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ABSTRACT

The topical application of sunscreens is widely practised to protect healthy and photosensitive

skins from the sun. The benzophenone-derived sunscreens, e.g. "2-hydroxy-4-methoxy

benzophenone-5-sulphonic acid (or benzophenone-4) and 2-hydroxy-4-methoxy benzophenone

(or benzophenone-3), were ranked as the second and third most frequently used sunscreens,

respectively, by the United States Food and Drug Administration (FDA) in 1996. These

sunscreens are categorised as being 'safe' and 'effective'. However, it is well known that the

parent compound, benzophenone, undergoes rapid hydrogen abstraction reactions on irradiation

and is an extremely powerful radical generator. In addition, benzophenone has been shown to

be a potent photosensitizer of thymine dimers in deoxyribose nucleic acid (DNA). More

astounding to the sunscreen industry is the recent discovery that a group of non-steroidal anti­

inflammatory drugs (NSAIDs) having the benzophenone backbone, e.g. ketoprofen, not only

form thymine dimers when irradiated with DNA in vitro, but also photosensitize double

stranded supercoiled DNA making it prone to single-strand break formation. Both these lesions,

if unrepaired, may contribute to mutagenesis, carcinogenesis, inherited disease and eventually

cell death.

The purpose of this investigation was to determine if a group of benzophenone-derived

sunscreen agents has the ability to photosensitize the cleavage of DNA, whereby supercoiled

DNA is converted to the relaxed circular and linear forms. The group of UV absorbers

investigated in this study included benzophenone-4, benzophenone-3 , 2,4­

dihydroxybenzophenone (or benzophenone-l), 2,2'-dihydroxy-4,4'-dimethoxy benzophenone

sulphonic acid (or trade name Uvinul DS49) and 2-phenylbenzimidazole-5-sulphonic acid (or

trade name Eusolex 232). For comparison the parent compound benzophenone and the NSAID

ketoprofen, a well-known photocleaver, were also studied.

Buffered aqueous solutions of the benzophenones were irradiated in the presence of DNA at

wavelengths greater than 300 nm with an Osram 500 WI2 high-pressure mercury lamp in

conjunction with a 10 mm thick Pyrex filter. The irradiated samples were analysed for DNA

cleavage by agarose gel electrophoresis and for DNA binding by fluorescence spectroscopy.

The photostability of the UV absorbers was also investigated. In addition , computational

studies were conducted to obtain the lowest energy geometrical structures of these UV

absorbers and hence determine if intercalation of these UV absorbers with DNA was possible.



From the photostability experiments conducted, it is apparent that the benzophenone-based UV

absorbers were stable to photodecomposition when irradiated with DV light. They behaved in a

manner different from their parent compound benzophenone, and from ketoprofen, where

substantial photodegradation occurred upon UV irradiation. This is indicative of the rapid

photoreactivity of the benzophenone backbone. The relative photostability of the UV absorbers

was not anticipated and was attributed to the substituents present on the benzophenone

backbone.

The agarose gel electrophoresis experiments however clearly showed that benzophenone ,

ketoprofen, benzophenone-l, Uvinul DS49 and Eusolex 232 cleave <jlX174 DNA when

irradiated with UV light at wavelengths greater than 300 nm, while benzophenone-3 and

benzophenone-4 did not. For these DV absorbers with the exception of benzophenone-3 and

benzophenone-4, the number of single strand breaks in the DNA increased compared to when it

was irradiated in their absence. In addition, the supercoiled DNA was converted to the relaxed

circular and linear forms, the latter of which was undetected in the absence of the UV absorbers.

Binding of benzophenone, ketoprofen, benzophenone-l and Uvinul DS49 to calf thymus DNA

was also detected by the fluorescence spectroscopy technique. However, this was not observed

for Eusolex 232, benzophenone-3 and benzophenone-4, since they did not compete with

ethidium bromide for DNA binding sites.

Where DNA cleavage did occur, the mechanism of this interaction had to be determined hence

the motivation for the computational studies. From computational studies using PM3 serni­

empirical calculations, it was determined that the benzophenone-based UV absorbers

investigated, apart from Eusolex 232, displayed non-planar geometrical structures. This

indicated that DNA intercalation of these sunscreen agents with DNA would at best be very

limited, since only one half of the molecule could possibly interact with the bases of DNA. For

benzophenone, ketoprofen, benzophenone-l and Uvinul DS49, photosensitised type I and type

11 processes involving triplet energy transfer reactions has been identified in literature as being

responsible for DNA cleavage. It was determined by ab initio calculations that Eusolex 232

exists in a planar structure unlike the other DV absorbers mentioned above that were non­

planar. It was concluded that although Eusolex 232 has the ability to intercalate with the base

pairs of DNA, it does not do so, as shown by its lack of binding to calf thymus DNA by the

fluorescence spectroscopy study. Literature alludes to photooxidation by singlet oxygen in

single stranded DNA via the type 11 reaction and type I electron transfer reactions in double

stranded DNA as the mechanism responsible for DNA cleavage induced by Eusolex 232.
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Benzophenone-3 and benzophenone-4 did not cleave DNA as was expected. This was

attributed to the electron-donating groups -OH and -OCH3 present on the benzophenone

backbone, which are known to reduce the reactivity of the lowest triplet from n,1t to 1t,1t*.
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Chapter 1

INTRODUCTION

The dramatic increase in the incidence of skin cancer over the past few decades has become a

major cause of concern for scientists throughout the world. Exposure to sunlight and, in

particular, ultraviolet (DV) radiation has been implicated as the principal cause for this

epidemic. Consequently, the use of sunscreens has been practised for over 80 years now, in an

effort to protect the skin from the adverse effects of the sun. However, recent studies have

shown that sunscreens may actually inflict more damage than they prevent (Wolf et al. [1994],

Westerdahl et al. [1995], Autier et al. [1998] and Westerdahl et al. [2000]). The

photochemistry of sunscreens is therefore very important and it has gained increasing interest

from researchers throughout the world. In this study the photochemistry of a group of

benzophenone-derived DV absorbers, namely, benzophenone-l (or 2,4-dihydroxy

benzophenone), benzophenone-3 (or 2-hydroxy-4-methoxy benzophenone), benzophenone-4 (or

2-hydroxy-4-methoxy benzophenone-5-sulphonic acid), 2, 2'-dihydroxy-4, 4'-dimethoxy

benzophenone sulphonic acid (trade name Uvinul DS49) and 2-phenylbenzimidazole-5­

sulphonic acid (trade name Eusolex 232), has been investigated. Inparticular, this work focuses

on the ability of these sunscreen active agents to photoinduce DNA strand breaks and DNA

damage in vitro.

1.1 Deleterious effects of sunlight

Life on earth would be impossible ~ithout sunlight. Sunlight is necessary for the production of

vegetation, food and vitamin D in the body and it is essential for emotional and physical well

being. However, in excessive doses it does have harmful effects.



Sunlight consists of radiation of differing wavelengths. These are DV-radiation (190 - 400 nm),

visible radiation (400 - 800 nm) and infrared (lR) (0.78 - 300 urn) radiation (Skoog et al.

[1996]). Due to the filtering effect of the ozone layer, not all of this solar energy reaches the

earth's surface. Of the total energy reaching the earth's surface, 60% is in the visible range,

25% in the IR range and 15% in the DV region (Sayre [1992]).

DV radiation can be subdivided into three regions. These are the DVA (320 - 400 nm), DVB

(280 - 320 nm) and DVC (lOO- 280 nm) regions. All of the DVC radiation however is filtered

out by the ozone layer and oxygen. Only DVA (95%) and a small portion of DVB radiation

(5%) reach the earth's surface (Larsen [1994]) (Figure 1.1).

UVB

III 60%Visible

[]25% IR

~14%UVA

[] 1% UVB

Figure 1.1: Solar radiation reaching the earth's surface.

Although DV radiation accounts for the smallest fraction of the solar energy reaching the earth's

surface, it is of the highest energy since it has the shortest wavelength. Consequently, it has

been implicated to be most harmful in inducing damage to living organisms. Efforts of dozens

of researchers have revealed that overexposure to DV radiation induces a list of ailments

including erythema (skin reddening), tanning, photoaging and skin cancer. The relationship

between sunlight and skin cancer was recognized as early as 1894. It is now well established

that DV radiation exposure is a significant factor contributing to skin malignancies in man

(Glass & Hoover [1989], Lee [1989] and Higginson et al. [1992]).
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Of the DV radiation reaching the terrestrial environment, UVB has been implicated to be the

most destructive to living organisms although it is 100 times less abundant than UVA (Voss

[2001]). UVB radiation has long been recognized as the principal cause of erythema, and is

most significant in the induction of skin cancers (Green et al. [1997]). UVB radiation inhibits

DNA , ribonucleic acid (RNA) and protein synthesis, and is responsible for most of the tissue

damage that results in photoaging of the skin (Woodruff [2001]). UVA radiation, on the other

hand , was once thought to be harmless due to its long wavelength region and low energy. It

was only during the past decade that scientists have begun to understand fully the damaging

effects of DVA radiation. UVA radiation has been shown to cause premature aging of the skin,

with effects including roughening, blotchiness, sagging and wrinkles (Woodruff [2001]). UVA

light penetrates deepest into the skin and has been implicated in the initial stages of suntanning.

More importantly, it has been shown to suppress the immune function and contribute to the

induction of skin cancers (Setlow et al. [1993]), which had previously not been thought to be

the case.

uve radiation, which is of the highest energy, would be the most potent if it were to reach the

earth's surface, therefore depletion of the ozone layer is of great concern. The shortest

measurable wavelength of solar radiation at sea level is 290 nm (Martincigh et al. [1997]).

Continued deterioration of the ozone layer could mean that wavelengths shorter than 290 nm,

i.e. the lower energy UVC wavelengths and the higher energy UVB, would be able to penetrate

the stratospheric ozone layer and reach the terrestrial environment. This could have deleterious

effects.

1.2 Skin cancer and DV radiation

The most common of all human cancers is that of the skin. There are three main types of skin

cancer affecting man today. These are malignant melanoma, basal cell carcinoma and

squamous cell carcinoma. The basal and squamous cell carcinomas are the most prevalent forms

of skin cancer and are associated with long-term exposure to the sun (Voss [2001]), while

malignant melanoma, which is linked to brief, intense periods of sun exposure is the rarest form

of skin cancer, but the most deadly of the three (Larsen [1994]).

According to the National Cancer Registry of South Africa, there have been 149 815

histologically diagnosed cancer cases in South Africa over the period 1993-1995 (Sitas et al.

[1998]). Of these, 41 713 cases were due to cancers of the skin, making skin cancer the most
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commonly occurring form of cancer in South Africa during this period . In order to understand

how these skin cancers occur, an understanding of the structure of human skin is required.

Human skin is composed of three main layers. These are the epidermis, dermis and the

hypodermis. Only the epidermis and the dermis are affected by UV radiation. The epidermis ,

which is the top and the thinnest layer of the three (lOO- 150 urn) consists of multiple layers of

cells , while the dermis , a relatively thick layer, consists largely of collagen and elastic fiber

(Young [1997]) (Figure 1.2). UVB rays penetrate the epidermis, while the longer wavelength

UVA rays continue into the dermis. The cells found in the epidermis are the keratinocytes, the

Langerhans cells and the melanocytes, with the keratinocytes being the main cell type. The

keratinocytes in the basal layer undergo cell division and differentiate into several layers to

eventually form the outermost layer of skin, the stratum corneum (Figure 1.2).

Basal cell carcinoma, which is the most common type of skin cancer, develops from the

abnormal cell division of the keratinocyte cells of the basal layer of the epidermis, while

squamous cell carcinoma develops from the spinous layer (Figure 1.2). Malignant melanoma

arises from the abnormal cell division of the melanocyte cells. These cells, present in the

innermost part of the epidermis, are the melanin pigment-producing cells , which not only give

the skin colour, but also protect the body from UV radiation. However, in fair skin this

protection develops only in part. Malignant melanoma accounts for more than 90% of all skin

cancer deaths. Researchers have now estimated that for every I% decline in the stratospheric

ozone layer, a 3 - 5% increase in squamous cell carcinoma, 2 - 3% rise in basal cell carcinoma,

and I 22% increase in malignant melanoma is expected (Voss [2001]).

Studies conducted with polychromatic light sources in the hairless albino mouse show that UVB

radiation is responsible for 70 - 80% of the cases of non-melanoma skin cancer (de Gruijl & van
~-

der Leun [1994]). In contrast, while studying a special hybrid fish (Xiphophorus) Setlow et al.

[1993] have shown that 90% of melanoma cases are due to exposure to UVA radiation, which

was once not thought to be the case. UVA light is a more likely cause of melanoma than UVB

since it penetrates deeper into the skin and is therefore more likely to produce cancer in the

deeper-lying melanocytes, while UVB expends its energy only in shallower tissues (Ainsleigh

[1993]). However, researchers are now convinced that both UVB and UVA radiation can

induce skin cancers.

After several decades of research, scientists now have a better understanding of how exposure to

UV radiation leads to skin cancer. It is quite apparent that erythema is only a physical

manifestation of the direct effects of UV radiation on the skin . What is unseen is the damage
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Figure 1.2: Structure of human skin showing the epidermis, dermis and hypodermis layers (http://hcrkules.oulu.fi/isbn95l4266463/html/x563.hlmJ, Date

accessed: 20 September 2002) .



inflicted to cells within the epidermis. Each of these cells contains a nucleus in which lies the

chromosome. Each chromosome is a strand of DNA coated with proteins. It has been well

established that the DNA is susceptible to DV damage and it is this damage that is believed to

induce malignancies in human skin.

1.3 DNA photochemistry

DNA is the macromolecule responsible for the storage and transmission of genetic information

in living cells. The structure of the DNA molecule is dynamic and must be considered in order

to understand its photochemistry.

The double helical DNA structure proposed by Watson and Crick (Alberts et al. [1989])

consists of two long anti-parallel polynucleotide chains that coil around a common axis (Figure

1.3). Each of the two strands is a polymer of nucleotides. A nucleotide comprises a nucleic

acid base, which is joined to deoxyribose (a five-carbon sugar), which in turn is bonded to a

phosphate group (Figure lA). On the inside of the helix are the bases, either pyrimidines

(thymine and cytosine) or purines (adenine and guanine), linking the two anti-parallel DNA

strands together with hydrogen bonds, while the sugar-phosphate backbone makes up the

outside of the helix (Figure 1.3). The bases are specifically paired, that is, adenine (A) and

thymine (T) pair, as do guanine (G) and cytosine (C). Two hydrogen bonds hold the AT base

pair together, while three hydrogen bonds are formed between a GC base pair (Figure 1.5).

During exposure of DNA to DV radiation, the bases are the principal targets of attack (Setlow &

Ahmed [1980]). The bases have conjugated double bonds (Figure 1.5) with a bond energy

suited to absorb DV radiation.

The sequence of nucleotides along the DNA backbone carries the genetic information, and

serves as the template for synthesis of an exact copy of a complementary DNA strand upon

replication (Figure 1.6). This governs the process of transcription of DNA into RNA, followed

by translation into proteins. Preservation of the precise sequence of bases is essential, since any

alterations would cause the transfer of incorrect genetic information, and if left unrepaired could

cause gene mutations that could ultimately result in the formation of cancerous cells.

Numerous in vitro studies have shown that exposure of DNA to DV radiation results in the

formation of specific photoproducts. These have been identified to be the cyclobutane

pyrimidine dimer (CPD) and the (6-4) pyrimidine photoproduct, both formed between two
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Figure 1.3: Model of the double helical Watson and Crick DNA structure (Brown [2003]).
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Figure 1.5: Interstrand hydrogen bonding between specific nucleic bases (Avers [1984]).
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adjacent pyrimidine bases on the same DNA strand (Mathews & van Holde [1996] and Young

[1997]) (Figure 1.7). The principal photoproduct in DNA is the CPD, which is formed when

two adjacent pyrimidine bases in the same DNA strand become linked (Haseltine et al. [1980],

Franklin et al. [1982] and Raghunathan et al. [1990]). The most prevalent of these dimers is

that formed between two thymine bases, with thymine-cytosine occurring in smaller amounts.

The (6-4) photoproduct, although more lethal, is, however, formed in smaller amounts and

occurs when adjacent pyrimidines are linked across the 4-carbon of one to the 6-carbon of the

other (Patrick [1977]).

The reaction mechanism for the formation of CPD agreed upon in literature is briefly outlined

below (Sztumpf et al. [1967], Greenstock et al. [1967] and Brown & Johns [1968]). Initially

absorption of a photon by the pyrimidine base promotes it from the ground state to its first

excited singlet state. The singlet excited state is short-lived and rapidly undergoes intersystem

crossing to the first excited triplet state. Population of the thymine triplet may also occur as a

result of an energy transfer from a nearby excited molecule. This process is known as

photosensitization and will be considered in Section 1.4.1. The excited pyrimidine then

encounters an adjacent base in the ground state and reacts to form a dimer. Pyrimidine

dimerization links the adjacent thymine residues, thereby causing uncoiling and bending in the

DNA molecule. This distorts the helix in such a way that replication beyond this point is

blocked (Mathews & van Holde [1996]).

Living cells are equipped with a number of repair mechanisms that are able to remove DV­

induced lesions. One such repair system capable of removing thymine dimers in humans is

known as excision repair. In this repair process the distortion in the DNA is recognized by a

protein complex, which nicks the DNA on either side of the thymine dimer. This triggers the

enzyme called DNA Polymerase I, which then inserts the missing bases (http://www.

emunix.emich .edufrwinning/genetics/mutat4.html, Date accessed: 5 December 2002).

Cyclobutane pyrimidine dimers have been shown to be a major cause of mutagenic and

carcinogenic events, especially in patients suffering with a condition known as xeroderma

pigmentosum (XP). XP is a rare recessive hereditary disease in which repair to DV-induced

damage is defective (Avers [1984]). Cleaver [1968] demonstrated that cells from individuals

with XP, who were extremely prone to sunlight-induced skin cancer, were unable to excise

pyrimidine dimers. More specifically, dimer formation is believed to induce mutations in the

p53 tumor suppressor gene, a gene that plays an important role in cell division (Young [1997]).
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Figure 1.7 The two most common DNA photoproducts formed by UV irradiation of DNA

(http://kukulkan.mcb.arizona.edu/-mhewlettlmarty/alt411/modules/dimerrep.ht

ml, Date accessed: 25 September 2002).

This mutation is believed to be the initial process involved in the production of UV-induced

skin cancers. A reduced capacity to excise pYrimidine~~n XP patients leaves them at a

2000-fold risk of developing malignant melanoma and a 4800 -fold chance offorming squamous

and basal cell carcinomas by the age of 20 (Voss [2001]).

In addition to tumor formation, pyrimidine dimers have also been shown to be involved in many

pathways leading to tissue and cell damage including erythema, sunburn and suppressed

immunity (Young [1997]). The effect of the (6-4) pyrimidine photoproduct is not yet fully
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understood but studies have recently suggested that it too may be directly involved in

mutagenesis (Mathews & van Holde [1996]). ·

1.4 The photochemistry of sunscreens

As a response to the high rates of skin cancer, sunscreens are now increasingly being used to

protect the skin from the harmful effects of excessive exposure to UV radiation. The sunscreen

industry is rapidly expanding and sunscreens are now incorporated into a wide range of

products, from creams and moisturizers to cosmetics and shampoos. Sunscreen formulations

are now made to be more effective, more cosmetically appealing and tolerable to the consumer.

Theeffectiveness of a sunscreen formulation is currently assessed in terms of its Sun Protection

Factor (SPF). The SPF refers to the product's ability to screen or block out the sun's burning

rays. It is interpreted as how much longer skin covered with sunscreen takes to burn compared

to unprotected skin (Diffey [2001]). If unprotected skin takes 10 minutes before it starts to

burn, then applying a sunscreen with a SPF factor of 15 will protect your skin from sunburn for

15 times longer (that is for 150 minutes). Today, a typical sun protection product consists of a

UV absorber (sunscreen) in a base, which may be alcohol, oil, or more frequently an emulsion.

The amount of UV absorber allowed in sunscreen formulations must be low to minimize side

effects on users. The type and concentration of UV absorbers in sunscreens is strictly governed

in most countries.

The UV absorbers can be broadly classified into two categories depending on their mode of

action. These are either physical blockers or chemical absorbers. Physical blockers act as

physical barriers that reflect and scatter UV radiation away from the skin. They include

inorganic pigments such as titanium dioxide, iron oxides and zinc oxides, and generally offer

broadband protection over both the UVA and UVB regions of the spectrum. Alternatively,

chemical absorbers are organic molecules, which prevent sunburn by absorbing specific

wavelengths of UV radiation. These absorbers are of paramount interest to this work and have

been considered in detail in Section 1.4.1.

1.4.1 Chemical absorbers

Chemical absorbers can be classified as either UVA or UVB absorbers depending on their

absorption spectrum. The UVA absorbers absorb the shorter wavelengths of UVA radiation

(320 - 360 nm) and include compounds such as the benzophenones, anthranilates and

dibenzoylmethanes. The UVB absorbers, on the other hand, are effective in absorbing the entire
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UVB spectrum (290 - 320 nm) and include the para-aminobenzoate derivatives, cinnamates, and

salicylates or their esters. The structures of the most commonly used chemical absorbers are

shown in Figure 1.8.
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Figure 1.8:
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The most commonly used chemical absorbers in sunscreen formulations

(Serpone et al. [2002]).

In general, most UVB absorbers are aromatic compounds conjugated with a carbonyl group and

contain electron-releasing groups (such as amine, or methoxy) at the arrha- or para- positions of

the aromatic ring. This allows for electron delocalisation, thereby allowing the compound to

absorb radiation of the appropriate wavelength before it reaches the skin. The mechanism of

absorption of light by chemical sunscreens and the possible pathways for the dissipation of the

excess electronic energy have been illustrated in Figure 1.9 and will be briefly discussed below.
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Mechanism of absorption of light and possible dissipation pathways for a

chemical absorber.

Initially, the molecule absorbs a photon , which is a quantum of electromagnetic energy. This

causes the energy of the molecule to increase and changes its electronic configuration . Before

absorption; the orbital configuration of the electrons is the "ground" state, in which all the

electrons are paired with opposite spin. On absorption of a photon, one of a pair of electrons is,
promoted to a higher energy level, but in doing so, it maintains its spin orientation. This is the

first excited singlet state. The lifetime of the singlet excited state is short (l0-9 - 10-8 seconds),

and deactivation of the excited state occurs rapidly via one of the following pathways. Either

the molecule in the singlet state can return to the ground state by emitting its energy thermally

as heat through a series of vibrational relaxation transitions (nonrad iative decay), or it could

emit this energy as a photon of longer wavelength by a process known as fluorescence (radiative

decay). These are the preferred routes for a sunscreen since the harmful radiation is dissipated

in a harmless way, however this may not always be the case.

The excited molecule in the singlet state may react with another molecule to form

photoproducts , or more commonly, it may transfer its energy by a radiationless process called
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intersystem crossing (ISC) to populate the triplet excited state. In the triplet excited state the

spin of one of the electrons of the pair is inverted. Again, it is least damaging for the triplet

excited state to decay to the ground state via nonradiative (emission of heat) or radiative de­

excitation (emission of a photon). The latter process is called phosphorescence since it occurs

between two states of different spin. However, as the triplet excited state is long-lived, lasting

10-4 seconds (Turro [1978]) or longer, it is more likely to undergo a photochemical reaction or

an energy transfer reaction.

The photochemical reactions include photoadditionlsubstitution, cycloaddition,

photoisomerization and photofragmentation reactions. Any of these reactions may alter or

destroy the UV absorption capacity of the sunscreen and are therefore undesirable. In addition,

if the chemical absorber has the potential to penetrate the epidermis of the skin, the possibility

exists for the occurrence of direct photochemical reactions between the sunscreen and

biomolecules, such as DNA, in its vicinity or of indirect photochemical reactions via reactive

intermediates, such as free radicals (OH·, 102) , These reaction products could be potentially

carcinogenic.

Energy transfer reactions occur when the excited triplet returns to the ground state by

transferring its energy to a nearby molecule. The excited triplet becomes the "donor" (D*) and

is known as the photosensitizer with the nearby molecule being the "acceptor" (A). This

process is known as photosensitization . Upon the transfer of energy, O· returns to the ground

state in its original form while A is elevated to its excited state (A·). The photosensitization

process is illustrated in Reaction 1.1 below and will only occur if the energy of D· is greater

than that of A·.

D·+A~D+A· (1.1)

In some cases, this is the desired mechanism for energy dissipation, however, more commonly

photosensitization leads to the formation of undesirable and often lethal products such as

thymine dimers. Thymine, in the excited triplet state, can react with ground state thymine to

yield thymine dimers which are potential precursors to skin cancer, as discussed in Section 1.3.

The lowest triplet energy of a pyrimidine base is that of thymine which is estimated to be 314.8

kJ mol" (Lamola et al. [1967]). Any sunscreen havin~ the lowest tri~~~~n~~~ higher than or

similar to that of thymine could act as aphotosensitiser and thereby increase the formation of

thymine dimers.
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The preferred energy dissipation pathway for an excited molecule will depend on a number of

factors, which include the rates and activation energies of each competing reaction, the triplet

energy and its lifetime, as well as the concentration and nature of the molecules. Ideally, a

sunscreen should function by absorbing harmful UV radiation and then dissipating this energy

either by nonradiative or radiative means. In this way the energy is given off in a harmless way

and the sunscreen returns to the ground state such that it is able to absorb another photon of

light, thereby repeating the process, which will protect the skin from UV damage. The skin

penetration of the active ingredients should also be minimal thereby preventing any phototoxic

reactions to the biological cells.

1.4.2 Controversy facing chemical sunscreens

The positive correlation between sunscreen use and the increased rates of skin cancer has now

prompted scientists to re-evaluate the benefits of using sunscreens. Moan & Dahlback [1992]

reported that in Norway during the period 1957 to 1984 the cases of melanoma increased by

440% for women and 350% for men, although there had been no change in the ozone layer over

this period. In addition, studies conducted by Garland et at. [1992] suggest that the greatest

increase in melanoma has been experienced in countries (such as Australia) where the use of

sunscreens has been heavily promoted. The hypothesis that the use of sunscreens increases the

risk of cancer, especially melanoma, has been further strengthened by a number of

epidemiological case studies (Wolf et al. [1994], Westerdahl et at. [1995], Autier et at. [1998]

and Westerdahl et at. [2000]) . This now raises the possibility, though yet scientifically

unproved, that sunscreens may play a very significant role in contributing to the skin cancer

epidemic rather than preventing it.

Scientists do agree that most sunscreens protect the skin against sunburn and erythema,

however, they are now re-examining their behaviour to determine if they protect the skin against

non-erythema damages such as that to DNA and suppression of the immune system. Both of

these are believed to be instrumental in the initiation of skin cancer. There is some evidence

that regular use of sunscreens helps prevent the formation of actinic keratoses, that may be

regarded as a precursor to squamous cell carcinomas (Dover et al. [1994]), however, the ability

to protect against melanoma or basal cell carcinoma is not yet fully determined. Several in vitro

studies on the photochemistry of sunscreens have been conducted, however, some of them are

circumstantial since they may not reveal what sunscreens actually do when applied on the skin

(Wu [1998]). Until the absorptivity of the active ingredients used in sunscreens is determined ,

these results should not be taken lightly since they indicate what sunscreens may be capable of
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doing if they are absorbed through the skin and interact with the skins cells. Some of these

studies are outlined below.

1. Para-aminobenzoic acid

Para-aminobenzoic acid (PABA) was the most common ingredient used in sunscreens in the

1980's. PABA was widely used as a chemical absorber to block UVB radiation, which at that

time was thought to be the most lethal. However, PABA had some drawbacks such as stinging

of the skin as well as photocontact allergic reactions, which have been well documented over

the years . When the potential deleterious effects of PABA irradiation were recognized, its use

as a sunscreen was discontinued. Firstly, it was found to photodegrade, when irradiated with

Pyrex-filtered DV lamps, forming free radical intermediates (Chignell et al. [1980], Gasparro

[1985] and Shaw et al. [1992]). In addition, Sutherland [1982] demonstrated that PABA has the

potential to penetrate human cells, where it has the potential to increase the formation of

thymine dimers in cellular DNA. The triplet state energy of PABA was calculated to be 311.2

kJ mol" (Osgood et al. [1982]), similar to that of the thymine base, thereby making energy

transfer possible. This finding was supported by various researchers including Aliwell [1991]

who showed the in vitro PABA-photosensitized formation of thymine dimers in .pUC 19 plasmid

DNA. In addition, studies conducted by Gasparro & Battista [1987] and Shaw et at. [1992]

suggested that PABA reacts directly with the DNA bases by forming photoadducts. Also,

studies conducted by Allen et at. [1996] suggested that PABA is a good triplet sensitizer

converting harmless triplet ground state oxygen (02) into singlet oxygen e02), which is known

to be cytotoxic.

2. Esters of PABA

Due to the harmful effects of PABA, it has subsequently been replaced in sunscreens by its

esters. These are Padimate-O (or octyl dimethyl PABA) and Padimate-A (or amyl dimethyl

PABA). Although these esters are presently used in sunscreen formulations, some adverse

effects have been reported. These include photofragmentation of Padimate-O (Roscher et at.

[1994]), as well as the generation of reactive free radicals such as 102 (Allen et al. [1995]) and

·OH (Knowland et at. [1993]), in illuminated solutions containing Padimate-O, Although

padimate-O does not generate the thymine dimer, these free radicals have been shown to break

DNA strands and inflict other damage to the base pairs (Knowland et at. [1993]). Padimate-O

has also been shown by Kenny et al. [1995] to be absorbed through the skin where it is 32-36%

metabolized. In addition, this sunscreen has also been negatively received by the sunscreen

market since it has been shown to cause photoallergic and other skin related problems and was
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therefore withdrawn in the late 1980's (Serpone et al. [2002]). In most countries, the sunscreen

products available nowadays are PABA-free and have been replaced with cinnamates and

salicylates as the UVB absorbers.

3. Cinnamates

Presently the most widely used UVB sunscreen in the world belongs to the cinnamate class of

UV absorbers. This is 2-ethylhexyl-para-methoxycinnamate (EHMC). However, the

cinnamate absorbers are subject to trans-cis photoisomerization across the ethylenic double

bond (Morliere et al. [1982]). The eis-isomer is a less efficient UV absorber , therefore this type

of isomerization results in a loss in the absorbing ability of these sunscreens . Trans-EHMC not

only isomerizes to the eis-isomer but Broadbent et al. [1996] have demonstrated that it also

dimerizes with itself by means of a (2+2) cycloaddition reaction across the ethylenic double

bond, which also contributes to a loss in absorbing ability. In addition, although EHMC does

not photosensitize the formation of thymine dimers since its triplet state energy is lower than

that of thymine (Broadbent et al. [1996]), it has been shown to interact with DNA by

photobinding to the bases (Kowlaser [1998]), which is potentially carcinogenic.

4. Butyl methoxy dibenzoylmethane

Butyl methoxy dibenzoylmethane, commonly known as avobenzone, is a frequently used UVA

sunscreen. However, avobenzone not only photodegrades when illuminated in a non-polar

solvent (Roscher et al. [1994]) but also produces carbon-centered free radicals that induce direct

strand breaks on DNA on illumination in vitro (Damiani et al. [1999]). Photodecomposition of

avobenzone into complex mixtures has also been demonstrated by Schwack & Rudolph [1995].

Today, avobenzone is often used in combination with EHMC to offer broad-spectrum

protection, i.e. to cover both the UVA and UVB regions. However, it has been shown that

using avobenzone in combination with EHMC in sunscreen formulations causes EHMC to

photodegrade (Sayre & Dowdy [1999]) . In addition, recent studies conducted by Panday [2002]

have demonstrated that avobenzone photosensitises the photoisomerisation of EHMC in a non­

polar medium.

5. Benzophenones

There is currently a wide range of benzophenone-based sunscreens on the market. Some of the

benzophenone absorbers used are benzophenone-I , benzophenone-3, benzophenone-4 and 2,2'­

dihydroxy-4-methoxybenzophenone (or benzophenone-8). However, benzophenone, the parent
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compound to these DV absorbers, has been shown to be a potent photosensitizer of thymine

dimers in vitro (Greenstock & Johns [1968] and Charlier & Helene [1972]). In addition, the in

vitro studies conducted by Bolton [1991] suggest that Uvinul DS49 and Eusolex 232, both DV

absorbers having benzophenone-derived structures, also photosensitise thymine dimer

formation. DNA damage by the latter sunscreen agent has also been confirmed by studies by

Inbaraj et al. [2001]. This team demonstrated that free radical and oxygen species were

involved in the photodamage of DNA by Eusolex 232. In addition, Eusolex 232, an approved

FDA sunscreen agent has been shown to degrade by 90% in water, after only 10 minutes of

irradiation at wavelengths greater than 290 nm and by 50% after 20 minutes of irradiation in

acetonitrile (Serpone et al. [2002]) .

Benzophenone-3, one of the more commonly used of the benzophenone class of sunscreens, has

been shown to cause both contact and photocontact allergies (Bilsland & Ferguson [1993],

Schmidt et al. [1998] and Berne & Ros [1998]). According to Darvay et al. [2001] and Trevisi

et al. [1994], benzophenone-3 is the most common DV filter photoallergen. Studies conducted

by Serpone et al. [2002] have shown benzophenone-3 to be photochemically unstable when

irradiated in either a non-polar or a polar solvent at wavelengths greater than 290 nm. It

degraded by 15% in acetonitrile, by 20% in water and by 90% in methanol. In addition, this

team also demonstrated the significant photodegradation of benzophenone-3 in the presence of

the physical absorber titanium dioxide. There is now evidence that benzophenone-3 is absorbed

systemically following topical application to the skin. Studies conducted by Jiang et al. [1999]

have shown that this DV absorber is absorbed by the skin in significant amounts (10% of

applied dose) to warrant further investigation of its continued application in sunscreens. In

addition, Schallreuter et al. [1996] reported that the oxidation of benzophenone-3 after topical

skin application caused it to photofragment into benzophenone-3 semiquinone thus changing its

properties. Benzophenone-3 has been shown to not only penetrate the skin but its metabolites

have also been detected in urine after topical application (Felix et al. [1998] and Hayden et al.

[1997]). However, Agin et al. [1998] reported that the amount of benzophenone-3 Hayden and

his team detected was too small to be deemed harmful. Reports of the photochemistry of the

other benzophenone sunscreens are less numerous and therefore this .topic warrants

investigation, and will be considered in this study.

1.5 Photosensitive benzophenone-derived drugs

Of concern to the sunscreen industry is the recent discovery that a group of 'non-steroidal anti­

inflammatory drugs ' (NSAIDs) having a benzophenone or a benzophenone-Iike chromophore
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induce DNA photosensitization in vitro. NSAIDs are widely used in the treatment of rheumatic

and arthritic diseases and include compounds such as ketoprofen, tiaprofenic acid and suprofen.

The structures of these drugs appear in Figure 1.10. Included in this group of benzophenone­

derived photosensitive drugs is fenofibrate, an anti-hyperlipoproteinemic drug, which at present

is the most commonly used lipid-lowering agent in the world. A number of studies conducted

by various researchers regarding phototoxicity and DNA photosensitization induced by these

drugs appear in the literature.

o

Ketoprofen

CH3

I
CH

'COOH

o

Tiaprofenic acid

CH3

I
CH

'COOH

Cl

o
o

Fenofibrate Suprofen

Figure 1.10: Chemical structures of the benzophenone-derived NSAIDs.

The NSAIDs have being shown to photosensitise chemical modifications to key biomolecules.

These include lipid peroxidation, protein oxidation, protein cross-linking and DNA damage

(Bosca & Miranda [2001], Lhiaubet et al. [2001] , Marguery et al. [1998], Condorelli et al.

[1995] and Bosca & Miranda [1998]). The DNA damage includes strand breaks, oxidation of

bases as well as thymine dimerization (Artuso et al. [1991], Bosca & Miranda [2001] and

Castrell et al. [1994]). Photoallergic, phototoxic and photosensitive reactions were also
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reported with all the above benzophenone-derived drugs (Bosca & Miranda [1998]).

Ketoprofen, the most widely used NSAID, has been shown to efficiently produce single strand

breaks in supercoiled DNA as well as promote photodimerization of pyrimidine dimers (Bosca

& Miranda [2001]) . In addition, irradiation of ketoprofen in neutral aqueous media produced a

number of benzophenone-containing photoproducts, which not only contributed to the

photoallergic reactions and the phototoxicity of this drug, but also photosensitized linoleic acid

peroxidation in vitro (Bosca et al. [1994]). Studies conducted by various researchers attribute

the photosensitivity reactions of this group of drugs to the benzophenone chromophore.

Benzophenone is one of the most powerful and most potent radical generators known to man

(Larsen [1994]) . The powerful photoreactivity of the benzophenone chromophore is of concern

to the sunscreen industry since benzophenone-derived absorbers are commonly incorporated in

sunscreen formulations. Surprisingly few reports on the photochemistry of the benzophenone

UV absorbers appear in the literature and therefore there is an urgent need to investigate the

photoreactivities of these compounds.

1.6 Rationale and outline of this study

This work investigates the, photochemistry of a group of benzophenone-derived sunscreens.

These are benzophenone-I, benzophenone-3 , benzophenone-4, Uvinul DS49 and Eusolex 232.

The structures of these compounds appear in Figure 1.11.

Since these sunscreens all have the benzophenone chromophore with various substituents on the

backbone, it is highly probable that they may behave in a similar manner to benzophenone.

Therefore an investigation of their photochemistry is very important, in order to determine if

their use in sunscreens can be considered "safe".

The benzophenone-based sunscreens have gained popularity in the sunscreen industry since

they have the advantage of absorbing over a wider range of the UV spectrum than most other

sunscreens. Therefore, they can be used alone or in combination with other sunscreens for

maximum protection. According to the United States FDA's final monograph [2000] of

approved sunscreen active ingredients, benzophenone-4, benzophenone-3 and Eusolex 232

make up three of the 14 chemical sunscreens substances permitted in the United States. In

1996, the former two were ranked as the second and third most frequently used UV absorbers in

sunscreens, respectively, by the FDA (Steinberg [1996]). Eusolex 232 is widely used as a UVB

filter in sunscreen formulations and cosmetic products such as moisturizers (Levy [2002],
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Figure 1.11: Chemical structures ofthe sunscreens under investigation in this study.

Stevenson & Davies [1999]). The other sunscreen absorbers being investigated have also found

widespread use in sun protection. Benzophenone-l is commonly used as a UV protector for

nail lacquers and other cosmetics , in most countries . This sunscreen absorber, however, is only

approved for use in protection of certain products from DV damage

(http://216.239.39.120/translate c?hl=en&ie=UTF-8&oe=UTF-8&u=htt.p:l!www. abacovital.
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corn lfichastecnicasltiltroslbenzofenone1.htm, Date accessed: 4 December 2002). Uvinul DS49,

which often exists as the disodium salt in sunscreen agents, commonly referred to as

benzophenone-9 or 2,2'-dihydroxy-4,4'-dimethoxy benzophenone-5,5-disodium sulfonate, is

also only approved for product protection. (http://216.239.39.120/translate c?hl-en&ie-UTF­

8&0e=UTF-8&u-http://www.abacovital.com!fichastecnicas/filtroslbenzofenone9.htm. Date

accessed: 4 December 2002). The maximum allowed concentrations of these benzophenone­

derived sunscreen agents in commercial products as drawn up by the various regulatory

authorities is given in Table 1.1.

Of these DV absorbers, the photochemistry of benzophenone-3 has most often been considered

in literature. Despite the controversy surrounding its use in sunscreen formulations, some of

which has been discussed in Section 1.4.2, benzophenone-3 is still currently one of the most

popular DV absorbers on the market. It is a cream coloured powder that has many of the

favorable properties of a sunscreen, that is, it is insoluble in water, melts at a high temperature

(66°C) and has a low volatility. In addition, various studies have demonstrated the benefits of

using it in a sunscreen. Some of these are outlined below.

The in vivo studies conducted by 0' Kereke et al. [1995] and Robinson et al. [1994] suggest

that benzophenone-3 does not induce genotoxic effects in Sprague-Dawley rats. The triplet

state energy of benzophenone-3 as determined by Gozenbach et al. [1992] is 276.14 kJ mol".

This is much lower than the triplet state energy of thymine (314.8 kJ mol") (Lamola et al.

(1967]) , thereby suggesting that thymine dimer photosensitization with this sunscreen is not

possible. This was confirmed by studies conducted by Wolf et al. (1994], who demonstrated

that skin treated with sunscreen formulations containing benzophenone-3 formed less thymine

dimers compared to unprotected mouse skin. In addition, an in vitro study conducted by

Sewlall [1999] suggests that irradiation of thymine in the presence of benzophenone-3 does not

induce thymine dimerization. There is also evidence that irradiation of benzophenone-3 does

not promote photosensitization of singlet oxygen, nor any other reactive oxidant species such as

OH· or the peroxy radicals (AlIen et al. [1995]). However, although studies performed by

Roscher et al. [1994] demonstrated that a solution of benzophenone-3 in a non-polar solvent

irradiated for a period of 100 hours did not photodegrade , Serpone et al. [2002] appeared to

prove otherwise (as mentioned previously). There is therefore a need to re-examine its

photostability .
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Table 1.1: Maximum allowed concentrations (%) of the benzophenone-based sunscreens

in commercial sunscreens*.

-<
~

.... -<~ Z ~ ::r:Concentration =.. ....
~

u-e 0 N ~
Eo-< ....

00 l:I=: ~
;:J l:I=:allowed 1% ;:J -< Eo-< 0 r.c;:J = l-o.l 00 00 -<~ ;:J

-<

Benzophenone

Benzophenone-3 6 10 10 5 Approved 10

Benzophenone-4 10 5 10 Approved

Product Product Product
Benzophenone-l 3

protection protection protection

Not
Eusolex 232 4 8 8 Approved 8

approved

Product Product Not
Uvinul D849

approvedprotection protection

*(Strange [1995], FDA final monograph [2000], &

http://216.239.39 .120/translate c?hl-en&ie-UTF-8&oe=UTF-8&u=http :llwww. abacovital

.com! fichastecnicas/filtros/filtros.htm&prev, Date accessed: 4 December 2002)

[The shading indicates that the sunscreen agent is currently under review

(www.health.gov. au/tgaldocs/pdf/sunscrai .pdf. Date accessed: 6 December 2002) . A blank cell

implies that the use of this sunscreen ingredient in a particular country has not been mentioned

in literature.]

Due to the vast, often contradictory, literature available on the benzophenone sunscreens, in

particular benzophenone-3, it is necessary to further investigate the photochemistry of this

group of sunscreens. The aim of this study was to investigate the potential of the

benzophenone-derived sunscreens, namely, benzophenone-l , benzophenone-3, benzophenone­

4, Uvinul DS49 and Eusolex 232 to photosensitize the conversion of double stranded

supercoiled DNA to the relaxed circular and linear forms. This investigation also included the

parent compound, benzophenone, to provide a benchmark, since it has been examined
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extensively in photochemical studies, as well as the DV-absorbing compound ketoprofen, since

it is a well-known DNA photocleaver.

Briefly, buffered aqueous solutions of the sunscreens were irradiated in the presence of DNA at

wavelengths greater than 300 nm. The DNA photocleavage potential of these DV absorbers

was investigated by the technique of gel electrophoresis, while fluorescence spectroscopy

enabled the DNA binding ability of these compounds to be determined. <\JX 174 phage DNA and

calf thymus DNA were used for the gel electrophoresis and the fluorescence spectroscopy

.experiments respectively. This study also included an investigation of the photostability of

these DV absorbers. A pH of 7-8 was maintained throughout all the experiments conducted to

replicate physiological conditions. Computational studies were also conducted to determine the

lowest energy geometrical structures of the benzophenone-based sunscreen agents with the aim

of determining if intercalation of these compounds with DNA was possible. Finally, the

mechanisms of interaction of these sunscreens with DNA have been postulated.

Chapter 2 deals with the experimental techniques and procedures performed in this

investigation, while Chapter 3 contains a discuss.ion of the experimental results. This is

followed by concluding remarks in Chapter 4.
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Chapter 2

EXPERIMENTAL

The experimental techniques and procedures that will be discussed in this chapter are divided

into four sections. These are:

• The irradiation techniques employed in this work in Section 2.1,

• DV absorption spectroscopy and the photostability investigation of the DV

absorbers in Section 2.2,

• Agarose gel electrophoresis techniques and procedures to detect DNA cleavage

in Section 2.3,

• Fluorescence spectroscopy to detect DNA damage induced by the DV absorbers

in Section 2.4, and

• Computational studies using the semi-empirical and ab initio method to

determine the geometrical structures of the DV absorbers in Section 2.5.

The materials and equipment used for the various experimental procedures are listed in

Appendix A.

2.1 DV irradiation techniques and equipment

This investigation required the use of a light source of high intensity in both the DVB (280 ­

320 nm) and the DVA (320 - 400 nm) wavelength ranges. This is the region in which the DV

absorbers being investigated absorb DV radiation. For this investigation the source of DV light

chosen was the Osram HBO 500W/2 high pressure mercury lamp. The lamp 's suitability to this

study will be discussed in Section 2.1.1. Section 2.1.2 describes the irradiation techniques used

for this investigation while Section 2.1.3 discusses the irradiation cells used for the various

experiments conducted.
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2.1.1 Light source for the photosensitized irradiation of DNA

The Osram HBO 500 W/2 high pressure mercury lamp (shown in Figure 2.1) was the lamp of

choice since it provided high luminance, strong ultraviolet radiation in the UVB and UVA

regions, good light efficacy and high lamp stability. This lamp has also proven to be very

successful for DNA photosensitization studies conducted by previous workers in this field

(Thomas [1989], Bolton [1991] and Clemmett [1992]).

Mercury filling

Base with current

Shaft with current lead

Electrode

Figure 2.1: Top view of the Osram HBO 500 W/2 high pressure mercury lamp.

The radiation emitted from the HBO lamp consists of extensive pressure-broadened mercury

spectral lines in the wide wavelength range of 260 nm to 700 nm (Figure 2.2). Therefore,

isolation of the wavelengths of interest from this source would require the use of an appropriate

filter. The filter used in this study was a 10 mm thick Pyrex filter. This filter has a short

wavelength cutoff of about 300 nm and therefore only allows wavelengths greater then 300 nm

to impinge on the irradiation cell (Figure 2.3). This enabled the wavelength of light emitted by

the lamp when used in conjunct ion with the filter to be similar to that of sunlight incident on the

earth 's surface. The use of this filter minimized direct irradiation of DNA by DV light and

allowed photosensitized DNA studies to be carried out.

2.1.2 Irradiation techniques

The Osram HBO 500W/2 high pressure mercury lamp used in this study is housed in an

insulated steel box, which is connected to an external bracket, a Schreiber power pack, and an

igniter (as shown in Figure 2.4 A).

The lamp housing is necessary due to the danger of DV radiation, glare and overpressure caused

by the lamp during operation. The lamp is fixed vertically in front of a circular opening, which
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Figure 2.2: Output of the HBO 500W12 high pressure mercury lamp (Broadbent [1994]).
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Figure 2.3 Transmission characteristics of the 10 mm thick Pyrex filter used for all

irradiations carried out in this investigation (Broadbent [1994]).
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A: Front view of the ignitor (A) attached to lamp housing (B) and an external

bracket (C). The cooling and extractor fans are represented by D

and E respectively.

Shutter gate

Filter holder

Cell holder

B:

Figure 2.4:

Side view of the external bracket attached to the lamp housing.

Lamp housing (A) and optical train (B) for the Osram HBO 500 W/2 high pressure

mercury lamp.
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enables the radiation to reach the irradiation cell. The irradiation cell is held in position by

means of an external bracket, which is attached to the lamp housing (Figure 2.4B). The external

bracket consists of a shutter gate, filter holder and cell holder. The shutter gate controls the

light intensity impinging on the irradiation cell while the filter and cell holders hold the filter

and the irradiation cell (or cuvette) respectively in place during irradiations. A cooling fan is

also positioned directly behind the external bracket to cool the filter and the irradiated solution.

The lamp housing is also fitted with an extractor fan, leading to the exterior of the building, to

provide ventilation as well as to remove any ozone produced by the photolysis of oxygen.

The lifetime of the lamp is usually in the region of 400 hours (as recommended by the

manufacturer). The lamp output does not vary significantly over the 400 hours. However, after

this time, the intensity decreases dramatically and it is necessary to replace the lamp.

Before any irradiations were conducted, the lamp was allowed at least 15 minutes to warm up.

This was necessary to reach thermal equilibrium. A Blak-Ray J-221 Longwave Photovoltaic

DV intensity meter was used to measure the lamp output. Due to the low sensitivity of the

meter, these measurements were only used to monitor the intensity of the lamp during the

course of the experiments and to ensure that the intensity was stable.

2.1.3 Irradiation cells used for the various experiments

When choosing an irradiation cell (cuvette) to hold the sample for irradiation , it was important

to ensure that the cell allowed radiation in the spectral region of interest to pass to the sample.

Generally, for work in the DV region of the spectrum, quartz cuvettes are used (Skoog, West &

Holler [1996]). For this investigation both 1 cm and I mm pathlength quartz cells were used.

For the gel electrophoresis experiments, however, a different cell from the conventional type

was needed. The experiments conducted required the use of a series of 5 mm internal diameter

glass tubes due to the small sample volumes (5JlI) to be irradiated. These tubes were preferred

to the I mm pathlength cuvette since they enabled easy removal of the samples after irradiation.

Each irradiation had to be performed separately in an individual tube. For this purpose Nuclear

Magnetic Resonance (NMR) tubes were used since they were easily available, and did not

absorb DV radiation in the region of interest.

The DV absorption spectrum for a typical NMR tube used as the irradiation cell for the

electrophoresis experiments is shown in Figure 2.5. This spectrum was obtained by use of a

Cary lE DV-Visible spectrophotometer (details in Section 2.2.2). The tube had to be cut down
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Figure 2.5:

3

Cl)
e 2eca.a...
0
In 1.a
c(

0
190 290 390 490 590 690 790

Wavelength I nm

Absorption spectrum of the irradiation cell used for the electrophoresis

experiments.

to size to fit into the sample holder. The instrument was zeroed against air, and when the

measurement was taken the empty NMR tube was placed in the sample holder and was held in

place with adhesive tape. From the spectrum it can be seen that the NMR tube absorbs short

wavelength DV radiation up to about 300 nm and does not absorb in the longer UVB or DVA

region, which is the region of interest for this study. Hence these tubes were suitable for use in

this investigation. The tubes were cut down to about 4 cm in length so that they could fit in the

cell holder and were fixed in place with adhesive tape during irradiation.

2.2 DV absorption spectroscopy

The benzophenone-derived compounds are widely used in sunscreen formulations because of

their ability to absorb in the DV region of the terrestrial solar spectrum. Absorption

spectroscopy was the analytical method employed to determine the nature of this absorption

and, in particular , to investigate the photostability of the absorbers.

2.2.1 An introduction to absorption spectroscopy

Every molecule possesses a unique series of closely spaced energy levels, the lowest of which is

known as the ground state. When a photon of radiation passes near a molecule with energy

equal to the energy difference between the ground state and a higher electronic state, the energy
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of the photon is transferred to the molecule. This results in an energy transfer from the ground

state to the higher excited energy state (Skoog, West & Holler [1996]). This transition is known

as absorption and can be depicted by Equation 2.1 as follows:

M+hv (2.1)

whereby a species M is converted to its excited state M· by the absorption of a photon hv.

These transitions are responsible for the Uv -visible absorption spectra observed for molecules.

This process of absorption occurs in a brief period (10-6
- 10-9 seconds) and is specific to a

characteristic structure (Skoog, West & Holler [1996]).

2.2.2 Instrumentation for absorption spectroscopy

The basic spectrophotometer consists of five main components. These are an energy source, a

monochromator, a sample cell (and reference cell), a detector and a readout device (Figure 2.6).

D
=

Reference -.Monochromator

/......---l
Source

Readout

Sample

Figure 2.6: Schematic diagram of the optical components of a typical absorption

spectrometer.
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Radiation from the source first passes to the monochromator, which consists of gratings or

prisms that permits isolation of a specific wavelength region. The monochromatic beam is then

split into two, one passing through the absorbing sample, while the other passes through a

reference cell . The reference cell contains the blank, which is essentially the solvent that has no

analyte element. The detector alternatively samples the two beams and their ratio, as shown in

Equation 2.2, which is determined electronically and displayed on a screen by the readout

device.

A = log P so/vent = log~
Pso/ution P

(2.2)

where A is absorbance while Pe and p refer to the power of radiation after it has passed through

cells containing the solvent (reference cell) and the analyte (sample cell) respectively.

Essentially this is the difference between two signals.

Commercial spectrophotometers are available either as single-beam or double-beam

instruments. A single-beam instrument normally allows monitoring of the sample at a single

wavelength only, whereas with the latter, instrument absorbance is monitored as a function of

wavelength (Skoog, West & Holler [1996]). However, with the single-beam spectrometer,

measurements must be corrected for fluctuations in the light source, spectrometer efficiency, as

well as variations in the sensitivity of the detector with wavelength (Lumb [1978]). Using a

double or split-beam instrument eliminates the necessity of such corrections and therefore most

commercial spectrometers used for analytical work today are dual beam. In this study the

double-beam Cary lE DV-Visible spectrophotometer was used. .

2.2.3 Analysis of the photostability of the benzophenone-based

sunscreens

Since DV absorbers are widely used in sunscreen formulations to protect the skin from the

harmful rays of the sun, they are required to be stable towards photodecomposition in simulated

sunlight in order to afford the desired protection to the consumer. The stability of the

benzophenone-based sunscreens to DV radiation was assessed by DV spectroscopy. Samples of

benzophenone, ketoprofen, benzophenone-l, benzophenone-3 , benzophenone-4, Eusolex 232

and Uvinul DS49, as obtained from their suppliers, were analysed.
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To dissolve the sunscreen absorbers, a solvent that reciprocated physiologically relevant

conditions (pH 7 - 8) was desired. For this purpose a variety of buffers could have been used,

with Tris-HCI buffer and phosphate buffered saline (PBS) being the ~ost common. The Tris­

HCI buffer, which is the acronym for Tris-(hydroxymethyl)-methylammonium chloride, was

chosen due to its success as a physiological buffer. This buffer does not precipitate calcium

salts as the phosphate buffer does, and is also stable in solution at room temperature for longer

periods than the phosphate buffer.

Stock solutions of 1 x 10-3 M of all the DV absorbers were prepared in Tris-HCI buffer, except

for benzophenone-3. Due to the very low solubility of benzophenone-3 in this buffer, a solution

of 50% (v/v) ethanol/ Tris-HCI buffer mixture was used as the solvent.

Tris-HCI was unavailable in the laboratory during the time of this investigation, therefore Tris­

(hydroxymethyl)-aminomethane (or Tris) and hydrochloric acid (HCI) were used to obtain the

desired pH. This buffer was comprised of 0.1 M Tris, 0.1 M NaCI and a volume of HCI to give

a pHof 8. This involved dissolving 12.140 g ofTris and 5.844 g of NaCI in MiIIipore water,

which was made up to one litre in a volumetric flask. When reference is made to MiIIipore

water in this dissertation it refers to water that has been passed through a MiIIipore Milli-Q

apparatus, which consists of ion exchange and organic removal resins. More details of the Tris­

HCI buffer appear in Section 2.4.5. The pH of the buffer was measured with a Mettler 740 pH

meter that had been calibrated with two buffers of pH 4.0 and 7.0. The pH of the Tris-HCI

buffer was adjusted to 8 with 20 ml of 33% HCI. The buffer was filtered through a MiIIipore

HV 0.45 urn filter, to remove particulates, after which it was autoclaved at 250 OF and 15 psi for

30 minutes .

Each sunscreen sample was irradiated at 5 minute intervals for a total irradiation period of 30

minutes with the Osram HBO 500W12 high pressure mercury lamp coupled to the 10 mm thick

Pyrex filter. A 1 mm pathlength quartz cuvette was used during the irradiations. After each

irradiation an absorbance spectrum was recorded with the Cary lE U'V-Visible

spectrophotometer using the same 1 mm pathlength cuvette. As a matched pair of cuvettes was

not available, a baseline correction using a blank sample was performed before the DV

measurements of the samples were taken. This was achieved by placing Tris-HCI buffer or the

50% (v/v) ethanoIl Tris-HCI buffer (in the case of benzophenone-3) in the sample cell and

recording the spectrum over the wavelength region of interest. This blank spectrum was then

electronically subtracted from that of the sample spectrum. The absorbance of the sample

solution of interest was then measured from 190 nm to 400 nm at a scan rate of 600 nm min-I .
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The DV spectra obtained at this concentration did not conform to the Beer-Lambert law (shown

by Equation 2.3 below), since for all the solutions the absorbance readings were greater than 1.5

absorbance units.

A =ibc (2.3)

where A is the absorbance of the analyte of interest, E is the molar absorption coefficient of the

analyte in drrr' mort cm", b is the pathlength of the cuvette in cm and c is the concentration of

the analyte in mol dm",

From Equation 2.3, it can be deduced that the absorbance of an analyte in solution is directly

proportional to the concentration of that solution. However, deviations from Beer's law occur at

high concentrations since the analyte molecules are packed so closely together that the charge

distribution is distorted by neighboring molecules, resulting in changes in the absorption

properties of the molecules (Atkins [1994]). All the samples were therefore serially diluted

until absorbance readings below 1 (or just below 1.5) were obtained. This required

concentrations of about 5.5 x 10-4 M. The resultant DV spectra of all the compounds under

investigation are shown and discussed in Section 3.1.

2.3 Gel electrophoresis of DNA

The aim of this series of experiments was to investigate if the benzophenone-derived DV

absorbers had the ability to cleave DNA in vitro. The DNA used in this series of experiments

was supercoiled <j>X174 phage DNA obtained from Sigma. <j>X174 phage DNA was used for

these experiments as opposed to calf thymus DNA (that was used for the fluorescence

spectroscopy experiments) since it contains only a few genes and hence can be seen easily as a

clear band on a gel.

In this section the technique of gel electrophoresis (Section 2.3.1), the gel electrophoresis

apparatus used (Section 2.3.2) as well as the optimal electrophoresis conditions to ensure the

efficiency of this procedure (Section 2.3.3) will be discussed . Solution preparations (Sections

2.3.4 - 2.3.5) as well as the gel electrophoresis nicking procedure to detect DNA cleavage

(Sections 2.3.6 - 2.3.7) are also described. Finally Sections 2.3.8 - 2.3.10 describe the running,

viewing and photography of the gels followed by quantification of the DNA bands.
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2.3.1 The technique of gel electrophoresis

In gel electrophoresis the movement of small ions and charged macromolecules across a gel,

under the influence of an electric field, is studied. Electrophoresis through agarose or

polyacrylamide gels is the standard method used to separate and identify DNA fragments . This

technique is simple, easy to perform and is capable of resolving mixtures of DNA fragments

that cannot be separated adequately by other procedures . Agarose gels can be used to analyse

double- and single-stranded DNA fragments from 70 base pairs (bp) to 800 000 bp, while

polyacrylamide gels are used for smaller DNA fragments of between 6 bp and 1000 bp (Sedley

P.G. & Southern E.M. [1982]). Since the <\>X174 phage DNA used in this study contained 5386

bp as specified by the supplier (Sigma), agarose gel was used as the medium of separation for

this investigation.

Agarose, which is extracted from seaweed, is a linear polymer. Agarose gels are cast by

dissolving the required percentage of agarose in a heated solution of the desired buffer until a

clear solution is achieved. The solution is then poured into a mold and allowed to harden, thus

forming a matrix. The DNA to be separated is placed in sample wells made with a comb and a

voltage is applied across the gel until separation is achieved. The DNA, which is negatively

charged at neutral pH, migrates towards the anode. The rate of migration depends on a number

of parameters such as the molecular size of the DNA, agarose concentration, conformation of

the DNA , applied current and the composition of the electrophoresis buffer. Some of these

factors will be discussed in more detail in Sections 2.3.3 and 2.3.4.

Agarose gel electrophoresis can be used as an efficient technique to detect DNA cleavage, since

cleavage of supercoiled circular DNA produces different DNA forms which migrate through

gels at different rates (Thorne [1996]). The <\>X174 phage DNA molecule is a single-stranded

superhelix, which can exist in three distinct forms. These are the superhelical circular DNA

(Form I), open circular DNA (Form IT) and linear DNA (Form III) as illustrated in Figure 2.7.

Supercoiled (Form I) DNA has no breaks. Only one single strand break (SSB) per molecule is

sufficient to convert DNA from Form I (supercoiled) to Form IT (open circular) (Armitage

[1998]) . As Form IT molecules sustain numerous SSB, it is increasingly likely that two SSB on

opposite strands will be sufficiently close that intervening base pairs denature and hence

produce Form III (linear) DNA. The bacteriophage <\>X174 DNA used in this series of

experiments is a naturally occurring DNA molecule with a very small genome consisting of

closed circular single stranded DNA.
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Figure 2.7: Schematic diagram showing the three DNA Forms, where A represents

supercoiled Form I DNA, while Band C represent open circular Form IT DNA

and linear Form III DNA respectively.

The small compact Form I usually migrates the furthest, since it experiences the least resistance

in an agarose gel. This is usually followed by the rodlike, linear Form III DNA molecules. The

open circular Form 11 DNA molecules usually migrate the slowest (Boyer [1993]). Under some

conditions, however, the migration rates may be different and Form 11 DNA may migrate faster

than Form III DNA (Sambrook et al. [1989]) .

The relative motilities of the three DNA forms depend primarily on the concentration of the

agarose. They are also influenced by other factors such as the strength of the applied current,

the ionic strength of the buffer and the density of the superhelical twists in Form I DNA. Since

the three DNA forms migrate at different rates in different systems, it is important to run

standards, which can be used to identify each of these forms.

2.3.2 The agarose gel electrophoresis apparatus

The apparatus used for agarose gel electrophoresis was a horizontal slab gel electrophoresis

apparatus. The apparatus consisted of three main parts. These are: a casting tray, an

electrophoresis tank and a power supply as shown in Figure 2.8.
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Figure 2.8: The horizontal slab agarose gel electrophoresis apparatus where A is the electrophoresis tank, B is the lid of the electrophoresis tank with

leads to the power supply, C is the casting tray or gel mold and D is the comb used to form sample wells.



The casting tray or gel mold provides a shape for the gel as it polymerizes and is used to set the

gel. The open ends of the casting tray are sealed with adhesive tape to provide a mold in which to

set the gel. Plastic combs are used to form sample wells in the gels. The combs are placed at the

cathodic end of the gel bed, to allow the negatively charged DNA molecules to migrate down the

gel bed towards the anode. When forming sample wells, the comb is placed some 0.5-1 mm

above the bottom of the gel bed. This prevents samples from leaking from one well to the other.

Sample wells of about 1 cm in width and 1 cm in height were prepared such that a maximum

volume of about 30 III could be inserted into each well. The electrophoresis tank consists of two

buffer reservoirs and a gel platform onto which the gel in the casting tray is placed when

electrophoresis is performed. The lid of the tank contains two leads which when put into place

are connected to the power supply. A power pack delivering up to 500 V at 400 mA was used.

2.3.3 Optimal electrophoretic conditions

There were many parameters that had to be considered to ensure optimal electrophoretic

conditions. The most important of these are the agarose concentration and the applied current.

When considering the optimal agarose concentration, it is important to produce a gel firm enough

to be easily handled but yet not too concentrated, such that the matrix becomes too difficult for

the DNA to move through, and hence separation would be more difficult to achieve. Using gels of

different concentrations makes it possible to resolve specific size ranges of DNA molecules as

shown in Table 2.1.

Table 2.1: Range of separation of DNA molecules in gels containing different amounts of

agarose (Sambrook et al. [1989]).

Amount of agarose in gel (% w/v) Efficient range of separation of linear

DNA molecules (size in kb)

0.3 5 - 60

0.6 1 - 20

0.7 0.8 - 10

0.9 0.5 -7

1.2 0.4 - 6

1.5 0.2 - 3

2.0 0.1 - 2
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A very concentrated solution of agarose (e.g. 2% w/v) will offer good separation of the small

DNA fragments « 2 kilobases), however, the larger fragments will not separate due to their

inability to move efficiently in the concentrated gel. Conversely, less agarose (e.g. 0.3% w/v)

will offer better separation for the larger DNA fragments, while the smaller fragments will all

migrate an equal distance thus providing no separation. It is important to achieve the best

resolution of the DNA molecules at the chosen gel concentration. For conventional work,

however, gels are often mixed at 0.8 - 1.0% (w/v) agarose. This normally separates DNA

fragments larger than 500 bp but smaller than 70 000 bp. Since the DNA fragment size used for

this investigation was 5 386 bp and hence fell within this range, both 0.8% (w/v) and1.0% (w/v)

agarose gels were investigated to see which gave the best resolution. Although a 1.0% (w/v)

agarose gel produced a firmer gel, the 0.8% (w/v) gel gave better separation of the DNA

fragments and was chosen as the agarose concentration to be used for all further experiments.

The second factor of importance to be considered was the applied current. The optimum running

current depends on the degree of resolution required, fragment size and the amount of time

available. Electrophoresing smaller DNA fragments at high voltage gradients increases band

sharpness as the smaller fragments diffuse faster. Conversely, large DNA fragments are best

resolved by electrophoresing for longer times at low voltages, thus increasing separation but

reducing the sharpness of the bands.

It is therefore important when choosing the optimum running current that a balance is struck

between sharpness and separation. Another disadvantage of using too high voltages is the

possibility that overheating of the electrophoresis buffer might occur during electrophoresis.

Overheating distorts DNA bands and therefore must be avoided.

Agarose gels are typically run at 20 - 150 V, with the upper limit being heat dissipated. For this

investigation 100 V was chosen as the optimum running voltage since it allowed good resolution

of the DNA fragments under investigation.

2.3.4 Preparation of solutions for irradiation

Samples for irradiation consisted of solutions of <l>X174 DNA (Sigma) and solutions of the

sunscreen DV absorbers of interest. The solutions that were prepared are briefly described

below.
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• PBS buffer

Biological cells maintain a constant pH by natural buffers, therefore it was necessary to use an

artificial medium to mimic the natural environment of a cell. PBS was the buffer used to ensure

that physiological pH (7.4) was maintained. The phosphate buffer was preferred to the Tris

buffer used in Section 2.2.3 for the photostability experiments since it has been used with much

success in gel electrophoresis of DNA.

A 5 mM phosphate buffer was prepared by dissolving 0.5884 g NaCl (l0 mM), 0.7098 g

Na2HP04 (5 mM) and 0.6804 g KH2P04 (5 mM) in approximately 200 ml of Millipore water,

with sonication, and then making up the resulting solution to one litre in a volumetric flask. All

reagents used were of analytical grade. The pH of the PBS buffer was measured with a Mettler

740 pH meter which had been calibrated with pH 4.0 and pH 7.0 buffer solutions. The pH was

adjusted using 4 M NaOH. For all PBS solutions prepared the pH was maintained between 7.4

and 7.5. The buffer solution was filtered through a Millipore RV 0.45 urn filter to remove

particulates. The solution was then autoclaved and refrigerated at about 7 QC.

• <j>X174 DNA solution (75.4 JlM DNA base pairs)

Preparation of the cl>X174 DNA solutions for irradiation required appropriate dilution of the

original DNA solution (as supplied by Sigma) . The cl>X174 DNA was supplied with a total

volume of 0.095 ml and a concentration of 10.5 Aujo units/mL. A concentration of 14 nM in

DNA molecule {or 75.4~ DNA bp} was required for this series of experiments (Artuso et al.

[1991]). Using the molecular mass of cl>X174 DNA to be 3.6 x 106 daltons (5386 bp per

molecule) and the volume supplied, this corresponded to a 10-fold dilution of the original DNA.

Special care had to be taken to ensure that no DNA was lost during handling of the sample since

the volume purchased was very small. Before each irradiation, a 100 ~l fresh working solution

was prepared by very carefully transferring 10 IJ.I of the original DNA solution to a sterilized

plastic Eppendorf tube with a P 100 Gilson micropipette and making it up to 100 ul volume with

90 ul of the PBS solution.

• Sunscreen solutions (45 J1M or 0.2 oM)

Stock solutions of the benzophenone-based sunscreens (45 ~M or 0.2 nM) were prepared by

dissolving the appropriate mass of reagent with PBS solution in sterile volumetric flasks. The
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small masses required were weighed using the Mettler 6-digit mass balance. For benzophenone­

3, PBS could not be used as the solvent since benzophenone-3 is completely insoluble in this

buffer, therefore another solvent was sought. It was important to ensure that the DNA was stable

in the chosen solvent and did not precipitate out or degrade. For this purpose high purity ethanol

was used . However, DNA is known to precipitate in solutions with an ethanol content greater

than 60% (v/v). Various mixtures of ethanol in PBS buffer were prepared and the dissolution of

benzophenone-3 was tested. A 50% (v/v) ethanol / PBS solution proved successful and hence

was used to dissolve the benzophenone-3.

• Special precautions taken during preparation of solutions

Considerable precautions were taken to ensure that all glassware used was properly cleaned and

sterile. The presence of nucleases on glassware can result in the degradation of DNA in the

samples upon storage. Furthermore, the PBS solution used for the preparation of samples for

irradiation provides the ideal conditions for bacterial growth. The measures which were

employed to minimize bacterial contaminants, and hence DNA degradation, are as follows:

• All glassware was firstly washed with chromic acid, followed by a 0.5% detergent wash.

• Sterilization of all equipment (glassware, Eppendorf tubes, pipette tips, etc.) and PBS

solutions were carried out by autoclaving in the Wisconsin aluminium electric pressure

steam sterilizer at 250 OF (121 "C) and 15 psi for 30 minutes.

• All solutions were wrapped in aluminum foil and stored in the cold at temperatures below

10°C. When required the solutions were allowed to attain room temperature before use,

except for the DNA solution, which was used cold.

• Latex gloves were worn during the handling of the sterilized glassware and the solutions to

minimize transfer of nucleases .

All these precautions were routinely performed with extreme care to ensure the validity and

reproducibility of the results .

2.3.5 Preparation of solutions for electrophoresis

Solutions required for gel electrophoresis consisted of the electrophoresis buffer (tris-borate

EDTA, where EDTA refers to ethylenediaminetetraacetic acid), the loading dye (bromophenol

blue) and the staining dye (ethidium bromide) .
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• Tris - borate EDTA electrophoresis running buffer

The electrophoretic mobility of DNA is affected by the composition and ionic strength of the

electrophoresis buffer. The buffer optimizes the pH and the ion concentration of the gel and its

use is essential to ensure an efficient running gel. There are several different buffers available for

electrophoresis of native DNA, but one of the most common buffers , which provides sufficient

buffering power, is the tris-borate EDTA buffer (TBE).

A stock (lOx) TBE solution was prepared by dissolving 108 g of Tris-(hydroxymethyl)

aminomethane (or Tris), 55 g of boric acid and 40 rnL of 0.5 mM EDTA (pH 8.0) in a one litre

volumetric flask with Millipore water. The pH was measured with a Mettler 740 pH Meter and

was adjusted with 33% HCl. The Tris present in the buffer helps maintain a constant pH in the

solution while the boric acid provides the proper ion concentration. Furthermore, the TBE buffer

contains EDTA, which serves to chelate divalent cations (e.g. magnesium) that are required for

nuclease action. The electrophoresis buffer was transferred to storage bottles and autoclaved.

When the buffer was required, a 10-fold dilution was made to give a working solution.

• Bromophenol blue loading buffer

A loading buffer is also required for gel electrophoresis. This buffer serves two purposes, i.e., it

increases the density of the sample, ensuring that the DNA sinks to the bottom of the well, and

the buffer also contains a dye that enables the progress of an electrophoretic run to be visible and

thus monitored. The loading buffer was prepared by adding 0.05 g of bromophenol blue to 75 ml

of glycerol in a 100 ml volumetric flask. The mixture was brought to volume with a 250 mM Tris

buffer (pH 7.2) . This Tris buffer was prepared by dissolving 7.571 g of Tris­

(hydroxymethyl)aminomethane with Millipore water in a 250 rn1 volumetric flask. The pH was

adjusted with 2 M HCl. The loading buffer was stored in the refrigerator.

• Ethidium bromide staining buffer

The use of a staining dye in electrophoresis is essential. The staining dye serves as a convenient

method to visualize DNA in agarose gels. For this purpose the fluorescent dye ethidium bromide

was used (see Section 2.4.4 for the structure of the dye). Ethidium bromide contains a planar

group, which enables it to intercalate between stacked bases of the DNA and this increases its

fluorescence compared to the unbound dye on illumination. Hence, the DNA in an agarose gel

can be detected by the fluorescence of the ethidium bromide bound to the DNA. The ethidium
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bromide was prepared as a stock solution of 2 mg/ml in PBS, which was stored in the refrigerator

and wrapped in aluminum foil to prevent dye degradation.

2.3.6 The DNA suitability assay

The purpose of this assay was to identify the three DNA forms. The $X174 DNA contained 85%

supercoiled DNA (Form I), 15% open circular DNA (Form 11) and no linear DNA (Form Ill) as

specified by the supplier (Sigma) . As the DNA may have degraded during transport and storage,

it was necessary to perform the suitability assay.

A Form III DNA marker was required for this assay to identify the linear DNA band. For this

purpose, the Providencia Stuarti i (Pst!) restric tion endonuclease was used . The Pst I enzyme has

the following recognition sequence: 5'-CTGCA/G-3'. Once the enzyme recognises this specific

sequence in the DNA, it will cleave DNA strands within this recognition site, thus converting the

DNA to the linear form.

A mass of 1 ug of $X174 DNA was digested with 20 units of Pst I in the digestion buffer

provided. The equivalent volume of DNA required for the suitability assay was calculated using

the following relationships, that is, one unit of DNA is equivalent to 50 ug of DNA and a volume

of 0.095 rnl as specified by the supplier (Sigma). The enzyme was supplied as 15 units/ul, so the

20 units of Pst I required was equivalent to a volume of 1.33 Jll. The assay used is shown in

Table 2.2.

Table 2.2: Suitability assay used to identify the DNA Forms of the $X174 DNA

EXPERIMENT CONTROL

PstI / J.1I 1.3 0.0

$X174 DNA / ....1 1.9 1.9

Pst 1 digestion buffer / J.1I 3.0 3.0

Water / J.1I 23.8 25.1

Total / J.1I 30.0 30.0

The experimental and control samples were prepared as shown in Table 2.2 and transferred to two

sterilized Eppendorf tubes using a Gilson P 100 micropipette. The tubes were then inserted in a

polystyrene slab and floated on a water bath, which had been prepared to 37 °C. The DNA was
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allowed to digest for 2 hours, after which 7 IIIof loading dye was added to each tube. The agarose

gel was prepared as discussed in Section 2.3.8. The experimental samples (Pst 1 digested cl>X174

DNA) were loaded into lanes 2, 4 and 6 while lanes 1, 3 and 5 were occupied by the control (no

Pst 1 enzyme). Volumes of 5, 10 and 15 III of each sample were loaded into lanes 1 and 2,3 and

4, and 5 and 6 respectively. The gel was run and analysed as described in Sections 2.3.9 - 2.3.10.

The results obtained are discussed in Section 3.2 .1.

2.3.7 The DNA· agarose gel nicking assay to detect DNA cleavage

The DNA - agarose nicking assay that was performed in this investigation is an adaptation of that

of Artuso et al. [1991]. Studies conducted by this research team demonstrated that a group of

nonsteroidal anti-inflammatory drugs having benzophenone-derived structures photosensitize the

formation of single strand breaks in double stranded cl>X174 DNA. From this group of

benzophenone-derived drugs, ketoprofen was chosen as the standard photocleaver to verify the

protocol implemented in this study. The preliminary experiment performed with ketoprofen and

cl>X174 DNA appears in Table 2.3. Once the protocol proved to be successful, this technique was

implemented to study the DNA photocleavage induced by the benzophenone-based DV

absorbers. A mole ratio of DNA bp: DV absorber of approximately 1:3 was used (refer to Table

2.5) since, according to Marguery et al. [1998], this proved to be most successful in inducing

SSB. A control experiment was set up in which cl>X174 DNA was irradiated alone for various

time periods and gel electrophoresis was performed (refer to Table 2.4).

Listed below are tabulations of the assays used in this investigation, followed by a brief outline of

the procedure.

Table 2.3: Experimental protocol for demonstration of ketoprofen photosensitization of

DNA cleavage.

Sample 1 2 3 4

cl>X174 DNA (75.4 J1M bp) /J.LI 5 5 5 5

Ketoprofen (45 J1M) /J.LI 0 5 0 5

PBS (5 mM, pH 7.4) /1lI 10 10 10 10

Irradiation period / min 0 0 30 30
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Table 2.4: Experimental protocol to demonstrate DNA photocleavage induced by the

irradiation of DNA alone (control).

Sample 1 2 3 4 5 6

cj>X174 DNA (75.41JM bp) /IJ.I 5 5 5 5 5 5

PBS (5 mM, pH 7.4) /IJ.I 15 15 15 15 15 15

Irradiation period / min 0 5 10 20 30 45

Table 2.5: Experimental protocol to demonstrate DNA photocleavage induced by the

irradiation of DNA in the presence of the benzophenone-derived DV absorbers

using a DV absorber DNA bp ratio of 3.

Sample 1 2 3 4 5 6

cj>X174 DNA (75.4 IlM bp)/1l1 5 5 5 5 5 5

Sunscreen (0.2 nM)/1J.I 5 5 5 5 5 5

PBS * (5 mM, pH 7.4) /IJ.I 10 10 10 10 10 10

Irradiation period I min 0 5 10 20 30 45

{*For benzophenone-3, the PBS was replaced by 50% (v/v) ethanol: 50% (v/v) PBS (refer to

section 2.3.5) .}

The samples for the individual nicking assays were prepared as stipulated in the tables above

(refer to Section 2.3.4 for the preparations of the individual solutions). The mixtures were placed

in sterilized NMR tubes, which served as the irradiation cells (see Section 2.1.3) and were

capped. The tubes were wrapped in aluminum foil and placed on ice. The samples were

irradiated with an Osram HBO 500W/2 high pressure mercury lamp in conjunction with a 10 mm

thick Pyrex filter for the specific time periods indicated in the tables above. The use of the lamp

is discussed in Section 2.1.1. Following irradiation, 5 III of a loading dye comprising of a mixture

of 250 mM Tris buffer (pH 7.2), 75% glycerol and 0.05% bromophenol blue was added to each

sample (for the preparation of the loading dye, refer to Section 2.3.5). The samples were then

loaded onto the gel as described in the following Section 2.3.8.

2.3.8 Running of the gel

A 0.8% agarose gel was prepared by adding 0.8 g of molecular grade agarose (Whitehead

Scientific) to 100 ml of the TBE buffer (see Section 2.3.5 for preparation of the TBE buffer). The
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agarose was dissolved by microwaving the mixture for a few minutes, until the contents just

started to boil. The agarose solution was cooled to about 50°C and then poured into the casting

tray , which had been sealed with adhesive tape. The comb was inserted into the mold to form the

wells (refer to Section 2.3.2 for the electrophoresis apparatus used).

The gel was allowed 45 - 60 minutes to set at room temperature, after which the comb was

carefully removed. The adhesive tape on the sides of the casting tray was removed before the

casting tray was placed onto the gel platform in the electrophoresis tank . The gel apparatus was

filled with TBE buffer solution such that the gel was covered to a depth of about 1 mm.

A volume of 25 III of each sample was then loaded into the wells of the submerged gel using a P

100 Gilson micropipette. A fresh sterilized pipette tip was used for each sample transfer. After

all the samples had been loaded the lid of the gel tank was closed and the electrical leads were

attached. Electrophoresis was performed with a power supply set at 100 V and 100 mA.

When the bromophenol blue front reached the end of the gel, usually about 1.5 - 3 hours after the

start of the run, electrophoresis was stopped. The gel was removed and placed in a staining bath

where it was stained for 30 - 40 minutes in an aqueous solution of ethidium bromide (250 III in

500 ml of water). This enabled the ethidium bromide to bind to the DNA such that it would

fluoresce under UV light, thus allowing visualization of the DNA bands. During the staining

process the staining bath was placed on a flask shaker (Scientific Engineering) to shake the gel.

After the gel was stained, it was examined under UV light and photographed as described in

Section 2.3.9. The bands were then quantified as described in Section 2.3.10.

2.3.9 Viewing and photography of the gels

To view and photograph the DNA bands in the agarose gel, a UV transilluminator connected to a

camera apparatus was required, which in turn was connected to a computer installed with the

imaging software.

The transilluminator provides the source of UV light which is required for the ethidium bromide

stained DNA bands to be visualized. Ethidium bromide fluoresces when bound to DNA and

illuminated with light of a wavelength of 302 nm, thus enabling DNA bands in an agarose gel to

be detected. The transilluminator consists of a black box, with a Perspex sheet on the top and the

UV source within. Two such gel photography systems were used, as they became available.

These are the Syngene transilluminator connected to a Vacutec camera system (Figure 2.9) and
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the Hoefer Scientific transilluminator connected to the CCTV camera (Matsushita

Communications) (Figure 2.10).

Camera

Transilluminator

Figure 2.9:

Camera

Transilluminator

The Syngene transilluminator connected to a Vacutec camera system.

Figure 2.10: The Hoefer Scientific transilluminator connected to the CCTV camera

(Matsushita Communications).
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The viewing and photography of the gels was carried out in a dark room to limit the amount of

light present. When viewing the gel, it was placed on the DV transparent perspex sheet, which

serves as a DV-pass visible blocking filter allowing DV light to impinge on the gel. The attached

camera was then set up and focused such that a picture with best resolution was obtained on the

computer screen. After the best picture of the gel had been captured, the photograph could be

further manipulated using the imaging software to emphasize certain aspects of the gel.

2.3.10 Quantification of the DNA bands

After the gels had been photographed, the bands were quantified to determine the relative

composition of DNA in Form I (supercoiled), Form 11 (open circular) and Form III (linear).

Initially this was carried out by means of the Hoefer Scientific densitometer GS 300 (Figure

2.11) . When using this densitometer the negative films of the gel photographs had to be scanned

in the transmittance mode. During the scan, the areas of the DNA bands in Forms I, 11 and III

present in each lane were plotted on a graph plotter. The areas under the peaks were then cut out

and weighed . This method was disadvantageous since it was time-consuming and allowed for

human error and inaccuracies, therefore another method for DNA quantification was sought.

Figure 2.11: The Hoefer Scientific densitometer GS 300 (A) connected to a plotter (B).
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The Scion Image software was purchased since it enabled direct quantification of the DNA bands

to be carried out. This software was used in conjunction with the Hoefer Scientific

transilluminator that had been connected to the CCTV camera (Figure 2.10). This system proved

to be very efficient and accurate. It uses the logarithmic relationship between optical density and

brightness to calculate the concentration of each band in an image. Each lane had to be marked

using the appropriate software tools and the area under the peaks was then plotted.

The expressions for the percentage of DNA in Forms I, II and III following exposure to DV

irradiation were adapted from Croke et al. [1988] and are shown below.

[IF] [I] x 100
[I] + [IT]+ [III]

[lli] = [IT] x 100
[I] + [IT]+ [ill]

[Illi] [ill] x 100
[I] + [IT] + [ill]

(2.5)

(2.6)

(2.7)

where [1], [Il] and [Ill] represent DNA Forms I, II and III respectively, while [IF], [IIF] and [IIIF]

are the fractional amounts of Form I DNA (supercoiled), Form 11 DNA (open circular) and Form

ill DNA (linear) respectively. This enabled normalization of the DNA Forms, which was

necessary to compensate for variations in the volumes loaded in each lane.

When ethidium bromide intercalates with DNA, the dye causes an unwinding of the supercoiled

DNA. This affects the centrifugal sedimentation rate and the electrophoretic mobility of DNA

Form I (Boyer [1993]). Because ethidium bromide binds less efficiently to supercoiled DNA than

to nicked and to linear DNA molecules, various correction factors have been used to estimate the

relative proportions of Form I DNA. Roots et al. [1985] obtained a correction factor of 1.25,

while Lloyd et al. [1978] and Ciulla et al. [1989] obtained values as high as 1.44 and 1.66

respectively. According to Croke et al. [1988] and Masnyk & Minton [1991], however, these

corrections factors proved to be negligible. Since the variation in the published values for this

correction factor is large, and the use of values determined by others under different gel, buffer or

staining conditions may lead to significant errors in the quantitation of Form I, the use of the

correction factor was omitted from all calculations in this work.
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The number of SSB was calculated from the following expression (Hertzberg and Dervan

[1984]):

SSB = 10

I
(2.8)

where 1
0

is the initial concentration of Form I DNA and I is the concentration of Form I DNA

after irradiation in the presence of the sunscreen absorbers.

The mean and standard deviations for the percentages of each DNA form as well as for the

number of SSB were calculated and plotted against irradiation time. The effect of the sunscreen

absorber was determined by comparing the DNA cleavage caused in its presence to that when it

was absent (control). The gel scans and the resultant DNA cleavage induced by each of the

benzophenone-derived compounds investigated in this study are discussed in Section 3.2.

2.4 Fluorescence Spectroscopy

Fluorescence spectroscopy was the second technique used to detect DNA damage photoinduced

by the benzophenone-based sunscreen absorbers. This technique utilized displacement of

ethidium bromide from the DNA base pairs as an indication of DNA damage. The DNA used for

this series of experiments was calf thymus DNA. In this section, a brief introduction to

fluorescence spectroscopy (Section 2.4.1), a description of the instrumentation that was used

(Section 2.4.2) and the precautionary measures that were taken to ensure the success of this

technique (Section 2.4.3) are discussed. The fluorescent intercalator displacement techniques and

assay to detect DNA cleavage are outlined in Sections 2.4.4 - 2.4.6.

2.4.1 An introduction to fluorescence spectroscopy

Fluorescence spectroscopy is an important and powerful analytical technique for the investigation

of biological material. Until the last decade radioactive labeling procedures and UV

measurements were preferred whenever only the smallest amounts of a sample were available.

However, recently, the development of sophisticated optical instruments, the supply of new

fluorescent dyes, as well as the employment of lasers instead of lamps has turned fluorescence

spectroscopy into a superior method. This technique owes its superiority to its sensitivity, which

has reached an extremely high level. Fluorometric methods can detect concentrations of

substance as low as one part in ten billion, with the sensitivity 1000 times greater than that of

most other spectrophotometric methods (Guilbault [1973]). The process of fluorescence emission
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occurs in a time scale between nanoseconds and milliseconds. Since in this time scale many

important and dynamic events take place, this technique can provide information on a molecule

that most other techniques cannot.

Upon absorption of a photon of light, a molecule goes from the ground state to the first excited

singlet state as discussed in Sections 2.2.1. Now the excited state is short-lived and there are

several ways an excited molecule can give up its excitation energy (refer to Section 1.4.1 for

more details). One such de-excitation process is where the molecule rapidly loses its excess

vibrational energy by collision with other excited molecules, and falls to the lowest vibrational

level of the first excited state, in a process called collisional deactivation (depicted by short wavy

arrows between vibrational energy levels in Figure 2.12). If all the excess energy is not further

dissipated by collisions with other molecules, the electron returns to the ground electronic state,

with the emission of a photon. This phenomenon is called fluorescence.

Loss of vibrational energy
by collision

.§....
Eo
Q

.!
<

hv 11
".""" I

!
!
:
i
!

Ground
state, So

INTERATOMIC DISTANCE

Figure 2.12: Schematic energy - level diagram showing fluorescence.
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Fluorescence is generally complete after about 10-5 seconds (or less) from the time of excitation

(Skoog et al. [1996]). Because some of the energy is lost in the brief period before emission can

occur, the emitted energy (fluorescence) is lower and hence of a longer wavelength than that of

the energy that was absorbed (absorption). Therefore fluorescence is always monitored at a

longer wavelength than the excitation wavelength.

2.4.2 Instrumentation for fluorescence spectroscopy

A fluorescence spectrophotometer consists of the same basic components as found in an

absorption spectrophotometer, i.e., the light source, the wavelength selectors, a sample holder, a

detector system and a readout. However, one major difference separates these two

spectrophotometric techniques, i.e. for fluorescence the sample is measured at a 90° angle with

respect to the source as apposed to 180 QC for absorption spectroscopy (Figure 2.13).

Primary
Monochromator

Secondary
Monochromator

Readout

Figure 2.13:

Lamp

Schematic diagram of the optical components of a typical fluorescence

spectrometer.

Energy from the light source first passes through the primary or excitation monochromator before

it is transmitted to the sample in the sample holder. This serves to restrict the wavelength, which

is important, since it greatly enhances both the selectivity and the sensitivity of the instrument.

Fluorescence radiation emitted from the sample is propagated in all directions, but it is most

conveniently observed at right angles to the excitation beam. At other angles increased scattering

from the solution and the cell walls may cause large errors in the intensity measurement. This

serves to limit the amount of incident light striking the detector and is characteristic of

fluorescence spectroscopy. Only light emitted from the sample reaches the detector, so the
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detector will register zero signal when no fluorescence occurs and an increase in signal indicates

emission from the sample. This is the major reason for the sensitivity of this technique.

Energy emitted from the sample reaches the detector after passing through the secondary or

emission monochromator. The monochromators consist of an entrance slit, a collimating mirror

to produce a parallel beam of radiation, a grating to disperse the radiation into its component

wavelengths and an exit slit (Skoog et al. [1996]). The slit widths are the most important

parameter determining the resolution of the instrument. The signals from the detectors are then

processed by the instrument electronics and are displayed on a computer screen;

For this study fluorescence was measured with a Perkin Elmer LS 50B luminescence

spectrometer (Figure 2.14), using a quartz cell with a path length of 1 cm and a xenon discharge

lamp as the light source.

Figure 2.14: Perkin Elmer LS 50B luminescence spectrometer.

The excitation and emission slits were selected to be 10 nm and 5 nm respectively as these gave

the best resolution. A high scan speed of 100 nm min-I was used since the compounds under

investigation reacted photochemically. The operation of the instrument was simple and required

only a 50 second initializing period after which a measurement could be taken.

2.4.3 Precautionary measures

Fluorescence spectroscopy is an extremely sensitive technique, therefore considerable

precautions had to be taken to ensure valid results.
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Among the parameters examined, the first was the concentration effect. The concentration of the

fluorescent species (C) and its fluorescence (F) is related by the following equation:

F= KC (2.9)

When the fluorescence of a species is directly proportional to its concentration by the constant K,

then Beer's law is obeyed. But when C becomes large enough that the absorbance is greater than

0.05, linearity is lost and this relation does not hold. This effect is called self-absorbance in

which the analyte molecules absorb the fluorescence produced by other analyte molecules. At

very high concentrations little of the radiation source actually penetrates the main bulk of the

solution since most of it is absorbed by the solution confined to the front surface of the cuvette.

The fluorescence emission becomes distorted and light scattering also becomes important. It was

therefore important to measure the absorbance of the fluorescent species, before fluorescence

was measured and to ensure that the absorbance was below 0.05 so as to prevent self-absorbance

of the fluorescent species. If the absorbances of the solutions prepared were larger than 0.05

then the appropriate dilutions were made.

Another problem that is frequently encountered in fluorescence spectroscopy is quenching.

Quenching is the reduction in the intensity of fluorescence due to a competing deactivating

process, which results in a specific interaction between the exited species and another substance ,

as represented by Equation 2.10 below.

M*+Q M+Q* (2.10)

where M* represents fluorescent species M that is quenched by another species Q.

One of the most notorious quenchers is oxygen. Oxygen present in a solution at a concentration

of 10-3 M can reduce fluorescence of a typical compound by 20% (Guilbault [1973]). It was

therefore necessary to deaerate all solutions by bubbling nitrogen through the solutions for 10 _

15 minutes before irradiation . This was sufficient to remove the oxygen present in solution

(Guilbault [1973]).

The DV radiation used for excitation may cause photochemical changes in the fluorescent

compound, thus degrading its fluorescence emission. To overcome this problem, the longest

wavelength radiation was always chosen for excitation since it had the lowest energy. Also the

standard solutions of the fluorescent compounds were stored in opaque bottles, or if not, they

were wrapped in aluminum foil to protect them from sunlight and fluorescent laboratory lights.
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Temperature control of the fluorescent compounds also had to be exercised. This was important

since in most molecules the quantum efficiency of fluorescence decreases with increasing

temperature. This is due to the increased frequency of collision at elevated temperatures, which

improves the probability of collisional relaxation. The change in fluorescence is normally 1%

per 1°C, however, in some compounds it can be as high as 5% (Guilbault [1973]) . Therefore for

maximum precision and accuracy it was important to take all measurements at the same

temperature. In this study all samples were left to equilibrate to 25°C before fluorescence

measurements were taken.

It was also necessary to ensure that all glassware and solutions were free of impurities since their

presence can cause interferences. All the glassware, solvents and buffers were cleaned and

treated in the same way as for agarose gel electrophoresis (Section 2.3.4). It was also very

important that high quality solvents were used that were free of traces of contaminants which

would interfere with fluorescence. Buffers were also not stored in plastic containers since

leaching of organic additives could occur.

Finally, accurate pipetting and thorough mixing are critical for reproducible results. However, it

was important to ensure that no air bubbles were present in the solution when fluorescence was

measured. Air bubbles can cause scattering of light leading to inaccurate results.

2.4.4 The fluorescent intercalator displacement technique

Ethidium bromide (Figure 2.15) is a cationic dye that interacts with supercoiled DNA by

intercalation. This fluorescent complex between ethidium bromide and DNA was first reported

by Lepecq and Paoletti in 1967. When ethidium bromide is intercalatively bound to DNA a large

increase in fluorescence is observed with intensity from 20 to 100 times that of the free dye

(Strothkamp K. & Strothkamp R. [1994D. The intercalation model proposed by Lerman et al.

[1961] suggests that the strong mode of binding of the ethidium bromide to DNA results in the

intercalation of the phenanthiridium ring between adjacent base pairs on the double helix.

In the last decade a variety of drugs have been shown to interact with DNA in a similar manner

(Rai et al. [1993] and Arrnitage et al. [1994]). One of the most successful techniques to detect

drug-DNA binding has been the fluorescent intercalator displacement (Fill) technique. The Fill

assay provides a rapid and readily reproducible measure of drug-DNA binding and interaction

and requires only milligram quantities of drug and microgram quantities of DNA (Cain et al.

[1978]).
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Figure 2.15: Chemical structure of ethidium bromide.

The FID technique utilizes competition of an added drug with ethidium bromide for DNA

intercalation sites. Addition of a DNA binding compound would result in a decrease in

fluorescence due to the displacement of the ethidium bromide bound intercalator. Several forms

of DNA damage (including base intercalation, base oxidation, base liberation etc.) are believed

to contribute to the loss of fluorescence. The fluorescent yield reduces to about 50% upon DNA

denaturation in neutral solution and becomes very weak when intramolecular hydrogen bonds in

single strands are further destabilized (Morgan & Pulleyblank [1974]). Thus the DNA-ethidium

bromide fluorescence provides a convenient probe to detect DNA damage. The percentage

fluorescence decrease is directly related to the extent of DNA binding.

For this assay calf thymus DNA was the DNA of choice as compared to the <j>X174 phage DNA

that was used for the agarose gel electrophoresis experiments. This was due to the fact that calf

thymus DNA is double stranded in contrast to the phage DNA that is single stranded. Due to the

nature of the interaction between ethidium bromide and DNA, a double helix DNA was required

to allow intercalation of the ethidium bromide , therefore calf thymus DNA was used.

The key to the assay is to employ an ethidium bromide concentration that saturates the DNA.

This ensures that all the DNA intercalation sites are occupied by the intercalator (ethidium

bromide) and therefore addition of a DNA binding compound results in the displacement of the

intercalator from the DNA and not in binding at a vacant site. The molecular modelling studies

of ethidium bromide intercalation with DNA have revealed that on binding, the base pairs in the

immediate region are twisted by 10°, giving rise to an angular unwinding of -26°, while the

intercalative base pairs are tilted 8° relative to one another (Sobell et al. [1977]). These changes

in DNA conformation indicate that at maximal drug-DNA ratios, intercalation is limited to every

other base pair, i.e. a neighbour exclusion model (Geall & Blagbrough [2000]). Also binding of

the dye is saturated when one dye molecule is bound for every four or five base pairs (Nordmeier

[1992]).
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Studies performed on the AD assay have revealed that the assay is expected to perform best at a

1:2 ethidium bromide: DNA base pair ratio where all the intercalation sites are occupied (Boger

et al. [2001]). The failure of this assay would be caused by using an inappropriate ethidium

bromide : DNA ratio . Using a small ethidium bromide: DNA ratio (e.g. 1:4) would

underestimate the binding of the compound since not all available intercalation sites would be

occupied and hence compound binding could occur at sites where less or no intercalator would

be displaced and would not significantly affect the fluorescence intensity. On the other hand, if

the ethidium bromide concentration is raised above the optimal 1:2 ethidium bromide : DNA

ratio (e.g. 2:1) then the fluorescence decrease would diminish due to an enhanced background

fluorescence of the unbound ethidium bromide. Another important parameter for the assay is the

compound concentration. The use of a near 6:1 ratio of DNA base pairs to compound, according

to Boger et al. [2001], was necessary to provide the desired robust intensity of this assay .

For the success of the assay it was also important to ensure that binding took place exclusively at

intercalation sites and not at the phosphate groups. At high salt concentration (> 0.5 M NaCl),

ethidium bromide binds exclusively by intercalation with DNA with a resulting enhanced

fluorescence (Geall & Blagbrough [2000]). However, at low salt concentration (::;; 10 mM) ,

ethidium bromide can bind to the outside of the helix, where the fluorescence intensity is low. It

was therefore necessary to ensure that the salt concentration was relatively high. This was

provided by use of the Tris-HCl buffer, which ensured a relatively high salt concentration and

minimized electrostatic binding of the benzophenone-based sunscreen absorbers to the

phosphates.

The variable that is most crucial to the success of the assay, and most likely to be responsible for

avoidable errors, is the quality of the DNA. In addition to the obvious concern of its constitution

and purity, its concentration is critical. This was determined by absorption spectroscopy as will

be discussed in Section 2.4.5.

Finally, the sensitivity of the assay is also dependent on the chosen excitation wavelength and the

wavelength selected to monitor the fluorescence of ethidium bromide. Researchers in this field

have used various excitation wavelengths. These include direct excitation of ethidium bromide

at 540-546 nm (by Boger et al. [2001], Rai et al. [1993], Hansen et al. [1983], Cain et al. [1978]

and Reinhardt & Krugh [1978]), 520-525 nm (by Birnboim & Jevcak [1981] and Strothkamp K.

& Strothkamp R. [1994]), as well as 510 nm (by Armitage et al. [1994] and Mohtat et al.

[1998]). In addition Geall & Blagbrough [2000] reported that indirect excitation of ethidium

bromide at 260 nm by energy transfer from the DNA produces a more sensitive assay. When

choosing the excitation wavelength it is important to ensure that the absorbance of the ethidium
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bromide at this wavelength is below 0.05 units to prevent self-absorbance as discussed in Section

2.4.3, yet not too small such that fluorescence is not detected. When choosing the wavelength to

monitor fluorescence , it is important to ensure that only the ethidium bromide absorbs or

fluoresces at the chosen wavelength and that none of the other compounds used in the assay do

(i.e. the benzophenone-based compounds, buffer and DNA).

2.4.5 Solutions required for the FID assay

A solution of 1 x 10-4 M DNA bp containing 1.67 x 10.5 M of the sunscreen compound, as well as

a solution of 0.68 x 10-5 M of ethidium bromide was required for the assay. These concentrations

ensured that a 1: 2 ethidium bromide: DNA bp ratio as well as a 6: I ratio of DNA bp to

compound was maintained. The success of the assay was dependent on the concentrations used

and therefore it was important to ensure that all solutions were accurately prepared. Preparation

of all the solutions required for the assay will now be discussed.

1. Tris • HCl buffer

Firstly, the buffer used for this assay was the Tris-HCI buffer, as it is commonly known. The

Tris-HCI buffer (or a buffer of similar composition) has been the buffer of choice of many

researchers in this field (Strothkamp K. & Strothkamp R. [1994], Rai et al. [1993], Hansen et al.

[1983], Birnboim & Jevcak [1981] and Reinhardt & Krugh [1978]). This buffer not only

approximates physiologically relevant conditions (pH 7-8) but also represents a relatively high

salt concentration, to minimize simple electrostatic binding to the phosphate backbone of the

DNA. This buffer was comprised of 0.1 M Tris, 0.1 M NaCI and a volume of HCI to give a pH

of 8. Preparation of the buffer has been described in much detail in Section 2.2.3. This buffer

was used in the preparation of the other solutions required for the FID assay.

2. Solution containing calf thymus DNA (1 x 10-4 M DNA bp) and sunscreen

(1.67 x 10.5 M)

A solution containing 1 x 10-4 M calf thymus DNA as well as 1.67 x 10.5 M sunscreen was

prepared, with a total volume of 20 ml in a volumetric flask. Preparation of this solution required

initially the preparation of individual stock solutions of each component, as discussed below and

then mixing using the appropriate dilution factors as determined by absorption spectroscopy to

give the final solution. Large volumes were not prepared since DNA is known to degrade when
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stored for long periods. Preparation of the individual solutions as well as determination of the

dilution factors is discussed below.

Preparation of the DNA stock solution:

A concentrated stock solution of calf thymus DNA was prepared by dissolving approximately 5

mg of calf thymus DNA in about 20 ml of Tris-HCI buffer in a sterilized stoppered 100 ml

volumetric flask. Since the calf thymus DNA used was fibrous in nature, sterilized tweezers had

to be used to handle the DNA when weighing. The handling period of the DNA was minimized

to prevent contamination and degradation of the DNA by impurities. Dissolving the DNA .

required stirring the solution using a magnetic stirrer in the cold (2-9°C), until the solution

appeared clear. This usually required 2-3 days of stirring in the cold.

Calf thymus DNA is known to contain many contaminants such as protein, water, sodium and

others and therefore the concentration of the pure DNA in the stock solution had to be determined

accurately. Although the percentages of sodium and water were specified by the supplier

(Sigma), these could not be relied on since the water content may change on storage. Absorption

spectroscopy was therefore used to determine the concentration of pure DNA in the stock

solution. A Cary lE UV-visible spectrophotometer and a matched pair of quartz cuvettes with a

path length of 1 cm were used to measure the absorbance of the DNA in the stock solution. The

instrument was zeroed with Tris-HCl buffer. The absorbance was measured at 260 nm, since

pure DNA absorbs at this wavelength. A 10-fold dilution was made to the stock solution such

that the absorbance at 260 nm was below one absorbance unit and hence obeyed the Beer

Lambert law (Equation 2.3 in Section 2.2.3). The resultant absorption spectrum of the calf

thymus DNA solution appears in Figure 2.16.

From this spectrum, the absorbance of the dilute DNA solution at 260 nm was determined to be

0.6239 units. It is generally accepted that calf thymus DNA with an absorbance of 1 unit at 260

nm, has an average concentration of 0.050 mg ml? (www.tumerdesigns.com/t2/doc/appnotes/s­

0046 .pdf, Date accessed: 2 December 2002). Using this conversion, this corresponded to 0.03120

mg ml -I for the lO-fold diluted stock solution and therefore 0.3120 mg ml" for the stock DNA

solution. A DNA concentration of 1 x lO-4 M in DNA bp was required for this assay. Using a

molar mass of 660 g mol" for I bp of calf thymus DNA as supplied by the manufacturer, this

corresponds to 0.066 mg ml" of DNA. Hence the dilution factor was determined to be 4.727.

DNA purity and quality were critical for the success of the FID assay. Protein is a common

contaminant of DNA and it was necessary to establish whether the protein content was within the
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Figure 2.16: Absorption spectrum of a 10-fold diluted solution of calf thymus DNA with a

concentration 0.03120 mg mi'.

acceptable limits to classify the DNA as pure. Proteins absorb DV light at 280 nm, therefore by

comparing the ratio of the A260 reading (the wavelength at which pure DNA absorbs) to that at

A28o, the presence of protein in the DNA solution can be evaluated. An A2fdA28o ratio of 1.8

orgreater indicates pure DNA. This analysis using the A2fdA28o ratio was first described by

Warburg & Christian [1942] to assess protein purity in the presence of nucleic acid contaminants.

Today, this method is commonly used to determine both nucleic acid purity and yield. The

absorbance at 280 nm for the 10-fold diluted stock solution was 0.3379 units, therefore the

A2601A28o ratio was calculated to be 1.86. This indicated that the DNA solution was of high purity

and therefore could be used for the FID assay.

Preparation ofthe sunscreen stock solution:

The mass required to prepare 1.67 x 10-5 M sunscreen was too small to be weighed. A 20 ml

concentrated solution of 1 x 10-4 M sunscreen was prepared by dissolving the appropriate mass of

sunscreen in Tris-HCl buffer. This corresponded to a dilution factor of 5.988.

Preparation ofthe final solution with 1 x 10-4 M DNA bp and 1.67 x 10-5 M sunscreen:

To prepare 20 rnl of solution required 4.23 ml of DNA stock solution (dilution factor =4.727 as

discussed above), 3.34 ml of sunscreen stock solution (dilution factor = 5.988) and 12.43 mlof

Tris-HCl buffer. For the control samples the 3.34 ml of sunscreen solution was replaced by Tris­

HCl buffer, and in the case of benzophenone-3 50% (v/v) ethanol : Tris-HCl was used.
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3. Ethidium bromide solution (0.68 x 10.5 M)

For the FID assay a 0.68 x 10.5 M solution of ethidium bromide was required. Since the mass

required was too small to be weighed, a concentrated solution of 4 x 10.5M was prepared and

diluted to the required concentration . The solution of ethidium bromide was prepared by

dissolving 0.000789 g of ethidium bromide in a 50 ml volumetric flask with Tris-HCI buffer. The

concentration of this solution was determined accurately by measuring the absorbance at 480 nm

and using a molar absorption coefficient of 5 600 M·I cm" (Strothkamp K & Strothkamp R.

[1994]). The Cary lE DV-visible spectrophotometer and a matched pair of quartz cuvettes with a .

path length of 1 cm were used. The instrument was zeroed with Tris-HCI buffer. A 5-fold

dilution of the ethidium bromide stock solution was made such that the absorbance at 480 nm was

below one absorbance unit and hence obeyed the Beer Lambert law. The resultant absorption

spectrum of the diluted ethidium bromide stock solution appears in Figure 2.17.

From the absorption spectrum of the 5-fold diluted ethidium bromide solution in Figure 2.17, the

absorbance at 480 nm was determined to be 0.04898 . Using the Beer Lambert law (Equation 2.3

in Section 2.2.3), where the molar absorption coefficient (E) of ethidium bromide at 480 nm is 5

600 M-I cm" (as supplied by the supplier) a~d the path length (b) was 1 cm, the concentration of

the 5-fold diluted solution was calculated to be 8.65 x 10'6M. Hence the concentration of the

concentrated stock ethidium bromide solution was calculated to be 4.38 x 10'5M. Since a 0.68 x

10-5 M solution of ethidium bromide was required, this corresponded to a dilution of 6.43 from

the stock solution. A total volume of 100 ml of ethidium bromide was prepared by dissolving

15.56 ml of the stock ethidium bromide solution (4.38 x 10,5 M) with 84.45 ml of Tris-HCI

buffer.

2.4.6 The FID assay for DNA cleavage

Binding of the benzophenone-based DV absorbers to the DNA bases would reduce the number of

available binding sites for the intercalator ethidium bromide and would result in a decrease in the

fluorescence intensity for an ethidium bromide-DNA solution, as discussed in Section 2.4.4.

The Fill assay employed in this study is an adaptation of the work done by Boger et al. [2001]

because this group of researchers utilized optimum conditions for the assay. However, they

utilized a fluorescent plate reader that was able to analyse microvolumes (lOO III at a time) of

solution. The Perkin Elmer LS 50B luminescence spectrometer that was available for this study

was unable to analyse such small volumes. For the purpose of this study all the volumes utilized
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Absorption spectrum of a 5-fold diluted solution of ethidium bromide (8.65 x 10'6
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by Boger et al. [2001] were increased by 30-fold to accommodate the 3 ml quartz cuvette (l cm

path length) that was available.

For the Fill assay, samples containing 0.36 ml of 1 x 10'4M DNA bp and 1.67 x 10'5 M of the

sunscreen compound of interest were irradiated at one minute intervals for a total irradiation

period of 30 minutes (refer to Section 2.4.5 for preparation of the solutions). Irradiation was

carried out with the Osram HBO 500W/2 high pressure mercury lamp in conjunction with a 10

mm thick Pyrex filter, using a 10 mm pathlength capped irradiation cell. Two control

experiments were also conducted in the absence of any DV absorber. For the control samples.

0.36 ml of a solution only containing 1 x 10-4 M calf thymus DNA was used. The first of these

controls was prepared in Tris-HCI buffer. and served as the control for all the DV absorbers

except benzophenone-3. For benzophenone-3, the control required dissolving the calf thymus

DNA in 50% (v/v) ethanol: Tris-HCl buffer. After each irradiation, the irradiated sample was

removed from the irradiation cell and added to 2.64 ml of 0.68 x 10-5 M ethidium bromide in a

fluorescence quartz cuvette. The sample was then incubated for 30 minutes by placing the

cuvette in the sample holder of a DMS 300 DV-VIS spectrophotometer that was attached to a

water-cooling system that had been equilibrated to 25°C. The fluorescence of the sample was

then measured with the Perkin Elmer LS 50B luminescence spectrophotometer. The samples

were scanned from 525 to 700 nm with excitation at 510 nm. The emitted fluorescence was

monitored at 586 nm.
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Due to the poor reproduciblity of this assay, for each of the DV absorbers under investigation the

assay was performed at least in duplicate or triplicate. The percentage of binding sites remaining

at a given time (t) was then calculated from the following equation (Annitage et al. [1994)):

Percentage binding sites remaining =
(2.11)

where 10' 110 and louf correspond to the fluorescence intensity of the solution at 586 nm before

irradiation, after t minutes of irradiation, and of the buffer respectively. The average and the

standard deviation for the percentage binding sites remaining after irradiation were then plotted.

The results obtained are discussed in Section 3.3.

2.5 Computational Modelling

Computational modelling can be used to determine the energies and geometries of products,

intermediates and transition states. In order to assess whether the benzophenone-based DV

absorbers would be able to intercalate with DNA bases, the lowest energy geometries of these

compounds were determined by means of computational modelling. By using an appropriate

computational model, it can be ascertained whether these structures are planar (such as the

common DNA intercalator, anthraquinone), in which case they would have a higher probability of

intercalating with DNA, or non-planar, where intercalation would be limited or impossible.

There exist three different computational methods, namely ab initio, semi-empirical and

molecular mechanics (Foresman & Frisch [1996], Hehre et al. [1998] and Leach [1996)). The

first two methods are concerned with quantum mechanics and provide solutions to the

Schrodinger wave equation, while the latter describes molecular properties in terms of energy

potentials . The Schrodinger wave equation is represented by Equation 2.12 below:

Hlf/=Elf/ (2.12)

where H is the Hamiltonian operator to the wavefunction, 'If is the wavefunction and E is the

corresponding energy, which is known as the eigenvalue in quantum terms,
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Ab initio, a Latin phrase, meaning from first principles, solves the wave function from basic

principles. These calculations are theoretically pure and the most accurate that can be performed

for computational modelling, however, they are most time-consuming and expensive, requiring

large ultra-speed computers. In contrast, semi-empirical methods use approximations to simplify

the solution to the Schrodinger equation so that it can be solved quickly. These approximations

are obtained from experimental results and/or high level ab initio calculations. In addition, this

method is relatively cheaper (several orders of magnitude) with regard to computer resources and

time. Lastly, molecular mechanics uses force fields to determine energies and structures of

normally much larger systems. Force fields include parameters such as bond lengths, angles, and

charges, etc., that are also obtained from experiment and/or ab initio calculations. Provided the

force field has been verified as producing acceptable answers, one can normally get fairly

accurate results with molecular mechanics within a very short time.

Semi-empirical calculations were chosen to find the lowest energy structures of the different

molecules studied, with the exception of Eusolex 232, due to the ease of calculation. This method

is extremely fast since it refrains from evaluating complex integrals and is able to generate results

in minutes. The semi-empirical method has up to ten different approximations, from which the

PM3 approximation (or the parametric method number 3) was chosen. The PM3 approximation

is used primarily for organic molecules and has proved to be surprisingly accurate. For Eusolex

232, the semi-empirical calculation failed to give an accurate result so for this structure ab initio

methodology was used.

2.5.1 Determination of the lowest energy, most stable structure for each

UVabsorber

The program used was Hyperchem and a conformational search was employed to find the low

energy structures of each DV absorber. For each compound, energy scans were performed

around a chosen dihedral angle(s) (refer to Section 3.4 for more details) . The program has a

conformational search algorithm, which varies the required dihedral angle(s) randomly to all

possible values (+180° to -180°). An input structure is automatically created with random

dihedral angles, and the structure is then optimized without any constraints. A new set of

dihedral(s) is generated and the process is repeated. The program automatically overlays the

products found and tests them for unique versus similar structures . In order to determine if the

planar structure was stable, the required dihedral angles were then fixed (constrained) to force a

flat structure and the energy obtained was compared to the lowest energy obtained from the

optimization process.
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To obtain the most stable structure for each of the DV absorbers under investigation, the energy

profile for the different dihedral angles was of importance. The potential energy of a molecule is

at a minimum for the most stable conformation and reaches a maximum when it is unstable

(Morrison & Boyd (1992]). Depending on the value of the dihedral angle(s), the energy

minimization algorithm might be trapped in a local minimum or the global minimum. This can

be illustrated for butane as shown in Figure 2.18. A global minimum (the lowest point on the

curve) , corresponding to the anti-conformation (for the case of butane), as well as two local

minima (at slightly higher energies), corresponding to the gauche conformations, can be seen.

The gauche conformation has a slightly higher energy and is slightly less stable than the anti­

conformation due to steric repulsion between the methyl groups . Also the maximum seen in this

graph (4.4-6.1 kcal above the local minima) usually corresponds to an intermediate structure, i.e.

a transition state, and it is representative of an unstable conformation.

A clear pattern was observed for each of the benzophenone-based structures studied after several

starting structures were generated and optimized. The low energy structures were then optimized

using PM3 for all the DV absorbers apart from Eusolex 232 and rank ordered by energy. For the

latter, ab initio calculations were required, which took into account the electron delocalisation

that contributed very strongly to the lowest energy structure for this DV absorber. The lowest

energy structures corresponding to the most stable state for each DV absorber will be discussed in

Section 3.4.

GaucheGauche

CH 3

Anti

Dihedral angle I degrees

Figure 2.18: Potential energy changes during rotation about the C(2)-C(3) bond for n-butane

showing a global ( •••••••• ) and local ( - -) minima (Morrison & Boyd [1992]).
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Chapter 3 ·

RESULTS AND DISCUSSION

The benzophenone-derived group of sunscreens is amongst the most commonly used sunscreen

absorbing agents on the market today. However, the discovery that some DV absorbers

containing the benzophenone backbone, for example, ketoprofen, amongst others not only form

thymine dimers when irradiated with DNA, but also photosensitize DNA cleavage is of concern

and has put the safety of the benzophenone sunscreens under the spotlight. In addition, it has

been well established that the parent compound, benzophenone, is a potent free radical

generator. It also induces thymine dimer formation when irradiated with DNA in vitro. The

purpose of this investigation therefore was to determine if a group of benzophenone-derived

sunscreens, that is, benzophenone-l, benzophenone-3, benzophenone-4, Uvinul DS49 and

Eusolex 232 have the ability to photosensitize the cleavage of supercoiled DNA to the relaxed

circular and linear forms. Binding of the DV absorbers to the DNA by intercalation has also

being a focus of this investigation. Also included in this study were the parent compound,

benzophenone, as well as the known DNA photocleaver, ketoprofen .

The experimental techniques employed to generate the necessary data have all been described in

Chapter 2. Briefly, aqueous solutions of supercoiled DNA were irradiated in the presence of

aqueous solutions of the benzophenones at wavelengths greater than 300 nm with an Osram 500

W/2 high pressure mercury lamp (Section 2.1). All solutions were buffered to pH 7-8 to

maintain physiological conditions. The irradiated samples were analyzed by two separate

techniques: these are gel electrophoresis (Section 2.3) and fluorescence spectroscopy (Section

2.4). The photostabilty of the DV absorbers have also been investigated (Section 2.2). Finally

computational modelling was conducted to determine the lowest-energy geometrical structures

of the benzophenone absorbers (Section 2.5).
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This chapter deals with a discussion of results. Firstly, the photostablity of all the compounds

analysed will be discussed (Section 3.1). This will be followed by a discussion of the results

obtained for the photocleavage experiments of <j>X174 phage DNA as detected by agarose gel

electrophoresis (Section 3.2), as well as DNA (calf thymus) binding as monitored by

fluorescence spectroscopy (Section 3.3). In Section 3.4, the lowest-energy geometrical

structures of the benzophenone absorbers, obtained from computational studies will be

described and finally the mechanism for DNA photocleavage as induced by the various DV

absorbers will be proposed in Section 3.5.

3.1 Photostability of the benzophenone-derived DV

absorbers

The UV radiation reaching the earth's surface is comprised of no UVC, 5% UVB and 95%

UVA radiation (Larsen [1994]). Previously it was thought that UVA radiation was harmless

and that all skin ailments due to sun exposure, including skin cancer, were due to UVB radiation

only. However, in the past decade it has been realized that UVA exposure is just as deadly as

UVB. Nowadays sunscreen formulations offer protection against both these radiations by

consisting of a mixture of DV absorbers that absorb DV radiation strongly in both regions.

However for such a sunscreen to effectively protect skin from UV damage it should be stable to

photodecomposition when subjected to sunlight. Hence the photostability of sunscreens is of

importance.

In this series of experiments, the photostability of a group of benzophenone-derived DV

absorbers was investigated with a Cary lE DV-visible spectrophotometer. Absorption

measurements were taken after specific irradiation periods at wavelengths greater than 300 nm

as described in Section 2.2.3.

Dilute solutions of the UV absorbers (l x 10-4 M - 6.5 X 10-4 M) were prepared in Tris-HCI

buffer or 50% (v/v) ethanollTris-HCI buffer in the case ofbenzophenone-3. The concentrations

of the UV absorbers used were such that the intensity of absorption at their absorption maxima

was below 2 units to prevent deviations from the Beer Lambert law as discussed previously

(Section 2.2.3). The absorption spectra of these compounds were recorded before exposure to

UV radiation and after every 5 minutes of irradiation thereafter. The solutions were contained

in a one mm pathlength quartz cell and were irradiated with an Osram HBO 500 W/2 high

pressure mercury lamp whose output passed through a 10 mm thick Pyrex filter. The total

irradiation period used to monitor the photostability of the UV absorbers was chosen to be 30
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minutes since this irradiation period was similar to that used in the agarose gel electrophoresis

experiments.

The UV absorbers studied in this investigation were classified as either narrow-spectrum or

broad-spectrum absorbers. Their absorption spectra recorded prior to any UV radiation appear

in Figure 3.1. Benzophenone, ketoprofen and Eusolex 232 were classified as the narrow

spectrum absorbers since they absorb radiation only in the UVC and UVB regions of the

spectrum (190 - 320 nm), with no absorption in the UVA region (Figure 3.IA). However,

benzophenone-I, benzophenone-3, benzophenone-4 and Uvinul DS49 offer broad-spectrum

protection (190 - 400 nm) and therefore were grouped together as broad-spectrum absorbers

(Figure 3.IB). The results of the irradiation of the narrow- and broad-spectrum absorbers are

presented below in Sections 3.1.1 and 3.1.2, respectively.

3.1.1 Photostability of benzophenone, ketoprofen and Eusolex 232

The UV absorbers, benzophenone and ketoprofen, have similar chemical structures and

demonstrated similar photostability patterns towards UV radiation. It should however at the

outset be mentioned that these UV absorbers are not used in sunscreen formulations and are

included in this study simply as benchmarks for DNA photocleavage. However, the use of

benzophenone is still under review in some countries like Australia

(www.health.gov.au/tga/docs/pdf/sunscrai.pdf. Date accessed: 6 December 2002). It should

further be noted that reference to these compounds as "UV absorbers" does not imply that they

are used in sunscreens. Eusolex 232, the third of these UV absorbers, however, is approved for

use in sunscreens in most countries. Eusolex 232 differs from the other two in that it does not

possess the benzoyl chromophore, in addition it was found to have a very different

photostability pattern.

Benzophenone

Benzophenone is the parent compound of the UV absorbers in this investigation (refer to its

structure in Figure 3.2) and therefore knowledge of its photochemistry was important. The UV

spectra that were recorded at the beginning of the experiment and after each 5-minute irradiation

period have been superimposed and appear in Figure 3.2. The absorption spectrum of

benzophenone without irradiation (see 1 in Figure 3.2) consisted of two peaks in the UV region,

a strong band at 202 nm and a slightly weaker one at 258 nm. Upon irradiation, a rapid decline

in height of both these peaks was observed. The results obtained here are in agreement with
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with those obtained by Charlier & Helene [1972], Ledger & Porter [1971] and Scaiano et al.

[1982].

The absorbance at 258 nm was found to decrease dramatically from 0.5 units initially to 0.09

units after only 30 minutes of irradiation. The peak at 202 nm also decreased rapidly at first

from 0.76 units without irradiation to 0.35 units after 15 minutes of irradiation and for the rest

of the irradiation period this peak remained the same. Also for the first 5 minutes of irradiation,

isosbestic points (points of intersection) occurred at about 220 nm, 230 nm and 287 nm,

however, when the irradiation period was increased (5 - 30 minutes), deviations from these

isosbestic points were observed. The absorbance decrease was also accompanied by an increase

of absorbance on the red side of the band at 258 nm. This behaviour was indicative of a

photochemical reaction and the possible formation of photoproducts absorbing in this

wavelength region.

The percentage of photodegradation of benzophenone at its absorption maximum (258 nm) has

been plotted against irradiation time and appears in Figure 3.3. From this Figure it can be seen

that the percentage of photodegradation of benzophenone varied linearly with irradiation time

for the first ten minutes of irradiation. Thereafter the curve levelled off suggesting a maximal

formation of photoproducts. After only 20 minutes of irradiation about 80% of the

benzophenone was degraded.
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Percentage of photodegradation of benzophenone (5.5 x 10-4 M) in Tris-HCl

buffer at 258 nm.
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The photoreduction of benzophenone, and in particular the carbonyls, had been the subject of

many photochemical studies in the 1900's and therefore the primary processes involved in its

photochemistry are now largely understood. The mechanism involved in the photodegradation

of benzophenone is shown in Figure 3.4 (Bosca & Miranda [1998]).
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The mechanism of photodegradation of benzophenone (BP) (Bosca & Miranda

[1998]).

Irradiation of benzophenone with DV light causes excitation of benzophenone from the ground

state to its first excited singlet state (Figure 3.4). The efficiency of the intersystem crossing to

the triplet state is determined by the quantum yield (<!>ISc), where a high value of <!>ISC indicates

that intersystem crossing to a higher state occurs. Since <!>ISC for benzophenone is approximately

one (Lamola & Hammond [1965]), the first excited state quickly intersystem crosses to the
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triplet state eBP). In the excited triplet state, the electronic configuration of the molecule is

n,1t*, which implies that one of the lone pairs of electrons is promoted from a non-bonding

orbital to the antibonding 1t orbital upon absorption of a photon. This leaves an unpaired

electron in the non-bonding orbital located on the benzoyl carbonyl oxygen causing the excited

oxygen to become electrophilic.

In the 3n,1t* state the characteristic primary reaction is hydrogen abstraction preferably from the

surrounding solvent molecule resulting in the formation of a ketyl radical (BPH). The resulting

ketyl radical may either disproportionate to yield benzophenone (BP) again or it may dimerise

to give benzopinacol (BP1) or even recombine with an alkyl radical to form a tertiary alcohol

(BP2). Other usual products are the so-called light absorbing transients, which are formed by

the recombination of BPHo with itself or with other alkyl radicals. These species have been

found to have an absorption at about 330 nm (Bosca I & Miranda [1998] and Scaiano et al.

[1982]). . However, the major photoproducts are the hydroxybenzophenones and the

benzopinacols. The hydroxyl radical adduct of benzophenone is known to occur at long UV

wavelengths of approximately 390 nm (Ledger & Porter [1971]). These photoproducts formed

at the longer UVA wavelengths accounts for the increase in absorbance observed in Figure 3.2,

after about 290 nm.

The above results clearly support the lack of photostability of benzophenone towards sunlight­

simulated light as it has been previously demonstrated (Charlier & Helene [1972], Ledger &

Porter [1971] and Scaiano et al. [1982]). Benzophenone decomposed almost completely in UV

light, producing various photoproducts after only a short irradiation period thus demonstrating

its inability to act appropriately as a sunscreen UV absorber. Luckily the use of benzophenone

is not approved in sunscreen formulations in most countries. However in Australia its use is

still under review (www.health.gov.au/tga/docs/pdf/sunscraLpdf. date accessed: 6 December

2002). This is a definite cause for concern since it is quite clear from these results and results

published elsewhere by other researchers that benzophenone' s lack of photostability makes it an

inefficient UV absorber, therefore its use in sunscreens should be strictly disapproved.

Ketoprofen

Ketoprofen, a non-steroidal anti-inflammatory drug, used in the treatment of arthritic diseases,

is a UV absorber having the benzophenone chromophore (refer to its structure in Figure 3.5).

Although this compound is not used in sunscreen formulations, its photostability was

investigated so that a better understanding of its mechanism of DNA cleavage could be attained.
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The absorption spectrum of ketoprofen without irradiation appeared very similar to that of

benzophenone. It consisted oftwo peaks in the UVC region, that is, a major one at 201 nm and

a weaker absorption band at 256 nm (Figure 3.5). This was attributed to the 3­

benzoylpropanoic acid chromophore. When the 1 x 10-4 M solution of ketoprofen was

irradiated, a rapid consumption of the compound at 256 nm was observed, but only after the first

five minutes of irradiation. The absorbance band at 256 nm initially increased from 0.290 to

0.305 absorbance units (0-5 minutes) and thereafter for the rest of the irradiation period (5-30

minutes), a dramatic decrease in absorbance from 0.305 to 0.191 absorbance units was

observed. The increase in absorbance for the first minutes of irradiation could have been due to

the formation of a photoproduct, which on further irradiation degraded. Also it should be noted

that increases in absorbance on both the red and blue sides of this band were observed. This

behaviour was also observed during the irradiation of benzophenone, and again was indicative

of a photochemical change.

The percentage of photodegradation of ketoprofen at 256 nm as a function of irradiation time

appears in Figure 3.6. From this Figure it can been seen that only about 30% of ketoprofen was

photodegraded after the entire irradiation period, compared to 80% photodegradation for

benzophenone (Figure 3.3). The initial drop in photodegradation after the first five minutes

could probably be attributed to the accumulative absorbance of another photoproduct that

absorbed at 256 nm and thereafter degraded.
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Figure 3.6: Percentage of photodegradation of ketoprofen (l x 10-4 M) in Tris-HCl buffer at

256 nm.
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Several studies have dealt with the photochemistry of ketoprofen (Bosca et al. [1994] , Bosca &

Miranda [1998] and Lhiaubet et al. [200 I)). Nine different photoproducts have been identified

in literature. The major photoproduct reported has always been 3-ethylbenzophenone whose

yield according to Bosca et al. [1994] reaches a maximum, then progressively decreases on

further irradiation. The photochemical reactivity of ketoprofen is dependent on the nature of its

triplet-excited state. The lowest triplet state of ketoprofen is (n.n") with characteristics similar

to its parent compound benzophenone (Lhiaubet et al. [2001)). The triplet state of ketoprofen

leads to the formation of a ketyl radical by hydrogen abstraction from the solvent. This is

characteristic of the (n.n") of benzophenone (Lhiaubet et at. [2001]).

A brief outline of the mechanism involved in the photodegradation of ketoprofen follows

(Figure 3.7). Ketoprofen (1) exists at physiological pH (pH 7-8) as the dissociated acid (I)

(Bosca et al. [1994)). On irradiation, the dissociated acid undergoes decarboxylation , which

results in the formation of the benzylic radical (2") and the evolution of carbon dioxide. This

process is also associated with the ejection of an electron, which in the presence of oxygen

would be scavenged to give the superoxide radical anion. Hydrogen abstraction by the benzylic

radical results in the formation of 3-ethylbenzophenone (2). However, the benzylic radical may

also in the presence of oxygen (or superoxide anion) produce a number of oxygenated products,

one of which is shown as 3 in Figure 3.7. On further irradiation, the benzophenone

chromophore of 2 becomes excited, and as for benzophenone (Figure 3.4) undergoes hydrogen

abstraction. This explains the reduction in the yield of 3-ethylbenzophenone as observed by

Bosca et al. [1994]. Hydrogen abstraction by the benzophenone chromophore produces the

corresponding ketyl radical (2H") from which various photoproducts similar to those formed

with benzophenone are then possible.

These results clearly demonstrate lack of stability of ketoprofen towards UV radiation. These

findings support those of Bosca et al. [1994], Bosca & Miranda [1998] and Lhiaubet et al.

[2001]. Luckily, ketoprofen is not used in sunscreens as a UV absorber and its use therein

should not be allowed.

Eusolex 232

The UV absorber 2-phenylbenzimidazole-5-sulphonic acid, commonly known by its trade name

as Eusolex 232, is frequently used in sunscreen formulations. It has a benzophenone-derived
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Figure 3.7: The mechanism of photodegradation of ketoprofen (Bosca et al. [1994]).

backbone, where the benzoyl chromophore has been substituted with an indole group, and a

sulphonic acid group appears at the 5 position (structure in Figure 3.8).

The absorption spectrum of Eusolex 232 had 3 absorption peaks, one in the UVB region of the

spectrum and two in the DVe region (Figure 3.8). When this spectrum was compared to that of

benzophenone, the following observations were made. The absorption peak at 208 nm had been
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shifted to a slightly lower wavelength compared to benzophenone, while the transition

maximum at 258 nm for benzophenone now appeared at 303 nm. This was be attributed to the

2-phenylimidazole chromophore. The appearance of another transition at 242 nm was assigned

to the phenyl sulphonic acid chromophore.

Irradiation of a solution of Eusolex 232 (5.5 x 10-4 M) in Tris-HCI buffer with an Osram HBO

500W/2 high pressure mercury lamp at wavelengths greater than 300 nm induced no changes in

the UV spectrum as can be seen from Figure 3.8. Even after 30 minutes of irradiation, it is quite

clear that Eusolex 232 was very stable against UVB and UVA radiation and did not undergo any

photodegradation at 303 nm (Figure 3.9). These findings support those obtained by Stevenson

& Davies [1999] and Chignell et at. [2002] who also reported Eusolex 232 to be stable towards

photodecomposition under DV irradiation.
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Figure 3.9: Percentage of photodegradation of Eusolex 232 (5.5 x 10-4 M) in Tris-HCI

buffer at 303 nm.

Therefore, it can be concluded that in terms of photostability, Eusolex 232 behaved like an ideal

DV absorber and when used in sunscreen formulations it would effectively protect human skin

from UV radiation.

3.1.2 Photostability of benzophenone-l, benzophenone-3,

benzophenone-4 and Uvinul DS49

The broad-spectrum absorbers studied in this investigation were benzophenone-l,

benzophenone-3 , benzophenone-4 and Uvinul DS49. In order for these compounds to act
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effectively as UV absorbers in sunscreens or cosmetics they must display photostability towards

UV radiation.

All of these UV absorbers have the benzophenone chromophore and demonstrated similar

photostability patterns towards UVB and DVA radiation, however, their behaviour to UV

radiation differed substantially from that of their parent compound benzophenone. These UV

absorbers are grouped according to similar chemical structures and discussed below.

Benzophenone-l and Benzophenone-3

Benzophenone-l (or 2,4-dihydroxybenzophenone) and benzophenone-3 (or 2-hydroxy-4­

methoxybenzophenone) absorb UV radiation in both the DVB and DVA regions of the

spectrum (Figures 3.10 and 3.11 respectively). They are considered as broadband filters and are

incorporated in cosmetics and sunscreen formulations to offer broad-spectrum protection.

The small difference in structure between benzophenone-3 and benzophenone-I was reflected in

their DV spectra, where benzophenone-l offered a greater absorption in the DVA region of the

spectrum than benzophenone-3. This was attributed to the replacement of the methoxy

substituent in benzophenone-3 with the hydroxyl substituent in benzophenone-l.

When the absorption spectra of benzophenone-l and benzophenone-3 were compared to that of

benzophenone, the following observations were made. The absorption maximum at 201 nm

present in benzophenone (Figure 3.2) appeared in both these DV absorbers (Figures 3.10 and

3.11). The absorbance maximum at 258 nm for benzophenone, however, was now shifted to

344 nm for benzophenone-l and for benzophenone-3 it appeared at 290 nm with a shoulder in

the band at about 330 nm. These shifts in absorbance in the spectra of benzophenone-l and

benzophenone-3 could be attributed to the para-hydroxybenzoyl and the para-methoxybenzoyl

chromophores respectively. The appearance of another transition at 249 nm in benzophenone-l

and around 242 nm in benzophenone-3 could be due in both cases to the ortho-hydroxy

substituent on the benzoyl chromophore.

Upon irradiation of 5.5 x 10.4 M solutions of benzophenone-l and benzophenone-3 in Tris-HCI

and 50% (v/v) ethanol: Tris-HCI buffers respectively, both these DV absorbers appeared fairly

stable against UV radiation at wavelengths greater than 300 nm. Benzophenone-3, however,

showed a greater stability towards UV radiation in the polar Tris buffer when compared to

benzophenone-I and underwent almost no photodegradation (Figure 3.12). These findings are

81



O-+--........--....,...--~---r---r-----,--.....,....-- ..........
190 215 240 265 290 315 340 365 390

0.2

1.4
HO

1.2 o-c +.1-7
OH

1
- 11

0

QJ
~

=0.8
~

~
J-i

+1-70
t'-l 0.6
~

<
0.4

Wavelength I nm
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in agreement to those obtained by Roscher et al [1994] who demonstrated the photostability of

benwphenone-3 even after 100 hours of irradiation with UV light. This team used a non-polar

solvent compared to the polar Tris-HCl buffer, which was used in this study. However, these

findings do contrast with the photochemical studies performed by Serpone et al. [2002] using an

Oriel 1000 W HglXe lamp. This team demonstrated that benwphenone-3 degrades by 20% in

water and by 90% in the polar solvent methanol after two hours of irradiation.

In the case of benzophenone-l , the 'absorption spectra revealed that after 30 minutes of

irradiation a small change in the absorption maximum at 344 nm had occurred. However, this

change was negligible when compared to benzophenone since only about 5% of benzophenone­

I photo degraded (Figure 3.12).

The lack of photodegradation of both benzophenone-I and benzophenone-3 could be attributed

to the substituents present on the benzophenone chromophore. Literature reveals that

intermolecular hydrogen abstraction by benzophenone is dependent on the polarity of the

solvent and on the substituent present. Substituted benzophenones have been shown to display

dramatic differences in their photoreactivity (Calvert & Pitts [1967], Bosca & Miranda [1998]).
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It has been well established that the hydrogen-atom abstracting state of benzophenone is the

lowest n,1t* triplet (Calvert & Pitts [1966]). The presence of electron-donating substituents such

as para-amino, para-hydroxy, para-phenyl or para-dimethylamino groups greatly reduces the

tendency for intermolecular hydrogen-atom abstraction in polar solvents (Bosca & Miranda

[1998]). In contrast, the reaction still proceeds in non-polar solvents. The quenching of

photoreduction in polar solvents by electron-donating substituents on the benzophenone

chromophore can be attributed to a change in the nature of the lowest triplet state from 3(n,1t*)

to 3(1t,1t*). This change brings about a decrease in the chemical reactivity of the lowest triplet

state of the benzophenone chromophore. The attachment of electron-withdrawing groups,

however, demonstrates high efficiency for hydrogen abstraction since these groups do not alter

the typical n,1t* character of the lowest triplet state (Bosca & Miranda [1998]) . Therefore it can

be deduced that the electron-donating substituents, that is, -OH in benzophenone-I and -OH and

-OCH3 in benzophenone-3, are responsible for the lack of photodegradation in these two UV

absorbers in the polar solvent water.

In addition, for some benzophenones intramolecular hydrogen abstraction reactions involving

photoenolization have been proposed as being responsible for the quenching of the

benzophenone photoreduction (Calvert & Pitts [1967]). According to Tarras-Wahlberg et al.

[1999], certain substituted benzophenones can act as sensitizers and catalyze

photodecomposition reactions. The mechanism of this photoreaction is illustrated for

benzophenone-3 in Figure 3.13.

Since both benzophenone-l and benzophenone-3 have demonstrated stability towards

photodecomposition when exposed to UV light, they can be considered as efficient UV

absorbers when used in sunscreen formulations.

Benzophenone-4 and Uvinul DS49

Benzophenone-4 (or 2-hydroxy-4-methoxy benzophenone-5-sulphonic acid) and Uvinul DS49

(or 2,2'-dihydroxy-4,4'-dimethoxy benzophenone sulphonic acid) are both wide range DV

absorbers, absorbing in both the UVA and UVB regions (Figures 3.14 and 3.15 respectively).

The absorption spectra of both these UV absorbers differed substantially from that of

benzophenone. This is attributed to the substituents present on the benzophenone chromophore.

In addition to the hydroxyl and methoxy groups, benzophenone-4 and Uvinul DS49 both

contain the sulphonic acid substituent. The presence of the sulphonic acid group makes both

these UV absorbers water-soluble.
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Figure 3.13: Photoreaction mechanism of benzophenone-3 (Tarras-Wahlberg et al. [1999]).
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Figure 3.14: Changes in the absorption spectrum ofbenrophenone-4 (5. 5x 10-4 M) in Tris­

HCI buffer after 0, 5, 10, 15, 20, 25 and 30 minutes of irradiation.
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Figure 3.15: Changes in the absorption spectrum ofUvinul DS49 (6.5 x 10-4 M) in Tris-HCl

buffer after 0, 5, 10, 15, 20, 25 and 30 minutes of irradiation.
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When the spectrum of benzophenone-4 was compared to that of benzophenone-3 similar

absorbance peaks were observed, except the presence of the sulphonic acid group in

benzophenone-4 greatly increased the intensity of the absorbance at about 245 nm. The

absorbance spectra of benzophenone-4 and Uvinul OS49 were very similar due to the presence

of the same substituents on the benzophenone backbone. The addition of a 2-0H, 4-0CH3 and

5-S0z0H on both the phenyl groups in Uvinul OS49 did not cause any significant change in the

absorption spectrum when compared to that of benzophenone-4.

Upon irradiation ofbenzophenone-4 (5.5 x 10-4 M) and Uvinul OS49 (6.5 x 10'4M) in Tris-HCI

buffer with an Osram HBO 500WI2 high pressure mercury lamp at wavelengths greater than

300 nm, both these UV absorbers appeared fairly stable against UV radiation. After 30 minutes

of irradiation no changes in the absorption spectrum of benzophenone-4 were observed. For

Uvinul OS49, however, the absorbance peaks at 245 nm, 279 nm and 318 nm decreased slightly

for the first 25 minutes of irradiation, while an increase in absorbance at 208 nm was observed.

Thereafter, for the last five minutes of irradiation the opposite effect was observed, that is, the

absorbance peaks at 245 nm, 279 nm and 318 nm increased, while that at 208 nm decreased.

The biggest change in absorbance was observed at 208 nm where the absorbance increased from

lA72 units to 1.655 units during the first 25 minute irradiation period, and thereafter dropped to

1.550 units.

Figure 3.16 compares the percentage of photodegradation ofbenzophenone-4 and Uvinul OS49

at 321 and 318 nm respectively. What is clear here is that Uvinul OS49 was not as photostable

as benzophenone-4 when illuminated with DV light. The maximum amount of Uvinul OS49

that photodegraded is about 25%, which occurred after 25 minutes of irradiation at 318 nm and

thereafter photodegradation decreased. This could possibly be due to the photodegradation of

Uvinul OS49 during the first 25 minutes of irradiation, and on further irradiation a photoproduct

possibly was formed which contributed to an accumulative absorbance at 318 nm after 30

minutes of irradiation. However, this level of photochemical change was relatively small if one

compared it to that of benzophenone.

This relative lack of photodegradation can be attributed to the substituents present on the

benzophenone chromophore. Benzophenone-4 and Uvinul DS49 both possess two electron­

donating groups (-OH and -OCH3) and one electron-withdrawing group (-SOzOH). Ideally, the

presence of the electron-withdrawing group should not alter the \n,7t*) state and should

promote hydrogen abstraction while the electron-donating groups should not, as discussed

previously (Bosca & Miranda [1998]). Since photodegradation of benzophenone-4 did not

occur and that of Uvinul OS49 was limited, it can therefore be assumed that the effect of the
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(at 321 nm) and Uvinul DS49 (DS49) (at 318 nm) for solutions of similar

concentration (5.5 x 10-4 M and 6.5 x 10-4 M respectively) in Tris-HCI buffer.

electron-donating groups was greater than that of the electron-withdrawing groups which

resulted in the quenching of hydrogen abstraction by these UV absorbers.

The above results have demonstrated that the UV absorbing agent benzophenone-4 was

photochemically stable and will act as an effective UV absorber when used in a sunscreen

formulation, while Uvinul DS49 appeared relatively stable and the little photodegradation that

was seen was not to the same extent as that for the parent compound benzophenone.

3.2 Gel electrophoresis to detect DNA cleavage

Agarose gel electrophoresis is the standard method used to separate and identify nucleic acids.

The DNA-agarose nicking assay adapted from Artuso et al. [1991] was performed to identify

DNA cleavage induced by the presence of a group of benzophenone-based DV absorbers. The

experimental procedures conducted have been described in Section 2.3 and a discussion of these

results will now follow.

Section 3.2.1 describes the identification of the three forms of epX174 DNA by the suitability

assay. These forms demonstrate different migration rates in an electrophoresis system and can

be identified by their migration rates. Preliminary experimental results obtained for the known

photocleaver ketoprofen, appear in Section 3.2.2. The results for the photocleavage activity of
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benzophenone, benzophenone-1, benzophenone-3, benzophenone-4, Uvinu1 DS49 and Eusolex

232, which were demonstrated by irradiating these DV absorbers (50 IJM) for specific time

periods (0 - 45 minutes) at wavelengths greater than 300 nm in the presence of buffered aqueous

solutions of <j>X174 DNA (18.851JM) appear in Sections 3.2.4 - 3.2.5. A mole ratio of DNA bp:

UV absorber of 1: 2.7, i.e. approximately 1: 3, was used since studies conducted by Marguery et .

al. [1998J suggest that this mole ratio is required to obtain the maximum number of SSB. Due

to the extreme sensitivity of this technique, small volume changes during DNA handling and

irradiation of the samples, variations in lane-to-lane gel loading, as well as differences in

pipetting became increasingly significant, and therefore it was necessary to perform the assay at

least in duplicate. A control experiment, which was set up in the absence of the DV absorbers,

was subjected to the identical conditions as the experiments and the results obtained for the

control appear in Section 3.2.3.

3.2.1 Identification of the DNA Forms by the suitability assay

The suitability assay was necessary since it enabled the DNA Forms I, 11 and III to be identified.

The assay involved digesting <j>X174 DNA with Pst 1 enzyme (which cleaves the circular Form

I DNA only once) and running this digest on a 1% agarose gel against a control of undigested

DNA. The undigested <j>X174 DNA was found to contain 80% supercoiled and 20% nicked

circular DNA, as stipulated by the supplier (Sigma). This enabled DNA Forms I and 11 to be

identified in the undigested DNA control. Pst 1 catalyses the formation of double strand breaks

and converts supercoiled Form I DNA to the linear Form III (Smith et al. [1976]) thus enabling

the linear DNA Form III to be identified in the digested sample. The samples were prepared

and loaded as described in Section 2.3.6 after which electrophoresis was performed. The

ethidium bromide-stained agarose gel was viewed with a Hoefer transilluminator and was

photographed with a digital camera, since at this point the electrophoresis photography system

was not set up.

The photograph of the ethidium bromide stained agarose gel showing the three DNA forms

appears in Figure 3.17. From the control lanes 1~, 3 and 5 (undigested <j>X174 DNA), the fastest

migrating bands (lower band in lanes 1, 3 and 5) corresponded to approximately 80% of the

DNA sample and represented the supercoiled Form I DNA. The band of slower electrophoretic

mobility in the control lanes corresponded to approximately 20% DNA and was the nicked

circular DNA Form 11.
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Figure 3.17: Ethidium bromide-stained agarose gel showing enzymatic cleavage of <l>X 174

DNA with Pst 1. The DNA samples were treated with the enzyme for two

hours at 37°C. Lanes I, 3 and 5 contain 5, 10 and 15 Ill, respectively , of

undigested <l>X174 DNA (control) while lanes 2, 4 and 6 contain 5, 10 and 15 III

of Pst 1 digested <l>X174 DNA.

Volumes of 5, 10 and 15 III of the Pst 1 digest, which were loaded into lanes 2, 4 and 6

respectively, showed the presence of only one band. This was attributed to the linear DNA

(Form Ill), since digestion of <l>X174 DNA with the enzyme Pst 1 catalysed double strand

breaks in supercoiled DNA and converted it to the linear form. From this assay it was

concluded that the compact Form I DNA migrated the fastest, followed by the rod-like linear

Form III DNA, while the nicked circular Form 11 DNA had the slowest mobility . These rates of

DNA migration were used to identify the DNA Forms in all the agarose gels analysed.

3.2.2 Ketoprofen photosensitization of DNA cleavage

To ensure that DNA photocleavage could be successfully detected by the DNA-agarose nicking

assay, a preliminary electrophoresis experiment was performed using the known photocleaver

ketoprofen. Artuso et al. [1991] have shown by in vitro studies that under DV irradiation,

ketoprofen, a drug having the benzophenone chromophore and used for the treatment of arthritic

diseases, photosensitizes DNA cleavage. Ketoprofen was therefore used as a standard to assess

the sensitivity of the electrophoresis system.
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The samples were prepared as described in Table 2.3 of Section 2.3 .7. Samples 1 and 3

contained DNA alone in a buffered solution and served as the control, while samples 2 and 4

contained in addit ion to the buffered DNA, ketoprofen, and were the experiments. To

demonstrate the photocleavage activity of the drug , <jlX174 DNA (18.85 ~) was irradiated for

30 minutes at wavelengths greater than 300 nm in the presence or in the absence of a buffered

aqueous solution of ketoprofen (11.25 JlM). The irradiations were carried out with an Osram

HBO 500 W/2 high-pressure mercury lamp in combination with a 10 mm thick Pyrex filter.

The photosensitized DNA cleavage was followed by agarose gel electrophoresis as described in

Section 2.3.8. Samples 1-4 were loaded into lanes 1-4 respectively. A Hoefer Scientific

transilluminator was used to view the gel and the gel was photographed with the aid of a digital

camera. The reverse image of the ethidium bromide-stained agarose gel appears in Figure 3.18.

."..~. '. '... . ';;lIlfIf'

Lanes

DNA I
mobility +

1 2 3 4

Form 11DNA

Form III DNA

Form I DNA

Figure 3.18: Agarose electrophoresis gel showing cleavage of <jlX174 DNA in the presence

of ketoprofen (KP). Lane 1: no KP, no irradiation (dark control) , Lane 2: KP

present, no irradiation, Lane 3: no KP, with 30 minutes irradiation (light

control) and Lane 4: KP present, with 30 minutes irradiation.

From Figure 3.18 it can be seen that the original DNA content in lane 1 (dark control) was

approximately 80% in the supercoiled Form I DNA (lower band) and 20% nicked circular DNA

Form 11 (top band). In the presence of ketoprofen, but in the absence of irradiation, no change

in the DNA composition was observed (see lane 2). Upon irradiation of <jlX174 DNA for 30
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observed as evidenced by the increase in the amount of Form 11 DNA and the decline in the

amount of Form I DNA. Cleavage was even more significant in the presence of ketoprofen

(compare lanes 3 and 4), as a distinct band of intermediate mobility between DNA Forms I and

11, identical to that observed by the treatment of supercoiled DNA with Pst 1 (see Figure 3.17)

was also present. This band was due to the linear DNA Form m.

When the cl>X174 DNA was irradiated alone at A. > 300 nm for 30 minutes, 40% of the DNA was

in the supercoiled form, with the remaining 60% in the nicked circular. The proportions of

DNA Forms produced on irradiation of the DNA in the presence of ketoprofen for 30 minutes

was approximated to be 5% supercoiled (Form I DNA), 85% nicked circular (Form 11 DNA)

and 10% linear DNA (Form m DNA). These results agree with those obtained by Artuso et al.

[1991], and this technique was used to study the photocleavage efficiency of the benzophenone­

derived DV absorbers under investigation.

3.2.3 Photocleavage of <jlX174 DNA at A, > 300 nm (control)

DV irradiation of DNA at wavelengths characteristically absorbed by the common nucleic acid

bases (240 - 280 nm) is known to induce SSB with low yields (Rahn & Patrick [1976]). In

order to determine the extent of cleavage induced by the irradiation of DNA alone at

wavelengths greater than 300 nm, cj>X174 DNA (18.85 ~) was irradiated for a total irradiation

period of 45 minutes with an Osram HBO 500W12 high pressure mercury lamp, in conjunction

with a 10 mm thick Pyrex filter. This assay served as the control and has been tabulated in

Section 2.3.7 (Table 2.4). Due to the extreme sensitivity of this technique, the control was

repeated several times. The ethidium bromide-stained agarose gel as well as the densitometric

lane graphs for each gel (where available) appear in Figures 3.19 - 3.24.

The gels in Figures 3.19A and 3.20A were viewed and photographed with a Syngene

transilluminator that had been connected to a Vacutec camera system (Figure 2.9 in Section

2.3.9). For this photography system the Hoefer Scientific densitometer was used to quantify the

DNA bands (Figure 2.11 in Section 2.3.10) and the lane graphs obtained appear in Figures

3.19B and 3.20B respectively. This required cutting and weighing of the respective peaks as

described in Section 2.3.10. The gels in Figures 3.21 - 3.24, however, were viewed and

photographed with a Hoefer Scientific transilluminator that had been connected to a Panasonic

CCTV camera (Figure 2.10 in Section 2.3.9). Quantitation of the DNA bands was by means of

the Scion imaging software and the densitometric lane graphs appear with the respective gels.
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Figure 3.19: The ethidium bromide-stained agarose gel (A) and the densitometric lane

graphs (B) showing <j>X174 DNA (18.85 llM) photocleavage induced by

irradiation of DNA alone. DNA samples in lanes 1-6 were irradiated for 0,5,

10,20,30 and 45 minutes, respectively (RUN 1).
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Figure 3.20: The ethidium bromide-stained agarose gel (A) and the densitometric lane graphs (B)

showing <j>X174 DNA (18.85 J1M) photocleavage induced by irradiation of DNA
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Figure 3.21: The ethidium bromide-stained agarose gel (A) and the densitometric lane

graph (B) showing cj>X174 DNA (18.85 IlM) photocleavge induced by

irradiation of DNA alone. DNA samples in lanes 1-6 were irradiated for 0,

5, 10, 20, 30 and 45 minutes , respectively (RUN 3).
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irradiation of DNA alone . DNA samples in lanes 1-6 were irradiated for 0,

5, 10,20,30 and 45 minutes , respectively (RUN 3).
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Figure 3.22: The ethidium bromide-stained agarose gel (A) and the densitometric lane graph (B)

showing <j>X174 DNA (18.85 ~) photocleavge induced by irradiation of DNA alone.

DNA samples in lanes 1-6 were irradiated for 0, 5, 10, 20, 30 and 45 minutes ,

respectively (RUN 4).
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Figure 3.23: The ethidium bromide-stained agarose gel CA) and the densitometric lane

graph CB) showing <j>X174 DNA (18.85 ~) photocleavage induced by

irradiation of DNA alone . DNA samples in lanes 1-6 were irradiated for 0,

5, 10, 20, 30 and 45 minutes, respectively (RUN 5).
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Figure 3.24: The ethidium bromide-stained agarose gel (A) and the densitometric lane graph (B)

showing <l>X174 DNA (18.85 J.lM) photocleavage induced by irradiation of DNA

alone . DNA samples in lanes 1-6 were irradiated for 0, 5, 10, 20, 30 and 45 minutes,

respectively (RUN 6).

100



From Figures 3.19 - 3.24 it can be seen that when <j>X174 DNA was irradiated for a total

irradiation period of 45 minutes at wavelengths greater than 300 nm, only two DNA forms were

present. These corresponded to the supercoiled Form I DNA (lower band in each lane) and the

nicked circular DNA Form 11 (upper band in each lane). No linear Form III DNA was

detectable. The means and standard deviations for DNA Form I, 11 and III as well as for the

SSB, were plotted against the irradiation time (0 - 45 minutes) and appear in Figures 3.25 - 3.28

respectively. The raw data used in the statistical analysis can be found in the Appendix Bl.

Initially, without irradiation, the DNA composition was 68% DNA Form I, 32% DNA Form 11

and no DNA Form III (Appendix Bland Figures 3.25-3.26). After 45 minutes of irradiation the

supercoiled Form I DNA decreased from 68% to 35%, the nicked circular Form 11 DNA

increased from 32% to 65% while there was still no DNA Form III present. This implies that

after 45 minutes of irradiation of DNA at wavelengths greater than 300 nm, 49% of the original

supercoiled DNA Form I was nicked to the circular Form 11 DNA. The number of SSB induced

on the DNA reached a maximum of 0.79 after 45 minutes of irradiation (Figure 3.28). It can be

concluded that when <j>X174 DNA was irradiated at wavelengths greater than 300 nm the extent

of DNA cleavage and the number of SSB produced was not significant to form linear (Form Ill)

DNA. Figures 3.25 - 3.28 will now serve as the control graphs against which the effects of the

benzophenone-derived DV absorbers under investigation will be compared.

3.2.3 DNA photocleavage by benzophenone, benzophenone-l, Uvinul

DS49 and Eusolex 232

Benzophenone-l , Uvinul DS49 and Eusolex 232 demonstrated a similar DNA photocleavage

pattern to that of their parent compound, benzophenone, and therefore have been grouped

together in this discussion.

Benzophenone, the parent compound of the UV absorbers under investigation, was included in

this study to gain insight into the DNA photocleavage ability of this group of DV absorbers.

Studies conducted by Kilfoil & Salter [1988] have shown benzophenone to be a potent

photosensitizer of thymine dimerization in vitro. In addition, Bolton [1991] and Bolton et al.

[1992] demonstrated that Uvinul DS49 and Eusolex 232 also promoted thymine dimer

formation in DNA.
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Figure 3.25
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Change in the percentage of supercoiled DNA Form I induced by the irradiation of

<j>X174 DNA (18.85 JlM) DNA at A. > 300 nm. The error bars indicate the standard

deviations and N refers to the number of replicates.
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Figure 3.26: Change in the percentage of nicked circular DNA Form II induced by the

irradiation of <j>X174 DNA (18.85 I!M) at A. > 300 nm. The error bars indicate

the standard deviations and N refers to the number of replicates.
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Figure 3.27: Change in the percentage of linear DNA Form ill induced by the irradiation of

cj>X174 DNA (18.85 IJM) at A. > 300 nm, and N refers to the number of

replicates .
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Figure 3.28: Change in the mean number of SSB per DNA molecule induced by the

irradiation of DNA at A. > 300 nm. The error bars indicate the standard

deviations and N refers to the number of replicates .
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The ethidium bromide-stained agarose gels showing DNA cleavage induced by the presence of

benzophenone, benzophenone-I, Uvinul DS49 and Eusolex 232 appear in Figures 3.29-3.30,

3.31-3.33,3.34-3.36 and 3.37-3.39 respectively.

From Figures 3.29 - 3.39 it can be seen that three DNA Forms were present. These were the

supercoiled DNA Form I (lowest band in each lane), the nicked circular Form II DNA bands

(upper band in each lane), as well as a band of intermediate mobility, which occurred only in

those lanes in which the samples were irradiated for longer periods. This band was attributed to

the linear DNA Form Ill, which was due to an increase in the nicks on the DNA Form II

molecule that are within 5-10 base pairs of the first (Kochevar & Dunn [1990)). Furthermore,

as the irradiation time was increased from 0 - 45 minutes (except in Figure 3.29 where the

maximum irradiation period is 30 minutes) the amount of supercoiled DNA Form I decreased,

while the composition of the nicked circular DNA Form 11 and the linear DNA Form ID

appeared to increase. From Figures 3.29 and 3.30, it can be seen that irradiation of cIIXl74 DNA

in the presence of benzophenone required only about 15 minutes of irradiation, for the DNA to

be converted to the linear Form. In contrast about 20-30 minutes of irradiation was required to

produce the linear Form III DNA when benzophenone-l (Figures 3.31-3 .33), Uvinul DS49

(Figures 3.34-3.36) or Eusolex 232 (Figures 3.37-3.39) was present.

The linear DNA band appeared as a distinct, well-defined band, in all the agarose gels except

for that in Figure 3.39, in which cIIXI74 DNA was irradiated in the presence of Eusolex 232.

Here a broad smear band between DNA Form I and 11 replaced the linear DNA band. At the

higher irradiation doses, this smear DNA band acquired a sharp edge, the position of which

coincided with Form ID linear DNA.

The mean percentage of the DNA in Forms I, II and ID as well as the number of SSB induced

on the DNA after treatment with each UV absorber have been plotted against irradiation time

(Figures 3.40-3.43 respectively). Included in these figures are the control graphs, which depict

irradiation of the DNA in the absence of the DV absorbers (shown by the dotted lines). Error

bars represent the standard deviation at each irradiation time for each DV absorber . The large

error bars are representative of the large variations that are typical of this assay. However, it

should be noted that the trends observed are always the same. The results of the DNA

photocleavage experiments for benzophenone, benzophenone-I, Uvinul DS49 and Eusolex 232

can be found in Appendices B2 - B5 respectively.
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Figure 3.29 : The ethidium bromide-stained agarose gel (A) and the densitometric lane

graphs (B) showing cleavage of cj>X174 DNA (18.85 IlM) photosensitised by

benzophenone (50 IlM). Lanes 1-4 contain DNA in the presence of

benzophenone that had been irradiated for 0,5, 15 and 30 minutes, respectively

(RUN 1).
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Figure 3.30: The ethidium bromide-stained agarose gel (A) and the densitometric lane graph

(B) showing cleavage of <l>X174 DNA (18.85 IlM) photosensitised by

benzophenone (50 IlM). Lane I: DNA alone, no irradiation (dark control) ,

Lanes 2-6 contain DNA irradiated in the presence of benzophenone for 0, 10,

15, 30 and 45 minutes, respectively (RUN 2).
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Figure 3.31: The ethidium bromide-stained agarose gel (A) and the densitometric lane graph

(B) showing cleavage of <l>X174 DNA (18.85 ~M) photosensitised by

benzophenone-I (50 ~M). DNA samples in lanes 1-6 were irradiated for 0, 5,

10, 20, 30 and 45 minutes, respectively (RUN 1).
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Figure 3.32: The ethidium bromide-stained agarose gel (A) and the densitometric lane graph (B)

showing cleavage of <l>X174 DNA (18.85 IlM) photosensitised by benzophenone-l (50

/lM). DNA samples in lanes 1-4 were irradiated for 5, 20, 30 and 45 minutes , respectively

(RUN 2).
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Figure 3.33: The ethidium bromide-stained agarose gel (A) and the densitometric lane graph

(B) showing cleavage of <j>X174 DNA (18.85 JlM) photosensitised by

benzophenone-l (50 IlM). DNA samples in lanes 1-6 were irradiated for 0,5,

10, 20, 30 and 45 minutes, respectively (RUN 3).
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Figure 3.34: The ethidium bromide-stained agarose gel (A) and the densitometric lane graph

(B) showing cleavage of <j>X174 DNA (18.85 J.IM) photosensitised by Uvinul

DS49 (50 J.IM). DNA samples in lanes 1-6 were irradiated for 0,5, 10,20,30

and 45 minute, respectively (RUN 1).
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Figure 3.35: The ethidium bromide-stained agarose gel (A) and the densitometric lane graph

(B) showing cleavage of <l>X174 DNA (18.85 IlM) photosensitised by Uvinul

DS49 (50 IlM). DNA samples in lanes 1-6 were irradiated for 0, 5, 10, 20, 30

and 45 minutes, respectively (RUN 2).
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Figure 3.36: The ethidium bromide-stained agarose gel (A) and the densitometric lane graph

(B) showing cleavage of <j>X174 DNA (18 .85 llM) photosensitised by Uvinul

DS49 (50 !1M). DNA samples in lanes 1-6 were irradiated for 0,5 , 10, 20, 30 and

45 minutes, respectively (RUN 3).
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Figure 3.37: The ethidium bromide-stained agarose gel (A) and the densitometric lane graph

(B) showing cleavage of <j>X174 DNA (18.85 ~M) photosensitised by Eusolex

232 (50 ~M). DNA samples in lanes 1-6 were irradiated for 0,5, 10, 20, 30 and

45 minutes, respectively (RUN 1).
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Figure 3.38: The ethidium bromide-stained agarose gel (A) and the densitometric lane graph

(B) showing cleavage of q,X174 DNA (18.85 ~) photosensitised by Eusolex

232 (50 IlM). DNA samples in lanes 1-6 were irradiated for 0,5, 10, 20, 30 and

45 minutes, respectively (RUN 2).
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The ethidium bromide-stained agarose gel (A) and the densitometric lane graph

(B) showing cleavage of <j>X174 DNA (18.85IlM) photosensitised by Eusolex 232

(50 1lM). DNA samples in lanes 1-6 were irradiated for 0, 5, 10, 20, 30 and 45

minutes, respectively (RUN 3).
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From Figure 3.40, it is apparent that irradiation of <jlX174 DNA in the presence of

benzophenone, benzophenone-l, Uvinul DS49 or Eusolex 232 dramatically reduced the amount

of DNA in the supercoiled form compared to when the DNA was irradiated alone. After 45

minutes of irrad iation of the DNA in the presence of benzophenone, the supercoiled DNA Form

I content was reduced from 59 % to 15% (Appendix B2). This indicates that 74% of the

supercoiled DNA was nicked compared to only 49% when the irradiation was carried out in its

absence (see control in Figure 3.40). Benzophenone-l, Uvinul DS49 and Eusolex 232 behaved

similarly and induced decreases in the DNA Form I content from, 65% to 11%,67% to 10 %

and 64% to 8% respectively (Appendices B3-B5) . This implies that 87% of the supercoiled

DNA was nicked in the presence of Eusolex 232, followed by 86% in the presence of Uvinul

DS49 and 83% when benzophenone-l was present. When this is compared to the control,

where only 49% of the supercoiled DNA was nicked to the circular form it can be seen that

irradiation of the DNA in the presence of these UV absorbers increased the nicks in the

supercoiled DNA by almost 2- fold.

The formation of the DNA Form 11 which arises from a SSB per DNA molecule , was increased

in the presence of the UV absorbers, compared to when they were absent (control) (Figure

3.41). However, on closer examination, it can be seen that the DNA Form 11 content reached a

maximum around 20-30 minutes of irradiation and thereafter declined. At this maximum point

it is possible that the number of nicks on the DNA Form 11 had reached its optimum level such

that many are within 5-10 bps of the first, and on further irradiation they are now converted to

the linear DNA Form m. The DNA Form m content, which was undetectable when the DNA

was irradiated alone, was increased significantly when the irradiations were performed in the

presence of the UV absorbers, as can be seen in Figure 3.42. The percentage of linear DNA

produced after 45 minutes of irradiation of <jlX174 DNA, was largest when benzophenone was

present (35%), followed closely by benzophenone-l (31%), then Uvinul DS49 (29%) and

finally Eusolex 232 (17%).

The number of SSB was also much larger in the presence of these UV absorbers than in their

absence. It can be seen that the number of SSB reached a maximum after about 20-30 minutes

and thereafter declined . The maximum number of SSB from Figure 3.43 was formed when the

DNA was irradiated in the presence of Eusolex 232, which induced 3.4 SSB per mole of DNA

after 30 minutes of irradiation compared to 0.43 in its absence (see control). This was followed

by Uvinul DS49, which induced 2.3 SSB per mole of DNA (after 20 minutes), and then

benzophenone-l with 2.3 SSB per DNA mole (after 30 minutes), and finally benzophenone with

2.1 SSB per DNA mole (after 30 minutes).
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Figure 3.40: Change in the percentage of supercoiled DNA Form I induced by the irradiation

of 4>X174 DNA in the presence of benzophenone (BZ) [N=2], benzophenone-l

(BZ-l) [N=3], Uvinul DS49 (DS49) [N=3] and Eusolex 232 (232) [N=3]. The

dashed line shows the control, which represents DNA irradiated alone [N=6]

and N refers to the number of replicates.
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Figure 3.41: Change in the percentage of nicked circular DNA Form II induced by the

irradiation of 4>X174 DNA in the presence of benzophenone (BZ) [N=2],

benzophenone-I (BZ-l) [N=3], Uvinul DS49 (OS49) [N=3] and Eusolex 232

(232) [N=3]. The dashed line shows the control. which represents DNA

irradiated alone [N=6] and N refers to the number of replicates.

118



I

I
I 100
I
I
I 80

I
I
I -e 60 I,

I

z
~ • with BZ 11~

DNA alone I~
~ -.-e 40 .. with DS49~

I er-.
$ with 232I ..= with BZ-l

I1
I 4.l AfJ

I

~
4.l

20Q,;

1I

I 0
I 5 10 15 20 25 30 35 40 45

I
!
I -20I
I

I

I Irradiation time / minutes

Figure 3.42: Change in the percentage of linear DNA Form III induced by the irradiation of

<j>X174 DNA in the presence of benzophenone (BZ) [N=2], benzophenone-l

(BZ-l) [N=3], Uvinul DS49 (OS49) [N=3] and Eusolex 232 (232) [N=3]. The

dashed line shows the control, which represents DNA irradiated alone [N=6]

and N refers to the number of replicates. (The dashed line, which shows the

control, coincides with the solid line and is zero along the x-axis.)
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(BZ-l) [N=3], Uvinul DS49 (DS49) [N=3] and Eusolex 232 (232) [N=3]. The

dashed line shows the control, which represents DNA irradiated alone [N=6]

and N refers to the number of replicates.
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The photocleavage trend observed here suggests that irradiation of DNA in the presence of

benzophenone, benzophenone-l, Uvinul DS49 and Eusolex 232 greatly enhanced DNA

photocleavage in that order. This is a definite cause for concern since these DV absorbers are

approved for use in sunscreen and cosmetic formulations, apart from benzophenone, the use of

which is currently being reviewed. If these DV absorbers were to be absorbed through the skin

and enter human cells then DNA strand breaks would be able to occur in the body. If these are

left unrepaired, they may contribute to mutagenesis, carcinogenesis, inherited disease and

eventually cell death.

3.2.4 DNA photocleavage by benzophenone-3 and benzophenone-4

Benzophenone-3 and benzophenone-4 demonstrated similar DNA photocleavage patterns.

However, their behaviour differed substantially from that of the parent compound

benzophenone as well as from the other DV absorbers discussed above. The ethidium bromide­

stained agarose gels showing DNA cleavage induced by the presence of benzophenone-B and

benzophenone-4, appear in Figures 3.44-3.46 and 3.47-3.48 respectively.

From Figures 3.44-3.48, it can be seen that only two DNA Forms were present. These were the

supercoiled DNA Form I (lower band in each lane), and the nicked circular DNA Form IT

(upper band in each lane). What is also evident is that the relative amounts of DNA forms

remained constant in the case of benzophenone-3 (see lane graphs in Figures 3.44-3.46)

irrespective of the irradiation period.

However, for benzophenone-4 (Figures 3.47-3.48) as the irradiation time was increased, the

composition of the supercoiled DNA Form I content decreased slightly while that of the nicked

circular DNA Form IT was slightly increased.

The mean percentage of the DNA in Forms I and IT as well as the number of SSB induced on

the DNA after treatment with benzophenone-3 and benzophenone-4 have been plotted against

irradiation time in Figures 3.49-3.51 respectively. Included in these figures are the controls

(represented by the dotted lines), which depict irradiation of the DNA in the absence of the UV

absorbers. Error bars represent the standard deviation at each irradiation time for the UV

absorbers. As mentioned before these error bars are large, which is typical of this assay. The

results of the DNA photocleavage experiments for benzophenone-3 and benzophenone-4 can be

found in Appendices B6 and B7 respectively.
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Figure 3.44 The ethidium bromide-stained agarose gel (A) and the densitometric lane graph

(B) showing cleavage of <j>X174 DNA (18.85 IlM) photosensitised by

benzophenone-3 (50 IlM). DNA samples in lanes 1-6 were irradiated for 0,5,

10, 20, 30 and 45 minutes, respectively (RUN 1).
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Figure 3.45: The ethidium bromide-stained agarose gel (A) and the densitometric lane graph

(B) showing cleavage of <j>X174 DNA (18.85 J!M) photosensitised by

benzophenone-3 (50 J!M). DNA samples in lanes 1-6 were irradiated for 0,5,

10, 20, 30 and 45 minutes , respectively (RUN 2).
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Figure 3.46: The ethidium bromide-stained agarose gel (A) and the densitometric lane graph

(B) showing cleavage of <l>X174 DNA (18.85 ~M) photosensitised by

benzophenone-3 (50 ~M). DNA samples in lanes 1-6 were irradiated for 0,5,

10, 20, 30 and 45 minutes, respectively (RUN 3).
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Figure 3.47: The ethidium bromide-stained agarose gel (A) and the densitometric lane graph

(B) showing cleavage of <jlX174 DNA (18.85 JlM) photosensitised by

benzophenone-4 (50 ~M). DNA samples in lanes 1-6 were irradiated for 0,5,

10,20,30 and 45 minutes, respectively (RUN 1).
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Figure 3.48: The ethidium bromide-stained agarose gel (A) and the densitometric lane graph

(B) showing cleavage of <jlX174 DNA (18.85 Jl.M) photosensitised by

benzophenone-4 (50 Jl.M). DNA samples in lanes 1-6 were irradiated for 0, 5,

10, 20, 30 and 45 minutes, respectively (RUN 2).
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Figure 3.49: Change in the percentage of supercoiled DNA Form I induced by the irradiation

of cjlX174 DNA in the presence of benzophenone-3 (BZ-3) [N=3] and

benzophenone-4 (BZ-4) [N=2]. The dashed line shows the control, which

represents DNA irradiated alone [N=6] and N refers to the number of replicates.
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Figure 3.50: Change in the percentage of nicked circular DNA Form II induced by the

irradiation of <j>X174 DNA in the presence of benzophenone-3 (BZ-3) [N=3]

and benzophenone-4 (BZ-4) [N=3]. The dashed line shows the control, which

represents DNA irradiated alone [N=6] and N refers to the number of replicates.
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Figure 3.51: Change in the number of SSB per mole of DNA induced by the irradiation of

<j>X174 DNA in the presence of benzophenone-3 (BZ-3) [N=3] and

benzophenone-4 (BZ-4) [N=2]. The dashed line shows the control, which

represents DNA irradiated alone [N=6], and N refers to the number of

replicates.
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From Figure 3.49, it is apparent that when <\>X174 DNA was irradiated in the presence of

benzophenone-3, the supercoiled DNA Form I content changed only negligibly from 61%

without irradiation, to 65% after 45 minutes of irradiation (Appendix B6). This implies that for

the duration of the irradiation period the supercoiled DNA content remained almost constant. In

the case of benzophenone-4, after 45 minutes of irradiation of the DNA in its presence, the

supercoiled DNA content was decreased from 77% initially to 41% indicating that 46% of the

DNA was nicked in the presence of benzophenone-4. When this is compared to the control,

which demonstrated a 49% decrease in the supercoiled Form I content, the results clearly show

that in the presence of benzophenone-4, the number of nicks on the supercoiled DNA was

reduced, but more so in the presence of benzophenone-3. When benzophenone-3 was present

the supercoiled DNA was almost completely protected from nicks irrespective of irradiation

time.

From Figure 3.50, it can be seen that the nicked circular DNA Form 11 content was also smaller

in the presence of both benzophenone-3 and benzophenone-4 compared to when they were

absent. After 45 minutes of irradiation of DNA in the presence of benzophenone-3 and

benzophenone-4 35% and 59% of the DNA existed as the nicked circular DNA Form 11

respectively compared to 65% when the DNA was irradiated alone (control). No linear DNA

Form III was formed when the DNA was irradiated in the presence of either benzophenone-3 or

benzophenone-4.

Also the number of SSB per DNA mole is higher when the DNA was irradiated alone,

compared to when either benzophenone-3 or benzophenone-4 were present (Figure 3.51). After

45 minutes of irradiation the number of SSB produced when benzophenone-3 was present was

undetectable, however, in the presence of benzophenone-4, 0.61 SSB per DNA mole was

produced. The control suggests that 0.79 SSB per DNA mole was produced when the DNA was

irradiated alone (Appendix B1), hence it can be seen that both benzophenone-4 and

benzophenone-3 protect <\>X174 DNA from SSB. In the presence of benzophenone-3 SSB are

completely prevented.

It can be concluded that DNA photocleavage was decreased both in the presence of

benzophenone-3 and benzophenone-4 compared to in their absence. Both these DV absorbers

protected DNA from photocleavage, with this effect being more pronounced when

benzophenone-3 was present. From these results it appears that benzophenone-3 and

benzophenone-4 do not cleave DNA under DV irradiation therefore their use in sunscreen

formulations is acceptable.
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3.3 Fluorescence spectroscopy to detect DNA binding

The Fluorescent Intercalator Displacement technique (FID) is a fast and efficient method to detect

DNA binding in vitro. In this assay, the fluorescence from ethidium bromide was used as a reporter

of DNA damage. It utilises competition of an added compound with ethidium bromide for DNA

intercalation sites. The parameters selected for the assay are discussed in Section 3.3.1, the mode of

interaction of ethidium bromide and DNA is described in Section 3.3.2, while in Section 3.3.3 the

photocleavage efficiencies of the DV absorbers under investigation as detected by the FID assay are

discussed.

3.3.1 Parameters selected for FID assay

The success of the AD assay is dependent on a number of parameters, all of which have been

addressed in Section 2.4.4. AI: 2 ethidium bromide: DNA bp ratio was used to ensure that all

intercalation sites on the DNA helix are occupied. A 6:1 DNA bp: DV absorber ratio was required

to provide an assay sensitive enough to depict large and sharp decreases in the fluorescence

intensity. A Tris-HCl buffer with high salt concentration (0.1 M Tris-HCl) was used to ensure that

binding of the ethidium bromide occurred exclusively by intercalation and not to the anionic

phosphate groups on the outside of the helix. Two other parameters that had to be determined were

the excitation and fluorescence monitoring wavelengths. These will now be discussed .

Fluorescence excitation wavelength

Excitation of ethidium bromide has been frequently performed directly at 510 nm, 525 nm or 546

nm (Armitage et al. [1994], Mohtat et al. [1998], Strothkamp [1994], Cain et al. [1978], Reinhardt

& Krugh [1978] and Boger et al. [2001]), as well as indirectly at 260 nm (Geall & Blagbrough

[2000]). The excitation wavelength for ethidium bromide had to be very carefully selected to

ensure that the absorbance of ethidium bromide at the excitation wavelength was below 0.05

absorbance units, such that errors due to self-absorbance were avoided, yet the absorbance was

large enough to ensure a sensitive assay. In addition, the excitation wavelength chosen should give

the best resolution of peaks. The absorbance of the ethidium bromide solution (0.68 x 10-5 M) used

in this assay was measured with a Cary lE DV-Visible spectrophotometer so that the optimum

excitation wavelength could be determined. The spectrum obtained appears in Figure 3.52.
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Figure 3.52: The absorption spectrum of the 0.68 x 10.5 M solution of ethidium bromide.

Excitation at 546 nm and 525 nm were both discarded since the absorbance of ethidium bromide at

the former wavelength was 0.0049 and hence not sufficient enough to induce fluorescence, while at

the latter it was 0.016 and not large enough to provide a sensitive assay. Excitation at 260 nm was

also discarded since the absorbance of ethidium bromide at this wavelength was too large (0.128

absorbance units) and also gave poor resolution of fluorescence. The excitation wavelength that

gave the best resolution of peaks was 510 nm. In addition the absorbance of ethidium bromide at

this wavelength was 0.027 absorbance units and below the required limit of 0.05 units. Excitation

of ethidium bromide at 510 nm was therefore selected to be used in this assay.

Fluorescence monitoring wavelength

The fluorescence of ethidium bromide (0.68 x 10.5 M) was measured with a Perkin Elmer LS 50B

luminescence spectrophotometer. The spectrum was measured from 525 nm to 700 nm with

excitation at 510 nm and appears in Figure 3.53. From this figure it can be seen that the maximum

fluorescence of ethidium bromide occurs around 586 nm. This was chosen as the wavelength to be

used to monitor the fluorescence of ethidium bromide from the FID assay.
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Figure 3.53: Fluorescence spectrum of ethidium bromide (0.68 x 10-5 M) showing maximum

fluorescence at 586 nm.

None of the DV absorbers being investigated or the buffers fluoresced or absorbed light at this

chosen wavelength, hence indicating that fluorescence at 586 nm would be due entirely to that of

ethidium bromide.

3.3.2 The mode of interaction of ethidium bromide with DNA

The fluorescence spectra of ethidium bromide (0.68 x 10-5 M) both in the absence and the presence

of calf thymus DNA (1.2 x 10-5 M bp) were measured as described in Section 2.4.6 with a Perkin

Elmer LS 50B luminescence spectrophotometer. The spectra, which were measured from 525 nm

to 700 nm with excitation at 510 nm, are presented in Figure 3.54.
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Fluorescence spectra of ethidium bromide (0.68 x 10-5 M) alone and ethidium

bromide bound to calf thymus DNA (1.2 x 10-5 M bp).

It is apparent that ethidium bromide in the absence of DNA was very poorly fluorescent and

depicted only a small emission peak with an intensity of 10 units at about 586 nm. In the presence

of the DNA, the intensity of the fluorescence was dramatically increased to about 65 units at this

emission wavelength. The increase in fluorescence upon binding to DNA as observed in Figure

3.54 has been well established in literature to be due to intercalation of the ethidium bromide

between the base pairs of the DNA double helix, producing a strongly fluorescent complex.

The nature of this interaction between ethidium bromide and DNA has been well characterised in

literature (Lepecq & Paoletti. [1967], Lober et al. [1974], Reinhardt & Krugh [1978] and Geall &

Blagbrough [2000]). Ethidium bromide intercalates with the DNA by vertical stacking of the

phenanthridium ring between two nucleotide bps of the DNA double helix such that the

phenanthridium ring is roughly parallel to the bps (Reinhardt & Krugh [1978]) (Figure 3.55).

Ethidium bromide does not have a requirement for any particular base in binding to DNA, but it

does show a preference in forming complexes with cytosine-guanine and other pyrimidine-purine

sequence dinuc1eotides(Reinhardt & Krugh [1978]). Binding of the dye is saturated when one dye
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Figure 3.55: Schematic diagram showing intercalation of ethidium bromide with the DNA bps.

molecule is bound for every 4 or 5 bps (Reinhardt & Krugh [1987] and Geall & Blagbrough

[2000]). This implies that there is one intercalation site for every other bp.

According to Olmstead & Kearns [1977], this fluorescence increase is due to a reduction in the rate

of deactivation of the excited state of ethidium bromide. Deactivation of free ethidium bromide in

aqueous solution is by proton transfer from the excited singlet state to water (Geall & Blagbrough

[2000]) . When ethidium bromide intercalates DNA, slow proton transfer occurs as the ethidium

bromide is sterically protected from the aqueous solvent. This results in longer lifetimes for

ethidium bromide and hence fluorescence enhancement.

3.3.3 DNA binding by the DV absorbers detected by the FID assay

The FID technique uses the fluorescence of ethidium bromide when bound to DNA as a useful tool

to detect DNA binding by another competing compound. Any process that destroys potential DNA

binding sites for ethidium bromide would result in a decrease in the ethidium bromide fluorescence

intensity. However, this technique does not allow for the specific binding site on the DNA to be

identified. A molecule may bind to DNA at a site different to that at which ethidium bromide binds,

but due to neighbour exclusion and steric interferences, the number of binding sites available for

ethidium bromide could be decreased and hence fluorescence would be reduced (Cain et al. [1978]).

Non-intercalating compounds therefore will also compete with ethidium bromide and a

135



fluorescence decrease does not necessarily imply that the compound under investigation binds to

DNA in a similar manner to that of ethidium bromide.

In this series of experiments the ability of the benzophenone-derived DV absorbers to bind to DNA

when irradiated with DV light was investigated using the FID assay. Each DV absorber was treated

as described in Section 2.4.6. Samples containing 0.36 ml of 1 x 10-4 M DNA bp and 1.67 x 10,5 M

of the DV absorber were irradiated at one minute intervals for a total irradiation period of 5 minutes

with an Osram HBO 500W/2 high pressure mercury lamp at wavelengths greater than 300 nm.

Longer irradiation periods were not analysed since they showed larger fluctuations in results due to

the extreme sensitivity of this technique. A 2.64 ml volume of ethidium bromide was then added to

the irradiated sample and it was allowed to equilibrate at 25°C for 30 minutes, after which the

fluorescence of ethidium bromide was measured with a Perkin Elmer LS 50B luminescence

spectrometer. The excitation wavelength was 510 nm, while the fluorescence was monitored at 586

nm.

This assay was performed with a ratio of one DV absorber for every 6 DNA bps, therefore it is

assumed that if each DV absorber were to react only once, then a maximum of 6% of the available

binding sites could be destroyed per DNA molecule. However, large fluctuations in fluorescence

readings with this assay have been reported previously in literature (Geall & Blagbrough [2000]).

Therefore for each DV absorber analysed the assay was performed at least in duplicate, and the

average and standard deviation was determined .

The percentage of ethidium bromide binding sites remaining after interaction of the DV absorber

with the DNA was calculated from Equation 2.10. For this calculation the fluorescence intensity of

the buffer was required. The fluorescence of both the Tris-HCl buffer as well as the 50% (v/v)

ethanol: Tris-HCl buffer was measured and their spectra appear in Figures 3.56 and 3.57. From the

spectra it can be seen that both buffers fluoresced negligibly at the wavelength of maximum

fluorescence of ethidium bromide (586 nm). Therefore, when calculating the percentage of binding

sites remaining, the fluorescence intensity of the buffer was taken to be zero.
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Figure 3.57 Fluorescence spectrum of 50% (v/v) ethanol: Tris-HCI buffer showing negligible

fluorescence at 586 nm.
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The binding interaction of ethidium bromide with DNA was investigated firstly in the absence of

the DV absorbers. This served as the control, and by comparing it to the experiment, the DNA

binding ability of the DV absorbers could be determined. The controls were subjected to the same

conditions as the experiments. Since two different buffers were used to dissolve the DV absorbers,

two control experiments had to be set up. In the first, the DNA was dissolved in Tris-HCI buffer

and this served as the control for all the DV absorbers, except benzophenone-3. For benzophenone­

3, however, the control consisted of DNA dissolved in 50% (v/v) ethanol: Tris-HCI buffer.

The average percentage of binding sites remaining after irradiating the DNA alone for a total

irradiation period of 5 minutes in Tris-HCI buffer and 50% (v/v) ethanol: Tris-HCI buffer were

calculated and the values have been plotted against irradiation time and appear in Figures 3.58 and

3.59 respectively. After 5 minutes of irradiation of DNA in both buffers, the percentage of binding

sites remaining showed no significant decrease. For both controls, the overall trend suggested that

all the ethidium bromide-binding sites remained intact and no binding sites were destroyed after 5

minutes of irradiation at wavelengths greater than 300 nm. According to Boger et al. [2001], the

variations in readings for this assay may be as large as 10%, therefore the fluctuation in the results

as can be seen in both figures is typical of this assay. The equations of the curves in Figures 3.58

and 3.59 are y =0.367x + 104 and y =-0.098lx +101 respectively.

Benzophenone, the parent compound of the DV absorbers, was the first compound to be analysed

by this assay. The percentage of ethidium bromide binding sites remaining after irradiation of calf

thymus DNA (1.2 x 10-5 M bp) in the presence of benzophenone (2 x 10-6 M) was calculated for the

5 minute irradiation period by means of Equation 2.10, and the results have been plotted against

irradiation time in Figure 3.60.

In the presence of benzophenone, the number of DNA binding sites available to ethidium bromide

decreased with irradiation time. After 5 minutes of irradiation, 7.27% of the ethidium bromide

binding sites were destroyed. The slope of the graph was determined to be -1.09, when this was

compared to the slope of the control (0.367), it is apparent that ethidium bromide binding to DNA

was decreased by 2.96 times in the presence of benzophenone compared to when it was absent.

This implies that the destroyed ethidium bromide binding sites were occupied by benzophenone.
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Figure 3.58: Ethidium bromide (0.6 x 10-5 M) binding to calf thymus DNA (1.2 x 10-5 M bp),

irradiated in a Tris-HCI buffer (0.1 M, pH 8.0) at A> 300 nm, in the absence of any

DV absorber [N=2]. DNA binding was detected by the fluorescence of ethidium

bromide at 586 nm. N refers to the number of replicates. (This served as the

control for all the DV absorbers apart from benzophenone-3.)
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Figure 3.59:

I;lIJ

c:: 110·a !
1" · " i.... . . . ! . . . I . . .~e 100 .. . .

~
~

fI.l
90 y=-O.0981x +101.04~..-....

fI.l
I;l)
c:: 80....

-=c::....
..c 70
~ 0 2 3 4 5 6

Irradiation tinE!~

Ethidium bromide (0.6 x 10-5 M) binding to calf thymus DNA (1.2 x 10-5 M bp),

irradiated in a 50% (v/v) ethanol: Tris-HCI buffer (0.1 M, pH 8.0) at A> 300 nm, in

the absence of any DV absorber [N=2]. DNA binding was detected by the

fluorescence of ethidium bromide at 586 nm. N refers to the number of replicates.

(This served as the control for benzophenone-3.)
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Figure 3.60: Ethidium bromide (0.6 x 10-5 M) binding to calf thymus DNA (1.2 x 10-5 M bp),

irradiated in the presence of benzophenone (2 x 10-6 M) at A> 300nm, and detected

by fluorescence at 586 nm [N=2]. The control, indicated by the dashed line,

represents ethidium bromide binding to DNA in the absence of any sunscreen. N

refers to the number of replicates .
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The DNA binding ability of the UV absorbers under investigation in this study, were obtained

similarly to that of benzophenone, and the percentage of ethidium bromide binding sites remaining

after treatment of calf thymus DNA with each specific UV absorber were calculated and are plotted

in Figures 3.61-3.66. From these graphs it can be seen that benzophenone-l, Uvinul DS49 and

ketoprofen demon started comparable DNA binding patterns to that of benzophenone, while that of

Eusolex 232, benzophenone-3 and benzophenone-4, differed, with this deviation being more

pronounced with the latter two sunscreen agents.

For ketoprofen, benzophenone-l and Uvinul DS49 the percentage of sites available for ethidium

bromide to bind to DNA decreased with irradiation time as depicted in Figures 3.61 - 3.63. After 5

minutes of irradiation in the presence of Uvinul DS49, ketoprofen and benzophenone-l, ethidium

bromide binding to DNA was decreased by 7.44%, 10.7% and 13.1% respectively (Figures 3.63,

3.61 and 3.62). The slopes of the graphs in Figures 3.61, 3.62 and 3.63 are -1.63, -2.10 and -1.52

respectively. When these values are compared to the slope of the control graph (0.367), it is clear

that in the presence of ketoprofen, benzophenone-l and Uvinul DS49, ethidium bride intercalation

sites were reduced 4.45 fold, 5.57 fold and 4.14 fold respectively compared to when they were

absent. This implies that the lost ethidium bromide binding sites may now be occupied by the

respective UV absorbers.

Eusolex 232, however, did not display a similar reduction in ethidium bromide binding sites as

observed with the UV absorbers mentioned above. DNA binding sites available to ethidium

bromide, when calf thymus DNA was irradiated in the presence of Eusolex 232, appear in Figure

3.64. The slope of the graph is 0.0729 and the percentage of ethidium bromide binding sites

remained almost constant for the duration of the irradiation period. This implies that Eusolex 232

did not compete with ethidium bromide binding sites on the DNA duplex. This result agrees with

the work done by Stevenson & Davies [1998] and Inbaraj et al. [2002] who also showed the

inability of Eusolex 232 to bind to calf thymus DNA.

For benzophenone-3 and benzophenone-4, two of the most commonly used sunscreens on the

market, the DNA photobinding trend differed substantially from that of benzophenone. Instead of a

reduction in ethidium bromide binding sites, in the presence ofbenzophenone-3 and benzophenone­

4 the DNA sites available to ethidium bromide for binding were increased compared to in their

absence (Figures 3.65 and 3.66).
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Figure 3.61: Ethidium bromide (0.6 x 10-5 M) binding to calf thymus DNA (1.2 x 10-5 M bp),

irradiated in the presence of ketoprofen (2 x 10.6 M) at A. > 300 nm and detected by

fluorescence at 586 nm [N=2]. The control, indicated by the dashed line, represents

ethidium bromide binding to DNA in the absence of any sunscreen. N refers to the

number of replicates.
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Figure 3.62: Ethidium bromide (0.6 x 10-5 M) binding to calf thymus DNA (1.2 x 10-5 M bp),

irradiated in the presence of benzophenone-I (2 x 10-6 M) at A. > 300 nm and

detected by fluorescence at 586 nm [N=2]. The control, indicated by the dashed

line, represents ethidium bromide binding to DNA in the absence of any sunscreen.

N refers to the number of replicates.
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Figure 3.63: Ethidium bromide (0.6 x lO's M) binding to calf thymus DNA (1.2 x lO's M bp),

irradiated in the presence of Uvinul DS49 (2 x 10.6 M) at A> 300 nm and detected

by fluorescence at 586 nm [N=2]. The control, indicated by the dashed line,

represents ethidium bromide binding to DNA in the absence of any sunscreen. N

refers to the number of replicates.
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Figure 3.64: Ethidium bromide (0.6 x 10-5 M) binding to calf thymus DNA (1.2 x 10-5 M bp),

irradiated in the presence of Eusolex 232 (2 x 10-6 M) at A. > 300 nm and detected

by fluorescence at 586 nm [N=2]. The control, indicated by the dashed line,

represents ethidium bromide binding to DNA in the absence of any sunscreen. N

refers to the number of replicates.
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Figure 3.65:

CD= 130....= y =l.172x + 106.8....
= 120El

~ t IQI
110 ~~"" i -

rI.l
QI

100 , - - i- --. - - -- ""I- - -~~~....
rI.l .l-

CD 90= y =-0.098lx + 101.04....
"Cl 80=:El 70
~

0 1 2 3 4 5 6

Irradiation time I minutes

Ethidium bromide (0.6 x 1005 M) binding to calf thymus DNA (1.2 x 10-5 M bp),

irradiated in the presence of benzophenone-3 (2 x 10-6 M) at A. > 300 nm and

detected by fluorescence at 586 nm [N=2]. The control, indicated by the dashed

line, represents ethidium bromide binding to DNA in the absence of any sunscreen.

N refers to the number of replicates.
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Figure 3.66: Ethidium bromide (0.6 x 10,5 M) binding to calf thymus DNA (1.2 x 10'5 M bp),

irradiated in the presence of benzophenone-4 (2 x 10.6 M) at A. > 300 nm and

detected by fluorescence at 586 nm [N=2]. The control, indicated by the dashed

line, represents ethidium bromide binding to DNA in the absence of any sunscreen.

N refers to the number of replicates.
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The slopes of the graphs in Figures 3.65 and 3.66 are 1.17 and 1.33, while the slopes of their

respective controls are -0.0981 and 0.367, thus indicating that in the presence of benzophenone-3

and benzophenone-4 the ability of ethidium bromide to bind to the DNA bases was increased by

12.0 and 3.62 times respectively compared to when they were absent.

It can be concluded that the ability of the UV absorbers studied in this investigation to bind to calf

thymus DNA when irradiated with DV light decreased in the following order: benzophenone-l >

ketoprofen> Uvinul DS49 > benzophenone . Benzophenone-l was the most efficient DNA binder.

However, Eusolex 232, benzophenone-3 and benzophenone-4 did not compete with ethidium

bromide for binding sites on calf thymus DNA and hence did not bind to the DNA. The latter two

sunscreen agents seemed to free more intercalation sites on the DNA, and make them available to

ethidium bromide for binding. This is not ideal since it implies that the extent of DNA binding by

an intercalating compound would be increased in the presence of benzophenone-3 or

benzophenone-4 on irradiation with calf thymus DNA and hence the damage induced to the DNA

would be more severe.

3.4 Computational Results

Since it is of importance to know whether the DV absorbers investigated in this study can bind to

DNA by intercalation, computational chemistry using the PM3 calculation was used to determine

the low energy, most stable conformations of these structures (Section 2.5). Between 5 - 10 local

minima were found for each DV absorber, and the lowest energy structure found in each case is

reported below. The results obtained for benzophenone-l, benzophenone-3, benzophenone-4 and

Uvinul DS49 showed similarities, and have been grouped together and are discussed in Section

3.4.1, however, Eusolex 232 showed a remarkable difference to the above-mentioned compounds

and appears in Section 3.4.2.

3.4.1 Lowest energy structures for benzophenone-1, benzophenone-3,

benzophenone-4 and Uvinul DS49

For benzophenone-l, benzophenone-3, benzophenone-4 and Uvinul DS49, the dihedral angles

chosen for the conformational searches were CI3-C8-C7-CI and C8-C7-CI-C6 (Figure 3.67).
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Figure 3.67: Chemical structures of benzophenone-l , benzophenone-3, benzophenone-4 and

Uvinul 0549 showing the dihedral angles C13-C8-C7-Cl and C8-C7-CI-C6.

For all cases the dihedral angles were first fixed, both to 180°, thus inducing a planar structure.

However, these structures proved not to be a minimum on the energy surface for these molecules,

but corresponded to a maximum or transition state. The frequency calculations of the flat structures

had one negative eigenvalue in each case and the movement of atoms associated with the

eigenvalue resembled movement (twisting) out of the plane.

The results obtained for the computational studies appear in Table 3.1.
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Table 3.1: Computational results for the optimised structures for benzophenone-1,

benzophenone-3, benzophenone-4 and Uvinul DS49.

Benzophenone-1 Benzophenone-3 Benzophenone-4 Uvinul DS49

Optimized Twisted Twisted Twisted Twisted

Structure

Energy preference 10 10 9 14

/ kcal mOrl

Dihedral angle 180 180 179.6 152.9

C13-C8-C7-Cl / °

Dihedral angle 90.6 91.2 108.7 152.9

C8-C7-C1-C6 / °

The lowest energy state in each case corresponded to the twisted structure. From Table 3.1, it can
,

be seen that the optimized twisted structures for benzophenone-1, benzophenone-3, benzophenone-

4 and Uvinul DS49 were preferred to the planar structures by 10 kcal mol" , 10 kcal mol" ,9 kcal

mol" and 14 kcal mol", respectively. This is not surprising since for all these molecules

considerable steric hindrance is exerted in the flat structure between C6(H) and C9(H) thus

preventing the planar structure from being the most stable. In addition to steric hindrance,

intramolecular hydrogen bonding between C7(O) 'and ClO(H) reaffirms the twisted structure. Also
,

for Uvinul DS49 the difference in energy betwee~ the twisted and planar structures was higher than

for the other benzophenone molecules. This can' be attributed to increased steric hindrance in the

flat structure in the case of Uvinul DS49 due to a larger number of functional groups on the

backbone. The 14 kcal mol" preference is thus a direct result from the higher steric hindrance in

the flat structure.

The optimized twisted structures for benzophenone-I, benzophenone-3, benzophenone-4 and

Uvinul DS49 have dihedral angles between atoms, 13,8,7 and 1 and between atoms 8, 7,1 and 6 of

(180°,90.6°), (180°, 91.2°), (179.6°, 108.7°) and (152.9°, 152.9°) respectively (Table 3.1). These

structures appear in Figure 3.68.
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Figure 3.68: The optimized structures for benzophenone-l, benzophenone-3, benzophenone-4

and Uvinul DS49 obtained from semi-empirical PM3 calculations.
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From these results it can be noted that in the case of benzophenone-4 and Uvinul DS49, the dihedral

angles were larger than those of benzophenone-l and benzophenone-3, and the optimised structures

are twisted to a smaller extent as can be seen in Figure 3.67. This can be attributed to the presence

of the sulphonic acid group at ClO in benzophenone-4, and at C3 and CID in Uvinul DS49. In the

sulphonic acid group the hydrogen atom is shielded and as a result the conformational search did

not find the same hydrogen atom here as for the benzophenone-I and benzophenone-3. This was

noted and the structure was changed manually to have the hydrogen bond at ClO, and C3 and ClO

in benzophenone-4 and Uvinul DS49 respectively. Optimization of the hydrogen bonded structure

of benzophenone-4 gave an energy of about 9 kcal mol" lower than the flat structure compared to

about 7 kcal mol" when the hydrogen bond was not detected. This is an overestimation since it is

known that a single intramolecular hydrogen bond stabilizes the structure by about 3-6 kcal mol"

(March [1992]). Similar intramolecular bonding was found in Eusolex 232, which contributed to

the larger dihedral angles in the optimised structure .

3.4.2 Lowest energy structure for Eusolex 232

The situation for Eusolex 232 was very different to that of the UV absorbers mentioned above

(Section 3.4.1). Firstly the chemical structure of Eusolex 232 (Figure 3.69) does not display large

groups exercising huge steric hinderance as with the cases above. More importantly, in Euslolex

232 n-electron delocalisation is of importance, It is well known from literature that rotational

barriers involving delocalization are underestimated by PM3 (Foresman & Frisch [1996]), therefore

an ab initio calculation in addition to the PM3 was required. With ab initio methodology better n­

electron delocalization can be considered in the mathematical code. The results obtained from both

these methods are shown in Table 3.2.

PM3 calculations

The PM3 calculation preferred a twisted structure where the dihedral angle C7-C8-ClO-Cll (Figure

3.69) was approximately 30°, From the PM3 calculations it was also shown that the twisted

structure was only marginally (0.1 kcal mol") more stable than the flat structure (dihedral angle C7­

C8-ClO-Cll constrained at 0° and the rest of the molecule optimized using PM3). However, these

calculations do not consider electron delocalisation, which has been shown to contribute
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Table 3.2: Computational results for the optimized structure of Eusolex 232 as obtained from

PM3 and ab initio calculations.

PM3 Ab initio

Optirnised structure Twisted Planar

Energyl kcal mol" 0.1 6

Dihedral angle
30 0

C7-C8-C lO-C11 1°

n-electron delocalization No Yes

S020 H, 9 N 11-12

'8/ ~4"---3~ / - \
11 I "2-10 ;,13

7 .....-:5 / ~ /I
~~""""""N 15-14

H
1

Figure 3.69: Chemical structure of Eusolex 232 showing the dihedral angle C7-C8-C 1O-C 11.

considerably to stabilization of flat structures. These results, therefore, did not accurately predict

the lowest energy state and hence ab initio calculations were required.
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Ab initio calculations

The geometry and energy of Eusolex 232 was subsequently obtained using ab initio calculations at

the Restricted Hartree-Fock level of theory with the 3-21+G basis set (Foresman & Frisch [1996]).

Diffuse functions (+) are typically used for a more accurate description when n-electron

delocalization is involved. The partially unconstrained twisted structure (where C7-C8-ClO-Cll is

approximately 30°, obtained from PM3 calculations) was optimised using ab initio methods and

became perfectly flat, confirming that the lowest energy structure for Eusolex 232 should in fact be

planar (Figure 3.70). Furthermore, the flat structure did not have any negative eigenvalues,

confirming that the flat structure should at least be a local minimum and not a transition state. The

dihedral angle C7-C8-ClO-Cll was then constrained at 90.0° and the rest of the molecule optimised

using the same ab initio method. Any unconstrained structure became planar with the ab initio

calculation. The flat structure was more stable by about 6 kcal mol" confirming that this structure

should be the global minimum, due to the large contribution towards stabilization from n-electron

delocalization.

Figure 3.70 Optimized planar structure for Eusolex 232.

The flat structure of Eusolex 232 can therefore possibly intercalate with DNA and hydrogen bond

formation between the nitrogen atom on Eusolex 232 and the base pairs of DNA can occur.
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3.4.3 Conclusion

The computational results clearly suggest that intercalation of the following benzophenone-based

UV absorbers, i.e., benzophenone-l, benzophenone-3, benzophenone-4 and Uvinul DS49, with

DNA will at best be very limited, since only one half could possibly interact with the base pairs of

DNA. This is due to the structure of the DNA grooves, where only flat molecules are able to fit in

the grooves and fully intercalate with DNA. The only analogue that could intercalate fully with

DNA is Eusolex 232, since the structure is flat at room temperature. However, it should be noted

that intercalation may not always lead to direct DNA cleavage and in some cases further treatment

may be required (Tullius [1998]). In addition, DNA cleavage may be possible without intercalation

with the base pairs.

3.5 Proposed mechanism of DNA photocleavage induced by

the benzophenone-based sunscreen agents

This study, which investigated the DNA photocleavage potentials ofbenzophenone, benzophenone­

1, benzophenone-3, benzophenone-4, Uvinul DS49 and Eusolex 232, has demonstrated some

alarming results. All these DV absorbers, with the exception of benzophenone-3 and

benzophenone-4, induced the cleavage of DNA when irradiated with simulated sunlight (A.. > 300

nm). The possible mechanism of these interactions will now be addressed.

3.5.1 Possible pathways for DNA photocleavage

A vast amount of literature is available on agents that cleave DNA (Armitage [1998], McMillin &

McNett [1998], Burrows & Muller [1998] and Pogozelski & Tullius [1998]). These agents may

have mutagenic and carcinogenic effects on DNA if the damage remains unrepaired. On the other

hand, some of them may be useful for the removal of harmful sequences in the DNA bases and

hence find use as structural probes and therapeutic agents. With advances in medicine, new DNA

cleaving agents are being sought for the treatment of various diseases such as cancers.

Photocleaving agents, in particular, have gained popularity especially because the DNA cleavage

event can be controlled since it is only initiated in the presence of UV light. The review article by
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Armitage [1998] describes the various mechanistic pathways available to DNA photocleavage

agents.

From these possible mechanisms, two distinct pathways for DNA cleavage are apparent. These are

reaction of the reactive species either with the nucleobases or at the ribose sugars of the DNA

leading to strand breaks. Spontaneous DNA photocleavage, however, does not occur that easily and

is usually not due to reaction at the nucleobase but restricted to hydrogen atom abstraction from the

sugar residue (Armitage [1998] and Pogozelski & Tullius [1998]).

Detection of the DNA photocleavage mechanism is commonly achieved with electrophoresis.

However, agarose gel electrophoresis, although simple in technique, is limited in mechanistic

details as compared to using gel-sequencing protocols on polyacrylamide gels. With the latter, the

cleavage sites can be mapped by comparing the electrophoretic mobility of the cleavage fragments

with those of a reference sequence ladder using end-labelled DNA molecules (Stevenson & Davies

[1999]). It should also be noted that several photocleavage agents give spontaneous cleavage on

agarose gels, however, nucleobase cleavage is only observed on guanine sites after piperidine

treatment on end-labelled DNA. Also of importance is that the high sensitivity of the agarose gel

technique may be misleading and may not always reveal the true type of cleavage, since a low

quantum yield can produce spontaneous cleavage while a higher quantum yield DNA cleavage

process may require piperidine treatment only observed on polyacrylamide gels (Armitage [1998]).

Both these pathways to DNA cleavage will now be discussed in more detail.

A Reaction with a sugar residue

Reaction at the sugar residue is the most common route reported in literature to DNA

photocleavage. Reaction with the sugar moiety may involve abstraction of a hydrogen atom by the

photocleaving agent or by a free radical or a reactive intermediate, A reactive intermediate may

form from photodegradation of the cleaving agent or from reaction with the cleaver and another

molecule, while free radicals arise as a result of triplet energy transfer reactions to another molecule

(such as oxygen to form singlet oxygen), which may then abstract a proton from the sugar.

Photocleavers that attack at the sugar are generally expected to cleave at any sequence since a sugar

residue is present in every nucleotide. However, in some cases preferential cleavage may occur as

the cleaver may have higher preference for one site than another, alternatively its orientation if

bound to DNA may leave some sites with higher affinity for reaction than other sites (Armitage

157



[1998]). Hydrogen atoms on a sugar residue that may be accessible for abstraction are shown in

Figure 3.71.

H-5'

B

H-1'

Figure 3.71: Hydrogen atoms on the sugar moiety in DNA available for abstraction (Pogozelski

& Tullius [1998]).

Although all seven hydrogens are believed to be reactive towards free radicals not all have equal

probability of being abstracted from DNA (Pogozelski & Tullius [1998]). Depending on the helical

structure of the DNA and on the orientation of the reacting species to the sugar, some of these

hydrogens may be more accessible than others. DNA can exist in two forms, that is, the B form

(superhelical turns, coil to the left) or A form (superhelical turns, coil to the right). Under normal

conditions, in aqueous solution, the bases stack in the B-form (McMillin & McNett [1998]) (Figure

3.72). Studies have shown that molecules that bind to the minor groove of DNA do so at the 5' and

4' positions of the sugar in B-form DNA (Pogozelski & Tullius [1998]). These positions have been

shown to be most accessible to solvent and oxidizing species from the minor groove. On the other

hand, the 3' position is accessible from the major groove of B-DNA.

Hydrogen abstraction at a sugar residue, generally leads to direct strand breaks with spontaneous

cleavage.
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Major
groove

Minor
groove

Figure 3.72: B-form DNA model showing the major and minor grooves (Pogozelski & Tullius

[1998]).

B. Reaction at the DNA base

Reaction at the nucleobase generally includes (Arrnitage [1998]):

1) Direct electron transfer from the nucleobase to the excited photocleaver,

2) Triplet energy transfer from the excited photocleaver to oxygen, forming singlet oxygen,

which then reacts with the base, or

3) Triplet energy transfer from the excited photocleaver to the base forming an adduct with the

base or inducing an adduct formation between the bases.

The bases (adenine, guanine, thymine and cytosine) differ greatly in terms of their reactivities and

oxidation potentials. It has been well established that photocleavers that attack nucleobases in most

cases do so almost selectively at guanine. Guanine is by far the most easily oxidised and the most
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reactive towards singlet oxygen (Annitage [1998]). In the first two mechanisms listed above,

cleavage occurs almost exclusively at guanine, however, for adduct formation the reactive base may

differ depending on the mechanism. Adduct formation between adjacent DNA bases has been

found to occur commonly between two thymine dimers. Thymine has the lowest triplet state energy

therefore energy transfers are highly possible.

Direct electron transfer from the nucleobase to the excited photocleaver occurs very commonly by

intercalation (Figure 3.73). Examples of some common photocleavers that cleave DNA by

intercalation include anthraquinones, anthracene, psoralens and riboflavin (Breslin & Schuster

[1996] , Annitage et al. [1994] and Rai et al. [1993]).

DNA
intercalating
molecule

Figure 3.73: Antibiotic Distamycin A intercalates with the minor groove of DNA (Bruice P.

[2001]) .
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However, it should be noted that binding to DNA by intercalation is not a universal requirement for

direct electron transfer.

Cleavage at the base rarely leads to direct strand breaks but generally allows cleavage to occur site­

specifically following an additional treatment. This may involve heat, alkali (hot piperidine or

aniline) or enzymatic treatment to reveal the damage (Armitage [1998] and Burrows & Muller

[1998]). The general pathway to DNA cleavage induced at the nucleobase is shown in Figure 3.74.

The cleavage event is as a result of deglycosylation (removal of a sugar unit), ~-elimination of the

3'-phosphate, and the formation of a modified base as shown in the figure (Burrows & Muller

[1998]).

3.5.2 Postulated mechanism for DNA photocleavage by the DV absorbers

In this study, DNA photocleavage was induced spontaneously by a group of benzophenone-based

sunscreens for the supercoiled DNA target investigated (<!>X174 DNA) as detected by agarose gel

electrophoresis. It would therefore point to hydrogen abstraction at the sugar residue. However,

from the argument above it is quite clear that nucleobase attack cannot be eliminated as the

mechanism of cleavage at this stage without gel sequencing protocols being conducted. Postulated

mechanisms for the sunscreen agents will now be discussed, and this will be followed by a specific

mechanism for Eusolex 232, which has been identified in literature.

Benzophenone

If one considers the parent compound of the sunscreen agents under investigation, benzophenone,

some insight into the DNA photocleavage behaviour of the benzophenone-based group of

sunscreens can be obtained. Benzophenone has been shown to photocleave DNA, by agarose gel

electrophoresis, and to bind to calf thymus DNA, as detected by the fluorescence spectroscopy

technique. In addition, benzophenone has been shown to rapidly photodegrade when irradiated

with DV light (A. > 300 nm), to almost 80% after only 20 minutes of irradiation. The mechanism of

this photodegradation, has been discussed in Section 3.1.1, and is well known to involve the n,n*

triplet state and hydrogen atom abstraction.
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Figure 3.74: General scheme for nucleobase cleavage, where B refers to the nucleobase, and step 1 involves modification by the base damaging

reagent X, followed by cleavage in step 2 using alkaline conditions or a nuclease (Burrows & Muller [1998]).



If the hydrogen abstracted were a hydrogen atom on the sugar residue of the DNA molecule, then

this would lead to direct strand breaks and explain the DNA photocleavage observed by gel

electrophoresis . However, an interesting observation is that photodegradation of benzophenone

occurs before the time required for a significant number of single strand breaks. Single strand

breaks are detected only after about 15 minutes of irradiation with DV light, as observed by gel

electrophoresis, however, from the photostability experiments photodegradation of benzophenone

can be seen after only 5 minutes of irradiation with the same light source. The

fluorescencespectroscopy results show interaction with the DNA, or binding, within five minutes.

Hence the possibility exists that cleavage arises as a result of photosensitisation reactions via triplet

energy transfer from benzophenone directly to DNA, or to another molecule, which may then

cleave the DNA.

The basis of these triplet energy transfer reactions has been attributed in literature to photosensitised

oxidations. According to Helene [1987], photosensitization of DNA under aerobic conditions leads

predominantly to oxidative modifications of the guanine bases, which are detected when the DNA

is subsequently treated with hot piperidine. Two such photosensitised oxidation processes are

possible, i.e., the type I and type IT processes (Foote [1991]). In the type I process, electron or

hydrogen atom transfer occurs between the excited benzophenone molecule (or sensitiser) and

either directly with the DNA substrate or with a solvent molecule. Transfer can actually occur in

either direction, but most commonly the excited sensitiser acts as the oxidant. Abstraction of a

proton from the solvent, would yield radicals or radical ions which may then be available to abstract

a proton from the sugar residue and induce DNA cleavage (Foote [1991]). The type I reaction is

shown in Figure 3.75.

In contrast, a type IT reaction involves triplet energy transfer between the excited sensitiser to

molecular oxygen (Foote [1991], Stevenson & Davies [1999]). In these reactions the triplet state

quencher is oxygen because unlike most other molecules, oxygen has a triplet ground state and a

low energy singlet state making triplet energy transfer highly possible. This type IT reaction leads

mainly to singlet molecular oxygen (1°2), which is then capable of DNA cleavage by hydrogen

atom abstraction as shown in Figure 3.76.
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Type I reactions

BP +hv-7IBP

IBP-73BP

3BP + R - H -7 BPH ° + RO

R· -7 strand breaks

BP + hV-7IBP

IBP-7 3BP

3BP + S - H -7 BPHo+So

So + R - H -7 S - H + RO

RO -7 strand breaks

Figure 3.75:

Figure 3.76:

Photosensitisation of DNA by Type I reactions, where BP represents

benzophenone, R-H represents a proton of the DNA and S-H represents a solvent

molecule.

Type 11 reaction

BP+hV-7IBP

IBP-7 3BP

3BP+30 -7JBP+lo2 2

102 + DNA -7 strand break

Photosensitisation of DNA by type IT reactions, where BP represents

benzophenone, and 302 and 102 represent triplet and singlet oxygen respectively.

Benzophenone-l and Uvinul DS49

Benzophenone-I and Uvinul DS49 also cleaved DNA as detected by agarose gel electrophoresis.

However, from the computational studies, the lowest energy structures for these sunscreens were

non-planar. This implies that one half of the molecule could still intercalate with DNA and bind.

Binding of both benzophenone-l and Uvinul DS49 to calf thymus DNA was confirmed by the

fluorescence spectroscopy experiments. However, unlike benzophenone the photodegradation of

these sunscreen agents was very limited. Here again a triplet energy transfer process may be
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involved as shown for benzophenone in Figures 3.75 and 3.76, which allows hydrogen abstraction

(or electron transfer) from the DNA to occur by either a type I or type 11 process.

Benzophenone-3 and benzophenone-4

Benzophenone-3 and benzophenone-4, demonstrated a very different photocleavage pattern to that

of the other sunscreen agents investigated. These DV absorbers did not cleave DNA as detected by

gel electrophoresis and in fact seemed to demonstrate a protective effect. This supports studies

conducted by O'Kereke et al [1995] and Robinson et al [1994] who also showed the inability of

benzophenone-3 to induce damage to DNA. In addition, both benzophenone-3 and benzophenone-4

demonstrated stability towards photodecomposition under DV light. Also, from the fluorescence

studies no interaction or binding with calf thymus DNA was detected. From the computational

studies it was shown that both these DV absorbers possess non-planar lowest energy structures,

which imply that although one half of these molecules could possibly intercalate and bind with

DNA, this does not occur, as shown by the fluorescence studies. Hence benzophenone-3 and

benzophenone-4 are unable to perform type I and type 11 photosensitised processes as discussed

above for benzophenone (Figures 3.75-3.76), the latter of which has been confirmed for

benzophenone-3 by Allen et al. [1995]. Allen and his team demonstrated that benzophenone-3 does

not photosensitise the formation of singlet oxygen on irradiation with DV light, nor any other

reactive oxidant species. The lack of triplet energy transfer reactions by benzophenone-3 has been

also demonstrated by Wolf et al [1994] and Sewlall [1991], who showed that when DNA is

irradiated in the presence of benzophenone-3 thymine base dimerization does not occur.

DNA photocleavage by benzophenone-3 and benzophenone-4 may be prohibited due to the

substituents present on the benzophenone. Benzophenone-3, as discussed previously, contains the

electron donating groups, -OH and -OCH3, which are known to alter the nature of the lowest triplet

from n,1t* to 1t,1t* (Bosca & Miranda [1998]) . This is known to decrease the reactivity of the

lowest triplet state. Benzophenone-4 similarly has the electron donating groups, -OH and -OCH3,

but in addition it also contains the electron withdrawing group -S030H. Electron withdrawing

groups are known to demonstrate high efficiency for reactivity and hydrogen abstraction (Bosca &

Miranda [1998]). However, the effect of the electron-donating groups seems to dominate in the

case of benzophenone-4 and reduce its reactivity. This then raises the question of how Uvinul

DS49, which contains the same reactive groups as benzophenone-4, is reactive to DNA cleavage. A

possible explanation for this may be that the presence of the -OH, -OCH3, and the -S030 H
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substituents on both of the phenyl groups of the benzophenone backbone somehow alters the

photochemistry. The presence of two -S030H groups may switch its reactivity in favour of the

electron withdrawing effect and the n,1t* triplet is unaffected and therefore DNA photocleavage is

observed for Uvinul DS49.

Eusolex 232

Eusolex 232 is completely stable towards photodecomposition under UV light. This agrees with the

work done by Stevenson & Davies [1998] and Inbaraj et al. [2002]). However, from the gel

electrophoresis studies, it was shown to be a potent photocleaver of DNA, and its reactivity was the

highest as compared to the other UV absorbers studied here. In addition, the computational work

revealed a planar lowest energy structure for this sunscreen, thus implying that intercalation with

the DNA bases was highly probable. This was in contrast to the fluorescence spectroscopy results,

which showed that Eusolex 232 does not compete with the ethidium bromide for DNA binding sites

since the fluorescence of the ethidium bromide remained constant during the duration of the

experiment.

This was supported by studies conducted by Stevenson & Davies [1999] and Inbaraj et al. [2002]

who showed that although Eusolex 232 does not bind to calf thymus DNA it still cleaves DNA.

These researchers described the DNA cleavage mechanisms induced by Eusolex 232 as

photooxidation by singlet oxygen in single stranded DNA via the type IT reaction and the type I

mechanism in double stranded DNA. Both these processes as mentioned before involve electron

transfer between DNA and the photoexcited sensitiser. Stevenson & Davies [1999] also showed the

formation of piperidine-labile cleavage sites that mapped exclusively to the guanine residue in

single stranded DNA and to 5' guanines of GG (guanines situated 5' to another guanine) in double

stranded DNA. This now implies that the spontaneous cleavage which was indicated from the

agarose gel electrophoresis results was misleading in this case, since hydrogen abstraction from the

sugar may have been in poor competition with nucleobase cleavage of which the latter was

undectable with agarose gel electrophoresis.

Singlet molecular oxygen is formed via energy transfer from the excited triplet of Eusolex 232 to

dissolved ground state oxygen which then modifies the guanine base and induces DNA cleavage

(Stevenson & Davies [1999] and Inbaraj et al. [2002]). According to Inbaraj et al. [2002] the

phosphorescence lifetime of Eusolex 232 was 2 ms, which indicates a sufficiently long-lived triplet
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state that would be able to react with oxygen even at room temperature. Support for singlet oxygen

as being the main source of DNA damage in single stranded DNA, was provided by the formation

of 4,8-dihydro-4-hydroxy-8-oxo-2'-deoxy-guanosine in aerated solution from 2'-deoxyguanosine

(Stevenson & Davies [1999]). This is a diagnostic reaction of 102 production, which from this

literature source did not occur in the absence of Eusolex 232. Further support was provided by the

suppression of DNA photosensitization by Eusolex 232 in the presence of singlet oxygen quenchers

(sodium azide, 1,4-diazabicyclo[2.2.2]octane and cysteine) (Stevenson & Davies [1999]).

Photocleavage is not induced by singlet oxygen in double-stranded DNA, since the nucleobases are

not readily accessible for reaction compared to single stranded DNA. Instead electron transfer to

Eusolex 232 occurs, which leads to the formation of nucleobase radical cations situated at the 5'­

guanines in GG doublets, which then act as precursors to DNA cleavage.

Bolton [1991] also showed that Eusolex 232 photosensitised thymine dimer formation via its triplet

state. These Eusolex 232 photosensitised pathways are shown in Figure 3.77.

Scheme for DNA cleavage and thymine dimerisation by

Eusolex 232

232 +hV~1232

1232~3232

3232 + T(or 3°2 ) ~ 232+ 3T(or 1°2 )

3T + T ~ T()T(dimer)

102 + DNA ~ strand break

Figure 3.77: Mechanism of DNA photocleavageand thymine dimerisation induced by Eusolex

232, where 232 refers to Eusolex 232, and T refers to the thymine base in DNA.

It can be concluded that although Eusolex 232 is planar, it does not intercalate with DNA as would

be expected. However, it still cleaves DNA via singlet oxygen triplet energy transfer. Other

photosensitisers cleaving DNA in a similar manner to Eusolex 232 are riboflavin, and certain

pterins which bind weakly, if at all, to duplex DNA (Stevenson & Davies [1999]).
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Chapter 4

CONCLUSION

The photocleavage ability of a group of benzophenone-based DV absorbers, most of which are

commonly used in sunscreen preparations, was investigated. This group of sunscreen agents

included benzophenone-I (or 2,4-dihydroxybenzophenone), benzophenone-3 (or 2-hydroxy-4­

methoxy benzophenone), benzophenone-4 (or 2-hydroxy-4-methoxy benzophenone-5-sulphonic

acid), 2, 2'-dihydroxy-4, 4'-dimethoxy benzophenone sulphonic acid (trade name Uvinul DS49) and

2-phenylbenzimidazole-5-sulphonic acid (trade name Eusolex 232). Agarose gel electrophoresis

was used to detect DNA cleavage, while fluorescence spectroscopy techniques indicated DNA

binding. This study involved irradiating buffered aqueous solutions (pH 7-8) of the benzophenone­

based sunscreens in the presence of buffered aqueous solutions of DNA at wavelengths greater than

300 nm. Two types of DNA were used in this investigation, that is, single stranded cj>X174 phage

DNA for the gel electrophoresis experiments and double stranded calf thymus DNA for the

fluorescence spectroscopy studies. The stability of the sunscreen agents to photodecomposition in

DV light was also investigated. Finally, computational studies were conducted to determine the

lowest energy geometry of these sunscreen agents in an attempt to determine if intercalation of the

sunscreen agents with the DNA bases was possible.

The results obtained in this investigation indicate quite clearly that benzophenone, benzophenone-I,

Uvinul DS49 and Eusolex 232 are able to photocleave DNA and induce single strand breaks in the

DNA helix. The mechanism of this interaction has been postulated to be type I or type II

photosensitised reactions initiated by a triplet-energy transfer reaction between the excited DV

absorber and DNA.
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Benzophenone-3 and benzophenone-4 did not behave in a similar manner to the parent compound,

benzophenone, and prevented DNA photocleavage from occurring. This is attributed to the

substituents present on the benzophenone backbone. The electron donating groups, -OH and

-OCH
3

are known to be responsible for altering the nature of the lowest triplet from n,n* to n,n*,

which is believed to decrease the reactivity of the lowest triplet state. Nevertheless, other workers

in this field (Schallreuter et al. [1996]) have identified reasons for concern over the use of

benzophenone-3 in sunscreen formulations.

Although the parent compound, benzophenone, and the DNA photocleaver, ketoprofen,

photodegraded, the other benzophenone-based DV absorbers were relatively stable over the time

period investigated, which indicates that they do satisfy one of the requirements of a sunscreen

absorber. However, other researchers (Serpone et al. [2002]) would disagree since they have shown

both benzophenone-3 and Eusolex 232 to undergo photodegradation on irradiation with DV light to

such an extent that their use as DV absorbers in sunscreen formulations warrants further

investigation. Also, although the use of benzophenone is not permitted in sunscreen formulations

by most authorities throughout the world, its use in sunscreens is still under review in Australia.

This is of concern, since it is quite clear that benzophenone does not provide the intended protection

against DV radiation and its use in sunscreens should not be permitted.

However, more alarming than this, is the finding that some of these DV absorbers, which are FDA

approved, are able to cleave DNA. Although these studies were conducted in vitro, they do show

that if these substances are able to penetrate skin and enter the cells then they would have the

potential to damage DNA. Jiang et al. [1999] have provided evidence that benzophenone-3 is

absorbed through the skin following topical application. According to this author's knowledge skin

permeability tests for the other DV absorbers have not yet been conducted and this aspect requires

urgent investigation. If these strand breaks were to occur in human DNA and if they were

unrepaired, they could contribute to mutagenesis, carcinogenesis, inherited disease and eventually

cell death. The photosensitising properties of Eusolex 232 are also a potential cause of concern. Its

ability to induce singlet oxygen upon DV irradiation poses a threat of oxidative damage to skin

tissue and the cell membranes.

With regards to the use of ketoprofen as a drug for the treatment of arthritic diseases, skin

permeability is not a factor. DNA cleavage has been shown before by other workers, and has been

confirmed here. Since this drug is consumed orally, it is most likely to react with DNA, but DV
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light would have to reach the DNA. Therefore patients taking ketoprofen medication should avoid

UV irradiation treatment.

In conclusion it should be emphasised that, before the benzophenone-based sunscreens can be

considered "safe", more work needs to be done to evaluate the photochemistry in vivo. Until then ·

the use of sunscreen formulations containing benzophenones should be used with caution.
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APPENDIX A

A list of the materials and equipment used for the various experiments

AI: Equipment used for UV irradiation

A2: Chemicals and equipment used for UV absorption spectroscopy

A3: Chemicals and equipment used for agarose gel electrophoresis .

A4: Chemicals and equipment used for fluorescence spectroscopy

A5: Equipment for computational modelling
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Al Equipment used for DV irradiation

Osram HBO 500 W/2 high pressure mercury lamp

Schreiber Power pack

10 mm Pyrex filter

NMR tubes

Quartz cuvette (10 mm pathlength)

Blak-Ray 1-221 Longwave UV intensity Meter (UVP)

A2 Chemicals and equipment used for DV absorption spectroscopy

CHEMICALS SUPPLIER INFORMATION

Tris-(hydroxymethyl)-arninomethane Saarchem Ltd.

Sodium chloride Skychem - Analytical grade

Hydrochloric acid BDH Chemicals

Millipore water Water that was purified by the Millipore

Milli - Q50 ultra - pure water system

Ethanol 99% pure

Benzophenone BDH Chemicals

Benzophenone-l Uvinul 400 - BASF

Benzophenone-3 Uvinul M-40-BASF

Benzophenone-4 Uvinul MS-40-BASF

2,2'-dihydroxy-4,4'-dimethoxy Uvinul DS-49-BASF

benzophenone sulphonic acid

2-phenylbenzimidazole-5-sulphonic acid Eusolex 232-Merck

(s). (+). Ketoprofen Aldrich Chemicals, 99% pure

EQUIPMENT

Cary lE UV-Visible spectrometer

Pecsa Analytical matched quartz cuvettes (l0 mm pathlength)

Wisconsin aluminium steam sterilizer- Model No. 25X

Mettler AT 250 analytical balance

Millipore Milli - Q50 ultra - pure water system

181



A3 Chemicals and equipment used for agarose gel electrophoresis

CHEMICALS SUPPLIER INFORMATION

lj> X174 PHAGE DNA Sigma - (store at 2 to S°C)

di-Sodium hydrogen orthophosphate BDH Chemicals - Analytical grade

Potassium dihydrogen orthophosphate BDH Chemicals - Analytical grade

Sodium chloride Skychem - Analytical grade

Millipore water Water that was purified by the Millipore

Milli - Q50 ultra - pure water system

Sodium hydroxide

Ethanol 99% pure

Benzophenone BDH Chemicals

Benzophenone-l Uvinul 400 - BASF

Benzophenone-3 Uvinul M-40-BASF

Benzophenone-4 Uvinul MS-40-BASF

2,2'-dihydroxy-4,4'-dimethoxy Uvinul DS-49-BASF

benzophenone sulphonic acid

2-phenylbenzimidazole-5-sulphonic acid Eusolex 232-Merck

(s). (+). Ketoprofen Aldrich Chemicals, 99% pure

Tris-(hydroxymethyl)-aminomethane Saarchem Ltd.

Bromophenol blue BDH Laboratory Chemicals

Boric acid BDH Chemicals - Analytical grade

Ethylenediamine tetra-acetic acid BDH Chemicals

Hydrochloric acid BDH Chemicals

Ethidium bromide Merck

Glycerol BDH Chemicals Ltd.

Bromophenol blue BDH Laboratory Chemicals

Providencia Stuartii enzyme (with digestion Sigma

buffer)
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EQUIPMENT

Cigen horizontal agarose gel electrophoresis apparatus .

Hoefer Scientific DC power supply - PS 500 X (500 V, 400 mA)

Scientific Engineering Flask shaker

Hoefer Scientific transilluminator- Model HE 33

Matsushita communications Panasonic color CCTV camera

Mecer Premium Computers

Scion Imaging software

Syngene transilluminator

Vacutec Camera system

Syngene Genesnap software 2.60.0.14

Hoefer Scientific GS 300 Transmittance / Reflectance

Metrohm Labograph plotter - E 478XY

Wisconsin aluminium steam sterilizer - Model No. 25X

Mettler AT 250 analytical balance

Millipore Milli - Q50 ultra - pure water system

Gilson micropipettes 1-100 ilL (P 100)

Gilson micropipettes 100-1000 ilL (P 1000)

Ratiolab pipette tips

Greiner Labortecknik plastic Eppendorf tubes (1.50 ml)

A4 Chemicals and equipment used for fluorescence spectroscopy

CHEMICALS SUPPLIER INFORMATION

Deoxyribonucleic acid (DNA) sodium salt Sigma - Type 1, highly polymerized from

Calf Thymus (store desiccated at 0-5°C)

Benzophenone BDH Chemicals

Tris-(hydroxymethyl)-aminomethane Saarchem Ltd.

Sodium Chloride Skychem - Analytical grade

Hydrochloric acid BDH Chemicals

Millipore water Water that was purified by the Millipore

Milli - Q50 ultra - pure water system

Ethanol 99% pure

183



Benzophenone BDH Chemicals

Benzophenone-I Uvinul400 - BASF

Benzophenone-3 Uvinul M-40-BASF

Benzophenone-4 Uvinul MS-40-BASF

2,2'-dihydroxy-4,4'-dimethoxy Uvinul DS-49-BASF

benzophenone sulphonic acid

2-phenylbenzimidazole-5-sulphonic acid Eusolex 232-Merck

(s). (+). Ketoprofen Aldrich Chemicals, 99% pure

Ethidium bromide Merck

Nitrogen gas Afrox

EQUIPMENT

Perkin Elmer LS SOB Luminescence Spectrometer

FL Winlab Software

I cm pathlength quartz fluorescence cuvette

Wisconsin aluminium steam sterilizer- Model No. 25X

Mettler AT 250 analytical balance

Millipore Milli - Q50 ultra - pure water system

Freed Electric magnetic stirrer

AS Equipment used for the computational studies

Hyperchem software
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APPENDIXB

The raw data obtained for the quantitative analysis of the ethidium bromide-stained agarose gels

BI: Figures 3.19 - 3.24 (DNA alone-control)

B2: Figures 3.29- 3.30 (Benzophenone)

B3: Figures 3.31 - 3.33 (Benzophenone-l )

B4: Figures 3.34 - 3.36 (Uvinul DS49)

B5: Figures 3.37 - 3.39 (Eusolex 232)

B6: Figures 3.44 - 3.46 (Benzophenone-3)

B7: Figures 3.47 - 3.48 (Benzophenone-4)
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Bl: The quantitative analysis of the ethidium bromide-stained agarose gels in

Figures 3.19 - 3.24 showing DNA photocleavage induced by the irradiation of

DNA alone (in the absence of any DV absorber).

Figure 3.19

Lane 1 2 3 4 5 6

Irradiation timeJ min 0 10 15 20 30 45

% DNA Form I 0.54 0.63 0.62 0.60 0.48 0.43

% DNA Form 11 0.30 0.50 0.54 0.52 0.65 0.65

% DNA Form III 0.00 0.00 0.00 0.00 0.00 0.00

Total 0.84 1.13 1.16 1.12 1.13 1.08

% [I]F 64.29 55.75 53.45 53.57 42.48 39.81

% [II]F 35.71 44.25 46.55 46.43 57.52 60.19

% [lII]F 0.00 0.00 0.00 0.00 0.00 0.00

SSB 0.00 0.14 0.18 0.18 0.41 0.48

Figure 3.20

Lane 1 2 3 4 5 6

Irradiation timeJ min 0 10 15 20 30 45

% DNA Form I 0.65 0.61 0.57 0.57 0.62 0.31

% DNA Form 11 0.27 0.34 0.44 0.33 0.56 0.44

% DNA Form III 0.00 0.00 0.00 0.00 0.00 0.00

Total 0.92 0.95 1.01 0.90 1.18 0.75

% [I]F 70.65 64.21 56.44 63.33 52.54 41.33

% [II]F 29.35 35.79 43.56 36.67 47.46 58.67

% [lII]F 0.00 0.00 0.00 0.00 0.00 0.00

SSB 0.00 0.10 0.22 0.11 0.30 0.54

Figure 3.21

Lane 1 2 3 4 5 6

Irradiation timeJ min 0 5 10 20 30 45

% DNA Form I 60.85 46.73 44.69 33.39 40.99 15.77

% DNA Form 11 41.09 41.18 43.71 45.08 75.84 61.73

% DNA Form III 0.00 0.00 0.00 0.00 0.00 0.00

Total 101.94 87.91 88.40 78.47 116.83 77.50

% [I]F 59.69 53.16 50.55 42.55 35.09 20.35

% [II]F 40.31 46.84 49.45 57.45 64.91 79.65

% [III]F 0.00 0.00 0.00 0.00 0.00 0.00

SSB 0.00 0.12 0.17 0.34 0.53 1.08
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Figure 3.22

Lane 1 2 3 4 5 6

Irradiation time! min 0 5 10 20 30 45

% DNA Form I 74.20 80.00 73.50 65.50 51.60 17.10

% DNA FormII 31.20 34.90 61.20 78.90 81.50 94.70

% DNA Form III 0.00 0.00 0.00 0.00 0.00 0.00

Total 105.40 114.90 134.70 144.40 133.10 111.80

% [I]F 70.40 69.63 54.57 45.36 38.77 15.30

% [II]F 29.60 30.37 45.43 54.64 61.23 84.70

% [II1]F 0.00 0.00 0.00 0.00 0.00 0.00

SSB 0.00 0.01 0.25 0.44 0.60 1.53

Figure 3.23

Lane 1 2 3 4 5 6

Irradiation time! min 0 5 10 20 30 45

% DNA Form I 47.77 50.27 48.09 47.50 40.11 25.92

% DNA FormII 20.87 52.01 45.59 57.33 77.39 79.61

% DNA Form III 0.00 0.00 0.00 0.00 0.00 0.00

Total 68.64 102.28 93.68 104.83 117.50 105.53

% [I]F 69.59 49.15 51.33 45.31 34.14 24.56

% [I1]F 30.41 50.85 48.67 54.69 65.86 75.44

% [III]F 0.00 0.00 0.00 0.00 0.00 0.00

SSB 0.00 0.35 0.30 0.43 0.71 1.04

Figure 3.24

Lane 1 2 3 4 5 6

Irradiation time! min 0 5 10 20 30 45

% DNA Form I 51.80 61.90 68.19 67.69 70.52 76.81

% DNA Form 11 21.00 28.82 26.87 31.22 29.15 38.62

% DNA Form III 0.00 0.00 0.00 0.00 0.00 0.00

Total 72.80 90.72 95.06 98.91 99.67 115.43

% [I]F 71.15 68.23 71.73 68.44 70.75 66.54

% [II]F 28.85 31.77 28.27 31.56 29.25 33.46

% [III]F 0.00 0.00 0.00 0.00 0.00 0.00

SSB 0.00 0.04 -0.01 0.04 0.01 0.07
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The mean and standard deviation for % DNA [I]F, rmF, rllI]F, and SSB obtained from

Figures 3.19-3.24 for the irradiation of DNA alone (in the absence of any DV

absorber).

% [IlF % [IIlF SSB

Time/min Mean Std, Dev. Mean Std. Dev. Mean Std. Dev.

0 67.63 4.63 32.37 4.63 0.00 0.00

5 60.02 8.49 39.98 8.49 0.13 0.12

10 56.35 7.84 43.65 7.84 0.19 0.11

20 53.09 10.70 46.91 10.70 0.26 0.17

30 45.63 13.99 54.37 13.99 0.43 0.25

45 34.65 18.81 65.35 18.81 0.79 0.52
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B2 The quantitative analysis of the ethidium bromide-stained agarose gels in

Figures 3.29 - 3.30 showing DNA photocleavage induced by the irradiation of

DNA (18.85 IlM) in the presence of benzophenone (50 IlM).

Figure 3.29

Lane 1 2 3 4

Irradiation time / min 0 5 15 30

% DNA Form I 0.29 0.33 0.25 0.01

% DNA Form 11 0.22 0.34 0.51 0.34

% DNA Form ID 0.00 0.03 0.11 0.15

Total 0.51 0.70 0.87 0.50

% [I]F 56.86 47.14 28.74 2.00

% [II]F 43.14 48.57 58.62 68.00

% [ID]F 0.00 4.29 12.64 30.00

SSB 0.00 0.19 0.68 3.35

Figure 3.30

Lane 1 2 3 4 5 6

Irradiation time / min 0 0 10 15 30 45

% DNA Form I 0.19 0.16 0.15 0.26 0.16 0.07

% DNA Form 11 0.09 0.08 0.17 0.27 0.27 0.23

% DNA Form ID 0.00 0.00 0.03 0.07 0.15 0.16

Total 0.28 0.24 0.35 0.60 0.58 0.46

% [I]F 67.86 66.67 42.86 43.33 27.59 15.22

% [II]F 32.14 33.33 48.57 45.00 46.55 50.00

% [ID]F 0.00 0.00 8.57 11.67 25.86 34.78

SSB 0.00 0.02 0.46 0.45 0.90 1.49

The mean for % DNA [I]F, [II]F, [III]F, and SSB obtained from Figures 3.29 - 3.30 for the

irradiation of DNA (18.85 IlM) in the presence of benzophenone (50 IlM).

Time/min 0 5 10 20 30 45

Mean % [I]F 59.23 47.14 42.86 36.03 14.79 15.22

Mean % [II]y 40.77 48.57 48.57 51.81 57.28 50.00

Mean % [III]y 0.00 4.29 8.57 12.16 27.93 34.78

MeanSSB 0.06 0.19 0.46 0.57 2.12 1.49
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B3: The quantitative analysis of the ethidium bromide-stained agarose gels in

Figures 3.31 - 3.33 showing DNA photocleavage induced by the irradiation of

DNA (18.85 IlM) in the presence of benzophenone-1 (50 IlM).

Figure 3.31

lLane 1 2 3 4 5 6

lirradiation time I min 0 5 10 20 30 45

% DNA Form I 56.63 60.97 44.83 28.58 14.51 22.99

% DNA Form 11 33.80 51.84 56.25 65.16 87.28 75.48

% DNA Form III 0.00 0.00 0.00 0.00 15.76 8.26

[rotal 90.43 112.81 101.08 93.74 117.55 106.73

% [I1F 62.62 54.05 44.35 30.49 12.34 21.54

% [II1F 37.38 45.95 55.65 69.51 74.25 70.72

% [III1F 0.00 0.00 0.00 0.00 13.41 7.74

SSB 0.11 0.25 0.45 0.83 1.73 1.17

Figure 3.32

lLane 1 2 3 4

IIrradiation time I min 5 20 30 45

% DNA Form I 29.80 13.93 1.15 1.15

% DNA Form 11 21.14 22.97 19.12 9.48

% DNA Form ID 4.53 3.88 4.45 11.83

~otal 55.47 40.78 24.72 22.46

% tn- 53.72 34.16 4.65 5.12

% [II1F 38.11 56.33 77.35 42.21

% [lII1F 8.17 9.51 18.00 52.67

SSB 0.30 0.75 2.75 2.65

Figure 3.33

lLane 1 2 3 4 5 6

~rradiation time I min 0 5 10 20 30 45

% DNA Form I 58.50 60.50 16.40 8.01 8.00 13.00

% DNA Form 11 27.60 73.80 129.60 111.80 82.40 104.20

% DNA Form ID 0.00 0.00 13.30 12.90 24.20 56.40

~otal 86.10 134.30 159.30 132.71 114.60 173.60

% [I]F 67.94 45.05 10.30 6.04 6.98 7.49

%[mF 32.06 54.95 81.36 84.24 71.90 60.02

% [III1F 0.00 0.00 8.35 9.72 21.12 32.49

~SB 0.04 0.45 1.92 2.46 2.31 2.24
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The mean and standard deviation for % DNA [I]F, [II]F, [III]F' and SSB obtained from

Figures 3.31 - 3.33 for the irradiation of DNA (18.85 IlM) in the presence of

benzophenone-l (50IlM).

% [I]F % [II]F % [III]F SSB

Time/min Mean Std. Dev, Mean Std. Dev, Mean Std. Dev, Mean Std. Dev,

0 65.28 3.76 34.72 3.76 0.00 0.00 0.07 0.05

5 50.94 5.10 46.34 8.43 2.72 4.71 0.33 0.10

10 27.32 24.08 68.50 18.18 4.17 5.90 1.19 1.04

20 23.56 15.29 70.03 13.97 6.41 5.55 1.35 0.96

30 7.99 3.94 74.50 2.73 17.51 3.88 2.26 0.51

45 11.38 8.88 57.65 14.40 30.97 22.50 2.02 0.76
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B4: The quantitative analysis of the ethidium bromide-stained agarose gels in

Figures 3.34 - 3.36 showing DNA photocleavage induced by the irradiation of

DNA (18.85 ~M) in the presence of Uvinul 0549 (50 ~M).

Figure 3.34

lLane 1 2 3 4 5 6

IIrradiation time I min 0 5 10 20 30 45

% DNA Form I 63.82 29.55 12.10 8.13 2.08 9.03

% DNA Form 11 . 31.01 19.24 22.88 35.08 29.88 42.45

% DNA Form III 0.00 0.00 0.00 10.87 16.88 12.01

Irotal 94.83 48.79 34.98 54.08 48.84 63.49

% [I]F 67.30 60.57 34.59 15.03 4.26 14.22

% [II]F 32.70 39.43 65.41 64.87 61.18 66.86

% [III]F 0.00 0.00 0.00 20.10 34.56 18.92

SSB 0.01 0.11 0.67 1.51 2.77 1.56

Figure 3.35

!Lane 1 2 3 4 5 6

~rradiation time I min 0 5 10 20 30 45

% DNA Form I 54.65 33.80 30.26 1.61 6.24 10.30

% DNA Form 11 46.28 39.62 51.86 49.12 62.31 38.81

% DNA Form III 0.00 0.00 0.00 7.61 17.97 22.98

Total 100.93 . 73.42 82.12 58.34 86.52 72.09

% [I]F 54.15 46.04 36.85 2.76 7.21 14.29

% [II]F 45.85 53.96 63.15 84.20 72.02 53.84

% [III]F 0.00 0.00 0.00 13.04 20.77 31.88

~SB 0.22 0.39 0.61 3.20 2.24 1.56

Figure 3.36

!Lane 1 2 3 4 5 6

~rradiation time I min 0 5 10 20 30 45

% DNA Form I 58.10 28.70 17.20 2.30 17.50 0.40

% DNA Formll 15.00 52.30 106.00 92.60 97.00 44.00

% DNA Form III 0.00 0.00 0.00 11.40 25.60 23.90

Irotal 73.10 81.00 123.20 106.30 140.10 68.30

% [I]F 79.48 35.43 13.96 2.16 12.49 0.59

% [II]F 20.52 64.57 86.04 87.11 69.24 64.42

% [III]F 0.00 0.00 0.00 10.72 18.27 34.99

~SB -0.16 0.65 1.58 3.44 1.69 4.75
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The mean and standard deviation for % DNA [I]F, [II]F, [III]F, and SSB obtained from

Figures 3.34 - 3.36 for the irradiation of DNA (18.85 JlM) in the presence of Uvinul

DS49 (50 j..lM).

% [I]F %[mF % [IDl F SSB

Time/min Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

0 66.98 12.67 33.02 12.67 0.00 0.00 0.02 0.19

5 47.34 12.62 52.66 12.62 0.00 0.00 0.38 0.27

10 28.47 12.61 71.53 12.61 0.00 0.00 0.95 0.54

20 6.65 7.26 78.72 12.09 14.62 4.88 2.72 1.06

30 7.99 4.17 67.48 5.63 24.53 8.77 2.23 0.54

45 9.70 7.89 61.71 6.92 28.60 8.53 2.62 1.84
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B5: The quantitative analysis of the ethidium bromide-stained agarose gels in

Figures 3.37 - 3.39 showing DNA photocleavage induced by the..irradiation of DNA

(18.85 JlM) in the presence of Eusolex 232 (50 J.1M).

Figure 3.37

lLane 1 2 3 4 5 6

~rradiation time I min 0 5 10 20 30 45

% DNA Form I 56.42 42.99 33.05 3.39 0.20 . 0.89

% DNA Form 11 25.68 41.37 47.51 54.70 43.92 60.45

% DNA Form III 0.00 0.00 0.00 15.89 14.31 24.10

Total 82.10 84.36 80.56 73.98 58.43 85.44

% [I]F 68.72 50.96 41.03 4.58 0.34 1.04

% [II]F 31.28 49.04 58.97 73.94 75.17 70.75

% [l1I]F 0.00 0.00 0.00 21.48 24.49 28.21

~SB 0.00 0.30 0.52 2.71 5.30 4.19

Figure 3.38

lLane 1 2 3 4 5 6

~rradiation time I min 0 5 10 20 30 45

% DNA Form I 40.73 40.28 27.59 6.49 1.82 2.56

% DNA Form 11 26.66 35.12 42.30 53.37 62.17 . 66.85

% DNA Form III 0.00 0.00 0.00 14.26 17.26 20.95

Total 67.39 75.40 69.89 . 74.12 81.25 90.36

% [I]F 60.44 53.42 39.48 8.76 2.24 2.83

% [II]F 39.56 46.58 60.52 72.00 76.52 73.98

% [III]F 0.00 0.00 0.00 19.24 21.24 23.19

~SB 0.00 0.12 0.43 1.93 3.30 3.06

Figure 3.39

~ane 1 2 3 4 5 6

rradiation time I min 0 5 10 20 30 45

% DNA Form I 54.33 49.56 32.42 18.50 10.58 13.92

% DNA Form 11 32.42 45.27 63.19 84.60 70.39 52.38

% DNA Form III 0.00 0.00 0.00 0.00 0.00 0.00

~otal 86.75 94.83 95.61 103.10 80.97 66.30

% [I]F 62.63 52.26 33.91 17.94 13.07 21.00

% [II]F 37.37 47.74 66.09 82.06 86.93 79.00

% [III]F 0.00 0.00 0.00 0.00 0.00 0.00

SSB 0.00 0.18 0.61 1.25 1.57 1.09
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The mean and standard deviation for % DNA [I]F, [II]F. [III]F, and SSB obtained from

Figures 3.37 - 3.39 for the irradiation of DNA (18.85 IlM) in the presence of Eusolex

232 (50 J.lM).

% [I]F % [IIlF % [IIIl F SSB

Time/min Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev,

0 63.93 4.29 36.07 4.29 0.00 0.00 0.00 0.00

5 52.21 1.23 47.79 1.23 0.00 0.00 0.20 0.09

10 38.14 3.74 61.86 3.74 0.00 0.00 0.52 0.09

20 10.43 6.84 76.00 5.33 13.57 11.81 1.96 0.73

30 5.22 6.86 79.54 6.44 15.24 13.30 3.39 1.87

45 8.29 11.04 74.58 4.16 17.13 15.05 2.78 1.57
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B6: The quantitative analysis of the ethidium bromide-stained agarose gels in

Figures 3.44 - 3.46 showing DNA photocleavage induced by the irradiation of

DNA (18.85IlM) in the presence ofbenzophenone-3 (50 /lM).

Figure 3.44

~ane 1 2 3 4 5 6

rradiation time I min 0 5 10 20 30 45

% DNA Form I 87.00 104.20 86.50 134.20 72.80 96.50

% DNA Form 11 49.00 52.30 41.90 86.00 46.10 65.60

% DNA Form III 0.00 0.00 0.00 0.00 0.00 0.00

Total 136.00 156.50 128.40 220.20 118.90 162.10

% [I]F 63.97 66.58 67.37 60.94 61.23 59.53

% [I1]F 36.03 33.42 32.63 39.06 38.77 40.47

% [lII]F 0.00 0.00 0.00 0.00 0.00 0.00

SSB 0.00 -0.04 -0.05 0.05 0.04 0.D7

Figure 3.45

lLane 1 2 3 4 5 6

~rradiation time I min 0 5 10 20 30 45

% DNA Form I 121.40 125.60 114.90 125.50 96.20 107.10

% DNA Form 11 73.00 69.00 60.80 60.30 52.70 52.30

% DNA Form III 0.00 0.00 0.00 0.00 0.00 0.00

Total 194.40 194.60 175.70 185.80 148.90 159.40

% [I]F 62.45 64.54 65.40 67.55 64.61 67.19

% [I1]F 37.55 35.46 34.60 32.45 35.39 32.81

% [III]F 0.00 0.00 0.00 0.00 0.00 0.00

SSB 0.00 -0.03 -0.05 -0.08 -0.03 -0.07

Figure 3.46

lLane 1 2 3 4 5 6

Irradiation time I min 0 5 10 20 30 45

% DNA Form I 43.77 57.67 53.28 57.97 63.50 70.18

% DNA Form 11 33.38 39.55 28.31 27.68 29.66 31.22

% DNA Form III 0.00 0.00 0.00 0.00 0.00 0.00

Total 77.15 97.22 81.59 85.65 93.16 101.40

% [I]F 56.73 59.32 65.30 67.68 68.16 69.21

% [I1]F 43.27 40.68 34.70 32.32 31.84 30.79

% [III]F 0.00 0.00 0.00 0.00 0.00 0.00

SSB 0.00 -0.04 -0.14 -0.18 -0.18 -0.20
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The mean and standard deviation for % DNA [I]F, [II]F' [III]F, and SSB obtained from

Figures 3.44 - 3.46 for the irradiation of DNA (18.85 JlM) in the presence of

benzophenone-3 (50 JlM).

% [I]F % [II]F % tnn, SSB

Time/min Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

0 61.05 3.82 38.95 3.82 0.00 0.00 0.00 0.00

5 63.48 3.75 36.52 3.75 0.00 0.00 -0.04 0.01

10 66.02 1.17 33.98 I.l7 0.00 0.00 -0.08 0.05

20 65.39 3.85 34.61 3.85 0.00 0.00 -0.07 0.11

30 64.67 3.47 35.33 3.47 0.00 0.00 -0.06 0.12

45 65.31 5.11 34.69 5.11 0.00 0.00 -0.07 0.14
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B7: The quantitative analysis of the ethidium bromide-stained agarose gels in

Figures 3.47 - 3.48 showing DNA photocleavage induced by the irradiation of

DNA (18.85 J.lM) in the presence ofbenzophenone-4 (50 J.lM).

Figure 3.47

lLane 1 2 3 4 5 6

~rradiation time I min 0 5 10 20 30 45

% DNA Form I 49.07 36.44 25.41 29.30 21.98 17.55

% DNA Form 11 15.45 12.17 9.54 18.28 20.87 22.63

% DNA Form III 0.00 0.00 0.00 0.00 0.00 0.00

[fotal 64.52 48.61 34.95 47.58 42.85 40.18

% [I]F 76.05 74.96 72.70 61.58 51.30 43.68

% [II]F 23.95 25.04 27.30 38.42 48.70 56.32

% [III]F 0.00 0.00 0.00 0.00 0.00 0.00

~SB 0.00 0.01 0.05 0.21 0.39 0.55

Figure 3.48

[Lane 1 2 3 4 5 6

~radiationtime/min 0 5 10 20 30 45

% DNA Form I 42.39 48.99 40.71 28.46 24.34 18.24

% DNA Form 11 12.67 9.08 17.25 15.15 20.41 28.62

% DNA Form III 0.00 0.00 0.00 0.00 0.00 0.00

Total 55.06 58.07 57.96 43.61 44.75 46.86

% [I]F 76.99 84.36 70.24 65.26 54.39 38.92

% [I1]F 23.01 15.64 29.76 34.74 45.61 61.08

% [III]F 0.00 0.00 0.00 0.00 0.00 0.00

~SB 0.00 0.00 0.08 0.15 0.34 0.67

The mean and standard deviation for % DNA [I]F. [II]F. [lII]F. and SSB obtained from

Figures 3.47 - 3.48 for the irradiation of DNA (18.85 J.lM) in the presence of

benzophenone-4 (50 JlM).

% [I]F % [II]F % [DI]F SSB

Time/min Mean Std, Dev, Mean Std. Dev, Mean Std. Dev. Mean Std. Dev,

0 76.52 0.66 23.48 0.66 0.00 0.00 -0.01 0.01

5 79.66 6.65 20.34 6.65 0.00 0.00 -0.04 0.08

10 71.47 1.74 28.53 1.74 0.00 0.00 0.06 0.02

20 63.42 2.60 36.58 2.60 0.00 0.00 0.18 0.04

30 52.84 2.19 47.16 2.19 0.00 0.00 0.36 0.04

45 41.30 3.36 58.70 3.36 0.00 0.00 0.61 0.08
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