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AbsTraCT 

Abstract 

The nature and competitiveness of the modern software development industry demands 

that software engineers be able to make accurate and consistent software cost estimates. 

Traditionally software cost estimates have been derived with algorithmic cost estimation 

models such as COCOMO and Function Point Analysis. However, researchers have 

shown that existing software cost estimation techniques fail to produce accurate and 

consistent software cost estimates. Improving the reliability of software cost estimates 

would facilitate cost savings, improved delivery time and better quality software 

developments. To this end, considerable research has been conducted into finding 

alternative software cost estimation models that are able produce better quality software 

cost estimates. Researchers have suggested a number of alternative models to this 

problem area. One of the most promising alternatives is Case-Based Reasoning (CBR), 

which is a machine learning paradigm that makes use of past experiences to solve new 

problems. CBR has been proposed as a solution since it is highly suited to weak theory 

domains, where the relationships between cause and effect are not well understood. 

The aim of this research was to determine the applicability of CBR to software cost 

estimation. This was accomplished in part through the thorough investigation of the 

theoretical and practical background to CBR, software cost estimation and current 

research on CBR applied to software cost estimation. This provided a foundation for the 

development of experimental CBR software cost estimation models with which an 

empirical evaluation of this technology applied to software cost estimation was 

performed. In addition, several regression models were developed, against which the 

effectiveness of the CBR system could be evaluated. The architecture of the CBR 

models developed, facilitated the investigation of the effects of case granularity on the 

quality of the results obtained from them. Traditionally researchers into this field have 

made use of poorly populated datasets, which did not accurately reflect the true nature of 

the software development industry. However, for the purposes of this research an 

extensive database of 300 software development projects was obtained on which these 

experiments were performed. 
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The results obtained through experimentation indicated that the CBR models that were 

developed, performed similarly and in some cases better than those developed by other 

researchers. In terms of the quality of the results produced, the best CBR model was able 

to significantly outperform the estimates produced by the best regression model. Also, 

the effects of increased case granularity was shown to result in better quality predictions 

made by the CBR models. These promising results experimentally validated CBR as an 

applicable software cost estimation technique. In addition, it was shown that CBR has a 

number of methodological advantages over traditional cost estimation techniques. 
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Chapter I IlItrodllction 

Chapter 1: Introduction 

This research deals with the AI technique of Case Based Reasoning applied to the fi eld of 

software development effort cost estimation. This introductory section will provide an 

overview of these fields. 

1.1 Background to the Problem 

Accurate project effort prediction is an important goal for the software engineering 

community (Shepperd and Schofield , 1997). To date most research has focu sed upon 

developing algori thmic effort models such as COCOMO (Boehm, 1981) and Function 

Point Anal ysis (FPA) (Albrecht, 1979), deri ved from the stati sti cal anal ysis of historical 

project data. These models are often unable to model the complex set of relationships 

that are evident in many software development environments (Mair et aI, 1999). Thus, 

none of these model s have been entirely successful in their estimation accuracy or 

adoption by the software development industry (Jeffery and Walkerdon, 1999; Schofield , 

1998). Software engineers have expressed concern over their inability to accurately 

estimate costs associated with software development. Thi s concern has become even 

more pressing as costs associated with softw are development continue to increase 

(Kemerer, 1987). 

The accuracy of software project estimates has a direct impact on the quality and 

fin ancial viability of software projects (Mukhopadhyay et aI, 1992) and it is essential that 

the software engineer be able to maximize both of these attributes . For thi s reason a 

number of alternati ve estimation techniques have been proposed. Most of these have 

been of the Machine Learning genre and include such techniques as Neural Network and 

Case Based Reasoning (CBR) models. Of these model s, CBR has received the most 

attention by researchers in recent years (Aarnodt and Plaza, 1994). 
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Software Cost Estimation 

There are a number of different techniques for estimating software development effort 

described in the literature. Two of the most popular models mentioned are COCOMO 81 

(Boehm, 198 1) and Functi on Point Analysis (FP A) (Albrecht, 1979). These provide an 

example of the common di stinction between the two large classes of estimation models, 

namely those that use lines of code (LOC), and those that use fun cti onal complexity as a 

basis to their estimati on. 

Researchers have suggested many classifications for cost estimati on models. Some have 

chosen to group models into all-encompassing categories such as algorithmic models, 

which broadl y defines models that are deri ved from hi storical project data and then use 

statisti cal measures to deri ve an estimate. Irrespecti ve of their classificati ons, the two 

most popular models of software cost estimation; COCOMO and FPA have gone through 

a process of evolutionary improvement, being revised by the authors and other 

organi zati ons. COCOMO 2000 was developed to take into account the criticisms that 

have been directed at the original COCOMO 81 model. The focus of thi s criti cism has 

been the models use of a LOC based metri c as its primary estimator (Dolado, 1997). 

Similarl y the ori ginal FPA model has been regularly revised and in its present fo rm is 

regulated by the Internati onal Function Point Users Group (IFPUG). 

Machine Learning techniques as app lied to software cost estimation models are a recent 

development in thi s problem domain. Two of the most prominent techniques applied are 

Neural Networks and Case-Based Reasoning (Mai r et aI, 1999). Both have shown 

considerable promise as alternati ves to the traditi onal methods of effort estimati on. 

An Overview of Case-Based Reasoning 

Case-Based Reasoning (CBR) is a problem-solving paradi gm based on the reuse of past 

experi ences. There ex ists considerable optimi sm about the use of CBR in difficult 

The Applicability of Case-Based Reasoning IV Sojiware Cost Estilllo tion 2 
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problem solvi ng areas where human expertise is evidently expenence based (Delany, 

2000). CBR is said to be parti cul arly well suited to weak theory domai ns, where the 

relation between cause and effect is not well defined or understood. In thi s respect it is 

fundamentall y diffe rent to other AI approaches in two ways: 

• Aarnodt and Pl aza (1994) state that CBR does not rely solely on the general 

knowledge of a problem domai n or make associations along generalized 

relati onships between problem descriptors and conclusions. Instead, CBR is able 

to utili ze the specific knowledge of prev iously experienced problem situati ons. 

Each instance of a previously solved problem is viewed as knowledge container 

or case, which a CBR system is able to utilize in so lving new problem situations. 

• Secondl y, CBR is an approach to incremental sustained learning, since a new 

experience is retained each time a problem is solved. 

CBR solves new problems by findin g a similar past case and reusing it in the context of 

the new problem. This process is described in the CBR cycle as suggested by Aarnodt 

and Plaza (1994): 

• Retrieve the most simjlar case or cases . 

• Reuse the informati on and knowledge contained in that case to so lve the new 

problem. 

• Revise the proposed solution. 

• Retain the solution or parts thereof to fac ili tate future problem solving. 

The use of CBR was first suggested by Schank (1977). His work culminated in the 

development of the firs t CBR system by Kolodner (1983). Since then, CBR has been 

successfull y applied to SLlch varied fields as diagnosis, arbitrati on, legal reasoning, design 

and repair. 
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A number of CBR tools have been developed to aid the development of CBR 

applications. This allows the developer to concentrate on the specifics of the application 

rather than having to reformulate the basic principles of CBR. 

More recently CBR has been suggested for use as a software effort estimation tool. Thi s 

will be di scussed in more detail in the following section on CBR applied to software 

effort estimation. 

Case Based Reasoning Applied to the Field of Software Cost Estimation 

Existing estimation techniques have failed to produce consistently accurate software 

development effort estimates. Mukhopadhyay et al (1992) argue that these approaches 

are not incorrect, but rather insufficient and that further insight into the problem is 

required. The developers of these models have attempted to derive models that quantify 

the causal dependencies within the domain. Since these models do not consistently solve 

the problem accurately, it can be assumed that they do not model the problem domain 

effectively since the causal rel ation between effort and input variables is not well 

understood (Delany, 2000). However, the use of CBR avoids the need to model the 

problem domain. Furthermore CBR is able to produce estimates in situations where little 

domain knowledge exists and is able to augment its knowledge base with so lved 

solutions that may be relevant to future problems. 

Mukhopadhyay et al (1992) were the first to apply CBR to software effort estimation. 

Since then a number of similar systems have been successfully applied to this field. 

Mukhopadhyay et al (1992), Shepperd and Schofield (1995), Finnie and Wittig (1997) 

have all developed CBR systems which produce estimates with accuracy that exceed 

those of traditional estimation techniques . Previous research is thus used as a basis to the 

research and experimentation conducted in thi s thesis. 
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1.2 Goals and Sub-Goals of the Research 

The primary goal of this research is to investigate the applicability of CBR to the fie ld of 

software cost estimation. 

This primary goal can be decomposed into a number of sub-goals. These sub-goals can 

objectively be divided into theoretical and experimental components. 

The theoretical sub-goals can be formulated as follows: 

• To provide insight into CBR through describing the technology, methodologies 

and applications. 

• To formulate a categorization of software cost estimation techniques. 

• To provide an overview of software cost estimation techniques and their 

methodologies. 

• To provide an overview of CBR applied to software cost estimation. 

• To define the functional requirements of a CBR tool. 

• To review the CBR tools considered for this research. 

• To conduct experimental validation of the application of CBR to software cost 

estimation. The experimental sub-goals can be formulated as follows: 

o To develop a CBR system suitable for software cost estimation. 

o To define an appropriate case retrieval mechanism. 

o To suggest case adaptation mechanisms for the experimental CBR system. 

o To suggest and define appropriate measures of accuracy for the CBR 

system . 

o To determine the effect of case granu lari ty on the quality of estimations 

made by the experimental CBR system. 

The Applicahility of C(/se-Based Reasoll illg 10 Software Cost Estim!llioll 
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o To report on the success and applicabi lity of the CBR system as a solution 

fo r software cost estimation. 

The above goals can be justified on the basis of the current state of research in the areas 

of software cost estimati on and CBR. 

1.3 Scope and Delimitations of the Research 

The research conducted establishes the theoretical foundations of CBR and software cost 

estimation and di scusses the application of CBR to the latter. Thi s prov ides momentum 

for the development of an experi ment which would produce results from which 

conclusions can be drawn as to the applicability of CBR to software cost estimati on. 

The di scussion on software cost estimation will focus on two of the most prominent and 

applied estimation methods used, namely: 

• COCOMO 81 (Boehm, 198 1) and COCOMO 2000 (Boehm et ai, 2000) 

• Function Point Analysis (FPA) (Albrecht, 1979) and IFPUG FPA version 4 

(IFPUG, 1996). 

The di scussion of Functi on Point Analysis has a di rect impact on the experimental 

component of thi s research, since it is the primary method used in compiling hi storical 

project data. As mentioned in the background di scussion into CBR, the use of past 

project data forms the basis of an estimation made by a CBR system. Thi s influences the 

design of the experiment, since the fo rmulation of thi s data needs to be analyzed so as to 

determine appropriate case structures fo r the experimental CBR system. 

Many studies in the fie ld of cost esti mation are limited in scope as their conclusions are 

based on the results obtained from small and medium sized datasets (Wieczorek, 200 I ), 

which often do not refl ecting cross-organi zational inf luences. Thi s research aims to 

overcome thi s limitation by maki ng use of a more comprehensive dataset that is more 

refl ecti ve of the software deve lopment industry. At the same time, a de limi tation of thi s 

The Appliw bility of Case· Based Reasoning to Software Cost Estill/otioll 
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research is that it is accepted that the results obtained though experimentation would be 

highly dependant on the input data provided to the CBR system developed in the 

experiment. The quality of this data cannot be verified since project data is collected by 

different software engineers in different organizations. Thus, the author of the dataset 

used in this research has no control over the robustness of the compiled data. Although 

the collection methods used are standardized, this cannot completely assure data 

consistency, since software development projects are of a highly specialized nature that 

does not completely allow for generalizations across organizations or application areas. 

The applicability of CBR to software cost estimation will be determined on the basis of 

the discussion on CBR applied to software cost estimation, the results obtained through 

experimentation and comparisons made to other research in this field. Comparison IS 

however limited to the small pool of published research available in this field. 

1.4 Research Methodology 

According to Robey (1996), justification of research can be made by suitably linking the 

research aim to the theoretical foundation of the research and research methods used. In 

addition to this, the theoretical foundation of the research determines the research 

methods used. Robey (1996) refers to this as the tri ad for justification of research. The 

relationships between the three components are illustrated in Figure 1.0 (Adapted from 

Robey, 1996). 

The primary research aim is to investigate the applicability of CBR to software cost 

estimation. This goal determines the methodologies used and this necessitated an 

investigation into CBR, software cost estimation techniques and CBR applied to the field 

of software cost estimation. This was conducted in the form of literature reviews on the 

above topics. Thi s establishes the theoretical foundation upon which the experimental 

aspect of thi s research is conducted, as described below. 

The ApplicabiliTy of Case- Based Reasolling /0 Sofiwa re COST ESTimaTion 
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Research Aim 

Theoretical L-_____ .... _____ ---->. 

Foundation 
Research 
Methods 

Figure 1.0 Triad for the justi fication of research (Robey, 1996) 

IlItroductioll 

The applicability of CBR applied to the field of software cost estimation can at best be 

determined using the experimental methodology. Thi s is because, to the best knowledge 

of the author, internati onally there are no companies that are applying CBR to software 

cost estimation. Therefore no field investi gation or acti on research is possible in th is 

area. Since several datasets were reported to have been used by other researchers in thi s 

field, it was hoped that at least one of them would be made avail able for the experiment. 

This research aimed to produce replicable resul ts by detailing the methods used in 

formulating the CBR system used for experimentati on. To adhere to thi s, 

experimentati on in thi s research was conducted through the application of a consistent 

procedure of development, structuring and analysis of results. As in most experimental 

fie lds, replicati on is the key to establi shing validity and generaIi zability of results. 

Critici sm has been directed at researchers for fa iling to detail the methods used and 

formul ate the results in a manner that allows fo r compari son to other research 

(Wieczonek, 200 I ). For example, Finnie and Witti g (1 997) produce results and an 

experimental methodology that a ll ow fo r replication and compari son fo r future 

researchers. In additi on to the above di scussion, ex perimental veri ficati on and validation 

of the experiment was enhanced through the application of stati sti cal analysi s of the 

results. 
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1.5 Importance of This Research to the Fields of Case-Based Reasoning and 

Software Cost Estimation 

The need for accurate software cost estimates has been highlighted in the introductory 

section of this chapter. CBR is a new approach to problem solving and learning (Aarnodt 

and Plaza, 1994) that has recei ved much attention from researchers. Furthermore, CBR 

as applied to the field of software cost estimation is comparatively an even newer field of 

study in comparison to other cost estimation techniques such as Function Point Analysis 

(since 1979) and COCOMO (since 1981). As mentioned in the section on project scope, 

the studies on the use of CBR applied to softw are cost estimation that have been 

completed are often inconclusive (Wieczonek, 2001), owing to the nature of the data used 

in the experiments conducted. This indicates a need to perform further research into the 

applicability to this field usi ng data that is more representative of real world software 

developments. To the best knowledge of the author, no previous research has been 

conducted on the effects that granularity of data has on the accuracy of a CBR systems 

predictions. 

An added justification of this research in the context of software cost estimation is that an 

attempt is made to derive a categorization of the various software cost estimation 

techniques, placing them in context with modern methods of estimation. This is a facet 

of software cost estimation which is often avoided in the literature. 

This research therefore intends to make both a theoretical and practical contribution to 

the fields of software cost estimation and case based reasoning. 
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1.6 Overview of the Structure of the Dissertation 

Since the purpose of this research is to determine the applicability of CBR to software 

cost estimation, a number of theoretical chapters precede the experimental chapter to 

establish the appropriate theoretical foundations. 

Chapter 2 provides an overview of the AI paradigm of CBR by discussing the involved 

technologies, applications and methodologies. This is followed by an overview of the 

various software cost estimation techniques in Chapter 3. This chapter intends to define a 

categorization of the various cost estimation models and uses this as a framework for the 

rest of the chapter. 

The use of CBR in the field of software cost estimation is discussed in Chapter 4. This 

chapter will include information on existing CBR systems developed for this purpose. A 

discussion is also undertaken on the functional requirements that a generic CBR tool 

should have. This culminates in an examination of the CBR tools short listed for the 

development of an experimental CBR system. 

Chapter 5 focuses on the research component of this research; the methodologies used, 

experimental design and nature of the experiments are discussed in detail. Included in 

this chapter is a discussion of the experimental results, which intends to place this 

research in the same context as similar research and seeks to compare and evaluate the 

results obtained. 

Chapter 6 is the concluding chapter in which the theoretical and practical contributions of 

this research to the software engineering community will be discussed. Suggestions will 

be made as to possible future directions of research into CBR applied to software cost 

estimation. 
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Chapter 2: Case-Based Reasoning 

2.1 The Origins of Case-Based Reasoning 

Case-Based Reasoning (CBR) is a problem-solving paradi gm based on the reuse of past 

experiences that has developed into a well-establi shed sub-field of Artifici al Intelli gence 

(Leake, 1996). CBR is class ified as a machine learning paradi gm since it embodies some 

of the facets of the human mind that allows fo r the rapid solution of huge ly complex 

problems (Schank, 1982). Many successful implementations of CBR are in existence in 

commercial fields worldwide, solving problems ranging from the operati onal to the 

organizational levels (Kolodner, 1993). CBR has been in ex istence for approximately 

two decades and now enjoys the level of refinement that makes it superi or to other 

knowledge based reasoning techniques (Watson and Marir, 1994). The advantages of 

CBR over traditional knowledge based techniques are di scussed in Secti on 3.3. 

It is widely accepted that CBR has its philosophical ori gins In the fi eld of cogniti ve 

science, since the basic concepts and the operati on of a CBR system attempt to simulate 

an experienced and intelligent human type interac ti on (and response) to a given problem. 

The study of CBR is dri ven by two primary moti vati ons: The first from cogniti ve science 

is the desire to model human reasoning and learning. The second, from artifi cial 

intelli gence, is the pragmati c desire to develop the technology to make AI systems more 

effective (Leake, 1996). The conceptual mechani sms used in CBR can be traced to the 

fields of psychology and philosophy, which have investi gated and theori sed on concept 

formation, experi enti al learning and problem solving (Wittgenstein , 1953; Tulving, 1972; 

Smith et aI, 198 1). Wittgenstein (1953) observed that natural physical concepts are in 

fac t pol ymorphic and therefore cannot be classified by a single set of necessary features. 

They can instead be defined by a set of instances (cases) with famil y resemblances 

(simil ariti es). Aarnodt and Plaza (1 994) site thi s work as the philosophical basis for 

CBR. 
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It is widely accepted that the first published semblance of CBR came from Schank and 

Abelson (1977), who suggested the use of scripts for knowledge representation. Their 

paper "Scripts, Plans, Goals, and Understanding: An Inquiry into Human Knowledge 

Structures" was foundational for the CBR field. Schank persevered with the exploration 

of the role that memory of previous situations and situation patterns have in problem 

solving and learning. This research culminated in the publication of his paper on 

"Dynamic Memory: A Theory of Learning in Computers and People" (Schank, 1982). 

This was the first work that described a memory-based approach to reasoning and 

suggested an architecture for developing such a reasoning system. This would be the 

basis for CBR memory simulation and implementation. 

A major advancement in the field of CBR occurred in 1983 with the development of the 

first computer implemented CBR system, CYRUS (Computerised Yale Retrieval and 

Update System) (Kolodner, 1983). CYRUS implemented Schanks dynamic memory 

model using Memory Organisation Packets (MOP's) for problem solving and learning. 

CYRUS was essentially a question answering system which retained knowledge of US 

Senator and former secretary of state, Cyrus Vance's travels and agenda. 

In the subsequent decade following Schanks' foundational work and Kolodner's CBR 

implementation, came a proliferation of academic experimental CBR systems. The 

dynarmc memory model used in CYRUS has served as the basis for many of these CBR 

systems, most notably: CHEF (Hammond, 1986), PERSUADER (Sycara, 1987), 

MEDIATOR (Simpson, 1985), CASEY (Koton, 1992) and JULIA (Hinrichs, 1992). 

Schank's dynamic memory model was however not the only approach to case storage and 

management in CBR systems. Porter and Bareiss (1986) suggested an alternative 

approach to Schank's dynamic memory model. Thi s became known as the category

exemplar model. Their CBR system known as PROTOS, unified general domain 

knowledge and specific case knowledge into a single case memory model (Watson and 

Marir, 1994). This work was later furthered and implemented by Banting (1991) in a 
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CBR system known as GREBE. The dynamic memory model and the category-exemplar 

model are discussed further in Section 3.1. 

The academic CBR systems referred to above, increased markedly in sophistication as 

CBR became accepted as an effective solution to knowledge based problems. The 

maturity that CBR was attaining culminated in the first commercial application of CBR: 

CLAVIER (Barletta and Henessy, 1989). CLAVIER was developed at Lockheed to 

assist in the manufacturing process of aircraft materials. CLAVIER has been continually 

improved over the course of its operation since its initial implementation and now makes 

use of a case base of over 300 entries - far more than the initial 20 cases. Other 

prominent successful CBR implementations are: CaseLine, used by British airways for 

fault diagnosis on certain model aircraft and SMART (Acorn and Walden, 1992) as used 

by Compaq as a help-desk application to solve common computer problems. 

Many other successful commercial applications of CBR exist. These are indicative of the 

success that CBR has achieved in diverse problem areas such as: diagnosis, decision 

support, design, planning and legal reasoning. The areas of application of CBR have 

become a form of classification for CBR systems. This implies that the implementations 

of CBR in working systems can be organised according to the particular field of 

application. A listing and description of a number of prominent CBR implementations is 

outlined in Table 2.1. A discussion of the various implementations CBR falls beyond the 

scope of this thesis as there are over 100 commercially implemented CBR systems 

(Aarnodt and Plaza, 1994) and countless academic demonstrators (Kolodner, 1993). 

Owing to the diversity of the possible applications of CBR it is evident that CBR's 

flexibility has in the past been a hindrance to its widespread adoption. Each CBR 

application would have to be specifically tailored to its domain of application and then 

further to its actual implementation. This required a customised CBR system for each 

application. The maturity that the field of CBR has attained and the demand for a 

platform for CBR system development, resulted in the development of a number of CBR 

shells. ESTEEM, CBR Works (Tecc Inno) and REMIND (Inference Corp) are a few of 
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the CBR shell s that have been commerciall y developed. CBR shell s have allowed fo r 

the easier development and deployment of CBR systems in both the academic and 

commercial environments. These CBR shell s are discussed further in Chapter 4. 

Table 2.1 Table of selected CBR systems class ified according to area of application 
(Kolodner 1993· Watson and Mari r 1994) , , , 

Field Name Date Brief Description 

Knowledqe acquisition REFINER 1988 Helps experts refine their knowledge 
JUDGE 1989 Determines criminal sentences 

Legal reasoning 
HYPO 1991 Creates leqal arquments 
GREBE 1991 Classifies new cases 
KICS 1994 Interprets building regulations 

Explanation of SWALE 1986 Gives explanations for the deaths of 
anomalies humans and animals . 

PROTOS 1986 Diagnoses hearinq disorders 
CASEY 1989 Diagnoses potential heart failure 

Diagnosis 
CASCADE 1992 Diagnoses operating system crashes 
PAKAR 1994 Diagnoses possible buildinq defects 
SMART 1993 Help desk assistant for diagnosing 

common PC problems 
MEDIATOR 1985 Suggests resolutions to disputes 

Arbitration PERSUADER 1987 Mediator for union-management 
disputes 

CYCLOPS 1989 Solve landscapinq desiqn problems 
JULlA 1992 Designs and plans meals 

Design CADET 1992 Mechanical desiqn assistant 
ARCHIE 1992 Architectural desiqn assistant 
CLAVIER 1989 Autoclave layout assistant 
BATTLE 1989 Land warfare strategist 
BOLERO 1993 Diagnostic disease planner 

Planning TOTLEC 1993 Solves manufacturing planning 
problems 

JULlA 1989 Meal planner 
CHEF 1986 Creates new recipes 

Repair and adaptation PLEXUS 1986 Adapts existing routines 
COACH 1987 Football play strategist 

Tutoring DECIDER 1987 Gives guidance accordinq to goals 
ESTOR 1992 Estimation of software cost from 

historical data on software projects. 

Software Cost 
MERMAID Unknown Software cost estimation tool 

Estimation ACE 1999 Research cost estimation model 
ANGEL 1995 An automated environment for 

developing CBR cost estimation 
applications. 
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2.2 The Process of Case-Based Reasoning 

Aarnodt and Plaza (1994) prescribe a two-part framework for describing CBR methods 

and systems. This involves the description of the CBR cycle and a task-method structure 

for CBR. The first is a model that identifies the main sub-processes of the CBR cycle 

and their interdependencies, while the second is a task-oriented view where the problem 

solving methods are described . Thi s structure is followed in the discussion on the CBR 

process below. 

2.2.1 The CBR Cycle 

A case-based reasoner solves new problems by adapting solutions that were used 

successfully in the past to solve old problems (Riesbeck and Schank, 1989). From a 

human perspective the process of reasoning through past experience does not require any 

thought or formal method. However, it is necessary to have some structure to the 

reasoning process to formalise the way in which CBR can be applied and used in the 

more artificial computing environment. This process is central to all CBR systems and 

can be described as a CBR cycle. 

Similarly to Kolodner (1993), Aarnodt and Plaza (1994) propose that the process of CBR 

is a four phase cyclical process: 

• RETRIEVE the most similar case(s) 

• REUSE the case(s) to attempt to solve the problem 

• REVISE the proposed solution as necessary 

• RETAIN the new solution or case 

When a problem is encountered, previously experienced cases are retrieved from 

memory. The retrieved case(s) are then reused and possibly revised to solve the problem. 

The new solved experience is then retained in the case base. The CBR cycle is depicted 

in Figure 2. 1. 
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This cyclical view of CBR is a process model designed to give an overview of the CBR 

process. An alternati ve, introspecti ve view of the CBR process can be made using a tas k

method structure. Thi s is appropriate for discussing the operati on of a CBR system in 

more detail since each task is decomposed into its component methods. 

Input 
Problem New 

Case 

Retrieve 

Re;/ 
Final 
Solution 
Case 

Ir 

Final 

Confirmed 

Retrieved 
Case 

L...----:::or------..----l New I Case 

/ 
Case 
Base 

Revise 

Reuse 

Solved 
Case 

Figure 2.1 Cyclical process of CBR (adapted from Aarnodt and Pl aza, 1994) 

2.2.2 Task Structure of a CBR System 

The tas k-method decompositi on structure of CBR is described graphicall y in Fi gure 2.2 

(adapted from Aarnodt and Pl aza, ] 994). There are four primary tasks in the CBR system 

as mentioned in the CBR cyc le above. They are: retri eve, rev ise, reuse and retain. Each 
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shall be described in detail to provide a more detailed operational knowledge of a CBR 

system. 

The CBR Problem Solving & Learning Process 

Identify 
Indices 

Search 
Indices 

Initial Match 

Adapt 

Figure 2.2 Task decomposition ofCBR (adapted from Aarnodt and Plaza, 1994) 

2.2.2.1 Case Retrieval 

The retrieval of a case is vital to the success of the remaining CBR tasks. It is here that 

an often vague/partiall y formulated problem description has to be transformed into a 

comparable case, i.e. the problem case is required to be indexed to make it compatible 

with the case base. A search procedure then follows, eventuall y retrieving a case 

matching or a similarity matching to those cases in the case base. 

A number of methods/sub-tasks can be identified as constituting the core activities of the 

retrieval task. The task methods are: 

• Identify Indices 
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• Search Indices 

• Find an Initial match 

Identifying appropriate indices 

Taking an abstract problem and organising it into a useable format for comparison (and 

ultimately problem solving) is the primary objective of th is method (Aarnodt and Plaza, 

1994)_ In order to accomplish thi s, the information in the given problem needs to be 

categorised (using the appropriate CBR method for this system). This means that the 

problem case is re-constructed into a compatible format using certain criteria to define its 

structure. The two divergent methods of indexing a problem either use the problems 

syntactic properties or the semantic properties as primary identifiers. In either case the 

new problem will be formalised as best possible to facilitate searching and matching with 

the new cases problem descriptors (indices) serving as input for the searching and 

matching tasks . 

Searching and matching 

How the case base is searched depends on the case memory structure (Watson and Marir, 

1994). Case memory structure is discussed in detail in Section 3.1. Usually dominant 

features of the search case would be used to refine the search early on to reduce overhead. 

This becomes more important for the operation of the CBR system as the size of the case 

base increases (usually in commercial circumstances). It is here that algorithms are 

employed to perform the search and matching. The choice of algorithm can be 

influenced by many factors : size of case base, the nature of indices and overhead versus 

accuracy requirements of the CBR system. Through the amalgamation of information 

from the literature a typical set of algorithms used for searching and matching are 

(Watson and Marir, 1994; Shepperd and Schofield, 1997: Ko lodner, 1993): 

• Induction 

• Nearest Neighbour 
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• Template Retrieval 

• Knowledge Guided Induction 

• Fuzzy similarity 

• Recency Preference 

Nearest neighbour algorithms are by far the most popular form of finding matching cases 

(Shepperd and Schofield, 1997). Due to the popularity of this type of matching algorithm, 

this particular approach will be discussed in greater detail than the other methods. 

Induction 

Induction algorithms develop a decision tree structure from the most pertinent features 

that discriminate cases. This algorithm is most applicable to CBR systems that require a 

single case feature as a solution, and where that case feature is dependent upon others 

(Watson and Marir, ]994, pg10). 

Nearest Neighbour 

The Nearest Neighbour algorithm is one of the most popular algorithms presented here: 

Compaq SMART System (Acorn and Walden, 1992) and BROADWAY (Skalk, 1992) 

are just a few CBR systems that use this algorithm. A prerequisite for the use of this 

algorithm is the assignment of weights to case features . Nearest neighbour algorithms 

can be implemented in two ways: as a straightforward distance measurement or as the 

sum of the squares of the differences for each variable. Either way, this algorithm makes 

a similarity assessment of the weighted sum of features of the input case to the cases in 

the case base: each variable must first be standardised so that it has an equal influence in 

the algorithm; each variable must be weighted according to the degree of influence 

attached to that feature. 

A typical algorithm suggested by Aha (1991) is shown in equations 2. 1 and 2.2: 
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(2.1 ) 

Where, P is the set of n features, Cl and C2 are cases and i is the particular case feature. 

Feature_dissimilarity is calculated as follows: 

{

(Cl i ' C2i ) 2, if the features are numeric 

Feature _ dissimilarity ( Cli , C 2i ) 0, if the features are categorical and Cli = C2i or 3 

1, where the features are categorical and Cli -:f= C2i 

(2.2) 

A straightforward distance measurement for determining feature similarity as suggested 

by Petrak et al (1994) is presented in Equation 2.3 below. 

ICI -C2- 1 . ·1 . (C C) 1 I I Slml anty li ' 2i = -
Cli max- C2i max 

(2.3) 

Where, as in Equation 2.1 and 2.2, Cl and C2 are cases and i is the particular case feature. 

Cli max and C2i max are the maximum possible values for those features. 

The form of the Nearest Neighbour algorithm may be implementation specific but the 

fundamental operation will always remain the same. The overhead involved in using the 

Nearest Neighbour algorithm is significant. Retrieval time increases linearly with the 

number of cases. It is therefore preferable to use thi s algorithm on a relatively small case 

base if there are performance requirements that need to be fulfilled. To overcome the 

performance limitations of thi s algorithm, it is often used in conjunction with another less 

preci se algorithm such as Template Retrieval mentioned below. Thi s allows the search 

base to be narrowed before the costly Nearest Neighbour algorithm is then used to refine 

the search. 
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Template Retrieval 

Template retrieval algorithms use a feature comparison method to retrieve and match 

cases. Here all cases that fit the input feature criteria are returned. This can be likened to 

a typical database query (Watson and Marir, 1994). Template retrieval is often used to 

narrow the search base for later more detailed search procedures. Most often Template 

Retrieval is used as a precursor to nearest neighbour retrieval. In Template Retrieval the 

user can supply ranges and all cases that match are retrieved (Shepperd and Schofield, 

1997). 

Knowledge Guided Induction 

Knowledge guided induction introduces suggestive knowledge in manually identifying 

case features that are considered important or influential on the primary case feature . 

This algorithm is often used in combination with other algorithms and is particularly 

suited for large case bases, since an informed decision can vastly reduce the search base 

(Watson and Marir, 1994). 

Fuzzy Similarity 

In Fuzzy similarity, fuzzy concepts such as at-least-as-similar and just-noticeable

difference are employed. (Shepperd and Schofield, 1997). These rules are formed and 

the retrieval process then tries to meet their requirements in finding the closest matching 

features. 

Recency Pref erence 

In Recency preference algorithms, preference is given to recently matched cases over 

those that haven't been matched for a defined period of time or frequency (Shepperd and 

Schofield, 1997). 
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The abovementioned similarity measures suffer from a number of disadvantages 

(Shepperd and Schofield, 1997): 

• The major disadvantage being that they are computationally intensive. As such a 

number of more efficient algorithms have been proposed by researchers such as 

Aha (1991). 

• The algorithms are mostly intolerant of noise and irrelevant features. This can 

however be controlled through the stricter implementation of weights . 

• Symbolic and categorical features are problematic for similarity algorithms. 

Although several algorithms have been proposed to overcome this, none have 

met with any particular success. 

• These similarity measures fail to recognise higher order similarities In the 

structure of the data. 

2.2.2.2 Case Reuse 

As mentioned previously, the primary objective of CBR is to use past cases to solve new 

problems. The Case Reuse task aims to do this by reusing the knowledge contained in 

the retrieved case(s) in the context of the new case. In order to accomplish this it is 

necessary to note the differences between the retrieved case and the new case and then 

establish which portion of the retrieved case can be applied to the new case. This is 

popularly referred to as case adaptation. Shepperd and Schofield (1997) state that 

adaptation is viewed as the most challenging task in CBR research. 

If the cases are very simi lar, then Case Reuse is a fairly simple process of copying the 

useab le solutions of the retrieved case to the new case. This is however not always the 

situation and changes might need to be made to the solutions provided by the retrieved 

case to make them apply to the new case. 

According to Aarnodt and Plaza (1994), case reuse can be divided into two sub-tasks , 

namely copy the retrieved case and adapt the retrieved case if necessary: 
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Copy Retrieved Case 

Copy represents the most basic form of Case Reuse. Here, the differences in the cases 

are not considered a priority, and the solution class of the retrieved case is transferred to 

the new case as its solution class. In thi s situation the similarities between the cases is 

considered more important than the differences between the cases. However, it is often 

necessary to take these differences into account if a practical solution to the new problem 

is to be found. The Case Adaptation sub-task is responsible for analyzing the differences 

and taking them into account when suggesting an informed solution. 

Adapt Retrieved Case 

The purpose of Case Adaptation is to make the solution contained in the retrieved case(s) 

applicable to the current problem case. This is done by noting the differences between 

the problem and solution cases and then applying rules or algorithms to get a resultant 

solution that has factored in the inherent differences. This ensures that the suggested 

solution is placed in the same context as the problem. 

There are two different techniques that can be used for case adaptation (Aarnodt and 

Plaza, 1994): 

• Transformational Reuse (otherwise known as Structural Adaptation) 

• Derivational reuse 

Transformational Reuse uses a transform operator T to convert the exi sting solution to an 

applicable solution. Thi s can be likened to the operation of transformational matrices. In 

more conci se terms, Transformational Reuse concentrates on the relative equivalence of 

solutions. 
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Derivational Reuse applies the successful operators (algorithms, methods or rules) used 

in arri ving at a successful solution in the retrieved case to arriving at a suggested so lution 

for the new case. Thus any unsuccessfu l operators would be avoided when applying the 

operators to the new case. 

Many varyi ng implementations of the above two methods exist in the literature . Watson 

and Marir (1994) and Koldoner (1993) categorise the various techniques sli ghtl y 

differe ntly. This indicates a lack of consensus on a formal class ification. An adapted 

classification based on adaptation mechanisms that ex ist in CBR systems and in the 

literature is: 

Null adaptation 

This is the simplest fo rm of adaptation and invo lves simply copying the retri eved solution 

to the new case, without making any form of adaptation. This is parti cul arl y sui ted to 

complex p roblems that have simple solutions. 

Parameter Adjustment 

Parameter adjustment is a structural adaptation technique, which uses parameter 

compari son to decide on what adjustments to the retri eved solution should be made. 

PERSUADER (Sycara, 1987), creates initial solutions, critically evaluates them, and then 

suggests more complicated solutions. Similarl y JUDGE (Bain , 1986) recommends a 

shorter sentence for a criminal where the crime is less violent. 

Local Search (a lso referred to as Abstraction and Respecialization) 

This is a structural adaptation technique as used in PLEXUS (Alterman, 1986). PLEXUS 

is a planning system that makes use of th is technique. It has an execution time adaptati on 

technique that attempts to find substitute actions for those that cannot be performed. 

Local Search implements a process of searching in an abstraction hi erarchy in the 

envi rons of a concept for some close relative that cou ld be substituted fo r it. It is 
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generally used when the retrieved case is almost the same as the problem case and could 

be made to fit with a minor substitution. For example in the case of PLEXUS, a subway 

ticket station could simply be replaced by a ticket vending machine. 

Reinstantiation 

Reinstantiation is used to instantiate features of an old solution with new features 

(Watson and Marir, 1994). MEDIATOR (Simpson, 1985) uses the Reinstantiation 

method for case adaptation. Reinstantiation can be used when the framework of the new 

problem is the same as that of the suggested solution, but where the semantics may differ. 

This implies the possibility for the transfer of direct knowledge from an existing case to 

the retrieved case if that knowledge is in the same context. CHEF (Hammond, 1986) also 

uses a Reinstantiation adaptation mechanism. Here a reinstantiation can occur in a recipe 

where certain ingredients are not available. In the case where a similar recipe exists, the 

transfer of alternatives to the missing ingredients can take place. 

Case-Based Substitution 

Case-Based Substitution attempts to find a substitute case by finding a case that can 

suggest an alternative. CLAVIER (Barletta, 1989) uses case-based substitution. 

Problems with adaptation, in particular varyIng success rates has led to many CBR 

systems not using the technical adaptation techniques listed above. Instead, many depend 

on human interaction to adapt and evaluate solutions. This is particularly the case with 

CLA VIER, which in its latest version allows the user to perform manual adaptation 

(Kolodner, 1993). Kolodner (1993) states that case adaptation is an area of CBR that is 

most often ignored by CBR systems. Instead, this is usually left to an expert to make the 

final adjustments to the retrieved case. The abovementioned adaptation techniques are 

not representative of the population of adaptation techniques that exist and serve only as 

an indication of the variety of techniques that have been used in CBR systems. 
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2.2.2.3 Case Revision 

CBR not only reuses past solutions but is also able to learn from mismatches or mistakes 

if necessary . This is the essence of the Case Revi sion task and involves two sub tasks, 

namely; Evaluate and Repair. In these tasks, the suggested solution generated by the 

Case Reuse task is evaluated for possible learning or is repaired after fault diagnosis. 

Evaluate the Proposed Solution 

To evaluate the proposed solution requires the testing of the solution in its field of 

application, i.e. during the course of a CBR systems operation. Owing to the nature of 

CBR applications, it can take considerable time for the analysis of the solution and thus 

for the relative success/fai lure of the solution to become apparent. This is one of the 

dangers of a CBR system, since the success of the evaluated solution can seldom be 

guaranteed . Some CBR models overcome this by using an internal model simulation 

program to evaluate a solution (one such CBR system is CHEF (Bain, 1986)). Once a 

sufficient evaluation outcome is available, the CBR system then determines if the 

solution was appropriate or whether it needs to be repaired. 

Repair the Proposed Solution 

In order to repair a solution, it is necessary to have acquired knowledge on the errors that 

the solution produced and their exact nature (i .e. being able to produce explanations for 

them). Explanations can inter-alia can be in the form of reasons why the goals of the 

solution were not achieved and may include what solution steps in the suggested case 

were responsible for this. Once the failures and their explanations have been established, 

the suggested solution can be repaired so as to avoid the undesired outcomes. This can be 

done manually or as in the case of CHEF (Bain , 1986), a repair module can be used. The 

sophisticated repair module in CHEF possesses general causal knowledge and domain 

knowledge on how to avoid or compensate for the undesired outcomes (Aarnodt and 

Plaza, 1994; Kolodner, 1993). This module may affect changes to the solution that 
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include additional compensating steps. CHEF is able to learn problem causing 

circumstances and the appropriate solutions to that problem. After the case is repaired it 

can either be directl y retained in the case memory or re-considered by submitting it to the 

evaluati on-repair procedure. 

2.2.2.4 Case Retention 

Case Retention is the ' learning' module of CBR. The ability for a CBR system to learn 

from past experiences and mistakes makes CBR more effecti ve than other traditional 

knowledge based systems. Retention is dependant on the results of the Case Revision 

task. The Retention task is responsible fo r selecting what information from the new 

solution to retain (if not all of it), in what fo rmat the new info rmation is to be retained and 

how thi s is integrated in the memory storage schema. It follows that there are three sub

tasks involved here, namely; Extract, Index, and Integrate. 

Extract Information from the Solution 

Learning is an integral part of many CBR systems and improves the perfo rmance or 

effectiveness of the system. Deciding what info rmation to Extract from the new case 

solution will have an effect on the problem so lving abilities of the CBR system in future 

cases. Thus when a new case is solved it is as often beneficial that some fo rm of 

' learning' through retenti on occurs. 

The form of retention will vary according to how the problem was so lved or under what 

circumstances the so lution was created. If a new case was developed using knowledge 

from a previous case, then in order to retain the new knowledge, either a new case can be 

created in the case memory or a more generali zed fo rm of the existing case can be created 

(thi s is especiall y considered if the two cases are highl y similar in contex t and outcome). 

If the new case was so lved through outside in tervention (for example, fro m a user or 

system operator), then it is most likely that a uni que case would be created in memory. 

Often the info rmati on regarding the so luti on finding process obtained/recorded in the 
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Case Revision task is retained to avoid future similar failures or help solve them. This 

information may be stored as case-specific information (tagged onto the case) or stored 

separately in the case base. Information regarding the problem solving technique used 

can also be stored in the case base so as to expedite the solving of future similar cases. 

This can include information on what problem solving technique was used for that 

specific case. In addition explanations can be included as to why a specific solution was 

used. 

It is evident from the discussion above that the information stored in the case base can go 

beyond problem descriptors and solutions. The form and type of data stored is dependant 

on the area of application of the CBR system and on the requirements set by the users. 

For example: a "strategic military decision support" CBR system (a hypothetical CBR 

system) would require that each solution have associated explanations with detailed 

probable failures associated with each case. Thi s can be contrasted with a hypothetical 

CBR "automobile diagnosis system", which would have limited need for detailed 

explanations, since the solutions would most likely be considered exact. 

Index the Case to be Retained 

The task of indexing involves deciding on what type of indices should be used for the 

cases and how the search space of the indices should be structured. This has a defining 

effect on how cases are retrieved, stored and manipulated in a CBR system. As 

uncomplicated as this seems, the problem that this poses is referred to as the Indexing 

problem. Kolodner (1993) refers to the retrieval of appropriate cases as the single biggest 

issue in CBR. 

Indexing is a multi-part process: the first being the identification and subsequent labelling 

of cases on entry into the case base; the other is that of organizing the indexed cases in a 

manner that would allow for efficient searches through the case base. The choice of 

indexing system for the case base has repercussions on the performance and effectiveness 

(the ability to produce useful solutions) of a CBR system. 
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The indexing task usually requires that the most pertinent features of a case be identified 

and then labels assigned to them. This ensures that only the domjnant features of a case 

are initially searchable and allows for a structured form of memory usage. There are a 

number of memory storage strategies that can be used. These will be discussed in Case 

Memory Representation. In the most trivial case of indexing, all input features of a case 

can be indexed. Matches would have to be performed on every single feature of every 

case. This can be effective in simplistic problem solving circumstances, but can also 

result in overburdening the case memory, especially as the size of the case base increases. 

Once a decision has been made on what features of a case to index, the case base can be 

updated with the new information in the Integrate task. 

Integrate the New Case Into the Case Base 

Knowledge integration is the last remaining sub-task of the Retention task and indeed of 

the CBR process. The knowledge gained from a new case is stored in the case memory 

in whatever form has been decided by the Extract and Indexing sub-tasks. 

Integration of case data may involve the modification or re-organisation of the existing 

case storage structure. This can occur if a continual improvement policy is implemented 

by the Retention task. This continual improvement policy is an important component of 

the learning mechanism of CBR and involves improving the application of indexing 

method used. This adjustment is determined by the relative success or failure of the cases 

used to solve a problem. For example, if it is found that certain indexed features of a case 

are more relevant for solving problems, then the importance of those features can be 

emphasised when being indexed. The opposite can also occur where features that are 

found to be less critical in providing a successful solution outcome are given a weaker 

association to their parent case. This will be discussed further in Case Memory 

Representation. 
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2.3 Case Memory Representation 

Kolodner (1 993) identified case memory as one of the vital components of a CBR 

system, since the case memory structure determines how the cases will be stored for 

retrieval and retenti on purposes. Two prominent case memory representati on techniques 

will be explained in more detai l in this secti on. 

2.3.1 Case Memory Representation Techniques 

The type or method of memory storage in a CBR system is one of the main contributors 

to the systems perfo rmance and resulting success . Ideall y the case base needs to be 

stored in a highl y manageable structure that all ows for efficient search, retri eval and 

storage methods as mentioned in section 2.0. It is necessary to fi nd equilibrium between 

the indices that defin e the access and retri eval of cases in memory, and storage methods 

that are able to preserve the semanti c and often abstract complexities of cases. 

Ideall y one would like to maximi se both aspects, so as to create a hi ghl y effi cient, yet 

ri ch storage system. Retaining the abstractness of cases is fundamental to a CBR system, 

in order to attempt to repli cate to as greater extent as possible the full semantics of a 

learning experience. Stripping an experi ence/lesson of its abstractness would be 

architecturall y highl y efficient but would result in a signi ficantl y diluted case base, in 

terms of usefulness in being able to provide or suggest a solution. The models used to 

store cases in memory are referred to as case memory models. 

According to Watson and Marir (l 994:p24), the two most influenti al models for the 

representati on of case memory are the dynamic memory model of Schank and Kolodner 

(1 982) and the category-exempl ar model of Porter and Bareiss (1 986). They are based on 

di fferent views of how to organi se cases in memory. Both models have their advantages 

and will be di scussed further. The models can be distingui shed as fo ll ows: (Kolodner, 

1993:pJ08) 
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• One organising situations with similar activities, and the other 

• Organising situations that are similar in the interactions between the goals and 

plans of people interacting in the situation. (Categories) 

2.3.1.1 The Dynamic Memory Model 

Referring to Section 2.1, Schank's research in the early 1980's was foundational in 

establishing the field of CBR. His paper on dynamic memory organisation (Schank, 

1982) establishes the basis to the dynamic memory model. As mentioned in Section 2.1, 

this memory model was soon afterwards implemented in CYRUS (Kolodner, 1983) and 

many other subsequent CBR systems mentioned previously. 

As supported by Schank (1982), the dynamic memory model makes use of Memory 

Organization Packets (MOPS) which organize situations (cases) whose activities are 

similar (Kolodner, 1993:pl08). MOPS can be visualized as a form of container frame. 

MOPS are able to represent two distinct classes of events (Watson and Marir, 1994): 

• Instances representing cases, events or objects, and 

• Abstractions representing generalized versions of instances or of other 

abstractions. 

A more advanced form of the MOP are Episodic Memory Organization Packets the (E

MOPS)). These are a development on the original MOP concept (Kolodner, 1983). E

MOPS are more widely referred to as Generalized Episodes (GE's) as suggested by 

Koton (1989). 

The case memory, in the updated dynamic memory model consists of GE's organised in a 

hierarchical structure. A Generalized Episode is an indexing structure, which exists to 

allow the storage, matching and retrieval of cases. Cases that share similar properties are 

organised under the same GE. A GE in turn, has its own structure, consisting of three 

objects; cases, norms and indices (Aarnodt and Plaza, 1994): 

The Applicability <Jj' Case- Bosed Reasoning to Software Cost Estilllation 31 



Chapter 2 Case-Based Reasoning 

• Cases are stored under a GE if they are considered similar, according to 

certain criteria. 

• Norms represent the features that are considered common to the cases stored 

in the same GE. 

• Indices are the features of the cases stored under the GE that allow the cases to 

be discriminated. An index is composed of an index name (reference) and an 

index value. An index can refer to another GE (usually one that is more 

specific) or a case. 

The architecture of the case memory can thus be described as a discrimination network. 

The nodes in the discrimination network are either a Generalized Episode or its possible 

constituents, namely: cases, norms, index values or index names. 

The Operation of Dynamic Memory 

Dynamic memory is organised by a set of rules, which may differ by implementation, but 

the general concept is still the same, in that an attempt is made to allow for the fluent 

storage of new cases. The most likely operations to be performed on case memory are, 

search, retrieve and store. The retrieval operation encompasses and is dominated by the 

search procedure. 

Retrieval 

When a new problem (case) is encountered, the search process starts in an attempt to 

match the features of the new case to existing features in the discrimination network. 

This process begins at the root node and traversal continues down the discrimination 

network until one or more features of an existing GE matches the features of the new 

case. The new case is then further discriminated by its remaining features until the case 

with the closest match to the new case is found and retrieved. 
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Storage 

The storage process is similar to the retrieval process. A new GE is created on the basis 

of the similarity of features of the new case to those of the existing case. For example: 

when an index name and an index value pair are matched. The two cases are then 

discriminated by placing them under different indices contained below the GE. If per 

chance that two GE's are created under the same index, they are not left to coexist, but 

are instead absorbed by the creation of a new GE. 

The memory structure can thus be considered as dynamic, since similar components of 

two case descriptions are dynamically generalized into a new GE, with the cases being 

indexed under the GE by their dissimilarity in features (Aarnodt and Plaza, 1994). 

One of the main problems of Dynamic Memory systems is that this method of dynamic 

storage and GE creation can result in rapid memory expansion. This occurs because of 

the growth of indices as case numbers increase (Watson and Marir, 1994). Thus it is 

practical in Dynamic Memory CBR systems to limit the choice of indices. 

2.3.1.2 The Category-Exemplar model 

The Category-Exemplar model is an alternative approach to case storage and 

management. This discussion on the Category-Exemplar model is based on the PROTOS 

system (Bareiss and Porter, 1986). PROTOS was developed to diagnose hearing 

disorders and is based on the preposition that "the real world should be defined 

extensionally" (Bareiss and Porter, ] 986). 

In the Category-Exemplar model cases are referred to as exemplars and are organized 

into categories according to their classification. Classification can broadly be defined as 

the process of determining what category cases can be organised under. Exemplar based 

classification is done by finding the exemplar most similar to the new case (exemplar) 
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and assigning the new case its classificati on (Kolodner, 1993). Further to thi s, a 

category's exemplars are organi zed accordi ng to their degree of prototypicality to the 

category. For example in the CBR system PROTOS (Bareiss and Porter, 1986), Bird is 

linked by strong prototypicality links to Robin and Canary (Kolodner, 1993). 

Kolodner (1993) identifies the two primary processes involved in classification as: 

• Identifying or fi nding the exemplars to match, and 

• The actual matching process 

The case memory structure of the Category-Exemplar model consists of categories, cases, 

and semanti c re lations (Bareiss and Porter, 1986; Aarnodt and Plaza, 1994; Kolodner, 

1993; Watson and Marir, 1994). A case contains defining features, which are described 

by a name and associated value. A case's membership to a category is determined by its 

features, which can each be individuall y assigned a weighting in determining the cases 

membership to the category. Semantic re lations provide a mechani sm of associating and 

connecting cases and categories. They play an important role in the classification process 

and allow for ri ch knowledge representati on in the model. 

According to Watson and Marir (1994), there are five differe nt types of semantic 

re lations: 

• Associative links that point from case features (problem descriptors) to a case or 

category. 

• Case links which point fro m categories to associated cases. 

• Difference links which point from categories to neighbouring cases which are 

onl y marginally di ssimilar in features. Difference links give thi s model an ability 

to make 'good' matches (Kolodner, 1993). 

• Censor links whi ch prov ide negati ve associations. 

• Pro totypicality links as mentioned earli er. 
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An example of the structure and relationships in the category-exemplar model IS 

illustrated in Figure 2.3. 

The Retrieval, Storage and Learning Processes 

When a new problem (case) is encountered, it is organized by its prominent features. The 

new cases features are combined into a pointer to a case or category that matches its 

features best. If a category is directly identified, then the most prototypical cases are 

traversed and returned for analysis. The storage mechanism is again similar to the 

retrieval mechanism; an appropriate category as the storage domain is selected by finding 

a matching case and then appropriate feature indices are created. Difference links are 

established to any incorrectly matched or inappropriate cases identified previously. 

Feature-3 

Difference (feature-2) 

Figure 2.3 The structure of categories, features and exemplars (Aarnodt and Plaza, 

1994). 

Although the structure of the dynamic memory model is vastly different to the category 

exemplar model, both facilitate the process of CBR. Both models have been successfully 

implemented in many CBR systems mentioned in this chapter. However, the most 

adopted method of memory organization and management is Schank's dynamic memory 

model. This can be deduced from the fact that overwhelming majority of CBR systems 
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use the dynamic memory model in one variation or another. Aarnodt and Plaza (1994) 

stress the main problem with the category exemplar model; that it is extremely difficult to 

generalize cases to specific categories_ The category exemplar model should not however 

be totally discounted for the reason that it has been implemented with great success in 

specific application areas. PROTOS (Bareiss and Porter, 1986) and CASEY (Koton, 

1988) are examples of successful CBR systems implementing this method of memory 

organization and management. Kolodner (1993) states that exemplar based classification 

works when a model exists that can be used for matching and when it is easy to identify 

items in the real world with concepts in the concept world. 

This chapter concludes with a discussion on the advantages of using CBR. 

2.4 The Advantages of Case-Based Reasoning 

When discussing the advantages of CBR, the literature tends to compare CBR with other 

knowledge-based systems such as rule-based reasoning. The reasons for thi s can be 

attributed to the field of application of each problem solving technique; both CBR and 

rule-based systems operate in the domain of solving real-world problems. In addition, 

knowledge-based systems in the form of rule-based reasoners are the most frequently 

implemented expert systems in the commercial environment (Turban and Aronson, 

1998). Since it is not the purpose of this thesis to discllss the general field of knowledge

based systems, they are referred to in this discussion only for the purposes of indicating 

the advantages of CBR. 

Knowledge-Based Systems have met with the following problems (Watson and Marir, 

1994): 

• Knowledge elicitation is a complex and difficult process . 

commonly referred to as the knowledge e licitation bottleneck. 
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• Implementation of Knowledge-Based Systems is a difficult, time-consuming 

process requiring special skills. This problem has been partially solved by the 

development of some sophisti cated development she ll s. 

• Once implemented, model-based Knowledge-Based Systems are often slow and 

are limited in their ability to access and manage large volumes of information. 

• Knowledge-Based Systems are notoriously diffi cult to maintain . Rule-Based 

Systems require that in order for new knowledge to be gained, new rules need to 

be added to the system. 

CBR is able to directl y address the problems with traditi onal Knowledge-B ased systems 

outlined above: 

• CBR avoids the problems associated with knowledge eli citation and extracting 

and codi fying the knowledge. 

• CBR only makes use of real instances of problems. Thi s implies that arti ficial 

algorithmi c models are never used to model the problem domai n. This avoids the 

ri sk associated with the potential inaccuracy of these mode ls. 

• CBR is able to deal with failed cases. These are cases fo r which an accurate 

predi cti on could not be made. 

• CBR is particul arl y suited to weak theory domains (Kolodner, 1993). These are 

problem areas where the relation between cause and effect is not well understood 

(Delany et ai, 2000). 

• Users may be more willing to favour solutions proposed by a CBR system, since 

they are deri ved through a form of reasoning simil ar to human problem so lving 

(Shepperd and Schofield , 1997). This is parti cul arl y important in situations where 

it is necessary that the user have confidence in the predi cti ons made. Thus, CBR 

systems can be said to have hi gh expl anatory value (Mair et aI, 1999) . 

• Rapid development and implementation of CBR systems is possible through the 

Ll se of CBR she ll s such as REMIND (Infe rence Corportaion) and CBR Works 

(Tecc Inno) . 
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• The learning mechanism in CBR allows for the immediate incorporation of new 

information into the case base. In addition to this failure driven knowledge 

acquisition protocols can be implemented in CBR to help improve the predictive 

capabilities of the CBR system. 

It should be noted the advantages listed above are not intended to overshadow the use of 

other knowledge-based systems but rather to show the capabilities of CBR. Ketler (1993) 

states that CBR will not replace rule-based reasoning as an expert system technique but 

should be considered as an alternative complementary technique, which will allow for 

expert system implementations in domains not satisfactorily dealt with by other AI 

technologies. CBR has a number of qualities that make it particularly suited to domains 

in which other AI techniques are not particularly proficient. These are in particular: the 

ability to provide solutions to problems in weak theory domains (Delany et aI, 2000); the 

ability to mimic the human thought process (Reisbeck and Schank, 1989) and the ability 

to seamlessly integrate new knowledge into the reasoning system. 

The purpose of this chapter was to provide a theoretical and practical overview of the 

field of CBR. This was accomplished through: a di scussion on the origins of CBR, a 

detailed description of the CBR process, a description and di scussion on memory 

representation techniques and a summary of the advantages that CBR has to offer. CBR 

is able to provide an intuitive reasoning so lution to problem areas, which have previously 

relied on experts to solve problems. CBR's inherent ability to automate human problem 

solving creates a niche application area for this technology. This will be discussed 

further in Chapter 4. The issue of case adaptation is probably one of the greatest 

challenges identified in this chapter. Watson and Marir (1994) emphasize the need for 

further research into this area. Furthermore, the available literature indicates that there is 

a need for further research into the limitations and application areas of CBR. This 

research intends to fulfil the need for such research by investigating the applicability of 

CBR to software cost estimation. This is a field of application that in the past has 

struggled to find effective so lutions (Kemerer, 1987). Chapter 3 will provide a practical 

and theoretical background to the field of software cost estimation. 
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Chapter 3: Software Cost Estimation 

This chapter wi 11 present an overv iew of the current state of research on software cost 

estimation techniques. Factors that are used as a framework to the di scussion are: 

• The nature of software development producti vity. 

• The classificati on of software cost estimati on models. 

• The methodologies used in cost estimati on models. 

• The operation of the various cost estimati on techniques. 

3.1 The Nature of Software Development Productivity 

Software engineering practitioners have expressed concern over their inability to 

accurately estimate software costs (Kemerer, 1987). Accurate estimates are not only 

necessary for initi al budgeting, where over and under estimates can be financially 

di sastrous, but also for monitoring progress, scheduling resources and evaluating ri sk 

fac tors (Schofie ld, ] 998). Financial consequences are not the only results of inaccurate 

software cost estimation; under estimated software costs can have a detrimental impact 

on the quality of the deli vered software projects (Briand et aI, 2000). Consequently, 

considerable research has been directed at gaining a better understanding of the software 

development process and developing more effective software cost estimation too ls. 

Boehm (1 987) postul ates that owing to the intangibility of the software development 

process, the costs of a software project cannot be mapped directl y to quantitati ve 

measurements made to the actual development process . Instead, software costs are a 

functi on of producti vity related to the outputs produced by the process and the inputs 

consumed by the process of software development. 
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Boehm (1987) defines productivity as a process: 

. . Outputs produced by the process 
Pr OductlVl ty = -~-~---~-~---

Inputs consumed by the process 
(3.1 ) 

Inputs consumed by the process generall y compn se labor, hardware and supplies. 

Boehm (1 987) states that the major problem in definin g software productivity is definin g 

the outputs . There have been two main measurements of outputs suggested by the 

literature. These are: Lines of Code (LOC) and functi onal complexity measurements. 

The COCOMO 81 model (Boehm, 198 1) and Function Point Analysis (FPA) model 

(Albrecht, 1979) di scussed below, are cost estimati on techniques that use LOC and 

functi onal complexity measurement respecti vely. 

A di scussion on functional complex ity and LOC models will be undertaken in the context 

of the models that use these measurements as their primary estimator. In order to di scuss 

the various software cost estimation models that have been used, it is necessary to deri ve 

a descripti ve class ificati on fo r these models. This is undertaken in the next section. 

3.2 Classification of Cost Estimation Models 

There are a number of software cost estimati on models avail able to the modern software 

engineer. Many of them, such as COCOMO 81 (Boehm, 1981) and Albrecht ' s FPA 

model (Albrecht, 1979) have gone through evolutionary improvement to take into 

account developments within the software industry over the years. These improvements 

have become necessary, as the way in which software is developed has evolved. Boehm 

(1995) states a number of facto rs that have affected the effecti veness of cost estimati on 

models: 

• Programming environments have changed considerably with most commercial 

software deve lopment now undertaken using fo urth generation languages. The 
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immediate impact of this on software productivity is the impact of automatically 

generated code on programmer productivity. 

• Object orientated programming has changed the way in which software projects 

are approached. In addition, object orientation has affected the way in which 

software maintenance is approached. 

• The concept of design for reuse has had an impact on subsequent development 

projects and their maintenance in that reuse improves efficiency. 

It is necessary to define a classification of effort estimation techniques in order to have an 

objective understanding of the functioning of the various effort estimation techniques. 

Many classifications of the available estimation techniques have been made in the 

literature (Conte et aI, 1986; von Mayrhauser, 1990; Delany and Cunningham, 2000; 

Mukhopadhyay et aI, 1992). The categorization of the estimation techniques is often 

subjective (owing to their complexity) and the deductive processes often not clear. It is 

probably for this reason that modern textbooks often avoid aligning with a particular 

classification 

Von Mayrhauser (1990) proposes in her classification, three categories: 

• Algorithmic Models 

• Experiential and Statistical Models 

• Subjective Experience Models 

A more recent classification by Pfleeger et al (200 I) also proposes three slightly different 

categories: 

• Expert Judgment Models 

• Algorithmic Models 

• Machine-Learning Models 
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Both of these classifications use Algorithmic models as one of the categories. This can 

be considered a convenient category, where the majority of models are bundled together 

without di stinction . The definition of an Algorithmic model according to Delany and 

Cunningham (2000) is one that uses mathematical formulae to predict effort and duration. 

This is a broad definition and could possibly include every estimation model other than 

subjective expert estimation. A notable departure from other classifications is Pfleeger' s 

(2001) inclusion of the machine learning model type. This indicates the growing 

importance of machine learning techniques to the field of software cost estimation. 

Machine learning model s are relevant to thi s research since this category also includes 

CBR. 

Basili (1980) suggests a classification of software cost estimation models according to the 

form of the derivational equation that expresses the model and the level of detail of the 

model: 

• Static or dynamic models 

• Single variable or multi-variable models 

• Theoretical or empirical models 

• Micro or macro model s 

This classification is not representative of the underlying methodologies employed in 

each model and is thus not ideal to use as the basis for a summary on estimation methods. 

In hi s classification, Basili (1980) does not indicate the differences between descriptive 

and predictive models; Predictive models estimate the required effort before 

development. Models that fall into thi s category are COCOMO and Albrecht's FPA 

model. Descriptive models such as Halstead' s Software Science approach (Halstead, 

1977) are applied to existing software and are used to compare relative complexity and 

other comparati ve factors (Ghezzi et ai, 1991 ). 
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Conte et al (1986) proposes the followin g, more extensive classificati on of cost 

estimation models: 

• Historical - Experienti al Models 

• Stati stical Models 

• Theoretical Models 

• Composite Models 

Conte et aI' s classification or categorization has as the basis to its formulati on, the 

method used in deri ving each respective model. The abovementioned advancements in 

the sophisticati on of software have led to the development of a number of equally 

sophi sticated estimati on models, not in ex istence when this classification was made. It is 

for thi s reason that it is necessary to append thi s classification wi th a furth er category, 

namely machine-learning models as suggested by Pfleeger et al (2001 ). Thi s new 

category of model makes use of modern machine- learning techniques such as CBR and 

Neural Networks to deal with the complexities of effort estimation in our modern 

software development environments. 

Thus, for the purposes of thi s research the fo llowing classifi cati on will be used based on 

the above di scussion: 

• Histori cal - Experienti al Models (Analogical) 

• Stati sti cal Models 

• Theoretical Models 

• Composite Models 

• Machine-Learnin g Models 

A di scussion on thi s adapted classificati on fo llows wi th the intention of provid ing insight 

into each category, hi ghlighting the most noteworth y estimati on models in each. The 

models that have hi storicall y had the most impact on the field of software cost estimation 
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have been COCOMO (Boehm, 1981; Boehm et aI, 1995) and Function Point Analysis 

(Albrecht,1979). For this reason , these models will be discussed in more detail. 

3.2.1 Historical·Experiential Models 

These types of estimation model are often referred to as judgment or analogical models. 

Models of this type use an experience-based analysis and prediction mechanism for 

estimating software cost. This experience is retrieved locally from the involved 

developers (expert) and would usually be based on their personal opinions, augmented by 

internal historical data. 

When more than one expert is involved, then a weighted average can be taken of their 

estimates. Other, more formal methods can be applied to improve this subjective form of 

estimation. One such method uses a probability distribution of experts' opinions 

(Pfleeger et aI, 2001). This is done asking several experts to make three predictions: 

pessimistic(x), optimistic(y) and best guess(z) . A normalized estimate is calculated using 

a formula of the form: (x+4y+z)/6. 

An alternative way of formalizing an expert's opinion and giving the decision making 

process some structure can be done using the Delphi technique. The principles used in 

the Delphi technique were originally developed in the late] 940 ' s to structure group 

communication processes to solve problems. This estimation technique enables several 

estimators to come to agreement by amalgamating their differing estimates into one 

(Pfleeger, 2001). Boehm (1981) refined thi s concept, so that it could be suitable for the 

task of software effort estimation. A number of discrete steps are followed until 

convergence is reached amongst the experts on an acceptable estimate. 
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The eight steps of the Delphi technique fo r software cost estimati on as described in 

Pfleeger et al (2001 , pg 611) are shown in the foll owing table: 

1. A group of experts receives the specification and an estimation 
form. 

2. The experts discuss product and estimation issues. 
3. The experts produce individual estimates. 
4. The estimates are tabulated and returned to the experts. 
5. An expert is made aware only of his or her own estimate; the 

sources of the remaining estimates remain anonymous. 
6. The experts meet to discuss the results. 
7. The estimates are revised. 
8. The experts cycle through steps 1 to 7 until an acceptable degree 

of convergence is obtained. 

Table 3.1 The ei ght steps of the Delphi technique. 

Experi ential methods of estimati on can be applied in either a top-down or bottom-up 

fashion (as with most estimati on models) . Top-down estimation focuses on the system 

level, and takes into account system-level functi ons such as documentati on, management 

and integrati on (Conte et ai, 1986). Bottom-up estimation uses a componenti zed form of 

estimati on, and considers the software project as a sum of system components. This 

implies that the final estimate made is the sum of the component estimates . The inherent 

advantage of bottom-up estimation is that the project is considered in more detail. Thi s 

should theoreti cally provide a better estimate, but may result in the failure to consider 

factors such as management efficiency, testing and integration effort. Thi s is where the 

top-down approach is more advantageous. 

The most well known histori cal model is the (now itself histori cal) TRW Wolverton 

model (Wolverton, 1974). In it, costs are deri ved from a hi storical database of completed 

projects and their modul arized costs. This model uses a Software Cost-Matrix to identify 

the cost involved in the six specified modules defined to be in the system under 

development, under the head ings: Control, Input/Output, Pre/Post-Processor, Algori thm, 

Data Management and T ime Criti cal. It should be noted that a sys tem does not have to 
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be all inclusive of the above six modules . Furthermore, the complexity of each module is 

estimated on a six-point scale, under the headi ngs OE (Old Easy), OH (Old Hard), NE 

(New Easy), NM (New-Medium) and NH (New Hard), (Pfleeger, 1998). 

If C represents the cost matri x, then the elements of the matri x Cij are given in Doll ars per 

line of code. Where C is the module and Cj the difficulty. The overall system cost is 

given by Equation 3.2: 

SystemCost = I C(k ) (3 .2) 
all modules 

Where C(k) is defined in Equation 3.3: 

C(k ) = S(k )C;(k ). j(k) (3 .3) 

Where k is a module of size S(k) in estimated LOC. 

This cost matri x needs to be constantly updated to be representati ve of current costs. 

Conte et al (1986) state that thi s model introduces a level of objecti vity, however they 

also state that there remains a great deal of subjecti vity in the entire process. An example 

of a Wolverton Model Cost Matri x is given in Table 3.2 below: 

Difficulty 

Type of Module OE OM OH NE NM NH 

Control 21 27 30 33 40 49 

Input/Output 17 24 27 28 35 43 

Pre/Post Processor 16 23 26 28 34 42 

Algorithm 15 20 22 25 30 35 

Data Management 24 31 35 37 46 57 

Time-Critical 75 75 75 75 75 75 

Table 3.2 Wolverton Cost Matn x (Pfleeger et aI, 1998) 
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Owing to the transient nature of employment in the software development industry, much 

knowledge gained through experience is lost with rapid staff turnover cycles . It is 

therefore difficult to rely on developers for input as their experience base may vary from 

individual to individual. Experts can however incorporate into his/her estimation, unique 

knowledge of the organization, which could improve the accuracy of the estimate over 

other estimation methods. According to Pfleeger et al (2001), expert judgment methods 

are highly dependent on current data, often they neglect to take into account technical and 

other factors, and rely too heavily on an expert's ability to find similarities with past 

projects. This does not however condemn experiential and historical cost models but 

indicates the need to combine the positive aspects these models with more robust forms 

of estimation, one of which is CBR. Hence, their importance to the field of CBR for 

software cost estimation. 

3.2.2 Statistically Based Models 

Statistically based model s, incorporate stati stical methods such as regression analysis to 

produce a cost estimate. Conte et al (1986) divide this category into two, based on 

mathematical characteristics: The simplest statistical models are linear models, with the 

majority of statistical models being non-linear (see also Bailey and Basi I, 1981; Walston 

and Felix, 1977). According to Conte et al (1986), linear models are not efficient at 

software cost estimation as compared to nonlinear models. Reasons for thi s include the 

fact that effort is an intrinsically non-linear entity and for thi s reason cannot be accurately 

predicted by linear regression techniques. The relative performance of linear to nonlinear 

models would explain the prevalence of non-linear models. 

A generic linear model would be of the form : 

11 

E = Co + L C;x; 
;=1 
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where Xi are the factors affecting development effort (otherwise known as cost dri vers) . 

The number of factors affecting development effort are almost enumerable, with many of 

them having an insignificant effect on development effort. Different linear models 

include thei r own parti cul ar choices of cost dri vers in the equation. 

Much research into linear models was undertaken in the 1960's. In 1966 (Nelson, 1966) 

SDC (Systems Development Corporation) investi gated the use of cost drivers to be 

included in a linear regression model using the least squares technique. Fourteen 

attributes were eventuall y identi fied as having a significant enough impact on total 

project effort to be included in the model. These are listed in Table 3.3 below. 

Scale/ 

Cost Driver Attributes Value 

XI Lack of Requirements 0-2 

X2 Stability of Design 0-3 

X3 Percent Math Instructions 0/0 

X4 Percent Input/Output Instructions % 

Xs Number of Subprograms Number 

Xa Programming Language 0-1 

X7 Business Application 0-1 

xB Stand-alone Computer 0-1 

X9 First Program on computer 0-1 

XIO Concurrent Hardware Development 0-1 

Xl1 Random Access Device Used 0-1 

XI2 Different Host, Target Hardware 0-1 

XI3 Number of Personnel Trips Number 

XI4 Developed by Military Organization 0-1 

Table 3.3. Fourteen Cost Dnver Attnbutes according to Nelson (1 966). 

These attributes are the bas is of the effort equati on 3.5 

(3.5) 
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where E is the effort in person months. 

According to Conte et al (1986), nonlinear models are generall y of the form of Equati on 

3.6: 

(3 .6) 

where, 5 is the estimated size of the project in LOC, a, band c are constants deri ved from 

regress ion techniques and m(X) is an adjustment multipli er, dependant on the choice of 

cost dri ver attributes (X). 

Most nonlinear models assume that the main factor affecting development cost is the size 

of the project. It is fo r thi s reason that size is usually estimated using LOC, which is 

subject to its own problems. 

Walston and Felix (1 977) derived a non-linear estimation technique based on the 

principles mentioned above. After analyzing IBM data from 60 projects, the fo llowing 

multipl iers were arri ved at. This is shown in Equation 3.7: 

E = 5.255 09 1 (3.7) 

Where the effort E is a fac tor of system size 5 measured in LOC. This is the basic fo rm of 

Equati on 3.5, without having considered the adjustment multiplier fac tors. All prominent 

models (Bailey and Basili , 198 1, Walston and Feli x 1977, Boehm, 198 1) produce an 

equati on similar to that of Equati on 3.6 and then provide qualificati ons of their specific 

choice of adjustment factors. 

The Bailey and Basil i model (198 1) was intended to prov ide an organi zati on specific 

mode ling technique (Pfleeger, 200 1; Conte et ai, 1986). The basis fo r thi s model was the 

hypothesis th at suggested that any constants used in an effort estimati on model were 

signi ficantl y affected by the deve lopment environment and personnel at a given 
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organi zati on. Thi s modeling technique was based on NASA data from eighteen scientific 

projects. Most criti cism of thi s model is targeted at the lack of variety in the data used in 

developing thi s technique (Conte et ai, 1986). This implies that thi s model works well 

fo r scientific applications; especially ones developed using Fortran (as were the projects 

in the NASA database) . The factors that Bai ley and Basili (1 98 1) considered in their 

model can be categori zed into three areas affecting development effort (Table 3.4). 

These are the attributes that are used to adjust the effort of the Bai ley and Basili effort 

equation. 

Methodology (METH) Complexity (CPLX) Experience (EXP) 

Tree charts Customer interface complexity Programmer qualifications 

Top-down design Application complexity Programmer machine experience 

Formal documentation Program flow complexity Programmer language experience 

Chief programmer teams External communication complexity Programmer application experience 

Formal test plans Internal communication complexity Team experience 

Formal training Database complexity 

Design formalisms Customer-initiated program design changes 

Code Reading 

Unit Development folders 

Table 3.4 Factors affecting development effort (Bailey and Basi li , 198 ]) 

Contemporaril y, stati stical models have gone out of favor. Thi s is primaril y because of 

two fac tors: these models are highl y calibrated to the data which was used to deri ve them 

and they are highly dependent on the size estimate of the software development (Pfleeger 

et aI, 1998). Stati sti cal models have made way fo r more sophisti cated composite models 

such as COCOMO 81 (Boehm, 198] ) and COCOMO II (Boehm et ai, 1995), which 

acknowledge thi s problem and incorporate the use of a number of sizing techniques. 

The Applicability of Case- Based Reasoning la Software Cosl ESlilll(f(ion 50 



Chapter 3 Sojiware Cost Estima tiol1 

3.2.3 Theoretical Models 

Theoretical methods try to overlay mathematical laws to the process of software 

development (Conte et ai, 1986). Theoretical model describe relationships among 

product objectives, corporate assets and project objectives (Fairley, 1991). The most 

used theoretical model is Putman' s Resource Allocation Model (Putman, 1978, 1984). 

This has since been incorporated into a commercial product known as SLIM (Software 

Life-cycle Methodology). Another popular approach is Halstead Software Science 

Model (Halstead, 1977). More recently Pillai and Nair (1997) used a Gamma 

Distribution equation as a basis to their theoretical model on software development effort 

and cost estimation. 

The Rayleigh-Putman Model 

Putman's Resource A llocation Model is based on the assumption that manpower 

utilization during program development follows a form of Rayleigh Curve (Putman, 

1978). This is a negative exponential curve, which models the cumulative manpower 

distribution over time during a project. 

The Putman model (Putman, 1976) has as its theoretical basis this hypothesis that the 

level of manpower effort required during the course of a software development project 

has a simjlar envelope (graphical) to that of the Rayleigh curve. The Rayleigh curve as 

appli ed to manpower estimation can be modeled by the following differential equation: 

(3.8) 

This equation expresses the Rayleigh expenditure rate p as a function of time. Here, t is 

e lapsed time and a is a constant affecting the shape of the curve, where a=lI(r), and 

where T is the time for manpower to peak. d is the cost scaling parameter (to fit the 

model to the project being modeled). 
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This observation was originally made by Norden (1958) who saw that the Rayleigh 

distribution curve provided a good approximation of the manpower required during the 

course of hardware development. This came from studying a number of hardware 

development projects at IBM. Putman pursued his initial hypothesis by studying military 

software projects to ascertain how his theory can be applied in describing the software 

lifecycle. From this research came a number of important observations: 

• The Rayleigh curve reaches its maximum value, T, usually corresponding to the 

time of system testing and product release. 

• The area under the Rayleigh curve at any time interval represents the total effort 

expended up to that interval. 

• 40% of the area under a Rayleigh curve is to the left of T, and 60% is to the right. 

This is a reasonable model of how effort is distributed between the development 

and maintenance lifecycles. 

Simply implementing the Rayleigh curve for any software project would not result in an 

accurate estimation, since software projects have a number of factors affecting their 

progress. It is for this reason that Putman introduced what he calls a technology factor C. 

This constant combines the effect of using tools, languages, methodology, quality 

assurance procedures and standards (note this is not an exhaustive listing). These factors 

can be said to implicitly affect productivity and are usually specific to the environment of 

the project. This constant can determined based on historical data or can be chosen from 

the twenty possible values suggested by Putman (Putman, 1978). This enables the 

developer to calibrate his project accordingly. To determine the constant from historical 

data, a least squares regression technique would normally be applied. 

Problems with the Rayleigh-Putman approximation model can also be generalized to 

other approximation methods that use the Rayleigh/Norden equation as their basis 

(Conte et ai, 1986; Fairley, 1991): 
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• These types of models appear to be significantly more accurate for larger software 

projects. Small to medium sized projects tend to be overestimated. 

• The effect of scheduLe compression on a software project is radically over

exaggerated. 

• The model provides little accuracy at the initial and end stages of software 

development, since most projects begin with a non-zero manpower level. This 

also applies to the maintenance phase. 

• Fitting a Rayleigh curve to a given dataset through regular non-linear regression 

techniques is a complicated process that requires the aid of sophisticated 

statistical tools. 

It must be noted that the Putman model does not utilize the Rayleigh curve as an 

estimate, instead the model attempts to fit manpower data to the curve. The use of the 

Rayleigh distribution as a model for fitting manpower data was an observation made by 

Putman for which he provides no theoretical reasoning (Fairley, 1991). 

The Halstead Software Science Methodology 

Halstead's Software Science method (Halstead, 1977) is a unique approach to predicting 

software effort in the early stages of software development (Conte et aI, 1986). 

Halstead's Software Science approach has its origins in information theory and attempts 

to predict the qualities of a program before inception. Halstead attempts to provide a 

formal definition for qualitative, empirical, and subjective software attributes like ease of 

understanding, level of abstraction, based on low level quantitative software attributes 

like number of operators and operands appearing in a program (Ghezzi et aI, 1991). 

These are referred to as Halstead metrics and are defined as follows: 

• 1]1 is the number of unique, distinct operators appearing in the program, 

• 1]2 is the number of unique, distinct operands appearing in the program, 

• NI is the total number of occurrences of operators in the program, 

• N2 is the total number of occurrences of operands in the program. 
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The precise definition of these terms is said to subjective and is the source of much 

criticism of the Halstead method (Ghezzi et ai, 1991). Halstead makes use of set theory 

and combines these features to produce effort estimation. Halstead 's effort estimation is 

defined as the number of mental discriminations required to implement a program. This 

is a unique approach (considering the other approaches considered in thi s chapter). The 

defining effort equation is as follows in Equation 3.9: 

E-V/ - / L 

where V is the program volume defined by Equation 3.10 

v = Nlog 2 7J 

(3.9) 

(3.10) 

V is intuitively the minimum number of bits required to code the program in question (V 

is referred to as the potential volume), 

And, 

And, 

where, 

L- v ' l - I v 
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V* is referred to as potential volume and L is an attempt to quantitatively gauge the level 

of abstraction of the formulation of an algorithm. An assumption is that V* is the most 

abstract possible formulation. 

Ghezzi et al (1991) state that for small programs, effort E correlates with the effort 

needed for maintenance. As previously mentioned, Halstead 's approach is intuitive to the 

point that it is attractive, yet the subjective nature of many of his assumptions and 

definitions leads to the questioning of his methods real world suitability and application. 

This makes it difficult to integrate with software development methodology. Fenton and 

Pfleeger (1997) and Maxwell et al (1996) have also directed much criticism towards the 

use of Halstead metrics. Maxwell et al (1996) state that they are based on questionable 

assumptions, which do not properly transform into accurate predictions. 

3.2.4 Composite Models 

Composite models incorporate a combination of analytic equations, stati stical data fitting 

(linear or nonlinear) and expert judgment (Conte et aI, 1986). Composite models can 

intuitively be partitioned into two distinct types according to the underlying metric used 

in estimation: Those that use Lines of Code (LOC) as a basis for estimation and those that 

use function points. 

The most widely used composite model using LOC is the COCOMO model by Boehm 

(1981), more specifically the intermediate form of CO CO MO is the most popular. A 

newer version of COCOMO, known as COCOMO II was more recently developed 

(Boehm et aI, 1995) and takes into account the widely published criticisms of the 1981 

COCOMO model. 

Models that use function points as the basis of their estimation capability are based on the 

original Function Point model suggested by Albrecht (1979). The description of these 
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two models will be the focus of thi s sub-section . To avoid confusion where necessary, 

the original COCOMO model shall be referred to as COCOMO 81 as in Boehm (2000). 

3.2.4.1 Models that Use Lines of Code as the Primary Estimator 

The two most prominent models that use Lines of Code (LOC) as their primary estimator 

are COCOMO 81 (Boehm, 1981) and COCOMO II (Boehm et aI, 1995). These two 

models are di scussed in detail in the following sections. 

COCOM081 

COCOMO 81 (Constructive Cost Model) is an algorithmic cost estimation technique 

developed by Barry Boehm in 1981 whilst working for TRW. COCOMO 81 is a well 

documented and the most widely implemented of the cost estimation techniques 

described (v on Mayrhauser, 1990). Knowledge of the operation of COCOMO 8] gives 

insight into the general operation of most algorithmic cost models. COCOMO 81 was 

developed by Boehm with the data collected from 63 software development projects. 

COCOMO was intended as an easy-to-understand model that predicts the duration of and 

effort required for a project, based on inputs rel ating to the size of the systems and a 

number of cost drivers, which Boehm identified as affecting productivity (Kemerer, 

1987) 

There are three variations of implementation within COCOMO 81, increasing in 

complexity and level of detail (Ghezzi et aI, 1991). These are: The Basic, Intermediate 

and Detailed COCOMO. Each variation shows an increasing technical complexity used 

in estimating costs by applying cost drivers that adjust and improve the quality of 

estimation. Thus each more advanced level of estimation requires that more information 

is known about the software project than the previous level: 
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• The basic COCOMO is suitable for software projects where the project 

requirements are vague. The equation used is of a basic form and doesn ' t include 

the use of cost drivers. 

• The intermediate COCOMO is suitable for software projects where the 

requirements are well understood. Here cost drivers are used to improve the 

accuracy of estimation. These cost drivers were selected by Boehm as the factors 

that he considered most influential on the productivity (Boehm, 1981). 

• The detailed COCOMO model is very similar to the Intermediate COCOMO 

model , except that it is applied after the completion of each phase of a project. 

This allows for a work in progress perspective of a software project. Boehm 

(1981) identified 4 di stinct project phases: Product Design, Detailed Design, 

Codingffesting and Integrationffesting. After each of these phases the 

COCOMO model would be applied (taking into account additional cost drivers). 

Before an explanation of the mechanics of the COCOMO model is given, it is important 

to have an idea of the bounds of the environment within the COCOMO model operates. 

For the COCOMO model to be effective, a number of assumptions are made: (Boehm, 

1981): 

• 

• 

• 

The model is more effective if the software projects are within the limits of 2K 

(thousand) to 32 KDSI (Thousands of Delivered Source Instructions). 

The software project domain has to be familiar to the developers. 

Software requirements are stable and the customer and the software developer 

will manage the project jointly (Sommerville, 1989). Thi s serves to enclose and 

protect the development environment from being influenced by other external 

factors which could disturb the model. 
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• Effort multipliers are used to modify the above assumptions. 

• The scope of the estimates take into account the following activities: Design 

through acceptance testing, the cost of documentation and reviews and the cost of 

the project manager and program librarian. The effort estimators exclude the cost 

of planning and analysis and of minor employees. 

• Systematic software engineering techniques are used throughout the development 

process. This would include such activities as incremental documentation and 

careful definition and validation of architectural design. 

COCOMO seeks to identify variables that would most significantly impact on 

productivity. The COCOMO model considers extensive factors regarding the type of 

project, implementation requirements and personnel constraints. These are considered in 

the following general equation that COCOMO uses for estimation of development effort: 

(3.14) 

In the above formula, a and b are constants, which are intelligently selected according to 

the level of estimation (basic, intermediate or detailed) and category of software project 

(organic, semi-detached, embedded). The primary factor affecting this effort estimation 

formula is size, S. Size (S) is measured in KDSI (Thousands of Delivered Source 

Instructions). m(X) is a cost multiplier and is a function of 15 other factors (cost drivers) . 

Effort, E, is measured in Person Months . A Person Month is defined as the amount of 

time one person spends on working on the software development project for one month 

(Boehm et ai, 2000). This is equivalent to 152 hours per Person Month. These further 15 

considerations can be said to 'fine-tune' the predictive capability of COCOMO by 

considering such qualitative attributes as personal ability and experience (among others). 

The necessity to identify poss ible contributing factors to software productivity came after 

Boehm found that the Basic COCOMO model was not accurate in predicting effort. He 
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found that the Basic COCOMO model predicted effort accuratel y on sixty percent of the 

time in hi s 63-project database (Kemerer, 1987). 

The cost dri vers identified by Boehm to enhance the COCOMO model are shown in 

Table 3.6 adapted from Boehm (1981) and von Maryhauser (1990). Here factors 

influencing total project effort are grouped into three attributes; Product, Process and 

Resource attributes . This grouping is not essenti al to the functioning of the model but is 

useful for illustrati ve purposes. The basic COCOMO model does not consider these cost 

dri vers but only considers program size as the primary estimator. 

Product attributes 
Required software reliability 
Size of application database 

Product complexity 

Process attributes 
Application of software engineering methods 

Use of software tools 
Required development schedule 

Computer attributes 
Performance requirements 
Memory/Storage constraints 
Virtual machine volatility 
Turnaround time 

Resource attributes 
Personnel attributes 
Analyst capability 
Applications experience 
Programming capability 
Language experience 
Virtual machine experience 

Table 3.5 Cost Drivers fo r the COCOMO model (Boehm, 198 1; von Mayrhauser, 1990) 

The three categories of software projects, namely Organic, Embedded and Semi-detached 

are defined as fo llows: 

• Organic software projects are software projects of relatively small size. They 

require little innovati on, are usuall y developed in-house and often don' t have 

fixed deadlines constraining them. 

Th e Applicability of Case-Based Reasol/ill~ to Software Cost Estillla tioll 59 



Chapter 3 Suftware Cost Estimation 

• Embedded software projects are relatively large, require a much greater degree of 

innovation, have strict deadlines, and are generally more complex. 

• Semi-detached projects fill the divide between the subjective definitions of 

Organic and Embedded projects. 

The following Table 3.6 illustrates the effect that project category and estimation level 

have on constants a and b of the COCOMO 8] effort estimation formula. 

Model Basic Intermediate 

a b a b 

Organic 2.4 1.05 3.2 1.05 

Semi-detached 3.0 1.12 3.0 1.12 

Embedded 3.6 1.20 2.8 1.20 

Table 3.6 The effect of project category and estImatIOn level on constants a and b (Conte 

et ai , 1986). 

Total project development time T (months) can be determined as an adjusted product of 

Effort E (in PM - Person Months) as indicated in Equation 3.15. As previously 

mentioned, Person Months are defined as the amount of time one person spends on 

working on the software development project for one month (Boehm et ai , 2000). 

(3.15) 

where a and b are constants depending on development level , with c=2.5 for organic, 

semi-detached and embedded systems in the basic COCOMO model. Sommerville 

(1989) notes that the time required to complete a project is a function of the total effort 

required for the project and not a function of the number of software engineers working 

on the project. This confirms the idea that adding more people to a software project 

which is behind schedule is unlikely to get the project back on schedule. 
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COCOMO 81 has been much criticized in the literature. One of the major criticisms of 

COCOMO 81 is that it does not account for the reuse of existing code, although this can 

be considered a criticism of the majority of estimation models. A criticism directed at the 

LOC based models in general is that they require estimation before development, when 

accurate LOC estimates may only be available until the design phase is complete 

(Mukhopadhyay et aI, 1992). The difference in programming languages greatly affects 

the LOC count, which is the basis of COCOMO estimation model. This implies that that 

the model needs to be recalibrated to suit the development environment (lones, 1986). 

These factors have led to the development of an improved estimation model, COCOMO 

II (Boehm et aI, 1995). 

COCOMOII 

COCOMO II builds on the success of the original COCOMO 81 model. COCOMO II is 

evidently immensely more sophisticated than COCOMO 81 and incorporates the use of 

function points. COCOMO II makes better use of cost drivers by providing less 

qualitative definitions for the cost drivers. 

COCOMO 81 was developed in an era where there were preferred software life-cycles 

such as the Waterfall Model (Boehm et aI, 2000). Software development models have 

changed considerably since then and need to take into account design for reuse concepts 

and object-orientated componentized software development. COCOMO 81 is inflexible 

in these regards. The newer COCOMO II model allows for the software engineer to 

adjust the cost-estimating model as more is known about the project during development 

(Boehm et aI., 1995). With COCOMO II, there is an acknowledged realization that 

source lines of code (SLOC) are not an accurate basis for early effort estimation (Pfleeger 

et aI, 2001). This had been the major source of criticism for the COCOMO 81 model 

(Jones, 1991). This knowledge is incorporated in the incremental development model of 

COCOMO II and for that reason allows for the term 'hybrid model' to be used in 

describing it (Boehm et aI., 1995). 
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COCOMO II separates the development process into three major phases: 

• In the initial phase (Phase I), prototypes are developed to resolve issues 

considered high-risk. These issues under consideration include (among others): 

user interfaces, performance and software and system interaction. At this phase 

quantitative size estimation methods using SLOC are notoriously inaccurate as 

little is known about the project. For this reason COCOMO II uses object points 

as a size estimate. Object points were originally proposed by Banker, Kauffman 

and Kumar, 1994. This method of size estimation uses high level generators to 

estimate size. These generators can include: number of server data tables, number 

of client data tables and percentage of screens and reports used in past projects. 

• Phase II of the project considers alternative architectures and concepts of system 

operation are explored. At thi s phase a firm deci sion has been made to proceed 

with the project in question . Considerably more is known about the project at this 

phase and Function Points are used for size estimation. The cost drivers used here 

are of a lesser set than those used to derive an estimation in phase III (Pfleeger et 

aI, 2001). 

• Phase III is the phase at which development has begun. Here size estimation can 

be done in terms of Function Points or LOC. Pfleeger et al (200 I) state that at 

this phase cost drivers can be estimated with some degree of comfort. 

The basic form of COCOMO 11 has some similarity to its first version and is of the form 

(Equation 3.16): 

E = bS Cm(X) (3.16) 
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Where as before, the size estimate bS' is multipli ed by m(X) which is a function of the 

cost drivers (otherwi se known as effort multipli ers) . The constant b approximates a 

productivity constant in PM/KSLOC (Person Months per Thousand Source Lines of 

Code) fo r the case where c=l.O. The exponent c is an aggregation of five scale factors 

that account for economies or di seconomies of scale encountered for software projects of 

different sizes (Banker et al 1994). Economies of scale follow the principle that as the 

project size increases, so does the productivity. The size, S is in KSLOC, which can also 

be estimated using UFP's (Unadjusted Functi on Points), which are then converted into 

SLOC. An overview of the scale factor c is presented in Table 3.7 below. 

Exponentc Relative Level of Economies of Scale Circumstance 

Project exhibits economies of scale 
Project tools can help attain 

c<1 .0 
economies of scale. 

Economies and diseconomies of scale are Usually for small software 
e=1.0 

equal , resulting in a linear model projects 

Overheads have become 
c>1 .0 Project exhibits diseconomies of scale 

too large. 
. . 

Table 3.7 The defInitIOn of the scale fac tor c (Boehm, 2001 ) . 

Boehm (2000) reiterates the necessity to use cost di vers, since they unique ly capture the 

characteristi cs of the software development that affect the effort to complete the project. 

The cost dri vers in COCOMO H have qualitati ve ratings on the impact of that dri ver on 

development effort. Ratings are on a seven-point scale ranging fro m Extra Low to Extra 

High. Each qualitati ve rating then has its associated effort multiplier, whi ch all ows the 

software engineers qua litati ve assessment to be used quantitati vely in the model 

equati ons. It is important to note that a major advancement in the use in cost drivers was 

made with COCOMO H. The way in whi ch cost dri vers are used takes into account 

componenti zed project development, since most cost dri vers apply to individual project 

components. 

Boehm (2000) states that Size is still the most important input into the COCOMO H 

model (similarl y to COCOMO 81). However, the theory behind the exponent adjustment 
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factor (discussed above) has advanced considerably since COCOMO 81 and is more 

representative of a real development situation. The cost drivers used at each stage of the 

COCOMO II estimati on model are summari zed in the Table 3.8. 

Stage 1 - Stage 2 - Early Stage 3 -Post 
Model Aspect Application Design architecture 

Composition 

Size Application points Function Points 
Function Points and 
language or SLOC 

Equivalent SLOC as Equivalent SLOC as 
Reuse Implicit in model function of other function of other variables 

variables 

Requirements Implicit in model 
% Change expressed % Change expressed as 

change as a cost factor a cost factor 

Application , Point, 
Function of ACT, 

Function of ACT, 
software 

Maintenance Annual , Change, understanding, 
software understanding, 

Traffic unfamiliarity 
unfamiliarity 

0.91 to 1.23, 
0.91 to 1.23, depending 

depending on 
precendent, 

on precendent, 
Scale, c in conformity, early 

nominal effort 1 
conformity, early 

architecture, risk 
equation 

architecture, risk 
resolution, team 

resolution, team 
cohesion , and SEI 

cohesion, and SEI 

process maturity 
process maturity 

Reliability, database size, 
Product cost 

None 
Complexity, required documentation needs, 

drivers reusability required reuse and 
product complexity 

Execution time 
Platform cost 

None Platform difficulty constraints, main storage 
drivers constraints and virtual 

machine volatility 

Analyst capability, 
applications experience, 

Personnel Personnel capability programmer capability, 

cost drivers None 
and experience programmer experience, 

language and tool 
experience and personnel 
continuity 

Required development Use of software tools, 
Project cost 

None schedule, required development 
drivers development schedule and multisided 

environment development 

Table 3.8. Cost Dn vers used at each stage of COCOMO II (Pfleeger et ai, 2001) 
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The COCOMO II model has the ability to be calibrated to a gIven project database. 

Boehm (2000) recommends that the model be calibrated to local data, so that it reflects 

local productivity and improves the models accuracy. Currently the COCOMO Il 

development database is based on 162 software projects. 

COCOMO II has the ability to take into account economies of scale, componentized 

development, software reuse, the local development environment and is able to refine the 

estimates at each project phase. This makes it a far more complete solution for 

estimation than COCOMO 81 and the other models discussed so far. The discussion on 

COCOMO II can proceed further, well beyond the scope of this chapter, since COCOMO 

II is not only intended as a mechanism for estimation but a complete planning 

methodology. 

3.2.4.1 Models Based on Functional Complexity 

Function Points are able to quantitatively measure a software project, by quantifying the 

information processing functionality associated with major external data or control input, 

output or file types (Boehm, 2000). There are several variations of thi s idea, discussed 

below. 

Function Point Analysis as defined by Albrecht 

The original function point methodology for effort estimation was developed by Allan 

Albrecht of IBM (1979). Albrecht determjned in his hypothesis that software could be 

sized by evaluating the external transactions processed by an application or subsystem 

and the databases that were used (Herron, 2000). Thus, Function Point Analysis (FPA) 

measures software size by quantifying the functionality the software provides to the user 

based primarily on logical design. Albrecht's reasons for proposing function points as a 

measure of system size are stated as follows (Albrecht and Gaffney, 1983): 
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The measure isolates the intrinsic size of the system from the environmental 

factors, facilitating the study of factors that influence productivity. 

The measure is based on the users external view of the system and is technology 

independent. 

The measure can be determined early in the development cycle, which enable 

function point counts to be used in the estimation process. 

• Function points can be understood and evaluated by non-technical users. 

Symons (1985) suggests that an implied aim was to develop a method which has an 

acceptably low measurement overhead. In its initial form Albrecht's (1979) function 

point model had as the basis to its estimation, four data requirements for input: 

• Number of inputs 

• Number of outputs 

• Number of inquiries 

• Number of logical master files 

Albrecht's original FPA model was refined by Albrecht and Gaffney (1983) and has 

since been developed by the International Function Point Users Group (IFPUG). This 

IFPUG function point model form s the basis to this di scussion on Function Point 

Analysis. There are many other forms of function point counting available to the 

software engineer. One of the models that makes the most significant methodological 

departure from Albrecht FPA is Mark 11 FPA developed by Symons (1985,1991). Most 

other funtion point models use similar methodologies and will therefore not be di scussed 

in thi s section . Mark 11 FPA is discussed in greater detai l below. 
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FPA Mark II 

An alternative function point model was proposed by Symons in 1985 and officially 

implemented in 1991. Hi s model , known as Mark 11 Function Point Analysis (FPA) was 

aimed at addressing the shortcomings of Albrecht's FP A model that he identified in hi s 

research (Symons, 1985). These two methods measure subtly but significantly different 

sizes of the software product and therefore the work-output of the processes of 

developing, maintaining and enhancing the software product (Symons, 1991). 

Symons (1985, 1991) identified that the most significant shortcoming in Albrecht FP A 

was that the classification of all system component types as simple, average or complex 

limited the accuracy of the measure in larger software developments . Symons (1991) 

states that Mark 11 FPA has a finer granularity and is a continuous measure, while 

Albrecht FPA limits component size once a threshold is reached. 

In Mark 11 FPA, The Unadjusted Function Poi nt count (UFP) is calculated through the 

use of the following formula: 

Where: 

Ni = the number of input data element types 

Wi = weight of an input data element type 

Ne = the number of entity-type references 

We = weight of an entity-type reference 

No = the number of output data element types 

Wo = weight of an output data element type 

And N;, Ne and No are each summed over all transaction types. 

(3 .l7) 

Symons ( 1991 ) defines transacti on types as: logical transacti ons, inputs, outputs, data 

e lements and entities. This count is then refined further by considering 19 other 
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characteristics in addition to any particular characteristics the user wishes to include. 

This is a similar system to the model developed by the International Function Point Users 

Group (IFPUG) method described in the next section. 

Rask et al (1992) compared both techniques (FPA and Mark 11 FPA) by simulation, 

deriving all function types and counts automatically from dataflow diagrams and entity 

relationship diagrams. In general, they obtained good correlations between the models, 

with Mark 11 FPA arriving at a higher UFP count as the system size increases. However, 

the correlation was higher when the system sizes were smaller. Low and Jeffery (1990) 

analysed FPA counts as an effective measure of system size. Dolado (1997) summarized 

their findings as follows: 

• Function points appear to be a more consistent a priori measure (early in the 

development of the software project) of system size than Lines of Code (LOC). 

• There are significant differences in computing function point counts among 

different analysts and organizations. 

• Experience in both software development and in function point counting was an 

important factor in obtaining a representative function point count. 

The IFPUG function point counting procedure is di scussed below. 

Function Point Analysis Model Developed by the International Function Point Users 

Group 

The IFPUG (International Function Point Users Group) was formed in 1986 and assumed 

the responsibility of standardizing and promulgating the function point metric. IFPUG 

have advanced the original Albrecht model and IFPUG FPA considers five (rather than 

four) user function types defined in Table 3.9 as adapted from Boehm (2000). These 

function types are further classified by complexity level. These complexity level s are 
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used to determine a set of weights, which are then app lied to their corresponding functi on 

point counts to determine the UFP (Unadjusted Function Point) count. 

Function Function Point Code Description 
Point Type Name 

Count each unique user data or user control input 
External Input El type that enters the external boundary of the 

software system being measured . 
Count each unique user data or control output 

Transactional 
External Output EO type that enters the external boundary of the 

software system beinQ measured. 
Functions 

Count each major logical group of user data or 

Internal Logic 
control information in the software system as a 

ILF logical internal file type. Include each logical file 
File that is generated, used, or maintained by the 

software system. 

External 
Files passed or shared between software systems 

Interface Files 
ElF should be counted as external interface file types 

Data with in each system. 
Functions Count each unique input-output combination , 

External Enquiry EO where input causes and generates an immediate 
output, as an external inquiry type. 

Table 3.9 Defi nitions of function poi nt types (IFPUG , 2000). 

The IFPUG function point counting procedure can be described as a three-stage process 

(adapted fro m Abran, 1996) : 

• Determ ine the UFP coun t by counting the function points as defi ned in Tab le 3.9. 

Function point types can be divided into two categories: data fu nctions and 

transactional functi ons. The low, average and high complexity values of: extern al 

inputs, ex ternal outputs, external interface fi les, internal logic files and external 

inquiries are totaled using IFPUG matrices to determine the total Unadj usted 

Functi on Po int (UFP) Count. The calculation process uses standard multip licative 

weights as suggested by IFPUG. These weights are function poin t specific and 

are shown in Table 3.10. Equation 3.18 shows how the UFP count is calcu lated: 

5 5 

UFP= LL wijxij (3. 18) 
i=1 ) =1 
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Where, with reference to Table 3. 10, W ij = weight for row i (function point name) 

and column j (Iow, average or hi gh weight), and xi) = actual value of fun cti on 

point count in cell i,j. 

• Determine the Value Adjustment Factor (VAF) through counting the predefi ned 

General System Characteri stics (GSC's) which assess the environment and 

processing complexity of the software app lication. There are fourteen application 

characteri sti cs (GSC's), which are counted on a rating scale fro m 0 to 5. The 

fourteen characteristics are descri bed in Table 3. 11. The VAF is calcul ated using 

the fo llowing fo rmula: 

14 

VAF = 0.65 + O.OIL GSC; (3. 19) 
;=1 

Where VAF is the value adjustment fac tor and GSC is the degree of influence 

score fo r GSC i. 

• Determine the adjusted function point count, using the UFP count and the VAP. 

The adjusted function point count is determined by Equati on 3.20 below: 

FP = UFP xVAF (3.20) 

Where, FP is the adjusted functi on poi nt count, UFP is the unadjusted function 

poi nt count and VAF is the value adjustment fac tor. 

Function Point Name 
Low Count x Average Count x High Count x 

Weight Weight Weight 
External Input x3 x4 x6 
External Output x4 x 5 x7 
Internal Loqic File x7 x10 x15 
External Interface File x5 x7 x10 
External Inquirv x3 x4 x6 

Table 3.10 Multlplt catl ve weIghts applt ed to the IndI VIdual functi on point counts 

(Kemerer, 1993). 
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General System Description 
Degree of 

Characteristic Influence 

Data Communication 
The degree to which the application o to 5 
communicates directly with the processor 

Distributed Data Processing 
The degree to which the application transfers o to 5 
data among the components of the application 

The degree to which response time and 
Performance throughput performance considerations o to 5 

influenced the application development 

The degree to which computer resource 
Heavily Used Configuration restrictions influenced the development of the o to 5 

application 
The degree to which the rate of business 

Transaction Rate transactions influenced the development of the o to 5 
a(lplication 

Online Data Entry The degree to which data is entered through o to 5 interactive transactions 
The degree of consideration for human factors 

End-User Efficiency and ease of use for the user of the application o to 5 
measured 

Online Update The degree to which internal logical files are o to 5 updated online 

Complex processing The degree to which processing logic o to 5 influenced the development of the application 
The degree to which the application and the 

Reusability code in the application have been specifically o to 5 designed, developed and supported to be 
usable in other applications 

The degree to which conversion from previous 
Installation Ease environments influenced the development of o to 5 

the application 

The degree to which the application attends to 
Operational Ease operational aspects such as start-up, back-up o to 5 

and recovery processes 

The degree to which the application has been 
Multiple Sites developed for multiple locations and user o to 5 

organizations 

The degree to which the application has been 
Facilitate Change developed for easy modification of processing o to 5 

logic or data structure 

Table 3.11 General system characten stl cs used In calculating the value adjustment factor 

(IFPUG manual version 4.2, 2000). 
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Concluding Remarks on Function Point Analysis 

The continued well -being of function points is in the hands of the IFPUG group. It is the 

responsibility of thi s group to convey to software engineers the effecti veness and unique 

capabilities of functi on points as an estimation technique. Herron (2000) states that 

Functi on Point Analysis has been misused and misunderstood in the past. It is the 

responsi bility of the IFPUG to educate software engineers as to the correct method of 

implementati on. There are many other function-based metrics that have not been covered 

in thi s chapter. These include (among others) Demarco's Bang Metric (Demarco, 1982), 

Jones and Capers Feature Points (199 1) and Boeing's 3D Function Points. These have not 

been covered since the principles are generall y the same and the popularity of these 

altern ate techniques have not been strong, leaving IFPUG FPA as the dominant method. 

Boehm (2000) states that functi on points are useful estimators since they make use of 

info rmati on which is avail able in the earl y stages of the software li fecycle, unli ke the 

LOC based models. For thi s reason Boehm included the use of function point counts in 

hi s COCOMO II model. Kemerer (1 993) states that despite their wide use by researchers 

and software and their growing acceptance by software engineering practiti oners, they are 

not without cri ticism. Kemerer (1993) descri bes the fo llowi ng concerns in using the 

functi on point method: 

• The first concern revo lves around the alleged low inter-rater reli abili ty of the 

functi on poi nt counts, that is, whether two indi viduals performing a fun cti on point 

count fo r the same system would generate the same result. 

• The second related concern has developed in part owing to the popul arity of the 

functi on point method. A number of researchers, consultants and organi zati ons 

have developed vari ants on the original FPA method developed by Albrecht. 

Kemerer' s ( \ 993) concern over these variants is that functi on point counts using 

these methods often di ffer fro m the Albrecht FPA method. Jones (1986) 

compiled a list of 14 named variations and suggested that values obtained using 

these vari ations may differ by as much as 50%. 
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• Kemerer' (1993) third concern is that counting function points is a labor-intensive 

operati on. In hi s research, Kemerer fo und that collecting data fo r 100 functi on 

points took one hour. However, there has been much research into developing 

Computer Aided Software Engi neering (CASE) tools to automati call y collect 

functi on point data fro m software projects. 

Since function points are a measure of software functionali ty, they provide a vehicle to 

estimate the cost and resources required fo r software development (IFPUG, 2000). The 

functi onal size of a software project can be translated into requi red effort through 

determining the level of producti vi ty within an organization (MacDonell , 1994). This is 

usually organi zati on specific and requires that the productivity of the developers be 

quantified in terms of functi on points per person-hour. 

The fo llowing secti on describes machine-learning techniques that have been developed 

for the purposes of software cost estimati on. These are a recent advancement in the field 

of software cost estimation and have shown much promise in compari son to traditional 

cost estimati on techni ques (MacDonell , 1994). 

3.2.5 Machine Learning Estimation Techniques 

Machine learning techniques have successfull y been applied to such complex problem 

areas as speech recognition (Sejnowski and Rosenberg, 1987), adaptive control (Narendra 

and Parthasarath y, 1987) and markup estimati on in the constructi on industry (Hegazy and 

Moselhi , 1994) to mention onl y a few. Only recently have machine learning techniques 

been considered as an altern ati ve way of pred icting software effort (Schofie ld , 1998; 

Mair et aI, 1999). There are a number of cost estimati on techniques that are of the 

machine learning type. These are case-based techniques, artificial neural networks and 

rule induction, fuzzy systems, and regression trees. Of these techniques, it is onl y CBR 

and neural networks th at are receiving seri ous attention fro m researchers (Schofield , 

1998). These Arti f icial Inte lli gence techniques are vast ly diffe rent from the traditi onal 
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methods of estimati on as they attempt to produce info rmedllearned decisions from the 

data that is hi storicall y available. In a sense thi s can be paralle led to Hi storical 

Experi enti al models di scussed above, the core diffe rence being that the informed decision 

is now automated. 

Carbonell (1990) di vides machine learning into four major paradigms: 

• Inductive \earnin g 

• Analytic learning 

• Geneti c algorithms 

• Connecti oni st learning 

According to Carbonell (1990), case-based estimati on techniques fall under the analytic 

machine-learning paradi gm while neural networks are of the connecti oni st-learning 

paradigm. These two most prominent techniques used for software effort estimation 

(Schofi eld , 1998), namely case-based and neural network methods will be considered in 

the di scussion below. 

3.2.5.1 Artificial Neural Networks Applied to Software Cost Estimation 

The term neural network app lies to a multi tude of modeling techniques using diffe rent 

architectures (MacDonell and Gray, 1996). The most frequentl y used fo rm of neural 

networks for effort estimation is feed-forward networks trained using the back

propagation algorithm . Thi s form of neural networks will be used as the basis to the 

di scussion of neural networks used in effort estimati on, since a di scussion on neural 

network architecture and algorithms fall s beyond the scope of the research. Typically a 

feed-forward, back-propagated network would operate in th ree phases : feed-forward of 

the input error, back-propagatio n of the output error and adjustment of the network 

weights. Neural networks of thi s form have successfull y been app lied to effort estimati on 

in a number of studies, all of which show favorab le results (see: Finnie and Wittig 
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(1997), MacDonell and Gray (1996), Mair et al (1999». These models were consistently 

able to outperform regression models and the results are good enough to rival results 

obtained from CBR models. The major issues that seem to shadow the use of neural 

networks in this domain are: lack of configurability, ease of use and explanatory value 

(Mair et aI, 1999). 

Artificial neural networks are nets of interconnected processing elements capable of 

learning the mappings that exists between input and output data (Dolado, 2000). What 

makes neural networks so promising for cost estimation is that they are able to represent 

a number of interconnected, independent units. This is ideal for representing the various 

activities involved in a software development project (Pfleeger et aI, 2001 ). What makes 

an even more compelling argument for the use of neural nets in cost estimation is that the 

equation relating input and output variables can be left unspecified, allowing previously 

unknown relationships to be modeled (Dolado, 2000). This falls well beyond the scope 

of traditional estimating techniques where any unknown variables would make 

computation improbable. 

A typical network created for the purposes of effort estimation would have as inputs: 

system size, several general system characteri stics (GSC's) and the programming 

environment. The exclusive system output would be the estimated development time 

(Wittig and Finnie, 1997). 

In a neural network, each activity is represented by a neuron (and graphically by a 

network node), with each activity having inputs and outputs. Figure 3.1 depicts the basic 

operation of a neuron making use of a step function for activation . Each neuron of the 

neural network has its associated software that performs an accounting of its inputs, 

computing a weighted sum as described as follow s: 

Each input is multiplied by the weight associ ated with that particular connection. The 

weighted inputs are then computed for that neuron . This value is then compared to the 

threshold value assigned to that neuron and the output is determined by thi s comparison. 
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This output can either be an excitory on inhibitory input to other neurons in the network. 

This process continues until the neural net produces a final cascaded output value 

(Pfleeger et ai, 2001). 

In a typical feed-forward neural network using the back-propagation learning algorithm, 

the difference between the actual and desired output is determined continuously for each 

set of inputs and corresponding set of outputs. A portion of this error is backward 

propagated through the network and used to adjust the weighting system so as to improve 

subsequent calculations. This process then continues until the network performance is 

optimized. According to Rumelhart et al (1986), classical back-propagation is a gradient 

method of optimization executed iteratively, with implicit bounds on the distance moved 

in the search direction in the weight space. This is achieved by incorporating a learning 

weight (gain) and the momentum term (damping factor) in the model. 

w, ~ 

W2 -----.. ~~/ 

W3 -----~ 

W4 -----...... 

h 

Figure 3.1 A McCulloch and Pitts Neuron (McCulloch and Pitts, 1943) adapted from 

Mairetal (1999). 

According to Beale and lackson (1991) thi s is the guiding principle behind the neurons 

ability to learn from previous mi stakes. Thus, the error produced is used constructively 
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adjust the weights of the connections so that in the next incidence the level of error is 

improved. 

Equation 3.21 summarizes the reactive behavior of an artificial neuron (equation and 

associated description taken from Schofield, 1998): 

(3.21 ) 

The operation of Equation 3.19 can be descri bed as follows: 

The neuron computes the weighted sum of its inputs, Xj , where j=1,2, ... n. An output of 1 

is generated if the sum is above a certain threshold u. Else an output of 0 is generated. 

80 is a unit step function at 0 and Wj is the synapse weight associated with the jth input. 

u is considered as a weight i.e. wo=-u attached to the neuron with a constant input of 

xo=l. Positive weights model excitory synapses, while negative weights model 

inhibitory ones. The activation function in Figure 3.1 is known as a Step function, 

however there are a number of functions that can be utilized such as Gaussian, Linear, 

Sigmoid and Tanh. Sigmoid functions are most frequently used in neural networks 

(Finnie and Wittig, 1997). 

Two general types of neural networks exist: feed-forward and feedback networks. They 

differ architecturally, with feed-forward networks containing no loops in the network 

path, while feedback networks may have recursive loops in the network path. A feed

forward network is said to be of a static nature and has no memory of previous network 

states. A typical structure of a feed-forward neural network applied to effort estimation is 

shown in Figure 3.2. 

The performance and operation of a neural network is reliant on the given architecture 

and parameter settings of the network (Dolado, 2000; Finnie and Wittig, 1997). The 

architecture of a network has a direct impact on performance criteria such as learning 

speed, accuracy and noise resistance. This makes configuration of a neural network 

The Applicability of Case- Based Reasolling to Software Cost Estimatioll 77 



Chapter 3 Sofiwa re Cost Estimation 

extremely difficult. There is no pre-defined method that is available to neural network 

developers that can suggest suitable parameter settings. 

Problem 
Complexity 

Novelty of 
Application 

Use of 
Design Tools 

Team Size 

Input Layer Intermediate layers Output (Effort) 

Figure 3.2 An example of a multi-layer perceptron (Rosenblatt, 1962) for software cost 

estimation (taken from Pfleeger et aI, 1998) 

Neural networks have to go through a 'training' process, where the relevant weights are 

refined. The implications of this are that an appropriate training set of data needs be fed 

into the network. This means that subsequent results will be greatly affected by the 

original training data (Finnie and Wittig, 1997). A disadvantage of this process is that 

once the network has been trained, it cannot be adjusted in any way. If the developer 

wished to adjust any parameters, the network would have to re-trained with training data. 

As previously mentioned, Finnie and Wittig (1997) made use of a back-propagation 

multi-layer perceptron when they experimented with software effort prediction on two 

datasets. The datasets they used, were the Desharnais and Australian Metrics Association 

(ASMA) data sets. Both of these datasets were tested three times, so as to make sure of 

the confidence of the results. Finnie and Wittig found that the best results were 
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consistently obtained using a learning rate of 0.3, with a momentum coefficient of 0.6 on 

a network architecture with a single hidden (or intermediate) layer. In addition to this 

they concluded that the use of a Guassian and Sigmoid activation function resulted in the 

lowest prediction errors. The results obtained were impressive: for the Desharnais 

dataset an average MRE (Magnitude of Relative Error) of 29% was obtained, whi lst for 

the ASMA datasets an MRE of 17% was obtained. From these datasets, ten projects 

were randomly chosen to be used as the test set wile the rest were used as training data. 

Simjlarly to Finnie and Wittig (1997), Venkatachalam (1993), Jorgenson (1995), 

MacDonell and Gray (1996) and Srinivasan and fi sher (1995) have all used back

propogation neural networks of sirilllar configuration. All results obtained were 

promising, with the neural network consistently out-perforrillng traditional algorithmic 

estimation techniques. Jorgenson (1995), MacDonell (1996) and Srinivasan and fisher 

(1995) did however question the robustness of th is form of approach to effort estimation, 

since results were often inconsistent and required vast amounts of training data. 

Srinivasan and fisher (1995) indicated the difficulty in finding the best configuration of a 

neural network and suggested that in order to do this, th trianign data should be 

partitioned into smaller portions, so that more configurations can be tested with the test 

data. 

Karunanithi (1992) attempted to make use of different network neural network 

architectures in their investigation. They made use of both a feed-forward and feed-back 

neural network using an algorithm known as cascade correlation . This algorithm 

incorporates in it, some aspects of the back-propagation algorithm. They reported 

success in that their model outperformed algorithmic estimation models. 

Dolado (1999) developed a neural network for effort estimation in their investigation into 

effort estimation methods. He compared three different estimation techniques: Genetic 

programming, a regression model and neural networks. Dolado made use of a feed

forward neural network with a structure consisting of two layers and two neurons in the 

hidden layer. The primary activation function used was sigmoidal and the learning 
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algorithms employed were Levenberg-Marquardt and classical back-propagation. They 

conclude that the former algorithm has a performance advantage over the back

propagation algorithm. Using the test data, multiple runs of the neural network were 

performed in order to optimize the weights from those initially randomly chosen. 

Dolado's reaction to his results was far less optimistic than those of the other researchers 

mentioned above. He concludes that his neural network system was unable to attain 

acceptable results in that the neural network was unable to consistently outperform 

classical regression measures. However, in some cases the neural network was able to 

outperform the other models. Dolado concludes that neural network models have the 

potential to perform as well as other estimation methods but without any significant 

benefit. 

The results in the literature regarding the performance of neural networks as applied to 

effort estimation are in general positive, indicating that they have potential in this 

domain . However, most of the researchers mention the difficulty in finding an 

appropriate configuration and consistent results. 

MacDonell and Gray (1996), state that an obvious di sadvantage of neural networks is 

their "black box" nature, where inputs and outputs are visible, but the underlying process 

of getting one from the other is hidden. This view is supported by Mair et al (1999) who 

state that neural network models are significantly lacking in explanatory value. In 

addition to this, neural networks also have operational limitations; as mentioned 

previously, once the learning phase of a neural network is complete, the analyst cannot 

manipulate the parameters set by that process (Dolado, 1999). MacDonell and Gray 

(1996) suggest as an alternative, the use of hybrid fu zzy neural networks, since they are 

able to provide the advantages of model-free estimation, non-linear mappings and good 

generalization capability. One of the greatest appeal s for using neural networks in 

general, is that if there is any underlying relationship in the data being used, then a neural 

network should be able to find it (Dolado, 1999). Dolado makes an important statement 

regarding research in the field of effort estimation. He states that all results that have 

been achieved in the research are contingent on the datasets used. In all of the research 
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into estimation models, the datasets have consisted of data which he terms "simple data". 

This refers to the small number of datasets available to researchers such as the COCOMO 

81 dataset, Albrechts dataset (1983) and the Kemerer dataset (1987). It is generally 

accepted that in order to improve the estimation methods and attain a better quality of 

research it is necessary to have better quality data available to the researchers. 

3.2.5.2 Case-Based Reasoning as a Software Cost Estimation Technique 

In an examination of the feasibility of a case-based reasoning model for software effort 

estimation, Mukhopadhyay and Vicinanza (1992) state that traditional algorithmic 

techniques fail to produce accurate software development effort estimates. This creates 

scope and gives credence for the development of CBR models in this problem domain. A 

di scussion on CBR as an alternative cost estimation technique is presented in Chapter 4. 
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Chapter 4: Case-Based Reasoning Applied to Software Cost Estimation 

This chapter presents an overvIew of the current state of research on applying CBR 

methods to cost estimati on to demonstrate the applicability of CBR to software cost 

estimation . In addition to thi s, CBR development tools which are often used fo r 

developing CBR software cost estimati on mode ls are di scussed in the context of thi s 

research. 

4.1. The Applicability of CBR to Software Cost Estimation 

Researchers have repeatedl y stated that existing algorithmic models of softw are cost 

estimation fail to produce consistentl y accurate software development effort estimates 

(Kemerer, 1987; Mukhopadhyay et ai, 1992; Kadoda et ai, 2000). This has been 

extensively di scussed in the literature, with many empiri cal evaluati ons of the vari ous 

estimati on techniques available (Kemerer, 1987, Mukhopadh yay et ai, 1992). It is the 

lack of consistency and accuracy that has resulted in the ever-increasing interest in 

machine learning techniques as an alternati ve (Mair et aI, 1999). Finnie and Witti g 

(1997), Mair et al (1999), Schofield and Shepperd (1 995 and 1997) are some prominent 

researchers that have developed and tested vari ous analogy-based software cost 

estimation models. Their research is di scussed in Section 4 .3. 

CBR has been extremely successful in many areas of application, particul arl y in the fields 

of di agnosis, repair and adaptati on, design and arbitrati on to name only a few (refer to 

Chapter 2: Table 2.1 fo r more examples). The fie lds of application are ev idently di verse 

yet they have some commonality in that the problem domains are usuall y areas that are 

re li ant on human expertise to provide solutions. Since CBR is a problem solving 

technique that relies on past experiences to suggest so lutions (Riesbeck and Schank, 

1989), it is hi ghl y suitable to these weak theory do mains. Weak theory domains are those 

in which the relationships between cause and effect are not well understood. Software 

cost estimati on is such a weak theory domain (De lany and Cunningham, 2000) and much 
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research has been conducted into the use of CBR in this area (Mukhopadhyay et aI, 1992; 

Kadoda et aI, 2000; Schofield and Shepperd, 1995,1997). 

Boehm (1981) suggested the use of analogies as a possible cost estimation technique as 

far back as ] 981. However, further research into this possibility was not considered until 

the late 1980's (Cowedroy and Jenkins, 1988). In the last decade a number of analogical 

and CBR cost estimation models have been developed. These have met with considerable 

success when compared to existing modeling techniques such as COCOMO 81 (Boehm, 

1981) and Function point Analysis (Albrect, 1979) (Schofield and Shepperd, 1995,1997; 

Mukhopadhyay et aI, 1992). 

4.2. The Distinction Between Analogical and Case Based Reasoning. 

Analogical reasomng and CBR are very closely related and it is fo r reasons of 

completeness that an appropriate distinction is drawn. The problem with a term like 

analogy is that it is overloaded with different meanings and no definition is preci se. 

Aarnodt and Plaza (1994) state that analogy based reasoning is sometimes used as a 

synonym to case based reasoning and furthermore that case-based reasoning is often used 

as a generic term to describe systems that organize, retrieve, utilize and index the 

knowledge retained in past cases. They place CBR in the same domain as exemplar 

based reasoning, instance-based reasoning, memory based reasoning and analogy-based 

reasoning. Other researchers like Shepperd and Schofield (1997) state that estimation by 

analogy is a form of CBR. Serengul (2000) place CBR in the category of "hybrid 

learning" algorithms along with analogy and explanation-based learning. 

Mukhopadhyay et al (1992) describe the di stinction between CBR and analogy-based 

reasoning through the relative restrictions placed on the source and target domain of 

operation. They argue that analogical problem solving should in theory allow for the 

mapping of a source analog, which has a conceptually different domain to that of the 

target (new case/problem). However, in CBR the source analog is extracted from the 
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same general problem domain as the target. Furthermore, the source and target analog 

have the same structural representati on. It can therefore be concluded that analogical 

reasoning and CBR operate similarl y differin g onl y in the parameters of operati on. Thi s 

is supported by Aarnodt and Plaza (1994), who use as a basis for thi s analysis, research 

that has been carri ed out in these fie lds. They state that analogy-based reasoning is the 

method used to solve new problems based on past cases from different domains, while 

case-based methods focus on index ing and matching strategies for single domain cases. 

They conclude by stating that research on analogical reasoning is a sub fi e ld concerned 

with mechani sms for identificati on and utilizati on of cross-domain analogies . It is 

focused on mapping the solution of an identified analogue to the present problem. 

An overview of existing CBR based cost estimati on techniques fo llows. Even though 

many of the systems mentioned in thi s chapter may be examples of some other learnin g 

approach Like analogical reasoning, thi s does not mean that it is excluded from being a 

typical CBR applicati on as well. This differentiati on is not considered a criti cal fac tor in 

the di scussion on the applicability of CBR to cost estimati on and the terms analogical and 

case-based reasoning are used as per the authors/researchers statement without 

preference. The aim of the overview is to elaborate on some of the hi storical CBR 

systems and their success to demonstrate the applicability of CBR to the domain of 

software cost estimati on. 

4.3. Existing Analogical Reasoning Techniques Applied to Software Cost Estimation 

There are onl y a few analogy-based effort estimati on tools that have been developed 

(Shepperd and Schofield , 1995; Jeffery and Walkerden, 1999; Finne and Wittig, 1997; 

Mukhopadh yay et aI, 1992, Briand et aI, 2000). These have been exclusively for 

academi c research purposes and thus far to the best knowledge of the author, none have 

been implemented commerciall y. As detailed in Chapter 2, CBR is a machine learning 

paradi gm that has been in ex istence fo r approx imately two decades, yet onl y in the las t 

decade has there been any signi ficant research into CBR' s application to software cost 

estimati on. More precisely, most of thi s research was undertaken in the latter half of the 
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past decade. This is indicative of the maturity that CBR as a problem solving technique 

is attaining with the result that problems that more closely represent the human thought 

process are being attempted. Several of the reported results in this area will be discussed 

below. 

Mukhopadhyay et al (1992) were the first to investigate and implement CBR as a 

software cost estimation model. They developed a tool called ESTOR with which they 

performed an experimental investigation into the feasibility of using CBR for software 

cost estimation. ESTOR made use of function point and intermediate COCOMO metrics 

as inputs to case-base. These inputs were obtained from a previous study by Vincinanza, 

et al (1991) which augments the Kemerer (1987) dataset with additional projects. 

ESTOR selects an analogue (nearest matching case in the case-base) for the new software 

project by calculating the Euc1idean distance between completed projects and the new 

project and then selecting the nearest neighbor. In order to adjust the estimate suggested 

by ESTOR, a number of production rules are used. A conflict set of rules is created for 

non-corresponding attributes, which are accordingly adjusted to resolve the conflict 

(Mukhopadhyay et aI , 1992). 

ESTOR's predictive capabilities were measured against the predictions made by an 

expert in the software engineering field and predictions made by using COCOMO 

(Boehm, 1981) and Function Point Analysis (Albrecht, 1979). In the respect that 

Mukhopadhyay et al (1992) compare the predictions made by ESTOR to an expert is 

methodological departure from more current research, which tends to compare the 

accuracy of the developed analogy-based estimation model to algorithmic models. 

Mukhopadyay et al (1992) found that for the 15 projects for which ESTOR and the expert 

had to suggest solutions; the Mean Measure of Rel ative Error (MMRE) for the expert was 

31 % and for ESTOR, 51 %. MMRE is a measure of absolute relative accuracy, which 

will be di scussed in detail in Chapter 5. MMRE can briefly be defined as the absolute 

percentage error of the prediction to the actual effort. In conclusion to their research, 

Mukhopadhyay et al (1992) state that ESTOR produced significantly more accurate 

estimates than Function Point Analysis and COCOMO. These results are indicated in 
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Table 2.1. These positi ve results give credence to the use of CBR as a cost estimati on 

technique. Kadoda et al (2000) do however criti cize the ESTOR CBR model, stating that 

a di sadvantage of the ESTOR CBR model is that it is very specific to the parti cular 

dataset since the rules and si milarity measures are defined in terms of the features 

avail able. 

Table 4.1 Relative accuracy of ESTOR to other models (Mukhopadhyay et ai, 1992) 

Method MMRE% 

Expert 30.72 
ESTOR 52.79 
COCOMO 102.74 
Function Point Analysis 618.99 

The ANGEL (ANaloGy softwarE tooL) software is a more recent analogical cost 

estimation tool developed by Schofield and Shepperd (1995). Shepperd and Schofield 

have played a central ro le in promoting analogical reasoning as a solution to software 

cost estimation. Similarl y to ESTOR, ANGEL identifies the most similar cases through 

using an algorithm that is based upon the min imizati on of Euclidean di stance in n

dimensional space (Schofield and Shepperd , 1995). What makes ANGEL different from 

other analogical too ls, is its dynamic ability to deal with differing datasets (Shepperd and 

Schofield , 1995). Thi s means that the ANGEL too l can be easily adapted to the dataset 

used as the basis to estimation. Schofield and Shepperd (1 995) prove thi s abil ity by 

testing it on three different datasets. Schofield and Shepperd (1995) do however point 

out that ANGEL is a prototype and is limited in the number of vari ables it can handle fo r 

determining the optimum combination of variables fo r finding analogies. The figure for 

the limitation number of vari ables is currently ten. Thi s is a severe limitati on, which 

would place restri ctions on ANGEL's dynamic ability to use different datasets. In 

conclusion to their research (Schofield and Shepperd, 1995), it was determined that the 

analogy based reasoning approach outperforms the algorithmic approach against which 

they compared their results. In thi s particul ar case, this algorithmic techn ique was linear 

regress ion. A summary of Shepperd and Schofield 's (1995) findings are indi cated in 

Tab le 4.2 . 
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Table 4.2 MMRE values for effort estimation (Shepperd and Schofield, 1995) 

Dataset ANGEL (MMRE %) Regression (MMRE %) 

Albrecht 62 90 
Atkinson 39 99 
Kemerer 62 106 

Subsequent to the preliminary research by Shepperd and Schofield (1995), a number of 

papers have been published that make use of the ANGEL software tool (Briand et aI, 

2000; Jeffery and Walkerdon, 1999). The primary thrust of research by the developers of 

ANGEL (Shepperd and Schofield, 1995) has been to investigate the effects of different 

datasets on the accuracy of the ANGEL estimates (Shepperd et ai, 1996; Shepperd and 

Schofield, 1997)_ A major criticism of ANGEL is that it does not provide a mechanism 

for case adaptation (Jeffery and Walkerden, 1999)_ Instead, Shepperd et al (1996) use the 

average effort value for two or three of the closest analogies suggested by ANGEL. 

Averaging is only likely to improve the estimate where the sizes of the closest projects 

straddle the size of the target project (new problem case) (Jeffery and Walkerden, 1999). 

In a methodological departure to the research reviewed above, Briand et al (2000), 

Wieczorek (2001), Finnie and Wittig (1997) and Jeffery and Walkerden (1999) have 

developed analogy-based software cost estimation models using commercially available 

CBR tools. These tools facilitate the development of customizable CBR systems. CBR 

tool s will be di scussed in more detail in Section 4.4. 

Jeffery and Walkerdon (1999) developed an analogical reasoning prototype tool called 

ACE (Analogical and Algorithmic Cost Estimator) . As in ESTOR and ANGEL, ACE 

estimates effort for a new project by searching through a database of metrics for 

completed projects and selecting the completed projects it determines to be closest to the 

new project. They made use of a custom dataset, which they derived in earlier research 

(Jeffery and Stathi s, 1999). Their findings are summarized in Table 4.3 below. The 

results they obtained indicated that ACE produced more accurate results than either 

ANGEL or the linear regression mode l. 
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Table 4.3 Mean Errors of the estimation methods used (Jeffery and Walkerden, 1999) 

Estimation Method MMRE% 

ACE 55 
Linear Regression 68 

ANGEL 112 

Finnie and Witti g (1997) developed a CBR software cost estimati on model using the 

Remind CBR development too l (Cognitive Systems Inc_). To date they have shown the 

most positive results produced by a CBR software cost estimation system; achieving an 

MMRE figure of 36.2% on a large project dataset of approx imate ly 300 software 

projects. Briand et al (2000) report more modest resul ts for their analogy-based software 

cost estimati on. They developed a CBR software cost estimation system using the CBR 

development tool CBR Works 4 (Tecc Inno). They achieved an MMRE of 74% from 

testing conducted over the entirety of the dataset. 

Table 4.4 summarizes the results from all the researchers mentioned above. These results 

indicate that CBR is highly applicable to the problem domain of software cost estimati on. 

Thi s is validated by the indi vidual researchers in comparing their models with vari ous 

regression techniques and traditional algorithmic models such as COCOMO and Function 

Point Analysis. For example: Mukhopadhyay et al (1992) found that their CBR model 

significantl y outperfo rmed COCOMO and Functi on Point Analysis (see Table 4 .1); 

Shepperd and Schofield (1997) demonstrated that regression models were unable to 

outperfo rm ANGEL using most of the, then currently avail able datasets outl ined in Table 

4 .4. 

Table 4.4 shows that the best achieved MMRE results were those obtained by Finnie and 

Wittig (1997), with an MMRE of 36%. Their methodology in obtai ning their resul ts is 

outlined in Chapter 5. A signi ficant observation that can be made from Table 4.4 is that 

Finnie and Wittig's research was conducted on a much larger dataset than those used by 

other researchers . They are the first researchers to have made use of such a large dataset. 

The most recent work was conducted by Bri and et al (2000) who obtained an MMRE of 
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74% fro m their results_ To summarize the resul ts obtained by other researchers, an 

average MM RE figure over all the projects in Table 4.4_ The average arrived at was 

55_73 %. Although averaging results is not methodologically prudent, it prov ides an 

indicati on of the results one can expect to obtai n using CBR in software cost estimation. 

Table 4.4 Summary of resul ts obtained fro m research into analogy-based software cost 

estimation. 

Analogical/CBR tool and 
Researchers Year Dataset name No. of projects MMRE% 

ESTOR / Mukhopadhyay et al 1992 Kemerer 15 

ANGEL / Shepperd and Schofield 1995 Albrecht 24 
Atkinson 21 
Kemerer 15 

1997 Desharnais 1 77 
Finnish 38 
Mermaid 28 

ACE / Jeffery and Walkerden 1999 In house 19 
Finnie and WiUig 1997 Desharnais 2 299 
ANGEL / Mair et al 1999 Desharnais 1 77 
Briand et al 2000/2001 European SJ=>.ace ~en9 166 

Average MMRE % 

Following the research rev iewed above, the typical features and considerations for 

developers of analogy-based reasoning systems can be summari zed as fo llows : 

• Case structure. 

The case structure of an analogy-based reasoning system is fo rmulated fro m the data 

that is used as an input to the system. It is the deve loper's responsibi li ty to identify 

appropriate features of the data for inc lusion in the case-base of the system. Case 

structure has implications on the similarity and adaptation mechani sms used. 

• Similarity measures. 

Similarity measures are necessary in order to identify whi ch cases are similar to the 

input case . The most popul ar form of determ ining simil arity is th rough the 

min imi zation of Euclidean di stance in n-d imensional space (as imp lemented by 

Shepperd and Schofi eld ( 1995) , Bri and et al (2000) and Wieczonek (200 1 )) . 
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• Adaptation measures. 

Case adaptation is currently an area of much discussion and speculation (Kolodner, 

1993). Adaptation is necessary in order to place the problem case in the same context 

as the retrieved case(s). A linear extrapolation along the lines of some quantifiable 

measure of development project size is currently the most popular method (as 

implemented by Jeffery and Walkerden (1999) and Briand et al (2000)). 

• Measures of prediction accuracy of the estimation model. 

It is necessary for the researcher to be able to determine the accuracy of the 

predictions made by the developed system. Implementing a standardized measure of 

prediction accuracy allows for comparison with other analogy-based models 

(verification) and serves to validate the relative success of the model developed. Two 

measures have been applied consistently in all the research reviewed, these are: the 

calculation of the Mean Measure of Relative Accuracy (MMRE) and Prediction at 

Level (I). Both of these measures were proposed by Conte et al (1986) as appropriate 

measures of system accuracy. These measures and their derivations are discussed in 

detail in Chapter 5. 

Developing a custom CBR model for software cost estimation like ESTOR and ANGEL 

is a time consuming process, since each tool has to be developed from the ground up. 

This means that considerable development time, testing time and manpower has been 

consumed by these projects. However, with the advent of sophisticated CBR shells, it 

has become unnecessary to develop a CBR application from the ground up. CBR shells 

are able to provide the basic components of a CBR system to the CBR application 

developer. These CBR shells also have mature user interfaces and are highly 

customizable by design. The positive implications for the CBR developer are significant 

and allow the CBR application developer to concentrate on hi s/her particular CBR 

application without having to develop an entire CBR environment. A discussion on CBR 

tools follows in the next section . 
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4.4 A Review of CBR Shells, Tools and an Overview of CBR Application 

Considerations. 

A CBR shell can be defined as customi zable tool for developing a CBR application. The 

advent of CBR shell s has meant that CBR appli cations can be deve loped more rapidly. 

CBR shells have expedited the development of CBR applications by removing the 

responsibility of creating the interface and logic systems from the developer- The more 

sophisticated CBR shell s are hi ghl y fl exible in defining and adjusting the core system 

logic. This would include important aspects of a CBR system such as retrieval, similarity 

and adaptati on rules . Much progress has been made on the end-user interface of CBR 

applicati ons. For example, CBR Works 4 has custornizable HTML generating capability, 

which allows the user of the CBR application to perform online queries. The ability to 

interface with case data is an important consideration for any CBR system. Thi s becomes 

more important as the size of the case base to be used increases. Many CBR she ll s 

provide import capabilities from such commonl y used database, spreadsheet and (more 

recentl y) web-based formats like XML (eXtensible Markup Language) databases. This 

ability to define structured cases from raw data fo rmats means that data can easil y be 

acquired by the CBR system. 

Watson (1 996) presents a comprehensive di scuss ion on the vari ety of software too ls and 

applicati ons in hi s analysis of CBR tools. This was the first attempt at a comprehensive 

review on thi s subject It is however not extensive whi ch creates the need to di scuss the 

tool s in further detail. In hi s review, Watson sets out to define what a theoretically ideal 

CBR too l should support. He states that a too l should not onl y support a ll the main 

processes of CBR, namely: Retri eval, Reuse, Rev ision and Retention, but also support the 

developers in deli vering an efficient tool that is capable of interfac ing with other systems. 

Watson (1996) suggests the fo llowing core function set that a CBR too l should contain : 

• Representati on - A full range of data types must be supported, e.g. numeri c, 

string, Boolean and symbol. The cases should be able to be constructed in a way 
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that is reflective of the application domain , e_g_ some domains may require the use 

of ordered symbol hierarchi es and may also benefit from object-oriented 

inheritance_ 

• Retention - The case structure should be organi zed in a manageable structure that 

facilitates efficient search and retrievaL As mentioned in Chapter 2, a balance 

needs to be struck between retaining the semanti c richness of the case to be stored 

whil st at the same time maintaining efficient levels of access and retrieva l of these 

cases_ 

• Retrieval - Indexi ng must be supported by the CBR tool, whether manual or 

automatic, to facilitate effi cient retrieval of the cases_ Watson specifies that if 

inductive techniques are used, then the tree that is generate should be open to 

inspection and alteration_ Alternately, if nearest neighbor retrieval is 

implemented then case features should be able to be weighted and similarity 

measures customjzed if necessary_ 

• Revision - The CBR tool should prov ide a facility for adaptati on of cases through 

some form of procedural programming language or through the use of Knowledge 

based techniques_ 

The above features pertain to the core competencies of the CBR tooL In addition to these 

the tool should provide the developer with functi onalities that make using the too l more 

efficient and that provide with some fl ex ibility in the creation and maintenance of the 

case base_ Watson (1996) li sts these as fo llows: 

• The use of large case-bases should be supported_ Retrieval times should at worst 

increase linearl y with the number of cases_ 

• There should be a vari ety of retrieval mechani sms, whi ch should be allowed to be 

used in paralle l with each other if necessary_ 
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• There should be a variety of metrics avai lable to assist in the development of the 

most efficient system possible and for the maintenance of the case base. 

• A CBR tool should be able to provide database connectivity to a full range 

database formats. 

• A CBR tool should provide a good user interface for the developer and the end

user alike. 

• Embedded application support should be provided to assist in the embedding of 

the developed application. The tool should thus provide support for function 

libraries (e.g. DLL support) or support for the use of standard communication 

protocols such as DDE (Dynamic Data Exchange). 

Both developer centric factors and CBR competency factors as discussed above will be 

used as the basis to the review of selected CBR tools, which follows in this chapter. Two 

of the most prominent CBR tool s available for CBR application development were 

selected for review purposes. The selection was based on availability of the product and 

financia l constraints since a licensed version of ESTEEM was accessible as was an 

evaluation version of CBR Works 4. An independent comparative review was necessary 

as the analysis conducted by Watson (1996) is not current enough to have considered 

CBR Works 4 and not detailed enough for tool se lection purposes. 

The CBR shells that were selected as possible development environments for developing 

a software cost estimation tool were CBR Works 4 and ESTEEM 1.4. Their rel ative 

strengths, weaknesses and features will be analyzed and a conclusion drawn for each 

along the lines of Watson's (1996) criteria. 
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4.4.1 ESTEEM 

ESTEEM is a commercial CBR development tool that provides an environment that is 

not only suitable for experienced CBR developers but also for those with little 

programming experience. The latest version of the ESTEEM product is version 1.4 

released in 1995. ESTEEM was originally built on the foundation of Intellicorp's Kappa

PC and has since been ported to C++ (Watson and Marir, 1994). ESTEEM has been 

particularly popular in the academic CBR research environment for CBR application 

development. 

ESTEEM has a GUI (Graphical User Interface) based user interface and has the 

capability to import and export cases from dBase IV, Lotus 1-2-3 or ASCII format files. 

From thi s perspective it can be considered slightly limited in not providing a standardized 

database access format (The importance of this will be discussed further with respect to 

CBR-Works 4). 

The GUI end user interface to Esteem 1.4 is divided into three main operational areas: 

• Target Case Entry Screen - here target case data is entered 

• Retrieved Case Screen - here retrieved case are displayed and can be analyzed I 

more detail in the selected case screen 

• Selected Case Screen 

ESTEEM can be said to lack modern features and user interface niceties, however the 

deci sion-making capabilities it has are extensive and powerful. A li sting of the internal 

logic features that make ESTEEM so popular follows: 

• 

• 

ESTEEM has its own inference engine, which enables CBR application 

developers to create adaptation rules; 

It supports case hierarchies that helps to systematically reduce the size (and 

therefore complexity) of search fi eld ; 
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• It has the ability to access multiple case-bases and nested cases_ The impl ications 

of being able to reference nested cases is that an entire tree of cases can be 

referenced with a single attribute entry in the case base; 

• It is capable of hierarchi cal retrieval, a ll owing the induction process to be 

controlled through feature counting, weighted feature computation and inferred 

computati on_ 

In addition to the core capabilities of ESTEEM, there are further end-user interface 

features that are useful to the CBR developer. Like any CBR shell should provide, 

ESTEEM has an end-user interface whereby the user can enter a new case, retri eve 

similar cases from a case-base, modify or adapt selected cases for use in the new problem 

situati on_ There exists a limited capability fo r the CBR developer to develop customi zed 

GUI (Graphical User Interface) interfaces for the end-user. However, the developer of an 

ESTEEM CBR application is able to select the capabilities that the end-user can have in 

the applicati on and what modificati ons can be made to the case base_ The user is able to 

adjust the way cases are retri eved to suit hi s/her requirements, add new cases to the case

base, use rules of the domain to assist in adaptati on of a retrieved case to the new case 

(ESTEEM] .4 Product Documentati on, 1995)_ 

ESTEEM has the fo llowing predefined similarity matching capabilities for cases : 

• Feature counting 

• Weighted feature computati on 

• Inferred feature computati on 

The above three methods are then accentuated by combinati ons of matching perfo rmed at 

the feature (attribute) level: 

• Exact feature value match (and derivati ves) 

• Parti al fea ture value match (and deri vatives) 

• Parti al word matching (and derivati ves) 

• Equal feature matching (descri bes numerical equality) 
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• Range feature matching (similarity between numbers with a given tolerance, 

value returned is 0 or 1) 

• Fuzzy Range feature matching 

• Inferred Feature matching 

• Recursive feature matching (especially for nested cases) 

• Matching for multi-valued sets in text features 

With reference to the weighted feature computation, ESTEEM version lA has what is 

called an automatic weight generation facility, whereby two different heuristics are 

provided to determine the relative weights of a case base' s features: The ID3 Weight 

Generation method (Quinlan, 1990) and the Gradient Descent Weight Generation 

method_ 

As the name suggests, the ID3 method employs the popular (in algorithmics) algorithm to 

build a deci sion tree for the cases in the case base. This tree is then used to calculate 

weights for the features that were used in the tree. Note that the user is able to select the 

target and source features. With the ID3 algorithm, only one target feature can be 

specified. Unlike the ID3 algorithm, the Gradient Descent Weight Generation method, 

multiple targets can be specified. The Gradient Descent Weight Generation method's 

algorithm is as follows: several random cases are selected from the case base, and the 

cases that are most similar to them (based on the current weights of the source features) 

are found. 

Esteem makes the source Kappa-PC code available to developers. This allows the 

developer to embed CBR functionality within the Kappa environment. The Kappa-Pc 

code can be exported as C code then compiled into a standalone application (Watson, 

1996). 
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The Capabilities of ESTEEM Contextualized by Watson's (1996) Criteria: 

According to Watson's (1996) criteria for the core competencies of a CBR tool , 

ESTEEM's features can be summarized as follows: 

• Representation - An extensive range of data types are supported which IS 

sufficient for any CBR application. 

• Retention - Like most CBR tools, cases are represented with a set of feature types 

and feature value pairs. These can be actively di splayed and navigated through 

the GUI 

• Retrieval - ESTEEM makes available a number of algorithms for retrieval. 

Combining the available forms of matching and similarity leads to greater 

precision. ESTEEM has provided an extensive range of similarity options within a 

rigid framework, in that it would have been preferable to have allowed the 

developer to be able to develop hi s/her own similarity measures in addition tot 

hose already provided. 

• Revision - ESTEEM allows developers to create their own adaptation rules 

With reference to the developer centric aids that ESTEEM provides: 

ESTEEM is able to support large databases. It does however have a restrictive support 

for only a few database types e.g. Lotus and DBASE. This means that the developer 

might have to transfer the database to a compatible database format. The GUr is 

functional yet dated owing to its similarity to that of the Windows 3.1 operating system. 

Retrieval algorithms provided (as mentioned above) are extensive and sufficient for most 

CBR applications. Metrics for efficiency are not provided. 

The ESTEEM based application can be embedded and can exist as a standalone 

application. 
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In summary, Esteem 1 A is a competently designed CBR shelL The areas in which it is 

not ideal are : 

• In the flexibility of its similarity definitions 

• Its limited capability for interfacing with external databases. 

• Dated GUI 

4.4.2 eBR Works 

CBR Works was developed by Tec-Inno Germany. It makes use of an object-oriented 

framework for the definition and storage of cases. It does this through the use of CQL 

(Case Query Language), which is a standardized exchange format specially developed for 

CBR applications. CQL is an object-oriented language for storing and exchanging 

domain model descriptions and cases. 

The latest release (version 4.2.1) was out in the year 2000. According to the CBR Works 

4 reference manual, the most significant features of CBR Works 4 are as follows: 

• Availability for major operating systems (Windows, UNIX, Macintosh) 

• Object oriented modeling capabilities 

• Direct ODBC (Open DataBase Connectivity) to databases 

• Generic web-interface 

• Flexible similarity measures 

• Integration with existing systems via CQL 

• HMTL and Java front end capability 

CBR-Works 4 has a GUI interface that has been divided into four self-contained units: 

• 
• 
• 
• 

The concept manager - for managing and defining the structure of the cases 

The type manager - defines types for attributes and their similarity measures 

The case explorer - provides tools to manage the case base 

The case navigator - allows retrieval to be carried out 
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These intuitive units make it easier for the CBR developer to construct, navigate and 

modify the CBR application. The concept manager allows for a case structure to be 

imported or developed from an existing database that is ODBC compliant. Furthermore, 

the case explorer allows cases to be directly imported from any ODBC database. Queries 

are easily performed through the case navigator. All queries are totally customizable and 

a form of automated question answering query can be designed and performed. 

In CBR Works, concepts define the structure of cases. Each concept consists of 

attributes, which in turn may be concepts themselves. The structure of concept attributes 

includes three properties in addition to the attributes definition. These are relative weight 

(to other concept attributes), whether an attribute is a discriminant for retrieval and 

whether the attribute is mandatory for queries. 

Like ESTEEM, CBR Works has similarity matching capabilities for cases (concepts) and 

attributes . Similarity for concepts is approached from two different perspectives. Tbis 

depends on whether the similarity is to be based on content or structure; contents-based 

similarity or structure-based similarity. Contents-based similarity is computed based on 

the attributes that are defined in the case structure (concept) and in CBR Works can be of 

four types: 

• Average - where all attribute similarities are averaged. 

• Euclidean - where a geometric interpretation of the distance between the contents 

of a concept is made. 

• Minimum - where the lowest attribute similarity defines the contents-based 

similarity. 

• Maximum - where the highest attribute similarity defines the contents-based 

similarity. 

Concept similarity can be computed as a weighted sum of contents based similarity and 

structure-based similarity. In structure based similarity the similarity is computed 
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independent of the concepts contents. Types or attributes are defined hierarchically with 

CBR Works and new attributes are defined as sub-types to the elementary predefined 

types. Similarity can computed for these attributes in a variety of ways: 

• Value to value comparisons 

• Type dependant similarity - such as strings 

• Functional specification - highly flexible method achieved through the use of 

graphs which can be tailored to the specific situation. For example, the similarity 

can vary as the value of the attribute increases 

• User defined - through the use of the programming function. 

CBR Works has the capability of defining more than one similarity for each type. This 

specifically caters for situations where the decision on what similarity to use 

CBR Works takes a slightly different approach to similarity than ESTEEM. Even though 

value and type similarity is computed in the same way, CBR Works provides additional 

functionality. In CBR shells, the definition of similarity is generally closely linked to the 

definition of attribute/object types. In CBR Works, there are three initial options for 

similarity: standard, advanced and programming. Standard and advanced modes provide 

a choice of symmetric and asymmetric similarity. In symmetric mode, the result of the 

similarity is independent of the roles of the target and source queries, whereas in 

asymmetric similarity, the result depends on the role of the compared values. What 

makes CBR Works extremely flexible is that it has a programming mode (mentioned 

above), which allows the developer to write his/her own similarity functions in the 

Smalltalk programming environment. Furthermore the ability to compute customizable 

non-linear similarities is a powerful feature. 
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The Capabilities of CBR Works 4 Contextualized by Watson's (1996) Criteria: 

As with ESTEEM and most flexible CBR tools intended for diverse CBR application 

development, the core functionalities of retrieve, retention, reuse and revision are well 

implemented: 

• Representation - One again extensive range of data types are supported, which is 

sufficient for any CBR application_ Furthermore, CBR Works is able to import 

case types from a database or the user is able to define his/her own type, which is 

not present. 

• Retention - Like ESTEEM, cases are represented with a set of feature types and 

feature value pairs_ These can be actively displayed and navigated through the 

GUI which displays them in a tree-like fashion_ The structure can be edited and 

maintained through the intuitive interface. 

• Retrieval - CBR Works makes available all the popular algorithms for retrieval. 

The developer is able to compose similarity functions manually if necessary. This 

is not ideal but the feature is most welcomed. 

• Revision - CBR Works provides developers with capability of defining 

customized adaptation rules to facilitate case revision_ 

With reference to the developer centric aids that CBR Works 4 provides: 

Like ESTEEM, CBR Works is able to support large databases. Furthermore CBR Works 

has Microsoft ODBC support which allows it to interface with any ODBC compliant 

database. This is a particularly useful feature for importing large case bases. The CBR 

Works GUI is intuitive and relatively easy to master-

Retrieval algorithms provided are highly customizable and the ability to generate ones 

own retrieval criteria enhances CBR Works appeal in terms of flexibility. As with 

ESTEEM, metrics for efficiency are not provided. CBR Works is intended as a complete 

CBR package and does not allow for standalone applications to be developed. It does 
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however have the capability to act as a case server through the use of CQL (Case Query 

Language). This means that an online web accessible application can be developed. 

In summary, CBR Works provides numerous advantageous over its competitors. The 

most noteworthy are that similarity can be manually defined or programmed if necessary. 

The ODBC database support allows for the easy definition of the case structure and 

importing of the case base. In addition the intuitive GUI makes the development and 

maintenance of the case base a more efficient task. It is for these reasons that CBR 

Works was selected as the CBR tool to develop a CBR software cost estimation tooL 

4.5 Concluding Remarks on the Application of Case-Based Reasoning to Software 

Cost Estimation 

The purpose of the previous sections were to discuss the current state of research into 

analogy-based software cost estimation models and to describe CBR tools that facilitate 

the development of an application of that nature. Researchers such as Shepperd and 

Schofield (1997) and Mukhopadhyay et al (1992) have demonstrated the applicability of 

analogy-based models to the problem of software cost estimation. Furthermore, Briand et 

al (2000) and Finnie and Wittig (1997) have demonstrated CBR tools can successfully be 

applied to developing analogy-based software cost estimation models. The research, 

literature and theory discussed in this chapter and preceding chapters gives credence to 

and forms a foundation for the development of an experimental CBR software cost 

estimation modeL The development of this CBR system is presented in Chapter 5. 
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Chapter 5: Experimental Design and Results 

In thi s chapter the goals, definition , design and fo rmul ation of the experiments are 

explored in detail. In order to justify the experiment, it is necessary to place the 

experiment in context with similar research that has been performed by other researchers. 

5.1 Placing the Experiment in Context with Similar Research through Further 

Exploration of the Published Findings of Other Researchers 

Chapter 4 inter ali a explored the vari ous analogy-based appli cations developed for 

software cost estimation. Further to thi s, the underlying methodologies of the 

investi gations into CBR as an effort estimati on method shall be discussed below, through 

further explorati on of the published findings of other researchers. Particular attention is 

given to the structure of the case bases used, the adaptati on methods and measures of 

predi ctive performance used. Most often, detailed information on adaptation rules used 

and specific case structures was not avail able in the published literature. The research 

projects di scussed be low have all attempted to validate the use of CBR as an effort 

estimation technique. Usuall y, the CBR method was compared to some regression model 

or across multiple datasets. 

As mentioned earli er, Jefferey and Walkerdon (1999) investi gated the use of analogy and 

regress ion fo r estimating software effort. Their prototype ACE, estimated the effort 

required for a target project by searching through a database of metri cs for completed 

projects, determining the highest ranking completed project and adjusting the effort value 

of the completed project taking into account the difference in size between the target and 

completed project. The results were then compared to a linear regression model and the 

results from the ANGEL (Shepperd and Schofi eld , 1995) estimati on too l. Conclusions 

were then draw n from the stati sti cal ranki ng of the accuracy of the vari ous meth ods used. 

The measurement of accuracy in thi s experiment was MARE (Mean Average Relati ve 

Error). In additi on to thi s they measured the prediction accuracy th rough the use of the 
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prediction at level l (Pred(l)) measurement. The use of this measure of predictive 

accuracy is discussed in the experimental methodology section below. 

Kododa et al (2000) explored some of the practical issues associated with the use of CBR 

for effort estimation. They wanted to determine the impact of case base size on 

prediction accuracy, what number of analogies to use in making a prediction and what 

adaptation strategy to use in finalizing the prediction. They made use of the ANGEL 

estimation tool (Shepperd and Schofield, 1995) on a dataset which was divided into 4 

portions of increasing size. The larger portions were a superset of the smaller portions. 

This was necessary to explore the impact of the size of the case base on prediction 

accuracy. One of the datasets supplied by Desharnais consisted of 77 software projects. 

Kododa et al (2000) made use of the MMRE (Mean Magnitude of Relative Error) statistic 

to measure the accuracy of the CBR system. 

Finnie and Wittig (1997), in their investigation of software cost estimation techniques, 

used a project dataset of approximately 300 completed software projects to compare the 

accuracy of the model s. They removed 50 cases from the case base to test the accuracy 

of the CBR system on the remaining cases. The CBR system was developed using the 

CBR tool Remind version 1.3. Since the data used consisted of function point counts, the 

case base was structured accordingly and consisted of: significant general characteristics 

(GSC's), system size (in unadjusted function points) and the ratios of inputs, outputs, 

inquiries, internal files and external files to the unadjusted function point count. The 

adaptation rule developed for the system was based on the differences in productivity for 

each significant GSc. Productivity was measured as a ratio of UFP to total development 

hours. Six significant GSC's were selected based on statistical analysis (refer to Chapter 

3 for a full description of the GSC's used in function point analysis or to Table 5.2). A 

simple linear regression model was developed for each significant GSC against the 

productivity. The adaptation rules adjusted the effort estimation using a multiplier based 

on the differences for any significant GSc. After the adaptation rules were implemented, 

the final effort prediction was based on the average of the three nearest cases (Finnie and 

Wittig, 1997). Accuracy of the models developed for this experiment were measured by 
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the MARE (Mean Absolute Residual Error) statistic. They based the choice of this 

method of accuracy measure on similar research conducted by Srinivasan and Fisher 

(1994). After analysis of the formulation of the MARE accuracy measure, it was found 

that it is of the same mathematical form as the MMRE accuracy measure and therefore 

simply another nomenclature for the same accuracy measure. 

Schofield and Kitchenham (1996) made use of the ANGEL estimation tool on a number 

of datasets to demonstrate the superiority of CBR in this field against regression models. 

They partitioned the datasets used, limiting the case base to those projects developed 

using the same development environment. Accuracy was measured by the MMRE 

statistic. Similar work was carried out by Shepperd and Schofield (1997). The final effort 

estimate was derived using a weighted or unweighted average of up to three analogous 

projects. 

In all of the abovementioned research , the case simjlarity mechanism operated by 

minimizing Euclidean distance. This is considered the best approach for this problem 

domain (Shepperd and Schofield, 1997). A number of observations can be made from the 

above di scussion on the methodologies used in previous research conducted into the use 

of CBR as an effort estimation technique. The following methodological considerations 

can be drawn from the literature: 

• 

• 
• 
• 

Identification of a suitable dataset containing data on past software development 

projects, their characteristics and the effort associated with them. 

The selection or development of an appropriate CBR or analogical tool. 

Deciding on the measure of quality for the results obtained from the tool used. 

Comparing the results with another estimation model (usually a regression 

model). 

None of the above sources reports directly on an investi gation into the role of case 

granularity on the quality of the results. This provided the motivation for one of the 
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major sub-goals of this research. 

following section 

The goals of the experiment are discussed m the 

5.2 Goals of the Experiment and Hypothesis 

The primary objective of this experiment was to investigate the applicability of case

based reasoning to the problem of software effort/cost estimation. 

Sub-goals of the Experiment 

The primary sub-goal of this experiment was to investigate the impact of case granularity 

on the predictive capabilities of the CBR model. 

Secondary sub-goals were: 

• To identify suitable case structures for the CBR system 

• To select an appropriate measure of accuracy of the CBR system. 

This research concludes with recommendations on the applicability of CBR to effort 

estimation and suggestions for future research. The logical process followed in 

developing the experiment is indicated in Figure 5.1 

Formulation of Hypothesis for the Primary Sub-Goal 

This hypothesis is based on assumption that providing the CBR system with more data 

regarding the software projects will improve estimation accuracy. Finnie and Wittig 

(1997) found that only six GSC's in their data were relevant to their effort estimate. This 

was determined through a statistical analysis of the 14 GSC's contained in the data. They 

sought to identify key factors affecting productivity and thus the most significant factors 

contributing to the effort estimate. In their experiment, Wittig and Finnie (1997) chose to 

exclude more specific data on the function point counts of External Inputs, External 

Outputs, External Inquiries, Internal Logical Files and External Interface Files. The use 

The Applicahiliry of Case-Based Reasuning to S()fiware Cost Estimatioll 
106 



Chapter 5 
Experimental Design and Results 

of the full adjusted function point count was excluded from any rules and calculations 

used for the effort estimate. Finnie and Wittig ' s statistical refining of the data therefore 

shielded the CBR system from having to differentiate the raw data. 

It is therefore necessary to determine whether providing the CBR system with a more 

detailed description of the software projects (cases) will necessarily result in improved 

prediction accuracy or whether it will reduce this accuracy as the CBR system as it 

becomes unable to differentiate the cases adequately for the purposes of retrieval and 

ultimately effort estimation. 

Thus, the hypothesis can formerly be stated as follows: Increased case granularity will 

improve the quality of the predictions made. 

5.3 Methodology of the Experiment 

To accomplish the above stated goals a case-based reasoning model was developed using 

the CBR Works version 4 development environment. A number of case structures and 

associated case bases were constructed so as to reflect increasing granularity of the data 

made available to the CBR system for reasoning. Statistical analysis of the results 

included the evaluation of Mean Magnitude of Relative Error (MMRE) and the predictive 

capabilities of the model. A discussion of the methods used to obtain these statistics 

follows in Section 5.3.2. 

The development structure of the experiment is illustrated in a flow chart depicted in 

Figure 5.1 below. An important aspect of any CBR system is the case structure. The 

case structure determines what view the CBR system has over the problem domain. The 

form and nature of the case structure itself is dependant on the data that is available from 

which to formulate it. Thus, an examination of the data was undertaken, to establish 

which attributes in the data should be included in the case structure. Since the hypothesis 

required a number of case structures to reflect the increasing granularity of the data, three 

case structures were formulated from the data. The following section describes the nature 
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of the dataset used, adjustments made to the dataset in preparati on fo r the experiment, the 

measures of accuracy used, the case structures developed, the adaptation rules used and 

the similari ty measure used for in retrievi ng the closest matching case. 

Exam ine dataset to define criteria for 
r.ase strIJr.lI lres 

• Define the case structures fo r the 
exneriment 

• .. Formulate the case base contingent on .. the chosen case structure 

• Develop the CBR system for the case 
structure 

I Formulate similarity rules I Form ulate adaotation rules 

• Extract results from the CBR system 

• Determine the accuracy of the resu lts 

• Draw experim ental conclusions 

Figure 5.1 Flow chart of logical process fo llowed in developing the experimental CBR 

systems. 

5.3.1. Dataset Considerations 

For the purposes of thi s research, a database of approxi mately 300 software projects was 

obtained fro m a Canadi an researcher, Jean-Marc Desharnais (author of the database). 

Thi s dataset was obtained through personal conespondence with Desharnais. A smaller 

subset of the Desharnais dataset has previously been made avail able to other researchers 
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In CBR. For example, Shepperd and Schofield (1995,1997) have used thi s data 

extensively in their research into the use of analogical reasoning usi ng their ANGEL 

estimation tool. In a hi ghly competiti ve industry, software developers are not eager to 

provide even academi c researchers with informati on regarding their software projects. 

The datasets that are available to researchers are extremely difficult to obtain, are all of 

limited size (typically less than 100 projects) and are usuall y based on very old (early 
, 

1980's) project data. Some of these datasets have been mentioned in the di scussion on 

software cost estimati on techniques and are summari zed in Table 5.1. Dolado (1999) 

complained of the simpli stic nature of the data available to researchers, which causes any 

results obtained to be scientifically inconclusive. These inadequate datasets have been 

used in most of the research into CBR and analogical reasoning applied to software effort 

estimation. 

Table 5.1 Datasets that have been used by researchers 

Name of Number of Description Year 
Dataset projects 

Albrecht 24 IBM DP Services projects 1983 
Atkinson 21 Builds to a large telecoms product 1994 
Desharnais 1 77 Commercial projects from Canadian software house 1988 
Finnish 38 IS projects from 9 different Finnish companies Unknown 
Kemerer 15 Large business applications 1987 
Mermaid 28 New enhancements and projects Unknown 
Desharnais 2 300 Compilation of commercial projects 1997 
ESA 166 European Space Agency projects 2000 

It is ev ident from the above table that most of the datasets that have been used in the 

literature are based on informati on fro m a limited number of projects and are mostly 

contemporaril y out of date. 

The newer Desharnais dataset (referred to as Desharnais 2) consists of functi on point data 

for software development projects co llected over a peri od from 1984 to 1990. It contains 

detailed data on the fun cti on point counts fo r these projects including general system 

characteri sti cs (GSC's) and the total reali zed development effort fo r each project. Table 

5.2 shows the structure of the Desharnais 2 dataset used. Note that the functi on counts 

are proceeded by a descripti on and the multiplicati ve weighting recommended by the 
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International Function Point Users Group (IFPUG) for the calculation of the unadjusted 

function point count. 

Analysis of the Dataset 

After an analysis of the dataset and the fields contained in it, a number of fields were 

excluded from use in this experiment (these are indicated in bold in Table 5.2) for the 

following reasons: 

• The data on project manager experience and technical personnel experience was 

not consistently available for every software project, therefore including this 

feature as a discriminant in the CBR system could compromise consistency. 

• Information on exactly which sector of activities the project data was collected 

from was not available for privacy reasons. Desharnais indicated in which sector 

the projects were deployed by allocating a different number to each sector. In 

order to produce an accurate measure of the software productivity associated with 

each sector, further information on the nature of the software development would 

have to be known. This attribute was therefore excluded from the experimental 

dataset. 

• The data on the number of personnel in the software development projects 

described in the Desharnais database was not considered for inclusion in the 

experimental CBR systems, since the values provided were approximate team 

sizes and therefore the precise effects on productivity could not be determined. 

An additional consideration for this decision was that the effect on development 

team size on programmer productivity is a subject of differing opinion in the 

literature (Boehm, 1981; Conte et ai, 1986, Wittig 1991). 

• Project duration in months and the year in which the project was completed were 

not considered since they of an informative nature and their inclusion would not 

enhance the predictive capabilities of the estimation model. 
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The adjustment factor based on language was considered an important contributor to 

software productivity. It was therefore incorporated in the calculation of the value 

adjustment factor (V AF) in a case structure to facilitate a more accurate adaptation 

strategy (see Case Structure 3). Adjustments made to the dataset included: the 

calculation of the weighted total s for each of the five function point counts (External 

Outputs, External Inputs, Internal Logical files, External Inquiries and External Interface 

Files). Since the data provided was of the raw (unweighted) function point counts, it was 

necessary to apply the IFPUG weighting scheme to these counts. The weights exist to 

equalize the contribution of the function counts to the UFP count. Thi s enables the CBR 

system to consider each function as contributing equally to productivity and indirectly the 

effort total. This is an important consideration for determining the similarity of the cases. 

The weighted function point counts were used to calculate the unadjusted function point 

(UFP) count for each project. Chapter 3 presents a detailed description of function point 

counting. The general system characteristics and the adjustment factor for programming 

language was totaled and used to calculate the value adjustment factor as per the IFPUG 

defined method. The IFPUG methodology only accounts for 14 adjustment factors. The 

addition of another adjustment factor (Adjustment factor for programming language) 

meant that it was necessary to adjust the IFPUG method that calculates the adjusted 

function point count. 

With reference to Table 5.2, the definition of the function point data contained within the 

dataset is covered in detail in Chapter 3, Section 3.2.4.1. This section also detail s how 

the function point counts are derived . 
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Table 5.2 Original structure of the Desharn ais dataset. 

Desharnais Dataset Structure Description of Dataset Fields 
WeightlR 

ange 

Project Number A unique number for each project 

Year Completed Year in which the project was completed 

Duration in months The Duration of the project in months 

Effort in Hours Total effort in hours to complete the project 

Internal Logical Files Low Count User Identifiable group of logically related 7 

Internal Logical Files Average Count data or control information within the 10 

Internal Logical Files Low Count boundary of the application 15 

External Interface Files Low Count User Identifiable group of logically related 5 

External Interface Files Average Count data or control information referenced by the 7 

External Interface Files High Count application 10 

External Outputs Low Count An elementary process that processes data or 4 

External Outputs Average Count control information that comes from outside 5 

External Outputs High Count the application boundary 7 

External Inputs Low Count An elementary process that processes data or 3 

External Inputs Average Count control information that comes from within the 4 

External Inputs High Count application boundary 6 

External Inquiries Low Count An elementary process that sends data or 3 

External Inquiries Average Count control information outside the application 4 

External Inquiries High Count boundary 6 

General System Characteristic 1 Complexity of Data Communications 0-5 

General System Characteristic 2 Complexity of Distributed Data Processing 0-5 
General System Characteristic 3 Complexity of Performance Requirements 0-5 

General System Characteristic 4 Degree of computer resource restrictions 0-5 

General System Characteristic 5 Degree of Transaction Rates required 0-5 
General System Characteristic 6 Degree of Online Data Entry 0-5 
General System Characteristic 7 Degree of End-User Efficiency 0-5 
General System Characteristic 8 Degree of internal logic files updatinq 0-5 
General System Characteristic 9 Degree Complex Processing required 0-5 
General System Characteristic 10 Degree of Reusability required 0-5 
General System Characteristic 11 Deqree of Installation Ease 0-5 
General System Characteristic 12 Degree of Operational Ease 0-5 
General System Characteristic 13 Degree of requirements for Multiple Sites 0-5 
General System Characteristic 14 Degree of modifiability required 0-5 
Adjustment Factor based on language Complexity of programming language used 0-5 
Total for all Adjustment Factors Value Adjustment Factor (VAF) 
Programming Language Category of proqramming language used 1-3 
Project Manager Experience in Years Experience of the senior project manager 
Technical Personnel Experience in 
Years Experience of senior technical personnel 
Sector of Activity Sector category for application deployment 1-4 
Number of People Involved in the 
Project Total number of people used in the project 
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5.3.2. Definition of the Precision of the Experimental Results 

The selection of which accuracy measures to use was based upon the analysis of quality 

measurements used in other similar research as indicated in the beginning of this chapter. 

In comparing the performance of ESTOR with COCOMO and Function Point Analysis 

(FPA), Mukhopadhyay et al (1992) chose to determine some measure of accuracy and 

consistency. These were based on the same criteria that Kemerer (1987) used in his 

analysis of cost estimation models. Accuracy is said to be the most important 

consideration, since the software project is directly affected by the effort estimation 

(Mukhopadhyay et aI, 1992). Mair et al (1999) support this view and state that the 

potential spread of error generated by an estimation system is of most significance to 

developers. It is necessary to compensate for the absolute error for project size that can 

arise. For this reason a percentage-based accuracy measure would be preferable. For 

example, a larger software project may have as much as a 1000-hour prediction error 

whereas a smaller development may only produce an error of 100 hours. The relative 

errors are equally important to the software developers. 

In the CBR research domain, two most popular methods of establishing a models 

accuracy are through the calculation of MRE (Magnitude of Relative Error) and Pred(l) 

(Prediction at levell) (Conte et ai , 1986). Both are percentage-based measures since it is 

necessary to compensate for the absolute error for project size that can arise - this is 

particularly necessary for cost estimation since project size can vary significantly. MRE 

was first suggested by Thebaut (1983) and has since been supported in the literature as an 

appropriate accuracy measurement (Conte et ai, 1986; Kemerer, 1987; Mukhopadhyay 

1992). However this measure has come under some criticism for weighting the 

importance of overestimates more than underestimates Shepperd and Schofield, 1997). 

The Magnitude of Relative Error (MRE) is a normalized measure of the discrepancy 

between actual values V A and fitted (predicted) values V F (MacDonnell and Gray, 1996). 

This can be formulated as follows in Equation 5.1 : 
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Iv -V I 
MRE = A F (5.1 ) 

VA 

Mean Magnitude of Relative Error (MMRE) is the percentage-based measure of the 

above equation that considers all observations in the validation sample i.e. an average of 

the MRE results for the sample (MacDonnell and Gray, 1996). A lower MMRE will 

therefore indicate that the model is more accurate. 

Prediction at level L (Pred(L) ) is a threshold oriented (and therefore configurable) 

statistical measure based on the MRE measurement for each estimate. It is able to show 

the consistency of the predictions made by a software estimation model. It is formulated 

in Equation 5.2: 

e 
Pred(l)=

n 
(5.2) 

where L is the selected threshold value, e is the number of data points with MRE less than 

or equal to L. n is the total number of data points available. Conte et al (1986) state that 

Pred(25) is an appropriate calibration for Equation 5.2, since it is desirable that the model 

to be tested produces a high percentage of predictions that fall within the 25% MMRE 

range. 

Shepperd and Schofield (1997) summarize the two techniques as follows: MMRE is a 

fairly conservative measure which exhibits bias against overestimates while Pred(l) will 

identify those prediction systems that are generally accurate but occasionally wildly 

inaccurate. It is for the reasons of comparison that they chose to adopt MMRE and 

Pred(25) as their accuracy measurements. Indeed, Mair et al (1999), Finnie and Wittig 

(1997), Mukhopadhyay et al (1992) are some researchers that have used these 

measurements in their estimation systems. Thus, it is for the reasons of conformity and 
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comparability that these measurements shall be used to benchmark the CBR system 

developed in the course of thi s research. 

In addition to the two techniques of measuring the quality of results, a linear regression 

model was developed to further validate the results obtained from the experiment. 

5.4. Case Structures, Similarity Rules and Adaptation Mechanisms Implemented in 

the Experiment. 

Three case structures were proposed to measure the accuracy and predictive capability of 

the CBR system and the effect that case granularity has on the quality of the predictions 

made by the CBR system. For each case structure the relationship between project 

development effort and the attributes used, is indicated in diagrammatic form. In 

addition, a flat file view of each case structure is given. 

Three of the most important aspects considered in the literature when developing a CBR 

system form the basis for the discussion on the three CBR systems developed. These are: 

• Definition of case structure 

• Definition of similarity mechanism 

• Definition of adaptation mechanism 

Each case structure required the development of a new CBR system with a new case base 

reflecting the new case structure. In addition, similarity and adaptation rules were re

defined for each of the three CBR systems developed. The adaptation mechanism used in 

each CBR system is discussed in the description of the case structures. The similarity 

algorithm used was the same for all three CBR systems to allow for comparability. 
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5.4.1 Similarity Algorithm Used 

In all case structures described below only the re levant function point counts were used 

as di scriminants by the CBR system in determining the closest matching cases. The 

similarity measure described below was chosen because it has similarly been successfully 

applied by other researchers (Briand et aI, 2000; Wieczonek, 2001; Finnie and Wittig, 

1997 and Shepperd and Schofield, 1995, 1997). The similarity measure used to 

determine the closest matching cases is implemented by the following two-stage 

algorithm: 

• Determine attribute similarity - determine the similarity of each di scriminant 

attribute to the same attribute from the query (input) case using the following 

algorithm (CBR Works reference manual , 2000): 

Let q = query-value (an attribute input value from the new problem case) 

Let c = value of a case attribute 

Let lh = the defined lower bound 

Let uh = the defined upper bound 

If q = c then similarity = 1,0 Ilthey are identical 

else 

( 

) 

similarity = 1,0 - ( ( Iq - cl )J 
uh-lh 

(5.3) 

The upper and lower bounds were defined to be the maximum and minimum values 

(respectively) of the attributes over the entire dataset. 

Alternately thi s can be defined mathematicall y as in Briand et al (2000): 
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For each variable k of n variables included in the similarity measure, the 

distance (8(~k ' Pjk )) between the target project (new case) variable value Pik and the 

source project variable value Pjk is defined as: 

[ 
I~k -Pjk I J2. . . 

... . ' if k lS contmuous 
max k - mIn k 

8(~k, Pjk ) = O,if kiscategoricalAND~k = Pjk 

1, if k is categorical AND ~k *- Pjk 

(5.4) 

Where max and min are the defined upper and lower bounds of the variable respectively. 

• Determine the closest matching case - which case exhibits the closest similarity to 

the query case. 

Here the similarity of the cases is computed based on the geometric interpretation of the 

attribute-based similarity. Normalized un-weighted Euclidean distance is used to 

determine the proximity of the cases in n-dimensional space, where each dimension 

corresponds to a different case attribute i.e. minimization of Euclidean distance 

determines the closest matching case. Following from Equation 5.5, mathematically, the 

Euclidean distance in n-dimensions between two points Pi and Pj is (Briand et ai, 2000): 

t 8(~k - Pjk )2 
dis tan ce(~ , Pj ) = k =1 (5.5) 

n 

Where Pi (or qi) is the coordinate of P (or q) in dimension i. 

Shepperd and Schofield (1997) summarize the benefits of the Euclidean distance method 

of determining case similarity as follows: Determining the proximity of cases in n-

dimensional case is intuitively appealing for finding case similarity. Since each 
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dimension is standardized (between 0 and ]), each attribute has the same degree of 

influence and therefore the method is immune to choice of units and individual attribute

specific size differences. Moreover, the notion of distance gives a good indication of the 

degree of similarity. 

The case structures derived for the purposes of this experiment are outlined in detail in 

the discussion on the CBR systems developed that follows. The case structure and 

adaptation mechanism are the defining features of the experimental CBR systems 

developed. The simjlarity measures implemented were the same for each CBR system in 

accordance with the above discussion on similarity. 

5.4.2 CBR system 1 - Case Structure and Adaptation Mechanism 

This case structure was developed to provide the CBR system with a limited view of the 

relation between the function point counts for data functions and transactional functions 

to total development effort in hours. Only five function point attributes were used for this 

case structure: External Interface Files (ElF) total, Internal Logical Files (ILF) total, 

External Inputs (El) total, External Outputs (EO) total and External Inquiries (EQ) total. 

As previously mentioned and detailed in Chapter 3; Section 3.2.4.1, these total s are 

derived from the low, average and high raw counts for each function multiplied by their 

associated weight as per the International Function Point Users Group (IFPUG) method. 

Included in the case structure are the unadjusted function point (UFP) count for each case 

and the development time in hours for each case. This is used in the final calculation for 

predicted effort. The relation between total effort and these function point totals is given 

in Figure 5.2. A flat file view of the case structure is given in the Table 5.3 
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Logical relationships in Case Structure 1 

Effort (hrs) ~ 

Data Function 
Counts { 

Transactional Functio 
Counts 

Figure 5.2 Logical relationships in Case Structure 1 

Table 5 3 Flat file view of case structure 1 . 
Case Structure 1 

Internal Loqical Files Weighted Total 
External Interface Files Weighted Total 
External Outputs Weighted Total 
External Outputs Weighted Total 
External Inquiries Weighted Total 
Total Effort (hrs) 
Total Unadiusted Function Points 

Internal Logic Files 
Weighted Total 

External Interface Files 
Weighted Total 

External Inputs 
Weighted Total 

External Outputs 
Weighted Total 

External Inquiries 
Weighted Total 

The ANGEL software tool developed by Schofield and Shepperd (1995) does not 

implicity implement an adaptation mechanism . However, more recent research pays 

attention thi s issue (Jeffery and Walkerden , 1999; Briand et ai, 2000) . It was therefore 

decided to implement the adaptation mechanism described below. 

Adaptation Mechanism 

The predicted effort was calcu lated via linear ex trapolation along the dimension of the 

unadjusted function point count, since effort can be strongly correlated to function points 

(Jeffrey and Walkerden , I 999;Briand et ai, 2000). This is implemented in Equation 5.6: 
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Effort ANALOGIUE FP 
EffortTARGET = x U TARGET 

UFPANALOGUE 

(5.6) 

Where, EffortTARGET is the predicted effort in hours for the input case, EffortANALOGUE is 

the effort in hours of the retrieved case, UFPANALOGUE is the unadjusted function point 

count of the retrieved case and UFPTARGET is the unadjusted function point count of the 

input case. This is calculated by taking a ratio of the retrieved (analogue) cases effort to 

its UFP count, which is then re-adjusted for the target case (input case). 

Case structure 1 was developed to provide the lowest system granularity. In order to 

increase the granularity to satisfy the requirements of the hypothesis, case structure 2 was 

developed, providing the CBR system with a more detailed view of the specifics of each 

function count. 

5.4.3 CBR system 2 - Case Structure and Adaptation Mechanism 

Case structure 2 was designed to increase the granularity of the data used for the effort 

estimation. The addition of a more detailed description of each function point count 

should theoretically provide the CBR system with additional information with which to 

make a more informed decision. 

The individual scores for each function point were included in the structure. This means 

that for each of the five function point counts, (Internal Logical files, External Interface 

Files, External Inputs, External Outputs and External Inquiries) there are attributes for the 

individual low, average and high counts. Similarly to case structure 1, there are attributes 

for total development effort (in hours) and UFP counts for each case. The same 

adaptation mechanism was used as in case structure 1. Therefore, the predicted effort is 

calculated in the same manner as in Equation 5.3 above. The relation between total effort 
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and these weighted function point count is given in Figure 5.1. A fl at file view of the 

case structure is given in the Table 5.3 

Effort (hrs) ~ 

Logical Relationships in Case Structure 2 

Data Function 
Counts 

Transactional Function 
Counts 

Internal Logic Files 
Weighted Counts 

{ 
ILF Low 

ILF Average 

ILF High 

External Interface Files { 
Weighted Counts 

ElF Low 

ElF Average 

ElF High 

External Inputs { 
Weighted Counts 

External Outputs { 
Weighted Counts 

Externallnquiries{ 
Weighted Counts 

El Low 

El Average 

El High 

EO Low 

EO Average 

EO High 

El Low 

El Average 

El High 

Figure 5.3 Logical relationships in Case Structure 2 

Case structure 3 in CBR system 3, is an advancement on the above CBR systems (1 and 

2) since it implicitly takes into account of the effect of the Value Adjustment Factor 

(YAF) on calculated effort. A di scussion on how the inclusion of the YAF allows fo r an 

improvement in adaptation mechani sm fo llows in the discussion of CBR system 3. 
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Table 5.4 Flat file view of case structure 2 

Case Structure 2 
Internal Loqical Files Weighted Low Count 
Internal Loqical Files Weighted Averaqe Count 
Internal Loqical Files Weighted Low Count 
External Interface Files Weighted Low Count 
External Interface Files Weighted Averaae Count 
External Interface Files Weighted Hiqh Count 
External Outputs Weiahted Low Count 
External Outputs Weiqhted Average Count 
External Outputs Weiqhted High Count 
External Inputs Weiqhted Low Count 
External Inputs Weiqhted Average Count 
External Inputs Weighted High Count 
External Inquiries Weighted Low Count 
Externallnauiries Weiahted Average Count 
External Inauiries Weiqhted High Count 
Total Effort (hrs) 
Total Unadiusted Function Points 

5.4.4 CBR system 3 - Case Structure and Adaptation Mechanism 

Case structure 3, includes all the attributes of case structure 2, with the additi on of the 

Value Adjustment Factor (V AF) fo r each case. The V AF is calculated by: totaling the 

general system characteristi cs scores, these are then multipli ed by a constant of 0.01 and 

added to a base score of 0.70 as per the IFPUG (Internati onal functi on Point Users 

Group) method . The base score would usuall y be 0.65, however the inclusion of the 

effect of programming language means th at the base score increases to 0.70. The 

increment of 0.05 is because each general syste m characteri stic is scored out of a total of 

5. Refer to Chapter 3; Section 3.2.4.1, fo r a detai led descripti on of function point 

methods. This VAF is used to adj ust the perfo rmance of Equati on 5.3 to be more 

representative of the actual effo rt required. The relationships of total effort and the 

functi on points and adjustment factor used is indicated in fi gure 5.3. A flat file view of 

case structure 3 is given in Table 5.4. 
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Logical Relationships in Case Structure 3 

Data Function 
Counts 

Transactional Function 
Counts 

Internal Logic Files 
Weighted Counts { 

ILF Low 

ILF Average 

ILF High 

External Interface Files { 
Weighted Counts 

ElF Low 

ElF Average 

ElF High 

El Low 

External Inputs { El Average 
Weighted Counts 

El High 

EO Low 

External Outputs { EO Average 
Weighted Counts 

EO High 

El Low 

Externallnqui,ies{ El Average 
Weighted Counts 

El High 

General System 
Characteristic 

Counts 
{

Value Adjustment 
Factor (V AF) 

Figure 5.3 Logical relati onships in Case Structure 3 
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Table 5.4 Flat fil e view of case structure 3 

Case Structure 3 
Internal Loaical Files Weighted Low Count 
Internal Loaical Files Weighted Averaae Count 
Internal Loaical Files Weighted Low Count 
External Interface Files Weighted Low Count 
External Interface Files Weighted Average Count 
External Interface Files Weighted High Count 
External Outputs Weighted Low Count 
External Outputs Weighted Average Count 
External Outputs Weiahted High Count 
External Inputs Weiahted Low Count 
External Inputs Weiahted Average Count 
External Inputs Weighted High Count 
External Inquiries Weighted Low Count 
External Inauiries Weiahted Average Count 
External Inauiries Weiahted Hiqh Count 
Total Effort (hrs) 
Total Unadiusted Function Points 
Value Added Function (VAF) Adjustment Factor 

Since the case structure described in Table 5.4 is different from case structures 1 and 2, 

an adjustment to the adaptation mechanism can be made. This is described below. 

Adaptation Mechanism 

Thi s adaptati on mechani sm takes into account the effect of the value adjustment factor 

(VAF) on productivity. In the adaptati on mechani sm in Equation 5.7, The Unadjusted 

Function Point (UFP) count fo r each case is adjusted by multiplying it by the associated 

VAF fo r that case. This is referred to by the Intern ati onal Functi on Point Users Group 

(IFPUG) as the adjusted functi on point coun t. Adjusted functi on point counts are more 

refl ecti ve of development effort since fac tors effecting producti vity are taken into 

accoun t. 

A modificati on of Equati on 5.6 is used in Equation 5.7: 
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(
Effo r t ANALOG/uE J ( VAF ) 

EffortTARGET = x UFPTARGET X TARGET 
UFPANALOGU£ X VAFA NALOGUE 

(5.7) 

Where, Effor tTARGET is the predi cted effort in hours fo r the input case, EffortANALOGUE is 

the effort in hours of the retri eved case, UFPANALOGUE is the unadjusted functi on point 

count of the retrieved case and UFP TARGET is the unadjusted fun ction point count of the 

input case. V AFANALOGUE is the calculated VAF value for the retri eved case and 

VAFTARGET is the VAF value of the problem case. 

5.5 Data Collection Method 

Shepperd and Schofie ld (1997) made use of a technique known as Jack Kni fing to obtain 

objective results fro m their CBR system. They summarize the Jack Knifing technique as 

a validation technique whereby each case is removed from the dataset and the remainder 

of the cases are used to predi ct a solution fo r the removed case. The case is then returned 

to the dataset and the next case removed. This procedure continues until all of the 

se lected cases have been tested. This is a popular method of tes ting, since the test case is 

actuall y a validated case (since it is based on actual knowledge) and the dataset is tested 

over itself. However, thi s method has traditi onally been appl ied where the case bases 

have typicall y contained less than 80 software projects (Shepperd and Schofield, 1995, 

1997). 

Since the test database was based on data fro m 300 software development projects, using 

thi s method would have proved impracti cal. Finnie and Wi tti g (1997) have made use of 

the same database in their comparison of softw are cost estimati on techniques . They 

se lected 50 projects from the ori ginal dataset, which they used for testing purposes. This 

selecti on was excluded from the case base and used to validate the predi ctions made. 

A similar method was adopted in thi s research; 50 random cases were excl uded from the 

dataset and used as test inputs fo r the CBR system. The random func ti on used was the 

automati c random generation functi on provided by Microsoft Exce l version 9. For each 
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case the predi cted versus actual effort was recorded. This informati on was tabulari zed to 

refl ect the predi cted effort in direct compari son to the actual effort fo r each test case. The 

MRE and Pred(25) was calcul ated for each case. The results obtained are described the 

fo llowing section. 

5.6 Validation of Results through Comparison with Regression Models 

In the literature, a vari ety of regressions models are frequentl y used to validate the 

accuracy of the CBR system developed. Shepperd and Schofield (1 997), Bri and et al 

(2000) and Wieczonek (2001 ) are some of the researchers who have made use of 

regression models with which to compare their CBR systems. The form of the regression 

technique used is usuall y ordinary least-squares regression. Thi s form of regression was 

used to deri ve the models di scussed below. 

As in Briand et al (2000) and Wi eczonek (2001 ), the relationship between effort and 

system size was modeled. The variable used for system size was Unadjusted Function 

Points (UPP). Wieczonek (2001 ) showed that an exponenti al relationship was the most 

plausible of all the possible regression models. Finnie and Witti g (1997) similarl y fo und 

that an exponential regression model produced the best results. In thi s experiment, three 

regression models were developed; they were of the log-linear (exponenti al), logarithmic 

and linear fo rms respecti vely. Their deri ved equati ons are presented in Table 5.5. These 

models were developed from the samp le data (after the 50 random cases were removed). 

The test data (50 random cases) was used as inputs to the regression models. Residuals 

(actual values) were compared directl y with the predicted values to compute the MRE 

values and predi cti on accuracy with Pred(25). The co-efficient of determination, R2, 

which is a measure of the percentage of vari abili ty in the data that the model can exp lain , 

is indicated fo r each model in Table 5.5 
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Table 5.5 Regression models developed with their associated equations and R2 values. 

Regression Model Derived Equation Ff(%) 

Log Linear y=2787.3eoOO14X 27.60 
Logarithmic y=7246.8Lni4 - 33383 27.06 
Linear y:=14.315x + 2489.6 24.33 

5.7 Results and Discussion 

This section describes and discusses the results that have been obtained through using 

CBR to estimate software cost. These results are compared to the regression model 

developed and to results by other researchers in this field. Prediction accuracy (as 

detailed in Section 5.3.2.) is assessed using the Mean Magnitude of Relative Error 

(MMRE) statistic. This is complemented by the Prediction at Level (I) (Pred(l) measure 

which is calibrated to a value of 25%. This calibration was suggested by Conte et al 

(1986). Pred(25) is an indication of the percentage of prediction made within an MRE of 

25%. MMRE and Pred(25) differ in that they asses slightly different characteristics of a 

prediction system (Shepperd and Schofield, 1997). MMRE is a termed a conservative 

measure that looks at the mean absolute relative error, while Pred(25) is optimistic and 

focuses on the best predictions made (those within 25%) (Shepperd and Schofield, 1997). 

The primary objective of this experiment was to empirically demonstrate the applicability 

of CBR to software cost estimation. The sub-goal of this experiment was to determine 

the effects of case granularity on the quality of the predictions made by the CBR system. 

The hypothesis is restated for the purposes of the discussion contained in this section. 

Hypothesis: Increased case granularity should improve the precision of the estimations 

made. 

The results obtained from the experiment using the 50 randomly sampled test cases using 

three different CBR systems are summarized in Table 5.6. For reference, Appendix A 
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contains a detailed table of results. With reference to Table 5.6 , it should be noted that a 

lower MMRE indicates better prediction accuracy while a higher Pred(25) indi cates that a 

hi gher number of predicti ons within a 25% MRE are made. 

Table 5.6 Compari son of MMRE and Pred(25) results obtained from the 3 CBR systems 

and the regression models. 

Accuracy CBR CBR CBR Log Linear Logarithmic Linear 
System System System Regression Regression Regression 

Measure 
1 2 3 Model Model Model 

MM RE (%) 73.22 61.44 57.08 62.11 100.40 83.85 
Pred(25%) 38.00 40.00 44.00 24.00 30.00 32.00 

Following Table 5.4, it is evident that the MMRE performance of the software cost 

estimati on models that implement CBR techniques are mostly superi or to the regression 

mode ls. Only in the case of the least accurate (in terms of MMRE) CBR model did the 

best regression model (in terms of MMRE) show an advantage. The Pred(25) values 

obtained for each model described in Table 5.4 indicates that the CBR models were able 

to produce better quality results than the regression models. The observati on th at CBR 

models are superi or to regression models has similarl y been made by other researchers in 

thi s fi eld . (Shepperd and Schofield, 1997; Shepperd et aI, 1996; and Finnie and Witti g, 

1997). Finnie and Wittig (1 997) state that regression models do not perform effecti vely 

in modeling the complexiti es invo lved in software development projects. Since the 

dataset used in thi s research is the same Desharnais 2 dataset used by Finnie and Witti g 

(1 997), their explanation for thi s is applicable to thi s research: the data used in thi s 

experiment can be termed typi cal of real-world software developments, with an ex treme 

vari ati on in producti vity (between 0.0 I to 0.67 DFP/hr) and a considerable range of 

possible causes fo r thi s producti vity vari ati on. 

To p lace the results obtained in context with those obtained by other researchers in thi s 

fie ld, Table 4.4 is updated to include the Pred(25) stati sti c where available and results 

from the three CBR systems developed for thi s experiment. The outcome is Table 5.7 

be low. 
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Table 5.7 Summary of MMRE and Pred(25) resul ts (where avail a? le) obtained from 

research into analogy-based software cost estimation , augmented by the three CBR 

systems deve loped in thi s experiment. 

Analogy-Based Model! Year Dataset Name No. Of projects MMRE% Pred(25%) 
Researcher 

ESTOR / Mukhopadhyay 1992 Kemerer 15 52.79 -

ANGEL / Shepperd and Schofield 1995 Albrecht 24 62.00 33 
Atkinson 21 39.00 38 
Kemerer 15 62.00 40 

1997 Desharnais 1 77 64.00 36 
Finnish 38 41.00 39 
Mermaid 28 78.00 21 

ACE / Jeffery and Walkerdon 1999 In house 19 55.00 24 
Finnie and Wittig 1997 Desharnais 2 299 36.20 42 
ANGEL! Mair et al 1999 Desharnais 1 77 49.00 -
Briand et al and Wieczonek 2000/2001 European Space Agency 166 74.00 4 
BRACE / Stamelos et al 1999 ISBSG database 100+ 70.37 23.84 
CBR system 1 2002 Desharnais 2 300 73.22 38 
CBR system 2 Desharnais 2 300 61.44 40 
CBR system 3 Desharnais 2 300 57.08 44 

The following discussion is held within the context of the results presented in Table 5.7. 

Strictly speaki ng, a direct comparison of the three CBR systems in this experiment to 

other analogy-based models has no scientific fo undation, since the results obtained by the 

various researchers are highly dependant on the underlyi ng dataset used in their models. 

However, a general positioning of the accuracy of the predictions made can be gai ned 

from such an exercise. Such an analysis suggests that the three CBR systems developed 

fa ll with in the range of MMRE values of those obtained by other researchers. Further to 

this, it can be noted that the Pred(25) value is the hi ghest of the published Pred(25) 

values. 

A direct comparison can however be made to those software cost estimation models that 

make use of the same dataset or a smaller subset thereof. In this respect all three CBR 

systems developed in thi s experiment outperform al l ANGEL (S hepperd and Schofie ld, 

1995) based model s that make use of the Desharnais I dataset (Mai r et aI, 1999 and 

Shepperd and Schofie ld , 1997). Thi s is a smaller subset of the Desharnais 2 dataset that 
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does not show the effect of mul ti-organizati onal data on predi ction accuracy, since it onl y 

contains project data fro m a single organization. It would therefore be ex pected that the 

effects of multi-organi zation data would impact negatively on the MMRE and Pred(25) 

resul ts obtained (Brian et ai, 2000) . The term 'outperform ' is simply used to indicate that 

the MMRE results from the three CBR systems developed, shows that they are more 

accurate. Furthermore the Pred(25) measurement shows that the three CBR systems 

make more predi ctions within a 25% MRE than those made by ANGEL. 

Finnie and Wittig (1997) report MMRE results of 36.2 % and a Pred(25) value of 42%. 

Clearly the MMRE figure obtai ned is superior those of the three CBR systems developed. 

Even the best perfo rming CBR system (CBR system 3) yields an MMRE of 57 .08%. The 

MMRE results obtained are superior to all of the models contained in Table 5.4. There 

are a number of reasons that can be attri buted to thi s: 

• Firstl y, the deri vati on of the case structure of Finnie and Witti g's (1 997) CBR 

system was achieved through a process of optimi zati on; As mentioned in Section 

5.1 , Finnie and Witti g onl y made use of what they termed 'signi ficant' general 

system characteri sti cs (GSC's). T hey applied a statistical Hest to analyze which 

GSC's were responsible fo r a corresponding signi ficant difference in productivity. 

Producti vity was measured as the rati o of unadjusted functi on points to effort 

hours for each project. They selected SIX GSC's to be included in the case 

structure, based on thi s statistical analysis. This process can subjecti vely be 

referred to as a process of data smoothing, thus protecting the CBR system from 

inconsistencies and possible inaccuracies in the underl ying dataset. The 

implicati on of thi s is that their CBR system is hi ghl y calibrated to the underl ying 

dataset, which explains in part the comparatively excell ent results obtained. 

• Secondl y, the results obtained by Finnie and Wittig ( 1997) are based on the 

se lecti on of 50 random projects, which were used fo r testing purposes. Since the 

researcher has no control over the process of random selecti on , it is possible to 

hypothesize that the 50 random projects may have been more favo rable to the 
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results than the 50 random projects selected in this experiment for the three CBR 

systems. However, no scientific credence can be given to this hypothesis without 

a direct comparative test using similar samples and a comparable CBR system to 

that developed by Finnie and Witiig (1997). 

• Thirdly, the adaptation rules applied by Finnie and Wittig (1997) differ in those 

used by the CBR systems presented in this research. Finnie and Wittig's (1997) 

adaptation rules were based on the calculated differences in productivity for each 

significant GSC. A multiplier based on the differences in score for any significant 

GSC adjusted the predicted effort by a multiplier based on the differences in score 

for any significant GSc. Further to this, in an attempt to smooth out the effect of 

single incorrect estimates, an average of the estimates based on the three nearest 

neighbors was used in the final effort estimate. This method of adaptation is more 

sophisticated than the linear extrapolation mechanism used by and developed for 

the three CBR systems in this experiment, which adjusts the predicted effort for 

the nearest neighbor case according to the unadjusted function point count (for 

CBR systems I and 2) and adjusted function point count (in CBR systems 3). 

The Pred(25) value of 44% achieved by CBR system 3 is higher than the Pred(25) value 

of 42% obtained by Finnie and Wittig (1997). This is not a significant difference, as 

when this value is placed in the context of the 50 random project samples used in this 

experiment; it is evident that after decomposition of this percentage value, CBR system 3 

predicted 1 project (within an MRE of 25%) more than Finnie and Wittig (1997). 

Significant conclusions cannot be drawn from this difference since the use of a random 

sample cou ld explain this variation. 

The above discussion has validated the CBR systems developed in this experiment in 

comparison to other similar CBR systems. In addition it has been shown that these 

experimental CBR systems all outperform an algorithmic model in the form of a least

squares linear regression model. A sub-goal of this experimental research was to 

determine the effect of case granularity on the quality of the results obtained by the CBR 
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systems developed in this research. It was hypothesized that an increasing case 

granularity would improve the quality of the predictions made. Following the discussion 

on the derivation of the CBR systems and their respective case structures, the 

experimental CBR systems developed can be ranked according to increasing granularity 

as follows: CBR System 1, CBR System 2 and CBR System 3. Section 5.3.2 identified 

the two accepted means of determining system quality through the accuracy of 

predictions (Conte et ai, 1986); MMRE and Pred(25). 

With reference to Table 5.3, it can be seen that for each instance of increased case 

granularity contained in the case structures of CBR systems 1 to 3, there IS a 

corresponding increase in Pred(25) values and a corresponding decrease In MMRE 

values. Quantitatively, across the CBR systems developed, there is a total 16.14% 

decrease in MMRE and a 6% improvement in Pred(25). Since there is a difference 

evident in the values obtained from these measures of accuracy, it can be deduced that 

case granularity does affect the quality of the predictions made by the CBR systems. 

Furthermore, since the reductions of MMRE and increase in Pred(25) values corresponds 

to the increase in case granularity of the respective CBR systems, it can be concluded that 

increased case granularity has a positive effect on the quality of the predictions made by 

the CBR systems. These measurements tend to disprove the null hypothesis that case 

granularity has no effect on the quality of the predictions made. 

As in Finnie and Wittig (1997) a paired (-test was performed to verify if the results 

obtained for the CBR systems were statistically significantly different or whether the 

results could be as a result of chance factors. The null hypothesis is that the differences 

in MRE's produced by the CBR systems are equal to zero (Ho: f.J = 0). Since the 

calculated (-statistic value was well below the critical t-value, the null hypothesis Ho 

could not be rejected. This indicates that even though there are apparent significant 

differences in the effort estimates produced by the three CBR systems, these individual 

estimates are not statistically significantly different. The complete statistical results are 

presented in Appendix B. 

The Applica/Jilirv of Case- Based Reasoning /() Sojiware COST ESTilllaTion 132 



Chapter 5 £ rperimental Design lllld Results 

Although not directly comparable to research conducted into software cost estimation 

models, owing to differences in the datasets used, the results of this experiment show that 

they are not contradictory to the general findings of other researchers (Finnie and Wittig, 

1997; Shepperd and Schofield, 1995, 1997; Jeffery and Walkerdon, 1999; Briand et ai, 

2000; Wieczonek, 2001; Stamelos et ai, 1999 and Mair et ai, 1999). In addition, the 

results obtained from this experiment have shown the applicability of CBR to software 

cost estimation by indicating that a MMRE of 57.08% is achievable using case based 

methods on a large multi-organizational database of software projects from a wide variety 

of commercial sectors. Conte et al (1986) places restrictions on what he terms a good 

estimation model. He states that a good estimation model should produce predictions 

with Pred(25) :2 75 % and an MMRE ~ 25%. This has realistically never been realized 

even by experts, Kemerer (1987) in his empirical evaluation of software cost estimation 

models obtains a MMRE of 167.69% for function point models and 85.48% for 

COCOMO based models. Similarly Mukhopdhyay et al (1992) finds that Function Point 

Analysis can be totally inaccurate (MMRE of 618.99%) and COCOMO, unreliable 

(MMRE of 102.74%). These are models traditionally relied upon by software engineers 

for software cost estimates. Mukopdhyay et al (1992) found that even the estimates 

produced by the expert they employed did not fall within Conte et ai's (1986) strict 

criteria. 

Empirical validation is however not the only consideration in assessing the applicability 

of CBR to software cost estimation. There are a number of intrinsic advantages that CBR 

has over other estimation models when applied to software cost estimation: 

• Explanatory value 

Since the CBR process attempts to emulate the human thought process (Reisbeck and 

Schank, 1989), solutions presented by CBR models can be considered to be more 

easily accepted by the user of the model (Mair et ai, 1999). The process of adaptation 

is intuitively natural since an attempt is made to place the problem case in the same 

context as similar cases. The inherent explanatory value that CBR models have, has 
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implications for the adoption of CBR in an area in which confidence in estimates is a 

paramount concern for the software engineer. 

• Configurability 

Mair et al (1999) refers to configurability as the effort required to build and adjust 

prediction systems. The advent of CBR tools has facilitated more rapid CBR 

application development (Watson and Marir, 1994). According to Kododa et al 

(2000), configuring a CBR system for software cost estimation is a non-trivial task 

that requires inter-alia the development of similarity measures, adaptation 

mechanisms and case structure. However, these issues have become well 

documented in the literature (Petrak et aI, 1994; Briand et aI, 2000; Jeffery and 

Walkerden, 1999) as the research base into CBR as a cost estimation technique has 

grown. 

5.8 Conclusion 

In thi s chapter, the applicability of CBR to software cost estimation has been 

demonstrated by producing empirical (practical) and theoretical evidence. A primary 

sub-goal of the experiment presented in thi s chapter was to explore the effect of case 

granularity on the quality of the predictions produced by the CBR system. It was found 

that increased case granularity improved the quality of the results obtained. The accuracy 

and quality of the results were determined by stati stical methods as suggested in the 

literature. In comparison to other analogy-based software cost estimation models, it was 

found that the CBR systems developed compared favorably to the best models presented 

in the literature. Chapter 6 is the concluding chapter in which a summary of the 

achievements of thi s research are presented and suggestions are made for future research. 
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Chapter 6: Conclusion 

The aim of this research was to investigate the applicability of CBR to the field of 

software cost estimation. To perform this investigation within a suitable background of 

the existing body of knowledge on CBR applied to software cost estimation, required a 

thorough theoretical investigation into the fields that pertain to this problem area. This 

was conducted through literature reviews on the current state of research into the fields 

of: CBR, software cost estimation, CBR applied to software cost estimation and CBR 

tools. These literature surveys were conducted within the following framework: 

• An overview of the methodology and process of CBR formed the basis of the 

literature review of CBR. 

• A classification for software cost estimation models, derived from the available 

literature was used as the basis to the di scussion on prominent software cost 

estimation models. 

• An examination of the current state of research into the field of CBR applied to 

software cost estimation was conducted, with specific attention given to results 

obtained and methodologies used in developing such a system. 

• An investigation into CBR tool s was conducted to ascertain the requirements for 

such a tool and their abilities and limitations. 

The practical component of this research involved the formulation of an experiment from 

which empirical conclusions could be drawn as to the applicability of CBR to software 

cost estimation . This is di scussed in further detail in the following section describing 

how the goals of the experiment were achieved. 

6.1 How the Goals of This Research Were Implemented 

A number of sub-goals were formulated to satisfy the primary goal of the research, which 

was to determine the app li cabi lity of CBR to software cost estimation. A secondary goal 

was to determine the effects of case granularity on the qual ity of the predictions made by 
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the CBR system. The nature of the primary goal was such that this research could be 

divided into theoretical and practical components. The theoretical component involved 

the establishment of the theoretical foundation of the research, while the practical 

component necessitated the development of an experiment. 

As mentioned above, the theoretical component of thi s research was completed through 

reviews of current literature and research into software cost estimation, CBR and CBR 

applied to software cost estimation. This theoretical foundation was used as a basis to the 

formulation of the experimental component of this research. The experimental 

component involved the development of a number of CBR systems, not only to explore 

the applicability of CBR to software cost estimation but also to investigate the effect of 

case granularity on the quality of the results obtained. Three experimental CBR systems 

were developed to ascertain the applicability of CBR to software cost estimation. These 

three CBR systems were designed in a manner, which facilitated the exploration of the 

sub-goal of the research. The three CBR systems were designed to reflect improved case 

granularity in each instance, with the 1 SI CBR system having the lowest case granularity 

and the 3rd CBR system having the maximum granularity based on the available data. 

The CBR systems developed for the purposes of the experiment required the design and 

implementation of similarity and adaptation mechani sms to facilitate the operation of 

these systems. The adaptation mechanism used in each CBR system would be contingent 

on the case structures developed. The case structures were developed to explore the 

effects of case granularity on the predictions made by the CBR system. The results 

obtained from the CBR systems developed for the experiment were formulated to provide 

a mechanism for comparison to other research conducted in this field. The predictive 

accuracy of the CBR systems developed was empirically evaluated defining a systematic 

and repeatable evaluation method. This was to ensure compliance with the requirement 

that any scientific research conducted should be repeatable. 

The investigation into effect of case granularity on the quality of the results produced by 

a CBR system was empirically evaluated through the comparison of the results obtained 
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from the three CBR systems developed. The overall applicability of CBR to software 

cost estimation was determined through the analysis of all the results obtained from the 

CBR systems developed. 

The main outcomes of this research 

The final determination of the applicability of CBR to software cost estimation is based 

on the outcome of the experiments and the operational advantages that CBR has to offer 

the field of software cost estimation. It was found that the developed CBR systems 

produced results in line with other researchers into this field. The quality of the 

predictions made by the best of the three CBR systems demonstrated the applicability of 

CBR to this problem area and indicated that CBR has potential as an alternative to other 

software cost estimation techniques. 

The effect of case granularity on the quality of the results from a CBR system was 

determined through the comparison of the results from the three CBR systems developed 

for experiment. The comparison of the results from the three experimental CBR systems 

provided a clear indication that prediction accur~cy and prediction error were improved 

with increased case granularity. This confirms the original hypothesis that case 

granularity improves the quality of the predictions made by a CBR system. 

It is important to note that any results obtained from a CBR system are reliant on the 

underlying dataset used. This is because there is no control over the quality of the data 

entered in the database or further information on the circumstances surrounding the 

development of the software projects. In comparison to other researchers, the results 

showed that the accuracy of CBR systems developed, fell within the range of other CBR 

systems developed for the same purpose and outperformed them in certain areas. 
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6.2 The Theoretical and Practical Contributions of this Research 

The known theoretical and practical contributions of this research to the to the fie lds of 

CBR and software cost estimation are summarized as follows: 

Theoretical contributions: 

• An investigation was undertaken into the effect of case granularity on the 

prediction accuracy of CBR systems applied to software cost estimation . To the 

best knowledge of the author, no formal investigation into case granu larity has 

been undertaken although it has been mentioned in the course of other research 

into the field of CBR applied to software cost estimation (as in Kadoda et ai, 

2000). 

• An adaptation mechanism was proposed to improve the prediction accuracy of the 

CBR cost estimation system. Kolodner (1993) suggested that adaptation 

techniques are not a primary consideration in the development of CBR systems 

and that most CBR systems fulfill the role of a sophisticated decision support 

system. This implies that the final solution construction is usually undertaken by 

an expert. The adaptation mechanism developed was based upon previous 

research undertaken by Jeffery and Walkerden (1999) but was improved upon to 

take into account the effect of productivity factors on the total effort required to 

develop a software project. 

• These results can be seen to complementary to the published accounts of app lying 

CBR to software cost estimation . Since CBR applied to software cost estimation 

is a re latively new development in the software engineering field (since 1992, 

Mukhopadhyay et al), researchers such as Shepperd and Schofield (1997) have 

stressed the need for further research on more representative datasets properly 

reflecting the operation of the software development industry. 
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The methodological applicability of CBR to software cost estimation was 

demonstrated through: a discussion on the process and benefits of CBR, a 

discussion on the current state of research into the field of CBR applied to 

software cost estimation and the methodological benefits that CBR has to offer 

thi s problem domain . 

Practical contributions of this research project: 

• The applicability of CBR to software cost estimation was demonstrated 

empirically. The results obtained can be considered encouraging for the software 

engineer. They indicate that by storing project data in a case based system and 

developing a CBR model for software cost estimation, useful predictions can be 

made. 

• When compared to research into software cost estimation, CBR has been shown 

to out perform traditional algorithmic methods. The practical implications for the 

software engineer are that CBR can be considered as a viable alternative to other 

modeling techniques. 

• Another practical contribution is that this research has demonstrated that 

developing a software cost estimation model using a CBR tool is a viable 

alternative to developing an application from first principles. The advantages of 

using a CBR tool for application development are that adjustments can relatively 

easily be made to the structure of the case-base, similarity measures and 

adaptation measures of the CBR system. 

The methodologies used and experimental results of this investigation into CBR applied 

to software cost estimation technique have validated the applicability of CBR to thi s 

field. CBR is particularly well suited to this field since it is a field that has hi storically 

been reliant on the predictions made my software engineering experts (Delany and 
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Cunningham, 2000). CBR has a number of methodological advantages over other cost 

estimation techniques: CBR models offer a high degree of explanatory value as the 

reasoning process attempts to replicate the human thought process; and CBR is highly 

configurable to any environment or dataset used (Mair et aI , 1999). CBR tools have 

furthered the advantages of CBR in this area of application, since the rapid development 

of CBR systems is possible using these highly configurable and adaptable tools (Watson 

and Marir, 1994). 

6.3 Possible Directions for Future Research 

In this section, several of future directions are suggested for research in the field of CBR 

applied to software cost estimation. The suggestions made are based on observations 

made throughout the course of this research: 

• To investigate the impact of cross-organizational data on the quality of the 

predictions made by a CBR software cost estimation system. 

• To investigate the effects of qualitative project data on the quality of the 

predictions made by a CBR system. Shepperd and Schofield (1997) observe that 

the results obtained by researchers have been on quantitative datasets that were 

never intended for analogy-based reasoning. CBR is particularly proficient In 

using qualitative data to make predictions (Kolodner, 1993). 

• To experiment further on the effects of case granularity on the predictive 

performance of the CBR systems. This can be accomplished by deriving different 

granularities from other datasets. 

• To investigate and assess current adaptation techniques and provide suggestions 

for alternatives. 
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6.4 Concluding Remarks 

The justifi cati on for the use of CBR for software cost estimati on can be made on the basis 

of the failure of existing cost estimation methods (Kemerer, 1987,1 993; Symons, 1988) 

and the inherent capabilities of CBR in such a weak theory domain (Delany and 

Cunningham, 2000). The importance of accurate cost estimates for software 

development projects cannot be overstated as thi s directly influences the viabil ity and 

qual ity of the software development (Mukhopadhyay et aI, 1992). Researchers have 

consistently reiterated that ex isting solutions to software cost estimation fai l to produce 

consistently accurate results (Jeffery and Walkerdon, 1999; Schofield, 1998) . CBR can 

be justi fied as a potenti all y successful solution to this problem area based on its 

successful implementati on in fi elds that have had difficulti es in modeling the causal 

dependencies between the problems and the associated so lutions. These are most often 

fields where the judgment of an expert is relied upon to provide so lutions. 

CBR is a re lati vely new fie ld of AI and the applicati on of CBR to software cost 

estimati on is particul arly new to the domain of software engineering. To the best 

knowledge of the author, no fo rmal implementati ons of CBR applied to software cost 

estimation exist in the commercial environment. Thus, commercial acceptance of a CBR 

solution for software cost estimati on has yet to be gained. Research that has been 

conducted in this field, is most often based on limited info rmati on on software projects 

that do not refl ect accurately the intricacies of modern software developments. Thus, 

there is considerable scope for further research into thi s field. CBR software cost 

estimati on mode ls have not yet attained the maturity that other CBR systems applied to 

other problem domains have attained. In order fo r such CBR systems to be accepted 

commerciall y, further research needs to be conducted into thi s area of applicati on. 

Thi s research has empiri cally and methodologicall y shown the applicability of CBR to 

software cost estimati on. The quality of the resul ts obtained through experimentati on are 

encouraging and vali date the experimental methodologies used in deri ving the 

experimental CBR systems. The formul ati on, structure and methodologies used in thi s 
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experimental component of the research were clearly defined so as to ensure replicability 

of the experimentation undertaken . Validation of the results was ensured through 

comparisons with a number of regression models and to results obtained by other 

·researchers in this fie ld. In summary, this research has demonstrated the suitability of 

applying CBR to a problem domain that has historically been dominated by algorithmic 

modeling techniques that have not performed to the satisfaction of the software 

development industry. 
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Appendices 

Appendix A 

Below is a table of complete MRE, MMRE and Pred(25) values fo r a ll models developed 

in thi s research. 

CBR CBR CBR Linear 
Log Linear Logarithimic 

Random Case Number Index System 1 System 2 System 3 Regression 
Regression Regression 

Model Model 
MRE (%) MRE (%) MRE (%) MRE (%) MRE (%) MRE (%) 

4 1 17.14 17.14 8.68 53.25 0.38 79.75 
12 2 63.83 34.84 49.66 19.74 48.12 3.61 
18 3 4.40 80.83 73.83 92.58 52.15 28.51 
21 4 20.69 20.77 1.50 8.81 30.98 34.35 
26 5 43.27 291 .70 210.80 925.52 620.82 892.00 
27 6 406.37 185.63 181.72 303.54 185.24 282.00 
30 7 56.35 32.10 15.98 45.28 67.36 29.17 
52 8 4.20 4.20 5.61 93.60 62.41 120.88 
54 9 69.91 4.57 0.39 13.58 12.04 43.17 
56 10 80.17 18.08 11 .23 0.91 28.77 3.95 
61 11 25.21 2.77 12.95 40.11 11.19 73.19 
62 12 13.96 22.61 18.13 17.41 40.49 28.08 
63 13 7.08 23.89 10.25 3.35 25.15 51.64 
76 14 290.99 24.57 22.75 1.45 33.41 6.94 
81 15 31 .31 126.04 80.35 31 .85 55.53 19.48 
83 16 28.04 28.04 39.75 10.33 47.75 10.23 
84 17 12.25 62.25 50.92 29.59 50.02 34.50 
87 18 0.41 29.22 22.14 7.73 38.56 4.58 
88 19 1.34 106.06 136.28 16.89 48.21 4.78 
96 20 55.67 21 .91 1.93 57.58 73.56 53.05 
99 21 40.02 68.10 68.52 29.97 8.52 25.07 
110 22 34.55 10.58 50.55 48.43 8.97 89.75 
113 23 69.84 2.24 2.21 138.50 105.62 190.95 
114 24 73.32 73.32 75.03 208.48 185.09 500.20 
128 25 61 .90 27.08 39.10 110.26 48.20 101.24 
135 26 14.63 14.63 7.99 36.19 8.71 52.02 
136 27 136.10 9.11 0.46 30.58 55.37 15.92 
149 28 25.52 69.79 82.30 51 .68 10.89 95.70 
153 29 71 .38 71 .38 77.94 36.49 63.02 18.99 
163 30 5.73 61.12 68.36 108.50 21 .32 165.36 
165 31 20.31 20.31 9.26 38.00 17.95 78.65 
168 32 57.92 87.03 87.78 8.14 37.26 2.37 
168 33 57.92 87.03 87.78 8.14 37.26 2.37 
169 34 71.78 50.19 39.51 43.40 61 .25 40.27 
192 35 18.50 41 .12 14.36 26.58 5.67 108.10 
200 36 20.41 219.76 197.45 144.11 82.27 72.20 
205 37 26.67 24.67 29.35 142.60 101.58 105.26 
206 38 254.31 6.97 5.64 107.29 44.52 106.52 
219 39 23.09 23.09 1.83 66.38 27.40 5.40 
224 40 23.93 23.93 8.33 21 .74 22.34 49.15 
228 41 276.08 132.62 139.66 124.41 31.64 189.22 
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228 42 276.08 132.62 139.66 124.41 31 .64 
232 43 9.81 50.06 47.19 11.98 43.75 
236 44 24.31 86.79 81 .02 6.93 36.43 
249 45 64.16 75.94 19.64 117.13 86.24 
251 46 341 .93 53.72 53.03 74.25 55.11 
253 47 25.88 119.42 110.52 181.53 108.78 
258 48 55.75 64.69 67.30 44.13 58.43 
280 49 10.26 7.98 20.17 18.19 15.73 
298 50 236.49 219.33 267.05 311 .16 152.61 

MMRE (%) 73.22 61.44 57.08 83.85 62.11 
Pred(25%) 38.00 40.00 44.00 32.00 24.00 

Appendix B 

t-stati sti c results obtained from the three CBR model s, H est assuming unequal vari ances 

in each case. 

CBR SyJsem 1 CBRSystem2 
Mean 73.22249471 61.43576954 
Variance 9463.4 7 4132 3891 .542322 
Observations 50 50 
Hypothesized Mean Difference 0 
df 83 
t Stat 0.721200379 
P(T <=t) one-tail 0.23640643 
t Critical one-tail 1.663420335 
P(T <=t) two-tail 0.47281286 
t Critical two-tail 1 .988960321 

CBR System 2 CBR St,stem 3 
Mean 61.43576954 57.07700146 
Variance 3891 .542322 3724.017599 
Observations 50 50 
Hypothesized Mean Difference 0 
df 98 
t Stat 0.353181416 
P(T <=t) one-tail 0.362355507 
t Critical one-tail 1.660550879 
P(T <=t) two-tail 0.724711013 
t Critical two-tail 1.984467417 
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189.22 
7.58 
1.09 

171.04 
232.04 
108.20 
59.62 

7.94 
424.92 
100.40 
30.00 
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Mean 
Variance 
Observations 
Hypothesized Mean Difference 

df 

t Stat 
P(T <=t) one-tail 
t Critical one-tail 
P(T <=t) two-tail 

t Critical two-tail 
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CBR System 1 CBR System 3 
73.22249471 57.07700146 
9463.474132 3724.017599 

50 50 
o 

82 
0.99415756 

0.161535406 
1.663647708 
0.323070811 

1.989319571 
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