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Abstract 

In Mycobacterium tuberculosis, resistance to ethionamide (ETH) is usually combined with 

isoniazid (INH) resistance due to a number of mutations in genes that are involved in the 

biosynthesis of mycolic acids. ETH resistance in INH susceptible isolates is rare. Ten such 

isolates were identified from patients participating in other studies.  

Genotyping by means of IS6110 was performed to compare the relatedness of these isolates 

to each other. In attempts to identify the molecular basis for the resistance to ETH, the ethA, 

mshA and mshC genes were amplified and the amplicons sequenced using an ABI 3730 DNA 

Analyser. INH and ETH minimum inhibitory concentrations (MICs) were determined alone 

and in combination by means of checkerboard titrations in Middlebrook 7H9 broth, using the 

3-(4,5-dimethylthiozol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and microplate 

alamarblue assays (MABA) for detection of growth.  

Seven isolates were not related to each other and their INH susceptibility was confirmed. No 

mutations were observed in all the sequenced genes. One out of seven isolates was found to 

be co-resistant to INH nad ETH. The MIC for the remaining isolates was 1µg/ml for ETH. 

MABA revealed a paradoxical susceptibility of the isolates to ETH, where mycobacterial 

growth was observed in ETH concentrations higher than the MIC for the six isolates. For 

combination of the two drugs, MABA revealed an antagonism between INH and ETH, where 

the isolates grew in high ETH concentrations regardless of the concentration of INH.  

The paradoxical effect of ETH and antagonism between ETH and INH in our isolates does 

not result from mutations in ethA, mshA or mshC.  
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Chapter 1: Introduction 

Since its primary discovery by Robert Koch in the second half of the nineteenth century [1], 

Mycobacterium tuberculosis has evolved into multi-drug resistant (MDR) and extensive drug 

resistant (XDR) strains. In the first half of the twentieth century chemotherapy for 

tuberculosis (TB) was deemed unachievable as a result of the lipid-rich cell wall [2]. This 

changed with the discovery of the first anti-tuberculosis drugs streptomycin [3] and para-

aminosalicylic acid [4]. This was followed by the development of isoniazid [5], pyrazinamide 

[6], rifampicin [7] and ethambutol [8]. Shortly after the introduction of the first anti-

tuberculosis drugs, resistance to those drugs was observed [9]. This led to the need for 

accurate and easy to perform drug susceptibility assays [10].  

 

For several decades, treatment with the combination of isoniazid, rifampicin, pyrazinamde 

and ethambutol allowed for effective tuberculosis control in the clinical setting [11]. 

Although the TB epidemic was not completely under control in most developing countries, 

the prevalence was declining. The Human Immunodeficiency Virus (HIV) epidemic changed 

this picture and the number of new cases of TB spun beyond the point of control [12]. This 

lead to the declaration of TB as a worldwide health emergency by the World Health 

Organization (WHO) in 1993. This was followed by intense efforts to advance TB care and 

control nationally and globally [13].  In spite of the accessibility of effective short-course 

chemotherapy (DOTS) and the Bacilli-Calmette-Guerin (BCG) vaccine, tuberculosis is still 

responsible for more deaths than any other infectious agent [14]. The increase of drug 

resistance in clinical isolates of M. tuberculosis has been a major impediment in fighting the 

incidence and spread of TB, and consequently amplified universal labors to comprehend the 

molecular mechanisms resulting in drug resistance [15].  
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WHO estimated 8.7 million new TB cases in 2011 worldwide with 1.4 million TB related 

deaths [13]. This is almost 20 years after TB was declared a global health emergency [13]. 

This enduring crisis has resulted from disregard of TB by governments, insufficient access to 

health care and infrastructure, unsatisfactory adherence to medication by patients, reduced 

efficiency of TB management programmes, poverty, increase of populace and resettlement, 

and a major increase in the amount of TB cases in HIV infected persons [11].  

 

MDR-TB is TB caused by bacilli that are resistant to isoniazid (INH) and rifampicin (RIF), 

which are the two most potent first-line drugs used in TB treatment [16]. XDR-TB results 

from bacilli that are resistant to fluoroquinolones, and any one of the injectable second-line 

drugs such as capreomycin, kanamycin or amikacin, on top of the two first-line drugs, 

consequently resulting in an elevated death rate especially in individuals co-infected with 

HIV [17 – 19].  

 

The distinguishing traits of M. tuberculosis comprise dormancy, intricate cell envelope and 

intracellular survival and growth [20], which makes it intrinsically resistant to the action of 

many drugs that kill other pathogenic bacteria. Not many organisms generate such a varied 

range of lipid molecules as M. tuberculosis. These vary from a number of simple fatty acids, 

to very long-chain, extremely composite molecules. These molecules are known as mycolic 

acids [20].  

 

The general understanding of tuberculosis drug resistance has significantly improved through 

the use of molecular techniques [10]. M. tuberculosis uses a number of strategies to oppose 

the action of anti-bacterial drugs [21]. One of these is reduced cell wall permeability, 
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resulting from the highly hydrophobic mycobacterial cell envelope [22, 23]. Genes that are 

linked with active drug efflux systems and degrading inactivating enzymes have been found 

in M. tuberculosis, which also aid in drug resistance [20, 24].  

 

Exogenous agents, DNA polymerase errors, deletions, insertions and duplications are 

common means of mediating mutations in any prokaryotic genome through regular base 

changes, and these result in drug resistance in many prokaryotes [11]. This includes 

resistance of M. tuberculosis to anti-TB agents. Resistance to anti-TB drugs has been 

previously shown to be predominantly the effect of innate mutations in genes encoding drug 

targets, or enzymes implicated in drug activation [21]. Such mechanisms of resistance have 

been identified for all first-line and for various second-line drugs, including ethionamide [25 

– 28].  

 

ETH monoresitance in clinical isolates is rare. In this study, eleven M. tuberculosis clinical 

isolates were identified which, based on breakpoint testing, are phenotypically resistant to 

ETH, while showing full susceptibility to INH. To ensure that these isolates were not the 

same strain, these isolates were genotyped by means of IS6110 fingerprinting to compare 

their relatedness to each other. In an attempt to determine the molecular basis for ETH 

resistance in these isolates, ethA, mshA and mshC genes were sequenced, which are 

commonly implicated in high level resistance to ETH [33 – 35]. Finally, cell viability 

detection assays were performed to determine the precise minimum inhibitory concentrations 

(MICs) of the isolates to INH and ETH. 
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Chapter 2: Isoniazid and Ethionamide 

2.1 Isoniazid  

Before the discovery of isoniazid (INH), the treatment of TB was not very effective, as it was 

restricted to a few antimicrobial agents and synthetic drugs [29]. Broad-spectrum 

antimicrobial agents were not effective against TB [29]. The process leading to the discovery 

of isoniazid in 1952 began with the finding in the mid 1940s, by researchers in Europe, that 

nicotinamide was effective against TB [36]. Pyrazinamide was discovered as a result of the 

production of new synthetic molecules based on nicotinamide [37]. However, M. tuberculosis 

rapidly became resistant to pyrazinamide [37], hence the continued search for more effective 

antituberculosis agents. The β- and γ-pyridylaldehyde thiosemicarbazones, which 

demonstrated better activity against the tubercle bacilli, were synthesized in an effort to 

improve the activity of nicotinamide and other related compounds [29]. A breakthrough was 

achieved when one of the intermediates in the production of γ-pyridylaldehyde 

thiosemicarbazone , isonicotinic acid hydrazide (INH) had an unexpected increased effect 

against TB [38; 39], significantly higher than other antimicrobial agents used at the time [38; 

39]. INH is still one of the main drugs used in TB chemotherapy [29]. 

 

2.2 Ethionamide  

Ethionamide (2-ethylthioisonicotinamide, ETH) was first discovered in 1956 [40]; like 

isoniazid, ETH is a prodrug which requires metabolic activation [32] by the mycobacterial 

monooxygenase EthA [41]. It has been previously shown that ETH has a strong bacteriostatic 

effect against mycobacteria, more especially against isoniazid resistant mutants [33]. 

Resistance of mycobacterial strains to ethionamide is often coupled with resistance to 



13	
  
	
  

isoniazid, although there have been cases where resistance to isoniazid in mycobacteria has 

been observed with no co-resistance to ethionamide [42 – 43]. Treatment of MDR-TB still 

greatly relies on the use of the second line drug ETH [44]. ETH is a narrow-spectrum 

molecule, and like many other drugs used in the treatment of tuberculosis, the activity of 

ETH is mostly limited to mycobacteria, most likely as a result of the specificity of its 

interaction with essential components unique to mycobacteria [45]. On the other hand, the 

specificity may be due to the buildup or activation of ETH by uptake systems or converting 

enzymes only found in mycobacteria [45]. As a result of its high toxicity levels, the use of 

ETH in the treatment of infections caused by agents in the mycobacteria family is limited 

[46].  

 

2.3 Inhibition of Mycolic Acids 

INH and ETH are generally active against mycobacterial bacilli [29] by inhibiting mycolic 

acid biosynthesis [47]. Mycolic acids are long-chain α-alkyl-β-hydroxy fatty acids [29], and 

these substances are uniquely found in mycobacteria and related genera [48]. Mycolic acids 

play a critical function in mycobacterial-envelope structural design, forming an intersection 

between the capsule and the cell-wall frame, where they are covalently bound [49]. Winder & 

Collin in 1970 first demonstrated the inhibition of mycolic acids by INH, where they 

observed an inhibition of mycolic acid synthesis in M. tuberculosis H37Ra and M. bovis BCG 

following treatment with INH; similar inhibition patterns were not observed in INH resistant 

strains [47]. Two years later, Takayama and colleagues confirmed the inhibition of mycolic 

acid synthesis in M. tuberculosis treated with INH [50]; further, they demonstrated that this 

inhibition was linked to cell death [50] as well as the accretion of long chain fatty acids [51]. 

Previous research shows that INH treatment results in major damage to the envelope 
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organization, such as loss of the acid-fastness [52], discharge of irregular quantities of 

proteins into the culture medium and distorted ultrastructure [53].  

 

2.4 Mechanism of Action of Isoniazid 

INH is a pro-drug which requires activation by the mycobacterial enzyme catalase-peroxidase 

(KatG) [54] in combination with NADH oxidase [55]. NADPH oxidase-derived peroxidase 

activity of KatG seems essential in activation of INH [56]. Treatment with INH induces a 

powerful selection for INH-resistant mutants, where most mutations are found in the katG 

gene [54; 55; 58]. KatG activates INH, in concurrence with its peroxidase activity, by 

peroxidation to generate intracellular, reactive, INH-derived toxic species [59]. A variety of 

oxidants support KatG oxidation of INH, including superoxide [60], hydrogen peroxide [61] 

and simple alkyl hydroperoxides [62]. The in vitro auto-oxidation of INH [63] and NADH, 

when utilised [61], can supply adequate oxidants to permit INH activation by KatG, even if 

there is a deficiency of supplementary oxidants [63]. It is possible that the oxidant in vivo is a 

low flux of hydrogen peroxide that may occur inside the bacteria as a by-product of aerobic 

metabolism [61]. Both these superoxide- and low-flux hydrogen peroxide-oxidizing systems 

demonstrate the anticipated decline in the capacity of mutant S315T KatG to activate INH in 

vitro, in comparison to alkyl hydroperoxides which do not [63],  however, of these the in 

vitro oxidant species has not been established [59]. Horseradish peroxidase [64; 65] or even 

inorganic manganese ions [66; 67] have been previously postulated to be possible model-

oxidising systems which may be capable of activating INH. Nevertheless, it has not been 

decided if these representation oxidants precisely imitate the accurate species produced by 

KatG, since even greatly associated KatG enzymes can vary in the products they generate 

[68]. The crystal structures of KatG [69; 70] and recently the S315T variant [61] give an 
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improved understanding of the mechanisms by which INH is activated. The contraction of the 

haem access channel from 6 Å ´ in the wild type to 4.7 Å ´ in the S315T variant implies that 

diminished INH access to the oxidizing site of KatG may be the means to resistance, this is in 

agreement with prior spectroscopic analyses [71 – 73]. In the NAD+ or NADP+ deficiency, 

no considerable constant anti-tubercular products resulting from INH metabolism are 

generated during in vitro activation [59]. Consequently, reactive intermediates resulting from 

INH metabolism are essential to the efficacy of INH [59]. KatG oxidatively activates INH 

through the formation of a variety of carbon-, oxygen- and nitrogen-centered free radical 

species, with the formation of acyl, acylperoxo and pyridyl radical adducts of 

phenylbutylnitrone (PBN) projected from outcomes of spin trapping experiments [63]. 

Nevertheless, the differentiation of dissimilar adducts of PBN by hyperfine coupling constant 

alone is convoluted, thus these allocations remain rather uncertain [74]. The spin trap 5,5- 

dimethyl-1-pyrolline-N-oxide (DMPO) frequently permits improved allocations than PBN,  

since the variety of hyperfine coupling constants of its spin adducts are wider [59]. 

Consequently, species formed from INH allocated as carbon-centred and alkoxyl adducts of 

DMPO have been observed upon KatG oxidation of INH [75], with an extra peroxyl radical 

species observed in the presence of molecular oxygen, due to a reaction of one of these 

radicals with O2 [59]. The nitric oxide radical (NO·) has also been trapped from KatG 

oxidation of INH, with 15N isotopic labelling of INH hydrazide resulting in 15NO· [75; 76]. 

The outcomes of other oxidizing systems imply that the hydrazyl radical [77] can be easily 

formed by INH oxidation and is possibly a preliminary product, although verification with a 

proper KatG enzyme is necessary [59]. In spite of these advances, the necessity to describe 

the nature of these radical intermediates remains, and in particular, to show ultimately the 

formation of the isonicotinoyl radical [78], since this is the crucial intermediate that adds to 

NAD+ and NADP+ to generate a variety of potent inhibitors [59]. While it took long to 
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establish the mechanisms, it had been known for ages that INH disturbs production of both 

mycolic acids [47; 50] and nucleic acids [80]. The discovery that oxidation of INH in the 

presence of NADH and InhA led to covalent INH-NADH adducts that are potent inhibitors of 

InhA [80] was a major advance [59]. InhA mediates the production of mycolic acids [81], 

which are exclusive and essential mycobacterial cell wall lipids, and so its inhibition is in 

harmony with the characteristic susceptibility of mycobacteria to INH [59]. The metabolic 

effects of NADH/NAD+ ratios on INH susceptibility in mycobacteria supports the function 

of NAD+ in production of INH-NAD adducts [82], in which decreased NAD+ levels caused 

INH resistance, and also by mutations in the NADH oxidase gene ndh in some isolates 

resistant to INH [83]. INH-NAD adducts proficient in InhA inhibition are formed both in 

simple Mn/INH/NADH mixtures [66; 78; 84] and in KatG-mediated reactions. The S isomer 

binds to InhA when the stereochemical centre is produced by the addition of the isonicotinoyl 

radical to NAD+ in the INH-NAD adduct [80]. This S isomer is generated as a tight-binding 

(Ki = 0.75 nM) inhibitor [85]. The two primary INH-NAD adducts generates a variety of 

diastereoisomers upon subsequent cyclization [66; 67; 84]; however, these do not seem to 

have the inhibitory effect which the acyclic S isomer has on InhA [59]. The coupling of 

activated INH with NADP+ may possibly occur, in vitro these INH-NADP adducts are a 

potent inhibitor of MabA, an NADPH dependent b-ketoacyl-ACP reductase which is also 

vital in the synthesis of mycolic acids [86]. Consequently, INH adducts of both NAD+ and 

NADP+ may well inhibit various steps in cell wall lipid synthesis, though an in vivo role for 

MabA inhibition has not been demonstrated yet [59]. Additionally, previous studies have 

revealed that the acyclic 4R isomer of the INH-NADP adduct binds M. tuberculosis 

dihydrofolate reductase (DHFR), which is essential in nucleic acid biosynthesis to generate 

nucleotide pools, with a Ki less than 1 nM [87]. Even though it seemed as if an INH adduct of 

KasA, another mycolic acid synthetic enzyme, may arise by means of an INH-induced 80 
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kDa covalent complex consisting of KasA, AcpM and an INH-derived isonicotinic acyl 

fragment [88], it appears probable that effects on KasA are mediated through INH-NAD 

adduct inhibition of InhA [89] as an outcome of its identified close regulation with InhA [90]. 

The comparative importance of InhA and KasA as targets has been further elucidated by 

inducing mutations seen in clinical isolates, such as the S94A mutation found on the inhA 

gene in wild-type mycobacteria [91]. The induced S94A mutation amplified INH resistance, 

whereas kasA mutants G269S as well as F413L were unable to produce a similar effect [91]. 

Accordingly, a variety of strong INH-NAD/NADP inhibitors have been described, and in 

general, the essential genetic alterations of target mycobacteria have resulted in the expected 

alteration in INH sensitivity [59]. Nonetheless, an increased concentration of NAD+/NADP+ 

and a very low concentration of other molecules with the ability to react with the isonicotinic 

acyl radical was used in these in vitro systems , in so doing compelling the isonicotinoyl 

radical to react with NAD+ or NADP+ [59]. The isonicotinoyl radical will be highly reactive 

with a broad variety of reactants as for other acyl radicals [92; 93] such as proteins, 

mycothiol and unsaturated lipids [94]. Thus, when generated within the tubercle bacilli, the 

isonicotinoyl radical will react mostly with other molecules rather than NAD+ or NADP+, 

that are present at only ~0.4 mM and 0.2 mM, respectively, in M. tuberculosis [79]. While the 

gathered data is persuasive, final verification of the function of these INH-NAD and INH-

NADP species will necessitate their isolation from INH-treated mycobacteria at 

concentrations concurring with a considerable inhibitory effect from their known Kis [59]. 

 

2.5 Mechanism of action of ethionamide 

The mode of action of ETH upon activation is through the inhibition of the enoyl-ACP 

reductase [30; 95] enzyme which is encoded by the inhA gene and forms part of the mycolic 

acid biosynthesis system [96]. The activation of ETH is via the ethA gene encoded mono-
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oxygenase (EthA), which results in the formation of an S-oxide metabolite (ETH-SO) [33; 

97], possibly a sulfinate, which demonstrates superior bactericidal action against M. 

tuberculosis compared to the inactivated form of ETH in vitro [33]. Previous studies have 

implied that ETH-SO maintains the biological activity of the inactivated form of the drug 

[98] which correlates with the fact that a number of drugs used in TB treatment, including 

ETH, need some kind of metabollic activation parallel to the oxidative, reductive, or 

hydrolytic unmasking of active groups [99 – 101].   

 

2.6 Killing by isoniazid  

Passive diffusion is the mode of entry of INH into the mycobacterial cell interior [102] which 

then kills only dividing bacteria; no killing of mycobacterial cells is seen during stationary 

phase or when the bacteria are growing under anaerobic conditions [103]. During the first 24 

hours of INH administration, the action of INH against M. tuberculosis is bacteriostatic, 

followed by the killing of the bacteria [29]. It has also been reported in the past that there is a 

postponement from 1 to 4 days before INH begins its bacteriocidal action [52; 103 – 105]; in 

the meanwhile, the mycobacterial cells lose their acid fastness [52; 105]. INH also brings 

about physical alterations in mycobacterial cells, such as the loss of inner structure and the 

emergence of surface wrinkles and bulging [106 – 108].  

 

2.7 Genes associated with ETH resistance 

In the year 2000, Baulard et al and DeBarber et al separately identified the EthA and EthR 

genes which are implicated in the activation of ETH [33; 34]. EthA is a FAD-containing 

enzyme that mediates two steps in the activation of ETH [41]. The resistance of M. 
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tuberculosis to ETH has been ascribed to the transcriptional suppression of ethA applied by 

the bacterial regulator EthR, encoded by the ethA neighboring gene ethR [45]. EthR was 

shown to repress the expression of ethA, the binding of EthR upstream of ethA results in the 

suppression of ethA expression [45]. In wild-type mycobacteria, some of the ETH molecules 

remain unactivated [45]. This has been signified by the linking of the chromosomal 

inactivation of ethR with ETH hypersensitivity, and as a result, EthR adds to the resistance of 

M. tuberculosis to ETH [96]. EthR was proposed and confirmed as a drug target to boost the 

bioactivation of ethionamide and increase the efficacy of ETH in vivo [109]. Flipo and 

colleagues observed and documented structure−activity relationships of a progression of 

druglike 1,2,4-oxadiazole EthR inhibitors identified via a judicious drug design approach 

[110; 111]. In 2008, Vilcheze et al showed that mutations in the glycosytranferase MshA 

encoding gene, mshA, resulted in high level resistance of spontaneous mutants of M. 

tuberculosis [35]. MshA mediates the first step in mycothiol biosynthesis [112; 113], which 

had been previously reported to be crucial in the survival of M. tuberculosis [114]. However, 

Vilcheze and colleagues showed that some M. tuberculosis mutants deficient of mycothiol 

were viable [35]. Most mutations in genes that mediate mycothiol biosynthesis were found to 

confer ETH and INH resistance. Vilcheze and colleagues later showed that in vitro induced 

mshA and mshC mutations were responsible for high level resistance to ETH and low level 

resistance to INH [99]. Mutations in the mshA gene, however, must be carefully examined 

because some clinical isolates showing phenotypic susceptibility to ETH and INH have been 

observed to have some mutations in this gene [99].  
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2.8 Common INH Resistance Conferring Mutations  

Mutations in katG, a gene encoding the INH activator, are the most common cause of INH 

resistance in M. tuberculosis. This results in a decline in or loss of catalase-peroxidase 

activity [57; 115; 116]. There have been observed insertions, deletions, truncation, missense 

and nonsense mutations, and less frequently, full gene deletion [55; 117; 118]. S315T 

mutation, which harbours a product which has a highly decreased capacity to form the INH-

NAD adduct, is most common in katG [116 – 122]. Consequently, M. tuberculosis strains 

with a mutation in katG are most probably resistant to INH as a result of a lowered capacity 

to form the INH-NAD adduct, which is the InhA inhibitor. The subsequent mutation detected 

in an INH resistant strain was the mutation in inhA [32] which ecodes the enzyme enoyl-acyl 

carrier protein reductase (InhA). This mutation decreases the attraction of InhA for its 

cofactor NADH and is located in the NADH binding pocket of InhA [32]. Consequently, the 

InhA (S94A) protein has a greater Ki for the INH-NAD adduct and is more resistant to the 

inhibition by the INH-NAD adduct than the wild-type enzyme [91]. This mutation disrupts 

the hydrogen bonding network, as indicated by X-ray crystallographic structural 

determinations [91]. Consequently, an INH-NAD adduct with reduced binding abilities to 

InhA is formed [91]. Other INH resistance conferring mutations in inhA, such as I16T, I21V, 

I47T, and I95P, are also situated in the NADH binding pocket and diminish the affinity for 

NADH [124]. When a M. tuberculosis isolate is resistant to INH, mutations in the inhA gene 

are not always found but if they are found, these typically coexist with mutations in the 

promoter region of katG or inhA mutations [116 – 119; 121 – 124]. Overexpression of inhA 

is another way in which M. tuberculosis can become resistant to INH. This resistance results 

from dilution of INH by the InhA enzyme [29]. The C-15T inhA promoter mutation is the 

second most frequent mutation in INH-resistant M. tuberculosis clinical isolates [116 – 122]. 

This mutation results in InhA overexpression by increasing the inhA mRNA level 20 times as 
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compared to the wild-type, resulting in a much higher resistance of mycobacteria to INH 

[91]. Mutations in the NADH dehydrogenase NdhII were initially found in INH-resistant M. 

smegmatis laboratory strains [82]. INH-resistant M. bovis BCG laboratory strains were later 

shown to also harbour ndh mutations [99]. The ndh mutants had low NdhII activity, which 

resulted in an accrual of NADH, the substrate for NdhII [99]. This NADH accumulation 

played the role of a competitive inhibitor for binding to InhA and shielded InhA from the 

inhibitory effect of the INH-NAD adduct [99]. R268H is the only mutation in ndh that has 

been reported to occur in clinical isolates of INH-resistant M. tuberculosis [122; 125]. The 

inactivation of INH by the nat-encoded arylamine N-acetyltransferase (Nat) is another means 

of resistance [29]. The acetylation of the nitrogen group of INH by M. tuberculosis Nat 

prevents the activation of INH by KatG [126; 127]. Following transformation with the 

mycobacterial expression vector pACE-1, overexpression of M. tuberculosis nat results in an 

increased level of INH tolerance in M. smegmatis [126]. However, mutations in nat identified 

in clinical isolates of INH resistant M. tuberculosis were constantly interrelated with katG 

mutations and also observed in INH-sensitive clinical isolates [116]. 

 

2.9 Other Mutations Conferring INH Resistance 

INH resistance has also been observed in M. smegmatis strains lacking in mycothiol [29].  

The genes, mshA, mshB, mshC, and mshD, mediate the biosynthesis of mycothiol with M. 

smegmatis mutants having a transposon in either mshA [129], mshC [129], or mshD [130]. 

This renders the organisms extremely resistant to INH [29]. A M. smegmatis mshB mutant 

was surprisingly found to be sensitive to INH [131], while a twofold increase in INH 

resistance was seen in a M. tuberculosis mshB mutant [131]. The reasons for INH-resistance 

in mycothiol deficient mutants are not yet understood although it has been hypothesized that 
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mycothiol is necessary for the activation of INH [129; 131]. Other mutations found to 

facilitate INH resistance in clinical strains of M. tuberculosis include mutations found in 

furA, afpC, fadE24 and kasA [116; 117; 120; 122; 132 – 137]. However, these mutations 

were often related to katG and/or inhA mutations in promoter region, or were also present in 

INH-susceptible clinical isolates [29].  

 

2.10 INH Tolerance Conferring Mutations 

Almost all of the M. tuberculosis cells die within 3 to 4 days after treatment with INH [29]. 

The surviving tubercle bacilli signifies a heterogeneous population made up of bacilli that 

have either acquired their INH resistance through spontaneous mutations or are genetically 

sensitive to INH but maintaining tolerance to the drug [29]. This drug tolerance phenotype 

was characterized by testing the INH-inducible iniBAC operon, which encodes an 

unidentified membrane transporter, for its capability to shield M. tuberculosis against cell 

wall synthesis inhibitors like INH and ethambutol [138]. This research led to the finding that 

the iniA gene in M. tuberculosis, upon overexpression, conferred a multidrug-tolerant 

phenotype to both INH and ethambutol [138]. However, Colangeli and co-workers [138] 

showed that the IniA protein on its own does not work as a drug transporter and hypothesized 

that its function is to eradicate toxic compounds from the cells [29]. 
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Chapter 3: Methodology 

Ethical clearance to conduct this study was obtained from the University of KwaZulu Natal 

Biomedical Research Ethics Committee (BREC), reference number BE067/12. 

 

3.1 Bacterial strains and media 

 Mycobacterium tuberculosis clinical isolates from patients admitted to the Church of 

Scotland Hospital in Tugella Ferry in 2007 were obtained from storage. The susceptibility of 

these isolates was identified using the agar incorporation method on Middlebrook 7H10 agar 

(Difco, Becton and Dickenson, USA). The concentrations used were 1 mg/L for isoniazid 

(INH) (Sigma-Aldrich (Pty) LTD, SA) and 2.5 mg/L for ethionamide (ETH) (Sigma-Aldrich 

(Pty) LTD, SA). Susceptibility was defined as the absence of growth and resistance was 

defined as growth of any number of colonies. The isolates were grown in Middlebrook 7H9  

liquid medium (Difco, Becton and Dickenson, USA) supplemented with 10% (v/v) OADC 

(BD, USA) enrichment (Difco) and 0.2% (v/v) glycerol.  

DNA was extracted from these isolates to perform IS1660 fingerprinting as well as 

sequencing of predefined genes. Quantitative susceptibility to isoniazid and ethionamide 

alone and in combination was also performed. 

 

3.2 DNA Extraction  

Once an OD600nm of 1 has been reached, 2 ml of the culture was transferred into an Eppendorf 

tube (Merck, USA) and centrifuged for 10 min at 3000 x g. The supernatant was discarded 

and the deposit was resuspended in 500 µl triple distilled water and killed by exposure to 

80ºC for 30 min. This was followed by the addition of 70 µl of 10% sodium dodecyl sulphate 
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(SDS) (Sigma-Aldrich (Pty) LTD, SA) and 50 µl proteinase K (10 mg/ml) (Roche, SA) and 

incubation at 60ºC for 1 hour. A solution of 5M NaCl and CTAB (10% CTAB, 0.7M NaCl) 

was pre-heated to 60ºC and 100 µl 5M NaCl was added. The tube’s contents were mixed by 

inverting repeatedly. The mixtures were incubated at 60ºC for 15 min then frozen at -70ºC for 

another 15 min. The tubes were removed and defrosted at 60ºC, 700 µl chloroform-isoamyl 

alcohol (24:1) was added and the contents were mixed by inversion by hand 20-25 times 

followed by centrifugation at 13000 x g for 10 min. The upper aqueous phase was transferred 

to a tube with 700 µl cold isopropanol and mixed by tilting the tubes up and down several 

times. These mixtures were incubated at -20ºC for 30 min. The tubes were centrifuged for 10 

min at room temperature (25⁰C). The supernatants were drained and the pellets were washed 

with 80% ethanol and centrifuged for 5-10 min. The liquid was drained and the pellets were 

dried in speed vacuum for about 5 minutes. Following this 55 µl 1x TE was added. The DNA 

quality was checked by electrophoresis in a 1% agarose gel.  

 

3.3 Gel Electrophoresis 

Seakem agarose gel powder (Whitehead Scientific, SA) was dissolved in 1X TBE buffer (0.3 

g in 30 ml) by heating in a microwave oven for 30 sec. Ethidium bromide (Sigma-Aldrich 

(Pty) LTD, SA) was added to a final concentration of 0.5 mg/L. The mixture was poured onto 

a Hoefer gel electrophoresis tray (7 cm X 10 cm) and was left to solidify at room temperature 

(25⁰C). The gel was placed on a Hoefer electrophoresis machine containing 1XTBE buffer. 

Each well was loaded with 1 µl DNA mixed with 5 µl of gel loading buffer. The gel was run 

for 30 min at 100 V and then viewed under UV light to check the quality and the approximate 

quantity of the extracted DNA. 
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3.4 IS6110 Restriction Fragment Length Polymorphisms (RFLPs)  

 

Endonuclease restriction 

Similar amount of DNA of each isolate were diluted with distilled water to reach a final 

volume of 22 µl. This was mixed with 2.5 µl PvuII buffer, and 1.5 µl of 5000 U PvuII 

enzyme and incubated for three and half hours in a water bath at 37⁰C. The digested samples 

were run in a 1% agarose gel (15 cm X 20 cm) for 30 min at 90  V and then overnight at 36 V 

on a Hoefer electrophoresis machine. 

 

Southern blot 

A Hybond-N+ membrane (Amersham-GE Health, USA) was briefly submerged in water and 

then soaked in 10X SSC (Annexure 4) for 5 min. The gel was placed on the prepared 

membrane. A vacuum of -55 cm mbar was created by means of a GE-Health Vacugen-XL 

vacuum pump. The gel was flooded with 1/100 HCl for 20 min after which the liquid was 

removed. The gel was flooded with Soak I (Annexure 4) for 20 min and, after removal of the 

fluid, again with Soak II for 20 min. The gel was once more submerged in 10X SSC for 1.5 

hours after which the fluids were removed by vacuum. After removal of the gel, the 

membrane was allowed to dry for 5 min. To optimize the cross links, the membrane was 

briefly irradiated under UV (UVP-CL1000). 

 

Hybridization  

The probes used were manufactured by PCR (Annexure 3) according to van Embden et al 

(1993). The membrane was emersed in 20 ml of hybridization buffer while rotating at ~5 
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RPM at 42ºC for 30 min. A mixture of equal volumes of 10 µl of probe and 10 µl of water 

was boiled for 5 min and then placed on ice for 10 min. To this, 20 µl of labeling agent and 

20 µl of glutaraldehyde (Amersham ECL Direct Nucleic Acid Labeling and Detection 

System – RPN 3000) were added followed by incubation in a 37ºC water bath for 15 min. 

The probe was added to the hybridization buffer at the required concentration. Hybridization 

was allowed overnight in a rotating incubator at 6 RPM at 42ºC. 

 

Detection of banding pattern 

Following hybridisation, the membrane was briefly rinsed with primary wash buffer. The 

tube containing the membrane in fresh primary wash buffer was rotated for 30 min at ~5 

RPM at 42ºC. The membrane was removed from the tube and soaked in secondary wash 

buffer on a Stuart Orbital SSL1 shaking platform for 10 min. The liquid was discarded and 

the above step was repeated. 

The membrane was incubated (1 min at + 25oC) in a mixture of 5 ml of Soak I and 5 ml of 

Soak II, wrapped in plastic and placed with the Amersham Hyperfilm ECL in a cassette 

(Amersham, USA) and developed by chemiluminescence in a dark room till bands with the 

required density were observed.  

 

3.5 Minimum Inhibitory Concentrations (MICs)  

Minimum inhibitory concentrations (MIC) to INH and ETH were determined for the M. 

tuberculosis isolates using the 3-(4,5-dimethylthiozol-2-yl)-2,5-diphenyl tetrazolium bromide 

(MTT) (Include ref) and the microplate alamar blue assays (MABA) (ref: fransblau, ref# 

141). Cultures were incubated till the log phase of growth was reached, indicated by an 
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OD600nm of 1. This corresponds with a growth density of 108 cfu/mL. A test inoculum of 103 

cfu/mL for each isolate was prepared by serially diluting the cultures in Middlebrook 7H9 

broth. Stock solutions of INH and ETH were prepared in distilled water and dimethyl 

sulfoxide (DMSO) respectively. Both solutions were filter sterilized. Serial 2-fold dilutions 

were made in the wells of a microtiterplate with 7H9 broth as diluent. To each test well, 

containing 50 µl of drug solution, 50 µl of the test inoculum was added. The final 

concentrations for INH were 16, 8, 4, 2, 1, 0.5 and 0.25 µg/ml and for ETH 64, 32, 16, 8, 4, 2 

and 1 µg/ml. The plates were incubated for seven days in a 37ºC O2 incubator before the 

respective colorimetric reagents were added. Both the MTT assay and MABA was done in 

triplicate to test for intra-test variation and both were repeated in triplicate on different days 

to test for inter-test variation.  

 

The MTT solution was prepared by dissolving 0.00513 g MTT powder (Sigma-Aldrich (Pty) 

LTD, SA) in 1 ml 7H9 broth and filter sterilized. Of the MTT solution 7.5 µl was added to 

each well of the MIC microtiter plate. After a further incubation period of 24 hours, 25 µl of 

20% sodium dodecyl sulphate (SDS) solution with N1N-dimethylformamide (DMF) (Sigma-

Aldrich (Pty) LTD, SA)  [1:1 vol/vol] was added to each well. This was followed by an 

additional 24 hour incubation step to allow for colour development. A purple colour and/or 

precipitate indicates bacterial growth. 

 

For the MABA, at the end of the 7-day incubation period of the MIC microtiterplates, 15 µl 

of AlamarBlue® reagent (Life Technologies, SA) was added to each well. The plates were 

further incubated for 24 hours. A colour change from blue to pink indicates bacterial growth. 

Wells showing colour change were subcultured on Middlebrook 7H11 agar plates to confirm 

mycobacterial growth. 
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 3.6 Checkerboard Titrations 

Plates for the checkerboard titrations were prepared as shown in (figure 3.6.1).  

	
   1	
   2	
   3	
   4	
   5	
   6	
   7	
   8	
   9	
   10	
   11	
   12	
  
A	
   E64   I16   18   I4   I2   I1   I0.5   I0.25   I0.125   I0.062

5  
+  C   -­‐‑C  

B	
   E32     E64  
I16  
  

E32  
I16  

E16  
I16  

E8  
I16  

E4  
I16  

E2  
I16  

E1  
I16  

E0.5  
I16  

E0.25  
I16  

+  C   -­‐‑C  

C	
   E16   E64  
I8  
  

E32  
I8  

E16  
I8  

E8  
I8  

E4  
I8  

E2  
I8  

E1  
I8  

E0.5  
I8  

E0.25  
I8  

+  C   -­‐‑C  

D	
   E8   E64  
I4  
  

E32  
I4  

E16  
I4  

E8  
I4  

E4  
I4  

E2  
I4  

E1  
I4  

E0.5  
I4  

E0.25  
I4  

+  C   -­‐‑C  

E	
   E4   E64  
I2  
  

E32  
I2  

E16  
I2  

E8  
I2  

E4  
12  

E2  
I2  

E1  
12  

E0.5  
I2  

E0.25  
I2  

+  C   -­‐‑C  

F	
   E2   E64  
I1  
  

E32  
I1  

E16  
I1  

E8  
I1  

E4  
I1  

E2  
I1  

E1  
I1  

E0.5  
I1  

E0.25  
I1  

+  C   -­‐‑C  

G	
   E1   E64  
I0.5  
  

E32  
I0.5  

E16  
I0.5  

E8  
I0.5  

E4  
I0.5  

E2  
I0.5  

E1  
I0.5  

E0.5  
I0.5  

E0.25  
I0.5  

+  C   -­‐‑C  

H	
   E0.5   E64  
I0.25  
  

E32  
I0.25  

E16  
I0.25  

E8  
I0.25  

E4  
I0.25  

E2  
I0.25  

E1  
I0.25  

E0.5  
I0.25  

E0.25  
I0.25  

+  C   -­‐‑C  

I	
   E0.2
5  

E64  
I0.125  
  

E32  
I0.125  

E16  
I0.125  

E8  
I0.125  

E4  
I0.125  

E2  
I0.125  
  

E1  
I0.125  
  

E0.5  
I0.125  

E0.25  
I0.125  

+  C   -­‐‑C  

J	
      E64  
I0.062
5  
  

E32  
I0.062
5  

E16  
I0.062
5  
  
  

E8  
I0.062
5  
  
  

E4  
I0.062
5  
  

E2  
I0.062
5  
  
  

E1  
I0.062
5  
  
  

E0.5  
I0.062
5  
  
  

E0.25  
I0.062
5  
  

+  C   -­‐‑C  

Figure 3.6.1: Representation of checkerboard titration assays.  

E = ethionamide; I = isoniazid; numerical values = drug concentrations. 

 

3.7 DNA sequencing and analysis 

The extracted DNA samples were shipped to Jacobs Lab at the Albert Einstein College of 

Medicine (New York) where PCR amplification of the mshA, mshC and ethA genes was 

performed followed by amplicon sequencing and analysis of the data obtained. 
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Polymerase Chain Reaction (PCR) Amplification 

The following primers were used for PCR amplication: mshA, mshC and ethA genes	
  	
  

mshAF: GGCAGCTGGAGTCCACTGT 

mshAR: GCAGCAGGAACCGGTATACG 

mshCF: ACAACCAACTGGACCCCTAC 

mshCR: TCACCGCCAGCTCTGATTTG 

ethAF: AGGCGGACGGTCCTCGAGAA 

ethAR: GGGCGGGGTGACATTCGTTC 

A PCR kit from Applied Biosystems (Life Technologies, USA) was used. The composition 

of the master mix is shown in table 3.7.1. Of this master mix, 49 µl volumes were aliquoted 

into PCR tubes and 1 µl of extracted DNA was added. The PCR final reagent concentrations 

and cycling steps are summarized in table 3.7.1 and table 3.7.2 respectively. 

 

Table 3.7.1 Final concentrations of the PCR components  

Master Mix component for a 100 µl reaction Concentration  
dNTPs 40 nmol 
PCR Buffer II, 10X 10 µl  
MgCl2 300 nM 
Reverse primer 40 pmol 
Forward primer 40 pmol 
Enzyme (taq) AmpliTaq DNA polymerase 0.5 µl 
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Table 3.7.2 PCR cycling steps and parameters 

 Initial 

denaturation 

Denaturation Annealing 

 

Extension Final 

extension  

Temperature (ºC)    94       94     55    72    72  

Duration (min)    5     30 sec     1   1.30    7 

Number of PCR cycles: 40 

 

Purification of PCR products 

To each PCR product, 250 µl of buffer PB provided with the QIAquick PCR purification kit 

was added in a QIAquick spin column. The mixture was centrifuged for 60 sec. The flow-

through was discarded and 0.75 ml of buffer PE was added to the column and centrifuged for 

an additional 60 sec. The column was placed in a clean 1.5 ml microcentrifuge tube. To elute 

the DNA, 30 µl of elution buffer was added to the centre of the QIAqiuck membrane of the 

column. The column was allowed to stand for 2 min and then centrifuged for 2 min.  

 

DNA Sequencing 

DNA sequencing was performed at the Albert Einstein College of Medicine DNA sequencing 

facility using an ABI 3730 DNA Analyzer. To prepare the sample, 3.2 µl of each primer was 

aliquoted in separate tubes and 2 µl of purified PCR product was added to each tube. The 

samples were sent to the sequencing facility for DNA sequencing. The sequences were 

analyzed using clone manager sequence alignment program. 
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Chapter 4: Results  

4.1 Restriction Fragment Length Polymorphism Genotyping 

The result of the DNA extraction of all 10 isoniazid susceptible but ethionamide resistant 

Mycobacterium tuberculosis isolates was checked by means of elecrophoresis. The results are 

shown in Fig. 4.1.1 One isolate (TF2232, lane 9) was resistant to both drugs.  

 

Figure 4.1.1: DNA gel image of INH susceptible ETH resistant isolates of M. tuberculosis. 1: 

marker 2, 2: TF727, 3: TF1701, 4: TF1719, 5: TF1734, 6: TF2205, 7: TF2204, 8: TF2226, 9: 

TF2232, 10: TF1400, 11: TF1735 and 12: TF1091.  

 

Seven out of ten isolates had distinct restriction patterns. Four isolates (TF1701, TF1719, 

TF1734 and TF1735) showed identical restriction patterns. Therefore only one (TF1719) of 

these was included in the experiments. 
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Figure 4.1.2: IS6110 RFLP dendogram showing restriction patterns of M. tuberculosis 

isolates.  The TF isolate numbers are shown on the right side of the dendogram. 

 

4.2 Checkerboard Titrations 

 4.2.1 Tetrazolium Microplate Assay 

The results of the checkerboard titration using 3-(4,5-dimethylthiozol-2-yl)-2,5-diphenyl 

tetrazolium bromide (MTT) microplate assay is shown in figure 4.2.1.1. The lay-out of the 

plate is as shown in figure 3.6.1. As mentioned in chapter 3.5 bacteria were exposed to the 

drugs for 7 days followed by overnight incubation with the reagent. The MIC for INH was 

>.0.0625 mg/L (A2 – A10) and 2 mg/L for ETH. However, the MTT reagent also showed a 

reaction with the 4 to 5 highest ETH concentrations (A1-D1/E1). 

Dice (Opt:1.00%) (Tol 3.0%-3.0%) (H>0.0% S>0.0%) [0.0%-100.0%]
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The assay was repeated without bacteria. After 7 days of incubation a colour change was 

observed in all wells, independent of the ETH concentration (not shown). Therefore, the 

microplate alamar blue assay (MABA) was employed for the detection of bacterial growth. 

  

Figure 4.2.1.1: Checkerboard MTT assay 

Blue-black: bacterial growth,  

Row 11: positive control  

Row 12 negative control. 

 

          4.2.2 Microplate Alamar Blue Assay 

The results of the checkerboard titration of INH and ETH using the Microplate Alamar Blue 

Assay (MABA) as shown in figure 4.2.2.1. The lay-out of the plate is as shown in 3.6.1. No 

interaction of INH or ETH with the AlamarBlue reagent was observed in the absence of 

bacteria. 
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Figure 4.2.2.1: Checkerboard titration with Microplate Alamar Blue Assay  

Pink= bacterial growth, 

Row 11: positive control  

Row 12 negative control  

 

With INH only (wells A2 – A10), growth inhibition was observed in all wells, resulting in an 

MIC ≤ 0.0625 mg/L. The dilution series with ETH only (wells A1 – I1)  showed growth at 

concentrations 64, 32, 16 and 8 mg/L, no growth from 4 mg/L till  1 mg/L and growth again 

at  a concentration of 0.5 mg/L and lower. This indicates an MIC of 1 mg/L. Growth at the 

high concentrations is in keeping with paradoxical susceptibility or Eagle’s phenomenon 

[166]. This was observed in six isolates: TF727, TF1091, TF1400, TF1719, TF2204 and 

TF2226. TF2232 was found to be co-resistant to both INH and ETH, with an MIC of 8 mg/L 

for INH and an MIC ≤ 64 mg/L for ETH.  

This paradoxical effect of ETH was seen with all six isolates that, based on the proposed 

WHO breakpoints (WHO, 4th Edition), had been identified as ETH resisitant while 

susceptible to INH. All the six isolates showed complete susceptibility to INH, where their 

MICs were less than or equal to 0.0625 µg/ml (lowest concentration used). 
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When the growth in wells with the highest concentrations of ETH was subcultured in 7H11 

agar plates, growth with colony morphology compatible with M. tuberculosis was observed 

(Figure 4.2.1.2). Ziehl Neelsen staining confirmed the cultured organims to be acid fast. 

 

 Figure 4.2.2.2: 7H11 agar plates with subcultures from a representative wells of the checkerboard titration.  

A: INH 16mg/L and ETH 64 mg/L 

B: ETH 64 mg/L 

 

To confirm the observed paradoxical susceptibility pattern for ETH with those isolates that 

were selected based on the proposed WHO breakpoints (WHO, 4th Edition) MICs were 

performed with two of the paradoxically susceptible isolates, two M. tuberculosis isolates 

susceptible to INH and ETH, as well as two M. tuberculosis isolates resistant to both INH and 

ETH. The paradoxical effect of both isolates (TF2226 and TF727) was confirmed as shown 

in figure 4.2.2.3. showing an MIC of 1 mg/L and growth in wells 1 to 4. 
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Figure 4.2.2.3: M. tuberculosis isolates tested for ETH susceptibility alone.  

V9124 and TF2284: susceptible to both INH and ETH  

TF2226 and TF727: susceptible to INH; resistant to ETH  

TF2232 and 1291: resistant to INH and ETH. 

 Rows 9 positive control Row 10: negative control  

 

4.3 PCR and DNA Sequencing 

          4.3.1 PCR of ethA, mshA and mshC genes 

No mutations were observed on ethA, mshA and mshC genes. All isolates showing PCR 

product were sequenced, PCR was repeated for those isolates that did not show a PCR 

product, where the DNA concentration was adjusted.  
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Figure 4.3.1.1: PCR products of the ethA gene of M. tuberculosis paradoxically susceptible isolates.  

Lanes: 1-TF2204, 2-TF1719, 3-TF1091, 4-TF2226, 5- H37Rv (positive control) and 6-Marker 2. 

 

 

Figure 4.3.1.2: PCR products of the mshA gene of M. tuberculosis paradoxically susceptible isolates.  

Lanes: 1-Marker 2, 2-TF727, 3-TF1091, 4-TF1719, 5-2204, 6-TF2226 and 7-H37Rv (positive control). 
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Figure 4.3.1.3:  PCR products of the mshC gene of M. tuberculosis paradoxically susceptible isolates.  

Lanes: 1-H37Rv (positive control), 2-TF1400, 3-TF2204, 4-TF1719, 5-TF2226, 6-TF727 and 7-marker 2. 

 

4.3.2 DNA Sequencing 

The sequences of TF727 for ethA, mshC and mshC aligned with a wildtype reference 

sequences (H37Rv) for each of the genes are attached in Annexture 1. The other 6 sequences 

are similar. Annexture 2 contains the chromatograms generated with the DNA sequences. For 

DNA sequence analysis, the generated DNA sequences were examined by alignment with 

reference sequences using Clone Manager 9 Professional Edition software (serial number 

873-081-7617), these were examined in conjunction with the generated chromatograms to 

check if a putative mutation seen from the alignment is a true or false mutation. All 

sequenced genes for all isolates were found to be wildtype. 
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Chapter 5: Discussion 

Mono-resistance to ethionamide (ETH) in M. tuberculosis is rarely reported. This may be due 

to the fact that ETH resistance is often accompanied with isoniazid (INH) resistance and/or 

resistance to other drugs [99; 139]. Combined resistance to INH and ETH has a molecular 

basis in mutations in inhA. Resistance of M. tuberculosis to ETH is increasing, especially in 

those African countries where use of this drug is part of the standard regimen for treatment of 

multi-drug resistant tuberculosis (MDR-TB) [139]. In this study, we determined the MICs for 

INH and ETH of the selected group of isolates. The selection criteria were susceptibility to 

0.1 mg/L of INH and resistance to 2.5 mg/L of ETH.  Both drugs were tested in combination 

to establish whether inhibiting both related drug targets leads to synergism or antagonism. 

This was done by means of a checkerboard titration. 

The MIC determination as well as the checkerboard titration was done by means of broth 

micro-dilution using a colorimetric growth detection system. The detection methods 

employed were the MTT and the Alamar Blue (MABA) assays . Although the MTT assay has 

shown to give good results with other anti-TB drugs, it was deemed to be unsuitable for our 

study since the reagent reacted with ETH in the absence of bacteria. This may be on the 

account of oxidative activity of EthA. The MABA has also been shown to be an efficient 

method of determining MICs for a number of compounds against mycobacteria [3; 140]. This 

was therefore chosen as an alternative for the MTT assay. In this assay, no interaction with 

the reagent and any of the two drugs was observed. 

Previous studies have shown MICs to be generally lower when tested in liquid media 

compared to MICs tested on solid media [139; 141; 142]. However, there is not much 

information on which of the two media used for drug susceptibility testing best represents 

what takes place in vivo.  
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Combinations of drugs have long been used for the treatment of infections. Such 

combinations provide a broad spectrum of activity, delay or suppress the emergence of drug 

resistance and in some situations allow the use of a decreased dose of individual drugs to 

avoid toxicity [143]. Drug combination regimens are of vital importance in the treatment of a 

number of infections like malaria, HIV infection and TB, where the use of monotherapy has 

been observed to select for resistant mutants [3; 144], ultimately resulting in treatment 

failure. Although combination regimens are the cornerstone of control programmes for 

susceptible as well as drug resistant TB worldwide, studies on the pharmacodynamics of 

these drugs in combination are rare.   

 

In contrast, studies on pharmacokinetic interactions between INH as well as ETH with other 

compounds, including anti-TB drugs, are numerous. INH has been previously reported to 

negatively interact with other compounds [145]. Among the clinically significant interactions 

were those with phenytoin [146 – 150], carbamazepine [151; 152] and certain foods [153 – 

155]. These interactions may result in elevated levels of drug toxicity and insufficient INH 

absorption, if special attention is not given to patients taking INH concomitantly with these 

compounds. INH has been also documented to have pharmacokinetic interactions with other 

anti-tuberculosis drugs such as para-aminosalicylic acid [156] and rifampicin [157], but these 

are not of clinical significance [3].  There also were instances where INH was reported to 

have interactions with antacids [159] anticoagulants [159], benzodiazepines [160] and 

vitamin D [3], which also poses no significant threat to the patient although precautions must 

be taken when INH is being co-administered with these compounds.  
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Absorption of ETH from intestinal tract is almost complete [146], leaving a very small 

proportion of the drug to be excreted in an unchanged form in the stool [161]. Food and 

antacids, unlike in INH absorption, appear to have little effect on the absorption of ETH 

[146] and it has been previously reported that ETH is distributed with ease throughout the 

body [162]. 

 

ETH is given in combination with rifampicin in drug susceptible tuberculous meningitis, 

although the effect of this combination, as well as that of co-administration of ETH with 

other drugs is unknown [161]. Thee and colleagues [161] recently conducted a study of ETH 

serum levels in children given ETH concomitantly with rifampicin over a period of four 

months. This study revealed no significant pharmacokinetic alterations in ETH, although high 

variability was documented in children receiving a South African standard oral dose of 15 – 

20 mg/kg body weight [161]. This was consistent with studies in adults [146; 147; 163]. 

Little is known regarding the accumulation of ETH during continuous therapy in children, but 

no significant clinical interactions between the second-line ETH and first-line drug rifampicin 

were observed [161]. However this does not exclude the possibility of such reactions.  

 

We report on a pharmacodynamic study on the interaction between ETH and INH in vitro. 

We found concentration dependent antagonism between the two drugs in all our INH 

susceptible isolates that showed resistance to 2.5 mg/L of ETH. No such antagonistic effect 

was observed between INH and ETH in the susceptible control strains of M. tuberculosis. 

This suggests that the basis for this phenomenon is not in the composition of the drugs 

themselves, but may be the result of changes in mycolic acid synthesis pathways in our 

isolates, suggesting a new mechanism for drug resistance.  
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Since the standard drug combination of INH, rifampicin, pyrazinamide and ethambutol has 

shown to be highly effective in the treatment of susceptible TB, it is unlikely that any of these 

drugs will have antagonistic effect on the others. However, drug combinations for treatment 

of drug resistant TB are known to be less effective than standard first line treatment. In South 

Africa, the standard treatment regimen for MDR-TB includes ETH but not INH. Therefore, 

our findings do not provide an explanation for the observed poorer response to treatment with 

that regimen as compared to first line treatment. However, the results presented here indicate 

that testing for antagonistic effect between drugs used in combination for treatment of drug 

resistant TB may be useful to improve treatment outcomes. 

 

Henderson and colleagues (2008) proposed a model of ETH metabolism (figure 5.1) [164]. 

ETH is actively metabolized by human FMO2 and mycobacterial EthA to its more reactive 

species, the S-oxide, and the non-reactive 2-etthyl-4-amidopyridine decomposition product. 

Concerns were raised by Palmer et al in 2012, following the outcome of their study, where 

they measured the metabolism and pharmacokinetics of ETH in wild type (WT) mice and 

compared these with the flavin-containing mono-oxygenase deficient knock-out (KO 

fmo1/2/3 null) mice [165]. They found that concentrations of the S-oxide, which is the 

primary metabolite in ETH metabolism, was greater than that of the parent drug in WT mice. 

In KO mice, they observed greater ETH concentrations than S-oxide concentrations. 

Extrapolating their finding to clinical settings, one of their concerns in administering 

clinically relevant doses of ETH to healthy individuals with normal flavin mono-oxygenase 

activity (represented by the WT mice), would be chronic oxidative stress due to the S-oxide 

mediated depletion of glutathione (figure 5.1). On the other hand, accumulation of ETH over 
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multiple doses in individuals with the FMO2*2 genotype (represented by the KO mice) was 

thought to be clinically more relevant. The authors suggest that interactions of ETH with co-

administered drugs through competitive inhibition may occur [166]. Such competitive 

inhibition could aggravate the observed antagonistic effect of ETH on INH in patients. This 

needs further investigation.  

 

Figure 5.1: Representation of oxidative stress and toxicity in ETH metabolism pathway 

[165]. 

 

Our study revealed a paradoxical effect of ETH on our selected isolates, where growth was 

observed at high concentrations of ETH but not with lower concentrations. Growth 

reappeared at drug concentrations below the MIC of the isolate. The growth intensity, as 

depicted by the colour signal, decreased with decreasing ETH concentrations. This 

phenomenon was first described by Harry Eagle in 1948, where he observed a decreased 

activity of penicillin against strains of certain bacterial species at high concentrations [166]. 

Eagle argued the previous hypothesis posed by Garrod (1945) who reported similar 

observations. Garrod attributed this retarded activity of penicillin to impurities in the drug 
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[167]. Eagle found this interpretation inconsistent with his findings and described this zonal 

inhibition as a ‘paradoxical effect’ of penicillin. Until a decade ago, such reactions have not 

been reported in in vitro susceptibility testing of anti-tuberculosis drugs. A study by Abate 

and colleagues in 2002 showed thiacetazone to have a paradoxical effect on certain strains of 

M. tuberculosis. They observed this drug to have greater inhibiting activity at lower 

concentrations as opposed to higher concentrations [168]. Thiacetazone is not used in South 

Africa in first line treatment of TB, however it may still be considered for the control of drug 

resistant TB [168]. 

 

The paradoxical effect of ETH and antagonism between ETH and INH was confirmed by the 

presence of growth on Middlebrook 7H11 plates, following sub-culturing of our isolates from 

the wells with the highest concentrations of ETH alone and in combination with INH, at the 

highest concentrations. This eliminates the possibility that a reaction between ETH and 

alamar blue is the cause of the observed colour change. It can be concluded that both the 

paradoxical effect of ETH and the antagonistic reaction between ETH and INH in our isolates 

does not result from mutations found in ethA, mshA or mshC genes, which are commonly 

implicated in high level resistance of isolates of M. tuberculosis to ETH [41; 169]. Further 

investigations have to be done to elucidate the mechanism by which both these phenomena 

occur in our isolates.  

 

The proposed WHO resistance breakpoint for ETH in liquid media is 2.5 to 5 mg/L and on 

solid agar media 5 to 10 mg/L. We selected isolates that showed mono-resistance to ETH 

using these breakpoints. However, this resulted in a wrong selection since the true MIC in of 

these isolates in liquid media was shown to be 1 mg/L. Therefore these isolates are fully 
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susceptible which is corroborated by the absence of mutations in the msh genes and ethA. 

This error is based on the paradoxical phenomenon. To avoid false reporting of ETH 

resistance, tests using lower concentrations need to be included. Whether this paradoxical 

effect has clinical significance also needs further exploration. 
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Preparation of probe DNA by PCR [170]: 

Preparation of PCR mix. Required per reaction; 

10x PCR buffer (Saiki)                             5µl 

dNTP mix (each dNTP; 2.5 mM)             4µl 

Primer 1 (50 ng/µl)                                   5µl 

Primer 2 (50 ng/µl)                                   5µl 

Primers: 

INS-1  5’ CGTGAGGGCATCGAGGTGGC 3’ 

INS-2  5’ GCGTAGGCGTCGGTGACAAA  3’ 

To the PCR mix, 0.25 µl Taq polymerase (1.25 U) (Ampli-Taq) per reaction was added. The 

mix was vortexed and kept on ice. PCR mix was transferred to PCR tube in 20 ml aliquots. 

30µl of the target DNA preparation (10 ng) isolated from M. bovis BCG was added to the 

PCR mix. The reaction mixture was overlayed with approximately 75 µl mineral oil (paraffin, 

Sigma), to prevent evaporation. This was mixed and centrifuged for 5 seconds in a 

microcentrifuge at 12 000 g. Program used for denaturing-annealing-synthesizing cycle: 

3 min 94⁰C       once 

1 min 94⁰C      25 cycles 

1 min 65⁰C      25 cycles 

2 min 72⁰C       25 cycles 

4 min 72⁰C      once  
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The PCR products were examined by electrophoresis and staining with ethidium bromide. 

The PCR fragments should be 245 bp in length using primers INS-1 and INS-2 from IS6110. 

When the correctly sized fragments were obtained, purification on a Sephadex column was 

used. The PCR products were carefully collected by carefully pipetting the samples from 

under the oil in fresh microcentrifuge tubes. If necessary, the collected samples were 

centrifuged at 12000 g to be able to move the rest of the oil. A Quick SpinTM Sephadex G-50 

column (Boehringer Mannheim) was removed from its zip-lock bag and was gently inverted 

several times to re-suspend the medium. The top cap was removed from the column, then the 

bottom tip was removed. This sequence is necessary to avoid creating a vacuum and uneven 

flow of the buffer. The buffer was allowed to drain and was discarded. The column was 

placed in a collection tube (10 ml) and was centrifuged at 200g in a swing out rotor for 2 

minutes. The collection tube was discarded with the eluted buffer. 100 µl of the sample was 

applied to the censer of the column bed. The column was placed in an upright position in 

fresh collection tube and was centrifuged for 4 minutes at 200 g in a swing out rotor. The 

eluate from the second collection tube contained the purified DNA. 100 µl of 1XTE and 

500µl 96% ethanol was added to precipitate the DNA. This was stored at -20⁰C for 30 

minutes. This was spun in a microcentrifuge for 15 minutes at room temperature at 12000g. 

The supernatant was discarded leaving the last 20 µl above the pellet. 1ml of 70% ethanol 

was added and the tube was carefully shaken. This was spun for 5 minutes in a 

microcentrifuge at room temperature and the supernatant was discarded leaving the last 20 µl 

above the pellet. This was again spun for 1 minute and the last 20 µl of ethanol was removed 

using a pipette and the pellet was permitted to air dry at room temperature for 10 minutes. 

The pellet was dissolved in 50 µl of 0.1XTE. The concentration of the PCR fragment was 

determined by measurement of the OD260 of a 1:50 dilution of the sample.  
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Buffers and solutions 

10X TBE:  

108g Tris base  

55g boric acid  

9.3g EDTA  

Add distilled water up to 1000ml 

 

20X SSC:  

173g NaCl  

88.2g sodium citrate  

Add distilled water up to 1000ml, pH=7  

 

Soak I:  

20g NaOH (0.5M)  

87.66g NaCl (1.5M)  

Add distilled water up to 1000ml 
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Soak II:  

62.6g Tris base (0.5M)  

87.6g NaCl (1.5M)  

40ml HCl  

Add distilled water up to 1000ml, pH=7.2 

 

Hybridization buffer (500ml):  

29.22g NaCl (0.3M)  

20g blocking agent  

 

10x PCR buffer:  

30Mm MgCl2   

100Mm Tris-HCl pH 8.3  

500Mm KCL  

0.2 gelatine 

 

Primary wash buffer:  

360g urea  

4g SDS (or 20ml of 20% SDS)  
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25ml 20X SSC  

Add distilled water up to 1000ml 

 

Secondary wash buffer:  

2X SSC 

 

Gel loading buffer:  

5ml 10X TBE  

25ml glycerol (Merck, Germany)  

15ml distilled water  

5ml 1% DD 

 

1% DD:  

1g bromophenol blue  

1g xylene cyanole  

100ml distilled water 

  

 

	
  


