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SUMMARY 

The development and testing of a Kalman filter on a typical metallurgical 

plant is described in this thesis. A ball milling circuit, which was 

monitored by a medium-sized process control computer, was used. 

A two-level filter was developed. The first level processed volumetric 

data, and estimated volumes and flows from the noisy measurements. The 

second level used these data and measurements of concentration to predict 

the masses in each particle size fraction around the circuit. From these, 

unmeasured variables, such as particle size distributions, were calculated 

and compared with samples. 

Parameters for use in the filter had to be determined experimentally. 

When the filter was ready, runs were done on the milling circuit to get 

data, which were then used to do off-line testing of the filter. Once this 

was working satisfactorily, and its characteristics were understood, it was 

run in real time on the milling circuit. These results were successful 

and showed some of the problems associated with the actual application of 

such a filter in real time. 

This thesis gives the development and subsequent testing of the milling 

circuit filter. It discusses the relevant literature, and goes on to 

present the theory and how the filter was built. The apparatus and 

experimentation, both off-line and on-line, are described. The results of 

the experiments and the filter computations are shown, and the effects of 

various factors on the filter are displayed. Finally, all the results are 

discussed in the light of using an on-line filter, and recommendations are 

made. 
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Chapter 2. 

INTRODUCTION. 

Kalman filters have been limited mainly to the aerospace industry in the 

past, but are potentially useful in a wide variety of industrial 

applications. The objectives behind this study were:-

(1) To develop and test recursive Kalman type filters on 

metallurgical processes. 

(2) To determine and find solutions for the problems associated with 

their real-time use. 

(3) To devise methods of solving the filter equations ' in real time. 

To do this, a pilot plant milling circuit in the Department of Chemical 

2 

Engineering at the University of Natal was used. This plant was coupled 

to a CDC 1700 process control compu~er for control and data logging purposes. 

By means of a dynamic stochastic model for the grinding circuit, a filter 

was written and programmed to take measurements from the plant and predict 

the state. This gave (inter alia) the particle size distribution at any 

point in the circuit, which was then checked against samples taken. 

Although the development of a useful filter depends on an adequate model of 

the process, it was not the aim of this investigation to make a detailed 

study of the modelling of comminution, or to develop optimal automatic 

control for a grinding circuit. 

The use of a filtBr such as the one outlined here enabled dynamic 

estimation to be done on a milling circuit, unlike steady state predictions 

based on linear regressions. 

2.1 Background/ ... 



2.1. Background 

Noise 
+ 

Control -+ Process r+-

Noise 
... Measurement s 

Instrumentat ion Filter .. .. 

3 

Estimate of 
state of 
process 

Figure 2.1. Basic signal flowchart with filter 

Figure 2.1. shows how a filter is used to estimate the state of a process 

which cannot be observed directly and noiselessly. The filter cannot 

predict the state exactly, but rather the probability of a st~te, and this 

may be simplified to estimates of the mean and variance. A recursive filter 

treats the observations from the plant sequentially and, with a computer, 

observations are taken at discrete points in time. The filter contains 

a simplified model of the process and corrects its own estimates from the 

actual obs ervations as the plant is operating. 

Since 1960, when Kalman first proposed his form of a recursive filter, a 

lot of fundamental work in developing the theory has taken place. The 

aerospace industry has been a profitable area for applications and most of 

the early reports came from missile guidance applications. The use of 

r.ecursive estimation and filtering on industrial plants has not been reported 

as much, but it has been shown to be successful. There are a number of 

problems associated with plant use, such as the formulation of a filter and 

its solution in real time for a generally nonlinear problem. There are 

also operational difficulties which are often overlooked in theoretical or 

simulated s~udies. The reason that this project was started was to 

investigate these problems on an actual plant in real time. 

On the metallurgical side, there has been a considerable increase in the use 

of automatic control and computer control recently. Plant disturbances here 

are large (compared to aeros pace work ) and instrumentation on the key variables 

is often poor or non-existent . On-line estimation is suited to this sort 

of problem. For example, a milling circuit is a severe test for a filter. 
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It is subject to disturbances which cannot be measured, such as solids feed 

variations in hardness or size, a relatively large yet poor model, a state (i.e., 

masses in each particle size fraction) which cannot be measured directly, 

and observations of concentrations which are inherently clouded by noise. 

The pilot plant milling circuit in the Department was a suitable subject 

for this investigation. 

2.2. Brief description of filter 

~----------------~Ground product 

Cyclone 

Water 

t 
Coarse solids----~ Mill Sump 

Water 

Pump 

Figure 2.2. Simplified flowchart of milling circuit 

The wet ball milling circuit shown in Figure 2.2. was used. It was 

instrumented and connected to the computer so that all control was D.D.C.* 

By this means it was possible to store the operating data for subsequent 

use, as well as having powerful computing facilities available while running 

the plant. 

* D.D.C. = direct digital control. 

Figure 2.3./ .•. 
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as parameters 

f p.s.d. filter 

Block diagram of the filter 
which was developed 

in 

The signal flowchart of the filter is shown in Figure 2.3. 

use 

Because a 

complete model of the milling circuit is highly nonlinear, the filter was 

split into two levels. This also saved some complexity. The volu-

metric filter handled only the volumes and volume flows around the plant. 

The particle size distribution Cp.s.d.) filter dealt with the grinding 

and the classification of the rock carried in the slurry. It took 

measurements of concentrations of cyclone feed an~ overflow, and used data 

from the volumetric filter as parameters, to predict the masses in each 

size fraction in the mill and sump. 

The volumetric filter was a linear Kalman-Bucy continuous-discrete filter. 

Its state variables were the volumes in the mill and " sump, and control 

parameters were the water additions to the mill and sump, the solids feed 

(as a volume feed rate), and the sump to cyclone flow rate. Its state 

model was obtained by writing volume balances over the mill, sump and cyclone. 

Its observations consisted of single state or control variables, and so they 

could be handled one at a time. 

The volumetric filter/ ..• 



The volumetric filter was assumed to be independent of the results from 

the p.s.d. filter, i.e., it was assumed that the volumetric models and 

measurements were not affected by either quantity or size of the solids 

present. This was justified sufficiently (see results) to be of use. 

The errors associated with the volumetric estimates were assumed to be 

small compared to the errors in the p.s.d. filter, so that the mean values 

of the volumetric estimates might be used as deterministic parameters in 

the p.s.d. filter. 

The p.s.d. filter was a nonlinear filter. The particle size range was 
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discretised into four size groups, and the masses in each size group in the 

mill and sump were the state variables (i.e., dimension of state = 8). 

These masses were random variables with their own probability distribution, 

which should not be confused with the particle size distribution. 

The normal comminution equations for a continuous mill were written as 

stochastic differential equations with the rates of grinding as the random 

input. The cyclone model used was a simple one with the reduced 

classification constants for each size group dependent linearly upon the 

feed concentration. A mass balance for each group around the sump 

completed the state model. This formed a set of eight stochastic 

differential equations. The use of moments was found to be the most 

practical method of solving the set, although closure approximations were 

needed. A technique using differential quadrature was also tried, with 

only limited success. 

The observations used in the p.s.d. filter were the cyclone feed and over-

flow concentrations. Using the cyclone model, these were written in terms 

of the mass in each size fraction in the sump, and so the observation step 

of the p.s.d. filter was derived, us ing a simplified second order extended 

Kalman filter observation step . 

The filter was run/ •.. 



The filter was run recursively. The volumetric filter was run first 

after each observation, and the results from this were then used in the 

p.s.d. filter. Finally, if it was required to display the results, the 

distributions and concentrations around the circuit were calculated from 

the p.s.d. filter results. 

This filter was used on data from the mill and was found to have reasonable 
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agreement with the samples taken. These results are discussed at length in 

this thesis. The cyclone overflow was used most often for samples, as the 

sizing in this stream is an important criterion for mill operation. The 

sizing generally agreed well with the predictions, although the concentrations 

were more scattered than expected. 

The effects of a number of factors on the filter were also investigated, and 

information about its operation was collected to determine what considerations 

would be important in designing filters such as these in the future. 

Experience was gained on the practical side of filter application and this 

is reviewed in the discussion. 

2.3. Outline of work done and thesis 

At the beginni'ng of this investigation, much of the relevant literature was 

studied, on both filtering theory and milling. Some stochastic modelling 

was tried with simulations on the computer, and some elementary filtering 

theory was tested out in real time on the slurry mixing tanks for the 

flotation plant. 

The pilot plant milling circuit in the Department was instrumented and 

prepared for use in this project. The milling circuit filter was also 

developed. A number of preliminary off-line tests were done to get 

parameters for the filter and calibrations for the instruments. Some 

simple runs were done on the circuit to test it out and get data for 



filtering. From these results, further off-line tests and runs on the 

circuit were performed. This gave a lot of stored data for evaluating the 

filter. After determining the effects of various factors in the filter 

on stored data, the filter was run in real time on the mill and its 

performance was evaluated. 

This thesis concentrates on development of the filter and its subsequent 

testing. Pertinent literature is surveyed in Chapter 3, and is listed 

in the bibliography in Appendix B. Chapter 4 develops the filter, and 

summarises the basic theory on filters and modelling which was used. 

Details of the equipment used, and the experimental procedure are presented 

in Chapter 5. . This includes details of the milling circuit, computing 

facilities, and some of the basic software. The test procedure, both 

off-line and on-line, and methods of analysis are given. The results of 

all the work are presented in Chapter 6. The results from off-line tests 

fbr determining parameters in the model, graphical records and details of 

the runs done on the mill, and computed results from tests on the filter 

are given. All the results are discussed in Chapter 7, and the final 

conclusions are listed in Chapter 8. 

2.4. Units 

Basic S.l. units have been used throughout (except where quoting 

nominal sizes of equipment). Slurry concentration (kg solids/m3 slurry) 

is used in preference to percent solids by mass, as the latter is nonlinear 

in the quantity of solids present. 

8 



9 

Chapter 3 

LITERATURE SURVEY . . 

This chapter is not intended as an exhaustive survey of all the literature 

available, but rather as a description of the literature which was used for 

this investigation. It can be divided into two main classes: the one re-

lates to milling circuit operation and modelling, and the other to filter-

ing theory. An alphabetical list of all the references appears in 

Appendix B. 

3.1 Modelling of Grinding 

Early modelling of grinding was based on energy considerations, and gave 

rise to models such as those of Kick, Rittinger and Bond (see Austin 1973(a), 

Mular and Bull 1969, Perry 1963, Taggart 1927). At present, the form of 

model most widely used is based on the sizing analysis and the rates of 

grinding from one fraction into smaller fractions. This is the selection 

and breakage function model, originally given by Epstein (Austin 1971/72). 

Broadbent and Callcott (1956) published the discrete version of this model. 

Apart from the generally understood fact that the selection for breakage is 

a random process, (originally proposed by Kolmogorov in 1941 - see Austin 

1971/72) there have been very few attempts made to model grinding as a 

stochastic process. An important paper in this field is by Filippov (1961, 

see also Goren 1968). It is interesting to note that the handling of the 

selection function as a random process in some publications is slightly in-

correct in the light of stochastic calculus. This is explained in section 

4.2.3. 

When applying the grinding model to practical problems, it is necessary to 

know the effects of various operating variables on the basic parameters in 

the grinding model/ ... 



the grinding model. The number of publications of use here is large, 

but the following were found particularly useful: 
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(1) A sequence of papers by the division of Chemical Engineering, CSIRO, 

Australia, on the effects of various parameters in wet ball and rod 

milling. (Heyes, Kelsall, Stewart 1973(a) and (b), and Kelsall, Reid, 

Restarick 1967/68, 1968/69, 1969/70, 1973(a) and 1973(b». 

(2) " Austin (1973(b». 

(3) Herbst and Fuersteneau (1972). 

(4) Clark and Kitchener (1968). 

(5) Herbst and Mika (1973). 

Many attempts have been made to obtain a general solution to the grinding 

equation, suitable for practical use. Analytical solutions usually re­

quire rather major restrictive assumptions. An interesting analytical 

solution to the batch grinding equation is given by King (1972a). 

Gardner and Verghese (1975) give a very simple analytical solution to a 

steady state grinding circuit model, which had already been used in­

directly by Herbst and Mika (see below). Luckie and Austin (1972) have 

published programmes useful for grinding circuit modelling. Austin and 

Klimpel (private communication) have developed a programme to regress on 

grinding data. They use functional forms for the selection and breakage 

functions. Herbst, Grandy, Mika and Fuersteneau (1972) have described 

another similar programme which they have developed which can fit individual 

selection functions (see also Herbst and Mika , 1970). Both these programmes 

were made available to the author during this investigation. 

3.2 Grinding Circuit Control 

It is only fairly recently that sophisticated control or even simple con­

trol has been applied to grinding circuits. The conventional grinding 

circuit with a cyclone/ ... 



circuit with a cyclone is open loop stahle (except for sump level control) 

and although the dynamic response is poor, it is slow and amenable to 

manual control. The number of control strategies which have been tried 

are enormous, and are evidence of the problem involved. Descriptions of 

some of the more common methods being used and reports on some specific 

projects are given by Birch (1972), Stewart (1970), Rowland (1963), Weiss 

(1960), Cross (1966), Pownall (1964), Williamson (1960), and Draper, 

Dredge and Lynch (1969). 

The advent of computers for control, with their flexibility, has yielded 

11 

a number of reports of their applications to grinding circuits: Lees (1971), 

Wiegel (1973), Timm and Williams (1970(a) and 1970(b)), Smith and Lewis 

(1969), Lewis (1970/71), "The Kloof Concentrator" (1973 - no author given), 

Fewings (1971), Fewings and Pitts (1973), Lynch and Stanley (1971), 

Brookes, Cutting, Watson (1970), Peterson, Whit~ Krist (1974)~ King (1972(d)). 

Amsden, Chapman and Reading (1972) reported a simple installation on the 

Ecstall flotation plant which paid for itself in two months. Brittan, see 

e.g. Brittan and van Vuuren (1973) has achieved remarkable success with 

off-line optimisation. A useful survey was done by White (1974) to test 

how industry was responding to instruments and controls in mineral pro­

cessing works. (See also Kelly 1973) Grinding circuit control also forms 

part of the control packages being offered by some large companies e.g. 

Outokumpu Oy. (see Leskinen & Penttila 1973). Ol'skii (1971) reports simi­

lar trends towards computer control in Soviet mining and mineral under­

takings. 

There have not been many attempts to analyse the control dynamics of grind­

ing circuits on a theoretical basis. This unfortunate position is pro­

bably indicative of the gap which exi sts between the practising metallur­

gists and control theorists. Brookes, et. al. (1969) modelled the 

grinding! ... 



grinding but controlled the mill separately. Steady state regressions 

have been used by Watson et. al. (1970) and the group at the University 

of Queensland, see e.g. Fewings (1971) and Lees and Lynch (1972). 

Schonert (1969) attempted to analyse the effects of the classifier charac­

teristics. Woodburn (private communication) is taking a dynamic "black 

box" approach, and is using mu1tivariable linear control theory to solve 

the ·problem. Crosby (1967) discussed mill circuit dynamics rather quali­

tatively, as did Freeh et. al. (1973). 

3.3 Measurement and Control of Particle Size Distribution 

Recently, a number of papers have appeared, proposing various methods of 

on-line particle size measurement. Autometrics are now marketing a unit, 

the PSM system-100, which uses ultrasonics. Several authors have reported 

favourably on its use - Diaz and Musgrove (1971), Bassarear and McQuie 

(1972), Hathaway (1972), Dart and Sand (1973), Webber and Diaz (1973), 

Lloyd, Atkins and Hind (1974). Unfortunately, it is expensive and very 

little information on its actual operation is available. Beck, Lee and 

Stanley-Wood (1973) have developed a technique which monitors the eddies 

present in a slurry stream and correlates these with the sizes of par­

ticles present. Osborne (1970 and 1972) describes an instrument ori­

ginally developed by the Royal School of Mines, London (see Holland-Batt 

(1968». This instrument uses a loop in the pipe to classify the slurry 

stream and then detects differences in density with a nuclear gauge. 

Ricci (1970) dilutes the slurry stream and then uses a light scanning 

device to "see" the particles. Carr-Brion and Mitchell (1967) use an 

X-ray technique. 

No papers or reports have been found which deal directly with the use of 

on-line filters for the prediction of particle size distribution in a 

milling circuit/ ... 
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milling circuit for the purposes of control. Fournier and Smith (1972) 

at the University of Toronto have been engaged in a programme of developing 

observers for milling and flotation plants (see also Fournier 1971). The 

group at the University of Queensland have developed steady state linear 

regressions relating product particle size to various operating measure­

ments (similar to their cyclone model) and have used these for control 

(Fewing 1971, see also Peterson et. al. 1974). 

3.4 Cyclone and Classifier Modelling 

The detailed quantitative modelling of a cyclone has not been taken very 

far. Kelsall (1952) described the trajectories of single particles in a 

cyclone. Bloor and Ingham (1973 (a) and (b» attempted to derive effic­

iency curves from a model of the fluid dynamics 6f the system. It is in­

teresting that a stochastic model of the cyclone has been publi'shed by 

Molerus (1967). 

Early reports on cyclones generally concentrated on the influence of 

design variables, e.g. Fontein, van Kooi and Leniger (1962). Bradley 

(1965) published a book on hydrocyclones, giving general correlations and 

design criteria. 

The group at the University of Queensland have published a number of 

useful correlations. Two that were used frequently in this investigation 

were Lynch and Rao (1967) and Lees (1968). Mular and Bull (1969) summa­

rize some of these results in their course. Other references giving use­

ful operating information are Kanungo and Rao (1973), Lynch, Rao and 

Prisbey (1974), Tarr (1965) and figure 2 in Peterson, et. al. (1974). 

Earlier in this investigation, the use of a D.S.M. screen was considered. 

It is worth recording the reference by Fontein (1965) on sieve bend 

performance! ... 
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performance, as this was the only reference on the subject which could 

be found. 

3.5 Filtering Theory - Fundamentals 

Kalman (1960) published a paper, and this was followed a year later by 

Kalman and Bucy (1961), in which a type of filter formulation was pro­

posed which was radically different from earlier filters (associated 

mainly with Wiener). These new recursive filters were linear, but their 

concept was soon extended to cover a wide range of processes, and they 

became known as Kalman or Kalman-Bucy filters. Much of the development 

work was due to the aerospace industry, and many papers are oriented 

towards this field. 
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The first book to be published on the subject was by Bucy and Joseph (1968). 

In 1970, Jazwinski published his book on stochastic processes and fil­

tering theory, (Jazwinski, 1970) which was the first comprehensive treat­

ment of the subject with a strong engineering orientation. This was 

followed by Sage and Melsa's book (1971). A number of recent books on 

control also feature a chapter on filtering e.g. ~strom (1970). Computer 

and Control Abstracts (published by the IEEE, ref. 75) covers most of the 

work published in this field. 

In this investigation, the accent on researching literature on filters 

was on finding new ways of solving nonlinear filtering equations. The 

following is a list of techniques and associated references: 

(1) Extensions of linear filtering theory: Jagwinski (1970) Sage and 

Melsa (1971), Bejczy and Shridhar (1972) 

(2) Approximations of the probability density using Gaussian Sums: 

Alspach and Sorenson (1972), Sorenson and Alspach (1971), Alspach 

(1972), Center (1971). 

(3) Power series/ ... 



(3) Power Series expansions approximating the probability density: 

Schilder (1971), SWerling, Goldstein, Arnold (1971). 

(4) Statistical linearisation (series expansions of non linearities 

with the coefficients determined in some optimal way): Mahalanabis 

and Farooq (1971), Dessau (1972), Kazakov (1969) ( who uses an iter­

ative technique), Heess (1970). 
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(5) . Discretisation of state space: Tacker and Linton (1970), Center (1971). 

(6) Polynomial approximation of the probability density: Hughen and 

Vimolvanich (1972), Hecht (1971), Center (1971). 

(7) Multilevel filters and Hierarchical filters: Noton (1971). 

(8) Stochastic Approximation. (This is an extension of linear fi~tering 

theory where the gain matrix is approximated): Solov'yev (1970). 

(9) Filtering algorithms for parallel computation: Tse (1971) and Larson 

and Tse (1971). See also Slotnik (1971) for a description of 

ILLIAC IV. 

(10) Monte Carlo Techniques: Yoshimura and Soeda (1971), Hammersley and 

Handscomb (1964), White (1971). 

(11) Expansion of non linearities by series approximations: Swerling 

(1966(a) and (b». 

(12) Fading memory nonlinear filter: Sacks and Sorenson (1971). 

It is interesting to note .that other on-line estimation techniques exist 

although they were not used here, ego 

(1) Square root filters: Bierman (1974). 

(2) Deterministic observers (e.g. Luenberger observers): Seborg, Fisher 

and Hamilton (1974), Crossley and Porter (1971). 

(3) Polynomial filtering: Stubberud and Masenten (1970). 

Basanez et. al. (1974) present an interesting technique called stochastic 

computation. In a number of cases, very simple forms of data smoothing 

have been used/ ... 



have been used successfully, e.g. Fertik (1971), Rome (1971). Adaptive 

control and on-·line model identification were not found to be of much 

use, and so are not reported here. 

3.6 Applications. of Filtering 

Most reports on the implementation of Kalman-Bucy filters are based on 

simulations. The value of testing them on an actual plant is often 

underestimated, for it is only then that many unforseen phenomena occur. 

Outside the field of the aerospace industry, the experimental testing of 

Kalman filters has not been reported much. Some early work was done on 

papermaking machines (~strom 1970). Wismer and Wells (1972) reported 
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the application to a basic oxygen furnace. A group at the University of 

Alberta have reported several times on the application to a pilot plant . 

evaporator (Hamilton, Seborg and Fisher 1973, Seborg, Fisher and Hamilton 

1974, Fisher and Jacobson 1973). King (1972(c» achieved success with 

the application of a nonlinear filter to slurry mixing tanks. Harvey 

(1972) reported the use of on-line estimation in the control of a cement 

plant feed proportioning system. 

Some useful reports on simulations are given by Goldman and Sargent (1971), 

Camp (1971), Wells (1971), Bar-Shalom (1972(a». 

A number of authors have reported on the computational requirements of 

various forms of filter: 

(1) Gura and Bierman (1971) and Singer and Sea (1971) consider the com­

putational efficiency of linear filtering algorithms. 

(2) Kaneko and Liu (1971) and Philips (1972) analyse the error in 

assimilating and processing data by digital computer'. 

Several authors/ ... 



Several authors have compared the operating and predicting efficiency 

of various filters, (there is considerable overlap with conventional 

estimation here) e.g. Lapa (1970), Saridis (1974), Iserman et. ale (1974), 

Wasan (1970). 

3.7 Methods Related to the Solution of Nonlinear Filters 

The following text books were used in th~s study. They are grouped 

according to the subject for which they were consulted. 

(1) Probability theory, stochastic calculus and statistics: Cramer 

(1955), Papoulis (1965), Sveshnikov (1968), Takacs (1968), ~strom 

(1970), Himmelblau (1970), Jazwinski (1970), Sage and Melsa (1971). 

(2) Computer methods: Carnahan, Luther and Wilkes (1969), Ralston and 

Wilf, vols. I and II (1967), Knuth (1969). For time-series data 

processing, Robinson (1967), and Bendat and Piersol (1971). 

(3) Nonlinear analysis: Bellman (1973). 

(4) Orthogonal Polynomials and general tables: Abramowitz and Stegun 

(1964/65). 

(5) Orthogonal functions: Sansone (1959). 

(6) Monte Carlo methods: Schreider et. ale (1966). 

The following papers were also used. They are similarly grouped accord­

ing to subject: 

(1) Stochastic Calculus and solutions of stochastic differential equa­

tions (S.D.E. IS): King (197l(a», King (1971(b», Kstrom (1965) who 

gives interesting simulations, King (1972(b», Wong (1964) who 

relates typical distributions to corresponding S.D.E.'s. 

(2) Simulations of random processes and generation of pseudorandom 

numbers: Muller (1959). 

(3) Use of polynomial/ ... 
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(3) Use of polynomial expansions to approximate probability density 

functions: Wong and Th..omas (1962). 

3.8 Modelling for Kalman Filters 

The models used in a Kalman filter are stochastic. For the purposes of 

achieving observability and simplicity in solution, the models must be 

carefully chosen, and an understanding of the physical interpretations 

of stochastic calculus is essential. Clark (1966) deals with the problem 

of modelling real processes by diffusion processes, and the approximation 

of noise inputs by "white noise". Wong and Zakai (1965~a) and (b» show 

that the Stratonovich definition of a stochastic integral is more realis­

tic than Ito. Anderson and Kailath (1971) prove a conjecture of Kalman 

that the best linear model is the one with the "smallest" error co­

variance matrix. Mahalanabis (1972) briefly discusses a problem in re­

ducing model dimensions. See also Galiana, Schweppe and Fiechter (1974), 

Bar-Shalom (1972(b». 

The handling of distributed variables in a filter is developed by 

Meditch (1970), Meditch (1971), Atre and Lamba (1972), Dubenko (1972), 

Nomura and Nakamura (1972), and Tzafestas (1972) who deals with poisson 

disturbances. 
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Chapter 4 

THEORY 

This chapter is divided into three main sections. The first section deals 

with basic filtering theory., It is not intended to be rigorous or thorough, 

but to cover the theory which is needed ahead. The next section discusses 

several theoretical topics in modelling grinding circuits. Finally, the 

filter used in this investigation is developed. Nomenclature is given in 

appendix D. 

4.1 Basic Filtering Theory 

con troIs, ~(t)~ Plant state, x(t) .. Instrumentation l-

rand orn inputs, !!.(w,t) + random inputs, ~(w,t) l 

filter 
state probability state estimates= 

rvations, z( t) 
distribution, p(~;t)~ variances, etc. 

.8.(t) , 

obse 

Figure 4.1 Block diagram of system. 

In figure 4.1, it is assumed that we have a plant which may be described 

by the following stochastic differential equation. (For a more comprehensive 

treatment than the following, see e.g. Jazwinski, 1970) 

Where ~(t) 

~(t) 

!!.(w,t) 

is the state vector of dimension n 
s 

is the control parameter vector of dimension n 
u 

(4.1.1) , 

is a vector of random Wiener processes of dimension n
W

' 

as defined, for example, by Jazwinski(1970) 

i, ~ are functions/ ... 



i.,.&. are functions as shown. 

The discrete observations are clouded by noise and may be m~delled. by: 

~ = y(tk ) = ~(~,~,tk) + ~(w,k) (4.1.2) 

Where y(t
k

) is the observation vector of dimension no at time tk 

~(w,k) is a normally distributed noise vector, E~(w,k) = Q, 

Ev(w,k).vT(w,j) = R.ok · • 
- - - J 

We will refer to Y
k 

as the set of discrete observations up to and 

including time t k , 

Yk = {Yi ' i = 1,2, ... ,k} 

We will also drop the vector and matrix notation, except in cases where 

clarity is needed. 
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The state and observations are random variables, and the filter describes 

these in terms of probability distribution densities. The continuous-

discrete filter, as it is called, is then given by the 

equations, (4.1.3) and (4.1.4). 

At an observation, the probability distribution density 

from the value of the observation, Yk' by Bayes' rule: 

= 
p(x;tkIYk-l)·P(Yklx;tk'Yk-l) 

P(yk!Yk- 1 ) 

following 

of the state is updated 

(4.1.3) 

Where p(x;tk!Yk ) is the probability density function of x at time tk given 

the set of observations Yk , (i.e. after observation Yk) 

p(x;"tk!Yk_1 ) is the probability density function of x at time tk 

given the observations Yk- 1 , (i.e. before observation Yk) 

p(Yklx;tk'Yk-l) is the probability density function of observation 

Yk given the state x a t time tk and the observation set, Y
k

-
1 

(This is from the stati stics of v(w,k) in equation (4.1.2)) 

P(Yk!Yk- 1 ) is the integr al of the numerator in (4.1.3) over the 

state space 
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Between the observations, the distribution of the state evolves according 

to the Fokker-Plank or Kolmogorov forward equation associated with · 

equation (4.1.1). Let p(x;tIYk ) = Px' where tk+1~t~tk' then 

ap 
x = 

n dCl
1

.p 
ES J x 

. ax. + 
d2

Cl 2jk ·Px 

dXjaxk 
(4.1.4) 

at 

where = 

= 

J=l J 

f.(x,u,t), 
J 

j=1,2, •• ,n s 
(using Ito calculus) (4.1.5) 

(4.1.6) 

If the control parameters are constant between observations but uncertain, 

we may include them as augmented state variables in defining equation 

(4.1.4), but with their corresponding f. and g'l set equal to zero. 
J J 

From the results of the filter we may calculate more meaningful quantities 

such as the estimated mean of the state, 

(4.1.7) 

The major problem in implement ing the above filter is to solve the 

equations, particularly (4.1.4), and to do so in real time. 

4.1.1 Linear Filtering Theory 

The linear Kalman-Bucy filter is a special case of the above when the plant 

and observation equations are linear and all distributions are Gaussian. 

For practical purposes, it is convenient to write the model equations as 

follows. (For symbols, see nomenclat ure, appendix D.) 

Plant model: 

differential form: d~ = (F.~ + Q.~ + ~').dt + G.dW (4.1.8) 

difference form: (4.1.9) 

(The conversion from the differential to the difference form is shown in 

most texts on state space control.) 

observation model/ ... 



observation model: (4.1.10) 

For Gaussian distributions we need consider only the mean vector and 

covariance matrix to characterise the distribution completely. Define 

~_, Ex:- as the means and covariances immediately before the observation 

~. Similarly define ~+' ~+ immediately after the observation. The 

filter equations then simplify to the following: 

From the equation (4.1.4) we get 

evolution of means: ~+1- = !.·B.k+ + l·~ + C 

evolution of covariances: P = ~ P ~T =4<+1- =.=4<+.= 

T 
+ <fl.C~.l -I-

where U = covariance matrix of uk 
=k -+ 

T T 
'I'.~.!. 

+ 

+ 

T 
'I'·~·l · 

T L.Q.L 

~ = covariance matrix between ~k+ and ~+ 

Q = noise covariance matrix = E~W.~WT 

From equation (4.1.3) we get at an observation: 

update of means: [~:l = [~~l + [~-l - l:1. - ) 
~-

where ,K, = 
=j( 

= the Kalman gain matrix 

~ = augmented covariance matrix = [~uT ~u] 
~ = observation noise covariance matrix 

update of covariances: 

or: -1 
~k+ = 

-1 
~k-

= ~k-

+ 

(4.1.11) 

(4.1.12 ) 

(4.1.13) 

(4.1.14) 

(4.1.15) 

(4.1.17) 

In addition, controller changes may be included in the formulation. These 

are shown in section 4.3.1, but are not normally included in the standard 

linear filter/ ... 
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linear filter. 

The following points regarding linear filters were made use of In the 

volumetric filter: 
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(1) Jazwinski (p270) explains that equation (4.1.16) is to be preferred for 

computational stability to equation (4.1.15). Consequently, equation 

(4.1.16) was used in the volumetric filter to update the covariances at the 

observation step. 

(2) When the ~ matrix is diagonal, the observations are independent and may 

be treated separately, one at a time. This simplifies the calculations and 

shortens the time required, mainly through the saving in time required to 

compute an inverse matrix. 

(3) When the matrix ~ consists of zeroes with only one 1 per row, and if 

~ is a diagonal matrix, then equations (4.1.14) and (4.1.15) simplify to 

row and column manipulations. For example, M x ~ would be a matrix 

consisting of rows in P as marked out by ones in ~. This occurs when direct 

observations are made of state variables. Far fewer arithmetical operations 

are needed, and the time saved is considerable. 

(4) Generally after a few observations, the covariances in the linear 

filter tend to steady values. The Kalman gain matrix is then constant, and 

it is only necessary to update the means from the observations. The evolution 

of the means is the only evolution step. This is then called the stationary 

Kalman filter, and all the covariances and the Kalman gain may be pre­

computed and stored, with a large saving in time and storage during 

execution. 

During this investigation, generalised programmes were written for doing 

filter calculations for most of these types of filters at varying levels of 

complexity. 

4.1.2 / ... 
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4.1.2 Nonlinear Filtering Theory. 

When either a plant model. or an observation model is nonlinear, the problem 

of implementing a filter becomes more complicated. Some usable form of 

solution to the Kolmogorov equation must be obtained which can be solved in 

real time. This is by far the most difficult problem. The observation 

step is not usually as complicated, but it should be quick to compute if 

control is to be implemented as soon as possible after taking the observations. 

The following is a list of techniques which were considered for this 

investigation. This list is by no means complete as far as nonlinear 

filters are concerned. Many other techniques (as listed in the literature 

survey section 3.5) are important but were not considered usable, and so 

are not listed here. 

4.1.2.1 Extensions to Linear Filtering Theory. 

Several methods based on linearisation of the equations exist. See any text, 

e.g. Jazwinski, or Sage and Melsa, for details of the following. 

(a) Linearised Kalman filter. This linearises all the equations around a 

fixed trajectory and observation, then uses the standard Kalman-Bucy filter. 

(b) Extended Kalman filter and iterated extended Kalman filter. Here the 

nominal trajectory moves with the mean of the filter. All the standard 

Kalman-Bucy equations apply (as given in section 4.1.1) except for the 

evolution of the means equation, which is nonlinear. 

(c) The truncated and Gaussian second order filters. Both these filters 

expand the nonlinearities to the second order. The truncated filter 

ignores all moments higher than the second, while the Gaussian filter 

approximates fourth order moments in terms of second order moments as 

they would be for a Gaussian distribution. Modified second order filters 

simplify calculations considerably by ignoring terms of minor importance 

in the covariance I ... 
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in the covariance observation step. Finally, there is a minor term in 

the denominator of the Kalman gain, which not only differs between the two 

types of second order filter, but is of opposite effect. A simplified 

second order filter, which ignores this term, has the following 

observation step (compare this with equations (4.1.13), (4.1.15), and 

(4.1.2)). Based on the observation model in equation (4.1.2), we have: 

where m 
x 

= 

= 
am. (x ,uk ) 

1 -matrix with elements i,j = ----------­ax. 
i = 1, ... ,n , o j = 1, ... ,n 

s 

ns ns 
vector with element i = L L 

i = 1, ... ,n 
o 

j=1 k=1 

J 

2 a m. (x'U
k 

) 
1 -

(4.1.18) 

(4.1.19) 

(4.1.20) 

(4.1.21) 

These observation step equations are also suitable for any filter using 

moments, and were used in the particle size distribution filter 

(section 4.3.4). 

4.1.2.2 Use of Moments 

When the functions f and g given in equation (4.1.1) can be written as 

polynomials in x, then the use of moments is a convenient technique 

for solving the filter. We shall derive the evolution equations for the 

first and second moments ~1(x.) and ~2(x.,x ) respectively, as these 
11m 

were used in the grinding circuit filter. Multiplying the Kolmogorov 

equation (4.1.4) through by x. and integrating over the region in state 
1 

space, we get: 



= 

= 

J 
lE. x .. ':\ .dx 

l at-

f 

aal~p 
x.. a J x .dx 

l x. 
J 

+ 
ns ns 

~ l: l: 
j=l k=l 
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.dx 

= J a1 ··p .dx + 
l x-

o (4.1.22a) 

d 
-d l.I 2(x.x) 

t l m 

= 

= 

x.x 
l m 

aa
1

·p 
J x 

ax. 
dx + 

J 

= J Xi aim Px dx + J xm ali Px dx + 

= J (xi a1m + xm ali + a
2

. ) p dx lm x-

x.x 
l m 

2 
a a2jk'px 

axj.axk 

J a2' p dx lm x-

dx 

(4.1. 22b) 

The second central moments m (x.x ) can be derived from the above as . 2 l m 

follows: 

= + a
2
.) p dx lm x-

(4.1.22c) 

If the a functions, which are related to f and g in equation (4.1.1) by 

equations (4.1.5) and (4.1.6), are polynomials in x, then these equations 

«4.1.22a) to (4.1.22c» will be a set of ordinary differential equations 

for the moments in terms of other moments. If in equation (4.1.1), i 

and ~ are polynomials in x of order greater than one, then the differential 

equations for the moments form an open set, and closure approximations 

are needed. The closure approximations used in this study are given in 

section 4.3.4. 

For the observation step, if up to only second order moments are considered, 

equations (4.1.18) to (4.1.21) may be used. Jazwinski gives formulae for 

updating/ .. . 
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updating higher order moments at an observation. 

Moments give a very convenient solution to the filtering problem, 

provided the problem is not highly nonlinear. Usually only the first and 

second moments are considered, as they are the most meaningful and are 

usually sufficient. Solution via moments should not be confused with the 

approximate linear filters. Although moments take longer to programme, they 

are usually quicker and more accurate. 

4.1.2.3 Orthogonal Series Approximations. 

After the success that King (1972(c)) and others had had, the use of 

this technique was tried. The probability distribution density is 

approximated as an orthogonal series, and is written: 
I 

p(x;t) ~ fO(x) L a.(t).f.(x) 
1 1 i=l 

(4~1.23) 

where the f.(x), i = 1, .• ,1 are I terms of an orthogonal set of functions 
1 

with normalising function fO(x). 

Substituting this into equation (4.1.4), we get a set of I ordinary 

differential equations in the coefficients a .• Depending upon the 
1 

set chosen, so various properties are apparent. The observation step also 

depends upon the set of orthogonal functions chosen. 

The major disadvantage of this technique is that the equations for the 

coefficients usually have to be worked out by hand, and only small dimensional 

problems are feasible. One generally needs at least 3ns coefficients in 

the expansion. 

4.1.2.4 Use of Discretised State Space 

This technique lumps the probability density at a number of discrete points 

in the state space, x., i = 1, ... ,I. The derivatives w.r.t. x in the 
1 

Kolmogorov equation (4.1.4) are put in a discrete form, and this yields a 

set of/ ... 
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set of ordinary differential equations in time. The discrete form of the 

observation step (from Bayes' rule} is as follows: 

i = 1, ... ,1 (4.1.24) 

where 
I 

K' = I P(Xi;tkIYk-l).P(Yklxi;tk'Yk-1) 
i=l 

Again the disadvantage of this technique is the large number of points 

required for anything larger than about a two dimensional system. It can, 

however, handle highly nonlinear systems. It also forms the basis for our 

next technique. 

4.1.2.5 Differential Quadrature 

This technique was originally proposed by Bellman (see Bellman 1973) ,as a 

means of solving nonlinear partial differential equations using a discretised 

space. The method is suited to highly nonlinear problems with small 

dimensions. It was tried on the 8-dimensional particle size distribution 

(p.s.d.) filter (see ahead) as an experiment, and although it did not 

perform well, it was interesting to see the results. 

The method is given below. Only an outline of the method is shown here, 

as the actual implementation was simple and involved much repetitive work. 

The state space was discretised as i n section 4.1.2.4 above, and the 

probability density, p(~,t), was lumped at these points, Pi' i = 1, .• ,1. 

The differential quadrature assumed that the derivatives of p(~,t) could be 

approximated by weighted sums of the Pi' i.e.: 

~ 
dX. 

J 

at point i 
I 
I 

m=l 
e ... p 

Jlm m 

Second derivatives were written similarly . 

(4.1.25) 

In the Kolmogorov equation (4.1.4), the t erms containing the derivatives 

w.r.t. the state were expanded as shown below for the first t erm in 



equation (4.1.4), at point i 

ns aa1 · .p ns (aa1j . ::~ ) L 
. J x = L Px + O,lj' ax. ax. 

j=l J j=l J J 

ns ( aa1j 
I ] = L -a-' p. + a1j 
L 6 ... p 

j=l 
x. J. m=l JJ.m m 

J 

I 

[j~: { aa1j }}Pm = L O. + a1j·6jim ax. J.m 
m=l J 

= K: x .E. (4.1. 26 ) 
-J. 

The expression in square brackets (making up the elements ,of !i) was 

calculated beforehand. Terms with second order derivatives were treated 
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similarly, and although more complicated, had the same format. The Kolmogorov 

equation then simplified to a linear matrix equation for the Pi' 

= (4.1.27) 

The p.s.d. filter had the ~ as a function of two parameters, 

(4.1.28) 

The observation step followed the usual discrete solution of the nonlinear 

filter shown in equation (4.1.24) above. 

The p.s.d. filter had 8 states, and so the points were chosen on a 

rectangular grid, along the lines of a two level factorial design with a centre 

point. The maximum number of points which could be handled by the CDC 1700 

computer was 16+1 = 17. This gave some aliasing between second derivatives, 

and it would have been desirable to have considerably more . The coefficients 

6 .. in equation (4.1.25), and similar coefficients for second derivatives, 
JJ.m 

were obtained by a linear regression done on a Gaussian distribution with a 

comparable variance to the distribution given by the solution with moments 

(as shown in the results, chapter 6). Suitable levels for the states were 
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also chosen from the solution with moments. It was found necessary to limit 

the elements of £ to be not negative. 

A programme was written to implement the above filter. This programme read In 

data for the filter including the plant and observation models, then 

converted these into the T matrices in equation (4.1.28), and into observation 

values at each point. It then ran the filter recursively, following the 

procedure below: 

(1) Values of the observations were used in equation (4.1.24) to update £. 

(2) The £ was evolved using the linear equations (4.1.27) and (4.1.28) with 

the precomputed matrices and values of the parameters read in. 

(3) The values of £ were converted into means of the state variables and 

thence into the concentrations and particle size distributions. 

Another programme extended the above programme to work on real data. The 

results of this are shOvffi in section 6.9. 

4.2 Modelling of grinding circuit operations 

4.2.1 Comminution 

To model grinding, we describe an assembly of particles in terms of the mass 

of particles in each of a number of size ranges. Let p(d.) = p. be the mass 
l l 

fraction in size group i with mean size d .. The particles in group i break with 
. l 

a rate constant S. into a number of smaller size groups. Let b •. be the mass 
l )l 

fraction of products from breakage of size group j which are in group i. 

S. is called the selection function, and b .. the individual breakage function. 
l Jl 

It is customary to number size groups sequentially from the largest, 1, to 

the smallest, n Note S = O. The equation governing the rate of 
p np 

grinding for a batch of rock is then 

dPi / .... 
dt 



dp. 
1. 

dt = - S .• p. 
1. 1. 

i-1 
+ 1: 

j=l 
S .• b ..• p. 

J J1. J 

(Where the sum is zero for the case i = 1.) 

Let P. be the cumulative mass fraction = 
1. 

np 
1: p .. 

j=l J 

i = 1, .. ,n 
p 

(4.2.1) 

Similarly define the 
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cumulative breakage function B .. = 
J1. 

Then equation (4.2.1) can also 

be written: 

dP. 
1. 

dt = 
i-1 

1: 
j=l 

S .. B ... (P. 1 - P.) 
J J1. J+ J 

i = 2, .• ,n 
p 

(4.2.2) 

For continuous distributions, p(d) and P(d), we have equ~valent equations 

and 

dP~~;t) = - S(d).p(d;t) + J: S(y).b(y,d).p(y;t).dy 

dP(d;t) 
dt 

= S(y).B(y,d)AdP(y;t) fOOd 

(4.2.3) 

(4.2.4) 

Where Sed), b(y,d), B( y ,d) are the continuous selection function, and 

individual and cumulative breakage functions respectively. 

For continuous milling (as opposed to batch milling), feed and discharge 

terms must be included in these equations. 

The above equations (4.2.1) to (4.2.4) are the basis for most of the studies 

done on grinding. To implement them, some assumptions must be made, e.g.: 

(1) Generally the equations ar.e assumed to be linear (i.e. the selection 

and breakage functions are not functions of the masses in each fraction), 

and deterministic. 

(2) Although each size interval may cover a range of sizes, the selection 

and breakage functions are assumed constant over each range. 

(3) In order to obtain estimates of the parameters in the model from 

experimental data, the breakage function and sometimes the selection 

function / ... 
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function are described by a simple functional form on d, the particle size. 

In this investigation, experimental batch grinding tests were the source of 

data used to determine the parameters in the grinding model, and their 

dependence on experimental conditions. This data was in the form of the 

particle size distribution (p.s.d.) at a number of times during the batch 

grind, as well as the p.s.d. at a fixed time (in this case 20 minutes) for 

high and low slurry densities and high and low total slurry charge. 

The selection and breakage functions were calculated using a programme 

called "GRIND". This generalised programme was written by Herbst and Mika, 

and was lent to the author during a visit to the department by Prof. T. S. 

Mika, who also assisted in running the programme. This fitted discrete values 

of the selection function and a three parameter breakage function of the form: 

B.o = a
1

.(d./d.)a2 
Jl l ] 

+ (1 - a
1

).(d./d. )a3 
l ] 

(4.2.5) 

The programme used a Gauss-Newton type of search to optimise a quadratic 

performance criterion. A full description of the programme is given by 

Herbst, Grandy, Mika and Fuersteneau (1972). 

It was necessary in the filter to know the effe·cts of slurry solids 

concentration and total slurry charge on the selection and breakage 

functions. To avoid doing extensive tests, the following method was used. 

It was assumed that the main effect would be a uniform scaling of the 

selection function (i.e. scaling the rates of breakage by the same factor in 

each size ~raction). From the sequence of particle size distributions over 

the range of batch grinding times done under standard conditions, graphs 

of D25 , D50 , and D75 against time were drawn, where D
25

, D
50

, and D75 were 

the particle sizes corresponding to 25%, 50%, and 75% cumulative mass 

percent respectively, and were functions of time (refer to graph 6.4). 

On these lines, the D25 , D50 and D75 of the runs done using high and low values 

of density I . 0 0 



of density and charge (all done for the same grinding time of 20 minutes), 

were plotted, to give equivalent grinding times, teo The assumption that 

the selection function scaiing was the major effect was reasonably 

justified, as the te values at D25 , D50 and D75 were almost the same for any 

given set of conditions. The rate scaling factors for the selection 

function for each variation in conditions were calculated from 

scaling factor = t /20 
e 

(t in minutes) 
e 

(4.2.6) 

To scale up the selection function for a larger mill, the scaling factor 

[

di.ameter1JO ,6 
was used (see Austin 1973(b)). The breakage function was d1ameter

2 

assumed to be unaffected. 

To condense the grinding parameters into fewer size groups for use in 

the filter, the following method was used. 

Let: S. be the selection function 

} 1 

b .. be the individual breakage function 1J 

as defined above, for the 

larger number of narrower 

size classes. 

Sk be the selection function } 

bkl be the individual breakage function 

for the reduced system, with 

a smaller number of wider 

classes. 

nk = number of smaller classes in larger class k. 

Also let i E k mean that size group i forms a part of larger group k. 

Also assume that all the narrower classes which together form a wider class 

have the same mass of solids in each. 

Sk and bkl are distributed variables, the mean of which can be found by 

writing equation (4.2.1) for this smaller system and then expanding each 

term. This gives: 

E S' 
k = l: 

all iEk 
l: b .. 

all jik 1J 
(4.2.7) 
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E b
kl = I ( I bij·Si/(Sk·nk) ) (4-.2.8) 

all j EI all iEk 

A variance of the Sk due to this reduction may be calculated from: 

2 = I ( Si x ( I b..) - E Sk ) 2 Ink (4-.2.9) 
(j S' 

k all iEk all jlk lJ 

(Note that we divide by n
k 

and not n
k
-1.) 

In this study, 17 size groups were condensed into 4- for the filter. 

4-.2.2 Cyclone Modelling 

Two parts were needed to model the cyclone: 

(1) The volumetric flow split model. This gave the dependence of the exit 

flows on feed flow, concentration, and particle size distribution. 

(2) The solids size split model. 

The most successful modelling work on cyclones which has been published so 

far is by the group at the University of Queensland, as given in the literature 

survey. Their models have been mostly simple linear correlations. The 

solids size split model is in terms of the reduced corrected classifier 

function. The D
SO

' or size corresponding to 50% qn the corrected classifier 

function curve, is then written as a linear function of the operating variables. 

Particular points which were found in the literature and verified experimentally, 

were: 

(1) The size split is very dependent on feed concentration, but far less 

on feed flow or pressure. The split is also affected by the specific gravity 

of the rock being handled. Provided the cyclone does not rope badly, the 

linear model is reasonably good. 

(2) The underflow volume rate is nearly constant. It is only slightly 

affected (within a reasonable operating range) by the feed flow, concentration, 

and size distribution. The small functional dependence on these variables 

is not/ ... 
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is not properly understood. 

The volumetric split was finally modelled by the following equation: 

= + (4.2.10) 

Where QUO is a constant, independent of feed flow or concentration. 

. d t E - 0 E ~2 = ~2 EU lS a ran om error erm ' . EU -, c.u v E 

The particle size split model required the corrected classifier functions 

for each particle size group as a function of feed concentration. This meant 

that the models from the literature could not be used directly in the filter, 

but only as rough checks on the experimental data. The following linear 

classifier model was then chosen: 

Where cc. = the corrected classifier function for size group i, 
1 

ccOi ' cC1i are constants for size group i, 

C = cyclone feed solids concentration. r . 

(4.2.11) 

The actual classifier function, c., was calculated from the corrected 
1 

classifier function as follows: 

c . . - + 
1 

Where QUW = water-only flow in the 

QSW = water-only flow in the 

We can thus write: 

c. = cOi + cli 'Cr 1 

Where 
Q

UW QSW - Q
UW cOi = + QSW Q

SW 
QSW - Q

UW c
1i = cC

1i Q
SW 

. 

cc. 
1 

underflow, 

feed coming 

cC
Oi 

(4.2.12) 

from the sump. 

(4.2.13) 

4.2.3 / .... 
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4.2.3 Modelling of Random ~rocesses 

A problem which is associated with nonlinear filtering is that of stochastic 

calculus and the modelling of random processes. A common way of modelling 

noise is as shown in equation (4.l.1). 

The stochastic integral, Jttb g(x(t)).dW(t) has two common definitions. The 

a 
Ito definition is: 

n-l 

J
tb 
t g(x(t)).dW(t} = 

lim 
n-+<o 
ilt+o 

L g(x(t.)).(W(t. l)-W(t.)) 
1 1+ 1 

i=O 
(4.2.14) 

a 

and the Stratonovich definition is 

J:b g(x(t)).dW(t) 
lim 

= n-+<o 
lIt+O 

n~l g[X(t i ) +2 X(ti +1 )] 
t.. .(W(t.

1
)-W(t.)) 

1+ 1 
i=O 

a (4.2.15) 

The two definitions are not equivalent, and there have been a lot of papers 

in recent years on the subject of which is more realistic. 

To "get a feel" for the problem, and to determine how to model plant noise 

quantitatively, a study was made of a simple one-dimensional equation of a 

form similar to that encountered in the particle size distribution filter: 

dx = (1 - x). dt + x. dW (4.2.16) 

The theoretical stationary distributions for the Ito and Stratonovich 

definitions a.re plotted in figure 4.2. They are markedly different. Sample 

paths were then simulated in the computer using a normally distributed random 

number generator. Two types of equivalent difference equation were tried, 

one in the form of the Ito definition, 

= (4.2.17) 

and the other in the form of the Stratonovich definition, 

~+1 = (~ + xk+1 )}.lIt xk + (1 - 2 + (4.2.18) 

Histograms/ ... 
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Stratonovich type simulation 

Stratonovich stationary distribution 
/' . 

o~~---.------.------.------~-----r------.------r----~ 

. 
~ 

.+J 
.,-l 

til 
s:: 
Q) 

1., 

'd 0, 
s:: 
o 

.,-l 

+J 
::l 
.Q 
.,-l 

H 
+J 
til 

.,-l 
Q 

o 2,0 3,0 

x in equation below 

type simulation 

Ito stationary distribution 

o 1,0 2,0 

x in equation below 

Comparison of Ito and Stratonovich definitions of 

a stochastic integral. Theoretical stationary distributions and 

simulation histograms shown for equation 

dx = (l-x)dt + x.dW 

4,0 
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Histograms were drawn up from these sample paths showing the fraction of the 

total time spent by the path in each small interval along the x-axis. These 

histograms are also shown in figure 4.2. They too, are markedly different, 

but agree closely with their corresponding stationary distribution curves. 

From this it can be seen that the modelling of processes and the fixing of 

noise levels in the model depend on the type of stochastic calculus used, 

and are not uniquely determined by the differential equation alone. This 

is important to remember, as it is unlike deterministic, or linear stochastic, 

modelling. This also means that some of the grinding models being used, 

which assume that the selection functions are random, but which continue by 

using the mean values, may be wrong. The error in a large collection of 

particles is small, however. Throughout the rest of this investigation, Ito 

calculus was used as it is simpler to apply in most cases. 

The form of equations (4.1.1) and (4.1.2) allows one to model a large 

variety of realistic noise processes. One can easily fit desired probability 

distributions and power spectra (see Sveshnikov 1968, Wong 1964). This 

usually requires at least one extra variable per noise input, and so it is 

not desirable because of the extra complexity of the filter. A number of 

workers (e.g. Galiana et al 1974, Clark 1966) have reported that sophisticated 

noise models are often an unnecessary complication, and that an equivalent 

simple Wiener process is satisfactory in terms of model response. It appears 

(see Goldman and Sargent 1972, and section 6.8.5) that models requiring 

extra state variables often degrade filter performance by producing larger 

differences between predictions and actual values, or by making the filter 

unstable. The use of simplified noise models often result in apparently 

unrealistically high noise levels in a model. This is particularly the 

case with correlated observation noise s . 

4.2.4 / .... 
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4.2.4 Determination of Noise Levels in Models 

The assigning of values to noise levels in a filter model is a probiem, 

particularly on real plants (unlike simulations). The noise levels can 

seldom be measured beforehand, and consequently methods are needed which 

enable one to make a careful guess based on whatever information is 

avai~able. 

For a linear filter, one can consider all factors which are likely to 

contribute to each noise, measure or guess the effects of each factor, and 

then calculate the total resulting noise. Generally this is sufficient, but 

it may be checked by running the filter on the actual plant, and comparing 

the residuals of the actual observations about the predicted observations 

to their statistics (see Jazwinski, p271). The covariance matrix for these 

residuals, ~, is given by: 

= (4.2.19) 

This method was used for the volumetric filter. The resulting noise levels 

used are given in section 6.6. This statistical check does not require a 

knowledge of the actual state, but if this is also available (say from 

samples), it enables the ~ and R matrices to be checked separately. 

For nonlinear systems, there is no way of specifying noise levels in the 

plant model solely from a consideration of the factors involved. This 

is because noise levels depend on the definition of the stochastic 

integral, and are only physically meaningful when their effects on the state 

variables are known. There are two alternative techniques to determine 

noise levels: 

(1) The first method is to run the complete filter on a set of synthetic 

data. This set consists of average values of the parameters and measurements, 

and the filter is run until an almost stationary state is reached. The 

predicted errors! ... 
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predicted errors on the state variables are then compared to measured or 

guessed values on the act~al plant. Other noise levels are tried, and the 

filter responses to step changes in some of the parameters and measurements 

are also measured. From these tests, noise levels can be obtained which 

produce the desired output. This method has the advantage that it is the 

closest to reality. 

(2) The second method is to run only the evolution part of the filter, until 

a stationary state is obtained (if this can be done) which is the state of 

the system without any observations. Again the predicted errors on the 

estimates are compared to measured or guessed values on ,the actual plant. 

These errors are the uncertainties in the state of operation of the real plant 

when inputs are fixed and no other measurements are taken. From tests done 

at various noise levels, values can be chosen for the noise levels to produce 

the desired output. This method was used for the p.s.d.filter. 

Observation errors, even for nonlinear observations, can generally be 

obtained directly from measurements, or from guesses based on a knowledge 

of the plant instrumentation. 

If it is found that noises cannot be uniquely determined, it is possible 

that the plant has been over modelled, so that a model simplification (if it 

is possible) will help. 

In this investigation, noise levels in the p.s.d. fi~ter were determined 

beforehand using the second method above, based on carefully guessed error 

levels, but with a slightly erroneous plant model. These values were used 

until after the filter had been debugged and was running normally. They 

were then rechecked using the same method with the new model and found to 

be satisfactory (see graph 6.16, section 6.6). 

4.3 Development / .... 



4.3 Development of Filter for Grinding Circuit 

The formulation of a suitable particle size distribution filter proved to 

be a problem and consider~ble time was spent on it. Initial problems were 

mostly on the mathematical side, formulating a model which had a reasonable 

solution, and which could be solved in real time. Realisation that the 
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filter could be split into two levels helped considerably. Later modifications 

and improvements were made in the light of operating experience on the 

milling circuit. 

Modelling a full grinding circuit required a large number of nonlinear 

differential equations. In this investigation, the filter was broken down 

into two levels, thereby removing some of the nonlinearities and simplifying 

the problem, at the expense of some precision and resulting in slightly 

suboptimal estimates. These two sections of the filter were as follows: 

(1) The volumetric filter. This part of the filter estimated the volumes 

and volumetric flows in the grinding circuit from measurements of flows and 

levels. It was basically a stationary linear filter with a control step, 

and was assumed (with reasonable justification - see results, chapter 6) to 

be independent of the solids concentrations or size distributions. 

(2) The particle size distribution filter (p.s.d. filter). This part of 

the filter operated at a higher level (i.e. it was dependent on the results 

from the volumetric filter) and estimated the masses in each particle size 

fraction around the circuit and hence the size distributions and solids 

concentratipns, from a knowledge of solids feed and concentration measurements 

from the gamma-ray density gauges. It was a nonlinear filter, based on the 

grinding model. Estimates of the mean volumes and flows from the volumetric 

filter were used as parameters in the p.s.d. filter, without regard for 

their estimation variances. 

4.3.1 / .... 



42 

4.3.1 Volumetric Filter 

Sump 

Solids, S ____________ ~~ 

Mill water, WM 

Figure 4.3 Circuit showing symbols used for volumetric filter. 

(Also see figure 5.1.) 

Let V denote volume, and Q volumetric flow. 

Subscripts M refer to ~ill, S to ~ump, 0 to cyclone £verflow, U to cyclone 

underflow. 

Volume balances over the mill and sump yielded: 

dVM 
SiPS W

M Q
U 

QM = + + dt 

dVS 
(4.3.1) 

QM Ws QS = + dt 

It was assumed (see section 5.5.3) that the mill outflow could be 

modelled by 

= (4.3.2) 

and the cyclone (section 4.2.2) by 

= (4.3.3) 

where EU was an unknown constant, to describe the uncertainty ln the model. 

Putting equations (4.3.2) and (4.3.3) into (4.3.1), and grouping the 

terms, we get: 

= / •••• 
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dV
M -k

1
VM 

+ WM + siPs + k1 ·VMO + QUO + £u :: 
dt (4-.3.4-) 
dVS +k

1
VM 

+ W - Q -k1·VMO 
0 

dt 
:: 

S S 
'-Y---' \. J \ J '--y-' V V 

control constants errors state parameters 

We now have a linear equation, and defining 

x :: ( VM' Vs 
)T 

-

u :: ( QS 
S, WM' Ws 

)T 
- , 

T 
c :: (k1·VMO + QUO' -k1·VMO ) -
N :: (£U' O)T 

we may write the volumetric model, equation (4-.3.4), as 

dx :: (L'~ + G.~ + c + N).dt (4.3.5) 

Instruments were available to take uncorrelated observations of S, WM, 

Qs' Vs and Ws directly. The observation model was thus 

:: 

which can be written 

y. 
1. 

:: 

+ v 

+ v. , 
]. 

i:: 1, •.. ,5 

where: 
T M is a matrix of 1s and Os, and Ev.v is diagonal. 

(4.3.6) 

(4-.3.7) 

Subscript m. implies the m.th element from the augmented state 
1. ]. 

and control parameter vector. 

Equation (4-.3.7) was for use when handling observations individually. 

Directly after each observation step, each of the control parameters 

underwent control changes: 

u -k+1- :: ~k+ + ~uk (4-.3.8) 

During operation of the plant, the control changes which were sent out to 

the controllers/ ... 
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the controllers were known, but the instrument responses were uncertain. 

Thus ~uk was not known e~actly, and s o was written as the sum of the 

mean, ~uk' and an error with covariance ~U. The control step In the filter 

was then 

~k+1-

U 
9<+1-

= 

= 

~ 

u 
-k+ 

Depending on the length of time, t ., taken to change controller i, 
Cl 

(4.3.9) 

(4.3.10) 

so an average value of the control over the next interval, uk ., was 
,l 

calculated for use in the evolution step from 

uk ". ,l = .• Cl 
A [t 'J ~+,l 2T 

where T is the observation interval. 

(4.3.11) 

With equation (4.3.5) as a plant model, equation (4.3.7) as an observation 

model, and equation (4.3.8) as a controller model, a linear Kalman-Bucy 

filter was developed for the volumetr ic filter (section 4.1.1). The unknown 

constant, ~, in equation (4.3.5) was treated as an uncertain parameter 

but without an update at the observations (see Jazwinski, page 285). 

4.3.2 Checks in the Volumetric Filter 

If a plant which is being monitored is upset, or if for some other reason 

the measurements reaching a filt er ar e incorrect, the predictions will be 

wrong. Faulty predictions from the volumetric filt er were found to upset 

the p.s.d. filter, and so the following three checks were built into the 

volumetric filter. 

(1) Check against faulty observations. 

Define ~y. 
l 

y. 
l r:k -] 

l k- m. 
l 

i=1, .. ,5 (4.3.12) 

_ _ ..J r'I _ I 
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5 2 2 
L (t..y.) lot.. 

i=l 1 Yi 
and s = 

where the residual t..y. is the difference between the actual and the predicted 
1 

ith observation . The 
2 

a is given by the ith diagonal element of ~~ 
t..y. -" , 1. 

in equation (4 . 2.19). 

S has approximately a X2 distribution with 5 degrees of freedom, as the 

t..y. are approximately normally distr~buted. S was calculated at each 
1 

observation step (it did not require much extra programming), and checked 

against some criterion, S . (here the 99% confidence limit was used). crlt ' 

This determined whether the observations were satisfactory . If they were, 

then the filter continued unchanged. If they were not, then the t..y . 'Here 
1. 

scaled in proportion toJs/S 't before updating the means in equation cr1. 

(4.1.13). This was equivalent to scaling down the Kalman gain matrix 

when there was a faulty observation. 

This check protected against outlying points, as caused by, say , faulty 

instruments, and also protected against the actual observations behaving 

differently from the observation model. 

(2) Check against undetectable plant upsets. 

If, at an observation, we check a measure of the difference between the 

predicted observation at the end of the previous interval and that 

observation, to the difference between the predicted observation at the 

beginning of the previous interval and the same observation, we should find 

that the latter is larger if the plant and plant model are in agreement. 

This was done in the following way. 

Define = M. [:-1+] k-1+ 
(4.3.13) 

~b = 
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5 2 2 
and S = L (by.) lab a i=l al Yi 

5 . (4.3.14) 
2 2 

Sb = L (bYb') lab 
i=l 

l y. l 

Then if the plant were operating as the filter would expect, 

If this difference, Sa - Sb' was greater than zero at an observation, then 

the error in the filter would be greater if the previous evolution step 

was accepted as correct. In this case it would be better to use 

xk_ = xk- 1+ and uk_ = uk- 1+' The following procedure was used at an 

observation: 

(i) Calculate Sa and Sb for the observation, using equation (4.3.14). 

(ii) set x = x , -k- ~-1+ 
U = U , -k- -k-1+ S = S . 

b a 

(iii) Use Sb in the observation check outlined in (1) above. 

(iv) Perform the observation step. 

These were not sure checks against plant mishaps, but they reduced the 

risk of an upset, and were suitable for detecting when a control action 

was not having the desired effect. Their practical use is shown in section 

6.8.1. 

(3) Checks against variables out of range. 

This check was used to prevent the sump volume becoming too small and 

giving integration difficulties in the p.s.d. filter. The minimum volume 

of the sump was limited to 0.008 m3 at all times. 

All these checks were conservative: they kept near to the state which they 

were at when an unexpected observation was received from the plant. This 

was a desirable characteristic in the two level filter, and also probably 

for any subsequent control algorithms. 

4.3.3 Particle Si7.p 1 _ __ _ 
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4.3.3 Particle Size Distribution Model and Filter 

The first problem encountered with any particle size distribution (p.s.d.) 

filter is how to represent a particle size distribution as a random variable. 

Let p(d.) and P(d.) (also denoted p. and P.) be the individual and 
~ ~ ~ ~ 

cumulative mass fractions respectively of a discrete particle size distribution. 

Both are random variables. We can now define the probability distributions: 

Hr(Pi' i = 1, ... ,n ) = Prob{p. ~ p. , i = 1, ... ,n } (4.3.15) 
p ~ ~ P 

HC(Pi , i = 1, ... ,n ) = Prob{P. ~ P. , i = 1, ..• ,n } (4.3.16) 
p ~ ~ P 

Also let 
np 

hr(Pi' i 1, ... ,n ) 
a 

Hr(Pi' i 1, •.. ,n ) (4.3.17) = = = p ap1" ... ap p 
np 

np 

hc(Pi , i 1, ... ,n ) 
a 

Hc(P. i 1, ••• ,n ) (4.3.18) = = = p ap1'" .. ap ~, p 
np 

Discrete grinding models can now be handled if there is a random input to 

the system. The individual form was used in this investigation. Continuous 

particle size distributions were not easily handled, and no satisfactory 

filter in the form of either equation (4.2.3) or (4.2.4) was developed. 

To model the mill behaviour for use in the filter, it was necessary to find 

the sources of random disturbances, and model them. A list of the major 

noise sources which were encountered, is given below. 

(1) The solids feed rate and size distribution to the mill. 

(2) The hardness of the rock affecting the rate of grinding. 

(3) Perturbations in operating conditions affecting the rate of grinding. 

(4) Cyclone operating and modelling errors. 

(5) Slurry flow behaviour causing fluctuations, particularly in the sump. 

(6) Modelling errors, particularly as a result of simplifications. 

Variations in the rate of grinding were perhaps the largest source of 

noise/ ..... . 



noise. Because all the above causes were dependent upon the mass of solids 

present in each size fraction, it was assumed that the perturbations were 

directly proportional to the mass in each fraction. Thus it was chosen to 

lump all the causes together and model the noise input as a variation in 

the S. in equation (4.2.1). The following model was written: 
). 
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(4.3.19) 

where Si~ is the deterministic selection function calculated from 

off-line tests, 

~ is a load factor which depended on the slurry charge in the mill, 

KS is a softness factor (reciprocal of hardness) which could be 

estimated on line, if desired, 

~. is a noise attenuation factor, 
). 

dW. is a normalised Wiener process associated with size fraction i. 
). 

This meant, in effect, that S was a white noise process with a non-zero 

mean (section 4.2.3). 

We now consider the flow of solids around the grinding circuit: 

classification in cyclone 
~ overflow tank = ni 

cyclone 
classification, 

ci~ 

overflow concentration 
measurement, Co 

cyclone feed concentration 
measurement, CF 

solids feed, -----I~ 
S = EqFi 

Mill 

(grinding) 

classification on 
leaving mill = S. 

). 

ft\-

Sump 

(no 
grinding) 

PSi 

~cation on 
leaving sump = y. 

). 

Figure 4.4 Solids flows in the milling circuit. 

The mill/ ..•. 
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The mill and sump were regarded as fully mixed vessels, but with 

classification occuring at the output as shown. Thus, 

QM 6. qMi = . . PMi V
M 

1 
(4.3.20) 

Qs 
qSi = . y. . PSi Vs 1 

(4.3.21) 

The cyclone model was written as 

= = (4.3.22) 

where C
r 

was the cyclone feed concentration, and 

(4.3.23) 

Material balances for the mill and sump were written for size group i, 

based on the individual grinding model, equation (4.2.1), giving: 

i-1 
= (qri + ~i - qMi - S"PM' + 1: S .. b ... PM·)·dt 

1 1 j=1 J J1 J 
(4.3.24) 

(t~.3.25) 

Substituting equations (4.3.19) to (4.3.23) into (4.3.24) and (4.3.25) gave: 

dPSi 

QM 
• S .. PM' 

QS 
- V

M 
.y. ·PS· , 

1 1 Vs 1 1 

i = 

i = 

QM 
- -V .13. ·PM· M 1 1 

1, ..• ,n 
P 

1, .•• ,n 
P 

(4.3.26) 

(4.3.27) 

Equations (4.3.26) and (4.3.27) formed the plant model for the p.s.d. 

filter. Note that for n particle size groups, there were 2n state 
P P 

variables, PMi , PSi' i = 1, .. . ,n . 
P 

All other variables of interest were 

calculated/ .... 
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calculated from these state variables. 

At observations, the concentrations of the feed to the cyclone and "the 

overflow from the cyclone were measured. Thus, for the observation model: 

feed cone., 

oV'erflow cone., 

In this investigation, 4 particle size groups were used. 

(4.3.28) 

np 
1: Y .. Ps . )y . n • PS . 

j=l J J 1 1 1 

(4.3.29) 

This was about the 

largest number which could be handled, and about the smallest number which 

would model the process adequately. This also reduced the problem of 

observability which might have occurred if there were .two nearly equal size 

groups. The size ranges chosen were 0 to 75~m, 75 to 212~m, 212 to · 850~m, and 

850 to 9500~m. The choice of 75 and 212~m was because these are two commonly 

quoted sizes, and with 850~m, they divide up the size spectrum into suitable 

ranges. 

4.3.4 Solution of Particle Size Distribution Filter, Using Moments. 

Several methods of solving the filter equations were considered. The most 

successful was the method of moments. Other methods failed either because of 

over-complexity with the large dimension, or because of excessive core or time 

requirements in implementation. Differential quadrature was also tested as 

explained in section 4.1.2.5. 

The solution by moments was carried out as explained in section 4.1.2.1, and 

4.1.2.2, with the plant model given by equations (4.3.26) and (4.3.27), .and 

the observation model given by equations (4.3.28) and (4.3.29). Only the 

first and second moments were considered, par'tly because of the difficulty 

with large dimensions, and partly because most of the information is 

contained/ ...• 
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contained in the first and second moments. The calculations were done using 

central second order moments or covariances because these were more directly 

usable. With 4 size groups, there were 8 state variables, which had 8 means 

and 36 variances and covariances, the latter being most easily written as a 

symmetric 8x8 matrix (i.e. 64 elements). To estimate softness, another 

state variable, K
S

' was added (see section 4.1), which required one extra mean 

and a further 8 covariances. KS could then be estimated on line together 

with the masses in each fraction. 

Appendix A lists the differential equations for the evolution of the moments 

as used in the filter, based on the plant model equations .(4.3.26) and (4.3.27). 

The problem of closure occurred using moments. This was handled by ignoring 

all third order central moments, as though the distribution were Gaussian, 

i.e. (using the notation in appendix A): 

= (4.3.30) 

and writing fourth order moments as 

= 

(4.3.31) 

This approximation was not the best for fourth order moments, but it was 

short and sufficiently accurate. 

Subroutine IBCDRV was written to compute the derivatives given in appendix 

A. This is listed in appendix C. 

For integration of the moment equations, both simple trapezoidal rule and Euler 

half step integration were tried. These are, respectively, for moments m: 

dm 
= + ~t. d~ (~(tk+),tk+) (4.3.32) 

dm 
m(tk+l ) = ~(tk+) + ~ ~t. d~ (~(tk+) ,tk+) 2 

dm 
~(tk+1- ) = ~(tk+) + ~t. 

dt (~( t k+l ) ,tk+l ) 
2 2 

} (4.3. 33 ) 

, I 
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The time required for the evaluation of the derivatives (see section 6.8.10), 

made it uneconomic to try higher order integration methods with the time 

interval used. Equation (4.3.331 was used for all results given in this thesis. 

For the observation step, the simplified second order filter observation step 

which was outlined in section 4.1.2.1(c) was used, with the model in equations 

(4.3.28) and (4.3.29). This observation step was handled by subroutine IBPOBS. 

This subroutine used the concentration 'measurements of the cyclone feed and 

overflow from each observation k, as the vector Yk in equation (4.1.18), 

with the function, m, in this equation given by the first terms on the right 

hand sides of equations (4.3.28) and (4.3.29): 

m = 

1 np 
Vs . L Yi·PSi 

i=l 

and the PA matrix consisting of the second central moments of PMi' PSi' i = 

1, •.• ,4, and KS' From this observation step, the means and variances (x ' 

and PA respectively in equations (4.1.18) to (4.1.21)), of the masses in 

each fraction in the mill and sump were update~, and if desired, the softness 

factor, KS ' was simultaneously estimated (as a parameter u in equation (4.1.18)). 

Normally the softness was kept fixed. 

It should be noted here how the filter is able to estimate variables which 

are not measured directly. During the evolution step, the plant model 

(equations , (4.3.26) and (4.3.27)) causes the variables In the model to 

become correlated through the covariance matrix PA' This part is described 

by the evolution for the covariances given in appendix A. At an observation k, 

the Kalman gain matrix ~ in equation (4.1.18) is calculated from equation 

(4.1.20), using the covariance matrix P
A 

as shown. The elements of matrix ~ 

are effectively correction factors for each variable from each observation 

error/ •.•. 
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error, based on the expected correlations. Thus the softness parameter, KS ' 

for example, may be included in the estimation by augmenting it to the state 

variables as a parameter u, with equations for the evolution of the state and 

softness (as given in appendix A), and with u included in the observation 

step (equations (4.1.18) to (4.1.21». 

4.3.5 Conversion to Particle Size Di stributions and Concentrations 

Presenting the output from a filter was found to be a problem because of the 

large amount of information produced. For the p.s.d. filter, it was found 

easiest to convert the raw data (i.e. the masses in each fraction) into 

quantities such as particle size distributions and concentrations, and to display 

these graphically. The conversions were done as shown below. 

Let x be the state vector of the p.s.d. filter (consisting of the masses 

in each fraction in the mill and sump) and let f be the vector of individual 

mass fractions in the stream under consideration. Now, f. = f.(x), and 
1 1 

expanding the function to second order, we get: 

8 8 Clf. 
mean of f. = I. 0=' f . (x) + 1 ~ ~ 

1 
1TI

2
(X

j
X

k
) 

1 1 1 2: oXjelxk 
. 

j=l k=l 
(4.3.34) 

8 8 elf. elf. 
covariance of f. f. m

2
(f.f. ) :': ~ ~ 

1 
m

2
(x

k
x

l
) . _J = 

1 J 1 J k=l OPk oPl 1=1 
(4.3.35) 

where m2(xj xk ) is the covariance of Xj and x
k 

as used in appendix A. 

(The similarity of equation (4.3.34) to the observation step, equations 

(4.1.18) and (4.1.21), should be noted.) 

The cumulative fractions, F., were 
1 

Hence, 

mean of F. 
1 

F. 
1 

= 

= 

F. 
1 

4 
~ f. 

j=i J 

4 
= ~ 

j=i 

the sum of the individuals, 

f. 
J 

l=' / 

i. e. : 

(4.3.37) 
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covariance (4.3.38) 

Similarly for a concentration C. = C.(x) in stream i, we have: 
11-

mean of C. 
1 

= C. '" C. (x) + 
1 1 

8 8 af. 
1 l: l: 1 

2. k 1 axJ.axk J=l = 

8 8 ac. ac. 
l: l: 1.0'2 1 variance of C. 

1 j=l k=l 
ax

J
. X

J
. X

k 
• aX

k 

ror example, for the cyclone overflow concentration, 

4 

Co = KO· l: y .. (1 - c
Oi 

- c
li 

.Cr )· PSi 
i=l 

1 

QS 1 
4 

where KO = and C
r = l: y. ·PS· 

VS(QS-QU) Vs i=l 
1 1 

so that 

4 - K 
Co = KO· l: y .• (l - COl· - c1 .·Cr )·m1 (PS·) - ~. l: 

i=l 1 1 1 2 i=l 

4 

and 

(4.3.39) 

(4.3.40) 

(4.3.41) 

4 y. Y . (c
1

· +c
1 

. ) 
lJ 1 J ( ) 

l: V .m2 PS·Ps· 
j=l S 1 J 

(4.3.42) 

(4.3.43) 

Subroutine IBPTOF was written to calculate the means and variances of the size 

distributions of the product stream (cyclone overflow), the cyclone underflow 

and mill contents, as well as the concentrations around the circuit. This 

took a long time to compute (see section 6.8.10) and so a simplified subroutine, 

IBSIMP, was written to calculate concentrations and distributions without 

taking variances into account. This used equations (4.3.34) without the 

second term, (4.3.36), and (4.3.39) without the second term. Its accuracy is 

discussed in section 6.8.11. 

4.3.6 Summary/ .... 



4.3.6 Summary of p.s.d. Filter. 

The particle size distribution filter developed here estimated the first 

moments and second central moments of the masses in each size fraction in 
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the mill and sump. Four particle groups were used. The softness of the rock 

could also be estimated on line through the filter if desired. 

To do this, an evolution step and an observation step were developed. The 

evolution step used subroutine IBCDRV, which calculated the derivatives of the 

means and variances of the estimates given in appendix A, to integrate over 

the interval between observations. At the observations, (after running the 

volumetric filter), the concentration measurements were used to update the 

estimates with subroutine IBPOBS. 

From the means and variances of the state in the p.s.d. filter, the 

predictions of the actual particle size distributions were calculated 

using IBPTOF or IBSIMP. 

4.3.7 Use of the Filter 

A simple flowchart for the full filter is shown in figure 4.5. 

Before running the filter, by means of programme IBPRPC, the values of the 

constants and starting values for use in both filters were read in. Matrices 

for the volumetric filter were calculated, and all ~he_ necessary data were 

stored on a disc file. The data were then read back when the filter started. 

Two main programmes were written to coordinate the filter calculations, 

IBMFLC for off-line work, and IBOLMF for real time work. The following 

steps were then performed after each observation from the plant. 

(1) Measurements from the instruments were taken and converted to values 

of the variables S, WM, QS' VS ' WS ' CF and Co at time tk on the operating 

plant.I .... 
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Figure 4.5 Filter Flowchart. 

This shows basic signal flows and sequencing of calculations. 

(See section 4.3.7.) 
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plant. 

(2) The volumetric filter, outlined in sections 4.3.1 and 4.3.2, was 

implemented using subroutine 1BSTST. This gave estimates of VM, VS ' QS' s, 

WM and WS' From these, QM' KL and the actual classifier constants, ~ and 

~, were calculated for use in the p.s.d. filter. 

(3) The p.s.d. filter observation step given in section 4.3.4 was taken 

1BPOBS. 

(4) The p.s.d.filter evolution step was taken using Euler half step 

integration with the derivatives calculated by 1BCDRV. 

using 

(5) The p.s.d. state was then converted to the size distributions and 

concentrations using 1BPTOF for off-line runs, and 1BS1MP for real-time work. 

At this point, all the estimates were available for the following interval. 

For off-line tests, these were stored on another disc file, and the programme 

went back to step(1) to continue. For on-line work, these were also made 

available for control, and the programme then waited for the next observation. 

The main subroutines used in the filter, 1BSTST, 1BCDRV, 1BPOBS, 1BPTOF, and 

1BS1MP are listed in appendix C. The preparation programme, 1BPRPC, the 

off-line filter programme 1BMFLC, and the on-line filter programme, 1BOLMF, 

are also shown. 
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. Chapter 5 

EQUIPMENT AND EXPERIMENTATION 

Most of the work done was on the pilot plant milling circuit or the Control 

Data 1700 computer in the Department. The batch grinding tests were done 

on a separate batch grinding machine, and use was made of the research 

group's analytical equipment for doing the analyses of samples. Other 

off-line experiments were done on the milling circuit. The Burroughs 

B5700 computer at the University of Natal, Durban computer centre was also 

used for some of the computations. 

5.1. Milling circuit 

Figure 5.1 shows details of the milling circuit. 

with a nominal capacity of one tonne per hour. 

It was a wet ball mill 

Solids were fed from a 

storage bin by means of a variable speed belt to the mill, where water 

was added before entry. The mill overflowed into a sump which was 

stirred. After dilution, the slurry was pumped with a variable speed pump 

to the cyclone. The coarse cyclone underflow returned to the mill, while 

the finer overflow discharged into a small stirred tank where its concen­

tration was measured before it left the plant as the product stream. 

Table 5.1 gives specifications of the circuit . 

view of the equipment. 

Plate 1 shows a general 

Two different ball charges were used, and these are shown in Table 5.2. 

The initial charge was found to be too fine for grinding larger stones. 

The coarser charge was used for all full scale runs quoted here, but 

scaled down versions of both were used for the batch runs. 

The instrumentation is also shown in Figure 5.1. All the instrumentation 

was connected to the CDC 1700. All control was of the signal to change 

type D.D.C. with manual override, which gave great flexibility. Table 5.3 
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signals to computer 

Al. Solids feed-belt 
speed setting 
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valve setting 
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Cl. Solids feed belt 
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Figure 5.1 Flowchart of milling circuit. 
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. Mill type: 

Internal 
dimensions: 

Mill speed: 

Sump capacity: 

Cyclone: 

Variable 
speed pump: 

Table 5.1 

Specifications of Milling Circuit. 

Allis Chalmers, nominal size 3ft x 4ft 
with overflow discharge 

1,22m long, 0,762m mean diameter 
7 lifters, wave ± 1,27cm about mean diameter 
0,2l7m overflow diameter 

30 r.p.m. (= 62% of critical) 

originally 0,18 m
3 

max. (unstirred) 
subsequently 0,025 m3 max. (stirred) 
(The former was used only for the mill 
outflow characteristics.) 

l50mm diameter 200 , type S.I. cyclone 
(made by R.J. Spargo) 
50mm (i.d.) vortex finder diameter 
25mm x 75mm inlet 
12,5 mm spigot diameter 

1~/1B Warman pump 
810 to 2430 r.p.m. speed range 
nominal flow of 1 tis 
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· Table 5.2 

Details of ball charges used in the pilot plant mill and corresponding batch tests. 

First load Second load -, 

Ball size Mean mass 
mm per ball Mass loaded Mass used for Mass loaded 

Mass used for 
(nominal) kg batch test 30/4 batch test 20/6 

kg % kg % kg % kg % 

30 0,126 570 63,0 23,1 63,3 63,4 6,9 2,60 7,1 

40 0,263 335 37,0 13,4 36,7 145,2 15,9 5,70 15,7 

. -
50 0,589 - - - - 312,9 34,4 12,25 33,7 

60 
, 

0,956 - - - - 245,0 26,9 9,65 26,6 

70 1,545 - - - - 145,0 15,9 6,15 16,9 
-

I 

Totals = 905 100 36,5 100 911,5 100 36,35 100 
-

I 

Ol 
tv 



Table 5.3 

Details of Measurement and Control Devices. 

Solids feed rate: calculated from actuator setting on variable speed 
belt, (weight of solids feed hopper also 
available). 

Mill water: calculated from setting of actuator on valve. 

Sump to cyclone flow: measured with M.l. flowmeter (Altometer type) 
and corrected for magnetite content from 
concentration. 

Sump volume: measured with bubble tube and electric DIP cell, and 
corrected for S.G. from concentration. 

Sump water flow: measured with orifice plate and electric DIP cell. 

Concentrations: measured by y-ray absorption using Cs137 source, and 
Philips detection heads and ratemeters. 

Sump to cyclone concentration: situated along a vertical section of 
the sump to cyclone line (approx. 0.5m long, 
flow downwards). 

Cyclone overflow concentration: situated across the discharge tank 
from the cyclone overflow (stirred). 

Mill power: 3~ power meter on supply to mill motor. 

Controls: all controls of the signal-to-change type, controlled 
directly by computer, with manual override. 

Sump pump control: Variable speed pulley drive with actuator 
Actuator time = 40,5 s for full range. 

Solids feed control: Variable speed belt with actuator 
Actuator time = 145,0 s for full range. 

Mill water control: Logarithmic control valve with actuator 
(Philips ND16 valve , 15mm nominal diameter) 
Actuator time = 91,5 s for full range. 

Sump water control: Needle valve with Rotork type 1F actuator 
Actuator time = 30,7 s for full range. 
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lists the details of the instrumentation and how each variable was measured 

or controlled. One of the remote typewriters from the computer was 

available at the plant for communications. 

cabinet on the plant. 

5.2. "Control Data 1700" computer 

Plate 2 shows the instrument 

This was a process control computer installed in the Department and used 
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for batch processing, real-time data logging, and control of pilot plants. 

Details of the system are listed in Table 5.4. Part of the system is shown 

in Plate 3. The computer was basically for control, and operated on a time 

sharing basis to . process several programmes or parts of programmes together. 

Programmes were written in Fortran IV with extra statements for real-time 

work (mainly input/output and timing). Data could be stored in a file on 

a disc for later re-use. Towards the end of this project, hardware was 

fitted for doing floating point arithmetic, which speeded up filter 

computations considerably (see results, section 6.8.10). 

5.3. Analyses 

Sampling of slurry streams was done using a bucket and stopwatch. These 

samples were then weighed, filtered, dried and weighed again to determine 

flows and densities. 

Samples for particle size analyses were then lightly crushed to break up the 

lumps, and split using a Jones riffler into suitable quantities for screening. 

These were wet deslimed on a 38 ~m sieve and re-dried before sieving using 

standard metric 200 mm sieves on an Endecotts sieve shaker. For the batch 

milling analyses, about 200 to 250 grams of sample were used and the sieving 

was done in two stacks into 17 size fractions forming the usual 12 progression 

from 6300 ~m to 850 ~m and then from 600 ~m to 53 ~m. For the s~mples from 

the continuous mill and cyclone, about 100 to 150 grams were used and sieving 



Plate 2 Instrument cabinet on plant showing ratemeters, 

control relay box, flowmeter and power supplies. 
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Table 5.4-

Details and Specifications of the Computer System Used 

(1) A central processor (1,5 ~s cycle time) with 32K of core, 

(each word 16 bits + 1 parity + 1 protect) and built-in clock. 

(2) Two disc drives, and a selection of discs each 3M words storage. 

(3) A line printer (150 lines/minute) 

(4-) A main teletype. 

(5) Four remote typewriters for communication with the computer 

from pilot plants. 

(6) A card reader (300 cards/minute) 

(7) An incremental graph plotter. 

(8) A display storage c.r.t. with an associated remote terminal. 

(9) A range of signal input/output devices consist ing of 

(i) 128 Analogue inputs multiplexed to an A/D converter 

(ii) 8 Analogue outputs 

(iii) 128 Digital inputs (contact closure) 

Civ) 9.6 Digital outputs (relay changeover) 

(v) 4- event counters 

(vi) 16 external interrupt lines 
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Plate 3 Part of the departmental computer centre with CDC 1700 control computer. 

From left: C.P.V., teletype, line printer, plotter, display 'scope, card reader. 

(J) 

-..J 
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was done on one stack following a progression of 2 from 3350 ~m to 425 ~m 

and then 12 down to 53 ~m. For the results of the runs on the milling 

circuit, only condensed particle size analyses are given in this thesis. 

These used the same 4 groups as the filter, i.e. sizes 0, 75, 212 and 

850 ~m. 

Where densities were measured, an air pyknometer was used to measure the 

actual volume of dry powder. The density was calculated from the mass 

and volume, and in the results is expressed as specific grav.ity (S.G.). 

5.4. The ore 

The ore used throughout this investigation was an apatite-calcite-magnetite-

olivine mixture from the Phalaborwa complex in the north eastern Transvaal, 

commonly known as "Phoscorite". The approximate analysis is given in 

Table 5.5. 

Table 5.5. Approximate data for the ore used 

Apatite 

Calcite (+ minor MgC03) 

Magnetite 

Serpentine-Olivine (+ minor mica) 

Average S.G. 

Range of S.G. in constituent 
minerals 

Range of hardness in 
constituent minerals 

Average Bond Work Index 

20% (by mass) 

16% " 
34% " 
30% " 

3,37 

2,71 to 5,18 

3 to 6 (Moh's scale) 

A problem encountered w.ith this ore, and perhaps typical of many ores in 

practice, is the variation in hardness and density between constituents. 

This resulted in an increase of magnetite in the circulating load in the 

milling circuit (giving an S.G. up to 3,7 in the cyclone underflow). 



Although not unimportant, this was ignored in most cases, and most tests 

were done using the average rock at that point in the circuit. This 

caused some scatter in the' results, and is discussed in Chapter 7. 
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The rock supplied by the Phosphate Development Corporation had been crushed 

to -9,5 mm. This was then fed directly from storage to the milling circuit. 

5.5. Off-line tests 

The following off-line tests were done: 

1) Batch milling experiments to get parameters for the grinding model. 

2) Cyclone tests to get classification and flow behaviour data. 

3) Mill overflow characteristics, for transport model. 

4) Calibrations of instruments. 

5.5.1. Batch milling 

Two sets of runs, 30/4 and 20/6, were done on a batch mill to determine 

selection and breakage function data. The data from both of these runs 

are presented in the results, although only run 20/6 data were used in the 

filter. A 30,5 cm by 30,5 cm batch mill was used. Quantities in the 

large mill were scaled down in proportion to volume, and the percent of 

critical speed was kept approximately the same. Each set of runs consisted 

of a sequence of samples ground for different times to determine the 

selection and breakage functions corresponding to normal operation, and a 

set of grinds with varying slurry density and charge to determine the effects 

of these two variables. These latter grinds were all done for twenty 

minutes with the total slurry charge and density put separately at two levels, 

e~ually spaced each side of the mean. After doing set 30/4, the ball load 

in the pilot plant was altered, and the second set 20/6 was then done on the 

new load. Ball charges used are given in Table 5.2. 
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A fairly representative sample of fresh ore was drawn off from the solids 

feed system and split into 16 equivalent lots using a Jones riffler. Each 

sample was then rounded off by hand addition or removal to the desired mill 

load. A separate sample of solids was used for each grind, and the mill 

was completely washed out between grinds. 

5.5.2. Cyclone tests 

The filter required details for two models involving the cyclone, one giving 

the volumetric split and the other the solids classification for each particle 

size group. The cyclone was tested in situ in the milling circuit. 

Perturbations were deliberately added to get data over a wide range. Two 

sets of runs were done solely to collect cyclone data, and further data were 

added from samples taken during other runs. 

The ore used was not homogeneous. To simplify the model it was assumed 

that the solids would behave in some "average" way for classification, but 

variations in solids S.G. between feed, overflow and underflow were taken 

into account in analysing the results. 

The size of a cyclone required for a pilot plant scale milling circuit means 

that the cyclone operates under near limiting conditions. This makes the 

useful range of operation smaller, as well as making the cyclone operation 

noisy and potentially troublesome. Some earlier work (not reported here) 

was needed to get the cyclone operating properly. 

5.5.3. Mill outflow characteristics 

In the filter model, the mill and sump were assumed to behave as ideal stirred 

tanks, and the mill was assumed to have first order outflow characteristics 

(Section 4.3.1.). An experiment was done to check this and obtain the 

constant in the overflow equation. 

The mill was put/ ... 
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The mill was put into normal closed circuit operation. At a given time, 

all feeds to the mill and sump, and the sump withdrawal were stopped. The 

mill, which had been overflowing normally, continued to overflow and fill 

the sump, and the volume in the sump was recorded as a function of time. 

Finally, the mill was stopped and rolled back so that the charge was 

horizontal. The total volume of water overflowed was added to the 

calculated remaining volume of the charge, to get the operating volume of 

the mill. 

5.5.4. Calibrations of instruments 

Because the filter required actual values of variables on the plant, a large 

number of calibrations were required. It was also found to be necessary 

to continually re-calibrate as instruments drifted, or as they failed and 

were repaired, or as plant changes were made. A minor change would often 

mean a major re-calibration. As well as calibrating between sensing 

elements and the computer, the characteristics of the control devices were 

determined from actuator time to position and then to value of controlled 

variable. 

The calibrations of most of the devices were simple, and usually linear. 

Solids feed rate was calculated very approximately from the variable speed 

belt setting, using a quadratic equation . The mill water valve was 

logarithmic and had a noticeable hysteresis, which was included in the 

calibration. The sump pump controller was not calibrated as it was 

dependent on the slurry being pumped, but the actual flow was measured with 

a magnetic induction flowmeter and then corrected slightly for the magnetite 

content from the concentration measurement. Concentrations from the nuclear 

gauges were calculated by 

Concentration = K x ln (water reading - background ) 
present reading - background 

where K is/ ... 

(5.1) 



where K is a constant dependent on the syst em 

background = background count rate (without source) 

water reading = count rat e with only water in the system. 

5.5. Runs done on mill for filt er 
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The data from four runs which totalle d over ten hours of useful operation, were 

used for testing the filter. Because of the cost of the ore it was not 

possible to run for a long time, and so the circuit was deliberately 

perturbed over as wide a range as possible during the runs. Some short 

runs were done earlier for debugging the system and programmes, but they 

were found to be of no use for .detailed studies. 

A control programme, IBMILL, was written to control the plant, log data on 

a disc file, and write out data on the remote typewriter. Another programme 

was written for communicating with the control programme to alter set points, 

controller settings, etc. The first two runs, 18/10 and 23/10, (coded 

"A" and "B" respectively) were done to get data, without the filter operating 

in real time. After the filter had been tested off-line on these stored 

data, it was modified to run on-line as programme IBOLMF. IBMILL was extended 

to operate with this filter. Runs 16/4 and 18/4 (coded "c" and "D" 

respectively) were done with the filter operating in real time. 

Controller settings were made deliberately slack, so that natural fluctuations 

would be large for tracking by the filter. 

was as follows: 

The D.D.C. control scheme used 

1) Control the sump water from the cyclone feed concentration. 

2) Control the sump pump from the pump flow (a fast loop), where 

the flow set point was controlled from sump level. 

3) Control the solids fe ed from the solids flow to the cyclone, 

calculated from the flow and concentration. 



4) Control the mill water in proportion to the solids feed. 

5) If the sump level goes too low, increase the sump water 

regardless of other control. 

6) If the cyclone feed concentration was low, (e.g. during start-up) 

control the sump water from the level and keep the pump flow set 
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point fixed. Otherwise control remained the same. Settings were 

made to give a smooth change-over to normal control. 

7) During runs C and D, if it was desired to control from the filter 

results, the mill feed solids could be controlled from the predicted 

underflow concentration, and the sump water from t~e predicted -75 ~m 

fraction in the overflow product. Otherwise the control remained 

the same. Some difficulty was experienced in setting the controller 

constants here. 

Aithough control was automatic, at least one assistant was required when 

doing runs in case of a breakdown. Start-up and shutdown were performed 

manually. Several hours before a run the ratemeters were switched on, 

and a quick check was made that the circuit was ready. Sample buckets were 

also prepared. The other instruments were switched on when the run was 

ready to start, and the ratemeter water counts were checked and entered in 

the control programme. The mill was started in open circuit, and extra 

water was added to the sump during startup. The mill control programme 

could be scheduled at any time, and the sump control switched to automatic 

immediately. The circuit was closed by re-routing the sump withdrawal to 

the cyclone, and all controls were then put on automatic. 

Samples were taken during the runs at approximately 5 to 10 minute intervals. 

These samples were for use in checking the filter, and so it was attempted to 

take them more frequently when more detailed data were needed. During runs 

A and B, and up to 90 minutes in run C, the overflow was sampled at the outflow 

of the density tank. Thereafter the cyclone discharge was sampled directly. 
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A few underflow samples were taken directly at the cyclone spigot. 

Shutdown was the reverse of startup, and was generally faster. After each 

run, the samples were analysed, and a plot on the computer graph plotter 

was drawn up of the main variables, using the stored data. 



Chapter 6 

RESULTS 

The results from this study form two main groups, the experimental data and 

the filter results. The experimental data comprise the off-line tests 

and the raw data from the runs on the milling circuit. In the results 

from the filter, the filter predictions for each of the runs are shown and 

compared with the sampled values, and the effects of various factors in the 

filter are demonstrated. Finally, the real time requirements of the 

filter are examined, and the use of a quadrature filter is shown. 

6.1. Batch milling results 

The results of the two sequences of batch grinds (runs 30/4 and 20/6) are 

listed in Tables 6.1 and 6.2 respectively, and are displayed for comparison 
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in Figure 6.l. In this figure, the cumulative mass percent has been plotted 

on .a linear axis against particle size on a log axis, to give nearly equal 

weighting to each fraction. The effect of the difference between the two 

ball loads is clearly visible. 

The regression on these data to get selection and breakage functions was done 

as explained in the theory, Section 4.2.1. The initial values of the model 

parameters to be used in the regression were estimated in various ways, but 

~ere fairly close to the calculated best fit values and so one may assume that 

the final regressed values were reasonably optimal. Tables 6.3 and 6.4 

summarise the results. Reasonably good fits were obtained as shown by the 

lines in Figure 6.~ even though the ore was not homogeneous. In Figure 6.2 

the selection functions are plotted against particle size, and in Figure 6.3 

the breakage functions are plotted together with the breakage function of 

Broadbent and Callcott for comparison. 

To use these data/ •.. 
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Table 6.1 Batch milling results for run 30/4 

Table of individual mass fractions per size grOUp for each grind time. 

Grind time, minutes 

° 5 10 15 20 30 

0,0984 0,0795 0,0810 0,0667 0,0416 0,0255 

0,2071 0,1134 0,0757 0,0780 0,0456 0,0147 

0,1940 0,1221 0,0821 0,0450 0,0347 0,0111 

0,1369 0,0835 0,0471 0,0233 0,0158 0,0039 

0,0767 0,0450 . 0,0278 0,0143 0,0093 0,0033 

0,0596 0,0432 0,0233 0,0103 0,0068 0,0022 

0,0397 0,0376 0,0216 0,0114 0,0070 0;0024 

0,0325 0,0428 0,0309 0,0175 0,0102 0,0032 

0,0247 0,0451 0,0418 0,0288 0,0174 0,0053 

0,0223 0,0548 0,0649 0,0587 0,0429 0,0161 

0,0201 0,0612 0,0869 0,1002 0,0961 0,0595 

0,0152 0,0516 0,0797 0,1041 0,1218 0,1175 

° ,-0118 0,0403 0,0629 0,0827 ! 0,1032 0,1324 

0,0111 0,0392 0,0618 0,0815 0,1036 0,1405 

0,0089 0,0288 0,0447 0,0590 0,0732 0,0982 

0,0065 0,0212 0,0329 0,0409 0,0527 0,0710 

0,0379 0,0908 0,1346 0,1777 0,2182 0,2933 
-- - ---- ------ -- --

40 ' 

0,0084 

0,0042 

0,0035 

0,0014 

0,0014 

0,0009 

0,0010 

0,0014 

0,0019 

0,0064 

0,0284 

0,0894 

0,1275 

0,1620 

0,1178 

0,0892 

0,3551 
I 

-..J 
Ol 
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Table 6.2 Batch milling results for run 20/6 

Table of individual mass fractions per size group for each grind time. 

Grind time, minutes 

° 2 5 10 15 20 

0,0762 0,0708 0,0358 0,0168 0,0033 0,0055 

0,1589 0,0736 0,0573 0,0193 0,0079 0,0000 

0,1438 0,1191 0,0663 0,0219 0,0083 0,0007 

0,1131 0,1013 0,0694 0,0137 0,0031 0,0001 

0,0893 0,0846 0,0610 0,0197 0,0026 0,0003 

0,0694 0,0771 0,0729 0,0321 0,0070 0,0009 

0,0537 0,0639 0,0710 0,0555 0,0160 0,0029 

0,0460 0,0616 0,0755 0,0856 0,0474 0,0138 

0,0379 0,0531 0,0702 0,1013 0,0910 0,0474 

0,0372 0,0520 0,0729 0,1101 0,1316 0,1169 

0,0350 0,0503 0,0725 0,1098 0,1453 0,1623 

0,0266 0,0384 0,0564 0,0880 - 0,1181 0,1437 

0,0210 0,0294 0,0423 0,0630 0,0827 0,1010 

0,0192 0,0271 0,0396 0,0592 0,0773 0,0942 

0,0151 0,0210 0,0293 0,0429 0,0550 0,0668 

0,0118 0,0169 0,0202 0,0303 0,0407 0,0493 

0,0460 0,0597 0,0874 0,1305 0,1626 0,1941 

30 

0,0000 

0,0000 

0,0000 

0,0000 

0,0000 

0,0002 

0,0002 

0,0014 

0,0078 

0,0448 

0,1277 

0,1616 

0,1314 

0,1223 

0,0851 

0,0688 

0,2485 

40 

0,0000 

0,0000 

0,0000 

0,0000 

0,0000 

0,0002 

0,0002 

0,0004 

0,0025 

0,0157 

0,0777 

0,1396 

0,1421 

0,1398 

0,1004 

0,0814 

0,2998 

'I 
'I 
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Table 6.3 

Regressed values of selection and breakage function 
for run 30/4 in batch mill. (Smaller mean ball 
size in mill.) 

Particle size group 

number range in ~m 

1 6300 - 9500 

2 4750 - 6300 

3 3350 - 4750 

4 2360 - 3350 

5 1700 - 2360 

6 1180 - 1700 

7 850 - 1180 

8 600 - 850 

9 425 - 600 

10 300 - 425 

11 212 - 300 

12 150 . - 212 

13 106 - 150 

14 75 - 106 

15 53 - 75 

16 38 - 53 

17 ° - 38 

Selection function 
-1 

min 

0,0397 

0,1061 

0,1743 

0,2887 

0,4771 

0,5561 

0,6208 

0,5068 

0,3975 

0,2295 

0,1175 

0,06622 

0,04024 
, 

0,01283 

0,005957 

0,007743 

° 

Breakage function 
from 1st s iz e 
group (individual) 

° 
0,5949 

0,1004 

0,0741 

0,0530 

0,0448 

0,0305 

0,0248 

0,0186 

0,0143 

0,0108 

0,0082 

0,0062 

0,0047 

0,0036 

0,0026 

0,0086 

Parameters for breakage function (equation (4.2.5)) 

a:l = 0,4964 a: = 18 27 
2 ' a: = 0,7957 3 
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Table 6.4 

Regressed values of selection and breakage 
functions for run 20/6 in batch mill. 
(Larger mean ball size in mill.) 

Particle size group 

number range in ~m 

1 6300 - 9500 

2 4750 - 6300 

3 3350 - 4750 

4 2360 - 3350 

5 1700 - 2360 

6 1180 - 1700 

7 850 - 1180 

8 600 - 850 

9 425 - 600 

10 300 - 425 

11 212 - 300 

12 150 - 212 

13 106 - 150 

14 75 - 106 

15 53 - 75 

16 38 - 53 

17 ° - 38 

Selection function 

min -1 

0,1464 

0,3667 

0,3839 

0,4350 

0,4885 

0,4412 

0,4056 

0,2948 

0,2158 

0,1321 

0,07445 

0,04838 

0,03892 

0,02161 

0,01627 

0,01263 

° 

Breakage function 
from 1st size 
group (individual) 

° 
0,6661 

0,0966 

0,0583 

0,0414 

0,0349 

0,0237 

0,0192 

0,0144 

0,0110 

0,0083 

0,0063 

0,0048 

0,0036 

0,0027 

0,0020 

0,0066 

Parameters for breakage function (equation (4.2.5)) 

0:1 = 0,6071 0: 2 = 12,0 0:3 = 0,8004 
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To use these data, it was necessary to recalculate the parameters for the 

four size fractions used in the filter, as explained in Section 4.2.1, 

equations (4.2.7) to (4.2.9). The results of this data compression are 

given in Table 6.5. The lumped selection functions are also included in 

Figure 6.2. The calculated standard deviation due to lumping together of 

the particle size groups, equation (4.2.9), is also given, although the 

actual error is not likely to be as great. The error is particularly 

large where the selection function curve is decreasing with particle size. 

Fortunately, this is associated with a large mean, and is hence not the rate 

controlling step in grinding from coarse to fine rock. The reduced data 

from run 20/6 were used directly for all the filter computations shown in 

this thesis, as they matched the ball load distribution used. They were 

used in the p.s.d. filter as the values of the Sand b functions in the 

grinding model. 

The size analyses of the two feed samples used for the batch grinds were 

averaged to obtain a mean value of the mill feed for use in the filter. 

This analysis is shown in Table 6.6. 

Table 6.6. Averaged feed size distribution 

Size range, ~m Percentage in range 

850 - 9 500 75,7 

212 - 850 12,8 

75 - 212 5,25 

o - 75 6,25 

The grinds which were done with the varying slurry concentration and total 

charge were used to determine the effects of these factors on the grinding 

model as explained in the theory, Section 4.2.1. These grinds were all 

done for 20 minutes. Figure 6.4 shows the graphs of the D
25

, D50 and D75 

against time for the two sequences of batch grinds. On these lines, the 

n n / 



Table 6.5 

Selection and breakage functions for lumped size groups 

Results of data compression on grinding data for runs 30/4 and 20/6 

D 
(..l:.) 0,6 *Rate scaling factor = 
D2 

= 1,733 

Run 30/4 

Particle size Selection functions Breakage functions, fractions 
group min-1 into 

Num- std. scaled Group Group Group Group 
ber range ~m mean 

devs. mean 
1 2 3 4 due to for 

lumping big 
mi1l1: 

1 850-9500 0,1582 0,2028 0,2740 - 0·,7545 0,1378 0,1077 

2 212-850 0,1121 0,0112 0,1942 - - 0,6152 0,3848 

3 75-212 0,01644 0,00300 0,02848 - - - 1,0000 

4 0-75 - - - - - - -

Run 20/6 

Particle size Selection functions Breakage functions, fractions 
group min-1 into 

Num- std. scaled 
ber 

range ~m mean 
devs. Group Group Group Group mean 
due to for 1 2 3 4 

lumping big 
mill": 

1 850-9500 0,1212 0,1237 0,2099 - 0,7651 0,1324 0,1025 

2 212-850 0,05562 0,01135 0,09634 - - 0,6544 0,3456 

3 75-212 0,01536 0,00447 0,02661 - - - 1,0000 

4 0-75 - - - - - - -
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D
25

, D
30 

and D75 for the varying charge and concentration runs have been 

plotted, and a line corresponding to a mean time has been drawn for each set 

of three points, to give the equivalent grinding time, teo From these 

results, the rate scaling factors were calculated using equation (4.2.6). 

These rate scaling factors are plotted in figure 6.5. The difference between 

the ball charges is noticeably different, but the general trends are the same. 

Approximate linear relationships from these graphs, scaled for the pilot 

plant mill, were:-

= 1,0 10,0 x (V
M 

- 0,1435) (6.1) 

= 1,0 - 6,34 x 10-4 x (CM - 1500) (6.2) 

where K
L

, KC are the rate scaling factors for load and concentration 

respectively 

V
M 

is the actual volume in the pilot plant mill (m3 ) 

C
M 

is the actual concentration in the pilot plant mill (kg/m3 ) 

Because the effect of concentration was more difficult to incorporate in the 

filter, only equation 6.1 was used, even though the total effects were about 

the same in the normal operating range. This scaling factor was evaluated 

each time after the volumetric filter to account for the effect of changes 

in the mill volume on the rates of grinding in the p.s.d. filter. 

6.2. Errors in analyses 

The feed sample for the first sequence of batch tests (30/4) was split and 

analysed as four separate samples to get an estimate of the repetition error 

in the sample analyses. Table 6.7 shows these results for the 17 size 

fractions, and condenses these into the four size fractions used in the 

filter. 

6.3. Cyclone datal ... 
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Table 6.7 

Typical Particle Size Analysis Errors 

(feed 'sample for experiment 30/4) 

Particle size Average mass % Standard std.dev. 
range, microns in group Deviation of C.v.= mean mass % 

° - 38 3,70 0,11 0,031 

38 - 53 0,64 0,02 0,035 

53 - 75 0,85 0,05 0,053 

75 - 106 1,14 0,06 0,050 

106 - 150 1,19 0,04 0,029 

150 - 212 1,52 0,04 0,025 

212 - 300 2,03 0,05 0,025 

300 - 425 2,22 0,03 0,013 

425 - 600 2,47 0,08 0,032 

' 600 - 850 3,26 0,09 0,027 

850 - 1180 4,04 0,12 0,030 

1180 - 1700 5,96 0,14 0,024 

1700 - 2360 7,69 0,25 0,033 

2360 - 3350 13,45 0,23 0,017 

3350 - 4750 19,80 1,06 0,054 

4750 - 6300 19,30 1,75 0,091 

6300 - 9500 10,75 1,96 0,182 

° - 75 5,19 0,14 0,027 

75 - 212 3,85 0,12 0,030 

212 - 850 9,98 0,25 0,025 

850+ ' 80,98 0,47 0,006 
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6.3. Cyclone data 

The results from the cyclone show considerable scatter. Several reasons for 

this were outlined in Section 5.5.2, but the main causes were the use of a 

mixed ore, the scale of operation, and a poor model. It is an obvious 

area for further development of the filter. 

Initially, two sets of runs, 23/7 and 5/8, were done, each giving 7 pairs of 

overflow and underflow samples. From these, graphs of classifier 

characteristics were drawn and the D was read. 50 corrected 
These D 

50 corrected 

were then plotted against feed rate and feed concentration to check against 

the results quoted in literature. They are shown in ~igures 6.6 and 6.7 

respectively. Also shown in Figure 6.7 are two correlations for D50 corrected 

against concentration from sources in literature as indicated. Similar 

trends can be seen in the experimental points above the scatter. The 

allowable operating region for the feed flow in Figure 6.6 was limited, but 

no trends can be seen. We may therefore assume that the cyclone could be 

adequately modelled either by fixed classifier constants, or slightly better 

by linear functions of feed concentration. 

The filter required classification parameters for each of the four size 

groups separately, so the cyclone data were also calculated in this form. 

The results of runs 23/7 and 5/8 are shown in Figure 6.8 as the corrected 

classifier functions against feed concentration for each size group. Linear 

regressions were done on these to fit equation (4.2.~1), and the results 

are given in Table 6.8. 

When runs A and B were done on the milling circuit to collect data for 

filtering, it was found from samples of the overflow and underflow taken 

together that the cyclone behaviour had changed slightly. From these new 

samples, corrected classifier functions were calculated and are shown in 

Figure 6.9 against feed concentration. These points were insufficient to 

do a full linear/ ... 
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Table 6.8 Corrected classifier functions for individual 
size groups, from runs 23/7 and 5/8 

. 
Particle size range, llm linear classifier functions of feed conc. 

850 to 

212 to 

75 to 

0 to 

cCOi 
cC

li 

9500 1,0073 -0,2894 x 10-4 

850 0,9479 -1,4582 x 10 
-L~ 

212 0,8088 -3,276 x 10-4 

75 0,1904 -1,364 x 10-4 

Table 6.9 Corrected classifier functions for individual 
size groups, from runs 18/10 and 23/10 

Particle size mean 
range llm corrected linear classifier functions of feed 

850 to 

212 to 

75 to 

0 to 

classifier 
constants, cCOi cC

li 
cCi 

9500 0,9351 0,9543 -0,2894 x 10 
-4 

850 0,6660 0,7629 -1,458 x 10-4 

212 0,3516 0,5694 -3,276 x 10-4 

75 0,0144 0,1051 -1,364 x 10-4 

Table 6.10 Corrected classifier functions for individual 
size grOUpS, data from all runs. 

conc. 

Particle size range, llm linear 'classifier functions of feed conc. 

cCOi cCli 

850 to 9500 0,96229 +0,0614 x 10-4 

212 to 850 .0,78381 -0,0826 x 10-4 

75 to 212 0,60516 -1,6883 x 10-4 

0 to 75 0,11496 -0,7623 x 10-4 
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do a full linear regression, and so the slopes of the lines from the previous 

regressions (Table 6.8) were put through the averages of the new points to 

obtain the classification parameters shown in Table 6.9. 

The values of cC
Oi 

and cC
li 

given in Table 6.9 were used for all the filtering 

tests. They were used in t?e p.s.d. filter. From the volumetric filter, 

and the predicted concentrations in the p.s.d. filter from the previous step, 

the flow split in the cyclone was calculated. From this and the corrected 

classifier constants in Table 6.9, the actual classifier constants were 

calculated as explained in Section 4.2.2. 

Finally, as shown in Section 6.8.2, different values of classifier functions 

were used to test the effects of this factor. To get values for this, all 

the data from runs 23/7, 5/8, 18/10 (run A) and 23/10 (run B) were put in a 

regression, and the results are shown in Table 6.10. The values of cC
Oi 

and 

cC
li 

in this table were only used for this one test, and represented a generally 

finer cut than the average. 

The flow model for the cyclone assumed that the underflow was fairly 

constant over the range of operation, independent of the feed flow or 

concentration {equation (4.2.10)). The data from runs 23/7 and 5/8 were 

plotted as underflow volume flow rate against feed concentration and feed 

flow rate. These two graphs are shown in Figure 6.10. Although there 

is scatter, there is no noticeable dependence on either feed flow or 

concentration, and the points are fairly constant. From these data, the 

average and variance were calculated and are shown in Table 6.11. 

Table 6.11 Cyclone flow data (equation 4.58) 

Mean underflow rate, ~O = 

Error variance, CJ2 = 0,383 x 10-8 m6/s2 
£ 

E d . ~2 rror stan ard devlation, Y0 = 
£ 

-4 3 0,619 x 10 m /s 
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The values in Table 6.11 for the cyclone flow model were used in the 

volumetric filter as parameters. 

6.4. Mill overflow characteristics 

The results from the overflow test on the mill are shown in Figure 6.11. 

96 

The graph shows the volume in the sump as the mill overflowed into it, 

plotted against time (as explained in Section 5.5.3). It seemed reasonable 

to assume that the overflow characteristics were first order, and that 

equation (4.3.2 ) would apply. From the slope of the curve at the start, 

the flow rate through the mill was determined. The operating volume of the 

mill, V
M

, and the minimum volume, V
MO

' were calculated as explained in 

Section 5.5.3. From these, the parameters in Table 6.12 were calculated 

for equation (4.3.2). 

Table 6.12 

Model: 

= 

= 

Mill overflow model parameters 

3 0,0935 m 

-1 
0,01 s 

(4.3.2) 

These values were used in the volumetric filter in the mill flow model. 

6.5. Results of runs on milling circuit 

Runs coded "A" and "B" (18/10 and 23/10 respectively) were done on the 

milling circuit to get data for testing the filter. Runs coded "e" and 

"D" 06/4 and 18/4 respectively) were done with the filter running in real 

time. The data from all runs were stored on a disc file. Run B "las the 

most successful, and it was used for doing most of the off-line tests. 

The graphs of/ ... 
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The graphs of the raw data from each run shown ahead are intended as 

summaries of how the main variables behaved during the runs. Greater 

detail is shown in the filter results. 

on a disc file on the CDC-1700. 

The complete set of data was kept 

The particle size analyses for these runs, although done as explained in 

Section 5.3, are quoted only in a condensed form for the sizes used in the 

filter. The times at which the samples were taken are shown in each graph. 

6.5.1. Run A 

The graphs of the measurements taken during this run are shown summarised in 

Figure 6.12. Twelve samples were taken of the cyclone overflow, and one of 

the underflow. Summarised analyses of these samples are given in Table 6.13. 

During the run, the mill concentration rose so high that the stones vlhich 

were discharged overloaded the cyclone after about 48 minutes. This gave a 

very coarse cut and the overflow tank sanded up, resulting in abnormally high 

overflow concentration measurements. The sump ran low as a result of the 

decreased circulating load, and the control on the sump water cycled while 

trying to bring the level up. · The run terminated shortly afterwards. 

6.5.2 • .. Run B 

Figure 6.13 shows the graphs for this run, and Table 6.14 gives the analyses 

of the samples. 28 overflow samples and 6 underflow samples were taken. 

This run continued for over three hours and gave much useful data. During this 

time, conditions varied over a wide range and only two minor upsets were exper­

ienced. A fuse blew in the controller box at about 55 minutes, but was quickly 

repaired. The second upset occurred when the line to the cyclone blocked at about 

100 minutes, but this was also quickly cleared. The cyclone behaved well and 

operated around a fast rope to a spray discharge throughout the run. Some large 

stones were discharged from the mill towards the end, but they did not cause any 

trouble. During the run, the cyclone feed concentration set point was deliberately 

lowered for a period of about 40 minutes to provide a perturbation on the 
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Table 6.13 

Analyses of Samples for Run A. 

Sample Sample Volumetric Concentration, Cumulative Particle Size 
No. Type flow kg solids/ Analyses 

xlO-3 m3/s m3 slurry -75 lIm -212 lIm -850 lIm 
. . 

9< . o . 9< . o . % 

Al OIF 0,535 536 37,67 70,56 98,62 

A2 OIF 0,402 477 37',74 70,05 98,72 

A3 O/F 0,618 476· 34',61 69,26 98,83 

A4 OIF 0,600 505 30',99 65,54 98,04 

A5 U/F 0,387 1690 5,75 18,97 71,02 

A6 OIF 0,475 505 29,,49. . . 59,95 9.7,04 

A7 OIF 0,549 532 22,65' ' 46,34' 88,21 

A8 O/F 0,732 538 20,36 46,00 88,55 

A9 O/F 0,664 269 31,21 60,02 94,82 

AI0 O/F 0,495 343 33',85 61,16 9.5,50 

All OIF 0,466 415 29,05 59,81 97,30 

A12 OIF 0,620 365 27,71· 54,85 95,46 

A13 O/F 0,819 358 25,99 55,05 93,82 

. . . , . 
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Table 6.14 

Analyses of Samples for Run B. 

Sample Sample Volumetric Concentration Cumulative Particle Size 
No. Type flow kg solidsl Analyses 

xlO-3 m3/s m3 slurry -75 l1m -212 l1m -850 l1m 
% % % 

Bl OIF 0,735 325 35,00 70,11 99,03 

B2 OIF 0,551 349 36,80 72,02 99,28 

B3 U/F 0,440 810 16,10 50,00 98,40 

-BI.j. OIF 0,246 398 38,96 76,87 99,76 

B5 OIF 0,253 465 37,25 75,66 99,76 

B6 U/F 0,488 692 25,50 63,07 98,83 

B7 O/F 0,241 468 43,98 84,09 99,85 

B8 OIF 0,261 472 44,76 82,09 99,81 

B9 OIF 0,318 437 41,99 78,62 99,59 

B10 U/F 0,473 701 25,72 61,37 98,77 
, 

Bll OIF 0,148 479 40,80 78,04 99,79 

B12 OIF 0,194 474 42,20 80,80 99,84 

B13 OIF 0,506 355 43,32 80,62 99,78 

B14 OIF 0,449 310 47,08 83,38 99,89 

B15 OIF 0,559 327 45,99 83,82 99,85 

B16 OIF 0,675 271 43,57 80,86 99,74 

B17 U/F 0,440 570 21,43 56,63 97,93 

B18 OIF 0,584 315 42,53 79,76 99,66 

B19 OIF 0,588 323 39,46 76,22 99,62 

B20 OfF 0,620 284 40,10 75,96 99,58 

B21 OIF 0,417 423 39,39 76,30 99,63 

B22 OIF 0,503 440 38,98 75,60 99,56 

- continued overleaf -
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Table 6.14 (contd.) (Run B sample analyses) 

Sample Sample Volumetric Concentration Cumulative Particle Size 
No. Type flow kg solids/ Analysis 

xlO-3 m3/s m3 Slurry 
-75 J.lm -212 J.lm -850 J.lm 

% % % 

B23 OIF 0,470 403 36,39 70,52 98,92 

B24 O/F 0,478 362· 39,88 72,73 99,25 

B25 O/F 0,607 342 37,26 71,06 99,04 

B26 O/F 0,838 339 34,55 68,89 98,59 

B27 U/F 0,375 1605 5,60 26,43 83,11 

B28 O/F 0,995 265 35,09 69,41 97,65 

B29 O/F 1,001 229 34,30 67,63 97,85 

B30 O/F 0,812 215 37,47 70,33 99,25 

B31 O/F 0,790 302 33,28 68,18 99,23 

B32 U/F 0,373 1189 9,53 39,18 95,06 

B33 OIF 0,656 324 34,18 69,53 99,39 

B34 O/F 0,816 301 34,37 69,07 98,98 
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system. Around 150 to 170 minutes, the sump pump was running near the 

maximum of its range. 

6.5.3. Run C 

The plots for this run are shown in Figure 6.14, and the sample analyses in 

Table 6.15. 

collected. 

15 overflow samples were taken but no underflow samples were 

At the beginning, the samples were taken after the cyclone 

overflow tank, but from sample 9 onwards the overflow was sampled directly 

at the cyclone discharge. 

This was the first run done to test the filter on line, and it performed 

satisfactorily. (Filter results are shown ahead.) Some time-sharing 

difficulties had been experienced earlier while debugging the programme, 

caused by the complexity and size of the on-line filter, but these were 

remoyed before doing the run. 

At the beginning, the potentiometer on the solids feed actuator came loose, 

and some of the readings were below the actual value, giving a low solids 

feed rate. This was repaired after 50 minutes, and the run continued. 

After 42 minutes, and again after 95 minutes, it was attempted to control 

the plant from the filter, as explained in Section 5.6, but the controller 

settings were too high, and instability resulted, particularly on the sump 

water. (Note that the control strategy was not written into the filter, but 

control changes were entered after each observation as part of the volumetric 

filter. Consequently, a change in control strategy such as this would not 

require a reformulation of the filter.) Both times the plant was put back 

on normal control after a few minutes. The measurements of the sump 

volume were found to have a slight uniform offset throughout the run (later 

found to be caused by the instrument), and so the set point was set to 

0,020 m
3 

in place of the normal 0,016 m3 Otherwise the circuit and the 

filter worked well. The cyclone operated with a fast rope most of the time, 

except when the oscillations from the filt er control caused it to block 
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Table 6.15 

Analyses of Samples for Run C. 

All samples of cyclone overflow. 

Sample Volumetric Concentration Cumulative Particle Size 
No. flow . kg solids/ Analysis 

~10-3 m3/s m3 slurry 
-75 llm -212 llm -850 llm , 

% % % 

Cl 0,082 642 44,90 84,21 99,85 

C2 0,207 756 43,68 82,38 99,78 

C3 0,194 735 44,61 81,51 99,68 

C4 0,136 792 44,13 80,16 99,54 

C5 0,563 380 48,39 84,80 99,85 

C6 0,499 324 44,32 77 ,70 99,18 

C7 0,585 340 40,68 75,99 99,47 

C8 0,490 352 39,07 71,99 99,09 

C9 0,395 316 46,83 79,16 99,71 

CIO 0,296 386 47,82 82,82 99,88 

Cll 0,287 525 37,80 78,04 99,85 

C12 0,123 581 43,51 82,30 99,93 

C13 0,148 776 38,79 82,97 99,92 

C14 0,089 647 46,66 86,00 99,94 

C15 0,104 754 45,90 86,64 99,94 
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6.5.4. Run D 

Figure 6.15 shows the plots of the data from this run, and the analyses of 

the 15 overflow samples are given in Table 6.16. All samples were taken 

at the cyclone discharge. 

The operating conditions did not fluctuate much during this run. From 55 

to 80 minutes it was attempted to control from the filter results using new 

controller settings but, while this was less erratic than run C, it did not 

work well. The sump overflowed slightly from 75 to 80 minutes. Never-

theless, control was achieved as desired. To attempt to perturb the circuit, 

two manual increases were made on the solids feed controller at 83 and 

138 minutes. The equipment behaved well throughout the run. 

6.6. Values of parameters used in the filter 

The values of the parameters summarised in Table 6.17 were the standard values 

used for the tests done on the filter. Their explanation is as follows. 

(Where non-standard values were used in a test, the reason is given in the 

section dealing with that test.) 

(1) The grinding data (selection and breakage functions), cyclone data 

2 
(~o' ccl ' Quo' cr

E
), feed size distribution, and mill overflow parameters 

were determined from off-line experiments as explained already in Sections 

6.1 to 6.4. The rate scaling factor KC was kept constant at 1,0, while 

~ was calculated from equation 6.1. 

were also changed from min-l to s-l 

The units of the selection function 

(2) The classification parameter vectors, ~, y, and ~ for the mill, sump 

and cyclone overflow tank respectively, were all given values of unity, 

except where a different value could be adequately justified. Thus, in the 

coarsest size fraction, the mill parameter 8
1 

was given a value· of 0,1 as 

this fraction was generally held back in the mill. Earlier tests seemed to 
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Table 6.16 

Analyses of Samples for Run D 

All samples of cyclone overflow. 

Sample Volumetric Concentration Cumulative Particle Size 
No. flow kg solids/ Analysis 

xlO-3 m3/s m3 slurry -75 ~m -212 ~m -850 ~m 
% % % 

Dl 0,139 671 46,79 86,88 99,90 

D2 0,235 525 45,30 82,27 99,77 

D3 0,262 796 42,86 81,14 99,76 

D4 0,126 759 45,93 80,07 99,69 

D5 0,136 767 45,32 80,05 99,68 

D6 0,869 222 46,80 81,12 99,60 

D7 0,052 379 55,05 90,96 99,95 

D8 0,152 849 41,51 79,89 99,70 

D9 0,186 844 42,00 79,98 99,67 

DIO 0,141 764 43,53 79,29 99,73 

Dll 0,135 815 42,-79 79,48 99,76 

D12 0,112 903 44,05 79,75 99,73 

D13 0,212 865 44,60 80,76 99,61 

D14 0,262 748 44,84 79,48 99,50 

D15 0,352 540 53,10 85,01 99,61 



Table 6.17 

Standard values of parameters 

used in the filter. 

Parameter 

Observation interval 

Mean cyclone underflow rate, 'QuO -

Standard deviation of cyclone underflow 
rate 

Mill overflow constant 

Mill minimum charge volume, V MO 

Specific gravity of solids 

Softness factor, KS 

Variance of softness, 0 2 
KS 

Selection function vector, S 
-0 

Breakage function matrix, g, 
Mill exit classification vector, 8 

Sump exit classification vector, ~ 

Cyclone overflow tank classification 
vector, :!l 

Noise vector for grinding model, i 

Cyclone classifier functions, ~ and cC
l 

Feed solids size distribution 

Standard deviation of cyclone overflow 
concentration 

Standard deviation of cyclone feed 
concentration 

Value 

5,0 seconds 

0,0619 i:10 -3 

0,01 -1 
s 

0,0935 3 m 

3,37 

0,9 

0,02025 

~ as given in 
) Table 6.5 

m3 Is 

T 
(0,1 1,0 1,0 1,0) 

(1,0 1,0 1,0 1,0)T 

T (10,0 1,0 1,0 1,0) 

T (2,5 0,5 0,5 0,5) 

as in table 6.9 

as in table 6.6 

400,0 

200,0 

3 kglm 

3 kglm 

110 
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indicate that this was a reasonable value, although it varied considerably 

depending on the pulp viscosity. Similarly, the cyclone overflow tank 

tended to retain coarse p~rticles, and so nl was given a value of 10,0. 

Neither of these two values was very critical in the normal filter performance. 

(3) If the scale-up of the selection function from the batch tests were exact, 

then the softness of the rock w~uld be 1,0. The normal operating mill was 

observed to have an increased magnetite content in the circulating load, which 

produced higher solids specific gravities (typically 3,6 to 3,7) and harder 

rock for grinding. It was attempted to calculate the difference in softness 

from a knowledge of the increased magnetite content calculated from the 

specific gravity, but there were insufficient reference -data available. 

Instead, Run B was used to find the value of softness giving the best 

predictions, and this was the value of 0,9 in Table 6.17. This value is 

fairly critical, but could not be found more accurately, as it could vary 

slightly depending on the mill charge. The filter was also able to estimate 

softness, but this was not found to be very satisfactory, as shown in 

Section 6.B.5, .and so KS was normally kept constant. 

(4) The noise levels for the volumetric filter were chosen as explained in 

Section 4.2.4. for a linear filter. Only the variance of the underflow rate 

and the control change errors were calculated from data; the remaining noise 

levels were guessed. Table 6.1B details the noise levels used in the 

process, measurement, and controller models, and gives the resulting error 

variances for the stationary state predictions (see Section 4.3.1). 

Comparing the variances of the predictions with the observation variances, 

this table shows clearly how the use of even a simple filter can reduce the 

errors in measured variables, as well as predict variables which cannot be 

measured. Also shown here are the variances of the actual observations 

given the a priori observation predictions, which were used for checking the 

error levels as explained in Section 4.2.4, and for on--line checking of the 
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Table 6.18 

Noise levels in volumetric filter. 

(All units are S.l.) 

Variance of error on Qu = 3,83 * 10-9 

Measurement Control Variances Variances 

Variables error change of predic- of observa-
variances variances tions after tions given 
(diag R) (diag t.U) observation predictions 

- (diag ~A ) (diag ~) 

Mill 
volume, 

10-7 (J) VM - - 7,67 ,': -~ 
....:I 
m 
~ 
p::; Sump 
~ 
:> volume, 
~ Vs 2,5 1, 10-7 - 8,22 1, 10-8 

3,99 ~': 10-7 
E-< 
~ 
E-< 
(J) 

Sump 
, withdrawal 

10-9 1 44;"10-10 rate, QS 1,6 * 3,34 'I, 10-10 
2,08 ,', 10-9 , -

Solid 
feed 

10-4 
(J) rate, S 9,0 -/; 2,5 1, 10-5 1,38 ,'; 10-4 1,06 1, 10-3 
~ 
....:I 
m Mill feed 
~ water, WM 

1,0 ,', 10-10 1,96;"10 -10 7,29 .'. 10-11 3,69 ,'; 10-10 p::; " 
~ 
:> 
....:I Sump 
0 dilution 
~ water. Ws 4,0 ,,, 10-10 4,0 ;', 10-10 

2,39 ;'; 10-10 
1,04 ,'; 10-8 z 

0 
CJ 
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reliability of the measurements as explained in Section 4.3.2. Graph 6.22(b) 

(see Section 6.7.2) shows a detail from run B with the actual measurements 

of sump flow compared to the predictions. The standard deviation of the 

observations about the predictions, = lo2A ., is shown as a band on each side 
uy1 

of the predictions. This was used (see Section 4.2.4) as a check on the 

noise levels used in the filter. 

(5) The noise levels in the p.s.d. model (t and o~s = m2 (KS» were chosen by 

running the evolution only as explained in Section 4.2.4., method (ii) on a 

grid of noise levels to determine the best point. The vector t was guessed, 

from a consideration of the results of the errors in calculating grinding 

parameters for the smaller number of size groups (see Section 6.1, 

Table 6.5) and other sources of error (see Section 4.2.4),to be a scalar 

multiple of (5 1 10)T. The other noise level was the variance of softness, 

2 o • Figure 6.16 shows the effects of 3 different levels of both of these 
KS 

v9riables on the predicted standard deviations of mill concentration, sump 

concentration and the percentage in the finest size fraction in the product. 

Each pair of graphs in this figure shows the data plotted firstly as a 

. 2 2 
function of t for each level of oKS ' and secondly as a function of oKS 

for each level of t. 

From Figure 6.16, t affected the concentrations more than the product size, 

2 
and ° was the other way round. The values of the estimation errors which 

KS 

were guessed from a knowledge of the plant are shown below: 

Range of values Guessed value of approximate 
during normal standard deviation at 

Variable plant operation stationary state 

Mill concentration 1000 to 1800 kg/m3 150 kg/m3 

Sump concentration 400 to 800 " 50 " 
-75 11m fraction 
in product 30 to 50% 4% 

Horizontal dotted/ ..• 
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Effect of varying no i se l evels on standard deviations of predicti ons . ( Wit hout 
observation step in fi l ter . ) Three level grid used . Left hand graphs show effects 
of i with softness a s parameter , right hand graphs show corresponding effects of 
softness wi th ¢ as parameter. Values of parameters in the graphs are at points on the 
grid . m are points corresponding to values used (table 6 . 17) . Hor]zonT~l nnTr~n 



Horizontal dotted lines in Figure 6.16 are shown corresponding to these 

values. The values of the parameters used in the filter (Table 6.17) 

are shown as squared points,m, on the graphs. These points had been 

chosen earlier (as explained in Section 4.2.4) to agree with the chosen 
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error levels. In retrospect though, it may have been better to have used a 

larger t, as the concentration predictions were not as accurate as anticipated, 

while the size predictions were reasonable. 

The observations in the p.s.d. filter were measurements of concentrations. 

These were particularly noisy, and often had slight zero offsets, and so 

their noise levels in the filter were made particularly high (see Table 6.17). 

This meant that the results did not depend very much on the observation 

measurements. 

Although the original choices of noise levels were only carefully guessed, 

in most cases they were found to be satisfactory for use in the filter. 

The p'.s.d. filter measurement errors were examined as one of the factors 

affecting the filter, and the results are given in Section 6.8.6. There 

were too many error parameters for all to be carefully calculated and their 

individual performances evaluated in this way. This determination of noise 

levels is a difficulty which affects all filters, and it is essential to put 

much effort into obtaining well estimated values from the start. 

6) Average values were used for starting the filter, and a diagonal 

covariance matrix of suitable size was used for the p.s.d. filter. 

is discussed in Section 6.8.7.) 

6.7. Results of filter tests on runs 

(This 

Graphs 6.17 to 6.33 show the results of the filter applied to each of the 

runs A, B, C and D. State variables from the p.s.d. filter were not plotted 

directly, because they were found to be difficult to interpret visually. 

Instead, they were/ •.. 
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Instead, they were reformed into variables that were more meaningful, as 

explained in Section 4.2.1. For each of the runs, 

(1) One graph shows the results of the volumetric filter with the 

predictions compared to the measurements, for all states and parameters as 

indicated. Predictions shown are the values of the estimates after each 

observation step. 

(2) Another graph shows the predictions of the cyclone overflow particle 

size distributions from the p.s.d. filter, with the results from samples 

taken plotted for comparison. This graph shows the cumulative percentage 

for the distribution at 75, 212 and 850 microns, agains~ time. Each group 

of 3 lines is the mean and the mean + standard deviation for the prediction 

of the percent less than the size indicated. 

(3) The particle size distribution predictions for the mill contents and 

cyclone underflow are shown as two separate graphs on a third page. 

(4) The predicted concentrations of the mill, sump (i.e. cyclone feed), 

cyclone overflow and cyclone underflow are shown on the same axes on a fourth 

graph. The actual measurements recorded are also drawn as dotted lines, 

and sampled concentrations are plotted as points. 

All the plots were calculated from the predictions after each observation 

step. The volumetric parameters were calculated from the averages over each 

interval. There were no large differences betwee~ the estimates before and 

after each observation step, except when there was a plant upset. 

The details of each of these runs are given below: 

6.7.1. Run A filter results 

The upsets during this run were too great for the filter to operate very well. 

The high solids concentration in the mill (see graph 6.20) made the slurry too 

viscous, and the rate of grinding decreased so that the rock behaved as if it 



were harder. A softness factor of 0,2 was needed to get predictions in the 

correct order of magnitude, and these are shown in Figures 6.17 to 6.20. 

For comparison, the predicted product particle size distribution shown in 

Figure 6.21 used a softness of O,S, and was too fine. 

The volumetric predictions in Figure 6.17 closely followed the plant 

measurements up to the time of the upset. After 48 minutes, the checks 

built into the volumetric filter found that the plant was not operating 

properly, and limited the sensitivity to observations. This can be seen 

clearly in the sump volume, sump water, and sump outflow graphs. 
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Figures 6.18 and 6.21 show that the softness of the rock appeared to decrease 

during the run. 

O,S predicted. 

Up to 30 minutes the grind was finer than a softness of 

From 30 to SO minutes, the softness was between O,S and 

0,2. This correlates with the increase in mill concentration shown in 

Figure 6.20. After SO minutes the cyclone had choked and, although the 

softness appeared to have decreased further, the abnormal operation made the 

results doubtful. 

This run shows that the filter can be made to operate even though the plant 

is gt~eatly upset. It does not show much about the normal operation of the 

filter. The. predictions followed the correct trends, while the range 

covered could be explained by a change in softness, caused by a high mill 

concentration. 

6.7.2. Run B filter results 

Run B was the most successful in showing how the filter operated. The 

results are shown in graphs 6.22 to 6.2S. The standard values of the 

parameters were used, and the filter was started S minutes after the 

beginning of the run. 

The volumetric filter measurement s agreed well with the predictions (Figures 

6.22 a and b). The checks in the filter came into operation at SS to 60 
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Figure 6.17 Run A - Volumetric filter results. 
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measurements shown continuous ( ) . 



100 ~ • • ./It> .-. A. 
~- A4-

850,...m A 

'0 
, • 

aJ 
~ 
ro 
() 

-..-I 
'0 
s:: 

-..-I 

aJ 
N ~ + -..-I 
U) 

s:: 
ro 

..c: 
.j..l 

50 
U) 
U) + 
aJ 

r-l 

.j..l 

s:: 

~ ~ 
e aJ 

() 
G> H ~ aJ 

0-
~ :;;::~ 

aJ <:) 

:> 
8. = E> 

-..-I 850~m 
.j..l 
ro + = 2l2tlm r-l 
;::1 

o = 75J.lm S 
;::1 
u 

0 , I 
0 50 100 

Time, minutes 

Figure 6.18 Run A_=-f~l~er preQictions of cyclone overflow 

cumulative particle size distribution (softness = 0,2), with actual sample points 

plotted for comparison. 
..... ..... 
c.D 



~ 100 
...., 
n1 
o 

'M 
'U 
~ 

'M 

Q) 
N 

oM 
to 

~ 
.c . ...., 
fI) 50 

- fI) 
Q) 

r-I 
...., 
~ 
Q) 

o 
~ 
Q) 
p. 

Q) 

> 
'M ...., 
n1 
r-I 
~ 

~ 0 
() 0 

'U 
t!100 
n1 
0 

'M 
'U 
~ 

'M 

Q) 

N 
'M 
fI) 

~ 
n1 
.c ...., 
fI) 
fI) 50 Q) 

r-I 
...., 
~ 
Q) 
0 
~ 
Q) 
p. 

Q) 

> 
'M ...., 

n1 
r-I 
~ 
S 
~ 0 () 

0 

Figure 6.19 

50 
Time, minutes 

Underflow 

50 
Time, minutes 

Mill contents 

100 

100 

Run A - Filter predictions of 

'. 

particle size distributions in the cyclone underflow 

and mill contents as shown. 

120 

\...... 



:>t 
I-l 
I-l 
:;j 

r-I 
Ul 

M 

<. 
Ul 
'0 
·rl 
r-l 
o 
Ul 

t'J1 
,.!<! 

s:: 
o 
·rl 
+J 
n1 
I-l 
+J 
s:: 
Q) 
u 
s:: o 
u 

2000 

1000 

o I 
o 

I 

/./ 
' / 
i 

/ 

I 
I 

/ 
/ 

50 
Time, minutes 

I 
I 
I 
I 

~~~--------~-------r Mill contents 
! Prediction 

jl 
J 

I 

, 
I 

) 

I I I. 

I' \" 
~l ~, \I""~IV Y 
~NJ~ • 

Cyclone 
Underflow 
prediction 

I ~¥" 
~ .})!'~ , r 

'\""" ~J.I!I~ t 

ump prediction 

Sump measurement 

,. ' Cyclone overflow 

100 

measurement 

Cyclone overflow 
prediction 

Figure 6 f 20 Run A - Filter predictions and measurements of concentrations. 

Predictions shown dotted and instrument measurements shown continous. Cyclone overflow 
concentration measurement wandered during run because of blocked overflow tank (see text). 

I-' 
rv 
I-' 



100 
~-& 

"d 
6- t. 

/It. .. 8S0p-m Q) o/i> 
+J 
CO 
() 6. 

-..-I 
'd s:: 
-..-I 

Q) 
N 

-..-I 
U) 

s:: 
CO 

j 
..c:: 

-++ 
212f-m 

+J + + 
U) -+ 
U) 

./ ++ 
Q) 

r-l50 

+J 
s:: 
Q) 
() 

H ~~ .......... t:'\ ~ 
Q) 

0.. 

Q) l') ca 7Sf-m :> 0 
-..-I 
+J 

QI 

CO e 
r-l A = 8S0fm e 
;j 

3 + = 2121"m u 
o = 7Sfm 

o I 
o 50 100 

Time,minutes 

Figure 6.21 Run A - Filter predictions of cyclone overflow 

cumulative particle size distribution (softness = 0,5), with actual sample points 

plotted for comparison. ~ 
N 
N 



0, 
<lJ 
8 
~ 

r-I 
0 C"J 
:> 80,01 

0.. 
8 
~ 

CJ) 

0 

<lJ 
8 
~ 

0,1 r-I 
0 M 
:> 8 
r-I 
r-I 
.r-i 

. ~ 

0 

~ Ul 
<lJ .......... 
+l M 
lIS 8 
~ 

M 
0. I 

9 0 
r-I 

CJ) x 0 

~ Ul 
0,3 

<lJ ~ 
+l 1 0,2 lIS 
~ 

M 
r-I I 0,1 
r-I 0 
.r-i r-I 
::: >< 0 

't1 0,6 <lJ 
<lJ 

IH Ul 

Ul 
",-0,4 
tJ1 

't1 .!( 
.r-i 0,2 
r-I 
0 

CJ) 
0 

Ul 
~ "'-0 C"J 

r-I 8 1 4-l 
M 

0.. I 
8 0 
~ r-I 

CJ) x 
0 

~w 

-----------_ ... -----------." ...... ~--- ... ---------- ...... -- --- .", '--,- -- ~-...-- - .... ", 

10 50 100 

Time, minutes 
150 

Figure 6. 22( a ) Run B - Volumetric results. 

Predictions shown dotted (--- ---) and instrument 

measurements shown continuous ---). 

123 

------

200 



III ....... 
bO 
~ 

'0 
Q) 
Q) 

4-t 

III 
'0 
'M 
rl 
0 

(/) 

o~ 

0,2 

0 
10 20 30 

Time, 

40 

minutes 

124 

50 60 

1,51~-----------------------------------------------------------------' 
t " 

III ....... 
(I') 

S 
(I') 

I 
o 
ri 

X 

1,0 

;0,5 
o 
rl 
4-t 

Po 

3 
(/) 

) t, 

ft , I 

O~----.----.-----r----.----'r----.----'-----r---~-----.----.---~ 

10 20 30 40 50 60 

Time, minutes 

Figure 6.22(b) Detail from figure 6.22(a). Volumetric filter results for 

Run B. 

First 60 minutes of sump flow and solids feed measurements and predictions. 

Measurements shown continuous (,--). Dotted lines ( ........ ) are the predicted means 

and the predicted one standard deviation band of the observation errors about the 

predicted means. 



'0 
Q) 
~ 
C1j 
() 
.~ 

'0 
~ 

• .-j 

Q) 
N 
.~ 

(J) 

~ 
ttl 

..c: 
~ 

(J) 
(J) 
Q) 

r-i 

~ 
~ 
Q) 
() 

l-I 
Q) 

0.. 

Q) 

> 
.~ 

~ 
ttl 

r-i 
:l 
E 
:l u 

100 I - - -- - ~- ~ .... tu 

~85~fm 

i 
~' + 

-t ... -+ 0+-

2l2fm 

50 

If"--- ~ ~------ e 

e 

1 75fm 

A = 850fm 

+ = 2l2fA.m 

0= 75p.m 

0 1 
I 

10 50 100 150 

Time, minutes 

Figure 6.23 Run B - Filter predictions of cyclone overflow cumulative particle size 

distribution, with actual sample points plotted for comparison. 

Each set of three lines are mean and mean +/- standard deviation. 

200 

... 
r--: 
(J 



126 

~'0fi-~----~----~--------~------~A~------------------------~=======---~ 
+' 
n:I 
o 

OM 
'0 
~ 

OM 

V 
N 

OM 
(/) 

~ 
n:I ..c: 
+' 

~ 50 
V 

.--l 

+' 
~ 
V o 
~ 
V 
p.. 

V 
::-

OM 
+' 
n:I 
.--l 

+ 

;:I 

9 oJL __ ~~-r--'--'--Ii--.--r--.--,---r--'--'--'-~r--r--~-T--'---~ 
() 10 

'010 
V 
+' 
n:I 
0 

OM 
'0 
~ 

OM 

V 
N 

oM 
(/) 

~ 
n:I 
..c: 
+' 
(/) 50 
(/) 
V 

.--l 

+' 
~ 
V 
(.) 
~ 
V 
p.. 

V ::-
OM 
+' 
n:I 
.--l 
;:I 
S 0 
;:I 10 () 

Figure 6.24 

50 

50 

100 

Time, minutes 

Underflow 

o 
Time, minutes 

Mill contents. 

150 

Run B - Filter predictions of .particle size 

distributions in the cyclone underflow and mill contents as shown. 

Each set of lines is mean and mean +/- standard deviation. 

2 0 



200°lrl ----------------------------~------------~----------------------------------------~----------------------~ rv, ~ 

'" '"''\. I \\ 
J. \ I 

) '"'\ I \ 
Mill contents I ",,r \ >t 

H 
l-l 
~ 
~ 
Ul 

C"') 

..... prediction ~ ;/ \ /\ . . + \--'\ 
/ \ / \ / \ 

,-,./ \ f''' I \ ) '\ I \ . . /r-,-.-_ , I 
\ I \ ./ \....... I S 

"" Ul 
ro 
-~ 
~ 
o 
Ul 

l)) 1000 
~ 

Ul 
~ 
o 

-~ 
+l 
rU 
H 
+l 
~ 
Q) 

U 
~ 
o u 

O-li 

\ I , /,... 
\ / \ ~_./ \ "\ ...... _,,,r 

\. /1'" ~ \ ~./ .... ..,1 // \CYC10ne u~derflow pred-i-ction. 
'-... / I, \. ./ , f "" "r "' ..... "-~.J \.. / I ,,I J ~ '- , I "~,, II \ / 11 Iii"" " or". ',I t '-I 

_... II '-./ tr I 1" '''' ' r' '-_ n' " ...... ./11 '\All I A .,1 "" I 
~"""'\./' II ~ ...fl'J'I\/II'''',fo,; .... ..,,VO It

,' ',T'I I!' .. '"" I 
/J ~~ A 1 ~. ~ ".. ,: :'\., fll''',,''r\ , ~. • ~\; ~~l\r,)~ '\ I V'J , 

"', ... ' ,,-.. J J! 10 -I I, ,If ,I i , 
v , .... j to ~ J'J) I,' I~ 11\ 'I A ~ I~ I ,I ' , 

+ '\ """,,,'1,,,,,...,'" "" \J ~\ v -:'\',,, '. ,..t'J'/'~'", J I "''''' , ... rl i
/ S UIDO Sump 1 

10 50 

! ,\,tA./".. " A/.N'" 'J \ r " ~ 
,-' ." \, ~ 1 \.1 

\' .. 1 • 
~ 

u 
100 

Time, minutes 

Cyclone overflow 
measurement 

150 

Figure 6.25 Run B - Filter predictions and measurements of concentrations. 

Predictions shown dotted and instrument . measurements shown continous. Underflow samples 

marked + and overflow samples marked 0 

200 

~ 
to 
-.J 



minutes when the fuse blew, at 100 to 105 minutes when the cyclone line 

choked, and from 150 to 180 minutes when the sump pump was operating near 

maximum. The effectiveness of these checks is discussed ahead. '. 
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The large number of samples taken of the cyclone overflow size distribution 

all agreed well with the predictions shown in Figure 6.23. The range 

covered by the samples was wide for a particle size distribution, from 

33,28% to 47,08% for the -75 ~m fraction. It can be seen in this plot that 

the filter tends to predict ahead of the samples by up to 7 or 8 minutes. 

This is also discussed ahead. 

If one assumes that the errors in the particle size distribution predictions 

are approximately normally distributed, then 68% should lie within the band: 

mean~standard deviation to mean+standard deviation. Of the -75 ~m and 

-212 ~m sample points, 25 out of 56 (45%) lay within the band. (The +850 ~m 

fraction is too small to measure properly.) For a normal distribution, the 

45% acceptance limit corresponds to 0,61 x standard deviation on each side of 

the mean. This meant that the actual standard deviations of the size 

predictions were approximately 1,64 (:;: 1/0,61) times greater than predicted. 

The original choice of noise levels in the filter would affect these predicted 

errors, but other factors such as sampling errors could also have an effect. 

Underflow samples were of the same order of magnitude as the predicted values 

shown in Figure 6.24, but were not as accurate as the overflow samples. 

The underflow predictions were rougher, and the +850 ~m fraction was the 

least accurate. 

Concentration predictions agreed well with the overflow samples, when compared 

with those in runs C and D, but the underflow samples varied considerably more 

than did the predictions. These large differences between sampled and 

predicted concentrations could be partly attributed to the volumetric model 

of the cyclone underflow. From Table 6.11, QUO = 0,4073 x 10-3 m3/s and 
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102 = 0,619 x 10-4 m3/s, which gives a coefficient of variation for QU = 0,15. 
£ 

If the mass flow of solids in the cyclone underflow were to remain fixed, the 

underflow concentration would then have a coefficient of variation 'of 0,15. 

The poor classification model would also explain some of the errors, 

especially in the cyclone underflow distribution and concentration (see 

Section 6.8.2). 

Run C filter results 

The standard set of parameter values was used to obtain the results shown in 

Figures 6.26 to 6.29 for run C. The filter was run in real time, although 

the results shown here were recomputed afterwards, as there was insufficient 

time during the run to log enough data. 

Although the solids feed measurement was faulty up to 50 minutes, and the 

system cycled from 95 to 100 minutes when a different control was tried, there 

were no major upsets during the run. As a result of this, the volumetric 

filter predictions did not deviate much from the measurements, as can be seen 

in figure 6.26. 

The cyclone overflow size predictions in Figure 6.27 show general 

agreement except for a section from samples C5 to Cl0. There were two 

possible explanations for this. The first is that, when the solids feed 

actuator was repaired at 50 to 55 minutes, and when the different control was 

tried at 95 to 100 minutes, the system was upset in some way that produced a 

finer grind. Samples C5 to C8 seem to show that the system was recovering 

towards the predicted values. The second explanation is that the rock may 

have hardened during the run perhaps as a result of the increased magnetite 

in the circulating load, but at the beginning the faulty potentiometer may 

have given low measurements resulting in predictions that were too fine. The 

overall result would then be that the predictions appeared to agree up to the 

time that the actuator was repaired, thereafter the difference was 
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noticeable, but gradually decreased. In either case, the same trends are 

seen in both the predicted and the actual values, but again the predictions 

are ahead. Figure 6.28" of the underflow and mill contents size distributions 

reveal little information without samples. 

In Figure 6.29, the predictions of the cyclone feed concentration agree well 

with the measurements, but the overflow concentration predictions show poor 

agreement with both samples and measurements. Again, this is caused mainly 

by the poor cyclone model, as explained for run B, since the measurements and 

samples are in greater agreement. The ' overall higher values of the samples 

were probably caused by poor operation of the ratemeter measuring the 

concentration. The higher concentration in the mill during the middle of 

the run may also have contributed to giving a coarser grind. It is 

suspected that the actual mill concentration may have been higher around 45 

to 55 minutes (caused by the faulty solids actuator) as the cyclone feed 

concentration measurement was noticeably higher than the predicted values. 

6.7.4. Run D filte~ results 

Run D results are shown in Figures 6.30 to 6.33. The standard values of 

the parameters were used. Again the filter was run in real time, although 

the results shown here were recomputed afterwards. 

The results of this run did not fluctuate much, except from 55 to 80 minutes 

when it was attempted to control from the filter as explained earlier. 

Consequently this was the only major upset and the results were otherwise 

fairly steady. The volumetric predictions shown in Figure 6.30 agree with the 

measurements, except during the upset when the sump overflowed from 70 to 80 

minutes, and after the manual increases in the solids feed at 83 and 138 minutes. 

The cyclone overflow size prediction in Figure 6.31 was also fairly steady 

and only two of the sample points were away from the predictions. The first 

of thesp .::IT / 
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of thes~at 84 minutes)~as soon after the upset and was probably caused by it. 

The second/at 157 minutes/was associated with a decrease in concentration, and 

may have been a poor sample, but was probably a result of an unmeasured decrease 

in rock softness, perhaps caused by a mill concentration change. ·Other than 

these, there were insufficient changes to show any trends, but the predictions 

were in the right range. Again the size distributions in the underflow and mill 

contents (Figure 6.32) could not be checked without samples for comparison. 

The ·concentration predictions are shown in Figure 6.33. Here the predictions 

follow the measurements better than in run C, but the concentrations of 

cyclone overflow samples are again high. A noticeable drop in this 

concentration towards the end can be observed in the samples and measurements 

but not in the predictions. The reason for this is unknown. 

6.8. Effects of various factors on the filter 

The testing of the various factors discussed below was done firstly to 

determine what parts of the filter were more important in obtaining good results, 

and secondly to find the effects of each factor so that bad filter performance 

could be analysed and remedied. Although this particular part of the work 

was specific to a milling circuit filter, it would be a necessary part of 

any filter development. 

Run B was used for all the tests done, and the standard filter with the 

parameter set given in Table 6.17 was used except where it was changed as 

needed. Most of the results in the following sections may be compared to 

the "standard" results for run B shown already in Figures 6.22 to 6.25. 

6.8.1. Efficacy of checks in the volumetric filter 

The only test done on the volumetric filter was to determine how effective 

the checks against upsets were. Early results had shown that the filter 

became unstable at the first upset because of integration difficulties caused 

by a very low/ ... 
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by a very low sump volume. This led to improved integration, limits on 

the minimum sump volume, and checks to reduce the possibility of faulty data 

causing an upset. These checks were explained in the theory, Section 4.3.2. 

The difference in the volumetric filter results with and without the checks 

is shown in Figures 6.22 and 6.34 respectively for run B. It is particularly 

noticeable during the upsets at 55, 100 and 150 to 180 minutes. Around 

150 to 180 minutes, the sump pump was at the maximum of its range and the 

controller tried to push it higher. The filter was unable to see this 

directly, but the checks helped to reduce the effects. 

The effects on the p.s.d. filter are shown in Figure 6.35. Here the p.s.d. 

filter was run without the observation step, so that errors in the model 

would show up more clearly on the predicted concentrations. 

Figure 6.35 is interesting in that it shows both how the cyclone feed 

concentration behaves with no observations to correct it, and the effects of 

the volumetric filter checks on this prediction. The checks are again most 

noticeable at the upsets, and can be seen to make the predictions follow the 

measurements more closely. We can thus conclude that these checks would 

help during plant upsets in reducing the unwanted error incurred by the upset. 

6.8.2. Effect of cyclone model parameter errors 

In the classification model, ~ and cCl were the parameter vectors (see 

Section 4.2.2). The cCl described the dependence of the classifier functions 

on the cyclone feed concentration, while ~ was the value of the classifier 

functions at zero feed concentration. The effects of both these parameters 

were tested. 

Figure 6.36 shows the effects on overflow size predictions of no feed 

concentration dependence, i.e. cc = 0 and cc was changed so that the model 
-1 -0 

remained the same at the mean concentration of 665 kg/m3 . These were the 

values given in/ ... 
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values given in the second column in Table 6.9. There was little difference, 

although the lines were smoother. One should notice that the cyclone feed 

concentration only changed noticeably from 70 to 110 minutes and during some 

upsets, and the effects on the predictions were slight, though not negligible. 

The effects on other variables such as concentrations were small, and are not 

plotted here. 

Figure 6.37 shows the effects on overflow size predictions of using offset 

values for the classification functions. The values given in Table 6.10 

were used, and were greater than the standard values (i.e. a finer cut). 

From graph 6.37 it can be seen that the size predictions for the -75 ~m and 

-212 ~m fractions were on average about 6% finer than the predictions under 

standard conditions. Using this result it was possible to estimate 

approximately the effect that errors in the cyclone model would have on the 

filter predictions of size, as follows. 

The variance of the residuals between the actual classifier functions and 

the regressed cyclone model for the data used to prepare Table 6.9 are shown 

below in the second column. The differences between the classifier 

functions given by Table 6.9 (standard values) and by Table 6.10 (values 

used for Figure 6.37) at an average feed concentration of 600 kg/m3 (a rounded 

average for run B) are shown in the fourth column, and .their ratios to the 

standard deviations are given in the fifth column. 

Standard Difference 
deviation = in classif. C!) Size Variance of ,j variance • functions 

Ratio X 
fraction residuaJ.s "X" "Y" 

-75 ~m 0,0045 0,067 0,0461 0,69 

75 to 212 11m 0,0130 0,114 0,1310 1,15 

212 to 850 ~m 0,0081 0,090 0,1034 1,15 

+850 11m 0,0012 0,034 0,0290 0,85 

From this table/ ... 
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From this table it can be seen that the classifier functions given by 

Table 6.10 were approximately one standard deviation finer than the values 

in Table 6.9. Thus the errors in the filter predictions of size could have 

a standard deviation of 6% for the -75 ~m and -212 ~m fractions, caused by 

the poor cyclone model. Fortunately, it appears that the cyclone behaviour 

fluctuates (it is not known exactly how) and that this is damped with a 

filter time constant of about 10 minutes (see Section 6.8.7). Although not 

shown here, the concentration predictions were also poor. 

From these results, we see that the classification function is important, but 

its dependence on feed concentration is slight. This emphasizes the need 

to get good data for the cyclone, and the need for a better cyclone model. 

6.8.3. Effects of errors in grinding model parameters (S and b) 

To determine how exact the selection and breakage functions had to be, a 

constant selection function and Broadbent and Callcott's breakage model, i.e 

B(y,x) = (1 - exp (-x/y)) / (1 - exp (-1/12)) 

were tried. 

for all sizes. 

. -1 The selection function was given a value of 0,1 mlnutes 

These data were then reduced to the four size groups used 

in the filter,' (see Sections 4.2.1 and ' 6.1) giving the figures shown in 

Table 6.19. (Compare these to the standard values shown in Table 6.5 for 

run 20/6.) 

Table 6.19 , Reduc~d data for simp~ified grinding model 

S = (0,050262 0,070000 0,078789 O,O)T -

b = -1,0 0,70812 0,18495 0,10692 -

° -1,0 0,58762 0,41238 

° ° -1,0 +1,0 

° ° ° ° - -( units of S in minutes- l ) -
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When these parameters were tried on the filter, the results were too much in 

error to be satisfactory. The distributions were quite different (although 

of the same order of magnitude) and the predicted mill concentration was too 

3 high (up to 2050 kg/m ). This showed that the model was completely 

inadequate. We thus see that it was necessary to get reasonable values 

for the grinding model parameters, and that this involved doing batch tests 

off line. 

6.8.4. Effect Qf feed distribution and softness of rock 

A feed distribution with equal mass percentage in each size fraction (i.e. 

considerably finer than normal feed - see table below) was tested in the 

filter on both runs A and B. 

Graph 6.38 shows the overflow size predictions for run B with this finer 

feed. The table below summarises the results from this graph: 

Nominal average predicted I 
Feed size distribution, product size distribution, I 
cumulative % less than cumulative % less than 

75 11m 212 11m 850 11m 75 11m 212 11m 850 11m 

Standard filter 
for Run B 6,25% 11 ,5% 24,3% 41% 76% 99% 

Filter with finer 
feed for Run B 25% 50% 75% 48% 85% 99% 

The filter performed reasonably, and predicted a finer product, but the 

difference in product distributions can be seen in the table to be 

relatively much less than the difference in the feed distributions. This was 

probably the result of the correcting action of the concentration measurements. 

From Tables 6.1 and 6.2 it was possible to calculate the difference in feed 

distributions between batch runs 30/4 and 20/6, and estimate variances for 

the feed distribution. The standard deviations are shown below: 

Feed size distribution/ ••• 
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Feed size distribution, 
cumulative % less than: I 

75 11m 212 11m 850 11m 

. 
Mean 6,25 11,5 24,3 

Standard deviation 0,98 2,5 5,2 

We can thus conclude that the effects of variations in feed size on the 

filter are not important. This is fortunate, as there are often 

fluctuations in feed size on an operating plant. 

In run A, the finer feed was at times finer than the actual product, and so 

represented a severe test on the filter. The results for this run are shown 

in Figure 6.39 as the size predictions for the cyclone overflow and the mill 

contents. The results are again finer, but it can be seen that the 

coarsest fraction in the mill had a negative quantity for part of the run. 

This is a form of filter instability and is further discussed in section 6.8.9. 

The filter recovered after this, however, and continued normally. This shows 

us that gross errors in the parameters which are physically unrealisable can 

lead to filter instability. It is under circumstances like these that an 

understanding of the plant being used helps in filter development. 

Austin proposed (private communication) that a change in feed rock softness 

could not be distinguished from an equivalent change in feed distribution 

(i.e. two feed distributions, the coarser of which can be ground to the finer 

using the given set of Sand b functions). Although it may be difficult to 

observe, changes in a harder finer feed may appear in the product sooner than 

changes in a softer coarser feed. Thus this hypothesis is only a steady state 

one. The effects of different feed softnesses have been shown already in Figures 

6.18 and 6.21, and are similar to the effects of a different feed size. 

6.8.5. On~line regression of softness 

As explained earlier, the filter could be made to estimate the softness 

parameter on line/ ... 
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parameter on line, although this was not normally done. 

formulation in Section 4.3.4. showed how this was done. 

The p.s.d. filter 

Figure 6.40 shows the overflow size predictions with simultaneous estimation 

of rock softness for run B. The estimated value of KS is also plotted. 

The size predictions were all finer than the samples taken during the run. 

The estimated values for KS shown on the graph also seem unreasonably high. 

This behaviour was probably caused by the actual concentration measurements 

being biased, as the gamma-ray slurry concentration gauges were found to 

drift slightly during runs. The cyclone model which was used may also 

have contributed to the poor results. 

It is difficult to show precisely from the filter formulation why the on-line 

estimation of softness degraded the filter performance. The state estimates 

in a filter are affected by both the plant model (during the evolution), and 

the actual observations (through the observation model). Parameter estimates 

are only changed at the observation step (see equation 4.1.18). In a 

filter where only the states are estimated, the effects of unmodelled 

observation errors on the predictions would be reduced during the evolution 

step if they were contrary to the plar.t model. If, however, a parameter was 

also estimated, it would have an effect on the plant model without itself 

being corrected during the evolution. The parameter would continue to be 

changed by the observations until the plant model was forced to agree on 

average with the observations coming from the instruments. 

These results seem to show that it is better to have a reasonably accurate 

model for the process with fixed parameters which are determined beforehand 

than to estimate parameters on line in a model where the parameters are not 

known initially. This would also save some computation in the filter. 

In particular, on-line estimation of softness should not be included In 

future milling circuit filters. 

6.8.6. Effects of / ... 
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6.8.6. Effects of observation errors 

The usual standard deviations for the concentration measurement errors were 

3 200 and 400 kg/m for the. cyclone feed and overflow respectively. Three 

computations were done using different observation errors in the p.s.d. filter. 

The results of these on the cyclone overflow size predictions for run Bare 

shown in Figures 6.41 to 6.43: 

(1) Figure 6.41 shows the effect of an accentuated sensitivity to the overflow 

3 
The standard deviations used were 200 kg/m for concentration measurement. 

both feed and overflow errors. 

(2) Figure 6.42 shows the effect of an accentuated sen~itivity to the cyclone 

feed concentration measurement. The standard deviations used were 100 kg/m
3 

3 for feed and 400 kg/m for overflow. 

(3) Figure 6.43 shows the effect of overall reduced observation sensitivity. 

3 3 
The standard deviations used were 400 kg/m for the feed and 800 kg/m for 

the overflow. 

(The effects on the concentrations of having no observation step in the filter 

have been shown already in Figure 6.35.) 

Figures 6.41 and 6.42 show that, when an observation was accentuated, the 

predictions became over-sensitive to noise fluctuations, and so were slightly 

poorer. Reduced sensitivity to observations (Figure 6.43) gave a smoother 

prediction, which was reasonably good compared to th~ "standard" graph in 

Figure 6.23. The predictions also drifted towards the end of the run, and had 

a slight bias. All concentration predictions were affected detrimentally 

by these tests. The effects on the concentration predictions of having no 

observation step as shown in Figure 6.35, were also detrimental. 

Besides showing the individual effects, these results show again what was 

found with the volumetric filter: the estimates of noise levels have to 

h.o ,..1",... ..... 4-_ -'-,_ 
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be close to the correct levels for the filter to work well. More accurate 

concentration measuring instruments would also help. to obtain better 

predict ions. 

6.8.7. Effects of incorrect starting points 

For most runs, the p.s.d. filter was started with a diagonal covariance matrix. 

This took about 10 to 20 minutes to change into the actual covariance 

matrix, but the filter remained stable. To test the effect of incorrect 

starting points, a suitable average covariance matrix was used from the 

start. The volumetric filter had a considerably faster response (the 

largest time constant was that of the mill overflow = 0,01 s-l) than the 

p.s.d. filter, and so only the p.s.d. filter was examined in detail. The 

mass in each fraction in the mill and sump were changed for the different 

starting points. 

Figure 6.44 shows how the two different starting points converged for the 

cyclone overflow size predictions and the concentration predictions in run B. 

Generally, it took the first 10 minutes or so to converge rapidly, and then 

the convergence slowed and took about 30 minutes more to complete. Any 

errors in the predictions caused by upsets or noise would have a similar 

response. 

6.8.8. Frequency response of filter 

The dynamic responses of the filter were tested for perturbations in the 

concentration measurements and total solids feed. This was done partly to get 

some idea of how fast the filter responded to unknown upsets, and partly to get 

some rough data for controller design. The standard filter and parameters were 

used, and tests were done on simulations on the Burroughs B5700 computer. 

Normal frequency testing was done over a range of frequencies, and the amplitude 

ratio and phase shift were noted. 

operation. 

Conditions used were typical of average 

Figures 6.45 to 6.47/ ... 
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Figures 6.45 to 6.47 show the results of these tests. Each figure shows 

. 
four Nyquist diagrams giving the transfer functions for the predictions of 

mill concentration, sump concentration, product -75 ~m size fraction, and 

product -212 ~m size fraction, as output, with the indicated perturbation 

as input, over a range of frequencies. 

The responses to the cyclone feed concentration shown in Figure 6.45 were 

all nearly first order with a time constant of around 60 seconds. The over-

flow concentration perturbations (Figure 6.46) produced slow responses in 

the size predictions with time constants around 400 seconds, but faster, 

more complex responses in the concentration estimates with time constants 

around 60 seconds. The responses to the total solids ' feed perturbations 

in Figure 6.47 were not examined thoroughly, but were fairly complex with 

more than 2nd order dynamics. Here time constants were about 300 seconds. 

From the Nyquist stability criterion, Figure 6.47 shows that, if the solids 

feed to the circuit was controlled through a simple proportional controller 

from the size predictions at, say, -75 ~m, instability could result if the 

-1 -1 
gain was greater than 0,25 kg.s .% ,with a cycle of period 10 minutes. 

6.8.9. Stability of filter 

The filter was normally very stable and could take considerable upsets. 

There were three factors, however, that were found to cause upsets during 

the tests. These were 

(l} Integration difficulties with short time constants compared to step size. 

This occurred when the sump volume was low, and has been discussed already 

in Sections 4.3.2 and 6.8.1. Checks in the filter could prevent this. 

(2) Use of wrong parameter values that were physically impossible, in 

particular a feed distribution that was too fine. This has also been shown 

already in Section 6.8.4 (Figure 6.39). This is a situation which would 

not normally occur once the filter was running properly. 



Im(G) G- estin. mill cone. 
rneas. eye. feed cone. 

Im(G) 

160 

G= es t.irr,. sumo cone. 
meas. eye. feed cone. 

__ ~~---T----.----,---.~Re(G) ---4&----+----,----,r---rr~~e(G) 

2 3 4 

-3 

Pre ueneies of oints 
radiansLs 2eriod, min. 

A 0.00525 20 

B 0,0105 10 

C 0,02625 4 

D 0,0525 2 

Im(G) G_estim.-75~re frae.prod. 
meas. eye. feed cone. 

Im(G) G estirn.-212~ frae.prod. 
meas. eye. feed cone. 

_0,05 

'A 

-0,05 

Figure 6.45 Frequency testing of filter. 

Nyquist plots showing effects of perturbations in 

cyclone feed concentration measurement. 



Im(G) 

0,' 
estirn. mill cone. 

G=--~~~~~~~---­
~eas. eye. O/F cone. 

Im(G) 

0,' 

161 

_~e~s~t~i~m~.~s~u~IT~p~c~o~n~e~._ G= -meas. eye. OfF cone. 

A 
____ ~----~----+_----.__+--~Re(G) ____ ~--~r_--~----~~~~.Re(G) 

-0,' 

-0,2 

Im(G) 

D • 

-0,02 

G=estim.-75~m frae.prod. 
meas. eye. OfF cone. 

-0,' 

-0,2 

-0,3 

Im(G) 

E 

G=estim.-212fw frae.prod. 
meas. eye. O/F cone. 

Re (G) 
---t~-----'r-----~----~Im(G) 

Frequencies of points 

radians/s period,min. 

A 0~00105 100 
B 0,002625 40 
C 0,00525 20 
D 0,0105 10 
E 0,02625 4 
F 0,0525 2 

F i gu re 6 _. _4_6 ___ F_' _r_e_qL.u_e:-.n_e.;..y~..::t-=e..::s:....t:..:l:..:· n:..:..g.~-=o..:;f:.-....:f:..:i:..l::..t-=e=r..:-. 

Nyquist plots showing effects of perturbations in 

cyclone overflow concentration measurement. 



162 

1m (G) estim. mill conc. 
G solids feed rate 

1m (G) _estim.sump conc. 
G-sblids feed rate 

----~~------10~0-0------2·00-0------,-~Re(G) --~-----10rO----2'OrO----3~0-0----~~e(G) 

-100 

-100 

-200 

-2000 -300 

1 (G) 
G=estim.-75rm frac.prod. 

solids feed rate 

1m (G) 
G=estim.-212~m frac.prod 

solids feed rate 

----~~~---r----~----.---~Re(G) -T.~~----~----'---~--~~e(G) 

-30 

c 

Frequencies of points 

radians/s Eeriod,min 

A 0,00105 100 
B 0,002625 40 
C 0,00525 20 
D 0,0105 10 

Figure 6.47 Frequency testing of filter. 

Nyquist plots showing effects of perturbations in 

solids feed parameter . 



163 

(3) Use of the wrong covariance matrix for starting. It can be seen 

from equation 4.1. 20 that the l~alman gain matrix cannot be calculated if 

T (m ,P
Ak 

.m + R) is singular. 
x - x 

Under correct filter operation Rand 

m ,P
Ak 

.mT are positive semidefinite matrices (because they are covariance 
x - x 

matrices) .and, provided at least one is nonsingular, the sum is nonsingular, 

and the Kalman gain can be calculated. It was found in the nonlinear 

p. s •. d. filter that, as a result of the approximations used, it was possible 

T 
to obtain a m ,P

Ak 
.m matrix which was not positive definite and which made 

x - x 
T (m ,P

Ak 
.m + R) singular. 

x - . x 
This was only a temporary occurrence, and 

resulted from a starting value for P
Ak 

which was outside the range of 

applicability for the approximations in the filter. This was discovered 

experimentally when the average matrix of covariances, P
Ak

, for a softness 

of 0,9 was used to start a test having a softness factor of 0,2. 

The effect is shown in Figure 6.48 with run A data. Here the filter 

appeared to work reasonably up to 7 minutes and then suddenly became unstable. 

Afterwards it took about 40 minutes to recover, but then carried on working 

normally. An interesting fact is that, during the recovery, each 

prediction went through a point of zero variance. It appears from the 

reason for this upset that this instability is not easy to see in advance, 

and can be caused by factors which are not immediately obvious. • One can 

avoid this trouble by starting with a diagonal covariance matrix. 

In each of the three cases of instability encountered, the filter was able 

to recover afterwards. This is useful for continuous plant applications, 

where the filter should be able to recover by itself if there is an upset. 

6.8.10. Time requirements 

The time requirements for various parts of the filter are shown in Table 6.20. 

These computation times were measured from the core clock for the 

CDC1700 computer in background mode. Times for calculations done with both 

hardware and software/ ... 
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hardware and software floating point (f.p.) arithmetic are shown. 

Table 6.20. Computation times 

Operation 

1) 

2) 

3) 

4) 

Reading disc file 

Data conversion and "book-keeping" 

Volumetric filter (call to IBSTST) 

P.s.d. filter, observation step. 
(Call to IBPOBS) 

5) P.s.d. filter, evolution step: 

6) 

a) 

b) 

Single step integration 

Euler two step integration 

Conversions to distributions and 
concentrations (call to IBPTOF) 

6.8.11. Simplified calculations 

Time required, seconds 

f .,p .. software 

0,10 

0,10 

0,17 

0,50 

0,86 

1,72 

4,03 

f.p. hardware 

0,105 

0,026 

0,059 

0,126 

0,460 

0,968 

Because the computer took longer to calculate the filter when using software 

arithmetic than the plant took to evolve, (run B took approximately 4 hours 

to calculate in background mode) the simplified calculations, explained in 

Section 4.35, were used for real time work. 
, 

These cut the calculation time 

down to about 3 seconds per cycle, (see Section 6.9) mainly through the time 

saved in not using IBPTOF. (See Table 6.20.) 

Basically, the subroutine IBSIMP calculated the concentrations and size 

distributions without taking variances into account (see ·Section 4.3.5). 

The results showed that the predicted concentrations were almost unaffected, 

while the size distributions differed by less than 0,25% of the mass 

in each fraction. This was because the nonlinearities in the filter were 

not very great. This accuracy is far greater than that of the filter, and 

is an example of an unnecessary refinement. It also means that the 

term / ... 
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term; (P 32m) in equation (4.1.18) is insignificant and could be neglected 
Ak-

without much loss of accuracy, and with some saving in time and core. 

6.9. Results from differential quadrature filter 

The quadrature filter outlined in Section 4.1.2.5 was run on the data from 

run B. Results were not particularly successful, and so not much time 

was spent on it. The predictions of cyclone overflow size are shown in 

Figure 6.49. These predictions held· very steady regardless of the plant 

behaviour, probably because of the limited range allowed by the grid size. 

The concentration predictions varied more than the size predictions, but 

were also far steadier than the actual variables on the plant. We may 

therefore conclude that discretisation in a large dimensional system is not 

a practical tool for solution. 

The time requirements of this quadrature filter are of interest in assessing 

the time required by the method of moments. On the CDC 1700 computer, using 

software arithmetic, the times required for one complete observation cycle 

(which took 5 seconds in real time) for each filter are shown below . 

(1) Quadrature filter . 4,3 seconds 

(2) Moments filter with IBPTOF (off-line") . 6,0 " 
(3) Moments filter with IBSIMP (on-line) - 3,0 " 

(The time required for on-line computations in (3) depended on time sharing 

with other programmes.) 

This shows us that the use of the quadrature filter required about as much 

time as the moments filter, even though the formulation was much simpler. 

This was found to be typical of matrix formulations, and is discussed in 

Chapter 7. 

Chapter 7/ ... 
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Chapter 7 

. DISCUSSION 

The results of this investigation are discussed here firstly with regard to 

the milling circuit filter in particular, and secondly to filters in general. 

7.1. Results of off-line tests 

Before discussing the filter results, the results of the off-line tests 

should be briefly considered, as they give much useful information on how the 

filter could be expected to perform. 

7.1.1. Selection and breakage funct i ons from batch mill tests 

The results from the batch milling tests gave reasonable estimates of the 

selection and breakage functions for the conditions examined. As is typical 

of wet ball milling, some of the assumptions of first order breakage were 

not well justified, particularly in the coarse size groups, although the 

overall fit wa's satisfactory. It was found during the regressions that · 

the breakage function was less critical than the selection function. The 

shape of the curves and the difference between the two ball size distributions 

is of theoretical interest, but was not of use in this study. 

The scale-up to a larger mill assumed that the selection function would be 

scaled uniformly over all size groups. It is known that the larger-size 

groups on the downward part of the curve usually scale by a larger factor, 

but the scaling factor was small, and there was little difference after data 

reduction to fewer size groups. The error incurred by assuming the ore to 

be homogeneous could not be easily estimated. The decay curves of the coarse 

size fractions did not have the typical "knee" of a mixed ore, but t~e 

circulating load rock had a higher measured specific gravity than the feed 

rock. Also the filter/ ..• 
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rock. Also the filter results showed that the rock in the continuous mill 

was definitely harder than the rock used for the batch tests, as the softness 

factor was less than 1,0. 

7.1. 2. Cyclone model 

The flow model for the cyclone assumed that the total underflow volumetric 

flow rate was constant. The data showed that it was not noticeably 

dependent on either feed flow or concentration, but that there was scatter 

about the mean. The operation of a cyclone underflow is complicated by the 

air core, and the exact dependence of the underflow rate on the operating 

variables is not known well enough to propose more complex models. This is 

unfortunate, as the variation in the underflow rate was the largest error in 

the volumetric filter, and had a direct influence on the p . s.d. filter. 

The result was that the overflow volume rate from the cyclone could not be 

predicted with sufficient accuracy and so the estimates of concentrations 

were influenced. 

Results from the cyclone tests showed that the performance of the cyclone can 

vary considerably. Tests done on the fil~er showed that the parameters used 

in the cyclone model had a considerable effect on the predictions, and so 

accurate values were needed for the parameters. It can be seen that th~ 

performance of the whole milling circuit was dependent on cyclone variables 

which were difficult to control to within the desired tolerances. 

Overall, the cyclone contributed much error to the predictions 

by the filter. Both the flow model and the classification model were 

inadequate. Abetter understanding of cyclone operation, and improved 

models are still needed. 

7.1.3. Mill overflow and transport 

The overflow from the mill was not an important factor in the filter, as the 

error' in Dredict i no- / __ _ 
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error in predicting the mill volume from the volumetric filter was not large 

enough to affect the p.s.d. filter results significantly. An assumption was 

made in developing the f~lter that the volumetric model was not influenced by 

the mass or size of solids present. In the case of mill overflow, the 

solids affected the flow because of viscosity, but this seemed a minor effect 

in the mill studied. Transport through the mill was more important, but 

models requiring more than a single stirred tank for the mill would increase 

the dimension of the p.s.d. filter. The filter was not sufficiently accurate 

to show up any errors in grinding caused by the transport model, but a 

difference in response time was noticeable. 

Classification at the mill exit was a"ffected by the solids present, 

particularly when the concentration was high. This phenomenon could easily 

be included in the p.s.d. filter model, but it would need much difficult 

experimentation to collect data for parameters. 

7.L4. Runs on milling circuit 

Runs B, C and p all gave useful information for testing the filter under 

normal operation. Run A was too upset to give normal data, but it was 

useful for testing how the filter behaved under abnormal circumstances. 

The control interval of 5 seconds was not varied. Earlier, a IO-second 

interval was t~ied, but the control on the sump was found to be too erratic. 

The 5~second interval was then tried as a balance between having good control 

and having enough time to do filter computations, and was found to be 

s'atisfactory. 

The maximum throughput of the milling circuit seemed to be limited both by 

the cyclone underflow solids rate, and by the mill when it put out large stones 

when it was overloaded. As in run A, operation near the limits was found 

to be likely to give trouble. 

7.2. Results from the/ .•. 



7.2. Results from the filter tests 

The performance of the filter is best evaluated by studying in detail the 

graphs 6.17 to 6.33 shown in the results, chapter 6. These results showed 

the following points. 

(l) A filter for predicting the state of a milling circuit could be 

written and made to operate successfully on an actual plant in real 

time. It gave reasonable predictions and tolerated plant upsets. 

In doing this, we achieved the main goal of this investigation. 

(2) The volumetric filter performed well in each case. It was simple to 

employ, and gave no trouble on its own. It followed measurements 
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closely and recovered quickly after upsets. The built-in checks helped 

to prevent it causing instabilities or upsets in the p.s.d. filter when 

the plant was experiencing an upset, but it did not affect normal 

operation noticeably. 

(3) In the p.s.d. filter, the product or cyclone overflow size distribution 

was more accurately predicted than the underflow size distribution. 

All trends were followed well, although the predictions were slightly 

ahead. The concentration predictions were inaccurate because of the 

poor cyclone model in the volumetric filter. The actual softness of the 

rock appeared to vary slightly, although this was kept constant in the 

filter. 

The predictions were observed to be slightly ahead of the samples. This was 

probably caused by two main factors. The first possibility was that we did 

not take any delays in the circuit into consideration, e.g., in the lines, the 

cyclone overflow tank, the mill residence time, the sump, the pump, and the 

cyclone. This would only explain about half the delay of approximately 

8 minutes that was observed. The second possibility was that the use of only 

four size groups in the filter meant that the coarse material entering the 
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circuit would start to appear in the fine product too soon. In reality, it 

would have to break through considerably more intermediate sizes. The use 

of more than four size groups would help this, but must be balanced by 

the greater computational load. The results obtained indicate that the use 

of only four size groups is as good a compromise as possible. 

7.3. Effects of factors on filter 

Section 6.8 showed the effects of several factors on the filter performance, 

and discussed these. Some of these proved to be more important than others. 

These main results are discussed below. 

(1) Variat5_ons in rock softness, feed size, and cyclone classification all 

produced similar results, particularly on the cyclone overflow size prediction. 

It was difficult to distinguish between the causes, and this raises the question 

of whether it was necessary to distinguish between the causes. Provided all 

the parameters are of the correct order and are as accurate as they can be 

conveniently determined, it might be easier to describe all variations in terms 

of changes in rock softness. The filter was found to be poor at regressing 

on rock softness, but this was mainly due to not having an adequate cyclone 

model, and was not helped by the poor instrumentation. If, on a larger scale, 

the predictions were found to drift slightly, then it may be be"tter to let 

the filter regress on softness. The difficulties in this regression, which 

were pointed out earlier, should, however, be noted. 

(2) The noise in the plant and on the instruments was not small. This gave 

larger than desired prediction errors. A larger scale plant might give better 

predictions, partly because it would probably be less prone to noise because 

of its scale, and partly because it would have better instrumentation, 

particularly on concentration measurements. 

(3) Of the models used in the filter, the cyclone was the most inaccurate 

and one of the most critical, both for flow and classification. The cyclone 
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obviously needs further study. The cyclone model could have been made 

stochastic, except that this would have made it more difficult to develop a 

filter, as the same noise would appear in both the evolution equation 4.1.1 

and the observation equation 4.1.2. This would require some modifications 

of the basic filter structure, and is a problem discussed by Jazwinski (1970) 

page 208. The performance would probably not differ much from that of the 

existing filter, as the basic cyclone model would still be the same. The 

grinding model was reasonably accurate over the normal operating range. 

A larger number of size groups would have helped both models. The ore used, 

being of mixed hardness and density, also produced some scatter. 

(4) The use of differential quadrature is not suited to large dimensional 

systems. Although requiring a calculation time comparable with the method of 

moments, the results were inferior. 

7.4. General use of real-time recursive filters 

The results from the milling circuit filter have been discussed. This 

investigation also showed a number of matters and problems associated with 

real time use of filters in general. These are discussed below. 

7.4.1. Determination of noise levels 

Noise levels in a filter are difficult to determine precisely, and they 

are a source of uncertainty in a filter. Various methods are given in 

section 4.2.4, and the effects of varying noise levels are shown in 

section 6.8. To determine levels experimentally, if it were possible, would 

take a long time. The questions arise of how exact do they need to be and 

what are the effects of using incorrect levels. 

Noise levels determine how much relative reliance is placed on each part of 

the filter process and observation models. For this it is the relative 

magnitudes which are important, rather than the absolute values. If a noise 



level were increased by a factor of 2, i.e. the variance by a factor of 4, 

(as in section 6.8.6) then the effect of that part of the model would be 
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reduced by a factor of almost 4. It appeared that the effects of such factors 

were not great under normal operation, as the plant and the filter evolutions 

did not differ widely, and new observations did not have to change the state 

predictions noticeably. Under a plant upset, however, the effects could usually 

be seen more easily. 

Noise levels also determine the accuracy of the predictions. It has been 

found that the mean value of a prediction is the most useful and most easily 

understood statistic. In a multidimensional system, the variances of 

individual variables are used occasionally, but the full variance-covariance 

matrix, or the probability density function are seldom consulted. Noise 

levels usually have little effect on the mean. Thus the need for reliable 

noise levels is not as great as the need for a good model. 

The response of the means in a linear filter is not affected by a uniform 

scaling of all the noise levels. This can easily be seen by applying a 

scalar factor, say b, to Q, Uk' CU' Pk+, and P
k

+
l

- in equation (4.1.12) and 

R, Pk-, and P
k
+ in (4.1.17), and noting that the Kalman gain K does not change 

while the other filter equations remain satisfied. In an actual plant 

situation where control actions will be taken on the basis of the filter 

output, greater accuracy would be required for estimates of the noise levels 

than those achieved in this study. As indicated in section 4.2.4, noise 

levels can be obtained with reasonably good precision and this does not appear 

to be a major difficulty in the industrial application of the modelling and 

filtering technique developed in this study. 

7.4.2. Presentation of results 

Presenting output from a filter is a problem. To judge the performance 

visually, it is necessary to have graphs which are not confusing but contain 
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all the relevant data. Raw data from a filter are generatly meaningless, and 

they must be converted, as explained in section 4.3.5, to more meaningful 

quantities. Output in the form of numbers is only useful for checking, and 

uses an excessive amount of paper. Statistical checks are useful to quantify 

performance, but they do not convey how the filter actually worked. Perhaps 

on a larger scale of plant, most of the filter data would be used only for 

control, and output of only key variables to an operator would be by way of a 

chart or by a display on request. 

7.4.3. Advantages of a noisy system 

In developing a filter for a system such as a milling circuit, one has two 

particular advantages over systems tested previously, such as those for missile 

tracking. 

The first advantage is that the milling circuit is inherently stable over a 

reasonable range, and so the filter is less likely to diverge through lack of 

good information. This has not been proved rigorously for a nonlinear 

system, but it follows intuitively because the evolution equations in the 

p.s.d. filter (appendix A~with reasonable parameter values, will tend to a 

fixed point with a finitely limited variance, as a result of the stability of 

the model. This was shown to be correct for a number of points (see 

sections 6.6(5) and 6.8.1) when developing the noise levels in the filter. 

For a linear system, any observations will decrease the variance of the 

estimates (from equation 4.1.17). Thus, provided any observations from the 

plant are not out of the operating range, the range of the estimates of the 

means and variances should remain bounded. 

The second advantage is that the noise levels are high and the nonlinearities 

are slight. Thus simpler, more approximate methods of solution can be used 

provided the errors which they introduce are relatively smaller than the 

standard deviations of the estimates. This also means that there is less 



likelihood of computational instability, as simpler meth~s are generally 

stable over a wider region. 

With a practical filter, one has the advantage that the model of the plant 

will behave much like the actual plant. A "feel" for the plant is useful 

for understanding how the filter works, and for guessing parameters for use 

in the filter without actually measuring them. 

A filter automatically reduces the error in the mass balance for the plant. 

It will not do an exact mass balance, but it will try to compromise between 

the errors which it holds in its model noise levels. 

7.4.4. Updating a filter 

It was found throughout this investigation that it was necessary to check 

calibrations continually, and make changes in parameter values as the plant 

changed. This would probably also be the same with any plant, and is a 

disadvantage in that it would always require attention. 

7.5. Necessary considerations in designing a filter 
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With a large nonlinear system, the problem of what type of filter formulation 

to use is very important. 

considering the method. 

(1) Speed of operation: 

The following factors are important in 

Real time work allows a very limited amount of 

time for computations and there are considerable complications if this 

is exceeded even once during plant operation. 

(2) Accuracy of prediction: An approx i mate criterion is that the accuracy 

of the method must be better than the normal error in the predictions, 

but this may be difficult to determi ne. To be too accurate is a waste 

of time and computer capacity. An example of this was shown in section 

6.8.11. Inaccuracy may make the results useless, as in the case of the 
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quadrature filter in section 6.9. 

(3) Difficulty in formulation: An intricate filter takes a long time to 

formulate, programme and test, and this is expensive in terms of man-hours. 

It might be advantageous to develop filters such as the one presented 

here before needing them on an industrial plant, as there may not be 

enough time to develop a new one from the beginning when commissioning a 

plant. Some filters are already available in this way, usually as part 

of a control scheme, e.g. for paper-making machines (see Rstr~m 1970). 

(4) Computer requirements for (i) storage, (ii) processing: A long filter 

programme usually uses a large amount of both core and time. Methods 

which require a lot of storage for filter variables generally take a long 

time to compute, and are not usable. Storage for variables for most 

practical methods is not large compared to that available in a computer, 

and would probably only be important if the computer was on-line to 

several parallel plants simultaneously. The accuracy required for the 

arithmetic may also vary between methods. Typically, large matrix 

inversion requires high accuracy, often more than 32 bit floating point 

arithmetic (which is typical of present-d~y control computers) can provide. 

(5) Availability of data for parameter determination: In a model, the use 

of extra sections which have little effect on the result but which require 

much off-line experimentation, is inefficient. It would be better if 

time was limited to run the filter the first time on a simulation with 

assum~d values for the parameters. Once the sensitivity to errors had 

been checked, the necessary parameters could be determined experimentally. 

7.6. Comparison of methods for i~plementing a filter 

This project studied a large an~ noisy system which was not linear, but not 

highly nonlinear. It is felt that this is typical of most metallurgical 

plants. The conclusions dra\OTD here are based on this system, rather than the 
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more exact missile-tracking type of system. 

(1) Method of moments: This was the method used here, not to be confused 

with extensions to the linear Kalman-Bucy filters. This was found to 

be the best method for most problems where the dimension was large and 

the nonlinearities were small. It is more economical for computing 

time than the extensions of the linear filters, as less arithmetic is 

needed, but the programmes are not as general. It is also more 

difficult to write and programme than the equivalent extended filter. 

(2) Extensions to linear filtering theory: After the method of moments, 

this is the next most feasible method on present day machines. More 

core is required for storage of variables, and more time is required for 

computations. This is because of the time used in doing calculations 

on large parts of the matrices which have little effect on the results. 

The method is quicker for programming, and has been well developed in 

the literature, so that its behaviour is more easily understood. 

(3) Orthogonal series approximations: These approximations are usually only 

feasible on a small system, but give more information about the actual 

probability distribution, which the above. methods do not give. They 

generally take time to formulate and programme, and are not very well 

developed in the literature for filters. 

(4) Discretised state space: This method is only suited to very low 

dimensions, and can give very detailed information. If differential 

quadrature is used, the formulation is simplified, and matrix arithmetic 

is all that is required for solution. The use of discretised state 

space for large dimensions was shown in this investigation to be 

unsuccessful. 

Other possible methods, such as Guassian sums, Monte-CarlQ techniques, or 

deterministic observers, were not examined in detail in this study, as they 

did not appear to be suitable. 



7.7. Recommended procedure for practical filters 

The following procedure is recommended for developing a filter. .. 

(1) Draw up the simplest possible model for the process being studied. 

(2) 

A "feel" for the plant being studied is a great advantage here. 

Develop a filter from the process model. 

revising the model. 

This may require 

(3) Collect whatever data can be collected easily from the plant or 

from literature. Estimate values for the parameters which cannot 

be measured, and run the filter to test it. 

(4) From the results of the tests, decide on what parameters need to 

be determined, and whether improvements are needed in the filter. 

(5) Perform the further work required and re-run the filter. 
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Some type of improvement to a filter is usually possible, and so (4) and (5) 

will be repeated several times. For this reason, it is essential to have 

some form of the filter operating as early as possible. 

7.8. Comment on linear algebra 

Linear algebra is often used in control theory. It is a convenient 

"shorthand" way of formulating problems, and the algebra has been well 

developed. It is not restricted to linear control theory. It is a well 

known fact, and it became increasingly obvious during this study, that the 

length of time required on most computers for doing matrix manipulations is 

too long. This makes the technique impractical in all but the smallest 

systems. 

In recent years, computers with parallel processors have been built. These 

enable several similar computations to be done simultaneously and are suited 
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to doing matrix arithmetic quickly (see section 3.5 no.(9)). The use of 

small multiprocessor machines for real-time control work would revolutionise 

the use of advanced control theory on complicated industrial plants. The 

programmes would be both simpler to write and quicker in execution, and these 

are two of the greatest difficulties in present day control theory applications. 

The use of matrix algebra in filtering theory has already been explained for 

extensions of the linear theory. In this investigation, the method of 

moments was chosen as it was the best method of solving the filter equations 

with the existing facilities, but it took a long time to prepare. If a 

matrix processor had been available, then the second order extended Kalman 

filter probably would have been a superior method. Other methods, such as 

differential quadrature, would also become feasible. 

7.9. Estimation of a distribution 

A problem that was encountered when first developing the filter for the 

milling circuit was the lack of fundamental mathematics available for handling 

the estimation of a distribution or distribution density. In this study 

(see section 4.3.3), the size distribution density, p(d), was lumped at four 

points d., i=1, .... 4, and designated p., i=l, ••.. 4. 
1 1 

These p. were then 
1 

treated as state variables, and the filter was written about their probability 

density function, hI(Pi' i=I, .... 4). No success was achieved when attempting 

to formulate the filter in terms of a continuous p(d), although it seemed that 

this should have been possible. This is obviously an area where more basic 

research is still needed. 

7.10 Advantages and disadvantages of practical use 

A filter provides a knowledge of the state of a process in real time. This 

state is often otherwise unmeasurable, or not measurable as accurately as the 

filter can predict it. It i s the availability of this knowledge for further 

use which is the main advantage in using a filter. 



The implementation of a filter is complicated and time-consuming. A large 

computing facility is required as opposed to conventional DDC loops. Much 

off-line experimentation is needed to get data for the model, and these data 

must be continually updated as the plant changes. 

disadvantages in using a filter on a real plant. 

These are the main 

In the case of the milling circuit filter developed here, the particle size 

distributions were calculated at three different sizes in the distribution 

curves. Most present day size monitoring instruments and estimation 

techniques give only one point on the distribution. The use of a size 

measuring instrument together with the filter could also be considered, as 

this should give more accurate predictions and more information than either 

could provide separately. 

Chapter 8/ ..• 
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CONCLUSIONS 

In this investigation, a filter was developed and successfully tested in 

real time on a milling circuit. 

conclusions drawn. 

The following is a summary of the main 

(1) The use of Kalman filters is def~nitely feasible on a typical 

metallurgical process where the modelling is normally poor and 

the errors are large. 

(2) The predictions from the milling circuit filter agreed reasonably 

well with the samples taken. This showed that a simple model could 

be used, and that approximate methods of solution are sufficient. 

(3) The time of execution was not short, but the calculations could be 

done fast enough for the filter to be used in real time. 

(4) Of the methods of implementing a filter that were tried for the 

system, the method of moments was found to be the best. 

(5) The choice of noise levels in a filter is difficult. The need for 

good model parameters was greater than the need for accurate noise 

levels, but it was essential to give some effort to get reasonable 

estimates from the start; 

(6) The main advantage of a filter is briefly that it provides a 

knowledge of the state of a system which could not be obtained as 

accurately from direct measurements. 

(7) Disadvantages of a filter are the complexity and time required in 

development, and the need for continual updating of calibrations 

and parameters as the plant changes. 
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(8) Further work is needed in the following areas: 

(i) 

( ii) 

( iii) 

( ivl 

Development of suitable simple models. These shculd reflect a 

good understanding of the process rather than being very accurate. 

This applies particularly to the cyclone model in the milling 

circuit filter. 

On-line computing facilities. Use of small parallel processing 

machines would make matrix formulations of large filters feasible 

in real time. This would simplify filter design considerably. 

Filter development. Actual applications of filters to real plants 

are needed as there are still several difficulties to be overcome, 

particularly in the modelling and development of large filters • 

. On the theoretical side, methods of implementation and more general 

methods of modelling (e.g. particle size distributionsl are needed. 

Milling circuit filter. Improved cyclone models would improve 

filter performance. Given faster computing machinery, more complex 

models pa.rticularly with more size groups, might be trJed with 

advantage. 
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APPENDIX A 

' . 

EQUATIONS FOR THE EVOLUTION OF MOMENTS FOR THE PARTICLE 

SIZE DISTRIBUTION FILTER. 

The equations for the moments shown below were derived from the model for 

the p.s.d. filter (equations (4.3.26) and (4.3.27», as explained in section 

4.3.4, using the method of moments given in section 4.1.2.2. These equations 

were prepared as a subroutine, IBCDRV (see appendix C) for use in the 

evolution step of the filter. 

Notation 

. State vector x = T 
(PM1" ••.•• ,PM4 ,PSi" •••.. ,PS4) 

Softness parameter = KS 

First moment of x. 
l. = 

Second central moment of x. and x. - m (x x) - 11 (x x) m (x ) m (x ) - 2 .. - ~2 . . - 1 . • 1 . 
l. J l. J l. J l. J 

First Order Moments (means) m (x) l.' - 1 8 1 i' - , ... ,. 

Mill Contents -

i = 1, ... ,4. 
(A4.1) 
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Sump Contents 

= i = 5, .• ,8 (A4.2) 

Note -

= 0,0 as it was assumed that the softness parameter would 

not change over an observation interval. 

Second Order Central Moments (Covariances) m
2 

( x . x . ), i = 1,.., 8; ] = 1,.., 8 . 
~ ] 

Mill - Mill Covariances -

dm2(x.x. ) 
~ ] 

dt 

Q = - ( S. + S.). M. m
2 
(x . x . ) 

~ ] - ~ ] VM 

-SiO~·(m2(xixj)ml(KS) + m2(XjKs)ml(xi») 

-SjOKL· (m2(xixj)m1(KS) + m2(xiKs)m1(xj») 

i-l 
+ k~lSkO~bki·(m2(Xj~)m1(Ks) + m2(xkKs)ml(xj») 

j-1 
+ k~lSkO~bkj' (m2(xixk)ml(KS) + m2(xkKS)ml(xi») 

QS ( + y •• -.-v c·
O
m

2
(x.x. 4) 

~ S' ~ J ~+ 

i = 1, .... ,4, j = 1, .... ,4 

2 2 
where ~4(xkKS) = fourth order moment, assume 

+ m2(XjXk+4)m1(Xi+4»)] 

+ m2(xi~+4)m1(Xj+4») J 

(A4.3) 



Sump - Sump Covariances -

dm2(x.x. ) 
~ ] 

dt 

Q Q = B. 4- M .m2(x. 4X .) + s. 4- M .m2 (x.x. 4) 
~- -- ~-] ]- -- ~ ]-VM VM 

( y . +y . ). QS • m
2 

( x . x.), i = 5, .. ,8, j = 5, .. ,8. 
~ ] ~ ] 

Vs 

Mill - Sump Covariances -

dm2(x.x.) -- Q QM ( ) QS m ( x) 
__ ;::...,.._~--",J_ \Jj-4 __ .m2 xi xj _4 - Yj-4 --' 2 xi j 

dt VM Vs 

- Si QM .m2(xi xj ) - sioKL(m2(xixj)ml(Ks) + m2(XjKS)m1(xi») 
VM 

i-l 
+ k~l SkO~bki(m2(xkXj)ml(KS) + m2(XjKs)ml(xk») 

A3 

(A4.4) 

+ y. 
~ QS .[CiOID2(Xi+4Xjl + ~il k~lYk(ID2(Xi+4XjlID1(Xkl + ID2(XjXklID1(Xi+4l)] , 

Vs S 

i = 1, ... ,4, j = 5, ... ,8 (A4.5) 

Mill - Softness Covariances -

i = 1, ... ,4 (A4.6) 

Sump - Softness Covariances -

i = 5, .. ,8. (A4.7) 
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C1 

APPENDIX C 

Listing of Progr ammes Used in .the Filter. 

This appendix contains the relevant programmes used in the mill filter. They are all 

written in Fortran IV for the CDC 1700 computer. Each programme contains comments 

to guide the reader as to the purpose of each section, and these should be read in 

conjunction with the corresponding section in the main body of the thesis, as 

indicated below. (See also the CDC manuals on Fortran IV and Fortran ln a 

multiprogramming environment, as well as the Departmental programming notes.) 

(1) IBSTST. Used to perform volumetric filter calculations. C2 

(See section 4.3.7.) 

(2) IBCDRV. This calculates derivatives of the estimates of means and C2 

variances for use in the p.s.d. filter evolution step. 

(See section 4.3.6 and appendix A.) 

(3) IBPOBS. This performs the observation step in the p.s.d. filter. C4 

(See section 4.3.6.) 

(4) IBFVAR. Subroutine used by IBPTOr (see below). C4 

(5) IBPTOF. Calculates concentrations and size distributions from raw C5 

state variable estimates. (See section 4.3.5.) 

(6) IBSIMP. Simplified version of IBPTOF. (See section 4.3.5.) C6 

(7) IBMFLC. Main programme for running the filter off line on stored C6 

data. (See section 4.3.7.) 

(8) IBOLMF. Main programme for on-line filter operation. Communicates C8 

with control programme through communication block 9. 

(See sections 4.3.7 and 5.6) 

(9) IBPRPC. Prepares data for the filter. (Section 4.3.7.) C9 

IBSTST/ .•. 



BSTST 
SURROUTIN~ I~STSTCPHI.Psr.cnN.M.AKAL~.XHA.XMij.YAVrp.U~A.UMH. 

IUAY[R'OU·OUAV'YORS.R.NS.NP.NO.PA.PA.Pc.pn) 
: ... SURP OII TINE TO HANDLE prAL-TIHr EVULUTION Of ~ STA1IWUHY rlL lER FOH Mf.ANS 
: ••• ONLY. STARTS AT DBS STEP. UPOATES MfANS Of STATf ~NO PARAHEr(RS nffORE . 
... nHSERYATl O~IS .XMH ~ UMH. lISING YOI1S , AKALK. Tn (a:T XHA & U~A AFTER IIRSEIlV. · 
... THf~ CO,..PUT[ S tlMtl AfTEH CHANGf.S nl). ANO AVERA/;E CONTI>(lLS OVER NEXT INTt:kVAL 
••• fROH UMA + OUAV. TAKf.S EVOL STEP TO GET NEW XMB AND CO~PUTES AVERAG[S OF 
••• STATE OVEM NEXT TNTEHVAL' XAVER. 
.. .IF ORSERV ATI ONS ARE 'jEAMEH STATE AT REr.INNTNG (If PkEvT OU S INTERVAL CPIlSSIHLC 
••• PLANT MODE L FAILUREI THEN THo sE VALUES ApE USfO FOR THE uPDATE. Ir NOPMAL­
... ISE O OSSFP VATI ON ERfHlI1 IS GflEAHR THA N CPITf.lnll~ (PCISSIHLE [lHS MODEL rAIL) 
... THE"! t1IlSEf~VAT!ON ERROkS Akf SCALED oOw~ . 

n 1 ME ~l S I ON I' H I ( I ) • PSI ( 1 ) • C IlN C ( ) • M C t ) • A K A L K C t I 
OI~ENSION XMACII.XMBCII.XAV[RC\I.UMAC\I.UMRfll.UAVEPCI) 
OI~EIljSlON IIU (1). OIlA V(II.Y ORS CII.RCI) 
DIM ENS ION P4(1).p~CI).PCC\I.pOC1) 

••• 0IMEN S I ON S Of PA.pH.PC. ALL .GT. NS+NP 
••• CX UIAIlG A • Cx U)AUG R + AKALK • CyOBS - AM • CX U)AUG ~) 

. DO 1 I-(.NS 
PCCI)~XMA(II 
PA(I)cXHBCII 
DO <' 1"1 dip 
II=I+NS 
pC<IIl=UMACI) 

2 PA(IIl"U MIHI) 
NT-N5+Nf' 
(RA=O .O 
fRR"O.O 
00 6 I"I'NO 
II-MClI 
pDCII"YOBSCI)-PCCII) 
PIl( I I·VORSC I )-PAC I I) 
[RA"ERA+POCI)**<'/RCI) 
rRR:OERR+PBCII··?,/R(I) 

6 CONTINUE 
I •• CHEC K rOR PLANT MOnEl. FAILURE 

If IERB.Lf.ERA) GO TO ' 7 
DO 8 I a l.NS 
XMR (!) e XMA II) 

8pACII"PC(I> 
DO Q I=I.Np 
II"I+ NS 

9 PACIII=PC(!I) 
00 10 rel. NO 

10 Pr1<11=PI)(I) 
[fHl=fllA 

7 CRTTcQ.O+l.4.fLOATCNO) 
•• CHEC K fOR OB S M0nEL fAILUPE 

If ([kR.Ll.CRIT) GO TO II 
pATcSQRT(CRIT/fPR) 
00 12 Iel.NO 

12 PRIII·RAT·PBCIl 
11 r.ONTINU[ 

CALL MATMpY(AKALK.P8.pC.NT'NO.l) 
CALL MATAOD(pA.PC.pA.NT.() 

.. SEpA RATE (X IJJAUG AND Co,..PUTF: II"lR-U"lA+[)U. IJAvrrt-UMA+OUAV 
no 3 1:0 I. 'IS 

3 XMA(II"PA(I) 

I,U " 1-1" Nt"' 

II-I+"IS 
liMA( I ) ""'t. ( I I) 
UMR(I)"PA(lI)+OU(I) 

4 tIAVER<T ) .. PACT Il+OIlAV(I> 
C ... EV tlLli Tl O'j Of sTArt "t:ANS. X'~R - PHI" XMA + PSI" UAvEH + CON 

C ~ L L ~: AT " P Y ( pSI . II A V E ~ • p A • N 5 • ~I P • 1 ) 
CALL MA T~O D IPA.CON.XM~.NS.l) 
CALL HATMPY(PHI.XMA.PA.NS.NS.I) 
CALL HATA\)[)CpA.X",<1.X",fl.NSd) 
OU 5 I .. l.NS 

5 xAVERCI)=O.5.(XHA(Il+XHB(II) 
RE TllflN 
rNO 

IBCDRV 
SURRO UTINE InCnRV(PM.pVAP.PSV.SUfTV.SOFT.S.AKL.B.OMDVM.OSDVS. 

IRETA .GAMM A .I'H I.co.c 1. VS .F"EEn .OP'" .\lPVAR .0PSv) 
C",SIlBROUTlNE TO CALCULATE DERIVATIvEs Of MEANS AND VARIANCES FOR" SIzE GROUPS 
C .. .IN SUMP ANO MILL. USING IMPROvED CYCLONE MOOEL' ROCK SOfTNESS. AND MATRIcES 
c ••• STnRE O I N SOUA RE fORM 
C---I'M • vEC TOR Of MEANS. PYAR _ VARIANCE "lATRIX Of MILL AND SUMP MASSES 
C---I'SV • VAR ~ITH bllfTNESS. SOfTy • VAR nr SOfTNESS. SOfT. SOfTNESS 
C---S • ~fLECTION fUNCTION fUNCTlo~ VECTOR. ,K L - LOAniNG SCALING fACTOR fOR 
C---S fUNCTIO N. B .. BREAKAGE fUNCTION MATRIX 
C---OMDVM e QM/VM. QSOVS .. QS/VS RETA. GAMMA - CL~sSlrIcATION CONSTANTS 
C---PHI .. linENS Uf" NOISE nN S. Co. Cl - CYCLIlNE CLASSIfICATION CONSTANTS 
C---VS .. SlI"!p VflL. fEED· In LL fRES"! f[fO vEcrnq 
C---OpM. O P VA~ . ~P 5V " DfR I~S TO RE CALCULATfo flY THIS SUHROUTINE 

flWE"lS!IlN PM Ctll.P VAR(6 4).pS V(8) . Df'M(~) .OPVAIl(b4).OpSVC61 
n I" E"l S IIlN ~ ( " 1 • B ( 16) • B £ T A C 4) • G A ~'1 A ( 4 ) • PH I ( 4 ) 
nIMENSIO~ CO(").clCQ).rEEOC4).HACR) 
DIME~SlI)N GQV(4).BOVC4) .CGQVC4). CGOVV (41.S~CI61 

C ••• CALCt' LATE TYPICAL TERMS 
DO II 1"1.4 
GQVCl)·GA"!HACI)·oSOVS 
RUvCII"nETA(I)·nMnv~ 
CGUV( I )"collVC I ).CO( I I 
CGQVYC I I=G QY ( 1 )*CI( ( )/vs 

11 CONT I NUE 
C"'S MUST HAVf. ZERU 4TH ELE,..ENT. AND B MUST BE -1 812 Rt3 814 
C... 0 -1 A23 R24 
C... 0 0 -1 1 
C'., 0 0 0 0 

no 14 I" 1.4 
II -I 
xaAKL.S( I) 
no 14 J el •• 
Sf!( II ).X.I:!(!I1 
0-11+4 

14 Ct1 NTlrw E 
C ••• CYCLIl "l [ PAPT Of C\lvA~ "It L'MILL-SUMP' "ILL-SnrTNESS' AND "ILL MEANS . 

I 1::1) 
OU 40 " ,,\.6 
HACJ)= O.O 
TI" I 1+4 
n(l i, n 1=1 •• 

"" [I + J 
HACJ)"HACJ)+PVAPCJI).GA~~ACI) 

40 CII"T [ r,u[ 
(') 
I\) 



t"t'1S!:O.l' 

HC-O.O 
I)() 1i3 1-104 
!I" T +4 
HC"HC+PSVC II) ·r.AMMAC I) 
HH"HR+PMCII).GAMMACI) 

43 CONTINUE 
11=" 

LOOP OVER PM ROW 
On 41 J"I.4 
JJ-J+4 
TK"J-4 
X"CGQVV(J)·HA+CGQVCJ) 
Y-PMCJJ)·CGuVVCJ) 
OPSV(J)=PSV(JJ)·X+HC*Y 
oPM(J)·PM(JJ)·X+HACJJ)*CGQVVCJ) 

LOOP OVER PM. PS COLUMN 
n041K:aI.8 
I1"II+l 
IK:aIK+8 
OPVARI II )"HACII).V+~*pVARC III) 

41 CONTINIIE 
•• COVARS or suMP-SUMP AND SUHP-SOFTNESS. ALSO MEANS OF SUMP MASSES 

. IJ-32 . 
JI-60 
00 60 J-l.4 
JJ=.I+/I 
IJ-IJ+4 
JI=JI-31 
OPMCJJ)aBQV(J)*PHCJ)-GQV(J)*PM(JJ) 
OPSV(JJ):aBUV(J).PSV(J)-GQveJ).PSYeJJ) 
00 61 T:al.4 
IJ"IJ+I 
JI-J\+e 
IF (I-J) 62.63.64 

64 x=GQVel)+GQveJ) 
OPVAR(IJ)aAQV(I).PVAReIJ-4)+8QVeJ)*PVAReJI-32)-X*PYARCIJ) 
GO TO 61 

630 PVAR(IJ )a2.0*C8QVel).PVAReTJ-4)-r,QVCI).PVARCIJ» 
GO TO 61 

62 OPVAR(IJ):aOPVARCJI) 
61 CUN TIN UE 
60 CO'JTIN l) f 

,.GRINDING AND TRANSPORT SECTION. FINISHING or COVARS OF HILL MASSES wITH 
, .SUMP ~ N D sorTNESS. lLSO EXTENf) MILL-MILL COVARS 

I 1.0 . 
JJs-4 
IJa-4 

.00P rOf( PH ROw 
00 50 J=I.4 
II" I 1+/1 
1.1=IJ+4 
JJ .. JJ+/I 
~I El =o. 0 
I1C"o. O 
00 51 ""I. J 
JKaJJ+1( 
HBaH~+S~CJK)+rMCK) 

HC"HC+SACJK).PSY(K) 
HA( K )=S~(JI()*S~~T . 

'51 CUN T I NU[ 
Y=FfE n CJ)-AQV(J).PMeJ) 
DPMIJ)=DPM(J)+Y+HC+HA*sorT 

,(aHA(J)- ROV(J) 
C LOOP fnfl ~M ANU pS CUL 

on ~3 1-\.4 
11 .. 11 + I 
IJ=IJ+l 
I( 1 = 1 +4 
I(J"! 
OPVAR(Il)=OPVAR(II)+PSVCI+4)+MR+SQVCI).PVARCIJ) 
o p V ~ fl ( I J ) :o 1H' V II R C I J I + P S v C I ) • H II 
H~ (.J)=~-r.'IV( I) 
on ';7 K=I.J 
"PVft~(II).OPVARCII)+HA(K).PVARcKI) 
IF (~.rQ.J) H~(J) .. X 
O~VAR(IJ)aOPVAQ(IJ)+HACK).PV~RCKJ) 

f(1"KI+P. 
K.lzK J+t\ 

52 CII"JTJNUE 
';3 CIl"'TINlIl" 

C Coy of PM WITH SOrTNESS 
OPSvCJ)·UPSV(J)+SOrTv·H8 
OPS V(J)=OPSVCJ)+HC.SOrT-BQV(J)+PSVCJ) 

50 CONTINuF 
C ... COPV ~ 1I'1 P-M[LL INTO "ILt.-SUMP 

JI"O 
0(1 b2 I=1.4 
JL-JI+4 
I .J= I + 2 4 
00 42 J .. t.4 
JI-JI+t 
tJ"IJ+/I 
OPYAR(IJ) .. OPVAR(JI) 

42 CU NTINlfF: 
c ••• rr'i! SH OFr COVAHS or '4lI.L-MILL RV ADDING NOtSF ON S FUNCTION TERMS 
C PREPA~r liTH MOMENTS 

x=snrTv+snFr.sorT 
II =-/\ 
00 30 1",.4 
tl=1l +Q 

Y=PVA H( I r )+P'1( I ).PMC I) 
Z=PSV(I).(2.0·PSV(J)+4.0.~MCI)*sorT) 
HAC)·CX*Y+Z)·PH1(!)·PHICI) 

30 CONTINUE 
C COMPUTE TF:RHS IN MILL-MILL COvARS 

1[=-4 
IJ=24 
J[:a-4 
DO 31 r -I. I, 
II .. [I + II 
IJ=IJ-ll 
JI= .Jl +4 
JJ=-Il 
nil 31 .J= 1.4 
I .J= I J+ 1l 
. J I =J I +1 
J.J=.fJ+4 
J r I,.. r, 1 •. J) r. (J Tn 33 
K T" 1 1 
f(J=J.J 
n O JI. 1':= 1. J 

"T =- 1+' 
"J=<J+I 
lIP V • f' I J I ) " ,i P V A ~ ( J T ) + I) P V A II C T .J) + HAC ~ ) • C; H C I( r ) • ~ tH -: J ) 
(,1, TfJ 3" 

() 
w 



34 COII/TINUE 
31 CONTINU( 

RETURN 
(NO 

IBPOBS 
SUA~OUTINr. IAPOASCVAR.PSV.SOrTV.R.X~.SorT.OAS.CO.Ct.GAM.ETA. 

!QS.VS·QU.PA.FBl ' 
C ••• THIS SUMROUTINE HANDLES SLURRY CONCENTRATION ~EASUR[MENrs AROUND CYCLONE. 
C USING MODlfIEO SECOND ORDER fILTER EQUATTONS 
C---VAR a VARIAII/CE Of STAT[. PSV . , STATE - sorTII/ESS COVARIANCE 
C---SOfTV E VAR Of SOfTII/[SS. R • OBSERVATION VARTANCE 
C---XM • MEANS Of STATE. SOfT - SOfTNfSS fACTOR. OHS· OASERVATIONS or CYClON 
C---fEEo AND OVrRflUW. co. CI • ClASSlfICATIOIII fUNCTION · PARAMETERS fOR CYClON 
C---GAM • GAMMA. THE ClASSIFICATIOII/ ON lEAVING THE SUMP 
C---ETA • CLASSIfIcATION IN CYC Olf TANK 
c---os • SUMP wITHDRAwAL a CYClONF. fEEl) RATE. VS. SUMP VUlUME 
~---OU • UNDERfLOW TOTAL VOLUME fLOW. PA. pa a AREAS rOR INTERMEDIATF. STORAGE 
: VAR64·PSV6.RQ'XM6'OHS2.C04.CI4'GAM4'PAI8.PRI8 

DIMENSION VARCll.PSVCll.RCll.XMCll.OaSCll 
DIMENSION CO(I).CICIl.GAM(I).ETACll.PACI).P8CI) 
DIMENSION VOBSC4l.YOC2l 

: ••• CAlC UlATE EXTRA TERM GIVING NONLINEARITY Of 08SERVATION 
EXTRA-O.O 
IJ-28 
DO 11-1'4 
IJ"IJ+8 
0 0 1 J=I.4 
JJ-IJ+J 
TE RH ~CC1CI)/ETA(I)+CICJ)/ETACJ»*GAMCI)'GAMCJ)*VAR(JJ) 
If CI.EO.J) TERM-O,S'TERM 
EXT RAcfXTRA+TERM 
OK=US/CVS'COS-QUl) 
EXTRAa-QK.EXTRA/VS 

... CALC ULATE VAR*CUNEARISEI) OflSERVATlON MATRIX>TRANS IN PAl AND INITIAllY 
PREOICTE D OBSERVATIONS THEN nBSERVATION ERRORS TN Yo 

SAo: O.O 
5 8 =0.0 
YUC I ) ~O. ° 
DO 2 1=1.4 
X-GAMC I )'XMC 1+/1) 
YOCIl~YOCll+X 
SAaSA+X*CI(I)/ETACl) 
SB=Sa+X·(I.O-COCI»/ETACI) 

2 CO NTINUE 
YDCIl=Y(jCI)/VS 
YDC21=OAS(2)-QK*CSB-YOCt)*SA)-EXTRA 
SA=SA/VS 
DO 3 1-1016 

3 PAC 1)-0.0 
IJ=32 
00 4 1"1.4 
II = I +4 
XA=f.AMCIl/VS 
XA=QK.GAMC I)lC C I.O-COC I )-CI C r )'YDC!) )/(TAC T I-SA) 
PA(9)=PAC9)+XA*P.SVCII) 
PAC 16)=PA( IH)+XB';PSVC If I 
005 Jal.fI ' 
IJ=IJ+l 

JJ-J+~ 
PACJ)·rACJI+xA·VA~(rJ) 

PACJJ)·PACJJ)+XH.VA~CIJ) 
5 CIHIT (~I IIE 

PfHI)='It'A 
P~(!Il=~H 

q C(! II/TtIW[ 
ynCI )=n8sct)-ynCt) 

C~ •• CALCUlA1E vn~S ANO INV~~T TT 
r)O 6 I" 1 • IJ 

(, VORser )",wCl) 

no 7 I"' 1.4 
Vll I.\S( I )=vOHSC 1 )+PI1C ()*PAC 1+11) 
VO~S(2).VOASCl)+PHrI)*PACI·13) 
VURS(4)=VOIlSC4)+Pfj( 1+4).PAC t+13) 

7 COII/TI"'uE 
nET~VORSCI)·VURSC4)-Vn~SC2).VOBSC2) 
HIIUJ",V'1BSC I) 
VOHSCI)-VO~SC4)/OET 
VORS(4l=H()LO/OET 
VUHS(7)=-VOUSC?)/D(T 

e ... CALCtiLATf MF:ANS nr STATE AND PARAMETF:RS ' AND MulTIPLY VOIIS BY PBTRANS 
HOLD,.YDC I) 
YUCl)=V()RS(I)*HOlD+VORSC2)*YD(2) 
YD(2)=VU8SC2)'HOlO+VOBSC4)'YOC?) 
DO 8 I" 1 • q 
Il~I+9 

PRCI)"'VOBS(I)·PA(I)+VObSC2).PA(IJ) 
PBCIT)=VORSC2)*PACI)+VOIlSC4).PACII) 
If CI.(Q.9) GO TO 8 
~ M ( I ) = X M C I ) + PAC I ) • Y IJ ( 1 ) + P A ( T t ) • y f' C 2) 

8 CI)"IT I" U( 
s n rT=S O FT+PA(9)*YOCI)+PACI~)*YnC2) 

C ••• CALt:lJL~, TE NEw VARIANCES 
IJa O 
on II 1"1.8 
JI=I 
no 9 J=( 011 
IJ=TJ+I 
IF CI.f,T.J) GO TO 10 
VARCIJ)= VAPCIJ)-PACI)*P8(J)-PACI+9)*PRCJ+91 
GIl TO 9 

10 VAPCI.I)"VARCJI) 
9 JI"JI+!' 

PSVCI)"PSV(I)-PACI)'PRC9)-PACI+Q),Pfl(t8) 
II CONTINUE 

RE TUR~' 
END 

IBFVAR 
SUIlROUTI",F: IBfVARCA4.PVAP.fVAP.VI.VC) 

C .... THIS SU8PI'l(ITINf OpfRATES wITH IIl"Tnf TO CALCIJLATf. VAIl-CUVAI( '1ATR!x Of P5DS 
C,,, PVAR ST~RTING su~scrtlpT MUST ~[ I fnl~ ",YLL CflVA!l5 Ar-:n 37 rUk SUIoIP CClVARS 

DJ"'EII/SIliN AMCI).PVAI'CI).FV~RCI).V1CI'.VCCI' 
C ••• CALCIILATE' fVAR " (A")T"ft"~ • PV~" • AM 

IJEO 
[10 I J" 1 • Q 

'1 (1 I 1 = ~ • /I 
I J= I J+ 1 
ILL=4'1-/J () 

~ 



I(J,,4*J-Ll 
DO 1 I(zl, 4 
LK"Ii*K-fj 
S=O.O 
I1.zILL 
nn ? La,,4 
tL" 1 L+ 1 
LK=i.I(+1 
S=S+4MCIL)*PVAR(LK) 

? CONT I NtH: 
KJ=KJ+l 
r V4peIJ)-FVAP(IJ)+S*AHeKJI 
COIll TINUf 

••• VI C V4RIANC£ 0. INDIVIDUAL fRACTInNS • OIAG(fVA~) 
••• VC a YAk I ANCE Of CUMULATIvE fRACTIONS. StJM or Al.L VARS ANn COVARS IN 'VAR 

fOR SIZfS NOT GkfATER THAN 1 
S-O.o 
no 1 K _, ,4 
laS-I( 
IT=S*I-4 
vl(l )=fVAR( II) 
Dtl 4 J"1'4 
XC'VAR(TI) 
T I,. 11 + I 
If (J.NE.I) X.X*2.0 
SaS+X 

.4 CO'<TlNUE 
VC(J)-S 

3 CONTI NUf 
RETtJRN 
[ tolD 

BPTOF 
SURROU TIN[ IBPTUf(PH.PVAR,VM.VS,QS.Qu.CO.CI,GAM.ETA.CONC.VCUNC. 
IfI~'VfrH.fCH,VfCH.fIO.VfIO'fCO'Vfcn,rIU,VfIIJ,'CU.V'CU.PA.PB,PC) 

•••••••••• THIS SUBkOUTINE CONVERTS PRIMARY STATE VARIABLES (PM' PSI INTO 
CONCENTRATIO NS A ... n PARTICL E SI7E nlSTRIRUTIONS 

DI~ENSION p~el),pVA~el ).COel).CI(l).r.AM(I).ETAel).CONC(I),VCONC(t) 
DI~ENSIUN FIH(l), FCM(l)"fIO(I). rCOel) •• Iuel). 'CUel) 
DIMENSION VfIMel),VFC~el).VrInel).VFCO(I).vnU(l).VFCUel) · 
DI~ENSION PA(1),PR(I).PC(I).ARe4) 

••• CONe VECTOR - I MILL, ? SUMP. 1 CYC fE[O. 4 CYC 0/ •• 5 CYC u/r 
••• OETERMINr. CONCS IN HILL' SUMP A'<n cYCLnNE rE[D 

no I 1-1.5 
COfIC( I ) .. 0.0 
vCnNC<T ).0.0 
OI(:QS/evs*(QS-QU» 
tJK=IlS/evS*QU) 
DO 2 I al .4 
CONCel).cnNC(I)+PM(I) 
n.I+4 
CONC(2)=CONC(2)+PM(II) 
CONC(l)=CONC(3)+PH(11)·GAM(I) 

2 CONTINU[ 
CONC(3).CONCe3)/VS 

•• 0ETER~INE CO~MON TER~S AT .IRST LEVEL 
IJ:O 
DO 3 1" 1.4 
Y:GAMe I) *PMe 1+4) 

A~ ( I ) =0.0 
CO NC (4).CONC(Ql+(1. 0 -X)*Y 
CONC (S).CONC(51+x·' 
z·p~el)/(CO~Cel)*c nN Cel» 

[10 4 J:I.4 
IJ"IJ+I 
PAC IJ)=-Z 
If eI.EQ.J) PA(IJ)·PA(IJ)+\.0/CI)NC(ll 
AN(I)=AHel)+GA~eJ)*eCI(I)+Cl(J»*PMeJ+4) 

/I crJNT!NUE 
AN(I)=AR(I)/vS+coeI) 

3 CON TI M) E 
C ••• DETERMINE VARIANCEs or rEEn OISTRIAUTION 

CALL IHfVARePA.pVARel),p~.vrlM.v.c~) 

C ••• OETER~I~[ COMMUN TfRMS AT SEcoNn LEVEL 
JI.O 
CUO"tIoO 
IJ:32 
00 5 1=1./1 
IJ=IJ+4 
RRM=2.0*PMel)/(CONC(I)**l) 
y=r,A~eI)·PM(I+a) 

cc:coeI)+CI(I)*CONC(3) 
TlO.Y*( I.O-CC) 
Tlu-y*CC 
FIoet)=TIO/cnNCe4) 
fIU(I)=TIU/CONC(S) 
rIH(J)apMeI)/CONC(I) 
ZZZ.Y.CI (I )/VS 
1)0 6 J"I.4 
IJ-IJ+I 
GIJar,AMel)oGAHeJ) 
VCONCel)-VCUNC(1)+PVAR(IJ-36) 
Y·PVAR(IJ) 
VCONC(2)cVCUNC(2)+Y 
X-Y·GIJ 
VCDNC(3)aVCONC(l)+X 
VCO NC(4 )=VC~NC(4)+Xo(1.O-AR(I»*(1.0-AR(Jj) 
VCO NCe'i )=VC I)N ceS)+X*4R( I l*AneJ) 
cun=cuo+x*eCI(I)+C!eJ» 
HOlOO=GIJ*el.U-CC)*e!.0-AR(J»/CONC(4) 
JI" .JI+I 
PAeJl)=-ec,IJ*Clel)/VS+HOLOO).PM(I+4)ICnNC(4) 
HflLIJIJ=G I J*CC *AIl e J) ICONC e ';) 
P B eJI)=eGIJ*cl(I)/V~-HOLOU)*PM(t+4)/CONC(S) 
IF (I.NE.J) GU TO II 
PAeJI)=PAeJI)+GAM(I).(1.0-CC)/CUNC(4) 
P8(JI)zPHeJI)+GAM(I)*CC/CONC(S) 

11 cn lll T IIWE 
JK-II*J+26 
no 7 K:,.q 
JK.JK+I 
r,II(=GAM(I)·C,6M(K) 
GJK=GA~eJ)*GAM(K) 
HRn=2.n*Tt o *r,JK.el.0-AAeJ»*(I.O-AP.(K»/CONC(4) 
RP.II=?0*TTU*C,JI<*AR(J)*AP.(K)/CO"lC(5) 
7z=c,JK o eCleJ)+CleK»/VS 
7"'ZZ7*GJK 
RRnaeHRn+TIu*Z7+z*e2.0-AReJl-ARe'<»)/CnNC(~) 
HHu=ebPu-TltJ.lZ-Z·(AR(J)+A~(K»)/CONC(5) 
If (I.N[.Jl GO TO II 
Y"GII(*CtC ()Iv:> 

(") 
(J1 



• •• " ... '" I' VUI'''''' -.. I 

RRU"~RIJ+Y-AfH K )-G I K -CCICONC (0;) 

BRM:BRM-2.0/(CnNC(] )-CnNC(I» 
e CONTI NUE 

IF (I.NE.IO, GO TO 9 
Y-GIJ-Cl< I )/VS 
RRnaARn-Y-HOI.DO 
RRlI" fl P U + Y - H 0 LO I) 

9 CON TI NU E 
XX-O.5*PV~R(JK) 

FIO(I)aFl n CI)+XX*BRO/CONC(4) 
FIU(I)aFIu(I)+XX+BRU/CONC(5) 
FIM(I)arIM(I)+XX_ARM 

7 CONTINUE 
,6 CONTINUE 
5 CON TI NUE 

C ••• FINISH OFF CO NCS MEANS AND VARS 
CONC( 1 )"CONC( 1 )/VM 
CO NC(2)=CO NC (ll/VS 
CUOcO .5- CUO /vS 
CON C (4 ):OK*CCONC (4 )-CUO) 
CO NC(5)aUK*(CONC(51+CUO) 
VCONC(I)cVCONC(I)/(VM+VM) 
VCONC(2)"VCO NC(21/(VS·VS) 
VCnNC(31:VCONC(3)/(VS+VS) 
VCONC(4)aVCONCC4)-OK+OK 
VCnNC(S)=VCONC(S).U~.UK 

C ... CALCULAH VARIANCES I)F. O/F AND IJ/F' PSOS. 
CALL IBFVAR(PA.PVAR(37).PC'VFIO.VFCO) 
CALL IBF'VA R( PtJ .PVA R( 371.PC .Vr IU.VrCII) 

C ••• CAL CULATE MEANS OF CUMULATIVE "ASS FRACTIONS FROM INDIVIOUAL 
FC"(4)aFIMC4) 
rC O(4)"rIOC4) 
rC II (4):r I II( 4) 
on I? K=ld 
l"4-K 
rC~(I)=F'CM(I+l)+F'J~(I) 
F'CO(I)"F'CO(I+l)+f"PHI) 
FCU(I).rCU(I+l)+F'IU(I) 

12 CONTI NUE 
RETUR N 
END 

IBSIMP 
SU A ~ouT rNE lB& IMP(P M.G_M.ACO.ACI.VS.QS.QU.rIO.FCO.nCnNC.UC.F'C) 

C ... Sl "lP LlF'lf D ROUTINE TO CALCIILATE PROnllCT DISTRlB ANn CO NCS AROUND CYCl.n",t:: 
c ••• OCnNC = rl /r CUNC IJ C a U/F cnNC Fe" FEEn CONC 
C ••• FI(). F'C U e psnS (FRACTIONS) nF o/r. INDIV ~Nn elJ~ RESPEC. 

DIMENSION PM(l).GA ~ (lj.AeO(t).Ael(I).rIO(l).F'CO(I) 
C ... CALC UL ATr. F'rE D COtlC 

F'C" O.O 
00 I I a 1.4 
rC=F C+GA"( I ).P"( 1+4) 
rC= fC IVS 

C ••• CAL CIILATE CLASs1ra: '! II J ;~CTlIJ'II I4F:N STI!F:AMS r ;] 'l EACH <;llE "ROUP 
nr.r) NC =0.0 
ri O 2 I = 1.4 
CC :I. O-ACO(I)-A CI(I).F'C 
FIP(I).PM(I·4)*GAU(I)*CC 
nC'lN C" PCf'l'llC +F l ~ r I) 

~ I;UIIII !NUl 
C ••• CALC ULATF: DISTRIRUTIO ~S AND DCnNC 

D'J 3 I:o\> II 
3 rrO(I).FIO(I)/nCONC 

rCn(4)-FIO(4) 
1)0 4 Y-ld 
YI:4-1 
FCO(II)·FIO(JI)+rC 0 (II+I) 

/I COrH I NU ( 
OCDNC" QS *OCU1llC/(VS*(Q5-01J» 
UC-(Qs.rC-(QS-QU)+OCONC)/QU 
RETURN 
ENO 

IBMFLC 
f' ~ OGR A ' . Y AMF l. C 

C ... IHI& PllO t;'1AM DO'ES F'ULL F'ILTERING (vnLUMETRIC ANn PSD) ON STOReD DATA 
nIMENSJO~ IHEAD(40)'LG(47S) 
nIME NSIUN XM(2).UH(4).PHIV(4).PSI(A).cnNST(?).GOG(4).M(S) 
DIMENSIUN CO(4).Cl(4).rEEO(4).PM(~).PVAR(~4).PSV(~) 
nl"E NS TQN S( 4) .~( t~) .IlET q II) .r;AM"A( II) .ET4( II) .PHIN( 4) .IlP(II) 
D r~ E'IIS I O~ IN(9~1. 0 45V(~).OASP(2).XMA(2).U M A(4)'XAVER(2).UAVER(4) 
1)1"EII1SI(J r~ OU (4).D IJAV(4).PA(64).f'1j(1'l).PC(1 F1 ).c nNC(S).VCONC(S) . 
nI4E'IISJDN FEn(4). UP"(8 ).npVAR(64).npC;V(R).A~ALK(30).PO(6).IlV(5) 
1l1 Mr~jS I IlN FP1(4). FCM(4). rr O( 4). rCO(4). rIU(4" rCU(4) 
nY"E NSION Vt T"(4).vrCM(4).VFtOI4).vrCO(4).vrYU(4).vrCU(4) 
nl"lEIII 510'll ACOI").A C1 (4) 
f rll J 1 V A L r Ncr (I " E A I) ( 1 ) • L G C I ) ) • ()t'M ( 1 ) • L roC 4 I ) ) • ( II" ( \ ) • L G ( "S ) ) • 

I(PHIV(I). LG (53».(Il SI ll).LGCf.,t».(C flN STC1)' LG (77». . 
2 ( r, il r, C 1 ) • L r; C 111 ) ) • ( M ( 1 ) • L G ( 8 Q ) ) • ( AI( A LK ( 1) • I r; ( Q /I) 1. 
3(IlV( 1) . LG( 1<'4» 

E Oil I V A L E'lie E ( C 0 ( 1 ) • L G ( 201 ) ) • ( C I ( 1 ) • L r; (209) ) • ( F fF 0 ( 1 ) • LG ( 217) ) • 
I( P~ (I).L G C2l5».(PVA P (I).L G(~41» ).(P SV(I) .L G(l~9 ». 
2 ( S ( 1 ) . I.G (3115) ) • ([1 C I ) • L r; ( 19 1) ) • (fiFT AC 1 ) . Lr. (/1;>5) ). 
3( GA~MA CI).L G(433) .(F'T A(I) ' lG(1I4 1».(P4J N(I )'L G (449». 
4(RP( I ) 'L"r 1~))) 

F 0 I J 1 v ~ L E 'Ij C t:: c T TNT. L 'j C 461 ) ) • ( f '/ R 0 • L r; ( ,,(, 1 ) ) • ( V" [J • L r. ( 4 to c; ) ) • 
I(A KA . LG (46 ,» .C QRn .L ~(4~q» .(Sn F' T.L G (471».(S O F TV .LG(473» 

C.,. OpE 'Ij FILES A ~O GE T OATA 
OPE N 1.';.I.n. 2noo 
II P [<I 2 01 • '; [) () • /j 01 '; 0 0 
OPE'Ij 3 .I.l000 .P..300 0 
READ CI(I» (Lf.(lloJel.47S) 
J IJ ilT : ) 
w41TE (l ~u T.I UO ) (IHfAU(T)'I-I.40) 

100 r,)p"H (I~HIf'ATA liSEn --- '''c,All/) 
C ... SlT VAI.Ur~ 

T Ffl A C K" (1) 

IO fl AC K:l] 
tf' wAT "I<;~() 
I Q'H. T=f., ,/i) 
ROo1F'CI) N=;ooo n .o 
R ... nC f)" : ~'II) . Ii 
RMOlS=l.3'E:I 
If I "f :-l 
I MIoI : O 
t ~ 1 14 C : 1 
'Ij$ :? 
NP =LJ 

IJt l=C, 
(') 
a> 



CONC(5)"0.0 
••• GET DATA FOR U~SERVATIONS FRn~ DISC 

I(REC=O 
LL=95 

3 CONTI NUE 
Ll=LL+13 
If CLL.LT.70) GO TO 2 
KRECaI(REC+l 
LL-O 
READ C2(KREC)J CIN(I).lat.9S) 
DO 1 lal,95 
IF (IN(I).NE.O) GO TO 2 
CONTINUE 
~S=ITIM(+2 
WRITE C3(IS» (INCl).I-l.95) 
STOp 

2 CONTINUE 
lTIME"1TIHE·l 
TS(CmTINT'fLOATCITIME) 
Tf04IN"TS(C/60.0 
KP a ITIME-C[TIME/12)'12 

: ••• CONVERT DATA INTO OBSERVATIONS 
SOlIOS FE(O AND FEFn eELT SPEED. KG/S AND ~/S wITH GAP 1.SCH. 

FBS"2.764(-Q·(INCLL+l)+930) 
CONVER .. O.927-2.2E-Q*FlOAT(IN(LL+I» 
DBSV(1)zFBS'CONVER 

HILL WATER FEED SETTI~G. WATMIL, /43/S 
ISDa(IMW-IN(LL+2»'[VORC 
IM"INCLl+2) 
If CISO.lT.194) GO TO 66 
IV ORC·-IVORC 
GO TO 67 

66 If (ISO.GT.O) GO TO 6d 
67 IMW c I NClL+2) 

If CIV OR C.LT.O) IM-IM+194 
WAT MIL-0.ISE-4+9.89E-8*EXPC4.96E-3+IM) 

68 CONTINUE 
OBSVC2,=I;ATMIL 

SUMP WATER FLOW. M3/S 
IXaINCLl+3) 
If (lx.LT.4S0) IX c 4S0 
OBSV(S)-0.02265E-3*SORT(fLoAT(IX-4S0» 

CYC FEED CONC KG SoLIOS I H3 SLURRY 
CO NRCR-RMfCON'ALOG(FLOAT(IFWAT-IFBACK)/FLDATCIN(LL+6)-IFeACK» 
IF CCO N~ CR.GT.RHOS) CONRCRcO.O . 
If CC ONRCR.LT.-20.0) CDNRCR=O.O 
o8SP(1)IICONRcR 

CYC O/F CONC KG SOLIDS I "3 SLURRY 
C ONPRO"RMOCON' A LOG (fL·OAl C I owU- I OBACK )!FLOA TC I N( LL +7) -lOR ACK» 
IF CCONP~O.GT.RHOS) CONPRO-o.O 
If (CO~PRO.LT.-20.0) CONPRD.O.O 
08SP(;naCoNPRo 

CYC FEED RATE. M3/S. CORRECTED FROM CONCENTRATInN 
RECIRC.l.S7E-6*(INClL+4)+3) 
OBSV(3)kRECIRC/(I.O+4.0E-4*CONRCR) 

SUMP VOLUME. ~3. CORRECTED FROM CONC 
S~pVOL·rLoAT(INCLL+S)-136)/CI.O+o.7t~E-3*cnNRCR) 
SMPVOL c 7.662IE-3+3.467f-S*SMPVOL 
OBSV(4)"SMPVOL 

I •• CONTROLLER CHANGES 
TCC-60.0*TINT 
JTC-IFIX( TCC) 

U t I ".. ,,-"".., 

TNn=LL+I+'I 
IF CI ~ I[ ~O).~1.I1Cl INCJND).ITC 
IF CIIH[ N[l).lT,-TlC> INCINO).-lTC 

II CONl Jl'Hlf. 
C SUMP PIJI.'P 

T R A " r. t= /, 0 • () . 4 0 • <; 
TMf)vE=Fl.(lATC 11~(LL+tO» 
nU(1)=2.0E-3·T~OVE/TRANGE 

FKAC=TMllVEIlCC 
OUAV(l)=OUCI)·O.S*CZ.O-FRAC) 

C SOLIDS FEE.O 
TMOvE=FLOATCINCLL+ll» 
OU(2)=(2.764E-Q·CoNVER-2.2E-O*FaS)·0.191*TMOVE 
FRAC=TMOvE/TcC 
OUAV(21=OU(2)*O,S·12.0-FRAC) 

C MILL wATER 
IPOS-l~CLL+2)+IFIXCO.SD7·INCLL+12» 
ISn=(IMw-IPUS)·IVORC 
IF (ISO.LT.O) GO TO 10 
IF OS[I.r,T.194) GO TO 11 
OIJ(3)=O.O 
OUAV(3)=O.0 
GO TO I;> 

It IF CIVDRC.GT.O) IPOS.IPOS+194 
GU TO 13 

10 IF CIVD~C.LT.O) IPUS·IPOS+tqO 
13 VAL=O.ISE-4+9.HQE-H*EXP(4.98E-3*JPDS) 

OUC3)=VAL-wATMIL 
OUAV(3)=U.S*OU(3) 

12 ClJNTI NUE 
C SUMP WATER 

TMIlVE=FUJAT< IN(l.L+13l I 
wIG=IN(LL+3)-4S0.0 
owIG=1.0/C\.3668+3.28IE-3*WIG+3.3866E-6*WIG*WJG) 
wlG·wlG+uwIG.T~Dvf 
IF CwIG.LT.O,O) WIG=O.O 
OU(4)=O.0?26SE-3·SQRT(WIG)-OBSV(S) 
F " ~ C = H Hl V[ IT C C 
nUA~(4J=OU(I)·o.5*(l.O-FMAC) 

C ... wkITE fllJ T DATA tlF.FlIII[ IlBSEPVATION STEP 
IF CKP.[O.O) ~RITF (IOUT.llo) ITIMf.TSEC.T~IN 

110 Frp~AT Cl?HO OHS(I< II NO.I4.RH TI~E _.rb.I.7M SECS •• F8.2.5H MINS) 
IF (KP.[Q.Ol WMITI «(OUT.tll) (XMCI).I.I.NS).(~M(I).I.t.NP) 

III FORMAT (37M VULU METKlt MEANS BEFORE OSS. STATE.2EI2.4. 
lQM PAMAMS.4El?.Gl 

IF (KP.EO.O) winTE (Il1uT>!l;» COBSV(J),J"I.NI),cOBSPCIl.l a l.2) 
112 FORtHT (;>3H nIlSfRvHIONS. VOLUM •• SEI2. 4 .6H PSD.2E12.4) 

C ••• VOLUMETRIC FIlTE~ FOI> C(IMPLETE SHp (STATIONARY FILTER) 
CAL L J II S T S T C PH r V • pSI. c. il N ST. " , A I( A L K • X M A • X M • )( A V E 'l • U M A • U M. U A V E R. 

In U • f' U ~ V • 0 H 5 V • R V • ' I S • I~ P • ~ , n • P ~ , P fl • PC. l' 0 1 
IF CXMA(2).lT.O.00 M) XMAC2l.0.008 
IF (XM(2).LT.u.o){)~) (11(;»=0.008 
IF CXAVERC?).lT.n. IIU R) xAVEfH2)-1).001l 
IF CKP.[Q.OJ w~ITIC (IIJUTd") (XMA(J).I.I.tIS).CUMACl).hl.tlP) 

113 FOAMAT (36M VOlUMEllllc ~rANS AFTER DRS" STATE.2fl?4. 
t 9H PA"~M~.4Et~.4l 

C ••• PSO F1LTEq I)HSrHVATlnN AMI) C~LCULATION OF nIST'lIAUTI~NS AFTEM~AROS 
UFICAC=(IlR'J/I)fIAC,) ).(I<ItOS-CCiNC(<;) )/CIH4QS-CfJlIC()) 
nF'lA-C = I. U -Uf rlAC 
on q) 1"1.4 
ACOC I )sUf"RAC+IJFAAC*CI)C I 1 
ACI(II=OFnAC.CICll 

(') 
~ 



CALL IRPOqSCPVA~.PSV,SOFTV'RP.p~.SnFT.nSS~.ACO,ACI.GAMMA.ETA, 
lUMA(1),VS.QRO,PA.PB) 
SOFhO.9 
CALL IBPTOFCPH.PVAR'XMA(1)'VS.UMACI).QRO.ACO.AC1.GAMMA.EiA 

I.CO NC. VCIl NC.F 1M. 'JFIM .rCM' vrCM.F In. VF TO.Fco,vrcn.r!IJ. VF IU.FCU, VFCU 
2.PA.PIl.PC) 

IF CKP.EO.O) ~RITE (IOUT.114) (CUNC(I).I-!.~) 
114 fORMAT C?7H FILTER CONCS. KG/HJ ~ILL.F7.1.7M SUMP,F7.t. 

t ltM 'CYC rEEO,f7.I.l0M eyC UIF.f~o1,10H CyC U/F.f"To1) 
IF (KP.EQ.O) WRITE CIOUT.115) (FCM(I).I~I,4),(FCO(I).I-I.4). 

lCFCU(l).!"1'4) 
115 FORMAT (26H PSDS. (CUM fRACS) MILL.4.6.3.7H 0/ •• 4.6.3. 

I 7M U/f,4f6.3) 
: ••• PSD .ILTER EVOLUTION 

QMDVM=AKA*CXMA(I)-VMO)/XMAC1) 
VS-XMA(2)+O.o2 
QSOVS"UMA( 1)/VS 
UfRAC-CQRO/UMACI»*(RHOS-CONCC5»/(RHOS-CONC(3') 
OFRAC-l.0·UfRAC 
00 44 lal.4 
ACOCI)"U,RAC+UfRAC*COCI) 
AC!CI)cOFRAC.C\C!) 

44 'EOCI).fEEDCI)*U~A(2)-5.0 
AKLs!.O+10,0*(XMA(I)-0.1435) 
CALL IBCORVCPM.PvAR.PSV.SOfTV.SOfT,S.AKL.B.QMOVM.QSOVS. 
!BETA.GAMM~'PHIN.ACO'ACI.VS·fEO'OPM.OPVAR'OPSV) 

THALf-O.5.TINT 
DO 45 1=1.8 
PBCI)RPMCI)+OPM(I)-THALf 

45 PCCI)aPSVCI)+OPSVCI)-THALf 
DO 46 1=1.64 

46 PACI)2PVAR(I'+OPVARCI)*THAL. 
OMOV M=AKA*CXAVER(1)-VMO)/XAVFRC1) 
VS.XA V[fH2)+O.02 
QSOVSzUAVER(!)/VS 
U,RAC-CQRO/UAVER(I»*CRHOS-CONCCS»/(RHOS-CONC(3» 
OFRAC=1.0-UFRAC 
00 '10 1"1,4 
ACOCI) z UFRAC+UFRAC-COCI) 
AC!CI)zOrRAC*CI(I) 

40 fEOCI).fEEOCI).UAVERC2)*5.0 
AKL-l.0+10.0*(XAVERCI)·O.143S) 
CALL IBCORVCP~.PA.PC.SOFTv.SOrT.S.AKL.B.QHDVM.QSDVS • • 

lSETA.GAMMA,PHIN.ACO.AC1.VS.,EO.OPM.OPVAR.OPSV) 
00 41 J21.8 
P"'( I )"PtH J )+OPfo1( I)-TINT 

41 PSV(I)~PSV(I)+OPSV(I)*TINT 

00 42 1-).64 
42 PVARCI)=PVA~CI)+DPVARCI).TINT 

.. WRITE TO DISC 
IS"ITIME+l 
wRITE (3CIS» IS.CXMCI).I-l.NS).CXHACI).r-l.NS).CUMCI).I-I.NP). 
I(UASV(I),I.l.NO).ORSP(I).OBSPC?).SOfT.CfC~(I).VfC~CI).fCOCI). 
2VfCO(I).fCUCI).VrCUCI).1-1'4).CCONC(I).Ial.~).VCONr.Cl),YCONCC4) 

GO TO 3 
END 

30LMF 

.,;, ~ 

. 'j 

C ••• ON LT~E P~OGRA~ Ta wORK wITH IRfo1ILL. PROCESSING OATA TO PREDICT P.S.D. 
OI~ENSIDN 1~qgfC~"'.ITEMPC~).A"'OVEC4).TLIMC4).JTEMPC~) 
fll"'EN:>rnN IHfAOC4("'LG(4'~) 
OIMEN~JON Xfo1CI.).U~(4).PHIVC4).PSICR).CONSTC2).r.QG(4,.M(~) 
OJ~fNSION C0(4).CI(q).FfFO(4).PM(~).PV~RC64),~SV(H) 
f) I M f N 5 I O'J S ( 4 ) • A l I " ) • Il ET A C 4 ) • G A ''''1 A C 4 ) • ET A ( 4 ) • PHI N ( 4 ) • R f' ( 4 ) 
OI,..rNSInN I~(9~).U~SV(5).OBSPC?).X~AC2).UMAC4).XAVEQC2).UAVERC4) 
0 I ME III S I 0111 D U ( 'l ) • Oil A V ( 4 ) • PA ( 64) • P R ( III) • PC ( III) • COlli C (5 ) • v C nNC (5 ) 
nI~E~~ION fEo(4).np"(8).OPV~R(64).f)PSV(6).AKALK(30).PO(6).RVC5) 
OIM(~5JON FIO(II).fCOC4) 
DIMENSION ACO(4).~Cl(4) 
EQUIVALENCE (IHEAf)C 1) .LGC I».c leMC 1) .LGC 41».( 1),,-( I) .tG( 4';). 

lCPHIV()'LG(5J».CPSICI).LGC61».(CONSTC\).LG(77». 
2(Ga6(1).LG(61».(M(1).LGC69».CAKALK(I).Lr.CQ4». 
3(RVC1).LGC154» 

FOUIVALENCE (CO()j.LGC201».CCICI).LG(2n9».(FEEOC1).tUC217». 
lCPM(1),LG(225».CPVAR(1).LGC2 41».(P5VC).LG(369». 
2(S(\)'LGC3A5».(B(1).LG(393».CHrTA(I).LG(42~». 
3(GAMMA(1).LG(433»,CETAC\)'LG(441».(PHIN(11.LG(449»· 
4CRP(1).LG(193» 

EQIIIVALENCE (TINT.LG(461»'CERRO.LG(463».(VMO.LG(46S»' 
I(AKA.LG(467».CQRO.LG(469».CSOfT.LGC471».CSOrTV.LGC473» 

RELATIVE IBSTST.IBPOAS.IBPTor. IACOqV,ALLOTS.IRSIMP 
RELATIVE c;ETx'GETI 'PIJTx.PUT 1.0EfREC .rINln 
RELATIVE r~ATAllo.MATrIPY 
IOUT.17 

C ••• SET TRAVEL LIMITS fOR cONTROLLERS. AND SUNORY VARIABLES 
TLIM(1)-O.123 
TLIM(2)-O.0344 
TLIM(3).O.0546 
TLIM(4) .. O.163 
NS .. 2 
'11'''4 
NO=5 
IIC=O.O 
fC=O.U 
RHOS-3.37E3 

C ••• CYCLE. CHECKING fOR SIGNAL TO RUN 
3 CONTINUE 

TST-IGET(9.531.3) 
If (15T.Nf.l) GO TO 7 
CALL SETBfR(IWRBF.80) 
WRITE (lOUT0101) 

101 fUR~AT (16H IBOLMf RELE~SEO) 
CALL R[L5PC(9) 
CALL RELESE(I~OLMf) 

7 CONTINUE 
ICYC=Ir.rT(Y.~31,5) 
TF (ICYC.NE.Ol GO TO 2 
ASSIGN 3 TO IJ(ET 
CALL TIMf.~(IpET.S0004.20.ITr.MP) 
CALL OIS~AT 

2 Cll~TINUE 
C ••• GET DATA fNOM COMMUNICATIONS BLOCK 

OBSV(!).XUET(Y.511.22) 
OASV(2).XGET(9.53I,23) 
OBSV(3)=XGET(Y.531.25) 
nR5V(4)=XGETCY.5Jl.26) 
!"~ SV(5)=XG(Trq.5 :H .24) 
nljs~'( 1 )RXGfT (9. u 31.27) 
Ot'Sp(2).,XGE r(9.531.?/I) 
f)U 5 1=1,4 () 

(X) 



5 A~OVE(r)-XCET(Q,53!'II) 
FBS-XGET(Q,531,35) 
CONVER-XGET(9,531.36) 
CALL I~UT(9,S31,5,0) 

C ••• CHEC~,ANn IF NECESS~RY. GET STARTING DATA rRn~ OIsC 
IST-IGET(9.531,3) 
JF (IST.EQ.O) GO TO 6 
CAll DEFRF.C(~15.q22.!,5.1) 
00 I 1-1,475 
CALL GErr(lG(I» 
CAll fINIO( lUi) 
CAll SETBFk(IWR~f,80) 
WRITE (IOUT,IOO) CIHEAO(I).I-t,40) 

!OO FOR~AT(I)H FILTER OATA .qOA?) 
CALL IPUT(Y,531,),0) 

6 CO NTI NUE 
C ••• CONV ERT CONTROL CHANGES 

nu 10 1=1.4 
IF (AMOVE(I).GT.TLIM(I» AMOVECI).TLl~CI) 
IF CAHOVECl).LT.-TLIM(I» AHOVECI).-TLIMCI) 

10 CUt.lrrt.lUE 
C ••• SU~~ PUMP 

OU(I)=2.0E-3*AHOVECl) 
C ... SDLIOS "EEO 

O U C7.)=C2.Q06E-4*CO~VER+2.31E-4·raS)·AHOVEC2)·1581.0 
C ••• MILL WATER 

OF BOPa5.2QE-3*COBSV(2)-O.15E-4) 
OP BOM"12t7.0 
OUC).OFBOP*OPRDM*AMQVE(3) 

C ••• SUMP wATER 
OU(4)·1.0[-3*AMOV[CI) 
00 16 I D 1.4 
FRACaA MUYECI)/TLIMCI) 
OUA VCI)-OUCI)*O.5*C2.0-FRAC) 

16 CO NTINUE 
: ••• VOL UM f. TR IC FILTER 

CALL IBSTSTCPHIV,PSI.CONST.M.AKALK.XMA.XM.X4VER.UMA.UM.UAVER. 
lOU. OUAV,OHSV, RV,NS,Np. NO,PA.PA.PC.PO) 

IF CXMA(2).LT.O.00R) XMA(2).0.OOA 
IF (XMC 2 ).LT. O. OOB ) XHC?).O.008 
IF ( XAVERC2).LT. 0 . 00 8) XAVER(2).O.OOe 

: ... PS O O!:lS STEP 
UfRAC=CQRO/U~A(I»*(RHOS-UC)/(RHOS-rC) 
OfRAC"'I.0-UfRAC 
0 0 II I-\,q 
ACOCIlaUf RAC+UfRAC*CO(I) 

11 ACl(I)aOFRAC*CICIl 
VS.X"IA(2)+0.02 
CALL IBpn H S(pVAR,PSV,SOFTV.RP.PM.SOFT.nRSP.ACO,ACI,GAM~A.ETA, 

IU~AC!)' V S,QRO'PA,~~) 
• ,.PSO EVOLUTION 

Q ~I)VM=AKA·( XIotAC! )-V ll0)/XIotAC 1) 
V$" XI~AC;»+o.02 

QSOVS=U " A C Il/VS 
OU 12 1=1,4 

12 FE OC I )",FEEO( J ).II~AC2)*5.0 
AKLa\.O+IO.O*CXMACI )-0.11135) 
CALL I"CDRVCPM,PVA~'PSV.SOfTV,SnFT,5.AKL,R,~MOV~,rSnvs. 
IHETA.GAMIotA'PHIN'ACO'ACI'VS'F[n'DP~.npVAR,np5V) 

THALF a u.5*TINT 
no 13 1=1." 
P~( 1 )=PMC I) + O I'~1( I l*TIIAL" 

00 14 1=1,(,4 
14 PAC I ):PVARC I )+r)f'vAJl( I )*THALr 

QMDVM=AKA*(XAVEP(I)-VMO)/XAVERC1) 
VS .. XAVER(2)+O.02 
osnvs"uAV~H(1)/VS 

UFRAC=(QHn/uAvERC1».CRHOS-UC)/(PHnS-rC) 
OFRAC-I.O-UFR~C 

no 15 I=I,q 
ACO(I)·UFRAC+OFRAC*Co(I) 
AC1(I)aOFRAC.CI(I) 

15 FEO(I).fEEOCI).UAV(RC2).5.0 
AKLa!.0+IO.O*CXAVERCI)-0.1435) 
CALL I~CORV(PR'PA,Pc,sorTv.SOFT.S,AKL'B.Q""nVH.Osovs. 

1 BETA,RAMIotA,PHIN.ACO,ACI.VS,FEn.DPM,npVAR.DPSV) 
00 16 I-I,B 
P~(I).PHCl)+OPIot(I)*TrNT 

16 PSVCI)= I' SVCI)+OPSV(I).TINT 
00 17 1=1.64 

17 PVAR(J).PVARCI)+OPVAR(I)*TINT 
C ••• CONvrRT TO CO NCS AND DISTRIBUTIONS 

UFRAC·CORO/UM(1»*(HMOS-UC)/CRHOS-rC) 
OFRAC-I.O-UFRAC 
00 20 1",1.4 
ACOCI)=UFRAC+OFRAC*CO(I) 

20 ACICIl:.IlFRAC*CICIl 
CALL IRSIMPCPM,C;AMHA,ACO.AC!,XM(2).lJ~ct).QRn.nD.FCO.OC,lJc.rC) 

C ••• PUT rILTE fJ nATA AACK INTO CU~IotIlNICATInNS ALOCK 
CALL XPuTC9,53\,41,FCO(4» 
CALL XPUT(9,531.42,OC) 
CALL XPuTc9,~31,43.UC) 
CALL xPuTC9,531.44.fC) 
GO TO 3 
STOP 
END 

IBPRPC 
PROGRAM IRPRPC 

C ••• PREpARES OATA FOR VOLu~ETRIC AND PSD rTLTfAS AND wAITES IT ON DISc 
or~ENSION IHEAD(~O)'LGC475) 
DI~ENSION XM(2),U~Cq)'EVALC4).ECOLCO),rJNV(II).rC4).PHIVC4).GC8) 
OIMENSIIIN PSI(6),CnNSTC2),GoG(4),MC5).RV(S),XVARCII).CUYSP(6) 
DI"IENSION UVAR(lb),AKALKC30).DUVAR(4) 
nIMENSION CO(4),CI(4).FE[OC4),PM(Hl,PVAR(6 0 ),PSV(8) 
OIMENSION S(4)'AC\6),H[TftC4),GA~MA(4),ETA(4),PHIN(4),HP(4) 
DIMENSION PACIOO).P~(100)'PCC10n)'XM4(6).UAV(4),IRC5).ICC5) 
EQUIVALE NCE (XNA(l),UAVC\» 
EQUIVALE NCE (IHEAOCI),LGCI1),Cl(MCI).LG(q\»,(II~(1),LGC45» • 
I(PHIVCI)'L~(53»,CPSICI)'LGC6\»,CCONSTC\)'LG(77»' 
2(GQRCI),LG(81».(M(I),IGCij9».CAKALKCI),LGCQ4», 
3CHVCI),l.C,C154» 

EQUIVALENCl (Cn(\)'L~(?01»,(C\CI)'LRC?'OQ)l,CFEEO(I)'LGC217», 
!(P~(I)'LGC225»),CPVAR(1),Lr.(?ql».CPSVCll,LGC369»' 
2(S(I)'LGC385»'CB(I)'L ~ (393»'(BfTAC\)'LGCa~5»), 
3 C G A"'~ A C ! ) • L G C 4 3 ~ ) ) , ( [T ~ ( I ) • I G C q q! ) ) • C PHI N C 1 ) , L r.c 1149 ) ) , 
q(RPCI),U;C!93}) 

EoUIVALfNCE cTI~r'L~C~61»'CE~HO'LG(461»,CV~O'lGC4h5». 
!CAKA,LGCq67»),(QRO,LG(A6Q»,(SOfT,lG(n7\11,(SOFTV.LG(473» 

C ... REAU -AJ1.£l l"I<tTE HEAOING 
, 1 "1= I (") 

to 

" 



WHITE (InUT.IOI) (IH(AO(J).Tal.40) 
100 FOR MAT (40A2) 
101 FORMAT(IHl.20x.40A2/) 

NSa2 
~r.4 

C ••• READ AND wHIT~ ST~RTING VALUES 
C ••• STATE. 1 a VM' 2 = VS. PARAMETERS 1 - as. 2 - S. 3 - WM. 4 - WS 

READ (1IN.I02) (XM(I).I.I.NS).(U~(I).I-l.NP) 
102 FORMAT(ftEIO.3) 

~HITE (IOUT.IO~) (XM(I).I-l.NS).CUM(T).I-I.NP) 
103 FORMAT (2S~ STARTING VALUES. STATE -.2E12.4.10H PARAMS -.4EI2.4/) 

REAO(IIN'I02) TIN1.EARO.VMO.AKA.QRO -
wRITE (IOU1.I04) TINT.ERRO'VMO.AKA.QRO 

104 FORMAT (17M TIME INT. SEes •• F6.2.13H ERROR ON QRO.EI2.4. 
U6H VMO •• FIO.T.ISH MILL n/r CONST.fI2.4.6M ORO -'EI2.4/) 

C ••• REAO IN EIGENVALuES AND (EIGENeOLU~NMATRIx)TRANS FOR f AND CHECK 
00 I 1=1.4 
EVAL(I)cO.O 
READ (IIN.IO?) VA.VB.(ECOL(I).Isl.4) 
wRITE (IOUT'IOS) VA'VB.(ECOL(I).IsI.4) 

105 fURMAT (19H EIGENVALUES OF F -.2EI5.6/13H EIGENyECTS -'2EI5.6. 
110x.2EI5.6/) 
EVAl(I).ExP(VA*TINT) 
EVAl(4)=EXP(v~·TINT) 

DET=ECOl(I)*ECOL(4)-ECOL(2)*ECOL(3) 
fINV(I)=ECOL(4)/DET 
EINV(2)z-ECOl(2)/DET 
EINV(3)--ECUl(3)/DET 
EINV(4)=ECOlCI)/DET 
CALL MATMPY(ECOl.EVAL.PA.NS.NS.NS) 
CAll MATMPy(pA.EINV.PHIv.NS.NS.NS) 
EVAl(!)=VA 
EVAl(4).VB 
CAll MATMPY(ECOL.EVAL.PA.NS.N&.NS) 
CALL MATMPY(PA.EINV.F.NS.NS.NS) 
wRITE CIOUT.I06) (F(!).I-l.4) 

106 FORMAT CISH F MATRIX TRANS.?ElS.6/15X.2ElS.6/) 
wRITE CIOUT.107) CPHIVCI).lsl •• ) 

107 FORMAT (17H pHIMATRIx TRANS.2EI5.6/17X.2ElS.6/) 
C ••• READ IN G MATRIX CIN CULUMNS) AND CDNST AND CALC pSI. CONST AND NOISE COVAR 

00 2 1-1.4.) 
IF CEVAL(II.(Q.O) GU TO 3 
EVAL(I)sCEXP(EVAlCI)*TINT)-1.0)/EVAL(I) 
GO TO 2 

3 EV~l(II~TINT 
2 CONTINUE 

CALL MATMPYCECOL.EVAL.PA.NS.NS.NS) 
CALL MATMPYCpA.EINV.PB.NS.NS.NS) 
REAO (1I N.I0?1 CG(I).I-l.ft) 
WRITE (IOUT.I0A) (GCI).I-l.r.2).CGCI).r-2.A.2) 

lOA FORHATC9H G MATRIX.AElS.6/9X.4ElS.6/) 
CALL MArMPYCp~.G.PSI.NS.NS'NP) 

wRITE CIOuT.I09) CPS!CII.Iat.7.?).CPSYCII.I_2.8.?) 
109 FORMAT CIIH PSI M~TRIX.4ElS.~/IIX.4EIS.6/) 

REAO(IIN.102) PACl).PA(2) 
CALL MATMPy(pB.PA.CUNST.NS.NS.!) 
W~ITE (IOUl'II0) PA(I).PA(2).CONST(I)'CONST(21 

110 FORMAT C19H OIFFERENTIAL C"NST.2EI5.A.IOX.16HDIFFERENCE CONST. 
12EI5.6/) 

ERRO-ERRO*ERRU 
G Q G(1)QERRO*P~Cl)·PA(1) 

GU t; ! j) sG'l G (") 
r, Q r, ( I, I = E fllW • t' H 1 2 I • f' II ( 2 I 
WkITE C1 0U T>!II) (('(jG!lI,J.,.b) 

III FQRMATC19H NOISE CltVA~ MATRTX.?El~.6/19X.2fJ5.6/1 
C ••• READ I N OAS(RVATtO~ T~OEY VtCTn~ 

NO=S 
R[A~ (1IN.ll?1 (MCII.l=I.NO) 

II? FnRMAT (16I~) 
WHITE (I UU T.113) (H(II.I=l.NOI 

113 r'JRMATC 2ttl On SFRV. INDEX VECTCJR.SI<;n 
C ••• RE~O OAS ERVATIn~ ERRORS CSTD.OrVS.) ANO CONVERT TO COVAR MATRIX 

R(~n (IIN.I02) CRVcl).lal.S) 
WRITE (IOUT'114) CRV(I).Tsl.S) 

I1A fUR MAT C20H SlO DFVS Of OASERVS.5EI2.4/) 
00 4 1=I.NO 

4 RVCI)2RVC1)*RV(t) 
C ••• READ IN CUNTROL CHANGE lRRDRS 

PE~n (IIN.I0?) COUVARCI).I-l.NP) 
WRITF (IOUT.\17) (DUVARCI),I-l.NP) 

liT fORMAT (24H CUNTROL CHANGE STD OEVS.b[t2.4/) 
DU S IcI.NP 

5 DUVAR(I)·OUVARCI)*·2 
C ••• STAHT wiTH INPuT FOR PSO FILTER 
C ••• READ CONSTANTS TO STAPT 

NEAD(IIN.I02) SOFT.SUFTV 
WRITE CIOUT.\16) SOfT.SOFTV 

116 rORf'AT CIIH SOfTNESS a.Fr •• ,16H SOFT VARIANC[ -.[12.4/) 
C ••• REAU S ANO B 
C ••• REAO ANO WRITE 5 AND B 

READ (IIN.I02) (SII).I-l.A) 
WRITE CIOUT.2(4) (SCI).I-I.4) 

204 FORMAT CI4H SELEC. FUNC -.4F14.ft/24H BREAKAGE MATRIX IS -) 
DO 10 1=1.4 
S( n=S!I )/bO.O 
1121+12 
READ (IIN.I02) (B(J).J-I.II.4) 
WRITE CIOIIT.20S) CBCJ).J-I,tl.4) 

to CONTINUE 
C ••• READ AND rlMIT[ ~ETA. GAMMA. ETA. PHI. CO. Cl 

,os FORMAT (IX.8F1A.5) 
REAO (IIN.I02) (BETACI).I-l •• ) 
w~ITE (IOUr.?06) (BETACI~.I-l.4) 

106 FORMAT CIX/17H ~ETA s.4F10.s/) 
READ (IIN.IO?) CGAMMA(I).I-I.4) 
wRITE CIOUT.20 7 ) CGAMMACI).I-I •• ) 

?07 FORMAT C8H GAMMA •• 4FI0.S/) 
REA D (IIN.IO?) (ETA(I).lzl.A) 
wRITE !lOuT'lln CETA(I),J·<\.4) 

?17 rOQMAT (6M ETA E •• FIO.S/) 
RE~ D (II N.I02) C~HINCI).1=1.4) 
wRITE (IOUT'20A) (PHINCIl.I21.4) 

?06 f uRY AT (hH PHl •• 4FIO.5/1 
REA O (IIN.IO?) (CO( [).121.4) 
W~TTE (IOUT.209) (CO(II.I=I.4) 

7.09 FOR ~ AT CSH CO =.4FIO.5/) 
READ (IIN.1 02 ) (Cl(I).1-1 •• ) 
WHITE CIOUT.?IO) (CICII.r-I.4) 

210 FllN M ~T (SH CI =.4rl 11 .fl/ll 
C ••• RrAn ANO WRITE tEED 

READ (IIN.I02) (FE[U(I).I=I.4) 
FT a re:FDCI)+rEEO(2)+FEEDC1)+FEEDC4) 
wRITE (IOIIT.211) (fEfOCI).I_I.4).rT (") 

--. 
o 



~ ••• ~tAU A~U W~ITE URSERVATIONS ANn nBSrRVATTn~ rRR~R MATRIx 
REA~ CIIN.I02) CRPCI).1=1. 4 1 
wRIrE CIOuT'2161 (~pcli.I-I.41 

216 rORMAT(2IM o~S ERROR cnVARTANCE.2F12.P/PlX.~FI2.211) 
C",READ AND WRITE STARTING VALUFS 

wflITr (Inln.;>12) 
?12 FORMAT (20H STARTING VALUES -I) 

READ (1IN.I02) CPM(!).I=I.R) 
wRITE (I01JT.2131 (PM<I).I-1.6) 

PI3 FORMAT (17H MEANS nF STATE •• 8FI2.31112H v~RIANCES -) 
00 111-\.8 
Il a l+56 
READ CIIN.I02) lPVAN(J1.J-t.II.61 
WRITE CIr)I)l.2051 CPVAR(J1,j-Idt./l1 

11 COt.lTINUE 
REAn (IIN.IO?,) (pSVCI).lcl.A) 
wRITE CIOuT.214) cPSveI1.1-\.61 

214 FnRMAT (IX/24M STATE-SOFTNESS COVARS •• 8rI2.311) 
C ••• fINn STATIONARY KALMAN GAIN 
C ••• CREATE STARTING cnVARIANCES 

IJ-O 
no 20 1-1.2 
no 70 Jal.2 
IJ-IJ+I 
XVARClJ)·O.O 
IF (I,EQ.J1 XVAR(IJ1_XMCI1*XMC!)*O.OI 

20 CONTINUE 
DO 21 1-1.6 

21 COvSP( I )-0.0 
IJ-O 
no 2::? 1,.1.4 
nn 22 J-I.4 
I .J,. I J+ I 
UVAIl( IJ)"O.O 
IF (I,EQ.J) UVAR(IJ).UMCI)*UMC.I)*O.OI 

22 C O"T! NUE 
: ••• LOOP TO GET STATIONARY STATE 

WRITE CIOUT.300) CXVARCI).I_l.4.3).CUVAReI1.1·1.16.~1 
t<L:aO 
00 ' 30 KOUNT"1.240 
00 32 I-l.NS 

32 XMACI)"XMCI) 
nO 33 Icl.NP 

33 uAVCIl-UMCI) 
CHECK=XVARCI1+XVAR(4) 
00 31 I-I.NO 
MMaM(I) 
RR"RVCI) 
OIlS"XI1ACMMl 
CALL IBKFACCPA.fINV,XVAR.cnvSp.UVAR.RR.HM.NS.NP) 
CALL IBONEOCXMA.UAV'XVAR.cnvsp.UVAR~PA'fINV.OBS.HH.NS.NP) 

31 CONTINUE 
KREH-KOUNT-CKUUNT/12l*12 
IFCKREM.EQIU)WRITECIOUT.3001(XVAR(J).J-t.4.3l.CUVARCJ).J.l.16,5) 

300 rORMAT(20H OIAG Of VAR. MATRIX.6f15.7l 
no 35 Jal.NP 
JJ,,5*J-4 
UVARCJJ)-UVAReJJ)+DuVARCJ) 

35 CONTINIJE 
CALL IBEVOL(PMIV.PSI.CONST'XHA.UAv.GQG.XVAH.UVA~,COVSP'NS.NP.PA 

I,FR) 
CHANGE -XVARCl)+xVAR(4l-CHEC~ 

J ~ t t. H M !lH • t Q • n • 0) 1\ L " t< L + I 
tf CKL,FQ.36) GO Tn 34 

30 C(lNTIN\I~ 

34 cn''''INUE 
~"Tlr (f(1uT.lOOl OV4RC!l oI_I,Q.~) .cltV_R(!l 01-\ .,,,.'i) 

c ••• rU4M P * MTNANS I~ PI 
1.)=0 
fl'l 4() 1= \. NO 
MM-"C I ) 
IF (~~,LE.NS) GO TO 41 
I(=C"M-NS-l)*":; 
fill 42 JzI.NS 
IJ=IJ+I 
K=K " 

42 PACIJ),.CnvSPCII) 
KaCH"'-NS-I)*NP 
nu 41 Jal.Nt' 
IJ"IJ+I 
K'"K+l 

43 PACIJ)=UVARCK) 
GU TO 40 

41 CONTINIJE 
K"<'H'-I )*NS 
00 44 J"I.NS 
IJ=IJ+I 
K-K+I 

44 PACIJ1zXVARCK) 
K=M>1 
DO 45 J,.I.NP 
TJ=tJ+I 
PACIJ)-COVSP(K) 

45 K"I\+"/S 
40 CfHiTlNUE 

C ••• fORM M * P * MTR4NS + R IN PB 
NT_NS+NP 
IJ=O 
00 46 I-I,NU 
MM"MCIl 
00 46 J=I.NO 
IJ=IJ+I 
P~C IJ)"PACMM) 
MM"M !~HlT 
IF CI.EQ,J) pSCtJ)·PR(tJl+RVCI) 

46 CONTINUE 
C ••• PUT OIAG (IF ORS/STATE COVAR MATRIx IN RV 

I I" I 
00 46 I"I.NO 
RVn )-PRC II) 
IIztI+NO+t 

46 CONTINUE 
WRITE CIOUT.303) (RV(Il.I-l.N(1) 

303 rOR>1Ar C26HOnRS-GTVEN-STATE VARIANCES.5E12.4/) 
C ••• OETERMINE K MATRIx _ PA * (PB)INV AND WRITr OuT 

CALL MATINCCpa.NO,DfT.IR.ICl 
CALL MATHPy(pA.P~.AKALK.NT'Nn'NO) 
~RtrE ClOUT 0]01) nET 

301 rnR ltATC 14H U(TERMINANT a,E12.4/20H KALHAN GA 'IN HATRIX-) 
pO 47 I"I.NT 
J1=I+(NO-l)· .. r 
wklTE CtnIJT.30~) CAIIALKeJ)'J=loTt. NT ) 

30? rORMATCIOX.5EI5.b1 
.7 CUNTPWf 

C ••• wRITE TO DISC 
n" PI 1. ~ • 1 • tl • 2 n U () 
"'~trf Ctcl» CI.GCllola)o475) 
STOP 
[NO 

() .... .... 
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Appendix D 

Nomenclature and Symbols Used. 

coefficients in orthogonal expansion~ equation (4.1.23) 

breakage functions (individual and cumulative, respectively) 

constant vector for discrete linear processes 

constant vector for continuous linear processes 

actual classifier function for size group i 

coefficients for actual classifier function 

corrected classifier function for size group i 

coefficients for corrected classifier function 

concentration, kg/m3 

covariance matrix between state and parameters 

parameter matrix for continuous linear processes 

function in equation (4.1.1) 

individual mass fractions in each size group 

orthogonal function in equation (4.1.23) 

state transition matrix for continuous linear processes 

cumulative mass fractions in each size group 

function in equation (4.1.1) 

noise matrix for continuous linear processes 

probability density functions for individual and cumula­
tive p.s.d. 's 

probability function for indivudual and cumulative p.s.d. 's 

mill overflow constant 

Kalman gain matrix 

normalising factor in (4.1.24) 

vector defined in equation (4.1.26) 

concentration factor on rate of grinding 

volume load factor on rate of grinding 



m. 
1 

m 

M 

n 
u 

N 

p 

p(. ) 

p. 
1 

p 

p 

Q 

%0 
R 
= 

s 

S. 
1 

t 

t . 
C1 

T 

T 

softness factor on rate of grinding 

ith central moment 

observation function 

observation matrix 

number of particle sizes 

dimension of state 

dimension of control parameters 

dimension of noise vector 

uncertain error vector in volumetric filter 

individual particle size distribution 

probability density function 

= p(x(t», probability density of state 

mass in size group i in p.s.d. filter 

cumulative particle size distribution 

covariance matrix of state 

mass flow in size group i in p.s.d. filter 

volumetric flow rate, m3/s 

noise covariance matrix for plant model 

underflow volume rate 

mean underflow volume rate 

covariance matrix of observation noise 

error measure in volumetric filter checks 

selection function for size group i (tabulated here as 
mins-l , but used as s-l in filter) 

time 

equivalent grinding time (in minutes) in equation (4.2.6) 

time for controller change to be implemented 

observation interval 

transition matrix in differential quadrature 

D2 



u 

u 

v 

v 

x 

6. 
~ 

y. 
~ 

n· 
~ 

e 

1l. 
~ 

~. . ~ 

w 

control vector 

covariance matrix of parameters 

random noise vector 

3 volume, m 

mill zero volume (no overflow) 

Wiener process vector 

state vector 

observation vector 

set of observations up to time tk 

coefficients in breakage function, equation (4.2.5) 

coefficients in Kolmogorov equation (4.1.4) 

mill classification parameters as in figure 4.4 

sump classification parameters as in fig. 4.4 

noise matrix for discrete linear processes 

Kroeneker delta 

operation defined by equation (4.1.21) 

change in controls 

covariance of control changes 

error in underflow volume rate 

D3 

cyclone overflow tank classification parameters in fig. 4.4 

differential quadrature coefficients 

ith moment (not control) 

3 solids density, kg/m 

variance of e: 
u 

noise attenuation factor in mill model 

state transition matrix for discrete linear processes 

parameter matrix for discrete linear processes 

random symbol in a random variable 



Subscripts, superscripts and symbols 

Subscripts i, j, k, 1, m, and n were used for indexing. 

Subscripts M, V, 0, U, and F refer to the mill, sump, cyclone overflow, 

cyclone underflow and cyclone feed respectively. 

k as in tk is the time at observation k 

k+ = time immediately after observation k 

k- = time immediately before observation k 

= mean value 

= est imat e of mean 

= vector 

= matrix 

Superscript T refers to matrix transpose. 
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