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General abstract 
 

 
The effects of bunker fuel oil on the growth of A. marina, B. gymnorrhiza and R. 

mucronata were investigated in glasshouse and field experiments. The effects of oil on 

community structure in micro-organisms were also investigated in microcosm 

glasshouse experiments. The differences in oil tolerance of the three mangroves were 

compared in propagule and sediment oiled treatments and growth monitored for 13 

months under glasshouse conditions. In propagule oiled treatments, various portions of 

the propagule were coated with oil. In the sediment oiled treatments, 50ml oil were 

added to the sediment in each pot. In oiled treatments, plant height, number of leaves 

and chlorophyll content were significantly reduced in all species compared to the 
control. In A. marina and R. mucronata, oiling resulted in growth malformations such as 

abnormal phyllotaxy and deformity of leaves and stems. 

  

The effects of oil on root growth were investigated in rhizotrons for 245 and 409 days 

respectively. In oiled treatments, root growth rate, length and volume were significantly 
reduced in all species. In A. marina and B. gymnorrhiza oil increased root diameter.  

 

In another series of experiments, PAH accumulation in roots and leaves of the three 

species were determined in one year old seedlings subjected to oiling for 21 days. The 

concentrations of 15 PAHs in roots and leaves were determined by gas 

chromatography / mass spectrometry. The highest total concentration of PAHs was 
accumulated in oiled roots of A. marina (44,045.9μg/kg), followed by B. gymnorrhiza 

(10,280.4μg/kg) and R. mucronata (6,979.1μg/kg). In oiled treatments, the most 

common PAHs in roots of all species were fluorene and acenaphthene (two rings), 

phenanthrene and anthracene (three rings), pyrene and chrysene (four rings) and 

benzo[a]pyrene (five rings). In the leaves of all species in oiled treatments, the common 

PAHs were naphthalene and acenapthene (two rings) and phenanthrene (three rings). 

To test for living and dead root tip cells and to compare the effects of oil on cell 

ultrastructure in roots and leaves of the three species, one year old seedlings were 

subjected to a control and sediment oiled treatments for seven days. Control root tips, 

stained with fluorescein diacetate, exhibited green fluorescence in living cells of the 

meristematic and conducting tissue in all species. Oiled root tips, stained with 

propidium iodide, exhibited red fluorescence, indicating cell death or dead cells. 
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Transmission electron micrographs revealed that oil damaged cell ultrastructure in root 

tips and leaves in all species. Anatomical changes induced by oil included, 

disorganization of cells in the root cap, epidermis and meristem. Oil also induced loss 

of cell contents and destruction of organelles in root tissue. Oil damaged chloroplasts 

and cell organelles in spongy mesophyll and palisade cells of leaves. 

 

To compare the effects of oil on the ability of the three species to tolerate salinity, 

healthy one year old seedlings were subjected to 10% and 50% seawater in control 

and sediment oiled treatments for 12 months. In the oiled treatments, 200ml oil were 

added to the soil in each pot. Oil significantly reduced growth in the 50% seawater 

treatment in all species. Results suggested that oil reduces salt tolerance in the three 

species. 

 
The effects of oil on salt secretion in A. marina were investigated by subjecting one 

year old seedlings to sediment oiling treatments at 0%, 10% and 50% seawater for 

three weeks. Sodium accumulated in the leaves of oiled seedlings at 10% and 50% 
seawater. The effects of oil on salt secretion in A. marina in the light and dark were 

compared in one year old seedlings subjected to oiling treatments for seven days. 

Sodium accumulated in the leaves of oiled seedlings in the light and dark within 11 

hours. Oil reduced secretion rates of Na+, K+, Ca²+ and Mg²+ in all treatments. 

 

The effects of oil on species abundance, richness and community structure of soil 

micro-organisms were determined by subjecting microcosms to oiling treatments with 

or without fertiliser for four weeks. In the oiled treatments, 15ml oil and 5ml/L fertiliser 

were added to 200g soil. Fertiliser consisted of 4% N, 2% P and 5% K. Nematodes 

were extracted after the experimental period and identified to genus or species level. 

Oil significantly reduced species abundance and richness. Oil also eliminated sensitive 

species and altered the abundance of dominant species thereby altering the free living 

nematode community structure. Addition of fertiliser increased richness and dominant 

species in oiled treatments. 

 

The effects of oil coating on leaves and internodes on growth of the three mangroves 

were investigated in field experiments for 48 weeks. Oiling of the leaves resulted in leaf 

abscission and decreased leaf production in all species. The effects of sediment oiling 

(at a dose of 5Lmˉ²) on the three species were also investigated in a field study for 53 
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weeks. In A. marina, oil caused adventitious roots to develop on the stem, about 10-15 

cm above the soil surface after 38 weeks of treatment. In oiled treatments, plant 

mortality occurred after 53 weeks in all three species.  

 
The ability of B. gymnorrhiza and R. mucronata to exclude PAHs from sensitive root 

tissues probably accounted for the higher oil tolerance than A. marina. The capacity of 

the species to adapt to residual oil contamination by increasing root diameter (A. 

marina and B. gymnorrhiza), producing adventitious roots (A. marina), increasing 

root/shoot ratio (R. mucronata) and abscising oiled leaves (all species) probably 

contributed to oil tolerance.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



viii 
 

 
List of contents 

 
 

General Introduction  .................................................................................................... 1 

 

Chapter 1: Literature review  ......................................................................................... 4 

1.1 Introduction  ........................................................................................................ 4 

1.2 Factors influencing oil toxicity  ............................................................................ 4 

1.2.1 Characteristics of oil  ................................................................................ 4 

1.2.2 Sediment type  ......................................................................................... 5 

1.2.3 Salinity  .................................................................................................... 6 

1.2.4 Tidal cycles and waterlogging  ................................................................. 7 

1.2.5 Mangrove characteristics ......................................................................... 7 

1.3 Oil effects between species  ............................................................................... 9 

1.4 Oil contamination in meiofauna  ........................................................................ 12 

     Effects of oil on nematodes  .............................................................................. 12 

1.5 Remediation of oil contaminated sites  ............................................................. 13 

1.6 Aims of study  ................................................................................................... 14 

 

Chapter 2: The effects of oil contamination on growth of Avicennia marina,  

Bruguiera gymnorrhiza and Rhizophora mucronata in glasshouse and field  

experiments  ............................................................................................................... 16 

Abstract  ................................................................................................................. 16 

Keywords  .............................................................................................................. 17 

2.1 Introduction  ..................................................................................................... 17 

2.2 Materials and methods  .................................................................................... 18  

Glasshouse study  ............................................................................................. 18 

2.2.1 Growth conditions  .................................................................................... 18 

2.2.2 Plant growth measurements ..................................................................... 19 

2.2.3 Chlorophyll content  .................................................................................. 19 

Field study  ........................................................................................................ 20   

2.2.4 Leaf and internode oiling experiment  ....................................................... 20 

2.2.5 Sediment oiling experiment  ...................................................................... 21  



ix 
 

2.2.6 Soil analysis  ............................................................................................. 21 

2.2.7 Data analyses  .......................................................................................... 22 

2.3 Results  ............................................................................................................ 22 

2.3.1 Glasshouse study  .................................................................................... 22 
A. marina  ................................................................................................... 22 

B. gymnorrhiza  ........................................................................................... 23 

R. mucronata  ............................................................................................. 24 

2.3.2 Leaf and internode oiling experiment  ....................................................... 31 
A.  marina  .................................................................................................. 31 

B. gymnorrhiza  ........................................................................................... 34 

R. mucronata  ............................................................................................. 37 

2.3.3 Sediment oiling experiment  ...................................................................... 41 
A.  marina  .................................................................................................. 41 

B. gymnorrhiza  ........................................................................................... 41 

R. mucronata  ............................................................................................. 41 

2.4 Discussion  ....................................................................................................... 46 
 
Chapter 3: The effects of oil on morphological characteristics in Avicennia marina,  

Bruguiera gymnorrhiza and Rhizophora mucronata in rhizotrons under glasshouse 

conditions  .................................................................................................................. 52 

Abstract  ................................................................................................................. 52 

Keywords  .............................................................................................................. 52 

3.1 Introduction  ..................................................................................................... 52 

3.2 Materials and methods  .................................................................................... 54 

3.2.1 Growth conditions  .................................................................................... 54 

First rhizotron study  ................................................................................... 54 

Second rhizotron study  .............................................................................. 55 

3.2.2 Plant growth measurements...................................................................... 56 

3.2.3 Root growth and harvesting of plant parts  ................................................ 56 

3.2.4 Leaf area and chlorophyll content  ............................................................ 56 

3.2.5 Root/shoot ratio and relative root growth rate  ........................................... 56 

3.2.6 Root volume and morphology  .................................................................. 57 

3.2.7 Data analyses  .......................................................................................... 57 

3.3 Results  ............................................................................................................ 58 

3.3.1 First rhizotron study  ................................................................................. 58 



x 
 

3.3.1.1 Shoot growth and morphology  ........................................................ 58 
A. marina  .......................................................................................... 58 

B. gymnorrhiza  .................................................................................. 60  

R. mucronata  .................................................................................... 62 

3.3.1.2 Biomass allocation and root growth rate  ......................................... 64 
A. marina  .......................................................................................... 64  

B. gymnorrhiza  .................................................................................. 64 

R. mucronata  .................................................................................... 64  

3.3.1.3 Root morphology and volume  ......................................................... 69 
A. marina  .......................................................................................... 69 

B. gymnorrhiza  .................................................................................. 69 

R. mucronata  .................................................................................... 69  

3.3.2 Second rhizotron study  ............................................................................ 76 

3.3.2.1 Shoot growth and morphology  ........................................................ 76 
A. marina  .......................................................................................... 76 

B. gymnorrhiza  .................................................................................. 77 

R. mucronata  .................................................................................... 78 

3.3.2.2 Biomass allocation and root growth rate  ......................................... 85 
A. marina  .......................................................................................... 85 

B. gymnorrhiza  .................................................................................. 85 

R. mucronata  .................................................................................... 85  

3.3.2.3 Root morphology and volume  ......................................................... 90 
A. marina  .......................................................................................... 90 

B. gymnorrhiza  .................................................................................. 90 

R. mucronata  .................................................................................... 90  

3.4 Discussion  ..................................................................................................... 100 

 
Chapter 4: Effects of PAHs on cell ultrastructure in A. marina, B. gymnorrhiza  

and R. mucronata  .................................................................................................... 105  

Abstract  ............................................................................................................... 105 

Keywords  ............................................................................................................ 106 

4.1 Introduction  ................................................................................................... 106 

4.2 Materials and methods  .................................................................................. 107 

4.2.1 Growth conditions  .................................................................................. 107 

4.2.2 Determination of PAHs  ........................................................................... 108 



xi 
 

4.2.3 Staining with fluorescein diactetate (FDA) and propidium iodide (PI) ...... 108 

4.2.4 Preparation of material for light microscopy  ........................................... 109 

4.2.5 Preparation of material for the transmission electron microscope (TEM)  109 

4.3 Results  .......................................................................................................... 110 

4.3.1 Determination of PAHs  ........................................................................... 110 

       Concentrations of PAHs in roots  .............................................................. 110 

       Concentrations of PAHs in leaves ............................................................. 111 

4.3.2 Fluorescence of living and dead cells  ..................................................... 116 

4.3.3 Light micrographs of control root tips in longitudinal section  ................... 122 

4.3.4 Transmission electron micrographs of root tips  ...................................... 128 

Ultrastructure of root tip cells in the control treatment ............................... 128 

Ultrastructure of root tip cells in the oiled treatment  .................................. 140 

4.3.5 Transmission electron micrographs of leaf tissue  ................................... 156 

Ultrastructure of leaf cells in the control treatment  .................................... 156 

Ultrastructure of leaf cells in the oiled treatment  ....................................... 165 

4.4 Discussion  ..................................................................................................... 173 

    Concentrations of PAHs in roots and leaves  .................................................... 173 

    Living and dead root tip cells  ........................................................................... 175 

    The effects of oil on ultrastructure of root tip cells  ............................................ 176 

    The effects of oil on ultrastructure of leaf cells  ................................................. 178 
 
Chapter 5: Responses of A. marina, B. gymnorrhiza and R. mucronata to oil  

contamination at different salinities  .......................................................................... 179 

Abstract  ............................................................................................................... 179 

Keywords  ............................................................................................................ 179   

5.1 Introduction  ................................................................................................... 180 

5.2 Materials and methods  .................................................................................. 181 

5.2.1 Plant material  ......................................................................................... 181 

5.2.2 Growth experiment  ................................................................................. 181 

5.2.2.1 Growth conditions  ........................................................................ 181 

5.2.2.2 Plant growth measurements  ......................................................... 181 

5.2.2.3 Chlorophyll content  ...................................................................... 182 

5.2.3 Salt secretion experiments  ..................................................................... 182 

5.2.3.1 Growth conditions  ........................................................................ 182 

Effects of oil at different seawater salinities  ..................................... 182 



xii 
 

Effects of oil in the light and dark  .................................................... 182 

5.2.3.2 Salt secretion and ion analysis  ..................................................... 182 

Effects of oil at different seawater salinities  ..................................... 182 

Effects of oil in the light and dark  .................................................... 183 

5.2.4 Data analyses  ........................................................................................ 184 

5.3 Results  .......................................................................................................... 184 

5.3.1 The effects of salinity on oil contamination  ............................................. 184 
A. marina  ................................................................................................. 184  

     The effects of seawater salinity in the absence of oil  ........................... 184 

     The effects of oiling at different seawater salinities .............................. 184 
B. gymnorrhiza  ......................................................................................... 184 

     The effects of seawater salinity in the absence of oil  ........................... 184 

     The effects of oiling at different seawater salinities .............................. 185 
R. mucronata  ........................................................................................... 185  

     The effects of seawater salinity in the absence of oil  ........................... 185 

     The effects of oiling at different seawater salinities .............................. 185  
5.3.2 The effects of salinity and oil on concentration of ions in A. marina  ........ 189 

The effects of different seawater salinities in the absence of oil  ............... 189 

The effects of oiling at different seawater salinities  .................................. 189 
5.3.3 The effects of salinity and oil on salt secretion in A. marina .................... 193 

The effects of different seawater salinities in the absence of oil  ............... 193 

The effects of oiling at different seawater salinities  .................................. 193 
        5.3.4 The effect of oil on concentrations of ions in A.marina during 

         the day and night  ............................................................................................ 196 

                Light experiment  ....................................................................................... 196 

       Dark experiment ....................................................................................... 196 
         5.3.5 The effect of oil on salt secretion in A. marina during the day 

         and night .......................................................................................................... 200 

            Light experiment  ...................................................................................... 200 

       Dark experiment ....................................................................................... 200 

5.4 Discussion  ..................................................................................................... 203 

5.4.1 The effects of salinity and oil on growth  ................................................. 203 
5.4.2 The effects of salinity and oil on concentrations of ions in A. marina  ...... 205  

 5.4.3 The effects of oil on salt secretion in A. marina  ...................................... 207 

 



xiii 
 

Chapter 6: The effects of oil on soil meiofauna  ........................................................ 211 

Abstract  ............................................................................................................... 211 

Keywords  ............................................................................................................ 211 

6.1 Introduction  ................................................................................................... 212 

6.2 Materials and methods  .................................................................................. 213 

6.2.1 Collection of nematodes  ......................................................................... 213 

6.2.2 Experimental microcosms  ...................................................................... 214 

6.2.3 Nematode extraction  .............................................................................. 214 

6.3 Data analyses ................................................................................................ 215 

6.4 Results  .......................................................................................................... 216 

6.4.1 Effects of oil on nematodes  .................................................................... 216 

         Effects of oil on adults and juveniles  ...................................................... 217 

6.4.2 Effects of oil with added fertiliser on nematodes ..................................... 217 

         Effects of oil with added fertiliser on adults and juveniles  ....................... 218 

6.5 Discussion  ..................................................................................................... 223 

6.5.1 The effects of oiling on nematode community structure .......................... 223 

6.5.2 The addition of fertiliser  .......................................................................... 225 

 

Conclusion  ............................................................................................................... 228 

 

References  .............................................................................................................. 234 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1 
 

General Introduction 
 

 

Mangrove habitats are plant-dominated ecosystems that occur between marine and 
terrestrial environments (Zhang et al., 2007a; Lewis et al., 2011). Mangroves comprise 

70 tropical and subtropical species, 28 genera, and 19 families (Duke et al., 1998; 

Field, 1998). These halophytic macrophytes occupy a narrow ecological range and are 
adapted to high temperatures, fluctuating salinities and anoxic soils (Paliyavuth et al., 

2004; Parida and Das, 2005). They protect shorelines from floods, wave action and 
erosion (Duke and Wolanski, 2001; Zahed et al., 2010; Gedan et al., 2011).  

 

Mangrove ecosystems play an important role in the export of carbon and nutrients to 
the coastal zone (Kristensen et al., 2008; Adame and Lovelock, 2011). The highly 

productive mangrove habitats serve as nurseries for a wide variety of fauna (Holguin et 

al., 2001; Feller et al., 2010). They are currently regarded as one of the most 

threatened marine environments (Bayen, 2012). Many mangrove species are at a high 
risk of becoming extinct (Polidoro et al., 2010). 

 

Oil contamination has been recognized as one of the most serious threats to marine 
environments (Tam et al., 2005). Mangroves are particularly sensitive to the impacts of 

oil spills (Proffitt et al., 1995; Duke et al., 2000; Duke and Watkinson, 2002). Exposed 

shores can recover faster from oil spills than sheltered areas which are often 
completely inundated with oil (Kingston, 2002; Anderson et al., 2008). Oil can persist in 

the marine environment and effects are measurable after decades (Kingston, 2002). Oil 

persisted for more than 25 years after the Metula oil spill in Tierra del Fuego, Chile 
(Owens et al., 1999).  

 

Oil contamination occurs by spills from ships, leakage of fuel from refineries, improper 

disposal and discharge of used motor and lubricating oil (McNicoll and Baweja, 1995; 
Tam et al., 2005). Petroleum hydrocarbons are the toxic components of oil and are 

highly persistent organic pollutants in the environment (Moreira et al., 2011). Oil spills 

adversely affect a wide variety of natural resources and services in marine 
environments (Dsikowitzky et al., 2011). The severity of oil spills depends on the 

season, the discharge volume, type and location and environmental conditions at the 
time of occurrence (Moreira et al., 2011). Polluted mangrove habitats exhibit low 
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biodiversity, genetic abnormalities and reduced ecosystem function (Duke and 

Wolanski, 2001; Duke and Watkinson, 2002). Oil pollution disrupts trophic relationships 

between organisms (Lee, 1995). 

 

As marine ecosystems are dynamic, the state to which an environment returns after oil 

spill damage is usually unpredictable (Kingston, 2002). The biological recovery of 

marine ecosystems is dependent on robust colonizing organisms that can tolerate 
residual oil contamination in sediments (Baker et al., 1990). Re-colonization of oil-

impacted ecosystems depends on the time of year, the availability of colonizing 
organisms, biological interactions and climate (Carman et al., 1997; Kingston, 2002).  

 
Oil pollution in South Africa poses a threat to coastal marine ecosystems (Orr et al., 

2008; Whitfield and Cowan, 2010). The South African coastline is one of the world’s 

busiest oil-shipping routes making it prone to tanker accidents, resulting in spills 

(Moldan and Jackson, 2005). Since 1987, 82 000 tonnes of oil were discharged into 

South African coastal waters (Strydom and King, 2009). The South African Maritime 

Safety Authority facilitates the clean-up of major oil spills along our coastline according 

to the Marine Pollution Control Act (No. 6 of 1981) (SAMSA, 2013). However, most 

spills are small (less than seven tonnes), occur during loading, discharging and 
bunkering and originate in or near ports (Taylor et al., 2003; O’Brien, 2006). 

Ecosystems such as mangroves associated with ports are at high risk from oil pollution 

(Taylor et al., 2003; O’Brien, 2006).  

 
Oil spills result in loss of mangrove area cover in South Africa (Taylor et al., 2003). In 

South Africa, the total mangrove area is 1631.7 ha, with the largest cover occurring in 

the KwaZulu-Natal Province (1391.1 ha) (Hoppe-Speer, 2012). A loss of 6.5 per cent of 
mangroves per year is estimated along the South African coast (Taylor et al., 2003). As 

a result, Bruguiera gymnorrhiza and Rhizophora mucronata are listed in the Protected 

Tree list (DWAF, 2010).  

 
Oil pollution research is limited in South Africa (Wolfaardt et al., 2009; Naidoo et al., 

2010). Oil pollution studies have concentrated on the impact of spills on penguins 
(Underbill, 2000; Wolfaardt et al., 2009). Marine ecotoxicology research in South Africa 

faces limitations such as the high costs involved in organic contaminant analysis and 

the necessary equipment to conduct routine analyses (Wepener and Degger, 2012). 
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The assessment and monitoring of pollution effects are important (Whitfield and 

Cowan, 2010; Wepener and Degger, 2012) in maintaining the high degree of 
biodiversity in the relatively pristine marine ecosystems of South Africa (Griffiths et al., 

2010).  
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Chapter 1  
Literature Review 

 
 
1. 1 Introduction 
 
Population growth and industrialisation have led to anthropogenic pollution in many 
coastal regions (Iturbe et al., 2007; Inckot et al., 2011; Oyo-Ita et al., 2013). Oil 

pollution in particular, contributes to the reduction of biodiversity and productivity of 
coastal ecosystems worldwide (Dsikowitzky et al., 2011; Moreira et al., 2011). Many 

studies have documented the devastating effects of oil pollution on coastal marshes 
(Kennish, 1992; Lin and Mendelssohn, 1996; Dowty et al., 2001) and mangroves 

(Nansingh and Jurawan, 1998; Tam et al., 2005; Naidoo et al., 2010) around the world. 

 

Mangroves are prone to contamination from oil spills because they occupy sheltered 
bays that are inundated by tides (Proffitt et al., 1995; Mille et al., 2006). The results of 

prolonged oil pollution are reduced ecosystem function, low biodiversity and genetic 

abnormalities (Lee, 1995; Duke and Watkinson, 2002). Oil adheres to and soaks into 

the sediments and covers exposed trunks, foliage, prop roots and pneumatophores 
(Getter et al., 1985; Duke et al., 1998). This leads to oxygen deficiency, suffocation, 

growth irregularities and plant mortality (Garrity et al., 1994; Duke and Burns, 2003; 

Naidoo et al., 2010). The intensity of oil toxicity is dependent on the type and quantity 

of the oil, the period of exposure, climatic conditions, sediment type and plant species 
(Lin et al., 2002; Ke et al., 2011a).   

 
1.2 Factors influencing oil toxicity 
 
1.2.1 Characteristics of oil 
 
Oil is a naturally occurring substance (Kingston, 2002). Hydrocarbons (the components 
of oil) can be either biogenic, petrogenic or pyrogenic in origin (Guo et al., 2005; Lima 

et al., 2005; Yu et al., 2005). Biogenic sources of hydrocarbons are biosynthesized by 

living organisms and include plant alkanes, sterols, fatty acids and waxes (Wang et al., 

2009). Petrogenic sources include petroleum which is comprised of saturates, olefins, 

alkanes, cyclohexanes, asphaltenes and polycyclic aromatic hydrocarbons (PAHs) 
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(Luz et al., 2010; Naidoo et al., 2010). Pyrogenic sources are formed through rapid, 

high temperature combustion and include motor, shipping and power plant fuels (Lima 
et al., 2005). PAHs are highly toxic and have carcinogenic and mutagenic properties 

(Luan et al., 2006; Cavalcante et al., 2009; Li et al., 2010). Substances that are added 

to oil such as amines, phenols, benzene, sulphur and lead are less biodegradable than 
the base oil (Thompson et al., 2007). These additives increase the toxicity of oil (Haus 

et al., 2001; Drzyzga, 2003; Powell et al., 2005).  

 

The rate of oil degradation is determined by physical and chemical factors such as oil 

thickness and components (Kingston, 2002). Biological factors such as temperature, 

sediment grain size, microbial communities and availability of nutrients also influence 
degradation rates (Colombo et al., 2005; Santos et al., 2010). During the first 24 hours 

of a spill, up to 40% of the volatile components of oil start to evaporate (Shigenaka, 
2011). Thick oils have a longer evaporation time (Durako et al., 1993; Ralph and 

Burchett, 1998). Oil is broken up by wave action into small droplets that are degraded 
by bacteria (Ramsay et al., 2000; Yuan et al., 2001; Soares-Gomes et al., 2010). 

Lighter oils can have a greater degree of penetration and persistence in soils 
(Vandermeulen et al., 1981; Gundlach et al., 1993).  

 
1.2.2 Sediment type 
 
The accumulation and retention of oil in sediments is determined by the proportions of 
sand, clay and organic matter and the size of soil particles (Li et al., 2010; Paixão et al., 

2011). Sandy soils that have larger pore spaces allow a greater penetration of oil into 
the deeper root zones (Pezeshki et al., 2000; Kingston et al., 2003). PAHs are 

hydrophobic and adsorb onto organic matter and fine clay particles (Chen and White, 
2004; Yu et al., 2005; Dsikowitzky et al., 2011). The waterlogging features of mangrove 

sediments reduce microbial breakdown of PAHs (Pereira et al., 2002). PAHs therefore 

accumulate and persist in muddy mangrove sediments causing long term exposure of 
plants to oil contamination (Burns et al., 2000; Taylor and Jones, 2001). 

 

Oil persistence decreases sediment permeability, soil pH, dissolved oxygen 

concentrations, redox potentials and salinity of the interstitial water (Suprayogi and 
Murray, 1999; Pereira et al., 2002). Decreased oxygen levels in sediments reduce root 

respiration, disrupt ion and water relations and ultimately result in reduced plant growth 
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(Gilfillan et al., 1989; Pezeshki et al., 2000). The biodegradation of oil by 

microorganisms can also lead to oxygen depletion in sediments (Li et al., 2009). There 

is a higher concentration of bacteria in oil contaminated than in non-contaminated 

sediments (Espinosa et al., 2005). An increase in bacterial density increases the rate of 

oxygen depletion resulting in the creation of anaerobic niches (Pereira et al., 2002). 

This leads to the proliferation of anaerobic bacteria and products of degradation such 
as hydrogen sulphide that contributes to a slower oil degradation rate (Li et al., 2009). 

 
1.2.3 Salinity 
 

Mangroves have adapted to high salinity by developing salt tolerance mechanisms to 
regulate the salt concentrations in the plant (Naidoo and von Willert, 1995). Kandelia 

obovata (L.) and Rhizophora mucronata Lam. resist salt stress by excluding salt from 

entering the plant (Naidoo, 1986). Aegiceras corniculatum (L.) Blanco. and Avicennia 

marina (Forsk.) Vierh. secrete salt through salt glands present in the leaves (Naidoo, 

1987; Naidoo and Chirkoot, 2004; Ye et al., 2005). Bruguiera gymnorrhiza (L.) Lam. 

stores excess salt in vacuoles or in older leaves, which are then shed (Tam and Wong, 

2000; Youssef and Ghanem, 2002). Mangroves reduce the amount of salt that is 

transported to the foliage by regulating water loss through stomatal control (Naidoo and 

von Willert, 1995). This prevents salt accumulation in tissues (Parida and Das, 2005). 

High salinity can reduce the metabolism of plant cells thereby limiting growth (Lovelock 

et al., 2004; Parida and Jha, 2010). Naidoo et al. (2011) reported that A. marina under 

hypersaline conditions had reduced photosynthesis and exhibited swelling and 

disintegration of cell organelles such as chloroplasts, mitochondria and nuclei.  

 
Oil impairs the salt secreting mechanism of A. marina (Youssef and Ghanem, 2002). 

PAHs damage root membranes, adversely affecting the ionic balance of plants and 
their ability to tolerate salinity (Gilfillan et al., 1989; Zhang et al., 2007a). The 

combination of high salinity and oil aggravates the toxicity of PAHs thereby increasing 
oil damage to plants (Ibemesim, 2010; Ke et al., 2011b). High salinity in combination 

with oil reduced germination in salt marsh grasses (Youssef, 2002). High soil salinity 

reduces the metabolism of microorganisms thereby reducing degradation of PAHs in 
the sediment (Ke et al., 2011b).   
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1.2.4 Tidal cycles and waterlogging 
 
Mangroves occupying various coastal habitats endure different tidal cycles that are 

affected by sea level rise (Lacerda et al., 2002). During continuous tidal flooding the 

interstitial spaces between soil particles become saturated with water, reducing the 
supply of oxygen to plants (Ke et al., 2011b). Mangroves have well-developed 

aerenchyma that provides efficient transport of atmospheric oxygen to roots in anoxic 
soils (Armstrong et al., 2009). However, tidal inundation and waterlogging can cause 

severe oxygen stress reducing the growth of plants and microorganisms (Ye et al., 

2003). Oxygen deficiency leads to decreased nutrient uptake thereby inhibiting ATP 
synthesis (Steffens et al., 2005). Nutrient deficiency can weaken plant resistance to 

pollutants and slow down microbial degradation of pollutants (Romantschuk et al., 

2000). Oxygen depletion enables the accumulation and persistence of oil in the 
sediment and decreases the tolerance of mangroves to PAH toxicity (Li et al., 2009; Ke 

et al., 2011b).   

 
1.2.5 Mangrove characteristics 
 
Studies on the responses of mangroves to salinity and waterlogging are abundant 
(Naidoo, 1985; Patel et al., 2010; Naidoo et al., 2011). The effects of nutrients and 

heavy metals on mangroves have been widely reported (MacFarlane et al., 2003; 

Naidoo, 2009; Harish and Murugan, 2011). In comparison, studies on oil contamination 
have been few (Ye and Tam, 2007; Naidoo et al., 2010). The degree of oil toxicity in 

mangroves depends on the type, dosage and frequency of oiling treatment (Pezeshki 
et al., 2001; Ke et al., 2011a; Shigenaka, 2011). The effects of different oil types, such 

as Bunker fuel (Naidoo et al., 2010); No.2 fuel (Getter et al., 1985); No.6 fuel (Proffitt 

and Devlin, 1998); Kuwait crude and North West Shelf Condensate (Suprayogi and 

Murray, 1999) on mangroves have been reported. In addition, the effects of fresh 
(Proffitt et al., 1995) and used lubricating oil (Ye and Tam, 2007; Zhang et al., 2007a) 

have also been reported. 

  
Oil is drawn up into roots and translocated to the foliage by transpiration (Getter et al., 

1985). PAHs accumulate in roots, leaves and stems (Suprayogi and Murray, 1999; 
Meudec et al., 2006; 2007). When oil migrates into deeper soil sediments, it leads to 

mortality of the roots and ultimately the plant itself (Tam et al., 2005). The 
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morphological and physiological characteristics of plants can determine the degree of 
oil toxicity (Ye and Tam, 2007; Pi et al., 2009; Naidoo et al., 2010). Differences in leaf 

transpiration and root uptake determine the survival rates of plants exposed to oil 

(Getter et al., 1985). Therefore, oil can severely affect plant community composition 

depending on the sensitivity of individual species to toxicity (Proffit et al., 1995; Lin and 

Mendelssohn, 1996).  

 

Short term negative effects of oil include inhibition of germination, leaf wilting, 
defoliation and abnormal growth morphology (Duke et al., 1997; Naidoo et al., 2010). 

Long term effects include reduced growth and biomass, genetic mutations and 
increased plant mortality (Duke and Watkinson 2002; Zhang et al., 2007a; Ke et al., 

2011a). Oil that coats the leaves, blocks stomata and reduces transpiration, increases 
leaf temperature and restricts CO2 entry, reducing photosynthesis (Pezeshki et al., 

1997; 2000; Lin et al., 2002; Naidoo et al., 2010). Oil accumulation within the plant 

damages tissues and cells (Watts et al., 2006; Kang et al., 2010). 

 

Oil contamination accelerates the production of reactive oxygen species (ROS) such as 
superoxide radicals, hydrogen peroxide and hydroxyl free radicals (Proffitt et al., 1995; 

Zhang et al., 2007a). ROS disrupt normal metabolism through oxidative damage to 

lipids, proteins and nucleic acids (Parida and Das, 2005). This adversely affects 
biological membranes and metabolic processes (Ke et al., 2011a) resulting in an 

inhibition of plant growth leading to mortality (Takemura et al., 2000). ROS-scavenging 

antioxidant enzymes, including superoxide dismutase (SOD), perioxidase (POD) and 
catalase (CAT), increase after exposure to oil (Parida et al., 2004; Zhang et al., 2007a). 

These enzymes are biomarkers for the recognition of damage caused by pollution 
(Caregnato et al., 2008). In addition, lipid peroxidation (oxidative degradation of lipids) 

caused by ROS produces malondialdehyde (MDA) that is used as an indicator of 

oxidative stress (Yadav, 2010; Harish and Murugan, 2011). Physiological damage 

which is caused by the direct contact of organelles with oil, leads to the visible physical 
effects on plants (Watts et al., 2006; Kang et al., 2010). 
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1.3 Oil effects between species 
 
Avicennia marina, B. gymnorrhiza and R. mucronata exhibit distinct zonation patterns 

in Durban, South Africa. Avicennia marina occupies the seaward portions of swamps 

whereas the latter two species occur at the mid-tidal level (Naidoo, 1989). Avicennia 

marina, a pioneer species, possesses salt glands and is highly salt-tolerant (Naidoo, 

1987; Patel et al., 2010). Bruguiera gymnorrhiza and R. mucronata are both salt 

excluders (Tam and Wong, 2000; Hoppe-Speer et al., 2011). Avicennia marina, B. 

gymnorrhiza and R. mucronata plants treated with oil exhibit leaf wilting, defoliation, 

decreased photosynthesis, reduced biomass and increased mortality (Ye and Tam, 
2007; Naidoo et al., 2010; Ke et al., 2011a).   

 

Oil dosage is important in determining the degree of damage to plants (Levings and 

Garrity, 1995; Profitt and Devlin, 1998). The degree of oil coverage on the propagule 
determines the rate of germination (Proffitt et al., 1995; Zhang et al., 2007a). Complete 

oil coating inhibits germination, for example, in Rhizophora mangle L. (Proffitt and 

Devlin, 1998). Rhizophora mangle exhibited a decrease in shoot length and number of 

leaves at heavily oiled compared to light sites (Levings et al., 1997). Avicennia 

germinans (L.) and R. mangle exhibited similar results as the previous study when 

exposed to single heavy and multiple, smaller doses of oil (Proffitt et al., 1995). The 

single heavier oil dose caused greater adverse effects, including, severe reduction in 

growth and survival rate compared to the latter treatment. A single high oiling dose to 
B. gymnorrhiza caused greater toxic effects than weekly oiling at lower doses (Ke et 

al., 2011a). Mangroves can adapt to oil toxicity over time and become more tolerant to 

multiple, smaller oiling doses (Ke et al., 2011a).   

 

PAHs that enter the roots are drawn up and travel apoplastically with the transpiration 
stream via the xylem (Wild et al., 2005). Avicennia marina has well-developed xylem 

and phloem that allows for greater bioaccumulation of PAHs within roots, stems and 
leaves (Pi et al., 2009; Ke et al., 2011a). Avicennia marina can accumulate between 

two and six times more hydrocarbons in its leaves compared to other mangroves, 
including R. mucronata (Suprayogi and Murray, 1999). Lubricating oil damages the 

xylem vessels of fine roots of A. marina (Ye and Tam, 2007). PAHs disrupt cellular lipid 

membranes in the conducting tissue which leads to growth reduction (Gilfillan et al., 

1989; Zhang et al., 2007a).  
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At sub-lethal doses, mangroves could change growth rates and develop morphological 

adaptations to survive the physical and chemical effects of oil contamination (Hoff, 
2002). Bunker fuel oil applied to the base of debarked stems of A. marina and B. 

gymnorrhiza resulted in the production of adventitious roots in the former species but 

not in the latter (Naidoo et al., 2010). The study concluded that adventitious root 

production is an adaptive response after damage to the phloem tissue. Bruguiera 

gymnorrhiza exhibited a greater tolerance to oil compared to other oil-treated 

mangroves (Ke et al., 2011a). The root epidermis of B. gymnorrhiza consists of highly 

suberized cells that enable a high binding tendency of lipophilic substances such as oil 
(Ke et al., 2003). This characteristic restricts PAHs in the roots, reducing negative 

effects and increasing oil tolerance (Ke et al., 2011a). 

 
Rhizophora mangle had a higher survival rate when exposed to oil compared to A. 

germinans. This was attributed to differences in root uptake and leaf transpiration 

(Getter et al., 1985). The differences in the effects of oil on A. marina, R. mucronata 

and R. mangle are also associated with differences in tolerance of anaerobic conditions 

in oil-saturated sediments (Dicks, 1986). High mortality of A. marina occurred in heavily 

oiled sediment with low oxygen levels and low soil redox potentials (Dicks and 
Westwood, 1987). Avicennia germinans is more sensitive to highly reduced soil 

conditions compared to R. mangle (Pezeshki et al., 1997). The roots of R. mangle 

(Joner et al., 2005) and R. mucronata (Holmer et al., 1999) exude compounds such as 

carbohydrates and amino acids. These compounds stimulate bacterial degradation of 
contaminants thereby increasing oil tolerance (Moreira et al., 2011).  

 

Ye and Tam (2007) found that lubricating oil applied to the canopy resulted in greater 
physical effects and increased mortality compared to base-oiling in A. marina. Their 

study showed that canopy and base-oiling resulted in greater leaf and root damage and 
increased mortality in Avicennia marina compared to Aegiceras corniculatum. They 

concluded that the dense trichomes on the abaxial surface of A. marina leaves promote 

oil adherence, contributing to a higher sensitivity. Several studies have shown A. 

marina to be more sensitive to oil than other mangroves (Proffitt et al., 1995; Suprayogi 

and Murray, 1999). 

 

The salt secreting ability of some mangroves is another factor that determines 
differential oil sensitivity. Avicennia marina is susceptible to greater oil uptake because 
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it is a salt-secretor and is unable to efficiently exclude salt and PAHs compared to salt-
excluders (Suprayogi and Murray, 1999). The salt glands of A. marina are important in 

controlling the ionic composition of photosynthesizing leaves (Waisel et al., 1986). 

Avicennia marina is more efficient at salt secretion compared to A. corniculatum (Ye et 

al., 2005). However, fumigation of A. marina with volatile fraction crude oil at high 

salinity decreased the rate of salt secretion (Youssef and Ghanem, 2002).  

 

The rate of salt secretion increases when the salt content in the foliage increases and 
is naturally independent of stomatal behaviour (Waisel et al., 1986; Naidoo and von 

Willert, 1995). Yousseff and Ghanem (2002) demonstrated that oil fumes interfered 

with the plasma membranes of salt glands and slowed the secretion process. Their 

study found that this in turn affects leaf water potential and decreases stomatal 

conductance and transpiration. As a result of reduced stomatal conductance, plants 
decrease gas and nutrient uptake, leading to a reduction in growth (Lindau et al., 

1999). Kuwait crude oil decreased the concentration of nutrients in A. marina but not in 

R. mucronata (Suprayogi and Murray, 1999).  

 

Oil-induced damage to the salt secreting mechanism results in the excess 
accumulation of salt in plant tissues (Page et al., 1985). In B. gymnorrhiza, high salinity 

in combination with oil resulted in reduced growth and biomass and increased the 
concentration of MDA (Ke et al., 2011b). The roots of R. mangle can exclude salt and 

PAHs, decreasing the amount of oil taken up by the roots thereby increasing its oil 

tolerability (Suprayogi and Murray, 1999). 

 

Oil causes the production of albino propagules (lack chlorophyll) in some mangroves 
(Chen et al., 1996). Chlorophyll deficient propagules are unable to photosynthesise and 

appear white, yellow, pink or red in colour in A. marina and R. mangle (Handler and 

Teas, 1983; Duke and Watkinson, 2002). Newly established seedlings of these mutant 
propagules produce chlorophyll deficient leaves and therefore do not survive (Chen et 

al., 1996). Albino propagules are more frequent in sediments with higher levels of 

PAHs (Klekowski et al., 1994; Proffitt and Travis, 2005). The presence of PAHs in 

sediments is indicative of genetic deterioration of the mangrove habitat (Duke and 

Watkinson, 2002). 
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1.4 Oil contamination in meiofauna 
 
Many studies have investigated the harmful effects of oil on meiofauna in field 

experiments (Ansari and Ingole, 2002; Thompson et al., 2007) and experimental 

microcosms (Suderman and Thistle, 2003; Boufahja et al., 2011). Benthic meiofauna 

are organisms that pass through a 500-1000 µm mesh and are retained on a 63-44 µm 

mesh (Gyedu-Arabio and Baird, 2006; Giere, 2009). Meiofauna play a vital role in the 
benthic food web (Sundbäck et al., 2010) and are involved in sediment bioturbation 

(reworking of the soil) and recycling of organic matter (Lindgren et al., 2012). Juvenile 

fish in intertidal habitats feed on meiofauna (Coull et al., 1995).  

 

Effects of oil on nematodes 
 
Among benthic meiofauna, nematode communities are commonly used in microcosm 
studies (Austen et al., 1994; Mahmoudi et al., 2005) because they are small, 

numerous, easy to maintain (Suderman and Thistle, 2003) and are sensitive to 
contaminants (Santos et al., 2010). There are many factors that contribute to the 

negative effects of PAHs on nematode communities, including, type of oil and dosage, 
morphological and physiological differences and sedimentary conditions (Di Toro et al., 

1991; Carman and Todaro, 1997; Louati et al., 2001). Lubricants produce more intense 

toxic effects on nematode assemblages than other oils (Thompson et al., 2007). An 

increase in oil dosage leads to an increase in the intensity of toxicity (Mahmoudi et al., 

2005).  

 
PAHs decrease nematode abundance and species richness (Powell et al., 2005; 

Moreno et al., 2009; Lv et al., 2011). In addition, oil can cause the increase, decrease 

or elimination of certain species (Mahmoudi et al., 2005; Beyrem et al., 2007). Thus 

community composition is altered resulting in reduced biodiversity (Schratzberger et 

al., 2003; Beyrem et al., 2010) which in turn alters nematode community structure 

(Beyrem et al., 2010). Nematode communities that live in oil contaminated 

environments become more tolerant to PAHs over time (Carman et al., 2000). 

 
PAHs decrease soil permeability (Langston and Spence, 1994; Pereira et al., 2002). 

The hydrophobic nature of PAHs restricts the number of habitable spaces between soil 
particles (Gao et al., 1998). PAHs decrease dissolved oxygen concentrations in the 
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sediment that leads to oxygen stress (Carman et al., 2000; Neira et al., 2001). Oil 

enhances the retention of other toxins such as heavy metals (Millward et al., 2004). 

Combinations of heavy metals and PAHs further reduce nematode assemblages 

(Kennicutt et al., 1996; Beyrem et al., 2007). The food sources of nematodes that 

include bacteria are negatively affected by PAHs (Austen and McEvoy, 1997; Blakely 
et al., 2002). In addition, PAHs promote the growth of microalgae that produce mucous 

exo-polymers (Carman et al., 1997). These exo-polymers have an affinity for heavy 

metals and are consumed by nematodes, resulting in greater toxic effects (Decho and 

Lopez, 1993). 
 
1.5 Remediation of oil contaminated sites 
 

A clean environment is one that contains a level of PAHs that does not impact the 

functioning of an ecosystem (Kingston, 2002). Natural attenuation is the process by 

which oil is degraded in the sediment by microorganisms such as bacteria and fungi 
(Colombo et al., 2005). This process is controlled by physical and chemical factors 

such as composition of the microbial community, temperature, sediment grain size and 
nutrient availability (Lee and Lee, 2003; Smets and Pritchard, 2003; Tam et al., 2005). 

Degradation of individual PAHs occurs at different rates and is dependent on the 

structure of the PAH and the group of microorganism (Fedorak and Westlake, 1981; 

Cerniglia, 1992).  

 
The manual removal of spilled oil facilitates natural attenuation (Ramsay et al., 2000; 

Kingston, 2002). However, removal of persistent PAHs from soils is difficult, slow and 
expensive (Huang et al., 2005; Moreira et al., 2011). Mechanical techniques include 

removal of vegetation and flushing with clean water that causes permanent habitat 
destruction (Pezeshki et al., 2000). Incineration of the site leads to a change in species 

dominance (Pezeshki et al., 2001). Dispersants and chemical cleaners are toxic to 

many organisms (Fingas, 2011; Mishra et al., 2012). Phytoremediation uses the 

planting of trees to enhance natural attenuation (Parrish et al., 2006). The by-products 

of natural attenuation are carbon dioxide and water (Lee et al., 1997) that are taken up 

by plant roots (Park et al., 2011). 

 

Bioremediation is the addition of nutrients or fertiliser to enhance natural attenuation 
(Lin et al., 2002; Colombo et al., 2005; Xu et al., 2005). Fertilisers are effective in 
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biodegradation of PAHs because they maintain nutrient concentrations at high levels in 
oil-contaminated sediments (Xu et al., 2005). This provides sources of energy, carbon 

and nitrogen for microorganisms (Richmond et al., 2001). Nutrients stimulate the 

growth and activity of microorganisms thereby accelerating PAH degradation (Lee and 
Merlin, 1999; Ramsay et al., 2000; Mills et al., 2004). Nutrient addition accelerates the 

degradation process by up to 70% in mangrove sediments (Zhu et al., 2004). This 

process does not pose a threat to the environment and is efficient and cheap (Moreira 
et al., 2011). 

 
1.6 Aims of study 
 
Studies on oil contamination have mainly concentrated on the mass mortality of plants 
after large-scale crude oil spills (Lamparelli et al., 1997; Jones et al., 1998; Melville et 

al., 2009). Few studies have focussed on the effects of oil contamination on seedling 

establishment and growth of mangroves under sub-lethal concentrations (Proffitt et al., 

1995; Zhang et al., 2007a). Studies on the responses of A. marina, B. gymnorrhiza and 

R. mucronata to oil contamination are few (Ye and Tam, 2007; Naidoo et al., 2010).  

 

The three mangrove species were selected because they co-occur under similar 

environmental conditions with respect to salinity, tidal cycle, and substrate matrix. 
These species are taxonomically different – A. marina (family: Avicenniaceae), B. 

gymnorrhiza and R. mucronata (family: Rhizophoraceae). They possess different 

salinity adaptations. Bruguiera gymnorrhiza and R. mucronata are salt excluders 

whereas A. marina possesses leaf salt glands and is a salt secretor. These species 

have different tolerance levels to oil contamination (Zhang et al., 2007a; Naidoo et al., 

2010; Ke et al., 2011a).  

 

The degree of oil exposure is important in understanding plant responses to 

contamination (Suprayogi and Murray, 1999). In this study, different methods of oiling 

were used to characterise the responses of mangroves to oil contamination. 
Propagules (with and without pericarps in A. marina), leaves, internodes and sediments 

were oiled. Little is known about the accumulation of oil components in tissues and 

cells of roots and leaves and their contribution to oil-induced plant stress. 
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Little is known about the effects of oil on South African meiofauna. Field studies of oil 

contamination are few and restricted to the composition of beach communities after an 
oil spill (Hennig and Fricke, 1980; Fricke et al., 1981). There are no studies on the 

effects of oil on nematode community structure and species richness. Nematodes were 
selected because they are useful bio-indicators of contamination (Blakely et al., 2002; 

Gyedu-Arabio and Baird, 2006) and are sensitive to PAHs (Mahmoudi et al., 2005; 

Beyrem et al., 2010). 

 

The primary objective of this study was to determine the effects of spent bunker fuel oil 

on:  

                   
      i. mature plants of three mangrove species, namely, A. marina, B. gymnorrhiza and         

         R. mucronata in glasshouse and field experiments, and  

      ii. selected meiofauna, namely, nematodes in microcosm experiments.  

 

Specifically, this study determined the effects of oil on:  

 

 growth of seedlings and mature plants; 

 root growth and development; 
 salt secretion in A. marina; 

 root and leaf tissues and cells; 

 nematode assemblages, and, 

 nematodes in fertiliser amended sediments. 
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Chapter 2                                                                                                                      

The effects of oil contamination on growth of Avicennia marina, Bruguiera 
gymnorrhiza and Rhizophora mucronata in glasshouse and field experiments 

 
 
Abstract 
 
The responses of the mangroves A. marina, B. gymnorrhiza and R. mucronata to 

bunker fuel oil in glasshouse and field experiments were investigated. In the 

glasshouse study, freshly picked propagules of all species were subjected to oiled 
treatments for 13 months and growth monitored. In A. marina, treatments included a 

control; sediment oiled; propagules completely oiled (with or without pericarps) and ½ 
of the propagule without a pericarp oiled. In B. gymnorrhiza and R. mucronata, 

treatments included a control; sediment oiled and ⅔ propagule oiled. Oiling reduced 

plant height, number of leaves and chlorophyll content in all species compared to their 
respective controls. In A. marina, plant height, number of leaves and chlorophyll 

content were highest in the control and significantly reduced in the propagule without 

pericarp oiled treatment, by 96%, 92% and 66% respectively. Fifty percent plant 

mortality occurred in the propagule without pericarp oiled treatment after eight months. 
In B. gymnorrhiza, plant height, number of leaves and chlorophyll content were highest 

in the control and significantly reduced in the sediment oiled treatment by 45%, 31% 
and 22% respectively. In R. mucronata, plant height, number of leaves and chlorophyll 

content were significantly reduced in the sediment oiled treatment by 56%, 89% and 

69%, respectively, compared to the control. Field experiments were carried out in 

Beachwood Mangroves Nature Reserve and Isipingo estuary on healthy, naturally 

occurring one to two year old seedlings. Leaves and internodes of all species were 

oiled for 48 weeks and growth monitored. In all species, oiling of the leaves resulted in 

leaf abscission and considerable decreases in plant height and leaf production. All 

species were also subjected to a sediment oiled treatment (at a dose of 5 Lmˉ²) for 53 
weeks and growth monitored. In A. marina, adventitious roots developed on the stem, 

about 10-15 cm above the soil surface after 38 weeks of treatment. Sediment oiling 
resulted in 89%, 100% and 75% plant mortality in A. marina, B. gymnorrhiza and R. 

mucronata, respectively, after 53 weeks. These results indicate that bunker fuel oil 

adversely affects growth of the three mangrove species. 
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2.1 Introduction 
 
The demand for petroleum escalates with increasing population growth (Inckot et al., 

2011). A rise in petroleum production has resulted in oil spills that contaminate many 
coastal ecosystems (Dsikowitzky et al., 2011; Moreira et al., 2011). Oil pollution has 

had devastating impacts on coastal marshes (Dowty et al., 2001; Ko and Day, 2004; 

Mishra et al., 2012) and mangroves (Ansari and Ingole, 2002; Tam et al., 2005; 

Cavalcante et al., 2009).  

 

Mangroves are distributed within the intertidal zones of tropical and subtropical regions 
(Paliyavuth et al., 2004) and are highly vulnerable to oil spills as they are located in low 

wave energy sheltered bays (Duke et al., 2000; Mille et al., 2006). Spilled oil that enters 

mangrove ecosystems soaks into sediments and coats aerial and prop roots (Getter et 

al., 1985; Proffitt et al., 1995). Oil coating leads to oxygen deficiency, suffocation and 

growth irregularities in the short-term and mortality in the long-term (Duke et al., 1998; 

Naidoo et al., 2010).   

 

PAHs are the components of oil that penetrate plant roots and consequently cause root 
membrane damage (Gilfillan et al., 1989; Pezeshki et al., 2000; Zhang et al., 2007a). 

The responses of mangroves to environmental conditions such as salinity, water-

logging and inorganic pollutants such as nutrients and heavy metals have been widely 
reported (Caregnato et al., 2008; Harish and Murugan, 2011; Naidoo et al., 2011). Few 

studies have focussed on the effects of oil contamination on establishment and growth 
of mangroves (Zhang et al., 2007a; Naidoo et al., 2010). 

 

The aim of this study was to determine and compare the effects of bunker fuel oil on 
the growth of three mangroves, A. marina, B. gymnorrhiza and R. mucronata in 

controlled glasshouse and field experiments. The effects of oiling of the propagules, 

leaves and sediments were also compared. 
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2.2 Materials and methods 

 
Glasshouse study 
 
2.2.1. Growth conditions 
 
Propagules of A. marina and B. gymnorrhiza, were collected from the Beachwood 

Mangroves Nature Reserve (29° 48ʹ S, 31° 02ʹ E) and those of R. mucronata from the 

Isipingo estuary (29° 59ʹ S, 30° 56ʹ E) in March 2010. After collection, A. marina 

propagules were placed in water and pericarps allowed to shed naturally (24 hours). 
Propagules of A. marina were planted in 17 cm diameter x 15 cm height and those of 

B. gymnorrhiza and R. mucronata in 24 cm x 21 cm plastic pots. All pots contained a 

mixture of sand, potting soil and compost (1:2:1). Pots were watered daily with tap 

water and once monthly with 10% seawater. All pots were maintained in a glasshouse 

for 13 months. The temperature in the glasshouse during the experimental period was 

25 °C (day) and 18 °C (night).  

 
In this study, propagules of A. marina, with or without pericarps were subjected to one 

of five treatments: 

 

i.  control (C) – propagules with pericarps were planted in the sediment. 

ii.  SO – propagules without pericarps were planted in sediment to which 50 ml of oil 

were carefully poured onto the soil surface. 

iii.  PO1 – propagules with pericarps were completely dipped in oil and planted in 

sediment. 

iv. PO2 – propagules without pericarps were completely dipped in oil and planted in 

sediment. 

v.  ½PO – ½ of the propagule without a pericarp was dipped in oil using a pair of 

forceps. 

 
Propagules of B. gymnorrhiza (about 12.5 ± 0.5 cm in height), and R. mucronata (about 

22 ± 2 cm in height) were subjected to one of three treatments: 

 

i.  control (C) – untreated propagules were planted in the sediment. 
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ii.  SO – propagules were planted in sediment to which 50 ml of oil were carefully 

poured onto the soil surface. 

iii. ⅔PO – ⅔ of the propagule from the base/radical end was dipped in oil using a pair 

of forceps. 

 

There were four replications per treatment for all species. The bunker fuel oil used was 

obtained from FFS Refineries (Pty) Ltd, Durban. The properties of this oil are indicated 

in Table 2.1.  

 
2.2.2 Plant growth measurements 
 

Measurements were made of plant height and number of leaves monthly.  

 
2.2.3 Chlorophyll content 
 

Measurements of leaf chlorophyll content (five per replicate) began four months after 

commencement of treatments, and monthly thereafter. Chlorophyll content was 

determined with a hand-held chlorophyll absorbance meter (CCM-200, Opti Sciences, 

Tyngsboro, MA, USA). The CCM-200 is a cost-effective instrument that provides a non-
destructive and reliable estimate of leaf chlorophyll content (Naidoo et al., 2010; 

Khaleghi et al., 2012; Flores-de-Santiago et al., 2013). 

 

 

Table 2.1 

Specifications of bunker fuel 150 (FFS Refiners, 2002) 
 
                                                                                        Unit                                  Value 
 
Energy content (gross) kJ kgˉ¹ 43,400 
Viscosity @ 50 °C cSt 140 
Total sulphur as S mass% 3.2 
Pour point °C -10 
Flashpoint (PMCC) °C 95 
Water content mass% 0.45 
Density @ 20 °C kg lˉ¹ 0.98 
Ash mass% 0.05 
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Field study 
 
Field investigations were undertaken in the Beachwood Mangroves Nature Reserve 

and Isipingo estuary. The average daily maximum and minimum temperatures for 

Beachwood were 26 °C and 17 °C and for Isipingo, 27 °C and 16 °C, respectively. The 

mean annual rainfall is 1228 mm for Beachwood and 1040 mm for Isipingo. Soil 

characteristics for Beachwood and Isipingo are indicated in Table 2.2. Selected plants 

were tagged for identification with plastic tape. 

 
2.2.4 Leaf and internode oiling experiment  
 
Healthy, young, naturally occurring, one year old seedlings of A. marina (about 46.5 ± 7 

cm in height), B. gymnorrhiza (about 48.5 ± 8 cm in height) and R. mucronata (about 

66.5 ± 9 cm in height) were selected for oiling experiments. Two study sites were used, 

Beachwood and Isipingo, based on the abundance of seedlings present for each 
species. A. marina (Fig. 2.12A) and B. gymnorrhiza (Fig. 2.13A) seedlings from 

Beachwood and R. mucronata seedlings from Isipingo (Fig. 2.14) were subjected to 

one of three treatments:  

 

i. control (C) – plants were untreated. 
ii. IO – the second internode from the base of the stem of A. marina (the first internode 

was too short for oil application) and the first internode from the base of the stem of B. 

gymnorrhiza and R. mucronata were oiled.  

iii. LO – both surfaces of the last pair of mature leaves directly below the shoot tip of 

each plant were oiled.  

Oil was applied with a paintbrush. 

 
Internodes and leaves of A. marina and B. gymnorrhiza were oiled at the 

commencement of the experiment in October 2010 and again after 7, 15, 19, 27, 32, 

and 48 weeks. Initially, leaves were oiled on the adaxial surface at the commencement 

of the experiment and again after seven weeks. At 15 weeks until the end of the 

experiment, leaves were oiled on both the adaxial and abaxial surfaces. Internodes and 
leaves of R. mucronata were oiled at the commencement of the experiment in 

November 2010 and again after 5, 14, 18, 25, 30 and 48 weeks. Leaves were oiled on 

the adaxial surface at the commencement of the experiment and again after five 
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weeks. At 14 weeks until 48 weeks, leaves were oiled on both the adaxial and abaxial 

surfaces. There were seven replications per treatment for each species. Measurements 

of plant height and number of leaves were taken on the same days as the oiling. 

 
2.2.5 Sediment oiling experiment 
 

This investigation was undertaken in the Isipingo estuary. Healthy young, one to two 
year old seedlings of A. marina (about 110 ± 50 cm in height), B. gymnorrhiza (about 

65 ± 6 cm in height) and R. mucronata (about 76 ± 8 cm in height) were selected for 

oiling experiments. Groups of seedlings of each species were enclosed by 0.5 m radius 

x 0.5 m height circular perspex sheets (Figs. 2.18 - 2.20). The sheets were pushed into 

the soil to a depth of 5 cm to prevent loss of oil as the tide receded. The height of the 

enclosures was adequate to prevent the escape of oil with the rising tide. Control plants 

were also enclosed like the treatment plots, but no oil was applied. There were nine 
replications per treatment for A. marina (because of the abundance of A. marina plants 

in the stand) and four for B. gymnorrhiza and R. mucronata, respectively. Dosage rate 

was 5 Lmˉ² for all plots. Oil treatments were applied once in June 2011 and monitoring 

continued until June 2012. Measurements of plant height and number of leaves were 

taken at 16, 26, 38, 46 and 53 weeks after treatment.  
 
2.2.6 Soil analysis 
 
Soil samples were collected from the experimental sites in Beachwood and Isipingo, 

placed onto plastic sheets and left to air dry in the glasshouse. After one week, the 

samples were crushed using a wooden mallet and thereafter passed through a 1 mm 

sieve. Coarse materials (>1 mm) were discarded. Clay content was analyzed by near-

infrared reflectance. Soil pH was measured using a gel-filled combination glass 

electrode placed in a potassium chloride solution (Manson and Roberts, 2000). 

 

Concentrations of ions were determined by atomic absorption using mid-infrared 

spectroscopy (Bruker Tensor 27, FTIR Spectrometer with HTS/XT). The instrument 

detects light (2500 – 15000 nm) reflected by the sample. Carbon and nitrogen contents 

were analyzed by the Automated Dumas dry combustion method using a LECO CNS 

2000 (Leco Corporation, Michigan, USA; Matejovic, 1996). The results of the soil 

analyses for Beachwood and Isipingo are indicated in Table 2.2 
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2.2.7 Data analyses 
 

Means and standard errors were calculated for all measurements. Resulting data were 

tested for normality using the Kolmogorov-Smirnov test and subjected to one-way 

analysis of variance (ANOVA) and Tukey-Kramer multiple comparisons test (P ≤ 0.05) 

using MINITAB version 16 (Minitab Statistical Software, MINITAB Inc. USA). Other 
data were subjected to unpaired t-tests to detect for differences between control and 

oiled treatments. 

 

 
2.3 Results 
 
2.3.1 Glasshouse study 
 

A. marina 
 
Plant height was highest in the control and significantly lower in the sediment oiled, 

propagule with pericarp oiled, propagule without pericarp oiled and ½ propagule oiled 

treatments by 67%, 86%, 96% and 61% respectively (Fig. 2.1A).  

 

In the sediment oiled, propagule with pericarp oiled, propagule without pericarp oiled 

and ½ propagule oiled treatments, number of leaves was significantly lower by 54%, 

83%, 92% and 47% respectively, compared to the control (Fig. 2.1B).  

 

In the sediment oiled, propagule with pericarp oiled, propagule without pericarp oiled 

and ½ propagule oiled treatments, chlorophyll content was significantly lower by 34%, 

58%, 66% and 28% respectively, compared to the control (Fig. 2.1C).  

 

There were no significant differences in plant height, number of leaves and chlorophyll 

content between the sediment oiled and ½ propagule oiled treatments and between the 

propagule with pericarp oiled and propagule without pericarp oiled treatments (Fig. 

2.1A, B and C). After eight months, there was 25% and 50% plant mortality, 

respectively, in the propagule with pericarp oiled and propagule without pericarp oiled 

treatments. 
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Oiled treatments exhibited leaf wilting, senescence and defoliation. In the propagule 

with pericarp oiled and propagule without pericarp oiled treatments, leaves initially 

exhibited necrosis (yellow and brown spots) and eventually turned completely brown 

and withered (Fig. 2.3C). Although no measurements were made, internodes of oiled 

seedlings were shorter and leaves smaller compared to the controls.  

 

Furthermore, the propagule without pericarp oiled treatment caused abnormal 

phyllotaxy or arrangement of leaves after two months. Instead of the normal opposite 

arrangement, leaves formed an abnormal whorled arrangement with three leaves per 

node (Fig. 2.2B) which continued throughout the duration of the experiment (Fig. 2.2C). 

Another abnormal feature of the oiled treatments was the development of two or three 

shoots from a single propagule (Fig. 2.3A). These additional shoots eventually died, 

leaving surviving plants with a single shoot. 

 

 

B. gymnorrhiza 
 

Plant height was highest in the control and significantly lower in the sediment oiled and 

⅔ propagule oiled treatments by 45% and 36% respectively (Fig. 2.4A). Seedlings of 

oiled treatments exhibited stunted growth compared to those in the control (Fig. 2.5A 

and B).  

 

In the sediment oiled and ⅔ propagule oiled treatments, number of leaves was 

significantly lower by 31% and 24% respectively, compared to the control (Fig. 2.4B).  

 

In the sediment oiled and ⅔ propagule oiled treatments, chlorophyll content was 

significantly lower by 22% and 20% respectively, compared to the control (Fig. 2.4C). 

Leaves of seedlings in oiled treatments were healthy and green as those in the control 

and no abnormalities were observed. 

 

There were no significant differences in plant height, number of leaves and chlorophyll 

content between the oiled treatments (Fig. 2.4A, B and C). 
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R. mucronata 
 

Plant height was highest in the control and significantly lower in the sediment oiled and 

⅔ propagule oiled treatments by 56% and 49% respectively (Fig. 2.6A). Seedlings of 

oiled treatments exhibited stunted growth compared to those in the control (Fig. 2.7A 

and 2.8A).  

 

In the sediment oiled and ⅔ propagule oiled treatments, number of leaves was 

significantly lower by 89% and 70% respectively, compared to the control (Fig. 2.6B).  

 

In the sediment oiled and ⅔ propagule oiled treatments, chlorophyll content was 

significantly lower by 69% and 56% respectively, compared to the control (Fig. 2.6C). 

Leaves of seedlings in oiled treatments were pale and light green in colour compared 

to the dark green leaves of those in the control (Fig. 2.7C). 
 

There were no significant differences in plant height and number of leaves between the 

oiled treatments (Fig. 2.6A and B). Chlorophyll content was significantly higher by 30% 

in the ⅔ propagule oiled than in the sediment oiled treatment (Fig. 2.6C). 
 

All seedlings in the sediment oiled (Fig. 2.7B) and 25% in the ⅔ propagule oiled 

treatments (Fig. 2.8B) did not shed their leaf caps after the formation of new leaves, 

whereas those in the control shed theirs two to three weeks after planting. Although 

there was no mortality, 25% of seedlings in the sediment oiled and 25% in the ⅔ 

propagule oiled treatments did not produce leaves for the duration of the experiment.  

 

The leaves of seedlings in the oiled treatments were severely deformed (Fig. 2.7B and 

2.8B). Leaf wilting, senescence and defoliation were observed in the oiled treatments 

(Fig. 2.7C). In addition, seedlings in the sediment oiled treatment exhibited necrosis on 

their propagules. The necrotic area initially appeared dark yellow to orange, then brown 

and eventually black. Seedlings in the oiled treatments exhibited yellowing and 

deformity of the stems (Fig. 2.8B). 
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Fig. 2.1 Effects of oiling on plant height (A), number of leaves (B) and chlorophyll 

content index (CCI) (C) in A. marina in the glasshouse study. Measurements were 

taken every four weeks for 55 weeks after oiling treatment, C = control, SO = sediment 

oiled, ½PO = ½ propagule oiled, PO1 = propagule with pericarp oiled, PO2 = 

propagule without pericarp oiled. Means ± standard error are given, n = 4. Bars with 

different letters are significantly different at P ≤ 0.05 using Tukey-Kramer multiple 

comparisons test. 
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Fig. 2.2 Avicennia marina in the glasshouse study. (A) Control (left) and propagule 

without pericarp oiled treatment (right) after seven months. (B) Abnormal leaf 

arrangement in propagule without pericarp oiled treatment after two months (arrow). 

Note the whorled leaf arrangement. (C) Whorled leaf arrangement after seven months 

(arrows). 

 

   
 
 
Fig. 2.3 Avicennia marina in the glasshouse study. (A) Abnormal shoot growth in 

propagule with pericarp oiled treatment after three months (arrows). Note two shoots 

growing from the propagule, a smaller third shoot is present but hidden from view. (B) 

Abnormal shoot growth in the ½ propagule oiled treatment after two months (arrows). 

(C) Dead seedling of propagule without pericarp oiled treatment after eight months. 

Note stunted shoot growth and brown leaves (arrows). 

B C A 

A B C 
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Fig. 2.4 Effects of oiling on plant height (A), number of leaves (B) and chlorophyll 

content index (CCI) (C) in B. gymnorrhiza in the glasshouse study. Measurements 

were taken every four weeks for 55 weeks after oiling treatment, C = control, SO = 

sediment oiled, ⅔PO = ⅔ propagule oiled. Means ± standard error are given, n = 4. 

Bars with different letters are significantly different at P ≤ 0.05 using Tukey-Kramer 

multiple comparisons test. 
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Fig. 2.5 Bruguiera gymnorrhiza seedlings in the glasshouse study. (A) Control (left) 

and sediment oiled (right) treatments after two months. (B) Control (left) and ⅔ 

propagule oiled (right) treatments after four months. 
 
 
 
 
 
 
 

A 

B 
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Fig. 2.6 Effects of oiling on plant height (A), number of leaves (B) and chlorophyll 

content index (CCI) (C) in R. mucronata in the glasshouse study. Measurements were 

taken every four weeks for 55 weeks after oiling treatment, C = control, SO = sediment 

oiled, ⅔PO = ⅔ propagule oiled. Means ± standard error are given, n = 4. Bars with 

different letters are significantly different at P ≤ 0.05 using Tukey-Kramer multiple 

comparisons test. 
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Fig. 2.7 Rhizophora mucronata in the glasshouse study. (A) Control (left) and sediment 

oiled (right) treatments after seven months. (B) Leaf cap that has not fallen off in the 

sediment oiled treatment after seven months (arrowhead) despite the growth of new 

leaves. Note that new leaves are deformed (arrow) (C) Light green leaves in the 

sediment oiled treatment after 11 months. Note wilting and senescence of the leaf on 

the left (arrow). 

 

  

 

Fig. 2.8 Rhizophora mucronata in the glasshouse study. (A) Control (left) and ⅔ 

propagule oiled treatments (right) after seven months. (B) New leaves are deformed 

(arrow) and leaf cap (arrowhead) has not fallen off. Note the yellowing stem (black 

arrow). 

 

A B C 

A B 
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Table 2.2 

Soil characteristics of the study sites at Beachwood Mangroves Nature Reserve and 

Isipingo estuary.  

 
                                                Beachwood                              Isipingo 

Salinity (psu)     19  ± 3     26  ± 4 

Clay content %                    27.7  ± 2  23.3  ± 3                  

pH                                             6.2  ± 0.2    6.6  ± 0.4 

P                                          0.06  ± 0.003  0.03  ± 0.001 

K                                             0.8  ± 0.02    0.5  ± 0.01 

Ca     1.3  ± 0.01    1.8  ± 0.02 

Mg                                           1.7  ± 1.9    1.2  ± 0.05 

Zn        glˉ¹                      0.08  ± 0.002  0.32  ± 0.003 

Mn              0.05  ± 0.002         0.03  ± 0.001 

Cu        0.01  ± 0.001  0.02  ± 0.003 

N     4.7  ± 0.1    5.4  ± 0.05 

C   47.0  ± 4.3  51.7  ± 3.8 

  
 
 
2.3.2 Leaf and internode oiling experiment 
 
A. marina 
 

Plant height increment (final plant height – initial) was highest in the control and 

significantly lower in the internode oiled and leaf oiled treatments by 62% and 83% 

respectively (Fig. 2.9A). Plant height increment was significantly higher by 54% in the 

internode oiled than in the leaf oiled treatment. 

 

Change in number of leaves (final number of leaves – initial) was highest in the control 

and significantly lower in the internode oiled and leaf oiled treatments by 88% and 

109% respectively (Fig. 2.9B). The negative value for the leaf oiled treatment indicated 

a decrease in the number of leaves after 48 weeks of leaf oiling compared to that at the 

commencement of the experiment. Leaves abscised in oiled plants and fewer new 
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ones were produced. Change in number of leaves was significantly higher by 100% in 

the internode oiled than in the leaf oiled treatment (Fig. 2.9B). 

 

Oiled seedlings exhibited stunted growth and old shoot tips died while new shoots grew 

adjacent to the dead ones. In addition to leaf wilting, senescence and defoliation, new 

leaves that formed above the oiled leaves were deformed after 19 weeks. Plants in the 

internode oiled treatment were more susceptible (50%) to faunal feeding activity 

compared to those in the control (25%) and leaf oiled (10%) treatments. Leaves that 

were oiled were monitored at each of the sites to determine whether they remained on 

the plants or were abscised (Fig. 2.12B). The percentage of abscised leaves in the leaf 

oiled treatments is indicated in Table 2.3. 

 

Table 2.3 
Percentage of abscised leaves in leaf oiled treatments in A. marina over the 

experimental period, AD = adaxial and AB = abaxial surface, n = 7. 
 
Leaf oiled treatments                                                              % abscission 
 
7   weeks:  - AD oiled on commencement    36 
15 weeks: - AD oiled on commencement   71 
  - AD oiled after 7 weeks    50  

19 weeks: - AD on commencement             100 

  - AD oiled after 7 weeks    64 
  - AD+AB after 15 weeks    79 
27 weeks: - AD oiled after 7 weeks             100 
  - AD+AB oiled after 15 weeks            100 
  - AD+AB oiled after 19 weeks   86 
32 weeks: - AD+AB oiled after 19 weeks            100 
  - AD+AB oiled after 27 weeks            100 
48 weeks: - AD+AB oiled after 32 weeks            100 
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Fig. 2.9 Effects of oiling on plant height increment (final plant height – initial) (A) and 

change in number of leaves (final number of leaves – initial) (B) in A. marina in the field 

study at Beachwood. Measurements were taken 7, 15, 19, 27, 32, and 48 weeks after 

oiling treatment, C = control, IO = internode oiled, LO = leaf oiled. Means ± standard 

error are given, n = 7. Bars with different letters are significantly different at P ≤ 0.05 

using Tukey-Kramer multiple comparisons test. 
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B. gymnorrhiza 
 
Plant height increment was highest in the control and significantly lower in the 

internode oiled and leaf oiled treatments by 56% and 78% respectively (Fig. 2.10A). 

Plant height increment was significantly higher by 51% in the internode oiled than in the 

leaf oiled treatment.  

 

Change in number of leaves was highest in the control and significantly lower in the 

leaf oiled treatment by 133% (Fig. 2.10B). Leaves abscised in oiled plants and fewer 

new ones were produced. There were no significant differences in number of leaves 

between the control and internode oiled treatments. Change in number of leaves was 

significantly higher by 159% in the internode oiled than in the leaf oiled treatment. 

  

Plants in the internode oiled and leaf oiled treatments exhibited stunted growth while 
new leaves that formed above the oiled leaves were not deformed as in A. marina and 

R. mucronata.  

 

Plants in the internode oiled treatment were more susceptible (50%) to faunal feeding 

activity compared to those in the control (25%) and leaf oiled (10%) treatments, similar 
to A. marina.  

 

Leaves that were oiled were monitored at each of the sites to determine whether they 

remained on the plants or were abscised (Fig. 2.13B). The percentage of abscised 

leaves in the leaf oiled treatments is indicated in Table 2.4. 
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Fig. 2.10 Effects of oiling on plant height increment (final plant height – initial) (A) and 

change in number of leaves (final number of leaves – initial) (B) in B. gymnorrhiza in 

the field study at Beachwood. Measurements were taken 7, 15, 19, 27, 32, and 48 

weeks after oiling treatment, C = control, IO = internode oiled, LO = leaf oiled. Means ± 

standard error are given, n = 7. Bars with different letters are significantly different at P 

≤ 0.05 using Tukey-Kramer multiple comparisons test. 
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Table 2.4 
Percentage of abscised leaves in leaf oiled treatments in B. gymnorrhiza over the 

experimental period, AD = adaxial and AB = abaxial surface, n = 7. 

 

Leaf oiled treatments                                                             % abscission 
 
7   weeks: - AD on commencement                 0 

15 weeks: - AD on commencement      0 

 - AD oiled after 7 weeks      0 

19 weeks: - AD on commencement    43 
  - AD oiled after 7 weeks    29 

  - AD+AB oiled after 15 weeks   86 

27 weeks: - AD on commencement    64 

  - AD oiled after 7 weeks    57 

  - AD+AB oiled after 15 weeks   90 

  - AD+AB oiled after 19 weeks   64 

32 weeks: - AD on commencement    82 

  - AD oiled after 7 weeks    71 

  - AD+AB oiled after 15 weeks            100 

  - AD+AB oiled after 19 weeks   72 

  - AD+AB oiled after 27 weeks   29 

48 weeks: - AD on commencement             100 

  - AD oiled after 7 weeks    79 

  - AD+AB oiled after 15 weeks            100 

  - AD+AB oiled after 19 weeks            100 

  - AD+AB oiled after 27 weeks   93 

  - AD+AB oiled after 32 weeks   86 
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R. mucronata         

 

Plant height increment was highest in the control and significantly lower in the 

internode oiled and leaf oiled treatments by 72% and 85% respectively (Fig. 2.11A). 

Plant height increment was significantly higher by 100% in the internode oiled than in 

the leaf oiled treatment (Fig. 2.11A). 

 

Change in number of leaves was highest in the control and significantly lower in the 

internode oiled and leaf oiled treatments by 78% and 110% respectively (Fig. 2.11B). 

Leaves abscised in oiled plants and fewer new ones were produced. Change in 

number of leaves was significantly higher by 100% in the internode oiled than in the 

leaf oiled treatment (Fig. 2.11B). 

 

Plants in oiled treatments exhibited stunted growth and after 48 weeks, there was 29% 

and 57% mortality respectively, in the internode oiled and leaf oiled treatments. In 

addition, shoot tips of leaf oiled plants died while new shoots grew adjacent to the dead 

ones. Some plants in the leaf oiled treatment developed two new shoots on either side 

of the dead one.  

 

In addition to leaf wilting, senescence and defoliation in oiled plants, new leaves that 

formed above the oiled ones were deformed after 18 weeks. After 48 weeks, all new 

leaves of oiled plants were deformed.  

 

Control plants were more susceptible to faunal feeding activity (40%) compared to 

those in the internode oiled (10%) and leaf oiled (20%) treatments.  

 

Leaves that were oiled were monitored at each of the sites to determine whether they 

remained on the plants or were abscised. The percentage of abscised leaves in the 

leaf oiled treatments is indicated in Table 2.5.  
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Fig. 2.11 Effects of oiling on plant height increment (final plant height – initial) (A) and 

change in number of leaves (final number of leaves – initial) (B) in R. mucronata in the 

field study at Isipingo. Measurements were taken 5, 14, 18, 25, 30, 48 weeks after 

oiling treatment, C = control, IO = internode oiled, LO = leaf oiled. Means ± standard 

error are given, n = 7. Bars with different letters are significantly different at P ≤ 0.05 

using Tukey-Kramer multiple comparisons test. 
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Table 2.5 
Percentage of abscised leaves in leaf oiled treatments in R. mucronata over the 

experimental period, AD = adaxial and AB = abaxial surface, n = 7. 

 
Leaf oiled treatments                                                             % abscission 
 
5   weeks: - AD on commencement    86 

14 weeks: - AD on commencement             100 

  - AD oiled after 5 weeks             100 

18 weeks: - AD+AB oiled after 14 weeks   93 

25 weeks: - AD+AB oiled after 14 weeks            100 

  - AD+AB oiled after 18 weeks            100 

30 weeks: - AD+AB oiled after 27 weeks   79 

48 weeks: - AD+AB oiled after 27 weeks            100 

  - AD+AB oiled after 32 weeks            100 

  
 

 

          

Fig. 2.12 Avicennia marina in the leaf and internode oiling experiment. (A) Individually 

tagged plants in the internode oiled treatment (arrows). (B) Individually tagged plant in 

the leaf oiled treatment. Note the dead oiled leaves (arrows).  

 

A B 
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Fig. 2.13 Bruguiera gymnorrhiza in the leaf and internode oiling experiment. (A) 

Individually tagged plants in the internode oiled treatment (arrows). (B) Individually 

tagged plants in the leaf oiled treatment (arrows). 

 

 

 

Fig. 2.14 Individually tagged R. mucronata seedlings showing internode oiled plants 

(arrow) in the field study at Isipingo. 

A B 
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2.3.3 Sediment oiling experiment 
 
A. marina 
 
Plant height increment was highest in the control and significantly lower in the sediment 

oiled treatment by 97% (Fig. 2.15A). Change in number of leaves was highest in the 

control and significantly lower in the sediment oiled treatment by 106% (Fig. 2.15B).  

 

After 16 weeks, there was 78% plant mortality in the sediment oiled treatment. After 38 

weeks, adventitious roots developed on the stem, about 10-15 cm above the soil 

surface in surviving plants (22%). After 53 weeks, these adventitious roots (11) were 

about 4-12 cm in length and ± 0.8 cm in width and grew towards the substrate (Fig. 

2.18C). There was 89% mortality in the sediment oiled treatment after 53 weeks. Ten 

seedlings from newly fallen propagules grew in the control, while in the sediment oiled 

treatment, 19 new seedlings established after 53 weeks (Fig. 2.18B). 

 

B. gymnorrhiza 
 

Plant height increment was highest in the control and significantly lower in the sediment 

oiled treatment by 100% (Fig. 2.16A). Change in number of leaves was highest in the 

control and significantly lower in the sediment oiled treatment by 100% (Fig. 2.16B). 

 

After 26 weeks, there was 50% mortality in the sediment oiled treatment and after 53 

weeks all plants died. Four seedlings from newly fallen propagules grew in the control 

while in the sediment oiled treatment five new seedlings established after 53 weeks 

(Fig. 2.19C). 

 

R. mucronata 
 

Plant height increment was highest in the control and significantly lower in the sediment 

oiled treatment by 95% (Fig. 2.17A). Change in number of leaves was highest in the 

control and significantly lower in the sediment oiled treatment by 108% (Fig. 2.17B). 

After 16 weeks, there was 75% plant mortality in the sediment oiled treatment (Fig. 

2.20). New seedlings were absent because there was no source of propagules (Fig. 

2.20). 
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Fig. 2.15 Effects of oiling on plant height increment (final plant height – initial) (A) and 

change in number of leaves (final number of leaves – initial) (B) in A. marina in the field 

study at Isipingo. Measurements were taken 16, 26, 38, 46 and 53 weeks after 

treatment, C = control, SO = sediment oiled. Means ± standard error are given, n = 9. 

Bars with different letters are significantly different at P ≤ 0.05 using Tukey-Kramer 

multiple comparisons test. 
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Fig. 2.16 Effects of oiling on plant height increment (final plant height – initial) (A) and 

change in number of leaves (final number of leaves – initial) (B) in B. gymnorrhiza in 

the field study at Isipingo. Measurements were taken 16, 26, 38, 46 and 53 weeks after 

the commencement of treatments, C = control, SO = sediment oiled. Means ± standard 

error are given, n = 4. Bars with different letters are significantly different at P ≤ 0.05 

using Tukey-Kramer multiple comparisons test. 
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Fig. 2.17 Effects of oiling on plant height increment (final plant height – initial) (A) and 

change in number of leaves (final number of leaves – initial) (B) in R. mucronata in the 

field study at Isipingo. Measurements were taken 16, 26, 38, 46 and 53 weeks after 

treatment, C = control, SO = sediment oiled. Means ± standard error are given, n = 4. 

Bars with different letters are significantly different at P ≤ 0.05 using Tukey-Kramer 

multiple comparisons test. 
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Fig. 2.18 Avicennia marina in the sediment oiled treatment in Isipingo. (A) Control 

plants at the commencement of the experiment. (B) Sediment oiled plants 53 weeks 

after oiling. Note the new seedling growth from recently fallen propagules (arrows). (C) 

Adventitious root development in a sediment oiled plant after 53 weeks (arrows). 

 

   

 

Fig. 2.19 Bruguiera gymnorrhiza in the sediment oiled treatment in Isipingo. (A) Control 

plants at the commencement of the experiment. (B) Sediment oiled plants at the 

commencement of the oiling treatment. (C) Sediment oiled plants 53 weeks after 

treatment. Note abscised leaves on the sediment and new seedlings from recently 

fallen propagules (arrows). 

 

A B C 

A B C 
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Fig. 2.20 Rhizophora mucronata in the sediment oiled treatment in Isipingo after 53 

weeks. Note the single surviving plant on the left (arrow). 

 

 

2.4 Discussion 

 
This study has demonstrated that bunker fuel oil produces adverse effects, such as leaf 

wilting, necrosis, defoliation, reduced growth and plant mortality in the three species. 
Abnormal growth morphology particularly in A. marina and R. mucronata were caused 

by the mutagenic properties of PAHs (Guo et al., 2005; Luan et al., 2006; Cavalcante 

et al., 2009). 

 

In the glasshouse study, the growth of all species was significantly reduced by oiled 

treatments. Oil did not inhibit the establishment of propagules in all species. 
Propagules of A. marina, B. gymnorrhiza and R. mucronata were coated with oil and 

anchored vertically into the substratum, the position in which seedling establishment 
and growth takes place in the natural environment (Zhang et al., 2007a). Oil coating on 

the radical end of the propagule probably caused PAHs to enter the developing primary 

root resulting in reduced growth and morphological deformities in stems and leaves. 

Sediment oiling enabled PAHs to enter the entire root system over the experimental 

period. Oil entering the roots and its translocation to above ground parts of the plant 

probably caused reduced growth and deformity. Previous studies have demonstrated 

that the primary mechanism of PAH toxicity is related to oil that enters roots and is 
drawn up the stems and leaves by transpiration (Getter et al., 1985; Suprayogi and 
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Murray, 1999). Oil damage to conducting tissues (Youssef and Ghanem, 2002; Ye and 
Tam, 2007) and disruption of cellular lipid membranes in roots (Zhang et al., 2007a) 

probably caused reduced growth. 

 
In A. marina, complete oiling of propagules resulted in fewer new leaves, defoliation, 

deformity, necrosis, abnormal arrangement of leaves, reduced growth and plant 
mortality. In R. mucronata, oil caused necrosis in propagules, deformity of the stems 

and leaves and the inability to shed the leaf cap when flag leaves were produced. 

These oil effects are probably a result of the translocation of oil from the roots to the 
foliage (Getter et al., 1985; Duke et al., 1997). Deformity and reduced growth were 

probably caused by oil disrupting biochemical processes and plant metabolism (Zhang 
et al., 2007a; Ke et al., 2011a). Physiological stress can eventually lead to plant 

mortality (Takemura et al., 2000). Tissue necrosis was probably caused by oil 

accumulation which led to the death of cells (Suprayogi and Murray, 1999; Meudec et 

al., 2006; 2007). Previous studies have shown that oil accumulation in the roots and 

leaves resulted in organelle and tissue damage in the grasses, Spartina alterniflora 

Loisel. (Watts et al., 2006) and Lolium multiflorum Lam. (Kang et al., 2010). Leaf 

deformity (Duke and Watkinson, 2002; Tam et al., 2005) and tissue necrosis (Ye and 

Tam, 2007) caused by oil have been reported before. 

 
In A. marina, reduced growth and mortality occurred when the pericarp was intact or 

removed before oiling. The pericarp did not appear to protect the endosperm and 

embryo from oil effects. Oil could have penetrated the developing embryo when 

propagules were completely coated, causing deformity, reduced growth and mortality. 
There was no mortality in oiled B. gymnorrhiza and R. mucronata seedlings possibly 

because propagules are thicker and more dense (De Ryck et al., 2012), which probably 

restricted the degree of oil penetration.  

 

Oiling significantly reduced chlorophyll content in all species. Oil probably damaged 

chloroplasts resulting in reduced chlorophyll content. Previous studies have 

demonstrated that PAHs negatively affect the photosynthetic apparatus of chloroplasts 
(Naidoo et al., 2010; Yin et al., 2011) and break down chlorophyll (Huang et al., 1996). 

Reduced chlorophyll content probably decreased photosynthetic performance (Naidoo 
et al., 2010; Khaleghi et al., 2012; Flores-de-Santiago et al., 2013) which resulted in 

reduced growth.  
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Growth was significantly reduced in all species when internodes and leaves were oiled 

in the field. Leaf oiling resulted in abscission of leaves in all species within seven 
weeks. Abscission was probably due to the carcinogenic properties of PAHs (Luan et 

al., 2006; Li et al., 2010). Ethylene, for example, is a hydrocarbon known to be a 

natural constituent of plants and serves as a growth regulator that promotes leaf 

abscission (Yang and Hoffman, 1984; Zakrzewski, 2002). However, Jackson and 

Osborne (1970) demonstrated that an increase in the rate of ethylene production after 

the onset of sensitivity to this hydrocarbon can be closely correlated with the time of 
abscission. Excess ethylene (Zakrzewski, 2002) and PAHs (Luan et al., 2006) are 

carcinogenic plant toxins (Guo et al., 2005; Cavalcante et al., 2009). Sensitivity to and 

toxicity of PAHs could have resulted in premature leaf abscission in this study. 

Additionally, aromatic hydrocarbons in vehicle emissions (e.g. benzene and xylene) 

cause cuticle degradation in leaves (Sauter and Pambor, 1989). Furthermore, oil 
passed through intercellular spaces and aerenchyma channels in leaves of Phragmites 

australis (Cav.) Trin. ex Steud. whereas water normally does not (Armstrong et al., 

2009). Therefore another reason for leaf abscission could be that oil penetrated the leaf 
cells resulting in death of chloroplasts and other organelles (Watts et al., 2006; Kang et 

al., 2010) causing early senescence. 

 
In A. marina and R. mucronata, leaf and internode oiling resulted in leaf wilting, 

senescence and defoliation. These adverse effects could have been caused by 

increased leaf temperature because of blocked transpiration pathways (Pezeshki et al., 

2000). In A. marina and R. mucronata, new leaves that formed above the oiled ones 

were deformed after 19 and 18 weeks respectively. After 48 weeks, all new leaves of 
R. mucronata were deformed. Oil that entered the leaves could have been translocated 

to new shoots and leaves (Meudec et al., 2006; 2007) causing deformity by altering 

plant physiology (Zhang et al., 2007a; Ke et al., 2011a). Previous studies have reported 

that PAHs in tissues increase reactive oxygen species  (Proffitt et al., 1995; Zhang et 

al., 2007a) that disrupt normal metabolism by damaging lipids, proteins and nucleic 

acids (Parida and Das, 2005). Damage to vital constituents of cells drastically affects 
biological membranes and metabolic processes (Ke et al., 2011a) which probably 

resulted in deformity and reduced growth. Rhizophora mucronata failed to produce new 

leaves after oiled leaves abscised and this eventually (27 weeks) led to plant mortality. 

Refined oil such as Bunker C was also reported to inhibit the formation of new leaves in 
S. alterniflora leading to plant mortality (Pezeshki et al., 1995). A similar study with 
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Aegiceras corniculatum and Avicennia marina showed that mortality occurred as a 

result of direct contact of leaves with oil (Ye and Tam, 2007).  

 

Field sediment oiling caused mass mortality of seedlings in all species. This was 

probably related to the high oil dosage (5 Lmˉ²). Sediment oiling probably decreased 

soil permeability, pH, dissolved oxygen concentrations, redox potentials and salinity of 
the interstitial water (Suprayogi and Murray, 1999; Pereira et al., 2002). Oil probably 

reduced growth by smothering and eventually killing roots (Suprayogi and Murray, 
1999; Tam et al., 2005; Zhang et al., 2007a). The high dose of oil in the sediment 

probably led to the death of roots, which in turn resulted in rapid plant mortality in all 
species, as reported previously for A. marina and B. gymnorrhiza (Proffitt and Devlin, 

1998; Ke et al., 2011a). The three species were more tolerant to lower oil doses in the 

glasshouse study, enabling them to survive residual oil contamination, as documented 
previously for A. germinans, B. gymnorrhiza and R. mangle (Proffitt et al., 1995; Ke et 

al., 2011a).  

 
Adventitious roots developed at the base of the stem in A. marina plants in the 

sediment oiled field experiment as described previously (Naidoo et al., 2010). The 

formation of adventitious roots is an adaptive response after damage to the phloem 
tissue (Naidoo et al., 2010). Plants of A. marina that formed adventitious roots survived 

residual oil contamination. There was no adventitious root development in B. 

gymnorrhiza and R. mucronata after 53 weeks of treatment probably because these 

species lack this adaptive capacity. 

 

Some mangroves can survive the physical and chemical effects of oil contamination by 
developing morphological adaptations (Hoff, 2002) such as adventitious roots in A. 

marina. Plants of all species adapted to leaf oiling by abscising oiled leaves. In 

addition, new shoots grew adjacent to the dead apices in A. marina and R. mucronata 

plants after leaf oiling. 

 

Species variation in the effects of oil (see Table 2.6) is probably due to morphological 
and physiological differences (Lamparelli et al., 1997; Pi et al., 2009; Naidoo et al., 

2010). In this investigation, B. gymnorrhiza did not exhibit necrosis or morphological 

deformity when leaves and internodes were oiled. Bruguiera gymnorrhiza exhibited 

minimal oil effects when propagules and sediments were oiled in the glasshouse. The 
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higher tolerance of B. gymnorrhiza to oil (see Table 2.6) could be due to its suberized 

root epidermal cells which bind PAHs thus minimizing the amount of oil entering the 
plant (Ke et al., 2003). Furthermore, although oiled leaves were abscised in B. 

gymnorrhiza plants, new leaves were produced and there was no plant mortality, 

compared to A. marina and R. mucronata. The leaves of B. gymnorrhiza appeared to 

have a thicker waxy cuticle than A. marina and R. mucronata, which probably 

decreased oil accumulation in the leaves and translocation of PAHs to other plant 

organs. 

 
Although R. mucronata and A. marina exhibited similar adverse oil effects (see Table 

2.6), the latter was the least tolerant of the three species to PAH contamination. The 
lower tolerance of A. marina to oil was probably due to morphological and physiological 

characteristics. The roots of A. marina can synchronously take up salt and PAHs 

whereas those of R. mucronata and B. gymnorrhiza can exclude salt and oil (Suprayogi 

and Murray, 1999; Ye and Tam, 2007) which probably resulted in differences in 
tolerance. Furthermore, the leaves of A. marina possess dense trichomes on the 

abaxial surface which causes oil adherence (Ye and Tam, 2007). Oil adherence 

probably contributed to a greater penetration of oil into leaf cells thereby increasing 

translocation of PAHs throughout the plant. This work supports those of others 
(Suprayogi and Murray, 1999; Ye and Tam, 2007) that A. marina is more sensitive to 

oil contamination than B. gymnorrhiza and R. mucronata. 
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Table 2.6 
Oil effects in A. marina, B. gymnorrhiza and R. mucronata in glasshouse and field 

experiments. *asterisk indicates oil effect exhibited in species. 

 
 
Oil effects                    A. marina     B. gymnorrhiza       R. mucronata                                
 
Plant height  *  *  * 

Shorter internodes  *  

Abnormal shoot growth  *  * 

Death of shoot tips  *  * 

Stem deformity  * 

Yellowing of stems  * 

Necrosis of propagules  * 

Number of leaves  *  *  * 

Necrosis of leaves  * 

Smaller leaves  * 

Pale leaves   * 

Fewer new leaves  *  *  * 

Leaf deformity  *   * 

Leaf wilting  *    * 

Leaf abscission  *  *  * 

Senescence  *  * 

Defoliation  *  * 

Abnormal phyllotaxy  * 

Chlorophyll content  *  *  * 

Adventitious roots  * 

Plant mortality  *  *  * 
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Chapter 3 
The effects of oil on morphological characteristics in Avicennia marina, 
Bruguiera gymnorrhiza and Rhizophora mucronata in rhizotrons under 

glasshouse conditions 
 
 
Abstract 
 
This study investigated the effects of oil on morphological characteristics of A. marina, 

B. gymnorrhiza and R. mucronata grown in rhizotrons in the glasshouse. Freshly 

picked propagules of all species were collected from the field and subjected to oiled 

treatments for 245 and 409 days. Oil was applied to propagules or sediments. After the 

experimental period, plant parts were separated, measured and weighed. In propagule 
oiled treatments, root diameter increased in A. marina and B. gymnorrhiza by 31% and 

27%, respectively, compared to those in the control. In the propagule oiled treatment, 
R. mucronata produced numerous lateral roots just beneath the soil surface. Oiled 

propagules in R. mucronata resulted in 67% mortality after two months. Sediment oiling 

reduced root biomass, growth rate, length and volume of seedlings in all species 

compared to the control. In the sediment oiled treatment, there was 67% plant mortality 
in A. marina and 67% in B. gymnorrhiza after four weeks. Sediment oiling reduced 

shoot length, number of leaves, leaf area, chlorophyll content and biomass 

accumulation of seedlings in all species. This study demonstrated that oiling of 

propagules and sediments altered growth patterns and root morphology. 

 

Keywords: 
 

Biomass, growth, oil, propagules, root morphology 

 

 
3.1 Introduction 
 
Plants possess various adaptations to acquire, allocate and store resources for growth 
(Chapin et al., 1990). Biomass production and accumulation, particularly belowground, 

are important in contributing to vertical plant growth (Sánchez, 2005). Roots have 
heterogeneous morphological traits and physiological functions (Eissenstat et al., 
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2000). Mangroves have specialized adaptations such as pneumatophores (A. marina), 

knee (B. gymnorrhiza) and prop (R. mucronata) roots (Kathiresan and Bingham, 2001) 

for survival in anoxic soils (Hoff, 2002).  

 

Studies in belowground activities are limited due to the difficulty of observing roots 

(Sánchez, 2005). Soil contaminants are absorbed by the roots and either stored or 
metabolised by the plant (Evangelou et al., 2007; Park et al., 2011). The use of plants 

to remove, degrade or inactivate contaminants in soil has been the focus in numerous 
studies (Parrish et al., 2006; Inckot et al., 2011; Sodré et al., 2013). There are also 

many studies on the effects of heavy metals on root growth (Zhang et al., 2007b; 

Kopittke et al., 2009; Naidoo et al., 2014).  

 

Many studies on oil contamination in mangroves have focussed on the aboveground 
component (Proffitt et al., 1995; Duke et al., 1997; Youssef and Ghanem, 2002). Few 

studies have focussed on the effects of oil on roots (Ye and Tam, 2007; Zhang et al., 

2007a). The toxic effects of PAHs on root growth have been reported previously (Jiao 
et al., 2007; Kechavarzi et al., 2007; Reynoso-Cuevas et al., 2008). However, most 

studies have focussed on graminoids and agricultural crop plants. Studies on the 

effects of oil on mangrove root growth are limited.  

 

Studies on the effects of oil on root growth have been limited to biomass i.e. 

quantitative characteristics (Hou et al., 2001; Lin et al., 2002). Qualitative 

characteristics are often neglected although they provide more insight into the 
functioning of the root system than biomass alone (Blouin et al., 2007). The structure of 

the root system influences the ability of a plant to exploit nutrient resources (Lynch, 

1995).  

 

Root morphology is described by characteristics such as weight, length, volume and 

ratios among these traits (Boot, 1989; Eissenstat, 1991). Root biomass is defined as 
plant investment in belowground construction and maintenance (Bouma et al., 1996; 

2000; Sánchez, 2005). Length determines the capacity of the root system to acquire 
water and nutrients (Bouma et al., 2001; Blouin et al., 2007) which is more important 

than mass (Boot and Mensink, 1990). Length, diameter and volume of roots are 

important characteristics for describing and comparing belowground components 
(Bouma et al., 2000).  
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There is limited information on the effects of oil on root morphological characteristics in 
general (Merkl et al., 2005; Kechavarzi et al., 2007). In this study, the effects of oil 

applied to propagules and sediments, on length, diameter, volume and biomass of 

roots were investigated in three mangrove species. As far as we are aware, this is the 

first study to use rhizotrons to investigate the effects of oil on root growth and 

development in mangroves. 
 
 
3.2 Materials and methods 
 
3.2.1 Growth conditions 
 
First rhizotron study 
 
Propagules of A. marina, B. gymnorrhiza and R. mucronata were collected as 

described in Chapter 2.2.1. After collection, A. marina propagules were placed in water 

and pericarps allowed to shed naturally (24 hours). Root growth was monitored by 

growing plants in perspex rhizotrons with dimensions of 50 cm height x 31 cm length x 

3.6 cm width. Rhizotrons were filled with a mixture of sand, potting soil and compost 
(1:2:1) and covered with black plastic to exclude light. Propagules of A. marina, B. 

gymnorrhiza and R. mucronata were inserted into the soil to about 5 mm, 3 cm and 7 

cm, respectively. The rhizotrons were tilted at an angle of 30° from the horizontal and 

watered daily with tap water and once monthly with 10% seawater. The rhizotrons were 

maintained in a glasshouse for 245 days. The temperature in the glasshouse during the 

experimental period was about 25 °C (day) and 18 °C (night). 

 
Propagules of A.marina without pericarps were subjected to one of three treatments: 

 

i.  C – control propagules were planted in the sediment. 

ii.  ½O – 50% of the propagule was dipped in oil using a pair of forceps. 

iii.  O – propagules were completely dipped in oil and planted in the sediment. 

 
Propagules of B. gymnorrhiza (about 15.5 ± 2 cm in height), and R. mucronata about 

22 ± 0.9 cm in height) were subjected to one of two treatments: 
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i.  C – control propagules were planted in the sediment. 

ii.  ⅔O – 67% of the propagule from the base/radical end was dipped in oil using a pair 

of forceps. 

 

The properties of the bunker fuel oil used in this study are indicated in Table 2.1, 
Chapter 2. There were four replications per treatment for A. marina and three for R. 

mucronata. One oiled propagule of B. gymnorrhiza was not viable and excluded, so 

that there were four replications in the control and three in the oiled treatment.  

 

 
Second rhizotron study 
 

Propagules of the three species were collected from the Isipingo estuary (29° 59ʹ 59ʺ S, 
30° 56ʹ 42ʺ E). Root growth was monitored by growing A. marina and B. gymnorrhiza in 

perspex rhizotrons with the same dimensions as in the first study. Rhizophora 

mucronata was grown in rhizotrons with dimensions of 50 cm height x 31.2 cm length x 

7 cm width. The experimental set-up was identical to the first study. The rhizotrons 

were maintained in a glasshouse for 409 days. The second study concentrated on 
sediment oiling in all species. In A. marina, the completely oiled propagule treatment 

was replicated as there was 100% mortality in the first study. 

 

Propagules of A. marina without pericarps were subjected to one of three treatments: 

 

i.  C – control propagules were planted in the sediment. 

ii. SO – propagules were planted in sediment to which 200 ml of oil were carefully 

poured onto the soil surface. 

iii. O – propagules were completely dipped in oil and planted in the sediment. 

 
Propagules of B. gymnorrhiza (about 17 ± 2.5 cm in height), and R. mucronata (about 

22 ± 1.2 cm in height) were subjected to one of two treatments: 

 

i.  C – control propagules were planted in the sediment. 

ii.  O – propagules were planted in sediment to which 200 ml of oil were carefully 

poured onto the soil surface. 
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The sediment was oiled at the commencement of the experiment. There were three 
replications per treatment for A. marina and B. gymnorrhiza and two for R. mucronata.  

 

3.2.2 Plant growth measurements 
 

Measurements of shoot and internode length and number of leaves were determined 

after the experimental period. 
 
3.2.3 Root growth and harvesting of plant parts 
 

Root growth was monitored weekly by tracing new growth onto clear plastic 

transparencies attached to the outside of the rhizotron. At the end of the treatment (245 

and 409 days, respectively), plants were carefully removed from rhizotrons and washed 

with water to remove soil. Plants were measured and separated into leaves, stems and 

roots. Plant parts were weighed and dried in an oven to constant mass at 70 °C for 

three days. 

 
3.2.4 Leaf area and chlorophyll content 
 
Leaf areas were determined by photocopying fresh leaves and scanning into a 

computer using image analysis software, SIS Pro Softward, version 3:1. Chlorophyll 

content was determined as described in Chapter 2.2.3. 

 
3.2.5 Root/shoot ratio and relative root growth rate 
 

Dry mass of roots and shoots were determined by weighing on a scale (Mettler Toledo 

AG 204, accuracy ± 0.1 mg, Mettler Toledo products, Switzerland). Root/shoot ratio 

was determined on a dry mass basis. Relative root growth rate (RRGR) expressed in 

grams per day, was calculated according to Sánchez (2005) using the equation:                                

 

RRGR = DM / t 

 

where DM = root dry mass, t = duration of the experiment in days, assuming that the 

initial root mass was zero. 
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3.2.6 Root volume and morphology 
 
Root volume was determined using the Archimede’s principle (Harrington et al., 1994). 

Plant roots were suspended in a known volume of water in a measuring cylinder. Root 

volume was approximated to that of the water displaced. Specific root volume (SRV) 
was calculated according to Merkl et al. (2005) and is defined as the ratio of volume (V) 

per unit dry mass (DM): 

 

SRV = V / DM 

 

where V = root volume, DM = root dry mass. 

 
Roots were separated into coarse (>2 mm) and fine (<2 mm) diameter. Root diameter 

(RD) was measured from cross sections using an ocular graticule (Muthukumar et al., 

2003). Root length was determined by scanning traced transparencies into a computer 

using image analysis software, SIS Pro Softward, version 3:1. Specific root length 
(SRL) was calculated according to Bouma et al. (2001) and is defined as the ratio of 

length (L) per unit dry mass (DM):  

 

SRL = L / DM 

 

where L = root length, DM = root dry mass. 
 
 
3.2.7 Data analyses 

 

Means and standard errors were calculated for all measurements. Resulting data were 

tested for normality using the Kolmogorov-Smirnov test and subjected to one-way 

ANOVA and Tukey-Kramer multiple comparisons test (P ≤ 0.05) using MINITAB 

version 16 (Minitab Statistical Software, MINITAB Inc., USA). Other data were 

subjected to two-way ANOVA and Tukey’s multiple comparisons test (P ≤ 0.05) using 

GraphPad Prism Version 6.05 (GraphPad Software, Inc., USA). 
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3.3 Results 
 
3.3.1 First rhizotron study 
 
3.3.1.1 Shoot growth and morphology 
 
A. marina  
 
There was 100% plant mortality in the completely oiled propagule treatment. In the ½ 

propagule oiled treatment, shoot length was significantly lower by 29% compared to the 

control (Fig. 3.2A). In the control and ½ propagule oiled treatments, the second 

internode was the longest compared to the others (Fig. 3.1). In the ½ propagule oiled 

treatment, the length of the second and fifth internodes were significantly lower by 38% 

and 75% respectively, compared to their counterparts in the control. A sixth internode 

was present in 75% of seedlings in the control but absent in the ½ propagule oiled 

treatment.  

 

Number of leaves (Fig. 3.2B), leaf area (Fig. 3.2C) and chlorophyll content (Fig. 3.2D) 

were highest in the control and significantly lower in the ½ propagule oiled treatment by 

40%, 30% and 31% respectively. 

 

Fig. 3.1 Effects of oiling on length of each internode in A. marina. Measurements were 

taken after 245 days, C = control, ½O = ½ propagule oiled. Means ± standard error are 
given, n = 4. Bars with different letters are significantly different at P ≤ 0.05 using two-

way ANOVA and Tukey’s multiple comparisons test. 
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Fig. 3.2 Effects of oiling on shoot length (A), number of leaves (B), leaf area (C) and 

chlorophyll content index (CCI) (D) in A. marina. Measurements were taken after 245 

days, C = control, ½O = ½ propagule oiled. Means ± standard error are given, n = 4. 

Bars with different letters are significantly different at P ≤ 0.05 using Tukey-Kramer 

multiple comparisons test. 
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B. gymnorrhiza  
 

There was no significant difference in shoot length between treatments (Fig. 3.4A).  

 

In the oiled treatment, the length of the first internode was significantly lower by 42% 

compared to the control (Fig. 3.3). However, the length of the fourth and fifth internodes 

were significantly higher in the oiled treatment by 44% and 85%, respectively, 

compared to their counterparts in the control.  

 

There were no significant differences in number of leaves (Fig. 3.4B), leaf area (Fig. 

3.4C) or chlorophyll content (Fig. 3.4D) between treatments.  

 

 

 

 

Fig. 3.3 Effects of oiling on length of each internode in B. gymnorrhiza. Measurements 

were taken after 245 days, C = control, O = propagule oiled. Means ± standard error 

are given, n = 4 - control; 3 – propagule oiled. Bars with different letters are significantly 

different at P ≤ 0.05 using two-way ANOVA and Tukey’s multiple comparisons test. 
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Fig. 3.4 Effects of oiling on shoot length (A), number of leaves (B), leaf area (C) and 

chlorophyll content index (CCI) (D) in B. gymnorrhiza. Measurements were taken after 

245 days, C = control, O = propagule oiled. Means ± standard error are given, n = 4 - 
control; 3 – propagule oiled. Bars with different letters are significantly different at P ≤ 

0.05 using Tukey-Kramer multiple comparisons test. 
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R. mucronata 
 

In the oiled treatment, shoot length was significantly lower by 82% (Fig. 3.6A) while the 

lengths of the first and second internodes were lower by 76% and 100%, respectively, 

compared to their counterparts in the control (Fig. 3.5).  

 

Number of leaves (Fig. 3.6B) leaf area (Fig. 3.6C) and chlorophyll content (Fig. 3.6D) 

were highest in the control and significantly lower in the oiled treatment by 100% 

respectively.  

 

Seedlings in the oiled treatment did not produce leaves (Fig. 3.14) and propagules 

exhibited necrosis (black in colour) close to the base (Fig. 3.15). After two months there 

was 67% plant mortality in the oiled treatment. 

 

 

 

Fig. 3.5 Effects of oiling on length of each internode in R. mucronata. Measurements 

were taken after 245 days, C = control, O = propagule oiled. Means ± standard error 
are given, n = 3. Bars with different letters are significantly different at P ≤ 0.05 using 

two-way ANOVA and Tukey’s multiple comparisons test. 
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Fig. 3.6 Effects of oiling on shoot length (A), number of leaves (B), leaf area (C) and 

chlorophyll content index (CCI) (D) in R. mucronata. Measurements were taken after 

245 days, C = control, O = propagule oiled. Means ± standard error are given, n = 3. 

Bars with different letters are significantly different at P ≤ 0.05 using Tukey-Kramer 

multiple comparisons test. 
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3.3.1.2 Biomass allocation and root growth rate 
 

A. marina  
 

Oiling of propagules significantly reduced biomass by 42% compared to the control 

(Fig. 3.7A).  In the ½ propagule oiled treatment, reductions in dry mass of leaves and 

roots were 59% and 44%, respectively, compared to the control (Table 3.1). There was 

no significant difference in stem dry mass between treatments.  

 

In the ½ propagule oiled treatment, root growth rate was significantly lower by 50% 

compared to the control (Fig. 3.7C). There was no significant difference in root/shoot 

ratio between treatments (Fig. 3.7B).  

 
B. gymnorrhiza 
 

In the oiled treatment, biomass was significantly higher by 14% compared to the control 

(Fig. 3.8A). There were no significant differences in leaf, stem or propagule dry mass 

between treatments (Table 3.1). 

 

In the oiled treatment, root dry mass was significantly higher by 17% compared to the 

control (Table 3.1). Root/shoot ratio (Fig. 3.8B) and root growth rate (Fig. 3.8C) were 

not significantly different between treatments.  

 

R. mucronata  
 

Oiling of propagules significantly reduced biomass by 20% compared to the control 

(Fig. 3.9A).  

 

In the oiled treatment, reductions in dry mass of leaves, stems and roots were 100%, 

94% and 85%, respectively, compared to the control (Table 3.1). There was no 

significant difference in propagule dry mass between treatments.  

 

In the oiled treatment, root/shoot ratio was significantly higher by 88% compared to the 

control (Fig. 3.9B) while root growth rate was lower by 86% (Fig. 3.9C). 
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Table 3.1 Propagule, leaf, stem, root and total biomass accumulation in A. marina, B. 

gymnorrhiza and R. mucronata. Measurements were taken after 245 days, T = 

treatment, C = control, ½O = ½ propagule oiled, O = propagule oiled. Means ± SE are 

given, A. marina (n = 4), B. gymnorrhiza (n = 4 - control; 3 – propagule oiled) and R. 

mucronata (n = 3). Means with different letters within a column are significantly 

different at P ≤ 0.05 using Tukey-Kramer multiple comparisons test.   

 
            Dry Mass (g) 

 
T            Propagule                  Leaf                Stem                  Root                  Total      
  
 
A. marina 
 
C            0 ± 0   0.7 ± 0.05a  0.8 ± 0.05a   1.0 ± 0.06a   2.4 ± 0.33a 

½O      0 ± 0    0.3 ± 0.03b  0.6 ± 0.04a  0.6 ± 0.08b  1.4 ± 0.25b 
 
B. gymnorrhiza 
 
C         4.2 ± 0.11a  1.4 ± 0.09a  0.9 ± 0.01a   1.9 ± 0.04a  8.4 ± 0.22a 

O       5.0 ± 0.16a   1.5 ± 0.07a  0.9 ± 0.08a  2.3 ± 0.02b  9.7 ± 0.88b 
 
R. mucronata 
 
C   26.9 ± 1.38a   1.4 ± 0.13a  0.5 ± 0.01a  1.9 ± 0.05a  31 ± 2.01a 
O   25.0 ± 0.95a  0.0 ± 0.00a  0.0 ± 0.00b  0.3 ± 0.07b  25 ± 0.75b 
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Fig. 3.7 Effects of oiling on dry biomass (A), root/shoot ratio (B) and relative root 

growth rate (RRGR) (C) in A. marina. Measurements were taken after 245 days, C = 

control, ½O = ½ propagule oiled. Means ± standard error are given, n = 4. Bars with 

different letters are significantly different at P ≤ 0.05 using Tukey-Kramer multiple 

comparisons test. 
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Fig. 3.8 Effects of oiling on dry biomass (A), root/shoot ratio (B) and relative root 

growth rate (RRGR) (C) in B. gymnorrhiza. Measurements were taken after 245 days, 

C = control, O = propagule oiled. Means ± standard error are given, n = 4 - control; 3 – 

propagule oiled. Bars with different letters are significantly different at P ≤ 0.05 using 

Tukey-Kramer multiple comparisons test. 
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Fig. 3.9 Effects of oiling on dry biomass (A), root/shoot ratio (B) and relative root 

growth rate (RRGR) (C) in R. mucronata. Measurements were taken after 245 days, C 

= control, O = propagule oiled. Means ± standard error are given, n = 3. Bars with 

different letters are significantly different at P ≤ 0.05 using Tukey-Kramer multiple 

comparisons test. 
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3.3.1.3 Root morphology and volume 
 

A. marina  
 

Root growth in seedlings commenced after one week in the control and four weeks in 

the ½ propagule oiled treatment (Fig. 3.10A). In the oiled treatment, root length and 

SRL were significantly lower by 54% and 19%, respectively (Table 3.2), while root 

length was lower in April, May, July, August, September, October, November and 

December compared to the control (Fig. 3.10A).  

 

In the oiled treatment, root diameter and SRV were significantly higher by 31% and 

21%, respectively, compared to the control (Table 3.2) while volume was lower by 30% 

(Fig. 3.11A).  

 

B. gymnorrhiza 
 

Root growth in seedlings commenced after two weeks in the control and four in the 

oiled treatment (Fig. 3.10B). In the oiled treatment, root length and SRL were 

significantly lower by 19% and 31%, respectively (Table 3.2), while root length was 

lower in April, May and December compared to the control (Fig. 3.10B).  

 

In the oiled treatment, root diameter (Table 3.2), root volume (Fig. 3.11B) and SRV 

(Table 3.2) were significantly higher than the control by 27%, 26% and 14%, 

respectively.  
 

R. mucronata 
 

Root growth in seedlings commenced after two weeks in the control and four in the 

oiled treatment (Fig. 3.10C). Plants in oiled treatments produced numerous lateral roots 

(Fig. 3.14). In the oiled treatment, root length and SRL were significantly lower by 89% 

and 73%, respectively, than the control (Table 3.2). In the oiled treatment, root length 

was significantly lower than the control in all months (Fig. 3.10C). 

In the oiled treatment, root diameter (Table 3.2) and volume (Fig. 3.11C) were 

significantly lower than the control by 51% and 79%, respectively, while SRV was 

higher by 31% (Table 3.2).  
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Table 3.2 Root length (RL), specific root length (SRL), root diameter (RD) and specific 
root volume (SRV) in A. marina, B. gymnorrhiza and R. mucronata. Measurements 

were taken after 245 days, T = treatment, C = control, ½O = ½ propagule oiled, O = 

propagule oiled. Means ± SE are given, A. marina (n = 4), B. gymnorrhiza (n = 4 - 

control; 3 – propagule oiled) and R. mucronata (n = 3). Means with different letters 

within a column are significantly different at P ≤ 0.05 using Tukey-Kramer multiple 

comparisons test.  
 

 
T                    RL (cm)                SRL (cm gˉ¹)                 RD (mm)             SRV (cm³ gˉ¹)      
  
 
A. marina 
 
C       147.55 ±  11.7a  149.41 ±  8.22a        2.14 ± 0.11a               4.33 ± 0.18a 

½O   67.23 ±  6.61b   122.21 ±  10.9b     3.12 ± 0.13b    5.45 ± 0.31b 
 
B. gymnorrhiza 
 
C       209.65 ± 8.41a  108.34 ± 3.41a  3.15 ± 0.09a   5.29 ± 0.23a  
O     170.11 ± 6.65b      74.93 ± 4.61b              4.25 ± 0.15b 6.12 ± 0.11b 
 
R. mucronata 
 
C     98.51 ± 6.91a      50.77 ± 2.32a        3.62 ± 0.12a  4.81 ± 0.33a  
O     10.56 ± 4.02b     36.86 ± 2.45b       1.83 ± 0.03b  6.99 ± 0.41b
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Fig. 3.10 Effects of oiling on root length in A. marina (A), B. gymnorrhiza (B) and R. 

mucronata (C). Measurements were recorded weekly for 245 days beginning eight 

days after treatment, C = control, ½O = ½ propagule oiled, O = propagule oiled. Means 
± standard error are given, A. marina (n = 4), B. gymnorrhiza (n = 4 - control; 3 – 

propagule oiled) and R. mucronata (n = 3). Bars with different letters are significantly 

different at P ≤ 0.05 using two-way ANOVA and Tukey’s multiple comparisons test. 
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Fig. 3.11 Effects of oiling on root volume in A. marina (A), B. gymnorrhiza (B) and R. 

mucronata (C). Measurements were recorded after 245 days, C = control, ½O = ½ 

propagule oiled and O = propagule oiled. Means ± standard error are given, A. marina 

(n = 4), B. gymnorrhiza (n = 4 - control; 3 – propagule oiled) and R. mucronata (n = 3). 

Bars with different letters are significantly different at P ≤ 0.05 using Tukey-Kramer 

multiple comparisons test. 
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Fig. 3.12 Effects of oiling on root growth in A. marina, control (top) and ½ propagule 

oiled treatment (bottom) after four months.  

Control 

½ propagule 
oiled treatment 
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Fig. 3.13 Effects of oiling on root growth in B. gymnorrhiza, control (top) and oiled 

(bottom) treatment after four months. 

Control 

Oiled  
treatment 
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Fig. 3.14 Effects of oiling on root growth in R. mucronata, control (top) and oiled 

treatment (bottom) after two months. Note the propagule growing at a 45° angle (left 

arrow) and the two dead propagules (right arrows) in the oiled treatment. Note the 

numerous lateral roots beneath soil surface (arrowhead). 

Oiled  
treatment 

Control 
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Fig. 3.15 Effects of oiling on root growth in R. mucronata, after two months. Note the 

necrosis on the propagule (arrow). 

 

 

3.3.2 Second rhizotron study 

 
3.3.2.1 Shoot growth and morphology 
 
A. marina  
 
Propagules in the control exhibited shoot growth within two weeks whilst those in the 

oiled treatments took twice as long.  

 
Oiled  

treatment 
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Shoot length was highest in the control and significantly lower in the sediment and 

propagule oiled treatments by 80% and 82%, respectively (Fig. 3.16). There was no 

significant difference in shoot length between the oiled treatments (Fig. 3.16).  

 

In the oiled treatments, the length of the first - fifth internode was significantly lower by 

86% compared to the control (Fig. 3.18). There was no significant difference in the 

length of each internode between the oiled treatments (Fig. 3.18).  

 

Number of leaves (Fig. 3.20), leaf area (Fig. 3.22) and chlorophyll content (Fig. 3.24) 

were highest in the control and significantly lower in the sediment oiled treatment by 

80%, 81% and 79%, respectively. In the propagule oiled treatment, number of leaves, 

leaf area and chlorophyll content were significantly lower by 80%, 82% and 80%, 

respectively, compared to the control. 

 

In both the sediment and propagule oiled treatments, there was 67% plant mortality 

after four weeks. Sixty seven percent of propagules in the oiled treatments produced 

roots, but shoots were absent (Figs. 3.37 and 3.38).  

 
 
B. gymnorrhiza  
 

Shoot length was highest in the control and significantly lower in the oiled treatment by 

88% (Fig. 3.17A).  

 

In the oiled treatment, the length of the first - fourth internode was significantly lower by 

84% compared to the control and there were only four internodes in seedlings (Fig. 

3.19A).  

 

Number of leaves (Fig. 3.21A), leaf area (Fig. 3.23A) and chlorophyll content (Fig. 

3.25A) were highest in the control and significantly lower in the oiled treatment by 93%, 

94% and 81%, respectively. 

 

After four weeks, there was 67% plant mortality in the oiled treatment. 
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R. mucronata  
 

Shoot length was highest in the control and significantly lower in the oiled treatment by 

43% (Fig. 3.17B).  

 

In the oiled treatment, the length of the first – third internode was significantly lower by 

65% compared to the control while the fourth was absent (Fig. 3.19B).  

 

There was no significant difference in number of leaves between treatments (Fig. 

3.21B). In the oiled treatment, leaf area (Fig. 3.23B) and chlorophyll content (Fig. 

3.25B) were significantly lower than the control by 44% and 32%, respectively. 

 
 

 

 

Fig. 3.16 Effects of oiling on shoot length in A. marina. Measurements were taken after 

409 days, C = control, SO = sediment oiled, O = propagule oiled. Means ± standard 

error are given, n = 3. Bars with different letters are significantly different at P ≤ 0.05 

using Tukey-Kramer multiple comparisons test. 
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Fig. 3.17 Effects of oiling on shoot length in B. gymnorrhiza (A) and R. mucronata (B). 

Measurements were taken after 409 days, C = control, O = sediment oiled. Means ± 
standard error are given, n = 3 (B. gymnorrhiza) and n = 2 (R. mucronata). Bars with 

different letters are significantly different at P ≤ 0.05 using Tukey-Kramer multiple 

comparisons test. 
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Fig. 3.18 Effects of oiling on length of each internode in A. marina. Measurements 

were taken after 409 days, C = control, SO = sediment oiled, O = propagule oiled. 

Means ± standard error are given, n = 3. Bars with different letters are significantly 

different at P ≤ 0.05 using two-way ANOVA and Tukey’s multiple comparisons test. 
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Fig. 3.19 Effects of oiling on length of each internode in B. gymnorrhiza (A) and R. 

mucronata (B). Measurements were taken after 409 days, C = control, O = sediment 

oiled. Means ± standard error are given, n = 3 (B. gymnorrhiza) and n = 2 (R. 

mucronata). Bars with different letters are significantly different at P ≤ 0.05 using two-

way ANOVA and Tukey’s multiple comparisons test. 
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Fig. 3.20 Effects of oiling on number of leaves in A. marina. Measurements were taken 

after 409 days, C = control, SO = sediment oiled, O = propagule oiled. Means ± 

standard error are given, n = 3. Bars with different letters are significantly different at P 

≤ 0.05 using Tukey-Kramer multiple comparisons test. 

 

 

 

Fig. 3.21 Effects of oiling on number of leaves in B. gymnorrhiza (A) and R. mucronata 

(B). Measurements were taken after 409 days, C = control, O = sediment oiled. Means 
± standard error are given, n = 3 (B. gymnorrhiza) and n = 2 (R. mucronata). Bars with 

different letters are significantly different at P ≤ 0.05 using Tukey-Kramer multiple 

comparisons test. 
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Fig. 3.22 Effects of oiling on leaf area in A. marina. Measurements were taken after 

409 days, C = control, SO = sediment oiled, O = propagule oiled. Means ± standard 

error are given, n = 3. Bars with different letters are significantly different at P ≤ 0.05 

using Tukey-Kramer multiple comparisons test. 

 

 

 

Fig. 3.23 Effects of oiling on leaf area in B. gymnorrhiza (A) and R. mucronata (B). 

Measurements were taken after 409 days, C = control, O = sediment oiled. Means ± 
standard error are given, n = 3 (B. gymnorrhiza) and n = 2 (R. mucronata). Bars with 

different letters are significantly different at P ≤ 0.05 using Tukey-Kramer multiple 

comparisons test. 
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Fig. 3.24 Effects of oiling on chlorophyll content index (CCI) in A. marina. 

Measurements were taken after 409 days, C = control, SO = sediment oiled, O = 

propagule oiled. Means ± standard error are given, n = 3. Bars with different letters are 

significantly different at P ≤ 0.05 using Tukey-Kramer multiple comparisons test. 

 

 

 

Fig. 3.25 Effects of oiling on chlorophyll content index (CCI) in B. gymnorrhiza (A) and 

R. mucronata (B). Measurements were taken after 409 days, C = control, O = sediment 

oiled. Means ± standard error are given, n = 3 (B. gymnorrhiza) and n = 2 (R. 

mucronata). Bars with different letters are significantly different at P ≤ 0.05 using 

Tukey-Kramer multiple comparisons test. 
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3.3.2.2 Biomass allocation and root growth rate 
 
A. marina  
 

In the sediment and propagule oiled treatments, biomass was significantly reduced by 

85% and 74%, respectively, compared to the control (Fig. 3.26). There was no 

significant difference in biomass between the oiled treatments (Fig. 3.26). In the oiled 

treatments, root/shoot ratio was significantly reduced by 14% and 37%, respectively, 

compared to the control (Fig. 3.28). Root/shoot ratio was significantly lower in the 

propagule than the sediment oiled treatment by 28% (Fig. 3.28).  

 

In the sediment oiled treatment, reductions in dry mass of leaves, stems and roots 

were 76%, 92% and 86%, respectively, compared to the control (Table 3.3). In the 

propagule oiled treatment, dry mass of leaves, stems and roots were reduced by 56%, 

80% and 81%, respectively, compared to the control (Table 3.3). Root growth rate was 

highest in the control and significantly lower in the sediment and propagule oiled 

treatments by 86% and 80% respectively (Fig. 3.30). There was no significant 

difference in root growth rate between the oiled treatments (Fig. 3.30). 
 

B. gymnorrhiza 
 
In the oiled treatment, biomass was significantly reduced by 31% compared to the 

control (Fig. 3.27A). In the oiled treatment, root/shoot ratio was significantly lower by 

32% compared to the control (Fig. 3.29A).  

 

In the oiled treatment, dry mass of leaves, stems and roots were significantly reduced 

by 99%, 89% and 97%, respectively, compared to the control while propagule dry mass 

was higher by 37% (Table 3.3). In the oiled treatment, root growth rate was significantly 

lower than the control by 97% (Fig. 3.31A). 

 
R. mucronata 
 
In the oiled treatment, biomass was significantly reduced by 35% (Fig. 3.27B) while 

root/shoot ratio was lower by 45% compared to the control (Fig. 3.29B). There were 

significant reductions in dry mass of leaves (52%) and roots (73%) in the oiled 
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treatment compared to the control (Table 3.3). In the oiled treatment, stem dry mass 

was significantly reduced by 38% compared to the control while there was no 

significant difference in propagule dry mass (Table 3.3). Root growth rate was highest 

in the control and significantly lower in the oiled treatment by 70% (Fig. 3.31B).  

 

 
Table 3.3 Propagule, leaf, stem, root and total biomass accumulation in A. marina, B. 

gymnorrhiza and R. mucronata. Measurements were taken after 409 days, T = 

treatment, C = control, SO = sediment oiled, O = propagule oiled (A. marina); O = 

sediment oiled (B. gymnorrhiza, R. mucronata). Means ± SE are given, A. marina, n = 

3; B. gymnorrhiza, n = 3; R. mucronata, n = 2. Means with different letters within a 

column are significantly different at P ≤ 0.05 using Tukey-Kramer multiple comparisons 

test.  
  

 
      Dry Mass (g) 

 
T                 Propagule             Leaf                 Stem                  Root                  Total      
  
 
A. marina 
 
C            0 ± 0   0.5 ± 0.07a  0.5 ± 0.04a   1.1 ± 0.10a   2.2 ± 0.18a 

SO      0 ± 0    0.1 ± 0.02b  0.1 ± 0.00b  0.2 ± 0.03b  0.4 ± 0.09b 
O      0 ± 0 0.2 ± 0.05b 0.1 ± 0.01b  0.2 ± 0.02b 0.5 ± 0.08b
  
B. gymnorrhiza 
 
C         6.0 ± 0.06a  2.7 ± 0.12a  1.3 ± 0.04a   4.2 ± 0.10a          14 ± 0.18a 

O       9.5 ± 0.54b   0.0 ± 0.00b  0.1 ± 0.02b  0.1 ± 0.03b  9.8 ± 0.75b 
 
R. mucronata 
 
C   17.6 ± 0.55a   2.8 ± 0.17a  0.8 ± 0.05a  4.3 ± 0.16a  26 ± 0.81a 
O   13.8 ± 0.21a  1.3 ± 0.15b  0.5 ± 0.07b  1.2 ± 0.06b  17 ± 0.10b 
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Fig. 3.26 Effects of oiling on dry biomass in A. marina. Measurements were taken after 

409 days, C = control, SO = sediment oiled, O = propagule oiled. Means ± standard 

error are given, n = 3. Bars with different letters are significantly different at P ≤ 0.05 

using Tukey-Kramer multiple comparisons test. 

 

 

Fig. 3.27 Effects of oiling on dry biomass in B. gymnorrhiza (A) and R. mucronata (B). 

Measurements were taken after 409 days, C = control, O = sediment oiled. Means ± 
standard error are given, n = 3 (B. gymnorrhiza) and n = 2 (R. mucronata). Bars with 

different letters are significantly different at P ≤ 0.05 using Tukey-Kramer multiple 

comparisons test. 
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Fig. 3.28 Effects of oiling on root/shoot ratio in A. marina. Measurements were taken 

after 409 days, C = control, SO = sediment oiled, O = propagule oiled. Means ± 

standard error are given, n = 3. Bars with different letters are significantly different at P 

≤ 0.05 using Tukey-Kramer multiple comparisons test. 

 

 

Fig. 3.29 Effects of oiling on root/shoot ratio in B. gymnorrhiza (A) and R. mucronata 

(B). Measurements were taken after 409 days, C = control, O = sediment oiled. Means 
± standard error are given, n = 3 (B. gymnorrhiza) and n = 2 (R. mucronata). Bars with 

different letters are significantly different at P ≤ 0.05 using Tukey-Kramer multiple 

comparisons test. 
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Fig. 3.30 Effects of oiling on relative root growth rate (RRGR) in A. marina. 

Measurements were taken after 409 days, C = control, SO = sediment oiled, O = 

propagule oiled. Means ± standard error are given, n = 3. Bars with different letters are 

significantly different at P ≤ 0.05 using Tukey-Kramer multiple comparisons test. 

 

 

Fig. 3.31 Effects of oiling on relative root growth rate (RRGR) in B. gymnorrhiza (A) 

and R. mucronata (B). Measurements were taken after 409 days, C = control, O = 

sediment oiled. Means ± standard error are given, n = 3 (B. gymnorrhiza) and n = 2 (R. 

mucronata). Bars with different letters are significantly different at P ≤ 0.05 using 

Tukey-Kramer multiple comparisons test. 
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3.3.2.3 Root morphology and volume 
 
A. marina 
 

Root length was highest in the control and significantly lower in the sediment and 

propagule oiled treatments in all months (Fig. 3.32). In the oiled treatments, root length 

was significantly lower by 96% and 91%, respectively, compared to the control (Table 

3.4). Root length was significantly lower in the sediment than the propagule oiled 

treatment by 49% (Table 3.4). In the oiled treatments, SRL was significantly lower by 

70% and 57%, respectively, compared to the control (Table 3.4). Specific root length 

was significantly lower in the sediment than the propagule oiled treatment by 30% 

(Table 3.4).  

 

In the oiled treatments, root diameter was significantly lower by 61% and 72%, 

respectively, compared to the control (Table 3.4). There was no significant difference in 

root diameter between the oiled treatments (Table 3.4). In the oiled treatments, root 

volume was significantly lower by 78% and 84%, respectively (Fig. 3.35) while SRV 

was higher by 34% and 20%, respectively compared to the control (Table 3.4). Specific 

root volume was significantly lower in the propagule than the sediment oiled treatment 

by 18%. Roots in the oiled treatments were dark brown to black in colour and flaccid 

compared to the white turgid ones in the control (Figs. 3.37 and 3.38). 
 
B. gymnorrhiza 
 

Root length was highest in the control and significantly lower in the oiled treatment in 

all months (Fig. 3.33). In the oiled treatment, root length, diameter and SRL were 

significantly lower than the control by 99%, 83% and 58%, respectively (Table 3.4). In 

the oiled treatment, root volume was significantly lower by 97% (Fig. 3.36A) while SRV 

was higher by 28% compared to the control (Table 3.4). Roots in the oiled treatment 

were dark brown in colour and flaccid compared to the white turgid ones in the control 

(Fig. 3.41). 

 
R. mucronata 
 

Root length was highest in the control and significantly lower in the oiled treatment in 

all months (Fig. 3.34). In the oiled treatment, root length, diameter and SRL were 
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significantly lower than the control by 73%, 48% and 27%, respectively (Table 3.4). 

Root volume was highest in the control and significantly lower in the oiled treatment by 

78% (Fig. 3.36B). In the oiled treatment, SRV was significantly higher than the control 

by 23% (Table 3.4). Roots in the oiled treatment were brown in colour, thinner and less 

healthy in appearance compared to the white, turgid, thicker ones in the control (Fig. 

3.44). 

 

 

Table 3.4 Root length (RL), specific root length (SRL), root diameter (RD) and specific 
root volume (SRV) in A. marina, B. gymnorrhiza and R. mucronata. Measurements 

were taken after 245 days, T = treatment, C = control, SO = sediment oiled, O = 
propagule oiled (A. marina); O = sediment oiled (B. gymnorrhiza, R. mucronata).  

Means ± SE are given, A. marina, n = 3; B. gymnorrhiza, n = 3; R. mucronata, n = 2. 

Means with different letters within a column are significantly different at P ≤ 0.05 using 

Tukey-Kramer multiple comparisons test.  
 

 
T                    RL (cm)                SRL (cm gˉ¹)                 RD (mm)             SRV (cm³ gˉ¹)      
  
 
A. marina 
 
C       239.97 ±  15.0a  214.30 ±  3.20a        3.27 ± 0.46a               3.10 ± 0.11a 

SO   10.71 ±  7.02b     65.51 ±  1.91b     1.29 ± 0.12b    4.70 ± 0.33b 
O   20.83 ±  9.20c     93.32 ±  2.82c     0.89 ± 0.06b    3.86 ± 0.40c 
 
B. gymnorrhiza 
 
C       367.67 ± 11.7a    87.20 ± 2.22a   4.35 ± 0.55a   5.54 ± 0.34a  

O         4.71 ± 2.00b      36.73 ± 1.10b               0.75 ± 0.07b 7.69 ± 0.56b 
 
R. mucronata 
 
C   230.12 ± 8.75a        53.0 ± 0.50a        4.80 ± 0.63a  4.72 ± 0.23a  
O     45.93 ± 5.19b       38.8 ± 0.89b       2.54 ± 0.33b  6.11 ± 0.07b
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Fig. 3.32 Effects of oiling on root length in A. marina. Measurements were taken 

weekly for 409 days, beginning 17 days after treatment, C = control, SO = sediment 

oiled, O = propagule oiled. Means ± standard error are given, n = 3. Bars with different 

letters are significantly different at P ≤ 0.05 using two-way ANOVA and Tukey’s 

comparisons test. 
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Fig. 3.33 Effects of oiling on root length in B. gymnorrhiza. Measurements were taken 

weekly for 409 days, beginning 17 days after treatment, C = control, O = sediment 

oiled. Means ± standard error are given, n = 3. Bars with different letters are 

significantly different at P ≤ 0.05 using two-way ANOVA and Tukey’s multiple 

comparisons test. 
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Fig. 3.34 Effects of oiling on root length in R. mucronata. Measurements were taken 

weekly for 409 days, beginning 17 days after treatment, C = control, O = sediment 

oiled. Means ± standard error are given, n = 2. Bars with different letters are 

significantly different at P ≤ 0.05 using two-way ANOVA and Tukey’s multiple 

comparisons test. 
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Fig. 3.35 Effects of oiling on root volume in A. marina. Measurements were taken after 

409 days, C = control, SO = sediment oiled, O = propagule oiled. Means ± standard 

error are given, n = 3. Bars with different letters are significantly different at P ≤ 0.05 

using Tukey-Kramer multiple comparisons test. 

 

 

Fig. 3.36 Effects of oiling on root volume in B. gymnorrhiza (A) and R. mucronata (B). 

Measurements were taken after 409 days, C = control, O = sediment oiled. Means ± 
standard error are given, n = 3 (B. gymnorrhiza) and n = 2 (R. mucronata). Bars with 

different letters are significantly different at P ≤ 0.05 using Tukey-Kramer multiple 

comparisons test. 
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Fig. 3.37 Roots of A. marina in the sediment oiled (left) and control (right) treatments 

from the rhizotrons after 14 months. Note the dead propagule in the oiled treatment 

(arrow). 

 

Fig. 3.38 Roots of A. marina in the propagule oiled (left) and control (right) treatments 

from the rhizotrons after 14 months. Note the dead propagule in the oiled treatment 

(arrow).  
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Fig. 3.39 Seedlings of B. gymnorrhiza in control rhizotron after 12 months. Note the 

magnified picture on the right showing root growth. 

 

    

Fig. 3.40 Seedlings of B. gymnorrhiza in the oiled treatment in the rhizotron after 12 

months. Note the two dead propagules on either side of the living plant on the left 

(arrows). Note the magnified picture on the right showing roots of the living plant 

(arrows).  

 

Control Roots 
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Fig. 3.41 Roots of B. gymnorrhiza in the control (left) and oiled (right) treatments from 

the rhizotrons after 14 months. Note the long, thick healthy roots in the control.  
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Fig. 3.42 Seedlings of R. mucronata in the control rhizotron after 12 months. Note the 

magnified picture on the right showing roots (arrows). 

   

Fig. 3.43 Seedlings of R. mucronata in the oiled treatment in the rhizotron after 12 

months. Note the magnified picture on the right showing roots (arrows).  
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Fig. 3.44 Roots of R. mucronata in the oiled (left) and control (right) treatments from 

the rhizotrons after 14 months. Note the thicker roots in the control. 

 
 
3.4 Discussion  
 
Studies on the toxic effects of PAHs on root growth in mangroves are few (Ye and 
Tam, 2007; Zhang et al., 2007a). Growth of mangrove propagules in rhizotrons 

provided a novel approach to determine the effects of oil on roots. In this study, oiling 
reduced root growth and altered morphology in A. marina, B. gymnorrhiza and R. 

mucronata. 

 
In propagule oiled treatments, roots of A. marina and B. gymnorrhiza were broader in 

width and shorter in length than those in the control. Coarse roots had greater diameter 

and SRV and reduced length. This is the first study to show that increased root 

Oiled treatment Control 
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diameter and reduced root length in mangroves is an adaptive response to sub-lethal 

oil contamination.  
 
An increase in root diameter could be attributed to reduced soil permeability caused by 

PAHs, which was reported previously (Davies and Bacon, 2003). Oil has been reported 

to increase mechanical resistance of sediments (Bengough, 2003). Previous studies 

demonstrated that coarser roots exert greater force on sediments, for soil penetration 
(Fitter, 1996; Muthukumar et al., 2003).  

 

Increased root diameter for greater soil penetration and nutrient absorption has been 
described previously (Fitter, 1994; Blouin et al., 2007). Previous studies showed that 

nutrient deficiency in soil, as a result of PAHs, can change root structure and produce 
roots with larger diameter (Zhang et al., 2003; Devinny et al., 2005). This study 

supports work by Merkl et al. (2005) on Brachiaria brizantha Hochst. ex A. Rich. Stapf 

(Poaceae) and Cyperus aggregatus (Willd.) Endl. (Cyperaceae) which reported 

increased root diameter and SRV but reduced root length in oil contaminated sediment.  

In this study, sediment oiling reduced root length, volume, biomass, SRL and SRV in all 

species compared to the control. Oiling reduced root length in previous studies on 
grasses (Kechavarzi et al., 2007) and Mimosa pilulifera Benth. (Leguminosae) (Inckot 

et al., 2011). A decrease in root length reduces the surface area for absorption of 

nutrients and water (Eissenstat, 1991; Blouin et al., 2007), and leads to slower growth 

(Bengough, 2003; Reynoso-Cuevas et al., 2008). Reduced root length, volume, 

biomass, SRL and SRV in oiled treatments in all species suggests inefficient nutrient 
uptake (Merkl et al., 2005; Corrêa de Souza et al., 2013).  

In all species, sediment oiling reduced the number and growth rate of roots as a result 
of mortality caused by PAHs (Getter et al., 1985; Tam et al., 2005). PAHs that 

penetrate root cell walls (Ke et al., 2011a); accumulate within cells (Gao and Zhu, 

2004; Jiao et al., 2007) and damage tissues (Watts et al., 2006).  

 

In oiled treatments, the roots of all species were flaccid and dark brown in colour. Dead 
and damaged roots appeared black in A. marina (Figs. 3.37 and 3.38), probably due to 

oil adherence and penetration (Smith et al., 2006). In the control, live roots were whitish 

or lighter in colour, turgid and structurally intact, as described before (McKee, 2001). 
Previous studies demonstrated that lubricating oil damaged fine roots of A. marina and 
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A. corniculatum (Ye and Tam, 2007). PAHs also disrupted cellular lipid membranes in 

the conducting tissue of roots (Zhang et al., 2007a).  

 

In the propagule oiled treatment, R. mucronata produced numerous lateral roots about 

5–7 cm beneath the soil surface (Fig. 3.14). These were similar in length and diameter 

but lacked the vertical extension and support of long, thick anchoring primary roots 
(Chapman, 1975; Blouin et al., 2007). Oiled seedlings did not grow upright as those in 

the control because they lacked primary root support (Figs. 3.14 and 3.15). Oil 

probably caused mortality of thicker primary roots, as described in previous studies (Ke 
et al., 2003; Tam et al., 2005), while the numerous lateral roots were probably oil-

induced. Physiological stress can trigger lateral root growth in Rhizophora sp. 

(Sánchez, 2005) which is supported in this study. 

 
Oiling increased the root/shoot ratio in seedlings of R. mucronata probably due to the 

production of numerous lateral roots to increase nutrient absorption. Previous studies 

found that PAHs decreased sediment permeability and reduced nutrient and water 
uptake (Suprayogi and Murray, 1999; Pereira et al., 2002). When nutrients are limited, 

plants allocate more biomass to roots (McKee, 1995; Sherman et al., 2003; Barton and 

Montagu, 2006). In addition, seedlings did not produce leaves and shoot growth was 

retarded contributing to increased root/shoot ratio, an adaptive response to oiling.  

 

In the sediment oiled treatment, the root/shoot ratio and biomass were reduced in all 

species. Oil probably smothered roots and caused mortality. Previous studies reported 
reduced root biomass in sediment oiled treatments in grasses (Kechavarzi et al., 2007; 

Inckot et al., 2011). 

 
Plant mortality occurred in completely oiled propagules of A. marina. Oil probably 

penetrated the propagule and developing embryo resulting in mortality. PAHs 
negatively affected the establishment of propagules in previous studies (Huang et al., 

2005; Zhang et al., 2007a). Complete oil coating inhibited the establishment and 

growth of seedlings. Establishment and growth of seedlings are inhibited to a greater 

degree as oil coverage increases (Proffitt and Devlin, 1998). Oiling reduced shoot 

length and biomass of seedlings, the stage that is most sensitive to PAHs (Maila and 

Cloete, 2005).  
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Internodes of oiled seedlings were shorter and thicker than those of the control. In 

nature, internode growth follows a uniform pattern that is correlated with regular and 
annual seasonal changes (Duarte et al., 1999). However, oil adversely affected 

internode growth. Sediment oiling reduced the length of the first - third internode in all 

species, thereby altering growth patterns. 

 
In the propagule oiled treatments, seedlings of A. marina and B. gymnorrhiza were 

taller in the first three months compared to those in the control. This shows that PAHs 

stimulated the growth of seedlings at low dose, similar to other studies (Lin and 
Mendelssohn, 1996; Lin et al., 2002). Suprayogi and Murray (1999) found that oil 

increased the concentration of nutrients in the leaves of mangroves thus serving as a 

fertiliser at low doses. 

 
Sediment oiling reduced growth and caused mortality in seedlings of A. marina and B. 

gymnorrhiza similar to other studies (Proffitt et al., 1995; Ke et al., 2003). This was 

probably due to the higher oil dosage. 

 

Sediment oiling reduced leaf area in all species. Leaf expansion is critical to plant 

growth as it determines the amount of photosynthetic material required for carbon 
fixation (Goodman et al., 2010). A reduction in leaf area is an indication of physiological 

stress in mangroves (Flores-de-Santiago et al., 2013) induced by PAHs (Zhang et al., 

2007a; Ke et al., 2011a). 

 

Oiling reduced number of leaves and chlorophyll content in all species. Decreases in 
leaf chlorophyll content (Blackburn, 2007; Liu et al., 2009) and photosynthesis (Naidoo 

et al., 2010) are indicative of oil induced plant stress. PAHs are known to disrupt the 

photosynthetic apparatus of chloroplasts (Naidoo et al., 2010; Yin et al., 2011) and 

break down chlorophyll (Huang et al., 1996). 

 
In propagule oiled treatments, root growth rate, volume, biomass, leaf area, number of 
leaves and chlorophyll content were reduced in A. marina and R. mucronata but not in 

B. gymnorrhiza. In addition, plant mortality occurred in A. marina and R. mucronata in 

propagule oiled treatments. Seedlings of A. marina and R. mucronata were less 

tolerant of oil than B. gymnorrhiza. Oil appeared to have penetrated the propagules of 

R. mucronata and A. marina more easily than those of B. gymnorrhiza. The higher 
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tolerance of B. gymnorrhiza is probably due to the suberized root epidermal cells which 

bind PAHs, minimizing the amount of oil entering the plant (Ke et al., 2003).  

 

Plant mortality occurred in the sediment oiled treatment in seedlings of A. marina and 

B. gymnorrhiza but not in R. mucronata. This study suggests that A. marina and B. 

gymnorrhiza are intolerant to sediment oiling at high doses. The propagules of R. 

mucronata had a greater dry mass than those of B. gymnorrhiza. Propagules of R. 

mucronata could be sites of accumulation thus minimizing the amount of oil entering 

the shoots, accounting for higher tolerance. The roots of R. mucronata secrete 

exudates (Holmer et al., 1999) which increases microbial activity around the roots 

thereby enabling PAHs to be degraded in the soil (Moreira et al., 2011) contributing to 

greater oil tolerance. Roots of A. marina have larger air spaces between aerenchyma 

cells and thinner epidermis and hypodermis compared to the other two species (Pi et 

al., 2009) allowing greater penetration of oil into cells and increased toxicity.  

 

This study showed that oil altered patterns of growth and root morphology in the three 

mangroves. The data indicate that mangroves have the ability to survive sub-lethal or 

residual oil contamination.  
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Chapter 4 
Effects of PAHs on cell ultrastructure in A. marina, B. gymnorrhiza and R. 

mucronata 
 
 
Abstract 
 
In this study, the effects of oil on cell ultrastructure in A. marina, B. gymnorrhiza and R. 

mucronata were investigated. Healthy one year old seedlings, grown under controlled 

conditions in a glasshouse, were subjected to control and sediment oiled treatments. 

Seedlings of all three species were subjected to oiling for three weeks. Roots and 

leaves were harvested and the concentrations of PAHs determined by gas 

chromatography / mass spectrometry. In the oiled treatment the total concentration of 

PAHs was higher in roots than in leaves of all species. In oiled treatments, the highest 
concentrations of PAHs were detected in roots of A. marina (44,045.9 μg/kg) followed 

by B. gymnorrhiza (10,280.4 μg/kg) and R. mucronata (6,979.1 μg/kg). In roots of all 

species in the oiled treatments, PAHs with two (naphthalene, acenaphthene and 

fluorene), three (phenanthrene and anthracene) and four (pyrene, benzo[a]anthracene 

and chrysene) rings were detected. Benzo[a]pyrene was the only PAH with five rings in 

roots of all species in the oiled treatments.  

To test for living and dead cells and compare the effects of oil on cell ultrastructure in 

roots and leaves in the three species, seedlings were subjected to control and 

sediment oiled treatments for seven days. To test for living and dead cells in root tips, 

fresh sections were stained with fluorescein diacetate and propidium iodide. In control 

treatments, fluorescein diacetate exhibited green fluorescence in living root tip cells of 

all species. In oiled treatments, propidium iodide exhibited red fluorescence in most 

cells of the root tip in all species, which indicated cell death.  

To compare the effects of oil on cell ultrastructure, root and leaf tissue were viewed 

under the transmission electron microscope. Transmission electron micrographs 

revealed that oil accumulated in root tips and leaf cells in all species. Anatomical 

changes induced by oil included, disorganization of cells in the root cap, epidermis, 

meristem and conducting tissue. Oil also induced loss of cell contents and 

fragmentation of organelles such as the nucleus and mitochondrion. In leaf cells of all 

species, oil caused dilation, distortion and disintegration of chloroplasts. This study 
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showed that oil accumulated in root tips and leaf tissue of all species and led to cell 

disorganisation. 
  
 
Keywords: 
 

Cell ultrastructure, chloroplasts, fluorescence, leaves, PAHs, roots  

 

 
4.1 Introduction 
 
Oil spills cause sediment and atmospheric contamination (Kechavarzi et al., 2007; 

Meudec et al., 2007). Fuel oil is a complex mixture of hydrocarbons, alkanes, 

cyclohexanes, asphaltenes, naphthenes, olefins and PAHs (Luz et al., 2010). PAHs 

contain two or more fused benzene rings (Haritash and Kaushik, 2009) and are highly 

toxic, persistent, organic pollutants (POPs) with carcinogenic and mutagenic properties 
(Luan et al., 2006; Li et al., 2010).  

 

Each PAH compound has a different UV absorption spectrum making it easily 

identifiable (Orecchio, 2007). Currently, more than 200 types of PAHs have been 
described (Zhang et al., 2010). Sixteen PAHs have been identified as priority pollutants 

by the United States Environmental Protection Agency (Wilson and Jones, 1993; Binet 
et al., 2000).  

 

PAHs are resistant to biodegradation due to their high insolubility and therefore persist 

in soils (Kottler and Alexander 2001; Taylor and Jones, 2001). The PAHs in fuel oil 
adsorb onto soil particles and accumulate in sediments (Wang et al., 2001; Tolosa et 

al., 2004). They are highly hydrophobic, tightly bound to soil particles and not readily 

bio-available (Pilon-Smits, 2005). PAHs with two to three rings volatize easily from soil 
into the atmosphere (Wetzel et al., 1997).  

 

PAHs enter plant roots from contact with contaminated soil (Gao and Zhu, 2004; 
Meudec et al., 2006) and are drawn up through the root apoplastically with the 

transpiration stream via the xylem (Wild et al., 2005). They are translocated to the 

shoots symplastically via diffusion across cellular membranes and through 

plasmodesmata (Orcutt and Nielsen, 2000). Although PAHs constitute a small part of 
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oil components, they can be found in high concentrations within plant tissues (Lin et al., 

2007; Reynoso-Cuevas et al., 2008).  

 

Many studies have investigated PAH accumulation in vegetables (Tao et al., 2004; 

Parrish et al., 2006; Khan et al., 2008) and agricultural crops such as rice (Jiao et al., 

2007) and maize (Lin et al., 2007). Other studies have concentrated on ryegrass (Binet 

et al., 2001) and the salt-marsh grass, S. alterniflora (Watts et al., 2006). Most studies 

on oil contamination in mangroves focus on the physical effects of oil that lead to 
reduced growth and plant mortality (Proffitt et al., 1995; Duke et al., 1997; Tam et al., 

2005). Some studies have focussed on the harmful effects on physiological 

mechanisms like photosynthesis, respiration, transpiration and nutrient absorption 
(Youssef and Ghanem, 2002; Zhang et al., 2007a; Naidoo et al., 2010). There are 

limited studies on the uptake, accumulation, translocation and phytotoxicity of PAHs 
within plant tissues (Suprayogi and Murray 1999; Hong et al., 2009). The uptake of 

PAHs by roots is dependent on their chemical properties and the plant species (Zhu et 

al., 2007). Stress responses of plants to oil are dependent on both the chemical and 

physical effects of PAHs (Meudec et al., 2006). 

 
Oil in tissues can disrupt cellular lipid membranes in the conducting tissue (Zhang et 

al., 2007a) and damage the xylem vessels of fine roots (Ye and Tam, 2007). However, 

information on the effects of PAHs on mangrove root and leaf ultrastructure is almost 

non-existent. Physiological damage is a result of the direct contact of organelles with 
PAHs (Watts et al., 2006; Kang et al., 2010). The accumulation of PAHs in plant 

tissues causes different degrees of ultrastructural damage, depending on the chemical 
structure and concentration of the compounds (Alkio et al., 2005; Liu et al., 2009).  

 

 
4.2 Materials and methods 
 
4.2.1 Growth conditions 
 
Propagules of A. marina, B. gymnorrhiza and R. mucronata were collected and planted 

in March 2011 as described in Chapter 2.2.1. Pots were maintained in a glasshouse 

and seedlings allowed to grow for 12 months. The temperature in the glasshouse was 

the same as in Chapter 2.2.1. 



108 
 

Healthy one year old seedlings of A. marina, B. gymnorrhiza and R. mucronata were 

subjected to control and oiled treatments for three weeks. In the oiled treatments, 200 

ml of oil were carefully poured onto the soil surface. There were 13 replications for the 

control and 10 per species for the oiled treatment. 

 
4.2.2 Determination of PAHs  
 

After three weeks, the leaves and roots of four replicates were harvested and fresh 

mass determined by weighing on a Toledo scale. Leaves and roots from replicates 

where pooled to obtain the weight requirement (10 g) for determination of PAHs. The 

properties of the bunker fuel oil used in this study are indicated in Table 2.1, Chapter 2. 

 

PAHs were extracted from 10 g of leaf and root material that were freeze dried and 

ground into a powder. The powder was combined with acetonitrile and buffered with 

magnesium sulphate, sodium chloride and citrate salts (pH 5 - 5.5) and then 

centrifuged. Formic acid was added to the mixture. The resulting extracts were 

analysed by gas chromatography on an HP-5890 gas chromatograph (Hewlett 

Packard, USA) equipped with an HP-DB 5MS column (60 m x 0.25 mm x 0.25 μm thick 

film). The column was coupled to a mass spectrometer detector (HP 5972) operating in 

a selected ion monitoring (SIM) mode. Deuterated pyrene and benzo(a)pyrene were 

used as internal standards. The temperature was set at 300°C. Fifteen PAHs were 

identified based on the EPA list of priority PAHs (United States Environmental 

Protection Agency, 2008). Benzo[k]fluoranthene and benzo[b]fluoranthene were 

grouped as one compound - benzo[k+b]fluoranthene. 
 
4.2.3 Staining with fluorescein diacetate (FDA) and propidium iodide (PI) 
 

After seven days, fresh roots from the control and oiled treatments were harvested. 

Fresh root tips were placed between small pieces of polystyrene and sectioned with a 

Vibratome 1000 (Lancer, U.S.A). Sections were approximately 300 µm thick.  

 

The plant cell viability assay kit containing the stains, PI and FDA, was used for the 

staining of root cells (Sigma, USA). The kit components were thawed in a 30 - 37°C 

water bath. After thawing, a precipitate formed in the PI solution which was re-

dissolved by vortexing vigorously. Each stain (1 µL) was diluted in 99 µL of deionised 



109 
 

molecular water (pH 7.4) in Eppendorf tubes using a 10 µL pipette. The solutions were 

vortexed to mix. Sections were stained for 5 min with PI and for 20 min with FDA on 

microscope glass slides.  

 

Slides were examined with a Nikon Eclipse 80i, utilizing Nikon filter sets, FITC 

(fluorescein isothiocyanate) (510 to 560 nm) and TRITC (tetramethylrhodamine 

isothiocyanate) (475 to 490 nm). Each section was individually stained. Sections 

stained with FDA were viewed with the FITC band pass filter, and those stained with PI 

were viewed with the TRITC band pass filter. Photomicrography was performed with 

the Nikon imaging software (NIS-D) with a Nikon sight DS-Fli digital camera. 
 
4.2.4 Preparation of material for light microscopy 
 
After seven days, the root tips of three replicates of all species were observed with the 

compound light microscope to view the structural organisation of cells. Fresh root tips 

of all species were harvested (about 5 mm in length) by cutting with a sterilised blade. 

Samples were fixed in 10% formalin acetic acid (FAA) (Jensen, 1962) within 15 min of 

procurement. Tissues were fixed for at least 24 hours followed by storage in 70% 

ethanol. Tissues were processed through a tertiary butanol series in which each 

sample was in a butanol solution for at least 24 hours. Tissues were placed in two 

changes of paraffin, embedded in paraffin wax and sectioned (5 to 7 μm) using a LKB 

Bromma 2218 Historange microtome (LKB, Bromma, Sweden). Sections were placed 
on microscope glass slides and stained with safranin and methylene blue. 

Photomicrography was performed with the Nikon imaging software (NIS-D) with a 

Nikon sight DS-Fli digital camera. 
 
4.2.5 Preparation of material for the transmission electron microscope (TEM)  
 

After seven days, fresh leaves and roots of three replicates from all species were 

harvested. Small segments (1 mm²) of material were taken from root tips and flag 

leaves i.e. the youngest, fully expanded leaves. The material was fixed under vacuum 

for 24 hours in 2.5% glutaraldehyde (4°C) and then washed three times for 5 min each 

in phosphate buffer (pH 7.2). Samples were post fixed in 0.5% osmium tetroxide 

(OsO4) for 1 hour in a dark cupboard at room temperature and washed three times for 

5 min each in phosphate buffer (pH 7.2). The material was then dehydrated through a 
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graded series of acetone (i.e. two times for 5 min each in 30%, 50%, 75% and two 

changes of 10 min each in 100% acetone). The samples were left for 4 hours in equal 

parts of Spurr’s (1969) low viscosity resin and 100% acetone. The material was then 

embedded in 100% resin for 24 hours. The specimens were orientated in a mould with 

fresh 100% resin and placed in an oven to polymerize for 8 hours at 70°C.  

 

Sectioning was carried out using a Reichert Ultracut E microtome (Leica, Germany). 

Ultrastructural analysis was undertaken using ultrathin sections (60 to 100 nm) 

collected on copper grids. Sections were initially post stained with 2% aqueous uranyl 

acetate for 10 min and thereafter with Reynolds’ (1963) lead citrate for 10 min. Grids 

were placed in a petri dish lined with filter paper and surrounded by sodium hydroxide 

(NaOH) pellets for 5 min. Sections were viewed with a Jeol 1010 transmission electron 

microscope operating at 100kV and images captured using the Megaview 3 soft 

imaging system (SIS). 
 
 
4.3 Results 
 
4.3.1 Determination of PAHs 
 
Fifteen PAH compounds detected in root and leaf samples of A. marina, B. 

gymnorrhiza and R. mucronata are shown in Tables 4.1 – 4.3. In oiled treatments of all 

species, the total concentration of PAHs was higher in roots (6,979.1 – 44,045.9 μg/kg) 

than in leaves (64.5 – 1,642.3 μg/kg).  

 

In oiled treatments, the concentrations of all 15 PAHs in roots and leaves were higher 
in A. marina than in B. gymnorrhiza or R. mucronata (Tables 4.1 – 4.3).  

 
 
Concentrations of PAHs in roots 
 
In the roots of oiled treatments, the total concentration of PAHs was highest in A. 

marina (44045.9 μg/kg) followed by B. gymnorrhiza (10280.4 μg/kg) and R. mucronata 

(6979.1 μg/kg) (Table 4.4). 
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In the roots of all oiled treatments, the more volatile PAHs with two rings, naphthalene, 

acenaphthene and fluorene were detected but acenaphthylene was undetected (Tables 

4.1 – 4.3). Fluorene concentrations in oiled treatments of all species were higher than 

those of naphthalene and acenaphthene in A. marina (3,938.8 μg/kg), B. gymnorrhiza 

(1,183 μg/kg) and R. mucronata (725 μg/kg). 

 

In roots of all oiled treatments, volatile PAHs with three rings, phenanthrene and 

anthracene, but not fluoranthene, were detected (Tables 4.1 – 4.3). The concentration 

of phenanthrene in oiled treatments of all species was higher than all other PAHs. 
Phenanthrene concentrations in oiled treatments were 27,044.8 μg/kg in A. marina 

(Table 4.1), 5,632 μg/kg in B. gymnorrhiza (Table 4.2) and 3,485 μg/kg in R. mucronata 

(Table 4.3). 

 

In roots of all oiled treatments, the PAHs with four rings (pyrene, benzo[a]anthracene 
and chrysene) were detected. In A. marina, the concentration of chrysene was 2,278.1 

μg/kg compared to pyrene (1,508.3 μg/kg) or benzo[a]anthracene (867.6 μg/kg) (Table 

4.1). The concentrations of pyrene were higher than other PAHs with four rings, 607 
μg/kg in B. gymnorrhiza (Table 4.2) and 500 μg/kg in R. mucronata (Table 4.3). 

 

In roots of all oiled treatments, benzo[a]pyrene was the only PAH with five rings. 
Benzo[a]pyrene concentrations were 562.7 μg/kg in A. marina (Table 4.1), 78 μg/kg in 

B. gymnorrhiza (Table 4.2) and 315 μg/kg in R. mucronata (Table 4.3). In oiled 

treatments, roots of all species lacked PAHs with six rings (Tables 4.1 – 4.3).  

 

Control roots of all species had very low concentrations of PAHs with two (naphthalene 

and acenaphthene) and three (phenanthrene) rings (Tables 4.1 – 4.3). In the control, 

PAHs with four (chrysene) and five (benzo[a]pyrene and benzo[k+b]fluoranthene) rings 
were detected in roots of A. marina in very low concentrations but undetected in B. 

gymnorrhiza and R. mucronata.  

 
Concentrations of PAHs in leaves 
 
In the leaves of oiled treatments, the total concentration of PAHs was highest in A. 

marina (1,642.3 μg/kg) followed by R. mucronata (71 μg/kg) and B. gymnorrhiza (64.5 

μg/kg) (Table 4.4).  
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In the leaves of all oiled treatments, PAHs with two rings (naphthalene, acenaphthene 
and fluorene) were detected. In A. marina the concentration of acenaphthene (136.2 

μg/kg) was considerably higher than naphthalene (26.3 μg/kg) or fluorene (88.3 μg/kg) 

(Table 4.1). In B. gymnorrhiza, the concentration of acenaphthene (22.4 μg/kg) was 

higher than naphthalene (21.4 μg/kg) or fluorene (11.8 μg/kg). In R. mucronata the 

concentration of naphthalene (16.5 μg/kg) was higher than acenaphthene (3.5 μg/kg) 

or fluorene (5.1 μg/kg). In oiled treatments, the concentration of acenaphthylene (two 
rings) was 7.5 μg/kg in A. marina but undetected in B. gymnorrhiza and R. mucronata.  

 

In leaves of oiled treatments, the concentration of phenanthrene (three rings) was 
higher in A. marina (451.3 μg/kg) and R. mucronata (36.5 μg/kg) than all other PAHs. 

Anthracene (three rings) was detected in leaves of A. marina (173.8 μg/kg) but 

undetected in B. gymnorrhiza or R. mucronata. In oiled treatments, the concentrations 

of fluoranthene (three rings) in leaves of A. marina and R. mucronata were 58.5 μg/kg 

and 7.7 μg/kg respectively but undetected in B. gymnorrhiza. 

 

In oiled treatments, the concentration of pyrene (four rings) in leaves was 112.7 μg/kg 

in A. marina, and 1.8 μg/kg in R. mucronata but undetected in B. gymnorrhiza (Tables 

4.1 – 4.3). In oiled treatments, benzo[a]anthracene (122.4 μg/kg) and chrysene (193.5 
μg/kg) (four rings) were detected in leaves of A. marina but undetected in the other two 

species.  

  

In leaves of oiled treatments, the PAHs with five rings, benzo[k+b]fluoranthene (180.4 
μg/kg) and benzo[a]pyrene (91.4 μg/kg) were detected in A. marina but undetected in 

B. gymnorrhiza and R. mucronata (Table 4.1) while PAHs with six rings were 

undetected. 

 

Control leaves of all species had negligible concentrations of PAHs with two 

(naphthalene and acenaphthene) and three (phenanthrene) rings (Tables 4.1 – 4.3).  
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Table 4.1 Concentrations of 15 PAHs (μg/kg) in leaves and roots of A. marina in control 

(C) and oiled (O) treatments. *asterisk indicates undetected in sample. 
 

                                                                             
                                                                   Leaves                                     Roots 
                                                                                                    
# rings        PAH                                C                       O                    C                      O                                                                                                                            
 

2          Naphthalene         *   26.3     35.7      238.2 

2  Acenaphthene  21.1  136.2  228.4   2,933.7 

2  Acenaphthylene       *      7.5      5.4             * 

2  Fluorene    21.1    88.3  191.1               3,938.8 

3  Phenanthrene   50.3  451.3  434.9             27,044.8 

3  Anthracene         *  173.8       82.9   4,673.8 

3  Fluoranthene      5.2    58.5         *         * 

4  Pyrene    *  112.7  *   1,508.3 

4  Benzo[a]anthracene  *   122.4    *                   867.6 

4  Chrysene    *  193.5   6.1               2,278.1 

5  Benzo[k+b]fluoranthene    * 180.4   39.3           * 

5  Benzo[a]pyrene   *    91.4   21.5    562.7 

5  Dibenz[a,h]anthracene  *   *   *          * 

6  Benzo[g,h,i]perylene  *   *   *           * 

6  Indeno[1,2,3-cd]pyrene  * *   *                     * 
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Table 4.2 Concentrations of 15 PAHs (μg/kg) in leaves and roots of B. gymnorrhiza in 

control (C) and oiled (O) treatments. *asterisk indicates undetected in sample. 
 

                                                                             
                                                                  Leaves                                     Roots 
                                                                                                    
# rings        PAH                                C                       O                    C                       O                                                                                                                            
 

2          Naphthalene      3.3   21.4       4.5           79 

2  Acenaphthene       *   22.4      6.6      1,306 

2  Acenaphthylene       *         *         *             * 

2  Fluorene         *    11.8         *      1,183 

3  Phenanthrene     2.1      8.9     7.3      5,632 

3  Anthracene         *         *          *         839 

3  Fluoranthene         *         *         *          * 

4  Pyrene    *         *  *         607 

4  Benzo[a]anthracene  *          *    *     123 

4  Chrysene    *         *      *        433 

5  Benzo[k+b]fluoranthene    *        *    *         * 

5  Benzo[a]pyrene   *        *    *       78 

5  Dibenz[a,h]anthracene  *   *   *          * 

6  Benzo[g,h,i]perylene  *   *   *           * 

6  Indeno[1,2,3-cd]pyrene  * *   *                     * 
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Table 4.3 Concentrations of 15 PAHs (μg/kg) in leaves and roots of R. mucronata in 

control (C) and oiled (O) treatments. *asterisk indicates undetected in sample. 
 

                                                                             
                                                                   Leaves                                      Roots 
                                                                                                    
# rings        PAH                                 C                       O                    C                       O                                                                                                                            
 

2          Naphthalene      17.8   16.5       3.0         156 

2  Acenaphthene      6.3     3.5      6.0         717 

2  Acenaphthylene        *         *         *             * 

2  Fluorene           *      5.1         *         725 

3  Phenanthrene     27.7    36.5     5.4      3,485 

3  Anthracene           *         *          *         460 

3  Fluoranthene      6.9      7.7         *          * 

4  Pyrene     *      1.8  *         500 

4  Benzo[a]anthracene   *          *    *     138 

4  Chrysene     *         *      *         483 

5  Benzo[k+b]fluoranthene     *        *    *         *  

5  Benzo[a]pyrene    *        *    *     315 

5  Dibenz[a,h]anthracene   *   *   *          * 

6  Benzo[g,h,i]perylene   *   *   *           * 

6  Indeno[1,2,3-cd]pyrene   * *   *                     * 
 

 
Table 4.4 Total concentration of 15 PAHs (μg/kg) in roots and leaves of A. marina, B. 

gymnorrhiza and R. mucronata in control (C) and oiled (O) treatments. 

 

                                                                                    
                                                         Leaves                                             Roots 
                                                                                                    
                                               C                         O                         C                          O                                                                                                                            
 

A. marina  97.6 1,642.3 1,125.2 44,045.9 
B. gymnorrhiza 5.4 64.5 18.4 10,280.4 
R. mucronata 58.7 71 14.4 6,979.1 

 
  



116 
 

4.3.2 Fluorescence of living and dead cells 
 
In the control, fresh sections of root tips stained with FDA, exhibited green fluorescence 

in living cells of the meristematic and conducting tissue in A. marina (Fig. 4.1), B. 

gymnorrhiza (Fig. 4.3A and B) and R.  mucronata (Fig. 4.5A and B).  

 

In the oiled treatment, fresh sections of root tips stained with PI, exhibited red 
fluorescence in dead cells of the meristematic and conducting tissue in A. marina (Fig. 

4.2A and B), B. gymnorrhiza (Fig. 4.4) and R.  mucronata (Fig.4.6A and B). 

 

 

 

 

Fig. 4.1 Fluorescence light micrographs of root tips in longitudinal section of A. marina 

from the control. After staining, fluorescein diacetate (indicated by bright green 

fluorescence) penetrated the cell walls and plasma membranes in cells of meristematic 

tissue (arrows). Note: green = living. 

 

 

 

 

 

 

 50 μm 
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Fig. 4.2 Fluorescence light micrographs of root tips in longitudinal section of A. marina 

from the oiled treatment. (A and B) After staining, propidium iodide (indicated by bright 

red fluorescence) penetrated the cell walls and plasma membranes in cells of 

meristematic tissue (arrows). Note: red = dead. 
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Fig. 4.3 Fluorescence light micrographs of root tips in longitudinal section of B. 

gymnorrhiza in the control. (A) After staining, fluorescein diacetate (indicated by bright 

green fluorescence) penetrated the cell walls and plasma membranes in cells of root 

cap (arrowhead) and meristematic tissue (arrow). (B) Cells of meristematic tissue 

exhibiting bright green fluorescence (arrows). Note: green = living. 
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Fig. 4.4 Fluorescence light micrographs of root tips in longitudinal section of B. 

gymnorrhiza in the oiled treatment. After staining, propidium iodide (indicated by bright 

red fluorescence) penetrated the cell walls and plasma membranes in cells of 

meristematic tissue (arrows). Note: red = dead. 

 

 

 
 

  50 μm 
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Fig. 4.5 Fluorescence light micrographs of root tips in longitudinal section of R. 

mucronata in the control. (A and B) After staining, fluorescein diacetate (indicated by 

bright green fluorescence) penetrated the cell walls and plasma membranes in cells of 

meristematic tissue (arrows). Note: green = living. 
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Fig. 4.6 Fluorescence light micrographs of root tips in longitudinal section of R. 

mucronata in the oiled treatment. (A and B) After staining, propidium iodide (indicated 

by bright red fluorescence) penetrated the cell walls and plasma membranes in cells of 

meristematic tissue (arrows). Note: red = dead. 
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4.3.3 Light micrographs of control root tips in longitudinal section 
 
In the control, light micrographs of root tips in longitudinal section of A. marina (Figs. 

4.7 and 4.8), B. gymnorrhiza (Figs. 4.9 and 4.10) and R. mucronata (Figs. 4.11 and 

4.12), showed the typical cell organization of the meristematic region. The structural 

organization of the root tip included cells of the root cap and epidermis; then meristem, 

cortex, xylem and phloem tissue. 
 

 

 

Fig. 4.7 Light micrographs of root tip of A. marina in the control treatment. (A) Root tip 

showing root cap (arrow), epidermis (e), apical meristem (am) and meristematic tissue 

(m). (B) Meristematic cells exhibiting cell division (arrowheads).  

250 μm 
 

 50 μm 
 

A 

B 

am 
e m 



123 
 

 

 

 
Fig. 4.8 Light micrographs of root tip of A. marina in the control treatment. (A) Centre of 

root primordium showing cortex (c) and conducting tissue (arrows). (B) Conducting 

tissue showing xylem tracheid (arrowheads) and sieve tube of phloem (arrows).  
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Fig. 4.9 Light micrographs of root tip of B. gymnorrhiza in the control treatment. (A) 

Root tip showing root cap (rc), epidermis (e), apical meristem (am) and meristematic 

tissue (m). (B) Centre of root primordium showing cortex (c) and meristematic tissue 

(m).  
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Fig. 4.10 Light micrograph of root tip of B. gymnorrhiza in the control treatment 

showing xylem vessels (arrowheads) and sieve tubes of phloem (arrows).  
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Fig. 4.11 Light micrographs of root tip of R. mucronata in the control treatment. (A) 

Root tip showing root cap (rc), epidermis (e), apical meristem (am) and meristematic 

tissue (m). (B) Centre of root primordium showing cortex (c) and immature xylem (x) 

and phloem tissue (p).  
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Fig. 4.12 Light micrograph of root tip of R. mucronata in the control treatment showing 

xylem vessel (arrowheads) and phloem sieve tube (arrows). 
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4.3.4 Transmission electron micrographs of root tips  
 
Ultrastructure of root tip cells in the control treatment 
 
In the control, transmission electron micrographs of root tips of A. marina (Figs. 4.13 – 

4.16), B. gymnorrhiza (Figs. 4.17 - 4.20) and R. mucronata (Figs. 4.21 - 4.23), showed 

the typical ultrastructure of normal, healthy cells.  

 
Cells of the meristematic tissue were robust and exhibited cell division in A. marina 

(Fig. 4.13B), B. gymnorrhiza (Fig. 4.18A) and R. mucronata (Fig. 4.22A). Meristematic 

cells were turgid with uniform cell walls and intact plasma membranes in A. marina 

(Fig. 4.14B), B. gymnorrhiza (Fig. 4.18B) and R. mucronata (Fig. 4.22B). In the 

meristematic cells of R. mucronata, plasmodesmata were clearly observed (Fig. 

4.22B). Cells of the cortex were healthy and structurally intact in A. marina (Fig. 4.15A). 

 

In xylem tissue, vessel members were uniform and had intact scalariform thickenings in 
A. marina (Figs. 4.16A and B). In phloem tissue, parenchyma cells were structurally 

intact and healthy in A. marina (Fig. 4.15B), B. gymnorrhiza (Figs. 4.19A and 4.20) and 

R. mucronata (Fig. 4.23A). Sieve tubes of phloem tissue in R. mucronata were also 

healthy with intact cell walls (Fig. 4.23B). 

 

All cells had well-developed nuclei with prominent nucleoli in A. marina (Figs. 4.13B 

and 4.14A), B. gymnorrhiza (Figs. 4.17B and 4.19B) and R. mucronata (Figs. 4.22A 

and 4.23A). In control root tip cells, vacuoles were well-distributed throughout the cell in 
A. marina (Fig. 4.14A), B. gymnorrhiza (Fig. 4.17B) and R. mucronata (Fig. 4.22A). 

Cellular organelles including mitochondria and endoplasmic reticula were well-defined 
in A. marina (Fig. 4.14A) and B. gymnorrhiza (Fig. 4.17B).  
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Fig. 4.13 Transmission electron micrographs of root tip cells of A. marina in the control 

treatment. (A) Meristematic tissue showing densely cytoplasmic intact cells (m). (B) 

Cells of meristematic tissue exhibiting cell division (arrows). Note the intact nucleus (n) 

with prominent nucleolus (nc) and well-defined nuclear membrane (arrowheads). 
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Fig. 4.14 Transmission electron micrographs of root tip cells of A. marina in the control 

treatment. (A) Cells of meristematic tissue showing mitochondria (arrows) and nucleus 

(n) with dense chromatin network. Note vacuoles (v) distributed throughout cells. (B) 

Cell of meristematic tissue showing intact and uniform cell wall (cw) and plasma 

membrane (arrows).  
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Fig. 4.15 Transmission electron micrographs of root tip cells of A. marina in the control 

treatment. (A) Cortex region of root tip showing intact cells (cc). (B) Centre of the root 

tip showing xylem vessel members (xv) and phloem parenchyma cells (pc). 
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 Fig. 4.16 Transmission electron micrographs of root tip cells of A. marina in the control 

treatment. (A) Xylem tracheid (xt) showing scalariform thickening of cell walls (arrows). 

(B) Xylem tracheid (xt) showing intact scalariform thickening (arrows).  
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Fig. 4.17 Transmission electron micrographs of root tip cells of B. gymnorrhiza in the 

control treatment. (A) Meristematic tissue showing healthy, intact and uniform cells 

(mc). Note intact nuclei (n). (B) Meristematic cells showing nucleus (n) with dense 

chromatin network and uniform intact nuclear membrane (arrowheads) and prominent 

nucleolus (nc). Note mitochondria (mi) and cisternae of endoplasmic reticulum 

(arrows). Note vacuoles well-distributed within the cell (v). 
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Fig. 4.18 Transmission electron micrographs of root tip cells of B. gymnorrhiza in the 

control treatment. (A) Cells of meristematic tissue (mc) exhibiting cell division (arrows). 

(B) Meristematic cell showing intact uniform cell wall (cw) and plasma membrane 

(arrows). 
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Fig. 4.19 Transmission electron micrographs of root tip cells of B. gymnorrhiza in the 

control treatment. (A) Phloem tissue showing intact organized parenchyma cells (pc). 

(B) Phloem parenchyma cell (pc) showing nucleus (n) with prominent nucleolus 

(straight arrow). Note cell organelles, mitochondria (elbow arrows) and cisternae of 

endoplasmic reticulum (arrowheads). 
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Fig. 4.20 Transmission electron micrograph of phloem parenchyma cell in root tip of B. 

gymnorrhiza in the control treatment showing uniform cell wall (cw) and plasma 

membrane (arrows). 
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Fig. 4.21 Transmission electron micrographs of root tip cells of R. mucronata in the 

control treatment. (A) Cells of the root cap (rc) showing intact uniform cell walls 

(arrows). (B) Meristematic tissue showing healthy cells (mc) with nuclei (arrowheads).  
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Fig. 4.22 Transmission electron micrographs of root tip cells of R. mucronata in the 

control treatment. (A) Cells of meristematic tissue (mc) exhibiting cell division (arrows). 

Note vacuoles (v) distributed throughout the cell. Note the nucleus (n) with prominent 

nucleolus (arrowhead). (B) Cell of meristematic tissue showing intact uniform cell wall 

(cw) and plasma membrane (arrowheads). Note the distinct plasmodesmata (arrows).   
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Fig. 4.23 Transmission electron micrographs of root tip cells of R. mucronata in the 

control treatment. (A) Parenchyma cells (pc) of phloem tissue showing nucleus (n) with 

prominent nucleolus (arrowhead). (B) Phloem tissue showing sieve tube (s) with intact 

cell walls (arrows). 
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Ultrastructure of root tip cells in the oiled treatment 
 
The effects of oil were deleterious on fine structure of root tip cells in A. marina (Figs. 

4.24 – 4.29), B. gymnorrhiza (Figs. 4.30 – 4.33) and R. mucronata (Figs.4.34 – 4.37). 

Oil accumulated in root tip cells and resulted in their complete disorganisation.  

 

Effects of oil on cell ultrastructure were similar in all three species. In the root cap 
region in R. mucronata, oil deposits were observed in the interior of cells (Fig. 4.34A) 

and around root hairs (Fig. 4.34B).  

 
In the epidermal region in R. mucronata, cell contents and organelles such as the 

nucleus, mitochondrion and endoplasmic reticulum were unrecognizable as oil deposits 

occurred throughout the cells (Fig. 4.35A). 

 
In the meristematic tissue, cells were deformed in B. gymnorrhiza (Fig. 4.30A) and 

distorted in R. mucronata (Fig. 4.35B). Cell walls and plasma membranes were 

irregular and invaginated (with numerous inward folds) in meristematic cells of A. 

marina (4.24B) and B. gymnorrhiza (Fig. 4.30B). Cell walls appeared darkened and 

large oil deposits were observed in A. marina (Fig. 4.25A), B. gymnorrhiza (Fig. 4.30A) 

and R. mucronata (Fig. 4.35B). Oil appeared to infiltrate adjacent cells via deteriorated 

cell walls in B. gymnorrhiza (Fig. 4.30A).  

 
Cell contents of meristematic tissue appeared disorganized in A. marina (Fig. 4.24A). 

Vacuoles appeared to make up the bulk of the cell volume in A. marina (Fig. 4.24B) 

and B. gymnorrhiza (Fig. 4.31A). In meristematic cells of B. gymnorrhiza, oil 

accumulated within large vacuoles (Fig. 4.31A) while in R. mucronata, oil filled entire 

cells (Fig. 4.35B). Oil deposits were observed close to the nucleus in meristematic cells 
of A. marina (Fig. 4.24B) while in B. gymnorrhiza, the nuclear membrane was 

perforated (Fig. 4.31B).  

 

 

 

 



141 
 

Cell organelles such as mitochondria and endoplasmic reticula were fragmented and 
unrecognizable in meristematic cells of A. marina (Figs. 4.24A and B), B. gymnorrhiza 

(Figs. 4.31A and B) and R. mucronata (Fig. 4.35B).  

 
In the cortex region of the root tip in A. marina, cells were distorted and filled with oil 

deposits and large vacuoles made up the bulk of the cell volume (Fig. 4.26A and B). Oil 
induced loss of cell contents in the cortex region of the root tip of A. marina, and cell 

organelles such as mitochondria and endoplasmic reticula were fragmented and 

unrecognizable (Fig. 4.26A and B). 

 
In the phloem tissue, in A. marina (Fig. 4.27A), B. gymnorrhiza (Fig. 4.32B) and R. 

mucronata (Fig. 4.37A), parenchyma cells contained large oil deposits. The cell walls of 

parenchyma cells were invaginated and darkened in A. marina (Fig. 4.27A), B. 

gymnorrhiza (Figs. 4.32B and 4.33) and R. mucronata (Fig. 4.37A and B). Cell contents 

leaked out through ruptured cell walls in R. mucronata (Fig. 4.36A). 

 
In phloem parenchyma cells in A. marina, large oil deposits leaked from cell walls into 

the cytoplasm (Fig. 4.28) while large vacuoles were observed (Fig. 4.27A). In B. 

gymnorrhiza, oil deposits were closely appressed to parenchyma cell walls (Figs. 4.32A 

and 4.33).  

 

In R. mucronata, phloem cells were distorted, indistinguishable from each other and 

were filled with oil (Fig. 4.36A). Sieve tubes of phloem tissue in R. mucronata were also  

filled with oil (Fig. 4.36B). In A. marina, xylem vessels with intact scalariform 

thickenings exhibited minimal damage compared to phloem cells (Fig. 4.29A and B). 
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Fig. 4.24 Transmission electron micrographs of root tip cells of A. marina in the oiled 

treatment. (A) Meristematic cells (mc) showing disorganization of cell contents 

(arrows). (B) Meristematic cells showing irregular invaginated cell walls (arrows). Note 

oil deposits (arrowheads) appeared to enter nucleus (n). Note also the large vacuole 

(v) making up the bulk of the cell volume. 
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Fig. 4.25 Transmission electron micrographs of root tip cells of A. marina in the oiled 

treatment. (A) Cell of meristematic tissue showing cell walls (cw) that appeared to be 

darkened by oil (arrows). (B) Cytoplasm of meristematic cell showing higher 

magnification of oil deposits (arrows). 
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Fig. 4.26 Transmission electron micrographs of root tip cells of A. marina in the oiled 

treatment. (A) Cells of the cortex showing disorganization of cell contents (arrows) and 

large vacuoles (v) making up the bulk of the cell volume. (B) Cells of the cortex 

showing cell wall that appeared invaginated and perforated (arrows). Note oil deposits 

(arrowheads). 
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Fig. 4.27 Transmission electron micrographs of root tip cells of A. marina in the oiled 

treatment. (A) Parenchyma cell of phloem tissue showing invaginated cell wall 

(arrows). (B) Parenchyma cell of phloem tissue showing oil deposits (arrows) in large 

vacuoles (v). 
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Fig. 4.28 Transmission electron micrograph of root tip cells of A. marina in the oiled 

treatment. Parenchyma cell (pc) of phloem tissue showing a large oil deposit 

(arrowheads) which appeared to leak out (arrows) of the cell wall (cw).  
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Fig. 4.29 Transmission electron micrographs of root tip cells of A. marina in the oiled 

treatment. (A and B) Xylem tracheids (xt) showing scalariform thickenings (arrows). 

Note oil deposits (arrowheads). 
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Fig. 4.30 Transmission electron micrographs of root tip cells of B. gymnorrhiza in the 

oiled treatment. (A) Cells of the meristematic tissue (mc) showing oil deposits (o). Note 

that cells appear to be deformed. Note also that oil appeared to infiltrate cells (arrows). 

(B) Meristematic cells showing oil deposits (o) and irregular invaginated cell walls 

(arrows). 
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Fig. 4.31 Transmission electron micrographs of root tip cells of B. gymnorrhiza in the 

oiled treatment. (A) Cell of meristematic tissue showing oil deposits (arrows) inside 

large vacuole (v) occupying the bulk of the cell volume. (B) Cells of meristematic tissue 

showing nucleus (n) and nuclear membrane, which appeared to be perforated by oil 

(arrows).  
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Fig. 4.32 Transmission electron micrographs of root tip cells of B. gymnorrhiza in the 

oiled treatment. (A) Phloem tissue showing parenchyma cells with oil deposits closely 

appressed to cell walls (arrows). (B) Phloem parenchyma cell showing oil deposit (o) 

and invaginated cell walls (arrows). 
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Fig. 4.33 Transmission electron micrograph of phloem parenchyma cell in B. 

gymnorrhiza in the oiled treatment showing oil deposits (arrows) closely appressed to 

the cell wall (cw).  
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Fig. 4.34 Transmission electron micrographs of root tip cells of R. mucronata in the 

oiled treatment. (A) Root cap cell (rc) showing oil deposits (arrows). (B) Root cap cell 

showing root hair (rh) growing from cell wall (cw) with oil deposits around it (arrows). 
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 Fig. 4.35 Transmission electron micrographs of root tip cells of R. mucronata in the 

oiled treatment. (A) Epidermal cells (ec) with oil deposits (o). Note the cell walls 

appeared darkened with oil (arrows). (B) Cells of meristematic tissue showing oil 

deposits (o). Note that cells were distorted and appeared to be filled with oil.  
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Fig. 4.36 Transmission electron micrographs of root tip cells of R. mucronata in the 

oiled treatment. (A) Phloem tissue showing deformed and distorted cells that are 

indistinguishable from each other. Note oil deposits (o). (B) Phloem tissue showing 

sieve tubes (arrows) filled with oil (o).  
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Fig. 4.37 Transmission electron micrographs of root tip cells of R. mucronata in the 

oiled treatment. (A) Phloem parenchyma cells showing oil deposits (o). Note the 

invaginated (arrows) cell wall (cw). (B) Phloem parenchyma cell showing close-up of oil 

deposits (o) within cells. Note that the cell wall appeared to be darkened by oil. 
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4.3.5 Transmission electron micrographs of leaf tissue 
 
Ultrastructure of leaf cells in the control treatment 
 
In the control, transmission electron micrographs of leaf cells in A. marina (Figs. 4.38 – 

4.39), B. gymnorrhiza (Figs. 4.40 – 4.42) and R. mucronata (Figs. 4.43 – 4.45) showed 

typical healthy ultrastructure. 

 
Palisade and spongy mesophyll cells were intact and had uniform cell walls in A. 

marina (Fig. 4.38A and B), B. gymnorrhiza (Figs. 4.40A and 4.42) and R. mucronata 

(Figs. 4.43A and B).  

 
The cytoplasm formed a parietal layer against the cell wall in A. marina (Fig. 4.38A), B. 

gymnorrhiza (Figs. 4.40A) and R. mucronata (Figs. 4.43A).  

 
Cells contained well-developed nuclei with nucleoli in A. marina (Fig. 4.38A), B. 

gymnorrhiza (Fig. 4.40B) and R. mucronata (Figs. 4.43B).  

 
Elliptical chloroplasts populated the cytoplasm in A. marina (Fig. 4.39A), B. 

gymnorrhiza (Figs. 4.41B) and R. mucronata (Fig. 4.44A). Chloroplasts were abundant 

and well-developed with organized grana and integranal lamellae in A. marina (Fig. 

4.39B), B. gymnorrhiza (Fig. 4.41B) and R. mucronata (Figs. 4.44A and 4.45).  

 
Numerous small granules of starch were observed between lamellae in A. marina (Fig. 

4.39B), B. gymnorrhiza (Fig. 4.41B) and R. mucronata (Figs. 4.44A and 4.45). 
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Fig. 4.38 Transmission electron micrographs of palisade and spongy mesophyll cells in 

leaf of A. marina from the control treatment. (A) Well defined palisade (pc) and spongy 

mesophyll (mc) cells. Note the nucleus (arrowhead) and abundance of chloroplasts 

(arrows). (B) Palisade cells (pc) showing several well-developed chloroplasts (arrows). 

Note few vesicles are present (arrowheads). 
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Fig. 4.39 Transmission electron micrographs of spongy mesophyll cell in leaf of A. 

marina from the control treatment. (A) Spongy mesophyll cell (mc) showing well-

developed elliptical chloroplasts (arrows). (B) Chloroplast of palisade mesophyll cell 

(pc) showing well-defined granal stacks (g). Note several starch granules (arrowheads) 

are present. Note also closely appressed intergranal lamellae (arrows).  
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Fig. 4.40 Transmission electron micrographs of palisade and spongy mesophyll cells in 

leaf of B. gymnorrhiza from the control treatment. (A) Spongy mesophyll cell (mc). (B) 

Palisade mesophyll cell (pc). Note the nucleus (n). 
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Fig. 4.41 Transmission electron micrographs of spongy mesophyll cell in leaf of B. 

gymnorrhiza from the control treatment. (A) Spongy mesophyll cell (mc) showing 

chloroplasts (cl). (B) Well-defined chloroplast (cl) of spongy mesophyll cell. Note starch 

granules (arrows), grana (g) and intergranal lamellae (arrowheads). 
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Fig. 4.42 Transmission electron micrograph of spongy mesophyll cell in leaf of B. 

gymnorrhiza from the control treatment showing well-defined cell wall (cw) and intact 

plasma membrane (arrows). 
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Fig. 4.43 Transmission electron micrographs of spongy mesophyll and palisade cells in 

leaf of R. mucronata from the control treatment. (A) Spongy mesophyll cells (mc). (B) 

Palisade mesophyll cells (pc) showing chloroplasts (arrows). Note the nucleus (n). 
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Fig. 4.44 Transmission electron micrographs of spongy mesophyll cell in leaf of R. 

mucronata from the control treatment. (A) Well-developed elliptical chloroplast (cl) 

showing thylakoids (arrowhead) of granum (g) and starch granules (arrows). (B) 

Spongy mesophyll cell showing well-defined cell wall (cw) and intact plasma membrane 

(arrows).  
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Fig. 4.45 Transmission electron micrograph of spongy mesophyll cell in leaf of R. 

mucronata from the control treatment. Note the prominent thylakoids (t) of granum and 

starch granule (arrow) of chloroplast adjacent to cell wall (cw).  
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Ultrastructure of leaf cells in the oiled treatment 
 

In oiled treatments, transmission electron micrographs of palisade and spongy 

mesophyll cells from the leaves of A. marina (Figs. 4.46 – 4.47), B. gymnorrhiza (Figs. 

4.48 – 4.49) and R. mucronata (Figs. 4.50 – 4.52) showed fine structural cell damage. 

Oil deposits were observed in palisade and spongy mesophyll cells in the leaves of B. 

gymnorrhiza (Fig. 4.48A) and R. mucronata (Fig. 4.50A). Oil deposits were observed in 

cell walls in B. gymnorrhiza (Fig. 4.49A) and R. mucronata (Fig. 4.52). Plasmolysis was 

observed in palisade cells of B. gymnorrhiza (Fig. 4.48B). In R. mucronata, 

multivesicular structures were visible in the cytoplasm and vacuoles of spongy 
mesophyll cells (Fig. 4.51A). In A. marina, vacuoles were large and irregular in shape 

in spongy mesophyll cells (Fig. 4.46).  

 

Although no quantitative measurements were made, it was obvious that palisade and 

spongy mesophyll cells of leaves in the oiled treatments possessed fewer chloroplasts 
than those in the control. Chloroplasts were disorganized in the cytoplasm in A. marina 

(Fig. 4.46) and R. mucronata (Fig. 4.51B). Chloroplasts were displaced from the 

plasma membrane boundary in A. marina (Fig. 4.46) and R. mucronata (Fig. 4.52). The 

shapes of the chloroplasts were irregular in the oiled treatment in R. mucronata (Fig. 

4.51B) compared to those in the control. Chloroplasts appeared to be dilated, distorted 
and degraded in A. marina (Fig. 4.47A and B), B. gymnorrhiza (Fig. 4.49B) and R. 

mucronata (Figs. 4.51B and 4.52).  

 
Oil accumulated in chloroplasts in R. mucronata (Figs. 4.51 – 4.52). The ultrastructure 

of the photosynthetic apparatus, i.e. granal stacks and lamellae, appeared to be 
disorganized and disintegrated in A. marina (Fig. 4.47B), B. gymnorrhiza (Fig. 4.49B) 

and R. mucronata (Fig. 4.52). Thylakoids appeared to be dilated and lamellar 

separation was observed in A. marina (Fig. 4.47A and B), B. gymnorrhiza (Fig. 4.49B) 

and R. mucronata (Fig. 4.52). Granal stacks separated and thylakoids and intergranal 

lamellae appeared to be abnormally sinuous and not closely appressed to each other 
in B. gymnorrhiza (Fig. 4.49B) and R. mucronata (Fig. 4.52). In addition, large spaces 

were observed between grana and lamellae in chloroplasts in A. marina (Fig. 4.47A 

and B) and B. gymnorrhiza (Fig. 4.49B). The chloroplasts in A. marina (Fig. 4.47B), B. 

gymnorrhiza (Fig. 4.49B) and R. mucronata (Fig. 4.52) contained few or no starch 

granules.  



166 
 

 

 

Fig. 4.46 Transmission electron micrograph of spongy mesophyll cells (mc) in leaf of A. 

marina from the oiled treatment. Note large vacuoles (v) and disorganization of 

chloroplasts (arrows).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   5 μm 
 

mc 

v 

mc 

v 



167 
 

 

 

 

Fig. 4.47 Transmission electron micrographs of a chloroplast in spongy mesophyll cell 

in leaf of A. marina from the oiled treatment. (A) Chloroplast (cl) showing spaces 

(arrows) between grana and lamellae. Note lamellar separation (arrowheads). (B) 

Spongy mesophyll cell showing displacement of chloroplast from the plasma 

membrane (arrows). Note lamellar separation (arrowheads). 
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Fig. 4.48 Transmission electron micrographs of palisade mesophyll cells in leaf of B. 

gymnorrhiza from the oiled treatment. (A) Palisade mesophyll cell (pc) showing oil 

deposits (arrows). (B) Palisade mesophyll cell showing cell wall (cw) with oil deposits 

(arrows). Note plasmolysis (arrowheads). 
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Fig. 4.49 Transmission electron micrographs of palisade mesophyll cells in leaf of B. 

gymnorrhiza from the oiled treatment. (A) Palisade mesophyll cell showing oil deposits 

(arrows) inside cell wall (cw). Note plasmolysis (arrowheads). (B) Chloroplast showing 

disintegrated grana (arrows) and large space (s) at the centre. Note oil deposits 

(arrowheads) in cell wall (cw). Note also the absence of starch granules. 
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Fig. 4.50 Transmission electron micrographs of leaf cells of R. mucronata from the 

oiled treatment. (A) Spongy mesophyll (mc) and palisade cells (pc) showing oil 

deposits (arrowheads). (B) Spongy mesophyll cell showing oil deposits (arrowheads). 

Note oil deposits within chloroplasts (arrows). 
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Fig. 4.51 Transmission electron micrographs of spongy mesophyll cell in leaf of R. 

mucronata from the oiled treatment. (A) Chloroplasts (arrows) showing oil deposits (o). 

Note multivesicular structure (arrowhead) occupied vacuolar space (vs). (B) Spongy 

mesophyll cell showing disorganized aggregated chloroplasts (arrows). Note the large 

oil deposits (o) within chloroplasts (arrowheads). Note the irregular shapes of 

chloroplasts (arrowheads). 
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Fig. 4.52 Transmission electron micrograph of a chloroplast of spongy mesophyll cell in 

leaf of R. mucronata from the oiled treatment. Note the large oil deposit (o) making up 

the bulk of the volume of the chloroplast (cl). Note oil deposits (arrowheads) within cell 

wall (cw). Note also that oil deposits (black arrows) surrounded the chloroplast (cl). 

Note the displacement of the chloroplast (cl) from the plasma membrane (white 

arrows).  

 

 

 

 

 

 

 

 

 

 

 

      1.5 μm 
 

o 
cw 

cl 



173 
 

4.4 Discussion 
 
This study demonstrated that PAHs entered mangrove roots and were translocated to 

shoots. Previous studies reported that oil was translocated from roots and accumulated 
in shoots of grasses (Parrish et al., 2006), vegetables (Jiao et al., 2007) and the 

mangrove Kandelia candel (L.) (Hong et al., 2009).  

 

Concentrations of PAHs in roots and leaves 
 

In oiled treatments, roots and leaves of all three species had high concentrations of low 

molecular weight PAHs (i.e. with two or three rings). Low molecular weight PAHs 
dissolve in water and enter plant roots (Wang et al., 2012). In oiled treatments, roots of 

all three species had a higher concentration of phenanthrene (three rings) than all other 

PAHs. Low molecular weight PAHs occur in higher concentrations in plant tissues 
because of their greater vapour pressure, water solubility and bioavailability (Jánská et 

al., 2006; Sojinu et al., 2010). Kang et al. (2010) demonstrated that phenanthrene had 

a high uptake and accumulation in ryegrass because it moved rapidly through the 

transpiration stream from roots to shoots.  

 

In oiled treatments, PAHs with four and five rings were detected in roots of all three 

species. High molecular weight PAHs (i.e. four rings or more) are mostly associated 

with soil organic matter (Simonich and Hites, 1995; Sojinu et al., 2010). The strong 

adsorption of high molecular weight PAHs onto the root epidermis is suggested to 
prevent them from being drawn into the conducting tissue (Kipopoulou et al., 1999). 

However, benzo(a)pyrene (five rings), for example, which is listed as a persistent 
bioaccumulative and toxic chemical (Wilson and Jones, 1993; Binet et al., 2001), was 

found in oiled treatments within the roots of all species and also in the leaves of A. 

marina, showing that it is mobile and translocated. Previous studies reported high 

molecular weight PAHs in roots and shoots of saltmarsh plants (Meudec et al., 2006) 

and vegetables (Fismes et al., 2002). 

 
In roots of oiled seedlings of A. marina, the total concentration of PAHs was about four 

times higher than those of B. gymnorrhiza and six times higher than R. mucronata 

(Table 4.4). This was probably due to oil exclusion in B. gymnorrhiza and R. mucronata 

(Suprayogi and Murray, 1999; Ke et al., 2011a). In oiled treatments, the roots of B. 
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gymnorrhiza had almost double the concentration of PAHs than those of R. mucronata. 

Additionally, oiled roots of B. gymnorrhiza had a higher concentration of pyrene (four 

rings) than R. mucronata. In a previous study, oiled B. gymnorrhiza accumulated more 

pyrene in its roots than K. obovata (Ke et al., 2003). Plants can exclude, metabolise or 

degrade PAHs (Wittig et al., 2003; Baek et al., 2004). The roots of Rhizophora sp. are 

known to exclude salt and organic compounds, including PAHs (Suprayogi and Murray, 
1999; Ye and Tam, 2007). Lower bioaccumulation of PAHs in R. mucronata than the 

other two species could further be attributed to root exudation (Holmer et al., 1999). 

These exudates increase microbial activity around the roots which degrade PAHs in 
soil (Moreira et al., 2011).  

 
The higher total concentration of PAHs in the roots of oiled A. marina compared to the 

other two species, was probably due to the ability of this species to synchronously take 

up salt and organic compounds (Suprayogi and Murray, 1999; Ye and Tam, 2007). The 
roots of A. marina probably have a greater ability to draw PAHs from the sediment 

through the transpiration stream compared to the two other species (Ke et al., 2011a). 

This characteristic probably enables greater accumulation of PAHs in tissues after root 
penetration (Ke et al., 2011a). 

 
The roots of oiled A. marina also had a higher concentration of each of the 15 PAHs 

than the other two species. Pi et al. (2009) found that A. marina possessed the largest 

air spaces between aerenchyma cells in the root compared to seven other mangroves 
including B. gymnorrhiza. Their study also showed that A. marina possessed a thinner 

epidermis and hypodermis that provided a weak barrier against radial oxygen loss 
compared to other mangroves. In leaves of oiled A. marina, the total concentration of 

PAHs was 26 and 23 times higher respectively than those in B. gymnorrhiza and R. 

mucronata respectively (Table 4.4). In a previous study, A. marina was found to 

accumulate between two and six times more PAHs in the leaves than other mangroves 
including R. mucronata (Suprayogi and Murray, 1999). Furthermore, four and five ring 

PAHs were detected in leaves of oiled A. marina plants but not in the other two 

species. The larger air spaces, together with thinner epidermis and hypodermis, could 
account for the greater penetration and accumulation of PAHs in A. marina compared 

to the other two species.  
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In oiled treatments, leaves of B. gymnorrhiza only had four PAHs compared to 12 in A. 

marina and six in R. mucronata. The roots of B. gymnorrhiza plants contain closely 

packed root aerenchyma cells with smaller air spaces (Pi et al., 2009). Furthermore, 

the root tips of B. gymnorrhiza have a thick epidermis that consists of greatly suberized 

cells that bind PAHs (Ke et al., 2003; Pi et al., 2009). These characteristics restrict PAH 

entry into the roots of B. gymnorrhiza (Ke et al., 2011a) accounting for the lower 

accumulation. 

 

Control treatments of all species had negligible concentrations of PAHs with two 

(naphthalene and acenaphthene) and three (phenanthrene) rings. The control and oil-

treated plants in this experiment were grown in the glasshouse. As a precautionary 

measure, control and oil-treated plants were separated by about 3 m. Despite these 

efforts, low molecular weight PAHs could have entered control plants via the 
atmosphere, similar to previous studies (Watts et al., 2008; Desalme and Binet, 2011; 

Wang et al., 2012). Low molecular weight PAHs volatise and enrich the air even at a 

distance from oil-contaminated sediment (Wang et al., 2009; Yang et al., 2010) and 

enter foliage via stomata (Fismes et al., 2002; Yousseff and Ghanem, 2002) or 

diffusion through the epidermis (Wild et al., 2005).  

 

In this study, the concentrations of PAHs in plant tissues varied amongst the three 

mangroves but identities of the compounds were identical. This suggests that the 

mechanisms controlling the distribution of PAHs in mangroves are similar. Similar 
findings were reported for the grasses, Phragmites australis and Spartina alterniflora 

and the sedge, Scirpus mariqueter Tang. in an investigation of PAH accumulation in 

sediment oiled treatments (Wang et al., 2012).  

 

Living and dead root tip cells 
 
Fluorescein diacetate and propidium iodide were used to test for living and dead root 

tip cells. In control treatments, fluorescein diacetate exhibited bright green fluorescence 

in living root tip cells of all three species. Living cells have intact plasma membranes 

(Jones and Senft, 1985). Fluorescein diacetate is lipophilic (i.e. has an affinity for lipids) 
and membrane-permeable (Lassailly et al., 2010). Living cells are distinguished by the 

presence of intracellular esterases that hydrolyse fluorescein diacetate (Breeuwer et 

al., 1995; Battin, 1997). Fluorescein diacetate is hydrolyzed to highly polar fluorescent 
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compounds within living plant cells (Truernit and Haseloff, 2008). The polar nature of 

the hydrolyzed fluorescein diacetate makes it unable to diffuse across the plasma 

membrane and it is retained within living cells, thus exhibiting bright green fluorescence 

in the cytoplasm (Jones and Senft, 1985). 

 

In oiled treatments, propidium iodide exhibited bright red fluorescence in dead root tip 

cells of all three species. Dead cells have non-intact or damaged plasma membranes 
(Jones and Senft, 1985; Steinkamp et al., 1999; Truernit and Haseloff, 2008). 

Propidium iodide can only enter cells with damaged membranes, whereupon it 

intercalates into double-stranded nucleic acids exhibiting bright red fluorescence 
(Steinkamp et al., 1999). In oiled treatments, the majority of root tip cells of all three 

species exhibited bright red fluorescence indicating that PAHs penetrated cell walls 

and membranes thereby killing cells. 

 
The effects of oil on ultrastructure of root tip cells 
 

Oiling of the sediment resulted in the disorganisation of root tip cells in all three 

species. The effects of oil on cell ultrastructure were similar in all three species. 

Various regions of the root including the root cap, meristem, cortex, and conducting 

tissue were adversely affected by oil.  

 

Oil deposits accumulated in root tip cells. All PAHs adsorb onto roots first and then 
gradually diffuse into subcellular fractions of tissues (Alkio et al., 2005) before 

accumulating in cell walls, vacuoles and organelles (Gao and Zhu, 2004; Wild et al., 

2005). Oil deposits filled the cytoplasm, vacuoles and cell walls. Anthracene was 

detected in epidermal cell walls and cytoplasm using TPEM (Two-Photons Excitation 
Microscopy) (Wild et al., 2005).  

 

Electron micrographs of root tips in oiled treatments showed darkened cell walls and 

plasmodesmata were not visible as they were probably filled with oil deposits making 

them unrecognizable. PAHs are known to move through cells via plasmodesmata 

(Orcutt and Nielsen, 2000). Oil deposits infiltrated adjacent cells through deteriorated 

cell walls and membranes. Cell contents leaked out of cells with damaged cell walls 
and plasma membranes. The lipophilic nature of PAHs (Orcutt and Nielsen, 2000), 

could have caused them to gravitate towards lipid components of the cell wall and 
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membrane. PAHs accumulate in the plasma membrane and displace lipid molecules 

increasing membrane permeability (Gilfillan et al., 1989). 

 

Furthermore, oil caused the fragmentation of organelles such as the nucleus, 

mitochondrion and endoplasmic reticulum. Similar effects were reported for maize root 
tip cells treated with nitrobenzene (Zaalishvili et al., 2002). The nucleus was penetrated 

by oil and nuclear membranes were invaginated and perforated. These nuclear 
abnormalities which are due to the toxic mutagenic effects of PAHs (Aina et al., 2006), 

leads to the death of cells (Fernandes et al., 2007). Oil caused nuclear abnormalities 

that led to the death of root cells of Allium cepa L. (Leme et al., 2008). 

 

Phloem tissue was extensively damaged and cells were indistinguishable from each 

other. On the other hand, xylem tissue exhibited minimal damage from oiling. In a 

previous study on maize roots contaminated by lubricating oil, xylem tissue was found 
to be more intact than phloem (Grijalbo et al., 2013). In another study, bunker fuel oil 

applied to the base of debarked stems of A. marina resulted in the production of 

adventitious roots which was an adaptive response after damage to the phloem tissue 
(Naidoo et al., 2010). Scalariform thickenings of xylem vessel members probably 

reduced oil damage.  

 

In all species, sieve tubes and parenchyma cells of phloem tissue accumulated large 

deposits of oil, due probably to the affinity of PAHs for lipids. Phloem exhibited greater 

adverse oil effects than the xylem. Phloem is a living tissue with cellular components 
and organelles that all contain lipid (Gao and Zhu, 2004; Kang et al., 2010). Xylem on 

the other hand is a dead tissue (Chen et al., 2013). As PAHs move through the 

conducting tissue apoplastically, they have an affinity for the lipid content of closely 
associated tissues (Meudec et al., 2006). Gao and Zhu (2004) found that the uptake of 

PAHs was dependent on the lipid content of plant roots. Previous studies demonstrated 
that PAHs accumulated in plant tissues containing high lipid content (Meudec et al., 

2006; 2007). These studies showed that cellulose tissues, cell walls, membranes and 

all organelles containing lipid components, are primary domains for PAH accumulation 
after they enter root cells. Kang et al. (2010) found that the lipid content of cell 

organelles determined the degree of PAH accumulation.  
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The effects of oil on ultrastructure of leaf cells 
 

Oil deposits were observed in leaf palisade and spongy mesophyll cell walls and 

cytoplasm in all three species. Aromatic hydrocarbons in vehicle emissions (e.g. 
benzene and xylene) damaged the mesophyll cells of spruce needles (Viskari et al., 

2000). Oil caused disorganization of chloroplasts in the cytoplasm. Chloroplasts are the 
first organelles to exhibit symptoms of physiological stress (Alscher et al., 1997). In this 

study, chloroplasts were degraded, distorted, dilated and irregularly-shaped. In 

previous studies, PAHs had adverse effects on the photosynthetic apparatus (Naidoo 
et al., 2010; Yin et al., 2011) and caused chlorophyll disintegration (Huang et al., 1996). 

Furthermore, chloroplasts were displaced from the plasma membrane boundary. In 

maize plants, lubricating oil caused degradation of the chloroplast structure and 
plasmolysis of the chloroplast membrane (Grijalbo et al., 2013). In this study, 

chloroplast lamellae were separated by oil and large spaces were observed between 

lamellae and grana. This indicated break down of the photosynthetic apparatus.  

 
In R. mucronata, oil accumulated in chloroplasts and occupied the bulk of their volume 

resulting in irregular shapes. In this study, PAHs in leaf cell walls probably moved to 
and accumulated within chloroplasts. Kang et al. (2010) found that PAHs in the cell wall 

moved to and accumulate in organelles because of their high lipid content. The uptake 

and accumulation of PAHs by plants can also be related to the carbohydrate content of 

cells (Gao and Zhu, 2004; Zhang and Zhu, 2009). In chloroplasts, starch granules with 

high carbohydrate content (Kasperbauer and Hamilton, 1984) probably contributed to 

oil accumulation. 

 

This study demonstrated that oil accumulated in root and leaf cells resulting in the 

disorganisation of organelles such as mitochondria, nuclei and chloroplasts. These 

organelles are responsible for cell vitality and are the sites of energy formation. 
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Chapter 5 
Responses of A. marina, B. gymnorrhiza and R. mucronata to oil contamination 

at different salinities 
 
 
Abstract 
 
In this study, the responses of A. marina, B. gymnorrhiza and R. mucronata to oil at 

different salinities were investigated under glasshouse conditions. Healthy one year old 

seedlings were subjected to sediment oiling at 10% and 50% seawater for 12 months. 

In oiled treatments, 200 ml oil were added to the soil in each pot. Growth was better at 

10% compared to 50% seawater in all species and significantly reduced in oiled 

treatments. 
The effects of oil on salt secretion in A. marina were investigated by subjecting healthy 

one year old seedlings to sediment oiling at 0%, 10% and 50% seawater for three 

weeks. Sodium accumulated in the leaves in oiled treatments. Oiling increased the 

concentration of Na+ in 50% seawater by 41% compared to the control while 

concentrations of K+, Ca²+ and Mg²+ were significantly reduced by 72%, 100% and 

100%, respectively. Oiling decreased the rates of secretion of Na+, K+, Ca²+ and Mg²+ in 

50% seawater by 60%, 76%, 68% and 78%, respectively, compared to the control.  
The effects of oil on salt secretion in A. marina during the day and night were 

compared in one year old seedlings subjected to control and oiled treatments for seven 

days. Sodium accumulated in the leaves of oiled seedlings during the day and night 

within 11 hours. Oiling increased Na+ concentrations during the day and night by 42% 

and 73%, respectively, compared to the controls, while concentrations of K+, Ca²+ and 

Mg²+ decreased by 48% - 78%. Oiling significantly reduced secretion rates of all ions 

compared to the controls during the day and night. 

This study demonstrated that oiling reduced the growth of the three mangroves in 50% 
compared to 10% seawater. Oiling also reduced salt secretion in A. marina at both 

salinities. 
 
Keywords: 
 

Growth, mangroves, oil, salinity, salt secretion  
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5.1 Introduction 
 
Mangroves inhabit intertidal zones with fluctuating salinities (Lovelock et al., 2004; 

Naidoo, 2006). High salinity in mangrove sediments is due to the presence of 

excessive amounts of salts (Parida and Das, 2005). An increase in salinity can lead to 
salt stress, even in halophytes, such as mangroves (Suarez et al., 1998).  

 

Mangroves are morphologically and physiologically adapted to survive under saline 
conditions (Mizrachi et al., 1980; Naidoo and von Willert, 1995; Naidoo et al., 2002). 

Species such as K. obovata and R. mucronata exclude salt by root ultrafiltration 

(Scholander, 1968; Naidoo, 1986). Some species such as A. corniculatum and A. 

marina secrete salt via salt glands present in their leaves (Naidoo, 1987; Ye et al., 

2005; Naidoo et al., 2011). Others such as B. gymnorrhiza and R. mucronata 

accumulate salt in vacuoles and older leaves which are then shed (Steinke, 1999; Tam 

and Wong, 2000).  

 

Mangroves also accumulate organic acids as osmotica to counter the toxic effects of 

salinity (Parida and Das, 2005). The amount of salt transported to the foliage is 

restricted by regulating water loss through stomatal control and avoiding salt 

accumulation in the plant (Naidoo and von Willert, 1995). In addition, mangroves 

decrease their water and osmotic potentials to maintain turgor at high salinity (Naidoo, 

1987; Khan et al., 2000). Despite these adaptations, as salinity increases, carbon 

assimilation capacity, plant metabolism, growth and productivity are reduced 
(Allakhverdiev et al., 2000; Naidoo and Chirkoot, 2004). 

 

The effects of salinity on mangroves have been studied in relation to leaf structure, 
stomatal conductance, rates of transpiration and photosynthesis (Naidoo et al., 2002; 

Patel et al., 2010; Hoppe-Speer et al., 2011). Salt stress decreases photosynthesis, 

protein synthesis and lipid metabolism (Hasegawa et al., 2000; Zhu, 2002). High 

salinity increases the activities of antioxidative enzymes (Takemura et al., 2000; Parida 

et al., 2004). Few studies have investigated the effects of salinity in response to oil 

contamination in mangroves (Page et al., 1985; Ke et al., 2011b). 

 

Oil damages root membranes which adversely affect the ionic balance of plants and 
their ability to tolerate salinity (Gilfillan et al., 1989; Zhang et al., 2007a). Sediment 



181 
 

oiling at high salinity reduced germination in grasses (Youssef, 2002; Ibemesim, 2010) 
and mangroves (Ke et al., 2011b). Volatile fraction of Arabian crude oil impaired the 

salt secreting ability of A. marina (Youssef and Ghanem, 2002). This study aims to 

investigate the effects of salinity in combination with oil on the growth of A. marina, B. 

gymnorrhiza and R. mucronata seedlings and on salt secretion in A. marina. 

 
 
5.2 Materials and methods 
 
5.2.1 Plant material 
 
Propagules of A. marina, B. gymnorrhiza and R. mucronata were collected and 

prepared for experiments as described in Chapters 2.2.1 and 4.2.1.  
 
5.2.2 Growth experiment 
 
5.2.2.1 Growth conditions 
 
Sixteen one year old, healthy seedlings of A. marina (about 52 ± 10 cm in height), B. 

gymnorrhiza (about 61 ± 6 cm in height) and R. mucronata (about 62 ± 7 cm in height) 

were selected for the growth experiment. Pots containing uniform, actively growing 

plants were placed in large circular troughs (70 cm diameter x 18 cm height) and 

subjected to oiling treatments at 10% and 50% seawater (or 3.8 and 19 practical 

salinity units) for 12 months. Oil (200 ml) was carefully poured onto the soil surface of 

each pot. Four replicate pots were allocated to each treatment in a completely 

randomised design. Salinity treatments were introduced gradually at increments of 10% 

seawater every two days. Pots were irrigated from below and seawater renewed every 

five days.  

 
5.2.2.2 Plant growth measurements 
 

Measurements of plant height and number of leaves were determined monthly. 
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5.2.2.3 Chlorophyll content 
 

Measurements of chlorophyll content were determined monthly as described in 

Chapter 2.2.3. There were six measurements per replicate.  

 
5.2.3 Salt secretion experiments  
 
5.2.3.1 Growth conditions 
 

Effects of oil at different seawater salinities 
 
Twenty four one year old, healthy seedlings of A. marina of uniform height were 

selected to determine the effects of oil on salt secretion at different salinities. Pots were 

placed in troughs and maintained identically to the growth experiment. Pots were 

subjected to control and oiling treatments at 0%, 10% and 50% seawater for three 

weeks. The experimental design was identical to the growth experiment (5.2.2.1). Pots 

were irrigated from below and seawater renewed every two days.  

 
Effects of oil in the light and dark  
 

Eight one year old, healthy seedlings of A. marina of uniform height were selected to 

determine the effects of light and darkness on salt secretion of oiled seedlings. Pots 

were placed in troughs and maintained identically to the growth experiment. Pots were 

subjected to oiling treatments at 10% seawater for seven days. Oil (200 ml) was 

carefully poured onto the soil surface of each pot. Four replicate pots were allocated to 

each treatment identical to the growth experiment. Pots were irrigated from below and 

seawater renewed daily.  

 

 
5.2.3.2 Salt secretion and ion analysis 
 

Effects of oil at different seawater salinities 
 

After three weeks of treatment, six mature leaves from each replicate were washed 

with double distilled water to remove previously secreted salt from the leaf surface, 
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labelled and blotted dry. After five days, secreted salts from each leaf were rinsed for 

20 seconds with 20 ml double distilled water and the wash water sealed in air-tight 

vials. The rinsed leaves were excised from the plant and leaf areas determined by 

photocopying fresh leaves and scanning the images into a computer using image 

analysis software, SIS Pro Softward, version 3:1. The fresh mass of leaves was 

determined on a Toledo scale, dried to constant mass at 70°C and weighed again. The 

dried leaves were milled before ion analysis. Concentrations of Na+, K+, Ca²+ and Mg²+ 

were determined by atomic absorption using mid-infrared spectroscopy (Bruker Tensor 

27, FTIR Spectrometer with HTS/XT).  
 

Effects of oil in the light and dark  
 

In the light and dark experiments, six leaves from each replicate were washed to 

remove previously secreted salts as described before. In the light experiment, leaves 

were washed at 06h00, labelled and after 11 hours (at 17h00) rinsed to collect secreted 

salts. In the dark experiment, leaves were washed at 17h00 to remove previously 

secreted salts and labelled. Seedlings were then covered partially with black plastic 

bags which allowed for air movement but excluded light. Seedlings were then placed in 

a dark room. After 11 hours (06h00 the following morning), seedlings were removed 

from darkness and the leaves rinsed to collect secreted salts. The rinsed leaves from 

both light and dark were excised and leaf area, mass and ion concentrations 

determined as before.   

 

Salt secretion was calculated using the formula: 

 

For Na+ and K+:                                     {[meq Lˉ¹ / LA] x 1000} / t 

 

For Ca²+ and Mg²+:                                {[meq Lˉ¹ / LA] x 1000} / t 

                                                                      2 

 

where meq Lˉ¹ = the concentration of the ion in meq Lˉ¹, LA = leaf area in m², t = 

duration of the experiment in seconds. 
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5.2.4 Data analyses 
 
Means and standard errors were calculated for all measurements. Resulting data were 

tested for normality using the Kolmogorov-Smirnov test and subjected to two-way 

ANOVA and Tukey’s multiple comparisons test (P ≤ 0.05) using GraphPad Prism 
Version 6.05 (GraphPad Software, Inc., USA). Other data were subjected to unpaired t-

tests using MINITAB version 16 (Minitab Statistical Software, MINITAB Inc., USA). 
 
 
5.3 Results 
 
5.3.1 The effects of salinity on oil contamination 
 

A. marina 
 

The effects of seawater salinity in the absence of oil 
 

In the controls, plant height increment (final plant height – initial) was highest in 10% 

seawater and 25% lower in 50% seawater (Fig. 5.1A). There were no significant 

differences in change in number of leaves (final number of leaves – initial) and 

chlorophyll content between 10% and 50% seawater treatments (Fig. 5.1B and C).  

 

The effects of oiling at different seawater salinities 
 

Plant height increment (Fig. 5.1A), change in number of leaves (Fig. 5.1B) and 

chlorophyll content (Fig. 5.1C) were highest in the control and significantly lower in the 

oiled treatments at 10% and 50% seawater. Decreases in these parameters with oiling 

were higher at 50% compared to 10% seawater. 

 

B. gymnorrhiza 
 

The effects of seawater salinity in the absence of oil 
 

In the controls, plant height increment (Fig. 5.2A) and change in number of leaves (Fig. 

5.2B) were highest in 10% seawater and significantly lower in 50% seawater, by 42% 
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and 31%, respectively. There were no significant differences in chlorophyll content 

between the 10% and 50% seawater treatments (Fig. 5.2C). 

 

The effects of oiling at different seawater salinities 
 

Plant height increment (Fig. 5.2A) and change in number of leaves (Fig. 5.2B) were 

highest in the control and significantly lower in the oiled treatments at 10% and 50% 

seawater. Decreases in these parameters with oiling were higher at 50% compared to 

10% seawater. 

 

There were no differences in chlorophyll content (Fig. 5.2C) between the oiled 

treatment and control at 10% seawater. In the oiled treatments, decreases in 

chlorophyll content were higher at 50% compared to 10% seawater. 

 

R. mucronata 
 

The effects of seawater salinity in the absence of oil 
 

In the controls, plant height increment (Fig. 5.3A), change in number of leaves (Fig. 

5.3B) and chlorophyll content (Fig. 5.3C) were highest in 10% seawater and 

significantly lower in 50% seawater by 52%, 40% and 24%, respectively.  

 

The effects of oiling at different seawater salinities 
 

Plant height increment (Fig. 5.3A), change in number of leaves (Fig. 5.3B) and 

chlorophyll content (Fig. 5.3C) were highest in the control and significantly lower in the 

oiled treatments at 10% and 50% seawater. Decreases in number of leaves and 

chlorophyll content with oiling were higher at 50% compared to 10% seawater. 
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Fig. 5.1 Effects of oil at different salinities on plant height (A), number of leaves (B) and 

chlorophyll content index (CCI) (C) in A. marina. Measurements were taken monthly for 

12 months in control and oiled treatments. Means ± standard error are given, n = 4. 

Bars with different letters are significantly different at P ≤ 0.05 using two-way ANOVA 

and Tukey’s multiple comparisons test. 

A 

B 

C 
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Fig. 5.2 Effects of oil at different salinities on plant height (A), number of leaves (B) and 

chlorophyll content index (CCI) (C) in B. gymnorrhiza. Measurements were taken 

monthly for 12 months in control and oiled treatments. Means ± standard error are 

given, n = 4. Bars with different letters are significantly different at P ≤ 0.05 using two-

way ANOVA and Tukey’s multiple comparisons test. 
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Fig. 5.3 Effects of oil at different salinities on plant height (A), number of leaves (B) and 

chlorophyll content index (CCI) (C) in R. mucronata. Measurements were taken 

monthly for 12 months in control and oiled treatments. Means ± standard error are 

given, n = 4. Bars with different letters are significantly different at P ≤ 0.05 using two-

way ANOVA and Tukey’s multiple comparisons test. 

A 

B 

C 



189 
 

5.3.2 The effects of salinity and oil on concentration of ions in A. marina  
 

In all treatments, the dominant cation in the leaves was Na+.  

 
The effects of different seawater salinities in the absence of oil 
 

In the absence of oil, concentration of Na+ (Fig. 5.4A) was least in 0% seawater and 

higher in 10% seawater by 58%, while there were no significant differences in 

concentrations of K+ (Fig. 5.4B), Ca²+ (Fig. 5.5A) and Mg²+ (Fig. 5.5B). In the absence 

of oil, concentrations of Na+, K+, Ca²+ and Mg²+ increased significantly with salinity 

increase from 0% to 50% seawater by 80%, 55%, 67% and 56%, respectively.  

In the absence of oil, concentrations of Na+, Ca²+ and Mg²+ increased significantly with 

salinity increase from 10% to 50% seawater by 53%, 51% and 46%, respectively, while 

there was no significant difference in the concentration of K+. In the absence of oil, 

Na+/K+ ratios were least in 0% seawater (0.83), 1.36 in 10% and 1.91 in 50% seawater 

(Fig. 5.6). 

 

The effects of oiling at different seawater salinities 
 

Oiling decreased the concentration of K+ (Fig. 5.4B) by 75% in 10% seawater 

compared to the control while there were no significant differences in the 

concentrations of Na+ (Fig. 5.4A), Ca²+ (Fig. 5.5A) and Mg²+ (Fig. 5.5B). Oiling 

increased the concentration of Na+ in 50% seawater by 41%, compared to the control 

while concentrations of K+, Ca²+ and Mg²+ decreased by 72%, 100% and 100%, 

respectively.  

 
In the oiled treatments, the concentration of Na+ increased by 65% with increase in 

salinity from 0% to 10% seawater while there were no significant differences in 

concentrations of K+, Ca²+ and Mg²+. In the oiled treatments, the concentration of Na+ 

was least in 0% seawater and higher in 50% seawater by 81%, while there were no 

significant differences in the concentrations of K+, Ca²+ and Mg²+. In oiled treatments, 

the concentration of Na+ increased by 45% with increase in salinity from 10% to 50% 

seawater while there were no significant differences in the concentrations of K+, Ca²+ 

and Mg²+. Na+/K+ ratios in oiled treatments in 0%, 10% and 50% seawater were 2.33, 

9.78 and 9.09, respectively (Fig. 5.6). 
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Fig. 5.4 Effects of oil at different salinities on the concentration of Na+ (A) and K+ (B) in 

A. marina after three weeks of treatment. Means ± standard error are given, n = 4. Bars 

with different letters are significantly different at P ≤ 0.05 using two-way ANOVA and 

Tukey’s multiple comparisons test. 
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Fig. 5.5 Effects of oil at different salinities on the concentration of Ca²+ (A) and Mg²+ (B) 

in A. marina after three weeks of treatment. Means ± standard error are given, n = 4. 

Bars with different letters are significantly different at P ≤ 0.05 using two-way ANOVA 

and Tukey’s multiple comparisons test. 
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Fig. 5.6 Effects of oil at different salinities on the Na+/K+ ratio in A. marina after three 

weeks of treatment. Means ± standard error are given, n = 4. Bars with different letters 

are significantly different at P ≤ 0.05 using two-way ANOVA and Tukey’s multiple 

comparisons test. 
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5.3.3 The effects of salinity and oil on salt secretion in A. marina 
 
The effects of different seawater salinities in the absence of oil 
 

There were no significant differences in rates of secretion of Na+, K+ (Figs. 5.7A and B), 

Ca²+ and Mg²+ (Figs. 5.8A and B) between 0% and 10% seawater. 

 

In the 50% seawater treatment, rates of secretion of Na+ and Mg²+ increased by 67%, 

and 63%, respectively, compared to 10% seawater. There were no significant 

differences in rates of secretion of K+ and Ca²+ between the 10% and 50% seawater 

treatments. 

 

In the 50% seawater treatment, rates of secretion of Na+, K+, Ca²+ and Mg²+ increased 

significantly by 78%, 43%, 52% and 75%, respectively, compared to 0% seawater. 

 

The effects of oiling at different seawater salinities 
 

There were no significant differences in rates of secretion of Na+, K+ (Figs. 5.7A and B), 

Ca²+ and Mg²+ (Figs. 5.8A and B) between the oiled and control treatments at 0% or 

10% seawater. 

 

Oiling decreased rates of secretion of Na+, K+, Ca²+ and Mg²+ in 50% seawater by 60%, 

76%, 68% and 78%, respectively, compared to the control.  

 

There were no significant differences in rates of secretion of Na+, K+, Ca²+ and Mg²+ in 

the oiled treatments at 0%, 10% or 50%. 
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Fig. 5.7 Effects of oil at different salinities on secretion of Na+ (A) and K+ (B) in A. 

marina after three weeks of treatment. Means ± standard error are given, n = 4. Bars 

with different letters are significantly different at P ≤ 0.05 using two-way ANOVA and 

Tukey’s multiple comparisons test. 
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Fig. 5.8 Effects of oil at different salinities on secretion of Ca²+ (A) and Mg²+ (B) in A. 

marina after three weeks of treatment. Means ± standard error are given, n = 4. Bars 

with different letters are significantly different at P ≤ 0.05 using two-way ANOVA and 

Tukey’s multiple comparisons test. 
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5.3.4 The effect of oil on concentrations of ions in A. marina during the day and 
night          
           
Sodium accumulated in the leaves in oiled treatments during the day and night.  

 

 
Light experiment 
 

In the oiled treatment, the concentration of Na+ was 42% higher compared to the 

control while concentrations of K+, Ca²+ and Mg²+ were significantly lower by 74%, 48% 

and 78%, respectively (Fig. 5.9).  

 

Na+/K+ ratios were 1,21 in the control and 8,17 in the oiled treatment (Fig. 5.11). 

 
 
Dark experiment 
 

In the oiled dark treatment, the concentration of Na+ was 73% higher compared to the 

control while concentrations of K+, Ca²+ and Mg²+ were significantly lower by 68%, 60% 

and 71%, respectively (Fig. 5.10).  

 

Na+/K+ ratios were 1,33 in the control and 7,63 in the oiled treatment (Fig. 5.12). 
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Fig. 5.9 Effects of oil on the concentration of Na+ (A), K+ (B), Ca²+ (C) and Mg²+ (D) in 

A. marina in the light experiment after seven days of treatment, C = control and O = 

oiled. Means ± standard error are given, n = 4. Bars with different letters are 
significantly different at P ≤ 0.05 using unpaired t-tests. 
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Fig. 5.10 Effects of oil on the concentration of Na+ (A), K+ (B), Ca²+ (C) and Mg²+ (D) in 

A. marina in the dark experiment after seven days of treatment, C = control and O = 

oiled. Means ± standard error are given, n = 4. Bars with different letters are 
significantly different at P ≤ 0.05 using unpaired t-tests. 
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Fig. 5.11 Effects of oil on the Na+/K+ ratio in A. marina in the light experiment after 

seven days of treatment, C = control and O = oiled. Means ± standard error are given, 
n = 4. Bars with different letters are significantly different at P ≤ 0.05 using unpaired t-

tests. 

 

 

             
Fig. 5.12 Effects of oil on the Na+/K+ ratio in A. marina in the dark experiment after 

seven days of treatment, C = control and O = oiled. Means ± standard error are given, 

n = 4. Bars with different letters are significantly different at P ≤ 0.05 using unpaired t-

tests. 
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5.3.5 The effect of oil on salt secretion in A. marina during the day and night 
 

Salt secretion was highest in the control and significantly lower in the oiled treatments 

in both light and dark experiments. 

 

 
Light experiment 
 

In the light experiment, rates of secretion of Na+, K+, Ca²+ and Mg²+ were highest in the 

control and significantly lower in the oiled treatment by 54%, 56%, 67% and 49%, 

respectively (Fig. 5.13).  

 

 
Dark experiment 
 

In the dark experiment, rates of secretion of Na+, K+, Ca²+ and Mg²+ were highest in the 

control and significantly lower in the oiled treatment by 56%, 69%, 52% and 66%, 

respectively (Fig. 5.14).  

 

 

In the absence of oil, rate of secretion of Na+ was 31% higher in the dark compared to 

the light while there were no significant differences in rates of secretion of K+, Ca²+ and 

Mg²+. There were no significant differences in the rates of secretion of Na+, K+, Ca²+ 

and Mg²+ in the oiled treatment between light and darkness.  
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Fig. 5.13 Effects of oil on secretion of Na+(A), K+ (B), Ca²+ (C) and Mg²+ (D) in A. marina 

in the light experiment after seven days of treatment, C = control and O = oiled. Means 

± standard error are given, n = 4. Bars with different letters are significantly different at 

P ≤ 0.05 using unpaired t-tests. 
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Fig. 5.14 Effects of oil on secretion of Na+(A), K+ (B), Ca²+ (C) and Mg²+ (D) in A. marina 

in the dark experiment after seven days of treatment, C = control and O = oiled. Means 

± standard error are given, n = 4. Bars with different letters are significantly different at 
P ≤ 0.05 using unpaired t-tests. 
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5.4 Discussion 
 
5.4.1 The effects of salinity and oil on growth 
 

Optimal growth of mangroves is in the range of 10% to 45% seawater (Aziz and Khan, 
2001; Ye et al., 2005). Seawater salinity greater than 45% leads to reduced growth 

(Naidoo, 2006; Patel et al., 2010; Hoppe-Speer et al., 2011).  

 

Growth in all species was higher at 10% seawater and decreased at 50%. In this study, 

salt stress at 50% seawater probably decreased metabolism and cell division leading to 
reduced growth as reported previously (Hayashi and Murata, 1998; Hasegawa et al., 

2000; Parida and Das, 2005). Seawater salinity greater than 40% reduced growth in A. 

marina (Patel et al., 2010), A. corniculatum and A. ilicifolius (Ye et al., 2005). Optimal 

growth for Rhizophora apiculata Bl., Rhizophora stylosa Griff., R. mangle (Aziz and 

Khan, 2001; Biber, 2006) and R. mucronata (Hoppe-Speer et al., 2011) was reported to 

be between 23% and 40% seawater and reduced at higher salinities. Optimal growth 
for B. gymnorrhiza was reported to be between 30% and 40% seawater and reduced at 

higher salinities (Basak et al., 2004).  

 

The accumulation of inorganic ions such as Na+ and Clˉ in cell walls reduces cell 

turgor, expansion and growth (Parida and Das, 2005). Although the regulation of water 

loss through stomatal control in mangroves reduces the amount of salt transported to 

the foliage (Naidoo and von Willert, 1995), salinity greater than 40% seawater 

decreases stomatal conductance, thereby decreasing transpiration and growth 

(Youssef and Ghanem, 2002; Parida and Das, 2005). The results of this study support 

previous reports that 50% seawater reduces growth in the three species investigated.  

 
The number of leaves in B. gymnorrhiza and R. mucronata were higher at 10% 

seawater and decreased at 50%. This was probably due to leaf-shedding, a coping 
mechanism during salt stress in halophytes (Krauss et al., 2008). Salt excluders like B. 

gymnorrhiza and R. mucronata accumulate salt in older leaves which are then shed 

(Steinke, 1999). Leaf production in R. mucronata was previously reported to decrease 

at a salinity of 47% seawater (Hoppe-Speer et al., 2011).  
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There were no significant differences in number of leaves and chlorophyll content in A. 

marina between 10% and 50% seawater. Avicennia marina is a highly salt tolerant 

pioneer species (Naidoo, 2006). In this study, A. marina was more salt tolerant than B. 

gymnorrhiza and R. mucronata probably because of the ability to secrete salts via 

glands in the leaves (Ye et al., 2005; Jayatissa et al., 2006; Patel et al., 2010). 

Additionally, ion exclusion at the root level in A. marina was reported to be an effective 

barrier for restricting solute transport to the leaves (Youssef and Ghanem, 2002; 
Naidoo et al., 2014).  

 
Increase in salinity from 10% to 50% seawater reduced chlorophyll content in R. 

mucronata. In mangroves under salt stress, chlorophyll content decreases as a result 

of chlorophyll degradation (Steinke et al., 1993; Flores-Santiago et al., 2013). At 50% 

seawater, decreases in osmotic potential probably caused Na+ ions to leak into the 
cytosol (Papageorgiou et al., 1998) disrupting photosynthesis (Allakhverdiev et al., 

2000) by decreasing chlorophyll content (Parida et al., 2003). Reduced chlorophyll 

content reduces energy trapping efficiency, carbon fixation and ultimately growth 
(Parida and Das, 2005; Naidoo et al., 2011; Khaleghi et al., 2012). 

 

Greatest reduction in growth occurred when plants were exposed to two stressors in 

combination, (salinity of 50% seawater and oil). Oil decreases sediment permeability 
and dissolved oxygen concentrations (Suprayogi and Murray, 1999; Pereira et al., 

2002) which exacerbates salt stress. Oil probably disrupted ion and water relations that 
further reduced plant growth as reported previously (Gilfillan et al., 1989; Pezeshki et 

al., 2000). High Na+ concentrations in the soil prolong the residence time of oil by 

inhibiting the metabolic activity of microorganisms that degrade PAHs (Walker and 
Colwell, 1975) thereby increasing toxicity (Rhykerd et al., 1995).  

 

Salinity of 50% seawater, in combination with oil, reduced plant height, number of 

leaves and chlorophyll content in all species. Oil probably damaged root cell walls and 

membranes that led to excessive salt accumulation in plant tissues resulting in reduced 
growth (Page et al., 1985). Salinity of 40% seawater in combination with oil caused 

reduced growth and biomass in the grass, Paspalum conjugatum Bergius (Ibemesim, 

2010). In previous studies, B. gymnorrhiza and A. corniculatum exhibited reduced 

growth and biomass and increased SOD activity in sediment oiled treatments at 35% 
compared to 15% seawater (Ke et al., 2011b). In the oiled treatments, R. mucronata 
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exhibited necrosis of leaves and propagules, in addition to leaf shedding. Oil probably 

caused sub-lethal biochemical and molecular damage and mortality of cells (Duke and 
Watkinson, 2002; Zhang et al., 2007a).  

 

Decreased chlorophyll content was probably a result of PAHs negatively affecting the 
photosynthetic apparatus of chloroplasts (Naidoo et al., 2010; Yin et al., 2011) and 

degrading chlorophyll (Huang et al., 1996). In maize plants, lubricating oil degraded the 

chloroplast structure (Grijalbo et al., 2013). Furthermore, oil causes Na+ to accumulate 

in leaves of mangroves (Page et al., 1985; Gilfillan et al., 1989). High concentrations of 

Na+ in leaf cells induce swelling of thylakoids, disintegration of the lamellae and 
chloroplast envelope, thereby reducing photosynthetic capacity (Naidoo et al., 2011). 

 
5.4.2 The effects of salinity and oil on concentrations of ions in A. marina  
 

Concentrations of Na+, K+, Ca²+ and Mg²+ in leaves increased with increase in salinity 

from 0% to 50% seawater. The accumulation of inorganic ions is commonly observed 
in mangroves at high salinity (Naidoo, 1985; Gilfillan et al., 1989; Parida and Das, 

2005). Salinity of 50% seawater probably caused roots to absorb greater amounts of 

salt resulting in an increase in transportation of ions from root to shoot via the 
transpiration stream as reported previously (Tattini et al., 1995). Many studies have 

shown that A. marina accumulates more Na+ ions than other mangroves such as R. 

stylosa, R. mucronata and B. gymnorrhiza growing in nutrient solutions with exactly the 

same salt composition (Clough, 1984; Naidoo, 1985; Medina, 1999).  

 
Salt secretors like A. marina absorb salt from the soil to maintain a water potential that 

is more negative than the soil, thereby increasing ion concentrations in root and leaf 
cells (Papageorgiou et al., 1998). This creates a higher osmotic potential difference 

between plant cells and soil water enabling water to enter cells through the plasma 
membrane via osmosis (Parida et al., 2004). Furthermore, A. marina possesses a thin 

endodermis that allows a greater amount of salt to pass into root cells than other 
mangroves (Pi et al., 2009).  

 

Concentrations of Na+ in leaves were significantly higher in oiled treatments compared 

to the controls. This probably occurred because oil causes excessive Na+ accumulation 

in plant tissues due to damaged root cell walls and membranes, as reported previously 
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(Page et al., 1985; Gilfillan et al., 1987; 1989; Ke et al., 2011b). Mangroves can control 

the amount of salt entering the plant by ultrafiltration that occurs at the interface of the 
root cell surface (Youssef and Ghanem, 2002; Basyuni et al., 2012). Root tissue 

therefore, plays a pivotal role in controlling the content of ions such as Na+ in the whole 
plant (Munns, 2005). Ultrafiltration in A. marina is the most important process for 

reduction of salt uptake in which 80% of salt absorbed by the root through the 

transpiration stream is excluded (Medina, 1999; Youssef and Ghanem, 2002). Salt 

glands remove 40% of the remaining quantities of salt that enter the shoot, which is 8% 
of that eliminated at the root level (Waisel et al., 1986; Ball, 1988).  

 
Oil disrupts the cellular lipid membranes in root tissues (Ye and Tam, 2007; Zhang et 

al., 2007a) allowing excess salt to enter the foliage. Medina (1999) found that A. 

marina root cells may have more permeable plasma membranes (based on greater salt 

concentrations in the xylem sap) than other mangroves including Rhizophora stylosa. 

PAHs are lipophilic and accumulate in root cell plasma membranes (Kang et al., 2010) 

disrupting the lipid components (phytosterols) that regulate ion permeability (Hartmann, 

1998). Oil-induced permeability of the plasma membrane probably reduced the 
tolerance of A. marina to 50% seawater.  

 

In oiled treatments, the Na+/K+ ratios were significantly higher (> 7) than the controls (< 

2), due to increased Na+ and decreased K+ concentrations. The concentrations of Na+ 

and K+ ions are important in determining the level of oil-induced stress in mangroves 
(Gilfillan et al., 1987). High Na+ uptake interferes with the absorption of other nutrient 

ions, especially K+, leading to K+ deficiency (Ball et al., 1987). High Na+/K+ ratios (4 - 7) 

have been reported previously for mangroves under salt stress (Waisel et al., 1986; 

Parida and Das, 2005; Naidoo, 2010). In oil-damaged roots, the concentration of Na+ 
was elevated in A. marina leading to deleterious effects as described previously for 

other salt-secretors (Gilfillan et al., 1987; 1989; Parida and Das, 2005). 

 
Oil has been reported to disrupt Na+/K+ ratios. Page et al. (1985) reported a Na+/K+ ratio 

of 8.5 in the leaves of sediment oiled mangroves. High Na+/K+ ratios were found in the 
leaves of sediment oiled Spartina alterniflora (a salt-secretor) (Gilfillan et al., 1989) and 

other grasses (Ibemesim, 2010) under salt stress. K+ is a major cation that serves as a 
reference for Na+ accumulation in plant tissues (Page et al., 1985). High Na+/K+ ratios 

in mangroves result in Na+ toxicity (Sümer et al., 2004; Wakeel et al., 2011) and 
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impaired cell metabolism (Parida and Das, 2005; Patel et al., 2010; Naidoo, 2010). The 

high Na+/K+ ratios in this study are probably a result of oil-induced increases in 
permeability of the root plasma membranes (Page et al., 1985; Gilfillan et al., 1989). 

 
Oiling significantly reduced the concentrations of K+, Ca²+ and Mg²+ in the leaves of A. 

marina. High Na+ absorption disrupts the absorption of other nutrient ions, such as K+, 

Ca²+ and Mg²+ resulting in deficiency of these ions, as reported previously (Parida and 

Jha, 2010). Similar results were obtained by Suprayogi and Murray (1999) in which 

Kuwait crude oil added to the sediment significantly reduced the concentrations of Mg²+ 
and K+ in A. marina. Magnesium plays an important role in chlorophyll structure and in 

the export of photosynthates (Marschner and Cakmak, 1989). The accumulation of Na+ 

and the subsequent decrease in K+, Ca²+ and Mg²+ leads to a reduction in quantum 
yield of PSII thereby decreasing photosynthesis (Ball et al., 1987; Parida et al., 2003).  

 
5.4.3 The effects of oil on salt secretion in A. marina  
 

Salt secretion was higher in 50% seawater compared to 10%. The rate of secretion 
increases as the salt content in the foliage increases (Waisel et al., 1986; Naidoo and 

von Willert, 1995). Seawater salinity greater than 40% increased the amount of salt 

entering the roots and therefore increased salt secretion, as reported previously 
(Jayatissa et al., 2006; Patel et al., 2010). Salt glands are important in controlling the 

ionic composition of photosynthesizing leaves (Waisel et al., 1986). Some reports 

suggest that the salt glands of A. marina are more efficient at secreting salts than those 

of other salt secreting mangroves such as Aegiceras corniculatum (Gordon, 1993; Ye 

et al., 2005; Jayatissa et al., 2006).  

 

In this study, oiling reduced leaf salt secretion. Oil probably damaged salt glands 

resulting in accumulation of salt in tissues as suggested previously (Youssef and 
Ghanem 2002; Ke et al., 2011b). Youssef and Ghanem (2002) found that volatile 

fractions of Arabian crude oil reduced salt secretion in A. marina. Their study 

suggested that oil damaged the plasma membranes of the salt glands decreasing 

secretion. Oil could have displaced phytosterols in the plasma membranes of salt 

glands reducing their capacity to secrete salt, as described previously for root cells 
during salt exclusion (Gilfillan et al., 1989; Zhang et al., 2007a).  
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Oil taken up by roots accumulates in leaf tissue via the transpiration stream (Meudec et 

al., 2006; 2007). PAHs detected in mesophyll cells of spruce needles disrupted cell 

metabolism (Viskari et al., 2000). PAHs probably entered salt gland membranes from 

surrounding mesophyll cells, by diffusion across cellular membranes and through 

plasmodesmata (Orcutt and Nielsen, 2000). Furthermore, oil passed through 
intercellular spaces and aerenchyma channels in leaves of Phragmites australis, 

whereas water normally does not (Armstrong et al., 2009). The lipophilic nature of 

PAHs could have caused them to gravitate towards lipid components of the cell wall 

and membrane of salt glands as described previously for root cells (Gao and Zhu, 

2004; Meudec et al., 2006; 2007).  

 

PAHs could have decreased plasma membrane integrity of salt glands. PAHs change 

membrane structure in microorganisms by causing expansion and increased fluidity, 
compromising the capacity of the membrane to regulate ions (Sikkema et al., 1994). 

This adversely affects the functioning of membranes altering homeostasis (e.g. pH 
balance, ion permeability, and respiration) (Gauthier et al., 2014). PAHs such as 

fluoranthene and pyrene were reported to decrease membrane integrity in trout cells 
(Schirmer et al.,1998). PAHs could have adversely affected the function of the plasma 

membrane in salt glands as an ion-selective barrier and matrix for important enzymes, 
as reported previously for the mussel, Mytilus edulis (Antoun, 2011).  

 

PAHs are known to be cytotoxic (Kang et al., 2010). Certain salt gland characteristics 

could make them sites for PAH accumulation and thus toxicity. The salt glands of A. 

marina comprise of collecting, stalk and secretory cells (Salama et al., 1999). The stalk 

and secretory cells contain numerous minute vacuoles (Drennan et al., 1987) while the 

collecting cells have large central vacuoles. As the leaf matures, the glands of the 

adaxial and abaxial surfaces become highly vacuolated (Drennan and Berjak, 1982). 

Previous chemical studies demonstrated that PAHs accumulate in vacuoles of ryegrass 
root and leaf cells disrupting cell metabolism (Gao and Zhu, 2004; Wild et al., 2005). 

Accumulation of PAHs in salt gland vacuoles could have had a similar effect. 

 

Furthermore, salt reaching the leaves is accumulated in vacuoles in mangroves as well 
as other halophytes (Harvey et al., 1981). This ensures that salt sensitive enzymes in 

the dense cytoplasm are isolated from high salt concentrations (Medina, 1999). 

Organic osmolytes, such as cyclitols and amino acids are synthesized at high Na+ 
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concentrations to ensure cytoplasm hydration for enzyme function (Medina, 1999) as 
described previously in mangroves (Popp et al., 1984). Oil probably accumulated in the 

vacuoles of salt glands resulting in Na+ accumulation in the cytoplasm, leading to 

dehydration and destruction of enzymes and decreased salt secretion. 

 

The stalk and secretory cells of salt glands contain numerous endoplasmic reticulum 
and mitochondria (Drennan et al., 1987). Kang et al. (2010) found that phenanthrene 

and pyrene primarily accumulated in organelles of ryegrass roots. PAHs could have 
accumulated in the organelles of stalk and secretory cells. Drennan et al. (1987) 

suggested that salt could move from the stalk cell to the secretory cells via the 

plasmodesmata. The plasmodesmata could provide a pathway (Orcutt and Nielsen, 

2000) for PAHs to the stalk and secretory cells of the salt glands. PAHs could have 

accumulated in organelles such as mitochondria disrupting sites of energy formation, 

thereby decreasing salt secretion. The large number of mitochondria and endoplasmic 

reticulum in the gland cells suggest that salt secretion is an energy requiring process 
(Drennan et al., 1987). In order to maintain ion selectivity and membrane stability, large 

amounts of photosynthetic energy are required for salt secretion (Medina, 1999). 

Reduced chlorophyll content and reduced energy trapping efficiency by oil could have 

contributed to decreased salt secretion. 

 

The outer walls of stalk and secretory cells of salt glands are surrounded by a cutinized 

layer that creates a large collecting compartment (Salama et al., 1999). PAHs could 

have degraded this layer (entering the collecting compartment), as reported previously 

for the cuticle of spruce needles (Sauter and Pambor, 1989). Furthermore, this 
collecting compartment is a cavity (Salama et al., 1999; Drennan et al., 1987) which 

could also serve as sites of oil accumulation and toxicity within the salt gland. 

 

In the absence of oil, Na+ secretion was higher during the night compared to the day as 
reported previously (Drennan and Pammenter, 1982; Waisel et al., 1986; Naidoo, 

2010). The salt that is accumulated during the day is secreted at night (Parida and Das, 

2005). In oiled treatments, there were no differences in salt secretion during the day 

and night, probably due to oil-damage to the salt glands. 
 
This study demonstrated that the adverse effects of 50% seawater were exacerbated 

by the presence of oil, resulting in reduced growth as described previously (Youssef, 
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2002; Ke et al., 2011b). This study also showed that Na+ accumulated in leaf cells of A. 

marina due to oiling. The salt glands of A. marina are highly selective and eliminate 

large quantities of salt (Jayatissa et al., 2006; Patel et al., 2010; Naidoo, 2010). 

However, oil probably damaged the plasma membranes and organelles of collecting, 

stalk and secretory cells of salt glands. Oil probably impaired the functioning of the salt 

glands at 50% seawater leading to accumulation of Na+ and disruption of the uptake of 

essential elements such as K+, Ca²+ and Mg²+.  
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Chapter 6 
The effects of oil on soil meiofauna 

  
 
Abstract 
 

In this study, the effects of oil on species abundance, richness and community 

structure of free living nematodes were investigated in microcosms. Mangrove 

sediment containing natural nematode assemblages were collected from the Isipingo 

estuary and transferred in buckets to an airconditioned glasshouse. Microcosms (350 

ml plastic jars) were filled with mangrove sediment and subjected to oiling (with or 

without fertiliser) for four weeks. In the oiled treatments 15 ml oil and 5 ml/L fertiliser 

were added to 200 g soil. Fertiliser consisted of N, P and K (3:2:5). Nematodes were 

extracted after the experimental period and identified to genus or species level. In the 

unfertilised oiled treatment, nematode abundance and species richness were 

significantly reduced by 87% and 53%, respectively, compared to the control. In the 

fertilised oiled treatment, nematode abundance and species richness increased by 

56% and 30% respectively. Five species, Monhystrella sp., Prodesmodora sp., Plectus 

sp., Tobrilus sp. and Fictor sp. were present in the control but absent in oiled 

treatments and characterised as oil-intolerant. The species from the family 

Leptolaimidae increased in the unfertilised oiled treatment by 78% compared to the 

control and was characterised as opportunistic. In all treatments, the dominant species 
was Ethmolaimus sp. The seven species present in the oiled treatments were 

characterised as oil-resistant (i.e. tolerant to oiling) and resilient. Species such as 
Rhabditis sp., Koerneria sp. and Rotylenchus sp. survived oiling due to the addition of 

fertiliser. Furthermore, the addition of fertiliser increased reproduction in species from 

the family Leptolaimidae. Out of the 16 nematode taxa identified in this study; seven 

were oil-resistant and nine oil-intolerant. This study demonstrated that oiling eliminated 

species that were oil-intolerant and favoured those that were resistant and resilient, 

thereby altering the free living nematode community structure. 

 
Keywords: 
 

Community structure, fertiliser, nematode abundance, oil, species richness 
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6.1 Introduction 
 
Coastal marine ecosystems around the world are contaminated by PAHs (Louati et al., 

2001). The major sources of PAH contamination in the oceans are spills of crude oil, 

discharges of refined fuels and offshore production (Kennish, 1992). Changes in the 

community structure of macro- and meiofauna have been widely used to determine the 
effects of anthropogenic contamination in aquatic environments (Munawar et al., 2003; 

Rubal et al., 2009). Many studies have investigated the impacts of PAHs on benthic 

communities around the world (Gesteira and Dauvin, 2000; Suderman and Thistle, 
2003; Mazzella et al., 2007).  

  

Oil contamination in macrofauna has been more commonly studied because larger 

organisms are easier to sample and identify (Netto and Gallucci, 2003). However, it is 

important to investigate soil meiofauna and their responses to oil contamination 

because these organisms are closely associated with the sediment (Kennedy and 

Jacoby, 1997). Soil meiofauna therefore constitute an important link in the benthic food 

web by providing ecosystem services such as sediment bio-turbation, recycling of 

organic matter and consumption of bacteria and microalgae (Christie and Berge, 1995; 
Coull et al., 1995). Additionally, meiofauna are an important food source for juvenile 

fish that use intertidal habitats as nurseries (Nozais et al., 2005; Cibic et al., 2009).  

 

Soil meiofauna such as nematodes are a widespread, taxonomically and functionally 
diverse group (Albuquerque et al., 2007; Wei et al., 2012). Nematode communities are 

common biological indicators of soil health because of their role in essential ecological 
processes including nutrient cycling and decomposition (Ingham et al., 1985; Beare et 

al., 1992). Nematodes are an ideal group for microcosm experiments because they are 

small and abundant in soil (Suderman and Thistle, 2003). Furthermore, nematodes 

reproduce continuously and are sediment bound throughout their life history which 
makes them easy to maintain under experimental conditions (Neher, 2001; Blakely et 

al., 2002; Gyedu-Arabio and Baird, 2006).  

 

Nematodes exhibit rapid responses to many toxicants because of their short life cycles 
(Guo et al., 2001; Santos et al., 2010). Many studies have investigated the effects of 

PAHs on natural free-living nematodes in field (Feder and Blanchard, 1998; Thompson 
et al., 2007) and laboratory experiments (Beyrem et al., 2007; Lindgren et al., 2012). 
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The intensity of oil pollution effects are dependent on the type and quantity of the oil 
(Mahmoudi et al., 2005), the bioavailability of PAHs in the soil (Langston and Spence, 

1994), the type of sediment (Di Toro et al., 1991) and on the nematode species (Powell 

et al., 2005). 

 

The majority of spilled oil that is not cleaned by human intervention undergoes 

degradation by soil microorganisms (Leahy and Colwell, 1990). The rate of oil 
degradation is limited by low levels of biologically available N and P (Hozumi et al., 

2000). Bioremediation of oil spills has involved the use of fertilisers (Head and 

Swannell, 1999; Nikolopoulou and Kalogerakis, 2013) which are effective in 

biodegradation of PAHs because they maintain nutrient concentrations at high levels in 
contaminated sediments (Xu et al., 2005). The addition of fertilisers can increase the 

rate of oil degradation in sediments by three to five times (Atlas, 1995; Swannell et al., 

1996). Studies on the responses of meiofauna to the addition of fertilisers in oil 
contaminated sediments are limited (Schratzberger et al., 2003; Sundbäck et al., 

2010). 

 

Studies on oil pollution in South Africa have focussed on the impact of spills on beach 
meiofauna (Fricke et al., 1981), shellfish (O’Donoghue and Marshall, 2003; Degger et 

al., 2011) and penguins (Wolfaardt et al., 2009). Most studies have concentrated on the 

effects of heavy metals on meiofauna (Watling and Watling, 1988; Gyedu-Ababio et al., 

1999; Gyedu-Ababio, 2011). Studies on the effects of PAHs on nematodes in South 

African mangrove sediments are non-existent. This study aims to use experimental 

microcosms to investigate the effects of oil, with or without fertiliser, on natural 

nematode abundance, species richness and community structure. 
 
 
6.2 Materials and methods 
 
6.2.1 Collection of nematodes 
 

Mangrove sediment containing natural nematode assemblages were collected from the 

Isipingo estuary. Sediment was removed from a depth of 15 cm, transferred to a bucket 

and transported to an airconditioned glasshouse. Sediments were homogenised by 
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gentle stirring with a spatula before they were used for oil contamination experiments. 

Soil characteristics for the Isipingo estuary are indicated in Table 2.2, Chapter 2. 
  
6.2.2 Experimental microcosms 
 
Microcosms consisted of 350 ml plastic jars, sterilized with ethanol, washed with 

double distilled water and filled with 250 g of sediment. Microcosms were subjected to 

control and oiled treatments (with or without fertiliser). There were four replicates in 

each treatment.  

 

Mass of wet sediments was determined on a Toledo scale. Oiled treatments consisted 

of 200 g untreated natural mangrove sediment and 50 g oil-treated sediment. Sediment 

used for oil contamination was frozen overnight in a chest freezer at -20 °C and thawed 

the next day. This process was repeated over three days in order to kill any existing 
microorganisms (Austen et al., 1994). Fifty grams of the frozen and thawed sediment 

were contaminated by 15 ml of oil. The oil was mixed into the sediment with a spatula. 

In the control, 200 g untreated natural mangrove sediment and 50 g frozen and thawed 

sediment were combined.  

 

In the fertilised oiled treatment, 200 g untreated natural mangrove sediment and 50 g 

oil-treated sediment were combined with an organic liquid fertiliser (Biotrissol, 

Germany), the specifications of which are indicated in Table 6.1. Fertiliser (5 ml) was 

diluted with double distilled water (1 L) and the mixture sprayed onto the sediment 

surface weekly. All treatments were kept moist by spraying seawater at 10 psu daily 

onto the soil surface. Jars were unsealed throughout the duration of the experiment to 

allow for ventilation. Microcosms were maintained in a glasshouse at 25 °C (day) and 

18 °C (night) for four weeks. The properties of the bunker fuel oil used in this study are 

indicated in Table 2.1, Chapter 2.  
 
6.2.3 Nematode extraction 
 

Nematode extraction was undertaken with the centrifugal flotation method in which 

sucrose solution was the separating agent (Lackey and May, 1971). Live nematodes 

that passed through a 1 mm mesh sieve and retained on a 40 μm sieve were collected 

(Vitiello and Dinet, 1979). Nematodes were placed in 5% formalin and counted under a 
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LEICA MZ16 stereo microscope (Leica Microsystems, USA). Genus and species 

identification were undertaken with a compound oil immersion microscope (Olympus 

BH2, Japan) using the pictorial keys of Platt and Warwick (1983, 1988), and Warwick 

et al. (1998). 

 
 
6.3 Data analyses 
 
Means and standard errors were calculated for all measurements. Resulting data were 

tested for normality using the Kolmogorov-Smirnov test and subjected to two-way 

ANOVA and Tukey’s multiple comparisons test (P ≤ 0.05) using GraphPad Prism 

Version 6.05 (GraphPad Software, Inc., USA). Other data were subjected to one-way 

ANOVA and Tukey-Kramer multiple comparisons test (P ≤ 0.05) using MINITAB 

version 16 (Minitab Statistical Software, MINITAB Inc., USA). 

 

 

Table 6.1 

Specifications of fertiliser used in the study (Biogrow Chemicals, 2007).  

 
                                                               Value 

               

pH                                               6.4     

N                                          3   

P           %                                   2    

K       5     

Cu                                   10     

Fe                               3.2  

Mn         mgLˉ¹                    0.55   

Zn         0.2   

B       0.18     

Ca     50 

Mg  105 

S 85 

Na      100 
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6.4 Results 
 
As nematodes in mangroves in South Africa have not been investigated previously, 

most species were assigned to genus and some to family (Table 6.1).  

 

Species were ranked from highest dominance [1] (based on their abundance in each 

treatment), to lowest [5] (Table 6.1). Of the 15 species present in the control, 
Ethmolaimus sp. exhibited highest dominance (Fig. 6.2).  

 
6.4.1 Effects of oil on nematodes 
 
Nematode abundance (Fig. 6.1) and species richness (Fig. 6.2) were highest in the 

control and significantly lower in the unfertilised oiled treatment by 87% and 53%, 

respectively.  

 
In the unfertilised oiled treatment, Monhystera sp. (13%), Ethmolaimus sp. (40%) and 

species from the family Leptolaimidae (40%) exhibited the highest abundance. In the 
unfertilised oiled treatment, Hemicycliophora typical, Hemicycliophora ripa, 

Panagrolaimus sp., and species from the family Areaolaimida had similar abundance (2 

- 5%) (Fig. 6.2). The seven species present in the unfertilised oiled treatment were 
characterised as oil-resistant and resilient (Millward et al., 2004; Mahmoudi et al., 

2005). 

 
In the unfertilised oiled treatment, Ethmolaimus sp. and Monhystera sp. decreased in 

abundance by 33%, 58%, respectively, compared to the control (Fig. 6.2). 

 

In the unfertilised oiled treatment, abundance of species from the family Leptolaimidae 

increased by 79%, compared to the control and was characterised as opportunistic 
(Mahmoudi et al., 2005; Beyrem et al., 2010) (Fig. 6.2). 

 

The nine species present in the control but absent in the unfertilised oiled treatment, 
namely, Rhabditis sp., Monhystrella sp., Prodesmodora sp., Plectus sp., Desmodora 

sp., Tobrilus sp., Koerneria sp., Fictor sp., and Rotylenchus sp. (Fig. 6.2) were 

characterised as oil-intolerant (Mahmoudi et al., 2005; Beyrem et al., 2010). 
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Effects of oil on adults and juveniles 
 

In the unfertilised oiled treatment, adults of five species were present, namely, 

Ethmolaimus sp. (50%), Monhystera sp. (7%), Hemicycliophora ripa (4%) and species 

from the families Leptolaimidae (36%) and Areaolaimida (4%) (Fig. 6.3).  

 
Juvenile abundance of Monhystera sp. was highest in the control and significantly 

lower in the unfertilised oiled treatment by 50% (Fig. 6.4). In the unfertilised oiled 

treatment the species from the family Leptolaimidae exhibited the highest juvenile 

abundance (46%), while juveniles were absent in the control (Fig. 6.4). In the 
unfertilised oiled treatment, the juvenile abundance of Ethmolaimus sp. was 63% lower 

than the control (Fig. 6.4). 

 
6.4.2 Effects of oil with added fertiliser on nematodes 
 

Nematode abundance (Fig. 6.1) and species richness (Fig. 6.2) were highest in the 

control and significantly lower in the fertilised oiled treatment by 69% and 33% 

respectively.  

 

The addition of fertiliser to oiled treatments increased nematode abundance and 

species richness by 56% and 30%, respectively, compared to the unfertilised oiled 

treatment.  

 
In the fertilised oiled treatment, Ethmolaimus sp. (51%) and species from the family 

Leptolaimidae (27%), exhibited the highest abundance. In the fertilised oiled treatment, 
Monhystera sp., Hemicycliophora typica, Hemicycliophora ripa, Rhabditis sp., 

Panagrolaimus sp., Desmodora sp, and Rotylenchus sp. and Koerneria sp. had similar 

abundance (1 - 6%) (Fig. 6.2). 

 
Abundance of Ethmolaimus sp. and species from the family Leptolaimidae increased in 

the fertilised oiled treatment by 37% and 83% respectively, compared to the control 

(Fig. 6.2).  

 
Three species, namely, Rhabditis sp., Koerneria sp. and Rotylenchus sp. were absent 

in the unfertilised oiled treatment but present in the fertilised oiled treatment and in the 
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control and characterised as oil-sensitive (Mahmoudi et al., 2005; Beyrem et al., 2010) 

(Fig. 6.2). One species, Desmodora sp. was absent in the unfertilised oiled treatment 

and control but present in the fertilised oiled treatment.  

 
Five species, Monhystrella sp., Prodesmodora sp., Plectus sp., Tobrilus sp. and Fictor 

sp (Fig. 6.2) were absent in both oiled treatments but present in the control and  
characterised as oil-intolerant (Mahmoudi et al., 2005; Beyrem et al., 2010).  

 

Effects of oil with added fertiliser on adults and juveniles 
 

In the fertilised oiled treatment, adults of six species were present, namely, 
Ethmolaimus sp. (57%), the species from the family Leptolaimidae (32%), Monhystera 

sp. (4%), Desmodora sp. (2%), Koerneria sp. (4%) and Hemicycliophora ripa (2%) (Fig. 

6.3).  

 
In the fertilised oiled treatment, adult abundance of Ethmolaimus sp. and species from 

the family Leptolaimidae increased significantly by 44% and 75% compared to the 

control (Fig. 6.3). 

 
In the control, Monhystera sp. exhibited the highest juvenile abundance, which was 

60% lower in the fertilised oiled treatment (Fig. 6.4). In the fertilised oiled treatment, 

species from the family Leptolaimidae exhibited the highest juvenile abundance (25%), 

while juveniles were absent in the control (Fig. 6.4).  

 
In the fertilised oiled treatment, juveniles of Rhabditis sp. (8%) and Rotylenchus sp. 

(8%) were present, but absent in the unfertilised oiled treatment (Fig. 6.4). There were 
no significant differences in juvenile abundance of Ethmolaimus sp. between the 

treatments. Juveniles of species from the family Areaolaimida, Desmodora sp., and 

Koerneria sp. were absent in the control and both oiled treatments (Fig. 6.4).  
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Table 6.1 Species richness of nematodes from the Isipingo estuary after four weeks of 

treatment, ranked (1 - 5) according to abundance, C = control, O = unfertilised oiled, O 

+ F = fertilised oiled. 

                                                                                            
                                                                                                   Treatment                                                                                             
 
 Taxon                                      Abbreviation                C             O + F             O 
 
Ethmolaimus sp. E 1 1 1 
Monhystera sp. M1 2 3 2 
Leptolaimidae L 3 2 1 
Hemicycliophora typica H1 3 4 3 
Hemicycliophora ripa H2 5 4 3 
Panagrolaimus sp. P1 5 4 3 
Prodesmodora sp. P2 5 0 0 
Plectus sp. P3 5 0 0 
Areaolaimida  A 5 0 3 
Desmodora sp. D 0 4 0 
Tobrilus sp. T 5 0 0 
Koerneria sp. K 5 4 0 
Fictor sp. F 5 0 0 
Monhystrella sp. M2 4 0 0 
Rhabditis sp. R1 5 4 0 
Rotylenchus sp. R2 5 4 0 

  
 

 
 
Fig. 6.1 Effects of oil and added fertiliser on nematode abundance in mangrove 

sediment. Measurements were taken after four weeks of treatment, C = control, O + F 

= fertilised oiled, O = unfertilised oiled. Means ± standard error are given, n = 4. Bars 

with different letters are significantly different at P ≤ 0.05 using Tukey-Kramer multiple 

comparisons test. 
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Fig. 6.2 Effects of oil and added fertiliser on species richness in mangrove sediment. 

Measurements were taken after four weeks of treatment, C = control, O + F = fertilised 

oiled, O = unfertilised oiled. Species names on the X-axis are listed in Table 6.1 (E1 to 

R2). No bars indicate absence of species in treatment. Means ± standard error are 

given, n = 4. Bars with different letters are significantly different at P ≤ 0.05 using two-

way ANOVA and Tukey’s multiple comparisons test. 
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Fig. 6.3 Effects of oil and added fertiliser on adult nematode abundance in mangrove 

sediment. Measurements were taken after four weeks of treatments, C = control, O + F 

= fertilised oiled, O = unfertilised oiled. Species names on the X-axis are listed in Table 

1 (M1 to R2). No bars indicate absence of species in treatment. Means ± standard 

error are given, n = 4. Bars with different letters are significantly different at P ≤ 0.05 

using two-way ANOVA and Tukey’s multiple comparisons test. 
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Fig. 6.4 Effects of oil and added fertiliser on juvenile nematode abundance in 

mangrove sediment. Measurements were taken after four weeks of treatment, C = 

control, O + F = fertilised oiled, O = unfertilised oiled. Species names on the X-axis are 

listed in Table 1 (M1 to R2). No bars indicate absence of species in treatment. Means ± 

standard error are given, n = 4. Bars with different letters are significantly different at P 

≤ 0.05 using two-way ANOVA and Tukey’s multiple comparisons test. 
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6.5 Discussion 
 
The nematode assemblage-level approach to determine, monitor and assess the 

negative effects of PAHs has been validated in many studies (Moreno et al., 2009; 

Beyrem et al., 2010; Lv et al., 2011). In this study, natural populations of nematodes 

from the Isipingo estuary responded negatively to oil contamination in experimental 

microcosms.  

 
6.5.1 The effects of oiling on nematode community structure 
 

Oiling significantly decreased nematode abundance and species richness. Although 

nematodes are generally resistant to disturbance, many studies have found that they 
are particularly sensitive to PAHs (Moreno et al., 2009; Lv et al., 2011; Lindgren et al., 

2012). Nematodes, because of their close association with the sediment, are directly in 
contact with oil contaminated soil particles (Blakely et al., 2002). Their permeable 

cuticles, and lack of a protective casing (calcium or silicate) that other meiofauna, such 

as copepods possess, makes them vulnerable to PAH penetration and toxicity, 
resulting in decreased abundance (Stringer et al., 2012). PAHs diffuse passively across 

membranes as a result of their non-polar and lipophilic nature (Gauthier et al., 2014). 

PAHs adversely affect membrane structure, causing expansion and increased fluidity 
that impairs cellular function and results in cell death (Sikkema et al., 1994). Benzene 

was reported to increase membrane fluidity in the bacterium, Rhodococcus sp. 

(Gutierrez et al., 1999) and disrupt ion transport and decrease Ca²+ in the mussel, 

Mytilus edulis (Borseth et al., 1995). Furthermore, PAHs are cytotoxic, causing 

intracellular damage in nematodes by preventing the synthesis of proteins that are 
important for both damage repair and survival (Liuzzi et al., 2012). 

 

Previous studies showed that nematode abundance and species richness decreased 
with diesel (Lindgren et al., 2012), crude (Lv et al., 2011) and lubricating oil (Beyrem et 

al., 2010) added to the sediment. In this study, oil probably depleted dissolved oxygen 

in the soil decreasing nematode activities such as sediment bio-turbation and recycling 
of organic matter, as reported previously (Aller and Aller, 1992; Neira et al., 2001; 

Sundbäck et al., 2010). The addition of pyrene to sediment, was shown to decrease 

grazing activity of nematodes (Petersen et al., 2009; Sunbäck et al., 2010). Reduced 

grazing activity increases the anoxic zone in the sediment, as the nematodes no longer 
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oxygenate the sediment through their bio-turbation (Sochová et al., 2006; Lindgren et 

al., 2012). Anoxia of the sediment, as a result of oiling, probably contributed to the 

decrease in abundance and species richness in this study. Anoxia in soil alters 

nematode community structure by reducing competition and favouring resilient species 
(Elmgren et al., 1983). 

 

Four species decreased with oiling. Previous studies found that sensitive species 
decrease with oiling (Morena et al., 2009; Sundbäck et al., 2010; Lindgren et al., 2012). 

Individual species vary in their sensitivity to PAHs at sub-lethal concentrations (Austen 
and McEvoy, 1997; Carman et al., 2000; Millward et al., 2004). In marine nematodes, 

regulation of water and salt content of the body is achieved by renette glands, present 
under the pharynx (White et al., 1986). PAHs disrupt the functioning of cell membranes 

of microorganisms as ion-selective barriers and matrix for enzymes (Sikkema et al., 

1995; Wilke, 1997). PAH-induced damage to nematode membranes could have 

contributed to sensitivity in saline mangrove soil. Furthermore, specialized excretory 

systems are not well developed in nematodes and nitrogenous wastes are lost by 
diffusion through the outer membrane of the body (White et al., 1986). PAHs could 

have contributed to waste build up in nematodes thereby increasing sensitivity. 

 

Nine species present in the control were absent in the oiled treatment. Five oil-

intolerant species were absent in both oiled treatments. The elimination of species by 

oil was reported in several studies (Mahmoudi et al., 2005; Beyrem et al., 2010). In a 

previous study, crude oil eliminated 15 genera that were oil-intolerant (Lv et al., 2011). 

PAHs are neurotoxic (Tang et al., 2003). Nematodes have nervous systems (ganglia 

from which nerves run throughout the body), that are connected to the gut, 
reproductive organs and mouth (White et al., 1986). Exposure to neurotoxic pesticides 

resulted in adverse effects on the nervous system of the nematode, Caenorhabditis 

elegans (Meyer and Williams, 2014). PAHs negatively affected locomotion, feeding 

behavior, brood size, growth and life span, ultimately leading to cell death in previous 
studies (Ruan et al., 2009; Meyer and Williams, 2014). The nervous system of 

nematodes can account for nearly one-third of the total number of cells in the body 
(White et al., 1986). PAH contamination could have negatively affected the nervous 

system of nematodes in this study, resulting in increased sensitivity and death.  
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In this study, Ethmolaimus sp. and species from the family Leptolaimidae were 

dominant in the oiled treatments. Some species of meiofauna exhibit greater resilience 
to oiling than others (Austen and McEvoy, 1997; Carman et al., 2000). Nematodes that 

remain dominant with oiling are highly resilient (Danovaro et al., 2000; Millward et al., 

2004; Mahmoudi et al., 2005).  

 

Species from the family Leptolaimidae increased with oiling and were therefore 
opportunistic (Millward et al., 2004; Mahmoudi et al., 2005). Oiling can increase robust 

and opportunistic species, causing them to be dominant (Thompson et al., 2007). 

Ethmolaimus sp. and the species from the family Leptolaimidae were the most resilient 

species in this study. Oiling reduced competition and favoured species resistant to oil 
(Carman et al., 1997, 2000; Millward et al., 2004). The change in abundance of 

dominant species, due to oiling, alters nematode community structure (Carman et al., 

2000; Mahmoudi et al., 2005; Beyrem et al., 2010).  

 

In the oiled treatments, species from the family Leptolaimidae exhibited the highest 

juvenile abundance. Oil stimulated species from the family Leptolaimidae to reproduce. 

High juvenile abundance in oiled sediment indicates a highly tolerant and resilient 
species (Mahmoudi et al., 2005). Juvenile abundance of Monhystera sp. was highest in 

the control and decreased significantly in the oiled treatment. The ability to reproduce 
affects community structure by changing species dominance (Beyrem et al., 2010). 

 
6.5.2 The addition of fertiliser 
 

In this study, the addition of fertiliser to oiled treatments significantly increased 

nematode abundance and species richness, as demonstrated in other studies (Widbom 
and Elmgren, 1988; Eisentraeger et al., 2002). The addition of fertiliser increased 

nematode abundance of Ethmolaimus sp. and opportunistic species from the family 

Leptolaimidae. Studies have shown that N-addition increases the abundance of 
dominant and opportunistic species (Murray et al., 2006; Sánchez-moreno et al., 2006). 

Fertiliser additions increased the decomposition rate of oil in soil by stimulating bio-

degrading bacterial activity which in turn elevated N and P concentrations in the 
interstitial water (MacNaughton et al., 1999; Rohling et al., 2002; Xu et al., 2005).  
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Three species, Rhabditis sp., Koerneria sp. and Rotylenchus sp. survived oiling with 

the addition of fertiliser. This suggests that fertiliser improved conditions for these 
nematodes. Juveniles of Rhabditis sp. and Rotylenchus sp. were absent in the oiled 

treatment but present with the addition of fertiliser. This suggests that these species 

were able to reproduce because of the addition of fertiliser, consistent with a previous 

study (Widbom and Elmgren, 1988). In the fertilised oiled treatment, the species from 

the family Leptolaimidae exhibited the highest juvenile abundance suggesting that this 
is an opportunistic species (Thompson et al., 2007).  

 

In the fertilised oiled treatment, juvenile abundances of five species were similar. 

Similar abundance of species is characterized as ‘evening out’ and was previously 

reported for nematodes in fertilised oiled treatments in a field mesocosm study 
(Schratzberger et al., 2003). Lubricating oil decreased the abundance of dominant 

nematode species in oiled treatments resulting in a decrease in competition and an 
evening out of species compared to those in the controls (Beyrem et al., 2010). In the 

fertilised oiled treatment, the decrease in juvenile abundance of Ethmolaimus sp., 

contributed to the increase of oil-sensitive species through reduced competition. 

Furthermore, the addition of fertiliser to oiled sediment increased the resilient 

microalgal and bacterial community that provide a food supply to oil-resistant 
nematodes (Montserrat et al., 2008; Sundbäck et al., 2010). 

 

In this study, the majority of nematode taxa were predatory (feed on bacteria and 

fungi). Other studies found higher proportions of predatory nematodes in sites heavily 

polluted with PAHs, compared to light or uncontaminated ones (Erstfeld and Snow-
Ashbrook, 1999; Chen et al., 2009). Bacterivorous nematodes proliferate in soils 

contaminated with PAHs (Blakely et al., 2002; Chen et al., 2009) probably because of 

increased microbial activity and availability of food resources (Erstfeld and Snow-

Ashbrook, 1999). 

 
Desmodora sp. was present in the fertilised oiled treatment but absent in the 

unfertilised oiled and control treatments. This suggests that Desmodora sp. is tolerant 

to oiling with fertiliser or that it is a rare tolerant species.  

 

Out of the 16 nematode taxa identified in this study, seven were oil-resistant, and nine 

oil-intolerant. Altered species composition and abundance in nematodes, induced by 



227 
 

oil, could have repercussions on other meiofauna communities and ultimately 

ecosystems. The recovery of communities after an oil spill is slow. Although 

microcosms do not completely mimic natural conditions, the responses of nematodes 

to oil incubation of four weeks, in situ, provides valuable insight into the negative 

effects of PAHs. 
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Conclusion 
 

 

This study demonstrated the deleterious effects of oil on coastal macrophytes, A. 

marina, B. gymnorrhiza, R. mucronata and on nematode meiofauna.  

 

Seedlings of the three mangrove species exhibited various adverse morphological 

responses to sub-lethal contamination. Sub-lethal and residual oil contaminations occur 

more frequently than large-scale accidental spills and pose a serious threat to 

mangroves (Kathiresan and Bingham, 2001). Sub-lethal oil contamination on 

propagules, internodes, leaves and sediment reduced growth in all species.  

 
Avicennia marina and R. mucronata were more sensitive to oil applications to 

propagules, stems and leaves than B. gymnorrhiza. For example, propagule oiling 

caused necrosis, deformed leaves and stems in A. marina and R. mucronata but not in 

B. gymnorrhiza. Oil-induced responses were most intense in A. marina (see Table 2.5, 

Chapter 2). The pericarp did not provide any protection from the adverse effects of oil 
in A. marina. Avicennia marina responded to sediment oiling in the field by producing 

adventitious roots, as reported previously (Naidoo et al., 2010).  

 

Rhizotrons provided a non-invasive technique of measuring and evaluating root growth. 

Partially oiled propagules of A. marina and B. gymnorrhiza produced shorter and 

thicker roots than untreated controls. Avicennia marina and B. gymnorrhiza seedlings 

responded to sub-lethal oil contamination by increasing root diameter, an adaptive 
response, not described previously for mangroves. Growth of B. gymnorrhiza was 

stimulated by partial oiling of the propagules. Oil stimulated lateral root growth in R. 

mucronata seedlings, an adaptive response not described previously.  

 

There is a paucity of information on the uptake and accumulation of PAHs in 

mangroves and their contribution to oil-induced plant stress. PAHs with low molecular 

weight were suggested to be the cause of oil toxicity in previous studies on mangroves 
(Getter et al., 1985; Suprayogi and Murray, 1999). This study clearly demonstrated that 

PAHs with low and high molecular weight are absorbed by mangroves. In the oiled 

treatments, roots contained a greater number of PAHs and in higher quantities than 
leaves in all three species. Avicennia marina accumulated more PAHs in roots and 
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leaves compared to those of B. gymnorrhiza and R. mucronata. This probably explains 

the greater oil-sensitivity of this species.  

 

In oiled treatments, the most common PAHs in roots of all species were fluorene and 

acenaphthene (two rings), phenanthrene and anthracene (three rings), pyrene and 
chrysene (four rings) and benzo[a]pyrene (five rings). In the leaves of R. mucronata 

and B. gymnorrhiza in oiled treatments, the common PAHs were naphthalene and 

acenapthene (two rings) and phenanthrene (three rings). Leaves of A. marina in oiled 

treatments contained almost all PAHs tested, more than those in roots. This 
demonstrates that in A. marina all PAHs tested were translocated from the roots to the 

shoots. In leaves of B. gymnorrhiza in oiled treatments, high molecular weight PAHs 

were absent, while there was a negligible amount of pyrene in leaves of R. mucronata. 

These results suggest that B. gymnorrhiza possibly restricts oil entry into the roots, 

thereby reducing PAH accumulation in the foliage, as reported previously (Ke et al., 

2003; 2011a). This explains the minimal oil effects on B. gymnorrhiza compared to the 

other two species. This study demonstrated that A. marina has larger air spaces and 

thinner hypodermis and epidermis in roots, compared to B. gymnorrhiza or R. 

mucronata (Pi et al., 2009). These anatomical differences probably permitted greater 

oil penetration and accumulation within tissues in A. marina. Furthermore, oil was 

probably translocated through aerenchyma channels in roots and leaves of A. marina 

whereas water does not, as demonstrated previously in Phragmites australis 

(Armstrong et al., 2009). In our study, the combined effect of PAHs caused 

disorganization of cells and degradation of cell walls, plasma membranes and 

organelles in root and leaf tissues in the three species. 

 
Of the three species, R. mucronata propagules are the largest, followed by B. 

gymnorrhiza and A. marina. Larger propagules in R. mucronata and B. gymnorrhiza 

could serve as additional sites of accumulation, thus minimizing the amount of oil 
entering the shoots. This could account for the greater tolerance of R. mucronata and 

B. gymnorrhiza to oil than A. marina. Additional research on oil accumulation in 

propagules of other species could provide more insight into the role of propagule size 

in restricting PAH accumulation in the shoots.  

 

The concentrations of individual PAHs in roots and leaves varied amongst the three 

species but identities of the compounds were similar. This suggests that mechanisms 
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controlling the uptake of PAHs in mangroves could be similar. However, studies on 
PAH distribution in mangrove tissues are lacking. Kang et al. (2010) suggested that 

transpiration and the lipid content of cells are the main drivers of PAH accumulation 

and distribution in ryegrass roots by demonstrating that phenanthrene and pyrene 

primarily accumulated in cell walls and organelles. Distribution of absorbed oil 
components in tissues appears to be PAH-specific (Gauthier et al., 2014). In fish, 

naphthalene accumulated almost exclusively in the intestine and anthracene in the liver 
and kidneys (Advaiti et al., 2013). Pyrene, which has a higher lipophilicity, accumulated 

primarily in cellular walls and organelles in ryegrass roots (Kang et al., 2010). The 

mechanism of toxicity appears to be PAH-specific and species-specific (Gauthier et al., 

2014). Although this study offers valuable insights into oil accumulation within root and 

leaf cells, further research is required to determine the sites of PAH-specific 

accumulation within tissues and their toxic effects. Studies on the toxicity of specific 

PAHs and the ability of tissues to detoxify or metabolise these compounds could be 

useful for phytoremediation.  

 

In another series of experiments, the stain propidium iodide was used to detect dead 

cells in oiled root tips. The majority of cells in oiled root tips of all three species 

exhibited red fluorescence indicating dead and damaged cells, demonstrating that 

PAHs are cytotoxic. Transmission electron micrographs further demonstrated the 

extent of oil-damage in root tips and leaves and provided insights into the activities of 

oil within cells. Oil accumulated within cell walls, cytoplasm, vacuoles and organelles in 

the meristematic and conducting tissue of root tips. Oil infiltrated adjoining cells through 

ruptured walls, plasma membranes and plasmodesmata and caused the deterioration 

of these structures. Phloem cells in all species were completely disorganised while 
xylem tissue exhibited minimal damage. The results suggested that A. marina was 

more susceptible to oil injury than the other two species and support a previous study 
(Naidoo et al., 2010) that adventitious root development was a response to oil-

damaged phloem tissue. In leaves of all oiled seedlings, chloroplasts were 

disorganised with degraded grana and lamellae as a result of oil accumulation. This is 

the first report to demonstrate the precise location of oil within root and leaf cells. 

 

This study also demonstrated the effects of 50% seawater, in combination with oil, on 

growth. Salinity is one of the principle environmental factors limiting the development of 

mangrove forests (Koch and Snedaker, 1997). In this study, 50% seawater in 
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combination with oil resulted in reduced growth in all species. This study demonstrated 

that the adverse effects of 50% seawater were exacerbated by oil. 

 

Oiling reduced salt secretion in A. marina and led to the accumulation of Na+ in leaves. 

Sodium accumulation in leaves significantly increased Na+/K+ ratios in oiled treatments. 

This study demonstrated that oil-damage to root and leaf cells probably led to 
accumulation of Na+. Avicennia marina accumulates more Na+ and Clˉ than other 

mangroves (Naidoo, 1985; Medina, 1999). When roots are damaged by oil, 

ultrafiltration and salt exclusion are impaired and salt accumulated has to be removed 

by salt glands. PAHs could have damaged the plasma membrane in salt glands as an 

ion-selective barrier and matrix for important enzymes, as reported previously for cell 
membranes in the mussel, Mytilus edulis (Antoun, 2011) and trout (Schirmer et al., 

1998). The results of this study suggest that if the integrity of the membranes of salt 
gland cells is compromised by oil, the capacity of A. marina to secrete salt decreases. 

Further investigation into oil accumulation in the collecting, stalk and secretory cells of 

the salt glands will give more insight into the mechanisms of PAH-induced damage. 

Excess trace metals, Cu and Zn, are secreted with other solutes such as Na and Cl, in 
A. marina leaves (Naidoo et al., 2014), A. germinans and Aegiceras corniculatum 

(MacFarlane and Burchett, 1999; MacFarlane et al., 2007). Further research is required 

to determine whether PAHs are secreted with other solutes. 

 

Oil also decreased growth by reducing the capacity of seedlings to acquire resources 
(e.g. gas exchange and nutrients) through damage to cells and tissue. Bruguiera 

gymnorrhiza was the most oil-tolerant species followed by R. mucronata and A. marina.  

Many studies previously suggested that oil damaged cell walls and membranes in 
conducting tissue leading to reduced growth and mortality (Gilfillan et al., 1989; Ye and 

Tam, 2007; Zhang et al., 2007a). This study clearly demonstrated (using chemical 

testing and electron microscopy) that PAH accumulation and oil-damage to cell walls 

and membranes reduced growth and caused mortality. Further research is required to 

determine PAH-specific effects on root and leaf cells. 

 

In microcosm experiments, natural free-living populations of nematodes from the 

Isipingo estuary were adversely affected by oil contamination. Oiling decreased 

nematode abundance and species richness. Out of the 16 different taxa identified in 

this study, seven were oil-resistant and nine were oil-intolerant. Oiling eliminated five 
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genera. Oiling reduced competition and favoured resilient, resistant species as well as 

the abundance of opportunistic species. Oiling resulted in changes in nematode 

abundance, species richness and dominant species, thereby altering community 

composition and structure, as reported previously (Mahmoudi et al., 2005; Beyrem et 

al., 2010). 

 

The addition of fertiliser to oiled treatments significantly increased nematode 

abundance and species richness. The addition of fertiliser to oiled treatments is known 

to accelerate bio-degradation of PAHs in sediments and increase nematode survival 
(Schratzberger et al., 2003; Lima et al., 2012). Fertiliser addition also increased 

reproduction in dominant species and improved conditions for oil-sensitive species, 

ensuring their survival. Fertiliser addition is a cheaper, less toxic alternative to chemical 

cleaners and is effective in areas impacted by oiling without posing a threat to the 
environment (Moreira et al., 2011).  

 

In this study, the majority of nematode taxa were predatory (feeding on bacteria), 

probably because PAHs increase microbial activity in sediments thereby increasing 

available food resources (Erstfeld and Snow-Ashbrook, 1999). Further investigation 

into the microbes in mangrove soils will be beneficial in bioremediation. 

 

This study has implications for interpreting the ecological consequences of 

hydrocarbon contamination to benthic communities. Altered species composition and 

community structure by oil could significantly influence interactions between 
nematodes and other benthic organisms (Carman et al., 1997; Schmid-Araya et al., 

2002). Many macrofauna depend on nematodes as a food source (Gee, 1989; Coull et 

al., 1995). Responses of free living nematodes to oil (increase, decrease or elimination) 

could lead to food limitation that ultimately affects and alters entire communities and 

ecosystems. Although microcosms are useful in demonstrating broad changes to 

nematode assemblages, a more detailed examination of the benthic nematode ecology 

in South African mangroves is needed, under field conditions, to better understand the 

impacts of oil contamination. 

 

Mangroves are unique and significant ecosystems of high ecological and conservation 
value (Holguin et al., 2001; Feller et al., 2010). There is a great need to better 

understand the effects of oil pollution on mangrove flora and fauna. Mangrove forests 
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are disappearing in many parts of the world (Kathiresan and Bingham, 2001; Polidoro 
et al., 2010; Bayen, 2012). This study provided important information on the effects of 

oil on above and below ground components in South African mangroves. This is the 

first study to use rhizotrons in oil contamination experiments on mangroves. Our results 

showed that mangroves can survive the physical and chemical effects of oil 
contamination by developing morphological adaptations. Avicennia marina and B. 

gymnorrhiza increased their root diameters in response to sub-lethal oil contamination. 

Avicennia marina produced adventitious roots while R. mucronata produced numerous 

lateral roots. Valuable insight into the accumulation and activities of oil within roots and 

leaves of mangroves was demonstrated in this work. Salinity effects were exacerbated 

by oil. Valuable information on the effects of oil and added fertiliser on nematode 

assemblages in the mangrove sediments of a South African estuary was gained. New 

nematode species (currently under investigation) contribute to an increase in mangrove 

benthic taxonomical studies. The results of this study contributed significantly to our 

understanding of marine oil pollution effects in mangroves of South Africa.  
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