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APPLICATION OF SURVIVAL ANALYSIS METHODS TO STUDY
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by Miss. Nasejje Justine

Infant and child mortality rates are one of the health indicators in a given community

or country. It is the fourth millennium development goal that by 2015, all the united

nations member countries are expected to have reduced their infant and child mortality

rates by two-thirds. Uganda is one of those countries in sub-Saharan Africa with high

infant and child mortality rates and therefore has the need to find out the factors strongly

associated to these high rates in order to provide alternative or maintain the existing

interventions. The Uganda Demographic Health Survey (UDHS) funded by USAID,

UNFPA, UNICEF, Irish Aid and the United kingdom government provides a data set

which is rich in information. This information has attracted many researchers and

some of it can be used to help Uganda monitor her infant and child mortality rates to

achieve the fourth millennium goal. Survival analysis techniques and frailty modelling

is a well developed statistical tool in analysing time to event data. These methods

were adopted in this thesis to examine factors affecting under-five child mortality in

Uganda using the UDHS data for 2011 using R and STATA software. Results obtained

by fitting the Cox-proportional hazard model and frailty models and drawing inference

using both the Frequentists and Bayesian approach showed that, Demographic factors

(sex of the household head,sex of the child and number of births in the past one year)

are strongly associated with high under-five child mortality rates. Heterogeneity or

unobserved covariates were found to be significant at household but insignificant at

community level.

Key: Cox-proportional hazard model, frailty models, Frequentists and Bayesian infer-

ence.
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Chapter 1

Introduction

1.1 Background

Infant and child mortality rates are important indicators of societal and national devel-

opment as they have been described as key markers of health equity and access. Bryce

et al. (2006), Ssewanyana and Younger (2008) observed that reducing infant and child

mortality is one of the Millennium development goals and in fact it is the fourth mil-

lennium development goal (MDG4) which states that infant and child mortality rates

are to be reduced by two-thirds between 1990-2015. Kyaddondo (2012) described the

under-five child mortality rate in Sub-Saharan Africa as a high mortality rate and that

of Southern Asia as moderate. The above mentioned concerns are some of the reasons

why infant and child mortality has attracted many researchers in order to identify the

factors strongly associated with high under-five child mortality rate and to evaluate the

various government interventions.

1.1.1 Background of the study area

Uganda is one of the countries in East Africa, it is one of the Sub-Saharan African

countries categorised as a low income or a developing country (World Bank Group,

2010). It is a landlocked country on an area of 236,580 Square Kilometres. The country

has a total population of approximately 36.35 million people and it is expected to reach

103.2 million people in 2050 (Kyaddondo, 2012, World Bank Development Data Group,

2012) . Uganda is bordered by five countries which are, Southern Sudan to the North,

Democratic republic of Congo to the West, Tanzania to the South, Rwanda to the

South-west and Kenya to the East.

1
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Figure 1.1: The map of the Republic of Uganda with its neighbours (Reinikka and
Collier, 2001).

Okwero et al. (2010) described Uganda’s economy as one of the fastest growing economies

in the world. He indicated that Uganda’s gross domestic product grew by an impressive

6.5% in 2007 and that Uganda’s overall growth performance over the past twenty years

has been among the best in Africa as well as in the whole world. Despite this growth

Uganda’s per capita income of US$320 in 2007, the country is still placed among the

poor countries of the world.

Ssewanyana and Younger (2008) described Uganda’s economy as one that has been

rapidly growing and sustained for an extended period of time but the rate of increase in

the incomes of the people did not match the rate of improvement in the health indicators

such as infant and child health. He examined the factors affecting child mortality and

also examined the likelihood that Uganda will meet the millennium development goal

(MDG4) by 2015.

The results of his study (Ssewanyana and Younger, 2008) suggested that in order to

achieve the fourth millennium development goal, there is need for further studies to

asses the effects of contextual determinants of child survival in Uganda. Nuwaha et al.

(2011a) by using the DHS data collected within the period of 1995-2000 did show that

under-five mortality rate in Uganda increased from 147.3 to 151.5 deaths per 1000 live

births and indicated that the reasons for the increase were not clear.
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Ayiko et al. (2009) used the data collected between 1990 and 2006 from the Uganda

demographic health surveys (UDHS) to assess the determinants of under-five child mor-

tality. The results indicated that under-five child mortality remained unchanged in the

period of 1991-1995 and 1996-2000 and it later declined in the period of 2001 -2005. He

pointed out factors like sex of the child (males were at a higher risk of death), place of

residence (northern Uganda recorded highest mortality rate), birth interval (Less than

24 months was linked to a high under-five child mortality) and mother’s education (no

primary education were associated with a higher risk of a child dying before the age

of five). He therefore concluded that Uganda was not on track to meet the MGD4 by

2015 and he therefore suggested further studies to asses the effects of the contextual

determinants of child survival in Uganda.

Croke (2012) identified political economic factors that help to explain the dramatic

differences in the pace of child mortality reduction in Uganda and Tanzania from 1995-

2007. He realised that in Uganda there was a negative shock to the health system

driven by the President’s decision to eliminate presidential term limits in 2001-2006.

A presidential candidate was not only restricted to two terms but can go as many

terms as he wants as long as he is re-elected by the citizens. This process reversed the

previous health sector institution gains and had particularly negative effects on child

health service delivery in Uganda over the 2001-2006 period . His results indicate that

Uganda had an under-five mortality rate of 147 per 1000 live births in 1995 and Tanzania

recorded a rate of 137 per 1000 live births. After a period of ten years, the Tanzania’s

under-five mortality rate had declined by 34-35% to 91 per 1000 live births and that of

Uganda declined by 12-15% to 137 per 100 live births which was even more less than

the average decline for sub-Saharan Africa over the same period which was 18% during

that period.

1.2 Literature review

The past two decades have seen an increase in articles on the factors associated with

infant and child survival. This is because infant and child mortality rate is considered

to be one of the key health indicators in an economy.
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A paper by Mosley et al. (1984), An analytical framework for the study of child survival

in developing countries proposed an analytical framework for the study of determinants

of child survival in developing countries. The study incorporates both Social and Bio-

logical variables and integrates research methods used by social and medical scientists

to study child survival. The frame work is based on the premise that all social and

economic determinants of child mortality necessarily operate through a common set of

biological mechanism or proximate determinants that exert an impact on mortality.

Bailey (1988) examined the factors determining infant mortality using data from fertility

and family planning survey in Uganda sponsored by the international research centre in

Canada. The results of the analysis indicated that Background factors (current place

of residence of the mother, religion and mother’s tribe), Demographic factors (mother’s

age, age at first marriage, number of children ever born and duration of breast feeding),

Social-economic factors (maternal and paternal education and occupation, household

income) are the key determinants of infant and child mortality. Many other studies

on the same research topic, in different countries, using survey data are in agreement

with these results (Limin, 2003, Mondai et al., 2008, Nuwaha et al., 2011b, Uddin et al.,

2009).

A study by Hobcraft et al. (1984) identified five main social-economic factors that in-

fluence infant and child survival and these include mother’s education, mother’s work

status, husband’s occupation, husband’s education and type of place of residence. They

used a simple tabular analysis followed by a multivariate approach in order to asses the

relative importance of each of the five variables. The study used the World Fertility

Survey data that was based on enquiries from 28 developing countries. In Asian coun-

tries, mother’s level of education was seen to be strongly associated with mortality of

the child during the first five years of their life. In America, results indicated that the

husband’s education was most important and in a few African countries, infant mortality

was relatively strongly associated to husband’s occupation and education.

Rutstein et al. (2000) showed that internally comparable data derived from survey pro-

grammes like the Demographic and Health Survey (DHS) have identified some of the

key factors that help to explain child and infant mortality trends. The factors that have

been repeatedly given in the DHS programme are and fall into five broad categories

which include;

• Fertility behaviour like spacing births;
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• The use of health services by mothers and for her children;

• Environmental health conditions like outbreak of diseases, hygiene, among others;

• Nutritional status, breastfeeding, and infant feeding;

• Social economic status.

The study also showed that there has been a remarkable decrease in mortality among

infants and children in most developing countries from 1980-1990’s but that the decline

has reversed in some sub-Saharan African countries over the period.

Ssengonzi and Shannon (2002) examined the effect of female migration on the health

and survival of the most vulnerable migrants (infants and children) in Uganda. He used

the Loglogistic regression techniques to analyse the probability of a child surviving up

to the age of five. Results showed that 10% of the children die before age five and

within group difference in mortality exists in urban and rural children depending on

their mother’s migration status. Other variables like parents education, household size,

household hardship, mother’s age at first birth, duration of breast feeding and place of

delivery were seen to be significant.

Other studies on infant and child mortality in Uganda include one by Nuwaha et al.

(2011b) which focused on understanding the social-economic determinants of child mor-

tality. The study was a retrospective study and was based on the Teso region in Eastern

Uganda. For this region, it was found out that in the period of the 1959-1969, in-

fant mortality was 94 per 1000 live births compared to the 120 per 1000 live births for

the whole country by that time. The data used was from the 1959 and 1969 census

(Protectorate, 1961, Uganda Ministry of Planning and Economic Development Statis-

tics Division, 1976). They concluded that the high ownership of cattle and growing of

high protein and energy foods for domestic consumption might have been responsible

for better childhood survival in the Teso region compared to Uganda as a whole.

Results from the 2006 DHS survey indicated that the primary factors affecting infant

mortality include; gender of the child, mother’s age at first birth, birth order, and birth

interval. We recommend Uganda Bureau of Statistics Kampala (2007) report for more

details.
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From a statistical and data analysis point of view, different models have been used by

different authors to study child survival. Ssengonzi and Shannon (2002) used a Logistic

regression techniques on the 1995 Ugandan Demographic Health Survey (UDHS) data set

to determine the relationship between child survival and migration status. Some authors

choose to use Loglinear models to do the analysis for instance Curtis and McDONALD

(1991) used it to determine the effect of birth spacing on infant mortality in Brazil.

The Logistic model is the most popularly used model because it assumes that child

survival is a binary response (child is dead or alive, Kazembe et al. (2012) ). All the

above mentioned models ignore time to event and therefore fail to include the exposure

to the risk of the event overtime. Other models like the Cox proportional hazard model

by Cox (1972), are widely used to deal with time to event data and their relevancy

on research in survival analysis in demography and related fields has increased over

the years. The Cox model has several advantages and some of them are; (a) ability

to include analysis of censored and truncated data (b) ability to include analysis of

time varying covariate effects and lastly (c) the extensions of the Cox regression models

with the inclusion of random effects and flexible modelling through semi-parametric

and non-parametric approach. There is an advantage of these models over the ordinary

generalised linear models as demonstrated by Kazembe et al. (2012). The random effects

allows for the modelling of the unobserved covarieties (and inherent heterogeneity) or

frailty. These factors may be at a family, district, community, regional or national level

and these can not be ignored because they have an effect on the outcome.

Kazembe et al. (2012) and Omariba et al. (2007) used the Weibull unobserved het-

erogeneity (frailty) survival model on the 1998 Kenya DHS data to analyse the de-

terminants of infant and child mortality in Kenya. They compared the results of the

standard Weibull survival model to the frailty Weibull model. They also mentioned

that non-frailty models are biased due to the violation of the statistical assumption of

independence.

1.3 Basic survival analysis concepts

Survival analysis is a statistical method or tool used to analyse time to events data.

Survival analysis is a highly active area of research with application in many fields of



Chapter 1. Introduction 7

study which include engineering, physical, biological and social sciences (Cleves et al.,

2008, Klein and Goel, 1992). An event is an outcome on an individual unit that is

of scientific interest in different studies like sociology, biology, demography, medicine,

employment among other fields. The most common event of interest in the earlier

development of research in this area was death, this therefore suggests the name of the

research area Survival analysis.

Other events include, disease diagnosis, wedding, falling in love, infection of disease,

graduation from the university among others.

The main focus of this thesis is the classical survival analysis which focuses on time to

a single event for each individual unit in the study. Examples that fall under time to

event data include;

• Time from disease diagnosis to death

• Time from enrolment of a graduate degree to graduation

• Time of release from prison to re-arrest.

• Time from marriage to divorce.

As earlier on explained, the original event of interest in this research area was death and

this led to the name Survival analysis and therefore time to any other event which is

not death is also called Survival time (Aalen and Gjessing, 2008a).

Survival analysis is special from any other statistical methods of analysis because survival

data is always incomplete. This arises due to the fact that the person doing the study

has to wait until the event of interest occurs but since the study period has got a time

limit (end of the study), some of the individual units may not have experienced the event

within the time frame and therefore at the end of the study one will face a challenge

of an incomplete dataset which makes the analysis of such data using other standard

statistical methods and the ordinary linear regression methods impossible (Aalen and

Gjessing, 2008a). Other causes of an incomplete data set include; losses to follow up

and dropouts from the study. These result into what we call censored data points.

There are three forms of censoring and these are;
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• Right censoring

• Left censoring

• Interval censoring

With censored data we cannot use the ordinary statistical methods to analyse it because

we can not even calculate the simple mean with such data, we cannot find the standard

deviation or even perform a regression analysis. In a essence with censored data we are

faced with partially observed distribution of the time to event random variable.

1.3.1 The survival and the hazard functions

There are two basic functions that are very important in the whole theory of survival

analysis. These are the survival and hazard function.

1.3.2 The survival function

Given a random variable T that denotes the survival time, the survival function denoted

as S (t) is defined as:

S (t) = P (T > t) = 1− F (t) = 1−
∫ t

0
f (u) du, (1.1)

where f (t) and F (t) are the probability density and the cumulative density functions

respectively of a given distribution. The expression in (1.1) is the probability of surviving

beyond time t. Note that S (0) = 1, S (t)→ 0 as t→∞. It is a downward sloping curve

and can be estimated by using the Kaplan-Meier method (to be discussed in the later

section).

1.3.3 The Hazard function

Given a set containing individuals who are at a risk of experiencing a certain event

denoted by R (t) (risk set) or individuals who have not yet experienced the event by

time t, the probability of an individual in the risk set experiencing the event in the small

time interval [t, t+ ∆t) is defined as h (t) ∆t. Therefore the hazard rate is defined as:
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h (t) = lim
∆t→0

1

∆t
P (t ≤ T < t+ ∆t|T ≥ t) . (1.2)

Unlike the survival function which is a downward sloping curve for any type of survival

data given, the hazard function takes on any shape of a non negative function and it

varies depending on the type of survival data given (will be discussed in details in the

later chapter). The hazard function can be alternatively represented in terms of the

cumulative hazard function H (t).

H (t) =

∫ t

0
h (u) du. (1.3)

The name cumulative is due to the fact that the function is the accumulation of the

hazard over time.

According to Aalen and Gjessing (2008b), the cumulative hazard rate can be estimated

using the Nelson-Aalen estimate and the increments of the Nelson-Aalen estimate can

be smoothed to provide an estimate to the hazard rate.

1.3.4 The relationship between the hazard and the survival functions

From equation (1.2),

h (t) = H
′
(t) =

1

S (t)
lim

∆t→0

S (t)− S (t+ ∆t)

∆t
= −S

′
(t)

S (t)
,

H (t) = −S
′
(t)

S (t)
= − ln [S (t)] , (1.4)

where H (t) =
∫ t

0 h (u) du and H
′
(t) denotes the first derivative of the cumulative hazard

function.
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1.3.5 Non-parametric methods

Survival data are summarized through estimates of the hazard and survival function (Le

and Le, 1997, Miller Jr, 2011). The methods used to estimate these functions are known

as Non-parametric or distribution free methods.

The aim of non-parametric estimation of the survival function is to come up with graph-

ical summaries of the survival times for a given group of individuals considered in the

study. These graphical summaries are for the hazard and the survival function. After

estimating the survival function, the median and other percentiles can be obtained which

help to give a more detailed analysis (Cleves et al., 2008, Hanagal, 2011).

Given survival curves of two groups, we can as well compare the two groups of individuals

by plotting them on the same graph and then observe if there exists a difference between

the curves (whether one group has a higher chance of survival than the other group).

However, this is an informal procedure because sometimes the difference between the

two groups may exist but not significant. A more formal procedure is by using the

Logrank test which is the most powerful test against the alternatives that the hazard

functions are proportional (Fleming and Harrington, 2011, Hanagal, 2011).

1.3.6 The Empirical survival function

Assuming that in the given sample of survival data none of the data points is censored

and that also there exists no tied observations. The survival function denoted as S (t)

which is the probability that an individual survives beyond time t can be estimated by

using the empirical survival function. The empirical function which is the estimate to

the survival function in absence of censored data denoted as Ŝ (t) is given by:

Ŝ (t) =
Number of individuals with survival time ≥ t

Number of individuals in the data set
, (1.5)

Ŝ (t) = 1 for all values of t before the first failure and Ŝ (t) = 0 after the final failure or

occurrence of event.
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The estimated survival function (Ŝ (t)) is observed to be constant between two adjacent

times and therefore its plot turns out to be a step function, this function decreases

immediately after each observed event time (Collett, 2003, Hosmer Jr et al., 2011).

1.3.7 The Kaplan-Meier estimator

The Kaplan-Meier estimator also known as the product limit estimator was presented by

Kaplan and Meier (1958). It gives a simple and quick estimate of the survival function in

the presence of censoring. It uses the exact failure time (Collett, 2003, Hanagal, 2011).

The standard error is therefore given by:

s.e
(
Ŝ (t)

)
= ŝ (t)

[
k∑
i=1

di
ni (ni − di)

] 1
2

.

The cumulative hazard function

From equation (1.4), if Ŝ (t) is the Kaplan-meier estimate to the survival function, then:

Ĥ (t) = −
k∑
i=1

ln

(
1− di

ni

)
,

is an estimate to the cumulative hazard function.

From Taylor series expansion:

ln

(
1− di

ni

)
= −di

ni
−
[
di
ni

]2

+ . . . ≈ −di
ni
,

by ignoring higher order terms. The estimate to the cumulative hazard function is

therefore given as:

Ĥ (t) =

k∑
i=1

di
ni
.
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1.4 Study objectives

The broad objectives of the thesis is to review survival analysis techniques with frailty

models and apply these methods on Uganda Demographic Health Survey data for the

year 2011 to examine factors affecting under-five child mortality in Uganda and to also

examine whether unobserved heterogeneity or unobserved covariates help to explain the

under-five children mortality in Uganda using both the Frequentist and the Bayesian

approach.

The specific objectives of this study is to apply survival analysis techniques including

frailty models on the 2011 Demographic Health Survey data for Uganda;

• To identify the factors responsible for the under-five child mortality in Uganda

• To examine the effects of unobserved covariates (frailty) on under-five mortality

both at family and community level.



Chapter 2

Important statistical distributions

for a time to event random

variable

The parametric methods used in survival analysis are based on distribution functions

which allow for only positive random variables. This is because time to an event T is a

positive random variable.

2.1 Parametric methods

There are quite a number of parametric models for survival data. The choice of the

model is sometimes based on the physics of the failure mode (Hanagal, 2011, Hosmer Jr

et al., 2011, Le and Le, 1997) but it is sometimes due to the fact that the model fits the

given survival data. With parametric models one has to make a choice of the distribution

to assume for the given dataset, the following distributions are some of the distributions

that are most often used. These are;

• Exponential distribution;

• Weibull distribution;

• Log-normal distribution;

• Gamma distribution;

• Log-logistic distribution.

13
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Note: All the distributions assumed for survival data have one special characteristic,

that they take on only positive random variables. This is because survival times are

always positive (T ≥ 0).

2.1.1 Exponential distribution

The exponential model is the most simplest of all life distribution models with only one

parameter. The exponential model has got a constant hazard rate. The probability

that an individual will die within a small interval of time ∆t given that the person has

survived up to time t is constant for any time period.

The probability density function of an exponential distribution is given as:

f (t) = λ exp (−λt) , t > 0 λ > 0. (2.1)

The cumulative distribution function denoted as F (t), the probability that an individual

has survived up to time t is given as:

F (t) = 1− exp (−λt) , 0 ≤ t <∞.

The survival function S (t), the probability that an individual survives beyond time t

can be derived from F (t) as follows:

S (t) = 1− F (t) = exp (−λt) . (2.2)

The hazard function denoted as h (t) is given as:

h (t) =
f (t)

S (t)
= λ. (2.3)

And the cumulative hazard function is given as below:

H (t) = λt.

Note: The exponential distribution has a most important property called the loss of

memory property because it has a constant hazard rate. The exponential model is
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most suitable in modelling lifetime data of engineering applications. For example the

probability that a light bulb will blow today given that it did not blow yesterday is

the same as the probability that the bulb will blow tomorrow given that it did not

blow today therefore in such a problem, the hazard function can be modelled using the

exponential hazard. The exponential model is unrealistic when it comes to lifetime data

which involves ageing which therefore calls for a more general model.

(a) The exponential density function for differ-
ent values of the scale parameter.

(b) Survival Function.

(c) The exponential hazard and its cumulative
hazard function.

Figure 2.1: The probability density, the survival function and the cumulative hazard
functions of the Exponential distribution.
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2.1.2 Weibull distribution

The exponential distribution is not applicable in some of lifetime data like Biological

and social process because it assumes a constant hazard rate. The Weibull distribution

is the most flexible and more general distribution, it has got two parameters; one of the

parameters is called the scale parameter and the other the shape parameter.

The probability density function of the Weibull distribution is formulated in a number

of similar forms but one of the commonly used version is given by:

f (t) =
α

t

[
t

λ

]α
exp

(
−
[
t

λ

]α)
, 0 < t <∞, λ, α > 0. (2.4)

where λ and α are the scale and shape parameters respectively.

The Weibull distribution is a more general distribution compared to the exponential

distribution, because when α = 1, the Weibull distribution simplifies to an Exponential

distribution.

The cumulative density function denoted as F (t) is given as:

F (t) = 1− exp

(
−
[
t

λ

]α)
.

The survival function S (t) is given as:

S (t) = exp

(
−
[
t

λ

]α)
. (2.5)

It follows that the hazard rate is given by:

h (t) =
α

λ

[
t

λ

]α−1

. (2.6)

The cumulative hazard function for the Weibull hazard distribution is given by:

H (t) =

∫ t

0
h (u) du =

[
t

λ

]α
.
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(a) The probability density function of the
Weibull distribution for different values of the

shape and scale parameter. (b) The Weibull survival function.

(c) The shapes of the Weibull hazard functions
for some selected values of the shape parameter.

Figure 2.2: The probability density, the Survival function and the Hazard functions
of the Weibull distribution.

The Weibull model can fit a range of survival data because of its flexibility. When α = 1

the shape parameter is set to one, the failure rate is a constant.

When α > 1, the failure rate is increasing and when α < 1, we have a decreasing failure

rate.

Thus the Weibull probability model can be used to model survival times of populations

whose hazard rate is assumed to be decreasing, increasing or constant.

2.1.3 Log-normal distribution

According to Hanagal (2011), the Log-normal distribution is a very flexible distribution

just like the Weibull distribution therefore it can fit many types of failure data. The

two parameter Log-normal distribution with scale parameter σ and shape parameter τm
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(median time) has a probability density function give as below:

f (t) =
1

σt
√

2π
exp

(
− 1

2σ2
[ln t− ln τm]

)
, 0 < t <∞. (2.7)

The survival function is given by:

S (t) = 1− F (t) = 1− Φ

[
ln t− ln τm

σ

]
,

where F (t) =
∫ t

0
1

σx
√

2π
exp

(
− 1

2σ2 [lnx− ln τm]
)
dx = Φ

[
ln t−ln τm

σ

]
and Φ (z) denotes

the standard normal cumulative distribution function.

The hazard rate denoted as h (t) is derived as follows:

h (t) =
f (t)

S (t)
=

[
1

tσ
√

2π
exp

(
− [ln t−ln τm]2

2σ2

)]
1− Φ

[
ln t−ln τm

σ

] .

The three parameter form of the Log-normal distribution is more general because it has

got a third parameter θ known as the shift or location parameter.

Given that the failure times follow a Log-normal distribution, the natural log of the

failure times have a normal distribution with mean ln τm and standard deviation σ.

This fact makes it easy to work with data assumed to follow a Log-normal distribution

because you just have to take the logarithm of the failure and censor times and then

analyse the data as normally distributed data. It is a flexible distribution and because

of this property it can easily be transformed into a normal distribution. This makes it

easy to work with this distribution mathematically and also due to the presence of many

good software analysis programmes to deal with normal data.

2.1.4 Log-logistic distribution

The survival time T has a Log-logistic distribution if lnT has a Logistic distribution.

The probability density function of a Log-logistic distribution is given by:

f (t) =
αλ [αt]λ−1[
1 + [αt]λ

]2 , α > 0, λ > 0 and t > 0. (2.8)
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The survival function is given as:

S (t) =
1

1 + [αt]λ

and the hazard function is given as below:

h (t) =
αλ [αt]λ−1

1 + [αt]λ
.

When λ > 1 (the scale parameter), the Log-logistic hazard first increases and it becomes

a maximum at t = [λ−1]
1
λ

α
1
λ

and it then declines, when λ = 1, the hazard starts at α
1
λ

and it declines monotonically and when λ < 1, the hazard is very big as t → 0 and it

then declines towards zero as t → ∞ (as time increases). The Log-logistic distribution

therefore can be used to describe a hazard that first increases and later decreases or a

monotonically decreasing hazard. For example, the hazard of an individual after a major

surgery like a Kidney transplant increases just after surgery due to the open wounds

and it later declines as the individual responds to the treatment.
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(a) The probability density function of the Log-
logistic distribution for different values of the

shape and scale parameter. (b) The Loglogistic survival function.

(c) The shapes of the Log-logistic hazard func-
tions for some selected values of the shape pa-

rameter.

Figure 2.3: The probability density, the Survival function and the Hazard functions
of the Log-logistic distribution.
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Regression models in survival

analysis

3.1 Introduction

In most cases, the survival time data is presented together with the other factors that

help to explain the survival time. These factors may include; age, sex, health status

among others . With this additional information one may decide to model the survival

time including such information in the model, the resulting model after considering the

available information (factors/ covariates) is known as a regression model. A regression

model can be parametric or semi-parametric. Consider a vector of covariates XXX, in this

case the regression model linking the covariates to the hazard is given by:

h (t|XXX) = h0 (t) η
(
XXXTβββ

)
,

where h0 (t) is the baseline hazard, βββ is the vector of the regression parameters and

η
(
XXXTβββ

)
is the link function. The link function has to be a positive function since

the hazard function is always positive. The best choice for the link function is the

exponential

η (X) = exp (X) > 0, ∀X. (3.1)

From equation (3.1),

h (t|XXX) = h0 (t) exp
(
XXXTβββ

)
.

21
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When we specify the distribution of the baseline hazard function, the resulting model

is known as a parametric regression model and such a model takes on the name of the

distribution assumed. For example;

• The Exponential regression model;

• The Weibull regression model and

• others.

3.1.1 The Exponential and Weibull regression models

The exponential model has a constant hazard

h0 (t) = λ.

Give a vector of covariatesXXX, the regression model for the hazard function is given

by:

h (t,XXX) = λ exp
(
XXXTβββ

)
.

In a similar way the Weibull regression model for the hazard function can be

derived. In this case,

h0 (t) = αλαtα−1.

The Weibull regression model for the hazard as a function of covariates is given

by:

h (t,XXX) = αλαtα−1 exp
(
XXXTβββ

)
,

where βββ represents a vector of regression coefficients.
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3.1.2 Semi-parametric models

3.1.2.1 The Cox-proportional hazard model

The most commonly used regression model is the Cox-proportional hazard model. With

this model the distribution for the baseline hazard function is not specified and that is

why it is called a semi-parametric model. The Cox-proportional hazard model is a more

general model in modelling the hazard and survival function because it does not place

distributional assumptions on the baseline hazard. The Cox model was introduced by

Cox (1972). It has the from:

h (t|XXX) = h0 (t) exp
(
XXXTβββ

)
.

The measure of the effect of the given covariates on survival time is given by the hazard

ratio denoted as HR. Consider a categorical variable with two levels say X = 1 and

X = 0, then the hazard ratio for the two groups is defined as:

HR =
h (t|X = 1)

h (t|X = 0)
= exp (β) .

When HR = 1, it implies that the individuals in the two categories are at the same risk

of getting the event, when HR > 1, it implies that the individuals in the first category

(X = 1) are at a high risk of getting the event and if HR < 1, the individuals in the

second category (X = 0) are at a high risk of getting the event.

The Cox-proportional hazard model assumes a proportional hazard this therefore implies

that the model can not be used in the situation where the assumption is violated.

3.2 Estimation of unknown parameters in both parametric

and semi-parametric regression models

To demonstrate how to determine the estimates of the unknown parameters in both

parametric and semi-parametric regression models we used the most common model in

survival analysis, the Cox-PH model.

The main objective in fitting the Cox proportional hazard model is to come up with es-

timates of the regression parameters (βββ
′
s). Assuming that there are no tied event times,
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Cox (1972) described how to estimate the regression parameters (βββ
′
s) by maximising

the partial likelihood given by:

L (βββ) =
n∏
i=1

 exp
(
XXXT
i βββ
)∑

j∈R(ti)
exp

(
XXXT
j βββ
)
δi ; i = 1, 2, . . . , n; j = 1, 2, . . . ,m, (3.2)

where R(ti) = {j : tj ≥ ti}, denotes the risk set at time ti, n represents the number of

individuals in the data set and m the observed survival times. Only event times con-

tribute their factor to the numerator but both the censored and uncensored observations

are included in the denominator where the sum over the risk set includes all individuals

who are still at risk just before time ti. It is easy to work with the partial log-likelihood

which is given by;

l (βββ) = ln (L (βββ)) =
n∑
i=1

δδδi
(
XXXT
i βββ
)
−

n∑
i=1

δδδi ln

 ∑
j∈R(ti)

exp
(
XXXT
j βββ
) . (3.3)

Let β̂ββ, denote the maximum partial likelihood estimate for βββ obtained by maximising

the partial log-likelihood function (3.3), the first derivative of l (βββ) with respect to βββ is

called a vector of efficient scores and is given by:

U (βββ) =
dl

dβ
= XXXTδδδ −

n∑
i=1

δδδi

∑
j∈R(ti)

exp
(
XXXT
j βββ
)
XXXj∑

j∈R(ti)
exp

(
XXXT
j βββ
) , (3.4)

where δδδ = [δ1, . . . , δn]T denotes the vector of censoring indicators and XXX is the n × p
matrix of covariate values with the jth row containing covariates of the jth individual

(XXX(j)). To calculate the maximum likelihood estimates β̂ββ, we solve a nonlinear system

U (βββ) = 0 and we use the Newton-Raphson algorithm (Jennrich and Robinson, 1969).

The information matrix I (βββ) is given by the negative of the second derivative of l (βββ).

I (βββ) = − d
2l

dβ2
. (3.5)

For large samples, the maximum likelihood estimate β̂ββ is known to follow asymptotic

p-variate normal distribution:

I (βββ)
1
2 {β̂ββ − βββ} →n→∞ N [000, Ip] . (3.6)
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The inverse of the information matrix I−1
(
β̂ββ
)

is a consistent estimate of the covariance

matrix of β̂ββ. It is used to construct confidence intervals for the components of βββ.

3.3 Drawing inference on the hazard ratios and the regres-

sion parameters in regression models.

Aalen and Gjessing (2008a) argues that to test for a simple null hypothesis, one may

use the likelihood based tests. These tests include; The Likelihood ratio test, Wald’s

test and the Score test. These tests are asymptotically equivalent and they all follow

a chi-square distribution with p degrees of freedom. Where p is the dimension of the

vector of the regression parameters.

Assume that βββ is the vector consisting of regression parameters, we want to test the

hypothesis that H0 : βββ = βββ0 against Ha : βββ 6= βββ0. Where βββ0 is known.

• The Likelihood ratio test is given by:

TLR = 2
[
l
(
β̂ββ
)
− l
(
β̂ββ0

)]
.

Under the null hypothesis, the asymptotic distribution of TLR is χ2
p. We calculate

the p−value at tail probability of the χ2
p distribution as P

(
χ2
p ≥ TLR

)
.

• The Wald test

The Wald test statistic has a quadratic form:

W =
(
β̂ββ − βββ

)′
I
(
β̂ββ
)(

β̂ββ − βββ
)
.

The test statistic has a chi-square distribution with p degrees of freedom, where

p is the dimension of the information matrix I (βββ). In order to conduct a one-

sided test, we compare W to χ2
1−α at the α-level of significance. Asymptotically,

β̂ββ follows a a standard normal distribution that is.

β̂ββ∼N
[
βββ, I−1

(
β̂ββ
)]
.

Taking the square root of W , we get a standard normal statistic,

Z =
β̂ββi − βββ

s.e
(
β̂ββ
) ∼N (0, 1) ,
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with

s.e
(
β̂ββ
)

=
1√
I
(
β̂ββ
) .

Using this statistic together with the standard error, we can conduct a two-sided

test of the hypothesis about a single parameter βββi and construct its confidence

intervals at the α−level of significance.

According to Dobson (2002) the statistic

Z∗i =
β̂ββi

s.e
(
β̂ββi

) ,
is called a Wald test statistic with a null hypothesis

H0 : βββi = 000.

Given that β̂ββi is the estimate of the regression parameter βββi , then ĥi = exp (βββi) is

the hazard ratio estimate of a covariate Xi. By using the Delta method described

in Appendix A, the variance of ĥi is given by:

V ar
(
ĥi

)
= ĥi

2
V ar

(
β̂ββi

)
.

The 100 (1− α) for ĥ is given by:

ĥ± s.e
(
ĥ
)
Z1−α

2
.

If 1 lies within the confidence interval of ĥ, then the variable is non-significant or

has no effect on the response variable.

3.4 Variables and best fitting model selection

Schoenfeld Residuals

In order to fit the standard cox-proportional hazard model, one has to be aware of one of

its main assumptions. The model assumes that the hazard of the different strata formed

by the levels of the covariates are proportional (Abeysekera and Sooriyarachchi, 2009,

Collett, 1994, Cox, 1972). One can use the Kaplan-Meier plots to test for this assumption

but these graphical techniques may be inadequate in cases where the violation of the

proportional hazard assumption is marginal.
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Kleinbaum et al. (2002) presents the Goodness of fit (GOF) testing approach. This

approach gives a test statistic and a p-value for assessing the proportional hazard as-

sumption. This test enables a researcher to make an objective decision than when using

the graphical method. A number of tests have been presented in literature but for this

research we used the one discussed by Schoenfeld (1982). The schoenfeld residuals are

further discussed by Grambsch and Therneau (1994). The idea behind this statistical

test is that if the PH assumption holds for a particular covariate, then the schoenfeld

residuals for that covariate will not be related to the survival time.

Akaike information criteria

According to Akaike (1987), the empirical principle of parsimony in a statistical model

building dictates that the increase in the number of parameters should be stopped as

soon as it is seen that further increase does not produce a significant improvement of

the fit of the model to the data. He suggested the Akaike Information Criteria (AIC)

given by:

AIC = −2 ln (L) + 2number of parameters

as the measure of GOF of a model defined with parameters estimated by the maximum

likelihood method. The value of the AIC will always increase if an unnecessary variable

is included in the model. This therefore implies that the smaller the AIC the better the

model.
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Application to UDHS 2011

4.1 Data description and exploratory analysis

The data for this study is from the 2011 Uganda Demographic Healthy Survey (UDHS)

which was collected from may 2011 through December 2011 (DHS, 2012). This is the

fifth comprehensive survey conducted in Uganda as part of the world wide demographic

and health survey, the first one having been done in 1988-1989 (Macro, 2004). The

surveys were funded by USAID, UK, department of international development (DFID),

The president’s Emergency plan for AIDS Relief, the Government of Uganda, the Health

Partnership Fund, the United Nations Children’s Fund (UNICEF), the United Nations

Population Fund (UNFPA) and the government of Japan with the technical assistance

of ORC Macro, Calverton, Maryland, USA through its project MEASURE DHS.

A representative sample of 10,086 for the 2011 households was randomly selected to

participate in the survey, and these households contained 9,247 women aged between

15-49 years of age (DHS, 2012). These women were interviewed by distributing ques-

tionnaires and information on their birth history was recorded, the information on the

birth history includes;

• Child survival status ( alive or dead );

• Male or female;

• Age at the day of interview if the child is alive and if dead, the age at death;

• Year of birth.

28
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Information on other characteristic of the woman recorded in the survey were the ed-

ucation level, type of occupation, place of residence, partner’s education, household’s

income and many other characteristics.

Out of the 9,247 women interviewed, it should be noted that only 6,692 women were

considered for this research because we excluded all births in the year 2011. 62 of the

children born in the period of 2006-2010 were recorded as still births.

The survival time for the children who were dead and those still alive was the age of the

child in months and it was calculated as:

survival time for children still alive =
(Date of interview −Date of birth)

12
,

survival time for children who are dead =
Age at death (in years)

12
,

where date of interview, date of birth and age at death are all provided in the data set.

The factors affecting under-five child survival from the data set were selected based on

the paper by Mosley et al. (1984). These factors were categorised into the following

four categories; social demographic, social economic, environmental and proximate or

biological.

The social demographic factors include;

• Mother’s age at first birth;

• Sex of household head;

• Religion;

• Mother’s age group.

The social economic factors include;

• Social economic status of the family;

• Mother’s education;

• Partner’s education.

The environmental factors include;
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• Source of drinking water;

• Type of place of residence.

The proximate and biological determinants include;

• Type of birth (multiple or single birth);

• Sex of the child;

• Birth order;

• Previous birth interval.
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The table below shows the distribution of deaths of the children under the age of five

for each factor level included in the analysis;

Table 4.1: Distribution of births and deaths by survival determinants.

% of deaths Child is dead N(Total)

Mother’s education level
Illiterate Mothers 7.7 344 4493
Mother completed primary 6.4 119 1868
Secondary and higher 4.2 14 331
Partner’s level of education
Illiterate Father 7.7 266 3446
Father completed primary 6.9 170 2457
Secondary and higher 5.2 41 789
Birth status
Singleton births 6.7 431 6479
Multiple births (Twins) 21.5 46 213
Sex of the child
Males 7.8 258 3325
Females 6.3 212 3367
Type of place of residence
Urban 5.8 81 1389
Rural 7.5 396 5303
Wealth index
Poorest 7.5 131 1754
Poorer 8.5 112 1317
Middle 7.2 86 1195
Richer 6.9 72 1041
Richest 5.5 76 1385
Children ever born
One child 3.3 20 601
Two children 7.1 81 1146
Three children 6.6 67 1020
Four and more 7.9 309 3925
Birth order number
First child 7.6 95 1249
Second to Third child 5.6 117 2091
4th-6th child 7.1 149 2098
7th+child 9.2 116 1254
Religion
Catholics 7.4 217 2939
Muslims 7.5 69 921
Other Christians 6.8 187 2758
Others 5.4 4 74
Type of toilet facility
Flush toilet 4.1 5 121
Pitlatrine 6.9 376 5407
No-facility 8.2 96 1164

% of deaths Child is dead N(Total)

Mother’s occupation
Not-working 6.9 93 1353
Sales and Services 6.5 110 1699
Agriculture 7.5 274 3640
Births in past 5 years
1-Birth 4.5 93 2075
2-Birth 6.5 227 3515
3-Births 13.6 140 1027
4-Births 22.7 17 75
Births in past 1 year
No-births 6.8 309 4521
1-Birth 7.6 163 2134
2-Births 13.5 5 37
Children Under 5 in Household
No-child 34.9 101 289
1-Child 10.5 178 1689
2-Children 4.9 146 2977
3-Children 2.5 35 1384
4-Children 4.8 17 353
Mother’s age group
Less than 20 years 8.9 29 325
20-29 years 6.5 235 3611
30-39 years 7.4 164 2218
40 years+ 7.9 49 538
Birth order number
First child 7.6 95 1249
Second to Third child 5.6 117 2091
4th-6th child 7.1 149 2098
th+child 9.1 116 1254
Sex of household head
Male 6.7 341 5112
Female 8.6 136 1580
Source of drinking water
Piped water 5.9 76 1280
Borehole 7.3 216 2947
Well 6.7 93 1354
Surface/Rain/Pond/Lake/tank 8.5 70 826
Other 7.7 22 285
Age at first birth
Less than 20 years 7.5 347 4638
20-29 years 6.2 127 2026
30-39 years 12.0 3 25
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In this study most of the variables were categorical. The other variables which were not

categorical, their categorizations were adopted from previous research and the paper by

(Bailey, 1988, Bolstad and Manda, 2001, Croke, 2012, Mbonye et al., 2012, Mosley et al.,

1984).

Table (4.1) shows that among the illiterate mothers, out of the 4493 children born

7.7% died before celebrating their fifth birthday which was the highest death proportion

compared to other education levels of mothers. These were followed by mothers who

had completed primary with 6.7% of the deaths. The category of mothers with the least

percentage of deaths was those who had acquired secondary and higher education with

4.2% of deaths. The results in the table also show that the number of men who have

achieved secondary and higher education is more than double that of women. Out of

the 789 children born in families where the father is illiterate 7.7% of the children died

before reaching the age of five. The families where the father had achieved secondary

and higher education, 6.2% of the children had died before reaching the age of five

which was the least death proportion compared to the other levels of father’s education.

Children born as a result of multiple births recorded the highest percentage of death

compared to those as a result of a singleton birth. Out of the 213 born 21.5% had died

before the age of five and this was the highest proportion compared those born out of

a singleton birth which recorded 6.7% of the death. Most of the children in this sample

were born to women who resided in rural areas. In this sample 5303 children were born

to mothers who resided in the rural areas and they also recorded the highest percentage

of deaths of 7.5% compared to those born of parents who resided in urban areas which

was recorded to be 5.8% of the deaths. Families with no decent toilet facility recorded

the highest percentage of children under the age of five deaths of about 8.2% compared

those families with decent toilet facilities like a pit-latrine and flash toilets at 6.9% and

4.1% of the deaths respectively. The table also summarises the distribution of deaths

and births of children in all the other factors included in this study.

Non-parametric exploratory analysis methods

Given that ti represents the time to death of a child under-five years of age (age of the

child) in the Uganda DHS data set 2011, non-parametric methods which are mainly

graphical were used to describe how the risk of death for the children under-five is

distributed across the strata of some of the chosen covariates. Note that what we meant

by time to death is actually years of life until death for the child under the age of five

years. This time is recorded in months for our analysis. In other words it is not a typical
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follow up study. The graphs produced below are Kaplan-Meier and Cumulative hazard

plots for a few selected factors affecting under-five child survival in Uganda from the

UDHS 2011 data set.

(a) Mother’s age at first birth. (b) Mother’s education level.

(c) Sex of the child.

Figure (4.1b) shows that children born of mothers with secondary and higher education

are at a higher chance of surviving to the age of five years than children born of mothers

with primary or no education at all. The survival curve for children with mothers

who have acquired secondary and higher education is above the survival curve of those

children born of mothers who have primary or illiterate. From Figure (4.1c) one sees

that a female child is at a higher chance of survival than a male child. From Figure

(4.1b) one sees that mothers whose age at first birth birth was below 20 years were at a

higher probability of having their children dead before reaching the age of five years, this

is because the survival curve of this category of children was below the one for children

whose mother’s age at first birth was between the age of 20− 29years. This is probably

due to the ill preparedness of these mothers on parenting plus birth complications. The

probability of surviving becomes less for children born of mothers whose age at first

birth is between 30 − 39years, this is probably due to the birth complications involved

with mothers of this age group.
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(d) Mother’s education. (e) Sex of the child.

(f) Family wealth index.

Figure (4.1d) shows the a cumulative hazard curve for the children mother’s level of

education. The cumulative hazard curve for children whose mothers have secondary

and higher education is below the rest of the other children whose mothers have a

lower education level which indicates a lower probability of death for children from such

mothers and an increased probability of death for the rest of the other children whose

mothers had primary or no education at all. The male child had an increased probability

of death, and this can be seen from the cumulative hazard curve being higher than that

of the female child under the age of five see Figure (4.1e). Figure (4.1f) indicated that

children born from the richest families were exposed to a lower probability of death

before reaching the age of five compared to the rest of the children from richer, middle,

poorer and poor families. Figure (4.1f) shows that the curve for the cumulative hazard

of death for children in rich families is below all the other curves.

4.1.1 Fitting a standard Cox-proportional hazard model on the 2011

UDHS data

Suppose that t = (t1, t2, . . . , tn)
′

are n independent identically distributed survival time.
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The Proportional Hazard Model which stems from the work of the Cox (1972), assumes

that for individuals with a vector of covariate XXX = (X1, X2, . . . , Xn), the hazard rate at

time t is given by:

h (t|XXX) = h0 (t) exp
(
XXXTβββ

)
.

Assuming that the survival times or time to death of the children under the age of five

in the 2011 UDHS data are identically and independently distributed, the CPH model

with covariates such as; mother’s education, father’s education, total number of children

ever born, sex of the child, type of place of residence, wealth index, birth order, age

at first birth, previous birth interval, number of births in the past one year, number of

births in the past five years, mother’s age, sex of the household head, source of drinking

water, mothers occupation and religion was fitted on the 2011 UDHS data. A total of

6692 survival times for the children under the age of five were considered in this study

( n = 6692) together with the survival indicator which helps us to identify whether the

survival time was censored or observed. The results are presented in the table below.

Results

The Figures (4.1a), (4.1b) and (4.1c) present Kaplan-Meier curves that show how the

risk of death of children under-five years of age is distributed across the categories of

a given covariates. However, it is not possible to include all the Kaplan-Meier plots in

this thesis for all the covariates included in the study but by fitting a univariate Cox-

proportional hazard model, the hazard ratios have enough information to give about the

distribution of the hazard on a given covariate.

Table (4.2) presents the unadjusted hazard ratios, the p-values and the 95% confidence

intervals from fitting the univariate cox-proportional hazard model. The variables that

were found significant by using the likelihood ratio test at 0.05 level of significance in-

clude; social economic factors (mothers education, father’s education and wealth index),

demographic factors (type of place of residence, sex of the household head sex of the

child, total children ever born, number of births in the last one year and number of

births in the past five years) and the biological factors (type of birth, birth order and

the previous birth interval) are presented in the table.

Children born of mothers with secondary and higher education had a low risk (HR=0.56,

p-value 0.03) of dying before reaching the age of five years compared to those children



Chapter 4. Application to UDHS 2011 36

Table 4.2: The univariate standard Cox-ph model.

Variable Unadjusted HR[95%CI] p-value

Mother’s
educa-
tion
Illiterate 1 . . .
Primary 0.83 [0.68, 1.03] 0.09
secondary
and higher

0.56 [0.33, 0.95] 0.03

Father’s
educa-
tion
Illiterate 1 . . .
Primary 0.89 [0.74, 1.08] 0.25
Secondary
and higher

0.67[0.48, 0.92] 0.015

Sex of
the child
Male 1 . . .
Female 0.83[0.69, 0.99] 0.04
Total
num-
ber of
children
ever
born
1.child 1 . . .
2. 2.04[1.25, 3.32] <0.01
3. 1.84 [1.12, 3.04] 0.02
4+. 2.22[1.41, 3.48] <0.01
Type of
place of
residence
Rural 1 . . .
Urban 1.29[1.01, 1.63] 0.04
Wealth
index
Poorest 1 . . .
Poorer 1.147[0.89, 1.48] 0.29
Middle 0.96[0.73, 1.26] 0.78
Richer 0.93[0.70, 1.24] 0.64
Richest 0.73[0.55, 0.97] 0.03
Birth or-
der
1St 1 . . .
2nd 0.72[0.55, 0.95] 0.02
3rd 0.92[0.71, 1.19] 0.53
4th+ 1.22[0.93, 1.59] 0.15
Age at
first
birth
< 20 1 . . .

20-29 0.84[0.68, 1.02] 0.08
30+ 1.52[0.49, 4.73] 0.47
Previous
birth
interval
< 2yrs 1 . . .

2yrs 0.69 [0.54, 0.87] <0.01
3yrs 0.66[0.49, 0.90] 0.01

Variable Unadjusted HR [95%CI] p-value

4yrs + 0.62[0.45, 0.86] <0.01
Number
of births
in the
past one
year
No birth 1 . . .
1 birth 1.18[0.98, 1.43] 0.08
2 2.34[0.97, 5.67] 0.06
Number
of births
in the
last five
years
1 births 1 . . .
2 births 1.45 [1.14, 1.85] <0.01
3 births 3.11[2.39, 4.05] <0.01
4+ 5.70[3.40, 9.56] <0.01
Mother’s
age
< 20 1 . . .
20−29yrs 0.66[0.45, 0.98] 0.04

30− 39yrs 0.74[0.50, 1.10] 0.14
40+ 0.90 [0.57, 1.43] 0.67
Sex of
house-
hold
head
Male 1 . . .
Female 1.30 [1.07, 1.59] 0.01
Source of
drinking
water
Piped wa-
ter

1 . . .

Borehole 1.24[0.96, 1.62] 0.1
Well water 1.17 [0.86, 1.58] 0.32
Surface/pond/
lake/Rain/etc1.44 [1.04, 1.98] 0.03
Others 1.32 [0.82, 2.13] 0.25
Mother’s
occupa-
tion
Not work-
ing

1 . . .

Sales and
Services

0.93[0.71, 1.23] 0.61

Agriculture 1.08 [0.86, 1.37] 0.50
Type of
birth
single
birth

1 . . .

Multiple
births

3.66 [2.69, 4.96] < 0.01

Religion
Catholic 1 . . .
Muslim 1.01[0.77, 1.33] 0.94
Other
Christians

0.91 [0.75, 1.11] 0.37

Others 0.717[0.27, 1.93] 0.51

born of mothers who had not even achieved the basic primary education. The results

about the mother’s education are in agreement with the father’s education, the risk of

death of a child under the age of five born in a family with a father who has attained
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secondary and higher education was at a lower risk of dying (0.67, p-value 0.015) com-

pared to those with fathers who have not acquired even the basic primary education.

A Male child under the age of five years had a higher risk of death compared to that

of a female child. The hazard of a male child dying before reaching age five was 20%

(HR=1.20, p-value 0.04) higher than that of a female child under age five.

However, not all the variables presented in Table (4.2) satisfy the proportionality hazard

assumption. In order to fit the multiple covariate cox-proportional hazard model, we

need to first test for the proportionality hazard assumption. To test for the propor-

tionality hazard assumption, we based the test on the scaled Schoenfeld residuals and a

command cox.zph in the R software is used.

Table 4.3: Testing the proportional hazard assumption using the scaled Schoenfeld
residuals by Grambsch and Therneau (1994) see appendix 5.

Variable (Determinant) χ2(df) p-value

Mother’s education
Illiterate 1 . . .
Primary 4.83 0.03
secondary and higher 7.52 <0.01
GLOBAL 11.25 < 0.01
Father’s education
Illiterate 1 . . .
Primary 0.51 0.48
Secondary and higher 0.86 0.35
GLOBAL 1.12 0.57
Sex of the child
Male 1 . . .
Female 1.99 0.16
Total number of children ever born
1.child 1 . . .
2. 5.39 0.02
3. 0.44 0.51
4+. 0.26 0.61
GLOBAL 14.61 < 0.01
Type of place of residence
Rural 1 . . .
Urban 8.43 < 0.01
Wealth index . . .
Poorest 1 . . .
Poorer 0.17 0.7
Middle 0.00 0.98
Richer 6.94 < 0.01
Richest 2.26 0.13
GLOBAL 9.29 0.05
Birth order . . .
1St 1 . . .
2nd 0.28 0.59
3rd 6.69 < 0.01
4th+ 2.64 0.10
GLOBAL 8.46 0.04
Age at first birth
< 20 1 . . .

20-29 0.10 0.75
30+ 0.41 0.52
GLOBAL 0.54 0.76
Previous birth interval 1 . . .
< 2yrs Ref

2yrs 1.83 0.18

Variable (Determinant) χ2(df) p-value

3yrs 0.97 0.32
4yrs + 2.53 0.11
GLOBAL 8.69 0.03
Number of births in the past one year
No birth 1
1 birth 0.7 0.40
2 1.24 0.27
GLOBAL 1.81 0.40
Number of births in the last five years
1 births 1 . . .
2 births 0.11 0.75
3 births 0.03 0.86
4+ 5.00 0.03
GLOBAL 5.85 0.12
Mother’s age
< 20 1 . . .
20− 29yrs 0.16 0.69

30− 39yrs 0.63 0.43
40+ 0.08 0.78
GLOBAL 5.58 0.13
Sex of household head
Male 1 . . .
Female 0.07 0.79
Source of drinking water
Piped water 1 . . .
Borehole 0.17 0.68
Well water 0.12 0.73
Surface/pond/
lake/Rain/etc 2.58 0.11
Others 1.82 0.18
GLOBAL 6.55 0.16
Mother’s occupation
Not working 1 . . .
Sales and Services 0.202 0.65
Agriculture 6.88 < 0.01
GLOBAL 14.41 < 0.01
Type of birth
single birth 1 . . .
Multiple births 13 < 0.01
Religion
Catholic 1
Muslim 0.009 0.92
Other Christians 0.73 0.39
Others 1.59 0.21
GLOBAL 2.21 0.53

Table (4.3) shows the results of testing for the proportional hazard assumption and these

results show that mother’s education, total children ever born, type of place of residence,
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Wealth index, birth order, mother’s occupation and type of birth do not satisfy the

proportionality hazard assumption because their p-values are less than 0.05 significance

level from the scaled Schoenfeld residuals test. Based on the scoenfeld residuals, these

factors can not be fitted in the final cox-proportional hazard model to get the adjusted

hazard ratios. Other variables like the sex of the child satisfy this assumption and can

therefore be fitted in the final cox-proportional hazard model.

Table 4.4: The adjusted hazard ratios from fitting the Cox-proportional hazard model
for only the variables that satisfy the proportionality hazard assumption.

Variable Unadjusted HR[95%CI] Adjusted HR[95%CI] p-values

Mother’s edu-
cation
Illiterate 1 1 . . .
Primary 0.83 [0.68, 1.03] . . .
secondary and
higher

0.56[0.33, 0.95] . . .

Father’s educa-
tion
Illiterate 1 1 . . .
Primary 0.89 [0.74, 1.08] 0.92 [0.76, 1.12] 0.43
Secondary and
higher

0.67[0.48, 0.92] 0.72[0.51, 1.01] 0.06

Sex of the child
Male 1
Female 0.83 [0.69, 0.99] 0.83 [0.69, 0.99] 0.04
Total number of
children ever born
1.child 1
2. 2.04 [1.25, 3.32] . . .
3. 1.84 [1.12, 3.04]
4+. 2.22[1.41, 3.48] . . .
Type of place of
residence
Rural 1 . . .
Urban 1.29 [1.01, 1.63] . . .
Wealth index . . .
Poorest 1 . . .
Poorer 1.147 [0.89, 1.48] . . .
Middle 0.96[0.73, 1.26]
Richer 0.93 [0.70, 1.24] . . .
Richest 0.73[0.55, 0.97] . . .
Birth order . . .
1St 1 . . .
2nd 0.72 [0.55, 0.95] . . .
3rd 0.92[0.71, 1.19] . . .
4th+ 1.22[0.93, 1.59] . . .
Age at first
birth
< 20 1 1

20-29 0.84[0.68, 1.02] 0.86[0.69, 1.06] 0.16
30+ 1.52[0.49, 4.73] 1.59[0.51, 5.02] 0.42
Previous birth
interval
< 2yrs 1 . . .

2yrs 0.69[0.54, 0.87] . . .
3yrs 0.66[0.49, 0.90] . . .
4yrs + 0.62 [0.45, 0.86] . . .
Sex of house-
hold head
Male 1 1
Female 1.30 [1.07, 1.59] 1.33[1.09, 1.63] 0.01

Variable Unadjusted HR[95%CI] Adjusted HR [95%CI] p-value

Number of
births in the
past one year
No birth 1 1
1 birth 1.18[0.98, 1.43] 1.22 [1.01, 1.48] 0.04
2 2.34[0.97, 5.67] 2.57[1.06, 6.25] 0.04
Number of
births in the
last five years
1 births 1 . . .
2 births 1.45[1.14, 1.85] . . .
3 births 3.11[2.39, 4.05] . . .
4+ 5.70[3.40, 9.56] . . .
Mother’s age
< 20 1 1
20− 29yrs 0.66[0.45, 0.98] 0.71[0.48, 1.05] 0.08

30− 39yrs 0.74[0.50, 1.10] 0.79 [0.53, 1.19] 0.27
40+ 0.90[0.57, 1.43] 0.99[0.62, 1.59] 0.98
Source of drink-
ing water
Piped water 1 1
Borehole 1.24[0.96, 1.62] 1.12 [0.86, 1.48] 0.39
Well water 1.17[0.86, 1.58] 1.06[0.78, 1.45] 0.69
Surface/pond/
lake/Rain/etc 1.44 [1.04, 1.98] 1.28[0.91, 1.79] 0.15
Others 1.32 [0.82, 2.13] 1.21[0.75, 1.94] 0.44
Mother’s occu-
pation
Not working 1 . . .
Sales and Services 0.93 [0.71, 1.23] . . .
Agriculture 1.08 [0.86, 1.37] . . .
Type of birth
single birth 1 . . .
Multiple births 3.66[2.69, 4.96] . . .
Religion
Catholic 1 1
Muslim 1.01[0.77, 1.33] 1.02[0.77, 1.34] 0.91
Other Christians 0.91 [0.75, 1.11] 0.94[0.77, 1.14] 0.51
Others 0.717 [0.27, 1.93] 0.67[0.25, 1.81] 0.43

Table (4.4) show that sex of the child and number of births in the past one year were

strongly associated with high under five child mortality rates. There was not enough

evidence to conclude that father’s eduction, age of the mother at first birth, source

of drinking water, mother’s age group and religion are strongly associated with high

under-five children mortality rates.
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Table 4.5: The best fitting model selected by the AIC by Akaike (1973) of the standard
cox proportional hazard model.

Variable β(s.e) HR [95%CI] pvalues

Father’s education
Illiterate 1 . . .
Primary -0.09 (0.09) 0.90 [0.75, 1.09] 0.31
Secondary and Higher -0.41 (0.17) 0.66 [0.47, 0.92] 0.014
Sex of the child
Male 1 . . .
Female -0.18 (0.09) 0.83 [0.69, 0.99] 0.04
Number of births in the past one year
No.birth 1 . . .
1.birth 0.20 (0.09) 1.22 [1.01, 1.48] 0.04
2.births 0.922( 0.45) 2.51[1.04, 6.09] 0.04
Household head
Male 1 . . .
Female 0.28 (0.10) 1.33[1.09, 1.62] 0.01
Mother’s age group
less than 20yrs 1 . . .
20-29 -0.38 (0.19) 0.68 [0.46, 1.01] 0.05
30-39 -0.27 (0.20) 0.77 [0.51, 1.14] 0.17
40+ -0.05 (0.24) 0.95 [0.59, 1.51] 0.83

∗∗Best fitting model ∗∗
∗∗ < 0.05, level of significance ∗∗.

Using Akaike’s Information Criterion (AIC) by Akaike (1973), the best fitting standard

cox proportional hazard model consisted of five variables which include father’s educa-

tion, sex of the child, number of births in the past one year, mother’s age group and the

sex of the household head, Table (4.5).

From Table (4.5), there is a enough evidence to conclude that sex of household head,

number of births in the past one year and sex of the child affect under-five children

survival in Uganda. Households headed by women or regarded as broken families showed

a high risk of death for children under the age of five compared to those that are headed

my males. A female child had a low risk of death compared to a male child and this is

attributed to the value most communities in Uganda attach to a female child. A female

child is seen as source of bride price or wealth they are therefore given more care which

may explain why they have an edge over the males.
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Frailty modelling

This chapter seeks to analyse the factors affecting under-five child mortality in Uganda

taking into account any extra heterogeneity present in the data using the so called

frailty models. The frailty term takes into consideration the situation where some of

the children may be exposed to the hazard of death before the age of five more than

the others. This brings about the possibility that due to the unobserved or unmeasured

causes some children are more likely to experience the hazard than others. The frailty

term captures total effects of all factors that influence the child’s risk of death that are

not included in the standard Cox-proportional hazard model presented in chapter 3.

The model presented in this chapter accounts for both observed and unobserved effects.

Nonetheless the ensuing model is still based on the standard proportional hazard model.

Frailty terms enter the Cox proportional hazard model as random effects. The estimated

variance of the frailty effects is used to test if the frailty term is significant. This can

be used to test the variability between individuals with the same cluster for example a

household or community. A zero variance of the frailty term indicates that observations

from the same household or community are independent. A large variance indicates a

large heterogeneity or difference across a given household or community and therefore a

greater correlation among individuals from the same household or community.

In this chapter we therefore present preliminary concepts of the model, the development

and the statistical estimation algorithms which are supported in STATA and R software.

The tables presented at the end of this chapter show the results from the analysis.

5.1 History about frailty models

In recent years, research papers and books have been written to show how one can extend

the proportional hazard models to analyse more complex survival data (Hanagal, 2011,

40
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Vaupel and Stallard, 1979, Wienke, 2009). Among them are the research papers on

frailty models. These models help to explain the relationship between individuals in a

given cluster or the difference among individuals in different clusters. The concept of

frailty was introduced by Vaupel and Stallard (1979) showing that some individuals are

more frail or susceptible or at risk than others although they may appear to be similar

while considering the observable or measurable attributes like sex, age and weight.

A frailty model is a hazard model with a multiplicative frailty factor. The major as-

sumption of a frailty model is that the information about the hidden internal or external

factors is contained in the shape and structure of the hazard function and in the form

of the frailty distribution (Hanagal, 2011).

5.1.1 Model development

In the presence of covariates with a covariate vector represented as XXX, the Cox-proportional

hazard model is:

h (t,XXX) = h0 (t) exp
(
XXXTβββ

)
, (5.1)

where XXX = [X1, X2, . . . , Xn] and βββ = [β1, β2, . . . , βn] are the covariate and regression

parameter vectors respectively.

In the presence of the unobserved components represented by a vector denoted as UUU ,

(5.1) is modified as follows:

h (t,XXX,UUU) = h0 (t) exp
(
XXXTβββ +UUU

)
= h0 (t) exp (UUU) exp

(
XXXTβββ

)
, (5.2)

let ZZZ = exp (UUU) then:

h (t,XXX|ZZZ) = ZZZh0 (t) exp
(
XXXTβββ

)
. (5.3)

Equation (5.3) is what is known as a frailty model and ZZZ is a variable representing the

frailty term.

The frailty models are in two different forms;

1. The univariate frailty model;

2. The multivariate frailty model.
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5.1.2 The univariate frailty model

Given that an individual child under-five years of age i, i = 1, 2, . . . , n has a survival

time denoted as ti, the covariate vector XXXi, with a frailty term denoted as zi; Vaupel et

al (1979) stated that the hazard function of the individual i is given as:

hi (ti,XXXi|zi) = zih0 (ti) exp
(
XXXT
i βββ
)
. (5.4)

When zi > 1 (frailty is greater than one), the individual i is said to be at an increased

risk of failure and therefore more frail than an average individual in that given cluster

or group. On the other hand if zi < 1, the individual is less frail and therefore tends to

survive longer. This implies that a more frail individual experiences failure earlier on

than the less frail individual.

The survival function of individual i conditional on frailty is given by:

Si (ti,XXXi|zi) = exp

(
−zieXXX

T
i βββ

∫ ti

0
h0 (s,XXXi|zi) ds

)
= exp

(
−ziH0 (ti) exp

(
XXXT
i βββ
))
,

(5.5)

H0 (ti) =
∫ ti

0 h0 (s) ds is the cumulative baseline hazard function. The survival function

given in (5.5) is at an individual level and is therefore unobservable (Wienke, 2009).

The unconditional survival function of an individual i at the population level is given

as the mean of the survival function conditional on frailty with respect to the frailty

distribution:

Si (ti,XXXi) = E [Si (ti,XXXi|zi)] = E
[
exp

(
−zi exp

(
XXXT
i

)
H0 (ti)

)]
.

5.1.3 The distributions of frailty

In the previous section we have noted that to determine the unconditional survival

function of an individual one needs to know the frailty distribution and this is the same

for the unconditional hazard.
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Given the conditional hazard of an individual i, the unconditional hazard (Average

hazard)of an individual i is given by:

h̄i (ti,XXXi) =

∫ ∞
0

zih0 (ti) exp
(
XXXT
i βββ
)
fz (zi) dzi,

assume that h0 (ti) is a constant, then:

h̄i (ti,XXXi) = h0 (ti) exp
(
XXXT
i βββ
) ∫ ∞

0
zifz (zi) dzi,

= h0 exp
(
XXXT
i βββ
)
z̄i,

where z̄i =
∫∞

0 zifz (zi) dzi is the mean frailty.

Assuming one covariate XXXi representing a variable gender which is 1 = Female, 0 =

Male:

h̄i (ti,XXXi) = h0 exp (βββ) z̄i. (5.6)

Equation (5.6) shows that the average hazard or the unconditional hazard depends on

the frailty distribution.

Most of the researchers assume a Gamma Frailty but frailty can be assumed to follow

other distributions which include;

• The Log-normal distribution;

• The Positive Stable frailty model;

• The Inverse Gaussian frailty model;

• The compound Poisson frailty model.

The Gamma frailty model is the most frequently used frailty model due to the following

reasons;

• The Gamma distribution takes on positive random variables. Since the frailty term

is a positive random variable, it makes the Gamma distribution the most suitable

choice for the frailty term;

• The Gamma frailty is conjugate to the hazard model thus simplifying computation

(tractability);
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• The Gamma distribution is flexible. That is to say, the pdf of a two parameter

Gamma distribution is given by;

f (z, α, β) =
βαzα−1 exp (−βz)

Γ(α)
, α > 0, β > 0 and z > 0.

The mean and variance are given as E (Z) = α
β and V (Z) = α

β2 respectively.

Where α and β are the shape and scale parameters respectively. When the shape

parameter is equal to 1 (α = 1), the distribution becomes exponential with pa-

rameter β and for large values of α, the distribution assumes a bell shape that is

identical to that of the a normal distribution.

3. It is analytically tractable and easy to compute because of its simple Laplace

transform.

L{f (z)} (s) =

∫ ∞
0

f (z) exp (−zs) dz

=

∫ ∞
0

βαzα−1e−αz

Γ(α)
exp (−zs) dz

=
βα

(s+ β)
,

where the parameter s is a complex number:

s = a+ ib

with a and b real numbers.

Note: The mean and variance of the Gamma distribution can be obtained by using the

first and second derivatives of the Laplace transform respectively.

L(1) (s) =
−αβα

(s+ β)α+1

L(2) (s) =
α (α+ 1)βα

(s+ β)α+2 ,

on evaluating the derivatives at s = 0,

E (Z) = −L(1) (0)

=
α

β
,
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and

V ar (Z) = L(2) (0)−
(
−L(1) (0)

)2

=
α

β2
.

5.1.4 The univariate semi-parametric Gamma frailty model

For simplicity, we restrict our selves to a one parameter Gamma distribution (α = β),

with mean E (Z) = 1 and variance V (Z) = 1
α . Assuming that the variance of Z, the

frailty term is denoted as θ, then V (Z) = 1
α = θ. The probability density function of a

one parameter Gamma distribution f (z):

f (z) =
ααzα−1 exp (−αz)

Γ (α)
.

By using the fact that the variance V ar (Z) = θ = 1
α ,

f (z) =
z

1
θ
−1e

−z
θ

Γ
(

1
θ

)
θ

1
θ

.

Let T denote the random variable representing the survival times and Z denote frailty

which is distributed as a Gamma. The conditional survival function is given by:

Si (t|z) = exp (−zH0 (t)) ,

the unconditional survival function is derived by integrating z out from the conditional

survival function;

Si (t) = E [S (t|z)] ,

=

∫ ∞
0

e−zH0 exp(XXXT
i βββ)(t)f (z) dz = L (H (t)) ,

where L denotes the Laplace transform.

The Laplace transform of a one parameter Gamma distribution is given by:
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L (s) = [1 + θs]
−1
θ ,

thus the unconditional survival function can be written as:

Si (t) =
[
1 + θH0 (t) exp

(
XXXT
i βββ
)]−1

θ .

The likelihood denoted as L (t,XXXi,βββ, θ) is calculated as:

L (t,XXXi,βββ, θ) =
G∏
i=0

ni∏
j=1

zδii h0 (tij)
δi exp

(
δiXXX

T
ijβββ
)
, [S (tij)]

1−δi , (5.7)

where G denotes the total number of clusters in the data set, and ni the total number

of individuals in cluster i.

5.1.5 The multivariate semi-parametric frailty model

In analysing time to event data, we always assume that the time to event of the indi-

viduals considered in the study are independent. However this may not always be true

because there is a possibility of the survival times of individuals in the same cluster for

example in a family or community to be correlated. The correlation among the survival

time violates the independence assumption and such data can not be analysed using the

univariate semi-parametric model. The data with correlated survival times is known as

the multivariate survival data (Phipson and Mwambi, 2010). The models which were

developed to analyse such data include the Shared frailty model.

5.1.6 The shared frailty model

This model was introduced by Clayton (1978) and Vaupel and Stallard (1979) (Wienke

and Yashin, 2003). Hanagal (2011), Shih and Louis (1995) observed that individuals

in the same cluster are assumed to share the same frailty and this is the reason why

it is called the shared frailty model. Frailty is assumed to be independent across the

groups or clusters while the survival times of individuals within the same group are

conditionally dependent.
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A univariate frailty model on the other hand assumes a frailty term for each individual

and this frailty term represents the individual’s unmeasured or hidden covariates after

considering the measured covariates.

Let N denote the number of individuals in a given cohort with each individual in the

cohort assigned to a group. Let the total number of groups be denoted by G such that,

given the ith group that consists of ni individuals, then;

G∑
i=1

ni = N.

Given that δ =

1, Uncensored or event occurred

0, Censored or event did not occur at last observation.

is the censoring indicator. Uncensored or event occurred implies that the survival time

of the individual in the data set was observed and therefore recorded whereas Censored

or event did not occur implies that the event time was not observed and in this case it

is believed that the event time is more than the recorded time (right censored). The

hazard function of the jth individual of the ith group is given as:

hij (t) = h0 (t) exp
(
XXXT
ijβββ + uuui

)
,

XXXij is a vector of covariates for the individual j in the ith group, ui the unobserved

covariates and h0 (t) the baseline hazard function.

As already stated, zi = exp (ui) is the frailty term. The hazard function can therefore

be written as:

hij (t) = h0 (t) exp
(
XXXT
ijβββ + uuui

)
,

= zih0 (t) exp
(
XXXT
ijβββ
)
.

Note: The z′is are independent with an identical probability density function denoted

as f (z).

The full likelihood of the shared frailty model is given as:

L (tij ,XXXij , θ) =

G∏
i=1

ni∏
j=1

(zi)
δi h0 (tij)

δi exp
(
δiXXX

T
ijβββ
)

[S (tij)]
1−δi

G∏
i=1

f (zi) .
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5.2 Estimating parameters in a semi-parametric frailty model

Given that an individual i′s survival and hazard functions are given as Si (ti) and hi (ti)

respectively and that the probability density function of the frailty term is given by f (z)

then the likelihood contribution by such an individual is denoted as Li (zi, ti,XXXi, θ) is

given by:

Lfulli (zi, ti,XXXi, θ) = f (z) [Si (ti)hi (ti)]
δi [Si (ti)]

1−δi .

The estimates of the parameters are derived by differentiating the likelihood function

with respect to the parameters but it is always easier to work with the Log-likelihood.

Let us denote the log-likelihood as lfulli (zi, ti,XXXi, θ);

lfulli (zi, ti,XXXi, θ) = ln (Li (zi, ti,XXXi, θ)) ,

= ln
(
f (z) [Si (ti)hi (ti)]

δi [Si (ti)]
1−δi

)
.

Since the frailty term is unobserved, we therefore need to find the observed likelihood

by integrating the frailty term out with respect to its distribution.

lobsi (zi, ti,XXXi, θ) =

∫ ∞
0

f (zi) li (zi, ti,XXXi, θ) dzi. (5.8)

The parameter estimates are derived by differentiating equation (5.8) with respect to all

the parameters in the model and the resulting equations solved simultaneously. With

frailty models, it is not usually possible to solve the equations simultaneously due to the

presence of latent variables (Arthur et al., 1977). If the latent variables are known, the

solution becomes easy to find by using the maximum likelihood method as described

above. The presence of the latent variables in addition to the unknown parameters

requires us to use a more advanced method, these methods include;

• The Expectation-Maximisation Algorithm (EM-Algorithm);

• The Markov Chain Monte Carlo (MCMC) methods;

• The Monte Carlo EM (MCEM) approach;

• The penalised partial likelihood (PPL).
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5.2.1 The Expectation-Maximisation Algorithm (EM-Algorithm)

The EM algorithm is a numerical method used to find the maximum likelihood estimates

for the parameters of the statistical model which has got latent variables in addition to

the unknown parameters given the observed data. With such models, the equation

derived by differentiating the log-likelihood with respect to the unknown parameters

and the variance of the distribution of the latent variable can not be solved directly

(Arthur et al., 1977). Hanagal (2011), mentioned that the EM algorithm differs from the

maximum likelihood estimation method (MLE) because it maximises the full likelihood

instead of the likelihood in equation (5.7). In the full likelihood the latent variables are

treated as additional parameters.

The EM-algorithm consists of two steps;

• The E-step;

• The M-step.

Let YYY = (XXX,ZZZ) be a full data set for a given statistical problem, suppose that only XXX

is observed and ZZZ is unobserved or missing data and also suppose that ΦΦΦ denotes the

vector of the unknown parameters. The complete data-log-likelihood function of YYY is

denoted as Lfull (ΦΦΦ|YYY ) and the missing information (Frailty) is ZZZ whose distribution

can generally be taken to be Gamma. The EM algorithm consists first of the E-step,

which is the expectation of the complete data likelihood with respect to the missing

information ZZZ given the observed data XXX and the initial parameter estimates (Small

and Wang, 2003).

5.2.1.1 The E-step

Let ΦΦΦ0 denote some initial parameter estimates then on the first iteration, the E-step

requires the calculation of:

Q
(
ΦΦΦ,ΦΦΦ0

)
= EΦΦΦ0

[
ln (L (ΦΦΦ|z)) |x,ΦΦΦ0

]
.

The complete-data log-likelihood is unobserved so we replace it by a conditional expec-

tation given the observed data using the current fit for ΦΦΦ.



Chapter 5. Frailty modelling 50

5.2.1.2 The M-step

In M-step, the EM-algorithm maximises the expectation of the computed expectation

in E-step.

ΦΦΦ1 = argmaxΦΦΦQ
(
ΦΦΦ,ΦΦΦ0

)
.

We iterate between the Expectation step and the Maximisation step until convergence

is realised.

At the kth step, the E-step and the M-step are stated below:

Q
(
ΦΦΦ,ΦΦΦk−1

)
= EΦΦΦk−1

[
ln (Lfull (ΦΦΦ|z)) |x,ΦΦΦk−1

]
,

ΦΦΦk+1 = argmaxΦΦΦQ
(
ΦΦΦ,ΦΦΦk−1

)
.

Arthur et al. (1977) suggested a modified form of the EM algorithm called the Gener-

alised Expectation Maximisation Algorithm (GEM) in cases where the solution to the

M-step does not exist in closed form (Small and Wang (2003)). With the GEM algo-

rithm, we choose ΦΦΦk+1 such that Q
(
ΦΦΦk+1,ΦΦΦk

)
≥ Q

(
ΦΦΦk,ΦΦΦk−1

)
. Small and Wang (2003)

described the M-step as one that chooses ΦΦΦk+1 to increase the function Q
(
ΦΦΦ,ΦΦΦk

)
over

its value at ΦΦΦ = ΦΦΦk other than maximising it over the parameter space ω. Details about

the EM algorithm and its proofs of convergence we recommend a paper by Arthur et al.

(1977).

5.2.2 Application of the EM algorithm on a shared Gamma frailty.

Let the full likelihood be denoted as Lfull (ti, h0,βββ, θ). The full likelihood of a shared

frailty model of a cohort consisting of N individuals, each individual assigned to a group

and with a total number of groups equal to a number denoted as G with each group

consisting of ni number of individuals is given by:

Lfull (ti, h0,βββ, θ) =

G∏
i=1

ni∏
j=1

(zi)
δi h0 (tij)

δi exp
(
δiXXX

T
ijβββ
)

exp (−ziH0 (tij)) f (zi) .

The frailties are assumed to follow a Gamma distribution, the full likelihood is therefore

given by:

Lfull (ti, h0,βββ, θ) =

G∏
i=1

ni∏
j=1

(zi)
δi h0 (tij)

δi exp
(
δiXXX

T
ijβββ
)

exp (−ziH0 (tij))
G∏
i=1

z
1
θ

+Di−1

i exp
(−zi
θ

)
Γ
(

1
θ

)
θ

1
θ

,
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where Di is the total number of events in the cluster i. With the EM algorithm one needs

to find initial estimates for βββ,H0 (tij) and θ (β̂ββ, Ĥ0 (tij) and θ̂ respectively ). To get the

initial estimates β̂ββ and Ĥ0 (tij) we use the model which has no frailties, this is equivalent

to letting θ = 0 (Phipson and Mwambi, 2010). Use the estimates β̂ββ and Ĥ0 (tij) obtained

together with β̂ββ = 000 in the expectation step (E-step) to get the expected values of the

frailty terms (zsi ).

Hanagal (2011), suggests that the expectation for the frailties given the observed data

as was calculated by (Parner 1997) and it is given by the general formula:

E (zi) = −
LDi+1

(∑
j Ĥ0 (tij) exp

(
−XXXT

ijβ̂ββ
))

LDi
(∑

j Ĥ0 (tij) exp
(
−XXXT

ijβ̂ββ
)) , i = 1, 2, . . . , G,

where LDi+1 denotes the {Di+1}th derivative of the Laplace transform of LDi+1
(∑

j Ĥ0 (tij) e
−XXXT

ijβ̂ββ
)

.

For the Gamma frailty model there exists a short cut to derive E (zi) and E (ln (zi))

based on the full likelihood (Hanagal, 2011, Small and Wang, 2003). They argue that

the distribution of the frailty terms zi is a Gamma with the shape and scale parameters

α̂ = 1
θ + Di and θ̂ = 1

θ +
∑

j H0 (tij) exp
(
XXXT
ijβββ
)

. The expected value of the frailties is

therefore given by:

E (zi) =
α̂i

θ̂i
,

E (ln (zi)) = ψ (α̂i)− ln
(
θ̂i

)
.

ψ(.) represents a Di-gamma function given by:

ψ =
Γ
′
(α)

Γ (α)
.

At the M-step, we plug in the expected values of the frailty terms into the modified

partial likelihood to obtain the estimates of βββ and h0. The modified partial likelihood

is given by:

L (βββ) =
M∏
k=1

exp (ẑβββsk)(∑
l∈R(tk)

ˆzl exp
(
XXXT
l βββ
))dk .

tk is the smallest failure time, dk is the number of failures at time tk, Dk is the set of all

individuals who fail at time tk and sk =
∑

j∈Dk xj . The maximum likelihood estimate
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for the baseline hazard function is obtained from the expression below:

ĥ0k =
dk∑

l∈R(tk) ẑl exp
(

ˆXXXT
l βββ
) , k = 1, 2, . . . ,M.

Finally we Plug in the estimates β̂ββ, ĥ0 and ẑi in the full likelihood to obtain the estimates

of θ.

In order to determine the level of precision (Standard errors) of the estimates from the

true parameters we have to derive the information matrix, I. The covariance matrix is

the inverse of the information matrix.

5.2.3 The penalised partial likelihood approach

The EM-algorithm is slow and in order to get the variance estimates, it requires further

computations. The penalised partial likelihood (PPL) is an alternative approach. In

this approach, the frailty terms are treated as additional regression coefficients which

are constrained by a penalty function added to the log-likelihood. The PPL and the EM

give the same parameter estimates for a Gamma frailty model (Duchateau and Janssen,

2007, Hanagal, 2011, Phipson and Mwambi, 2010).

The penalised partial likelihood approach uses the random effects ui instead of the frailty

terms zi = exp (ui).

Assuming a univariate frailty model, the hazard function and the survival function of

an individual is given by:

hi (ti) = h0 (ti) exp
(
XXXT
i βββ + uuui

)
,

Si (ti) = exp
(
−H0 (ti) expXXXT

i βββ + uuui
)
.

The full likelihood is given as:

Lifull (uuui, θ,βββ) = fi (ui) [hi (ti) si (ti)]
δi [si (ti)]

1−δi ,

where θ is the variance of the uuu
′
is.

The log of the full likelihood is given by:

lifull (uuui, θ,βββ) = ln f (ui) + δi lnh0 (ti) + δiXXX
T
i βββ + δiui −H0 (ti) expXXXT

i βββ + uuui. (5.9)
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The full likelihood can be written in two parts (Duchateau and Janssen, 2008). It is

argued that the first part consists of the conditional likelihood of the data given the

frailties and the second part corresponds to the distribution of the frailties.

lifull (uuui, θ,βββ) = lpart1i (βββ,uuui) + lpart2i (θ,uuui) . (5.10)

From equation (5.10), lpart2i (θ, ui) is called the penalty term. Therefore from the full

likelihood in equation (5.9),

lpart1i (βββ,uuui) = δi lnh0 (ti) +XXXT
i βββ + ui −H0 (ti) exp

(
XXXT
i βββ + uuui

)
,

lpart2i (θ,uuui) = ln f (ui) .

When the actual value of the random effect is far away from its mean, the logarithm of

the absolute value of the probability density function at that value of the random effect

(ln |f (ui) |) takes on a large value and this implies that the penalty term has a large

negative contribution to the likelihood.

The penalised partial likelihood is given as:

lppl (βββ, θ,uuui) = lpart (βββ, ui)− lpen (θ,uuui) .

lpeni (θ) = − ln f (ui) ,

lpen (θ) = −
n∑
i=1

ln f (ui) .

If we let ηηηi = XXXT
i + uuui, then

lpart (βββ,uuui) =

n∑
i=1

δi

ηηηi − ln

 ∑
qw∈R(ti)

exp (ηηηqw)

 ,
where R (ti) is the risk set at time ti. Thus with all the contributing terms defined lppl

gives the penalised partial likelihood used to draw inference on the parameters θ and βββ.
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5.2.4 Implementation of the penalised partial likelihood on a Normal

random effects density

The random effects are assumed to be normally distributed ui ∼ N (0, θ). This implies

that the frailties denoted as zi = exp (ui) is log-normally distributed.

The probability density function of a normal distribution whose random variable is the

random effects ui is given by:

f (ui, θ) =
exp

(
−u2i
θ

)
θ

1
2

√
2π

, θ > 0,

where θ is the variance of the random effects.

lpen = −1

2

n∑
i=1

ln f (ui, θ)

=
1

2

n∑
i=1

(
u2
i

θ
+ ln 2πθ

)
.

The maximisation of the penalised partial likelihood consists of an outer loop and an

inner loop. The Newton-Raphson method is used in the inner loop to maximise the

penalised partial likelihood (lppl (βββ, θ,uuu)) to obtain the best linear unbiased predictors

(BLUPS) of βββ and uuu given a provisional value of θ. In the outer loop: After fixing βββ

and uuu at the best linear unbiased predictors (BLUPS), the estimate of θ is obtained by

maximising l (βββ,uuu) which is similar to the log-likelihood maximised in the EM. The pro-

cedure is repeated until convergence is realised (Duchateau and Janssen, 2008, Phipson

and Mwambi, 2010).

Procedure:

Let s denote the outer loop and k the inner loop index. Let θs denote the estimate of θ

at the sth iteration in the outer loop.

Suppose β(s,k) and u(s,k) are the estimates and predictors for βββ and u at the kth step in

the inner loop given θs. Starting with the initial values uuu(1,0),βββ(1,0), θ(0) and θ1, the kth

iterative step for the Newton-Raphson method given θ(1) is given by:

[
βββ(s,k)

uuu(s,k),

]
=

[
βββ(s,k−1)

uuu(s,k−1)

]
− V

[
0(

θ(s)
)−1

uuu(s,k−1)

]
+ VVV [XXXZZZ]

dlpart (βββ,uuu)

dη
,
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where VVV =

[
v11 v12

v21 v22

]
is the inverse of a square (p + a) dimensional matrix BBB, with BBB

given by:

BBB =

[
BBB11 BBB12

BBB21 BBB22

]
=

[
XXXT

ZZZT

](
−∂

2lapart (βββ, u)

∂η∂η

)
[XXX,ZZZ] +

[
0 0

0
(
θ(s)
)−1

IG.

]

Once the Newton-Raphson procedure has converged for the current value of θ(s), a

restricted maximum likelihood (REML) estimate for θ is given by:

θ(s+1) =

∑(
u

(s,k)
i

)2

n− r
,

where r = trace(v22)

θ(s)
.

The outer loop is iterated until the absolute difference between two sequential values for

θ;

|θ(s) − θ(s−1)| is sufficiently small.

The asymptotic variance for β̂ββ is given by v11. The asymptotic variance for θ̂ is generally

given by:

2θ2

n− 2r + θ−2trace
(
v2

22

) .
Detailed information about the Penalised partial likelihood and further understanding

of the penalised partial likelihood approach we recommend a book by Duchateau and

Janssen (2008).

5.2.5 The markov chain monte carlo methods

The above mentioned methods of estimating parameters (The EM algorithm and the

Penalised Partial likelihood) are mainly used when the survival data is right censored.

With complicated forms of censoring like interval and left censoring, more advanced
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methods have to be used to estimate the parameters of the model. Markov Chain

Monte Carlo methods (MCMC) are the alternative methods that can be used to estimate

parameters of parametric frailty models in circumstances where there exists left and

interval censored data points in the data set.

The MCMC methods due to Clayton (1991) are statistical techniques (Jones, 2004).

These methods are statistical simulation techniques. Under these methods a process

is directly simulated given the probability density functions that describe it, instead of

writing down complex system of equations (such as a system of differential equations)

that describe the behaviour of the system which may increase the complexity. Given the

probability density functions (p.d.f’s) together with its initial defining parameters, the

simulation process begins by iteratively re sampling each parameter given the current

values of the other parameters.

They are known as Markov Chain Monte Carlo Methods because one uses the previous

sample values to generate randomly the next sample values which results into a Markov

chain.

The Markov chain is a sequence of random variables {X0, X1, . . .} with a property that;

Given the present state, the future and past sates are independent. Stated mathemati-

cally this means

P (Xn+1 = x|X1 = x1, X2 = x2, . . . , Xn = xn) = P (Xn+1 = x|Xn = xn) .

This is known as the Markov property.

Suppose we have a sequence of random variables {X0, X1, . . .}with time as the index set

which are generated in such a way that at each time t ≥ 0, the next state Xt+1 depends

only on the current state of the chain. That is to say Xt+1 is sampled from P (Xt+1|Xt)

and the state Xt+1 does not depend on the rest of the chain {X0, X1, . . . , Xt−1}, the

random variables generated in such a sequence result in to what is known as a Markov

Chain (Gilks et al., 1996).

Jones (2004) argues that it is important to visualise each parameter as a node in a given

network, where by one visits the node and resamples its value by picking randomly a

value from its conditional distribution given the current values of the other parameters.

This process results into a Markov chain which when it converges after a sufficiently long

burn-in period of say k iterations, gives a sample from the full posterior distribution

of any parameter interest (Gilks et al. (1996)). Jones (2004) mentions that from a

theoretical point of view, the MCMC implies the Bayesian approach. However other
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schemes based on MCMC like the Gibbs sampling and the Metropolis-Hastings can be

used to fit frailty models on clustered failure data.

Clayton (1991), Jones (2004), used Gibbs sampling to fit frailty models on clustered

failure time data with right censored observations, by sampling iteratively from the full

conditional distribution of the parameters in the model.

5.3 The results from fitting the shared gamma frailty model

on 2011 Uganda DHS data correcting for both com-

munity and household effects

The software used for fitting the Shared Gamma Frailty model to determine the param-

eter estimates using a semi-parametric Penalized Likelihood on the hazard function was

R, using the library called frailtypack with a command ”frailtyPenal”. There are 404

communities and 4285 households presented in the data set.

Two models were fitted, one was the CPH model with community effects as the frailty

term and a CPH model with household effects as the frailty term. The fixed effects

(covariates) used in both models were those considered to obey the proportional hazard

assumption which were discussed in chapter (5.2). The results of these two models are

presented in the tables below;
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1

Table 5.1: The results from fitting a shared frailty (community effect and household
effects) model on 2011 Uganda DHS data to determine factors affecting under-five

children survival in Uganda.

Correcting for household effects
variable HR (SE β̂) [95%CI] pvalues

Sex of the child
Male 1 . . .
Female 0.83 (0.09) [0.68, 1.00] 0.05
Father’s education
Illiterate 1 . . . . . .
Primary 0.95 (0.11) [0.77, 1.18] 0.65
Secondary and
Higher

0.73 (0.19) [0.50, 1.06] 0.09

Age at first birth
Below 20 1 . . .
20-29 0.84 ( 0.12) [0.67, 1.07] 0.15
30-39 1.89 (0.69) [0.49, 7.32] 0.35
Number of births in
past 1year
No birth 1 -
One birth 1.25 ( (0.11) [1.01, 1.55] 0.04
Two births 4.57 (0.62) [1.36, 15.32] 0.014
Sex of household
head
Male 1 . . .
Female 1.39 (0.11) [1.11, 1.74] 0.00
Mother’s age group
Below 20 years 1 . . .
20-29 years 0.89 (0.2) [0.59, 1.33] 0.56
30-39 1.00 (0.22) [0.65, 1.52] 0.98
40years + 1.28 ( 0.26 ) [0.77, 2.12] 0.34
Source of drinking
water
Piped water 1 . . .
Borehole 1.23 ( 0.15) [0.92, 1.65] 0.16
Well 1.16 (0.17) [0.82, 1.62] 0.39
Surface/Rain/Lake 1.38 (0.19) [0.95, 2.00] 0.09
Others 1.34 (0.27) [0.79, 2.28] 0.28
Religion
Catholic 1 . . .
Muslim 1.05 (0.16) [0.78, 1.43] 0.74
Other Christians 0.95 (0.11) [0.76, 1.18] 0.61
Others 0.64 (0.54) [0.22, 1.86] 0.41
Household Frailty
parameter (Vari-
ance)

θ = 1.78 (0.43)

Penalised Marginal
loglikelihood

= −3025.98

Correcting for Community effects
variable HR (SE β̂) [95%CI] pvalues

Sex of the child
Male 1 . . .
Female 0.84 (0.09) [0.70, 1.00] 0.06
Father’s education
Illiterate 1 . . . . . .
Primary 0.95 (0.10) [0.78, 1.16] 0.60
Secondary and
Higher

0.74(0.18) [0.53, 1.05] 0.09

Age at first birth
Below 20 1 . . .
20-29 .86 (0.11) [0.70, 1.06] 0.17
30-39 1.66 (0.58) [0.52, 5.28] 0.39
Number of births in
past 1year
No birth 1 -
One birth 1.25 ( 0.11) [1.03, 1.52] 0.03
Two births 2.76 (0.46) [1.11, 6.85] 0.03
Sex of household
head
Male 1 . . .
Female 1.36 (0.10) [1.11, 1.66] 0.00
Mother’s age group
Below 20 years 1 . . .
20-29 years 0.84 (0.19) [0.57, 1.22] 0.36
30-39 0.94 (0.12) [0.63, 1.39] 0.74
40years + 1.18 ( 0.23) [0.74, 1.88] 0.50
Source of drinking
water
Piped water 1 . . .
Borehole 1.21 ( 0.14) [0.92, 1.61] 0.16
Well 1.15 (0.16) [0.84, 1.59] 0.37
Surface/Rain/Lake 1.36 (0.17) [0.96, 1.92] 0.08
Others 1.30 (0.17) [0.80, 2.11] 0.28
Religion
Catholic 1 . . .
Muslim 1.05 (0.14) [0.79, 1.39] 0.75
Other Christians 0.96 (0.10) [0.79, 1.18] 0.71
Others 0.69 (0.51) [0.25, 1.89] 0.45
Community Frailty
parameter (Vari-
ance)

θ = 0.12(0.07)

Penalised marginal
loglikelihood

= −3042.18

1Level of significance ∗∗ < 0.05, The Likelihood-ratio test of θ = 0, χ = 2.63 and p-value of = 0.052
from the STATA software for the community frailty term.
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Results

By using the likelihood ratio test with a null hypothesis that the variance of the frailty

term is zero (θ = 0), the chi-square test statistic (χ = 2.63) with a p-value of 0.052.

At 0.05 level of significance, it implies that there is not enough evidence to show the

existence of unobserved heterogeneity at community level. In this case therefore one can

use the standard cox PH model because the results suggest that there is no difference

on the conclusions that would be drawn about the data set.

The factors that were strongly associated with high under-five child mortality rates were

identified by looking at their confidence intervals and the p-values. The factors whose

confidence intervals contained a 1 (HR=1), implied that these factors are not significant

and this results is confirmed p-values greater than 0.05 level of significance. Number of

births in the past one year and the sex of the household head were found to be strongly

associated to high mortality rates. The children whose mothers had more than one birth

in the past one year were at a higher risk of death before reaching the age of five than

those whose mothers had no birth at all. The children born in households headed by

women were at a high risk of death than those born in households where the man is the

head.

On comparing the estimates of the hazard ratios of the standard cox-proportional hazard

model and those of the community frailty model, there was an observed increase in the

estimates after correcting for community frailty as shown in table (5.2).

In the case of household or family frailty, there were 4285 households in the sample

considered for analysis. The variance of the frailty term (household frailty) θ = 1.78,

which is different from zero, this gives evidence of the existence of the unobserved het-

erogeneity at family or household level. The results suggests that some households were

associated to a higher risk of children dying before reaching the age of five than the

others.

Summary

We observe that although the confidence intervals are wider, they are close to those under

the CPH when accounting for community effects. When accounting for the household

effects, the confidence intervals are even wider which implies that there is much more
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Table 5.2: Comparing the results from the standard cox-proportional hazard model
and the results of the model after correcting for community effects.

Fitting the standard Cox-ph
model

Variable Adjusted HR HR[95%CI] p-values

Sex of the child
Male 1 . . .
Female 0.83 [0.69, 0.99] 0.04
Father’s educa-
tion
Illiterate 1 . . .
Primary 0.92 [0.76, 1.12] 0.43
Secondary and
higher

0.72 [0.51, 1.01] 0.06

Age at first
birth
< 20 1 . . .

20-29 0.86 [0.69, 1.06] 0.16
30+ 1.59 [0.51, 5.02] 0.42
Number of
births in the
past one year
No birth 1 . . .
1 birth 1.22 [1.01, 1.48] 0.04
2 2.57 [1.06, 6.25] 0.04
Sex of house-
hold head
Male 1 . . .
Female 1.33 [1.09, 1.63] 0.01
Mother’s age
group
< 20 1 . . .
20− 29yrs 0.71 [0.48, 1.05] 0.08

30− 39yrs 0.79 [0.53, 1.19] 0.27
40+ 0.99 [0.62, 1.59] 0.98
Source of drink-
ing water
Piped water 1 . . .
Borehole 1.12 [0.86, 1.48] 0.39
Well water 1.06 [0.78, 1.45] 0.69
Surface/pond/
lake/Rain/etc 1.28 [0.91, 1.79] 0.15
Others 1.21 [0.75, 1.94] 0.44
Religion
Catholic 1 . . .
Muslim 1.02 [0.77, 1.34] 0.91
Other Chris-
tians

0.94 [0.77, 1.14] 0.51

Others 0.67 [0.25, 1.81] 0.43
Log-Likelihood = -4128.68

Correcting for Community
effects

variable HR (SE β̂) [95%CI] p-values

Sex of the child
Male 1 . . .
Female 0.84 (0.09) [0.70, 1.00] 0.06
Father’s educa-
tion
Illiterate 1 . . . . . .
Primary 0.95 (0.10) [0.78, 1.16] 0.60
Secondary and
Higher

0.74(0.18) [0.53, 1.05] 0.09

Age at first
birth
Below 20 1 . . .
20-29 .86 (0.11) [0.70, 1.06] 0.17
30-39 1.66 (0.58) [0.52, 5.28] 0.39
Number of
births in past
1year
No birth 1 -
One birth 1.25 ( 0.11) [1.03, 1.52] 0.03
Two births 2.76 (0.46) [1.11, 6.85] 0.03
Sex of house-
hold head
Male 1 . . .
Female 1.36 (0.10) [1.11, 1.66] 0.00
Mother’s age
group
Below 20 years 1 . . .
20-29 years 0.84 (0.19) [0.57, 1.22] 0.36
30-39 0.94 (0.12) [0.63, 1.39] 0.74
40years + 1.18 ( 0.23) [0.74, 1.88] 0.50
Source of drink-
ing water
Piped water 1 . . .
Borehole 1.21 ( 0.14) [0.92, 1.61] 0.16
Well 1.15 (0.16) [0.84, 1.59] 0.37
Surface/Rain
/Lake 1.36 (0.17) [0.96, 1.92] 0.08
Others 1.30 (0.17) [0.80, 2.11] 0.28
Religion
Catholic 1 . . .
Muslim 1.05 (0.14) [0.79, 1.39] 0.75
Other Chris-
tians

0.96 (0.10) [0.79, 1.18] 0.71

Others 0.69 (0.51) [0.25, 1.89] 0.45
Frailty parame-
ter

θ = 0.12(0.07)

Penalised
marginal log-
likelihood

= −3042.18

heterogeneity at the household level than at the community level. This is something ex-

pected. Overall at community level, one might expect homogeneity but higher variability

between households.

The estimate of the hazard ratios of the sex of the child remained unchanged after

correcting for household effects. Number of births in the past one year and the sex of

the household head were strongly associated to under-five infant mortality in Uganda

even after correcting for household and community effects. Other factors included in the

analysis like sex of the child, father’s education, age at first birth, mother’s age group,

source of drinking, and religion have an effect on the survival time of the children but

there was not enough evidence from the data to confirm their strong association to this

survival time.
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Table 5.3: Comparison of results from the standard cox PH model and the results
after correcting for household effects.

Fitting the standard Cox-ph
model

Variable Adjusted HR HR[95%CI] p-values

Sex of the child
Male 1 . . .
Female 0.83 [0.69, 0.99] 0.04
Father’s educa-
tion
Illiterate 1 . . .
Primary 0.92 [0.76, 1.12] 0.43
Secondary and
higher

0.72 [0.51, 1.01] 0.06

Age at first
birth
< 20 1 . . .

20-29 0.86 [0.69, 1.06] 0.16
30+ 1.59 [0.51, 5.02] 0.42
Number of
births in the
past one year
No birth 1 . . .
1 birth 1.22 [1.01, 1.48] 0.04
2 2.57 [1.06, 6.25] 0.04
Sex of house-
hold head
Male 1 . . .
Female 1.33 [1.09, 1.63] 0.01
Mother’s age
group
< 20 1 . . .
20− 29yrs 0.71 [0.48, 1.05] 0.08

30− 39yrs 0.79 [0.53, 1.19] 0.27
40+ 0.99 [0.62, 1.59] 0.98
Source of drink-
ing water
Piped water 1 . . .
Borehole 1.12 [0.86, 1.48] 0.39
Well water 1.06 [0.78, 1.45] 0.69
Surface/pond/
lake/Rain/etc 1.28 [0.91, 1.79] 0.15
Others 1.21 [0.75, 1.94] 0.44
Religion
Catholic 1 . . .
Muslim 1.02 [0.77, 1.34] 0.91
Other Chris-
tians

0.94 [0.77, 1.14] 0.51

Others 0.67 [0.25, 1.81] 0.43

Log-Likelihood = -4128.68

Correcting for household
effects

variable HR (SE β̂) [95%CI] p-values

Sex of the child
Male 1 . . .
Female 0.83 (0.09) [0.68, 1.00] 0.05
Father’s educa-
tion
Illiterate 1 . . . . . .
Primary 0.95 (0.11) [0.77, 1.18] 0.65
Secondary and
Higher

0.73 (0.19) [0.50, 1.06] 0.09

Age at first
birth
Below 20 1 . . .
20-29 0.84 ( 0.12) [0.67, 1.07] 0.15
30-39 1.89 (0.69) [0.49, 7.32] 0.35
Number of
births in past
1year
No birth 1 -
One birth 1.25 ( (0.11) [1.01, 1.55] 0.04
Two births 4.57 (0.62) [1.36, 15.32] 0.014
Sex of house-
hold head
Male 1 . . .
Female 1.39 (0.11) [1.11, 1.74] 0.00
Mother’s age
group
Below 20 years 1 . . .
20-29 years 0.89 (0.2) [0.59, 1.33] 0.56
30-39 1.00 (0.22) [0.65, 1.52] 0.98
40years + 1.28 ( 0.26 ) [0.77, 2.12] 0.34
Source of drink-
ing water
Piped water 1 . . .
Borehole 1.23 ( 0.15) [0.92, 1.65] 0.16
Well 1.16 (0.17) [0.82, 1.62] 0.39
Surface/Rain/
Lake 1.38 (0.19) [0.95, 2.00] 0.09
Others 1.34 (0.27) [0.79, 2.28] 0.28
Religion
Catholic 1 . . .
Muslim 1.05 (0.16) [0.78, 1.43] 0.74
Other Chris-
tians

0.95 (0.11) [0.76, 1.18] 0.61

Others 0.64 (0.54) [0.22, 1.86] 0.41
Frailty parame-
ter

θ = 1.78 (0.43)

Penalised
Marginal log-
likelihood

= −3025.98



Chapter 6

The Bayesian approach

Bayesian inference provides a unified approach to statistical modelling and inference.

The Markov chain Monte Carlo (MCMC) sampling makes the Bayesian inference pos-

sible by enabling parameter estimation and quantifying of their uncertainties (Akerkar

et al., 2010). As stated by Martin and Quinn (2002) Bayesian approaches have become

increasingly used in science research since the early 1990’s .

The highly specialised tools for doing Bayesian analysis of survival models is WinBUGS.

WinBuGS is a software package for Bayesian analysis of complex statistical models using

MCMC methods. Any other Markov scheme can be used instead of WinBUGS and

the results will be the same. The simulations based inference are possible but with

significant computing time constraints such as, updating schemes may produce slow

converging samplers which can underestimate the variability of the random variables

being estimated. The computations can also become too expensive because of the Monte

Carlo error. There is a new tool that allows the user to easily perform approximate

Bayesian inference using the integrated nested Laplace approximations introduced by

H̊avard and Nicolas (2009). This tool provides a deterministic alternative to MCMC

which is a standard tool for inference in Latent Gaussian Models. The tool is called

INLA, it computes posterior marginals for each component in the model from which

posterior expectations and standard deviations can easily be found (Akerkar et al.,

2010). In this chapter we present the basic concepts and origin of Bayesian analysis

and present results obtained using the INLA package in R. A Weibull model (assuming

that the time to death of the children under-five follows a Weibull distribution) was fitted

with and without family and community effects to draw conclusions on factors affecting

under-five child mortality rate in Uganda using the Uganda demographic health survey

data for 2011.

62
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6.1 The Bayesian inference

Bayesian inference is a method of inference in which Baye’s theorem is used. Given that

η represents the vector of the unknown parameters and X represents the data,

P (ηηη|XXX) =
P (ηηη,XXX)

P (XXX)
, (6.1)

where ηηη =
(
hhhT , θ,βββT , zzzT

)T
, P (ηηη|XXX) denotes the posterior density, P (ηηη,XXX) the joint

probability density of the data and the unknown parameters and P (XXX) denotes the

marginal probability density. P (XXX) =
∑

ηηη P (ηηη)P (XXX|ηηη) for a discrete case and P (XXX) =∫
ηηη P (ηηη)P (XXX|ηηη) dη in a continuous case.

The joint probability density P (ηηη,XXX) can be written as a product of the prior and the

sampling distribution. The posterior distribution therefore becomes:

P (ηηη|XXX) =
P (ηηη)P (XXX|ηηη)

P (XXX)
.

The Bayesian approach is based on specifying the probability model of the observed

data XXX given the vector of the unknown parameter ηηη leading to the likelihood function

L (ηηη|XXX). With the Bayesian approach, ηηη is assumed to be random and has got a prior

distribution denoted as f (ηηη). To draw inference on ηηη, we base analysis on the posterior

distribution denoted as f (ηηη|XXX) (Chen et al., 2000).

From equation (6.1), the posterior distribution can be obtained as follows:

f (η|X) =
L (ηηη|XXX) f (η)∫

ΨΨΨ L (ηηη|XXX) f (η) dη
, (6.2)

where ΨΨΨ is denotes the parameter space. From equation (6.2) we can conclude that

posterior distribution f (η|X) is proportional to the product of the likelihood and the

prior distribution of the parameter. That is

f (η|X) ∝ L (ηηη|XXX) f (η) . (6.3)
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Let M (X) =
∫

ΨΨΨ L (ηηη|XXX) f (η) dη; M (X) is called the normalising constant and it is

generally known as the marginal distribution of the data.

Equation (6.3) implies that the posterior distribution has got a contribution from the

observed data through the likelihood and a contribution from the prior information

about the parameter.

According to Chen et al. (2000), the normalising constant does not have an analyti-

cal closed form which implies that the posterior distribution has no closed form. They

suggested that in-order to sample from a multivariate distribution (the posterior distri-

bution f (η|X)), one needs to use computational methods. The most commonly used

computational method for sampling from the posterior distribution is called the Gibbs

Sampler.

In this chapter we fitted the Weibull model with and without frailty effects and the Cox-

proportional hazard model on the UDHS 2011 data set. Variables that were selected for

analysis in the Cox-proportional hazard model are the same variables considered in the

analyses using Bayesian inference.

6.1.1 The Weibull model

The Weibull distribution is the most commonly used distribution to model time event

data because of its flexibility in specifying the hazard function. The Weibull model

therefore is the most widely used parametric model. The Weibull distribution described

in chapter two with parameters α > 0 and λ > 0, has a density function for ti which

can also take on the following form:

f (ti|α, λ) = αtα−1
i exp− [λti]

α , 0 < ti <∞. (6.4)

The survival function is given by S (ti|α, λ) = exp (− exp (λ) tαi ). The likelihood function

of the unknown parameters (α, λ) given the data can be written as:

L (α, λ|DDD) =
n∏
i=1

f (ti|α, λ)S (ti|α, λ)(1−δi) , (6.5)

= α
∑
δi exp{λ

n∑
i=1

δi +
n∑
i=1

(δi (α− 1) log (ti)− exp (λ) tαi )}, (6.6)
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where δi is the indicator variable taking value 1 if ti is the failure time and 0 if ti is right

censored.

To incorporate covariates in order to build a regression model, we do it through λ. We

therefore write λ = XXXT
i βββ. Where XXXi and βββ are p×1 vectors of covariates and regression

coefficients respectively.

Assuming Gamma prior with parameters (α0, κ0) for α and normal prior with parameters(
µ0, σ

2
0

)
for λ. The joint posterior distribution of (α, λ) is given by:

π (α, λ|DDD) ∝ L (α, λ|DDD)π (α0, κ0)π (λ|µ0, σ0) . (6.7)

If we assume a normal prior Np (µ0,
∑

0) for βββ, the joint posterior is given by:

π (βββ, α|DDD) ∝ αα0+d+1 exp{
n∑
i=1

(
δi +XXXT

i βββ + δi (α− 1) log (ti)
)

(6.8)

−tαi exp
(
XXXT
i βββ
)
− κ0α−

1

2
(βββ −µµµ0) Σ−1

0 (βββ −µµµ0)}, (6.9)

where DDD = (n, t,XXX,δδδ) denotes the observed data for regression model and XXX is the n×p
matrix of covariates with the ith row as XXXi and δδδ = (δ1, . . . , δn)T .

6.1.2 The Weibull frailty model

Let tij be the survival time for the jth individual in the ith cluster , i = 1, . . . , n and

j = 1, . . .mi. Here the m
′s
i represent the number of individuals in the ith cluster. We

assumed that these tij are independently and identically distributed random variables.

Weibull distribution such that

tij∼Weibull (α, ηij) , α > 0.

For frailty models the conditional hazard function of tij given the unobserved frailty zi,

a covariate vector XXXij and the Weibull parameter α is given by:

h (tij |XXXij , zi, α) = αtα−1
ij exp [ηηηij ] , (6.10)
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where ηηηij = βββ0 +XXXT
ijβββ+zzzi, βββ is a p×1 vector of regression coefficients and βββ0 is denoted

intercept and XXXij is a p× 1 covariate vector. The complete data likelihood is given by:

L (βββ, α|DDD) =

n∏
i=1

mi∏
j=1

(
αtα−1
ij exp (ηηηij)

)δij
exp

(
− exp (ηηηij) t

α
ij

)
, (6.11)

where δij is the censoring indicator having a value 1 if the individual in the jth clus-

ter dies and 0 otherwise and DDD = (t,XXX,δδδ, bbb) denotes the complete data set with t =

(t11, . . . , tnmn)T , XXX = (X11, . . . , Xnmn), δδδ = (δ11, . . . , δnmn)T and bbb = (b1, . . . , bn).

6.1.3 The INLA approach

Survival analysis consists of a great body of work using latent Gaussian models. Akerkar

et al. (2010) recommends the work by (Berzuini and Clayton, 1994, Brezger et al., 2003,

Fahrmeir et al., 1994). Latent Gaussian models are a subset of the Bayesian additive

models with a structured additive predictor in this case denoted by ηi. With these

models, the observation variable Yi is assumed to belong to an exponential family where

the mean µi is linked to this structured additive predictor ηi through a link function

(g (µi)). The additive predictor ηi accounts for effects of various covariates in an additive

way:

ηi = α+

nf∑
j=1

f (j) (uji) +

nβββ∑
k=1

βkZki + εi,

where {f j (.)}s are unknown functions of the covariates UUU , βββsk the linear effects of co-

variates ZZZ and εεεsi are the unstructured terms. We assign a Gaussian prior to α, f j (.) , βk

and εi. Let us denote π (.|.) as the conditional density of its arguments and let XXX denote

the vector of all the n Gaussian variables ηi, α, f
j (.) and θθθ denotes the vector of the

hyper parameters which are not necessary Gaussian. The density π (XXX|θ1) is Gaussian

with zero mean and precision matrix Q (θ1) with hyper parameters θ1.

The distribution for the nd observational variables Y = {Yi : i ∈ I} is denoted by

π (YYY |XXX, θ2) and we assume the {Yi : i ∈ I} are conditionally independent given XXX and

θ2. For simplicity, denote θθθ =
(
θT1 , θ

T
2

)T
with dim (θθθ) = m. The posterior is therefore

written as:
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π (XXX,θθθ|YYY ) ≈ π (θθθ)π (XXX|θθθ) ,

≈ π (θθθ) |Q (θθθ) |
n
2 exp

(
−1

2
XXXTQ (θθθ)XXX +

∑
i∈I

log π (YYY i|XXXi, θθθ)

)
.

The main aim is to approximate the posterior marginals of the latent field, π (XXXi|YYY )

and the posterior marginals of the hyper parameters, π (θθθ|YYY ) and π (θj |YYY ).

According to H̊avard and Nicolas (2009), INLA computes posterior marginals for each

component in the model and it is from these that the posterior expectations and standard

deviations can be found. The survival models can be expressed as a latent Gaussian

model on which the integrated nested Laplace approximations (INLA) can be applied

(Akerkar et al., 2010). The posterior marginals are given by:

π (XXXi|YYY ) =

∫
π (XXXi|θθθ,YYY )π (θθθ|YYY ) dθ, (6.12)

π (θj |YYY ) =

∫
π (θθθ|YYY ) dθ−j , (6.13)

where π (XXXi|YYY ) , π (θθθ|YYY ) and π (θj |YYY ) are the posterior marginals to be approximated by

the Latent Gaussian models. We recommend Akerkar et al. (2010) for thorough reading

on the Latent Gaussian models.

The forms mentioned in equation (6.12) are used to construct nested approximations and

this makes the Laplace approximations very accurate when applied to latent Gaussian

models.

π̃ (XXXi|YYY ) =

∫
π̃ (XXXi|θθθ,YYY ) π̃ (θθθ|YYY ) dθ, (6.14)

π̃ (θj |YYY ) =

∫
π̃ (θθθ|YYY ) dθ−j , (6.15)

where π̃ (.|.) represents the conditional approximated density of its arguments.

To obtain the approximations to π (XXXi|YYY ) we use approximations to π (θj |YYY ) and π (XXXi|θθθ,YYY )

and we use numerical integration to integrate out θθθ.
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The posterior marginal π (θθθ|YYY ) of the hyper parameters θ is approximated using a

Laplace approximation.

π̃ (θθθ|YYY ) ≈ π (XXX,θθθ,YYY )

π̃G (XXX|θθθ,YYY )
|XXX=XXX∗(θθθ),

where π̃G (XXX|θθθ,YYY ) is the Gaussian approximation to the full conditional of XXX and XXX (θθθ)

is the mode of the full conditional for XXX for a given θθθ (Tierney and Kadane, 1986). We

use the approximate sign because the normalising constant for π (XXX,θθθ|YYY ) is unknown.

The approximations of the posterior marginals of the latent field are obtained using the

finite sum

π̃ (XXXi|YYY ) =
∑
K

π̃ (XXXi|θk,YYY ) π̃ (θk|YYY ) ∆k.

The sum is evaluated at support points θk using appropriate weights ∆k.

Rue and Martino (2007) discussed three different approaches with their features to

approximate π̃ (XXXi|θk,YYY ), namely a Gaussian, a full Laplace and a simplified Laplace

approximation. INLA has a great improvement in speed compared to the other MCMC

and also a higher level of accuracy (Akerkar et al., 2010). An R package called R-INLA

works as an interface for INLA and it is used just as the other R functions. The INLA

programme and the R package for INLA are freely available. For more information

about the R- INLA project we recommend Rue et al. (2012).

6.1.3.1 Data analysis using INLA for Bayesian inference

For the Uganda DHS data 2011, we assume that the time to death (ti) of children under

the age of five follows a Weibull distribution. This is due to the fact that the Weibull

distribution is a flexible distribution which can fit any form of life time data. Given that

βββ = (β0, β1, . . . , βn)′ is the vector of coefficients of the covariates considered for analysis,

β0 is the intercept and n the number of covariates, we assume that all these coefficients

have a normal prior with mean 0 and variance 0.001. We also assume a gamma prior

with parameters 1 and 0.001 for the shape parameter α of the Weibull distribution α.

ti∼Weibull (α, λi) ,

where i = 1, . . . 6692.
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To draw inference about the posterior distribution, the information on the prior stated

above and the likelihood are used and fitted in INLA. The results are given in the table

below.

Table 6.1: The results for Bayesian inference by assuming that the time to death of
children under-five follows a Weibull distribution.

Results from a Weibull model
Factors Mean SD [95%CI]

Intercept -3.52 0.233 [−3.99,−3.08]
Fixed effects
Father’s education
Illiterate 1 . . .
Complete Primary -0.08 0.09 [−0.28, 0.11]
Secondary and higher -0.330 0.18 [−0.69, 0.00]
Sex of the child
Male 1 . . .
Female -0.19 0.09 [−0.37,−0.01]
After at first birth
Less than 20 years 1 . . .
20-29 years -0.14 0.18 [−0.36, 0.07]
30-39 years 0.49 0.58 [−0.78, 1.52]
Births in the past one
year
No-births 1 . . .
One birth 0.19 0.09 [0.00, 0.39]
Two births 0.98 0.45 [0.02, 1.79]
Sex of the household
head
Male 1 . . .
Female 0.29 0.1 [0.09, 0.49]
Mother’s age group
Below 20 years 1 . . .
20- 29 years -0.37 0.19 [−0.75, 0.03]
30-39 years -0.27 0.20 [−0.66, 0.15]
40 + years -0.06 0.24 [−0.52, 0.42]
Source of drinking water
Piped water 1 . . .
Borehole 0.12 0.14 [−0.15, 0.39]
Well 0.06 0.16 [−0.25, 0.37]
Surface/Rain/
Pond/Lake/Tank 0.24 0.17 [−0.09, 0.58]
Others 0.18 0.24 [−0.31, 0.65]
Alpha parameter
for Weibull 0.33 0.01 [0.30, 0.36]

Results of a Cox-ph model
Factors Mean SD [95%CI]

Intercept -5.67 0.23 [−6.13,−5.23]
Fixed effects
Father’s education
Illiterate 1 . . .
Complete Primary -0.09 0.09 [−0.28, 0.11]
Secondary and higher -0.34 0.18 [−0.69, 0.01]
Sex of the child
Male 1 . . .
Female -0.19 0.09 [−0.37,−0.01]
Age at first birth
Less than 20 years 1 . . .
20-29 years -0.11 0.11 [−0.33, 0.09]
30-39 years 0.59 0.58 [−0.69, 1.62]
Births in the past one
year
No-births 1 . . .
One birth 0.25 0.09 [0.05, 0.44]
Two births 1.19 0.45 [0.22, 1.99]
Sex of the household
head
Male 1 . . .
Female 0.29 0.10 [0.09, 0.49]
Mother’s age group
Below 20 years 1 . . .
20- 29 years -0.61 0.19 [−0.98,−0.19]
30-39 years -0.53 0.21 [−0.92,−0.11]
40 + years -0.37 0.24 [−0.84, 0.10]
Source of drinking water
Piped water 1 . . .
Borehole 0.12 0.14 [−0.15, 0.39]
Well 0.06 0.16 [−0.25, 0.37]
Surface/Rain/
Pond/Lake/Tank 0.24 0.17 [−0.09, 0.58]
Others 0.17 0.24 [−0.33, 0.63]
Precision for
baseline Hazard 18629.97 18409.77 [1271.41, 67216.46]
Marginal Likelihood -3312.13

Results

The mean values presented in Table (6.1), are the means of the estimated coefficients β̂

of the covariates included in the model. The exponent of these values gives us the hazard

ratios, since the exponent of zero is one. Effects whose confidence intervals include zero

indicates that they are not significant because they contain the hazard ratio of 1. The

null hypothesis is β̂ = 0(HR = 1) and the alternative hypothesis is that β̂ 6= 0(HR 6= 1).

From the results presented in Table (6.1), the fixed effects that have confidence intervals

which include zero imply that the factors are not significant. Such factors include;

father’s education, age of the mother at first birth, mother’s age group and source

of drinking water. These results are consistent with the results got from the models
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presented in chapter two and three. The factors that are strongly associated to under-

five child survival according to the results presented in the Table (6.1) are; sex of the

child, number of births in the past one year and the sex of the household head.
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6.1.4 Bayesian frailty modelling

In this section,

the model of interest is the Weibull frailty model with additive frailties.

Let time to death of children under the age of five in Uganda represented by a sample of

6692 children presented in the UDHS 2011 data set follow a Weibull distribution, tij is

the survival time of the jth child in the ith cluster. In our data set there are 404 clusters

at the community level and at household level there are 4285 clusters. This implies that

i = 1, 2, . . . , 404 at community level and i = 1, 2, . . . , 4285 at household level.

tij∼weibull(α, ηij).

The conditional hazard function given the unobserved frailty zzzi, a covariate vector XXXij

and the Weibull parameter α is given by:

h (tij |XXXij , zzzi, α) = αtα−1
ij exp [ηηηij ] , (6.16)

where ηηηij = βββ0 +XXXT
ijβββ + zzzi.

The likelihood function can then be obtained as described in chapter three. We further

assume that the coefficients of the fixed effects have a normal prior with parameters 0

and 0.001, the frailty term zi∼N (0, τ) and a Gaussian prior for τ and α with parameters

1 and 0.001. The assumptions used on the prior parameters and the frailty term are the

same assumptions used by (Akerkar et al., 2010, Rue et al., 2012).

6.1.4.1 Data analysis for the Weibull frailty model
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Table 6.2: The results for Bayesian inference, a model with frailty at community and
household level.

Results for frailty at community
level

Factors Mean SD [95%CI]

Intercept -3.49 0.24 [−3.97,−3.05]
Fixed effects
Father’s education
Illiterate 1 . . .
Complete Primary -0.08 0.09 [−0.28, 0.11]
Secondary and
higher

-0.33 0.18 [−0.69, 0.00]

Sex of the child
Male 1 . . .
Female -0.19 0.09 [−0.37,−0.01]
Age at first birth
Less than 20 years 1 . . .
20-29 years -0.14 0.11 [−0.36, 0.06]
30-39 years 0.49 0.59 [−0.78, 1.52]
Births in the past
one year
No-births 1 . . .
One birth 0.19 0.09 [0.00, 0.39]
Two births 0.99 0.45 [0.12, 1.79]
Sex of the household
head
Male 1 . . .
Female 0.29 0.10 [0.09, 0.49]
Mother’s age group
Below 20 years 1 . . .
20- 29 years -0.37 0.19 [−0.75, 0.04]
30-39 years -0.26 0.21 [−0.65, 0.15]
40 + years -0.05 0.24 [−0.52, 0.43]
Source of drinking
water
Piped water Ref . . .
Borehole 0.12 0.14 [−0.15, 0.39]
Well 0.06 0.16 [−0.25, 0.37]
Surface/Rain/
Pond/Lake/Tank 0.24 0.17 [−0.10, 0.58]
Others 0.18 0.24 [−0.31, 0.65]
Random effects
Precision for frailty
term

61.33 64.88 [11.66, 63.47]

Alpha parameter for
Weibull

1.18 0.19 [1.07, 1.29]

Marginal likelihood -2951.26

Results for frailty at household
level

Factors Mean SD [95%CI]

Intercept -3.89 0.26 [−4.42,−3.39]
Fixed effects
Father’s education
Illiterate 1 . . .
Complete Primary -0.08 0.14 [−0.28, 0.12]
Secondary and
higher

-0.34 0.18 [−0.70, 0.01]

Sex of the child
Male Ref . . .
Female -0.19 0.09 [−0.38,−0.01]
Age at first birth
Less than 20 years 1 . . .
20-29 years -0.16 0.11 [−0.38, 0.06]
30-39 years 0.56 0.62 [−0.78, 1.67]
Births in the past
one year
No-births 1 . . .
One birth 0.19 0.10 [−0.01, 0.39]
Two births 1.189 0.50 [0.12, 2.10]
Sex of the household
head
Male 1 . . .
Female 0.30 0.10 [0.09, 0.51]
Mother’s age group
Below 20 years 1 . . .
20- 29 years -0.35 0.21 [−0.75, 0.08]
30-39 years -0.24 0.21 [−0.65, 0.19]
40 + years -0.02 0.25 [−0.51,−0.49]
Source of drinking
water
Piped water 1 . . .
Borehole 0.12 0.14 [−0.15, 0.41]
Well 0.06 0.17 [−0.26, 0.39]
Surface/Rain/
Pond/Lake/Tank 0.24 0.18 [−0.11, 0.59]
Others 0.20 0.25 [−0.31, 0.69]
Random effects
Precision for frailty
term

1.42 0.35 [0.91, 2.28]

Alpha parameter for
Weibull

0.33 0.01 [0.30, 0.36]

Marginal Likelihood -2945.52

6.1.4.2 Results

From Table (6.2), the precision of the frailty term is 61.3. Precision is defined as the

reciprocal of the variance. The variance of the frailty term is 0.016, which is very close

to zero and therefore confirms the results that the community frailty is not significant.

This implies that all the differences among the mortality rates of the children under the

age of five are explained by the observed fixed covariates stated in the model.

The precision for the household frailty term is 1.42 with a tight confidence interval

presented in the table indicates that the frailty at household level is significant. Children

under the age of five in different households were exposed to different risks of death

whereby some of the children were more exposed to the risk than others.

The factors that were strongly associated to a high under-five child mortality were sex

of the child , number of births in the past one year and sex of the child just as concluded

earlier on.
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Generally the confidence intervals for all the fixed effects considered in the household

effects model appear wider than in the community effects model.



Chapter 7

Discussion and conclusions

Two broad methods were used for inference in this thesis namely the Frequentist and

Bayesian approaches. Each of these approaches has its advantages and disadvantages. To

use the Bayesian approach, one has to accept that parameters of interest may be treated

as random variables with the so called prior. Advantages of the Frequentist inference over

the Bayesian inference are listed by Hall (2012) and these include; Frequentists models

are easier to implement because there is no requirement to set any prior distributions.

All aspects of parameter estimation are data driven unlike the Bayesian models where

prior distributions and initial values for approximations have to be specified.

In addition to the above, the run time for the Frequentists models are shorter than for

those of Bayesian models via the MCMC. The problem becomes even more compounded

when one is dealing with complex models with larger sample sizes taking weeks in

Bayesian inference via MCMC. Note: However the recent Laplace approximations when

used in Bayesian estimation give run-times that are as fast as the Frequentists Maximum

likelihood estimation even in case of a large data set. This is one of the facts on which

the INLA package in R was built. Further more, the Frequentist models are able to

include large data sample sizes well as Bayesian models via MCMC have been restricted

to small sample sizes.

Note: This ristriction however has been overcome by running the MCMC Algorithms in

Laplace Approximation functions. These do not loop through records and are vectorised

allowing for handling large data sets.

Hall (2012) also presents the advantages of Bayesian inference over the Frequentist infer-

ence and these include; (a) Bayesian models allow for informative prior so that the prior

knowledge can be used to inform the current models. (b) Bayesian inference assumes the

74
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data to be fixed and the unknown parameters to be random which is true and this is the

opposite with Frequentists inference. The Frequentists estimation is therefore not based

on the data at hand but data at hand plus hypothetical repeated sampling in future

with similar data. (c) There is no Frequentists probability distribution associated with

the unknown parameters or hypotheses. Bayesian inference therefore estimates a full

probability model. (d) Bayesian inference estimates the probability of the hypothesis

given the data where as the Frequentists estimate the probability of the data given the

hypothesis. Hypothesis testing itself suggests that one should test for the hypothesis

given the data. (e) Bayesian inference uses observed data only while Frequentists uses

observed and future data that is unobserved and hypothetical.

As per what type of inference gives the most precise results remains as a choice and pref-

erence of the researcher. For this thesis the conclusions got by using Bayesian inference

and Frequentists inference were not in anyway different.

In this thesis one has to note that some of the variables that were excluded from the

analysis was due to the selection of variables and model selection criteria used but this

does not mean that these variables have no effect on the survival time of the children

under the age of five years in Uganda. Given the fact that the models used in this section

have got defined assumptions, there was not enough evidence to include some of these

covariates in the final analysis.

There was no evidence to prove that the frailty effect was significant at the community

level but there was enough evidence from the data to show the significance of the frailty

effect at the household level. This implies that survival times of children under the age of

five in a given community in a country are different from the survival time of the children

under the age of five in any other community in the country whereas children under the

age of five who live in the same household have correlated survival times. This indicates

that more efficient interventions may be those that target individual households rather

than communities. This may be expensive but may realistically help reduce on infant

and child mortality and hence see the way to achieving the millennium development

goal.

The results in this thesis do not deviate much from the findings of other sub-Saharan

African countries such as Zimbabwe, Kenya, Tanzania among others (Hobcraft et al.,

1984). The results indicate that sex of the child, sex of the household head and number

of births in the last one year are strongly associated to the survival of children under

the age of five. The results also indicated that children born in broken families were

exposed to a higher risk of death than those in families that had both the parents and

the father as the family head. A female child was at a lower risk of death than a male

child and this is attributed to the value most of the tribes in Uganda attach to the girl
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child. The female child is seen as a source of wealth to the family, thus the female child

is preferentially given more care or attention.

Mothers who had more than one child born in the last one year exposed their children

to a higher risk of death before reaching the age of five. This covariate also shows that

short birth intervals are associated with a high child mortality rate. The short birth

intervals portrayed by the results can also be as a result of the low use of modern family

planning methods. The data shows that only 25.3% of the women were using modern

family planning methods, 3.4% were using traditional methods, 47.5% were non-users

and intend to use later and 23.7% of the women did not intend to use any family planning

method in the near future at the time of the survey. The data also shows that the health

facilities where these women go for their maternal health failed to inform women on the

several methods available for family planning because 50% of the women confessed that

the health facilities did not inform them about family planning and only 27.0% of these

women claimed to have been told about family planning and 22.7% of the women didnot

answer the question and therefore had missing information.

Covariates such as previous and preceding birth interval which could have given us good

information on the birth intervals of the women included in this sample were not included

in the analysis. This is as a result of the high level of missing information with these

covariates. Most mothers did not know their preceding and succeeding birth intervals.

Other factors like fathers education, source of drinking water, mother’s age at first

birth among others, have an effect on the survival of children under the age of five but

the effect seemed insignificant based on the results. The results however give us some

clues on how some of these factors are associated to under-five children mortality. For

example, the results show that Families with fathers who had attained secondary and

higher education, had their children under the age of five exposed to a low risk of death

than those in households where the father had not even attained the basic primary

education.

Recommendations from this study are that, more efficient interventions may be those

that target individual households rather than communities. Mothers should be made

more aware about modern family planning methods to enable them plan for their families

well and to also avoid short preceding and succeeding birth intervals. Parents should

also be made aware that all children require equal treatment regardless of their sex. This

will reduce on the death of children due to negligence by parents basing on the sex of

the child. Issues on who to take care of the child after the marriage is broken should be

handled carefully by the state to stop making children under the age of five from such

families vulnerable or exposed to high risk of death.
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The DHS survey is associated with the following critics and they include; the DHS data

collection involves collection of data from women age between the age 15− 49 who are

alive in a given household but for mothers who have died, no information is collected,

this creates a bias in the results. More to that, the DHS survey uses a retrospective

technique. This is associated to many problems and challenges. The major problem

with it is that the quality of the results depends on the completeness and correctness

of the birth and death history. In most cases incomplete and inaccurate information is

provided which affects the final conclusions and recommendations. A follow up study

may be a good alternative to the DHS surveys, in this case a cohort of women is followed

up for five years, recording the death and birth histories of their children.
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Delta method

According to Oehlert (1992), the delta method was introduced by Thompson (1968)

and modified by different authors including Mehta and Srinivasan (1971) and Oehlert

(1981). To find the estimate of the variance of the Kaplan-Meier estimate, we need to

introduce the concept of the delta method. This method uses the first order Taylor

series expansion of a function h (X) around the mean E (X) = µ of a random variable

X.

h (X) ≈h (µ) + h
′
(µ) (X − µ) ,

V ar (h (X)) ≈V ar
(
h (µ) + h

′
(µ) (X − µ)

)
,

=h
′2 (µ)V ar (X − µ)

=h
′2 (µ)V ar (X) .

provided the function h (X) is first-order differentiable.

In order to get the variance of the estimate to the survival function Ŝ (t), we apply the

delta method on the estimate Ŝ (t) of the survival function.

Ŝ (t) =
r∏
i=1

(
ni − di
ni

)
,

log Ŝ (t) = log

r∏
i=1

(
ni − di
ni

)
=

r∑
i=1

log

(
ni − di
ni

)
,

V ar
{

log Ŝ (t)
}

=
r∑
i=1

V ar

{
log

(
ni − di
ni

)}
.
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by applying the delta method on the right hand side of the equation,

V ar
{

log Ŝ (t)
}

=
r∑
i=1

di
ni (ni − di)

by applying the delta method on the left hand side we get the estimate for variance and

then derive the estimate for the standard error as shown below:

V ar
{

log Ŝ (t)
}

=
1

Ŝ (t)2
V ar

{
ˆS (t)
}

V ar
{
Ŝ (t)

}
=
[
Ŝ (t)

]2
r∑
i=1

di
ni (ni − di)

.



Schoenfeld Residuals

For the proportionality hazard assumption to be true, the schoenfeld residuals centred

at zero should be independent of time, Schoenfeld (1982).

The approach considers one covariate at a time i.e. we get one set of residuals and one

p-value per covariate in the model. Suppose a failure occurs and that the model we have

is correct, the failure would happen to an individual k with probability:

P (kfails) =
eβxk∑

j∈R(t) e
βxj

.

The individual who fails has at time ti has a covariate xi, the expected value of this is:

E (Xi) =
∑

k∈R(ti)

xkP (kfails) ,

=
∑

k∈R(ti)

xke
βxk∑

j∈R(t) e
βxj

.

The difference between the observed and the expected covariates of the person who fails

at time ti is given by:

r̂i = xi − E (Xi) . (1)

If the proportional hazard assumption is true, (1) should be independent of time, Schoen-

feld (1982). Alternatively Grambsch and Therneau (1994) proposed the scaled schoen-

feld residuals. He scaled the residuals by an estimate of their variance. The scaled

schoenfeld residuals are given by:

r̃ = mV̂
(
β̂
)
r̂i.
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Where m is the number of censored observations and this is what the R package and

other softwares give. The null hypothesis is that the scale residuals are independent of

failure times and the test statistic is based on a Chi-square test derived in Grambsch

and Therneau (1994) and R automatically calculates it using the Cox.phz command.



The Gibbs Sampler (Alternating

conditional sampling)

.1 The Gibbs Sampler (Alternating conditional sampling)

According to Chen et al. (2000), the Gibbs Sampler is one of the best known MCMC

sampling algorithm in Bayesian computational literature. They add that the formal term

was introduced by Geman and Geman (1984). According to Duchateau and Janssen

(2008), Gibbs sampling is based on the posterior density of each parameter conditional

on all other parameters.

With Gibbs sampling, the high dimensional problem is reduced to many unidimensional

or lower dimensional problems. They continue to say that, the parameter vector is

divided into a number of subvectors and in each iteration, sampling cycles through the

different subvectors and draws a random sample for the subvector using the posterior

density of the subvectors conditional to the current values of the other subvectors. We

will design the subvector such that it consists of only one parameter. The advantage of

Gibbs sampling is that the posterior densities are easy to obtain and also easy to draw

samples from them.

Let η = (η1, η2, . . . , ηp)
′

denote a p-dimensional vector of parameters and let f (η|X) be

the posterior distribution given the data. The basic Gibbs sampler is given as follows:

Step 0:

• Choose an arbitrary starting point:

η0 = (η1,0, η2,0, . . . , η,o)
′
,
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• Set i = 0.

Step 1:

• Generate

ηi+1 ∼ (η1,i+1, η2,i+1, . . . , ηp,i+1)
′

as follows;

• Generate

η1,i+1 ∼ f (η1|η2,i+1, . . . , ηp,i, X) ;

• Generate

η2,i+1 ∼ f (η2|η1,i+1, η3,i+1, . . . , ηp,i, X) ;

. . . . . . . . . . . . . . . . . . . . . . . . ;

• Generate

ηp,i+1 ∼ f (ηp|η1,i+1, η2,i+1, . . . , ηp−1,i+1, X) .

Step 2: Set i = i+ 1 and go to step 1.

Therefore each component of η is visited in the natural order and a cycle in this scheme

requires generation of p random variables.

Gelfand and Smith (1990) show that under certain regularity conditions, the vector

sequence {ηi, i = 1, 2, . . .} has a stationary distribution f (η|X).

Schervish and Carlin (1992) provide a sufficient condition that guarantees geometric

convergence. Other properties regarding geometric convergence are discussed in Roberts

and Polson (1994).



R Codes

############## The univariate Cox-ph model, testing

for the schoenfield residuals and Exploratory

data analysis codes ########################

#### Changing categorical variables into factors####

Data$V149 = as.factor(Data$V149)

Data$V729 = as.factor(Data$V729)

Data$B4 = as.factor(Data$B4)

Data$V201= as.factor(Data$V201)

Data$V025= as.factor(Data$V025)

Data$V190= as.factor(Data$V190)

Data$M4= as.factor(Data$M4)

Data$M18= as.factor(Data$M18)

Data$V130<-as.factor(Data$V130)

#Data$B11= as.factor(Data$B11)

Data$BORD<-as.factor(BORD)

Data$V212<-as.factor(V212)

#Data$previousbirthinterval2<-as.

factor(previousbirthinterval2)

Data$V209<-as.factor(Data$V209)

Data$V208<-as.factor(Data$V208)

Data$V137<-as.factor(Data$V137)

Data$V013<-as.factor(Data$V013)

Data$V151<-as.factor(Data$V151)

Data$V714<-as.factor(Data$V714)

Data$V113<-as.factor(Data$V113)

Data$V717<-as.factor(Data$V717)

Data$B0<-as.factor(Data$B0)

Data$V130<-as.factor(Data$V130)

Data$V116<-as.factor(Data$V116)

################################

#####mother’s educ V149############

Data$Censorstatus
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Data$V149 = as.factor(Data$V149)

#summary(data)

coxfit=coxph(Surv(Data$Survivaltime,Data$Censorstatus)~

Data$V149, data=Data)

coxfit

#plotHR(coxfit)

summary(coxfit)

###Testing for proportionality hazard assumption######

cox.zph(coxfit,transform=rank)

plot(cox.zph(coxfit,transform=rank))

####end mother’s education#################

######father’s educ V729#######################

Data$V729 = as.factor(Data$V729)

#summary(data)

coxfit1=coxph(Surv(Data$Survivaltime,Data$Censorstatus)~

Data$V729, data=Data)

coxfit1

summary(coxfit1)####satisfies coxph

###Testing for proportionality hazard assumption######

cox.zph(coxfit1,transform=rank)

plot(cox.zph(coxfit1,transform=rank))

######################end#####################

################Child sex B4 ######################

Data$B4 = as.factor(Data$B4)

coxfit2=coxph(Surv(Data$Survivaltime,Data$Censorstatus)~

Data$B4+frailty(V001) ,data=Data)

coxfit2

summary(coxfit2)

###Testing for proportionality hazard assumption######

cox.zph(coxfit2,transform=rank)

plot(cox.zph(coxfit2,transform=rank))

#################End child sex ###########################

###########################V201 Children ever born#######

Data$V201= as.factor(Data$V201)

Data$V201

class(Data$V201)

Data$V201

coxfit3=coxph(Surv(Data$Survivaltime,Data$Censorstatus)~

Data$V201,data=Data)

coxfit3

summary(coxfit3)

###Testing for proportionality hazard assumption######

cox.zph(coxfit3,transform=rank)

plot(cox.zph(coxfit3,transform="km", global=TRUE))

#########################End Partner’s educ#############
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###########################Type of place of residence V102##

Data$V025= as.factor(Data$V025)

Data$V025 ###Not significant

coxfit4=coxph(Surv(Data$Survivaltime,Data$Censorstatus)~

Data$V025,data=Data)

coxfit4

summary(coxfit4)

###Testing for proportionality hazard assumption######

cox.zph(coxfit4,transform=rank)

plot(cox.zph(coxfit4,transform="km", global=TRUE))

################eEnd type of place of residence########

##########################V190 Wealth index###############

Data$V190= as.factor(Data$V190)###satisfies coxph

Data$V190

coxfit5=coxph(Surv(Data$Survivaltime,Data$Censorstatus)~

Data$V190,data=Data)

coxfit5

summary(coxfit5)

###Testing for proportionality hazard assumption######

cox.zph(coxfit5,transform=rank) ##doesnot satisfy cox ph

plot(cox.zph(coxfit5,transform="km", global=TRUE))

#############################end V190 Wealth index###########

#######################M4 Duration of breast feeding###########

Data$M4= as.factor(Data$M4)

Data$M4

coxfit6=coxph(Surv(Data$Survivaltime,Data$Censorstatus)~

Data$M4,data=Data)

coxfit6

###Testing for proportionality hazard assumption######

cox.zph(coxfit6,transform=rank)

plot(cox.zph(coxfit6,transform="km", global=TRUE))

################end of M4 Duration of breast feeding###

#####################M18 size of child at birth########

Data$M18= as.factor(Data$M18) #satisfies cox ph

Data$M18

coxfit7=coxph(Surv(Data$Survivaltime,Data$Censorstatus)~

Data$M18,data=Data)

coxfit7

summary(coxfit7)

###Testing for proportionality hazard assumption######

cox.zph(coxfit7,transform=rank)

plot(cox.zph(coxfit7,transform="km", global=TRUE))

##########################end M18 size of child at birth#########

##########################birth intervals B11 nad B12 ###########
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Data$B11= as.factor(Data$B11)

Data$B11

coxfit8=coxph(Surv(Data$Survivaltime,Data$Censorstatus)~

Data$B11,data=Data)

coxfit8

###Testing for proportionality hazard assumption######

cox.zph(coxfit8,transform=rank)

plot(cox.zph(coxfit8,transform="km", global=TRUE))

#################end birth intervals B11 and B12#####

#######Birth order BORD##############################

Data$BORD<-as.factor(BORD)

Data$BORD= as.factor(Data$BORD)

Data$BORD ####n

coxfit9=coxph(Surv(Data$Survivaltime,Data$Censorstatus)~

Data$BORD,data=Data)

coxfit9

summary(coxfit9)

###Testing for proportionality hazard assumption######

cox.zph(coxfit9,transform=rank)

plot(cox.zph(coxfit9,transform="km", global=TRUE))

###########end birth order###########################

#######Age at first birth V212##############################

Data$V212<-as.factor(V212)

Data$V212= as.factor(Data$V212)#satisfies cox ph

Data$V212 ####n

coxfit10=coxph(Surv(Data$Survivaltime,Data$Censorstatus)~

Data$V212,data=Data)

coxfit10

summary(coxfit10)

###Testing for proportionality hazard assumption######

cox.zph(coxfit10,transform=rank)

plot(cox.zph(coxfit10,transform="km", global=TRUE))

###########end birth order###########################

#####Previous birth interval B11##############################

Data$previousbirthinterval2<-as.factor(previousbirthinterval2)

Data$previousbirthinterval2= as.factor(Data$previousbirthinterval2)

Data$previousbirthinterval2####n

###Testing for proportionality hazard assumption######

coxfit11=coxph(Surv(Data$Survivaltime,Data$Censorstatus)~

Data$previousbirthinterval2,data=Data)

coxfit11

summary(coxfit11)

cox.zph(coxfit11,transform=rank)

plot(cox.zph(coxfit11,transform="km", global=TRUE))

###########end previous birth interval#################

#####Births in the past one yr##########################

Data$V209<-as.factor(Data$V209)

Data$previousbirthinterval2= as.factor(Data$V209)



Appendix D. R Codes 95

Data$V209####n

coxfit12=coxph(Surv(Data$Survivaltime,Data$Censorstatus)~

Data$V209,data=Data)

coxfit12

summary(coxfit12)

###Testing for proportionality hazard assumption######

cox.zph(coxfit12,transform=rank)

plot(cox.zph(coxfit12,transform="km", global=TRUE))

###########end births in the past one yr############

#####Births in the past one yr###################

Data$V209<-as.factor(Data$V209)

Data$V209= as.factor(Data$V209)

Data$V209####n

coxfit13=coxph(Surv(Data$Survivaltime,Data$Censorstatus)~

Data$V209,data=Data)

coxfit13

summary(coxfit13)

###Testing for proportionality hazard assumption######

cox.zph(coxfit13,transform=rank)

plot(cox.zph(coxfit13,transform="km", global=TRUE))

###########end births in the past one yr############

#####Births in the past five yrs###############

Data$V208<-as.factor(Data$V208)

Data$V208= as.factor(Data$V208)

Data$V208####n

coxfit13=coxph(Surv(Data$Survivaltime,Data$Censorstatus)~

Data$V208,data=Data)

coxfit13

summary(coxfit13)

###Testing for proportionality hazard assumption######

cox.zph(coxfit13,transform=rank)

plot(cox.zph(coxfit13,transform="km", global=TRUE))

###########end births in the past one yr##############

#####Number of childeren underfive in a household V137#######

Data$V137<-as.factor(Data$V137)

Data$V137= as.factor(Data$V137)

Data$V137####n

coxfit14=coxph(Surv(Data$Survivaltime,Data$Censorstatus)~

Data$V137,data=Data)

coxfit14

summary(coxfit14)

###Testing for proportionality hazard assumption######

cox.zph(coxfit14,transform=rank)

plot(cox.zph(coxfit14,transform="km", global=TRUE))

####end Number of childeren underfive in a household######
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#####Mother’s age group V013######################

Data$V013<-as.factor(Data$V013)

Data$V013= as.factor(Data$V013)

Data$V013####n

coxfit15=coxph(Surv(Data$Survivaltime,Data$Censorstatus)~

Data$V013,data=Data)

coxfit15

summary(coxfit15)

###Testing for proportionality hazard assumption######

cox.zph(coxfit15,transform=rank)

plot(cox.zph(coxfit15,transform="km", global=TRUE))

###########end Mother’s age group V013#################

#####Sex of household head V151#########################

Data$V151<-as.factor(Data$V151)

Data$V151= as.factor(Data$V151)

Data$V151####n

coxfit16=coxph(Surv(Data$Survivaltime,Data$Censorstatus)~

Data$V151,data=Data)

coxfit16

summary(coxfit16)

###Testing for proportionality hazard assumption######

cox.zph(coxfit16,transform=rank)

plot(cox.zph(coxfit16,transform="km", global=TRUE))

###########end Number of childeren underfive in a househo####

#####Current working status of respondent V714############

Data$V714<-as.factor(Data$V714)

Data$V714= as.factor(Data$V714)

Data$V714####n

coxfit17=coxph(Surv(Data$Survivaltime,Data$Censorstatus)~

Data$V714,data=Data)

coxfit17

summary(coxfit17)

###Testing for proportionality hazard assumption######

cox.zph(coxfit17,transform=rank)

plot(cox.zph(coxfit17,transform="km", global=TRUE))

###########end Current working status of

respondent V714###

####Source of drinking water V113##########

Data$V113<-as.factor(Data$V113)

Data$V113= as.factor(Data$V113)

Data$V113####n

coxfit18=coxph(Surv(Data$Survivaltime,Data$Censorstatus)~

Data$V113,data=Data)

coxfit18

summary(coxfit18)
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###Testing for proportionality hazard assumption######

cox.zph(coxfit18,transform=rank)

plot(cox.zph(coxfit18,transform="km", global=TRUE))

#######end Source of drinking water V113##############

####Mother’s occupation V717##########

Data$V717<-as.factor(Data$V717)

Data$V717= as.factor(Data$V717)

Data$V717####n

coxfit19=coxph(Surv(Data$Survivaltime,

Data$Censorstatus)~

Data$V717,data=Data)

coxfit19

summary(coxfit19)

###Testing for proportionality hazard assumption######

cox.zph(coxfit19,transform=rank)

plot(cox.zph(coxfit19,transform="km", global=TRUE))

###########end Mother’s occupation V717#################

####Type of birth B0##############################

Data$B0<-as.factor(Data$B0)

Data$B0= as.factor(Data$B0)

Data$B0####n

coxfit20=coxph(Surv(Data$Survivaltime,Data$Censorstatus)~

Data$B0,data=Data)

coxfit20

summary(coxfit20)

###Testing for proportionality hazard assumption######

cox.zph(coxfit20,transform=rank)

plot(cox.zph(coxfit20,transform="km",

global=TRUE))

###########end Type of birth B0###################

####Religion V130##############################

Data$V130<-as.factor(Data$V130)

Data$V130= as.factor(Data$V130)

Data$V130####n

coxfit21=coxph(Surv(Data$Survivaltime,

Data$Censorstatus)~

Data$V130,data=Data)

coxfit21

summary(coxfit21)

###Testing for proportionality hazard assumption######

cox.zph(coxfit21,transform=rank)

plot(cox.zph(coxfit21,transform="km",

global=TRUE))

###########end Religion V130####################
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####Type of Toilet Facility V116###########

Data$V116<-as.factor(Data$V116)

Data$V116= as.factor(Data$V116)

Data$V116####n

coxfit22=coxph(Surv(Data$Survivaltime,

Data$Censorstatus)~

Data$V116,data=Data)

coxfit22

summary(coxfit22)

###Testing for proportionality hazard assumption######

cox.zph(coxfit22,transform=rank)

plot(cox.zph(coxfit22,transform="km", global=TRUE))

###########end Toilet Facility V160#####################

############Fitting the overall Cox-PH model after data

cleaning and testing for the PH assumption

with the selected variables#####################

###variables that satisfy the propazard assumption#####

coxfitO1=coxph(Surv(Data$Survivaltime,

Data$Censorstatus)~

Data$V729 +Data$B4+Data$V212

+Data$V209 +Data$V151 +Data$V013 +

Data$V113 +Data$V130 ,data=Data)

coxfitO1

summary(coxfitO1)

##model selection #################

f1=step(coxfitO1,.~Surv(Data$Survivaltime,

Data$Censorstatus)~Data$V729

+Data$B4 +Data$V212

+Data$V209 +Data$V151 +Data$V013

+Data$V113 +Data$V130

,direction="both",data=Data)

###############################################

################final cox model################

m=coxph(Surv(Data$Survivaltime, Data$Censorstatus) ~

Data$V729 + Data$B4 +

Data$V209 + Data$V151+ Data$V013, data=Data)

summary(m)

#########################################

############# Frailty Modelling ########

##############Frailty###################

####comunity frailty#########

pen=frailtyPenal(Surv(Data$Survivaltime,
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Data$Censorstatus)

~Data$V729 +

Data$B4

+Data$V212 +Data$V209

+Data$V151 +Data$V013

+Data$V113+Data$V130 +cluster(Data$V001),

data=Data, Frailty=TRUE,n.knots=6,

kappa1=5000,recurrentAG=FALSE,

cross.validation=TRUE

,hazard="Splines")

pen

summary(pen)

f2=step(pen,.~Surv(Data$Survivaltime,

Data$Censorstatus)~

Data$V729 +Data$B4

+Data$V212 +Data$V209 +Data$V151

+Data$V013 +Data$V113 +Data$V130

+cluster(Data$V001),Frailty=TRUE,

n.knots=6,kappa1=5000, recurrentAG=FALSE,

cross.validation=TRUE,hazard="Splines"

,direction="both",data=Data)

######## Household frailty ###############

pen=frailtyPenal(Surv(Data$Survivaltime,

Data$Censorstatus)~

Data$V729 +Data$B4

+Data$V212 +Data$V209 +Data$V151

+Data$V013 +Data$V113 +Data$V130

+cluster(Data$HHI),data=Data, Frailty=TRUE,

n.knots=6,kappa1=5000,recurrentAG=FALSE

,cross.validation=TRUE,hazard="Splines")

pen

summary(pen)

########################################

#############Model selection#########

f1=step(coxfitO1f,.~Surv(Data$Survivaltime,

Data$Censorstatus)~

Data$V729 +Data$B4

+Data$V212 +Data$V209 +Data$V151 +Data$V013

+Data$V113 +Data$V130

+frailty(V001),direction="both",data=Data)

##################### End Frailty ###############

#########Bayesian modelling and inference ########

############INLA CODE#########

###INLA CODE###############
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library(INLA)

########Weibull Model##########

inla.surv(Data$Survivaltime, Data$Censorstatus)

formula = inla.surv(Data$Survivaltime,

Data$Censorstatus)~Data$V729+

Data$B4+Data$V212

+Data$V209+Data$V151+Data$V013+Data$V113

model=inla(formula, family="weibull", data= Data,

verbose=TRUE,keep=TRUE )

summary(model)

################End Weibull###############

########semiparametric models############

formula = inla.surv(Data$Survivaltime,

Data$Censorstatus)~Data$V729+Data$B4+

Data$V212+Data$V209+

Data$V151+Data$V013+Data$V113+Data$V130

model1 = inla(formula,family="coxph",

control.hazard=list(model="rw1", cutpoints =

c(0,900,1800)),data=Data,keep=T)

summary(model1)

###########end semiparametric models###########

############ Community frailty term###############

formula = inla.surv(Data$Survivaltime,

Data$Censorstatus)~ Data$V729+Data$B4+

Data$V212+Data$V209+Data$V151+Data$V013+

Data$V113+Data$V130+f(Data$V001, model="iid",

param =c(1, 0.001), initial=0.01)

model = inla(formula, family="weibull",

data =Data,verbose=T,control.family

=list(param=c(1,0.001),fixed=F,initial = 0.3),

control.inla = list(int.strategy="grid",

diff.logdens=20, dz=0.5), keep=T )

summary(model)

##############Household Frailty###############

formula = inla.surv(Data$Survivaltime,

Data$Censorstatus)~ Data$V729+Data$B4+

Data$V212+Data$V209+Data$V151+Data$V013+

Data$V113+Data$V130+f(Data$HHI, model="iid", param

=c(1, 0.001), initial=0.01)

model2 = inla(formula,

family="weibull",data =Data,verbose=T,

control.family=list(param=c(1,0.001),

fixed=F,initial = 0.3),

control.inla = list(int.strategy="grid",
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diff.logdens=20, dz=0.5), keep=T )

summary(model2)

##################################
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