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ABSTRACT 

The projected increase of air temperature across the globe has been associated the increased 

vulnerability of resource-poor farming communities to climate variability. Past and possible 

changes in climate trends for the study area within the KwaZulu-Natal (KZN) midlands 

sugarcane belt are presented in this study. An analysis of the climatic trend for two time-periods 

(1966-1994 and 1997-2017) is undertaken. Various analytical tools which include Expert Team 

on Climate Change Detection and Indices (ETCCDI), the Penman-Monteith model, linear 

regression and Man-Kendall (MK) test, the de-trended method, surface humidity index (SHI), 

Run’s theory, statistical downscaling method (SDSM), drought indices and a survey through 

questionnaires were applied. 

 The ETCCDI analysis showed that air temperatures during day-time have become 

warmer resulting in a decrease in the number of cool days. with night-time air temperatures 

showing an opposite trend. The Penman-Monteith model results showed a statistically 

insignificant decreasing  short-grass reference evapotranspiration (ETo) trend for the study site 

for the 1966 to 2017. The statistical downscaling results indicated an increasing trend for both 

minimum and maximum air temperature for the period of 2011-2099.  

Except for the results of extreme minimum air temperature, the results of the study are 

consistent with other climate studies conducted worldwide. Nevertheless, the findings of this 

study provide evidence that despite the general global warming observation across the world, 

there are areas that experience a paradoxical minimum air temperature trend that is often 

overlooked in global and national studies. The study also emphasizes the possible influence of 

microclimate on climate trends.  Most importantly, the study results highlight the critical role 

that individual local weather stations play in informing local farming communities and relevant 

stakeholders that are less knowledgeable about local climate change.  

Descriptive analysis based on the survey data for the study area found that the majority 

of the small-scale sugarcane farmers (69%) in the study area are poorly informed about the 

accessibility, availability and possible use of climate information. A large number of the 

participants (> 50%) have never used either seasonal climate information or climate warnings 

in their decision making. The few individuals (31%) who have received the information from 

different sources highlighted the delayed delivery of the information. Despite significant 

progress on climate modelling and possible information dissemination channels, access to 
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climate information by small-scale farmers still has not improved and many have not captured 

the substance of climate change. This finding needs a further investigation.  

The study is useful in informing land-use planning decisions based on the observed and 

projected climate trends. Through identification of possible impacts of increased extreme 

rainfall and decrease in short grass reference evapotranspiration as well as projected changes in 

air temperature and precipitation, the sugarcane farming community can determine whether 

sugarcane farming will be commercially viable under climate change conditions or determine 

sugarcane varieties that align with the detected and projected climate changes of the study area. 
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1. CHAPTER 1: INTRODUCTION 

1.1 Rationale for the research  

There is growing evidence that local climate could respond differently to climate change in 

physiographically diverse regions. This is substantiated by increasing inconsistency and 

incoherency in precipitation extreme trends among neighbouring stations (New, 2006; Mekasha 

et al., 2013). The literature also highlights that the degree of agricultural susceptibility to 

climate change hinges on diverse local environmental and management factors. KwaZulu-Natal 

(KZN) is one of the provinces with fewer weather stations compared to the rest of the provinces 

in the country. Thus, the majority of studies conducted in South Africa at a national level are 

limited to the use of data from only about five stations across the whole province (Kruger, 2006; 

Kruger & Sekele, 2013). The province has a varied climate altogether, with the north inland 

climate different from that of the south coast. Thus, the inclusion of an acceptable number of 

stations for different climate zone is always advisable to ensure that the findings are the true 

representation of the area.  

 

This study, therefore, uses data from weather stations that have not been included in the 

previous studies to investigates the effects of climate change on localized extreme weather 

events, particularly drought in the KZN midlands, South Africa. This study specifically focuses 

on a sugarcane area in the midlands, which most past studies have not included in their analysis.  

1.1.1 Background and justification for the study  

Globally, evidence shows that the mean surface temperature has been increasing since the 19th 

century (Allen et al., 2018). Over the past two decades, southern Africa’s surface temperature 

has been rising twice the rate of global temperature increase (Engelbrecht et al., 2015). This 

increase has been associated with changes in rainfall patterns and increased frequency of 

extreme weather events such as floods, drought, and wildfires. There is high confidence that 

the characteristics of extreme weather events and climate events over Africa will continue to 

change due to climate change (IPCC, 2014).  

 

A general shift from a wet condition to a drier condition has been observed in southern Africa 

(Meque, 2015). South Africa recently experienced the most severe and prolonged drought in 

the country since the 1940s, particularly for regions such as north-eastern Mpumalanga, part of 
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eastern Free State and northern KwaZulu-Natal (Swemmer et al., 2018). Although the event 

was not induced by climate change, its severity and intensity are likely to have been influenced 

by increased heat due to global warming (Trenberth et al., 2014; Vicente-Serrano et al., 2014). 

The effects of such changes in climate conditions are anticipated to have different effects across 

various regions. Different areas within South Africa can have different experiences from the 

same climate extremes. This is because the effects of specific extreme weather events are not 

only determined by the intensity and severity of the event, but also by the pre-existing 

conditions. For example, at a national scale, the 2014/15 drought was less severe compared to 

the previous drought events in the 1960s, 1980s, and 1990s (Swemmer et al., 2018). However, 

for provinces such as KZN, Mpumalanga, and Free State the 2014/15 drought events were more 

severe (Swemmer et al., 2018). Such differences are also influenced by the spatial and temporal 

variation of precipitation within the provinces. 

 

KwaZulu-Natal is characterized by a varied climate due to its diverse and complex topographic 

nature. Kruger (2006) confirmed the heterogeneity of rainfall trends across districts in South 

Africa. This heterogeneity suggests that in order to understand the increased vulnerability of 

farming communities to climate change effects owing to fewer resources (Alig & Mercer, 

2011), local studies are necessary to assist in the development of local adaptation based on local 

experiences.  

 

1.1.2 Possible changes in microclimate as global warming continues 

Different approaches have been employed to understand the changes in microclimate as global 

warming intensifies. The changes in microclimate range from variation in historical extreme 

weather trends, historical grass reference evaporation (ETo) trends and projections of future 

drought events. In addition, the strategies adopted by farmers in order to deal with such changes 

has been a serious concern.  

 

1.1.2.1 Historical drought and extreme precipitation trends 

Climate Change Detection, Monitoring, and Indices as recommended by Expert Team (ET) on 

Climate Change Detection, and Indices (ETCCDI) is one of the widely used approaches to study 

climate change throughout the world (Zhang, 2013). The indices focus primarily on climate 
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extremes derived from daily weather station data. Computations of extreme indices enable 

investigation of changes in air temperature and precipitation related extreme trends at a station 

resolution. However, until recently studies that address climate change implications have 

always been at a relatively large scale. Yet previous studies have shown that effects of global 

warming on a national level or above can conceal the effects at a field or local scale (Pielke et 

al., 2002; Shongwe et al., 2009). Mackellar et al. (2014) . In other words, the effects of global 

warming at a nation scale can hide the effects at field or local level. Kruger & Nxumalo (2017) 

provided updated analysis on the trends on rainfall and air temperature in South Africa.  

 

However, these studies did not include weather stations in the sugar belt areas of the KZN 

province in South Africa. Despite the close proximity (over 50 km apart) of the weather station 

used in these studies to the sugar belt area in KZN midlands, precipitation can vary significantly 

within a short distance. While changes in the average of climate variables may be relatively 

small, changes in the frequency and intensity of climate extremes may be larger (Jobert & 

Hewitson, 1997). Also, different weather stations in the study area indicated differences in long-

term local changes in the microclimate of the study area (Strydom & Savage, 2018). 

 

1.1.2.2 Historical ETo trends 

The differences in the long-term trends of various microclimate factors in the study site can 

have a significant effect on evaporation trends. The potential changes in evaporation demands 

as a result of global warming can have a significant implication for water resources. However, 

very few effective measurement techniques exist for monitoring actual evapotranspiration at an 

appropriate scale. Water movement to the atmosphere is quite complex as it is affected by 

temporal and spatial changes of effective parameters which include plant cover, crop-specific 

water-use efficiency, and climatic conditions (Jerszurki et al., 2017). As such empirical methods 

have become popular for estimating evaporation from crops. 

 

 The ETo is widely used as the basis for estimating crop evapotranspiration and computing 

specific crop water requirements (Kosa, 2009; Gu et al., 2017). It is defined as the evaporation 

rate of the reference crop that is free from water stress and diseases. Allen et al. (1998: pg 5) 

specifically defined reference evaporation as “the rate of evapotranspiration from a hypothetical 
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reference crop with an assumed crop height of 0.12 m, a fixed surface resistance of 70 sm-1 and 

an albedo of 0.23”.  

 

The use of ETo enables a realistic characterization of microclimate effects of a field evaporative 

transfer of water from soil-plant surfaces to the atmosphere (Tabari et al., 2016). Although there 

are several empirical methods to estimate ETo, the Penman-Monteith (PM) method has been 

recommended as the universal standard by the Food and Agriculture Organization of the United 

Nations (FAO) to determine ETo (Allen et al., 1998) at either hourly or daily times scales and 

for short-grass and tall-crop surfaces. The PM technique considers various climatic parameters 

that influence the evaporation process which includes, solar irradiance (Rs), air temperature 

(Tair), wind speed (WND) and water vapour pressure deficit based on relative humidity (RH). 

Global warming affects microclimates through subsequent changes in solar radiation, absolute 

humidity, net terrestrial radiation and precipitation which in turn influence ETo (Collins et al., 

2013). The response of evaporation to changes in Rs, WND, Tair and RH is well comprehended 

(Liu & Zeng, 2004; Kousari et al., 2012; Xu et al., 2014; Sun et al., 2017; Ma et al., 2017). 

However, the correlation of ETo with changes in rainfall is relatively unclear. Atmospheric 

humidity mainly depends on the surface moisture content that is linked to rainfall trends directly 

influences the evaporative demand of the atmosphere. The surface humidity index (SHI) 

(Hulme et al., 1992) is a useful tool for evaluating the correlation between rainfall and ETo.  

 

1.1.2.3 Climate change and projected future adverse weather events 

According to the Clausius-Clapeyron law described by Trenberth (2006), as the atmospheric 

heat increases the ability of air to hold water vapour will increase stimulating a rise in potential 

evapotranspiration. According to Penman (1956), potential evapotranspiration is defined as 

“the amount of water transpired in a given time by a short green crop, completely shading the 

ground, of uniform height, and with adequate water status in the soil profile” (Allen et al., 1998: 

pg 5). The effects of an increase in potential evapotranspiration will manifest through changing 

the hydrological cycle leading to more precipitation extremes (Trenberth, 2006; Abiodun et al., 

2017).  

 

Global and regional future predictions are conducted consistently to understand the impacts of 

climate change on the hydrological system. However, the results from either global or regional 
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studies are obtained from Global Climate Models (GCMs) or an average of meteorological 

observations (Mason et al., 1999; New et al., 2006). On the other hand, studies conducted at a 

national scale often include only a few weather stations that meet their data requirements of a 

continuous record (Kruger, 2006; Kruger & Nxumalo, 2017). This shows a gap in 

understanding the possible future climate variation in local areas, especially areas that either 

has poor climate data or lack the weather stations to provide the necessary data. As a result, 

there is still uncertainty about possible scenarios for future agriculture production under a 

shifting climate, particularly for the rural communities that depend on agriculture (Schreiner et 

al., 2018).  

 

In order to understand the impact of climate change on a local scale, downscaling GCM data to 

the finer resolution is recommended. Downscaling is the process that is used to derive fine-

resolution spatial or temporal climate information from coarse-resolution GCM data. 

Downscaling of GCM data enables identification and analysis of extreme events at a specific 

location (Wilby et al., 2002).  

 

Future predictions of air temperature and rainfall changes using different plausible scenarios 

are the basis for future drought assessment. Generally, statistical and dynamical downscaling 

techniques are used for climate change projections. However, the statistical downscaling 

method has been widely preferred (Manhood & Babel, 2012; Mtongori, 2016; Saymohammadi 

et al., 2017). Statistical downscaling is preferred because of its major advantages which include 

easy applicability of statistical downscaling (SD) to any GCM output; being computationally 

inexpensive; ability to provide site-specific information from GCM scale output; ability to 

derive variables that are not available from RCMs; and can directly incorporate observations 

into a method (Chen et al., 2011). Because of the complex climate systems which are generally 

associated with uncertainties, the use of multiple GCMs for future climate projections is 

recommended. As such scenarios from both the models provided by the Coupled Model 

Intercomparison Project (CMIP5) phase 5 (CanESM2) (Gillet et al., 2012; Stott et al., 2013) 

and Hadley Centre (HadCM3) (Johns et al., 2003; Chou et al., 2012) have been used in this 

study. The projected climate based on Representative Concentration Pathway (RCP) 8.5 and 

4.5, as well as Special Report of Emission Scenarios (SRES) scenarios A2 and B2, enables 

estimation of drought events through drought indices. Using data derived from the GCM 

projections of future precipitation and air temperature trends, drought indices can be computed. 
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Drought indices basically convert precipitation and/or air temperature data into probabilities on 

medium-terms precipitation or climatic water balance (i.e the difference between precipitation 

and reference evapotranspiration (P – ETo) records into a normal distribution with an average 

and a standard deviation of 0 and 1, respectively (Botai et al., 2019). According to the drought 

classification, a drought exists when the drought index reaches a value of -1 and below and 

should last for at least one month (Lee at al., 2017). 

 

Drought indices have been widely used for computing, monitoring and analysing drought 

patterns across the world. Both historical and projected changes in climate are believed to have 

an influence on drought occurrences as well as severity and intensity. Thus, drought indices, 

specifically the Standardised Precipitation Index (SPI) (Mckee et al., 1993) and Standardised 

Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano et al., 2010), are found useful 

for assessing the effects of global warming on drought patterns whereas statistical Run’s theory 

enables the assessment of variation of future drought characteristics. Hence with increasing 

probability of climate extremes, such as drought and floods under climate change, timely and 

effective drought projection as well as the evaluation of changes in drought characteristics has 

become an important subject. A better understanding of how different locations will be affected 

by global warming enables 1) vulnerability assessment in order to improve the ability of the 

vulnerable people to cope with climate change (Xu et al., 2020) 2) accurately modelling of 

responses of the ecosystem so as to understand the subsequent shift in the distribution of species 

due to climate change as well as to describe the resilience of species and ecosystem to changes 

in climate (Nitschke &Innes, 2008) 3) potential threats identification and 4) effective adaptation 

strategy development to increase small-scale farmers resilience and minimise possible losses 

(Adzawla et al., 2020). 

 

1.1.2.4 Access to climate information as an adaptation tool 

Climate extremes can directly and indirectly impact agricultural productivity, which raises 

concerns for the sustainability of small-scale farmers' livelihoods. It is likely that under climate 

change conditions, indigenous knowledge may not be applicable as rainfall patterns have 

become irregular. Thus, other possible ways to help farmers cope with climate change are 

needed. While most researchers believe that the use of seasonal climate information can assist 

farmers to cope and adapt to changing climate conditions, insufficient uptake and use of 
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seasonal forecasts by small-scale farmers have been reported (Vogel, 2000; Ziervogel and 

Calder, 2003; Chisadza et al., 2020). Despite the progress in assessing the impact of forecast 

use amongst small-scale and smallholder farmers, these studies have focused on ex-post 

evaluation through monitoring actual access to forecast by farmers and how farmers benefit 

from using the forecast. The limitations of these studies are that results are geographically 

restricted and cannot be scaled up.  

 

1.2 Aims and objectives  

The main aims of the research projects are discussed in this section. The objectives of the study, 

in order to achieve the main aim, are explored.  

1.2.1 Aims 

The main aim of the study is to assess historical and future extreme weather changes, 

particularly drought, within the sugarcane areas in the midlands of KwaZulu-Natal. 

The study intends to achieve the following aims: 

1. analyse the historical trends of air temperature and precipitation extremes;  

2. investigate the effects of dry conditions on the ETo trends; 

3. model the possible future changes in the KZN midlands drought characteristics; 

4. quantify the benefits of accessing climate information by small-scale sugarcane farmers to 

mitigate the prospective impacts of adverse weather. 

 

1.2.2 Specific objectives  

The specific objectives are: 

1. an analysis of historical air temperature and precipitation trends in the KZN midlands 

using the Expert Team on Climate Change Detection and Indices (ETCCDI) (Zhang, 

2013); 

2. computation of ETo using the PM method and analysis of ETo trends as well as studying 

the effects of drought on ETo using drought indices (SPI) and SHI; 

3. employ HadCM3 and CanESM2 models to simulate future changes in KZN drought 

using a statistical downscaling model and drought characteristics using Statistical Run’s 

theory  
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4. the evaluation of the access to and use of climate information to small-scale sugarcane 

farmers through the use of questionnaires to gather information on whether farmers do 

access the information or not.  

1.3 Outline of the thesis structure 

Each chapter of the thesis is independent, with the experimental chapters containing an 

introduction, materials and methods, results, discussion and conclusions sections.  

 

Chapter 2 focuses on previous research on climate change and associated impacts on 

adverse weather occurrence. The emphasis is on describing the importance of considering 

the geographically, socio-economic and vulnerability differences within the region in 

climate change impact studies. The modelling of future climate changes is also discussed.  

 

Chapter 3 is the first experimental chapter that focuses on the historical trends of air 

temperature and precipitation in the sugarcane area in the KZN midlands. Using ETCCDI 

(Zhang, 2013), air temperature and precipitation extremes from four different weather 

stations in the study site were analysed. 

 

Chapter 4 is devoted to the understanding of the annual and seasonal long-term ETo trends. 

Computation of daily ETo is presented. The correlation between dry conditions and ETo 

derived through the use of SPI and SHI is also discussed.  

 

In Chapter 5, a statistical downscaling model is utilized to model the future air temperature 

and precipitation trend for the study site. In this chapter, the simulated possible future 

microclimate data were used to detect potential drought events using drought indices (SPI 

and SPEI). Drought duration, intensity and severity based on Run’s Theory are also 

presented.  

 

Chapter 6 focuses on the accessibility and use of climate information by small-scale 

sugarcane farmers as one of the tools to mitigate and adapt to climate change and adverse 

weather conditions. Through face to face interviews and questionnaires data on access to, 

the use and the benefits of using climate information was collected and analysed.  
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Chapter 7 documents the overall conclusion of the study, revisits the aims and objectives, 

the main contribution of the research, the limitations encountered and possible future 

research.  
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Lead to Chapter 2 

In the previous chapter, the effects of global warming on climate change and the variation of 

climate across the province due to differences in terms of proximity to the ocean and elevation 

were pointed out. Thus, the importance of including local weather stations in climate change 

assessment studies is highlighted. Chapter 2, therefore, presents reviews of the climate change 

implication for South Africa, projected changes in climate, the subsequent effects of climate 

change on different climate parameters and crop yields as well as adaptation to climate change. 
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2. CHAPTER 2: HISTORICAL AND FUTURE CLIMATE PARAMETERS 

TRENDS AND IMPACT ON DROUGHT AND LOCAL FARMING: A 

REVIEW. 

2.1 Abstract  

Climate extremes, such as drought, floods and heatwaves can cause crop yield losses and 

threaten the livelihoods and food security of farming communities throughout the world. 

Although such extremes are experienced by both large-and small-scale farmers worldwide, 

there is consensus that small-scale farmers are particularly vulnerable due to their direct 

dependence on agricultural production and a wide range of challenges already facing small-

scale farmers.  

Various reports, papers, and article documents related to the observed and projected 

changes on extreme air temperature and rainfall in South Africa and other parts of the world 

are reviewed. The projected changes in drought event occurrences as well as the use of climate 

information as a coping mechanism to minimize the adverse impacts of climate extremes on 

agricultural production were also reviewed. According to the reviewed literature, there has been 

a consistent upward air temperature trend in most parts of South Africa whereas the rainfall 

trend was found to be inconsistent.  

It is widely acknowledged that ETo sensitivity to different meteorological variables 

differs from one region to another. As such, global and regional ETo trends do not follow a 

similar pattern, with global ETo showing an increase while regional ETo was found to be 

decreasing in many parts of the world. The contrasting ETo trends indicate the diverse response 

of ETo to heterogeneous climate conditions experienced worldwide.  

 The downscaling of climate data to obtain high resolution for impact assessment studies 

using Global Circulation Models (GCMs) stimulated different ideas within the research 

community. Downscaling, using either the statistical or dynamical method, is still preferable 

for assessing local and regional climate compared to the use of raw GCM output. 

Throughout the world almost all farmers, both large-and small-scale have, experienced 

climate change and are faced with the impacts. However, due to the different coping 

mechanisms and adaptation abilities, the severity of climate change impacts substantially 

differs between the two groups of farmers.  

Keywords: Drought; Downscaling Method; Climate Change and Climate Projections 
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2.2 Introduction 

The definitions of climate change, climate extremes, and drought as well as the causes of 

droughts in general are presented and the effects of climate change on the observed and 

projected drought trends in southern Africa are reviewed. The influence of increasing air 

temperature and decreasing precipitation on reference evapotranspiration are also discussed, 

given that evapotranspiration contributes towards drought occurrences. An overview of the 

observed and projected effects of climate change and drought on the different spatial scales is 

presented. National adaptation and mitigation strategies to climate change are reviewed to 

ascertain their effectiveness at a local level.  

2.3 Definitions and concepts 

2.3.1 Climate change and climate or weather extreme 

Climate change is generally described as changes in weather conditions and the distribution of 

weather compared to the long-term average conditions. These changes are not restricted to a 

specific meteorological variable but include all forms of climate deviations despite their 

physical causes (Intergovernmental Panel on Climate Change (IPCC), 2007; IPCC, 2018). 

Although climate change is often associated with anthropogenic forcing, it can also result from 

natural forcing (Cubasch, et al., 2013; IPCC, 2018). According to the fifth assessment report of 

IPCC (2014:pg 5: IPCC, 2018:pg 6), climate change is referred to “a change in the state of the 

climate that can be identified (e.g., by using statistical tests) by changes in the mean and/or the 

variability of its properties, and that persists for an extended period, typically decades or 

longer”. No universal definition exists for an extreme climate event. However, Otto et al. (2015) 

described an extreme weather event as a rare phenomenon driven by changes in external 

climatic drivers. Such changes include daily air temperature, daily rainfall, remarkably warm 

monthly air temperatures and hurricanes. These events can also be defined by the impact an 

event has on society (Easterling et al., 2000). The IPCC (2018) defined an extreme event as the 

occurrence of weather parameter above (or below) a threshold value near the upper (or lower) 

end of its observed range in a specific region. In simple terms, extreme weather events may be 

defined as exceptional and rare events at a specific location and period. These conditions can 

range from the small spatial scale (cyclones, floods) to large scale (droughts and heat).  
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Weather and climate extreme events are a result of natural climate variability and form part of 

climate variability.  Cubasch et al. (2013) indicates that climate change either as a result of 

anthropogenic or natural forcing can lead to changes in the likelihood of occurrence and severity 

of extreme and climate events. This implies that even in the absence of anthropogenic forcing 

of climate, different forms of natural weather and climate extremes would still take place. The 

implication is that anthropogenic climate change does not cause weather and climate extremes, 

rather it causes changes in the likelihood and timing of their occurrence, their magnitude, the 

spatial extent, the duration of the extremes which may lead to unprecedented extremes (Field 

et al., 2012). Also, it is difficult to know where and when an extreme event will occur as well 

as how it will occur. Some extreme events are the consequence of accumulated weather or 

climate events that are individually not considered extreme for example a continuous rainfall 

or lack of over an extended period may result in a flood and drought (Seneviratne et al., 2012) 

while others develop strictly as extreme events (e.g a hailstorm and cyclone). Hence, it is quite 

challenging to accurately predict the occurrence of weather and climate extremes.  

2.3.2 Drought  

 Drought is part of natural climate variability that takes place virtually throughout the world, 

even in high rainfall areas (Wilhite & Glantz, 1985). Drought characteristics differ both in space 

and time for different regions. Unlike other extreme events, drought usually develops slowly 

over a large area and can develop over both short periods and extended periods of various 

seasons. Because drought develops gradually, it is difficult to identify and often gets recognition 

once water-shortages are established (Wilhite & Glantz, 1985). Until there are obvious effects 

of inadequate water supply on human activity, below-normal precipitation is not perceived as 

drought (Maybank et al., 1995). Several definitions of drought have been proposed based on 

case-specific conditions. For example, Redmond (2002) defined drought as an inadequate 

supply of water to meet demands. Spinoni et al. (2014) defined drought as a temporary climate 

aberration associated with low rainfall and differs from permanent aridity. Aladaileh et al. 

(2019) defined drought as longer periods of inadequate precipitation relative to the long-term 

average for a particular area. According to Hassan Gana (2018), drought is the shortage of 

rainfall or water that affects people’s livelihood and the environment, both directly and 

indirectly. 
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Drought is among the least understood and least manageable climate phenomena affecting the 

world in recent times (Eslamian et al., 2017). Wilhite & Glantz (1985) emphasized the use of 

different definitions of drought as drought affects many sectors differently within society. As a 

result, drought is categorized into two definitions, that is, conceptual and operational. 

Conceptual drought definitions are general definitions that lack relevance to the current 

situation while operational definitions include definitions that describe the beginning, the 

duration and the end of the drought event (Hisdal et al., 2000). Operational drought definitions 

are typically classified into four categories, that is, meteorological, hydrological, agricultural 

and socioeconomic drought. These definitions provide a clear understanding of the process of 

drought occurrence and its subsequent environmental and socioeconomic impacts. Yu et al. 

(2015) emphasized that in general, drought occurrence is induced by below-normal 

precipitation (meteorological) which results in reduced soil moisture affecting crop growth 

(agricultural) and reduced streamflow and reservoir levels (hydrological) thus affecting social 

and economic activities (socioeconomic). Maybank et al. (1995) pointed out that a simple 

shortfall in precipitation does not constitute a drought event, but it must be an insufficiency that 

falls short the normal or anticipated amount.  

 

Figure 2.1:Scheme representing different categories of drought and their development  

(adapted from Van Loon, 2015) 
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2.4 Climate change over southern Africa and South Africa 

There has been ongoing research on climate-observed trends and projected trends for southern 

Africa as well as South Africa. This section reviews the previous work regarding climate change 

effects on climatic variables, particularly air temperature and rainfall at regional and national 

levels.  

2.4.1 Observed climate trends and signals of climate change 

For southern Africa, New et al. (2006) used air temperature indices calculated through 

RClimDex software (Zhang & Yang, 2004) to assess near-surface air temperature trends for 

southern Africa. An increase in hot days and warm nights were reported throughout the region, 

with hot days increasing faster (5 days decade-1) than the warm nights increase (3 days decade-

1) over 1961-2000. The study also showed that the number of extremely hot (95th percentile) 

days and nights have increased by more than 8 days decade-1). Also, Davis-Reddy & Vincent, 

2017) in their study found that warming has been noticeable in southern Africa since the 1970s 

and attributes the warming partly to air temperature increases during the summer and autumn 

months (Fig. 2.2). Jury (2013) used data from the Global Historical Climate Network (GHCN) 

for the surface air temperatures to present air temperature trends. Despite different values given 

by different models, the study indicated an upward trend of up to more than 0.4 oC year-1.  

 

Rainfall indicators across different countries have shown different results for rainfall trends in 

southern Africa. Fauchereau et al. (2003) reported that, based on the review studies on modelled 

rainfall changes under a doubled-CO2 concentration and findings of the observed changes in 

daily and seasonal rainfall, rainfall variability has changed substantially. This change showed 

an increase in interannual variability since the late 1960s. Contrary to these findings, New et al. 

(2006) reported that the overall results suggest that daily rainfall intensity has increased while 

the total rainfall and days with heavy rainfall showed a decrease. Another study also detected 

insignificant statistical evidence of substantial general wetting or drying across the region as it 

is mainly marked by a strong variation between months and years (Fig. 2.3) (Davis-Reddy & 

Vincent, 2017). Drought events are reported to have become more intense and widespread 

(Masih et al., 2014). 
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At a national level, several studies on air temperature response to the rising GHG concentration  

in the atmosphere have been conducted. For example, Hughes & Balling (1996), Kruger & 

Sekele (2013), Mackellar et al. (2014) and Kruger & Nxumalo (2017a) have investigated 

changes in past air temperature trends across South Africa. Hughes and Balling (1996) 

examined air temperature trends for urban and non-urban areas for 1885 to 1993 and reported 

that an air temperature increase in the last three decades of the study period was as a result of 

urbanization and an overall increase in regional air temperature. 

 

For 1960-1990, maximum air temperature (Tmax) increased consistently throughout South 

Africa, irrespective of the spatial scale or the location of the station (Hughes & Balling, 1996). 

Maximum air temperature showed a statistically insignificant increasing rate of 0.11 o C decade-

1 for small towns while an increase of 0.12 o C decade-1 was observed for cities. Minimum air 

temperature (Tmin) was found to increase at a slower rate of 0.07 oC decade-1 at non-urban 

stations and this increase was non-significant. Significant increasing Tmin trends were recorded 

for large cities (0.34 o C decade-1) (Hughes & Balling, 1996). 

Figure 2.2: Mean annual air temperature anomaly (°C) over southern Africa from 1900 
to 2014 with respect to the long-term average climatology 1961-1990; based on the gridded 
CRUTEMv4 data set. Red represents a positive anomaly and yellow a negative 
temperature anomaly (Davis-Reddy & Vincent, 2017). 
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 Also, Kruger & Sekele (2013) investigated extreme air temperature trends for 28 stations from 

1960 to 2009. The study employed RClimDex software to compute ten core sets of temperature 

indices as described by the Expert Team on Climate Change Detection and Indices (ETCCDI). 

These indices enable a description of specific characteristics of extremes, such as frequency, 

intensity and persistence. The analysis confirms an increase in warm extremes and a decrease 

in cold extremes. These changes were more pronounced in the western half of the country, parts 

of the northeast and east relative to other parts of the country (Kruger & Sekele, 2013). A recent 

study (Jury, 2018) also indicated that South Africa has experienced significant warming of more 

than 0.02 °C yr-1 from 1980 to 2014. On the contrary, in their more recent study, Kruger & 

Nxumalo (2017a) concluded that despite a marked increase in air temperature trends after the 

1960s at some stations, the countrywide air temperature trends show no acceleration for the 

period 1951-2015. 

 

Specifically, in South Africa, statistically significant increases in extreme rainfall have 

generally been recorded between 1931 and 1990, with major increases in the intensity of 

Figure 2.3: Mean annual rainfall anomaly (mm) over southern Africa from 1901 to 2014 
with respect to the long-term average climatology 1961-1990; based on the gridded CRU 
TS 3.23 data set. Red represents positive anomaly and blue a negative anomaly (Davis-
Reddy & Vincent, 2017. 
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extreme rainfall taking place over 1961 to 1990. Mason et al. (1999) concluded that the 

observed increase in high rainfall events cannot be attributed to global warming. For a similar 

period (1910-2004), Kruger (2006) also reported that an increase in longer dry periods due to 

increased sporadic heavy precipitation accompanied by dry periods in-between have been 

observed in some parts of the country (particularly Free State and Eastern Cape). Significant 

increases in heavy precipitation were recorded for southern Free State, Eastern Cape and some 

parts of KwaZulu-Natal. However, despite some significant changes in extreme rainfall events 

over specified areas, the largest part of the country showed no significant precipitation variation 

over the study period. Another study, which covered a relatively short period (1960-2010) 

reported mixed rainfall signals between seasons and across meteorological stations (Mackellar 

et al., 2014). The study indicated weak regional precipitation trends and emphasized that 

individual stations exhibit clear trends showing a general decrease of precipitation in autumn 

(Mackellar et al., 2014). However, due to a lack of spatial coherence in extreme precipitation 

trends, the study could not conclude whether precipitation extremes trends are increasing or 

decreasing. In order to provide updates on changes in precipitation trends, Kruger & Nxumalo 

(2017b) extended the length of the study period (1921-2015) and included more meteorological 

stations to examine general trends in annual, seasonal and extreme rainfall events in South 

Africa. The study noted that despite the evident uniformity between the individual station and 

district rainfall trends, some inconsistency exists. For 1921 to 2015, the study reported an 

increased annual rainfall in the southern interior while the eastern part showed a decrease. The 

majority of stations indicated insignificant increases in extreme rainfall while daily rainfall 

intensity continued to show a significant increasing rate.  

 

2.4.2 Climate change projections 

The rapid increase in air temperature and other evidence of climate change worldwide, 

including the associated impacts of such changes on various sectors, encourages further 

analyses of future climate (Aguilar et al., 2005; Alexander et al., 2006; Sheikh et al., 2015; 

Kruger & Nxumalo, 2017). These studies are primarily for ensuring preparedness for climate 

adaptation and mitigation by different stakeholders. The climate projections for southern Africa 

and Africa are generated from different scenarios, resolution, methods, and periods (Niang et 

al., 2014). As a result, there have been speculations that the differences in precipitation trends 
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contribute to the precipitation projections given by various Global Circulation Models (GCMs) 

(Kwon & Sung, 2019).  

 

Nevertheless, previous studies revealed that anthropogenically induced climate change is likely 

to manifest through an increase in precipitation extremes instead of changes in long-term 

average rainfall (Joubert et al., 1996). Also, climate models are found to be more consistent in 

projecting extreme rainfall events and the number of rainfall days compared to projecting 

seasonal totals (Pohl et al., 2017).  

 

However, the majority of the studies on climate projection tend to focus on the analysis of 

precipitation changes (Engelbrecht et al., 2012). For example, Engelbrecht et al. (2009) 

projected yearly rainfall variation over southern Africa and found that annual rainfall total 

changes are likely to be less than 10% and insignificant. However, for regions such as south-

western Cape of South Africa, north-eastern South Africa, and Zimbabwe, the study projects 

significant decreases in rainfall. The changes in rainfall were different from the seasonal scale, 

which showed larger and statistically significant changes over larger areas. However, some 

studies projected a pronounced decrease in the number of rainfall days, and a substantial 

increase in rainfall amounts during wet days by the end of the 21st century (Pohl et al., 2017). 

The prevalence of extreme rainfall was projected for southern Africa (Engelbrecht et al., 2012), 

with some regions expected to become generally drier, particularly Zimbabwe, Zambia and 

Angola (Engelbrecht et al., 2011). Shongwe et al. (2009) also predicted the increased 

probability of extreme wet events accompanied by delays in the start of rainfall season and early 

termination of the rainfall season in southern Africa. However, they predicted that dry extremes 

are expected over the western parts of the region. 

 

Downscaling techniques were also utilized to simulate future changes in precipitation at a finer 

spatial resolution across the region. Kalognomou et al. (2013) used ten Regional Climate 

Models (RCMs) as specified in coordinated Regional Climate Downscaling Experiment 

(CORDEX) framework to simulate precipitation (Nikulin et al., 2012) over southern Africa. 

Their study found biases between observed and the simulated seasonal variability of rainfall. 

However, after bias correction, RCMs simulated precipitations indicated drier conditions for 

the southern African region compared to GCMs (Haensler et al., 2011). 
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Air temperature for Africa, in general, is projected to increase throughout the seasons and at a 

faster rate relative to the global average during the 21st century (Collins et al., 2013). In southern 

Africa, the majority of the studies projected air temperature increases of about 3 oC by 2050 

and beyond. For example, a study for the Zambezi Basin indicates that by 2050 a maximum 

increase of 2.9 oC in air temperature is projected (Beck & Bernauer, 2011; Graham et al. (2011) 

predicted a 3 oC increase for the Thukela Catchment in South Africa for the period of 1961 to 

2100, an increase of up to 3 oC by 2050 was also projected in Zimbabwe (Mujere & Mazvimavi, 

2012) and as well as for South Africa, Swaziland and Lesotho (Hewitson & Tadross, 2011). 

The projected increase in southern Africa is expected to range between 3.5 to 4 oC by 2050 

depending on the season (Daron, 2014). However, earlier studies projected air temperature 

changes between 2 and 5 oC by 2080 and 2070s respectively (Arnell et al., 2003; Tadross et al., 

2005). Also, studies on air temperature extremes, particularly in South Africa, projected a 

warming trend. For example, Kruger et al. (2019) using dynamically downscaled data at a 

resolution of 0.44o x 0.44o analyzed the projected temperature extreme trends based on the 

ETCCDI across 22 stations in South Africa. The results indicated that South Africa is likely to 

experience a rising warm night trend (up to 2.5% of warm nights) and declining cold night 

trends (-2.5 %). This indicates that the southern African region will continue to warm until the 

end of the 21st century.  

2.5 Climate projections for high-resolution areas 

Climate projections are mainly performed using GCMs. Global Circulation Models simulate 

the behaviour of the climate system, its components and their interactions, based on the physical 

laws. Because of the large size of the climate system and the long-term period that is considered 

for climate studies, GCM results are often characterized by the spatial and temporal coarseness 

(Rummukainen, 1997). Consequently, the usefulness of GCMs results at finer resolutions is 

restricted since the course resolution prevents GCMs from simulating numerous smaller-scale 

processes and impacts of the terrain which have an influence in shaping regional to local scale 

climates. The coarse resolution also hinders their application in simulating the changing 

weather conditions and climate variability over a short-term period, both of which are very 

useful in predicting the occurrence of impactful climate extremes at regional to local scale 

(Conlon et al., 2016).  
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Even though some GCMs have proven to simulate the current atmospheric general circulation 

at the continental scales, they still show significant errors at smaller scales required for national 

and regional assessments. These errors are attributable to the inability of the models to explicitly 

represent small-scale processes (Mtongori, 2016). One way to capture the influences of weather 

systems and smaller features on the climate is to downscale GCM output. Evidence shows that 

results from high-resolution limited area models improved their accuracy and they tended to 

outperform global models in simulating extreme rainfall events (Pohl et al., 2017).  

 

 In order to obtain high-resolution projections, two techniques are commonly utilized: the 

dynamical and statistical downscaling methods. Comparison studies between dynamical and 

statistical downscaling methods suggest neither of the methods is superior as they perform fairly 

well in different regions (Hellström et al., 2001; Boe et al., 2007; Tiwari et al., 2019). This 

indicates that both approaches have comparable skills to produce regional climate data.  

2.5.1 Dynamical downscaling  

The dynamical downscaling technique is based on Regional Climate Models (RCMs). It utilizes 

nested modelling in which RCMs are driven by boundary conditions from GCMs (Giorgi et al., 

1990). The RCMs are basically the same as GCMs in terms of the formulation of the grid-scale 

dynamics and sub-scale physics and differ mainly in horizontal resolution and time-step 

(Mtongori, 2016). For RCMs to simulate regional climate, the large-scale circulation needs to 

be realized through the lateral boundary conditions (Mtongori, 2016). The RCMs are very 

useful for supplementing spatial information in the absence of long-term or evenly distributed 

observations. The drawbacks of RCMs are that they are relatively computationally intensive 

and subject to errors from the driving model. In addition, RCMs require bias correction before 

their application. Large amounts of boundary data collected previously from applicable GCM 

experiments are also a requirement for a successful application of RCMs.  

 

2.5.2 Statistical downscaling  

The statistical downscaling technique can be categorized into three: transfer function, weather 

typing and weather generator. The transfer function is premised on the concept that regional 

climate is conditioned by two factors: the large-scale forcing and regional/local physiographic 

features. The transfer function establishes a statistical relationship between large-scale 
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atmospheric variables and local climate (Wilby et al., 2002). The weather typing approach is 

based on the notion that specific local meteorological variables are linked to certain atmospheric 

circulation. It thus involves grouping local meteorological variables according to the classes of 

atmospheric circulation (von Stoch et al., 1993). The weather generator method is based on the 

modification of its parameters in relation to changes as per GCM projections (Zhang, 2005).  

 

The utility of statistical downscaling is based on four assumptions. The first assumption is that 

there is a stationarity relationship between large-scale and local variables, meaning the 

relationship that is derived from the recent climate will be the same in a future climate. In order 

to explain satisfactorily the local climate variability, there should be a strong link between the 

local variables (predictand) and the large-scale forcing (predictor). It is also assumed that long-

term high quality large-scale and local data are available to sufficiently establish robust 

relationships in the current climate and that the GCM should be able to accurately simulate the 

predictor variable (Hellström et al., 2001; Diaz-Nieto & Wilby, 2005).  

 

The major advantages of statistical downscaling are mentioned in chapter 1. However, there 

are drawbacks associated with the application of the SDM which include the failure to verify 

the stationarity assumption and the unavailability of long-term data to institute a robust 

relationship. The inconsistency of the strong predictor variables for the current climate change 

signals as well neglecting land surface forcing and generating regional climates based only on 

the atmospheric variables despite the contribution of land-use practices to the atmospheric 

conditions (Mtongori, 2016).  

 

2.5.3 Confidence in using downscaled data for impact studies  

The credibility of GCMs future climate projections at global and continental scales has been 

confirmed (Randall et al., 2007). However, GCM projections at a finer scale have been 

questioned due to the uncertainty associated with downscaling techniques. Generally, GCM 

projections are associated with uncertainties that are attributed to different sources such as 

internal and model uncertainty (Hawkins & Sutton, 2009). Downscaling uncertainty that arises 

from downscaling methods adds to the existing uncertainties and quantifying it is challenging 

(Daniels et al., 2012). Alliance (2009) suggested that the quality of downscaled scenarios can 

be jeopardised due to a failure of the downscaling method to correct GCM errors. Errors from 
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large scale projections are carried through to the regional scale irrespective of the downscaling 

process. Also, through the downscaling model - models have different characteristics that are 

not consistent with the GCMs, thus it incorporates local information. As a result, the 

plausibility, accuracy, and precision of the downscaled data are different from what the GCMs 

would provide if the spatial resolution was permitting. 

 

The confidence in the reliability of the downscaled outputs partly relies on the ability of the 

downscaling technique to simulate the baseline climate (Dibike et al., 2008). Many studies have 

been conducted to analyze the uncertainty in downscaling output due to downscaling methods. 

For example, Khan et al. (2006) assessed the uncertainty associated with different statistical 

downscaling techniques such as Statistical Downscaling Model (SDSM), Long Ashton 

Research Station Weather (LARS-WG) and Artificial Neural Network (ANN) through 

determining uncertainties in their downscaled results. The uncertainty was evaluated by 

comparing the observed monthly means and variances of daily maximum and minimum air 

temperature with the downscaled monthly mean and variances for each month of the year at a 

95% confidence interval. Their findings indicate that GCMs have different abilities in 

reproducing the uncertainty. Based on confidence interval comparison, the SDSM and the 

LARS-WG reproduced the uncertainty for the downscaled temperature quite well than ANN.  

 

The study by Dibike et al. (2008) also assessed the uncertainty associated with SDSM using 

different predictors. The study found that levels of uncertainty were not consistent across the 

predictors, indicating that uncertainty can stem from the GCM (predictor) used for simulation 

but not the downscaling method. The conclusion of the study was that the ability of the 

downscaling technique to accurately reproduce the baseline climate depends on the season and 

the location of the climate stations under consideration. 

 

 A comparison of different downscaled datasets indicates that the projected future (2071-2099) 

climates were marked by dissimilarity but the degree of the projected climate change relative 

to the baseline climate was highly similar (Jiang et al., 2018). However, Wilby et al. (2004) 

proposed that downscaled scenarios based on a single GCM or emission scenario do not equate 

to increased confidence in projections. Therefore, researchers should ensure that downscaled 

results intended to be incorporated into impact studies must have been generated from various 

downscaling methods and derived from several predictors (GCMs) ( Wilby et al., 2004); Najafi 
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& Kermani, 2017; Jiang et al., 2018). This will enable identification of uncertainties associated 

with different model structures, emission scenarios, parameterization schemes and the 

sensitivity of climate (Mtongori, 2016).  

 

Cooney, (2012) suggested that despite the efforts made to control uncertainty, uncertainty 

remains a part of climate change and it is important to be cognizant of such uncertainties and 

to make informed decisions based on them. Cooney (2012) further pointed out that uncertainty 

does not make the information useless but understanding the degree of uncertainty assists in 

making sound decisions. Daniel et al. (2012:pp 10) also pointed out that “uncertainty is not the 

same as incorrect information, nor does it mean we know too little to act”. Thus, despite the 

uncertainty associated with downscaling, downscaling techniques have additional benefits for 

climate projections because, unlike GCMs, downscaling takes local and regional climate drivers 

into account (Daniels et al., 2012). As a result, downscaling is still preferable to the use of raw-

GCM outputs in the impact studies (Vigaud et al., 2013) under certain circumstances.   

 

2.6 Effects of climate change and droughts  

2.6.1 Effects of climate change on grass reference evapotranspiration trends  

The increasing surface temperature is expected to change the dynamic interaction between 

evapotranspiration and soil water. Evapotranspiration is mostly affected by three climate factors 

independently, that is, demand-supply and energy (Zhang et al., 2015). Air temperature and 

wind speed represent the demand while solar radiation and precipitation represent the energy 

and supply, respectively. Investigations into the sensitivity of grass reference evaporation to 

variations in meteorological variables has been conducted across different regions of the world. 

The findings indicated ETo sensitivity to these factors differs from one area to another. For 

example, ETo in various climatic regions of USA proved to be sensitive to water vapour 

pressure (Irmak et al., 2006) while solar radiation and air temperature were found to have a 

great influence on ETo variation in semi-arid regions of southern Spain (Estévez et al., 2009). 

In the semi-arid regions of China, Liang et al. (2008) found that ETo was more sensitive to 

relative humidity variations and less sensitive to air temperature changes.  

 

Reference evapotranspiration plays a critical role in estimating actual crop water use. This is 

achieved through multiplying ETo by a stage-specific crop coefficient (Djaman & Irmak, 2012). 

Thus, in addition to climate variables, biological factors such as plant growth, canopy structure, 
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and stomatal processes regulate the actual evapotranspiration process (Li et al., 2012; 

Khanmohammadi et al., 2017). Xu et al. (2016) suggested that high CO2 concentrations in the 

atmosphere triggers plant stomatal closure, which in turn increases the resistance of the water 

vapour flow to the atmosphere and thus reduces evapotranspiration. Higher air temperatures 

stimulate growth rates and shorten the growing season of annual crops (Moratiel et al., 2010). 

Such changes can interfere with seasonal evapotranspiration rates. A decrease in 

evapotranspiration due to a shorter growing season was observed in Bangladesh (Mahmood, 

1997). 

 

However, as the air temperature continues to increase, the capacity of the atmosphere to hold 

moisture is expected to increase as governed by the Clausius–Clapeyron equation (Trenberth, 

2006). This will potentially increase evaporation and/or precipitation due to high 

concentration of carbon dioxide and other gases in the atmosphere (Trenberth, 1998). Global 

studies indicated that from 1982 to 2013 nearly 29% of the global land area showed a significant 

increasing evapotranspiration trend. This increase was attributed to global warming and a dry 

atmosphere (increasing water vapour pressure deficit) (Zhang et al., 2015). Over 1982 to 1997 

global annual evapotranspiration increased by about 6.1 to 8.1 mm year-1 per decade. The 

increasing trend stopped after the 1998 El Niño event due to dry conditions, particularly in 

Africa and Australia (Jung et al., 2010).  

 

Regional studies indicate contrasting trends, and this inconsistency in the ETo trends may be 

assigned to the non-uniformity effects of increasing air temperature across different regions. A 

decreasing ETo trend has been reported in China (Xu et al., 2006); and India (Bandyopadhyay 

et al., 2009), and Nebraska (Irmak et al., 2012) while an increasing trend was observed in South 

Florida (Abtew et al., 2011) and Iran (Tabari et al., 2011). The observed increase was mainly 

driven by an increase in air temperature, declining relative humidity, and increasing water 

vapour pressure deficit while the decrease was attributed to a reduction in net radiation, an 

increase in relative humidity, and a decrease in wind speed and an increase in precipitation 

which in turn reduces solar and net radiation, respectively. The contrasting ETo trend is 

indicative of a divergent response to ETo changes to climate change. 

 

The possible reason for the differences in observed ETo despite the consistent increase in 

surface air temperatures can be partly explained by the complementary relationship hypothesis 
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(Bouchet, 1963) as cited in Yu & Zhang (2009). The hypothesis suggests that a complementary 

feedback mechanism exists between ETa and ETo., particularly for large homogenous surfaces 

that have low advection of heat and moisture. It considers ETo as a function of the feedback 

mechanism between a surface with limited water availability and evaporative demand of the 

overlying atmosphere. It shows that ETa = ETo = ETw, where ETw is the wet environmental 

evaporation, for a particular environment when the surface moisture is sufficient and radiation 

energy is the only limiting factor for evapotranspiration. Under limited soil moisture, ETa < 

ETw whereas ETo increases due to an increase in sensible heat flux which heats and dries the 

atmosphere. This simply means that decreases in actual evapotranspiration which reduces water 

vapour pressure deficit and cools the atmosphere will cause an increase in the drying power of 

the air, thus ETo, (and vice versa). However, this hypothesis was proved inaccurate for regions 

at elevations beyond 1000 m asl (Yu & Zhang, 2009). In addition, Vadeboncoeur et al. (2018) 

suggested that the effects of warmer nights can counteract the increase in water vapour pressure 

deficit through an increase in daytime humidity to balance the water vapour pressure deficit. 

 

2.6.2 Effects of climate change on drought frequency, severity, and intensity 

Climate change impacts are diverse and can either be beneficial or detrimental depending on 

the economic sector, region and the period under consideration. The impact of climate change 

is projected to manifest through increased frequency and duration of hot and precipitation 

events (Dogondaji, 2013). Research on past and future spatial-temporal drought characteristics 

have been conducted on a global, national and regional scale (Dai et al., 2004; Dai, 2013; Masih 

et al., 2014; Trenberth et al., 2014; Vincente-Serrano et al., 2014). Assessments of the observed 

drought changes imply that drying may have already been progressing across the globe. Using 

the Palmer Drought Severity Index (PDSI) (Palmer, 1965), Dai et al. (2004) investigated the 

effects of surface warming on drought events. Their study discovered that dry areas have 

increased from 12 to 30% since the 1970s. However, Sheffield et al. (2012) discovered that 

previous studies have overestimated potential global drought trends as a result of climate 

change. They attributed the overestimation to the technique used to calculate ETo which only 

considers the effects of air temperature variability. Their study indicated that there have been 

minimal changes in global drought over the past six decades.  
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The recent study suggested that during a drought event, the observed widespread drying is 

primarily driven by surface warming since PDSI is smaller in the absence of heat. There is 

growing evidence that global aridity trends have been increasing and might even become worse 

under a continuous warming climate (Dai, 2013). The expansion of aridity is attributed to the 

widespread increase in evaporative demand, thus increasing ETo. Increasing ETo does not only 

cause drying in areas with below-normal precipitation but also causes droughts in areas that 

would have experienced little drying under normal circumstances (Cook et al., 2014). The 

implication is that increased heat from global warming does not necessarily result in drying but 

rather is likely to aggravate droughts when they occur (Trenberth et al., 2014). This has resulted 

in contradicting views as to whether the incidence of drought and drought severity is increasing 

under global warming or not.  

 

Despite the importance and usefulness of global studies on raising awareness of climate change 

and its possible impacts, the associated uncertainty cannot be ignored. Most global studies use 

low-resolution climate data which is highly susceptible to uncertainty owing to the 

unavailability of high-quality long-term data from ground weather stations (Vincente-Serrano 

et al., 2014). The lack of high-quality data implies that the findings of these studies are not a 

representation of the entire world but only the areas with adequate data. Regional studies 

provide evidence of increased drought severity due to increased atmospheric evaporative 

demand (Vincente-Serrano et al., 2014). Masih et al. (2014) reviewed over 100 studies to 

analyze the geospatial and temporal variation of African droughts from 1900 to 2013. Their 

study concluded that there have been widespread, more intense and frequent drought in most 

African countries over the past five decades. Also, Adisa et al. (2020) scientifically analyzed 

332 scientific publications to understand how the research on drought monitoring has evolved. 

Their findings showed that the majority of studies (75%) focus on agricultural and hydrological 

drought studies while the remaining 25% was shared among socioeconomic and meteorological 

studies. Their study also indicated that the African continent has experienced drought during 

1984, 1989, 1992, and 1997.  

 

Notwithstanding contrasting views about the past global drought trends, projection studies still 

show that drought events will become more frequent under climate change. For example, Dai 

(2013) analyzed coupled climate model simulations under intermediate future greenhouse gas 

(GHG) emissions scenarios from the Coupled Model Intercomparison Project phase 3 (CMIP3) 
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(IPCC, 2007) and the new phase 5 (CMIP5) (IPCC, 2013) to detect how drought might change 

under increased GHG concentration in the atmosphere. The study results show that warming 

has contributed towards increasing global drought areas which have risen by nearly 8% from 

2000 to 2010. Further drying over various land areas is projected due to either increased 

evaporation or reduced precipitation (Dai, 2013).  

 

Projections indicate that high ETo may consequently increase the land areas experiencing 

drying from 12 to 30% by the end of the 21st century (Cook et al., 2014). Sheffield & Wood 

(2008) employed eight models and three Special Report of Emission Scenarios (SRES) (A2, 

A1B, and B1) to investigate prospective changes of drought trends through analyzing global 

soil moisture and drought characteristics over land areas. Their study found a significant 

increase in short-term drought frequency both globally and in most regions. The frequency of 

long-term drought indicated both increases and decreases but decreases were only detected in 

small areas of high latitude. 

2.6.3 Effects of climate change on agricultural yield 

Climate plays a critical role in ensuring the attainment of the maximum potential yield of crops. 

Maximum potential yield requires that each crop and cultivar be exposed to a specified optimal 

climate variable otherwise it will be compromised. The effects of high air temperatures and 

water stress vary depending on the crops, cultivar, and environment (Fahad et al., 2017). High 

air temperatures and water stress can compromise yields through physical damages, 

physiological disruption, and biochemical changes (Wahid et al., 2007). While an increase of 

carbon dioxide concentration in the atmosphere is associated with increased assimilation and 

hence yields, a decrease in available soil water has detrimental effects on plant growth and 

ultimate crop yield (Zhao & Li, 2015).  

 

The effects of climate change on agricultural yield will be both direct and indirect. Agricultural 

yields will be directly affected through changes in climate variables while indirect impacts will 

be through changes in land suitability, changes in weeds, diseases as well as pest and insect 

infestation (Lobell & Gourdji, 2012; Zhao & Li, 2015; Lesk et al., 2016). For more insight on 

this, numerous studies have been conducted investigating how agricultural yield responds to 

changes in climate conditions. Focusing on climate extremes, Lesk et al. (2016) assessed the 

influence of extreme weather disasters on global crop production. Their study revealed that over 
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1964-2007, the average national cereal production for countries in Africa, Asia, Australia, the 

Caribbean, Europe, Latin America and North America declined by nearly 10% due to drought 

and extreme heat. Losses due to drought were mainly as a result of reduced harvested area and 

yield, whereas extreme heat only caused yield reduction. The effects of the recent past droughts 

were found to be more severe (~7%).  

 

Future projections indicate that in Africa, crop losses amounting to 30% are expected by 2080 

(Parry et al., 2004). Lobell & Gourdji (2012) pointed out that as the atmospheric temperature 

continues to increase, land suitability for crop production will increase and allow the expansion 

of agricultural production. However, the highly suitable land will decrease while moderate and 

marginally suitable land will increase (Lobell & Gourdji, 2012). Also, Bals (2008) as cited in 

Chijioke et al. (2011), suggested that agricultural land located in tropical areas of sub-Saharan 

Africa is likely to become unsuitable for crop production. Grassland areas will become less 

suitable for pastures, leading to reduced agricultural yield. The increase in global average air 

temperature will also affect agricultural yield through changes in the growing season. The 

majority of global land areas indicate a significant rise in the duration of the growing season 

which may contribute positively towards crop yields under sufficient soil moisture availability 

(Muller et al., 2015).  

 

Ray et al. (2019) found that climate change already has an impact on agricultural yields. The 

study showed that the impacts ranged from a yield decrease of 13.4% to an increase of 3.5% 

across different crops. On average, yield reduction ranged from -2551 to 982 kilograms per 

hectare per year with sugarcane showing the largest increase of 982 kilograms per hectare per 

year. Southern Africa was among the region with substantial negative impacts on agricultural 

yields from climate change (Ray et al., 2019). The increasing global yields are stimulated by 

increased carbon dioxide concentration in the atmosphere and decreases are partly attributed to 

warming trends (Lobell & Gourdji, 2012). Climate change can also indirectly influence crop 

yields through changes in fertilizer supply, diseases, and pests (Wang et al., 2018). In the 

absence of effective adaptation, an average decrease ranging between 3.1 to 6.0% is projected 

for a 1oC increase in global average air temperature by the end of the 21st century (Zhao et al., 

2017).  

 



34 

The effects of climate change are also experienced at the household level. Livestock production 

as the main asset in most households in rural communities is highly vulnerable to climate 

change and extremes. Owing to the expected decrease in grassland areas, livestock numbers 

will therefore decrease. Also, high air temperatures increase the exposure of animals to parasites 

and diseases (Furstenburg & Scholtz, 2009). In addition, extreme weather events are 

catastrophic to livestock production causing enormous losses. For example, during the recent 

past drought in South Africa livestock losses of up to 43% were recorded and total economic 

losses from the livestock exceeded R10 billion (Swemmer et al., 2018).  

 

2.6.4 Effects of climate change and drought on sugarcane productivity 

The climate change impact on sugarcane productivity is vast and diverse. However, the majority 

of previous studies tend to focus on fewer effects such as increased atmospheric CO2 levels and 

high air temperatures (De Souza et al., 2008; Vu & Allen, 2009; Allen et al., 2011; Marin et al., 

2013). The major drawback of these studies is that they do not fully consider the long-term 

effects of climate change. The impacts of climate change on the possible decrease in soil 

moisture due to increasing evapotranspiration as well as adverse effects on crop nutrients are 

still unclear for the sugarcane crop. Also, there are concerns over possibilities that existing 

studies might be overestimating the potential benefits of climate change due to the negligence 

of some climate change threats to agricultural production, such as erratic weather extremes, 

water availability limitations, and risks of diseases (Zhao & Li, 2015).  

 

The general effects of heat and water stress have been well documented in the literature (Wahid 

& Close, 2007; Inman-Bamber et al., 2012; Ferreira et al., 2017). Heat stress and drought are 

the major growth restraining and detrimental climatic factors for sugarcane. Heat stress is 

defined as an air temperature exceeding the threshold level over a long period such that it 

substantially damages the plant (Irmak, 2016). The optimum air temperature for sugarcane is 

32-33 oC, exposure to an air temperature above this adversely affects crop growth and 

subsequently reduces yield (Ebrahim et al., 1998).  

 

Sugarcane exposure to higher air temperatures triggers morphological changes such as 

reduction of total biomass, early drying of leaves, smaller internodes and increased tillering 

(Rasheed, 2009; Vu & Allen, 2009). Heat stress causes changes in the physiological and 
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biochemical processes which subsequently reduces crop growth and yield (Wahid & Close, 

2007). Heat stress affects leaf water potential despite non-limiting water supply and the 

optimum relative humidity of the air. Elevated air temperatures also affect the ripening and 

quality of sugarcane. High temperatures adversely affect the germination of the sugarcane crop, 

reduce the activity of sucrose phosphate synthase, and reduce the number of photosynthesis 

pigments (Hussain, 2018). 

 

Previous studies have employed both experimental data and crop simulation models to assess 

the observed and projected effects of the changing climate. Both experimental work and crop 

models simulation suggests a general increase in sugarcane yields under elevated CO2 

concentration and high air temperatures (De Souza et al., 2008; Vu & Allen, 2009; Marin et al., 

2013). An experimental study by Allen et al. (2011) conducted in a greenhouse at CO2 levels 

of 360 and 710 μmol -1 with four plausible air temperatures (baseline, 1.5, 3, 4.5 oC) indicated 

that the benefits of increasing CO2 concentration in sugarcane productivity exceed the expected 

10% increased for C4 plants. The study found that increases in sugarcane dry weight, fresh 

weight, juice volume as with the stem juice and sucrose are more sensitive to CO2 concentration 

increases compared to plant biomass. A study in Mexico also showed a positive impact of 

climate change on sugarcane yields (Baez-Gonzalez et al., 2018). Future predictions also 

suggest a general increase in sugarcane as the global atmospheric CO2 concentration continues 

to increase. In their studies, Marin et al. (2013) and Singels et al. (2018) using the DSSAT-

Canegro model, found that yield under dryland and irrigated areas will increase but the dryland 

yields are likely to experience larger gains due to improved water use efficiency and quickened 

canopy development. However, these studies have been criticized for their limited ability to 

completely reveal the interactions of CO2 concentration and other factors under field 

environments (Zhao & Li, 2015).  

 

The expected accelerated growth and biomass accumulation in sugarcane crop as suggested by 

crop modelling projection (Singels et al., 2018) and on pots (Vu & Allen Jr, 2009) may be 

negatively impacted by the increased frequency and intensity of extreme weather events under 

climate change conditions (Vu & Allen, 2009; Knox et al., 2010). Hussain (2018) found 

sugarcane production and yields proved to be highly sensitive to extreme weather and/or 

climate events, particularly drought. A reduction in sugarcane production ranging from 16 to 

46% was recorded in Fiji due to extreme weather events (Zhao & Li, 2015).  
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The vulnerability of sugarcane to water deficit depends on the crop growth stage (Zhao & Li, 

2015). The tillering and stem elongation stages tend to be highly susceptible to water stress 

relative to other stages (Ferreira et al., 2017). Moderate stress has positive effects on sugarcane 

crops during the maturation stage through increasing sucrose content. However, sugarcane 

cannot tolerate severe stress and drought, see Fig. 2.4, reported in Ferreira et al., (2017). As a 

result, severe stress significantly affects both cane and sucrose yield. Generally, under water-

deficit conditions, sugarcane crop responses include stomatal closure, leaf senescence, and 

reduced leaf area, inhibition of stalk and leaf growth (Inman-Bamber et al., 2012). Also, the 

increased vulnerability of sugarcane production and yield to increased diseases, insects and 

weeds due to high air temperature (Chandiposha, 2013) is not well documented in the literature. 

Yet, it has been reported that high air temperatures will increase the incidence of pests and 

diseases and are likely to introduce new pests and diseases (Park et al., 2008). In addition, the 

prevalence of extreme weather events particularly high air temperatures promotes overwinter 

pests (pests that fear and hide from cold weather) and disease pathogens (Zhao & Li, 2015). 

 

Figure 2.4: Sugarcane drought response mechanisms (adapted from Ferreira et al. 
2017).” 
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2.7 Adaptation by farming communities 

A study in South Africa revealed that climate condition presents a significant factor that affects 

rural livelihoods (Thomas et al., 2007). The subtle changes in climate such as hotter days, 

intermittent rainfall patterns and delays in the start of the rainfall season have forced farming 

communities to either adapt or collapse. The reliance of the majority of rural communities on 

farming forces them to adapt to climate change to continue with farming (Dasgupta et al., 2014). 

However, the low adaptation capacity due to insufficient information on how climate change is 

affecting their production and the possible responses to climate change increases their 

susceptibility to climate variability (Dasgupta et al., 2014). Small-scale and smallholder farmers 

across the globe have experienced the impacts of climate change through rising air 

temperatures, irregular and unpredictable rainfall and extreme weather events which adversely 

affect the crop yields, increases the incidence of pests and diseases, resulting in a loss of income 

(Belay et al., 2017; Harvey et al., 2018; Phuong et al., 2018).  

 

In Central America, a study found that virtually all the farmers participating agreed that they 

had experienced climate change and had faced the impacts of it (Harvey et al., 2018). The study 

discovered that the severity of climate change impacts experienced by farmers, their coping 

strategies as well as their adaptation needs substantially differed from one farmer to the other 

(Harvey et al., 2018). Also, Drolet & Sampson (2017) found that each of the six different 

communities included in their study experienced the impacts of climate change in a different 

manner. This may originate from the complications associated with on-farm decision-making 

including the climate change issues that need to be managed at a farm level. Evidence indicates 

that endogenous factors that substantially vary from region to region largely determine the 

community response to climate change (Duerden, 2004). In South Africa, the different 

adaptation capacities between different farming groups were also observed (Wilk et al., 2013). 

Hence, given various cultures, social history, and land-use practices within the region, 

responses to climate change are likely to be different within and between regions. 

 

 This, therefore, calls for the development of different approaches that are community-based 

and be grounded in a local community experience (Drolet & Sampson, 2017). Community-

based adaptation operates at the local level in areas that are susceptible to climate change 

impacts. It assists in identifying and developing community-based activities that improve the 

adaptation capacity of the local people (Jessica & Tim, 2009). Despite the successes of 
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community-based adaptation, concluding that they have improved the long-term resilience of 

communities is a challenge as its implementation across the region is still in its infant stages 

(Jessica & Tim, 2009).  

 

A southern African study revealed that small-scale farmers usually adapt to climate change 

through using various crop and/or crop varieties, soil conservation, planting trees and irrigation 

(Bryan et al., 2009). But, despite their perceived climate change in the region, the vast majority 

of farmers failed to adjust their farming practices accordingly. Their failure to adapt was 

attributed to limited access to credit, fertile land, and information. The study also suggests that 

wealth, access to credit, extension services as well as climate information have a major 

influence on the farmers’ adaptation decision (Bryan et al., 2009). Lack of access to climate 

information increases the vulnerability of the farmers to climate vagaries (Ezra, 2016). 

Vermeulen et al. (2012) suggested that through improved climate information services, farmers 

can improve the manner in which they deal with agricultural risks related to climate variability 

and extreme events.  

2.7.1 Access to climate information for adaptation to climate change  

“Climate services have a role to help improving farmers’ livelihoods in the context of climate 

change” (Lugen, 2016: pg 21). Climate information can substantially assist in understanding 

the prospects of climate as it has a major influence on society. It allows for the analysis of the 

extent and nature of impacts due to past and present climate experiences as well as the likely 

impacts in the future due to climate change (Niang et al., 2014). Climate information is mainly 

categorized into three groups, such as past, present, and future. Climate information that is often 

available for decision-making is mainly climate forecasts which cover various timescales such 

as, daily weather forecasts (short-range), weekly forecasts (medium-range), seasonal forecasts 

(long-range) and El Niño events (long-term) (Lötter et al., 2017). Climate information in South 

Africa is mainly issued by the South African Weather Service through different channels  

(Ziervogel & Calder, 2003). Daily weather forecasts are often disseminated through media 

sources such as television, radio, cell phones and newspaper while the seasonal climate forecast 

is issued through online sources such as e-mails and internet bulletins. Seasonal climate 

forecasts are normally supplied for a period ranging from one to six months, indicating the 

expected amount of rainfall over a particular period (Ziervogel & Calder, 2003).  
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Although this information can assist in understanding whether the season will be good for 

planting or not, the distribution of rainfall as an important aspect of seasonal rainfall is excluded 

(Ziervogel & Calder, 2003). This makes it difficult for some farmers to make use of such 

information given that they are mainly interested in knowing when they can start planting and 

the probability of crop survival throughout the season (Moeletsi & Walker, 2012). The 

implication of this mismatch between the type of information required by the prospective end-

users and the available information indicates that seasonal climate information does not address 

the needs of a particular group of end-users. Consequently, irrespective of the free access to 

seasonal climate information in South Africa over the past ten years, the uptake by small-scale 

farmers has been low (Ziervogel, 2004). In addition to the unsuitability of the information 

provided, other factors hampering the uptake and use of seasonal climate information by small-

scale farmers were identified in Lesotho (Ziervogel & Downing, 2004). These included the 

inability to understand the forecast due to the language and the technical terms used; the ill-

timed product delivery and the coarse spatial resolution of the forecast as well as the failure for 

the information to reach prospective users due to poor dissemination. 

 

A recent study in Kenya by Muema et al. (2018) analyzed factors that influence the access and 

uptake of climate information by smallholder farmers. Their results indicate that the age of the 

household head and frequent exposure to climate extremes negatively influence the likelihood 

of accessing climate information. The study also revealed that farmers who owned a radio and 

television, had access to improved seeds and household income was likely to access climate 

information (Muema et al., 2018).  

 

Attempts to improve seasonal climate forecasts have been made so as to enhance the potential 

usefulness of the local climate information to the specific end-user (Archer, 2003). The 

improvements were possible through increasing the number of meteorological stations and 

observers, ensuring that the forecast reaches the potential end-user timeously and increasing 

communication between the information providers and the public either directly or via 

stakeholders. Also, through including the feedback mechanism which allows the end-users to 

provide feedback to the forecasts providers to enable effective information dissemination 

(Ziervogel & Downing, 2004). User’s participation in producing and dissemination of climate 

information was found to be useful in ensuring that the information content is relevant and 

appropriate for their needs (Roncoli et al., 2009).  
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Regardless of the effort to improve seasonal climate forecast accessibility and usefulness, the 

weather station coverage is still very sparse (MacKellar et al., 2014). The issue of limited 

network of weather stations has been observed across the African continent. The uneven 

distribution of weather stations tends to be worse in rural areas as most stations are positioned 

in cities and towns. The existing weather stations in rural areas often lack maintenance and thus 

present poor-quality data with huge gaps of missing observations (Dinku, 2019). Dinku (2019) 

associated the sparse weather station density to a declining investment towards installing new 

and maintaining the old weather stations, social or political conflict, and challenging and remote 

geography of rural areas in Africa. 

 

Despite the perceived inutility and low uptake of climate information in southern Africa, 

climate information is still viewed as one of the key elements in addressing the adaptation needs 

to improve adaptive capacities under climate change conditions (Lugen 2016). Previous studies 

suggested that one way to mitigate the risks caused by climate change is through improving 

access to climate information and improve spatial coverage. However, for end-users to realize 

the benefits of accessing the information they have to understand and apply the information 

into their decision making (Tarhule & Lamb, 2003).  

2.8 Conclusions 

To ensure the sustainability of farming communities' livelihood and food security under climate 

change conditions, it is important to understand climate-related factors that threaten both 

agricultural yield and its stability. In this study, both historic and projected climate extremes 

and relevant aspects have been reviewed. Many researchers evaluated changes in extreme air 

temperature using ETCCDI, drought patterns through drought indices and future changes in air 

temperature and precipitation through the use of GCMs and downscaling methods. The majority 

of studies attested to the increasing air temperature and inconsistent precipitation trends 

worldwide. The existing literature indicates that climate is becoming more extreme in some 

areas suggesting that the impacts of climate change will not be uniform.   

 

 Although downscaling techniques enables analysis of climate change trend at a local scale, the 

shortage of available data present limitations and thus, currently, there is no strong evidence on 
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the microclimatic basis that extreme weather/climate events are increasing in severity and 

frequency.  

 

Despite the farming communities’ perception of climate change and their experiences of 

extreme weather and climate, adaptation to climate change continues to be a challenge. This 

may emanate from the fact that adaptation strategies cannot uniformly apply to all farming 

communities in different regions. Differences in cultures, social history and land-use practices 

across the region enforce different responses to climate change from region to region. Thus, the 

development of a community-based adaptation together with improved access to climate 

information would be the best possible way to increase farming communities' resilience to 

climate change as well as to reduce other potential losses.  
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Lead to Chapter 3 

Chapter 2 presented a review of climate change and its consequences. Several techniques that 

have been used for assessing historical climate extremes patterns were also reviewed in the 

previous chapter. In Chapter 3, the ETCCDI is utilized in order to evaluate historical extreme 

air temperature and precipitation for the study site. Chapter 3 mainly argues that extreme 

climate trends should not be generalized based on the findings from nearby stations.   
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3 CHAPTER 3: OBSERVED EXTREME PRECIPITATION AND AIR 

TEMPERATURE TREND FOR 1966-2017 WITHIN THE SUGARBELT 

AREA, KWAZULU-NATAL MIDLANDS, SOUTH AFRICA 

 
3.1 Abstract  

As the climate continues to warm, air temperature and precipitation patterns are expected to 

change throughout the world. Due to sparse automatic weather station network density across 

South Africa, studies previously conducted have included few stations for the KwaZulu-Natal 

(KZN) province and only one station for the study site. Extreme events, particularly 

precipitation can substantially vary from one station to the next within the same hydroclimatic 

zone.  

This study aims to provide insight into how extreme air temperature and precipitation 

have changed over the past 48 years, separated into two time periods (1966-1994 and 1997-

2017), in the sugarbelt area of KZN midlands. Datasets used were from four weather stations 

located in the sugarcane belt in KZN midlands. To ensure the quality of the datasets, the data 

were quality controlled using RClimDex 1.1 software. Using adjusted homogeneous datasets, 

the extreme precipitation and air temperature indices defined by the World Meteorological 

Organisation Expert Team on Climate Change Detection (ETCCDI) and Indices were computed 

using RClimDex 1.1.  

The results generally show that daytime air temperature is increasing while the night-

time air temperature is decreasing throughout the study period. As such, warm days and cool 

days are shown to be increasing and decreasing respectively. From the precipitation indices 

analysis, the study sites are shown to have been experiencing more extreme events leading to 

increases in annual precipitation totals. However, consecutive wet days and the intensity of 

continuous rainfall over 5-day periods appear to be decreasing suggesting that precipitation has 

become more extreme over the study site. The observed trend is partly consistent with results 

from similar studies conducted in South Africa. The observed precipitation changes confirm 

the projected increase in extreme precipitation as the air temperature increases throughout the 

globe. 

Keywords: ETCCDI, Extreme indices, RClimDex, Microclimate 
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3.2 Introduction 

Climate change, which often manifests as increased volatility of extreme weather events across 

the world, is a serious threat to society and the environment. The intense impacts of extreme 

weather events that have been observed and experienced by people in many parts of the world 

have stimulated increased interest in understanding and predicting changes in air temperature 

and rainfall extremes (dos Santos, 2013; Sheikh et al., 2015; Halimatou et al., 2017; Larbi et 

al., 2018; Rahimi & Hejabi, 2018; Sein et al., 2018; Popov et al., 2019). These studies concur 

with the positive trends of maximum and minimum air temperature with a significant increase 

in warm nights and substantial decreases in cold nights. The previous studies on precipitation 

indices indicate high levels of variability. These changes imply risks for human lives, 

ecosystems, and economies. Over the past 19 years (1998-2017) more than 11 thousand extreme 

events that occurred worldwide resulted in deaths of more than a half-million and losses of 

about 3.47 trillion dollars (Eckstein et al., 2018). 

 

3.2.1 Historical air temperature trends 

A range of studies on air temperature and precipitation variability have been conducted in South 

Africa. Muhlenbruch-Tegen (1992) cautions about relying on average air temperature when 

analysing the temperature variability indicating that in many cases trends in minimum and 

maximum air temperature counteract each other resulting in little evidence of trends in air 

temperature. The findings of Muhlenbruch-Tegen (1992) suggest that throughout 1940-1989, 

the average air temperature trend showed no significant changes, whereas minimum and 

maximum air temperatures showed an increase and a decrease, respectively in South Africa. 

South African air temperature trends were also investigated by Kruger & Shongwe (2004) from 

1900 to 2003. Contrary to the Muhlenbruch-Tegen (1992) findings, Kruger & Shongwe (2004) 

indicated that the majority of stations investigated showed a significant increase in annual 

average air temperature (0.13 oC decade-1). Kruger & Shongwe (2004) attests to air 

temperatures increasing at a decreasing rate given that over 1991-2003 annual average 

temperature was found to be increasing at 0.09 oC decade-1 whereas over 1960-2003 it was 

increasing at 0.11 oC decade-1. In South Africa, the study suggests a general decrease in cold 

days and nights and an increase in warm days and nights. Moreover, a study by New et al. 

(2006) indicated an increasing trend of the monthly maximum value of daily air maximum 
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temperature and a minimum value of daily minimum air temperature, suggesting a decrease in 

cold extremes.  

 

Using RClimDex software, Kruger & Sekele (2013) investigated trends in extreme daily 

maximum and minimum air temperature indices for 28 weather stations in South Africa. They 

also found that warm extremes have generally increased while cold extremes have decreased 

across South African weather stations. However, their study revealed that the annual absolute 

maximum and minimum air temperatures did not show similar behaviour to the other indices 

and thus suggested that individual extreme events are not always linked to long-term climate 

trends.  

 

An update on the South African trends of daily maximum and minimum air temperature 

extremes by Kruger & Seleke (2013) corroborated an upward trend in air temperature extremes 

except for a number of cool days and cool nights which showed a decrease for some stations. 

Recent studies (MacKellar et al., 2014; Kruger & Nxumalo, 2017; Kruger et al., 2019) confirm 

the findings of the previous studies suggesting an increase in warm temperature indices and 

decrease in cooler temperature indices. However, Kruger & Nxumalo (2017) report 

incoherencies between regional seasonal trend magnitudes with the majority of stations 

showing autumn as the warmest season. The average seasonal trend for the country, however, 

confirmed that summer is the season with the strongest warming. In their study, Kruger & 

Nxumalo (2017) also discovered that various stations within proximity showed different results 

and concluded that the results cannot be entirely attributed to climate variability and change but 

also to other factors that might have an influence on local air temperature.  

 

3.2.2 Historical precipitation trends 

Focusing only on data from South African weather stations that have not been relocated, Mason 

et al. (1999) assessed changes in the intensity of extreme precipitation events over the period 

of 1931 to 1990. The study results suggest that the large parts of the country have experienced 

rainfall with high intensity over 1931-1990. The increased rainfall intensity was, however, not 

attributed to global warming but was associated with palaeo-floods during the Little Ice Age 

that was the largest ever recorded during hydrographic records. Also, Groisman et al. (2005) 
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confirmed that intense precipitation events have become more frequent during 1906 to 1997 in 

the eastern parts of South Africa. 

 

 Extending the period of study, Kruger (2006) examined the spatial variation of extreme 

precipitation trends across South Africa for the period of 1910 to 2004. The study found an 

inconsistency in annual precipitation trends over 38 meteorological stations. However, the 

results generally showed an upward trend of days with extreme precipitation and the daily 

precipitation amount. The study showed that in spite of the increase of events with extreme 

precipitation, the annual precipitation amount showed an insignificant increase.  

 

3.3.3 Evaluation of observed air temperature and precipitation extremes in South Africa 

There have been studies evaluating observed surface temperature and precipitation extremes 

for South Africa. However, most of the studies were conducted on a national scale with a lack 

of detailed information about local patterns of climate change. Meteorological stations used in 

these studies are not uniformly distributed across the country and province. Stations are 

clustered around some areas, particularly the major metropolitan areas and often sparse in 

mountainous areas. Also, some stations do not possess long-term high-quality weather data and 

are therefore not well represented in regional studies.  

 

For example, the authors of previous studies have included few stations for the province of 

KZN in their analysis. Kruger & Seleke (2013) included only two stations that were not part of 

the KZN midlands while only one station for the KZN midlands was included in the study of 

Kruger & Shongwe (2004). Kruger (2006) highlighted the low density of weather stations in 

KZN and MacKellar et al. (2014) argued that stations within the same hydroclimatic area may 

fail to represent the heterogeneity of the area. Kruger & Nxumalo (2017) emphasizes that 

rainfall amounts across districts lack homogeneity, particularly in areas with complex 

topography. Sein et al. (2018) discourage the use of climate data from a limited number of 

stations for extreme analysis and suggest that the results can potentially indicate misleading 

climate extremes.  

 

This chapter assesses the historical trends of air temperature and precipitation in the study area. 

Unlike other studies that rely on the use of one or two commonly used indices, this chapter 
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derives strength in the sense that this study will apply a total of 17 unique indices to obtain in 

depth analysis and conclusions on the nature of extremes in the area of study. This study aims 

to provide new insights on trends of extreme weather indices, on a local scale, using observed 

daily air temperature and precipitation of the KZN midlands. The KZN midlands area was 

selected as the case study given that it is the heart of the high-quality agricultural production in 

the province and specifically, Wartburg was chosen as the study site because it's among the 

largest sugarcane producing areas within the midlands area. In addition, the study sites have 

been excluded in similar studies previously conducted in the KZN province and South Africa.  

3.3 Materials and methods 

3.3.1 Study area 

The KwaZulu-Natal province is located on the eastern seaboard of South Africa characterized 

by a subtropical climate with generally warm summers and mild winters. Compared to other 

provinces in South Africa, much of the land is cultivated, with an area of 6.5 million hectares 

suitable for farming purposes (Grant, 2016). Sugarcane production covers about 400 000 

hectares (South African Cane Growers Association, n.d.). Sugarcane is the most important cash 

crop of the province producing nearly 78% of the industry’s total production. About 91% of the 

total sugarcane production in KZN is dryland (Joubert, 2015). Hence, climate change, 

particularly dry conditions as a consequence of global warming, could adversely affect crop 

production and impact the South African economy. Dryland sugarcane has been subjected to 

adverse weather conditions over the past recent years which led to a decrease of roughly 14% 

in sugarcane production. For the 2009/10 season, a loss of about 2.64 million tonnes was 

recorded in the sugarcane industry (Singels et al., 2011) and in the 2010/11 season, the loss 

amounted to over 3 million tonnes leading to a shortfall of 51% in exports (South African Cane 

Growers Association (SACGA), 2011). This indicates the negative impact of extreme weather 

on the South African economy due to significant losses in agricultural production. 

 

3.3.2 Data and quality control 

Records of daily precipitation, maximum and minimum air temperature were obtained from 

four meteorological stations (see Table 3.1) located in the sugarbelt areas in the midlands of 

KwaZulu-Natal.  
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Table 3.1: Climate data used in this study 

Station 
name 

Latitude 
(S) 

Longitude 
(E) 

Altitude 
(m) 

Data 
period 

No. of 
data 

records 

No. of 
missing 

data 
Bruny’s Hill 29°25' 0"           30°41'0"       990 1998-2017 7305 139 

Eston 29°52' 0"            30°31'0" 785 1997-2017 8035 219 

Powerscourt 29°59' 0" 30°38'0" 630 1997-2017 8035 78 

Windy Hill          29o29'25"            30°34'17"      988 1966-1994 10592 322 

 

To be confident in the analysis of the extreme air temperature and precipitation trends, it was 

necessary to homogenize data in order to remove potential non-climatic effects. This is a key 

step because artificial change points in a data series could considerably bias the results of 

climate trends, variability and extreme (Alexander, 2016). A homogeneous climate time series 

assures that the detected variations are only as a result of climatic variation and not by changes 

in station location, observation processes, practice and instrumentation (Acquaotta & Fratianni, 

2014). Prior to homogenizing climate data, the data underwent a quality control data process 

which was carried out using the R-based software tool RClimDex 1.1 (Zhang & Yang, 2004) 

The software identifies duplicate dates, outliers, coherence between the maximum and 

minimum air temperature, and consecutive days with the same values. During the quality 

control process, incorrect air temperature data, such as minimum air temperature greater than 

maximum air temperature was detected and removed. Also, through quality control, air 

temperature outliers were identified using a standard deviation (σ) threshold of 3.5. The outliers 

which were greater than 3.5σ were validated manually by comparing their values with days 

before and after the event and with the same date at the nearest station (Aguilar et al., 2005), 

and were replaced or removed.  

 

After quality control, data homogeneity was assessed using the RHtestV4 and RHtest_dlyPrcp 

(Wang et al., 2010) which are available online at http://etccdi.pacificclimate.org. The programs 

can be used to detect multiple steps changes in minimum and maximum air temperature as well 

as precipitation which were either documented or undocumented in a time series without 

reference series (Wang & Feng, 2013). Given the high noise associated with daily series, which 

makes homogeneity test complicated (Wang et al., 2010; Wang & Feng, 2013), monthly series 

were used to identify undocumented step changes. Wang & Feng (2013) suggest that a daily 

http://etccdi.pacificclimate.org/
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homogeneity test be performed focusing on the detected monthly series step changes to test 

their significance. In this study, a similar approach was adopted to check if monthly and daily 

series change points were in agreement. In addition, to gain confidence in the detected changes, 

additional homogeneity tests such as the Pettit test (Pettitt, 1979), standard normal homogeneity 

test (Alexandersson, 1986; Alexandersson & Moberg, 1997) and Buishand range test 

(Buishand, 1982) (see Appendix 1) were used to check if they detected the same step changes 

and the significance of the detected step changes. The XLSTAT- Time Series Analysis module 

(XLSTAT V. 4.5, 2019) which contains the abovementioned homogeneity test was used. Time 

series were deemed inhomogeneous if all tests detected the same step change or if all three 

additional tests detect a similar statistically significant step change. Wang (2003) notes that if 

one intends to obtain a homogenous climate data series through the removal of bias, an 

adjustment to a trend type change in a climate series should be applied only if there is adequate 

evidence to support the change. But access to metadata can be a serious challenge given that 

significant quantities of metadata are only available in paper form and still need to be digitised 

(Venema et al., 2018). Adjustments to data were applied when it was considered necessary, for 

example, step changes that were detected during El Niño years were not adjusted as they are 

likely to have been influenced by climate while data step changes that were supported by the 

majority of the test performed were adjusted. The data that were detected to be inhomogeneous 

were adjusted through a penalized maximum F test (Wang, 2008). Specifically, a quantile-

matching technique in RHtestV4 (Wang et al., (2010) was used to adjust daily records. This 

test allows the time series to be tested without a reference series. This method was chosen due 

to the complexity of data adjustment and the unavailability of metadata from the data supplier. 

Some shifts that were detected both in the air temperature and precipitation series were common 

at the stations. Shifts that were common across the stations were not corrected since metadata 

was not available to affirm the changes and the shifts were likely to be as a result of climate 

change. 

3.3.3 Extreme indices and trend analysis 

Seventeen indices were used to assess climate change in the KZN midlands area. The selected 

indices are part of the core set of 27 indices that have been developed by the Expert Team on 

Climate Change Detection and Indices (ETCCDI) (Zhang, 2013) to standardize the definition 

and analysis of extreme. The selected indices can be classified into four categories: 
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1. Absolute indices that show maximum and minimum values within a year (TNx, TNn, 

TXx, TXn) 

2. Air temperature indices that are percentile-based representing the coldest and warmest 

deciles for both minimum and maximum air temperature (TN10p, TX10p, TN90p, and 

TX90p). 

3. Threshold-based indices are defined as the number of days on which precipitation falls 

above or below a specific threshold (RX1day, Rx5day, R10mm, R20mm, R95p, R99p, 

PRECPTOT). 

4. Duration-based indices defined as periods of excessive dryness and wetness (CDD, 

CWD) 

Table 3.2: Definition of the indices used in the study (Zhang, 2013) 
Index Descriptive name  Definition Units 

Indices of warm temperature extreme 

TXx Maximum value of daily 

maximum air temperature  

Monthly maximum value of daily maximum 

air temperature 

o C 

TXn Minimum value of daily 

maximum air temperature 

Monthly minimum value of daily maximum air 

temperature 

o C 

Tx90p Warm days Number of days when TX > 90th percentile day  

TN90p Warm nights Number of days when TN > 90th percentile day  

Indices of cold temperature extreme  

TNn Minimum value of daily 

maximum air temperature  

Monthly minimum value of daily maximum air 

temperature 

o C  

TNx Maximum value of daily 

maximum air temperature 

Monthly maximum value of daily maximum 

air temperature 

o C  

TX10p cold days Percentage of days when TX < 10th percentile  day  

TN10p Cold nights Percentage of days when TN < 10th percentile Day 

Indices of precipitation extreme 

RX1day Maximum of 1-day 

precipitation amount 

Monthly maximum 1-day precipitation Mm 

Rx5day Maximum of 5-day 

precipitation amount 

Monthly maximum of consecutive 5-day 

precipitation 

Mm 

R10mm Number of heavy precipitation Annual count of days when PRCRP > 10 mm Day 

R20mm Number of very heavy 

precipitation 

Annual count of days when PRCRP > 20 mm day  

CDD Consecutive dry days Maximum number of consecutive days with 

RR < 1 mm 

day  
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CWD Consecutive wet days Maximum number of consecutive days with 

RR > 1 mm 

day  

R95p Very wet days Annual total PRCP when RR > 95th percentile  Mm 

R99p Extremely wet days Annual total PRCP when RR > 99th percentile Mm 

 

The extreme indices were computed using RClimDex (1.1) (Zhang & Yang, 2004). The trend 

of extreme precipitation, minimum and maximum air temperature was analysed using simple 

temporal regression analysis. Trends for air temperature indices were analysed on both seasonal 

and annual bases while precipitation extreme indices were analysed at an annual scale only. 

These trends were computed for each weather station, however, simple regression was fit for 

both time series to detect the trends for both 1960 to 1994 and 1997 to 2017 (arithmetic average 

of the three stations).  

 

3.4 Results  

3.4.1 Trends in seasonal and annual extreme air temperature 

The analysis of seasonal and annual air temperature reveals a variety of changes from 1966 to 

1994 and 1997 to 2017 in the study area. The seasonal time series of minimum and maximum 

air temperature extreme over 1966-2017 showed both warming and cooling trends. Regional 

series of various extreme indices for different seasons are shown in Figures 3.2 to 3.5. For the 

autumn season (Figure 3.2), TXx, TX90p and TN10P showed an agreement of the trends 

between these two study periods indicating a statistically significant (p < 0.05) increasing TXx 

and TX90p trend and statistically insignificant (p > 0.05) increasing TN10p trend. The 

magnitude of the changes is greater for the former period compared to the recent past period. 

Over 1966-2017 TNn indicates a significant decreasing trend for the study area. Inconsistency 

in TXn, TX10p, TNx, and TN90p was observed.  

 

The regression analysis indicated a statistically significant increase in TXn and TX10p during 

1966-1994 and a statistically insignificant decrease in the same indices during 1997-2017. For 

TNx and TN90p neither periods experienced a statistically significant trend (p > 0.05).
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Figure 3.1: Temporal trends of seasonal (autumn) extreme maximum and minimum air temperature for the study area from 1966 to 2017

y = 0.1163x - 200.25
p = 0.00

y = 0.0665x - 101.3
p = 0.25

26
28
30
32
34
36

1965 1985 2005

T
X

x 
(o C

)

Year

y = 0.1081x - 199.36
p = 0.00

y = -0.0183x + 52.327
p = 0.65

9
11
13
15
17
19

1965 1985 2005

T
X

n 
(o C

)

Year

y = 0.6528x - 1282.3
p < 0.00

y = 0.2868x - 565.3
p = 0.15

0
5

10
15
20

1965 1985 2005

T
X

90
P 

(d
ay

) 

Year

y = -0.3846x + 771.85
p < 0.00

y = -0.1128x + 237.54
p = 0.22

0
5

10
15
20

1965 1985 2005

T
X

10
P 

(d
ay

) 

Year

y = -0.0745x + 154.56
p = 0.00

y = -0.0713x + 151.83
p = 0.03

2
4
6
8

10
12

1965 1985 2005

T
N

n 
(o C

)

Year

y = 0.0183x - 19.17
p = 0.48

y = -0.0303x + 78.325
p = 0.36

12
14
16
18
20

1965 1985 2005

T
N

x 
(o C

)

Year

y = 0.1909x - 368.38
p = 0.35

y = -0.3570x + 726.64
p = 0.10

0

6

12

18

1965 1985 2005

T
N

90
P 

(d
ay

) 

Year

y = 0.4403x - 861.57
p = 0.00

y = 0.3909x - 773.15
p = 0.07

0
6

12
18

1965 1985 2005

T
N

10
P 

(d
ay

)

Year



64 

   

 
 

 

  

 

Figure 3.2: Temporal trends of seasonal (winter) extreme maximum and minimum air temperature for the study area from 1966 to 2017 
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Throughout the seasons, TNx lack coherence between the two periods with 1966-1994 

indicating either a statistically insignificant (p > 0.05) increase or decrease whereas 1997-2017 

consistently shows a statistically insignificant (p > 0.05) decreasing trend. For the winter season 

(Figure 3.3), trends of TXx, TXn, TX90p, TNn and TN10P were not different from the one 

observed during autumn. However, TX10p showed a decreasing trend for both time periods. 

 

Similar trends for the spring season for all extreme air temperature indices (Figure 3.4) were 

observed with an exception of TXx which showed a statistically insignificant trend for the 1997-

2017 period and TXn which followed a warming trend for both time periods although 

statistically insignificant for the latter period. For TN10p, both time periods indicated a 

statistically insignificant positive trend during the spring season. The results for the summer 

season (Figure 3.5) suggest that the study area experienced an increase in maximum air 

temperature indices except for TX10 (cool days) which portrays a decreasing trend for both 

time periods. The TNn showed a statistically insignificant decrease over 1966-2017 while the 

other 3 indices (TNx, TN90 and TN10p) appeared to be decreasing and increasing respectively 

over 1997-2017. Despite lack of consistency in the seasonal trends of extreme air temperature 

results, these results suggest that the maximum value of Tmax (TXx), number of warm days 

(TX90), and cool nights are increasing whereas number of cool days (TX10p) and minimum 

value of Tmin (TNn) are decreasing in the study area. The regression results for annual 

maximum Tmax value (TXx) (Figure 3.6) shows that TXx is increasing at a rate 0.069 and 

0.003 oC annum-1 for 1966-1994 and 1997-2017 respectively but the minimum Tmax value 

(TXn) increase (0.094 oC annum-1) is only observed during 1966-1994 (Figure 3.6). For 1997-

2017, the study area experienced a statistically insignificant decrease (-0.012 oC annum-1) in 

TXn. The annual trends of both cool days (TX10p) and warm days (TX90p) were decreasing 

during the study periods 1966-2017. The rate of decrease during 1997-2017 (-0.119 and -0.113 

and oC annum-1) is lower than the decreasing rate during 1966-1994 (-0.280 and -0.225 oC 

annum-1). In addition, these trends were found to be statistically insignificant for the latter 

period. The minimum air temperature indices results suggest a statistically insignificant (p > 

0.05) decrease in annual maximum (TNn) and minimum Tmin (TNx) value for both time 

periods. Specifically, from 1966 to1994 (1997-2017) TNn and TNx indicated a decreasing trend 

of -0.038 (-0.029) and -0.022 (-0.049) oC annum-1 respectively. Positive trends for cool nights 

(TN10p) and warm nights (TN90p) were observed for the study area over 1966-1994.  
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Figure 3.3: Temporal trends of seasonal (spring) extreme maximum and minimum air temperature for the study area from 1966 to 2017
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Figure 3.4: Temporal trends of seasonal (summer) extreme maximum and minimum air temperature for the study area from 1966 to 2017 
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Cool nights (TN10p) were found to be statistically increasing at 0.365 and 0.405 oC annum-1 

for 1966-1994 and 1997-2017 periods respectively while cool days (TN90p) were increasing at 

0.092 oC annum-1 for the former period. For 1997-2017, TN90p was found to be decreasing at 

-0.010 oC annum-1, however, this trend for TN90p was found to be statistically insignificant (p 

> 0). 

3.4.2 Trends in annual extreme precipitation indices 

Figure 3.7a-i shows the regional average of precipitation indices from 1966 to 2017 for the 

study area. During 1966-1994, the maximum number of CDDs showed a positive significant 

trend of 0.797 days annum-1, while the maximum number of CWDs was found to be decreasing 

insignificantly at -0.036 days annum-1. From 1997 to 2017, a statistically insignificant (p > 

0.05) decreasing trend of -0.479 and -0.025 days annum-1 was observed for both CDD and 

CWD respectively. 

The regression analysis of regionally averaged CDD and CWD during both time periods 

indicates that the highest number of CDD (93.3 days) was observed in 1998 followed by 88 

days in 1993. The years with the highest number of CDDs coincide with the previous El Niño 

years (1992-1993 and 1997-1998) in South Africa. The study results indicate that the highest 

number of CWD (10 days) was observed over the 1966-1994 period suggesting a reduced 

temporal rainfall distribution. The number of days with precipitation greater than 10 and 20 mm 

(R10mm and R20mm) showed a statistically significant decrease in both indices over the 

former period and an increase over the 1997-2017 period. A statistically significant (p < 0.05) 

increase of 0.341 days annum-1 between 1997-2017 was observed for R10mm whereas a 

statistically insignificant increase of 0.126 mm annum-1 was observed for R20mm over the same 

period. 

 

Despite the increasing R10mm and R20mm over 1997-2017, the maximum number of days 

with heavy precipitation (R10mm and R20mm) was found in 1978 (49 days) and 1973 (20 days) 

respectively. The results suggest that although the study area appears to be experiencing heavy 

precipitation in the recent past years, their magnitude has not exceeded that previously 

experienced.
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Figure 3.5: Temporal trends of annual extreme maximum and minimum air temperature for the stud area from 1966 to 2017 
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As was the case with the increase in R10mm and R20mm during 1997-2017, the maximum 

amount of rainfall over 1 day (Rx1day) and the maximum amount of rainfall over 5 days 

indicated a statistically insignificant increasing trend over the same period. Rx1day and Rx5day 

showed a positive trend of 0.1738 and a negative trend of -0.337 mm annum-1 respectively 

during 1997-2017.  

 

The regression analysis results showed that Rx1day and RX5day are in accord with the 1987 

floods that were experienced in Pietermaritzburg. The study results indicate that for the study 

site Rx1day and Rx5day reached an amount of 248 and 455 mm respectively during 1987. Over 

the recent past (1997-2017) the highest amount of rainfall over a day and 5 days only amounted 

to 104 mm (1999) and 131 mm (2011) respectively. Very and extremely wet days (R95p and 

R99p) also showed a statistically insignificant decreasing trend during 1966-1994 and an 

increasing trend during the latter period. The trend of very wet and extremely wet days was 

increasing at 8.421 and 7.404 mm annum-1. However, the extremely wet days (R99p) positive 

trend was statistically insignificant. Annual precipitation total showed 1966-1994 a statistically 

significant (p < 0.05) decreasing trend whereas during 1997-2017 a statistically significant  
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(a) (b) (c) 

(d) (e)  (f) 

( g)  (h) 
 
 (i) 

Figure 3.6: Trend for regionally averaged precipitation indices over the study area for 1966 to 2017. (a) CDD; (b) CWD; (c) R10mm; (d) 

R20mm; (e) Rx1day; (f) Rx5days; (g) R95p; (h) R99p; (i) PRCP
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(p < 0.05) increasing trend of 11.693 mm annum-1 for the study was observed. The results 

suggest that the latter period is confronted with an increased frequency of extreme 

precipitation. 

 

3.5 Discussion 

3.5.1 Seasonal and annual variation of absolute temperature extremes trends 

The study investigated the variability of extreme weather for the study area within the 

sugarcane belt of the KZN midlands.  The study findings showed that extreme temperature 

trends over the study period are not consistent between seasons. However, some similar 

seasonal tendencies from season to season were found to exist.  The differences in the length 

of the dataset for the former period might have contributed to the inconsistences between the 

two study periods. This is particularly because during the 1966-1992 period dry events were 

more prevalent, hence a strong increase in temperature extreme trends relative to the latter 

period. Also, the decreases during the 1997-2017 period might be as a result of the prevalence 

in rare low temperature events that were projected to increase in areas of high latitudes (Collins, 

et a., 2013).  

 

The findings presented by this study partly agree with similar studies previously conducted in 

South Africa. While a general increase in extreme air temperature indices (TXx, TXn, TNn, 

and TNx) has been previously reported for South Africa, the study results confirm that monthly 

maximum value of daily maximum air temperature (Txx) is increasing throughout the seasons 

except for spring where a decrease is observed for the period of 1997-2017. The annual time 

series for TXx also display an increasing trend for both time series confirming that maximum 

air temperature values are increasing in the study area. The increasing maximum air 

temperature values have been reported across the globe (Halimatou et al., 2017; Aguilar et al., 

2005; Larbi et al., 2018). Minimum air temperatures are reported to show significant increases 

in many parts of the world; the study results suggest the decreasing trend of the coldest day 

trends throughout 1966-2017 indicating that the coldest day of the year (TNn) is becoming 

colder. Also, cool nights have been increasing at 0.365 and 0.405 oC annum -1 for 1966-1994 

and 1997- 2017 respectively. However, this paradox has also been observed at a nearby station 

(Kruger et al., 2019). Given the reported general warming throughout the world, it becomes 

difficult to explain the possible reason behind this paradox. However, it is fair to suggest that 

the prevalence of frost in high altitude (> 800 m) areas is likely due to frequent colder nights. 
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Furthermore, the most severe frost that occurred in 2014 might have contributed to relatively 

low TNn values (Ramburan et al., 2015). In addition, the decreasing trend of TNn can be 

explained by the fact that extreme events are represented by specific events on an annual basis. 

Thus the magnitude of particular events may not reflect the general warming in the time series, 

specifically for short-term series (Kruger & Sekele, 2013). Also, the TNn results might confirm 

the possibility of the contribution of other factors than climate variability and change to the 

decreasing TNn (Kruger & Nxumalo, 2017). For example, recent prevalent drought 

occurrences in the study site might have contributed to the decreasing TNn considering that the 

absence of clouds and sufficient water vapour to enhance downward longwave radiation. In the 

absence of clouds which act as an insulator for night-time temperatures, the surface tends to 

lose heat more efficiently. This, therefore, suggests that dry conditions increase maximum 

temperatures but decrease minimum temperatures, and hence increase the DTR. Variability of 

TXn and TNx displayed temporal incoherency in almost all the seasons. Over 1966-1994 a 

clear upward TXn trend was observed across all seasons whereas a negative trend is shown for 

autumn and winter during 1997-2017. Subsequently, annual variations for TXn show that the 

monthly minimum value of maximum air temperature has been increasing (decreasing) over 

the first period (1997-2017). Similarly, the maximum value of minimum air temperature (TNx) 

showed a negative slope for the second period. This implies that there is a substantial decrease 

in both higher and lower values for minimum air temperature for 1997-2017. 

 

 Decreasing minimum air temperature results were reported in Mexico (Lopez-Diaz et al., 

2013) and the decreasing Tmin trend was attributed to less effective infrared incident radiation 

since less infrared radiation is trapped by the surface owing to inadequate atmospheric water 

vapour, resulting in radiation frost (Lopez-Diaz et al., 2013). A clear upward TXn trend can be 

explained by the findings of Kruger & Shongwe (2004) who reported that a pronounced 

increase in air temperature during the early ’80s was likely to contribute towards the general 

increase in average air temperature in South Africa. The rise of cold nights and warm days 

detected in the recent past indicates the misleading results from mean air temperature analysis.  

3.5.2 Seasonal and annual variation of percentile temperature extremes trends 

A similar pattern of increasing TXx and decreasing TNn is apparent in the variation of warm 

days (TX90) and cool days (TX10p) and well as warm (TN90p) nights and cool nights 

(TN10p). TX90p and TX10p showed an increasing and decreasing trend throughout the 

seasons for the entire study period. The positive trend of warm days was also found (Kruger & 
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Sekele, 2013) in a nearby station and South Africa in general from 1962 to 2009. However, 

similar studies conducted recently in South Africa (Kruger & Nxumalo, 2017; Kruger et al., 

2019) showed that a station nearby the study site displayed no trend over 1931-2015 and 1951 

to 2005 respectively. Nevertheless, the study results suggest that warm day increase is more 

profound during the winter season at a rate of 0.49 days annum-1 followed by summer season 

at 0.27 days annum-1 over 1997-2016. An increase in warm days during the winter season 

means a possible reduction of frost occurrence and hence improves the production of sugarcane 

in the study area. Warm days due to high air temperatures coupled with a dry atmosphere 

(Strydom & Savage, 2018) promote evapotranspiration rates which could be detrimental to 

dryland farming relying on limited water sources. Several studies across the globe have 

confirmed that night-time air temperatures are increasing at a higher rate causing a substantial 

decrease in cool nights (Alexander et al., 2006; Donat et al., 2013). The TX90p results are 

consistent with TXn results indicating that warm nights are increasing over 1966-1994 and 

decreasing over 1997-2017. These results partly confirm the findings (Kruger & Shongwe, 

2004) which reported a slow increase in average air temperature (0.01 oC) over 1991-2003 

relative to an increase of 0.04 oC over 1960-1990. Despite the temporal coherency between two 

time periods under study, the TN10p results do not, however, correspond to the findings of 

similar studies in South Africa. A clear upward trend of TN10p, although statistically 

insignificant was observed over the entire study period. These findings suggest that the study 

area has been experiencing cooler night-time air temperatures. Previous studies associate the 

increase in TN10p with the reduction in night cloud cover (Revadekar et al., 2013). From this 

study, it can be concluded that for the study area, major decreases in TNn, TN90 and TNx 

occur in autumn and summer respectively whereas major increases in TXx, TX90, and TN10 

take place in winter.  

 

Increasing maximum and decreasing minimum air temperatures widen the range of diurnal 

temperatures. There have been reports that crop yields are negatively correlated to a large range 

of diurnal temperature due to water and heat stress induced by hot days (Lobell, 2007). 

Decreased air temperature either during daytime or night-time causes deterioration in the 

carbon budget (Uehara et al., 2009). Given that sugar yield is determined by the high sucrose 

concentration and stem fresh weight, a poor carbon budget tends to restrict stem growth and 

sucrose concentration in sugarcane (Uehara et al., 2009). Thus, low temperatures either 

occurring during the day or the night are associated with poor stem elongation and decreased 

fresh stem weight.  
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3.5.3 Annual variation of extreme precipitation trends 

It has been confirmed that the consequences of climate change would be felt primarily through 

changes in precipitation patterns. As air temperature increases due to increased concentration 

of greenhouse gases in the atmosphere, the water-holding capacity of air also increases 

resulting in greater moisture content in the atmosphere (Trenberth, 2011). High atmospheric 

content in conjunction with warmer near-surface temperature is likely to increase global 

precipitation (Fowler & Hennessy, 1995). This study confirms a significant increase in total 

precipitation over 1997-2017 for the study site. The increase in precipitation was projected to 

be achieved through significant increases in the frequency of extreme rainfall events (Mason 

& Joubert, 1997), meaning increases in rainfall per day, instead of increases in the number of 

rain days. Mason et al. (1999) attested that over half of the country has experienced a significant 

increase of intense rainfall events since the 1930s. Recent similar studies showed that the 

indices of total extreme rainfall (R99 and R95) for the KZN province displays an insignificant 

upward trend (MacKellar et al., 2014; Kruger & Nxumalo, 2017). Also, this present study 

confirms that the study area experienced a statistically insignificant decreasing trend for the 

1966-1994 time period and a significant upward trend for the latter time period. Similar results 

were observed for Rx1day although not significant. The results of R10mm and R20mm also 

displayed similar significant trends, indicating an increased frequency of days with rainfall 

greater than 10 and 20 mm. However, the highest amount of rainfall received over a 

consecutive 5-day period (Rx5day) appears to be decreasing during 1997-2017 suggesting that 

the magnitude of continuous rainfall is decreasing in the study area. The statistically 

insignificant decreasing trend of the amount of 5-days rainfall for the study site over 1997-

2017 demonstrates the increase in extreme precipitation events. The results of this study, 

however, are not in agreement with some previous studies (Kruger & Nxumalo, 2001; Kruger 

et al., 2019) who reported an insignificant decrease in R10mm, R20mm and total annual 

rainfall. 

 

Theoretically, a decrease in consecutive dry days (CDD) would imply that consecutive wet 

days (CWD) are increasing. However, temporal changes in the CDD and CWD trends are not 

coherent, particularly for the 1997-2017 period as both indices show a statistically insignificant 

decreasing trend despite that the CDD decrease was more pronounced than the CWD decrease. 

The results are consistent with the previous study conducted at the national level using the 

nearby station (Kruger & Nxumalo, 2017) which indicated an insignificant decrease in both 

indices over 1921-2015. The decrease of CWD can be explained by the increase in extreme 
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daily rainfall which is believed to be occurring at the expense of continuous moderate and light 

precipitation (Trenberth, 2011).  

 

Despite the significant increase in total annual precipitation trend, the temporal distribution of 

this rainfall is concerning given the increase in RX1day and R95 which are indicative of high 

rainfall amounts being received over a relatively short time period. The amount of rainfall 

received through heavy rains over a short period of time is often less beneficial to dryland 

farming because the timing, amount and distribution of rainfall during the farming season play 

a crucial role in the productivity of dryland farming. There are several long-term and short-

term negative effects that are associated with high rainfall intensities. High intense precipitation 

can increase the rate of soil erosion (Mohamadi & Kavian, 2015) and loss of soil nutrients 

which in turn decreases soil fertility and productivity (Fraser et al., 1999). Sugarcane crops are 

particularly sensitive to precipitation patterns given that each phase of the crop growth has 

specific climate requirements. High rainfall during the ripening period has been proved to be 

unfavourable for sugarcane crop (Malik & Tomar, 2003). 

 

3.6 Conclusions 

The study found a statistically insignificant increase in the extreme maximum air temperature 

trend for the study site for 1966-2017 and the results partially correspond to similar studies 

conducted at a national scale using a few weather stations. More warm days (TX90p) and fewer 

cool days (TX10p) have been experienced for the study period. Unlike previous studies that 

indicated a pronounced air temperature increase in autumn, this study showed that major 

increases in maximum air temperature occurred during winter indicating that the cooler season 

is becoming warmer. However, extreme minimum air temperature trends exhibited a different 

trend compared to previous studies. Minimum air temperature showed a decreasing trend 

causing an increase of cool nights (TN10p) and a decrease of warm nights (TN90p). Although 

previous studies found a decrease in TN10p and an increase in TN90p, a decreasing trend of 

TNn which is consistent with an increase in cool nights was observed for the study sites. The 

observed decreasing minimum air temperature trend can be attributed to microclimate 

influences. Also, considering that the study used a dataset of 26 and 20 years, it is possible that 

the results are indicative of a natural decadal variability rather than anthropogenically forced 

climate change. However, contrary to the study findings the general global warming 

observation may be indicative of the areas that experience a paradoxical minimum air 
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temperature trend across the globe which are often overlooked in global and national studies. 

The findings of this study, therefore, conclude that the study sites are amongst those few 

regions that experience paradoxical trend despite the observed general increase in air 

temperature across the country. This suggests that local climate conditions might be 

experiencing a different air temperature trend and thus need further investigation. 

 

Despite the inconsistent findings of minimum air temperature, precipitation variation displays 

an apparent increasing trend of extreme precipitation events during 1997-2017. The 

precipitation findings are consistent with the previous similar studies in South Africa. 

However, substantial differences have been observed between the results observed from a 

weather station located in Wartburg and the nearby station often used to represent KZN 

midlands for climate change studies. This study concludes that due to inconsistency of the 

results between the study site weather stations and the nearby station, the vulnerability of 

farming communities to climate change can be underestimated or overestimated through using 

the nearby station.  
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Appendix 1 
Table 3.3: Detected change points using different homogeneity tests for various stations.  

Test Bruny’s Hill Detected Change Point  
 Tmin p-value Tmax p-value Precipitation  p-value 
RHtestV4 1998 & 2015 < 0.05 None < 0.05 2007 < 0.05 
Pettit 2007 0.05 2006 0.80 2005 0.00 
STD normal Homogeneity 
test 

2007 0.06 1999 0.45 2005 0.10 

Buishand range  2007 0.02 2006 0.24 2005 0.05 

  Eston Detected Change Point  
RHtestV4 None < 0.05 1998 < 0.05 2003 < 0.05 
Pettit 2010 0.89 2002 0.52 2013 0.62 
STD normal Homogeneity 
test 

2010 0.66 1997 0.03 2017 0.82 

Buishand range 2010 0.32 2002 0.20 2013 0.86 
  Powerscourt Detected Change Point  
RHtestV4 1998 < 0.05 None  < 0.05 2003 & 2010 < 0.05 
Pettit 2007 0.49 2000 0.57 2005 0.28 
STD normal Homogeneity 
test 

2017 0.25 1997 0.03 2005 0.38 

Buishand range 2007 0.74 2001 0.27 2005 0.14 
  Windy Hill Detected Change Point  
RHtestV4 1985 < 0.05 1992 < 0.05  < 0.05 
Pettit 1986 0.92 1984 0.00 1989 0.27 
STD normal Homogeneity 
test 

1986 0.09 1984 0.00 1991 0.11 

Buishand range 1886 0.04 1984 0.00 1981 0.18 
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Lead to Chapter 4 

Historical air temperature and precipitation trends were probed in Chapter 3. In Chapter 4, ETo 

changes due to historical climate change conditions are analysed. The PM technique is used to 

quantify ETo for the study period. The influence of specific climate parameters on the ETo 

trend is examined using the de-trended method.   
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4 CHAPTER 4: REFERENCE EVAPORATION AND DROUGHT 
PREVALENCE UNDER CLIMATE CHANGE CONDITIONS IN THE 
WARTBURG AREA OF THE MIDLANDS OF KWAZULU-NATAL, 

SOUTH AFRICA 

4.1 Abstract 

 Climate change reality is widely recognised and its effects are becoming apparent in many 

parts of the world. Changes observed include rainfall variations, increased air temperatures and 

prevalence of climate extremes (droughts and floods). Evaporation is expected to reflect these 

changes. Due to the susceptibility of the African continent to dry conditions under climate 

change, understanding the response of reference evaporation to drought is essential.  

This study, therefore, aimed to 1) analyze the seasonal and annual ETo trends in the 

KwaZulu-Natal midlands area of South Africa for the period 1966-2017 using a linear 

regression model, 2) quantify the contribution of each meteorological variable towards the ETo 

variability, 3) identify wet and dry years using the Standardized Precipitation Index (SPI) and 

analyze the magnitude of change during dry years relative to wet years, and 4) evaluate the 

correlation between drought and ETo using the Surface Humid Index (SHI) and the Pearson 

correlation coefficient.  

The results indicate a generally statistically insignificant decreasing ETo over the period 

studied. The climate variables analyzed indicates an average decreasing trend in wind speed, 

solar irradiance, and relative humidity while average air temperature exhibited no significant 

change. Relative humidity and solar irradiance were found to have a significant influence on 

ETo variation. The results indicated that ETo increases during dry years and decreases during 

wet years. The magnitude of change analysis indicated that during drought, ETo increases at a 

faster rate relative to wet years. However, this only occurred at the beginning of a drought event 

with ETo decreases as the rainfall deficits intensify. The correlation analysis exhibits a negative 

relationship between rainfall and ETo, suggesting that ETo decreases as the SHI increases. The 

correlation analysis using the Pearson correlation coefficient indicates that SHI has a 

significantly negative correlation with ETo (r = -0.6 4, p < 0.05) and has a significantly positive 

correlation with precipitation (r = 0.95, p < 0.05). A negative significant correlation was also 

observed between ETo and precipitation (r = -0.40, p = 0.05). The study results conclude that 

although high evaporative demand during dry years resulted in increased ETo, low water vapour 
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pressure deficit as a result of adequate precipitation also resulted in an increase in ETo to a 

certain extent. 

Keywords: Drought events, Penman-Monteith, SHI, SPI 

4.2 Introduction 

Temporal changes in climate factors such as precipitation and air temperature have been 

observed throughout the world. As such, evapotranspiration is expected to respond to these 

changes. Different approaches have been adopted to understand the response of reference 

evaporation (ETo) to climate change as well as relative changes of each climate variable on 

ETo. Sensitivity analysis has been extensively used to study the sensitivity of ETo to the 

changes of key climatic variables (Hou et al., 2013; Du et al., 2015; Patle & Singh, 2015). Other 

studies have been conducted to assess the response of ETo to climate change and global 

warming (Liu et al., 2010; Wang et al., 2012; Gao et al., 2017). Although it was generally 

expected that global warming would increase evaporation (Trenberth, 2011), previous studies 

have reported a significant decrease in pan evaporation and reference evaporation in many parts 

of the world. For example, decreases in reference evaporation were reported in Australia 

(Roderick & Farquhar, 2004), China (Xu et al., 2006), South Africa (Hoffman et al., 2005), 

India (Bandyopadhyay et al., 2009) and sub-Saharan Africa (Marshall et al., 2012). These 

decreases can be attributed to the fact that the evaporative process is governed by both radiative 

and aerodynamic components.  

 

4.2.1 Background of ETo 

Evapotranspiration is an essential parameter which not only determines crop water 

requirements and evaporative demand of the atmosphere but also plays a key role in irrigation 

scheduling, regional water allocation (Sun et al., 2017), as well as the energy balance of the 

earth-atmospheric system (He et al., 2017). Evapotranspiration (ET) is used to describe two 

different processes, that is, evaporation (E) and transpiration (T). Evaporation refers to a process 

in which water evaporates from the soil or surfaces of the plant while transpiration involves the 

change of liquid water contained in plant tissues into water vapour in the atmosphere (Allen et 

al., 1998). Evapotranspiration is described in three different concepts: actual evapotranspiration 

(ETa), potential evapotranspiration (ETp) and reference evaporation (ETo). In the literature, 
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ETp and ETo are used interchangeably, which causes confusion. For example, Chen et al. 

(2005:pg 123) defined ETo as “the potential ET of grass”. Hence it is important to emphasize 

the difference between these concepts. Potential evapotranspiration was first introduced in 1948 

and Penman (1956) defined it as “the amount of water transpired in a given time by a short 

green crop, completely shading the ground, of uniform height, and with adequate water status 

in the soil profile” (Wang et al., 2012; pg 2) and adequate nutrients. In the 1990s, a standard 

and formal concept of ETo was introduced with detailed land-surface conditions as “the rate of 

evapotranspiration from a hypothetical reference crop with an assumed crop height of 0.12 m, 

a fixed surface resistance of 70 s m-1 and an albedo of 0.23” (Allen et al., 1998: pg 5). Although 

ETp and ETo may appear to possess similarities, Allen et al. (1998) discouraged the use of ETp 

when referring to ETo due to the lack of clarity in its definition. 

 

4.2.2  Different techniques for ETo estimation 

ETo expresses the atmospheric evaporating demand at various locations and times of year 

without taking into consideration crop characteristics and soil factors. Only climatic factors 

such as solar irradiance, air temperature, relative humidity and wind speed have an effect on 

ETo (Allen et al., 1998) in addition to the assumed fixed surface resistance. Various methods 

ranging from physical to empirical are used to estimate reference evaporation (Chen et al., 2005; 

El & Abdrabbo, 2015; Lang et al., 2017). Popular methods that are generally used include class-

A pan, FAO P-M, Priestley–Taylor, Hargreaves, Blaney-Criddle, and Thornthwaite methods. 

The widely used method for the estimation of ETo is the Penman-Monteith method (Hou et al., 

2010; Łabędzki et al., 2011; Gu et al., 2018) as the sole technique recommended by the Food 

and Agriculture Organization of the United Nations (FAO) to determine ETo (Allen et al., 1998) 

at either hourly or daily times scales and for short-grass and tall-crop surfaces. 

 

4.2.3 Climate change influences on ETo 

Global circulation model predictions indicate the high probability of dry periods in many parts 

of Africa under climate change conditions (IPCC, 2012; Jury, 2013; Kusangaya et al., 2014; 

Naumann et al., 2018). Of particular concern is the likely increase of ETo due to increased heat 

which can conceivably accelerate drying and heating of the soil surface resulting in the 

depletion of soil moisture. As the soil surface warms, the atmospheric demand for water vapour 
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is likely to increase. If the atmospheric moisture is not sufficient to support the increase, the 

aridity would intensify. However, given that ETo is independent of the soil surface and 

precipitation, there is a lack of an in-depth consideration of the correlation between precipitation 

and ETo, particularly in South Africa.  

4.2.4 Observed ETo trend and causal factors 

Numerous studies have been conducted across the world to understand the effects of 

meteorological factors variation on ETo changes (Xu et al., 2006; Bandyopadhyay et al., 2009; 

Marshall et al., 2012; Ma et al., 2017). In South Africa, Hoffman et al. (2011) studied the 

changes in pan evaporation, rainfall, wind run, air temperature and water vapour pressure deficit 

in Cape Floristic region over 1974 to 2005. Their study found a significant decrease in pan 

evaporation and partly associated the decrease with the observed significant wind run. Also, 

Tongwane, et al. (2017) investigated seasonal variation of reference evaporation in the eastern 

Free State of South Africa. They found that water vapour pressure deficit greatly influences 

ETo in the eastern Free State.  

 

Despite the fact that these studies provide useful information on the response of ETo to the 

abovementioned changes, the inconsistencies in terms of the effect of major meteorological 

factors’ condition on ETo trends across different parts of South Africa in particular, highlights 

that variation in ETo is mainly regulated by micro-climate conditions. This, therefore, 

necessitates an analysis of ETo trends at a local scale in order to consider local land use, land 

cover, topography aspects and other related factors. However, due to a sparse network density 

for microclimate measurements, understanding changes in microclimate parameters and its 

influence on other related elements becomes a challenge and hence a dearth of recent studies 

investigating the changes in ETo, specifically in South Africa, as climate conditions change.  

 

This study, therefore, investigates and addresses the gap in knowledge by 1) analyzing the 

seasonal and annual ETo trends in the KwaZulu-Natal (KZN) midlands for the period of 1966-

2017 using linear regression analysis; 2) quantifying the contribution of each meteorological 

variable towards the ETo variability using a detrending method; 3) identifying historical wet 

and dry years using the Standardized Precipitation Index (SPI) (McKee et al., 1993) and 

analyzing the magnitude of change during dry years relative to wet years using regression 
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analysis; 4) evaluating the correlation between drought and ETo using the Surface Humid Index 

(SHI) (Hulme et al., 1992) and the Pearson correlation coefficient. 

4.3 Materials and method 

4.3.1 Study area 

The province of KwaZulu-Natal is situated on the eastern seaboard of South Africa and has a 

geographic area of about 92180 km2 which represents 7.6% of the country’s total geographic 

area. It is the province with the second largest population, approximately 11.3 million people, 

19.2% of the country’s total population. It is characterized by a diverse landscape that is 

classified into highland and lowland regions with an altitude that ranges between 1000 and 3300 

m, and 400 to 1000 m above sea level respectively. This diverse topography exerts a major 

influence on the climate and local weather, resulting in higher areas in the north and west being 

cooler and receiving more rainfall. The average air temperature varies from 16 oC in the west 

to 18 oC in the east. The rainfall season occurs during summer while the dry period occurs in 

winter. An east-west rainfall gradient exists, ranging from 560 to 1000 mm with a long-term 

average rainfall of 927 mm. The study was conducted within the sugarbelt area in KwaZulu-

Natal midlands, South Africa. Figure 4.1 shows the geographical areas of KwaZulu-Natal and 

the area in which the study was conducted.  
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Figure 4.1: Map showing the study area within KwaZulu-Natal Province 

4.3.2 Data and methodology 

Both monthly and daily meteorological data from four stations (see Table 4.1)  in the sugarbelt 

area in KZN midlands used in this study are available from the South African Sugarcane 

Research Institute (SASRI). For this study, the daily data were accessed from the SASRI 

website: 

https://sasri.sasa.org.za/weatherweb/weatherweb.ww_menus.menu_frame?menuid=1.The data 

for all stations were of acceptable quality with only two missing years. The datasets included 

daily observations of maximum and minimum air temperature, solar irradiance, wind speed, 

rainfall and maximum and minimum relative humidity for at least 20 years.  

 

Table 4.1: Geographical characteristics of the studied stations 

Station name  Latitude (S) Longitude (E)    Altitude (m) Data period 

Bruny’s Hill 29°25' 0"           30°41'0"       990 1997-2017 

Eston 29°52' 0"            30°31'0" 785 1997-2017 

https://sasri.sasa.org.za/weatherweb/weatherweb.ww_menus.menu_frame?menuid=1
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Powerscourt 29°59' 0" 30°38'0" 630 1997-2017 

Windy Hill          29o29'25"            30°34'17"      988 1966-1994 

 

Daily meteorological data were used as an input for the estimation of reference evaporation 

using the Penman-Monteith method (Allen et al., 1998):  

    𝑬𝑬𝑬𝑬𝟎𝟎 =  
𝟎𝟎.𝟒𝟒𝟒𝟒𝟒𝟒 (𝑰𝑰𝒏𝒏𝒏𝒏𝒏𝒏−𝑭𝑭𝒔𝒔)+𝜸𝜸 𝑪𝑪𝒏𝒏

𝑻𝑻+𝟐𝟐𝟐𝟐𝟐𝟐𝑼𝑼𝟐𝟐𝒗𝒗𝒗𝒗𝒗𝒗

∆+𝜸𝜸 (𝟏𝟏+𝑪𝑪𝒅𝒅 𝑼𝑼𝟐𝟐)     (4.1) 

    𝑬𝑬𝑬𝑬𝟎𝟎 =  
𝟎𝟎.𝟒𝟒𝟒𝟒𝟒𝟒 (𝑰𝑰𝒏𝒏𝒏𝒏𝒏𝒏−𝑭𝑭𝒔𝒔)+𝜸𝜸 𝟗𝟗𝟗𝟗𝟗𝟗

𝑻𝑻+𝟐𝟐𝟐𝟐𝟐𝟐𝑼𝑼𝟐𝟐𝒗𝒗𝒗𝒗𝒗𝒗

∆+𝜸𝜸 (𝟏𝟏+𝟎𝟎.𝟑𝟑𝟑𝟑 𝑼𝑼𝟐𝟐)     (4.2) 

where ETo is the daily reference evaporation (mm day-1), Inet the net radiation (MJ m-2 day), Fs 

is a soil heat flux density (MJ m-2 day-1), T (oC) the mean air temperature at 2 m height, 𝑈𝑈2 the 

wind speed at 2 m height (m s-1), Cn (K mm s3 Mg-1 d-1) the numerator constant that changes 

with a reference type, viz. short-grass or tall-crop and calculation time step, Cd (s m-1) the 

denominator which changes with reference to type and calculation time step, vpd (kPa) the 

water vapour pressure deficit, ∆ (kPa oC-1) the slope of the saturation water vapour pressure vs 

temperature curve, and γ the psychrometric constant (kPa oC-1).  

 

4.3.2.1 Trend analysis for annual ETo data 

To obtain the slopes of linear regression, the least square method was used to assess trends in 

the time series: 

                          𝑦𝑦𝑖𝑖 = 𝑏𝑏 + 𝑚𝑚𝑥𝑥𝑖𝑖       (4.3) 

where 𝑦𝑦𝑖𝑖 is the fitted trend over a given period, 𝑏𝑏 and 𝑚𝑚 the estimated regression slope and the 

regression constant respectively, and  𝑥𝑥𝑖𝑖 the period of the dataset in years. The trends were also 

calculated using the non-parametric Mann-Kendall (MK) statistical test, a widely used 

technique to assess time-series trends to detect the significance levels of the trends. The MK 

test is commonly employed to detect monotonic trends in a series of environmental data, climate 

data and environmental data (Du et al., 2015; Khanmohammadi et al., 2017). The MK analysis 

is preferred since it does not require the dataset to conform to a specific statistical distribution. 

Also, it is not affected by outliers (Gao et al., 2017). The MK application requires an application 
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of a pre-whitening method to eliminate the possible effects of a series correlation on the trend 

value. 

 

 In this study, an initial series correlation test was performed, and no significant correlation was 

found in the Windy Hill time series whereas other stations showed significant serial correlation 

for a few months. The pre-whitening procedure was therefore applied to monthly data for the 

months that showed significant serial correlation to remove 1-lag correlation. The MK analysis 

was then applied to a new time series to detect the annual and seasonal trends of ETo. The daily 

ETo values, which were used for the computation of the long-term monthly and annual trends, 

were calculated using a spreadsheet for daily Penman-Monteith grass reference evaporation 

from meteorological data (Savage, 2018). The MK test and Sen’s slope estimator for ETo and 

climate variable trends were calculated using the Excel-based template MAKESENS 2.0 beta, 

developed by the Finnish Meteorological Institute (Salmi et al., 2002). The MK test statistic 𝑆𝑆 

was calculated using: 

           𝑆𝑆 =  𝛴𝛴𝑘𝑘=1𝑛𝑛−1 ∑ 𝑠𝑠𝑠𝑠𝑠𝑠 �𝑋𝑋𝑗𝑗 −  𝑋𝑋𝑘𝑘�𝑛𝑛
𝑗𝑗=𝑘𝑘+1       (4.4) 

where 𝑋𝑋𝑗𝑗 and 𝑋𝑋𝑘𝑘 are the data values at the time 𝑗𝑗 and 𝑘𝑘 respectively, 𝑛𝑛 the period length of the 

dataset and 𝑠𝑠𝑠𝑠𝑠𝑠 the function which is calculated as: 

     1  if   𝑋𝑋𝑗𝑗 − 𝑋𝑋𝑘𝑘 > 0 

 𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋𝑗𝑗 − 𝑋𝑋𝑘𝑘) = 0  if    𝑋𝑋𝑗𝑗 − 𝑋𝑋𝑘𝑘 = 0 

                                  -1  if   𝑋𝑋𝑗𝑗 − 𝑋𝑋𝑘𝑘 < 0                (4.5) 

 

If 𝑛𝑛 > 10, the test statistic Z nearly conforms to a standard normal distribution: 

 

  𝑆𝑆−1
√𝑉𝑉𝑉𝑉𝑉𝑉(𝑆𝑆)

    if S > 0 

 𝑍𝑍 =        0       if S = 0 

       𝑆𝑆+1
√𝑉𝑉𝑉𝑉𝑉𝑉(𝑆𝑆)

    if S < 0            (4.6) 
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where Var (S) represents the variance of statistic S. A positive value of 𝑍𝑍 depicts an upward 

trend while a negative value indicates a decreasing trend. The decision of either to accept or 

reject the null hypothesis, Ho, i.e., there is no significant trend in the time series depends on 

whether the computed Z statistics are less or more than the critical value of Z statistics obtained 

from the normal distribution table at the 5% significance level (Koudahe et al., 2017). The 

magnitude of the trend was measured using Sen’s estimator (β) (Koudahe et al., 2017; Qin et 

al., 2017). 

          𝛽𝛽 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 �𝑋𝑋𝑗𝑗 −𝑋𝑋𝑘𝑘
𝑗𝑗−𝑘𝑘

� , 1 < 𝑘𝑘 < 𝑗𝑗             (4.7) 

where 𝛽𝛽 is the estimated slope of the ETo trends. A value of 𝛽𝛽 greater than zero indicates a 

significant increasing trend and a value of 𝛽𝛽 that is less than zero represents a significant 

decreasing trend. 

 

4.3.2.2 Influence of each climate variable on the changes in ETo 

In order to assess the contribution of each climate variable on reference evaporation, a 

detrending method was used. This is a simple and effective method for quantifying the 

impacts of changing climate parameters on ETo and it has been widely used (Xu et al., 2006; 

Lieu et al., 2013; Qin et al., 2017) in climate change studies. The first step of this method is to 

remove the variation trend in different meteorological variables so as to establish a stationary 

dataset for each meteorological station. This was achieved using a multiplicative model which 

assumes that:      

𝑌𝑌 = 𝑓𝑓(𝑡𝑡)       (4.8) 

Where 𝑓𝑓 is the function of time. Then 𝑌𝑌 can be disintegrated to: 

𝑌𝑌 = 𝑇𝑇𝑇𝑇𝑇𝑇                         (4.9) 

Where 𝑇𝑇 is the long-term trend of a particular variable for an original time series, 𝑆𝑆 represents 

the seasonal component and 𝐼𝐼 is the the irregular component of the time series. The T values 

can be derived from a simple linear regression model using the original time series:  

𝑇𝑇 =  𝑚𝑚𝑚𝑚 + 𝑐𝑐            (4.10) 

Where x is the year. Applying the multiplicative model, both sides of the equation are devided 

by the 𝑇𝑇 values, hence: 
𝑌𝑌
𝑇𝑇

= 𝑆𝑆𝐼𝐼        (4.11) 
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Where 𝑆𝑆𝑆𝑆 is the detrended series consisting of only the seasonal and irregular variation. 

Secondly, the calculation of ETo using one detrended variable while keeping other variables 

unchanged was performed. Following this step, the contribution of changes in meteorological 

parameters on ETo variation using an evaluating indicator R was quantified as indicated in Qin 

et al. (2017) as follows: 

                    𝑅𝑅 =  ∑ (ETo 
o −EToR)
ETo 

o  𝑘𝑘
𝑛𝑛
𝑘𝑘=1               (4.12) 

where 𝐸𝐸𝐸𝐸𝑜𝑜 
𝑜𝑜 and 𝐸𝐸𝐸𝐸𝑜𝑜𝑅𝑅 (mm) represents the original and the revised daily ETo values respectively 

using the detrended dataset and n is the period length of the dataset. A positive R indicates that 

the change of climatic factor has positive effects on the changes in ETo whereas a negative R 

denotes a negative effect of changes of this climatic parameter to the ETo changes. An R-value 

of zero shows that the change of this climate factor results in insignificant impacts on changes 

of ETo. Large values of absolute R are indicative of a greater impact of the changes of this 

climate factor on the ETo changes (Qin et al., 2017).  

 

4.3.2.3 Analysis of magnitude of change during dry years versus wet years 

To identify dry and wet periods, the Standardized Precipitation Index (SPI) (McKee et al., 1993) 

was used. The SPI is a normalized index representing the likelihood of drought occurrence. 

This is achieved by comparing the observed rainfall amount and rainfall climatology at a certain 

geographical location over a long-term reference period. It enables rainfall to be quantified over 

different time scales (e.g 3-, 6-, 12- or 24-month rainfall) (Chi, 2013). The SPI is widely 

preferred due to the fact that it requires less data, is relatively easy to compute, enables drought 

characterization at various timescales as well as possesses the ability to adequately represent 

both wet and dry periods. The SPI has been accepted by the World Meteorological Organization 

as the reference index to characterize drought. To calculate SPI, a record of at least 30 years is 

required although 50 years has been recommended (Zargar, 2011). This study used 20-29 years 

of data depending on the availability of data at each weather station. However, to validate the 

results, data from three weather stations that are close to each other were combined. The 

combined dataset was for 1966-2017 excluding two years of missing data (48 years). The SPI 

was calculated using the combined dataset and the results are within a reasonable deviation 

from the SPI values calculated using 20-29 years of data. From the results, for each station one 

dry and one wet year was selected. Using the Penman-Monteith equation, daily ETo was 

calculated for both dry and wet years for all stations. To assess the magnitude of change in the 
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long-term trends, linear regression analysis was employed between time series and ETo annual 

series. In addition, SHI, as suggested by Hulme et al. (1992), was used to analyze the correlation 

between ETo and drought. This index is convenient for computing moisture availability. The 

index SHI is calculated as the ratio of temporal precipitation (P) to ETo at an annual timescale. 

A SHI of 1 indicates a balance between precipitation and ETo while values greater than 1 

indicate that ETo is less than precipitation. A SHI value 1 less than 1 is indicative of a condition 

where ETo is greater than precipitation. In addition, an increasing trend of the SHI index 

exhibits a decreasing trend of dryness and vice-versa. Furthermore, Pearson correlation analysis 

was conducted between SHI, ETo and P. 

 

4.4 Results  

4.4.1 Trends in ETo  

Figure 4.2a-d shows that the corresponding slope of change of annual ETo for four 

meteorological stations over the period of 1966 to 2017 is -5.13, -1.09, 5.10 and -0.18 mm a-1 

respectively, which are statistically insignificantly decreasing. Table 4.2 indicates that for ETo, 

the annual Sen’s slope estimator for Bruny’s Hill, Eston, Powerscourt and Windy Hill is -11.14, 

-0.29, 0.21, -1.38 mm a-1 respectively, which indicates agreement with the slopes shown in 

Figure 4.2a-d. There is no consistency in terms of seasonal ETo variation across these stations 

in the sugarcane belt of the study area. There were decreases in ETo for different seasons in 

Windy Hill and Bruny’s Hill stations. For the Eston, ETo appears to be decreasing in all seasons 

except autumn. The Powerscourt shows a decline in ETo only in spring and summer. The 

differences amongst the stations can be attributed to climatic and geographical differences. 

Based on three weather stations (Bruny’s Hill, Eston and Windy Hill), the slope shows a general 

decreasing trend in annual ETo for the study area. On the other hand, a statistically insignificant 

increasing annual ETo trend was observed for Powerscourt. The seasonal and annual ETo 

results based on the MK test for each climate station are shown in Table 4.2. The average 

decreasing trend in autumn, winter, spring, and summer for all stations is 0.256, 0.723, 1.335 

and 3.209 mm a-1 respectively for the study area. Based on these observations, the rate at which 

ETo is decreasing is faster in summer and spring seasons than in winter and autumn. The 

decreasing trend was statistically significant (p < 0.05) for two stations at a seasonal time scale. 

Bruny’s Hill and Powerscourt showed a significant decrease in summer at a significance level 
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of 95%. The Eston station indicated a decreasing trend in ETo in winter at a significance level 

of 90%. 

a) Bruny’s Hill                                                                                              

 
 
 
 
 
 
 
 
 
 

b) Eston 
 

c) Powerscourt d) Windy Hill 
 

 At the annual time scale, the slopes of the regression relationships indicate the average negative 

ETo trend of -0.324 mm a-1 while the MK test shows a negative trend of -3.209 mm a-1 for the 

study area. According to the MK test, only one station with a decreasing trend (Bruny’s Hill) is 

statistically significant (p < 0.05). Other meteorological stations indicate a statistically 

insignificant decreasing trend. In terms of the magnitude of trends for each station, the highest 

ETo decrease was observed for the Bruny Hill’s.Furthermore, the monthly changes of ETo 

based on the MK statistical test are shown (Fig 4.3). The index Z values based on MK statistical 

test are illustrative of how ETo changes as meteorological variables vary due to seasonal 

variation. Notably, the increases in ETo for the Powerscourt and Eston stations during the 

autumn and winter months reached a maximum of 2.21 and 0.88 mm respectively. 

 

The monthly ETo trends result of Fig 4.3 shows that monthly ETo trends do not follow a similar 

pattern with some stations indicating high ETo during winter months while ETo reaches a 
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Figure 4.2: Annual ETo for various stations in the Wartburg area 
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maximum during summer months for other stations. The results suggest that maximum ETo 

occurred in February, March, July, and November for Bruny’s Hill, Eston, Powerscourt, and 

Windy Hill stations respectively. Minimum values for ETo were observed in July and 

September for Bruny’s Hill and Windy Hill respectively, while they were observed in July and 

October for Eston and Powerscourt respectively. However, it is worth noting that during the 

summer months, almost all stations displayed statistically insignificant negative trends, except 

the Windy Hill station which showed a statistically significant (β < 0.05) (data not shown) 

positive trend in November. These differences are likely to be caused by the spatial variations 

in terms of topography, land cover and the location of each weather station.  

 

4.4.2 Trend analysis of annual and seasonal weather variables 

ETo depends on wind speed (WND) and solar irradiance (Rs), water vapour pressure deficit 

(vpd) calculated from the relative humidity (RH) and air temperature (Tave) (Allen et al., 1998). 

A positive correlation between ETo and Tave, WND, as well as Rs exists while a negative 

relationship between RH which corresponds to a decrease in vpd and ETo has been observed 

(Fig. 4.3). This means that high Tave, WND, and Rs increases ETo while an increase in RH 

causes a decrease in ETo. Table 4.3 shows the results of the MK test for annual and seasonal 

weather variables at 1, 5, and 10% significance levels. There was a general decrease in annual 

WND, RH and Rs across all stations. An inconsistent trend was found in the Tave, however, 

the results, for all the stations, showing a mean decreasing annual trend of Tave at a negligible 

rate of 0.014 oC a-1 were observed (data not shown). The statistically significant annual 
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Figure 4.3: Monthly ETo trends based on MK analysis in the Wartburg area for 1966 to 2017 
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decreasing trend for Tave was observed for Bruny’s Hill while other stations show either a 

statistically insignificant decrease or statistically insignificant increase. Annual WND indicated 

a statistically significant decreasing trend for Bruny’s Hill and Windy Hill. There was a general 

decrease in annual Rs for all stations, however, only two stations (Bruny’s Hill and 

Powerscourt) were statistically significant. Powerscourt showed a statistically significant 

annual decreasing trend for RH while the remaining stations showed either a statistically 

insignificant decrease or statistically insignificant increases. 

 

Table 4.2: MK test results for seasonal and ETo trends for the various stations for 1966 

to 2017 

Station                                             Season                                                                   Z    β 
Bruny’s Hill Autumn -1.07 -1.743 
 Winter -1.46 -2.531 
 Spring -1.27 -2.523 

 Summer -2.04 -3.448* 

 Annual   -2.37 -11.142* 

Eston Autumn 0.51 0.178 
 Winter -1.66 -1.209+ 
 Spring -0.76 -0.708 
 Summer -1.18 -1.038 
 Annual -0.39 -0.529 
Powerscourt Autumn 0.69 0.466 
 Winter 1.18  1.487 
 Spring -1.18 -1.876 
 Summer                                                                                -2.57         -2.033* 
 Annual                                    0.09 0.212 
Windy Hill Autumn -0.76            -0.468 
 Winter -1.06            -0.742 
 Spring -0.28            -0.234 
 Summer -0.02             -0.026 
 Annual    -0.54            -1.380   

*** p = 0.001 level of significance, ** p = 0.01 level of significance, * p = 0.05 level of significance, 

+ p = 0.1 level of significance 

The seasonal trend of the climate variables demonstrated in Table 4.3 indicates a decrease in 

Rs for all seasons, with Bruny’s Hill showing a statistically significant decrease throughout the 

year. Powerscourt indicated a statistically significant decrease in Rs for all seasons except 
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autumn. Decreasing trends in WND and RH are frequent in the sugarcane belt in the study area 

and the statistically significant negative trends for wind speed are found in different seasons for 

different stations. A statistically significant decreasing trend for WND occurs mainly in summer 

and occasionally during other seasons. There was an inconsistent seasonal trend in Tave for all 

stations under study. Statistically significant seasonal Tave increasing trends were observed in 

Windy Hill and Eston while a decreasing trend was observed for autumn and summer for 

Bruny’s Hill and Eston. Powerscourt showed statistically insignificant changes in Tave. Due to 

the increasing and decreasing trend for RH in different stations, an inconsistent seasonal trend 

for relative RH is noted for the sugarcane belt in the study area. However, Powerscourt shows 

a statistically significant decrease in RH for all seasons while other stations indicate both 

statistically significant decreases and statistically significant increases in different seasons. 
Table 4.3: Trend analysis for seasonal and annual rainfall, average air temperature, wind speed, 
solar irradiance and relative humidity 

Station Season Precipitation Tave Wind Rs RH 
  (mm) (oC) (m s-1) (MJ m-2 ) (%) 

Bruny’s Hill 
 

 

Autumn 
Winter 
Spring 
Summer 
Annual 

7.085** 
2.615+ 

- 
- 

18.24* 

-0.047+ 
- 
- 
- 

-0.047* 

-0.046+ 
-0.068* 

-0.081** 
-0.029+ 
-0.041* 

-2.89* 
-3.27*** 
-2.17** 

- 
-2.81*** 

- 
- 

-0.554+ 
- 

-0.633** 

       
   Eston Autumn - - - - - 

 Winter 3.489+ 0.065* - - - 
 Spring - - - - 0.373+ 
 Summer - -0.078* -0.032* -5.330* - 
 Annual - - - - - 
 

Powerscourt 
             
Autumn 
Winter 
Spring 
Summer 
Annual 

 
- 
- 
- 
- 
- 
 

 
-          
- 
- 
- 
- 
 

  
- 
- 
- 
- 
- 

 
- 

-3.048** 
-2.856+ 
-2.867+ 
-2.544 

 
-0.458** 
-0.332+ 
-0.394+ 
-0.471** 
-0.398** 

Windy Hill Autumn 
Winter 
Spring 
Summer 
Annual 

- 
- 
- 

-3.926*  
-7.303+ 

-                               
0.048** 

- 
- 

0.029* 
 

-0.022** 
-0.01* 

- 
- 

-0.019* 

- 
-1.215+ 

- 
- 
- 

- 
- 
- 

-0.145+ 
- 
 
 

*** p = 0.001 level of significance, ** p = 0.01 level of significance, * p = 0.05 level of significance, + at p = 0.1 level of 

significance 
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4.4.3 Influence of climate variables on changes in ETo 

Using the Penman-Monteith method and the detrended method, the influence of each climate 

variable on the annual and seasonal ETo changes for four weather stations was calculated (Fig. 

4.4). The results show a consistent variation from one station to another in terms of the 

contributing driving factor. There is clear evidence that RH exerts a negative contribution on 

ETo throughout the year for all weather stations except for Windy Hill while Rs contributes 

negatively during the winter season. In this case, Rs and RH appear to make substantial negative 

contributions to the stations in the study area compared to other parameters. The influence of 

Tave and WND to ETo variability exhibits a consistently positive effect on all stations. A major 

positive contribution to ETo changes in winter was noted for WND. The seasonal ETo trends 

indicate that the decreasing trends in spring and summer were noted mainly due to a decrease 

in Rs and an increase in RH. For example, for Bruny’s Hill and Eston, the decreasing trend was 

likely due to a decrease in Rs and an increase in RH. Although the influence of a decreasing 

RH appears to have been offset by changes for other variables for the seasonal ETo parameter 

contribution for other weather stations, the RH decreasing trend for Powerscourt seem to 

contribute towards the increase in ETo. The overall contribution of each variable towards ETo 

variation indicates that changes in ETo during autumn and winter can be attributed to RH and 

Rs. It appears that in winter, the negative contribution of Rs and RH offset the positive 

contribution of other climate variables to ETo variation. 

 

a) Bruny’s Hill  b) Eston 
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c) Powerscourt 

 

d) Windy Hill 

e) Bruny’s Hill f) Eston 

g) Powerscourt h) Windy Hill 

Figure 4.4: Index R showing the contribution of each climate variable to ETo seasonal (a 
to d) and annual (e to h) variability in the Wartburg area. 
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The contribution of the climate parameters on the annual ETo is clear. All the stations indicate 

a major positive influence on ETo by Tave followed by WND. The only parameter which 

appears to have a substantial negative effect is RH. Thus, the general ETo decrease in the study 

area can largely be attributed to the increase in RH and partly to the decreased Rs given its 

minimal contribution. The positive effects of Tave on ETo are offset by the negative effects of 

RH leading to a decreasing trend. Therefore, RH and Rs are the major contributors to the ETo 

trends in Wartburg over the study period. 

 

4.4.4 ETo variation during dry and wet years 

Figure 4.5 shows the annual ETo for different meteorological stations in Wartburg from 1966 

to 2017. The annual ETo for the study area ranges between 516 and 1248 mm. The highest ETo 

values for most of the stations were recorded during dry years whereas the lowest ETo values 

were observed during both dry and wet years. In particular, in Bruny’s Hill, Powerscourt, and 

Windy Hill station the highest ETo values occurred at the beginning of a dry period while Eston 

ETo values were high during the dry season.    
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Figure 4.5: Monthly ETo trends based on MK analysis in the Wartburg area for the 
period of 1966 to 2017 



103 

                                                                     

However, an increase in ETo values is not only regulated by the increased atmospheric demand 

but also by the availability of water of the surface. The results indicate that for the Bruny’s Hill 

station, the highest ETo value of 1248 mm was recorded in 2003 and a minimum value of 755 

mm in 2016. The Eston station experienced the highest ETo in 2013 and the lowest in 2016. 

The Powerscourt station recorded its maximum ETo value (938 mm) in 2013 and a minimum 

of 516 mm in 2014. For each station, SPI was employed to characterize meteorological drought 

for the study area. The SPI was computed using a 12-month timescale. Figure 4.6 illustrates the 

results of the SPI for each station. To illustrate dry and wet periods for each meteorological 

station, the selection of wet years and dry years is shown in Table 4.4.  

 

a) Bruny’s hill b) Eston 
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c) Powerscourt d) Windy Hill 

 

Table 4.4: Selected dry and wet periods for each station based on SPI values 
Station Dry years Wet years 

Bruny’s Hill 1999 

2001 

2004 

2014 

2006 

2012 

2013 

2017 

Eston 2004 

2013 

2014 

2015 

2000 

2002 

2003 

2008 

Powerscourt 

 

1999 

2005 

2014 

 

2013 

 

Windy Hill 1980 

1982 

1976 

1978 

Figure 4.6: Drought characterization using SPI for 1966 to 2017 for the four stations 
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1986 

1992 

1993 

1984 

1988 

 

The results show that ETo during dry and wet years follows the same trend. However, ETo is 

slightly greater during dry compared to wet years for all stations. For almost all stations, ETo 

increases at a greater rate during dry years relative to wet years. For the selected dry years, ETo 

was increasing at 1.90 mm month-1 for Bruny’s Hill, 0.34 mm month-1 for Eston, 1.92 mm 

month-1 for Powerscourt stations and 1.88 mm month-1 for Windy Hill. For wet years, the 

change was 1.075, -0.03, -0.34 and 2.35 mm month-1 for Bruny’s Hill, Eston, Powerscourt and 

Windy Hill stations respectively. 

4.4.5 Correlation of ETo to drought 

Although rainfall is not used for the determination of ETo, it is believed that there is a 

significant correlation between rainfall and ETo. Allen et al. (1998) emphasized that the surface 

of a green grass crop should be well watered for reliable grass reference evaporation estimation. 

This means that the lack of adequate soil/atmospheric moisture affects reference evaporation as 

well as actual evaporation. Given the threats posed by droughts to economic and environmental 

systems, understanding such correlation is important. To analyze the correlation in ETo and 

dryness/wetness, SHI was used. Annual ETo and SHI trends for all four stations are shown in 

Fig. 4.7. It is worth noting that the temporal variation of SHI and ETo indicate opposite 

changing patterns with few incidences where the change follows a similar pattern. As the SHI 

decreases, ETo increases, and vice versa. Three meteorological stations show an increasing 

sequential annual SHI trend and decreasing ETo trends. An increasing SHI trend for the recent 

years indicates that the intensity of dryness or drought for the study area is decreasing.  

 

Figure 4.7 b and 4.7 d illustrate a decreasing ETo trend during 2014/15 which was considered 

one of the driest years in South Africa. The stations during this period recorded rainfall amounts 

ranging between 544.6 and 668.9 mm. It is important to note that during this period, SHI 

increases to over 1, suggesting an increase in ETo which results in soil water depletion. 
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c) Powerscourt 

d) Windy Hill 

Figure 4.7: Temporal variation in the average annual ETo and annual SHI for the four 
stations 
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4.5 Discussion 

4.5.1 Observed grass reference evaporation trends for the study area 

This study analyzed the ETo variation and its effects on drought. The results indicate a 

statistically insignificant decline in ETo on an annual scale (Fig. 4.2). The magnitude of the 

decrease was more for Bruny’s Hill station compared to the other stations. Statistically 

significant seasonal trends were observed in Bruny’s Hill and Eston for summer and winter 

respectively. These findings correspond to the widely acknowledged general decrease in ETo 

during the winter months which are characterized by low Tave and Rs which results from 

reduced sunshine duration. A decreasing trend during summer months can be explained by the 

decrease in solar irradiance which is believed to be the main driver of ETo (de Bruin et al., 

2019). These observations are in agreement with earlier findings by Hoffman (2005) who found 

a decline in pan evaporation over South Africa due to a decline in wind speed over 1974-2005. 

These results are aligned with studies across the globe which suggest that under climate change 

conditions, ETo has been decreasing. A statistically significant decreasing trend in ETo was 

found in India (Bandyopadhyay et al., 2009). Xu et al. (2006) and Ma et al. (2017) reported a 

decreasing trend in ETo in different parts of China. Marshall et al. (2012) also found a 

decreasing trend in ETa for sub-Saharan Africa. 

 

4.5.2 Influence of climate variables on changes in ETo 

The MK test indicated that Tave, WND and Rs significantly influence the ETo changes for the 

Bruny’s Hill station, but ETo trends in other stations proved to be substantially determined by 

either one or two climate variables. The decrease in Rs appears to have an impact on ETo 

change resulting in decreasing ETo trends. It has been confirmed that ETo variations can be 

attributed to precipitation/ soil moisture content, Tave, WND, Rs and RH (Xu et al., 2014). 

However, there is a lack of scientific consensus about meteorological variables which have a 

major influence on ETo across the globe (de la Casa & Ovando, 2016). Hence, the relative 

importance of each climate variable, as well as its influence on ETo variation, varies both 

spatially and temporally. This can be partly attributed to the different geographical positions of 

the study areas as well as the research period (Ma et al., 2017). Geographical locations differ in 

terms of proximity to the ocean and elevation. Atmospheric evaporative demand in coastal areas 

tends to be lower than in inland areas, thus water vapour pressure deficit substantially influences 
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ETo variation (Aydin et al., 2015). Also, it has been proved that coastal areas have limited 

energy (Castellucci et al., 2016; Gu et al., 2018) which in turn reduces the effects of solar 

radiance and air temperature on ETo variation. The effects of climate variables on ETo changes 

depends also on the topography. For example, a study by Gu et al. (2018) found that ETo 

increased by 5.4-fold in plain areas compared to areas atop a hill. They did not associate the 

increase with any specific climate variable but partly with the impacts of open water close to 

the plain area. The WND proved to be the most influential climate factor in the study conducted 

in Iran (Dinpashoh et al., 2011; Kousari et al., 2012) and China (Xie et al., 2013) while Tave 

was found to make large contributions on ETo changes in the Arabian Peninsula (El-Nesr et al., 

2010). Sun et al. (2017) found that Rs was the main contributor to the ETo trends in the south-

west of China. Water vapour pressure deficit and wind speed had major impacts on ETo 

variability in Canada (Burn & Hesch, 2007). Ma et al. (2017) found a decreasing ETo trend in 

the north-east of China and attributed this to decreased WND and sunshine hours.  

 

In the present study, the contribution of each variable was analyzed for each station and the 

results indicate that in general, Rs and RH contributed significantly towards ETo changes over 

the period of study. This can be explained by the significant decrease of Rs for Bruny’s Hill as 

well as the significant decrease of the RH for Powerscourt. Although Tave appears to have 

declined in winter for most of the stations, the ETo response does not reflect these changes 

which indicate the minor impact of Tave on ETo. Plattle & Sigh (2015) attest to the reduced 

sensitivity of ETo to Tave decline compared to Tave increase. These results agree with the 

observation of the general decrease in pan evaporation across the globe due to 1) increased 

precipitation (Irmark et al., 2012); 2) changes in diurnal air temperature range and water vapour 

pressure deficit linked to decreasing Rs (Roderick & Farquhar, 2002); and 3) Rs reduction 

attributed to increased cloud cover as a result of aerosols (Roderick & Farquhar, 2002; Liu & 

Zeng, 2004). Despite the general decrease in ETo and pan evaporation, a recent study by 

Stephen et al. (2018) indicates that in Australia the general decrease of pan evaporation lasted 

until the late 1990s and started to increase in 1994. The study attributed the increase to Tave 

increases.  

4.5.3 Magnitude of change of ETo during dry and wet years  

Although only four major meteorological variables play a direct influence on ETo variability, 

precipitation is also found to play an important role. Ukkola & Prentice (2013) suggest that 
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precipitation in a water-limited area explains up to 90% of ET changes. Changes in ETo and 

how it responds to dry and wet periods are important for agricultural production, particularly 

under climate change conditions. The present study analyzed how ETo responds during dry 

years using a linear regression model. The results indicate that ETo increases during dry years 

and decreases during wet years. The magnitude of change indicates that during drought ETo 

increases at an increased rate relative to wet years. However, this only occurs at the beginning 

of a drought event and atmospheric “event” starts to decrease as the rainfall decreases. Sonia et 

al. (2010) suggests that the reduction of soil moisture due to limited rainfall increases soil water 

absorption and reduces atmospheric and soil moisture events. De la Casa & Ovando (2016) 

found a negative relationship between pan evaporation and rainfall, indicating that a decline in 

pan evaporation due to increased rainfall may lead to an increase in terrestrial evaporation. 

Teuling et al. (2013) confirm that high grass reference evaporation normally corresponds to 

decreased rainfall. Teuling et al. (2010) further described the ET-drought relationship through 

three stages: 1. when ET does not depend on soil moisture; 2. ET is becoming self-limiting; 3. 

ET becomes minimal due to inadequate soil moisture. In opposition to the widely acknowledged 

decrease of ETo as a result of low rainfall, the increased ETo as a result of reduced precipitation 

is likely to have adverse effects on growing crops. 

4.5.4 Correlation of ETo to drought 

Long-term SHI and ETo variations were analyzed for the period of the study. The results 

indicate that ETo decreased as the SHI increased (Fig. 4.7). Negative ETo anomalies were 

detected for Eston and Powerscourt stations during the 2014/15 period. Low ETo as a result of 

dry conditions often accompanied by extreme air temperatures which in turn decreases 

evaporative losses. The SHI, however, failed to capture the negative ETo anomalies and treated 

the decrease in ETo as a normal decrease which resulted in increased SHI. These results 

correspond to the findings by He et al. (2017) that the relationship between evapotranspiration 

and drought index indicates that ET increases at the onset of the rainfall deficit period and 

decreases as dryness becomes severe. The results of this study are in contrast to a study by Gao 

et al. (2017) which suggests that less rainfall induces higher ETo, and ETo decreases with 

increases in precipitation.  
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4.6 Conclusions 

Grass reference evaporation (ETo) response is linked to the changes of different meteorological 

variables, however, its response with respect to rainfall differs. This study for the KwaZulu-

Natal midlands of South Africa explored the temporal trends of seasonal and annual ETo and 

causative variables were calculated using a detrended method for each of four weather stations 

within the sugarcane belt of the KZN midlands. In addition, the correlation between drought 

events and ETo was analyzed to clarify the manner in which ETo responds during dry periods, 

which can assist in determining suitable measures for mitigation and adaptation for adverse 

weather. There is no consistent significantly decreasing ETo trend for the whole area for both 

seasonal and annual trends, but the results indicate inconsistent annual and seasonal changes 

for all stations. None of the stations indicated a statistically significant annual and seasonal 

increase. According to the MK trend analysis, only Bruny’s Hill exhibited a statistically 

significant decreasing annual trend. Thus, a general insignificant decreasing ETo was observed 

in the study area. The causative variable analysis indicates that relative humidity and solar 

irradiance were dominant factors in causing changes in ETo for all stations. Solar irradiance 

showed a minimal contribution on ETo changes relative to other variables and this can be 

attributed to its high decreasing rate. Finally, the SPI and annual ETo observations indicate that 

some dry years exhibit high ETo values, whereas for other dry years ETo values are similar to 

these for wet/normal years. The linear regression model results, therefore, indicate that during 

drought ETo increases at a greater rate compared to wet years until atmospheric humidity 

becomes inadequate for further increase in ETo which then starts to decrease. This suggests that 

adequate atmospheric moisture (rainfall) causes increase in ETo to a certain extent, however, a 

negative correlation exists between rainfall and ETo. The results from this study will assist to 

better understand the possible ETo variation as a result of climate change and its potential 

impacts on agriculture and hydrological systems. This should help support the development of 

measures to sustain agriculture and water resources. 
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Lead to Chapter 5 

In Chapter 5, projected air temperature, rainfall and drought frequency for the study site are 

presented. The chapter presents SDSM which is used to simulate air temperature and rainfall 

for the analysis of future drought occurrences. The previous Chapters (3 and 4) mainly focused 

on historical climate trends while Chapter 5 provides insight on the projected drought events 

due to changes in air temperature and rainfall. The relatively short-term climate data from other 

stations restricted the stations to be included in the projection of climate change, thus only 

Windy Hill was included in this Chapter. The projected air temperature and rainfall data are 

then used to compute drought indices to determine the projected drought trend for the study 

site.  
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5 CHAPTER 5: THE IMPACT OF CLIMATE CHANGE ON DROUGHT 

IN THE RURAL AGRICULTURAL COMMUNITY OF WARTBURG, 

KWAZULU-NATAL, SOUTH AFRICA 

5.1 Abstract  

Water and water-related issues are becoming a critical threat to the African region due to climate 

change. The vulnerability of different areas within the sub-continent varies owing to the 

heterogeneity of topography, climate, access to resources, farmer resilience as well as 

adaptation capacity. As a result, site-specific studies are encouraged to increase the awareness, 

resilience and adaptation capacity at the local level. 

 In this study, conducted in the KwaZulu-Natal midlands of South Africa, the 

Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration 

Index (SPEI) were used to analyse changes in future drought characteristics for a specific 

meteorological site from the Representative Climate Pathways (RCP8.5 and RCP4.5) as well 

as Special Report of Emission Scenarios (SRES) A2 and B2 climate projection of CanESM2 

and HadCM3 models respectively for the period of 2011-2040 (P1), 2041-2070 (P2) and 2071-

2099 (P3) periods. Changes in the future drought characteristics (duration, intensity, and 

severity) were also assessed using statistical Run’s theory.  

The results indicate that under all the forcing scenarios both minimum and maximum 

air temperatures will continue to increase until the end of the century reaching a maximum 

increase range of 1.72 to 3.14 oC and 1.54 to 3.48 oC respectively based on the worst-case 

scenario RCP8.5. In the case of rainfall, a positive trend is predicted, but with a declining trend 

for the near future period (2011-2040) for all scenarios. The projected drought characteristics 

indicate that droughts are more likely to occur in the near future due to climate change. 

Although the Global Circulation Models (GCMs) showed inconsistencies in predicting future 

drought occurrences, 2029, 2038, 2043 and 2047 were projected as dry years by both GCMs at 

different time-scales. The Run’s theory results indicate a projected increase in drought severity 

but a decrease in intensity relative to historical drought events for the study site.  

The implication is that under climate change conditions, the duration of drought will 

increase but the average rainfall anomaly below the rainfall threshold level will be close to 

normal. However, with increasing air temperatures even moderate drought events can have a 

substantial adverse impact on agricultural production due to crop losses resulting from either 

increased evapotranspiration or heat stress induced by limited soil moisture. These results 
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indicate that in the absence of adaptation the risk of small-scale farmers, particularly for 

sugarcane, which is largely planted in the area, to production losses will heighten and hence 

increase the likelihood of increased poverty, food insecurity, and unemployment.  

Keywords: Climate variability; Future drought characterization; SDSM; SPEI; SPI 

 

5.2 Introduction 

 

Meteorological variables such as rainfall and air temperature are the most influential factors 

that affect the global climate. Climate projections based on Global Circulation Models (GCMs) 

suggest that the rate at which global air temperature is increasing will induce substantial 

changes to other climate parameters, thus causing the occurrence of extreme weather events. 

The IPCC (2014) noted that given the continuous increase of anthropogenic greenhouse gas 

concentration, surface air temperature increases are expected throughout the world leading to 

frequent heat extremes and heat waves. The anticipation of the changes in precipitation as a 

result of climate change is, however, different from one region to another as predictions indicate 

more rainfall at higher latitudes and less rainfall in most subtropical land areas (Giorgi et al., 

2019). Projections of future rainfall have been found to be more complex as projections show 

some uncertainties and biases between the observed and projected rainfall values. However, 

based on the likelihood of the possible changes, adaptation decisions can still be devised 

(Engelbrecht et al., 2015). 

 

These changes will undoubtedly have adverse effects on climate-sensitive sectors. This is due 

to climate change affecting hydrological aspects of the region through changes in the magnitude 

and timing of rainfall, evaporation and transpiration rates due to increased air temperatures, and 

soil moisture (Stagl et al., 2014). Water supply and agricultural sectors are the most threatened 

sectors under climate change. Climate-related disasters pose a serious threat for developing 

countries where livelihoods depend primarily on agriculture. There is a consensus that droughts 

have become more intense and widespread in southern Africa (New et al., 2006; Ujeneza & 

Abioudun, 2015; Abiodun et al., 2019). Although not consistent throughout the country, 

significant changes in rainfall have been observed in South Africa for 1910-2004 (Kruger, 

2006). The air temperature trends for 1960-2003 also showed a positive undulating pattern 

across the country (Kruger & Shongwe, 2004). An increasing trend of extreme, severe and 



119 

moderate drought events over the central parts of South Africa have been observed for 1952-

1999 (Eddosa et al., 2014). The vulnerability of regions to such changes is not homogeneous. 

The KwaZulu-Natal province is amongst the most vulnerable areas in South Africa to climate 

change with increased frequency of extreme events over the past century. The heterogeneity 

within the province should be accounted for given that exposure, ability to cope, access to 

resources and poverty levels differ considerably (Gbetibouo et al., 2005).  

 

Further changes in climate can cause more extreme events, resulting in large negative impacts. 

Thus, predicting climate extreme is critical at all levels to evaluate the impact of potential 

climate change on the human and natural environment. The widely adopted approach for 

predicting changes in climate variables on a global level is through global circulation models 

(GCMs). These models such as HadCM3 (Johns et al., 2003; Chou et al., 2012) and CanESM2 

(Gillet et al., 2012; Stott et al., 2013) make use of quantitative methods to simulate interactions 

of the atmosphere, ocean, land surface and ice. Over the last 20 years, GCMs have undergone 

major advances to ensure that they produce a more accurate and reliable guide to the future of 

climate change (Musgrave, 2016). Although GCMs are the principal tools for projecting future 

changes in the climate system, their findings cannot be used at a finer spatial resolution to assess 

the local impacts due to their coarse resolution. As such, different downscaling methods have 

been developed to bridge the gap between the coarse resolution results from GCMs and the 

resolution needed for impact assessment. Downscaling can be applied to both spatial and 

temporal aspects of climate projection. Spatial downscaling refers to the techniques of obtaining 

fine spatial climate information from coarse resolution output, for example, 200-km-gridcell-

GCM output to a specific location or weather station. Temporal downscaling refers to deriving 

finer temporal GCM from coarse resolution GCM output.  

 

The downscaling technique is divided into two categories, statistical and dynamical 

downscaling. Statistical downscaling is based on instituting an empirical relationship between 

large-scale climate state (atmospheric predictors) and local climate characteristics such as land-

use, topography, land-sea contrast (Wilby et al., 2004) that are not adequately described by the 

GCMs. Statistical downscaling employs linear regression and a stochastic weather generator. 

The advantages of the statistical method are that it is computationally less demanding and can 
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be quickly used for impact assessment to provide onsite local information (Dorji et al., 2017; 

Li et al., 2018). One disadvantage of the statistical downscaling method is the assumption of 

stationarity of statistical relationships in the future (Trzaska et al., 2014). The dynamical 

downscaling method often referred to as the regional climate model, involves nesting of the 

higher resolution regional climate model within a coarse resolution GCM. The major limitation 

of dynamic downscaling is that it is computationally demanding. Boe et al. (2007) and Li et al. 

(2018) provide a detailed comparison of the two downscaling techniques.  

 

Numerous studies have been conducted worldwide to understand past and possible future 

changes in climate extremes as a result of global warming. Lee et al. (2016) investigated the 

observed changes in drought and the association between drought and climate change using 

GCM outputs. In Korea, Jang (2018) used the Representative Concentration Pathways (RCP) 

to analyze the possible future climate extremes. In Greece, Vasiliades et al. (2007) assessed the 

effectiveness of drought indices to monitor droughts under climate change conditions. 

Saymohammadi et al. (2017) used HadCM3 (SRES A2 emission scenario) statistically 

downscaled output to predict temperature and rainfall changes as a result of climate change. 

Other similar studies were conducted in China (Leng et al., 2015), Ethiopia (Feyissa et al., 

2018), Iran (Emami & Koch, 2018), and Pakistan (Manhood & Babel, 2012). Similar studies 

were also conducted in southern Africa: Abiodun (2019) projected future droughts at specific 

global warming levels; Ujeneza et al. (2015) examined the drought characteristics related to 

temporal and spatial changes using GCMs and the Standardised Precipitation 

Evapotranspiration Index (SPEI). Pinto et al. (2016) projected extreme precipitation using the 

Coordinated Regional Climate Downscaling Experimental (CORDEX) protocol models. The 

limitation of these studies is that they were conducted at a regional level. This resolution is not 

suitable for local impact assessment studies as regional observation might mask local level 

trends. It has been observed that results indicated significant trends at the finer scale but not at 

the regional scale (Dookie et al., 2018). In addition, it is less certain how changes in 

meteorological processes at individual sites will be affected, and yet these potential changes are 

the major concerns of policymakers (Dennis & Dennis, 2012). 
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The aim of the study is to examine changes in the characteristics of future drought patterns for 

a localised agricultural community within the sugarbelt region of KwaZulu-Natal, South Africa. 

The main focus is to show how rural areas more involved in the agricultural sector are likely to 

be affected by climate change. The study identifies the projected prevalence of intense and 

severe drought patterns in the region and investigates the likely changes in future droughts 

under Representative Concentration Pathway (RCP) 8.5 and 4.5 as well as Special Report of 

Emission Scenarios (SRES) scenarios A2 and B2 for a specific meteorological site. 

 

5.3 Materials and methods 

5.3.1 Study site 

The Wartburg area is situated at a latitude of 29.4332°S and a longitude of 30.5812°E and an 

altitude of 1000 m above sea level. It is inland in the province of KwaZulu-Natal (KZN) which 

is located in the southeast of South Africa. The climate of the KZN midlands area is described 

as a subtropical climate due to warm, wet summers and cool, dry winters. The province is one 

of the areas which engages in many agricultural activities in South Africa and the midlands area 

is amongst the areas with high-quality farming. The province has about 6.5 million ha of 

farming land. Sugarcane is the most important cash crop planted in the fields of the province. 

The KZN midlands is one of the areas where sugarcane production is mainly practiced under 

dryland conditions. The province experienced one of the most severe droughts in history during 

2014/2015 which resulted in water shortages. Consequently, the inevitable lack of sufficient 

water led to significant agricultural production losses with irrigated areas subjected to restricted 

irrigation.  

 

5.3.2 Climate data 

The daily observed maximum (Tmax) and minimum air temperature (Tmin) and rainfall data 

for the study area were collected from the South African Sugarcane Research Institute, 

particularly for the Windy Hill meteorological station (29.49028°S, 30.57139°E). The data 

were for the period of 1966-1994. To ensure that the dataset conforms to a standardized long-

term dataset (30 years), a two-year period of data was generated using ClimGen (Stöckle et al., 

1999). Daily predictors data required for this study were obtained from the government of 

Canada through the website: http://climate-scenarios.canada.ca/?page=pred-hadcm3#archived. 

These included predictors of the National Center of Environmental Prediction (NCEP), 

http://climate-scenarios.canada.ca/?page=pred-hadcm3#archived
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National Center for Atmospheric Research (NCAR), HadCM3 for A2 and B2 scenarios, 

CaneESM2 for 4.5 and 8.5 scenarios (Government of Canada, 2019). The HadCM3 GCM 

model was selected due to its successful application across different regions. In addition, 

HadCM3 is considered the best GCM for the prediction of climate variability and change. This 

judgment is based on the statistical performance analysis conducted by Babel et al. (2014) of 

five GCMs, in which HadCM3 has proven to be more accurate in estimating climate variable 

changes compared to its counterparts (CCSR/NIES, CGCM3, CSIRO, ECHAM4) (Shrestha et 

al., 2014). Its ability to capture the characteristics of historical climate change as a result of 

natural and anthropogenic forcing has increased its use in studies (Saymohammadi et al., 2017). 

HadCM3 is an Atmospheric Ocean Generation model (AOGM) developed at the Hadley Centre 

for climate prediction and research in the United Kingdom. It has a spatial resolution of 2.5o 

latitude and 3.75o longitude. The HadCM3 comprises two SRES scenarios, A2 which describes 

a very heterogeneous world with the absence of concerted measures to mitigate climate change 

impacts, resulting in average warming of 2 to 5.4 oC and scenario B2 which portrays a 

heterogeneous world with local adaptation measures in place, leading to a rise in surface 

warming of 1.4 to 3.8 oC.  

 

The climate change research community discourages the reliance on a single model when 

predicting future climate conditions. This argument is based on high uncertainty associated with 

a single GCM. Thus, CanESM2 was also employed for the simulation. CanESM is a second 

generation of the Canadian Earth System model, which is the 4th generation coupled global 

climate model of the coupled model intercomparison, phase 5. It is the only GCM from the 

Coupled Model Intercomparison Project (CMIP) phase 5 of which large-scale predictors can be 

applied directly in the statistical downscaling model. The CanESM2 consists of four 

independent pathways: RCP 8.5 which is considered as the high gas emissions, RCP 6.0 the 

intermediate emissions, RCP 4.5, intermediate emissions and RCP 2.6 which represents the 

lowest emissions.  

 

5.3.3 SDSM 

The Statistical Downscaling Model (SDSM) (version 4.2.6) used in this study was accessed 

from the Department of Geography in King’s College, London through the website: 

https://sdsm.org.uk/software.html. The SDSM enables the generation of climate change time 

series data at specific sites that have adequate data for model calibration. The SDSM which was 

https://sdsm.org.uk/software.html
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developed by Wilby et al. (2002), is described as a decision support tool for assessing the effects 

of local climate change and is fundamentally based on the statistical downscaling method of 

Wilby & Dawson (2012). It is a combination of multiple linear regression and a stochastic 

weather generator. The SDSM uses a series of equations to generate a statistical relationship 

between global and local level predictants. The downscaling process by the SDSM software 

involves a series of tasks such as data quality control and transformation: for identification of 

data errors and specification of outliers and for the applicable transformation of data; screening 

variables for the selection of appropriate downscaling predictor variables; model calibration, 

weather generator, scenario generator and frequency and statistical analysis. Two different sub-

models are nested in the SDSM, the conditional and unconditional, and are used to determine 

the occurrence of rainfall, the amount of evaporation and the variation in air temperature. In 

conditional models, there is a direct linear dependency on predictor variables while for 

unconditional models a direct linear relationship between the predictant and the chosen 

predictor is found (Manhood et al., 2015). SDSM has been employed in various countries across 

the world to test its capabilities (Chu et al., 2009; Nury & Alarm, 2014; Saymohammadi et al., 

2017; Mirgol & Nazari, 2018; Tahir et al., 2018). The observation from previous studies 

indicates that the SDSM can produce reliable predictions of intense rainfall as well as rainfall 

at seasonal time-scales. The SDSM has also proven its ability in providing station level climate 

parameters for different GCMs and future climate scenarios (Liu et al., 2017).  

 

5.3.4 Methodology 

In order to identify grid cells for the models corresponding to the specific weather station, the 

grid cells were first imposed on the South African region and the cells were selected 

accordingly. The data used in this study corresponds to the grid cell number Box_ 08X_45Y 

and 012X_22Y for HadCM3 and CanESM2 respectively. Historical data are available for both 

air temperature and rainfall for the period of 1961-2001 for HadCM3 and 1961-2005 for 

CanESM2 as well as the NCEP data for both models respectively. For each model, there are 

about 28 predictor variables which are derived from the NCEP/NCAR reanalysis data. Due to 

a large number of predictor variables, large-scale predictors were screened using Pearson’s 

product-moment correlation in the SDSM. The predictors were therefore selected based on the 

correlation matrix, partial correlation, and p-value. This process was undertaken to verify the 

statistically significant correlation between large-scale predictors and predictions for 

calibration. The predictors which showed statistically significant agreement with the predictant 
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were then selected for model calibration purposes. This permitted the synthesis of simulated 

data and 20 ensembles (default) were created.  

 

The calibration of the station data against the grid-cell data was carried out through the 

downscaling of the SDSM linear regression. Daily data for the period of 1960-1984 were used 

for the calibration of Tmax, Tmin, and rainfall for HadCM3 and CanESM2. With the calibrated 

model, 20 ensembles were simulated for 1960-1984, feeding NCEP/NCAR, A2, B2 (HadCM3) 

and historical (CanESM2) data. The mean values of these ensembles were used in this study. 

The validation of the model was carried out using the observed weather station dataset for the 

period of 1985-1996 using monthly time series. This study also used root mean square error 

(RMSE) and coefficient of determination (R2) as well as monthly mean and standard deviation 

to evaluate the performance of the model.  

 

5.3.5 Bias correction 

Sometimes, differences between GCM predictors and local level characteristics can cause bias 

in the downscaled data. These biases can be attributed to the increased radiative forces from 

greenhouse gases, particularly in rainfall trends (MacKellar et al., 2014). Biases often occur 

when the mean of the GCM data differs substantially from the observed mean for a particular 

variable. These biases are removed through a bias correction process. A bias correction process 

is necessary when there is a possibility of biases between the downscaled and observed data in 

order to obtain reliable results for climate analyses at a local level. In the present study, a simple 

bias correction method by Salzman et al. (2007) was adopted. The biases of daily average air 

temperature were corrected using: 

                    𝑇𝑇𝑑𝑑 =  𝑇𝑇𝑠𝑠 − 𝑇𝑇�𝑔𝑔 − 𝑇𝑇�𝑜𝑜        (5.1) 

where 𝑇𝑇𝑑𝑑 is the bias-corrected daily air temperature for the period under study, 𝑇𝑇𝑠𝑠 the biased 

daily air temperature generated by the model, 𝑇𝑇�𝑔𝑔 the long-term mean monthly values of 

simulated temperature for the study period (1980-1996) and 𝑇𝑇�𝑜𝑜 the long-term mean monthly 

observed air temperature for the study period. Daily rainfall biases were corrected using: 

                             𝑃𝑃𝑑𝑑 = 𝑃𝑃𝑠𝑠 × 𝑃𝑃𝑜𝑜����

𝑃𝑃𝑔𝑔����
                           (5.2) 

where 𝑃𝑃𝑑𝑑 is the bias-corrected daily rainfall for the period under study, 𝑃𝑃𝑠𝑠  the biased daily 

rainfall generated by the model, 𝑃𝑃𝑜𝑜�  the long-term mean monthly values of the observed air 

temperature for the study period, and 𝑃𝑃𝑔𝑔�  the long-term mean monthly values of simulated air 
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temperature for the study period. Manhood & Babel (2012) suggested the use of recent datasets 

to ensure improved results, hence in this study bias correction was used using the 1980-1996 

dataset. After the adjustments were made to the daily maximum and minimum air temperature 

and rainfall data, monthly mean values were calculated for the computation of drought indices 

for future periods in the 2020s (2011-2040), 2050s (2041-2070) and 2080s (2071-2099) for the 

four scenarios SRES A2, SRES B2, RCP 4.5 and RCP 8.5 at different timescales. 

 

5.3.6 Drought indices used in the study 

The study employed two drought indices: the Standardized Precipitation Index (SPI) (Mckee et 

al., 1993) and the Standardised Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano 

et al., 2010) to predict the potential impacts of climate change on the future drought occurrences 

as well as to characterize possible future drought events based on duration, intensity, and 

severity. Both indices have been frequently used in many parts of the world (Khan et al., 2017; 

Lee et al., 2017; Jang, 2018) and over southern Africa (Edossa et al., 2014; Botai et al., 2016; 

Botai et al., 2019) for defining and monitoring droughts. The wide application of the SPI was 

driven by its robustness, and versatility for drought analysis, easy computation, and reduced 

data demand. While SPI has been criticized for its main limitation which is the consideration 

of only precipitation in its calculation and its failure to include other variables that can influence 

droughts, such as air temperature, evapotranspiration, wind speed, and soil moisture (Vicente-

Serrano et al., 2010), it has the ability to be calculated over multiple timescales. This feature, 

that other complex drought indices lack, is very important as it enables analysis of precipitation 

from the shortest timescale until it accumulates to years (Lee et al., 2017). This also permits the 

use of SPI in monitoring both short-term and medium-term water deficits.  

 

Although SPI is highly recommended for drought characterization, its major limitation of 

considering only precipitation has been criticized, thus SPEI was developed to overcome it. The 

SPEI calculation is based on SPI algorithms (Vicente-Serrano et al., 2010). The major 

difference is that it also takes into account the effects of air temperature on drought occurrences, 

and it is calculated as the difference between precipitation (P) and potential evapotranspiration 

(PET). Thus the classification of drought is similar for both indices. In the present study, 

drought indices were calculated using SPEI and SPI script embedded in R software (R Core 

Team, 2013). For the calculation of potential evapotranspiration, which is required for SPEI 

computation, the SPEI script on the software offers four options for calculating PET based on 
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data demand ranging from the least data demanding method (Thornthwaite) to the most data 

demanding method (Penman-Monteith). The Penman-Monteith method is normally considered 

the best option, however, it requires a comprehensive dataset which is not always accessible 

(Abiodun, 2019). Therefore, for this study due to limited data availability, the Hargreaves air 

temperature based method (Hargreaves & Samani, 1985) was used to compute PET. It is 

calculated based on daily maximum and minimum air temperature range and the latitude of the 

study site. The Hargreaves air temperature based method is believed to produce sensible results 

given that it is linked to solar radiation through the daily air temperature range and the mean 

extraterrestrial radiation (Yates & Strzepe, 1994). A detailed description of SPI and SPEI 

calculation can be found in Beguería et al. (2014). 

 

5.3.7 Analysis of drought characteristics 

The impacts of drought on different sectors depend on the characteristics of a particular drought 

event. Drought events differ in intensity, severity, and duration. These characteristics are often 

analyzed using a probabilistic methodology proposed by Yevjevich (1967). This method has 

shown the capability of estimating the return periods of extreme events (Lee et al., 2017). In 

the present study, Run’s theory was applied to characterize drought based on SPEI and SPI for 

future periods. According to the theory, drought severity expresses a cumulative lack of rainfall 

below the normal level. Drought duration is the total period during which rainfall is 

continuously below normal and can be expressed in weeks, months, or years. Drought intensity 

is derived by dividing drought severity by drought duration and indicates the mean of the 

rainfall below the threshold level. Simply put, the severity indicates the accumulation of 

monthly drought index (negative values equal or less than -1) while duration and intensity show 

the duration of drought in months and the ratio of severity to the duration of drought 

respectively. 

 

5.4 Results 

This section mainly presents the outcomes of the study. First, the SDSM calibration and 

validation results are explained, highlighting the application of bias correction. The 

performance of the models based on the deterministic metric such as RSME and R2 is also 

shown. Second, the simulated long-term climate data is analysed using SPI and SPEI drought 

indices for determining future drought trend in the study site.  
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5.4.1 Calibration of the SDSM 

Results from the calibration of the model demonstrate a good correlation between the simulated 

and observed monthly rainfall totals as well as the average minimum and maximum air 

temperature. Figures 5.1 and 5.2 show the observed versus the simulated values of monthly 

average maximum (Tmax) and minimum (Tmin) air temperatures as well as monthly rainfall 

for the calibration of the model. The results of different predictors for both the Tmax and Tmin 

calibration indicate a similar pattern with small biases between the simulated and observed data. 

The air temperature values downscaled from the NCEP slightly underestimate the maximum 

air temperature whereas NCEP_NCAR predictors slightly overestimate the maximum air 

temperature almost throughout the year. The NCEP predictors appear to perfectly simulate the 

observed Tmax for May and July while the NCEP_NCAR predicators correctly simulate the 

observed Tmax for October, November and December.  

 

The agreement between simulated Tmin by both predictors and the local meteorological station 

data is not as good in the winter months compared to the rest of the year. The rainfall calibration 

results also show an overestimation using the NCEP_NCAR predictor and underestimation for 

the NCEP predictor for the whole year (Figure 5.2). 
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5.4.2 Validation of the SDSM results 

The SDSM-downscaling model is validated using an observed 11-year period (1985-1996) data 

set. For validation, four sets of data were generated for the period of 1985 to 1996, extracting 

NCEP, NCEP-NCAR, HadCM3 and CanESM2 variables. The observed monthly mean of 

Tmax, Tmin, and rainfall are illustrated in Figure 5.3. Table 5.1 shows the statistical results of 

simulated data. Despite air temperature simulation from different scenarios showing a similar 

pattern, the precipitation results are not satisfactory.  
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Figure 5.2: Comparison of monthly observed and simulated rainfall using SDSM for the 
calibration period 1966 to 1984 

 

Figure 5.1: Comparison of monthly observed and simulated of monthly Tmax and 

Tmin using SDSM for the calibration period 1966 to 1984 

0.00
20.00
40.00
60.00
80.00

100.00
120.00
140.00
160.00
180.00
200.00

1 2 3 4 5 6 7 8 9 10 11 12

A
ve

ra
ge

 ra
in

fa
ll

(m
m

/m
on

th
)

Month
Observed NCEP NCEP-NCAR



129 

As shown in Table 5.1, the models appear to simulate Tmin and Tmax better than rainfall. For 

example, in the case of Tmin, the R2 and RMSE of NCEP are 0.99 and 0.98 oC, for 

NCEP_NCAR and HadCM3 are 0.99 and 0.97 oC and 0.66 and 2.33  oC respectively. The R2 

and RMSE for Tmax are 0.87 and 0.93 for NCEP whereas for HadCM3 R2 and RMSE ranges 

between 0.50 to 0.51 and 2.32 to 2.36 oC respectively. For rainfall, results show R2 and RSME 

ranging between 0.56 to 0.76 and  24.53 to 40.05 mm. Similar behaviour is also observed for 

CanESM2 data in Table 5.1. However, results obtained using the NCEP_NCAR and NCEP are 

superior to HadCM3 and CanESM2 models for all the predictants. This shows that SDSM is 

good in simulating air temperature compared to rainfall.  

 

Although bias is observed biases between the simulated and the observed results, a similar 

pattern that is indicated by Tmax and Tmin shows the capability of the abovementioned models 

to simulate air temperature for the study site. Thus these models were employed for this 

simulation study. 

 

 

 

18.50

20.50

22.50

24.50

26.50

1 2 3 4 5 6 7 8 9 10 11 12

Tm
ax

 (o C
)

Month
Observed NCEP NCEP_NCAR

4.00

6.00

8.00

10.00

12.00

14.00

16.00

1 2 3 4 5 6 7 8 9 10 11 12

Tm
in

 (o 
C

)

Month
Observed NCEP NCEP-NCAR



130 

 

Figure 5.3: Validated Tmax, Tmin and rainfall before bias correction using SDSM for the 
validation period of 1985 to 1996 
 
Table 5.1: Before bias correction statistical results for the comparison of the observed 
and simulated rainfall and the maximum and the minimum air temperatures for the 
validation period 1985-1996. 
 Tmax Tmin Rainfall 

Mean 
 

Std 
dev 

RMSE 
 

R2 Mean Std 
dev 

RMSE R2 Mean Std 
dev 

RMSE R2 

 (oC) (oC) (oC)  (oC) (oC) (oC)  (mm) (mm) (mm)  
Observed 23.59 2.06   11.09 4.11   72.76 43.56   
A2 22.43 2.90  2.36 0.50 11.44 3.09  2.33 0.66 60.59 15.07  34.53 0.56 
B2 22.44 2.87  2.32 0.51 11.42 3.10  2.33 0.67 60.82 14.95  34.98 0.52 
CanEMS2 
NCEP 

22.55 
22.99 

1.63 
2.28 

 1.35 
 0.87 

0.79 
0.93 

11.62 
11.73 

2.82 
3.42 

 1.43 
 0.98 

0.97 
0.99 

81.60 
57.84 

49.95 
27.92 

 32.76 
 28.53 

0.57 
0.69 

NCEP_NCAR 23.02 1.99  0.82 0.92 11.65 3.31  0.97 0.99 91.04 55.77  40.05 0.76 
 

 

5.4.3 Validation results after bias correction 

Although the model was acceptable for the estimation of future climate parameters, the results 

showed biases. To remove biases between simulated and observed data, a bias correction 

method was applied using eqs. 5.1 and 5.2 to improve validation results and to obtain reliable 

future predictions. The statistical results for Tmin, Tmax, and rainfall after bias correction are 

displayed in Table 5.2 and the mean monthly observed data are compared with the bias-

corrected generated mean monthly data in Figures 5.4 and 5.5. Validation results after bias 

correction indicate improved R2 and reduced RMSE for both maximum and the minimum air 

temperatures as well as rainfall.  
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The graphical results in Figure 5.4 and the statistical results in Table 5.2 indicate that SDSM 

simulates maximum, minimum air temperature and rainfall acceptably well after the removal 

of biases. The application of bias correction enhanced the results by minimizing the difference 

between the generated and observed data and hence improved the correlation (Table 5.2). After 

bias correction, the monthly mean and standard deviation of the generated monthly data are 

much closer to the observed data. The corrected results of HadCM3 and CanESM2 were 

satisfactory to demonstrate the applicability of the SDSM model. Based on the statistical 

performance metrics of RMSE values for monthly rainfall and air temperature, CanESM2 

improved more than HadCM3 in both air temperature and rainfall projections with RMSE 

values for air temperature ranging from 0.08 to 0.20 oC while RSME value for rainfall 

projections was 1.15 mm. The statistical analysis also revealed that the SDSM is superior in 

simulating air temperature compared to rainfall. In general, the bias-corrected results and the 

graphical representation of simulated and observed scenarios revealed that the CanESM2 and 

HadCM3 models perform fairly well in simulating climate variables for the study area. Based 

on the plausible validation results and the acceptable behaviour of the model, the model was 

employed in the present study for the prediction of future Tmax, Tmin and rainfall for the study 

area. 

 

Table 5.2: Statistical maximum and minimum air temperature and rainfall monthly 
results for the observed and simulated after bias correction for the validation period 1985-
1996. 

 Tmax Tmin Rainfall 
Mean 
(oC) 

Std 
dev 
(oC) 

RMSE 
(oC) 

R2 

 
Mean 
(oC) 

Std 
dev 
(oC) 

RMSE 
(oC) 

R2 

 
Mean 
(mm) 

Std 
dev 
(mm) 

RMSE 
(mm) 

R2 

 

Observed 23.59 2.06   11.04 4.22   72.76    43.56   
A2 23.77 1.74 0.37 0.99 11.00 4.21 0.08 0.99 72.81 43.19 1.17 0.99 
B2 23.67 1.80 0.51 0.94 11.06 4.22 0.05 0.99 72.82 43.57 2.94 0.99 
CanEMS2 
NCEP 

23.77 
23.76 

2.09  
2.11 

0.20 
0.19 

0.99 
0.99 

11.03 
10.99 

4.23 
4.20 

0.08 
0.10 

0.99 
0.99 

72.83 
72.79 

43.69 
43.28 

1.15 
  1.16 

0.99 
0.99 

NCEP_NCAR 23.78 2.10 0.22 0.99 10.97 4.18 0.13 1.00 72.68 43.34 1.38 0.99 
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Figure 5.4: Validation of monthly observed and simulated Tmax and Tmin after bias 
correction using SDSM for the validation period 1985 to 1996 
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Figure 5.5: Validation of monthly observed and simulated rainfall after bias correction 
using SDSM for 1985 to 1996 
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5.4.4 Projected trend of average maximum and minimum air temperature and annual 

rainfall 

Figure 5.6 shows the general trends of Tmax, Tmin and rainfall for the study period. Scenarios 

indicate a statistically significantly positive trend for both Tmin and Tmax throughout the study 

period. The results agree with the consensus that under climate change conditions, the air 

temperature will increase. However, the CanESM2 scenarios displayed a pronounced increase 

in air temperature compared to the HadCM3 scenarios for 2011 to 2099. Based on CanESM2 

RCP 8.5 and RCP 4.5, Tmax is projected to increase from 24.1 to 27.6 oC and 23.6 to 25.2 oC 

respectively for 2011 to 2099. The HadCM3 A2 and B2 scenarios project an increase of Tmax 

from 23.7 to 24.9 oC and 24.2 to 24.5 oC respectively. The results suggest an increase of up to 

3.5 oC relative to the 2011 projected maximum air temperature data. For Tmin, the CanESM2 

RCP 8.5 and RCP 4.5 scenarios predicted an increase from 12.9 to 16.6 oC and 12.4 to 14.0 oC 

respectively. The A2 and B2 scenarios showed a smaller increase from 11.6 to 13.8 oC and 11.6 

to 13.7 oC respectively. The HadCM3 SRES scenarios appear to have projected the air 

temperature for the whole period relative to the observed.  

 

According to the results, Tmax is projected to increase at a greater rate than Tmin reaching the 

highest increase of 3.5 oC. In the case of rainfall, a generally positive trend is predicted.  

Rainfall trends show inconsistent results, with CanESM2 scenarios indicating a declining trend 

for the near future period (2011-2040) and begin to increase in the 2040s whereas HadCM3 

scenarios predict a general decreasing trend. A wetting trend is observed after 2040 until 2088 

where rainfall begins to decrease again. The annual rainfall shows a relative increase to 946.5 

and 906.0 mm based on RCP 8.5 and RCP 4.5 scenarios whereas A2 and B2 scenarios project 

a decreasing rainfall trend to 1035.4 and 1186.2 mm respectively. The rainfall changes are 

based on the 2020s average annual rainfall. 
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a) Tmax 

b) Tmin 

c) Rainfall 
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Figure 5.6: Projected future annual Tmax, Tmin and rainfall using SDSM from 
CanESM2 and HadCM3 for 2011-2099 
 

The overall analysis of the results indicates a general increase in air temperature for all periods 

(the 2020s (P1), 2050s (P2), and 2080s (P3)) for the selected GCM scenarios (Tables 5.3 and 

5.4), However, the magnitude of these increases differed for the different scenarios. The 

scenario RCP 8.5 projected that the average monthly Tmax for the three periods (P1, P2 and 

P3) would be 24.2, 24.6 and 26.8 oC respectively. These values were found to be 1.2, 1.7 and 

3.8 oC greater than the observed monthly average Tmax. The RCP 4.5 scenario also projected 

an increasing trend for all periods, indicating that average monthly Tmax would be 23.9, 24.2 

and 25.1 oC, which are 0.98, 1.19 and 2.17 oC greater when compared with the observed 

monthly Tmax.  

 

Temporal regression analysis was conducted to analyse the rate and the significance of changes 

in average yearly Tmax, Tmin and total rainfall. The results indicate an increasing rate of 0.007 

to 0.164 and 0.022 to 0.052 oC annum-1 in Tmax based on RCP 4.5 and RPC 8.5 scenarios. The 

increase projected by RCP 8.5 was found to be statistically significant (p < 0.05) for all three 

prospective periods while the RCP 4.5 scenario projected a statistically significant increase in 

Tmax for P1 and P2 only. Both HadCM3 scenarios (A2 and B2) predicted a general increase in 

Tmax for the three future periods relative to the observed. The A2 scenario projected a rise of 

Tmax to 24.1, 24.1 and 24.1 oC for P1, P2 and P3 respectively, each being 1.12, 1.22 and 1.33 
oC greater when compared to the observed period. The Tmax is projected by B2 to increase to 

be 24.1 for all three periods, P1, P2 and P3 respectively, an increase of 1.10, 1.15 and 1.17 oC 

relative to the observed period. For the HadCM3 scenarios, the increase was found to be 

statistically insignificant (p > 0.05). A similar trend for the average monthly Tmin was projected 

for all the scenarios (Table 5.4). The results suggest that the air temperature will continue to 

increase until the end of the 21st century.  
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Table 5.3: Overall change of Tmax for future climate generated using HadCM3 and 
CanESM2 model scenarios (changes based on the 1966-1996 Tmin mean) 
GCM 
scenarios 

Periods  Overall 
Tmax 
change 

Slope 
(annum-1) 

Significance < 0.05 

Observed  1966-1996 22.96   
HadCM3 A1 2020s (P1) 24.08   

2040s (P2) 24.18   
2080s (P3) 24.29   
oC change P1 vs obs 1.12 0.008 p > 0.05 
oC change P2 vs obs 1.22 0.009 p > 0.05 
oC change P3 vs obs 1.33 0.012 p > 0.05 

 HadCm3 B2 2020s (P1) 24.06 
24.11 
24.13 

1.10 
1.15 
1.17 

 
 
 

0.003 
0.002 
0.006 

 
2040s (P2)  
2080s (P3)  
oC change P1 vs obs p > 0.05 
oC change P2 vs obs p > 0.05 
oC change P3 vs obs p > 0.05 

RCP 4.5 2020s (P1) 23.94 
24.15 
25.13 

0.98 
1.19 
2.17 

 
 

 
 
 

0.066 
0.167 
0.012 

 
2040s (P2)  
2080s (P3)  
oC change P1 vs obs p < 0.05 
oC change P2 vs obs p < 0.05 
oC change P3 vs obs p > 0.05 

RCP 8.5 2020s (P1) 24.17 
24.63 
26.80 

1.21 
1.67 
3.84 

 
 
 

0.022 
0.074 
0.057 

 
2040s (P2)  
2080s (P3)  
o C change P1 vs obs p > 0.05 
o C change P2 vs obs p < 0.05 
o C change P3 vs obs p < 0.05 

 

Table 5.4: Overall change of Tmin for future climate generated using HadCM3 and 
CanESM2 model scenarios (changes based on the 1966-1996 Tmin mean) 
GCM scenarios Periods  Overall 

Tmin 
change 

Slope (annum-1) Significance < 
0.05 

Observed  1966-1996 11.53   
HadCM3 A2 2020s (P1) 11.87   

2040s (P2) 12.37   
2080s (P3) 13.00   
oC change P1 vs obs 0.34 0.023 p < 0.05 
oC change P2 vs obs 0.84 0.033 p < 0.05 
oC change P3 vs obs 0.82 0.029 p < 0.05 

 HadCM3 B2 2020s (P1) 11.54 
11.57 
11.64 

0.01 
0.04 
0.11 

 
 
 

 0.002 
-0.005 
 0.013 

 
2040s (P2)  
2080s (P3)  
oC change P1 vs obs p > 0.05 
oC change P2 vs obs p > 0.05 
oC change P3 vs obs p > 0.05 

RCP 4.5 2020s (P1) 13.13 
13.59 
13.87 

1.60 
2.06 

 
 
 

 0.049 
 0.025 

 
2040s (P2)  
2080s (P3)  
o C change P1 vs obs p < 0.05 
o C change P2 vs obs p < 0.05 
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oC change P3 vs obs 2.34  0.065 p < 0.05 
RCP 8.5 2020s (P1) 13.33 

13.95 
15.19 

1.80 
2.42 
3.66 

 
 
 

 0.055 
 0.012 

     0.070  

 
2040s (P2)  
2080s (P3)  
o C change P1 vs obs p < 0.05 
o C change P2 vs obs p < 0.05 
o C change P3 vs obs                  p < 0.05 

 

However, the models display different behaviour for rainfall. Overall, the models showed 

inconsistency in determining the period with the highest rainfall; the CanESM2 model scenarios 

predict high rainfall during the 2050s while according to the HadCM3 model scenarios, high 

rainfall is expected during the 2020s and 2080s (Table 5.5). The results suggest that the two 

models disagree on the direction of future rainfall predicted, with HadCM3 scenarios predicting 

a decreasing rate ranging between -13.025 to -18.124 mm annum-1 according to B2 and A2 

scenarios respectively while CanESM2 RCP 4.5 and RCP8 8.5 projects an increasing rate of 

1.989 to 4.373 mm annum-1 respectively during P2. However, the increase projected by 

CanESM2 were statistically insignificant whereas the decreases were found to be statistically 

significant. The discrepancies can emanate from the differences in the GCMs and scenarios 

used for downscaling, the selection of representative predictors, the spatial and temporal 

resolution of observed and predictor datasets and the downscaling techniques applied (SDSM). 

The summary of the projected rainfall trend for the respective periods are presented in Table 

5.5. 

 

Table 5.5: Overall change of rainfall for future climate generated from HadCM3 and 
CanESM2 model scenarios (changes based on the 1966-1996 rainfall mean) 
GCM scenarios Periods  Overall 

rainfall 
change 

Slope (annum-1) Significance < 
0.05 

Observed  1966-1996 960.37   
HadCM3 A2 2020s (P1) 1141.00   

2040s (P2) 869.25   
2080s (P3) 1028.30   
% change P1 vs obs 18.83  9.178 p < 0.05 
% change P2 vs obs -9.51 -18.10 p < 0.05 
 % change P3 vs obs 7.81  6.894 p > 0.05 

 HadCM3 B2 2020s (P1) 1261.76 
881.41 

1173.52 
31.38 
-8.22 
23.51 

 
 
 

11.092 
-13.025 
11.008 

 
2040s (P2)  
2080s (P3)  
% change P1 vs obs p < 0.05 
% change P2 vs obs p < 0.05 
% change P3 vs obs P < 0.05 

RCP 4.5 2020s (P1) 782.61   
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2040s (P2) 1063.49 
907.44 
-18.51 
10.74 
-5.66 

 
 

 0.687 
 1.979 

-12.730 

 
2080s (P3)  
% change P1 vs obs p > 0.05 
% change P2 vs obs p > 0.05 
% change P3 vs obs p < 0.05 

RCP 8.5 2020s (P1) 799.27 
1138.85 

951.48 
-16.77 
18.58 
-1.44 

 
 
 

 2.842 
 4.373 

-19.678 

 
2040s (P2)  
2080s (P3)  
% change P1 vs obs p > 0.05 
% change P2 vs obs p > 0.05 
% change P3 vs obs p < 0.05 

 

5.4.5 Predicted drought events using SPI and SPEI for 2011-2099 

SPEI and SPI were used at 6-, 12- and 24- months period during the period of 2011 to 2099 to 

compute the likelihood of drought occurrence based on generated future data. The intention 

was to capture the effects of changes in air temperature on drought characteristics.  The 6-month 

time-scale was considered in order to understand possible changes during the rainy period 

whereas a 12-month scale was inclusive of the dry season to capture the effects of changes in 

air temperature on the drying trend during that period. The 24-month time scale was for 

detecting longer drought events. For the 6-month analysis, only August to January months 

inclusive were considered so as to understand the possible future changes during the rainfall 

season. The study period was divided into three periods, namely the 2020s (P1), 2050s (P2) and 

2080s (P3). Figures 5.7, 5.8 and 5.9 indicate the 6-, 12- and 24-month drought occurrence 

results respectively.  The drought trend follows the same pattern for all three periods despite 

the inclusion of winter months in the 12-and 24-month drought analysis. However, SPI6 

progression appears to be slow. The drought anomaly initially decreased during the 2020s for 

all scenarios. However, the RCP 4.5 and RCP 8.5 scenarios suggest the prevalence of mild to 

moderate drought events from 2011 until the mid-2050s while A2 and B2 scenarios indicate 

possible drought events in the late 2020s until the late 2050s. Both SPEI and SPI show a wetter 

trend in the early 2020s which starts to decrease in the late 2020s for A2 and B2 scenarios. The 

SPEI and SPI values based on the RCP 4.5 and RCP 8.5 indices suggest an increased drought 

severity and intensity during 2011-2055 with SPEI showing a drought intensity of -2.12 and -

2.09 for 2029 and 2046 respectively while the SPI indicates an intensity of -2.70 and -2.02 for 

the same years.  
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According to A2 and B2 SPI-6 results, drought events with the highest severity are anticipated 

from 2040 to 2073 reaching an intensity of -2.27 in 2047 and -2.60 in 2060. For A2 and B2 

scenarios, SPEI6 revealed only moderate and mild drought events during 2040-2073. These 

results suggest that both SPI and SPEI detect drought events that are within the same category 

with slight differences, this happens despite the inclusion of air temperature in SPEI 

computation.  

a) A2 b) B2 

c) RCP 4.5 d) RCP 8.5 

 
 

 

 

A slight difference between the SPI and SPEI was observed with SPI consistently showing 

more intense results relative to SPEI for 2040-2073. The overall results indicate a possible 

drying trend under climate change conditions. 

 

Figure 5.7: Projected drought occurrences using SPI and SPEI based on a) A2, b) B2, c) RCP 4.5, 

and d) RCP 8.5, scenarios at the 6-month time-scale. 
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The evaluation of the drying trend for the 12-month analysis showed a reduced drought severity 

when compared to the 6-month analysis. The outcome of the 12-month analysis displayed a 

drying trend for 2028 to 2047, however, the SPI and SPEI analysis for the 12-month time-scale 

show the general high frequency of mild and moderately dry conditions with few extreme 

drought events. The implication is that although rainfall totals will be below normal, the 

magnitude of this shortage will be small. The SPI-12 results indicate that the severe and extreme 

drought events are predicted to occur in 2043 (-2.33), 2047 (-2.63) and 2031 (-2.27) as well as 

2038 (-2.96) based on A2, B2 and RCP 8.5 respectively whereas SPEI-12 project an occurrence 

of severe and extreme drought in 2043 (-2.37), 2047 (-2.55) and 2029 (-2.29) as well as 2038 

(-2.09). For the 24-month analysis, few drought events were projected over the study period. 

Only RCP 4.5 and B2 projected extreme drought events during the 2020s and 2050s. The RCP 

4.5 scenario predicts extreme drought in 2029 (-2.05), 2061 (-2.08) and 2066 (2.20) based on 

SPEI while according to SPI, extreme droughts are expected in 2029 (-2.09), 2030 (-2.02), 2031 

(-2.01), 2039 (-2.00) and 2066 (-2.09). The B2 scenario projected the occurrence of extreme 

drought events in 2047 and 2048 at an index of -2.13 (-2.01) and -2.34 (-2.36) for SPEI (SPI).  

a) A2 b) B2 

 
c) RCP 4.5 

 

 
d) RCP 8.5 
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Figure 5.8: Projected drought occurrences using SPI and SPEI based on a) A2, b) B2, 
c) RCP 4.5, and d) RCP 8.5, scenarios at the 12-month time-scale 
 

The consistency in terms of projected drought years for all scenarios is worth noting although 

at different time-scales. The scenarios commonly project extreme drought events in 2029, 2038, 

2043, and 2047 but at different time-scales. This implies that extreme droughts should be 

anticipated in the near future in the area under study. 

5.4.6 Analysis of future drought characteristics 

Possible changes in drought characteristics based on future drought events were investigated 

using the SPI and SPEI. The results indicate the inconsistency of scenarios in predicting such 

changes. Both increases and decreases in duration, severity and intensity relative to historical 

droughts are projected. Despite that, all scenarios predicted a higher severity of future  droughts 

compared to historical drought characteristics, the is an equal probability of increasing or 

decreasing drought severity in the future with the 2080s expected to experience more decreases 

relative to the other periods. The projected drought characteristics at different time-scales also 

lack consistency. At a 6-month timescale, the historical drought duration, severity and intensity 

were 44 months, -70 and 1.63 respectively (see Table 5.6). All scenarios project an increased 

drought duration and severity at the 6-month time-scale but the intensity is projected to 

generally decrease for all three periods except for the A2 scenario which projects an increased 

intensity in the 2080s. This indicates high probability of longer droughts under climate change.  

 

Based on the SPEI results in Table 5.7, the historical (1966-1996) drought duration, severity 

and intensity at the 12-month time-scale were 55 months, -84 and 1.53 respectively . The future 

projections at the 12-month scale indicate a general increase of these characteristics. The future 

drought events are predicted to be more severe (-225,-218) for the 2020s (RCP4.5, RCP8.5), (-

144 and -247)2050s  based on A2 and B2) and  (-148) 2080s as predicted by RCP8.5. The 

scenarios also project a potential increase in drought duration over the same period, however, 

the projected drought events are generally less intense than the historical drought event’s 

intensity. The lengthy drought events with mild to moderate intensity appear to become 

prevalent under climate change for the period under study. According to the SPEI at the 24-

month time scale (see Table 5.8), drought is projected to become more severe from -81 to -214 

and -139 based on RCP8.5 scenario for the 2020s and 2080s respectively. For the period of 
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2050, the projection shows an accumulative negative rainfall anomaly of up to -241 for the B2 

scenario. This indicates the high probability of future drought events with severity.  

  

a) A2 

  

b) B2 

  

c) RCP 4.5 

 

d) RCP 8.5 

Figure 5.9: Projected drought occurrences using SPI and SPEI based on a) A2, b) B2, c) 
RCP 4.5, d) RCP 8.5 scenarios at the 24-month time-scale 
 
Table 5.6: Possible future changes in drought characteristics at the 6-month timescale 
based on climate generated from HadCM3 and CanEM2 models 

Scenarios 2020s 2050s 2080s 
D S I D S I D S I 

SPI-6 OBS 44 -70 1.63       
 RCP 4.5 75 -99 1.32 58 -81 1.39 39 -59 1.51 
 RCP 8.5 81 -127 1.56 54 -71 1.31 43 -57 1.32 
 A2 72 -95 1.32 108 -165 1.52 35 -59 1.68 
 B2 61 -80 1.31 112 -176 1.57 35 -54 1.54 
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SPEI-6 OBS(1966-1996)  52 -71 1.37       
 RCP 4.5 73 -107 1.46 49 -71 1.45 48 -83  
 RCP 8.5 71 -85 1.20 42 -52 1.24 79 -148 1.73 
 A2 78 -97 1.24 105 -184 1.75 30 -51 1.87 
 B2 69 89 1.29 113 -158 1.40 36 -74 2.05 

D-Duration (period of drought in months), S- Severity (accumulative of negative drought index), I-Intensity (ratio of severity 
to duration) 
 
Table 5.7: Possible future changes in drought characteristics at the 12-month timescale 
based on climate generated from HadCM3 and CanESM2 models 

Scenarios 2020s 2050s 2080s 
D S I D S I D S I 

SPI-12 OBS 47 -84 1.79       
 RCP 4.5 130 -225 1.73 5 -5 1.00 17 -25 1.47 
 RCP 8.5 151 -218 1.44 22 -33 1.50 47 -63 1.34 
 A2 48 -74 1.54 116 -144 1.24 1 -1 1.00 
 B2 10 -12 1.20 167 -247 1.48 35 -54 1.54 
SPEI-12 OBS(1966-1996)  55 -84 1.53       
 RCP 4.5 112 -187 1.67 8 -7 0.88 51 -75 1.47 
 RCP 8.5 126 -167 1.32 21 -27 1.29 78 -119 1.52 
 A2 71 -74 1.04 99 -144 1.45 1 -1 1.00 
 B2 22 -27 1.23 157 -225 1.43 29 -40 1.38 

D-Duration (period of drought in months), S- Severity (accumulative of negative drought index), I-Intensity (ratio of severity to duration) 
 

Table 5.8: Possible future changes in characteristics at the 24-month timescale based on 
climate generated from HadCM3 and CanESM2 models 

Scenarios 2020s 2050s 2080s 
D S I D S I D S I 

SPI-24 OBS 40 -81 2.02       
 RCP 4.5 150 -249 1.66 - - - 13 -13 1.00 
 RCP 8.5 152 -221 1.45 13 -20 1.53 39 -50 1.28 
 A2 49 -37 0.76 129 -224 1.73 5 -5 1.00 
SPEI-24 OBS(1966-1996)  47 -74 1.67       
 RCP 4.5 128 -214 1.67 - - - 51 -120 2.35 
 RCP 8.5 132 -173 1.31 13 -17 1.31 95 -139 1.46 
 A2 64 -65 1.02 115 -197 1.71 10 -11 1.10 
 B2 22 -28 1.27 175 -241 1.38 11 -12 1.09 

D-Duration (period of drought in months), S- Severity (accumulative of negative drought index), I-Intensity (ratio of severity to duration 
Indicates the absence of drought events. S- Severity, D-Duration, I-Intensity 

5.5 Discussion  

5.5.1 Projected air temperature  

The results indicate that air temperature is expected to continue to increase in the area reaching 

a high in the 2080s for all scenarios. However, the pattern and the magnitude of future air 

temperature changes show differences across the GCMs. This may be attributed to the findings 

of Giorgi (2008) that indicated the dependence of regional temperature change sensitivity on 

the GCM sensitivity instead compared to local processes. Nevertheless, Giorgi & Coppola 



144 

(2010) confirm that the model regional sensitivity/ bias has a negligible effect on the projected 

regional change.   

 

The CanESM2 scenario results also reveal that the incremental increases of minimum air 

temperatures are greater than that of maximum air temperature increases, suggesting warmer 

nights. However, a statistically significant decreasing Tmin trend projected by RCP4.5 for P2 

is indicative that the rate of increase relative to the observed period will be low. The study 

findings correspond with other downscaling studies conducted worldwide and in southern 

Africa showing an increasing air temperature trend under global warming conditions (James & 

Washington, 2012; Engelbrecht et al., 2015; Dosio, 2017). Increasing air temperatures are 

associated with the prevalence of extreme heat events which is considered to be a major 

constraining factor in crop growth and yields. For example, warmer nights are detrimental to 

sugarcane production as they stimulate flowering which inhibits crop growth (Field, 2014). 

 

 It is imperative to consider the effects of increasing air temperature both to the environment 

and human life. High air temperatures induce increased evapotranspiration leading to the 

subsequent reduction of available soil moisture. Furthermore, increased air temperatures imply 

the prevalence of heat extremes such as heat waves, wildfires and intense storms. Under future 

scenario forcing, heatwave periods are projected to range between 20 and 80 days on an annual 

basis compared to just over three days under present-day conditions (Engelbrecht et al., 2015). 

The implication is that increased air temperatures as a result of climate change are not only a 

threat to agricultural productivity but also to biological life. Also, the effects of high surface 

temperatures accompanied by inadequate water supply to plants will result in high crop failures. 

This would mean a major loss for the community given that even those that are not directly 

involved in agricultural production often rent their gardens out for income (Swayimana small-

scale farmers 2019, personal communication, 19 January). 

5.5.2 Projected rainfall and drought occurrence 

Although the results suggest a clear direction of future air temperature, the GCMs give no clear 

direction of rainfall changes for the area. The scenarios indicate the occurrence of drought at 

different periods. However, there were years that both CanESM2 and HadCM3 GCMs showed 

possible drought occurrences with different severity and intensity. These years include 2029, 

2038, 2043 and 2047 indicating that in the study area, droughts are likely to be prevalent in the 
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near future compared to a distant future. Previous studies have indicated that over 1960 to 2007, 

southern African region has experienced an increase in the frequency and intensity of drought 

(Nhamo et al., 2019).  Also, Botai et al. (2020) projected frequent dry and wet conditions in the 

Limpopo river basin. However, dry conditions are expected to be common than wet conditions.  

 

The prevalence of drought has implications on regional food availability and water security 

(Calow et al., 2010). The projected recurrent drought threatens the sustainability of small-scale 

farming given its reliance on dryland agriculture. During years of less rainfall, the majority of 

households face challenges of crop failures, yield and livestock losses leading to increased 

poverty. Despite that small-scale farmers in South Africa have managed to maintain livelihood 

under unfavourable conditions, their ability to cope with the projected climate extremes is 

improbable. They have always found it challenging to recover from such losses, particularly 

crop farmers, due to their inability to quantify losses which is a requirement for drought relief 

funds from the government.  

 

 It should be noted that in this study, in contrast to various previous studies, the results from 

drought indices showed that SPEI was consistently rendering results that are almost similar to 

SPI despite being slightly less negative than SPI. Possible uncertainty lies in the computation 

of ETo due to a possible underestimation of air temperature by the models. This is due to the 

water balance calculations being based on ETo instead of actual evapotranspiration. Also, the 

choice of GCM proved to have an effect on the downscaling procedure and therefore the 

differences in station level outcome (Laflamme et al., 2016). It was also noted that the choice 

of the reference dataset period, as well as bias-correction method used, can influence the 

uncertainty of downscaled GCM results (Leng et al., 2015). 

 

 Despite the inconsistencies between SPI and SPEI, the results from the study clearly suggest 

both wetting and drying trends with more wet years in the future. The study results are in 

agreement with the findings of Botai et al. (2020). This “non-linearity” and “non-directional” 

reaction of meteorological drought to the increasing air temperature was also observed by Leng 

et al. (2015) in China. It is difficult to understand the reason behind this “non-linearity”. 

However, it is worth noting that previously, the statistical downscaling technique has been 

found to perform relatively poorly is simulating daily rainfall (Pervez & Henebry, 2014). The 

poor performance appeared to be driven by: 1) the parent GCM; 2) climate change emission 
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scenario chosen; 3) conditions of the observed data; 4) the method applied for downscaling 

(Hashmi et al., 2009). Additionally, Kwon & Sung (2019) suggest that the use of a historical 

baseline to assess future rainfall might be the underlying reason for weaker and fewer drought 

occurrences under climate change. This is because their study revealed that drought occurrence 

predictions that are based on future climate indicated an increase compared to drought 

predictions based on a historical baseline. This, therefore, indicates that more dry periods can 

be expected in future. Also, GCMs are found to be more skillful in predicting droughts at a 

short-timescale (3-month) compared to a longer time-scale (12-month) (Ujeneza & Abiodun, 

2015). The inconsistency of the model in determining the timing of potential droughts is an 

indication of uncertainty in the model-projected rainfall. Thus, the use of an ensemble of 

different newly developed models might be useful for improving rainfall projections in the 

context of climate change.  

5.5.3 Projected changes in drought characteristics  

Based on SPI and SPEI, drought characteristics were analysed using Run’s theory. The results 

indicate an increased drought duration and severity due to climate change when compared to 

the historical drought severity. One study in South Africa also showed an increased drought 

duration over a couple of recent past decades (Botai et al., 2016). Severe droughts are associated 

with reduced streamflow, which in turn disrupts agricultural and economical operations. The 

intensity of the projected droughts appeared to be relatively less than the historical drought 

intensity. However, it should be noted that most drought events identified for the historical 

period were associated with El Niño which has a large influence on the drought characteristics 

in South Africa (Shiferaw et al., 2014). This study did not take into account the effects of El 

Niño given the uncertainty of future changes of El Niño Southern Oscillation (ENSO) (Field, 

2012) as cited by Davis et al. (2017).  

 

The major implication of the projected changes for characteristics of drought is the high 

susceptibility of the agricultural sector and water resources in the study area to drought. The 

main concern is that South Africa is generally deemed a water-scarce country, which makes 

irrigation as a mitigation strategy less viable. This, therefore, implies that the increased severity 

of the projected drought events is highly likely to have adverse impacts on agricultural 

production if there are no alternative adaptation measures in place. 
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5.6 Conclusions 

This study investigated the future occurrences of drought due to climate change. The results 

from both HadCM3 and CanESM2 indicate an upward air temperature trend until 2099. 

Increasing air temperature for agricultural communities that largely depend on rainfed 

agricultural production is a serious concern. High air temperatures could mean a collapse of 

small-scale sugarcane farming in the absence of adaptation, due to the likelihood of increased 

evapotranspiration. Despite two indices (SPI and SPEI) indicating possible drought occurrence 

at different periods, the overall results show that the study site is likely to experience drought 

events in the near future. The findings of this study highlight the importance of devising climate 

change impact adaptation policies that address agricultural rural communities in order to 

manage and mitigate the adverse impacts. In the interim, despite the financial challenges faced 

by small-scale farmers, it is of paramount importance to consider investing in drought and heat 

resistant varieties as coping mechanisms.  

 

 It should be noted that by the nature of the study the results are site-specific and have used 

projections of CanESM2 (RCP4.5 and RCP8.5) and HadCM3 (A2 and B2). This affords an 

opportunity for future research on a comprehensive similar study that can employ more 

meteorological stations across the province and make use of an ensemble from many climate 

models so as to allow a complete description of the potential impacts of climate change on 

drought characteristics. It will prove the usefulness of GCMs in the assessment of uncertainties 

associated with the projections and provide improved results for decision-makers. This research 

provides insight into climate model data used to understand the potential risk associated with 

climate change at the local level. 
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Lead to Chapter 6 

Previous chapters presented historical and possible future changes in air temperature and 

rainfall patterns. This chapter assesses the potential adaptation strategy to climate change. 

Through the use of questionnaires and face-to-face interviews, the study analyses access to and 

use of climate information as a tool to deal with climate change and climate extremes. The study 

focuses solely on small-scale sugarcane farmers in the area.  
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6 CHAPTER 6: LIMITED ACCESS TO CLIMATE INFORMATION 

HAMPER THE USE OF CLIMATE INFORMATION BY SMALL-

SCALE SUGARCANE FARMERS IN SOUTH AFRICA: A CASE 

STUDY 

6.1 Abstract  

South Africa is continuously experiencing significant climate aberrations attributable to both 

climate change and the El Niño Southern Oscillation (ENSO). Air temperature increases, 

changes in precipitation patterns as well as increases in the frequency of extreme events are 

expected across the region. Agricultural production, either under dryland or irrigated will be 

affected by such climate vagaries. Small-scale farmers are disproportionately vulnerable to such 

changes owing to a series of factors constraining them from adaptation. Hence, a shift of the 

attention towards identifying adaptation strategies for small-scale farmers is necessary.  

This study assessed the use of climate information by small-scale sugarcane farmers as 

a coping strategy under climate change conditions. Through the use of questionnaires and face-

to-face interviews, data were collected from sixty-six farmers in the Swayimana community, 

KwaZulu-Natal Province, South Africa. Descriptive analysis indicates that the majority of 

small-scale farmers do not access climate information. Among other reasons, minimal access 

to and use of climate information can be attributed to the lack of knowledge in terms of the 

sources of information as well as lack of capacity to respond to the information provided. The 

study revealed that sugarcane small-scale farmers in South Africa still do not understand the 

climate change phenomenon and the associated effects of it. Thus, training of sugarcane small-

scale farmers on climate change and its possible effects on sugarcane production is 

recommended. 

Keywords: accessing climate information; using seasonal climate forecast small-scale farmers; 

KwaZulu-Natal Midlands 

6.2 Introduction 

Over 80% of the food utilized by underdeveloped and developing countries is produced by 

small-scale farmers (Donnati et al., 2018). Yet these small-scale farmers are perceived to be 

amongst the most vulnerable groups to climate change and climate variability (Harvey et al., 

2018; Jamshidi et al., 2019). Amongst other reasons, the direct negative impacts of climate 
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change on crops that serve as the major livelihood with limited ability to adapt exacerbate their 

vulnerability (Harvey et al., 2014). Small-scale farmers find it difficult to sustain agricultural 

practices considering the existing various challenges facing small-scale farming and an 

additional significant threat posed by climate change. Climate change and adverse weather 

associated with the El Niño Southern Oscillation have impacted past agricultural yield in South 

Africa. However, the sugarcane industry appears to constantly suffer the negative effects of 

adverse weather (BFAP, 2014; AGRI SA, 2016). In 2010/11 the South African sugarcane 

industry recorded its first lowest sugar yield since 2000 amounting to a 29.7% decrease (BFAP, 

2014). Agriculture South Africa (AGRI SA) (2016) reported an estimated loss of about R2 

billion in the sugarcane industry as a result of the 2015/16 drought event. Of concern is the 

vulnerability of the South African small-scale farming sector to climate variations given that 

farming, in general, is to a great extent rainfed. Nearly 73% of sugarcane production in the 

country is under rainfed conditions (AGRI SA, 2016).  

 

Future predictions indicate a potential decrease in agricultural yields across the globe as a result 

of climate change. A possible varying yield trend is predicted for sugarcane under climate 

change. Unlike other field crops, sugarcane is a versatile plant that is grown under a wide range 

of climate conditions. Sugarcane grows throughout the year and hence is exposed to both warm-

summer and cold-winter climate conditions. As a result, the yield of the crop depends on the 

exposure to suitable climate conditions during the entire growing period. Different stages of 

sugarcane crop growth require different optimal levels of different climate variables. The 

implication is, if a considerable difference exists between, for example, the optimum air 

temperature required and the air temperature experienced by the crop, crop growth will be 

affected, and in turn, affect the overall yield. Thus, the effects of climate change on sugarcane 

yield give different results for production. Field (2014) indicated that an increase in air 

temperature to 35 oC in winter would lead to a yield increase due to the increased CO2 

assimilation which promotes sugarcane growth. However, an increase in night-time 

temperatures would lead to a decrease in yield given that high night-time temperatures induce 

flowering which in turn causes internodes to stop growing, and ultimately leaves, thus reducing 

sucrose and cane yield.  

 

Prevalence of excessive rainfall has a negative effect on sucrose yields while frequent dry spells 

have a negative effect on cane yield as it requires more water for sustained growth. A reduction 
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in precipitation during the last growth phase enhances efficiency in harvesting. The effects of 

inadequate water supply on sugarcane depends on plant growth stage and duration of stress. 

Drought at the early stages of growth leads to a reduction of sucrose yield while moderate 

drought at a later growth stage increases sucrose content in stalks (Hussain et al., 2018). The 

implication is that long-term microclimate variability can be advantageous and lead to good 

sugarcane yields or reduce the expected yields. South African commercial sugarcane farmers 

are well equipped and have adaptation measures in place. However, the adaptation of small-

scale farmers who contribute about 10% to the sugarcane industry (Mbowa, 2015) is unclear.  

 

Due to the increased frequency of weather extremes and the expected intense adverse effects of 

climate change, understanding the exposure and identifying adaptation measures have received 

attention from scientists. Several studies have indicated the usefulness of weather forecasts for 

reducing the vulnerability of rainfed agriculture to climate aberrations (Hansen, 2002; Meza et 

al., 2008; Dell, 2012; Manatsa et al., 2012; Mudombi & Nhamo, 2014). Although most studies 

indicate low level climate information usage by small-scale farmers, these studies were either 

conducted nearly a decade ago or excluded sugarcane farmers. Johnston (2008) indicates that 

climate information has generally been used in the sugarcane industry for estimating crop 

yields. The operational crop estimates are then distributed to farmers in order to avoid the 

possible loss or to take advantage of possible good climate conditions. Ziervogel & Calder 

(2003) affirmed that the sugarcane industry has been using climate forecasts for a long time and 

have benefited from using them. However, there is a lack of clear evidence of whether small-

scale farmers also have had access to the information or not. Vogel (2000) suggested that 

research on the assessment of the usage and uptake of climate forecasts generally tends to focus 

on commercial farmers who have many alternative sources of climate information (Johnston, 

2008). In addition, there is little information on what adaptation measures are needed to reduce 

farmers’ vulnerability to climate change. 

 

In this study, the access to and use of climate information by sugarcane small-scale farmers in 

the KwaZulu-Natal midlands, South Africa are assessed as a tool to deal with climate change 

and extreme weather events. In this study, climate information includes, daily  forecast, 

seasonal climate forecast as well as future climate projections for the study site. Specifically, 

the study investigated climate changes experienced by small-scale sugarcane farmers and how 

it has impacted on sugarcane production. The study also evaluated the economic benefits of 
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accessing and using the information by measuring the maximized outcomes (achieved yield) 

and minimized risks (reduced possible cost/damage) in the sugarcane sector through the use of 

climate information. The study explores the efficacy of using climate information to cope with 

extreme weather events and thus identifies the risk, coping and adaptation strategies used by 

farmers as well as highlights the key adaptation needs. 

 

6.3 Materials and methods 

6.3.1 Study area and population frame 

The research was undertaken in Swayimana, a local community of Wartburg in KwaZulu-Natal 

midlands. The Swayimana community is located at a latitude of 29.4778 oS, longitude of 

30.6603 oE and altitude of 919 m above sea level. The area accounts for 32 km2 land area. The 

climate of the area is characterized by wet summers and dry winters with a long-term annual 

average precipitation of 881 mm and an average air temperature of 18 oC (South African 

National Biodiversity Institute (SANBI), 2014). The study area was specifically selected 

because it is the largest of the four rural communities within the Wartburg area and has many 

sugarcane farming households. The study focused on small-scale sugarcane farmers, who have 

been participating in the sector for at least 5 years, to assess their access to and use of climate 

information. The small-scale farmers were surveyed for responses on whether they: had access 

to climate information, used the information, and benefited from using the information over the 

past years. 

6.3.2 Sampling procedure and data collection techniques 

A purposive sampling procedure was employed to select the sugarcane producing area within 

the midlands of KwaZulu-Natal. The study area was selected based on the availability of long-

term climate information for the area, high probability of climate information, use of 

information provided by the Department of Agriculture and Cane Growers’ representative and 

a number of small-scale sugarcane farmers who have been participating in the industry. From 

a large group of small-scale farmers, the prospective respondents were randomly selected. The 

study employed an explanatory research design in which face-to-face interviews with 

respondents were conducted for data collection. Ethical clearance for this study was obtained 

from the Humanities and Social Science Research Committee, University of KwaZulu-Natal 
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(clearance number HSS/1173/017D). The questionnaires used consisted of both open- and 

closed-ended questions. The use of open-ended questions allowed respondents to provide 

insights about their personal experiences. To be eligible for the study, households had to have 

at least one adult who was responsible for planting sugarcane for at least 5 years.  

 

The questionnaire interviews were conducted between 13 December 2018 and 05 February 

2019. The interviews were carried out on an individual basis and in IsiZulu to ensure that 

questions were easy to understand by all the prospective respondents irrespective of educational 

background. The interviews conducted spanned a maximum of 30 minutes. A total of 66 

questionnaires were completed through the interviews. The questions covered in the 

questionnaire included: i) general respondent traits such as gender, age group, level of 

education, size of the farm, years of sugarcane farming; ii) sugarcane farming and climate 

effects, which focused on the effects of climate change on sugarcane production; iii) climate 

information which included questions on the access, use, and benefits of using climate 

information. The collected data were then coded in Microsoft Excel and descriptive statistics 

were generated and interpreted for analysis purposes. 

6.4 Results  

6.4.1 Demographic information of the respondents 

The demographic distribution of the respondents is shown in Table 6.1. The results indicate a 

virtually equal proportion of males and females. The majority (31%) of the respondents were 

elderly and over 60 years. Over 50% of the respondents had primary education, followed by 

46% who had secondary education. Only 2% indicated they had a bachelor’s degree. The 

majority (46%) of the respondents were producing sugarcane using 0.5-2 ha of land. However, 

most of the respondents with a farm size of more than a hectare indicated they either leased 

land from the neighbours who did not farm or were farming as a group within a family to 

efficiently use the land. The period for which the respondent had been producing sugarcane was 

an important factor in determining how long farmers have been exposed to climate aberrations 

and how they have used climate information or would have used climate information to alleviate 

the possible effects of climate change in the sugarcane production. Most respondents (80%) 

have been growing sugarcane for over five years while the rest indicated they had been farming 

for a period of 1 to 5 years. The latter group was included in this study because they have been 
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farming sugarcane and stopped due to challenges and re-joined the industry in the past few 

years. 

 

6.4.2 Reported climate effects on sugarcane production 

The sugarcane industry has faced the challenge of declining sugarcane yields since the 1980s. 

This study assesses the changes in land area under sugarcane production and the changes that 

have occurred in the size of cultivated land over the past few years so as to assess whether 

climate change has had an impact on the changes of the cultivated land. The results in Table 

6.2 show that the majority (66 %) of the respondents use all available land for sugarcane 

production while 34 % have allocated some land for the cultivation of other produce for home 

consumption. Only 18% of the respondents reported a decrease in the land area for sugarcane 

production while 42% reported no change. The lack of necessary resources (26%) such as 

finance and land area was reported as the main limiting factor for not increasing the land area 

under cultivation while poor climate conditions (20%) was presented as a significant cause for 

the declining land area under sugarcane cultivation. Some (17%) stated that yield increase and 

profit were the reason for increasing the sugarcane production area. 

 

The findings show that based on the experience of the small-scale farmers in the study area, 

climate conditions have significantly affected sugarcane production. Nearly 80% (Table 6.2) of 

the respondents believe that climate has a major effect on sugarcane production. Respondents 

were asked to list climate risks that limit sugarcane production in the area. There were 

inconsistencies in determining the top climate-related risk that inhibits sugarcane production. 

However, the study analyzed climate variables that were commonly mentioned although ranked 

differently. Drought and high air temperatures were commonly identified as climate-related 

risks that adversely affected the sugarcane production in the area followed by high rainfall, and 

frost, respectively. The respondents noted a strange pattern of dry spells and high rainfall. 

During the winter periods, the respondents indicated that the prevalence of frost particularly in 

low lying areas adversely affected production. All these extreme climate conditions adversely 

impact small-scale sugarcane production.  
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Table 6.1: Demographic information of the respondents (n = 66) 
Demographic variables Indicator         Responses (%) 
Gender of the sugarcane farmer Male 51 
  Female 49 
 
Age (years) <40 24 
  41-50 20 
  51-60  25 
  >60 31 
 
Level of education Primary 52 
  Secondary 46 
  Bachelor degree 2 
 
Farm size (ha)  <1 29 
  1-2 46 
  >2 25 
 
Years in sugarcane farming  <1 3 
  1-5 17 
  5-10 40 
  >10 40 

 
Table 6.2: Climate effects on sugarcane production (n = 66) 
Farming and climate effects Indicators Responses % 
Land under sugarcane production >1 32 
  1-2 46 
  <2 20 
Changes in the cultivated land over the past 5 
years Increased 22 
  Decreased 18 
  Remained the same 42 
  Don't know 17 
Reason for a specified change Poor climate conditions 20 

  
Easy maintenance and resistant to extreme weather 
conditions 8 

  Lack of necessary resources 26 
  To increase yield and profit 17 
  Because of good rains 2 
  No reason 14 
  Don't know 14 
Climate affect production Yes 78 
  No 22 
Climate risk that negatively affects sugarcane 
production  Too much rainfall 35 
  Drought  40 
  High temperatures 40 
  Hail/strong wind  14 
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  Frost  34 

  
Unusual rainfall pattern-late or early start of the 
rainfall season    3 

  Diseases due to adverse weather     5 
 + More than one choice 

6.4.3 Access to and benefits of using climate information  

The results (Table 6.3) show that 75% of the respondents have access to climate information. 

However, when it was categorized into daily weather, seasonal climate forecast and early 

warning, the results indicate that 100% of those who had access to climate information accessed 

daily weather forecasts. Seasonal climate forecast access was low as only 31% of respondents 

reported accessing and using it while 43% indicated accessing early warning information. A 

large number of respondents who accessed early warning information received it only once 

during the 2014/15 drought event. Those who only had access to daily weather forecasts 

indicated their lack of knowledge with regard to other forms of climate information. Television 

was the principal source of the daily weather forecasts followed by radio while the sugarcane 

farmers associations (Canegrowers and South African Farmers Development Association) and 

extension officers were sources for seasonal climate forecasts and early warning information 

respectively.  

 

The respondents were asked if the meteorological information met the requirements in terms of 

assisting with taking informed farming decisions. Almost 60% expressed their satisfaction 

reasoning that it is the only available information and cannot fault it as it assists with day-to-

day farming activity planning. The remaining 39% were not satisfied indicating that climate 

forecasts do not provide much help as it cannot be incorporated into seasonal farming decision 

planning. To understand whether the climate information the respondents accessed was useful 

or not, the respondents were asked if the climate information was sufficient for them to adapt 

and minimize potential adverse impacts on sugarcane production. The majority of the 

respondents (59%) stated that the information was insufficient. The insufficiency emerged from 

the inconsistent provision of seasonal climate forecasts and early warning as well as the rare 

sources of the necessary information in addition to the daily weather forecast.  

 

The respondents (59%) indicated that despite their limited capacity to cope with adverse climate 

events, understanding the possible upcoming extreme climate events or unusual climatic 

patterns would assist. Some (41%) indicated that its usefulness would only be realized if 
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accompanied by information on how to deal with the situation while others (59%) believed that 

it would enable them to prepare in advance with necessary measures in place. Those who 

believed that it would not be useful assigned the unhelpfulness of the information to the lack of 

adaptive or responsive capacity (48%), failure to understand the information provided (23%), 

the late arrival of the information (43%) and the unreliability of weather forecasts in general.  

 

Furthermore, respondents who had no access to climate information were asked if they were 

willing to receive climate information. Those who already had access to the information were 

asked if they would like to receive additional information. Firstly, it is necessary to indicate 

that most of the farmers had no knowledge of climate information, particularly seasonal climate 

information and its importance to farming. Given their low levels of education and reliance on 

indigenous knowledge such information was new to them. Irrespective of the length of time in 

farming and having observed the changes in climate over the recent past years, most of them 

had never had or thought they could have seasonal climate information. As a result, only 57% 

(Table 6.3) provided answers to the question, indicating that access to any information that 

would assist in production (8%) would be useful. Others responded that they would like to 

receive both seasonal climate forecasts and early warnings (23%), early warnings (5%), 

seasonal climate information (6%), information on rainfall season (12%) as well as possible 

impacts on production information (3%). The remaining 43% did not need additional 

information or did not want to access the information. Besides the fact that the respondents 

generally did not know of the existence of climate information, understanding the underlying 

reason behind the lack of access to climate information was important. As expected, lack of 

knowledge on where to obtain the information was the main reason (47%), followed by those 

who gave no reason (24%). Amongst other reasons, failure to understand the forecast (14%), 

lack of knowledge on the usefulness of it (12%) and its existence (4%) were mentioned as 

reasons for not accessing the information. Respondents who had access to climate information 

(seasonal climate information and early warning) were asked if it was beneficial to access such 

information.  
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Table 6.3: Access to, use, and benefits of using climate information by small-scale sugarcane growers (n = 38) 
Climate information  Indicators Responses (%) 

Access to climate information? Yes 75 
  No 25 
Type of information accessed? Daily weather forecast 100 
  Seasonal weather forecast 31 
  Early warning 43 
Sources of information? Television 82 
  Radio 59 
  Sugarcane organization 27 
  Extension officer/organization leader 29 
  Cell phone 8 
  Local media 8 
Does information meet the requirements? Yes 59 
  No 41 
Is the information sufficient for minimizing potential negative climate effects? Yes 41 
  No 59 
Information required? Seasonal weather forecast 6 
  Early warning 5 
  Production impact information 3 
  Information on rainfall season 12 
  Any information that would assist in the production 8 

  
Combination of either seasonal or Early Warning with production 
information 23 

What aspects of decision-making are influenced by climate information? Type and amount of fertilizer and herbicides 2 
  Type of cultivar to consider and when to plant 35 
  Weeding 5 
  Soil preparation 3 
  Plan day-to-day farming activities 5 
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  To plan all the farming operations 8 
  Combination of different aspects 9 
  None 29 
Is it beneficial to access climate information? Yes 53 
  No 39 
Reasons for not accessing climate information?     
  No reason 24 
  Do not know where to access it 47 
  Cannot understand the forecast 14 
  Never thought it is useful 12 
  Never knew it exists 4 
Would you like to receive (additional) climate information? Yes 57 
  No 43 
Would you pay for such information? Yes 57 
  No 43 
Thoughts about receiving an early warning on time? + Would be helpful 57 

  
Only if it is accompanied by suggestions on how to prepare for the 
event  43 

  Allows us to prepare in advance and put necessary measures in place 57 
  Would not be helpful 48 
  Do not have the capacity to mitigate possible adverse effects 48 
  Lack of information because we rely on indigenous knowledge 23 
  It is not reliable because the weather always changes 6 
  It arrives late for us 23 
 + More than one choice
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Although quantifying the benefits of accessing climate information through sugarcane yields 

over the past years was one of the objectives of the study, virtually none of the small-scale 

sugarcane farmers kept records of either cost of production, yield achieved, or profit. However, 

they indicated that it is beneficial (53%) as it assists in decision making, for example, type and 

amount of fertilizer and herbicides to be applied, types of cultivars and time of planting, 

weeding (manual or otherwise), and the overall planning of farming activities. Those who were 

interested in receiving either climate information or additional climate information were asked 

if they could pay for it. Over half of them showed their willingness to pay while 43% of them 

indicated a lack of funds and an inability to pay.  

6.4.4 Benefits of accessing and using climate information to cope with extreme climate events 

This study was conducted to determine how the sugarcane industry, small-scale sugarcane 

farmers, in particular, have used climate information to mitigate the adverse impacts of the 

2014/15 drought event. The respondents were asked about the climate changes that they have 

observed over the past decade so as to assess their perception of climate change. Although they 

believe that the Swayimana area has favourable climate conditions, particularly for sugarcane 

production, some noticeable changes in climate were observed. Table 6.4 shows the results of 

how the respondents have benefited from the use of climate information during the 2014/15 

drought event. The majority of them (32%) observed the prevalence of storms and hail which 

tend to significantly affect sugarcane fields. High air temperatures (26%), dry spells (21%), 

high rainfall (24%) and frost (14%) were also observed in the area over the past 10 years. The 

results show that most of the farmers (62%) did not receive a warning in cases when extreme 

climate conditions occurred. Few individuals who received the warning about the 2014/15 

drought event indicated that it was helpful because they planned accordingly. Over 83% 

indicate that they did not continue with planting as they were about to replant while 17% 

reported that they used advice from the extension officer. Advice included changes in weeding, 

type of fertilizer, timing and amount of fertilizer application and early harvesting.  

 

The usefulness of the early warning did not apply to all the end-users. It was found unhelpful 

by some due to the late arrival of the warning (67%), lack of capacity to respond (11%) and 

lack of knowledge on how to cope with the situation (22%). The changes that were adopted 

after receiving the information cited by the respondents included changing type and amount of 

fertilizer applied, mulching, ceasing planting, manual irrigation, and early harvesting.  
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Table 6.4: Usefulness of climate information to cope with extreme weather events 
 (n = 66) 

Usefulness of climate information  Indicator  
Responses 
(%) 

Climate changes observed over the past decade 
+ No change 5 

 High air temperatures 26 

 Drought 21 

 Intense and frequent adverse Weather 11 

 Storms and hails 32 

 Rainfall delays 9 

 High rainfall 24 

 Good rains 3 

 Frost 14 

   
Access to early warnings for the above-
mentioned events? Yes 32 

 No 62 

 No response 6 

   
 
 
Was it helpful? Yes 57 

 No 43 

How did it assist? 

 
I planned accordingly (e.g., stopped 
planting) 83 

 Extension officer advised on how to cope 17 
 
Reason for unhelpfulness of the information? It arrived late 67 

 
Had no knowledge on how to deal with the 
situation 22 

 Lack of capacity to respond 11 
 
Changes adopted/would be 
adopted after receiving the warning? + 

The appropriate type and amount of 
fertilizer 42 

 Stopped planting 58 

 Minimized area  17 

 Mulching 33 

 Manual irrigation 25 

 Early harvesting 17 

 None 17 
   

Impact on sugarcane yield Decrease 42 

 Increase 33 

 No change 25 
 
These changes have assisted in decreasing the negative impacts on sugarcane yield. However, 

others have indicated that no change was observed. The results regarding impacts are difficult 

to quantify given the lack of a long-term record of the sugarcane yield of the farmers. The 
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method that they use for quantifying their yield is inappropriate as they mainly base it either on 

the number of sugarcane truckloads or income realised from the yield. As a result, the study 

findings on the impact of drought events on sugarcane yield indicate the perceived impact by 

the farmer, not the actual impact based on measurements.  

 

6.4.5 Possible future adverse weather and impact on sugarcane production 

Understanding how sugarcane farmers, in general, comprehend the impacts of climate change 

in climate extreme patterns and how these will affect the sugarcane production in the study area 

was important. It provides an insight into the vulnerability and exposure, given that under 

circumstances where farmers lack understanding of the negative impact on the production, they 

are likely to suffer most should climate extremes occur. In addition, their livelihood generally 

depends on sugarcane production, hence an unforeseen loss would not only result in profit 

losses but also increase poverty and food insecurity. The results in Table 6.5 show that 99% of 

the respondents have no knowledge about the possible future adverse weather due to climate 

change and 92% are not aware of the potential impacts that the predicted climate extremes could 

have on sugarcane production. The respondents were asked about the tools that are in place to 

deal with climate variation and variability. Over half of the respondents indicated that there are 

no tools in place while 38% of them reported relying on mulching to maintain soil moisture 

under dry and hot conditions. Recommendations regarding the usefulness of climate 

information by sugarcane small-scale farmers indicate that punctuality, the use of the end-users’ 

language as well as accuracy are important to ensure the use of climate information by the 

sugarcane small-scale farmers.  

 

Table 6.5: Knowledge of possible adverse weather trends in the near future (n = 66) 
Possible future adverse weather  Indicator  Responses (%) 
Awareness of possible adverse weather in the near 
future? Yes 1.5 

 
No 98.5 

Knowledge on the potential impacts on sugarcane 
production? Yes 3 

 
No 92 

 
No response 5 

Other tools in place to mitigate the possible 
impacts of adverse weather? None 55 
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Mulching  38 

 
No response 7 

Recommendation on the usefulness of climate 
information? Must be sent through pamphlets 3 

 
Must be on time 23 

 
Must be accurate 11 

 
Must be disseminated through radios 2 

 
Must be sent with recommendations 6 

 
Must be free 5 

 

Must be applicable to the needs of 
farmers 6 

 

Must be released frequently and 
explained verbally  5 

 

Must be in a language understood by 
the audience 14 

 

6.5 Discussion 

The study investigated the use and the benefits of climate information by small-scale sugarcane 

farmers in the Swayimana community of KwaZulu-Natal in South Africa. Sugarcane 

production in the study area is important due to the fact that it is often the sole source of income. 

Cockburn et al. (2014) reported that sugarcane production in the study area plays a significant 

role given its substantial contribution towards food security and as a stable source of income. 

The study results suggest that, unlike commercial sugarcane farmers who have access to and 

benefit from using climate information (Ziervogel & Calder, 2003), small-scale farmers have 

limited access to climate information (Table 6.1 and Table 6.4). This can be partly attributed to 

their low literacy levels. This reasoning is based on the fact that the sugarcane industry is widely 

known for using climate information for a long time at different levels of the sugarcane value 

chain from farmers to millers (Johnston, 2008).  

 

The limited access to climate information may emanate from the fact that seasonal climate 

forecasts are mainly disseminated through an internet website, e-mails and third-party agents. 

Despite the wide use of smartphones by small-scale farmers, their access to e-mails or internet 

is still limited. In an attempt to facilitate access and utility of climate forecasts by intended end-

users, hard copies have been produced for extension officers for dissemination. Unexpectedly, 

this study shows that extension officers who primarily disseminate information to small-scale 

farmers were not the major source of climate information (Table 6.3). The reliance on sources 
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such as television, radio and sugarcane organizations indicate a lack of climate information 

provision by the extension officers despite the efforts made to improve the access to and use of 

climate information by a larger group of prospective end-users (Johnston, 2008). 

 

 Extension officers have been found to misinterpret the information (Roncoli, 2006). Maponya 

& Mpandeli (2012) suggest that farmers who receive information about climate change from 

extension officers are prone to high adverse effects compared to those who received it 

somewhere else. This emanates from the fact that some extension officers fail to comprehend 

what climate change entails and hence fail to provide relevant information to farmers. This can 

partly be attributed to a variety of factors such as: i) some extension officers’ qualification is 

not applicable to render extension services; ii) inadequate relevant training courses to keep 

extension officers updated (Maponya & Mpandeli, 2012). Patt et al. (2005) found that in South 

Africa the majority of people tend to misinterpret most of the basic forecast terms. Safdar et al. 

(2014) also reported that in most cases, extension officers fail to guide farmers on how to cope 

with climate extremes in order to sustain production during extreme weather/climate situations.  

 

Relatively modest access to early warning indicates that dissemination is primarily restricted to 

ENSO predictions as most of the early warning recipients received the warning for the first time 

in 2014/15 (Table 6.4). Although this is useful in ensuring that mitigation measures are in place, 

it does not promote access to and use of climate information by small-scale farmers. This has 

been the case since early 2000 as suggested by the Hudson and Vogel (2003) study cited in 

Johnston (2008). Small-scale farmers receive early warning information when climate hazards 

are experienced nationally. This, therefore, implies that in addition to low levels of education 

(lack of knowledge), inadequate sources and channels of information dissemination play a 

significant role in hampering access to climate information.  

 

Given that extension officers were not the main and reliable sources of climate information, 

farmers have to personally source out the information. However, the language used on climate 

forecasts either disseminated through an internet website, e-mails, or third-party agents is also 

a limiting factor. This was also proved during the interviews as the majority of the participants 

lacked an understanding of some climate concepts. Participants did not understand what 

seasonal climate forecasts or early warnings were. Language has been characterized as a serious 

barrier to knowledge transfer that can cause gaps in the information available in the scientific 

community (Amano et al., 2016). The inaccessibility of climate information in terms of 
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language has been identified previously. This inaccessibility emanates from the high use of 

scientific terminology and technical figures when transferring climate information (Jones et al., 

2017). This, therefore, implies that prospective end-users’ technical capacity should keep up in 

order to effectively use the available climate information. A similar study conducted in 

KwaNgwanase in KwaZulu-Natal (Jiyane & Fairer-Wessels, 2012) indicated that climate 

information is often disseminated through face to face setting or pamphlets. The study also 

showed that despite having pamphlets in either isiZulu or English or a combination of both 

English and isiZulu, the majority of community members often fail to effectively use the 

pamphlets.  

 

The usefulness and benefits of the seasonal forecasts and early warning depends on a series of 

factors. Accessibility, comprehensibility, punctuality, the lead-time as well as accuracy 

determines the usefulness of the forecast by the end-user. Surprisingly, a large number of 

respondents accessing only daily weather forecasts indicated they were satisfied with the 

information irrespective of its inability to be integrated into seasonal farming-decisions (Table 

6.3). This is an indication that farmers make decisions based on weather conditions, that is, a 

rainfall event at the beginning of the rainfall season is an indication of a good and normal 

season. They do not factor in the issues of rainfall distribution throughout the season. However, 

it should be noted that respondents replied based on their capacity; some of them had no 

knowledge about seasonal climate forecasts while others perceived that daily weather forecast 

is the sole climate information that can be accessed. Nevertheless, there was a clear indication 

from those who accessed information that the information was not sufficient to adapt to and 

minimize the potential adverse impacts of climate change (Table 6.3).  The problems that were 

associated with the information that they received previously are 1) limited ability to cope with 

extreme weather events due to lack of resources and knowledge 2) failure to understand the 

information provided in some cases 3) late arrival of the information. 

 

Studies have been conducted to understand the relation between access to climate information 

and adaptation to climate change.   In Burkina Faso, Ingram et al. (2002) indicated that the best 

climate forecast information provides no assistance to farmers in the presence of physical 

constraints to take necessary actions. Mahlangu & Lewis (2008) study support this statement 

as it indicates that small-scale farmers do not prioritize sugarcane production when the financial 

returns are declining because they engage in sugarcane production as the main livelihood 

strategy for income generation purposes. So even in the presence of an accurate forecast, 
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making an effort to improve practices is not an option if the returns are declining. A substantial 

decrease in the profitability of sugarcane farming has been recorded. Between the periods of 

2000/01 to 2010/11, the net farm income of the Midlands farmers declined by 26% (BFAP, 

2014). Decreasing financial returns as a result of reduced sugarcane quality during dry seasons 

and other relevant factors mean less money is generated to meet various household needs 

(Mahlangu & Lewis, 2008).  

 

Climate, particularly rainfall variability (Singels & Bezuidenhout, 1999) has a major influence 

on sugarcane production. The study herein, therefore, intended to make use of the sugarcane 

yield data for the past years and climate data to assess the access to and benefits of using climate 

information on sugarcane production. This would show how accessing the information benefits 

end-users in cases of both adverse weather and good weather conditions. Frei (2010) indicated 

that the benefits of accessing climate forecasting are realized when the farmer achieves high 

profit as a result of improved decision-making based on meteorological and climatic 

information.  

 

The present study acknowledged other factors involved to achieve greater yields in addition to 

good weather conditions. Farmers were to provide the yield data along with production costs 

so as to assess the reason underlying yield increases. However, none of the small-scale farmers 

had records of either yield or production costs. According to their record techniques, a decrease 

in yield was determined by reduced financial returns from the mill while others counted the 

number of truckloads per harvest (data not shown). The sizes of the trucks were also not known 

by the farmers. The farmers who received climate information, particularly from Canegrower’s 

Association, mentioned that their yield did not decrease as a result of adverse weather 

conditions as they always ensure that necessary precautions are in place. Also, they had not 

noticed improved yields as a result of good weather conditions. This analysis, therefore, is 

restricted to the available information and might be biased as it is based on the observation of 

respondents (27%) (Table 6.3). This affords an opportunity for future studies exploring the 

benefits of using climate information from small-scale sugarcane farmers who have records of 

yields and production costs.  

 

The limitations to quantify the benefits of using climate information, however, is not indicative 

of fewer benefits from accessing climate information. Similar studies conducted suggest that 

access to and use of climate forecasts by subsistence farmers has contributed positively. Using 
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the relative harvest index, Patt et al. (2005) assessed the effects of seasonal climate forecasts 

amongst subsistence farmers in Zimbabwe. Their findings, although with some study 

limitations, indicated that farmers who use climate information are “better off” compared to not 

using them. Roncoli et al. (2009) also showed that seasonal climate forecasts played a 

prominent role in the farmers’ decision making. Through the evaluation of participants’ 

responses, the use of forecasts proved to be beneficial to the farmers, but farmers indicated they 

benefited only through cognitive skills rather not tangible benefits.  

 

The results show a willingness to access climate information by small-scale farmers (Table 6.3), 

however, there is clearly confusion in terms of indicating the information they would like to 

receive. The chances that farmers mentioned seasonal climate forecasts and an early warning 

may have been increased by hearing about it during the interviews. In addition to the 

abovementioned, farmers were also interested in rainfall season forecasts, that is, the start and 

end of the rainfall season as well as the amount of rainfall during the season. They were more 

interested in receiving information that would assist in increasing production rather than climate 

information alone. These findings are aligned with the study by Johston (2008) which indicated 

that farmers often need information that applies to their specific needs. This would assist in 

crop selection decision making and advice on the resource that would be needed to enable an 

appropriate response to the forecast information.  

 

Both seasonal climate forecasts and early warnings are believed to be useful as they assist in 

farmer’s decision-making. The usefulness of the early warning depends on timeously reaching 

the targeted end-users. The main focus was on the 2014/15 drought event to understand how 

small-scale farmers have incorporated the warning into their farming decision and the benefits 

of it. A relatively small number of respondents who accessed early warning information 

indicated that they have benefited from it (Table 6.3). Nevertheless, this benefit cannot be 

quantified given their inability to compare with previous years’ harvest or with the seasonal 

expected harvests. The benefit was mainly derived from delaying the planting time as it saved 

the money that would have been lost from sugarcane germination failure or poor sugarcane 

quality. Those who had crops in their various growth stages opted for changes in the type and 

amount of fertilizers they used. They indicated that a specific fertilizer is used during dry 

conditions and they tend to apply more. Others preferred early harvesting. The farmers, 

however, were not confident about their mitigation strategies implying that they only apply 

available options and not the best practice to counteract the possible impact. Based on sugarcane 
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physiology some of the measures taken by farmers are not beneficial. For example, Scarpari 

and Beauclair (2004) reported that an accumulated water deficit greater than 130 mm in the 

months before harvest is positive for sucrose accumulation in stalks. The implication is that 

early harvesting due to dry conditions is less beneficial. Also, considering that sugarcane 

production is the major livelihood of the respondents, delaying planting means longer periods 

without having an income. Chand et al. (2010) suggested a soaking of setts in saturated lime 

water as a strategy to deal with dry soils during planting time. Their findings indicated that 

soaked setts trigger germination and result in an early tillering phase. This implies that short-

term dry periods can be overcome using this technique instead of delaying planting. Generally, 

for the uptake of nutrients by plants, the availability of water is required. In the case of 

sugarcane, fertilizer can be used to counteract the drought effects on crop growth. The 

application of potassium has been found to promote sugarcane growth and increase yield during 

water stress periods. This method, though effective, was found to be more costly by farmers.  

 

Given that the public awareness of climate change has increased, farmers should have a better 

understanding of what climate change means and the possible impacts of climate change in 

their production. Modelling studies across the world have reported on how climate is likely to 

change due to global warming and its potential impacts on sugarcane production (Chandiposha, 

2013; Baez-Gonzalez et al., 2018). However, this information rarely reaches small-scale 

farmers who are generally illiterate (Table 6.1). As a consequence, this study indicates that the 

majority of the participants (Table 6.5) do not know how climate is likely to be and the potential 

effects of the projected changes on sugarcane production in the study area. Lack of such 

information increases the susceptibility of small-scale farmers’ productivity to adverse effects 

of climate change. Continuous productivity under climate change conditions requires 

adaptation and mitigation strategies to be in place. Yet, small-scale sugarcane farmers have no 

adaptation measures in place and have no idea on how they can adapt to climate change (Table 

6.5).  

6.6 Conclusions 

The study provided an analysis of access to and use of climate information by sugarcane small-

scale farmers in KZN midlands in South Africa. Although previous studies showed a wide use 

and benefits of using climate information across the sugarcane production chain, the study 

results indicate that small-scale farmers are not part of climate information users within the 

industry in South Africa. The findings of the study are similar to that of others that were 
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conducted almost two decades ago. There have been no changes with regards to access to 

climate information by small-scale farmers in spite of improved technology to model as well as 

to disseminate the information. In addition, despite the reasons mentioned by farmers for the 

lack of access and use, small-scale farmers have not captured the substance of climate change 

impacts both generally and in sugarcane production. This observation is supported by their lack 

of interest in receiving climate information. This may be attributed to the inadequate training 

of small-scale farmers in general on the aspects of climate change and its impacts.  Hence, a 

further investigation is needed for more clarity.  

 

As shown in the study, most of the farmers were pensioners who are illiterate. The language 

used in climate information dissemination is often not understood by the majority of farmers 

who are not native speakers. Thus, appropriate training on climate information analyses, climate 

change and variability as well as possible impacts is required. In addition, for sustainable 

livelihood under climate change conditions, training on record-keeping is also necessary. 

Farmers do not understand the cause of declining sugarcane profitability. Such training would 

enable farmers to keep track of sugarcane production in terms of both the cane yield and sucrose 

yield. Understanding changes in climate and the associated potential effects of sugarcane 

production can enable farmers to understand the need to utilize climate information. Access to 

seasonal climate forecasts enables the planning of management strategies and resource 

allocation to respond to anticipated climate forecasts. These strategies can act as a means of 

adaptation to climate variability at a seasonal time-scale.  

 

The limitations of the study are acknowledged. The absence of yield and production cost halted 

the quantification of benefits from using climate information. Also, this study only focused on 

small-scale sugarcane farmers within KwaZulu-Natal midlands who farm under dryland. 

Hence, a comprehensive study that will include small-scale farmers who farm under irrigated 

and dryland, as well as farmers with long-term yield, production costs, and climate information 

use data is recommended so as to assess the usefulness of climate information by the sugarcane 

small-scale farming group. This research proves the vulnerability differences across the farming 

group within the same industry. It could serve as a basis for evidence for the need for the design 

of appropriate training required to address and prepare for possible future climate change 

impacts and thus adopt appropriate adaptation and mitigation measures for small-scale farmers 

within the sugarcane industry.  

 



175 

6.7 Acknowledgements 

Funding from UKZN and assistance from sugarcane small growers who voluntarily participated 

in this study, Mr. Mdunge an extension officer from the Department of Agriculture who 

introduced me to the farmers and Mr. Manciya for the collection of data is gratefully 

acknowledged.  

  



176 

6.8 References 

Agriculture South Africa, 2016. A raindrop in the drought” Agri SA’s status report on the 
current drought crisis. Retrieved April 24, 2019, from http://www.nstf.org.za/wp-
content/uploads/2016/06/Agri-SA-Drought-Report_CS4.pdf 

Amano, T., González-Varo, J.P., Sutherland, W.J. 2016 Languages Are Still a Major Barrier 
to Global Science. PLoS Biol 14: e2000933. 
https://doi.org/10.1371/journal.pbio.2000933  

Bureau for Food and Agricultural Policy (BFAP), 2014. Understanding the Factors that have 
impacted on Cane Production in the South African Sugar Industry. Retrieved April 26, 
2019, from https://www.bfap.co.za/wp-content/uploads/2018/08/2014_Understanding-
the-Factors-That-Have-Impacted-on-Cane-Production.pdf. 

Chand, M., Lal, R., Khippal, A., Singh, R., & Narang, A. K., 2010. Drought management in 
sugarcane during pre-monsoon period. An International Journal of Sugar Crops and 
Related Industries 12, 64-66.  

Cockburn, J.J., Coetzee, H.C., van den Berg, J., Conlong, D.E. and Witthöft, J., 2014. Exploring 
the role of sugarcane in small-scale farmers’ livelihoods in the Noodsberg Area, 
Kwazulu-Natal, South Africa. South African Journal of Agricultural Extension 42, 80-
97. 

Dell, M., Jones, B. F., Olken, B. A., 2012. Temperature shocks and economic growth: evidence 
from the last half century. American Economic Journal: Macroeconomics 4, 66-95.  

Donatti, C. I., Harvey, C. A., Martinez-Rodriguez, M.R., Vignola, R. and Rodriguez, C.M., 
2018. Vulnerability of smallholder farmers to climate change in Central America and 
Mexico: current knowledge and research gaps. Climate and Development 11, 1-23. 

Field, C. B. ed., 2014. Climate change 2014–Impacts, adaptation, and vulnerability: Regional 
aspects. Cambridge University Press. 

Frei, T., 2010. Economic and social benefits of meteorology and climatology in Switzerland. 
Meteorological Applications 17, 39-44. 

Hansen, J. W., Mason, S. J., Sun, L., Tall, A., 2011. Review of seasonal climate forecasting for 
agriculture in sub-Saharan Africa. Experimental Agriculture 47, 205-240.  

Hussain, S., Khaliq, A., Mehmood, U., Qadir, T., Saqib, M., Iqbal, M. A. and Hussain, S., 2018. 
Sugarcane production under changing climate: effects of environmental vulnerabilities 
on sugarcane diseases, insects and weeds. In Sugarcane Production-Agronomic, 
Scientific and Industrial Perspectives. IntechOpen. 

Ingram, K., Roncoli, M., Kirshen, P., 2002. Opportunities and constraints for farmers of West 
Africa to use seasonal precipitation forecasts with Burkina Faso as a case 
study. Agricultural Systems 74, 331-349.  

Johnston, P., 2008. The uptake and utility of seasonal forecasting products for commercial 
maize farmers in South Africa. PhD thesis, University of Cape Town, South Africa. 

Jones, L., Champalle, C., Chesterman, S., Cramer, L., Crane, T.A., 2017. Constraining and 
enabling factors to using long-term climate information in decision-making. Climate 
Policy 17, 551-572. 

http://www.nstf.org.za/wp-content/uploads/2016/06/Agri-SA-Drought-Report_CS4.pdf
http://www.nstf.org.za/wp-content/uploads/2016/06/Agri-SA-Drought-Report_CS4.pdf
https://doi.org/10.1371/journal.pbio.2000933
https://www.bfap.co.za/wp-content/uploads/2018/08/2014_Understanding-the-Factors-That-Have-Impacted-on-Cane-Production.pdf
https://www.bfap.co.za/wp-content/uploads/2018/08/2014_Understanding-the-Factors-That-Have-Impacted-on-Cane-Production.pdf


177 

Mahlangu, I., Lewis, F., 2008. Social and institutional constraints to the production of sugarcane 
by small-scale growers in the Amatikulu catchment. Proceedings of the South African 
Sugar Technologists Association 81,128-132. 

Manatsa, D., Unganai, L., Gadzirai, C., Behera, S. K., 2012. An innovative tailored seasonal 
rainfall forecasting production in Zimbabwe. Natural Hazards 64, 1187-1207.  

Maponya, P., Mpandeli, S., 2012. Climate Change Adaptation Strategies used by Limpopo 
Province Farmers in South Africa. Journal of Agricultural Science 4, 39-47.  

Mbowa, S., 2015. Farm size and economic efficiency in sugar cane production in KwaZulu-
Natal. PhD thesis, University of KwaZulu-Natal, South Africa. 

Meza, F. J., Hansen, J. W., Osgood, D. 2008. Economic value of seasonal climate forecasts for 
agriculture: review of ex-ante assessments and recommendations for future 
research. Journal of Applied Meteorology and Climatology 47, 1269-1286.  

Mudombi, S., Nhamo, G. 2014. Access to weather forecasting and early warning information 
by communal farmers in Seke and Murewa districts, Zimbabwe. Journal of Human 
Ecology 4, 357-366.  

Patt, A., Suarez, P., Gwata, C. 2005. Effects of seasonal climate forecasts and participatory 
workshops among subsistence farmers in Zimbabwe. Proceedings of the National 
Academy of Sciences 102, 12623-12628.  

Roncoli, C. 2006. Ethnographic and participatory approaches to research on farmers’ responses 
to climate predictions. Climate Research 33, 81-99. 

Roncoli, C., Jost, C., Kirshen, P., Sanon, M., Ingram, K. T., Woodin, M., Somé, L., Ouattara, 
F., Sanfo, B. J., Sia, C. 2009. From accessing to assessing forecasts: an end-to-end study 
of participatory climate forecast dissemination in Burkina Faso (West Africa). Climatic 
Change 92, 433-460.  

Safdar, U., Shahbaz, B., Ali, T., Khan, I.A., Luqman, M. Ali, S., 2014. Role of agricultural 
extension services in adaptation to climate change in highlands of Kaghan valley, 
Pakistan. Pakistan Journal of Agricultural Science 51,1095-1100. 

Scarpari, M. S., Beauclair, E. G. F. D. 2009. Physiological model to estimate the maturity of 
sugarcane. Scientia Agricola. (Piracicaba, Braz.) 66, 622-628.  

Singels, A., Bezuidenhout, C. N. 1999. The relationship between ENSO and rainfall and yield 
in the South African sugar industry. South African Journal of Plant and Soil 16, 96-101.  

Vogel, C. 2000. Usable science: an assessment of long-term seasonal forecasts amongst farmers 
in rural areas of South Africa. South African Geographical Journal 82, 107-116.  

Ziervogel, G., Calder, R. 2003. Climate variability and rural livelihoods: assessing the impact 
of seasonal climate forecasts in Lesotho. Area 35, 403-417.  



178 

CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS 

FOR FURTHER RESEARCH 

7.1 Introduction 

Small-scale sugarcane farmers are already facing a challenge of a significant decrease in 

sugarcane production in South Africa due to changes in the dynamics of global trade which 

resulted from the liberalization of the international trade market (mkhungo et al,.2018). Climate 

change poses an additional crisis of increased crop uncertainty and poor yields. This exacerbates 

an already dire situation. However, despite the overall changes of climate across the globe, the 

limited access to climate information results in the majority of small-scale farmers continuing 

using the basic agronomic practices with no plans in place to adapt to climate change. 

Consequently, the observed climate variability accompanied by a lack of adaptation strategies 

presents a substantial threat to the long-term sustainability of small-scale sugarcane production 

in South Africa.  

 

In this study, several methods were used to analyze historical and future extreme weather 

changes, particularly drought in a specific study site in South Africa. Historical climate trends 

from the Expert Team on Climate Change Detection and Indices analysis give clear insight into 

how local climate is changing as global warming heightens and whether the regional climate is 

becoming more or less beneficial for rainfed farming, particularly sugarcane farming. Also, 

given the reliance of small-scale sugarcane farmers on rainfed farming, it is necessary to study 

other meteorological factors that may aggravate the impact of climate extreme on sugarcane 

production. For example, changes in short-grass reference evaporation (ETo) as a result of 

climate change can significantly alter crop water requirements and hence water resource 

management. Therefore, small-scale sugarcane farmers need to investigate ways of continuing 

profitable farming under climate change conditions.  

 

The knowledge of historical weather extreme trends is useful in both managing water resources 

and enabling prediction of future extreme weather variation. Understanding both historical and 

future trends enables better preparation for mitigation and adaptation measures to cope with 

climate change. The use of climate information has been considered as one of the coping 

strategies when an extreme weather event is anticipated. The last part of the study was 
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conducted to assess whether small-scale farmers have access to and use climate information to 

deal with weather/climate extremes.  

 

7.2 Revisiting the aims and objectives 

The main aim of the study was to assess historical and future extreme weather changes, 

particularly drought, in the Wartburg area of KwaZulu-Natal midlands. The study intended to 

use data from weather stations that have never been included in South African climate change 

and climate extreme study analyse. The specific objectives were to:  

• analyze the historical trends of air temperature and precipitation extremes in the 

midlands of KwaZulu-Natal; 

• investigate the effects of dry conditions on ETo trends. This was achieved through the 

use of drought indices (SPI and SPEI) to detect dry years and the Penman-Montieth 

method to compute ETo;  

• model the possible future changes in the KZN midlands drought characteristics. This 

was conducted by employing HadCM3 and CanESM2 to simulate future changes in 

KZN drought using statistical downscaling model and drought characteristics using 

Run’s theory. Possible changes in drought characteristics based on future drought events 

were investigated using the SPEI and SPI; 

• characterize the benefits of accessing climate information by small-scale sugarcane 

farmers to mitigate the prospective impacts of adverse weather through the use of 

questionnaires to gather information on whether farmers do access the information or 

not. 

7.3 Study findings  

The study findings reveal that throughout 1966-1994 and 1997-2017, maximum air temperature 

(TXx) has been increasing. Surprisingly, minimum air temperature results indicated a 

downward trend suggesting that the number of cold days (TN90) and cold nights (TN10) have 

been increasing over the study period for the area under study. Extreme rainfall events have 

been increasing resulting in an upward trend of annual rainfall total. Days with high rainfall 

amounts (R10mm and R20mm) appear to have been increasing significantly causing a decrease 

in the amount of rainfall received over consecutive days as displayed by a decrease in 

consecutive wet days. 
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Both regression and the Mann-Kendall method consistently showed a decreasing ETo trend for 

the study site. Despite the increase in extreme air temperature, there has been a general 

decreasing ETo trend in the study area over 1966-1994 and 1997-2017. A decrease ranging 

between 0.18 to 5.13 mm a-1 was observed across the weather stations. The findings showed 

that, for the study site, a statistically significant decrease in solar irradiance and an insignificant 

increase in relative humidity (data not shown) have proved to greatly influence ETo patterns. 

The ETo results affirm a statistically significant negative correlation with precipitation as 

confirmed by the Pearson correlation coefficient. 

 

The projected changes in air temperature and precipitation using the Statistical Downscaling 

Method showed that air temperature will continue to increase until the end of the 21st century. 

Based on RCP8.5 an increase of up to 3.5 oC and 3.7 oC for maximum and minimum air 

temperature respectively, is projected for the study area. These increases are more pronounced 

from the 2050s. However, SPI and SPEI results detected common plausible future drought 

events in 2029, 2038, 2043 and 2047 but at different time scales. According to Run's theory, 

the drought events projected are expected to be less intense but severe. This implies that the 

accumulation of months with an index value less than -1 are likely to increase but the magnitude 

of the accumulated index is less likely to reach a point of extreme drought (an index of -2 and 

below). This, therefore, indicates that the study area may expect the prevalence of mild and 

moderate drought events over the next two decades. 

 

Virtually all farmers who participated in the questionnaire study had no access to any kind of 

seasonal climate information. Most of the participants relied on the daily and weekly weather 

forecast to plan their daily activities and have never used seasonal climate information to make 

informed decisions. Although some participants indicated that they accessed and have used 

climate information, particularly early warning, they have not benefited from using it because 

of the ill-timed arrival of the information and lack of information on how to counteract the 

impact of adverse weather. 

 

7.4 Contributions to new knowledge 

The research undertaken highlights the fact that there is a dearth of studies focusing on local 

level small-scale farmers. The nature of the study was different from previous studies as it 

mainly focused on analysing climate variations of a local sugarcane production site to 
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understand climate variation as a result of climate change and adaptation measures in place for 

sugarcane production. The study findings suggest that the study site might be experiencing 

different climate trends compared to the nearby station that has been widely used in most 

national studies. The results of this study raise the question of microclimate effects on local 

climate change trends. Thus, a better understanding of local climate variations is important as 

it would enable farmers, particularly small-scale, to adjust farming decisions to existing and 

expected changes, thus reducing production risks. Specifically, the study, therefore, contributes 

to the existing knowledge through: 

 

i. emphasizing that even though climate trends indicate a relatively similar trend to the 

previously reported studies, the historical climate trends for the study area do not always 

correspond to the nearby stations. This study, therefore, concludes that based on the 

findings of changes in minimum air temperature for the study sites, studies at a low-

resolution scale partly conceal actual trends at the local level; 

 

ii. discovering that despite global warming, ETo trends indicate a declining trend and 

concluding that air temperature does not contribute much to the ETo trend in the study 

site. Also, the study confirmed that the downward ETo trend was a result of decreased 

solar radiation and increased relative humidity; 

 

iii. evaluation of SDSM applicability to model future changes in air temperature and 

precipitation for a single site in KZN midlands. The study findings demonstrated that 

SDSM can be applied to simulate future changes in air temperature while simulating 

precipitation proved to be challenging as the two models employed disagreed on the 

future precipitation trend for the study site;  

 

iv. discovering that the majority of sugarcane small-scale farmers in the study are less 

informed and still need to be trained about climate change and its possible impacts on 

both human nature and sugarcane production. The findings of the study echoed that 

despite increased innovation in weather and climate forecasting as well as dissemination 

of climate information, small-scale sugarcane farmers in the study area still have no 

access to it and have not used the information to reduce the impact of adverse climate.  
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7.5 Challenges, limitations, and recommendations 

7.5.1 Challenges and limitations 

A key limitation and greatest challenge, as this is the case in many studies, was the absence of 

long-term quality data for the study site given that most AWS systems were installed in the late 

1990s to replace the manual weather stations (Chapters 3 and 4). 

 

Due to the use of relatively short-term data climatologically, this may have a negative impact 

on the outcome of this research. The absence of the required long-term data restricted the use 

of different meteorological stations for the study area for projecting plausible future trends of 

air temperature and precipitation for the projection of the likelihood of drought occurrence 

(Chapter 5).  

Data collection through questionnaires (Chapter 6) presented challenges because the majority 

of participants could not understand the content of the questionnaire, although it was translated 

to isiZulu. To circumvent the challenge, data had to be collected through one-on-one interviews 

which were time-consuming. Unfortunately, all the participants included in the study could not 

provide the necessary information regarding their yield and production costs during dry years. 

This led to a shift in emphasis of the study to an analysis of their benefit from using climate 

information. Also, this study has focused on small-scale sugarcane farmers in the KZN 

midlands and mostly those that relied on farming as the main livelihood due to the fact that 

literature on access to and use of climate information by small-scale sugarcane farmers has been 

scant. The timing of data collection which was mainly during weekdays automatically excluded 

those that are at work during the week.  

 

7.5.2 Recommendations 

Based on the study results, a significant increase in extreme climate events, particularly 

droughts and extreme rainfall poses a serious threat to small-scale sugarcane farmers. To reduce 

the vulnerability of the agricultural communities to extreme climate events, region-specific 

adaptation strategies should be developed based on the understanding of local climate change. 

The study recommends that key policymakers consider locally based studies as they assist in 

identifying areas that are subject to extreme and rapid shifts in climate as well as determine 

which areas are more vulnerable based on agricultural production aspects of the area.  
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The indisputable change in air temperature patterns necessitates the need for clear and relatively 

precise weather and seasonal climate forecasting skills and effective reporting to ensure that 

those that are deemed vulnerable to climate extremes receive the relevant information 

timeously. Therefore, the research recommends that extension officers should be trained in 

climate change, adaptation and mitigation and communication strategies. Public awareness of 

climate change, the possible consequences, and adaptation strategies are recommended for rural 

agricultural communities in South Africa.  

 

Also, farming communities need more training on how to access and use seasonal climate 

information and early warnings. This would assist in minimizing their susceptibility to adverse 

impacts of extreme weather and/or climate not only in terms of minimizing production losses 

but also through reducing infrastructure damages and loss of lives. 

 

7.6 Future possibilities 

The research described in this thesis intentionally focused on small-scale sugarcane farmers 

from a specific study site that has been excluded in previous studies. Future research should be 

extended to other sugarcane growing areas in the southern Africa region. Such a study would 

givea clear insight into the vulnerability of small-scale sugarcane production to climate 

vagaries. Currently, small-scale farmers contribute about 10 % to the total annual sugarcane 

production with the potential to decrease in the future due to a significant decrease in the 

number of small-scale sugarcane farmers. 

 

The study results suggest an increased rainfall extreme trend over the past decades. Further 

studies on how such changes have affected sugarcane production in the study area, and other 

areas, would be insightful. Despite the global warming trend, the study suggests an increase in 

the number of cold days and nights. It would be informative to undertake a study that would 

mainly focus on all the meteorological stations that showed similar trends across the country. 

This would provide insight into the possible causes of a decreasing air temperature trend. 

 

This study analyzed historical and possible climate trends and not the relationship between 

climate trends and sugarcane production due to the absence of small-scale production data. 

While most studies conducted predict an increase in sugarcane production under climate change 

conditions due to increased carbon dioxide concentration in the atmosphere, changes in the 
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frequency of extreme events such as drought, flood and heat stress which would possibly 

adversely impact on sugarcane production, have not been sufficiently explored across the 

province. Future research on the relationship between the changes in the frequency and intensity 

of climate extremes and sugarcane production across the sugarbelt areas in the province would 

be insightful. 

 

The study also noted that extension services were not the main source of climate information 

for farmers. Investigating the efforts made by the government to ensure that extension officers 

are receiving the relevant training in climate change, acquiring and properly delivering and 

communicating climate information to prospective end-users would be useful. Also, it is 

important to consider that more education on how to access and properly interpret data is needed 

for prospective end-users in order to be able to incorporate climate information into their 

decision-making. 

 

7.7 Final comments and summary conclusions 

Generally, the findings of the study highlight the importance of local studies in determining 

climate variation as global warming progresses. The results of the study conclude that: 

 based on the findings of the air temperature trend, particularly daily minimum air 

temperature, changes in local climate should not be generalized based on the results 

from the weather station in close proximity; 

 despite the increasing daytime air temperatures, the ETo trend continues to decline due 

to reduced solar irradiance reaching the surface and increased relative humidity as 

suggested by the Clausius-Clapeyron relationship;  

 Statistical Downscaling Model has proved its applicability for projecting air 

temperature and rainfall for the study area in the KwaZulu-Natal midlands of South 

Africa. However, it has shown relatively poor performance in precipitation projection. 

Based on the projected rainfall and air temperature, the study area is expected to 

experience droughts in the near future; 

 virtually all of the small-scale sugarcane farmers who participated in the study have not 

accessed or used climate information to mitigate adverse weather impacts on sugarcane 

production. These farmers also do not know the possible effects of climate change on 

the frequency and intensity of extreme weather as well as the potential impacts of such 
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changes in sugarcane production. There are no adaptation measures in place and the 

small-scale farmers have no plans to adapt to climate change.  
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APPENDIX A: QUESTIONNAIRE FOR DATA COLLECTION 

Uyacelwa ukuba uphendule imibuzo ngokuthi ufake uphawu [ √ ] ebhokisini elifanele 
uphinde ubhale endaweni oyinikeziwe. 

A. Imininingwane 
 

[Khetha ibhokosi elifanele] 

1. Ubulili ..................................... 
2. Iminyaka yakho ........................................... 
3. Izinga lemfundo: 

 
Ibanga aphansi ☐ Ibanga eliphezulu ☐ Iziqu ze-Bachelors ☐ Iziqu ze-Honours ☐  
Iziqu ze-Masters ☐ Iziqu zobuDokotela ☐ Okuhlukile ☐ Sicela uchaze ngako 
 

4. Usuneminyaka emingaki kwezolimo ? 
 
........................................... 
 

5. Useniminyaka emingaki ulima umoba? 
 
........................................... 
 

6. Uwulima into engakanani? 
 
Ulima into eningi ☐  Ulima into encane ☐ 
 

A. Imibuzo 
 

7. Lingakanani ipulazi lakho ngokwama-hecture? ............................ ha 
 

8. Ingakanani indawo otshala kuyo umoba ngokwama-hecture?...................................ha 
 

9. Eminyakeni emihlanu esidlulile, lungakanani ushitsho oselwenzekile endaweni otshala 
kuyo umoba ? 
 
Lwehlile ☐    Lwenyukile ☐  
 

10. Yiziphi izinto ezidala lolu shintsho? 
 
...........................................................................................................................................
......................................................................................................................................... 
…………………………………………………………………………………………. 
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11. Uyawuchelela umoba wakho?  

 
Yebo ☐   Cha ☐  Uma uthe yebo,uchelela ngento ebalelwa 
kwangaki amaphesenti …............................. 
 

12. Ngabe uyalugcina ulwazi lwamazinga emvula nokushisa? Uma uthe yebo, ulugcina 
isikhathi esingakanani? 
 
Yebo ☐   No ☐   Uma uthe yebo, Iminyaka emingaki 
.................................... 
 

13. Ngabe ukushintshashintsha kwesimo sezulu sinawo umthelela kokwenzeka epulazini 
lakho? 
 
Yebo ☐   Cha ☐   
  

14. Bala izinto eziyingozi mayelana nokushintsha kwesimo sezulu eziphazamisa 
imikhiqizo yakho noma ukutshala. Zibale ngokulandelana. 
 

1. ........................................................................................................................... 
2. ........................................................................................................................... 
3. ........................................................................................................................... 

 

B. Ukuthola ulwazi ngesimo sezulu  
 

15. Uyakwazi ukuthola ulwazi ngezexwayiso noma ukubikezela kwesimo sezulu kanye 
nangokushintshashintsha kwaso? 
 
Yebo ☐    Cha ☐ 
 

16. Unesikhathi esingakanani uthola lolu lwazi? 
 
Ulwazi ngokushintsha kwesimo sezulu ............................ years 
Ukubikezela kwezinkathi zonyaka zesimo sezulu .................................. years 
Izimpawu noma izexwayiso zesimo sezulu  .................................... years  
 

17. Hlobo luni lolwazi lwesimo sezulu okwazi ukulithola? 
 
a. .............................................................................................................................. 
b. .............................................................................................................................. 
c. .............................................................................................................................. 
d. .............................................................................................................................. 
e. .............................................................................................................................. 
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18. Useke wahlangabezana nezinkinga ngokuqondana kolwazi lwesimo sezulu olubale 

ngenhla? Uma uthi yebo,iziphi lezo zinkinga?  
 
Yebo ☐   Cha ☐ 

  Izinkinga ........................................................................................................................ 

................................................................................................................................... 

................................................................................................................................... 

19. Useke wahlangabezana nenkinga ngokufika ngesikhathi esifanele kwalolu lwazi 
olubalile? Uma uthi yebo, chaza/cacisa. 
 
Yebo ☐    Cha ☐ 
 

  Chaza/Cacisa  

   ………............................................................................................................................ 

   .......................................................................................................................................... 

    ........................................................................................................................................ 

 
20. Ngabe lolu lwazi ulibona lusezingeni elifanele? Nika izizathu zempendulo yakho. 

 
Yebo ☐   Cha ☐ 
 

 Izizathu 

  
................................................................................................................................................
................................................................................................................................................
................................................................................................................................................
................................................................................................................................................
...................................................................................................................................... 

 
21. Bala ukuthi ulwazi uluthola kuphi noma kanjani. Nikeza nezizathu ezikwenza ukhethe 

leyomithombo yolwazi.  
 
 
Imithombo yolwazi  Isizathu sokuwukhetha  

1.   
 

2.   
 

3.   
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4.   

 
5.   

 
 
 

22. Iziphi izinto noma izinqumo ozithathayo ezidalwa ulwazi olutholayo mayelana nesimo 
sezulu?  
 
...........................................................................................................................................
...........................................................................................................................................
...........................................................................................................................................
...........................................................................................................................................
...........................................................................................................................................
..................................................................................................................................... 
 

23. Kuyo yonke le minyaka uhlola noma uthola ulwazi ngesimo sezulu, ngabe kukhona 
yini okukusize ngakho ukuba nalolu lwazi? Chaza.  

      Yebo ☐     Cha ☐ 

...........................................................................................................................................

...........................................................................................................................................

...........................................................................................................................................

...........................................................................................................................................

...........................................................................................................................................

.................................................................................................................................... 

 
C. Iqhaza lolwazi ngesimo sezulu ekunciphiseni ezinye izinkinga ezingadalwa isimo 

sezulu esidala umonakalo (izimvula ezinamandla, ukushisa kakhulu, umoya 
onamandla kanye nesomiso).  

 
24. Iluphi ushintsho lwesimo sezulu osuke walibona kule minyaka eyishumi eyedlulile? 

 
...........................................................................................................................................
...........................................................................................................................................
...........................................................................................................................................
....................................................................................................................................... 
.......................................................................................................................................... 
 

25. Ngabe izimpawu noma izexwayiso ngesimo sezulu ziyaba khona ngaphambi kokuthi 
kwenzeke izehlakalo noma izimo ozibalile? 
 
Yebo ☐    Cha ☐ 
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Uma uthe yebo, ngabe zaba wusizo? Chaza. 
...........................................................................................................................................
...........................................................................................................................................
........................................................................................................................................ 
...........................................................................................................................................
......................................................................................................................................... 
 
Uma uthe cha, ucabanga ukuthi zingaba usizo? Chaza. 
 
...........................................................................................................................................
...........................................................................................................................................
...........................................................................................................................................
....................................................................................................................................... 
 

26. Ukushintshashintsha kwesimo sezulu okubalile ngasenhla kube nomthelela 
ongakanani noma kube nezinga elingakanani kwimikhiqizo yakho? 
 
Linyukile ☐   Lehlile ☐ Liyafana/Alikho ☐  
 
Cela ugcwalise loku okungezansi: 
 

Iminyaka  Imikhiqizo elindelekile 
ngokwamathani(tons) 

Imikhiqizo evelile 
ngokwamathani (tons) 

2005/6   
2006/7   
2007/8   
2008/9   
2009/10   
2010/11   
2011/12   
2012/13   
2013/14   
2014/15   
2015/16   

 
27. Ucabanga ukuthi umthelela wokushintshashintsha kwesimo sezulu kube nomthelela 

ongakanani kuloku okuvelile noma okukhiqizile? 
 
Mkhulu ☐  Mncane ☐   Awukho umthelela ☐  
 

28. Lolu shintsho lunamuphi umthelela kwimikhiqizo yakho ngokwentengo yezezimali? 
Cela ugcwalise ngezansi: 
 

Iminyaka  Imikhiqizo elindelekile inani 
lemali/ngokwama-hectare 
(ha) 

Imikhiqizo evelile 
ngokwenani 
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lemali/ngokwama-hectare 
(ha) 

2005/6   
2006/7   
2007/8   
2008/9   
2009/10   
2010/11   
2011/12   
2012/13   
2013/14   
2014/15   
2015/16   

 
 
 

29. Uluphi ushintsho olwaba /olwalungaba khona uma wenza izinto noma uthatha 
izinqumo ezithile ngokutshala ukube izexwayiso zesimo sezulu zaba khona ngonyaka 
ka-2014/15 lapho kwakunesomiso khona?  
 
...........................................................................................................................................
...........................................................................................................................................
...........................................................................................................................................
...........................................................................................................................................
...................................................................................................................................... 
 

30. Ngabe lolu shintsho lwaba/lwaluzoba nongakanani umthelela kwimikhiqizo yakho? 
 

      Omkhulu ☐      Omncane ☐        Akwenzekanga lutho ☐ 

31. Ngabe imikhiqizo yakho ibizoba namuphi umehluko ukube ubungenalo ulwazi 
mayelana nezimo zokushintshashintsha kwesimo sezulu samanje? 
 
...........................................................................................................................................
...........................................................................................................................................
...........................................................................................................................................
....................................................................................................................................... 

 

32. Iziphi izinto ezithikameza/ezivimba ukusebenzisa noma ukuthola ulwazi mayelana 
nesimo sezulu kanye nokushintsha kwesimo sezulu? 

 

      ................................................................................................................................... 

      .................................................................................................................................... 

      .................................................................................................................................... 



192 

      ................................................................................................................................... 

      .................................................................................................................................... 

 

33. Iziphi izinto/amathuluzi owasebenzisayo ukunciphisa imithelela noma imiphumela 
engemihle ngenxa yesimo sezulu esidala umonakalo? 

      ....................................................................................................................................... 

      ....................................................................................................................................... 

       ...................................................................................................................................... 

 

D. Ukushintsha kwesimo sezulu kanye nesimo sezulu esidala umonakalo 
 

34. Ngabe uyazi ngesimo sezulu esidala umonakalo esingase sibe khona esikhathini 
esizayo? 
 
Yebo ☐   Cha ☐ 
 

35. Uyazi ngomthelela wokushintsha kwesimo sezulu ongase uphazamise/uthikameze 
imikhiqizo yakho? 
 
Yebo ☐   Cha ☐ 
 
Uma uthe yebo, ngabe unawo amacebo okuthi ungahlanganisa kanjani izinto ezingaba 
nomthela esikhathini esizayo kwizindlela zakho zokulawula isimo sezulu esingekho 
sihle? 
 
Yebo ☐    Cha ☐ 
 
Uma uthe yebo, chaza.  
...........................................................................................................................................
...........................................................................................................................................
...........................................................................................................................................
...........................................................................................................................................
...................................................................................................................................... 
 

36. Ngabe ulwazi ngesimo sezulu onayo yanele yini ukunciphisa umthelela omubi 
kwimikhiqizo yakho?  
 
Yebo ☐   Cha ☐ Angilusebenzisanga lolo lwazi ☐ 
 
Uma uthe cha, iluphi ulwazi olwengeziwe ongathanda ukulithola mayelana nesimo 
sezulu? 
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...........................................................................................................................................
...........................................................................................................................................
...........................................................................................................................................
....................................................................................................................................... 
 

37. Ngabe lolu lwazi luzokusiza ngani? 
 
...........................................................................................................................................
...........................................................................................................................................
........................................................................................................................................ 
 
 

38. Uma lolu lwazi kungathiwa luyadayisa, ungalukhokhela? 
 
Yebo ☐     Cha ☐ 
 

39. Uma uthe yebo, ungalikhokhela malini ngokwakh? R.........................../ngenyanga 
 

40. Iziphi izincomo onazo ngolwazi olunikeziwe mayelana nesimo sezulu kanye 
nokubikezela kwaso? 
 
...........................................................................................................................................
...........................................................................................................................................
...........................................................................................................................................
....................................................................................................................................... 

 

41. Izphawulo onazo ngokuthola ulwazi ngezexwayiso zesimo sezulu kanye nokunye 
okuthinta sona isimo sezulu. 
 
...........................................................................................................................................
...........................................................................................................................................
...........................................................................................................................................
...........................................................................................................................................
...................................................................................................................................... 
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Ngiyabonga kakhulu ngokuthi ube yingxenye yalolu cwanigo. Uma ungathanda ukwazi 
ngemiphumela yalolu cwaningo, ngicela ungithinte kuleli kheli ncoyiniz@ukzn.ac.za  

 

mailto:ncoyiniz@ukzn.ac.za
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APPENDIX B: COVER LETTER 

                 Mrs. Zoleka Ncoyini 

                             Agrometeorology Discipline    

     Room 107 Rabie Saunders Building 

University of KwaZulu-Natal 

P/Bag X01 

Scottsville 

3209 

Mnu/Nks/Nkk 

 
Igama lami nginguZoleka Ncoyini, ngifundela iziqu zobuDokotela (PhD) kwi-

Agrometeorology eNyuvesi yaKwaZulu Natal. I-Agrometeorology izifundo ezimayelana 

nesimo sezulu, ukushitsha kwaso kanye nokusebenzisa ulwazi olumayelana naso isimo sezulu 

ukukhuthaza noma ukulekela imikhiqizo kwezolimo. Ngenza ucwaningo ngokushitshashitsha 

nokubikezela kwesimo sezulu kanye nomthelela waso kwezomnotho. Isihloko salolu cwaningo 

sithi ‘Observed and projected climate change effects on localized drought events: A case study 

for sugarbelt within Kwazulu-Natal midlands, South Africa’. Lolu cwaningo luzogxila kubalimi 

bomoba ngoba ngokwemibhalo kuvela ukuthi abalimi bomoba ibona aseke babakwazi ukuthola 

noma ukubona izexwayiso okanye ukubikezela kwesimo sezulu ngezinkathi zonyaka (seasonal 

climate forecast) eminyakeni eminingi.  

Lolu cwaningo luhlose ukubheka ukuthi balimi bakwazi kanjani ukuthola ulwazi 

ngokushintshashintsha kwesimo sezulu okungaba ukushisa kakhulu noma isomiso esikhulu. 

Umcwaningi uzobheka ukuthi abalimi balahlekelwa inzuzo engakanani ngokwazi mayelana 

nesixwayiso, ukubikezela kwesimo sezulu.  

Kunemibuzo umcwaningi azoyibuza abalimi ngenhloso yokuqoqa ulwazi. Izinhloso zalolu 

cwaningo:  

• Ukubheka ukuthi abalimi bomoba iyiphi inzuzo esebeyizuzile ngokwazi ukubheka 

isimo kanye noshintsho lwesimo sezulu eminyakeni eyedlule ikakhulukazi inzuzo 

abayenza kule minyaka kade kunesimo sezulu esingesihle (ukushisa kakhulu, izimvula 

ezinamandla,umoya omkhulu kanye nesomiso).  
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• Ukubheka ukuthi abalimi bomoba bahlola noma baluthola kanjani ulwazi ngesimo 

sezulu kanye nokuthi ngabe lolo lwazi lunawo yini umthelela kwizinqumo 

abazithathayo. 

• Ukubheka indima edlalwa ukukwazi ukubona ukubikezela kanye nezexwayiso zesimo 

sezulu ngokwezinkathi zonyaka ekunciphiseni izimo zezulu ezidala umonkalo 

embonini yezomoba. 

Njengomlimi womoba KwaZulu Natali Midlands, ngiyakholwa ukuthi useke wahlangabezana 

nezimo zezulu ezidala umonakalo ekutshaleni nasekukhiqizeni umoba nokungenzeka ukuthi 

ubukwazi ukuyibona ingozi noma kube nezixwayiso ezithile ngesimo sezulu. Ngicela ukuthi 

ube yingxenye yalolu cwaningo ngokuthi ugcwalise noma uphendule imibuzo ebhaliwe 

ngemuva. Ukubamba iqhaza kulolu cwaningo kuzothatha imizuzu engamashumi amathathu 

esikhathi sakho. 

Okunye okuyinhloso yalolu cwaningo ukuthola ulwazi ngezimo zesimo sezulu esidala 

umonakalo esingalindeleka ngomuso noma esikhathini esizayo uma kusetshenziswa izindlela 

zesimanje zokutshala embonini yezomoba. Ukuba kwakho yingxenye yalolu cwaningo 

kuzosiza nokunikeza ulwazi olufanele kuzosiza ekubambeni iqhaza kwizinqumo ezithathayo 

kwezokukhiqiza umoba. Kulabo abangenalo ulwazi ngokuhlola, ukubheka noma ukubona 

izexwayiso kanye nokubikezela kwesimo sezulu bangasizakala ngemiphumela yalolu 

cwaningo ukuze nabo babe nolwazi bakwazi futhi ukuhlola noma ukubheka isimo sezulu. 

Ngicela ukukwazisa ukuthi ukuba kwakho yingxenye yalolu cwaningo kumahhala ayikho 

inkokhelo ozoyithola. Uvumelekile ukuhoxa ekubeni yingxenye yalolu cwaningo noma inini 

uma udinga ukuhoxa. Abukho ubungozi noma okungase kubeke impilo yakho engcupheni uma 

ubamba iqhaza kulolu cwaningo. Ngicela ungalibhali igama lakho kanye neminye 

iminingingwane eveza ubuwena lapho ozobe uphendula khona imibuzo. Ngicela imibuzo 

uyiphendule ngesineke nangokwethembeka. 

Ngiyabonga ngokuthatha isikhathi sakho ungisiza ukwenza noma ukuqhuba lolu cwaningo 

oluhlose ukufeza izifundo zami. Ngicela uma usuqedile ukuphendula imibuzo nokugcwalisa 

ezindaweni ezifanele ungibuyisele kuleli kheli elibhaliwe ngezansi. Ulwazi oluqoqiwe luzoba 

ulwazi oluzosiza kakhulu mayelana nesimo sezulu esidala umonakalo ophazamisa ukutshalwa 

nokukhiqizwa komoba. Lolu lwazi lungaphinde futhi lusetshenziswe emizamweni 

yokunciphisa isimo sezulu esidala umonakalo kwezolimo KwaZulu Natali. 
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Uma unemibuzo noma okukukhathazayo ngalolu cwaningo ungathinta uZoleka Nconyini kuleli 

kheli nconyiniz@ukzn.ac.za, inombolo ithi (033-260-6395). Ungathinta futhi umeluleki wami 

uSolwazi Savage savage@ukzn.ac.za noma kule nombolo (033-260-5514). Noma futhi 

ungathinta uDkt Clulowa clulolwa@ukzn.ac.za ,inombolo (033-260-5510). 

 

Ngiyabonga kakhulu ukubamba kwakho iqhaza. 

 

Ozithobayo 

…………………… ….............. 

Zoleka Ncoyini 

School of Agriculture, Earth, and Environmental Sciences 

Discipline of Agrometeorology 

Room 107 Rabie Saunders Building 

University of KwaZulu-Natal 

P/Bag X01 

Scottsville 

3209 

  

  

mailto:nconyiniz@ukzn.ac.za
mailto:savage@ukzn.ac.za
mailto:clulolwa@ukzn.ac.za
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PROJECT TITLE: OBSERVED AND PROJECTED CLIMATE CHANGE EFFECTS 
ON LOCALIZED DROUGHT EVENTS: THE CASE STUDY OF SUGARCANE 
BELTS IN KWAZULU-NATAL MIDLANDS, SOUTH AFRICA 

 

RESEARCHER     SUPERVISOR 

Full Name: Zoleka Ncoyini     Full Name: Michael John Savage 

 
School: Agriculture, Earth and                  School: Agriculture, Earth and  
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College: Agriculture, Engineering,   College: Agriculture, Engineering  
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Proposed Qualification: PhD    Contact details: 0332605514   
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Email: ncoyiniz@ukzn.ac.za / zncoin@gmail.com 
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HSSREC RESEARCH OFFICE 

Zoleka Ncoyini 

Agrometeorology Discipline 

Room 107 Rabie Saunders Building 

University of KwaZulu-Natal 

P/Bag X01 

Scottsville 

3209 

 

I, Zoleka Ncoyini (student number, 216075527), a PhD candidate in Science in 

Agrometeorology, at the University of KwaZulu Natal invite you to participate in a research 

project entitled: “OBSERVED AND PROJECTED CLIMATE CHANGE EFFECTS ON 

LOCALIZED DROUGHT EVENTS: THE CASE STUDY OF SUGARCANE BELTS IN 

KWAZULU-NATAL MIDLANDS, SOUTH AFRICA”. The main aim of the study is to assess 

the possible effects of the adverse weather on the South African economy due to the impacts in 

the agricultural and environmental sectors.  

Your participation will greatly assist in providing useful information regarding impacts of 

adverse weather on sugarcane farming as well as adaptation to and mitigation of adverse 

weather effects by sugarcane farmers in the Midlands of KwaZulu-Natal. By signing, you 

indicate that you understand the contents of this letter and you are willing to participate in the 

study. 



200 

Declaration of Consent: Quantifying the benefits of accessing weather forecasts and 
early warnings 

I………………………………………………………………………………………………….
.……(full names of participant) hereby confirm that I understand the contents of this 
document and the nature of the research project, and I consent to participating in the research 
project. 

I understand that I am at liberty to withdraw from the project at any time, should I so desire. 

 

SIGNATURE OF PARTICIPANT_____________________ 

DATE____________________ 
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