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Abstract

Cooperation of Multiple Mobile Robot Systems (MMRS) have drawn increasing atten-

tion in recent years since these systems have the ability to perform complex tasks more

efficiently compared to Single Mobile Robot Systems (SMRS). An implementation of a

cooperative MMRS in a manufacturing environment can, for example, solve the issue

of bottlenecks in a production line, whereas the limitations of a SMRS can lead to a

lot of problems in terms of time wastage, loss of revenue, poor quality products and

dissatisfied customers.

The study of cooperation in heterogeneous robot teams has evolved due to the engineer-

ing and economic benefits attribute as well as the existence of diversities in homogeneous

robot teams. The challenge of cooperation in these systems is a result of the task tax-

onomies and fundamental abilities of each robot in the team; there is therefore a need

for an Artificial Intelligence (AI) system that processes these heterogeneities to facilitate

robot cooperation.

This dissertation focuses on the research, design and development of an artificial intel-

ligence for a team of heterogeneous mobile robots. The application of the system was

directed towards advanced manufacturing systems, however, it can be adapted to search

and rescue tasks.

An essential component of the AI design is the machine learning algorithm which was

used to predict suitable goal destinations for each mobile robot, given a set of input pa-

rameters. Mobile robot autonomy was achieved through the development of an obstacle

avoidance and navigation system. The AI was also interfaced to a Supervisory Control

and Data Acquisition System (SCADA) which facilitates end-user interaction – a vital

ingredient to manufacturing automation systems.
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Chapter 1

Introduction

Every manufacturer faces a common challenge: to satisfy the delivery, quality and cost

demands of the customer. Even though consumers do not directly influence the cost

of products, manufacturers must maintain a competitive edge. These challenges always

exist, since more companies have become advanced manufacturing plants by “making

use of innovative technology to improve products or processes” [1].

Manufacturers have realised the insurmountable benefits of the practical implementation

of robotics to their processes; one such genre of robots implemented in industry are

Automated Guided Vehicles (AGVs), which have been used as material transporters

within warehouses since the 1950’s [2]. These mobile robots have proven to increase

efficiencies and reduce costs while operating autonomously alongside humans.

Due to the complexities and variety of processes in an advanced manufacturing envi-

ronment, different (heterogeneous) robots are assigned to perform specific tasks. These

tasks are occasionally interrupted by plant disturbances, such as machine failures and in-

efficiencies. In this event, manufacturing bottlenecks are created which must be resolved

quickly so that plant downtime and operational costs do not escalate. The research in

this dissertation thus focuses on establishing cooperative teamwork behaviour among

heterogeneous mobile robots as they contribute towards the relief of production bottle-

necks. It is clear that this may be impractical in some scenarios due to the variation in

task categories and robot capabilities but this is discussed further in chapter 3.

1
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1.1 Robot heterogeneity in manufacturing environments

Multiple Mobile Robot (MMR) systems have drawn increasing attention in recent years

since these systems have the capability to efficiently perform complex tasks through team

work [3]. A Single Mobile Robot (SMR) system simply does not have the advantage of

executing distributed tasks as a MMR would. Moreover, having a MMR system with

resource-bounded robots is much more cost-effective and robust than implementing a

single, powerful robot whose resources may be wasted.

A MMR team can either consist of homogeneous or heterogeneous members. The study

of cooperation in heterogeneous robot teams has developed due to the following factors

inherent in manufacturing environments [4]:

� Engineering advantages: there may be complex tasks that require the simultaneous

use of combinations of sensors and robots; it can be challenging and impractical

to design individual robots with multiple functionalities.

� Economic reality: It is practical and much more economical to distribute the spe-

cialised abilities of simple robots rather than employing a team of large, expensive

robots.

� Diversity: A team of homogeneous robots can eventually become diverse over time

due the differences in sensor tuning or calibration, wear and tear, and changes in

construction due to robot maintenance.

Heterogeneous mobile robot teams can potentially find their way in many real-world

applications such as search and rescue, mine and planetary exploration, security and

surveillance, and hazardous waste clean-up. In relevance to manufacturing environ-

ments, areas include materials handling and transportation, and materials processing.

A materials handling and transportation application would involve the routing and trans-

porting of products or materials between processing stations in the plant. An example

of such an application is the Autonomous Materials Handling Robot for Reconfigurable

Manufacturing Systems [5]; although this particular system involves a single mobile

robot, the principle can be applied to a larger system of heterogeneous mobile robots

where each robot must cooperate with the others so that individual and global goals are

achieved while inhibiting path conflicts.
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1.2 Bottlenecks in manufacturing environments

Bottlenecks occur when resources become overloaded. In relation to the manufacturing

environment, this happens when the material build up rate at a process point (resource)

is greater than the processing rate. The diagram in figure 1.1 gives an overview of some

possible sources for production bottlenecks and a basic method used to relieve them.

Figure 1.1: General representation of the bottleneck problem in manufacturing plants.

Reconfiguration and machine inefficiency plant disturbances can be identified in man-

ufacturing environments which comprise of one or more process lines, whilst machine

failure disturbances occur in plants which rely on multiple lines to increase product

throughput. The bottleneck sources must be managed efficiently in order to re-establish

an optimal material flow in the manufacturing process. The task manager must there-

fore determine the work requirements, allocate the competent resources to accomplish

the tasks and finally ensure that they are executed.

1.3 Productivity and supply chain management

A typical “task manager” utilised by many manufacturers is the Manufacturing Resource

Planning (MRP) system. This is a computer-based information system that uses sales

orders, forecast demands, a production schedule as well as information such as the Bill

of Materials (BOM) and available inventory to schedule and order dependent-demand

inventories. The ordering of the precise quantity of inventory is a crucial step in the

process of maintaining a good standard of supply chain management in the face of

changes in market demand.
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Supply chain management becomes complex when manufacturing plants comprise of

more than one production line to increase throughput or produce various products.

Redundant work stations can also exist to minimise bottleneck conditions or aid in the

event of machine failures and preventative maintenance services. In these conditions,

it is absolutely vital that the resources (robots and people) in the plant are efficiently

managed so that productivity is increased and operational costs are minimised. The

scheduling of robot resources is much more complicated to handle since robots are good

at working to perform well on singular tasks but poor at being coordinated to multi-

task, hence there is a need for the development of task management systems for robot

resources. The design of such a system is much more convoluted when heterogeneous

robots are involved.

1.4 Literature Survey

The focus of this literature survey pertains to indoor, heterogeneous mobile robot sys-

tems. The key components of typical autonomous navigation systems are discussed in

each section.

1.4.1 The Mechatronic system

The discipline of Mechatronics originally included the combination of mechanics and

electronics however, due to an advancement in technology throughout the years, Mecha-

tronics now involves an integration of mechanical, electronic, computer and control sys-

tems as depicted in figure 1.2 [6].

Figure 1.2: Venn diagram of Mechatronic systems
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An autonomous industrial robot is a typical example of a Mechatronic system since it

combines the disciplines of electronics, mechanics, control theory and computing sys-

tems to function in an advanced manufacturing environment. In this context, a well

designed robotic system can significantly contribute to an improvement in manufactur-

ing processes by enhancing product throughput and maintaining high levels in system

reliability.

Navigation is one of the most challenging competences required of a mobile robot; four

building blocks of navigation are identified [7]:

� Perception: the robot must interpret the raw data extracted from the sensors to

obtain meaningful data.

� Localisation: the robot must identify its position in the environment.

� Cognition: the robot must decide how to achieve its goal position in the environ-

ment by planning a path.

� Motion Control: the robot must drive its motor outputs to achieve mobility in the

planned direction.

In addition to these building blocks, the robot must be able to avoid obstacles in route

to its goal. Figure 1.3 illustrates a structure of the components required in the design

of an autonomous mobile robot system; they are further discussed in the subsequent

sections of this chapter.

1.4.2 Perception

A core component of any autonomous mobile robot application is the ability of the

robot to gather information about its environment. This is accomplished through the

extraction and interpretation of meaningful data from sensors which are usually installed

on the robotic platform. Low performance sensors that generate signals with low data

resolution or susceptible to signal interference will cause an inaccurate representation of

the environment. This negatively impacts the robot’s autonomous performance in the

environment, thus it is vital that the correct sensors are chosen in the design process.



Chapter 1. Introduction 6

Real World
Environment

Cognition 
Path Planning

Perception

Information 
extraction

& interpretation

Existing Map
(Knowledge, database)

Raw Data

Motion 
Control

Mechanical
Modelling 
& Control

Obstacle 
Avoidance

Localisation
(Map Building)

      CognitionLocalisation

MOBILE
ROBOT

S
en

so
rs

A
ct

u
at

or
s

Mission
Commands

Figure 1.3: Control structure for autonomous mobile robots

Sensors can be classified using two functional axes [7]: 1) active or passive and 2) propri-

oceptive or exteroceptive. Proprioceptive sensors measure values internal to the robotic

system whilst exteroceptive sensors gather information from the robot’s environment.

The following sections discuss some types of sensors used in mobile robotic applications.

1.4.2.1 Odometry

Odometry is a sensor system that works by integrating incremental data over time. It is

a relative positioning system where the dead reckoning method determines the current

position of the robot from previous positions. The distance and direction travelled by

the robot are calculated by rotary encoders which are used to count the number of

revolutions of each wheel. Odometry is a popular sensor system since it provides good

short-term accuracy, is a relatively inexpensive option, and allows for high sampling

rates [8].

There are a few disadvantages in the odometry system such as the error integration

due to drift and slippage [9]. Figure 1.4 [10] shows an example of how the odometry

error can grow as the robot progresses in a straight line. The ellipses represent position
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uncertainties of the robot in the x, y direction; the y-error is more prominent due to the

uncertainty about the orientation of the robot.

Figure 1.4: Robot odometry straight line error accumulation

A further disadvantage to odometry is its sensitivity to terrain (bumps or uneven floors)

as the system cannot detect surface irregularities; other disadvantages include uncer-

tain robot geometry, differences in wheel diameters, kinematic imperfections, and non-

systematic errors [11].

Another area of research in the odometry sensing domain is Visual Odometry (VO) where

the position and direction of the robot are determined through an analysis of changes

that movement induces on the images taken by cameras. Research into VO began in the

early 1980’s with H. Moravec’s work on the Stanford cart [12] but was popularised by the

research of D. Nister et al. [13]. The advantages VO over conventional wheel odometry

is that VO is not affected by slippage or uneven terrain; it has also been demonstrated

that VO provides more accurate trajectory estimates, with the relative position error

ranging from 0.1% to 2% [14]. The disadvantages of VO are the high processing loads on

the computer system and the costly execution of the solution. There are many robotic

applications of VO, however, its implementation on the Mars exploration rovers [15] is

an outstanding example.

1.4.2.2 Range finder sensors

Range finder sensors are used to measure the distance from the observer to a particular

target. In the field of robotics, there are three types of range finders commonly used;

ultrasonic, laser, and infra-red.
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Ultrasonic Range Finders (URF) operate on the time-of-flight principle: the ultrasonic

signal is transmitted from the sender, reflected off an obstacle and then received by

the receiver; the distance from the obstacle is calculated by using the time taken to

receive the signal and the speed of sound in air. Despite their low cost and availability,

ultrasonic sensors are sensitive to noisy environments and other sound waves [16]. Other

factors which may influence measurements are temperature, humidity and barometric

pressure of the environment since the speed of sound in air varies accordingly.

Laser Range Finders (LRF) are an excellent choice to use in mobile robotic applications

due to the accurate range data provided [17]. The most common form of technology used

to calculate distance in LRFs is, as with URFs, the time-of-flight principle; the difference

is a laser beam is propagated through air and the speed of light (not sound) is used as

the constant in the distance equation. Another technology also used involves measuring

the phase shift of multiple frequencies on reflection and then applying simultaneous

equations to solve for the actual distance. The drawback of using a LRF is the high cost

implication; a good quality LRF can cost a minimum of R20 000. Research has been

pioneered in the design of a low-cost laser distance sensor [18], however, it has not been

released to the commercial market due to its integration on the NEATO XV-11 Robotic

All-Floor Vacuum Cleaner [19].

Infrared (IR) sensors are low cost devices, commonly used as proximity detectors for

obstacle avoidance in mobile robotic applications. Due to their non-linear characteristics

and dependence on the reflectance from surrounding objects, the back-scattered IR signal

is highly inaccurate for the purpose of ranging [20]. Some IR sensors produce medium

distance resolution at long ranges [21], however, these products are very costly.

1.4.2.3 Inertial sensing and navigation

Like odometry, Inertial Navigation Systems (INS) also use the dead reckoning method

to determine the position and orientation of the robot. The principle of operation in

these systems involves the employment of an Inertial Measurement Unit (IMU) which

contains three-axis accelerometers and gyroscopes. The accelerations in each of the three

directional axes are continuously sensed and integrated over time to derive the position

and velocity of the mobile robot at high rates, typically at 100 times per second [22].

The accelerometers thus sense the accelerations and the gyroscopes measure the angular
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rates. An integration of angular velocity with time gives angle data, whilst the double

integration of acceleration with time yields distance travelled.

A significant disadvantage in INS applications is the amplification of low frequency noise

and sensor biases due to the integrative nature of the system [23]. This accumulation

error problem (as with odometry) produces long term inaccuracies which can be rectified

by the use of additional external signals. In an aim to reduce the accumulation errors

found in dead reckoning (without the utilisation of exteroceptive sensors), a dead reck-

oning localization system for mobile robots using inertial sensors and wheel revolution

encoding [24], combined odometry and the INS measurement data to determine position

and orientation, then compensated for the errors by implementing a Kalman filter design

(the use of Kalman filters are discussed further in section 1.4.3). The method showed

correction of bias errors, inherent to inertial sensors, and compensated for the yaw angle

errors that generate position errors in odometry.

1.4.3 Localisation and mapping

Localisation is a key component in autonomous mobile robot systems since it is imper-

ative for the robot to identify its position in known or unknown environments. It has

become a popular area of research in the past few decades and as a result, significant

contributions have been made. Literature often discusses localisation and mapping (or

map building) in conjunction with one another since the problem of determining where

a robot is, is relative to a spatial model of the robot’s environment.

There are five key challenges attributed to the robotic mapping problem [25]:

� Measurement noise: the statistical dependent nature of sensor measurement errors

is a complicating factor and must be accommodated to ensure success in the map

building process.

� Dimensionality of entities: the dimensionality of the mapping problem is deter-

mined by how many numbers it may take to describe the environment. A detailed

two-dimensional floor plan often requires thousands of numbers whilst a 3D visual

map can require millions of numbers; this increases the complexity of the mapping

problem.
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� Data association: sensor measurements taken at different points in time must cor-

respond to the same object in the environment. An accumulated pose error of the

robot causes the number of possible localisation hypothesis to increase exponen-

tially over time, resulting in inaccurate mapping.

� Change in environment: map building in dynamic environments is a challenging

problem and research in this area is relatively new. Most mapping techniques are

designed for situations where the environment is static.

� Robot exploration: exploring robots work with partial, incomplete maps and must

factor contingencies that may arise during map building.

Almost all popular algorithms used for localisation and mapping have one common fea-

ture: they are probabilistic [25]. The reason for this approach is due to the uncertainties

characterised by the mapping problem as discussed above.

A common technique used in the localisation and mapping of mobile robotic applications

is the Kalman filter [26] which uses a Gaussian probability density representation (fig-

ure 1.5 [7]) for the robot position and environmental data obtained from the sensors [27].

Figure 1.5: Gaussian probability density function centred at a single value

The filter records the uncertainties of state variables and minimises the overall mean

square error in each update; as a result, it enables a Simultaneous Localisation and

Mapping (SLAM) approach where the robot builds the map and uses the same dynamic

map to localise. SLAM is actually a problem, not a solution, however, the term is closely

affiliated with algorithms that use Kalman filters for estimating the map and pose of

the robot [25].

Unlike the Kalman filter which represents the robot’s belief state using a single Gaussian

function, Markov localisation applies a probability distribution for every possible posi-

tion of the robot on the map (figure 1.6 [7]). This method is challenged for larger maps
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since it would require a significant amount of computing resources to evaluate every pos-

sible position in the distribution, however, it can be optimised by randomised sampling

methods such as particle filter [28] or Monte Carlo Localisation (MCL) algorithms [29]

where only a random distribution of the positions are evaluated.

Figure 1.6: Grid map with probability values for all possible robot positions

Adaptive Monte Carlo Localisation (AMCL) is an improved method used to determine

the robot’s position by narrowing the search of local maxima areas of random position

samples [30].

An advancement to the MCL algorithm termed Self-adaptive Monte Carlo Localisation

(SAMCL) [31] has been investigated, where: 1) a pre-caching technique is employed to

reduce the on-line computational burden, and 2) a concept of Similar Energy Region

(SER) is defined, which is a set of poses that have similar energy with the robot in the

robot space; samples are distributed in the SER instead of being randomly distributed

in the map. The localisation simulations revealed a better performance from SAMCL

compared to MCL and extended Kalman filter algorithms.

1.4.4 Cognition

The cognition component of an autonomous robot system represents the decision-making

and execution processes required to achieve the goals of a particular mission. In mobile

robotics, a robust autonomous system is directly linked to its cognitive competency.

This is the level to which the robot system responds to mission commands by path

planning goals, interpreting situations, and avoiding obstacles in the environment.
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1.4.4.1 Path planning

Path planning involves the application of a strategic trajectory algorithm to achieve

robot goal positions. The first step of the process is to transform the environmen-

tal model into a discrete map that is suitable for the planning algorithm; literature

identifies three general strategies used in path planning algorithms [7]: road map, cell

decomposition, and potential field.

In the road map approach, the environmental workspace is mapped to a one-dimensional

graph containing vertices, including the start and goal locations; a collision-free path

between vertices is then searched. Literature identifies some common road map methods

such as visibility graph [32] and the Voronoi diagram [33]. A significant drawback of the

visibility graph approach is that solution paths tend to take the robot as close to the

obstacles as possible, whereas the Voronoi diagram, in contrast, maximises the distance

between the robot and the obstacles in the environment [7].

Cell decomposition path planning involves the identification of areas or cells that are

free and those that are occupied by objects; an appropriate path between the initial and

goal locations is created by connecting adjacent free cells. There are two types of cell de-

composition techniques used in planning: exact cell decomposition and approximate cell

decomposition; the latter is more popular due to its grid-based environmental represen-

tation. The disadvantage of the exact cell approach is the dependence of computational

efficiency upon the density and complexity of the objects in the environment [7].

The potential field strategy implements the robot as a point under the influence of an

artificial potential field. A gradient is created across the robot’s map which causes it

to travel towards the goal positions from previous positions [34]. The goal positions act

as attractive forces, whereas the obstacles act as repulsive forces. Literature discusses

the potential field strategy as an elegant and simple approach to path planning [35],

however, it can cause the robot to fall in a local minimum if this is not accommodated

for in the high level software design.

1.4.4.2 Obstacle avoidance

While path planning involves a global-based strategy, obstacle avoidance techniques are

applied to situations that are local to the mobile robot. The principle function of an
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obstacle avoidance algorithm is to use the current measurements from sensors to shape

the direction of the robot’s path when unexpected obstacles (e.g. humans or other

robots) are encountered. It forms an integral component of a robot’s navigation system

since it significantly contributes to the safety aspect of the design.

A wide variety of obstacle avoidance algorithms are available, ranging from simple meth-

ods which stop the motion of the robot before an obstacle, to more sophisticated schemes

that control the robot to detour obstacles.

The Bug 1 [36], and its improvement, Bug 2 [37] algorithms follow a simplified approach

by moving directly towards the goal; if an obstacle is encountered, it is contoured by

the robot until motion in the direction of the goal is again possible. Bug algorithms do

not apply robot kinematics which is a shortcoming for non-holonomic robot systems. A

further drawback is the impact of sensor noise on robot performance due to the most

recent sensor data taken for these algorithms.

In known, static environments, potential field path planning algorithms can evaluate

the potentials offline and provide the robot drive system with the calculated velocity

vector; however, the algorithm can incorporate an obstacle avoidance component, thus

operating in an online mode. The local minimum drawback of potential field algorithms

can be mitigated by using an extended version of the strategy as discussed in [38]. In this

approach, the repulsive force due to an obstacle is considered as a function of distance

and orientation relative to the obstacle.

The Vector Field Histogram (VFH) method [39] creates a polar histogram of the en-

vironmental occupancy in close proximity of the robot. The polar histogram is first

evaluated to select the best suitable sector among all sectors in the histogram with low

polar obstacle densities and then proceeds to steer the robot in the direction of the sector

chosen. An advantage of VFH over potential field methods is the absence of the local

minima problem due to the non-existence of repulsive or attractive forces. The VFH+

method is an enhanced version of VFH and can be reviewed in [40].

1.4.5 Middleware in robotic networks

In robotic networks, the middleware is an abstraction layer found between the operating

system and software application layer as shown in figure 1.7.
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Figure 1.7: Middleware layer in robotic networks

The purpose of the middleware is to simplify the software design, manage robot hard-

ware heterogeneities and reduce development costs [41]. In a network of robots where

collaboration is required, the middleware is a key component of the system due to the

following requirements:

� Hardware heterogeneity: robots and sensors in the network may be different; this

creates a software development challenge to the higher layers in the network if

the heterogeneity is not masked. The middleware is required to communicate

with heterogeneous hardware and provide standard, simplified interfaces to the

application layer. The implementation of such a system will eliminate low level

complexities in the network, thus creating a simple, modular approach to the

design of the application program.

� Self-operable: the middleware layer must be able to operate in the software tier

without any direct intervention from the user. It should also reconfigure when

required and optimise processes so that the robot network efficiencies are main-

tained.

� Collaborative interface: a robot team will require a common collaborative interface

that is supported by the middleware. Each robot must be able to communicate

through this interface so that the group task can be achieved efficiently.
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� Modular design: the middleware must contain a modular software architecture so

that an upgrade to a sensor driver, for instance, does not implicate a change in

the design of the middleware.

Literature discusses a wide variety of middleware interfaces that are used in robotic

applications; only the Player Project will be discussed in the remainder of this section.

For a comprehensive survey on robot middleware, the reader is referred to Robotics

Middleware: A Comprehensive Literature Survey and Attribute-Based Bibliography [41]

and A Review of Middleware for Networked Robots [42].

The Player Project, developed by B. P. Gerkey et al. [43], is a robotic network server that

provides a transparent interface for robot and sensor control. The project is supported

by robotic researchers and is widely used all over the world [44]. It is a client-server

based system consisting of the following components:

� Player: the server that communicates with the robot hardware (sensors and actu-

ators) through device drivers and provides the client with standard interfaces to

them.

� Stage: a two-dimensional simulator used to fast prototype development without

the need for using actual robot hardware.

� Gazebo: a three-dimensional simulator.

The Player Project can be installed on a computer connected to the robot and provides

interfaces to sensors and actuators over an IP network. Client application programs

can communicate with the robot’s hardware using standard interfaces via Player over a

TCP socket. It is also possible for a client program, located anywhere in the network,

to access any device [43]; thus a particular robot can view the environment by use of

another robot’s sensor.

1.4.6 Cooperation in mobile robot teams

In recent years, there has been a great research interest in cooperative mobile robotics.

An advancement in industrial technology has seen the need for distributed applications
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in robotic systems where teams of robots are required to solve tasks intelligently and

efficiently. The definitions of cooperation in robotics literature include [45]:

� “joint collaborative behaviour that is directed toward some goal in which there is

a common interest or reward” [46]

� “a form of interaction, usually based on communication” [47]

� “(joining) together for doing something that creates a progressive result such as

increasing performance or saving time” [48]

1.4.6.1 Control architectures

Research [4] describes a categorisation of multiple mobile robot networks into 1) collec-

tive swarm systems and 2) intentionally cooperative systems – classified further as being

strongly cooperative or weakly cooperative solutions (figure 1.8).

Mobile Robot Networks

Collective 
Swarm Systems

Intentionally 
Cooperative Systems

Strongly
Cooperative

Weakly
Cooperative

Figure 1.8: Classification of multiple mobile robot systems

Collective swarm systems are attributed to a team of homogeneous mobile robots that

yield team behaviours while establishing little or no communication between each mem-

ber. Swarm robotics [49] is an emerging area of research where robot teams tend to

resemble the characteristics of biological societies such as ants, birds and bees.

Heterogeneous mobile robot systems are intentionally cooperative systems since the

robots are aware of other robots in the team and work together based on the state,

actions or capabilities of their team-mates to achieve a particular goal [4]. Depending on

the design of the robotic network, solutions may form high levels of communication and

synchronisation between robots (strongly cooperative), or allow for periods of functional

independence among robots (weakly cooperative).
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The method of cooperation system applied to a robotic team introduces the mention of

some typical control architectures: centralised, decentralised, hierarchical, and hybrid

systems.

� Centralised architectures control the entire team of robots from a single point. This

approach is unreliable due to a single point of failure as well as the impracticality of

maintaining a high communication frequency between robots for real-time control.

� Decentralised architectures is a common approach to most robot teams where each

robot assumes control based on a knowledge base of their local situation. Unlike

the centralised system, this type of control is highly robust, however, it may be a

challenging task to maintain global control of the team due to the local behaviours

of individual members.

� Hierarchical architectures resemble military systems where each robot oversees the

control of a group of robots. It is better than centralised architectures in terms of

reliability but is still susceptible to team failure due to the dependence on robots

structured higher up in the hierarchy.

� Hybrid architectures is a combination of centralised and decentralised forms where

local control and higher level plans are achieved, thus establishing a robust and

potentially efficient control system. Hybrid architectures are applied in many

multi-robot applications [4].

1.4.6.2 Related research

A great amount of research has been pioneered in the area of cooperation in multiple

homogeneous mobile robot systems, however, since the focus of this thesis relates to

heterogeneous robotic systems, a selected few of these approaches will be discussed.

The ALLIANCE architecture [50] is an early work studying cooperative behaviour in

small to medium sized heterogeneous mobile robot teams. Local robot control (e.g.

obstacle avoidance) and higher level task assignments are achieved by means of using

“motivational behaviours” to activate “behavioural sets” belonging to each robot in the

team.
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The selection of the appropriate action is based on: 1) the robot’s internal states, 2)

the activities of other robots (obtained through broadcast communications), 3) envi-

ronmental conditions, and 4) the requirements of the task. Successful fault tolerant

implementations of the ALLIANCE architecture include a hazardous waste clean-up

mission [51] and a cooperative box-pushing experiment [52]. An advancement to AL-

LIANCE is L-ALLIANCE [52] which improves the individual robot’s action selection by

using the knowledge learned from previous experience.

An integrated testbed for cooperation of heterogeneous mobile robots, Wireless Sensor

Networks (WSNs) and other Cooperating Objects (COs) is discussed in [53]. The pur-

pose of the testbed is to facilitate the development process of algorithms and techniques

used in the research of heterogeneous COs. The architecture considers all COs at the

same level, thus allows for various schemes such as multi-robot, WSN, and robot-WSN

experiments.

A tiered architecture was investigated (illustrated in figure 1.9 [54]) that integrates,

a graphical user interface, task planner, executive layer, and autonomous navigation

system to control multiple heterogeneous robots [54].

Figure 1.9: Tiered architecture for autonomous robots

The top layer in the tier consists of a task planner together with a graphical user interface

that facilitates a user-friendly interaction in the task assignment process.

The bottom layer is a component in each robot and performs probabilistic methods for

its autonomous navigation in the environment. Navigation consists of three components:
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localisation (using MCL as discussed in section 1.4.3), motion planning, and obstacle

avoidance.

The middle, executive, layer is an interface between the high and low levels in the tier.

It coordinates the robots by distributing the tasks accordingly.

A multi-robot system [54], consisting of four robots, was tested in an indoor environ-

ment. The deployment proved to be efficient and robust, however, explicit coordination

behaviours had to be implemented to achieve these results.

1.5 Problem statement

Identifying and managing bottlenecks in a manufacturing environment can have a sig-

nificant impact on a company’s product throughput and profit margins. In the context

of an advanced manufacturing environment where dissimilar mobile robots are used in

discrete processes, the idea of cooperation between robots when there is a need can

prevent bottlenecks, improve material flow and thus contribute to the upkeep of a good

supply chain management system. A middleware intelligence system is to be developed

for this specific task. The system will aid any member in a team of heterogeneous robots

in task decision making, particularly in a manufacturing environment. Each robot in

the system must be capable of moving autonomously in the known environment while

avoiding obstacles and maintaining a teamwork approach in the resolution of common

goals.

1.6 Research objectives and contributions

The primary objectives of this research include:

1. Investigate the need for heterogeneous mobile robot cooperation, using the Segway

RMP200, RMP400 and the Performance PeopleBot.

2. To research the system requirements for the design of a cooperative heterogeneous

mobile robot team.

3. To research and design a Mechatronic control system for the cooperation of different

mobile robots. This system involves the development of the middleware intelligence and

integration of electronic hardware interfaces.
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4. To test and validate the performance of the control system in simulated and real-world

environments against the following key indicators:

� Robustness: The ability of the system to continue its operation when a failure

occurs with a mobile robot.

� Reliability: The ability of the mobile robots to efficiently detect and avoid obsta-

cles, and to be able to operate in a “safe mode” under certain fault conditions,

thus minimising possible human injuries and damage to the environment.

� Plant integration: The user friendly design of the system to the plant engineer as

well as the ability of the system to provide useful data to the plant MRP and/or

Enterprise Resource Planning (ERP) networks.

1.7 Design specifications

The design specifications for this research topic are classified below according to mechan-

ical, electronic, Artificial Intelligence (AI), communication and Graphical User Interface

(GUI) categories; the AI specifications are split into expected individual and group robot

behaviours.

Mechanical specifications (individual)

The following mechanical specifications need to be considered:

� Operate at linear velocity no greater than 0.2 m/s.

� Operate at angular velocity no greater than 0.4 rad/sec.

Electronic specifications (individual)

The following electronic specifications must be met:

� Position range finder sensors at front of robots to measure forward (and not rear)

distances.

� Sensors must be powered from rechargeable batteries.

AI specifications (individual)

The following AI specifications for each robot need to be considered:



Chapter 1. Introduction 21

� Emergency stop (estop) if another robot or human is within a radius of 0.25 meters.

� Turn in tight spaces within an estop distance (0.25 meters) from obstacle.

� Plan and navigate along an efficient path towards the goal, avoiding obstacles.

� Teach the robot agent on the best task to execute, in either online or offline modes.

AI specifications (group)

The following AI specifications for the robot team need to be considered:

� Demonstrate team work when bottlenecks exist.

� Demonstrate robot assistance during robot failures.

Communication specifications

The following communication specifications for system need to be considered:

� Wireless communication between each robot and SCADA.

� TCP socket protocol exchange between each robot and SCADA.

� No direct inter-robot communication allowed.

GUI specifications

The following GUI specifications for the Supervisory Control and Data Acquisition

(SCADA) system need to be considered:

� Show the manufacturing plant process, data and bottlenecks.

� Start the manufacturing process from GUI.

� Show the locations of robots in the plant.

1.8 Research publications

1. N. Naidoo, G. Bright, R. Stopforth. “Material Flow Optimisation in Flexible Man-

ufacturing Systems”. In Proceedings of the 6th Robotics and Mechatronics Conference

(RobMech). Durban, South Africa. 30-31 October 2013.
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2. N. Naidoo, G. Bright, R. Stopforth. “Cooperative Autonomous Robot Agents in

Flexible Manufacturing Systems”. In Proceedings of the 8th International Conference

on Intelligent Systems and Agents. Lisbon, Portugal. 15-17 July 2014.

1.9 Chapter summary

This chapter introduced the area of heterogeneous mobile robotics in manufacturing

environments. The issue of bottlenecks was discussed and the literature survey addressed

the necessary components of an autonomous mobile robot system, namely: perception,

localisation, and cognition. In addition to these, the importance of implementing a

robotic middleware layer, particularly in heterogeneous robot systems, was outlined.

The problem statement was defined to summarise the constraints of the research problem

space and the research objectives were also listed to establish a clear representation of

the work involved in this dissertation. The chapter concluded by categorically listing

the design specifications of the research topic and a list of publications by the author.
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Mechatronic Architecture Design

This chapter discusses the control architecture design as well as the mechanical and

electronic hardware associated with the research topic.

2.1 Architecture design overview

The primary objective of this research is to establish a cooperation mechanism between

different robots so that bottlenecks in manufacturing environments can be mitigated.

The first step in the process of achieving the primary objective is to identify the control

architecture required in the design of such a system. In section 1.4.6.1, strongly and

weakly cooperative systems were discussed and four control architectures were identi-

fied, namely: centralised, decentralised, hierarchical, and hybrid systems. The scheme

chosen in this design is a weakly cooperative hybrid system where majority of the con-

trol (for robot motion, obstacle avoidance, path planning and goal decision making) is

decentralised; the centralised portion is necessary for the integration of the robot system

to the manufacturing plant data acquisition system, an element of the design that will

be discussed in the next chapter. The key benefits of the weakly cooperative hybrid

architecture are:

� Localised control allows fast response time for robots to react to obstacles and

changes in its path during navigation.

23
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� Robots do not depend on a synchronised communication scheme between team

members which promotes operational independence.

� The decentralised control characteristic strengthens the robot’s ability to assist

another team member during robot-failure conditions, this is a requirement for

the robustness key indicator (outlined in section 1.6).

The diagram in figure 2.1 gives an overview of the architectural design of the research.

Each robot in the team (conceptually not limited to three members) contains a local

computer. The computer contains the operating system and middleware responsible

for the decentralised motion control of the robot by obtaining data from sensors and

accordingly driving the actuators (or motors). Robots are assigned to primary tasks

(indicated by the black solid lines) and/or secondary tasks (indicated by the black dashed

lines); secondary tasks are executed by a robot when there is a bottleneck contributed

by machine inefficiencies or failures, reconfiguration, or robot failures. The centralised

control facet of the architecture is between the local computers and the remote computer

and occurs whenever the middleware of the robot is ready to make a global decision

concerning the source and destination goals (tasks).

Actuators Sensors

Local 
Computer

ROBOT #1

TASK #1 TASK #2 TASK #3

Remote Computer

Actuators Sensors

Local 
Computer

ROBOT #2

Actuators Sensors

Local 
Computer

ROBOT #3

Figure 2.1: Robot cooperation architecture
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2.2 Robot hardware

The three mobile robots used in this research topic are the Performance PeopleBot,

Segway RMP200, and Segway RMP400. The platforms were chosen on the basis of their

availability, they are mainly used for research purposes and not suited for manufacturing

environment applications, which is acceptable for this research since the objective is to

establish the concept of a cooperating team of heterogeneous mobile robots, irrespective

of their abilities and functionality.

The subsections below discuss the functionality of each robot and outlines the technical

specifications as well.

2.2.1 Performance PeopleBot

The Performance PeopleBot (shown in figure 2.2 [55]) is a mobile robot that was designed

by ActivMedia [56] for the purpose of human-robot interactive research and applications.

The robot is equipped with a reversible two-wheel differential motor drive system and

a balancing caster; this ensures that the steering control can be achieved by varying

the relative rate of rotation of each wheel. The Peoplebot is also installed with four

Figure 2.2: Performance PeopleBot robotic platform

sonar arrays of eight sonars in each array, bumper switches, a two degree of freedom

gripper, a pan/tilt/zoom colour camera, and on-board computer with wireless ethernet

and monitor.
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Table 2.1 [55] lists some of the technical specifications of the PeopleBot. The robot

operates on three rechargeable batteries with a typical run time of eight hours. Like

its fellow family members of Pioneer mobile robots [56], the PeopleBot has a relatively

small footprint, thus capable of maneuvering in small, tight spaces.

Table 2.1: Performance PeopleBot technical specifications

Parameter Specification

Base robot weight 21 kg

Footprint 51.5 x 42.9 cm

Tire diameter 19.5 cm

Operating payload 8 kg

Turn radius 0 cm

Maximum speed 0.8 m/s

Rotation speed 150◦/s

Run time 8 hours (3 batteries)

Battery recharge time 2.4 hours

Battery voltage 12 V

Battery capacity (each) 7.2 Ah

Battery chemistry SLA

2.2.2 Segway RMP200

In 2001, the Segway Personal Transporter (PT) was introduced to the market as the

first self-balancing, zero emissions personal transportation vehicle [57]. The Segway PT

operates on the concept of dynamic stabilisation (similar to the classic control problem,

the inverted pendulum); it has two wheels which are rotated in the correct speed and

torque to prevent the user from falling when leaning forwards or backwards.

A few years after the release of the Segway PT, the Robotic Mobility Platform (RMP)

was developed by Segway, based on the design of the PT, for scientific and engineering

research purposes. The RMP was designed for an integration into a system that has a

control processor to communicate velocity and steering commands via the USB or CAN

bus interface. Segway has developed balancing and non-balancing models of the RMP

in a variety of 2, 3 or 4 wheel configurations [58].

The RMP200 (shown in figure 2.3 [59]) is a two-wheeled differential drive robot that

is capable of maintaining its balance while carrying a heavy payload. The robot can

operate in one of two modes: 1) Tractor mode causes the RMP to function in a static
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stable condition with a large footprint and low payload height, whereas 2) Balance mode

is a dynamic stable operation with a smaller footprint and higher payload.

Figure 2.3: Segway RMP200

Table 2.2 [59] lists the technical specifications of the RMP200. The robot operates on

two rechargeable batteries with a typical run time of 8 hours. Unlike the PeopleBot,

the RMP200 has a larger tire diameter and footprint but it has the ability to operate in

tight spaces due to its turn radius specification of 0 cm.

Table 2.2: Segway RMP200 technical specifications

Parameter Specification

Weight 64 kg

Footprint 64 x 61 cm

Tire diameter 48 cm

Operating payload 45 kg

Turn radius 0 cm

Maximum speed 16 km/hr

Data update rate 100 Hz

Run time 8 hours (2 batteries)

Battery recharge time 6 hours

Battery voltage 72 V

Battery capacity (total) 380 watt-hours

Battery chemistry Ni-MH

Mechanically, the RMP200 consists of a base plate which houses the batteries, motors,

drives and control box. The payload plate is supported by two side plates. Electronically,

the robot has five gyroscope sensors which measure the following:

� Yaw angle and yaw rate

� Pitch angle and pitch rate
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� Roll angle and roll rate

In addition to the above itemised quantities, the RMP interface also returns left and

right wheel speeds as well as a calculated odometry. The RMP200 does not contain an

on-board computer so a laptop is used in this research as the control processor. The

purpose of the laptop is to establish a communication interface with the robot to obtain

data (yaw, pitch, roll, speed and odometry) and control its movement through speed

and yaw commands.

2.2.3 Segway RMP400

The RMP400 is one of Segway’s most powerful mobile robots, it is capable of carrying

loads up to 181 kg for long distances over rugged terrains. The robot operates on

four independent drive motors and five rechargeable batteries. A graphic image of

the RMP400 is shown in figure 2.4 [60] and its technical specifications are listed in

table 2.3 [60].

Figure 2.4: Segway RMP400

The RMP400 was designed for research applied in outdoor environments, therefore it

does not function well in indoor, manufacturing environments. For instance, the turning

radius of this robot is dependent on load conditions, operating surface type and tire fric-

tion, hence tire skid and wheel slippage can be expected over smooth surfaces pertinent

to manufacturing or research lab environments. Despite these realities, the objectives

of this research are not compromised.

The RMP400, like the RMP200, returns measurement data such as yaw, pitch, roll,

speed, and odometry and once again, a laptop is used as the control processor to control

the robot’s movement through speed and yaw commands.
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Table 2.3: Segway RMP400 technical specifications

Parameter Specification

Weight 109 kg

Footprint 76 x 112 cm

Tire diameter 53 cm

Operating payload 181 kg

Maximum speed 29 km/hr

Data update rate 100 Hz

Run time 8 hours (4 batteries)

Battery recharge time 8 hours

Battery voltage 72 V

Battery capacity (total) 1600 watt-hours

Battery chemistry Li-Ion

2.3 Sensor hardware

This section discusses the sensor hardware used in the research topic for the purpose of

robot navigation and obstacle avoidance.

2.3.1 Laser range finder sensors

Section 1.4.2.2 surveyed the various types of range finder sensors that are commonly

used in the field of robotics; among them, the LRF sensor was considered in the design

due to the accurate range data provided [17]. Figure 2.5 gives an illustration of a LRF

used in the robotic middleware platform, Player/Stage.

Figure 2.5: LRF illustration in Player/Stage simulation

Two types of LRF sensors were researched before being purchased for the research: the

SICK LMS200 (figure 2.6 [61]) and the Hokuyo URG-04LX (figure 2.7 [62]). Various

LRF models from each manufacturer were also reviewed but are not mentioned in this
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dissertation due to their lack of relevance to this research: some were not suited for the

research application and others were too expensive to even consider.

Figure 2.6: SICK LMS200

Figure 2.7: Hokuyo URG-04LX

Table 2.4 draws a comparison of the technical specifications between the SICK LMS200 [61]

and Hokuyo URG-04LX [62].

Table 2.4: SICK and Hokuyo technical specifications

Parameter LMS200 URG-04LX

Range 80 m 4 m

Scanning angle 180◦ 240◦

Angular resolution 0.5◦; 1.0◦ 0.36◦

Measurement accuracy ±10/±15 mm 20–1000 mm: ±10 mm
1000–4000 mm: ±1% of measurement

Resolution 10 mm 1 mm

Interface RS232 or RS422 RS232 or USB

Power source 24 VDC 5 VDC

Current consumption 1.8 A 0.5 A

Environment use indoor indoor

The LMS200 has been widely used in robotic applications for localisation and navigation.

The sensor can be configured in software to operate in a low range of 8 meters to the

full range of 80 meters. The angular resolution for the 8 and 80 meter ranges are 0.5◦

and 1.0◦ respectively.
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In comparison to the LMS200, the URG-04LX has a single, much smaller, operating

range of 4 meters, with angular resolution of 0.36◦. The scanning angle, however, is

240◦, a 60◦ more area coverage than the LMS200. A major advantage that the Hokuyo

laser has over the SICK laser is the extreme price difference. The URG-04LX is priced

at less than half the cost of a LMS200; this is the main reason for choosing the Hokuyo

product as the LRF for the RMP200 and the RMP400.

The URG-04LX can not be powered from the USB port of a laptop, therefore the 5V reg-

ulated power supply (figure 2.8 [63]) was sourced from Netram Technologies. The power

supply board takes in an input of 6–12VDC and supplies a selectable regulated output

voltage of 3.3 or 5 VDC. Due to the standalone operation of the LRF, a rechargeable

battery was also purchased to supply power to the voltage regulator. The SLA battery

is specified at 6V, 3.2Ah. The simple circuit diagram design of the LRF and power

supply is shown in figure 2.9.

Figure 2.8: 5V regulated power supply

Figure 2.9: Power supply design for URG-04LX
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2.3.2 Sonar range finder sensors

The SICK LMS200 (supplied as an accessory to the PeopleBot) was a part of the initial

design, to be used on the PeopleBot as the range finder; however, during the implemen-

tation phase of the research, the LRF did not function as expected and returned spurious

data signals which negatively impacted the robot’s navigation algorithm. Various at-

tempts were made to find the root cause of the problem and even filter the data but

none of these attempts yielded any success. A final decision was made to use the sonar

array sensors which are mounted at the top and bottom positions of the robot. The

sensors returned accurate, reliable data which contributed to the successful application

of the navigation algorithm on the PeopleBot, more of which will be discussed in the

succeeding chapters.

2.4 Chapter summary

This chapter began by discussing the control architecture used in this research. A hybrid,

weakly cooperative solution was chosen to utilise the benefits of localised control as

well as allow for periods of centralised communication for dependent data. The robot

hardware and technical specifications of the PeopleBot, Segway RMP200 and RMP400

were then discussed. The chapter concluded with the sensor hardware used in this

research, namely the Hokuyo LRF sensors for the RMP robots and the sonar range

finders for the PeopleBot.
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Mechatronic System Design

This chapter discusses the general system design and artificial intelligence aspect of the

research.

3.1 System design overview

An overview of the system design is shown in figure 3.1. The scope of the design consists

Figure 3.1: Design overview of the Mechatronic system

33
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of an integration of the following components:

� Robot hardware

� Middleware

� Agent program

� Supervisory Control and Data Acquisition (SCADA)

The robot hardware comprises of the mechanical robot (PeopleBot, RMP200, RMP400),

the sensors (LRF, sonars), and the actuators (drives, motors). The middleware layer is

necessary since it is responsible for interpreting the high level (agent program) commands

and presents them to the sensors and actuators through the use of low level software

driver modules.

The agent program is the robot’s decision making component in the system design as

it determines which task (primary or secondary) is required by the robot at a specific

point in time. In addition to the localisation and cognition modules (discussed in section

1.4.3 and section 1.4.4), the agent program contains a machine learning module which

was incorporated in the system design due to the following benefits:

� Robot heterogeneity and task taxonomy: due to the different capabilities of each

robot together with the variations in tasks, the system is required to identify

whether or not a particular robot can perform a secondary task when required. An

integrated learning system will ensure that each robot goes through an engineering

teaching process so that the robot “agent” can identify itself as a helping agent

when the need (bottleneck) arises.

� Manufacturing environment reconfiguration: changes in the environment, caused

by the manufacturing of different products or the implementation of new machin-

ery, will have a minimal impact on the cooperative function of each robot since

the learning module ensures that robot agents are re-taught accordingly. A further

advantage is the saving of money and resources that would have been required to

reconfigure the robots to adapt to the new environment.



Chapter 3. Mechatronic System Design 35

The agent program also comprises a communication interface which sends, receives and

processes data packets to/from the plant SCADA system. The SCADA is a vital compo-

nent in the manufacturing plant automation system since it makes process information

available to operators and engineers for the purpose of monitoring and control.

3.2 Artificial intelligence design

In this section, the middleware and agent program components of the research will be

discussed further.

3.2.1 The Player Project middleware

In section 1.4.5 the Player Project was discussed as a robotic network server that provides

the client (agent program) with an interface to communicate and/or control the sensors

and actuators of a robot. Player was chosen as the middleware layer for this research due

to: 1) its free open source nature, 2) the availability of a large software library for device

driver implementations, 3) the Stage simulation package that can be used to prototype

the software development process, and 4) its popularity in the robotics community.

Figure 3.2 is a diagram of the Player architecture, illustrating the communication links

between the Player Server and the other components in the robotic network.

Drivers

Driver-1

Driver-2
. . .

Driver-n

Player Server

Interfaces 

Robot 
Hardware

Stage 
Simulator

Client 
Application

PLAYER MIDDLEWARE

TCP 
SOCKET

Serial Cable

Virtual 
Connection

Figure 3.2: Player middleware architecture



Chapter 3. Mechatronic System Design 36

3.2.1.1 Client-server framework

The client-server framework, provided by Player, uses the TCP socket protocol for com-

munications between the client application and the Player server. The server is installed

on a computer which is directly connected to the hardware devices of the robot; hence

multiple clients (residing on local or remote computers) can connect to the Player server,

each on a different socket, and have access to the robot hardware on that particular node.

In this research topic, the client application (or agent program in figure 3.1) will reside

on the local computer and only have control over the local hardware, prohibiting remote

access of sensors and actuators. The use of remote access to sensors can be useful when

a robot agent utilises another robot’s LRF, for instance, to gain a knowledge of the en-

vironment map for the purpose of localisation and navigation. This requires the design

and application of advanced localisation and mapping algorithms which is beyond the

scope of this research topic.

Client applications can be written in any programming language that provides TCP

socket support; to mention a few: C, C++, Python and Java. In this research, the client

programs were developed in C++.

3.2.1.2 Interfaces and drivers

The interfaces and drivers in the Player middleware are key components in the client-

server framework since they are used to establish the high-level interface between the

client application and the sensors or actuators.

A device interface is a specification of data for commands and configuration formats,

and a device driver is a program that controls the device, providing a standard interface

to it. An example of a popular Player interface is the position interface, used to

control a mobile robot base. The position interface specifies a command format

for velocity and position targets, and specifies a data format for velocity and position

status. An implementation of the position interface is in Player’s p2os driver, which

is used to control ActivMedia research robots. There are also other drivers which use

the position interface to control other robots, hence they all accept commands and

produce data in the same format. Player thus allows for multiple drivers to support the

same interface and single drivers to support multiple interfaces. [43]
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3.2.1.3 Stage

The Stage simulation package works with the Player server to allow the end-user to

simulate the behaviours of robots, sensors and actuators without the need for actual

physical hardware. The attributes of the robots and devices, such as size, shape and

even colour, can be created in Stage model files and a map of the environment can

be added to the “Stage world” as an image. The end-user can therefore re-create the

environment and test the behaviour of robots in different scenarios which reduces the

total software development time for a particular robotics project.

3.2.1.4 File types

There are three types of files that can be used in the Player-Stage environment:

� the “.world” file: is a programmable description of the environment or “world”,

where the robots, items and layout of the map are defined. The world file is used

when the programmer is working with Stage simulations; it is not required for the

core Player server communications with the actual hardware.

� the “.inc” file: is similar to the .world file, the only difference is it can be included

in the .world file; this allows for modular programming in Stage simulations. Robot

models can be used in other worlds and if there are changes required for a particular

model, they can be easily modified in the .inc file.

� the “.cfg” file: is required in both simulated (Stage) and real-world environments.

The .cfg file is structured to give the Player server all the information about the

robot being used: the necessary drivers (if it is a simulated environment, the driver

will be Stage) and the format in which the data from the drivers will be presented

to the client application.

The use of these files will be discussed further in chapter 4. References to the Appendix

will also be made in chapter 4 so that the coding and structures of the files can be

viewed.
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3.2.2 Localisation

The localisation driver included in the Player Project driver library is the AMCL al-

gorithm (discussed in section 1.4.3). Fundamentally, the driver determines the robot’s

pose by using a predefined map of the environment and a probability distribution over

a set of all possible poses. The distribution set is updated from odometry, sonar and/or

LRF data.

In the development phase of this research the AMCL driver was tested in the Stage

environment and yielded poor results due to the driver’s inability to estimate the correct

pose when the robot becomes lost (possibly attributed to accumulated errors). The

developers of the Player AMCL driver make mention of this estimation problem and

discuss the use of more advanced techniques which have not yet been implemented [64].

A design decision was made to calculate the localised pose of the robot by using a x-y

coordinate system map of the environment together with the odometry data returned

from the internal sensors of the robot. The sole use of odometry in localisation cal-

culations has its own problems in terms of error integration due to drift and slippage

(see section 1.4.2.1 and figure 1.4), however, this approach to robot localisation does not

compromise the objectives of this research topic. Future work to this research (discussed

more in chapter 6) will see the use of SLAM algorithms or landmark methods in robot

localisation.

3.2.3 Cognition

The obstacle avoidance and local navigation drivers provided by Player include: 1) the

VFH algorithm, 2) Nearness Diagram (ND), and 3) an improvement to the ND, the

Smooth Nearness Diagram (SND). The drivers were tested during the development phase

of this research in both simulated and real-world cases and they each revealed satisfac-

tory results for the PeopleBot and to some extent the Segway RMP200; however, when

implemented on the RMP400 the navigation performance was poor since the robot did

not respond well to turns in tight spaces (due to its geometric shape and large size). For

this purpose, a cognition module was designed and developed as part of this research

topic. The design choice was also based on the idea of developing the module/driver

further to include an advanced localisation algorithm as part of the future work to this
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research topic.

The cognition module is a component of the agent program and contains obstacle avoid-

ance and local navigation routines. The state definitions in table 3.1 and the state

diagram in figure 3.3 depict the design methodology used in the development of the

cognition module, which is further discussed in chapter 4.

Table 3.1: State definitions for the cognition module

State no. State description

0 Avoid near obstacles (estop, turn, reverse)

1 Position robot towards goal

2 Positioning done. Clear to proceed?

3 Plan path to goal using way-points

4 Clear path to goal– move to goal

5 Goal reached

Figure 3.3: State machine diagram for the cognition module

3.2.4 Machine learning

The benefits of including a Machine Learning (ML) module to the system were discussed

in section 3.1. The ML system forms the core of the intelligence involved in determining

the immediate goals for each robot agent. Literature on learning models for robotic
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systems are vast and cover topics such as Behaviour-Based Systems (BBS) [50], Rein-

forcement Learning (RL), artificial neural networks [65], and genetic algorithms [66],

amongst many others. In this research, the Support Vector Machine (SVM) algorithm

is used as the learning platform for the robot agent intelligence. SVM learning is a su-

pervised, classification or inductive learning scheme where the computing system learns

from the database of past experiences to predict future outcomes; it was selected as the

learning engine in this research due to the following reasons:

� The inductive learning characteristics of SVMs allow for the teaching of robot

agents in an offline, simulated environment before the robots are called to action

in the real-world.

� SVMs have proven to be successful in many applications such as bioinformatics,

and text and image recognition.

� SVM software libraries are available as open source packages which assist devel-

opers to focus on their primary research.

3.2.4.1 SVM background

SVM learning is related to statistical theory [67] and was first introduced as a classifi-

cation method in 1992 [68]. It is widely used in bioinformatics due to its accuracy and

ability to work with high-dimensional space data. The standard SVM is a binary linear

classifier (commonly referred to as the linear SVM) which predicts whether an input

belongs to one of two possible classes; this is accomplished by first building a model

from a set of training examples, each consisting of input data that are mapped to the

corresponding class label. SVM non-linear classifiers can be created by using non-linear

kernel functions, further discussed in section 3.2.4.3.

3.2.4.2 SVM linear classifiers

In order to gain an intuition on what support vectors actually are and how they are used

to create learning models a few preliminary mathematical terms will now be introduced.

Given some training data set, D, with n points:

D = {(xi,yi),xi ∈ Rm,yi ∈ {−1, 1}}ni=1 (3.1)
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The boldface x term is a vector with training example inputs xi; each xi has an m–

dimensional size of m features. The classifier term, yi, is either -1 or 1 and indicates

the class to which each point xi belongs.

In figure 3.4 (a), the training examples are classified into positive and negative classes.

The hyperplane, H, is the decision boundary that divides the regions between positive

and negative classes. The decision boundary is said to be linear since the examples

are linearly separable and a classifier with a linear decision boundary is called a linear

classifier. H1 and H2 are lines that intersect the support vectors, these are the training

examples that are closest to the decision boundary and they determine the margin

(d1 and d2 ) at which the two classes are separated from the hyperplane (or decision

boundary). The SVM algorithm is also termed as the large margin classifier since its

goal is to maximise the margin d for a set of classified training examples.

Figure 3.4: (a) Hyperplanes and margins. (b) Margin classifiers

Figure 3.4 (b) is an extension to (a) and shows the training examples on a two dimen-

sional feature space with features x (1) and x (2). A linear classifier is based on a linear

function of the form:

f(x) = wTx + b (3.2)

where w is commonly known as the weight vector and b is the bias. The product between

w and x is known in linear algebra as the dot product and is defined as wTx =
∑

iwixi.

The equation for the hyperplane is:

H : wTx + b = 0 (3.3)
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where the purpose of the bias can be seen as moving the plane away from the origin, i.e.

if b=0 the hyperplane would go through the origin. Equations 3.4 and 3.5 are related

to planes H1 and H2 :

H1 : wTx + b = 1 (3.4)

H2 : wTx + b = −1 (3.5)

and are equated to 1 and -1 respectively due to the definition of the classifier term, yi in

equation 3.1. Using geometry and referring to figure 3.4 (b), the margin between H and

H1 is 1/‖w‖, where ‖w‖ is the length of the vector w and is given by
√

wTw; hence the

margin between H1 and H2 is 2/‖w‖. In order to maximise the margin, ‖w‖ must be

minimised subject to the following constraints which are added to prevent data points

falling into the margin:

wTxi + b ≥ 1, {for yi = 1} (3.6)

wTxi + b ≤ −1, {for yi = −1} (3.7)

Equations 3.6 and 3.7 can be combined to form:

yi(w
Txi + b) ≥ 1, {for 1 ≤ i ≤ n} (3.8)

Minimising ‖w‖ subject to equation 3.8 is a constrained optimisation problem and solving

it requires using the method of Lagrange multipliers. A method that can be used to

obtain a dual formulation, expressed in terms of αi variables [69]:

maximise α:

n∑
i=1

αi − 1
2

n∑
i=1

n∑
j=1

yiyjαiαjx
T
i xj (3.9)

subject to:
n∑

i=1

yiαi = 0, αi ≥ 0 (3.10)

The dual formulation also defines the weight vector in terms of the training examples:

w =
n∑

i=1

yiαixi (3.11)
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3.2.4.3 SVM non-linear classifiers

In most SVM classification problems the data set is not linearly separable. Literature [68]

solves this challenge by mapping the original finite dimensional space into a higher

dimensional space making the separation much easier in that space, as illustrated in

figure 3.5.

Figure 3.5: Non-linear classification mapping

The mapping is achieved by the use of Kernel functions and the dot product property

in the linear SVM algorithm. The xT
i xj terms in equation 3.9 are replaced by the kernel

function, K :

K(xi,xj) = ϕ(xi)
Tϕ(xj) (3.12)

which can represent (among others) a polynomial, gaussian, or hyperbolic function [70].

The linear classifier is also known as the linear kernel.

3.2.4.4 Multi-class SVM

SVMs are inherently binary classifiers however, there are many applications where mul-

tiple classifications are required. The common method of solving the M-class problem

is to divide it into multiple binary classification problems [71]:

� One-vs-All: This method constructs N binary SVM classifiers, where N represents

the number of classes. Every i -th SVM is trained to differentiate the training ex-

amples of the i -th class from the examples of the other classes. At the classification
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phase, samples are classified in accordance to the highest output function among

all the SVMs.

� One-vs-One: This strategy constructs one SVM for every pair of classes, hence for

an M-class problem of N classes, N (N -1)/2 SVMs are trained. A maximum-wins

voting concept is used where each SVM classifier assigns the sample to one of the

two classes and the number of votes for the assigned class increases by one; in the

end, the class with the most votes determines the classification of the sample.

Another approach to the M-class problem, which avoids the use of multiple binary

classification problems, involves the application of a single optimisation model [72].

3.2.4.5 SVM software libraries

Over the past two decades there has been a wide interest in SVM algorithms which has

led to the development of many solvers for SVM optimisation problems. Two popular

open source solvers are LIBSVM [73] and SVMlight [74]. These solvers form excellent

tools for researchers since they eliminate the vast quantity of time that could be spent

on the complex software development of SVM optimisation algorithms and thus allow

the scientist to focus on the primary components of the research. The LIBSVM library

is used in this research.

3.3 SCADA design

SCADA systems are widely used in the manufacturing industry; they can vary in func-

tionality and cost and are chosen to suite a company’s application and design require-

ments. The criteria used to select a SCADA package for this research topic are:

1. The software package must be open source.

2. Support TCP socket programming (for communicating with the agent interface).

3. Allow for the reliable connectivity of multiple nodes on a network (for the communi-

cation of every robot agent).

4. Ability to develop an internal program for the purpose of simulating plant data.

5. Ability to develop a Graphic User Interface (GUI).

6. Trending functionality of plant data.
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The Proview system [75] was chosen as the SCADA platform for this research since it

satisfied the above mentioned criteria by having the following features:

1. Proview is an open source system for process control and can run on a standard PC

with a Linux operating system.

2. Communication with other computers can be done via serial or ethernet means and

the TCP socket protocol is supported.

3. The distributed system architecture of Proview allows it to be connected to multiple

nodes in a network.

4. Simulation programs can be written in C, C++ or Java; the SCADA developer can

switch between simulated and real environments allowing for an efficient process in the

commissioning of a plant.

5. The Ge Editor is the environment in Proview where GUI’s can be developed.

6. Proview supports trending and historical capturing of data.

In addition to the above features, Proview comes with the following benefits (some of

which are not required for this research topic):

� Proview is based on a soft Programmable Logic Controller (PLC) solution, thus

there is no need for hard-wired inputs.

� There is no limit to the number of I/O, PLC programs, timers, counters, etc.

� The minimum PLC loop cycle time is less than 1 ms and performance is limited

by the hardware and operating system of the hosting PC.

� Proview is object orientated, thus complex blocks with methods and attributes

can be created.

Section 4.4 covers the development of the SCADA system for this research, using

Proview. Modules such as the PLC, GUI and simulation program will be discussed.

3.4 Operating system kernel

The main operating system used in this research is Linux, due to the compatibility of

both Player and Proview in this kernel. The Linux distribution used on the computing
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processors for the Segway robots is Ubuntu 12.04 and the distribution used on the

PeopleBot is ArchLinux.

3.5 System design overview (revisited)

A revised overview of the system design is given in figure 3.6 to include the components

that were discussed throughout this chapter.
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Figure 3.6: Revised design overview of the Mechatronic system

The form of communication between the SCADA and three Linux computers is wireless

ethernet (Wi-Fi), this prevents the use of network cables connected to mobile robots.

3.6 Chapter summary

This chapter discussed the design of the software components involved in the research,

namely the Player middleware, the agent program (consisting of localisation, cognition

and SVM learning modules), and the Proview SCADA system. The chapter concluded

by revisiting the system design overview to include the components discussed throughout

the chapter.
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Software Development

The artificial intelligence software is the core element of this research topic since the

research objectives are achieved here, through the development and system integra-

tion of multiple software components. The “parent” components are the Player server

and client applications which are further subdivided into “child” components such as:

drivers, interfaces, cognition and SVM modules, and communication protocols. The pur-

pose of this chapter is to discuss the development and integration of these components

in a structured manner so that the reader has a clear understanding of the AI process

taken to achieve the objectives of this research topic. This chapter also discusses the

development of the SCADA component of this research.

4.1 AI development overview

There are two development routes that were taken in this research: 1) the simulation

process involves the use of Player’s Stage platform, where robot models were created to

interact in the two dimensional simulation environment, and 2) the real-world portion

is the software implementation on the actual robots, in a robotic lab environment.

Figure 4.1 and figure 4.2 depict overviews of the software development for the simulation

and real-world routes respectively.

47
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Figure 4.1: AI simulation development overview
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Figure 4.2: AI real-world development overview

The simulation development (with reference to figure 4.1) has the Player/Stage files and

client application files that make up the system:

� sim.cfg is the Player configuration file which defines the drivers and interfaces (for

each robot) used in the system. The file defines Stage as the simulation driver and

includes the sim.world file. The code for sim.cfg is shown in Appendix A.1.

� sim.world defines the layout of the environment. The file includes an image of

the environment map and other “.inc” files for the definition of robot and sensor

hardware. The code for sim.world is shown in Appendix A.2.
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� Pbotsim.cc, Rmp200sim.cc and Rmp400sim.cc are three client application files

containing the cognition and SVM intelligence modules. The files also contain

TCP socket and protocol coding for communication between the SCADA interface;

Pbotsim.cc is shown in Appendix A.4. More detail on the client application code

is given in the succeeding sections.

In the simulation development, all three client application files reside on one computer

and use different socket connections to the Player server, although it is possible to run

each client application on a separate computer. A single instance of Stage is used and

all three robots can be seen in one Stage window during the simulation (see figure 2.5).

As shown in figure 4.2, the real-world development system comprises of .cfg files for

each robot (the code is documented in Appendices A.5, A.6 and A.7) and do not contain

“.world” or “.inc” files due to the lack of use of Stage. Each Player .cfg file and client

.cc file executes on a separate local computer attached to the robot.

4.2 Player server configuration

As mentioned previously, the purpose of the Player configuration file is to define the

drivers and interfaces used for each robot, in either simulated or real-world environments.

This section discusses the various drivers and interfaces implemented in the research.

4.2.1 Simulation drivers and interfaces

The interfaces that were used in the simulation are position2d, sonar, and laser,

as shown in table 4.1. The index (“:x”, where x is 0,1 or 2 in table 4.1) indicates which

interface is going to be used in the driver, since there may be more than one device in

the system.

Table 4.1: Player simulation drivers and interfaces

Robot model Driver Interface-1 Interface-2

PeopleBot r0 stage position2d:0 sonar:0

RMP200 r1 stage position2d:1 laser:1

RMP400 r2 stage position2d:2 laser:2
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The position2d interface is used by the client to retrieve the robot’s two dimensional

position data (such as x, y, and yaw odometry) and provides the client with control over

actuators to set the linear and angular velocities of the robot. The sonar and laser

interfaces are used to get range data from the sonars and lasers respectively.

4.2.2 Real-world drivers and interfaces

The driver and interface structure for the real-world development in Player is shown

in figure 4.3, where the black boldface font give the names of the Player drivers used

(e.g. p2os) and the red boldface font give the names of the final interfaces used (e.g.

position2d:0).

p2os
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provides

sonar:0

segwayrmp

position2d:0provides

hokuyo_aist

ranger:0provides

rangertolaser

ranger:0
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requires

segwayrmp

position2d:2provides

hokuyo_aist

ranger:0provides

rangertolaser

ranger:0

provides laser:0

requires

segwayrmp

position2d:1provides

segwayrmp400

position2d:1

provides

requires
position2d:2

position2d:0

pbot.cfg

rmp200.cfg

rmp400.cfg

Figure 4.3: Player real-world drivers and interfaces

The segwayrmp400 driver requires the position interfaces provided by two segwayrmp

drivers, this is simply for the forward and rear sets of wheels on the robot. The driver

for the Hokuyo laser, hokuyo aist, provides a ranger interface which is converted to

a laser interface by using the rangertolaser driver.
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4.3 Client applications

The client application code for the simulation and real-world developments are almost

the same, with just two sets of differences. The first difference is in the config.h files.

This file contains the program constants which are used as factors for speed, obstacle

avoidance, and navigation; the config.h file for the PeopleBot simulation is found in

Appendix A.3. The reader is referred to the accompanying CD for a complete reference

to the all the code files used in this research.

The second difference between simulation and real-world client code can be seen by

comparing the code shown in figure 4.4, where a SimulationProxy is used for the

simulation code only, a requirement for the Stage driver. Proxies are used in Player to

subscribe the client to the interfaces of the drivers.

Figure 4.4: (a) Simulation proxy code extract. (b) Real-world proxy code extract

4.3.1 Player proxies and methods

The Position2dProxy allows the client application programmer to use methods

such as GetXPos, GetYPos, SetSpeed, among many others. In this research, the

Position2dProxy methods used in the client application are:

� GetXPos() gets the robot’s current x-coordinate in relation to its x-start position.

� GetYPos() gets the robot’s current y-coordinate in relation to its y-start position.

� GetYaw() gets the robot’s current yaw in relation to its yaw-start position.

� SetMotorEnable(bool) takes a boolean input to enable or disable the robot’s

motors.

� SetSpeed(XSpeed,YawSpeed) is the command which controls the linear and

angular speed of the robot.
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The SonarProxy and LaserProxy methods used are:

� IsValid() returns a boolean state declaring whether the sonar/laser scan was

successful or not.

� GetCount() returns the number of points in the sonar/laser scan.

� ProxyName[index] returns the range data of the index for the sonar/laser scan.

4.3.2 Cognition module

Section 1.4.4 discussed the design overview of the cognition module; the state machine

diagram (figure 3.3) illustrated the steps involved in the cognition process. In this

section, a more detailed review of the cognition process will be discussed:

� Cognition program structure: flow chart illustration of the logic used in the pro-

gramming of the cognition module.

� Turning in tight spaces: analysis of the solution to this problem.

� Local navigation: developmental discussion of the way in which each robot navi-

gates to its immediate goal.

4.3.2.1 Cognition program structure

A flow diagram for the cognition program (in Appendix A.4) is given in figure 4.5. The

sequence begins when the GoalCmd boolean variable is true. The variable is set when

the SVM learning module evaluates a new goal location for the robot and the variable

is cleared at the end of the cognition sequence (i.e. when the goal has been reached).

The two procedures in the diagram responsible for the obstacle avoidance and local

navigation components are ObsAvoid and Calc waypoint respectively.

The ObsAvoid routine ensures that 1) the robot goes into an emergency stop (estop)

mode when another robot, obstacle or human is within a safety distance, 2) the robot

reverses when safe to do so, 3) the robot turns in tight spaces, and 4) the robot waits

until it is clear to proceed towards the goal.
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Figure 4.5: Cognition flow diagram
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The Calc waypoint routine calculates the x-y coordinates of the “waypoint” to the goal

and occurs whenever the robot is far away from the goal coordinates. The robot thus

travels on a series of way-points en route to the goal.

4.3.2.2 Turning in tight spaces

The objective of the “turning” function in the cognition program is to control the angular

speed (ω) of the robot so that the robot does not clash into objects in the confined space

environment. In figure 4.6 a robot, R, with length RL is shown xmin meters away from

its nearest vertical obstacle and ymin meters away from its closest horizontal obstacle.

The calculated ω must allow for a smooth trajectory of the robot without its 1) front

colliding with the xmin obstacle, and 2) rear colliding with the ymin obstacle. The xmin

and ymin distances are obtained from the sonar or laser range finders and the point of

origin in the measurements is the front-center of the robot (labeled as c in figure 4.6).

xmin

ymin

R R
L

r1

r2

d

o
c

Figure 4.6: Robot parameters in confined space

The relationship between linear speed, ν and ω is:

ν = rω (4.1)

where r represents the radius r1 in figure 4.6. Setting ν as a constant during robot

turns will imply that ω can be calculated if r1 is known. The outer radius, r2, can be

easily calculated using the theorem of Pythagoras:

r2 =
√

r2
1 + R2

L (4.2)
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The distance, d is simply given by the difference between r1 and r2; this distance is used

as a condition in the turning algorithm to ensure that the turn radius does not cause a

collision with the horizontal obstacle:

d < ymin (4.3)

The radius r1 is determined through an iterative loop as shown by the code extract in

figure 4.7.

Figure 4.7: Code extract for angular speed calculation

In the code, r1 is initialised to xmin and reduced by 0.05 at every iteration, until the

condition in equation 4.3 is satisfied. The r2 radius is calculated from the iterated r1

radius, hence d is determined by the difference between the radii. The resultant r1 and

the constant ν is then applied in equation 4.1 to determine ω.

4.3.2.3 Local navigation

The development for robot navigation is fundamentally achieved by choosing the correct

sonar/laser sector in the direction of the goal. The number of sectors chosen during the

implementation was 8, equidistantly spanned across 180◦ for the PeopleBot and 240◦

for the Segway RMP robots, as depicted in figure 4.8. The 180◦ span is due to the

positioning of the 16 sonar sensors: 8 located at the top of the robot and 8 at the base.

The 240◦ span is the maximum range of the Hokuyo LRF, since the laser is positioned

at the front-center of the robot, the span is 180◦ with an additional 30◦ on either side

of the robot.
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Figure 4.8: Sonar/Laser segments for PeopleBot and Segway robots

The result of the local navigation algorithm is the way-point coordinate which is used

as an intermediate goal for the robot, en route to the main goal defined by the SVM

module. The idea of the navigation is to calculate the way-points such that the robot

travels through gaps (free space) in the environment, avoiding obstacles; the gaps are

determined by using the data returned from the sonar and laser scans. The process of

calculating the way-point is given by the following steps:

1. Calculate the individual sector areas.

The area (A) of any sector, with radius R and angle θ, is given by [76]:

A =
θ

2
R2 (4.4)

Using equation 4.4, a summation of the infinitesimal areas produced by each laser reading

in the sector can determined by the following equation:

Sk =

n∑
i=1

θp
2
L2
i (4.5)

where Sk represents the total area for the k -th sector (k ∈ {1, 8}), θp is the constant

pitch angle between each laser reading (22.5◦ for the sonars and 0.36◦ for the Hokuyo

LRF), Li is the individual laser value in the sector of n laser readings.

2. Select the sectors by comparing the sector areas with a calculated threshold area.

The threshold area is calculated by use of equation 4.4, with a minor adjustment:

Athresh = Pfac ∗
θsector

2
∗R2

dist (4.6)
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where Pfac is the probability constant, θsector is the constant angle of each sector (cal-

culated by the sonar/laser span divided by 8— the number of sectors), Rdist is another

constant which represents the maximum distance allowed from the obstacle.

3. Group the adjacent selected sectors and calculate the arc length spanned by these

sectors.

The arc length, S, of any sector, with radius R and angle θ, is given by [76]:

S = Rθ (4.7)

The total arc length for adjacent sectors is calculated by applying equation 4.7 as a sum-

mation over each sector in the group. The parameters used for R and θ in equation 4.7

are Rdist and θsector respectively, as applied in equation 4.6.

4. If the total arc length calculated in step 3 is above a constant threshold, calculate

the start angle (θa) and end angle (θb) of the arc relative to the position of the robot.

The constant threshold is defined as 1.5*Rw, where Rw is the width of the robot; this

definition ensures that the gap through which the robot travels is wide enough.

5. Calculate the best angle, θbest, (from each selected arc) that give the smallest (ideally

zero) angle difference relative to the goal.

6. Loop through all of the best angles and choose one with the least angle difference, in

relation to the goal.

7. Calculate the x-y way-point coordinate from the best angle chosen in step 6, by

applying the following two parametric equations of a circle:

xw = xc + (Rdist ∗ cos θbest) (4.8)

yw = yc + (Rdist ∗ sin θbest) (4.9)

where x c and yc are the coordinates of the current location of the robot, and xw, yw are

the way-point coordinates.
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4.3.3 Client-SCADA communication

The communication between the SCADA system and the client application is done

through the use of TCP socket connections. The data packets in the communication

are built and decoded by both the SCADA and client interfaces. An overview of the

communication system is shown in figure 4.9.
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System

Interface 

Client -2

Interface 
SVM Module 

Client -3

Interface 
SVM Module 

TCP  Socket -1
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Figure 4.9: Client-SCADA communication overview

The following three sections discuss the development of the socket connection, the man-

ufacturing application used for this research topic, and the format of the data packets.

4.3.3.1 Socket connection

A description of the socket functions used in the SCADA and client interface code is

listed in table 4.2 and the sequence of the connection is illustrated in figure 4.10.

Table 4.2: TCP Socket functions

Function Description

socket() Create a new socket

bind() Attach a socket with a port and address

listen() Establish a queue for connection requests

accept Accept a connection request

connect() Attempt to establish a connection to a remote host

recv() Receive data over the connection

send() Send data over the connection

close() Close the connection
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Figure 4.10: Client-SCADA TCP socket connection

The TCP server in the socket connection is the SCADA node and the TCP client is

the client application. The server passively waits for and responds to clients, therefore

the server socket is a passive one. In contrast, the TCP client socket is active, since

the client initiates the communication and is required to know the address and port of

the server. The TCP socket protocol supports multiple client connections to a single

server, hence in this research, all three client applications connect simultaneously to the

SCADA server.

4.3.3.2 Manufacturing system (application)

The objectives of this research topic were tested in a material handling application, as

illustrated by the SCADA screenshot shown in figure 4.11. The application shows a

resource buffer (“R”), a storage buffer (“S”), 6 process buffers (“B1”–“B6”), 3 machines

(“M1”–“M3”), and a conveyor; it was designed in this manner to demonstrate the co-

operative ability of the system during bottleneck and fault conditions. The application

was set up for the PeopleBot to transport material from “R” to “B1”, the RMP200

move material from “B4” to “B5”, and the RMP400 to finally move the end product

from “B6” to “S”.
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Figure 4.11: Material handling application for this research topic

The numbers within the blocks shown in figure 4.11 represent the quantity of material

in the buffer and the buffer levels are illustrated as a percentage of their total capacity,

thus the bottlenecks in the process can be seen at a glance during production. The

calculations for the quantity of material, buffer capacities, and machine process rates

are all done in the simulation program which is located in the SCADA manufacturing

system component (see figure 4.9); more detail on the simulation program is discussed

in section 4.4.4.

During the implementation and debug phase of this research, bottleneck conditions were

intentionally created by altering: 1) the material handling capacities of the robots, 2) the

machine efficiencies, and 3) the buffer capacities.

4.3.3.3 Data packet structure

Data packets are built and decoded at the interface (see figure 4.9) modules of the server

and client nodes. The format of the data packets transmitted between the SCADA server

and client application is shown in figure 4.12. Figure 4.12 (a) gives an example of the

packet structure built at the client node and figure 4.12 (b) is an example of a server

packet structure; both packets are decoded at the other node (i.e. a client packet is

decoded at the server node and vice versa).
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#client; aid=1; amode=0; agoal=0; apass=0; end#

#server; aid=1; svm=1; data=1 1:80 2:10 3:0 4:10 5:0 6:0 7:0 8:0; ago=0; aclr=0; tout=3; end#

(a)

(b)

Figure 4.12: (a) Client data packet structure (b) Server data packet structure

The packets contain vital information required by the simulation code in the SCADA

system and the SVM module in the client application. The following list outlines the

meaning of each parameter in the data packets:

� header: the start of the packet, describing where it was built, either #client or

#server.

� aid : the robot agent identification, can range from 1 to 999. In this research, the

aid ’s used were 1, 2 and 3, for the PeopleBot, RMP200 and RMP400 respectively.

� amode: the agent mode, ranges from 0 to 6. Table 4.3 gives the description of

each mode.

Table 4.3: Agent modes

Mode no. Description

0 Wake up

1 Going home

2 At home

3 Going to source

4 At source

5 Going to destination

6 At destination

� agoal : refers to the agent goal location, ranges from 0 to 3 in this research. The

“0” value is the robot agent’s home location, “1” is the buffer service 1 location

(the area between the resource and buffer 1), “2” is the buffer service 2 location

(the area between buffers 4 and 5), and “3” is the buffer service 3 location (the

area between buffer 6 and the storage).

� apass: the agent passport parameter, where a value of “0” means that the agent

is not waiting to go to the buffer and “1” implies that the agent is waiting.
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� svm: SVM mode, ranges from 0 to 2. Table 4.4 gives the description of each mode.

Table 4.4: SVM modes

Mode no. Description

0 Do nothing

1 SVM learn mode

2 SVM train–predict mode

� data: this portion of the packet represents the number of materials in each buffer.

The “x:” (where x is a number from 1 to 8) represents the buffer number and

the value attached is the number of materials. For example, “1:80” represents 80

materials in the resource buffer. The first number after the data parameter is the

value of the agoal parameter.

� ago: agent go/stop command, where a value of “0” means that the agent must

stop and “1” commands the agent to go ahead.

� aclr : agent clear mutex, where a value of “0” means that the agent is not clear to

proceed and “1” is the agent’s clear-to-proceed flag.

� tout : timeout for the agent to try communications again with the SCADA server,

ranges from 0 to 65535 seconds.

� tail: the end of the packet, #end.

The use of some of these parameters will be made clear in the next section since they

are required by the SVM module.

4.3.4 SVM module

This section discusses the implementation of the SVM learning algorithm in the re-

search. The LIBSVM library was used in the client program for the train and prediction

algorithms, and the polynomial kernel was chosen as the non-linear SVM kernel function.

4.3.4.1 Program structure

The flow diagram for the SVM module is shown in figure 4.13, where the Run SVM

block represents the SVM algorithm.
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Figure 4.13: SVM module flow diagram for each robot agent

The home location is the “park-off” position of the robot, and the source and desti-

nation locations are the buffer service material pick-up and material drop–off positions

respectively. For example, in figure 4.11, one of the source locations is the “R” buffer

and the corresponding destination location is buffer “B1”.
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4.3.4.2 Learn, train and predict

There are two phases to the SVM algorithm:

� the learning phase, where agents are taught by the system on the best goal lo-

cation to follow. The teaching process can take place in an offline (simulation)

environment, or online through the GUI interface of the SCADA system.

The objective of the learning phase is to build a knowledge database of SVM fea-

tures with training examples. Figure 4.14 is an extract of the “train.txt” file that

contains the training examples. The SVM features in the file are the buffers in the

manufacturing application and the training examples are the number of materials

in each buffer as well as the (output) goal location for the robot— shown as the

first number in each line of the file.

Figure 4.14: Train.txt file extract with SVM features and training examples

The robots are taught by going through a “teach mode” process, using the GUI

interface (figure 4.22) of the SCADA system. The operator assigns each robot to a

particular task by selecting the appropriate buffer service (BS) location during the

simulation or the actual production process. The operator chooses the BS tasks

for the robots by considering the buffer levels and the abilities of each robot.

� the train–prediction phase uses the data collated in the learning phase (i.e. the

data contained in the train.txt file) to generate training models for each agent; the

goal output for each agent is then accomplished by using the current data values

(obtained from the data packet) as inputs to the prediction algorithm. The current

data values represent the immediate status of the manufacturing process; they are

stored as a string of data in the “test.txt” file which is used as an input to the
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SVM prediction algorithm. Figure 4.15 illustrates the entire process of training,

building the model, and predicting the goal output for each robot in the system.

Figure 4.15: Process of the SVM train–predict phase

4.4 SCADA development

Chapter 3 discussed the design choice of using the Proview SCADA package for this

research. The following sections cover the development and integration of the SCADA

system with the rest of the modules already discussed in previous chapters.

4.4.1 Proview environment

This section introduces the Proview SCADA environment and the associated object

orientated structures involved in the development of a SCADA project. Projects are

created in the Proview “Project List” space, shown in figure 4.16.

Figure 4.16: Proview project list
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Each project has a directory volume in which the volumes and nodes of the project

are created. Figure 4.17 is a screenshot of the directory volume used for the SCADA

development of this research.

Figure 4.17: Proview volume directory

A volume is like a container that holds objects, ordered in a tree structure. There are

various types of volumes that can be created in Proview, the one implemented in this

research is the root volume. In the right window of figure 4.17, the nodes of the project

are created: nodes are grouped by the QCOM bus port they communicate on. The two

BusConfig nodes that were created are “Sim999” (simulation) and “Prd1” (production),

each containing NodeConfig children objects that contain configurable node names and

IP addresses. The simulation and production BusConfig nodes can contain objects that

are assigned to the same root volume; in this way, SCADA development is done on one

volume which can be tested in a simulation environment for prototyping/debugging,

thereafter easily applied to the actual production environment.

Every volume can be configured and edited in a volume configuration space, shown in fig-

ure 4.18. The editor is split into two windows, the left window is the plant configuration

and the right window is the node configuration.
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Figure 4.18: Proview volume configuration space

The plant configuration contains 1) signal objects, and 2) PLC program (PlcPgm) ob-

jects:

� signal objects represent the Input/Output (I/O) signals that are used somewhere

in the process. Proview supports various I/O types, some of the commonly used

ones are digital, analog, integer, and string.

� PLC objects define the PLC program elements, such as the I/O configuration and

connections between I/O. Several PLC programs can be configured in a single

plant setup.

The node configuration specifies the type of I/O system used in the project, such as rack

and card, distributed I/O, or process and thread. The OpPlace object is also defined

here; this parent object has XttGraph children objects which are used to configure GUI

interfaces through Proview’s Ge editor.
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4.4.2 SCADA development overview

A development overview of the SCADA system for this research is given in figure 4.19.

The Proview runtime environment calls the user application programs (application in-

terface and simulation program), the project PLC program, and the GUI, developed in

Ge editor.

Proview runtime

Simulation program

Application interface

PLC program

GUI

Client 1 interface

Client 2 interface

Client 3 interface

TCP sockets

Figure 4.19: Proview SCADA development overview

4.4.3 Application interface

Proview supports the integration of user application programs to the SCADA system.

The programs can be written in C, C++ or Java and the programmer can attach the

real time database, rtdb, to read and write the I/O data.

The application interface code was written in C++ and can be viewed in appendix B.1.

The purpose of this program is: 1) to function as the TCP server socket and communicate

with the clients in the network, 2) to read and decode the data packets received from

the clients, thereafter write the necessary data to associated SCADA signals, 3) to read

data signals from the SCADA system, then build data packets before sending them to

the corresponding client.

Section 4.3.3.3 discussed the structure of the data packets. The application interface

builds the packet to send the aid, svm, data, ago, aclr, and tout parameters and en-

codes the packet received from the client to retrieve the aid, amode, agoal, and apass

parameters.
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4.4.4 Simulation program

The simulation program was written in C++ and can be viewed in appendix B.2. The

program uses Proview’s real time database to read and write I/O. The functionality of

the simulation program is described by the following itemised list:

� get agent modes (amode): determine whether the robot agent is at, or going to,

its home, source or destination location.

� get agent svm modes: identify whether a particular agent is in a teach or learn–

predict SVM mode.

� get agent buffer goals when robot at home or at destination (agoal): determine

which buffer service (BS) a particular agent is required to go to— this location is

shown in the GUI.

� get agent passports (apass): check whether an agent is waiting to go to a buffer.

� set agent clear flags (aclr): control the “clear to proceed” flags for each agent.

� calculate buffer levels at source and destination locations: increase or reduce the

material quantity in these buffers at the right time (determined by the PLC pro-

gram). The amount of material that is loaded or off–loaded depends on the load

carrying capacity of the robot as well as the amount of material the robot is actu-

ally carrying. The load carrying capacities of each robot agent are configured as

constants in the simulation program.

� set agent “go/stop” flags (ago): control whether an agent can move ahead or is

required to stop.

� calculate buffer levels effected by the machines and the conveyor: increase or reduce

the material quantity in these buffers at the right time (determined by the PLC

program). The efficiencies of the conveyor and the machines are set to constant

values; these efficiencies can influence bottleneck conditions in the production pro-

cess, however, they are not set as variables in this research. Bottleneck conditions

were solely controlled by the load carrying capacities of the robots and the failure

of individual robots.
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4.4.5 PLC program

The Proview PLC program developed for this research is a simple one and could have

been omitted from the SCADA system by being included in the simulation program.

The two reasons for including the PLC program in the system are: 1) it is much easier

and efficient to implement the use of timers in the PLC than writing timer code in the

simulation program; 2) it was a research interest to integrate and test the Proview PLC

module with the rest of the system.

Figure 4.20 is the PLC program developed in Proview. The wait function blocks are delay

timers that are activated when the digital input signals are positively edge triggered.

The output signals are set when the timer elapses. The purpose of this PLC program

is to simulate the completion of: 1) material loading and off–loading at the source (“S”

signals) and destination (“D” signals) buffers respectively, and 2) machine (“M” signals)

and conveyor (“C” signals) process times.

Figure 4.20: Proview PLC program
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4.4.6 Graphic interface development

The GUI was developed in Proview’s Ge editor package, shown in figure 4.21 and the

final interface is illustrated in figure 4.22.

Figure 4.21: Ge editor development environment

Figure 4.22: GUI screen in runtime
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The GUI screen has the following characteristics:

� displays the present goal of the robot agent, whether it is going to the buffer source

or destination.

� allows the operator to control the SVM mode of each agent, be it “teach mode”

or “predict mode”.

� displays the current buffer service (“BS1”, “BS2’ or “BS3’) goal of each agent, or

whether the agent is going home. The BS goal can also be a configurable parameter

if the agent is operating in a SVM teach mode.

� displays the number of materials in each buffer.

� displays the buffer levels (as a percentage).

The GUI screen also shows vertical level control bars at each source and destination

buffer; these were used to control the buffer levels during the test and implementation

phase of the research.

4.5 Chapter summary

At the outset of this chapter, the AI development overview was given which discussed the

two development routes taken in this research: the simulation and real-world develop-

ments. The Player, Stage and client configurations of each development was addressed.

The chapter also discussed the cognition and SVM modules of the client application and

code references to the appendix were made. The latter part of the chapter introduced

the Proview SCADA development environment and discussed the components involved

in the SCADA part of the research, namely the application interface, the simulation

program, the PLC program, and the GUI.
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Results and Discussion

The Mechatronic design and development of the components discussed in this research

were tested in simulated and real–world environments. This chapter begins by describing

the laboratory layout of the two environments as well as the actual robot assemblies used

in the tests; the sections that follow include the test results for robot cooperation and

cognition.

5.1 Simulation environment

A map of the lab environment used in the Stage simulation is depicted in figure 5.1.

Figure 5.1: Stage simulation environment with robot and buffer locations

73
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The map shows two rooms, separated by a wall and doorway. The room on the left is

used for tests with the PeopleBot (yellow robot) and the RMP200 (red robot), whilst

the room on the right is used for the RMP400 (green robot). The “S” and “D” labels

in the figure are the source and destination locations for buffer service 1, 2 and 3. The

PeopleBot’s primary goal is to move material between “S1” and “D1”, however it was

also trained to be a helping agent to the RMP200, whose only task is to move material

between “S2” and “D2”. The RMP400 also has a single task of handling material from

“S3” to “D3”. The home locations for the robots are their current positions shown in

figure 5.1 and, as mentioned in chapter 3, the localisation method used is odometry

together with a memory of the robot’s x–y coordinate position in the map.

Figure 5.2 is a screenshot of a simulation in progress. The picture shows 1) the Proview

SCADA window, 2) the Stage simulation window and simulation terminal, and 3) three

terminal windows— one for each client application. The clients connect to the Player

server on the local IP address of the Ubuntu machine.

Figure 5.2: Simulation system: SCADA, Stage and client applications

5.2 Real–world environment

The real–world tests were performed in the Mechatronics lab at the University of KwaZulu-

Natal. The three robots discussed in this research were used in the actual tests.
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5.2.1 Robot system assemblies

The PeopleBot assembly is shown in figure 5.3. The unused hardware are the Pan–Tilt–

Zoom (PTZ) camera, 2D gripper, and the SICK LRF. The top and bottom sonar array

sensors were used as the range finders in the navigation algorithm and the e-stop button

was used to stop the robot during its autonomous operation. This robot contains an

on-board PC, located in its base, and the wi-fi antenna (located behind the monitor)

allowed access to wireless communication with the remote SCADA PC.

Figure 5.3: PeopleBot system assembly

The Segway RMP200 assembly is shown in figure 5.4. The client application for this

robot was executed on the laptop PC, supported by the sheet metal bracket. The other

hardware installed on the bracket is the Hokuyo LRF, located at the front of the robot,

the regulated power supply circuit for the LRF, and the 6V battery which is used to

supply power to the voltage regulator. The power supply circuit was neatly installed in

an enclosure and the two-way switch was mounted outside the enclosure, allowing easy

access to control power to the LRF. The user controls, used to switch the robot on and

select balance or tractor mode, are located at the rear of the robot, hence they cannot
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be seen in figure 5.4, however, they are shown in figure 2.3. The balance mode was used

during tests.

Figure 5.4: Segway RMP200 system assembly

The assembly of the Segway RMP400 system is almost identical to the RMP200 system

in terms of the LRF and power supply arrangement, shown in figure 5.5. This assembly

also executes the client application on the local PC and communicates with the SCADA

system through the laptop’s wi-fi adapter.

Figure 5.5: Segway RMP400 system assembly
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5.2.2 Laboratory layout

The actual lab rooms used for the robotic system tests are shown in figure 5.6. The

room at the top of the figure was used for tests with the PeopleBot and the RMP200,

whilst the room at the bottom was used for tests with the RMP400. The rooms are

separated by a wall and doorway, similar to the map used for the Stage simulation, in

figure 5.1.

Figure 5.6: Lab rooms used during tests

The buffer source and destination locations are given in figure 5.7. The “H” labels

represent the home positions for each robot. The x–y coordinate locations for the real–

world tests were configured the same as the simulation system so that the performance

of the robots in the real–world could be measured and debugged in relation to the

simulation results. The short distance movement of the robots between source and
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destination locations may seem like a trivial exercise, however, the objective of the

research is to use the concept to demonstrate cooperation among robots in bottleneck

conditions.

Figure 5.7: Lab environment with robot and buffer locations

5.3 Cooperation results and discussion

This section produces the results of the tests performed during simulation and real–

world conditions. Bottlenecks were created by varying the load carrying capacities of the

robots, however, there were other options by which this could have been done, namely:

1) vary the machine or conveyor efficiencies, and 2) change the buffer capacities.

During the SVM teach phase of the tests, the PeopleBot was taught to help the RMP200

at the bottleneck. Figure 4.11 showed a screenshot of the material handling application,
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where the PeopleBot’s primary task is to move materials from the resource buffer (“R”

or “B0”) to “B1”, the RMP200 has the single task of transporting material from “B4”

to “B5”, and the RMP400 also has a single task of moving the final product from “B6”

to the storage buffer (“S” or “B7”).

A bottleneck was created at “B4” by reducing the load carrying capacity of the RMP200

from 20 materials to 5 materials. The capacity of the PeopleBot remained the same (at

20 materials), this ensured that the material build up rate at B4 was greater than the

buffer process rate, resulting in a bottleneck.

5.3.1 Simulation performance

Four types of simulation tests were performed:

� normal operation: the load carrying capacities of the robots were configured to

prevent bottleneck conditions.

� bottleneck condition: the load carrying capacities of the robots were configured to

promote bottleneck conditions.

� cooperation at the bottleneck: a robot agent was allowed to help another agent at

the bottleneck.

� cooperation during a robot fault: a robot agent was allowed to take over the tasks

of the faulty robot so that the possibility of the occurrence of a bottleneck is

reduced.

5.3.1.1 Normal operation

The material distribution graph for the normal operation simulation test is given in

figure 5.8. The graph has three axes: the x–axis represents the buffer locations, ranging

from 0 (buffer B0) to 7 (buffer B7); the y–axis represents the time (in seconds) of the

simulation; the z–axis gives the number of materials, in a percentage, at each buffer

location. The percentage is calculated by the following equation:

Bsize =
Bnum

Bcap
∗ 100 (5.1)
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where Bnum is the number of materials in the buffer and Bcap is a constant which

represents the number of materials that the buffer can contain, i.e. the buffer capacity.

Figure 5.8: Material distribution graph: normal operation

The visual trend in the graph shows a decrease in material count at the resource buffer

(which was initialised with 100 materials) and an increase in material count at the

storage buffer, towards the end of the simulation. Table 5.1 gives more detail to the

normal operation simulation and lists the values of some test parameters such as the

total simulation (or production) time and the total operation time of each robot agent.

Table 5.1: Test parameter values during normal operation

Test parameter Value

Total simulation time 683 sec

Agent 1 load capacity 20 materials

Agent 2 load capacity 20 materials

Agent 3 load capacity 100 materials

Agent 1 operation time 332 sec (48.6%)

Agent 2 operation time 434 sec (63.5%)

Agent 3 operation time 103 sec (15.1%)

Buffer 4 @100% 54 sec (7.9%)
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Agents 1, 2 and 3 are the PeopleBot, RMP200 and RMP400 respectively. The values

within brackets in the table are the percentages of the total simulation time. With the

exception of the resource and storage buffers, the only other buffer that reached its full

capacity during the simulation was the source buffer for the RMP200, B4: the buffer

was at the total size of 100% for 7.9% of the total simulation time.

The navigation path of each robot in the simulation is given in figure 5.9 which illustrates

the niche areas covered by the robots in the environment. The x–y positions of the robots

were recorded every second during the simulation by writing the coordinates to a text

file. The results shown in the figure depict a plot of the coordinates from the beginning

to the end of the simulation. The figure also gives the x–y location of the robot’s source

and destination buffer locations so that the navigation path between the locations can

be identified. The navigation paths in the figure give evidence that each robot performs

a single task in the simulation.

Figure 5.9: Robot navigation: normal operation



Chapter 5. Results and Discussion 82

5.3.1.2 Bottleneck condition

In comparison to figure 5.8, figure 5.10 (and table 5.2) shows a significant change in the

material distribution. The one modification made in this simulation was a change in the

material load capacity of agent 2, the RMP200, from 20 materials to 5 materials which

resulted in the total simulation time of 1763 seconds— a 158% increase in time from the

previous simulation.

Figure 5.10: Material distribution graph: bottleneck condition

Table 5.2: Test parameter values during a bottleneck condition

Test parameter Value

Total simulation time 1763 sec

Agent 1 load capacity 20 materials

Agent 2 load capacity 5 materials

Agent 3 load capacity 100 materials

Agent 1 operation time 349 sec (19.8%)

Agent 2 operation time 1520 sec (86.2%)

Agent 3 operation time 93 sec (5.3%)

Buffer 2 @100% 282 sec (16.0%)

Buffer 3 @100% 594 sec (33.7%)

Buffer 4 @100% 936 sec (53.1%)
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The obvious reason for the large increase in simulation time is due to the bottleneck at

buffer 4, where the RMP200 cannot transport the required amount of material to keep

up with the incoming rate at the buffer. Table 5.2 further exemplifies the bottleneck

problem by listing an increased time at which buffer 4 was at 100% in size; this caused

a cascaded effect (depicted in figure 5.10) to fill up buffer 3 and buffer 2. The purpose

of the bottleneck condition simulation was two–fold: 1) to emphasise the impact of the

bottleneck on the production system, and 2) to set the stage for an implementation of

the cooperative intelligence system in mitigating the bottleneck.

5.3.1.3 Cooperation at the bottleneck

The material distribution graph in figure 5.11 reflect the results of the cooperative

intelligence system.

Figure 5.11: Material distribution graph: robot cooperation at bottleneck

The cooperation at the bottleneck simulation was performed by allowing the SVM–trained

PeopleBot agent to assist the RMP200 agent at the bottleneck (buffer 4), hence the

PeopleBot executes its primary task of transporting material from B0 to B1 as well as

“cooperates” by effecting its secondary task of moving material from B4 to B5. The re-

sult of the cooperating agent is depicted by the navigation path illustration in figure 5.12

where the PeopleBot covers two areas in the environment as opposed to the one area in
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figure 5.9. An analysis of the SVM output results in the subplot of figure 5.13 gives an

interesting perspective on the periods at which the algorithm determines the assistance

of the PeopleBot at the bottleneck.

Figure 5.12: Robot navigation: cooperation at bottleneck

Figure 5.13: PeopleBot SVM outputs: cooperation at bottleneck
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The SVM outputs for the PeopleBot agent are either “1” or “2”, representing the primary

or secondary task respectively. During the teach phase, the PeopleBot agent was taught

to assist at B4 when the size of B0 is low and when the sizes of B4 and/or B3 are

high. The effect of the teaching exercise is clearly shown in figure 5.13 since the SVM

predictions are “2” during conditions where the test parameters of the SVM features

(i.e. the buffer sizes) are approximately the same as the SVM training examples.

Table 5.3 lists the total simulation time of 809 seconds— a 54% reduction in comparison

to the previous simulation case. The table also reflects the task distribution percentage

for agent 1: the SVM algorithm determined the secondary goal for the PeopleBot 3 times

out of a total of 8 iterations in the simulation, i.e. the PeopleBot spent 37.5% of its

operation time on the secondary task and 67.5% on its primary task. The simulation also

resulted in an elimination of buffer 2 from the bottleneck cascade and showed reduced

buffer–full times of buffer 3 and buffer 4 to 5.2% and 17.1% respectively.

Table 5.3: Test parameter values during robot cooperation at the bottleneck

Test parameter Value

Total simulation time 809 sec

Agent 1 load capacity 20 materials

Agent 2 load capacity 5 materials

Agent 3 load capacity 100 materials

Agent 1 operation time 600 sec (74.2%)

Agent 1 primary task 62.5%

Agent 1 secondary task 37.5%

Agent 2 operation time 678 sec (83.8%)

Agent 3 operation time 91 sec (11.3%)

Buffer 3 @100% 42 sec (5.2%)

Buffer 4 @100% 138 sec (17.1%)

During navigation, the robots do not arrive at the exact position of their goal location

but rather reaches the position a few tenths of a meter short, due to the goal tolerance

set point configured in the code. During the tests, the set point was configured to 0.3

meters, hence the agent will think it has reached the goal if it is localised within 0.3

meters of the goal coordinate. The results of the tolerance distances at each goal in the
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simulation is given by the interpolated plots in figure 5.14, none of the points go beyond

the tolerance threshold of 0.3 meters. The figure shows the maximum distance margin

from the goal for each robot, where the largest margin was 0.29 meters from the goal at

234 seconds into the simulation.

Figure 5.14: Robot goal tolerance simulation results

Figure 5.15 represents a plot of the distances between the PeopleBot and the RMP200

in the duration of the simulation. The smaller distances (less than 1 meter) in the

plot indicate the periods in the simulation where the obstacle avoidance routines are

carried out in each agent. The obstacle avoidance code was written such that a safe

distance of 0.25 meters is maintained between the robot and the obstacle, however, the

threshold was exceeded by 0.01 meters (a 4% error), 573 seconds into the simulation.

The performance of the system can be improved by implementing a velocity controller

that significantly reduces the speed of the robot as the obstacle approaches, yet this

may come at the cost of an operationally slow robot if sensor positioning and sensor

noise are not carefully considered in the design. Another approach in resolving obstacle

avoidance issues between robots is the use of negotiation protocols, hinging towards the

implementation of a strongly cooperative solution.
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Figure 5.15: Obstacle avoidance simulation results between PeopleBot and RMP200

5.3.1.4 Cooperation during a robot fault

One of the objectives of this research is to test the robust ability of the system when

a failure occurs with a robot. The results shown in figure 5.16 and in table 5.4 were

obtained from the cooperation during a robot fault simulation. The operation time of

the RMP200 was intentionally cut short to just 130 seconds out of the total simulation

time of 844 seconds, allowing the PeopleBot to take over the task of moving material

from B4 to B5. The system responded well to the robot failure since the production

time increased by a minor 4% from the previous simulation case. Table 5.4 gives further

information about the task distribution of the PeopleBot: a 50% split between primary

and secondary tasks, this is expected due to the reduced work load performed by the

RMP200, which had to be compensated by the PeopleBot.
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Figure 5.16: Material distribution graph: cooperation during robot fault

Table 5.4: Test parameter values during robot cooperation due to robot fault

Test parameter Value

Total simulation time 844 sec

Agent 1 load capacity 20 materials

Agent 2 load capacity 5 materials

Agent 3 load capacity 100 materials

Agent 1 operation time 691 sec (81.9%)

Agent 1 primary task 50%

Agent 1 secondary task 50%

Agent 2 operation time 130 sec (15.4%)

Agent 3 operation time 93 sec (11.0%)

Buffer 3 @100% 90 sec (10.7%)

Buffer 4 @100% 252 sec (29.9%)

The SVM outputs for the PeopleBot and the buffer sizes for B0, B3 and B4 are shown

in the two subplots of figure 5.17. The results are a similar representation of those

discussed in figure 5.13, where the PeopleBot assists at the bottleneck and, in this case,

takes over the task of the RMP200. The failure of the RMP200 in completing its task

can actually be seen in the “B4 size” plot where the minor reductions in size (due to the
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small load carrying capacity of the RMP200) are stopped around 150 seconds into the

simulation; thereafter the reductions are major due to the large load carrying capacity

of the PeopleBot.

Figure 5.17: PeopleBot SVM outputs: cooperation during robot fault

5.3.2 Real–world performance

The only type of test performed in the real–world was cooperation during a robot fault.

The other tests were not carried out to completion due to the inaccurate localisation

calculation for the RMP200. The inaccuracy in the calculation was due to the accu-

mulation of the odometry error (see figure 1.4), caused by the robot’s wheel slippage.

Attempts were made in software to compensate for the error, however none succeeded.

The exercise proved that odometry is not a good method for long–term accuracy and fur-

ther developments to this research will see the use of an advanced localisation technique

with odometry as a short–term or secondary option in the calculation.

A video of the complete demonstration is included in the accompanying CD, which shows

the operation of the RMP200 for approximately 4 minutes, thereafter intentionally re-

moved from the test to create a robot failure. Figure 5.18 gives a sequence of screenshots

that were taken from the video.
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Figure 5.18: Screenshots from video of actual test

A description of each labeled picture in the figure is given by the following itemised list:

� (a): the beginning of the test— the PeopleBot at its home position.

� (b): PeopleBot at its primary source location (B0).

� (c): PeopleBot moving away from its primary destination (B1) and the RMP200

at its home position.

� (d): RMP200 at its source location (B4).

� (e): PeopleBot at B1 and the RMP200 moving towards its destination location

(B5).

� (f): RMP200 at B5.

� (g): PeopleBot assisting the RMP200 at B4.

� (h): RMP200 moving to B4 and the PeopleBot going to B5.

� (i): RMP200 at B4.
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� (j): both robots moving to B5.

� (k): PeopleBot moving to B4 and RMP200 going to B5.

� (l): PeopleBot at B4, completing the “failed” robot’s task.

� (m): PeopleBot at B5.

� (n): RMP400 at its source location (B6).

� (o): RMP400 at its destination location (B7).

� (p): RMP400 at its home position— end of the test.

The results of the test are given in figure 5.19 and table 5.5. In comparison to the

simulation results for the cooperation during a robot fault test, the real–world results

improved the production completion time by 8%, this is attributed to the existence

of various obstacles (desks and cupboards) in the real environment which assisted in

the process of optimised solutions to the navigation algorithm; more on this matter

is discussed in the next section. The task distribution of the PeopleBot, as shown in

table 5.5, produced the same result as the simulation case: 50% for both primary and

secondary tasks, however, the operation time of the PeopleBot is lower at 660 seconds,

this is due to the increased work load performed by the RMP200.

Figure 5.19: Material distribution graph: cooperation during robot fault (real–world)
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Table 5.5: Real–world test parameter values

Test parameter Value

Total simulation time 775 sec

Agent 1 load capacity 20 materials

Agent 2 load capacity 5 materials

Agent 3 load capacity 100 materials

Agent 1 operation time 660 sec (85.2%)

Agent 1 primary task 50%

Agent 1 secondary task 50%

Agent 2 operation time 222 sec (28.7%)

Agent 3 operation time 100 sec (12.9%)

Buffer 4 @100% 126 sec (16.3%)

The SVM outputs for the PeopleBot in the real–world test are given in figure 5.20.

In comparison to figure 5.17, the SVM algorithm predicts an agent assist sooner (at

approximately 200 seconds), and the evidence of the RMP200 in performing its task can

be seen for a prolonged duration, up until 222 seconds into the actual test.

Figure 5.20: PeopleBot SVM outputs: cooperation during actual robot fault
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5.4 Cognition results and discussion

The previous section discussed the results of the cooperative group performance of the

robots; this section focuses on the test results of the individual robots, in particular, the

navigation path and obstacle avoidance performance of each robot.

5.4.1 PeopleBot performance

The simulation and actual navigation path results for the PeopleBot (obtained during

the cooperation during a robot fault test) are shown in figure 5.21. The figure also gives

the x–y location of the robot’s home position and the robot’s source and destination

buffer locations so that the navigation path between the locations can be identified.

Figure 5.21: PeopleBot navigation in simulation and actual tests

In the analysis of the results, the following two observations were made:

1. The robot yaw–turn around path in the actual test is narrower, thus more efficient

than the wide path taken by the robot in the simulation test, despite a configuration of

the same angular velocity set points for the robot in both tests. The main reason for
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these differences is due to the lack of obstacles designed in the simulation environment,

hence creating more free–space for the navigation algorithm to use in the calculation

of the way–points to the goal location. The obstacles in the actual environment are

the desks and cupboards which “aid” the algorithm in determining the best way–point

en-route to the goal. The second, and minor reason, can be attributed to an inaccurate

Stage design model of the PeopleBot which will influence the accuracy of the angular

speed.

2. Due to the goal tolerance set point of 0.3 meters, configured in the code, the actual

and simulation results illustrate that the robot does not arrive at the exact position of

its goal. Figure 5.14 showed the simulation results of the tolerance distances at each

goal, whereas figure 5.22 gives the actual results of the tolerance distances, revealing the

largest margin to be 0.28 meters from the goal, within the tolerance threshold of 0.3

meters.

Figure 5.22: Robot goal tolerance actual results

Figure 5.23 shows a frame sequence (viewed from left to right) of the PeopleBot avoiding

an obstacle in the actual environment. During the tests, there were cases when the robot
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moved in close towards the desk due to the inability of the sonar array in detecting the

narrow legs of the desk.

Figure 5.23: Screenshots from video of the PeopleBot obstacle avoidance

The actual distance plot between the PeopleBot and the RMP200 is show in figure 5.24.

The results reveal that the safe distance threshold of 0.25 meters was exceeded by 0.162

meters (a 64.8% error), 238 seconds into the actual test. A previous discussion on the

simulation results of the plot mentioned the use of a velocity controller or negotiation

protocols between the agents to improve the performance of the robots in an environment

of “moving obstacles”.

Figure 5.24: Obstacle avoidance actual results between PeopleBot and RMP200
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5.4.2 RMP200 performance

The navigation path results of the RMP200 are depicted in figure 5.25. The results were

obtained from the test where a failure was intentionally caused on the RMP200, thus

the navigation paths are incomplete for the two tests. The simulation path is shorter

than the actual path due to the robot operation time of 130 seconds (see table 5.4) and

222 seconds (see table 5.5) respectively. The irregularity of the actual navigation path

(showed towards the lower half of figure 5.25) is due to the occurrence of the obstacle

avoidance routine carried out by the RMP200 as it approaches the Peoplebot— these

sequence of events are illustrated by the screenshots shown in figure 5.26.

Figure 5.25: RMP200 navigation in simulation and actual tests

Figure 5.26: Screenshots from video of the RMP200 obstacle avoidance
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5.4.3 RMP400 performance

The navigation path results of the RMP400 are illustrated in figure 5.27. A comparison

of the navigation plots between the simulation and actual tests reveal the result of a

difference in configuration of the maximum angular velocity limit set point. In the

Stage simulation, the underlying RMP400 Player driver is an implementation of two

RMP200 drivers, and the driver does not consider the RMP400’s mechanical geometry

when angular speed scaling factors are calculated; thus an angular speed limit set point

in the simulation test does not yield the same result in the actual test. Figure 5.28 gives

a sequence illustration of the turning portion of the actual path in figure 5.27.

Figure 5.27: RMP400 navigation in simulation and actual tests

Figure 5.28: Screenshots from video of the RMP400 turning in a tight space
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5.5 Chapter summary

This chapter discussed the layout of the simulation and real–world test environments

where the buffer locations and home positions of the robots were shown. The actual

robot assemblies that were used in the real–world tests were also reviewed. The major

part of this chapter involved the discussion of the simulation and actual test results for

robot cooperation performance and individual robot cognition performances.



Chapter 6

Conclusion and Further Research

This chapter concludes the dissertation by summarising the research work performed

and includes a discussion on the achieved objectives outlined in section 1.6 . The contri-

butions of this research are also mentioned and recommendations are given for further

developments to the research topic.

6.1 Research conclusion

The motivation for this research topic stemmed around the problem of bottlenecks in

advanced manufacturing environments where heterogeneous robots exist to perform spe-

cialised tasks. The need for a cooperative intelligent system in these environments was

discussed. In this research, three heterogeneous mobile robots were used with the idea

that each one had its primary task to perform and would only execute a secondary task

if there was a need (i.e. a bottleneck) and if it had the ability to perform the secondary

task.

The literature review and design phase of the research involved the analysis of strongly

and weakly cooperative systems, together with the associated control architectures per-

tinent to robotic teams where four types of systems were discussed: centralised, de-

centralised, hierarchical, and hybrid (see section 1.4.6.1). The cooperation scheme that

was chosen and implemented in the research was a weakly cooperative, hybrid one for

reasons that were discussed in section 2.1.

99
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The literature survey also addressed the purpose of the middleware layer in robotic

networks; the Player server was implemented as the middleware layer in the AI system

of the research and the Stage platform was used as the simulator to test and debug

the software components. Another key element of the AI system is the SVM learning

algorithm which essentially predicts and determines the goal tasks of each robot agent

in the network by using a database of training examples.

The main objective of the research was the demonstration of a cooperative robot system

in both simulated and real–world environments, validated against the key indicators

outlined in section 1.6. This objective was achieved by the successful performance of

the SVM algorithm (as discussed in chapter 5), where the bottlenecks were alleviated by

the cooperating agent, significantly improving the manufacturing production times. The

system was validated against the robustness key indicator since an intentional robot fail-

ure during the tests proved the ability of the system to continue operation and mitigate

potential bottlenecks.

The cognition software module of the AI system in each robot agent allowed them to

detect and avoid obstacles, thus preventing collisions and damages to the environment,

establishing the reliability validation of the system. A shortcoming in this part of the

research was the actual test results for the obstacle avoidance safety distance between

the PeopleBot and the RMP200; the results did not exceed the safety distance design

specification of 0.25 meters and it was discussed that a velocity controller or negotiation

protocols between agents can be used to improve the performance of the system.

One of the design specifications of the research was the development of a GUI system

that shows the manufacturing process and the associated data. This specification was

achieved by the design and implementation of the Proview SCADA system which also

fulfilled the plant integration requirement of the validation. The user friendly GUI

permits system start up and SVM training of the robot agents and the Proview SCADA

functionality allows for the integration of plant software packages (ERP and MRP) so

that the data can be used at management levels.
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6.2 Research contributions

The contributions of this research are vast and cover the following areas in industry and

research:

� Productivity is the measure of the efficiency of a production system which is a

direct implication on the time required to complete a job. The cooperation system

discussed in this research has the potential to increase plant productivity due to

the mitigation of bottlenecks in the production process where robotic tasks are

concerned.

� An integration of the plant ERP system to the cooperation system can optimise

delivery schedules and supply chain management processes by utilising the predic-

tive data generated by the SVM algorithm of the AI. The cooperation system can

be used in complex supply chain processes that comprise of multiple production

lines and redundant work stations where the scheduling of (robotic) resources is

critical.

� Search and rescue research can see the application of the cooperation system where

the robots learn the dynamics of the environment and act accordingly, i.e. they

either continue performing their “primary” task or cooperatively swarm towards

a target in the environment.

� SVM learning has been widely used in the fields of bioinformatics and text/image

recognition. The research discussed in this dissertation broadens the use of SVM

algorithms (and potentially other supervised learning algorithms) in the area of

multi–robot systems and manufacturing applications. The attraction of a learning

based system is the semi–elimination of hard coded programmed solutions for

specific scenarios; the learning system can adapt to dynamic environments and

plant reconfiguration conditions.

6.3 Recommendations for further research

The localisation calculations for the robots in this research used odometry and, as a

result, inherited the errors associated with odometry measurements. The performance
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of the actual system in this research will significantly improve if advanced localisation

techniques are used such as Kalman filters and/or landmark detection methods.

Another recommendation for further research can be an inclusion of the load carrying

efficiencies of the robots to the learning algorithm. The agents should determine the

size of the task requirements at a work station since it may be inefficient to transport

small loads (rather wait at the station for a longer period) or it may be unnecessary

to operate at a capacity of 100% if the supply chain does not require fast production

times. The ERP and supply chain management system should be incorporated into the

cooperative learning system to optimise resources and establish a holistic solution to the

manufacturing system.

The final recommendation is the implementation of a reinforced learning system where

the agents dynamically learn the “positive” and “negative” examples from the envi-

ronment without going through a training exercise facilitated by the robot operator.

An addition to this recommendation is the use of an automated selection of a training

database in a suite of databases, this is useful when an agent has to solve a variety of

problems, requiring the employment of multiple sets of training data.
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Appendix A

Robot Agent Code

A.1 Agent simulation program: Player .cfg file

1 # load the Stage p lug in s imu la t i on d r i v e r
2 d r i v e r
3 (
4 name ” s tage ”
5 prov ide s [ ” s imu la t i on : 0 ” ]
6 p lug in ” s t agep lug in ”
7
8 # load the named f i l e i n to the s imu lato r
9 w o r l d f i l e ”sim . world”

10 )
11
12 # Create a Stage d r i v e r and attach pos i t i on2d and l a s e r i n t e r f a c e s
13 # to the model ” r0 ”
14 d r i v e r
15 (
16 name ” s tage ”
17 prov ide s [ ” po s i t i on2d : 0 ” ” l a s e r : 0 ” ” graphics2d : 0 ” ” graphics3d : 0 ” ]
18 model ” r0 ”
19 )
20
21 # Create a Stage d r i v e r and attach pos i t i on2d and l a s e r i n t e r f a c e s
22 # to the model ” r1 ”
23 d r i v e r
24 (
25 name ” s tage ”
26 prov ide s [ ” po s i t i on2d : 1 ” ” l a s e r : 1 ” ” graphics2d : 1 ” ” graphics3d : 1 ” ]
27 model ” r1 ”
28 )
29
30 # Create a Stage d r i v e r and attach pos i t i on2d and l a s e r i n t e r f a c e s
31 # to the model ” r2 ”
32 d r i v e r
33 (
34 name ” s tage ”
35 prov ide s [ ” po s i t i on2d : 2 ” ” l a s e r : 2 ” ” graphics2d : 2 ” ” graphics3d : 2 ” ]
36 model ” r2 ”
37 )

110
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A.2 Agent simulation program: Player .world file

1 inc lude ” p ionee r . i nc ”
2 inc lude ”segwayrmp . inc ”
3 inc lude ”map . inc ”
4 inc lude ”hokuyo . inc ”
5
6 # time to pause ( in GUI mode) or qu i t ( in head l e s s mode (−g ) ) the

s imu la t i on
7 qu i t t ime 3600 # 1 hour o f s imulated time
8
9 paused 1

10
11 r e s o l u t i o n 0 .02
12
13 # con f i gu r e the GUI window
14 window
15 (
16 s i z e [ 435 .000 466.000 ] # in p i x e l s
17 s c a l e 43 .481 # p i x e l s per meter
18 cente r [ 4 2 ]
19 r o t a t e [ 0 0 ]
20
21 show data 1 # 1=on 0=o f f
22 )
23
24 # load an environment bitmap
25 f l o o r p l a n
26 (
27 name ”cave ”
28 s i z e [ 9 . 0 0 0 4 .500 0 . 8 0 0 ]
29 pose [ 4 . 5 2 .25 0 0 ]
30 bitmap ”mater ia l app9 . png”
31 )
32
33 de f i n e product0 model
34 (
35 #p i c tu r e o f a black c i r c l e
36 bitmap ” c i r c l e . png”
37 s i z e [ 0 . 3 5 0 .5 0 . 1 0 ]
38 pose [−0.15 0 0 0 ]
39 c o l o r ” red ”
40 )
41
42 de f i n e product1 model
43 (
44 #p i c tu r e o f a black c i r c l e
45 bitmap ” c i r c l e . png”
46 s i z e [ 0 . 3 5 0 .35 0 . 1 0 ]
47 pose [−0.07 0 0 0 ]
48 c o l o r ” ye l low ”
49 )
50
51 de f i n e product2 model
52 (
53 #p i c tu r e o f a black c i r c l e
54 bitmap ” c i r c l e . png”
55 s i z e [ 0 . 6 0 0 .50 0 . 1 0 ]
56 pose [−0.3 0 0 0 ]
57 c o l o r ” green ”
58 )
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59
60 rmp200
61 (
62 # can r e f e r to the robot by t h i s name
63 name ” r0 ”
64 pose [ 1 2 0 0 ]
65 c o l o r ” red ”
66 hokuyolaser ( )
67 product0 ( )
68 )
69
70 pioneer2dx
71 (
72 # can r e f e r to the robot by t h i s name
73 name ” r1 ”
74 pose [ 3 2 0 0 ]
75 c o l o r ” ye l low ”
76 hokuyolaser ( )
77 product1 ( )
78 )
79
80 rmp400
81 (
82 # can r e f e r to the robot by t h i s name
83 name ” r2 ”
84 pose [ 5 3 0 0 ]
85 c o l o r ” green ”
86 hokuyolaser ( )
87 product2 ( )
88 )

A.3 Agent simulation program: config.h file

1 /*
2 Filename : c on f i g . h
3 Author : N. Naidoo
4 Date : 20/09/2014
5 Revi s ion : 4e
6 Desc r ip t i on : Header c on f i gu r a t i on f i l e f o r the PeopleBot
7 */
8
9 #de f i n e a id 1

10
11 #de f i n e MAXLINE 4096 //max text l i n e l ength
12 #de f i n e SERV PORT 3000 // port
13
14 #de f i n e Dnum 120 //number o f e lements in data t r a i n i n g s e t
15 #de f i n e dthresh 0 .3 // th r e sho ld d i s t ance between robot pose and goa l
16 #de f i n e dnear 2 . 0 // wai t ing d i s t ance between robot and goa l
17 #de f i n e RobTurn 1 .0 //0 degree s per second
18 #de f i n e RobSpeed 0 .3
19 #de f i n e htime 10 //no . o f s e c s to wait at home be f o r e check ing f o r next

goa l
20
21 //gap−nav
22 #de f i n e e s topDi s t 0 . 3
23 #de f i n e minObsDist 1 . 0
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24 #de f i n e maxObsDist 2 . 0
25 #de f i n e s a f eD i s t 0 .30
26 #de f i n e g o a l t o l 0 . 3
27 #de f i n e angto l 0 .10
28 #de f i n e vmin 0 .0
29 #de f i n e vmax 0 .10 // 0 .1
30 #de f i n e wmin 0 .0
31 #de f i n e wmax 0 .10
32 #de f i n e ewaitsp 3 //wait time s e tpo i n t in estop
33 #de f i n e revsp 2 // robot r e v e r s e time s e tpo i n t
34 #de f i n e fwdsp 0 // robot forward time s e tpo i n t
35 #de f i n e wayDist 1 . 0 //waypoint d i s t anc e
36 #de f i n e rangespan 240 //240 degree s
37 #de f i n e pitchang 1 // 0 .36 p i t ch ang le o f l a s e r in degree s
38 #de f i n e ango f f s e t −30 // o f f s e t s t a r t ang le in scan [ degree s ]
39 #de f i n e secnum 8 //number o f s e c t o r s in scan
40 #de f i n e Rw 0.4 // robot width
41 #de f i n e RL 0 .4 // robot l ength
42 #de f i n e navfreq 5 // nav igat i on f requency in seconds
43 #de f i n e sectmask 126 // binary mask f o r estop s e c t o r s
44 #de f i n e r f a c 0 .1
45 #de f i n e pfac 0 .70 // p r obab i l i t y f a c t o r
46
47 //svm
48 #de f i n e l e a rn c 1
49 #de f i n e t rnpredc 2
50
51 // robot home po s i t i o n s
52 #de f i n e hx 3 . 0 ;
53 #de f i n e hy 2 . 0 ;
54 #de f i n e hyaw 0 . 0 ;
55
56 // bu f f e r robot goa l l o c a t i o n s
57 #de f i n e Lnum 3 //number o f p o s s i b l e l o c a t i o n s
58 #de f i n e Lmask 2 // l o c a t i o n b i t mask ( e . g 7−>a l l 3 l o c a t i o n s )
59 #de f i n e s1x 1 .0
60 #de f i n e s1y 4 .0
61 #de f i n e d1x 2 .0
62 #de f i n e d1y 1 .0
63 #de f i n e s2x 4 .0
64 #de f i n e s2y 1 .0
65 #de f i n e d2x 4 .0
66 #de f i n e d2y 3 .0
67 #de f i n e s3x 5 .0
68 #de f i n e s3y 2 .0
69 #de f i n e d3x 8 .0
70 #de f i n e d3y 1 .0
71
72 // agent modes
73 #de f i n e wakeup 0
74 #de f i n e gohome 1
75 #de f i n e athome 2
76 #de f i n e gos rc 3
77 #de f i n e a t s r c 4
78 #de f i n e godest 5
79 #de f i n e atde s t 6
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A.4 Agent simulation program: Client file

1 /*
2 Filename : Pbotsim . cc
3 Author : N. Naidoo
4 Date : 20/09/2014
5 Revi s ion : 4e
6 Desc r ip t i on : C l i en t app l i c a t i on program f o r the PeopleBot
7 */
8 #inc l ude <iostream>
9 #inc l ude <s t d i o . h>

10 #inc l ude <s t d l i b . h>
11 #inc l ude <math . h>
12 #inc l ude <time . h>
13 #inc l ude <u t i l i t i e s . h>
14 #inc l ude <c on f i g . h>
15 #inc l ude <s t r i n g . h>
16 #inc l ude < l i b p l a y e r c++/p laye r c++.h>
17 #inc l ude <ctype . h>
18 #inc l ude <errno . h>
19 #inc l ude ”svm . h”
20 #inc l ude ”svm−t r a i n . h”
21 #inc l ude ”svm−p r ed i c t . h”
22 #inc l ude ” agent . h”
23 //#inc lude <uni s td . h>
24 #inc l ude <sys / types . h>
25 #inc l ude <sys / socket . h>
26 #inc l ude <ne t i n e t / in . h>
27 #inc l ude <arpa/ i n e t . h>
28
29 // g l oba l v a r i a b l e s
30 doub le xg , yg , yawg ; // goa l l o c a t i o n s
31 char s t r 1 [ 5 0 ] ;
32 i n t amode , agoal , aid , apass ; //amode i s the s t a t e number
33 i n t svmode , tout , ago , a c l r ; //go i f ago=1, e l s e stop
34 i n t imode ;
35 char s end l i n e [MAXLINE] , r e c v l i n e [MAXLINE] , inbuf [MAXLINE] ;
36 i n t sock fd ;
37 bool goalcmd=f a l s e ;
38 s t r u c t sockaddr in servaddr ;
39
40 bool opensocket ( )
41 {
42 bool tempb=true ;
43 //Create a socket f o r the c l i e n t
44 // I f sockfd<0 there was an e r r o r in the c r e a t i on o f the socket
45 i f ( ( sock fd = socket (AF INET, SOCK STREAM, 0) ) <0)
46 {
47 pe r ro r ( ”Problem in c r e a t i n g the socket ” ) ;
48 tempb=f a l s e ;
49 }
50 //Creat ion o f the socket
51 memset(&servaddr , 0 , s i z e o f ( servaddr ) ) ;
52 servaddr . s i n f am i l y = AF INET ;
53 servaddr . s i n addr . s addr= ine t addr ( ” 192 . 168 . 43 . 171 ” ) ; // 192 . 168 . 43 . 125
54 servaddr . s i n p o r t = htons (SERV PORT) ; // convert to big−endian order
55 //Connection o f the c l i e n t to the socke t
56 i f ( connect ( sockfd , ( s t r u c t sockaddr *) &servaddr , s i z e o f ( servaddr ) )<0)
57 {
58 pe r ro r ( ”Problem in connect ing to the s e r v e r ” ) ;
59 tempb=f a l s e ;
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60 }
61 i f ( tempb==true ) re turn t rue ;
62 e l s e re turn f a l s e ;
63 }
64
65 vo id updatepkt ( ) //update send packet to s e r v e r
66 {
67 s p r i n t f ( s t r1 , ”%s%d%s%d%s%d%s%d%s” , ”#c l i e n t ; a id=” , aid , ” ; amode=” ,amode , ” ;

agoa l=” , agoal , ” ; apass=” , apass , ” ; end#” ) ;
68 // c l e a r the send and r e c e i v e bu f f e r s :
69 memset(& s end l i n e [ 0 ] , 0 , s i z e o f ( s end l i n e ) ) ;
70 memset(& r e c v l i n e [ 0 ] , 0 , s i z e o f ( r e c v l i n e ) ) ;
71 memset(& inbuf [ 0 ] , 0 , s i z e o f ( inbu f ) ) ;
72 // s e t the send bu f f e r :
73 s np r i n t f ( s end l ine ,MAXLINE, ”%s” , s t r 1 ) ;
74 }
75
76 i n t ge ta id ( ) // get agent id
77 {
78 char * pa r s t r=” aid ” ;
79 s np r i n t f ( r e cv l i n e ,MAXLINE, ”%s” , inbu f ) ; // r e s t o r e recbu f from inbuf
80 i n t tempi=GetParam( r e cv l i n e , pa r s t r ) ;
81 std : : cout << ” a id : ” << tempi << std : : endl ;
82 i f ( tempi==a id )
83 {
84 re turn (1 ) ; // suc c e s s
85 }
86 e l s e
87 {
88 re turn (0 ) ; // f a i l u r e
89 }
90 }
91
92 i n t getsvm ( ) // get svm mode
93 {
94 char * pa r s t r=”svm” ;
95 s np r i n t f ( r e cv l i n e ,MAXLINE, ”%s” , inbu f ) ; // r e s t o r e recbu f from inbuf
96 i n t tempi=GetParam( r e cv l i n e , pa r s t r ) ;
97 std : : cout << ”svmode : ” << tempi << std : : endl ;
98 i f ( ( tempi>=0)&&(tempi<=2)) // check svmode
99 {

100 svmode=tempi ;
101 re turn (1 ) ; // suc c e s s
102 }
103 e l s e
104 {
105 re turn (0 ) ; // f a i l u r e
106 }
107 }
108
109 i n t getago ( ) // get ago
110 {
111 char * pa r s t r=”ago” ;
112 s np r i n t f ( r e cv l i n e ,MAXLINE, ”%s” , inbu f ) ; // r e s t o r e r ecbu f from inbuf
113 i n t tempi=GetParam( r e cv l i n e , pa r s t r ) ;
114 std : : cout << ”ago : ” << tempi << std : : endl ;
115 i f ( ( tempi==0) | | ( tempi==1)) // check ago
116 {
117 ago=tempi ;
118 re turn (1 ) ; // suc c e s s
119 }
120 e l s e
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121 {
122 re turn (0 ) ; // f a i l u r e
123 }
124 }
125
126 i n t g e t a c l r ( ) // get a c l r
127 {
128 char * pa r s t r=” a c l r ” ;
129 s np r i n t f ( r e cv l i n e ,MAXLINE, ”%s” , inbu f ) ; // r e s t o r e r ecbu f from inbuf
130 i n t tempi=GetParam( r e cv l i n e , pa r s t r ) ;
131 std : : cout << ” a c l r : ” << tempi << std : : endl ;
132 i f ( ( tempi==0) | | ( tempi==1)) // check a c l r
133 {
134 a c l r=tempi ;
135 re turn (1 ) ; // suc c e s s
136 }
137 e l s e
138 {
139 re turn (0 ) ; // f a i l u r e
140 }
141 }
142
143 i n t get tout ( ) // get tout
144 {
145 char * pa r s t r=” tout ” ;
146 s np r i n t f ( r e cv l i n e ,MAXLINE, ”%s” , inbu f ) ; // r e s t o r e recbu f from inbuf
147 i n t tempi=GetParam( r e cv l i n e , pa r s t r ) ;
148 std : : cout << ” tout : ” << tempi << std : : endl ;
149 i f ( tempi>0) // check tout
150 {
151 tout=tempi ;
152 re turn (1 ) ; // suc c e s s
153 }
154 e l s e
155 {
156 re turn (0 ) ; // f a i l u r e
157 }
158 }
159
160 i n t getbufdat ( ) // get bu f f e r data
161 {
162 char * pa r s t r=”data” ;
163 s np r i n t f ( r e cv l i n e ,MAXLINE, ”%s” , inbu f ) ; // r e s t o r e recbu f from inbuf
164 GetData ( r e cv l i n e , pa r s t r ) ; // s to r eda ta [ 0 ] should have the l o c a t i o n now !
165 i n t tempi=a t o i (&s to r eda ta [ 0 ] ) ;
166 std : : cout << ” ta r g e t : ” << tempi << std : : endl ;
167 i f ( ( tempi>=0)&&(tempi<=Lnum) ) // check l o c a t i o n number
168 {
169 agoa l=tempi ; // s e t agent goa l
170 re turn (1 ) ; // suc c e s s
171 }
172 e l s e
173 {
174 re turn (0 ) ; // f a i l u r e
175 }
176 }
177
178 // Set x−y goa l :
179 vo id SetGoal ( doub le x1 , doub le y1 , doub le yaw1)
180 {
181 xg=x1 ;
182 yg=y1 ;
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183 yawg=yaw1 ;
184 goalcmd=true ;
185 }
186
187 // ******************* begin main program ***********************

188 i n t main ( i n t argc , char *argv [ ] )
189 {
190 imode=a t o i ( argv [ argc −1]) ; // 0 : gapnav only ; any other number : gapnav and

svm/ s e r v e r comms
191 std : : cout << ”imode : ” << imode << std : : endl ;
192 i f ( argc==2)//&&((imode>=lea rnc )&&(imode<=trnpredc ) ) )
193 {
194 us ing namespace PlayerCc ;
195 P laye rC l i en t robot ( ” l o c a l h o s t ” ) ;
196 SimulationProxy simproxy(&robot ) ;
197 Posit ion2dProxy pp0(&robot , 1 ) ;
198 //RangerProxy rp(&robot , 0 ) ;
199 LaserProxy lp (&robot , 1 ) ;
200
201 pp0 . SetMotorEnable ( t rue ) ;
202
203 // va r i ab l e l i s t
204 i n t e lapsec , prevsec , t s e c ;
205 i n t waitime ; //wait time in seconds
206 i n t waitcount ; //wait time counter
207 // i n t svmloc ; // goa l l o c a t i o n f o r agent determined by svm algor i thm
208 doub le xc , yc , yawc ; // cur rent x−y and yaw l o c a t i o n s o f agent
209 doub le Home [ 2 ] ; //x−y l o c a t i o n s o f home po s i t i o n
210 doub le Src [ 3 ] [ 2 ] ; //x−y l o c a t i o n s o f source p o s i t i o n s
211 doub le Dest [ 3 ] [ 2 ] ; //x−y l o c a t i o n s o f d e s t i n a t i on p o s i t i o n s
212 bool wait=f a l s e ; // t rue i f robot must wait be f o r e proceed ing to next

s t a t e
213 bool svmflag ; //=1 i f we have an output from svm algor i thm
214 bool svmready ; //=1 i f ready to run svm algor i thm
215 bool servercom , se rve rok ; // servercom : i n i t i a t e comms with s e r v e r ;

s e rve rok : good packet r ep ly from se rv e r
216 bool s end f l a g ; //=1 when we want to send packets to the s e r v e r
217 t ime t s t a r t = time (0 ) ;
218 //gap−nav va r i a b l e s :
219 doub le sensdata [ 1 0 0 ] ; // i n t e g r a t ed senso r data , 8 s e c t o r s
220 doub le ThetaArr [ secnum ] [ 2 ] ; // chosen theta ranges f o r rout ing : theta1 ,

theta2
221 doub le v=vmin ;
222 doub le w=wmin ;
223 doub le vin , win ; // l i n e a r and angular v e l o c i t y user inputs
224 doub le xw , yw ; //x−y waypoints
225 doub le yawn ; // normal i sed yaw
226 doub le dgoal ; // d i s t anc e to goa l
227 doub le r d i s t=maxObsDist ;
228 doub le wdelta , gde l t a ; //waypoint and goa l ang le d i f f
229 doub le xt , yt , theta , the ta t ; //x&y temp vars
230 doub le xmin , ymin ;
231 doub le wdir ; //w d i r e c t i o n
232 doub le wgap ; //w f o r moving in t i g h t spaces
233 doub le area l im ;
234 doub le r1 , r2 ;
235 i n t l a s e r c oun t ; // l a s e r scan number
236 i n t cel lnum ;
237 i n t navtimer=0; // nav igat i on t imer
238 i n t stopnum=0; //number o f e s tops
239 i n t revnum=0; //number o f r e v e r s e s
240 i n t stnum=1; // s t a t e machine number



Appendix A. Robot Agent Code 118

241 bool es top=f a l s e ;
242 bool revrobot=f a l s e ;
243 bool oneshot=true ;
244 bool turn ing=f a l s e ;
245 bool navrun=f a l s e ;
246 bool slowdown=f a l s e ; // slow down robot f l a g
247 bool r t i g h t=f a l s e ; // t i g h t space f l a g
248 bool obsavoid=f a l s e ; // ob s t a c l e avoidance f l a g
249 bool waycalc=f a l s e ; //waypoint c a l c done f l a g
250 bool f r o n t c l r=f a l s e ; // robot f r on t c l e a r to move
251 u int ewa i t s e c =0;
252 u int r ev s e c =0;
253 u int fwdsec=0;
254 l ong t o t s e c =0; // t o t a l no . o f seconds s i n c e s t a r t
255 //end va r i ab l e l i s t
256
257 // I n i t i a l i s a t i o n s
258 // i n i t i a l i s e sample counter
259 t s e c =0;
260 a id=a id ;
261 amode=0; //wake up
262 agoa l =0; //home
263 ago=0; // not ready to go
264 a c l r =0; // not c l e a r to proceed
265 apass=0; // not wai t ing to go to bu f f e r source / d e s t i n a t i on
266 waitime=htime ;
267 waitcount=0;
268 // svmloc=0; //home l o c a t i o n
269 svmflag=f a l s e ; //we dont have an output from svm algor i thm
270 svmready=f a l s e ; // not ready to run svm algor i thm
271 servercom=f a l s e ; // not ready to communicate with s e r v e r
272 se rve rok=f a l s e ; //no good rep ly yet from se rv e r
273 s end f l a g=f a l s e ; //dont send data to s e r v e r
274 Home[0 ]=hx ;
275 Home[1 ]=hy ;
276 Src [ 0 ] [ 0 ]= s1x ;
277 Src [ 0 ] [ 1 ]= s1y ;
278 Src [ 1 ] [ 0 ]= s2x ;
279 Src [ 1 ] [ 1 ]= s2y ;
280 Src [ 2 ] [ 0 ]= s3x ;
281 Src [ 2 ] [ 1 ]= s3y ;
282 Dest [ 0 ] [ 0 ]= d1x ;
283 Dest [ 0 ] [ 1 ]= d1y ;
284 Dest [ 1 ] [ 0 ]= d2x ;
285 Dest [ 1 ] [ 1 ]= d2y ;
286 Dest [ 2 ] [ 0 ]= d3x ;
287 Dest [ 2 ] [ 1 ]= d3y ;
288 updatepkt ( ) ; // i n i t i a l i s e send bu f f e r packet
289 i f ( imode==0)
290 {
291 xg=d2x ; //Home [ 0 ] ;
292 yg=d2y ; //Home [ 1 ] ;
293 goalcmd=true ;
294 }
295 // end i n i t i a l i s a t i o n s
296
297 wh i l e (1 ) //main loop : gapnav and/ or svm
298 {
299 // get the e lapsed seconds from s t a r t
300 e l ap s e c = d i f f t im e ( time (0 ) , s t a r t ) ;
301 i f ( e l ap s e c != prevsec )
302 {
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303 // t i c k = true ;
304 i f ( imode !=0) //svm−s e r v e r
305 {
306 i f ( wait==true )
307 {
308 waitcount++;
309 i f ( waitcount>=tout ) wait=f a l s e ; // not wai t ing any longe r
310 }
311 e l s e waitcount=0;
312 }
313 i f ( ewaitsec >0) ewaitsec−−; // decrement estop t imer i f necce s sa ry
314 i f ( revsec >0) revsec−−; // decrement r e v e r s e t imer i f necce s sa ry
315 i f ( fwdsec>0) fwdsec−−; // decrement forward t imer i f necce s sa ry
316 navtimer++; // increment nav igat i on t imer
317
318 i f ( wait==true ) std : : cout << ”wai t ing ! ! ! ” << std : : endl ;
319
320 t o t s e c++; // increment t o t a l seconds
321 // s t o r e x−y l o c a t i o n s :
322 xys to re ( to t s ec , xc , yc ) ;
323
324 std : : cout << ”x , y , yaw , yawn : ” << xc << ” , ” << yc << ” , ” << yawc <<

” , ” << yawn << std : : endl ;
325 std : : cout << ” rd i s t , v ,w: ” << r d i s t << ” , ” << v << ” , ” << w <<

std : : endl ;
326 std : : cout << ”xg , yg : ” << xg << ” , ” << yg << std : : endl ;
327 std : : cout << ”xw ,yw : ” << xw << ” , ” << yw << std : : endl ;
328 std : : cout << ”r1 , r2 : ” << r1 << ” , ” << r2 << std : : endl ;
329 std : : cout << ”xmin , ymin , Area Lim : ” << xmin << ” , ” << ymin << ” , ”

<< area l im << std : : endl ;
330 std : : cout << ” gde l ta , theta , dgoal : ” << gde l t a << ” , ” <<theta << ” ,

” << dgoal << std : : endl ;
331 std : : cout << ”stnum : ” << stnum << std : : endl ;
332 f o r ( i n t i =0; i<secnum ; i++)
333 {
334 std : : cout << ” Sector Area ” << i << ” : ” << sensdata [ i ] << std : :

endl ;
335 }
336 f o r ( i n t i =0; i<l a s e r c oun t ; i++)
337 {
338 // std : : cout << ”LasArr : ” << i << ” : ” << lp [ i ] << std : : endl ;
339 }
340 i f ( es top ) std : : cout << ”Robot in E−STOP ! ! ! ” << std : : endl ;
341 prevsec = e l ap s e c ;
342 }
343 // e l s e t i c k = f a l s e ;
344
345 robot . Read ( ) ; // read from the p rox i e s
346 xc=pp0 . GetXPos ( )+hx ; // get cur rent x−l o c a t i o n o f robot
347 yc=pp0 . GetYPos ( )+hy ; // get cur rent y−l o c a t i o n o f robot
348 yawc=pp0 .GetYaw( )+hyaw ;
349
350 // ************************Begin GapNav**************************
351 i f ( ( lp . I sVa l i d ( )==true ) && ( goalcmd==true ) )
352 {
353 // robot . Read ( ) ; // read from the p rox i e s
354 // normal i se yawc to [ 0 ; 2 p i ]
355 i f ( yawc<0) yawn = (2*M PI) + yawc ;
356 e l s e yawn = yawc ;
357
358 l a s e r c oun t = lp . GetCount ( ) ;
359
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360 // c l e a r s enso r data
361 f o r ( i n t i =0; i<secnum ; i++)
362 {
363 sensdata [ i ] = 0 ;
364 }
365
366 // get xmin and ymin :
367 xmin=100.0;
368 ymin=100.0;
369 f o r ( i n t i =0; i<l a s e r c oun t ; i++)
370 {
371 doub le angt=DTOR( ango f f s e t )+DTOR( i *pitchang ) ;
372 i f ( ( angt >(0.3*M PI) )&&(angt <(0.8*M PI) ) ) xt=lp [ i ] ; // xt=fabs ( lp [

i ]* s i n ( angt ) ) ;
373 i f ( ( ( angt>=0)&&(angt<=(0.3*M PI) ) ) | | ( ( angt>=(0.8*M PI) )&&(

angt<=M PI) ) ) yt=lp [ i ] ; // yt=fabs ( lp [ i ]* cos ( angt ) ) ;
374 i f ( xt<xmin ) xmin=xt ;
375 i f ( yt<ymin ) ymin=yt ;
376 }
377
378 // check estop cond i t i on
379 i f ( ( ( xmin<e s topDi s t ) | | ( ymin<e s topDi s t ) )&&(estop==f a l s e )&&(revrobot

==f a l s e ) )
380 {
381 estop=true ;
382 obsavoid=true ; // handle estop in obsavoid rou t in e
383 ewa i t s e c=ewaitsp ;
384 stopnum++; // increment number o f s tops
385 }
386
387 // check i f robot must slow down
388 i f ( ( xmin>e s topDi s t )&&(xmin<minObsDist ) ) slowdown=true ;
389 e l s e slowdown=f a l s e ;
390
391 // check i f robot must wait
392 i f ( wait==true ) obsavoid=true ; // handle estop in obsavoid rou t in e
393
394 // i n t e g r a t e l a s e r data
395 i n t k=1;
396 doub le l p t ; //temp l a s e r var
397 f o r ( i n t i =0; i<l a s e r c oun t ; i++)
398 {
399 i f ( lp [ i ]> r d i s t ) l p t=r d i s t ;
400 e l s e l p t=lp [ i ] ;
401 // l p t=lp [ i ] ;
402 sensdata [ k−1] += (DTOR( pitchang /2 . 0 ) ) * sqrd ( l p t ) ; // area=(theta /2)

*Rˆ2 .
403 i f ( i== i n t ( ( l a s e r c oun t /secnum) *k ) ) k++;
404 } //end f o r
405
406 // check i f robot f r on t c l e a r :
407 area l im=(DTOR(( rangespan/secnum) /2) ) * sqrd (maxObsDist ) ; //Area=(

theta /2) *Rˆ2
408 i f ( ( ( sensdata [ secnum /2 ] )>(p fac * area l im ) )&&(( sensdata [ ( secnum/2)

−1])>(p fac * area l im ) ) ) f r o n t c l r=true ;
409 e l s e f r o n t c l r=f a l s e ;
410
411 // ob s t a c l e avoidance rou t ine
412 //−−−−−−−−−−−−−−−−−−−−−−−−−−
413 i f ( obsavoid==true )
414 {
415 // turn ing :
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416 i f ( ( turn ing==true )&&(estop==f a l s e )&&(revrobot==f a l s e ) ) // turn ing
r equ i r ed ?

417 {
418 wdelta=AngDiff (xw , xc , yw , yc , yawc ) ; // get ang le d i f f between

robot and waypoint
419 wdir=GetDirn ( wdelta ) ; // get d i rn to turn cw or acw
420 // check i f robot in t i g h t space and ca l c wgap :
421 i f ( ( xmin<(1*Rw) ) | | ( ymin<(1*Rw) ) )
422 {
423 // begin i t e r a t i o n to f i nd r1 , wgap :
424 bool wexit=f a l s e ;
425 r1=xmin ; //−e s topDi s t ;
426 wh i l e ( ( r1>0)&&(wexit==f a l s e ) )
427 {
428 r1−=0.05;
429 r2=sq r t ( sqrd ( r1 )+sqrd (Rw) ) ;
430 i f ( ( r2−r1 )<ymin )
431 {
432 wgap=(0.5*vmax) / r1 ;
433 i f (wgap>wmax) wgap=wmax;
434 wexit=true ;
435 }
436 }
437 i f ( r1<=0) wgap=wmin ;
438 w=wdir*wgap ;
439 }
440 e l s e w=wdir *0 .5*wmax; // robot not in t i g h t space
441 v=0.5*vmax ;
442 i f ( f abs ( wdelta )<=angto l ) turn ing=f a l s e ;
443 }
444 e l s e // turn ing==f a l s e or estop==true
445 {
446 i f ( revrobot==f a l s e )
447 {
448 // stop robot :
449 v=vmin ;
450 w=wmin ;
451 }
452 }
453 //slowdown :
454 // i f ( slowdown==true ) v=0.5*vmax ; // halve the speed
455 // e l s e v=vmax ;
456
457 // estop :
458 i f ( es top==true )
459 {
460 i f ( ( revrobot==f a l s e )&&(stopnum>1) )
461 {
462 revrobot=true ;
463 r ev s e c=revsp ; // s t a r t r e v e r s e t imer
464 estop=f a l s e ;
465 v=−1*vmax ;
466 w=wmin ;
467 }
468 e l s e i f ( ewaitsec<=0) estop=f a l s e ; // c l e a r estop f l a g
469 }
470 // r ev e r s e :
471 i f ( revrobot==true )
472 {
473 i f ( ( revsec<=0)&&(stopnum>0) )
474 {
475 revrobot=f a l s e ;
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476 stopnum=0;
477 // stop robot :
478 v=vmin ;
479 w=wmin ;
480 }
481 }
482 // wai t ing :
483 i f ( wait==true )
484 {
485 v=vmin ;
486 w=wmin ;
487 }
488
489 i f ( ( turn ing==f a l s e )&&(estop==f a l s e )&&(revrobot==f a l s e )&&(wait==

f a l s e ) ) obsavoid=f a l s e ; // e x i t r ou t ine
490 } //end i f ( obsavoid==true )
491
492 // State#1: Pos i t i on robot towards goa l
493 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
494 i f ( stnum==1)
495 {
496 gde l t a=AngDiff ( xg , xc , yg , yc , yawc ) ;
497 i f ( ( f abs ( gde l t a )>angto l )&&(obsavoid==f a l s e ) ) //need to turn

towards goa l
498 {
499 xw=xg ;
500 yw=yg ;
501 turn ing=true ;
502 obsavoid=true ;
503 }
504 i f ( f abs ( gde l t a )<=angto l ) // in d i r e c t i o n o f goa l − po s i t i o n i n g

almost done
505 {
506 //wait f o r obsavoid rou t ine to complete
507 i f ( obsavoid==f a l s e ) stnum=2; // po s i t i o n i n g done
508 }
509 }
510
511 // State#2: Po s i t i on ing done
512 //−−−−−−−−−−−−−−−−−−−−−−−−−
513 i f ( stnum==2)
514 {
515 i f ( obsavoid==f a l s e )
516 {
517 i f ( f r o n t c l r==true ) stnum=4; // c l e a r path to goa l
518 e l s e stnum=3; // ready to plan path
519 }
520 }
521
522 // State#3: Plan path us ing gaps
523 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
524 i f ( stnum==3)
525 {
526 dgoal = dca l c ( xg , xc , yg , yc ) ;
527 gde l t a=AngDiff ( xg , xc , yg , yc , yawc ) ;
528 i f ( obsavoid==f a l s e )
529 {
530 i f ( ( dgoal>g o a l t o l ) && ( dgoal <(4* g o a l t o l ) ) ) // are we c l o s e to

goa l ?
531 {
532 i f ( f abs ( gde l t a )<=angto l ) stnum=4; // c l e a r path to goa l
533 e l s e stnum=1; // pos i ton robot towards goa l
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534 }
535 e l s e
536 {
537 i f ( ( dgoal<=goa l t o l )&&(fabs ( gde l t a )<=angto l ) ) stnum=5; // goa l

reached
538 i f ( ( dgoal<=goa l t o l )&&(fabs ( gde l t a )>angto l ) ) stnum=1; //

pos i ton robot towards goa l
539 e l s e // f a r away from goa l − plan paths
540 {
541 i f ( ( waycalc==true )&&(navtimer<navfreq ) )
542 {
543 wdelta=AngDiff (xw , xc , yw , yc , yawc ) ;
544 i f ( ( f abs ( wdelta )>angto l )&&(obsavoid==f a l s e ) ) //need to

turn towards waypoint
545 {
546 turn ing=true ;
547 obsavoid=true ;
548 }
549 i f ( ( f abs ( wdelta )<=angto l )&&(obsavoid==f a l s e ) ) // t r a v e l

s t r a i g h t towards waypoint
550 {
551 w=wmin ;
552 v=vmax ;
553 }
554 }
555 e l s e
556 {
557 i f ( navtimer>=navfreq )
558 {
559 waycalc=f a l s e ;
560 navrun=true ; // c a l c u l a t e waypoints in nav rou t ine
561 navtimer=0; // r e s e t t imer f o r next i t e r a t i o n
562 }
563 }
564 }
565 }
566 }
567 }
568
569 // State#4: Clear path to goa l
570 //−−−−−−−−−−−−−−−−−−−−−−−−−−−
571 i f ( stnum==4)
572 {
573 dgoal = dca l c ( xg , xc , yg , yc ) ;
574 gde l t a = AngDiff ( xg , xc , yg , yc , yawc ) ;
575 i f ( obsavoid==f a l s e )
576 {
577 w=wmin ;
578 v=vmax ;
579 i f ( ( dgoal<=goa l t o l )&&(fabs ( gde l t a )<=angto l ) ) stnum=5; // goa l

reached
580 i f ( ( f r o n t c l r==f a l s e ) | | ( f abs ( gde l t a )>angto l ) ) stnum=3; //not

po s i t i on ed to goa l or no c l e a r path to goa l
581 }
582 }
583
584 // State#5: Goal reached
585 //−−−−−−−−−−−−−−−−−−−−−
586 i f ( stnum==5)
587 {
588 // stop robot :
589 v=vmin ;
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590 w=wmin ;
591 std : : cout << ”Goal reached ! ” << std : : endl ;
592 // f o r t e s t purposes :
593 //xg=s3x ;
594 //yg=s3y ;
595 stnum=1;
596 goalcmd=f a l s e ;
597 }
598
599 //Path planning / nav igat i on rout in e :
600 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
601 i f ( navrun==true )
602 {
603 navrun=f a l s e ;
604 waycalc=true ;
605 xt=1000;
606 yt=1000;
607 r d i s t=maxObsDist ;
608 area l im=(DTOR(( rangespan/secnum) /2) ) * sqrd ( r d i s t ) ; //Area=(theta

/2) *Rˆ2
609 gde l t a=AngDiff ( xg , xc , yg , yc , yawc ) ;
610 dgoal = dca l c ( xg , xc , yg , yc ) ;
611
612 i f ( xmin<r d i s t )
613 {
614 i n t s idx =0; // c l e a r s e c t o r index
615 i n t c s e c t o r =0; // c l e a r chosen s e c t o r index
616 i n t scount ; // s e c t o r counter
617 wh i l e ( s idx<secnum)
618 {
619 scount=0;
620 i f ( sensdata [ s idx ]>( p fac * area l im ) )
621 {
622 // i f ( ( ( s idx >1)&&(sidx <6) )&&(xmin<RL) ) scount=0;
623 scount++;
624 f o r ( i n t i =( s idx+1) ; i<secnum ; i++)
625 {
626 // i f ( ( ( s idx >1)&&(sidx <6) )&&(xmin<RL) ) i=secnum ;
627 // e l s e
628 //{
629 i f ( sensdata [ i ]>( p fac * area l im ) ) scount++;
630 e l s e i=secnum ;
631 //}
632 }
633 i f ( ( maxObsDist* scount *DTOR( rangespan/secnum) )>=(2.5*Rw)

) // (S=R* theta ) > 1 .5*Rw?
634 {
635 ThetaArr [ c s e c t o r ] [ 0 ] = yawn + ( ( s idx−(secnum/2) ) *DTOR(

rangespan/secnum) ) ; // the ta 1 ( s t a r t )
636 ThetaArr [ c s e c t o r ] [ 1 ] = yawn + ( ( scount−(secnum/2) ) *

DTOR( rangespan/secnum) ) ; // the ta 2 ( end )
637 //Normalise to [ 0 ; 2 p i ]
638 i f ( ThetaArr [ c s e c t o r ] [ 0 ] <0) ThetaArr [ c s e c t o r ] [0 ]+=(2*

M PI) ;
639 i f ( ThetaArr [ c s e c t o r ] [ 0 ] > (2*M PI) ) ThetaArr [ c s e c t o r

] [0]−=(2*M PI) ;
640 i f ( ThetaArr [ c s e c t o r ] [ 1 ] <0) ThetaArr [ c s e c t o r ] [1 ]+=(2*

M PI) ;
641 i f ( ThetaArr [ c s e c t o r ] [ 1 ] > (2*M PI) ) ThetaArr [ c s e c t o r

] [1]−=(2*M PI) ;
642 //add in s a f e t y d i s t ance :
643 ThetaArr [ c s e c t o r ] [0]+= sa f eD i s t ;



Appendix A. Robot Agent Code 125

644 ThetaArr [ c s e c t o r ][1]−= sa f eD i s t ;
645 c s e c t o r++;
646 }
647 s idx+=scount ;
648 std : : cout << ” s idx : ” << s idx << std : : endl ;
649 }
650 e l s e s idx++;
651 } //end whi l e
652 f o r ( i n t i =0; i<c s e c t o r ; i++)
653 {
654 std : : cout << ”CSector ” << i << ” : ” << ThetaArr [ i ] [ 0 ] <<

” , ” << ThetaArr [ i ] [ 1 ] << std : : endl ;
655 }
656 //now determine the best theta and waypoints :
657 i n t j =0;
658 i n t tnum ;
659 bool gpath=f a l s e ; //path to goa l f l a g
660 f o r ( i n t i =0; i<c s e c t o r ; i++)
661 {
662 tnum=BestThetaGoal ( xc , yc , xg , yg , r d i s t , ThetaArr [ i ] [ 0 ] ,

ThetaArr [ i ] [ 1 ] ) ;
663 i f ( tnum==2) //path to goa l
664 {
665 gpath=true ;
666 xw=xg ;
667 yw=yg ;
668 }
669 e l s e
670 {
671 i f ( tnum==0) ThetaArr [ i ] [ 0 ]= ThetaArr [ i ] [ 0 ] ; //−s a f eD i s t ;
672 e l s e ThetaArr [ i ] [ 0 ]= ThetaArr [ i ] [ 1 ] ; //+sa f eD i s t ;
673 j++;
674 }
675 i f ( gpath==true ) break ; // e x i t f o r loop
676 }
677 // c l e a r path to goa l not found , so i t e r a t e to get bes t

o v e r a l l theta :
678 i f ( gpath==f a l s e )
679 {
680 the ta t=ThetaArr [ 0 ] [ 0 ] ;
681 f o r ( i n t i =1; i<j ; i++)
682 {
683 tnum=BestThetaPair ( xc , yc , xg , yg , r d i s t , thetat , ThetaArr [ i

] [ 0 ] ) ;
684 i f ( tnum!=0) the ta t=ThetaArr [ i ] [ 0 ] ; // r ep l a c e new best

theta
685 }
686 //might have to tweak po int here so that s i d e s o f robot

dont c o l l i d e with ob s t a c l e !
687 xw = xc + ( r d i s t * cos ( the ta t ) ) ;
688 yw = yc + ( r d i s t * s i n ( the ta t ) ) ;
689 }
690 }
691 e l s e
692 {
693 xw=xg ;
694 yw=yg ;
695 }
696 } //end i f ( navrun==true )
697
698 pp0 . SetSpeed (v ,w) ;
699 }//end ( lp . I sVa l i d ( )==true )
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700 // ************************End GapNav**************************
701
702 // ******************Begin SVM and s e r v e r comms********************
703 i f ( imode !=0) //svm and s e r v e r comms
704 {
705 // ***********Agent i n t e r f a c e ************
706 //communicate with the s e r v e r
707 i f ( servercom==true )
708 {
709 std : : cout << ”<<<<Agent In t e r f a c e>>>>” << std : : endl ;
710 servercom=f a l s e ; // r e s e t f l a g
711 // check s e r v e r message here ( f o r #server , end#) and only proceed i f

message i s good ! ! !
712
713 // Level 0 r eque s t ( agent at home or d e s t i n a t i on ) :
714 i f ( ( amode==athome ) | | ( amode==atde s t ) )
715 {
716 i f ( ge ta id ( )==1)
717 {
718 i f ( getsvm ( )==1)
719 {
720 i f ( getago ( )==1)
721 {
722 i f ( g e t a c l r ( )==1)
723 {
724 i f ( ge t tout ( )==1)
725 {
726 i f ( getbufdat ( )==1)
727 {
728 std : : cout << ”<<<<Server packet i s good!!!>>>>” <<

std : : endl ;
729 se rve rok=true ; // s e r v e r s t r i n g i s good
730 svmready=true ; // ready to run svm algor i thm
731 }
732 e l s e s e rve rok=f a l s e ;
733 }
734 e l s e s e rve rok=f a l s e ;
735 }
736 e l s e s e rve rok=f a l s e ;
737 }
738 e l s e s e rve rok=f a l s e ;
739 }
740 e l s e s e rve rok=f a l s e ;
741 }
742 e l s e s e rve rok=f a l s e ;
743 } // l e v e l 0
744
745 // Level 1 r eque s t ( agent going to source or d e s t i n a t i on ) :
746 i f ( ( amode==gosrc ) | | ( amode==godest ) )
747 {
748 i f ( ge ta id ( )==1)
749 {
750 i f ( g e t a c l r ( )==1)
751 {
752 i f ( ge t tout ( )==1)
753 {
754 std : : cout << ”<<<<Server packet i s good!!!>>>>” << std : :

endl ;
755 se rve rok=true ; // s e r v e r s t r i n g i s good
756 }
757 e l s e s e rve rok=f a l s e ;
758 }
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759 e l s e s e rve rok=f a l s e ;
760 }
761 e l s e s e rve rok=f a l s e ;
762 } // l e v e l 1
763
764 // Level 2 r eque s t ( agent going at source ) :
765 i f (amode==at s r c )
766 {
767 i f ( ge ta id ( )==1)
768 {
769 i f ( getago ( )==1)
770 {
771 i f ( ge t tout ( )==1)
772 {
773 std : : cout << ”<<<<Server packet i s good!!!>>>>” << std : :

endl ;
774 se rve rok=true ; // s e r v e r s t r i n g i s good
775 }
776 e l s e s e rve rok=f a l s e ;
777 }
778 e l s e s e rve rok=f a l s e ;
779 }
780 e l s e s e rve rok=f a l s e ;
781 } // l e v e l 2
782
783 }//end i f ( servercom==true )
784
785 // send packet to s e r v e r
786 i f ( ( wait==f a l s e )&&(s end f l a g==true ) )
787 {
788 i f ( opensocket ( )==true ) // connected to s e r v e r
789 {
790 s end f l a g=f a l s e ; // r e s e t f l a g
791 updatepkt ( ) ; //update packet be f o r e send to s e r v e r
792 std : : cout << ”Sending s t r i n g to s e r v e r . . . ” << std : : endl ;
793 send ( sockfd , s end l ine , s t r l e n ( s end l i n e ) , 0) ;
794 i f ( recv ( sockfd , inbuf , MAXLINE, 0 ) == 0)
795 {
796 // e r r o r : s e r v e r terminated prematurely
797 pe r ro r ( ”The s e r v e r terminated prematurely ” ) ;
798 c l o s e ( sock fd ) ; // c l o s e the connect ion
799 }
800 e l s e
801 {
802 p r i n t f ( ”%s ” , ” St r ing r e c e i v ed from the s e r v e r : ” ) ;
803 puts ( inbu f ) ;
804 servercom=true ; // ready to ana lyse packet r e c e i v ed from se rv e r
805 c l o s e ( sock fd ) ; // c l o s e the connect ion
806 }
807 }
808 e l s e
809 {
810 tout=htime ;
811 wait=true ; //wait f o r tout seconds be f o r e t ry ing to connect to

s e r v e r again
812 }
813 }
814 // ********End Agent i n t e r f a c e **********
815
816
817 // ********** Learning component ************
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818 i f ( svmready==true ) // t h i s f l a g i s s e t a f t e r check ing packet qua l i t y
from se rv e r !

819 {
820 std : : cout << ”<<<<Learning component>>>>” << std : : endl ;
821 svmready=f a l s e ; // c l e a r f l a g
822 char * f t r a i n=” t r a i n ” ;
823 char *fmod=”model” ;
824 char * f i n=” t e s t ” ;
825 char * f ou t=” p r ed i c t ” ;
826 sw i t ch ( svmode )
827 {
828 case l e a rn c : // l e a rn i ng mode
829 s t r bu f ( svmode ) ; //append data s t r i n g to t r a i n f i l e
830 svmflag=true ;
831 break ;
832 case t rnpredc : // t ra in−p r ed i c t i on mode
833 s t r bu f ( svmode ) ; // wr i t e data s t r i n g to t e s t f i l e
834 tra in main ( f t r a i n , fmod ) ; // generate the model f i l e
835 pred ic t main ( f in , fmod , f out ) ; // p r ed i c t t a r g e t l o c a t i o n and

output to ” p r ed i c t ” f i l e
836 // get the t a r g e t l o c a t i o n from the ” p r ed i c t ” f i l e and eva luate

l o c a t i o n
837 i f ( g e t l o c ( )<=0) agoa l =0;
838 e l s e
839 {
840 i f ( ( Lmask & i n t (pow(2 , g e t l o c ( )−1) ) ) > 0) agoa l=g e t l o c ( ) ;
841 e l s e agoa l =0;
842 }
843 svmflag=true ;
844 break ;
845 d e f a u l t : //do nothing
846 svmflag=f a l s e ;
847 break ;
848 }
849 }
850 // ********End Learning component **********
851
852
853 // *********** Centra l Process ************

854 // robot source and de s t i n a t i on path planning
855
856 // robot . Read ( ) ; // read from the p rox i e s
857 i f ( lp . I sVa l i d ( )==true )
858 {
859 sw i t ch (amode)
860 {
861 case 0 : // agent j u s t woke up
862 amode=1; // next s t a t e
863 break ;
864 case 1 : //go home
865 SetGoal (Home [ 0 ] ,Home [ 1 ] , 0 ) ;
866 i f ( dca l c ( xc ,Home [ 0 ] , yc ,Home [ 1 ] )<dthresh )
867 {
868 amode=2; // next s t a t e
869 wait=true ; // s e t wait f l a g
870 tout=htime ; // timeout=htime
871 s end f l a g=true ; // ready to send packet to s e r v e r
872 }
873 break ;
874 case 2 : // at home
875 i f ( ( wait==f a l s e )&&(s end f l a g==f a l s e ) )
876 {
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877 i f ( ( svmflag==true )&&(ago==1)&&(se rve rok==true ) )
878 {
879 svmflag=f a l s e ;
880 se rve rok=f a l s e ; // r e s e t f l a g
881 // i f ( agoa l==0) amode=1; //go home
882 i f ( agoal >0) amode=3; //go to source
883 ago=0; // c l e a r go f l a g
884 s end f l a g=true ; // ready to send packet to s e r v e r
885 }
886 e l s e
887 {
888 wait=true ; //wait t imeout
889 s end f l a g=true ; // ready to send packet to s e r v e r
890 }
891 }
892 break ;
893 case 3 : //go to source
894 i f ( dca l c ( xc , Src [ agoal −1 ] [ 0 ] , yc , Src [ agoal −1 ] [ 1 ] )>dnear ) // f a r

away from source
895 {
896 SetGoal ( Src [ agoal −1 ] [ 0 ] , Src [ agoal −1 ] [ 1 ] , 0 ) ; // cont inue to

source
897 }
898 e l s e
899 {
900 i f ( ( dca l c ( xc , Src [ agoal −1 ] [ 0 ] , yc , Src [ agoal −1 ] [ 1 ] )<=dnear )&&(

dca l c ( xc , Src [ agoal −1 ] [ 0 ] , yc , Src [ agoal −1 ] [ 1 ] )>=dthresh )&&(wait==f a l s e )
&&(s end f l a g==f a l s e ) ) // near source

901 {
902 apass=1; // s e t pass f l a g so that agent waits
903 i f ( ( a c l r==1)&&(se rve rok==true ) )
904 {
905 SetGoal ( Src [ agoal −1 ] [ 0 ] , Src [ agoal −1 ] [ 1 ] , 0 ) ; // cont inue to

source
906 }
907 e l s e
908 {
909 // stay here and wait f o r tout seconds
910 wait=true ;
911 s end f l a g=true ;
912 }
913 }
914 e l s e
915 {
916 i f ( dca l c ( xc , Src [ agoal −1 ] [ 0 ] , yc , Src [ agoal −1 ] [ 1 ] )<dthresh ) //

robot i s at source − goto next s t a t e
917 {
918 amode=4; // next s t a t e
919 apass=0; // c l e a r agent pass f l a g
920 }
921 }
922 }
923 break ;
924 case 4 : // at source
925 i f ( ( wait==f a l s e )&&(s end f l a g==f a l s e ) )
926 {
927 i f ( ( ago==1)&&(se rve rok==true ) )
928 {
929 se rve rok=f a l s e ; // r e s e t f l a g
930 amode=5; // next s t a t e
931 ago=0; // c l e a r go f l a g
932 s end f l a g=true ; // ready to send packet to s e r v e r
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933 }
934 e l s e
935 {
936 wait=true ; //wait t imeout
937 s end f l a g=true ; // ready to send packet to s e r v e r
938 }
939 }
940 break ;
941 case 5 : //go to d e s t i n a t i on
942 i f ( dca l c ( xc , Dest [ agoal −1 ] [ 0 ] , yc , Dest [ agoal −1 ] [ 1 ] )>dnear ) // f a r

away from de s t i n a t i on
943 {
944 SetGoal ( Dest [ agoal −1 ] [ 0 ] , Dest [ agoal −1 ] [ 1 ] , 0 ) ; // cont inue to

d e s t i n a t i on
945 }
946 e l s e
947 {
948 i f ( ( dca l c ( xc , Dest [ agoal −1 ] [ 0 ] , yc , Dest [ agoal −1 ] [ 1 ] )<=dnear )&&(

dca l c ( xc , Dest [ agoal −1 ] [ 0 ] , yc , Dest [ agoal −1 ] [ 1 ] )>=dthresh )&&(wait==f a l s e
)&&(s end f l a g==f a l s e ) ) // near d e s t i n a t i on

949 {
950 apass=1; // s e t pass f l a g so that agent waits
951 i f ( ( a c l r==1)&&(se rve rok==true ) )
952 {
953 SetGoal ( Dest [ agoal −1 ] [ 0 ] , Dest [ agoal −1 ] [ 1 ] , 0 ) ; // cont inue to

d e s t i n a t i on
954 }
955 e l s e
956 {
957 // stay here and wait f o r tout seconds
958 wait=true ;
959 s end f l a g=true ;
960 }
961 }
962 e l s e
963 {
964 i f ( dca l c ( xc , Dest [ agoal −1 ] [ 0 ] , yc , Dest [ agoal −1 ] [ 1 ] )<dthresh )

// at d e s t i n a t i on
965 {
966 amode=6; // next s t a t e
967 apass=0; // c l e a r agent pass f l a g
968 }
969 }
970 }
971 break ;
972 case 6 : // at d e s t i n a t i on
973 i f ( ( wait==f a l s e )&&(s end f l a g==f a l s e ) )
974 {
975 i f ( ( svmflag==true )&&(ago==1)&&(se rve rok==true ) )
976 {
977 svmflag=f a l s e ;
978 se rve rok=f a l s e ; // r e s e t f l a g
979 i f ( agoa l==0) amode=1; //go home
980 i f ( agoal >0) amode=3; //go to source
981 ago=0; // c l e a r go f l a g
982 s end f l a g=true ; // ready to send packet to s e r v e r
983 }
984 e l s e
985 {
986 wait=true ; //wait t imeout
987 s end f l a g=true ; // ready to send packet to s e r v e r
988 }
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989 }
990 break ;
991 d e f a u l t :
992 amode=0;
993 break ;
994 }// end switch
995 }// end i f ( lp . I sVa l i d ( )==true )
996
997 //end source and de s t i n a t i on path planning
998 // *********** End Centra l Process ************

999
1000 }//end i f ( imode !=0)
1001 // ******************End SVM and s e r v e r comms********************
1002
1003 }//end whi l e (1 ) − main loop
1004 }
1005 e l s e
1006 {
1007 p r i n t f ( ” I n c o r r e c t input parameters \n” ) ;
1008 e x i t (1 ) ;
1009 }//end i f−e l s e
1010 re turn 0 ;
1011 }//main

A.5 PeopleBot real-world program: Player .cfg file

1 d r i v e r
2 (
3 name ”p2os”
4 prov ide s [ ”odometry : : : po s i t i on2d : 0 ” ” sonar : 0 ” ]
5 port ”/dev/ ttyS0 ”
6 )

A.6 RMP200 real-world program: Player .cfg file

1 d r i v e r
2 (
3 name ”segwayrmp”
4 prov ide s [ ” po s i t i on2d : 0 ” ” po s i t i on3d : 0 ” ”power : 0 ” ” u i : : : power : 1 ” ]
5 bus ”usb”
6 usb dev i c e ”/dev/ttyUSB0”
7 max xspeed 1 .0
8 max yawspeed 40
9 )

10
11 d r i v e r
12 (
13 name ” hokuyo a i s t ”
14 prov ide s [ ” ranger : 0 ” ]
15 portopts ” type=s e r i a l , dev i c e=/dev/ttyACM0 , timeout=1,baud=19200”
16 min d i s t 0 . 2 #0.15
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17 pose [ 0 . 2 5 0 .0 0 .0 0 .0 0 .0 0 . 0 ]
18 alwayson 1
19 )
20
21 d r i v e r
22 (
23 name ” r ang e r t o l a s e r ”
24 r e qu i r e s [ ” ranger : 0 ” ]
25 prov ide s [ ” l a s e r : 0 ” ]
26 )

A.7 RMP400 real-world program: Player .cfg file

1 d r i v e r
2 (
3 name ”segwayrmp”
4 prov ide s [ ” po s i t i on2d : 1 ” ” po s i t i on3d : 1 ” ”power : 1 ” ]
5 bus ”usb”
6 usb dev i c e ”/dev/ttyUSB0”
7 max xspeed 0 .5
8 max yawspeed 40
9 )

10
11 d r i v e r
12 (
13 name ”segwayrmp”
14 prov ide s [ ” po s i t i on2d : 2 ” ” po s i t i on3d : 2 ” ”power : 2 ” ]
15 bus ”usb”
16 usb dev i c e ”/dev/ttyUSB1”
17 max xspeed 0 .5
18 max yawspeed 40
19 )
20
21 d r i v e r
22 (
23 name ”segwayrmp400”
24 prov ide s [ ” po s i t i on2d : 0 ” ” po s i t i on3d : 0 ” ]
25 r e qu i r e s [ ” f r on t : : : po s i t i on3d : 1 ” ”back : : : po s i t i on3d : 2 ” ” f ront2d : : :

po s i t i on2d : 1 ” ”back2d : : : po s i t i on2d : 2 ” ]
26 f u l l s p e e d da t a 1
27 )
28
29 d r i v e r
30 (
31 name ” hokuyo a i s t ”
32 prov ide s [ ” ranger : 0 ” ]
33 portopts ” type=s e r i a l , dev i c e=/dev/ttyACM0 , timeout=1,baud=19200”
34 min d i s t 0 .15 #0.25
35 pose [ 0 . 2 5 0 .0 0 .0 0 .0 0 .0 0 . 0 ]
36 )
37
38 d r i v e r
39 (
40 name ” r ang e r t o l a s e r ”
41 r e qu i r e s [ ” ranger : 0 ” ]
42 prov ide s [ ” l a s e r : 0 ” ]
43 )
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Proview SCADA Code

B.1 Application interface program

1 /*
2 Filename : appServer3a . cpp
3 Author : N. Naidoo
4 Date : 25/04/2014
5 Revi s ion : 3a
6 Desc r ip t i on : App l i cat ion s e r v e r program f o r Proview SCADA
7 */
8
9 /*

10 run these two commands to compi le t h i s code :
11
12 pwrp@nicol : / usr / l o c a l /pwrp/plantmain/ s r c / appl$ g++ −g −c appServer3a . cpp −o

/ usr /pwr51/ o s l i n ux /hw x86/exp/ obj / appServer3a . o −I$pwr inc −DOS LINUX
=1 −DOS=l inux −DHW X86=1 −DHW=x86 −DOS POSIX

13
14 pwrp@nicol : / usr / l o c a l /pwrp/plantmain/ s r c / appl$ g++ −g −o / usr /pwr51/

o s l i n ux /hw x86/exp/ exe/ appServer3a / usr /pwr51/ o s l i n ux /hw x86/exp/ obj /
appServer3a . o / usr /pwr51/ o s l i n ux /hw x86/exp/ obj /pwr msg rt . o −
L$pwr l ib −l pwr r t −lpwr co −lpwr msg dummy − l r t

15
16 change ” l d a pp l n i c o l 9 9 9 . txt ” load f i l e in / usr / l o c a l /pwrp/plantmain/bld /

common/ load :
17 # User app l i c a t i o n s
18 # id , name , load /noload run/norun , f i l e , pr io , debug/nodebug , ”

arg ”
19 appServer3a , appServer3a , noload , run , appServer3a , 12 , nodebug , ””
20 #
21 # System pro c e s s e s
22 */
23
24 #inc l ude <s t d l i b . h>
25 #inc l ude <s t d i o . h>
26 #inc l ude <sys / types . h>
27 #inc l ude <sys / socket . h>
28 #inc l ude <ne t i n e t / in . h>
29 #inc l ude <s t r i n g . h>
30 #inc l ude <uni s td . h>

133
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31 #inc l ude <iostream>
32 #inc l ude ”pwr . h”
33 #inc l ude ” pwr ba s e c l a s s e s . hpp”
34 #inc l ude ” rt gdh . h”
35 #inc l ude ” r t e r r h . h”
36
37 #de f i n e MAXLINE 4096 //max text l i n e l ength
38 #de f i n e SERV PORT 3000 // port
39 #de f i n e LISTENQ 8 //maximum number o f c l i e n t connec t i ons
40 #de f i n e rnum 3 //number o f robot agents
41 #de f i n e bnum 8 //number o f b u f f e r s
42 #de f i n e bsnum 3 //number o f b u f f e r s be ing s e r v i c ed
43 // agent modes
44 #de f i n e wakeup 0
45 #de f i n e gohome 1
46 #de f i n e athome 2
47 #de f i n e gos rc 3
48 #de f i n e a t s r c 4
49 #de f i n e godest 5
50 #de f i n e atde s t 6
51 // agent goa l s
52 #de f i n e nogoal −1
53 #de f i n e hgoal 0
54 //svm modes
55 #de f i n e nosvm 0
56 #de f i n e learnsvm 1
57 #de f i n e predictsvm 2
58 //go−stop command
59 #de f i n e rwai t 0
60 #de f i n e rgo 1
61
62 // g l oba l v a r i a b l e s
63 pwr tBoolean bval ;
64 pwr tStatus s t s ;
65 pwr tInt32 iva l , i v a l 2 ;
66 i n t aid , amode , agoal , a c l r , apass ;
67 i n t svmode , ago , tout , a l o c ;
68 char r ecbu f [MAXLINE] , inbu f [MAXLINE] ; // r e c e i v e bu f f e r
69 char sendbuf [MAXLINE] ; // send bu f f e r
70 bool pktQ ; // packet qua l i t y f l a g . 1−> packet r e c e i v ed from agent i s good
71
72 i n t GetParam( char *buf1 , char *buf2 )
73 {
74 char *del im=”=” ;
75 char * token , * strtemp ;
76 i n t tempi ;
77
78 strtemp=s t r s t r ( buf1 , buf2 ) ;
79 i f ( strtemp != NULL)
80 {
81 // p r i n t f (”%s \n” , strtemp ) ;
82 token = s t r t ok ( strtemp , del im ) ;
83 i f ( token != NULL)
84 {
85 del im=” ; ” ;
86 token = s t r t ok (NULL, del im ) ;
87 i f ( token != NULL)
88 {
89 tempi=a t o i ( token ) ;
90 }
91 e l s e
92 {
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93 tempi=−996;
94 }
95 }
96 e l s e
97 {
98 tempi=−997;
99 }

100 }
101 e l s e
102 {
103 tempi=−998;
104 }
105 std : : cout << ” t e s t : ” << tempi << std : : endl ;
106 puts ( r ecbu f ) ;
107 re turn tempi ;
108 }
109
110 vo id updatedata ( )
111 {
112 i n t t a r r [ bnum ] ;
113 char s t r 1 [ 2 0 ] , s t r 2 [ 1 2 0 ] , s t r 3 [ 2 0 ] , s t r 4 [ 2 0 ] , s t r 5 [ 3 0 ] ;
114
115 // get bu f f e r data
116 s t s = gdh GetObjectInfo ( ”H1−B0 Iv . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ; //GET

the b0 bu f f e r va lue
117 t a r r [0 ]= i v a l ;
118 s t s = gdh GetObjectInfo ( ”H1−B1 Iv . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ; //GET

the b1 bu f f e r va lue
119 t a r r [1 ]= i v a l ;
120 s t s = gdh GetObjectInfo ( ”H1−B2 Iv . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ; //GET

the b2 bu f f e r va lue
121 t a r r [2 ]= i v a l ;
122 s t s = gdh GetObjectInfo ( ”H1−B3 Iv . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ; //GET

the b3 bu f f e r va lue
123 t a r r [3 ]= i v a l ;
124 s t s = gdh GetObjectInfo ( ”H1−B4 Iv . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ; //GET

the b4 bu f f e r va lue
125 t a r r [4 ]= i v a l ;
126 s t s = gdh GetObjectInfo ( ”H1−B5 Iv . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ; //GET

the b5 bu f f e r va lue
127 t a r r [5 ]= i v a l ;
128 s t s = gdh GetObjectInfo ( ”H1−B6 Iv . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ; //GET

the b6 bu f f e r va lue
129 t a r r [6 ]= i v a l ;
130 s t s = gdh GetObjectInfo ( ”H1−B7 Iv . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ; //GET

the b7 bu f f e r va lue
131 t a r r [7 ]= i v a l ;
132
133 // get and s e t other data f o r each agent
134 i f ( a id==1)
135 {
136 s t s=gdh GetObjectInfo ( ”H1−Svm1 . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ; // r1

svm
137 svmode=i v a l ;
138 s t s=gdh GetObjectInfo ( ”H1−R1goal . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ; // r1

l o c a t i o n
139 a l o c=i v a l ;
140 s t s=gdh GetObjectInfo ( ”H1−R1go . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ; //R1go
141 ago=i v a l ;
142 s t s=gdh GetObjectInfo ( ”H1−Rclr1 . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ; // r1

c l r
143 a c l r=i v a l ;
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144 s t s=gdh GetObjectInfo ( ”H1−Rtout1 . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ; // r1
tout

145 tout=i v a l ;
146 // s e t amode :
147 i v a l=amode ;
148 s t s=gdh SetObject In fo ( ”H1−R1loc . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ; // r1

mode
149 // s e t apass :
150 i v a l=apass ;
151 s t s=gdh SetObject In fo ( ”H1−R1pass . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ; // r1

pass
152 // s e t agoa l :
153 i f ( svmode==predictsvm )
154 {
155 i v a l=agoa l ;
156 s t s=gdh SetObject In fo ( ”H1−R1goal . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ; //

r1 goa l
157 }
158 }
159 i f ( a id==2)
160 {
161 s t s=gdh GetObjectInfo ( ”H1−Svm2 . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ; // r2

svm
162 svmode=i v a l ;
163 s t s=gdh GetObjectInfo ( ”H1−R2goal . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ; // r2

l o c a t i o n
164 a l o c=i v a l ;
165 s t s=gdh GetObjectInfo ( ”H1−R2go . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ; //R2go
166 ago=i v a l ;
167 s t s=gdh GetObjectInfo ( ”H1−Rclr2 . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ; // r2

c l r
168 a c l r=i v a l ;
169 s t s=gdh GetObjectInfo ( ”H1−Rtout2 . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ; // r2

tout
170 tout=i v a l ;
171 // s e t amode :
172 i v a l=amode ;
173 s t s=gdh SetObject In fo ( ”H1−R2loc . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ; // r2

mode
174 // s e t apass :
175 i v a l=apass ;
176 s t s=gdh SetObject In fo ( ”H1−R2pass . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ; // r2

pass
177 // s e t agoa l :
178 i f ( svmode==predictsvm )
179 {
180 i v a l=agoa l ;
181 s t s=gdh SetObject In fo ( ”H1−R2goal . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ; //

r2 goa l
182 }
183 }
184 i f ( a id==3)
185 {
186 s t s=gdh GetObjectInfo ( ”H1−Svm3 . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ; // r3

svm
187 svmode=i v a l ;
188 s t s=gdh GetObjectInfo ( ”H1−R3goal . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ; // r3

l o c a t i o n
189 a l o c=i v a l ;
190 s t s=gdh GetObjectInfo ( ”H1−R3go . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ; //R3go
191 ago=i v a l ;
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192 s t s=gdh GetObjectInfo ( ”H1−Rclr3 . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ; // r3
c l r

193 a c l r=i v a l ;
194 s t s=gdh GetObjectInfo ( ”H1−Rtout3 . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ; // r3

tout
195 tout=i v a l ;
196 // s e t amode :
197 i v a l=amode ;
198 s t s=gdh SetObject In fo ( ”H1−R3loc . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ; // r3

mode
199 // s e t apass :
200 i v a l=apass ;
201 s t s=gdh SetObject In fo ( ”H1−R3pass . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ; // r3

pass
202 // s e t agoa l :
203 i f ( svmode==predictsvm )
204 {
205 i v a l=agoa l ;
206 s t s=gdh SetObject In fo ( ”H1−R3goal . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ; //

r3 goa l
207 }
208 }
209
210 s p r i n t f ( s t r1 , ”%s%d%s” , ”#se rv e r ; a id=” , aid , ” ; ” ) ;
211 s p r i n t f ( s t r2 , ”%s%d%s%d%s%d%s%d%s%d%s%d%s%d%s%d%s%d%s%d%s” , ”svm=” , svmode , ”

; data=” , a loc , ” 1 : ” , t a r r [ 0 ] , ” 2 : ” , t a r r [ 1 ] , ” 3 : ” , t a r r [ 2 ] , ” 4 : ” , t a r r [ 3 ] , ”
5 : ” , t a r r [ 4 ] , ” 6 : ” , t a r r [ 5 ] , ” 7 : ” , t a r r [ 6 ] , ” 8 : ” , t a r r [ 7 ] , ” ; ” ) ;

212 s p r i n t f ( s t r3 , ”%s%d%s%d%s” , ” a c l r=” , ac l r , ” ; tout=” , tout , ” ; end#” ) ;
213 s p r i n t f ( s t r4 , ”%s%d%s%d%s” , ”ago=” , ago , ” ; tout=” , tout , ” ; end#” ) ;
214 s p r i n t f ( s t r5 , ”%s%d%s%d%s%d%s” , ”ago=” , ago , ” ; a c l r=” , ac l r , ” ; tout=” , tout , ” ;

end#” ) ;
215
216 i f ( ( amode==athome ) | | ( amode==atde s t ) ) s np r i n t f ( sendbuf ,MAXLINE, ”%s%s%s” ,

s t r1 , s t r2 , s t r 5 ) ; // send a l l
217 i f ( ( amode==gosrc ) | | ( amode==godest ) ) s np r i n t f ( sendbuf ,MAXLINE, ”%s%s” , s t r1

, s t r 3 ) ; // send a c l r
218 i f (amode==at s r c ) s np r i n t f ( sendbuf ,MAXLINE, ”%s%s” , s t r1 , s t r 4 ) ; // send ago
219 }
220
221 i n t main ( i n t argc , char ** argv )
222 {
223 i n t l i s t e n f d , connfd , n ;
224 s o c k l e n t c l i l e n ;
225 s t r u c t sockaddr in c l i addr , servaddr ;
226
227 s t s = gdh In i t ( ” appServer3a ” ) ;
228 i f (EVEN( s t s ) )
229 {
230 std : : cout << ”appServerXy I n i t i a l i s a t i o n Fa i l u r e ! ” << s t s << std : : endl ;
231 e x i t (0 ) ;
232 }
233 e l s e
234 {
235 std : : cout << ”appServerXy I n i t i a l i s a t i o n Success ! ” << s t s << std : : endl ;
236 }
237
238 // c r e a t i on o f the socket
239 l i s t e n f d = socket (AF INET, SOCK STREAM, 0) ;
240
241 // preparat i on o f the socket address
242 servaddr . s i n f am i l y = AF INET ;
243 servaddr . s i n addr . s addr = htonl (INADDR ANY) ;



Appendix B. Proview SCADA Code 138

244 servaddr . s i n p o r t = htons (SERV PORT) ;
245
246 bind ( l i s t e n f d , ( s t r u c t sockaddr *) &servaddr , s i z e o f ( servaddr ) ) ; // bind
247 l i s t e n ( l i s t e n f d , LISTENQ) ; // l i s t e n
248
249 p r i n t f ( ”%s \n” , ” Server running . . . wa i t ing f o r connec t ions . ” ) ;
250
251 //main loop
252 f o r ( ; ; )
253 {
254 c l i l e n = s i z e o f ( c l i a dd r ) ;
255 connfd = accept ( l i s t e n f d , ( s t r u c t sockaddr *) &c l i addr , &c l i l e n ) ;
256 p r i n t f ( ”%s \n” , ”Received reques t . . . ” ) ;
257 wh i l e ( (n = recv ( connfd , inbuf , MAXLINE, 0 ) ) > 0)
258 {
259 p r i n t f ( ”%s ” , ” St r ing r e c e i v ed from the c l i e n t : ” ) ;
260 puts ( inbuf ) ;
261 pktQ=f a l s e ; // i n i t i a l i s e packet qua l i t y to ”bad”
262 char * pa r s t r=” aid ” ;
263 s np r i n t f ( recbuf ,MAXLINE, ”%s” , inbu f ) ; // r e s t o r e r ecbu f from inbuf
264 i n t tempi=GetParam( recbuf , pa r s t r ) ;
265 i f ( ( tempi>0)&&(tempi<=rnum) ) // check a id
266 {
267 a id=tempi ;
268 std : : cout << ” a id : ” << a id << std : : endl ;
269 char * pa r s t r=”amode” ;
270 s np r i n t f ( recbuf ,MAXLINE, ”%s” , inbuf ) ; // r e s t o r e r ecbu f from inbuf
271 tempi=GetParam( recbuf , pa r s t r ) ;
272 i f ( ( tempi>=wakeup )&&(tempi<=atdes t ) ) // check amode
273 {
274 amode=tempi ;
275 std : : cout << ”amode : ” << amode << std : : endl ;
276 char * pa r s t r=” agoa l ” ;
277 s np r i n t f ( recbuf ,MAXLINE, ”%s” , inbuf ) ; // r e s t o r e recbu f from inbuf
278 tempi=GetParam( recbuf , pa r s t r ) ;
279 i f ( ( tempi>=hgoal )&&(tempi<=bsnum) ) // check agoa l
280 {
281 agoa l=tempi ;
282 std : : cout << ” agoa l : ” << agoa l << std : : endl ;
283 char * pa r s t r=” apass ” ;
284 s np r i n t f ( recbuf ,MAXLINE, ”%s” , inbu f ) ; // r e s t o r e r ecbu f from inbuf
285 tempi=GetParam( recbuf , pa r s t r ) ;
286 i f ( ( tempi==0) | | ( tempi==1)) // check apass
287 {
288 apass=tempi ;
289 std : : cout << ” apass : ” << apass << std : : endl ;
290 pktQ=true ; // packet i s good !
291 }
292 }
293 }
294 }
295 i f (pktQ==true ) // only r ep ly i f packet i s good
296 {
297 updatedata ( ) ; // get the data from SCADA and prepare packet
298 send ( connfd , sendbuf , s t r l e n ( sendbuf ) , 0) ; // send data to agent
299 puts ( sendbuf ) ;
300 }
301 }//end whi l e
302
303 i f (n < 0)
304 {
305 pe r ro r ( ”Read e r r o r ” ) ;
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306 e x i t (1 ) ;
307 }
308 c l o s e ( connfd ) ;
309
310 }//end f o r ( ; ; )
311 // c l o s e l i s t e n i n g socket
312 c l o s e ( l i s t e n f d ) ;
313 }//end main

B.2 Simulation program

1 /*
2 Filename : prodsim3c . cpp
3 Author : N. Naidoo
4 Date : 26/09/2014
5 Revi s ion : 3c
6 Desc r ip t i on : S imulat ion program f o r Proview SCADA
7 */
8
9 /*

10 run these two commands to compi le t h i s code :
11
12 pwrp@nicol : / usr / l o c a l /pwrp/plantmain/ s r c / appl$ g++ −g −c prodsim3a . cpp −o /

usr /pwr51/ o s l i n ux /hw x86/exp/ obj /prodsim3a . o −I$pwr inc −DOS LINUX=1 −
DOS=l inux −DHW X86=1 −DHW=x86 −DOS POSIX

13
14 pwrp@nicol : / usr / l o c a l /pwrp/plantmain/ s r c / appl$ g++ −g −o / usr /pwr51/

o s l i n ux /hw x86/exp/ exe/prodsim3a / usr /pwr51/ o s l i n ux /hw x86/exp/ obj /
prodsim3a . o / usr /pwr51/ o s l i n ux /hw x86/exp/ obj /pwr msg rt . o −L$pwr l ib
−l pwr r t −lpwr co −lpwr msg dummy − l r t

15
16 change ” l d a pp l n i c o l 9 9 9 . txt ” load f i l e in / usr / l o c a l /pwrp/plantmain/bld /

common/ load :
17 # User app l i c a t i o n s
18 # id , name , load /noload run/norun , f i l e , pr io , debug/nodebug , ”

arg ”
19 prodsim3a , prodsim3a , noload , run , prodsim3a , 12 , nodebug , ””
20 #
21 # System pro c e s s e s
22 */
23
24 #inc l ude <s t d l i b . h>
25 #inc l ude <s t d i o . h>
26 #inc l ude <sys / types . h>
27 #inc l ude <sys / socket . h>
28 #inc l ude <ne t i n e t / in . h>
29 #inc l ude <s t r i n g . h>
30 #inc l ude <arpa/ i n e t . h>
31 #inc l ude <iostream>
32 #inc l ude ”pwr . h”
33 #inc l ude ” pwr ba s e c l a s s e s . hpp”
34 #inc l ude ” rt gdh . h”
35 #inc l ude ” r t e r r h . h”
36
37 // d e f i n i t i o n s
38 #de f i n e bnum 8
39 #de f i n e bsnum 3
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40 #de f i n e rnum 3
41 #de f i n e load1 20
42 #de f i n e load2 5
43 #de f i n e load3 120
44 #de f i n e bs1 1
45 #de f i n e bs2 2
46 #de f i n e bs3 3
47 #de f i n e lwokeup 0
48 #de f i n e lgohome 1
49 #de f i n e lathome 2
50 #de f i n e l g o s r c 3
51 #de f i n e l a t s r c 4
52 #de f i n e l g od e s t 5
53 #de f i n e l a t d e s t 6
54 #de f i n e b0cap 100
55 #de f i n e b1cap 50
56 #de f i n e b2cap 20
57 #de f i n e b3cap 20
58 #de f i n e b4cap 20
59 #de f i n e b5cap 20
60 #de f i n e b6cap 100
61 #de f i n e b7cap 100
62 #de f i n e go 1
63 #de f i n e s tay 0
64 #de f i n e c l e a r 1
65 #de f i n e no t c l e a r 0
66 #de f i n e nosvm 0
67 #de f i n e learnsvm 1
68 #de f i n e predictsvm 2
69
70 // g l oba l v a r i a b l e s :
71 i n t bmtx [ bsnum ] [ 2 ] ; //mutex f o r each bu f f e r s e r v i c e ( s r c&dest ) . non −1

value imp l i e s mutex i s not a v a i l a b l e
72
73 vo id mtxtake ( i n t anum , i n t bs idx , i n t sd ) // take mutex
74 {
75 i f ( ( bs idx<=bsnum)&&(bs idx >0)&&(bmtx [ bs idx −1] [ sd]==−1)) bmtx [ bs idx

−1] [ sd ]=anum ;
76 }
77
78 bool mtxavai l ( i n t bs idx , i n t sd ) // check i f mutex i s a v a i l a b l e
79 {
80 i f ( ( bs idx<=bsnum)&&(bs idx >0)&&(bmtx [ bs idx −1] [ sd]==−1)) re turn t rue ;
81 e l s e re turn f a l s e ;
82 }
83
84 i n t mtxagent ( i n t anum , i n t bs idx ) // check i f mutex be longs to agent
85 {
86 i f ( ( bs idx<=bsnum)&&(bs idx >0) )
87 {
88 i f (bmtx [ bs idx −1][0]==anum) re turn 0 ; // s r c mutex
89 e l s e
90 {
91 i f (bmtx [ bs idx −1][1]==anum) re turn 1 ; // dest mutex
92 e l s e re turn −1;
93 }
94 }
95 e l s e re turn −1;
96 }
97
98 vo id mtxre l ease ( i n t anum , i n t bs idx , i n t sd ) // r e l e a s e mutex
99 {
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100 i f ( ( bs idx<=bsnum)&&(bs idx >0)&&(bmtx [ bs idx −1] [ sd]==anum) ) bmtx [ bs idx
−1] [ sd ]=−1;

101 }
102
103 //main program
104 i n t main ( )
105 {
106 pwr tBoolean bval ;
107 pwr tStatus s t s ;
108 pwr tInt32 iva l , i v a l 2 ;
109 s t s = gdh In i t ( ”prodsim3a” ) ;
110 i f (EVEN( s t s ) )
111 {
112 std : : cout << ” gdh In i t f a i l u r e ” << s t s << std : : endl ;
113 e x i t (0 ) ;
114 }
115 e l s e
116 {
117 std : : cout << ” gdh In i t su c c e s s ! ! ! ” << s t s << std : : endl ;
118 }
119
120 // d e c l a r a t i o n s
121 i n t r l o c [ rnum ] ; // cur rent pos o f robot : 0=home , 1=source , 2=dest
122 r l o c [ 0 ]=0 ;
123 r l o c [ 1 ]=0 ;
124 r l o c [ 2 ]=0 ;
125 i n t r l o cp [ rnum ] ; // prev ious pos o f robot : 0=home , 1=source , 2=dest
126 r l o cp [ 0 ]=0 ;
127 r l o cp [ 1 ]=0 ;
128 r l o cp [ 2 ]=0 ;
129 i n t r goa l [ rnum ] ; // goa l o f robot : 0=nothing , 1=bs1 , 2=bs2 , 3=bs3
130 rgoa l [ 0 ]=0 ;
131 rgoa l [ 1 ]=0 ;
132 rgoa l [ 2 ]=0 ;
133 i n t r l oad [ rnum ] ; // load capac i ty o f robot
134 r l oad [0 ]= load1 ;
135 r l oad [1 ]= load2 ;
136 r l oad [2 ]= load3 ;
137 i n t rprod [ rnum ] ; //no . o f products cu r r en t l y c a r r i e d by robot
138 rprod [ 0 ]=0 ;
139 rprod [ 1 ]=0 ;
140 rprod [ 2 ]=0 ;
141 i n t rgo [ rnum ] ; // robot ready to go {=1}
142 rgo [0 ]= go ;
143 rgo [1 ]= go ;
144 rgo [2 ]= go ;
145 i n t r c l r [ rnum ] ; // robot c l e a r f l a g s
146 r c l r [ 0 ]=0 ; // robot not c l e a r
147 r c l r [ 1 ]=0 ;
148 r c l r [ 2 ]=0 ;
149 i n t rpas s [ rnum ] ; // robot pas spo r t s
150 rpas s [ 0 ]=0 ; // robot not wai t ing
151 rpas s [ 1 ]=0 ;
152 rpas s [ 2 ]=0 ;
153 i n t rsvm [ rnum ] ; // robot svm modes
154 rsvm [0]=nosvm ;
155 rsvm [1]=nosvm ;
156 rsvm [2]=nosvm ;
157 bmtx [0 ] [ 0 ]= −1 ; //mutex f o r source i s a v a i l a b l e to take
158 bmtx [1 ] [ 0 ]= −1 ;
159 bmtx [2 ] [ 0 ]= −1 ;
160 bmtx [0 ] [ 1 ]= −1 ; //mutex f o r d e s t i n a t i on i s a v a i l a b l e to take
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161 bmtx [1 ] [ 1 ]= −1 ;
162 bmtx [2 ] [ 1 ]= −1 ;
163 i n t tempi=0;
164
165 //main loop
166 wh i l e (1 )
167 {
168 // get robot l o c a t i o n s :
169 s t s = gdh GetObjectInfo ( ”H1−R1loc . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ;
170 r l o c [0 ]= i v a l ;
171 s t s = gdh GetObjectInfo ( ”H1−R2loc . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ;
172 r l o c [1 ]= i v a l ;
173 s t s = gdh GetObjectInfo ( ”H1−R3loc . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ;
174 r l o c [2 ]= i v a l ;
175 f o r ( i n t i =0; i<rnum ; i++)
176 {
177 i f ( r l o c [ i ] != r l o cp [ i ] )
178 {
179 i f ( ( r l o c [ i ]== l a t s r c ) | | ( r l o c [ i ]== l a t d e s t ) )
180 {
181 rgo [ i ]= stay ; // robot must stay at source or d e s t i n a t i on
182 r l o cp [ i ]= r l o c [ i ] ;
183 }
184 }
185 }
186
187 // get robot svm modes :
188 s t s=gdh GetObjectInfo ( ”H1−Svm1 . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ; // r1

svm
189 rsvm [0]= i v a l ;
190 s t s=gdh GetObjectInfo ( ”H1−Svm2 . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ; // r2

svm
191 rsvm [1]= i v a l ;
192 s t s=gdh GetObjectInfo ( ”H1−Svm3 . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ; // r3

svm
193 rsvm [2]= i v a l ;
194
195 // get robot bu f f e r goa l s when robot at home or at d e s t i n a t i on :
196 f o r ( i n t i =0; i<rnum ; i++)
197 {
198 i f ( ( ( r l o c [ i ]==lathome ) | | ( ( r l o c [ i ]== l a t d e s t ) && ( rgo [ i ]==go ) ) )

| | ( ( rsvm [ i ]==predictsvm )&&(r l o c [ i ]== l g o s r c ) ) )
199 {
200 i f ( i==0) s t s = gdh GetObjectInfo ( ”H1−R1goal . ActualValue ” ,& iva l ,

s i z e o f ( i v a l ) ) ;
201 i f ( i==1) s t s = gdh GetObjectInfo ( ”H1−R2goal . ActualValue ” ,& iva l ,

s i z e o f ( i v a l ) ) ;
202 i f ( i==2) s t s = gdh GetObjectInfo ( ”H1−R3goal . ActualValue ” ,& iva l ,

s i z e o f ( i v a l ) ) ;
203 rgoa l [ i ]= i v a l ;
204 }
205 }
206
207 // get robot pas spor t s :
208 s t s = gdh GetObjectInfo ( ”H1−R1pass . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ;
209 rpas s [0 ]= i v a l ;
210 s t s = gdh GetObjectInfo ( ”H1−R2pass . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ;
211 rpas s [1 ]= i v a l ;
212 s t s = gdh GetObjectInfo ( ”H1−R3pass . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ;
213 rpas s [2 ]= i v a l ;
214
215 // s e t robot c l e a r f l a g s :
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216 i v a l = r c l r [ 0 ] ;
217 s t s = gdh SetObject In fo ( ”H1−Rclr1 . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ;
218 i v a l = r c l r [ 1 ] ;
219 s t s = gdh SetObject In fo ( ”H1−Rclr2 . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ;
220 i v a l = r c l r [ 2 ] ;
221 s t s = gdh SetObject In fo ( ”H1−Rclr3 . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ;
222
223 f o r ( i n t i =0; i<rnum ; i++)
224 {
225 // bu f f e r source and de s t i n a t i on c a l c s :−
226 //work with bu f f e r goa l 1 , source :
227 i f ( ( r goa l [ i ]==bs1 ) && ( r l o c [ i ]== l a t s r c ) && ( rgo [ i ]==stay ) )
228 {
229 bval=true ;
230 s t s = gdh SetObject In fo ( ”H1−S1 IN . ActualValue ” ,&bval , s i z e o f ( bval ) ) ;

// s e t the wait−t imer
231 s t s = gdh GetObjectInfo ( ”H1−S1 OUT . ActualValue ” ,&bval , s i z e o f ( bval ) )

; // get output from wait−t imer
232 i f ( bval==true )
233 {
234 bval=f a l s e ;
235 s t s = gdh SetObject In fo ( ”H1−S1 IN . ActualValue ” ,&bval , s i z e o f ( bval )

) ; // r e s e t the wait−t imer
236 s t s = gdh GetObjectInfo ( ”H1−B0 Iv . ActualValue ” ,& iva l , s i z e o f ( i v a l )

) ; //GET the b0 bu f f e r va lue
237 i f ( i va l >0)
238 {
239 i f ( r l oad [ i ]<=i v a l )
240 {
241 rprod [ i ]= r load [ i ] ;
242 i v a l=iva l−rprod [ i ] ;
243 }
244 e l s e
245 {
246 rprod [ i ]= i v a l ;
247 i v a l =0;
248 }
249 s t s = gdh SetObject In fo ( ”H1−B0 Iv . ActualValue ” ,& iva l , s i z e o f (

i v a l ) ) ; //SET the b0 bu f f e r va lue
250 rgo [ i ]=go ; // robot i s ready to l eave source
251 }// i f ( i va l >0)
252 }// i f ( bval==true )
253 }// i f ( ( r goa l [0]==bs1 ) && ( r l o c [0]== l s r c ) && ( rgo [0]== stay ) )
254
255 //work with bu f f e r goa l 1 , d e s t i n a t i on :
256 i f ( ( r goa l [ i ]==bs1 ) && ( r l o c [ i ]== l a t d e s t ) && ( rgo [ i ]==stay ) )
257 {
258 bval=true ;
259 s t s = gdh SetObject In fo ( ”H1−D1 IN . ActualValue ” ,&bval , s i z e o f ( bval ) ) ;

// s e t the wait−t imer
260 s t s = gdh GetObjectInfo ( ”H1−D1 OUT. ActualValue ” ,&bval , s i z e o f ( bval ) )

; // get output from wait−t imer
261 i f ( bval==true )
262 {
263 bval=f a l s e ;
264 s t s = gdh SetObject In fo ( ”H1−D1 IN . ActualValue ” ,&bval , s i z e o f ( bval )

) ; // r e s e t the wait−t imer
265 s t s = gdh GetObjectInfo ( ”H1−B1 Iv . ActualValue ” ,& iva l , s i z e o f ( i v a l )

) ; //GET the b1 bu f f e r va lue
266 i f ( i va l<b1cap )
267 {
268 i f ( rprod [ i ]<=(b1cap−i v a l ) )
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269 {
270 i v a l=i v a l+rprod [ i ] ;
271 rprod [ i ]=0;
272 rgo [ i ]=go ; // robot i s ready to l eave d e s t i n a t i on
273 }
274 e l s e
275 {
276 tempi=rprod [ i ]−(b1cap−i v a l ) ;
277 i v a l=b1cap ;
278 rprod [ i ]=tempi ;
279 }
280 s t s = gdh SetObject In fo ( ”H1−B1 Iv . ActualValue ” ,& iva l , s i z e o f (

i v a l ) ) ; //SET the b1 bu f f e r va lue
281 }// i f ( i va l<b1cap )
282 }// i f ( bval==true )
283 }// i f ( ( r goa l [ i ]==bs1 ) && ( r l o c [ i ]== l d e s t ) && ( rgo [ i ]==stay ) )
284
285 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
286 //work with bu f f e r goa l 2 , source :
287 i f ( ( r goa l [ i ]==bs2 ) && ( r l o c [ i ]== l a t s r c ) && ( rgo [ i ]==stay ) )
288 {
289 bval=true ;
290 s t s = gdh SetObject In fo ( ”H1−S2 IN . ActualValue ” ,&bval , s i z e o f ( bval ) ) ;

// s e t the wait−t imer
291 s t s = gdh GetObjectInfo ( ”H1−S2 OUT . ActualValue ” ,&bval , s i z e o f ( bval ) )

; // get output from wait−t imer
292 i f ( bval==true )
293 {
294 bval=f a l s e ;
295 s t s = gdh SetObject In fo ( ”H1−S2 IN . ActualValue ” ,&bval , s i z e o f ( bval )

) ; // r e s e t the wait−t imer
296 s t s = gdh GetObjectInfo ( ”H1−B4 Iv . ActualValue ” ,& iva l , s i z e o f ( i v a l )

) ; //GET the b4 bu f f e r va lue
297 i f ( i va l >0)
298 {
299 i f ( r l oad [ i ]<=i v a l )
300 {
301 rprod [ i ]= r load [ i ] ;
302 i v a l=iva l−rprod [ i ] ;
303 }
304 e l s e
305 {
306 rprod [ i ]= i v a l ;
307 i v a l =0;
308 }
309 s t s = gdh SetObject In fo ( ”H1−B4 Iv . ActualValue ” ,& iva l , s i z e o f (

i v a l ) ) ; //SET the b4 bu f f e r va lue
310 rgo [ i ]=go ; // robot i s ready to l eave source
311 }// i f ( i va l >0)
312 }// i f ( bval==true )
313 }// i f ( ( r goa l [0]==bs2 ) && ( r l o c [0]== l s r c ) && ( rgo [0]== stay ) )
314
315 //work with bu f f e r goa l 2 , d e s t i n a t i on :
316 i f ( ( r goa l [ i ]==bs2 ) && ( r l o c [ i ]== l a t d e s t ) && ( rgo [ i ]==stay ) )
317 {
318 bval=true ;
319 s t s = gdh SetObject In fo ( ”H1−D2 IN . ActualValue ” ,&bval , s i z e o f ( bval ) ) ;

// s e t the wait−t imer
320 s t s = gdh GetObjectInfo ( ”H1−D2 OUT. ActualValue ” ,&bval , s i z e o f ( bval ) )

; // get output from wait−t imer
321 i f ( bval==true )
322 {
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323 bval=f a l s e ;
324 s t s = gdh SetObject In fo ( ”H1−D2 IN . ActualValue ” ,&bval , s i z e o f ( bval )

) ; // r e s e t the wait−t imer
325 s t s = gdh GetObjectInfo ( ”H1−B5 Iv . ActualValue ” ,& iva l , s i z e o f ( i v a l )

) ; //GET the b5 bu f f e r va lue
326 i f ( i va l<b5cap )
327 {
328 i f ( rprod [ i ]<=(b5cap−i v a l ) )
329 {
330 i v a l=i v a l+rprod [ i ] ;
331 rprod [ i ]=0;
332 rgo [ i ]=go ; // robot i s ready to l eave d e s t i n a t i on
333 }
334 e l s e
335 {
336 tempi=rprod [ i ]−(b5cap−i v a l ) ;
337 i v a l=b5cap ;
338 rprod [ i ]=tempi ;
339 }
340 s t s = gdh SetObject In fo ( ”H1−B5 Iv . ActualValue ” ,& iva l , s i z e o f (

i v a l ) ) ; //SET the b5 bu f f e r va lue
341 }// i f ( i va l<b5cap )
342 }// i f ( bval==true )
343 }// i f ( ( r goa l [ i ]==bs2 ) && ( r l o c [ i ]== l d e s t ) && ( rgo [ i ]==stay ) )
344 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
345
346 //work with bu f f e r goa l 3 , source :
347 i f ( ( r goa l [ i ]==bs3 ) && ( r l o c [ i ]== l a t s r c ) && ( rgo [ i ]==stay ) )
348 {
349 bval=true ;
350 s t s = gdh SetObject In fo ( ”H1−S3 IN . ActualValue ” ,&bval , s i z e o f ( bval ) ) ;

// s e t the wait−t imer
351 s t s = gdh GetObjectInfo ( ”H1−S3 OUT . ActualValue ” ,&bval , s i z e o f ( bval ) )

; // get output from wait−t imer
352 i f ( bval==true )
353 {
354 bval=f a l s e ;
355 s t s = gdh SetObject In fo ( ”H1−S3 IN . ActualValue ” ,&bval , s i z e o f ( bval )

) ; // r e s e t the wait−t imer
356 s t s = gdh GetObjectInfo ( ”H1−B6 Iv . ActualValue ” ,& iva l , s i z e o f ( i v a l )

) ; //GET the b6 bu f f e r va lue
357 i f ( i va l >0)
358 {
359 i f ( r l oad [ i ]<=i v a l )
360 {
361 rprod [ i ]= r load [ i ] ;
362 i v a l=iva l−rprod [ i ] ;
363 }
364 e l s e
365 {
366 rprod [ i ]= i v a l ;
367 i v a l =0;
368 }
369 s t s = gdh SetObject In fo ( ”H1−B6 Iv . ActualValue ” ,& iva l , s i z e o f (

i v a l ) ) ; //SET the b6 bu f f e r va lue
370 rgo [ i ]=go ; // robot i s ready to l eave source
371 }// i f ( i va l >0)
372 }// i f ( bval==true )
373 }// i f ( ( r goa l [0]==bs3 ) && ( r l o c [0]== l s r c ) && ( rgo [0]== stay ) )
374
375 //work with bu f f e r goa l 3 , d e s t i n a t i on :
376 i f ( ( r goa l [ i ]==bs3 ) && ( r l o c [ i ]== l a t d e s t ) && ( rgo [ i ]==stay ) )
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377 {
378 bval=true ;
379 s t s = gdh SetObject In fo ( ”H1−D3 IN . ActualValue ” ,&bval , s i z e o f ( bval ) ) ;

// s e t the wait−t imer
380 s t s = gdh GetObjectInfo ( ”H1−D3 OUT. ActualValue ” ,&bval , s i z e o f ( bval ) )

; // get output from wait−t imer
381 i f ( bval==true )
382 {
383 bval=f a l s e ;
384 s t s = gdh SetObject In fo ( ”H1−D3 IN . ActualValue ” ,&bval , s i z e o f ( bval )

) ; // r e s e t the wait−t imer
385 s t s = gdh GetObjectInfo ( ”H1−B7 Iv . ActualValue ” ,& iva l , s i z e o f ( i v a l )

) ; //GET the b7 bu f f e r va lue
386 i f ( i va l<b7cap )
387 {
388 i f ( rprod [ i ]<=(b7cap−i v a l ) )
389 {
390 i v a l=i v a l+rprod [ i ] ;
391 rprod [ i ]=0;
392 rgo [ i ]=go ; // robot i s ready to l eave d e s t i n a t i on
393 }
394 e l s e
395 {
396 tempi=rprod [ i ]−(b7cap−i v a l ) ;
397 i v a l=b7cap ;
398 rprod [ i ]=tempi ;
399 }
400 s t s = gdh SetObject In fo ( ”H1−B7 Iv . ActualValue ” ,& iva l , s i z e o f (

i v a l ) ) ; //SET the b7 bu f f e r va lue
401 }// i f ( i va l<b7cap )
402 }// i f ( bval==true )
403 }// i f ( ( r goa l [ i ]==bs1 ) && ( r l o c [ i ]== l d e s t ) && ( rgo [ i ]==stay ) )
404
405 // passport checks and mutex con t r o l :
406 i f ( ( rpas s [ i ]==1) && ( ( r l o c [ i ]== l g o s r c ) | | ( r l o c [ i ]==lgode s t ) ) )
407 {
408 i n t temploc ;
409 i f ( r l o c [ i ]== l g o s r c ) temploc=0;
410 i f ( r l o c [ i ]==lgode s t ) temploc=1;
411 i f ( mtxavai l ( r goa l [ i ] , temploc )==true )
412 {
413 mtxtake ( i , r goa l [ i ] , temploc ) ; // take the mutex
414 r c l r [ i ]= c l e a r ;
415 rgo [ i ]= stay ; // c l e a r rgo f l a g e a r l y − be f o r e robot reaches source

or d e s t i n a t i on
416 }
417 }
418 i n t tempstat ;
419 tempstat=mtxagent ( i , r goa l [ i ] ) ;
420 i f ( ( tempstat==0) | | ( tempstat==1)) // check i f s r c or des t mutex held

by agent
421 {
422 i f ( rpas s [ i ]==0)
423 {
424 mtxre l ease ( i , r g oa l [ i ] , tempstat ) ; // r e l e a s e the mutex
425 r c l r [ i ]= no t c l e a r ;
426 }
427 }
428
429 }//end f o r ( i n t i =0; i<rnum ; i++)
430
431 // s e t rgo s t a tu s f o r each robot :



Appendix B. Proview SCADA Code 147

432 i v a l=rgo [ 0 ] ;
433 s t s = gdh SetObject In fo ( ”H1−R1go . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ;
434 i v a l=rgo [ 1 ] ;
435 s t s = gdh SetObject In fo ( ”H1−R2go . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ;
436 i v a l=rgo [ 2 ] ;
437 s t s = gdh SetObject In fo ( ”H1−R3go . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ;
438
439 //machine & conveyor e f f i c i e n c i e s :
440 //machine 1 :
441 s t s = gdh GetObjectInfo ( ”H1−M1En. ActualValue ” ,&bval , s i z e o f ( bval ) ) ; // get

machine s t a r t s i g n a l
442 i f ( bval==true )
443 {
444 s t s = gdh GetObjectInfo ( ”H1−B1 Iv . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ; //

get b1 value
445 s t s = gdh GetObjectInfo ( ”H1−B2 Iv . ActualValue ” ,& iva l2 , s i z e o f ( i v a l 2 ) ) ;

// get b2 value
446 i f ( ( i va l >0)&&(iva l2<b2cap ) )
447 {
448 s t s = gdh SetObject In fo ( ”H1−M1 IN . ActualValue ” ,&bval , s i z e o f ( bval ) ) ;

// s e t the wait−t imer
449 s t s = gdh GetObjectInfo ( ”H1−M1 OUT. ActualValue ” ,&bval , s i z e o f ( bval ) )

; // get output from wait−t imer
450 i f ( bval==true )
451 {
452 bval=f a l s e ;
453 s t s = gdh SetObject In fo ( ”H1−M1 IN . ActualValue ” ,&bval , s i z e o f ( bval )

) ; // r e s e t the wait−t imer
454 i v a l=iva l −1;
455 s t s = gdh SetObject In fo ( ”H1−B1 Iv . ActualValue ” ,& iva l , s i z e o f ( i v a l )

) ; // s e t b1 value
456 i v a l 2=i v a l 2 +1;
457 s t s = gdh SetObject In fo ( ”H1−B2 Iv . ActualValue ” ,& iva l2 , s i z e o f (

i v a l 2 ) ) ; // s e t b2 value
458 }
459 }
460 }
461 // conveyor :
462 s t s = gdh GetObjectInfo ( ”H1−C1En . ActualValue ” ,&bval , s i z e o f ( bval ) ) ; // get

conveyor s t a r t s i g n a l
463 i f ( bval==true )
464 {
465 s t s = gdh GetObjectInfo ( ”H1−B2 Iv . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ; //

get b2 value
466 s t s = gdh GetObjectInfo ( ”H1−B3 Iv . ActualValue ” ,& iva l2 , s i z e o f ( i v a l 2 ) ) ;

// get b3 value
467 i f ( ( i va l >0)&&(iva l2<b3cap ) )
468 {
469 s t s = gdh SetObject In fo ( ”H1−C1 IN . ActualValue ” ,&bval , s i z e o f ( bval ) ) ;

// s e t the wait−t imer
470 s t s = gdh GetObjectInfo ( ”H1−C1 OUT. ActualValue ” ,&bval , s i z e o f ( bval ) )

; // get output from wait−t imer
471 i f ( bval==true )
472 {
473 bval=f a l s e ;
474 s t s = gdh SetObject In fo ( ”H1−C1 IN . ActualValue ” ,&bval , s i z e o f ( bval )

) ; // r e s e t the wait−t imer
475 i v a l=iva l −1;
476 s t s = gdh SetObject In fo ( ”H1−B2 Iv . ActualValue ” ,& iva l , s i z e o f ( i v a l )

) ; // s e t b2 value
477 i v a l 2=i v a l 2 +1;
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478 s t s = gdh SetObject In fo ( ”H1−B3 Iv . ActualValue ” ,& iva l2 , s i z e o f (
i v a l 2 ) ) ; // s e t b3 value

479 }
480 }
481 }
482 //machine 2 :
483 s t s = gdh GetObjectInfo ( ”H1−M2En. ActualValue ” ,&bval , s i z e o f ( bval ) ) ; // get

machine s t a r t s i g n a l
484 i f ( bval==true )
485 {
486 s t s = gdh GetObjectInfo ( ”H1−B3 Iv . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ; //

get b3 value
487 s t s = gdh GetObjectInfo ( ”H1−B4 Iv . ActualValue ” ,& iva l2 , s i z e o f ( i v a l 2 ) ) ;

// get b4 value
488 i f ( ( i va l >0)&&(iva l2<b4cap ) )
489 {
490 s t s = gdh SetObject In fo ( ”H1−M2 IN . ActualValue ” ,&bval , s i z e o f ( bval ) ) ;

// s e t the wait−t imer
491 s t s = gdh GetObjectInfo ( ”H1−M2 OUT. ActualValue ” ,&bval , s i z e o f ( bval ) )

; // get output from wait−t imer
492 i f ( bval==true )
493 {
494 bval=f a l s e ;
495 s t s = gdh SetObject In fo ( ”H1−M2 IN . ActualValue ” ,&bval , s i z e o f ( bval )

) ; // r e s e t the wait−t imer
496 i v a l=iva l −1;
497 s t s = gdh SetObject In fo ( ”H1−B3 Iv . ActualValue ” ,& iva l , s i z e o f ( i v a l )

) ; // s e t b3 value
498 i v a l 2=i v a l 2 +1;
499 s t s = gdh SetObject In fo ( ”H1−B4 Iv . ActualValue ” ,& iva l2 , s i z e o f (

i v a l 2 ) ) ; // s e t b4 value
500 }
501 }
502 }
503 //machine 3 :
504 s t s = gdh GetObjectInfo ( ”H1−M3En. ActualValue ” ,&bval , s i z e o f ( bval ) ) ; // get

machine s t a r t s i g n a l
505 i f ( bval==true )
506 {
507 s t s = gdh GetObjectInfo ( ”H1−B5 Iv . ActualValue ” ,& iva l , s i z e o f ( i v a l ) ) ; //

get b5 value
508 s t s = gdh GetObjectInfo ( ”H1−B6 Iv . ActualValue ” ,& iva l2 , s i z e o f ( i v a l 2 ) ) ;

// get b6 value
509 i f ( ( i va l >0)&&(iva l2<b6cap ) )
510 {
511 s t s = gdh SetObject In fo ( ”H1−M3 IN . ActualValue ” ,&bval , s i z e o f ( bval ) ) ;

// s e t the wait−t imer
512 s t s = gdh GetObjectInfo ( ”H1−M3 OUT. ActualValue ” ,&bval , s i z e o f ( bval ) )

; // get output from wait−t imer
513 i f ( bval==true )
514 {
515 bval=f a l s e ;
516 s t s = gdh SetObject In fo ( ”H1−M3 IN . ActualValue ” ,&bval , s i z e o f ( bval )

) ; // r e s e t the wait−t imer
517 i v a l=iva l −1;
518 s t s = gdh SetObject In fo ( ”H1−B5 Iv . ActualValue ” ,& iva l , s i z e o f ( i v a l )

) ; // s e t b5 value
519 i v a l 2=i v a l 2 +1;
520 s t s = gdh SetObject In fo ( ”H1−B6 Iv . ActualValue ” ,& iva l2 , s i z e o f (

i v a l 2 ) ) ; // s e t b6 value
521 }
522 }
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523 }
524 s l e e p (1 ) ;
525 std : : cout << ”R1 go , loc , goa l : ” << rgo [ 0 ] << ” , ” << r l o c [ 0 ] << ” , ” <<

r goa l [ 0 ] << std : : endl ;
526 }//end whi l e
527 e x i t (0 ) ;
528 }


	Declaration of Authorship
	Declaration of Publications
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Robot heterogeneity in manufacturing environments
	1.2 Bottlenecks in manufacturing environments
	1.3 Productivity and supply chain management
	1.4 Literature Survey
	1.4.1 The Mechatronic system
	1.4.2 Perception
	1.4.2.1 Odometry
	1.4.2.2 Range finder sensors
	1.4.2.3 Inertial sensing and navigation

	1.4.3 Localisation and mapping
	1.4.4 Cognition
	1.4.4.1 Path planning
	1.4.4.2 Obstacle avoidance

	1.4.5 Middleware in robotic networks
	1.4.6 Cooperation in mobile robot teams
	1.4.6.1 Control architectures
	1.4.6.2 Related research


	1.5 Problem statement
	1.6 Research objectives and contributions
	1.7 Design specifications
	1.8 Research publications
	1.9 Chapter summary

	2 Mechatronic Architecture Design
	2.1 Architecture design overview
	2.2 Robot hardware
	2.2.1 Performance PeopleBot
	2.2.2 Segway RMP200
	2.2.3 Segway RMP400

	2.3 Sensor hardware
	2.3.1 Laser range finder sensors
	2.3.2 Sonar range finder sensors

	2.4 Chapter summary

	3 Mechatronic System Design
	3.1 System design overview
	3.2 Artificial intelligence design
	3.2.1 The Player Project middleware
	3.2.1.1 Client-server framework
	3.2.1.2 Interfaces and drivers
	3.2.1.3 Stage
	3.2.1.4 File types

	3.2.2 Localisation
	3.2.3 Cognition
	3.2.4 Machine learning
	3.2.4.1 SVM background
	3.2.4.2 SVM linear classifiers
	3.2.4.3 SVM non-linear classifiers
	3.2.4.4 Multi-class SVM
	3.2.4.5 SVM software libraries


	3.3 SCADA design
	3.4 Operating system kernel
	3.5 System design overview (revisited)
	3.6 Chapter summary

	4 Software Development
	4.1 AI development overview
	4.2 Player server configuration
	4.2.1 Simulation drivers and interfaces
	4.2.2 Real-world drivers and interfaces

	4.3 Client applications
	4.3.1 Player proxies and methods
	4.3.2 Cognition module
	4.3.2.1 Cognition program structure
	4.3.2.2 Turning in tight spaces
	4.3.2.3 Local navigation

	4.3.3 Client-SCADA communication
	4.3.3.1 Socket connection
	4.3.3.2 Manufacturing system (application)
	4.3.3.3 Data packet structure

	4.3.4 SVM module
	4.3.4.1 Program structure
	4.3.4.2 Learn, train and predict


	4.4 SCADA development
	4.4.1 Proview environment
	4.4.2 SCADA development overview
	4.4.3 Application interface
	4.4.4 Simulation program
	4.4.5 PLC program
	4.4.6 Graphic interface development

	4.5 Chapter summary

	5 Results and Discussion
	5.1 Simulation environment
	5.2 Real–world environment
	5.2.1 Robot system assemblies
	5.2.2 Laboratory layout

	5.3 Cooperation results and discussion
	5.3.1 Simulation performance
	5.3.1.1 Normal operation
	5.3.1.2 Bottleneck condition
	5.3.1.3 Cooperation at the bottleneck
	5.3.1.4 Cooperation during a robot fault

	5.3.2 Real–world performance

	5.4 Cognition results and discussion
	5.4.1 PeopleBot performance
	5.4.2 RMP200 performance
	5.4.3 RMP400 performance

	5.5 Chapter summary

	6 Conclusion and Further Research
	6.1 Research conclusion
	6.2 Research contributions
	6.3 Recommendations for further research

	References
	A Robot Agent Code
	A.1 Agent simulation program: Player .cfg file
	A.2 Agent simulation program: Player .world file
	A.3 Agent simulation program: config.h file
	A.4 Agent simulation program: Client file
	A.5 PeopleBot real-world program: Player .cfg file
	A.6 RMP200 real-world program: Player .cfg file
	A.7 RMP400 real-world program: Player .cfg file

	B Proview SCADA Code
	B.1 Application interface program
	B.2 Simulation program


