CARDINAL; 
Ov e rT: LONGREAL; 
ompot : LONGREAL; 
k CARDINAL; 
e : BOOLEA~; 

LONG RE.\L I ; 

~ t e~atrix(Phi,OrderTheta+OrderHeight,OrderTheta+O rderHeightl; 

: ri x Result.Error THEN 
3trt 'F::tlled to allocate PLANT.Phi' I; 

lte~atrix ( Fmat,OrderTheta+OrderHeight,31 ; 
: rixResult.Error THEN 
;tr('Falled to allocate PLANT.Fmat'l; 

'ro~latrix ( Phi I; 

rT := l.O/deltaT; 
" ~ := 1 TO OrderTheta+OrderHeight DO 
:= ro~; 

ntr y (OneOverT,rc~,col,Phil ; 

tr o ller theta *) 
~ := 2 TO OrderTheta DO 
:= ro~-l; 

ntry(-1.0,ro~,col,Phi) ; 

~ := 1 TO OrderTheta-1 DO 
~try(aT(ro~-lj ,row,OrderTheta,Phi); 

ry ((Entry(OrderTheta,OrderTheta, Phi) + aT(Ord e rTheta-lj), 

Gauss; 

OrderTheta,OrderTheta,Phi); 

f(l] := -aT(Oj*x(OrderTheta] + bT(O]*Utheta; 
FOR row := 2 TO OrderTheta DO 

f[row] := x(row-l] - aT[row-l]*x(OrderTheta] 
END; 

+ bT(row-l]*Utheta; 

(* Controller height *) 
FOR row := OrderTheta+2 TO OrderTheta+OrderHeight DO 

col : = row-I; 
putEntry(-l.O,row,col,Phi); 

DiD; 
FOR row := OrderTheta+l TO OrderTheta+OrderHeight-l DO 

index := row-l-OrderTheta; 
putEntry(aH(index],row,OrderTheta+OrderHeight,Phil; 

E!'<D; 
index := OrderTheta+OrderHeight; 
putEntry ((Entry(index, index, Phi) + aH[OrderHeight-l]), 

index, index, Phi); 

f[OrderTheta+l] := -aH(O]*x[OrderTheta+OrderHeight] + bH[O]*Uheight; 
FOR rOK := OrderTheta+2 TO OrderTheta+OrderHeight DO 

index := row-l-OrderTheta; 
f[row] := x[row-l] - aH(index]*x(OrderTheta+OrderHeight] 

+ bH(index]*Uheight; 

END; 

(* Now make Phi*(dx :X] = [f:F] *) 
makeZeroMatrix(Fmat); 
FOR r o w := 1 TO OrderTheta+OrderHeight DO 

putEntry(f(row],row,l,Fmat); 
END; 
FOR row := 1 TO OrderTheta DO 

putEntry(bT(ro w-l],row,2,Fmatl; 
END; 

FOR row := OrderTheta+l TO OrderTheta+OrderHeilht DO 
index := row-OrderTheta-l; 
putEntr y (bH(index],row,3,Fmat); 

END; 

Gauss(Phi, FlOat, rank, incompat, zerol; 
IF MatrixResult.Error THEN 

WrStr( 'matrix error in Controllers' ) ; 
WrLn; 

END; 

(* now construct (dx:X] *) 
FOR row := 1 TO OrderTheta+OrderHeight DO 

dx(row] := Entry(row,l,Fmat); 

putEntryIEntry(row,2,Fmatl,row ,l,X); 
putEntry(Entry(row,3,Fmat),row,2,X); 

END; 
deallocateMatrix(Phi); 
deallocateMatrix(Fmat); 

E~iD Controllers; 

f-' 
c.n 
o 



--------------------------------------------------------------*) 
I RE ControllerState(VAR du : vector; 

CARDISAL; 

VAR CtlThetaOut, CtlHeightOut : LONGREAL); 
(* update controllers' state vector *) 

;tr( 'ControllerState'); 
.n; 

. - 1 TO OrderTheta+OrderHeight DO 
] := xli] + dx[i] + Entry(i,l,X)*du[l] + Entry(i,2,X)*du[2]; 
rLngReal(x(i] ,9); 
rStr(' '); 

n; *) 

etaOut := x(OrderTheta]; 
ightOut := x[OrderTheta+OrderHeight]; 

trollerState; ___________________ *) 
------------------------------------------

~E EndCon t ro I; 

)cateMatrix(X); 
·ontrol; 

(* must be called before end of main module to 
deallocate memory *) 

._-------------------------------------------------------------*) 

: CARDI~AL; 

tBuffer ARRAY(l .. ll021+FIO.BufferOverhead)] OF BYTE; 
tFile FIO.File; 
~ame : ARRAY(l .. 40J OF CHAR; 

'Initialising CONTROLLERS'); 

'Controller data ') 

rl'Enter input file '); 
r(File:-iame); 
FIO.Exists(FileName) ; 
ile := FIO.Open(File~ame); 
signBuffer( InputFile, InplltBllffer}; 
heta := FIO.RdCard(InputFile}; 
~ight := FIO.RdCard(InputFile); 

o TO OrderTheta-l DO 
:= FIO.RdLngReal( InputFile); 

o TO OrderTheta-l DO 
:= FIO.RdLngReal(InputFlle); 

o TO OrcierHeight-1 DO 
:= FIO.RdLngRealllnputFile); 

FOR i:= 0 TO OrderHeight-l DO 
aH[i] := FIO.RdLngRealllnputFile); 

END; 

FOR i := 1 TO OrderTheta+OrderHeight DO 
xli] := FIO.RdLngRealllnplltFile); 

END; 
FIO.Close(InputFile); 

allocateMatrix(X,OrderTheta+OrderHeight,2); 

END HorCtl . 

~ 

c.n 
~ 
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