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ABSTRACT

This investigation seeks to perform a comparative study between the combined effects of
internal pressure and piping loads versus external pressure and piping loads on a pressure
vessel. There are currently several well-known and widely-used procedures for predicting the
stress situation and the structural stability of pressure vessels under internal pressure when
external piping loads (due to thermal expansion, weight, pressure, etc.) are applied at the
nozzles. This project familiarises one with several international pressure vessel design Codes
and standards, including ASME (American Society of Mechanical Engineers) pressure vessel
code sections and WRC (Welding Research Council) bulletins. It has been found that many
vessels are designed to operate under normal or steam-out conditions (in vacuum). The
combined effect of the external atmospheric pressure and the piping loads at the nozzle could be
catastrophic if not addressed properly — especially when the stability of the structure is a crucial
consideration, i.e. when buckling is a concern. The above-mentioned codes and standards do
not directly address procedures or provide acceptance criteria for external loads during vacuum

conditions.

The approach to the study was, firstly, to investigate the effects of internal pressure and piping
loads at the shell-to-nozzle junction. Theoretical stresses were compared with Finite Element
results generated using the software package MSC PATRAN. Finite Element Methods provide
a more realistic approach to the design of pressure vessels as compared to theoretical methods.
It was necessary to determine if the theoretical procedures currently used were adequate in
predicting the structural situation of a pressure vessel. Secondly, the buckling effects of vessels
subjected to external atmospheric pressure and piping loads were also investigated. Buckling of
the shell-to-nozzle region was explored with the aid of Finite Element software. The results
gained were used to develop appropriate procedures for the design of vessels under external
atmospheric pressure and piping loads. The design is such that it indicates if buckling will

occur at the shell-to-nozzle junction. These design procedures form the basis for future

exploration in this regard.

11



CONTENTS

Acknowledgements................ooocooii it
ADSITACT. ... iii
CONLENLS. ..o Y
LSt OF fIGUEES. ... viii
Listoftables............oo e Xi
List of SymbolS.........oooi Xii
Chapter 1 : PRESSURE VESSELS..... ..ottt 1
L1 Introduction. ........ooeniiiii 1

1.2 Design of Pressure Vessels............o.oviiuiunii e, 2

12,1 DeSIgN PreSSUIC. ...ouvetititit e, 2

1.2.2 Design temperature. ............o.oeuiniuiiiiiiii e, 2

1.3 Design of thin cylinders — ASME Code............cooooiiiiiiiiiiiiii. 3
Chapter 2 : STRESSES IN PRESSURE VESSELS......coooiiiiiiiiieee e, 4
2.1 IntrodUCtiOn. .....cuiii e, 4

2.2 Membrane Stresses in Vessels under Pressure...................ooooeieinnat. 5

2.3 Thin Plate theory..........oooiiiii e 8

2.3.1 Strain-curvature relationships...........ccooeiiiiiiiiiiiiinien. 9

2.3.2 Stress Resultants.............cooooiiiiiiiiiiiiii 13

2.4 Thin Shell theory..... ..o, 15

2.5 Stress Theories of Failure.............cooiiiiiiiiiiii e 20

2.5.1 Maximum Principal Stress Theory...............ccooiiiiiiiinnn 20

2.5.2 Maximum Shear Stress or Tresca Theory......................... 21

2.5.3 Distortion Energy or Von Mises Theory......................... 22

2.6 Finite Element Stress AnalysiS.......o.covviiivniriiiioiiiiiiiiiinnan, 23

2.6.1 Energy Methods..........c.cooooiiiii 23

v



2.6.2 Finite Elementmethod.....ccoooviviiiiiiiiiii e, 25

Chapter 3 : VESSELS UNDER INTERNAL PRESSURE AND PIPING LOADS......31

3.1 INEEOAUCHION . . o ve ettt et et et et e e et e e e e e 31
3.2 ASME VIII Div 2 Classification of Stresses..............coooeiiiiiii 33
3.3 SHIESS LIS, .uventiteete ettt et e ettt 36
3.4 Calculation of Stress Intensities. .. ...cououveiiiiiiiiiiiiie 39
3.5 WRC BUlletin 107 ... e 40
3.5.1 Stresses Resulting from Radial Load, P.....................o. 4]

3.5.1.1 Circumferential Membrane Stress................o.ovee. 4]

3.5.1.2 Circumferential Bending Stress...........cc.ooovviininnn. 41

3.5.1.3 Longitudinal Membrane Stress..............oooeeeeni 42

3.5.1.4 Longitudinal Bending Stress..................cooinn 42

3.5.2 Stresses Resulting from Circumferential Moment, Mc........... 42

3.5.2.1 Circumferential Membrane Stress................oeevene 42

3.5.2.1 Circumferential Bending Stress..............cooovevuinin 43

3.5.2.2 Longitudinal Membrane Stress.................cooeeneeen. 43

3.5.2.3 Longitudinal Bending Stress..............ccocoviieineen 43

3.5.3  Stresses Resulting from Longitudinal Moment, My............. 44

3.5.3.1 Circumferential Membrane Stress........................ 44

3.5.3.2 Circumferential Bending Stress........................... 44

3.5.3.3 Longitudinal Membrane Stress........................... 44

3.5.3.4 Longitudinal Bending Stress.................cc.ooeve 45

3.5.4 Stresses Resulting from Torsional Moment, Mr................. 45

3.5.5 Stresses Resulting from Shear Loads, Vcand Vi............... 45

3.5.6  Sign Convention.........co.eveiireieii i 46

3.5.7  Stress Intensities.......o.ooveieiieiiii i, 48

3.6 Numerical Results...... ..o, 49
3.7 Compensation Pads.............coooooiii 66
Chapter 4 : THEORY OF BUCKLING. ..ottt 72
4.1 Theory of Stability.........ccooviuiiiieniiiii i, 72
4.2 Buckling of Shells..... ..., 75
4.2.1 Differential Equations of Equilibrium.............................. 75



4.2.2 Cylindrical Shells under External Axial and Radial Pressure...83

4.3 Finite Element Buckling Analysis...............ooouviiiiiniiiiieieei, 92
4.3.1 Stability and Energy Methods....................ocooiiiiina 93
4.3.2  Finite Element Method........................co 94

Chapter 5 : VESSELS UNDER EXTERNAL PRESSURE AND PIPING LOADS.....96

5.1 Design of Pressure Vessels under External Pressure.......................... 96
S.I.T Literature SUIVeY......ovviieiiiii e 96
5.1.2 Numerical Results...........c.coooiiiiiiii 105

5.2 Design of Pressure Vessels under External Pressure and Piping Loads...113

5.2.1 Vessels with Geometric imperfections................c.ooeais 114
5.2.2 Numerical Results...........c.coooiiiiiii 119
Chapter 6 : DISCUSSION . .....iuitiiiii e 134
Chapter 7 : CONCLUSION ... 138
APPEDAIX Aot 139
ASME VIII Div 1 Nomenclature and Formulas for Reinforced Openings.......... 140
Reproduced Table of Pipe Schedules and Wall Thicknesses.......................... 141
Stress Relationships and Material Properties... ... 142
SASOL Piping Loads. .. ......oouiiuiiiiiiiii 143
Foster Wheeler Piping Loads.........ooieneiiiiiiiii 144
APPENAIX Bttt 145
FEM Stress Plots for Vessels 16-25 under internal pressure alone (0.26
ANA T.0SMPA). ...ttt 146
FEM Stress Plots for Vessels 16-25 under piping loads alone (SASOL)............ 151
FEM Stress Plots for Vessels 16-25 under combined loading of internal
pressure and piping 10ads. ... 154
APPENAIX €.ttt 159
Table of Results for Vessels 1-12 under external pressure..............coooieeeennees 160
CodeCalc external pressure computation Sheet. ... .....oooooiiiiiinn 161

Vi



FEM Buckling analyses for Vessels 1-12 under external pressure and a 24”....... 163

FEM Stress Plots for Vessels 1-12 under external pressure and piping loads for

247 NOZZIC. ..o 169

FEM Deflection Plots for Vessels 1-6 under external pressure and piping loads

fOr a 24”7 NOZZIE. .. ..voniii 175
AppendixX D .. 178

Table of FEM Results for Vessels 1-12 under external pressure and piping

loads for the SIX NOZZIES. .......oiii i 179
FEM Buckling Analyses for Vessel 6 and Vessel 12 under external pressure

and piping loads for the siXx n0zzles.................ooiiiiiiiiii i 180
Relationships between the out-of-round stress and the WRC 107 maximum

compressive stress for the 4”, 8, 127, 167, 20” and 24” nozzles.................. 186

Appendix E. ... 189
Vessel 1(Chapter 3) FEM Plots and design calculations for external pressure
and piping [0ads. ... ..., 190
Vessel 3(Chapter 3) FEM Plots and design calculations for external pressure
and piping 10ads...........ooiiiiiii 192

Appendix F. ..o 194
Paper to be submitted to the International Journal of Pressure Vessels
and PIPIng... ..o 195
Bibliography . ..........ooiiiii i 210

Vil



List of figures

1-1 Typical Cylindrical Pressure Vessels..................oooiiir i ]
2-1 Membrane stresses in vessel. Obtained from Harvey[20]................coooviviiiiiiii . 5
2-2 Longitudinal Stress in Cylinder. Obtained from Harvey[20]...............coveviiieiiiiii.. 7
2-3 Load-free plate. Reproduced from Ugural[19]..............ooiiiiiiii i, 8
2-4 Small plate element. Reproduced from Ugural[19]..................ooooiii i, 9
2-5 Pure bending of small plate element. Reproduced from Timoshenko[1]....................... 9
2-6 Bending of thin plate. Reproduced from Benham and Crawford[31].......................... 10
2-7 Lamina subjected to shear. Reproduced from Timoshenko[1].......................cocevne. 11
2-8 Shell Element. Obtained from Bulson and Allen[17]..................ocoiiiiiiiiiiiii 15
2-9 Deformed middle surface. Obtained from Timoshenko[1]......................... .. 16
2-10 Forces and bending moments on lamina. Obtained from Ugural[19]........................ 18
2-11 Principal Stresses. Obtained from Harvey[20]................ooiiiiiii e, 20
2-12 Rectangular Finite Element. Obtained from Bulson and Allen[17]................ccooiee 25
3-1 ASME VIII Div 2 Stress Categories and Stress Intensity Limits..................coooien. 36
3-2 Stress-strain Diagram for typical structural steel under tension. Obtained from Gere and
TIMOSIENKO 33 . ettt e e e 37
3-3 External Loading at shell-to-nozzle junction. Obtained from CodeCalc...................... 46
3-4 Codecalc Computation Sheet for Local Stresses in Cylindrical Shells......................... 49
3-5 Finite Element Model A. . ... 51
3-6 Theoretical General Primary Membrane Stress Po.....covitiieiiiii i 53
3-7 FEM General Primary Membrane Stress P ........ooviiiieiuiiiiiiiiiiaiiaiee e 53
3-8 FEM general membrane stress for Vessel 9. 54
3-9 Convergence between Theoretical and FEM results...............on, 54
3-10 Comparison between FEM and Theoretical (WRC 107) Combined Stress Intensities S...55
3-11 FEM Combined Stress Intensity for Vessel 1 using Model A...................on 56
3-12 FEM and Theoretical (WRC 107) stresses for vessels subjected to internal pressure
0,26 P A ..ot 58
3-13 FEM and Theoretical (WRC 107) stresses for vessels subjected to internal pressure
L0 P, ettt e e 59
3-14 FEM Stress analysis for Vessel 16 (internal pressure 0.26MPa).................oooivs 60
3-15 FEM Stress analysis for Vessel 21 (internal pressure 1.05MPa)...............coooiinns 6(

viii



3-16 FEM and Theoretical stresses for vessels 16 to 20 (identical to vessels 21 to 25)

subjected to external nozzle 10ads. ..o 61
3-17 FEM Stress analysis for vessel 16 subjected to external nozzle loads.......................... 62
3-18 FEM and Theoretical (WRC 107) Combined Stress Intensity S for vessels

subjected to 0.26MPa internal pressure and nozzle loads.............. e 63
3-19 FEM and Theoretical (WRC 107) Combined Stress Intensity S for vessels

subjected to 1.05MPa internal pressure and nozzle loads................ooooonns 64

3-20 FEM Stress analysis for Vessel 16 subjected to 0.26MPa internal pressure and nozzle

07T [ S P P P PP 65
3-21 FEM Stress analysis for Vessel 21 subjected to 1.05MPa internal pressure and nozzle

| 7073 T PSS 65
3-22 Shell-to-nozzle junction with Compensation Pad. Reproduced from WRC 107[16].......66
3-23 Codecalc Computation Sheet including Compensation Pad.......................cooc 67
3-24 Vessel 1 with Compensation Pad subjected to internal pressure alone........................ 70
3-25 Vessel 1 with Compensation Pad subjected to external nozzle loads alone.................. 70

3-26 Vessel 1 with Compensation Pad subjected to both internal pressure and external

NOZZIE 10AdS. ...\ e 71

4-1 Buckling of an Idealized Structure. Obtained from Gere and Timoshenko[33].............. 72
4-2 Equilibrium diagram for idealized structure. Reproduced from Gere and

TimMOShENKO 33 o et e 74
4-3 Cylindrical Shell showing displacements. Reproduced from Timoshenkof1]................. 75
4-4 Element of Cylindrical Shell. Obtained from Bulson and Allen[17].................c.ooeeii. 76
4-5 Stable and Unstable regions in the ¢, and ¢; plane. Reproduced from Flugge[8]........... 90
4-6 Ball in stable, unstable and neutral equilibrium. Obtained from Timoshenko[1]............. 93
5-1 Buckled Cylinder. Obtained from Bulson and Allen[17].............coiiiviiiiiiiiinnennnn, 97
5-2 Chart for number of lobes n. Obtained from Timoshenko[1]..................ooooviiinl, 98
5-3 Geometric Chart for Cylindrical Vessels under External Pressure. Obtained

from Harvey[20]. ... ..o 103
5-4 Material Chart for Cylindrical Vessels under External Pressure. Obtained from

Harvey[20]. ... o 104
5-5 FEM Model B...ooonii e 106
5-6 Comparison of ASME and FEM Critical Buckling Pressures................c.c.ccovevivn.... 107
5-7 Comparison of ASME and FEM Critical Buckling Pressures................ccovcuviuue.. ... 107
5-8 Comparison of Windenburg & Trilling and FEM Critical Buckling Pressures.............. 108
5-9 Comparison of Windenburg & Trilling and FEM Critical Buckling Pressures. ............. 108

15:4



5-10 Comparison of R Von Mises and FEM Critical Buckling Pressures........................ 109

5-11 Comparison of R Von Mises and FEM Critical Buckling Pressures........................ 109
5-12 Percentage errors between ASME and FEM Critical Buckling Pressures................... 110
5-13 Percentage errors between Windenburg & Trilling and FEM Critical Buckling

o8 E S T 110
5-14 Precentage errors between R Von Mises and FEM Critical Buckling Pressures............ 111
5-15 FEM Buckling pattern for Vessel 7........c.oviiiiiiiiii e 112
5-16 Local Stresses exceeding Critical Buckling Stress. Reproduced from Harvey[20]........ 113
5-17 Local Stresses exceeding reduced Critical Buckling Stress...............oooii 114

5-18 ASME maximum permissible deviation from a circular form e for vessels under
external pressure. Obtained from ASME VIII[34]).............. 116
5-19 Shell with Initial Ellipticity under External Pressure. Reproduced from Harvey[20].....117

5-20 FEM Local Stresses compared to ASME Critical Buckling Stress for Vessel 5............ 121
5-21 FEM Local Stresses compared to ASME Critical Buckling Stress....................c... 122
5-22 FEM Local Stresses compared to ASME Critical Buckling Stress........................... 122
5-23 FEM Stress Analysis for Vessel 1 under external pressure and 24” nozzle piping
LOAGAS . - ettt e e 123
5-24 FEM Stress Analysis for Vessel 7 under external pressure and 24" nozzle piping
102V P PP 123
5-25 Maximum FEM Deflection for Vessels 1 to 6 under external pressure and 24” nozzle
loads at shell-t0-n0zzle JUNCLION. .. .. ... ..iiiir e 124
526 FEM MOAE]l C.ooonieie et e 125
5-27 Reduction in Critical Buckling Pressure for Vessel 6 due to nozzle loads................... 126
5-28 Reduction in Critical Buckling Pressure for Vessel 12 due to nozzle loads................. 126
5-29 FEM Buckled Vessel 6 under external pressure and 24” nozzle loads....................... 127
5.30 FEM Buckled Vessel 12 under external pressure and 24 nozzle loads...................... 127

5-31 Comparison between Local Stresses and Critical Buckling Stresses for Vessels

1 — 6 under external pressure and 24” nozzle piping loads...............cooooinnn 128
5-32 Comparison between Local Stresses and Critical Buckling Stresses for Vessels

7 — 12 under external pressure and 24” nozzle piping loads...................oooeoiiinnnn 129
5-33 Relationship between WRC 107 Local Stresses and Out-of-round Stresses for

vessels 1 — 12 under external pressure and 24” nozzle piping loads.................oocoeees 131

5-34 Computation Sheet for determining the reduced Critical Buckling Stress................... 133



List of tables

3-1 ASME VIII Div 2 Classification of Stresses..........cooovviiiiiiiiiiiiiiii e, 34
3-2 Appropriate Stress Intensities and Stress Limits...................o 37
3-3 WRC Bulletin 107 Computation Sheet for Local Stresses in Cylindrical Shells............. 47
3-4 Vessels used to verify CONVEIZENCE. .. ...uiuiuiti ettt 52
3-5 Vessels analysed with an internal pressure of 0.26MPa.....................oo 57
3-6 Vessels analysed with an internal pressure of 1.05MPa.................o 57
5-1 Vessels under External Pressure..............ocooiiiiiiiiiii 105
5-2 Comparison between Theoretical and FEM lobes of buckling 72..................oooeieni. 112
5-3 ASME VIII Div 2 Critical Buckling Pressures and Stresses for vessels 1-12............... 120
5-4 WRC 107 Local Stresses and Out-of-round Stresses for vessels 1 — 12 under external
pressure and 24” nozzle piping loads...............oooiiii 130
5-5 Out-of-round Stresses for various nozzles................ccoovvieiiii i 132

Xi



List of symbols

6 Angle of displacement [°]
B =0.875-2
B Spring constant
Curvature
£ Strain
b, _ qr!l —v? '
ET

b, _- N, (1 —v? )

ET
y Shear Strain for shell and plate theory, = R?”' for WRC 107

, T’
o FEM unknown coefficient, = 52 for buckling of shells
P _mr
/

Ai Eigenvalue
1% Poisson’s Ratio
c Stress [MPa]
Oyp Yield Stress [MPa]
Oy Longitudinal Stress [MPa]
o Circumferential or Hoop Stress [MPa]
o, Radial Stress [MPa]
oy ,0,,03 Principal Stresses [MPa]
Cer Critical Buckling Stress [MPa]
o, Reduced Critical Buckling Stress [MPa]
Cor Maximum Compressive out-of-round Stress [MPa]
ours Ultimate Tensile Stress [MPa]
T Shear Stress [MPa]
13} FEM displacement
I Total Potential energy
A = % for ASME geometric chart

Xii



5 a mom oo

~ &

K4
Kn ’ Kb

3 Mo

X

6—2” for ASME material chart

Corrosion Allowance [mm]

Flexural Rigidity

Vessel outer diameter [mmy]

Design Pressure [MPa]

out-of-roundness value [mm]

Young’s Modulus [GPa], ASME joint efficiency
FEM Applied loading

Shear Modulus [GPa]

Polar moment of inertia for a tube

FEM element stiffness

FEM stiffness matrix

FEM geometric stiffness

FEM differential stiffness

Membrane and Bending stress concentration factors
Length of cylindrical shell [mm)]

Length of vessel [mm]

Critical buckling length [mm]

Number of lobes in longitudinal direction

Resultant bending moment per unit length

WRC 107 Circumferential Moment [Nmm]

WRC 107 Longitudinal Moment [Nmm]

WRC 107Torsional Moment [Nmm]

Maximum bending moment for out-of-roundness
Number of lobes in circumferential direction
Resultant membrane force per unit length
Internal or external applied pressure [MPa], FEM lateral load
FEM function of position, WRC 107 Radial load [N]
Critical Buckling Pressure [MPa]

Reduced Critical Buckling Pressure [MPa]
External radial pressure [MPa]

Resultant Shear Force per unit length
Radius [mm]

Nozzle outer radius [mm]

Vessel mean radius [mm]

Vessel outer radius [mm]

X1il



Vessel inner radius [mm]

Combined Stress Intensity [MPa]
Allowable Stress [MPa]

Design Stress Intensity [MPa]

Yield Stress [MPa]

Ultimate Tensile Stress [MPa]

Plate thickness [mm]

Vessel thickness [mm]

Plate or shell displacements

Total Strain Energy for plate or shell element
Total Potential Energy due to lateral load

Distance to neutral axis

Xiv



Chapter 1

PRESSURE VESSELS

1.1 Introduction

Pressure vessels are leak-proof containers. They may be of any shape and range from beverage
bottles to the more sophisticated engineering vessels encountered in industrial applications.
Familiar examples of pressure vessels for industrial applications will include compressed-air
tanks, pipes and heat exchangers. Vessels that have walls that are thin in comparison to their
radii and lengths, are classified as shell structures. For the purposes of this study cylindrical
vessels with circular cross sections will be considered. Figure 1-1 below shows typical
examples of cylindrical pressure vessels found in industry. For industrial vessels, high
pressures, extremes of temperatures, and severity of functional performance requirements pose
exacting design problems. The term “design” includes not only the calculation of detail
dimensions for various components of pressure vessels but also incorporates collectively the

following :

e Jikely modes of damage or failure;
e selection of an appropriate material and its environmental behaviour; and

e stress analyses and the significance of their results.

New concepts in design and selection of appropriate materials challenge the ingenuity of
engineers, and the problems that arise from every aspect of pressure vessel design affects both

safety and cost-effectiveness.

Figure 1-1 : Typical Cylindrical Pressure Vessels



1.2 Design of Pressure Vessels

The ASME VIII, ASME Boiler and Pressure Vessel Code, Div | and 2, are used for the design
of pressure vessels. It includes various sections which focus on the design of pressure vessel
components trom nozzles and flanges to supports. It is most commonly used by modern day
engineers. The body or shells of vessels are predominantly affected by two important design

factors, the design pressure and the design temperature.
1.2.1 Design pressure

Design pressure[ 18] is the pressure used to determine the minimum required thickness of each
vessel shell component and the denoted difference between the internal (design pressure) and
external (atmospheric pressure) pressures. The design pressure will include a suitable margin
above the operating pressure plus any static head of an operating liquid. The maximum
allowable working (operating) pressure is defined by the ASME Code as the maximum gauge
pressure permissible at the top of the completed vessel in its operating position at the designated
temperature. It is based on the nominal vessel thickness, exclusive of corrosion allowance, and
the thickness required for loads other than pressure. In most cases it is very close to the design

pressure of the vessels component.

The Code defines the required thickness as the minimum vessel wall thickness as computed by
the Code formulas, not including a corrosion allowance. The design thickness is the minimum
required thickness plus corrosion allowance and the nominal thickness is the rounded-up design
thickness which is used in the actual construction of the vessel for a commercially available
material. If the nominal thickness minus corrosion allowance is larger than the required
thickness then the design pressure or the corrosion allowance could be increased. For example,
excess thickness can be used in nozzle openings in vessels that require added reinforcement.
The vessel must be designed to withstand the most severe combination of pressure and

temperature under operating conditions.

1.2.2  Design temperature

The design temperature[18] is more of a design environmental condition than a design load.
Thermal stresses only occur due to rapid temperature changes or certain temperature gradients,
however, the design temperature is needed in the selection of a suitable material. The material
used for construction must be able to withstand any temperature effects. Increasing

temperatures cause a decrease in strength of most metals, and decreasing temperatures generally



results in materials becoming more brittle. It will be shown that vessel thickness is related to

the material strength, which means that dimensional changes could be experienced.

The required Code design temperature should not be less than the mean metal vessel wall
temperature expected under operating conditions and computed by standard heat transfer
equations or actual measurements. For standard vessels the design temperature is the maximum
temperature of the operating fluid plus an added amount for safety, or the minimum temperature
of the operating fluid if the vessel is designed for low-temperature service. Various types of
pressure vessels have different design temperatures. To ensure the safety of the design of the

vessel the appropriate design temperature is crucial.
1.3 Design of thin cylinders — ASME Code

The ASME VIII Div 1 Code[34] indicates that the thickness of cylindrical shells under internal

pressure shall not be less than that computed from the following formula.

DPR,

T=—"" (4 (1.1)
S,E—0.6DP

The above equation indicates that the thickness is related to the material’s allowable stress Sa
ASME joint efficiency £ (usually = 1), design pressure DP, corrosion allowance C4 and the
vessel inner radius R;. Using the above equation if the thickness is calculated as 8.4mm, this
value should be rounded-up to obtain the nominal thickness. Standard plate material sizes
should be used in the construction of the vessel. In this case the standard nominal thickness

would be 10mm.The design of flanges, nozzles, supports, etc can be found in the ASME Code.

Design of nozzles and their reinforcements, found in ASME VIII Div 1, is given in Appendix A.
When designing vessels with nozzles, the area of the material removed from the shell, must be
adequately reinforced before attaching a nozzle to it. Nozzle thickness is not calculated but is
given in a table found in Appendix A. The thickness used for the design, from the table for

various nozzle sizes, must be adequate when reinforcement is a concern.

The first stage of the design process requires the dimensional values of the components of the
vessel to be calculated. The next stage is to determine the stresses in the vessels due to various

loadings. The stresses will indicate whether the vessel will not fail under operating conditions.



Chapter 2

STRESSES IN PRESSURE VESSELS

2.1 Introduction

Pressure vessels used for industrial applications operate under high degrees of pressures,
temperatures and various other environmental factors. This means that the operating stresses
developed will have to be calculated using various analytical and experimental methods. Stress
analysis becomes particularly important when external components are attached to the shell of

the vessel.

An example of these components could represent piping attachments in the form of nozzles.
The imposed loading on the vessel by these external components can have a great impact on the
safety and stability of the vessel. An overall knowledge of the stresses developed by these

external attachments is needed to prevent failure of the vessel.

When we consider vessels or shells formed of plates, in which the thickness is small in
comparison with the other dimensions, and as such offer little resistance to bending
perpendicular to their surface, they are called “membranes” [20]. The stresses calculated by
neglecting bending are called “membrane stresses”. Membrane stresses are average tensile or
compressive stresses acting tangent to the surface of the vessel wall. Membrane stresses

includes both direct stresses and shear stresses.

Bending stresses are developed by forces that bend the vessel wall. External loads can cause
these stresses. Nozzle piping loads have external forces and moments that cause bending
stresses to occur in the vessel. Membrane and bending stresses can be calculated using various

theoretical and numerical methods.



2.2 Membrane Stresses in Vessels under Pressure

The membrane stresses in vessels of revolution, including those of complicated geometry, can
be evaluated from the equations of statics provided they are loaded in a rotationally symmetrical
manner. The pressure loading should be constant on any plane perpendicular to the axis of

rotation O-O indicated in figure 2-1(a, b and ¢).

Figure 2-1: Membrane stresses in vessel. Obtained from Harvey[20]



For figure 2-1a; if an element abef is cut by two longitudinal sections ab and e/, as well as two
sections normal to the longitudinal sections, ae and b/, it can be seen that symmetry exists and
normal stresses only act on the sides of this element. In the interest of this study the thickness
of the shell will be known as T, therefore referring to figure 2-1a, the total forces acting on the
sides of the elements are respectively o;7ds; and o,Tds;. The force o>7ds; has a component in
a direction normal to the element indicated in figure 2-1b. This force is given by the following

equation :
do
2F, =20,Tds, sin(TQJ (2.1)

and similarly the force o;Tds, has a component in a direction normal to the element indicated in

figure 2-1c. This force is given by the following equation :
. [ db
2F, =20,1ds, sm(T'] (2.2)
The normal pressure force on the element is :

P= p{2r| sin[dTeljJPrz sin[dTeQﬂ (2.3)

The above equation is in equilibrium with the sum of the normal membrane component forces

2F, and 2F,, hence :

. (do ]
20,Tds, sm{T'j + 20,Tds, sin[df2 } = 10[21"I sin[%‘g’”[%? sin(d—gzﬂ (2.4)
i 2

noting that :

G2_P
. (2.5)



For cylindrical vessels under pressure p, where the hoop radius r> = r and the
Jongitudinal radius r; = o, each radius is constant through the entire cylinder.

2

Substituting these values in (equation 2.5) gives :

0,0 _P

w v T
o, = ETL(hoop stress) (2.6)

Using figure 2-2 below the longitudinal stress can be evaluated by equating the

longitudinal forces producing extension to the total pressure force on the cross section

of the vessel.

‘\
\\ A
\
) \
g i
I
. /
- /
/
- /
~
g
Figure 2-2 : Longitudinal Stress in Cylinder. Obtained from Harvey|20]
o,2mT = pmr? 2.7
pr . .
o, = E(!ongltua’mal stress) (2.8)



2.3 Thin Plate theory

In studying pure bending of beams[33], the cross sections of beams rotate with respect to their
neutral axes or normal to the deflection. This refers to bending in one perpendicular direction.
However, bending in two perpendicular directions occurs in pure bending of plates. Analysis of
thin plate theory is thus similar to beam theory. First the bending moments are related to
curvature and then the deflection. Consider a plate with no loading indicated by figure 2-3. The
components of displacement occurring in the x, y and z directions, are denoted by w, v and w
respectively. When lateral loading occurs, the deformation of the midsurface at any point (x,,
Va) 1s denoted by w. For isotropic, homogenous, elastic thin plates, the following assumptions

have to be made.

Deflections are small compared to thickness of plate.

The midplane remains unstrained during bending.

Vertical shear strains and normal strains are negligible, implies no distortion.

Norma] stresses are small compared with other stress components.

The above assumptions are known as Kirchoff hypotheses[19].

Xy

v
=

y
Figure 2-3 : Load-free plate. Reproduced from Ugural[19]



Figure 2-4 below shows an element of material cut from a plate subjected to pure bending as in

figure 2-5.

dx
X
z
v
/2 -
\ 4 x
A
1/2 —
Y A S / """ .
/ xZ
T
& o v o
[

Figure 2-5 : Pure bending of small plate element. Reproduced from Timoshenko[1]

2.3.1 Strain-curvature relationships

The plane shown in figure 2-5 represents the middle of the plate or the neutral surface. The
direction of the moments indicate that the plate material above the neutral surface is in
compression and the material below the surface is in tension. The moments M, and M, per unit
length are positive when acting on the middle of the plate. The curvatures of the mid-plane
parallel to the xz and yz planes are denoted by 1/r, and 1/r, respectively. The strains at a depth z

below the neutral surface in the x and p directions can be determined using figure 2-6 below.



Figure 2-6 : Bending of thin plate. Reproduced from Benham and Crawford(31]

The element ABCD deforms to 4’B’C’'D’. The length along the neutral axis is given by r&0.

The length of fibre E'F” is (r + z)66. The longitudinal strain for fibre E’F’ is the change in
length divided by the original length.

(r. +2)50 — .50

£, = 2.9
: r 50 2.9)
therefore,
z
&, =— (2.10)
rX
and similarly in the y direction
z
£, =— 2.11)
r,



Strains can be related to displacements by the following equations.

£, = @ (2.12)
X ax
£, = » (2.13)
G
Y :8_u+@ (2.14)
T 9y Ox
e = @ =0 (2.15)
yx_:@Jra—”:o (2.16)
T oox oz
yv_zanF@:o 2.17)
Ty oz
The strains are determined by the figure below.
X
dx i
>
a b
@ ' \AL v+ —dx
dy a’v b’ X
c c’ d
u d
y v <>
S
u+t @dy
oy

Figure 2-7 : Lamina subjected to shear. Reproduced from Timoshenko[l]

During bending the points a, b, ¢, and d undergo small displacements. The components of the

displacement at point ¢ in the x and y directions are » and v respectively. The displacements of



v ]

: : — Ou ov ,
points b and c¢ in the x and y directions are u + ™ dyand v+ | — |dx respectively. Shear
A ox

strain is the measure of distortion or the change in shape. Therefore, it is the sum of the angles
of distortion. The shear strain owing to these displacements is given by equation 2.14,
Similarly the above diagram can be used to obtain the remaining shear strains corresponding to
. their respective directions. Integrating equation 2.15 gives w = w(x, ), and similarly integrating

equations 2.16 and 2.17 gives :

U= _26_w (2.18)
Ox

V= _Za_w (2.19)
oy

3 Z—2W 2.20
! 6x2 ( - )
(92W 2.21

_),r Z Eyz ( : )

7 2z 2W 2.22
Xy D ay ( . )

The curvature of a plane curve is defined as the rate of change of the slope angle of the curve
with respect to distance of the curve. Therefore, the partial derivatives of the above equations
represent the curvatures. The curvatures given by equations 2.10 and 2.11 are then represented

by :

I Odfow __62w
r, axlox ) ox? (2.23)
I 0fow)] 9w
r—_—a 5 __6y2 (2.24)
1 __0fow_ o'w
P alay ) ay (2.25)
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2.3.2 Stress Resultants

Stresses and strains are related according to Hooke’s Law[33]. The following equations are

valid for isotropic homogenous materials.

(2.26)

Where G = 2—(1E—), the shear modulus. Rearranging the above equations gives.
+ v

£z {ijui} 2.27)

Introducing equations 2.20 to 2.22 gives the following :

+V
ox’? oy’

g =

Ez [ow dtw

o, =

Ez | 8*w 0w
) o |—p2 (2.28)

oy’ ox

. _ Ez o'w
¥ 1+ v Oxdy

The above equations indicate that at the midsurface the stresses vanish as expected on the

neutral axis. The stresses also vary linearly over the thickness of the plate.

13



The stresses distributed over the thickness of the plate can be reduced to the bending moments
and twisting moments applied to the plate. 1In this way the following equations are obtained

with the aid of figure 2-4.

12

'[cr'\_ zdydz = M  dy
—1/2

112

'[cr) zdxdz = M .dx (2.29)

—t/2

132
'[rx_‘,zdz =M

—112

X

Substituting equations 2.28 into the above equations and performing the above integrations, the

following equations are obtained.

2 2
M. =-D 0 Zv V@ w
' Ox oy’
0*w 0w
M =-D v 2.
! {ayz 8x2} (2:30)
2
M, =-D(1-v) Ow
B Ox0y
where
Et’

is known as the flexural rigidity of the plate. Finally, substituting equations 2.30 and 2.31 into
equations 2.28 gives :

(2.32)
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2.4 Thin Shell theory

To develop the governing differential equations for the midsurface displacements u, v, and w,
which define the kinematics of deformation for a shell, one proceeds as in the case of plates. A
small shell element figure 2-8 is considered, which is formed by the intersection of two pairs of
adjacent planes perpendicular to the middle surface. The x and y axes are taken as tangents to
the point O, and z is perpendicular to the surface. The principal radii of curvatures in the xz and
yz planes, are denote by r, and r, respectively. The thickness of the shell is denoted by 7. To

determine the stress resultants o, o, and z,, strains developed in the shell have to be obtained.

~Y z

Figure 2-8 : Shell Element. Obtained from Bulson and Allen[17]

In considering bending of the shell, it is assumed that linear elements such as 4D and BC, which
are perpendicular to the middle surface, remain straight and become perpendicular to the
deformed middle surface of the shell. The lateral faces of the element ABCD, during bending,
rotate only with respect to their lines of intersection with the middle surface. The radii of
curvatures after deformation are r, and r ‘ However, in addition to rotation, the lateral sides of
the element are displaced parallel to themselves as shown in figure 2-9. The corresponding unit
elongations of the middle surface in the x and y directions are denoted by & and &,, respectively.

The elongation of the middle surface in the x direction is :

£, = (2.33)



Figure 2-9 : Deformed middle surface. Obtained from Timoshenko|1]

It can be seen that ds = r.d@, and I, = d@(r, — z), and combining these expressions one obtains :

¥

X

/= ds[l - i} (2.34)

Similarly it can be seen that ds + £,ds = ro d9',and I, = d@’(ds — z), and combining these

expressions one obtains :

r

X

I, = ds(1+gl)[1—i] (2.35)
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Substituting the above expressions into equation 2.33 the following equation is obtained :

g =z bl 2.36
R | (R .

The thickness of the shell 7, will always be assumed to be small in comparison with the radii of
curvatures, therefore z/r, can be neglected. The effects of & on the curvature can also be

neglected, therefore the above expression is reduced to :

11
€. =& “Z[_‘__jzgl —X.z (2.37)
rooor

X X

and similarly in the y direction it is reduced to :

1 1
—zZ———|=& %,z (2.38)
v l"', )

)
I
R

The distribution of shear strain is next evaluated. Let y_, denote the shear strain of the

midsurface. Owing to the rotation of edge BC relative to Oz about the x axis (figure 2-8) and

¥ o - and referring to equation 2.22 for plates, produces :

2z0%w

}/\'\': Xy T 4
o = o Ox0y

=7V w0~ 22,1’er (2.39)

Substituting equations 2.37 — 2.39 into equations 2.27, produces :

o, = l—Ev2 [81 +ve, —z(,(x +vy, )]

o [52 +ve — z(,(_‘, +vy, )] (2.40)

v 1_‘/2

T.r_\' = (7 w0 ZZZ Xy b
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On each side of the element ABCD (figure 2-8) the corresponding forces can be replaced by a
normal force applied at the centroid of the side and a bending moment. This is indicated in

figure 2-10.

Figure 2-10 : Forces and bending moments on lamina. Obtained from Ugural[19]

Since the thickness of the shell is very small, the lateral sides of the element can be considered
as rectangles. The resultant forces will act in the middle surface of the shell. Using the same

notations as in plates, for resultant forces and bending moments per unit length, the following

are obtained :

T2
J.O'Xdz
772

2
i

772

N = J.o",dz
=772
T2

Xy X

-T1/2

T2

= Jzo.d (2.41)

-T1/2

<
I

T2
JZO'VdZ

~T7172

<
i

T/2
Xy J.Zz}wak

-7172

<
I
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Substituting equations 2.40 into 2.41, produces :

N, = —ETZ (51 + vgz)
[
N\- = ET? (52 +V‘9|)
. l_v_
N = okt (2.42)
! 2(1 +v)

Here D defines the flexural rigidity of the shell, the same as for plates. The compound stresses

in a shell can be expressed in terms of forces and bending moments. Substituting equations
2.42 into 2.40, produces :

N, 12M z
o, =+
T T

. 12M z

o, = T + T*‘. (2.43)

N, 12Mz
T\’\ = . + -
T T’

Taking z = 772, the following equations become :

N,\' 6M.\'
X T T2
N, oM,
o, =+ (249)
N, oM
xv T Tz
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2.5 Stress Theories of Failure

The mechanical properties of structural and pressure vessel materials are determined by simple
tensile tests. When a test specimen is subjected to tensile or compressive loading, the allowable
or design stress is taken as a fraction of the yield or ultimate stress obtained from the tensile
tests. These tensile tests are for uniaxial stress conditions. For pressure vessel design the
objective is to determine the allowable stress for a specimen under combined loading. Failure
refers to the actual rupture of the material. In ductile materials yielding occurs first. To ensure
a safe design, yielding forms the basis of failure theories for these materials. The three most

important and widely used failure theories [20] are :

e Maximum Principal Stress Theory
e Maximum Shear Stress Theory or Tresca Criterion

e Maximum Distortion Energy Theory or Von Mises Criterion

2.5.1 Maximum Principal Stress Theory

The Maximum Principal Stress Theory predicts that failure occurs in a stressed body when one
of the principal stresses reaches the yield point value in simple tension or compression. For
steel, the materials yield strength is the same under tension and compression. The principal or

normal stresses for a plate or shell element is shown in figure 2-11.

o2

Figure 2-11 : Principal Stresses. Obtained from Harvey|[20]

20



The following equations are obtained

‘O—l} = U.w
EAET (2.45)
‘0—31 = O—.*‘ﬂ

for plane stresses o3 = 0, therefore the allowable stresses are taken as the greater of

‘O', ‘ and~0'2‘ .

2.5.2 Maximum Shear Stress or Tresca Theory

This theory prédicts that failure of a body under combined stresses will occur when the
maximum shear stress becomes equal to the maximum shear stress at yield point. The
maximum shear stress is equal to half the difference of the maximum and minimum principal

stresses. Therefore, the shear stresses are :

=517
2
o,-0,
> (2.46)
(o)
;=979
2

Likewise, the maximum shear stress in a tensile test is equal to half the normal stress at

yielding.

o,
T=— 2.47
5 (2.47)
Equating equation 2.47 with equations 2.46, produces :
o1 -ai|=0,
oy ~0| =0, (2.48)

‘O—l _O—l‘ =0y

21



For plane stresses g; = 0, the above equations are reduced to :

oy =0, (2.49)

P

‘O-i‘ = O-.rp

The allowable stress is taken as the larger of the three values given by equations 2.49.
2.5.3 Distortion Energy or Von Mises Theory

This theory predicts that inelastic action occurs in a body under any combination of stresses,
only when the strain energy of distortion (change of shape due to shear stresses) absorbed per
unit volume at a point, is equal to the strain energy of distortion absorbed per unit volume at a
point in a test specimen stressed to its elastic limit under a tensile test. Using energy theory the

following equation is obtained :

*4(o, - 0,) =207 (2.50)

(O-l -0, )2 + (O-z - 0-3) p

In the case of plane stress, o; = 0, the above equation reduces to :
0',2 - 0,0, 4—0’22 = ofp (2.51)

The distortion energy theory corresponds the best with experimental data for steels, however,
most design practices and codes employ the maximum shear stress theory. The maximum shear
stress or Tresca theory is believed to be the most conservative from all the theories and is the
most widely used method of failure for ductile materials. The maximum stress theory

corresponds the best with experimental data for brittle materials.
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2.6 Finite Element Stress Analysis

The analysis of stress and deformation in an elastic body can be determined by Finite Element
Methods (FEM) ([11] and [14]). For this study the finite element software MSC PATRAN(35]
was used to perform basic structural analyses for various pressure vessels. Stress analyses were
performed using a linear static analysis. Linear static analysis represents the most basic type of
analysis. The term /inear means that the computed stress or deformation is linearly related to
the applied load. The term static means that the applied loads or forces are not time dependent,
or the time variation is insignificant and can be safely ignored. The linear static equation that is

used by MSC PATRAN is

[Klis}=1{r} (2.52)

where K is the stiffness matrix (generated automatically by MSC PATRAN, based on the
geometry and material properties), F is the vector of applied loading and ¢ is the vector of
displacements induced by the applied loading. The procedure is to specify the geometry, the
material properties, the boundary conditions and applied loading, and to compute the
corresponding displacements. The displacements are then used to determine the stresses,
strains, etc for the structure being analysed. The applied loading may be applied individually or
in combination. Various loading subcases, in which a subcase represents a particular load and
boundary condition, can be analysed. Multiple loading subcases provide a means for efficiency,
whereby the solution time for subsequent analyses is a small fraction of the solution time of the

first.
2.6.1 Energy Methods

Equation 2.52 was developed with the aid of Energy Methods. Energy methods[19] employ the
principle of conservation of energy, which state that the strain energy stored in a system is equal
to the work done by the applied loads, during the loading process. For a plate or shell element,

such as figure 2-10, the stored strain energy is the sum of the work done by the bending

moments M dy and M dx, and the twisting moments M _dy and M _dx. The work done

by shearing forces and by the stretching of the middle surface is neglected, which is the same

method used in beam theory. The work done by the moments is % X (moment) x (angle between
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the sides of the element after bending). In the xz plane the angle is  — (azw/axz )a'x , therefore

o’ w

2
X

the strain energy due to moment M dy is —1 M, dxdy . The negative sign indicates that

a downward curvature (positive) has a decreasing slope as x increases. The strain energy owing
to M .dx is computed similarly. For the twisting moments, M dy and M  dx, the same
amount of energy is stored by both couples. The angles of the element faces due to twist are

(82M1/8x8y)dx and (82M1/6x8y)dy. The total energy due to the twisting moments is

o’w

Y 3 dxdy . The Total Strain Energy for a plate or shell element is :
" Oxdy

-~

1 0 0 0’
Ue=o [Jl-M S -M, 5o ey 25y
27 ox T Oy " Ox0y

The total potential energy stored in a plate or shell under a distributed lateral load p(x, y) is :

W, = %‘” (pw)dxdy (2.54)

A

where w is a function of the displacement &. Therefore, using conservation of energy :

(2.55)
M=U,-W, =0

[T is the total potential energy stored in the plate or shell. Substituting equations 2.53 and
2.54 into 2.55, produces :
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A2
0w Cw

o w / ! ! g
n=_ {‘ Mg Mg~ M axa.v}dldy —EU ity =0 259

82w azw azw
= j j [‘ M,—~-M, N 2M axay]dxdy - y(PW)dxdy =0 (257

Stress and deformation analyses can be determined using energy methods. Therefore, the Finite

Element Method uses equation 2.57.
2.6.2 Finite Element Method

The powerful finite element method[11,14,19] permits the prediction of stress and deflection for
a plate or shell, with a degree of ease and precision. In the finite element method, the plate or
shell is divided into a finite number of element(triangular or rectangular in shape), connected at
points of intersection known as nodes and along specified boundaries. The most commonly
used finite element method is the finite displacement approach where the governing set of
algebraic equations is expressed in terms of unknown nodal displacements. Consider an

individual element of an isotropic plate shown below in figure 2-12 :

. (4] — -
| |
y
S
| | |
| i /
-
| Element e
/
| "
1 —
b | k
L
| | |
| | I
—— - — ] — ———-
| I
|
| I
l | I
I | i
| ] L
X

Figure 2-12 : Rectangular Finite Element. Obtained from Bulson and Allen[17]
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Node / in the above figure has a nodal displacement made up of a deflection and two angular

rotations within the element, represented by :

61=4 — (2.58)

where,

w(x,y)=a, +a,x +a,y+a,x’ +tay gy’ +a,x’

2 2 3 3 3 (2.59)
TagxX Yy +agxy” o,y a Xy +an,xy
The list of nodal displacements for the four corers is designated by :

5:’
, o,

o}, =1 (2.60)
o,
o

Substituting equations 2.59 into 2.58, we obtain a set of twelve equations in « for equation

2.60 :

{6, =Iclia (2.61)

e} =[c]'s}, (2.62)
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Substituting equations 2.62 into 2.59, produces :

{w, =[Pls}. (2.63)

{w}e is referred to as the displacement function, and the displacement matrix is made up of

equation 2.63. [P] is a function of position and is often referred to as the shape function. It is

determined for a specific element, either triangle or rectangle in shape.

Next, consideration is given to the curvatures and twists at any point in the element, which is

represented by :

{g}e = y =9 3 (264)

{8}3 is referred to as the generalized strain displacement matrix(equations 2.20 to 2.22 for a

thin plate). Substituting equations 2.59 and 2.62 into 2.64 gives :

tet. =lolcT s}, (2.65)

e}, =[Blis}, (2.66)

Where {B] is determined for a specific element, either triangle or rectangle in shape.



The bending and twisting moments M, M and M are related to the curvatures by

equations 2.30 and 2.31, which can be written as :

B o*w
M . 1 v axfy
M.v - iEt‘zjv l _aVZV
M, U0 0 (1-v)2 aayzw
—zaxay

The above equation is condensed to :

(2.67)

(2.68)

The stresses ¢, o, and 7. are related to the curvatures by equations 2.28, therefore, a stress-

generalized strain relationship is obtained :

o, 1 v
Et
: :2il—v2iv )
r, 00 (1-v)/2

The above equation is condensed to :
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(2.69)
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According to energy method the variation in the potential energy of the plate shown in figure 2-

12, from equation 2.57, is :

All = i J.J.{_ M, o*w -M a2_w_2Mn_ az_w}dxdy —i J.J.(pw)dxdy =0 (2.71)
! A

o’ Yooy " Ox0y

where n, 4 and p represent the number of uniform thickness elements comprising the plate,
surface area of an element and the lateral load per unit surface area, respectively. The above

expression can be rewritten as :

N

Z J;J.({Ag}: M} - pAw)dxdy =0 (2.72)
Introducing equations 2.63 and 2.67 into equation 2.72, produces :

U el ([k].45}, - {F}.)=0 (2.73)
The element stiffness matrix [k], equals :

[k], = £J’[B]”" [D]B)dxdy (2.74)
The element nodal force matrix {F},, due to transverse load, is -

= fﬂP I pdxay (2.75)
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For a single element, equation 2.73 can be reduced to :

s}, (k.fo}, - {F}) =0 (2.76)
therefore,

[kl.i61. = {F), 2.77)
For the entire plate, equation 2.77 becomes 2.78

[Klis}=1{F} (2.78)

where

[H=ZML {H=2Uk (2.79)

The general procedure for solving plate or shell problems by the finite element method is

summarized as follows

e Determine [k]e from equation 2.74 in terms of the given element properties, and

generate [K ] = i [k]e :

e Determine {F}g from equation 2.75 in terms of the applied loading, and

i

generate {F} = Z {F}e :

e Determine the nodal displacements by using {5} = [K]_l {F}

The element moments and stresses can be calculated using equation 2.68 and 2.70 respectively.
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Chapter 3

VESSELS UNDER INTERNAL PRESSURE AND PJPING LOADS

3.1 Introduction

The subject of local stresses in the vicinity of nozzles in pressure vessels has been one of the
most researched areas of pressure vessels (see Chao[32]). Several practical approaches to this
problem have evolved which allow design engineers to check the adequacy of shell-to-nozzle
designs in pressure vessels. The most widely used method for calculating local stresses in
vessels due to the combined internal pressure and external nozzle loads, has been detailed in the
Welding Research Council (WRC) Bulletin 107[16] published in 1965. In 1989, WRC Bulletin
297[21] was published as a supplement to WRC Bulletin 107.

WRC Bulletin 107 calculates the stresses in the shell at eight points representing the inside and
outside surface at the shell-to-nozzle junction due to external loads on the nozzle based on
Bijlaard’s method. WRC Bulletin 297 covers a wider range of geometric parameters and also
calculates at eight points the stresses in the nozzle. Transverse and longitudinal membrane
stresses, due to internal pressure, are added to the stresses calculated for external loadings.
Design engineers use the WRC 107 method to calculate the local stresses in the shell due to the
combined effect of internal pressure and external loads. These stresses are compared with
stresses calculated numerically with Finite Element Analysis (FEA) software. The FEA results

also indicate the stresses in the nozzle.

However, when evaluating these stresses the effect of the pressure thrust load is overlooked. A
pressure thrust load is a load due to the internal pressure acting on the nozzle. The stresses
generated by the pressure thrust load are transferred to the shell. WRC Bulletins 107 and 297
calculate the stresses due to the pressure thrust load as membrane stresses induced in the shell
acting across the entire cross-section of the shell. The cross-section of the nozzle is much

smaller than that of the shell. The equation of stress is :
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(3.1)

F
o=—
A
The above equation indicates that the smaller the area the greater the stress, therefore the stress
induced in the shell to the pressure thrust load on the nozzle should be much greater than the

membrane stresses calculated by WRC 107 and 297. The reasons for ignoring the effects of the

pressure thrust load are :

e The nozzle is reinforced in accordance with ASME Code VIII Div | based on the
internal design pressure. This has been taken as being sufficient to nullify the effect of
nozzle openings, and only the general membrane stresses in the vessel due to internal

pressure are calculated and superimposed on those calculated due to external loadings.

e The internal pressure in the nozzle is converted into a radial outward thrust force acting
on the nozzle alone and is combined with the nozzle loadings which are used to

calculate the local stresses in the nozzle using WRC 107 and 297.

The objective of this study is to determine if the above reasons are justified in ignoring the

effects on the shell due to the pressure thrust load acting at the shell-to-nozzle junction.

The ASME Code is used to determine the significance of these stresses. The code gives
acceptance criteria for the stresses calculated. If the stresses are within acceptable limits, then
the design of the vessel is believed to be safe. The theory of failure used by the ASME Code is
the maximum shear stress theory or Tresca criterion. It implies that the maximum shear stress
at a point is equal to one half the difference between the algebraically largest and the
algebraically smallest of the three principal stresses at the point. To simplify calculations
ASME VIII Div 2 uses a stress called Stress Intensity. This stress is twice the maximum shear
stress thus eliminating the half. Instead of comparing the stress intensity to the maximum shear
stress it can now be compared directly to the yield stress or allowable stress of the material.
Nozzles are defined by the codes as being gross structural discontinuities. They are defined to
be sources of stresses and strains that affect large portions of the structure and influence the

stress situation of the structures as a whole.
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3.2 ASME VIII Div 2 Classification of Stresses

Ductile materials (see Roche[24]) are highly recommended for the construction of pressure
vessels. They can withstand excessive plastic deformations. Therefore, computations of
stresses are made easier by treating the material as elastic or linear. However, the behaviour of
ductile materials is different to that of elastic materials. To use these elastically computed
stresses conveniently, these stresses have to be split up into various stress parts. These parts are

primary stresses, secondary stresses, peak stresses, etc.

The ASME Code VIII Div 2 gives the following definitions for the stresses occurring in the

vessel :

(a) Primary Stress. A normal or shear stress developed by an imposed loading which is
necessary to satisfy the laws of equilibrium. The basic characteristic of a primary
stress is that it is not self-limiting. Mechanical loads cause primary stresses. Primary
stresses, which exceed the yield strength, may result in failure or gross distortion of the
structure. Primary stresses are divided into two categories : general and local. A

general primary stress in a cylindrical shell is due to internal pressure or live loads.

(b) Local Primary Membrane Stress. These membrane stresses arise when pressure, or
other mechanical loads, associated with a discontinuity, produce excessive distortion
when transferring the loads to other portions of the structure. Conservatism requires
that such a membrane stress be classified as a local primary membrane stress even
though it has some characteristics of a secondary stress. An example of a local
primary membrane stress is the membrane stress in a shell produced by external loads

and moments at a nozzle connection.

(c) Secondary Stress.  Secondary stress is a normal or shear stress developed by the
constraint of adjacent parts or by self-constraint of a structure. Secondary stress is
‘self-limiting’. Local yielding and minor distortions can cause the stress to occur. An
example of a general secondary stress is a thermal stress. Bending stresses developed

at gross structural discontinuities, like nozzle connections, are referred to as secondary

stresses.

A few definitions have been mentioned. These definitions are most applicable for shell-to-

nozzle junctions.
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The symbols for the stresses mentioned in the definitions are :

e Sum of all General Primary Membrane Stress Components

e Sum of all Local Primary Membrane Stress Components :

: Pm
P,

e Sum of all Primary Bending Stress Components : P

e Sum of all Secondary Membrane plus Bending Stress Components :

Y

The Code classifies the stresses at various locations on a pressure vessel according to the

following table:

Vessel Location Origin of Stress | Type of Stress Classification
Component
Cylindrical or Shell plate remote Internal pressure | General membrane P,
Spherical Shell from Gradient through
discontinuities plate thickness
Axial thermal Membrane 0
gradient Bending Q
Junction with head | Internal pressure Membrane P,
or flange Bending Q
Any shell or head | Any section across External load or | General membrane
entire vessel moment, or averaged across
internal pressure | full section. Stress
component P,
perpendicular to
Cross section
External load or Bending across
moment full section. Stress
component P,
perpendicular to
cross section
Near nozzle or External load or Local membrane P,
other opening moment, or Bending Q
internal pressure Peak (fillet or F
corner)
Any location Temp. diff, Membrane 0
between shell and Bending 9

head

Table 3-1 : ASME V111 Div 2 Classification of Stresses
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The above table from ASME VIII Div 2 indicates that at the shell-to-nozzle junction, the
Primary Local Membrane Stresses P, and the Secondary Bending Stresses Q represent the
membrane and bending stresses in the shell respectively. The stresses are produced with the
combination of internal pressure and nozzle loads. At the shell-to-nozzle junction there is a
transfer of loads from the nozzle to the shell, therefore, the membrane stresses produced at this
point, according to the definitions, are local primary membrane stresses. The bending stresses
according to the definitions given in the ASME Code are secondary stresses. Peak stresses are
stresses that do not cause noticeable distortions and are important in fatigue cases. However,

for general static cases they are ignored.

The primary and secondary stresses, or a combination of theses stresses produced by mechanical
loads, are divided into Stress intensities. For the purpose of this study the three most important

Stress intensities are :
e General Primary Membrane Stress Intensity : P,

¢ Local Membrane Stress intensity : P,

e Primary Plus Secondary Stress Intensity : P, + P, + Q
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3.3 Stress Limits

Stresses calculated theoretically or numerically have to be within the allowable limits given in

figure 3-1 obtained from the ASME Code.

Stress Primary ;ecogdary
- embrane Pea
Category General Membrane | Local Membrane Bending plus Bending eak
Description Average primary Average stress Component of Self-equilibrating (1) Increment added
stress across across any primary stress |  stress necessary to primary or second-
solid saction. solid section. proportional to satisfy con- ary stress by a con-
Excludes discon- Considers dis- to distance tinuity of structure. centration (notch).
tinuities and continuities from centroid | Occurs at struc-
concentrations. but not con- of solid tural discontinui-  1(2) Certain thermal
Produced only by centrations. section. Ex- ties, Can be stresses which may
mechanical loads. Produced only cludes discon- | - ca,5ed by mechan- cause fatigue but
by mechanical tinuities and ical load or by not distortion of
Joads. concentrations.|  gifferential ther- vessel shape.
Produced only {  ma) expansion.
by mechanical | Eyeiudes local
loads. stress concentra-
tions.
Symbol
m Pm Py Py Q F
Combination l l | I J l J
o v e SR H T :
components | | I
and allow- ! ! !
able limits | ! !
of stress 4 I I
. et e — — !
intensities. ! ¢
T (s |
]
: )
) t
v i
be——— e = .
|
) |
Use design loads
— ~— ~— — Use operating loads e

Figure 3-1 : ASME VIII Div 2 Stress Categories and Stress Intensity Limits
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For a vessel subjected to internal pressure and external piping loads, table 3-1 is used to

determine the relevant stresses produced, as well as the appropriate stress intensities. The table

below summarizes table 3-1 and figure 3-1 for a vessel under internal pressure and nozzle loads.

Internal Pressure

Internal Pressure + Nozzle

Loads
Type of Stress General Primary Membrane Local Primary Membrane
and Secondary Bending
Classification P, P and Q
Stress Intensity P, P, P +Q
Stress Limits " 1.5S,, 38,

Table 3-2 : Appropriate Stress Intensities and Stress Limits

The following diagram represents failure of ductile materials:

e—— LUnrform strormn ——

pte—————— Strain 10 froclure ————»

N

&

g

&> Orfser

g /! yreld Topsy

> rrenalh ensi/e

< [ streng slfrengrt;
Fracture
srress

Y

Conventional stroin e

Figure 3-2 : Stress-strain Diagram for typical structural steel under tension. Obtained

from Gere and

Timoshenko[33]
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For ductile materials, in figure 3-2, the elastic or linear strain is much smaller than the plastic
strain. Therefore, it can be assumed that for pressure vessels, stresses below the yield strength
result in negligible strain whereas stresses above the yield strength could result in excessive

strains or distortions, which can cause failure.

Designing for stresses below the material’s yield strength ensures that negligible or no
strains/distortions occur in the material to prevent failure. To prevent severe plastic deformation,
which will eventually lead to the structure collapsing, the allowable stress should be the ultimate

tensile stress of the material .

The Py stress intensity includes only local primary membrane stresses. The result of these
stresses exceeding the yield strength can cause gross distortion or result in failure of the vessel
at the shell-to-nozzle junction. Therefore, the allowable stress limit for the local primary

membrane stress intensity should be the yield strength of the material.

The P, + Q stress intensity includes primary membrane stresses as well as secondary bending
stresses. The secondary stresses cause additional distortions to that created by the primary
stresses. Substantial unrecoverable deformations may occur. To prevent rupture or ductile
bursting the ultimate tensile strength of the material applies to the primary plus secondary stress

intensity.

The ASME Code gives the value §,,, and is referred to as the design stress intensity of the
material at design temperature. The allowable or design stress of the material S, is often used
instead of §,,, The ASME Code calculates the allowable or design stress as a fraction of the

material’s yield strength and ultimate tensile strength. The tables showing these relationships

can be found in Appendix A. The following summarize these relationships :

1.5 §,, = Yield Strength (S,)

38, =Ultimate Tensile Strength (S7)
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3.4 Calculation of Stress Intensities

The Stress Intensities are calculated using the Maximum Shear Stress theory or Tresca
Criterion. For the calculation of the local primary membrane stress intensity Py, the following
procedures need to be followed. The membrane stresses calculated from the combined
loadings, which include internal pressure and nozzle loads, have to be divided into four
categories. These categories are longitudinal stresses o, transverse (hoop) stresses oy, radial
stresses o, and shear stresses . These stresses then need to be converted to three principal
stresses representing the longitudinal, transverse and radial directions. These stresses are ¢, o,
and o5 respectively. The ASME Code VIII Div 2 calculates three stress differences for a

particular location on the vessel.

For the shell-to-nozzle junction the stresses obtained will be transverse stresses oy, longitudinal
stresses o, radial stresses o, and shear stresses 7. At the junction the transverse, longitudinal
and shear stresses have to be converted to two principal stresses representing the transverse and
longitudinal directions. These stresses o, and &, are mentioned above. The remaining stress
component, g, can be represented as a principal stress ;. Using the Tresca Criterion the

following stress differences are obtained:

S12=0-0; (31)
823 =03-03 (32)
S31= 03- 0 (3.3)

The final stress intensity S is the largest absolute value of the three stress differences shown
above, for a particular location at the shell-to-nozzle junction. The procedures for deriving the

stress intensity is given in ASME VIII Div 2, APPENDIX 4 - MANDATORY DESIGN BASED
ON STRESS ANALYSIS, ARTICLE 4-1.

For the P, + Q stress intensity the same procedures mentioned above apply. However the
bending stresses calculated have to be included. Again four component stresses have to be
calculated and converted to three principal stresses. Using the Tresca Criterion the largest
absolute value of the three stress differences (similar to that shown above) is the final stress
intensity S. The procedures for deriving the stress intensity are given in ASME VIII Div 2,
APPENDIX 5 - MANDATORY DESIGN BASED ON FATIGUE ANAL YSIS, ARTICLE 5-1.
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3.5 WRC Bulletin 107

1t has been mentioned that the most common procedures for the computation of stresses in the
shell due to the combined effect of internal design pressure and external nozzle loads are given
by the Welding Research Council Bulletin 107. The relation between internal membrane forces

and internal bending moments are represented by the following equation:

N |
o =K, LK, (3.5)

1

The above equation takes the form of equations 2.44. The methods for obtaining the membrane
forces N; and bending moments M; were developed by Professor P. P. Bijlaard[16]. With the

use of a shell parameter (¥ ) and an attachment parameter ( £ ),

}/ __m (36)

v,

=0.875
p R

(3.7)

m

Bijlaard was able to develop several nondimensional curves to determine the stresses at the

shell-to-nozzle junction.

The membrane stresses due to internal pressure are calculated using the following equations

derived from the ASME Code VIII Div |.

Circumferential (Hoop/Transverse) Stresses :

DP(R, + 0.6T)

o4 = T (ID. Formula) (3.8)
DP(R, — 0.4T)

0y =~ (OD. Formula) (3.9)
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Longitudinal Stresses :

o= L(R’Lm (1.D. Formula) (3.10)
X 2T
. —0.4T
o, = DP(R'zT 0 )(O.D. Formula) (3.11)

The above equations indicate that the greater stresses occur at the inside surface of the shell,

since the internal design pressure is applied to the inside surface.

3.5.1 Stresses Resulting from Radial Load, P

3.5.1.1 Circumferential Membrane Stress

Ny

Using the parameters ¥ and f and the nondimensional curves 3C or 4C, values for

are found. The circumferential membrane stress due to the radial load is given by the following

equation :

N¢ N¢ j2
= : (3.12)
T P/R, R, T

3.5.1.2 Circumferential Bending Stress

Using the parameters y and £ and the nondimensional curves 1C or 2C-1, values for ~— are

found. The circumferential bending stress due to the radial load is given by the following

equation :
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6M, | M
oMy 1Mo .Fﬂ (3.13)
,1.2 P T;

3.5.1.3 Longitudinal Membrane Stress

Using the parameters y and f and the nondimensional curves 3C or 4C, values for

P/R

are found. The longitudinal membrane stress due to the radial load is given by the following

equation:

N, N P
o R (3.14)
e

m

3.5.1.4 Longitudinal Bending Stress

Using the parameters ¥ and £ and the nondimensional curves 1C or 2C-1, values for — are

found. The longitudinal bending stress due to the radial load is given by the following equation

6M, |M, |[6P
Tz' { P }{*T—z} (3.15)

3.5.2 Stresses Resulting from Circumferential Moment, M

3.5.2.1 Circumferential Membrane Stress

Using the parameters ¥ and £ and the nondimensional curve 3A, values for —— % —

—— are
MC /Rmﬂ
found. The circumferential membrane stress due to the circumferential moment is given by the

following equation :
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=

N N, 6M
—| |t (3.16)
T M(' /Rmﬂ RHIT ﬂ

3.5.2.2 Circumferential Bending Stress

M¢
— a
MC /Rmﬂ

Using the parameters ¥ and f and the nondimensional curve 1A, values for re

found. The circumferential bending stress due to the circumferential moment is given by the

following equation :

6M¢ M¢ 6MC
Rap : . (3.17)
T MC /Rmﬂ RIHT ﬂ

3.5.2.3 Longitudinal Membrane Stress

Using the parameters ¥ and £ and the nondimensional curve 4A, values for re

X
————a
MC /Rmﬂ
found. The longitudinal membrane stress due to the circumferential moment is given by the

following equation :

N, N, 6M
L= . . (3.13)
T MC /Rmﬂ RmT ﬂ

3.5.2.4 Longitudinal Bending Stress

Using the parameters ¥ and /£ and the nondimensional curve 2A, values for re

X a
MC /Rmﬂ
found. The longitudinal bending stress due to the circumferential moment is given by the

following equation :

6M, { M, 6M
2 ' 2 (3.19)
r MC /anlB RmT IB
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3.5.3 Stresses Resulting from Longitudinal Moment, M,

3.5.3.1 Circumferential Membrane Stress

N¢
——————— a
ML /R/?HB

Using the parameters ¥ and £ and the nondimensional curve 3B, values for re

found. The circumferential membrane stress due to the circumferential moment is given by the

following equation :

Nvf N¢ 6ML
e — |- : (3.20)
T M,/R.B||RTp

3.5.3.2 Circumferential Bending Stress

Using the parameters y and /S and the nondimensional curves 1B or 1B-1, values for
My
ML /RmIB

are found. The circumferential bending stress due to the circumferential moment is

given by the following equation :

oM, _ M, 6M,
= : : (3.21)
T ML /RIII/B RmT IB

3.5.3.3 Longitudinal Membrane Stress

Using the parameters  and £ and the nondimensional curve 4B,values for re

X > a
ML /Rmﬂ
found. The longitudinal membrane stress due to the circumferential moment is given by the

following equation :

N[N T em, )
T ML/RIi/B RHITZIB (3 2)
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3.5.3.4 Longitudinal Bending Stress

Using the parameters y and / and the nondimensional curves 2B or 2B-1, values for

M.
ML / Rmﬂ

are found. The longitudinal bending stress due to the circumferential moment is

given by the following equation :

oM, [ m, ][ oM, -
T2 ML /Rmﬂ RmT ﬂ

3.5.4 Stresses Resulting from Torsional Moment, My

Torsional moments are assumed to induce shear stresses in the shell. The shear stress due to the

torsional moment is :

Ty =10 (3.24)

The nozzle is assumed to be a tube, therefore, torsional shear stresses for tubes are given by the
equation 3.24. /[, for the shell-to-nozzle junction is 27z7‘03T. Therefore, substituting this into

the above equation we obtain :

T, = (3.25)

3.5.5 Stresses Resulting from Shear Loads, V¢ and V_

Bijlaard predicted that the shear forces transmitted to the shell produced shear membrane

stresses (force divided by area). Therefore, shear stresses generated by shear loads for round

nozzles are given as :
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T, = (3.25)
' mwr, T

Ty = 4 (3.26)
o, T

3.5.6 Sign Convention

The stresses calculated using the methods given in WRC 107 are either in tension or
compression. Tensile stresses are indicated to be positive (+), compressive stresses are
indicated to be negative (-).  For the shell-to-nozzle junction, there are four points of
consideration, indicated in figure 3-3. Figure 3-3 also indicates the directions of the radial and
moment loading, which give the sign convention for the stresses resulting from radial and

moment loading in table 3-3.

MT
" b
\ . o
oy Ve
)
B )
< -
ve 270
ML

Figure 3-3 : External Loading at shell-to-nozzle junction. Obtained from CodeCalc.

For shear stresses the sign convention is dependent on the direction of the loading. Shear
stresses caused by torsional moments are positive. Shear stresses due to V¢ are positive at point

A and negative at point B, indicated in figure3-3. Shear stresses due to V| are positive at point

D and negative at point C.
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The table below is used to compute local stresses in cylindrical shells using WRC 107 :

Add algebraically : 1
|2 g M

From | Read curves | Compute absolute values of | STRESSES : IF Load is acting in opposite direction,
Fig for stress reverse the sign
S— '
AU AL BU BL CuU CL
3Cor N¢ Ngj P
K : = )
4C P/R, 1 PIR, || RyT -
1Cor My Myl 6P
2C-1 T Kb [—}[_f = - + - + - + +
A N oM
— K, = ] +
MC/R"’[} MC /Rm RmT ﬂ J
A My « 6/\4(
h =] - + -
MC/R”’ﬂ MC/Rm;B R/)IT BJ
3B qu 6/\4/
2 K| ——5— e = + +
Myl Rnf LML/R,,, R,,,r 5 |
1B or My . ] 6M,
b = 5 + + -
1B-1 M) Ryfp _ML/R,,,,BJ RuT28 |
Add algebraically : oy
3Cor N-Y K Nx .- P ‘\_
4C P/Rm Z P/ Rm ,,,T_ = = = = -
1C or ,V/X . M_Y 6P o
2C P Kol | 7—2— Nl - + + - + +
A N 6M(:
2 = . «
Mc/Rnb meﬂ RuT?8
A _ My M, M |
. = +
Mc/Rnf McIR, B R,,,TZ,B
N VR [ oo,
2 = i
MyIRnf3 ) _"WL/Rmﬂ RmTZ/B - &
wor )My [ m, oM,
b =
ZB-I ML /R'”ﬂ ML /Rlllﬂ RIHTQﬂ K o
Add algebraically : o,
Shear Stresses due to My
Ts =
torsion, M+ a 2,,,.02'[ + ¥ + + + + +
Shear Stress due to load, Ve
Tyg =—F
Ve a4 wr, T + + i i
Shear Stresses due to v
ng‘. = =
load, V_ T = W

Table 3-3 : WRC Bulletin 107 Computation Sheet for Local Stresses in Cylindrical Shells
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3.5.7 Stress Intensities

The final Combined Stress Intensity S is calculated using the Tresca Criterion. This stress
intensity is equal to the P, + Q stress intensity. The stresses are computed for eight points at the

shell-to-nozzle junction. The algebraic sums of all circumferential stresses at these points are

indicated by o, and the algebraic sum of all the longitudinal stresses at these points are

indicated by o ,. The circumferential, longitudinal and shear stresses are computed on the

same plane, therefore, these stresses need to be converted to principal stresses. The principal

stress equation is given by:

o, +0, , \/(O'X —O'¢>2 +47°
2 2

0,0, = (3.27)

The ASME Code indicates that the combined stress intensity S is given by the largest absolute
magnitude of three stress differences, equations 3.2 to 3.4. Radial stresses are not computed

therefore the radial principal stresses can be assumed to be zero. Therefore equations 3.2 to 3.4

become :

Sy, =0,-0, (3.28)
Sy =0, (3.29)
Sy =0, (3.30)

Using equations 3.27 to 3.30, the following WRC 107 rules apply :

1. When 7 # 0, § = the absolute largest magnitude of either

N :%[ax -0, i\/(ax ——O'¢)2 +4T2Jor \/(O'X —O'¢>2 +47°

2. When 7= 0, § = the absolute largest magnitude of either

S=o,,0,o0r (O’X —a¢)
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3.6 Numerical Results

The theoretical stresses for vessels under the combined loading of internal pressure and nozzle
piping loads, were calculated using the methods described in WRC Bulletin 107. The WRC 107
equations and nondimensional curves are programmed into a software called Codecalc. The
vessels are loaded according to the WRC 107 convention, shown in figure 3-3 above. The

WRC 107 format of the results, presented by Codecalc, is shown below :

DESIGN

Internal Design pressure(DP)
Design Temperature

Vessel Material

Nozzle Material

CYLINDRICAL SHELL

2.51MPa

150degrees C
SA - 516Grade 70
SA - 106Grade B

Vessel Inner Diameter(DV) 570mm
Vessel Thickness(TV) 14mm
Corrosion Allowance(CAS) 3mm
Vessel Allowable Stress(Sm) 137.9MPa
NOZZLE (6 inch)

Nozzle Outer Diameter(DN) 168.275mm
Nozzle Thickness(TN) 10.97mm
Corrosion Allowance(CAN) 3mm
Nozzle Alowable Stress(SNm) 117.9MPa
Nozzle Loads WRC 107 Sign Convention (SASOL LOADS)

Radial Load(P) -9450N
Circumferential Shear(VC) ON
Longitudinal Shear(VL) ON
Circumferential Moment(MC) 4350000Nmm
Longitudinal Moment(ML) 6300000Nmm
Torsional Moment(MT) ONmm
GEOMETRIC PARAMETERS WRC 107

Rm = (DV+TV-CAS)/2 290.50mm
T=TV-CAS 11.00mm
ro=DN/2 84.14mm
GAMMA=Rm/T 26.41
BETA=0.875*ro/Rm 0.253

Dimensionless loads from WRC 107

Figure
4C N(PHIY(P/Rm)

(PHI - circumferential, x - longitudinal)
Gamma Beta VALUE

26.41 0.253 3.562
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2C1 M(PHI/P

3A N(PHI/(MC/(Rm"2"BETA))
1A M(PHD/(MC/(Rm*BETA))
3B N(PHN/(ML/{Rm*2"BETA))
1B M(PHIY(ML/(Rm*BETA))
3C N(x)/(P/Rm)

1C1 M(x)/P

4A N(x)(MC/(Rm"2*BETA))
2A M(x)/(MC/{(Rm*BETA))

4B N(x)/(ML/(Rm"2*BETA))
2B M(x)Y/(ML/(Rm*BETA))
POINTSC & D

3C N(PHN/(P/Rm)

1C M(PHI)/P

1B1 M(PHN/(ML/(Rm*BETA))
4C N(x)/(P/Rm)

2C M(x)/P

2B1 M(x)/(ML/(Rm*BETA))

26.41
26.41
26.41
26.41
26.41
26.41
26.41
26.41
26.41
26.41
26.41

26.41
26.41
26.41
26.41
26.41
26.41

STRESS CONCENTRATION FACTORS Kn=1, Kb=1

0.253
0.253
0.253
0.253
0.253
0.253
0.253
0.253
0.253
0.253
0.253

0.253
0.253
0.253
0.253
0.253
0.253

0.031
1.129
0.079
2.628
0.024
2.202

0.06
2.069
0.036

1.09
0.039

2.202

0.06
0.024
3.562
0.031
0.042

STRESS VALUES MPa - NOZZLE TO SHELL JUNCTION
AU AL BU BL “CU CL DU DL

CM(DP) 63.7 66.2 63.7 66.2 63.7 66.2 63.7| 66.2
CM(P) 10.5 10.5 10.5 10.5 6.5 6.9 6.5 6.5
CB(P) 14.5 -14.5 14.5 -14.5 281 -28.1 28.1 -28.1
CM(MC) 0.0 0.0 0.0 0.0 -20.9 -20.9 20.9 20.9
CB(MC) 0.0 0.0 0.0 0.0 -231.5 231.5 231.5 -231.5
CM(ML) -70.4 -70.4 70.4 70.4 0.0 0.0 0.0 0.0
CcB(ML) -101.8 101.8 101.8 -101.8 0.0 0.0 0.0 0.0
S(PHI) -83.5 93.7 261.0 30.7 -154.0 255.2 350.7 -166.0
LM(DP) 31.8 31.8 31.8 31.8 31.8 31.8 31.8 31.8
LM(P) 6.5 6.5 6.5 6.5 10.5 10.5 10.5 10.5
LB(P) 28.1 -28.1 281 -28.1 14.5 -14.5 14.5 -14.5
LM(MC) 0.0 0.0 0.0 0.0 -38.3 -38.3 38.3 38.3
LB(MC) 0.0 0.0 0.0 0.0 -105.5 105.5 105.5 -105.5
LM(ML) -29.2 -29.2 292 29.2 0.0 0.0 0.0 0.0
LB(ML) -165.5 165.5 165.5 -165.5 0.0 0.0 0.0 0.0
S(x) -128.2 146.5 261.2 -126.1 -86.8 95.1 200.6 -39.
SHEAR(MT) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SHEAR(VC) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SHEAR(VL) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1 0.0 0.0 0.0 0.0 0. 0.0 0.0 0.0
S(PL + Q) 128.2 146.# 261.2 156.4 154. 255.2 350.7 166.0

Figure 3-4 : Codecalc Computation Sheet for Local Stresses in Cylindrical Shells
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The finite element results were calculated using Model A, shown below :

Isometric View

Figure 3-5 : Finite Element Model A

Model A was constructed as close as possible (considering [15], [23] and [27]) to the actual
geometry of a vessel with a nozzle attachment. Shell elements or 4-noded quadrilateral
elements were used to mesh the model. MSC PATRAN has a node limit of 6000 nodes,
therefore, vessels using Model A were meshed as close to 6000 nodes as possible to generate an
appropriate fine mesh. No welds have been modelled for the nozzle connection to the shell, to
ensure more conservative results for external loads and more realistic pressure stresses. The
material of the shell is SA 516 Grade 70 (carbon steel) and the nozzle material is SA 106 Grade
B (carbon steel). Their properties can be found in Appendix A. An elastic modulus of 200GPa

and a Poisson’s ratio of 0.3 were used.
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The two types of nozzle loadings, SASOL Loads and Foster Wheeler Loads, can also be found

in Appendix A. Model A is validated by comparing theoretical results with FEM values. The

primary membrane stress, generated by internal pressure, is calculated theoretically, remote

from the shell-to-nozzle junction, and compared with the finite element stress. The objective 1s

to reach at least a 5% model convergence. To verify the model’s convergence the following

vessels were analysed. Vessels with different diameters were chosen.

Vessel Inner —l Thickness | Corrosion | Design Design Nozzle | Nozzle
Diameter (mm) Allowance | Pressure | Temperature | (inch) | Loading
(mm) (MPa) (degrees
Celsius)
1 570 14 3 2.51 150 6” SASOL
2 570 10 3 1.03 160 2” FW
3 700 8 - 0.24 60 4 Fw
4 760 10 3 1.02 60 4” FW
5 760 8 - 0.24 60 10”7 FWwW
6 800 8 - 1.13 140 4” FwW
7 840 8 - 0.21 65 10” FwW
8 1080 13 3 1.05 160 107 FWwW
9 1200 16 3 2.51 150 127 SASOL
10 1260 16 3 251 205 2” Fw
11 1270 13 3 1.03 160 §” Fw
12 1410 8 - 0.2 80 147 Fw
13 1420 16 - 1.46 150 107 SASOL
14 1710 8 - 0.26 125 47 FW
15 2450 12 - 0.26 75 16” FwW

*FW — Foster Wheeler

Table 3-4 : Vessels used to verify convergence

The following results were achieved :
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Figure 3-6 : Theoretical General Primary Membrane Stress P,
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Figure 3-7 : FEM General Primary Membrane Stress P,
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Figure 3-8 : FEM general membrane stress for Vessel 9

Figure 3-8 is an example of a stress analysis, using Model A to determine the general membrane

stress for vessel 9.
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Figure 3-9 : Convergence between Theoretical and FEM results
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Stress MPa

Figure 3-9 indicates that FEM analyses using Model A are within the 5% model convergence.
FEM results accurately coincide with theoretical results. The FEM combined stress intensity. S.
was determined for each of the vessels and compared with the theoretical results. The results

achieved were :

700 -
600 - ® 603
500
® 467 3S,, =414MPa
| ® 451
400....._...,.4.19..._......4............_....._......
® 350.7 ® 352 ® 3704 319
323 ® 325.3
300 i ® 316.6 P ® jis ® 324 o1 ®
282.1
. 240 ' 253 . 264.1‘ 265 . . 268 . 257_5'
® 2133 ® 2278 ® 2259 ® 23860 2207 257.9
200 ® 195 '
® 155.4 ® 157.1
100 |
|
0! + ;
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Vessel
B ®
WRC 107 FEM

Figure 3-10 : Comparison between FEM and Theoretical (WRC 107) Combined Stress

Intensities S

An example of a stress analysis. using Model A (o determine the combined stress intensity. is

shown below.
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Figure 3-11 : FEM Combined Stress Intensity for Vessel 1 using Model A

For vessel 1, the theoretical .S was calculated to be 350.7MPa. The FEM value of 467MPa is
much greater, due to the internal pressure thrust load developed at the shell-to-nozzle junction.
The effects of the internal pressure thrust load were investigated. First, a set of vessels was
analysed with an internal pressure of 0.26MPa and, thereafter, a second set of vessels, identical
to the first set, was analysed with an increased internal pressure of 1.05MPa. The vessels

analysed are shown below :
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Vessel Inner Thickness | Corrosion Design Design Nozzle Nozzle
Diameter (mm) Allowance Pressure | Temperature (inch) Loading
(mm) (mm)

(MPa) (degrees

Celsius)
16 1990 14 - 0.26 150 27 SASOL
17 1990 14 - 0.26 150 4” SASOL
18 1990 14 - 0.26 150 8"’ SASOL
19 1990 14 - 0.26 150 12" SASOL
20 1990 14 - 0.26 150 167 SASOL

Table 3-5 : Vessels analysed with an internal pressure of 0.26MPa

Vessel Inner | Thickness | Corrosion Design Design Nozzle Nozzle
Diameter (mm) Allowance Pressure | Temperature (inch) | Loading
(mm) (mm)

(MPa) (degrees

Celsius)
21 1990 14 - 1.05 150 27 SASOL
22 1990 14 - 1.05 150 47 SASOL
23 1990 14 - 1.05 150 8" SASOL
24 1990 14 - 1.05 150 127 SASOL
25 1990 14 - 1.05 150 16” SASOL

Table 3-6 : Vessels analysed with an internal pressure of 1.05MPa

Stress analyses for the above vessels were generated. The vessels were first subjected to

internal pressure alone. For tables 3-5 and 3-6 the following results were achieved :
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Figure 3-12 : FEM and Theoretical (WRC 107) stresses for vessels subjected to internal

pressure 0.26MPa
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Figure 3-13 : FEM and Theoretical (WRC 107) stresses for vessels subjected to internal

pressure 1.05MPa
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[t can be observed trom figures 3-12 and 3-13 that the FEM stresses due to internal pressure

alone do not coincide with the theoretical WRC 107 values. The stresses according to FEM are

much higher than the theoretical values.

This clearly illustrates the effect of the internal

pressure thrust load that occurs at the shell-to-nozzle junction. The type of nozzle 1s also an

important consideration. An increase in the size of the nozzle also increases the stress at the

shell-to-nozzle junction. Figure 3-13 indicates that an increase in the internal pressure produces

a much greater stress at the shell-to-nozzle junction. and this stress can be quite severe if the

size of the nozzle is increased. Figures 3-14 and 3-15 are FEM stress analyses showing an

increase in the stress. as the internal pressure is increased from 0.26MPa to 1.05MPa. for

identical vessels 16 and 21.
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Figure 3-14 : FEM Stress analysis for Vessel 16 (internal pressure 0.26MPa)
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Figure 3-15 : FEM Stress analysis for Vessel 21 (internal pressure 1.05MPa)

Further FEM Stress analyses for vessels 16 to 25, under internal pressure alone, can be found in

Appendix B.
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The vessels were also analysed with only the external nozzle loads being applied.  The

following results were achieved :
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Figure 3-16 : FEM and Theoretical stresses for vessels 16 to 20 (identical to vessels 21 to

25) subjected to external nozzle loads

Figure 3-17 below shows the FEM stress analysis for vessel 16 under external nozzle loads

alone.
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Figure 3-17 : FEM Stress analysis for vessel 16 subjected to external nozzle loads

It can be observed from figure 3-17 that the stresses induced in the shell, due to external nozzle
loads, are not at a maximum at the points 4, B, C and D, shown in figure 3-3. WRC 107
calculates stresses for points A, B, C and D only. The results indicate that greater stresses can
occur in regions between points 4, B, C and D. Further FEM stress analyses for vessels 16 to

25, subjected to external nozzle loads, can be found in Appendix B.
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The internal pressure thrust load and the greater stresses between points A. B. C and D. due to

external nozzle loads. affect the combined stress intensity S. as the results below indicate.
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Figure 3-18 : FEM and Theoretical (WRC 107) Combined Stress Intensity S for vessels

subjected to 0.26MPa internal pressure and nozzle loads
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Figure 3-18 shows that the stresses are close to the allowable limit of 414MPa. Figure 3-19

shows that for some vessels the allowable limit of 414MPa 1s exceeded. whereas. the theoretical

or WRC 107 stresses are well within the allowable limit. The FEM results of figure 3-19. thus.

indicate that the internal pressure thrust load and greater external nozzle loads stresses can

increase the stresses at the shell-to-nozzle junction. Failure. by exceeding the allowable limit

given by ASME VIII Div 2. can occur. Below are FEM stress analyses for identical vessels 16

and 21. subjected to both internal pressure and nozzle loads.
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Figure 3-20 : FEM Stress analysis for Vessel 16 subjected to 0.26MPa internal pressure

and nozzle loads
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Figure 3-21 : FEM Stress analysis for Vessel 21 subjected to 1.05MPa internal pressure

and nozzle loads

Further FEM stress analyses for vessels 16 to 25, subjected to the combined loading of internal

pressure and external nozzle loads, can be found in Appendix B.
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3.6 Compensation Pads

Compensation pads are used to reduce the stresses in the shell-to-nozzle junction. Pads are used
if the combined stress intensity .§ exceeds the allowable limit. Another method to reduce the
stresses in the shell, would be to increase the thickness of the shell. Since the shell-to-nozzle
junction is the most highly stressed area, as compared to the rest of the shell, compensation pads
can be used to increase the thickness of the shell at the shell-to-nozzle junction, as shown in
figure 3-22 below. The increased thickness results in an increased rigidity for the shell-to-
nozzle area. The shell-to-nozzle junction is much stronger and the stresses induced in the shell,

due to the combined effect of internal pressure and external nozzle loads, are much lower.

/pad
Eow st

Figure 3-22 : Shell-to-nozzle junction with Compensation Pad. Reproduced from WRC
107]16]

Consider Vessel 1 given in table 3-4. The WRC 107 combined stress intensity for vessel 1 is

given in figure 3-10 as 350.7MPa. Using a compensation pad, WRC 107 calculates the
following :
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DESIGN

Internal Design pressure(DP)
Design Temperature

Vessel Material

Nozzle Material

CYLINDRICAL SHELL

Vessel Inner Diameter(DS)

Vessel Thickness(TS)

Corrosion Allowance(CA)

Vessel Allowable Stress(Sm)
Compensation Pad Diameter(CPD)
Compensation Pad Thickness(CPT)

NOZZLE (6 inch)

Nozzle Outer Diameter(DN)
Nozzle Thickness{TN)
Corrosion Allowance(CA)
Nozzle Alowable Stress(SNm)

2.51 MPA

150 DEGREES C
SA - 516 Grade70
SA -106 Grade B

570mm
14 mm
3mm
137.9MPa
290 mm
14 mm

168.3mm
10.97 mm

3mm
117.9MPa

Nozzle Loads WRC 107 Sign Convention (SASOL LOADS)

Radial Load(P)
Circumferential Shear(VC)
Longitudinal Shear(VL)
Circumferential Moment(MC)
Longitudinal Moment(ML)
Torsional Moment(MT)

GEOMETRIC PARAMETERS WRC 107

Rm1 = (DS+TS+CPT-CA)/2
T1=TV+CPT-CA

ro1=DN/2
GAMMA1=Rm1/T1
BETA1=0.875"r01/Rm1

Rm2 = (DS+TS-CA)/2
T2=TV-CA

ro2=CPD/2
GAMMA2=Rm2/T2
BETA2=0.875"102/Rm2

-9450N

ON

ON
4350000 Nmm
6300000 Nmm
ONmm

297.50 mm
25.00mm
84.15mm
11.90
0.248

290.50mm
11.00mm

145.00 mm
26.41
0.437

Dimensionless loads from WRC 107

Figure

4C N(PHI)/(P/Rm)

2C1 M(PHI)/P

3A N(PHI/(MC/{RmA2*BETA))
1A M(PHI)Y/(MC/(Rm*BETAY})
3B N(PHI)/(ML/(RmA2*BETA))

(PHI - circumferential, x - longitudinal)

Gamma1l Beta1

Gamma2 Beta2

VALUE VALUE

11.90
11.90
11.90
11.90
11.90

0.248
0.248
0.248
0.248
0.248
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26.41
26.41
26.41
26.41
26.41

0.437
0.437
0.437
0.437
0.437

1.923
0.059
0.443

0.09
1.388

2.502
0.012
0.864
0.066
1.519




1B M(PHI)/(ML/(Rm*BETA)) 1190 0248 2641 0437  0.037  0.011
3C N(x)/(P/Rm) 1190 0248 2641 0437 153  1.142
1C1 M(x)/P 1190 0248 2641 0437  0.089  0.026
4A N(x)/(MC/(RmA2*BETA)) 1190 0248 2641 0437 0769  2.645
2A M(x)/(MC/(Rm*BETA)) 1190 0248 2641 0437  0.049  0.028
4B N(x)/(ML/(Rm*2*BETA)) 1190 0248 2641 0437 0439 0816
2B M(x)/(ML/(Rm*BETA)) 11.90 0248 2641 0437 0061  0.017
POINTS C & D
3C N(PHI)/(P/Rm) 1190 0248 2641 0437 153  1.142
1C M(PHI)/P 1190 0248 2641 0437  0.086 0.06
1B1 M(PHI)/(ML/(Rm*BETA)) 1190 0248 2641 0437  0.038  0.012
4C N(x)/(P/Rm) 1190 0248 2641 0437 1923 2502
2C M(x)/P 1190 0248 2641 0437  0.058 0.03
2B1 M(x)/(ML/(Rm*BETA)) 1190 0248 2641 0437 0.061  0.024
STRESS CONCENTRATION FACTORS Kn=1, Kb=1
B STRESS VALUES Mpa - NOZZLE TO PAD JUNCTION

AU AL BU BL cu cL DU DL
CM(DP) 27.5 30.0 275 30.0 27.5 30.0 27.5 30.0
cM(P) 24 2.4 24 24 1.9 1.9 1.9 1.9
CB(P) 54 5.4 5.4 5.4 7.8 7.8 7.8 7.8
CM(MC) 0.0 0.0 0.0 0.0 35 -35 35 35
CB(MC) 0.0 0.0 0.0 00 -51.0 51.0 5.0, -51.0
CM(ML) -16.0 -16.0 16.0 16.0 0.0 0.0 0.0 0.0
CB(ML) -30.4 30.4 304 -30.4 0.0 0.0 0.0 0.0
S(PHI) -11.1 41.5 81.6 12.6| -17.4 71. 91.8 -23.4
LM(DP) 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7
LM(P) 1.9 1.9 1.9 1.9 2.4 2.4 2.4 2.4
LB(P) 8.1 -8.1 8.1 -8.1 53 5.3 5.3 5.3
LM(MC) 0.0 0.0 0.0 0.0 6.1 -6.1 6.1 6.1
LB(MC) 0.0 0.0 0.0 00 -27.8 27.8 278 -27.8
LM(ML) 5.1 5.1 5.1 5.1 0.0 0.0 0.0 0.0
LB(ML) -50.1 50.1 50.1  -50.1 0.0 0.0 0.0 0.0
S(x) -31.4 52.7, 78.9 .37.5 -12.5 32.6 55.3\ -10.8
SHEAR(MT) 0.0 0.0 0.0 0.0) 0.0 0.0 0.0 0.0
SHEAR(VC) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SHEAR(VL) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
t 1 0. 0.0 0. 0.0 0. 0. 0. 0.0
S(1) 11.1 41.5 81.6 12.6 17.4 71.6 91.8 23.4
S(2) 31.4 52.7] 78.9 37.5 12.5 32.6 55.3 10.8
S(1)-S(2) 20.3 11.2 2 50.1 4.9 39.0 36.4 12.6
S(PL + Q) 31. 52.7 816 50.1 17. 71.6  91.8 23.4
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STRESS VALUES Mpa - PAD TO SHELL JUNCTION

AU AL BU BL cu cL DU DL

CM(DP) 63.7 662 637 662 637 662 637 662
CM(P) 7.4 7.4 7.4 7.4 3.4 3.4 3.4 3.4
CB(P) 5.6 5.6 5.6 56 281  -28.1 281  -28.1
CM(MC) 0.0 0.0 0.0 0.0 9.3 9.3 9.3 9.3
CB(MC) 0.0 0.0 0.0 00 -1122] 1122 1122 -1122
CM(ML) -23.6 236] 236 236 0.0 0.0 0.0 0.0
CB(ML) -27.1 27 1 271 274 0.0 0.0 0.0 0.0
S(PHI) 26.0 715 127.4  64.5 -26.3 144.4 216.7 _-61.5
LM(DP) 31.8 318 318 318 318 318 318 318
LM(P) 3.4 3.4 3.4 3.4 7.4 7.4 7.4 7.4
LB(P) 12.2 22 1220 122 144] 1441 14.4)  -14.1
LM(MC) 0.0 0.0 0.0 00 -284) 284 284/ 284
LB(MC) 0.0 0.0 0.0 00 -476| 476 476  -476
LM(ML) 127 127 127) 127 0.0 0.0 0.0 0.0
LB(ML) -41.9 419 419 419 0.0 0.0 0.0 0.0
S(x) -7.1 52.2 101.9  -6.1 -22.7] 44.4 129.3 6.0
SHEAR(MT) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SHEAR(VC) 0.0 0.0 0.0 0.0 0.0 00 0.0 0.0
SHEAR(VL) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

T 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
s(1) 26.0 715 1274 645 263 1444 2167 _ 61.5
5(2) 7.1 52.2 _ 101.9 6.1 227 444 1293 6.0
5(1)-5(2) 33.2 1920 255 706 3.6 1000 874 674
S(PL + Q) 33.2 71.5  127.4 70.6( 26.j 144.4{ 216. 67.4

Figure 3-23 : Codecalc Computation Sheet including Compensation Pad

The initial FEM combined stress intensity for Vessel 1, as shown in figure 3-11, is 467MPa.

After modifying Model A, to include a compensation pad, the following FEM stresses were

achieved :
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Figure 3-24 : Vessel 1 with Compensation Pad subjected to internal pressure alone
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Figure 3-25 : Vessel 1 with Compensation Pad subjected to external nozzle loads alone
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Figure 3-26 : Vessel 1 with Compensation Pad subjected to both internal pressure

and external nozzle loads

The FEM stresses do not coincide with the WRC 107 stresses. WRC 107 calculates the
maximum combined stress intensity to be located at the pad-to-shell junction. However, the
FEM results, according to figure 3-26, indicate that the maximum stress occurs at the pad-to-
nozzle junction. This is due to the high stresses induced by the internal pressure thrust load, see
figure 3-24, and the higher stresses created by the external nozzle loads, figure 3-25. The
combined stress intensity has been reduced from 467MPa to 273MPa. This indicates that

compensation pads are useful in reducing high stresses that exist at the shell-to-nozzle junction.

71



Chapter 4

THEORY OF BUCKLING

4.1 Theory of Stability

Load-carrying structures fail in a variety of ways. A type of failure, which is of concern for the
purposes of this study, is buckling. To illustrate the fundamental concepts of buckling and

stability, we need to study the idealized structure shown in figure 4-1 below :

e~

Figure 4-1 : Buckling of an Idealized Structure. Obtained from Gere and Timoshenko[33]

The structure represents two bars, 4B and BC, each of length L/2. They are joined by a pin
connection at point B and held in a vertical position by a rotational spring with a spring constant
of fr. An axial compressive load P is applied and is vertically aligned along the longitudinal
axis of the bars. Initially the spring is unstressed and the bars are in direct compression.
Suppose the structure is disturbed by some external force that causes point B to deflect a small
distance laterally. The two bars rotate through small angles & about points 4 and C,
respectively. A restoring moment develops in the spring, which tends to return the bars to their
original straight positions. At the same time the axial force acts to increase the lateral
deflection, thereby acting opposite to the moment. If the axial force P is relatively small, the
restoring moment is the more dominant force and will return the structure to its original

position. Under these conditions the structure is said to be stable. However, if the axial force P
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is greater than the restoring moment, point B will continue to deflect and the bars will rotate
through larger and larger angles until the structure will eventually collapse. This failure is

referred to as buckling and the structure is deemed unstable.

The restoring moment Mj is equal to the rotation stiffness fg times the angle of rotation 26 of
the spring:
M, =2p,0 4.1)

The lateral displacement of point B is GL/2. We thus obtain the following equation of
equilibrium:

M, - P[%’ij =0 (4.2)

Substituting equation 4.1 into 4.2 gives:

23,6 - P(%L] =0 (4.3)

To ensure that the structure is stable, we obtain a critical load (for axial load P) from the above
equation:

PCI' = 4ﬂR
L

(4.4)

The following conditions are developed:

e If P < P, the structure is stable (no buckling).

e If P> P, the structure is unstable (buckling occurs).

When the axial load is less that the critical load (0 < P < P,), the structure is in equilibrium
when it is perfectly straight (6 =0). If a disturbance occurs, the structure will return to its
original position and the equilibrium is deemed stable. When P > P, , the structure is still in
equilibrium when #=0 (no moment in spring, structure in direct compression), but the
equilibrium cannot be maintained and is deemed unstable. The slightest disturbance will cause
the structure to buckle. When the axial load equals the critical load, the structure is still in
equilibrium for any value of 6 The structure is neither stable nor unstable. This condition is
referred to as neutral equilibrium. The equilibrium conditions are shown in figure 4-2 below,

representing the graph of axial load P against the angle of rotation 6.
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<—Unstable equilibrium
B /Neutral equilibrium

< Stable equilibrium

0] 0

Figure 4-2 : Equilibrium diagram for idealized structure. Reproduced from Gere and

Timoshenko[33]

The two heavy lines, one vertical and one horizontal, represent the equilibrium conditions.
Point B is called the bifurcation point (see Fung and Sechler[12]). The neutral condition extends
to the left and right of the vertical axis because the angle € may be clockwise or
counterclockwise. The angle is assumed small, therefore, the line extends a short distance. This
assumption is valid since 6 is small when the structure first departs from its vertical position
and buckling begins. Thin-walled shells[8] are subjected to compressive forces in extensive
areas. The question arises as to whether the equilibrium of such shells is stable. A shell
carrying a certain load or basic load produces basic stresses and basic displacements. The
equilibrium is disturbed by imposing a small additional deformation, by some external force.
The equilibrium is stable if the external force is removed and the disturbance (a system of
additional stresses and displacements occurring spontaneously) vanishes. When the basic load
is increased, a less external force is needed to produce the same disturbance until a certain
disturbance becomes possible without any external force. The equilibrium and this point is
deemed neutral. The smallest value which the basic load must assume to reach neutral
equilibrium is the critical load or buckling load. When the critical or buckling load is exceeded,
the equilibrium becomes unstable and any disturbance can cause the shell to buckle or, perhaps,
eventually collapse. To find the critical load we formulate the differential equations for the
disturbed equilibrium without an external disturbing load. These equations also include new
terms for the additional stresses caused by the disturbing load. Since the disturbance is assumed
to be very small, these new terms must be of the same order of magnitude. These terms indicate
that the basic load is now acting on a slightly deformed element. Since the conditions of
equilibrium are satisfied, and Hooke’s Law expresses stresses in terms of displacements, we

obtain homogenous linear differential equations for the displacements u, v and w (shell theory).
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4.2 Buckling of Shells

4.2.1 Differential Equations of Equilibrium

Deformation of a cylindrical shell is defined by the displacements u, v and w.  This is illustrated

in figure 4-3 below :

u
>
X
v v
v VL
y y

Figure 4-3 : Cylindrical Shell showing displacements. Reproduced from Timoshenko|1]

The figure above shows that the displacements in the x, y and z directions are denoted by u, v
and w respectively. Differential equations for these displacements are needed to examine the
behaviour of cylindrical shells under the combined loading of radial and axial external
pressures. By considering the equilibrium of an element of a cylindrical shell, figure 4-4, it is
possible to determine relationships between edge moments, shear forces and edge forces.

Figure 4-4 is shown below :
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Figure 4-4 : Element of Cylindrical Shell. Obtained from Bulson and Allen[17]

Before deformation, the axes X, y and z are tangent to the element in the longitudinal direction,
tangent to the element in the circumferential direction and normal to the middle surface of the
shell respectively. After deformation, which is assumed to be very small, these directions are
altered slightly. The z axis is now normal to the deformed middle surface of the shell, the x axis
is tangent to the deformed element in the longitudinal direction and the y axis is perpendicular
to the xz plane. The directions of the resultant forces will also be changed slightly and these

changes must be considered in writing the equations of equilibrium of the element OABC.

Firstly, the angular displacements of sides BC and 4B with respect to sides O4 and OC of the
element has to be established. The rotation of side BC with respect to side O4 can be resolved
into three components with respect to the x, y and z axes. Rotation of the sides 04 and BC with
respect to the x axis is due to displacements v and w. Since the displacement v represents the

motion of the sides O4 and BC in the circumferential directions (see figure 4-4) and r is the

76



radius of the middle surface of the cylinder, the corresponding rotation of the side OA4, with

respect to the x axis, is v/ and that of the side BC is ;

l[v . @de (4.5)

Ox

Thus, owing to displacement v, the relative angular motion of BC with respect to 04 about the x

axisis:
——dx (4.6)

Owing to displacement w, the side O4 rotates with respect to the x axis by the angle ow/(rod),
and the side BC by the angle :

ow 0 ow
_— 4.7
¥08 Ox rol
Thus, because of displacement w, the relative angular displacement is :
0 ow 48)
——dx )
ox 100

Combining equations 4.6 and 4.8, the relative angular displacement of the side BC with respect

to the side O4 about the x axis is :

1{ ov . 0w 4 49
il i » .
il ox 0x00 (4.9)

The rotation of side BC with respect to side OA4 about the y axis is due to bending of the axial

(longitudinal) plane and is equal to (sign convention is determined using the right-hand rule) :

0*w

ox?

dx (4.10)
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The rotation of side BC with respect to side OA about the z axis is due to bending of the

tangential (circumferential) plane and is equal to :

d°v
—dx 4.11)
ox’

The last three expressions, equations 4.9 — 4.11, give the three components of rotation of side

BC with respect to side OA.

The corresponding formulas for the angular displacement of the side AB with respect to OC has
to be established. Due to the curvature of the cylindrical shell, the initial angle between the
axial sides of element OABC is d6. However, because of displacements v and w, this angle will

change. The rotation of the axial side OC with respect to the x axis can be expressed as :

v ow
MRS (4.12)
r o rof
The corresponding rotation of axial side AB being :
A 0 d
_+_u_[z+l a6 @.13)
r ro8 06\r rof
The initial angle is changed to :
2
d6+do % O (4.14)
ro6 rod

To calculate the angle of rotation of side AB with respect to side OC about the y axis, one needs
to determine the expression for twist. It is observed that after deformation the element rotates
about the y axis through an angle of — 0w/ 0x and with respect to the z axis through an angle of
ov/0Ox . If one considers an element a distance rd@ from the first one, it is observed that its

rotation about the y axis, corresponding to displacement w, is :

ow  O'w
_W_9W g
ox  000x (4.15)
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Rotation of the same element in the plane tangent to the shell s

v, oloviax) (4.16)
ox 00

The latter rotation has a component with respect to the y axis and is equal to :

_@dg (4.17)

Ox

Therefore, the angular displacement of side 4B with side OC about the y axis is given using

equations 4.15 and 4.17, and is equal to :

2
[0 9 g (4.18)
0680x Ox

Rotation of side 4B with respect to OC about the z axis is due to displacements v and w. Owing
to displacement v, the angle of rotation of side OC is 0v/0Ox and that of side AB is given by

equation 4.16. The relative angular displacement is :

2
6vd9

4.19
000x (419

Due to displacement w, the side 4B rotates in the axial plane by the angle ow/dx. The

component of this rotation with respect to the z axis is :

ow
—-——db (4.20)
ox

Combining equations 4.19 and 4.20, the relative angular displacement about the z axis of the

side AB with respect to the side OC is obtained.

o'v  ow
- e
[aeax 8x] (+.21)
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Having the formulas for the angles, the three equations of equilibrium of element OABC can be
obtained. This is achieved by projecting all the forces onto the x, y and z axes. The x

component of those forces parallel to the resultant forces N, and N, are :

aN—" dxrd®

Ox

(4.22)

ON,
- dOdx
a0

Due to the angle of rotation, equation 4.21, the forces parallel to N, give a component in the x

direction :

2
VN R PPN (4.23)
"\ 00ox  Ox

Due to the rotation given in equation 4.11, the forces parallel to the resultant forces N, have a x

component of :

0%y

- N, —dxrdd (4.24)

Finally, due to the expressions of the angles given in equations 4.10 and 4.18, the forces paralilel

to O, and Q, gives x components of :

otw
000x

0w
e 0

v 2
X

dxrd@ —Q‘,[ +%‘1Jd0dx (4.25)
' x

The expressions for the projections in the x direction, calculated above, are combined, as well as
expressions for the y and z directions. For radial pressure a normal pressure intensity of g is
used with zero projections on the x and y axes. After simplification, the three differential

equations of equilibrium for displacements u, v and w are, repectively :
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aN 2 2 ~ 2 ~2 a
. ON GRS 0 W—I‘N_\.‘.a—:—QY A 0w N, oy _’\_w 0
Ox o6 * ox? " Ox "\ Ox oOx06 L ox08  oOx

ON, ON, 0%y v 0'w
—t+r——+rN, — -0, —+ +
Ox 0x00

00 Ox " ox’

2 N (4.26)
Y AR (VO POP-AA:Aa
T\ 0x00  Ox ' ro6d  rod

a . 2 2 2 2
ran +&+Nx, @+ Ow +rN, g ZV+N), l+ﬂ+aimz +N, @+ ow +qr=0
ox 06 \ox  ox06 Ox ro8 rof Ox 0x00

The above equations relate edge forces to shear forces. Similarly we can obtain equilibrium
equations that relate edge moments to shear forces. We obtain three equations of moments with
respect to the x, y and z axes (figure 4-4). Again, we take into consideration the small angular
displacements of the sides BC and AB with respect to OA4 and OC respectively. The three

equilibrium equations are :

OM_. oM. 2 2
v ¥ _er 5 ;}_ ; (3 A% . aW rQ _
Ox 06 "0 "l ox08  ox :
oM, 9 0% o' ow
—+r ~+rM SRR =
00 x| 7or y[axae or ) TG =0 (27

ov 9w 0*w ov 0w ov 0w
M. | —+ +rM ., +M 1+ —+ -M | — - - =
[ax axaﬁ] - axz > [ ro@ r692 7\ ox + Ox06 +’(Nx)= Nyx) 0
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Substituting Q, and Q, from equation 4.27 into equation 4.26, three equations containing the
resultant forces N,, N, and V,, and the moments M,, M, and M,, are obtained. Using equation
2.42 we can express all these quantities in terms of three strain components &, £->and y, of the

middle surface and the three curvature changes ., % and y,,, as:

o
boox
ov  w
E)=————
rod r
o= Ou +@ 498
00 ox (4.28)
82
s = ox?

(o, o
Ay o0 06?

1{ov  o*w
Ao ="| 5+
orlox Ox08

Equations 4.26 and 4.27 represent the differential equations of equilibrium for the three

displacements u, v and w.

82



4.2.2  Cylindrical Shells under External Axial and Radial Pressure

Using the differential equations of equilibrium, the critical buckling strength of a cylindrical
shell can be determined under the combined loading of external axial and radial pressure.
Initially, shells subjected to external axial pressure will be considered. For shells under external
axial pressure we assume that all resultant forces, except N,, are very small. The products of
these forces with the derivatives of the displacements u, v and w, which are also small, are

neglected. Thus, equations 4.26 become :

ON, ON,
~+—=0
ox 06
ON oN . N 2y 0
S yp——+ N ——-0 = 4.
00 ox o’ O, (4.29)
a 2
aQ‘+—Q—y+rN 0w N, =0

For equations 4.27, we neglect the products of moment and derivatives of the displacements u, v

and w. The equations become :

oM, oM,

O =—+—

’ ox ro6
(4.30)

o oM, oM,

Y00 ox

Substituting equations 4.30 into equations 4.29 the three equations of equilibrium for buckling

of an axially compressed cylindrical shell becomes :
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I < S
Ox oo
oN, oN o'v oM oM,
—+r——+rN, —+——-—-=0 (4.31)

o6 ox Ox Ox rod

2 o’M_ O°M, O'M, O'M,
rNraZV+N\,+r -+ — + — - —=0

T Ox ' Ox oxo0 rod ox00

The resultant forces and moments are expressed using equations 2.42. Substituting equations

4.28 into 2.42 produces :

ET ( ou ov w
N, = = =tV ————
l—-v\ ox ro8d r

ET (6\) w] Ou
N, = S = |tv—
S rod r Oox

ET ou Ov
N, = — 4+ —|=N, 432
. 2(l+v){r86’ axj (432)

v - ET O'w , v v 0w
on(-vi e s lee 06

ET® 1 {ov 9*w) wiw
M, =- B G Jwow
’ 12il—vzi r2l 80  06? Ox?

ET? 1{ov o°w
M. =- 1—v)~| & __
? 1201 — 2 ( V)r[6x+8x86’j M'V"
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and substituting equations 4.32 into 4.3 1, finally produces :

(4.33)

0

8221+1+v v _K@_W l—v 0'u _
ox’ 2r ox00 r Ox 2 o6’
l+v 0u  r(l-v)d*v d'v  ow
+ o+ ——
2 ox08 2 ox° rob oo
2 [y Ow w0 N(i-v?) oy
+ + ¥ il — — =
12r2 | r06* 10’ ox’o0 ox’ ET ox*
N o v w
ET ox? ox ro0 r
Tt | o'y o'v , 0w 0'w *w
- e e
12r° | OO ox 06 Ox o0

2r =0
axzaez}

Equations 4.33 represent the differential equations of equilibrium for a cylindrical shell

compressed under axial pressure.

One also needs to consider a cylindrical shell compressed

laterally under radial pressure. For this condition, the differential equations of equilibrium are

determined and the following assumptions are made. Firstly, all resultant forces, except N,, are

small, and the products of these with the derivatives of displacements #, v and w can be

neglected. All bending and twisting moments are small, and the products of these with the

derivatives of displacements can be neglected as well. Substituting the above conditions into

equations 4.26 and 4.27 produces :
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—+r——-0,=0 (4.34)

oM, oM,
Qx = '
Ox o6

(4.35)
oM , oM ,,
Y00 Ox

Substituting equations 4.35 into 4.34, produces :

X

Ox 00

r

ON, 2
ON, . _,X_N{Ov aw}zo

0x00  0Ox

oN, ON, oM, oM
L — -y L =0 (4.36)
06 Ox rof Ox

+ + + +—t
ox06 Ox? r00°* Ox00

aZM,V.\’ razM,\' aZM.)' azM-\’_)' N 1 av azw
g rd0 1o’

]+qr:O

Due to the action of uniform external radial pressure, the following assumption is made. The
circular cylindrical shell remains circular and only undergoes compression in the

circumferential direction, so that N,, M, M,, M,, = 0 and

N,=—qr+N, (4.37)

3
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N, is a small change in the resultant force —gr. With the stretching of the middle surface of the
shell during buckling, N,(/+¢)) and g(/+¢)) (1+¢,) are used for N, and ¢ respectively in the

: . . : . Ou o w
second and third equations of equations 4.36. Since, & =— and &, =————, and

Ox 1ol r

substituting equation 4.37 into equations 4.36, produces :

ON, ON, o'v  Ow
F—= 4+ — 4 gr -
Ox o6 ox00  0Ox

ON, ON, oM. & oM.

r e T (e 43
00 | ax 100 | ox (438)

OM, oM, OM, M, W),
+ ~ + N, —g| w+ =
w00 o 000 oo 0 U 5

Substituting equations 4.32 into equations 4.38, produces :

2
r28?+1+v razv_wa_w+qr2(l—v2) 0%v _ow +l—v o’u
Ox 2 ox00 Ox ET 0x06  Ox 2 06°

1+v r0*u N ri(1-v) 82v+ o'v  ow
2 o0 2 o’ 00 06

T? [azv 3w, w azv} (4.39)
1% :O

+ + +
12/ 007 00° ' axioe

au a T2 63 3 4 4 4
Py 2y - —‘;+(2—V)r2 o +r4aw+aw+2r2—aw
ox 06 12r°| 060 ox’06 ot 00" ox’06*
qr(l—v2 o’w
= W+
ET 06’
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The differential equations of equilibrium for a cylindrical shell compressed both axially and

laterally under uniform external pressure can be determined. Using the notations :

qr{] —v2>:¢l

ET

N, (] —vz)

ET =-@, (4.40)

T2

~a
1242

equations 4.33 and 4.39 are combined to obtain the following three equations :

rzazu I +v 1oy ow [azv aw] 1—v 8%

+ -wr—r+r -—— |+ —
oxt 2 oxoo Ox g ox00  Ox 2 06?

L+v ro*u . ri(1-v) oty N v ow
2 oxo0 2 o’ 06° 06

I ; 2 . (4:41)
+0{ v+6w+r2 Ow rz(l—v)ﬂ}—rzq%ﬂzo

> +
06° 06’ ox’00
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;
o w

2

The edges are assumed to be simply supported w = 0 and 0. The general solutions of

ox
the displacement u, v and w for a cylindrical shell compressed both axially and laterally are

represented below ( r — radius of shell, / — length of shell) :

. mx
u = Asin n&cosT
V= Bcosn&sin@ (4.42)

. . mux
W= Csmn@smT

The above equations indicate that during buckling the shell buckles into m half-waves in the
longitudinal direction and 2n half-waves in the circumferential direction. Substituting equations
4.42 into 4.41, three homogeneous linear equations are obtained for 4, B and C. The equation
for calculating the critical buckling pressure is determined by equating the determinant of these

equations to zero. After simplification, the equation derived from equating the determinant to

zero is :

C, +Ca=C¢ +C,0, (4.43)

where

(l—vz)/{“

= (2 ) 2t 43407 + (4 - v)int +116]+ 202 -v)A*n? +n’

O 0O
Il

; nz(/12 +n2)2 —(3/12)12 +n4)

a A

= A )

and

A= (4.44)
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The buckling condition contains four unknowns i.e. The dimensionless loads ¢, and ¢ and the

modal parameters n and A. It is known that 7 must be an integer (0,1,2,...) and A must be an

integer multiple (1,2,3,...) of ~— . Equation 4.43 represents a linear relationship between
[

quantities ¢, and ¢. If one keeps nm constant and give to n the values 2, 3, 4,..., a system of

straight lines is obtained as shown in figure 4-5 below.

unstable

> ¢l

Figure 4-5 : Stable and Unstable regions in the ¢; and ¢, plane. Reproduced from Flugge
8]

The origin ¢, = ¢, = 0 represents the unloaded shell. When a load is applied, the path shown in
figure 4-5 by the dotted line is followed. The cylindrical shell is in stable equilibrium if it does
not meet any of the curves. When one curve is reached the equilibrium becomes neutral. The
region enclosed by the envelope of the curves is stable, however the region outside the envelope
is regarded unstable. Taking the points of intersection of these curves with the horizontal axis
(¢, = 0) we obtain the critical values of ¢, when lateral pressure acts alone. In the case of
lateral pressure acting alone, the buckled shape has only one half-wave length in the axial
direction m = 1, and the critical pressure increases as A increases and the length of the shell
decreases. Taking the points of intersection of the same curves with the vertical axis (¢, = 0)
we obtain the critical values of ¢, when axial pressure acts alone. For any given value of the
ratio ¢, /¢, one draws through the origin a straight line with slope ¢, /¢. The points of
intersection of this line with the polygons generated by the curves determine the corresponding
critical values of ¢, and ¢, It is observed that axial pressure causes the critical value of the

lateral pressure to decrease and lateral pressure causes the critical value of the axial pressure to
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decrease. The most common case is that of a cylindrical shell with closed ends under uniform
external pressure. This case indicates that ¢, = 5¢‘ . Assuming that the shell is thin and in

keeping only the principal terms of equation 4.43, the critical buckling pressure for a cylindrical

shell under external axial and radial pressure, is obtained :

ET 1

q, = ! + 2T2 2{n2+[zjz} (4.45)
r n2+'7(7”71/)2 [nz(%_r)anl]z 12r (l—v) !

The above equation was derived by R von Mises in 1929[2].
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4.3 Finite Element Buckling Analysis

In a linear static analysis a structure is assumed to be in a state of stable equilibrium. When the
load is removed the structure returns to its original undeformed position. However, buckling
occurs due to the structure continuing to deform without any increase in the applied loading.
The structure has become unstable. Various FEM packages or MSC PATRAN have developed
elastic or linear buckling analysis, to determine the buckling load for a particular structure. The
analysis assumes that there is no yielding of the structure and the direction of the applied

loading does not change.

The elastic buckling analysis creates a differential stiffness, in addition to the system stiffness
matrix, and includes the higher-order strain displacement relationships that are functions of the
geometry, element type and applied loads. The differential stiffness represents a linear
approximation of reducing the stiffness matrix for a compressive load and increasing the

stiffness matrix for a tensile load.

In a buckling analysis eigenvalues (see Walker[37] and Dahlgren[41]) are solved. These
eigenvalues represent scale factors that are multiplied to the applied load to produce the critical
buckling load. In general, the lowest buckling load is of interest, since the structure will fail
before reaching any higher-order buckling loads. Therefore only the smallest eigenvalue needs
to be calculated. The buckling equation used by MSC PATRAN is (Equation 4.46 was also
derived by energy methods) :

K+A4,K,|=0 (4.46)

K is the system stiffness matrix, K, is the differential stiffness matrix, generated automatically

by MSC PATRAN, and 4, are the eigenvalues to be computed. Once the eigenvalues are found,
the buckling load is solved for

CF i

F,=AF, (4.47)

where F., is the critical buckling load and F, is the applied load.
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4.3.1 Stability and Energy Methods

The stability of a structure can be determined with the aid of energy methods. Consider the

three cases of equilibrium of the ball shown in figure 4-5 below :

@,

() (b) (c)

Figure 4-6 : Ball in stable, unstable and neutral equilibrium. Obtained from Timoshenko

[1]

In figure 4-5(a) the surface is a concave spherical surface or shaped like a dish. The equilibrium
is stable since the ball will always return to its position of equilibrium or low point when
disturbed. In figure 4-5(b) the surface is a convex spherical surface or shaped like a dome. The
equilibrium is unstable because if the ball is disturbed, it will roll away and not return to its
position of equilibrium. In figure 4-5(c) the surface is perfectly flat, therefore, the ball is in
neutral equilibrium and remains wherever it is placed. The type of equilibrium can be
ascertained by considering the energy of the system. In the first case, figure 4-5(a), any
displacement of the ball from its position of equilibrium will raise its center of gravity.
Therefore, the potential energy of the system is increased. In the second case, figure 4-5(b),
any displacement of the ball from its position of equilibrium will lower its center of gravity and
the potential energy of the system will decrease. The third case, figure 4-5(c), there is no
change in the ball’s center of gravity, therefore, the potential energy of the system remains
unchanged. It can be concluded that for stable equilibrium the potential energy of the system is
a minimum (concave) and for unstable equilibrium the potential energy of the system is a
maximum (convex). To obtain stable equilibrium, the potential energy of the system must be

minimized with respect to the system’s deflection :

o

——=0 4,
25 (4.48)
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4.3.2 Finite Element Method

Consider the individual element of an isotropic plate shown in figure 2-12. It has been

discussed that the total strain energy for the element[17] is

AU, = %{M L [k). {51, (4.49)

This can be derived from equations 2.53 and 2.73. For the entire plate the above equation

becomes :
AU =—{as} [K 5} (4.50)

The element is now loaded with an external compressive stress o. The compressive stress can
be divided into stresses in the axial (longitudinal), o;, and radial (circumferential), o;,
directions. Using similar methods for calculating the total strain energy for the plate[17]

element, the work done by the compressive stress is given by :
1 :
AW = E{A&}’ (&, )5} (4.51)

K¢ is referred to as the geometric stiffness matrix. It is so called because the terms

representative of instability effects are geometric in nature. The total potential energy of the

plate is :

Al =—{as) | [k ]+ [k ] Jio) (4.52)
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The above equation can be rewritten as :

ALk lx )T} 453
and using equation 4.48 one obtains :

— =[[x]+[K; ] is}=0 (4.54)

The objective is to determine the critical buckling load, /. . K¢ contains the terms related to the

applied compressive load, therefore the above equation can be written as

{[K]-FFCI_ {i{dﬂ{é} =0 (4.55)

Substituting equation 4.47, produces :

{[K]Jr/liF{kdﬂ{cS}

[[&]+4,[x, ] o3

0 (4.56)

!

0 (4.57)

Since the deflections are not equal to zero, the above equation has a nontrivial solution. This is

in the form of an eigenvalue problem, therefore, the eigenvalues are determined by finding the
determinant of [ [K]+ A [Kd] ] and equating it to zero (equation 4.46). The lowest

eigenvalue is determined to produce the lowest critical buckling load using equation 4.47. Any
applied load, greater than the critical buckling load, makes the plate or shell structure unstable.

Therefore, failure due to buckling occurs.
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Chapter 5

VESSELS UNDER EXTERNAL PRESSURE AND PIPING LOADS

5.1 Design of Pressure Vessels Under External Pressure

5.1.1 Literature Survey

For thin-walled vessels, buckling (see Ross[26]) over an extensive region must be considered.
Presently, pressure vessels are designed to withstand failure due to buckling by determining a
critical load. Pressure vessels with loads greater than that of the critical value will give rise to
much larger and permanent deformations. As a result, buckling is said to occur and complete

collapse of the vessel will result.

For vacuum operations, buckling or elastic instability occurs due to the imposition of an
external force or pressure. A cylindrical vessel subjected to external pressure alone has a
circumferential compressive stress equal to twice the longitudinal compressive stress. This
larger circumferential compressive stress results in the vessel collapsing due buckling or elastic

instability.

Long, thin cylinders will buckle at stresses below the yield point of the material being used.
This can be best understood by a comparison with a rod. A rod in tension can carry a load even
after the yield point of the material is reached, while a rod in compression might bend and not
be able to carry an increased load at stresses below the yield point. This implies that a long thin

vessel will collapse at very low stresses under external pressure.

The degree of stability of a vessel under external pressure depends on its length, thickness and

diameter. Therefore, pressure vessels can be divided into three categories:

e Short Vessels : The vessel collapses near the yield point of the material. The

influence of length on the vessel is negligible.
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e Vessels of Intermediate Length : The vessel collapses by unstable buckling. The
collapsing pressure depends on the /D ratio and L/D ratio; t — thickness, D —

diameter, L — length.

e Long Vessels : The shell collapses by unstable buckling. The collapsing pressure
depends principally on the /D ratio.

For this study, vessels with intermediate length will be used where the collapsing pressure

depends all three factors : thickness, diameter and length.

Several formulas have been developed for the computation of the buckling pressure of vessels
under external pressure. The first and most accurate formulas were derived by R von Mises in
1929 (formula 4.45) . His formula for the buckling pressure of a vessel subjected to external

axial and radial pressure, related to the vessel’s outer diameter, 1s shown below :

The values of n, the number of circumferential waves or lobes (figure5-1), which makes this

expression a minimum, is taken from figure 5-2.

n waves

Figure 5-1 : Buckled Cylinder. Obtained from Bulson and Allen|[17]
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Figure 5-2 : Chart for number of lobes #n. Obtained from Timoshenko|[1]

For long vessels equation 5.1 is reduced to :

3
2F T
P, = 5 (n2 —1{1)—] (5.2)

Southwell[2] later developed the following equation for vessels under radial pressure alone :

1 2B (T 2E£
— 142 _ 0
PC,-—3(n 1)1_‘/2[1)0} +(nz_1)n4 m : (5.3)
7D,

Using the above equation, he later developed an approximate formula, independent of 7 :
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572
[l]
D
PC,.=8£”- EM- - (5.4)
27 (1-%)‘ L/D,

The buckling pressures were restricted for vessels of L < L. The critical length of a vessel is
the minimum length beyond which the resistance of the vessel to collapse, due to external

pressure, is independent of the length. Southwell derived the following formula :

46 T

% \isvop, | (5.5)
27 D

4

L =

cr

Taking v = 0.3, for carbon steel, the above equation reduces to :

L, =1.1D, /i (5.6)
DO

Southwell’s formula is differentiable. Thus an equation for n could be developed. The value
for n to be used in the formulas is the integral value which makes the buckling pressure a

minimum. An approximate value could be obtained from the following :

%ﬂz(l—vz)”z

4

= 5
" (Z/D,)(1/D,) 67
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In 1934, at the U.S. Experimental Model Basin, Windenburg and Trilling[9] derived an
approximate formula to equation 5.1, independent of n, to determine the critical buckling

pressure for a vessel under external axial and radial pressure :

5/2
T
2.42F D,

P, = (5.8)

cr (1_\/2)3/4 L 045 T 1/2
D,  \D,

]

Taking v = 0.3, for carbon steel, and ignoring the second term in the denominator since it has no

discernible effect, one obtains ;

(5.9)

The above equation’s results deviates about one percent from equation 5.1. On account of this
formula’s simplicity it is recommended for the design of vessels shorter than the critical length.

The ASME Code incorporated this formula to create their procedures for the design of pressure

vessels for external pressure.
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ASME DESIGN CRITERIA
Long Cylinders
If the length of the vessels is greater than the critical length then the collapsing pressure is given

by equation 5.2. The critical length is determined by equation 5.6. The buckling mode n = 2,

makes equation 5.2 a minimum. Therefore, substituting n» = 2 into equation 5.2 gives :

3
P, = 2E2 [ij (5.10)

Short Cylinders

In these vessels failure is by plastic yielding at the yield strength of the material. The influence

of the length of the vessel is negligible. The critical pressure is given by the following :

P, =—7" (5.10)

Intermediate Length Vessels

The collapsing pressure for vessels, whose lengths are less than the critical length, is given by

Windenburg and Trilling’s equation 5.9.
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For the design of pressure vessels under external pressure the ASME VIII Code developed the
Geometric Chart and the Material Chart. The geometric chart values for strain were developed

using the following strain equation :

£=—u (5.12)

P.D . . . . :
where o, = ‘;—T" (hoop stress equation). For long cylinders equation 5.10 is used to obtain :

2
g=Tu =1.1[i] (5.13)

For intermediate length cylinders one uses equation 5.9 and obtain :

E=—%= 27 (5.14)

The strain produced is represented in the Geometric Chart by the factor 4. The Geometric

Chart is represented by figure 5-3 below :
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Figure 5-3 : Geometric Chart for Cylindrical Vessels unaer External Pressure. Obtained

from Harvey[20]
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The Material Chart is used to determine the external allowable pressure, and is basically made

up of stress-strain curves for the material at various design temperatures. Factor A mentioned

above is plotted against factor B :

o
B=—=
2
The Material Chart is shown in figure 5-4 below :
Pl
wp w JOO0F
ZdBt
= I PY-Y
['A - /KI'JFI
A ey
|1 [ 4 “/./P_,v’
1 // | o] L
1 | 1
d |
y
/
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Figure 5-4 : Material Chart for Cylindrical Vessels under External Pressure. Obtained

from Harvey[20]

The procedure used by the ASME Code is as follows :

e Determine the L/D, and 77D, ratios.

e Using these ratios use the Geometric Chart to determine factor A4.

temperature.
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The ASME Code uses a safety factor of 3 for the allowable external pressure, therefore :

p P _20,T _ 4B 5.16)
3 3D, 3D,/T

For a perfect circular, cylindrical vessel the collapsing pressure can be determined with the
above equation. For vacuum conditions the external pressure is mainly atmospheric
pressure[26]. If the applied or atmospheric pressure is less than the above allowable pressure,
the vessel is safe under buckling. If the applied pressure is greater than the allowable pressure,
the vessel will collapse under buckling. The thickness of the vessel can then be increased to
raise the allowable pressure, thereby ensuring that the applied load is lower and the vessel will

not buckle under external pressure.
5.1.2  Numerical Results

For this study, typical medium and large diameter vessels have been chosen. The vessels

subjected to external atmospheric pressure are shown below

Vessel Outer | Thickness | Corrosion ﬁLength External
Diameter (mm) Allowance (mm) Pressure
(mm) (mm) (MPa)

i 2800 8 - 2000 0.1
2 2800 10 - 2000 0.1
3 2800 12 - 2000 0.1
4 2800 14 - 2000 0.1
5 2800 16 - 2000 0.1
6 2800 20 - 2000 0.1
7 1200 8 - 2000 0.1
8 1200 10 - 2000 0.1
9 1200 12 - 2000 0.1
10 1200 14 - 2000 0.1
11 1200 16 - 2000 0.1
12 1200 20 - 2000 0.1

Table 5-1 : Vessels under External Pressure
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Theoretical buckling pressures are calculated using the equations given above. The ASME
Code procedures for designing pressure vessels under external pressure, are also programmed
into the CodeCalc software. The CodeCalc format for the results can be found in Appendix C.
The FEM model, Model B, for analyzing the above vessels under external pressure, is shown

below

Isometric View

Figure 5-5 : FEM Model B

Shell elements or 4-noded quadrilateral elements were used to mesh the model. MSC PATRAN
has a node limit of 6000 nodes, therefore, vessels using Model B were meshed[2] as close to
6000 nodes as possible to generate an appropriate fine mesh. The material of the shell is SA

516 Grade 70 (carbon steel). An elastic modulus of 200GPa and a poisson’s ratio of 0.3 were

used.
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Theoretical critical buckling pressures and FEM values were generated.

below
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Figure 5-6 : Comparison of ASME and FEM Critical Buckling Pressures
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Figure 5-10 : Comparison of R Von Mises and FEM Critical Buckling Pressures
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The results indicate that the FEM and Von Mises critical buckling pressures coincide the best.
The ASME critical buckling pressures differ due the safety factor of 80% that exists in the
material chart, which is needed to determine the factor B. To verify Model B, analyses to
determine the theoretical and FEM number of lobes of buckling » were made. The following

results were obtained :
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Vessel n (Figure 5-2) n (equation 5.7) | n FEM
1 8 8 9
2 8 8 8
3 8 8 8
4 7 7 8
5 7 7 7
6 7 7 7
7 4 4 5
8 4 4 5
9 4 4 4
10 4 4 4
11 4 4 4
12 4 4 4

Table 5-2 : Comparison between Theoretical and FEM lobes of buckling »

Top View

Figure 5-15 : FEM Buckling pattern for Vessel 7

The number of lobes of buckling n coincides with the theoretical values, thereby verifying

Model B. The FEM results can be found in Appendix C.
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5.2 Design of Pressure Vessels under External Pressure and Piping Loads

The shell-to-nozzle region is a localized area and nozzle loads are regarded as local loads being
applied to this region. Therefore, the combination of external pressure and nozzle loads will
result in local buckling (see [20], [38] and [39]) occurring at the shell-to-nozzle junction. This

can be illustrated in the figure below

external pressure + nozzle loads

external pressure external pressure

Ocr Ocr

Omax

Figure 5-16 : Local Stresses exceeding Critical Buckling Stress. Reproduced from

Harvey|20]

[t has been discussed that, to prevent buckling from occurring, stresses should be less than the
critical buckling stress o... However, at the shell-to-nozzle junction, nozzle loads create local
stresses that can exceed the critical buckling stress, as shown in figure 5-16 above. Since the
critical buckling stress is exceeded, local buckling will occur. Nozzle loads also cause
deviations or deformations[9] to occur around this highly stressed region. At the shell-to-nozzle
junction the cross-section of the shell is not circular. With the added deviations it can be
assumed that this will have the same effect on the stability of a vessel as does a vessel with
geometric imperfections. The collapse pressure of cylindrical vessels subjected to external
pressure is dependent on the final fabricated shape. Imperfections or out-of-roundness in
cylindrical vessels reduce the ability of these vessels to withstand buckling (see [4], [5], [6],
[10], [28] and [40]) i.e. out-of-roundness (deflections caused by nozzle loads) at the shell-to-
nozzle junction, reduces the buckling strength of the vessel. With the inclusion of geometric

imperfections, figure 5-16 resembles figure 5-17 below.
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external pressure + nozzle loads

external pressure ! external pressure

Figure 5-17 : Local Stresses exceeding reduced Critical Buckling Stress

Stresses at the shell-to-nozzle junction, shown in figure 5-17 above, are much greater than the
reduced buckling strength ., thus rendering the vessel more unstable. For the design of
pressure vessels under the combined loading of external pressure and nozzle loads, the reduced
critical buckling stress, at the shell-to-nozzle junction, needs to be calculated. Local stresses at
this region should be within the reduced critical buckling stress to prevent failure of the vessel

due to buckling.
5.2.1 Vessels with Geometric Imperfections

It has been discussed that the collapse pressure of cylindrical vessels subjected to external
pressure is dependent on the final fabricated shape. Imperfections or out-of-roundness in
cylindrical vessels reduce the strength of these vessels to withstand buckling. The out-of-
roundness results in increased stress concentrations. This means that the stresses in the vessel
are much greater than the allowable stress for the vessel to withstand buckling. Out-of-
roundness after fabrication represents vessels of elliptical shape, dented vessels or vessels with
flat spots. Since nozzle loads cause deviations in the shell and stress concentrations at the shell-

to-nozzle junction, a relationship between out-of-roundness and nozzle loads was developed.
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M Holt[3] developed the following equation for the buckling pressure of a vessel with an initial

out-of-roundness :

P = o (5.17)

The above equation calculates the critical buckling pressure for a vessel in its buckled state.
Holt’s equation is a rational approach to the design of an imperfect vessel under external
pressure. However, the calculation of the buckling pressure is less straightforward. The

German Code[9] developed a much simplified equation shown below :

T

ZGW*

P, = o (5.18)
1.5[‘51- xlOO}(l ~0.2D,/L)

[2]

I+ 7 -
100~
D

[2]

The German Code calculates the reduced critical buckling pressure to be a certain fraction of the
critical buckling pressure calculated for a perfect cylindrical vessel. The equations above use
out-of-round values 4. ASME VIII Div 2 contains manufacturing tolerances when out-of-
roundness becomes a consideration. For external pressure the maximum deviation from true
circular form must not exceed 1% of the inner/outer diameter of the vessel. If an opening exists,
then 2% of the inner diameter of the opening must not be exceeded. The ASME Code also

calculates out-of-roundness values e given by the figure below
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Figure 5-18 : ASME maximum permissible deviation from a circular form e for vessels

Under external pressure. Obtained from ASME VIII[34]

The out-of-round values given by figure 5-18 can be used by equations 5.17 and 5.18.
However, the values do not reflect the variation in deflections caused by different nozzle loads.
The out-of-round value e may be much greater than the actual deflection caused by the nozzle,
thereby giving a much lower critical buckling pressure.  Therefore, more accurate out-of-
roundness values related to nozzle loads were developed. Equation 5.17 was derived on the
assumption that the initial out-of-roundness is similar in form to the assumed buckling mode
shape. This is not the case for vessels under external pressure and external piping loads. A
relationship between nozzle loads and the more acceptable equation 5.18 was developed. In
developing this relationship it was understood that nozzle loads increase the local stresses af the
shell-to-nozzle junction. Geometric imperfections at localised areas also increase stress
concentrations.  Therefore, stresses caused by out-of-roundness and stresses developed by
nozzle loads were related. S Timoshenko[7] developed an equation to determine the stress
caused due to out-of-roundness in the shell when subjected to external pressure. He studied the
effects of cylinders and tubes with initial non-circularity subjected to external pressure and

developed a theory around this. The most common form of non-circularity is that of an
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elliptical or oval shape. Using this, the deviation caused by non-circularity could be shown in

the following formula :

W, =W, cos2¢ (5.19)

w, is the maximum initial radial deviation, which is considered small in comparison with the

vessel radius. This is shown in the figure below

¢
P /f < P
\ A
N s Wo
~ ~ A

Figure 5-19 : Shell with Initial Ellipticity under External Pressure. Reproduced from
Harvey|20]

When an external pressure is applied, an additional radial displacement w, will occur.
Timoshenko determined that the deflection caused by external pressure is given by the

following higher order deferential equation :

— g tW, = (5.20)

To determine the bending moment A in the shell, consider a strip in the circumferential
direction of unit width. The bending moment at any cross section is equal to the compressive

force F' multiplied by the total radial deviation w, + w; at this cross section, or
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M = pRU(w2 + W, COS 2¢) (5.21)

Substituting this into equation 5.20 and rearranging gives :

2 3 3
Wy ol PR | PR w0529 (5.22)
dg’ D D

The solution to the above equation is :

s w, pR, cos2¢

: (5.23)
pr, =3D

w,

The critical buckling pressure for figure 5-19 is obtained by substituting n = 2 into equation 5.2.

One obtains :
28 (1Y
p o 2E [_] 529

Since D is the flexural rigidity, we substitute equation 5.24 into 5.23 and obtain :

(5.25)

Substituting equation 5.25 into equation 5.21 and taking the bending moment to be maximum at

points ¢= 0 and ¢ = 7, one obtains :



M, = 2 _ (5.26)

The compressive stress is obtained by converting M,, to a stress :

RN
Pcr

6M, 6 pRw,
o, = =

(5.27)

3 pD,w,
o, =—5"

or T2 1 [7 j
Pcr

Equation 5.27 (obtained from Jawad and Farr[22]) gives the compressive stress induced in an
out-of-round cylindrical shell subjected to external pressure. The total compressive stress will
be equal to the sum of the stress given by equations 5.27 and the compressive stress calculated

using equation 2.6 for the external applied pressure.

5.2.2 Numerical Results

The theoretical and FEM numerical results are based on the models given in table 5-1. These
vessels were also analyzed with nozzle loads. The 47, 87, 127, 16”, 20” and 24" inch nozzles
were used for each of the twelve vessels given in table 5-1. SASOL piping loads, found in
Appendix A, were used for each of the six nozzles. The orientation of these loads are given in
figure 3-4. For vessels with piping loads under external atmospheric pressure, the radial load is
in the same direction as the external pressure. The table below gives the ASME VIII Div 2

results for vessels 1-12.
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Vessel ASME P.. | ASME o,

MPa MPa
1 0.330 56.5
2 0.570 79.0
3 0.900 103.8
4 1.320 130.8
5 1.800 156.2
6 2.532 177.3
7 1.140 84.9
8 1.980 118.6
9 3.090 154.6
10 3.960 169.5
11 4.830 181.5
12 6.641 199.3

Table 5-3 : ASME VIII Div 2 Critical Buckling Pressures and Stresses for vessels 1-12

FEM stress analyses were performed on Vessel 5 to determine the stress at the shell-to-nozzle
junction under the combined loading of external atmospheric pressure and nozzle piping loads.
These stresses are compared with the ASME critical buckling stress given in table 5-3 above.

The results obtained are
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Figure 5-20 : FEM Local Stresses compared to ASME Critical Buckling Stress for Vessel §
Figure 5-20 shows that the local stresses at the shell-to-nozzle junction exceed the critical

buckling stress, ensuring local buckling to occur. Further FEM analyses were performed on

Vessels 1-12 and a 24” nozzle was used. The results obtained are
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Figure 5-23 : FEM Stress Analysis for Vessel 1 under external pressure and 24” nozzle
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Figure 5-24 : FEM Stress Analysis for Vessel 7 under external pressure and 24” nozzle

piping loads
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For Vessels 1-12, subjected to external pressure and piping loads for a 24 nozzle. the results

indicate that for some vessels the critical buckling stress is exceeded. However, the objective is

to achieve results as for vessels 6, 10, 11 and 12, where the local stresses are much lower than

the critical buckling stress to prevent local buckling from occurring. All FEM stress results can

be found in Appendix C. It has been discussed that local buckling becomes more severe due to

the fact that the critical buckling strength of the vessel is reduced to the deviation created at the

shell-to-nozzle junction. The effects of deviations created by nozzle loads have been

investigated. The figure below show deflections caused by external pressure and a 24” nozzle

for vessels 1 to 6 at the shell-to-nozzle junction.
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Figure 5-25 : Maximum FEM Deflection for Vessels 1 to 6 under external pressure and

24” nozzle loads at shell-to-nozzle junction
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An appropriate FEM Model, Model C shown below, was developed to determine the effects of
nozzle piping loads on the critical buckling pressure for vessels 1-12 subjected to atmospheric

pressure and piping loads for 47, 87, 127, 167, 207 and 24" nozzles.

Isometric View

Figure 5-26 : FEM Model C

Shell elements or 4-noded quadrilateral elements were used to mesh the model. Model C was
meshed as close as possible to 6000 nodes to generate an appropriate fine mesh. Identical
material properties to Model A and B were used. The circular region removed from the shell,
shown in Model C, represents the shell-to-nozzle junction. The appropriate nozzle loads were
applied to this region. Out-of-roundness represents a model with geometric imperfections. For
this type of model, where large displacements occur, a geometric nonlinear analysis (see [29]
and [39]) is advised. A nonlinear solution involves a series of incremental solutions. The load is
applied in increments and during each increment a solution is predicted. Convergence occurs
when each solution is achieved. If a solution does not converge, then it indicates that
equilibrium is unstable and buckling will occur due to nonlinearity. A nonlinear analysis was
performed on Vessel | for a 4” nozzle and convergence was reached for each of the load
increments.  Model C does not represent a model with severe geometric imperfections,
therefore, the linear eigenvalue buckling analysis, described in Chapter 4, was used. Vessels 6

and 12 were analyzed with the six nozzles, mentioned earlier, and the FEM results obtained are
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Figure 5-27 : Reduction in Critical Buckling Pressure for Vessel 6 due to nozzle loads
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Figure 5-28 : Reduction in Critical Buckling Pressure for Vessel 12 due to nozzle loads

126



Figure 5-29 : FEM Buckled Vessel 6 under external pressure and 24” nozzle loads

Figure 5-30 : FEM Buckled Vessel 12 under external pressure and 24” nozzle loads
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FEM buckling analyses for vessel 6 and 12 under external pressure and nozzle loads can be
found in Appendix D. The results indicate that the reduction in critical buckling pressure for
vessels under external atmospheric pressure and nozzle piping loads can be obtained by using
FEM. The buckled patterns given in figures 5-29 and 5-30 are difterent to the buckled patterns
tor the perfect cylindrical vessels. With the inclusion of nozzle loads. vessels buckle at much
lower modes than those predicted without nozzle loads. The reduction of the critical buckling
pressure results in local stresses being much greater at the shell-to-nozzle junction and severe

local buckling can occur. This is indicated in the tigures below
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Figure 5-31 : Comparison between Local Stresses and Critical Buckling Stresses for

Vessels | — 6 under external pressure and 24" nozzle piping loads
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Figure 5-32 : Comparison between Local Stresses and Critical Buckling Stresses for

Vessels 7 — 12 under external pressure and 24° nozzle piping loads

The objective for the design of vessels under external pressure and nozzle piping loads will be
to determine the reduced critical buckling stress and ensure that local stresses at the shell-to-
nozzle junction are lower than the buckling stress. Results for vessels 6 and 12 give the FEM
Jocal stresses to be much lower than both the ASME critical buckling stress and the FEM
reduced critical buckling stress. This is 1deal in ensuring that local buckling will not occur at
the shell-to-nozzle junction. It has been shown that the reduction in the critical buckling stress
can be determined by FEM methods. However. for this study. a theoretical procedure was
developed for the design of pressure vessels under atmospheric pressure and nozzle piping
loads. The theoretical procedures relate local stresses caused by nozzle loads alone to of out-of-
round stresses generated using equation 5.27. WRC 107 can calculate the local stresses which
can be used to determine the equivalent out-of-round stress. It should be noted that this stress is
not the actual reduced critical buckling stress of the vessel.  An out-of-round value can be
determined from the out-of-round stress. This out-of-round value can be used in the out-of-
roundness equation. equation 5.17. to determine the reduced critical buckling pressure. The
reduced critical buckling pressure can be converted to a stress and must be compared with the

more accurate FEM local stresses to determine if local buckling occurs at the shell-to-nozzle



junction. Lets consider vessels 1 to 12 subjected to atmospheric pressure and 24” nozzle piping

loads. Using the reduced critical buckling pressures, generated using FEM, these values were

substituted into equation 5.17.

Out-of-round values were calculated and substituted into

equation 5.27. For equation 5.27 the value of P, was also taken from equation 5.9. Out-of-

round stresses o, were generated and a relationship, between these values and the WRC 107

maximum local compressive stresses, under nozzle loads alone, was determined. The
relationship is shown in the table and figure below

Vesse 1 2 3 4 5 |6 7 8 9 10 11 12
1

WRC | 595. | 394. | 278. | 207. | 165. | I1l. | 577. | 375. | 264. | 198 | 154. | 101.
107 2 7 2 4 2 3 9 4 2 1 3
(MPa

)

o, | 341, 1 100. | 39.0 | 25.0 | 12.5 | 4.4 | 239. | 945 | 384 | 17. | 9.3 3.0
(MPa 2 1 9 9

)

Table 5-4 : WRC 107 Local Stresses and Out-of-round Stresses for vessels 1 — 12 under

external pressure and 24” nozzle piping loads
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Figure 5-33 : Relationship between WRC 107 Local Stresses and Out-of-round Stresses

for vessels 1 — 12 under external pressure and 24” nozzle piping loads

Further relationships for the remaining nozzles can be found in Appendix D. The table below
gives values obtained from the relationships and should be used for the design of vessels under

atmospheric pressure and nozzle piping loads.

131

400



WRC 107 Gor _{
4 8 12 16 20 24

80 0.1 0.2 0.7 0.9 13 2.0
| 90 0.1 0.3 10 13 18 27
100 0.2 0.4 13 17 2.4 35
110 0.3 05 17 22 3.1 45
120 0.4 0.7 2.1 2.9 3.9 5.6
130 05 0.8 2.7 3.6 4.9 6.9
140 0.6 1.0 3.3 4.4 5.9 8.3
150 0.8 13 4.0 5.3 71 9.9
| 160 1.0 1.6 47 6.4 8.5 11.6
170 12 1.9 5.6 7.6 10.0 136
180 15 2.2 6.5 8.9 1.7 15.7
190 18 2.6 7.6 10.4 13.5 18.0
200 22 3.0 8.7 12.0 15.5 205
210 25 35 10.0 13.8 17.7 23.2
220 3.0 4.0 11.4 15.7 20.0 26.1
230 35 46 12.8 17.8 225 29.2
240 4.0 5.2 14.4 20.1 253 32.5
250 4.6 5.9 16.2 225 28.2 36.1
260 5.3 6.7 18.0 25.1 314 39.9
270 6.0 7.4 20.0 27.9 34.7 439
280 6.8 8.3 22.1 31.0 38.3 48.1
290 7.7 9.2 243 34.2 421 52.6
300 8.6 10.2 26.7 37.6 46.1 57.3
310 9.6 11.3 29.2 412 50.3 62.3
320 10.7 12.4 31.9 451 54.8 67.5
330 11.9 13.6 34.7 49.2 59.5 73.0
340 13.2 14.8 37.7 53.5 64.5 78.7
350 145 16.2 40.8 58.0 69.7 84.7
360 16.0 17.6 44 1 62.8 75.2 91.0
370 17.6 19.1 476 67.8 81.0 97.5
380 19.3 20.7 51.2 73.1 87.0 104.3
390 210 22 4 55.0 787 93.3 111.4
400 229 24.1 59.0 84.5 99.9 118.8

Table 5-5 : Out-of-round Stresses for various nozzles

The reduced critical buckling stress can be determined using the computation sheet given below
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Design of Pressure Vessels under External Pressure

and Nozzle Piping Loads

s user fill in

ASME VIII Div 1 : UG-28

Do = 2800 mm

t= 20mm

CA= 0Omm

L= 2000mm

E= 200000 MPa

n= 7

Critical Buckling Pressure Per = 3.139MPa
Nozzle

Nozzle : 24inch

Calculation of Buckling Stress Cr

Gurs = 483 MPa
WRC 107 = 111.3MPa
Out of Roundness Stress = 4.5MPa
A= 2.075S mm
B Cpp = 165.7MPa  Holt

Figure 5-34 : Computation Sheet for determining the reduced Critical Buckling Stress
Appendix E shows results for two vessels (Vessels 1 and 3 shown in Chapter 3) subjected to

external pressure and nozzle piping loads. The reduced critical buckling stress is calculated for

both vessels using table 5-5 and the computation sheet shown above.
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Chapter 6

DISCUSSION

6.1 Design of Pressure Vessels

The objective of this study was to investigate the effects of both internal and external pressure
on a pressure vessel subjected to external piping loads at the nozzle. The study required an
understanding of the design procedures for pressure vessels. The ASME VIII Divisions and 2
Code contains the most widely used procedures for the design of pressure vessels and various
other components. The ASME Code is accurate and effective in calculating detailed dimensions
of pressure vessel shells, and even components like nozzles, flanges and supports. The Code
also contains properties for the vast range of materials used in the design of pressure vessels.
However, stress calculations for the nozzle attachments, and their corresponding loads, are not
given by the ASME Code. The Code contains allowable limits for the stresses calculated using
the procedures given in the Welding Research Bulletins 107 and 297. These allowable limits

are based on the materials yield and ultimate tensile stresses.
6.2 Design of Pressure Vessels under Internal Pressure and Piping Loads

This study investigates the use of the WRC Bulletins and compares stresses calculated
theoretically with stresses determined by Finite Element Models generated using MSC
PATRAN. Finite Element Analysis is believed to provide a more realistic approach with
regards to the design of pressure vessels. The Finite Element Models were validated by
obtaining convergence for values of the general primary membrane stress P, (figure 3-7 and
figure 3-8), to be within 5% (figure 3-9). These stresses are due to internal pressure alone and
are determined by accurate theoretical equations. The difference between the theoretical and
FEM values of P, are considerably small (uncertainties range from 0% to 1.7%). However,

greater uncertainties arise when local stresses are generated at the shell-to-nozzle junction.

By analysing various vessels, it was determined that FEM stresses, due to the combined loading
of internal pressure and piping loads, are much greater than stresses calculated theoretically
using WRC 107 (figure 3-10). Two factors are responsible for the marked differences between
the FEM and theoretical results. The first factor concerns the pressure thrust load, created by

the internal pressure, on the nozzle. This pressure thrust load increases the local stresses at the
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shell-to-nozzle junction and becomes more severe if larger diameter nozzles are used. High
internal pressures ranging from IMPa to about SMPa can create extremely large pressure thrust
loads, thus, drastically increasing the stress concentration at the shell-to-nozzle junction (figure
3-12 and figure 3-13). For example, the theoretical stress obtained for Vessel 25 was 74.2MPa
and the FEM stress, which includes the pressure thrust load, was 267MPa. Theoretically, WRC
368[36] was developed to determine the stresses caused by the pressure thrust load. However,
the location and orientation of these stresses are not determined, thereby, limiting their use in
conjunction with WRC 107. The FEM results indicated that the local stresses generated due to
piping loads at the nozzle can be much greater at locations different from those given in WRC
107 (figure 3-17). As a result of these two factors the FEM local stresses due to the combined
loading of piping loads at the nozzle and internal pressure, proved to be more accurate. FEM
provides more accurate locations of these siresses and being more conservative, the results
ensure the design of much safer pressure vessels (see [13], [25] and [30]). Apart from MSC
PATRAN there are pressure vessel FEM software packages like PV-Elite/CodeCalc, NOZPRO,
etc, that solely calculate local stresses and deformations at the shell-to-nozzle junction as well as
stresses generated by other components. The development of these software packages have
proven useful in determining the stress situations of pressure vessels. MSC PATRAN is a more
powerful and accurate Finite Element software, therefore, it was used for this investigation.
When local stresses in the shell exceed the allowable limits given by ASME VIII Div 2, it has

been shown that increasing the shell thickness or the use of compensation pads can be useful.
6.3 Design of Pressure Vessels under External Pressure and Piping Loads

When designing vessels under external atmospheric pressure buckling becomes a crucial
consideration. Buckling can occur at stresses well below the yield or ultimate tensile stress of
the material, therefore, it is important to design a vessel that can withstand the effects of
buckling. The effects of buckling on pressure vessels, subjected to external atmospheric
pressure alone, have been investigated. Typical large to medium diameter vessels used in
industry were chosen. The design for these vessels involves determining a critical buckling
pressure P.. This critical buckling pressure must be greater than the applied external pressure
and stresses generated by the applied external pressure must be within the critical buckling
stress o, calculated from P,. Various expressions and procedures to determine the critical
buckling pressure have been investigated. These range from the early works of R Von Mises,
later modified by Windenburg and Trilling, to the more recent procedures given in the ASMFE
VIII Div 1 and 2 code. The study shows that the procedures found in the ASME code are
closely related to the equations developed by Von Mises and Windenburg and Trilling. The
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ASME Code uses two important charts, Geometric and Material, to determine the critical

buckling pressure and stress.

As part of the study, a second FEM model, Model B, was developed to correlate the theoretical
critical buckling pressures with FEM values. The results coincided quite well for the pressures
given by Windenburg and Trilling and Von Mises (figures 5-8 to 5-11). The ASME code
critical buckling pressures (figure 5-6 and 5-7) differed for some vessels due to the safety factor
of 80% included in the Material Chart. The ASME procedures calculates the critical buckling
stress or factor B to be within the elastic region of the material. Designing within the elastic
region gives a much lower critical buckling stress and from this a much lower critical buckling
pressure. MSC PATRAN has a node limit of 6000 nodes, therefore, a model with a much finer
mesh would have generated more accurate results. However, the FEM model was validated by
comparing FEM modes of buckling (number of lobes ») with the modes of buckling determined
by the theoretical methods. The results coincided well, and, for vessels under external
atmospheric pressure and piping loads, a third model (Model C) similar to Model B was also

developed as part of this investigation.

There are currently no accepted procedures for the design of pressure vessels under the
combined loading of external atmospheric pressure and piping loads. The objective of this
study is to develop appropriate procedures for the design of these vessels and this was achieved
in the following manner. Firstly, local loads cause local buckling to occur in the shell. The
shell-to-nozzle junction, being a localized region, will have local stresses much greater than the
critical buckling stress of the vessel (figure 5-20). For Vessel 5, the FEM local stress, for a 24”
nozzle and atmospheric pressure, of 182MPa was greater than the ASME critical buckling stress
of 156.2MPa. Secondly, the piping loads at the nozzle create deformations in the shell (figure
5-25), which reduce the critical buckling pressure. This study investigates the effects of these
two factors. The vessels were subjected to various piping loads and atmospheric pressure. The
FEM local stresses, generated at the shell-to-nozzle-junction, for some vessels were much
greater than the critical buckling stresses calculated using the ASME Code procedures (figure 5-
21 and figure 5-22). A FEM model, Model C, was used to analyze the buckling effects of
various piping loads for the vessels. The 24” nozzle is typically the largest size nozzle used in
industry. The FEM results showed a reduction in the critical buckling pressure as the piping
loads were increased. For example, the FEM critical buckling pressure for Vessel 6 was
determined to be 3.695MPa and this value was reduced to 2.734MPa as a result of applying
piping loads for a 24” nozzle. It was also observed that these vessels buckled at a much lower
mode than that predicted for the vessels under external atmospheric pressure only (figure 5-29

and figure 5-30). The reduction in the critical buckling pressure reduces the critical buckling
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stress, thereby, causing the local stresses at the shell-to-nozzle junction to be much greater
(figure 5-31 and 5-32). The results also indicated that by increasing the thickness of these
vessels, the local stresses are reduced and can be lower than the reduced critical buckling stress.
This is ideal to prevent local buckling from occurring. Using a 24” nozzle the FEM local stress,
for Vessel 12, was determined to be 71.4MPa and this was much lower than the FEM reduced

critical buckling stress of 176.1MPa.

Since piping loads at the nozzle reduce the critical buckling pressure, it was investigated that
this has the same effect as that of vessels with geometric imperfections or out-of-roundness.
There are currently equations for determining the reduced critical buckling pressures for
imperfect or out-of-round vessels. The objective was to relate out-of-round theory to that of
piping loads at the nozzle. Timoshenko[7] developed an equation for determining the increased
compressive stress due to out-of-roundness in a cylinder. It is understood that both geometric
imperfections and piping loads increase stress concentrations, therefore, Timoshenko’s equation
was related to maximum compressive stresses generated using WRC 107 for vessels under
piping loads. The objective is to calculate an appropriate out-of-round value that can be used in
an out-of-round equation to determine the reduced critical buckling pressure. In Appendix E,
two random vessels were analyzed using the theoretical procedures developed. The theoretical
reduced critical buckling pressures coincide quite well with the FEM values. To prevent local
buckling from occurring, the local stresses generated at the shell-to-nozzle junction must be less
than the reduced critical buckling stress calculated using the computation sheet given in Chapter

5, figure 5-33.

If local stresses are greater than the reduced critical buckling stress, the study showed that
increasing the thickness of the shell will reduce the local stresses. Theoretically, reducing the

length of the shells or using stiffening rings can increase the buckling strength of the vessel.
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Chapter 7

CONCLUSION

A comparative study between the effects of internal pressure versus external pressure when
combined with piping loads at the shell-to-nozzle junction of a pressure vessel has been
undertaken. Various numerical models were analyzed theoretically as well as analytically using
the Finite Element software, MSC PATRAN. For vessels under internal pressure and piping

Joads at the nozzle, the following conclusions were made :

I. The pressure thrust load created by the internal pressure increases the local stresses at
the shell-to-nozzle junction.

2. Higher stresses may exist in locations that differ from those given in WRC 107.

3. The allowable limits given by the ASME Code are acceptable since they are related to
the material properties of the vessel.

4. More accurate and conservative FEM stresses should be used, instead of WRC 107,

when designing vessels under internal pressure and piping loads.

Extensive research with regard to the design of pressure vessels under external atmospheric
pressure and piping loads was undertaken. Procedures for determining the reduced critical
buckling pressure of a vessel under external atmospheric pressure and piping loads have been

developed with the aid of finite element methods. The design should :

1. Determine o, using the computation sheet, figure 5-33 and table 5-5.
2. Determine the local stresses at the shell-to-nozzle junction, taking FEM values to be

more accurate and conservative.

3. Compare the local stresses with o, . Redesign if local buckling occurs.

The effects of stiffening rings has not been explored in this study. For future study, the effects
of stiffening rings and compensation pads could be a consideration in the design of vessels
under external atmospheric pressure and piping loads at the nozzle. The FEM results are
understood to represent a more realistic approach to the design of pressure vessels. 1t would be
useful to correlate the theoretical results obtained with actual experimental data in a further
exploration of this topic. Appendix F contains a paper, based on this study, to be submitted to

the International Journal of Pressure Vessels and Piping.
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REPRODUCED TABLE OF SELECTIVE PIPE SCHEDULES AND WALL

THICKNESSES
Imperialj Imperial 1 Metric T
Nom. Size Outside Outside Std wall Sch XS Sch 160
Diameter | Diameter

1.500 1.900 48.260 ns 0.145 0.200 0.28ﬂ
mm 3.68 5.08 7.14
2.000 2375 60.325 ins 0.154 0.218 0.344
mm 3.91 5.54 8.74
2.500 2.875 73.025 ins 0.203 0.276 0.375
mm 5.16 7.01 9.53
3.000 3.500 88.900 ins 0.216 0.300 0.438
mm 5.49 7.62 11.13
4.000 4.500 114.300 ns 0.237 0.337 0.531
mm 6.02 8.56 13.49
5.000 5.563 141.300 ins 0.258 0.375 0.625
mm 6.55 9.53 15.88
6.000 6.625 168.275 ins 0.280 0.432 0.719
mm 7.11 10.97 18.26
8.000 8.625 219.075 ins 0.322 0.500 0.906
mm 8.18 12.70 23.01
10.000 10.750 273.050 ins 0.365 0.500 1.125
mm 9.27 12.70 28.58
12.000 12.750 323.850 ins 0.375 0.500 1.312
mm 9.53 12.70 33.33
14.000 14.000 355.600 ins 0.375 0.500 1.406
mm 9.53 12.70 35.71
16.000 16.000 406.400 ins 0.375 0.500 1.594
mm 9.53 12.70 40.49
18.000 18.000 457.200 ins 0.375 0.500 1.781
mm 9.53 12.70 45.24
20.000 20.000 508.000 ns 0.375 0.500 1.969
mm 9.53 12.70 50.01
22.000 22.000 558.800 ns 0.375 0.500 2.125
mm 9.53 [2.70 53.98
24.000 24.000 609.600 ins 0.375 0.500 2.344
J mm 9.53 12.70 59.54
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TABLE 1-100
CRITERIA FOR ESTABLISHING ALLOWABLE STRESS VALUES FOR TABLES 1A

AND 1B
Product/ Below Room Room Temperature and Above
Material Temperature
Tensile Yield Tensile Strength Yield Strength
Strength Strength
Wrought or S, 2/ s S, 1.1 /s 2/ S R
cast ferrous 35 A + 35 ESTRT A ) A o
and ' ' 0r0.98 R,
nonferrous [ Note(1)]
Welded 0.85 2 0855, | (1.1x0.85) 2 2
T 50855, X 35 orkr %% 0858, | 24x0.855,R,
tube, ' 0r0.9x0.855 R,
ferrous and [Note(1)]
nonferrous

TABLE 2-100(a)
CRITERIA FOR ESTABLISHING DESIGN STRESS INTENSITY VALUES FOR
TABLES 2A AND 2B

Product/Material Tensile Strength Yield Strength
Wrought or cast ferrous /s 1.1 2 2
and nonferrous A r 3 SrRy A S A SRy
or0.9S R,
[Note(1)]
Welded pipe or tube, 0.855, (1.1x0.85) 0.85 0.85
Sy Ry —3§, | —S R,
ferrous and nonferrous 35 15 15
0r0.9x0.855 R,
[Note(1)]

MATERIAL PROPERTIES :

SA 516 GRADE 70 : S, = 137.9MPa

SA 106 GRADEB: S,=117.9MPa
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SASOL Piping Loads
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Foster Wheeler Piping Loads

o
‘t-i? . DT EEITAN
\K FAGE TS OF 18
FETER AHHERLER nEv oot
ENGINEERING STANDARD oL R52

: /
130 HEAT EXCHANGER MDZZLE LOADS AND MOMENTS ,{OB)

HEAT EXCHANGER NDZZLE LOADS AND MOMENTS. {TO BE USED AS A BASIS FOR PIPING DESIGN)
[OADS AND MOMENTS (F-KN, M-KNM)
[APPLIED AT NQZZLE TO CYLINDER INTERSECTION)
PIPE . FLANGE RATING
N.3. L .
INCHES 1508 3004 5004 300§ i 15004 . . 25008
Fxyz MxvT Fxy?7 Mxyz Fxyz Mxyz Fava Mxyz Fxyz Mxyz Exyz Mxyz
2 1.0 0.2 1.0 c.2 1.2 0.3 15 0.3 1.8 Q.4 2.0' . os
3 1.6 0.6 1.5 0.6 2.0 0.8 2.2 10 25 1.2 3.0 1.5
4 aal 10 3.0 1.2 35 1.5 35 1.7 4.0 2.0 4.5 2.6
& 5.0 2.5 5.0 3.0 6.5 3.0 5.5 2.3 6.0 3.5 8.0 4Q
8 8.0 5.0 8.0 6.0 8.0 7.9 9.0 8.0 1.0} 110 13.0 13.0
10 104 7.0 10.0 2.0 12.0 10.0 12.0 12.0 an 14.0 16.0 16.0
12 12.0 8.0 12.0 3.0| 140 12.0 14.0 1a.0| 160 16.0) - 18.0 18.0
14 14.0 9.0 14.0 10.0 18.0 14.0 16.0 8.0 18.0 18.0 20.0{ -30.0
16 16.0 10.0 16.0 12,0 18.0 18.0 18.0 8.0 20.0 20.0 22.0 2270
18 18.0 12.0 18.0 14,0 20.0 18.0 220! - 22.0 24.0 24.0 269 260
20 20.0 t4.0 20.0 16.0 22.0 20.0 24.0 24.0 26.0 26.0 28.0 28.0
24 24.0 20.0 24.0 20.0 26.0 24.0 '28.0£ 28.0| . Q0.0 30.0 3a.0 34.0
- i .- - 1
e ec .? 4 ve Repiar  LaAdE Rin
8 2.8 2%
NQTES
3
1.  The tabulated loads and moments at the nozzle to cylinder intersection are the minimum
which the Heat Exchanger design must accommodate, except ds noted iIn 2, 3, and 4
betaw. )

2. For High Alloy Heat Exchangers (exciuding alloy clad} dasigned for temperatures
between -100°C and + 250“0 the [oads and maments may be reduced ta a minimum of
50% of the tabulated values,

3. For Carbon Steel and Low Alloy Heat Exchangers designed for temperatures
between -50°C and + 250°C the loads and moments may be reduced to a minimum of
75% of the tabulated values.

4. In exceptional cases {e.g. where application of the tabulated loads increases the
ciyedlaainne! perrel thickness) the loads may be reduced furtihar by cyfeernant with
P ¢ = annimorm teads are, 0%, for G5 and low alloy, cof 2a%, 1o

Purchisser. Numn
ran alicy equismznt, of the tabutat=d yalisgs,
. ' T -

¢
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FEM Stress Plots for Vessels 16-25 under internal pressure alone (0.26 and
1.05MPa)
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FEM Stress Plots for Vessels 16-25 under piping loads alone (SASOL)
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FEM Stress Plots for Vessels 16-25 under combined loading of internal pressure
and piping loads
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Numerical Results for Vessels under External Pressure

Vessel | Do T CA L n E Pcr(W&ﬂ Per(ASME | Per Per
) (mm | (mm | (mm | (mm (GPa | ) (MPa) ) (MPa) Von | FEM
) ) ) ) ) Mises | (MPa
(MPa )
)

1 2800 8 - 2000 | 8 | 200 0.318 0.330 | 0.329 | 0.385
2 2800 10 - 2000 | 8 | 200 0.555 0.570 | 0.583 | 0.667
3 2800 12 - 2000 | 8| 200 0.875 0.900 | 0.950 | 1.046
4 2800 14 - 2000 | 7] 200 1.287 1.320 | 1.347 | 1.557
5 2800 16 - 2000 | 7| 200 1.797 1.800 | 1.900 | 2.126
6 2800 20 - 2000 | 7| 200 3.139 2.532 | 3.459 | 3.695
7 1200 8 - 2000 | 4 | 200 1.132 1.140 | 1.202 | 1.323
8 1200 10 - 2000 | 4| 200 1.978 1.980 | 2.032 | 2.397
9 1200 12 - 2000 | 4| 200 3.120 3.090 | 3.215| 3.570
10 1200 14 - 2000 | 4| 200 4.587 3.960 | 4.822 | 5.104
11 1200 16 - 2000 | 4| 200 6.405 4.830 | 6.923 | 7.069
12 1200 20 - 2000 | 4| 200 11.189 6.641 | 12.88 | 12.53
9 3
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Codecalc external pressure computation sheet

Input Echo, Component 1, Description: extl

User Entered Minimum Design Metal Temperature 21.00 C

Design External Pressure PEXT 0.10 N./sq.mm.
Temperature for External Pressure 3778 C
External Pressure Chart Name CS-2

Include Hydrostatic Head Components NO

Material Specification (Not Normalized) SA-516 70

Allowable Stress At Temperature S 137.90 N./mm?
Allowable Stress At Ambient SA 137.90 N./mm?
Curve Name for Chart UCS 66 B

Joint efficiency for Shell Joint E 1.00

Design Length of Section L 2000.0000 mm.
Outside Diameter of Cylindrical Shell D 2800.0000 mm.
Minimum Thickness of Pipe or Plate T 8.0000 mm.
Corrosion Allowance CA 0.0000 mm.
Type of Element: Cylindrical Shell

EXTERNAL PRESSURE RESULTS, SHELL NUMBER 1, Desc.: extl
ASME Code, Section VIII, Division 1, 1998, A-99

External Pressure Chart CS-2 at 148.90 C

Elastic Modulus for Material 199955.00 N./sq.mm.
Results for Max. Allowable External Pressure (Emawp):

Corroded Thickness of Shell TCA 8.0000 mm.
Outside Diameter of Shell oD 2800.0000 mm.
Design Length of Cylinder or Cone SLEN 2000.0000 mm.
Diameter / Thickness Ratio (D/T) 350.0000

Length / Diameter Ratio LD 0.7143
Geometry Factor, A f{DT,LD) A 0.0002827
Materials Factor, B, f(A, Chart) B 28.2604 N./mm?
Maximum Allowable Working Pressure 0.11 N./sq.mm.

EMAWP = (4*B)/(3*%(D/T)) = ( 4 * 28.2604 )/( 3 * 350.0000 ) = 0.1077

Results for Reqd Thickness for Ext. Pressure (Tca):

Corroded Thickness of Shell TCA 7.8728 mm.
Outside Diameter of Shell oD 2800.0000 mm.
Design Length of Cylinder or Cone SLEN 2000.0000 mm.
Diameter / Thickness Ratio (D/T) 355.6560
Length / Diameter Ratio LD 0.7143
Geometry Factor, A f(DT,LD) A 0.0002760
Materials Factor, B, f(A, Chart) B 27.5889 N./mm?
Maximum Allowable Working Pressure 0.10 N./sq.mm.

EMAWP = (4*B)/(3*(D/T)) = (4 * 27.5889 )/( 3 * 355.6560 ) = 0.1034
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Results for Maximum Length Between Stiffeners (Slen):

Corroded Thickness of Shell TCA 8.0000 mm.
Outside Diameter of Shell OD 2800.0000 mm.
Design Length of Cylinder or Cone SLEN 2077.7944 mm.
Diameter / Thickness Ratio (D/T) 350.0000

Length / Diameter Ratio LD 0.7421
Geometry Factor, A f(DT,LD) A 0.0002716
Materials Factor, B, f(A, Chart) B 27.1504 N./mm?
Maximum Allowable Working Pressure 0.10 N./sq.mm.

EMAWP = (4*B)/(3*(D/T)) = (4 *27.1504 )/( 3 * 350.0000 ) = 0.1034

SUMMARY of EXTERNAL PRESSURE RESULTS:

Allowable Pressure at Corroded thickness 0.11 N./sq.mm.
Required Pressure as entered by User 0.10 N./sq.mm.
Required Thickness including Corrosion all. 7.8728 mm.
Actual Thickness as entered by User 8.0000 mm.
Maximum Length for Thickness and Pressure 2077.794 mm,
Actual Length as entered by User 2000.00 mm.

The CODECALC Program, (¢) 1989-2000 by COADE Engineering Software
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FEM Buckling analyses for Vessels 1-12 under external pressure and a 24”

G

MST Fatian 2001 (3 26:5ep03144).07 '
Dt SC2OEFAULT AliMode 1 Facior= 30457 Eiganedos Translstionsl (NOF-LAYERED)

Vessel 1 — External Pressure 0.1MPa
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BDefonn SCLOEFAULT Al Mudel Factar=£56724 Erenvactos Tensiatonat MHOHLAYERED)

Vessel 2 - External Pres.su re .la
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Dslom SCEDEFAULT Al Made 1. Factor = 18 456 Elgenvecais. Translsionsl (NOHHLAYERED)

Vessel 3 — External Pressure 0.1MPa
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Vessel 4 — External Pressure 0.1MPa




e i
MSCPanan 200113 5-Sap il 52531
Detorm ECIDEFAULT A1 Mode 1 Facor=21 264, Eigenvedors Translational, (NOM-LAYERED)

o

Vessel 5 — External Pressure 0.1MPa

HMSC Fatan 2007 i3 25-8ep-0315 253

Distami SC2OEFALILT A1 Mide 1 Factal « 36 846 Elgenvectois Transiational (NON-LAYERED)

Vessel 6 — External Pressure 0.1MPa




Vessel 7 — External Pressure 0.1MPa

Vessel 8 — External Pressure 0.1MPa
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defsult_Deformation :
Max 1.25-001 &Nd 5106

detault_Deformation :
e 1.25-001 @Nd 5106



detault_Deformation
Max 1.61-001 @Nd 3664

Vessel 9 — External Pressure 0.1MPa

default_Deformation
Max 1614001 (@Nif 5094

Vessel 10 — External Pressure 0.1 MPa
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default_Detormation
Max 1.51-001 @&Nd 5094

Vessel 11 — External Pressure 0.1MPa

detauit_Deformation
Mex 1.61-001 MNd 5094

Vessel 12 — External Pressure 0.1MPa

168



FEM Stress Plots for Vessels 1-12 under external pressure and piping loads for a
24” Nozzle
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Vessel 8 — Combined Stress Intensity (24” Nozzle)
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Vessel 10 — Combined Stress Intensity (24” Nozzle)
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FEM Deflection Plots for Vessels 1-6 under external pressure and piping loads for
a 24” Nozzle
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Vessel 2 — FEM Deflection (external pressure and 24” Nozzle)
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FEM Results for Vessels under External Pressure and Nozzle Piping Loads

]

Vessel | 1 2 3 4 } 5 6 W 7 87 9 107 11 12
S

Nozzl

es
£
Per’ 0.36 | 0.64 | 1.01 | 1.50 | 2.08| 3.62] 1.02] 1.92] 3.15] 4.70 | 6.61 | 11.85
(MPa) 2 0 4 0 0 6 3 6 6 0 7 3
8”

Per’ 030 | 0.56| 090 | 1.34] 1.90 | 3.37] 0.88] 1.61 | 2.64 | 4.02 | 5.77| 10.52
(MPa) 6 0 0 7 3 9 1 2 5 0 0 3
12’?

Per’ 027 050 | 0.81 | 1.22 | 1.74 | 3.11] 0.78 | 1.49 | 2.45  3.70 | 5.29 | 9.560
(MPa) 9 4 8 8 3 6 9 0 2 9 1

16”

Per’ 0.25| 047 | 0.76 | 1.15 | 1.63| 2.93 | 0.55 | 1.18 | 2.13 | 3.35 | 4.86 | 8.927
(MPa) 7 1 6 2 8 9 0 3 1 4 7

20”

Pcr’ 022 043 072 | 1.10 | 1.57 | 2.83] 0.39] 0.83 | 1.52| 2.51 | 3.86 | 7.705
(MPa) 5 6 5 2 5 8 4 0 0 9 8

24’?

Per’ 0.18 | 0.37 | 0.64 | 1.02 | 1.48 | 2.73 | 032 ] 0.66 | 1.21 | 2.01 | 3.10 | 6.312
(MPa) 1 0 9 1 8 4 0 9 7 3 2
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FEM Buckling Analyses for Vessel 6 and Vessel 12 under external pressure and
piping loads for the six nozzles
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Vessel 6 — FEM Buckling Analysis 8” Nozzle
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Vessel 6 - FEM Buckling Analysis 12” Nozzle
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Vessel 6 — FEM Buckling Analysis 16” Nozzle
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Vessel 6 — FEM Buckling Analysis 20” Nozzle

Vessel 6 — FEM Buckling Analysis 24” Nozzle
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Vessel 12 — FEM Buckling Analysis 8” Nozzle
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Vessel 12 — FEM Buckling Analysis 16” Nozzle
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Vessel 12 — FEM Buckling Analysis 24” Nozzle
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Gor (MPa)

Relationships between the out-of-round stress and the WRC 107 maximum

compressive stress for the 4”, 87,127, 16”, 20” and 24” nozzles
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Vessel 1(Chapter 3) FEM Plots and design calculations for external pressure and
piping loads

Vessel 1 (Table 3-4) - FEM Buckling Analysis (external pressure only)
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Vessel 1 (Table 3-4) — FEM Buckling Analysis (external pressure + 6” Nozzle)

Design of Pressure Vessels under External Pressure

and Nozzle Piping Loads

:user fill in

ASME VIII Div 1 : UG-28

Do = 598 mm

t= : 14 mm

CA= 3mm

L= 1000 mm

E= 200000 MPa

n= 3

Critical Buckling Pressure Pcr = 14.270 MPa
Nozzle

Nozzle : | 6inch

Calculation of Buckling Stress Oer

Curs= 483 MPa
WRC 107 = 287 MPa
Out of Roundness Stress = 8 MPa
A= 5.358 mm
O = 121.3MPa  Holt

Ocr = 148.5MPa  FEM
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Vessel 3(Chapter 3) FEM Plots and design calculations for external pressure and
piping loads

Vessel 3 (Table 3-4) — FEM Buckling Analysis (external pressure only)

Vessel 3 (Table 3-4) - FEM Buckling Analysis (external pressure + 4” Nozzle)
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Design of Pressure Vessels under External Pressure

and Nozzle Piping L.oads

- cuser fill in

ASME VIII Div 1 : UG-28

Do = 716 mm

t= , 8 mm

CA= ~ ‘ 0 mm

L= 800 mm

E= ‘ 200000 MPa

n= 5

Critical Buckling Pressure Pcr = 6.141 MPa
Nozzle

Nozzle : 41nch

Calculation of Buckling Stress o,,

OCuts = : 483 MPa
WRC 107 = 202.1 MPa
Out of Roundness Stress = ' 2.3MPa
A= 0.674 mm
’
O, = 201.6MPa  Holt
O¢p = 202.2MPa  FEM
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Effects of External Piping Loads on a Pressure Vessel under External

Pressure

A Maharaja*, C Jvon Klemperera, s Adali’®

?School of Mechanical Engineering, University of Natal, Durban, 4001, South Africa

Abstract

This paper deals with the effects of external piping loads at the nozzle on cylindrical pressure
vessels under vacuum. It describes the various theoretical methods with regard to the design of
pressure vessels under external atmospheric pressure. An approach to the design of pressure
vessels, under the combined effect of external atmospheric pressure and piping loads at the
nozzle, is then explored. Numerical models, validated by theory using the ASME (American
Society of Mechanical Engineers) VIII Div 1 and 2 [1] Pressure Vessel Codes, are correlated
with that of numerical models generated by the finite element analysis software MSC PATRAN

[2].
Keywords: Piping loads; External atmospheric pressure; Finite element analysis

Nomenclature

lop¥ critical buckling stress Pc,' reduced critical buckling pressure
Omax maximum local stress Kurs  ultimate tensile stress of material
crc,' reduced critical buckling stress A out-of-roundness
P, critical buckling pressure U initial radial deviation
L unsupported length of vessel M total bending moment
D, outside diameter of vessel r cylinder outer radius
t thickness of vessel D = Er’ flexural rigidity
121 - 2]
u poison’s ratio M., out-of-round bending moment
n lobes of buckling Oor out-of-round stress
E Young's Modulus of material ] angle

1. Introduction

There are currently several well-known and widely-used procedures for predicting the structural
stability of pressure vessels under external pressure. However, effects of combined loads were
not investigated fully. In the present paper the combined effects of the external atmospheric

pressure and the piping loads at the nozzle are investigated.
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These combined effects could be catastrophic if not addressed properly, especially when the

stability of the structure is a crucial consideration, i.e. when buckling is a concern.

In unstable thin-walled vessels the imposition of an external force results in additional
deformation, which may not vanish upon the removal of the force. Greater forces induced by
piping loads at the nozzle cause greater deformations to occur [3,4], thereby rendering the
vessel more unstable. The design of the vessel must therefore be modified to include also the
effects of the piping loads at the nozzle. Expressions for the prediction of the critical buckling
pressure under external pressure alone were first derived by von Mises and later improved by
Windenburg and Trilling [3,5]. Currently, design engineers use the procedures provided in the
ASME Pressure Vessel Design Code to predict the critical buckling pressure of a pressure
vessel under external pressure. These expressions predict the general buckling behaviour of

the entire vessel.

The combined effect of external pressure and piping loads will result in local buckling occurring
at the shell-to-nozzle junction. The effects of nozzle loads cause increased stress
concentrations to occur at the shell-to-nozzle junction. Stresses in this region are thus greater
than the critical buckling stress for the vessel. This highly stressed region can result in local
buckling [6-9]. Fig. 1 illustrates local stresses at the shell-to-nozzle junction, where the critical
buckling stress o, is exceeded. Since nozzle loads cause deviations in vessels [3,4], it can be
assumed that this has the same effect on the stability of a vessel as does a vessel with

geometric imperfections.

The collapse pressure of cylindrical vessels subjected to external pressure is dependent on the
final fabricated shape. Imperfections or out-of-roundness in cylindrical vessels reduce the
ability of these vessels to withstand buckling. Out-of-roundness (deflections caused by nozzle
loads) at the shell-to-nozzle junction, reduces the buckling strength of the vessel. This results in
stresses at this region, shown in Fig. 2, being much greater than the reduced buckling strength

oer, thus rendering the vessel more unstable.

2. Finite Element Models

The investigation of the theory and FEM (Finite Element Methods) critical buckling pressures
are based on the 6 vessels (typical large diameter vessels commonly used in industry) shown in
Table 1. Each of the above vessels (1 to 6) is analysed using a 24 inch (609.6mm outer
diameter) nozzle together with its corresponding loads. Figure 3 gives a representation of
nozzle loads with different orientations and typical values of these loads. The material
properties are obtained from ASME VIII Div 2 Part D, as shown in Table 2.
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In the present study, two FEM models of the pressure vessels, which are generated using MSC
PATRAN, are considered. The first, Model A shown in Figure 4 [2], which is a circular cylinder
with no nozzle loads is used to correlate the FEM buckling pressures with the calculated
theoretical values. The second, Model B shown in Figure 5 [10,11], includes piping loads at the
shell-to-nozzle junction, and is used to determine the critical buckling pressure of the 6 vessels

mentioned above.

3. Design of Pressure Vessels under External Pressure

Several equations have been developed for the computation of the buckling pressure of vessels
under external pressure. The first and most accurate equations were derived by von Mises
[3,5). Von Mises developed equations for vessels subjected to radial pressure only, as well as
for vessels subjected to both radial and axial pressure. The design of vessels subjected to
radial and axial pressure using the expression developed in Refs. [3,5], is deemed to be much

safer, viz.,

Windenburg and Trilling [3,5] also derived an approximate equation given by

5/2
-
p _ 24F [DOJ

er 3/4 1/2 (2)

1— 12

( “ ) L - 0.45[[J
D

2

2

The number of lobes of buckling, n, is given by the equation.

4 %ﬂz(l—ﬂz)l/z

(L/D,V(t/D,) (3)

n=

Due to its simplicity, the expression given in €q. 2, is recommended in the ASME Code for the
design of vessels under external pressure. The ASME VII| Div 1 and 2 Code incorporates eq. 2
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to create their procedures for the design of pressure vessels under external pressure. Table 3
shows the comparison between FEM critical buckling pressures and theoretical values using
Model A. Von Mises critical buckling pressures provide the best correlation with the FEM
values. The ASME values differ from the FEM values, due to safety factors included in the
ASME Code [1] design procedures. The FEM model can be confirmed by determining the lobes
of buckling for the vessels. Fig. 6 show the lobes of buckling for vessel 5, obtained from FEM
analyses. For vessel 5, the theoretical value of n, using eq. 3, is calculated as n= 7. Figure 6

also shows 7 lobes confirming the FEM results.
4. Design of Pressure Vessels under Eternal Pressure and Piping Loads

Results obtained using Model B are shown in Table 4. Critical buckling pressures for vessels 1
- 6, including nozzle loads, were determined by the FEM Model B. Table 4 indicates that
nozzle loads reduce the critical buckling pressure. The critical buckling stress of a vessel,
inclusive of nozzle loads, is calculated using the reduced buckling pressure given in Table 4.
As stated earlier, local buckling at the shell-to-nozzle junction occurs when the stresses induced
by both nozzle loads and external pressure exceed the critical buckling stress of the vessel.
Table 5 gives a comparison of the theoretical stresses at the shell-to-nozzle junction, calculated
using the WRC 107 [12] method and FEM, with the critical buckling stresses of the vessel. The
critical buckling stress of a vessel with no nozzle loads is calculated using the buckling pressure

generated by using eq. 2 given by Windenburg and Trilling [3,5].

it can be seen from Table 5 that the stresses generated by the combined loading of nozzle
loads and external pressure (WRC 107 and FEM) exceed the critical buckling stresses for
vessels 1 - 5. The inclusion of nozzle loads reduce the critical stress (Windenburg & Trilling)
even further, which implies that severe local buckling will occur at the shell-to nozzle junction.
The local stress calculated for vessel 6 is much lower than the critical buckling stress (inclusive
of nozzle loads). The thickness of this vessel is 20mm, which implies that the vessel is much

stronger and the stress is therefore much lower.

Reduced critical buckling stresses, for vessels 1 — 6 subjected to both external pressure and
piping loads, have been achieved using FEM (Table 5). However, analytical results will also
have to be generated. The design of pressure vessels under external pressure and piping
loads at the nozzle requires the assumption that the piping loads cause deviations in the vessel,
which implies that the vessel can be treated as an out-of-round cylinder [3]. Analytical methods
have been developed to account for the effect of geometric imperfections in cylindrical shells
subjected to external pressure. Holt [13] developed a formula for the buckling pressure of a
vessel with an initial out-of-roundness, which is given by
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; /
‘ 2K urs Dn
P, = = 5 (4)

«r
D
E112—l+v[ﬁ"]} 3
44 2L [r}
[2)

SR (-v2p, -p,) LD

Eq. 4 was determined on the assumption that the initial out-of-roundness is similar in form to the

assumed buckling mode shape. This is not the case for vessels under external pressure and
external piping loads. A relationship between nozzle loads and eq. 4 has to be developed. To
develop this relationship one needs to take into account the fact that nozzle loads increase the
local stresses at the shell-to-nozzle junction. Geometric imperfections at localised areas also
increase stress concentrations. Timoshenko [14] studied the effects of cylinders and tubes with
initial noncircularity subjected to external pressure and developed a theory around this. The
most common form of noncircularity is that of an elliptical or oval shape. Using this kind of

imperfection the deviation caused by noncircularity could be shown to be [14],
u; =u, cos2¢ (5)
Fig. 7 shows an imperfect cylinder as given in [14,15]. When an external pressure is applied,

an additional radial displacement u, will occur. Timoshenko [14] determined that the deflection

caused by external pressure is given by the following higher order diferential equation :

tuy == (6)

This equation also applies to Fig. 7. Considering an elemental ring of unit width the
compressive force shown in Fig. 7 is given by F = pr . Thus the bending moment at any cross
section is equal to the compressive force multiplied by the total radial deviation u; +u, atthis

cross section, viz.
M= pr(u2 +u, COS 2¢) (7)

Substituting eq. 7 into eq. 6 and rearranging give :

d2 3 3
u, +uz[l +LJ:— priu, cos2¢ (8)
de? D D

The solution of eq. 8 is given by
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_u,pcos2e
=,

cr

(9)

iy

Substituting eq. 9 into eq. 7 and taking the bending moment to be maximum at points | | and

¢ =, we obtain :

M _ pu,r (10)

")

The compressive critical stress is obtained by converting M, to a stress :

- :iLDOA_ (11)

or 2
v

Where D, =2r and u, = A. The increased stress for an imperfect vessel can be determined

using eq. 11. Substituting A from eq. 4 into eq. 11, one can determine a relationship between
the maximum compressive stress (nozzle loads only) and the maximum out-of round stress (eq.

11). The differences between these stresses is shown in Table 6.

Table 6 gives the stresses, for vessels 1 to 6, for the maximum compressive stress generated
by nozzle loads using WRC 107 and the maximum out-of-round stress calculated using eq. 11.
The results indicate that out-of-round stresses and stresses generated by nozzle loads increase
the stress concentration at localised regions. Therefore, a relationship between the two
stresses can be developed. However, this relationship is for a 24" (609.6mm outer diameter)

nozzle. Further relationships for various other nozzles can be developed.

5. Conclusion

The effects of piping loads on pressure vessels under external pressure have been
investigated. Theoretical models have been generated and analysed and compared to results
obtained by the finite element software MSC PATRAN. The theoretical results for vessels under
external pressure alone coincide with the finite element values. For the effects of the piping
loads further finite element analyses were generated and the results indicated that these
vessels could be related to out-of-round cylinders. Out-of-roundness causes a reduction in the

buckling strength of the vessel thus making it unstable.
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Procedures will have to be developed for the design of these vessels under piping loads at the
nozzle. This will involve the modification of the three major design parameters (diameter, length
and thickness) to ensure a much stronger vessel under buckling. The design engineer will have
to determine the critical buckling strength at the shell-to-nozzle junction. The research shows
that this can be achieved by determining, for various types of nozzles, relationships between
compressive stresses due to nozzle loads and stresses due to out-of-roundness. The out-of-
round compressive stress will give an out-of-round value, which can be used in Holt's formula
to calculate the critical buckling pressure at the shell-to-nozzle junction. To prevent local
buckling from occurring, stresses induced in the shell due to external pressure and piping loads

should be within the calculated critical buckiing stress of the shell-to-nozzle junction.
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Figure Captions

Figure 1 : Local Stresses exceeding Critical Buckling Stress

Figure 2 : Local Stresses exceeding reduced Critical Buckling Stress
Figure 3 : Nozzle Loads with orientations

Figure 4 : Model A

Figure 5 : Model B

Figure 6 : Buckled Vessel 5 — Model A

Figure 7 : Cylinder with Initial Ellipticity under External Pressure

Tables

Table 1 : Vessels for Theoretical and FEM Analysis

Table 2 : Vessel Material Properties

Table 3 : Comparison of Buckling Pressures between Theory and FEM

Table 4 : FEM Analyses for Vessels with Nozzle Loads

Table 5 : Comparison of Local and Critical Buckling Stresses at the shell-to-nozzle junction

Table 6 : Stress relationship between nozzle loads and out-of-roundness
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Figure 1 : Local Stresses exceeding Critical Buckling Stress
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Figure 2 : Local Stresses exceeding reduced Critical Buckling Stress



Nozzle Loads
P = 35500N
Mc = 16900Nmm
M, = 24800Nmm

Figure 3 : Nozzle Loads with orientations

Figure 4 : Model A
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Figure 5 : Model B

Isometric view Top view

Figure 6 ;. Buckled Vessel 5 — Model A
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Vessel Outer Diameter | Thickness Corrosion Length External Nozzle
Allowance Pressure outer

diameter
{mm)

1 2800mm 8mm Omm 2000mm 0.1 Mpa 609.6
2 2800mm 10mm Omm 2000mm 0.1 Mpa 609.6
3 2800mm 12mm Omm 2000mm 0.1 Mpa 609.6
4 2800mm 14mm Omm 2000mm 0.1 MPa 609.6
5 2800mm 16mm Omm 2000mm 0.1 MPa 609.6
6 2800mm 20mm Omm 2000mm 0.1 MPa 609.6
Table 1 : Vessels for Theoretical and FEM Analysis
Material Kyrs (MPa) E (GPa)
SA 516 Grade 70 483 200 0.3

(carbon steel)

Table 2 : Vessel Material Properties
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Vessel tiD, Buckling Pressure Mpa
ASME Windenburg & | Von Mises MSC
Trilling PATRAN
1 0.0029 0.330 0.329 0.329 0.385
2 0.0036 0.570 0.577 0.583 0.667
3 0.0043 0.900 0.913 0.950 1.046
4 0.0050 1.320 1.347 1.347 1.557
5 0.0057 1.800 1.887 1.900 2.126
6 0.0071 2.532 3.316 3.459 3.695
Table 3 : Comparison of Buckling Pressures between Theory and FEM
Vessel t/D, MSC PATRAN MSC PATRAN
Buckling Buckling Pressure
Pressure MPa - MPa ~ 24” Nozzle
no nozzle
1 0.0029 0.385 0.181
2 0.0036 0.667 0.370
3 0.0043 1.046 0.649
4 0.0050 1.557 1.021
5 0.0057 2.126 1.488
L 6 0.0071 3.695 2734

Table 4 : FEM Analyses for Vessels with Nozzle Loads
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Vessel t/D, Local Stresses — Nozzle Critical Buckling Stress
loads + External Pressure

WRC 107 FEM Windenburg Nozzle Loads

& Trilling — + External

no nozzle Pressure
1 0.0029 612.6 MPa 635 MPa 57.6 MPa 31.7 MPa
2 0.0036 408.5 MPa 446 MPa 80.8 MPa 51.8 MPa
3 0.0043 289.8 MPa 317 MPa 106.5 MPa 75.7 MPa
4 0.0050 217.3 MPa 239 MPa 134.7 MPa 102.1 MPa
5 0.0057 173.8 MPa 182 MPa 165.1 MPa 130.2 MPa
6 0.0071 118.2 MPa 111 MPa 232.1 MPa 191.3 MPa

Table 5 : Comparison of Local and Critical Buckling Stresses at the shell-to-nozzle junction

Vessel MSC PATRAN | MSC PATRAN Maximum Maximum out-
Buckling Buckling Compressive of-round
Pressure MPa | Pressure MPa | A - German Stress (WRC 107 — stress
— no nozzle — 24" Nozzle | Code mm nozzie loads only) (formula 11)
MPa MPa
1 0.385 0.181 13.731 595.2 258.6
2 0.667 0.370 9.729 3947 991
3 1.046 0.649 7.223 278.2 47 4
4 1.557 1.021 5.568 2074 25.8
5 2.126 1.488 4.316 165.2 15.0
6 3.695 2734 3.167 111.3 6.9

Table 6 : Stress relationship between nozzle loads and out-of-roundness
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