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Abstract

The air transportation industry in the past ten years witnessed an upsurge with the number

of passengers swelling exponentially. This development has seen a high demand in airport

and airspace usage, which consequently has an enormous strain on the aviation industry

of a given country. Although increase in airport capacity would be logical to meet this

demand, factors such as poor weather conditions and other unforeseen ones have made

it difficult if not impossible to do such. In fact there is a high probability of capacity

reduction in most of the airports and air sectors within these regions. It is no surprise

therefore that, most countries experience congestion almost on a daily basis. Congestion

interrupts activities in the air transportation network and this has dire consequences on

the air traffic control system as well as the nation’s economy due to the significant costs

incurred by airlines and passengers.

This is against a background where most air traffic managers are met with the challenge

of finding optimal scheduling strategies that can minimise delay costs. Current practices

and research has shown that there is a high possibility of reducing the effects of congestion

problems on the air traffic control system as well as the total delay costs incurred to the

nearest minimum through an optimal control of flights. Optimal control of these flights

can either be achieved by assigning ground holding delays or air borne delays together

with any other control actions to mitigate congestion. This exposes a need for adequate

air traffic flow management given that it plays a crucial role in alleviating delay costs.

Air Traffic Flow Management (ATFM) is defined as a set of strategic processes that reduce

air traffic delays and congestion problems. More precisely, it is the regulation of air traffic

in such a way that the available airport and airspace capacity are utilised efficiently without

been exceeded when handling traffic. The problem of managing air traffic so as to ensure

efficient and safe flow of aircraft throughout the airspace is often referred to as the Air

Traffic Flow Management Problem (ATFMP).

This thesis provides a detailed insight on the ATFMP wherein the existing approaches,

methodologies and optimisation techniques that have been (and continue to be) used to

address the ATFMP were critically examined. Particular attention to optimisation models

on airport capacity and airspace allocation were also discussed extensively as they depict

what is obtainable in the air transportation system. Furthermore, the thesis attempted a

comprehensive and, up-to-date review which extensively fed off literature on ATFMP. The

instances in this literature were mainly derived from North America, Europe and Africa.

Having reviewed the current ATFM practices and existing optimisation models and ap-

proaches for solving the ATFMP, the generalised basic model was extended to account for

additional modeling variations. Furthermore, deterministic integer programming formu-

lations were developed for reducing the air traffic delays and congestion problems based

vi



on the sector and path-based approaches already proposed for incorporating rerouting op-

tions into the basic ATFMP model. The formulation does not only takes into account all

the flight phases but it also solves for optimal synthesis of other flow management activ-

ities including rerouting decisions, flight cancellation and penalisation. The claims from

the basic ATFMP model was validated on artificially constructed datasets and generated

instances. The computational performance of the basic and modified ATFMP reveals that

the resulting solutions are completely integral, and an optimal solution can be obtained

within the shortest possible computational time. Thereby, affirming the fact that these

models can be used in effective decision making and efficient management of the air traffic

flow.
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Chapter 1

Introduction

This chapter is an overview of air traffic flow management, which forms the basis of this

study. Within this introductory chapter, the objectives, problem statement, significance

and scope of the study as well as the factors that motivated this research are also discussed.

1.1 Background to the Study

The air transportation industry is a key sector in most economies. It is the world’s most

important service industry owing to the catalytic and significant role it plays in most

global economic activities. As a case in point, Oxford Economics in the 2011 report on

the economic benefits of air transport in South Africa noted that the country’s aviation

sector contributes ZAR 50.9 billion (2.1%) to its Gross Domestic Product (GDP). This

is through the contributions made directly from the aviation sector; indirectly through

the aviation sector’s supply chain as well; through the induced effects of spending by the

employees of the aviation sector (Oxford Economics, 2011). It was also reported that

the overall contribution stood at ZAR 74.3 billion (3.1% of South African GDP) if the

additional ‘catalytic’ benefits through tourism were added. Other than that, the sector also

creates and supports 227 000 direct jobs with another 116 000 people employed through

tourism effects of aviation (Department of Transport, 2015; Oxford Economics, 2011).

Air traffic in most countries, as well as the aviation industry, have witnessed a rapid

growth over the last decade. This upsurge can be attributed to multifarious factors,

chief amongst them, an increased demand for airport and airspace resources due to the

exponential increase in the number of users. Thus, flight delays and congestion have

become a common phenomenon owing to the capacity reductions in the system resources

which are often associated with peak travel times or hours, bad weather conditions and

other unforeseen factors. As pointed out by Roosens (2008), the so-called congestion in air

transportation occurs when the demand for infrastructure exceeds capacity. In his words,

“congestion occurs when there is overcrowded airspace or airport and this causes delays

in the travel time” (Bertsimas and Odoni, 1997; Roosens, 2008). However, this does not

necessarily imply that all delays are caused by congestion, there are other contributing

factors such as adverse weather conditions, en route problems, airline companies, airport

and security procedures. Departure delays and crowded airspace serves as indicators of

airport and en-route congestion problems (Agust́ın et al., 2009; Bertsimas et al., 2008;

Roosens, 2008).

1



Section 1.1. Background to the Study Page 2

Statistics shows that in the year 2007, approximately one out of every four flights in the

United States was either delayed or cancelled (Agust́ın et al., 2009). It was also reported in

the same year that approximately 11% of flights were delayed in Europe. These delays have

been estimated to have a direct impact on the economy annually. The Joint Economic

Committee, United States Senate (2008) estimated that the domestic flight or system

delays cost passengers, airlines, will cost the US economy nothing less than 40 billion

dollars (Vossen et al., 2012). These delays can be weather-related or attributable to the

traffic volume (Agust́ın et al., 2009; Vossen et al., 2012).

Therefore, the steady growth of the aviation sector over the years has indeed placed

excessive demand on the air transportation system which tends to have a serious impact

on a nation’s economy due to the significant costs incurred by airlines and passengers.

Moreover, it has also been predicted that the increase in air traffic and demand for air

transportation will continue at an average growth rate of 4.7% over the next 20 years and

this continued growth poses a great threat to air traffic control and airport systems which

are currently being operated at full capacity. The capacity of the air traffic control systems

and that of airports is also greatly affected by the recent practice of “hub and spoke”

systems1 by most airlines, particularly those in the United States, Western Europe and

Africa. Thus, in order to meet up with the imminent future demand for air transportation

as well as accommodating the projected growth in air traffic, there is need for improvement

in air traffic management processes and traffic flow management procedures alongside

capacity enhancement of the system’s resources as incremental changes in the physical

capacity and current operations alone may not be able to meet up with the future demand

for air transportation (Odoni, 1987; Sridhar et al., 2008; Vossen et al., 2012).

Air Traffic Management (ATM) is a broader term that is used to represent the overall

collection of the air traffic management processes (Vossen et al., 2012). More precisely,

it is a composite of services that are taken to ensure safe, efficient and expeditious move-

ment of aircraft in the airspace. It comprises of two basic components namely Air Traffic

Control (ATC) and Air Traffic Flow Management (ATFM). ATC refers to those processes

that provide tactical separation services for conflict detection and avoidance while ATFM

is a set of strategic processes that mitigate delay costs and congestion problems. Most

authorities have defined it as “the regulation of air traffic in order to avoid exceeding air-

port and airspace capacity while making effective use of available capacity when handling

traffic” (Bertsimas and Patterson, 1998; Odoni, 1987; Sridhar et al., 2008; Vossen et al.,

2012).

For clarity’s sake, ATC generally controls individual aircraft and is usually performed by

human controllers with the aim of maintaining separation between aircraft while moving

traffic as quickly as possible and presenting the traffic in an orderly manner to the next

sector. ATC actions are particularly more tactical in nature and primarily address imme-

1using more than one airport as operational center (hubs).
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diate safety concerns of airborne flights. On the other hand, ATFM is strategic in nature

with the objective of matching the demand for air transportation with the capacity of

the system in order to ensure a safe and efficient flow of aircraft through the airspace.

Moreover, The processes of ATFM are geared towards finding a dynamic equilibrium be-

tween flight demands and airport capacity for safer operations such that flight overloading

is prevented through adjusted traffic flow aggregation, thereby optimizing scarce capacity

resources. Thus, protecting the ATC system from overloading and at the same time reduc-

ing the tasks of traffic controllers to a manageable level. In fact, ATFM plays a vital role

in maintaining system safety and addressing system efficiency. Above all, ATFM in the

short term tries to mitigate congestion problems that arise as a result of weather distur-

bances or unpredictable disruptions, and if at all, there must be delay, ATFM procedures

is efficiently applied within the shortest possible times to reduce the impact on airspace

user (Agust́ın et al., 2009; Vossen et al., 2012).

System disruptions, bad weather conditions, equipment failures and sudden increase in

demand, are a major challenge for ATFM as they are highly unpredictable and cause

significant capacity-demand imbalances. Adverse weather conditions particularly cause

temporary and substantial reductions in airspace and airport capacity. Other factors

that contribute to ATFM challenges are the number of runways available, ATC capacity,

airspace restrictions and restrictions as to which aircraft can follow an aircraft of a given

class are factors that determines the number of flights that can depart from or arrive at a

certain airport and the number of aircraft’s that traverses a particular sector of the airspace

at a particular period of time (Bertsimas and Patterson, 1998; Odoni, 1987; Vossen et al.,

2012).

In as much as ATFM has specific objectives and challenges to be addressed, it remains

very necessary that responsibilities relating to decision making are shared between a num-

ber of stakeholders. Collaborative Decision-Making (CDM) is of paramount importance

if appropriate ATFM actions are to be implemented. The main idea behind CDM is that

through the exchange of data and collaboration among stakeholders, air traffic flow man-

agers would be able to come up with better and effective decisions. The CDM objectives

include generating information based on the data from airspace system provided by airspace

users; distributing back the same information to both users and traffic managers, in order

to create common situational awareness, tools and procedures that allow for direct response

to congestion by airspace users; and finally collaborating with air traffic flow managers in

formulating ATFM actions (Vossen et al., 2012). Hoffman et al. (1999) pointed out that

the paradigm shift from central planning to collaborative flow management is a better way

to alleviate congestion problems as it allows airlines to have more control, flexibility and

input in the decision-making process through their control centers.

The problem of managing air traffic in order to maintain a safe and efficient flow of

aircraft throughout the airspace is referred to as the Air Traffic Flow Management Problem
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(ATFMP). Odoni (1987) came up with three approaches for solving ATFMP categorised

as long, medium and short-term approaches. Long-term approaches (usually 5 - 10 years)

try to solve the ATFMP by increasing capacity through construction of new airports

and additional runways, improvement of traffic control techniques and the introduction of

new technologies. Medium-term approaches (6months - 2years) can be seen as economic

and administrative measures taken to solve the ATFMP. This can be done either by

modifying the traffic flow patterns via temporary redistribution; flight diversion to off-

peak times; or regulation of the rate of departure and arrival in order to mitigate the

congestion problems. Short-term approaches (implemented daily within a time frame of

at most 6 - 12 hours) are those actions that are efficiently applied to control the air

traffic flow. The goal is to match the demand with available capacity over time and across

the various components of the ATC and airports network (Vossen et al., 2012). These

actions mitigate congestion problems that arise as a result of weather disturbances or

unpredictable disruptions in the shortest possible times. In fact, most of the optimisation

models discussed in Chapter 3 addressing ATFMP focus more on the short-term approach.

Precisely, Bertsimas and Patterson (1998) presented a generalised model for the ATFMP

wherein they illustrated how the model can be slightly changed to accommodate several

options of the basic problem, remarkably, the proposal of two approaches namely, sector

and path approaches, for incorporating rerouting option into the basic model especially

when there is bad weather condition (Agust́ın et al., 2009; Bertsimas and Patterson, 1998;

Odoni, 1987; Vossen et al., 2012).

Based on the 2004 report of the EUROCONTROL Performance Review Commission, the

problem of the en route capacity constraints may take at least another decade to be solved

because of its persistent nature. As a result of the occurrence of both airport and en route

airspace constraints at the same time, ensuring a safe and efficient flow of aircraft through

the airspace becomes a great challenge and a much more complicated task for traffic

managers especially when trying to resolve the capacity-demand imbalances. One of the

major challenges air traffic managers usually encounter is the problem of finding optimal

scheduling strategies that mitigate the impact of congestion problems on ATC system.

Hence, the need to come up with good and optimal scheduling ATFM strategies that do

not only alleviate congestion problems but also minimise delay costs while satisfying the

airport and en route airspace capacity constraints (Agust́ın et al., 2009; Bertsimas et al.,

2011)

1.2 Motivation for the Study

Air traffic congestion is currently a major problem facing the world’s air transportation

systems, especially in most developed countries. Resultantly, Air Traffic Flow Management

has become a necessity because of its central role in mitigating congestion problems as
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well as alleviating the associated costs. It is no surprise that it has become a fertile ground

for research work, which has attracted widespread interest on the ATFM problem in both

theory and practice. Given the recent trend in the aviation sector and the fast-growing

demand for air transportation, it becomes very needful to come up with strategies that

optimise the available resources to match the current air traffic demand as these will

not only reduce the impact of congestion problems on ATC systems but will also meet

up with the future demand for air transportation as well as the projected growth of the

airline industry. It is quite unfortunate that most of the systems and infrastructure of the

air transportation industries in most developed and developing countries do not have the

capacity to meet the rising demand for air transportation as a result of the inefficiency of

the flow management system. (Bertsimas and Odoni, 1997; Ronald, 2010).

To the very best of the researcher’s knowledge, most of the models developed so far for the

ATFMP considered instances from American and European airports and airspace where

ATFMP is assumed to be of great importance. Contrarily, the reality on the ground

as revealed in some reports is that most airports and airspace within other developing

countries are experiencing similar problems and these need to be addressed urgently to

meet with the future demand. Before the existing air traffic management system can

be upgraded, an in-depth understanding of the basic ATFMP, as well as the existing

optimisation models, needs to be developed. This will allow for a critical analysis of the

problems that a given country is experiencing and then try to either extend or adapt it to

address the challenge. This study is thus motivated by the afore-identified gaps.

1.3 Problem Statement

Air Traffic Flow Management is a planning activity designed specifically to address capacity-

demand imbalances, which occur either when capacity is reduced or when demand is high

(Bertsimas and Patterson, 1998; Odoni, 1987). The primary aim is to protect the Air

Traffic Control (ATC) system from overloading as well as to mitigate congestion problems

by limiting the resulting delays.

Until the late nineties, ATFM focused mainly on airports congestion and the most popular

approach, by far, was the allocation of ground delays (holding) to departing flights (Odoni,

1987). Apart from the ground holding approach, they also used other available control

options which include: speed control of airborne aircraft; metering of air traffic2; en route

airborne holding especially, near or inside terminal airspace and rerouting to resolve con-

gestion problems. In recent times, research findings and current practices have shown that

congestion problems also affect en route air sectors as a result of overcrowded airspace,

that is, capacity reduction in the airspace.

2controlling the rate at which aircraft go past a given point in airspace
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Bertsimas et al. (2011) pointed out that traffic congestion at these sectors is as critical an

issue as congestion in terminal airspace around major airports. Thus, airport and airspace

capacity constraints have been listed as the major causes of congestion problems (Agust́ın

et al., 2009; Bertsimas and Odoni, 1997; Odoni, 1987).

One of the ways to alleviate these problems on ATC system as well as maintaining opera-

tional and economic efficiency is by optimising operations for given demand and capacity

levels through optimal control of the air traffic flow in order to meet up with the demand

across the various components of the ATC and airports network over time using available

resources (Odoni, 1987). However, system disruptions and other unforeseen factors that

cause substantial reductions in airspace and airport capacity create unpredictable situa-

tions that require robust solution method. There are however other factors that determine

the number of flights that can depart from or arrive at a certain airport as well as the

number of aircraft that can are allowed in a particular sector of the airspace at a particular

period of time. These include availability of runways, ATC capacity, airspace constraints,

limitations on aircraft of the same class as to which aircraft can follow another (Ganu,

2008; Odoni, 1987; Vossen et al., 2012).

Given the presence of airport and en route airspace constraints, it becomes very difficult

for the traffic managers to adequately manage the traffic flow efficiently. This exposes a

need to find or develop optimisation techniques (approaches) as well as optimal scheduling

ATFM strategies that address these problems while satisfying the en route airspace and

airport capacity constraints which are also capable of handling large scale problems taking

into consideration the level of uncertainty with some of these problems.

The basic ATFMP can be stated as follows:

Given an airspace system, consisting of a set of airports, airways, and sectors, each with its

own capacity for each time period, t, over a time horizon of T periods, and given a schedule

of flights through the airspace system during T , we want to assign ground and airborne

delays to the flights in a way that satisfies all the capacity constraints while minimising a

function of the cost of the total delay assigned

Thus, the problems to be addressed are stated as follows:

i) Conducting a critical survey of existing optimization models and solution techniques

that address the ATFMP.

ii) Finding a better strategy for reducing air traffic delay and congestion problems in en

route airspace by improving on existing strategies and optimization models.

iii) Application of the sector and path-based approaches proposed by Bertsimas and Pat-

terson (1998) in developing new integer programming formulation for the ATFMP.

iv) Incorporating additional variables and constraints into the proposed IP formulation
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for the ATFMP in order to address other aspects of the basic problem.

1.4 Objectives of the Study

The main objective was to study the ATFMP as well as existing models and solution

approaches that have been devised to solve the problem. More specifically the study

sought:-

1. To review the existing optimisation models for solving ATFMP based on the type

of the problem they address and solution methodology. The primary aim of the

review is to provide insight into the problem formulation, solution methodology and

identify the best available model that will serve as underlying model when focusing

on solving the Air Traffic Flow Management Problem within the African region using

instances from any African airports and airspace.

2. To improve on already existing models by extending the model to allow for other

control options and modeling variations with focus on the deterministic case before

extending to probabilistic environment.

3. To investigate the computational performance of the existing optimisation models

in addressing the ATFMP on different data instances and draw valuable conclusions

from the computational results. More precisely, to see how efficient and realistic

it is to obtain integral solutions especially when solving both small and large scale

instances.

1.5 Significance of the Study

Ronald (2010) noted that one of the major significance of studying ATFMP is to empower

the decision-making process of air traffic flow management by filling the knowledge gap

and emphasising the need for integration in the ATFM decision-making process. Thus,

the research findings as well as the valuable conclusions deduced from the computational

results of the existing ATFMP models presented in this study are of paramount importance

to the air transportation industry as it aids in the ATFM decision making.

Although, most of the aviation industries are using a computerised procedure, software

and other tools to address the ATFMP, a closer look into the current practices in the Air

Traffic Control Systems reveals that the different optimisation models reviewed in this

study are well suited to be the underlying principles, that is the optimisation engine, for

the ATC system. This is evident from the fact that most of the models were validated

using real-world and artificially constructed (generated) data sets. Thus, the existing
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models and optimisation solution approaches of the ATFM will help in improving the

efficiency of the current and future traffic flow management practices if much attention is

given to them. Moreover, the ideas and underlying principles employed in the problem

formulation of the existing optimisation models for the ATFMP is not restricted only to

the air transportation industry but can also be used in other areas like manufacturing and

road transportation industries where goods and services are flowing through a dynamical

system with different types of capacitated elements (Bertsimas and Patterson, 1998).

1.6 Scope of the Study

ATFMP is complex and fraught with different subproblems that need to be addressed. The

scope of the study is therefore limited to the aspect of air traffic management that focuses

more on managing the air traffic flow while satisfying airport and en route airspace capacity

constraints. The study does not analyse the technicality involved in the data exchange of

the ATC and ATFM system; rather it gives an insight into the current ATFM practice and

problem within the context of South Africa. Also, the study does not cover the analysis of

the various traffic flow management models, but it focuses only on the optimisation models

for solving the ATFMP based on the different categories of problems under consideration.

Although the review of the optimisation models, covers both deterministic, stochastic,

static, dynamic and heuristics approaches for solving ATFMP, the study only considers

the deterministic case for the proposed formulation of the ATFMP that includes rerouting

and other control options. Moreover, the study does not provide a mathematical analysis

of the mathematical models given in this thesis, rather an insight is given on the concepts

of polyhedral combinatorics and integer programming that aptly capture the ATFMP to

help in understanding the modeling and optimisation of the ATFMP and proposed integer

programming formulation.

The researcher also encountered challenges with accessing air traffic managers within his

proximity in order to get useful information. Moreover, access to real-life data or already

generated data instances that are referenced in other academic works was almost impos-

sible given that the confidentiality level vis a vis such data is very high. Other than that,

obtaining access and license approval for the stand-alone modeling systems that make use

of CPLEX optimisation solver, which was mostly used in literature, is a lengthy process

given my status as an amateur in the usage of CPLEX optimiser and associated modeling

systems. Thus, most of the computational results are obtained using the students stand-

alone solver, which has a restriction on the number of variables and constraints that it

can handle when using the students’ stand alone version. This does not allow for large

instances of data.
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1.7 Research Contribution

It was the fervent hope of the researcher to contribute the following to ongoing research

in this area:

1. The critical analysis of the existing approaches, methodologies and optimisation tech-

niques that have been (and continue to be) used to address the ATFMP presented

herein in this thesis not only provides a detailed overview of the modeling and opti-

misation of the ATFMP but also provides further directions and recommendations

for future research especially with applications to developing countries.

2. New integer programming formulations were proposed for reducing the air traffic

delays and congestion problems based on two different approaches by extending the

basic air traffic flow model formulation to account for rerouting and other control

options.

3. The proposed deterministic integer programming formulation is envisaged to be as

strong as the underlying model as most of the inequalities (constraints) are facets

defining for the convex hull of solutions. Thus, the proposed formulation when tested

on real life instances can be used for effective decision making when managing the

flow of traffic in the air.

4. Small data instances depicting a typical ATFM problem were artificially constructed

based on the reviewed concepts in order to investigate the computational perfor-

mance of the basic ATFMP model (both for the MIP and LP relaxation case) in

obtaining integral solutions.

1.8 Thesis Outline

The remaining chapters of this thesis are organized as follows:

Chapter 2 describes the basic concepts in modeling and optimisation, optimisation pro-

cess and techniques, integer programming and polyhedral combinatorics. Thereby, giving

the background knowledge that is needed for proper understanding the problem under

consideration.

Chapter 3 provides an overview of the ATFMP by giving a detailed description of the

problem as well as the initiatives that have been put in place to address the ATFMP

from both a theoretical and practical point of view. The different existing approaches,

methodologies and optimisation techniques that have been used to address the problem

were critically reviewed.
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Chapter 4 provides an insight into the modeling approach for the proposed sector and

path-based approaches and the mathematical formulation of the new integer programming

deterministic model for the reducing air traffic delay and congestion problem. In Chapter 5,

the computational results obtained from the artificially constructed datasets for validation

purposes were presented and discussed.

Lastly, Chapter 6 contains the summary of the thesis, concluding remarks and recommen-

dations for future research.

1.9 Chapter Summary

This chapter was an introduction into the thesis, wherein background information to the

study was provided. An overview of the Air Traffic Management was presented with

the goal of distinguishing between the two components, ATC and the ATFM. The chapter

clearly stressed on the projected growth in the air traffic and demand for air transportation

which poses a great threat of severe congestion to the ATC system as well as the current

challenges encountered by traffic managers in finding optimal scheduling strategies that

mitigate the impact of these congestion problems on the ATC system.

The chapter also outlined the specific objectives and challenges of ATFMP and presented

an overview of the approaches that have been put in place to address the problem. The

motivation, objectives, significance and scope of the study were also outlined in this chap-

ter.



Chapter 2

Conceptual Framework

This chapter is an overview of the basic concepts, approaches and terminologies that

have been and continue to be employed in order to address the ATFMP. In Section 2.1,

the concept of modeling and optimisation, modeling and optimisation process as well as

techniques are briefly discussed. Key concepts in Integer Programming and Polyhedral

Combinatorics, which is the underlying principle for most of the ATFMP optimisation

models, are defined in Section 2.2. Most of the definitions, theorems, description and

illustration given in this chapter closely follow the ones presented in Odoni (1987); Sarker

and Newton (2007); Wolsey and Nemhauser (1988).

2.1 Modeling and Optimisation Techniques

2.1.1 Introduction to the Optimisation Problem

Several problems of interests that need to be solved (addressed) abound in every day life.

A unique class of problem that has attracted interest of researchers, problem-solving prac-

titioners and policy makers over the last decade are those problems whose solutions yield

minimum cost or maximum profits. These problems are generally referred to as optimisa-

tion problems. Optimisation problems can be found in all spheres of life and disciplines

of study including biological sciences, engineering, management science, information and

communication technology, computer science, humanities and social science etc due to the

fact that there is always the need for planning and decision making (Ali et al., 2015).

The basic idea of optimisation is finding the best possible solution to a given problem by

careful examination of all possible solutions and show that the selected solution is indeed

an optimal (best) solution (Ali et al., 2015; Sarker and Newton, 2007).

Researchers and problem-solving practitioners in most cases use mathematical models to

represent the problem of interest before attempting to solve it. The complexity of real-

world problems makes it difficult to develop mathematical models that can address all

aspects of the problem and in most cases an impossible one. However, problem-solving

practitioners and researchers tend to formulate simpler versions of the problem by making

several approximations and assumptions of which the solutions to the reduced problem

may likely differ to that of the original problem (Sarker and Newton, 2007).

2.1.1 Definition. A model is an abstraction of a problem of interest. It is to explain,

predict, or control the behavior of the entity modelled and forms an essential part of the

11
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process of solving that problem optimally (Chinneck, 2006; Sarker and Newton, 2007).

Three major types of models exist namely; analog, iconic, and mathematical or symbolic

models but the one that is of interest to optimisation is the mathematical model as it uses

a set of functional relationships and mathematical symbols to represent physical quantities

and allows for manipulation of the object that is been modeled. Mathematical models

or any type of models developed for solving problems must be simple, robust, adaptive,

complete and user-friendly (Chinneck, 2006; Sarker and Newton, 2007).

2.1.2 Definition. A mathematical model is a mathematical representation of the real

system or object of the problem and is able to present the important features of the system

in a form that is easy to interpret (Sarker and Newton, 2007). In other words, it is an

orderly and structured manner in which real-life problems might be tackled.

Mathematical models are generally classified into four categories: descriptive models, opti-

misation or normative models, often referred to as the prescriptive model, heuristic models

and predictive models. Descriptive models allow for representation of physical situations

in a visual mode. Optimisation models seek to optimise, that is either to ‘maximise’ or to

‘minimise’, an objective (mathematical) function of a decision variables, with respect to

some constraints. Heuristic models use intuitive rules which are guided by common sense

to look for solutions to a problem. In most cases, the solutions of optimisation models

are optimal while the solutions of heuristics model are said to be near-optimal. Predic-

tive models are developed in such a way that decisions about future trends can be made

(Sarker and Newton, 2007; Luke, 2009).

The focus of this study lies mainly on optimisation and optimisation models. There are

three major components to an optimisation (mathematical) model namely objective func-

tion, decision variables and set of constraints to be satisfied (Sarker and Newton, 2007).

The objective function of any mathematical model can either be a function of a one or

multiple variables. In any case, the optimisation problem is referred to as single and

multi-objective optimisation problems respectively. The decision variables used in the

mathematical model can also vary depending on the nature of the problem under consid-

eration. That is, the variables can be of the following forms: real, integer or a combination

of both. Moreover, the optimisation problem can either be constrained or unconstrained.

For the constrained optimisation problems, the left hand side of the constraint function in

the constraint parts of a the model is usually separated with any of the inequalities: (≤),

(≥), and (=). A typical (standard) mathematical model is of the form:

Maximse f(x) (2.1.1)

subject to

hi(x) ≤ Hi, i = 1, · · · ,m (2.1.2)



Section 2.1. Modeling and Optimisation Techniques Page 13

gj(x) = Gj , j = 1, · · · , n (2.1.3)

x ≥ 0, x ∈ Rn (2.1.4)

The objective function, (2.1.1), is a function of a single variable, x. The objective can

also be to minimise f(x) where minimisation is simply a negation of maximisation, that

is, min f(x) = −max(−f(x)). The constraints, (2.1.2) - (2.1.4), comprises of constraint

functions, hi and gj, which are general functions of the variable (otherwise expressed

as an unknown, decision variable or sometimes as a parameter); known constants for

deterministic problems, Hi and Gj; and a non-negativity constraint, x ≥ 0, which is

necessary for most real-world problems since most variables cannot be negative due to the

fact that the problems tends to either minimise costs or maximise profits which cannot be

assumed to be negative. This standard model is subject to change in any of the following

form: it can contain variable bounds instead of a non-negativity constraint or any other

constraint or contains only the standard model with or without (2.1.2) and (2.1.3). The

last case is applicable only to multiple variables (Sarker and Newton, 2007).

Supposing that x∗ denotes set of variables say x∗ = {x1, x2, · · · , xp}, Then the standard

mathematical model for multiple variables will be of the form:

Maximse f(x∗) (2.1.5)

subject to

hi(x
∗) ≤ Hi, i = 1, · · · ,m (2.1.6)

gj(x
∗) = Gj , j = 1, · · · , n (2.1.7)

x∗ ≥ 0 (2.1.8)

Mathematical models are generally characterised by the input sets, parameters, objective

function, decision variables and constraints. A detailed description of these characteristics

as well as general assumptions relating to mathematical model formulation can be found

in (Sarker and Newton, 2007, pg 6-7).

2.1.2 Classification of Optimisation Problem

General optimisation problems are classified based on the following: the number of ob-

jective functions; constraints and function type, that is, the nature of expressions for the

objective and constraint functions; nature of the problem under consideration; and nature

of the decision variables (Adewumi, 2010; Chinneck, 2006). More precisely, the problem

classification as summarised in Fig 2.1 is categorised as follows: objective classification,

problem or constraint classification, variable classification and function classification

1. Objective Classification: As alluded in the previous section, optimisation prob-
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Figure 2.1: Classification of Optimisation Problem (Adewumi, 2010; Sarker and Newton,
2007).

lems can be categorised as either single or multiple objective problem depending on

whether the function is of single or multiple variable. Moreover, the problem can be

classified based on the objective type which can either be to maximise or minimise.

2. Problem or Constraint Classification: The problem classification is an in-

dicator that shows whether the problem is constrained or unconstrained that is

whether it contains constraints or not. Although most real world problems are be-

lieved to be constrained, the study of unconstrained optimisation problems is also

of paramount importance to researchers as most of the unconstrained optimisation

techniques provide solution procedures for constrained problems. In constrained op-

timisation problems, the constraints can either be hard or soft. Hard constraints are

those constraints that the conditions must be satisfied in the final solutions (Sarker

and Newton, 2007). In other words, hard constraints defines the feasibility of the

solutions to be obtained and cannot be breached while soft constraints are those

constraints that can be violated under certain conditions or with a certain penalty

(Sarker and Newton, 2007).

3. Variable Classification: As has been mentioned in the preceding section, an op-

timisation problem can only have real, integer or mixed (combination of real and

integer) variables. These variable classifications are generally referred to as contin-

uous, integer or discrete, and mixed variables respectively. Optimisation problems

with continuous variable are referred to as Real-valued Programming Problems (Chin-

neck, 2006; Sarker and Newton, 2007). The nature of the problem implies that the

solution set must emanate from the set of real numbers. The optimisation problems

with integer or discrete variables is also known as combinatorial problem or inte-
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ger programming problem. The solution space consists of an object from a finite or

infinite set-typically an integer, permutation, or graph (Sarker and Newton, 2007).

Most practical real-world problems fall under combinatorial problems since it in-

volves permutation, combination (or even mixture of both) of some set of items or

even both subject to certain constraints. In particular, ATFMP is an example of

combinatorial problem since it involves scheduling, assignment and planning.

4. Function Classification: The function classification is based on the nature of the

objective and constraint functions which can either be linear, nonlinear or both as

well as the mathematical properties of the functions which are considered impor-

tant from the solution approach point of view (Chinneck, 2006; Sarker and Newton,

2007). Given any optimisation (mathematical) model and based on the function

classification, the model is said to be a linear programming model if all the functions

are linear. On the other hand, it is referred to as a nonlinear model if one or more of

the functions of a model has some elements of nonlinearity. However, several special

cases have been recorded where an optimisation model has linear constraints but

with either a quadratic or geometric objective function. The optimisation problems

that arises as a result of this classification are referred to as Linear Programming

Problem, Nonlinear Programming Problem, Quadratic Programming Problem and

Geometric Programming Problem respectively (Sarker and Newton, 2007).

Since most optimisation techniques are developed based on the assumption that

the function is convex, convexity has been considered as an important property in

classical optimisation. Thus, optimisation problems can also be classified as either

convex or nonconvex optimisation problem depending on the convexity properties

of functions. Moreover, the problems can also be classified as non-differentiable or

differentiable based on the solution approaches which can either be derivative free

(without derivatives) or with derivatives (Chinneck, 2006; Sarker and Newton, 2007).

In addition to the the above classification, the following function properties: uni-

modal, multimodal, static and dynamic are also considered when classifying optimi-

sation problems. Unimodal functions are functions with only one optimum (peak)

solution while multimodal functions are those functions with ‘more than one opti-

mum solution. The solution can either be a local or global optima. Static functions

are functions that does not change with time while dynamic functions changes over

time (Sarker and Newton, 2007).

Deterministic Optimisation versus Stochastic Optimisation Problems

The distinguishing factor between deterministic and stochastic optimisation problems is

whether the associated data for the given problem (capacities of the system) are known

or uncertain. For deterministic optimisation problems, the data for the given problem

is known accurately while in stochastic optimisation or optimisation under uncertainty,
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the capacities of the system are assumed to be probabilistic and the uncertainty is incor-

porated into the model. However, for most real-world problems, the data is not always

deterministic due to a number of reasons. Czyzyk et al. (1997) noted that in most real

world problems, the data cannot be known accurately due to simple measurement or pre-

diction error coupled with the fact that some of the data contains information about the

future which is uncertain (Czyzyk et al., 1997). For the case of stochastic optimisation,

uncertainty is incorporated into the model formulation using the concept of scenario trees

with associated weights. Techniques like robust optimisation (estimation) can be applied

to such problems when the parameters are known up to certain limits with the aim of

finding feasible optimal solution for all the data instances. The goal of stochastic pro-

gramming as opined by Czyzyk et al. (1997) is “to find some policy that is feasible for all

(or almost all) the possible data instances and optimises the expected performance of the

model by taking advantage of the fact that the probability distributions governing the data

are known or can be estimated” (Czyzyk et al., 1997; Chinneck, 2006; Sarker and Newton,

2007).

2.1.3 Optimisation Process

An important stage that is crucial to many institutions, organisation and production

companies is the optimisation phase or process. This is because of the central role that

it plays during the design and decision making processes. Markedly, it helps the decision

makers in coming up with realistic solutions to most complex management problems that

are of utmost concern to them. Although there are several ways to address the problems

that are of utmost concern to decision makers, the best way one might ever think of may

not be necessarily unique or obvious. Thus, optimisation provides a step by step process

of finding the best way (optimal solution) to the complex real-world problems (Adewumi,

2010; Chinneck, 2006; Sarker and Newton, 2007).

Until now, problems of utmost concern are addressed using either a qualitative approach

(where problem solvers rely on previous experience and personal judgements for decision-

making when handling similar situations) or a quantitative approach, which involves the

use of already developed techniques to solve the problems when they are either recurrent

or complex involving many variables.

Sarker and Newton (2007) is of the opinion that quantitative approaches are more appro-

priate and efficient when addressing complex problems than qualitative approaches since

it provides a better structured and logical path through the decision-making process. The

authors also pointed out that the process of decision-making begins once a real-world

phenomenon or problem that is of interest is identified (Sarker and Newton, 2007). This

process can also be referred to as the mathematical modelling process. The identified

problem is extensively studied and analysed with the aim of gathering necessary informa-
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tion that is needed for proper understanding of the problem as well as accessing available

information relating to the problem which will be of help when formulating the mathemat-

ical model. Thereafter, an optimal solution has to be found using the model by following

a sequence of mathematical evaluations, performing several iterations and testing in order

to validate the formulated model (Sarker and Newton, 2007).

Subsequently, the model assumptions are examined at various stages using datasets that

are not necessarily meant for the study and those that have been collected specifically for

the problem at hand to ascertain whether the assumptions provide valid answers to the

problem under consideration (Chinneck, 2006). These stages are often referred to as dry

and wet run. Sensitivity analysis is then carried by the decision makers with the aim of

identifying the decision variables that have the most significant impact on the solution and

investigating how the solutions are affected by slight changes in the input data (Sarker and

Newton, 2007). This analysis actually helps in ascertaining the robustness of the preferred

option as well as determining how sensitive the choice of the option is to slight changes

in the data and assumptions (Chinneck, 2006). The solution is then tested against past

and future behaviour as well as observations of actual performance over a period of time

in other to validate the robustness of the model before final implementation (Chinneck,

2006; Sarker and Newton, 2007).

The decision-making process as shown in Fig 2.3 involves six stages or phases namely,

Identifying and clarifying the problem; Defining the problem; Formulating and constructing

a mathematical model; Obtaining a solution to the model, Testing the model, evaluating the

solution, and carrying out sensitivity analysis; Implementing and maintaining the solution

(Chinneck, 2006; Sarker and Newton, 2007). None of the steps can be said to be the most

demanding item in the process but in the case that the problem is not well defined, the

analysis will eventually lead to wrong results. Hence, extra care is required when defining

and analysing the problem. Figures 2.2 and 2.3 illustrates the modelling and optimisation

process but the core optimisation process are steps 2-5 of Fig 2.3.

Model
Real World

Pheneomenon

Mathematical
Conclusions

Real World
Explanations
or Prediction

Solution techniquesAnalysis

Interpretation

Implementation

Simplification

Refinement

Verification Validation

Figure 2.2: Illustration of Modelling Process.
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Figure 2.3: Decision-Making Process (Sarker and Newton, 2007).

2.1.4 Optimisation and Modeling Techniques

There are several ways to address the identified complex problems. However as previously

highlighted, the best strategies may not necessarily unique or obvious. The process of

finding this best way or optimal solution to identified problems is known as optimisation

and the choice of suitable optimisation techniques or methods depends on the type of

optimisation problem under consideration.

Optimisation techniques are applied to solve most complex real-life and industrial problems

(Ali et al., 2015). The existence of optimisation techniques and mathematical models for

solving real-world problems can be traced back to several decades ago when concepts of

calculus of variation and differential calculus was the basic tool used for finding maximum

or minimum values of functions when solving theoretical problems as well as those arising

from practical situations (Sarker and Newton, 2007). For instance, the famous secretary

problem was solved by Johannes Kepler in 1613 and as far back as 300 BC Euclid showed

that the minimal distance between two points is the length of straight line joining the two

and years later in 1657, Kepler proved that light travels between two points through the path

with shortest length (Shodhganga, 2010; Sarker and Newton, 2007). Subsequently, in the

early nineties, people like H. L. Gantt, F. W. Harris, A. K. Erlang amongst others derived

mathematical equations for solving most of the problems that were of utmost concern.

For instance, Gantt charts developed in 1900 are used efficiently today to schedule jobs on
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machines while F. W. Harris, on the other hand derived, the well-known economic order

quantity in inventory management, used today in determining the most economic quantity

of an item to order from a vendor. A. K. Erlang’s formulation is used to analyse problems

encountered by callers to an automated telephone switchboard which in turn gave rise to

the recent queuing/waiting line analysis (Sarker and Newton, 2007; Chinneck, 2006).

Several other methods were later introduced for solving both constrained and uncon-

strained optimisation problems. L. Kantorovich in 1939 and George B. Dantzig in 1947

developed an algorithm, known today as simplex algorithm, for solving linear program-

ming problems (Sarker and Newton, 2007). J. L. Lagrange introduced the method of

Lagrange multipliers for solving constrained optimisation problems while L. A. Cauchy

in 1847 proposed an iterative method for solving systems of equations (Chinneck, 2006).

The proposed method is known today as the gradient method and has been applied to

solve unconstrained optimisation problems. Interior point optimisation methods, which

are based on the polynomial time algorithm developed by N. Karmarkar in 1984 are also

part of the solution methods for most optimisation problems (Chinneck, 2006; Sarker and

Newton, 2007).

Other advanced techniques have also been developed over the past decades for solving

optimisation problems, amongst these, a dynamic programming algorithm developed by

Richard Bellman in 1957. These techniques provide procedural steps that help in exploring

a solution search space in order to obtain a feasible solution that optimises given objective

functions subject to certain constraints. Moreover, the recent development of modern

heuristic techniques such simulated annealing (SA), tabu search (TS), genetic algorithms

(GA), neural computing, fuzzy logic, particle swarm and ant colony optimisation (PSO

and ACO) has helped problem-solving practitioners and researchers in addressing more

complex optimisation problems like blood assignment in blood banking system and space

allocation problem and many others (Adewumi, 2010; Adewumi and Ali, 2010; Olusanya

et al., 2015).

These optimisation techniques are classified into two major categories: Classical or exact

optimisation techniques and heuristics (meta-heuristics) techniques which are outlined

below. Exact optimisation techniques are briefly discussed while heuristics methods are

outlined with little or no description on the different techniques. More details on the

different methods can be accessed in any optimisation and modeling textbook.

2.1.4.1 Classical or Exact Optimisation Techniques

Exact optimisation techniques are suitable when finding optimal solutions to both single

and multiple objective optimisation problems. These techniques obtained optimal solu-

tions to given problems via an iterative process starting from an initial solution. The

different methods are briefly described below.
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• Direct methods: These are brute force approaches used in exploiting the nature

of functions which do not require evaluation of derivatives. The solution approaches

used depend on the type of the problem, that is multiple or single objective optimisa-

tion problem. For single optimisation problems, the golden-search, a general-purpose

single-search technique, or quadratic interpolation method can be used while uni-

variate search or random search methods are used for multi-objective optimisation

problems (Chinneck, 2006).

The golden-search method starts with upper and lower bound points (two initial

guess), followed by selection of the interior point which is chosen according to the

golden ratio given by
√
5−1
2 and the function is evaluated at new points and accord-

ingly the either the lower or upper bound is changed. The premise of quadratic or

three points interpolation method is that there will be only one quadratic connecting

three points and a quadratic polynomial which often provides a better approximation

to the objective function near optimal solution (Shodhganga, 2010).

The random search method is used for multiple objective optimisation problems

where the solution space are searched repeatedly by evaluating the function at ran-

domly selected values of independent variables with the goal of finding an optimal

solution. It works well for non-differentiable and discontinuous functions since it does

not require the gradient of the problem to be optimised but the only setback is that

the behaviours of functions at already evaluated points are not accounted for by the

method. On the other hand, the univariate search method optimises the objective

function with respect to a single variable at a time. The multivariable problem are

reduced to series of single-variable optimisation problems using this search method

and as the variables are interchanged, the process converges to an optimal point.

(Chinneck, 2006; Luke, 2009; Shodhganga, 2010).

• Gradient methods: Gradient methods, as stated earlier are iterative methods for

solving systems of equations (Shodhganga, 2010). These methods obtain optimal

solutions to real-valued optimisation problems of the form min
x∈Rn

f(x) based on the

knowledge of derivative information with the search directions defined by the func-

tion’s gradient at the current state. The gradient descent and the conjugate gradient

methods are some examples of the gradient method (Shodhganga, 2010; Weisstein,

2015).

• Linear programming methods: There are specific methods that apply to Linear

Programming Problems and this includes the graphical method, simplex method

(algorithm) and many more. The graphical solution method is used mostly for

two or three dimensional linear programming problems where the feasible solution

region and optimal solution are determined by plotting the graph of the equality and

inequality constraints and by finding the point in the feasible region for which the

objective function is optimal respectively (Chinneck, 2006; Shodhganga, 2010). This
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method is not applied regularly in practice although it is one of the effective methods

used for solving LP problems.

Simplex Method (Algorithm): As revealed in the introduction to this section,

simplex algorithm was invented by George Dantzig in 1947 to solve LP problems.

The algorithm determines the feasible solution set of any given LP problem by

evaluating the solutions gathered from the corner points with the aim of finding

the optimal point from the solution space. The simplex method tests the adjacent

corner points of the feasible solution set (usually a polytope1) in sequential order in

such a way that any new corner point, the objective function is either the same or

improved. To do this, the n−m variables are set to zero in order to obtain the basic

solution for m linear equations with n unknowns, the m equations for m remaining

unknowns are finally solved until the optimum is found. The zero variables are

called the nonbasic variables, while the remaining m variables are referred to as the

basic variables (Shodhganga, 2010). The basic solution including the optimum is

obtained when all the basic variables are non-negative (Sarker and Newton, 2007;

Shodhganga, 2010).

Before applying simplex method to linear programming problems, it is necessary to

ensure that the LP problem is converted into the standard form where the objective

is maximised, the constraints are inequalities and the variables are all nonnegative by

adding an external (slack or surplus) variable that converts the inequality constraints

into equality constraints as well as applying transformation to those variables with

unrestricted signs in the formulation. This method provides optimal solution for

linear programming problems in an extremely efficient manner and very efficient in

practice unlike the graphical method which has very limited practical utility (Chin-

neck, 2006; Shodhganga, 2010)

Interior point methods: Unlike the simplex method that solves only linear pro-

gramming problems, the interior point methods are used to solve both linear and non-

linear constrained optimisation problems. As far back as 1960, the interior method

was solely used for solving nonlinear constrained optimisation problems but after

the invention of fast interior methods for solving LP problems in 1984 by Narenda

Karmarkar, interior methods are now applied to almost all kind of optimisation

problems (Sarker and Newton, 2007; Shodhganga, 2010).

The logic behind the interior method is that the best solution to any given op-

timisation problem are obtained through searching the interior of the feasible re-

gion. The interior methods that give solutions to linear programming problems are

the Khatchian’s ellipsoid method and Karmarkar’s projective scaling method (Shod-

hganga, 2010). Primal-dual method is also another interior point method. The

interior method has a lot of advantages over the simplex method both in terms of

complexity and the fact that it is not affected by the problem of degeneracy. This is

1See Remark 2.2.5 of Section 2.2
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evident from the fact that the estimated run time needed to solve a LP problem of

size n by the simplex method is of the order 2n while that of the interior point method

is of the order of ni : i = 2 or 3. In essence, the complexity of interior methods is

polynomial for both average and worst cases and that of simplex method is polyno-

mial for average case and exponential for worst case since polynomial time algorithms

are computationally superior to exponential algorithms for large linear programming

problem (Chinneck, 2006; Sarker and Newton, 2007; Shodhganga, 2010).

• Branch and Bound (B&B) Algorithm : This method is amongst several others

that are used for solving integer programming (combinatorial) and real-valued prob-

lems. The B&B algorithm was proposed in 1960 by A. H. Land. The goal of the

method is to find a value x that optimises the objective function within the feasible

region. The algorithm consists of a systematic enumeration of individual solutions

by means of state space search. This is based on the fact that the outlined integer

solutions has a tree-like structure with the set of individual solutions forming the

rooted tree with the full set at the root (Sarker and Newton, 2007). Thus, the tree-

like structure is assumed to have a root node, leaf node and bud node with parent

node closest to the root node and child node closest to the leaf node as well as edges

representing the algorithm’s partial or complete solutions (Chinneck, 2006; Sarker

and Newton, 2007).

The core idea is to to grow the trees in stages with only the auspicious nodes grown

at each stage and avoid the entire tree as much as possible. The most auspicious

nodes are determined by putting a restriction, that is assuming a bound, on the

best objective function value that can be obtained if the nodes are grown to the

later stages. Chinneck (2006) noted that the B&B algorithm explores the branches

of this tree, that is the subsets of the solution set and before the candidate solutions

of a branch are enumerated, the branch is first checked against upper and lower es-

timated bounds on the optimal solution (Chinneck, 2006; Shodhganga, 2010). The

solution is discarded if it cannot produce a better solution than the best one found

thus far by the algorithm. Thus, the two important aspects of the algorithm are

Branching and Pruning. Others include Bounding and Fathoming, a by-product of

the bounding function calculations (Chinneck, 2006). In summary, the algorithm

performs a recursive search through the tree-like structure from top to down, formed

by the branching after which the other aspect of the algorithm follows suit (Chin-

neck, 2006; Sarker and Newton, 2007; Shodhganga, 2010). The key terms that are

associated with the branch and bound algorithm are briefly defined below.

– Branching: The splitting of the solution search space into smaller spaces

– Pruning: The cutting off and permanently discarding of nodes (individual

solutions) that that the algorithm can show that it will never be feasible or

optimal by keeping track on the bounds (Chinneck, 2006; Sarker and Newton,
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2007).

– Bounding: This is when the bound on the best value attained by a growing

node is estimated (Chinneck, 2006) .

– Fathoming: The is case where the expansion of a bud node can be halted

when the potential objective function value obtainable by expansion can be

seen directly.

– Bounding Function: This is the method of estimating the best value of the

objective function obtainable by giving a bud node further (Chinneck, 2006;

Sarker and Newton, 2007)

• Dynamic Programming is mostly assumed to be a general concept rather than

a strict algorithm although often times in literature it is referred to as the dynamic

programming algorithm. The concept is mainly applied to problems with a temporal

structure with the aim of splitting the problem into disparate sub problems before it

is finally solved. This method of solving the problem is distinct in the sense that the

sub problem for the last period is solved. The optimal solution for the last period is

obtained by first determining the optimal solution for the last but one period. The

sequence continues like that until all the sub problems are finally solved (Chinneck,

2006; Shodhganga, 2010).

2.1.4.2 Heuristics and Meta-heuristics Optimisation Techniques

Heuristic and Metaheuristic optimisation techniques or algorithms serve as an alternative

for the classical optimisation techniques discussed in the previous section. The need for

heuristic techniques particularly arises when classical techniques are either too slow or

cannot solve large instances of a given problem. Precisely, when classical techniques fails

to find exact solution to a given optimisation problem. Hence, heuristic techniques are

developed for solving complex optimisation problems much quicker or finding alternative

solutions to the given problem where an exact solution does not exist, that is, they search

for the best feasible solutions to the given optimisation problem where the complexities

involved does not permit an optimal solution (Adewumi, 2010). This is done by either

a trial and error method or trade off on optimality, completeness, accuracy, or precision

for speed and execution time. Heuristics techniques are often referred to as a short cut

method. Although the techniques are used to address most real-world complex problems

and have emerged as one of the strongest producers of good or near-optimal solutions

to the problem, most of the heuristics are exposed to several pitfalls, which however go

beyond the scope of this study. Some pitfalls have strong underlying theory while others

are just based on some rules of thumb learned empirically without the influence of theory.

Examples of such techniques include greedy algorithm, alpha-beta pruning and all other

search algorithms (Adewumi, 2010; Luke, 2009).
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On the other hand, metaheuristics is an advancement of heuristic algorithms. The phrase

meta simply means higher level (Luke, 2009), thus, meta-heuristics simply means higher-

level heuristics, implying that meta-heuristics algorithms can perform better with less

computational efforts than simple heuristics algorithms, classical optimisation techniques,

and iterative methods when looking for feasible solutions to a given problem. Hence, they

are very useful for solving most real-world problems as well as combinatorial optimisa-

tion problems. The method of implementation in most cases takes the form of stochastic

optimisation in the sense that the solutions depends on the set of random variables gen-

erated (Luke, 2009). Essentially therefore, metaheuristic algorithms are approximate,

non-deterministic and not problem specific.

Metaheuristics as defined by most authorities is a process that “guides subordinates heuris-

tics by bringing together different concepts and ideas for the purpose of investigating and

exploiting the search space in order to obtain efficient near optimal solutions” (Beheshti

and Shamsuddin, 2013; Laporte and Osman, 1995). It endeavours to maintain a balance

between exploitation and exploration of the local neighbourhood structures of the solu-

tion space . Exploration searches for the global optimum solution point while exploitation

seeks to find more ’promising ’ local neighbourhood as most superior solutions can be found

within such neighbourhood (Adewumi, 2010; Luke, 2009).

Metaheuristics algorithms are classified based on certain properties they possess or exhibit.

Some of the techniques include Genetic Algorithm(GA), Simulated Annealing(SA), Tabu

Search, Ant Colony Optimisation(ACO), Particle Swarm Optimisation (PSO) among oth-

ers that fall into different classification based on their properties. The classification is

outlined below along with examples of metaheuristics optimisation techniques for each

classification (Adewumi, 2010; Luke, 2009).

• Local search-based versus Global search-based Metaheuristics

Metaheuristics are characterised based on the search strategies they employ in finding

an optimal solution to given optimisation problem.

Local search algorithms are used when there are too many candidate solutions to

a given optimisation problem. The idea is to move from solution to solution in

the search space, that is the space of candidate solutions, by applying local changes,

until an optimal solution is found or time bound is elapsed (Luke, 2009). On the

other hand, global search algorithms are metaheuristics that improve local search

heuristics in order to find better solutions. A typical example of local search-based

metaheuristics is the Hill Climbing (HC) Method while Simulated Annealing (SA),

Tabu Search (TS), Iterated Local Search, Variable Neighborhood Search, and Greedy

Randomised Adaptive Search Procedure (GRASP) can be classified as both local

or global search-based metaheuristics. Moreover, global search-based metaheuristics

that are not local search-based are generally known as population-based metaheuris-
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tics. See population-based metaheuristics below (Adewumi, 2010; Adewumi and Ali,

2010; Luke, 2009).

• Single-solution versus Population-based Metaheuristics

Single-solution approaches focus more on improving and adjusting a single candi-

date solution in the search space while Population- based search methods, which are

inspired by the social behaviours or natural concepts, seek to maintain and improve

multiple candidate solutions (Luke, 2009). The search techniques are mostly based

on the population characteristics. In particular, single-solution based metaheuristics

are local search-based heuristics. Examples of single-solution based metaheuris-

tics include SA, Iterated Local Search algorithms, Variable Neighbourhood Search

and Guided Local search while GA, Evolutionary Computation, PSO, ACO, Arti-

ficial Bee Colony, Social Cognitive Optimisation on the other hand are examples

of population-based metaheuristics (Beheshti and Shamsuddin, 2013; Luke, 2009).

PSO, ACO, Artificial Bee Colony, Social Cognitive Optimisation are classified under

Swarm Intelligence Metaheruristics since it is a collective behaviour of decentralised,

self-organised agents in a population or swarm (Adewumi, 2010; Luke, 2009; Be-

heshti and Shamsuddin, 2013).

Metaheuristics can be combined with other optimisation techniques so as to improve on

the search mechanism. This idea of combining metaheuristics with algorithms from math-

ematical programming, constraint programming, and machine learning is referred to as

hybridisation and the resulting algorithm or metaheuristic is often called a hybrid meta-

heuristic (Luke, 2009). On the other hand, memetic algorithms are those algorithms that

represent the synergy of evolutionary or any population-based approach with separate

individual learning or local improvement procedures for problem search (Adewumi, 2010;

Luke, 2009)

2.2 Integer Programming and Polyhedral Combinatorics

In this section, key concepts in Integer Programming (IP) and Polyhedral Combinatorics

are briefly discussed. The basic concepts and definitions and theorems closely follow the

one presented in (Wolsey and Nemhauser, 1988).

In the previous section, IP problems were defined as those optimisation problems with

integer variables and whose solution space consists of an object from a finite or infinite

set, say integer, permutation or graph (Sarker and Newton, 2007). In fact, an IP problem

is one that seeks to optimise, that is to minimise or maximise an objective function, say

f(x), subject to the following conditions:

• The vector x must satisfy the given set of constraints functions, that is, x must



Section 2.2. Integer Programming and Polyhedral Combinatorics Page 26

satisfy the system of linear inequalities (Ax ≥ b) (Sarker and Newton, 2007).

• x must be a non-negative (x ≥ 0)

• x must be an integer.

If the last condition is omitted, then the resulting problem is said to be a LP problem and

the resulting formulation is said to be relaxed (LP relaxation of the IP).

Consequently, the link between integer programming and polyhedral combinatorics will

now be discussed starting with definition of basic concepts.

2.2.1 Definition. A set of points of dimension m, that is, x1, · · · , xm ∈ Rn is said to be

affinely independent if the unique solution to the equation below is λi = 0, ∀ i = 1, · · · ,m.

m∑
i=1

λixi = 0,

m∑
i=1

λi = 0 (2.2.1)

2.2.2 Remark. For linear independence, the second equation is not included. Affine

independence is used because IP deals mostly with inequalities.

2.2.3 Definition. The ‘maximum number of linearly independent row (columns) of A’

is the rank of A, denoted by rank(A) while the ‘maximum number of affinely independent

points in Rn’ is n + 1, that is n linearly independent points and the zero vector (Wolsey

and Nemhauser, 1988).

2.2.4 Definition. Let P be a set, P is said to be a polyhedron if P ⊆ Rn is a set of

points satisfying a finite number of linear inequalities, that is, P = {x ∈ Rn|Ax ≤ b}, with

(A, b), an m× (n+ 1) matrix (Ganu, 2008; Wolsey and Nemhauser, 1988).

2.2.5 Remark. A polyhedron is a ‘convex set’. Moreso, it can be bounded. A polyhedron

is bounded if there is an α ∈ R1
+ : P ⊆ {x ∈ Rn : −α ≤ xj ≤ α for j = 1, · · · , n}. A

bounded polyhedron is called a polytope (Ganu, 2008; Wolsey and Nemhauser, 1988).

2.2.6 Definition. A polyhedron, P , is of dimension k, denoted dim(P ) = k, if the

maximum number of affinely independent points in P is k + 1 (Wolsey and Nemhauser,

1988). In other words, the dimension of P is just one less than the cardinality of the

maximal set of affinely independent points in P (Ganu, 2008). P ⊆ Rn is said to be full

dimensional if dim(P ) = n.

2.2.7 Proposition. If P ⊆ Rn, then dim(P )+rank(A=, b=) = n. (A=, b=) is the equality

set consisting of the rows corresponding to aix = bi ∀ x ∈ P (Wolsey and Nemhauser,

1988).

Proof. See Proposition 2.4 of Wolsey and Nemhauser (1988) for proof.
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2.2.8 Definition. The inequality, πx ≤ π0 or (π, π0) is a valid inequality for P if it

is satisfied by all points in P . In other words, (π, π0) is a valid inequality if and only if

max{πx : x ∈ P} ≤ π0 (Wolsey and Nemhauser, 1988).

2.2.9 Definition. If (π, π0) is a valid inequality for P and F = {x ∈ P : πx = π0}, then

F is called a face of P .

2.2.10 Remark. The following remark is as a result of the above definitions.

• The inequality (π, π0) represents F . F is said to be proper if F 6= ∅ and F 6= P .

• Moreover, F represented by (π, π0) is nonempty if and only if max{πx : x ∈ P} = π0.

Hence, (π, π0) supports F .

• A face of P is said to be a facet if dim(F ) = dim (P ) - 1.

• P can described by the facets of P .

2.2.11 Definition. Given a set S ⊆ Rn, a point x ∈ Rn is said to be a convex combi-

nation of points of S if there exists a finite set of points {xi}ti=1 in S and a λ ∈ Ri+ with
t∑
i=1

λi = 1 and x =
t∑
i=1

λixi (Wolsey and Nemhauser, 1988).

2.2.12 Definition. The convex hull of S, denoted by conv(S), is the set of all points

that are convex combinations of points in S (Wolsey and Nemhauser, 1988). In other

words, conv(S) = {y ∈ Rn : y =
t∑
i=1

λixi} where xi ∈ S and λi ∈ R+ ∀i with
t∑
i=1

λi = 1.

If S is defined as S = P ∩ Zn, then convex hull of S, conv(S) , corresponds to the convex

hull of integral polyhedron on Rn. See Figure 2.4.

2.2.13 Definition. x ∈ P is said to be an extreme point of P if @ x1, x2 ∈ P , x1 6= x2

such that x = 1
2x1 + 1

2x2.

2.2.14 Remark. If πx ≤ π0 is valid for S, then it is also valid for conv(S). Furthermore,

if πx ≤ π0 defines a face of dimension k − 1 of conv(S), then there exists k affinely

independent points x1, · · · , xk ∈ S such that πxi = π0 for i = 1, · · · , k (Wolsey and

Nemhauser, 1988). More details on this can be seen in the proof of Propositions 6.5 and

6.6 of (Wolsey and Nemhauser, 1988, pg 107-108).

2.2.15 Remark. Two valid inequalities, πx ≤ π0 and γx ≤ γ0 are said to be equivalent

if (γ, γ0) = λ(π, π0) for some λ > 0, otherwise they are not equivalent. If they are not

equivalent and there exists µ > 0 such that γ ≥ µπ and γ0 ≤ µπ0, then {x ∈ Rn+ : γx ≤
γ0} ⊂ {x ∈ Rn+ : πx ≤ π0}. In this case, we say that γx ≤ γ0 dominates πx ≤ π0 or

πx ≤ π0 is dominated by γx ≤ γ0 (Wolsey and Nemhauser, 1988).

2.2.16 Definition. A maximal valid inequality for S is one that is not dominated by any

other valid inequality (Wolsey and Nemhauser, 1988).
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Figure 2.4: Convex hull of integral solutions in Rn (Ganu, 2008; Wolsey and Nemhauser,
1988)

2.2.17 Remark. Any maximal valid inequality for S defines a nonempty face of conv(S),

and the set of maximal valid inequalities contains all of the facet-defining inequalities for

conv(S) (Ganu, 2008; Wolsey and Nemhauser, 1988).

2.2.18 Theorem. Given S = P ∩ Zn 6= ∅, P = {x ∈ Rn+ : Ax ≤ b} and any c ∈ Rn. It

follows that:

• The objective function value of the IP problem is unbounded from above if and only

if the objective of the LP relaxation is unbounded from above.

• If the LP relaxation has a bounded optimal value, then it has an optimal solution

(namely, an extreme point of conv(S)), that is an optimal solution to the IP.

• If x∗ is an optimal solution to the IP problem, then x∗ is an optimal solution to the

LP relaxation (Wolsey and Nemhauser, 1988).

In other words, if P = {x ∈ Rn+ : Ax ≤ b} is the feasible set of the LP relaxation of the

IP problem max{cx : cx ∈ conv(S)} and the LP on the convex hull of S has an optimal

solution, x∗ (namely an extreme point of conv(S)). Then, x∗ will be an optimal solution

to the IP on S (Ganu, 2008; Wolsey and Nemhauser, 1988).

Proof. See Theorem 6.3. of Wolsey and Nemhauser (1988) for the proof.
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The above theorem simply indicates that we can solve the IP problem by solving the LP

relaxation. Thus, the solution to an IP problem can be obtained directly from its LP

relaxation.

2.2.19 Remark. In a situation where each of the corner points of the set of feasible points

to the LP relaxation is integral, then there will always be an integral optimal solution, x∗,

to the LP relaxation. Since every integer point feasible to the IP problem is contained in

the feasible set of points of the LP relaxation, then the optimal solution for LP relaxation,

x∗ must be the optimal integer solution for the IP problem (Wolsey and Nemhauser, 1988).

This merely is a cursory explanation on the theorem, more details can be located in

Chapters 1 and 2 of Wolsey and Nemhauser (1988). The basic concepts illustrated in this

section form the underlying principle for the best identified optimisation model for the

ATFMP that contributed positively to the computational performance of the model.

Based on the basic concepts described above, the best option or technique in IP is to

find a formulation (possibly a strong formulation) for which the feasible set of points to

its LP relaxation fits tightly around the convex hull of integer solutions (Hoffman, 1997).

This closeness of fit is measured by the value gap2 while the strongest formulations are

ones that define facets of the convex hull of integer solution (Hoffman, 1997; Wolsey and

Nemhauser, 1988).

IP problems are usually more difficult to solve than LP problems. Resultantly therefore,

most of the algorithms for solving IP or MIP problems rely on branch and bound strategy

by enumerating the set of feasible points and exploring the tree solutions in which each

branch represents a restriction on the set of feasible points. Research findings shows that

much can be done to simplify an integer programming problem after formulation before it

is finally solved. A preprocessing phase involves all the steps or measures taken in order

to simplify an integer programming problem before it is finally solved. It is an integral

part of most optimisation solvers especially CPLEX. These measures include one of the

following: fixing some of the variables a priori or even eliminating the variables altogether;

examining the bounds and constraints for potential tightening and elimination respectively

(Hoffman, 1997; Hoffman et al., 1999). All the techniques of integer programming as well

as the concepts briefly discussed above are mostly applied when formulating the air traffic

flow management problem.

2Value gap is the difference between the objective function values of the IP and LP relaxation. It is
used for determining a stronger model when given two different problem formulation. A lower value gap
indicates a stronger model (Hoffman, 1997; Wolsey and Nemhauser, 1988).
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2.3 Chapter Summary

This chapter focused mainly on modeling and optimisation concepts. In summary, Figure

2.5 shows the classification of optimisation problems taxonomy with particular emphasis

on the sub fields of deterministic optimisation with a mono-objective function.

The concept of optimisation problem, the three main components of mathematical model,

the objective function, decision variables and a set of constraints to be satisfied, as well

as the general characteristics and assumptions were introduced. The different optimisa-

tion problems classified by Sarker and Newton (2007) and Chinneck (2006) were briefly

discussed.

The chapter also illustrated the various stages involved in optimisation since it is pivotal

to many institutions and decision makers. The optimisation process helps in the decision

making and design process by providing realistic solutions to most complex real-world

optimisation problems. Different modeling and optimisation techniques that are classified

under two broad headings; exact and heuristic techniques, were also discussed. Basic

concepts in integer programming and polyhedral combinatorics were also defined and

briefly discussed with the aim of illustrating the relationship between integer programming

and polyhedral combinatorics.
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Figure 2.5: Taxonomy of optimisation problems (Czyzyk et al., 1997).



Chapter 3

Methodologies for the Air Traffic Flow

Management Problem

This chapter is an exploration of existing approaches, initiatives and methodologies that

have been used to address the ATFMP in the context of South Africa from both a the-

oretical and practical point of view. A review of the optimisation models taxonomy for

solving the ATFMP is also presented in Section 3.3.

3.1 Air Traffic Flow Management Problem Description

The ATFMP can be described in terms of a network flow model or better still from a

graph theoretical point of view considering the geographical representation of an airspace

which can be represented in terms of graphs and network flows (Delahaye and Puechmorel,

2013; Helme, 1992). See Figures 3.1 , 3.2 and 3.3 for illustration.

Figure 3.1: Illustrative Example: A geographical representation of an airspace.

In order to describe ATFMP as a network problem, the elements of the network as visu-

alised in Fig 3.3 are describe first for proper understanding. They include airports (A/P ),

airways (A/W ), sectors (S/R) and waypoints (W/P ).

1. Airports: Aircrafts make use of airport for departure and arrival (to destination),

thus an airport is an origin for some flights and destination for others. Moreover,

aircrafts fly through waypoints.

2. Waypoints: A waypoint is a trans-shipment node through which traffic flows. It may

32
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Figure 3.2: A graph representation of the geographical airspace

be a departure fix, an arrival fix, a point of intersecting airways, or any point in the

airspace that one wishes to designate (Helme, 1992). It is neither an origin nor a

destination for any flight.

3. Airways: An airway is a recognised or predefined route followed by aircraft while

traversing the airspace to its destination.

4. Sectors: Sectors are collections of waypoints and adjacent sections of airways (Helme,

1992).

3.1.1 Remark. A node in the network can represent an airport or a waypoint while a

link or arc represents an airway between two nodes.

3.1.2 Remark. Airports are the sources and sinks of flows on the network while airways

represents the arcs on which flows travel. On the other hand, the nodes of the network

are the waypoints. The airways either merge, intersect or diverge at such points Odoni

(1987).

The most critical of these elements are the airplane terminals and sectors since they consti-

tute the chief bottleneck of the system (Odoni, 1987). This is a consequence of limitations

on the quantity of aircraft that can leave or touch base at a specific air terminal and

additionally the quantity of flying machine that is permitted to be in a specific area at a

specific time frame. In this manner, every air terminal has a landing and a flights limit

(See Figure 3.3 where R and D are the servers connected with Airport 1) which shifts with

time contingent upon various elements such as poor climate conditions; runway setup be-

ing used; ATC partition prerequisites and techniques; sorts of aircraft and portion of every

kind of the movement; runway geometry; and human components (execution of ATC con-

trollers and pilots) that change after some time (Odoni, 1987). Besides, deciding airplane
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terminals limits is regularly described by instability since one can’t foresee precisely the

climate conditions at any given point in time despite the fact that now and again, the

limits are known ahead of time (Bertsimas and Patterson, 1998; Bertsimas and Odoni,

1997; Odoni, 1987; Vossen et al., 2012).

Figure 3.3: Network representation of ATC system for ATFMP purposes (Odoni, 1987).

On the other hand, aviation routes, waypoints and sectors limits are controlled by the

greatest number of aircraft that can navigate these components at a specific time frame

period. On account of sectors, it is controlled by the maximum number of aircraft that
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can be in a segment for a time period (Helme, 1992; Odoni, 1987). Odoni (1987) noted

that the limits offered by these components practically speaking as a rule surpasses the

movement streams that can be created by and consumed at the air terminals Odoni (1987).

In any case, sectors what’s more, waypoints situated at key positions and near bunches of

air terminals individually are regularly barred.

As already noted in Section 1.1 ATFM tries to reduce delays that arise as a result of

congestion problems which usually occur when the demand for the systems infrastructure

exceeds capacity. Taking into account the presumption that the limit of airways is not

generally the reason for congestion, Odoni (1987) points out that delays in the ATC

framework can happen as a consequence of an unfavorable demand-to-capacity relationship

at the accompanying ATC components:

(i) Departing airport (as a result of congestion at the departure runways)

(ii) En route air shafts (airways) on account of waypoint congestion.

(iii) En route airways as a result of congestion at the en route airspace sector

(iv) Arrival airport (due to congestion of the arrival runways) (Odoni, 1987).

Further, Odoni (1987) stresses that once there is no great activity stream administration

framework, the effect of delays subsidiary with (i) - (iv) would be significantly felt in the

congested zones, that is, on the runway, preceding take-off; on the aviation routes, through

airborne holding close to a congested waypoint or before entering a congested division;

and in terminal zones, through airborne holding and vectoring before arriving at the

airplane terminal of destination (Odoni, 1987). In any case, a great stream administration

framework with the open data concerning the system tries to moderate the effect of clog

and delays and additionally implementing any of the control activities so as to minimize

the related expenses (Bertsimas and Odoni, 1997; Odoni, 1987; Vossen et al., 2012).

1. Ground holding or Gate Holding: Delaying the departure times of flights by

not permitting the aircrafts to leave its departure gate at the scheduled time even

though they are ready for departure (Bertsimas and Odoni, 1997).

2. Traffic Metering: is the regulation of the rates of aircraft flow through particular

focuses on the system, for example, flight runways or various transit waypoints

(Odoni, 1987).

3. En route re-routing: This is the modification of routes for selected flights when it

is noticed that the current route is no longer usable due to problems associated with

poor weather conditions and other factors. This will enable the flights to boycott

crowded en route areas.
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4. En route speed control restrictions: imposing a restriction on the cruising

speed of flights while en route so as to monitor their time of arrival at a waypoint

or terminal area of an airport (Odoni, 1987).

5. Air (High-elevation) holding and path-stretching maneouvers: This is a

means of holding a flight in the air at high altitude. Thus, delaying arrival to

crowded areas as well as avoiding the cost associated with holding flights at low

elevation.

ATFMP, as already stated in Section 1.1, is the problem of managing the air traffic

so as to ensure efficient and safe flow of aircraft throughout the airspace but in a

more general sense, ATFMP is “the problem of designing a flow management system

that will minimise the cost of ATC delays described in (i) - (iv) within the shortest

possible time subject to a set of operational and policy constraints” (Odoni, 1987).

The ATFMP can be addressed from a macroscopic or microscopic point of view at

different stages depending on the type of control action to be implemented. The traf-

fic flow management control actions to be implemented can be pre-tactical, strategic

and tactical in nature where decisions of a more tactical nature require more de-

tailed, microscopic models while those concerned with strategic flow management

requires macroscopic models with a high level of aggregation (Vossen et al., 2012;

Odoni, 1987).

When considering the control actions described above, actions (4) and (5) are of

a tactical (fine-tuning) nature, (1) is of a strategic nature and (2) and (3) fall in-

between (Odoni, 1987). In Section 3.3, most of the models that were reviewed con-

sidered at least one of the control actions as possible flow management tools but

most importantly, the models try to resolve the most important aspect of ATFM

from a practical point of view, that is, the trade-off between ground-holding delays

and airborne delays (Odoni, 1987). The trade off is important in that flights are

held on the ground (when aircraft is stationery and its engines switched off) instead

of the air, which is quite costly and somewhat unsafe. Trade off is thus crucial in

that it saves costs to the airlines and the nation as well.

3.2 The Air Traffic Flow Management Initiatives

In the United States, Air Traffic Control System Command Center (ATCSCC), an arm

of the Federal Aviation Administration (FAA), has the obligation of dealing with the air

movement action inside of the National Airspace System (NAS). Their part is to adjust

air traffic demand with the system limit in the NAS and are focused on dealing with the

NAS in a sheltered, effective, and firm way with the point of minimizing delays and clog

while augmenting the general utilization of the NAS (Vossen et al., 2012). Different units

that assists in the air traffic control and administration incorporates the Airport Control



Section 3.2. The Air Traffic Flow Management Initiatives Page 37

Towers, Air Route Traffic Control Centers (ARTCC), Terminal Radar Approach Control

Facilities (TRACONs) amongst others (Vossen et al., 2012).

In South Africa, the Central Airspace Management Unit (CAMU) is accountable for air

traffic flow and capacity management inside of the South African airspace in a joint effort

with South Africa Air Traffic and Navigation Services (ATNS). ATNS is the sole business

supplier of air activity, route and related administrations in charge of aviation authority

in roughly 10% of the world’s airspace (ATNS, 2011, 2015).

CAMU is essentially in charge of the airspace capacity management; slot allocation; adapt-

able utilization of airspace, and re-routing of activity influenced by unfriendly climate or

confined airspace utilizing diverse fundamental and progressed ATFM systems (ATNS,

2011).

Ground Delay Programme was the first to be implemented by FAA & ATCSCC since

the problem of airport congestion basically occur in USA via the national ground hold-

ing policy using a computerised procedure in order to select appropriate ground-holds

(Vossen et al., 2012). To ensure safe and efficient traffic flow management practices in

South Africa, CAMU already have in place different ATFM techniques for traffic manage-

ment decision making which can either be strategic, pre-tactical or tactical flow manage-

ment decision. These techniques include: Ground Stops, Airspace Flow and Ground de-

lay Programmes (which includes Ground Holding, Airborne Holding, Flight Cancellation,

Rerouting, Swapping, Miles and Minutes-in-Trail (MIT & MINIT), Traffic Sequencing

Programmes, Speed Control and other control actions) as well as ATFM tools like Air-

port Flow Tool (AFT), Thales’s ATFM solution (EUROCAT and FLOWCAT), Airspace

Management Tool (AMT), Metron Traffic Flow AND CAMU WEB amongst others. See

(ATNS, 2011, 2015) and Section 3.2.1 for more details on these techniques. Figure 3.4

illustrates the exchange of information through the different phases of the ATFM between

the control managers, traffic managers, airline operators and other decision making bodies

and stake holders.

3.2.1 Central Airspace Management Unit ATFM Techniques

The description of the CAMU ATFM advanced techniques outlined in this section follow

closely the descriptions presented in ATNS (2011, 2015) and others found in literature.

See ATNS (2011) for more details on the basic CAMU ATFM techniques (Miles-in trails,

Minutes-in-trail, depature flow rates, sequencing traffic programmes)

1. Ground Stops (GS) are actualized at aerodromes1 when major ATC blackouts

or terrible climate conditions make limit diminishments in the system framework to

1Aerodrome is an area from which airplane flight operations occur, paying little or no attention to
whether they include air cargo, travelers, or none of them (ATNS, 2011).
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Figure 3.4: Screen shot of CAMU data exchange through the ATFM phases (ATNS, 2015).

the degree that traffic jam can happen at an aerodrome ATNS (2011).

2. Ground Delay Programs (GDP) are ground or entryway holding moves taken

to delay the flights on the ground because of the limit imperatives at the landing

or takeoff aerodromes. GDP’s try to minimise costs by avoiding too much airborne

delay or rerouting (ATNS, 2015).

3. Airspace Flow Programs (AFP) are those control activities actualized when

there is a limit decrease in the airspace, that is, in the areas, waypoints or aviation

routes. The influenced regions are distinguished as Flow Constrained Area (FCA)

4. Airspace Management Tool (AMT) is utilized predominantly for airspace man-

agement in order to ensure a safe and productive stream of flights. See Figure 3.5 for

illustration. The AMT is composed in a manner that data in regards to the present

air circumstance (concerning the flight arrangement tracks, graphical routes, maps,

arrangements of flights, climate information, Storm TSA); the future air circum-

stance, and the sector/position/TSA activity burden, can be shown on the screen

as an aide for traffic managers in executing flow management techniques. Different

abilities include: snappy sorting/filtering, alerts, notices and stacking maps and also

transmission of ATFM rerouting messages (ATNS, 2011, 2015)

5. Airport Flow Tool (AFT) is a pre-strategic propelled choice bolster device that

resolves the capacity-demand imbalances within the South African airspace profi-

ciently (see Figure 3.6) by observing the systems capacity and demand and imple-

menting necessary traffic management initiatives. Airport Flow Tool
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Figure 3.5: Airspace Management Tool used by CAMU operators (ATNS, 2015).

• provides situational mindfulness and report to the CAMU administrators uti-

lizing the Airport Demand List (ADL) information, movement plan (including

a blend of OAG timetable, IATA air terminal slots and flight data processor

information);

• presents graphical and course of events presentation of aerodrome furthermore,

airspace demand and capacity data;

• contains effective utilities for ground delay administration and examination
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that considers brisk reaction to airspace imperatives by CAMU air traffic flow

experts (ATNS, 2011, 2015).

For viable choice making, the CAMU administrators screen the aerodromes and

Flow Constrained Areas (FCA) by viewing existing demand and limitations at those

components and model the effects of potential traffic management initiatives (TMIs)

with the aim of choosing the activity that yields the best answer for the present

imperatives before it is finally implemented and reflected in the ADL (ATNS, 2011,

2015).

Figure 3.6: Airport Flow Tool (AFT) used by CAMU operators (ATNS, 2015).

6. CAMU Web (Figure 3.7) is an online investigation and strategic slot management

tool (ATNS, 2011). The fundamental motivation for building up the web is to show

current traffic initiative and related parameters; access the execution of cutting

edge ATFM procedures progressively and give strategic slot management abilities

through substitutions (ATNS, 2011, 2015). With the procurement of the online
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interface, airlines have the choice of upgrading their utilization of accessible capacity.

In addition, all airplane terminal partners have up-to-the-second shared situational

mindfulness and booking (ATNS, 2015).

Figure 3.7: Screen shot of CAMU web interface (ATNS, 2015).

7. METRON Traffic Flow, Thales Eurocat and FLOWCAT: These software

were developed by Thales with the support of Metron for the ATNS and CAMU for

ATFM in South Africa. It was devised to meet the demand of airport and airspace

users which in light of the 2010 World Cup, hosted in South Africa alongside a

general increase in the country’s tourism was set to increase. The flowchart in

Figure 3.8 illustrates the ATFM system provided by Thales and Metrons for South
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Africa ATNS while Figures 3.9 and 3.10 illustrates the Metron Traffic Flow .

Figure 3.8: ATFM system provided by Thales and Metron for ATNS (ATNS, 2010).

Figure 3.9: ATFM system provided by Thales and Metron for ATNS (ATNS, 2010).
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Figure 3.10: ATFM system provided by Thales and Metron for ATNS (ATNS, 2010).

The system optimises the utilization of accessible airspace and airplane terminal

resources by adjusting load and limit keeping in mind the end goal, that is to lessen

delays, reduce clog and streamline the workload of air traffic controllers. The method

includes the utilization of a Flight Schedule Monitor software to dole out landing

slots to airplane in light of the available capacity and flight arrival times, including

the delays in successive manner until demand equivalents the capacity (ATNS, 2010,

2011)

3.3 Optimisation Models for the ATFM Problem

As alluded to in the preceding section, there are several approaches or initiatives that

are used by traffic managers to reduce the excessive demand before congestion occurs.

These includes: Ground Holding Approaches − this is the strategic modification of land-

ing and take off time of flights by assigning delays to flights selectively before departure

which can be in the form of GS or GDP; Airborne Control Approaches − which includes

spacing−miles-in-trails2, speed controls3, and vectoring4; Rerouting approaches − in which

decisions are made on which flight routes an aircraft can traverse when it is known in ad-

2Spacing majorly controls the separation between aircraft moving in the same direction
3Speed control ensures “safety and efficient flow of aircraft by increasing or decreasing the speed”
4Vectoring can be seen as minor spatial deviation from a flight route (Vossen et al., 2012)
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vance that the scheduled route is unusable due to reasons associated with poor weather

conditions or other unforeseen factors. The distinguishing factor between these approaches

is that Ground Holding and Rerouting approaches are only applicable some hours in ad-

vance for effective control of the situation to be possible while Airborne approaches are

used some minutes prior in order to tactically manage the situation at hand. However, the

miles-in-trails are an exception because they are employed to achieve a particular purpose

as and when need arises. In the context of this review, these approaches are broadly clas-

sified into two major categories-Ground Holding and ATFM Approaches (Vossen et al.,

2012).

ATFMP can be deterministic, stochastic, static and dynamic in nature depending on the

aspect under consideration. Deterministic in the sense that the capacities of the system

are assumed to be known in advance and stochastic in the sense that capacities of the sys-

tem are not known with certainty (Agust́ın et al., 2009; Bertsimas and Patterson, 1998).

On the other hand, ATFMP can be dynamic or static in the sense that the solutions are

updated dynamically or not with time during the day. The optimisation model that are

used to address the problem can be formulated either as dynamic, integer, stochastic pro-

gramming and network-flow problem or any other method which are solved using different

optimisation solvers and techniques like Lagrangian multipliers, relaxation methods, ex-

act, heuristics and multi-objective algorithms and several others in order to get optimal

solutions in good computational time. Thus, the review of related works on modeling and

optimisation of ATFMP are classified based on these features:-

3.3.1 The Ground Holding Approaches

Most of the existing optimisation models that address ground holding approaches for

solving ATFM are categorised under the airport capacity allocation models, which are

further subdivided into two: the one that focuses on enhancing runway use through flight

sequencing and another that concentrates primarily on capacity allocation amid discrete

time interims among booked flights in an airport (Vossen et al., 2012). This is the most

straightforward method for regulating the air traffic demand. The objective is to delay

air plane on the ground as opposed to airborne, that is, exchanging airborne delay to

the ground at the flight air terminal since it is more secure and less costly. This is quite

advantageous because an aircraft will no longer have to fly extra distance in trying to

avoid crowded regions of the airspace or flapping around a crowded airport. In essence,

this also reduces fuel consumption. The rationale behind this methodology is to restrain

the number of airborne aircraft at any given time with a specific end goal to decrease

the controller workload and in addition fulfilling the capacity requirements of the aircraft

arrival terminals. To achieve this, delays are selectively distributed to initially-scheduled

aircraft departure times (Bertsimas and Patterson, 1998; Bertsimas and Odoni, 1997;

Chaimatanan, 2014; Vossen et al., 2012).
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There are two sub-classifications of problems when considering ground holding approaches:

Single Airport Ground Holding Problem (SAGHP) and Multiple Airport Ground Holding

Problem (MAGHP). The SAGHP is concerned with one destination airport at once in

view of the presumption that reduction in capacity happens just at one airport in the

framework while others have a boundless limit (Vossen et al., 2012). The Multiple Air-

port Ground Holding Problem (MAGHP) is a broadened variant of the SAGHP which

incorporates the between relationship that exists between various airports (Agust́ın et al.,

2009; Vossen et al., 2012). For SAGHP, the models do not consider constraints that are

related to the en route sectors capacities rather it takes into consideration the arrival air-

port capacity as well as the departure airport capacity. The objective function of ground

holding approaches is The target capacity of ground holding methodologies is to minimise

the aggregate congestion and delay costs (with respect to the aggregate ground holding

and to the airborne deferrals for the flights) while guaranteeing that the capacity lim-

itations of the arrival airports are fulfilled (Agust́ın et al., 2009; Bertsimas and Odoni,

1997; Chaimatanan, 2014; Vossen et al., 2012). The presumptions (A1−A4) of the model

incorporates the accompanying:

A1) The capacity of the arrival airport is known in advance with certainty.

A2) The capacity of both the departure airport and the airspace is unlimited.

A3) Alternative routes are not taken into account.

A4) The time horizon is discrete (Agust́ın et al., 2009).

3.3.1.1 The Single Airport Ground-Holding Problem (SAGHP)

The SAGHP is one of the least difficult techniques for the ATFMP as it doesn’t mull over

the air sector capacity. As pointed out by Agust́ın et al. (2009), the SAGHP proposes

answers for the issue of choosing the ideal planning for an airplane terminal, taking into

the thought the confinements concerning the quantity of landing and takeoff operations

that should be possible inside indicated time periods (Agust́ın et al., 2009)

Odoni (1987) was the first to formulate a model using mathematical programming re-

lated approaches for solving the SAGHP. Since then investigations have been going on,

to decipher whether better strategies and methods can at all be developed to solve the

problem (Balakrishnan and Chandran, 2015; Odoni, 1987). The strategy which was first

studied in the United States of America (U.S.A) considers flight planning in real time with

the aim of minimising congestion costs. They suggested an objective function based on

the aircraft landing priority subject to probabilistic single-period airport capacities, and

proposed a polynomial dynamic programming model to solve the fixed landing priority

case and another optimal decision policy to solve a random priority, which depends on the
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chronological order of landing requests. Some of the assumptions (B1− B6) of the basic

SAGHP model found in literature are listed below

B1) Airport is the only capacitated resource in the problem.

B2) Departure time and flight time are deterministic and known.

B3) Ground delay and air delay costs are known.

B4) Flight speed and alternative routes are not considered.

B5) Flight continuation is not permitted.

B6) Arrival advances in the schedule are not permitted (Agust́ın et al., 2009; Vossen et al.,

2012).

The given data of the problem include: a set of flights, time periods, scheduled departure

and arrival times to destination airports, a set of possible delay slots and associated delay

costs, capacity of the arrival airports for the given scenario, the set of decision variables,

which includes the arrival times to the destination airport, the ground delay attributed to

each flight amongst other factors (Agust́ın et al., 2009; Chaimatanan, 2014).

Related Works

Deterministic Models: For the deterministic case, the airport capacities, departure

time and flight time are deterministic. Moreover, the problem can be formulated either

as a minimum-cost network problem or using any other method. See Vossen et al. (2012);

Terrab and Odoni (1993) and Richetta and Odoni (1993) for more details.

Presented below is the mathematical formulation of the basic model which starts with

the definition of the input data sets. F−the set of flights for an airport with capacity

reduction; af−the scheduled arrival time of a flight; T−the time period with t as the

discretised time horizons; Mt−the capacity of the airport for each time period t; Xft−the

decision variables is defined as follows:

Xft =

1, if flight f is assigned to time interval sector t

0, otherwise
(3.3.1)

The expression
T∑

t=af

(t − af )Xft shows the total ground delay that was assigned to a par-

ticular flight f . It is important to note that non linear ground delay cost functions can

be incorporated into the expression for the amount of ground delay that was assigned to

each flight as
T∑

t=af

g(t − af )Xft where g(.) is any arbitrary cost function. For example,
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T∑
t=af

(t− af )2Xft represents a quadratic ground delay cost function. Moreover, the ground

delay costs can vary depending on the flights under consideration and thus can be weighed

by some constant, say, Cf (Vossen et al., 2012).

The generalised formulation− the objective function and set of constraints is given by

Min
∑
f∈F

T∑
t=af

Cfg(t− af )Xft

subject to:
T∑

t=af

Xft = 1 ∀ f ∈ F. (3.3.2)

∑
f∈F :af≤t

Xft ≤Mt ∀ t ∈ T (3.3.3)

Xft ∈ {0, 1} ∀ f ∈ F, t ∈ T. (3.3.4)

The formulated problem can be solved as a linear IP problem via LP relaxation since the

objective function is linear and the constraint matrix is totally unimodular (Vossen et al.,

2012). Hence, integer solutions are always guaranteed. The constraints ensures that one

time interval is assigned to a flight and the capacity of the airport is not exceeded. The

above formulation also shows that the proposed model is of polynomial computational

complexity (Vossen et al., 2012)

Terrab and Odoni (1993) additionally introduced the deterministic model for SAGHP

with the aim of minimizing the aggregate cost of ground holding for the set of flights and

utilizing a linear cost function with specific parameters to represent the delay cost of each

flight. In any case, Hoffman et al. (1999) is a variant of the model as it considers ‘banking

constraints’ with the condition that one or more groups of flights must arrive within pre-

determined time windows and this depicts the current practice as most airlines ‘schedule

banks of operations at their hub airports (Terrab and Odoni, 1993; Hoffman et al., 1999).

The rationale for including the banking constraints by Hoffman et al. (1999) was to keep

flights of each banks incidentally gathered. Be that as it may, this really influenced the

computational execution of the model as far as the time taken to get optimal solution

since the LP relaxation does not give integer solution always.

Aside from allocating ground delays to approaching flights (which has dependably been

the situation for most SAGHP models), others like that of Gilbo (1993) presented models

that relegates ground delays to both landing and takeoff movement and augmented it

in Gilbo (1997) to incorporate arrival and takeoff fix capacities at an airplane terminal

close by its runways Gilbo (1993, 1997). A comparable issue was that of Dell’Olmo and

Lulli (2003), which however was unravelled efficiently utilising a dynamic programming

algorithm to acquire optimal solutions. In all the deterministic models introduced, the
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arrival and departure capacities of an air plane terminal are associated. The reliance

between these limits happens when there are intersection runways or when two runways

are excessively near each other or when a runway is utilised for both landing and departure

operations. This is usually captured with the concept of capacity envelope and runway

allocation5 (Vossen et al., 2012; Bertsimas and Patterson, 1998).

Stochastic Models: Aside reductions in airport capacities, bad weather conditions also

affects the departure capacities of an airport. This knowledge led to the modeling of the

SAGHP using stochastic approaches as it captures cases of uncertainty.

Stochastic programming approaches were first used to solve the SAGHP by Richetta and

Odoni (1993). The problem was formulated as a one-stage stochastic linear program with

static weather scenarios, which were not updated with time. However, the problem sizes

were reduced by including only a small number of weather scenarios and aggregating flights

into cost classes. The problem can be simplified by assuming a constant air delay cost in

order to achieve a reasonable solution time.

Dynamic Programming Models: Terrab and Odoni (1993) extended the deterministic

version to stochastic version. The authors developed an exact dynamic programming

model based on the work presented in Andreatta and Romanin-Jacur (1987).

Richetta and Odoni (1994) improved their previous study by providing a partially dy-

namic multistage stochastic integer programming formulation with recourse actions while

maintaining previous assumptions. That is, making delay decisions at each stage of the

updated weather forecast and no decision once the delay has been assigned (Chang, 2010).

The dynamic ground holding model, Mukherjee and Hansen (2007), is an improvement

of Richetta and Odoni (1994), in the sense that it allows for revision of the ground delay

decisions based on the latest information for flights that are yet to depart once the delays

has been assigned.

Liu et al. (2008) applied scenario-based approaches to the models in Mukherjee and Hansen

(2007) as well as Ball et al. (2003) by studying the capacity scenarios based on the historical

data provided. The study reveals that certain scenarios which follow a tree-like structure

possess same capacities.

Static Programming Models: Considering the uncertainty in the capacity of arrival

airport, Richetta and Odoni (1994) were the first to suggest a Static Stochastic Integer

Programming Model in order to solve the problem albeit its modification by Ball et al.

(2003) to find optimal number of scheduled aircraft arrivals during different time inter-

vals. To assign delays to departing flights, decisions are made at the commencement of

the scheduling process and cannot be reversed once assigned. This short-fall was later

5Capacity envelope is a “piecewise linear convex functional relationship that shows the interdependence
between arrival and departure capacities of airports” (Vossen et al., 2012).
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addressed in Richetta and Odoni (1994) via a new formulation of a Multistage Stochastic

IP with Recourse. See Agust́ın et al. (2009), Vossen et al. (2012) and Barnhart et al.

(2012) for more details.

3.3.1.2 The Multiple Airport Ground-Holding Problem (MAGHP)

This methodology is an extended version of the previous methodology which includes the

inter-relationship that exists between network of airports. The contrast between MAGHP

and SAGHP is that MAGHP contemplates the proliferation of delays in the network of

airports as aircraft perform sequential flights, that is optimization of the ground delays

allocated to flights in a manner that a delay on a given flight section can spread crosswise

over to down fragments own by the same aircraft (Agust́ın et al., 2009; Bertsimas and

Odoni, 1997; Chang, 2010). Although, the MAGHP approaches considers arrival and

departure capacities in the network of airports, en-route airspace capacity constraints are

not considered. Moreover, most models for the MAGHP do not carter for flights whose

departure or arrival airport does not belong to the set of airports under consideration.

One of the real target of MAGHP is to discover an arranging model that minimises the

aggregate cost of delays, airborne comprehensive subject to the airport capacity and flight

network imperatives (Agust́ın et al., 2009). This can be achieved by simulating various

alternatives of the said infrastructures. The vast majority of the MAGHP models are

deterministic in nature. The essential presumptions (C1−C7) of the models are recorded

beneath

C1) The airport capacities are deterministic function of time and are known before hand

with certainty.

C2) Air sector airspace capacity is unlimited.

C3) There is no limit on the ground holding upper bounds as well as that of the air borne

delay.

C4) Flight cancellation are considered on a partial basis based on the previous assumption.

C5) Flight speed and alternative routes are not considered.

C6) Flight continuation is permitted.

C7) The turnaround time 6 is always known for continued flights (Agust́ın et al., 2009;

Bertsimas and Patterson, 1998).

The datasets for the problem include: a set of arrival and departure airports, set of airports

by independence, scheduled departure times for flight, scheduled arrival times to destination

6A turnaround time is the “slack time between the arrival of a flight to an airport and the departure of
given flights from the same airport”.
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airports, air and ground holding delay costs, the departure and arrival airports capacities,

decision variables, which includes assignment and delay decision variables (Agust́ın et al.,

2009; Bertsimas and Patterson, 1998; Chaimatanan, 2014).

Related Works

Deterministic Models: Vranas et al. (1994) were the first to propose a deterministic

optimisation for multi-airport ground holding problem which was formulated as an integer

program (IP). The computational performance of their model revealed that the run times

to get optimal solution when solving real-life instances are very high. The authors also pre-

sented a stochastic optimisation model of MAGHP considering uncertainty in the airport

capacities. However, an alternative formulation was presented by Bertsimas & Patterson

Bertsimas and Patterson (1998) which performed better computationally when compared

with that of Vranas et al. (1994). The performance was as a result of the facet-defining

constraints that were used in the formulation. This formulation was extracted from the

model they presented for the airspace capacity allocation problem.

Andreatta and Brunetta (1998) made a comparison of three distinct models for the

MAGHP. The models they considered were that of Andreatta and Tidona (1994)−where

insufficient arrival capacity causes a congestion problem based on the assumption of infi-

nite departure capacity; Vranas et al. (1994) and MAGHP case of Bertsimas and Patterson

(1998)−where the 0-1 variables takes the value 1 if and only if a flight f has arrived by

time t that is it arrives at time t or earlier respectively (Agust́ın et al., 2009; Andreatta

and Brunetta, 1998). The models were validated using a set of seven test bed instances

in a bid to ascertain their computational performance which was shown to be good.

The deterministic models developed for the MAGHP can be extended to account for

several variations. See Bertsimas and Patterson (1998) and Navazio and Romanin-Jacur

(1998) for more details.

Agust́ın et al. (2009) pointed out that the proposed methods by Andreatta and Tidona

(1994), Vranas et al. (1994) and several others have been applied to solve different problems

simulated at the Drapper Laboratory, MITRE Corporation using FAA data and Boston

Logan Airport respectively (Agust́ın et al., 2009).

Recently, Zhang et al. (2007) solved the MAGHP using a stochastic search approach

by developing a co-evolutionary Genetic Algorithm. The model was validated with real

data obtained from the Beijing, Shangai and Guangzhou traffic control centres of the

China Aviation Administration which was considered good computationally because of

the characteristic features of the Genetic Algorithm. It therefore created more research

opportunities for modelling MAGHP via stochastic search techniques (Agust́ın et al., 2009;

Zhang et al., 2007).
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3.3.2 The Basic Air Traffic Flow Management Problem

ATFMP is one of the methods that is used to address the air traffic delay and congestion

problem. The approach involves control and management of the air traffic flow within

the airspace sector capacity apart from ground holding and air borne delay. Besides

regulating the departure time of flights, ATFM also seeks optimal arrival times to each

airspace sector, taking into account airspace capacity constraints (Chaimatanan, 2014).

This methodology depicts clearly what ATFMP is all about in the sense that it tries

to solve realistic instances that are more complicated than those solved using the past

methodology. This is because the former only applies where airport congestion problems

occur frequently while the latter applies not only when congestion problems are confined to

airports but also when en route sector congestion occurs. Most of the optimisation models

that takes into consideration airspace capacity constraints alongside ground holding and

air borne delays are categorised under the airport capacity allocation models (Agust́ın

et al., 2009; Bertsimas and Odoni, 1997; Chaimatanan, 2014).

Other sub-categories of problems considered in literature under ATFM includes ATFM

Rerouting Problem (ATFMRP), ATFM Rerouting Problem with Uncertainty and many

more.

The general assumptions (D1−D5) of the basic ATFM model problem includes but is not

restricted to the following:

D1) The arrival and departure airports capacities as well as the airspace capacities are

known in advance with certainty (Bertsimas and Patterson, 1998).

D2) Flight speed is not taken into consideration.

D3) Alternative routes are not considered as a control option.

D4) Flights are continued in such a way that the turnaround time is known for the con-

tinued flights.

D5) Flight cancellation is permitted although no much decisions are made since it is

implicitly considered continuation is allowed (Agust́ın et al., 2009; Bertsimas and

Patterson, 1998; Chaimatanan, 2014).

The objective function is to minimise the total cost of delays assigned to flights while

satisfying the airport and the airspace capacity constraints (Bertsimas and Patterson, 1998;

Chaimatanan, 2014). The problem input sets and parameters include, a set of flights,

airports, continuing flights, sectors, time periods, scheduled departure and arrival times,

associated ground delay and airborne delay costs per unit of time, decision variables which

includes includes the ground delay times, the air delay times, the time at which each
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flight arrives at a given airspace or at a given waypoint (Bertsimas and Patterson, 1998;

Chaimatanan, 2014).

According to Bertsimas et al. (2011), the ATFMP represents the air traffic network by a

directed graph with nodes7 and arcs8. For instance, an arc from node i to node j exists

if i and j are adjacent sectors such that an aircraft can reach sector j immediately after

flying through sector i. Given a flight, f , the set of sectors that follow sector i is denoted

by Lfi while the set of sectors that precede sector j is denoted by P fj (Bertsimas et al.,

2008; Chaimatanan, 2014). See Fig. 3.11 for illustration:

Figure 3.11: Illustration of possible routes from O-D airport (Bertsimas et al., 2008, 2011).

3.3.1 Remark. An arc is required to be fully contained within a sector (i.e. it cannot

cross sector boundaries). In other words, a sector could be viewed as a collection of arcs.

3.3.2 Remark. Nodes are introduced at the sector boundaries to ensure that arcs do not

cross sectors, although a node could be present in the interior of a sector.

3.3.3 Remark. Bertsimas et al. (2011) noted that sectors followed by more than one

sector are called forks while those sectors preceded by more than one sectors are called

joints. In Fig 3.11, sectors i and h are forks while sector j is a joint.

Related Works - Air Traffic Flow Management Problem

Deterministic Models: Helme (1992) formulated the National Air Space (NAS) traffic

management problem considering both the airport and air sector capacity constraints.

The problem was formulated as a multi-commodity minimum-cost flow on a space-time

network which deals with aggregate flows of flight instead of individual flights based on

the assumption that flights route are pre-determined before departure.

The computational performance of the model was weak when compared to others but per-

formed better when compared to models formulated as a single-commodity flow network.

7A node can be either a physical location, corresponding to a region in the airspace, or a set of capaci-
tated components, that is, airports and airspace sectors Bertsimas et al. (2011)

8An arc is a directed segment connecting two nodes which also represents the sequence relations while
a sector is a contiguous region of an airspace. See Section 3.1.
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Lindsay et al. (1993) formulated a deterministic IP model in order to assign ground and

airborne delays to individual flights taking into considerations the capacity constraints

of both airport and airspace (Agust́ın et al., 2009; Balakrishnan and Chandran, 2015;

Lindsay et al., 1993).

A deterministic optimisation model that depicts the problem of ATFM in European (EU)

environment was formulated by Lulli and Odoni (2007) where they illustrated the intricacy

of the ATFM in European locales, the benefits of doling out airborne holding delays to a

few flights deliberately and the issues of equity that can emerge as a consequence of the

interactions among traffic flows. One critical angle that the proposed EU ATFM model

tended to was the contentions that might emerge between the objectives of efficiency of

and equity−fairness (Bertsimas et al., 2011; Lulli and Odoni, 2007).

It is important to note that neither rerouting of flights nor speed control were considered

in all the afore-mentioned models as a control action for the ATFMP.

Akgunduz et al. (2013) introduced a mixed 0-1 IP model in order to minimise the travelling

time, operating cost, air pollution which are subjected to some constraints. The decision

variables for the model include speeds, departure and arrival times for each flight, the arcs

and nodes but in a 3D-mesh network. The problem is then solved by an exact deterministic

method but on instances involving not more than 10 flights and the was computationally

efficient (Akgunduz et al., 2013; Chaimatanan, 2014).

Bertsimas and Patterson (1998) proposed a 0-1 IP deterministic model for the ATFMP.

They defined the route between the origin-destination of each aircraft as a predefined

set of en-route sectors. The proposed model determines the optimal departure time, as

well as, sector occupancy time (the time expected for each aircraft to stay in a sector)

for each aircraft (Bertsimas and Patterson, 1998; Bertsimas et al., 2011). The definition

of the decision variables with “by” rather than “at” and the transformation done from

the standard decision variable to the variable used were critical for the models excellent

performance in addition to the facet-defining constraints and the polyhedral structure

of the basic LP relaxation problem. They illustrated the complexity of the problem by

proving that it is NP-hard. The LP-relaxation of the formulation gives integer optimal

solutions in most cases. The general model formulation is illustrated below (Bertsimas

and Patterson, 1998).

For the input data sets, K,F, J, T, C := {(f, f ′) : f ′ is continued by f} represents the set

of airports, flights, sectors, time periods which are discretised into time horizons and set

of continued flights respectively. For any given flight f , Nf represents the cardinality of

sectors on a flight’s route; P (f, i), the ith sector in the flight’s path while Pf = (P (f, i) :

1 ≤ i ≤ Nf ) represents the predefined route for the flight with P (f, 1) and P (f,Nf )

been the origin and destination airports. The capacities for the departure and arrival

airports for each time interval is denoted by Dk(t) and Ak(t) respectively taken over all
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airports and time periods. The number of aircraft permitted to be in a particular sector

at a particular time period is denoted by Sj(t). This restriction is referred to as the “en

route sector capacities” (Bertsimas and Patterson, 1998). lfj represents the minimum

number of time spent by the flight in each sector. af , df , sf , rf , gf represents the scheduled

arrival time, scheduled departure time, turnaround time, airborne delay and ground delay

assigned to a flight respectively. caf and cgf denotes the cost of delaying a flight in the air

and on the ground per unit of time. Moreover, for each flight, T jf , the set of feasible time

periods (that is set of feasible time window for each flight that is an indicator of the time

that a flight can occupy a resource along its flight route) for flight f to arrive to sector

j is defined as T jf = [T jf , T
j
f ] where T jf and T

j
f represents the first and last time period

in the set T jf respectively without detailed description. It is important to note that the

set of feasible time periods are calculated sets in preprocessing defined for the purpose of

reducing the size of the problem formulation.

The decision variables are defined as

wjf,t =

1, if flight f arrives at sector j by time t

0, otherwise
(3.3.5)

The objective function is given by

Min
∑
f∈F

(
cgfgf + cafrf

)
, (3.3.6)

where

gf =
∑

t∈Tk
f :k=P (f,1)

t(wkf,t − wkf,t−1)− df (3.3.7)

and

rf =
∑

t∈Tk
f :k=P (f,Nf )

t(wkf,t − wkf,t−1)− af − gf (3.3.8)

Subject to ∑
f :k=P (f,1)

(wkf,t − wkf,t−1) ≤ Dk(t) ∀ k ∈ K, t ∈ T (3.3.9)

∑
f :k=P (f,Nf )

(wkf,t − wkf,t−1) ≤ Ak(t) ∀ k ∈ K, t ∈ T (3.3.10)

∑
f :j=P (f,i),j′=P (f,i+1),i≤Nf

(wjf,t − w
j′

f,t) ≤ Sj(t) ∀ j ∈ J , t ∈ T (3.3.11)

wj
′

f,t+l(f,j) − w
j
f,t ≤ 0

∀ f ∈ F , t ∈ T
j
f :

j = P (f, i), j′ = P (f, i+ 1), i ≤ Nf

(3.3.12)
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wkf,t − wk
′
f ′,t−sf ≤ 0

∀ (f ′, f) ∈ C, t ∈ T kf :

k = P (f, i), k′ = P (f ′, Nf )
(3.3.13)

wjf,t − w
j
f,t−1 ≥ 0 ∀ f ∈ F , j ∈ Pf , t ∈ T jf (3.3.14)

wjf,t ∈ {0, 1} ∀ f ∈ F , j ∈ Pf , t ∈ T
j
f (3.3.15)

Since the the departing and arriving airports are defined as the starting and ending sector

of each flight respectively, equations (3.3.7) and (3.3.8) implies that the time units of

ground delay assigned to a flight can be expressed as the actual departure time minus

the schedule departure time while the amount of air borne delay assigned to each flight is

expressed as the actual arrival time minus the scheduled arrival time minus the amount

of ground delay assigned to the flight (Bertsimas and Patterson, 1998).

The first three constraints are the capacity constraints satisfying the departure, arrival

and sector capacities while the subsequent three constraints are the operational or con-

nectivity constraints satisfying sector, flight and time connectivity respectively. They are

facet-defining and that is why the model performs very well computationally. The last two

constraints ensure that the decision variables are binary variables and non-negative. Most

of the models presented beforehand are variations of the Bertsimas and Patterson (1998)

model formulation. The removal of the sector capacity constraints from the BATFMP

formulation will correspond to a MAGHP formulation. Moreover, if flight continuity con-

straints is also removed and the set of airports, K, is assumed to be a singleton set, then

the resulting formulation will be a SAGHP. The authors presented a MAGHP formulation

which they compared the performance of the model to that of Vranas et al. (1994) and

it performed excellently. One presumption of the model is that flight network require-

ments should have been fulfilled from the earlier in view of planned aircraft connections.

This, however is not generally the situation practically speaking because of the vicinity

of hub and spoke systems which energize the utilization of bank of flights (Bertsimas and

Patterson, 1998; Bertsimas and Gupta, 2011).

3.3.2.1 The Air Traffic Flow Management Rerouting Problem

Related Works−ATFM Rerouting Problem

Bertsimas and Patterson (1998) illustrated how the models can be extended to incorpo-

rate the dependence of airport runway capacity of departures and arrival, handle banks

in the spoke system, hub connectivity and multiple connections using the concept of ca-

pacity envelopes and runway allocation and modifying the flight connectivity constraint

respectively. They also presented two possible approaches namely, the path and sector

approaches, which illustrates how their model can be modified to include rerouting options

when there is drastic drop in the capacity levels (Bertsimas et al., 2008; Bertsimas and



Section 3.3. Optimisation Models for the ATFM Problem Page 56

Patterson, 1998).

The path approach decides which route to fly among a set of possible routes for each

aircraft while the sector approach determines which sector to enter next for each flight

on its route (Bertsimas and Patterson, 1998). This is where the idea of graph theory and

partially ordered set comes in as the traffic network is always assumed to be an acyclic

digraph.

Deterministic Models: Bertsimas and Patterson (2000), considered rerouting at a

broader level by presenting a model that addresses routing as well as scheduling deci-

sions. The problem was formulated as a dynamic, multi-commodity, integer network flow

with side constraints (Bertsimas and Patterson, 2000). To solve the problem, they gen-

erated aggregate flows of flights and using a Lagrangian relaxation, they solved the LP

problem with the constraints relaxed into the objective function. The aggregate flows were

later decomposed into sets of individual flights by applying rounding heuristics which are

random in nature. The optimal and near optimal solutions of the individual flight routes

were obtained by solving an integer packing problem. The computational performance

was inadequate for addressing large-scale problems in real life situations (Agust́ın et al.,

2009; Balakrishnan and Chandran, 2015; Vossen et al., 2012).

Bertsimas et al. (2008) addressed this limitation by presenting another model that com-

bines the flexibility and properties of their previous models to optimise for each flight;

the departure time, the flight plan, the time needed to cover each sector, and the arrival

time, taking into consideration the capacity of the air traffic management system (Bert-

simas et al., 2008). Later, it was discovered that the sector capacity constraint of the

model has a computational problem and this has been addressed in a more recent work

by the same authors in Bertsimas et al. (2011) by introducing a maximum function in

the sector capacity constraint. However, as a result of the maximum function that was

introduced, the model contains non-linear constraints giving rise to a non-linear model.

The proposed model is an extension of Bertsimas and Patterson (1998) formulation to

account for rerouting on an acyclic network. The problem was formulated as an IP model

taken into consideration all the stages of each flight as optimisation approaches were used

to allocate ground delays and rerouting options taking into account airspace sector capacity

constraints. They introduced new inequalities for nodes in the network with in-degree or

out-degree equal to 1, which are valid and were shown to be facet-defining for the problem.

Another advantage of their model is the fact that the initial variables were maintained and

the approach for defining the routes based on the principles of graph theory and partially

ordered sets (POSET) (Bertsimas et al., 2008).

The origin-destination route is represented by digraphs and is assumed to be acyclic9

9A graph, G, is a representation of a set of points called vertices, V , in which the pairs are connected
(joined) by lines or links called edges, E. More precisely, a graph is denoted as G = (V,A) or G = (V,E).
A graph is said to be a diagraph if the edges, elements of E, have a direction associated with them. A
digraph is acyclic if the graph have no directed cycles (Chinneck, 2006)
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without loss of generality. The authors set local conditions that ensures that the flights

follow exactly one route which is similar to the mass balance constraints in network flow

model (Bertsimas et al., 2008). The additional notations which they introduced that

formed part of the new constraints are the same as the ones illustrated in Fig 3.11. The

notations were used to describe the routing conditions. The computational performance

of model was very good when applied to regional-sized and nation-sized instances due

to the polyhedral structure, the facet-defining constraints and the new valid inequalities

that were included. Moreover, all the works described above and presented in Bertsimas

et al. (2008, 2011); Bertsimas and Patterson (1998) rely on branch-and-bound algorithms,10

which considers all feasible points of the optimisation problem implicitly in order to provide

optimal solutions to the ATFMP(Bertsimas et al., 2008; Chaimatanan, 2014).

In fact, these models have been identified as the best optimisation models for addressing

the ATFMP as all other models are variants of the basic model. See Bertsimas and Pat-

terson (1998, 2000); Bertsimas et al. (2008, 2011) for more insights on the computational

results of the models.

Balakrishnan and Chandran (2015) as well as Agust́ın et al. (2012a) addressed both the

deterministic and stochastic cases of ATFMRP. For the deterministic case, Balakrishnan

and Chandran (2015) presented an integer programming approach for solving large scale

ATFMP. Their model considers almost all the control actions and their representation is

on a standard node-link network which is unrestricted. To determine the best trajectories

in space and time satisfying the network and flight connectivity constraints, the authors

used column generation approach in which they solved the LP relaxation problem, applied

rounding heuristics to estimate the optimality. The master problem is finally solved using

CPLEX and a scalable parallel implementation of their approach is used to solve nation-

size instances which reveals that their model is the computationally efficient and their

approach is good for real time implementation.

Agust́ın et al. (2012a) formulated a mixed 0-1 IP model for the ATFM which also considers

almost all the control actions including bounds and penalisation for the deviations in the

current travel time from the scheduled arrival time of the flights to the nodes in the sectors.

Rerouting in their work was defined exactly in the same way as a scheduled route that

is defining links that joins two nodes but when a node has different possible links, it is

then forced to take one and go on the chosen route, thereby penalising the alternatives

(Agust́ın et al., 2012a). The proposed route representation allows the ATFM model to be

represented by a collection of subgraphs Gf = (Nf , Af ), where the node set, Nf represents

the airports and waypoints overflown by flight f , and the arc set, Af , connects the nodes

for flight f (Agust́ın et al., 2009). The decision variables, xtf,m,n, takes value 1 if flight

f is scheduled to arrive at node n at time t through arc (m,n) by the end of time period

t, and takes value 0 otherwise (Agust́ın et al., 2012a). The proposed model likewise

10See Section 2.1.4.1
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considers equity between flights notwithstanding minimising the aggregate ground delay

and airborne delay costs. The major contrast between the proposed model and different

models existing in literature is that the configuration depends on the arcs (links) of the

routes and not exclusively on the nodes and does not require the execution of the branch-

and-bound stage in order to obtain an optimal solution in any given instances (Agust́ın

et al., 2012a). Likewise, the model acquainted new objective functions to be optimised

in addition to the standard objective function found in literature (Chaimatanan, 2014;

Agust́ın et al., 2012a).

3.3.2.2 Air Traffic Management Rerouting Problem Under Uncertainty

As mentioned earlier, ATFMRP is more concerned with real life situations where flights

can be rerouted whenever congestion problems arises notwithstanding unforeseen changes

that can also occur in the airport and air sector capacities (and these vary significantly

with weather conditions). These situations are difficult to predict with certainty in ad-

vance thus the need for approaches that can work under uncertainty in order to account

for these unforeseen changes. ATFMRP with uncertainty is a variation of the previous

methodologies and depicts the current practice because of the generic uncertainty incorpo-

rated in the model parameters which can then be solved using stochastic methodologies.

These can also be static or dynamic. They are considered to be static if the solution

holds firm from the start of the planning horizon and dynamic if the solution is updated

throughout the planning horizon (Agust́ın et al., 2009; Balakrishnan and Chandran, 2015).

Stochastic optimisation is one of the options to consider when modeling weather uncertain-

ties because it allows representation of uncertainty by means of set of possible scenarios

that can arise (Agust́ın et al., 2012b).

3.3.4 Definition. A scenario is a realisation of the uncertain parameters along the

periods of the given time horizon while a scenario group for a given period is the set of

scenarios with the same realisation of the uncertain parameters up to the period (Agust́ın

et al., 2009, 2012b).

Agust́ın et al. (2009) pointed out that each of these scenarios weights according to the

occurrence of its certainty known to the decision-maker as well as the proposed solution

must be such that all scenarios are considered and it does not depend on any one of them

in particular (Agust́ın et al., 2009, 2012b).

Agust́ın et al. (2012b) outlined the different approaches involved in stochastic optimi-

sation; decomposition, Lagrangian decomposition, disjunctive decomposition, stochastic

branch-and-cut and Branch-and-Fix Coordination and noted that the objective functions

considered by these approaches can be categorised as (neutral risk)11, (risk aversion)12

11neural risk is “maximising the expected objective function value over the scenarios”
12risk aversion is “maximising a composite mean-risk function-included by the expected objective func-
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and (robust optimisation)13 (Agust́ın et al., 2009).

The literature on solving stochastic cases of ATFMP is typically limited to optimising

flows into a single capacitated airport under probabilistic scenario-tree forecasts of airport

capacity following the difficulty encountered when trying to solve large-scale deterministic

ATFMP (Ball et al., 2003; Mukherjee and Hansen, 2007; Richetta and Odoni, 1994). Al-

though most of the stochastic optimisation approaches dealing with weather uncertainties

are scenario based, some researchers have also modelled weather uncertainty and evolution

as a stationary Markov chain while others used different methodology from mathematical,

dynamic or stochastic programming techniques. Considering the illustration of the sce-

nario tree in Fig 3.12 as given by Agust́ın et al. (2012b), the following descriptions are an

interpretation of the notations used. T −the set of consecutive stages along time horizon;

Ω− the set of scenarios; R− the set of scenario groups in such a way that there is a tree

where R is the set of nodes; Rt− set of scenario groups in stage t for t ∈ T ; Ωr− set of

scenario groups in r for r ∈ R. t(r), a(r), Vr, Vr and ωr represents the time period where

r belongs; immediate ancestor node of node r; set of scenario groups to group r including

r; set of successors of scenario group r and weighted factor representing the associated

likelihood with r respectively (Agust́ın et al., 2009, 2012b).

Each node in the figure denotes a point in time where a decision can be made. Moreover,

contingencies occurs once a decision is made with the relevant information associated

to these contingencies are known at the beginning of the period. For example, in the

illustrated figure, period t = 3, contingencies occurred three (3) times (Agust́ın et al.,

2009, 2012b). The information structure is visualised as a tree, where each root-to-leaf path

represents a specific scenario corresponding to a realisation of sets of uncertain parameters

with the scenario groups associated with each node in such a way that two scenarios

belongs to the same group in a given period provided that they have the same realisations

of uncertain parameters up to that period (Agust́ın et al., 2012b).

3.3.5 Definition. A period is a set of consecutive time units where the realisation of the

uncertain parameters take place while a stage is a set of consecutive periods where the

realisation of the uncertain parameters take place (Agust́ın et al., 2012b).

One noteworthy issue that happens is the way t the number of scenarios considered grows

exponentially with the number of time periods. This is evident in the sense that the

final number of scenarios is extremely large once the number for each time period is

high not minding the size of the time horizon. Thus, it becomes vital to produce a

bargain solution so that without considering an unnecessary number of scenarios, neither

extremely illustrative scenarios nor those liable to happen, will be eliminated since the

issue considered thusly can’t be managed. (Agust́ın et al., 2012b).

tion and the weighted probability of maximising the occurrence of scenarios”
13robust optimisation is “minimising the difference between the value of the proposed solution and the

air traffic management solution value for each scenario (Agust́ın et al., 2009).
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Figure 3.12: Illustration of a scenario tree (Agust́ın et al., 2012b).

Stochastic Models: Liu et al. (2008) as well as Buxi and Hansen (2011) developed

techniques to determine probabilistic capacity profiles and scenario tree forecasts from

historical data. Marron (2004) proposed a column generation approach for solving the

ATFM problem with rerouting, and demonstrated it on a regional-scale example with ap-

proximately 150 flights whereas Gupta and Bertsimas (2011) studied robust and adaptive

optimisation formulations of the ATFM problem to address capacity uncertainties

Balakrishnan and Chandran (2015) also considered the stochastic case of ATFMRP. They

extended their approach to generate recourse strategies in the presence of uncertain ca-

pacity constraints. The solution provided for solving the problem is similar to the deter-

ministic case only that it is no longer on a single path via a space-time network rather on

a tree in a scenario space-time based network. The authors also used the column gener-

ation approach to solve the LP relaxation of the problem. Using dynamic programming

algorithm, they solved a maximum weighted tree in a space-time-scenario network which

is equivalent to solving the sub problem. The difference between their models and other

models is based on the representation of the O-D routes by a standard node-link network

which is unrestricted. Their model also considers almost all the control actions and was

shown to be performing better computationally and adequate for real time implementation

(Balakrishnan and Chandran, 2015).
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Agust́ın et al. (2012b) extended Agust́ın et al. (2012a), the deterministic case of their

ATFM model, to account for uncertainty as well as rerouting. They formulated it as

a multi-commodity network dynamic flow model taking into account uncertainty in the

airports and air sectors capacity and the uncertainty on the flight demand by the airline

companies (Agust́ın et al., 2012b). The proposed model uses a scenario generation scheme

based on storm scenarios to represent the Deterministic Equivalent Model (DEM) of the

stochastic mixed 0-1 program with full recourse in such a way that the non-anticipativity

constraints (NAC) for the continuous and 0-1 variables in each scenario group of each

period along the time horizon are implicitly satisfied in the compact representation of DEM

Agust́ın et al. (2012b). Their work falls under the risk neutral environment category. The

model computational performance was shown to be very good. See Agust́ın et al. (2009)

for a comprehensive synopsis of the main features of the proposed model in Agust́ın et al.

(2012b), which they tagged as Stochastic Air Traffic Flow Management (SATFM).

Chang (2010) proposed a two-stage stochastic IP model to solve the ATFMP with empha-

sis on a given single sector. The author considers the following control actions: ground

delay, cancellation, and cruise speed for each flight on the ground in the first stage and

air holding and diversion recourse actions for each flight in the air in the second stage.

Weather uncertainty is not left out in the model formulation. To overcome the intractabil-

ity of the proposed model which is caused by the weather scenarios, the author proposed

a rolling horizon method to solve the the problem to near optimal which was justified using

Lagrangian relaxation and sub-gradient method. The model was later extended to a multi-

stage stochastic programming methodology. Same rolling horizon method, Lagrangian

relaxation as well as sub-gradient method were applied to the multi-stage stochastic pro-

gramming and comparison was made between the two methodologies (Chang, 2010).

Ronald (2010) developed stochastic optimisation models that reduces air traffic delay and

at the same time allows for efficient traffic flow management actions by investigating dy-

namics of air traffic delay in Uganda. This was achieved by investigating on the relationship

between airport utility and the interaction effects of daily probabilities of delay and airport

inefficiency estimates. The analysis was carried out using data instances of 4 years interval

obtained from Entebbe International Airport in order to make valid conclusion. Several

conclusions were drawn based on the analysis and computational experiments which will

be very useful in the decision making and management of the air traffic flow as well as

Entebbe Airport Traffic managers. To the best of the researcher’s knowledge, this is the

only work that used instances and domestic flight data from African Region to solve the

ATFMP (Ronald, 2010).

Ichoua (2013) addressed the issue of ATFMP with stochastic time-dependent sector capaci-

ties and presented a scenario-modeling framework to formulate the problem. The solution

framework proposed in the work was based on Sample Average Approximation Method

(SAA) and a Deterministic MIP Model which includes almost all the control actions as
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in Bertsimas et al. (2011). The SAA model is solved using CPLEX which gives several

alternative solutions to select from and an evaluation of these alternative solutions gives

the best plan (Ichoua, 2013).

3.3.2.3 Heuristic Algorithms and Other Approaches for the ATFMP

Tian and Hu (2010) developed a non-linear multi-objective and multi-constrained model

which utilises a multi-genetic algorithm to reduce flight delays and air space congestion

since dependence on a single-objective models to address problems like re-routing of flights,

departure slots and air traffic workloads cannot meet the demands of ATFM (Tian and

Hu, 2010).

Kuhn and Raith (2010) reformulated the ATFMP as a formal multi-objective optimisation

problem in order to minimise inefficiency and inequity. This they achieved by finding all

the pareto-optimal solutions, trading off efficiency and equity without having to select and

parametrise a model of the cost of inequity. The most important aspect of their work is

the consideration of equity which is a major goal of ATFM activities, in their formulation.

Until now, the issue of equity and fairness has not been fully addressed in theory, as such

this gap is one of the primary reasons why results from previous studies have not been

fully adopted into practice in air traffic control. The need to delve into these issues and

incorporate them in model formulation vis a vis addressing ATFMP becomes dire.

Barnier and Brisset (2004) addressed the problem from a graph theoretical point of view

using the concept of graph colouring. The authors designed new route network that consid-

ers direct routes only and vertically separate intersecting ones by allocating distinct flight

levels, thus leading to a graph colouring problem. The concept of constraint programming

was used in solving the problem and a greedy algorithm was developed for obtaining large

cliques which guides the search strategy and at the same time used for posting global

constraints (Barnier and Brisset, 2004). Optimal solutions were achieved in almost all

the instances except for the large ones with an implementation using FaCiLe, Functional

Constraint Library, while the corresponding number of flight levels could fit in the cur-

rent airspace structure. This graph colouring technique has also been tested on various

benchmarks, featuring good results on real-life instances, which systematically appear to

contain large cliques (Barnier and Brisset, 2004).

Torres (2012) approach for solving the ATFMP was nature inspired, in particular, the

swarm theory. The idea is to convert pilots into goal seeking agents that individually find

local solutions to the optimisation problem and as a whole the collective action of agents

creates emergent behaviour that naturally tends to converge on its own to a Pareto efficient

state. Since air traffic is a multi-swarm system, they presented a Self-Managed Air Traffic

(Self-MAT) concept which removes the sources of inefficiency and provides mechanisms

so that optimality results as an emergent behaviour (Torres, 2012).
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Multiple Airport Scheduler (MAS) is a hybridised heuristics algorithm developed for the

Advanced Traffic Management System of the FAA with the goal of maximising flows in the

ATM network subject to airport and en route capacities, flight connectivity and fairness-to-

user constraints (Epstein et al., 1992). Bertsimas and Odoni (1997) pointed out that the

quality of the resulting solution of MAS cannot be ascertained as information regarding

the model is limited.

Research findings indicates that EUROCONTROL uses a heuristic algorithm, popularly

known as Computer Assisted Slot Allocation (CASA) algorithm, to support its tactical

level planning when for solving the ATFMP (Philipp and Gainche, 1994; Bertsimas and

Odoni, 1997). The description of the algorithm is omitted herein as Philipp and Gainche

(1994) have given a detailed description of the algorithm. The algorithm is characterised

by its priority preference which is done on a First Planned, First Served (FPFS) basis,

that is, giving priority to flights with the earliest departure times. Moreover, the algorithm

assigns ground holding delay sequentially to the flights with earliest departure times when

necessary (Bertsimas and Odoni, 1997; Philipp and Gainche, 1994).

The CASA algorithm has a very efficient computational performance in the sense that

solutions are returned in about 30 seconds for problems considered to be large for an

optimisation model. However, there are cases where the LP or MIP formulations per-

form better than the search techniques depending on the polyhedral structure and valid

inequalities used in the formulation. Although the performance was shown to be good,

the quality of the solutions returned for ATFM slot allocations as well as ground-holding

assignments by the the same algorithm is yet to be confirmed (Bertsimas and Odoni, 1997;

Philipp and Gainche, 1994). The algorithm solutions are updated automatically every few

minutes with the aim of finding an improved slot allocation strategy as conditions change.

Bertsimas and Odoni (1997) noted that “the algorithm reserves a portion of the available

capacity for short-haul flights and (or) for flights that may, for some reason, file a flight

plan shortly before their intended departure time” (Bertsimas and Odoni, 1997). The ma-

jor reason behind this initiative is that all available slots might be consumed by long-haul

flights that file flight plans early and have early departure times in the absence of such

practice (Bertsimas and Odoni, 1997; Philipp and Gainche, 1994).

Computational results for selected ATFMP models.

In this section, we briefly discuss some computational results for MAGHP and ATFMP

considering Bertsimas and Patterson (1998) models, identified as the best existing opti-

misation model and has been widely tested utilizing genuine data from both the US and

the European networks.

For the MAGHP, the datasets for the ground holding problem instances were the same data

sets used in Vranas et al. (1994). More precisely, the datasets consist of two (2) and six(6)
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airports with 500, 1000 and 3000 flights per airport respectively. The authors considered

15-minutes time interval over a 16-hour day and four distinct levels of connectivity, which

is a marker of the proportions of continued flights to aggregate flight. They adjusted the

datasets keeping in mind the end goal to suit the contrasts between their model and that

of Vranas et al. (1994). All experiments were performed on a SUN SPARC workstation

10 model 41 using GAMS as the modeling tool and CPLEXMIP 2.1 as the solver. Table

3.1 and 3.2 belows shows the summarized results obtained by the authors using the above

mentioned datasets. For each case considered, the results were obtained at the infeasibility

border14, the reported times are in CPU and the percentage of the aggregate flights with

non integer solutions displayed in the % Nonint column. The results when compared with

that of Vranas et al. (1994) and showed a great improvement in the integrality of solutions.

Table 3.1: Bertsimas and Patterson (1998) results at infeasibilty border for 1000
flights

|F | |C|/|F | Dep Capacity Arr Capacity Time % Nonint

1000 0.20 32 15 262 0

1000 0.40 17 10 741 4

1000 0.60 20 14 359 0

1000 0.80 20 20 283 0

Table 3.2: Bertsimas and Patterson (1998) results at infeasibilty border for 3000 flights

|F | |C|/|F | Dep Capacity Arr Capacity Time % Nonint

3000 0.20 20 20 5475 0

3000 0.40 20 20 4703 0

3000 0.60 20 20 5407 0

3000 0.80 20 20 9411 0

For the ATFMP, they performed different set of experiments using data sets and pseudo

generated datasets obtained from the Official Airline Guide (OAG) flight schedules. The

first set of experiments consisted of 200 and 1000 flights over a 24-hour time period divided

into 5 and 15 minutes interval respectively. The problem was solved using the same

configuration setting as the previous one. The resulting optimal solution was integral

in most cases. The other set of experiments were two realistic sized datasets obtained

straightforwardly from the Official Airline Guide (OAG) flight schedules, were provided

by the FAA. The first comprised of 278 flights, 10 airports and 178 sectors, tested over

a 7 hour time horizon with 5 minute interims. The second of these information sets

comprised of 1,002 flights, 18 airports, and 305 sectors tried over an 8 hour time span

with 5 minute interims. The flight-sector crossing times, airport and sector capacities,

turnaround times were all given by the FAA. These information sets are equivalent to

those problems being solved every day by the FAA. The first problem when implemented

consists of 43,226 constraints and 18,733 variables. An ideal (optimal) solution for the LP

14The set of critical values for the arrival and departure capacities in units of time per time interval
under which the problem becomes infeasible
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relaxation was found in roughly 30 minutes on a SUN SPARC 20 workstation utilizing

CPLEX 3.0 as the solver and GAMS 2.25 as the modelling language. Moreover, the

resulting solution were totally integral which implies that there is no need to utilize any

integer programming techniques. For the second and bigger information set comprising of

151,662 constraints and 69,497 variables, was solved to optimality in around 2 hours with

the resulting completely integral. Comparable results, with basically the same model,

were gotten by Vranas et al. (1994) for the European system. For an information set

provided by EUROCONTROL, a problem instance including 2,293 flights and 25 sectors

and with all costs equivalent to one, that is minimising the aggregate delay, was solved

to optimality and the solution found in around one hour in a SUN 10 workstation. See

Vranas et al. (1994), Bertsimas and Patterson (1998) and Bertsimas and Odoni (1997) for

more details. It is worthy to note that in all the instances considered for the MAGHP and

ATFMP, integral solutions were obtained from the LP relaxations which was not affected

by the problem size or parameters used. The solutions were obtained within the shortest

possible computational time.

3.4 Chapter Summary

The chapter focused mainly on the existing approaches, initiatives and methodologies that

have been (and continue to be) used to address the ATFMP. The ATFMP was introduced

and briefly discussed after which an insight was given on the initiatives and techniques

currently used by CAMU in addressing the Air Traffic Flow Management within the South

African airspace. Particular attention was given to the existing optimisation models for

the ATFMP that focus more on airport capacity and airspace allocation. These were

extensively reviewed because they depict what is obtainable in the air transportation

system. The ground holding approach emerged to be more effective in situations where

congestion at the airports is most likely to occur and less effective when airspace sector

congestion is also considered since the flow of air traffic between origin and destination

airports has to be considered. Moreover, the study revealed how both the airborne holding

and ground delay can be reduced to lowest minimal once rerouting is included as one of the

control actions for the ATFMP. However, there is need to incorporate other control actions

when formulating the mathematical model as this will help in addressing real life situations.

Furthermore, the study shows that much work has been done on this area of study using

instances from American and European countries but little or no attention have been

given to ATFM data instances from developing countries over the past decade. Thus, the

need for researchers to shift their focus from American and European countries to what is

obtainable in other developing and underdeveloped countries (as similar problems or even

worse problem abound), and apply these methodologies to solve the ATFM problem and

challenges associated with it. This will immensely help the concerned countries in decision

making and consequently contribute positively to their economic growth and development.
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A wide variety of optimisation algorithms/techniques (considering several objective func-

tions, possible control actions, operational and capacity constraints) exist in literature for

solving the ATFMP either for the deterministic or the stochastic case. However, since

ATFMP has been shown to be an NP hard problem, the problem encountered is that the

run time needed to find an optimal solution increases exponentially with the size of the prob-

lem as well as the degree of connectivity. Although extensive computational experiments

tested on some national and regional instances which were used to validate existing models

show that large-scale ATFMP can be solved to near-optimal solution within feasible com-

putational times, these can still be reduced further if better optimisation techniques are

applied as well as exploring other LP and MIP optimisation solvers. Current research has

shown that application of hybrid-metaheuristic and metaheuristic optimisation methods

on most complex real-world problems can produce optimal solutions within the shortest

possible time. It would be a good option therefore to explore these options in solving the

ATFMP (Bertsimas and Patterson, 1998; Chaimatanan, 2014; Agust́ın et al., 2012b).

A practical ATFM is required to maintain a careful balance between equity and efficiency

Kuhn and Raith (2010). Equity in this sense ensures that the costs incurred as a result of

ATFM activities do not dis-proportionally fall on certain airlines or flights. Although the

different proposed mathematical models/optimisation techniques have been validated for

solving ATFMP via its computational performance, they have not yet been fully adapted

in practice given that the issue of equity is yet to be fully considered as a goal of ATFM

activities. Although efforts have been made recently by several researchers with respect to

this, in particular Barnhart et al. (2012); Bertsimas and Gupta (2011); Kuhn and Raith

(2010), there is need to explore more on these issues and incorporate them in the model

formulation. This will help to bridge the gap between research and practice.

Table 3.3 presents a summary of the instances, possible control actions and test cases

considered by authorities in literature to solve the Air Traffic Flow Management Problem.

A comparison of the different methodologies and test cases of different models reviewed

in this paper relative to other existing ones in literature was also drawn. Although an

overview of the computational performance of the reviewed works is presented in the

table. The computational run times are not necessarily comparable as there are significant

differences in the computing environments. They are only presented for context purposes.

Table 3.4 is a summary table of the basic assumptions with respect to the different ap-

proaches for solving the Air Traffic Flow Management Problem. The computational com-

plexity for the basic models with respect to each approach were also reported. Nonetheless,

the complexity of algorithms for solving ATFMP varies depending on the formulation and

solution approach adopted by the decision makers.
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Table 3.3: Summary of ATFMP instances and control actions for selected references

References Instances Control Actions Datasets Horizon/Disc Run time

Helme (1992) Deterministic Ground Holding and
Air borne Holding

Bertsimas and
Patterson (1998)

Deterministic Ground Holding and
Air borne Holding

1002 flights, 18
airports, 305
sectors

8hours/5min 8+ hours

Bertsimas and
Patterson (2000)

Deterministic Ground Holding, Air
borne Holding and Re-
stricted Rerouting

71 flights, 4 air-
ports, 42 sectors

8hours/ 5mins 4 mins

Lulli and Odoni
(2007)

Deterministic Ground Holding and
Air borne Holding

368 flight ar-
rivals, MXP
airport, different
sector cases

18hours/15 mins

Bertsimas et al.
(2008)

Deterministic Ground Holding, Air
borne Holding, Re-
stricted Rerouting and
Speed Control

6745 flights, 30
airports, 145
sectors

8hours/5 mins 10 mins

Bertsimas et al.
(2011)

Deterministic Ground Holding, Air
borne Holding, Re-
stricted Rerouting,
Miles-in-trails and
Speed Control

6745/3000
flights, 30/20
airports,
145/113 sec-
tors

8hours/5min 10 mins

Marron (2004) Stochastic Ground Holding and
Air borne Holding

148 flights, 40
sectors, 3 scenar-
ios

not spec/5min 112 mins

Mukherjee and
Hansen (2007)

Stochastic (dynamic) Ground Holding and
Air borne Holding

Chang (2010) Stochastic (dynamic) Ground Holding, Air
borne Holding, Diver-
sion, Cruise Speed and
Flight Cancellation

Agust́ın et al.
(2012a,b)

Deterministic &
Stochastic

Ground Holding, Air
borne Holding, Re-
stricted Rerouting,
Flight Continuation,
Flight Cancellation,
Speed Control etc.

Four testbeds
including the
one used by
Bertsimas et al.
(2011). See
Agust́ın et al.
(2012a,b) for
details.

Balakrishnan
and Chandran
(2015)

Deterministic &
Stochastic

Ground Holding, Air
borne Holding, Un-
restricted Rerouting,
Flight Cancellation
and Speed Control
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Table 3.4: Summary of basic assumptions and computational complexity ATFMP

Approaches Type Selected References Basic Assumptions Complexity

Ground Holding Approaches SAGHP Odoni (1987), Terrab
and Odoni (1993),
Richetta and Odoni
(1993), Hoffman et al.
(1999), Richetta and
Odoni (1994)

Assumptions: A1 -
A4; B1 - B6

Polynomial time com-
plexity

Ground Holding Approaches MAGHP Bertsimas and Pat-
terson (1998), Vranas
et al. (1994), An-
dreatta and Brunetta
(1998),Andreatta and
Tidona (1994),

Assumptions: C1 -
C7. En route airspace
capacity constraint is
not considered.

NP Hard, Polynomial
time complexity

Air Traffic Flow Management Ap-
proaches

BATFMP Bertsimas and Patter-
son (1998), Bertsimas
et al. (2011),Helme
(1992), Lindsay et al.
(1993), Lulli and
Odoni (2007), Bert-
simas and Gupta
(2011)

Assumptions: D1 -
D5. Rerouting, speed
control are not consid-
ered as a control op-
tion. The flights route
are predetermined

NP Hard

Air Traffic Flow Management Ap-
proaches

ATFMRP Bertsimas et al.
(2008), Balakrishnan
and Chandran (2015),
Bertsimas and Patter-
son (1998), Bertsimas
et al. (2011), Bert-
simas and Patterson
(2000), Agust́ın et al.
(2012a)

Assumptions: D1, D4,
D5. Rerouting and
flight speed are con-
sidered as a control
option. The flights
route are not prede-
termined. Routes can
be represented as an
acyclic graph or col-
lection of subgraphs

NP Hard

Air Traffic Flow Management Ap-
proaches

SATFMP Balakrishnan and
Chandran (2015),
Ronald (2010), Chang
(2010), Liu et al.
(2008), Agust́ın et al.
(2012b),?, Marron
(2004),Ichoua (2013),
Torres (2012),?, ?

Same assumptions
as ATFMRP but on
probabilistic envi-
ronment instead of
deterministic. The
assumption includes
generic uncertainty
in the parameters,
represents uncertainty
by set of possible sce-
narios and decisions
are made at each
point in time.

NP Hard, Polynomial
time complexity and
exponential time com-
plexity



Chapter 4

Deterministic Mixed Integer

Programming Models for the ATFMP

This chapter provides insight into the mathematical formulation of the proposed integer

programming models for reducing air traffic delays and congestion problems. The models

presented in Bertsimas and Patterson (1998) and Bertsimas et al. (2011) and the proposed

approach for including rerouting in the basic ATFMP model presented in Bertsimas and

Patterson (1998) formed the basis of the IP formulation described here because of its

strong formulation and computational performance when handling large instances of data.

Key ideas and basic assumptions from the underlying model that are relevant to the

mathematical formulation of the ATFMRP are presented in Section 4.1. The proposed

formulations are discussed in Section 4.2 based on the proposed sector and path approach.

4.1 Mathematical Problem Formulation

Bertsimas and Patterson (1998) formulated the basic ATFMP mathematically (see equa-

tion 3.3.5 − 3.3.15) and proposed two main approaches for incorporating rerouting options

into the basic TFMP model, namely sector and path approaches. The decision variable of

their model and the proposed approach provides direction for the model presented here.

The goal/objective is to come up with a strong formulation using a better strategy that

reduces airspace and airport congestion while satisfying the capacity constraints as well

as ensuring safe and efficient flow of aircraft through the airspace.

The Starting Point

The basic model presented in Bertsimas and Patterson (1998) was described briefly in

the previous chapter (see equation 3.3.5 − 3.3.15) and will not be repeated. Key ideas

from the basic model and basic assumptions, relevant to the present work are included

in this section to serve as a guide in understanding the proposed model. Moreover, the

basic concepts described in Section 2.2 form part of the underlying principles of the model

formulation.

Basic Assumptions

1. The airspace is divided into sectors and can be represented as a graph with the nodes

and edges representing the sectors and the neighbourhood respectively (Bertsimas

69



Section 4.1. Mathematical Problem Formulation Page 70

and Patterson, 1998; Bertsimas et al., 2011; Delahaye and Puechmorel, 2013).

2. Flights are expected to fly through adjacent sectors en route to its arrival airport

(Bertsimas and Patterson, 1998).

3. There is restriction on the number of aircraft to cross a sector at each time period1.

4. The origin to destination (O-D) can be represented as a sequence of sectors flown by

a flight. The O-D route is predetermined if rerouting is not included. To incorporate

rerouting option, each O-D route can be represented by a digraph where the set of

nodes of the digraphs represents sectors and airports that is the set of capacitated

elements of the airspace (Agust́ın et al., 2009; Bertsimas et al., 2011). Moreover, the

idea of Partially-Ordered Sets (POSETS) helps in the description of the O-D route

of a flight especially when using the sector approach to rerouting. See Bertsimas

et al. (2011) for more details.

5. The time horizon, T , is fixed and discretised into equal-sized, contiguous time peri-

ods, t = 1, · · ·T (Bertsimas and Patterson, 1998).

6. The capacities, departure time and flight time are deterministic in nature.

7. Flight continuation and flight cancellation are considered.

8. There is a limit on the amount of ground holding and airborne delay to be assigned

to each flight.

9. There is maximum accepted duration of flight for each flight. Thus, flights that

exceed the maximum duration of flights are penalised.

Recall from Section 3.3.2, that the input data sets, parameters and variables have been

defined. The flight sector variable wjft are defined as being 1 if flight f arrives at sector j

by time t expressed as

wjft =

1, if flight f arrives at sector j by time t,

0, otherwise
(4.1.1)

which is a variant of the standard flight-sector variable defined as

ujft =

1, if flight f arrives at sector j at time t,

0, otherwise
(4.1.2)

Pf have been previously defined to be the sectors to be flown by a flight, that is, the

predefined route of the flight. Also, T jf is the defined to set of feasible time periods for

1This restriction is referred to as en route sector capacities (Bertsimas and Patterson, 1998).
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a flight to be in a particular sector. Thus, the decision variable wjft are defined only for

those sectors in Pf and those times within T jf .

Moreover, Bertsimas and Patterson (1998) noted that “one variable per flight-sector pair

can be eliminated from the formulation by setting wj
f,T fj

= 1 as a parameter where T fj is

the last time period in the set Tfj since flights has to arrive at sector j by the last period”

(Bertsimas and Patterson, 1998, pg 409). The illustrative example in 4.1.1 will help in

understanding of the model.

4.1.1 Example. Fig 4.1 is an illustrative diagram showing two flights travelling through

a set of sectors.

Figure 4.1: Illustrative example of flight routes (Bertsimas and Patterson, 1998).

The associated data for each of the flight is given as P1 = (1, A,C,D,E, 4) and P2 =

(2, F, E,D,B, 3). If “the current position of the aircraft is assumed to occur at time t,

then the variables for these flights at time t” will be: w1
1,t = 1, wA1,t = 1, wC1,t = 1, wD1,t = 0,

wE1,t = 0, w4
1,t = 0, and w2

2,t = 1, wF2,t = 1, wE2,t = 1, wD2,t = 0, wB2,t = 0, w3
2,t = 0 (Bertsimas

and Patterson, 1998).

For a clear understanding of the underlying models, Bertsimas and Patterson (1998);

Bertsimas et al. (2008, 2011), it is worthy to note some of the factors that contributes

to the excellent computational performance of the models. Thereby distinguishing them

from other models found in literature. They include:

1. Strong formulations of the models.

2. Facet-defining constraints and introduction of valid inequalities to strengthen the

polyhedral structures.

3. The definition with “by” rather than “at” in the decision variables.

4. The transformation from ujft to wjft that is ujft = wjft − w
j
f,t−1 and wjft =

∑
t′≤t

ujft′ ,

which are used to express several quantities of interest.
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5. The solutions from the LP relaxations are completely integral solutions and are

obtained within the shortest possible time.

The concepts described in Section 2.2, especially Theorem 2.2.18, explains the underlying

principle behind the occurrence of integral solutions when solving ATFMP using strong

formulation. See Wolsey and Nemhauser (1988); Bertsimas and Patterson (1998); Bertsi-

mas et al. (2008, 2011) for more details.

The Objective Function

The global objective function, depending on the goal of the decision makers, can include

different terms which can be joined together with suitable weights to form an objective

function to be optimised. In as much as the objective function comprises of different terms

to be minimised, the main goal as pointed out in Bertsimas et al. (2011) is to minimise a

function of total delay costs that is a combination of airborne and grounding holding delay

costs possessing the following properties

• It is expected that airborne delays assigned to each flights should be more costly per

unit of time than the ground delay (Bertsimas et al., 2011)

• Moreover, delays should be assigned to flights in a fairly manner

Based on the above properties, the expression used in Bertsimas et al. (2008) of the form

αAD+GD for objective function was adapted for this work where AD and GD represents

airborne and ground delay respectively with equivalence factor, α > 1, since air-borne

delay is assumed to be more costly than ground-holding delay. Thereby modifying the

objective function of the basic model.

The following approximations can be done based on the choice of expression αAD +GD

αAD +GD = αAD + αGD − αGD +GD (4.1.3)

or

αAD +GD = αAD −AD +AD +GD (4.1.4)

As a result, the expression for the objective function can be rewritten as

αTD − (α− 1)GD or TD + (α− 1)AD (4.1.5)

where TD is the total delay given by

TD = AD +GD (4.1.6)
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This implies that the objective function is either the difference between the total delay cost

and the cost reduction obtained by ground holding or the sum of total delay cost assigned

to a flight and an additional cost incurred by airborne delay depending on the choice

of approximation (Bertsimas et al., 2008; Lulli and Odoni, 2007; Bertsimas and Gupta,

2011). For the purpose of this work, the choice of approximation is the expression given

in equation 4.1.3.

To ensure equity among flights, that is assigning moderate assignment of total delays

between two flights rather than assigning larger amount of delay to one as compared to the

other flight, we adapt the same objective function cost coefficient, of the form (t− af )1+ε

for each flight f and for each time period t with ε close to zero that are super-linear

function of the tardiness of a flight as shown in Bertsimas et al. (2008). The following

example elaborates more on why the super-linear cost coefficients are priviledged.

4.1.2 Example. Suppose, two flights are to be assigned two units of delay, then the

following assignments is what is likely to be obtainable using an objective function with

linear coefficients

• 1 unit of delay to both flights and

• 2 units of delay to one flight and 0 to the other

If the latter is selected, then the delay is not fairly assigned to the flights. In contrast, a

super-linear cost coefficient (with ε = 0.001 for example) will assign 1 unit to both flights

since 11.001 + 11.001 < 21.001 + 0 (Bertsimas and Gupta, 2011).

Based on the first choice of (4.1.5), the following cost coefficients are defined for each flight

f and period t. Thus, the flight cost Cfts, that is, the cost of flight to arrive to a sector in

it’s path at time period t, can accommodate the super-linear function as defined below:

• By letting CftDf
:= Cftd(t) to denote the total cost of delaying flight f (ground holding,

airborne and rerouting) for (t − af ) units of time periods delay, where t and af

represents the actual and scheduled arrival time of flight. Cftd(t) can be expressed as

Cftd(t) ≡ α(t− af )1+ε (4.1.7)

with α and ε denoting the equivalence factor and super cost coefficient respectively.

• Similarly, letting CftOf
:= Cfgr(t) to denote the cost reduction obtained by holding

flight f on the ground for (t − df ) units of time periods delay, where t and df

represents the actual and schedule departure time of departure respectively. The

expression for Cfgr(t) is given as

Cfgr(t) ≡ (α− 1)(t− df )1+ε (4.1.8)
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A combination of both costs in (4.1.7) and (4.1.8) gives the super-linear cost of total delay

minus ground holding reduction cost which forms part of the objective function to be

optimised. The total delay cost defined in (4.1.7) can be used in place of the ground

delay and air borne delay costs (cgf and caf ) defined in Section 3.3.2 for the BATFMP or

together with any other fixed or variable costs for delaying a flight or holding the flight

on the ground. Moreover, by choosing parameters ε2, ε1 close to zero to be coefficients for

airborne and ground holding delay respectively in such a way that (ε2 > ε1), the flight cost

Cfts can accommodate the super-linear function in Bertsimas et al. (2011) as illustrated

below:

Cftd(t) ≡ α(t− af )1+ε = (t− af )1+ε2 (4.1.9)

and

Cfgr(t) ≡ (α− 1)(t− df )1+ε = (t− af )1+ε2 − (t− df )1+ε1 (4.1.10)

Thus, the BATFMP can be modified with respect to the above approximation using both

costs in the objective function.

Modification of the BATFMP

In view of the above, the delay cost function for each flight f at each time period t takes

the form:

∑
t∈Tk

f :k=P (f,Nf )

α(t− af )1+ε(wkf,t − wkf,t−1)−
∑

t∈Tk
f :k=P (f,1)

(α− 1)(t− df )1+ε(wkf,t − wkf,t−1)

(4.1.11)

Thus, the modified objective function becomes

Min
∑
f∈F

[ ∑
t∈Tk

f :k=P (f,Nf )

Cftd(t)(w
k
f,t−wkf,t−1)−

∑
t∈Tk

f :k=P (f,1)

Cfgr(t)(w
k
f,t−wkf,t−1)

]
(4.1.12)

The set of feasible time window for a flight to arrive at a particular sector in Bertsimas

and Patterson (1998) was not explicitly defined. To explicitly define these sets, additional

parameters and new constraints were to incorporated into the BATFMP and proposed

formulation. The parameters include: the maximum units of delay for a flight to be held

on the ground or in the air, the maximum acceptable duration of flight, scheduled time for

a flight to arrive at a particular sector from its origin airport, the scheduled time for flight

to cross a sector while the additional constraints ensures that flight does not exceed the

maximum acceptable duration of flight. For the purpose of this work, the following sets
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are explicitly defined:

1. The set of feasible time window for a flight to depart from its origin airport is defined

as

T kf = {t ∈ T : df ≤ t ≤ min(df +Gf , T )} ∀f ∈ F : k = P (f, 1) (4.1.13)

where f, F, k = P (f, 1), t, df , T takes their usual meaning and “the maximum

units of delay that can be assigned to a flight on the ground” is denoted by Gf .

2. The set of feasible time window for a flight to enter its destination is defined as

T kf = {t ∈ T : af ≤ t ≤ min(af +Gf +Af , T )} ∀f ∈ F : k = P (f,Nf ) (4.1.14)

where f, F, k = P (f,Nf ), t, af , T takes their usual meaning and Gf , Af represents

the “maximum units of delay that can be assigned to a flight on the ground and in

the air” respectively.

3. The scheduled time for a flight to arrive at a particular sector in it’s flight path can

be expressed as

T jf = df + To,j ≡ df +
∑

i=P (f,j′):j′<j

lfi ∀f ∈ F, j ∈ Pf (4.1.15)

where To,j is the defined time for a flight to reach a sector from its origin airport,

T jf , the last time period in T jf , lf,j , the minimal transit time for a flight to traverse

from one sector to another.

4. The set of feasible time window for a flight to arrive at a particular sector on its

flight path is defined as

T kf = {t ∈ T : T jf ≤ t ≤ min(T jf +Gf +Af , T )} (4.1.16)

∀f ∈ F, j = P (f, i) : 1 < P (f, i) < Nf where f, F, P (f, i), t, T, Gf , Af denotes

its usual meaning.

4.2 Insight on the proposed approach for the ATFMRP

The sector and path based approach for ATFMRP as illustrated in Bertsimas and Pat-

terson (1998) with the proposed complete formulation for each approach are presented

below.
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4.2.1 Sector-Based Approach

This approach decides at each sector in a flight’s route which sector to enter next (Bert-

simas and Patterson, 1998). To implement this approach, new sets are defined namely

Nfj and Pf,j . Nfj is the set of sectors that a flight f can enter immediate after leaving

a particular sector, say sector j, while Pfj is the set of sectors that flight f can enter

immediate before entering sector j (Bertsimas and Patterson, 1998). Pf was previously

defined as the predefined route for each flight including the departure and arrival airports

but in this approach, Pf is now defined as the set of sectors to be flown that can be flown

by flight f , including the origin and destination airport denoted now as Sf . See Example

4.2.1 for illustration. An additional index, j′, that keeps track of the preceding sector is

introduced in the decision variables. Thus, the new decision variables for incorporating

rerouting based on the sector approach as presented in Bertsimas and Patterson (1998) is

given below

wjj
′

ft =

1, if “flight f arrives at sector j′ from sector j by time t”,

0, otherwise
(4.2.1)

Moreover, the decision variable that was previously defined for the BATFMP can be

expressed in terms of this new decision variable as shown in (4.2.2) below

wjft =
∑

j′∈Nfj

wjj
′

ft (4.2.2)

4.2.1 Example. Figure 4.2 is an illustration of “possible routes from an origin airport

to a destination airport”(Bertsimas et al., 2011). Suppose we assume that a flight f ′ is

departing from origin, O, then there are three (3) possible routes that the flight can follow

to reach D, its destination. Based on the sector approach, the associated data for the flight

Figure 4.2: Illustration of possible routes from O-D airport (Bertsimas et al., 2008, 2011).

is given as Sf ′ = {O, i, g, h, e, f, k, j,D}. Nf ′O = {i}, Nf ′i = {g, e, }, Nf ′g = {h}, Nf ′h =

{k, j}, Nf ′e = {f}, Nf ′f = {j}, Nf ′k = {D}, Nf ′j = {D}. Pf ′i = {O}, Pf ′g = {i}, Pf ′h =
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{g}, Pf ′e = {i}, Pf ′f = {e}, Pf ′k = {h}, Pf ′j = {h, f}, Pf ′D = {k, j}. There is nothing like

Pf ′O and Nf ′D since they represent the departure and arrival airport.

In addition to the above description, the departure and arrival airports remain unchanged

with respect to this new decision variable for all flights. Thus, if we denote the departure

and arrival airports by Of and Df respectively, then w
Of ,Of

ft = w
Of

ft since it is expected that

flights departs from the origin airport and arrives at the sector containing the airport by

time t. Likewise,
∑

j∈Pfj
w
j,Df

ft = w
Df

ft since a flight is expected to arrive at it’s destination

airport from one of the preceding sectors by time t. These variables in most cases, takes

on the value 1 except if the flight is cancelled. In other words, the flight would not have

departed from its origin airport, hence will not arrive to its destination.

Model definition and Notation

The formulation of the model requires definition of the following notation for the input

data sets and parameters to be used. Some of the notations used for the underlying model

were still maintained for the proposed formulation. The input data sets and parameters

for the model formulation include:

Input Sets: :=

F := {1, · · · ,F}, set of flights,

Kd := {1, · · · ,Kd}, set of departing airports

Ka := {1, · · · ,Ka}, set of arrival airports

K := {1, · · · ,K}, set of airports, K = Kd ∪Ka.

T := {1, · · · , T }, set of time periods,

S := {1, · · · ,S}, set of sectors,

C := {(f ′, f) : f ′ is continued by f}, set of continued flights

Sf := set of sectors that can be flown by flight including O-D airports

Nfj := set of sectors that flight f can enter immediately after exiting sector j

Pfj := set of sectors that flight f can enter immediately before entering j

Sf ⊆ S; ∀j ∈ Sf , Pfj ⊂ Sf and Nfj ⊂ Sf
T fj ≡ first time period in T fj

T fj ≡ last time period in T fj

T fj := [T fj , T fj ] ≡ set of feasible times for flight to be in sector j
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The last three sets are calculated sets in preprocessing. The definition of the sets follows

closely to that already defined in the previous section.

Input Parameters: :=

Of := origin (departure) airport of flight f

Df := destination (arrival) airport of flight f

Dk(t) := departure capacity of airport k at time t

Ak(t) := arrival capacity of airport k at time t

Sj(t) := capacity of sector j at time t

df := scheduled departure time of flight f

af := scheduled arrival time of flight f

sf := turnaround time for an airplane after flight f

lfj := minimum number of time units that flight must spend in j

Gf := maximum ground holding time units delay for flight f

Af := maximum air borne time units delay for flight f

Mf := maximum allowed number of time units delay for flight

f to arrive to its destination without penalisation.

maxf := maximum acceptable duration of flight f , maxf = af − df +Af

Ccf := cancellation cost of flight f

Cfts := cost of flight to arrive to a sector in it’s path at time period t,

∀f ∈ F , t ∈ T fj , j ∈ Sf : j 6= Of . C
f
ts = 0 if arrival is on schedule.

schdfj := scheduled travel time for flight to arrive at j

schdfOf
= schdfDf

= 0.

schdmin := minimum travel time allowed for flight f to arrive a sector

schdmax := maximum travel time allowed for flight f to arrive a sector

schdmin ≤ schdfj ≤ schdmax,

schdmin(Of ) = schdfOf
= schdmax(Of ) = 0

schdmin(Df ) = schdfDf
= schdmax(Df ) = 0

By letting CftDf
and CftOf

to be the delay cost of flight to arrive to its destination and

ground holding delay cost respectively, CftOf
= 0 for t ≤ df and CftDf

= 0 for t ≤ af .
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The Objective Function

With respect to the description of the objective function presented in the previous section,

the objective function to be optimised is presented below based on the new decision vari-

ables. As pointed out earlier, these objective functions can be combined with appropriate

weights to form a single objective function. See Agust́ın et al. (2012a); Bertsimas et al.

(2011) for more details.

• The difference between the total cost of delaying the flights f for time (t− af ) time

units and the cost reduction obtained by holding flight for (t− df ) time units on the

ground.

∑
f∈F

[ ∑
j∈Pfj

∑
t∈T f

Df

Cftd

(
w
j,Df

f,t − w
j,Df

f,t−1

)
−
∑
t∈T f

Of

Cfgr
(
w
Of

f,t − w
Of

f,t−1
)]

(4.2.3)

• The total cancellation cost. ∑
f∈F

∑
t∈T f

Of

Ccf

(
1− wOf

f,t

)
, (4.2.4)

where
∑
f∈F

∑
t∈T f

Of

(
1− wOf

f,t

)
represents the number of canceled flights.

• The number of flights exceeding the maximum allowed units of delay for arrival to

their destination without penalisation∑
f∈F

[ ∑
j∈Pfj

∑
t∈T f

Df

(
w
j,Df

f,t − w
j,Df

f,af+Mf

)]
(4.2.5)

• The cost of arriving at each sector, j, in the flight routes at each time period, t∑
f∈F

[ ∑
j′∈pfJ

∑
t∈T f

j

Cst

(
wj

′,J
f,t − w

j′,j
f,t−1

)]
(4.2.6)

4.2.2 Path-Based Approach

This approach decides from the onset which of the routes a flight takes from available

options of routes to reach its destination. To use this approach, the set of possible routes

that a flight may fly needed to be defined. Let the set be denoted by Rf . Rf contains

at least one route. For the BATFMP that was initially formulated, Rf = Pf since it is

a predefined route. The new decision variables for incorporating re-routing based on the

path approach as illustrated in Bertsimas and Patterson (1998) is presented below. An
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additional index was included in the variable to show the route that the flight took to its

destination.

wjrft =

1, if flight f arrives at sector j by time t along route r,

0, otherwise
(4.2.7)

The basic decision variables defined for the BATFMP can also be expressed in terms of

these current decision variables as shown in (4.2.8) below

wjft =
∑
r∈Qf

wjrft (4.2.8)

Similar to the sector based approach, the departure and arrival airports remains unchanged

with respect to this new decision variable for all flights. Thus, w
Of ,r
ft = w

Of

ft since it is

expected that flights departs from an origin airport along a particular route r by time t.

Likewise, w
Df ,r
ft = w

Df

ft since a flight is expected to reach it’s destination airport along a

preferred route by time t. As with the sector based approach, these variables takes on the

value 1 except if the flight is cancelled.

4.2.2.1 Model Definition and Notation

The formulation of the model requires definition of the following additional notations for

the input data sets and parameters to be used. The rest of the notations defined for

the sector based approach except for Sf , Nfj , Pfj , C
f
ts remains valid for the path-based

approach.

Rf := {r1f , · · · , rnf}, set of possible routes that flight f may choose

rnf := {r(f, i) : 1 ≤ i ≤ nsf},

nsf := number of sectors in flight f ’s path

r(f, i) := the ith sector in flight f ’s path, where r(f, 1) = Of and r(f, nsf ) = Df

Cfst := cost of flight to arrive to a sector in it’s path at time period t,

∀f ∈ F , t ∈ T fj , j ∈ rnf : j 6= r(f, 1)”. Cfts = 0 if the arrival is on schedule

Car := cost of using an alternative route different from the scheduled route

As with the sector-based approach, CftOf
= 0 for t ≤ df and CftDf

= 0 for t ≤ af on the
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assumption that CftDf
and CftOf

represent the delay cost of flight to arrive to its destination

and ground holding delay cost respectively.

The global objective function still remains the same as that of the sector-based approach.

All the costs previously defined in equations (4.2.3 to 4.2.5) can still be considered as

part of the objective function except for changes in the decision variables as shown below.

Moreover, cost of using an alternative route can also be included in the objective function

to be minimised.

• The difference between the total cost of delaying the flights f for time (t− af ) time

units and the cost reduction obtained by holding flight for (t− df ) time units on the

ground

∑
f∈F

[ ∑
t∈T f

Df

Cftd

(
w
Df ,r
f,t − w

Df ,r
f,t−1

)
−
∑
t∈T f

Of

Cfgr
(
w
Of ,r
f,t − w

Of ,r
f,t−1

)]
(4.2.9)

• The total cancellation cost. ∑
f∈F

∑
t∈T f

Of

Ccf

(
1− wOf ,r

f,t

)
, (4.2.10)

where
∑
f∈F

∑
t∈T f

Of

(
1− wOf ,r

f,t

)
represents the number of cancelled flights.

• The number of flights exceeding the maximum allowed units of delay for arrival to

their destination without penalisation∑
f∈F

(
w
Df ,r
f,t − w

Df ,r
f,af+Mf

)
(4.2.11)

• The cost of arriving at each sector, j, in the flight routes at each time period, t∑
f∈F

[ ∑
j∈rnf

∑
t∈T f

j

Cst

(
wj,rf,t − w

j,r
f,t−1

)]
(4.2.12)

• The cost of using alternative flight routes.∑
f∈F

∑
r∈Rf

Carw
j,r
f,t (4.2.13)

Constraints

The constraints for the model formulation are classified into different categories: These are

capacity, operational or connectivity and delay constraints. The bounds of the variables are
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also considered as part of constraints for the model formulation. The capacity constraints

ensure that the capacity of the system resources are not exceeded while the operational

constraints ensures the smooth operation of flight while en route to its destination. The

delay constraints ensure that the flight does not exceed the maximum allowed time.

4.3 Mixed 0−1 Integer Programming Models for ATFMRP

4.3.1 IP model for the ATFMRP (Sector-Based Approach)

The complete IP formulation based on the sector approach, a variant of the basic ATFMP

model, for reducing air traffic delay and congestion in en route airspace is presented

below. The interpretation of the constraints follow closely from the ones described for

the underlying model. The constraints interpretation for both the main and alternative

formulation were given simultaneously.

Minimise
∑
f∈F

[ ∑
j∈Pfj

∑
t∈T f

Df

Cftd

(
w
j,Df

f,t − w
j,Df

f,t−1

)
−
∑
t∈T f

Of

Cfgr
(
w
Of ,Of

f,t − wOf ,Of

f,t−1
)]

(4.3.1)

Subject to ∑
f∈F :Of=k

(wk,kf,t − w
k,k
f,t−1) ≤ Dk(t) ∀ k ∈ K, t ∈ T (4.3.2)

∑
f∈F :Df=k

∑
j∈PfDf

(wj,kf,t − w
j,k
f,t−1) ≤ Ak(t) ∀ k ∈ K, t ∈ T (4.3.3)

∑
f∈F :j∈Sf

( ∑
j′∈Pfj

wj
′j
f,t −

∑
k∈Nfj

wjkf,t

)
≤ Sj(t) ∀ j ∈ Sf , t ∈ T (4.3.4)

∑
j′∈Pfj

wj
′j
f,t ≤

∑
j′∈Pfj

∑
i∈Pfj′

wij
′

f,t−lfj ∀ f ∈ F, j ∈ Sf , t ∈ T
j
f , (4.3.5)

∑
j′∈Pfj

wj
′,j

f,T
f
j

−
∑
k∈Nfj

wj,k
f,T

f
k

= 0 ∀ f ∈ F, j ∈ Sf : j 6= Df (4.3.6)

∑
k∈Nfj

∑
j′∈Pfk

wj
′k

f,T
f
k

≤ 1 ∀ f ∈ F, j ∈ Sf : j 6= Df (4.3.7)

w
Of ,Of

f,T
f
j

−
∑

j∈PfDf

w
j,Df

f,T
f
j

= 0 ∀f ∈ F (4.3.8)

wk,kf,t −
∑
j∈Pf ′k

wj,k
f ′,t−s′f

≤ 0 ∀ (f ′, f) ∈ C, t ∈ T kf , k = Of = Df ′ (4.3.9)
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∑
j∈PfDf

w
j,Df

f,T
f
Df

≤
∑

j′∈PfDf ′

w
j′,Df ′

f ′,T
f
Df ′
∀(f ′, f) ∈ C, (4.3.10)

w
Of ,Of

f,t −
∑

j∈PfDf

w
Df

f,t+maxf
≤ 0 ∀ f ∈ F, t ∈ T fOf

: t+maxf ∈ T fDf
(4.3.11)

∑
j′∈Pfj

(
wj

′j
f,t − w

j′j
f,t−1

)
≤ 0 ∀f ∈ F, j ∈ Sf , t ∈ T fj (4.3.12)

wjj
′

f,t ∈ {0, 1} ∀ f ∈ F, j
′ ∈ Sf , j ∈ Pfj′ , t ∈ T jf (4.3.13)

Alternative Model Formulation: The complete formulation below is an alternative

formulation based on the sector approach. The difference between this and the former

model is that the formulation consists of both the first

Minimise
∑
f∈F

[ ∑
j∈Pfj

∑
t∈T f

Df

Cftd

(
w
j,Df

f,t − w
j,Df

f,t−1

)
−
∑
t∈T f

Of

Cfgr
(
w
Of ,Of

f,t − wOf ,Of

f,t−1
)]

(4.3.14)

Subject to

wjf,t =
∑

j′∈Nfj

wj
′,j
f,t ∀f ∈ F, j ∈ Sf , t ∈ T

f
j (4.3.15)

∑
f∈F :Of=k

(wkf,t − wkf,t−1) ≤ Dk(t) ∀ k ∈ K, t ∈ T (4.3.16)

∑
f∈F :Df=k

(wkf,t − wkf,t−1) ≤ Ak(t) ∀ k ∈ K, t ∈ T (4.3.17)

∑
f∈F :j∈Sf

( ∑
j′∈Pfj

wj
′j
f,t −

∑
k∈Nfj

wjkf,t

)
≤ Sj(t) ∀ j ∈ Sf , t ∈ T (4.3.18)

∑
j′∈Pfj

wj
′j
f,t ≤

∑
j′∈Pfj

∑
i∈Pfj′

wij
′

f,t−lfj ∀ f ∈ F, j ∈ Sf , t ∈ T
j
f , (4.3.19)

wj
f,T

f
j

≤
∑
k∈Nfj

wjk
f,T

f
k

∀ f ∈ F, j ∈ Sf : j 6= Df , (4.3.20)

∑
k∈Nfj

wjk
f,T

f
k

≤ 1 ∀ f ∈ F, j ∈ Sf : j 6= Df (4.3.21)
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∑
j′∈Pfj

wj
′,j

f,T
f
j

−
∑
k∈Nfj

wj,k
f,T

f
k

= 0 ∀ f ∈ F, j ∈ Sf : j 6= Df (4.3.22)

w
Of

f,T
f
j

−
∑

j∈PfDf

w
j,Df

f,T
f
j

= 0 ∀f ∈ F (4.3.23)

w
Of

f,t − w
Df ′

f ′,t−sf ≤ 0 ∀ (f ′, f) ∈ C, t ∈ T kf : t− sf ∈ T f
′

Of ′
(4.3.24)∑

j∈PfDf

w
j,Df

f,T
f
Df

≤
∑

j′∈PfDf ′

w
j′,Df ′

f ′,T
f
Df ′
∀(f ′, f) ∈ C, (4.3.25)

w
Of

f,t − w
Df

f,t+maxf
≤ 0 ∀ f ∈ F, t ∈ T fOf

: t+maxf ∈ T fDf
(4.3.26)∑

j′∈Pfj

(
wj

′j
f,t − w

j′j
f,t−1

)
≤ 0 ∀f ∈ F, j ∈ Sf , t ∈ T fj (4.3.27)

wjf,t, w
jj′

f,t ∈ {0, 1} ∀ f ∈ F, j
′ ∈ Sf , j ∈ Pfj′ , t ∈ T jf (4.3.28)

Constraints (4.3.2), (4.3.3) and (4.3.4) as well as constraints (4.3.16), (4.3.17) and (4.3.18)

are the capacity constraints that takes into consideration the capacities of the different

components of the system. Constraints (4.3.15) in the alternative formulation describes

the relationship between the basic decision variables and the modified decision variables

(Bertsimas and Patterson, 1998).

Constraints 4.3.2 and 4.3.3 (4.3.16 and 4.3.17) ensure that the number of flights departing

from or arriving at an airport, k, at time period t does not exceed the departure and

arrival capacity of airport k for that time period. Constraints 4.3.4 (4.3.18) ensure that

the number of flights in a sector j at time period t does not exceed the sector capacity for

that period. Since for each sector k, we already know the previous sector j, the second term

of Constraint 4.3.4 (4.3.18),
∑

k∈Nfj
wjkf,t, takes 1 if and only if the first term,

∑
j′∈Pfj

wj
′j
f,t

takes 1 and for this reason, the difference cannot take the value −1. Moreover, the first

expression takes 1 if flight f has arrived at sector j at time t and if the flight crossed to

one of the subsequent sectors, then the second term takes 1. This implies that flight f will

not be counted among those flights that are still in sector j. Otherwise,
∑

k∈Nfj
wjkf,t = 0

and the difference between the terms takes the value of 1 implying that flight f will be

one of the flights that are still in sector j (Bertsimas et al., 2011).

Constraints 4.3.5, 4.3.6 and 4.3.7 (4.3.19, 4.3.20, 4.3.21 and 4.3.22) represents the connec-

tivity between sectors. Constraint 4.3.5 (4.3.19) stipulates that a flight is not permitted to

enter the next sector on its route unless it has spent at least the minimum required trav-

elling time through one of the previous sector on in its path. This means a flight cannot

arrive at sector j by timet if it has not arrived at one of the previous sectors by time
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t− lfj(Bertsimas and Patterson, 1998; Bertsimas et al., 2011).

Constraint 4.3.6 (4.3.22) ensures that the number of flights arriving in sector j must equal

the number of flights leaving sector j. Constraint 4.3.7 (4.3.20 and 4.3.21) stipulates that

a flight must arrive at one of the subsequent sectors by the latest time period at which it

is allowed to reach these sectors (Bertsimas et al., 2008, 2011).

Constraint 4.3.8 (4.3.23) ensures that a flight gets to its destination if it departs from its

origin airport and vice versa; otherwise, the flight is cancelled. Constraint 4.3.9 (4.3.24)

represents flight connectivity and handle instances where an aircraft for a flight is scheduled

to perform a subsequent flight within certain user specified time interval continued that is

flight continuation where f ′, f, sf denotes the first flight, subsequent flight and turnaround

time2 Constraint 4.3.10 (4.3.25) represents the flight cancellation priority such that the

variable upper bound ensures that flight f is not cancelled if flight f ′ is not. Constraint

4.3.11 (4.3.26) guarantees that the flight arrives to its destination without exceeding the

maximum acceptable duration of flight; otherwise the flight is cancelled. Lastly, Constraint

4.3.12 (4.3.27) guarantees connectivity in time for all flights. Thus, if a flight arrived at

sector j by time t̃ to its destination, then the variables have to take a value 1 for all later

time periods (t ≥ t̃) (Bertsimas et al., 2008, 2011).

4.3.2 IP model for the ATFMRP (Path-Based Approach)

The complete IP formulation based on the path approach, a variant of the basic ATFMP

model, for reducing air traffic delay and congestion in en route airspace is presented below.

The constraint interpretation for the sector approach still applies here except for slight

changes. The constraints interpretation for both the main and alternative formulation

were given simultaneously.

Minimise
∑
f∈F

[ ∑
t∈T f

Df

Cftd

(
w
Df ,r
f,t − w

Df ,r
f,t−1

)
−
∑
t∈T f

Of

Cfgr
(
w
Of ,r
f,t − w

Of ,r
f,t−1

)]
(4.3.29)

Subject to ∑
f∈F :Of=k

(wk,rf,t − w
k,r
f,t−1) ≤ Dk(t) ∀ k ∈ K, t ∈ T (4.3.30)

∑
f∈F :Df=k

(wk,rf,t − w
k,r
f,t−1) ≤ Ak(t) ∀ k ∈ K, t ∈ T (4.3.31)

∑
f∈F :r(f,i)=j,r(f,i+1)=j′,i≤Nf

(
wj,rf,t − w

j′,r
f,t

)
≤ Sj(t) ∀ j ∈ S, t ∈ T (4.3.32)

2minimum amount of time required to prepare flight f for departure following the arrival of flight f ′.
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w
Of ,r

f,T
f
Of

− wDf ,r

f,T
f
Df

= 0 ∀f ∈ F (4.3.33)

wk,rf,t − w
k,r′

f ′,t−s′f
≤ 0 ∀ (f ′, f) ∈ C, t ∈ T kf , k = r(f ′, Nf ′) = r(f, 1) (4.3.34)

w
Df,r

f,T
f
Df

≤ wDf ′ ,r
′

f ′,T
f
Df ′
∀(f ′, f) ∈ C, (4.3.35)

w
Of ,r
f,t − w

Df ,r
f,t+maxf

≤ 0 ∀ f ∈ F, t ∈ T fOf
: t+maxf ∈ T fDf

(4.3.36)

wj,rf,t − w
j′,r
f,t+l(f,j) ≥ 0 ∀f ∈ F, r ∈ Rf , j = r(f, i), j′ = r(f, i+ 1), i < Nf , t ∈ T fj (4.3.37)

∑
r∈Rf ,k=r(f,1)

wk,r
f,T

f
k

= 1 ∀f ∈ F (4.3.38)

wj,rf,t + wj
′,r′

f,t′ ≥ 0 ∀f ∈ F, r, r′ ∈ Rf , j ∈ rf , j′ ∈ r′f , t ∈ T
f
j (4.3.39)

wj,rf,t − w
j,r
f,t−1 ≥ 0 ∀f ∈ F, r ∈ Rf , j ∈ rnf , t ∈ T fj (4.3.40)

wj,rf,t ∈ {0, 1} ∀ f ∈ F, j ∈ rnf , r ∈ Rf , t ∈ T
j
f (4.3.41)

Alternative Model Formulation: The complete formulation below is an alternative

formulation based on the path approach. The difference between this and the former

model is that the formulation consists of both the first

Minimise
∑
f∈F

[ ∑
t∈T f

Df

Cftd

(
w
Df ,r
f,t − w

Df ,r
f,t−1

)
−
∑
t∈T f

Of

Cfgr
(
w
Of ,r
f,t − w

Of ,r
f,t−1

)]
(4.3.42)

Subject to

wjf,t =
∑
r∈Rf

wjrf,t ∀f ∈ F, j ∈ rnf , t ∈ T
f
j (4.3.43)

∑
f∈F :Of=k

(wkf,t − wkf,t−1) ≤ Dk(t) ∀ k ∈ K, t ∈ T (4.3.44)

∑
f∈F :Df=k

(wkf,t − wkf,t−1) ≤ Ak(t) ∀ k ∈ K, t ∈ T (4.3.45)
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∑
f∈F :r(f,i)=j,r(f,i+1)=j′,i≤Nf

(
wjf,t − w

j′

f,t

)
≤ Sj(t) ∀ j ∈ S, t ∈ T (4.3.46)

w
Of

f,T
f
Of

− wDf

f,T
f
Df

= 0 ∀f ∈ F (4.3.47)

wk,rf,t − w
k,r′

f ′,t−s′f
≤ 0 ∀ (f ′, f) ∈ C, t ∈ T kf , k = r(f ′, Nf ′) = r(f, 1) (4.3.48)

w
Df,r

f,T
f
Df

≤ wDf ′ ,r
′

f ′,T
f
Df ′
∀(f ′, f) ∈ C, (4.3.49)

w
Of ,r
f,t − w

Df ,r
f,t+maxf

≤ 0 ∀ f ∈ F, t ∈ T fOf
: t+maxf ∈ T fDf

(4.3.50)

wj,rf,t − w
j′,r
f,t+l(f,j) ≥ 0 ∀f ∈ F, r ∈ Rf , j = r(f, i), j′ = r(f, i+ 1), i < Nf , t ∈ T fj (4.3.51)

∑
r∈Rf ,k=r(f,1)

wk,r
f,T

f
k

= 1 ∀f ∈ F (4.3.52)

wj,rf,t + wj
′,r′

f,t′ ≥ 0 ∀f ∈ F, r, r′ ∈ Rf , j ∈ rf , j′ ∈ r′f , t ∈ T
f
j (4.3.53)

wj,rf,t − w
j,r
f,t−1 ≥ 0 ∀f ∈ F, r ∈ Rf , j ∈ rnf , t ∈ T fj (4.3.54)

wj,rf,t ∈ {0, 1} ∀ f ∈ F, j ∈ rnf , r ∈ Rf , t ∈ T
j
f (4.3.55)

Constraints 4.3.30, 4.3.31 and 4.3.32 (4.3.44, 4.3.45 and 4.3.46) are the capacity constraints

that takes into consideration the capacities of the different components of the system.

As with the sector-based approach, constraints (4.3.43) in the alternative formulation

describes the relationship between the basic decision variables and the modified decision

variables.

Constraints 4.3.30 and 4.3.31 (4.3.44 and 4.3.45) ensure that the number of flights departing

from or arriving at an airport, k, at time period t does not exceed the departure and arrival

capacity of airport k for that time period. The difference between the terms in 4.3.30 and

4.3.31 (4.3.44 and 4.3.45) equals one when the first term and second term is one and zero

respectively. Thus, the differences capture the time at which a flight uses a given airport.

Constraint 4.3.32 (4.3.46) ensures that the number of flights in a sector j at time period t

does not exceed the sector capacity for that period. This can be seen from the fact that the

first term will have the value of 1 if flight f has arrived in sector j by time t and second
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term will be 1 if flight f has arrived the next sector by time t. Moreover, the only time

the sum will have a value of 1 is if the flights have arrived at j and have not yet departed

by time t. Thus, similar to the case of 4.3.30 and 4.3.31 (4.3.44 and 4.3.45), the difference

captures the flight which are currently in sector j at time t (Bertsimas and Patterson,

1998; Bertsimas et al., 2011).

Constraint 4.3.33 (4.3.47) ensures that a flight arrives its destination if it departs from

its origin airport and vice versa; otherwise, the flight is cancelled. Constraint 4.3.34

(4.3.48) ensures connectivity between flights and handle instances where the flight’s aircraft

is scheduled to perform a subsequent flight within certain user specified time interval that is

flight continuation where f ′, f, sf ′ denotes the first flight, subsequent flight and turnaround

time. Constraint 4.3.35 (4.3.49) represents the flight cancellation priority such that the

variable upper bound ensures that flight f is not cancelled if flight f ′ is not. Constraint

4.3.36 (4.3.50) guarantees that the flight arrives to its destination without exceeding the

maximum acceptable duration of flight; otherwise the flight is cancelled (Bertsimas et al.,

2008, 2011).

Constraint 4.3.37 (4.3.51) guarantees connectivity between sectors in a flight route. The

interpretation is if flight f arrives at j′ by time t+lfj, then it must have arrived at j by time

t where j′ and j are adjacent sectors in the flight f ′s path. More precisely, a flight is not

allowed to enter the next sector on its path if it has not spent the minimum required time

for traveling through sector j, the current path, in its path. Constraint 4.3.39 (4.3.53)

guarantees that exactly one route is chosen per flight while Constraint 4.3.38 (4.3.52)

ensures that at most one route is chosen for every flight. Constraints 4.3.38 (4.3.52) are

important for relaxations and are redundant for the IP formulation as they are implied

by Constraints 4.3.39 (4.3.53). Lastly, Constraint 4.3.40 (4.3.54) guarantees connectivity

in time for all routes. Thus, if a flight arrived at sector j by time t̃ along its route to

its destination, then the variables has to take a value 1 for all later time periods (t ≥ t̃)

(Bertsimas and Patterson, 1998; Bertsimas et al., 2008, 2011)

4.3.3 Size of the Formulation

The size of the formulation for the proposed models in the previous section can be deter-

mined given any data instance based on the generalised formula presented in Bertsimas

and Patterson (1998) and defined below:

1. The actual number of variables is given by

∑
f

∑
j∈Pf

|T jf |, (4.3.56)

since each flight has a different number of sectors and number of feasible time inter-
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vals associated with it (Bertsimas and Patterson, 1998).

2. The upper bound on the number of variables wjft can be calculated using the expres-

sion below

|F |DX, where D = max
f∈F,j∈Pf

|T jf | & X = max
f∈F

Nf (4.3.57)

3. The exact number of constraints is

2|K||T |+ |S||T |+ 2
∑
f∈F

∑
j∈Pf

|T jf |+
∑

(f ′,f)∈C

min{|T jf |, |T
k
f ′ |} (4.3.58)

where j = P (f, 1) and k = P (f ′, Nf ′).

4. The upper bound on the number of constraints can be calculated as

2|K||T |+ |S||T |+ 2|F |DX + |C|D. (4.3.59)

Describing the notations in words,

• D is the maximum cardinality of the set of feasible times for flight f to be in sector

j taken over all f and j (Bertsimas and Patterson, 1998).

• X is the maximum number of sectors that a flight passes through its route, taken over

all flights. X ≥ 2 since the origin and destination airports are counted as sectors on

flights path (Bertsimas and Patterson, 1998).

• |F |, |T |, |S|, |K| and |C| represents the total number of flights, time periods, sectors,

airports and continued flights respectively (Bertsimas and Patterson, 1998).

4.4 Chapter Summary

An insight into the proposed integer programming formulation for reducing air traffic delay

and congestion was given in this chapter. The proposed formulations were described based

on the sector and path based approaches proposed by Bertsimas and Patterson (1998) for

including re-routing option in the BATFMP model. Besides extending the basic model to

account for re-routing options, additional constraints like flight cancellation priorities and

penalisation constraints were also incorporated into the formulation. Moreover, new cost

functions to be minimised were also defined. The proposed formulation is as strong as the

basic formulation because of the facet-defining constraints that were used. The additional

index in the decision variables that were used in the formulation is the distinguishing factor

between the proposed models and other models in literature that consider re-routing as a

control option.



Chapter 5

Implementation and Computational

Results

This chapter is dedicated towards the discussion and presentation of the numerical im-

plementation of the basic ATFMP models on constructed input data sets and parameters

considering different possible instances with fictitious airports and sectors. The intention

is to solve the basic and modified models using the artificially constructed data sets and

analyse the resulting solution. Most importantly, to ascertain the computational perfor-

mance of the model based on the constructed data sets and verify if the constructed data

sets support the claims and conclusions drawn in reviewed literature. The method of

solution, as well as, the software specification, are briefly outlined in Section 5.1 while

Section 5.2 provides a description of the computer specification, as well as, the artificially

constructed datasets used for the implementation. Results and findings were presented in

Sections 5.3 and 5.4 respectively.

5.1 Method of Solution

In this section, the method of solution used for implementation are outlined. The different

stages of the implementation process and the software used were also described in details.

The optimisation model was solved using the GLPK (GNU Linear Programming Kit)

solver (version 4.57) which comes in the form of a callable library and is solely designed

for solving LP, MIP, and other related problems (Makhorin, 2015). The GNU Mathprog

Language (GMPL), a subset of the AMPL modeling language, was used to describe the

models. This is because it uses symbolic algebraic notation which has advantages over

other modelling languages. GNU MathProg language consists a set of statements and

data blocks that must be in the required format and the implementation is based on

the description presented in Fourer et al. (1987). More precisely, GNU Mathprog is the

model translator that analyses the model description and translates it into internal data

structures that can be used either for generating mathematical programming problem

instance or directly by a solver to obtain numeric solution of the problem (Fourer et al.,

1987; Makhorin, 2015).

For the implementation, the stand-alone solver, glpsol, within GLPK and CPLEX opti-

misation solver was used since CPLEX standalone solver is part of the GLPK together

with the fact that CPLEX can be accessed through the GMPL. The solvers address the

90
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optimisation problem using the generated output by the GNU Mathprog translator or

language processor.

There are different stages involved in the implementation of the model. First, the mathe-

matical model is described using GMPL. The input format of the GMPL model consists of

the following items sets, parameters, variables, objective, constraints, of which the sample

format of the GMPL Models as well as the sample of the associated datasets for the differ-

ent model used for this work can be located in the appendix section for reference purposes.

See Fourer et al. (1987); Makhorin (2015) for more details on the model description.

The input statements for the different components of the model as described in Makhorin

(2015) are highlighted below:

1. set setname alias domain, attrib, · · · , attrib;

2. param parametername alias domain, attrib, · · · , attrib;

3. var variablename alias domain, attrib, · · · , attrib; where

• setname is a symbolic name of the set, parameter or variable;

• alias is an optional string literal, which specifies an alias of the set, parameter

or variable;

• domain is an optional indexing expression, which specifies a subscript domain

of the set, parameter or variable;

• attrib, · · · , attrib are optional attributes of the set, parameter or variable

(Fourer et al., 1987; Makhorin, 2015).

4. The objective statement is

a) minimise name alias domain : expression;

b) maximise name alias domain : expression; where

• name is a symbolic name of the objective;

• alias is an optional string literal, which specifies an alias of the objective;

• domain is an optional indexing expression, which specifies a subscript domain

of the objective;

• expression is a linear expression used to compute the linear form of the objective

(Fourer et al., 1987; Makhorin, 2015)

5. The constraint statement is of the following form where the keyword subj to, s.t.

can be used in place of subject to when writing the statement or omitted at all.

i) subject to name alias domain : expression , = expression;
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ii) subject to name alias domain : expression , ≤ expression;

iii) subject to name alias domain : expression , ≥ expression;

iv) subject to name alias domain : expression , ≤ expression , ≤ expression;

v) subject to name alias domain : expression , ≥ expression , ≥ expression;

(Fourer et al., 1987; Makhorin, 2015).

The above information with the associated data sets will be used by the GMPL exe-

cutable file when solving the optimisation problem. The stand alone solver, glpsol, is

either launched from the command line or from the shell to solve models written in the

GMPL using different command line options (Fourer et al., 1987; Makhorin, 2015). Solv-

ing the problem using CPLEX solver is a little bit different as the model description has

to be in the required input format. In order for the IBM CPLEX optimisation solver to

access the model, GNU Mathprog model for the problem has to be converted to LP model

expressed in LP format, a required format for CPLEX, using the GNU/GLPK executable

file. The lp file is thus read into the CPLEX solver in order to solve the model. As

the model is being solved, the solution stages are displayed until an optimal solution is

obtained. Once the final solution has been produced, the solutions pools are saved and

readable solutions are generated from the pool (Fourer et al., 1987; Makhorin, 2015). See

illustration of the result details in Section 5.3 and Appendix A for more clarification.

5.2 The Data

The computational performance of the basic models was tested on artificially constructed

data sets for verification purposes. Three nominal data sets (Datasets 1 - 3 ) were used in

validating the computational performance of the models considering, at least, two problem

instances for each data set. Table 5.1 shows the computer specification that was used for

the implementation.

Table 5.1: Computer specification

Computer brand HP

Model HP Pavilion g6

Processor Intel(R) Core(TM) i3-3110M CPU

Processor speed 1

Number of processors 2.40 GHz

Number of cores 4

RAM size 4 GB

Operating system Windows 8 Enterprise

System type 64 bit Operating system

Data sets 1 - 3 were constructed with an imaginary airports and flights. The total number

of flights in each data set varied from 4 to 15 while the time horizon varied from two
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hours to just over five hours discretised into time units of 15-minute or 30-minutes each.

The total number of airports considered ranges from 4 to 7 while the arrival, departure

and enroute sector capacities vary from 1 to 5 flights per time period depending on the

number of conflicting flights in the set which is assumed to be the same for all time periods.

The percentage of connecting flights ranged from 15% to 75% depending on the instances

considered. The feasible time periods, calculated during the preprocessing phase and

defined for each of the instances, agrees with the scheduled departure and arrival timings.

The ground and airborne delay cost was assigned to each flight in such a way that the

airborne delay are higher than the ground delay cost.

Each of the instances consist of a set of flights, airports, sectors, time periods, feasible time

periods, scheduled arrival and departure times, system resources and enroute capacities,

set of continued flights and other relevant information. These data sets were constructed

in such a way that there are flights having the same scheduled arrival, departure or sector

crossing timing. Thereby giving rise to conflicting flights.

For each of the instances considered above, the primary data sets, that is, “the feasible time

periods, the scheduled departure and arrival timings and other parameters” were modified

to account for different scenarios considered in order to ascertain how the integrality of

the solutions obtained are affected by the various parameters. The instances considered

include: “when conflicts existed between flights, when flights departed or arrived earlier

than the scheduled time, when outgoing flights departed before the arrival of incoming

connecting flights, when flights were expected to traverse a particular sector at the same

time period.

Each problem instance was solved using the stand alone solvers, glpsol within GLPK

and the IBM ILOG CPLEX interactive optimiser 12.6.0 implemented on a PC with the

specification described in Table 5.1 both for the LP relaxation and the integer programming

problem.

As an illustration, given the departure and arrival airport for each flight, it is possible to

estimate the demands on the airport for each time period based on the schedule departure

and arrival timings. Figures 5.1, 5.2 and 5.3 are an illustration of such demands. Moreover,

the demand for different sectors can be computed as well given the predefined or preferred

route of each flight and the time for the flight to reach each sector. Fig 5.4 is an illustration

of sector demands for randomly generated flights dataset.

The summary of the results for selected instances are tabulated in the next section with

a brief explanation.
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Figure 5.1: Total demand for airport usage at each time period.

Figure 5.2: Airport demands for departure for each time period

Figure 5.3: Airport demands for arrival for each time period
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Figure 5.4: Sector demands at different time period.

5.3 Computational Results

Table 5.2 to 5.9 shows the summarised result of how delays were assigned to conflicting

flights based on the different scenario considered for Data set 1 - 3. The experiments were

tested using both the basic and modified ATFMP model with little or no changes in the

input parameters and feasible time window.

Data set 1 was constructed based on the illustrative sample in Figure 3.1 presented in

Chapter 3. The primary set consist of 4 airports, 6 sectors, 7 flights, time horizon of 4

hours discretised into 16 time periods of 15 minutes each. The sector transit time for each

flights varies. Both ground and air delay costs are fixed for all flights.

From now onward, the headings of the table represents the following except otherwise

stated. Gcost− ground delay cost, Acost− air delay cost, SDep− scheduled departure

time, ADep− actual departure time, SArr− scheduled arrival time, AAr− actual arrival

time, GD− ground delay, AD− air borne delay, TD− total delay, RGD− ground holding

based on cost reduction. Flights are represented by their sectors or flight number denoted

as F6.

For the result presented in Table 1, all flights are independent of each other. Flight 6

and 4 are conflicting with each other based on the scheduled arrival time. The result

shows that flight 6 is delayed on the ground for 1 unit time period while flight 4 arrived

at the destination airport without any delay since it has earliest departure time. This
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adheres to the “first in first out policy” in assigning delays to flight. The result in Table

Table 5.2: Results for dataset 1 without connecting flight

Flight Gcost Acost SDep ADep SArr AAr GD AD

1. A-B-C-D R400 R20000 1 1 7 7 0 0
2. A-F-E R400 R20000 1 1 6 6 0 0
3. F-C-D R400 R20000 3 3 8 8 0 0
4. A-B-C-E † R400 R20000 3 3 9 9 0 0
5. D-E-C-F R400 R20000 3 3 10 10 0 0
6. D-C-E † R400 R20000 5 6 9 10 1 0
7. D-E-F-A R400 R20000 3 3 11 11 0 0

Arr Cap= 1; Dep Cap = 3 & Sec Cap = 3; Obj = 400 & Cost = 400, CPU = 5.3s

5.3 is still for dataset 1 with F6 continuing F2. The scheduled departure and arrival

time remains the same as with previous one except for F6 which is changed in order to

continue F2. The result showed how the flight was delayed for 2 time periods on the

ground since its scheduled departure time was earlier than the arrival of the incoming

flight. The implication of having the connecting flight depart before the arrival of the

incoming flight is that passengers from the incoming flight are bound to miss their flights.

To avoid such occurrences, the model ensures that the flights that need to be delayed in

order to minimise costs are delayed. Delay will only be assigned to F7 if F6 was initially

scheduled to depart at 7. Reducing the capacity of the system resources to allow only one

(1) flight will result in delaying flights F1, F3 and F7 with a rapid increase in the number

of iterations before obtaining optimal solution.

Table 5.3: Results for dataset 1 with connecting flight

Flight/Sectors Gcost Acost SDep ADep SArr AAr GD AD

1. A-B-C-D R400 R20000 1 1 7 7 0 0
2. A-F-E R400 R20000 1 1 6 6 0 0
3. F-C-D R400 R20000 3 3 8 8 0 0
4. A-B-C-E R400 R20000 3 3 9 9 0 0
5. D-E-C-F R400 R20000 3 3 10 10 0 0
6. E-C-B-A R400 R20000 5 7 9 11 2 0
7. D-E-F-A R400 R20000 3 4 11 12 1 0

Arr Cap= 1; Dep Cap = 3 & Sec Cap = 3; Obj = 1200 & Cost = 1200, CPU = 6.9s

Data set 2 consists of 4 flights (2 independent flights) and 7 sectors. All the sectors are

assumed to be containing airports. The horizon is 5 hours discretised into 11 time slots

of 30 minutes each. The arrival capacity for each of the system resources is expected to

accommodate at most 3 flights per time period.

For the solution presented in Table 5.5, none of the flights was delayed because there is
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Table 5.4: Results for dataset 1 with connecting flight and capacity reduction

Flight/Sectors Gcost Acost SDep ADep SArr AAr GD AD

1. A-B-C-D R400 R20000 1 2 7 8 1 0
2. A-F-E R400 R20000 1 1 6* 6 0 0
3. F-C-D R400 R20000 3 4 8 9 1 0
4. A-B-C-E R400 R20000 3 3 9 9 0 0
5. D-E-C-F R400 R20000 3 3 10 10 0 0
6. E-C-B-A R400 R20000 5* 7 9 11 2 0
7. D-E-F-A R400 R20000 3 4 11 12 1 0

Arr Cap= 1; Dep Cap = 1 & Sec Cap = 2; Obj = 1200 & Cost = 1200, CPU = 5.9s

no capacity reduction in the system. F2 would have been delayed if there was no capacity

reduction in the arrival capacity. See Appendix A the detailed results.

Table 5.5: Results for data set 2 without conflicts

Flight/Sectors Gcost Acost SDep ADep SArr AAr GD AD

1. DUR-LDY-MGH R300 R3000 1 1 3 3 0 0
2. LDY-NCS-ULD† R700 R6000 3 3 5 5 0 0
3. MGH-NCS R500 R4000 4 4 6 6 0 0
4. MGH-RCB-ULD† R900 R6000 3 3 5 5 0 0

Arr Cap= 3; Dep Cap = 3 & Sec Cap = 3; Obj = 0 & Cost = 0, CPU = 3.7s

The next scenario that was considered is that of flights that actually depart or arrive

before the scheduled time. A close observation in the basic model formulation shows that

there is no restriction in the formulation that will prevent such from occurring. Therefore,

there is a possibility of the solver assigning negative values to flights since the objective

is to minimise costs. However, this was avoided by setting an auxiliary cost variable as

γ ≥ max(0, α) to cater for cases where there is negative value in the cost variable by

providing the real value. α represents the function to be minimised, that is, the computed

cost where γ is the real cost. This scenario was avoided in the modified model as well as

the new formulation by setting a restriction that CftOf
= 0 for t ≤ df and CftDf

= 0 for

t ≤ af .

To implement this scenario, the feasible set of time window for F4 was adjusted backwards

so that the flight can depart before the scheduled time and arrive before time at the

destination airport. The solution is presented in Table 5.6. There is no capacity reduction

in the system.

Data set 3 is exactly the same as the previous one only that there is modification in

the costs and flights. Moreover, the results presented were used to show how the modified

model assigns delays to flights in comparison with the basic model. For the result presented
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Table 5.6: Results for data set 2 with arrivals before scheduled times

Flight/Sectors Gcost Acost SDep ADep SArr AAr GD AD

1. DUR-LDY-MGH R300 R3000 1 1 3 3 0 0
2. LDY-NCS-ULD R700 R6000 3 3 5 5 0 0
3. MGH-NCS R500 R4000 4 4 6 6 0 0
4. MGH-RCB-ULD R900 R6000 3 1† 5 3 -2 0

Arr Cap= 2; Dep Cap = 2 & Sec Cap = 2; Obj =-1800 & Cost = 0, CPU = 2.7s

in Table 5.7, the indications with ∗, ?, †, ‡ show the conflicts between the flights. That is,

flights are anticipated to arrive or depart at the same time or that flights are traversing

a sector at the same time period. F1 is continued by F2. Table 5.8 shows results of a

scenario where there has been a change in the set of feasible time period for the flights

while Table 5.9 shows the result for the instances with different values of α, the equivalence

factor.

Table 5.7: Result for dataset 3 with conflicting flights

Flight/Sectors Gcost Acost SDep ADep SArr AAr GD AD

1. DUR-LDY? 400 20000 1 1 2 2 0 0
2.?LDY-NCS-ULD‡ 600 30000 3 5 5 7 2 0
3. †MGH-RCB 800 40000 3 3 4 4 0 0
4. ∗RCB-ORT-ULD‡ 1000 50000 3 3 5 5 0 0
5. †, ∗MGH-ORT-ULD‡ 1200 60000 3 4 5 6 1 0

Flight/Sectors SDep ADep SArr AAr TD RGD

1. DUR-LDY? 1 1 2 2 0 0
2.?LDY-NCS-ULD‡ 3 4 5 6 1 1
3. †MGH-RCB 3 3 4 4 0 0
4. ∗RCB-ORT-ULD‡ 3 3 5 5 0 0
5. †, ∗MGH-ORT-ULD‡ 3 5 5 7 2.00139 1

Arr Cap = Dep Cap = Sec Cap = 1; Obj1 = 2200 = Obj2 & Cost =2200, CPU = 5.3s

Table 5.8: Result for dataset 3 with different sets of feasible time window

Flight/Sectors Gcost Acost SDep ADep SArr AAr GD AD

1. DUR-LDY? 400 20000 1 1 2 2 0 0
2.?LDY-NCS-ULD‡ 600 30000 3 4 5 7 1 1
3. †MGH-RCB 800 40000 3 3 4 4 0 0
4. ∗RCB-ORT-ULD‡ 1000 50000 3 3 5 5 0 0
5. †, ∗MGH-ORT-ULD‡ 1200 60000 3 4 5 6 1 0

Arr Cap= 1; Dep Cap = 1 & Sec Cap = 1; Obj1 = 31600 & Cost =2200, CPU = 5.5s
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Table 5.9: Result for dataset 3 with different equivalence factor value

Flight/Sectors SDep ADep SArr AAr GD AD

1. DUR-LDY? 1 1 2 2 0 0
2.?LDY-NCS-ULD‡ 3 4 5 6 1 1
3. †MGH-RCB 3 3 4 4 0 0
4. ∗RCB-ORT-ULD‡ 3 3 5 5 0 0
5. †, ∗MGH-ORT-ULD‡ 3 5 5 7 2.00139 1

Flight/Sectors SDep ADep SArr AAr TD RGD

1. DUR-LDY? 1 1 2 2 0 0
2.?LDY-NCS-ULD‡ 3 4 5 6 1 0
3. †MGH-RCB 3 3 4 4 0 0
4. ∗RCB-ORT-ULD‡ 3 3 5 5 0 0
5. †, ∗MGH-ORT-ULD‡ 3 5 5 7 2.00139 0

Arrival Capacity = 1 at all times, OBJ1-12.013, OBJ2-3.013, CPU = 4.6s

5.4 Result Findings

The computational performance reveals that the problem size of the formulation is very

huge even for simple data instances. The IBM ILOG CPLEX 12.6.0. interactive solver can

compute optimal solution in relatively fast runtime than the glpsol LP/MIP solver and in

almost all the cases considered, integral solutions were obtained from the LP relaxations

of the formulations. This shows that the computational results reported in Bertsimas

and Patterson (1998); Bertsimas et al. (2008, 2011) which were highlighted in Chapter

3 were not based on the specific data sets that were used. Integral solutions as can be

seen, can also be obtained from our constructed datasets which are neither affected by

the changes made in the input parameter nor the problem size. For all the instances

considered, the resulting solutions were obtained within an optimality value gap of 1%.

This affirms the fact that the formulation is a strong one since a lower value gap indicates

a stronger model and the reason for choosing it as the underlying model for the proposed

formulation. Furthermore, it was observed that the number of iterations and the run time

required for optimal solution to be obtained varies with the capacity reductions and flight

connectivity.

5.5 Chapter Summary

The basic ATFM models were solved using fabricated data sets in order to ascertain the

performance of the resulting solution with respect to the constructed data sets. The

implementation details, the data sets used and a summary of the results were given.

Different scenarios were considered for each dataset and solved using the stand alone

optimisation solvers GLPSOL and CPLEX. The computational result shows that CPLEX
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can solve each of the problem very fast time. Results also indicate that in almost all the

cases considered, the solution was completely integral.



Chapter 6

Summary, Conclusion and Future Work

6.1 Summary

Can the Air Traffic Flow Management Problem be addressed? If so, what approaches and

methods can be used to address it? What has been done in previous studies, and how

can this be improved to manage the problem? These and other question formed the basis

of this thesis. The research investigated the ATFMP and critically examined the existing

models and optimisation techniques that have been used to address the problem. The

research was conducted from an empirical and practical point of view in order to identify

the best available optimisation models and solution approaches, and to improve on them.

The thesis was made up of five chapters. In the first chapter, a detailed insight on the

ATFMP was provided. The researcher commenced by outlining the specific objectives

and challenges of ATFM, thereby distinguishing between ATC and ATFM, the two com-

ponents of Air Traffic Management system. An overview of the current practices and

ATFM techniques implemented by the South African Central Airspace Management Unit

to address the ATFM challenges in South Africa was also given.

Chapter 2 provides the conceptual framework for this study wherein the concept of mod-

eling and optimisation, optimisation process and techniques as well as key ideas in integer

programming and polyhedral combinatorics were extensively discussed.

Chapter 3 focused on optimisation models and approaches for solving the ATFMP both

for the deterministic and stochastic case. These were critically analysed with particular

focus on airport capacity and airspace allocation models. The general assumption of the

existing ground holding approaches is that congestion problems and capacity constraint

occur mainly at the terminal hence the flow of air traffic is not affected by the en-route

airspace capacities. This however is a misconception. Research indicates that there are

some countries where en-route airspace pose great challenges in managing the flow of air

traffic. Moreover, the existing models classified under the ATFM approaches especially

the ATFMRP and ATFMRP under uncertainty tend to be more reliable and viable in pro-

viding solutions to the current ATFM challenges in comparison to the current techniques

being employed by traffic managers.

Having reviewed the existing optimisation approaches for solving the ATFMP, In Chapter

4, an insight into the proposed integer programming formulation for reducing air traffic

delay and congestion problems in en-route airspace was provided. The IP formulation was

based on the sector and path approaches proposed by Bertsimas and Patterson (1998)

101
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for including re-routing option in the BATFMP model. In order to extend the model to

account for several variation, key ideas and basic assumptions relevant for the mathemat-

ical formulation were established. The objective function was also modified, set of feasible

time window for a flight to arrive in a particular sector and the set of possible routes that

a flight will choose from explicitly defined. Additional constraints like flight cancellation

priorities, flow conservation and penalisation constraints were also incorporated into the

formulation in addition to the re-routing options. Cost functions to be minimised were also

defined with respect to the new decision variables. The distinguishing factor between the

proposed formulation and other ones in literature is that an additional index was added

in the decision variables that were used in the formulation. This led to the linearisation

of some of the non-linear constraints found in other models.

Finally, the method of solution, description of the software used for implementation, de-

tails of the data sets used, as well as, the problem instances considered, the computational

results and findings were presented in Chapter 5. The basic ATFMP model was validated

using artificially constructed datasets with different scenarios programmed in GNU Math-

prog Language (GMPL) and implemented on a HP Pavilion g6 Intel Core i3-3110M PC

and solved with GLPK/GLPSOL and IBM ILOG CPLEX 12.6.0. interactive solvers with

the goal of investigating the claims and conclusions drawn from the literature review of

related work.

6.2 Conclusion

It emanated from this study, precisely in Chapter 3 that the models in Bertsimas and

Patterson (1998); Bertsimas et al. (2008, 2011), which form the underlying model for

other existing models and the proposed formulation, can be combined with the current

practices for effective air traffic flow management and decision making. This is because

the polyhedral structures, valid inequalities and facet-defining constraints used in the

formulation makes it stronger, leading to its outstanding performance when tested on

real-life data instances. The only limitation for adapting most optimisation models in

practice is that most issues are yet to be fully considered as part of ATFM activities when

formulating the mathematical models that address the problem. These issues include

equity and fairness consideration, interaction with airlines, collaboration decision making

with stakeholders, dynamic updating of decisions, size of the formulation and other ATFM

challenges peculiar to areas. There is therefore need to explore more on these issues so as

to bridge the gap that exists between research and practice.

The study further revealed the need for researchers to shift their focus from American

and European countries and extend it to other developed, developing and underdeveloped

countries where similar if not worse problem are encountered. Such a move will immensely

help in the decision making of the countries considered and contribute positively to their
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economic growth and development.

It emerged that the proposed formulation presented in Chapter 4 is foreseen to be strong

as the underlying model because of the facet-defining constraints that were used. The

computational performance of the basic ATFMP models shows that the resulting solutions

were completely integral in all the cases considered. This affirms the fact that the results

reported in literature are not based on the specific data sets used but based on the strong

formulation of the model which also yields integral solution for the artificially constructed

datasets.

The computational performance further revealed that CPLEX 12.6.0. interactive optimi-

sation solver can compute optimal solution even for large data instances in relatively fast

run time when compared to the stand alone glpsol LP/MIP solver due to its special ca-

pabilities and characteristics. Changes in the input parameters does not in anyway affect

the integrality of the solution. Observation from the computational results indicates that

the resulting solutions were obtained within an optimal value gap of 1% and the number

of iterations as well as the run time required to obtain the integral solutions increases

exponentially with the size of the problem , the degree of connectivity varies when there

is capacity reduction in the system resources.

ATFMP, as has been in reviewed literature is an NP-hard problem given its complexity.

However, from the review and results presented herein, it is evident that both small and

large-scale instances of ATFMP can be solved to optimal solution within the shortest

possible computational times using either exact or heuristic optimization techniques after

careful examination of the underlying structures of the formulation.

In conclusion, the study revealed that the ideas and underlying principles employed in the

ATFMP formulation is not restricted only to the air transportation industry but can also

be applied in other areas like manufacturing and road transportation industries, where

goods and services are flowing through a dynamical system with different types of capaci-

tated elements. Furthermore, both the stochastic and the deterministic ATFM solutions

play an important role in the efficient operation of the air traffic system since in a practical

implementation, the stochastic ATFM problem will be used to determine a strategic oper-

ational plan in the presence of uncertain forecasts while the deterministic ATFM problem

will provide the tactical plan as new information is obtained.

6.3 Directions for Future Work

Having been restricted from accessing the datasets that have been in most studies found

in literature as well as the license to most of the optimisation solvers, the implementation

of the proposed formulation for reducing delay and congestion problem, as well as, com-

parison of results with other researcher results was impossible. It has thus been shelved
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for future work so as to allow for more time in validating and testing the robustness of the

model. Moreover, the integrality of the two formulations based on each of the approaches

will be investigated via the polyhedral structures in order to ascertain the computational

performance. This decision will allow for more time to incorporate different modeling

variations like interdependence between arrival and departure runways, Hub Connectivity

with Multiple Connections, Banking of Flights Constraints, Equity and Fairness, Col-

laborative Decision Making between shareholders, interaction with airlines and dynamic

updating of the solution into the proposed formulation. Moreover, extending the investi-

gation as a future endeavour will allow the researcher ample time to come up with a good

solution approach for solving the problem either by considering Lagrangian relaxation

techniques together with any heuristics or with any other techniques. The deterministic

model will also be extended to probabilistic environment to accommodate uncertainty.

Thus, formulating a stochastic version of the resulting formulation

Based on the computational results obtained from the artificially constructed data sets,

the size of the problem can be reduced by carefully examining the scheduled departure and

arrival times. One method of doing such is to solve the problem only for the conflicting

flights. This will automatically give rise to definition of two new sets say F and F
′

where

F
′

and F is the conflicting and non-conflicting sets respectively. The process will then be

solved for the conflicting sets. That is, to check if there exist conflicts among the flights,

update the set of conflicting sets, check again for conflicts between both sets, update

solution again and continue with the process until there is no longer conflicting flights.

Thus, the future can concentrate on coming up with a good heuristic that will be able to

do such an iterative process. This however may have its limitations and shortfalls which

cannot be ascertained because it has not been implemented. This will lead to exploration

of heuristics, meta-heuristic and other hybrid heuristics techniques in order to solve the

ATFMP and make comparison with other existing heuristic and exact techniques.

In view of the current trends in South Africa as well as the fact that Africa has a sparse

network, emphasis should be placed on Air Traffic Flow Management Rerouting Problem

under uncertainty and in cases where disruptions affects the traffic flow. With this ap-

proach, the problem can be reformulated as a minimum cost multi-commodity network

flow model on a Time-Space Network with Network Simplex Method as the solution ap-

proach. To consider rerouting of flights when there is uncertainty, search methods and

heuristic techniques can be considered. It is also possible to consider what happens when

a flight is rerouted to an airport that is not in the defined set of airports when uncertainty

happens.



Appendix A

Computational Results

The purpose of presenting this computational result is to illustrate how GLPK and CPLEX

solves optimisation problem using the same model and data instances. The detailed result

is just for one instance.

GLPK/CPLEX Results for Dataset 1 Table 5.2

GLPK Integer Optimizer, v4.57

1079 rows, 688 columns, 1334 non-zeros

672 integer variables, all of which are binary

Preprocessing...

61 hidden packing inequaliti(es) were detected

8 hidden covering inequaliti(es) were detected

148 rows, 102 columns, 378 non-zeros

86 integer variables, all of which are binary

Scaling...

A: min|aij| = 1.000e+00 max|aij| = 2.000e+04 ratio = 2.000e+04

GM: min|aij| = 3.761e-01 max|aij| = 2.659e+00 ratio = 7.071e+00

EQ: min|aij| = 1.414e-01 max|aij| = 1.000e+00 ratio = 7.071e+00

2N: min|aij| = 9.766e-02 max|aij| = 1.221e+00 ratio = 1.250e+01

Constructing initial basis...

Size of triangular part is 148

Solving LP relaxation...

GLPK Simplex Optimizer, v4.57

148 rows, 102 columns, 378 non-zeros

0: obj = -2.800000000e+05 inf = 5.880e+02 (24)

102: obj = 3.600000000e+03 inf = 2.517e-14 (0)

* 114: obj = 4.000000000e+02 inf = 1.373e-14 (0)

OPTIMAL LP SOLUTION FOUND

Integer optimization begins...

+ 114: mip = not found yet >= -inf (1; 0)

+ 114: >>>>> 4.000000000e+02 >= 4.000000000e+02 0.0% (1; 0)

+ 114: mip = 4.000000000e+02 >= tree is empty 0.0% (0; 1)

INTEGER OPTIMAL SOLUTION FOUND

Time used: 5.3 secs

Memory used: 1.6 Mb (1673269 bytes)
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GLPSOL Solution File (Summary)

Problem: alexdataset1a

Rows: 1079

Columns: 688 (672 integer, 672 binary)

Non-zeros: 1334

Status: INTEGER OPTIMAL

Objective: domy = 400 (MINimum)

CPLEX> read dataset1a.lp

Problem ’dataset1a.lp’ read.

Read time = 0.00 sec. (0.08 ticks)

CPLEX> optimize

Tried aggregator 4 times.

MIP Presolve eliminated 983 rows and 619 columns.

Aggregator did 33 substitutions.

Reduced MIP has 62 rows, 36 columns, and 152 nonzeros.

Reduced MIP has 36 binaries, 0 generals, 0 SOSs, and 0 indicators.

Presolve time = 0.00 sec. (1.06 ticks)

Found incumbent of value 60400.000000 after 0.00 sec. (1.21 ticks)

Probing time = 0.00 sec. (0.06 ticks)

Tried aggregator 1 time.

Reduced MIP has 62 rows, 36 columns, and 152 nonzeros.

Reduced MIP has 36 binaries, 0 generals, 0 SOSs, and 0 indicators.

Presolve time = 0.00 sec. (0.10 ticks)

Probing time = 0.00 sec. (0.06 ticks)

Clique table members: 93.

MIP emphasis: balance optimality and feasibility.

MIP search method: dynamic search.

Parallel mode: deterministic, using up to 4 threads.

Root relaxation solution time = 0.00 sec. (0.08 ticks)

Nodes Cuts/

Node Left Objective IInf Best Integer Best Bound ItCnt Gap

* 0+ 0 60400.0000 -98000.0000 18 262.25%

* 0+ 0 400.0000 -98000.0000 18 ---

0 0 cutoff 400.0000 400.0000 18 0.00%

0 0 cutoff 400.0000 400.0000 18 0.00%

Elapsed time = 0.02 sec. (1.65 ticks, tree = 0.00 MB, solutions = 2)

Root node processing (before b&c):
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Real time = 0.02 sec. (1.67 ticks)

Parallel b&c, 4 threads:

Real time = 0.00 sec. (0.00 ticks)

Sync time (average) = 0.00 sec.

Wait time (average) = 0.00 sec.

------------

Total (root+branch&cut) = 0.02 sec. (1.67 ticks)

Solution pool: 2 solutions saved.

MIP - Integer optimal solution: Objective = 4.0000000000e+002

Solution time = 0.02 sec. Iterations = 18 Nodes = 0

Deterministic time = 1.67 ticks (104.56 ticks/sec)
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GNU Mathprog (GMPL) sample code

The sample codes presented here are for illustration purposes on how the BATFMP models

can be represented using GMPL. They are not the codes used for implementation.

B.1 Sample Code I

# SAMPLE GMPL CODE FOR THE BATFMP MODEL

### SETS ###

set NU; # nat. nombers

set AS; #airports \& sectors

set FL; #Flights

set TI; #Time periods

### PARAMETERS ###

param arrcap{a in AS, t in TI}; #capacity 1-ARR

param seccap{a in AS, t in TI}; #capacity 2-SEC

param depcap{a in AS, t in TI}; #capacity 3-DEP

param atsect{f in FL, a in AS, t in TI};

#last time period for flight to be in sector

param etd{f in FL}; #estimated time of departure

param eta{f in FL}; #estimated time of arrival

param trt{f in FL, a in AS}; #transit time

param wtime{f in FL}; #Flight turnaround time

param gcost{f in FL}; #cost of holding flight on ground per unit

param acost{f in FL}; #cost of air borne holding

param twind{t in TI, a in AS, f in FL}; #set of feasible time window

param cflight{g in FL, f in FL}; #continuing flights

#param if is 1 and set if its many

param sect_od{f in FL, n in NU}symbolic; #ith sector in flight route

param cad{f in F}; #set of flights sector cardinality

### VARIABLES ###

var w{f in FL, t in TI, a in AS} integer >= 0, <=1; #decision variable

var gdel{f in FL}; # ground delay variable

var adel_fl{f in FL}; #air delay variable
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var cost; #variable cost = max (0, real cost)

var domyobj; #Domy obj func

### OBJECTIVE FUNCTION AND CONSTRAINTS ###

minimize domm: domyobj; #obj func

subject to domyobj1: domyobj = sum{f in FL}

(gcost[f]*gdel[f] + acost[f]*adel[f]);

subject to ps: cost >=0;

subject to ps1: cost >=domyobj; # the obj functn

subject to gdel{f in FL}:gdel[f]=sum{t in TI:twind[t, sect_od[f,1],f] = 1}

t*(w[f,t,sect_od[f,1]] - (if t-1 in TI then w[f,t-1,sect_od[f,1]]))

- etd[f]; #ground delay

subject to adel{f in FL}: adel[f] =

sum{t in TI: twind[t, sect_od[f,cad[f]],f] = 1}t*(w[f,t,sect_od[f,cad[f]]]

- (if t-1 in TI then w[f,t-1,sect_od[f,cad[f]]]))

-eta[f] - gdel[f]; #air delay

subject to deparrv{f in FL,t in TI,a in AS:twind[t,a,f] = 0.0}:w[f,t,a]=0;

#no arval/dep at infeasible time window

s.t. AtsectA{f in FL, a in AS, t in TI: atsect[f,a,t] = 1}: w[f,t,a] = 1;

#flight must arrive at sector by time t

### CONSTRAINTS###

subject to departcap{t in TI, a in AS}:

sum{f in FL: a=sect_od[f,1] and twind[t,a,f]=1}(w[f,t,a]

-(if t-1 in TI then w[f,t-1,a])) <= depcap[a,t]; #capacity of orig airport

subject to arrvcap{t in TI, a in AS}:

sum{f in FL: twind[t,a,f]=1 and a = sect_od[f,cad[f]]}

(w[f,t,a]-(if t-1 in TI then w[f,t-1,a])) <= arrcap[a,t]; #cap (arrival)

subject to sectorcap{t in TI, a in AS}:

sum{f in FL, n in NU:n<cad[f] and twind[t,a,f]=1 and sect_od[f,n]=a}

(w[f,t,sect_od[f,n]] - w[f,t,sect_od[f,n+1]])<=seccap[k,t]; #capa (sector)

s.t. secconet{f in FL, n in NU, t in TI:n<cad[f] and twind[t,sect_od[f,n]

,f]=1}:(if t + trt[f,sect_od[f,n]] in TI then w[f,t + trt[f,sect_od[f,n]],

sect_od[f,n+1]] - w[f,t,sect_od[f,n]])<= 0; #connectivity btwn sectors

s.t.turnarrtime{f in FL, g in FL, t in TI: twind[t,sect_od[f,1],f]=1 and

cflighht[g,f]=1}:(w[f,t,sect_od[f,1]]- w[g,t-wtime[g],sect_od[g,cad[g]]])

<=0; #flight turnaround/waiting time

s.t. arrive{f in FL, a in AS, t in TI: twind[t,a,f]=1}:(w[f,t,a] -

(if t-1 in TI then w[f,t-1,a])) >= 0; ###
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B.2 Sample Code II

# SAMPLE GMPL CODE FOR THE ATFMP MODEL

### PARAMETERS ###

param T > 0 integer; #number of time periods

param F > 0 integer; #number of flights

param S >=0 integer; #number of sectors

### SETS ###

set Airports; # set of airports

set OD within {i in Airports, j in Airports: i <> j};

#set of origin-destination pairs

set Sect_od{i in Airports, j in Airports};

set next{i in Airports, j in Airports, s in Sect_od[i,j]};

# set of subsequent sectors for each sector picked

set previous{i in Airports, j in Airports, s in Sect_od[i,j]};

#set of previous sectors for each sector picked

set CFlights dimen 2;

set CFLights within {1..F,1..F}; #Continuing flights

### PARAMETERS CONTD #########

param arrcap{k in Airports, t in 1..T}; #capacity (arrival)

param depcap{k in Airports, t in 1..T}; #capacity (departure)

param Sec_Capacity{j in 0..S, t in 1..T}; #sector capacity

param etd{f in 1..F}; #estimated departure time

param eta{f in 1..F}; #estimated arrival time

param orig{f in 1..F}; # airport of departure

param dest{f in 1..F}; # airport of arrival

param ftime{j in 0..S, l in 0..S}; #flight time from one element to

another element #default value set to 2

param time2sect{k in Airports, s in 0..S}; #flight time from an airport

to a sector of the ATFM system

param epsylon; #coefficient

param afa; #equivalence factor

param G_f{f in 1..F}; #max ground holding time

param A_f{f in 1..F}; #max air holding time

param arrsect{f in 1..F, j in Sect_od[orig[f],dest[f]]}:= etd[f] +

time2sect[orig[f],j]; #schedule arrival time period to sector
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param tun{f in 1..F}; #s_f, turnaround time for an aircraft

################### Calculated sets########################

set Td1{f in 1..F} := {t in 1..T: t >= etd[f]};

set Td2{f in 1..F} := {t in 1..T: t <= min(etd[f]+ G_f[f],T)};

set Td{f in 1..F} := {Td1[f] inter Td2[f]}; #set of time window for dep

set Ta1{f in 1..F} := {t in 1..T: t >= eta[f]};

set Ta2{f in 1..F} := {t in 1..T: t <= min(eta[f] + G_f[f] + A_f[f], T)};

set Ta{f in 1..F} := {Ta1[f] inter Ta2[f]} ;#set of time window for arr

set Tj1{f in 1..F, j in Sect_od[orig[f],dest[f]]} := {t in 1..T: t

>= arrsect[f,j]};

set Tj2{f in 1..F, j in Sect_od[orig[f],dest[f]]} := {t in 1..T: t <=

min(arrsect[f,j] + G_f[f] + A_f[f], T)};

set Tj{f in 1..F,j in Sect_od[orig[f],dest[f]]}:={Tj1[f,j] inter Tj2[f,j]};

#set of feasible time period to be in sectors

######################## VARIABLES ##########################

### VARIABLES ###

var w{f in 1..F, t in 1..T, k in 0..S} integer >= 0, <=1; #decsn variables

var totdel_fl{f in 1..F}; ##

var reddel_fl{f in 1..F}; ##

var cost; ###

var domyobj; #dummy obj functn

############ OBJECTIVE FUNCTION AND CONSTRAINTS ###########

minimize dommy: domyobj; #objective function

s.t. pos1: cost >=domyobj; # the objective function

#################Objective Main#########################

s.t. totdel{f in 1..F} : totdel_fl[f] = sum{t in Ta[f]}(if t >= eta[f]

then afa*((t - eta[f])**(1+epsylon)))*(w[f,t,dest[f]] - (if t-1 in Ta[f]

then w[f,t-1,dest[f]]));

s.t. redel{f in 1..F} : reddel_fl[f] = sum{t in Td[f]}(if t >= etd[f]

then (afa-1)*((t - etd[f])**(1+epsylon)))*(w[f,t,orig[f]]-(if t-1 in Td[f]

then w[f,t-1,orig[f]]));

###############newest###########################

s.t. domyobj1: domyobj = sum{f in 1..F}(totdel_fl[f] - reddel_fl[f]);

############## CONSTRAINTS###########

subject to departcap{t in 1..T, k in Airports}: sum{f in 1..F: k=orig[f]}
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(w[f,t,k]-(if t-1 in 1..T then w[f,t-1,k])) <= depcap[k,t];#cap of depairpt

subject to arrivecap{t in 1..T, k in Airports}: sum{f in 1..F: k = dest[f]}

(w[f,t,k]-(if t-1 in 1..T then w[f,t-1,k]))<= arrcap[k,t]; #arrival capcity

subject to seccapa{t in 1..T, j in 0..S}:sum{f in 1..F:j in Sect_od[orig[f],

dest[f]] and j <> dest[f] }((w[f,t,j]-(sum{i in next[orig[f],dest[f],j]}

w[f,t,i]))) <= Sec_Capacity[j,t]; #sector capacity

subject to secconet{f in 1..F, j in Sect_od[orig[f],dest[f]], t in Tj[f,j]:

j <> orig[f]}:(w[f,t,j]) <= sum{i in previous[orig[f],dest[f],j]}

(if t-ftime[i,j] in Tj[f,j] then w[f,t-ftime[i,j],i]);#cant arrive if hasnt

subject to secconet2{f in 1..F, j in Sect_od[orig[f],dest[f]]: j <> dest[f]}:

(w[f, min(arrsect[f,j] + G_f[f] + A_f[f], T),j]) <= sum{i in next[orig[f],

dest[f],j]}(w[f, min(arrsect[f,i] + G_f[f] + A_f[f], T),i]);#arrv at subsqnt

subject to secconet3{f in 1..F, j in Sect_od[orig[f],dest[f]]: j <> dest[f]}:

sum{i in next[orig[f],dest[f],j]}(w[f,min(arrsect[f,i]+G_f[f]+A_f[f],T),i])

<=1; #must arrive by the latest time period

subject to continud{(f,g) in CFlights, t in Td[f]}:(w[f,t,orig[f]] -

(if t -tun[f] in Td[g] then w[g,t-tun[f],dest[g]])) <= 0; #continued flight

subject to arrvby{f in 1..F, j in Sect_od[orig[f],dest[f]], t in Tj[f,j]}:

(if t-1 in Tj[f,j] then w[f,t-1,j]) - w[f,t,j] <= 0; #time conectivity

############################
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Sample Data Sets

The data presented here are sample data instances to illustrate the required format for data

to be accessed by models written in GMPL. They are not the ones used for implementation.

C.1 Sample Dataset I

#Generated data instances for ATFMP

data;

set Airports := 41 42 43 44 45;

set Sectors := 41 42 43 44 45 46 47; #41 42 43 44 DUR ULD RCB LDY NCS MGH;

set Flights := 1 2 3 4; #1 2 6; #3 #4 5; #7 8 9 10 11 12;

set Times := 0 1 2 3 4 5 6 7 8 9 10; #0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15;

set Sect_od[41,44] := 41 43 44;

set Sect_od[44,45] := 44 45;

set Sect_od[43,42] := 43 46 42;

set Sect_od[44,42] := 44 47 42;

param Twindow default 0.0 :=

[*,*,1]: 41 42 43 44 45 46 47 := #Calculated Set of feasible time window

0 . . . . . . .

1 1 . . . . . .

2 1 . 1 . . . .

3 1 . 1 1 . . .

4 1 . 1 1 . . .

5 1 . 1 1 . . .

6 1 . 1 1 . . .

7 1 . 1 1 . . .

8 . . 1 1 . . .

9 . . 1 1 . . .

10 . . 1 1 . . .

[*,*,3]: 41 42 43 44 45 46 47 :=

0 . . . . . . .

1 . . . . . . .

2 . . . . . . .
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3 . . 1 . . . .

4 . . 1 . . 1 .

5 . 1 1 . . 1 .

6 . 1 1 . . 1 .

7 . 1 1 . . 1 .

8 . 1 1 . . 1 .

9 . 1 1 . . 1 .

10 . 1 . . . 1 .

[*,*,2]: 41 42 43 44 45 46 47 :=

0 . . . . . . .

1 . . . . . . .

2 . . . . . . .

3 . . . . . . .

4 . . . 1 . . .

5 . . . 1 1 . .

6 . . . 1 1 . .

7 . . . 1 1 . .

8 . . . 1 1 . .

9 . . . 1 1 . .

10 . . . 1 1 . .

[*,*,4]: 41 42 43 44 45 46 47 :=

0 . . . . . . .

1 . . . . . . .

2 . . . . . . .

3 . . . 1 . . .

4 . . . 1 . . 1

5 . 1 . 1 . . 1

6 . 1 . 1 . . 1

7 . 1 . 1 . . 1

8 . 1 . 1 . . 1

9 . 1 . 1 . . 1

10 . 1 . . . . 1 ;

param acost :=

[1] 30000

[2] 60000

[3] 40000

[4] 60000;

param gcost :=

[1] 300
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[2] 700

[3] 500

[4] 900;

param atsect default 0.0 :=

[1, *] 41 7.0 43 10.0 44 10.0

[2, *] 44 10.0 45 10.0

[3, *] 43 9.0 46 10.0 42 10.0

[4, *] 44 9.0 47 10.0 42 10.0;

param seccap default 1.0 :=

;

param depcap default 1.0 :=

;

param arrcap default 1.0 :=

;

param cflight default 0.0 :=

[1,2] 1;

param wtime default 0.0:=

[1] 1;

param trt: 41 42 43 44 45 46 47 :=

1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1;

param etd:= 1 1 2 4 3 3 4 3;

param eta:= 1 3 2 5 3 5 4 5;

param orig:= 1 41 2 44 3 43 4 44;

param dest:= 1 44 2 45 3 42 4 42;

end;
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C.2 Sample Dataset II

data;

param T := 45;

param F := 21;

param S := 44; #40;

set Airports := 41 42 43 44;

set OD := (41,42) (42,43) (43,41) (44,42);

set Sect_od[41,42] := 41 2 1 26 7 6 29 10 15 20 42;

set Sect_od[42,43] := 42 20 15 37 21 16 33 11 34 17 38 12 13 35 14 43;

set Sect_od[43,41] := 43 14 32 8 27 2 41;

set Sect_od[44,42] := 44 18 39 22 21 20 42;

param depcap default 8.0 :=

;

param arrcap default 5.0 :=

;

param G_f default 6.0 :=

; #max ground holding time

param A_f default 6.0 :=

; #max air holding time

param wtime default 1.0 :=

; #max air holding time

param afa := 10; #1.2; #3; #5;

param epsylon := 0.001;

param etd:= 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1

11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1;

param eta:= 1 10 2 10 3 9 4 13 5 13 6 13 7 13 8 13 9 13

10 13 11 13 12 13 13 10 14 13 15 10 16 13 17 13 18 13 19 13

20 13 21 13;

param orig:= 1 41 2 41 3 41 4 41 5 41 6 41 7 41 8 41 9 41

10 41 11 41 12 41 13 42 14 42 15 42 16 42 17 42 18 42 19 42

20 42 21 42;
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param dest:= 1 44 2 44 3 43 4 42 5 42 6 42 7 42 8 42 9 42

10 42 11 42 12 42 13 44 14 43 15 44 16 41 17 41 18 41 19 41

20 41 21 41;

param Sec_Capacity default 5.0 :=

[*, 15] 3 3 4 3 5 3 6 3 7 3

[*, 20] 3 3 4 3 5 3 6 3 7 3

[*, 37] 3 3 4 3 5 3 6 3 7 3

[*, 16] 8 3 9 3 10 3 11 3 12 3

[*, 21] 8 3 9 3 10 3 11 3 12 3

[*, 38] 8 3 9 3 10 3 11 3 12 3

[*, 17] 13 3 14 3 15 3 16 3 17 3

[*, 22] 13 3 14 3 15 3 16 3 17 3

[*, 39] 13 3 14 3 15 3 16 3 17 3

[*, 18] 18 3 19 3 20 3 21 3 22 3

[*, 23] 18 3 19 3 20 3 21 3 22 3

[*, 40] 18 3 19 3 20 3 21 3 22 3

[*, 19] 23 3 24 3 25 3 26 3 27 3

[*, 24] 23 3 24 3 25 3 26 3 27 3;

set CFlights := (3,7) (1,5) (16,21) (4,16) (14,9);

set next[41,42,41] := 2;

set next[41,42,2] := 1 26 7;

set next[41,42,1] := 6;

set next[41,42,26] := 6;

set next[41,42,7] := 6;

set next[41,42,6] := 29;

set next[41,42,29] := 10;

set next[41,42,10] := 15;

set next[41,42,15] := 20;

set next[41,42,20] := 42;

set next[42,43,42] := 20;

set next[42,43,20] := 15 37 21;

set next[42,43,15] := 33 16;

set next[42,43,37] := 16;

set next[42,43,21] := 16 38;

set next[42,43,16] := 11 34 17;
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set next[42,43,33] := 11;

set next[42,43,11] := 12;

set next[42,43,34] := 12;

set next[42,43,17] := 12 35;

set next[42,43,38] := 17;

set next[42,43,12] := 13;

set next[42,43,13] := 14;

set next[42,43,35] := 13;

set next[42,43,14] := 43;

set next[43,41,43] := 14;

set next[43,41,14] := 32;

set next[43,41,32] := 8;

set next[43,41,8] := 27;

set next[43,41,27] := 2;

set next[43,41,2] := 41;

set next[44,42,44] := 18;

set next[44,42,18] := 39;

set next[44,42,39] := 22;

set next[44,42,22] := 21;

set next[44,42,21] := 20;

set next[44,42,20] := 42;

set previous[41,42,2] := 41;

set previous[41,42,1] := 2;

set previous[41,42,26] := 2;

set previous[41,42,7] := 2;

set previous[41,42,6] := 1 26 7;

set previous[41,42,29] := 6;

set previous[41,42,10] := 29;

set previous[41,42,15] := 10;

set previous[41,42,20] := 15;

set previous[41,42,42] := 20;

set previous[42,43,20] := 42;

set previous[42,43,15] := 20;

set previous[42,43,37] := 20;

set previous[42,43,21] := 20;
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set previous[42,43,16] := 15 37 21;

set previous[42,43,33] := 15;

set previous[42,43,11] := 16 33;

set previous[42,43,34] := 16;

set previous[42,43,17] := 16 38;

set previous[42,43,38] := 21;

set previous[42,43,12] := 11 34 17;

set previous[42,43,13] := 12 35;

set previous[42,43,35] := 17;

set previous[42,43,14] := 13;

set previous[42,43,43] := 14;

set previous[43,41,14] := 43;

set previous[43,41,32] := 14;

set previous[43,41,8] := 32;

set previous[43,41,27] := 8;

set previous[43,41,2] := 27;

set previous[43,41,41] := 2;

set previous[44,42,18] := 44;

set previous[44,42,39] := 18;

set previous[44,42,22] := 39;

set previous[44,42,21] := 22;

set previous[44,42,20] := 21;

set previous[44,42,42] := 20;

param time2sect:=

[41, *] 0 5 1 3 2 1 3 3 4 5 5 6 6 4 7 3 8 4 9 6

10 7 11 6 12 5 13 6 14 7 15 9 16 8 17 7 18 8 19 9 20 11

21 10 22 9 23 10 24 11 25 5 26 3 27 3 28 5 29 6 30 5

31 5 32 6 33 8 34 7 35 7 36 8 37 10 38 9 39 9 40 10

41 0.0 42 12 43 8 44 9

[42, *] 0 9 1 10 2 11 3 12 4 13 5 7 6 8 7 9 8 10

9 12 10 5 11 6 12 7 13 9 14 11 15 3 16 4 17 6 18 8 19 10

20 1 21 3 22 5 23 7 24 9 25 9 26 10 27 11 28 12 29 7

30 8 31 9 32 11 33 5 34 6 35 8 36 10 37 3 38 5 39 7 40 9

41 12 42 0 43 12 44 9

[43, *] 0 11 1 9 2 7 3 6 4 5 5 10 6 8 7 6 8 4 9 3

10 9 11 7 12 5 13 3 14 1 15 10 16 8 17 6 18 4 19 3 20 11

21 9 22 7 23 6 24 5 25 10 26 8 27 6 28 5 29 9 30 7

31 5 32 3 33 9 34 7 35 5 36 3 37 10 38 8 39 6 40 5
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41 8 42 12 43 0 44 5

[44, *] 0 10 1 9 2 8 3 7 4 8 5 9 6 7 7 6 8 5 9 6

10 8 11 6 12 4 13 3 14 4 15 7 16 5 17 3 18 1 19 3 20 8

21 6 22 4 23 3 24 4 25 9 26 8 27 7 28 7 29 8 30 6

31 5 32 5 33 7 34 5 35 3 36 3 37 7 38 5 39 3 40 3

41 9 42 9 43 5 44 0;

param ftime default 2.0 :=

[2, *] 41 1

[14, *] 43 1

[18, *] 44 1

[20, *] 42 1

[25, *] 0 1 1 1 5 1 6 1

[26, *] 1 1 2 1 6 1 7 1

[27, *] 2 1 3 1 7 1 8 1

[28, *] 3 1 4 1 8 1 9 1

[29, *] 5 1 6 1 10 1 11 1

[30, *] 6 1 7 1 11 1 12 1

[31, *] 7 1 8 1 12 1 13 1

[32, *] 8 1 9 1 13 1 14 1

[33, *] 10 1 11 1 15 1 16 1

[34, *] 11 1 12 1 16 1 17 1

[35, *] 12 1 13 1 17 1 18 1

[36, *] 13 1 14 1 18 1 19 1

[37, *] 15 1 16 1 20 1 21 1

[38, *] 16 1 17 1 21 1 22 1

[39, *] 17 1 18 1 22 1 23 1

[40, *] 18 1 19 1 23 1 24 1

[41, *] 2 1

[42, *] 20 1

[43, *] 14 1

[44, *] 18 1;

end;
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