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Abstract

We model the dynamics of a spherically symmetric radiating dynamical star, emitting

outgoing null radiation, with three spacetime regions. The local internal atmosphere

is a two-component system consisting of standard pressure-free, null radiation and an

additional string fluid with energy density and nonzero pressure obeying all physically

realistic energy conditions. The middle region is purely radiative which matches to

a third region which is the Schwarzschild exterior. A large family of solutions to the

field equations are presented for various realistic equations of state. A comparison of

our solutions with earlier well known results is undertaken and we show that all these

solutions, including those of Husain, are contained in our family. We then generalise

our class of solutions to higher dimensions and consider the effects of diffusive trans-

port We also study the gravitational collapse in the context of the cosmic censorship

conjecture. We outline the general mathematical framework to study the conditions on

the mass function so that future directed nonspacelike geodesics can terminate at the

singularity in the past. Mass functions for several equations of state are analysed using

this framework and it is shown that the collapse in each case terminates at a locally

naked central singularity. These singularities are strong curvature singularities which

implies that no extension of spacetime through them is possible. These results are then

extended to modified gravity. We establish the result that the standard Boulware-Deser

spacetime can radiate. This allows us to model the dynamics of a spherically symmet-

ric radiating dynamical star in five-dimensional Einstein-Gauss-Bonnet gravity with

three spacetime regions. Finally, the junction conditions are derived entirely in five-

dimensional Einstein-Gauss-Bonnet gravity via the matching of two spacetime region

leading to a model for a radiating star in higher order gravity.
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Chapter 1

Introduction

The general theory of relativity has so far been the most quintessential in describing

the notion of gravity in the context of strong gravitational fields. General relativity

describes the interaction between bodies in the universe as a result of their gravitational

fields and with this, the richness of gravity becomes more evident and it can no longer be

regarded as an amorphous force. It is part of a more efficacious structure, the spacetime

manifold. The reader is encouraged to seek out Eddington (1923), Poison (2004) and

Straumann (2004) for further insights into the principles of general relativity.

The very first solutions of Einstein’s field equations are the Schwarzschild exte-

rior and interior solutions (Schwarzschild 1916a, 1916b), and the Reissner-Nordström

solution (Nordström 1918, Reissner 1916). The exterior Schwarzschild solution is a

vacuum solution which describes the gravitational field in the exterior spacetime of a

spherical, uncharged and non-rotating body whereas the interior Schwarzschild solution

describes the interior of an object in the limit when the mass density is a constant. The

Reissner-Nordström solution is a static solution to the Einstein-Maxwell field equations

and represents the exterior gravitational field of a charged, non-rotating body.

In general, a realistic astrophysical star would consist of a rapidly rotating ball of

perfect fluid matter and radiation, all entangled together. However, within the context

of general relativity, modeling such systems is extremely complicated and analytically
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difficult. Therefore we impose spherical symmetry and use a special type of energy

momentum tensor, that gives rise to the generalised Vaidya spacetime. However, such

models are more general than those which contain perfect fluid matter and no radiation.

The matter distribution for a model in cosmology or astrophysics is usually described

by a relativistic fluid. Radiation and matter are assigned to an energy momentum

tensor (which can take on several forms depending on whether the fluid distribution

is static or radiating). It is conserved throughout the spacetime and is the source of

the gravitational field for the Einstein field equations in the same way that the mass

density is a source in Newtonian gravity.

The geometry outside a spherically symmetric radiating star is described by the

Vaidya spacetime (Vaidya 1951) and it defines outgoing null radiation. It is written in

terms of the mass of the radiating body and the Petrov-Pirani-Penrose classification

of the metric is of type D (Petrov 1954, 2002, Pirani 1957, Penrose 1960). The result

(Vaidya 1951) provided an advance in the modeling process and the possibility then

arose to study the interior of radiating stars by matching the interior solution to the

radiating exterior (de Oliviera 1985, 1986, 1988, Kramer 1992, Govender et al 1998).

The complete derivation of the junction conditions for a shear-free radiating star was

provided by Santos (1985). The important result that followed was that the pressure

on the boundary of the radiating star should be nonzero in general, and proportional

to the heat flux. It should be noted that this framework describes only the emission

of pressureless null radiation (photons) into the exterior region of the dissipating star,

and no other outflow of any other type of observable radiation. The effects of radiation

are important in the latter stages of gravitational collapse and allows for a surrounding

zone of radiation.

In recent times, Maharaj et al (2012) have generalised the Santos junction condition

by matching the interior geometry of a manifold, containing a shear-free heat conduct-

ing fluid, to the exterior geometry described by the generalised Vaidya metric which

contains the additional type II null fluid. This result provided an even wider array

2



of opportunities and possibilities with regards to the modeling of relativistic objects

in astrophysics and cosmology. More importantly, the result provided a more general

exterior region for a radiating star, which is made up of a two-fluid system: a combi-

nation of the standard null radiation as in the case of the original Santos framework,

and an additional more general fluid distribution which can be taken to be another

form of radiation or, perhaps more interestingly, a field of particles such as neutrinos

or other exotic non-interacting matter. Another interesting feature of the generalised

junction condition is the fact that the radiating fluid pressure at the boundary is not

only proportional to the heat flux, but also coupled to the non-vanishing energy density

of the type II null fluid.

A significant amount of study on relativistic radiating stars has been carried out

in the standard Santos framework. The junction conditions were generalised, for ex-

ample, to include the effects of an electromagnetic field as well as shearing anisotropic

stresses during dissipative stellar collapse by de Oliveira et al (1987) and Maharaj

and Govender (1999). Analytical solutions for shear-free non-adiabatic collapse in the

presence of electric charge were obtained by Pinheiro and Chan (2013). Schäfer and

Goenner (2000) studied a highly idealised model with constant luminosity radiating

away its mass showing that an event horizon never forms. Nonlinear models for rela-

tivistic stars in the shear-free regime were found with heat flow by Misthry et al (2008)

using a transformation that reduced the boundary condition to a simpler form in the

conformally flat zone. Abebe et al (2014, 2014) utilised the Lie symmetry analysis for

studies on geodesic models and radiating Euclidean stars with an equation of state.

Govender et al (2015) modeled the physical behaviour at the surface of a radiating star.

They investigated the effect of the exterior energy density on the temporal evolution

of the radiating fluid pressure, luminosity, gravitational redshift and mass flow at the

boundary of a relativistic star.

It is often required that for a radiating stellar model to have a more realistic physical

form, a barotropic equation of state must be imposed on the fluid distribution. In
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most cases the equation of state becomes a Cauchy-Euler differential equation. Several

attempts have been made to model such situations. Wagh et al (2001) made use of

a linear equation of state in spacetimes which are shear-free and Goswami and Joshi

(2004) studied the gravitational collapse of an isentropic perfect fluid distribution with

a linear equation of state. An important note to make is that the notion of a type II fluid

existing in the exterior region of the radiating star has been studied in isolation without

any direct connection to the interior matter conglomeration. Nonstatic spherically

symmetric solutions to Einstein’s field equations with a null fluid source were obtained

by Husain (1996) in general for such an exterior fluid with a polytropic equation of

state P = kρa. He demonstrated that for a linear equation of state (a = 1) and varying

values of the constant k, the metrics were either asymptotically flat (1/2 < k < 1) or

cosmological (0 < k < 1/2). The value k = 1 yielded the charged Vaidya solution.

Finally, it was shown that in the long time limit, the asymptotically flat spacetimes

were hairy black hole solutions. Dawood and Ghosh (2004) characterised a large family

of solutions to Einstein’s equations representing a spherically symmetric type II fluid,

and showed that the well known dynamical black hole solutions are a particular case of

this larger family. Ghosh and Dawood (2008) then generalised these results to higher

dimensions. An appraisal was conducted by Wang and Wu (1999) where the ideas

of Husain and others were extended and further classes of solution were obtained.

Contained within these results are the well known monopole solution, the de Sitter

and anti-de Sitter models, the charged Vaidya solution, the Husain solution and the

radiating dyon solution. It should be noted that these solutions were obtained via

a method of assuming a series form for the gravitational mass function in the field

equations. In our study below, we will attempt to integrate the field equations directly

subsequent to assuming an equation of state.

Another important notion to consider is that of gravitational collapse. Maharaj and

Govender (2005) studied collapse models with an internal isotropic pressure and van-

ishing Weyl stresses and probed the dynamical stability of the dissipating stellar fluid.
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They found that close to the centre, the configuration was more unstable. The thermal

evolution of a radiating fluid is vital in any stellar model and Martinez (1996), Herrera

and Santos (1997) and Govender et al (1999) studied the explicit role of relaxation

and mean collision time in these frameworks. A further investigation of these ideas

was carried out by Naidu et al (2006), Naidu and Govender (2008) and Maharaj et al

(2012) where the latter authors investigated the gravitational collapse of a radiating

sphere evolving into a final static configuration described by the interior Schwarzschild

solution. More recently, Mkenyeleye et al (2014) studied the gravitational collapse of

the Vaidya spacetime in the context of the cosmic censorship hypothesis. Developing

a general mathematical template, they showed that there exist classes of generalised

Vaidya mass functions in which the collapse reaches an end state with a locally naked

central singularity.

When a massive star of mass greater than 8 solar masses reaches the end of the

luminous phase of its life, it experiences an inwardly directed gravitational collapse.

This is a very violent process which occurs on timescales of the order of seconds and is

observed as a type II supernova. The entire collapse process is usually divided into an

early, intermediate and late stage. The effects of radiation are important in the later

stages of gravitational contraction when an immense amount of energy is ejected from

the star in the form of neutrinos or photons.

The notion of collapse was first brought to light by Oppenheimer and Snyder (1939),

and they described the free-fall contraction of a spherical body in which pressure forces

were completely overwhelmed by the gravitational forces. The equations of collapse,

were analysed analytically by Misner (1965), Shapiro and Teukolsky (1983), Goswami

and Joshi (2004), Misthry et al (2008) and Maharaj et al (2012) and numerically by

May and White (1966), Bodenheimer et al (2007), Kuroda and Umeda (2010) and

Müller et al (2012). These works have produced significant new insights into gravita-

tional collapse. A massive stellar object (or supermassive object of 40 solar masses or

more), in its very long life, will exist in a state of suspended collapse, converting its
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hydrogen into helium, carbon, neon, oxygen, magnesium and silicon through nucleosyn-

thesis creating an internal pressure gradient resulting in the release of outward energy

(radiation, convection and conduction). Thermonuclear fusion ends at iron-56, the

most bound nuclear species. Beyond iron, fusion is no longer exothermic. The reader

is encouraged to seek out Glendenning (2000) for further insights into gravitational

contraction.

The process of gravitational collapse is usually complicated. Once the hydrogen has

burned out in the core, the next phase of thermonuclear burning - helium - commences

(hydrogen in some surrounding shell will continue to burn). The helium which builds

up in the core undergoes an increasingly intense compression, until these helium atoms

commence fusion into heavier elements like carbon, neon, oxygen and so on. Concentric

burning shells are created as one element after the other is synthesized. Enormous

amounts of gamma rays in the core produce electron-positron pairs which annihilate,

producing neutrino pairs. At the exhaustion of each elemental fuel, the core contracts

further until the ignition temperature for the next step in the next chain is attained.

Each successive burning stage is quicker than the preceding one. Iron-56 is the end

point of nucleosynthesis (the result of silicon burning). Burning in the outer shells of

the star add to the now iron core’s mass and since iron will not easily fuse to form a

heavier element, it remains as such and a hydrodynamical instability sets in, where the

inward pressure of gravity in the star will begin to overwhelm the outward energy being

released. Gravity crushes the core to such an extent that electrons become relativistic

and the pressure they provide increases less rapidly with increasing density.

The inward gravity crushes the iron core very quickly, and it becomes extremely

hot (∼ 1011K). The infalling material in the core, overshoots the equilibrium con-

figuration and rebounds from the stiffened core, acting in a similar way to a piston.

The catastrophic result of this induces what is called a post-bounce-pre-supernova

shockwave which will propagate outward from some point within the collapsing core

reaching relativistic speeds. The heat energy released in the process is transported
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away from the core through the interior and across the stellar surface by neutrinos and

it is this shockwave that drives the outflow of the neutrinos. A physically reasonable

relativistic model for gravitational collapse should include these features. In view of

this, Glass (1990) modeled the emission of neutrinos in dissipative collapse and Herrera

and Núñez (1987) and Barreto (1993) investigated the associated shock structure and

propagation in the interior of a radiating star. As this shockwave travels outward, its

energy is dissipated by neutrino losses and by photodisintegration of all the nuclei in its

path, and will eventually stall. The plasma material that surrounded the pre-collapsed

core will also, very quickly, fill the space now available, and this notion produces a

decompression shockwave which travels outward at the speed of sound in the diffuse

stellar material, and this material now begins to freefall. The freefalling material is

seized as it meets the stalled shock front, and this turns the latter into an accretion

shock, which is heated by this infalling matter. A rarefied bubble-like region develops

between the highly dense core and the accreting shock front. Neutrino pairs diffusing

from the extremely hot interior, annihilate, heat up and expand the bubble. Through

a complex sequence of events, i.e. some interplay of convection and neutrino heating,

a fraction of the deeply intense gravitational binding energy of the dense core remnant

is transported to the accretion front. This small fraction provides the kinetic energy

for the ejection of all but the core remnant of the progenitor star in what is called a

type II supernova explosion. The resulting supernova remnants and this core remnant

are pushed away from each other during this phase. The reader is encouraged to seek

out Smoller and Temple (1997) and Temple and Smoller (1999) for further information

on general relativistic shock wave theory.

What is left behind is a very dense, compact and hot core remnant which becomes,

if the mass of the initial star was large, a proto-neutron star. Otherwise it becomes

a white dwarf. The resulting compact object is usually supported by either electron

degeneracy pressure in the case of a white dwarf or neutron degeneracy pressure in

the case of a neutron star. Over an interval of a few seconds, this proto-neutron star
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loses its trapped neutrinos and cools, and at this point, the collapsed core remnant

has reached its equilibrium configuration composition of neutrons, protons, hyperons,

leptons and perhaps quarks. Thus, the neutron star is born. The radius of such a star

is around 10km and it has a density in the region of 1014 times greater than that of the

Earth. It may itself manifest into a pulsar or magnetar at a later point. The limit of

neutron degeneracy pressure is known as the Tolman-Oppenheimer-Volkoff limit and if

the neutron star is more massive than this limit, it must undergo a further collapse to

some denser and more compact form, which is the hypothetical quark/ultra-compact

star. The final state for a collapsed star is an astrophysical black hole (also referred to

as a collapsar) which inherits the mass, angular momentum and electric charge (if any)

of the initial object. This is characterised in the famous no-hair conjecture proposed

by John Wheeler (Misner et al 1973).

A renewed interest in higher order theories of gravity has arisen in recent times. The

reason for studying these new theories is the fact that conventional Einstein gravity

has shortcomings. An example is the fact that the late time expansion of the universe

is noted in observations, but isn’t a direct consequence of standard general relativ-

ity. Many results are reported in the literature on solutions in EGB gravity. The well

known Boulware-Deser solution (Boulware and Deser 1985) was an early higher dimen-

sional analogue of the vacuum Schwarszchild solution from general relativity. Bhawal

(1990) studied the higher dimensional geodesic motion of a Boulware-Deser black hole

spacetime and performed comparisons with the higher dimensional Schwarszchild ge-

ometry. More recently Davis (2003) derived the generalised Israel junction conditions

on a membrane and Anabalon et al (2009) found a vacuum solution in EGB gravity

with the Kerr-Schild ansatz in five-dimensional space. Recent investigations (Maharaj

et al 2014, Chilambwe et al 2015, Hansraj et al 2015) have reported new solutions to

the EGB field equations for a static spherically symmetric interior of a perfect fluid.

The notion of gravitational collapse has also been looked upon. Maeda (2006) studied

the gravitational contraction of dust in EGB gravity, and efforts have been made to find
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asymptotically AdS black hole solutions in EGB gravity (Wheeler 1986, Wiltshire 1986,

Cai 2002). Ghosh et al (2014) studied the gravitational contraction of a spherical cloud

of inhomogeneous dust in EGB theory, and Ghosh and Maharaj (2014) presented null

dust solutions in third order Lovelock gravity for a spherically symmetric string cloud

background in arbitrary dimensions. Upon finding black hole solutions, an important

task is to study the conserved charges such as the angular momentum; Peng (2014)

looked at quasi-local conserved charges of dyonic rotating black holes in both EGB

gravity and four-dimensional conformal Weyl gravity. Dawood and Ghosh (2004) char-

acterised a large family of solutions to Einstein’s equations for a spherically symmetric

type II fluid, and showed that the well known black hole solutions are a particular case

of this larger family. Ghosh and Dawood (2008) further generalised these results to

higher dimensions. Ghosh and Dadhich (2002) studied the gravitational collapse of a

type II fluid in higher dimensions and noted that due to the presence of strange quark

matter, as well as the higher dimensions, there was a shrinkage of the initial data space.

This dissertation is organised as follows:

• Chapter 1: Introduction.

• Chapter 2: In this chapter the relevant theoretical concepts inherent with rela-

tivity theory are presented for the reader’s perusal. We define the differentiable

manifold as well as the spacetime manifold. Pertinent aphorisms and definitions

are then underscored and the Einstein field equations are formulated from these.

Further definitions relating to higher order theories of gravity are shown, with

particular emphasis on Einstein-Gauss-Bonnet gravity, where we then present the

field equations for that theory. The complete theoretical concepts of the junction

conditions are then realised in full, followed by a brief description of the energy

conditions for a realistic stellar model.

• Chapter 3: This chapter is the first major feature of this work. Dynamical

radiating stars with outgoing null radiation are discussed in detail. Considering
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three separate concentric zones, the generalised Vaidya spacetime is used as a

specific class of spacetimes to model an entire realistic, astrophysical radiating

star in general relativity. The matching conditions are provided for these three

zones and a complete mass function is described in full. Solutions for this mass

function for various realistic equations of state are then presented in full and we

demonstrate that many of the other seminal solutions of the past are contained in

ours. We then generalise these results to higher dimensions. Finally, we consider

the notion of diffusion, generating the relevant partial differential equation and

solving it for various realistic equations of state. It is important to note that this

work was published in General Relativity and Gravitation (Brassel et al, 2017).

• Chapter 4: In this chapter we consider the gravitational collapse of generalised

Vaidya spacetimes. The collapsing model is formulated in detail as well as the

notion of the naked singularity. We then discuss the conditions for the formation

of a naked singularity, as well as discussing its structure, nature and strength. We

then present the end states of our generalised Vaidya mass functions from Chap-

ter 3 for various equations of state, showing that the final outcome of collapse

is a strong, central naked singularity. We give a brief discussion on mass func-

tions where naked singularities can be eliminated due to the presence of higher

dimensions. The work in this chapter has been published in Physical Review D

(Brassel et al 2017).

• Chapter 5: We demonstrate in this chapter, that the Boulware-Deser class of

spacetimes can radiate. Using techniques analagous to those in Chapter 3, we

model a five-dimensional astrophysical radiating star with three concentric zones

using one class of Boulware-Deser metric. Again, the matching conditions for the

three zones are formulated and the complete, continuous mass function is pre-

sented. Solutions for various realistic equations of state are then systematically

presented for our radiating metric. We show that several previous results are
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contained within ours before extending them to higher dimensions. The work in

this chapter was published in General Relativity and Gravitation (Brassel et al

2017).

• Chapter 6: In this chapter we completely model a radiating star in five-dimensional

Einstein-Gauss-Bonnet gravity. We consider the smooth matching of two space-

times, namely the shear-free interior and the pure Vaidya exterior, in the context

of Einstein-Gauss-Bonnet gravity and we present the resulting Santos (1985) junc-

tion conditions from first principles, including the additional modified condition

for the continuity of the scalar curvature and its first derivative. Solutions for

the boundary condition as well as the third junction condition are then obtained.

• Chapter 7: Conclusion.
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Chapter 2

Theoretical concepts of gravitation

2.1 Introduction

Einstein’s theory of general relativity has, so far, been the most successful theory

describing matter fields in strong gravitational fields. The reader is referred to the

books by Shapiro and Teukolsky (1983) and Glendenning (2000) for excellent reviews on

the physics of compact objects, black holes and relativistic stellar processes. Within this

chapter the relevant background theory which allows us to generate a spherical model

for a radiating star or cosmological system is presented. In Sec. 2.2 the definitions for

a differentiable manifold and spacetime manifold are given with the latter discussed

in detail, pertaining to the relevant curvature tensors and connections leading to the

formulation of the Einstein field equations. For extensive details on manifolds and

tensor analysis, the reader is referred to Bishop and Goldberg (1968), Misner et al

(1973) and Foster and Nightingale (1994). A brief discussion is given on modified

gravity in Sec. 2.3, specifically Einstein-Gauss-Bonnet gravity. The Lovelock term and

Lanczos tensor are introduced and used to adduce the Einstein-Gauss-Bonnet field

equations. The reader is encouraged to seek out Papantonopoulus (2015) for further

details on these notions and modified theories in general. The theory of the junction

conditions are presented in Sec. 2.4 followed by a description of the energy conditions
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which make a stellar model realistic.

2.2 Differentiable manifold

Let RN denote an N -dimensional Euclidean space, i.e., the set of all N -tuples, repre-

sented as (x1, x2, ..., xN) such that, with the usual topology of the open interval 1
2
RN

denoting the lower half of RN with x1 ≤ 0, −∞ < xi < ∞ for i ∈ {1, 2, ..., N}. We

then have the following definitions:

Definition 1: A map φ from some open set O ∈ RN to another open set O′ ∈ RM

is said to be of differentiability class Cw if the coordinates (x1′ , x2′ , ..., xN
′
) of the im-

age point φ(p) in O′ are w-times continuous differentiable functions of the coordinates

(x1, x2, ..., xN) of p in the original set O. An N -dimensional differentiable manifold is

a set that is simply locally similar to an open set of Euclidean space RN .

Definition 2: If there exists a map Cw ∀w ≥ 0, then it is a C∞ (infinitely differen-

tiable) map. A manifold with such a mapping is said to be a smooth manifold.

Definition 3: A function f with the mapping f : RN −→ R is said to be locally

Lipschitz if, for each open set U ∈ O with compact closure (the set closure of U is

compact), there exists some constant L, such that for each pair of points p, q ∈ U ,

|f(p)− f(q)| ≤ L|p− q|.

2.3 Spacetime manifold

For the purposes of this dissertation, unless otherwise stated, we assume that space-

time, denoted byM, in general is an N -dimensional, oriented, paracompact, Hausdorff,

C∞ pseudo-Riemannian manifold endowed with a symmetric, nondegenerate, smooth
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metric tensor field g. In local regions, the manifold (M, g) is homeomorphic and diffeo-

morphic to Euclidean space RN which implies that it may be covered by overlapping

coordinate patches so that special relativity holds locally. The tensor field g has a

signature (−+ + · · ·+N) and encodes the properties and dynamics of the gravitational

field. For detailed treatments on spacetime geometry, the reader is referred to the stan-

dard textbooks in differential geometry such as Hawking and Ellis (1973), de Felice and

Clarke (1990), do Carmo (1992), Foster and Nightingale (1994) and Straumann (2004).

2.3.1 Metric tensor

The idea of distance between two infinitesimally separated points on the spacetime

manifold is defined by the metric tensor. This tensor acts on pairs of vectors to give a

numerical value, and is symmetric in its indices. In terms of the coordinate basis, the

metric tensor is defined as

g = gabdx
a ⊗ dxb, (2.3.1)

where gab = g
(

∂
∂xa

, ∂
∂xb

)
. The above can be written as

g(V,W) = gabV
aW b,

for any two vectors V and W, and this can be expressed as the distance between two

infinitesimally separated points on the manifold as

ds2 = gabdx
adxb. (2.3.2)

The matrix [gab] is regular with inverse gab such that

gabg
bc = δa

c, (2.3.3)

where δa
c is the Kronecker delta. Both tensors gab and gab may be used to define

relationships between covariant and contravariant vectors in the following way

Xa = gabX
b, Xa = gabXb. (2.3.4)
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For a tensor T of rank two, the relationships are given as follows

Tab = gacgbdT
cd, T ab = gacgbdTcd, T ab = gacTcb. (2.3.5)

The metric is indefinite since the magnitude of the nonzero vector can be positive, zero

or negative.

2.3.2 The metric connection

The metric tensor g can have a torsion-free connection ∇ which is unique such that

∇g = 0 or gab;c = 0, (2.3.6)

where ; denotes covariant differentiation. The metric connection coefficient Γ is defined

in terms of the metric tensor and its derivatives (Boothby 1986) by

Γabc =
1

2
gad
(
∂gcd
∂xb

+
∂gdb
∂xc
− ∂gbc
∂xd

)
≡ 1

2
gad(gcd,b + gdb,c − gbc,d), (2.3.7)

where commas denote partial differentiation. The coefficients Γabc are also known

as the Christoffel symbols of the second kind and are components of the Levi-Civita

connection (Christoffel 1869, Levi-Civita 1917). The connection coefficients entirely

describe the curvature of the coordinate system and since they are not tensors, can be

transformed to vanish under a suitable coordinate transformation.

Given a vector field Xa, the covariant derivative is defined in the following way

∇bX
a = ∂bX

a + ΓabcX
c, ∇bXa = ∂bXa − ΓcabXc, (2.3.8)

where ∂b = ∂
∂xb

. For a mixed tensor T ab, we thus have

∇cT
a
b = ∂cT

a
b + ΓacdT

d
b − ΓdabT

b
d. (2.3.9)

2.3.3 Geodesics

Within Euclidean space, a geodesic is defined by two properties which are equivalent

to each other. First, its tangent vector points in the same direction and secondly, it
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is the curve of shortest length between any two points. The geodesic is considered,

on a torsion-free manifold, as a curve xa(u) described by a parameter u by the fixed

direction of its associated tangent vector. It satisfies the condition

dt

du
= λ(u)t,

where λ(u) is a parametric function of u. In general, the equations satisfied by null

and non-null geodesics, parametrised by some parameter u, are given by

d2xa

du2
+ Γabc

dxb

du

dxc

du
= λ(u)

dxa

du
. (2.3.10)

This curve can always be parametrised such that λ(u) can vanish. The geodesics are

then defined as the following equations

d2xa

du2
+ Γabc

dxb

du

dxc

du
= 0, (2.3.11)

and in this case, u is is called an affine parameter. Thus, on a manifold (M, g), a

geodesic can be timelike, spacelike or null if its tangent vector is timelike, spacelike or

null respectively.

2.3.4 Curvature tensors

The Riemann curvature (or Riemann-Christoffel) tensor is a rank four tensor which is a

tensor field that measures the extent to which the metric tensor is not locally isometric

to that of Euclidean space. It can be defined for any pseudo-Riemannian manifold or

any manifold with an affine connection. It is defined (in terms of Christoffel symbols)

as

Rd
abc = Γdac,b − Γdab,c + ΓeacΓ

d
eb − ΓeabΓ

d
ec, (2.3.12)

where Γdac,b = ∂bΓ
d
ac. The curvature tensor represents the tidal force experienced

by any rigid body moving along a geodesic, and is a way to capture a measure of the

intrinsic curvature. It also measures noncommutativity of the covariant derivative, and

as such is the integrability condition for the existence of an isometry with Euclidean (or
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flat) space. The symmetry properties inherent with the curvature tensor are observed

by changing from mixed components, Ra
bcd, say, to covariant components Rabcd =

gaeR
e
bcd. It can easily be shown that

Rabcd = −Rbacd = −Rabdc, (2.3.13a)

Rabcd = Rcdab. (2.3.13b)

The tensor is therefore antisymmetric in each of the index pairs (a, b, c, d) and is sym-

metric under the interchange of any two pairs of indices with one another. The cyclic

sum (obtained by permuting any three indices) of the components of Rabcd is zero

Rabcd +Racdb +Radbc = 0. (2.3.14)

The Bianchi identity

Ra
bcd;e +Ra

bde;c +Ra
bec;d = 0, (2.3.15)

can also be proved by use of the curvature tensor.

The Ricci (or Ricci-curvature) tensor is a rank two tensor which provides a way

of measuring the degree to which the geometry determined by a Riemannian metric

differs from ordinary Euclidean space. It is defined on a pseudo-Riemannian manifold

as a trace of the Riemann curvature tensor and can be written as

Rab = gdcRdacb = Rc
acb. (2.3.16)

Using (2.3.12) we have

Rab = Rc
acb

= Γcab,c − Γcac,b + ΓcdcΓ
d
ab − ΓcdbΓ

d
ac. (2.3.17)

The Ricci tensor is symmetric, i.e. Rab = Rba and upon its contraction, we acquire

R = gabRab = gacgbdRabcd, (2.3.18)

which is called the Ricci scalar of the space. The Kretschmann invariant (or scalar)

is defined as the square of the Riemann tensor and can be used as an indicator of
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curvature singularities in the manifold. It is given by

K = RabcdR
abcd, (2.3.19)

and as such, is called a quadratic invariant. In some higher order theories of gravity, a

possible invariant is given by

CabcdC
abcd, (2.3.20)

where Cabcd is the Weyl (deformation) tensor, defined as

Cabcd = Rabcd +
1

N − 2
[gadRbc − gacRbd + gbcRad − gbdRac]

+
1

(N − 1)(N − 2)
[gacgbd − gadgcb]R, (2.3.21)

where N corresponds to the spacetime dimension. It can be related to the Kretschmann

invariant (Cherubini et al 2002) by

K = CabcdC
abcd +

4

N − 2
RabR

ab − 2

(N − 2)(N − 1)
R2. (2.3.22)

2.3.5 The Einstein tensor

The Einstein tensor is a rank two tensorial quantity used to express curvature on a

pseudo-Riemannian manifold. It can be derived from the Bianchi identity (2.3.15) and

is expressed in terms of the Ricci tensor (2.3.17) and Ricci scalar (2.3.18) as

Gab = Rab −
1

2
Rgab. (2.3.23)

In general relativity (and higher order theories) the Einstein tensor describes the curva-

ture of spacetime in a way which is consistent with physical and energy considerations.

The Einstein tensor is symmetric, so Gab = Gba and is divergenceless, i.e.

∇aG
ab = 0. (2.3.24)

The trace of the Einstein tensor can be computed by contraction with the metric tensor

gab. On an N -dimensional manifold

gabGab = gabRab −
1

2
gabgabR,
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which then gives

G = R− 1

2
(NR) =

2−N
2

R. (2.3.25)

It is interesting to note that when N = 4, the trace of the Einstein tensor is the

negative of R, the trace of the Ricci tensor. Thus, it is often called the trace-reversed

Ricci tensor. With regards to uniqueness, Lovelock (1969, 1971) showed that, in a

four-dimensional differentiable manifold, the Einstein tensor is the only tensorial and

divergence free function of the metric tensor (and at most their first and second partial

derivatives).

2.3.6 Energy momentum tensor

The matter distribution for a model in astrophysics and cosmology is usually described

by a relativistic fluid. For an erudition on relativistic fluid dynamics and magneto-

fluid dynamics, the reader is referred to Anile (1989). The energy momentum tensor (or

stress-energy tensor) is an attribute to radiation and matter in the spacetime manifold,

and is the source of the gravitational field in the Einstein field equations. Denoted by

T ab it can be described as the a-th component of four-momentum across some surface

with constant xb, so that we have

1. T 00 is the flux density of the 0-th component of four-momentum across the time

surface (x0), called the energy density.

2. T 0i = T i0 is the energy flux density across a surface of constant xi, called the

heat conduction.

3. T ij is the flux of the i-th momentum across the j-surface, called the stress.

4. T ii is the pressure in the i-th direction (there is no summing over i).

The energy momentum tensor for uncharged matter, for example, is defined as

T ab = (ρ+ p)uaub + pgab + qaub + qbua + πab. (2.3.26)

19



In the above ρ is the energy density, p is the isotropic (kinetic) pressure, qa is the

heat flux vector (qaua) = 0 and πab is the anisotropic pressure (stress) tensor (πabua =

0 = πaa). These quantities are measured relative to a comoving fluid four-velocity u

which is unit and timelike (uaua = −1). In perfect fluids there are no stress and heat

conduction terms (qa = 0, πab = 0) and so the stress-energy tensor is isentropic. Hence,

for a perfect fluid, the energy momentum tensor (3.3.4a) becomes

T ab = (ρ+ p)uaub + pgab. (2.3.27)

Since the energy momentum tensor is conserved throughout the spacetime manifold,

we have that

∇aT
ab = 0. (2.3.28)

2.3.7 Einstein field equations

Derived in four seminal papers by Albert Einstein (1915), the Einstein field equations

(or gravitational field equations) describe the fundamental interaction of gravity as a

consequence of spacetime being curved by matter and energy (described by the energy

momentum tensor Tab). Using equations (2.3.24) and (2.3.28) we have the following

∇aG
ab = 0 = ∇aT

ab, (2.3.29)

which can be written naturally in the following way

Rab −
1

2
Rgab = κTab, (2.3.30)

where κ is the constant given by κ = 8πG̃
c4

, G̃ is a gravitational constant and c is the

speed of light. Using (2.3.23) we can write (2.3.30) as

Gab = κTab. (2.3.31)

These equations (2.3.31) are known as the Einstein field equations and are a set of ten

highly nonlinear, hyperbolic-elliptic partial differential equations, with twenty indepen-

dent components of the Riemann tensor Rabcd. (2.3.31) is also a tensor equation and
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along with the geodesic equation, forms the fundamental mathematical formulation of

general relativity. Including the cosmological constant term Λ in the field equations

gives

Gab + Λgab = κTab, (2.3.32)

and since Λ is constant, the conservation law of energy is unaffected. If the energy

momentum tensor Tab vanishes, the Einstein field equations become the vacuum field

equations and are written as

Rab = 0. (2.3.33)

The field equations can be written in trace-reversed form as was the case with the Ricci

tensor, previously. Computing the trace with respect to the metric on both sides of

the equation (2.3.32) gives, in N -dimensional space

Rab −
Λgab
N
2
− 1

= κ

(
Tab −

1

N − 2
Tgab

)
. (2.3.34)

Letting N = 4 gives

Rab − Λgab = κ

(
Tab −

1

2
Tgab

)
. (2.3.35)

Setting Tab = 0 and Λ = 0 in the above equation gives (2.3.33). The original field

equations can be regained by reversing the trace once again. The form of the field

equations above is useful in certain applications.

2.4 Modified theories of gravity: Einstein-Gauss-

Bonnet gravity

Higher order theories of gravity have been the subject of much study. One approach

to modify general relativity is the introduction of nonlinear forms of the Riemann and

Ricci tensor, and the Ricci scalar. The second order equations of motion resulting

from linear forms is advantageous in four dimensions; however as shown by Lovelock

(1971, 1972) it is possible to introduce a polynomial form of the Lagrangian which
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is of quadratic order. This form generates the Einstein-Gauss-Bonnet (EGB) action.

Curvature terms which are quadratic in the spacetime appear as corrections to Einstein

gravity, and this theory can be considered a consequence of low energy string theory

(Fradkin and Tseytlin 1985, Metsaev et al 1987). These higher order curvature terms

will have no consequence in four-dimensional gravity unless some surface term is in-

volved. An interesting point to note is that the equations of motion which result from

the EGB action are still second order and quasilinear. If the higher order quantities

are vanquished or absent, conventional Einstein gravity is regained (Deser and Yang

1989). The modified form of the Einstein-Hilbert action in five dimensions is

S =
1

16π

∫ √
−g [(R− 2Λ + αLGB)] d5x+ Smatter, (2.4.1)

which is called the Gauss-Bonnet action where α is the Einstein-Gauss-Bonnet (EGB)

coupling constant, R is the Ricci scalar, LGB is the Lovelock term and Λ is the cos-

mological constant. The above action has no direct effect in dimensions of four or less

(it is in fact a total derivative in four dimensions) since the Lovelock term does not

contribute to the field equations, but is generally nonzero in dimensions higher than

four.

2.4.1 Lovelock term

The Lovelock (or Gauss-Bonnet) term LGB is derived from the Lagrangian

LGB =
√
−g (R− 2Λ + αLGB) , (2.4.2)

of the theory and we have that LGB ∝ LGB. It is given by

LGB = R2 +RabcdR
abcd − 4RcdR

cd, (2.4.3)

and is essentially a linear combination of quadratic terms in curvature. It is also the

dimensionally extended version of the Euler density. The cogency of the Lovelock term

lies in the fact that the equations of motion are second order and quasilinear despite
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the fact that the Langrangian is quadratic in the Riemann-curvature tensor, the Ricci

tensor and the Ricci scalar. The EGB theory with a Lagrangian given by a linear

combination of the Einstein-Hilbert Lagrangian and the Lagrangian LGB is the most

trivial truncation of the Lovelock model (Padmanabhan and Kothawala 2013).

2.4.2 Lanczos tensor

The Lanczos (or Gauss-Bonnet) tensor Hab is defined (Lanczos 1932, 1938) in terms

of the metric tensor, Riemann tensor, Ricci tensor and Ricci scalar, and the Lovelock

term, as

Hab = gabLGB − 4RRab + 8RacR
c
b + 8RacbdR

cd − 4RacdeRb
cde. (2.4.4)

Moreover, the above can also be written in terms of the following rank four tensor

Pabcd ≡ Rabcd + gadRbc − gacRbd − gbdRac + gbcRad +
1

2
R(gacgbc − gbcgad), (2.4.5)

since

Hab = PacdeRb
cde − 1

2
gabLGB. (2.4.6)

Interestingly, the tensor Pabcd has several properties:

• Firstly, it is divergence free, i.e.

∇dPabcd = 0.

• It has the same index symmetries as the Riemann tensor.

• Tracing two of its indices yields

P b
acb = Gac, (2.4.7)

which yields the divergence free property of the Einstein tensor. It is interesting

to note that the tensor Pabcd could be argued as the curvature tensor associated

with the Einstein tensor in the same way that the Riemann tensor is the curvature

tensor associated with the Ricci tensor.
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• In four dimensions Hab = 0, hence we have the Lovelock identity from (2.4.6) as

PacdeRb
cde =

1

2
gabLGB. (2.4.8)

For extensions of the above equation, the reader is encouraged to seek out Edgar

and Hoglund (2002).

2.4.3 Einstein-Gauss-Bonnet field equations

In dimensions four or more, Einstein gravity can be considered a particular case of

Lovelock gravity and EGB gravity in particular. The EGB field equations may finally

be written as

Gab = κTab, (2.4.9)

where

Gab = Gab −
α

2
Hab. (2.4.10)

In the above, Gab is the Einstein tensor, Tab is the energy momentum tensor and Hab

is the Lanczos tensor. In the limit where α→ 0, conventional Einstein gravity will be

regained.

2.5 Theory of junction conditions

The model for a relativistic, dissipating radiating star with outgoing null radiation

was completed by Santos (1985) by analysing the junction conditions at the stellar

surface. The important result that followed was that the pressure on the boundary

of the radiating star should be nonzero in general, and proportional to the heat flux.

Consider two N -dimensional spacetime manifolds M± with oriented boundaries Σ±

such that there exists a diffeomorphism between Σ− and Σ+. Each is endowed with

symmetric, nondegenerate, smooth metric tensor fields g±. Upon successful matching,

the resulting spacetime (M, g) is the disjoint union of the spacetimesM± with points

on their oriented boundaries Σ± such that the junction conditions are satisfied (Israel
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1966). Individual points onM± are labelled by {xa±} where a ∈ {0, ..., N − 1}. Let gij

be the intrinsic metric to Σ± so that

ds2
Σ± = gijdξ

idξj. (2.5.1)

The intrinsic coordinates to Σ± are given by {ξi±} where i ∈ {1, ..., N − 1}. The two

embeddings are given by the maps

Ψ± : Σ −→M±, (2.5.2a)

ξi 7→ xa± = Ψi
±(ξi), (2.5.2b)

such that Σ± ≡ Ψ±(Σ) ⊂M±. The diffeomorphism from Σ+ to Σ− is Ψ− ◦Ψ+−1
. The

metrics in the regions M± are of the form

ds2
± = gabdχ

a
±dχ

b
±, (2.5.3)

where χa± are the coordinates in M± with a ∈ {0, ..., N − 1}. The requirement here

is that the metrics (2.5.1) and (2.5.3) match smoothly across Σ±. This generates the

first junction condition

(ds2
−)Σ− = (ds2

+)Σ+ = ds2
Σ, (2.5.4)

which implies that Σ− ≡ Σ+, hence from here on both boundaries Σ± can be repre-

sented by Σ. The above condition (2.5.4) is also referred to as the first fundamen-

tal form. The coordinates of Σ on the spacetimes M± are consequently given by

χa± = χa±(ξi±). The second junction condition is acquired by requiring the continuity of

the extrinsic curvature of Σ across the boundary. This results in

K−ij = K+
ij , (2.5.5)

where

K±ij ≡ −n±a
∂2χa±

∂ξi±∂ξ
j
±
− n±a Γabc

∂χb±
∂ξi±

∂χc±

∂ξj±
. (2.5.6)

The above condition is called the second fundamental form where n±a (χb±) are compo-

nents of the vector normal to Σ. The junction conditions (2.5.4) and (2.5.5) are ho-

mologous with those generated by O’Brien and Synge (1952) and Lichnerowicz (1955).
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Further insights into the junction conditions can be found in the texts by Raju (1982),

Lake (1987) and Husain (1996).

In higher dimensional modified theories of gravity two further matching conditions

need to be satisfied at the boundary. First, the continuity of the scalar curvature

R±
∣∣∣∣
Σ

= 0, (2.5.7)

as well as its first derivative, which is a directional derivative along the radial coordinate

perpendicular to the boundary

∇aR
±
∣∣∣∣
Σ

= 0. (2.5.8)

These two extra conditions make the notion of matching a stellar interior with an

exterior quite restrictive. Further insights into the matching conditions in modified

gravity can be found in Clifton (2006), Deruelle et al (2008), Clifton et al (2013) and

Ganguly et al (2014).

2.6 Energy conditions

In addition, for a stellar model to be deemed realistic, it must also adhere to the so-

called energy conditions of general relativity, as well as not being in violation of the

law of causality. A relativistic fluid must obey the three energy conditions:

(i) The weak energy condition: For any future pointing timelike vector wa, the total

energy density Tabw
awb ≥ 0, at each event in the spacetime.

(ii) The strong energy condition: For any future pointing timelike unit vector wa,

the stresses of the matter, at each event in the spacetime are restricted by the

condition 2Tabw
awb+T ≥ 0 where T is the trace of the energy momentum tensor

Tab.

(iii) The dominant energy condition: For any future pointing timelike vector wa, the

four-momentum density vector Tabw
b must be future pointing and timelike, or

null at each event in the spacetime.
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A detailed discussion of the energy conditions is contained in Hawking and Ellis (1973)

and Kolassis et al (1988). To further elucidate on the above three conditions, we

express them in terms of the matter variables for an imperfect fluid, so that

(a) The weak energy condition: ρ− p+ ∆ ≥ 0.

(b) The strong energy condition: 2p+ ∆ ≥ 0.

(c) The dominant energy condition: ρ− 3p+ ∆ ≥ 0,

where ρ is the energy density, p is the pressure and q is the heat flux. We have defined

∆ =
√

(p+ q)2 − 4q2,

in the above. In the absence of heat flux we obtain ρ ≥ 0 and p ≥ 0. The speed of

sound for a relativistic fluid is given by

dp

dρ
= c2

s. (2.6.1)

A violation of causality would result if the above quantity is, at any point in time,

negative or greater than the speed of light.
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Chapter 3

Diffusive and dynamical radiating

stars with realistic equations of

state

3.1 Introduction

The Vaidya metric (Vaidya 1951) describes the geometry outside a spherically symmet-

ric radiating star and it defines outgoing null radiation. Though this outside geometry

and the matching conditions have been studied in detail, the main problem is as fol-

lows:

How do we model a realistic collapsing astrophysical star with a core null fluid and

a string fluid which matches to the intermediate Vaidya spacetime enclosed by the

Schwarzschild exterior?

This is a key question for a better understanding of the dynamics, thermodynamics

and gravitational collapse in realistic astrophysical stars, in the context of general rel-

ativity. The class of spacetimes that are natural candidates for models of such stellar

interiors are generalised Vaidya spacetimes. The matter field in these spacetimes have

two components: A general type I matter field (whose energy momentum tensor has a
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timelike and three spacelike eigenvectors), that describes null fluid matter, and also a

type II matter field (whose energy momentum tensor has double null eigenvectors) that

describes null radiation and a string fluid. Such a stellar interior can then be naturally

matched to an external radiating zone described by the Vaidya spacetime, and finally

the radiation zone can be matched smoothly with the vacuum Schwarzschild exterior,

as we explain in later sections of this dissertation.

The intent of this chapter is to generate solutions to the generalised Vaidya stel-

lar interior with a string fluid and null matter for various thermodynamically realistic

equations of state. It turns out that a direct integration of the resulting partial differen-

tial equations is possible in general for the linear, quadratic and polytropic equations.

Our solutions for the linear cases generalise all of those obtained by Husain and oth-

ers as well as the complete summary of solutions presented in Wang and Wu (1999),

and are therefore the most general solutions known. For pedagogical completeness, we

also further generalise all of our results in the higher dimensional generalised Vaidya

spacetimes.

This chapter is organised as follows: In the next section we give a complete outline

of how to model an isolated spherical and physically realistic radiating astrophysical

star via the generalised Vaidya geometry. In the following section we describe the

generalised Vaidya spacetime in detail by analysing the Einstein field equations. We

present the relevant aphorisms indicative with the geometry of the generalised Vaidya

metric and make mention of the energy conditions for a physically reasonable model.

A note on equations of state is presented with various cases discussed. In Sec. 3.4

we systematically present solutions to the Einstein field equations for the gravitational

mass function by assuming several different equations of state. The succeeding Sec. 3.5

then deals with the higher dimensional spacetime and field equations. The solutions are

summarised in detail for higher dimensions and the masses are tabulated. Finally an

analysis if the effects of diffusion on our model is undertaken. We will present several

classes of solutions to the diffusion equation using the various equations of state.
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3.1.1 Generalised Vaidya spacetimes

The generalisation of the Vaidya spacetime was given in detail by Wang and Wu (1999)

and includes most of the known solutions of Einstein’s field equations with the addi-

tional Type II fluid. The notion that the energy momentum tensor is linear in terms

of the gravitational mass for these matter fields, engenders this generalisation of the

spacetime. The generalised Vaidya metric in single (collapsing and exploding) null

coordinates (v, r, θ, φ) is given as

ds2 = −
(

1− 2m(v, r)

r

)
dv2 + ε2dvdr + r2(dθ2 + sin2 θdφ2), (3.1.1)

where ε = ±1. Here the function m(v, r) describes the Misner-Sharp mass of the

stellar interior and can be obtained via integrating the Einstein field equations with

combinations of perfect fluid and null matter sources.

3.2 The model of a dynamic and radiating relativis-

tic fluid star

Any isolated spherically symmetric astrophysical star with outgoing null radiation is a

combination of three distinct concentric zones: the innermost zone is the stellar interior

where there are two component matter sources, namely null fluid matter along with

radiation. The middle zone is purely a radiation zone while the outermost zone is the

vacuum Schwarzschild exterior that extends roughly to a radius of 1 light year (for

solar mass stars) beyond which galactic dynamics take over. In this section we briefly

outline how to model all three of these zones under a combined framework using a

generalised Vaidya class of metric.

3.2.1 Stellar interior

As described earlier, the best possible candidate for the spacetime of a stellar interior

is the class of generalised Vaidya spacetimes (3.1.1), and the mass function m(v, r) can
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be uniquely obtained via the Einstein field equations with the two component matter

sources. Let m(v, r) be one such solution for a given combination of fluid and radiation

fields. This solution then completely describes the solution of the interior of the star,

up to a boundary layer given by r = rb. Beyond this boundary we enter a pure radiation

zone.

3.2.2 Radiation zone

In this zone the matter field is a single component null matter field and the spacetime

is well described by the Vaidya metric

ds2 = −
(

1− 2m1(v)

r

)
dv2 − 2dvdr + r2(dθ2 + sin2 θdφ2) . (3.2.1)

We can naturally relate the Vaidya mass function m1(v) in the radiation zone to the

generalised Vaidya mass function in the stellar interior in the following way

m1(v) = m(v, rb).

This radiation zone continues until some retarded null coordinate value v = V0, beyond

which the spacetime is Schwarzschild (as dictated by Birkhoff’s theorem).

3.2.3 Schwarzschild exterior

This region is well described by the exterior static subset of the completely extended

Schwarzschild manifold, and the metric is given by

ds2 = −
(

1− 2M

r

)
dv2 − 2dvdr + r2(dθ2 + sin2 θdφ2) . (3.2.2)

Here the Schwarzschild mass M is related to the Vaidya mass m1(v) by

M = m1(V0).
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3.2.4 Matching conditions at the boundary layers: Complete

mass function

We note here that the spacetime is divided into three distinct regions for our above

mentioned stellar model: the interior region, the radiation zone and the Schwarzschild

exterior region. The first boundary layer between the inner and the intermediate zone,

given by r = rb, is a timelike boundary, whereas the second boundary given by v = V0

is a null boundary. The important point that all the three zones are described by the

same class of metric makes the matching conditions across these boundaries extremely

transparent. To match the first fundamental form all we need is the mass function to

be continuous across these boundaries. Hence the complete C2 mass function for an

isolated stellar model can be given in the following form:

m(v, r) =



m(v, r) r ≤ rb , v ≤ V0

m1(v) ≡ m(v, rb) r > rb , v ≤ V0

M ≡ m1(V0) ≡ m(V0, rb) r > rb , v > V0

(3.2.3)

We can easily check that this mass function is a solution to the Einstein field equations

in all the three zones mentioned above, and hence it completely describes the spacetime

of an isolated collapsing star. To match the second fundamental form, we need the

partial derivatives of the mass functions across the boundaries to be continuous. These

conditions are given by

∂

∂v
m(v, rb) =

∂

∂v
m1(v), (3.2.4a)

∂

∂r
m(v, r)

∣∣∣∣
r=rb

= 0, (3.2.4b)

∂

∂v
m1(v)

∣∣∣∣
v=V0

= 0. (3.2.4c)

where r = rb is the timelike boundary (from equating (3.1.1) to (3.2.1)) and v = V0

is the null boundary (from equating (3.2.1) to (3.2.2)). These boundaries serve as the

matching surfaces for the three concentric regions which can be seen in Figure 3.1.
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Figure 3.1: Depiction of spacetime divided into the three distinct regions (in retarded

time coordinates with ε = 1).

It is therefore necessary to find physically relevant mass functions, with the struc-

ture of (3.2.3), to model a dynamical radiating star which is isolated. We achieve this

by imposing specific equations of state.
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3.3 Generalised Vaidya spacetime: Field equations

and energy conditions

The line element for all three regions belongs to the generalised Vaidya class given by

(3.1.1). Note that m(v, r) is the mass of the star and is related to the gravitational

energy within a given radius r (Poisson and Israel 1990, Lake and Zannias 1991). The

nonvanishing connection coefficients (2.3.7) are given by

Γ0
00 = 1

r
(rmr −m) Γ1

01 = −1
r
(rmr −m)

Γ1
00 = 1

r3
(2mmr − r2mr − r2mv − 2m2 + rm) Γ0

22 = r2

Γ0
33 = r sin2 θ Γ2

12 = Γ3
13 = 1

r

Γ1
22 = 2m− r Γ3

23 = cot θ

Γ1
33 = sin2 θ(2m− r) Γ2

33 = − sin θ cos θ

where we have used the notation

mv =
∂m

∂v
, mr =

∂m

∂r
.

From the above we have the following quantities

R0
0 = R1

1 =
mrr

r
, (3.3.1a)

R1
0 =

2mv

r2
, (3.3.1b)

R2
2 = R3

3 =
2mr

r2
, (3.3.1c)

with the Ricci scalar

R =
2

r2
(rmrr + 2mr).

The Einstein tensor components are

G0
0 = G1

1 = −2mr

r2
, (3.3.2a)

G1
0 =

2mv

r2
, (3.3.2b)

G2
2 = G3

3 = −mrr

r
. (3.3.2c)
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The energy momentum tensor is defined by

Tab = T
(n)
ab + T

(m)
ab , (3.3.3)

where

T
(n)
ab = µlalb,

T
(m)
ab = (ρ̃+ P )(lanb + lbna) + Pgab.

In the above

la = δ0
a, na =

1

2

[
1− 2m(v, r)

r

]
δ0
a + δ1

a,

with lcl
c = ncn

c = 0 and lcn
c = −1. The null vector la is a double null eigenvector of

the energy momentum tensor (3.3.3). Hence the nonzero components are given by

T 0
0 = −ρ̃, (3.3.4a)

T 1
0 = −µ, (3.3.4b)

T 2
2 = T 3

3 = P, (3.3.4c)

The Einstein field equations (Ga
b = κT ab) become

µ = −2
mv

κr2
, (3.3.5a)

ρ̃ = 2
mr

κr2
, (3.3.5b)

P = −mrr

κr
, (3.3.5c)

which describe the gravitational behaviour of a string fluid (Glass and Krisch 1998,

1999).

The energy conditions for this kind of fluid are

1. The weak and strong energy conditions:

µ ≥ 0, ρ̃ ≥ 0, P ≥ 0 (µ 6= 0). (3.3.6)

2. The dominant energy condition:

µ ≥ 0, ρ̃ ≥ P ≥ 0 (µ 6= 0). (3.3.7)
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In the case when m = m(v) the above energy conditions all reduce to µ ≥ 0, and if

m = m(r), then µ = 0 and the matter field becomes a Type I fluid. For the purposes of

many applications, it is a requirement that the matter distribution satisfy an equation

of state

P = P (ρ̃), (3.3.8)

on physical grounds. Sometimes the linear γ-law equation of state

P = (γ − 1)ρ̃, (3.3.9)

where 0 < γ < 1, is assumed in cosmology when probing the dynamics of matter on

galactic and extragalactic length scales. The case γ = 1 corresponds to dust (vanishing

pressure); γ = 2 gives a stiff equation of state in which the speed of sound and light

speed are equal; γ = 4/3 corresponds to radiation. In the limit when γ = 0, the fluid

pressure is negative, p = −ρ̃ (since ρ̃ > 0). This is the characteristic property of the

so-called dark energy or the existence of a possible scalar field that is responsible for

the accelerated expansion of the universe. Often the particular equation of state

P = kρ̃γ,

is assumed in relativistic astrophysics; this is called the polytropic equation of state. It

is commonly used to model electron degenerate and neutron degenerate gases in white

dwarfs and neutron stars, respectively.

3.4 Solutions with equations of state

In this section we will impose various equations of state upon the system (3.3.5).

3.4.1 Case I(a): Linear

If we assume a linear equation of state P = kρ̃ to the field equations (3.3.5), we have

mrr +
2k

r
mr = 0, (3.4.1)
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which is a second order linear partial differential equation. Since we are differentiating

with respect to one variable, we can treat it as an ordinary differential equation, in

which case it’s a weaker variant of the Cauchy-Euler equation. The above equation

can be solved via reduction of order and has two solutions. For the case when k = 1
2
,

the solution is given by

m(v, r) = c1(v) ln(r) + c2(v),

where c1(v) and c2(v) are functions of integration. For k 6= 1
2

we have the solution

m(v, r) = c1(v)
r1−2k

1− 2k
+ c2(v). (3.4.2)

Hence we have (for the latter case)

µ = −
[

2ċ1

κ(1− 2k)r1+2k
+

2ċ2

κr2

]
, (3.4.3a)

ρ̃ =
2c1

κr2+2k
, (3.4.3b)

P =
2c1k

κr2+2k
. (3.4.3c)

We have that all the energy conditions are satisfied if c1(v) ≥ 0 and ċ2(v) < 0.

3.4.2 Case I(b): Generalised linear

Imposing the condition P = kρ̃+ k2 yields

mrr +
2k

r
mr + κk2r = 0, (3.4.4)

which can be solved via reduction of order. Letting y(v, r) = mr yields the first order

equation

y′ +
2k

r
y + κk2r = 0, (3.4.5)

which in turn has the solution

y(v, r) =
−κk2

2k + 2
r2 + c1r−2k, (3.4.6)

where c1 = c1(v) is a function of integration. Again, two cases arise. When k = 1
2

the

general solution for m(v, r) is given by

m(v, r) = c1(v) ln(r) + c2(v)− κk2r3

9
,
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where c2 = c2(v) is a further integration function. The general solution for the mass

when k 6= 1
2

is

m(v, r) =
−κk2

3(2k + 2)
r3 +

c1r1−2k

1− 2k
+ c2. (3.4.7)

Thus we have (for the latter case)

µ = −
[

2ċ1

κ(1− 2k)r1+2k
+

2ċ2

κr2

]
, (3.4.8a)

ρ̃ =
2c1

κr2+2k
− k2

k + 1
, (3.4.8b)

P =
k2

k + 1
+

2c1k

κr2+2k
, (3.4.8c)

which contains the system (3.4.3) as well as several of the seminal other cases sum-

marised in Wang and Wu (1999). This list of possible solutions is presented in Table 3.1.

Again, the energy conditions are satisfied for c1(v) ≥ 0 and ċ2(v) < 0.

3.4.3 Case II(a): Quadratic

If we impose the quadratic equation of state P = kρ̃2 on the system (3.3.5), we have

mrr +
η

r3
m2

r = 0, (3.4.9)

where η = 4k/κ. Reducing the order of the above equation with y(v, r) = mr gives

y′ +
η

r3
y2 = 0, (3.4.10)

which is a separable equation in y. The solution is

y(v, r) = − 2r2

c1r2 + η
, (3.4.11)

where c1 = c1(v) is again, an integration function. Hence, the general solution for m is

m(v, r) = c2 − 2

 r

2c1

−
√
η arctan

(√
2
√
c1r√
η

)
2
√

2c
3/2
1

 , (3.4.12)
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where c2 = c2(v) is a second integration function. Hence the field equations give

µ = − 2

κr2

ċ2 +
ċ1r

c2
1

+
ċ1r

2c1

(
1 + 2c1r2

η

)
−

3
√

2
√
ηċ1

4
√
c1

5 arctan

(√
2
√
c1r

√
η

)]
, (3.4.13a)

ρ̃ =
4

κ(2c1r2 + η)
, (3.4.13b)

P =
4η

κ(2c1r2 + η)2
. (3.4.13c)

For the above, the energy conditions are satisfied for the following restriction: η ≥ 0

or c1(v) ≥ 0 and for any c2(v).

3.4.4 Case II(b): Generalised quadratic

Imposing the condition P = kρ̃2 + k2ρ̃+ k3 yields

mrr +
η

r3
m2

r +
2k2

r
mr + k3κr = 0, (3.4.14)

which can be solved again by reducing the order. Doing so with y(v, r) = mr yields

y′ +
η

r3
y2 +

2k2

r
y + k3κr = 0. (3.4.15)

Equation (3.4.15) is a nonlinear Riccati equation. Integration yields

y(v, r) = −1

η

(
r2 tan

(√
k3κη − k2

2 − 2k2 − 1(ln r− c1)

)
×
√
k3κη − k2

2 − 2k2 − 1

)
, (3.4.16)

where c1 = c1(v) is a function of integration. Thus, the solution for m can be expressed

as a quadrature

m(v, r) = −1

η

∫ (
r2 tan

(√
ζ (ln r− c1)

)√
ζ
)
dr + c2, (3.4.17)
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where c2 = c2(v) is a second integration function. In the above we have set ζ =

k3κη − k2
2 − 2k2 − 1 for convenience. So we have the result

µ =
2

κηr2

[
∂

∂v

∫ (
r2
√
ζ tan

(√
ζ(ln r− c1)

))
dr

]
+

2

κηr2
ċ2, (3.4.18a)

ρ̃ =
2

κηr2

(√
ζr2 tan

(√
ζ(ln r− c1)

))
, (3.4.18b)

P =
1

κη

[
2
√
ζ tan(

√
ζ)× ζ sec2

(√
ζ(ln r− c1)

)]
. (3.4.18c)

The energy conditions are satisfied as in the previous case for any c2(v) and the con-

dition: η ≥ 0 or c1(v) ≥ 0.

3.4.5 Case III: Polytropic

If we finally impose the equation of state P = kρ̃γ, we have

mrr + kκ

(
2

κ

)γ
r1−2γmγ

r = 0. (3.4.19)

Reducing the order of the above equation with y(v, r) = mr gives

y′ + kκ

(
2

κ

)γ
r1−2γyγ = 0, (3.4.20)

which is a separable equation in y. Therefore the solution is

y(v, r) =

[
(γ + 1)kκ

(
2

κ

)γ
r2−2γ

2− 2γ
+ (1− γ)c1

] 1
1−γ

, (3.4.21)

where c1 = c1(v) is a function resulting from the integration process. So the solution

for the mass m is

m(v, r) =

∫ [
(γ + 1)kκ

(
2

κ

)γ
× r2−2γ

2− 2γ
+ (1− γ)c1

] 1
1−γ

dr + c2, (3.4.22)
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Table 3.1: Known solutions contained within the system (3.4.8).

Solution m(v, r) c1(v) and c2(v) k-indices

Monopole ar
2

c1(v) = a
2
, c2(v) = 0 k, k2 = 0

Charged Vaidya g(v)− q(v)2

2r
c1 = q(v)2

2
, c2 = g(v) k = 1, k2 = 0

dS/AdS Λ
6

r3 c1(v) = c2(v) = 0 k = const.,

k2 = −Λ(k+1)
κ

Husain g(v)− q(v)
(2k−1)r2k−1 c1(v) = −q(v)

2
, c2(v) = g(v) k, k2 = const.

where c2 = c2(v) is a second integration function. It should be noted that this solution

was first presented by Husain (1996). The field equations yield

µ = − 2

κr2

(
∂

∂v

∫ [
(γ + 1)kκ

(
2

κ

)γ
× r2−2γ

2− 2γ
+ (1− γ)c1

] 1
1−γ

dr

)
− 2

κr2
ċ2, (3.4.23a)

ρ̃ =
2

κr2

[
(γ + 1)kκ

(
2

κ

)γ
r2−2γ

2− 2γ
+ (1− γ)c1

] 1
1−γ

, (3.4.23b)

P =
1

(1− γ)r2k

[
(γ + 1)kκ

(
2

κ

)γ
r2−2γ

2− 2γ
+ (1− γ)c1

] γ
1−γ

×(γ + 1)k

(
2

κ

)γ
. (3.4.23c)

A summary of the above solutions can be found in Table 3.2. The weak and strong

energy conditions are satisfied when c1(v) ≥ 0 and for any c2(v). The dominant energy

condition is satisfied for c1(v) ≥ 0 and the further restriction: 2
κr2k
≥ (γ+1)

(1−γ)

(
2
κ

)γ
.
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Table 3.2: Equations of state and the gravitational mass.

Equation of state P = P (ρ̃) m(v, r)

Linear P = kρ̃ m(v, r) = c1(v) ln(r) + c2(v), (k = 1
2
)

m(v, r) = c1(v) r
1−2k

1−2k
+ c2(v), (k 6= 1

2
)

Generalised linear P = kρ̃+ k2 m(v, r) = c1(v) ln(r)

+c2(v)− k2κr3

9
, (k = 1

2
)

m(v, r) = −κk2
3(2k+2)

r3

+ c1(v)r1−2k

1−2k
+ c2(v) (k 6= 1

2
)

Quadratic P = kρ̃2 m(v, r) = c2(v)− 2
(

r
2c1(v)

−
√
η arctan

(√
2
√
c1(v)r√
η

)
2
√

2c1(v)3/2

)
Generalised quadratic P = kρ̃2 m(v, r) = c2(v)

+k2ρ̃+ k3 − 1
η

∫ (
r2 tan

(√
ζ (ln r− c1(v))

)√
ζ
)
dr

Polytropic P = kρ̃γ m(v, r) =
∫

[(γ + 1)kκ
(

2
κ

)γ
× r2−2γ

2−2γ
+ (1− γ)c1(v)

] 1
1−γ

dr + c2(v)
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Table 3.3: Equations of state and the higher dimensional gravitational mass.

Equation of state P = P (ρ̃) m(v, r)

Linear P = kρ̃ m(v, r) = c1(v) ln(r) + c2(v), (k = 1
N−2

)

m(v, r) = c1(v) r1−(N−2)k

1−(N−2)k
+ c2(v), (k 6= 1

N−2
)

Generalised linear P = kρ̃+ k2 m(v, r) = c1(v) ln(r) + c2(v)

− κk2
(N−2)k+N−2

rN−1

N−1
, (k = 1

N−2
)

m(v, r) = − κk2
(N−2)k+N−2

rN−1

N−1

+c1(v) r1−(N−2)k

1−(N−2)k
+ c2(v) (k 6= 1

N−2
)

Quadratic P = kρ̃2 m(v, r) = (2−N)
∫

rN−2

c1(v)(N−2)rN−2+η
dr + c2(v)

Generalised quadratic P = kρ̃2 m(v, r) = − 1
2η

∫ [(
rN−2 tan(

√
ς(ln r− c1(v))

)
+k2ρ̃+ k3 ×(

√
ς +N − 2 + ξ)] dr + c2(v)

Polytropic P = kρ̃γ m(v, r) =
∫ [
κk(γ + 1)

(
N−2
κ

)γ
× rN−2−γ(N−2)

N−2−γ(N−2)
+ (1− γ)c1(v)

] 1
1−γ

dr + c2(v)
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3.5 Higher dimensional Vaidya spacetime

Higher dimensional Vaidya spacetimes have a variety of physical applications. For

example, the thermodynamics of spacetime, entropy and the existence of horizons have

been studied in detail by Debnath (2014). Also Mkenyeleye et al. (2015) considered

gravitational collapse in higher dimensional Vaidya spacetimes. It is also interesting

to note that solutions have been found in alternate theories of gravity. For example,

Dominguez and Gallo (2006) found families of radiating black hole solutions for various

equations of state in higher dimensional Einstein-Gauss-Bonnet gravity. Collapse and

other physical features are affected by the presence of higher dimensions. The N -

dimensional generalised Vaidya metric is given by

ds2 = −
(

1− 2m(v, r)

rN−3

)
dv2 − 2dvdr + r2dΩ2

N−2, (3.5.1)

where

dΩ2
N−2 =

N−2∑
i=1

[
i−1∏
j=1

sin2(θj)

]
(dθi)2.

The nonvanishing Ricci tensor components are given by

R0
0 = R1

1 =
mrr

r(N−3)
− (N − 4)mr

r(N−2)
, (3.5.2a)

R1
0 =

(N − 2)mv

r(N−2)
, (3.5.2b)

R2
2 = R3

3 = ... = Rθ(N−2)
θ(N−2) =

2mr

r(N−2)
, (3.5.2c)

with the Ricci scalar

R =
2mrr

r(N−3)
+

4mr

r(N−2)
. (3.5.3)

The nonvanishing components of the Einstein tensor are

G0
0 = G1

1 = −(N − 2)mr

r(N−2)
, (3.5.4a)

G1
0 =

(N − 2)mv

r(N−2)
, (3.5.4b)

G2
2 = G3

3 = ... = Gθ(N−2)
θ(N−2) = − mrr

r(N−3)
. (3.5.4c)
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The Einstein field equations are thus

µ = −(N − 2)mv

κrN−2
, (3.5.5a)

ρ̃ =
(N − 2)mr

κrN−2
, (3.5.5b)

P = − mrr

κrN−3
. (3.5.5c)

As in section 3.4 we can find solutions to the field equations with various equations of

state for the higher dimensional Vaidya spacetime (3.5.1). The results are presented in

Table 3.3 for particular equations of state.

3.6 Diffusion

The notion of diffusion is an important one in regards to the understanding of many

physical systems. The ideas of diffusion have been applied to fields as diverse as the

stock exchange, kinetic theory and physiology. Vilenken (1981) characterised string

evolutions as the formation of Brownian trajectories in an attempt to introduce dif-

fusion into the description of cosmic strings. Calogero (2011) presented a new model

to describe the dynamics of particles undergoing diffusion in general relativity. It was

shown that in the flat Robertson-Walker spacetime, either unlimited expansion or the

formation of a singularity may occur, depending on the initial value of the cosmological

scalar field. If we assume that string diffusion is likened to point particle diffusion then

we have

∂

∂v
n = D∇2n, (3.6.1)

where ∇2 = r−2 ∂
∂r

(r2 ∂
∂r

) and D is the positive coefficient of self-diffusion, which we

treat as a constant. In classical transport theory the diffusion equation is derived

beginning with Fick’s law

~J(n) = −D~∇n, (3.6.2)
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where ~∇ is a purely spatial gradient. The 4-current conservation Ja(n);a = 0, where

Ja(n);a = (n, ~J(n))

= n
∂

∂u
−D

(
∂n

∂r

)(
∂

∂r

)
, (3.6.3)

then yields the diffusion equation (3.6.1). Rewriting the field equations (3.3.5a) and

(3.3.5b) as mv = −κµr2 and mr = κρ̃r2, we can express the integrability condition for

m as

∂ρ̃

∂v
+

1

r2

∂

∂r
(r2µ) = 0. (3.6.4)

If we compare the diffusion equation (3.6.1) (n replaced with ρ) with ρ̃v in equation

(3.6.4) above, we get

∂m

∂v
= Dr2∂ρ̃

∂r
. (3.6.5)

Solving the above equation (3.6.5) for the mass function m(v, r) will provide solutions

for the Einstein equations. Recall that the equations of state presented earlier were

of the form F1(m′,m′′) = 0. Using the field equation (3.3.5b) and substituting into

(3.6.5) we get the following

∂m

∂v
=

2D
κ

(
∂2m

∂r2
− 4

r

∂m

∂r

)
, (3.6.6)

which is of the functional form F2(ṁ,m′,m′′) = 0. In order to solve (3.6.6) entirely we

require a functional form F3(ṁ,m′) = 0. This entails isolating ∂2m
∂r2

in each equation of

state and substituting into (3.6.6). We will consider some cases below.

3.6.1 Linear

If we begin with the linear equation of state P = kρ we have from before

mrr +
2k

r
mr = 0,

which we can substitute into (3.6.6) to finally get

∂m

∂v
− α

r

∂m

∂r
= 0, (3.6.7)
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where α = −2D
κ

(2k + 4) for convenience. Equation (3.6.7) can be solved using the

method of characteristics and the solution is given by

m(v, r) = F
(

1

2
r2 + αv

)
, (3.6.8)

which is an infinite family of solutions. To check for consistency, we simply have to

substitute (3.6.8) into (3.4.1). In doing so we get

r2F ′′ + (1 + 2k)F ′ = 0, (3.6.9)

which is a consistency condition on F . It turns out that a solution is only possible for

the case when k = −1
2
. It is given by

F
(

1

2
r2 + αv

)
= l1

(
1

2
r2 + αv

)
+ l2, (3.6.10)

where l1 and l2 are constants.

3.6.2 Generalised linear

For the generalised linear equation of state the resulting partial differential equation

becomes

∂m

∂v
− α

r

∂m

∂r
+ κk2r = 0, (3.6.11)

and can be solved in the same way as above giving the solution

m(v, r) = F
(

1

2
r2 + αv

)
− κk2

3α
r3. (3.6.12)

The above solution is consistent if and only if

r2F ′′ + (1 + 2k)F ′ −
(

2k2κ

α
+

2kk2κ

α
− k2κ

)
r = 0. (3.6.13)

Then we must have

F ′′ = (1 + 2k)F ′ =
(

2k2κ

α
+

2kk2κ

α
− k2κ

)
= 0. (3.6.14)

This implies that F has the same form as (3.6.10) and k = −1
2
. We also have

k2κ

(
1− 1

α

)
= 0. (3.6.15)
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Since k2 6= 0, we have that
(
1− 1

α

)
= 0 which implies α = 1 and so κ = −6D. This is

also a generalisation of the first result (3.6.10) where k = −1
2

with the added restriction

that κ = −6D.

3.6.3 Generalised quadratic

Isolating mrr in the equation (3.4.14) and substituting into (3.6.6) the resulting partial

differential equation is given by

∂m

∂v
−Θη

1

r3

(
∂m

∂r

)2

−Θ

(
2k2 + 4

r

)
∂m

∂r
−Θk3κr = 0, (3.6.16)

where Θ = −2D
κ

and η = 4k
κ

. This equation above cannot be solved via the method of

characteristics and so another approach is needed. If we assume a separable solution

for the mass function m of the form

m(v, r) = a(v) + b(r),

then we can express (3.6.16) as two ordinary differential equations

da

dv
= c, (3.6.17a)

Θη
1

r3

(
db

dr

)2

−Θ

(
2k2 + 4

r

)
db

dr
−Θk3κr = c, (3.6.17b)

where c is a constant. Both of these equations can be analysed independently and used

to yield a solution for the master equation (3.6.16). Solving equations (3.6.17a) and

(3.6.17b) yields the final expression for the mass function as

m(v, r) = cv + ε− (2k2 + 4)

6η
r3 ±

[
1

6αβη
(αr2 + βr)

3
2

− β
√
αr

8α
5
2η
√
β

(
1 +

αr

β

) 3
2

+
β

16α
5
2η

√
1 +

αr

β

− β

2α
5
2η

ln

(√
1 +

αr

β
+

√
αr√
β

)
+

ζ

2βη

]
, (3.6.18)

where α = Θ2(2k2 + 4)2 − 4Θ4k3κ, β = 4c and, as before η = 4k
κ

. In the above ε and

ζ are constants of integration. The mass functions (3.6.18) are other solutions to the

diffusion equation (3.6.6) which we believe are new. The functional form (3.6.18) has

to be consistent with the equation of state (3.4.14).
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3.6.4 Polytropic

Special mention should be made about this particular case. The partial differential

equation resulting from substitution of the expression (3.4.19) for the polytrope is

∂m

∂v
− βκk

(
2

κ

)
r2−2γ

(
∂m

∂r

)γ
− β 4

r

∂m

∂r
= 0, (3.6.19)

which is a first order, degree γ nonlinear equation. The above equation can only be

solved for specific values of the constant γ but not in general. Specifically, we have

shown that it only admits general closed form analytical solutions only for 0 < γ ≤ 2.

The case γ > 3 is highly nonlinear and not easy to analyse.

3.7 Discussion

In this chapter we considered a spherically symmetric radiating star. We noted that

any astrophysical star is a combination of three distinct concentric zones: the innermost

two-component matter zone, the middle radiation zone and the outermost zone which

is the vacuum Schwarzschild exterior. A large family of solutions to the field equations

were presented for various thermodynamically realistic equations of state. We showed

that it was possible to obtain solutions via a direct integration of simple second order

differential equations. Note that many of our solutions cannot be found using the Wang

and Wu (1999) approach; they assumed a series form of the mass function which is

restrictive. Several other mass functions have been shown to exist in four and higher

dimensions which are physically reasonable. It was also possible to obtain several

diffusive solutions for the mass function via a substitution of the above mentioned

second order equations into the diffusion equation. We can easily show that a dynamical

radiating star is possible by matching the mass function (3.2.3) at the two boundaries.

We illustrate this with the generalised linear equation of state

P = kρ̃+ k2. (3.7.1)
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At the first interface r = rb, between the two-component region and the null Vaidya

zone, the mass function is

m1(v) =
−κk2

3(2k + 2)
r3
b +

c1(v)r1−2k
b

1− 2k
+ c2(v). (3.7.2)

At the second interface, between the Vaidya zone and the vacuum exterior the mass

function is

M =
−κk2

3(2k + 2)
r3
b +

c1(V0)r1−2k
b

1− 2k
+ c2(V0). (3.7.3)

Clearly the forms (3.7.2) and (3.7.3) are always possible since c1(v) and c2(v) are

arbitrary functions. A comparison with earlier well known results was undertaken

and we showed that our solutions generalise all of the earlier ones, including those

of Husain (1996). We then generalised our results to higher dimensional spacetimes.

Additionally, diffusive solutions are also possible at each interface for the same reasons.

These (for the generalised linear case) are given by

m1(v, r) = F
(

1

2
r2
b + αv

)
− κk2

3α
r3
b , (3.7.4a)

M = F
(

1

2
r2
b + αV0

)
− κk2

3α
r3
b , (3.7.4b)

at the first and second interfaces respectively.

Another important observation that transparently comes out of our analysis here

is the non-linear nature of gravity. Even though the energy momentum tensor can be

written as a combination of radiation and matter parts, these quantities intertwine in

the metric in such a way as to give physically interesting solutions that can model a

dynamic star. If we switch off the radiation part completely, then the field equations

force the remaining matter to obey an equation of state ρ + pr = 0, (pr is the radial

pressure) which is that of an anisotropic de Sitter-like space, and hence not appropriate

for stellar modeling.

This work can further be enhanced by considering the notion of gravitational col-

lapse; whether or not there are special classes of Vaidya mass functions for which a
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collapse comes to an end as a naked singularity or not. This will be discussed in the

next chapter.
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Chapter 4

Radiating stars undergoing

gravitational collapse

4.1 Introduction

The notion of radiating stars emitting null radiation, collapsing under their own gravity

has been an ongoing area of interest in the relativistic setting. Chan (1997) studied the

collapse of a shearing isotropic fluid undergoing radial heat flow with outgoing radia-

tion. Govender (2013) studied the collapse of a spherically symmetric star dissipating

in the form of a radial heat flux. An interior was matched to the generalised Vaidya

spacetime consisting of a two-fluid atmosphere of null radiation and a string fluid. In

higher order theories, Ghosh and Maharaj (2012) found null dust solutions in metric

f(R) gravity with constant scalar curvature which described the collapse of null dust

matter in an AdS background. Goswami et al (2014) studied the physically realistic

collapse scenario of massive stars in f(R) gravity. They presented the extra matching

conditions required in modified gravity and mentioned the restrictive nature of these

impositions (which will be relevant in a later chapter).

Generalised Vaidya spacetimes have been widely used in the study of regular and

dynamical black holes (Dawood and Ghosh 2004, Hayward 2006) as well as black
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holes with trapped regions (Frolov 2014). The Vaidya-Papapetrou model (Papapetrou

1985, Dwivedi and Joshi 1989) is one of the earliest to counter the cosmic censorship

conjecture (CCC). Here, a physically reasonable matter field satisfying the energy

conditions was found in a shell focusing central singularity (v = 0, r = 0) which

was formed by imploding shells of radiation. Radially injected radiation flows into

a region which is initially flat, and is focused into a central singularity of increasing

mass. A central singularity was shown to become a node with a definite tangent for

families of nonspacelike geodesics, for some nonvanishing measure of parameters in the

model. Thus, the singularity is naked as in families of future directed nonspacelike

geodesic curves going to future null infinity, terminate at the central singularity in

the past. A comprehensive analysis on censorship violation is given by Joshi (1993,

2007). Mkenyeleye et al (2014) studied the gravitational collapse of Vaidya spacetimes

in the context of the CCC. A general mathematical framework was developed to study

the conditions on the mass function where future directed nonspacelike geodesics can

terminate at the central singularity in the past. We will use this framework extensively

in this chapter. The results obtained were further generalised in higher dimensions in

Mkenyeleye et al (2015). Maharaj et al (2012) showed that the generalised Vaidya

model can be matched smoothly to a heat conducting interior in the Santos (1985)

framework. The physical behaviour of this model was analysed in detail by Govender

et al (2015) where they investigated the effect of the exterior energy density on the

temporal evolution of the radiating fluid pressure, luminosity, gravitational redshift,

mass flow and collapse rate at the boundary of a relativistic star.

The main intent of this chapter is to study the gravitational collapse of generalised

Vaidya spacetimes in the context of the CCC. The mass functions obtained in Chapter

3 for various equations of state will be analysed using the general framework developed

in Mkenyeleye et al (2014). It will be shown that for each mass function, the collapse

terminates with a local central singularity, which is naked. We also calculate the

strength of the naked singularities and show that they are strong curvature singularities
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and there does not exist an extension of spacetime through these singularities. This

Chapter is organised as follows: In the next section we present a complete outline of

how to model an isolated spherical and physically reasonable radiating astrophysical

star via the generalised Vaidya geometry. In the following section we describe the

generalised Vaidya spacetime by analysing the field equations; the relevant aphorisms

indicative with the geometry of the generalised Vaidya metric are presented and we

mention the energy conditions for a physically reasonable model. In Sec. 4.2 we

systematically present the mathematical framework as done by Mkenyeleye et al (2014)

for a collapsing model followed by the conditions for the formation of a locally naked

singularity and its strength. In Sec. 4.3 and 4.4 the conditions for the formation of a

locally naked singularity as well as the strength of such a singularity are presented in

detail. The following section details the end state of generalised mass functions found

in Chapter 3 for various equations of state. Finally, we discuss the higher dimensional

spacetime and how the consequences of the model may change due to the presence of

higher dimensions.

4.2 Collapsing model

We will examine the gravitational contraction of imploding matter and radiation de-

scribed by the generalised Vaidya spacetime. Here, a thick shell of radiation and type

I matter collapses at the centre of symmetry (Joshi 1993). If Ka is the tangent to non-

spacelike geodesics with Ka = dxa

dk̂
, where k̂ is the affine parameter, then Ka

;bK
b = 0

and

gabK
aKb = B, (4.2.1)

where B is a constant which characterises different classes of geodesics. Null geodesics

are characterised by B = 0 while B < 0 applies to timelike geodesics. The equations
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for the quantities dKv

dk̂
and dKr

dk̂
are calculated from the Euler-Lagrange equations

∂L

∂x%
− d

dk̂

(
∂L

∂ẋ%

)
= 0, (4.2.2)

where the Lagrangian is

L =
1

2
gabẋ

aẋb. (4.2.3)

In the above equations the dot denotes differentiation with respect to the affine pa-

rameter k̂. These equations are given by

dKv

dk̂
+

(
m(v, r)

r2
− m′(v, r)

r

)
(Kv)2 − l2

r3
= 0, (4.2.4a)

dKr

dk̂
+
ṁ(v, r)

r
(Kv)2 − l2

r3

(
1− m(v, r)

r

)
−B

(
m(v, r)

r2
− m′(v, r)

r

)
= 0. (4.2.4b)

Joshi (1993) gave the components Kθ and Kφ of the tangent vector as

Kθ =
l cosϕ

r2 sin2 θ
, (4.2.5a)

Kφ =
l sinϕ cosφ

r
, (4.2.5b)

where l is the impact parameter and ϕ is the isotropy parameter defined by sinφ tanϕ =

cot θ.

Following Dwivedi and Joshi (1989), we can write Kv as

Kv =
P

r
, (4.2.6)

where P = P (v, r) is some arbitrary function. Therefore, gabK
aKb = B gives

Kr =
P

2r

[
1− 2m(v, r)

r

]
− l2

2rP
+
Br

2P
. (4.2.7)

Using (4.2.6), we get

dKv

dk̂
=

d

dk̂

(
P

r

)
=

1

r

dP

dk̂
− P

r2

dr

dk̂
. (4.2.8)

Thus,

dP

dk̂
=

1

r

(
r2dK

v

dk̂
+ P

dr

dk̂

)
. (4.2.9)
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If we substitute equations (4.2.4a), and (4.2.7) into the above equation (4.2.9), the

differential equation satisfied by the function P results in

dP

dk̂
=
P 2

2r2

(
1− 4m(v, r)

r
+ 2m′(v, r)

)
+

l2

2r2
+
B
2
. (4.2.10)

If the mass function m(v, r) and initial conditions are defined, the function P (v, r) can

then be found.

4.3 The conditions for a locally naked singularity

In this section we analyse how the final fate of collapse is determined in terms of a

naked singularity or a black hole, given the generalised Vaidya mass function. If there

exist families of future directed nonspacelike trajectories reaching observers faraway in

spacetime, which terminate in the past at the singularity, then the singularity forming

as the final state of collapse is naked. If no such families exist and an event horizon

forms at a sufficiently early time to cover the singularity, we then have a black hole.

The equation of null geodesics for the metric (3.1.1) is given by

dv

dr
=

2r

r− 2m(v, r)
. (4.3.1)

This equation has a singularity at v = 0 and r = 0 and its nature can be analysed using

the standard techniques associated with the theory of differential equations (Tricomi

1961, Perko 1991, Roberts and Stewart 1991).

4.3.1 Structure of the central singularity

Equation (4.3.1) can generally be written in separable form

dv

dr
=
M̂(v, r)

N̂(v, r)
, (4.3.2)

with its singularity at v = r = 0, where the functions M̂ and N̂ are vanquished. Thus,

the analysis of the existence and uniqueness of the solution to this differential equation
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should be carefully considered. If we introduce the new independent variable t with

differential dt such that

dv

M̂(v, r)
=

dr

N̂(v, r)
= dt, (4.3.3)

the differential equation (4.3.2) may be replaced by

dv(t)

dt
= M̂(v, r), (4.3.4a)

dr(t)

dt
= N̂(v, r). (4.3.4b)

It is important to note that all solutions of the equation (4.3.2) are indeed solutions to

(4.3.4) and hence, studying the behaviour of this system of equations near the singular

point v = r = 0 is necessary in the (v, r) plane. It can be easily seen that the singular

point of (4.3.2) is a fixed point of the system (4.3.4). In order to find the necessary

and sufficient conditions for the existence of solutions to this system in the region of

the fixed point v = r = 0, (4.3.4) can be written as a differential equation of the vector

x(t) = [v(t), r(t)]T on <2 as

dx(t)

dt
= f(x(t)). (4.3.5)

Several definitions and theorems were given by Mkenyeleye et al (2014) on the method-

ologies of showing the existence and uniqueness of solutions to the above system (4.3.4)

and equation (4.3.5).

4.3.2 Nature of the fixed point v = r = 0

Since the partial derivatives of the functions M̂ and N̂ exist and are continuous in the

neighbourhood of the fixed point, the system can be linearised near the fixed point and

whence, the general behaviour of this system near the singularity is homologous to the

characteristic equations

dv

dt
= Av +Br, (4.3.6a)

dr

dt
= Cv +Dr, (4.3.6b)
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where A = M̂v(0, 0), B = M̂r(0, 0), C = N̂v(0, 0) and D = N̂r(0, 0), with the following

M̂v =
∂M̂

∂v
, M̂r =

∂M̂

∂r
,

and

N̂v =
∂N̂

∂v
, N̂r =

∂N̂

∂r
.

In the above, AD −BC 6= 0. Considering a linear transformation of the type

φ = αv + νr, (4.3.7a)

ψ = τv + ωr, (4.3.7b)

where αω − ντ 6= 0, as well as the equation

dψ

dφ
=
χ2ψ

χ1φ
, (4.3.8)

the system (4.3.6) can be expressed in the reduced form

dφ

dt
= χ1φ, (4.3.9a)

dψ

dt
= χ2ψ, (4.3.9b)

where χ1 and χ2 are suitable real constants. Using the systems (4.3.6), (4.3.7) and

(4.3.9) it can be shown that

α(Av +Br) + ν(Cv +Dr) = χ1(αv + νr), (4.3.10a)

τ(Av +Br) + ω(Cv +Dr) = χ2(τv + ωr). (4.3.10b)

Equating coefficients of v and r in (4.3.10) above, we acquire

(A− χ1)α + Cν = 0,

Bα + (D − χ1)ν = 0, (4.3.11)

as well as

(A− χ2)τ + Cω = 0,

Bτ + (D − χ2)ω = 0. (4.3.12)
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If the values of α, ν, τ and ω are not all zero, then the above equations may be satisfied

if the determinant of the coefficients vanishes, i.e.∣∣∣∣∣∣∣
A− χ C

B D − χ

∣∣∣∣∣∣∣ = 0,

or

χ2 − (A+D)χ+ Ad−BC = 0. (4.3.13)

The above is the characteristic equation, with eigenvalues χ1 and χ2, given by

χ =
1

2

(
(A+D)±

√
(A−D)2 + 4BC

)
. (4.3.14)

The singularity of (4.3.6) can be classified as a node if (A−D)2+4BC ≥ 0 and BC > 0.

It is otherwise a center of focus. In equation (4.3.1) we have that M(v, r) = 2r and

N(v, r) = r − 2m(v, r). If v = 0 and r = 0 at the central singularity we can define the

following limits:

m0 = lim
v→0
r→0

m(v, r), (4.3.15a)

ṁ0 = lim
v→0
r→0

∂

∂v
m(v, r), (4.3.15b)

m′0 = lim
v→0
r→0

∂

∂r
m(v, r). (4.3.15c)

The null geodesic equation can then be linearised near the central singularity as

dv

dr
=

2r

(1− 2m′0)r− 2ṁ0v
. (4.3.16)

It can be clearly seen that this equation has a singularity at v = 0 and r. It is possible

to determine the nature of this singularity by observing the discriminant value of the

characteristic equation. By making use of (4.3.14), the roots of the characteristic

equation are

χ =
1

2

(
(1− 2m′0)±

√
(1− 2m′0)2 − 16ṁ0

)
. (4.3.17)
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For the singularity at v = 0 and r = 0 to be a node, we must have that

(1− 2m′0)2 − 16ṁ0 ≥ 0, ṁ0 > 0. (4.3.18)

Hence, if the mass function m(v, r) is chosen such that the above condition (4.3.18) is

satisfied, the singularity at the origin will then be a node and outgoing nonspacelike

geodesics can exit the singularity with a defined value of the tangent.

4.3.3 Existence of outgoing nonspacelike geodesics

We can now choose a generalised Vaidya mass function with the properties:

1. The mass function m(v, r) obeys all the physically reasonable energy conditions

throughout the spacetime.

2. The partial derivatives of the mass function must exist and are continuous on the

entire spacetime.

3. The limits of the partial derivatives of the mass function m(v, r) at the central

singularity obey the conditions: (1− 2m′0)2 − 16ṁ0 ≥ 0 and ṁ0 > 0.

A mass function with the above properties would ensure the existence and uniqueness

of the solutions of the null geodesic equation in the immediate vicinity of the central

singularity. Also, the central singularity will be a node of C1 solutions with definite

tangents.

If we consider the tangents of these curves at the singularity, we can find the

condition for the existence of outgoing radial nonspacelike geodesics from the nodal

singularity. Let X be the tangent to the radial null geodesic. If the limiting value of

X is finite and positive at the singular point, we can then see that the outgoing future

directed null geodesics terminate in the past at the central singularity. The existence

of these radial null geodesics characterises the nature (a naked singularity or a black

hole) of the collapsing solutions. To determine the nature of the limiting value of X
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at v = 0 and r = 0, we define the following:

X0 = lim
v→0
r→0

X = lim
v→0
r→0

v

r
. (4.3.19)

Using (4.3.16) and l’Hôpital’s rule (for the C1 null geodesics) we acquire

X0 = lim
v→0
r→0

v

r
=
dv

dr
=

2

(1− 2m′0)− 2ṁ0

(
v
r

) , (4.3.20)

which in turn simplifies to

X0 =
2

(1− 2m′0)− 2ṁ0X0

. (4.3.21)

Solving the above for X0 gives the following

X0 = b± =
(1− 2m′0)±

√
(1− 2m′0)2 − 16ṁ0

4ṁ0

. (4.3.22)

If one or more positive real roots exist for (4.3.21), then the singularity may be locally

naked if the null geodesic lies outside the trapped region. In the following subsection

we will consider the dynamics of the trapped region to find conditions for the existence

of such geodesics.

4.3.4 Apparent horizon

The causal behaviour of the trapped surfaces developing within the spacetime usually

decides the occurrence of a naked singularity or black hole during the collapse evolu-

tion. The apparent horizon is the boundary of the trapped surface region within the

spacetime. The equation of the apparent horizon for the generalised Vaidya spacetime

is given as

2m(v, r)

r
= 1. (4.3.23)

Hence, the slope of the apparent horizon can be calculated in the following manner:

2
dm

dr
= 1, (4.3.24a)

2

(
∂m

∂v

)(
dv

dr

)
AH

+ 2
∂m

∂r
= 1, (4.3.24b)
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which gives the slope of the apparent horizon at the central singularity (v −→ 0,

r −→ 0) as (
dv

dr

)
AH

=
1− 2m′0

2ṁ0

. (4.3.25)

All of the above can now be stated in the following proposition.

Proposition 1. Consider a collapsing generalised Vaidya spacetime from some

regular epoch, with a mass function m(v, r) that obeys all the physically reasonable

energy conditions and is differentiable in the entire spacetime. The central singularity

is locally naked with outgoing C1 radial null geodesics escaping to the future if the

following conditions:

1. The limits of the partial derivatives of the mass function m(v, r) at the central

singularity obey the conditions: (1− 2m′0)2 − 16ṁ0 ≥ 0 and ṁ0 > 0,

2. There exists at least one root X0 (real and positive) of equation (4.3.21),

3. At least one of the positive real roots is less than
(
dv
dr

)
AH

at the central singularity,

are satisfied.

4.4 Strength of the singularity

If we consider the null geodesics parametrised by the affine parameter k̂ and terminating

at the shell focusing singularity v = r = k̂ = 0, we can compute the strength of the

singularity (according to Tipler (1977)). The strength of the singularity is the measure

of its destructive capacity in the sense of whether the extension of spacetime is possible

through them or not (Dadhich and Ghosh 2001). Following Clarke and Krolack (1985)

and Mkenyeleye et al (2014), a singularity would be strong if the condition

lim
k̂→0

k̂2ψ = lim
k̂→0

k̂2RabK
aKb > 0, (4.4.1)

where Rab is the Ricci tensor, is satisfied. It is interesting to note that this is the suf-

ficient condition for the singularity to be Tipler strong (Tipler 1977). Using equations
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(3.3.1), (4.2.6) and (4.2.7) we can find the scalar ψ = Rabk̂
aKb as

ψ = (2ṁ0)

(
P

r2

)2

, (4.4.2)

and so therefore

k̂2ψ = (2ṁ0)

(
k̂P

r2

)2

. (4.4.3)

Using l’Hôpital’s rule and equations (4.2.6) and (4.2.7), we can evaluate the limit along

nonspacelike geodesics as k̂ → 0 as

lim
k̂→0

k̂2ψ = (2ṁ0) lim
k̂→0

(
k̂P

r2

)2

. (4.4.4)

If we make the assumption that P 6= 0,∞, then we can use l’Hôpital’s rule to obtain

lim
k̂→0

(
k̂P

r2

)
= lim

k̂→0

(
Pdk̂

2rdr

)
. (4.4.5)

From equation (4.2.6), P
r

= dv

dk̂
and so therefore

lim
k̂→0

(
k̂P

r2

)
=

1

2

dv

dk̂

dk̂

dr
=

1

2

dv

dr
=

1

2
X0. (4.4.6)

Thus, we finally acquire

lim
k̂→0

k̂2ψ =
1

4
X2

0 (2ṁ0). (4.4.7)

It can be observed that the strength of the central singularity depends on the limit of

the derivative of the mass function only with respect to v and the limiting value X0.

Given a suitable mass function, it can be shown that

lim
k̂→0

k̂2ψ =
1

4
X2

0 (2ṁ0) > 0. (4.4.8)

If this above condition is indeed satisfied for some positive and real root X0, we can

conclude that the naked singularity observed is strong. An interesting note is that

when the energy conditions are satisfied, and if a naked singularity is developed as an

end state of collapse, the naked singularity is always strong.
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4.5 The end state of generalised Vaidya spacetimes

for several equations of state

In this section we will present solutions to the Einstein field equations (3.3.5) for various

equations of state, as found in chapter 3. A direct integration of the resulting partial

differential equations was possible in general for the linear, quadratic and polytropic

equations. Those solutions for the linear cases generalise all of those obtained by Husain

(1996) and others as well as the complete summary of solutions presented in Wang and

Wu (1999), and are therefore the most general solutions known. Also, using equation

(4.3.21) the equations of the tangents to the null geodesics at the central singularity

are calculated for these various Vaidya mass functions. We show that it is possible to

obtain at least one real and positive value of X0 for each mass function. Below, we

include each solution with its equation of state.

1. For the linear equation of state P = kρ̃ the mass function found is

m(v, r) = c1(v)
r1−2k

1− 2k
+ c2(v). (4.5.1)

Using (4.3.21) we obtain the following

2X2k+1
0 + 2ċ2X

2
0 −X0 + 2 = 0. (4.5.2)

When ċ2 = 0.01 and k = −1, the above equation becomes a cubic and it is possible

to find two positive and real roots. One such root is X0 = 2.862560272 which

means the singularity is naked. We also have that c2 = 0.01v and c1 = v2k (from

(4.3.15)) for v > 0. In Figure 4.1 a naked singularity forms at the origin and we

have a static distribution of matter focused into this central singularity of growing

mass. Null radiation shells fall through this static distribution terminating at the

singularity. For v > 0 and those values of c1 and c2 we have infalling light-like

matter described by the generalised Vaidya metric, specifically (4.5.1), reaching

the singularity. We also have that limk̂→0 k̂
2ψ = 1

4
X2

0 (2ṁ0) = 0.04097 > 0 so the
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condition for a strong singularity is satisfied. The real root is less than the slope

at the apparent horizon

X0 <

(
dv

dr

)
AH

= 37.79632254,

thus the third condition of Proposition 1 is satisfied. Therefore the central

singularity is naked and strong with outgoing C1 radial null geodesics escaping

to the future.

2. For the generalised linear equation of state P = kρ̃+ k2 we have

m(v, r) =
−κk2

3(2k + 2)
r3 +

c1r1−2k

1− 2k
+ c2. (4.5.3)

By using (4.3.21) the equation we obtain is identical to (4.5.2) and so all the

conditions of Proposition 1 are satisfied as well. An interesting observation is

that this solution generalised all those contained in Wang and Wu (1999) and

Husain (1996), so those should satisfy all these conditions too.

3. The quadratic equation of state P = kρ̃2 gives

m(v, r) = c2 − 2

 r

2c1

−
√
η arctan

(√
2
√
c1r√
η

)
2
√

2c
3/2
1

 , (4.5.4)

where η = 4k/κ. Making use of (4.3.21) we have

2

[
ċ2 +

ċ1

2c2
1

]
X2

0 −X0 + 2 = 0. (4.5.5)

If we let ċ2 = 0.01 and ċ1 = 0 (so ṁ0 > 0) the above equation reduces to

2(0.01)X2
0 −X0 + 2 = 0, (4.5.6)

which admits two positive real roots. One of these roots is X0 = 2.087121525 so

we have a naked singularity. We also have that c2(v) = 0.01v and c1 = const.

and in Figure 4.2, we have a dynamical type I and light-like fluid distribution

focused into the central singularity of growing mass forming at the origin. Again,
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Figure 4.1: Linear: Here v = 0 depicts the first collapsing null ray falling into the central

singularity through a static distribution of matter. A naked singularity forms at the

origin with families of trajectories γ1 and γ2 escaping to infinity from the singularity.

A shell of null radiation falls through a static distribution of matter, and into the

singularity. Nonspacelike curves such as γ3 which are emitted after the event horizon,

cross the apparent horizon and fall back into the singularity.

at v = 0, a shell of radiation falls through this type I fluid and into the cen-

tral singularity. In the region where v > 0 and for those values of c1 and c2 we

have the generalised Vaidya solution (4.5.4) collapsing to the singularity. Also

limk̂→0 k̂
2ψ = 1

4
X2

0 (2ṁ0) = 0.02178 > 0: thus this singularity is indeed strong.

Finally, this X0 is also less than
(
dv
dr

)
AH

= 50 so the third condition of Proposi-

tion 1 is satisfied.
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Figure 4.2: Quadratic: Here v = 0 depicts the first collapsing null ray falling into the

central singularity, superposed onto a dynamic and collapsing distribution of type I

matter. In this case the naked singularity forms at the origin as before with escaping

null geodesic trajectories γ1 and γ2. However due to the form of the mass function

(3.4.12) for the quadratic equation of state here, we instead have an injected radiation

flow into an initially radiated region (consisting of a type I fluid) focused into the

central singularity of growing mass, as opposed to a static region in the preceding case

Figure 4.1.

4. The generalised quadratic case P = kρ̃2 + k2ρ̃+ k3 yields

m(v, r) = −1

η

∫ (
r2 tan

(√
ζ (ln r− c1)

)√
ζ
)
dr + c2, (4.5.7)

where again, η = 4k/κ. We have set ζ = k3κη − k2
2 − 2k2 − 1 for convenience.
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The equation (4.3.21) becomes the following

2ċ2X
2
0 −X0 + 2 = 0,

which, if we set ċ2 = 0.01, becomes identical to (4.5.6). Thus, all the conditions

will be satisfied for this case.

5. For the polytropic equation of state P = kρ̃γ, we have a mass function of the

form

m(v, r) =

∫ [
(γ + 1)kκ

(
2

κ

)γ
× r2−2γ

2− 2γ
+ (1− γ)c1

] 1
1−γ

dr + c2. (4.5.8)

It should be noted that this solution was first presented by Husain (1996). Using

(4.3.21) we have

2ċ2X
2
0 −X0 + 2 [(1− γ)c1]

1
1−γ X0 + 2 = 0. (4.5.9)

If we let c1 = 1, ċ2 = 0.01 with γ > 0 we have the following

2(0.01)X2
0 −X0 + 2 [(1− γ)c1]

1
1−γ X0 + 2 = 0,

which is not solvable for any integer γ > 0. If we let γ = 1
2
, (4.5.9) will admit two

positive real roots. One of these is X0 = 5, thus the singularity is naked. Also we

have limk̂→0 k̂
2ψ = 1

4
X2

0 (2ṁ0) = 1
8
> 0 so the condition for a strong singularity

is satisfied. Finally,
(
dv
dr

)
AH

= 25 > X0 so the final condition is thus, satisfied.

In all the above cases c1 = c1(v) and c2 = c2(v) are integration functions. A summary

of the algebraic equations for X0 for each equation of state is presented in Table 3.1.

4.6 Higher dimensional Vaidya spacetime

In this section we briefly show that it is possible to extend the analysis of the collapse

dynamics of our generalised Vaidya masses to higher dimensions, since the presence of
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N > 4 dimensions can have an effect on the physical contracting features of radiating

stars (Mkenyeleye et al 2015). The general theory of collapse extends naturally to

higher dimensions as presented by Mkenyeleye et al (2015). For the linear and gen-

eralised linear equations of state, there exist at least two positive and real roots for

equation (4.3.21) for all dimensions greater than four. Some examples are provided in

Table 4.1. The quadratic, generalised quadratic and polytropic equations of state all

yielded equations identical to their four dimensional analogues, so these are omitted

from the table. It is also important to note that Proposition 1 will of course be

satisfied for all the cases. That is to say, a naked singularity forms in each case which

is naked and indeed strong.

A summary of the algebraic equations of tangents X0 to the singularity curve values

for the above higher dimensional mass functions is presented in Table 4.2. We are also

in the position to state this theorem:

Theorem 1. Consider an N ≥ 4 generalised Vaidya spacetime which is undergoing

gravitational collapse, with a mass function m(v, r) obeying all physically reasonable

energy conditions and is continuously differentiable throughout the entire spacetime.

If the local central singularity is naked, and ċ2 > 0, which is to say that ṁ0 > 0, this

naked singularity will always be strong.

4.6.1 Mass functions in N ≥ 4 dimensions where naked singu-

larities can be eliminated

The existence of a naked sigularity is not guaranteed for any generalised Vaidya mass

function. As noted in Mkenyeleye et al (2015), the possible transition to higher dimen-

sions does not necessarily preserve the existence of a naked singularity. They showed

that the value of the tangent to the null outgoing geodesic from a central singularity

can be greater than the slope of the apparent horizon curve of the singularity. Hence,

the outgoing null direction is contained within the trapped region which implies the
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singularity is causally cut off from an external observer. It turns out that one can

prove that for such a mass function, there exists an open set of mass functions in the

functional space. Let p(z) be a complex polynomial of degree n ≥ 1 with m distinct

roots {ω1, ..., ωm} with (1 ≤ m ≤ n). Defining the quantity R0(p) as follows:

R0(p) =


1
2
, if m = 1

1
2

min|ω1, ..., ωm|, i ≤ j ≤ m , if m > 1

(4.6.1)

we can state the well known theorem from complex analysis (Alen 2015):

Theorem 2. Let p(z) be a polynomial of degree n ≥ 1, with real coefficients {µ̂k}.

Suppose ω is a real root of p(z) of multiplicity one. Then for any ε with 0 ≤ ε ≤ R0(p),

there exists a δ(ε) > 0 such that any polynomial q(z) with real coefficients {ν̂k} and

|µ̂k − ν̂k| ≤ δ has a real root β̂ with |ω − β̂| ≤ ε.

From the above theorem, we see that if a polynomial p(z) with a real coefficient

admits a real root ω of multiplicity one, then any polynomial q(z) which is obtained

by small, real perturbations to the coefficients of p(z) will also have a real root in the

neighbourhood of ω. This means that not only is the root dependant continuously on

coefficients, but also remains real under sufficiently small perturbations of coefficients.

This result directly translates to this problem of an open set of mass functions in the

mass functional space. A specific example of this is shown in Mkenyeleye et al (2015).

In summary, for a given mass function, it is possible (but not guaranteed) for a naked

singularity to form in four dimensions, however a transition to higher dimensions may

(however not necessarily) yield a final outcome which is a black hole.

4.7 Discussion

In this chapter we detailed the general mathematical framework to describe the gravita-

tional collapse of a generalised Vaidya spacetime in the context of the cosmic censorship

conjecture (CCC). The structure of the central singularity was studied in order to show

that it can be a node with outgoing null geodesics emerging from a singular point with
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a definite value of the tangent, depending on the parameters in the problem and the

nature of the generalised Vaidya mass function in question.

We considered a spherically symmetric radiating star. We made note that any

astrophysical star is a combination of three distinct concentric zones: the innermost

two-component matter zone, the middle radiation zone and the outermost zone which

is the vacuum Schwarzschild exterior. The mass functions obtained in Chapter 3 for

various equations of state were analysed using this mathematical framework and it was

shown that in each case, the collapse terminates with a local central singularity which is

naked. The strength of these naked singularities were calculated and it was shown that

they are strong curvature singularities and no extension of spacetime through them

exists. This has consequences which are far reaching as their presence will no longer

make the global spacetime asymptotically simple. This is to say that the theorems

of black hole dynamics may require some reformulation. With this, for any realistic

mass function, there exists an open set for which the central singularity is naked in

the parameter space, and the CCC is violated. That is, the occurence of a naked

singularity is a phenomenon which can be referred to as “stable”, despite any changes

in the matter field due to a combination of a radiation-like field with a collapsing

perfect fluid. With regard to pure type I matter fields, this result is well known (Joshi

2007, Goswami and Joshi 2007). For completeness, we considered higher dimensional

spacetimes and discussed briefly where and under what conditions naked singularities

may be eliminated.

It is important to note that during the later stages of gravitational collapse, the gen-

eralised Vaidya spacetime is more realistic and physically reasonable than pure dustlike

matter or perfect fluid fields. Any collapsing star must radiate and so there exists a

combination of a perfect fluid and lightlike matter for this period in the evolution of

the star.
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Table 4.1: Solutions for algebraic equations of tangents X0 for different dimensions

with k = −1, ċ2 = 0.01

Dimensions Equation for tangent to the singularity curve X0 Roots

N = 5 2X−2
0 + 2(0.01)X2

0 −X0 + 2 = 0 X0 = 2.45276

X0 = 47.9119

N = 6 2X−3
0 + 2(0.01)X2

0 −X0 + 2 = 0 X0 = 2.27356

X0 = 47.9129

N = 7 2X−4
0 + 2(0.01)X2

0 −X0 + 2 = 0 X0 = 2.18335

X0 = 47.9129

N = 8 2X−5
0 + 2(0.01)X2

0 −X0 + 2 = 0 X0 = 2.1362

X0 = 47.9129
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Table 4.2: Equations of tangents X0 to the singularity curve and values of limk̂→0 k
2ψ

for several generalised higher dimensional Vaidya mass functions.

Equation of state Equation for the tangent limk̂→0 k̂
2ψ

to the singularity curve X0

Linear 2X
(N−2)k+1
0 + 2ċ2X

2
0 −X0 + 2 = 0 1

4
X2

0 (2ċ2)

Generalised linear 2X2k+1
0 + 2ċ2X

2
0 −X0 + 2 = 0 1

4
X2

0 (2ċ2)

Quadratic 2
[
ċ2 + ċ1

2c1

]
X2

0 −X0 + 2 = 0 1
4
X2

0

(
2
[
ċ2 + ċ1

2c1

])
Generalised quadratic 2ċ2X

2
0 −X0 + 2 = 0 1

4
X2

0 (2ċ2)

Polytropic 2ċ2X
2
0 −

(
1− 2 [(1− γ)c1]

1
1−γ

)
+ 2 = 0 1

4
X2

0 (2ċ2)
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Chapter 5

A class of radiating Boulware-Deser

spacetimes

5.1 Introduction

The need to study higher order theories of gravity has been more prominent in recent

times. The well known Boulware-Deser solution (Boulware and Deser 1985) was an

early higher dimensional analogue of the vacuum Schwarszchild solution from general

relativity and although the outside geometry as well as the matching conditions have

been studied extensively in general relativity with the Vaidya metric (Vaidya 1951),

we are faced with the following issue in the Einstein-Gauss-Bonnet EGB theory: How

do we model a five-dimensional realistic, collapsing astrophysical star, emitting null

radiation with a core containing a null fluid and a string fluid which matches to an

intermediate radiating Boulware-Deser spacetime enclosed by the Boulware-Deser vac-

uum exterior? This question is vital for a better understanding of the thermodynamics,

dynamics and gravitational collapse of realistic stars, in the context of EGB gravity.

The class of spacetimes which forms a natural candidate for models of such interi-

ors are the radiating Boulware-Deser spacetimes. The idea of a radiating Vaidya-like

Boulware-Deser spacetime was first brought to light by Kobayashi (2004). The matter
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fields in these spacetimes will be analagous to those in the four-dimensional generalised

Vaidya metrics with type I and type II matter distributions. A general type I matter

field (whose energy momentum tensor has three spacelike and one timelike eigenvec-

tor), describes null matter, and a type II matter field (whose energy momentum tensor

has double null eigenvectors) describes a string fluid and null radiation. A stellar in-

terior with a type II distribution can be matched naturally to an external radiating

zone described by a pure radiating Boulware-Deser spacetime, and then finally, this

radiation zone can be matched smoothly to the conventional Boulware-Deser vacuum

exterior.

In the five-dimensional Boulware-Deser spacetime the constant M̃ can be related

to the mass within a hypersurface. We show that it is possible for M̃ to depend on

the spacetime coordinates; the variable M̃ is consistent with the field equations with

a modified energy momentum tensor. Hence, with a type II fluid (consisting of a

null fluid and a string source), the standard Boulware-Deser spacetime radiates. In

this chapter we generate solutions to the radiating interior Boulware-Deser spacetime

with null matter and a string fluid for various thermodynamically realistic equations

of state. It turns out that it is possible to directly integrate the resulting partial differ-

ential equations for linear, quadratic and polytropic equations of state. In recent times

Dominguez and Gallo (2006) found solutions to the EGB equations which represented

dynamic black holes as well as EGB versions of the original Vaidya (dS/AdS) solution,

the monopole and the Husain black hole Husain (1996). Our solutions for the linear

cases as well as the total solution set are the EGB analogues of those found in Husain

(1996), Wang and Wu (1999) and Chapter 3 of this dissertation respectively. We also

further generalise our results in higher dimensions for pedagogical completeness.

This chapter is organised as follows: In the next section, an outline of the the-

ory of EGB gravity is presented as well as the general modified field equations. The

Boulware-Deser spacetime is discussed in the following section followed by a detailed

description of a radiating Boulware-Deser metric in Sec. 5.3. Here, the relevant def-
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initions relating to the modified geometry of the spacetime are presented along with

the EGB field equations and energy conditions for a physically reasonable model. In

Sec. 5.4 a complete description of how to model an isolated, spherical five-dimensional

astrophysical radiating star via the Boulware-Deser geometry is given. In the section

following this, solutions to the EGB field equations for the gravitational mass are sys-

tematically presented for various realistic equations of state. In Sec. 5.6 the higher

dimensional analogue of the Boulware-deser metric is discussed and the generalised

solutions for equations of state are tabulated.

5.2 The Boulware-Deser spacetime

A static, spherically symmetric, exterior vacuum solution of the modified action (2.4.1)

was first given by Boulware and Deser (1985). The form is given by

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2(dθ2 + sin2 θdφ2 + sin2 θ sin2 φdψ2), (5.2.1)

where

f(r) = 1 +
r2

4α

1−

√
1 +

16M̃α

r4

 .

In the line element (5.2.1), M̃ is the gravitational constant mass of the 5-dimensional

hypersurface. For our purposes it will be prudent to express (5.2.1) in retarded coor-

dinates. Utilising the transformation

v = t−
∫

dr

f(r)
,

the Boulware-Deser metric (5.2.1) becomes

ds2 = −f(r)dv2 + ε2dvdr + r2(dθ2 + sin2 θdφ2 + sin2 θ sin2 φdψ2), (5.2.2)

where ε = ±1 and (xa) = (v, r, θ, φ, ψ). As M̃ is a constant mass, all the components

of (2.4.10) vanish since the Boulware-Deser spacetime is vacuum.
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5.3 A radiating Boulware-Deser interior

If we consider a radiating inhomogeneous spacetime in EGB gravity we then can obtain

a Vaidya-like metric by allowing the mass function to depend on both the retarded null

coordinate and the radius of the star

M̃ −→M(v, r). (5.3.1)

Thus we will have

ds2 = −f(v, r)dv2 − 2dvdr + r2(dθ2 + sin2 θdφ2 + sin2 θ sin2 φdψ2), (5.3.2)

where

f(v, r) = 1 +
r2

4α

(
1−

√
1 +

16M(v, r)α

r4

)
.

The nonzero components of the connection coefficients (2.3.7) are given by

Γ0
00 = 1

4α2r2

(
1 + 16αM

r4

)− 1
2

[
−
√

1 + 16αM
r4

r3 + r3 + 4αMr

]
Γ1

01 = −Γ0
00

Γ1
00 = 1

8α2r2

(
1 + 16αM

r4

)− 1
2

[√
1 + 16αM

r4
r5 + 2αr2Mr

√
1 + 16αM

r4

−r5 − 2αr2Mr − 2αr3 − 8α2Mr − 8α2Mv − 8αrM

+2αr3
√

1 + 16αM
r4

]
Γ0

22 = r

Γ1
22 = r

4α
(
√

1 + 16αM
r4

r2 − r2 − 4α) Γ3
23 = Γ4

24 = cot θ

Γ0
33 = r sin2 θ Γ1

33 = sin2 θΓ1
22

Γ4
34 = cotφ Γ0

44 = r sin2 θ sin2 φ

Γ2
12 = Γ3

13 = Γ4
14 = 1

r
Γ2

33 = − sin θ cos θ

Γ3
44 − sinφ cosφ Γ1

44 = sin2 φΓ1
33

Γ3
44 = − sinφ cosφ

for the metric (5.3.2). In the above, we have the following

Mv =
∂M

∂v
, Mr =

∂M

∂r
.
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Using the above connection coefficients, the components of the Ricci tensor (2.3.17)

which do not vanish are as follows

R0
0 = R1

1 =
(r4 + 16αM)−1

αr3

√
1 + 16αM

r4

[
−r7

√
1 +

16αM

r4
+ αr5Mrr + r7

−αr4Mr + 16α2rMMrr − 8αrM2
r + 48α2MMr + 24αr3M

−16αr3M

√
1 +

16αM

r4

]
, (5.3.3a)

R1
0 =

3Mv

r3

√
1 + 16αM

r4

, (5.3.3b)

R2
2 = R3

3 = R4
4 =

8αM + r4 − r4
√

1 + 16αM
r4

+ 2αrMr

αr4

√
1 + 16αM

r4

. (5.3.3c)

Using (5.3.3) and (2.3.18), the Ricci scalar is thus

R =
(r4 + 16αM)−1

αr4

√
1 + 16αM

r4

[
−5r8

√
1 +

16αM

r4
+ 2αr6Mrr + 5r8

+4αr5Mr + 32α2r2MMrr − 16α2r2M2
r + 120αr4M + 192α2rMMrr

+384α2M2 − 80αr4

√
1 +

16αM

r4

]
. (5.3.4)

Now making use of (5.3.3) and (5.3.4), the nonvanishing components of the Einstein

tensor Ga
b are calculated as

G0
0 = G1

1 = − 3

2
√

1 + 16αM
r4

[
1

αr2
+

8M

r4

+
2Mr

r3
− r4

√
1 +

16αM

r4

]
, (5.3.5a)

G1
0 =

3Mv

r3

√
1 + 16αM

r4

, (5.3.5b)

G2
2 = G3

3 = G4
4 = − −1

2r8α + 32α2r4M

×

[
−3r8

√
1 +

16αM

r4

+2Mrrαr6 + 3r8 + 32α2r2Mrr − 16α2r2M2
r

+72αr4M + 128α2rMr + 128α2M2

−48αr4M

√
1 +

16αM

r4

]
, (5.3.5c)
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The nonzero components of the Lanczos tensor (2.4.4) become

H0
0 = H1

1 = − 3

α2r3(r4 + 16αM)

×

[
r7

√
1 +

16αM

r4

+2αr4Mr

√
1 +

16αM

r4

−r7 − 2αr4Mr − 32α2MMr

+8αr3M

√
1 +

16αM

r4
− 16αr3M

]
, (5.3.6a)

H1
0 =

6Mv

[
r4
√

1 + 16αM
r4
− r4 − 16αM

]
αr3(r4 + 16αM)

, (5.3.6b)

H2
2 = H3

3 = H4
4 =

(
1 + 16αM

r4

)− 1
2

α2r4(r4 + 16αM)

×

[
2αr6Mrr

√
1 +

16αM

r4

+3r8

√
1 +

16αM

r4
− 2αr6Mrr − 3r8

+32α2r2MMrr − 32α2r2MMrr

+16α2r2M2 − 128α2rMr − 128α2M2

+48αr4M

√
1 +

16αM

r4
− 72αr4M

]
, (5.3.6c)

Using the above expressions (5.3.5) and (5.3.6), we can calculate the nonzero compo-

nents of (2.4.10). It is remarkable to note that despite the complexity of the nonzero

components of the Einstein and Lanczos tensors, their combinations yield rather simple

expressions. These are given by

G0
0 = G1

1 = − 3

r3
Mr, (5.3.7a)

G1
0 =

3

r3
Mv, (5.3.7b)

G2
2 = G3

3 = G4
4 = − 1

r2
Mrr. (5.3.7c)

The modified curvature components (5.3.7) are generated by an appropriate matter

field. Comparing (5.3.7) with the field equations (2.4.9) gives rise to an energy mo-
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mentum tensor of the form

Tab = µlalb + (ρ̃+ P )(lanb + lbna) + Pgab, (5.3.8)

where

la = δ0
a,

na =
1

2

[
1 +

r2

4α

(
1−

√
1 +

16Mα

r4

)]
δ0
a + δ1

a,

with lcl
c = ncn

c = 0 and lcn
c = −1. The null vector la is a double null eigenvector of

the energy momentum tensor (5.3.8). Using the form of the energy momentum tensor

(5.3.8) with (5.3.7), we acquire the EGB field equations Gab = κT ab in the form

µ = − 3

κr3
Mv, (5.3.9a)

ρ̃ =
3

κr3
Mr, (5.3.9b)

P = − 1

κr2
Mrr. (5.3.9c)

As Mv 6= 0, in general it is clear that the Boulware-Deser spacetime radiates. When

ρ̃ = P = 0, the above expressions reduce to the single solution obtained for the

radiating Boulware-Deser metric when M = M(v). Furthermore when µ = ρ̃ = P = 0,

we regain the vacuum case with constant mass.

The energy conditions for this kind of fluid are

1. The weak and strong energy conditions:

µ ≥ 0, ρ̃ ≥ 0, P ≥ 0 (µ 6= 0). (5.3.10)

2. The dominant energy condition:

µ ≥ 0, ρ̃ ≥ P ≥ 0 (µ 6= 0). (5.3.11)

In the case when M = M(v) the above energy conditions all reduce to µ ≥ 0, and if

M = M(r), then µ = 0 and the matter field becomes a type I fluid.
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Finally, we are in the position to state the following theorem:

Theorem 1. Consider the five-dimensional spacetime

ds2 = −

[
1 +

r2

4α

(
1−

√
1 +

16Mα

r4

)]
dv2 − 2dvdr

+r2(dθ2 + sin2 θdφ2 + sin2 θ sin2 φdψ2),

from a regular epoch, where M = M(v, r) (v is the null retarded time coordinate and r is

the radius) is differentiable in the entire spacetime, and obeys all physically reasonable

energy conditions. This spacetime is then consistent with an energy momentum tensor

which is a unique combination of the type I and type II matter fields. This geometry

represents a solution to the EGB field equations with a superposition of null radiation

and a string fluid. In the relevant limit, we regain the radiating case (M = M(v)) and

the Boulware-Deser spacetime (M = M̃ = const.) when α 6= 0, and Einstein gravity

when α = 0.

5.4 The model for an isolated, radiating and dy-

namic star in five dimensions

Any spherically symmetric five-dimensional astrophysical star is a combination of three

distinct concentric zones: the innermost zone is the stellar interior where there are

two component matter sources, namely null fluid matter together with radiation. The

middle zone is a purely radiative zone while the outermost zone is the vacuum Boulware-

Deser exterior (5.2.1) that extends approximately to a radius of one light year (for solar

mass stars) beyond which galactic dynamics will take over. In this section we briefly

outline how to model all three of these zones under a combined framework using a

generalised Boulware-Deser class of metric.
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5.4.1 Stellar interior: M = M(v, r)

As described earlier, the best possible candidate for the spacetime of a stellar interior

with the mass parameter (5.3.1) is

ds2 = −f(v, r)dv2 − 2dvdr + r2(dθ2 + sin2 θdφ2 + sin2 θ sin2 φdψ2), (5.4.1)

where

f(v, r) = 1 +
r2

4α

(
1−

√
1 +

16M(v, r)α

r4

)
.

The mass function M which depends on the coordinates v and r can be uniquely

obtained via the Einstein field equations with the two component matter sources. Let

M(v, r) be one such solution for a given combination of fluid and radiation fields. This

solution then completely describes the solution of the interior of the star, up to a

boundary surface given by r = rb. Beyond this boundary we enter a pure radiation

zone.

5.4.2 Radiation zone: M = M(v)

In this zone the matter field is a single component null matter field and the spacetime

is well described by the radiating Boulware-Deser metric

ds2 = −f1(v, r)dv2 − 2dvdr + r2(dθ2 + sin2 θdφ2 + sin2 θ sin2 φdψ2), (5.4.2)

with

f1(v, r) = 1 +
r2

4α

(
1−

√
1 +

16M1(v)α

r4

)
.

We can naturally relate the Boulware-Deser mass function M1(v) in the radiation zone

to the generalised Boulware-Deser mass function in the stellar interior in the following

way

M1(v) = M(v, rb), (5.4.3)

so that M is a function of the retarded coordinate v. This radiation zone continues

until some retarded null coordinate value v = V0, beyond which the spacetime is the

conventional Boulware-Deser vacuum (as dictated by Birkhoff’s theorem).
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5.4.3 Boulware-Deser exterior: M = M̃

This vacuum region is described by the exterior static subset of the completely extended

Boulware-Deser manifold, and the metric is given by

ds2 = −f̃(r)dv2 − 2dvdr + r2(dθ2 + sin2 θdφ2 + sin2 θ sin2 φdψ2), (5.4.4)

with

f̃(r) = 1 +
r2

4α

1−

√
1 +

16M̃α

r4

 .

Here the static mass M̃ is related to the radiating Boulware-Deser mass M1(v) by

M̃ = M1(V0), (5.4.5)

which is constant.

5.4.4 Matching conditions at the boundary surfaces: Com-

plete mass function

We note here that the spacetime is divided into three distinct regions for our above men-

tioned stellar model: the interior region, the radiation zone and the vacuum Boulware-

Deser exterior region. The first boundary surface between the inner and the inter-

mediate zone, given by r = rb, is a timelike boundary, whereas the second boundary

surface given by v = V0 is a null boundary. The important point that all the three

zones are described by the same class of metric makes the matching conditions between

boundaries extremely transparent. To match the first fundamental form all we need is

the mass function to be continuous across these boundaries. Hence the complete C2

mass function for an isolated stellar model can be given in the following form:

M(v, r) =



M(v, r) r ≤ rb , v ≤ V0

M1(v) ≡M(v, rb) r > rb , v ≤ V0

M̃ ≡M1(V0) ≡M(V0, rb) r > rb , v > V0

(5.4.6)
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We can easily check that this mass function is a solution to the EGB field equations

in all three zones mentioned above, and hence it completely describes the spacetime

of an isolated collapsing star. To match the second fundamental form, we need the

partial derivatives of the mass functions across the boundaries to be continuous. These

conditions are given by

∂

∂v
M(v, rb) =

∂

∂v
M1(v), (5.4.7a)

∂

∂r
M(v, r)

∣∣∣∣
r=rb

= 0, (5.4.7b)

∂

∂v
M1(v)

∣∣∣∣
v=V0

= 0. (5.4.7c)

where r = rb is the timelike boundary (from equating (5.2.2) to (5.4.2)) and v = V0

is the null boundary (from equating (5.4.2) to (5.4.4)). These boundaries serve as the

matching surfaces for the three concentric regions which can be seen in Figure 5.1.

It is therefore necessary to find physically relevant mass functions, with the struc-

ture of (5.4.6), to model a dynamical radiating star which is isolated. We achieve this

by imposing specific equations of state.

5.5 Solutions with equations of state

In this section, we will consider various equations of state to solve the system (5.3.9).

5.5.1 Case I(a): P = kρ̃

If we assume a linear equation of state P = kρ̃ in the field equations where k is a

constant, we then arrive at

r2Mrr + 3krMr = 0, (5.5.1)

which is a second order linear partial differential equation. Since the derivatives occur

in one variable, we can integrate it as an ordinary differential equation via reduction
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Figure 5.1: Depiction of a five-dimensional spacetime divided into the three distinct

regions (in retarded coordinates with ε = 1).

of order. There are two solutions. For the case when k = 1
3
, the solution is given by

M(v, r) = c1(v) ln(r) + c2(v),

where c1(v) and c2(v) are functions of integration. For k 6= 1
3
, the second solution is

M(v, r) = c1(v)
r1−3k

1− 3k
+ c2(v). (5.5.2)
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5.5.2 Case I(b): P = kρ̃+ k2

Assuming P = kρ̃+ k2 in the field equations (5.3.9) yields

Mrr +
3k

r
Mr + κk2r2 = 0, (5.5.3)

which takes the form of a Cauchy-Euler equation. If we let y(v, r) = mr we get the first

order linear equation

y′ +
3k

r
y = −κk2r2, (5.5.4)

which can be easily integrated to give

y = −κk2
r3

3k + 1
+
c1(v)

r3k
. (5.5.5)

Again, two cases arise. When k = 1
3

the first solution for M(v, r) is given by

M(v, r) = c1(v) ln(r) + c2(v)− κk2r4

16
.

The second solution for the mass with k 6= 1
3

is given by

M(v, r) = c2(v) + c1(v)
r1−3k

1− 3k
− κk2

4(3k + 1)
r4, (5.5.6)

which contains (5.5.2) as well as several of the seminal others contained in Dominguez

and Gallo (2006). It should be noted that this solution also contains the EGB analogues

of those found in Husain (1996) and Wang and Wu (1999). These are summarised in

Table 5.1.

5.5.3 Case II(a): P = kρ̃2

If we assume a quadratic equation of state P = kρ̃2, in the field equations (5.3.9), we

have

r5Mrr +
9k

κ
rM2

r = 0, (5.5.7)

which is a second order nonlinear equation. A reduction of the order yields the following

y′ +
η

r4
y2 = 0, (5.5.8)
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which is a first order nonlinear equation with η = 9k/κ. Integration yields

y =
−1

η
3r3

+ c1(v)
. (5.5.9)

Therefore the mass can be expressed as

M(v, r) = −
∫ (

1
η

3r3
+ c1(v)

)
dr + c2(v). (5.5.10)

The integral on the right hand side of the above expression admits two solutions. When

the constant c1 = 0 the solution is

M(v, r) = − 3

4η
r4 + c2(v). (5.5.11)

When c1 6= 0 the above integral can be evaluated via partial fraction decomposition.

The final expression for the mass M is given by

M(v, r) = c2(v)− r

3c1(v)
+

(
η

3c1(v)

)1/3(
1

3η

)

×

1

2
ln


(

r +
(

η
3c1(v)

)1/3
)2

r2 −
(

η
3c1(v)

)1/3

+
(

η
3c1(v)

)2/3


+
√

3 arctan

2r−
(

η
3c1(v)

)1/3

√
3
(

η
3c1(v)

)1/3


 . (5.5.12)

As far as we are aware, this solution is not found anywhere in the previous literature.

5.5.4 Case II(b): P = kρ̃2 + k2ρ̃+ k3

Imposing the equation of state P = kρ̃2 + k2ρ̃+ k3 in the field equations (5.3.9) yields

Mrr +
9k

κr4
M2

r +
3k2

r
Mr + k3κr = 0. (5.5.13)

Reducing the order of the above equation yields

y′ +
3k2

r
y + k3κr = − η

r4
y2, (5.5.14)
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with η = 9k/κ, which is a Riccati differential equation. Integration of the above

equation gives

y = − r3

2η
tan

(
1

2

√
ε(ln(r)− c1(v))

)
×
(
− r3

2η
(
√
ε+ 3 + 3k2)

)
. (5.5.15)

In the above expression, we have the following: ε = 4βη−9k2
2−109−18k2 and β = κk3.

Hence, the expression for the mass is given by

M(v, r) = −
∫ [

r3

2η
tan

(
1

2

√
ε(ln(r)− c1(v))

)
×
(

r3

2η
(
√
ε+ 3 + 3k2)

)]
dr + c2(v). (5.5.16)

It should be noted that when k2 = k3 = 0 in the above solution (5.5.16), we regain

Case II(a), which is to be expected.

5.5.5 Case III: P = kρ̃γ

If we assume the equation of state P = kρ̃γ, where γ ∈ R, we then have

Mrr + kκ

(
3

κ

)γ
r2−3γMγ

r = 0. (5.5.17)

Reducing the order of the above equation yields

y′ + kκ

(
3

κ

)γ
r2−3γyγ = 0,

which is a separable equation. Its general solution is given by

y =

[
(γ − 1)

(
kκ

(
3

κ

)γ
r3−3γ

3− 3γ
+ c1(v)

)] 1
1−γ

. (5.5.18)

Therefore we can express the mass M as

M(v, r) = c2(v) +

∫ [
(γ − 1)

(
kκ

(
3

κ

)γ
× r3−3γ

3− 3γ
+ c1(v)

)] 1
1−γ

dr. (5.5.19)
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Table 5.1: Solutions contained within the system (5.5.6).

Solution M(v, r) c1(v) and c2(v) k-indices

Monopole-EGB ar
2

c1(v) = a
2
, c2(v) = 0 k, k2 = 0

Charged Vaidya-EGB g(v)− q(v)2

2r
c1 = q(v)2

2
, c2 = g(v) k = 1, k2 = 0

dS/AdS Λ
6

r3 c1(v) = c2(v) = 0 k = const.

k2 = −Λ(k+1)
κ

Husain-EGB g(v)− q(v)
(3k−1)r3k−1 c1(v) = −q(v)

2
, c2(v) = g(v) k, k2 = const.

Boulware-Deser-Wheeler M0 c1 = c2 = 0

It should be noted that in the works of Wang and Wu (1999), Ghosh and Dadhich

(2002) and Dominguez and Gallo (2006), it appears that solutions only for a linear

and/or generalised linear equation of state are provided in conventional general rela-

tivity in the Vaidya spacetime. In Chapter 3 we further found solutions for both linear

cases as well as quadratic and generalised quadratic equations of state. It should be

noted that Husain (1996) found a general integral quadrature similar to ours above

for the polytropic equation of state in the generalised Vaidya spacetime, however ours

differs in the fact that we are dealing with the EGB theory of gravity. In the case of

Wang and Wu (1999), a series solution approach was used to obtain solutions, whereas

in our case, a direct integration of the EGB field equations was undertaken. Also we

have not assumed separability of the mass functions. This, in a sense, makes our so-

lutions (which are the EGB analogues of those found in Wang and Wu (1999)) more

general.
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5.6 Higher dimensional Boulware-Deser spacetime

Higher dimensional Boulware-Deser spacetimes have been studied in various physical

scenarios. Bhawal (1990) studied the geodesic motion inside a Boulware-Deser black

hole in arbitrary dimensions and Dominguez and Gallo (2006) found solutions of radiat-

ing black holes for certain equations of state. Ghosh and Dadhich (2002) also considered

type II black hole solutions and gravitational collapse with a quark equation of state

in higher dimensions. Dadhich and Pons (2015) found static black hole solutions in

both Einstein and EGB gravity in higher dimensions by considering the topology of

the product of two spheres Sn×Sn. This topology comprised of black rings and branes

and new solutions were obtained, also, for constant curvature. Gravitational collapse

as well as other features may be affected by additional dimensions.

The N -dimensional Boulware-Deser metric is given by

ds2 = −f(r)dv2 − 2dvdr + r2dΩ2
n−2, (5.6.1)

with

dΩ2
N−2 =

N−2∑
i=1

[
i−1∏
j=1

sin2(θj)

]
(dθi)2,

and where

f(r) = 1 +
r2

2α̂

(
1−

√
1 +

8α̂

N − 3

(
2M

rN−1

))
.

In the above α̂ = α(N − 3)(N − 4). If we consider an inhomogeneous radiating metric

with

M −→M(v, r),

the nonzero components of (2.4.10) are given by

G0
0 = G1

1 = −(N − 2)Mr

r(N−2)
, (5.6.2a)

G1
0 =

(N − 2)Mv

r(N−2)
, (5.6.2b)

G2
2 = G3

3 = ... = Gθ(N−2)
θ(N−2) = − Mrr

r(N−3)
. (5.6.2c)
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The EGB field equations are thus

µ =
(N − 2)Mv

κrN−2
, (5.6.3a)

ρ̃ =
(N − 2)Mr

κrN−2
, (5.6.3b)

P = − Mrr

κrN−3
. (5.6.3c)

As in the previous section, we find solutions to the EGB field equations and these

are presented in Table 5.2. We do not give the details of the integrations as they are

similar to the five-dimensional case. It is also important to note that Theorem 1 can

be extended to hold in higher dimensions. We state this as follows:

Theorem 2. Consider an N -dimensional spacetime given by

ds2 = −f(r)dv2 − 2dvdr + r2dΩ2
n−2,

with

dΩ2
N−2 =

N−2∑
i=1

[
i−1∏
j=1

sin2(θj)

]
(dθi)2,

and

f(r) = 1 +
r2

2α̂

(
1−

√
8α̂

N − 3

(
2M

rN−1

))
,

where α̂ = α(N − 3)(N − 4) and M = M(v, r), which obeys all physically reasonable

energy conditions and is differentiable in the entire spacetime. This spacetime is then

consistent with an energy momentum tensor which is a unique combination of the type

I and type II matter fields, and represents a solution to the EGB field equations with

a superposition of null radiation and a string fluid. Again, in the relevant limit, we

regain the radiating case (M = M(v)) and the Boulware-Deser spacetime (M = M̃ =

const.) when α 6= 0, and the Einstein gravity when α = 0.

5.7 Discussion

We have established the principal result that the standard Boulware-Deser spacetime

can be made to radiate. In this chapter we considered a five-dimensional spheri-

cally symmetric radiating star in Einstein-Gauss-Bonnet (EGB) gravity. We noted
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Table 5.2: Equations of state and the higher dimensional gravitational mass.

Equation of state P = P (ρ̃) M(v, r)

Linear P = kρ̃ M(v, r) = c1(v) ln(r) + c2(v), (k = 1
N−2

)

M(v, r) = c1(v) r1−(N−2)k

1−(N−2)k
+ c2(v), (k 6= 1

N−2
)

Generalised linear P = kρ̃+ k2 M(v, r) = c1(v) ln(r) + c2(v)

− κk2
(N−2)k+N−2

rN−1

N−1
, (k = 1

N−2
)

M(v, r) = − κk2
(N−2)k+N−2

rN−1

N−1

+c1(v) r1−(N−2)k

1−(N−2)k
+ c2(v) (k 6= 1

N−2
)

Quadratic P = kρ̃2 M(v, r) = (2−N)
∫

rN−2

c1(v)(N−2)rN−2+η
dr + c2(v)

η = k(N−2)2

κ

Generalised quadratic P = kρ̃2+ M(v, r) = − 1
2η

∫ [(
rN−2 tan(1

2

√
ς(ln r− c1(v))

)
k2ρ̃+ k3 ×(

√
ς +N − 2 + ξ)] dr + c2(v)

ς = 4βη −N2 − 2Nξ − ξ2 + 4ξ − 4,

ξ = k2(N − 2), β = κk3

Polytropic P = kρ̃γ M(v, r) =
∫ [
κk(γ + 1)

(
N−2
κ

)γ
× rN−2−γ(N−2)

N−2−γ(N−2)
+ (1− γ)c1(v)

] 1
1−γ

dr + c2(v)
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that any astrophysical star is a combination of three concentric zones: the innermost

two-component zone of matter which can be modeled by an inhomogeneous radiating

Boulware-Deser metric, the radiation zone in the middle and the outermost zone which

is the Boulware-Deser vacuum exterior. A large family of solutions to the EGB field

equations were presented for various realistic equations of state. It was shown that solu-

tions were possible via a direct integration of second order differential equations. Many

of these solutions cannot be found by the approach used by Wang and Wu (1999) in

conventional Einstein gravity; they assumed a restrictive series form of the mass func-

tion. Other mass functions have been shown to exist in five and higher dimensions

which are physically reasonable. It is easy to show the existence of a dynamical star

which is radiating, by matching the mass function (5.4.6) at the two boundaries. We

illustrate this notion with the generalised linear equation of state

P = kρ̃+ k2.

At the first interface r = rb, between the two-component region and the null Boulware-

Deser zone, the mass function is written as

M1(v) = c2(v) + c1(v)
r1−3k
b

1− 3k
− κk2

4(3k + 1)
r4
b . (5.7.1)

At the second interface, between this null zone and the vacuum exterior region, the

mass function is

M̃ = c2(V0) + c1(V0)
r1−3k
b

1− 3k
− κk2

4(3k + 1)
r4
b . (5.7.2)

It is clear that the forms (5.7.1) and (5.7.2) are always possible due to the freedom

permitted by the integration functions c1(v) and c2(v). A comparison with earlier

results was undertaken and we showed that our solutions generalise earlier results in

EGB gravity, including the EGB analogue of Husain’s solution. We then generalised

our results to higher dimensions.

An important point to note is the nonlinear nature of gravity, and even more specif-

ically, modified gravity. Despite the fact that the energy momentum tensor can be
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written as a combination of radiation, matter and modified curvature parts, these

quantities intertwine in the metric in such a way as to give physically interesting and

reasonable solutions that can be used to model a dynamic star in dimensions five or

higher. If the radiation part is absent, for example, then the EGB field equations force

the matter that remains to obey an equation of state ρ̃+ Pr = 0 (Pr is the radial pres-

sure), which is that of an AdS-like space, and is not appropriate for stellar modeling.

It is also important to note that if the Gauss-Bonnet connection term tends to zero

(α→ 0), Einstein gravity is regained.
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Chapter 6

Junction conditions in 5-D

Einstein-Gauss-Bonnet gravity

6.1 Introduction

The study of radiating stars has been an ongoing and salient endeavour in the con-

text of general relativity due to the many applications in the area of relativistic stellar

astrophysics. These include dynamical stability, surface luminosity, relaxation effects,

particle production at the surface of the star as well as the important idea of gravita-

tional collapse. Di Prisco et al (2007), Pinheiro and Chan (2008), Herrera et al (2009)

and Govender et al (2015) have studied some of these features in detail. With regards

to gravitational collapse, Goswami and Joshi (2007), Joshi (2007) and Mkenyeleye et al

(2014, 2015) have studied the final end state of radiating stars with particular emphasis

on naked singularity formation. We have also provided new details on these notions in

a previous chapter.

Shear-free spacetimes are extensively used to model the interior of relativistic stars

which, in the form of radial heat flow, dissipate null radiation. The heat flows outward

from the much hotter centre towards the stellar surface. There exist many models

on radiative gravitational collapse that have been studied earlier. These include the
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models by Santos (1985), Glass (1990), Deng and Mannheim (1990, 1991), Stephani et

al (2003), Ivanov (2012) and Sharif and Yousaf (2012). An important requirement for

all these models is that the interior spacetime must match at the stellar boundary to

the exterior radiating spacetime.

The complete model for a radiating star with outgoing null radiation undergoing

dissipation was given by Santos (1985) by use of the junction conditions at the stellar

surface. By matching a purely radiating Vaidya exterior spacetime to a shear-free inte-

rior spacetime, it was shown that at the stellar surface, the pressure was nonvanishing

and proportional to the magnitude of the heat flux. By investigating the boundary

condition, Kramer (1992) and Maharaj and Govender (1997) generated, from a static

model, radiating spheres by allowing certain parameters to become functions of time.

Geodesic fluid trajectories were assumed by Kolassis et al (1988) and Thirukkanesh

and Maharaj (2009) to produce new radiating models. There are solutions for shear-

free interiors which are conformally flat which generate radiating stellar models. These

are contained in Herrera et al (2004), Herrera et al (2005), Maharaj and Govender

(2005) and Misthry et al (2008). de Oliviera et al (1985) and Nogueira and Chan

(2004) assumed a model which was initially in a static configuration before a gradual

radiating collapse of the sphere commenced. In recent times the generalised junction

conditions were analysed by Maharaj et al (2012) where a shear-free interior metric

was matched to a generalised Vaidya spacetime. The physical features of the resulting

model were discussed in detail by Govender et al (2015).

Some work on the junction conditions has been done in higher order and modified

theories of gravity. Doležel (2002) analysed the junction conditions in the context of

the Randall-Sundrum model with the addition of the Gauss-Bonnet interaction. Davis

(2003) derived the Israel junction conditions in spacetimes of dimensions greater than

four and applied these to certain EGB brane world scenarios. Mena (2012) studied the

junction of a collapsing interior fluid and exterior vacuum as well as the gravitational

collapse of such a model in higher dimensions. Sharif and Abbas (2013) formulated
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the field equations for the shear-free spherical interior geometry of a radiating star and

studied the effect of charge on dissipative collapse. An important note which needs

to be made and is often not included in such models is the inclusion of the additional

matching conditions (2.5.7) and (2.5.8). These were described briefly in Clifton (2006),

Clifton et al (2013) and Ganguly et al (2014).

In Sec. 6.2 the relevant tensorial quantities and the EGB field equations are de-

rived for both the five-dimensional shear-free interior and the exterior radiating Vaidya

spacetime. In the following section the matching conditions are presented in detail and

the junction conditions are derived completely for the matching of both spacetimes at

the boundary interface. In Sec. 6.4 a summary is presented of the junction conditions

as well as certain properties of the various junction conditions. Sec. 6.5 then deals with

the finding of solutions to both the boundary condition as well as the condition for the

continuity of scalar curvature. Finally, a brief remark is made on the structure of the

scalar curvature condition in Sec. 6.6 and the possibility of finding further solutions.

6.2 EGB field equations

We take the interior spacetime M− to be the five-dimensional shear-free line element

in comoving coordinates (xa) = (t, r, θ, φ, ψ),

ds2 = −A(r, t)2dt2 +B(r, t)2
[
dr2 + r2(dθ2 + sin2 θdφ2 + sin2 θ sin2 φdψ2)

]
. (6.2.1)

Interior solutions for this metric were obtained by Brassel et al (2015) in four-dimensional

Einstein gravity. The fluid five-velocity u is comoving and is given by

ua =
1

A
δa0 .

The matter field is an imperfect fluid with energy-momentum tensor

Tab = (ρ+ p)uaub + pgab + qaub + qbua, (6.2.2)

and the heat flow vector takes the form

qa = (0, q, 0, 0, 0),
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since qaua = 0. Due to the spherical symmetry of the star, the heat is assumed to flow

in a radial direction outwards from the interior on physical grounds. The nonvanishing

connection coefficients (2.3.7) are given by

Γ0
00 = Ȧ

A
Γ0

01 = A′

A

Γ0
11 = BḂ

A2 Γ0
22 = r2BḂ

A2

Γ0
33 = r2 sin2 θBḂ

A2 Γ1
00 = AA′

B2

Γ0
44 = 1

A2 (r2 sin2 θ sin2 pφ) Γ1
44 = 1

B
(−r sin2 θ(B′r +B))

Γ1
11 = B′

B
Γ1

22 = −r2
(
B′

B
+ 1

r

)
Γ1

33 = −r2 sin2 θ
(
B′

B
+ 1

r

)
Γ1

01 = Ḃ
B

Γ2
02 = Ḃ

B
Γ3

03 = Ḃ
B

Γ2
12 = B′

B
+ 1

r
Γ3

13 = B′

B
+ 1

r

Γ2
33 = − sin θ cos θ Γ3

23 = cot θ

Γ4
04 = Ḃ

B
Γ4

14 = B′

B
+ 1

r

Γ4
24 = cot θ Γ2

44 = − sin θ sin2 φ cos θ

Γ3
44 = − sinφ cosφ Γ4

34 = cotφ

for the metric (6.2.1). In the above, dots and primes denote differentiation with respect

to t and r, respectively. Using the above Christoffel symbols and the definition for the

Ricci tensor (2.3.17), we can write the nonvanishing Ricci tensor components as follows
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R−00 =
AA′′

B2
− 4

B̈

B
+ 4

ȦḂ

B
+
AA′B′

rB3
+ 3

AA′

rB2
, (6.2.3a)

R−01 = 3

(
ḂB′

B2
− Ḃ′

B
+
A′Ḃ

AB

)
, (6.2.3b)

R−11 = 3
Ḃ2

A2
+
A′

A

B′

B
− 3

r

B′

B
−BḂ Ȧ

A3
− A′′

A

+
BB̈

A2
+ 3

B′2

B2
− 3

B′′

B
, (6.2.3c)

R−22 = r2BB̈

A2
− r2BḂ

Ȧ

A3
+ 3r2 Ḃ

2

A2
− r2A

′

A

B′

B
− rA

′

A

−5r
B′

B
− r2B

′′

B
, (6.2.3d)

R−33 = sin2 θR−22, (6.2.3e)

R−44 = sin2 φR−33. (6.2.3f)

Making use of (6.2.3), and the definition (2.3.18), we obtain the Ricci scalar

R− = 8
B̈

AB
− 6

B′′

B3
+ 12

Ḃ2

A2B2
− 2

A′′

AB2
− 4

A′B′

AB3

−8
ȦḂ

A3B
− 18

r

B′

B3
− 6

r

A′

AB2
. (6.2.4)

Now using (6.2.3), along with (6.2.4), we obtain the nonvanishing Einstein tensor

components

G−00 = 3

(
2
Ḃ2

B2
− A2B′′

B3
− 3

r

A2B′

B3

)
, (6.2.5a)

G−01 = 3

(
A′Ḃ

AB
− Ḃ′

B2
+
B′Ḃ

B2

)
, (6.2.5b)

G−11 = 3

(
B′2

B2
+
A′B′

AB
− BB̈

A2
− Ḃ2

A2
+
BȦḂ

A3

+
2

r

B′

B
+

1

r

A′

A

)
, (6.2.5c)

G−22 = −3r2BB̈

A2
+ 3r2BḂ

Ȧ

A3
− 3r2 Ḃ

2

A2

+2r
A′

A
+ 4r

B′

B
+ r2A

′′

A
− r2B

′2

B2
+ 2r2B

′′

B
+ r2A

′B′

AB
, (6.2.5d)

G−33 = sin2 θG−22, (6.2.5e)

G−44 = sin2 φG−33. (6.2.5f)
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When shearing stresses are absent in the fluid (πab = 0), the nonvanishing components

of the energy momentum tensor (2.3.26) are written in the following way:

T−00 = ρA2, (6.2.6a)

T−01 = −AB2q, (6.2.6b)

T−11 = pB2, (6.2.6c)

T−22 = pB2r2, (6.2.6d)

T−33 = sin2 θT22, (6.2.6e)

T−44 = sin2 φT33, (6.2.6f)

where q = qaqa. Furthermore, it is quite evident from (6.2.6b) that in the limit when

the fluid is not conducting heat (q = 0), the energy momentum tensor has diagonal

components. The higher order curvature contribution is contained in the Lanczos

tensor. The nonvanishing components of the Lanczos tensor (2.4.4) are given by the
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following

H−00 = 4

(
3
B′′B′2A2

B7
− 3

B′′Ḃ2

B5
3
B′4A2

B8
+ 3

Ḃ4

A2B4
+

6

r

A2B′′B′

B6

−3
A2B′3

B7
− 9

r

Ḃ2B′

B5
+

6

r2

A2B′2

B2

)
, (6.2.7a)

H−01 = 4

(
3
Ḃ′B′2

B5
− 3

Ḃ′Ḃ2

A2B3
+

6

r

Ḃ′B′

B4
− 3

ḂB′2A′

AB5
+ 3

Ḃ3A′

A3B3

−6

r

ḂB′A′

AB4
− 3

ḂB′3

B5
+ 3

Ḃ3B′

A2B4
− 6

r

ḂB′2

B5

)
, (6.2.7b)

H−11 = 4

(
3
B̈B′2

A2B3
− 3

A′B′3

AB5
− 3

ȦḂB′2

A3B3
+ 3

Ḃ2A′B′

A3B3
− 3

B̈Ḃ2

A4B
+ 3

ȦḂ3

A5B

−9

r

A′B′2

AB4
+

6

r

B̈B′

A2B2
− 6

r

ȦḂ

A3B2
+

3

r

Ḃ2A′

A3B2
− 6

r2

A′B′

AB3

)
, (6.2.7c)

H−22 = 4

(
r2A′′Ḃ2

A3B2
− r2A′′B′2

AB4
− 2

r2Ḃ′2

A2B2
+ 4

r2Ḃ′ḂB′

A2B3
− 2

r2B′′A′B′

AB4

−2
r2B′′A′B′

A3B2
+
r2ȦḂB′2

A3B3
− 4

rȦḂB′

A3B2
− 2

r2Ḃ2B′2

A2B4
− 2

r2Ḃ2A′2

A4B2

+2
rA′B′2

AB4
+ 2

rA′Ḃ2

A3B2
+ 2

r2B′′B̈

A2B2
− r2B̈B′2

A2B3
− 3

r2B̈Ḃ2

A4B

−2
rA′′B′

AB3
− 2

rA′B′′

AB3
+ 4

rB̈B′

A2B2
+ 3

r2A′B′3

AB5
+ 3

r2ȦḂ3

A5B

)
, (6.2.7d)

H−33 = sin2 θH−22, (6.2.7e)

H−44 = sin2 φH−33. (6.2.7f)

In the above, the components (6.2.7e) and (6.2.7f) play no explicit part in the field

equations.
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Using (6.2.5) and (6.2.6) we obtain the EGB field equations (2.4.9) as

ρ =
6Ḃ2

A2B2
− 1

B2

(
3B′′

B
+

9B′

rB

)
+

α

A2
H−00, (6.2.8a)

p =
3

A2

(
−B̈
B
− Ḃ2

B2
+
ȦḂ

AB

)

+
3

B2

(
B′2

B2
+
A′B′

AB
+
A′

rA
+

2B′

rB

)
+

α

B2
H−11, (6.2.8b)

p =
−3B̈

BA2
+

3ȦḂ

BA3
− 3Ḃ2

A2B2
+

2A′

rAB2

+
4B′

rB3
+

A′′

AB2
− B′2

B4
+

2B′′

B3
+
A′B′

AB3
+

α

r2B2
H−22, (6.2.8c)

q = − 3

AB2

(
−Ḃ

′

B
+
B′Ḃ

B2
+
A′

A

Ḃ

B

)
− α

AB2
H−01. (6.2.8d)

The system (6.2.8) are highly nonlinear, coupled partial differential equations that

describe the dynamics of the matter field in the interior of the radiating star.

The line element for the exterior manifold M+ is taken to be

ds2 = −
(

1− m(v)

r2

)
dv2 − 2dvdr + r2(dθ2 + sin2 θdφ2 + sin2 θ sin2 φdψ2), (6.2.9)

which is the five-dimensional purely radiating Vaidya metric. The solution was first

found in a general relativistic setting by Vaidya (1951, 1953). In the above, m = m(v)

is the Newtonian mass function of the star as measured by an observer at infinity.

The Vaidya solution describes the exterior gravitational field of a radiating star. The

above solution has been the subject of much analysis with insights by de Oliveira et

al (1985), Kolassis et al (1988), Kramer (1992) and Thirukkanesh and Maharaj (2009)

in conventional general relativity. Kobayashi (2005) and Dominguez and Gallo (2006)

considered this metric in EGB gravity. In the latter paper by Dominguez and Gallo,

the Born-Infeld-Vaidya and the Bonnor-Vaidya solutions for black holes were discussed

in a modified gravity setting. The nonvanishing connection coefficients for (6.2.9) are

Γ0
00 = −m

r3
Γ1

01 = m
r3

Γ1
00 = 1

r5

(
1
2
mvr3 − r2m+ 2m

)
Γ0

22 = r

Γ2
12 = Γ3

13 = Γ4
14 = 1

r
Γ1

22 = 1
r
(m− r2)
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Γ0
33 = r sin2 θ Γ3

23 = Γ4
24 = cot θ

Γ1
33 = 1

r
(sin2 θ(m− r2)) Γ2

33 = sin θ cos θ

Γ0
44 = r sin2 θ sin2 φ Γ4

34 = cotφ

Γ1
44 = 1

r
(sin2 θ sin2 φ(m− r2)) Γ2

44 = − sin θ cos θ sin2 φ

Γ3
44 = − sinφ cosφ

The single nonvanishing Ricci tensor component is given by

R+
00 = −3

2

mv

r3
, (6.2.10)

and the Ricci scalar is

R+ = 0. (6.2.11)

The only nonvanishing component of the Einstein tensor G+
ab is hence

G+
00 = − 3

2r3

dm

dv
, (6.2.12)

and the nonzero components of the energy momentum tensor (3.3.3) are given by

T+
00 = ε+ ρ

(
1− 1

r

)
, (6.2.13a)

T+
01 = ρ, (6.2.13b)

T+
22 = r2P, (6.2.13c)

T+
33 = sin2 θT+

22, (6.2.13d)

T+
44 = sin2 φT+

33. (6.2.13e)

The nonzero Lanczos tensor components are given by

H+
00 = 2

(
−3m

r7

dm

dv
− 6m2

r8
+

6m3

r10

)
, (6.2.14a)

H+
01 = −12m2

r8
, (6.2.14b)

H+
22 = −20m2

r6
, (6.2.14c)

H+
33 = sin2 θH+

22, (6.2.14d)

H+
44 = sin2 φH+

33. (6.2.14e)
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Therefore the EGB field equations (2.4.9) are given by

ε = α
[
H+

00 −H+
01

(
1− m

r2

)]
− 3

2r3

dm

dv
, (6.2.15a)

ρ = αH+
01, (6.2.15b)

P =
α

r2
H+

22, (6.2.15c)

where ε is the energy density of the null dust radiation; ρ and P are the null string

energy density and null string pressure respectively. It is interesting to note that both

ρ and P are nonvanishing despite the one nonvanishing Einstein tensor component,

unlike the situation in general relativity. This is a direct consequence of the existence

of the Lanczos tensor (2.4.4) in this modified theory.

6.3 Matching of the spacetimes

In this section we now present the junction conditions (Darmois 1927, Israel 1966) to

match the two spherically symmetric spacetimes (6.2.1) and (6.2.9) on a hypersurface

Σ as done by Santos (1985) and Bonnor et al (1989) in four-dimensions.

The intrinsic metric to Σ is given by

ds2
Σ = −dτ 2 +R2(dθ2 + sin2 θdφ2 + sin2 θ sin2 φdψ2), (6.3.1)

where R = R(τ) and coordinates ξi = (τ, θ, φ, ψ). It is important to note that the

coordinate τ is defined only on Σ. The surface Σ is the boundary of the interior

distribution of matter (6.2.1) and in this case is given by

f(r, t) = r − rΣ = 0,

where rΣ is a constant. The vector orthogonal to Σ is ∂f
∂χa−

and is given by

∂f

∂χa−
= (0, 1, 0, 0, 0),

therefore the unit vector normal to the surface Σ takes the form

n−a = [0, B(rΣ, t), 0, 0, 0]. (6.3.2)
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For the interior manifoldM− the first junction condition (2.5.4), for the line elements

(6.2.1) and (6.3.1) yields the following restrictions

A(rΣ, t)ṫ = 1, (6.3.3a)

rΣB(rΣ, t) = R(τ), (6.3.3b)

where, in the above, dots refer to differentiation with respect to τ . The extrinsic

curvature components K−ij of Σ can be obtained by using (2.5.6), (6.2.1) and (6.3.2).

The lengthy calculation eventually yields

K−ττ =

(
− 1

B

A′

A

)
Σ

, (6.3.4a)

K−θθ = (r(rB)′)Σ , (6.3.4b)

K−φφ = sin2 θK−θθ, (6.3.4c)

K−ψψ = sin2 φK−φφ, (6.3.4d)

which are valid on the surface Σ. In the above, primes denote differentiation with

respect to the variable r.

For the exterior spacetime M+, the equation of the surface Σ is given by

f(r, v) = r− rΣ = 0,

hence the vector orthogonal to Σ is

∂f

∂χa+
=

(
−drΣ

dv
, 1, 0, 0, 0

)
.

The unit normal vector is then

n+
a =

(
1− m

r2
Σ

+ 2
drΣ

dv

)− 1
2
(
−drΣ

dv
, 1, 0, 0, 0

)
, (6.3.5)

on Σ. The first junction condition (2.5.4) for the spacetimes (3.1.1) and (6.3.1) gives

the following

rΣ = R(τ), (6.3.6a)(
1− m

r2
+ 2

dr

dv

)
Σ

=

(
1

v̇2

)
Σ

. (6.3.6b)
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The unit normal vector (6.3.5) can be rewritten, using (6.3.6b) in the following simpler

form

n+
a = (−ṙ, v̇, 0, 0, 0). (6.3.7)

Using (2.5.6), (3.1.1) and the above equation (6.3.7), we can calculate the nonvanishing

extrinsic curvature components to Σ. The lengthy and intricate calculation finally

yields

K+
ττ =

(
v̈

v̇
− v̇m

r3

)
Σ

, (6.3.8a)

K+
θθ =

(
v̇

r
(r2 −m) + rṙ

)
Σ

, (6.3.8b)

K+
φφ = sin2 θK+

θθ, (6.3.8c)

K+
ψψ = sin2 φK+

φφ, (6.3.8d)

which are valid on the surface Σ.

The first junction condition (2.5.4) yields the equations (6.3.3) and (6.3.6), which

are summarised below

A(rΣ, t)ṫ = 1, (6.3.9a)

rΣB(rΣ, t) = R(τ), (6.3.9b)

rΣ(v) = R(τ), (6.3.9c)(
1− m

r2
+ 2

dr

dv

)
Σ

=

(
1

v̇2

)
Σ

. (6.3.9d)

Since the variable τ was only defined as an intercessor, it can be eliminated from the

above equations. Thus, the necessary and sufficient conditions on the spacetimes for

the validity of the first junction condition (2.5.4) are

(Adt)Σ =

(
1− m

r2
+ 2

dr

dv

) 1
2

Σ

, (6.3.10a)

(rB)Σ = rΣ(v). (6.3.10b)

Equating the appropriate extrinsic curvature components (6.3.4) and (6.3.8), yields
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the second junction condition (2.5.5) as(
− 1

B

A′

A

)
Σ

=

(
v̈

v̇
− v̇m

r3

)
Σ

, (6.3.11a)

(r(rB)′)Σ =

(
v̇

r
(r2 −m) + rṙ

)
Σ

. (6.3.11b)

We can obtain an expression for m(v) in terms of A and B only by eliminating r, ṙ and

v̇ from equation (6.3.11b) above. The mass function can be written, with the aid of

(6.3.9), after a long calculation as

m(v) =

(
r4B2

A2
Ḃ2 − 2r3BB′ − r4B′2

)
Σ

. (6.3.12)

The expression above is interpreted as the total gravitational mass of the star within

the surface Σ. The mass function (6.3.12) is the five-dimensional analogue of the mass

function first obtained by Hernandez and Misner (1966) and Cahill and McVittie (1970)

for spheres of radius r within Σ. From equations (6.3.9a), (6.3.9b) and (6.3.9c) we have

ṙΣ =

(
rḂ

A

)
Σ

,

and substituting the mass function (6.3.12) into (6.3.11b), using the expression for ṙΣ

above, we get

v̇Σ =

(
1 + r

B′

B
+ r

Ḃ

A

)−1

Σ

. (6.3.13)

Differentiating the above expression with respect to τ and using (6.3.9a), we acquire

v̈Σ =

 1

A

(
1 + r

B′

B
+ r

Ḃ

A

)−2

×

(
r
ḂB′

B2
− r Ḃ

′

B
+ r

ȦḂ

A
− r B̈

B

)]
Σ

. (6.3.14)

Upon substituting (6.3.9b), (6.3.9c), (6.3.12), (6.3.13) and (6.3.14) into (6.3.11a), we

obtain (
− 1

B

A′

A

)
Σ

=

(1 + r
B′

B
+ r

Ḃ

B

)−1

×

(
r
ḂB′

AB2
− r Ḃ

′

AB
+ r

ȦḂ

A3
− r B̈

A2

−r Ḃ
2

A2B
+ 2

B′

B2
+ r

B′2

B3

)]
Σ

.
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Multiplying this above expression by 1 + r
(
B′

B

)
+ r

(
Ḃ
A

)
and simplifying, we acquire

the result [
−3

r

A′

AB2
− 3

A′B′

AB3
− 3

A′Ḃ

A2B2
+ 3

Ḃ′

AB2
− 3

ḂB′

AB3

−3
ȦḂ

A3B
+ 3

B̈

A2B
+ 3

Ḃ2

A2B2
− 6

r

B′

B3
− 3

B′2

B4

]
Σ

= 0,

which is equivalent to [(
qB +

α

AB
H−01

)
−
(
p− α

B2
H−11

)]
Σ

= 0,

where we have utilised the field equations (6.2.8b) and (6.2.8d). The above simplifies

to

pΣ =

(
qB + α

[
1

AB
H−01 +

1

B2
H−11

])
Σ

. (6.3.15)

It is interesting to note that the above condition (6.3.15) can be expressed as

pΣ = (pq + pα)Σ,

which is to say that the pressure due to the heat flux coupled with the pressure due

to the higher order curvature terms contribute to the pressure at the boundary. This

is a fundamental distinction between EGB gravity and standard general relativity.

Therefore, the necessary and sufficient conditions on the spacetimes for the second

junction condition (2.5.5) to hold are

m(v) =

(
r4B2

A2
Ḃ2 − 2r3BB′ − r4B′2

)
Σ

, (6.3.16a)

pΣ =

(
qB + α

[
1

AB
H−01 +

1

B2
H−11

])
Σ

. (6.3.16b)

The final two conditions deal with the continuity of the scalar curvature (and its deriva-

tive) across the boundary. Utilising (2.5.7) yields the following additional restriction[
4
B̈

A
− 3

B′′

B
+ 6

Ḃ2

A2B
− A′′

AB
− 2

A′B′

AB2

−4
ȦḂ

A3
− 3

r

(
3
B′

B
+

A′

AB

)]
Σ

= 0. (6.3.17)

108



Continuity of the derivative (2.5.8) gives[
4
B̈′

A
− 4

A′B̈

A2
− 3

B′′′

B2
+ 6

B′B′′

B3
+ 12

ḂḂ′

A2B

−12
A′Ḃ2

A3B
− 6

B′Ḃ2

A2B2
− A′′′

AB
+
A′A′′

A2B
− A′′B′

AB2

−2
A′B′′

AB2
+ 2

A′2B′

A2B2
+ 4

A′B′2

AB3
− 4

Ȧ′Ḃ

A3
− 4

ȦḂ′

A3

+12
A′ȦḂ

A4
+

3

r

(
3
B′

B
− 3

B′′

B2
+ 6

B′2

B3
+

1

r

A′

AB

− A′′

AB
+

A′2

A2B
+
A′B′

AB2

)]
Σ

= 0. (6.3.18)

An important note is that (6.3.17) and (6.3.18) are only relevant in higher order gravity.

In the above, (6.3.17) and (6.3.18) arise in EGB gravity since α 6= 0. When α = 0,

i.e. in 5-D Einstein gravity, these conditions do not arise. Also, (6.3.16b) becomes

pΣ = (qB)Σ,

which itself is the five-dimensional analogue of the result by Santos (1985).

6.4 Summary of the complete junction conditions

The necessary and sufficient conditions on the spacetimes for all the three junction

conditions to hold are

1. The first fundamental form:

(Adt)Σ =

(
1− m

r2
+ 2

dr

dv

) 1
2

Σ

, (6.4.1a)

(rB)Σ = rΣ(v). (6.4.1b)

2. The second fundamental form:

m(v) =

(
r4B2

A2
Ḃ2 − 2r3BB′ − r4B′2

)
Σ

, (6.4.2a)

pΣ =

(
qB + α

[
1

AB
H−01 +

1

B2
H−11

])
Σ

= (pq + pα)Σ, (6.4.2b)
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3. Continuity of the scalar curvature:[
4
B̈

A
− 3

B′′

B
+ 6

Ḃ2

A2B
− A′′

AB
− 2

A′B′

AB2

−4
ȦḂ

A3
− 3

r

(
3
B′

B
+

A′

AB

)]
Σ

= 0, (6.4.3a)[
4
B̈′

A
− 4

A′B̈

A2
− 3

B′′′

B2
+ 6

B′B′′

B3
+ 12

ḂḂ′

A2B

−12
A′Ḃ2

A3B
− 6

B′Ḃ2

A2B2
− A′′′

AB
+
A′A′′

A2B
− A′′B′

AB2

−2
A′B′′

AB2
+ 2

A′2B′

A2B2
+ 4

A′B′2

AB3
− 4

Ȧ′Ḃ

A3
− 4

ȦḂ′

A3

+12
A′ȦḂ

A4
+

3

r

(
3
B′

B
− 3

B′′

B2
+ 6

B′2

B3
+

1

r

A′

AB

− A′′

AB
+

A′2

A2B
+
A′B′

AB2

)]
Σ

= 0. (6.4.3b)

With regards to the above conditions, some important points can be made:

• These junction conditions hold only at the boundary of the radiating star.

• Both the heat flux and spacetime curvature contribute to the pressure at the

boundary. The fundamental distinction between general relativity and higher

order gravity are the modified curvature components, relating to α, contributing

to the field equations. This has a profound influence on the dynamics of the

radiating star and the physical features.

• In the Einstein limit, i.e. when α → 0, equation (6.4.2b) reduces to the well

known result of Santos (1985)

pΣ = (qB)Σ,

in five dimensions. An important note to make is that the third junction condition

(6.4.3) does not arise in Einstein gravity.

• In the absence of a heat flux, i.e. when q = 0 and pq = 0 the pressure at the
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boundary of the star is a function only of the modified curvature of the theory

pΣ =

(
α

[
1

AB
H−01 +

1

B2
H−11

])
Σ

= pα.

This quantity pα can be regarded as a pressure due to the presence of modified

curvature where this modified curvature behaves like a heat flux, thus the null

radiation on the exterior is generated by higher order curvature terms only.

• Importantly, solving (6.4.2b) and either one of (6.4.3a) or (6.4.3b) for the grav-

itational potentials A and B will complete the model for a radiating relativistic

star in EGB gravity. The restrictive nature of the third junction condition lies

in the fact that two partial differential equations need to be solved in addition to

the boundary condition.

6.5 A solution

In this section we will present a solution to the two conditions (6.4.2b) and (6.4.3a).

Due to the highly nonlinear nature of the equations as well as the fact that they both

contain two dependent variables, a choice needs to be made for one of these dependant

variables such that the equations may be integrated to yield solutions for the remaining

variable.

6.5.1 B(r, t) = βr

If we assume that B(r, t) is a linear function in r such that B(r, t) = βr with β being

a constant, the two junction conditions (6.4.2b) and (6.4.3a) become

(2β4r6 + 18α)A′ + (3β2r3 + 2β4r6)A = 0, (6.5.1a)

r2A′′ + 5rA′ + 9A = 0, (6.5.1b)

respectively. Both these equations need to be solved independently. Beginning with

the second equation (6.5.1b), it is easy to notice that it is a second order Cauchy-Euler
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equation. Letting A = rm, generates the corresponding characteristic equation

m2 + 4m+ 9 = 0,

with the complex roots

m = −2± i
√

5.

Hence, the solution for A(r, t) is given by

A(r, t) =
c1(t)

r2
sin(
√

5 ln r) +
c2(t)

r2
cos(
√

5 ln r), (6.5.2)

where c1(t) and c2(t) are functions of the integration processes. So we have the following

potentials

A(r, t) =
c1(t)

r2
sin(
√

5 ln r) +
c2(t)

r2
cos(
√

5 ln r), (6.5.3a)

B(r, t) = βr. (6.5.3b)

If we now consider the boundary condition (6.5.1a), we can see that it is a separable

first order equation. It can hence be written as

∫
dA

A
= −β


∫ (

3r3dr

β̃r6 + 18α

)
︸ ︷︷ ︸

I1

+

∫ (
β̂r6dr

β̃r6 + 18α

)
︸ ︷︷ ︸

I2

 ,

where we have set β̃ = 2β4 and β̂ = 2β2 for convenience. We will consider both

integrals separately due to their complexity. The first integral I1 becomes

I1 =
18

2
3

72
β̃−1

(
α

β̃

)− 1
3

[
−2 ln

(
r2 + 18

1
3

(
α

β̃

) 1
3

)

+ ln

(
r4 − 18

1
3

(
α

β̃

) 1
3

r2 + 18
2
3

(
α
β̃

) 2
3

)

+2
√

3 arctan

(
1

27

(
α

β̃

)− 1
3 √

3

(
18

2
3 r2 − 9

(
α

β̃

) 1
3

))]
. (6.5.4)
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The second, more complicated integral, I2 takes the form

I2 =
−1

72β̃

[
3

2
3 2

5
6 β̃

(
4

(
α

β̃

) 1
6

2
1
3 3

2
3

× arctan

(
1

6

(
α

β̃

) 1
6

3
2
3 2

5
6

(
2

1
6

(
α

β̃

) 1
6

3
5
6 + 2r

))

−2

(
α

β̃

) 1
6

2
1
3 3

2
3 arctan

 3
√

3α

3
1
3 2

2
3 r2
(
α
β̃

) 2
3
β̃ − 3α


+4

(
α

β̃

) 1
6

3
2
3 2

1
3 arctan

(
1

6

(
α

β̃

) 1
6

3
2
3 2

5
6 r

)

+3

(
α

β̃

) 1
6

2
1
3 3

1
6 ln

[
r2 + 3

5
6 2

1
6

(
α

β̃

) 1
6

r + 3
2
3 2

1
3

(
α

β̃

) 1
3

]

−3

(
α

β̃

) 1
6

2
1
3 3

1
6 ln

[
r2 − 3

5
6 2

1
6

(
α

β̃

) 1
6

r + 3
2
3 2

1
3

(
α

β̃

) 1
3

]
−12(3

1
3 2

1
6 )
)]
. (6.5.5)

Therefore the complete solution for the differential equation for A is given by

A(r, t) = C̃1(t) exp[−β(I1 + I2)], (6.5.6)

where C̃1(t) is a function of integration. Thus the full solution to the boundary condi-

tion (6.4.2b) is given by

A(r, t) = C̃1(t) exp[−β(I1 + I2)], (6.5.7a)

B(r, t) = βr, (6.5.7b)

where I1 and I2 are given by equations (6.5.4) and (6.5.5) respectively.

An important point that needs to be made about the solutions (6.5.3) and (6.5.7)

is the choice of the potential B(r, t). In both cases, the linear choice for B implies

that the heat flux, q will vanish entirely, since H−01 = 0 in the field equations. The

consequence of this is the fact that the pressure at the boundary will be a function of

the modified curvature inherent with the theory, and will not vanish. So, in essence,

this modified curvature acts like a heat flux. The solutions (6.5.3) and (6.5.7) complete

the model for a five-dimensional radiating relativistic star in EGB gravity.
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6.6 Solutions for the continuity of scalar curvature

If we focus only on the condition (6.4.3a), it is possible to find some generic solutions.

For example, if we let B(r, t) = β where β is a constant, then equation (6.4.3a) reduces

to

A′′ +
3

r
A′ = 0,

which can be integrated via a reduction of order. Letting y(r, t) = A′(r, t), the above

equation reduces to

y′ +
3

r
y = 0,

which can be integrated to give

y(r, t) =
c1

r3
,

where c1 = c1(t) is an integration function. Finally, the solution for A(r, t) is given by

A(r, t) =
−c1(t) + c2(t)r2

r2
, (6.6.1)

where c2(t) is a second integration function. Thus, in summary we have

A(r, t) =
−c1(t) + c2(t)r2

r2
, (6.6.2a)

B(r, t) = β. (6.6.2b)

If c1(t) = 0 and c2(t) = 1 in the above solution, the particle motion in the model will

become geodesic. Again, this choice of B(r, t) will cause the heat flux to vanish, and

so this solution above is more cosmological than astrophysical. It is interesting to note

that the condition (6.4.3a) can be written in the following form

A′′ +

(
2
B′

B
+

3

r

)
A′ +

(
3
B′′

B
+

9

r

B′

B

)
A = 0, (6.6.3)

therefore, for suitable choices of one of the variables A and B, it may be possible to

obtain further solutions to the above equation. We will demonstrate this below.
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6.6.1 Case I

First, we let

3
B′′

B
+

9

r

B′

B
= 0,

in equation (6.6.3). The above equation is a second order linear partial differential

equation with radial derivatives. Reducing the order with the transformation y(r, t) =

B′(r, t) yields

y′ +
3

r
y = 0,

which is a separable equation with a solution given by

y =
c1(t)

r3
.

Therefore, the solution for B is given by

B(r, t) = c2(t)− c1(t)

2r2
. (6.6.4)

In the above, c1(t) and c2(t) are functions of integration. Using, (6.6.4) the equation

(6.6.3) becomes

A′′ +

(
4c1

c2r3 − c1r
+

3

r

)
A′ = 0. (6.6.5)

The above equation can again be solved via a reduction of order. Letting z(r, t) =

A′(r, t) yields

z′ +

(
4c1

c2r3 − c1r
+

3

r

)
z = 0, (6.6.6)

which is a separable equation. The solution for A is hence given by

A(r, t) =
1

4
r4 +

∫ (
r4

(c1(t)r2 − c2(t))2

)c1(t)

dr + c3(t), (6.6.7)

where c3(t) is a further integration function. So, we have

A(r, t) =
1

4
r4 +

∫ (
r4

(c1(t)r2 − c2(t))2

)c1(t)

dr + c3(t), (6.6.8a)

B(r, t) = c2(t)− c1(t)

2r2
. (6.6.8b)

For different values of the integration function c1(t), it may be possible to integrate

(6.6.8a) entirely. This is beyond the scope of this dissertation and is the subject of

ongoing work.
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6.6.2 Case II

We now let

2
B′

B
+

3

r
= 0, (6.6.9)

in equation (6.6.3). The above equation can be integrated to give

B(r, t) = c1(t)r−
3
2 . (6.6.10)

With this, equation (6.6.3) becomes

A′′ −
(

45

2
r + 18

)
A = 0, (6.6.11)

which is an Airy differential equation. It can be solved via a series solution approach

to give

A(r, t) = c2(t)Ai

(
3

2
3 (5r − 4)

2
1
3 5

2
3

)
+ c3(t)Bi

(
3

2
3 (5r − 4)

2
1
3 5

2
3

)
, (6.6.12)

where Ai(r) are Airy functions of the first kind and Bi(r) are Airy functions of the

second kind (or Bairy functions). The reader is encouraged to seek out Airy (1838),

Vallée and Soares (2004) and Press et al (2007) for further insights into these types of

equations. Therefore, the complete solutions are

A(r, t) = c2(t)Ai

(
3

2
3 (5r − 4)

2
1
3 5

2
3

)
+ c3(t)Bi

(
3

2
3 (5r − 4)

2
1
3 5

2
3

)
, (6.6.13a)

B(r, t) =
c1(t)

r
3
2

. (6.6.13b)

In the above c1(t), c2(t) and c3(t) are functions of integration. An important note to

consider here are the Airy functions. Since these are series solutions, it is difficult to

model a physically reasonable stellar model. The reason for this is the fact that Airy

functions cannot be truncated to become a polynomial.

6.7 Discussion

The main intent of this chapter was the calculation of the junction conditions for two

five-dimensional spacetime geometries in EGB gravity. The interior spacetime was
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taken to be the shear-free line element and the outside geometry was that of a pure

Vaidya class. The EGB field equations were derived for both metrics and the matching

was performed using the standard Santos framework, with the addition of the junction

condition for the continuity of the scalar curvature and its derivative. A summary of

the three junction conditions was then provided before a solution was obtained for both

the boundary condition and the scalar curvature. Some important points can now be

elucidated upon:

• For these solutions to be entirely valid, they have to be consistent with each

other. This is already the case for the gravitational potential B(r, t), since the

same choice was made for both conditions (6.4.2b) and (6.4.3a). For the potentials

A(r, t) to be consistent, special choices for the integration functions c1(t), c2(t)

and C̃1(t) need to be made. This is beyond the scope of this dissertation and is

the subject of ongoing work.

• The linear choice of the potential B(r, t) = βr has some repercussions. First

of all, this choice causes the heat flux q to vanish in the model. Secondly, the

pressure at the boundary of the star is then simply a function of the modified

curvature of the theory as a result.

Finally, a trivial solution was presented for the continuity of scalar curvature. Since the

choice for B in this case was constant, the heat flux q will again vanish in the stellar

model. We have also shown that it is possible to write equation (6.4.3a) in a form

which may yield solutions more easily. Two such solutions were presented, however for

these to be complete, the boundary condition needs to be solved and made consistent

with them.

The most important aspect of this chapter is the fact that a complete model for

a relativistic radiating star has been obtained in five-dimensional EGB gravity, for

the first time. This should now have effects on the observable quantities measured on

the surface of the star as well as in its surrounding region. These include the surface
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redshift and the luminosity which play a critical role in understanding the formation

of black holes as a result of gravitational collapse (Chan 1997, 2003). This research is

ongoing work.
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Chapter 7

Conclusion

In this dissertation we have studied spherically symmetric radiating stars emitting

null radiation in the strong gravity regime. We have generated several new classes

of solutions for the class of generalised Vaidya spacetimes describing the complete

model of a radiating star in four and higher dimensions. We demonstrated that the

differential equations resulting from the assumption of an equation of state could be

integrated directly, and several of the well known seminal solutions from earlier are

contained within our class. We then considered the idea of gravitational collapse where

we analysed the end state of these generalised Vaidya spacetimes, demonstrating that

each collapse terminated with the formulation of a naked singularity. This idea was

extended to an higher order theory, namely Einstein-Gauss-Bonnet (EGB) gravity,

where we modeled a five-dimensional radiating star using one class of the Boulware-

Deser metric. Several solutions were obtained for various realistic equations of state

and it was shown that they generalise many solutions found by others, prior. We then

extended these results to higher dimensions for pedagogical completeness. Finally, we

generated and analysed the junction conditions resulting from the matching of two

five-dimensional spacetimes in EGB gravity. We demonstrated that a solution can be

found for both the boundary condition as well as the extra condition resulting from

the matching of the scalar curvature across the boundary.
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Below is an overview of our study:

• In chapter 2, we introduced the relevant formalisms and aphorisms for differential

geometry and general relativity. These notions were also extended to a particu-

lar case of higher order gravity, which is the Einstein-Gauss-Bonnet theory. The

theory of the junction conditions (Darmois 1927, Israel 1966, Santos 1985) re-

sulting from the matching of two general spherically symmetric spacetimes, were

presented in detail from first principles. We also showed that in higher order

theories of gravity, a third matching condition needs to be satisfied to complete

the model of a radiating star. In summary, the junction conditions in the strong

gravity regime are given by

(ds2
−)Σ− = (ds2

+)Σ+ = ds2
Σ,

K±ij

∣∣∣∣
Σ

= 0,

R±
∣∣∣∣
Σ

= 0,

∇aR
±
∣∣∣∣
Σ

= 0.

Finally, the chapter closes with a brief portraiture of the energy conditions for a

stellar model.

• Chapter 3 commenced with one of the main results obtained in this dissertation.

The complete model of a radiating and dynamic relativistic star was described un-

der one general class of generalised Vaidya metric. The spacetime region was di-

vided into three concentric regions. The stellar interior was a two-component sys-

tem consisting of standard null, pressure-free radiation and an additional string

fluid with energy density and nonzero pressure obeying all physical conditions.

The middle region was a purely radiative one which matched smoothly to the
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vacuum Schwarzschild exterior. The complete C2 mass function was given as:

m(v, r) =



m(v, r) r ≤ rb , v ≤ V0

m1(v) ≡ m(v, rb) r > rb , v ≤ V0

M ≡ m1(V0) ≡ m(V0, rb) r > rb , v > V0

Several solutions were obtained for the mass function m(v, r) for various realistic

equations of state including the polytrope which was first analysed by Husain

(1996). We demonstrated that it was possible for the second order equations to

be integrated directly. It was then shown that one of our classes of solutions

contained the monopole, charged Vaidya, dS/AdS, and Husain solutions. An

important note that requires mentioning is the fact that many of our solutions

cannot be found using the approach of Wang and Wu (1999). They assumed a

series form of the mass function which was restrictive. We naturally extended

these notions to higher dimensional spacetimes and showed that physically rea-

sonable solutions exist. The possibility also existed for the generation of diffusive

solutions for the mass function via a substitution of the above mentioned second

order equations into the diffusion equation.

• A complete analysis of the gravitational collapse of our generalised Vaidya space-

times, obtained for various equations of state, was performed in chapter 4. The

general mathematical framework to describe the gravitational collapse of a gener-

alised Vaidya spacetime in the context of the cosmic censorship conjecture (CCC)

was presented in detail. The collapsing model was described (as shown in Joshi

(1993) and Mkenyeleye (2014, 2015)) before considering the conditions for the

formation of a locally naked central singularity. The singularity structure was

investigated in order to show that it can be a node with outgoing null geodesics

emerging from a singular point with a definite value of the tangent, depending

on the parameters in the problem and the nature of the generalised Vaidya mass

function. The nature and strength of the singularity and the apparent horizon
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were then described. The various generalised Vaidya solutions obtained in chap-

ter 3 were then analysed and it was shown that the end state of collapse for each

of these spacetimes is a locally, strong naked singularity. During the latter stages

of gravitational collapse, the generalised Vaidya spacetime is more realistic and

physically reasonable than pure pressureless matter or perfect fluid fields since

any collapsing star must radiate. The higher dimensional metric was then dis-

cussed briefly and it was proved that the spacetime dimensions do have an effect

on the existence of a naked singularity; in higher dimensions it is possible for

naked singularities to be eliminated.

• In chapter 5 we considered EGB gravity. We introduced the Boulware-Deser

spacetime (Boulware and Deser 1985) and showed that it can radiate by allowing

the mass function M to depend on both the radial coordinate and retarded time,

creating the inhomogeneity. These notions were then formulated into a theorem.

We then modeled a five-dimensional relativistic radiating astrophysical star in

isolation using one class of generalised Boulware-Deser spacetime. The spacetime

was divided into three concentric regions. In the stellar interior there was a two-

component matter source consisting of null fluid matter together with radiation.

The middle zone was once again a pure zone of radiation which then matched

smoothly to the Boulware-Deser vacuum exterior spacetime. It was proved that

the complete C2 mass function is given by:

M(v, r) =



M(v, r) r ≤ rb , v ≤ V0

M1(v) ≡M(v, rb) r > rb , v ≤ V0

M̃ ≡M1(V0) ≡M(V0, rb) r > rb , v > V0

A large family of solutions to the EGB field equations were then presented for var-

ious realistic equations of state. As was the case in Chapter 3 for the generalised

Vaidya spacetime, it was possible to obtain solutions via a direct integration of

the second order differential equations. These results are essentially the EGB
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analogues of those found in Chapter 3, in Einstein gravity. With that, some

important points can be made:

– Many of these solutions cannot be found using the approach of Wang and

Wu (1999) in general relativity. They assumed a restrictive series form for

the mass function which was also separable, therefore our solutions can be

regarded as more general than those found in the past (Husain 1996, Wang

and Wu 1999, Dominguez and Gallo 2006).

– In Einstein gravity, Husain (1996) found a solution for the polytropic equa-

tion of state in the generalised Vaidya spacetime which was in quadrature

form. We found the EGB analogue of this solution in the Boulware-Deser

spacetime.

– In the limit when α −→ 0, conventional Einstein gravity is regained in five

dimensions.

Finally, our model was extended to higher dimensional spacetimes and it was

possible to state the following theorem:

Theorem. Consider an N -dimensional spacetime given by

ds2 = −f(r)dv2 − 2dvdr + r2dΩ2
n−2,

with

dΩ2
N−2 =

N−2∑
i=1

[
i−1∏
j=1

sin2(θj)

]
(dθi)2,

and

f(r) = 1 +
r2

2α̂

(
1−

√
8α̂

N − 3

(
2M

rN−1

))
,

where α̂ = α(N − 3)(N − 4) and M = M(v, r), which obeys all physically rea-

sonable energy conditions and is differentiable in the entire spacetime. This

spacetime is then consistent with an energy momentum tensor which is a unique

combination of the type I and type II matter fields, and represents a solution to
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the EGB field equations with a superposition of null radiation and a string fluid.

Again, in the relevant limit, we regain the radiating case (M = M(v)) and the

Boulware-Deser spacetime (M = M̃ = const.) when α 6= 0, and the Einstein

gravity when α = 0.

A paramount point that needs to be made is the nonlinear nature of gravity,

specifically modified and higher order theories of gravity. As mentioned in the

chapter, despite the fact that the energy momentum tensor can be written as a

combination of radiation, matter and modified curvature parts, these quantities

are married in the metric in such a way as to provide physically interesting and

reasonable solutions. These can be used to model a dynamic star in dimensions

five or higher.

• The complete model of a five-dimensional radiating relativistic star in EGB grav-

ity theory is shown from first principles in chapter 6. The smooth matching of

two spherically symmetric spacetimes, namely the shear-free interior and the pure

Vaidya exterior is considered in the context of EGB gravity. The Santos (1985)

junction conditions are derived with the inclusion of the additional junction con-

dition for the continuity of the Ricci scalar across the boundary, as well as its

first derivative. It was mentioned that the additional junction condition adds a

restriction to the model in the sense that an extra consistency equation (either

one of the scalar curvature or its derivative) needs to be solved over and above the

original boundary condition. The equation for the continuity of the scalar curva-

ture was simpler than that of its derivative, so this was chosen in the subsequent

analysis. These two highly nonlinear partial differential equations are:

pΣ =

(
qB + α

[
1

AB
H−01 +

1

B2
H−11

])
Σ

.[
4
B̈

A
− 3

B′′

B
+ 6

Ḃ2

A2B
− A′′

AB
− 2

A′B′

AB2
,

−4
ȦḂ

A3
− 3

r

(
3
B′

B
+

A′

AB

)]
Σ

= 0.
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A linear function in r was chosen for the potential B, such that B(r, t) = βr

which reduced the above equations to

(2β4r6 + 18α)A′ + (3β2r3 + 2β4r6)A = 0,

r2A′′ + 5rA′ + 9A = 0.

Subsequent solutions were then found for the gravitational potential A. In sum-

mary, these are

A(r, t)BC =
c1(t)

r2
sin(
√

5 ln r) +
c2(t)

r2
cos(
√

5 ln r),

A(r, t)SC = C̃1(t) exp[−β(I1 + I2)],

B(r, t) = βr,

where the subscripts “BC” and “SC” stand for the “boundary condition” and

“scalar curvature” respectively. I1 and I2 are given by equations (6.5.4) and

(6.5.5) respectively. For these solutions to be valid in their entirety, they both

have to be consistent with each other. This involves tweaking the various inte-

gration functions such that this consistency may be found. An important note

which requires mentioning is the fact that this assumption for the variable B will

result in the heat flux q vanishing which implies that the radiating star is being

held together by the higher order curvature terms.

A solution was presented for the third junction condition for a constant choice

for B and again, this choice causes the heat flux to vanish at the boundary.

The vital result of this chapter lies in the fact that a complete model for a five-

dimensional radiating star in EGB gravity has now been obtained for the first

time. A subsequent analysis of the physical conditions will be the subject of

future work.

The investigations presented in this dissertation and the results generated form a

paramount part of a wide selection of models which can be used in astrophysics and
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cosmology, within the frameworks of general relativity and modified gravity. Within

the context of astrophysics and the modeling of a radiating star in EGB gravity, these

investigations may be enhanced by the inclusion of the following features:

• Studying the dynamical stability of the dissipating fluid within the star in the

context of non-adiabatic gravitational collapse. To achieve this, we would require

a detailed analysis of the behaviour of the effective adiabatic index Γeff , the Weyl

tensor Cabcd and the rate of collapse Θ = ua;a.

• Including the effects of shearing anisotropic stresses in the interior radiating fluid.

This is a more general and realistic way of depicting stellar fluids in relativistic

astrophysics.

This research will be carried out in future work.
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[31] Darmois G J, Les équations de la gravitation einsteinienne, Mémorial des Sciences
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