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Chapter 1

SUMMARY

The development and testing of a Kalman filter on a typical metallurgical
plant is described in this thesis. A ball milling circuit, which was

monitored by a medium-sized process control computer, was used.

A two-level filter was developed. The first level processed volumetric
data, and estimated volumes and flows from the noisy measurements. The
second level used these data and measurements of concentration to predict
the masses in each particle size fraction around the circuit. From these,
unmeasured variables, such as particle size distributions, were calculated

and compared with samples.

Parameters for use in the filter had to be determined experimentally.

When the filter was ready, runs were done on the milling circuit to get
data, which were then used to do off-line testing of the filter. Once this
was working satisfactorily, and its characteristics were understood, it nas
run in real time on the milling circuit. These results were successful
and showed some of the problems associated with the actual application of

such a filter in real time.

This thesis gives the development and subsequent testing of the milling
circuit filter. It discusses the relevant literature, and goes on to
present the theory and how the filter was built. The apparatus and
experimentation, both off-line and on-line, are described. The results of
the experiments and the filter computations are shown, and the effects of
various factors on the filter are displayed. Finally, all the results are

discussed in the light of using an on-line filter, and reccmmendations are

made.



Chapter P

INTRODUCTION.

Kalman filters have been limited mainly to the aerospace industry in the

past, but are potentially useful in a wide variety of industrial

applications. The objectives behind this study were:-

(1) To develop and test recursive Kalman type filters on
metallurgical processes.

(2) To determine and find solutions for the problems associated with
their real-time use.

(3) To devise methods of solving the filter equations in real time.

To do this, a pilot plant milling circuit in the Department of Chemical
Engineering at the University of Natal was used. This plant was coupled
to a CDC 1700 process control computer for control and data logging purposes.
By means of a dynamic stochastic model for the grinding circuit, a filter
was written and programmed to take measurements from the plant and predict
the state. This gave (inter alia) the particle size distribution at any

point in the circuit, which was then checked against samples taken.

Although the development of a useful filter depends on an adequate model of
the process, it was not the aim of this investigation to make a detailed
study of the modelling of comminution, or to develop optimal automatic

control for a grinding circuit.

The use of a filter such as the one outlined here enabled dynamic
estimation to be done on a milling circuit, unlike steady state predictions

based on linear regressions.

2:1 Background/. ..




241 Background

Noise Noise
4 Measurements Sk n! e
Control — Process Instrumentation » Filter —Pstate of

process

Figure 2.1. Basic signal flowchart with filter

Figure 2.1. shows how a filter is used to estimate the state of a process
which cannot be observed directly and noiselessly. The filter cannct
predict the state exactly, but rather the probability of a state, and this
may be simplified to estimates of the mean and variance. A recursive filter
treats the observations from the plant sequentially and, with a computer,
observations are taken at discrete points in time. The filter contains

a simplified model of the process and correéts its own estimates from the

actual observations as the plant is operating.

Since 1960, when Kalman first proposed his form of a recursive filter, a

lot of fundamental work in developing the theory has taken place. The
aerospace industry has been a profitable area for applications and most of
the early reports came from missile guidance applications. The use of
recursive estimation and filtering on industrial plants has not been repofted
as much, but it has been shown to be successful. There are a number of
problems associated with plant use, such as the formulation of a filter and
its solution in real time for a generally nonlinear problem. There are
also operational difficulties which are often overlooked in theoretical or
simulated studies. The reason that this project was started was to

investigate these problems on an actual plant in real time.

On the metallurgical side, there has been a considerable increase in the use
of automatic control and computer control recently. Plant disturbances here
are large (compared to aerospace work) and instrumentation on the key variables
is often poor or non-existent. On-line estimation is suited to this sort

of problem. For example, a milling circuit is a severe test for a filter.



It is subject to disturbances which cannot be measured, such as solids feed
variations in hardness or size, a relatively large yet poor model, a state (laees
masses in each particle size fraction) which cannot be measured directly,

and observations of concentrations which are inherently clouded by noise.

The pilot planf milling circuit in the Department was a suitable subject

for this investigation.

2.2 Brief description of filter

» Ground product

Cyclone
Water
Coarse solids Mill Sump
Water
Pump
Figure 2.2. Simplified flowchart of milling circuit
The wet ball milling circuit shown in Figure 2.2. was used. It was

instrumented and connected to the computer so that all control was D,D.C.*
By this means it was possible to store the operating data for subsequent

use, as well as having powerful computing facilities available while running

the plant.

* D.D.C. = direct digital control.

Figure 2.3./...
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Figure 2.3. Block diagram of the filter
which was developed

The signal flowchart of the filter is shown in Figure 2.3. Because a
complete model of the milling circuit is highly nonlinear, the filter was
split into two levels. This also saved some complexity. The volu-
metric filter handled only the volumes and volume flows around the plant.
The particle size distribution (p.s.d.) filter dealt with the grinding
and the classification of the rock carried in the slurry. It took
measurements of concentrations of cyclone feed and overflow, and used data
from the volumetric filter as parameters, to predict the masses in each

size fraction in the mill and sump.

The volumetric filter was a linear Kalman-Bucy continuous-discrete filter.

Its state variables were the volumes in the mill and sump, and control
parameters were the water additions to the mill and sump, the solids feed

(as a volume feed rate), and the sump to cyclone flow rate. Its state

model was obtained by writing volume balances over the mill, sump and cyclone.
Its observations consisted of single state or control variables, and so they

could be handled one at a time.

The volumetric filter/...



The volumetric filter was assumed to be independent of the results from
the p.s.d. filter, i.e., it was assumed that the volumetric models and
measurements were not affécted by either quantity or size of the solids
present. This was justified sufficiently (see results) to be of use.
The errors associated with the volumetric estimates were assumed to be
small compared to the errors in the p.s.d. filter, so that the mean values
of the volumetric estimates might be used as deterministic parameters in

the p.s.d. filter.

The p.s.d. filter was a nonlinear filter. The particle size range was
discretised into four size groups, and the masses in each size group in the
mill and sump were the state variables (i.e., dimension of state = 8).
These masses were random variables with their own probability distribution,

which should not be confused with the particle size distribution.

The normal comminution equations for a continuous mill were written as
stochastic differential equations with the rates of grinding as the random
input. The cyclone model used was a simple one with the reduced

classification constants for each size group dependent linearly upon the

feed concentration. A mass balance for each group around the sump
completed the state model. This formed a set of eight stochastic
differential equations. The use of moments was found to be the most

practical method of solving the set, although closure approximations were
needed. A technique using differential quadrature was also tried, with

only limited success.

The observations used in the p.s.d. filter were the cyclone feed and over-
flow concentrations. Using the cyclone mcdel, these were written in terms
of the mass in each size fraction in the sump, and so the observation step

of the p.s.d. filter was derived, using a simplified second order extended

Kalman filter observation step.

The filter was run/...



The filter was run recursively. The volumetric filter was run first
after each observation, and the results from this were then used in the
p.s.d. filter. Finally, if it was required to display the results, the
distributions and concentrations around the circuit were calculated from

the p.s.d. filter results.

This filter was used on data from the mill and was found to have reasonable
agreement with the samples taken. These results are discussed at length in
this thesis. The cyclone overflow was used most often for samples, as the
sizing in this stream is an important criterion for mill operation. The
sizing generally agreed well with the predictions, although the concentrations

were more scattered than expected.

The effects of a number of factors on the filter were also investigated, and
information about its operation was collected to determine what considerations
would be important in designing filters such as these in the future.
Experience was gained on the practical side of filter application and this

is reviewed in the discussion.

228 Outline of work done and thesis

At the beginning of this investigation, much of the relevant literature was
studied, on both filtering theory and milling. Some stochastic modelling
was tried with simulations on the computer, and some elementary filtering
theory was tested out in real time on the slurry mixing tanks for the

flotation plant.

The pilot plant milling circuit in the Department was instrumenfed and
prepared for use in this project. The milling circuit filter was also
developed. A number of preliminary off-line tests were done to get
parameters for the filter and calibrations for the instruments. Some

simple runs were done on the circuit to test it out and get data for



filtering. From these results, further off-line tests and runs on the
circuit were performed. This gave a lot of stored data for evaluating the
filter. After determining the effects of various factors in the-filter
on stored data, the filter was run in real time on the mill and its

performance was evaluated.

This thesis concentrates on development of the filter and its subsequent
tesfing. Pertinent literature is surveyed in Chapter 3, and is listed

in the bibliography in Appendix B. Chapter 4 develops the filter, and
summarises the basic theory on filters and modelling which was used.
Details of the equipment used, and the experimental procedure are presented
in Chapter 5. This includes details of the milling circuit, computing
facilities, and some of the basic software. The test procedure, both
off-line and on-line, and methods of analysis are given. The results of
all the work are presented in Chapter 6. The results from off-line tests
for determining parameters in the model, graphical records and details of
the runs done on the mill, and computed results from tests on the filter
are given. All the results are discussed in Chapter 7, and the final

conclusions are listed in Chapter 8.

2.4, Units

Basic S.I. units have been used throughout (except where quoting
nominal sizes of equipment). Slurry concentration (kg solids/m3 slurry)
is used in preference to percent solids by mass, as the latter is nonlinear

in the quantity of solids present.



Chapter 3

LITERATURE SURVEY.

This chapter is not intended as an exhaustive survey of all the literature
available, but rather as a description of the literature which was used for
this investigation. It can be divided into two main classes: the one re-
lates to milling circuit operation and modelling, and the other to filter-
ing theory. An alphabetical list of all the references appears in

Appendix B.

3.1 Modelling of Grinding

Early modelling of grinding was based on energy considerations, and gave
rise to models such as those of Kick, Rittinger and Bond (see Austin 1973(a),
Mular and Bull 1969, Perry 1963, Taggart 1927). At present, the form of
model most widely used is based on the sizing analysis and the rates of
grinding from one fraction into smaller fractions. This is the selection
and breakage function model, originally given by Epstein (Austin 1971/72).
Broadbent and Callcott (1956) published the discrete version of this model.
Apart from the generally understood fact that the selection for breakage is
a random process, (originally proposed by Kolmogorov in 1941 - see Austin
1971/72) there have been very few attempts made to model grinding as a
stochastic process. An important paper in this field is by Filippov (1961,
see also Goren 1968). It is interesting to note that the handling of the
selection function as a random process in some publications is slightly in-
correct in the light of stochastic calculus. This is explained in section

b4.2.3.

When applying the grinding model to practical problems, it is necessary to

know the effects of various operating variables on the basic parameters in

the grinding model/...
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the grinding model. The number of publications of use here is large,

but the following were found particularly useful:

(1) A sequence of papers by the division of Chemical Engineering, CSIRO,
Australia, on the effects of various parameters in wet ball and rocd
milling. (Heyes, Kelsall, Stewart 1973(a) and (b), and Kelsall, Reid,
Restarick 1967/68, 1968/69, 1969/70, 1973(a) and 1973(b)).

(2) Austin (1973(b)).

(3) Herbst and Fuersteneau (1972).

(4) Clark and Kitchener (1968).

(5) Herbst and Mika (1973).

Many attempts have been made to obtain a general solution to the grinding
equation, suitable for practical use. Analytical solutions usually re-
quire rather major restrictive assumptions. An interesting analytical
solution to the batch grinding equation is given by King (1972a).

Gardner and Verghese (1975) give a very simple analytical solution to a
steady state grinding circuit model, which had already been used in-
directly by Herbst and Mika (see below). Luckie and Austin (1972) have
published programmes useful for grinding circuit modelling. Austin and
Klimpel (private communication) have developed a programme to regress on
grinding data. They use functional forms for the selection and breakage
functions. Herbst, Grandy, Mika and Fuersteneau (1972) have described
another similar programme which they have developed which can fit individual
selection functions (see also Herbst and Mika, 1970). Both these programmes

were made available to the author during this investigation.

3.2 Grinding Circuit Control

It is only fairly recently that sophisticated control or even simple con-

trol has been applied to grinding circuits. The conventional grinding

circuit with a cyclone/...
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circuit with a cyclone is open loop stable (except for sump level control)
and although the dynamic response is poor, it is slow and amenable to
manual control. The number of control strategies which have been tfied
are enormous, and are evidence of the problem involved. Descriptions of
some of the more common methods being used and reports on some specific
projects are given by Birch (1972), Stewart (1970), Rowland (1963), Weiss
(1960), Cross (1966), Pownall (1964), Williamson (1960), and Draper,

Dredge and Lynch (1969).

The advent of computers for control, with their flexibility, has yielded

a number of reports of their applications to grinding circuits: Lees (1971),
Wiegel (1973), Timm and Williams (1970(a) and 1970(b)), Smith and Lewis
(1969), Lewis (1970/71), "The Kloof Concentrator" (1973 - no author given),
Fewings (1971), Fewings and Pitts (1973), Lynch and Stanley (1971),

Brookes, Cutting, Watson (1970), Peterson, White, Krist (1974), King (1972(d)).
Amsden, Chapman and Reading (1972) reported a simple installation on the
Ecstall flotation plant which paid for itself in two months. Brittan, see
e.g. Brittan and van Vuuren (1973) has achieved remarkable success with
off-line optimisation. A useful survey was done by White (1974) to test

how industry was responding to instruments and controls in mingral pro-
cessing works. (See also Kelly 1973) Grinding circuit control also forms
part of the control packages being offered by some large companies e.g.
Outokumpu Oy. (see Leskinen & Penttild 1973). Ol'skii (1971) reports simi-
lar trends towards computer control in Soviet mining and mineral under-

takings.

There have not been many attempts to analyse the control dynamics of grind-
ing circuits on a theoretical basis. This unfortunate position is pro-
bably indicative of the gap which exists between the practising metallur-

gists and control theorists. Brookes, et. al. (1969) modelled the

grinding/...
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grinding but controlled the mill separately. Steady state regressions
have been used by Watson et. al. (1970) and the group at the University

of Queeﬁsland, see e.g. Fewings (1971) and Lees and Lynch (13872).

Schonert (1969) attempted to analyse the effects of the classifier charac-
teristics. Woodburn (private communication) is taking a dynamic "black
box" approach, and is using multivariable linear control theory to solve
the problem. Crosby (1967) discussed mill circuit dynamics rather quali-

tatively, as did Freeh et. al. (1973).

3.3 Measurement and Control of Particle Size Distribution

Recently, a number of papers have appeared, proposing various methods of
on-line particle size measurement. Autometrics are now marketing a unit,
the PSM system-100, which uses ultrasonics. Several authors have reported
favourably on its use - Diaz and Musgrove (1971), Bassarear and McQuie
(1972), Hathaway (1972), Dart and Sand (1973), Webber and Diaz (1973),
Lloyd, Atkins and Hind (1974). Unfortunately, it is expensive and very
little information on its actual operation is available. Beck, Lee and
Stanley-Wood (1973) have developed a technique which monitors the eddies
present in a slurry stream and correlates these with the sizes of par-
ticles present. Osborne (1970 and 1972) describes an instrument ori-
ginally developed by the Royal School of Mines, London (see Holland-Batt
(1968)). This instrument uses a loop in the pipe to classify the slurry
stream and then detects differences in density with a nuclear gauge.
Riceci (1970) dilutes the slurry stream and then uses a light scanning
device to 'see" the particles. Carr-Brion and Mitchell (1967) use an

X-ray technique.

No papers or reports have been found which deal directly with the use of

on-line filters for the prediction of particle size distribution in a

milling circuit/...
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milling circuit for the purposes of control. Fournier and Smith (1972)

at the University of Toronto have been engaged in a programme of developing
observers for milling and flotation plants (see also Fournier 1971). The
group at the University of Queensland have developed steady state linear
regressions relating product particle size to various operating measure-
ments (similar to their cyclone model) and have used these for control

(Fewing 1971, see also Peterson et. al. 1974).

3.4 Cyclone and Classifier Modelling

The detailed quantitative modelling of a cyclone has not been taken very

far. Kelsall (1952) described the trajectories of single particles in a

cyclone. Bloor and Ingham (1973 (a) and (b)) attempted to derive effic-

iency curves from a model of the fluid dynamics of the system. It is in-
teresting that a stochastic model of the cyclone has been published by

Molerus (1967).

Early reports on cyclones generally concentrated on the influence of
design variables, e.g. Fontein, van Kooi and Leniger (1962). Bradley
(1965) published a book on hydrocyclones, giving general correlations and

design criteria.

The group at the University of Queensland have published a number of
useful correlations. Two that were used frequently in this investigation
were Lynch and Rao (1967) and Lees (1968). Mular and Bull (1969) summa-
rize some of these results in their course. Other references giving use-
ful operating information are Kanungo and Rao (1973), Lynch, Rao and

Prisbey (1974), Tarr (1965) and figure 2 in Peterson, et. al. (1974).

Earlier in this investigation, the use of a D.S.M. screen was considered.

It is worth recording the reference by Fontein (1965) on sieve bend

performance/...
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performance, as this was the only reference on the subject which could

be found.

3.5 Filtering Theory - Fundamentals

Kalman (1960) published a paper, and this was followed a year later by
Kalman and Bucy (1961), in which a type of filter formulation was pro-
posed which was radically different from earlier filters (associated
mainly with Wiener) . These new recursive filters were linear, but their
concept was soon extended to cover a wide range of processes, and they
became known as Kalman or Kalman-Bucy filters. Much of the development
work was due to the aerospace industry, and many papers are oriented

towards this field.

The first book to be published on the subject was by Bucy and Joseph (1968).
In 1970, Jazwinski published his book on stochastic processes and fil-
tering theory, (Jazwinski, 1970) which was the first comprehensive treat-
ment of the subject with a strong engineering orientation. This was
followed by Sage and Melsa's book (1971). A number of recent books on
control also feature a chapter on filtering e.g. &strdém (1970). Computer
and Control Abstracts (published by the IEEE, ref. 75) covers most of the

work published in this field,

In this investigation, the accent on researching literature on filters

was on finding new ways of solving nonlinear filtering equations. The

following is a list of techniques and associated references:

(1) Extensions of linear filtering theory: Jagwinski (197C) Sage and
Melsa (1971), Bejczy and Shridhar (1972)

(2) Approximations of the probability density using Gaussian Sums:
Alspach and Sorenson (1972), Sorenson and Alspach (1971), Alspach

(1972), Center (1971).

(3) Power series/...
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(3) Power Series expansions approximating the probability density:
Schilder (1971), Swerling, Goldstein, Arnold (1971).

(4) Statistical linearisation (series expansions of non linearities
with the coefficients determined in some optimal way): Mahalanabis
and Farooq (1971), Dessau (1972), Kazakov (1969) ( who uses an iter-
ative technique), Heess (1970).

(5) Discretisation of state space: Tacker and Linton (1970), Center (1971).

(6) Polynomial approximation of the probability density: Hughen and
Vimolvanich (1972), Hecht (1971), Center (1971).

(7) Multilevel filters and Hierarchical filters: Noton (1971).

(8) Stochastic Approximation. (Thié is an extension of linear filtering
theory where the gain matrix is approximated): Solov'yev (1970).

(9) Filtering algorithms for parallel computation: Tse (1971) and Larson
and Tse (1971). See also Slotnik (1971) for a description of
ILLIAC 1IV.

(10) Monte Carlo Techniques: Yoshimura and Soeda (1971), Hammersley and
Handscomb (1964), White (1971).

(11) Expansion of non linearities by series approximations: Swerling
(1966(a) and (b)).

(12) Fading memory nonlinear filter: Sacks and Sorenson (1971).

It is interesting to note that other on-line estimation techniques exist

although they were not used here, eg.

(1) Square root filters: Bierman (1974).

(2) Deterministic observers (e.g. Luenberger observers): Seborg, Fisher
and Hamilton (1974), Crossley and Porter (1971).

(3) Polynomial filtering: Stubberud and Masenten (1970).

Basafiez et. al. (1974) present an interesting technique called stochastic

computation. In a number of cases, very simple forms of data smoothing

have been used/...
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have been used successfully, e.g. Fertik (1971), Rome (1971). Adaptive
control and on-line model identification were not found to be of much

use, and so are not reported here.

3.6 Applications of Filtering

Most reports on the implementation of Kalman-Bucy filters are based on
simulations. The value of testing them on an actual plant is often

underestimated, for it is only then that many unforseen phenomena occur.

Outside the field of the aerospace industry, the experimental testing of
Kalman filters has not been reported much. Some early work was done on
papermaking machines (Rstrdm 1970). Wismer and Wells (1972) reported

the application to a basic oxygen furnace. A group at the University of
Alberta have reported several times on the application to a pilot piant
evaporator (Hamilton, Seborg and Fisher 1973, Seborg, Fisher and Hamilton
1974, Fisher and Jacobson 1973). King (1972(c)) achieved success with
the application of a nonlinear filter to slurry mixing tanks. Harvey
(1972) reported the use of on-line estimation in the control of a cement

plant feed proportioning system.

Some useful reports on simulations are given by Goldman and Sargent (1971),

Camp (1971), Wells (1971), Bar-Shalom (1972(a)).

A number of authors have reported on the computational requirements of

various forms of filter:

(1) Gura and Bierman (1971) and Singer and Sea (1971) consider the com-
putational efficiency of linear filtering algorithms.

(2) Kaneko and Liu (1971) and Philips (1972) analyse the error in

assimilating and processing data by digital computer.

Several authors/...
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Several authors have compared the operating and predicting efficiency
of various filters, (there is considerable overlap with conventional
estimation here) e.g. Lapa (1970), Saridis (1974), Iserman et. al. (1974),

Wasan (1970).

3.7 Methods Related to the Solution of Nonlinear Filters

The following text books were used in this study. They are grouped

according to the subject for which they were consulted.

(1) Probability theory, stochastic calculus and statistics: Cramér
(1955), Papoulis (1965), Sveshnikov (1968), Takdcs (1968), &strém
(1970), Himmelblau (1970), Jazwinski (1970), Sage énd Melsa (1971).

(2) Computer methods: Carnahan, Luther and Wilkes (1969), Ralston and
Wilf, vols. I and II (1967), Knuth (1969). For time-series data
processing, Robinson (1967),.and Bendat and Piersol (1971).

(3) Nonlinear analysis: Bellman (1973).

(4) Orthogonal Polynomials and general tables: Abramowitz and Stegun
(1964/65).

(5) Orthogonal functions: Sansone (1959).

(6) Monte Carlo methods: Schreider et. al. (1966).

The following papers were also used. They are similarly grouped accord-

ing to subject:

(1) Stochastic Calculus and solutions of stochastic differential equa-
tions (S.D.E.'s): King (1971(a)), King (197l(bj), Estrdm (1965) who
gives interesting simulations, King (1972(b)), Wong (1964) who
relates typical distributions to corresponding S.D.E.'s.

(2) Simulations of random processes and generation of pseudorandom

numbers: Muller (1959).

(3) Use of polynomial/...
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(3) Use of polynomial expansions to approximate probability density

functions: Wong and Thomas (1962).

3.8 Modelling for Kalman Filters

The models used in a Kalman filter are stochastic. For the purposes of
achieving observability and simplicity in solution, the models must be
carefully chosen, and an understanding of the physical interpretations

of stochastic calculus is essential. Clark (1966) deals with the problem
of modelling real processes by diffusion processes, and the approximation
of noise inputs by '"white noise'". Wong and Zakai (1965(a) and (b)) show
that the Stratonovich definition of a stochastic integral is more realis-
tic than It8. Anderson and Kailath (1971) prove a conjecture of Kalman
that the best linear model is the one with the "émallest” error co-
variance matrix. Mahalanabis (1972) briefly discusses a problem in re-
ducing model dimensions. See also Galiana, Schweppe and Fiechter (1974),

Bar-Shalom (1972(b)).

The handling of distributed variables in a filter is developed by
Meditch (1970), Meditch (1971), Atre and Lamba (1972), Dubenko (1972),
Nomura and Nakamura (1972), and Tzafestas (1972) who deals with poisson

disturbances.
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Chapter 4

THEORY

This chapter is divided into three main sections. The first section deals
with basic filtering theory. It is not intended to be rigorous or thorough,
but to cover the theory which is needed ahead. The next section discusses
several theoretical topics in modelling grinding circuits. Finally, the
filter used in this investigation is developed. Nomenclature is given in

appendix D.

4.1 Basic Filtering Theory

t
controls, u(t)— Plant state, x(t) -

Instrumentation |——

random inputs, E(w,t)—————} random inputs, X(w,t)-———-——f

state probability state estimates=3X(t),

filter : . : !
distribution, p(x;t) variances, etc.

observations, y(t)

Figure 4.1 Block diagram of system.

In figure 4.1, it is assumed that we have a plant which may be described
by the following stochastic differential equation. (For a more comprehensive

treatment than the following, see e.g. Jazwinski, 1970)
dx(t) = f(x,u,t).dt + g(x,u,t).dW(w,t) (4.1.1)

Where =x(t) is the state vector of dimension ng

u(t) 1is the control parameter vector of dimension n,

W(w,t) 1is a vector of random Wiener processes of dimension Dys
as defined, for example, by Jazwinski(1970)

f, g are functions/...



20

f, g are functions as shown.

The discrete observations are clouded by noise and may be modelled by:

T T yfnd = BEELE) FEue g (4.1.2)
Where zﬂtk) is the observation vector of dimension n, at time tk
v(w,k) is a normally distributed noise vector, Ev(w,k) = 0,

T ;
Ev(w,k).v (w,3) = g-'ékj ;

We will refer to Yk as the set of discrete observations up to and

including time tk,

We will also drop the vector and matrix notation, except in cases where

clarity is needed.

The state and observations are random variables, and the filter describes
these in terms of probability distribution densities. The continuous-
discrete filter, as it is called, is then given by the following

equations, (4.1.3) and (4.1.4).
At an observation, the probability distribution density of the state is updated
from the value of the observation, Yo by Bayes' rule:

p(xst, ¥, ).p(y, x5t Y, 1)

p(xst, |1, ) = ST ) (4.1.3)

Where p(x;tk|Yk) is the probability density function of x at time t, given

k

the set of observations Yk’ (i.e. after observation yk)

p(x;tlek_l) is the probability density function of x at time th
given the observations Yk—l’ (i.e. before observation yk)

p(yklx;tk,Yk_l) is the probability density function of observation

Yy given the state x at time tk and the observation set, Yk—l

(This is from the statistics of v(w,k) in equation (4.1.2))

p(ylek_l) is the integral of the numerator in (4.1.3) over the

state space
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Between the observations, the distribution of the state evolves according
to the Fokker-Plank or Kolmogorov forward equation associated with

equation (4.1.1). Let p(x;tlYk) =PLs where t 2t2ty then

k+1”
2
apx s amljpx 1 95 o8 G 0Lij'px
—E = ] —a——— + —é' X z W (4.1.4)
o% 521 9%y $=1 k=t ek
where Ui = fj(x,u,t), j=1,2,..,nS (using It0 calculus) (4.1.5)
J
g
= . 4,1.6
%3k 1§1 gjl(x,u,t) gkl(X,u,t) ( 5 ).

If the control parameters are constant between observations but uncertain,
we may include them as augmented state variables in defining equation

(4.1.4), but with their corresponding fj and gjl set equal to zero.

From the results of the filter we may calculate more meaningful quantities

such as the estimated mean of the state,

+oo
%(t) = J x.p(x;t'Yk)dx (4.1.7)

—00

The major problem in implementing the above filter is to solve the

equations, particularly (4.1.4), and to do so in real time.

4.1.1 Linear Filtering Theory

The linear Kalman-Bucy filter is a special case of the above when the plant
and observation equations are linear and all distributions are Gaussian.
For practical purposes, it is convenient to write the model equations as
follows, (For symbols, see nomenclature, appendix D.)

Plant model:

differential form: dx = (E.x + D.u + ¢').dt + G.dW (4.1.8)
difference form: AL g% + Lu + e + TN (4.1.9)
(The conversion from the differential to the difference form is shown in

most texts on state space control.)

observation model/...
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X
observation model: y. = M. X + v (4.1.10)
= u —x —_—

For Gaussian distributions we need consider only the mean vector and
covariance matrix to characterise the distribution completely. Define

gk o gk— as the means and covariances immediately before the observation

Yy: Similarly define X immediately after the observation. The

e Bt
filter equations then simplify to the following:

From the equation (4.1.4) we get

evolution of means: §k+l- = 2;§k+ + i;Ek + c (4.1.11)
lution of covariances: P = $.P @T + V.U WT
evolu n & es: B $.L -2 ¥.0, ¥
T B T T
+ . # “ry % - Q. et
gy ¥ + Yolu.® + LQ.L (4.1.12)
where gk = covariance matrix of Ek+
Cu1 = covariance matrix between §k+ and Ek+
Q = noise covariance matrix = EAW.AWT

From equation (4.1.3) we get at an observation:

X X X
update of means: Ek+ = Ek + K .(Zk - %, 3 ) (4.1.13)
Yt Y- k k-
= T T -1
where K = B olige. VB . (4.1.14)
= the Kalman gain matrix
oA -
gﬂ = augmented covariance matrix = Qg? u
R = observation noise covariance matrix = Egk.zg
ia i i 3 = -
update of covariances Eﬂk+ Eﬂk— ék'g’gﬂk— (4.1.15)

or: gAkJr = (;—%.Q)QA}(_.(;—%.M__)T + gk.g.g (4. 1. 56)

: -1 -1 T -1
ar Bager © Bgp. * BB E (5017}

el

In addition, controller changes may be included in the formulation. These

are shown in section 4.3.1, but are not normally included in the standard

linear filter/...
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linear filter.

The following points regarding linear filters were made use of in the
volumetric filter:

(1) Jazwinski (p270) explains that equation (4.1.16) is to be preferred for
computational stability to equation (4.1.15). Consequently, equation
(4.1.16) was used in the volumetric filter to update the covariances at the
observation step.

(2) When the R matrix is diagonal, the observations are independent and may
be treatéd separately, one at a time. This simplifies the calculations and
shortens the time required, mainly through the saving in time required to
compute an inverse matrix.

(3) When the matrix M consists of zeroes with only one 1 per row, and if

R is a diagonal matrix, then equations (4.1.14%) and (4.1.15) simplify to

row and column manipulations. For example, M x P would be a matrix

consisting of rows in P as marked out by ones in M. This occurs when direct

observations are made of state variables. Far fewer arithmetical operations
are needed, and the time saved is considerable.

(4) Generally after a few observations, the covariances in the linear

filter tend to steady values. The Kalman gain matrix is then constant, and

it is only necessary to update the means from the observations. The evolution
of the means is the only evolution step. This is then called the stationary
Kalman filter, and all the covariances and the Kalman gain may be pre-

computed and stored, with a large saving in time and storage during

execution.

During this investigation, generalised programmes were written for doing

filter calculations for most of these types of filters at varying levels of

complexity.
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4,1.2 Nonlinear Filtering Theory.

When either a plant model. or an observation model is nonlinear, the problem

of implementing a filter becomes more complicated. Some usable form of
solution to the Kolmogorov equation must be obtained which can be solved in
real time. This is by far the most difficult problem. The observation

step is not usually as complicated, but it should be quick to compute if
control is to be implemented as soon as possible after taking the observations.
The following is a list of techniques which were considered for this
investigation. This list is by no means complete as far as nonlinear

filters are concerned. Many other techniques (as listed in the literature
survey section 3.5) are important but were not considered usable, and so

are not listed here.

4.1.2.1 Extensions to Linear Filtering Theory.

Several methods based on linearisation of the equations exist. See any text,
e.g. Jazwinski, or Sage and Melsa, for details of the following.

(a) Linearisea Kalman filter. This linearises all the equations around a
fixed trajectory and observation, then uses the standard Kalman-Bucy filter.
(b) Extended Kalman filter and iterated extended Kalman filter. Here the
nominal trajectory moves with the mean of the filter. All the standard
Kalman-Bucy equations apply (as given in section 4.1.1) except for the
evolution of the means equation, which is nonlinear.

(c) The truncated and Gaussian secound order filters; Both these filters
expand the nonlinearities to the second order. The truncated filter
ignores all moments higher than the second, while the Gaussian filter
approximates fourth order moments in terms of second order moments as

fhey would be for a Gaussian distribution. Modified second order filters

simplify calculations considerably by ignoring terms of minor importance

in the covariance /...
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in the covariance observation step. Finally, there is a minor term in

the denominator of the Kalman gain, which not only differs between the two
types of second order filter, but is of opposite effect. A simplified
second order filter, which ignores this term, has the following
observation step (combare this with equations (4.1.13), (4.1.15), and

(4.1.2)). Based on the observation model in equation (4.1.2), we have:

K+ = k- 2 o ~milst. o0 3 - 3(P an)) {4.1.18)
a a Kk' k =Y = 23 Ak- —
Yt k-
- i 4.1.19
P ak+ P k- KMy Fak- LT
T T =1
= 4 . o2
K PayorMe(m Py om 4 R) (4.1.20)
om,(x,u, )
. z s 1 k-
where m = matrix with elements 1,] =
p axj
i= 1,...,no, 1.5 l,...,nS
2
5 ng ng ) mi(x,uk_)
P3°m = vector with element i = I I P.k. e R 5
j=1 k=1 3 5%
i = l,...,no (4,1.21)

These observation step equations are also suitable for any filter using
moments, and were used in the particle size distribution filter

(section u.3.4).

4,1.2.2 Usé of Moments

When the functions f and g given in equation (4.1.1) can be written as
polynomials in x, then the use of moments is a convenient technique
for Solving the filter. We shall derive the evolution equations for the
first andrsecond moments pl(xi) and u2(xi,xm) respectively, as these
were used in the grinding circuit filter. Multiplying the Kolmogorov
equation (4.1.4) through by s and integrating over the region in state
space, we get:

d

(—i-_E ul(xi) /-...
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d 3
- = o == X
ax M%) J AT
n 90, .D Ng n 9 aQ.k.p
—zSJx.ljx.g_+‘§z ZJX'ax]axX'd—x
jz1 4 T ¥R j=1 k=1 oy
- f all'px'gi + 0 (4.1.22a)
d 3P
dt UQ(X ) J Xle ot Q_
Us aoLlj]px 1 Bs 1 g 0L2jk'px
= - I X d + 5 I X X. d
i“m 9x — 2 i“m  9x..9X -
j=1 ] j=1 k=1 k
= J % P dx ¥ J Xn 0Lli Py &X * J %2im px ax
- 4,1.22b
) J (x 0le * xm ®11 * anm) px gi ﬁ__};___l

The second central moments mQ(xixm) can be derived from the above as
follows:

d _d } & _ d_
dat mQ(Xixm) T4t UQ(XiXm) ul(xi) dt ul(xm) ul(xm) dt ul(xi)

= J ((xi - %) a + (x - x)o (4.1.22c)

i im m m 1i .| 0LQim) px dx

If the o functions, which are related to f and g in equation (4.1.1) by
equations (u.i.s) and (4.1.6), ére polynomials in x, then these equations
((4.1.22a) to (4.1.22¢c)) will be a set of ordinary differential equations
for the moments in terms of other moments. If in equation (4.1.1), f

and g are polynomials in x of order greater than one, then the differential
equations for the moments form an open set, and closure approximations

are needed. The closure approximations used in this study are given in

section 4.3.4.

For the observation step, if up to only second order moments are considered.

equations (4.1.18) to (4.1.21) may be used. Jazwinski gives formulae for

updating/...
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updating higher order moments at an observation.

Moments give a very convenient solution to the filtering problem,

provided the problem is not highly nonlinear. Usually only the first and
second moments are considered, as they are the most meaningful and are
usually sufficient. Solution via moments should not be confused with the
approximate linear filters. Although moments take longer to programme, they

are usually quicker and more accurate.

4.1.2.3 Orthogonal Series Approximations.

After the success that King (1972(c)) and others had had, the use of
this technique was tried. The probability distribution density is
approximated as an orthogonal series, and is written:

p(x3t) = fo(x) i%l ai(t).fi(x) (4.1, 23

where the fi(x), i=z1,..,I are I terms of an orthogonal set of functions

with normalising function fo(x).

Substituting this into equation (4.1.4), we get a set of I ordinary
differential equations in the coefficients a,. Depending upon the
set chosen, so various properties are apparent. The observation step also

depends upon the set of orthogonal functions chosen.

The major disadvantage of this technique is that the equations for the
coefficients usually have to be worked out by hand, and only small dimensional

problems are feasible. One generally needs at least 3”8 coefficients in

the expansion.

4.1.2.4 Use of Discretised State Space

This technique lumps the probability density at a number of discrete points
in the state space, s i=1,...,I, The derivatives w.r.t. x in the

Kolmogorov equation (4.1.4) are put in a discrete form, and this yields a

set of/...
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set of ordinary differential equations in time. The discrete form of the

observation step (from Bayes' rule) is as follows:

p(xst 1) = plegst |V )y lxgse 0 /K,
Sk R | (4.1.24)
I
where K' = igl p(xi;tlek_l).p(yklxi;tk,Yk_l)

Agaih the disadvantage of this technique is the large number of points
required for anything larger than about a two dimensional system. It can,
however, handle highly nonlinear systems. It also forms the basis for our

next technique.

4,1.2.5 Differential Quadrature

This technique was originally proposed by Bellman (see Bellman l973)las a
means of solving nonlinear partial differential equations using a discretised
space. The method is suited to highly nonlinear problems with small
dimensions., It was tried on the 8-dimensional particle size distribution
(p.s.d.) filter (see ahead) as an experiment, and although it did not

perform well, it was interesting to see the results.

The method is given below. Only an outline of the method is shown here,

as the actual implementation was simple and involved much repetitive work.

The state space was discretised as in section 4.1.2.4 above, and the
probability density, p(x,t), was lumped at these points, Pss i = 1l,awyls
The differential quadrature assumed that the derivatives of p(x,t) could be

approximated by weighted sums of the P;» i e

I

3p T
ij at point i mil ejim'pm (B.1:25)

Second derivatives were written similarly.

In the Kolmogorov equation (4.1.4), the terms containing the derivatives

Ww.r.t. the state were expanded as shown below for the first term in
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equation (4.1.4), at point i

3 30, . ]
T;s Balj Py B ,Izls [ %14 < . B _&]
. XK. T et X 13° 3x
j=1 ] =1
rlS ¢ 30!. x I
1]
£ o i
jil | 9x Pi % Otlj sy D Pm ]
 F Dg oa
1)
= X pX { . 6 ok i } .P
§ im 1 im m
m=1 | J=1 Oxj 1]
= gg X p (4.1.26)

The expression in square brackets (making up the elements of Ei) was
calculated beforehand. Terms with second order derivatives were treated
similarly, and although more complicated, had the same format. The Kolmogorov

equation then simplified to a linear matrix equation for the P; s

dp _ T.p (b, 1:27)
at

The p.s.d. filter had the T as a function of two parameters,

i}

g +
+ T ul

4.,1.28
Lty L (4.1.28)

L

The observation step followed the usual discrete solution of the nonlinear

filter shown in equation (4.1.24) above.

The p.s.d. filter had 8 states, and so the points were chosen on a

rectangular grid, along the lines of a two level factorial design with a centre
point. The maximum number of points which could be haﬁdled by the CDC 1700
computer was 16+1 = 17. This gave some aliasing between second derivatives,
and it would have been desirable to have considerably more. The coefficients
ejim in equation (4.1.25), and similar coefficients for second derivatives,
wefe obtained by a linear regression done on a Gaussian distribution with a

comparable variance to the distribution given by the solution with moments

(as shown in the results, chapter 6). Suitable levels for the states were



also chosen from the solution with moments. It was found necessary to limit

the elements of p to be not negative.

A programme was written to implement the above filter. This programme read in
data for the filter including the plant and observation models,\then

converted these into the T matrices in equation (4.1.28), and into observation
values at each point. It then ran the filter recursively, following the
procedure below:

(1) Values of the observations were used in equation (4.1.24) to update p.
(2) The p was evolved using the linear equations (4.1.27) and (4.1.28) with
the precomputed matrices and values of the parameters read in.

(3) The values of p were converted into means of the state variables and

thence into the concentrations and particle size distributions.

Another programme extended the above programme to work on real data. The

results of this are shown in section 6.9.

4.2 Modelling of grinding circuit operations

4,2.1 Comminution

To model grinding, we describe an assembly of particles in terms of the mass

of particles in each of a number of size ranges. Let p(di) o] be the mass
fraction in size group i with mean size di' The particles in group 1 break with
a ratevconstant Si into a number of smaller size groups. Let bji be the mass
fraction of products from breakage of size group j which are in group 1i.

Si is called the selection function, and bji the individual breakage function.
It is customary to number size groups sequentially from the largest, 1, to

the smallest, np. Note Sn = 0. The equation governing the rate of

p
grinding for a batch of rock is then :

dp.
¥s o
dt
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dpi =,

dt i3

(Where the sum 1is zero for the case i = 1.)

n
Let P. be the cumulative mass fraction = I pj. Similarly define the
i o
=1
Up
cumulative breakage function Bji = I bjk' Then equation (4.2.1) can also
k=1
be written:
dPi 3% ( :
—= & S 5 JB gl GEL = R T S 2,0 50 4.2.2
— DSy (Bry m B ooy (84.2.2)

For continuous distributions, p(d) and P(d), we have equivalent equations

dEéi&t) = - S(d).p(d;t) + J S(y).b(y,d).p(yst).dy SE-2-3)
d
and
JERELR) | J S(y).B(y,d).dP(y;t) (4.2.4)
dt 4

Where $(d), b(y,d), B(y,d) are the continuous selection function, aﬁd

individual and cumulative breakage functions respectively.

For continuous milling (as opposed to batch milling), feed and discharge

terms must be included in these equations.

The above equations (4.2.1) to (4.2.4) are the basis for most of the studies
done on grinding. To implement them, some assumptions must be made, e.g.:
(1) Generally the equations are assumed to be linear (i.e. the selection
and breakage functions are not functions of the masses in each fraction),
and deterministic.

(2) Although each size interval may cover a range of sizes, the selection
and breakage functions are assumed constant over each range.

(3) In order to obtain estimates of the parameters in the model from

experiméntal data, the breakagze function and sometimes the selection

function /...
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function are described by a simple functional form on d, the particle size.

In this investigation, experimental batch grinding tests were the source of
data used to determine the parameters in the grinding model, and their
dependence on experimental conditions. This data was in the form of the
particle size distribution (p.s.d.) at a number of times during the batch
grind, as well as the p.s.d. at a fixed time (in this case 20 minutes) for

high and low slurry densities and high and low total slurry charge.

The selection and breakage functions were calculated using a programme

called "GRIND". This generalised programme was written by Herbst and Mika,
and was lent to the author during a visit to the department by Prof. T. S.
Mika, who also assisted in running the programme. This fitted discrete values

of the selection function and a three parameter breakage function of the form:

_ ap i O3
}3ji = al.(di/dj) + (1 al).(di/dj) (4.2.5)

The programme used a Gauss-Newton type of search to optimise a quadratic
performance criterion. A full description of the programme is given by

Herbst, Grandy, Mika and Fuersteneau (1872).

It was necessary in the filter to know the effects of slurry solids
concentration and total slurry charge on the selection and breakage
functions. To avoid doing exfensive tests, the following method was used.
It was assumed that the main effect would be a uniform scaling of the
selection function (i.e. scaling the rates of breakage by the same factor in
each size fraction). From the sequence of particle size distributions over
the range Qf batch grinding times done under standard conditions, graphs

of D25, D5O’ and D75 against time were drawn, where D , and D7 were

25° D50 5
the particle sizes corresponding to 25%, 50%, and 75% cumulative mass

percent respectively, and were functions of time (refer to graph 6.4).

On these lines, the D25, D50 and D75 of the runs done using high and low values

of density/...



of density and charge (all done for the same grinding time of 20 minutes),
were plotted, to give equivalent grinding times, te. The assumption that
the selection functicn Scaiing was the major effect was reasonably

were almost the same for any

justified, as the te values at D D_._ and D7

28" %D 5

given set of conditions. The rate scaling factors for the selection
function for each variation in conditions were calculated from
scaling factor = te/20 (te in minutes) (4.2.6)

To scale up the selection function for a larger mill, the scaling factor

diameterl 240

_— was used (see Austin 1973(b)). The breakage function was
dlameter2

assumed to be unaffected.

To condense the grinding parameters into fewer size groups for use in

the filter, the following method was used.

Let: Si be the selection function as defined above, for the
\
bij be the individual breakage function | larger number of narrower
size classes.
Sﬂ be the selection function \ for the reduced system, with

bﬁl be the individual breakage function J a smaller number of wider
classes.
n = number of smaller classes in larger class k.
Also let i e k mean that size group i forms a part of larger group k.
Also assume that all the narrower classes which together form a wider class
have the same mass of solids in each.
Sﬂ and bﬂl are distributed variables, the mean of which can be found by

writing equation (4.2.1) for this smaller system and then expanding each

term, This gives:

E Sﬁ = z S. x [ L bij J /nk (9.2+71

1
E bkl Fynas
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BoBf-SE z [ z b...S./(Si.nk) ] (4.2.8)
i all jel ‘ all iek A
A variance of the Sﬁ due to this reduction may be calculated from:
2
2, = 5 - 4.2.9
o2, = I [s. JF R b, ; ) sk] /oy ( )
k all iek

all j%k
(Note that we divide by ny and not nk—l.)

In this study, 17 size groups were condensed into 4 for the filter.

4,2.2 Cyclone Modelling

Two parts were needed to model the cyclone:
(1) The volumetric flow split model. This gave the dependence of the exit
flows on feed flow, concentration, and particle size distribution.

(2) The solids size split model.

The most successful modelling work on cyclones which has been published so
far_is by the group at the University of Queensland, as given in the literature
survey. Their models have been mostly simple linear correlations. The

solids size split model is in terms of the reduced corrected classifier
function. The D5O’ or size corresponding to 50% on the corrected classifier

function curve, is then written as a linear function of the operating variables.

Particular points which were found in the literature and verified experimentally,
were:

(1) The size split is very dependent on feed concentration, but far less

on feed flow or pressure. The split is also affected by the specific gravity

of the rock being handled. Provided the cyclone does not rope badly, the

linear model is reasonably good.

(2) The underflow volume rate is nearly constant. It is only slightly

affected (within a reasonable operating range) by the feed flow, concentration,

and size distribution. The small functional dependence on these variables

is not/...
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is not properly understood.

The volumetric split was finally modelled by the following equation:
Qi = "R t € (4.2.10)

Where QUO is a constant, independent of feed flow or concentration.

g, 1s a random error term, E g = 0, E ES = g2 ,

U €

The particle size split model required the corrected classifier functions
for each particle size group as a function of feed concentration. This meant
that the models from the literature could not be used directly in the filter,
but only as rough checks on the experimental data. The following linear

classifier model was then chosen:

ce, = ccg. + Ccli'CF (4.2,11)

Where ce, = the corrected classifier function for size group i,

ce cc,. are constants for size group i,

01’ 1i

CF = cyclone feed solids concentration.

The actual classifier function, c;, Was calculated from the corrected

classifier function as follows:

_ Yy % ~ Wy
e, = ) + ) . ccy (4.2.12)
SW SW
Where QUw = water-only flow in the underflow,
st = water-only flow in the feed coming from the sump.

We can thus write:

c; = o + Cli'CF (4.2.13)
Q Q Q
Where c0i = QUW + OF L . GE
SW Uy 4%
a |- BB Y o
1 st 11
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4,2.3 Modelling of Random Processes

A problem which is associated with nonlinear filtering is that of stochastic
calculus and the modelling of random processes. A common way of modelling
noise is as shown in equation (4.1.1).

t

The stochastic integral, J 3 g(x(t)).dW(t) has two common definitions. The
=
Ito definition is:
tb 15 T o o
J g(x(t)).dW(t) = me T og(x(t.)) (Wwit,, )-W(t.)) (4.2.14)
. i i+1 i —
t At>0 1=0

a

and the Stratonovich definition is

th lim n-1 lx(ti) + X(ti+l)J
g(x(t)).dW(t) = o I & W, )WL)
€ At>0  1=0 4 il *

(4,2.15)

The two definitions are not equivalent, and there have been a lot of papers

in recent years on the subject of which is more realistic.

To "get a feel" for the problem, and to determine how to model plant noise
quantitatively, a study was made of a simple one-dimensional equation of a

form similar to that encountered in the particle size distribution filter:

dx = (1 - x). dt + x. dvW (4.2.16)

The theoretical stationary distributions for the Itd and Stratonovich
definitions are plotted in figure 4.2. They are markedly different. Sample
paths were then simulated in the computer using a normally distributed random
number generator. Two types of equivalent difference equation were tried,

one in the form of the Itd definition,

X1 T X, + (1 - Xk)' At + X - AW (4.2.17)

and the other in the form of the Stratonovich definition,

+ X P 4
k k+l <
el NI L VRIS

X
x]<+1:Xk+(l-{ 2 5

Histograms/...
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~___ __ Stratonovich type simulation

Stratonovich stationary distribution
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Figure 4.2 Comparison of Itd and Stratonovich definitions of
a stochastic integral. Theoretical stationary distributions and

simulation histograms shown for eguation

dx = (l-x)dt + x.dw
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Histograms were drawn up from these sample paths showing the fraction of the
total time spent by the path in each small interval along the x-axis. These
histograms are also shown in figure 4.2. They too, are markedly different,

but agree closely with their corresponding stationary distribution curves.

From this it can be seen that the modelling of processes and the fixing of
noise levels in the model depend on the type of stochastic calculus used,

and are not uniquely determined by the differential equation alone. This

is important to remember, as it is unlike deterministic, or linear stochastic,
modelling. This also means that some of the grinding models being used,
which assume that the selection functions are random, but which continue by
using the mean values, may be wrong. The error in a large collection of
particles is small, however. Throughout the rest of this investigation, Ito

calculus was used as it is simpler to apply in most cases.

The form of equations (4.1.1) and (4.1.2) allows one to model a large

variety of realistic noise processes. One can easily fit desired probability
distributions and power spectra (see Sveshnikov 1968, Wong 1964). This
usually requires at least one extra variable per noise input, and so it is
not desirable because of the extra complexity of the filter. A number of
workers (e.g. Galiana et al 1974, Clark 1966) have reported that sophisticated
noise models are often an unnecessary complication, and that an equivalent
simple Wiener process is satisfactory in terms of model response. It appears
(see Goldman and Sargent 1972, and section 6.8.5) that models requiring

extra state variables often degrade filter performance by producing larger
differences between predictions and actual values, or by making the filter
unstable. The use of simplified noise models often result in apparently
unrealistically high noise levels in a model. This is particularly the

case with correlated observation noises.




39

b.2.4 Determination of Noise Levels in Models

The assigning of values to noise levels in a filter model is a problem,

particularly on real plants (unlike simulations). The noise levels can

seldom be measured beforehand, and consequently methods are needed which
enable one to make a careful guess based on whatever information is

available.

For a linear filter, one can consider all factors which are likely to
contribute to each noise, measure or guess the effects of each factor, and
then calculate the total resulting noise. Generally this is sufficient, but
it may be checked by running the filter on the actual plant, and comparing
the residuals of the actual observations about the predicted observations

to their statistics (see Jazwinski, p271). The covariance matrix for these
residuals, lk, is given by:

3 T
v o= LB, M + R (4.2.19)

This method was used for the volumetric filter. The resulting noise levels
used are given in section 6.6. This statistical check does not require a
knowledge of the actual state, but if this is also available (say from

samples), it enables the EA and R matrices to be checked separately.

For nonlinear systems, there is no way of specifying noise levels in the
plant model solely from a consideration of the factors involved., This

is because noise levels depend én the definition of the stochastic

integral, and are only physically meaningful when their effects on the state
variables are known. There are two alternative techniques to determine
noise levels:

(1) The first method is to run the complete filter on a set of synthetic
data. This set consists of average values of the parameters and measurements,

and the filter is run until an almost stationary state is reached. The

predicted errors/...
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predicted errors on the state variables are then compared to measured or
guessed values on the actual plant. Other noise levels are tried, and the
filter responses to step changes in some of the parameters and measurements
are also measured. From these tests, noise levels can be obtained which
produce the desired output. This method has the advantage that it is the
closest to reality.

(2) The second method is to run only the evolution part of the filter, until
a stationary state is obtained (if this can be done) which is the state of
the system without any observations. Again the predicted errors on the
estimates are compared to measured or guessed values on the actual plant.
These errors are the uncertainties in the state of operation of the real plant
when inputs are fixed and no other measurements are taken. From tests done
at various noise levels, values can be chosen for the noise levels to produce

the desired output. This method was used for the p.s.d.filter.

Observation errors, even for nonlinear observations, can generally be
obtained directly from measurements, or from guesses based on a knowledge

of the plant instrumentation.

If it is found that noises cannot be uniquely determined, it is possible
that the plant has been over modelled, so that a model simplification (if it

is possible) will help.

In this investigation, noise levels in the p.s.d. filter were determined
beforehand using the second method above, based on carefully guessed error
levels, but with a slightly erroneous plant model. These values were used
until after the filter had been debugged and was running normally. They
were then rechecked using the same method with the new model and found to

be satisfactory (see graph 6.16, section 6.6).

4.3 Development /....
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4.3 Development of Filter for Grinding Circuit

The formulation of a suitable particle size distribution filter proved to

be a problem and considerable time was spent on it. Initial problems were
mostly on the mathematical side, formulating a model which had a reasonable
solution, and which could be solved in real time. Realisation that the

filter could be split into two levels helped considerably. Later modifications
and improvements were made in the light of operating experience on the

milling circuit.

Modelling a full grinding circuit required a large number of nonlinear
differential equations. In this investigation, the filter was broken down
into two levels, thereby removing some of the nonlinearities and simplifying
the problem, at the expense of some precision and resulting in slightly
suboptimal estimates. These two sections of the filter were as follows:

(1) The volumetric filter. This part of the filter estimated the volumes
and' volumetric flows in the grinding circuit from measurements of flows and
levels. It was basically a stationary linear filter with a control step,
and was assumed (with reasonable justification - see results, chapter 6) to
be independent of the solids concentrations or size distributions.

(2) The particle size distribution filter (p.s.d. filter). This part of
the filter operated at a higher level (i.e. it was dependent on the results
from the volumetric filter) and estimated the masses in each particle size
fraction around the circuit and hence the size distributions and solids
concentrations, from a knowledge of solids feed and concentration measurements
from the gamma-ray density gauges. It was a nonlinear filter, based on the
grinding model. Estimates of the mean volumes and flows from the volumetric
filter were used as parameters in the p.s.d. filter, without regard for

their estimation variances.
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4.,3.1 Volumetric Filter

SRS — S QO

Sump water, W

Solids, S 4 R

Mill water, WM =

Figure 4.3 Circuit showing symbols used for volumetric filter.

(Also see figure 5.1.)
Let V denote volume, and Q volumetric flow.
Subscripts M refer to mill, S to sump, O to cyclone overflow, U to cyclone

Epderflow.

Volume balances over the mill and sump yielded:

av
T T Sleg f Wy Q-

av, (X8 F)

T S Wt W T G

It was assumed (see section 5.5.3) that the mill outflow could be

modelled by
QM = kl.(VM = VMO) (i, 8:2)
and the cyclone (section 4.2.2) by

Q, = Q,. + e (4.3.3)

where ey Was an unknown constant, to describe the uncertainty in the model.

Putting equations (4.3.2) and (4.3.3) into (4.3.1), and grouping the

terms, we get:
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dav
B o= N+ + €
& - Fi'w Wy + 8l ¥k Vi * Qo U
(4.3.4)
dVS v . — ==t
—2 = - -k, .
at )V t W - Qg 1Mo
contro
tants errors
state parameters cons
We now have a linear equation, and defining
T
x = (Vs Vo)
= ( S, W., W )T
_l_-_l_ - QS, E M’ S
= (k..V, +0Q k. V)T
£ 7 Y1tYmo T oo TT1T MO
T
N o= (gys 0)
we may write the volumetric model, equation (4.3.4), as
dx = (E.x + G.u + ¢ + N).dt (4.3.5)

Instruments were available to take uncorrelated observations of S, WM,

QS’ VS and WS directly. The observation model was thus
X
= =t 4.3.6).
y = 1 [3] v (4.3.6)
which can be written
y = |2 + v i=1,...,5 (4.3.7)
i u i? ’ ’ —

where: M is a matrix of 1s and 0s, and EX'X? is diagonal.
Subscript m, implies the mith element from the augmented state

and control parameter vector.
Equation (4.3.7) was for use when handling observations individually.

Directly after each observation step, each of the control parameters

underwent control changes:
Yo T + Au] ‘4.3.8)

During operation of the plant, the control changes which were sent out to

the controllers/...
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the controllers were known, but the instrument responses were uncertain.

Thus Au. was not known exactly, and so was written as the sum of the

k
mean, Aﬁ], and an error with covariance AU. The control step in the filter
was then
u = 4 u (4.3.9)
G- ° B * B b T
= + AU (5.3.10)
Uppge * G AL (4.3.10)

Depending on the length of time, tci’ taken to change controller i,
so an average value of the control over the next interval, G% ;5 Was
2

calculated for use in the evolution step from

_ A e, s -~ s S
. = .8 - - s 83l
Uy g Ut i [_%] * Nl [1 ﬂ] (4.8.11)

Zr 2T

where T is the observation interval.

With equation (4.3.5) as a plant model, equation (4.3.7) as an observation
model, and equation (4.3.8) as a controller model, a linear Kalman-Bucy
filter was developed for the volumetric filter (section 4.1.1). The unknown
constant, N, in equation (4.3.5) was treated as an uncertain parameter

but without an update at the observations (see Jazwinski, page 285).

4.3.2 Checks in the Volumetric Filter

If a plant which is being monitored is upset, or if for some other reason
the measurements reaching a filter are incorrect, the predictions will be
wrong. Faulty predictions from the volumetric filter were found to upset
the p.s.d. filter, and so the following three checks were built into the

volumetric filter.

(1) Check against faulty observations.

ne>
~
!

Define Ayi y, = : i=1,..,5 (4.3.12)
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and S =

I ™Mo

A
(Ay.)"/a
g | © LR Vg
where the residual Ayi is the difference between the actual and the predicted

ith observation. The Giy is given by the ith diagonal element of lk
: i

in equation (4.2.19).

S has approximately a x2 distribution with 5 degrees of freedom, as the
Ayi are approximately normally distributed. S was calculated at each
observation step (it did not require much extra programming), and checked
against some criterion, Scrit (here the 99% confidence limit was used).
This determined whether the observations were satisfactory. If they were,
then the filter continued unchanged. If they were.not, then the Ayi were
scaled in proportion tojg?g;rit before updating the means in equation
(4.1.13). This was equivalent to scaling down the Kalman gain matrix

when there was a faulty observation.

This check protected against outlying points, as caused by, say, faulty
instruments, and alsc protected against the actual observations behaving

differently from the observation model.
(2) Check against undetectable plant upsets.

If, at an observation, we check a measure of the difference between the
predicted observation at the end of the previous interval and that
obsepvation, to the difference between the predicted observation at the
beginning of the previous interval and the same observation, we should find
that the latter is larger if the plant and plant model are in agreement.

This was done in the following way.

(ik—1+ )
Define Az = Xk - M. 3
L k=14 L
. (4.3.13
_ -
éXb - Xk - M Gk— )
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5
2,2
and 8 = E &y .3 /e
a io1 ai Ayi
1 C4.3:1u)
. P . ki
s, = I (Aybi) /cAy

i=1
Then if the plant were operating as the filter would expect,
E(Sa - Sb) >0

If this difference, Sa - S, , was greater than zero at an observation, then

b,
the error in the filter would be greater if the previous evolution step
was accepted as correct. In this case it would be better to use

e = Ryo1t and LIV The following procedure was used at an

X
observation:

(1) Calculate Sa and S. for the observation, using equation (4.3.14).

b

-

(i1) TIfs_<S Sy S,

set B THegey BT FZaqyr B T %4

b)

(iii) Use Sb in the observation check outlined in (1) above.

(1iv) Perform the observation step.

These were not sure checks against plant mishaps, but they reduced the
risk of an upset, and were suitable for detecting when a control action
was not having the desired effect. Their practical use is shown in section

6.8.1.
(3) Checks against variables out of range.

This check was used to prevent the sump volume becoming too small and
giving integration difficulties in the p.s.d. filter. The minimum volume

of the sump was limited to 0.008 m3 at all times.

All these checks were conservative: they kept near to the state which they
were at when an unexpected observation was received from the plant. This
was a desirable characteristic in the two level filter, and also probably

for any subsequent control algorithms.

L.3.3 Particle Cioa /
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4.3.3 Particle Size Distribution Model and Filter

The first problem encountered with any particle size distribution (p.s.d.)
filter is how to represent a particle size distribution as a random variable.
Let p(di) and P(di) (also denoted P; and Pi) be the individual and

cumulative mass fractions respectively of a discrete particle size distribution.

Both are random variables. We can now define the probability distributions:

Hl(pi, i=1, ,np) = Pr'ob{pi < ﬁi, g = l,...,np} (4.3.15)
Hc(ﬁi, i= l,...,np) = Prob{P, ¢ P;, 1= l,...,np} (4.3.16)
Also let
i 2P ) ( )
hI(pi’ i=1, ,np) = apl.. apn HI(pi’ i= l,...,np ., 8.0
P
5 P )
i = .o = P i = o 3
ho(Pys 12 1, ,np) oyrae e, o ( E Lyeesmy (4.3.18)
p

Discrete grinding models can now be handled if there is a random input to
the system. The individual form was used in this investigation. Continuous
particle size distributions were not easily handled, and no satisfactory

filter in the form of either equation (4.2.3) or (4.2.4) was developed.

To model the mill behaviour for use in the filter, it was necessary to find
the sources of random disturbances, and model them, A list of the major
noise sources which were encountered, is given below.

(1) The solids feed rate and size distribution to the mill.

(2) The hardness of the rock affecting the rate of grinding.

(3) Perturbations in operating conditions affecting the rate of grinding.
(4) Cyclone operating and modelling errors.

(5) Slurry flow behaviour causing fluctuations, particularly in the sump.

(6) Modelling errors, particularly as a result of simplifications.

Variations in the rate of grinding were perhaps the largest source of

noise/.veeeee
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noise. Because all the above causes were dependent upon the mass of solids
present in each size fraction, it was assumed that the perturbations Were
directly proportional to the mass in each fraction. Thus it was chosen to
lump all the causes together and model the noise input as a variation in

the S. in equation (4.2.1). The following model was written:
1 d
= ] . .dW. ) vd.
Si.dt SiO.KL.KS Gt = ¢l dll, (,3.19)

where SiO is the deterministic selection function calculated from
off-line tests,
KL is a load factor which depended on the slurry charge in the mill,

KS is a softness factor (reciprocal of hardness) which could be
estimated on line, if desired,

¢i is a noise attenuation factor,

dwi is a normalised Wiener process associated with size fraction i.

This meant, in effect, that S was a white noise process with a non-zero

mean (section 4.2.3).

We now consider the flow of solids around the grinding circuit:

classification in cyclone

overflow tank = n.
Qi . )
=
cyclone overflow concentration cyclone feed concentration
classification, measurement, CO measurement, CF
i —7\ = e
i Mill
solids feed, (grinding) (?O . Ad
S = 1q — > grinding) Si
Fi Pyui
Py

classification on (TZI;;;;;antion on g;;g
leaving mill = Bi

leaving sump = i

Figure 4.4 Solids flows in the milling circuit.

The mill/....
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The mill and sump were regarded as fully mixed vessels, but with

classification occuring at the output as shown. Thus,

QM
_ an 5.9
1 v+ 8 - Py {5,630
M
QS
dg; =y + Y3 * Pgy (RT3
o . e
The cyclone model was written as
Qy; T Qg5 X ¢ T qSi'(cOi + cli'CF) (4,802
where Cf was the cyclone feed concentration, and
n
1 ¥ '
C = =, iE ] D (4.3.23)
F VS io1 Si _

Material balances for the mill and sump were written for size group i,

based on the individual grinding model, equation (4.2.1), giving:

i-1
dpy; = (Qp; + 9yy ~ Q3 ~ SyPys * j§1 HgiDyg Py )-dt L)

dpg; = (in - qSi).dt (4.3.25)

Substituting equations (4.3.19) to (4.3.23) into (4.3.24) and (4.3.25) gave:

Q G, W Q
dp,; = (ag; + Vi. Gny * Vii. _Ei Yj-PSj]-Yi-Psi - Vﬁ 85 Dys
i1
- SiO'KL'KS'pMi + .gl O'KL KS b pM]). dt
=g
0 KL+ Kg 0y Py AW, jfl S10+Kp,"Kgedy Dy opys dily
1= 1,.0,n (4.3.26)

Qy QS

dpSi = V; .Bl.pMi = Vg-'Yi'pSi 3 3 = 1,...,np (4.8.27)

Equations (4.3.26) and (4.3.27) formed the plant model for the p.s.d.
filter. Note that for np particle size groups, there were 2n state

variables, Pyi> Pgi> ie l,...,np. All other variables of interest were

calculated/....
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calculated from these state variables.

At observations, the concentrations of the feed to the cyclone and the

overflow from the cyclone were measured. Thus, for the observation model:

1 0p '
feed conc., vy Ty .§ Y;Pgs + v, (4.3.28)
S i=1
Q n Cax n,
S p 11
overflow conC., y, = o—7r—m—~ + & (1l -c . -5— . L Y..ps.)YinipSi
: 2 Vg ) 4 L

4,3.29
+ v, ( )

In this investigation, 4 particle size groups were used. This was about the
largest number which could be handled, and about the smallest number which
would model the process adequately. This also reduced the problem of
observability which might have occurred if there were two nearly equal size
groups. The size ranges chosen were 0 to 75um, 75 to 212um, 212 to-850um, and
850 to 9500um. The choice of 75 and 212um was because these are two commonly
quoted sizes, and with 850um, they divide up the size spectrum into suitable

ranges.

4.3.4 Solution of Particle Size Distribution Filter, Using Moments.

Several methods of solving the filter equations were considered. The most
successful was the method of moments. Other methods failed either because of
over-complexity with the large dimension, or because of excessive core or time
requirements in implementation. Differential quadrature was also tested as

explained in section 4.1.2.5.

The solution by moments was carried out as explained in section 4.1.2.1, and
4.1.2.2, with the plant model given by equations (4.3.26) and (4.3.27), and
the observation model given by equations (4.3.28) and (4.3.29). Only the
first and second moments were considered, partly because of the difficulty

with large dimensions, and partly because most of the information is

contained/....
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contained in the first and second moments. The calculations were done using
central second order moments or covariances because these were more directly
usable. With 4 size gro;ps, there were 8 state variables, which had 8 means
and 36 variances and covariances, the latter being most easily written as a
symmetric 8x8 matrix (i.e. 64 elements). To estimate softness, another

state variable, KS, was added (see section 4.1), which required one extra mean
and a further 8 covariances. K_ could then be estimated on line together

S

with the masses in each fraction.

Appendix A lists the differential equations for the evolution of the moments

as used in the filter, based on the plant model equations (4.3.26) and (4.3.27).
The problem of closure occurred using moments. This was handled by ignoring
all third order central moments, as though the distribution were Gaussian,

i.e. (using the notation in appendix A):
u3(ABC) = m2(AB).ml(C) + m2(AC).ml(B) + m2(BC).ml(A) (4.3.30)
and writing fourth order moments as

uu(ABCD) = ml(A).ml(B).ml(C).ml(D) + m2(AB).m2(CD)
t my(AC).m (BD) + m,(AD).m,(BC) (4.3.31)
This approximation was not the best for fourth order moments, but it was

short and sufficiently accurate.

Subroutine IBCDRV was written to compute the derivatives given in appendix

A. This is listed in appendix C.

For integration of the moment equations, both simple trapezoidal rule and Euler

half step integration were tried. These are, respectively, for moments m:

dm
mity, ) = n(t, )+ At. T (m(tk+),tk+) _ (%.8.32)
dm
- 1 b
n(t ) n(t )+ 3ot gp (mly ).t )
, ) dm (4.3.83)
Blp) = mf) 4t g5 iy )0t )

T PP | Rl e PR <
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The time required for the evaluation of the derivatives (see section 6.8.10),
made it uneconomic to try higher order integration methods with the time

interval used. Equation (4.23.33) was used for all results given in this thesis.

For the observation step, the simplified second order filter observation step
which was outlined in section 4.1.2.1(c) was used, with the model in equations
(4.3.28) and (4.3.29). This observation step was handled by subroutine IBPOBS.
This subroutine used the concentration measurements of the cyclone feed and
overflow from each observation k, as the vector Y in equation (4.1.18),

with the function, m, in this equation given by the first terms on the right

hand sides of equations (4.3.28) and (4.3.29):

f l Izlp 3
= YD
VS i=1 SIS
m =
— Q n C. . n
S 11 P
TTa AT b (=B =57 L Y..Pos)eY: Pes
- ; S
\ VS(QS QU) ) SR 521 sy’ T4 1)

and the PA matrix consisting of the second central moments of Py Pgi? i=
l1,...,4, and KS. From this observation step, the means and variances (X:
and PA respectively in equations (4.1.18) to (4.1.21)), of thevmasses in

each fraction in the mill and sump were updated, and if desired, the softness

factor, KS, was simultaneously estimated (as a parameter 4 in equation (4.1.18)).

Normally the softness was kept fixed.

It should be noted here how the filter is able to estimate variables which

are not measured directly. During the evolution step, the plant model
(equations (4.3.26) and (4.3.27)) causes the variables in the model to

become correlated through the covariance matrix PA. This part is described

by the evolution for the covariances given in appendix A, At an observation k,
the Kalman gain matrix Kk in equation (4.1.18) is calculated from equation
(4.1.20), using the covariance matrix PA as shown. The elements of matrix Kk

are effectively correction factors for each variable from each observation

error/....
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error, based on the expected correlations. Thus the softness parameter, KS,

for example, may be included in the estimation by augmenting it to the state

variables as a parameter u, with equations for the evolution of the state and
softness (as given in appendix A), and with u included in the observation

step (equations (4.1.18) to (4.1.21)).

4.3.5 Conversion to Particle Size Distributions and Concentrations

Presenting the output from a filter was found to be a problem because of the
large amount of information produced. For the p.s.d. filter, it was found
easiest to convert the raw data (i.e. the masses in each fraction) into
quantities such as particle size distributions and concentrations, and to display

these graphically. The conversions were done as shown below,

Let x be the state vector of the p.s.d. filter (consisting of the masses
in each fraction in the mill and sump) and let f be the vector of individual
mass fractions in the stream under consideration. Now, fi = fi(x), and

expanding the function to second order, we get:

8 8 o
mean of £, = F, = £, (X) + 3 I T ——— . m (x.x ) (4.3.34)
i i i 5=1 k=1 ijaxk 277k | e
: 8 8 Bfi of .
covariance of f. f. = m (f.£f.) = % I — . m.(x x_). — (4.3.35)
17 2 kst 353 pk 2 k1 Bpl ——

where mQ(Xij) is the covariance of xj and x, as used in appendix A.

(The similarity of equation (4.3.34) to the observation step, equations

(4.1.18) and (4.1.21), should be noted.)

The cumulative fractions, Fi, were the sum of the individuals, i.e.:

L
Fi = .g‘ fj (4.3.36)
jei
Hence,
—— ‘+ —
mean of Fi = Fi = j?i fj (4.3.37)

COvVaNIarcs ~Ff T o 17
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TR
covariance of Fi, Fj = mQ(FiF.) = R ¥ m.(f

fl) (4.3.38)
k=1 1=j

k

Similarly for a concentration Ci = Ci(z) in stream i, we have:

8 8 of.
1

mean of C. = C. = C.(x) + 3% ¢ I = cmy(xx ) (4.3.39)
1 1 1 321 k=1 oxjaxk 2] -

5 8 8 BCi ; aci
variance of C. = m (C,) = ¥ I — .O 5 (4.3.40)
1 21 321 k=1 OX . x.xk axk —_—

CO = KO .; yi.(l =B, = cll'CF) Pgs (4.3.847)
1=1 =
where K = ———:%i——- and Gai-= B . ; Y. Do
0~ Vv (QQ) F Vg ' gy iTvsi
so that
- 4 pd s Kb ; ; y.yj(cl tc, ) ; ‘
Co * Ko'lilYi'(l T Cpy TSy il T 501 5e1 Vg Mot PgiPgy
(4.3.42)
and
20— + 1% g ik _
m2(CO) = Ko.izl jil Y.y:-(1 o1 Vg kzlyk.(cli + clk)'pSk) X
1 4 s
(1 - o5 ~ Vg.kilyk.(clj + clk)'pSk)'mQ(pSiij) (4.3.43)

Subroutine IBPTOF was written to calculate the means and variances of the size
distributions of the product stream (cyclone overflow), the cyclone underflow
and mill contents, as well as the concentrations around the circuit. This

took a long time to compute (see section 6.8.10) and so a simplified subroutine,
IBSIMP, was written to calculate concentrations and distributions without

taking variances into account. This used equations (4.3.34) without the

second term, (4.3.36), and (4.3.39) without the second term. Its accuracy is

discussed in section 6.8.11.

4.3.6 Summary/....
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4.3.6 Summary of p.s.d. Filter.

The particle size distribution filter developed here estimated the first
moments and second central moments of the masses in each size fraction in
the mill and sump. Four particle groups were used. The softness of the rock

could also be estimated on line through the filter if desired.

To do this, an evolution step and an observation step were developed. The
evolution step used subroutine IBCDRY, which calculated the derivatives of the
means and variances of the estimates given in appendix A, to integrate over
the interval between observations. At the observations (after running the
volumetric filter), the concentration measurements were used to update the

estimates with subroutine IBPOBS.

From the means and variances of the state in the p.s.d. filter, the
predictions of the actual particle size distributions were calculated

using IBPTOF or IBSIMP.

4.3.7 Use of the Filter

A simple flowchart for the full filter is shown in figure 4.5.

Before running the filter, by means of programme IBPRPC, thebvalues of the
constants and starting values for use in both filters were read in. Matrices
for the volumetric filter were calculated, and all the necessary data were
stored on a disc file. The data were then read back when the filter started.
Two main programmes were written to coordinate the filter calculations,

IBMFLC for off-line work, and IBOLMF for real time work. The following

Steps were then performed after each observation from the plant.

(1) Measurements from the instruments were taken and converted to values

of the variables S, WM, QS’ VS, WS, CF and CO at time tk on the operating

Plan®. /s a.
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plant.

(2) The volumetric filter, outlined in sections 4.3.1 and 4.3.2, was

implemented using subroutine IBSTST. This gave estimates of VM’ VS, QS, 2

WM and WS. From these, QM, KL

c,, were calculated for use in the p.s.d. filter.

and the actual classifier constants, < and

(3) The p.s.d. filter observation step given in section 4.3.4 was taken using
IBPOBS.

(4) The p.s.d.filter evolution step was taken using Euler half step
integration with the derivatives calculated by IBCDRV.

(5) The p.s.d. state was then converted to the size di;tributions and
concentrations using IBPTOF for off-line runs, and IBSIMP for real-time work.
At this point, all the estimates were available for the following interval.
For off-line tests, these were stored on another disc file, and the programme
went back to step(l) to continue. For on-line work, these were also made

available for control, and the programme then waited for the next observation.

The main subroutines used in the filter, IBSTST, IBCDRV, IBPOBS, IBPTOF, and
IBSIMP are listed in appendix C. The preparation programme, IBPRPC, the
off-line filter programme IBMFLC, and the on-line filter programme, IBOLMF,

are also shown.
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Chapter 5

EQUIPMENT AND EXPERIMENTATION

Most of the work done was on the pilot plant milling circuit or the Control
Data 1700 computer in the Department. The batch grinding tests were done
on a separate batch grinding machine, and use was made of the research
group's analytical equipment for doing the analyses of samples. Other
off-line experiments were done on the milling circuit.  The Burroughs
B5700 computer at the University of Natal, Durban computer centre was also

used for some of the computations.

5.1. Milling circuit
Figure 5.1 shows details of the milling circuit. It was a wet ball mill
with a nominal capacity of one tonne per hour. Solids were fed from a

sforage bin by means of a variable speed belt to the mill, where water

was added before entry. The mill overflowed into a sump which was
stirred. After dilution, the slurry was pumped with a variable speed pump
to the cyclone. The coarse cyclone underflow returned to the mill, while

the finer overflow discharged into a small stirred tank where its concen-
tration was measured before it left the plant as the product stream.
Table 5.1 gives specifications of the circuit. Plate 1 shows a general

view of the equipment.

Two different ball charges were used, and these are shown in Table 5.2.
The initial charge was found to be too fine for grinding larger stones.
"The coarser charge was used for all full scale runs quoted here, but

scaled down versions of both were used for the batch runs.

The instrumentation is also shown in Figure 5.1. All the instrumentation
was connected to the CDC 1700. All control was of the signal to change

type D.D.C. with manual override, which gave great flexibility. Table 5.3
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Table 5.1

Specifications of Milling Circuit.

- Mill type:

Internal
dimensions:

Mill speed:

Sump capacity:

Cyclone:

Variable

speed pump:

Allis Chalmers, nominal size 3ft x ift
with overflow discharge

1,22m long, O,762m mean diameter
7 lifters, wave * 1,27cm about mean diameter
0,217m overflow diameter

30 r.p.m. (= 62% of critical)

originally 0,18 m3 max. (unstirred)
subsequently 0,025 m max. (stirred)
(The former was used only for the mill
outflow characteristics.)

150mm diameter 20°, type S.I. cyclone
(made by R.J. Spargo)

50mm (i.d.) vortex finder diameter
25mm X 75mm inlet

12,5 mm spigot diameter

13/1B Warman pump

810 to 2430 r.p.m. speed range

nominal flow of 1 &/s
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Discharge end of mill showing some associated instrumentation.

Plate 1
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Table 5.2

Details of ball charges used in the pilot plant mill and corresponding batch tests.

R First load Second load
Ball size Mean mass
(romina1) | kg nass loaded | 2R UCECSCT Mass loaded basen sest 20/6
kg % kg % kg % kg %
-

30 0,126 570 63,0 23,1 63,3 63,4 6,9 2,60 7,1
40 0,263 335 37,0 13,4 36,7 145,2 15.9 5,70 15,7
50 0,589 - - - - 312,9 | 34,4 12,25 33,7
60 0,956 - - - - 245,0 26,9 9,65 26,6
70 1,545 - - - - 145,0 15,9 6,15 16,9
Totals = 305 100 36,5 100 911.,5 100 36,35 lOO

Z9



Table 5.3

Details of Measurement and Control Devices.

Solids feed rate: calculated from actuator setting on variable speed
belt, (weight of solids feed hopper also
available). \

Mill water: calculated from setting of actuator on valve.
Sump to cyclone flow: measured with M.I. flowmeter (Altometer type)
and corrected for magnetite content from

concentration.

Sump volume: measured with bubble tube and electric D/P cell, and
corrected for S.G. from concentration.

Sump water flow: measured with orifice plate and electric D/P cell.

Concentrations: measured by Y-ray absorption using Csl37 source, and
Philips detection heads and ratemeters.

Sump to cyclone concentration: situated along a vertical section of
the sump to cyclone line (approx. 0.5m long,
flow downwards).

Cyclone overflow concentration: situated across the discharge tank
from the cyclone overflow (stirred).

Mill power: 3¢ power meter on supply to mill motor.

Controls: all controls of the signal-to-change type, controlled
directly by computer, with manual override.

Sump pump control: Variable speed pulley drive with actuator
Actuator time = u0,5 s for full range.

Solids feed control: Variable speed belt with actuator
Actuator time = 145,0 s for full range.

Mill water control: Logarithmic contrecl valve with actuator
' (Philips ND16 valve, 15mm nominal diameter)
Actuator time = 91,5 s for full range.

Sump water control: Needle valve with Rotork type 1F actuator
Actuator time = 30,7 s for full range.
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lists the details of the instrumentation and how each variable was measured
or controlled. One of the remote typewriters from the computer was
available at the plant for communications. Plate 2 shows the instrument

cabinet on the plant.

5.2. "Control Data 1700" computer

This‘was a process control computer installed in the Department and used

for batch processing, real-time data logging, and control of pilot plants.
Details of the system are listed in Table 5.4. Part of the system is shown
in Plate 3. The computer was basically for control, and operated on a time
sharing basis to process several programmes or parts of programmes together.
Programmes were written in Fortran IV with extra statements for real-time
work (mainly input/output and timing). Data could be stored in a file on

a disc for later re-use. Towards the end of this project, hardware was
fitted for doing floating point arithmetic, which speeded up filter

computations considerably (see results, section 6.8.10).

5.3. Analyses

Sampling of slurry streams was done using a bucket and stopwatch. These
samples were then weighed, filtered, dried and weighed again to determine

flows and densities.

Samples for particle size analyses were then lightly crushed to break up the
lumps, and split using a Jones riffler into suitable quantities for screening.
These were wet deslimed on a 38 um sieve and re-dried before sieving using
standard metric 200 mm sieves on an Endecotts sieve shaker. For the batch
milling analyses, about 200 to 250 grams of sample were used and the sieving
was done in two stacks into 17 size fractions forming the usual v2 progression
from 6300 um to 850 um and then from 600 pm to 53 pm. For the samples from

the continuous mill and cyclone, about 100 to 150 grams were used and sieving



Plate 2

Instrument cabinet on plant showing ratemeters,

control relay box, flowmeter and power supplies.
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Table 5.4

Details and Specifications of the Computer System Used

(1)

(2)

(3)

(&)

(5)

(6)

(7)

(8)

(9)

A central processor (1,5 us cycle time) with 32K of core,

(each word 16 bits + 1 parity + 1 protect) and built-in clock.

Two disc drives, and a selection of discs each 3M words storage.

A line printer (150 lines/minute)
A main teletype.

Four remote typewriters for communication with the computer

from pilot plants.

A card reader (300 cards/minute)

An incremental graph plotter.

A display storage c.r.t. with an associated remote terminal.

A range of signal input/output devices consisting of
(i) 128 Analogue inputs multiplexed to an A/D converter

(ii) 8 Analogue outputs

(iii) 128 Digital inputs (contact closure)

(iv) 96 Digital outputs (relay changeover)
(v) 4 event counters

(vi) 16 external interrupt lines
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Plate 3

Part of the departmental computer centre with CDC 1700 control computer.

From left: C.P.U., teletype, line printer, plotter, display 'scope, card

reader.

4B
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was done on one stack following a progression of 2 from 3350 uym to 425 um
and then v2 down to 53 um. For the results of the runs on the milling
circuit, only condensed particle size analyses are given in this thesis.
These used the same Y4 groups as the filter, i.e. sizes 0, 75, 212 and

850 um.

Where densities were measured, an air pyknometer was used to measure the
actual volume of dry powder. The density was calculated from the mass

and volume, and in the results is expressed as specific gravity (S.G.).

5.4, The ore

The ore used throughout this investigation was an apatite-calcite-magnetite-

olivine mixture from the Phalaborwa complex in the north eastern Transvaal,

commonly known as '"Phoscorite'. The approximate analysis is given in
Table 5.5.

Table 5.5. Approximate data for the ore used

Apatite 20% (by mass)

Calcite (+ minor MgCO3) 16% "

Magnetite 34% "

Serpentine-Olivine (+ minor mica)  30% "

Average S.G. 3,37

Range of S.G. in constituent

minerals 2,71 to 5,18

Range of hardness in

constituent minerals 3 to 6 (Moh's scale)
Average Bond Work Index ~13

A problem encountered with this ore, and perhaps typical of many ores in
practice, is the variation in hardness and density between constituents.
This resulted in an increase of magnetite in the circulating load in the

milling circuit (giving an S.G. up to 3,7 in the cyclone underflow).
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Although not unimportant, this was ignored in most cases, and most tests
were done using the average rock at that point in the circuit. This

caused some scatter in the results, and is discussed in Chapter 7.

The rock supplied by the Phosphate Development Corporation had been crushed

to -9,5 mm. This was then fed directly from storage to the milling circuit.

5.5. Off-line tests

The following off-line tests were done:

1) Batch milling experiments to get parameters for the grinding model.
2)  Cyclone tests to get classification and flow behaviour data.
3) Mill overflow characteristics, for transport model.

y) Calibrations of instruments.

5.5.1. Batch milling

Two sets of runs, 30/4 and 20/6, were done on a batch mill to determine
selection and Breakage function data. The data from both of these runs’
are presented in the results, although only run 20/6 data were used in the
filter. A 30,5 cm by 30,5 cm batch mill was used. Quantities in the
large mill were scaled down in proportion to volume, and the percent of
critical speed was kept approximately the same. Each set of runs consisted
of a sequence of samples ground for different times to determine the
selection and breakage functions corresponding to normal operation, and a

set of grinds with varying slurry density and charge to determine the effects
of these two variables. These latter grinds were all done for twenty
minutes with the total slurry charge and density put separately at two levels,
équally spaced each side of the mean. After doing set 30/4, the ball load
in the pilot plant was altered, and the second set 20/6 was then doné on the

new load. Ball charges used are given in Table 5.2.
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A fairly representative sample of fresh ore was drawn off from the solids

feed system and split into 16 equivalent lots using a Jones riffler. Each
sample was then rounded off by hand addition or removal to the desired mill
léad. A separate sample of solids was used for each grind, and the mill

was completely washed out between grinds.

5.5.2. Cyclone tests

The filter required details for two models involving the cyclone, one giving
the volumetric split and the other the solids classification for each particle
size group. The cyclone was tested in situ in the milling circuit.
Perturbations were deliberately added to get data over a wide range. Two
sets of runs were done solely to collect cyclone data, and further data were

added from samples taken during other runs.

The ore used was not homogeneous. To simplify the model it was assumed
that the solids would behave in some "average'" way for classification, but
variations in solids S.G. between feed, overflow and underflow were taken

into account in analysing the results.

The size of a cyclone required for a pilot plant scale milling circuit means
that the cyclone operates under near limiting conditions. This makes the
useful range of operation smaller, as well as making the cyclone operation
- noisy and potentially troublesome. Some earlier work (not reported here)

was needed to get the cyclone operating properly.

5.5.3. Mill outflow characteristics

In the filter model, the mill and sump were assumed to behave as ideal stirred
tanks, and the mill was assumed to have first order outflow characteristics

(Section 4.3.1.). An experiment was done to check this and obtain the

constant in the overflow equation.

The mill was put/...
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The mill was put into normal closed circuit operation. At a given time,
all feeds to the mill and sump, and the sump withdrawal were stopped. The
mill, which had been overflowing normally, continued to overflow aﬁd i 1 0
the sump, and the volume in the sump was recorded as a function of time.
Finally, the mill was stopped and rolled back so that the charge was
horizontal. The total volume of water overflowed was added to the
calculated remaining volume of the charge, to get the operating volume of

the mill.

5.5.4. Calibrations of instruments

Because the filter required actual values of variables on the plant, a large
number of calibrétions were required. It was also found to be necessary
to continually re-calibrate as instruments drifted, or as they failed and
were repaired, or as plant changes were made. A minor change woula often
mean a major re-calibration. As well as calibrating between sensing
elements and the computer, the characteristics of the control devices were
determined from actuator time to position and then to value of controlled

variable.

The calibrations of most of the devices were simple, and usually linear.
Solids feed rate was calculated very approximately from the variable speed
belt setting, using a quadratic equation. The mill water valve was
logarithmic and had a noticeable hysteresis, which was included in the
calibration. The sump pump controller was not calibrated as it was
dependent on the slurry being pumped, but the actual flow was measured with

a magnetic induction flowmeter and then corrected slightly for the magnetite
content from the concentration measurement. Concentrations from the nuclear

gauges were calculated by

water reading - background

Concentration = K x 1n ;
(present reading - background

) (5.1)

where K is/...



where K is a constant dependent on the system
background = background count rate (without source)

water reading = count rate with only water in the system.

5.6. Runs done on mill for filter

The data from four runs which totalled over ten hours of useful operation, were
used for testing the filter.  Because of the cost of the ore it was not
possible to run for a long time, and so the circuit was deliberately

perturbed over as wide a range as possible during the runs. Some short

runs were done earlier for debugging the system and programmes, but they

were found to be of no use for detailed studies.

A control programme, IBMILL, was written to control the plant; log data on

a disc file, and write out data on the remote typewriter. Another programme
was written for communicating with the control programme to alter set points,
controller settings, etc. The first two runs, 18/10 and 23/10, (coded

"A"™ and "B" respectively) were done to get data, without the filter operating

in real time. After the filter had been tested off-line on these stored
data, it was modified to run on-line as programme IBOLME. IBMILL was extended
to operate with this filter. Runs 16/4% and 18/4 (coded "C" and "D"

respectively) were done with the filter operating in real time.

Controller settings were made deliberately slack, so that natural fluctuations

would be large for tracking by the filter. The D.D.C. control scheme used
was as follows:
1) Control the sump water from the cyclone feed concentration.

2) Control the sump pump from the pump flow (a fast loop), where

the flow set point was controlled from sump level,

3) Control the solids feed from the solids flow to the cyclone,

calculated from the flow and concentration.
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4) Control the mill water in proportion to the solids feed.

5) If the sump level goes too low, increase the sump water

regardless of other control.

6) If the cyclone feed concentration was low, (e.g. during start-up)
control the sump water from the level and keep the pump flow set
point fixed. Otherwise control remained the same. Settings were

made to give a smooth change-over to normal control.

7) During runs C and D, if it was desired to control from the filter
results, the mill feed solids could be controlled from the predicted
underflow concentration, and the sump water from the predicted -75 um
fraction in the overflow product. Otherwise the control remained
the same. Some difficulty was experienced in setting the controller

constants here.

Although control was automatic, at least one assistant was required when
doing runs in case of a breakdown. Start-up and shutdown were performed
manually. Several hours before a run the ratemeters were switched on,
and a quick check was made that the circuit was ready. Sample buckets were
also prepared. The other instruments were switched on when the run was
ready to start, and the ratemeter water counts were checked and entered in
the control programme. The mill was started in open circuit, and extra
water was added to the sump during startup. The mill control programme
éould be scheduled at any time, and the sump control switched to automatic
immediately. The circuit was closed by re-routing the sump withdrawal to

the cyclone, and all controls were then put on automatic.

Samples were taken during the runs at approximately 5 to 10 minute intervals.
These samples were for use in checking the filter, and so it was attempted to
take them more frequently when more detailed data were needed. During runs
A and B, and up to 90 minutes in run C, the overflow was sampled at the outflow

of the density tank. Thereafter the cyclone discharge was sampled directly.
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A few underflow samples were taken directly at the cyclone spigot.

Shutdown was the reverse of startup, and was generally faster. After each
run, the samples were analysed, and a plot on the computer graph plotter

was drawn up of the main variables, using the stored data.
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Chapter 6

RESULTS

The results from this study form two main groups, the experimental data and
the filter results. The experimental data comprise the off-line tests
and the raw data from the runs on the milling circuit. In the results
from the filter, the filter predictions for each of the runs are shown and
compared with the sampled values, and the effects of various factors in the
filter are demonstrated. Finally, the real time requirements of the

filter are examined, and the use of a quadrature filter is shown.

6.1. Batch milling results

The results of the two sequences of batch grinds (runs 30/4 and 20/6) are
listed in Tables 6.1 and 6.2 respectively, and are displayed for comparison

in Figure 6.1. In this figure, the cumulative mass percent has been plotted
on .a linear axis against particle size on a log axis, to give nearly equal
weighting to each fraction. The effect of the difference between the two

ball loads is clearly visible.

The regression on these data to get selection and breakage functions was done
as explained in the theory, Section 4.2.1. The initial values of the model
parameters to be used in the regression were estimated in various ways, but

were fairly close to the calculated best fit values and so one may assume that

the final regressed values were reasonably optimal. Tables 6.3 and 6.4
summarise the results. Reasonably good fits were obtained as shown by the
lines in Figure 6.1, even though the ore was not homogeneous. In Figure 6.2

the selection functions are plotted against particle size, and in Figure 6.3
the breakage functions are plotted together with the breakage functioh of

Broadbent and Callcott for comparison.

To use these data/...



Table

6.1

Batch milling results for run 30/4

Table of individual mass fractions per size group for each grind time.

Grind time, minutes
0 5 10 15 20 30 4O -

6300 to 9500 0,0984 0,0795 0,0810 0,0667 0,0416 0,0255 0,0084

4750 to 6300 0,2071 0,113y 0,0757 0,0780 0,0456 0,0147 0,0042

3350 to 4750 0,19u0 0,1221 0,0821 0,0450 0,0347 0,0111 0,0035

2360 to 3350 0,1369 0,0835 0,0471 0,0233 0,0158 0,0039 0,0014

w 1700 to 2360 0,0767 0,0450 0,0278 0,0143 0,0093 0,0033 0,0014
§ 1180 to 1700 0,0596 0,0432 0,0233 0,0103 0,0068 0,0022 0,0009
-é 850 to 1180 0,0397 0,0376 0,0216 0,0114 0,0070 0,0024 0,0010
5 600 to 850 0,0325 0,0428 0,0309 0,0175 0,0102 0,0032 0,0014
o 425 to 600 0,0247 0,0451 0,0418 0,0288 0,0174 0,0053 0,0019
E 300 to 425 0,0223 0,058 0,0649 0,0587 0,0429 0,0161 0,006k
; 212 to 300 0,0201 0,0612 0,0869 0,1002 0,0961 0,0595 0,0284
§ 150 to 212 0,0152 0,0516 0,0797 0,1041 0,1218 0,1175 0,0894
TE 106 to 150 0,0118 0,0403 0,0629 0,0827 . 0,1032 0,1324 0,1275
é 75 to 106 0,0111 0,0392 0,0618 0,0815 0,1036 0,1405 0,1620
_§ 53 to 175 0,0089 0,0288 0,0u47 0,0590 0,0732 0,0982 0,1178
@ 38 to 53 0,0065 0,0212 0,0329 0,0409 0,0527 0,0710 0,0892
-38 0,0379 0,0908 0,1346 0,1777 0,2182 0,2933 0,3551

9L



Table 6.2 Batch milling results for run 20/6

Table of individual mass fractions per size group for each grind time.

Grind time, minutes
0 2 5 10 15 20 30 40

6300 to 9500 0,0762 0,0708 0,0358 0,0168 0,0033 0,0055 0,0000 0,0000

4750 to 6300 0,1589 0,0736 0,0573 0,0193 0,0079 0,0000 0,0000 0,0000

3350 to 4750 0,1438 0,1191 0,0663 0,0219 0,0083 0,0007 0,0000 0,0000

2360 to 3350 0,1131 0,1013 0,0694 0,0137 0,0031 0,0001 0,0000 0,0000

1700 to 2360 0,0893 0,0846 0,0610 0,0197 0,0026 0,0003 0,0000 0,0000

= 1180 to 1700 0,0694 0,0771 0,0729 0,0321 0,0070 0,0009 0,0002 0,0002
§ 850 to 1180 0,0537 0,0639 0,0710 0,0555 0,0160 0,0029 0,0002 0,0002
-§ 600 to 850 0,0460 0,0616 0,0755 0,0856 0,047y 0,0138 0,001y 0,0004
5 425 to 600 0,0379 0,0531 0,0702 0,1013 0,0910 0,0u74 0,0078 0,0025
2 300 to 425 0,0372 0,0520 0,0729 0,1101 0,1316 0,1169 0,04u8 0,0157
§ 212 to 300 0,0350 0,0503 0,0725 0,1098 0,1453 0,1623 0,1277 0,0777
L L50-t0 212 0,0266 0,0384 0,056 0,0880 . 0,1181 0,1437 0,1616 0,1396
.§ 106 to 150 0,0210 0,029y 0,0423 0,0630 0,0827 0,1010 0,1314 0,1421
§ 75 to 106 0,0192 0,027 0,0396 0,0592 | 0,0773 0,0942 0,1223 0,1398
% 53 to 75 0,0151 0,0210 0,0293 0,0429 0,0550 0,0668 0,0851 0,1004
2% 38 to 53 0,0118 0,0169 0,0202 0,0303 0,0407 0,0u493 0,0688 0,0814
-38 0,0460 0,0597 0,0874 0,1305 0,1626 0,1941 0,2u485 0,2998

LL
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Table 6.3

Regressed values of selection and breakage function

for run 30/4 in batch mill.

size in mill.)

(Smaller mean ball

Particle size group Selection function Breakage function
] . =1 from lst size
number range in um min group (individual)
1 6300 - 9500. 0,0397 0
2 4750 - 6300 0,1061 0,5349
3 3350 - 4750 0,1743 0,1004
by 2360 - 3350 0,2887 0,0741
5 1700 - 2360 0,4771 0,0530
6 1180 - 1700 0,5561 0,0u48
7 850 - 1180 0,6208 0,0305
8 600 - 850 0,5068 0,0248
-9 425 - 600 0,3975 0,0186
10 300 - '425 0,2295 0,0143
11 212 - 300 0,1175 0,0108
12 150.- 212 0,06622 0,0082
13 106 - 150 0,04024 0,0062
14 75 - 106 0,01283 0,0047
15 53 - 175 0,005957 0,0036
16 38 - 53 0,007743 0,0026
17 0 - 38 0 0,0086

Parameters for

« = 0,4964

breakage function (equation (4.2.5))

5 = 18,27 =, = 0,7957
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Table 6.4

Regressed values of selection and breakage

functions for run 20/6 in batch mill.

(Larger mean ball size in mill.)

Particle size group Selection function Breakage function
. ] from lst size
number | range 1n um _min group (individual)
1 6300 8500 0,1464 0
2 4750 6300 0,3667 0,6661
3 3350 4750 0,3839 0,0966
b 2360 3350 0,4350 0,0583
5 1700 - 2360 0,4885 0,041
6 1180 1700 O,4u412 0,0349
7 850 1180 0,4056 0,0237
8 600 850 0,2948 0,0192
>9 425 600 0,2158 0,014k
10 300 425 0,1321 0,0110
11 212 ‘ 300 0,07445 0,0083
12 150 212 0,04838 0,0063
13 lOé 150 0,03892 0,0048
14 75 106 0,02161 0,0036
15 53 75 0,01627 0,0027
16 38 53 0,01263 0,0020
17 0 38 0 0,0066

Parameters for breakage function (equation (4.2.5))

C:l=o,

6071

D) = 12,0 oc3 =

80
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To use these data, it was necessary to recalculate the parameters for the
four size fractions used in the filter, as explained in Section 4.2.1,
equations (4.2.7) to (4.2.9). The results of this data compressicn are
given in Table 6.5. The lumped selection functions are also included in
Figure 6.2. The calculated standard deviation due to lumping together of
the particle size groups, equation (4.2.9), is also given, although the
actual error is not likely to be as great. The error is particularly
large where the selection function curve is decreasing with particle size.
Fortunately, this is associated with a large mean, and is hence not the rate
controlling step in grinding from coarse to fine rock. The reduced data
from run 20/6 were used directly for all the filter computations shown in
this thesis, as fhey matched the ball load distribution used. They were
used in the p.s.d. filter as the values of the S and b functions in the

grinding model.

The size analyses of the two feed samples used for the batch grinds were
averaged to obtain a mean value of the mill feed for use in the filter.

This analysis is shown in Table 6.6.

Table 6.6. Averaged feed size distribution
Size range, um Percentage in range
850 - 9 500 75,7
212 - 850 12,8
75 - 212 5,25
0 - 75 6,25

The grinds which were done with the varying slurry concentration and total

charge were used to determine the effects of these factors on the grinding

model as explained in the theory, Section 4.2.1. These grinds were all
done for 20 minutes. Figure 6.4 shows the graphs of the D25, D50 and D75
against time for the two sequences of batch grinds. On these lines, the



Table

6.5

Selection and breakage functions for lumped size groups

Results of data compression on grinding data for runs 30/4 and 20/6

%#Rate scaling factor =

D

(D—l) 0s6 - 1,733
2
Run 30/4

Particle size| Selection functions Breakage functions, fractions
group min~1 .~ into
Num- std. scaled
bep | T@N&e um | mean A oy Group | Group | Group | Group
: 1 2 3 L
due to | for
lumping | big
mill#
1 850-9500 | 0,1582 | 0,2028 0,2740 =2 0,7545| 0,1378 | 0,1077
2 212-850 0,1121 0,0112 0,1942 = = 0,6152| 0,3848
3 75-212 | 0,01644] 0,00300] 0,02848 = - - 1,0000
b 0-75 - - - = - - =
Run 20/6
| Particle size Selection functions Breakage functions, fractions
group min~L into
Num- std. scaled
bep | F3Nge um | mean Eave, fimith Griup Grzup Group | Group
due to for g -
lumping | big
mill#
1 850-9500 | 0,1212 | 0,1237 0,2099 = 0,7651 { 0,1324( 0,1025
2 212-850 0,05562| 0,01135 0,09634 = = 0,6544 | 0,3456
3 75-212 0,01536 | 0,00u447 | 0,02661 = - - 1,0000
b 0-75 - - ~ - - - -
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D__ and D__ for the varying charge and concentration runs have been

D25’ 30 75

plotted, and a line corresponding to a mean time has been drawn for each set
of three points, to give the equivalent grinding time, te. From these

results, the rate scaling factors were calculated using equation (4.2.6).

These rate scaling factors are plotted in figure 6.5. The difference between
the ball charges is noticeably different, but the general trends are the same.
Approximate linear relationships from these graphs, scaled for the pilot

plant mill, were:-

K, = 1,0 - 10,0 (Vy - 0,1435) (6.1)
KC = 1,0 - 6,34 X 1074 x (cM - 1500) (6.2)
where KL, KC are the rate scaling factors for load and concentration

respectively

VM is the actual volume in the pilot plant mill (m3)

CM is the actual concentration in the pilot plant mill (kg/ms)

Because the effect of concentration wasAmore difficult to incorporate in the
filter, only equation 6.1 was used, even though the total effects were about
the same in the normal operating range. This scaling factor was evaluated
each time after the volumetric filter to account for the effect of changes

in the mill volume on the rates of grinding in the p.s.d. filter.

6.2. Errors in analyses

The feed sample for the first sequence of batch tests (30/4) was split and
analysed as four separate samples to get an estimate of the repetition error
in the sample analyses. Table 6.7 shows these results for the 17 size

fractions, and condenses these into the four size fractions used in the

filter.

6.3. Cyclone data/...
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Table 6.7

Typical Particle Size Analysis Errors

(feed 'sample for experiment 30/4)

Particle.size éverage mass % Sta?da?d - Std.dev.
range, microns in group Dev1ation of C.V.= = e
mass %

0 38 3,70 0,11 0,031

38 53 0,64 0,02 0,035
53 75 0,85 0,05 0,053
75 - 106 1,14 0,06 0,050
106 150 1,19 0,04 0,029
150 212 1,52 0,04 0,025
212 300 2,03 0,05 0,025
300 425 2,22 0,03 0,013
425 - 600 2,47 0,08 0,032
600 - 850 3,26 0,09 0,027
850 1180 4,04 0,12 0,030
1180 1700 5,96 0,14 0,024
1700 2360 7,69 - 0,25 0,033
2360 3350 13,45 0,23 0,017
3350 1750 19,80 1,06 0,054
4750 6300 19,30 1,75 0,091
6300 9500 10,75 1,96 0,182
0 75 5,19 0,14 0,027

75 212 3,85 0,12 0,030
212 850 9,98 0,25 0,025
850+ ~ 80,98 0,47 0,006
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6.3. Cyclone data

The results from the cyclone show considerable scatter. Several reasons for
this were outlined in Section 5.5.2, but the main causes were the use of a
mixed ore, the scale of operation, and a poor model. It is an obvious

area for further development of the filter.

Initially, two sets of runs, 23/7 and 5/8, were done, each giving 7 pairs of
overflow and underflow samples. From these, graphs of classifier
characteristics were drawn and the D50 soipeiesy T read. These D50 R
were then plotted against feed rate and feed concentration to check against

the results quoted in literature. They are shown in Figures 6.6 and 6.7
respectively. Also shown in Figure 6.7 are two correlations for D50 crpreaTad
against concentration from sources in literature as indicated. Similar

trends can be seen in the experimental points above the scatter. The
allowable operating region for the feed flow in Figure 6.6 was limited, but

no trends can be seen. We may therefore assume that the cyclone could be

adequately modelled either by fixed classifier constants, or slightly better

by linear functions of feed concentration.

The filter required classification parameters for each of the four size
groups separately, so the cyclone data were also calculated in this form.

The results of runs 23/7 and 5/8 are shown in Figure 6.8 as the corrected
classifier functions against feed concentration for each size group. Linear
regressions were done on these to fit equation (4.2.11), and the results

are given in Table 6.8.

When runs A and B were done on the milling circuit to collect data for
filtering, it was found from samples of the overflow and underflow taken
together that the cyclone behaviour had changed slightly, Trom these new
samples, corrected classifier functions were calculated and are shown in

Figure 6.9 against feed concentration. These points were insufficient to

do a full linear/...
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Table 6.8 Corrected classifier functions for individual
size groups, from runs 23/7 and 5/8

Particle size range, um ; linear classifier functions of feed conc.
€Coi €11
850 to 9500 1,0073 -0,2894 x 10
-1
212 to 850 0,9479 -1,4582 x 10 '
75 to 212 0,8088 3,276 x 10"
0 to 75 0,1904 1,364 x 107"

Table 6.9 Corrected classifier functions for individual
size groups, from runs 18/10 and 23/10

Particle size mean

range um corrected | linear classifier functions of feed conc.
classifier
ggpstants, ccoi ccli
ccs

i
850 to 9500 0,9351 0,9543 -0,2894 x lO_L+
212 to 850 0,6660 0,7629 1,458 x 107
75 to 212 .| 0,3516 0,5694 3,276 x 10
0 to 75 0,01l 0,1051 1,364 x 10 "

Table 6.10 Corrected classifier functions for individual
size groups, data from all runs.

Particle size range, pm linear classifier functions of feed conc.
o1 ©C1i
850 to 9500 0,96229 +0,0614 x 10
212 to 850 0,78381. ~0,0826 x 10 "
75 to 212 0,60516 -1,6883 x 10
0 to 75 0,11496 ~0,7623 x 10 "




Corrected classifier function for size group indicated, ccj

o
e

2] g +850 pm mean |
B
. A
Sa
A 512 to 850pum mean
= +850 pm
y-3 A 212 to 850 mpm

0]
A=
+= 75 to 212 pm
©= 0 to 75 pm

! -
75 to 212pm mean |
i +
+
+ ,
+
- D
2 1
o - & &n 75rm mean
© ©
o
- 0,1 T T T T ‘I L T [ = o T T T
0 - 500 1000 1500
cyclone feed slurry concentration, kg/m3 ‘
Biguxe 6.9 Corrected classifier constants against feed

concentration for runs 18/10 and 23/10. (Table 6.9)

Sample points and means shown.



94

do a full linear regression, and so the slopes of the lines from the previous
regressions (Table 6.8) were put through the averages of the new points to

obtain the classification parameters shown in Table 6.9.

The values of Co3 and e,y given in Table 6.9 were used for all the filtering
tests. They were used in the p.s.d. filter. From the volumetric filter,
and the predicted concentrations in the p.s.d. filter from the previous step,
the flow split in the cyclone was calculated. From this and the corrected
classifier constants in Table 6.9, the.actual classifier constants were

calculated as explained in Section 4.2.2.

Finally, as shown in Section 6.8.2, different values of classifier functions
were used to test the effects of this factor. To get values for this, all
the data from runs 23/7, 5/8, 18/10 (run A) and 23/10 (run B) were put in a

regression, and the results are shown in Table 6.10. The values of cc ., and

01

cey s in this table were only used for this one test, and represented a generally

finer cut than the average.

The flow model for the cyclone assumed that the underflow was fairly
constant over the range of operation, independent of the feed flow or
concentration (equation (4.2.10)). The data from runs 23/7 and 5/8 were
plotted as underflow volume flow rate against feed concentrafion and feed
flow rate. These two graphs are shown in Figure 6.10. Although there
is scatter, there is no noticeable dependence on either feed flow or
concentration, and the points are fairly constant. From these data., the

average and variance were calculated and are shown in Table 6.11.

Table 6.11 Cyclone flow data (equation 4,58)

3

Mean underflow rate, QUO = 0,4073 x 10“3 m /s

Error variance, Oi = 0,383 x 10“8 m6/s2

Error standard deviation, /bi = 0,619 x 10_u m3/s
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The values in Table 6.11 for the cyclone flow mocdel were used in the

volumetric filter as parameters.

6.4. Mill overflow characteristics

The results from the overflow test on the mill are shown in Figure 6.11.

The graph shows the volume in the sump as the mill overflowed into it,
plotted against time (as éxplained in Section 5.5.3), It seemed reasonable
to assume that the overflow characteristics were first order, and that
equation (4.3.2 ) would apply. From the slope of the curve at the start,
the flow rate through the mill was determined. The operating volume of the

mill, VM, and the minimum volume, V. _, were calculated as explained in

MO
Section 5.5.3. From these, the parameters in Table 6.12 were calculated

for equation (4.3.2).

Table 6.12 Mill overflow model parameters

Model: QM = kl(vM - VMO) (4.3.2)
\ = 0,0935 m3
MO ¥
k, = 0,01 i e

These values were used in the volumetric filter in the mill flow model.

6.5. Results of runs on milling circuit

Runs coded "A" and "B" (18/10 and 23/10 respectively) were done on the
milling circuit to get data for testing the filter. Runs coded "C" and
"D" (16/4 and 18/4 respectively) were done with the filter running in real
time. The data from all runs were stored on a disc file. Run B was the

most successful, and it was used for doing most of the off-line tests.

The graphs of/...
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The graphs of the raw data from each run shown ahead are intended as
summaries of how the main variables behaved during the runs. Greater
detail is shown in the filter results. The complete set of data was kept

on a disc file on the CDC-1700.

The particle size analyses for these runs, although done as explained in
Section 5.3, are quoted only in a condensed form for the sizes used in the
filter. The times at which the samples were taken are shown in each graph.

6.5.1. Run A

The graphs of the measurements taken during this run are shown summarised in
Figure 6.12. Twelve samples were taken of the cyclone overflow, and one of

the underflow. Summarised analyses of these samples are given in Table 6.13.

During the run, the mill concentration rose so high that the stones which
were discharged overloaded the cyclone after about 48 minutes. This gave a
very coarse cut and the overflow tank sanded up, resulting in abnormally high
errflow concentration measurements. The sump ran low as a result of the
decreased circulating load, and the control on the sump water cycled while

trying to bring the level up. The run terminated shortly afterwards.

6.5.2.  "Run'B

Figure 6.13 shows the graphs for this run, and Table 6.14 gives the analyses

of the samples. 28 overflow samples and 6 underflow samples were taken.

This run continued for over three hours and gave much useful data. During this
time, conditions varied over a wide range and only two minor upsets were exper-
ienced. A fuse blew in the controller box at about 55 minutes, but was quickly
repaired. The second upset occurred when the line to the cyclone blocked at about
100 minutes, but this was also quickly cleared. The cyclone behaved well and
operated around a fast rope to a spray discharge throughout the run. Some large
stones were discharged friom the mill towards the end, but they did nét cause any
trouble. During the run, the cyclone feed concentration set point was deliberately

lowered for a period of about 40 minutes to provide a perturbation on the



Samples for run A

= 1

15
Mill power, kw lj-__‘

T T

Mill water, Oﬁ]

x10”3 m3/s 0

T

_.‘TJ

0,5
Solids feed, kg/S T——W
07 T T T T T T T

0,025
Sump VOlume, m3 OW%W’\—WM
T T T

I | =

Sump to cyclone flow, 2L"‘

x10~3 m3/s 04 :

Cyclone overflow conc.'OOOI i Aa#“~ﬁA-ﬂ/M"*””»fww\ufwﬂﬂbﬂwvvﬂ&/\\_
kg/m3 i |

Cyclone feed conc.,

kg/m3 01 T

Figure 6.12

T T T T T

T
50
Time, minutes

Run A - Summary of stored data from run,showing trends.




Table 6.13

‘Analyses of Samples for Run A.

100

Sample | Sample | Volumetric | Concentration,| Cumulative Particle Size
No. Type flow kg solids/ Analyses
x1073 m%/s | n3 slurry =75 ym | -212 ym| -850 um
% % %
Al O/F 0,535 536 37,67 70,56 98,62
A2 O/F 0,402 477 37,74 70,05 98,72
A3 O/F 0,618 476 34,61 | 69,26 98,83
Ay O/F 0,600 505 30,99 65,54 Q8,04
A5 U/F 0,387 1690 5,75 18,97 71,02
A6 0/F 0,475 505 29,49 | 59,95 97,04
A7 0/F 0,549 532 22,65 46,34 88,21
A8 O/F 0,732 538 20,36 | 46,00 88,55
Ag O/F 0,664 269 31,21 60,02 ay ,82
Al0 O/F 0,495 343 33,85 61,16 95,50
A1l O/F 0,466 415 29,05 59,81 97,30
A12 O/F 0,620 365 27,71 | su,85 | as5,u6
A13 0/F | 0,819 358 25,99 55,05 93,82
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Table 6.14

Analyses of Samples for Run B.

Sample | Sample | Volumetric | Concentration | Cumulative Particle Size
No. Type flow kg solids/ Analyses
x10-3 m¥/s n® slurry =75 ym | -212 pm | -850 um

% % %

El O/F 0;735 325 35,00 70,11 89,03
B2 o/F 0,551 349 36,80 72,02 99,28
B3 | u/F 0,440 810 16,10 | 50,00 98,40
Bi B O/F 0,246 398 38,96 76,87 99,76
B5 o/F = 0,253 465 37,25 75,66 99,76
B6 | U/F 0,488 692 25,50 63,07 98,83
B7 O/F 0,2u1 468 43,98 | 84,09 99,85
B8 O/F 0,261 472 uy,76 | 82,09 99,81
B9 0o/F 0,318 437 41,99 78,62 99,59
B10 U/F 0,473 701 25,72 | 61,37 98,77
B1l O/F 0,148 479 40,80 78,04 99,79
B12 O/F 0,194 474 42,20 80,80 99,84
B13 0/F 0,506 355 43,32 80,62 99,78
Bl O/F o,ul49 310 47,08 83,38 99,89
B15 O/F 0,559 327 45,99 83,82 99,85
B16 o/F 0,675 271 43,57 80,86 99,74
B17 U/F 0,440 570 21,43 56,63 97,93
B18 0/F 0,584 315 42,53 | 79,76 99,66
B19 o/F 0,588 323 39,46 76,22 99,62
B20 0/F 0,620 284 40,10 | 75,96 99,58
B21 O/F 0,417 423 39,39 | 76,30 99,63
B22 O/F 0,503 440 38,98 75,60 99,56

- continued overleaf -
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Table 6.14 (contd.) (Run B sample analyses)
Sample | Sample | Volumetric | Concentration | Cumulative Particle Size
No. Type flow kg solids/ Analysis
x10~3 m3/s m3 slurry
=75 um =212 um -850 um
9 9 9
(7] (2] (2]
B23 O/F 0,470 403 36,39 70,52 98,92
B2y O/F 0,478 362 39,88 72,73 99,25
B25 O/F 0,607 342 37,26 71,06 99,04
B26 0/F 0,838 339 34,55 68,89 98,59
B27 U/F 0,375 1605 5,60 26,43 83,11
B28 O/F 0,995 265 35,09 63,41 97,65
B29 O/F 1,001 228 34,30 67,63 97,85
B30 O/F 0,812 215 37,47 70,33 99,25
B3l O/F 0,790 302 33,28 68,18 99,23
~B32 U/F 0,373 1189 9,53 39,18 95,06
B33 O/F 0,656 324 34,18 69,53 99,39
B34y O/F 0,816 301 34,37 69,07 98,98
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system. Around 150 to 170 minutes, the sump pump was running near the

maximum of its range.

6.5.3. Run C

The plots for this run are shown in Figure 6.14%, and the sample analyses in
Table 6.15. 15 overflow samples were taken but no underflow samples were
collected. At the beginning, the samples were taken after the cyclone

overflow tank, but from sample 9 onwards the overflow was sampled directly

at the cyclone discharge.

This was the first run done to test the filter on line, and it performed
satisfactorily. (Filter results are shown ahead.) Some time-sharing
difficulties had been experienced earlier while debugging the programme,
caused by the complexity and size of the on-line filter, but these were

remoyed before doing the run.

At the beginning, the potentiometer on the solids feed actuator came loose,
and some of the readings were below the actual value, giving a low solids
feed rate. This was repaired after 50 minutes, and the run continued.
After 42 minutes, and again after 95 minutes, it was attempted to control

the plant from the filter, as explained in Section 5.6, but the controller
settings were too high, and instability resulted, particularly on the sump
water. (Note that the control strategy was not written into the filter, but
control changes were entered after each observation as part of the volumetric
filter. Consequently, a change in control strategy such as this would not
require a reformulation of the filter.) Both times the plant was put back
on normal control after a few minutes. The measurements of the sump
volume were found to have a slight uniform offset throughout the run (later
found to be caused by the instrument), and so the set point was set to

0,020 m’ in place of the normal 0,016 m>. Otherwise the circuit ana the
filter worked well. The cyclone operated with a fast rope most of the time,

except when the oscillations from the filter control caused it to block
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Table 6.15

Analyses of Samples for Run C.

All samples of cyclone overflow.

Sample Volumetric Concentration Cumulative Particle Size
No. flow, kg solids/ Analysis
x107 m*/s | n? slurry 75 ym | -212 um| -850 um
% % %
Cl 0,082 642 44,90 84,21 99,85
C2 0,207 756 43,68 82,38 99,78
C3 0,194 735 Ly ,61 81,51 99,68
Cu 0,136 792 44,13 80,16 99,54
C5 0,563 380 48,39 84,80 99,85
C6 0,499 324 Ly ,32 77,70 99,18
c7 0,585 340 40,68 75,99 93,47
c8 0,490 352 39,07 71,99 99,09
c9 0,395 316 46,83 79,16 99,71
Cl0 0,296 386 47,82 82,82 99,88
Cll 0,287 525 37,80 78,04 99,85
Cl2 0?123 581 43,51 82,30 99,93
C13 0,148 776 38,79 82,97 99,92
Clu 0,089 647 46,66 86,00 99,94
C15 0,104 754 45,90 86,64 99,94
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6.5.4. Run D

Figure 6.15 shows the plots of the data from this run, and the analyses of
the 15 overflow samples are given in Table 6.16. All samples were taken

at the cyclone discharge.

The operating conditions did not fluctuate much during this run.  From 355

to 80 minutes it was attempted to control from the filter results using new
controller settings but, while this was less erratic than run C, it did not
work well. The sump overflowed slightly from 75 to 80 minutes. Never-
theless, control was achieved as desired. To attempt to perturb the circuit,
two manual increases were made on the solids feed controller at 83 and

138 minutes. The equipment behaved well throughout the run.

6.6. Values of parameters used in the filter

The values of the parameters summarised in Table 6.17 were the standard values
used for the tests done on the filter. Their explanation is as follows.

(Where non-standard values were used in a test, the reason is given in the

section dealing with that test.)

(1) The grinding data (selection and breakage functions), cyclone data

2 ; : : ; '
{az s Ge)’ feed size distribution, and mill overflow parameters

0 €10 Qo
were determined from off-line experiments as explained already in Sections
6.1 to 6.4. The rate scaling factor KC was kept constant at 1,0, while
KL was calculated from equation 6.1. The units of the selection function

were also changed from min_l to s—l.

(2) The classification parameter vectors, 8, y, and n for the mill, sump
and cyclone overflow tank respectively, were all given values of unity,
except where a different value could be adequately justified. Thus, in the

coarsest size fraction, the mill parameter Bl was given a value of 0,1 as

this fraction was generally held back in the mill. Earlier tests seemed to

g P B_ERFEPORTTT SUTURSRY S0 it e Ty |



Samples, run D 1 2 4 5 6 7 8 9 10 11 12 13 14 15
1 | 1 { { i | | | | 1 | 1 i [l
I ' I T T i T 1 T T T T T I T
Mill power, = 6- 4
4 T T T T f T T T T T T I T T

Mill water, 95
X1073 m3/s O-}—\“‘“

T

kg/s 0

T I

I I T

T I T I I 1 I I

Sump volume %02%] -
m3 0

Sump to cyclone

| I |

1 2
flow,
X1073 m3/s o]h“

Cyclone overflow

I i I

conc. 1000]
kg/m3 0 1%
Cyclone feed

conc. 1000]

kg/m3 0 1
(o]

Figure 6.15

Time, minutes

Run D - Summary of stored data from run,

showing trends.

80T



Table 6.16

Analyses of Samples for Run D

All samples of cyclone overflow.

Sample Volumetric Concentration Cumulative Particle Size
No. flow kg solids/ Analysis
x107% m3/s m? slurry =75 ym| -212 pm| -850 um
% % %
D1 0,139 671 46,79 86,88 99,90
D2 0,235 525 45,30 : 82,27 99,77
D3 0,262 796 42,86 81,14 99,76
Du 0,126 759 45,93 80,07 99,69
D5 0,136 767 45,32 80,05 99,68
D6 0,869 222 46,80 81,12 99,60
D7 0,052 379 55,05 90,96 99,95
D8 0,152 849 41,51 79,89 99,70
D9 0,186 844 42,00 79,98 99,67
D10 0,141 64 43,53 79,29 99,73
D11 0,135 815 42,79 79,48 99,76
D12 0,112 903 4y ,05 79,75 99,73
D13 0,212 865 44,60 80,76 99,61
D1y 0,262 48 by .84 79,48 99,50
D15 0,352 540 53,10 85,01 99,61

109



Table 6.17

Standard values of parameters

used in the filter.

Parameter

_ Value

Observation interval
Mean cyclone underflow rate, Qo

Standard deviation of cyclone underflow
rate

Mill overflow constant
Mill minimum charge volume, VMO
Specific gravity of solids

Softness factor, KS

2
Kg

Variance of softness, ¢
Selection function vector, §o
Breakage function matrix, b

Mill exit classification vector, B

Sump exit classification vector, Y

Cyclone overflow tank classification
vector, N

Noise vector for grinding model, ¢
Cyclone classifier functions, cc_ and cc
—0 ==L

Feed solids size distribution

Standard deviation of cyclone overflow
concentration

Standard deviation of cyclone feed

concentration

5,0 seconds

0,4073 #107° © /s
0,0619 #10™° /s
0,00 st

0,0935 m°

3,37

0,9

0,02025

as given in

) Table 6.5

(0,1 1,0 1,0 1,0)"

(1,0 1,0 1,0 1,0)"

(10,0 1,0 1,0 1,0)T

(2,5 0,5 0,5 0,5)T
as in table 6.9

as in table 6.6

400,0 kg/m°

200,0 kg/m°

110
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indicate that this was a reasonable value, although it varied considerably
depending on the pulp viscosity. Similarly, the cyclone overflow tank
tended to retain coarse particles, and so n, was given a value of 10,0.

Neither of these two values was very critical in the normal filter performance.

(3) If the scale-up of the selection function from the batch tests were exact,
then the softness of the rock would be 1,0. The normal operating mill was
observed to have an increased magnetite content in the circulating load, which
produced higher solids specific gravities (typically 3,6 to 3,7) and harder
rock for grinding. It was attempted to calculate the difference in softness
from a knowledge of the increased magnetite content calculated from the
specific gravity, but there were insufficient reference data available.
Instead, Run B was used to find the value of softness giving the best
predictions, and this was the value of 0,9 in Table 6.17. This value is
fairly critical, but could not be found more accurately, as it could vary
slightly depending on the mill charge. The filter was also able to estimate
softness, but this was not found to be very satisfactory, as shown in

Section 6.8.5, and so K_, was normally kept constant.

S

(4) The noise levels for the volumetric filter were chosen as explained in
Section 4.2.4. for a linear filter. Only the variance of the underflow rate
and the control change errors were calculated from data; the remaining noise
levels were guessed. Table 6.18 details the noise ievels used in the
process, measurement, and controller models, and gives the resulting error
variances for the stationary state predictions (see Section 4.3.1).

Comparing the variances of the predictions with the observation variances,
this table shows clearly how the use of even a simple filter can reduce the
errors in measured variables, as well as predict variables which cannot be
measured. Also shown here are the variances of the actual observations
given the a priori observation predictions, which were used for checking the

error levels as explained in Section 4.2.4, and for on-line checking of the



Table 6.18

Noise levels in volumetric filter.

(A1l units are S.I.)
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reliability of the measurements as explained in Section 4.3.2.  Graph 6.22(b)
(see Section 6.7.2) shows a detail from run B with the actual measurements
of sump flow compared to the predictions. The standard deviation of the

., 1s shown as a band on each side

S 2
observations about the predictions, = Vo i

of the predictions. This was used (see Section 4.2.4) as a check on the

noise levels used in the filter.

2 -

(5) The noise levels in the p.s.d. model (¢ and OKS

m2(KS)) were chosen by
running the evolution only as explained in Section 4.2.4., method (ii) on a
grid of noise levels to determine the best point. The vector ¢ was guessed,
from a consideration of the results of the errors in calculating grinding

parameters for the smaller number of size groups (see Section 6.1,

Table 6.5) and other sources of error (see Section 4.2.4), to be a scalar

multiple of (5 1 1 O)T. The other noise level was the variance of softness,
Gi . Figure 6.16 shows the effects of 3 different levels of both of these
S

variables on the predicted standard deviations of mill concentration, sump
concentration and the percentage in the finest size fraction in the product.
Each pair of graphs in this figure shows the data plotted firstly as a
function of Q_for each level of UES , and secondly as a function of OE

for each level of 9.

From Figure 6.16, ¢ affected the concentrations more than the product size,

2
and Oy, was the other way round. The values of the estimation errors which
S ]

were guessed from a knowledge of the plant are shown below:

Range of values Guessed value of approximate
during normal standard deviation at
Variable plant operation stationary state
Mill concentration 1000 to 1800 kg/m3 150 kg/m3
Sump concentration 400 to 800 o 50 "
=75 ym fraction
in product 30 to 50% 4%

Horizontal dotted/...
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Horizontal dotted lines in Figure 6.16 are shown corresponding to these

values. The values of the parameters used in the filter (Table 6.17)

are shown as squared points, B, on the graphs. These peints had been
chosen earlier (as explained in Section 4.2.4) to agree with the chosen

error levels. In retrospect though, it may have been better to have used a
larger ¢, as the concentration predictions were not as accurate as anticipated,

while the size predictions were reasonable.

The observations in the p.s.d. filter Qere measurements of concentrations.
These were particularly noisy, and often had slight zero offsets, and so
their noise levels in the filter were made particularly high (see Table 6.17).
This meant that the results did not depend very much on the observation

measurements.,

Although the original choices of noise levels Qeve only carefully guessed,
in most cases they were found to be satisfactory for use in the filter.

The p.s.d. filter measurement errors were examined as one of the factors
affecting the filter, and the results are given in Section 6.8.6. There
were too many error parameters for all to be carefully calculated and their
individual performances evaluated in this way. This determination of noise
levels is a difficulty which affects all filters, and it is essential to put

much effort into obtaining well estimated values from the start.

6) Average values were used for starting the filter, and a diagonal
covariance matrix of suitable size was used for the p.s.d. filter. (This

is discussed in Section 6.8.7.)

6.7. Results of filter tests on runs

Graphs 6.17 to 6.33 show the results of the filter applied to each of the
runs A, B, C and D. State variables from the p.s.d. filter were not plotted

directly, because they were found to be difficult to interpret visually.

Instead, they were/...
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Instead, they were reformed into variables that were more meaningful, as

explained in Section 4.2.1. For each of the runs,

(1) One graph shows the results of the volumetric filter with the
predictions compared to the measurements, for all states and parameters as

indicated. Predictions shown are the values of the estimates after each

observation step.

(2) Another graph shows the predictions of the cyclone overflow particle
size distributions from the p.s.d. filter, with the results from samples
taken plotted for comparison. This graph shows the cumulative percentage
for the distribution at 75, 212 and 850 microns, against time. Each group
of 3 lines is the mean and the mean + standard deviation for the prediction

of the percent less than the size indicated.

(3) The particle size distribution predictions for the mill contents and

cyclone underflow are shown as two separate graphs on a third page.

(4) The predicted concentrations of the mill, sump (i.e. cyclone feed),
cyclone overflow and cyclone underflow are shown on the same axes on a fourth
graph. The actual measurements recorded are also drawn as dotted lines,

and sampled concentrations are plotted as points.

All the plots were calculated from the predictions after each observation
step. The volumetric parameters were calculated from the averages over each
interval., There were no large differences between the estimates before and

after each observation step, except when there was a plant upset.
The details of each of these runs are given below:

6.7.1. Run A filter results

The upsets during this run were too great for the filter to operate very well.
The high solids concentration in the mill (see graph 6.20) made the slurry too

viscous, and the rate of grinding decreased so that the rock behaved as if it
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were harder. A softness factor of 0,2 was needed to get predictions in the
correct order of magnitude, and these are shown in Figures 6.17 to 6.20.
For comparison, the predicted product particle size distribution shown in

Figure 6.21 used a softness of 0,5, and was too fine.

The volumetric predictions in Figure 6.17 closely followed the plant
measurements up to the time of the upset. After 48 minutes, the checks
built into the volumetric filter found that the plant was not operating
properly, and limited the sensitivity fo observations. This can be seen

clearly in the sump volume, sump water, and sump outflow graphs.

Figures 6.18 and 6.21 show that the softness of the rock appeared to decrease

during the run. Up to 30 minutes the grind was finer than a softness of
0,5 predicted. From 30 to 50 minutes, the softness was between 0,5 and
0,2. This correlates with the increase in mill concentration shown in
Figure 6.20. After 50 minutes the cyclone had choked and, although the

softness appeared to have decreased further, the abnormal operation made the

results doubtful.

This run shows that the filter can be made to operate even though the plant
is greatly upset. It does not show much about the normal operation of the
filter. The predictions followed the correct trends, whilé the range
covered could be explained by a change in'softness, caused by a high mill

concentration.

6.7.2. Run B filter results

Run B was the most successful in showing how the filter operated. The
results are shown in graphs 6.22 to 6.25. The standard values of the
parameters were used, and the filter was started 5 minutes after the

beginning of the run.

The volumetric filter measurements agreed well with the predictions (Figures

6.22 a and b). The checks in the filter came into operation at 55 to 60
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minutes when the fuse blew, at 100 to 105 minutes when the cyclone line
choked, and from 150 to 180 minutes when the sump pump was operating near

maximum. The effectiveness of these checks is discussed ahead. -

The large number of samples taken of the cyclone overflow size distribution
all agreed well with the predictions shown in Figure 6.23. The range
covered by the samples was wide for a particle size distribution,‘from

33,28% to 47,08% for the -75 uym fraction. It can be seen in this plot that
the filter tends to predict ahead of the samples by up to 7 or 8 minutes.

This is also discussed ahead.

If one assumes that the errors in the particle size distribution predictions
are approximately normally distributed, then 68% should lie within the band:
mean-standard deviation to meantstandard deviation. Cf the -75 um and

-212 ﬁm sample points, 25 out of 56 (45%) lay within the band. (The +850 um
fraction is too small to measure properly.) For a normal distribution, the
45% acceptance limit corresponds to 0,61 x standard deviation on each side of
the mean. This meant that the actual standard deviations of the size
predictions were approximately 1,64 (= 1/0,61) times greater than predicted.
The original choice of noise levels in the filter would affect these predicted

errors, but other factors such as sampling errors could also have an effect.

Underflow samples were of the same order of magnitude as the predicted values
shown in Figure 6.24, but were not as accurate as the overflow samples.
The underflow predictions were rougher, and the +850 um fraction was the

least accurate.

Concentration predictions agreed well with the overflow samples, when compared
with those in runs C and D, but the underflow samples varied considerably more
than did the predictions. These large differences between sampled and
predicted concentrations could be partly attributed to the volumetric model

of the cyclone underflow. From Table 6.11, QUO = 0,4073 x 1073 m3/5 and

By IR
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/Gz = 0,619 x 107" m3/s, which gives a coefficient of variation for QU = (05,
If the mass flow of solids in the cyclone underflow were to remain fixed, the
underflow concentration would then have a coefficient of variation of 0,15.
The poor classification model would also explain some of the errors,
especially in the cyclone underflow distribution and concentration (see

Section 6.8.2).

6.7.3. Run C filter results

The standard set of parameter values was used to obtain the results shown in
Figures 6.26 to 6.29 for run C. The filter was run in real time, although
the results shown here were recomputed afterwards, as there was insufficient

time during the run to log enough data.

. Although the solids feed measurement was faulty up to 50 minutes, apd the
system cycled from 95 to 100 minutes when a different control was tried, there
were no major upsets during the run. As a result of this, the volumetric
filter predictions did not deviate much from the measurements, as can be seen

in figure 6.26.

The cyclone overflow size predictions in Figure 6.27 show general

agreement except for a section from samples C5 to C10. There were two
possible explanations for this. The first is that, when the solids feed
actuator was repaired at 50 to 55 minutes, and when the different control was
tried at 95 to 100 minutes, the system was upset in some way that produced a
finer grind. Samples C5 to C8 seem to show that the system was recovering
towards the predicted values. The second explanation is that the rock may
have hardened during the run perhaps as a result of the increased magnetite
in the circulating load, but at the beginning the faulty potentiometer may
have given low measurements resulting in predictions that were too fine. The
overall result would then be that the predictions appeared to agree ﬁp to the

time that the actuator was repaired, thereafter the difference was

e oy e T | T
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noticeable, but gradually decreased. In either case, the same trends are
seen in both the predicted and the actual values, but again the predictions
are ahead. Figure 6.28 of the underflow and mill contents size distributions

reveal little information without samples.

In Figure 6.29, the predictions of the cyclone feed concentration agree well
with the measurements, but the overflow concentration predictions show poor
agreement with both samples and measurements. Again, this is caused mainly
by the poor cyclone model, as explained for run B, since the measurements and
samples are in greater agreement. The overall higher values of the samples
were probably caused by poor operation of the ratemeter measuring the
concentration. The higher concentration in the mill during the middle of
the run may also have contributed to giving a coarser grind. It is
suspected that the actual mill concentration may have been higher around 45
to 55 minutes (caused by the faulty solids actuator) as the cyclone feed

concentration measurement was noticeably higher than the predicted values.

6.7.4. Run D filter results

Run D results are shown in Figures 6.30 to 6.33. The standard values of
the parameters were used. Again the filter was run in real time, although

the results shown here were recomputed afterwards.

The results of this run did not fluctuate much, except from 55 to 80 minutes
when it was attempted to control from the filter as explained earlier.
Consequently this was the only major upset and the results were otherwise
fairly steady. The volumetric predictions shown in Figure 6.30 agree with the
measurements, except during the upset when the sump overflowed from 70 to 80

minutes, and after the manual increases in the solids feed at 83 and 138 minutes.

The cyclone overflow size prediction in Figure 6.31 was also fairly steady

and only two of the sample points were away from the predictions: The first

of theeas a+/
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of these, at 84 minutes,was soon after the upset and was probably caused by it.
The second,at 157 minutes, was associated with a decrease in concentration, and
may have been a poor sample, but was probably a result of an unmeasured decrease
in rock softness, perhaps caused by a mill concentration change. Other than
these, there were insufficient changes to show any trends, but_the predictions
were in the right range. Again the size distributions in the underflow and mill

contents (Figure 6.32) could not be checked without samples for comparison.

The concentration predictions are shown in Figure 6.33. Here the predictions
follow the measurements better than in run C, but the concentrations of
cyclone overflow samples are again high, A noticeable drop in this
concentration towards the end can be observed in the samples and measurements

but not in the predictions. The reason for this is unknown.

6.8. Effects of various factors on the filter

The testing of the various factors discussed below was done firstly to

determine what parts of the filter were more important in obtaining good results,
and secondly to find the effects of each factor so that bad filter performance
could be analysed and remedied. Although this particular part of the work

was specific to a milling circuit filter, it would be a necessary part of

any filter development.

Run B was used for all the tests done, and the standard filter with the
parameter set given in Table 6.17 was used except where it was changed as
needed. Most of the results in the following sections may be compared to

the "standard" results for run B shown already in Figures 6.22 to 6.25.

6.8.1. Efficacy of checks in the volumetric filter

The only test done on the volumetric filter was to determine how effective
the checks against upsets were. Early results had shown that the filter

became unstable at the first upset because of integration difficulties caused

by a very low/...
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by a very low sump volume. This led to improved integration, limits on
the minimum sump volume, and checks to reduce the possibility of faulty data

causing an upset. These checks were explained in the theory, Section 4.3.2.

The difference in the volumetric filter results with and without the checks

is shown in Figures 6.22 and 6.34 respectively for run B. It is particularly
noticeable during the upsets at 55, 100 and 150 to 180 minutes. Around

150 to 180 minutes, the sump pump was at the maximum of its range and the
controller tried to push it higher. The filter was unable to see this

directly, but the checks helped to reduce the effects.

The effects on the p.s.d. filter are shown in Figure 6.35. Here the p.s.d.
filter was run without the observation step, so that errors in the model
would show up more clearly on the predicted concentrations.

Figure 6.35 is interesting in that it shows both how the cyclone feed
concentration behaves with no observations to correct it, and the effects of
the volumetric filter checks on this prediction. The checks are again most
noticeable at the upsets, and can be seen to make the predictions follow the
measurements more closely. We can thus conclude that these checks would

help during plant upsets in reducing the unwanted error incurred by the upset.

6.8.2. Effect of cyclone model parameter errors

In the classification model, e, and cc, were the parameter vectors (see
Section 4.2.2). The cc,y described the dependence of the classifier functions
on the cyclone feed concentration, while ce, was the value of the classifier
functions at zero feed concentration. The effects of both these parameters

were tested.

Figure 6.36 shows the effects on overflow size predictions of no feed
concentration dependence, i.e. ce, = 0 and EEO was changed so that the model

remained the same at the mean concentration of 665 kg/m3. These were the

values given in/...



w1

Fngi ] gpig it

Mill volume

| |

=10~ 3 m3/s
1

1 7
¢
11
,é

Sump water

Mill water

(=]

-
o
[

Solids feed

x10~3 m3/s

Sump flow

o

T J [ T I j
10 50 100 150 200

Time, minutes

Figure 6.34 Volumetric filter without checks.

Run B data. Predictions shown dotted (--—-) and instrument

measurements shown (———) . Compare this with figure 6.22 which

uced rharka



‘2000

mill contents
prediction

cyclone underflow
prediction

Cyclone overflow\. *
prediction

Cencentrations, kg solids/m3 slurry

T T I T T T T I T T T T L
50 100 150
Time, minutes

10

Figure 6.35 Effect of volumetric filter checks on p.s.d. filter predictions of concentrations.

Continuous lines are without checks, dashed lines are with checks. (Also different starting points.)

P.s.d. filter was run without observation step, as explained in text (section 6.8.1). See figure 6.25.

¢hT



Cumulative percent less than size indicated

A = 850ym
3 = 212pm

@ = 75pum

o v T T T I T T T T I ¥ T aJ L I \ T i ¥
10 50 100 150 200
: Time, minutes
Figure 6.36 . Effect of cyclone model changes.

Parameters cey = O and cc, = values in column 2 of table 6.9. Prediction of particle size

distribution of cyclone overflow for run B shown. Standard mean values (from fig 6.23) shown dotted.

ehl



144

values given in the second column in Table 6.9. There was little difference,
although the lines were smoother. One should notice that the cyclone feed

concentration only changed noticeably from 70 to 110 minutes and during some
upsets, and the effects on the predictions were slight, though not negligible.
The effects on other variables such as concentrations were small, and are not

plotted here.

Figure 6.37 shows the effects on overflow size predictions of using offset
values for the classification functions. The values given in Table 6.10

were used, and were greater than the standard values (i.e. a finer cut).

From graph 6.37 it can be seen that the size prediction; for the -75 ym and
-212 um fractions were on average about 6% finer than the predictions under
standard conditions. Using this result it was possible to estimate

approximately the effect that errors in the cyclone model would have on the

filter predictions of size, as follows.

The variance of the residuals between the actual classifier functions and

the regressed qyclone model for the data used to prepare Table 6.9 are shown
below in the second column. The differences between the classifier
functions given by Table 6.9 (standard values) and by Table 6.10 (values

used for Figure 6.37) at an average feed concentration of 600 kg/m3 (a rounded
average for run B) are shown in the fourth column, and their ratios to the

standard deviations are given in the fifth column.

Standard Difference

. deviation = in classif. ratia (X)
Size Variance of Y varilance functions o X
fraction residuals nyn fryn
=75 um 0,0045 0,067 0,0u61 0,69
75 to 212 um 0,0130 0,114 0,1310 1,158
212 to 850 um 0,0081 0,090 0,1034 1,15
+850 um 0,0012 0,034 0,0290 0,85

From this table/...
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From this table it can be seen that the classifier functions given by

Table 6.10 were approximately one standard deviation finer than the values

in Table 6.9. Thus the errors in the filter predictions of size could have
a standard deviation of 6% for the -75 um and -212 um fractions, caused by
the poor cyclone model. Fortunately, it appears that the cyclone behaviour
fluctuates (it is not known exactly how) and that this is damped with a
filter time constant of about 10 minutes (see Section 6.8.7). Although not

shown here, the concentration predictions were also poor.

From these results, we see that the classification function is important, but
its dependence on feed concentration is slight. This emphasizes the need

to get good data for the cyclone, and the need for a better cyclone model.

6.8.3. Effects of errors in grinding model parameters (S and b)

To determine how exact the selection and breakage functions had to be, a

constant selection function and Broadbent and Callcott's breakage model, i.e

B(y,x) = (1 - exp (-x/y)) / (1 - exp (-1/V2))
were tried. The selection function was given a value of 0,1 minu‘ces_l
for all sizes. These data were then reduced to the four size groups used

in the filter, (see Sections 4.2.1 and 6.1) giving the figures shown in
Table 6.19. (Compare these to the standard values shown in Table 6.5 for

run 20/6.)

Table 6.19  Reduced data for simplified grinding model

S = (0,050262 0,070000 0,078789 0,0)7
b = [ -1,0  0,70812 0,18495 0,10692 |
0 -1,0 0,58762 0,41238
0 0 -1,0 +1,0
0 0 0 0
i 1

(units of S in minutes™1)
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When these parameters were tried on the filter, the results were too much in
error to be satisfactory. The distributions were quite different (although
of the same order of magnitude) and the predicted mill concentration was too
high (up to 2050 kg/ma). This showed that the model was completely
inadequate. We thus see that it was necessary to get reasonable values
for the grinding model parameters, and that this involved doing batch tests

off line.

6.8.4. Effect of feed distribution and softness of rock

A feed distribution with equal mass percentage in each size fraction (i.e.
considerably finer than normal feed - see table below) was tested in the

filter on both runs A and B.

Graph 6.38 shows the overflow size predictions for run B with this finer

feed. The table below summarises the results from this graph:

Nominal average predicted

Feed size distribution, product size distribution,
cumulative % less than cumulative % less than
75 um 212 um 850 um 75 um 212 um 850 um
Standard filter
for Run B 6,25% 11,5% 24,3% 41% 76% 99%
Filter with finer
feed for Run B 25% 50% 75% 48% 85% 99%

The filter performed reasonably, and predicted a finer product, but the
difference in product distributions can be seen in the table to be

relatively much less than the difference in the feed distributions. This was
probably the result of the correcting action of the concentration measurements.
From Tables 6.1 and 6.2 it was possible to calculate the difference in feed
distributions between batch runs 30/4 and 20/6, and estimate variances for

the feed distribution. The standard deviations are shown below:

Feed size distribution/...
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Feed size distribution,

cumulative % less than: ‘

75 um 212 um 850 um
Mean | 6,25 AN 24,3
Standard deviation 0,98 DD 5,2

We can thus conclude that the effects of variations in feed size on the
filter are not important. This is fortunate, as there are often

fluctuations in feed size on an operating plant.

In run A, the finer feed was at times finer than the actual product, and so
represented a severe test on the filter. The results for this run are shown
in Figure 6.39 as the size predictions for the cyclone 6verflow and the mill
contents. The results are again finer, but it can be seen that the
coarsest fraction in the mill had a negative quantity for part of the run.
This is a form of filter instability and is further discussed in section 6.8.9.
The filter recovered after this, however, and continued normally. This shows
us that gross errors in the parameters which are physically unrealisable can
lead to filter instability. It is under circumstances like these that an

understanding of the plant being used helps in filter development.

Austin proposed (private communication) that a change in feed rock softness
could not be distinguished from an equivalent change in feed distribution

(i.e. two feed distributions, the coarser of which can be ground to the finer
using the given set of S and b functions). Although it may be difficult to
observe, changes in a harder finer feed may appear iﬁ the product sooner than
changes in a softer coarser feed. Thus this hypothesis is only a steady state
one. The effects of different feed softnesses have been shown already in Figures

6.18 and 6.21, and are similar to the effects of a different feed size.

6.8.5. On-line regression of softness

As explained earlier, the filter could be made to estimate the softness

parameter on line/...
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parameter on line, although this was not normally done. The p.s.d. filter
formulation in Section 4.3.4. showed how this was done. .

Figure 6.40 shows the overflow size predictions with simultaneous estimation
of rock softness for run B. The estimated value of KS is also plotted.

The size predictions were all finer than the samples taken during the run.
The estimated values for Kg shown on the graph also seem unreasonably high.
This behaviour was probably caused by the actual concentration measurements
being biased, as the gamma-ray slurry concentration gauges were found to
drift slightly during runs. The cyclone model which was used may also

have contributed to the poor results.

It is difficult to show precisely from the filter formulation why the on-line
estimation of softness degraded the filter performance. The state estimates
in a filter are affected by both the plant model (during the evolution), and
the actual observations (through the observation model). Parameter estimates
are only changed at the observation step (see equation 4.1.18). In a

filter where only the states are estimated, the effects of unmodelled
observation errors on the predictions would be reduced during the evolution
step if they were contrary to the plant model. If, however, a parameter was
also estimated, it would have an effect on the plant model without itself
being corrected during the evolution. The parameter would continue to be
changed by the observations until the plant model was forced to agree on

average with the observations coming from the instruments.

These results seem to show that it is better to have a reasonably accurate
model for the process with fixed parameters which are determined beforehand
than to estimate parameters on line in a model where the parameters are not
known initially. This would also save some computation in the filter.

In particular, on-line estimation of softness should not be included in

future milling circuit filters.

6.8.6. Effects of/. ..
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6.8.6. Effects of observation errors

]
The usual standard deviations for the concentration measurement errors were

3 ~
200 and 400 kg/m  for the cyclone feed and overflow respectively. Three
computations were done using different observation errors in the p.s.d. filter.
The results of these on the cyclone overflow size predictions for run B are

shown in Figures 6.41 to 6.43:

(1) Figure 6.41 shows the effect of an accentuated sensitivity to the overflow
7 3
concentration measurement. The standard deviations used were 200 kg/m~ for

both feed and overflow errors.

(2) Figure 6.42 shows the effect of an accentuated sensitivity to the cyclone
FITY, 3
feed concentration measurement. The standard deviations used were 100 kg/m

for feed and 400 kg/m3 for overflow.

(3) Figure 6.43 shows the effect of overall reduced observation sensitivity.
3
The standard deviations used were 400 kg/m3 for the feed and 800 kg/m~ for

the overflow.

(The effects on the concentrations of having no observation step in the filter

have been shown already in Figure 6.35.)

Figures 6.41 and 6.42 show that, when an observation was accentuated, the
predictions became over-sensitive to noise fluctuations, and so were slightly
poorer. Reduced sensitivity to observations (Figure 6.43) gave a smoother
prediction, which was reasonably good compared to the "standard" graph in
Figure 6.23. The predictions also drifted towards the end of the run, and had
a slight bias. All concentration predictions were affected detrimentally
by these tests. The effects on the concentration predictions of having no

observation step as shown in Figure 6.35, were also detrimental.

Besides showing the individual effects, these results show again what was

found with the volumetric filter: the estimates of noise levels have to

Tl o P ot il 7
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be close to the correct levels for the filter to work well. More accurate
concentration measuring instruments would also help to obtain better

predictions.

6.8:7s Effects of incorrect starting points

For most runs, the p.s.d. filter was started with a diagonal covariance matrix.
This took about 10 to 20 minutes to change into the actual covariance

matfix, buf the filter remained stable. To test the effect of incorrect
starting points, a suitable average covariance matrix was used from the

start. The volumetric filter had a considerably faster response (the

largest time constant was that of the mill overflow = 0,01 s_l) than the

p.s.d. filter, and so only the p.s.d. filter was examined in detail. The
mass in each fraction in the mill and sump were changed for the different

starting points.

Figure 6.44 shows how the two different starting points converged for the
cyclone overflow size predictions and the concentration predictions in run B.
Generally, it took the first 10 minutes or so to converge rapidly, and then
the convergence slowed and took about 30 minutes more to complete. Any
errors in the predictions caused by upsets or noise would have a similar

response.

6.8.8. Frequency response of filter

The dynamic responses of the filter were tested for perturbations in the
concentration measurements and total solids feed. This was done partly to get
some idea of how fast the filter responded to unknown upsets, and partly to get
some rough data for controller design. The standard filter and parameters were
used, and tests were done on simulations on the Burroughs B5700 computer.

Normal frequency testing was done over a range of frequencies, and the amplitude

ratio and phase shift were noted. Conditions used were typical of average

operation.
: Figures 6.45 to 6.47/...



Cumulative percent less than size indicated

100

N\850Fm

Mill contents

)

Cyclone

Concentrations, kg solids/m3 slurry

500—
i nyclone overflow
4
T T T T T T T -7 T (o] T T T T T T Y T T
10 50 90 10 50 -90
Time, minutes Time, minutes
Cyclone overflow size distribution. Concentrations.
Figure 6.44 Response from different starting points. Predictions of particle size distributions

of cyclone overflow, and concentrations for run B data.

8GT



159

Figures 6.45 to 6.47 show the results of these tests. Each figure shows
four Nyquist diagrams giving the transfer functions for the predictions of
mill concentration, sump concentration, product -75 um size fraction, and
product -212 ym size fraction, as output, with the indicated perturbation

as input, over a range of frequencies.

The responses to the cyclone feed concentration shown in Figure 6.u45 were
all nearly first order with a time constant of around 60 seconds. The over-
flow concentration perturbations (Figure 6.46) produced slow responses in
the size predictions with time constants around 400 seconds, but faster,

more complex responses in the concentration estimates with time constants
around 60 seconds. The responses to the total solids feed perturbations

in Figure 6.47 were not examined thoroughly, but were fairly complex with
more than 2nd order dynamics. Here time constants were about 300 seconds.
From the Nyquist stability criterion, Figure €.47 shows that, if the solids
feed to the circuit was controlled through a simple proportional controller

from the size predictions at, say, -75 um, instability could result if the

= p=l 7 . ;
gain was greater than 0,25 kg.s l.% , with a cycle of period 10 minutes.

6.8.9. Stability of filter

The filter was normally very stable and could take considerable upsets.
There were three factors, however, that were found to cause upsets during

the tests. These were

(1) Integration difficulties with short time constants compared to step size.
This occurred when the sump volume was low, and has been discussed already

in Sections 4.3.2 and 6.8.1. Checks in the filter could prevent this.

(2) Use of wrong parameter values that were physically impossible, in
particular a feed distribution that was too fine. This has also been shown
already in Section 6.8.4 (Figure 6.39). This is a situation which would

not normally occur once the filter was running properly.

~ \ Wrde o -0 . a-w 7
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(3) Use of the wrong covariance matrix for starting. It can be seen

from equation 4.1.20 that the Kalman gain matrix cannot be calculated if

T

(mX.P _.m_ + R) is singular. Under correct filter operation R and

mx°PAk—'m£ are positive semidefinite matrices (because they are covariance
matrices) and, provided at least one is nonsingular, the sum is nonsingular,
and the Kalman gain can be calculated. It was found in the nonlinear

p.s.d. filter that, as a resulf of the approximations used, it was possible

to obtain a m_.P .mz matrix which was not positive definite and which made
- =

Ak

(m ‘PAk .mT + R) singular. This was only a temporary occurrence, and
X S

resulted from a starting value for PA which was outside the range of

k
applicability for the approximations in the filter. This was discovered

experimentally when the average matrix of covariances, for a softness

PAk’
of 0,9 was used to start a test having a softness factor of 0,2.

The effect is shown in Figure 6.48 with run A data. Here the filter
appeared to work reasonably up to 7 minutes and then suddenly became unstable.
Afterwards it took about 40 minutes to recover, but then carried on working
normally. .An interesting fact is that, during the recovery, each
prediction went through a point of zero variance. It appears from the
reason for this upset that this instability is not easy to see in advance,
and can be caused by factors which are not immediately obvious. One can

avoid this trouble by starting with a diagonal covariance matrix.

In each of the three cases of instability encountered, the filter was able
to recover afterwards. This is useful for continuous plant applicationms,

where the filter should be able to recover by itself if there is an upset.

6.8.10. Time requirements

The time requirements for various parts of the filter are shown in Table 6.20.
These computation times were measured from the core clock for the
CDC1700 computer in background mode. Times for calculations done with both

hardware and software/...
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hardware and software floating point (f.p.) arithmetic are shown.

Table 6.20. Computation times

Time required, seconds

Operation . f.p. software f.p. hardware
1) Reading disc file 0,10 0,105
2) Data conversion and "book-keeping' 0,10 0,026
3) Volumetric filter (call to IBSTST) 0,17 0,059

4) P.s.d. filter, observation step.
(Call to IBPOBS) 0,50 0,126
5) P.s.d. filter, evolution step:
a) Single step integration 0,86 -
b) Euler two step integration 1,72 0,460

6) Conversions to distributions and
concentrations (call to IBPTOF) 4,03 0,968

6.8.11. Simplified calculations

Because the computer took longer to calculate the filter when using software
arithmetic than the plant took to evolve, (run B took approximately 4 hours
to calculate in background mode) the simplified calculations, explained in
Section 4.35, were used for real time work. These cut the calculation time
down to about 3 seconds per cycle, (see Section 6.9) mainly through the time

saved in not using IBPTOF. (See Table 6.20.)

Basically, the subroutine IBSIMP calculated the concentrations and size
distributions without taking variances into account (see Section 4.3.5).
The results showed that the predicted concentrations were almost unaffected,

while the size distributions differed by less than 0,25% of the mass

in each fraction. This was because the nonlinearities in the filter were
not very great. This accuracy is far greater than that of the filter, and
is an example of an unnecessary refinement. It also means that the

term /...
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term 3 (P _azm) in equation (4.1.18) is insignificant and could be neglected

Ak

without much loss of accuracy, and with some saving in time and core.

6.9. Results from differential quadrature filter

The quadrature filter outlined in Section 4.1.2.5 was run on the data from
run B. Results were not particularly successful, and so not much time
was spent on it. The predictions of cyclone overflow size are shown in
Figure 6.43. These predictions held- very steady regardless of the plant
behaviour, probably because of the limited range allowed by the grid size.
The concentration predictions varied more than the size predictions, but
were also far steadier than the actual variables on the plant. We may
therefore conclude that discretisation in a large dimensional system is not

a practical tool for solution.

The time requirements of this quadrature filter are of interest in assessing
the time required by the method of moments. On the CDC 1700 computer, using
software arithmetic, the times required for one complete observation cycle

(which took 5 seconds in real time) for each filter are shown below.

(1) CQuadrature filter . 4,3 seconds
(2) Moments filter with IBPTOF (off-line) 6,0 "
(3) Moments filter with IBSIMP (on-line) = B0 th

(The time required for on-line computations in (3) depended on time sharing

with other programmes.)

This shows us that the use of the quadrature filter required about as much
time as the moments filter, even though the formulation was much simpler.

This was found to be typical of matrix formulations, and is discussed in

Chapter 7.

Chapter 7/...
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Chapter 7 r

- DISCUSSION

The results of this investigation are discussed here firstly with regard to

the milling circuit filter in particular, and secondly to filters in general.

e Results of off-line tests

Before discussing the filter results, the results of the off-line tests
should be briefly considered, as they give much useful information on how the

filter could be expected to perform.

- Selection and breakage functions from batch mill tests

The results from the batch milling tests gave reasonable estimates of the
selection and breakage functions for the conditions examined. As is typical
of wet ball milling, some of the assumptions of first order breakage were

not well justified, particularly in the coarse size groups, although the
overall fit was satisfactory. It was found during the regressions that

the breakage function was less critical than the selection function. The
shape of the curves and the difference between the two ball size distributions

1s of theoretical interest, but was not of use in this study.

The scale-up to a larger mill assumed that the selection function would be
scaled uniformly over all size groups. It is known that the larger-size
groups on the downward part of the curve usually scale by a larger factor,

but the scaling factor was small, and there was little difference after data
reduction to fewer size groups. The error incurred by assuming the ore to
be homogeneous could not be easily estimated. The decay curves of the coarse

size fractions did not have the typical "knee" of a mixed ore, but the

circulating load rock had a higher measured specific gravity than the feed

rock. Also the filter/...
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rock. Also the filter results showed that the rock in the continuous mill
was definitely harder than the rock used for the batch tests, as the softness

factor was less than 1,0.

Tl 2. Cyclone model

The flow model for the cyclone assumed that the total underflow volumetric
flow rate was constant. The data showed that it was not noticeably
dependent on either feed flow or concentration, but that there was scatter
about the mean. The operation of a cyclone underflow is complicated by the
air core, and the exact dependence of the underflow rate on the operating
variables is not known well enough to propose more complex models. This is
unfortunate, as the variation in the underflow rate was the largest error in
~ the volumetric filter, and had a direct influence on the p.s.d. filter.

The result was that the overflow volume rate from the cyclone could mot be
predicted with sufficient accuracy and so the estimates of concentrations

were influenced.

Results from the cyclone tests showed that the performance of the cyclone can
vary considerably. Tests done on the filter showed that the parameters used
in the cyclone model had a considerable effect on the predictions, and sco
accurate values were needed for the parameters. It can be seen that the
performance of the whole milling circuit was dependent on cyclone variables

which were difficult to control to within the desired tolerances.

Overall, the cyclone contributed much error to the predictions
by the filter. Both the flow model and the classification model were
inadequate. A better understanding of cyclone operation, and improved

models are still needed.

i e Mill overflow and transport

The overflow from the mill was not an important factor in the filter, as the

error in orediectineg/.
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error in predicting the mill volume from the volumetric filter was not large
enough to affect the p.s.d. filter results significantly.' An assumption was
made in developing the filter that the volumetric model was not influenced by
the mass or size of solids present. In the case of mill overflow, the
solids affected the flow because of viscosity, but this seemed a minor effect
in the mill studied. Transport through the mill was more important, but
modelé requiring more than a single stirred tank for the mill would increase
the dimension of the p.s.d. filter. The filter was not sufficiently accurate

to show up any errors in grinding caused by the transport model, but a

difference in response time was noticeable.

Classification at the mill exit was affected by the solids present,
particularly when the concentration was high. This phenomenon could easily
be included in the p.s.d. filter model, but it would need much difficult

experimentation to collect data for parameters.

Pl s Runs on milling circuit

Runs B, C and D all gave useful information for testing the filter under
normal operation. Run A was too upset to give normal data, but it was

useful for testing how the filter behaved under abnormal circumstances.

The control interval of 5 seconds was not varied. Earlier, a 10-second
interval was tried, but the control on the sump was found to be too erratic.
The 5-second interval was then tried as a balance between having good control
and having enough time to do filter computations, and was found to be

satisfactory.

The maximum throughput of the milling circuit seemed to be limited both by

the cyclone underflow solids rate, and by the mill when it put out large stones
when it was overloaded. As in run A, operation near the limits was found

to be likely to give trouble.

725 Results from the/...
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T Results from the filter tests

The performance of the filter is best evaluated by studying in detail the
graphs 6.17 to 6.33 shown in the results, chapter 6. These results showed

the following points.

(1) A filter for predicting the state of a milling circuit could be
written and made to operate successfully on an actual plant in real
time. It gave reasonable predictions and tolerated plant upsets.

In doing this, we achieved the main goal of this investigation.

(2) The volumetric filter performed well in each case. It was simple to
employ, and gave no trouble on its own. It followed measurements
closely and recovered quickly after upsets. The built-in checks helped
to prevent it causing instabilities or upsets in the p.s.d. filter when
the plant was experiencing an upset, but it did not affect normal

operation noticeably.

(3) In the p.s.d. filter, the product or cyclone overflow size distribution
was more accurately predicted than the underflow size distribution.
All trends were followed well, although the predictions were slightly
ahead. The concentration predictions were inaccurate because of the
poor cyclone model in the volumetric filter. The actual softness of the

rock appeared to vary slightly, although this was kept constant in the

filter.

The predictions were observed to be slightly ahead of the samples. This was
probably caused by two main factors. The first possibility was that we did
not take any delays in the circuit into consideration, e.g., in the lines, the
cyclone overflow tank, the mill residence time, the sump, the pump, and the
cyclone. This would only explain about half the delay of approximately

8 minutes that was observed. The second possibility was that the use of only

four size groups in the filter meant that the coarse material entering the
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circuit would start to appear in the fine product too soon. In reality, it
would have to break through considerably more intermediate sizes. The use

of more than four size groups would help this, but must be balanced by

the greater computational load. The results obtained indicate that the use

of only four size groups is as good a compromise as possible.

7.3. Effects of factors on filter

Section 6.8 showed the effects of several factors on the filter performance,
and discussed these. Some of these proved to be more important than others.

These main results are discussed below.

(1) Variations in rock softness, feed size, and cyclone classification all
produced similar results, particularly on the cyclone overflow size prediction.
It was difficult to distinguish between the causes, and this raises the question
of whether it was necessary to distinguish between the causes. Provided all
the parameters are of the correct order and are as accurate as they can be
conveniently determined, it might be easier to describe all variations in terms
of changes in rock softness. The filter was found to be poor at regressing
on rock softness, but this was mainly due to not having an adequate cyclone
model, and was not helped by the poor instrumentation. If, on a larger scale,
the predictions were found to drift slightly, then it may be better to let

the filter regress on softness. The difficulties in this regression, which

were pointed out earlier, should, however, be noted.

(2) The noise in the plant and on the instruments was not small. This gave
larger than desired prediction errors. A larger scale plant might give better
predictions, partly because it would probably be less prone to noise because

of its scale, and partly because it would have better instrumentation,

particularly on concentration measurements,

(3) Of the models used in the filter, the cyclone was the most inaccurate

and one of the most critical, both for flow and classification. The cyclone



173

obviously needs further study. The cyclone model could have been made
stochastic, except that this would have made it more difficult to develop a
filter, as the same noise would appear in both the evolution equation 4.1.1
and the observation equation 4.1.2. This would require some modifications
of the basic filter structure, and is a problem discussed by Jazwinski (1970)
page 208. The performance would probably not differ much from that of the
existing filter, as the basic cyclone model would still be the same. The
grinding model was reasonably accurate over the normal operating range.

A larger number of size groups would have helped both models. The ore used,

being of mixed hardness and density, also produced some scatter.

(4) The use of differential quadrature is not suited to large dimensional

systems., Although requiring a calculation time comparable with the method of

moments, the results were inferior.

Tl General use of real-time recursive filters

The results from the milling circuit filter have been discussed. This
investigation also showed a number of matters and problems associated with

real time use of filters in general. These are discussed below.

gL Determination of noise levels

Noise levels iﬁ a filter are difficult to determine precisely, and they

are a source of uncertainty in a filter. Various methods are given in
sectién 4.2.4, and the effects of varying noise levels are shown in

section 6.8. To determine levels experimentally, if it were possible, would
take a long time. The questions arise of how exact do they need to be and

what are the effects of using incorrect levels.

Noise levels determine how much relative reliance is placed on each part of
the filter process and observation models. For this it is the relative

magnitudes which are important, rather than the absolute values. If a noise
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level were increased by a factor of 2, i.,e. the variance by a factor of y,

(as in section 6.8.6) then the effect of that part of the model would be
reduced by a factor of almost 4. It appeared that the effects of such factors
were not great under normal operation, as the plant and the filter evolutions
did not differ widely, and new observations did not have to change the state
predictions noticeably. Under a plant upset, however, the effects could usually

be seen more easily.

Noise levels also determine the accuracy of the predictions. It has been
found that the mean value of a prediction is the most useful and most easily
understood statistic. In a multidimensional system, the variances of
individual variables are used occasionally, but the full variance-covariance
matrix, or the probability density function are seldom consulted. Noise
levels usually have little effect on the mean, Thus the need for reliable

noise levels is not as great as the need for a good model.

The response of the means in a linear filter is not affected by a uniform
scaling of all the noise levels. This can easily be seen by applying a

gealar factor, say b, ¥ Q4 U, 4 € Pk+’ and P in equation (4.1.12) and

k2 P k+1-

R, , and P, in (4,1.17), and noting that the Kalman gain K does not change

Pk— k+
while the other filter equations remain satisfied. In an actual plant
situation where control actions will be taken on the basis of the filter
output, greater accuracy would be required for estimates of the noise levels
than those achieved in this study. As indicated in section 4.2.4, noise
levels can be obtained with reasonably good precision and this does not appear

to be a major difficulty in the industrial application of the modelling and

filtering technique developed in this study.

Talia 2y Presentation of results

Presenting output from a filter is a problem. To judge the performance

visually, it is necessary to have graphs which are not confusing but contain
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all the relevant data. Raw data from a filter are generally meaningless, and

they must be converted, as explained in section 4.3.5, to more meaningful

quantities. Output in the form of numbers is only useful for checking, and
uses an excessive amount of paper. Statistical checks are useful to quantify
performance, but they do not convey hcw the filter actually worked. Perhaps

on a larger scale of plant, most of the filter data would be used only for
control, and output of only key variables to an operator would be by way of a

chart or by a display on request.

T o4+ .Advantages of a noisy system

In'developing a filter for a system such as a milling circuit, one has two
particular advantages over systems tested previously, such as those for missile

tracking.

The first advantage is that the milling circuit is inherently stable over a
reasonable range, and so the filter is less likely to diverge through lack of
good information. This has not been proved rigorously for a nonlinear
system, but it follows intuitively because the evolution equations in the
p.s.d. filter (appendix A),with reasonable parameter values, will tend to a
fixed point with a finitely limited variance, as a result of the stability of
the model. This was shown to be correct for a number of points (see
sections 6.6(5) and 6.8.1) when developing the noise levels in the filter.
For a linear system, any observations will decrease the variance of the
estimates (from equation %.1.17). Thus, provided any observations from the

plant are not out of the operating range, the range of the estimates of the

means and variances should remain bounded.

The second advantage is that the noise levels are high and the nonlinearities
are slight. Thus simpler, more approximate methods of solution can be used
provided the errors which they introduce are relatively smaller than the

standard deviations of the estimates. This also means that there is less



likelihood of computational instability, as simpler methods are generally

stable over a wider region.

With a practical filter, one has the advantage that the model of the plant
will behave much like the actual plant. A "Feel" for the plant is useful
for understanding how the filter works, and for guessing parameters for use

in the filter without actually measuring them.

A filter automatically reduces the error in the mass balance for the plant.
It will not do an exact mass balance, but it will try to compromise between

the errors which it holds in its model noise levels.

7.4.4, Updating a filter

It was found throughout this investigation that it was necessary to check
calibrations continually, and make changes in parameter values as the plant
changed. This would probably also be the same with any plant, and is a

disadvantage in that it would always require attention.

7 5% Necessary considerations in designing a filter
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With a large nonlinear system, the problem of what type of filter formulation

to use is very important. The following factors are important in

considering the methed.

(1) Speed of operation: Real time work allows a very limited amount of
time for computations and there are considerable complications if this

is exceeded even once during plant operation.

(2) Accuracy of prediction: An approximate criterion is that the accuracy

of the method must be better than the normal error in the predictions,

but this may be difficult to determine. To be too accurate is a waste

of time and computer capacity. An example of this was shown in section

6.8.11. Inaccuracy may make the results useless, as in the case of the
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quadrature filter in section 6.9.

(3) Difficulty in formulation: An intricate filter takes a long time to
formulate, programme and test, and this is expensive in terms of man-hours.
It might be advantageous to develop filters such as the one presented
here before needing them on an industrial plant, as there may not be
enough time to develop a new one from the beginning when commissioning a
plant. Some filters are already available in this way, usually as part

of a control scheme, e.g. for paper-making machines (see Kstr8m 1970).

(4) Computer requirements for (i) storage, (ii) processing: A long filter
programme usually uses a large amount of both core and time. Methods
which require a lot of storage for filter variables generally take a long
time to compute, and are not usable, Storage for variables for most
practical methods is not large compared to that available in a computer,
and would probably only be important if the computer was on-line to
several parallel plants simultaneously. The accuracy required for the
arithmetic may also vary between methods. Typically, large matrix
inversion requires high accuracy, often more than 32 bit floating point

arithmetic (which is typical of present-day control computers) can provide.

(5) Availability of data for parameter determination: In a model, the use
of extra sections which have little effect on the result but which require
much off-line experimentation, is inefficient. It would be better if
time was limited to run the filter the first time on a simulation with
assumed values for the parameters. Once the sensitivity to errors had

been checked, the necessary parameters could be determined experimentally.

7«6+ Comparison of methods for implementing a filter

This project studied a large and noisy system which was not linear, but not
highly nonlinear. It is felt that this is typical of most metallurgical

plants. The conclusions drawn here are based on this system, rather than the
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more exact missile-tracking type of system.

(1) Method of moments: This was the method used here, not to be confused
with extensions to the linear Kalman-Bucy filters. This was found to
be the best method for most problems where the dimension was large and
the nonlinearities were small. It is more economical for computing
time than the extensions of the linear filters, as less arithmetic is
needed, but the programmes are not as general. It is also more

difficult to write and programme than the equivalent extended filter.

(2) Extensions to linear filtering theory: After the method of moments,
this is the next most feasible method on present day machines. More
core is required for storage of variables, and more time is required for
computations. This is because of the time used in doing calculations
on large parts of the matrices which have little effect on the results.
The method is quicker for programming, and has been well developed in
the literature, so that its behaviour is more easily understood.

(3) Orthogonal series approximations: These approximations are usually only
feasible on a small system, but give more information about the actual
probability distribution, which the above. methods do not give. They
generally take time to formulate and programme , and are not very well

developed in the literature for filters.

(4) Discretised state space: This method is only suited to very low
dimensions, and can give very detailed information. If differential
quadrature is used, the formulation is simplified, and matrix arithmetic
is all that is required for solution. The use of discretised state
space for large dimensions was shown in this investigation to be

unsuccessful.

Other possible methods, such as Guassian sums, Monte-Carlo techniques, or
deterministic observers, were not examined in detail in this study, as they

did not appear to be suitable.
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s Recommended procedure for practical filters

The following procedure is recommended for developing a filter.

@, Draw up the simplest possible model for the process being studied.

A "feel" for the plant being studied is a great advaﬁtage here.

(2) Develop a filter from the process model. This may require

revising the model.

(3) Collect whatever data can be collected easily from the plant or
from literature. Estimate values for the parameters which cannot

be measured, and run the filter to test it.

(4) From the results of the tests, decide on what parameters need to

be determined, and whether improvements are needed in the filter.
(5) Perform the further work required and re-run the filter.

Some type of improvement to a filter is usually possible, and so (4) and (5)
will be repeated several times. For this reason, it is essential to have

some form of the filter operating as early as possible.

7.8. Comment on linear algebra

Linear algebra is often used in control theory. It is a convenient
"shorthand" way of formulating problems, and the algebra has been well
developed. It is not restricted to linear control theory. It is a well
known fact, and it became increasingly obvious during this study, that the

length of time required on most computers for doing matrix manipulations is

too long. This makes the technique impractical in all but the smallest
systems.
In recent years, computers with parallel processors have been built. These

enable several similar computations to be done simultaneously and are suited

La Aadeirr modeesd o 7
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to doing matrix arithmetic quickly (see section 3.5 no.(8)). The use of
small multiprocessor machines for real-time control work wguld revolutionise
the use of advanced control theory on complicated industrial plants. The
programmes would be both simpler to write and quicker in execution, and these

are two of the greatest difficulties in present day control theory applications.

The use of matrix algebra in filtering theory has already been explained for
extensions of the linear theory. In this investigation, the method of
moments was chosen as it was the best ﬁethod of solving the filter equations
with the existing facilities, but it took a long time to prepare. If a
matrix précessor had been available, then the second order extended Kalman
filter probably would have been a superior method. Other methods, such as

differential quadrature, would also become feasible.

P29 Estimation of a distribution

A problem that was encountered when first developing the filter for the
milling circuit was the lack of fundamental mathematics available for handling
the estimation of a distribution or distribution density. In this studyl
(see section 4.3.3), the size distribution density, p(d), was lumped at four
points di’ i=1,....4, and designated P;» #21, ....4. These p; were then
treated as state variables, and the filter was written about their probability
density function, hI(pi’ s TR | 5 No success was achieved when attempting
to formulate the filter in terms of a continuous p(d), although it seemed that
this should have been possible. This is obviously an area where more basic

research is still needed.

7.10  Advantages and disadvantages of practical use

.A filter provides a knowledge of the state of a process in real time. This
state is often otherwise unmeasurable, or not measurable as accurately as the
filter can predict it. It is the availability of this knowledge for further
use which is the main advantage in using a filter.

MY A ] A mvmdem de ¥ e
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The implementation of a filter is complicated and time-consuming. A large
computing facility is required as opposed to conventional bDC loops. Much
off-line experimentation is needed to get data for the model, and these data
must be continually updated as the plant changes. These are the main

disadvantages in using a filter on a real plant.

In the case of the milling circuit filter developed here, the particle size
disfributions were calculated at three different sizes in the distribution
curves. Most present day size monitoring instruments and estimation
techniques give only one point on the distribution. The use of a size
measuring instrument together with the filter could also be considered, as
this should give more accurate predictions and more information than either

could provide separately.

Chapter 8/...



Chapter 8 ,

CONCLUSIONS

In this investigation, a filter was developed and successfully tested in
real time on a milling circuit. The following is a summary of the main

conclusions drawn.

(1) The use of Kalman filters is definitely feasible on a typical
metallurgical process where the modelling is normally poor and

the errors are large.

(2) The predictions from the milling circuit filter agreed reasonably

well with the samples taken. This showed that a simple model could

be used, and that approximate methods of solution are sufficient.

(3) The time of execution was not short, but the calculations could be

done fast enough for the filter to be used in real time.

(4) Of the methods of implementing a filter that were tried for the

system, the method of moments was found to be the best.

(5) The choice of noise levels in a filter is difficult. The need for
good model parameters was greater than the need for accurate noise

levels, but it was essential to give some effort to get reasonable

estimates from the start.

(6) The main advantage of a filter is briefly that it provides a
knowledge of the state of a system which could not be obtained as

accurately from direct measurements.

(7) Disadvantages of a filter are the complexity and time required in

development, and the need for continual updating of calibrations

and parameters as the plant changes.

182
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(8) Further work is needed in the following areas:

(i) Development of suitable simple models. These shculd reflect a
good understanding of the process rather than being very accurate.
This applies particularly to the cyclone model in the milling

circuit filter.

(i11) On-line computing facilities. Use of small parallel processing
machines would make matrix formulations of large filters feasible

in real time. This would simplify filter design considerably.

(iii) Filter development. Actual applications of filters to real plants
are needed as there are still several difficulties to be overcome,
particularly in the modelling and development of large filters.

-On the theoretical side, methods of implementation and more general

methods of modelling (e.g. particle size distributions) are needed.

(iv) Milling circuit filter. Improved cyclone models would improve
filter performance. Given faster computing machinery, more complex
models particularly with more size groups, might be tried with

advantage.



Al

APPENDIX A

EQUATIONS FOR THE EVOLUTION OF MOMENTS FOR THE PARTICLE

SIZE DISTRIBUTION FILTER.

The equations for the moments shown below were derived from the model for

the ﬁ.s.d. filter (equations (4.3.26) and (4.3.27)), as explained in section
4.3.4, using the method of moments given in section 4.1.2.2. These equations
were prepared as a subroutine, IBCDRV (see appendix C) for use in the

evolution step of the filter.

Notation
- State vector x = (p SRR R DRy )T
X Ml,...o-o, ML}’ Sl, L SL*'
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APPENDIX C

Listing of Programmes Used in the Filter.

This appendix contains the relevant programmes used in the mill filter. They are all
written in Fortran IV for the CDC 1700 computer. Each programme contains comments

to guide the reader as to the purpose of each section, and these should be read in
conjunction with the corresponding section in the main body of the thesis, as
indicated below. (See also the CDC manuals on Fortran IV and Fortran in a

multiprogramming environment, as well as the Departmental programming notes.)

Page
(1) IBSTST. Used to perform volumetric filter calculations. C2
(See section 4.3.7.)
(2) IBCDRV. This calculates derivatives of the estimates of means and C2
variances for use in the p.s.d. filter evolution step.
(See section 4.3.6 and appendix A.)
(3) IBPOBS. This performs the observation step in the p.s.d. filter. C4
(See section 4.3.6.)
(4) IBFVAR. Subroutine used by IBPTOF (see below). C4
(5) IBPTOF. Calculates concentrations and size distributions from raw C5
state variable estimates. (See section 4.3.5.)
(6) IBSIMP. Simplified version of IBPTOF. (See section 4.3.5.) C6
(7) IBMFLC. Main programme for running the filter off line on stored Cé
data. (See section 4.3.7.)
(8) IBOLMF. Main programme for on-line filter operation. Communicates C8
with control programme through communication block 9.
(See sections 4.3.7 and 5.6)
(9) IBPRPC. Prepares data for the filter. (Section 4.3.7.) C9

IRBIST/. ..



BSTST

SURROUTINE IRSTST(PHIsPSTsCONsMsAKALK,YMA, XMH,YAVFRMA 1 MH»
TUAVERDIj»NUAY»YNBS»sRINSsNPeNNsPA,PRsPCH»PN)
v o SURRNUTINE TNt HANDLE RFAL=TIMF EVOULUYION OF & STATTONARY FILTER FOR MEANS
es s ONLY. STARTS AT 08S STEPs UPNDATES MFANS OF STATE AND PARAMETERS RFEFNRE
s a s OBSERVATTI(ONS s XMB & UMHs USING YOAS & AKALK» Tn GFT XMA & UMA AFTER (RSERV.
soa THEN CNMPUTLES M8 AFTER CHANGFS NU» AND AVERAGE COMIRPNLS OVER NEYT INTERVAL
eosFRAM UMA + DUAV. TAXES EVOL. STEP TU GET NEW XMB AnD COMPUTES AVERAGES OF
20+ STATE OVER NEXT INTERVAL» XAVER
sselF (RSERVATIONS ARE NEARER STATE AT HEGINNING OF PREVINUS INTERVAL (PNSSIBLC
s o oPLANT MOQEL FAILIRE) THEN THNSE vApyES ARE USFD FQOR THE uPDATE. IF NORMAL=
e o ISED NRSFRVATINM ERRUK IS AREATER THAN CRITEWRTUON (PUOSSIHLE 0BS MODEL ralp)
so s THEN URSERVATION ERROKS AkF SCALED DNwWNe
NIMEMSTION PHTIC1)wPSTCL)»CUNCI)»M (1) s AKALK(Y)
NDIMENSTON XMAC1) s XMBCO1)»XAVER(1)»UMACT1)»JHRI 1) s UAVER(])
DIMENSTUN NUCL)»DDAV(L) o YORS(1)sR( 1)
DIMENSINN PA(1)»PBC1)-PC(1),PD(1)
so o DIMENSIONS OF PASPBsPCy ALL +GTs NSeNP
sae(X UXAUG A a (X U)YAUG B + AKALK « (YOBS = AM » (X U)AUG B)
no 1 I=1,NS
PC(lyaxmacl)
1 PA(CIN=XMB(])
DO 2 I=1»NpP
TI=I+NS
PCCILI)=UMACI)
2 PACII)=auMB(I])
NT=NS+NP
FRA=N,0
ERARU.O
D0 6 I=1sNO
IT=M(1)
POCI)=Y0BS(I)=PC(II])
PRI )syQRS(I)=PA(I])
ERA=ERA+PD(I)*+2/R(])
FARRacRR+PE(I)*»p2/R(1)
6 CONTINUE
1o ¢ CHECK FOR PLANT MODEL
IF (ERRJLFERA) GO
DO 8 I=1sNS
XMR(I)=xMAC])
8 PA(I)=pPC(I)
DO 9 I=1sNP
TI=14+NS
9 PA(IT)=PC(II)
DO 10 I=1sNO
10 Pu(I)=PO(])
FRE=FRA
7 CRIT=4,04+1,8.FLOATI(ND)
e aCHFCK FOK 0BS MUREL FAILURF
IF (FRH.LTWCRIT) 60 TO 11
RAT=SART(CRIT/FRR)
DU 12 I=1,NO '
12 PR(I)=RAT#*PR(I)
11 CUNTINUE
CALL MATMPY (AKALKs»PB,PC»NTsNOs])
CALL MATADD(PASPCsPAMNTS1)
» o SEPARATE (X U)AUG AND COMPUTE tUMB=sUMA+DU»
PN 3 I=1sM8
3 xMAl(D)=PAC])

FATLURE
y 7

UAVFR=UYMA+DIAV

[I=]+nM5
HMA(T)Y=PACTIT)Y
UMBR(I)=PACTI)Y+DUCI)

4 UVAVER(I)=PA(TI)+NUAV(I)

EvOLUTION NF STATE MEANS» XuR = PHI #» XMA 4 PST ¢ yavER ¢ CON
CALL MATHPY(PSIsAVER,PAINS,MP»1)
CALL MATAND(PAL,CON»XMI,NS»1)

CALL HMATMPY(pPM[,XMA»PAsNS»NSs1)
CALL MATAND(PA,XMBsXMHINS» 1)
NU 5 I=1sNS

5 XAVER(I)=NaS5#(YMACI)+XMB(I))
RETURN
FND

LR B

Cone

1BCDRV

SURRMOUTINE IACNRV(PMePVARSPSYV»SUFTV»SOFT»S»AKL»8»QMDVM»Q50VSs
1RETASGAMMASPHI»COsCloyYSsFEENNP¥sDPVARSDPSVY)
CoesSURKNUTINE TO CALCULATE DERTVATIVES OF MEANS AND VARIANCES FOR 8 SIZE GRQUPS
CesaIN Symp AND #lLLs USING IMPROVED CYGCLNNE MODFL» ROCK SOFTNESS» AND MATRICES
CessSTNRED IN SNUARE FORM

¢===PM = VECTQR OF MFANG» PVAR = yARTANCF MATRIX 0OF MILL AND SUMP MASSES
C===PSv = VAP WITH SNFTNESS, SOFTy = VAR NF SNFTNESSs SOFT = SOF TNESS
C===5 = SFLECTION FUNCTINN FUNCTINN VECTNR» AKL = LDADING SCALING FACTOR FOR
C=~=5 FUNCTINHNs 1§ = GREAKAGE FUNCTION MATRIX
C===QMDVM = QM/YMs AQSDYS = QS/VS BETA, GAMMA = CLASSIFICATINON CONSTANTS
C===PH] = INTENS UF NQISE AN S» (C0s C1 = CYCLONE CLASSIFICATION CONSTANTS
C=~=yYS = SumP VilLs» FEEQ = MILL FRESH FEFD VECTAR
C===DPM, 1PVAR, NPSV = NDFRIVS TO RFE CALCULATED BY THIS SUBROUTINE

NINENSTIN PH(B)PYAR(64)»PSV(B)sNPH{A)NDPVARI6D)»DPSV(B)

PIMENSTON SC4)Y»R(16),BETACE)sGAMMACA)»PHI(A)

DIMENSINM CO(Y4)»CL(AYFEED(A)sHA(B)

DIMENS[IN GQY(4),B0Y(4),C6Qv(a)»CGQVV(8)»SR(16)
CsasCALCULATE TYPICAL TERMS .

DO 11 T=1,4

GOV(I)eGAMMA(CT YeQSNVS

HOVCI)=pETA(T)wOMNVY

CGAVIT)=6GOV(II*COLT)

CeaVV(IysGauv(Iync1Cly/svS
11 CONTINULE
CeasS MUST HAVF ZERU 4TH ELEMENT» 1 B12 R13 B14
Conoe 0 =i BR23 R24
Conn 0 0 =1 1
Cane 0 0 ) 0

AND B MUST BE =

nn 14
11=1
XxAKL*S(])
nil 1a J=i,4
SBR(II)y=x*B(IT) .
TI=11+4

14 CONTINUE

CossCYCLONE RART QOF CHVAR MILLeMILL®SUMP»

11=0
DU an J=1.8
HA(J)Y=(G,0
I1=11+4
Nl a0 T=1.4
Tl=[1+}
HA(J)=HA(J)+PVARCTT I« GAMMA(Y)

a0 CHMT [k

I=1.4

MILL=SOFTNESS» AND MILL MEANS.

¢0



43

M2, U

HCaD,0

nn 43 [=1.,4

T1=1+4
HC=HC+PSV(I1)*AAMMA(T)
HA=HR+PM{I])«GAMMA(])
CONTINYE

I1=0n

LOOP OVER PM ROW

NN 41 Jels4

JJaJ+y

TKaJ=4

X=CORVVJIYHR*CGAVI(Y)
YaPM(JJ)*CGRVV(J)
DPSV(J)aPSV(JJ)ax+HCwY
DPMUDI=PMIJJII*X+HA(JID)=CGQVV ()

LOOP GVER PM, PS COLUMN

a1

N0 41 K=t1.8

I1=11+1

TKa[K+8
DPVAR(II)=HA(K)*yeX+pVAR(IK)
CONTINUE

«oCOVARS OF SyYMP=SyMP ANpD SUMP=SNDFTNESSs A SO MEANS OF SyMP MASSES

64

63

62
61
60

Ve GRINDING AND TRANSPORT SECTIONs FINISHING 0OF COVARS OF MILL HASSES WITH

1J=32

J1a60

DO 60 J=1.,4

Jd=.)+4

IJalJ+a

JI=JI=31

DPM(JJYaRQV(JI*PM(J)I=GQV(J)*PM(JIY)
DPSV(JJUIZBUV(J)*PSVIII=GAV(JI*PSV(JIJ)

L0 61 131,48

1J=1J+1

Ji=J]+8

IF (1=J) 62+63s64

X=Gav(l)+GQv(J)
DPVAR(CIJ)=RQVIT)I#PVAR(IJ=4)+80AV(J)«PVAR(JI=32)=X*PVAR(IJ)
60 TO 61
DPVAR(IJ)=2,0+(BAV(I)I*PVAR(1J=2)=GQV(])«PVaAR(IJ))
G0 10 61

DPVAR(IY)Y=NDPYAR(CJI)

CUNTINUE

CoONTIMIE

v e SUMP AHD SOFTWNESS, ALSO EXTEND MILL=MILL COVARS

Il=0
JJ==4
IJ=z=~yg

.00P FORK PM ROW

51

NU 50 J=1.4

11=11+4

Id=10+a

JJd=JJ+a

ME=0.0

HC=0.0

NU 51 ¥=1,0

JK=J)+K
HBzHKB+SH(JK)+PM(K)
HC=HC+SR(JK) «PSV(K)
HACK)=SB(JK)*SIFET
CUNTIMUL
Y=FEENCII=BEVI)«PM())
DPMCJ)=NPMCJ)+Y+HC+HASNFT

YeHa(J)=RQV(Y)

C LONP FNn] Pm AND pPS CUL

52
53
¢ cov

50

nn 53 1=zl.4

11=11+1

1J=10%*1

Kl=1+a

KJ=}
PEVAR(TI)I=DPVAR(II)+PSV(I+a)+HR+RUVIT)I«PVAR(IJ)
DPVAP(TJ)aDPVAR(TUI+PSVII) *HR
HA()=x=GAV(T)

Nl 52 ¥=1,J

NPYAR(IT)aDPYAR(II )+HA(K)*PVAR(XI)

IF (K,Fp,Jt) HA(J)=X
DPVARCIJ)I=DPVAR(IJ)+HA(K) *PVAR(KI)
KIzkl+8

K=K J+8

COMNTINUE

COMTINUE

nF PM wit SOfTNESS
DPSV(J)=UPSV(J)+SNFTyaHB
DPSY(J)=NPSY(J)+HC+SOFT=BQV(J)*PSV(D)
CUONTINUF

CaoesCOPY SuMP=MILL [NTO MILI.=SUMP

42 CONTINF
CossFINISH DFF COVARS OF MILL=MILL. RY ADDING NOISF O

JI=g

Dl 8P I=1,4

Ji=Jl+a

1.=1+24

DO 42 JU=1.4

Jledl+1

Td=1J+8
DPVAR(IJ)=DPVARCUI)

C PREPARF uTH MOMENTS

X=S(FTv+SOF [«SOFT

I1l==8

no 30 I=1,4

11=11+9

Y=PVAR(IIN+PM(T)PM(]) f
Z2=PSV(II*(2.0%PSV{1)+8,0%PM(I)*SOFT)
HA(1)=(X*Y+Z)*PH]L(T)aPHI(T)

30 CONTINUL
C cOMPUTE TFRuS IN MILL=MILL CNVARS

1l==a

1J=248

Ji==q4

DO 31 I=1.9
TI=11+a
1J=1J-131
Jl=Jgl+a

b= =l

N 31 Jsi»b
1J=1J+8
Jl=al+1
Jd=J+ra

1F (i.61:.2) nl} TP 33
Kl=11

KJ=JJ

PO 34 K=1,.1
K{=x]+1
Ki=xJ+1]

NEVARCJI)=uPVAR(JTI+DPYAR(T J)+HA(K) *SR(KT)«SH(%J)

G T 34

N S FUNCTION TERMS

€0



34 CONTINUE
31 CONTINUE
RETURN

END

BPOBS

SUBROUTINE IRPNBS(VARSPSVsSOFTVsR,XUsSOFTHNRS,COsC1,GAM,ETA,
1QS+VS»QUPPALPY) ]
s es THIS SURKNUTINE HANDLES SLURRY CONCENTRATION MEASUREMENTS AROUND CYCLONES
- USING MONIFIFD SECAND NROFR FILTER EQUATINNS
~==yAR a VARIANCE OF STATE. PSV = STATE = SNFTNESS COVARIANCE
===SOFTY = VAR OF SNFTNFSS, R ® NBSERVATION VARIANCE
m=~XM ® MEANS OF STATE. SOFT = SOFTNESS FACTNR. 0OHKS = NBRSERVATIONS NF CYCLON
===FEED AND OVERFpUw. CO» C1 = CLASSIFICATION FUNCTION -PARAMETERS FNR CYCLON
~=~GAM = GAMMA, THE CLASSIFICATINN ON LEAVING THE SUMP
==ETA = CLASSIFICATIDN IN CYC N/F TANK
===QS = SUMP WITHDRAWAL = CYCLUNE FEEN RATE, VS = SUMP VULUME
===Qu = UNDERFLOW TOTAL VALUME FLOW PAs PR = AREAS FOR INTERMEDIATE STORAGE
VARG6AsPSVBsRU»XMBsNHS22CO4sC142GAMASPALIBIPRISB
- DIMENSION VARC1I)SPSV(1)»R(1)sXM(1)sNRS(1)
DIMENSION CO(1),CLU1)»GAMUT1)H,ETACL)sPAC1),PR(Y)
DIMENSION vVOBS(4)sY0(2)
00 s CALCULATE EXTKA TERM GIVING NNNLINEARITY OF NBSERVATINN
EXTRA=0,0
1Je28
N0 1 Ir1sa
IJe1J+8
N0 1 J=1,4
Jdulg+y
TERM2(CLCI)/ETACI)+CI1CUI/ZETACIIIGAMCII*GAM(J)*VARCIY)
IF (I+EQed) TERM=O.S*TERM
1 EXTRA=EXTRA+TERM
QK=0QS/(VS+(QS=QU))
EXTRAm=QK*EXTRA/VS
0o CALCULATE VAR*(LINEARISEnD NRSERVATION MATRIX)TRANS IN PA» AND INITIALLY
PREDICTEN OBSFRVATIONS THEN NBSERVATION ERRMARS IN YD
SA=0,0
S8=0,0
YD(1)20,0
D0 2 I=1»4
X=GAM(I)*XM([+4)
YD(1)=YD(1)+X
SAxS5A+X*C1(I)/ETA(])
SBE=SH+X»(1.0=COCI))/ETA(C])
2 CUNTINUE
YDC1)Y=YD(1)/vS
YD(2)=08S(2)=QGK*(SB8=YD(1)*SA)=EXTRA
SA=SA/VS .
D0 3 I=1,18
3 PA(]I)=a0.0
1J=32
N0 a ]1=1,4
T1=1+4
XA=GAM(I)/VS
YE=OKaGAM(T)a((1,0=COCI)=C1(T)*YD(1))/ETA(T)=SA)
FA(YI=PA(I)+XARPSV(]I])
PAC18)=PA(18)+XB»PSV(II)
DO S J31sH
1J=1J+1

JIRIET
PA(CJII=PACJ)I+XAVAR(TY)
PA(IJI=PA(JUI+XH»VAR(TY)
5 ChMT[MIF
PR{I)=YA
Po(lI)=x"
a COUNTTHUE
YN(E1)I=PBS(1)=¥YN(1)

CaseCALCULAYE VKRS AND INVERT IT

no 6 1=1.4
6 VORS(I)=r(])
Ny 7 Istlsd
VIIRS(1)=v0BS(1)+PB(I)*PA(]+a)
VORS(2)3VORS(2)+PH(T)*PA(TI+13)
VURS(4)=VORS(A)+PH(1+4)=*PA(T¢13)
7 CONTINNE
NETavORS (1) *VURS (4)~=yNRS(2)+VOBS(2)
HOLD=VARS (1)
VIIBS (1)=VDHES(8)/DET
vORS(4)=HOLD/UVET
VURS(2)==VyNBS(2)/DET

CossCALCULATE MEANS OF STATE AND PARAMETERS AND MULTIPLY vOBS BY PBTRANS

HOLND=YD(1)
YD(1)=VDBS(1)*HULD+VORS(2)*YN(2)
YD(2)=VURS(2)*HOLD+VOBS(4)4YD(2)
DO 8 Iz1,9
JI=ls®
PR(I)=VOBS(1)*PA(CI)*yvORS(2)+PACI])
PHCIT)=VORS(2)2PA(I)4VORS(4)+PACII)
IF (1.EQe9) GU TN 8
X¥M(I)=X“(I)+PACT)*YD(L)4PA(TI)*YD(2)
8 COUNTINUE
SOFT=SOFT+PA(9)*YD(1)+PA(1B)=YDN(2)

CeosCALCULATE NEw VARIANCES

1J=0
nn 11
Jl=T
nh 9 J=1.A4
IJ=144+1
IF (16T7T,J) GO TO 10
VAR(TJ)I=VAR(IJ)=PA(I)*PR(J)=PA(I+9)*PR(J+9)
G TO 9

10 VAR(T.W)=VAR(JI)

9 Jl=yl+e
PSY(I)=2PSV(I)=PA(I)*PR(9)=PA(]1+9)«PB(18)

11 CONTINUE
RETURMN
EuND

I=1,8

IBFVAR

SUBROUTINE IBFVAR(AMPVARSFVAR,VTLVC) 7
CooesTHIS SURRNPUTINE OPERATES wiTw IRPTNF TN CALCULATE VAR=CUVAR MATRIX OF FSDS
Coes PVAR STARTING SuBSCRIPT MysT RE 1 FNR mIL L CNYARS Ahp 37 Fuk SumP CDVARS

NIMENSION AMC1)sPVARCL)sFVARCL)sv1(1YavVC(Y)Y
Cess CALCHLATE FVAR = (AMITRANS ¢ PYAR o AM

1J=0

DU 1 J=1.28

no 1 1=%,4

Td=1J+1

ILL=an]=s

140)



KJages =g

ne 1 K=1.4

LKaReK=H

S=20.0

IL=ILL

DN 7 L=1st

TL=1L4+1

LEK=lX+1

S=S+AM(TL)*PVAR(LK)
2 CUNTINUF

KJzKJ)+1

FUAR(I))=FVARCTI J)+S*AM(KY)
1 CONTINUF

eseV] = VARIANCE OF INDIVIDUAL FRACTINNS = DIAG(FVAR)
seeVC = VAKTANCE OF CuUMULATIVE FRACTIONS = SyM NF AlL VARS ANp COVARS IN FvaAR

FOR SIZES NOT GREATER THAN I
S=0.0
NC 3 Keled
1a5=K
11=5%1=4
VICI)=FVAR(CIT)
DI 4 J=7»4
x=FYAR(CII)
1i=11+1
IF (JeNEo1) x=X#2,0
S=Sex

.4 CONTINUE

vC(I)=S

3 CONTINUC
RETURN
END

BPTOF

SUAROUTINE IBPTUF(PMsPVARSVMsVSsQS»QUsCO»C1,GAMPETA»CONC»VCUNCS»
1FIMsYFIMIFCHM VECHFIDsVFIDsFCO»VFCOsFINsVFIUsFCUsVFCUsPASPBIPC)
esesssnses THIS SUBKOUTIME CONVERTS PRIMARY STATE VARIABLES (PM & PS) INTO

CONCENTRATIONS AND PARTICLE SIZF DISTRIBUTIONS

DIMENSION PM(1)pPVAR(1)sCOC1)sC1¢1)»GAM(1)»ETACL1)»CONC(1)»VCONC(T)

DIMENSIUN FIM(1)» FCM(1)sFIDCL1)» FCOC1)» FIUCL1)»

FCu(l)

DIMENSION VFIM(1),VFCME1)aVFIONC1)pVFCOC1)»VFIUCL)»VFCUCL) '

DIMENSION PA(IDN,PHR{1)»PCL1),AR(YL)

»aeCONC VECTOR = | MILL» 2 SUMP» 3 CYC FEFOs 4 CYC O/F»

»e o DETERMINE CONCS IN MILL» SUMP AND CYCLOME FEED
N0 1 Iw1»S
CONC(I)=040
1 vCnnC(I)=040Q
UK=QS/(VS*(Q5=QU))
1HK=0S/(vS*QU)
DO 2 I=]1»4
CUNCCL)=CANCCL)+PM(])
IREREY
CONC(2)=CNNC(2)+PM(IT)
CONC(3)=CONC(3)+PM(II)*GAM(T)
2 CONTINUE
CONC(3)=CAONC(3)/VS
..DE;ERMINE CAMMON TERMS AT FIPST LEVEL
J=0
00 3 I=1.8
Y=GAM(I)*PM([+4)

5 CYC U/F

a

3

AR(I)=0.0
COMNC(B)=CNNC(EY+ () U=X)»Y
CONC(5)=CANC(5) exaY

Z=PM (L) /7 (CONCCL)»CINC(L))

N0 4 J=1.a

1J=1J+1

PACTY)==2

IF (1.E6G.J) PACILD=PACTIY)+L 0/C0ONCCT)
ARCI)=ARCII*GAMC)*(CIC(II+CI(J))»PM(J+A)
CONTINUE

AR(I)=ARCI)/ZVS+COCT)

CUNTINUE

Coe«DETERMINE VARIANCES NF FEEND DISTRIRUTINN

Cone

11

CALL IHFVAR(PA»PYAR(]1)sPRsVFIM,VFCH)

DETERMINE COMMUN TERMS AT SECOND LEVEL

JI=0

CunN=0.0

1J=32

DO 5 I=1»14

IJu=lJ+2

ARM=2.0«PM( L)/ (CONC(1)%»3)

Y=SRAM([)*PM(I*a)

CC=COC(I)+C1(I)=CONC(3)

T10sY#*(140=CC)

Tluays+CC

FIO(I)=TIQ/CNNC(A)

FIUCI)=TIU/CONC(S)

FIM(I)=PM(I)/CONC(1)

ZZ2aY+*C1(1)/VvS

N0 6 J=1,a

IJ=TJ+1

GluasGAM(T)*GAM(J)
VCONC(1)=VCUNC(1)+PVAR(IJ=36)

Y=PVAR(IJ)

VCANC(2)=vCUNC(2)+Y

Xmy+nlJ

VCANC(3)=yCINC(3)+¢X
VCONC(4)=VCUNC(a)+Xs(140=AR(CI)I*(1,0=AR(J))
VCANC(5)=yCONC(5)+X*aR(II»AR(J)
CUN=CUN+xY»(C1C(T)+C1(J))
HOLDN=6TJ+(1,0=CC)*»(1,0~4R(J))/CANC(A)
JI=ll+1
PACIE)==(51U*C1(1)/VS+HOLDO)*PM(T+4)/CONC(E)
HOLDY=GIJeCUrAR( J)/CONC(S)
PECJI)=(GIJ*CLII)/VS=HALDU)aPM(T+4)/CONC(5)
IF (I.NEsJ) GU TO 11
PACJII)=PACJI)*GAMCI)*(1.0=CC)/CUNC(A)
PROJII=PH(JI)*GAM(I)*CC/CONC(5)

CONTINUE

JKaf~J+28

NO 7 K=Y»4

JK= JK+ 1

GIK=GAM(T)*6aM(K)

GJK=GAM(J)*GAM(K)
BRO=2,0eTTN#GJIX# (1 0=AR(J)I#(1.0=AR(K))/CONC(4)
BRIIZ2 ., 0*TIU*GJK*AR(J)*AR(K)/CONC(5)

7Z=60K+ (C1(JY+CI(K)I)/VS

7=2727*GJ¥
ARO=(HRN+TIU*Z74Z%(2,0=AR(J)I=AR(K))II/ZCANC(A)
HRU=(BRUSTIU*ZZ=7*(AR(J)+AR(K)))/CONC(S)

IF (I.ME«JY GO TO A

Y=GIK#C1([)/VS

SO



RRUZARI+Y=AR(K)aGIK#CC/CONC(S)
BRM=BRM=2,0/(CONC(1)#CNNCCTY)

& wUINTAWNUL
CeasCALCULATE DISTRIRUTINNSG AND DCNNC
Ny 3 Iagsa

8 CONTINUE 3 FIOCI)=FIOCI)/NCONC
IF (1.NEaK) GO Tp 9 FEN(A)Y=FIN(A)
YagIJ#C1(I)/VS no a =13
RRN=ARMN=Y=H1].0N Tl=a=]
RRU=AR+Y=HULDY FENCID)=FINCIL)+FCN(II+1)

9 CUNTINUE 4 CONTINYE
XXm0,5#PVAR( JX) OCONCzgS+*0CUNC/(VS*(25=0U))
FIOCI)=2FI0C1)+XX*BRU/CONC(A) UCa(QS*FC=(GS=QU)+UCONC)/QU
FIuCr)=FIyCI)y+xx*«BRU/CONC(S) RETURN
FIMCI)=FIM(I)*XX*BRM END

7 CONTINUE

6 CONTINUE

5 CONTINUE

CoeeoFINISH OFF CONCS MEANS AND VARS

CONCC1)=CONCCL) ym M

CONC(2)=CONC(2)/VS
CUNEN.5+«CYO/VS
CONC(4)=0K*(CUNCC(a)=CUD)
CONC(S)aUK*(CONC(5)+CUD)
VCONC(1)EVCUNC(1)/(VMRVM)
VCONC(2)ayCONC(2)/7(VS*VS)
VCNNC(3)=vCONC(3)/(VS*VS)
VCONC(a)=vCUNC(4)+NK«0K
VCONC(S)=VCONL(S) »UK#YK

CosoCALCULATE VARIANCES NF O0/F AND U/F PSDSe

CosoCALCULATE MEANS OF CUMULATIVE MASS FRACTIONS FROM INDIVIDUAL

12

CALL IBFVARCPA,PYARCIT)IsPCoyFIOsyFCO)
CALL IBFVAR(PH,PVAR(37),PC,yFIU,yFCU)

FCu(a)sFIm(y)
FCO(4)=FINta)
FCU(a)=FTHu(a)

Dl 12 K=1,3

I=4=K
FCUM(II=FCMOI+1)+F M)
FCOCII=FCO(I41)4F10(])
FCuCI)=aFCUCTI+1)+FIUCT)
CONTINUE

RETURN

END

PROGRAYM IBMF)C
Ces o THIS PRUGPAM DNES FULL FILTERING (VNLUMETRIC AND PSD) ON STORED DATA

NIMENSTION THEAC(AD)sLG(875S)

! NIMENSTON XM(2)sUM(4)sPHIV(A)sPSTI(A)sCNNST(2)5606(8)sM(5)

DIMENSION CO(4)sCL1CA)sFEEDCA)sPM(B)sPVAR(GE)»PSVI(B)

NIMENSTUN SCa) s ( 1A} sHETACA)»GAMMA(A)sETACA)sPHIN(A)IRP(D)
DIMENSTOY IN(95) " IHSV(S) s DRSP(2)»XMA(2),1IMA(4) s XAVER(2)»UAVER(S)
DIMENSION DUC4)sDUAV(E)sPA((a)»PRI18)sPCLYIAYLCNANC(5),VCONC(S)

NIMENSTON FENCA) s UPM(B)sNPVAR(AL)»NPSY(A)»AKALK(30),PD(6)sRV(S)

NIMENSTON  FIM(4)s FCM(4)s FINC4Ys FCNC4Ys FIUC4)s FCUCH)

NIMENSTNN VEIM(3)sUFCM(A) o VFTOCA) o VFCO(U) s vFTUCE) s VFCUCH)

NIMENSION ACOLO)»AC](4)

FAQUIVALOHNCT (IHEADCI) s LGOI Yo (XM(1)sLG(A1) ) (14 (1)»LG(B5))»
TPHIVOI) »LG(53)) s (PSTC1)oLG(AL) ) (CURSTCI)WLGLTTI)S
2E0AGE1)H>LGMATI))Is(H(L)»LAIBYY)» (AMALK(1)si(QN)),
3(RV(1),LG(154))

FQUIVALENCE (CNCL)sLG(201))a(C1C1)sLGE209)) o (FEFD(1)sLG(217))»
1(PHCE)sLGI229))s (PVAR(1)»LG(281))s(PSVY(1)eLA(359))s
2(501)01.GC385))e(RE1)I4LHL393))0(HFTACI)HLGCE25)) s
3(AAMMALYI)YLG(A33) ) (FTALY) 1. GLALY) ) (PHINIL)LG(E49)),
GCRPC1),1LG0193))

FOUIVALENCE (TTIMNT el SC061)Y)s (R0 a(863)) s (umsG(U65))s
1(AKA,LG(467)) s (QRNLG(UR9) ), (SOFTHLG(U71))s(SNFTVSLG(473))

Cooe OPEM FILES AnD GET DATA

OPES 1050 108,2000

NPEN 2516500,8,1500

OPFEY 3,1»3000»P»3000

READ (1C1)) (LG(I)Y»I=]1sa75)

IBSIMP

SURROUTINE 18STMP(PMsGAMsACOsACLsVSsQSIQUFIN,FCNINCANCUCSFC)
CessSIMPLIFILD ROUTINE TO CALCULATE PRODUCT DISTRTB AnD CONCS AHDUND CYCLNNE
ConaICANC = G/F CUNC e = U/F ¢NNC FC = FEEN CONG

Juir=2

WRTITE C(10uT»100) CIMFALC(T)»T=1,40)
100 FOPMAT (18HINATA USER === s8R/ /)

CesoSLT VALUFS

CossFINs FCU = PSDS (FRACTIONS) NF N/Fs INDIV AND ClM RESPEC. IFRACK=20
DIMENSTION PMCL1)sGAMCL1)oACOC1)»ACICI)SFIN(LI)LFCD(T) I0RACK=33
Cos o CALCULATE FFED CONC [FuaT=151310
FC=0),0 T'wAT=690)
no 1 I=1»4 RMFCNu=2000,0
1 FC=FC+GAMOT)#PM([e4) AMACINZHED G
FL=rc/vs RHNS= 3,373
CoooCALEHULATE CLASSIFIEW T uCTINN THEN STAFAMS F10 FACH SIZE HROUP [FIur==1
NCHNC=N.0 ITMw=z
Nt 72 I=s1,4 IVhwe=
CC=1,0=AC0C[)=aC1(I)+FC NS =2
FINCI)=PM(I+a)sGAM(T)CC NP =4
NCONC=OCANCHFLINT L) =y

90



?QD;LL4{4Q

CONC(5)=0.0
J0e¢GET NDATA FOR URSERVATIONS FRAYM DISC TE CINOIM)enToITCY INCIND)RITC
KREC=0 IF CINCIND) o To=TTC) INCIND)e=1TC
LL=95 14 CONTINUE
3 CONTINUE C SuMP Pu=P
LL=LL*13 TEANGE=/0,1*40,8

THOVE=FLOATCTNCLL+10))
OUC1)=2.0F=3«TMNVE/TRANGF
FRAC=TMUVEZ1CC

IF (LLeLTs70) GO TO 2
KRECsKKEC+1

LL=0
READ (2(KREC)Y) (INCI)n]=m14+9%) DUAV(1)=DU(1)*0,5+(2,0=~FRAC)
N 1 1=1,95 : '€ SOLIDS FEED
IF CINCI)WNELO) GO TO 2 TMOVE=FLOATCINCLL#11))
1 CONTINUE i DUC2)=(2.764F=49CONVER=2.2E~0*FBS)*0,191*THNVE
I1S=1TIME+2 FRAC=TMOVE/TCC
WRITE (301S8)) (IN(I)sIm1595) DUAV(2)=DUC2)#%0,5+(2,0~FRAC)
sTnp C MILL WATER

IPOS=IM(LL+2)+IFIX(0,567#IN(LL+12))

2 CONTINUE
1S0=(IMN=IFPUS)«]VDRC

ITIME=ITIME®]

TSECaTINT#FLOAT(ITIME) ' IF (ISDsLT+V) GPD TD 310
TMIN=2TSEC/60,0 IF (ISHh.6GT194) GO Tn 11
KP=ITIME=(ITIME/12)*12 DUC3)=0.0
o s CONVERT DATA INTD NRSERVATIONS DUAV(3)=0,0
SOLINS FEED AND FEFN BELT SPEED, KG/S AND M/S WITH GAP 1,5CM. 60 70 12
FBS=2e764E~4»C IN(LL+1)+930) y 11 IF (IVDRC.GT,0) IPNS=IPOS+194
CONVER=02927=242E=4*FLOATCINC(LL*1)) GU TN 13
OBSV(1)=FBS«CUNYER 10 1F (IVDRC.LT,U) 1PUS=IPNS+192
MILL WATER FEED SETTING» WATMIL, M3/S 13 VAL=0,15E"4+9+B9E~B*EXP(84498E=3*TP0OS)
ISDa(IMN=INCLL+2))*IyDRC DU(3)=VAL=WATMIL
IM=IN(LL+2) DUAV(3)=0.5#DU(3)
IF (ISD.LTe«194) GO TO 66 12 CUNTINUE
IVORC==1VNRC C SUMP WATER
GO TO 67 TMOVE=FLOATCTINCLL+13))
66 IF (ISD.GT«0y GU TN 68 WIGSINC(LL+3)=450,0
67 IMWEIN(LL+2) DNIG=140/(13668+3s2R1C=3*N]G*3:38B66E=6*WIG*WIG)
IF (IVDRC.LT,0) IM=IM+192 ’ WlGznIG+wlGaTHMOYE

WATHMIL=20415E=449 ,B9E=82EXP(4:98E=3%1NM IF (WIG(LTa,0) WiG=040
68 CONTINUE - DULA)=002265E=3*S5QART(WIG)=NRSV(S)
08SV(2)=wATHM]IL FRAC=THUVEZTCC
SUMP WATER FLOwW» M3sS§ nUay(a)=puCay«n,5+(2,0=FRAC)
IXaINC(LL+3) CoasWHITFE 00T DATA BFFNPE NBSERVATION STEP

IF (IXeLTa850) Ixes59 TF (KPGEN,0) WRITF (T10UT»110) ITIMFSTSECST™IN

0BSV(5)=0,022656=3+SQRT(FLOAT(IX=850)) 110 FPYAT (12HO NBSCRY NOsI4sHH  TIME =sFBel1e7H SECS =sFB842s5H MINS)
CYC FEED CNNC KG SOLIDS / M3 SLURRY IF (KPeEQaU) WRITE (TUUT»111) (XMCI)»TmT1aNS)»("IM(I)sIml,NP)

CONRCRaRMFCON®ALOG(FLOAT(IFWAT=IFBACK) /FLOATCIN(LL+*6)~IFBACK)) ' 111 FORMAT (374 VULNMETRIC MEANS BEFNRE 0OBS = STATE»2E1244,

IF (CONRCR.GT«RHOS) CONRCR=0.0 19H PAaRAMS»aE]2, )

IF (CONHCRoLTW=20,0) CONRCR=0,0 IF (KPyEQ.D) WRITE (10uT,112) (OBSVIT)sI=14MN)s (OBSP(1},1%1,2)

112 FORMAT (23H ARSFRYATI(MS = VOLUM»S5F124856H PSDs2F12.4)

CYC 0/F CONC KG SOLIDS / M3 SLURRY Cesa VOLUMFTRIC FILTER FOR rumMpLETE STFP (STATINNARY FILTER)
CONPRO=RMOCON*ALOG(FLOAT(INWAT=INBACK)/FLOATCINC(LL+?)~10RACK)) CALL IOSTSTU(PHTV,PSI,(IINSTamsAKALKs XMA, XMXAVERIUMA» UM» UAVERS
IF (CUNFPRD.GTsRHODS) CONPRD=00 1RUsDUAY S OHSY s RY»HSsNPS MNP PALPBIPCHFPN)

IF (CONPRDsLTa=2040) CONPRD=04O IF (XMA(2)eLTe0.00A) xMA(2)=0.008
1F (XM(2) LT, Uun0R) ¥xH(2)=0,008

0BSP(1)=CONRCR

0BSP(2)aCONPRD
CYC FEED RATE» M3/Ss» CORRECTED FROM CONCENTRATIDN IF (XAVER(2) 4L TaNsHBR) XYAVER(2)20.0NA
RECIRCE1.57E=62(IN(LL*4)+3) IF (KPLEQ.D) WRITE (TQUTS113) (XMACI)»Tal,NS),(UMA(T),»1m],NP)
113 FORMAT (36H VOLUMETHIC MFENS AFTER OBS = STATES2E1244»

0BSV(3)=RECIRC/(14N+4,0E=8+CDNRCR)

SUMP VOLUME» M3» CORRECTED FROM CONC
SHPVOL=FLOATCINCLL#5)=436)/(140404715F=32CANRCR)
SMPVNLET 46621E~343 . 467E~5+SMPYNL
OBSY(4)aSuPyvOL

¢ ¢ CONTROLLER CHANGES
TCC=60.0O#TINT
ITCalF1IX(TCC)

1 9H PARAMDS , 4F12,.4)

CeosaPSD FILTEQR NHSERVAYINN AMD) CALCULATINN NF PISTRIBUTIMNS AFTERWARDS
UFRAC=(ARN/UMA(1) ) *(RHDS=CONC(S) ) Z(RYAS-CONC(3)) :
OFRAC=1,U0=UFRAC
nn 43 I1=1,4
ACO(T)=UFRAC+IIFRAC*CACT)

ACH(I)=DFRACCY(T)

LD



CALL IBPNAS(PVARIPSVsSNFTVsRPsPMsSOFT»NRSPIACO,ACT»GAMMALETA,
1UMAC1)»VS»ORNPPA,PB) g

SOFT=0,.,9 ‘

CALL IBPTOF(PMsPVAR» XMA(1)»YSsUMA(1),QR0»ACO»ACLI»GAMMAPETA
15COANC VCONCHFIM, YEIMaFCMo VFCMOFINSVFTINsFCOsvFCOsFIU» VFIUSFCUs VFCU
2,PA,PB,PC) 7

IF (KP.EQeN) YRITE (IQUT»114) (CUONC(I)sIx1,5)

114 FORMAT (27H FILTER CONCSe KG/MI MILLSF741,7H SUMPsF 74l
1 11H CYC FEEDsF741,10H YC 0/FsFhel1s10H CYC U/FsF741)

1F (KP.EQsO) WRITE (TOUT»115) (FCM(I)sT=1,8)s (FCO(I)sIn1,4)s
1(FCU(I)slmira)

115 FORMAT (26H PSDS. (CuM FRACS)
1 7H U/FotiF643)
seePSD FILTER EVOLUTION

OMDVM=AKA#(XMA(1)=VMD)/XMA(])

VSeXHA(2)+0402

0SDVSeUMA(L1) /VS

UFRACS(QRND/UMA(1))*(RHOS=CONC(S5))/(RHOS=CONC(3))

OFRAC®140"UFRAC

DO 44 Imils4

ACO(I)=UFRAC+UFRAC*CO(I)

AC1(I)=0FRAC«C1(1)

44 FEOCI)=mFEEDCI) #UMA(2)%5,0

AKLa1+0+1060*(XMA(1)=041435)

CALL IBCDRV(PM,PVAR,PSV,SOFTVsSOFT»S»AKL»BsAMDVM»QSDVS,
IBETA»GAMMASPHINSACO»ACI»VYSsFEDSDPMsDPVARSDPSY)

THALF=0,5*TINT

DO 45 I=1,8

PB(I)=PM(I)+pPM(I)*THALF

45 PC(I)ePSV(I)+DPSV(I)»THALF

DO 46 1=1.64

46 PA(I1)=PVAR(I)*DPVAR(1)*THALF

QHMOVHM=AKA*(XAVER(1)=vM0)/XAVER(1)

VSaXAVER(2)+0.02 i

0SDVS=UAVER(1)/VS

UFRAC®(QRO/ZUAVER(1))~(RHOS=CONC(5))/(RHNS=CONC(3))

NFRAC=1.0=UFRAC

DO 40 [=1,4

ACO(I)=UFRAC+UFRACWCO(])

AC1(I)=OFRAC®CI(I)

40 FENCIY=FEED(I)*UAVER(2)%5,0
AKLa140+10,0+(XAVER(1)=04+1435)
CALL IRCORV(PB,PAsPC»SOFTVsSOFT,»SsAKL»BsQNDYM»QSDYS) -
1RETA»GAMMASPHIN,ACOSAC1sVSH»FEDSDPMsDPVAR»DPSV)
DO at J=1,8
PM(I)=PM(1)+DPM(I)*TINT
41 PSy(I)=PSV(I)*DPSV(I)#TINT

DO 42 I=t,64
42 PVAR(I)=PVAR(CI)+DPVARCI)*TINT
soWRITE TO DISC

IS=ITIME+1
WRITE (3(1S)) IS+ (XMCI)»ImIoNS)s (XMA(TI)oTm1sNS)s(UMCTI)oInloNP)»
1(URSV(I)sI=1,ND)sURSP(1)s0BSP(2)sSOFT»(FCM(I)»VFCM(I)»FCOCI)»
2VFCOCI)sFCUCTII»VFCUCT)» Im1,4)0(CONC(TI)»I=1,5)sVCONC(1)»VCONC(A)
G0 10 3
END

MILL»GFB43s7H 0/F»4F643s

3OLMF

WOARMN LALIYE FRAR RN EN AW WEARS EIOFY LVEFIE Rdy® A WM GRS O80T T Wy LW AT T I TTREEE

DIMFNSTUN IARSFCBD)» ITEMP(A) s AMOVECA) »TLIM(A) s JTEMP(A)

DIMEMSTON THFADCALYsLGCATS)

DIMENSTON XM(2)oUM(B),PHIV(8)»PST(B)»CONST(2),6QG6(8)sM(5)

DIMENSIUN CO(4)»C1(4)»FFFNCa)»PM(B8)sPVAR(ALU)I»PSVIR)

NIMFNSTION S(a)sut1A)eyFTA(LYosGAMMACL)»FTA(4)»PHIN(U)RP(A)

NIMENSTINN INC9S)»HUASVIS)»NBSP(2) s XMA(2),MA(4) s XAVER(2) »UAVER(E)

NIMENSION DUCA)»DUAV(U)sPACAL)sPRIIAISPCI1A)»CONCIS5)»VCONC(S)

NIMENSION FLDCA)»DPM(B)sDPVAR(E4)sNPSV(B) e AxALK(3IN)SPD(6)»RV(5)

NDIMENSTON FIDQ4a),FCUCH) .

DIMENSTION ACp(8),aC1(4)

EQUIVALENCE (IHEANC1)H,LGC1))s(XM(1)»LG(AL)),(UM(1)sL.G(ES))»
$CPHIV(1)sLG(S3))»(PSIC(1)sLG(61))»(CONSTC1)sLG(T7T7))0
2(GQR6(1),LGIB1))»(M(1)sLG(BI))» (AKALK(1)»LG(94)),
3(RV(1)»LG(154a))

FEOUIVALENCE (CO(l)»LG(201))»(Cl(1)'LG(209))»(FEED(1)oLG(ZIT))'
1(PM({1),LG(225))» (PVAR(1),LG(281))5(PSY(1)sLG(369))»
2(S(1)sLGC3B5))»(B(1),LG(393))»(HBFTAC1),LG(E25)),
3(GAMMACLI)»LG(433))s(ETAC1) L 6C4a1))» (PHINC(1)»LG(B89))»
4(RP(1),LG(193))

EQUIVALENCE (TINT»LG(A61))s(ERRO,LG(E63))»(YMO,LG(E65))
1(AKA;LG(“67))'(QRO-LG(A69)).(SOFT;LG(AT!))-(SOFTV-LG(ATB))

RELATIVE IBSTST»IBPURSsIBPTOF» IRCNRV»ALLOTSs IBSIMP

RELATIVE GETXeGETI»PuUTXsPUTI+NDEFREC,FINID

RELATIVE MATAUD»MATHPY

I10UT=17

CoeeSET TRAVEL LIMITS FOR CONTROLLERSs AND SUNDRY VARIABLES

TLIM(1)=04123

TLIM(2)=0.0348

TLIM(3)=0,0546

TLIM(4)=0,163

NS=a22

NP=agj

N(}=5

1C=0,0

FC=0.0

RHNS=3,37E3

CoasosCYCLE» CHECKING FOR SIGNAL TO RUN
3 CONTINUE

TST=IGET(9»531,3)

1IF (IST«NFel) GO T 7

CALL SETBFR(UINRBF,80)

WRITE (l0UT,101)

101 FURMAT (16H IBOLMF RELEASED)

CALL RELSPC(9)

CALL RELESECIBOLMF)

7 CUNTINUE

ICYC=1GFT(9+531,5)

IF (ICYC«NE.O) GO TO 2

ASSIGN 3 T IRET

CALL TIMFRCOIRET»30004,20»ITEMP)

caLL DISPAT
2 CUNTINUE

CosoGET DATA FROM COMMUNICATIONS BLOCK

0BSV(1)=XGET(9»531,22)

NBSV(2)=XGET(9,531,23)

NBSV(3)=XGET(Y,531,25)

NHSV(8)=XGET(Y,531926)

ORSY(S)=XGET(9,531020)

NBSP(1)=XGFT(9,231.27)

ORSP(2)=YGET(9:,531.28)

nu 5 I=1,4

80



S AMOVELT)=XGeT(9,531,11)
FASEXGET(9,531,3%)
CONVER=XGET(9+,531536)
CALL IPUT(9+531:5,0)
CoosCHECK»AND IF NECESSARY, GET STARTING DATA FROM DISC
IST=1GET(9,531,3)
IF (I1ST.EQ.0) GO TN &
CALL DEFREC(S515+422515551)
DO 1 I=1,475
1 CALL GETI(LG(I))
CALL FINIDCIER)
CALL SETBFK(IWRBF»A0)
WRITE (I0UT,100) (IHEADCI)sIm1,40)
100 FORMAT(13H FILTER DATA »40A2)
CALL IPUT(9+531,3,0)
6 COMTINUE
CoesCONVERT CONTRO[ CHANGES
DU 10 I=1,48
IF CAMOVECE) GToTLIM(I)) AMOVECI)=TLIMC])
IF CAMOVECID) (LTo=TLIM(I)) AMOVEC(TI)®=TLIM(I)
10 COUNTINUE
CeaosSUMP PUMP
: NUC1)=2.0E=3+AMOVE(])
CesaSOLIDS FEED
NUC2)=2(2.908E=4*CONVER*2431E=4%FBS)*AMOVF (2)*158140
CoosMILL WATER
DFRDP=5,29E=32(0BSV(2)=0415E=3)
DPHOM=1217.0
DU(3)=NFROP«DPROM*AMOVE(3)
o e s SUMP WATER
DUCA)=140E~3nAMOVEC(T) b
D0 18 I=l1,4
FRAC=AMUVECI)/TLIMCI)
DUAVIT)=NU(T)*0,5#(2,0=FRAC)
18 CONTINUE
;oo s VOLUMETRIC FILTER
CALL IBSTST(PHIVsPSI»CONSToMsAKALKSXMA»XMsXAVER, UMA s UM» UAVERS
1DUsDUAY s BHSVsRVNSsNPsNUIPASPRIPCHPD)
IF (XMAC?)4LT.0.008) XMA(2)20.00R
IF (XM(2) L T,.0,008) xM(2)30,008
IF (XAVER(2).LT40400B) XAVER(2)x0,008
seoPSD DHS STEP
UFRAC=(QRO/UMA(1))*(RHOS=UC)/(RHNS=FC)
OFRAC=1,0~UFRAC
D0 11 1=al,4
ACO(I=sUFRAC+UFRACHCOC(I)
11 AC1([)=0FRAC*CI(])
VSaxXMA(2)+0e02
CALL IBPOHS(PVARIPSV,SOFTVIRPsPM»SOFTsNRSP»ACOsACT»GAMMALETA,
1UMAC1)»vS,QRNPPASPB)
++aPSD EVOLUTION
OMDVM=AKA» ( XMA(1)=Vilg)/XMA(Y)
VE=XMA(2)+0.02
QSDVS=UMA(L1)/VS
DU 12 I=1»,4
12 FEDCI)=FEED(I)*UMA(2)*5,0
AKL=]140+10,0*(XMA(1)=0.,1835)
CALL TUCORV(PH,PVAR,PSVsSOFTVsSNFTsS»AKLsP»OMOVMeOSNVS,
IRETA,GAMMASPHINSACOLACI»VSSsFEDSDPMsNPYARSDPSY)
THALF=0,5+TINT
N0 13 T=1.4
PROI)Y=PMCTI)+pPR (L) *TitaLF

14

15

16

17
CoreaC

20

CoaeP

IBP

RPC

PO 14 J=1,64

PACII=PYAR(I)+NPYAR(])*THALF
QMDVM=AXA*(XAVER(1)=vyMN)/XAVFR(1)
VS=EXAVER(2)+0+02

0SNVSERUAVFER(1)/VS
UFRAC=(ONO/UAVER( 1)) «(HHOS=1UC)/(RHOS=FC)
OFRAC=) ,0=UFRAC

N0 15 I=1,4

ACOCI)=UFRAC+NFRAC*COC(I])

ACI1(I)=QFRAC+C1(I)
FENCI)aFEEDCI)*UAVER(2)*S,0
AKL=21e0+10+0*(XAVER(1)=0,1435)

CALL IRCDRV(PR»PASPCsSOFTVsSNFTsSsAKL2BsOMNYM,QSDYS,
1 BETA»GAMMASPHINSACUSACL»VS,FENsDPMsNPVARSDPSV)
DO 16 I=1,8

PM{I)BPM(T)$DPM(I)*TINT
PSV(I)=PSV(I)*NPSV(I)*TINT

DO 17 I=1,64

PVYAR(I)sPVAR(I)+DPVARCI)*TINT
ONVERT TO CcUWCS AND DISTRIBUTIONS
UFRACE(ORN/UM(1))*{(RHOS=UC)/(RHOS=FC)
OFRAC=1,0=UFRAC

DO 20 I=1.4

ACO(CI)=UFRAC+0OFRAC*CO(I)

AC1(I)=nNFRAC*CI1(])

CALL IBSIMP(PMsGAMMALACOLACT»XM(2)s 1MUY )sQROSFIDIFCOSOC,UCHFC)
UT FILTER NATA RACK INTO CUMMUNICATIONS BLOCK
CALL XPUT(9,531,41,FCU(8))

CALL XPUT(9+531,42+0C)

CALL XPUT(9»531,43»UC)

CALL XPUT(95531,44,FC)

GO T 3

sToP

END

’

PROGRAM IBPRPC

CoosPREPARES DATA FOR vOLUMETRIC aND PSND FTI.TFRS AND WRITES IT ON DISC

DIMENSTION IHEADCAO0)»LG(A75)

DIMENSION Xe{2)sUMU4)sEVAL{4)2ECOLL2YSsFINV(2)sF(4)sPHIV(A),G(8)

DIMENSION PSI(B)sCNONST(2),GAG(B)sM(5)sRV(5),XVAR(A),COVSP(8)

DIMENSINN UVAR(C16)sAKALK(30)DUVAR(AE)

DIMENSION CO(4),Cl(4)»FEFD(A)sPM(B)sPVAR(AB)»PSV(R)

DIMENSION S(8)eR(I6)>BFTACA)sGAMMAIU)PETA(U)SPHINC(G)sRP(4)

DIMENSION PACLOO)sPH(100)sPCC(100)sXMA(K)sUAV(4)»IR(S)»IC(S)

EQUIVALENCE (XMA(3)sUAV(1))

FQUIVALENCE (IHEADCID)»LGCi))» (XM (1)oLG(41))p (UM(L1)»LG(45))»
1(PHIVO1)rLG(S3))s(PSIC1)sLG(O1))»(CONST(I)sLG(7T7))»
2(GQRGC1),LGIB1)) s (M(1)sl GCAR))» (AKALK(1)sLG(94))>»
3(RV(1)»1.6(154))

EQUIVALENGCE (CNC1)rL6(201))»(CIC1)sLBC209))»(FEEDCLI)SLG(217))»
1(PMC1)s1.G(225))s (PVAR(L1)H»LA(281))s(PSV(1)15LG(369))»
2(SC1)2LG(385))s(BC1)5>LGCIVI))P(BFTA(C1)sLG(E25)),
3(GAMMA(CT1)sLG(Y33))s(ETACI)PL GCHLY) ) s (PHINIY1)»LR(889))
4(RP(1),L6(193))

EQUIVALENCE (TINTALGCAB1))»(ERRDMLGCAU63))I s (VMDILG(HA5))»
1CAKALLG(ahT))Ie (ARDSLG(A69)), (SOFTHLG(A7II)o (SOFTVALG(A73))

CessREAD AuD wHITE HEADING

T1Nn=y

60



WRITE (1NUT,101) (THFARCI)sT=1,40)
100 FORMAT (60A2)
101 FORMAT(IH1,20X,80A2/)
NS=2
NP=y )
CsasREAD AND wRITE STARTING VALUES
Coss STATE, 1 = VMs 2 = VS, PARAMETERS 1 = Q5» 2 = S» 3 = WM»
READ C(IIN»102) (XWM(I)sI=1sNS)s(UM(]I)s]Im1sNP)
102 FORMAT(BE1043)
WRITE (I0UT»103) (XM(I)sIml,NS)s(UM(T)pIml,NP)
103 FORMAT (25H STARTING VALUES, STATE =s2E12485,10H PARAMS =:4E12,4/)
READCIINS102) TINTSERROs VMO, AKA»QRO
WRITE C(IOUT104) TINTHERROQ»YMOsAKA»QRN
104 FORMAT (17H TIME INT, SECS =+F642s13H ERRUR ON QROSE12.4,
UGH VMD =sF10,7»15H MILL N/F CDONSTsF12:4856H OP0 2sFE1244/)
CO-oREAS INIEIGENVALUES AND (EIGENCOLUMNMATRIX)TRANS FOR F AND CHECK
DO 3 I=1s4
! EVAL(I)=040
READ (IINs102) VASVR,(ECOLCI)»I=148)
WRITE (I0UT»105) VAsVBs(ECOL(I)sI=158)
105 FURMAT (19H EIGENVALUES NF F s»2E1506/13H EIGENVECTS =»2E15460
©110X+2E15467)
EVAL(1)=EXP(VA=TINT)
EVAL(4)=EXP(yB#*TINT)
DET=ECDLC(1)*ECOL(&)~ECOL(2)*ECOL(D)
EINV(1)=ECOL(4)/DET
EINV(2)s=~ECQL(2)/DET
EINV(3)=s=ECCL(3)/DET
EINV(A)=ECOL(1)/DET
CALL MATMPY(FCOLIEVAL»PAsNSsNSsNS)
CALL MATMPY(PASEINVIPHIVSNS,NS,NS)
EVaL(1)=VA
EVAL(4)=VB
CALL MATMPY(ECOL»EVALsPASNSsNSsNS)
CALL MATMPY(PASEINVIFsNSINS,NS)
WRITE (I0UTs106) (F(I1)sImlsa)
106 FORMAT (154 F MATRIX TRANS»2E1546/15X02E1546/)
WRITE (IOUT,107) (PHIV(I)»Ix1,+8)
107 FORMAT (17H PHIMATRIX TRANS,2E1546717X02E1540/)

A = WS

CessREAD IN G MATRIX (IN CULUMNS) AND CONST AND CALC PSI» CONST AND NOISE COVAR

DD 2 I=1s4,3
IF (EVAL(I).FRQR.0) GU TO 3
EVaL(I)=C(EXP(EVALCI)*TINT)=14s0)/EVAL(TL)
G0 T0 2
3 EVAL(1)=TINT
2 CONTINUE
CALL MATMPY(ECOLSEVAL»PASNSsNS»NS)
CALL MATMPY(PASEINVsPBsNS»sNSsNS)
RFAD (1I82102) (G(I)sI=1s8)
WRITE (IDUT»108) (GCI)almls7s2)s(G(I)sIm2,R,s2)
108 FORMAT(9H G MATRIX»BE15:6/9%X04F15:67)
CALL MATMPY(PHsGsPSIsNS»INSsNP)
WRITE (I0UT5109) (PSI(I)sI=e147+2),(PSI(]1)s1=m2,8,2)
109 FORMAT (11H PST MATRIX»4E15.6/711X58E15467)
RQEADCIINP102) PA(CL1)PAC2)
CALL MATMPY(PBsPA»CUNSTSNS»MSs1)
WREITE (I0UT»110) PAC1)+PA(2)Y»CONSTC(I )P CIINST(2)
110 FORMAT (19H DIFFERENTIAL CONST»2E15.6,10%, 16HDIFFERENCE CONST»
12E1546/7)
FRRO=ERRO*ERROD
GOG(1)=FRRO*PH(1)*PR(])

MWW« FT WYL ¥
GOG(GY=FERRU*PB(2)I%PR(2)
WHITE (I0UT»111) (6OG(I)sTlavsd)
111 FORMAT(19H NOISE CHVAR MATRIX»2E1506/19Xs2F15467)
CesoREAD IN UBSERVATION THNNEY VECTNR
NU=5S
READ (IINs112) (M(T)sl=1snN)
112 FARMAT (1K15)
WRITE CI[UNTS112) (M(I)»I1=1+sND)
113 FRMAT(21H QRSFRV. INDEX VECTURSSIS/) ,
CessREAD (IBSERVATINN ERNORS (STP.NEVSe) AND GONVERT TN cNvAR MATRIX
READ (IINs102) (RV(I)sJelsd)
WRITE (ICUT»118) (RV(I)»T1=m1,5)
114 FORMAT (20H STD NDFVS QF NBSERVS»SE12.47)
nn 4 I=1,NO
a4 RV(I)aRV(I)*RV(I)
CeesRFAD IN CONTROL CHANGL ERRORS
REAN (IIN,102) (DUVARCI),I=1,NP)
WRITF C(I0UT»117) (DUVAR(I)»Im1sNP)
117 FORMAT (24KR CUNTROL CHANGE STD DEVS»4E12.4/)
D0 5 I=1sNP
5 DUVAR(I)=DUVAR(I)»=2
CesaSTART wITH INPUT FDOR PSD FILTER
CosoeREAD CONSTANTS TN START
READCIINS102) SOFT»SUFTV
WRITE (IQUT»116) SOFT,SOFTV
116 FORMAT (11H SOFTNESS =sF7¢8,16H SOFT VARIANCE 2,£12.4/)
CaseREAD S AND B
CoasREAD AND WRITE S AND B
READ (IINs102) (S(I)slrisdd)
WRITE (INUT,208) (S(I1),I=l,a)
208 FORMAT (14H SELECs FUNC =»8F14.8/24H
DO 10 I=1,4
S(I1)=S(I)/60.0
11a1+12
READ (IIN»102) (B(J)sJdslsllad)
WRITE (I10UT,205) (B(J)»Julsllsd)
10 CONTINUE
CsossREAD AND wHITC BETAs GAMMAS ETA» PHI» CO» C1
205 FORMAT (1XeBF14,5)
READ (IIN»102) (BETA(I)sI=1,8)
HRITE ([QUT»206) (RETA(I)sIn1s4)
206 FORMAT (1X//7H RETA a,4F1045/)
READ (IINs10U2) (GAMMA(I)sI=1s4)
WRITE (INUT»207) (GAMMA(I)»Imlsd)
207 FORMAT (8H GAMMA =,4F1045/)
REAN (IINs10?2) (FETA(I)sI=152)
WRITE (INUT»217) (ETA(I)»Ix143)
217 FORMAT (AW ETA =s4F10.57)
READ ([INs102) (PHIN(I)»I=1,4)
WRITE (I0UT»208) (PHINCI),Ix1,4)
208 FURMAT (6H PHI =,4F10.57)
READ ([[N,102) (COC[)sT=1,4)
WHTITE (TOWT»2009) (CO(CI)sI=1,4)
209 FORMAT (5H Co0 =»4F10,57)
READ (IIN,102) (C1Cl)sl=1,48)
WHTTE (10UT»210) (C1(1)s1=1,4)
210 FORMAT (5H C1 =,u4F10,877)
CeooeREAD AND WRITE FEED
REALD (IINs102) (FEEU(I)»I=1,8)
FTI=FEFRDC1)+FEEND(2)+FEED(3I)I+FEED(A)
WRITE (I10UT,211) (FEENCT)»Im1s8),FT

"BREAKAGE MATRIX IS =)

010



LoasREAD AND WRITE URSERVATINNS AND NBSLRVATIN®Y FRRNR MATRIX

216

READ (I1IN,102) (RP(I)s1=148)
ARITE (I10UT»216) (RP(I)sI=1,4)
FORMAT(21H UHRS ERRNR CNVARTANCE»?F12.2/21Xe2F12,2/7)

JeeaREAD AND WRITE STARTING VALUFS

212

213

11

2148

WRITE (INUT»212)

FORMAT (20K STARTING YALUES =/)

READ (1INs102) (PM(I)s]=1s8)

WRITE (100T»213) (PM(1),1x1,8)

FORMAT (17H MEANS NF STATE =,8F1243//12H VARIANCES =)
DO 11 I=1,8

1I=1+56

READ (IINs102) (PVAR(J)sJ=l,11:8)

WRITE (1NUT»205) (PVaR(J)sJals]l,d)

CONTINUE

READ (IIN,102) (PSV(I)sl=1,8)

WRTTE (10UT»218) (PSYy(I)»I=1,8)

FORMAT (1X/24H STATE=SOFTNESS CNDVARS ®»8F12,3/7)

CoeaFIND STATIONARY KALMAM GAIN
DessCREATE STARTING COVARIANCES

20

21

22

1J=0

NG 20 I=1,2

ng 20 J=sl,2

Id=1J+]

XVAR(IJI=0.0

IF (TeEQed) XVARCIUImXM(I)2xM(1)%04014
COMTINUE

DD 2: I=1,8

COVSP(1)=2040

1J=0

no 22 I1ai.d4

nf) 22 Jal,a

[J=lJ+1

UVAR(IJ)=040

IF (T1eFQeJ) UVARCIJI=UM(I)*yM(I)«0,0}
CONTINUE

se24l00P TO GET STATIONARY STATE

32
a3

31

WRITE (I0NT»300) (XVARCI)»I=i»8s3)e(UVAR(I),IN1,16,5)
KL=0 ’
DO 30 KOUNT=1,230

00 32 I=1,NS

XMa(l)exM(l)

PO 33 I=1,NP

UAV(I)=UM(CI)

CHECK=XVAR(1)+XVAR(4)

DO 31 I=1,ND

MM=M(])

RRaRV(I)

NBSaXMA(MH)

CALL IBKFACCPASFINVsXVARICNVSPIUVARIRRsMMsNSsNP)

CALL IBONEOCXMA,UAV»XVARSCNYSPIUVARIPASFINY»OBS»MMaNSINP)

CONTINUE
KREMSKOUNT=(KUUNT/12)e12

LS AT YeamTE . B
IF (KL.FR436) G0 TH 3a
30 CONTINUE
34 CONTINUE

WHTTE (I0UT»300) (XVARCI)sI=21s853)s(IIVAR(T)sIm1,515,5)

CeasFOUM P * ATRHANS TN PA

1J=0
N a0 I=1.nY)
MMaM( 1)

IF (MM, LE.NS)Y GO TGO 41
K= (MM=NS=1)#*H>
Nl 42 J=z=1sNS
1J=1J+1
K=K 4]
42 PA(1J)=2CNVSP(K)
KE(MU=NS=1) *NP
NQ 83 J=1sNP
TJ=1J+1
K2K+1
43 Pa(IJ)=UvAR(X)
60U TD a0
41 CONTINUE
Ka(MM=1)*NS
00 44 J=1,NS
1J=1J+1
K=K 4]
a4 PA(IJ)=XVAR(K)
K=MM
DO 45 J=1»NP
TJ=1J+1
PACIJ)=COVSP(K)
45 K=K4NS
40 COMTINUE
CesaFKM M *= P « MTRANS + R IN PB
NTaHS+NP
1J=0
D) 46 I=1sNU
MMeM(])
NN 46 J=1»NO
TJd=1J+1
PB(IJ)=PA(MH)
MMaM44NT
IF (14EQsJ) PH(IJ)=PR(IJ)+RV(])
46 CONTINUE
CessPUT NDIAG OF ORS/STATE COVAR MATRIX IN RV
11=1
DO 48 Ia1,NO
RV(I)=PAR(IT)
1I=11+NO#+1
48 COMTINUE
WRITE (I0UT,»303) (RV(I)»I=i,ND)}
303 FORMAT (26HONRS=GTVEN=STATE VARIANCES»SE12.8/)
Cos o DETERHMINE K MATRIX = PA ¢ (PB)YINV AND wRITFE OuT
CALL MATINC(PB.NODETHIRNIC)
CALL MATMPY(PA,PR«AKALK+NTsNN»NO)

IF(KREMJEQeUIHRITECIOUT»300)(XVAR(J)»Juls8r3)s(UVAR(JI s JmEr1655)

300 FORMAT(20H DIAG OF VARs MATRIXs6F1547) WRITE (I10UT»301) DEY
NG 35 JalsNP 301 FORMATC(14H DETERMINANT =5E12:8/20H KALMAN GAIN MATRIX=)
JJaSey=3 DN 47 I=1sNT
IVAR(JJ)I=UVARCJI)+NUVAR(I) TI=l+(Na=1)*nT
35 CONTINUE . WRITE (1011T0302) (ARALK(J)» =TaT1sNT)
CALL IBEVOL(PHIV,PSI,CONSTsXMA»UAY»GAGHXVARIUVARSCOYSPaNSsNPsPA 302 FORMAT(10Xs5E1546)
15FR8) a7 CUNTINUF
CHANGE =aXVAR(1)+xVAR(4)=CHECK CeaswWRITE TO DISC

NPEM 1+5»158,2000

WwRITFE (1€1)) C(LG(T)»]m1+475)
S1iP k

£END

%e
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Appendix D

Nomenclature and Symbols Used.

coefficieﬁts in orthogonal expansion, equation (4.1.23)
breakage functions (individual and cumulative, respectively)
constant vector for discrete linear processes

constant vector for continuous linear processes

actual classifier function for size group i
coefficients for actual classifier function

corrected classifier function for size group i
coefficients for corrected classifier function
concentration, kg/m3 ’

covariance matrix between state and parameters
parameter matrix for continuous linear processes
function in equation (4.1.1)

individual mass fractions in each size group

orthogonal function in equation (4.1.23)

- state transition matrix for continuous linear processes

cumulative mass fractions in each size group
function in equation (4.1.1)
noise matrix for continuous linear processes

probability density functions for individual and cumula-
tive p.s.d.'s

probability function for indivudual and cumulative p.s.d.'s
mill overflow constant

Kalman gain matrix

normalising factor in (4.1.24)

vector defined in equation (4.1.26)

concentration factor on rate of grinding

volume load factor on rate of grinding



18 =

=

Ii+o

fal
e

& lo ©

f=3

softness factor on rate of grinding

ith central moment

observation function

observation matrix

number of particle sizes

dimension of state

dimension of cohtrol parameters
dimension of noise vector

uncertain error vector in volumetric filter
individual particle size distribution
probability density function

= p(x(t)), probability density of state
mass in size group i in p.s.d. filter
cumulative particle size distribution
covariance matrix of state

mass flow in size group i in p.s.d. filter
_volumetric flow rate, ma/s

noise covariance matrix for plant model
underflow volume rate

mean underflow volume rate

covariance matrix of observation noise
error measure in volumetric filter checks

selection function for size group 1 (tabulated here as
mins l, but used as s~! in filter)

time

equivalent grinding time (in minutes) in equation (4.2.6)
time for controller change to be implemented

observation interval

transition matrix in differential quadrature

D2



D3

control vector

% .

U covariance matrix of parameters

v random noise vector

\'f volume, m3

VMO mill zero volume (no overflow)

W Wiener process vector

X state vector

y observation vector

Yk- set of observations up to time ty

0y 50)504 coefficients in breakage function, equation (4.2.5)
alj’ 23 coefficients in Kolmogorov equation (4.1.4)

Bi mill classification parameters as in figure 4.4

Y sump classification parameters as in fig. 4.4

I noise matrix for discrete linear processes

Gim. Kroeneker delta

32m operation defined by equation (4.1.21)

Au change in controls

£2= éovariance of control changes

Eu 'erfor in underflow volume rate

ng cyclone overflow tank classification parameters in fig. 4.4
] differential quadrature coefficients

Ms ' ith moment (not control)

P solids density, kg/m3

oi variance of €,

¢5 noise attenuation factor in mill model

3 state transition matrix for discrete linear processes
X= parameter matrix for discrete linear processes

w random symbol in a random variable



Subscripts, superscripts and symbols ,

Subscripts i, j, k, 1, m, and n were used for indexing.

Subscripts M, V, O, U, and F refer to the mill, sump, cyclone overflow,
cyclone underflow and cyclone feed respectively.

k as in Ty is the time at observation k

k+ = time immediately after observation k

k- = time immediately before observation k

= mean value

= estimate of mean

= vector

= matrix

Superscript T refers to matrix transpose.
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