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Abstract

In recent years, Crowd Monitoring techniques have attracted emerging interest in the

field of computer vision due to their ability to monitor groups of people in crowded

areas, where conventional image processing methods would not suffice. Existing

Crowd Monitoring techniques focus heavily on analyzing a crowd as a single entity,

usually in terms of their density and movement pattern. While these techniques are

well suited for the task of identifying dangerous and emergency situations, such as a

large group of people exiting a building at once, they are very limited when it comes

to identifying emotion within a crowd. By isolating different types of emotion within

a crowd, we aim to predict the mood of a crowd even in scenes of non-panic.

In this work, we propose a novel Crowd Monitoring system based on estimating

crowd emotion using Facial Expression Recognition (FER). In the past decade, both

FER and activity recognition have been proposed for human emotion detection.

However, facial expression is arguably more descriptive when identifying emotion

and is less likely to be obscured in crowded environments compared to body pos-

ture. Given a crowd image, the popular Viola and Jones face detection algorithm

is used to detect and extract unobscured faces from individuals in the crowd. A ro-

bust and efficient appearance based method of FER, such as Gradient Local Ternary

Pattern (GLTP), is used together with a machine learning algorithm, Support Vec-

tor Machine (SVM), to extract and classify each facial expression as one of seven

universally accepted emotions (joy, surprise, anger, fear, disgust, sadness or neutral

emotion). Crowd emotion is estimated by isolating groups of similar emotion based

on their relative size and weighting.

To validate the effectiveness of the proposed system, a series of cross-validation

tests are performed using a novel Crowd Emotion dataset with known ground-truth

emotions. The results show that the system presented is able to accurately and

efficiently predict multiple classes of crowd emotion even in non-panic situations

where movement and density information may be incomplete. In the future, this

type of system can be used for many security applications; such as helping to alert

authorities to potentially aggressive crowds of people in real-time.
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Chapter 1

Introduction

1.1 Background

Crowd Monitoring is a topic of emerging interest in the field of computer vision

and was born largely from the desire to monitor the nature of groups of individuals

in crowded areas, where conventional image processing methods would not suffice

[1]. Areas where Crowd Monitoring systems are commonly deployed include airport

terminals, sports stadiums, and other public facilities that attract large crowds of

people.

With the increasing threat of terrorism to national security [2][3], agencies tasked

with public safety have welcomed new developments and research into Crowd Mon-

itoring techniques. Crowd Monitoring can be used to aid law enforcement in rec-

ognizing and identifying crowds that may cause public disorder. Examples include

identifying disorderly crowds of sports fans that may have gathered after a football

match, or a group of disgruntled protesters that have taken to the street.

With the advent of social media platforms, such as Twitter, small gatherings can

often gather momentum very quickly, evolving into large crowds that can be dif-

ficult to control [4]; this necessitates the need for advances in Crowd Monitoring

techniques. Techniques for Crowd Monitoring are formally introduced in Section
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2.1.

Facial Expression Recognition (FER) is a technique used to extract and classify

emotion from an individual’s facial expression. It is widely accepted that there are

seven universally recognizable emotions as first identified by Ekman [5], namely:

joy, surprise, anger, fear, disgust, sadness and neutral emotion. In this work we use

FER to extract and classify emotion from individuals in a crowded environment.

The individual emotions can be combined to estimate the emotion of the crowd.

FER is formally introduced in Section 2.2.

1.2 Problem definition

Due to the difficulty associated with extracting individuals from a crowd, most

Crowd Monitoring techniques focus heavily on analyzing crowds as a single entity.

Many different holistic based methods of Crowd Monitoring have been proposed in

current literature, such as analyzing crowd movement patterns, flow and density.

While these approaches are well suited for the task of identifying emergency situa-

tions, such as a large group of people exiting a building at once or a crowd gathering

around a fight, they are very limited when it comes to identifying the nature or mood

of a crowd outside of scenes of panic.

Although most Crowd Monitoring approaches focus on using holistic based methods,

object-level based approaches to Crowd Monitoring have also been proposed. In

most object-level based approaches, the dominant movement pattern of the crowd

is formed based on an assessment of the movement patterns of individuals within and

around the crowd. Individuals whose movement pattern oppose the dominant crowd

flow can then be identified. While these approaches can be used to identify criminals,

such as pickpockets, who intentionally move through crowds in opposing direction

and at a different pace; they are unable to identify the mood of the crowd.

A system that is able to autonomously identify the mood of a crowd in real-time
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dynamic environments is required.

1.3 Motivation

There is potential for aggressive crowds, fuelled by their sense of superiority in

numbers [6], to vandalize and loot property while endangering the lives of innocent

bystanders. By identifying the mood of a crowd in real-time, the system can help

to potentially identify aggressive and disorderly crowds so that necessary measures,

such as additional policing units, can be deployed to prevent further aggression and

violence. In areas where policing units are limited, the system allows officials to

concentrate available units on crowds of interest; maximizing their resources and

efficiency. The system aims to ultimately improve public safety and security.

The system uses emotion to represent the mood of the crowd. Crowd emotion can

be estimated at object-level using Facial Expression Recognition.

1.4 Main goal and specific objectives

The main goal of this work is to produce a Crowd Monitoring system that is able

to estimate the emotion of a crowd in real-time using Facial Expression Recognition

(FER).

The specific objectives of this work are as follows:

1. To conduct a literature review on Crowd Monitoring techniques and Facial

Expression Recognition (FER).

2. To propose improvements on a robust and efficient method of FER; enhancing

recognition accuracy and efficiency.

3. To produce a Crowd Emotion dataset with ground-truth emotion labels by

placing individuals expressing different prototypic emotions in the same scene.
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4. To implement an algorithm to estimate the emotion of a crowd in real-time.

1.5 Contributions

This work contributes to the existing knowledge domain in the following ways:

• Improvements to an existing robust and efficient method of Facial Expression

Recognition (FER) are proposed. The improved method is tested using well-

known facial expression datasets and shown to further improve recognition

accuracy and efficiency compared to other state of the art methods in current

literature.

• A novel Crowd Emotion dataset is produced by combining separate images

of individuals expressing different prototypic emotions in the same scene.

Ground-truth emotions for each crowd image are provided. The dataset may

be used in future work for purposes such as FER, facial recognition, people

counting and face detection in crowded scenes.

• A novel method of Crowd Monitoring is proposed for safety and security ap-

plications using Facial Expression Recognition (FER). The proposed method

is able to identify the mood of a crowd even in scenes of non-panic.

1.6 Dissertation Outline

In Chapter 2, a literature review on existing methods of Crowd Monitoring and Fa-

cial Expression Recognition (FER) is presented. This includes an investigation into

holistic and object-level based methods of Crowd Monitoring as well as appearance-

based, geometric-based, and other state of the art methods of FER in current litera-

ture. In Chapter 3, improvements to a robust and efficient method of FER, Gradient

Local Ternary Pattern (GLTP), are presented. A machine learning algorithm for

classification of emotion is also discussed. Chapter 4 details the creation of a novel
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Crowd Emotion dataset which includes ground-truth emotion labels. In Chapter 5,

methodology for estimating crowd emotion based on the individual emotions within

the crowd is presented. This includes work on face detection algorithms and graph

theory. A full discussion on experimental results, datasets and the metrics used for

testing is presented in Chapter 6. This includes testing of FER with optimal pa-

rameter selection, face detection and crowd emotion estimation. A conclusion and

ideas for future work are given Chapter 7.
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Chapter 2

Literature Review

This chapter presents a literature review on existing methods of Crowd Monitoring

and Facial Expression Recognition (FER). Section 2.1 investigates some popular

approaches to Crowd Monitoring. Identification of possible applications for current

methodology and their limitations are presented. Section 2.2 investigates common

and state of the art methods of Facial Expression Recognition (FER); strengths and

weaknesses of each method are identified. A summary of the findings is presented

in Section 2.3.

2.1 Crowd Monitoring

Existing Crowd Monitoring techniques mainly focus on two different approaches:

holistic approach; where the crowd is analyzed as a whole and object-level approach;

where the crowd is analyzed as a collection of individuals. Techniques from both

approaches have been summarized in surveys presented in [7] and [8]. In Sections

2.1.1 and 2.1.2, we investigate some of the most popular methods identified by these

surveys as well as their limitations. More recently, methods for detecting emotion

in crowds have also been proposed. In Section 2.1.3, we investigate some of these

approaches as well as their limitations.
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2.1.1 Holistic-based methods of Crowd Monitoring

Due to the difficulty associated with extracting individuals from a crowd because

of obvious occlusions; Holistic-based approaches have formed a large part of the

ongoing investigation into Crowd Monitoring techniques. Holistic-based methods

are not concerned with local information, such as the movement of an individual in

the crowd, but with global information, such as the overall flow of the crowd.

Davies et. al [9] proposed an approach to distinguish stationary crowds from moving

crowds using discrete Fourier transforms combined with a linear area transform func-

tion. In terms of the Fourier transforms, fast moving crowds exhibit high frequencies

while stationary crowds exhibit constant frequency levels. Motion is measured at

pixel-neighbourhood level which can then be aggregated to obtain motion for larger

areas and used to identify crowd velocity.

Similarly aimed approaches are investigated in [10], [11] and [12]. These approaches

include the use of (1) block matching algorithms, (2) analysis of optical flow using

Hidden Markov Models (HMMs) and (3) detection of crowd instabilities based on

Lagrangian particle dynamics respectively. Although different approaches were used,

the main goal remains very similar to that of Davies et. al [9]; that is to determine

the overall flow (movement) of a crowd.

Methods to determine the density of crowds are also investigated. One such method

is proposed by Wu et al. [13]. This method uses texture analysis and Support

Vector Machines (SVM) to estimate the density of a crowd. It is argued by the

authors that density estimation can be used to identify scenes of emergencies due

to overcrowding.

The most popular holistic-based methods of Crowd Monitoring are aimed at identi-

fying the overall flow and density of a crowd. These type of methods are well suited

for the task of identifying dangerous or emergency situations in crowded areas. For

example, detecting a large group of people rapidly exiting a building at once could
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indicate that there is a fire or possible explosion indoors. On the other hand, de-

tecting an increasingly densely packed crowd of people in a specific area could be

used to indicate a crowd gathering around a possible fight or injured person.

While existing holistic-based methods of Crowd Monitoring are well suited for the

task of identifying dangerous or emergency situations, they do not provide specific

details of what type of event has occurred; for example, is there a fire or an explosion

? These methods are also extremely limited when it comes to identifying emotion

in crowds; for example, they cannot distinguish between a peaceful crowd and an

aggressive crowd.

2.1.2 Object-level-based methods of Crowd Monitoring

Junior et al. [7] note in their survey that crowds are identified when the density of

people is sufficiently large to disable individual identification. They also note that

people can lose their individualities in a crowd instead adopting the behaviour of

the crowd. These revelations have however not stopped researchers from investigat-

ing methods of Crowd Monitoring on an individual basis (object-level). Although

object-level analysis of crowds is less popular than holistic-based methods, some

novel object-level-based approaches to Crowd Monitoring are discussed below.

In past years, much work has been done into finding dominant movement patterns

from groups of individuals. One such work is that of Cheriyadat and Radke [14].

The work centers around clustering sets of low-level motion features into trajectories.

Similar work has been carried out by both Rabaud & Belongie [15] and Brostow &

Cipolla [16]; however, Cheriyadat and Radke [14] proposed implementing additional

clustering rules such as calculating dominant movements based on the longest com-

mon subsequences. Extracting dominant movement patterns from crowds allowed

them to identify unusual movements made by individuals.

Similar to Cheriyadat and Radke [14], Zhang et al. [17] proposed using a clustering

method based on trajectory distance using longest common subsequences. However,
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unlike Cheriyadat and Radke [14], their clustering scheme does not require tracking

image feature points. Instead it uses a more robust long range motion estimation

technique, particle video, to obtain long range motion trajectories. Zhang et al.

[17] tested their approach on real video sequences; finding that it could successfully

identify both dominant and anomalous motions in crowded scenes. They concluded

that particle video is more reliable at finding particle trajectory compared to other

approaches that use optical flow to find motion features.

Wang et al. [18] proposed a novel unsupervised learning framework to model ac-

tivities in crowded scenes. A hierarchical Bayesian model is used to connect three

elements: low-level visual features, simple atomic activities (modeled as distribu-

tions over low-level visual features), and multi-agent interactions (modeled as dis-

tributions over atomic activities). The model is learned in an unsupervised fashion.

Wang et al. [18] states that this system is able summarize typical activities and

interactions in a scene, segment a video sequence both temporally and spatially and

detect abnormal activities without human input (unsupervised).

Similar to holistic-based methods; object-level-based methods of Crowd Monitoring

are mainly aimed at analyzing crowd flow. However, there is a notable and impor-

tant distinction between the two types of techniques. While holistic-based methods

focus on overall crowd flow only, object-level-based methods are aimed at identifying

individuals that move abnormally compared to that of the overall crowd. For ex-

ample, object-level-based techniques of Crowd Monitoring could potentially be used

to identify a pick-pocket who directly enters a crowd from the opposite direction of

travel at a different pace.

Although object-level-based methods of Crowd Monitoring are useful at identifying

suspicious individuals moving in a crowd, they are very limited when it comes to

emotion detection. Similar to holistic-based methods, existing object-level-based

methods of Crowd Monitoring cannot identify the emotion of a crowd.
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2.1.3 Emotion detection in crowds

So far the methods we have investigated have not been aimed at emotion detection

in crowds. In this section, we investigate methods for emotion detection in crowds.

Majority of the methods are used for security applications; such as identifying vi-

olent crowds. However, systems that analyze crowd interest are also investigated

here.

Emotion detection using Dynamic Probabilistic Models

Baig et al. [19] proposed use of a dynamic probabilistic clustering technique to

model a crowd’s response to different events. The first step of the procedure was

to discretize the space under consideration into smaller more acceptable areas. The

Instantaneous Topological Map (ITM) algorithm was employed to segment the ob-

servation space into zones of correlated trajectories. Bio-inspired autobiographical

memory (AM) is used to model peoples reaction to events in their environment. A

probabilistic graphical model is used to describe the relationship between interac-

tions of event, cause and effect. Emotions are scaled into positive (pleasing) and

negative (displeasing) using a 2-dimensional map of mental space of emotions. A

simulation model to produce evacuation and panic situations was designed based on

a Social Force Model (SFM) to test the proposed method. The authors report that

their proposed method was capable of detecting emotions with a high accuracy.

While this approach represents a novel approach to emotion detection of crowds, it

is limited by the fact that it is only able to classify emotions as positive or negative.

This binary classification of emotion makes this method very limited for the purposes

of emotion detection in crowds and, as stated by the author, is mainly suited for

detecting panic and evacuation situations.
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Emotion-based classifiers for abnormality detection

Rabiee et al. [20] proposed using a trained set of emotion-based classifiers to rep-

resent the behaviour of a crowd. By using attributing emotions of the crowd, more

descriptive models can be created for crowd behaviour. First, a novel crowd dataset

annotated with crowd emotion and crowd behaviour is created. Next, low-level

visual features are extracted and used to represent mid-level emotion attributes

provided by the ground-truth emotion annotations. Emotion based feature vectors

can then be trained to represent different behaviour classes using a latent Support

Vector Machine (SVM) [21] [22].

The authors note that although there are many crowd behaviour datasets avail-

able online, they tend to have only a small number of video sequences taken under

controlled conditions with limited behaviour classes. A novel dataset is thus pro-

posed, consisting of 31 video sequences in total with approximately 44,000 normal

and abnormal video clips taken from 7 existing popular crowd behaviour datasets.

The videos are first annotated with 5 different behaviour types (neutral, obstacles,

panic, fight and congestion) then, because no emotion annotations are included, the

authors ask a group of annotators to classify each scene in terms of 6 basic emo-

tions (angry, happy, excited, scared, sad and neutral). The proposed dataset thus

contains normal and abnormal crowd video sequences annotated with both crowd

behaviour and crowd emotion.

A number of state of the art feature descriptors were proposed for extracting low-

level visual features from the video clips; namely histogram of oriented gradients

(HOG), histogram of optical flow (HOF), motion boundary histogram (MBH) and

dense trajectories. Each method was tested separately on the dataset using the

leave-one-out testing procedure. The authors found that dense trajectories achieved

the highest results on test with an average recognition accuracy of 43.9%. They note

that their results show that higher accuracies are achieved by combining emotion

and behaviour classifiers compared to using each approach on its own. They also
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note that their dataset can be used in future work of the same nature.

While this method serves as a novel approach to detecting emotion in crowds, it

still has some significant limitations. Firstly, rather than classifying unseen crowds

by an emotion, this method instead attempts to classify them into a behaviour class

based on the ground-truth emotions mapped to behaviour classes in the training

set. So although this method inherently uses emotion to classify crowd behaviour,

it does not explicitly label the emotion of crowd test data. Secondly, although the

video sequences range from neutral to apex crowd emotions, it is likely that only the

apex scenes that will contain enough low-level discriminative features to distinguish

between emotions. For example, in order to distinguish between a sad and angry

crowd, video sequences near the apex scenes will have to be used as the scenes

before this point will likely look very similar; this is because of the high holistic-

based level at which the images are examined (i.e. the whole scene). This means

that a violent crowd, for example, will only be identified after it has already reached

a high level of aggression. Finally, the behaviour of a crowd may be expressed

differently depending on the environment, for example, an indoor protest vs. an

outdoor protest; this means that recognition accuracy will suffer unless the trained

data includes video sequences from many different environments.

Emotion analysis of social media

Ngo et al. [23] proposed using emotion analysis of social media for emergency man-

agement at mass gatherings. The authors argue that having information about the

type of crowd at an event can highly assist with the response in case of an emergency.

With the emergence of social media, more information about how people think and

feel can be captured. The authors thus proposed using emotion analysis of social

media to identify crowd types at an event. Experimental tests using historical data

were conducted to validate the effectiveness of the proposed system. The authors

note that although some existing work, such as that in [24], has been undertaken
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into identifying crowd types using social media analysis; emotion analysis of social

media has not yet been used to represent crowd types.

The proposed system framework consists of 3 main stages. Firstly, contextual data

is extracted from social media, such as Twitter, using geolocation data and hash-

tags. This allows social media to be filtered based on a specific event. In the

second stage, emotion analysis of the social media is performed using a simplified

representation of the bag-of-words approach [25]. In this approach, the frequency

appearance of keywords is used to model the media into high and low levels of four

distinct categories of emotion; namely anger, fear, happiness and sadness. Finally,

the emotions and their corresponding levels obtained in the second stage are used

to classify the crowd type into one of five groups based on a crowd type mapping

model. The five groups of crowd types [26] identified by the authors are (1) ambu-

latory, limited movement and spectator (2) expressive/cohesive and participatory

(3) aggressive, demonstrator and violent (4) escaping and dense/suffocating and (5)

rushing/looting.

To test the proposed framework, a high profile sporting event was chosen where

a known stampede occurred. Social media pertaining to the event was collected

using geolocation data as well as the hashtag of the event from Twitter. The tweets

were analyzed at a rate of one tweet per fifteen minutes from the period during

and after the event. The authors note that an emotion was successfully extracted

from 84.67% of the total tweets. The authors also note that their results show that

there was a significant increase in the proportion of tweets labeled with the fear

emotion during the stampede. The fear emotion is closely correlated to the escaping

and dense/suffocating crowd type i.e. a stampede. The authors thus state that

their proposed framework was able to successfully identify the crowd type during

an emergency situation at a mass gathering. The authors also make the point that

their system is not affected by operating conditions, such as illumination, like other

computer vision-based methods and does not require deploying any hardware or

software-based equipment at the venue.
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With that said, there are still numerous limitations with the proposed framework.

Firstly, the system relies on filtering social media using geolocation information

and/or hashtags. This means that users are required to provide this information

as part of their social media messages. It is not guaranteed that users will include

this information and some may not even use social media to begin with, which

will in turn reduce the accuracy of the system. Secondly, the proposed system can

only monitor crowds at specific, largely mainstream, events. This system could not

be deployed in relatively unknown public areas. Finally, although the system can

potentially analyze social media in real-time, messages relating to emergencies are

likely to come after the emergency has already occurred. While this can improve

the response, early detection is limited and emergencies cannot be prevented from

occurring in the first place.

Detecting the interest-level of crowds

So far, the methods discussed in this section have been aimed towards improving

public safety and security by identifying emergency situations and negative crowd

behaviours using emotion. However, an existing crowd emotion monitoring system,

known as SWEET [27], has been proposed to enhance public experiences at con-

ferences and other events. Rather than providing enhanced measures of safety and

security to the public, the SWEET system instead uses crowd emotion to identify

the level of interest experienced by groups of people attending different presenta-

tions or events. Members of the public can then be directed to most interesting

presentation or event that is taking place.

The system works by taking photos of individuals attending different events through

a smartphone application. The facial expressions of the individuals in the photo are

then analyzed to determine their emotion. This, combined with location informa-

tion and surrounding sounds, is used to determine the interest level of the people

attending the presentation or event. This information can then be used to help other
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attendees make the best use of their time by attending only the most interesting

events.

The biggest limitation with this system is that, in its current form at least, it cannot

be used for security and safety applications. The fact that the system requires user

submitted images via a smartphone application and is heavily dependent on accu-

rate location information to aggregate the images, makes the system unfeasible for

autonomous real-time security applications. However, determining crowd emotion

from facial expressions for security and safety applications is a novel idea that is

investigated in more detail throughout this body of work.

Existing approaches to crowd emotion detection do not offer a significant break-

through in identifying the distinct emotions present in a crowd. We thus propose a

novel Crowd Monitoring technique that is able to identify the moment a crowd starts

exhibiting signs of aggression. This will be achieved by estimating the emotion of

the crowd in real time based on the individual emotions present in the crowd. Zhan

et al. [1] notes that conventional computer vision techniques are not appropriate

when analyzing crowded scenes. However, in Section 2.2, we investigate conven-

tional methods of emotion detection with the aim of applying these methods to

form a novel emotion-based Crowd Monitoring system.

2.2 Facial Expression Recognition (FER)

Over the past decade, automated human emotion detection has been a topic of sig-

nificant interest in the field of computer vision. Two of the most common approaches

to emotion detection are human behaviour analysis [28][29] and Facial Expression

Recognition (FER) [30][31][32]. In behaviour analysis, an individual’s emotion is

determined by analyzing their stance and movement patterns, while in FER, emo-

tion is determined from the individual’s facial expression. In this work, we use FER

to determine the emotion of an individual in the crowd. FER is arguably more
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descriptive than behaviour analysis [30] and an individual’s face is also less likely to

be obscured in crowded areas. Due to the wide variety of individuals that could be

found in a crowd; an accurate, efficient and robust method of FER is required for

the purposes of Crowd Monitoring. Much work has been carried out over the past

decade into creating and improving high accuracy, robust methods of FER. Some

novel FER techniques are investigated from Sections 2.2.2 to 2.2.6.

2.2.1 Overview

FER consists mainly of three important steps [30]; (1) face detection and pre-

processing, (2) facial feature extraction, and finally (3) expression classification.

In the first step, faces are identified and extracted from the background. Different

regions of the face can then be extracted such as eyebrows, eyes, nose and mouth.

The Viola and Jones face detection algorithm [33][34] is widely used due to its ef-

ficiency, robustness and accuracy at identifying faces in uncontrolled backgrounds.

Other methods include the use of Active Shape Models (ASM) [35][36][37] to identify

facial points and edges.

In the second step, suitable features that are able to describe the emotion of the face

are extracted. The features are grouped into two main categories; appearance and

geometric. In appearance-based methods, an image filter is applied to the whole

face or specific facial regions to extract changes in texture due to specific emotions;

such as wrinkles and bulges. Common appearance-based feature extraction methods

include the use of Local Binary Patterns (LBP) [36][38][39], Local Directional Pat-

terns (LDP) [39][40], Local Ternary Patterns (LTP) [41], Gradient Local Ternary

Patterns (GLTP) [42] and Gabor Wavelet Transforms (GWT) [30][39][43]. Geomet-

ric methods focus on extracting features that measure the distance between certain

points on the face such as the distance between corners of the eye and mouth. The

shape of various facial components due to changing emotions can also be extracted.

Geometric-based feature extraction is often considered more difficult to implement
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than appearance-based methods due to the variability in the size and shape of fea-

tures across emotions [30].

Because of the large amount of data that can be extracted from a face, a significant

portion constitutes redundant information. Large feature sets can greatly reduce

program efficiency; especially when training a classifier. Dimensionality Reduction

(DR) techniques are often used to reduce the size of the feature set by remov-

ing the redundant data; greatly improving efficiency without reducing accuracy.

Common DR techniques include the use of Principle Component Analysis (PCA)

[30][34][40][44], Independent Component Analysis (ICA) [30], Linear Discriminant

Analysis (LDA) [30] and AdaBoost [40][45].

The final step of FER is to create a classifier based on the features extracted in step

two. The extracted features are fed into a machine learning algorithm that attempts

to classify them into distinct classes of emotion based on the similarities between

feature data. Once the classifier has been trained, it is used to assign input features

to a particular class of emotion, for example [5]; joy, surprise, anger, fear, disgust,

sadness or neutral emotion. Common supervised classifiers include Support Vector

Machines (SVM) [30][34][36][37][40][42][46], K-Nearest Neighbours (K-NN) [39][47]

and Neural Networks (NN) [30][37][39][48].

2.2.2 Appearance-based methods of FER

Spatial domain versus transform domain

Suja and Tripathi [39] investigated the use of spatial domain methods versus trans-

form domain methods for feature extraction on cropped and whole faces. The

authors tested LBP [38] and LDP [40] (discussed further on) as spatial domain

methods and Dual Tree-Complex Wavelet Transform (DT-CWT) [49] and Gabor

Wavelet Transform (GWT) [43] as transform domain methods. Feature extraction

was performed on whole faces (segmented from background) and cropped faces (eye,
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eyebrows and mouth are segmented from the face). Classification was performed us-

ing NN [48] and K-NN [47].

DT-CWT is an improvement to Discrete Wavelet Transform (DWT). DT-CWT

uses two real DWTs; the first of which gives the real part of the transform and the

second of which gives the imaginary part thus finding the complex transform of

the image. The two transforms use two different sets of filters that allow for perfect

reconstruction and shift invariance. DT-CWT produces sub-bands of the image

made up of complex coefficients. The highest 500 high pass sub-band coefficients

and all low frequency coefficients (which contain the most significant information)

are used to form the feature vectors.

Gabor Wavelet Transform (GWT) [43] is a special form of short time Fourier trans-

form. A Gabor Wavelet is a function that minimizers its standard deviation in

the frequency and time domains thus having the lowest theoretically possible un-

certainty bound. Suja and Tripathi convoluted each input image with generated

Gabor kernels for five scales and eight orientations to obtain Gabor wavelets. The

magnitude of all coefficients for every scale and orientation was found together with

the mean and standard deviation of 40 Gabor wavelets. Feature vectors were formed

by combining the mean and standard deviation of the coefficients.

The features were trained separately using a NN and K-NN classifier. The NN

consisted of an input layer, a hidden layer with 20 neurons and an output layer.

The number of neurons in the input and output layers are dependent on the feature

set size and number of emotions. The NN was trained using the trainscg algorithm.

The activations of the input neurons, based on the feature vectors, are passed on

to other neurons until finally the output neuron activates; which determines the

emotion. In the K-NN classifier, the Euclidean distance (shortest distance) between

each test sample and the trained data was calculated. The test data was classified

as the class where the distance was found to be a minimum.

Suja and Tripathi tested their method using the JAFFE [50] and CK [51][52] datasets.
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For the JAFFE dataset, 70 images were used as the training set and another 70 im-

ages as the test set for 7-classes of emotion. For the CK dataset, 540 images were

used as the training set and 180 images as the test set for 6-classes of emotion.

According to the authors results, transform domain methods outperformed spatial

domain methods when used with NN and K-NN classifiers. For majority of the re-

sults, using cropped faces (facial regions such as the eyes and mouth) yielded more

accurate results than using the whole face. Although the authors found that trans-

form domain methods outperformed spatial domain methods when used together

with NN and K-NN; spatial domain methods such as Local Binary Pattern (LBP)

[38] and Local Directional Pattern (LDP) [40] have been proven more effective when

used with SVM [36][40] classifiers. In our work, we use three commonly referenced

testing procedures as in [34] and [53] (discussed in Chapter 6). The validity of the

results reported by Suja and Tripathi are questionable as they did not use a compa-

rable testing procedure to others in literature; which could explain why the results

reported for the JAFFE dataset are so poor (see Table 2.1).

Local Binary Pattern (LBP)

Wang et al. [36] proposed a novel FER method based on geometric alignment and

LBP features. The system uses an ASM [35] to align faces, LBP [38] to extract

features and a SVM [30][46] classifier to predict emotions. ASM uses a statistical

approach for shape modeling based on a Point Distribution Model (PDM) which

can label face edges, eyes and mouth regions accurately as well as align the face

horizontally.

LBP was applied to the face to extract histograms that represent the texture of the

face. LBP forms labels for each image pixel (represented by a grey-level intensity

value) by thresholding a circular neighbourhood of P sampling points on a radius

R of each pixel with the centre value. LBP makes use of a 2-level discrimination

encoding scheme, where pixels larger than the centre value are assigned a value of
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+1 and pixels smaller than the centre value are assigned a value of 0. The result can

be considered a binary number with 2P binary patterns being produced. Uniform

patterns (binary patterns that contain at most two bitwise transitions) are used to

reduce the size of the feature vector. Each uniform pattern is given a separate label

while non-uniform patterns are given a single label. Histograms are calculated from

the labels in different regions of the face and concatenated to form the LBP feature

vector.

A SVM classifier was used to classify the LBP feature vectors. SVM is, by nature,

a linear classifier that maximizes the margin between decision hyperplane and fea-

tures from the training set. An optimal hyperplane is formed that minimizes the

classification error of test samples. The proposed method was tested on the JAFFE

[50] dataset using a 5-fold cross-validation testing scheme. A recognition accuracy

of 86.1% was achieved for six basic emotions while 83.7% accuracy was achieved for

7 basic emotions (includes neutral expression).

The authors note that while their method achieved higher accuracies than other

methods, such as using Gabor wavelets [30][43]; more advanced feature extraction

methods are capable of achieving higher accuracies [40]. While LBP, which uses

grey-level intensity values to encode the texture of an image, is computationally

efficient, it has been shown to perform poorly under the presence of non-monotonic

illumination variation and random noise as even a small change in grey-level values

can easily change the LBP code [54].

Local Directional Pattern (LDP)

Jabid et al. [40] proposed a novel appearance-based feature descriptor; Local Di-

rectional Pattern (LDP). LDP employs a different texture coding scheme to that of

LBP, where directional edge response values are used instead of grey-level intensity

values. The use of dimensionality reduction techniques such as PCA [30][44] and

AdaBoost [45] were also investigated. SVM [30][46] was used as a classifier and tests
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were performed on the JAFFE [50] and CK [51][52] datasets.

Local Directional Pattern (LDP) [40] was developed as an improvement to LBP [38]

which is sensitive to non-monotonic illumination variation and random noise. LDP

computes the edge response values in 8 directions at each pixel; encoding them into

8 bit binary numbers based on the relative strength of the edge responses. As edge

responses are less sensitive to noise and illumination than intensity values; LDP is

more robust than LBP. The image is split up into multiple regions and histograms

are formed from the codes obtained for each region. An LDP feature vector is formed

by concatenating the histograms from each area.

To reduce the dimension of the feature vector, PCA is used to transform the existing

features into a new vector of reduced features. Firstly, eigenvectors are computed

from the covariance data matrix. Each feature is approximated by a linear com-

bination of the topmost few eigenvectors. The weight coefficients represent the

eigenspace, and the eigenvalues that are close to zero can be discarded. The eigen-

vectors associated with the top eigenvalues defines the reduced subspace and the

original feature vector can be projected onto this subspace to reduce its size. Ad-

aBoost is another method of dimensionality reduction that can be used to select

a subset of the existing feature set. AdaBoost works by learning a small number

of weak classifiers whose performance is slightly better than random guessing and

boosts them iteratively into a strong accurate classifier.

Both dimensionality reduction techniques were applied and tested separately using a

Radial Basis Function (RBF) kernel SVM. PCA was shown to be the more effective

dimensionality reduction technique achieving a higher recognition accuracy with a

smaller feature set. Testing was performed on the JAFFE and CK datasets using

a 7-fold cross-validation testing scheme. The authors report that their proposed

method achieved an average recognition accuracy of 96.4% (6-class CK), 93.4% (7-

class CK), 90.1% (6-class JAFFE) and 85.4% (7-class JAFFE).

Although the findings show that LDP outperforms LBP across both datasets, LDP
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still tends to produce inconsistent patterns in uniform and near-uniform regions due

to its two-level discrimination encoding scheme and is heavily dependent on the

number of prominent edge directions parameter [55].

Local Ternary Pattern (LTP)

Although LDP represents a considerable improvement to LBP, both techniques pro-

duce inconsistencies in uniform and near-uniform regions because of their use of a

two-level discrimination encoding scheme. This is especially prevalent in FER as

majority of facial regions are considered to be near-uniform. To solve this limitation,

Local Ternary Pattern (LTP) [41] was proposed for facial features selection.

In contrast to LBP and LDP, LTP implements a three-level discrimination encoding

scheme to ensure consistency in uniform and near-uniform facial regions. Grey-level

intensity values falling in between +t and −t of the center value are quantized to 0,

while those falling above +t and below −t are quantized to +1 and −1 respectively.

The binary code in LBP is thus extended to a three-valued ternary code in LTP.

One consequence with using a three-level encoding scheme is that the number of

possible patterns increases from the usual 28 patterns in LBP to 38 patterns in LTP.

To solve this issue, the ternary code is split into positive and negative parts and

each is treated as individual binary patterns. Histograms from both the positive

and negative codes are concatenated to form the feature vector.

In [42], LTP was implemented and tested on the CK dataset using a SVM. Results

were compared with LBP and LDP methods using a 10-fold cross-validation testing

scheme under the same experimental setup. The results showed that LTP performed

similarly to LDP, with LTP achieving a recognition accuracy of 93.6% (6-class)

& 88.9% (7-class) compared to 93.7% (6-class) & 88.4% (7-class) for LDP. Both

methods outperformed LBP. While LTP increases the robustness of LBP and LDP

in uniform and near-uniform regions, it still makes use of grey-level-based intensity

values. This means that LTP, like LBP, is still adversely affected by non-monotonic
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illumination variation and random noise.

Gradient Local Ternary Pattern (GLTP)

Ahmed and Hossain [42] proposed a novel appearance-based feature descriptor for

FER using gradient-based ternary texture patterns. Gradient Local Ternary Pattern

(GLTP) was proposed to encode the local texture of an image by computing the

gradient magnitudes of local neighbourhoods in the image and quantizing the values

into three discrimination levels. The location and frequency occurrence information

(histograms) of the resulting micropatterns were used as facial feature descriptors.

A SVM was used for classification and the proposed method was tested on the CK

dataset.

The authors note that while LDP [40] and LTP [41] offer improvements to LBP

[36]; neither method provides an optimal solution in solving the limitations of LBP.

LDP uses more robust edge response values compared to intensity values but im-

plements only a two-level discrimination encoding scheme. On the other hand, LTP

implements a robust three-level discrimination encoding scheme but still makes use

of sensitive intensity values. GLTP was proposed to address these limitations by

combining the advantages of Sobel-LBP [56] and LTP [41]. GLTP thus makes use

of gradient magnitude values which are robust against illumination variation and

random noise and implements a three-level ternary encoding scheme to improve

robustness in uniform and near-uniform regions.

In GLTP, the gradient magnitudes of each pixel position in the image are calculated

using the Sobel operator [56]. In uniform or near-uniform regions the gradient

magnitudes will be very similar whereas in high-textured regions the magnitudes

of edge pixels will be relatively higher. To differentiate between smooth and high-

textured areas a 3 × 3 threshold of ±t is applied around the centre gradient value

(Gc) of each neighbourhood. Neighbour values falling in between Gc + t and Gc − t

are quantized to 0, while those below Gc − t and above Gc + t are quantized to −1
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and +1 respectively. Because the number of possible GLTP patterns is large (38);

each code is split into positive and negative parts. Each facial image is split into

multiple regions and the GLTP histogram for each region is calculated by combining

the histograms of the positive and negative codes for the corresponding region.

Finally, the GLTP histograms from each region are concatenated to form the GLTP

feature vector. The feature vector is passed to a RBF kernel SVM for training and

classification.

The proposed method is tested using a 10-fold cross-validation testing scheme on

the CK dataset. The threshold value (t) was empirically selected and three different

region sizes of 3 × 3, 5 × 5 and 7 × 6 were tested. The authors note that greater

accuracies are achieved with larger region sizes but at greater computational cost.

An accuracy of 97.2% was achieved for 6-classes of emotion and 91.7% for 7-classes

of emotion using 7 × 6 facial regions. The findings show that GLTP outperforms

LBP, LDP and LTP in terms of recognition accuracy on the CK dataset while still

maintaining a high level of computational efficiency. The superiority of GLTP lies

in the utilization of robust gradient magnitude values with a three-level ternary

encoding scheme; ensuring consistent texture patterns even under the presence of

non-monotonic illumination variation and random noise.

A common limitation with all appearance-based methods of FER, including GLTP,

is that the number of features extracted from images tends to be very large. This is

to be expected as most appearance-based features selection methods use histograms

to represent encoded patterns within the image and each histogram alone can hold

up to 256 features. This, combined with the fact that most methods further seg-

ment the image into multiple regions, can result in an unnecessarily large amount

of information. Take GLTP for example, if we segment the image into 7× 6 regions

and find a positive and negative histogram, each consisting of 256 features, for each

region; the resulting feature vector can have up to: 7× 6 regions × 2 histograms ×

256 features = 21504 features. Unfortunately, most of these features are likely to

constitute redundant information as not every region of the image is guaranteed to
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contain the same amount of discriminative data. Having such a large feature set will

likely reduce classification efficiency and can also reduce recognition accuracy. One

of the most common ways to solve this problem, is to use dimensionality reduction

techniques to reduce the size of the feature vector so that only the most discrimina-

tive data remains. In the sections above, we have already discussed some methods

of dimensionality reduction, such as PCA and Adaboost.

2.2.3 Geometric-based methods of FER

Bezier Curves

Bao and Ma [37] proposed a feature extraction method based on Bezier curves

for FER. The authors note that appearance-based feature extraction methods that

analyze the whole face are accurate but classification can take a long time due to a

large amount of useless calculation. Bezier curve feature extraction was proposed to

solve this issue. The proposed method was tested on the JAFFE [50] dataset using

both SVM [46] and NN [48] classifiers.

Firstly, an ASM [35] was used to align the face and locate facial components such as

eyes, eyebrows, nose and mouth. Next a Bezier curve [57] was used to characterize

key components of the face. Key components that produce the most discriminative

expression features were identified to be the eyebrows, eyes and mouth. A Bezier

curve can be used to accurately represent the shape of each smooth key component

under different expressions using four control points. The distance and angle of the

end-points of the Bezier curve relative to a neutral expression template was used as

the feature vector for each expression.

Testing was performed on the JAFFE dataset for 6 classes of emotion using both a

SVM and NN classifier. 191 randomly selected images from the dataset were used as

the training set and the remaining 23 images as the test set. Bao and Ma reported a

recognition accuracy of 95.65% when using a SVM and 91.3% when using a NN. The
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findings once again demonstrate that a SVM classifier outperforms a NN classifier

for the task of FER. Unfortunately, the authors did not make use of a common,

comparable testing procedure such as those in [34] and [53]. However, if we were to

disregard any variations due to the different testing procedure used; we note that the

proposed method achieved a high level of recognition accuracy when used together

with a SVM classifier.

Although geometric-based methods of FER improves the computational efficiency of

classification by having a reduced feature vector compared to those of appearance-

based methods; a high recognition accuracy can still be achieved as shown in [37].

However, as we have already noted, geometric methods can be difficult to implement

due to the large variability in the size and shape of facial features across different

emotions and subjects [30]. For example, the shape of one subject’s eye can vary

greatly from another subject’s eye even if they are expressing the same emotion.

It is for this reason, that geometric-based methods of FER can be considered less

robust than their appearance-based counterparts.

2.2.4 Multiple feature sets for FER

DCT, SIFT and Gabor wavelets

Shaukat et al. [34] proposed using multiple feature sets for FER. Firstly, faces were

extracted using the popular Viola and Jones [33] face detection algorithm and resized

to ensure uniform size. Next, a combination of three different feature extraction

methods were used to extract discriminative features from different regions of the

face. The authors identified Discrete Cosine Transform (DCT) [58], Scale Invariant

Features Transform (SIFT) [59], and Gabor wavelets [60] as three methods that

are effective at recognizing emotion from faces. PCA [44] was used to reduce the

dimensionality of the feature sets. Finally, the feature sets were concatenated and

classified using a SVM [46]. The proposed method was extensively tested on the

JAFFE [50] dataset.
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DCT is a frequency domain transform that is used to describe an image as coefficients

of different frequencies of cosines. DCT is comprised of three frequency components

(low, middle and high) each of which gives some detail of the image. Each face was

divided into an upper and lower region. The upper region consisted of eyes and

eyebrows (components that can move and rotate) while the lower region consisted

of mouth and lips (components that can be reshaped). DCT was applied to both

the upper and lower region of the face and a DCT feature vector was formed by

combining the two feature sets.

SIFT was used to detect matching features within images. To avoid extracting fea-

tures affected by noise and other obscurities, as well as reducing the computational

cost, SIFT was only applied to four subsections of the face; the left-eye, right-eye,

nose and mouth. These subsections were found using the Viola and Jones algorithm.

To further improve efficiency, the features from each subsection were combined and

PCA was applied to reduce dimensionality; forming a new reduced SIFT feature

vector.

The whole facial image was used to construct Gabor wavelets. Important fiducial

points were extracted from the face using filters constructed from Gabor kernels for

five different scales and eight orientations. The average of forty images convolved

with multiple spatial resolutions, having multiple orientation sets of Gabor filters,

was used as the feature set. PCA was applied to reduce dimensionality forming a

reduced Gabor wavelet feature vector.

The DCT, SIFT and Gabor feature vectors were concatenated and passed to a

RBF-kernel SVM for training and classification. The proposed method was tested

on the JAFFE dataset using 10-fold cross-validation (CV), leave-one-out (LOO) and

person independent (PI) testing procedures introduced in [53]. The authors report

an average recognition accuracy of 99.04% (CV), 100% (LOO) and 91.03% (PI) for

7-classes of emotion. The authors note that their results are the highest achieved

on the JAFFE dataset in current literature.
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Although the results show that the proposed method achieves a high level of recog-

nition accuracy, it is unclear what contribution each individual feature set made.

Forming three different feature sets and applying dimensionality reduction sepa-

rately is likely to have an adverse affect on computational efficiency. Thus if one of

the methods contributes very little to improving overall recognition accuracy, it may

prove beneficial to remove it and instead increase computational efficiency. Another

limitation of using multiple feature sets is that multiple forms of pre-processing are

required; one for each independent method. Again, this not only increases complex-

ity, but increases the computational cost of the system.

Canonical Correlation Analysis (CCA) for transform domain features fu-

sion

El-Shazly et al. [61] proposed a novel FER method using Canonical Correlation

Analysis (CCA) for transform domain features fusion and classification. Firstly,

transform domain methods were used to extract features from a face. Secondly,

two-dimensional PCA (2DPCA) [62] was used to reduce the size of each feature set.

Finally, the reduced features were fused together and classified using CCA [63].

The authors proposed using a combination of common transform domain techniques

to extract features. Fast Fourier Transform (FFT), Discrete Cosine Transform

(DCT), and Discrete Wavelet Transform (DWT) were selected. By using multiple

transforms, more features can be obtained which improves classification accuracy

however increases the amount of resources required for classification. To enhance

efficiency, 2DPCA, a more efficient form of PCA, was applied to each set of trans-

form features to remove redundant data and decrease the computational cost of

classification.

CCA was applied to fuse together the feature sets from each transform and for

classification. The basic idea behind CCA is to analyze the relationship between

two sets of variables; finding two new basis vectors such that the correlation between
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the projections of the variables onto the vectors is maximized. The merit of CCA

lies in the fact that it is able to take multiple modalities data into consideration

which improves classification accuracy. CCA transforms both training and testing

feature sets into new, highly correlated, sets. When testing, the training set that

gives the highest correlation is the target set.

The proposed method was tested on the JAFFE [50] dataset. Two images for each

of the 7 expressions of each subject were used as the training set and the remaining

73 images were used as the test set. The methods DWT-CCA, DCT-CCA, FFT-

CCA and the combination of all three, (DWT, DCT, FFT)-CCA, achieved 94.52%,

93.15%, 95.89% and 97.26% accuracy respectively. The results clearly show that the

highest recognition accuracy was achieved by combining all three feature extraction

techniques.

The main difference between this proposed method and that in [34], besides the

different feature extraction techniques used, is that in this method, CCA was used

for features fusion and classification compared to a traditional classifier, such as

SVM. One of the main limitations with CCA is that it is strictly a linear-based

classifier and assumes that all data is linearly related [64]. Any outliers can thus

cause severe problems when used together with CCA. In these tests, CCA was

reported to have achieved high recognition accuracies however, SVM classifiers can

be considered more robust as they offer kernels for data that is not linearly separable

[46]. The validity of the reported results also comes into question as the authors did

not use a common comparable testing procedure as in [34] and [53].

Although using multiple feature sets for FER can increase recognition accuracy;

the extra amount of data included in the combined feature vector can make the

classification process slow. In both [34] and [61], dimensionality reduction (DR) was

proposed to solve this issue by reducing the feature vector size. However, DR must

be performed on each individual feature set before they are combined. This process

can greatly reduce efficiency, especially if it is to be performed on a crowd of faces.
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In [34], the need to perform three different types of pre-processing steps per face will

also harm system efficiency if it is to be used in a real-time environment. Finally,

in certain situations, having an additional feature set may only result in a slight

increase in recognition accuracy; an improvement that is not worth the resulting

increase in computational cost.

2.2.5 Deep Learning for FER

Deep Belief Networks (DBN)

Lv et al. [65] proposed implementing FER via Deep Learning. They note that dif-

ferent parts of the face contain different amounts of discriminative information and

that the weighting varies across faces. To combat this, they proposed recognizing

emotion from only the facial components that are active during expression using

Face Parsing (FP) [66] detectors. Parsing components removes redundant informa-

tion and ensures that images don’t need alignment. FP detectors were trained via

a Deep Belief Network (DBN) [67] and tuned by logistic regression. The face, nose,

eyes and mouth are detected hierarchically. The concentrated features of the de-

tected components are classified using a deep architecture pre-trained with Stacked

Autoencoder (SAE) [68]. The proposed method was tested using both the JAFFE

[50] and CK+ [51][52] datasets.

DBNs are probabilistic generative models that consist of several Restricted Boltz-

mann Machine (RBM) [69] layers where each layer captures strong high-order cor-

relations between activities of hidden features in the layer below. The authors use

DBN to establish strong correlations between images and shapes of each component

by estimating label maps directly from the detected image patches.

SAE is a deep network consisting of an autoencoding neural network in each layer.

SAE models are trained layerwise by learning an autoencoder that reconstructs

the previous layer. After a stack of encoders have been trained, an output layer
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is added to the top of the stack. The expression classifier is a three layer hidden

Neural Network pre-trained with SAEs.

Testing was carried out using a seven-fold cross-validation scheme for seven classes

of emotion. The proposed method achieved an average recognition accuracy of

90.47% and 91.11% on the JAFFE and CK+ databases respectively. Among others,

the authors compare their findings to the work of Liu et al. [70] who proposed

using a Boosted Deep Belief Network (BDBN) for feature selection, learning and

classification in a unified loopy framework. The authors note that although Liu et

al. achieved a higher accuracy of 96.7% on the CK+ database; their testing was

based on only six classes of emotion (as opposed to seven in Lv et al.s testing) and

is far more computationally intensive.

By far the greatest and most widely debated limitation with Deep Learning methods

is that of computational efficiency. Methods that employ Deep Learning techniques

are widely considered to be less efficient than more traditional techniques, as noted

in [65], due to their inherently multi-layered approach to feature extraction and

classification. The level of complexity of Deep Learning methods, such as that in

[65], is also high; due to the wide range of parameters that must be configured for

multiple network layers. If the Deep Learning network is not configured correctly,

recognition accuracy will greatly decrease. The results reported in [65] and [70] also

do not show a considerable increase in recognition accuracy compared to much more

computationally efficient methods of FER; such as that in [42].

2.2.6 Dynamic-based FER

So far this review has covered methods of FER for static images. However more

recently, work has been undertaken into dynamic FER. Different to static FER,

dynamic FER aims to determine emotion from an image sequence rather than a

single static image. Dynamic FER offers improvements to existing methods as facial

expressions in an image sequence contains both spatial (appearance) and temporal
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(expression evolution) information.

Atlas construction and Sparse Representation

Guo et al. [71] proposed a method of dynamic FER using Atlas construction and

Sparse Representation. The proposed method consists mainly of two stages; the

Atlas construction stage and the recognition stage. In the Atlas construction stage,

a diffeomorphic [72] growth model was estimated for each image sequence to capture

facial expression characteristics. This is motivated by the fact that facial expression

can be described by diffeomorphic motions of muscles beneath the face [73]. Atlases

are also capable of suppressing variations due to inter-subject facial shapes. Each

image sequence was made sure to begin with the neutral expression and end with

the apex of the expression. To reflect the overall evolution of each expression,

longitudinal Atlases were constructed using groupwise registration [74] and Sparse

representation [75]; which is capable of capturing subtle expression information. In

the recognition stage, each sample image sequence was registered to the constructed

Atlas of each expression using both appearance information and temporal evolution

information.

The proposed method was tested using numerous dynamic facial expression datasets

including the CK+ dataset [51][52]. Here, we only consider the CK+ dataset for

comparison to other techniques. 325 sequences from 118 subjects performing 7 fa-

cial expressions were used for Atlas construction and testing was performed using

the person independent testing procedure. The authors report an average recog-

nition accuracy of 97.2%; higher than that of other dynamic methods in current

literature.

The main strength of dynamic FER lies in the fact that it uses both spatial and

temporal information for more accurate expression recognition. However, facial

expression image sequences are not always guaranteed to be available. In [71],

the same testing procedure was repeated without temporal information (i.e. only
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spatial information was used) and it was found that the average recognition accuracy

decreased by 4.8% from 97.2% to 92.4%. This shows that when temporal information

is lost, the accuracy of dynamic FER decreases significantly. Another limitation

of dynamic FER is that of computational efficiency. It is fairly obvious that the

computational efficiency of dynamic FER is less than that of static FER because,

to achieve maximum accuracy, multiple image sequences need to be analyzed for

each subject under test; which takes time. In our body of work it is also unfeasible

to expect that a facial expression sequence be available for every subject in the

crowd and that all sequences be analyzed in real-time. The authors report that

their method took an average time of 1.6 seconds in the recognition stage for each

query sequence using a modern PC (4-core, 2.5GHz processor and 6 GB RAM);

further demonstrating that the proposed method is not suitable for a real-time

environment.

2.3 Chapter Summary

In Section 2.1, we investigated existing methods of Crowd Monitoring. We started

by looking at some novel holistic-based [9][10][11][12][13] and object-level-based

[14][15][16][17][18] methods in current literature. We found that both approaches

were unable to detect the mood of a crowd in scenes of non-panic. It was noted that

some form of emotion analysis of the crowd would be needed to distinguish between

peaceful and aggressive crowds. We thus investigated some novel methods aimed at

analyzing emotion in crowds [19][20][23][27]. We found that these methods did not

represent a significant breakthrough in terms of real-time identification of multiple

classes of emotion in changing environments. We thus proposed using conventional

methods of emotion detection to identify multiple classes of emotion in crowds in

real-time.

We compared the use of human behaviour analysis and Facial Expression Recogni-

tion (FER) for emotion detection in crowds and concluded that FER was the more
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appropriate technique as it is arguably more descriptive than behaviour analysis

and faces are less likely to be obscured in crowds. In Section 2.2, we investigated

some methods of FER, the results of which are summarized in Table 2.1. Firstly,

we investigated the use of appearance-based methods [39][36][40][41][42] for FER

and found that they offer a high level of efficiency, robustness and accuracy. They

do however, tend to contain a large amount of useless information which can slow

down the classification process. Secondly, we investigated the use of a geometric-

based method [37] for FER. It was found to provide a good level of accuracy but a

low level of robustness due to the variability in the size and shape of facial compo-

nents across different subjects. Thirdly, we investigated the use of multiple feature

sets [34][61] for FER. We noted that the added complexity of requiring multiple pre-

processing steps and reduced system efficiency may not be worth the improvement

in recognition accuracy. Next, we investigated the use of Deep Learning [65][70]

for FER. We found that while there was no significant improvement in recognition

accuracy, system complexity was high and efficiency was very poor. Finally, we

investigated a novel dynamic-based [71] method of FER. We found that recognition

accuracy decreased significantly when temporal information was not available and

also noted that analyzing an image sequence for each individual within the crowd

was unfeasible for real-world applications.

In this work, we want to extract emotion in real-time from a diverse crowd of

individuals in a wide range of environments. We thus require a robust, efficient

and accurate method of FER. Based on the review conducted in Section 2.2, we

identify the appearance-based method, Gradient Local Ternary Pattern (GLTP)

[42], that meets all of the above requirements. GLTP is computationally efficient,

robust against changing environments and has been shown to achieve a high level

of recognition accuracy. However, as GLTP is an appearance-based method, the

computed feature vector tends to be very large which can reduce the efficiency of

classification. We thus propose using dimensionality reduction (DR) to reduce the

size of the feature vector and improve classification efficiency. In [40], PCA was
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shown to outperform Adaboost as a DR technique. We compare the results in

[42], where LDP was implemented without DR to those in [40], where LDP was

implemented with DR (see Table 2.1). The results show that DR not only improves

efficiency but can also improve recognition accuracy. For classification, results have

shown that, for the task of FER, the robust and efficient Support Vector Machine

(SVM) [36][37][40] classifier with a Radial Basis Function (RBF) kernel outperforms

other classifiers such as Neural Networks (NN) [37][39] and K-Nearest Neighbours

(KNN) [39].
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Table 2.1: Comparison of recognition rates (%) for some methods of FER on JAFFE
and CK datasets

Proposed Methodology

Datasets

JAFFE [50] CK [51][52]

6-class 7-class 6-class 7-class

A
-b

DT-CWT + K-NN [39] - 651 992 -

DT-CWT + NN [39] - 88.61 99.92 -

GWT + K-NN [39] - 54.31 98.62 -

GWT + NN [39] - 87.91 98.32 -

LBP + K-NN [39] - 58.61 97.12 -

LBP + NN [39] - 40.71 81.12 -

LBP + SVM [36] 86.13 83.73 - -

LBP + SVM [42] - - 90.14 83.34

LDP + K-NN [39] - 501 85.42 -

LDP + NN [39] - 42.11 76.52 -

LDP + SVM [42] - - 93.74 88.44

LDP + DR + SVM [40] 90.15 85.45 96.45 93.45

LTP + SVM [42] - - 93.64 88.94

GLTP + SVM [42] - - 97.24 91.74

G
-b

Bezier curves + NN [37] 91.36 - - -

Bezier curves + SVM [37] 95.76 - - -

M
f
s DCT + SIFT + Gabor wavelets [34] - 994 1007 918 - -

(DWT, DCT, FFT) - CCA [61] - 97.39 - -

D
L DBN [65] - 90.55 - 91.15

BDBN [70] - - 96.710 -

D
y
n

Atlas constr. & Sparse Repres. [71] - - - 97.28 92.48,11

A-b = Appearance-based G-b = Geometric-based M f s = Multiple feature sets

D L = Deep Learning Dyn = Dynamic-based

1train-70, test-70
2train-540, test-180
35-fold cross-validation
410-fold cross-validation

57-fold cross-validation
6train-191, test-23
7leave-one-out
8person independent

9train-140, test-73
108-fold cross-validation
11without temporal info.
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Chapter 3

Improved Gradient Local Ternary

Pattern

3.1 Introduction

This chapter presents improvements to Gradient Local Ternary Pattern (GLTP).

In Section 3.2, we discuss the robust and efficient method of feature extraction,

GLTP, and explore potential improvements to enhance the method’s accuracy and

efficiency. The relevant pre-processing procedures for both GLTP & Improved GLTP

are presented in Section 3.3. A method for classification is presented in Section

3.4.

3.2 Feature Extraction

Gradient Local Ternary Pattern (GLTP) is a local appearance-based facial texture

descriptor proposed by Ahmed and Hossain [42]. GLTP is used to encode the local

texture of a facial expression by calculating the gradient magnitudes of local neigh-

bourhoods within the image and quantizing the values into three different discrim-

ination levels. The resulting local patterns are used as facial feature descriptors.
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GLTP aims to address the limitations of common appearance-based features like

LBP [36][38] and LDP [40] by combining the advantages of the Sobel-LBP [56] and

LTP [41] operators. GLTP uses more robust gradient magnitude values as opposed

to grey levels with a three-level encoding scheme to discriminate between smooth

and high textured facial regions. This ensures the generation of consistent texture

patterns even under the presence of illumination variation and random noise.

Horizontal and vertical approximations of the derivatives of the source image f(x, y)

are obtained by applying the Sobel-Feldman [56][76] operator. A Sobel operator con-

volves the source image with a horizontal and vertical mask to obtain the horizontal

(Gx) and vertical (Gy) approximations of the derivatives respectively (see Figure

3.1(a, b, c)). The gradient magnitude (Gx,y) (see Figure 3.1(d)) for each pixel can

then be found by using the Euclidean norm as:

Gx,y =
√
G2

x +G2
y (3.1)

To differentiate between smooth and high textured facial regions, a threshold of

±t is applied around a centre gradient value (Gc) of 3 × 3 pixel neighbourhoods

throughout the gradient magnitude image. Neighbour gradient values falling in

between Gc + t and Gc − t are quantized to 0, while those below Gc − t and above

Gc + t are quantized to −1 and +1 respectively. In other words, we have

SGLTP (Gc, Gi) =



−1, Gi < Gc − t

0, Gc − t ≤ Gi ≤ Gc + t

+1, Gi > Gc + t

(3.2)

where Gc is the centre gradient value of a 3× 3 neighbourhood, and Gi and SGLTP

are the gradient magnitude and quantized value of the surrounding neighbours re-

spectively (see Figure 3.1(e, f)).

38



 

(b) 

* 

* 

(c) 
(d) 

(e) 

(a) 

(j) (i) (h) (g) 
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Figure 3.1: The GLTP process (a) Source image (b) Horizontal & vertical Sobel
masks (c) Horizontal and vertical gradient images from Sobel operator (d) Gradient
magnitude image (e) Sample 3×3 neighbourhood of gradient magnitudes (f) GLTP
codes for t = 10 (g) Splitting GLTP code into positive and negative code (h) Positive
and negative decimal coded image (i) Segmenting positive and negative images into
7 × 6 regions (j) Concatenate positive and negative GLTP histogram from each
region to form feature vector

The resulting 8 SGLTP values for each 3 × 3 neighbourhood can be concatenated

to form a GLTP code. However, using a three-level discrimination coding scheme

results in a much higher number of possible patterns (38) when compared to that of

LBP (28) [36] which would result in a high dimensional feature vector. To reduce

the dimensionality, each GLTP code is split into its positive and negative parts and

treated as individual codes (see Figure 3.1(g)) as outlined by Tan and Triggs [41].

The formula for converting each binary GLTP code to positive (PGLTP ) and negative

(NGLTP ) decimal codes are given in equations 3.3 and 3.4.
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PGLTP =
7∑

i=0

SP (SGLTP (i))× 2i (3.3)

SP (v) =


1, if v > 0

0, otherwise

NGLTP =
7∑

i=0

SN(SGLTP (i))× 2i (3.4)

SN(v) =


1, if v < 0

0, otherwise

After computing the positive (PGLTP ) and negative (NGLTP ) GLTP decimal coded

image representations (see Figure 3.1(h)), each image is divided into m× n regions

(see Figure 3.1(i)). A positive (HPGLTP
) and negative (HNGLTP

) GLTP histogram is

computed for each region using the equations:

HPGLTP
(τ) =

M
m∑

r=1

N
n∑

c=1

f(PGLTP (r, c), τ) (3.5)

HNGLTP
(τ) =

M
m∑

r=1

N
n∑

c=1

f(NGLTP (r, c), τ) (3.6)

f(α, τ) =


1, if α = τ

0, otherwise

where M and N are the width and height of the GLTP coded image, r and c

represents row and column and τ is the GLTP code value (usually, 0-255) for which
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you are finding the frequency occurrence. By computing a GLTP histogram for

each region; the location information of the GLTP micro-patterns are combined

with their occurrence frequencies thus improving recognition accuracy.

Finally, the positive and negative GLTP histogram for each region are concatenated

together to form the feature vector (see Figure 3.1(j)) represented as:

HPGLTP
(1, 1)HNGLTP

(1, 1) . . . . . . HPGLTP
(m,n)HNGLTP

(m,n) (3.7)

The pseudo-code for implementing GLTP is presented in Algorithm 3.1.

Although GLTP [42] has been shown to perform well for the task of FER, outper-

forming other appearance-based methods, we believe that recognition accuracy and

efficiency can still be further improved. In Chapter 2, we noted that in some work

[39][77], it was found that performing feature extraction on specific regions of the

face yielded more accurate results than performing feature extraction on the whole

face. We thus discuss the use of facial component extraction for feature selection

in Section 3.2.1. In Section 3.2.2, we discuss the use of a more accurate gradient

operator, the Scharr operator, for computing the gradient magnitude image. The

most prominent problem with appearance-based methods is the large amount of

redundant data that they compute. We thus discuss the use of dimensionality re-

duction in Section 3.2.3. The proposed improvements are integrated together to

form Improved GLTP.
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Algorithm 3.1 Gradient Local Ternary Pattern

Require: Pre-processed source image
Ensure: Vector of GLTP histograms

1: Initialize variables
t←set the threshold

2: Compute horizontal (Gx) and vertical (Gy) derivative approximations
of source image using Sobel operator

3: Compute the gradient magnitude for each pixel of the source image
Gx,y =

√
G2

x +G2
y

4: Apply threshold of ±t around centre gradient value (Gc) in a 3 × 3
neighbourhood to determine SGLTP codes for the gradient magnitude
image
for each gradient magnitude value (Gi) around Gc do

if Gi > Gc + t then SGLTP(i)← +1
else if Gi < Gc − t then SGLTP(i)← −1
elseSGLTP(i)← 0

repeat for each 3× 3 neighbourhood

5: Compute positive (PGLTP) and negative (NGLTP) GLTP coded image
representations from SGLTP values
for each SGLTP(i) value in a 3× 3 neighbourhood do

if SGLTP(i) > 0 then SP (i)← 1 & SN(i)← 0
else if SGLTP(i) < 0 then SP (i)← 0 & SN(i)← 1
elseSP (i)← 0 & SN(i)← 0

PGLTP =
∑7

i=0 SP (i)× 2i

NGLTP =
∑7

i=0 SN(i)× 2i

repeat for each 3× 3 neighbourhood

6: Compute positive (HPGLTP
) and negative (HNGLTP

) GLTP histograms
for m× n regions
for each region (i, j) do

compute positive GLTP histogram: HPGLTP
(i, j)

compute negative GLTP histogram: HNGLTP
(i, j)

7: Concatenate positive (HPGLTP
) and negative (HNGLTP

) histograms from
all m× n regions to form feature vector
HPGLTP

(1, 1)HNGLTP
(1, 1) . . . . . . HPGLTP

(m,n)HNGLTP
(m,n)
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3.2.1 Facial Component Extraction

Each region of a face contains varying amounts of discriminative information with

regards to facial expression. Regions around the eyes, nose and mouth tend to

produce the most discriminative information [77] for appearance based feature ex-

traction methods. However, many appearance-based methods of FER, including

GLTP, still populate feature vectors using information obtained from the whole face

[36][40][42]. This makes the feature vector unnecessarily large by filling it with re-

dundant data that contains no discriminative expression information; such as that

from the edges of the face. In certain cases, the subjects hair or other edge lying

obscurities could unintentionally be included as part of the information in the fea-

ture vector. This, combined with a large amount of redundant information could

have a potentially negative effect on classification accuracy. Results from literature

have shown that performing feature extraction on specific facial components cropped

from the whole face can improve classification accuracy [39][77]. Two examples of

facial component extraction in current literature are given in Figure 3.2a [39] and

Figure 3.2b [34] below. Facial component extraction is considered a pre-processing

step and is discussed in greater detail in Section 3.3.

(a) Eyes & mouth (b) Eyes, nose & mouth

Figure 3.2: Extracting facial components from the whole face
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3.2.2 Scharr operator

The Sobel-Feldman [76] operator used with GLTP [42] may produce inaccuracies

when computing the gradient magnitude of an image. This is because the operator

only computes an approximation of the derivatives of the image. While this estima-

tion may be sufficient for most purposes, Scharr [78] proposed a new operator that

uses an optimized filter for convolution based on minimizing the weighted mean-

squared angular error in the Fourier domain. The Scharr operator is as fast as the

Sobel operator but provides much greater accuracy when calculating the derivatives

of an image. This should result in a much more accurate representation of the gra-

dient magnitude image. A comparison between the filter masks for a 3× 3 Sobel &

Scharr kernel are shown in Figure 3.3 [79], while a comparison between Sobel and

Scharr gradient magnitude images is given in Figure 3.4.

Figure 3.3: Sobel (a) Horizontal & (b) Vertical masks versus Scharr (c) Horizontal
and (d) Vertical masks for a 3× 3 kernel

 

(a) (b) 

Figure 3.4: (a) Sobel gradient magnitude image versus (b) Scharr gradient magni-
tude image
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3.2.3 Dimensionality Reduction

Having too few features within a feature vector will most often result in classification

failure even when using the best of classifiers. On the other hand, having a very

large feature vector will make the classification process slow and is not guaranteed to

increase classification accuracy. This is especially true if the feature vector contains

large amounts of redundant data. To solve this issue, a dimensionality reduction

(DR) [80] technique is proposed to reduce the size of the feature vector; improving

classification efficiency without compromising recognition accuracy.

Principal Component Analysis (PCA) [81] is a technique that is used to transform

existing features into a newly reduced set of features. PCA has widely been used for

face and expression recognition [44][82] with good accuracy and more recently has

also been used as a DR technique [34][40]. In [40], both PCA and Adaboost [45] were

used for DR and it was shown that PCA outperformed Adaboost. In [42], the same

method of FER was performed without DR and lower recognition accuracies were

achieved compared to those reported in [40]; demonstrating that DR can improve

recognition accuracy as well as efficiency by removing redundant data.

Using PCA, a covariance data matrix is used to compute eigenvectors for a set of

data. A linear weighted combination of the topmost few eigenvectors is used to

approximate each input feature. All the eigenvectors define the eigenspace and each

eigenvalue defines its corresponding axis of variance. Eigenvalues that are close to

zero can be discarded as they do not contain much discriminative information. The

eigenvectors associated with the top eigenvalues defines the reduced subspace and

the original feature vector can be projected onto this subspace to reduce its size;

thus achieving dimensionality reduction.

For example, take the 2D set of points in Figure 3.5a [83]. We see that the points

could be approximated by the blue line as shown and also note that the points vary

the most along the line. Now if we were to perform PCA on the feature space, we

would obtain two eigenvectors as shown in Figure 3.5b [83]. The two eigenvectors
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indicate where the most variation in data occurs; i.e. the principle components. By

using principle components to represent the data, we could reduce the dimensionality

from 2D to 1D.

(a) 2D set of points (b) Using principle components to represent
the points

Figure 3.5: Principle Component Analysis

The procedure for implementing Improved GLTP is presented in Algorithm 3.2

and illustrated in Figure 3.6. The process is similar to that of GLTP with a few

exceptions. Firstly, feature extraction is performed on facial components as opposed

to the cropped face. Secondly, the more accurate Scharr gradient operator is used

to find the horizontal and vertical derivatives of the source images compared to the

Sobel operator used with GLTP. Finally, Principle Component Analysis (PCA) is

used to reduce the dimension of the feature vector before classification.
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Algorithm 3.2 Improved Gradient Local Ternary Pattern

Require: Pre-processed cropped facial components ◃ see Section 3.3.
Ensure: Feature vector with reduced dimension

1: Initialize variables
t←set the threshold

2: Compute horizontal (Gx) and vertical (Gy) derivative approximations
of source image using Scharr operator

3: Compute the gradient magnitude for each pixel of the source image
Gx,y =

√
G2

x +G2
y

4: Apply threshold of ±t around centre gradient value (Gc) in a 3 × 3
neighbourhood to determine SGLTP codes for the gradient magnitude
image
for each gradient magnitude value (Gi) around Gc do

if Gi > Gc + t then SGLTP(i)← +1
else if Gi < Gc − t then SGLTP(i)← −1
elseSGLTP(i)← 0

repeat for each 3× 3 neighbourhood

5: Compute positive (PGLTP) and negative (NGLTP) GLTP coded image
representations from SGLTP values
for each SGLTP(i) value in a 3× 3 neighbourhood do

if SGLTP(i) > 0 then SP (i)← 1 & SN(i)← 0
else if SGLTP(i) < 0 then SP (i)← 0 & SN(i)← 1
elseSP (i)← 0 & SN(i)← 0

PGLTP =
∑7

i=0 SP (i)× 2i

NGLTP =
∑7

i=0 SN(i)× 2i

repeat for each 3× 3 neighbourhood

6: Compute positive (HPGLTP
) and negative (HNGLTP

) GLTP histograms
for m× n regions
for each region (i, j) do

compute positive GLTP histogram: HPGLTP
(i, j)

compute negative GLTP histogram: HNGLTP
(i, j)

7: Concatenate positive (HPGLTP
) and negative (HNGLTP

) histograms from
all m× n regions to form extended GLTP histogram
HPGLTP

(1, 1)HNGLTP
(1, 1) . . . . . . HPGLTP

(m,n)HNGLTP
(m,n)

8: Repeat steps 2 to 7 for each remaining facial component & concatenate
all extended GLTP histograms to form feature vector

9: Apply PCA to feature vector to reduce dimensionality
produce feature vector with reduced dimension
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Figure 3.6: The Improved GLTP process (a) Source image (b) Facial component
extraction (c) Horizontal & vertical Scharr masks (d) Horizontal and vertical gradi-
ent images from Scharr operator (e) Gradient magnitude images (f) Sample 3 × 3
neighbourhoods of gradient magnitude images (g) GLTP codes for t = 10 (h) Split-
ting GLTP code into positive and negative codes (i) Positive and negative decimal
coded images (j) Segmenting positive and negative images into 3 × 4 regions (k)
Concatenate positive and negative GLTP histogram from each region for each fa-
cial component to form feature vector (l) Reduce dimension of feature vector using
Principle Component Analysis (PCA) (m) Pass reduced feature vector to classifier
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3.3 Pre-processing

The JAFFE [50] and CK/CK+ [51][52] datasets were used to test our proposed

methodology (see Section 6.2). To ensure a fair and accurate comparison with

results in current literature, images from the datasets were pre-processed before

feature extraction and classification. For GLTP, we cropped the face from each

image while for Improved GLTP, we cropped multiple facial components from each

image. Both methods of pre-processing are discussed in detail below with reference

to the CK/CK+ dataset.

3.3.1 Cropped Face

To remove the background and other edge-lying obscurities, the subjects face was

cropped from the original image based on the positions of the eyes. For the CK/CK+

dataset, 68 facial landmark locations were provided for each image, each of which

represents a point on the face as shown in Figure 3.7 [84]. Using the provided

landmarks, the centers of the left and right eye were found and the distance (D)

between them was calculated. The face was then cropped using empirically selected

percentages of D with the center of the left eye as a reference point as shown in

Figure 3.8. In our setup, the cropping region was reduced, compared to [40][42], to

exclude non-discriminative expression regions of the face. After cropping, the faces

were resized to a uniform size of 147× 108 pixels. The pre-processing procedure for

GLTP is presented in Algorithm 3.3, followed by a brief explanation.
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Figure 3.7: 68 facial landmarks
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1.7D 

Figure 3.8: Face cropping in the CK/CK+ dataset

Algorithm 3.3 GLTP pre-processing

Require: 68 facial landmarks for each image
Ensure: Pre-processed cropped faces

1: Load images & their corresponding co-ordinates for the corners of the eyes

2: Determine co-ordinates for center of left & right eyes

3: Determine the distance between the centers of the eyes

4: Determine the region of interest (ROI) for the cropped face

5: Crop the ROI from the image

6: Resize the cropped face

7: Repeat steps 2 to 6 for each remaining image
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Explanation of Algorithm 3.3

1. Load images & their corresponding co-ordinates for the corners of the

eyes: We assume that prior to loading the images, a location text file containing

the x and y co-ordinates for each of the 68 facial landmarks has been made available

for each image. A portion of the location text file is shown in Figure 3.9.

Figure 3.9: Facial landmark locations inside text file

We open the location text file for each image and read the x & y co-ordinates for the

facial landmarks 37, 40, 43 & 46 that represent the corners of the eyes (see Figure

3.7).

2. Determine co-ordinates for center of left & right eyes: To find the center

x co-ordinate for each of the eyes, we take the x co-ordinate of the left landmarks

37 & 43 and add half the width of corresponding eye. The center y co-ordinates are

represented by the y co-ordinates for the landmarks 40 & 43.

xleft eye center = x37 +
x40 − x37

2
(3.8)

yleft eye center = y40 (3.9)

xright eye center = x43 +
x46 − x43

2
(3.10)

yright eye center = y43 (3.11)
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3. Determine the distance between the centers of the eyes: To determine

the distance D between the centers of the eyes, we simply subtract the x co-ordinate

of the left eye center from the x co-ordinate of the right eye center as shown:

D = xright eye center − xleft eye center (3.12)

4. Determine the region of interest (ROI) for the cropped face: We

empirically define a rectangle of size:

width = 1.7×D (3.13)

height = 2.3×D (3.14)

xtop left corner = xleft eye center − (0.35×D) (3.15)

ytop left corner = yleft eye center − (0.6×D) (3.16)

as the ROI representing the cropped face.

5. Crop the ROI from the image: We use the rectangle from above to crop

the face from the image and save it as a new matrix cropped Face.

6. Resize the cropped face: We resize the cropped Face image to 147 × 108

pixels.

7. Repeat steps 2 to 6 for each remaining image: Repeat the relevant

pre-processing procedure for each remaining image until all images have been pro-

cessed.
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3.3.2 Cropped Facial Components

Our first task is to decide what components should be extracted from the image.

In [34], cropping was performed on the eyes, nose and mouth regions. However,

in [39], cropping was only performed on the eye and mouth regions with the nose

being excluded. In our testing, greater recognition accuracy was achieved with

the mouth region included. Figure 3.10 shows a comparison between recognition

accuracy when using 4 facial components (left-eye, right-eye, nose and mouth) and 3

facial components (left-eye, right-eye and mouth) for feature extraction. The testing

was performed for 6 and 7 classes of emotion in the CK/CK+ dataset using 10-fold

cross validation with optimal parameters. The results show that higher recognition

accuracies were achieved when using 4 facial components for feature extraction i.e.

when the nose is included.
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Figure 3.10: The effect of extracting different sets of facial components on recogni-
tion accuracy in the CK/CK+ dataset

To determine the optimal number of regions for each component, 10-fold cross val-

idation using optimal parameters was performed for 6 and 7 classes of emotion in

the CK/CK+ dataset while varying the region size. The results are shown in Figure

3.11. It can be seen that the optimal region size is 3× 4 regions. Further increasing

the region size past 3 × 4 regions does not result in improved recognition accuracy
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as unnecessarily large amounts of redundant information gets incorporated into the

feature vector degrading accuracy.
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Figure 3.11: The effect of varying facial component region size on recognition accu-
racy in the CK/CK+ dataset

For the CK/CK+ dataset, the 68 facial landmark locations (see Figure 3.7) provided

with each image were used to crop the left eye, right eye, nose and mouth components

from the image as shown in Figure 3.12a. After cropping, each component was

resized to a uniform size of 75×120 pixels and segmented into 3×4 regions as shown

in Figure 3.12b. The pre-processing procedure for Improved GLTP is presented in

Algorithm 3.4.

Figure 3.12: Cropped facial components (a) Cropping eyes, nose & mouth compo-
nents (b) Segmenting each component into a 3× 4 region
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Algorithm 3.4 Improved GLTP pre-processing

Require: 68 facial landmarks for each image
Ensure: Pre-processed cropped facial components

1: Load images & their corresponding co-ordinates for the left eye, right eye, nose
& mouth

2: Determine region of interest (ROI) for left eye, right eye, nose & mouth

3: Crop each ROI separately from the image to form individual facial components

4: Resize each facial component to a uniform size

5: Repeat steps 2 to 4 for each remaining image

The pre-processing procedure for Improved GLTP is similar to that of GLTP (see

Algorithm 3.3) with a few notable changes. Firstly, in step 1, we load the co-

ordinates for both eyes, the nose and the mouth as opposed to just the eyes in

GLTP. Next, we determine the regions of interest for the left eye, right eye, nose

and mouth separately and crop each as a separate component. Finally, we resize

each component to a uniform size of 75× 120 pixels.

3.4 Classification using Support Vector Machines

A Support Vector Machine (SVM) [46] was used for feature classification. SVM is

a supervised machine learning technique that implicitly maps labeled training data

into a higher dimensional feature space; constructing a linearly separable optimal

hyper-plane between the data. The hyper-plane is said to be optimal when the

separating margin between the sample classes is maximal. The optimal-hyperplane

can then be used to classify new examples. Given a set of labeled training data:

T = {(xi, li), i = 1, 2, . . . , L}, where xi ∈ RP and li ∈ {−1, 1}, a new test sample x

is classified by:

f(x) = sign(
L∑
i=1

αiliK(xi, x) + b) (3.17)
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where αi are Lagrange multipliers of the dual optimization problem, K(xi, x) is a

kernel function and b is a bias or threshold parameter. The training samples (xi)

with αi > 0 are the support vectors. The hyper-plane maximizes the margin between

these support vectors.

Consider a simplified example of a linearly separable set of 2D points belonging to

two different classes in the Cartesian plane as shown in Figure 3.13 [85]. We can

see that there are many possible lines that could be drawn to separate the data as

shown in Figure 3.13a. Lines that pass too close to the points are considered bad as

they will not generalize well and over-fitting will occur. The goal of SVM is thus to

find the optimal separating hyperplane which maximizes the the minimum distance

between the classes of data. For this example, the optimal hyperplane is shown in

Figure 3.13b.

(a) Multiple separating lines (b) Finding the optimal hyperplane

Figure 3.13: Support Vector Machine

SVM is traditionally a binary classifier that constructs an optimal hyper-plane from

positive and negative samples. For multi-class classification, the one-against-rest

approach was employed. In this approach, a binary classifier is trained for each ex-

pression to discriminate one expression from the rest. A radial basis function (RBF)

kernel was used for classification. The RBF kernel is defined by the equation:

K(xi, x) = exp(−γ∥xi − x∥2), γ > 0 (3.18)
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where γ is a user selectable kernel parameter. The procedure for finding optimal

parameters for classification is discussed in Section 6.3.2.

3.5 Chapter Summary

In this chapter, improvements to the robust feature selection method Gradient Local

Ternary Pattern (GLTP) [42] were proposed. Facial component extraction was used

to extract regions of the face containing the most discriminative expression infor-

mation, such as the eyes, nose and mouth. This allowed for much of the redundant

expression information from the edges of the face, previously included with GLTP,

to be excluded from feature selection. For computation of the horizontal and verti-

cal derivatives of the images, the more accurate Scharr gradient operator was used

compared to the Sobel operator used with GLTP. This resulted in a more accurate

representation of the gradient magnitude image which better reflects the true tex-

ture of the images. Because the number of features extracted from the images tends

to be very large, Principle Component Analysis (PCA) was used to reduce the di-

mension of the feature vectors, further removing any redundant information before

classification. Together the improvements form the method Improved GLTP. The

pre-processing methods for GLTP & Improved GLTP were detailed and the use of a

Support Vector Machine for classification was discussed. In Section 6.3, we perform

an in depth comparison between the experimental results of Improved GLTP and

GLTP, as well as other state of the art methods in current literature.

57



Chapter 4

Crowd Emotion Dataset

4.1 Introduction

To test the performance and accuracy of our proposed Crowd Monitoring system

we require a dataset of crowd images with ground-truth emotions based on the

facial expressions within the crowd. With the recent interest in Crowd Monitoring

techniques, many crowded scene datasets have become publicly available for training

and testing. A few of the most commonly cited crowd datasets [8] are summarized

in Table 4.1.

Table 4.1: Popular crowded scene datasets

Dataset Size Scenario Environment Ground-truth

UCF Behaviour [86] 61 seq. behaviour outdoor yes

UMN [87] 11 videos panic indoor/outdoor yes

UCSD [88] 98 videos abnormality outdoor yes

CUHK [18] 2 videos traffic/pedestrian outdoor no

Violent-Flows [89] 246 videos violence outdoor yes

The UCF Behaviour [86] dataset consists mainly of image sequences from the web

representing crowds with various behaviours; such as panic, fight, congestion etc.

The UMN [87] dataset contains videos of escape/panic events in both indoor and
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outdoor environments where crowds are trying to leave an area at once. The UCSD

[88] dataset contains videos taken by a camera located outdoors above pedestrian

walkways. Abnormalities are marked by non pedestrian entities in the walkways

and anomalous pedestrian motion patterns. The CUHK [18] dataset contains two

videos; one for traffic and another for pedestrians. The pedestrian video was filmed

outdoors in a subway station however contains no ground-truth annotations for

crowd behaviour or abnormalities. The Violent-Flows [89] dataset contains real-

world video footage of crowd violence collected from YouTube.

Two of the datasets, UCSD and CUHK, are aimed towards testing abnormality de-

tection techniques. However only the UCSD dataset contains annotations for abnor-

mal events. The remaining three datasets are aimed at analyzing crowd behaviour.

The UMN and Violent-Flows datasets were created specifically for panic and violent

behaviours whereas the UCF Behaviour dataset contains image sequences of various

crowd behaviours. However, none of these datasets are aimed at emotion detection

in crowds. Although emotion can be linked to behaviour [20], behaviour alone is not

descriptive enough to represent distinct emotions. In terms of the camera placement

and quality, the datasets mentioned here are also not suitable for identifying facial

expressions. Although there are many datasets readily available for Facial Expres-

sion Recognition (FER), such as the JAFFE [50] and CK/CK+ [51][52] datasets,

each image contains a closeup of only one subject’s face. We thus propose creating

a new dataset to bridge the gap between crowded scene analysis and FER.

Our proposed Crowd Emotion dataset consists of crowd images; with the individuals

in the crowd expressing certain facial expressions based on one of seven prototypic

emotions [5]. Rather than capturing images of crowds expressing different emotions,

we propose capturing individual full-body images of multiple subjects expressing

different facial expressions; then overlaying them into a background scene to create

a crowded setting. The advantage in using this method is that we can create different

subsets of crowd emotion images on demand without having to put a group of people

together. For example, we can easily vary the size of the crowd or specifically set the
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type of emotion being expressed in different areas of the crowd. The ground-truth

emotion of the crowd is dependent on the type of emotions being expressed within

the crowd. The images of the individual subjects are included along with the crowd

images and their ground-truth emotions.

One could argue that, because crowds are very dynamic in nature, a video analysis

would be more suitable for emotion detection compared to still images. The main

purpose for video analysis of crowds, however, is to monitor crowd movement pat-

terns not emotion. In scenes of non-panic, crowd movement may be unreliable for

inferring emotion and does not help to distinguish between multiple types of simi-

lar emotion in crowds. While a dynamic method of Facial Expression Recognition

(FER) could be used to detect the evolution of emotion over time, the computa-

tional cost will be high and may not be suitable for real-time application. In terms

of FER, the evolution of facial expressions may also not be available in full sequences

as individuals may turn away from the camera at certain points in time. For FER,

still images represent a suitable form of media to detect crowd emotion at different

points in time and if analyzed in real-time, will still contain dynamic elements of

the crowd.

In reality, the emotion of a crowd has many dynamics and can be represented by body

posture, facial expression and even movement. In this work, we focus on using Facial

Expression Recognition (FER) for emotion analysis. In this case, the assumption

is made that crowd emotion is expressed solely through facial expression. Thus the

ground-truth emotion of the crowd images is set based on the facial expressions

present within the crowd and not any other form of emotion expression such as

body posture. To ensure that results from testing are consistent, all faces within the

crowd are unobscured and frontal facing; simulating a crowd in optimal conditions.

It must be noted that, in real world conditions, faces in a crowd may be highly

obscurred or facing away from the camera. These challenges are discussed further

in the final chapter of this work.
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Our Crowd Emotion dataset consists of 14 students enrolled at the University of

KwaZulu-Natal. The students are between 21 to 24 years of age. Of the 14 stu-

dents, 9 were male and 5 were female. The subjects were asked to express six

prototypic emotions (i.e. joy, surprise, anger, fear, disgust and sadness) as well as a

neutral emotion in three different sessions to account for any variation. The images

were captured in an indoor environment using a fixed camera positioned in front

of the subjects. The images were digitized to 1280×720 pixels in Portable Network

Graphics (PNG) image format. The creation of the crowd images consists of three

main steps; (1) Capturing the subject images, (2) Extracting the subjects, & (3)

Overlaying the subjects to create a crowded scene. All three steps are discussed in

detail in Sections 4.2 to 4.4. We aim to publish the dataset online for public use so

that in the future, the dataset can be used in other work such as facial recognition,

people counting, and face detection in crowded scenes. All of the subjects involved

in the formulation of the dataset gave their consent for the use of their images in

publications (see Appendix A).

4.2 Capturing the subject images

The first step in creating the Crowd Emotion dataset was to capture full-body still

images of each subject expressing different emotions. The camera was positioned

in front of the subjects and was fixed in place; one image of the background was

captured. Each subject was then asked to express 7 different emotions starting with

a neutral emotion and ending with a sadness emotion; one image was captured for

each emotion. This process was repeated 3 times for each subject to account for any

variation in the way they expressed each emotion. The images were saved as PNG

files using the directory structure shown in Figure 4.1.
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SUBJECT 1 

SESSION 1 

SESSION 3 

SESSION 1 

SESSION 3 

SUBJECT N 

NEUTRAL 

SADNESS 

NEUTRAL 

SADNESS 

…
 …

 

…
 

…
 

…
 

…
 

Figure 4.1: Directory structure for saving subject images

Each image was named using the following format:

 EMOTION 

S1_1_NE.PNG 

SUBJECT 

SESSION 

where NE = Neutral, HA = Joy, SU = Surprise, AN = Anger, FE = Fear, DI =

Disgust & SA = Sadness. A sample of the directory structure and output images

after capturing emotions for the 14 subjects is shown in Figure 4.2 below.

 
S1_1_NE.PNG 

S1_1_SA.PNG 

S14_3_NE.PNG 

S14_3_SA.PNG 

S1 

S14 

…
 …

 

…
 

…
 

1 

3 

…
 

1 

3 

…
 

Figure 4.2: Directory structure and output images for 14 subjects

4.3 Extracting subjects from the images

After having captured images for each subject, the next step is to extract the subject

out of the image. This is achieved by creating a mask for each image that distin-

guishes between the subject and the background. The steps for performing this task
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are shown in Algorithm 4.1 and are explained in detail after.

Algorithm 4.1 Extracting subjects from images

Require: Subject images, Background image
Ensure: Cropped subject images & corresponding subject mask

1: Initialize variables
threshold← set threshold for background subtraction

2: Load background & subject images

3: Perform background subtraction
produce threshold image

4: Crop the subject image & threshold image

5: Find the largest contour within the cropped threshold image

6: Create mask for subject by filling in the contour

7: Output cropped subject image & corresponding mask

8: Repeat steps 3 to 7 for each image

1. Initialize variables: We empirically set the threshold value for background

subtraction based on the lighting condition within the room. This is discussed

further in Step 3.

2. Load background & subject images: We load each of the subject images

and the background image. Both the background image and subject image are

required for background subtraction.

3. Perform background subtraction: In this step, we perform background

subtraction to isolate the subject from the background. The background image is

subtracted from the subject image and the absolute difference is compared to the set

threshold value. If the difference is above the threshold it is considered part of the

foreground, else it is considered part of the background. This process is summarized

in Equation 4.1 below.
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G(x, y) =


1, if |I(x, y)−B(x, y)| > threshold

0, otherwise

(4.1)

where I(x, y) is the subject image, B(x, y) is the background image and G(x, y) is

the resultant threshold image (with 1 representing the foreground & 0 representing

the background).

The threshold value should be set so that as little possible noise & illumination are

present in the threshold image. Figure 4.3 shows the result of setting the threshold

too low and too high. In Figure 4.3a, too much illumination and noise are included as

part of the foreground whereas in Figure 4.3b, parts of the foreground are mistaken

for the background.

 

(a) Threshold too low

 

(b) Threshold too high

Figure 4.3: Incorrectly setting the threshold for background subtraction

After having empirically set the threshold to an optimal value, we perform back-

ground subtraction to obtain the threshold image. A blur function is applied to the

threshold image to smooth the image and remove any noise around the subject. The

result is shown in Figure 4.4.

4. Crop the subject image & threshold image: The subject image and

threshold image are uniformly cropped to remove the unnecessary parts of the back-

ground; leaving only the subject centered in the frame. The region of interest for

cropping is determined empirically and the result is shown in Figure 4.5.
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(a) Background Image

 

(b) Subject Image

 

(c) Threshold Image

 

(d) Blur Function

Figure 4.4: Result of background subtraction

 

 

 

  

(a) 

(b) 

Figure 4.5: Cropping the (a) subject image & (b) threshold image to a uniform size

5. Find the largest contour within the cropped threshold image: We

identify the outline of the subject by finding the largest contour that exists within

the smoothed threshold image. By finding the largest contour, we eliminate the

chance of accidentally including any noise present within the image in the mask. In

the example image above, no noise is present; thus there exists only a single contour

as shown in Figure 4.6.
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Figure 4.6: Finding the contour of the subject within the image

6. Create mask for subject by filling in the contour: To create the subject

mask, we simply set all points within the interior of the contour to 1 and all points

outside of the contour to 0. The non-zero values of the mask represent the subject.

By finding and filling in the contour, we ensure that no holes exist within the mask.

As there are no holes and no noise present within the threshold image after applying

the blur function in Figure 4.4d; the smoothed threshold image and mask are, in

this case, equivalent.

7. Output cropped subject image & corresponding mask: The cropped

subject image and its corresponding mask are written to file. They will both be

used in Section 4.4.

8. Repeat steps 3 to 7 for each image: The relevant steps are repeated for

each subject image.

4.4 Creating crowd images with emotion

The final step is to place the cropped subject images together in another frame

using their corresponding masks. The steps for performing this task are shown in

Algorithm 4.2, followed by a detailed explanation of each step.
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Algorithm 4.2 Creating crowd images with emotion

Require: Cropped subject images & their masks, Image of empty environment
Ensure: Crowd image with emotion

1: Load the cropped subject images & their corresponding image masks

2: Load an image of an empty environment

3: Identify regions of interest (ROI) to place subjects in the chosen environment

4: Copy one subject image to each ROI using its corresponding mask

1. Load the cropped subject images & their corresponding image masks:

The subject images to be used depends on the type of crowd that is to be created.

For example, if the crowd is to only contain violent and neutral emotions, then only

the subject images exhibiting violent and neutral emotions should be loaded.

2. Load an image of an empty environment: An image of a suitable empty

environment is sourced from the web. The image could be an indoor or outdoor

environment as long as it does not contain any other individuals within it. The

environment we used is shown in Figure 4.7.

 

Figure 4.7: Empty indoor environment for placing subjects

3. Identify regions of interest (ROI) to place subjects: Areas where sub-

jects are to be placed are identified within the empty environment. The regions of

interest should be of the same size as the subject images and are dependent on the

number of subjects present in the crowd & whether or not occlusions of the face

should exist. In Figure 4.8, regions of interest are identified such that the crowd

contains the maximum number subjects as possible without facial occlusions.
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Figure 4.8: Identifying regions of interest to place subjects within the chosen envi-
ronment

4. Copy one subject image to each ROI using its corresponding mask:

Finally, we place one subject in each ROI starting with the top row as shown in

Figure 4.9. This is done by copying the cropped subject image to the ROI using its

corresponding mask. The non-zero elements of the mask indicate which elements of

the subject image should be copied. By starting at the top row and working our

way down, the subjects are overlaid on top of one another in a way that simulates

a crowded scene. The end result of randomly selecting subjects expressing neutral

emotion is shown in Figure 4.10. The size of the crowd can also be adjusted as

shown in Figure 4.11. The ground-truth emotion of the crowd can be based off of

the dominant emotions present within the crowd (see Section 6.5).

4.5 Chapter Summary

In this chapter, we investigated current datasets used for Crowd Monitoring and

found that they were not suitable for testing our proposed system. We thus proposed

and detailed the creation of a novel Crowd Emotion dataset by combining individual

subjects expressing different types of emotion through facial expression in the same

scene. The dataset is used to test the effectiveness of face detection in Section 6.4

and crowd emotion estimation in Section 6.5.
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Figure 4.9: Placing a subject in the ROI using its corresponding mask

 
Figure 4.10: Crowd of neutral emotion

 
Figure 4.11: Crowd reduced in size
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Chapter 5

Emotion Estimation in Crowds

5.1 Introduction

This chapter presents methodology for estimating the overall emotion of a crowd.

Firstly, in Section 5.2, a robust and accurate technique for face detection is presented.

Section 5.3 makes note of the use of Facial Expression Recognition (FER) to predict

the emotion being expressed in each of the detected faces. In Section 5.4, the distance

between the detected faces is computed using a fully connected, undirected graph.

In Section 5.5, each face’s closest neighbour is found using a Minimum Spanning

Tree. Finally, Section 5.6 presents a method for estimating crowd emotion based on

the size and weighting of groups of similar emotion in the crowd.

5.2 Face Detection

Over the years, many different techniques have been proposed for face detection.

One such method is that of Active Shape Models (ASM) [35]; which is commonly

used together with FER to identify facial points and edges in the pre-processing

stage [36][37]. The Viola and Jones [33] face detection algorithm, which uses a

boosted cascade of classifiers to rapidly detect faces, has been shown to be extremely
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effective at identifying faces in uncontrolled backgrounds with great accuracy [90]

compared to other existing face detection techniques. In our work, the Viola and

Jones method was selected for face detection due to its combination of speed and

accuracy. One real-world limitation with this method is that it is mostly designed

to detect frontal faces; however, for our purposes this is not a limitation but rather

an advantage. Faces that are obscured or rotated away from the camera will likely

reduce the accuracy of FER; thus we require a face detection algorithm that is able

to identify only the faces that are “suitable” for feature extraction i.e. those that

are mostly frontal facing. The Viola and Jones face detection algorithm consists of

three main steps; (1) Computing the integral image, (2) Learning classifiers using

Adaboost, and (3) Combining the classifiers in a cascade structure.

1. Computing the integral image: Images are classified using simple features

as opposed to pixel intensities. The simple features used are reminiscent of Haar

Basis functions and consist of two, three and four rectangle features. Because the

set of rectangle features can be very large, the images are first represented by an

integral image. The integral image at location (x, y) represents the sum of the pixels

above and to the left of (x, y), inclusive:

ii(x, y) =
∑

x′≤x,y′≤y

i(x′, y′) (5.1)

where ii(x, y) is the integral image and i(x, y) is the original image. By using the

integral image, the time taken to compute the rectangular feature set at any scale

or location is greatly reduced because any rectangular sum can be computed using

just four array references.

2. Learning classifiers using Adaboost: The number of rectangle features

associated with each image sub-window is far greater than the number of pixels.

To ensure fast classification, only a small subset of these features are combined to

form an effective classifier. Adaboost [45] is used in such a way that each weak
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learning algorithm selects only a single rectangle feature which best separates the

positive and negative examples. For each of these features, the optimal threshold

classification function is computed such that the minimum number of examples are

misclassified. A weak classifier hj(x) is thus represented by:

hj(x) =


1, if pjfj(x) < pjθj

0, otherwise

(5.2)

where fj is a feature, θj is the threshold, pj is a parity indicating the direction of

the inequality and x is a 24× 24 pixel sub-window of an image.

3. Combining the classifiers in a cascade structure: To speed-up the clas-

sification process, successively more complex classifiers are combined in a cascade

structure. Each stage in the cascade is constructed by training a classifier using Ad-

aboost with the threshold adjusted to minimize false negatives. By using a cascade

of classifiers, sub-windows that are not of interest can be quickly discarded in the

early stages so that increased computation is spent only on more promising face-like

regions in the later stages; greatly increasing the overall computational efficiency of

classification. This process is illustrated in Figure 5.1, where a negative outcome at

any of the increasingly complex classifier stages leads to the immediate rejection of

the sub-window.

 

Classifier 

2 

Classifier 

N 

Classifier 

1 
Input image 

sub-windows 

Reject sub-window 

… 
+ 

- 

+ + 

- - 

Figure 5.1: Cascading weak classifiers to improve overall performance

We investigate the effectiveness of the Viola and Jones face detection algorithm in

Section 6.4.
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5.3 Facial Expression Recognition (FER)

Facial Expression Recognition (FER) has already been discussed in detail in Chapter

3. At this point we simply note that each of the detected faces in the crowd undergoes

pre-processing, facial feature extraction and classification to identify the emotion

being expressed by each individual. The use of individual emotion for crowd emotion

estimation is discussed later in this chapter.

5.4 Computing the distance between faces

To determine the distance between neighbouring faces; each face is treated as a node,

where the vertex of the node is represented by the top left point of the ROI repre-

senting the face as shown in Figure 5.2. As in [91], a fully-connected undirected

graph is used to link every node’s vertex with one another, where the distance

between any two nodes is represented by the weight of the connecting edge. We

say the resulting graph is fully-connected because each node is connected to every

other node present, and undirected because there is only one unique edge between

each pair of nodes (direction does not matter). As such, for N nodes we have a total

of (N × (N − 1))/2 edges; where the distance between nodes i and j is found using

the Euclidean norm as:

Distancei,j =
√

(xi − xj)2 + (yi − yj)2 (5.3)

where (xi, yi) represents the vertex of node i and (xj, yj) represents the vertex of

node j. The graph is represented by an N ×N adjacency matrix (Adj Mat), where

Adj Mati,j = Distancei,j. The algorithm for finding the fully-connected undirected

graph is given in Algorithm 5.1. The fully-connected undirected graph for a group

of 4 people is shown in Figure 5.2. The weight of each edge represents the Euclidean

distance between the nodes.
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Algorithm 5.1 Finding a fully-connected undirected graph of distance

Require: Number of Nodes (N), Nodes
Ensure: Adjacency matrix (Adj Mat)

1: Initialize variables
Adj Mat ← 0
Distance ← 0

2: Find distance between nodes
for each node i← 0 to N − 1 do

for each node j ← i+ 1 to N − 1 do
Distance←

√
(xi − xj)2 + (yi − yj)2

Adj Mati,j ← Distance
Adj Matj,i ← Distance

 

Vertex of Node 0 

Figure 5.2: Fully-connected undirected graph of distance for a small crowd

The adjacency matrix for the fully-connected undirected graph of the crowd above

is given below.

Adj Mat =


0 1103 1852 1385

1103 0 761 391

1852 761 0 509

1385 391 509 0



Increasing the crowd size from 4 to 20 people exponentially increases the number of

edges present in the graph from 6 to 190 edges as shown in Figure 5.3.
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Figure 5.3: Fully-connected undirected graph for a larger crowd

5.5 Computing the closest neighbours of each face

AMinimum Spanning Tree (MST) is used to represent each face’s closest neigh-

bours as suggested in [91]. A spanning tree of a graph G is a tree, where every edge

in the tree belongs to G and, that includes every node of G. The cost of a spanning

tree is represented by the sum of the weights of all edges in the tree. A MST is

a spanning tree where the cost is a minimum. Numerous approaches have been

suggested for finding a MST. Two of the most popular approaches are Kruskal’s

algorithm and Prim’s algorithm [92]. In this work, Prim’s algorithm was used to

find the MST. Starting with an empty MST, for each step of Prim’s algorithm, we

consider a group of edges that connects the set of nodes already included in the

MST with the set of nodes not yet included. The edge with minimum weight is se-

lected and the node is added to the MST. The procedure is repeated until all nodes

have been included in the MST. Prim’s algorithm, which takes a fully-connected

undirected graph (represented by an adjacency matrix) as the input and outputs a

vector of parent nodes and their children (representing the MST), is summarized in

Algorithm 5.2.

The time complexity for Prim’s algorithm using an adjacency matrix is O(N2),

where N represents the total number of nodes in the graph. By representing the

graph as an adjacency list, rather than an adjacency matrix, and using a min heap;

the time complexity can be reduced to O((N + E) logN), where E represents the

total number of edges in the graph. That is; it takes O(N +E) time to traverse all

nodes in the graph using an adjacency list and O(logN) time for operations on the
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Algorithm 5.2 Finding a Minimum Spanning Tree (MST)

Require: Adjacency matrix (Adj Mat)
Ensure: Vector (Parent) representing the completed MST

1: Initialize variables
MST ← add node 0
Parent0 ← -1 (set node 0 as the root node)

2: Compute the MST

while MST does not include all nodes do

Find a node v that is not included in the MST with a minimal weighting
edge connecting to a node u included in the MST

Add node v to MST

Parentv ← u

min heap.

The MST for the fully-connected undirected graph of the crowd given in Figure 5.3

is shown below. In a MST there is a total of N − 1 edges.

 
Figure 5.4: Minimum Spanning Tree for a crowd of 20 people

The MST shown in Figure 5.4 can be represented using a vector shown in Figure

5.5.

 

Node 0 is the root node 

(i.e. it has no parent node) 

The parent of node 9 is 

node 4 
Etc. … … 

Figure 5.5: Vector representation of the Minimum Spanning Tree
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5.6 Estimating crowd emotion from groups of in-

dividual emotion

To estimate the overall emotion of a crowd, we employ both FER and a method

to identify groups of individuals who are expressing the same emotion and who are

situated close together in the crowd. These groups of individuals can be represented

by chains of emotion, where the length of each chain is represented by the number

of individuals in the chain. The overall emotion of the crowd can then be estimated

by finding the largest chain of emotion with the greatest weighting. This approach

is more accurate at estimating crowd emotion compared to more simplistic methods

such as finding the predominant individual emotion in the crowd. Because individu-

als in a crowd can take on the emotion of the people around them, it is possible that

even a relatively small group of individuals expressing one emotion can influence the

emotion of the individuals around them who in turn can influence the individuals

around them. This chain reaction is known as the Domino effect and can potentially

lead to crowds getting out of control. Our proposed crowd emotion estimation tech-

nique aims to identify sufficiently large groups of individuals with the same emotion,

such as anger, before it is able to spread any further. This allows for early detection

of potentially problematic crowds.

This section is split into two parts; firstly, finding chains of emotion in the crowd and

secondly, using the largest chains of emotion with the greatest weighting to predict

the overall crowd emotion. The algorithm for finding chains of emotion in the crowd

using it’s MST and the predicted emotion of each face is given in Algorithm 5.3.

The emotion chains can be represented by a matrix (chain Emotion) of size N ×N ,

where the row represents the start node of the chain, the column represents the end

node of the chain and chain Emotionstart,end = length of chainstart,end.
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Algorithm 5.3 Finding chains of emotion in the crowd

Require: Vector (Parent) representing the MST, The predicted emotion of each
node

Ensure: Matrix (chain Emotion) representing the chains of emotion in the crowd

1: Initialize variables
start← set starting node to Node 0
end← ending node
parent← set parent node to Node 0
child← child node
counter ← set initial chain count to 1
branches← vector to store remaining branch nodes
chain Emotion← 0

2: Check if parent node has a child
if parent has a child that has not yet been checked then
a: Mark the child node

child← child of parent
else
b: End chain

end← parent
chain Emotionstart,end ← counter
counter ← 0

c: Check for any remaining branches
if branches is not empty then goto step 5
else end

3: Check if parent node has another child
if parent has another child that has not yet been checked then
d: Save branch for later

add child to branches vector
e: End chain

end← parent
chain Emotionstart,end ← counter
counter ← 0

f: Start new chain
start← parent

4: Check if the emotion of the child is the same as the parent
if emotionchild = emotionparent then
g: Continue chain

increment counter
else
h: End chain

end← parent
chain Emotionstart,end ← counter
counter ← 0
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Algorithm 5.3 Finding chains of emotion in the crowd (continued)

i: Start new chain
start← child
increment counter

j: Child becomes the parent
parent← child
goto step 2

5: Go back to unfinished branch
remove child from branches and set as child
parent← Parentchild
k: Start new chain
if emotionchild = emotionparent then start← parent
else start← child
goto step 3

Consider the crowd in Figure 5.4. The emotion chains for the crowd are illustrated

in Figure 5.6, where the values above each node represent the node number and

predicted FER emotion label of the node. There are a total of 2 unique emotion

chains in the crowd; one with emotion label 0 (Anger) and another with emotion

label 4 (Neutral). The starting nodes for these unique emotion chains are indicated

in Figure 5.6 using black arrows. The resultant emotion chains in the crowd can be

represented by the chain Emotion matrix given in Figure 5.7. In the following steps

(1 to 17), the chain Emotion matrix was constructed.

 

3 

3 1 

1 

9 1 

1 

1 

Figure 5.6: Finding chains of emotion in the crowd

1. The starting node and parent node are set to Node 0. Counter = 1.

2. Check if Node 0 has a child. It does and Node 7 is marked as the child node
(Node 19 could also be marked instead).

3. Check if Node 0 has any other children. It does and Node 19 is saved for later.
End the current chain and set chain Emotion0,0 = 1. A new chain is started
with Node 0 as the starting node. Counter is reset.
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4. Check if child Node 7 has the same emotion as parent Node 0. It does, so
continue the chain by incrementing the counter. Node 7 now becomes the
parent and the process is repeated.

5. The chain continues until the parent node becomes Node 1 (counter = 3).
Node 1 does not have a child node, so end the chain and set
chain Emotion0,1 = 3. Counter is reset.

6. Go back to the unfinished branch with parent Node 0 and child Node 19. The
emotion of Node 19 is the same as that of Node 0 so set the start of the new
chain to Node 0 and increment the counter.

7. The chain continues until Node 4 (counter = 3). Node 4 has multiple children,
so mark Node 3 as the child and save Node 9 for later. End the chain and
set chain Emotion0,4 = 3. A new chain is started with Node 4 as the starting
node. Counter is reset.

8. Child Node 3 has the same emotion as parent Node 4, so continue the chain
by incrementing the counter. Node 3 becomes the parent node.

9. The child of Node 3 is Node 17 which has a different emotion, so end the
chain, set chain Emotion4,3 = 1, and start a new chain with the Node 17 as
the starting node. Counter = 1.

10. Node 17 becomes the parent and has multiple children, so mark Node 5 as
the child and save Node 15 for later. End the chain (counter = 1) and set
chain Emotion17,17 = 1. A new chain is started with Node 17 as the starting
node. Counter is reset.

11. Child Node 5 has the same emotion as parent Node 17, so continue the chain
by incrementing the counter. Node 5 becomes the parent node.

12. Node 5 does not have a child node, so end the chain (counter = 1) and set
chain Emotion17,5 = 1. Counter is reset.

13. Go back to the unfinished branch with parent Node 4 and child Node 9. The
emotion of Node 9 is the same as that of Node 4 so set the start of the new
chain to Node 4 and increment the counter.

14. Node 9 does not have a child node, so end the chain (counter = 1) and set
chain Emotion4,9 = 1. Counter is reset.

15. Go back to the unfinished branch with parent Node 17 and child Node 15.
The emotion of Node 15 is the same as that of Node 17 so set the start of the
new chain to Node 17 and increment the counter.

16. The chain continues until the parent node becomes Node 8 (counter = 9).
Node 8 does not have a child node, so end the chain and set
chain Emotion17,8 = 9. Counter is reset.

17. No unfinished branches remain so all chains of emotion have been found.
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Figure 5.7: Matrix representing the chains of emotion in the crowd

To predict the overall emotion of the crowd; the largest total length of each emotion

chain must first be found. The size of each emotion chain in relation to the crowd

is then compared to a set threshold value, thresh, which represents the minimum

size required for the chain to be considered large enough to influence the overall

crowd emotion. Each prototypic emotion is assigned a weighting representing its

importance. In our work, all emotions are assigned an equal weighting with the

exception of Neutral emotion which is assigned a lower weighting. This is because

Neutral emotion does not provide much information about the emotional state of

the individuals within the crowd. The overall crowd emotion is predicted as the

emotion belonging to the chain that meets the following requirements:

1. The size of the chain in relation to the crowd is greater than or equal to thresh.

2. The emotion of the chain has the greatest possible weighting out of the chains
that meet requirement (1).

3. The size of the chain is the largest out of the chains that meet requirements
(1) and (2).

If no chain meets the above requirements; the emotion of the crowd is considered

to be mixed. The algorithm for predicting the overall emotion of the crowd is
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summarized in Algorithm 5.4.

Algorithm 5.4 Predicting the overall emotion of the crowd

Require: Matrix (chain Emotion) representing the chains of emotion in the crowd,
Weighting of each emotion, Number of Nodes (N)

Ensure: Predicted crowd emotion

1: Initialize variables
start← starting node of the chain
end← ending node of the chain
counter ← used to count the total length of a chain of emotion
max count← vector to store the largest length of each emotion chain
per ← the percentage size of the emotion chain in terms of the whole crowd
thresh← min. % required for the emotion chain to be considered large enough
crowd emotion← the predicted emotion of the overall crowd

function addChains(start, counter)
for each node end← 0 to N − 1 do

counter ← counter + chain Emotionstart,end

if chain Emotionstart,end is non-zero and start ̸= end then
addChains(end, counter) ◃ end node becomes the start node

return counter

2: Find the largest total length of each emotion chain
for each starting node belonging to a unique emotion chain do

counter ← 0
start← starting node
counter ← addChains(start, counter)
if counter > max countemotionstart then max countemotionstart ← counter

3: Sort max count in descending order of chain length

4: Sort max count in descending order of emotion weighting

5: Compute the overall emotion of the crowd
for each emotion chain e do

per ← (max counte/total nodes)× 100%
if per ≥ thresh then

crowd emotion← emotion e
end

if crowd emotion is not set then crowd emotion← mixed
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Consider the chains of emotion in Figure 5.7. The procedure for predicting the

emotion of the crowd using thresh = 30% is given below.

 

+ + + 

+ + 

+ + + 

Figure 5.8: Finding the largest total length of each emotion chain

1. Refer to Figure 5.8. There are 2 unique starting nodes, Node 0 and Node 17,
which represent the start of 2 unique chains of emotion in the crowd. The
first step is to find the total length of each unique emotion chain. Working
with Node 0 as the starting node (row 0 of the matrix chain Emotion) and
counter = 0, check to see if any chains exist with start Node 0. A chain exists
between Node 0 and itself with length 1. Add 1 to the counter (counter is
now 1) and continue as start = end. Move on to the chain between Node 0
and Node 1 with length 3. Add 3 to the counter (counter is now 4) and check
to see if there are any branches to this chain by temporarily setting the start
node to 1 (end node becomes the start node). Row 1 of the matrix is empty
(there are no branch chains) so return to row 0. A chain exists between Node
0 and Node 4 with length 3. Add 3 to the counter (counter is now 7) and
check row 4 to see if there are any branch chains. A chain exists between Node
4 and and Node 3 with length 1. Add 1 to the counter (counter is now 8) and
check row 3. Row 3 is empty so return to row 4. A chain also exists between
Node 4 and Node 9 with length 1. Add 1 to the counter (counter is now 9)
and check row 9. Row 9 is empty so once again return to row 4. There are
no more chains with start Node 4 so return to row 0 where we left off. There
are also no more chains with start Node 0 so set the total chain length of the
emotion of the starting node, which in this case is Anger, to the value of the
counter, which is 9. Repeat the same steps for the other unique starting Node
17. The total chain length of Neutral emotion is (1 + 9 + 1) = 11. Only the
largest chain length for each emotion is saved.
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2. The emotion chains are sorted in descending order of chain length. In this
case we have Neutral ← 11 then Anger ← 9.

3. The emotion chains are sorted in descending order of emotion weighting. In
this case we have Anger ← 9 then Neutral ← 11. The emotion chains are
now sorted by weighting and length.

4. The percentage size of each emotion’s chain length in terms of the whole crowd
is computed using the equation:

per =
total length of emotion chain

total crowd size
× 100% (5.4)

Firstly, we have perAnger = 45% which is greater than the required threshold
value of thresh = 30%; so the overall emotion of the crowd is predicted to be
Anger. We note that perNeutral = 55%. Although perNeutral is greater than
perAnger, the weighting of Neutral emotion is lower than that of Anger emotion;
hence why the overall emotion of the crowd was predicted to be Anger, not
Neutral.

Consider a crowd where no chain exists with size greater than or equal to thresh =

30% as shown in Figure 5.9. In this case, the overall emotion of the crowd is

mixed.

 

3 = 15% < 30% 

Figure 5.9: Crowd with mixed emotion

5.7 Chapter Summary

In this chapter, methodology for predicting the overall emotion of a crowd was

presented in detail. Firstly, the Viola and Jones face detection algorithm was used

to identify faces in the crowd so that FER could be used to predict the emotion

of each individual. Next, the distances between the individuals were found using a

fully connected undirected graph. A Minimum Spanning Tree was then used to find

each individuals closest neighbour. Finally, the overall emotion of the crowd was

84



predicted by finding a suitably large group of individuals close together who were

all expressing the same emotion. The process for predicting the overall emotion of

a crowd is illustrated in Figure 5.10.

 

Figure 5.10: Predicting the overall emotion of a crowd

Our approach to crowd emotion estimation is tested in detail in Section 6.5.
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Chapter 6

Experimental Results &

Discussion

6.1 Testing Procedures

We selected three different testing procedures to measure the accuracy of our pro-

posed methodology as outlined in [34][53]. The procedures for each form of testing

are outlined below.

6.1.1 Cross-Validation (CV)

In k-fold cross-validation, the entire dataset is randomly divided into k roughly

equally-sized segments. In our setup, we used k = 10 as in [34][42]. For each fold,

9/10 of the segments are used as the training set while the remaining segment is

used as the testing set. This process is repeated 10 times so that each segment is

tested once. The average accuracy is calculated across the 10-folds. Because the

dataset is randomly divided, the average accuracy calculated will be different each

time 10-fold cross-validation is run. To ensure fair results, 10-fold cross-validation

is performed 10 times and the average accuracy is calculated from all 10 runs.
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6.1.2 Leave-One-Out (LOO)

In the leave-one-out method, all images in the dataset apart from one are used as

the training set. The remaining image is used for testing. This process is repeated

for every image in the dataset so that each image is tested once. The average overall

recognition accuracy is found using the equation:

Accuracy =
number of correct predictions

total number of images
× 100% (6.1)

6.1.3 Person Independent (PI)

In the person independent method, all images apart from one subjects set of images

are used as the training set (i.e. one subject is completely left out of the training

set). The one remaining subjects images are used as the test set. The process is

repeated for each subject. The accuracy from all subjects’ tests are averaged to

obtain the overall average recognition accuracy.

All three testing procedures actually represent a different form of cross-validation.

It is how the folds are selected that sets them apart. In cross-validation, each test

fold is random and roughly equally sized. In leave-one-out, each test fold consists

of only a single image. In person independent, each test fold consists of only one

subject’s images.

For testing Facial Expression Recognition (FER) all three testing procedures were

used to thoroughly test the method under consideration, allowing for better compar-

ison of recognition accuracies between methods. The general procedure for imple-

menting all three testing procedures with regards to FER is presented in Algorithm

6.1, followed by a brief explanation of each step. For testing our proposed crowd

emotion estimation algorithm, only the 10-fold cross-validation procedure was used.

Leave-one-out and person independent testing procedures would not be suitable for

testing on a crowded environment and thus are excluded. The procedure for testing
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our crowd emotion estimation algorithm is discussed further in Section 6.5.

Algorithm 6.1 Testing Procedure for Facial Expression Recognition (FER)

1: Pre-processing ◃ see Section 3.3

2: Initialize variables
vector of images & corresponding vector of labels
vector of percentages, total, average

3: Load pre-processed images & their corresponding labels
return vector of images & vector of their corresponding labels

4: Randomize the images and their corresponding labels ◃ ONLY for CV
create a vector of indices the same size as images
randomize the indices
for each randomized index do

add corresponding image & label to new vectors; rand images & rand labels

5: Set number of images to be used for training
num← number of training images

6: Move images & their corresponding labels for testing to end of vector
for each image i← 0 to size of images− num do

move image(i) to end of rand images vector
move label(i) to end of rand labels vector

7: Create training data & train classifier
for each image← 0 to num− 1 do

Feature extraction ◃ see Section 3.2
Train classifier ◃ see Section 3.4

8: Create test data & predict
count← 0
for each image← num to size of images− 1 do

Feature extraction ◃ see Section 3.2
Perform prediction ◃ see Section 3.4
if prediction is correct then increment count

9: Determine recognition accuracy for the fold
percentage← (count/(size of images− num))× 100%
add percentage to percentages vector

10: Repeat steps 5 to 9 for each remaining fold

11: Determine average recognition accuracy across all folds
total← sum of all percentages
average← total / (number of folds)

88



Explanation of Algorithm 6.1

1. Pre-processing: The images must be pre-processed prior to performing tests.

For GLTP [42] & Improved GLTP, see Section 3.3.

2. Initialize variables: We initialize vectors that will store the images and their

corresponding labels. In terms of tracking recognition accuracy, we create a vector,

percentages, to store the recognition accuracy for each fold. The variables total

and average will be used at the end to compute the average overall recognition

accuracy across all folds.

3. Load pre-processed images & their corresponding labels: The pre-

processed images and their corresponding labels for testing are loaded from a Comma

Separated Values (CSV) file that contains both the path to the image and its cor-

responding class label. An example of the entries within the CSV file is given in

Figure 6.1.

Figure 6.1: Example entries in CSV file

4. Randomize the images and their corresponding labels (ONLY for CV):

This step only needs to be performed for the cross-validation procedure. For the

leave-one-out procedure, we only select one image for testing per fold; thus there

is no need for randomization as the order in which the images are arranged does

not matter. On the other hand, for the person independent procedure it is very

important that we do NOT perform randomization. For PI testing, the entries in

the CSV file should be arranged by subject.
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Assuming we use CV, if we were to randomize both the images vector & labels

vector separately, we would run into problems as the image and label of correspond-

ing indices would no longer match due to different randomizations. To overcome

this, we instead create a vector of indices, the same size as the images & labels

vectors, and randomize the indices using a randomization function. We then add

each image and corresponding label to new vectors, rand images & rand labels,

based on the randomized indices. This results in a randomized vector of images

while still maintaining a vector of corresponding labels.

5. Set number of images to be used for training: This step depends on the

type of testing procedure that is being performed, as described below.

For CV, the first step is to determine the size of each segment (i.e. the size of the

test set for each fold). For example, if the dataset contained 100 images and we

were performing 10-fold CV, each segment would contain 100/10 = 10 images (i.e.

we test 10 images each fold). In this case, num = 100 − 10 = 90 images for each

fold (remember, num is the number of images used for training, not testing). In

this example, num is the same for each fold; however, that is not always the case.

Consider the following example, where the dataset contains 109 images and we

perform 10-fold CV. Each segment would contain 109/10 = 10.9 images. Obviously

we cannot get a fraction of an image, so instead we set num = 11 images for 9-folds

& num = 10 images for the remaining fold. This same principle applies whenever the

dataset cannot be equally segmented (hence why we specify “roughly equally sized

segments”).

For LOO, we use only one image for testing every fold. Thus num = size of images−1

for every fold.

For PI, the CSV file should be arranged in order of subject. Then, for fold(i) we

have num = size of images− (number of images for subject(i)).
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6. Move images & their corresponding labels for testing to end of vector:

For each fold we ensure that the images to be tested are located at the end of

the rand images vector along with their corresponding labels in the rand labels

vector. We can then use the first num images for training and remainder for testing.

The process for testing images using 10-fold CV is shown in Figure 6.2.

Figure 6.2: The image testing process for 10-fold cross-validation

Initially, we have a vector of images that we split into 10 roughly equally sized

segments (0-9) as shown above. At this point, we have not yet tested any of the

segments. For the first fold, we move the first segment, segment 0, to the end and

use it as the test set. The remaining segments are used as the training set. After we

complete the first fold, segment 0 will have been tested and will be included as part

of the training set for all future folds. We repeat the same process for the remaining

folds and see that after 10 folds have been completed, all segments will have been

tested once and the images are back in the original order. We can apply the same

process to LOO & PI procedures; only the size of the segments and number of folds
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will differ.

7. Create training data & train classifier: We perform feature extraction on

each training image and pass the feature vectors to the classifier. The number of

training images is indicated by num and because the test images are located at the

end of the vector, we simply loop through all images 0 to (num - 1) to create the

training data.

8. Create test data & predict: Now that we have trained a classifier, we

perform feature extraction on each test image and predict the class label it belongs

to. The test images are located at the end of the vector, from num to (size of images−

1). We check to see if the predicted class label is correct by comparing it to the

true label stored in the rand labels vector. If it is correct we increment a counter,

count, which will keep track of how many of the test images were correctly predicted.

This process is repeated for each test image.

At this stage, we also increment the relevant entry of our confusion matrix. The

format of the confusion matrix is shown in Figure 6.3, where each row represents

the true class label and each column represents the predicted class label. Using the

confusion matrix, we can determine the level of confusion between different classes

of emotion.
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Figure 6.3: Confusion matrix format

9. Determine recognition accuracy for the fold: After having tested each

of the images in the fold, we compute the recognition accuracy for the fold using

Equation 6.2. We then add this value to the vector percentages to keep track of

each fold’s recognition accuracy.

Recognition accuracy for the fold =
count

size of images - num
× 100% (6.2)

10. Repeat steps 5 to 9 for each remaining fold: We simply repeat the

relevant steps of the testing procedure for each of the remaining folds to ensure that

each segment gets tested exactly once. For 10-fold CV, we have a total of 10 folds.

For LOO, the number of folds is equal to the number of images and for PI, the

number of folds is equal to the number of subjects.

11. Determine average recognition accuracy across all folds: For the final

step of the testing procedure, we compute the average recognition accuracy across

all folds. To compute the average recognition accuracy, we sum all the percentages

from each fold and divide the result by the number of folds as shown in Equation

6.3. Note that for the cross-validation procedure, we repeat steps 4 to 11 a total of

10 times. This ensures that we generate a different randomization for each run. To

compute the overall average recognition accuracy across all 10 runs, we simply sum
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the average recognition accuracies and divide by 10.

Average recognition accuracy =

∑number of folds−1
i=0 percentages(i)

number of folds
(6.3)

We output the average recognition accuracy as well as each fold’s recognition accu-

racy to a file for later reference as shown in Figure 6.4.

Figure 6.4: Outputting the results from the test to a file

We also convert our confusion matrix to percentages by dividing each row by the

number of images for that particular class and multiplying by 100%. We output the

result to file as shown in Figure 6.5.

Figure 6.5: Outputting the confusion matrix to a file
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6.2 Datasets

This section presents the datasets that were used for testing our proposed method-

ology. For testing methods of Facial Expression Recognition (FER), the CK/CK+

and JAFFE datasets were used. For testing face detection and our proposed crowd

emotion estimation algorithm, the previously discussed Crowd Emotion dataset was

used.

6.2.1 CK/CK+

The CK/CK+ dataset is one of the most commonly used facial expression datasets

in current literature. The Cohn-Kanade (CK) AU-Coded Expression dataset [52]

consists of 97 university students between 18 to 30 years of age. 65% were female,

15% were African-American and 3% were Asian or Latino. Subjects were asked to

perform up to 6 different prototypic emotions (i.e. joy, surprise, anger, fear, disgust

and sadness) as well as a neutral expression. Image sequences from the neutral

expression to target expression were captured using a frontal facing camera and

digitized to 640 × 480 or 490 pixels in Portable Network Graphics (PNG) image

format.

Released in 2010, The Extended Cohan-Kanade (CK+) dataset [51] increases the

number of subjects from CK by 27% to 123 subjects and the number of image

sequences by 22% to 593 sequences. Each peak expression is fully FACS coded and

where applicable is assigned a prototypic emotion label.

In our setup, 309 sequences were selected from 106 subjects by eliminating sequences

that did not belong to one of the 6 previously mentioned prototypic emotions based

on the provided validated emotion labels. For 6-class expression recognition, the 3

most expressive images from each sequence were selected; resulting in 927 images.

To build the 7-class dataset, the first image (neutral expression) from each of the

309 sequences was selected and added to the 6-class dataset; resulting in a total
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   Neutral               Joy               Surprise              Anger          Fear               Disgust          Sadness

  

(a) 

(b) 

Figure 6.6: Sample prototypic expressions from (a) CK/CK+ dataset and (b)
JAFFE dataset

of 1236 images. Figure 6.6a shows a sample of 7 prototypic expressions from the

CK/CK+ dataset.

6.2.2 JAFFE

The Japanese Female Facial Expression (JAFFE) dataset [50] contains 213 images

of 10 female Japanese subjects. Each subject was asked to perform multiple poses

of 7 basic prototypic expressions. The expression label for each image represents

the expression that the subject was asked to pose. The images are provided in .tiff

image format with a resolution of 256×256 pixels. Figure 6.6b shows a sample of 7

prototypic expressions from the JAFFE dataset.

6.2.3 Crowd Emotion Dataset

The creation of a novel crowd dataset with known ground-truth emotion labels

was discussed in Chapter 4. The use of the Crowd Emotion dataset for testing

face detection and our proposed crowd emotion estimation algorithm is discussed in

Sections 6.4 and 6.5 respectively.
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6.3 Improved GLTP

6.3.1 Introduction

In the following sections, we analyze, discuss & compare our experimental results

for GLTP [42] with our proposed method, Improved GLTP, using the CK/CK+ and

JAFFE datasets. Firstly, in Section 6.3.2, we discuss the procedure for determining

the optimal parameters for feature extraction and classification for both GLTP &

Improved GLTP. Then, in Sections 6.3.3 & 6.3.4, we critically analyze & compare

the accuracy and performance of our proposed method with GLTP. In Section 6.3.5,

we compare our results to those in current literature. Finally, in Section 6.3.6, we

conclude our findings.

6.3.2 Optimal Parameter Selection

In this section, we discuss the procedure that was used for finding the optimal

parameters for feature extraction & classification. For GLTP, we require optimal

values for the threshold (t) & region size during feature extraction, and C & γ

during classification. For Improved GLTP we also need to find the optimal number

of principle components for PCA. To find each optimal parameter we hold all but

one parameter constant and modify the parameter of interest while performing 10-

fold cross-validation on 7-classes of emotion in the CK/CK+ and JAFFE datasets.

The value resulting in the highest recognition accuracy is chosen as the optimal

parameter.

To begin with, we set the starting value of t = 10 for both GLTP & Improved GLTP

as in [42]. We do not test varying region sizes for GLTP as it has already been shown

that a region size of 7×6 is optimal [40][42]. For Improved GLTP we set the starting

region size of each facial component as 1 × 1 region. We only implement & vary

PCA after we have found the optimal parameters for t & the region size. To set the
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starting values for C & γ, we use the OpenCV [93] function train auto() [94] to find

good (but not necessarily optimal) starting values. More information about finding

each optimal parameter is given below and the results for the CK/CK+ dataset are

summarized in Table 6.1 (for GLTP) and Table 6.2 (for Improved GLTP).

Threshold

Starting with t = 10 we consecutively increment t by 10 up until a threshold value

of t = 50. We then refine the value around the threshold that had the highest

recognition accuracy. Thresholds of t = 10 and t = 20 were found to be the op-

timal values for the CK/CK+ and JAFFE datasets respectively for both GLTP &

Improved GLTP.

Region size

GLTP: Before extracting GLTP histograms from the face, it is first segmented

into m × n regions. This ensures that location information is included together

with frequency occurrence information. Having few regions improves classification

performance, however may result in a low recognition accuracy. On the other hand,

having too many regions reduces classification efficiency and may also lower recogni-

tion accuracy due to too much unnecessary location information being included. It

has been shown in literature that a region size of 7×6 results in optimal recognition

accuracy and efficiency [40][42].

Improved GLTP: The technique of multiple region segmentation is also used

when working with facial components. Region sizes of 1× 1, 2× 2, 2× 4, 3× 4 and

3×5 were tested in succession. A region size of 3×4 resulted in optimal recognition

accuracy.
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(Only for Improved GLTP) Principle Component Analysis (PCA)

In PCA, the number of components selected for projection is a trade-off between

computational efficiency and recognition accuracy. If too few features remain after

applying PCA, efficiency will be high but recognition accuracy will decrease as not

enough discriminative features remain in the feature vector. On the other hand,

having too large a number of features remaining will not result in any improvement

to efficiency. Principle component values of 64, 128, 256, 512 and 1024 were tested

and it was found that the number of principle components that resulted in optimal

accuracy and efficiency was 256 components for the CK/CK+ dataset and 64 com-

ponents for the JAFFE dataset. Also see Section 6.3.4, where we investigated the

effect of PCA on system efficiency.

Classification using Support Vector Machines (SVM)

An optimal parameter grid-search was carried out to find the values C and γ for

the SVM as outlined in [46]. We found that varying the C value past C = 10

had no effect on recognition accuracy. Thus we left the optimal C value as the

value returned by the train auto() function (which was within that range). After

identifying a good value for γ from the initial grid-search, we further refined the grid

around that value to find the optimal value.
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Table 6.1: Optimal parameter selection for GLTP using CK/CK+ dataset

t C γ Recognition Accuracy (%)

1. Find optimal threshold

10 12.5 1.5e-4 96.5

20 12.5 1.5e-4 96.1

30 12.5 1.5e-4 95.2

40 12.5 1.5e-4 94.1

50 12.5 1.5e-4 89.0

1.1 Refine threshold: (0 < t < 20)

5 12.5 1.5e-4 96.2

10 12.5 1.5e-4 96.5

15 12.5 1.5e-4 96.3

2. Find optimal C value

10 0.1 1.5e-4 63.3

10 1 1.5e-4 91.7

10 10 1.5e-4 96.5

10 12.5 1.5e-4 96.5

10 100 1.5e-4 96.5

10 1000 1.5e-4 96.5

3. Find optimal γ value

10 12.5 1e-5 92.3

10 12.5 2.5e-5 93.9

10 12.5 5e-5 94.4

10 12.5 7.5e-5 95.7

10 12.5 1e-4 96.9

10 12.5 2.5e-4 95.5

10 12.5 5e-4 94.2

3.1 Refine γ: (7.5e-5 < γ < 2.5e-4)

10 12.5 0.5e-4 96.6

10 12.5 1e-4 96.9

10 12.5 1.5e-4 96.5

4. Optimal parameters are:

10 12.5 1e-4 96.9
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Table 6.2: Optimal parameter selection for Improved GLTP using CK/CK+ dataset

t Region size PCA components C γ Recognition Accuracy (%)

1. Find optimal threshold

10 1× 1 - 62.5 1e-5 76.2

20 1× 1 - 62.5 1e-5 75.1

30 1× 1 - 62.5 1e-5 73.7

40 1× 1 - 62.5 1e-5 68.9

50 1× 1 - 62.5 1e-5 63.8

1.1 Refine threshold: (0 < t < 20)

5 1× 1 - 62.5 1e-5 75.7

10 1× 1 - 62.5 1e-5 76.2

15 1× 1 - 62.5 1e-5 75.5

2. Find optimal region size

10 1× 1 - 62.5 1e-5 76.2

10 2× 2 - 62.5 1e-5 92.1

10 2× 4 - 62.5 1e-5 95.1

10 3× 4 - 62.5 1e-5 96.0

10 3× 5 - 62.5 1e-5 95.7

3. Find optimal number of PCA components

10 3× 4 64 62.5 1e-5 96.4

10 3× 4 128 62.5 1e-5 96.8

10 3× 4 256 62.5 1e-5 97.1

10 3× 4 512 62.5 1e-5 96.7

10 3× 4 1024 62.5 1e-5 96.5

4. Find optimal C value

10 3× 4 256 0.1 1e-5 72.3

10 3× 4 256 1 1e-5 92.4

10 3× 4 256 10 1e-5 97.1

10 3× 4 256 62.5 1e-5 97.1

10 3× 4 256 100 1e-5 97.1

10 3× 4 256 1000 1e-5 97.1

5. Find optimal γ value

10 3× 4 256 62.5 1e-5 97.1

10 3× 4 256 62.5 2.5e-5 97.3

10 3× 4 256 62.5 5e-5 97.6

10 3× 4 256 62.5 7.5e-5 97.2

10 3× 4 256 62.5 1e-4 96.9

10 3× 4 256 62.5 2.5e-4 96.2

10 3× 4 256 62.5 5e-4 95.6

5.1 Refine γ: (2.5e-5 < γ < 7.5e-5)

10 3× 4 256 62.5 4e-5 97.4

10 3× 4 256 62.5 5e-5 97.6

10 3× 4 256 62.5 6e-5 97.3

6. Optimal parameters are:

10 3× 4 256 62.5 5e-5 97.6
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6.3.3 Recognition accuracy

We test Improved GLTP using 10-fold cross-validation, leave-one-out & person in-

dependent testing procedures (see Section 6.1) for 6 & 7 classes of emotion in the

CK/CK+ dataset (see Section 6.2). Tables 6.3 & 6.4 summarize the recognition ac-

curacies obtained for GLTP & our proposed method, Improved GLTP, when using

optimal parameters.

Table 6.3: Recognition accuracy (%) for 6-class emotion in the CK/CK+ dataset
using GLTP and Improved GLTP

Method Cross-validation Leave-one-out Person Independent

GLTP 98.9± 0.16 99.2 86.4

Improved GLTP 99.3± 0.25 99.7 86.5

Table 6.4: Recognition accuracy (%) for 7-class emotion in the CK/CK+ dataset
using GLTP and Improved GLTP

Method Cross-validation Leave-one-out Person Independent

GLTP 96.9± 0.21 97.4 83.0

Improved GLTP 97.6± 0.30 98.1 83.1

We observe that our proposed method outperforms traditional GLTP by 0.4% to

0.7% in cross-validation testing and 0.5% to 0.7% in leave-one-out testing for 6 and

7 classes of emotion respectively. The results for person independent testing also

shows a slight improvement when using Improved GLTP. The results confirm that

the proposed enhancements to GLTP such as the use of the more accurate Scharr

gradient operator, dimensionality reduction via PCA, and facial component extrac-

tion, when combined, further improves the recognition accuracy of GLTP.
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Table 6.5: Confusion matrix (%) of cross-validation testing for 6-classes of emotion
in the CK/CK+ dataset when using Improved GLTP

Joy Sur Ang Fear Dis Sad

Joy 99.9 0 0.1 0 0 0

Sur 0 99.4 0.4 0.1 0 0.1

Ang 0 0 99.3 0 0.4 0.3

Fear 0 0.5 0 99.4 0 0.1

Dis 0 0 0.6 0 99.4 0

Sad 0 0 2.7 0 0 97.3

Table 6.6: Confusion matrix (%) of cross-validation testing for 7-classes of emotion
in the CK/CK+ dataset when using Improved GLTP

Joy Sur Ang Fear Dis Sad Neu

Joy 100 0 0 0 0 0 0

Sur 0.5 98 0 0 0 0 1.5

Ang 0 0.1 95.3 0 0 0 4.6

Fear 0 0.4 0 99.2 0 0 0.4

Dis 0 0 0.5 0 98.6 0 0.9

Sad 0 0 0.9 0.4 0 93.9 4.8

Neu 0.1 0 1.8 0.1 0.5 0.9 96.6

Tables 6.5 and 6.6 show the confusion matrices of 10-fold cross validation testing for

6 and 7 classes of emotion in the CK/CK+ dataset when using Improved GLTP. We

observe that, in particular, anger and sadness emotions get confused with neutral

emotion in 7 class cross-validation testing.
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Table 6.7: Confusion matrix (%) of leave-one-out testing for 6-classes of emotion in
the CK/CK+ dataset using Improved GLTP

Joy Sur Ang Fear Dis Sad

Joy 100 0 0 0 0 0

Sur 0 99.6 0.4 0 0 0

Ang 0 0 100 0 0.4 0.3

Fear 0 0.5 0 100 0 0.1

Dis 0 0 0.6 0 100 0

Sad 0 0 2.4 0 0 97.6

Table 6.8: Confusion matrix (%) of leave-one-out testing for 7-classes of emotion in
the CK/CK+ dataset using Improved GLTP

Joy Sur Ang Fear Dis Sad Neu

Joy 100 0 0 0 0 0 0

Sur 0.4 98.4 0 0 0 0 1.2

Ang 0 0.1 97 0 0 0 3

Fear 0 0 0 100 0 0 0

Dis 0 0 0.5 0 99.4 0 0.6

Sad 0 0 1.2 0 0 95.2 3.6

Neu 0 0 1.6 0 0.6 1 96.8

Tables 6.7 and 6.8 show the confusion matrices of leave-one-out testing for 6 and

7 classes of emotion in the CK/CK+ dataset when using Improved GLTP. As ex-

pected, the leave-out-out testing procedure achieved the highest recognition accura-

cies on test. This is because, for each fold, the entire database apart from one image

is used as the training set. Although high accuracies were achieved for both 6 and

7 classes of emotion, we observe that, anger and sadness emotions do get confused

with the added neutral emotion in 7 class testing; reducing the overall recognition

accuracy slightly.
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Table 6.9: Confusion matrix (%) of person independent testing for 6-classes of emo-
tion in CK/CK+ dataset using Improved GLTP

Joy Sur Ang Fear Dis Sad

Joy 96.6 0 1.9 0 1.5 0

Sur 0.8 97.2 1.2 0.4 0.4 0

Ang 0 4.4 78.5 0 11.9 5.2

Fear 16 6.7 6.7 58.6 0 12

Dis 2.3 0 11.3 0 86.4 0

Sad 0 11.9 14.3 8.3 0 65.5

Table 6.10: Confusion matrix (%) of person independent testing for 7-classes of
emotion in CK/CK+ dataset using Improved GLTP

Joy Sur Ang Fear Dis Sad Neu

Joy 93.7 0 0.5 0 1.0 0 4.8

Sur 0.8 94 0 0.4 0 0 4.8

Ang 0 1.5 61.5 0 8.1 0 28.9

Fear 13.3 2.7 4 56 0 4 20

Dis 2.3 0 6.2 0 82.5 0 9

Sad 0 3.6 3.6 6 0 48.8 38

Neu 0.3 1 2.5 1 1.3 1.3 92.6

Tables 6.9 and 6.10 show the confusion matrices of person independent testing for 6

and 7 classes of emotion in the CK/CK+ dataset using Improved GLTP. This testing

procedure achieved the lowest recognition accuracies on test. This is because not a

single image from the test subject remains in the training set. Person independent

testing is thus used to show the robustness of the method under test to unseen

subjects. We observe that in 6 class testing; anger, fear, and sadness emotions are

misclassified the most. In 7 class testing, the accuracies further decrease as the

emotions also get confused to a great extent with the added neutral emotion.
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We repeat the cross-validation and leave-one-out tests from above on the JAFFE

dataset. The results are summarized in Tables 6.11 and 6.12. We see that our

proposed method, Improved GLTP, shows a significant improvement in recognition

accuracy over traditional GLTP for the JAFFE dataset. The largest improvement

in recognition accuracy was seen during 7-class cross-validation testing, where Im-

proved GLTP outperformed GLTP by 7.3%. Improved GLTP also showed a sizeable

improvement of 7%, 6.3% and 5.5% for 7-class leave-one-out, 6-class cross-validation

and 6-class leave-one-out tests respectively. The results from the JAFFE dataset

further verifies that the recognition accuracy of Improved GLTP is superior to that

of traditional GLTP.

Table 6.11: Recognition accuracy (%) for 6-class emotion in the JAFFE dataset
using GLTP and Improved GLTP

Method Cross-validation Leave-one-out

GLTP 77.0± 1.1 81.3

Improved GLTP 83.3± 1.6 86.8

Table 6.12: Recognition accuracy (%) for 7-class emotion in the JAFFE dataset
using GLTP and Improved GLTP

Method Cross-validation Leave-one-out

GLTP 74.4± 1.3 77.5

Improved GLTP 81.7± 1.3 84.5

The confusion matrices for cross-validation and leave-one-out tests on the JAFFE

dataset are provided in Tables 6.13 to 6.16. We observe that, like with the CK/CK+

dataset, leave-one-out testing outperformed cross-validation testing while 7-class

testing produced lower recognition accuracies compared to 6-class testing due to

the added confusion caused by the included neutral emotion. We also observe that

the disgust emotion is the only emotion to not be confused with neutral emotion in

7-class testing.
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Table 6.13: Confusion matrix (%) of cross-validation testing for 6-classes of emotion
in the JAFFE dataset when using Improved GLTP

Joy Sur Ang Fear Dis Sad

Joy 89.1 0.3 0 3.1 0.6 6.9

Sur 3.4 84.5 4.1 5.2 0.7 2.1

Ang 0 1.3 81.7 6 9.3 1.7

Fear 3.1 7.5 0.9 75.4 5 8.1

Dis 0 0 5.5 1.4 89 4.1

Sad 0 5.3 0 7 7.3 80.4

Table 6.14: Confusion matrix (%) of cross-validation testing for 7-classes of emotion
in the JAFFE dataset when using Improved GLTP

Joy Sur Ang Fear Dis Sad Neu

Joy 86.9 0 0 3.4 0 0.3 9.4

Sur 0 76.6 3.1 1.7 0.7 0 17.9

Ang 0 2.3 78.4 4.7 10.3 0.3 4

Fear 1.3 5.9 0.3 74.1 4.1 6.9 7.4

Dis 0 0 4.1 1.4 90.4 4.1 0

Sad 0 5 1 8.6 8 73.7 3.7

Neu 0 3.2 4.5 0 0 0.3 92
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Table 6.15: Confusion matrix (%) of leave-one-out testing for 6-classes of emotion
in the JAFFE dataset using Improved GLTP

Joy Sur Ang Fear Dis Sad

Joy 90.6 0 0 3.1 0 6.3

Sur 3.4 89.8 3.4 3.4 0 0

Ang 0 0 86.7 3.3 10 0

Fear 0 9.3 0 78.1 6.3 6.3

Dis 0 0 3.4 0 93.2 3.4

Sad 0 6.7 0 3.3 6.7 83.3

Table 6.16: Confusion matrix (%) of leave-one-out testing for 7-classes of emotion
in the JAFFE dataset using Improved GLTP

Joy Sur Ang Fear Dis Sad Neu

Joy 87.5 0 0 3.1 0 0 9.4

Sur 0 79.4 3.4 0 0 0 17.2

Ang 0 0 83.4 3.3 10 0 3.3

Fear 0 6.3 0 75 6.2 6.3 6.2

Dis 0 0 3.4 0 93.2 3.4 0

Sad 0 6.7 0 3.3 6.7 80 3.3

Neu 0 3.2 3.2 0 0 0 93.6
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6.3.4 Effect of PCA on performance

In Section 6.3.2, we found that for the CK/CK+ dataset, the highest recognition ac-

curacy was achieved with 256 principle components selected for projection. However,

for the value to be optimal, we also consider the effect it has on performance. If, for

example, too many components are set to remain, the time taken to project the in-

creased number of components will outweigh the efficiency improvement gained from

training/testing the reduced feature set and efficiency will instead decrease.
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Figure 6.7: The effect of varying the number of projected principle components on
recognition accuracy and runtime for 6 classes of emotion in the CK/CK+ dataset
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Figure 6.8: The effect of varying the number of projected principle components on
recognition accuracy and runtime for 7 classes of emotion in the CK/CK+ dataset
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Figures 6.7 and 6.8 demonstrate the effect of varying the number of principle com-

ponents on recognition accuracy and training/testing runtime using 10-fold cross-

validation for 6 and 7 classes of emotion in the CK/CK+ dataset. The improvement

in runtime is in relation to running Improved GLTP without PCA. The results show

that projecting a small number of principle components, such as 64, results in a large

decrease in runtime but a comparatively lower recognition accuracy. On the other

hand, projecting a larger number of principle components, such as 1024, actually

increases runtime while recognition accuracy decreases as a result of redundant data

being included. It can be seen that the optimal number of principle components to

be used for projection is indeed 256.
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Figure 6.9: Training Runtime
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Figure 6.10: Testing Runtime

We compare the performance of GLTP to Improved GLTP by comparing the run-

time of the training and testing stages for 10-fold cross-validation & leave-one-out

procedures. We do not consider the person independent procedure as the size of
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the training & test segments varies per fold. Figures 6.9 & 6.10 show the training

& testing runtime for the first 10 folds using the CK/CK+ dataset (Core 2 Duo,

2.0GHz, 3GB RAM). The average per fold runtime for each method is given in Table

6.17.

Table 6.17: Average Runtime per fold (seconds) using the CK/CK+ dataset

(a) GLTP

Training Testing

6-class 7-class 6-class 7-class

CV 23.65 48.27 2.69 4.96

LOO 27.39 54.20 0.037 0.051

(b) Improved GLTP

Training Testing

6-class 7-class 6-class 7-class

CV 16.58 22.33 2.50 3.99

LOO 18.46 24.86 0.031 0.036

The improvement in runtime when using Improved GLTP is shown in Table 6.18.

Table 6.18: Improvement in Runtime when using Improved GLTP on CK/CK+
dataset

(a) Per fold improvement (seconds)

Training Testing

6-class 7-class 6-class 7-class

CV 7.07 25.94 0.19 0.97

LOO 8.93 29.34 0.006 0.015

(b) Percentage improvement (%)

Training Testing

6-class 7-class 6-class 7-class

CV 29.9 53.7 7.1 19.6

LOO 32.6 54.1 16.2 29.4

The overall improvement in runtime across all folds is shown in Table 6.19. For

10-fold cross-validation, we simply multiply the per fold improvement by 10. For

leave-one-out, we multiply the per fold improvement by 927 for 6 classes of emotion

& 1236 for 7 classes of emotion.

Table 6.19: Overall Improvement in Runtime when using Improved GLTP on
CK/CK+ dataset

(a) (seconds)

Training Testing

6-class 7-class 6-class 7-class

CV 70.7 259.4 1.9 9.7

LOO 8278.1 36264.2 5.6 18.5

(b) (hours)

Training Testing

6-class 7-class 6-class 7-class

CV 0.0196 0.0721 0.0005 0.0027

LOO 2.30 10.07 0.0016 0.0051
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The results show that dimensionality reduction via PCA had a positive effect on

runtime performance. The largest improvement in runtime was seen during the

training stages. In particular, for the leave-one-out procedure, Improved GLTP

saved a total of 10.07 hours for 7-class training; reducing the overall training runtime

by 54.1% compared to GLTP.

Table 6.20: Overall Improvement in Runtime when using Improved GLTP on JAFFE
dataset

(a) (seconds)

Training Testing

6-class 7-class 6-class 7-class

CV 11.4 17.6 0.4 0.7

LOO 262.6 535.3 0.7 0.6

(b) Percentage (%)

Training Testing

6-class 7-class 6-class 7-class

CV 60.0 66.8 24.2 33.0

LOO 63.5 72.0 30.8 23.1

We also compare the performance of Improved GLTP to GLTP using the JAFFE

dataset. The overall improvement in runtime across all folds when using Improved

GLTP is given in Table 6.20. We confirm that Improved GLTP showed an improve-

ment in runtime across all testing procedures. Once again, the largest improvement

was seen during the training stages. From the results obtained using both datasets,

we have verified that Improved GLTP is more efficient than traditional GLTP.

6.3.5 Comparison to results in literature

Table 6.21 shows a comparison between some common and state of the art methods

of FER in current literature using the CK/CK+ dataset. To make a fair and accurate

comparison; the results for LBP, LDP, LTP and GLTP are taken from [42], where

the experimental setup and testing procedure were kept constant for all methods.

In [42], a 10-fold cross-validation testing procedure was used for 6 and 7 classes of

emotion in the CK/CK+ [51][52] dataset. The results confirm that LBP was the

least accurate method on test. LDP and LTP outperformed LBP, achieving very

similar results to one another with only a 0.1% (6 class) to 0.5% (7 class) difference
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in recognition accuracy. GLTP was the best performing appearance based method

on test outperforming LDP by 3.3% (7 class) to 3.5% (6 class) and LTP by 2.8% (7

class) to 3.6% (6 class).

In our testing, we achieved a 98.9% and 96.9% recognition accuracy for 6 and 7

classes of emotion respectively when using GLTP with the same testing procedure.

The increase in base method results by 1.7% and 5.2% respectively is possibly due

to two different reasons. Firstly, our experimental setup differs to that in [42] by

the fact that we selected only the images in the CK/CK+ dataset that exhibited a

definitive prototypic emotion. Our selection of total images is thus 24% less than

in [42]. However, we included 11% more subjects from the extended CK+ database

to increase variety compared to [42]. Secondly, we refined the pre-processing of the

images by further reducing the area of the cropped face. This eliminated much of

the redundant areas that remained after pre-processing in [42]. The combination of

including only images with definitive prototypic emotion and a refined method of

pre-processing are the likely causes of the increase in the base recognition accuracy

of GLTP.

We also compare our results to other state of the art methods of FER in current

literature. In [65], a Deep Belief Network (DBN) was used for feature extraction and

classification. A recognition rate of 91.1% was achieved for 7-classes of emotion using

a 7-fold cross validation testing scheme. Then in [70], the method was improved by

using a Boosted DBN (BDBN). Using this method, a recognition accuracy of 96.7%

was achieved for 6-classes of emotion using an 8-fold cross-validation testing scheme.

If we were to disregard any differences due to the fold size; the results are 6.5% and

2.6% less accurate than our equivalent method. The computational cost of Deep

Learning methods is also much greater than Improved GLTP.

In [71], a state of the art method of dynamic FER using Atlas Construction and

Sparse Representation was presented. A recognition accuracy of 97.2% was achieved

for 7-classes of emotion using a person independent testing scheme. In our tests we
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obtained a 83.1% recognition accuracy when using Improved GLTP with the same

testing procedure. The results from the two methods differ by 14.1% when temporal

information is available. However, in [71], the same test was also performed with-

out any temporal information, i.e. only spatial information was used for features

selection. In this case, a recognition accuracy of 92.4% was achieved; 4.8% lower

than when temporal information was included. Even without temporal information,

the method still achieves a 9.3% higher recognition accuracy than that of Improved

GLTP. The results show that dynamic FER can offer much higher recognition ac-

curacies than traditional static methods of FER. However, the computational cost

& complexity of working with dynamic image sequences is much greater than when

working with static images. The authors report that it takes 1.6 seconds to predict

one image sequence for one subject (4-core, 2.5GHz, 6GB RAM). In comparison, we

found that our proposed method, Improved GLTP, took an average time of under

40 milliseconds for each image prediction (2-Core, 2.0GHz, 3GB RAM). So although

the method is very accurate, it is unfeasible for our required application of real-time

Crowd Monitoring.

6.3.6 Section Summary

In this section, we confirmed, via extensive testing on the CK/CK+ and JAFFE

datasets, that Improved GLTP is an accurate and efficient feature extraction tech-

nique well suited for the task of FER. We found that Improved GLTP outperformed

GLTP [42] in terms of both recognition accuracy & efficiency. In a comparison

with other state of the art methods in current literature, we found that Improved

GLTP offers an optimal solution to FER in terms of its robustness, high recognition

accuracy & real-time performance characteristics.
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Table 6.21: Comparison of recognition accuracies (%) for various methods of FER
using the CK/CK+ dataset

Method(1) 6-class 7-class

LBP [42] 90.1 83.3

LDP [42] 93.7 88.4

LTP [42] 93.6 88.9

GLTP [42] 97.2 91.7

DBN [65] - 91.1(2)

BDBN [70] 96.7(3) -

Dynamic Atlas [71] - 97.2(4) 92.4(4)(5)

Improved GLTP 99.3 97.6

(1)10-fold cross-validation unless otherwise stated

(2)7-fold cross-validation

(3)8-fold cross-validation

(4)person independent

(5)without temporal information
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6.4 Face Detection

The Viola and Jones face detection algorithm [33] is included as part of the OpenCV

image processing library [93]. Two parameters must be correctly configured for suc-

cessful face detection; namely the scale factor & the minimum number of neighbour-

ing rectangles. The Viola and Jones model is designed to detect faces of the same

size as those specified during training. In order to detect faces of all sizes, the input

image is scaled down to different levels; increasing the chance of finding matching

sized faces. The scale factor determines the percentage by which the input image

is reduced each time. To avoid false detections as well as multiple detections of the

same face, we also specify the number of neighbouring rectangles that should exist

after all layers have been processed in order for the detected object to pass as a face.

Objects that are not detected multiple times, and thus do not have the required

number of neighbouring rectangles, are excluded from the detected faces.

To find the optimal values for the scale factor and minimum neighbours, we used a

crowd image from our Crowd Emotion dataset as shown in Figure 4.10. The image

contains 48 unobscured faces of neutral expression. We implemented the Viola and

Jones face detection algorithm on the image and varied the number of minimum

neighbouring rectangles while using a default scale factor of 1.1. A neighbour value

of 5 resulted in all 48 faces being detected with only a few false positives and was

selected as the optimal value. To further refine the detection results we adjust the

value of the scale factor and investigate its effect on performance and accuracy as

shown in Figure 6.12. We define performance as the time taken to perform face

detection on the whole image and the accuracy as:

Accuracy =
true detections − false or repeated detections

total faces
× 100% (6.4)

From the results we see that as the scale factor is increased, runtime decreases. This

is because the larger the percentage reduction in scale is, the less layers will have
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Figure 6.12: Effect of varying scale factor on accuracy & performance of face detec-
tion

to be processed. However, this also means that the number of detected faces will

decrease because faces of certain sizes will be skipped due to the large jump in scale

size. From Figure 6.12, we see that the optimal value for the scale factor, having

achieved 100% detection accuracy in 2.7 seconds, is 1.3. An example of incorrectly

setting the parameters for scale factor and minimum neighbours is shown in Figure

6.13; many false and repeat detections are present. On the other hand, setting the

parameters to their optimal values yields a high detection accuracy as shown in

Figure 6.14.

 
Figure 6.13: Poor face detection accuracy when using incorrect parameters

To determine the average detection accuracy for the dataset we created 100 test im-

ages, each of which consists of 24 randomly placed subjects expressing random emo-

tions as shown in Figure 6.15. No facial occlusions are present in the images.
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Figure 6.14: High face detection accuracy when using optimal parameters

 
Figure 6.15: 24 randomly placed subjects expressing various emotions

Face detection using the Viola and Jones algorithm with optimal parameters was

performed on each image. The detection accuracy for each image was calculated

using Equation 6.4 and the results are summarized in Figure 6.16. The results show

that the Viola and Jones face detection algorithm performs very well on our dataset;

achieving over 83% detection accuracy for all images tested. The average detection

accuracy across all 100 images on test was found to be 95.9%, which serves as the

current benchmark for our Crowd Emotion dataset.

 

50

60

70

80

90

100

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

A
cc

u
ra

cy
 (

%
)

Image

Figure 6.16: Accuracy of face detection across 100 crowd images
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6.5 Predicting the Emotion of a Crowd

6.5.1 Introduction

In the following sections, the experimental results for our proposed crowd emotion es-

timation algorithm are presented, analyzed and discussed in detail. In Section 6.5.2,

we discuss the procedure for determining the accuracy of our proposed method and

the results are presented. In Section 6.5.3, we analyze and discuss the performance

of our proposed method. We conclude our findings in Section 6.5.4.

6.5.2 Recognition Accuracy

To find the average recognition accuracy of our proposed crowd emotion estima-

tion algorithm, we implement a 10-fold cross-validation testing procedure using the

subject images captured in Chapter 4. The subject images and their corresponding

masks are randomized and divided into 10 roughly equally-sized segments. For each

fold, 9 of the segments are used for training the classifier (see Section 3.4) while the

remaining segment is used to generate crowd images for testing (see Chapter 4). This

ensures that none of the subjects used for training the classifier are included in the

crowd image under test. Each crowd image consists of 20 randomly placed subjects,

where 9 subjects expressing emotion type A and 11 subjects expressing emotion type

B are placed together in 2 separate groups. We define 8 different classes of emotion

to represent the ground-truth emotion of the crowd image, namely; the 6 proto-

typic emotions (joy, surprise, anger, fear, disgust, sadness) as well as neutral and

mixed emotion. The emotion of A and B is dependent on the specified ground-truth

emotion of the crowd image based on the following algorithm:

if ground-truth emotion of crowd ← mixed emotion then
A← random emotion
B ← random emotion

else
A← ground-truth emotion
B ← neutral emotion
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We generate 3 crowd images for each of the 8 classes of emotion, resulting in 24

crowd images for testing per fold. The total size of our test data across all folds is

thus 240 crowd images. An example of a generated crowd image with ground-truth

emotion Anger is given below.

 

GROUP A: ANGER GROUP B: NEUTRAL 

GROUND-TRUTH: ANGER 

Figure 6.17: Generating a crowd image with ground-truth emotion Anger

The emotion of each of the 24 crowd images is predicted using our proposed al-

gorithm (see Chapter 5) and compared to the known ground-truth emotion. The

recognition accuracy for the fold is then found using the equation:

Fold Accuracy =
number of correct predictions

24 crowd images
× 100% (6.5)

This process is repeated for the remaining 9 folds and the average recognition accu-

racy is calculated across all 10 folds. The entire 10-fold cross-validation procedure

is repeated 10 times and the average overall recognition accuracy is calculated from

all 10 runs. The 10-fold cross-validation testing procedure for crowd emotion esti-

mation is summarized in Figure 6.18. In our testing, GLTP was selected for facial

feature extraction and combined with an SVM for classification. Optimal parame-

ters were selected from Section 6.3.2. The recognition accuracy obtained when using

our proposed crowd emotion estimation algorithm with 8-classes of crowd emotion

and a selected crowd threshold of 30% is summarized in Table 6.22.

An average recognition accuracy of 64.6% was achieved from 10 different 10-fold

cross-validation tests. Examining the crowd emotion confusion matrix for the tests

(Table 6.23), we find that joy, neutral and mixed crowd emotions exhibited a high
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Figure 6.18: Crowd emotion estimation testing procedure
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Table 6.22: Recognition Accuracy (%) for 8-classes of crowd emotion using our
proposed crowd emotion estimation algorithm

Cross-Validation Run Number Average Recognition Accuracy (%)

#1 66.3

#2 69.6

#3 63.8

#4 62.9

#5 64.6

#6 63.3

#7 65.0

#8 65.0

#9 61.3

#10 64.2

Overall Average 64.6 ± 2.1

Table 6.23: Crowd confusion matrix (%) of cross-validation testing for 8-classes of
crowd emotion when using our proposed crowd emotion estimation algorithm

Joy Sur Ang Fear Dis Sad Neu Mixed

Joy 97 0 0 0 0 0 3 0

Sur 0 62 0 0 0 0 37 1

Ang 0 0 5.7 0 0 0 91.6 2.7

Fear 0 0 0 58.3 0 0 38 3.7

Dis 0 0 0 0 66.3 0 32 1.7

Sad 0 0 0 0 0 29 67 4

Neu 0 0 0 0 0 0 100 0

Mixed 0 0 0 0 0 0 1.7 98.3

Table 6.24: FER confusion matrix (%) of cross-validation testing for 8-classes of
crowd emotion when using our proposed crowd emotion estimation algorithm

Joy Sur Ang Fear Dis Sad Neu

Joy 98.8 0 0.1 0 0 0 1.1

Sur 1.3 92.3 0.3 0.2 1.6 0.1 4.2

Ang 0 3.6 51.3 0.7 3.1 1.6 39.7

Fear 1.3 3.2 0.3 85.1 0 3.9 6.2

Dis 3 0.5 0.1 0.1 87.9 0 8.4

Sad 0 1.2 0.1 0.3 0 71.5 26.9

Neu 0.2 1 0.3 0.7 0.5 1.1 96.2

Average: 85.4%
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degree of recognition accuracy. On the contrary, anger and sadness emotions ex-

hibited a very poor degree of recognition accuracy. These findings share a direct

correlation with the chosen method of FER, which achieved an average recognition

accuracy of 85.4% on the crowd images. The confusion matrix for FER is given in

Table 6.24 and shows that out of the 7 facial emotions on test, anger and sadness

achieved the lowest recognition accuracies; being confused to a great extent with

neutral emotion. This is supported by our findings in Section 6.3.3, where anger

and sadness emotions displayed the most misclassification on test. Due to this mis-

classification of facial emotion, the size of the group of individuals expressing sadness

or anger emotion in the crowd was not able to exceed the required crowd thresh-

old value, thus resulting in incorrect crowd emotion predictions and reduced crowd

emotion estimation accuracy.

To determine the true effect of neutral emotion on the accuracy of our proposed

crowd emotion estimation algorithm, we repeat the cross-validation tests from above

but with neutral emotion excluded. We thus reduce 8-classes of crowd emotion to

7-classes; resulting in a total of 21 crowd images to test per fold. Where before the

individuals in group B expressed neutral emotion, they are now placed so that the

group exhibits random emotions; none of which exceed the required crowd thresh-

old value. The recognition accuracy obtained when using our proposed crowd emo-

tion estimation algorithm with 7-classes of crowd emotion is summarized in Table

6.25.

With neutral emotion excluded, an average recognition accuracy of 81.3% was

achieved from 10 different 10-fold cross-validation tests. This shows a 16.7% im-

provement compared to when neutral emotion was included. Examining the crowd

emotion confusion matrix in Table 6.26, we note that while all emotion classes

displayed an improvement in recognition accuracy compared to 8-class testing, in

particular, anger and sadness emotions experienced the largest improvement; having

increased more than threefold. This is supported by the FER confusion matrix given

in Table 6.27, where anger and sadness emotions experienced the most significant
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Table 6.25: Recognition Accuracy (%) for 7-classes of crowd emotion using our
proposed crowd emotion estimation algorithm

Cross-Validation Run Number Average Recognition Accuracy (%)

#1 80.5

#2 82.9

#3 81.4

#4 81.9

#5 84.3

#6 81.4

#7 80.0

#8 80.0

#9 82.4

#10 78.6

Overall Average 81.3 ± 1.6

Table 6.26: Crowd confusion matrix (%) of cross-validation testing for 7-classes of
crowd emotion when using our proposed crowd emotion estimation algorithm

Joy Sur Ang Fear Dis Sad Mixed

Joy 98.3 0 0 0 0 0 1.7

Sur 0 79 0 0 0.3 0 20.7

Ang 0 0 51.7 0 0 0 48.3

Fear 0 0 0 64.3 0 0 35.7

Dis 0 0 0 0 85.3 0 14.7

Sad 0 0 0 0 0 91.3 8.7

Mixed 0.3 0 0 0 0.3 0 99.4

Table 6.27: FER confusion matrix (%) of cross-validation testing for 7-classes of
crowd emotion when using our proposed crowd emotion estimation algorithm

Joy Sur Ang Fear Dis Sad

Joy 99.5 0 0.4 0 0.1 0

Sur 1.1 95.5 0.6 0.6 2.1 0.1

Ang 0 7 83 1 4.4 4.6

Fear 1.7 3 0.9 86.2 0.1 8.1

Dis 3.2 0.8 1.7 0 94.2 0.1

Sad 0.1 2.3 1.3 0.2 0.1 96

Average: 93.0%
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increase in recognition accuracy out of the 6 facial emotions on test. With neutral

emotion excluded, the average FER recognition accuracy improved by 7.6% from

85.4% to 93%. Further examination of both 7-class and 8-class FER confusion ma-

trices shows that pleasing emotions such as joy and surprise tend to exhibit higher

recognition accuracies compared to other displeasing emotions such as anger, fear

and disgust, which often get confused between one another. This is evident in Table

6.27, where anger and fear is confused with disgust and sadness.

Now let us consider reducing the 8 and 7 classes of crowd emotion into just 2 classes

- positive and negative. Emotions that can be considered pleasing are grouped into

the positive class while emotions that can be considered displeasing are grouped

into the negative class. For what was previously 7-classes of crowd emotion, we

group joy and surprise into the positive class while anger, fear, disgust and sadness

are grouped into the negative class. For what was previously 8-classes of crowd

emotion, we consider neutral emotion to be non-negative and place it in the positive

emotion class. Crowd’s of mixed emotion are also considered non-negative and thus

classified as positive. We repeat our cross-validation testing on the reduced class set

for 2 given scenarios: (1) neutral emotion is included as part of the positive emotion

class and (2) neutral emotion is excluded. 24 crowd images are generated per fold,

where the first 12 images represent a crowd expressing positive emotion and the final

12 images represent a crowd expressing negative emotion. The individuals in group

A are placed so that they are expressing either a random positive emotion (first

12 images) or a random negative emotion (last 12 images), while the individuals

in group B are placed so that the group exhibits random positive and negative

emotions; none of which exceed the required crowd threshold value. The recognition

accuracy obtained when using our proposed crowd emotion estimation algorithm

with 2-classes of crowd emotion is summarized in Table 6.28.

An average recognition accuracy of (1) 72.4% (neutral emotion included) and (2)

94.8% (neutral emotion excluded) was achieved from 10 different 10-fold cross-

validation tests. These results show an improvement in accuracy of 7.8% compared
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Table 6.28: Recognition Accuracy (%) for 2-classes of crowd emotion using our
proposed crowd emotion estimation algorithm

Method Recognition Accuracy (%)

With neutral emotion 72.4 ± 2.5

Without neutral emotion 94.8 ± 1.1

Table 6.29: Crowd confusion matrix (%) of cross-validation testing for 2-classes of
crowd emotion when using our proposed crowd emotion estimation algorithm

(a) with neutral emotion

Positive Negative

Positive 100 0

Negative 55.2 44.8

(b) without neutral emotion

Positive Negative

Positive 100 0

Negative 10.2 89.8

to 8-class testing and 13.5% compared to 7-class testing. We note that by exclud-

ing neutral emotion from 2-class testing, recognition accuracy improved by 22.4%

compared to when it was included. This significant increase in recognition accuracy

due to the exclusion of neutral emotion is consistent with our findings during 7-class

testing, where we also noted a significant increase in accuracy compared to 8-class

testing. The crowd emotion confusion matrix for both 2-class tests is given in Table

6.29. In both cases, all crowd images with positive emotion were correctly predicted;

demonstrating that positive emotions may be more easily recognized compared to

negative emotions. For the first case, with neutral emotion included, more than

half of the negative emotion crowd images on test were misclassified. Some nega-

tive emotions, such as anger and sadness, would have been misclassified as neutral

emotion (see Table 6.24) causing those crowd images to be incorrectly classified as

having positive emotion. For the second case, with neutral emotion excluded, the

number of crowd images with negative emotion that were correctly predicted was

much higher; resulting in the largest average recognition accuracy achieved on test.

Overall, these findings show that greater accuracies can be achieved by combining

multiple emotions of a similar type to form a reduced class set, while maintaining

the ability to discern negative crowd emotion from positive crowd emotion.

We compare our proposed crowd emotion estimation algorithm to existing crowd
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Figure 6.19: Comparison of methods for crowd emotion detection

emotion monitoring techniques identified in Chapter 2. While a direct comparison

cannot be made due to differences in the datasets, the testing procedures, and the

application of each method, we outline any disadvantages and advantages between

methods and where possible compare accuracies. A comparative summary of recog-

nition accuracies for the methods is given in Figure 6.19. In [23], emotion analysis

of social media was used to classify crowds into 5 types of behaviour. Although

the authors report that their method was successful at classifying a crowd during

one mainstream event, no further testing was performed; thus it is difficult to com-

ment on the true accuracy of this method, especially during smaller non-mainstream

events. The main disadvantages with this method is (1) it relies heavily on social

media with geolocation information and (2) it largely detects emergency situations

after they have already occurred. In comparison, our proposed Crowd Monitoring

method does not require any additional information apart from the facial expres-

sions of the crowd itself and can detect crowds with a potentially negative emotion

before the situation turns to an emergency.

In [20], it was proposed that emotion-based classification of a crowd could be used

to better predict crowd behaviour. The authors created a novel crowd behaviour

dataset consisting of video sequences for 5 types of crowd behaviour annotated with

6 emotion labels (disgust was excluded) based on the motion of the crowd. Using
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dense trajectory and SVM classification, emotion descriptions were extracted for

each video sequence and mapped to a crowd behaviour. The best accuracy reported

for their method was 43.9% using a leave-one-out testing procedure (which typically

gives higher accuracies), 20.7% lower than our worst achieved accuracy, although

the dataset used in their work was considerably more difficult. Although the authors

work represents a novel approach to Crowd Monitoring through the use of crowd

emotion, it requires obtaining video sequences of crowds around the apex of their

behaviour to be truly effective, which is a complex real-world task. The method is

also highly dependent on the type of crowd sequences supplied during the training

stage and thus may not work in all environments. In comparison, our proposed

method focuses only on 2D static images, which is far more computationally effi-

cient for practical real-world applications. By relying solely on facial expressions

for emotion classification, our method should not be greatly effected by changing

environments or scenery within the crowd (apart from illumination variation and

noise).

In [19], a dynamic probabilistic clustering technique was proposed to model a crowd’s

response to different events. A simulation model to produce evacuation and panic

situations was implemented to test the proposed method. Crowd emotion was clas-

sified as either positive or negative based on the clustering together (herding) of

individuals within the crowd in response to panic situations. The authors report

that a recognition accuracy of 88.6% for correctly detecting positive emotion and

85.8% for correctly detecting negative emotion was achieved using a Receiver Oper-

ating Curve (ROC) obtained from 50 simulations. If we were to take the average of

these values, we find that the method achieved an average recognition accuracy of

87.2% for both classes of emotion. Ignoring any discrepancies due to differences in

testing procedures, we note that the overall accuracy achieved is in the same region

(> 85%) as that of our 2-class test results without neutral emotion. However, the

authors proposed method is only able to discern positive and negative emotion from

panic/evacuation situations; which, depending on how the emotion is defined, may
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not be a true reflection of negative emotion. While this method is limited to panic

and evacuation events, our proposed method can be implemented during multiple

types of events for the detection of multiple types of emotion.

6.5.3 Performance

To test the performance of our proposed methodology, we vary the size of crowd

while measuring the average time taken to predict the emotion of each crowd image

(Core 2 Duo, 2.0GHz, 3GB RAM). The individuals placed in the crowd are selected

at random and the results are given in Figure 6.20. The time taken for face detection

is excluded from the results as it varies greatly depending on the size of the image.

In our testing, each crowd image had a size of 4250 × 1000 pixels. We found that

face detection took anywhere from 3.5 seconds (for 1 person) to 8.5 seconds (for 220

people). The results show a linear relationship between crowd size and prediction

runtime. We note that for small crowds of 1 to 20 people, prediction takes less than

1 second. On the other hand, for larger crowds of 200 to 220 people, it takes in the

region of 12 to 13 seconds for each prediction. We also consider the effect that each

step of the prediction has on runtime performance. We identify and analyze the

performance of 3 major components of each prediction, namely: (1) Pre-Processing
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of facial images, (2) FER (facial feature extraction using GLTP & classification

using SVM), and finally (3) Crowd Emotion Estimation (finding fully-connected

undirected graph, finding minimum spanning tree & finding largest chains of emotion

in the crowd). The breakdown of results is given in Figure 6.21. From the findings

we see that FER constitutes nearly 80% of the time taken for prediction, while the

pre-processing of facial images in the crowd constitutes 20.7%. In comparison, our

proposed crowd emotion estimation algorithm constitutes just 0.1% of the total time

taken for each prediction; demonstrating its impressive efficiency.

 

20,7%

79,2%

0,1%

Pre-Processing

FER

Crowd Emotion Estimation

Figure 6.21: Breakdown of prediction runtime

6.5.4 Section Summary

In this section, we confirmed, via extensive testing on generated crowd images with

ground-truth emotion, that our proposed crowd emotion estimation algorithm is

able to correctly classify a crowd emotion with multiple classes. We found that by

excluding neutral emotion and grouping emotions to form a reduced class set, high

recognition accuracies were able to be achieved. When testing the performance of our

proposed method, it was shown that real-time application is possible and can further

be improved by enhancing the efficiency of FER. In a comparison with other methods

of Crowd Monitoring, we found that our proposed method offers a viable alternative

to existing techniques, provided that facial expressions are unobscured.
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Chapter 7

Conclusion

This research has focused on the development of a novel Crowd Monitoring system

using Facial Expression Recognition (FER). Existing Crowd Monitoring techniques

focus heavily on identifying the movement and density of crowds during panic sit-

uations, greatly limiting their ability to predict the intention of a crowd outside of

scenes of panic. Our proposed system addresses these limitations by autonomously

detecting multiple types of emotion in a crowd in real-time, isolating groups of emo-

tion based on their relative size and weighting in the crowd. This system can be

used for many security applications, such as helping to alert authorities to poten-

tially aggressive crowds of people.

In order to validate the effectiveness of the proposed system, a series of cross-

validation tests were performed using generated crowd images with known ground-

truth emotions. The system was tested for 8, 7 and 2 classes of crowd emotion. The

average recognition accuracy for each test was calculated along with it’s standard

deviation. Confusion matrices were provided for both crowd emotion and FER.

The results showed that the system presented was able to accurately predict mul-

tiple classes of crowd emotion. The runtime performance of the system was also

tested against varying crowd sizes and showed potential for real-time application

on moderately sized crowds. The findings show that, compared to existing Crowd
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Monitoring techniques, our system is able to accurately and efficiently predict the

emotion and thus intent of crowds even in non-panic situations where movement

and density information may be incomplete.

A key challenge to producing accurate results is ensuring that the system is able to

optimally detect faces within the crowd. There are three major challenges that must

be considered when implementing traditional face detection algorithms on crowds,

namely: (1) Faces may be highly obscured in large crowds, (2) Not all faces will be

frontal facing, and (3) The resolution of the detected face must be adequate for the

type of FER being used. The quality and number of faces detected in the crowd

will have a direct impact on system accuracy and thus should be optimal. To ensure

consistency throughout this research, the assumption was made that all faces in the

crowd are unobscured and frontal facing.

7.1 Application

The system presented may be deployed in most indoor/outdoor areas that attract

crowds of people; such as airport terminals, shopping centres, sports stadiums, and

public rallies. In airport terminals and shopping centres, the system could be used

to detect potential criminal threats or danger by identifying groups of individuals

expressing fear emotion. At sports stadiums and public rallies, the system could

be used to detect disgruntled and disorderly groups of sports fans/protesters by

identifying the spread of anger emotion within the crowd. Unlike existing Crowd

Monitoring techniques, the system presented here is able to discern between groups

of positive emotion and groups of negative emotion in a crowd. At a public rally,

for example, this allows the system to distinguish closely packed supportive groups

of individuals from closely packed aggressive groups of individuals; which may help

authorities to provide a suitable response.

132



7.2 Future Work

Future research into the system presented is aimed at addressing the current limita-

tions associated with face detection and tracking in densely populated crowds.

• One potential solution to alleviate facial obscurities in large crowds is to use

an array of cameras to capture images of the crowd from different angles and

positions. The combined number of faces detected from each of these images

should show an improvement compared to a single camera-based system.

• In this research, the distance between individuals in the crowd is computed in

2-Dimensional space using x, y co-ordinates to map the location of each indi-

vidual in the image. By using a 3D camera system as discussed above, the dis-

tance between individuals can be computed more accurately in 3-Dimensional

space using an x, y, z co-ordinate-based system.

• To account for any variations in facial angle and posture, a non-frontal face

detection algorithm could be combined with a non-frontal-based method of

FER [95][96] trained with a larger facial image dataset consisting of frontal

and non-frontal faces at different angles. In combination with a 3D-based

camera setup, this could significantly improve the accuracy of the system for

larger crowds.

• To further improve the efficiency of the system, Dimensionality Reduction

techniques, such as PCA [44], may be applied during FER to reduce the time

taken to predict the emotion of each detected face. The use of PCA with

GLTP has previously been discussed in this work.
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