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ABSTRACT 

 

Mango is a perishable fruit, harvested once a year during the summer season. Smallholder 

farmers growing mango experience relatively high post-harvest losses because they receive 

large volumes of produce at the same time. Drying is a preservation method proven second to 

cooling in performance. In South Africa, dried mango fetches higher returns compared to 

canned mango, and mango juice, atchar and jam. Open-Air solar Drying (OAD) is a popular 

drying method used for producing dried mango. However, this method of drying has setbacks 

resulting in produce quality loss. Convective Oven Drying (OVD) is a more efficient drying 

method, however, it has high-energy consumption. In South Africa, there is lack of research on 

hot-air drying methods, as well as their performance when drying mango fruit. With the current 

shift in use of renewable energy for drying operations, research is focusing on improving solar 

drying technologies. These include increasing the drying capacity and reducing the drying time 

through modifying a greenhouse. Considering the research gap in South Africa on drying 

technologies and the limitations of open-air solar drying, this study comparatively assessed the 

performance of three drying methods, namely, (a) Convective Oven Drying (OVD), (b) Open-

Air solar drying (OAD) and (c) a Modified Ventilation Solar Drying (MVD). OVD was carried 

out at a set temperature of 70˚C, OAD and MVD at ambient temperature of 15.55˚C -36.77˚C, 

at an RH of 22.96%-79% and solar radiation of 317W.m-2- 1016 W.m-2.  The MVD improved 

the ambient conditions to obtain an average maximum temperature of 64.26 ˚C and RH of 

17.6%.  The drying time was longer for mango slices dried in OAD, MVD and OVD, 

respectively. The lemon juice pre-treatment did not affect the drying time. The drying time was 

reduced for 3 mm, as compared to the 6 mm and 9 mm dried mango slices, due to the relatively 

high drying rates. Drying took place in the falling drying rate period for most mango samples, 

indicating that diffusion was the driving mechanism in the drying experiments. The effect of 

the drying methods on the drying kinetics of mango slices (3 mm, 6 mm and 9 mm) as well as 

the effect of lemon juice pre-treatment was investigated. Non-linear regression analysis was 

used to assess the empirical model that best fits the experimental moisture ratio data. The 

quality parameters that were evaluated included the colour, rehydration, sensory properties, 

changes in mango microstructure and microbial changes. The empirical model that was best fit 

for the drying data was that of the Midilli et al., followed by Page model because a higher R2, 

a lower root mean square (RMSE) and a lower chi-square (X2) was obtained from non-linear 

regression analysis. A quality analysis indicated that colour change (ΔE) was not significantly 
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(P>0.05) affected by pre-treatment, although control samples that were dried in the OAD had 

a relatively higher colour change, resulting to browning. The rehydration ratio and electronic 

microscopy (SEM) showed structural changes in dried samples, with thicker mango slices 

having a relatively lower rehydration ratio, and the SEM scans dominated by cracks and pores, 

which were much more visible for 9 mm mango slices. Sensory evaluation results indicated 

that the panellists preferred the flavour and colour of pre-treated 3 mm mango slices compared 

to thicker control and pre-treated dried mango slices. In addition, the overall acceptability of 

dried mango was relatively higher for MVD-dried, than OVD- and OAD-dried mango slices, 

respectively. The fungi and anaerobic bacteria levels found in dried mango slices were higher 

than the recommended levels of 1x103; however, there were no pathogenic microbes detected 

in the fresh and dried samples. The study findings show that dried mango is an acceptable 

produce to consumers, especially in areas like Kwazulu-Natal, were mango is scarce. MVD is 

a drying method, which is practical and can solve the shortcomings of OAD. This method is a 

renewable energy alternative to OVD and further improvement is required to increase 

temperature and ventilation is necessary to reduce drying time.  
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1. INTRODUCTION 

 

Fruits and vegetables contain vitamins, minerals, dietary fibre, phytochemicals and 

antioxidants (Pereira, 2014; Conner et al., 2017). Therefore, they are an abundant source of 

nutrients in a healthy human diet (Conner et al., 2017). According to the World Health 

Organisation (WHO), approximately 16 million disability-adjusted lives (DALYs) and 1.7 

million of deaths worldwide is caused by low fruits and vegetable consumption (WHO, 

2011; Mujcic, 2016). In 2000 alone, about 23.6 million of the world’s population did not 

consume enough fruits and vegetables (Lock et al., 2005). Research studies indicate that the 

consumption of sufficient fruits and vegetables as part of a balanced diet, helps to reduce the 

risk of major non-communicable diseases, such as cardiovascular disease and certain 

cancers. An awareness of the reduced health risks associated with the consumption of fruits 

and vegetables has led to a rise in the demand for fruits, including mangoes, bananas, 

pineapples and passion fruit (Joosten et al., 2015). 

 

Mango (Mangiferia Indica L.), a tropical and subtropical fruits, has the highest per capita 

consumption in the world and it comprises about 39% of the total production of subtropical 

fruits. Its production in South Africa has been increasing over the years. In the 2014/2015 

production season, the highest production of 70 400 tons was recorded, compared to the five 

preceding years (Ntshangase et al., 2017). The Limpopo Province of South Africa produces 

75% of this fruit and it is planted over an area of approximately 5 013 hectares (Mashau et 

al., 2012; DAFF, 2016). The increasing popularity of the mango fruit is, attributed to its 

excellent flavour, attractive fragrance, beautiful colour, taste and nutritional properties 

(DAFF, 2016). The gross value of the mango fruit increases because of its processed 

products, such as canned mango, juice, atchar, jam and dried mango. Dried mango is the 

product with the highest value (Schiavone et al., 2013). Besides its favourable qualities, 

mango is a highly perishable fruit because of its high moisture content (>80%), which results 

in a short shelf-life (<16 days) (Tettey, 2008). Furthermore, Mangoes have a short harvest 

season, which makes them fetch high prices during off-seasons (Bretch and Yahia, 2009). 

According to Sarkar et al., (2011) the perishable nature of mangoes contributes to relatively 

high post-harvest losses of the fruit. These losses have been estimated to be approximately 

40-50% in developing countries, including South Africa (Kitinoja and Alhassan, 2012; 

Mashau et al., 2012). Improper handling and the lack of suitable storage of the fruit cause 
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the losses after harvest (Sarkar et al., 2011; Maremera, 2014). Improper handling and the 

lack of storage leads to wilting, shrivelling, chilling injury and decay, due to fungi and 

bacteria, as well as physical and mechanical injury problems (Mashau et al., 2012).  

Considering the increased value of mango during off-season, drying of mangoes can 

potentially solve the challenge of post-harvest losses of fresh mango and fetch high prices, 

to improve the livelihood of smallholder farmers. 

 

Smallholder farmers in developing countries, including South Africa are able to produce 

80% of the fruits and vegetables, including mango (Murthy, 2009). However, they cannot 

rely on agriculture as a livelihood strategy. This is primarily because of the post-harvest 

losses experienced before the fresh produce reaches the consumer. Reducing the post-harvest 

losses of fresh produce is an important part of sustainable agricultural efforts that aim to 

increase food availability (Kader, 2005; Sarkar et al., 2011). This involves the development 

of technologies for the preservation of fruits and vegetables to manipulate storage 

temperature and relative humidity (cooling), efficient packaging technologies, canning and 

drying. The drying technologies perform better than canning and it is second to cooling in 

performance (Alamu et al., 2010).  

 

Fruits are dried to extend the shelf-life and improve their market value, considering their 

perishable nature this could increase the availability of perishable commodities, which are 

also seasonal in nature (Aghabashlo et al., 2013). Drying is a heat and mass transfer process 

wherein there is a transfer of water, by diffusion, from inside the food material to the air-

food interface and from the air-food interface to the outside air, simultaneously, by 

convection (Afzal and Abe, 2000; Belessiotis and Deylanni, 2010; Schiavone, 2013; 

Demiray and Tulek, 2014; Süfer et al., 2016). Heat is applied to remove moisture from 

agricultural products. Heated air increases the capacity for water vapour absorption (Afzal 

and Abe, 2000; Blanco-Cano et al., 2013; Aghabashlo et al., 2013). Research studies have 

found that a reduction of the moisture content of food, to 10-20% prevents bacteria, fungi 

and enzymes from spoiling the food. In addition, it reduces the microbial deterioration of 

fruits and vegetables and reduces contamination by pathogenic microbes (Sivasankar, 2009; 

Tsado et al., 2015; Ntuli et al., 2017). 
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Drying is the most cost-effective way of preserving fruits and vegetables, and hot air is the 

common drying medium (Jangam et al., 2010). Convective hot air drying methods, such as 

oven drying, are efficient and used for both small- and large-scale drying operations. 

However, convective drying methods rate as one of the energy-intensive methods, 

competing with distillation, with high levels of energy consumption. This is caused by the 

use of hot air at relatively high temperatures, which can reach 70℃ (Jangam et al., 2010).  

As a result, several countries have found that the energy consumption of conventional drying 

systems ranging from 10-25% of the industrial energy consumption (Jangam et al., 2010; 

Tchaya et al., 2014). These are not feasible drying technology solutions for smallholder 

farmers of South Africa because there is scarcity of electricity and relatively high electricity 

tariffs (Hoffman and Ashwell, 2001; Gets and Mhlanga, 2013; Pretorius and le Cordeur, 

2016).  

 

Open-air uncontrolled solar drying is commonly used for drying fruits, such as mango in 

both the small- and large-scale drying operations of South Africa (Sulaiman and Inambao, 

2010; Kivevele and Huan, 2013). Open-air uncontrolled solar drying is an uncontrolled 

process in which the produce is exposed to direct sunlight, rain and dust. Produce that is 

dried, using open-air uncontrolled solar drying is undesirable because the drying method 

causes variability in product quality (Madhlopa et al., 2002; Pangavhane and Sawhney, 

2002, Sagar and Kumar, 2010).  Industrial operations use conventional methods, such as 

oven drying and fluidised bed drying. Other alternative methods to hot air drying are vacuum 

drying, microwave drying and freeze-drying. Improved solar drying generates relatively 

high temperatures, has a low relative humidity, a short drying period and is relatively 

inexpensive. In addition, research shows that an enhanced solar dryer shortens the drying 

time by 65%, when compared to open-air uncontrolled solar drying and it produces uniform 

quality fruits/vegetable when compared to open-air uncontrolled solar drying (Wankhade et 

al., 2014). Hence, the use of improved solar drying technology to reduce the energy costs 

and to speed up drying is an attractive option. 

 

Considering that the majority of South African provinces receive an average of 5.5 kWh.m-

2 of solar irradiation, the use of solar energy as a source of energy is feasible in the country 

(Fluri, 2009). However, extensive research needs to be undertaken on the utilization of solar 

energy in the South African food industry. This will ensure the preservation of perishable 
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produce, such as mangoes. Several research studies have developed efficient solar drying 

technologies and they include improvements on the efficiency of the indirect mode of drying. 

This usually involves integration of innovative aspects, such as solar chimneys, the use of 

thermal storage and wind ventilators. Naturally, ventilated dryers require no electrical or 

mechanical components, because the driving force is a result of the temperature difference 

or changes in air density (Schiavone et al., 2013). There is a research gap in South Africa, 

with  limited investigations into smallholder farmers who produce mangoes and who are not 

aware of this value-adding technology, which could assist in improving the marketability of 

their produce. This is because there is a lack of research for the improvement of solar drying 

technologies. 

 

This study has identified a need for investigating an innovative solar dryer that uses solar 

energy to preserve the mango fruit, and to reduce the post-harvest losses experienced by 

mango-producing farmers in the Limpopo Province. The aim of this study is, to evaluate, 

comparatively the effect of hot air methods on drying characteristics and quality of Tommy 

Atkin mangoes. This could result in the reduction of post-harvest losses and it could increase 

the shelf-life of fresh produce, simultaneously creating employment, providing food security 

and improving the livelihoods of the smallholder farmers in South Africa. This would be an 

innovative design because it would incorporate a wind ventilator, to improve the ventilation 

during drying. Another aim of this project is to evaluate the performance of a naturally-

ventilated direct solar drier with a wind ventilator. The specific objectives are: 

(i) to evaluate and assess performance of the improved solar dryer in terms of variation 

in the relative humidity and drying temperature during the drying process; 

(ii) to determine the empirical model which best describes the drying process; and 

(iii) to determine the physical and chemical quality of dried mango. 
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2. LITERATURE REVIEW 

 

The literature review section includes an overview of the mango fruit, highlighting its 

importance, the post-harvest losses and current preservation technologies. A review of the 

basic underlying principles of drying, factors influencing drying and the common drying 

methods are included in this section. This chapter also includes solar drying methods and 

the practices used to enhance solar dryer performance. Furthermore, this review includes the 

methods of analysis for assessing the quality properties and drying models. 

 

2.1 Production of The Mango Fruit 

 

Mango (Mangiferia indica L.) is a delicate and tasty fruit grown in tropical and subtropical 

regions of the world. The mango fruit constitutes for nearly half of the worldwide production 

of tropical and subtropical fruit and it originated in the Indi-Burmese region (Ravindra and 

Goswami, 2013). Mangoes are produced commercially in more than 87 countries, with India 

having the highest production of 13.5 million tons per annum, which accounts for 

approximately 50% of the fruit (van Deventer, 2011). Other major producing countries are 

China, Indonesia, the Philippines, Pakistan and Mexico. In South Africa, mangoes are the 

third most important subtropical fruit, after citrus and banana. Tommy Atkins mango 

cultivars are mainly grown in the subtropical regions of Limpopo (Hoederspruit, Levubu and 

Tzaneen) and Mpumalanga (Kiepersol, Malelane and Nelspruit) (Ntombela and Moobi, 

2013). Only 0.22% of the locally-produced mango fruit is exported. Therefore, most of the 

product is consumed locally (Ntombela and Moobi, 2013). 

 

The production of dried mango has been increasing over the years and due to the increased 

awareness of its nutritional benefits, the value is higher than that of atchar. According to 

Mudau et al. (2012), there has been a lifestyle change of South African consumers, with fatty 

foods becoming unpopular, and this has been the major influence in the boost of the fruit-

drying business. This provides an opportunity for mango-producing smallholder farmers, to 

penetrate the industry by producing dried mango. This allows them to sell mango fruit during 

the off-season, which promotes higher returns and results in the improvement of their 

livelihoods. 
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2.2 Post-harvest Losses of Fruits and Vegetables 

 

Fruits and vegetables are regarded as a delicate commodity and approximately 1.3 billion 

tons, produced for human consumption are estimated to be lost globally (Oelofse and 

Nahman, 2009; Prusky, 2011). Developing countries experience major losses in the field 

(Parfitt et al., 2010). Kitinoja and Alhassan (2012) describe post-harvest losses as that 

portion of the fruits and vegetables that are produced and do not reach the consumers. The 

highest losses are reported for fruits and vegetables, root crops and tubers (Gustavsson et al., 

2011). Research done by Oelofse and Nahman (2009) substantiates this because fruits and 

vegetables combined, with root crops and tubers contribute to 57% of the overall waste 

stream, as highlighted in Figure 2.1.  

 

According to Munhuweyi (2012), the top global fruits and vegetable producers air India, 

China and Japan, respectively. However, these countries experience a considerable amount 

of post-harvest losses annually. The post-harvest losses in India can meet the annual fresh 

produce needs of the UK (Reddy, 2000). Regions in the world experience about 20% post-

harvest losses and the highest losses (45-50%) have been reported in Africa and Asia, 

respectively (Kitinoja and Kader, 2003; Gustavsson et al., 2011). In Nigeria, post-harvest 

losses experienced by smallholder farmers can reach about 20-60% for fruits and vegetables, 

such as tomato, okra, onion, mango and carrot (Folayana, 2013). These figures coincide with 

the 50% of loss of mangoes, bananas, oranges and pawpaws, by smallholder farmers and 

street vendors in the Limpopo Province of South Africa (Mashau et al. 2012).  

 

Post-harvest losses in South Africa are due to the low level of post-harvest technology, which 

causes a loss in produce quality and variations in the compliance standards (Mashau et al. 

2012). External factors include mechanical injury, physical factors and microbial 

deterioration, and internal factors include physiological deterioration. The loss of fruits and 

vegetables aggravates hunger as less food becomes available for consumption (FAO, 2009). 

This therefore presents a challenge to the food industry to ensure that the food demand of 

the growing population is met, which must considering that the South African population is 

estimated to have an annual increase of 2%, with projections indicating that there will be 82 

million people by 2035 (STATSSA, 2013).  It is therefore vital to reduce post-harvest losses 
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by preservation of fruits and vegetables, such as mangoes as a complementary alternative 

for improving agricultural productivity. 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.1 Causes of postharvest losses 

 

Post-harvest losses experienced by smallholder farmers are caused by external factors 

(mechanical injury or physical damage and microbial deterioration) and internal factors 

(physiological). According to Munhuweyi (2012), the above causes complement each other. 

The pre-dominant form of mechanical injury is bruising, which makes the produce 

susceptible to microbial spoilage (Bollen, 2006; Salami et al., 2010). Furthermore, the 

presence of injuries, such as bruises increases the rate of water loss and respiration, resulting 

in physiological deterioration, which increases the rate of respiration and water loss in a 

produce. The changes that occur during respiration and water loss may result in wilting, 

sprouting, and increasing product susceptibility to mechanical damage (Maremera, 2014).  

 

Physical/environmental conditions, such as high temperature and relative humidity create 

favourable conditions for micro-organisms to grow. Physiological deterioration is, also 

caused, by the high temperatures, above 30℃ , experienced in the Limpopo Province, 

because of high respiration rate and water activity of farm produce (Maremera, 2014). 

Jangam et al. (2010) substantiated this by indicating that the rate of fresh produce 

deterioration increases two-to three-fold, for every 10˚C increase in temperature. Micro-

Figure 2.1 Food Losses variation across countries (after Gustavsson et al., 2011) 



    

12 

 

organisms, fungi, yeasts and moulds and bacteria, find conditions of high temperature, 

moisture, damaged produce and water activity conducive for survival. In addition, the yeasts 

and moulds contaminate food with diseases and parasites, which causes spoilage (Kitinoja 

and Kader, 2003; Munhuweyi, 2012; Folayana, 2013).  

 

Therefore, the drying of fruits and vegetables immediately after harvest eliminates the need 

for creating a conducive environment for maintaining product quality, because the reduction 

of water activity to less than 60% also reduces the chance of product infestation by micro-

organisms, mechanical damage and physiological deterioration (Kader, 2005; Maremera, 

2014). Table 2.1 summarises and highlights the most common primary and secondary causes 

of post-harvest losses.
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Table 2.1 Summary of the factors causing post-harvest losses 

 

Category Features Primary Causes Secondary Causes References 

Mechanical Injury Bruising, cutting, breaking 

and impact wounds 

Vibrations, Compression and 

impact damage. 

Unsuitable packaging, poor 

handling of produce before 

and during transportation. 

Kitinoja and Kader (2003); 

Salami et al., (2010); 

Munhuweyi, (2012). 

Physical Factors Softening and premature 

ripening 

Temperature and relative 

humidity 

Respiration rate 

Water activity 

Mashau et al. (2012); Kader 

(2005). 

Microbial Deterioration Discoloration, rotting and 

black spots 

Bacteria, Fungi, Insects and 

moulds. 

Diseases and Parasites Jangam et al. (2010); Salami 

et al. (2010); Munhuweyi 

(2010). 

Physiological Deterioration Undersize fruit and 

deformation 

Metabolism, growth and water 

loss 

Respiration, ethylene 

production 

Folayana (2013); Maremera 

(2014). 
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2.3 Fruit Preservation Methods 

 

Preservation technologies improve food security, by reducing post-harvest losses, to ensure 

food availability. Cooling, canning, efficient packaging technologies and drying are 

technologies used for the preservation of fruit. Cooling is a relatively expensive method and 

it is unaffordable for smallholder farmers, mainly due to the high-energy requirements to run 

the compressor. According to Mohammed (2004), canning requires more work and its 

energy requirements are higher than that of cooling. Furthermore, there is a growing 

resistance, to the use of chemicals for food preservation and energy intensive technologies 

and this has led to a renewed interest in drying.  

 

This simultaneous heat and mass transfer process takes place simultaneously to modify the 

physical and microstructure of fruit (Belessiotis and Delyannis, 2010; Mkhathini, 2014). 

Drying decreases the water content in fruit, this inhibits the development of the micro-

organisms and lessens the microbial and physiological deterioration process, hence ensuring 

product stability (Pavan, 2010). Research indicates that variables, such as the produce 

colour, texture, shape, size, porosity, density and shrinkage are affected during drying. This 

study intends to elucidate the variables that cause major changes during heat and mass 

transfer processes, when drying mangoes. 

 

2.4 A Review of Drying Principles and Factors Controlling the Drying Process 

 

2.4.1 Drying principles 

 

Drying is the evaporation of moisture from a crop. It is described as the simultaneous heat 

and mass transfer process. Drying reduces the moisture content of mangoes from 80-85% to 

12-18% (Schiavone, 2011). According to Correa-Hernando et al. (2011), the energy 

consumed during drying occurs during the evaporation of liquid water to vapour. This ranges 

between 0.43 -20.35 MJ.kg-1 and research indicates that the amount of energy required for 

drying of mangoes is 1.564 MJ.kg-1. The amount of heat required for drying is equal to the 

latent heat of the vaporisation of water, which is 2260 kJ.kg-1 (Leon, 2002; Schiavone, 2011). 

During drying, water from the produce surface evaporates first and then migrates from 

within the crop, as the crop absorbs the additional heat (Schiavone, 2011). Schiavone (2011), 
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describe these two processes as the constant and falling rate stages of drying, as shown in 

Figure 2.2. The driving mechanisms in the drying processes include surface diffusion, 

liquid/vapour diffusion and capillary action within the porous region of foods (Erbay and 

Icer, 2010). Several research studies have reported that the moisture removal from fruit is 

dominated, by diffusion (Doymaz, 2007, Duc et al., 2011; Hashim et al., 2014). 

 

Diffusion happens, when drying occurs in the falling rate period. Furthermore, fruit-drying 

process is in the falling rate period and sometimes has a slight constant rate period during 

initial stages of drying. The observations of a falling rate period during drying, were made 

in the drying of kiwi, lemon fruit and mango (Darvishi et al., 2013; Akoy, 2014). Serement 

et al. (2015) observed a constant rate for the first 5-10 minutes followed by a falling rate in 

drying of pumpkin. The process of drying ends when the moisture vapour pressure within 

the product is equivalent to the pressure of atmospheric moisture (Erbay and Icer, 2010). 

This is called the equilibrium state, where the moisture content of the wet material is in 

equilibrium with the surrounding air, at a given relative humidity and temperature. Studies 

indicate that only the physically held water is removed during the drying process. Equations 

2.1 and 2.2, indicate the moisture loss during the constant and falling drying rate periods, 

respectively.  

𝑚(𝑡) − 𝑚𝑐

𝑚𝑖 − 𝑚𝑐
= exp(−𝑘𝑡𝑐)                                                                                             (2.1) 

𝑚(𝑡) − 𝑚𝐸

𝑚𝐶 − 𝑚𝐸
= exp(−𝑘𝑡𝑐)                                                                                            (2.2)  

Where, m (t) (%) is the dry basis moisture content at any time, mc (%) is the moisture content 

at the end of the constant rate drying period, mi (%) is the initial moisture constant, mE (%) 

is the equilibrium moisture content, k (dimensionless) is the drying rate constant per minute 

and tc (min) is the drying time it takes to reach the constant rate period. 
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Figure 2.2  Drying rate curve (after Schiavone, 2011) 

Psychometry 

 

According to Schiavone (2011), ambient air is assumed to have a dry bulb temperature, as 

in Point One of Figure 2.3. As the ambient air is heated during drying, the relative humidity 

of the air remains constant until reaching the heated temperature, as in Point Two, where the 

humidity is reduced. Point 2-3 illustrate the removal moisture from the produce. The relative 

humidity increases, whilst the temperature reduces, because the drying air fills with water, 

which has evaporated from the crop. The air is reaching saturation at Point 3. The enthalpy 

remains constant during drying. 

 

 

Figure 2.3  Psychometric chart showing the drying process (after Schiavone, 2011) 

  

Water activity 
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Every food and agricultural product has a limit below which micro-organisms stop growing. 

The control of water activity of fruit is essential to minimize microbial deterioration of fruit 

(Sivasankar, 2009; Belessiotis and Delyannis, 2010). According to Jangam and Mujumdar 

(2010), the water activity influences the quality, safety, shelf-life, texture and flavour of 

food. The water activity is equal to the relative humidity of the surrounding air. 

𝛼𝑊 =
𝑅𝐻

100
                                                                                                                 (2.3) 

Where, 𝛼𝑊 (dimensionless) is the water activity, RH (%) is the relative humidity, as shown 

in Equation 2.3 (Sivasankar, 2009). According to Sivasankar (2009), bacteria growth is at 

𝛼𝑊 = 0.85, mould and yeast 𝛼𝑊 = 0.61, fungi is at 𝛼𝑊 < 0.70. Therefore, it is of vital 

importance for dried fruit to have water activity levels that will not allow for micro-organism 

to growth. 

 

2.4.2 Climatic factors influencing the drying process 

 

Relative humidity and temperature are reported to be the major factors influencing the rate 

of evaporation during the constant and falling rate periods of drying. Therefore, this study 

seeks to consider these factors, to establish their influence in the drying process. 

 

Drying temperature 

 

The greater the drying temperature difference between the food and the heating medium, the 

greater the rate of heat transfer during drying. In hot air drying the higher air temperature 

holds more moisture before reaching saturation, therefore the drying rates are relatively 

higher (Sivasankar, 2009). An average temperature of 60℃ is suggested for the drying of 

fruit such as mangoes. A temperature of 65℃, compared to 55℃, is also optimal for drying 

of mangoes, because it reduces the drying time from 210 min to 180 min (Goyal et al., 2006). 

Some researchers suggest a progressive temperature rise and others suggest an initial high 

temperature (Rahman, 2007; Jangam et al., 2010). 

 

 High temperature increases the drying rate by increasing the ability of air to hold moisture, 

therefore driving moisture to the surface rapidly. However, high temperatures above 80℃ 

affect the colour and texture of the fruit, depending on the thermal sensitivity of the fresh 

produce (Leon et al., 2002). According to Abdullahi et al. (2013), a relatively low 
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temperature at the beginning of drying causes product infestation by micro-organisms, 

before the produce is adequately dried. A temperature below 55℃ is suggested at the end of 

the drying process, to prevent the browning of produce (Schiavone, 2011). Therefore, 

elevated temperatures along, with increased airflow rates and reduced levels of relative 

humidity permit higher drying rates. Schiavone (2011) and Leon et al. (2002) indicated that 

these conditions only apply, if diffusion is the controlling process in water removal. Where 

there is a lower moisture content, the airflow rate is less important than the temperature. In 

this case, higher temperatures lead to a higher drying rate during the falling rate of the drying 

curve, as shown in Figure 2.2. 

 

Relative humidity 

 

This is the driving force for moisture transfer. As the temperature increases, the relative 

humidity decreases and the rate of drying increases (Huff, 2008; Jangam et al., 2010).  Air 

with a relative humidity of approximately 40% is preferred during drying (Rahman, 2007). 

Kaya et al. (2007) investigated drying parameters, with a relative humidity of 40%, 50% and 

70%. It was found that a decrease in relative humidity, with an increase in temperature and 

velocity, increases the diffusivity coefficient. Heating air increases the ability of air to hold 

moisture. According to Leon et al. (2002), this increases the thermal efficiency of the drying 

process.  

 

2.5 Drying Methods 

 

There are several types of dryers that are used for drying fruit. This study focuses on, hot air 

drying, microwave drying, freeze-drying and vacuum drying. 

 

2.5.1  Hot-air drying 

 

This is the one of the common methods of drying, where heated air is circulated by natural 

or forced ventilation through the moisture-filled product. It is used for drying piece-form 

fruits (Dirkbarsan, 2010). The operation temperatures range from ambient to 100℃ and 

electricity, solar or geothermal, are used as energy sources (Surat and Thorat, 2010). 

Research studies indicate that two- and four-stage hot-air drying is recommended, because 
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it increases the drying rate by approximately 24%. This also improves the product quality 

(Surat and Thorat, 2010). Hot-air drying methods includes, kiln dryers, fluidized bed dryers, 

cabinet tray dryers, tunnel dryers, pneumatic dryers, spray dryers and rotary dryers. Three 

hot air drying methods, namely, open-air solar drying, oven drying and modified solar drying 

using a tunnel/greenhouse dryer will be implemented, because of their popular use and 

applicability, with a cheaper energy source, such as solar energy.  

 

2.5.2 Freeze-drying 

 

This is a two-stage process, which involves, firstly, freezing of the water in the food materials 

and then application of heat, so that the ice can be directly converted to vapour. A partial 

vacuum is created to allow for sublimation of ice. Freezing is done at temperatures of 

between -50℃ and -80℃ , while the heating temperatures can range between 10–50℃ (Surat 

and Thorat, 2010). Literature studies indicate that this method has preference, because it 

retains the product’s structure. However, its application is limited for small-scale operations, 

as it is relatively expensive. Therefore, freeze-drying was not considered for this study, 

because the purpose is to create a solution that will be affordable for small-scale farmers 

producing a relatively large amount of produce and that is simple to use. 

 

2.5.3 Microwave drying 

 

Feng et al. (2012) described microwave drying, as the exposure of produce to high frequency 

electromagnetic waves. The frequency range is from 300 MHz to 300 GHz, with a 

wavelength of 1 mm-1 m. The dielectric heating of produce results in rapid energy coupling 

into the water, leading to fast heating and drying (Dirkbarsan, 2007; Feng et al., 2012). The  

main advantage of microwave drying is that it reduces the drying time four to eight times, 

compared to other drying methods. This is because the product loses internal water faster. 

However, there is a limit to the use of microwave drying, as it heats produce non-uniformly. 

Therefore, microwave drying is used to enhance other drying methods, such as hot-air 

drying. In addition, microwave-assisted vacuum drying is reported to be one of the most 

successful applications in food drying operations (Feng et al., 2012). However, the cost is 

relatively high and the magnetron has a short lifespan. In addition, the adaptability of this 

technology is limited by a lack of understanding of the operation. This study did not adopt 
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microwave drying because it has a relatively high capital and running cost for purchasing 

magnetron.  

 

2.5.4 Vacuum drying 

 

Vacuum drying is used for drying heat-sensitive fruit and vegetable. The process is done at 

a pressure less than 100 kPa, at different temperatures (Surat and Thorat, 2010). According 

to Cheenkachorn (2007), creating a vacuum in the dryer causes a lower boiling point, so that 

water can evaporate at a low temperature. A lower drying temperature causes a lower rate of 

oxidation, which results in an improvement of produce quality. This method, however, 

requires high capital and operational costs, to ensure that the pumping system for the vacuum 

runs smoothly. Therefore, it was not considered as a solution for this study, because it is 

relatively expensive and requires the control of pressure and temperature. Furthermore, the 

operation of the vacuum dryer requires certain specialised operating skills. 

 

2.6 Classification of Solar Dryers 

 

Solar dryers transfer the radiation, either directly or indirectly, to the product. This section 

reviews the two different classes of solar dryers, based on how the produce receives 

radiation.  

 

2.6.1 Open-air uncontrolled solar drying 

 

Open-air uncontrolled solar drying is a common preservation method used for agricultural 

products in tropical and subtropical countries. It is usually applied where outdoor 

temperatures are usually 30℃ or higher (Akarslan, 2012; Paul and Singh, 2013). The crop is 

spread out in open sunlight on the ground, on floors or roofs and is usually turned once or 

twice daily (Jairaj et al., 2009; Paul and Singh, 2013). The solar radiation that is absorbed in 

the crop converts it, to thermal energy. The increase in the temperature results in moisture 

evaporation from the crop, which causes the drying, as shown Figure 2.4.  

 

According to Hossain et al. (2007), the drying rate in open-air uncontrolled solar drying is a 

relatively low and this increases the drying time. Pangavhane and Sawhney (2002) showed 
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that pre-treated grapes require nine to ten days, while, Mercer (2012) took five days to dry 

5 mm thick mango fruit. Open-air uncontrolled solar drying has relatively low running costs, 

because it only requires labour. Product quality is compromised and does not meet either 

national or international standards (Mustayen et al., 2014). This is because the produce is 

susceptible to infestation by foreign materials, such as dust, insects and micro-organisms. In 

addition, there is discolouration from ultraviolet radiation and there is the chance of 

insufficient drying, or over-drying (Falgari et al., 2008; Sharma et al., 2009; Mustayen et al, 

2014). Because of its popularity and the lack of control of the drying parameters, this study 

will consider open air uncontrolled solar drying as a control experiment. 

 

Figure 2.4 Illustration of the working principle of open-air uncontrolled solar drying (after 

Tiwari et al., 2016) 

 

2.6.2 Direct solar dryers 

 

In direct type solar dryers, the produce is exposed to the sun’s rays. The produce is placed 

in a chamber that used as a collector (Ogunkoya et al., 2011; Eswara and Ramkrishnarao, 

2013). Akarslan (2012) indicated that it differs from open-air uncontrolled solar drying, 

because a transparent material covers the produce. This reduces the direct convective losses 

to the surrounding and increases the drying temperature (Jairaj et al., 2009; Akarslan, 2012). 

Direct-type solar dryers typically consist of a drying chamber that is made of glass or plastic, 

as shown in Figure 2.6. The produce is placed in a perforated tray that allows air to flow 

through the fresh produce (Wakjira, 2010; Eswara and Ramkrishnarao, 2013; Toshniwal and 

Karale, 2013). The different types of direct solar dryers include solar cabinet dryers, 
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greenhouse dryers, staircase dryers and glass roof dryers. These dryers are successful for 

drying small amounts of high moisture produce, such as mangoes, pineapples, bananas and 

carrots (Schiavone et al., 2013). In addition, a greenhouse solar dryer is an attractive 

solution, for drying large quantities of produce of up to 1000 kg (Tiwari et al., 2016). 

According to Ramana (2009) and Belessiotis and Delyannis (2010), the initial cost is 

relatively low, therefore more than 80% of smallholder farmers use this type of dryer. 

However, it requires the frequent turning, of the produce for uniform drying, because the 

essential component of the product is affected by radiation (Schiavone et al., 2013). 

 

This study considered modifying a greenhouse dryer for drying large quantities of produce, 

to promote the upscaling of production by smallholder farmers. Experiments were carried 

out and successful implementation was achieved in India, Thailand, Turkey, Uganda and 

Australia, for drying fruit, vegetables and herbs. It took four to seven days to dry 1000 kg 

grapes in a solar greenhouse dryer to a moisture content of about 9% (Tiwari et al., 2016). 

Schirmer et al. (1996) evaluated a greenhouse solar dryer and found that it took three to five 

days to dry banana in temperatures ranging from 40-65˚C, and it took five to  seven days 

when drying under open-air conditions. In addition, the essential changes required for 

improving a greenhouse solar dryer are simple and economical. This study intends to 

evaluate a modified greenhouse solar dryer under South African conditions. 

 

 

Figure 2.5 Illustration of the working principle of a direct solar dryer (after Tiwari et al., 

2016) 

 



    

23 

 

2.6.3 Indirect solar dryers 

 

In direct dryers, the sun does not act directly on the material that is to be dried. According 

to Akarslan (2012), the crop is placed in trays or shelves inside an opaque drying chamber 

and heated by circulating air, which is warmed during its flow through a solar collector, as 

shown in Figure 2.6. They are used for some perishables and fruits. The vitamin content of 

the product is reduced considerably by the direct exposure to sunlight (Belessiotis and 

Delyannis, 2010).  Indirect solar dryers have a higher drying rate than direct solar dryers and 

open sun dryers, because of the higher operating temperatures. Nahar (2009) tested the direct 

and the indirect solar dryers on onions, tomatoes, turmeric, coriander, okra and mints. It was 

found that it took 20% more time to dry, when using a direct dryer, compared to an indirect 

dryer. The limitation, however, is that indirect solar dryers require a large capital investment 

and higher maintenance costs than direct dryers (Belessiotis and Delyannis, 2010). A typical 

indirect solar dryer consists, of insulated ducting, a drying chamber and a solar collector. 

This study did not consider an indirect type solar dryer because of the increased capital costs 

and relatively low drying capacity associated with implementing the dryer. 

 

 

 

 

 

 

 

 

 

 

 

 

2.7 Comparison of Natural and Forced Ventilation Solar Drying systems 

 

Naturally-ventilated solar dryers have natural air circulation. Forced ventilation utilises a fan 

for air circulation (Hii et al., 2012). Natural convection solar dryers improve the drying time 

Figure 2.6 Illustration of the working principle of an indirect solar dryer (after Tiwari et al., 2016) 
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by 30-40%, compared to open sun drying (Berinyuy et al., 2012). However, they have a 

lower drying capability than forced convection dryers do. Therefore, forced ventilation 

dryers are preferred for large-scale commercial operations, because the drying parameters 

can be varied (Sharma et al., 2009). Availability of drying technology for commercial 

operations has led to limited research on suitable options for small-scale farmer operations. 

When comparing the performance parameters as shown in Table 2.2, it was found that the 

efficiency of the drying systems is almost the same, however, the drying time differs. 

Research studies indicate that a reduction of the drying time significantly retains product 

quality, in terms of the colour and reconstitution properties. Khazaei (2006) found that the 

drying time for forced convection is 55% shorter than natural convection drying, as shown 

in Figure 2.7. In conclusion, forced convection is a better option than natural convection 

drying systems. However, the capital cost increases, because of the fan, which requires a 

relatively high running cost. This study intends to improve air circulation in natural 

ventilation by using a wind ventilator, so that the dryer can be cost-effective. 

 

 

Figure 2.7 Drying time of forced convection and natural convection drying (after Khazaei, 

2006) 
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Table 2.2 Comparison of the performance parameters of natural and forced convection solar dryers 

 

Type of dryer Produce (mass, 

kg) 

Relative humidity 

(%) 

Temperature (℃ ) Velocity (m.s-

1)  

Average solar 

radiation 

(W.m-2) 

Drying period (hrs) Efficiency (%) References 

  Initial Final Ambient Average      

Forced 

convection 

Mushroom (160) 89.41 15 37 66.5 0.2 273-885 8 34.6 Bala et al.(2009) 

 Forced 

convection 

Moringa leaves 80 10 25 46.5 5.37 320  

      

24-30 25 Amedorme et al., 

(2013) 

Forced 

Convection 

Mango 85 10    - 60, 50 and 

44 

0.5    - 8.8, 11.6 and 13.2 - Mercer (2012) 

Natural 

convection 

Mango (9.80 ) 84 11.1 34 69 0.49 319 39 29.5 Schiavone (2011) 

Natural 

Convection  

Mango (100 ) 81.4 10 30 70 2 231.5 20 30 Akoy (2014) 

Natural 

convection 

Tomato, mango, 

fresh okra, carrot 

and onion (10) 

93, 88, 

88, 88 

and 87 

4, 6, 4, 5 

and 6 

31.4 49.9, 50.5, 

52.29, 49.9 

and 51.17 

1.32 570 34, 36, 28, 35 and 30 - Eke (2013) 
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2.8 Improving the Efficiency of Solar Dryers 

 

As noted in the previous section, natural ventilation solar dryers are not efficient because 

they have a lower drying rate than forced ventilation driers. Therefore, if several innovative 

features are implemented , they can improve their efficiency, for example,  incorporating a 

wind ventilator, a chimney, and the use of heat storage, as described in the sections below. 

 

2.8.1 Wind ventilator 

 

A wind ventilator runs on wind only and creates the necessary draught that maintains a good 

airflow inside the solar dryer. Chandak et al. (2006) found that dryers underperform when 

naturally ventilated and a wind ventilator enhances their ventilation rates. A wind ventilator 

induces ventilation, by drawing out hot air from the dryer. The wind blows on the vanes, 

which causes the ventilator to rotate and the rotation causes a negative pressure inside the 

ventilator, which extracts the air (Khan and Riffat, 2008). Bolaji and Olasusi (2011) 

substantiated this by evaluating the performance of a solar cabinet dryer, with a wind 

ventilator. The efficiency of the solar dryer with a wind ventilator was 46.7%, without a 

ventilator, it was 31.2%. Therefore, this study will include a wind ventilator, in order to 

improve air the ventilation inside the dryer. 

 

2.8.2 Solar Chimney 

 

A solar chimney is another way of improving the ventilation rate in naturally-ventilated 

dryers. This also prevents stagnation of air inside the dryer, by drawing out air from the dryer 

(Chen and Qu, 2014). A solar chimney consist of an internal absorber wall, which uses 

radiant energy to heat up the air in the chimney. It operates by increasing the buoyancy force, 

which is directly proportional to the difference between the mean air density within the 

chimney and the density of the outside air. In addition, the airflow, temperature and velocity 

at the outlet of the chimney also increase. Buchinger and Weiss (2002) indicated that solar 

chimneys have shown success in areas where the heated air is between 10-30℃. Solar 

chimneys are applicable to forced ventilation dryers because of the pressure difference, 

which then improves their performance. Consequently, the chimney with natural ventilation 
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may not have any significance. As a result, a solar chimney will not be considered for this 

study. 

 

2.8.3 Heat storage 

 

Thermal heat storage either in the, form of sensible heat or latent heat also enhances the 

performance of solar dryers. The recovered solar radiation is used during low sunshine 

periods. Common applications of sensible heat are a gravel bed, sand, clay and concrete 

(Mohanraj and Chandrasekar, 2009). Heat storage maintains a consistent drying temperature 

and improves the drying rate. Berinyuy et al. (2012) evaluated the natural ventilation solar 

dryer, with heat a storage provided by crushed basalt rocks. The drying rate improved by 30-

50%, compared to open-air uncontrolled solar drying. Thermal storage was not considered 

in this study because it is complicated and it requires skilled labour to operate the system. 

This is not an added advantage, as the prototype should be simple in design and operation. 

 

2.9 Electrical Energy for Drying Agricultural Products 

 

South Africa relies on Eskom for its energy production and provision. Eskom produces 95% 

of the energy, of which approximately 77% is produced from coal. Taylor (2009) indicated 

that the dependence on coal-based power stations has resulted in an annual per capita 

greenhouse gas emission rate of about 10 tons per year, which is 43% above the world 

average. This contributes significantly to climate change. Furthermore, the energy sector 

alone contributes about 60% to greenhouse gases (Khan et al., 2015). Reports show that 30% 

of South Africans have no energy supply (Taylor, 2009). 

 

Furthermore, the problem of energy supply persists, because in 2008 and 2015, Eskom 

declared that it could no longer meet the peak national electricity demand. According to 

Maasdam (2008), this has led to a 350% electricity tariff increase between 2008 and 2016. 

As a result, electricity costs have become a burden for the food processing industry, 

including drying. According to Jangam et al. (2010) and Tchaya et al. (2014), the energy 

consumption for an industrial air-drying process ranges from 10-25% of the total industrial 

energy demand. Thus, running electricity dependant operations is not feasible and 

sustainable. Furthermore, to reduce greenhouse gas emissions, there is a need to use 
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sustainable sources of energy to run energy-dependant operations, such as dryers. According 

to Sharma et al. (2009), many countries of the world use solar thermal systems in agriculture 

for the preservation of fruit. This is a practical, economical and an environmentally-friendly 

approach. The perception is that the modified solar drying of fruit improves the quality of 

the produce, compared to open-air uncontrolled solar drying and it contributes to the 

reduction of post-harvest losses (Wankhade et al., 2012). Therefore, solar energy is one of 

the best alternatives for use in drying operations in South Africa. 

 

2.10 Solar Energy Availability in South Africa 

 

Solar energy is a source of renewable energy, which is attributed to sunlight. The energy 

emitted is from the sun’s radiation (Duffie and Beckman, 1991; Bradford, 2006). Solar 

energy represents the largest source of renewable energy, compared to solid biomass, biogas, 

hydro, CSP, wind and geothermal sources. The sun emits energy at a rate of 3.8 x 1023  kW, 

of which 1.8 x 104 kW is intercepted by the earth (Timilsina et al., 2012; Tyagi et al., 2012). 

The average solar radiation in South Africa ranges from 4.5 kWh.m-2 – 6.5 kWh.m-2 , for an 

average of six to seven hours, as shown in Figure 2.8 (Fluri, 2009; van Vuuren et al., 2017).  

 

According to Saxena et al. (2013), this is enough radiation to be converted to heat, or 

electricity for thermal and electrical applications. The potential for the application of solar 

energy is its preservation of horticultural commodities, such as fruit through cool storage 

and drying. This is achieved by the conversion of solar energy to electricity for powering 

refrigerators, evaporative coolers and providing heat energy for drying. This study will focus 

on the thermal application of solar energy. This is where solar radiation is absorbed by a 

working fluid, which can either be water or air. Solar dryers incorporate collectors, to absorb 

the radiation into the working fluid/air. 
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Figure 2.8 Average annual solar radiation of South African Provinces (after Fluri, 2009) 

 

2.11 Drying Pre-treatments  

 

The recent trend in modern food technologies is to minimize nutrient degradation during the 

processing and storage of fruit (Marfil et al., 2008). In drying particularly, there is an interest 

in the enzymatic activity, which result in browning (Salunke et al., 1991; Marfil et al., 2008, 

Sagar and Suresh, 2010). This is mainly, because light-coloured fruits, such as mangoes, 

apples, peaches and pears darken rapidly when cut and exposed to air. Non-enzymatic 

reaction, such as the maillard reaction, caramelisation and the oxidation of ascorbic acid, 

lead to the browning of fruit (Sivasankar, 2009).  In order to slow down the reactions, several 

studies recommend the use of pre-treatments.  

 

Pre-treatments are techniques used to preserve the quality of fruit during drying. Pre-

treatments prevents enzymatic activity, which would results in colour change, loss of flavour 

and nutritional quality (Barbosa-Cánovas et al., 2003; Workneh et al., 2014). Furthermore, 

several studies have shown that pre-treatments reduce the drying time (Kingsley et al., 

2007). Alternately, several chemical physical methods, such as sulphating, blanching, fruit 

juice and ascorbic acid have been used to pre-treat fruit during drying (Mohammed, 2004; 

Kingsley et al., 2007; Tettey, 2008; Lewicki, 2009; Sagar and Suresh, 2010). 

 

 



 

30 

 

2.11.1 Sulphating 

 

Sulphating is one of the oldest chemical pre-treatment methods. The common and 

commercially-used pre-treatment is potassium bisulphate (Doymaz, 2004). Sulphites are 

oxidants that prevent or reduce the discolouration of light-coloured fruit, by hindering 

enzymatic and non-enzymatic reactions. The fruit is soaked in the solution for 5-30 minutes 

before drying (Lewicki, 2009). Research studies have found that pre-treatment conserves the 

shape and shrinkage volume of produce during drying. It was found that sulphite pre-

treatment increased the weight during the drying of apples and peaches. Furthermore, Tettey 

(2008) found that consumers preferred pre-treated dried mango due to colour, mouth feel 

and texture preservation. The challenge with using sulphites as a pre-treatment, is that it 

poses a hazard to humans, specifically those with ulcers. 

 

2.11.2 Blanching 

 

Blanching is the most popular physical pre-treatment method, which precedes drying. It 

inactivates enzymes and softens fruits. As a result, it reduces the drying time. Water or steam 

is used for blanching (Nisperos-Carriedo et al., 1988; Lewicki, 2009). A study by Kim et al. 

(1989) showed that treated apples blanched at 40-50°C had increased firmness, compared to 

untreated samples. However, research studies indicate that blanching increases the water 

permeability of fruit (Sivasankar, 2009). Consequently, the constant drying period is 

elongated and the drying rate reduces (Kingsly et al., 2007; Sagar and Kumar, 2010). 

Furthermore, blanching results in the leakage of solubles from the fruit to the surrounding 

water, affecting the drying rate (Lewicki, 2009). 

 

2.11.3 Fruit juice 

 

Fruit juice, which is high in Vitamin C, is used as a pre-treatment. Sources of juice include 

oranges, lemons, pineapples, grapes and cranberries (Wolf et al., 1990; Mohammed, 2004). 

The fruit juice slows down the reactions between the oxygen in the air and the chemicals in 

the fruit. Furthermore, it adds flavour to the fruit (Mohammed, 2004). The soaking of fruit 

in a fruit juice for three to five minutes is an effective pre-treatment. Lozano-de-Gonzalez et 

al. (1993) and Meza et al. (1995) obtained promising results with pineapple and lemon juice, 
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demonstrating that it can be used, as an alternative to sulphates. Abano et al. (2013) showed 

that dried mango treated, with lemon juice had a relatively high overall acceptancy (15%) 

during a sensory analysis, compared to samples treated with ascorbic acid (20%) and salt 

(0%). Therefore, lemon juice pre-tretment is applied in this study, due to less effect on human 

health. 

 

2.12 Quality Parameters 

 

Quality is the sum of all desirable attributes, which make food acceptable for consumption. 

Quality attributes may be categorised into physical, sensory and chemical properties. Colour, 

flavour, fragrance, taste and nutritional properties are the attributes that make mangoes a 

popular crop in international markets (Sivakumar et al., 2011). This section summarises the 

properties used to assess the quality of fruit, such as mangoes.  

 

2.12.1 Physical properties 

 

The physical properties of a fruit are observable attributes that consumers are initially 

exposed to and, therefore, they influence the consumer’s decision to purchase the fruit. Fruit 

colour and firmness are the main physical properties used in illustration of fruit physical 

properties. 

 

Colour 

 

Colour is an important quality attribute for consumers as well as for the fruit and processing 

industry. According to Pathare et al. (2013) in practice consumer associates a pleasant 

flavour with an attractive colour. Colour is a measure deterioration of fruit quality during 

thermal processes such as drying (Pathare et al., 2013). The skin colour of a fruit is an 

important indicator of initial stage of fruit ripeness (Shewfelt and Henderson, 2003; Pathare 

et al., 2013). The most common technique of measuring colour is a colorimeter or 

chromameter, which uses mostly the CIELAB (Commission Internationale de I’Eclairage 

L*, a*, b*) colour system. It uses a three-dimensional colour coordinate system, which 

presumes that a human eye has three colour receptors (red, green and blue) and all other 

colours are a combination of the three (Pathare et al., 2013). The CIELAB colour system 
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therefore as shown in Figure 2.10, provides a good discrimination for saturated colours, as 

in the case of fresh and dried fruit (Perumal, 2007). The L* refers to the lightness of the 

sample and ranges from black (zero) to white (100), a* indicates the range of colours red (+) 

and green (-) and b*, indicates the range of colours yellow (+) and blue(-) (Maskan, 2001). 

The total colour change (∆E), chroma (C) and hue angle (H) are important indicators of the 

fruit colour changes that occur during drying and are  calculated from using Equations 2.1-

2.3(Maskan, 2001; Pathare et al., 2013; Akoy 2014). 

 

∆𝐸 = √(∆𝐿∗)2 + (∆𝑎∗)2 + (∆𝑏∗)2                                                                               (2.1) 

𝐶 = √(𝑎)2 + (𝑏)2                                                                                                            (2.2) 

   𝐻𝑢𝑒 𝑎𝑛𝑔𝑙𝑒 = 𝑡𝑎𝑛−1 (
𝑏

𝑎
)                                                                                                          (2.3) 

 

In thermal processes, colour assess the formation of browning. Several studies show that 

browning is more prominent in the drying of fruit. It induces several reactions, such as 

pigment degradation (especially carotenoids), maillard reactions and the oxidation of 

ascorbic acid (Sivasankar, 2009; Korbel et al., 2013). The maillard reaction and oxidation 

of ascorbic acid have been shown to produce a yellow-brown colour in mangoes dried at 

high temperatures (Chong et al., 2013).  

 

 

Figure 2.9 The CIELAB colour coordinate system (after Pathare et al., 2013) 
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Firmness 

 

The firmness of a fresh produce is an important textural property to determine the quality. 

The common methods of assessing the firmness include applying of deforming forces, using 

puncture or compression (Abbott, 2004). These are methods which measures the force 

required to punch a probe into a fruit product. It is recommended to use the puncture and not 

the flat-plate compression for fresh fruit (Lana et al., 2005).  

 

2.12.2 Sensory properties 

 

Sensory properties describe the eating quality of the fruit. This section highlights flavour 

and colour as sensory attributes used to determine quality of mango fruit.  

                                                                                                                                         

Flavour 

 

Flavour is a result of perception by the taste buds in the mouth (Rathore et al., 2007; Saeed 

et al., 2007). Aroma, taste and chemical mouth-feel factors contribute to flavour and these 

are affected by thermal operations, such as drying (Meilgaard et al., 2007). Flavour is a 

product quality measure, perceived directly by consumers. A descriptive sensory analysis, a 

consumer test and preference mapping are the methods used for sensory analysis. Lawless 

and Heyman (2010) describe descriptive analysis as a method that provides a quantitative 

description of all the sensory attributes of food. The basis of a descriptive analysis is on 

perceptions of a group of qualified assessors.  

 

A consumer test assesses whether consumers like a product, prefer it to another product, or 

find the product acceptable, based on its sensory characteristics (Tenenhaus et al., 2005). 

Preference mapping indicates the sensory characteristics that contribute to the consumer 

liking a particular food product (Murray et al., 2001). A Consumer test is of particular 

interest for this study because it is necessary to find the acceptability of the dried mango 

produced  using the selected drying methods. Mongi et al. (2013) conducted a consumer test 

to assess the effect of drying methods on the mango fruit. The test was carried out with 78 

untrained panellists who assessed the colour, mouthfeel and overall acceptability of dried 

mango. A 9-point hedonic scale (where one = extremely dislike and nine = extremely like) 
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was used for scoring. Solar dried samples scored the lowest values, compared to samples 

dried under a solar tunnel drier. 

 

2.12.3 Chemical properties 

 

Total soluble solids 

 

Total soluble solids (TSS) are an important indicator, of the maturity and quality of fruit 

(Guthrie et al, 2005). Sugars, such as fructose, sucrose, and glucose are the main component 

of TSS, containing a major portion of the dry matter content of fruit (Parker and Maalekuu, 

2013). Fruit with low TSS has poor sensory qualities (Meilgaard et al., 2007). In the 

processing of fruit, TSS is essential to substantiate the level of maturity before processing.   

 

Rehydration 

 

Pre-treatments during drying as well as drying conditions induce structural and 

compositional changes in food (Perumal, 2007). Rehydration behaviour is a quality measure, 

because it measures the damage in fruit, which is induced during drying (Lewicki, 2009).  

Rehydration is the ability of a fruit to reabsorb water after drying. The denaturing of proteins 

during drying processes, leads to a lower dehydration ratio, due to the product’s inability to 

reabsorb water (Perumal, 2007). Oloruda et al. (1990) reported that tomatoes dried at lower 

temperature (60˚C) take in more water than those dried at 70˚C and 80˚C. Sacilik et al. 

(2006), reported that the rehydration of solar tunnel dried tomato was higher (3.15) than 

open-air uncontrolled dried tomato (3.10). Perumal (2007) investigated the rehydration ratio 

of tomato slices, of 4, 6 and 8 mm thickness dried under open-air uncontrolled solar drying 

and a vacuum-assisted solar dryer. The rehydration ratio was higher for the thicker (8 mm) 

slices. Therefore, higher drying temperatures, drying method and the thickness of dried 

product have an effect on the rehydration ratio. 

 

2.13 Microbial Properties 

 

Microbial activity accounts for the post-harvest decay of fruit by up to 15% (Workneh and 

Oke, 2012). The presence of micro-organisms, mainly anaerobic bacteria and fungi 
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significantly reduces the quality. Fresh fruit is a significant source of plant and human 

pathogens (Gultie and Sahile, 2013; Tasirin et al., 2014). Bacteria, yeast and moulds are 

micro-organisms, which thrive in fresh fruit. Therefore, drying has been demonstrated to 

reduce the microbial activity in fruit. Hence, dried fruit should carry acceptable levels of 

micro-organisms (Ntuli et al., 2017).  

 

2.14 Modelling of drying process 

 

The mathematical modelling of the drying process of agricultural produce allows for the 

prediction of their behaviour during the drying process. Thin-layer drying models, such as 

the Exponential, Henderson and Pabis, Two-term, Logarithmic, Page, Thompson and Wang 

and Sing models, as describe in Table 2.5 (Belessiotis and Delyannis, 2010). In these models, 

the experimental Moisture Ratio (MR) is termed by the Ficks diffusion Equation 2.4: 

𝑀𝑅 =
𝑀𝑡 − 𝑀𝑒

𝑀𝑖 − 𝑀𝑒
= 𝑒−𝑘𝑡                                                                                      (2.4) 

Where MR (dimensionless) is the moisture ratio, Mt (%) is the dry basis moisture content at 

any time, Mi and Me (%) are the initial and equilibrium dry base moisture content, k 

(kg.min1) is the drying rate constant per minute and t (min) is the drying time. To select a 

model that best describes the drying process, the correlation coefficient (R2) is the primary 

criteria used. The reduced chi-square (𝑋2) and the root mean square (RMSE) are used to 

determine the quality of the fit. Deshmukh et al. (2014) tested a mixed mode solar cabinet 

dryer for drying freshly-harvested ginger from a moisture content of 61.50%, to a moisture 

content of 12.19%.  

 

Drying curves showed that drying occurred during the falling rate period and no constant 

period was observed. The data was fit in five thin layer-drying models and the Page model 

was more suitable in describing the drying kinetics of ginger in a solar dryer, under natural 

ventilation. Darvishi et al. (2013) tested a laboratory scale microwave-convective dryer for 

green peppers, at microwave power of 180, 360, 540 and 720W. The moisture reduction was 

from 2.894 to 0.1 kg-1 dry matter. The drying data fit to the drying the models and the Midilli 

Model was a best fit to the experimental data. It had the highest R2 of 0.927, and the lowest 

RMSE of 0.2065 and X2 of 0.0555. Akpinar et al. (2004) tested parsley leaves in a forced 

convention solar dryer, with an airflow rate of 1 m.s-1 and temperatures of 56, 67, 85 and 

93℃ and open-air uncontrolled solar drying. The drying process took place in the falling rate 
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period. The drying data was fit to ten drying models. In comparing the coefficient (R), 

reduced chi-square (X2) and the root mean square error (RMSE). The Page Model was the 

best fit for forced convection dryer and the Verma Model was best fit for open-air 

uncontrolled solar drying.  This study intends to fit in four drying models on the drying data 

to illustrate the drying process of mango fruit. As illustrated in the above studies models 

have been successful in describing optimal conditions for operating dryers, as well as the 

drying process. 

 

Table 2.3 Selected thin layer-drying models 

Model name Model Equation References 

Lewis  𝑀𝑅 = exp (−𝑘𝑡) Deshmukh et al., (2014) 

Page 𝑀𝑅 = exp (−𝑘𝑡𝑛 Wang et al., (2007) 

Henderson and 

Pabis 

𝑀𝑅 = 𝑎𝑒𝑥𝑝(−𝑘𝑡) Motevali et al., (2011) 

Midili 𝑀𝑅 = 𝑎𝑒𝑥𝑝(−𝑘𝑡𝑛) + 𝑏𝑡 Midilli et al., (2002) 

MR (dimensionless) is the predicted moisture ratio, k (hr-1) is the drying constant, t (hr) is 

the drying time and a, b, n are drying model coefficients. 

 

2.15 Discussions and Conclusions 

 

The South African population is increasing rapidly. Estimates by STATS SA indicate that 

the population will be at 82 million people by 2035. Agriculture is the basis of food 

production and therefore the activities need to meet the food demands of the rapidly growing 

population. Smallholder farmers are able to produce more than their immediate consumption 

needs. However, they experience high post-harvest losses, which can be up to 50% (Mashau 

et al. 2012; Maremera, 2014). The population demands can be met if these losses are 

significantly reduced. Consequently, much research has focused on conventional drying 

technologies, such as freeze drying, microwave drying and vacuum drying to improve the 

shelf-life of fresh produce and to reduce post-harvest losses.  

 

However, the available technology is not affordable for smallholder farmers, because of the 

high capital and running costs. The energy scarcity and high electricity tariffs experienced 

in South Africa also limit the resource-poor farmers from attaining such technology. The use 
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of solar energy as an alternative energy source to electricity could be a solution, because it 

offers renewable and sustainable energy. Therefore, this study proposes to develop a 

modified ventilation solar dryer. Research studies indicate that drying prevents the effects 

of microbial activities, physiological deterioration and the further handling of produce, 

which cause mechanical injuries. 

 

South Africa receives enough solar radiation that can be used for energy-intensive processes, 

such as drying (Rajkumar, 2007; Fluri, 2009; van Vuuren, 2017). Smallholder farmers 

commonly use open-air uncontrolled solar dryers globally. However, research studies show 

that they alter the nutritional structure of fruit, thus producing low quality produce that is not 

acceptable for human consumption, according to national standards (Rajkumar, 2007; Ntuli 

et al., 2017).  Freeze-drying, microwave and vacuum dryers are more efficient than open-air 

uncontrolled solar dryers. However, they are not affordable for the farmers, because they 

either require a high level of expertise for operation or a high capital and running cost. 

Modified solar drying is an improvement to open-air uncontrolled solar drying and consists 

of a collector and a drying chamber. Using a greenhouse is a feasible solution, as it allows 

for drying produce up to 1000 kg.  

 

Literature studies have found that naturally-ventilated solar dryers have a lower drying rate 

than forced ventilation dryers. Supposedly, this contributes to the quality of produce being 

compromised (Akoy, 2014). Therefore, innovative options, such as the use of thermal 

storage, a solar chimney and a wind ventilator were considered, to improve the drying time 

and rate. A wind ventilator is an option that could be beneficial for a naturally-ventilated 

system. The study has identified a research gap in solar drying, which will improve the 

system’s performance and be beneficial for smallholder farmers. Furthermore, studies on 

comparison of the popular drying methods used in South Africa still lag behind, specifically 

in mango drying. The drying process will be analysed, by using models to establish the 

optimal drying conditions. Therefore, this study will also fill in a research gap in illustrating 

the drying characteristics and the quality characteristics of dried mango. 

 

The literature review showed that developing a solar dryer with improved ventilation could 

be a solution that would benefit mostly smallholder farmers. These are usually resource-poor 

farmers who are dependent on agriculture for the improvement of their livelihoods. 



 

38 

 

However, they are not necessarily able to meet their livelihood needs because they are not 

able to make a profit from all fresh produce sales. Preservation by drying will provide a 

simple technology. It may also provide new business ventures and opportunities to filter 

through the local fruit markets. 
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3. THE EFFECTS OF HOT-AIR DRYING METHODS ON THE 

DRYING OF MANGO CHARACTERISTICS AND MODELLING 

 

Abstract 

 

Mango (Mangiferia indica L.) is an important fruit in South Africa. It is harvested once-off 

during the summer months. Due to a lack of appropriate, effective preservation technologies, 

most resource-poor smallholder farmers experience relatively high post-harvest losses of 

their produce. Drying is a heat and mass transfer process wherein there is a transfer of water, 

by diffusion, from inside the food material to the air-food interface and from the air-food 

interface to the outside air, simultaneously; by convection. Improved solar drying generates 

relatively high temperatures, has a low relative humidity, a short drying period and is 

relatively inexpensive. In addition, research shows that an enhanced solar dryer, such as a 

modified ventilation solar dryer, shortens the drying time by 65% when compared to open-

air uncontrolled solar drying. This study investigated three hot air drying methods to evaluate 

the drying characteristics of mango. These include oven drying (OVD), open-air 

uncontrolled solar drying (OAD) and modified ventilation solar drying (MVD). Mango 

samples of 3 mm, 6 mm and 9 mm slice thickness, with and without lemon juice pre-

treatment were dried from a moisture content of 79±1.6%wb to 10±0.9%wb. The study 

findings showed that the drying time and drying rate were significantly (P<0.05) affected by 

mango thickness. In all drying methods thinner slices dried for a shorter period, mango slices 

of 3 mm thickness took 3 hours in OVD, 4 hours in MVD and 11hours in OAD, compared 

to the 6 mm thickness which took 4.5, 9 and 14 hours for OVD, MVD and OAD, 

respectively. The 9 mm thickness mango took 9, 14 and 20 hours for OVD, MVD and OAD, 

respectively and had the longer drying times. Pre-treatment did not have an effect on the 

drying time and drying rates. Most of the drying took place at the falling rate period and a 

constant drying rate was observed for 9 mm slices dried in OVD. Four mathematical models 

were tested to estimate the drying coefficients by the non-linear regression method, for both 

drying methods to find the best fit of the moisture ratio models. The Midilli et al. model was 

the best model for predicting the moisture ratio of mango slices dried using OAD, MVD and 

OAD, based on statistical parameters R2, x2and RMSE.  

 

Keywords:  Drying rate, drying time, thickness, pre-treatment, drying model, moisture 
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3.1 Introduction 

 

Drying is a post-harvest process that preserves fruit. In South Africa, the price of dried 

mango remains relatively high, even during the harvesting season. Hence, drying is an 

alternative preservation technology that could assist mango farmers in making profitably 

sound businesses. Open-air uncontrolled solar drying is a popular thin-layer drying method 

used for the preservation of fruit. It is a direct method of drying, whereby the commodities 

are exposed to ambient air conditions and direct sunlight. The material absorbs the solar 

radiation (Elkhadraoui et al., 2015). Several research studies have found this method to have 

shortfalls, which compromises the quality of the dried product. The shortfalls include longer 

drying periods, fungal growth and insect infestation (Misha et al., 2013; Fadhel et al., 2014). 

Kumar et al. (2013) found that insects and rodents destroyed mushrooms that were dried 

under open-air uncontrolled solar drying and that the drying time and rate was also slow.  

 

Studies have found that a greenhouse/ tunnel solar dryer is satisfactory and competitive with 

open-air uncontrolled solar drying (Farhat et al., 2004; Fadhel et al., 2014). However, they 

have poor ventilation. As a result, naturally-ventilated cabinet solar dryers have are a popular 

solar drying method (Pangavhane et al., 2002; Fadhel et al., 2014). Modified ventilation 

employed on a greenhouse solar dryer also uses the direct drying method, however, it is not 

commonly applied (Elkhadraoui et al., 2015). Improved solar drying generates relatively 

high temperatures, has a low relative humidity, a short drying period and is relatively 

inexpensive. In addition, research shows that an enhanced solar dryer, such as a modified 

ventilation solar dryer, shortens the drying time by 65% when compared to open-air 

uncontrolled solar drying (source). 

 

The challenge with use of naturally-ventilated cabinet solar dryers is their limited capacity 

and the relatively high cost of construction (Fadhel et al., 2014). Kumar et al. (2013) showed 

that a naturally-ventilated solar greenhouse dryer could take up to seven hours to dry 

mushroom at ambient temperature variations between 29℃ and 32℃. The conclusions made 

by Fadhel et al. (2014) also indicate that a modified ventilation solar greenhouse dryer 

reduces the drying time. Convective oven drying is a controlled and faster way of drying 

fruit (Ali et al., 2016). However, the cost of removing water during drying is relatively higher 

(Kumar et al., 2013). In addition, considering high electricity tariffs in South Africa, this 
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method can increase the operation costs. Research focus is on identifying suitable drying 

technologies, which can scale-up production capacities, and on identifying optimal operation 

parameters (Tripathy and Kumar, 2017). These include, modified solar dryers, such as 

modified ventilation solar dryers using a greenhouse.Drying characteristics are generally 

evaluated experimentally by measuring the weight of drying material as a function of time 

(Fudholi et al., 2011). Drying curves are used to represent the drying characteristics using 

three different plots of moisture content versus time, drying rate versus time and drying rate 

versus moisture content (Fudholi et al., 2011). Several research studies have shown that the 

time and drying rate are affected when the material is subjected to known temperature and 

relative humidity air conditions.  

 

However, there is limited research to determine the effect of product thickness and pre-

treatment on drying kinetics, especially for mangoes. Mathematical modelling is important 

for the management of operating parameters. Empirical models depict the drying process by 

showing the model that best fits the experimental moisture ratio data (Perumal, 2007). There 

has also been extensive research on thin-layer drying characteristics and modelling, for 

various fruit, including several drying methods. However, information is lacking with regard 

to a comparison the three methods considered in this study. Therefore the objectives of this 

study were: 

(i) to comparatively investigate the drying kinetics of mango slices treated with 

lemon juice as well as untreated slices dried, using convective oven drying, 

uncontrolled open-air solar drying and a modified ventilation solar drying, 

(ii) to comparatively investigate drying models and determine a drying model which 

best fits the drying data, and  

(iii) to comparatively investigate the effective moisture diffusivity of the three drying 

methods. 

 

3.2 Materials and Methods 

 

3.2.1 Study area 

 

The comparative performance evaluation of open-Air uncontrolled solar Drying (OAD), 

Modified Ventilation solar Drying (MVD) and convective Oven Drying (OVD) was carried 
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out at the Ukulinga Research Farm, located at 30°24’ S” and 29°24’ E and at an altitude of 

721 m (above sea level) in Pietermaritzburg, in the KwaZulu-Natal Province of South Africa. 

The long-term average minimum and maximum temperatures range between 6.0-16.4℃ and 

20.6-27.4℃ (Thipe, 2014). The average wind speed of Pietermaritzburg reported for the past 

two decades was 0.8 m. s-1, with a maximum of 9.7 m. s-1. The prevailing wind direction is 

east –southeast (Schulze and Maharaj, 2007). The daily average relative humidity is between 

61.1-75.3% and solar radiation 15.1-27.8 MJ.m-2.day-1 (Schulze and Maharaj, 2007). This 

site was selected because the ambient air conditions are within the acceptable range for 

conducting the OAD and MVD experiments. An ambient air temperature of about 30℃  is 

acceptable for open air solar drying (Akarslan, 2012; Paul and Singh, 2013). MVD can 

increase temperature by about 25℃ above the ambient temperature, therefore the lower and 

higher temperatures will be able to meet the required optimum temperatures of 55-65℃ for 

the drying of mango fruit (Goyal et al., 2006).  In addition, the relative humidity values of 

the area are within the ranges that have been tested by Kaya et al. (2007). The solar radiation 

received in the area is sufficient for use in drying applications (Saxena et al.,2013). In 

addition, the site selected had research resources and equipment as well as skilled researchers 

and a workshop with skilled technicians. 

 

3.2.2 Sample preparation and treatments 

 

A batch (150 kg) of process grade Tommy Atkin mangoes was acquired from ZZ2 

(Limpopo, South Africa). The sample was prepared immediately after delivery, at room 

temperature. Mangoes were sorted according to skin colour. The mango samples were 

washed and the skin peeled, using a hand peeler. The whole fruit was cut lengthwise, along 

the fibre into 3 mm, 6 mm, 9 mm slices using a knife, and the seed was removed. Lemon 

juice (100%) was used as pre-treatment to dip the slices for 5 minutes at room temperature. 

Dried samples were kept in labelled zip lock bags after drying (Victoria packaging, 

Pietermaritzburg, South Africa). 

 

3.2.3 Description of drying methods 

 

Modified ventilation solar drying 
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A 48 m2  floor area greenhouse structure with a width of 8 m, length of 6 m and a height of 

3.25 m was used for the MVD experiment. The structure was oriented in an east-west 

direction. The frame was of galvanised steel, with the parabolic roof structure covered with 

200 µm ultra-violet polyethylene plastic film. The flooring was compacted soil, covered by 

a black mat. The greenhouse was modified by including a natural ventilation system through 

three louvers (0.5 x 0.5 m), located in the middle of the east side of the dryer. Air exhaustion 

from inside the dryer was by means of two wind ventilators on the top of the roof, as shown 

in Figure 3.1. The mango slices were dried in a thin-layer on two drying trays (3 m length x 

1.45 m width) made of galvanised steel, with a perforated tray base and galvanised steel legs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Open-air uncontrolled solar drying 

 

The thin-layer drying of mango slices was under uncontrolled open sun conditions. The 

experiment was carried out simultaneously with MVD experiments. Samples of mango 

slices were on steel trays of 6 m2 surface area. 

 

Convective oven drying 

 

Oven air-drying was carried out at 70℃ (de Medeiros et al., 2016) using a forced air oven 

dryer (Prolab, PRIS, RSA). The dryer was run for 2 hours before placing samples inside for 

it to obtain stable conditions. 

6m 

8 m 

E 

W 

 

Wind ventilator 

Louver 

Figure 3.1 Schematic diagram of MVD dryer 
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3.2.4 Experimental design 

 

The experiment was designed, based on the Randomized Complete Block Design (RCBD), 

with three blocks, namely, OVD, MVD and OAD. Evaluations were carried out for mango 

slice thickness (3 mm, 6 mm and 9 mm) as well as control and a lemon juice pre-treatment. 

Each experiment was replicated three times to attain accuracy as seen in Appendix 3.1. 

 

3.2.5 Data collection 

 

Drying air conditions 

 

Ambient air conditions (temperature, relative humidity and solar radiation) were obtained 

from a weather station that is based at Ukulinga Research Farm. Five data loggers recorded 

air conditions inside the dryer (Hobo U12-013). The dots in Figure 3.2 represent the position 

of the data loggers. Two sensors were directly below each wind ventilator and  one sensor 

was at the air inlet (louver opening). Two sensors were placed on top of each drying tray. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moisture content 

 

The weight loss during drying was used to measure different moisture contents, namely; (i) 

the initial moisture content (Mi), (ii) the instantaneous moisture content (Mx) and (iii) the 

6

m 

8 

m 

E 

W 

 

Wind ventilator 

Louver 

Temperature/ RH and air 

velocity sensor 

Figure 3.2 Illustration of the positions of data loggers inside MVD 
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equilibrium moisture content (Me). The weight loss was monitored at fixed intervals of 30 

minutes for OVD and one hour for OAD and MVD by removing samples from the dryer and 

measuring the weight, using a digital weighing balance (Avery Berkel, Model TB151-

C4ZA10AAR, UK) with an accuracy of ±0.1 g. The samples were dried for 48 hours at 70℃, 

as in the AOAC (2000) method in a convective oven dryer to determine the initial moisture 

content (Workneh and Oke, 2012; Mercer, 2012). In order to, determine the equilibrium 

moisture content the sample was dried for 48 hours at 105℃ as in AOAC (2000) method in 

a convective oven dryer to estimate the equilibrium moisture content (Workneh and Oke, 

2012; Mercer, 2012).  

 

3.2.6 Temperature, relative humidity and solar radiation data analysis 

 

A statistical analysis of the temperature and relative humidity was carried out using the 

Analysis of Variance (ANOVA) one way and a general ANOVA analysis in the VSNI-

Genstat® data analysis tool (version 18.20.18409). 

 

3.2.7 Drying characteristics data analysis 

 

Moisture content drying curves 

 

The instantaneous and initial moisture content of dried produced is determined, by using 

Equation 3.1 and 3.2 respectively.  Drying curves were generated, by using Microsoft Office 

Excel (2010). 

 

𝑀𝑐𝑥 =
𝑤𝑥 − 𝑤𝑓

𝑤𝑥
  × 100                                                                                                           (3.1) 

The instantaneous moisture content, Mcx (% wb), is determined by the weight measured at a 

specific time during drying wx (g) and wf (g) is the final weight measured during drying. 

 

𝑀𝑖 =
𝑤𝑖 − 𝑤𝑓

𝑤𝑓
× 100                                                                                                             (3.2) 

Mi (% wb) is the dry basis moisture content, w I (g) is the initial weight and wf (g) is the final 

weight of product. 
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Drying rate  

 

The drying rate was estimated, by using Equation 3.3. Drying rate curves were generated on 

Microsoft Office Excel (2010). 

 

𝐷𝑅 =
𝑀𝑡+𝑑𝑡 − 𝑀𝑡

𝑑𝑡
                                                                                                                (3.3) 

DR (kg.hr-1) is the drying rate, Mt+dt (% wb) is the moisture content at the time t+dt, Mt 

(%wb) is the moisture content at the time t and t (hr) is the drying time (Akhijani et al.,2016). 

 

Mathematical modelling 

 

The sample’s experimental moisture ratio was determined by Equation 3.4. Non-linear 

regression was carried out to determine the goodness of fit of the selected models, shown in 

Table 3.1 to the experimental moisture ratio. The Microsoft Office Excel (2010) solver tool 

was used to estimate the drying coefficients and the coefficient of determination (R2) for the 

different drying models. The Chi-square (x2) and Root Mean Square (RMSE) were 

determined, by using Equation 3.4 and 3.5 respectively. The higher the R2 values and the 

lower the 𝑥2 and RMSE, the better the goodness of fit.  

 

𝑀𝑅 =
𝑀𝑐𝑥 − 𝑀𝑒

𝑀𝑖 − 𝑀𝑒
                                                                                                             (3.4) 

MR (dimensionless) is the moisture ratio, Mcx (%wb) is the instantaneous moisture content, 

Me (%wb) is the equilibrium moisture content and Mi (%wb) is the initial moisture content 

(Perumal , 2007). 

 

𝑥2 =
∑ (MRpre,i − MRexp,i)

2N
i=1  

N − z
                                                                                  (3.5) 

 x2 (dimensionless) is chi-square, MRpre,i (dimensionless) is the predicted moisture ratio and 

MRexp,i (dimensionless) is the experimental moisture ratio, N is the number of observations 

and z is the number of constants (Akhijani et al., 2016). 
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RMSE = (
∑ (MRpre,i − MRexp,i)

2N
i=1  

N
)

1
2

                                                                          (3.6) 

Where, RMSE (dimensionless) is the root mean square, MRexp,i (dimensionless) is the 

experimental moisture ratio, N is the number of observations. 

Table 3.1 Selected drying models 

Model name Model equation References 

Lewis  𝑀𝑅 = exp (−𝑘𝑡) Deshmukh et al. (2014) 

Page 𝑀𝑅 = exp (−𝑘𝑡𝑛) Wang et al. (2007) 

Henderson and Pabis 𝑀𝑅 = 𝑎𝑒𝑥𝑝(−𝑘𝑡) Motevali et al.(2011) 

Midilli et al. 𝑀𝑅 = 𝑎𝑒𝑥𝑝(−𝑘𝑡𝑛) + 𝑏𝑡 Midilli et al.(2002); 

Hayaloglu et al.(2007) 

MR (dimensionless) is the predicted moisture ratio, k (hr-1) is the drying constant, t (hr) is 

the drying time and a, b, n are drying model coefficients. 

 

3.2.8 Effective moisture diffusivity 

 

Fick’s law of diffusion is widely used to describe drying in the falling rate, where diffusion 

is the dominant drying mechanism of fruit (Akpinar, 2006; Perumal, 2007; Duc et al., 2011; 

Hashim et al., 2014). Fick”s equation solution was developed, by Crank (1975) and assumes 

that, in the drying period there is, uniform initial moisture distribution, moisture migration 

is by diffusion, negligible external resistance, negligible shrinkage, constant diffusivity and 

temperature.  

 

𝑀𝑅 =
𝑀𝑐𝑥 − 𝑀𝑒

𝑀𝑖 − 𝑀𝑒
=

8

𝜋2
exp (

−𝜋2𝐷𝑒𝑓𝑓𝑡

4𝐿2
)                                                                         (3.7) 

The moisture ratio, MR (dimensionless), Mcx (%wb) is the instantaneous moisture content, 

Me (%wb) is the equilibrium moisture content, Mi (%wb) is the initial moisture content, Deff 

(m2.s-1) is the moisture diffusivity, t (s) is the drying time and L(m) is the half slab thickness, 

as shown in Equation 3.7 Olanipekun et al. (2015). 

 

The  slope of the lnMR versus time graph was used to estimate to determine the effective 

moisture diffusivity. 
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𝐾 =
𝜋2𝐷𝑒𝑓𝑓𝑡

4𝐿2
                                                                                                                        (3.8) 

The slope, K (dimensionless) was obtained from lnMR versus time graph (Appendix 3.2), 

as shown in Equation 3.8 (Doymaz, 2007; Olanipekun et al. 2015).  

3.3 Results and Discussions 

 

3.3.1 Ambient air conditions during drying 

 

Ambient air conditions include temperature, relative humidity and solar radiation. 

Measurements were taken on an hourly basis between 8.00 am and 16.00 pm from 18-20 

January, as shown in Figure 3.3. The ambient temperature varied from a minimum of 

15.55˚C to a maximum of 36.77 ˚C during the drying period. The mean temperature on first 

day was 22.35˚C, 30˚C on second day and 33.16˚C on the third day. Observations of the 

highest temperatures were between 14.00 pm-15.00 pm on the first day. On the second day, 

however, the highest temperature was at 12.00 pm and the temperature started going down 

at 13.00 pm. On the third day, the highest temperature was between 13.00 pm-14.00 pm. The 

mean temperature during the drying period was 28.50˚C. Figure 3.3 shows that the mean 

temperatures during the drying period differ significantly (P<0.001). The mean temperature 

on first day was significantly lower (P<0.001) than for second day, by 7.65˚C. The mean 

temperature of the second day was not significantly lower than for the third day (P>0.05), 

with a difference of 3.16˚C. 
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Figure 3.3 The mean hourly ambient temperature during drying period 
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The relative humidity varied significantly during the drying period (P ≤0.05), as shown in 

Figure 3.4. The mean minimum relative humidity observed was 22.96% and a maximum of 

79.06%. The mean relative humidity observed during the drying period was 44.3%. On the 

first day it was significantly lower (P<0.05) than for the second day, by 10.1%. However, 

the mean relative humidity observed on second day was not significantly lower (P>0.05) 

than the third day. Observations indicated that relative humidity is at its lowest where the 

temperature is higher. 

 

 

 

 

 

 

 

 

 

 

 

 

 

An average of 769 W.m-2 was observed during the 8-hour daily drying period, as shown in 

Figure 3.5. The solar radiation was at its highest of 1016.203 W.m-2 on the first day, at around 

12.00 pm-13.00 pm and lowest on the third day, at 16.00 pm. During the three-day drying 

period, the highest temperature and solar radiation were observed between 12.00 pm-14.00 

pm. Studies by Perumal (2007) made a similar observation of ambient air temperature 

increase with solar radiation. The observed ambient air meteorological data clearly indicate 

that the solar drying of mango can be carried out during harvest season (Perumal, 2007; 

Akarslan, 2012; Paul and Singh, 2013). 

 

 

 

 

 

Figure 3.4 The mean hourly ambient relative humidity during the drying period 
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3.3.2 Climatic conditions inside MVD 

 

During the two days in the MVD the mean temperature inside the dryer was 49.33˚C and the 

relative humidity was 23.58%. It was observed that there was a highly significant (P<0.001) 

difference in the temperature at the various points of measurement inside the dryer. The 

highest mean temperature of 64.26˚C was observed at the product level, as shown in Figure 

3.6 (T-right and T-left) on the second day with the lowest of temperature 31.28˚C at the air 

inlet on the first day. The mean temperature at the outlet had reduced significantly (P<0.05), 

compared to the air inlet temperature during the drying period. Inside the dryer, the air 

temperature increase was significantly higher (p<0.001), and a 7.24˚C increase from the air 

inlet temperature was observed, with the highest value of 64.24˚C observed inside the dryer. 

The temperature on product level (drying tables) did not differ significantly (P>0.05). The 

temperature was 1.14˚C higher on the left side. The mean relative humidity had increased 

significantly (P≤0.001) at the air outlet, compared to the air inlet. It increased by 4.35% 

inside the dryer during the drying period. In addition, the relative humidity at products placed 

on left and right of the greenhouse was significantly different (P<0.001), with the left being 

lower than the right, by 3.39%. Tiwari et al., (2006) investigated a naturally-ventilated 

modified ventilation solar dryer, using a greenhouse solar dryer for drying prawns. The 

ambient temperature for two days varied between 33-39˚C. The dryer increased the product 

Figure 3.5 The mean hourly solar radiation during the drying period 
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temperature to between 41 and 51˚C. This study also showed that there is a substantial 

increase in the ambient temperature and a reduction of the relative humidity, creating 

favourable conditions for drying, due to an increase of the evaporative capacity of air. 

Ayyappan and Mayilsamy (2010) investigated a solar greenhouse dryer for copra. The 

highest solar radiation was at 800 W.m-2, RH and temperature of ambient air conditions were 

60% and 30˚C respectively. Inside the dryer, and the RH reduced to 30% and the temperature 

increased to 60˚C. Similar observations of effect of a greenhouse were observed in the study, 

where the RH reduction and temperature increase were a double of the ambient values.  

Kaewkiew et al. (2012) observed a significant difference between ambient air conditions 

and a modified forced-ventilated solar dryer, using a greenhouse, where it was also indicated 

that the relative humidity and temperature vary in the air inlet and outlet, with the air leaving 

the dryer at a lower relative humidity than the ambient air and air at the inlet. Similar 

observations were made in this study, indicating that the air from the outlet of the dryer can 

be recirculated for drying. In 2015, Elkhadrauoi et al. (2015) modified a greenhouse for 

drying chilli. It was found that the temperature inside the dryer increased from a range of 

21.25-35.71˚C to 27.87-54.68˚C, using a mixed mode dryer. The relative humidity was 

lowered to 17.62%. The dryer tested in this experiment showed relatively lower relative 

humidity values, reaching about 10% at product level. The findings indicate that a naturally-

ventilated MVD is an option, as it has the potential for performing better than a mixed mode 

solar dryer. 
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Figure 3.6  Temperature and relative humidity variations inside MVD 
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3.3.3 The effect of pre-drying treatments and slice thickness on drying time 

 

The drying of mango fruit was carried out from a fresh mango moisture content of 79±1.6% 

wb to a moisture content of 10±0.86% wb. Observations in OVD indicate that the drying time 

did not vary for control and lemon juice pre-treated mango slices of the same thickness, as 

shown in Figure 3.7. There was no significant (P>0.05) variation in the moisture content lemon 

juice treated and control samples. However, a significant (P<0.001) variation of drying time 

was observed, as the mango thickness changed. Thicker mango slices (9 mm) were observed 

to have a significantly (P<0.05) longer drying time than thinner slices (3 mm), the drying taking 

three times longer for the thinner slices. 

 

 

Figure 3.7 Moisture content variation of OVD during drying period 

 

In MVD, similar observations were made indicating no significance (P>0.05) in drying time 

and moisture loss of treated and untreated mango slices of similar thickness, as shown in Figure 

3.8. The drying time was significantly (P<0.001) longer for thicker mango slices (9 mm), 

compared to 6 mm and 3 mm slices. Compared to OVD, it took a significantly (P<0.001) longer 

to dry produce in MVD, 3 mm mango slices took up to an hour longer. Similarly, 6mm slices 

dried in MVD took 270 minutes longer to dry and 9 mm slices took 360 minutes longer to dry. 

Furthermore, the 6mm mango slices were dried for just over one day and 9 mm mango slices 

were dried in two days. 
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Figure 3.8 Moisture content variation of MVD during drying period 

 

Investigations into OAD indicated similar results, where lemon juice treated and control mango 

slices having no significant (P>0.05) difference in drying time for each mango slice. 

Observations also indicated a significant (P<0.05) difference in drying time between lemon 

juice treated and control mango slices of  3 mm, 6 mm and 9 mm, as in Figure 3.9. It was 

observed that 9 mm mango slices dried in three days (1200 minutes), 3 mm and 6 mm mango 

slices took two days, and 6 mm slices took about 120 minutes longer to dry. Overall 

observations indicate that mango slices dried in OAD took significantly (P<0.001) longer to 

complete drying, compared to OVD and MVD.  Thickness significantly affects the drying time 

and a pre- treatment of lemon juice does not affect the drying time. Abano and Sam-Amoah 

(2011) also found that pre-treatment did not have an effect on the drying time of bananas, 

however, the drying time is significantly dependant on slice thickness.  
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Figure 3.9 Moisture content variation of OAD during drying period 

 

3.3.4 The effect of pre-drying treatments and slice thickness on drying rate 

 

The drying rate varied for all drying methods, treatments and thicknesses of mango slices. 

Lemon juice treated and control samples of all mango thickness dried in OVD did not show a 

significant difference (P>0.05) in the drying rate. The maximum drying rate of 0.33g.hr-1 was 

for 3 mm lemon juice treated mango slices as shown in Figure 3.10. Observation of the 

maximum drying rates occurred within the first hour of drying. The mean drying rates of lemon 

juice treated samples was 0.19g.hr-1, 0.13g.hr-1 and 0.065g.hr-1 for 3 mm, 6 mm and 9 mm thick 

slices, respectively. The mean drying rates for control samples was 0.19g.hr-1, 0.14g.hr-1, and 

0.066g.hr-1 for 3 mm, 6 mm and 9 mm samples, respectively. The results indicate that pre-

treatment did not have an effect on the drying rate of mango slices that were dried in OAD. 

The drying rate was higher for thinner slices (3 mm and 6 mm) and no constant drying rate 

period was observed for the thinner slices. The drying occurred mainly in the falling rate period, 

and it initially increased as moisture content reduced. This clearly indicates that the drying of 

3 mm and 6 mm mango slices was driven, by the diffusion mechanism (Bebartta et al., 2014; 

Doymaz, 2015, Olanipekun et al., 2015, Onwude et al., 2016). The observations of this study 

were consistent with those of Akoy (2014) in the thin-layer drying of mangoes, Yu et al (2015) 

in drying Chines hawthorn and Doymaz (2015) in the thin-layer drying of carrot slices. The 

drying rate increases in the initial stage of drying because the product is increasing its internal 
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temperature. The air temperature is greater than the product temperature at this stage, hence, 

accelerating moisture removal in the mango slices (Yu et al., 2015; Onwude et al., 2016). The 

subsequent decrease in drying rate is attributed to the reduction in porosity of the mango slices 

because of shrinkage, which increased resistance of water movement, leading to a further 

decrease in drying rate. The drying rate also accelerated at the end of the drying period, because 

the product temperature was lower than the air temperature. The 9 mm mango slices only dried 

at a constant rate and a falling rate was only observed after a 20% moisture content was reached 

and during the last hour of drying (after the eighth hour). Several research studies have found 

that thicker slices dry at a relatively lower drying rate and that drying is at constant drying rate 

period, because of a lack of more surface area per mass of moisture. In addition, increasing the 

size increases the path length for mass transfer and reduces the drying rate (Bebartta et al., 

2015). Furthermore, gravity and capillary forces are the driving mechanisms for the constant 

drying rate (Onwude et al., 2016). The constant temperature used for MVD might not be 

suitable for drying the 9 mm mango slices, by the diffussion mechanisms, which is the suitable 

driving mechanism that would be required for drying fruit. According to Onwude  (2016), a 

constant drying rate may affect the surface of the product, leading to quality losses. 
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Figure 3.10 Drying rate curves (a) and (b) of mango slices during the drying period in OVD 

 

The mean drying rates were 0.13g.hr-1, 0.067g.hr-1 and 0.055g.hr-1 for 3 mm, 6 mm and 9 mm 

thick slices, respectively for both control and lemon juice treated samples. There was no 

significant difference (P>0.05). A maximum drying rate of 0.2 kg.hr-1 was observed for 3 mm 

mango slices. The maximum drying rate occurred within the first hour of drying, when the 

product’s internal temperature was increasing. Similar observations of higher drying rates for 

thinner slices occurred in OVD. The falling drying rate was mainly observed, indicating that 

diffusion is the driving mechanism for drying in mango slices in MVD. These results are in 

agreement with the findings by Goyal et al. (2006) and Akoy (2007). In addition, it shows that 

diffusion is the dominant mechanism driving the moisture movement in mango slices (Rasouli 

al., 2011; Priyadarshiniet al., 2013). Akoy (2007) indicates that for fruit, such as mangoes, the 

constant drying rate is either relatively small or does not exist at all 
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Figure 3.11 Drying rate curves (a) and (b) of mango slices during the drying period in MVD 

 

The mean drying rates in OAD were 0.054g.hr-1, 0.045g.hr-1 and 0.069g.hr-1 for 3 mm, 6 mm 

and 9 mm thick slices, respectively occurred for the control samples. The mean dying rates for 

lemon treated mango slices was 0.052g.hr-1, 0.045g.hr-1 and 0.061g.hr-1 for 3 mm, 6 mm and 9 

mm thick slices, respectively. There was no significant difference (P>0.05) in the drying rate 

of lemon juice treated as well as, for the control samples, of 3 mm, 6 mm and 9 mm thick slices. 

Findings show that the maximum drying rate was within the first hour of drying as shown in 

Figure 3.12. The drying rate was marked by falling drying rate periods for all mango 

thicknesses dried. Fluctuations in drying rate could be attributed to the fluctuations in 
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temperature, relative humidity and also the wind speed could have made a significant 

contribution to the drying rate in OAD. 

 

 

 

Figure 3.12 Drying rate curves (a) and (b) of mango slices during the drying period in OAD
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The highest drying rate was found for OVD, which was 3% higher than MVD and 12% higher 

than OAD. This study finding clearly indicates that temperature, relative humidity and slice 

thickness had an influence in the drying rate. Constant drying conditions, such as those 

observed in OVD might not be suitable for drying 9 mm thick mango slices. Temperatures in 

MVD were more suitable, because a falling rate period was observed, during the drying 

process. It is clear that the use of OAD does not offer the best solution, because of the 

fluctuations in the drying rate, which may result in product quality losses. 

 

3.3.5 Mathematical modelling 

 

The dimensionless moisture content (moisture ratio) decreased, with an increase in the drying 

time. The moisture ratio data were used to statistically analyse drying models, namely, the 

Lewis, Page, Henderson and Pabis and Midilli et al. models. To investigate the goodness of fit, 

the Chi-square (𝑥2), coefficient of determination (R2) and the root mean square (RMSE) were 

used.  The comparison between experimental and predicted moisture ratio curves for all drying 

models show that the four drying models used give a good correlation with experimental data. 

The Midilli et al. and Page models had the highest  R2 and the lowest RMSE and/or 𝑥2. In, 

OVD the R2 for the control mango samples varied between 0.9953 and 0.9790 for the Midilli 

et al. model and it varied between 0.9954 and 0.9803 for the Page model, as shown in Table 

3.11. The lemon juice treated samples in OVD, had an R2 variation of between 0.9959 and 

0.9832 for the Midilli et al. model and between 0.9949 and 0.9815 for the Page model, as 

shown in Table 3.12. Mango slices dried in OAD had an R2 value that was between 0.9957 and 

0.9662 for Midilli et al. and for the Page model the R2 varied between 0.9981 and 0.9550 for 

the lemon juice treated and control samples, respectively. In MVD, the Midilli et al. model had 

R2 variations between 0.9929 and 0.9981 for the lemon juice treated and control samples, 

respectively and for the Page model, R2 varied between 0.9942 and 0.9815 for the lemon juice 

treated and control samples, respectively. The highest correlation was for the control samples 

in OAD and lemon juice treated samples in OVD and MVD. In essence, the Midilli et al. and 

the Page models are useful for predicting the moisture ratio of drying mango slices. The 

Henderson and Pabis model, unlike the Lewis model, had the lowest correlation of the 

experimental data. Observations of the moisture ratio curves, as shown in Figure 3.13-3.15.on 

all drying methods indicated that the Henderson and Pabis model over-predicts the moisture 
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ratio at the beginning of the drying period and the Lewis model over-predicts at the end of the 

drying period. Workneh and Oke (2012) made similar observations in microwave drying.  

A comparison of the experimental and predicted moisture ratios in Figure 3.16 (a, b and c) 

shows that the Midilli et al. model provides the best correlation for drying mango slices, using 

OVD, OAD and MVD. Therefore, in the drying of mango slices, the model is representative 

of the drying data. Similar outcomes were observed in drying mangoes using a microwave oven 

(Nazmi et al., 2017), where Midilli et al. model was the best representative for predicting the 

moisture ratio. Similarly, the Abano et al. (2013) findings show that the Midilli et al. model 

has the best prediction in hot air drying of treated and untreated mangoes and that it is better 

than the Page model. Simal et al. (2005), Azoubel et al. (2010), Abano et al.  (2013), 

Longhmanieh and Bakhoda (2013) found this model to be accurate when drying kiwis, 

bananas, mangoes and thyme leaves respectively. 
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Table 3.2 Statistical parameters of different drying models tried for the control mango samples 

of various thickness 

 

 

Model Thickness (mm) Model constants 𝒙𝟐 𝑹𝟐 RMSE 

  k (hr-1) n a b    

Lewis- OVD 3mm 0.5152 - - - 6.1147x10-7 0.9705 0.00072 

 6mm 0.3229 - - - 0.01094 0.9882 0.09924 

 9mm 0.1604 - - - 0.00057 0.9656 0.02245 

Lewis- OAD 3mm 0.1199 - - - 1.0641x10-5 0.9413 0.00312 

 6mm 0.1151 - - - 0.00017 0.9972 0.01286 

 9mm 0.0777 - - - 3.1926x10-5 0.9643 0.00551 

Lewis-VMD 3mm 0.3970 - - - 3.1606x10-6 0.9730 0.00154 

 6mm 0.1833 - - - 9.3369x10-6 0.9743 0.00911 

 9mm 0.1172 - - - 1.9517x10-5 0.9684 0.00425 

Page-OVD 3mm 0.4406 1.2637 - - 0.00038 0.9803 0.01653 

 6mm 0.2211 1.3778 - - 0.02142 0.9856 0.13090 

 9mm 0.0733 1.5085 - - 0.00037 0.9954 0.01716 

Page-OAD 3mm 0.0648 1.3099 - - 0.00197 0.9577 0.04050 

 6mm 0.0875 1.1330 - - 0.00049 0.9957 0.00049 

 9mm 0.0348 1.3273 - - 0.00177 0.9800 0.03998 

Page-VMD 3mm 0.2773 1.4005 - - 0.00026 0.9910 0.01145 

 6mm 0.0983 1.3790 - - 0.00042 0.9907 0.01816 

 9mm 0.0607 1.3162 - - 0.00105 0.9815 0.03006 

Henderson and Pabis-OVD 3mm 0.5306 - 1.0248 - 0.00032 0.9687 0.01343 

 6mm 0.3418 - 1.0461 - 0.01947 0.9862 0.12483 

 9mm 0.1749 - 1.0720 - 0.00054 0.9591 0.02040 

Henderson and Pabis-OAD 3mm 0.1239 - 1.0254 - 0.00042 0.9388 0.01880 

 6mm 0.1202 - 1.0351 - 4.5775x10-5 0.9931 0.00626 

 9mm 0.0821 - 1.0453 - 0.00068 0.9603 0.02468 

Henderson and Pabis-MVD 3mm 0.4111 - 1.0317 - 0.00058 0.9707 0.01705 

 6mm 0.1951 - 1.0545 - 0.00056 0.9701 0.02082 

 9mm 0.1238 - 1.0468 - 0.00062 0.9646 0.02311 

Midilli et al.-OVD 3mm 0.4071 1.3348 0.9735 0 9.8458x10-5 0.9814 0.00649 

 6mm 0.1782 1.5255 0.9570 0 0.02177 0.9790 0.11431 

 9mm 0.0526 1.6314 1.6314 0 2.6825x10-5 0.9953 0.00386 

Midilli et al.-OAD 3mm 0.0257 1.6962 0.9092 0 0.000106 0.9665 0.00839 

 6mm 0.0894 1.1251 1.0039 0 1.4651x10-6 0.9981 0.00102 

 9mm 0.9277 1.5806 0.9277 0 9.5974x10-5 0.9852 0.98520 

Midilli et al.-MVD 3mm 0.2663 1.4287 0.9883 0 0 0.9913 0.00563 

 6mm 0.0817 1.4662 0.9704 0 5.9059x10-5 0.9916 0.00573 

 9mm 0.0395 1.4843 0.9466 0 0.00012 0.9842 0.00901 
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Table 3.3 Statistical parameters of different drying models tried for the lemon juice treated 

mango of various thickness 

Model Thickness (mm) Model constants 𝒙𝟐 𝑹𝟐 RMSE 

  k (hr-1) n a b    

Lewis-  OVD 3mm 0.4783 - - - 0.00052 0.9633 0.02130 

 6mm 0.2714 - - - 0.00859 0.9689 0.08791 

 9mm 0.1634 - - - 0.00061 0.9647 0.02319 

Lewis- OAD 3mm 0.1045 - - - 0.00066 0.9089 0.02449 

 6mm 0.1081 - - - 2.5591x10-5 0.9884 0.00487 

 9mm 0.0695 - - - 0.00194 0.9635 0.04297 

Lewis-VMD 3mm 0.3934 - - - 1.7272x10-5 0.9694 0.00359 

 6mm 0.1989 - - - 1.7186x10-5 0.9827 0.00391 

 9mm 0.1213 - - - 1.0145x10-5 0.9774 0.00307 

Page-OVD 3mm 0.3714 1.3724 - - 0.00037 0.9821 0.01634 

 6mm 0.2048 1.3889 - - 0.00059 0.9815 0.02166 

 9mm 0.0637 1.5573 - - 0.00043 0.9949 0.01822 

Page-OAD 3mm 0.0282 1.6637 - - 0.00283 0.9550 0.04810 

 6mm 0.0072 1.1963 - - 0.00033 0.9901 0.01744 

 9mm 0.0334 1.2945 - - 0.00126 0.9772 0.03370 

Page-MVD 3mm 0.2583 1.4675 - - 0.00026 0.9927 0.01140 

 6mm 0.1213 1.3078 - - 0.00029 0.9942 0.01523 

 9mm 0.0673 1.2852 - - 0.00013 0.9897 0.01078 

Henderson and Pabis-OVD 3mm 0.4914 - 1.0381 - 0.00025 0.9614 0.01348 

 6mm 0.3236 - 1.0473 - 0.00028 0.9581 0.01486 

 9mm 0.1788 - 1.0763 - 0.00063 0.9577 0.02208 

Henderson and Pabis-OAD 3mm 0.1139 - 1.0609 - 0.00037 0.9017 0.01761 

 6mm 0.1123 - 1.0297 - 0.00019 0.9824 0.01272 

 9mm 0.0732 - 1.0396 - 0.00035 0.9602 0.01785 

Henderson and Pabis-MVD 3mm 0.4096 - 1.0376 - 0.00069 0.9665 0.01867 

 6mm 0.2093 - 1.0463 - 0.00052 0.9796 0.02107 

 9mm 0.1276 - 1.0439 - 0.00056 0.9741 0.02188 

Midilli et al.-OVD 3mm 0.3369 1.4607 0.9722 0 6.8307x10-5 0.9832 0.00541 

 6mm 0.1643 1.5382 0.9584 0 5.0239x10-5 0.9836 0.00549 

 9mm 0.0512 1.6609 0.9708 0 3.0819x10-5 0.9959 0.00414 

Midilli et al.-OAD 3mm 0.0077 2.2222 0.9138 0 7.9418x10-5 0.9662 0.00711 

 6mm 0.0559 1.2903 0.9659 0 3.1126x10-5 0.9932 0.00472 

 9mm 0.0166 1.5322 0.9351 0 5.9648x10-5 0.9818 0.00691 

Midilli et al.-MVD 3mm 0.2475 1.4978 0.9883 0 0 0.9929 0.00548 

 6mm 0.0604 1.6372 0.8888 0 6.7893x10-6 0.9981 0.00194 

 9mm 0.0478 1.4193 0.9536 0 8.2897x10-5 0.9903 0.00769 
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(b) 6mm thickness                                                                                                               

(a) 3mm thickness 

 

 

 

 

 

 

 

 

 

(c) 9mm thickness 
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Figure 3.13: Moisture ratio variation with drying time for (a) 3mm, (b) 6mm and (c) 9mm thickness mango dried in OAD 
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Figure 3.14 Moisture ratio variation with drying time for (a) 3mm, (b) 6mm and (c) 9mm thickness mango dried in MVD 
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Figure 3.15 Moisture ratio variation with drying time for (a) 3mm, (b) 6mm and (c) 9mm thickness mango dried in OVD 
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(a)  OVD                                                                                                                   (c)  MVD 

 

 

 

 

 

 

 

 

(b) OAD 

Figure 3.16  Experimental vs. predicted moisture ratio of Midilli et al. model for (a) OVD, (b) OAD and (c) MVD
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3.3.6 Estimation of the effective moisture diffusivity 

 

The moisture transfer during drying was governed by diffusion. Therefore, Fick’s second law 

of diffusion was used to predict the effective moisture diffusion rate of lemon juice treated and 

control mango of different thickness dried in OAD, OVD and MVD. The variation of ln(MR) 

with drying time, for the Midilli et al. model indicates that the graph generally has a negative 

slope, as shown in Appendix 3.2. The effective moisture diffusivity varied between 1.048x10-

8 m2.s-1  and 9.7547x10-9 m2.s-1 as seen in Tables 3.4 and 3.5. The effective moisture diffusivity 

varied with mango thickness; a 3 mm thickness had a higher moisture diffusivity than, 6 mm 

and 9 mm thick slices. However, no significant (P>0.05) difference in moisture diffusivity was 

observed for lemon juice treated and control samples. In addition, OVD demonstrated higher 

effective moisture diffusivity (Deff) than OAD and MVD. This could be attributed to that OVD 

was conducted at relatively higher drying temperature, compared to the other drying methods 

(Fan et al., 2015). The effective moisture diffusivity obtained in this study was within the range 

found in research studies for hot air drying methods. Vega-Falvez et al. (2007) found a moisture 

diffusivity range of 5.30-17.173x10-10 m2.s-1 for aloes and a diffusivity range between 1.345-

2.658x10-9 m2.s-1 was found onion slices (Lee and Kim, 2008), for thyme Doymaz (2010) found 

an effective moisture diffusivity ranging between 1.097 m2.s-1 and 5.991x10-9 m2.s-1. Studies 

on mango drying found a moisture diffusivity range of 1.80x10-10-2.22x10-10 (Abano et al., 

2013). According to Zogzas et al. (1996) the acceptable range of effective moisture diffusivity 

is between 10-12 m2.s- and 10-8 m2.s-1. This study has demonstrated that the moisture diffusivity 

is strongly influenced by the method of drying and the thickness of the drying material (Abano 

et al., 2013; Shi et al., 2013). Studies by Perumal (2007) came to the similar conclusion that 

open-air uncontrolled solar drying has a lower effective moisture diffusivity, compared to other 

drying methods, including hot air methods and that a thicker material has a lower moisture 

diffusivity than thinner material. 
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Table 3.4 Effective moisture diffusivity of lemon juice treated samples 

Drying method Thickness(mm) Slope Deff (m2.s-1) 

OVD 3 -0.0107 9.7547x10-9 

 6 -0.0071 6.4727x10-9 

 9 -0.0039 3.55545x10-9 

OAD 3 -0.0027 2.46147x10-9 

 6 -0.0022 2.00564x10-9 

 9  -0.0015 1.36748x10-9 

MVD 3 -0.0091 8.29605x10-9 

 6 -0.0044 4.04774x10-9 

 9 -0.0027 2.46748x10-9 

LSD 

CV%                                              

P  

  7.50143x10-9 

75.3 

0.489 

 

Table 3.5 Effective moisture diffusivity of control samples 

Drying method Thickness(mm) Slope Deff (m2.s-1) 

OVD 3 -0.0115 1.0484x10-8 

 6 -0.0074 6.74624x10-9 

 9 -0.039 3.55500x10-9 

OAD 3 -0.0028 2.55263x10-9 

 6 -0.0022 2.00564x10-9 

 9  -0.0018 1.64100x10-9 

MVD 3 -0.0090 8.20489x10-9 

 6 -0.0042 3.82895x10-9 

 9 -0.0027 2.46100x10-9 

LSD 

Cv% 

P 

  7.50143x10-9 

75.3 

0.489 
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3.3.7 Conclusions 

  

Three drying methods were evaluated to determine the drying characteristics, the drying 

models that best fit the drying data and to estimate the effective moisture diffusivity. OAD 

occurred at the ambient air conditions (15.5-33.2˚C) and a 15.5-38% relative humidity, MVD 

at average an average temperature of 49.3˚C and 23.58% RH. OVD was set at 70˚C. OAD took 

three days (eight hours of drying per day) to complete drying, MVD took 13 hours to complete 

drying, OVD took nine hours and  OAD took 20 hours. It was found that lemon juice treatment 

did not have an effect on the drying characteristics. The thickness of the mango slices had a 

significant effect on the drying characteristics, such as drying time and drying rate. The 3 mm 

mango slices dried faster in OVD than in MVD and OAD, respectively, compared to the 6 mm 

and 9 mm thick slices. This was attributed to a relatively high temperature in OVD and MVD, 

which increased the drying rate. Furthermore, the drying rates were higher for thinner slices 

because of the increased surface area for moisture evaporation. Consequently, the moisture 

diffusivity was relatively higher for 3 mm mango slices than for 6 mm and 9 mm. Drying at 

constant temperature as in OVD is not practical for 9 mm mango slices, because drying takes 

place at the constant drying rate period. Although, MVD had longer drying time, the moisture 

removal rate was relatively higher and drying occurred at the falling rate-drying period, 

enabling moisture removal by diffusion and this resulted in better product quality. Therefore, 

the temperatures within MVD are suitable for drying mangoes of different thickness, 

simultaneously. Furthermore, MVD showed better drying characteristics than OAD in drying 

mango fruit. MVD is, therefore, a practical method for use in the drying of large quantities of 

a product and it allows for the use of renewable energies such as solar energy as an alternative 

to electricity. Therefore, it eliminates the challenges experienced due to the use of energy-

intensive drying methods. This study found the Midilli et al. model to be the best fit to the 

experimental moisture ratio data, while the Page model can also be used to estimate the 

moisture ratio of mango fruit during drying.  

 

3.4 References 

 

Abano, EE, Sam-Amoah, LK. 2011. Effects of different pre-treatments on drying 

characteristics of banana slices. Journal of Engineering and Applied Science 6(3):121-

129. 



 

82 

 

Abano, EE, Sam-Amoah, LK, Owusu, J and Engmann, FN. 2013. Effects of ascorbic acid, salt, 

lemon juice and honey on drying kinetics and sensory characteristics of dried mango. 

Croatian Journal of Food Science and Technology 5(1):1-10. 

Ali, MA. Yusuf, YA, Chin, NL and Ibrahim,MN. 2016. Effect of drying treatments on colour 

quality and ascorbic acid concentration of guava fruit. International Food Research 

Journal 23:155-161. 

Akarslan, F. 2012. Solar Energy Drying Systems, Modelling and Optimization of Renewable 

Energy systems. In Tech. Croatia, Europe. 

Akhijani, HS, Arabhosseini, A and Kianmehr, MH. 2016. Effective moisture diffusivity of hot 

air solar drying of tomato slices. Journal of Research in Agricultural Engineering 

62:15-23. 

Akoy, EOM. 2007. Mathematical modelling of solar drying mango slices. Unpublished 

PhDEng dissertation, Department of Agricultural Engineering, University of 

Khartoum, Khartoum, Sudan. 

Akoy, EOM. 2014. Effect of drying temperature on some quality attributes of mango.  

International Journal of Innovation and Scientific Research 4(2):91-99 

Akpinar, EK, 2006. Determination of suitable thin–layer drying curve model for some 

vegetables and fruits. Journal of Food Engineering 73:75-84. 

Ayyappan, S and Mayilsamy, K. 2010. Experimental investigation on a solar tunnel dryer for 

copra drying. Journal of Scientific and Industrial Research 69:635-638. 

Azoubel, PM, Baima, MA, Amorim, MR and Oliviera, SSB. 2010. Effect of ultrasound on 

banana Cv. Pacovan drying kinetics. Journal of Food Engineering 97:194-198. 

Bebartta, JP, Sahoo, NR, Dash, SK, Panda, MK and Pal, US. 2012. Kinetics modelling and 

moisture diffusivity of onion slices in fluidized bed drying. Journal of Food Processing 

and Preservation 38(1):193-199. 

Crank, J. 1975. The Mathematics of Diffusion. Oxford University Press, London, UK. 

de Medeiros, RAB, Barros, ZMP, de Carvalho, CBO, de Carvalho, CBO, Neta, EUG, Maciel, 

MIS and Azoubel, PM. 2016. Influence of dual-stage sugar substitution pre-treatment 

on drying kinetics and quality parameters of mango. LWT-Food Science and 

Technology 67:167-173. 

Deshmukh, AW, Varma, MN, Yoo, CK and Wasewar, KL. 2014. Investigation of Solar Drying 

of Ginger: Empirical Modelling, Drying Characteristics, and Quality Study. Chinese 

Journal of Engineering 2014:1-7. 



 

83 

 

Doymaz, I. 2007. The kinetics of forced convective air-drying of pumpkin slices. Journal of 

Food Engineering 79:243-248. 

Doymaz, I. 2010. Drying of thyme (Thymus Vulgaris L.) and selection of a suitable thin-layer 

drying model. Journal of Food Process Preservation 35:458-465. 

Doymaz,I. 2015. Infrared drying kinetics and quality characteristics of carrot slices. Journal of 

Food Processing and Preservation 39:2738-2745. 

Duc, LA, Woong, HJ and Hyuk, KD. 2011. Thin-layer drying characteristics of rapeseed. 

Journal of Stored Products Research 47:32-8. 

Elkhadraoui, A, Kooli, S, Hamdi, I and Farhat, A. 2015. Experimental investigation and 

economic evaluation of a new mixed-mode solar greenhouse dryer for drying of red 

pepper and grape. Renewable Energy 77:1-8. 

Fadhel, A, Kooli S, Farhat, A and Belghith, A. 2014. Experimental study of the drying of hot 

red pepper in the open air; under greenhouse and in a solar dryer. International Journal 

of Renewable Energy Biofuels:1-14. 

Fan, K, Chen, L, He, J and Yan, F. 2015. Characterization of thin layer hot air drying of sweet 

potatoes (Ipomoea Batatas L.) slices.  Journal of Food Processing and Preservation: 

1361-1371. 

Farhat, A, Kooli, S, Kerkeni, C, Maalej, M, Fadhel, A and Belghith, A. 2004. Validation of 

pepper drying model in polyethylene tunnel greenhouse. International Journal of 

Thermal Science 43:53-58. 

Fudholi,A, Othma, MY, Ruslan, MH, Yahya, M, Zaharim, A and Sopian, K. 2011. Design and 

testing of solar dryer for drying kinetics of seaweed in Malaysia. Journal of Recent 

Research in Geography, Geology, Energy, Environment and Bio-medicine (volume no 

not available):129-133. 

Goyal, RK, Kingsly, ARP, Manikantan, MR and Ilya, SM. 2006. Thin-layer drying model 

kinetics of raw mango slices. Biosystems Engineering 95(1):43-49. 

Hashim, N, Onwude, D and Rahnam, E. 2014. A preliminary study: kinetic model of drying 

process of pumpkins (Cucurbita moschata) in a convective hot air dryer. Agricultural 

Science Proceedia 2(2):345-352. 

Hayaloglu, AA, Karabulut, I, Alpaslan, M and Kelbaliyev, G. 2007. Mathematical modelling 

drying characteristics of strained yoghurt in a convective type tray dryer. Journal of 

Food Engineering 78(1):109 -117. 



 

84 

 

Kaewkiew, J, Nabnean, S and Janjai, S. 2012. Experimental investigation of the performance 

of a large-scale greenhouse type solar dryer for drying chilli in Thailand. Procedia 

Engineering 32:433-439. 

Kaya, A, Aydin, O and Demirtaş, C. 2007. Drying kinetics of red delicious apple. Journal of 

Biosystems Engineering 96(4):517-524. 

Kumar, A, Singh, M and Singh, G. 2013. Effect of different pre-treatments on the quality of 

mushrooms during solar drying. Journal of Food Science Technology 50(1):165-170. 

Mercer, DG. 2012. A comparison of mango drying in open air solar and force air dryers. 

African Journal of Agriculture, Nutrition and Development 12(7):6835-6852. 

Misha, S, Mat, S, Ruslan, MH, Sopian, K and Salleh, E. 2013. The effect of drying air 

temperature on the drying kinetic of kenaf core. Journal of Applied Mechanics and 

Materials 315:710-714. 

Motevali, A, Minaei, S and Khoshyagaza, MH. 2011. Evaluation of Energy Consumption of 

Different Drying methods. Journal of Energy Conservation and Management 52:1192-

1199. 

Midilli A, Kucuk H and Yapar Z. 2002.A new model for single layer drying. Dry Technology 

l20 (7):1503-1513. 

Nazmi, IZLI, G�̈�oken, IZLI and Taskin, O. 2017. Influence of drying characteristics on drying 

parameters of mango. Journal of Food Science and Technology 48(6):1-9. 

Lee, JH and Kim, HJ. 2008. Drying kinetics of onion slices in hot-air dryer. Journal of Food 

Science and Nutrition 13:225-230. 

Longhmanieh, I and Bakhoda, H. 2013. Dehydration characteristics and mathematical 

modelling of thyme leaves using the microwave process. Global Journal of Science 

Frontier Research 13(8):15-21. 

Olanipekun, BF, Tunde-Akintunde, TY, Oyelade, OJ, Adebisi, MG and Adenaya, TA. 2015. 

Mathematical modelling of thin-layer pineapple drying. Journal of Food Processing 

and Preservation 39:1431-1441. 

Onwude, DI, Hashim, N, Janius, RB, Nawi, NM, Abdan, K. 2016.  Modelling the thin layer 

drying of fruits and vegetables: A review. Comprehensive reviews in Food Science and 

Food Safety :599-617. 

Pangavhane, DR and Sawhney, RL. 2002. Review of research and development work on solar 

dryers for grape drying. Energy Conversion and Management 43:45-61. 



 

85 

 

Paul, B and Singh, SP. 2013. A review of solar dryers designed and developed for chilli. 

International Journal of Research in Advent Technology 1(4):2321- 9637. 

Perumal, R. 2007. Comparative performance of solar cabinet, vacuum assisted solar and open 

sun drying method. Unpublished MScEng dissertation, Department of Bioresource 

Engineering, Mcgill University, Montreal, Canada. 

Priyadarshini, I, Shulka, RN and Mishra, AA. 2013. Microwave drying characteristics of green 

peas and its quality evaluation. International Journal of Agriculture and Food Science 

Technology 5(4):445-452. 

Simal, S, Femenia, MC, Garau, MC and Roselló, C. 2005. Use of exponential, Page’s and 

diffusional models to simulate the drying kinetics of kiwi fruit.  Journal of Food 

Engineering 66(3):323-328. 

Saxena, A, Agarwal, N and Srivastava, G. 2013. Design and Performance of solar air heater 

with long term heat storage. International Journal of Heat and Mass Transfer 60:8-16. 

Schulze, RE and Maharaj, M. 2007. Daily maximum temperatures. In: ed. Schulze, RE, South 

African Atlas of Climatology and hydrology. Report No. 1489/1/06, Water Research 

Comission, Pretoria, South Africa.  

Rasouli, M, Seiidlou, S, Ghasemzadeh, HR and Nalbandi, H. 2011. Convective drying of garlic 

(Alliium sativum L.): Part I: Drying kinetics, mathematical modelling and change in 

colour. Australian Journal of Crop Science 5(13):1707-1714. 

Shi, Q, Zheng, Y and Zhao, Y. 2013. Mathematical modelling on thin-layer heat pump drying 

of yacon (Smallaanthus sonchifolius) slices. Energy Conversion and Management 

71:208-216. 

Thipe, EL. 2014. Comparative analysis of two greenhouse microclimates in the sub-humid 

climate of South Africa. Unpublished MscEng Dissertation, College of Agriculture, 

Engineering and Science, University of KwaZulu-Natal, Pietermaritzburg, RSA. 

Tiwari, GN, Das, T and Sarkar, B. 2006. Experimental study of greenhouse drying under 

natural convection. CIGR E-journal 3:1-9. 

Tripathy, PP and Kumar, S. 2017. Influence of sample geometry and rehydration temperature 

on quality attributes of potato dried under open sun and mixed mode solar drying. 2017. 

International Journal of Green Energy :43-156. 

Vega-Falvez, A, Uribe, E, Lemus, R and Miranda, M, 2007. Hot air drying characteristics of 

aloe vera (Aloe barbadensis Miller) and influence of temperature on kinetic parameters. 

Lebensm-Wiss Technology 40:2225-2253. 



 

86 

 

Wang, Z, Sun, J, Chen, F, Liao, X and Hu, X. 2007. Mathematical Modelling on Thin Layer 

Microwave Drying of Apple Pomace with and without Hot Air Pre-Drying. Journal of 

Food Engineering 80:536 -544. 

Workneh, TS and Oke, MO. 2012. The influence of the combined microwave power and hot 

air ventilation on the drying kinetics and colour quality of tomato slices. African 

Journal of Biotechnology 11(87):15353-15364. 

Yu, HM, Zuo, CC, Xie, QJ. 2015. Drying kinetics and model of Chinese Hawthorn using 

microwave coupled with hot air. Journal of Mathematical Problems in Engineering:1-

15. 

Zogzas, NP. Maroulis, ZB, Marinon-Kouris, D. 1996. Moisture diffusivity data compilation in 

foodstuffs. Journal of Drying Technology 14:2225-2253. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

87 

 

4. THE EFFECTS OF THIN-LAYER HOT AIR DRYING METHODS 

ON QUALITY OF MANGO SLICES 

 

Abstract 

 

Fresh Tommy Atkin mangoes (Mangifera indica L.) with flesh colour parameters, of 

L*(47.70±5.6), a* (24.72±6.9) and b*(34.87±8.76), a mean TSS of 13.85±2.07°Brix and 

firmness of 4.4±3.2N were used for the drying experiments. This study investigated the 

effect of three drying methods, namely, open-air solar drying (OAD), a modified ventilation 

solar dryer (MVD) and a convective oven dryer (OVD) on quality parameters of 3 mm, 6 

mm and 9 mm mango slices with  and without lemon juice pre-treatment. The study 

observations found relatively higher colour changes (ΔE) for mango slices dried in OAD 

than for MVD and OVD, respectively. Lemon juice treatment did not affect the colour 

parameters L* and a*, but only the drying method and the mango slice thickness affected 

the colour. It was found that the thicker mango slices (9 mm) dried in OAD became darker, 

indicating that there was more browning, compared to the thinner slices (3 mm and 6 mm) 

in MVD and OAD. Furthermore, pre-treatment did not affect the rehydration ratio; 

however, thicker slices dried in OAD showed a higher rehydration ratio, indicating cell 

damage. This was evident with microstructure analysis by Scanning Electron Microscopy 

(SEM) that showed significant cracking and pore formation in OAD dried mangoes. 

Sensory evaluations showed that panellists preferred treated mango samples. The overall 

acceptability of treated mangoes dried with MVD (7.09±1.26) was not significantly higher 

(P>0.05) than that of mangoes dried in OVD (6.94±1.64) and OAD (6.51±2.07), 

respectively. In addition, the microbial counts showed that the dried mangoes were safe for 

human consumption, because pathogens were not detected. However, fungi and anaerobic 

bacteria counts found were higher than the international stipulated limit of 1x103 CFU.g-1.  

 

Keywords: Solar, drying, thickness, pre-treatment, colour, microbial count, sensory 

evaluation, microstructure 
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4.1 Introduction  

 

Mango (Mangiferia Indica L.) is an important tropical and subtropical fruit that is popular on 

the world market because of its unique and attractive flavour, colour and nutritional value. It 

has the potential to provide about 50% of the recommended daily intake of Vitamin C (Akoy, 

2007; Djioua et al., 2012). However, the perishable nature of this fruit and the short harvest 

season limit its utilization for both economic and nutritional benefits. As a result, mangoes are 

not well developed as a commercial and export crop (Akoy, 2007). Dried mango is becoming 

a preferred health snack, which has a potential for export. The availability of a wide variety of 

dried fruit to consumers has resulted in a concern over the quality standards (Fudholi et al., 

2011).   

 

Studies have clearly shown that the method of drying has a significant impact on the quality of 

the dried produce. Several methods of drying have result in the loss of chemical, physical and 

sensory quality as well as microbial changes. Mensah et al. (2002) and de Souse (2008) found 

that food-borne illnesses, because of food processing procedures such as drying are a major 

international problem and continue to be a concern in developing countries, such as South 

Africa. This is a result of the food standards, regulations and safety policies, which are not well 

established or not in place. The quality of dried fruit is categorized as chemical, physical and 

sensory (Sivakumar et al., 2011). In addition, the assumption has always been that low moisture 

foods (LMF) prohibit microbial growth (Ntuli et al., 2017). However, counts of bacterial and 

fungal pathogens higher than the stipulated international limits (<103 CFU.g-1) have been 

observed in dried fruit produced at both a commercial and household level (Barth et al., 2010; 

Ntuli et al., 2017). 

 

Drying is a simultaneous heat and mass transfer process and during the drying process internal 

stresses in the food result in physical changes, such as cell collapse and shrinkage, colour 

changes and loss of rehydration ability (Lewicki and Pawlak, 2003; Karim, 2005; Perumal, 

2007; Karim et al., 2008). The acceptance of dried fruit can be assessed by its retention of 

quality, and to enhance this, different pre-treatments have been developed for fruit dehydration, 

including sulphating, blanching and fruit juice (Karim, 2005). Pre-treatments inhibit the 

enzymatic and non-enzymatic darkening of dried fruit (Levi et al., 1980). Studies by Karim et 

al. (2008) found that pre-treated samples exhibit less darkening, and panellists have judged in 
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favour of pre-treated samples for the dried pineapple. Masamba et al. (2013) further found that 

pre-treatment significantly improves colour and flavour. Furthermore, pre-treatment 

accelerates the drying process and prevents browning (Jayaraman and Gupta, 2006). Sensory 

evaluation studies have shown that lemon-treated mangoes are preferred to salt- treated 

mangoes (Abano et al., 2013). 

 

 The hot air drying methods used for fruit play a significant role in quality parameters (Perumal, 

2007). Open-air uncontrolled solar drying is a popular method used for preservation in hot 

climates, such as South Africa, rather than canning, mainly due to energy savings of solar 

energy, and it is a result of the scarcity of suitable cooling and storage facilities (Koyuncu, 

2007). Perumal (2007) highlighted that the quality of product dried using the open-air 

uncontrolled method deteriorates to levels that are not suitable for human consumption. 

Investigations into convective oven drying found that a lower drying temperature of about 60°C 

and longer drying periods results in higher total colour changes (ΔE) and a lower dehydration 

ratio of mangoes (Akoy, 2007). Vadivambal et al. (2007) and Contreras et al. (2008) indicate 

that convective oven drying is widely used in industrial drying and research studies have 

reported quality loses with respect to flavour, colour and case hardening because of the use of 

hot air. Convective oven drying at 70-90°C is one of the drying methods that causes the 

degradation of important flavour compounds and colour alterations (Antal et al., 2015). 

Consequently, massive quality losses due to open air solar drying, coupled with relatively 

higher energy costs of convective oven drying methods have resulted in consideration of other 

drying methods, such as the use of a greenhouse solar dryer, with modified ventilation.  The 

concept of using solar energy for drying is becoming increasingly feasible because of the 

concern about the depletion of fossil fuels and their effect on the climate (Perumal, 2007).  

 

Several studies have investigated the use solar drying of mangoes, including the Amelie and 

Kent mangoes using a greenhouse type solar dryer (Rankins et al., 2008; Prakash and Kumar, 

2014). Tommy Atkin is a popular mango variety found in South African markets. Limited 

studies have been conducted on the quality parameters of Tommy Atkin mangoes dried by 

solar drying, open-air uncontrolled solar drying and a convective oven dryer. Furthermore, 

there is a lack of information on the effect of pre-treatments on the quality parameters of 

Tommy Akin mangoes. Therefore, this study aims to fill a research gap by investigating 
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changes in colour, sensory properties, microbial load and microstructure of fresh Tommy Atkin 

mangoes slices dried using three hot air drying methods namely; OAD, MVD and OAD. 

 

4.2 Materials and Methods 

 

4.2.1 Fruit firmness 

 

A penetrometer of the brand Instron ® 3345 Universal Testing Machinw (Instron, UK), with a 

5kN loading capacity was used to determine the firmness of fresh mangoes. The firmness was 

determined by using a 4 mm stainless steel probe attached to a load cell at a penetration rate of 

0.2 mm. s-1 and a penetration depth of 10 mm (Barrett et al., 2010). 

 

4.2.2 Total soluble solids 

 

The Total Soluble Solids (TSS) was measured by a handheld refractometer (Atago, PAL-3, 

Japan). The refractometer was calibrated by distilled water at room temperature. To take the 

TSS measurements, a 10g sample of fresh mango was homogenized to form a pulp. The fruit 

pulp was placed on the refractometer and measurements were taken in triplicate. 

 

4.2.3 Colour 

 

Colour measurements of fresh and dried fruit was done using the Hunterlab Colourflex ® EZ 

colorimeter (Hunter Associates laboratory, Inc., USA). The instrument was calibrated with a 

black and a white standardization tile before taking measurements (Ismail and Nagy, 2012; 

Akoy, 2014).  The skin and flesh colour of fresh mangoes was determined. Fresh and dried 

mangoes of 3 mm, 6 mm and 9 mm thickness (treated and control) were placed on the cover 

glass cup of the colorimeter to cover so that the light did not escape from the instrument when 

taking measurements. The L* refers to the lightness of the sample and ranges from black (zero) 

to white (100), a* indicates the range of colours red (+) and green (-) and b*, indicates the range 

of colours yellow (+) and blue (-) (Maskan, 2001). The total colour change (∆E) and hue angle 

(H) were calculated from L*, a* and b* values using Equations 4.1-4.5 to describe the colour 

change during drying (Maskan, 2001; Pathare et al., 2013; Akoy 2014). 
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 ∆𝐸 = √(∆𝐿∗)2 + (∆𝑎∗)2 + (∆𝑏∗)2                                                                                           (4.1)  

𝐻𝑢𝑒 𝑎𝑛𝑔𝑙𝑒 = 𝑡𝑎𝑛−1 (
𝑏

𝑎
)                                                                                                               (4.2)  

The following equations  used in specifying the change in the colour parameters after drying 

with respect to the fresh product, as described by Akoy (2014). 

    ∆𝑎∗ = 𝑎𝑑𝑟𝑖𝑒𝑑
∗ − 𝑎𝑓𝑟𝑒𝑠ℎ

∗                                                                                                                  (4.3)  

   ∆𝑏∗ = 𝑏𝑑𝑟𝑖𝑒𝑑
∗ − 𝑏𝑓𝑟𝑒𝑠ℎ

∗                                                                                                                   (4.4) 

     ∆𝐿∗ = 𝐿𝑑𝑟𝑖𝑒𝑑
∗ − 𝐿𝑓𝑟𝑒𝑠ℎ

∗                                                                                                                  (4.5)  

 

4.2.4 Rehydration 

 

Rehydration characteristics are used to indicate the physical and chemical changes that occur 

during drying. A dried sample (5g) was soaked in a 250 ml beaker containing 150 ml of boiling 

distilled water. The content was left for five minutes for the mango slices to rehydrate (Prakash 

et al., 2004; Akoy, 2014). The water was filtered through filter paper and the rehydrated mass 

of the mango slices was measured in triplicate. The rehydration ratio was estimated, by using 

Equation 4.6: 

    𝑅𝑒ℎ𝑦𝑑𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 =
𝑊2

𝑊1
                                                                                               (4.6) 

The weight, W2 (g), is the weight of the drained material and W1 (g) is the weight of the dried 

material (Akoy, 2014). 

 

4.2.5 Sensory evaluation 

 

A group of 55 untrained panellists comprising of students and staff of the University of 

KwaZulu-Natal carried out a sensory evaluation of the mango samples. They were females and 

males of 18 years and above who evaluated the dried mango samples in terms of colour, 

flavour, and overall acceptability. The sensory evaluation was done at the Food Science 

laboratory of the university, in groups of 10 panellist at a time and they were separated by 

booths.  Ethical clearance was obtained from the University of KwaZulu-Natal, Humanities 

and Social Sciences Research Ethics Committee (Reference No: HSS/0307/017M) before the 

panellists were recruited (Appendix B1). Samples were served randomly on plates, and they 

were blind-labelled with three-digit random numbers generated, by using Microsoft Office 
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Excel. The panellists evaluated and scored the dried mango on a nine-point hedonic rating 

scale. The nine points ranged from “extremely desirable” (nine point) to “extremely 

undesirable” (one point) (Barrett et al., 2010; Okoth et al., 2013; Ray et al. 2014; 

Ngamchuachit et al., 2015). Panellists were permitted to use only one-digit scores on a sample 

evaluation card for rating (Appendix B2). The average of individual scores represented the 

sensory score of the dried mango sets evaluated. 

 

4.2.6 Microbial analysis 

 

Microbial enumeration and isolation was done in selective media. A 10 g sample of fresh and 

dried mango was placed in 90 ml of sterile 0.1% peptone water (Merck SAAR4943300DN). It 

was homogenized for 10 minutes in a zip-lock bag, 10 ml of sterile peptone was poured into 

one sterile McCartney bottle labelled 10-0 and 9 ml into bottles labelled 10-1 to 10-4. A quantity 

of 1ml of the homogenate was pipetted aseptically, with a sterilized pipette into the 10-0 dilution 

and from it, serial dilutions of 10-1 to 10-4 were prepared. Aliquots of 0.1ml of each dilution 

were spread-plated in solidified media on petri dishes (Ntuli et al., 2017). The total bacterial 

count was enumerated on nutrient agar (Merck HG0000C1), coliforms were enumerated on 

Violet Red Bile Agar (VBRA) (Merck HG0000C23), while fungal counts were determined on 

Potato Dextrose Agar (PDA) (Merck HG00C100). The plates were incubated at 28 ºC for 48 

hours. Each experiment was replicated three times. A colony counter was used to count the 

colonies, the count (only 30-300 colonies were counted) was expressed as colony forming units 

per gram (CFU.g-1), and an average was recorded.  

 

4.2.7 Microstructure changes 

 

Samples of fresh and dried mangoes were cut into small pieces (10 mm x 10 mm). The samples 

were mounted on aluminium double-sided stubs and coated with a fine layer of gold, using a 

sputter gold coater Quorum, Q150RES (Quorum, UK). The samples were examined with a 

scanning electron microscope (SEM), Zeiss Evo LS15 (Zeiss, Germany). Micrographs were 

taken at a magnification of 300, 500 and 750 at high vacuum and at an accelerating voltage of 

5kV. To enable viewing in high vacuum fresh mango samples had to be prepared, using the 

standard SEM procedure. The fresh mangoes were washed in 3% buffered Glutaraldehyde for 

one to three hours, to maintain the structural details. The samples were cleaned in Sodium 
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cacodylate buffer for five minutes. The sample was placed in 2% buffered Osimium Tetraoxide 

for an hour and cleaned afterwards. Sample dehydration was done by dipping the sample in 

10%, 30%, 50%, 70% and 90% ethanol for 10 minutes and in absolute ethanol for 30 minutes. 

Critical point drying was done prior to the exposure of sample to a high vacuum environment. 

The process involved the transfer of samples to CPD (critical point drying) baskets under 

absolute ethanol. During the CPD, the ethanol is replaced with liquid CO2. It was heated and 

pressurised to its critical point. The liquid was converted to gas without the damaging effects 

of surface tension to the sample, resulting in a dry, intact samples. 

 

4.3 Results and Discussions 

 

4.3.1 Fresh mango quality properties 

 

Fresh mangoes were sorted according to the firmness and TSS and mangoes with similar 

properties were used for the drying experiments. The firmness and TSS were also used as a 

measure of the maturity of the mangoes used for the drying experiments (Jah et al., 2006). The 

TSS of the fresh mango varied between 10.1-17.1˚Brix with a mean of 13.85˚Brix (Table 4.1). 

According to Jha et al. (2006) ripe mango has a TSS range of 12-23˚Brix and Tommy Atkin 

mangoes with a TSS range of 12-15˚Brix is considered ripe (Belayneh, 2004; Ahmed and 

Ahmed 2014). The mangoes used for the drying experiments had a firmness varying between 

1.441 N and 12.37 N. The average firmness (4.4 N), as shown in Table 4.1, indicate that the 

mangoes were ripe (Pleguezuelo et al., 2012). Therefore, the TSS and firmness values of the 

mango used for the drying experiments show that they were of process grade (Kader, 2008). 

 

Table 4.1 Fresh mangoes quality parameters 

 

 

 

 Firmness (N) TSS (˚Brix) 

Mean values 4.4±3.2 13.85±2.07 

CV% 

LSD(P>0.05) 

P 

74 

3.17 

0.81 

13.5 

5.19 

0.34 
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4.3.2 Colour changes 

 

Colour is an important quality parameter used as a measure for market value of produce. Colour 

was analysed by L*(lightness of colour), a*(degree of redness), b*(yellowness), hue angle, 

colour change. Studies have indicated that L*, a*, hue angle, change in colour and browning 

index are the important parameters in colour analysis of dried fruit (Pathare et al., 2013). It was 

found that the mean L* varied between 69.34 and  67.70 for fresh fruit, 47.68 and 60.28 for 

MVD dried mango slices , 55.63 and 64.57 for OVD dried mango slices, 32.33 and 60.31 for 

OAD dried mango slices. It was observed that the lightness of the dried mango slices was 

relatively lower than the fresh mango lightness, as shown in Figure 4.1-a. There was a highly 

significant difference (P<0.001) in the lightness of mango dried in the three drying methods. It 

was observed that for all drying methods, thickness had a highly significant effect (P<0.001) 

on the lightness of the mangoes. Furthermore, there was a significantly higher (P<0.001) 

lightness in 3 mm thick slices than 6 mm and 9 mm slices dried in all drying methods. The 

slices dried in the OVD had a significantly higher (P<0.001) lightness than those in the MVD 

and OAD, respectively. However, lemon juice treatment did not have a significant (P≥0.05) 

effect on the lightness of the dried mango.  

 

Similar observations were made by Rasouli et al. (2011), who observed that there was a 

decrease in the lightness (L*) of fresh product during drying and that the slice thickness is a 

factor that has a significant impact on the thicker slices being darker. Ali et al. (2016) observed 

that the OAD results in lower lightness, as compared to the fresh mangoes. The prolonged 

drying time in OAD and the exposure to oxygen-filled air the reason for the lower lightness 

values (Ali et al., 2016). Furthermore, de Medeiros et al. (2016) also found that pre-treatment 

does not significantly change the lightness of dried mango. The effect of the drying 

method*thickness*treatment on redness (a*) was significant (P<0.05). However, the redness 

(a*) was not significantly different (P>0.05) among the drying methods. A highly significant 

(P<0.001) difference in redness was observed for the mango slices of different thicknesses. 

However, the lemon juice treatment did not significantly (P>0.05) affect the redness of the 

mangoes. The mean redness value observed for the control and lemon juice treated 3 mm 

samples was 17.52-20.12 for MVD, 13.08-17.81 for OVD and 16.97-17.57 for OAD, 

respectively. The lemon juice treated and control mango slices of 6 mm thickness had a redness 

variation between 19.56 and 20.07 for MVD, 22.37-17.58 for OVD and 16.59-21.87 for OAD. 
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The lemon juice treated and control mango slices of the 9 mm thickness had redness values 

that varied from 19.74-19.22 for MVD, 20.39-22.37 for OVD and 17.28-18.97 for OAD. The 

redness of the mangoes dried in OAD was not significantly (P>0.05) higher than for the MVD 

and OAD dried mangoes, respectively. Observations also indicate that there is non-significant 

difference in the redness between dried and fresh mangoes.  

 

Studies show that drying reduces the yellowness of produce (b*) as observed in Figures 4.1-b 

and 4.1-c (Shi et al., 1999; Kerkhofs et al., 2005; Akoy, 2014). The hue angle varied from 

65.74 to 78.43, indicating the overall yellowness of the sample (Barreiro et al., 1997). This 

study shows a highly significant (P<0.001) decrease in hue for all drying method. However, 

the preservation of yellowness was by the OVD (78.43-70.35) and MVD (74.72-71) and a 

relatively higher reduction in the hue of fresh mango was observed for mango slices dried in 

OAD. The higher temperatures experienced in the OVD and MVD methods reduced the drying 

time. Previous research studies showed that drying time is the main factor resulting in 

preservation of the yellowness of a product (Oliveria et al., 2015). Furthermore, the total colour 

change (ΔE), which is a combination of L*, a* and b* values, as shown in Appendix 4.1, shows 

that the highest colour change was for the OAD control samples and the 9 mm dried slices. In 

addition, the 9 mm control samples dried in the MVD showed a relatively high colour change. 

This study substantiates other studies (Akoy et al., 2014, Oliveria et al., 2015), which indicated 

that drying in higher temperatures such as 70˚C result in lower colour change, because of a 

shorted drying period. The major cause of colour change during drying is carotenoid 

degradation, maillard reaction and non-enzymatic browning and they are affected by longer 

drying periods, as in the OVD. 
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4.3.3 Rehydration characteristics 

 

Rehydration properties are quality criteria that serve to indicate the physical and chemical 

changes that occur during drying (Abano et al., 2013). The rehydration ratio and rehydration 

coefficient of the mango slices dried by the OVD, MVD and OAD methods were not 

significantly (P>0.05) different, as shown in Table 4.2. The rehydration ratio for samples dried 

by OVD was between 2.518±0.43 and 1.512±0.28, for MVD it varied between 2.542±0.29 and 

1.591±0.09 for OAD it was between 2.667±0.05 and 1.649±0.06. The OVD dried mango had 

a relatively higher rehydration rates, compared to those dried by the MVD and OAD methods. 

It was also observed that, the rehydration ratio was significantly higher (P<0.001) for 3 mm 

than the 6 mm and 9 mm mango slices dried using the three methods. Pre-treatment did not 

affect the rehydration of mango slices significantly (P>0.05). Abano and Sam-Amoah (2011) 

and Abano et al. (2013) also concluded that the rehydration characteristics of bananas and 

mangoes are not affected by pre-drying treatments. The rehydration coefficient coincide with 

that of Askari et al. (2006) who found a coefficient of 0.405 for hot air drying. The highest 

rehydration ratio in OAD is attributed to higher internal stresses during drying (Kathirvel et 

al., 2006). Slice thickness is one of the factors that influences the rehydration characteristics 

(Madamba, 2003). A relatively higher rehydration ratio in 3 mm slices indicates that there was 

no cell wall damage for the thinner dried mangoes (Sacilik et al., 2006). Perumal (2007) 

observed that the rehydration ratio for thinner slices is relatively higher, when drying tomatoes. 
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Figure 4.1 Variation of colour parameters L*(a), a*(b), b*(c) and hue (d) for the fresh and dried 

mangoes 
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A lower rehydration ratio of the 6 mm and 9 mm dried mango slices also indicates there is a 

denaturing of proteins and cell wall damage (Perumal, 2007).  

 

Table 4.2 Rehydration ratio of dried mango samples 

Drying method Treatment Thickness(mm) Rehydration ratio 

(dimensionless) 

Rehydration coefficient 

(dimensionless) 

OVD Lemon juice treatment 3 2.518±0.43eghi 0.5105±0.01efghi 

  6 1.986±0.13bcdefg 0.4413±0.03bcdefg 

  9 1.152±0.28a 0.2561±0.03a 

 Control 3 2.297±0.25fghi 0.5595±0.06ghi 

  6 2.107±0.17cdefgh 0.4667±0.03cdefgh 

  9 1.479±0.25ab 0.3288±0.03ab 

MVD Lemon juice treatment 3 1.919±0.18bcdef 0.4265±0.04bcdef 

  6 2.352±0.06fghi 0.5222±0.07fghi 

  9 1.591±0.09abc 0.3536±0.02abc 

 Control 3 2.100±0.05cdefgh 0.4682±0.06cdefgh 

  6 2.542±0.29hi 0.5649±0.01hi 

  9 1.718±0.26bcd 0.3817±0.04bcd 

OAD Lemon juice treatment 3 2.518±0.18ghi 0.5597±0.02ghi 

  6 1.649±0.06abcd 0.3664±0.03abcd 

  9 1.756±0.09bcde 0.3901±0.05bcde 

 Control 3 2.667±0.05i 0.5926±0.06i 

  6 2.171±0.29defghi 0.4825±0.04defghi 

  9 1.861±0.26bcdef 0.4136±0.04bcdef 

CV% 

LSD (P=0.05) 

P 

 

  14.1 

0.475 

0.851 

14.1 

0.106 

0.851 

*Mean values (±SD) with similar superscript letters in a column are not significantly different (p<0.05) 

 

4.3.4 Sensory quality results 

 

A sensory determined flavour, colour and overall acceptability of lemon juice treated and 

control mangoes of various thicknesses. There was a highly significant (P<0.001) difference in 

the consumer acceptability of the colour of the lemon juice treated and the control mango slices 
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dried by the three methods used. The lowest acceptability was for the control mango slices 

dried using OAD (4.327±2.17). It was found that the panellists liked the colour of lemon juice 

treated mango slices dried using MVD (7.000±1.19) than the OVD (6.923±1.17) and OAD 

(6.635±1.79) dried mangoes. 

The difference in the likeness of the flavour of the dried mango was highly significant 

(P<0.001), as shown in Table 4.3. The panellists liked the flavour of the lemon juice treated 

mango slices dried in MVD (6.827±1.37) than those dried in OVD (6.788±2.02) and OAD 

(6.442±2.02). Furthermore, the panellists did not like the colour of the control dried mango 

slices dried in OAD because of the visible browning colour. In addition, mango slices dried in 

the MVD and OVD had the highest overall acceptability, as shown in Table 4.3.  The overall 

acceptability of mango slices dried in MVD was significantly (p<0.001). The study findings 

show the overall acceptability for lemon juice treated mango dried in MVD was the highest. 

Similar observations made by Abano et al. (2013) show that lemon juice pre-treatment has an 

influence on the panellists scoring of flavour, colour and overall acceptability of dried mango. 

In addition, Masamba et al. (2013) also found that mango pre-treated with lemon juice had 

higher scores of colour and flavour acceptability compared to control samples.  

 

Table 4.3 Consumer acceptability of treated and untreated dried mango of varied thickness 

Drying method     Treatment 

 

Flavour Colour Overall acceptability 

OVD Lemon juice treatment 6.788±2.02b 6.923±1.17b 6.941±1.64c 

Control 6.115±1.94b 6.538±1.88b 6.010±1.79b 

MVD Lemon juice treatment 6.827±1.37b 7.000±1.19b 7.088±1.26c 

Control 6.538±1.95b 6.500±1.73b 6.343±1.69bc 

OAD Lemon juice treatment 6.442±2.02b 6.635±1.79.b 6.510±2.07bc 

Control 5.269±1.99a 4.327±2.17a 5.00±1.95a 

LSD 

CV% 

P 

0.717 

29.3 

0.001 

0.660 

27.1 

0.001 

0.690 

28.0 

0.001 

*Mean values (±SD) with similar superscript letters in a column are not significantly different (p<0.05) 

 

4.3.5 Microbial load and safety results 

 



 

100 

 

The lower moisture content and water activity of dried fruit has led to the fruit being viewed 

microbiologically safe (FAO/WHO, 2016). However, the increased levels of food-borne illness 

have increased the concerns about the microbial quality of low moisture content foods (de 

Sausa, 2008; FAO/WHO, 2016). The microbial load is shown in Table 4.4 for OVD, OAD, 

and MVD dried mango slices. The lemon juice treated and control mango slices contained 

fungi and anaerobic bacteria only. Fungal counts varied between 3±1x107 and 7±7.5 x107 

CFU.g-1 for the lemon juice treated dried mango slices, for the control dried mango slices the 

mean fungal counts varied from 5±5.8x107 to 2±1.4x108 CFU.g-1. The mean Total Anaerobic 

Counts (TAC) varied from 7±2.5 x107 to 5±2.4 x107 CFU.g-1 for the lemon juice treated dried 

mango slices, while the control dried mango slices had a TAC count of about 8±3.7 x107 

CFU.g-1. The pre-drying treatments and drying methods used did not significantly (P>0.05) 

both fungal counts and TAC. The lowest TAC observed was for the lemon juice treated 

mangoes dried by OAD and MVD, respectively, and the highest was for control mangoes dried 

by OVD. The absence of faecal coliforms in dried mango is an indication of safety of the dried 

mangoes for human consumption, as there are no pathogenic micro-organisms (ICMSF, 1982). 

It also indicates good hygienic and handling practices (Ntuli et al., 2017).  

 

The fungal counts and TAC obtained in dried mango were above the World Health 

Organisation standards. A guideline by Gilbert et al. (2000) indicates that a TAC count of less 

than 1x102 CFU.g-1 is acceptable. In addition, the safe limit for fungi is less than 1x103 CFU.g-

1 (ICMSF, 1982; Wittum et al., 2009). However, according to the Health Protection Agency 

(HPA), the presence of anaerobic bacteria is an indication of a lower quality of the produce and 

it is not a priority in the safety of products (HPA, 2009). The study findings on the TAC and 

fungal counts indicate unacceptable microbial quality of the dried fruit. According to Babiker 

et al. (2014), drying should reduce the microbial counts of fungi and anaerobic bacteria. 

Therefore, the drying temperatures used for the drying experiments might not be sufficient to 

kill anaerobic bacteria, hence, creating available moisture to support the growth of the micro-

organisms (Adu-Gyamfi and Mahami, 2017). Beuchat and Mann (2014) also illustrate that 

lethal processes are necessary to prevent growth of anaerobic bacteria. Fungi are more 

prominent in foods that have a high sugar content and they are tolerant to low moisture content 

foods (Sagar and Suresh, 2010). Furthermore, the sugar content in fruit, such as mangoes 

enhances the survival of heat resistance micro-organisms (Beuchat et al., 2013; Finn et al, 

2013). The sugar content of mangoes could be a contributing factor to the high levels of fungi 
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in the lemon juice treated and control slices. These studies are in support with FAO (2004), 

indicating that modified solar driers are free from microbial contamination and produce better 

quality products than open-air uncontrolled solar dried products. Several studies on fish and 

meat drying have also shown that conventional drying methods, such as OVD do not eliminate 

the growth of anaerobic bacteria and fungi (Adu-Gyamfi and Mahami, 2017; Cherono et al., 

2016). 

 

Table 4.4 The microbial counts of dried mango 

Drying method Treatment VRB 

(CFU.g-1) 

PDA 

(CFU.g-1) 

TAC 

(CFU.g-1) 

Fresh mango  ND ND ND 

OVD Lemon juice treatment ND 7±7.5 x107a 7±2.5x107a 

 Control ND 8±6.2x107ab 8±3.3x107a 

OAD Lemon juice treatment ND 7±6.4x107a 5± 2.4x107a 

 Control ND 2±1.4 x108b 8±3.3x107a 

MVD Lemon juice treated ND 3±1x107a 5±2.4 x107a 

 Control ND 5±5.8x107a 8±3.7 x107a 

P>0.05 

LSD 

CV (%) 

 - 

- 

- 

0.289 

1 x108 

108.9 

0.682 

4 x107 

48.2 

*Mean values (±SD) with similar superscript letters in a column are not significantly different 

(p<0.05), ND=not detected 

 

4.3.6 Changes in the microstructure of mango slices 

 

Scanning Electronic Microscopy (SEM) was used for comparing the surface microstructure of 

fresh and dried mango slices, using SEM micrographs, as shown in Figure 4.5.  Fresh mangoes 

showed a smooth irregular surface. There was no clear difference in observations made for 

treated and untreated mango slices dried in MVD, OVD and OAD. There was evidence of 

microstructural difference for the 3 mm, 6 mm and 9 mm dried mango slices. Furthermore, 

observations showed that the 3 mm slices form a regular surface with pores and cracks as shown 

in Figure 4.5 (B1, C1 and D1). Cracking was mainly observed for 3 mm, 6 mm and 9 mm 

mango slices dried in OAD, as shown in Figure 4.5 (D1-D3). Fazaeli et al. (2012) also indicated 
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that samples dried, using hot air become porous. This is a result of water evaporation from the 

samples. The formation of cracks is a clear indication of cell wall damage, which is caused by 

a long drying time (Lewicki and Pawlack, 2003; Vega-Galvez et al., 2012). The observation 

made by López et al. (2016) show that most of the drying methods damage the microstructure 

of the fruit. However, significant damage is observed for open-air uncontrolled drying. This 

could be a result of the exposure of the fruit surface to outside air conditions, for a longer 

period.
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Figure 4.2 Figure 15 SEM micrographs of (A1) fresh mango; (B1, B2, B3) 3mm, 6mm and 9mm mango slice dried in MVD; (C1, C2, C3) 3 mm, 6 mm and 9 

mm mango slice dried in OVD; (D1, D2, D3) 3 mm, 6 mm and 9 mm mango slice dried in OAD (300 x magnification, 100 µm scale) 
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4.3.7 Conclusions 

 

Hot air methods used for the drying experiments had an influence on the quality characteristics 

mangoes. OAD dried produce was characterised by a higher colour change (ΔE), a lower 

overall consumer acceptance, relatively higher rehydration ratio, higher TAC and fungal count 

and the significant damage of product cell wall. MVD was observed to be an effective method 

of drying, which has the potential to replace the convective oven drying method because, 

similar observations were made on the results of quality properties investigated in the study. 

This study also found that lemon juice pre-treatment does not significantly (P>0.05) affect the 

quality of dried mango. The main factor influencing the quality is drying temperature, which 

influenced the drying time. The exposure of fruit to hot air for longer drying periods has been 

shown to have an effect on the quality of the fruit. The mango slices dried in OVD took a 

relatively shorter drying period, as a result the quality of mangoes was preserved, compared to 

that of the mangoes dried in MVD and OAD, respectively. Considering the current shift in 

South Africa to promote renewable energy sources, it is recommended that a solar collector be 

included in the MVD, to further increase the drying temperature for reduction of the drying 

time. This will also reduce the growth of anaerobic bacteria. Although the dried mango is 

acceptable for human consumption, it is necessary to investigate other possible pre-treatments 

that could potentially create an environment that does not promote fungal growth, during 

drying of mangoes. A mango slice thickness of 3 mm or 6 mm is more suitable for drying, 

because it takes a relatively shorter time to dry, resulting in less cell damage and better quality 

retention. 

 

 

 

 

 

 

 

 

 

 

 



 

106 

 

4.3.8 References 

 

Abano, EE and Sam-Amoah, LK. 2011. Effects of different pre-treatments on drying 

characteristics of banana slices. Journal of Engineering and Applied Sciences 6(3):121-129. 

Abano, EE, Sam-Amoah, LK, Owusu, J and Engmann, FN. 2013. Effects of ascorbic acid, salt, 

lemon juice and honey on drying kinetics and sensory characteristics of dried mango. 

Croat. Journal of Food Science and Technology 5(1):1-10. 

Adu-Gyamfi, A and Mahami, T. 2017. Effect of drying method and irradiation on the 

microbiological quality of moringa leaves. International Journal of Nutrition and Food 

Sciences 3(2):91-96. 

Ahmed, OK and Ahmed, SET.2014. Determining optimum maturity index of mango fruits 

(Mangifera indica L.).In Darfur. Agriculture and Biology Journal of North America 

5(2): 97-103. 

Ali, MA. Yusuf, YA, Chin, NL and Ibrahim,MN. 2016. Effect of drying treatments on colour 

quality and ascorbic acid concentration of guava fruit. International Food Research 

Journal 23:155-161. 

Antal, T, Kerekes, B, Sikolya, L and Tarek, M. 2015. Quality and drying characteristics of 

apple cubes subjected to combine drying (FD pre-drying and had finish drying). Journal 

of Food Processing and Preservation 39: 994-1005. 

Akoy, EOM. 2007. Mathematical modelling of solar drying mango slices. Unpublished 

PhDEng dissertation, Department of Agricultural Engineering, University of 

Khartoum, Khartoum, Sudan. 

Akoy, EOM. 2014. Experimental characterization and modelling of thin-layer drying of mango 

slices. International Journal of Food Research 21(5):1911–1917. 

Askari, G, Emam-Djomeh, Z and Mousavi, SM. 2006. Effects of combined coating and 

microwave assisted hot air drying on texture, microstructure and rehydrated 

characteristics of apple slices. Food Science Interim 12(1):39-46. 

Babiker, AOA, Isnail, IA, Ismail, IAI, Osman, OEM and Salih, ZA. 2014. Effect of solar drying 

using a natural convective solar drier on bacterial load and chemical composition of 

bayad (Bagrus bayad) fish flakes. International Journal of Multidisciplinary and 

Current Research 2:1100-1104. 



 

107 

 

Barth, M, Hankinson, T, Zhuang, H and Breidt, F. 2010. Microbiological spoilage of fruits and 

vegetables. Compendium of the microbiological spoilage of foods and beverages. 

Springer, New York. 

Barreiro, J, Milano, M and Sandoval, A. 1997. Kinetic of colour change of double concentrated 

tomato paste during thermal treatment. Journal of Food Engineering 33(3-4):359-371. 

Barrett, DM, Beaulieu, JC and Shewfelt, R. 2010. Colour, flavour, texture and nutritional 

quality of fresh-cut fruits and vegetables: Desirable levels, instrumental and sensory 

measurement and the effects of processing. Critical Reviews in Food Science and 

Nutrition 50(5):369-389. 

Belayneh, TY. 2004. Effect of cultural practices and selected chemicals on flowering and fruit 

production in some mango (Mangifera indica L.). Unpublished PhD dissertation. 

Department of Plant Production and Soil Science. Faculty of Natural and Agricultural 

Science. University of Pretoria, RSA. 

Beuchat, L and Mann, D. 2014. Survival of salmonella on dried fruits and in aqueous dried 

fruit homogenates as affected by temperature. Journal of Food Protection 44(7):1102-

1116. 

Beuchat, L, Komitopoula, E, Beckers, H, Betts, R, Bourdichon, F, Fanning, S, Joosten, H and 

Ter-Kuele, B. 2013. Low-water activity foods: increased concern as vehicles of 

foodborne pathogens. Journal of food Protection 76(1):150-172. 

Cherono, K, Mwithiga, G and Schmidt, S. 2016. Infrared drying as a potential alternative to 

convective drying for biltong production. Italian Journal of Food Safety 5:140-145. 

Contreras, C, Martín-Esparza, ME, Chiralt, A, Martínez-Navarrete, N. 2008. Influence of 

microwave application on convective drying: Effects of drying kinetics, and optical and 

mechanical properties of apple and strawberry. Journal of Food Engineering 88:55-64. 

de souse, CP. 2008. The impact of food manufacturing practices on food borne diseases. 

Brazilian Archives of Biology and Technology 51(4):815-823. 

de Medeiros, RAB, Barros, ZMP, de Carvalho, CBO, de Carvalho, CBO, Neta, EUG, Maciel, 

MIS and Azoubel, PM. 2016. LWT-Food Science and Technology 67:167-173. 

Djioua, T, Charles, F, Lopez-Lauri, F, Filgueiras, H, Coudret, MF, Ducap-Collun, M and 

Sallanon, H. 2012. Improving the storage of minimally processed mangoes (Mangifera 

indica L.) by hot water treatments. Post-harvest Biology and Technology 52:221-226. 



 

108 

 

Fazaeli, M, Tahmasebi, M and Djomeh, ZE. 2012. Characterization of food texture: application 

of Microscopic technology. In: ed.Méndez-Vilas, A. Current Microscopy 

Contributions in Science and Technology. 

FAO. 2004. The global cassava development strategy and implementation proceedings of the 

validation forum in the cassava development. [Internet]. FAO, Rome, Italy. Available 

from: http://www.fao.org/ag/AGPC/gcdslen/publication.html.pp.80-107. [Accessed 21 

August 2017]. 

FAO/WHO. 2016. Microbial safety of lipid-based ready-to-use foods for management of 

moderate acute malnutrition and severe acute malnutrition. Report No. 28. FAO, Rome, 

Italy. 

Finn, S Condell, O, McClure, P, Amézquita, A and Fanning, S. 2013. Mechanisms of survival, 

responses and source of Salmonella in low-moisture environments. Front. 

Microbiology 4:1-15. 

Fudholi,A, Othma, MY, Ruslan, MH, Yahya, M, Zaharim, A and Sopian, K. 2011. Design and 

testing of solar dryer for drying kinetics of seaweed in Malaysia. Journal of Recent 

Research in Geography, Geology, Energy, Environment and Bio-medicine (volume no 

not available):129-133. 

Gilbert, R, De-Louvois, J, Donavan, T, Little, C, Nye, K. 2000. Guidelines for the 

microbiological quality of some ready-to-eat food samples at the point of sale. Journal 

of Communicable Disease and Public Health 3:163-167. 

Health Protection Agency (HPA). 2009. Guidelines for assessing the Microbiological Safety 

of Ready-to-East Foods. (Report No. not available).  HPA, London, UK. 

ICMSF.1982. Microorganisms in Foods I: Their significance and methods of enumeration. 

University of Toronto Press. London. 

Ismail, OM and Nagy, KSA. 2012. Characteristics of dried mango slices affected by pre-

treatments and drying type. Australian Journal of Basic and Applied Sciences 6(5): 

230-235. 

Jah, SN, Kingsly, ARP and Chopra, S. 2006. Physical and mechanical properties of mango 

during growth and storage for determination of maturity. Journal of Food Engineering 

72(1):73-76. 

Jayaraman, KS and Gupta, DKD. 2006. Drying of fruits and Vegetables. In: Handbook of 

Industrial Drying, third edition. p.606-634. Taylor and Francis, Didcot, UK.  



 

109 

 

Kader, AA. 2008. Mango quality attributes and grade standards: A review of available 

information and identification of future research needs. Davis, USA. 

Kathirvel, K, Naik, KR, Gariepy, Y, Orsat,V and Raghavan, GSV. 2006. Microwave drying- 

A promising alternative for the herb processing industry. The Canadian Society of 

Bioengineering, Paper No. 06-212, Alberta, Canada. 

Karim, OR. 2005. Effect of pre-treatment on drying kinetics and quality attributes of air-

dehydrated pineapple slices. Unpublished PhD Food Science dissertation, Department 

of Food Science and Technology, University of Agriculture, Abeokuta, Ogun state, 

Nigeria. 

Karim, OR, Awonorin, SO and Sanni, LO. 2008. Effect of pre-treatments on quality attributes 

of air-dehydrated pineapple slices. Journal of Food Technology 6(4):158-165. 

Kerkhofs, N, Lister, C and Savage, G. 2005. Change in colour and antioxidant contecnt of 

tomato cultivars following forced-air drying. Journal of Plant Food and Human 

Nutrition 60:117-121. 

Koyuncu, T, Tosun, I, Pinar, Y. 2007. Drying characteristics and heat energy requirement of 

cornelian cherry fruits (Cornus mas L.). Journal of Food Engineering 78(2):735-739. 

Lewicki, PP. 2009. Effect of pre-drying treatment, drying and rehydration on plant tissue 

properties: A review. International Journal of Food Properties 1(1): 1-22. 

Lewicki, PP and Pawlack, G. 2003. Effect if drying on microstructure of plant tissue. 

International Journal of Drying Technology 21(4): 657-683. 

Levi, A, Ramirez-Matinez, JR and Paudua, H. 1980. The influence of heat and sulphur dioxide 

treatments on some quality characteristics of intermediate moisture banana. Journal of 

Food Technology 55:557-566. 

López, J, Ah-Hen, KS, Vega-Gálvez, A, Morales, A, García-Segovia, P and Uribe, E. 2016. 

Effects of drying methods on quality attributes of murta (ugni molinae turcz) berries: 

bioactivity, nutritional aspects, texture profile, microstructure and functional properties. 

Journal of Food Processing :1-11. 

Madamba, PS. 2003. Thin layer drying models for osmotically pre-dried young coconut. 

Journal of Drying Technology 19(3/4):611. 

Masamba, KG, Mkandawire,M, Chiputula, J and Nyirenda, KS. 2013. Evaluation of sensory 

quality attributes and extent of vitamin C degradation in dried pineapple, mango and 

banana fruit peaces pre-treated with sodium metabisulphate and lemon juice. 

International Research Journal of Agricultural Science and Soil Science 3(3):75-80. 



 

110 

 

Maskan, M. 2001. Kinetics of colour change of kiwifruits during hot air and microwave 

drying. Journal of Food Engineering 48(2):169-179. 

Mensah, P, Yeboah-Manu, D, Owusu-Darko, K and Ablordey, A. 2002. Street foods in 

Accra, Ghana: How safe are they. Bulleting of the World Health Organisation 

80(7):546-554. 

Ntuli,V, Chatanga, P, Kwiri, R, Gadaga, HT, Gere, J, Matsepo, T and Potloane, RP. 2017. 

Microbiological quality of selected dried fruits and vegetables in Maseru, Lesotho. 

African Journal of Microbiology 11(5):185-193. 

Ngamcguachit, P, Sivertsen, HK, Mitcham, EJ and Barret, DM. 2015. Influence of cultivar and 

ripeness stage on instrumental and sensory qualities of fresh-cut mango. Journal of 

Post-harvet Biology and Technology 106:11-20. 

Okoth, E, Sila, DN, Onyango, CA, Owino, WO, Mathooko, MSM. 2013. Evaluation of 

physical and sensory quality attributes of three mango varieties at three stages of 

ripeness, grown in lower Eastern Province Kenya-part 1. Journal of Animal and Plant 

Science 17(3): 2608-2618. 

Oliveria, SM, Ramos, IN, Brandao, TRS and Silvia, CLM. 2015. Effect of drying air 

temperature on the quality bioactive characteristics of dried Galega Kale (Brassica 

Oleracea L.var. Acephala). Journal of Food Processing and Preservation 39:2485-

2496. 

Pathare, PB, Opara, UL and Al-Said, FAJ. 2013. Colour measurement and analysis in fresh 

and processed foods: a review. Journal of Food and Bioprocess Technology 6:36-60. 

Perumal, R. 2007. Comparative performance of solar cabinet, vacuum assisted solar and open 

sun drying method. Unpublished MScEng dissertation, Department of Bioresource 

Engineering, Mcgill University, Montreal, Canada. 

Pleguezuelo, CRR, Zuazo, VHD, Fernandez, JLM and Tarifa, FT. 2012. Physico-chemical 

quality parameters of mango (Mangifera indica L.) fruits grown in a Mediterranean 

subtropical climate (SE Spain). Journal of Agricultural Science and Technology 

14:365-374. 

Prakash, S, Jha, SK and Datta, N. 2004. Performance evaluation of dried blanched carrots by 

three different driers. Journal of Engineering 62:305. 

Prakash, O and Kumar, A. 2014. Solar greenhouse drying: A review. Renewable and 

Sustainable Energy Reviews 29: 905-910. 



 

111 

 

Rankins, J, Sathe, SK and Spicer, MT. 2008. Solar drying of mangoes: Preservation of an 

important source of vitamin A in French-speaking West Africa. Journal of the 

American Dietician Association 108(6):986-990. 

Rasouli, M, Seiidlou, S, Ghasemzadeh, HR and Nalbandi, H. 2011. Convective drying of garlic 

(Alliium sativum L.): Part I: Drying kinetics, mathematical modelling and change in 

colour. Australian Journal of Crop Science 5(13):1707-1714. 

Ray, RC, Panda, SK, Swain, MR and Sivakumar, PS. 2014. Proximate composition and sensory 

evaluation of anthocyanin-rich purple sweet potato (Ipomea batatas L.). International 

Journal of Food Science and Technology 47(3):452-458. 

Sagar, V and Suresh, K. 2010. Recent advances in drying and dehydration of fruits and 

vegetables: a review. Journal of Food Science and Technology 47(1):15-26. 

Sacilik, K, Keskin, R and Elicin, AK. 2006. Mathematical modelling of solar tunnel drying of 

thin layer organic tomato. Journal of Food Engineering 73:231-238. 

Shi, J, Maguer, M, Kakuda, Y, Liptay, A and Niekamp, F. 1999. Lycopene degradation and 

isomerization in tomato dehydration. International Journal of Food Research 32:15-

21. 

Sivakumar, D, Jiang, Y and Yahia, EM. 2011. Maintaining mango (Mangifera indica L.) fruit 

quality during the export chain. Journal of Food Research International 44:1254-1263. 

Vadivambal, R and Jayas, DS. 2007. Changes in quality of microwave-treated agricultural 

producs:a review. Journal of Biosystems Engineering 98:1-16. 

VeGa-Galvez, A, Ah-Hen, L, Chacana, M, Vergara and Garcia-Segovia, JMMP, Lemus-

Mondaca, R and Dis Scala, K. 2015. Effect of temperature and air velocity on drying 

kinetics, antioxidant capacity, total phenolic content, colour, texture and microstructure 

of apple (var. Granny Smith) slices. Journal of Food Chemistry 132:51-59. 

Witthum, R, Engelbrecht, S, Joubert, E and Britz, T. 2005. Microbial content of commercial 

South African high-moisture dried fruits. Journal of Applied Microbiology 98:722-726. 

 

 

 

 

 

 

 



 

112 

 

5. CONCLUSIONS AND RECOMMENDATIONS 

 

Mango is a seasonal fruit, and in South Africa 75% of the fruit is produced in the Limpopo. 

The recent consumer preference for healthy snacks has created a demand for the dried mango 

fruit. Smallholder farmers producing mangoes experience relatively high post-harvest losses 

of up to 50%.  The reduction of the post-harvest losses is a sustainable measure that can be 

implemented for smallholder farmers, to penetrate the market through selling value added 

produce. The demand for dried mangoes, coupled with their high value in South Africa, makes 

drying an attractive solution for smallholder farmers to establish businesses and sell dried fruit, 

specifically during the off-season of mango. This practice can potentially increase the 

availability of mango throughout the country. The literature studies showed that hot air drying 

is the simplest applicable drying method, in terms of cost and the ability to dry a wide range of 

produce. The study experimented with three hot air drying methods, namely, a convective oven 

dryer (OVD), open-air uncontrolled solar drying (OAD) and a modified ventilation solar dryer, 

using a greenhouse (MVD). The three hot air drying methods were compared and their effect 

was observed on 3 mm, 6 mm and 9 mm mango slices that had been pre-treated with lemon 

juice and samples that were not treated (control). 

 

OVD drying was done at a set temperature of 70˚C, OAD at an ambient temperature of 

15.55˚C- 36.77˚C, RH of 22.96%-79% and an average solar radiation of 769 W.m-2 and MVD 

improved the ambient conditions to an average maximum of 64.26˚C and the relative humidity 

of 17.6%. The weather conditions used for solar drying were within an acceptable range. 

However, the ambient air had a relatively high relative humidity, which resulted in a longer 

drying period for OAD. The study observations indicate that mangoes dried using OVD dried 

faster than those dried in MVD and OAD. The maximum drying rate in OVD (0.33g.hr1) was 

3% higher than MVD (0.2 g.hr-1) and 12% higher than OAD (0.12 g.hr-1). The lowest drying 

rates were for 9 mm mango slices while the highest were for 3 mm mango slices. The lemon 

juice pre-treatment did not affect the drying rate for all drying methods and all mango slice 

thicknesses dried. Furthermore, increased drying rates in OVD and MVD resulted in a shorter 

drying time for 3 mm and 6 mm mango slices and most of the drying took place in the falling 

drying rate period, which indicates that the main drying mechanism was diffusion. The lemon 

juice treatment did not significantly affect diffusivity, although the samples had a relatively 

higher moisture diffusivity, while only the thickness had a significant effect on moisture 
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diffusivity. Research studies clearly indicate that where the drying mechanisms are capillary 

and gravitational forces, as in the constant drying rate period the result will be damage to the 

surface of the product. This was observed in microstructure of 9mm mango dried in OAD. The 

Midilli et al. and Page models were the best fit for drying data and were useful for modelling 

the drying moisture ratio of mangoes. Sensory evaluation studies indicates that 3 mm lemon 

juice treated mango slices dried in MVD was preferred, in terms of colour, flavour and overall 

acceptability and, for all drying methods 9 mm dried mango slices were the least preferred. 

EMS and rehydration rates showed the structural changes, which occurred, during drying. A 

relatively higher structural damage was observed for the 9 mm dried mango slices, which also 

showed more cracks that are visible on the micrographs.  The relatively lower rehydration rate 

and the observed structural changes can be attributed to the longer drying periods. This was 

observed for 9 mm thick dried mango slices and mostly mango dried in the OAD.  In addition, 

the total colour change (ΔE) was relatively higher for samples dried in OAD, showing the 

browning of the mango slices. 

 

MVD is a practical drying method recommended for implementation in South African 

conditions. It dries the mango fruit within an acceptable drying period, compared to OAD and 

the drying kinetics are almost similar to those of a convective oven dryer (OVD). The MVD 

needs to be developed further, by developing methods, such as the use of solar thermal 

collectors and air recirculation to increase the temperature, in order to reduce the drying time. 

This study recommends that further studies include an investigation into the air dynamics 

within the MVD, for further modification of the ventilation system. Furthermore, to promote 

the solar drying technologies manuals of standards of design, orientation and operation for the 

MVD and other solar drying technologies can be drafted. The optimum thicknesses of mango 

slices used in drying is 3 mm and 6mm, because they have a shorter drying time and hence 

allow for the preservation of the quality of the mangoes. This study recommends further 

investigation into pre-treatments, which will increase the drying rates, for further reduction of 

the drying time. Further investigations into the drying method, therefore, need to identify the 

type of fungi and aerobic bacteria and conduct a microbial analysis on an hourly interval, during 

the drying process, in order to identify the critical point, where the of anaerobic bacteria and 

fungi starts to grow. This study also recommends, for the engineering designs to identify 

methodologies that will consider the selection of food-safe material and other food safety 

components. Furthermore, it is also recommended to develop microbial count limit standards, 
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which are applicable for the South African drying industry. Lastly, further studies can 

investigate the shelf-life of dried mangoes and the payback period of MVD. 
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6. APPENDICES 

6.1 Appendix 3.1: Experimental Design 

 

Factor A (Drying conditions) 

 

Factor B (thickness) 

 

Factor C (treatments) 

 

Replications 

 

Rep.1 Rep.2 Rep.3 

Rep.32 Rep.2 Rep.1 

Rep.1 Rep.2 Rep.3 

Rep.3 Rep.1 Rep.2 

Rep.3 Rep.2 Rep.1 

Rep.1 Rep.2 Rep.3 

VMD 

Thickness 1(3mm) 

Thickness 2 (6 mm) 

Thickness 3 (9 mm) 

Treatment 

No treatment 

Treatment 

No treatment 

Treatment 

No treatment 

Rep.1 Rep.2 Rep.3 

Rep.3 Rep.2 Rep.1 

Rep.1 Rep.2 Rep.3 

Rep.3 Rep.1 Rep.2 

Rep.3 Rep.2 Rep.1 

Rep.1 Rep.2 Rep.3 

                    

OAD 

Thickness 1(3 mm) 

Thickness 2 (6 mm) 

Thickness 3 (9 mm) 

Treatment 

No treatment 

Treatment 

No treatment 

Treatment 

No treatment 

Rep.1 Rep.2 Rep.3 

Rep.32 Rep.2 Rep.1 

Rep.1 Rep.2 Rep.3 

Rep.3 Rep.1 Rep.2 

Rep.3 Rep.2 Rep.1 

Rep.1 Rep.2 Rep.3 

OVD 

Thickness 1(3mm) 

Thickness 2 (6 mm) 

Thickness 3 (9 mm) 

Treatment 

No treatment 

Treatment 

No treatment 

Treatment 

No treatment 
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6.2 Appendix 3.2: Effective Moisture Diffusivity Linear Curves 

Effective moisture diffusivity curves for untreated dried mango of (a) 3mm, (b) 6mm and (c) 9mm thickness 

y = -0,0074x + 0,1328

R² = 0,9389

y = -0,0022x + 0,0831

R² = 0,9702

y = -0,0042x + 0,21

R² = 0,9492

-2,5

-2

-1,5

-1

-0,5

0

0,5

0 200 400 600 800 1000

In
M

R

Drying time (min)

OVD

OAD

MVD

Linear (OVD)

Linear (OAD)

Linear (MVD)

y = -0,0039x + 0,2439

R² = 0,9309

y = -0,0018x + 0,232

R² = 0,8959

y = -0,0027x + 0,2339

R² = 0,9195

-3

-2,5

-2

-1,5

-1

-0,5

0

0,5

0 200 400 600 800 1000 1200 1400

In
M

R

Drying time (min)

OVD

OAD

MVD

Linear (OVD)

Linear (OAD)

Linear (MVD)

(c)

y = -0,0115x + 0,1799

R² = 0,9092

y = -0,0028x + 0,2029

R² = 0,881

y = -0,009x + 0,1852

R² = 0,9364

-2,5

-2

-1,5

-1

-0,5

0

0,5

0 200 400 600 800

In
M

R

Drying time (min)

OVD

OAD

MVD

Linear (OVD)

Linear (OAD)

Linear (MVD)

(a) 

 

(a) 

 

(a) 

 

(a) 

(b) 

 

(b) 

 

(b) 

 

(b) 



 

117 

 

Effective moisture diffusivity linear curves for treated dried mango of (a) 3mm, (b) 6mm and (c) 9mm thickness 
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6.3 Appendix 4.1: Table of Total Colour Change 

 

 

 

 

 

 

 

 

 

 

 

 

 

Drying method Thickness Treatment ΔE 

MVD 3 Control 11.25505 

MVD 3 Lemon juice treated 7.205167 

MVD 6 Control 8.733829 

MVD 6 Lemon juice treated 8.33576 

MVD 9 Control 27.07443 

MVD 9 Lemon juice treated 18.11597 

OVD 3 Control 4.47313 

OVD 3 Lemon juice treated 11.69546 

OVD 6 Control 24.08822 

OVD 6 Lemon juice treated 11.17621 

OVD 9 Control 20.12379 

OVD 9 Lemon juice treated 18.5591 

OAD 3 Control 9.3404 

OAD 3 Lemon juice treated 9.184075 

OAD 6 Control 52.07166 

OAD 6 Lemon juice treated 9.677768 

OAD 9 Control 48.4267 

OAD 9 Lemon juice treated 37.4026 



 

119 

 

6.4 Appendix 4.2: Sensory Evaluation sheet 

 

Panellist name: 

Instructions: 

i. Rinse your month with the water before tasting a sample (including the first sample) 

ii. Rate your liking of mouth feel, colour and overall acceptability for each coded sample 

using the scale in the next page 

 

Sample code Flavour/mouth 

feel 

Colour Overall Acceptability 

442    

276    

785    

431    

635    

327    

 

Dried mango Scoring Guidelines 

Please score dried mango samples using the following scale 

Score Flavour Colour Overall acceptability 

1 Extremely dislike Extremely poor Extremely poor Extremely poor 

2 Dislike very much Very poor Very poor Very poor 

3 Dislike moderately Poor Poor Poor 

4 Dislike slightly Below fair/above 

poor 

Below 

fair/above poor 

Below fair/above poor 

5 Neither like nor 

dislike 

Fair Fair Fair 

6 Like slightly Below 

good/above fair 

Below 

good/above fair 

Below good/above fair 

7 Like moderately Good Good Good 

8 Like very much Very good Very good Very good 

9 Like extremely Extremely good Extremely good Extremely good 
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6.5 Appendix 4.3: Ethics Approval Certificate 

 

 

 

 

 

 

 

 

 


