
UNIVERSITY OF NATAL

MODULAR MECHATRONIC CIM

CONTROL FOR INTERNET

MANUFACTURING

Johan-Gerhard Potgieter

MScEng

School of Mechanical Engineering

University ofNatal

Durban

Submitted in fulfilment ofthe academic requirements for the degree ofDoctor ofPhilosophy

inEngineering in the School of Mechanical Engineering, University of Natal.

I.?ecember 2002

The author hereby states that this entire thesis, unless specifically indicated otherwise, is his

own original work, and has not been submitted in part or in whole to any other University.

This dissertation records the work completed by the author at the Department ofMechanical

Engineering at the University ofNatal between January 1999 and November 2001. The work

contained herein has not been submitted for a degree at any other university.

J Potgieter

To my Son Jordan

ABSTRACT

Mechatronics encompass a holistic approach to the design, development, production,

maintenance and disposal of complex engineering systems, products and processes. The

control and modelling of the manufacturing process are carried out in a networked

environment allowing for realistic real time control and simulation. This is achieved through

the declarative definition of Computer Integrated Manufacturing (CIM) components, the

standardisation ofCIM interfaces and the object-orientated approach to model development

and data management. The development of the Modular Mechatronic CIM control system is

aimed at intelligently scheduling, controlling and monitoring manufacturing processes in real­

time over Internet capable networks.

Modular Mechatronics is an alternative design approach that requires the decomposition of

a project into separate modules, identifiable by their individual mechatronic functionality.

Modular Mechatronic control for Internet manufacturing produces an efficient and effective

solution for CIM processes. This approach allows a remote user to monitor and control CIM

processes in real time over the Internet allow for a supervisory control structure to control and

manage these processes. The modular mechatronic design approach has been applied to the

development ofthe CIM Internet control system, to optimise the overall function ofthe CIM

system.

A flexible, low cost Modular Mechatronic design approach was used to develop the CIM

architecture and computer interface network, which served as the backbone of the Modular

Mechatronic CIM control system. The modular designed control system was used to control

CIM components in real time over the Internet. The Modular Mechatronic building block

development allows for future integration of other CIM components.

-1-

ACKNOWLEDGEMENTS

This work presented in this thesis was carried out under the supervision ofProf G Bright of

the School ofMechanical Engineering at the University ofNatal, Durban. I wish to thank Prof

Bright for his enthusiastic supervision ofthis research and the friendly guidance and constant

support he has offered me throughout my studies.

I also wish to thank:

• My wife, Kerry, for her inspiration and enthusiasm that has helped me attain my goals.

• My mother, for her love, unfailing loyalty and absolute support.

• My sister, Anwyn, for all her love.

• My extended family and friends for their support through good times and bad.

• My colleagues, Dr N S Tlale and Dr J R S Mayor, for the friendly and stimulating

working environment they created.

• Miss Wendy Jannsens for all her assistance during the project.

• Mr Ben Vorster and staffofthe Mechanical Engineering Workshop, for their technical

expertise and assistance.

• The National Research Foundation (NRF) and the University of Natal, for their

financial support.

-11-

TABLE OF CONTENTS

ABSTRACT .

ACKNOWLEDGEMENTS ii

LIST OF FIGURES .. ix

LIST OF TABLES xv

CHAPTER 1 INTRODUCTION

1 IN"TRODUCTION 1

1.1 PROJECT BACKGROUND AND OBJECTIVES 2

1.2 NEW CONTRIBUTIONS 4

1.2.1 Internet Manufacturing Technologies 4

1.2.2 Modular Mechatronics 9

1.3 RESEARCH PUBLICATIONS 11

1.3.1 Refereed Journals 11

1.3.2 Refereed Conference Proceedings 11

1.4 THESIS LAYOUT 12

CHAPTER 2 MODULAR MECHATRONICS FOR CIM SYSTEMS

2 MODULAR MECHATRONICS FOR CIM SYSTEMS 14

2.1 COMPONENTS OF CIM ARCHITECTURE 18

2.2 CIM COMMUNICATION STRUCTURE 22

2.3 THE MR
2
G CIM LABORATORY 24

CHAPTER 3 MECHATRONIC ACTUATION

3 MECHATRONIC ACTUATION 31

3.1 DC MOTORS 32

3.1.1 Fundamental Operating Model 32

3.2 SWITCHIN"G DEVICES 37

3.2.1 Electromechanical Relays 37

3.2.2 Solid State Devices 37

-111-

3.2.2.1 Diodes 38

3.2.2.2 Bipolar Transistors 38

3.3 CONVEYER SYSTEM POWER ELECTRONICS 39

3.3.1 DC Servomotor Drive Circuitry 40

304 INDUSTRIAL ROBOT POWER ELECTRONICS 44

304.1 High Power Robot Drive Circuitry 44

CHAPTER 4 MECHATRONIC-BASED FEEDBACK INFORMATION

4 MECHATRONIC-BASED FEEDBACK INFORMATION 47

4.1 THE PC-BASED CONVEYER SYSTEM 49

4.2 INDUSTRIAL ROBOT FEEDBACK DEVICES 52

4.2.1 Resistive Potentiometers 52

4.2.2 Optical Incremental Encoders 53

4.3 SIGNAL CONDITIONING MODULES 56

4.3.1 LM12 - Buffer Circuit Module 57

4.3.2 Encoder - Signal Conditioning Module 57

CHAPTER 5 THE CIM TELEOPERATION SYSTEM

5 THE CIM TELEOPERATION SYSTEM 59

5.1 BACKGROUND OF THE WORLD WIDE WEB 60

5.1.1 HTML: The Language of the Web 60

5.1.2 Visual Basic Scripting 61

5.1.3 JavaScript 62

5.1.4 ActiveX Controls 62

5.1.5 Java Applets 63

5.2 THE INTERNET CONTROL FRAMEWORK 64

5.3 THE NETWORK MODULE 64

504 THE CONTROL PROTOCOL MODULE 66

504.1 Windows Sockets and the Windows WinSock Proxy 66

504.2 Connected Service Using TCP Sockets 67

504.3 Connectionless Service Using UDP Sockets 70

-lV-

5.4.4 The WinSock Proxy 70

5.4.5 WinSock Proxy Architecture 72

5.4.6 WinSock Proxy Control Channel 73

5.4.7 WinSock Proxy: TCP Redirection 75

5.4.8 WinSock Proxy: UDP Redirection 77

5.5 USING TCPIIP ON THE INTERNAL NETWORK 80

5.6 THE SERVER MODULE 80

5.7 THE VISUAL FEEDBACK MODULE 83

5.7.1 nS-Webcasting 85

5.7.2 Video-conferencing 86

5.7.3 Java Applet 87

CHAPTER 6 THE PC-BASED CONVEYER SYSTEM

6 THE PC-BASED CONVEYER SYSTEM 90

6.1 ROLLER CONVEYERS 92

6.2 THE PC-BASED ROLLER CONVEYER SYSTEM 93

6.3 DIGITAL I/O INTERFACING 96

6.3.1 Interfacing Using the PCL-836 Interface Card 97

6.4 DESIGN SPECIFICATIONS OF THE CONVEYER CONTROL

SySTEM 100

6.5 THE CONVEYER CONTROL MODULE 100

6.6 THE SUPERVISORY CONVEYER CONTROL STRUCTURE 103

CHAPTER 7 THE PC-BASED PUMA ROBOT

7 THE PC-BASED PUMA ROBOT 104

7.1 THE INTERDISCIPLINARITY OF MECHATRONICS

AND ROBOTICS 104

7.2 ROBOT KINEMATICS 108

7.3 THE DIRECT KINEMATIC SOLUTION 109

7.3.1 The Rotation Matrices 109

7.3.2 The Composite Rotation Matrix 112

-v-

7.3.3 Link and Joint Parameters 112

7.3.4 The Denavit-Hartenberg Representation 114

7.4 THE INVERSE KINEMATIC SOLUTION 115

7.4.1 The Geometric Approach 115

7.5 DYNAMIC ROBOT CONTROL 124

7.6 THE PC-BASED PUMA 560 SERIES ROBOT 124

7.7 THE ROBOT / COMPUTER INTERFACE 126

7.7.1 Control Using the PC-30GA Card 127

7.7.2 The PCL-832 Servo Control Card 132

7.8 ROBOT CONTROL SySTEM ·· 137

CHAPTER 8 PERFORMANCE ANALYSIS OF THE INTERNET·

BASED CIM SYSTEM

8 PERFORMANCE ANALYSIS OF THE INTERNET-BASED

CIM SYSTEM 138

8.1 MEASURING NETWORK PERFORMANCE 139

8.2 NETWORK PERFORMANCE MEASUREMENTS 141

8.3 CIM COMMUNICATION PERFORMANCE RESULTS 143

8.3.1 The Camera Selector Client 143

8.3.2 The Conveyer Client 146

8.3.3 The Robot Client 149

8.3.4 The Web Client 152

8.4 THE VISUAL FEEDBACK PERFORMANCE 156

CHAPTER 9 OPERATIONAL REVIEW OF THE MODULAR

MECHATRONIC CIM INTERNET CONTROL SYSTEM

9 OPERATIONAL REVIEW OF THE MODULAR MECHATRONIC

CIM INTERNET CONTROL SYSTEM 158

9.1 IMPLEMENTATION OF THE MODULAR MECHATRONIC

INTERNET CONTROL SYSTEM IN THE CIM ENVIRONMENT ... 159

9.2 OPERATIONAL REVIEW OF THE SUPERVISORY

-Vl-

CONTROL SYSTEM 162

9.2.1 The Remote Client Website 162

9.2.2 The Visual Feedback Module 166

9.2.3 The Web Client Control Software 169

9.3 OPERATIONAL REVIEW OF THE PRIMARY CIM CONTROL

SySTEM 171

9.3.1 The Conveyer Controller 171

9.3.2 Operational Review of the PUMA Robot 173

9.4 APPLICATIONS OF THE MECHATRONIC INTERNET

CONTROL SYSTEM 178

9.4.1 Example 1 : Telecare and Telehealth 178

9.4.2 Example 2: The Networked House 180

CHAPTER 10 CONCLUSION

10 CONCLUSION 182

10.1 INTERNET MANUFACTURING TECHNOLOGIES 185

10.2 MODULAR MECHATRONICS 186

10.3 SUGGESTIONS FOR FURTHER WORK 188

GLOSSARY

GLOSSARY 190

REFERENCES

REFERENCES 203

-vii-

Appendix A

Appendix B

Code Listing for the Modular Mechatronic

CIM Internet Control System 211

Cost Breakdown of the Modular Mechatronic

Internet Control System 335

-Vlll-

Figure 1.1

Figure 1.2

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5

Figure 2.6

Figure 2.7

Figure 2.8

Figure 2.9

Figure 2.10

Figure 2.11

Figure 2.12

Figure 2.13

Figure 2.14

Figure 2.15

Figure 2.16

Figure 2.17

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

LIST OF FIGURES

CIM Architecture 2

The functional modular mechatronic sub-tasks required by the

Internet-based CIM control system. Note how functional mechatronic

modules are shared between systems . 10

Mechatronics : synergism and integration through design 14

Dynamic system investigation . 16

The technical development and integration of related engineering

disciplines 16

Manufacturing system context diagram . 17

The relationship between procedural and process data in a mechatronic

context. Note the sharing ofprocedural information occurs through a

knowledge filter 18

An illustration of the specialist area of CIM 19

Shows the typical CIM hierarchy 20

The CIM cell in the MR2G laboratory 21

The basic types of topology for a LAN 23

The MR
2
G CIM cell in the School ofMechanical Engineering 25

The PC-based PUMA 560 series robot 25

The AGV aligning with the conveyer system in the CIM cell 26

The CIM cell conveyer hardware cabinet 27

The Automated Visual Inspection Apparatus 27

The contact-sensor CMM in the MR2G laboratory 28

The Automated Storage and Retrieval System 29

The MAHO MH-400 CNC milling machine with a Heidenhain

TNC-426 controller 29

The simplified "black-box" representation of a DC motor 32

The "black-box" motor with drive and load 33

Velocity response of a DC motor under varying inertia conditions 35

The "black-box" DC motor with a gearbox for impedance matching 35

Schematic ofthe electromagnetic relay 37

-lX-

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

Figure 3.10

Figure 3.11

Figure 3.12

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Diode characteristics, showing the forward- and reverse biassed

conditions 38

The two type of transistor symbols (a) NPN and (b) PNP 39

A schematic representation of the components of the DC motor

drive circuitry. Note the different signal levels 41

The circuit diagram for the direction control module of the DC

motor drive circuitry. The control voltage is applied to the base of the

transistor TR4 42

The circuit diagram for the on/off control module of the DC

motor drive circuitry. The control signal is applied to the base of the

transistor TR4. . 43

The driver board that incorporated all three power modules. The coils

indicate the two separate motors 43

The modular LM12 driver circuit 46

Elements of a closed loop control system for the modular mechatronic

CIM cell 47

The long range infra-red transmitter circuit 50

The infra-red receiver circuit. The circuit produces a clean

low-to-high transition whenever the input infra-red beam is blocked 51

Illustrates the single wire resistive wire of a rotary potentiometer 52

Illustrates the components of a rotary optical incremental encoder 54

Illustrates the encoder disk track patters 55

Illustrates the quadrature direction sensing and resolution

enhancement 55

The quadrature encoder circuit 56

The bidirectional encoder conditioning module circuit 58

Links may be to remote Web pages or within the same page 61

The star topology network 64

The 8-port DE-809TC Ethemet Hub used as the CIM cell networking

device 65

The server communication layer 68

-x-

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.10

Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4

Figure 6.5

Figure 6.6

Figure 6.7

Figure 6.8

Figure 6.9

Figure 7.1

Figure 7.2

Figure 7.3

Figure 7.4

Figure 7.5

Figure 7.6

The client communication layer 69

The UDP communication layer 77

Shows the discrete conversations between a Client computer and an

Internet Server 81

Shows how protocols fit together, during information transfer 82

Illustrates the compilation and interpretation of an executed

platform independent program 88

Video transmission diagram 89

An overview of the ClM cell int the MR2G laboratory. Note the oval

roller conveyer system 91

Diagram of the interlocking belts of the powered roller conveyer

system 92

Conveyer straight section module 94

Conveyer 90° curved module 94

Shows the hierarchical control structure of the PC-based conveyer

system 95

Schematic of the conveyer system configuration. Note the conveyer

integration and interaction with other ClM components 96

A typical digital signal conveying information on an event starting

at time t1 .•••...........................•......••••......... 97

The PCL-836 10 counter card 98

A block diagram depicting the structure of the conveyer

control module 101

Mechatronics is the synergistic integration ofprecision mechanical

engineering, electronics, intelligent control, and systems 104

The direct and inverse kinematic transfer function solution for the

end-effector position and orientation 108

The rotation matrix reference and body-attached coordinate system 110

The rotating coordinate systems . 111

The PUMA 560 series robot arm, showing the joints and links 113

The link coordinate system and parameters . 113

-Xl-

Figure 7.7

Figure 7.8

Figure 7.9

Figure 7.10

Figure 7.11

Figure 7.12

Figure 7.13

Figure 7.14

Figure 7.15

Figure 7.16

Figure 7.17

Figure 7.18

Figure 7.19

Figure 7.20

Figure 7.21

Figure 7.22

Figure 7.23

Figure 7.24

Figure 7.25

Figure 7.26

Figure 7.27

Figure 8.1

The link coordinate system for the PUMA 560 series robot 114

The various arm definitions and configurations of the PUMA 500

series robot 116

The configuration definition used for the PC-based PUMA 560

series robot 116

The geometric solution ofjoint 1 118

The geometric solution ofjoint 2 119

The geometric solution ofjoint 3 120

The geometric solution ofjoint 4 121

The geometric solution ofjoint 5 122

The geometric solution ofjoint 6 123

Illustrates how the difference between the calculated forward

kinematic solution and the comparative inverse kinematic solution

produced the actuation error 123

The modular mechatronic hierarchical control structure of the PC-based

PUMA 560 series robot 125

The Eagle PC-30GA interface card 127

The gear mechanism ofjoint 1 129

The gear mechanism ofjoint 2 129

The gear mechanism ofjoint 3 129

The gear mechanism ofjoint 4,5 and 6 129

The circuit diagram for the brake release control module. The control

signal was applied to the base ofthe transistor, which energised the

relay coil with the additiona110w power 12V DC supply 130

The decision logic of the PC-30GA interface card 131

The PCL-832 3-axis servomotor control card 133

The decision logic of the PCL832 interface cards for the

PC-based PUMA robot 134

The decision logic and control modules of the PC-based

PUMA controller 136

The LANScan graphical user interface (GUI) 140

-Xll-

Figure 8.2

Figure 8.3

Figure 8.4

Figure 8.5

Figure 8.6

Graph of the network traffic perfonnance for an average day on the

University ofNatal Network 142

Graph of the transmission times between the CIM Host and Camera

Selector Client 145

Graph of the transmission times between the CIM Host and the

Conveyer Client . 148

Graph of the transmission times between the CIM Host and the

Robot Client . 151

Graph of the transmission times between the CIM Host and the

Web Client 154

Figure 8.7

Figure 8.8

Figure 9.1

Figure 9.9(a)

Figure 9.9(b)

Figure 9.9(c)

Figure 9.9(d)

Figure 9.10

Figure 9.11

Shows the gradient increase for lower bandwidth values 155

The visual feedback perfonnance graph 156

The interactions between the various CIM Client components and the

CIM Host controller 160

Figure 9.2 The CIM Control System homepage 163

Figure 9.3(a) The CIM Video Feed Web page 1 163

Figure 9.3(b) The CIM Video Feed Web page 2 163

Figure 9.4 The live video feed page 164

Figure 9.5(a) The Conveyer System Web page 1 164

Figure 9.5(b) The Conveyer System Web page 2 164

Figure 9.6 The PUMA Robot Web page 165

Figure 9.7 The FlashPoineo frame grabber card 166

Figure 9.8 The Server.frm fonn. Note the server has connected to IP

address 146.230.195.78, which is the Camera Selector Client 167

Camera view 1 168

Camera view 2 168

Camera view 3 168

Camera view 4 168

The camera selector circuit 169

The TCP/IP network backbone for CIM hardware control and

monitoring 169

-Xlll-

Figure 9.12

Figure 9.13

Figure 9.14

Figure 9.15

Figure 9.16

Figure 9.17

Figure 9.18

Figure 9.19

Figure 9.20

Figure 9.21

Figure 9.22

Figure 10.1

The ActiveX CIM control GUI 170

The front panel of the conveyer controller 172

The front panel of the PC-based PUMA robot controller 174

The three ~iews ofthe robot arm 175

Manual control window 175

The end-effector position 176

The arm configurations of the PUMA robot 176

The operator command buttons .. 177

The [frmPCL832.frm] initialisation form of the PUMA robot 177

The telecare system design strategy 179

Networks in the home will distribute data and entertainment signals that

are generated locally, as well as brought in from the Internet through

a broadband connection 180

A flowchart showing the hierarchical CIM control structure integration of the

modular mechatronic sub-tasks 187

-XIV-

Table 5.1

Table 6.1

Table 6.2

Table 6.3

Table 6.4

Table 7.1

Table 7.2

Table 7.3

Table 7.4

Table 8.1

Table 8.2

Table 8.3

Table 8.4

Table 8.5

Table 8.6

Table 8.7

Table 8.8

Table 8.9

LIST OF TABLES

System specifications of the ClM cell Server / Host computer 83

Bit definitions for the four 8-bit ports. The data refers to the line

number of the port 98

The high level functions used to control the digital ports of the

PCL-836 card 100

The feedback signals used in the conveyer control module.

The conveyer numbers refer to Figure 6.7 102

The activation signals used in the conveyer control module 102

The revolutionary progresses in microelectronics and computer

science of the last decades 105

The link coordinate and parameter table of the PUMA 560 robot 115

Bit definitions for the three 8-bit ports. The data refers to the line number

of the port 128

The line definitions of the PCL-832 servo control card 135

The performance ofthe Network during the day 141

The command interactions between the ClM Host and the Camera

Selector Client 143

The transmission time performance between the ClM Host controller

and the Camera Selector Client in milliseconds 144

The command interactions between the ClM Host and the Conveyer

Client 146

The transmission time performance between the ClM Host controller

and the Conveyer Client in milliseconds 147

The command interactions between the ClM Host and the Robot

Client 149

The transmission time performance between the ClM Host controller

and the Robot Client in milliseconds 150

The command interactions between the ClM Host controller and the

Web Client 152

The transmission time performance between the CIM Host controller

-xv-

Table 9.1

Table 10.1

and the Web Client in milliseconds 153

The control commands as graphically illustrated in Figure 9.1 161

The Modular Mechatronic CIM Sub-Tasks 188

-xvi-

CHAPTER 1

1 INTRODUCTION

Multimedia works well in the computerised manufacturing environment mainly because it is

cost-effective, convenient and the results can be measured [Rahman et.al.]. There is a need for

enterprise integration due to the fact that modern manufacturing operations are more

decentralised in nature. This may be achieved using multimedia capable computer networks,

especially in the process ofintegrating various functional areas such as marketing, design and

planning, production and distribution within the enterprise [Rahman et.al.]. To succeed, the

Internet-based multimedia products have to be based on standard products including

transceivers, network interface cards, gateways, small servers, sensors and controllers, and a

widely accepted operating system.

Some functional areas of manufacturing that have been considered for Internet uses are

Computer Integrated Manufacturing (CIM), Flexible Manufacturing Systems (FMS),

Computer Aided Design (CAD), Automated Storage and Retrieval Systems (AS/RS), and

Robot control and scheduling. When using a modular design approach for each component

ofthe manufacturing process, control and implementation ofan Internet-based manufacturing

process is significantly simplified. In CIM, the traditionally separate functions ofresearch and

development, design, production, assembly, inspection, and quality control are linked.

Consequently, integration requires that quantitative relationships among product designs,

materials, manufacturing processes and equipment capabilities, and related activities be well

understood [Kalpakjian et.al.]. The effectiveness of a CIM system depends greatly on the

presence of some large-scale, integrated communications system involving computers,

machines, and their controls. Each component ofthe elM system must be seen as an actuator,

broken down into its most simplistic components. A microprocessor controlled actuators

within a ClM cell consist of sensors, motors and linear/rotary actuators capable of position

feedback and speed control. All these ClM cell components are connected to a PC-based

controller which connects to a host controller as in Figure 1.1.

-1-

Chapter I INTRODUCTION

HOST CONTROLLER

Ethemet Ethemet
I I I I I I

AGV ASRS CMM ROBOT l--ONVEYER CNC

Figure 1.1. CIM Architecture.

On a primary level these CIM components are controlled using modular mechatronic

principles. Mechatronics encapsulate the integration of electronics, control engineering and

mechanical engineering, where there is a trend towards the development ofmodular actuating

systems.

1.1 PROJECT BACKGROUND AND OBJECTIVES

The scope of this research addresses the topics of advanced manufacturing technologies,

specifically computer integrated manufacturing, and Modular Mechatronics.

The modular mechatronic Internet-based manufacturing system was designed to be integrated

into the eIM system being developed at the School of Mechanical Engineering at the

University ofNatal, Durban, South Africa. The developed technology would have to be PC­

based, whilst being cost-effective, making it accessible to all industrial sectors and institutions

of higher learning.

-2-

Chapter 1 INTRODUCTION

The primary objective ofthe research project was the design and implementation ofa low-cost

flexible Internet controlled manufacturing environment. Specific objectives include:

1. The design and development ofthe necessary power electronics required to operate the

motion systems of the conveyer material handling system and PC-based PUMA

industrial robot, using a modular mechatronic approach.

2. The design and development ofthe necessary mechatronic feedback devices required

to monitor the motion systems of the conveyer material handling system and PC­

based PUMA industrial robot, using a modular mechatronic approach.

3. The design and development of the technologies for Internet applications.

4. The design and development ofa PC-based controller for a conveyer material handling

system.

5. The design and development of a PC-based robot controller.

6. The integration of the PC-based robot and conveyer material handling technologies

into a CIM system for Internet control.

-3-

Chapter 1 INTRODUCTION

1.2 NEW CONTRIBUTIONS

The research discussed in this dissertation makes a meaningful and original contribution to

the ongoing research in the fields ofInternet manufacturing technologies and flexible, low cost

modular mechatronics.

1.2.1 Internet Manufacturing Technologies

The next wave ofthe Internet has already started to build. In this wave, everything electric will

be connected. That means everything in the manufacturing enterprise will be part ofan overall

network that's based on Internet protocols. The new connectivity and communications tools

will boost productivity, profits, speed to market, and flexibility, for those manufactures able

to change.

In Engineering today there is a rapid change taking place, where information technology (IT)

is now becoming a new challenge for the designer. IT can provide information for the

designer, and recently knowledge management systems have been developed to provide

greater assistance [Counsell et.al.]. Despite the technical revolution few IT software tools have

been developed which provide designers with a usable methodology for requirements capture,

conceptual design and control.

Web-based manufacturing has captured the interest ofresearchers and developers. The World

Wide Web can be used as the infrastructure for teleoperation. Manual closed-loop control,

where the human operator forms part ofthe control loop is the earliest and most studied form

ofte1eoperation [Taylor et.al.]. At its simplest, communication is through mechanical linkages

and feedback is by direct viewing.

Where there is significant time delay in communication, instability occurs and manual closed­

loop control is no longer suitable. One technique that can improve operator performance and

avoid instability problems is a shared or supervisory control scheme, where the control ofthe

-4-

Chapter 1 INTRODUCTION

robot or device is shared between a local control loop and the human operator. World Wide

Web teleoperation is a concept that involves the control of the remote device from within an

Internet application.

Connectivity would then become a feature of everything within an enterprise, every device

will be connected to a network. And that network will be based on the Internet or a corporate

intranet, a wide-area network (WAN) or virtual private network (VPN) based on TCP/IP

(Transmission Control Protocol/Internet Protocol), the computer protocols of the Internet.

The major difference will be that they won't necessarily be using a computer. Once every

device is connected, we'll be working online through other devices, including wireless phones

and also through the manufacturing machines and systems that are connected. "This will truly

empower the knowledge worker on the shop floor by giving him or her access to information

on machinery maintenance, repairs, upgrades, process improvements or whatever else he or

she needs access to at any time, right at the system that needs repairs," says Jim Fall, president

and CEO of Manufacturing Data Systems, Inc. (MDSI), an Ann Arbor, Michigan firm that

develops and implements motion control software applications.

Commerce over the Internet has grown to $101 billion in 1998 that is, actual sales ofproducts

and services to consumers or businesses over the Web, according to a study by Internet

Indicators. This sector has also been growing at an incredible rate ofover 50 percent per year.

Industry analysts expect e-COmmerce in the business-to-business sector to explode in the next

few years.

There are also more computer and Internet-enabled devices available on the market, from

industrial motion controllers to vision systems to medical instruments to automatic teller

machines. These embedded electronics were originally developed to control one small set of

functions, and to communicate with a single control system. As technology developed and the

Internet became an indispensable part ofalmost every manufacturer in North America, users

started to demand more functions and wider connectivity for such devices. Hence the growth

-5-

Chapter 1

of embedded Web browsers.

INTRODUCTION

Embedding Web connections into a wide range ofnon-computer devices requires an operating

system that can fit in the restricted memory of a cell phone or process control system.

Currently, there are three main contenders: Windows CE, embedded Java and a new version

ofOS12.

Microsoft's Windows CE is a small operating system for portable devices that allows

communications with Windows-based personal computers. The first devices to use Windows

CE were palm-top computers, but a growing number of consumer electronics such as game

systems, set-top boxes, pagers and Web-ready cell phones use embedded Windows CB.

Sun Microsystems embedded Java technology uses the Java Virtual Machine running on top

of the embedded device's operating system. Java is platform independent, yet allows a range

of high-level functions with relatively small amounts of coding. And because it's platform

independent, the same type offunctionality can be given to different products. It's being used

in products from mobile phones to printers and network switches, medical instruments and

industrial process controllers.

IBM is almost ready to release an embedded Web browser called NetDiver, which is based

on Sun's Java technology. NetDiver takes on 700 kilobytes of memory, plus another four

megabytes ofRAM for Web caching. Running on an embedded version ofthe OS/2 operating

system, it's a sign of a new possible direction for the development of this alternative OS to

Windows. It could be found soon on medical instruments, handheld computer terminals used

in warehousing and manufacturing, process and machine control systems as well as wireless

phones and automated teller machines.

Within manufacturing concerns Enterprise Asset Management (EAM) and Product Lifecycle

Management (PLM) are communicating with each other, and sharing data. Increasingly, this

is done through Internet connections.

-6-

Chapter 1 INTRODUCTION

The emergence of the Application Service Provider is another signal that the Internet is

becoming the computer software platform, more than the type ofoperating system orcomputer

manufacturer. In the ASP model, the user or software customer doesn't own the software, but

rather "rents" it. The application stays on the developer's computer server, and the customer

connects to it through the Internet.

The Internet and its communications protocols have a number ofadvantages. "IP is imperfect,

and it's everywhere," says Al Smith, vice-president of software development at Bluestone,

which develops technology that enables ASPs (Active Server Pages) and ASP software.

"Perfect technologies rarely get out of the lab," he explains, because to be perfect they

typically only fit a very limited set ofcriteria. The Internet, however, is easy to use and widely

accepted. Because it's everywhere, there is a great wealth of solutions, and a lot of expertise

to help users implement and troubleshoot what they're trying to do on the Internet.

The Internet is easy to use and widely accepted. Because it's everywhere, there is a wealth of

solutions, and a lot ofexpertise to help users implement and troubleshoot what they're trying

to do online.

"The biggest reason for the use of the Internet for machine-to-machine communication is

cost," says Don Thompson, a consultant with Deloitte Consulting in Toronto. Since most

corporate IT infrastructures already use intranets, it makes sense to base new communications

efforts on it. They don't need to add new physical networks or hire more experts to maintain

a different type ofnetwork.

The Internet is being used even at the shop floor level. For instance, OpenCNC 5.1 from

Manufacturing Data Systems, Inc. connects computer numerical control devices (CNCs)

through intranets or the Internet, production planning, or maintenance systems. "Fieldbus level

networks aren't oriented for communication between platforms, or between buildings or

plants," says Jim Fall, CEO of MDSI. Basing shop-floor data communication on lP, on the

-7-

Chapter 1 INTRODUCTION

other hand, makes it simpler to connect those systems with enterprise management systems.

Basing machine-to-machine communications on IP means setting up protocols and security

in software. This makes it so much easier to allow certain people access to certain sections of

the system, according to whatever criteria you like; maintenance people need certain parts of

the data, but not others; operators would be able to access a limited number of devices;

managers would be allowed to monitor, but not change anything, etc.

Furthermore, IP is robust enough to handle the communications. It supports real-time

communication (as opposed to batch processes) and it's faster and more robust than the virtual

private networks or value-added networks that came before it. As Jim Fall points out, it has

bandwidth to spare.

The Internet is where all the exciting developments are happening. Technologies such as Java

and ActiveX allow developers to build a wide range oftools, controls and functions to address

almost any manufacturer's needs.

New technologies such as the Extensible Markup Language (XML) are now making it easier

to share data between different application programs, and to set up computers to take actions

based on criteria for instance, to order supplies when inventories reach a critical low point.

With the Internet used within and between enterprises, communicating between management,

production planning, execution, maintenance, sales, accounting, shipping and purchasing

activities, the totally automated, "24 hour, lights-out factory" might not be far off. It has

already arrived in some plants: the manufacturing operation that can be operated completely

by remote control, with no one on the site other than maintenance personnel when needed.

Using Internet protocols makes the development of new communications simple, fast and

relatively cheap. And while the Internet seems popular now, it's going to grow even faster as

more Web-ready devices hit the markets.

-8-

Chapter I

1.2.2 Modular Mechatronics

INTRODUCTION

The research presented in this dissertation employs a design methodology referred to as,

Modular Mechatronics, which optimises the development ofthe Internet-based manufacturing

environment. The modular mechatronic design methodology is a rapid system development

tool integrating system building blocks comprising ofestablished mechatronic principles and

systems. The Internet-based CIM control system presented in this research was designed and

implemented using a low cost modular mechatronic rapid system development tool and

therefore provided a practical design strategy for modem mechatronic systems.

Manufacturing is a complex system composed ofmany diverse physical and human elements,

some ofwhich are difficult to predict and control [Kalpakjian et.al.]. Ideally a manufacturing

system should be represented by mathematical and physical models, which shows the nature

and extent of interdependence ofvariables involved. In a manufacturing system, a change or

disturbance anywhere in the system requires that it adjust itself system wide in order to

continue functioning efficiently. For CIM systems these models include process flow, control

information flow, data flow and cost. Similarly, the demand for a product may fluctuate

randomly and rapidly, on account of its style, size, or production volume. Modelling such a

complex system can be difficult due to a lack of comprehensive or reliable data on many of

the variables involved. The standardisation of the design process of the CIM architecture

simplifies the design of the manufacturing system and minimises the systems complexity.

[Honekamp et.al.] Proposes a modular design approach that reqUIres the functional

decomposition of the project into mechatronic functional modules and implementing the

hierarchical structuring of the mechatronic functional modules to develop mechatronic

systems. The base level of the mechatronic functional modules is defined to be an

encapsulated mechatronic system comprising ofa supporting structure, actuator/sensor groups

and controller elements [Honekamp et.al.].

The modular mechatronic design approach allows the project definition to be decomposed into

-9-

Chapter 1 INTRODUCTION

independent sub-tasks according to the individual mechatronic functionality ofeach module.

These sub-tasks define the mechatronic functional modules and therefore represent

encapsulated mechatronic systems.

The success of the modular mechatronic design methodology is dependant on the computer­

based integration of the various functional mechatronic modules. The responsibilities of the

computer-based controller can be organised in multiple levels, ranging from low-level control

through supervision to general system management [Isermann]. Figure 1.2 shows the

functional modular mechatronic sub-tasks required by the Internet-based ClM control system

presented in this research.

Figure 1.2. The functional modular mechatronic sub-tasks required by the Internet­
based CIM control system. Note how functional mechatronic modules are shared
between systems.

The integration ofthe modular mechatronics systems in a software domain is achieved by the

development ofalgorithms that control the coordinated interaction ofthe individual sub-tasks.

The modular mechatronic rapid system development tool should therefore be able to ensure

the rapid development of flexible Internet-based manufacturing technologies.

-10-

Chapter 1 INTRODUCTION

1.3 RESEARCH PUBLICATIONS

1.3.1 Refereed Journals

• G. Bright and J. Potgieter. "Robotic Internet System for ClM Processes", SA

Mechanical Engineer, South Africa, May 2000.

1.3.2 Refereed Conference Proceedings

• G. Bright and J. Potgieter. "PC-Based Mechatronic Robotic Plug and Play System for

Part Assembly Operations", IEEE International Symposium on Industrial Electronics,

Pretoria, South Africa, July, 1998.

• G. Bright and 1. Potgieter. "PC-Based Modular Robotic System for Part Assembly

Operations", lASTED International Conference on Robotics and Manufacturing,

Banff, Canada, July 1998.

• G. Bright and 1. Potgieter. "Operating System for part Assembly Operations using PC­

Based Plug and Play Mechatronic Technology", 9th DAAAM International

Symposium on Intelligent Manufacturing, Automation and Networking, Technical

University Cluj-Napoca, Romania, October, 1998.

• G. Bright and J. Potgieter. "Flexible PC-Based Modular Mechatronic Operating

Systems for Computer Integrated Manufacturing", The 15th ISPE/IEE International

Conference on CAD/CAM, Robotics and Factories ofthe Future, Aguas de Lindoia,

SP, Brazil, August, 1999.

• G. Bright and J. Potgieter. "Mechatronic Modular Robotic Internet-Based Control

System for Computer Integrated Manufacturing Processes", 7th lASTED International

Robotics and Applications 2000, Honolulu, Hawaii, USA, August 2000.

-11-

Chapter 1 INTRODUCTION

• G. Bright and J. Potgieter. "Mechatronic Internet-Based Control System for Computer

Integrated Manufacturing Processes", International Conference on Competitive

Manufacturing, COMA'01, Stellenbosch, South Africa, February 2001.

• G. Bright and 1. Potgieter. "Integrated Mechatronic Control Approach for Global

Manufacturing Enterprises", IASTED International Conference on Robotics and

Manufacturing (RM2001), Cancun, Mexico, May 2001.

• G. Bright and 1. Potgieter. "Mechatronic Control Approach for Global Internet

Manufacturing", The 17th ISPE/IEE International Conference on CAD/CAM,

Robotics and Factories of the Future, Durban, South Africa, July 2001.

1.4 THESIS LAYOUT

The layout of this thesis is based on the implementation of the modular mechatronics design

approach of the Internet-based computer integrated manufacturing control system. The

chapters present the research into each sub-task in the sequential order that reflects the design

methodology of the modular mechatronics approach.

Chapter 2 introduces the field of modular mechatronics and discusses current ClM

technologies. Chapter 3 covers the mechatronic principles and technologies that provide

primary power (actuation) of the modular ClM components, as discussed in Chapter 2.

Chapter 4 then discusses the collection offeedback information essential to the control ofthe

ClM cell and the associated mechatronic principles used. Chapter 5 discusses the ClM

teleoperation system, with the objective to design modular network and Internet systems.

Chapter 6 illustrates the integration ofthe mechatronic modules discussed in Chapters 3,4, and

5 for control of the PC-based conveyer system. Chapter 7 discusses the design and

implementation ofthe modular mechatronic Internet control strategy for the PC-based PUMA

robot.

-12-

Chapter I INTRODUCTION

A performance analysis and operational review of the modular mechatronic Internet-based

control system have been included in Chapter 8 and Chapter 9. Finally, Chapter 10 presents

a conclusion to this thesis that discusses the meaningful and original contributions of the

research presented in this thesis and offers some suggestions for future work.

-13-

CHAPTER 2

2 MODULAR MECHATRONICS FOR CIM SYSTEMS

Today, cost-effective electronics, microcomputers, and digital signal processors have brought

space-age technology to appliances and consumer products [Craig]. As Figure 2.1 illustrates,

mechatronics is the synergistic combination of mechanical engineering, electronics, control

systems, and computers. The key element ofmechatronics being the integration ofthese areas

through the design process. In order to design and build quality precision consumer products

in a timely manner, the present-day mechanical engineer must be knowledgeable (both

analytically and practically) in many different areas.

Figure 2.1. Mechatronics : synergism and integration through design. [Craig].

-14-

Chapter 2 MODULAR MECHATRONICS FOR CIM SYSTEMS

The ability to design and implement analogue and digital control systems, with associated

analogue and digital sensors, actuators, and electronics are an essential skill for every engineer

wanting to control a mechanical system. Knowledge of mechatronics helps an engineer

generate more and better concepts and facilitates the communication with team members in

other disciplines [Craig]. In mechatronics balance is paramount. The essential characteristic

of a mechatronic engineer is a balance between two sets of skills:

1. Modelling (physical and mathematical), analysis, and control design of dynamic

physical systems.

2. Experimental validation of models and analysis and understanding the key issues in

hardware implementation and design.

Figure 2.2 shows the diagram of the procedure for a dynamic system investigation that

emphasises this balance. Here the physical system can be an actual device or system that needs

improving, or a representation ofa concept being evaluated in the design process. Engineers

can no longer evaluate each design concept by building and testing. It is too costly and time

consuming. They must rely on the modelling and analysis of a previous design experience to

evaluate each design concept. This concept gives rise to the design of modular mechatronic

subsystems or building blocks.

Modular mechatronic systems can be applied to a variety of automated manufacturing

operations. These operations can be extended further by including information processing

functions, utilising an extensive network of interactive computers. The result is CIM, which

is a broad term describing the computerised integration of all aspects of design, planning,

manufacturing, distribution, and management [Kalpakjian et.al.]. Computer Integrated

Manufacturing is a methodology and a goal, rather than an assemblage of equipment and

computers. Implementation of CIM in existing plants may begin with modules in various

phases of operation. This provides an ideal platform for the implementation of the modular

mechatronic design methodology.

-15-

Chapter 2 MODULAR MECHATRONlCS FOR CIM SYSTEMS

Measurements,
Calculations,

Manufacturer's Specifications
Which Parameters to Identify?

What Tests to Perform?

Modify or
Augment

Model Adequate, Model Adequate,
Performance Performance
Inadequate Adequate

Figure 2.2. Dynamic system investigation [Parrish].

Although the emphasis on mechatronics should not change the fundamental content of it's

related engineering disciplines, it does provide the opportunity to contemporise and enhance

content, and improve sequencing ofmodelling and analysis, computing, electrical circuits and

machines, measurements and instrumentation, microprocessors and design. Figure 2.3 shows

the technical development and integration of the related engineering disciplines.

Information
Technology &

s.ftw~

Mechanical
Engineering => Mechanisation => Electro-mechanical => Mechatronics

System

Electrical
Technology

Electronics

-16-

Figure 2.3. The technical development and integration of related engineering
disciplines [Bradley et.al.].

Chapter 2 MODULAR MECHATRONICS FOR CIM SYSTEMS

Ifit is possible to implement and control mechatronic systems using modular building blocks,

then the nature and characteristic ofmechatronic systems would remain the same. Figure 2.4

shows these similar characteristics in a manufacturing system context diagram.

Ilnternal Nodel

Individual CNC
machine tool or robot
with internal
communications

'"

l'lsland of Automation'l

Island of Automation consisting
of CNC machine tools and robots
connected by a local area network

Factory level system made
up of 'Islands of Automation'
connected by a broad band
network

Internal
ommunications

Figure 2.4. Manufacturing system context diagram [Bradley et.al.].

Referring to Figure 2.4, the world ofa robot joint, which is a mechatronic system, is the robot

itself, while the world ofthe CIM may be the market. Each component ofthe CIM constitutes

a mechatronic system within an 'Island of Automation', consisting of a variety of modular

mechatronic building blocks. Figure 2.5 shows the information structure for the mechatronic

CIM system. The information structure has a hierarchy. Referring to Figure 2.5, layer 4 might

be a robot within the CIM system. The robot has its own process knowledge and has its own

controller, responsible for primary control. Layer 3 might be a robot host controller or macro

controller, controlling more than one robot. This layer contains process knowledge of the

manufacturing and assembly task being performed, while the robots being controlled, have no

knowledge about each others operation. Between layer 3 and layer 4 there exists a knowledge

filter allowing only the relevant information to be passed between layers in the process and

procedural mechatronic pyramid.

-17-

Chapter 2

Knowledge
Filter

MODULAR MECHATRONICS FOR CIM SYSTEMS

Procedural
Knowledge

Process
Knowledge

Procedural Knowledge Defines WHAT is to be done

Process Knowledge Defines HOW it is to be done
Figure 2.5. The relationship between procedural and process data in a mechatronic context.
Note the sharing ofprocedural information occurs through a knowledge filter [Bradleyet.al.].

2.1 COMPONENTS OF CIM ARCHITECTURE

The integration of the automated industry is now recognised by the widely accepted label of

CIM. Factory integration enables better organisation of material and information flows

[Parrish]. Part of the CIM component is the application of flexible manufacturing systems

(FMS) technology. CIM architecture is a framework, providing a structure of computer

hardware and software for computer systems in manufacturing companies.

The automation of the direct, and some indirect, production activity of a factory is classified

under the heading ofadvanced manufacturing technology (AMT). AMT aims to automate and

integrate all functions of a factory concerned with manufacturing operations such as design,

production and quality. AMT includes the automation of the manufacturing and engineering

activities such as computer-aided manufacturing (CAM), CIM and computer aided engineering

(CAB). Figure 2.6 maps the specialist area of CIM.

-18-

Chapter 2 MODULAR MECHATRONICS FOR CIM SYSTEMS

FACTORY OF THE FUTURE
(FOF)

elM

OPERATIONAL

1- --

! ORGANISATIONAL'·r
Corporate Services

Finance

Business Planning

Marketing

~AE
CAPP - Computer Aided Process
Planning

CAP - Computer Aided Planning

CAQ - Computer Aided Quality
Control

CADD - Computer Aided Design
and Drafting

MRP - Materials Resource Planning

leAf
FMS - Flexible Manufacturing
System

FMC - Flexible Manufacturing Cell

FAS - Flexible Manufacturing
Assembly

ONC - Direct Numerical Control

DAS - Data Acquisition System

AC - Area Controller

CC - Cell Controller

Figure 2.6. An illustration of the specialist area of CIM [Parrish].

The activities ofa CIM environment can be logically distributed into a hierarchy that operates

on a data exchange network system. There are five describable levels ofcontrol or organisation

(ref. Figure 2.7). Within the CIM hierarchy, host systems are designed to control groups of

machines and equipment or to organise facilities or data for the equipment.

-19-

Chapter 2 MODULAR MECHATRONICS FOR CIM SYSTEMS

CIM-Level d
Har ware Function Data Usage:

Long term
- Years
- Months

Relays Actuators
Switches Valves
Drives

Plant Control
- Centralise Data Base
- Production Planning

Mainframes
mini

1

Area Controller
Short ter

4 (MIS MRP CAD CAP SFDC)
- Localised Data Base - Weeks

- Area Planning - Days

minisb WS Cell Controller
Event-

3 PC (DNC. Master FMS. FMS. HOSTS)
Driven- Manufacturing Control

- Material Flow Control - Hours
a - Current Period Data Base - Minutes

Process Controllers
Real Time

2 - Operational Data
- Feedback Control - Seconds

5

Figure 2.7. Shows the typical CIM hierarchy [Parrish].

Levels 3 to 5 organise areas of the factory based on decisions taken from data received from

other levels in the hierarchy. Control is the execution and monitoring ofthe decisions oflevels

1 and 2. These functional levels found in the factory environment are not to be confused with

the seven ISO/OSI (International Standard Organisation! open system interface) layers upon

which the Manufacturing Automation Protocols (MAP) are based. The CIM hierarchy levels

support the organisation of a factory to be able to carry out functions. The ISO/OSI levels

enable communication between the functions found in a factory, such as the data transfer

between a CAD computer and an NC programming computer. Level 1 and 2 of the CIM

hierarchy, consisting ofRobots, CNC, PLC etc., is where the control functions are executed.

Levels 3, 4 and 5 define the organisational levels such as the FMS host and area controller. At

-20-

Chapter 2 MODULAR MECHATRONICS FOR CIM SYSTEMS

level I of the hierarchy is the modular mechatronic actuators and feedback devices. Level 2

includes the controllers which enable the mechatronic devices and machines to achieve an

autonomous standalone capability. The dedication of controllers to equipment or functional

areas results in decentralisation ofcontrol in the hierarchy. This provides a greater total system

reliability with higher system uptime. If any part of the hierarchy fails, the remainder may

continue to function.

The production cell host controller is installed (hierarchical control) above the stand-alone

controllers to provide the organisation and monitoring ofa group ofmachines. This occurs at

level 3a, and consists of a personal computer. The use of controller at this level is usually

dependant upon the size and complexity ofthe manufacturing system. The CIM system in the

Mechatronics and Robotics Research Group (MR2G) laboratory is an example of a CIM cell.

Figure 2.8 shows an overview of the CIM cell in the MR2G laboratory.

Figure 2.8. The CIM cell in the MR2G laboratory.

Each of the systems within the CIM forms a single autonomous island of production (ref.

Figure 2.4). Level 3b, where the host computer is often known as a coordination or master

-21-

Chapter 2 MODULAR MECHATRONICS FOR ClM SYSTEMS

host, is only ever configured in the hierarchy when two or more level 3a production cell

controllers require coordination into an even larger production island. They are grouped

together under the coordination of this master host computer to form the expanded

autonomous workshop.

Presented in this dissertation is the control of two different and unique material handling

systems:

1. The PC-based conveyer system in the MR2G laboratory is controlled by a desktop

computer, which takes care of all the primary functions of the conveyer material

handling system,

2. The PC-based PUMA robot is controlled by a dedicated desktop computer.

The PC-based conveyer and PUMA robot controller are connected to a host controller that

forms part of a single island of automation. This control technique uses a similar group

technology (GT) approach, where similar machine operations are grouped and controlled by

one hierarchical cell controller.

Level 4 configures the control level for an area within the factory. The input and output of

material into the area are planned at this level, as is the capacity planning of the equipment in

the area. The computers and mainframes of level 5 provide the automation of the corporate

functions.

2.2 CIM COMMUNICATION STRUCTURE

In order to maintain a high level of coordination and efficiency of operation in ClM, an

extensive, high-speed, and an interactive communications network is required. A major

advance in communications technology has been the local area network (LAN). In this

hardware and software system, logically related groups of machines and equipment

communicate with each other. An LAN can be very large and complex, linking hundreds or

-22-

Chapter 2 MODULAR MECHATRONICS FOR CIM SYSTEMS

even thousands ofmachines and devices in several buildings. Different types ofnetworks can

be linked through gateways. Access control to these LANs are important, otherwise collisions

can occur when several workstations transmit simultaneously. Continuous scanning of the

transmitting medium is essential. In the 1970's, a carrier sense multiple access with collision

system (CSMAlCD) was developed and implemented in Ethemet, which has now become the

industry standard [Kalpakjian et.al.].

Three basic network topologies for an LAN's used are (ref. Figure 2.9):

1. The star topology is suitable for situations that are not subject to frequent configuration

changes. All messages pass through a central station. All the messages from the central

station are passed to· each user station, while each individual user station

communicates directly to the central station.

2. The ring topology has a configuration where all the user stations are connected in a

continuous ring. The message is forwarded from one station to the next until it reaches

the assigned destination. Although the wiring is relatively simple, the failure of one

station shuts down the entire network.

3. In the bus topology all stations have independent access to the bus. The system is

reliable and easier to connect and maintain than the other two services.

~
}

Bus

(1) Star
~ suSlation (2) Ring (1) Bus

Figure 2.9. The basic types of topology for a LAN.

-23-

Chapter 2 MODULAR MECHATRONICS FOR CIM SYSTEMS

Each user station is seen as a module of the communication structure. The communication

structure used in the modular mechatronic CIM for Internet control is based on the star

topology.

Each system module computer has its own specifications and proprietary standards and is not

allowed to communicate beyond the cell, unless through a host controller in the network. This

situation created islands of automation. A major trend is the use of Internet tools within a

company to link all departments and functions into a self-contained and fully compatible

intranet. The linking ofthe islands ofautomation formed part ofthe Intranet control structure

within the MR2G laboratory. The host controller allows the outside world to connect to the

Intranet through the use of Internet specific tools.

2.3 THE MR2G elM LABORATORY

As research into CIM advanced, the technologies required to control other aspects of the

manufacturing process were developed. Control and communication strategies were

developed, enhancing the CIM process.

Before any CIM cell can be assembled, a clear objective for the CIM function and areas of

research must be determined. A clear distinction must be made whether the equipment in the

CIM will drive the research or will the research drive the equipment. In the MR2G laboratory

the latter have been achieved.

Figure 2.10 shows the MR2G CIM cell in the School of Mechanical Engineering, at the

University ofNatal, Durban.

-24-

Chapter 2 MODULAR MECHATRONICS FOR CIM SYSTEMS

Figure 2.10. The MR2G CIM cell in the School ofMechanical
Engineering.

The CIM cell incorporated s variety ofmanufacturing disciplines and consisted of:

• A PC-Based PUMA 560 series robot. The PUMA robot was a six-degree of freedom

industrial robot. The PUMA robot original dedicated controller was discarded as it was

nonoperational, and replaced with a PC-based controller. The function of the robot

within the CIM cell is material handling and part placement. Figure 2.11 shows the

PC-based PUMA robot.

Figure 2.11. The PC-based PUMA 560 series
robot. -25-

Chapter 2 MODULAR MECHATRONICS FOR CIM SYSTEMS

• An Automated Guided Vehicle (AGV). The AGV formed part ofthe material handling

system ofthe CIM cell, and was designed and built in the MR2G laboratory. The AGV

has a path tracking guidance system with the ability to deliver materials to the

conveyer and automated storage and retrieval system(AS/RS). Figure 2.12 shows the

AGV integrating with the conveyer system.

Figure 2.12. The AGV aligning with the conveyer system in the
CIM cell

• A modular PC-based conveyer system. The conveyer was configured as an oval track

and was responsible for the primary material handling functions of the CIM cell (ref

Figure 2.10). The conveyer track consisted ofsix re-configurable sections, each wired

to a central hardware cabinet. The hardware cabinet contained the power supplies and

the power relay modules (ref. Chapter 3) of each section of conveyer. Figure 2.13

shows the hardware cabinet.

-26-

Chapter 2 MODULAR MECHATRONICS FOR CIM SYSTEMS

Figure 2.13. The CIM cell conveyer hardware cabinet.

• An Automated Visual Inspection Apparatus (AVIS). The apparatus was responsible

for the visual inspection and verification ofmachined and assembled parts in the CIM

cell. The AVIS was a computer-based technology integrating modem machine vision

technology. Figure 2.14 shows the AVIS.

Figure 2.14. The Automated Visual Inspection
Apparatus.

-27-

Chapter 2 MODULAR MECHATRONICS FOR CIM SYSTEMS

• The Coordinate Measuring Machine (CMM). The CMM is a three-axis contact-sensor

measuring device. The contact-sensor-based CMM utilised an inspection probe that

makes physical contact with the part during the inspection process. Figure 2.15 shows

the CMM in the MR2G laboratory.

Figure 2.15. The contact-sensor CMM in the MR2G
laboratory.

• The Automated Storage and Retrieval System{AS/RS). The AS/RS was integrated as

a multi functional storage and material handling system. The AS/RS delivered

pelletised material directly to the conveyer system and the AGV. Figure 2.16 shows

the AS/RS.

-28-

Chapter 2 MODULAR MECHATRONICS FOR CIM SYSTEMS

Figure 2.16. The Automated Storage and Retrieval
System.

• The MAHO MH-400C CNC milling machine. The milling machine was retrofitted

with a Heidenhain TNC-426 controller. The controller was connected to a PC,

allowing part machining operations to be downloaded from the PC to the CNC

controller. Figure 2.17 shows the MAHO milling machine.

Figure 2.17. The MAHO MH-400C CNC milling machine
with a Heidenhain TNC-426 controller.

-29-

Chapter 2 MODULAR MECHATRONICS FOR CJM SYSTEMS

All the CJM cell components, were designed and controlled using modular mechatronic

actuators (ref. Chapter 3) and modular mechatronic feedback devices (ref. Chapter 4).

-30-

CHAPTER 3

3 MECHATRONIC ACTUATION

Most mechatronic systems involve motion or action of some sort. Actuators are devices that

produce this motion, resulting in a required action. This motion can be applied to any

articulated structure. The ability to affect some form of system response or action is

fundamental in ensuring an effective interaction with the system and its environment

[Harishima]. Modular mechatronic actuation is a field of engineering that is concerned with

the design and implementation ofmodular actuating systems for specific system motions. The

most common actuation technologies implemented in the field of modular mechatronic

engineering are related to electrical machines, pneumatics and hydraulics.

The modular mechatronic ClM control system has been developed as a low-cost computer­

based technology facilitating its integration into a PC-based flexible manufacturing

environment. The power requirements of the ClM control system exceeded the power

limitations ofthe standard PC-based controllers, and certain power electronic driver modules

were designed.

This chapter discusses the fundamental concepts of the mechatronic actuators used in the

design and implementation of the power electronic drive modules used to control the six­

degree of freedom industrial robot and conveyer part manipulation and positioning system,

implementing a modular design approach. The motors used in the industrial robot are 40V DC

permanent magnet servomotors, and the motors used in the conveyer system are 12V DC

permanent magnet servomotors.

-31-

Chapter 3 MECHATRONIC ACTUATION

3.1 DC MOTORS

This section summarises the works of [Auslander et.al.] and [Stadler] and reviews the

fundamental concepts ofrotating DC motors used in the industrial robot and conveyer system..

3.1.1 Fundamental Operating Model .

The fundamental operating model of a DC motor can be derived from the "black-box"

representation ofthe motor. In its most simplistic model representation, a DC motor has a pair

ofwires on one side and an output shaft on the other. For the exception ofthe electrical power

through the wires and the motion ofthe output shaft, there is no other energy interaction with

the motor. For this conceptual analysis, thermal effects, bearing friction and airflow are all

neglected. Assuming that there are no mechanisms for energy storage or dissipation inside the

"black-box" labelled motor (ref. Figure 3.1).

Voltage t

current Motor Torque,
speed

Figure 3.1. The simplified "black-box" representation of a DC motor.

Mechanical power = Electrical power

The power on each side of equation 3.1 is the product of the variables:

P = Vi = Tw

and

-32-

(3.1)

(3.2)

Chapter 3 MECHATRONIC ACTUATION

(3.3)

Substituting equation 3.3 into equation 3.2 allows the back emfequation to be determined. The

back emf is the voltage produced by the motor as a result of its speed.

(3.4)

therefore

(3.5)

The mathematical model can further be expanded to consider the "black-box" motor driving

an inertial load (ref. Figure 3.2). The inertial load is a flywheel.

Figure 3.2. The "black-box" motor with drive and load.

The motor is driven by a voltage, with a series resistance representing the motor winding and

external circuit resistance elements. The mechanical side of the "black-box" is governed by

the rotary equivalent of Newton's law, relating to torque and acceleration:

00)
T=J ­

L ot

The current depends on the voltage drop across the resistor:

-33-

(3.6)

Chapter 3 MECHATRONIC ACTUATION

v-vi= __-,m~

R
(3.7)

And the voltage across the motor is related to the speed from equation 3.5. The torque can now

be expressed as a function of the shaft speed:

(3.8)

Substituting equation 3.8 into equation 3.6 results in the final equation ofthe motor model in

terms of the shaft speed W:

Finally,

om _ KT CV - Vm)m
ot J L R

(3.9)

(3.10)

This final equation has an equilibrium point where the speed across the motor becomes zero.

This phenomenon occurs when the back-emfis equal to the applied voltage. The significance

ofthis result is that the motor will seek a constant operating speed regardless ofthe inertia of

the load it is driving. The load inertia will only affect the transient behaviour of the motor.

Figure 3.3 shows the rise of the motor velocity with time as a motor is started from rest. The

two curves represent two separate values of inertia. Note how the response time varies while

the equilibrium value stays constant for both loading conditions.

-34-

Chapter 3 MECHATRONIC ACTUATION

Velocity Response

1.4
11 - "" ~

1
EO.8
-£ 0.6
>0.4

01
O~:'--'--.--r--.---.--.---r--.--.---.--.---r---'---

o 1 2 3 4 :5 6 7 8 9 1011121314
TiTle

IiJ hertia A her1ia B

Figure 3.3. Velocity response ofa DC motor under
varying inertia conditions.

Impedance matching is critical when implementing a DC motor system, as the torque-speed

characteristics of DC motors are fixed by their design parameters. Potential load variations

outnumber standard motor availability, so motor to load or impedance matching is not always

optimal. Power transmission devices such as gearboxes, pulleys or lead screws are used as

impedance matching devices. These devices are the mechanical equivalents of electrical

transformers. Figure 3.4 shows the general arrangement of an inertia transforming or

impedance matching elements.

IMotor 1~_Sh_a_f_t_1 Gearbox 1~_S_ha_f_t_1 Load I

Figure 3.4. The "black-box" DC motor with a gearbox for impedance matching.

Referring to Figure 3.4, the inertia transforming element is a gearbox. The gearbox is used to

match the needed static characteristics ofthe motor-load system. The speed and torque range

of the system are the two most important static properties. Ifmaximum power transfer to the

load so as to achieve maximum acceleration is the most important operating characteristic, the

classic impedance matching rule provides optimisation. For this assumes the load and motor

-35-

Chapter 3 MECHATRONIC ACTUATION

are of pure inertia. Losses due to friction are neglected. Then the total sum of the system

inertia on the motor side of the gearbox is the sum of the motor and reflected load inertia:

(3.11)

Where r is the gear ratio. The kinetic energy of the load is given by:

(3.12)

when differentiated with respect to time, an expression for power is determined by:

(3.13)

for a motor the equivalent power equation is:

(3.14)

(3.15)

The maximum power can be achieved only by delivering the maximum current to the motor.

The acceleration is constant and proportional to the ratio ofthe (applied torque)/(total inertia).

Since the acceleration is constant, the power to the load is:

JLT~t
~ = r2J2

T

Optimise the value ofPL with respect to the gearbox ratio, r:

(3.16)

-36-

Chapter 3 MECHATRONIC ACTUATION

3.2 SWITCHING DEVICES

Many actuators rely on electromagnetic forces to create the required action. When a conductor

carrying current is moved in a magnetic field, a force is produced in a direction perpendicular

to the current direction and magnetic field direction [Histand et.al.].

3.2.1 Electromechanical Relays

An electromechanical relay is a solenoid used to make or break mechanical contacts between

electrical leads. A small voltage input to the solenoid controls a potentially large current

through the relay contacts. Relays offer a simple on/off switching action in response to a

control signal. Figure 3.5. illustrates the principle ofoperation. When a current flows through

the coil ofwire a magnetic field is produced. This pulls a movable arm that forces the contacts

to open or close. Applications include power switches and electromechanical control elements.

Armature

Coil

3.2.2 Solid-State Devices

Figure 3.5. Schematic of the
electromagnetic relay.

There are a number of solid-state devices, which are used for switching the devices and

circuits. The ones related to ClM control environment include:

-37-

Chapter 3 MECHATRONIC ACTUATION

1. Diodes

2. Bipolar transistors

3.2.2.1 Diodes

A diode allows a significant current to flow in only one direction. A diode is a directional

element only passing a current when forward biassed (ref. Figure 3.6.).

I
Cathode

An~

Revers

Forward biased

v

Breakdown

Figure 3.6. Diode characteristics, showing
the forward- and reverse biassed conditions.

If the diode is reverse biassed, it will break down. If an alternating voltage is applied across

a diode, it can be regarded as only switching on when the direction ofcurrent flow is from the

anode to cathode ie. Forward biassed. The resultant current is half rectified. This is the

principle of operation for a bridge rectifier.

3.2.2.2 Bipolar Transistors

Bipolar transistors come in two modes ofoperation. These include NPN and PNP. Figure 3.7.

Shows the configuration of each type.

-38-

Chapter 3 MECHATRONIC ACTUATION

+

Emitter

Emitter

Collector
I).
'f Base

current+vbe

~b
+

Vce

Base
current
I~
b

Base
+

(a) (b)

Figure 3.7. The two type of resistor symbols (a)
NPN and (b) PNP.

Consider the NPN transistor, the main current flows in at the collector and flows out the

emitter. The base is where the controlling signal is applied. The path from the base to the

emitter (ref. Figure 3.7.) has an arrow, which is of the same form as a diode. When the

transmitter is in normal operation there, will be a voltage drop ofabout O.7V from the base to

emitter. The collector currentIc is an exponential function ofthe base-emitter voltage Vbe• PNP

transistors function essentially like NPN transistors, with the main distinction being polarity.

3.3 CONVEYER SYSTEM POWER ELECTRONICS

The conveyer system is a PC-based technology that implements a discrete component control

system based on the transistor-transistor logic TTL protocol. The power requirements of the

PC-based conveyer system exceeded the power capabilities of the desktop computer,

necessitating the design and implementation of certain power electronics. The design

characteristics of the power electronics were:

1. TTL input signals to produce the appropriate and corresponding high power outputs.

-39-

Chapter 3 MECHATRONIC ACTUATION

2. The power electronics must be modular in design, to interchange conveyer sections,

enabling a flexible manufacturing environment.

The conveyer system implemented ten permanent magnet DC servomotors (ref. Chapter 2).

The design approach to the power electronics included a high degree ofmodularity. The power

electronic drive circuits were not designed as application specific circuits, but rather as robust

power electronic modules that were flexible in terms of application and operation.

3.3.1 DC Servomotor Drive Circuitry

The conveyer system implemented ten permanent magnet DC servomotors to power the pallet

transport system. For the pallet transport conveyer system, the oval conveyer configuration had

to be flexible and interchangeable. The conveyer system consisted of six sections, which

included:

1. Two straight sections, each driven by one l2V DC servomotor.

2. Four 90°curved sections, each section driven by two 12V DC servomotors.

For each pallet transport conveyer section the DC servomotors were required to drive inertial

and frictional loads in both directions. The motor drive circuitry had to therefore incorporate

a logic decoding module that was capable ofaccepting TTL input signals containing direction

information. The basic configuration of the modular design was to incorporate the power

electronics for each section of the pallet conveyer system onto one drive module. Each

modular was designed to drive two DC servomotors, capable ofdirection switching. Based on

the control information, the drive circuitry had to incorporate power electronics to enable an

external power source to provide the high-power drive signals required to drive the DC

servomotors (ref. Figure 3.8).

-40-

Chapter 3 MECHATRONIC ACTUATION

DIRECTION
CW/CCW DD

EXTERNAL
POWER
SUPPLY

LOGIC
DECODING

MODULE

(TTL)

POWER
MODULE

+13.5 Vdc

MOTOR

Figure 3.8. A schematic representation of the components of the DC motor
drive circuitry. Note the different signal levels.

The relay power module drive circuitry used a transistor - relay circuit that allowed a low

power TTL control input signal to activate relays to drive the DC servomotors from the

external power supply. The relay solenoid was connected to a collector-emitter circuit ofa low

cost, low power bipolar NPN-transistor. The TTL signals were applied to the base of the

transistor, setting the voltage bias ofthe base. When the PC-based control signal was a digital

high 2.8Vdc < Vb < 5Vdc the base was biassed such that the current flowed in the collector­

emitter circuit, energising the relay coil. Similarly ifthe control signal was a logic low 2.1Vdc

> Vb> O.8Vdc the biassing ofthe base would not allow current to flow through the collector­

emitter circuit, not allowing the coil to be energised. The switching state of the relay was

controlled by setting the appropriate control signal TTL levels to either high or low. The

selection ofthe appropriate relay for the power modules ofthe drive circuitry depended on the

peak voltage and current levels ofthe DC servomotors driving the conveyer system. The peak

-41-

Chapter 3 MECHATRONIC ACTUATION

demand values were based on physical mechanical measurements. The selection of an

appropriate relay was then based on a maximum supply voltage of 15V dc with current rating

lOA.

The power circuitry utilised double-pole double-throw relays that required a 12V dc excitation

voltage to energise the coil and switch the relay contacts. As the coil ofthe relay could not be

energised using a TTL signal voltage, a low current 12V dc power supply was included in the

circuit design. The drive circuitry consisting ofthree transistor-relay modules that controlled

the direction ofthe two DC servomotors connected to each circuit. The direction module (ref.

Figure 3.9) reverses the polarityofthe excitation voltage supplied to the two fixed speed motor

modules (ref. Figure 3.10).

+12V 0--------,

11<2

41<2>

Figure 3.9. The circuit diagram for the direction control module of
the DC motor drive circuitry. The control voltage is applied to the
base of the transistor TR4.

The design ofboth the direction module and the speed modules ensured that the high-power

drive section was isolated from the control section ofthe modules. The transistor circuits were

isolated from the power circuit by the contacts of the relays. Noise reduction in the logic

circuits included a freewheel diode connected across the relay coil thereby providing a

switching current path.

-42-

Chapter 3 MECHATRONIC ACTUATION

+12Y pp-Dr
-NO

=~47I.JF RELAY·

r
.~

...
, .~

~ -Ne
V ,

t
)

LOAD~
"')

FF 1k2 T~.......- ~

4k2.

COY
~ ...

OHIO

Figure 3.10. The circuit diagram for the on/off control module of the DC motor
drive circuitry. The control signal is applied to the base of the transistor TR4.

The transistor circuit required a low current 12V dc supply that powered the collector-emitter

circuit. A decoupling capacitor was connected across the supply in order to reduce any noise

picked up lower current logic circuits. The direction and two power control relay modules

were mounted on the same printed circuit board (PCB). Each board was designed as a module,

to provide the power control signals for each section of the conveyer system. Figure 3.11

illustrates the connections of the modular mechatronic transistor-relay driver circuit.

CW I ccw -+-+-f
MOTORI --r+-+-f
MOTOR2 --L+-+-f

12V

ND

1

Relay Power 1=======
Modules

I

+12V

GND

MTR
TML

COM
NC

NO

COM
NC

NO

Figure 3.11. The driver board that incorporated all three power modules. The coils
indicate the two separate motors.

-43-

Chapter 3 MECHATRONIC ACTUATION

3.4 INDUSTRIAL ROBOT POWER ELECTRONICS

There was a need for a high-power low-cost driver circuit allowing the PC peripherals to

interface and control the robot. The control signals supplied to the LM-12 power module robot

driver circuits were -10V to +1OV analogue signals. These signals were generated by an

Advantech© PLC-832 servo control card, and control voltages were generated according to

a P control algorithm (ref. Chapter 7). The control signal voltages were low-current analogue

signals, unable to drive and control the 40V de Servomotors of the PUMA industrial robot.

Modular driver circuitry had to be designed. The peak operating voltages ofeach ofthe six DC

servomotors were of the magnitude 40V dc at a peak dissipation current of 15A each.

A dual package LM12 150W operational amplifier was used in the modular mechatronic robot

driver circuit. The LM12 has typical uses as a high power audio amplifier component. The

LM12 consisted of an internal H-bridge configuration.

3.4.1 High Power Robot Drive Circuitry

The LM12 was a power operational amplifier capable of driving ±35V at ±lOA, while

operating from ±40V dc supplies. The monolithic integrated circuit delivered 150W of sine

wave power into a 40 load with 0.01 % distortion [National Semiconductor]. The power

bandwidth was 60 kHz, and a peak dissipation capability of 800W allowed the driver circuit

to handle reactive loads without derating. The operational amplifier included the following

features:

• Input protection.

• Controlled turn on.

• Thermally limiting.

• Over voltage shutdowns.

• Output current limiting.

• Dynamic safe-area protection.

-44-

Chapter 3 MECHATRONIC ACTUATION

The IC delivered a peak output current of lOA at any output voltage and was protected against

overloads, including shorts to the supply. The LM12 operational amplifier delivered

considerablyhigh power outputs, without resorting to complex switching schemes. The LM12

operational amplifiers could be parallelled or bridged for greater output capabilities.

Figure 3.12. Shows the modular LM12 driver circuit. The input reference signal to the LM12

was provided by the digital-to-analogue converters of the Advantech© PCL-832 servomotor

control card. The modular LM12 driver circuit is biassed for direction and speed control. The

LM12 driver circuit has a peak current rating of30A, as three LM12 operational amplifiers are

connected in parallel. During operation the parallelled LM12 operational amplifier's outputs

were kept in phase by the series connected 0.470 resistors while receiving the same analogue

control signal. Using the LM12 as a driver module allowed for the simple "building block"

type of approach to be used to solve over-current problems. The driver circuit could be

modified for the control ofsmaller motors, byremoving the extra LM12 operational amplifiers

connected in parallel. The operating voltage of the modular LM12 driver circuit was form

±12V dc to ±40V dc.

Each set ofLM12 power operational amplifiers was mounted on a heat sink to dissipate the

excessive heat generated during normal operating conditions. The maximum DC thermal

resistance of the LM12 operational amplifier was 2.3 CC/Watt. The peak operating case

temperature was kept below 70 cc.

The power electronic drive circuits for the conveyer and robot systems were not designed as

application specific circuits, but rather as robust power electronic modules that were flexible

in terms ofapplication and operation. This was achieved, as the modules were used to control

a variety of DC motor systems in the MR2G laboratory.

-45-

Chapter 3 MECHATRONIC ACTUATION

+40

+r--------i~-------___.

V;,,--+-_J

FR607

0.470

0.470

0.470

FR607

100f!~

---=F -40

Figure 3.12.The modular LM12 driver circuit.

-46-

CHAPTER 4

4 MECHATRONIC-BASED FEEDBACK INFORMATION

Mechatronics bring together the areas of technology involving sensors and measurement

systems, drive and actuation systems, analysis of the behaviour of systems, control systems

and microprocessor systems [Bolton]. One way to measure the sophistication of a CIM cell

is in terms of its independent interaction with its environment, more specifically in terms of

its capability to sense the environment and its ability through programming to interpret it.

Measurement devices are required for accurate closed loop feedback control. Figure 4.1

illustrates the system requirements for the accurate control ofmodular mechatronic CIM cell.

Reference
Value

..... r~Measqring14------------J
.Device

Controlled
Variable

Figure 4.1. Elements of a closed loop control system for the modular mechatronic eIM cell.

Measuring devices are classified as static if the data varies slowly with time or not at all, and

dynamic if the measured variables vary rapidly. In addition there is a distinction between

analogue and digital instrumentation. Measuring devices never measure what they set out to

measure, but rather the combined system incorporating the measuring device. In the derivation

ofthe mathematical models ofthe combined system, the separate mathematical models ofthe

measuring devices are needed. These models are usually linear and of the first- or second­

order [Stadler].

The output signals from the mechatronic-based feedback information devices must be

processed. These signals may be too small, contain noise or require linearisation. The signals

-47-

Chapter 4 MECHATRONIC-BASED FEEDBACK INFORMATION

may be analogue and have to be converted to digital signals. All these changes are referred to

as signal conditioning.

This chapter discusses the mechatronic systems implemented to collect position feedback

information used to control the PC-based industrial robot and conveyer part manipulation and

positioning system. In the field ofmechatronic-based feedback information there are a large

variety ofdevices used. This discussion will detail the specific devices used in the PC-based

CIM control system to collect real time feedback information regarding the status of the

individual motion systems used and the development of the mechatronicfeedback modules.

-48-

Chapter 4 MECHATRONIC-BASED FEEDBACK INFORMATION

4.1 THE PC-BASED CONVEYER SYSTEM

This conveyer system transported the workpiece from the individual machining and part

delivery systems of the CIM cell. The control of the conveyer system required the

implementation of a feedback system that was capable of accurately monitoring the position

of the workpiece along the conveyer track.

The pallet must be tracked and delivered to the correct part processing stations. The conveyer

system consisted of roller conveyers and formed part ofthe modular flexible manufacturing

system into which the PC-based robot was integrated.

The control resolution required the pallet to be accurately positioned and transported. An byte

array feedback technique was developed to obtain the feedback information from the part

conveyer system. The continuous scanning of the byte array information from the conveyer

system was compared to a database enabling real-time positional information ofa pallet within

the conveyer system. Fourteen critical sensing points were implemented to monitor the pallet

position and were interfaced directly to two 8-bit ports ofa computer interface card. The value

ofthe byte read from the interface ports was cross-referenced against a list ofpossible values

in order to determine the position of the pallet along the conveyer system.

The critical sensor points were positioned to monitor the pallet leaving and entering a

conveyer zone. As there were six modular conveyer sections, one sensor was placed at each

conveyer end. Extra sensors were placed at the Automated Guided Vehicle (AGV) docking

station and PC-based robot material handling station. The critical sensing points were

implemented using long range infrared (IR) switches. Each of the IR switch modules

comprised ofa transmitter and a receiver unit. As the leading edge ofa pallet would arrive at

a sensor point, the IR beam would be broken. Once the trailing edge ofsome pallet passes the

sensor point, the receiver is once again irradiated and the beam is restored. Figure 4.2 shows

the long range infrared transmitter circuit.

-49-

Chapter 4 MECHATRONIC-BASED FEEDBACK INFORMATION

+12Vdc

RI
4k7

R2
4 k

Cl
lOOn

40106
Oscillator

r-------------
I
I
I
I
I
I
I
I

IRDl

C2

JIO"
Figure 4.2. The long range infra-red transmitter circuit.

The circuit uses a 404l6-oscillator circuit to generate a rectangularwaveform with a short duty

cycle; a greater percentage ofthe period is spent in the low state as opposed to the high state.

The frequency of the pulse train set by resistors RI and R2 must be significantly higher than

the scanning frequency at which the states ofthe individual sensor points are monitored. The

modulated signal is used to bias the base-emitter circuit of the field effect transistor, TRl.

The infrared emitter, IRD1, is connected in the collector-emitter (drain-source) circuit ofTRI

with the capacitor C2 connected across it. The capacitor is charged by the supply when the

transistor is not biassed. When current flows in the collector-emitter circuit the capacitor

discharges through the diode resulting in a high current spike that dramatically increases the

transmitting power ofthe diode. Furthermore the short duration ofthe pulses ensures that the

diode will not be burnt out. The capacitor group, C3 and C4, decouple the supply from the

circuit in order to smooth out the high amplitude switching transients ofthe supply voltage,

thereby eliminating noise and upholding the integrity of the transmitted pulse.

The receiver circuit is based on a 12 Vdc photo-transistor, TRl (ref Figure 4.2). The

-50-

Chapter 4 MECHATRONIC-BASED FEEDBACK INFORMATION

photo-transistor is biassed by the intensity of infrared radiation detected at its base-emitter

junction. The photo-transistor receives a high frequency radiation pulse which results in the

switching of the collector-emitter current thereby necessitating the use of AC coupling

capacitors, C3, C4 and C5 (refFigure 4.3). Since the current in the collector-emitter circuit

is dependent on the intensity of the detected radiation, the output from TRl is coupled via

capacitor C3 to the base of transistor TR3 that forms the second half of the Darlington pair.

The output from transistor TR3 is coupled to a modulating circuit, R4 and R5, that allows a

small additional current to flow from the supply through R5. Therefore the pulse train

generated by TRl and TR2 is modulated and as a result does not display the current

fluctuations of the photo-transistor collector-emitter circuit. The stabilised pulse signal is

applied to the base of transistor TR4. The TR4 collector-emitter circuit performs a simple

level shifting function that reduces the supply voltage to TTL level using the potential divider

resistance pair, R6 and R7. The output DIP is pulled high when TR4 is not biassed, ie the

photo-transistor is not being irradiated by resistor R6. The polarised capacitor C6 decouples

the output signal thereby reducing the ground noise interference in the output signal.

+12Vdc

-~~1~1
~ C3

lOOn

C6
220\J.

R7
lk

Figure 4.3. The infra-red receiver circuit. The circuit produces a clean low-to-high
transition whenever the input infra-red beam is blocked.

-51-

Chapter 4 MECHATRONIC-BASED FEEDBACK INFORMATION

4.2 INDUSTRIAL ROBOT FEEDBACK DEVICES

Each joint of the PC-based robot is monitored by an incremental encoder and resistive

potentiometer. The resistive potentiometer is a contacting sensor, returning absolute joint

position feedback at robot startup. The incremental encoders provide the relativejointposition

from point of startup.

4.2.1 Resistive Potentiometers

The robot sliding contact resistive sensors are used to express the robot's angular

displacement in terms ofvoltage. The potentiometers ofeach joint are directly coupled to the

DC servomotors in a straight line configuration. The calibration of each joint position is not

influenced by this direct coupling, but is dependant on the gear train from the DC servomotors

to robot revolute joints. The best resolution is obtained when the potentiometer simply

consists of a wire and sliding contact connected to the displaced device. For a resistive

winding the resolution is equal to the reciprocal of the number of turns. Figure 4.4 shows a

displacement resistor, where:

vRaB[R (aB) (aB)]-1v =-- 1+- -- 1--
o L Ra L L

R

Figure 4.4. Illustrates the single wire resistive wire of a rotary
potentiometer [Stadler].

-52-

Chapter 4 MECHATRONIC-BASED FEEDBACK INFORMATION

Potentiometers produce analogue signals which contain certain elements of noise. Filtering

techniques are used, this reduces processing data acquisition speeds and reduces

potentiometers to static devices. The best results from potentiometers are obtained at the start

ofan operating sequence. Potentiometers act as calibrating devices for absolute position, from

which the analogue noise is filtered. The filters are either electronic hardwired filters or

software generated filters. With increased computer processing speeds and software reliability,

software filtering has become an everyday occurrence. Simple software algorithms allow for

adaptive noise filtering to occur as system changes occur.

4.2.2 Optical Incremental Encoders

An optical encoder is a device that converts motion into a sequence of digital pulses. By

counting a single bit or by decoding a set of bits, the pulses can be converted to relative or

absolute position measurements. The most common type of encoder is a rotary encoder.

Rotary encoders are manufactured in two basic forms:

1. Absolute encoders, where an unique digital word corresponds to each rotational

position of the shaft.

2. Incremental encoders, which produce digital pulses as the shaft rotates allowing

measurement of the relative shaft position.

As shown in Figure 4.5 most rotary encoders are composed of a glass or plastic code disk,

with a photographically deposited radial pattern organised in tracks.

-53-

Chapter 4 MECHATRONlC-BASED FEEDBACK INFORMATION

code disk

I or more LED
photoemitters ~~ _

~:AA:: - --

shaft

phototransistor
photodetectoI"S

digital output
signals

Figure 4.5. Illustrates the components of a rotary optical incremental encoder
[Histand et.al.].

Digital pulses are produced as the lines on each track interrupt the beam between the photo

emitter-detector pair. The photo emitter pair can be oriented in two configurations:

1. As in Figure 4.5, the beam shines through the path of the rotating disk or,

2. The beam is reflected of the surface of the rotating disk, and this last type of rotary

incremental encoder is used as the incremental feedback device ofthe PUMA robot.

The incremental encoder, sometimes called the relative encoder, is simpler in design than the

absolute encoder. It consists of two sensors whose outputs are called channels A and B. As

the shaft rotates, pulse trains occur on these channels at a frequency proportional to the shaft

speed, and the phase relationship between the signals yields the direction ofrotation. The code

disk pattern and output signals A and B is illustrated in Figure 4.6. The A and B channels are

used to determine direction of rotation, the signals from the two channels are If4 cycle out of

phase with each other and are known as quadrature signals. A third output channel called

INDEX, yields one pulse per revolution.

-54-

Chapter 4 MECHATRONIC-BASED FEEDBACK INFORMATION

fixed
sensors

~~D~
INDEX~

00
" 3600

direction of positive track motion

1
A

0
1

B
0
1

INDEX o nl-- _
Figure 4.6. Illustrates the encoder disk track patterns [Histand
et.al.].

The quadrature encoder signals A and B can be coded to yield the direction ofrotation shown

in Figure 4.7.

Reverse ceeW)

ew~

eew _ lX~

ew~
eew _

ew ..JlJLJLJIJlJUL
eew, _ 4X JlJLJlJULJWJL

Figure 4.7. Illustrates the quadrature direction sensing
and resolution enhancement [Histand et.al.].

Decoding transitions of A and B by using sequential logic circuits in different resolutions of

the output pulses: IX, 2X and 4X. IX resolution only provides a single pulse for each cycle

in one ofthe signals A or B. 4X resolution provides a pulse at every edge transition in the two

signals A and B providing four times the IX resolution. The direction of rotation (CW or

CCW) is determined by the level ofone signal during an edge transition of the second signal.

Figure 4.8 shows the circuit originally designed to determine the direction ofshaft rotation of

-55-

Chapter 4 MECHATRONIC-BASED FEEDBACK INFORMATION

the PC-based robot DC servomotors.

:~I2V

~ O.OI~f

I
IK Be237

~
1 14 14

13 1

-+ 4093 Motarola
MaJaysia 4013

l~ 1...
11--- 1,...

2 ~
lK Be237

~~ FOIward count

Ground Backward count

-+

+

c

c

Figure 4.8. The quadrature encoder circuit.

The PCL-836 servo control card however has this built in capability, so the quadrature

encoder circuit was discarded. The quadrature encoder circuit however can be used for any

modular mechatronic encoder application.

4.3 SIGNAL CONDITIONING MODULES

Signal conditioning modules were developed to take the signals from the robot sensors and

actuator circuitry and make them suitable for display, and to exercise control of the system.

The robot input and output devices were interfaced to a microprocessor system through ports.

The interface contained signal conditioning and protection, to prevent damage to the

microprocessor system. The following are some of the processes that occur in conditioning

a signal:

•

•

•

Protection to prevent damage to any system element.

Conditioning and changing a signal to suite the data acquisition equipment

requirements.

Eliminating and reducing noise. Increasing the signal to noise ratio (SNR).

-56-

Chapter 4 MECHATRONIC-BASED FEEDBACK INFORMATION

• Signal manipulation to eliminate linearity problems.

4.3.1 LM12· Buffer Circuit Module

The basis of many signal conditioning modules is the operational amplifier. The operational

amplifier is a high gain DC amplifier. The LM741 is an example of a typical operational

amplifier. The LM741 operational amplifier has two inputs, known as the inverting (-) and the

non-inverting (+) input, the output ofthe LM741 is dependent upon the inputs made to these

connections.

A particular form of this amplifier is when the feedback loop is a short circuit. Then the

voltage gain is 1. Such an amplifier circuit is referred to as a voltage follower. The voltage

follower circuit prevents the LMl2 drive module (ref. Chapter 3) from loading the output from

the PC servo control cards, acting as a buffer between the drive modules and the PC. The

LMI2- buffer circuit module is a low-cost protection solution.

4.3.2 Encoder· Signal Conditioning Module

Figure 4.9 shows the LM741 operational amplifier connected as a non-inverting amplifier.

The output can be considered to be taken from across a potential divider circuit consisting of

RI in series with R2 • The voltage Va is then the fraction of the supply voltage V
cc ' This

relationship translates to the following expression:

RI
Va = -R-t-'-R-Vcc

I 2

10
Va =-10-t-l-0 5 = 2.5V

(4.5)

The supply latches as the input to pin 3 reaches Va, producing a square waveform as input to

-57-

Chapter 4

the PC.

MECHATRONIC-BASED FEEDBACK INFORMATION

+5V

v~

IVVI Encoder
Signal o------~

-sv

To pe

Figure 4.9. The bidirectional encoder conditioning module
circuit.

The circuit converts the sawtooth waveforms of the PUMA robot bidirectional encoders to

square waveforms. The PCL 832 Servo control cards require square waveforms to enable

encoder pulse counting (ref. Chapter 7).

This chapter discussed the mechatronic systems implemented to collect position feedback

information used to control the PC-based industrial robot and conveyer part manipulation and

positioning system. This discussion detailed the specific devices used in the PC-based CIM

control system to collect real time feedback information regarding the status ofthe individual

motion systems used and the development of the mechatronic feedback modules. The

feedback systems used were a low-cost solution to some feedback information gathering

techniques used in the field ofMechatronics.

-58-

CHAPTER 5

5 THE elM TELEOPERATION SYSTEM

Today's Internet technologyprovides for the development ofintegrated network environments

for the diversified applications of different manufacturing systems. To be successful in real­

world applications, Internet controlled machines require a high degree ofautonomy and local

intelligence to deal with the restricted bandwidth and arbitrary transmission delays of the

Internet [Hu et.al.].

With the rapid development of the Internet, more intelligent devices and systems have been

developed. Although the notion ofInternet or Web-based manufacturing is relatively new and

still in its infancy, it has captured the interest ofmany researchers worldwide. The research

presented in this section has a completely new range of real-world applications, not only in

tele-manufacturing, but also in tele-training, tele-surgery, disaster rescue and health care.

Although the Internet provides a cheap and readily available communication channel for

teleoperation, there are still many problems that need to be solved before successful real-world

applications can be achieved. One way to overcome these problems are to remove the closed­

loop control ofthe human operator and provide a high degree ofmachine intelligence for the

uncertainties in real-world applications. As researchers it is essential to find the correct balance

between human and machine interaction. Also an intuitive user interface is required for

inexperienced people that control machinery over the Internet.

This chapter discusses the Internet concepts used in the framework for the control of the

modular mechatronic elM teleoperation system. The Internet control framework provided the

macro control and monitoring of the PC-based PUMA robot, conveyer system, and visual

feedback system for the CIM cell developed in the MR2G laboratory at the University ofNatal,

Durban. Essentially this is the macro Internet control framework ofthe modular mechatronic

actuators and mechatronic feedback modules described in Chapter 3 and Chapter 4.

-59-

Chapter 5 THE CIM TELEOPERATION SYSTEM

5.1 BACKGROUND OF THE WORLD WIDE WEB

The Web was created early 1989 by researchers from the European Laboratory of Particle

Physics (CERN) in Geneva, Switzerland. The goal was to create an online system that would

allow nontechnical users to share data without the need to use arcane commands and esoteric

interfaces. Within two or three years, users outside CERN were putting together pages for the

Web while developers were designing and creating powerful browsers. By 1993, the Web and

its browsers had become the way to move around the Internet.

Today an industry group known as The World Wide Web Consortium (W3C) develops

common standards for the Web. The Web is defined in the following way. "It has a body of

software, and a set ofprotocols and conventions. The WWWusesHypertext and multimedia

techniques to make the Web easy for anyone to roam, browse, and contribute to."[McGee].

5.1.1 HTML: The Language of the Web

The language used to program and control a Web page is known as: Hypertext Markup

Language (HTML). HTML Web pages have the ability to include active links to other HTML

pages either at the same or another Web site. These links are embedded into the page and

rendered by the browser so that they are easily recognisable as jumps. When a user clicks one

of these links, the browser loads, reads, and renders the destination page, which may be a

remote Web page, one local to the Server, or even content on a different part of a displayed

page itself. Figure 5.1 illustrates this concept. The underlying software uses the information

contained in the link to connect to that site, and then retrieve the page for the browser.

When the link is to a page residing on another Server, a uniform resource locator (URL) in the

anchor tag along with the Hypertext Transfer Protocol (HTTP) must be specified. The link

information is in the URL, which is divided into several different parts beginning with the

protocol. For HTML pages, the protocol is usually the HTTP. An exception to this is the File

protocol, which is valid within the local directory or the local network, but not across the Web.

-60-

Chapter 5 THE CIM TELEOPERATION SYSTEM

Displayed
Web Page

An cho r

Ta rget co ntent
on tl1 e di spla yed

web page

Figure 5.1. Links may be to remote Web pages or
within the same page [McGee].

Several new and emerging technologies, however, create a tremendous opportunity to create

active, and therefore interesting, Web pages. These technologies allow the creation and

insertion of active content and objects into the Web page. Such content can be used to

integrate multimedia (animation, video, sound, and 3-D rendering), dedicated applications, and

database tools right into the Web page itself.

5.1.2 Visual Basic Scripting

Scripting with Microsoft Visual Basic® is available through the Microsoft Visual Basic

Scripting Edition (VBScript). VBScript is a subset ofthe Microsoft Visual Basic programming

-61-

Chapter 5 THE CIM TELEOPERATION SYSTEM

language and is upwardly compatible with Visual Basic. VBScript is used to create active

online content on a Web page by embedding the script into the HTML page. Similarly,

VBScript also allows developers to link and automate a wide variety ofobjects in Web pages,

including ActiveX controls and "applets" (created using the Java™ language from Sun

Microsystems, Inc.), which are then loaded and registered in the user's system.

With VBScript, there are many ways to enhance the HTML page with interesting elements.

For example, the HTML page with embedded VBScript can respond to user-initiated events

quite easily. Functionality now provided by VBScript was previously possible only with a

common gateway interface (CGI) application running on the Server. VBScript resides in the

Web page, and doesn't demand Server processing time, or require the overhead of a

communications link.

5.1.3 JavaScript

JavaScript is a scripting language developed by Netscape Communications and Sun

Microsystems, Inc. Compared to Java, JavaScript is limited in performance because it is not

compiled before execution. Basic online applications and functions can be added to Web pages

with JavaScript, but the number and complexity of available application programming

interface functions are fewer than those available with Java. JavaScript code, which is included

in a Web page along with the HTML code, is generally considered easier to write than Java.

A JavaScript-compliant Web browser, such as Microsoft Internet Explorer or Netscape

Navigator, is required to interpret JavaScript code.

5.1.4 ActiveX Controls

ActiveX is a set oftechnologies that enables software components to interact with one another

in a networked environment, regardless ofthe language in which the components were created.

ActiveX is used primarily to develop interactive content for the World Wide Web, although

it can be used in desktop applications and other programs.

-62-

Chapter 5 THE CIM TELEOPERATION SYSTEM

ActiveX controls are reusable software components that incorporate ActiveX technology.

ActiveX controls can be embedded in Web pages to produce animation and other multimedia

effects, interactive objects, and sophisticated applications. There are literally hundreds of

ActiveX controls available today with functionality ranging from a simple timer control (that

fires events to its container at specified intervals) to full-featured animation display control.

When a control is used within a control container, such as the Web browser, it can

communicate by exposing properties and methods as well as by launching events.

5.1.5 Java Applets

Java Applets are a Java class that is loaded and run by an already-running Java application

such as a Web browser. Java applets can be downloaded and executed by a Web browser

capable of interpreting Java, such as Microsoft Internet Explorer or Netscape Navigator. The

Java language allows the writing ofprograms that, like ActiveX Controls, can be included in

a HTML Web page to create such things as:

•

•

•

•

animations.

graphical objects (bar charts, graphs, diagrams, etc.).

applications made up of collections of controls like edit areas, buttons, and check

boxes.

new controls.

Java is an object-oriented programming language derived from C++ and extended by means

of a collection of libraries. In addition to creating Java applets that are loaded over the Web

with the HTML page, the Java environment also allows for the creation of standalone

applications.

-63-

Chapter 5 THE CIM TELEOPERAnON SYSTEM

5.2 THE INTERNET CONTROL FRAMEWORK

CIM components must not only be controlled, but also monitored. The solution of this

problem consisted of two parts. The first part covered getting information about the process

being monitored. The process was naturally active during this time. The second part

represented visualisation of the process on the Internet providing actual information through

the World Wide Web. This section presents the research into the modular sub-tasks for the

CIM Internet control framework. These modular mechatronic sub-tasks included:

•

•

•

•

5.3

The network module.

The control protocol module.

The Server module.

The visual feedback module.

THE NETWORK MODULE

The network communication configuration used in the network design sub-task was based on

the star topology (ref. Chapter2). This network configuration was already in use by the School

ofMechanical Engineering LAN. Figure 5.2 shows the networked star topology used.

, ,, ,, ,, ,, ,, ,, ,

Jt A ~

\

\

\

\

\

\

Hub

I

UND: elM Host
Server: Server

I
I
I
I

www
Client

Camera
Selector
L1ient

Robot
Client

Conveyer
Client

Figure 5.2. The star topology network.

-64-

Chapter 5 THE CIM TELEOPERATION SYSTEM

The star topology used a central device with LAN cables extending in all directions. Each

networked device was connected via a point-to-point link to a central device called a hub. The

Star topology had the following characteristics:

• Star topologies are moderately difficult to install. The design ofthe network is simple,

but a separate media segment must be installed for every arm of the star. This is the

reason why cabled star topologies require more cable than most other topologies.

• Star topologies are relatively easy to configure. Changes do not involve more than the

connection between changed network devices and the hub.

•

•

Since all the data in a star network goes through a central point where it can be

collected, stars are easy to troubleshoot. Stars can also be organised hierarchically,

providing there is architectural flexibility and traffic isolation.

Star networks handle faults relatively well. If a media fault occurs on the network, the

hub can be used to identify and remove the offending link from the network. When a

media segment does fail, only the segment's units are affected.

Figure 5.3 shows the 8-port DE-809TC Ethemet Hub used as the CIM cell networking device.

Figure 5.3. The 8-port DE-809TC Ethemet Hub used as
the CIM cell networking device.

-65-

Chapter 5 THE CIM TELEOPERATION SYSTEM

The CIM cell star topology operated using a Microsoft® workgroup, called the MR2G

workgroup. This workgroup was nested within the Microsoft® Windows workgroup residing

on the University of Natal (UND) Server. The MR2G workgroup formed part of the

hierarchical network topology. In star topologies, electric and electromagnetic signals travel

from the networked device, up its LAN cable to the hub. From there the signal is sent to the

other networked devices.

5.4 THE CONTROL PROTOCOL MODULE

For Internet connectivity there exists a variety of control protocols, each used depending on

the required application. The control protocols discussed in this section are available on the

Microsoft Windows® network. The first step towards the implementation ofa network control

strategy is the understanding how these protocols function, a clear understanding ofWindows

Sockets and the WinSock Proxy must be established.

5.4.1 Windows Sockets and the Windows WinSock Proxy

Windows Sockets is a mechanism for interprocess communication between network

applications running on the same computer, or on different computers connected using a local

area network (LAN) or wide area network (WAN). It defines a set of standard API's

(Application Program Interface) that an application uses to communicate with one or more

other applications, usually across a network.

The Windows Sockets APls support:

•

•

•

•

Initiating an outbound connection for a Client application.

Accepting an inbound connection for Server application.

Sending and receiving data on a Client/Server connection.

Terminating a Client/Server connection.

-66-

Chapter 5 THE ClM TELEOPERATION SYSTEM

The specification includes a standard set of APIs supported by all Windows-based TCPIIP

(Transmission Control Protocol/InternetProtocol) protocol stacks, and to be used bynetwork

applications.

In Windows Sockets, application communications channels are represented by data structures

called sockets. A socket is identified by two items:

• An IP address.

• A port number.

Windows Sockets can support both point-to-point connected service (also referred to as

stream-oriented communications), and multipoint connectionless service (referred to as

datagram-oriented communications). When using the TCP/IP protocol suite, stream-oriented

communications use TCP and datagram-oriented communications use UDP.

5.4.2 Connected Service Using TCP Sockets

Most Internet application protocols, including HTTP, and FTP (File Transfer Protocol), are

connection-oriented Client/Server protocols. A Client typically initiates a connection to a

Server in order to process a specific Client request. A Server waits for connections initiated

by Clients, accepts those connections, and begins communicating with each Client following

the rules ofthe specific application protocol. Communications managed expressly between a

Server and its Clients in this manner form what is known as a connected service. For

application protocols that use the connected service, the Transmission Control Protocol (TCP)

has been long established as the transport-level protocol of choice. TCP supports the use of

sockets as well to form connected communications between computers on a network. For

example, a TCP socket can be formed by first associating an IP address and a TCP port. The

IP address is a 32-bit number that uniquely identifies the local IP network interface. The port

identifies a virtual channel used for communications at the TCP level. A stream-oriented

connection is then formed by associating a local IP/TCP port pair with a remote IP address-

-67-

Chapter 5

TCP port pair.

THE CIM TELEOPERATION SYSTEM

A Server goes through the following steps to create a TCP socket with a Client (Figure 5.4):

• The socketO API is used to establish a socket and associate it with a specific streaming

protocol, such as TCP.

• The bindO API is used to associate a local IP address and port with the socket. Most

Servers specify that they want to bind the socket to all local IP addresses, and indicate

the well-known port for the application protocol (port 80 for HTTP, port 21 for FTP,

and so on).

• The listenO API is used to enable inbound connections on the lP/port pair.

• When a Client connection is received, the Server uses the acceptO API to complete the

connection process, associate a different socket with the connection, and go back to

the listening stage on the original socket to handle future Client connections.

• The Server uses the recvO and sendO APIs to communicate with the Client.

• The Server can use the getsocknameO API to query the local and remote IP address­

port pairs.

Server
f f

c=J-1 =;10 1-
Socket 1
Socket 2
Socket. "

I socketQ 11 getsocknameQ I
f t

bindO
recvO

~ ~sendO IP address Socket Port 80 (HTTP)
Port 21 (FTP)

Figure 5.4. The server communication layer.

-68-

Chapter 5 THE CIM TELEOPERATION SYSTEM

•

A Client typically initiates a TCP socket connection to a Server in order to process a user

request. With stream-oriented TCP connections, the Client executes the following steps

(Figure 5.5):

• The socketO API is used to establish a socket and associate it with a specific streaming

protocol, such as TCP.

• The bindO API is used to associate a local JP address and port with the socket. Most

Clients specify that they are willing to use any local JP address and port.

The connectO API is used to initiate a connection to a specified JP address/port pair.

The remote JP address identifies the Server, and the port identifies the service.

• The Client uses the recvO and sendO APIs to communicate with the Server.

• The Client can use the getsocknameO API to query the local and remote JP address­

port pairs.

Oient

socketO

JP address

getsocknameO

bindO

Socket Port 80 (HTIP)
Port 21 (FTP)

I connectO rl recvO I.- sendO

Figure 5.5. The client communication layer.

-69-

Chapter 5 THE CIM TELEOPERATION SYSTEM

5.4.3 Connection less Service Using UDP Sockets

Some Internet applications can use User Datagram Protocol (UDP), a transport protocol that

delivers Server data in a form that offers higher throughput performance than TCP. UDP is

very effective for delivering data from Servers to Clients at the highest possible speeds by

using unacknowledged delivery and packaging data into small uniform-length packets called

datagrams. Communications that consist ofUDP datagrams sent from a Server to Clients on

a network in this manner form what is known as connectionless service. This type of service

is useful for real-time applications such as streaming audio and video. For example, RealAudio

and VDOLive both use UDP to offer connectionless service to Clients.

For UDP, the Client and Server each establish a UDP socket in the following way:

•

•

•

•

The socketO API is used to establish a socket and associate it with a specific datagram

protocol, such as UDP.

The bindO API is used to bind the socket to a local IF address-port pair.

The sendtoO and recvfrom() APls are then used to begin immediately sending and

receiving data. These APls specify the IP port to send to, and return the IP port

received from.

While most UDP implementations consist of a Client communicating with a single

Server at a time, UDP is a connectionless protocol and supports communications

between a Client application and multiple Servers over a single socket.

5.4.4 The WinSock Proxy

WinSock Proxy allows a Windows Sockets application running on a private network Client

to perform as though it is directly connected to a remote Internet Server application, when in

actuality, the Microsoft Proxy Server serves as the proxy host for this connection. WinSock

-70-

Chapter 5 THE CIM TELEOPERATION SYSTEM

Proxy consists of two parts: a service running on a gateway computer, and a dll (Dynamic

Link Library) installed on each Client computer.

The WinSock Proxy service runs on Windows NT Server or Windows 2000 Server. It runs as

a stand-alone Windows service, and is responsible for creating virtual connections between

internal applications and Internet applications. The WinSock Proxy service is also responsible

for doing "datapumping" between the two actual communications channels set up for a virtual

connection, and acting as a TCPlIP protocol gateway. One ofthe benefits ofthis type ofdesign

is that all application-level communications are channelled through a single secured

computer-the gateway computer running Microsoft Proxy Server. The WinSock Proxy

service can also provide application-level event monitoring for redirected Windows Sockets

applications on the private network.

With WinSock Proxy, Client applications send Windows Sockets APIs to communicate with

Server applications running on Internet computers, and the WinSock Proxy service on the

Microsoft Proxy Server intercepts these calls. The Microsoft Proxy Server then handles

redirecting these APIs to the remote Server on the Internet. This establishes a logical

communications path from the internal Client application to the Internet Server application by

way of the computer running Microsoft Proxy Server.

The gateway process is not visible to either the internal network Client or the remote Server.

Both Client and Server computers appear to share only a single connection to each other. In

truth, both maintain separate connections to the computer running Microsoft Proxy Server

through separate network hardware interfaces on the computer running Microsoft Proxy

Server.

There are some side effects to using the proxy Server to access the Internet.

-71-

Chapter 5 THE CIM TELEOPERATION SYSTEM

• External Servers see different users coming from the same address.

• A Client application that binds a socket to a specific port may fail when the requested

port is already assigned to another Client. To avoid this, the Client software can either

request PORT_ANY (0), or try a range of ports when a bind fails with the error

WSAEADDRINUSE.

5.4.5 WinSock Proxy Architecture

On Client computers, the WinSock Proxy uses a specially designed dll to redirect Windows

Sockets API calls from the Client to remote Servers. When this dll is installed, it renames the

standard Windows Sockets dlls, and the WinSock Proxy dll is given the name of the

corresponding Windows Sockets dll (WinSock.dll for 16-bit; Wsock32.dll for 32-bit). This

results in all Windows Sockets API calls being forwarded to the WinSock Proxy dll first, and

then the WinSock Proxy dll redirecting calls to the renamed Windows Sockets dll as needed,

or processing the call itself.

Once the WinSock Proxy dll is actively installed on the Client, it intercepts all Windows

Sockets API calls made by applications on the Client computer. Depending on the API, and

the current socket status, the Client WinSock Proxy dll may:

•

•

-Or-

•

Completely process the Client's request.

Pass the request to the (renamed) actual Windows Sockets dll on the local computer

(after possibly making changes to the request).

Need to pass control information (by use of the WinSock Proxy Control Channel) to

the WinSock Proxy service on the computer running Microsoft Proxy Server.

For network communication between local applications on the internal network, the WinSock

Proxy Client dll passes Windows Sockets API calls to the previously installed (and renamed)

Windows Sockets dll. This allows Windows Sockets communications to continue to work

-72-

Chapter 5 THE CIM TELEOPERATION SYSTEM

normally. Also, this is true regardless of whether the previous Windows Sockets dll was

obtained from a third-party TCPlIP stack or directly from Microsoft. In all cases, the Windows

Sockets dll that was installed prior to WinSock Proxy Client setup is maintained for

forwarding local network calls. There are two versions ofthe WinSock Proxy Client dll, a 16­

bit version and a 32-bit version. The 16-bit version is installed on Windows 3.1 and Windows

For Workgroups 3.11. The 32-bit version is installed on Windows NT and Windows 2000.

Both versions are installed on Windows 98.

5.4.6 WinSock Proxy Control Channel

The WinSock Proxy service and Client dlls communicate by using a control channel that is

set up when the Client dll is first loaded. The control channel uses the connectionless UDP

protoco1. UDP allows a single socket on the gateway computer to be used for communications

with all WinSock Proxy Clients, and is faster than TCP. A simple acknowledgment protocol

is used between WinSock Proxy Client and service to add reliability to the control channe1.

The goal is to use the control channel as infrequently as possible, and to have as few Windows

Sockets APIs that require special processing on the Client computer as possible. For example,

for TCP connection requests, the control channel is used to set up the virtual connection, but

once the connection is set up, sending and receiving data (sendO and recvO APIs) requires no

special processing on the Client: the WinSock Proxy dll simply forwards these requests to the

(renamed) Windows Sockets dll. This also means that the Win32 APIs ReadFile and

WriteFile, which bypass Windows Sockets, will work with redirected connections.

The WinSock Proxy control channel is used for the following purposes:

• To set up TCP connections for WinSock Proxy Clients to remote Servers. When a

connection with a remote application is being established, the control channel is used

in establishing the virtual connection. Once the connection is established, sending and

receiving data will not require use of the control channe1.

-73-

Chapter 5 THE CIM TELEOPERATION SYSTEM

• To maintain UDP communications between WinSock Proxy Clients and WinSock

Proxy Servers. The control channel is used by WinSock Proxy Clients to contact the

WinSock Proxy Server when the UDP socket is bound. Additionally, in order to

support multiple remote applications communicating with the internal application,

port-mapping information is sent to the Client dll each time a new remote peer sends

data. Sending and receiving data to and from known peers does not require the control

channel.

• To manage database requests between WinSock Proxy Clients and WinSock Proxy

Servers. Redirection of the Windows Sockets database requests, such as DNS name

resolution (gethostbynameO, and so on) is handled bypassing the Client request to the

WinSock Proxy service by using the control channel, and the response is forwarded

to the Client dll by using the control channel.

When the first application on a Client attempts to make its first Windows Sockets connection,

the WinSock Proxy dll is loaded and initialised. At this time, the WinSock Proxy dll does the

following:

•

•

It establishes its own WinSock Proxy control channel with the WinSock Proxy service,

and notifies the service, by using the control channel, that it is active.

The WinSock Proxy service then downloads the Local Address Table (LAT). The LAT

is a routing table that consists ofa list ofIP address pairs, each pair indicating a range

ofaddresses located on the internal (private) network. The LAT is used by the Client

to determine which requests need to be redirected.

Once the WinSock Proxy dll has initialised service, for future connection attempts by

applications, the WinSock Proxy dll attempts to determine if the application is trying to

communicate with a local computer (private network) or remote computer (Internet).

For connection attempts and Windows Sockets APIs destined for a local computer, the

WinSock Proxy dll simply forwards the API calls to the (renamed) Windows Sockets dll, for

normal processing. If a Windows Sockets API call contains no information about the

-74-

Chapter 5 THE CIM TELEOPERATION SYSTEM

destination (and therefore no indication as to whether it should be redirected), the WinSock

Proxy component assumes it is a local request, and forwards the request to the standard

Windows Sockets dll.

When a Windows Sockets database API is called by an application (gethostbynameO, and so

on) to resolve an Internet name or address, the WinSock Proxy components work together,

using the control channel, to redirect the request to the gateway computer, and have the request

processed on the Internet.

The architecture ofWinSock Proxyrequires special processing bythe Client's WinSockProxy

dll when establishing a connection with an Internet site, but once a communication channel

is established, standard Windows Sockets and Win32 APIs for reading and writing a socket

or file can be used with no special processing on the Client. The application perfonns as if it

is reading and writing to the Internet site, while it is actually communicating with the WinSock

Proxy service, which forwards the requests.

5.4.7 WinSock Proxy: Tep Redirection

TCP handles point-to-point, connection-oriented communications. For each TCP connection

requested by an internal application, two actual connections are set up by WinSock Proxy

servIce:

•

•

A connection between the Client application and the WinSock Proxy service using the

WinSock Proxy Microsoft Proxy Server's internal network port interface.

A connection between the WinSock Proxy service and the Internet application using

the WinSock Proxy Microsoft Proxy Server's external (Internet) port interface.

Data received from either connection is forwarded to the other connection, .and both

applications perfonn as though they are communicating directly with each other.

A TCP redirected connection is managed in the following way:

-75-

Chapter 5 THE CIM TELEOPERATION SYSTEM

The WinSock Proxy control channel is used to set up a TCP redirected connection. Once the

TCP redirected connection is set up, the control channel is not used for data transfer.

• The internal application then initiates an outbound TCP connection to an Internet site.

• The sendO and recvO APIs are then called on the Client and Server. The WinSock

Proxy Client dll forwards sendO calls to the real Windows Sockets dll (these APIs do

not contain addresses, they simply refer to a socket), and all data is identical to data

sent in a normal (non-redirected) socketed connection. (The ReadFileO and WriteFileO

Win32 APIs work on TCP redirected connections as well. For Windows 2000, these

APIs are not handled by Windows Sockets and therefore are not intercepted by the

WinSock Proxy dll).

Once an internal application's socket has been remotely bound, WinSock Proxy makes it

appear that the socket is bound to the proxy computer's Internet interface. If the internal

application calls the getsocknameO API, the data returned will indicate that the socket's local

JP address is that of the proxy computer. Thus, it appears to the application that it is on the

Internet. This is necessary for protocols such as FTP, in which the Client sends its local JP

address to a Server, in order for the Server to initiate a new TCP connection back to the Client.

When an internal application attempts to listen for a TCP connection initiated by an Internet

application, WinSock Proxy uses the local JP address to which the application's socket is

bound to determine whether the listen should be redirected. If the local JP address is that of

the Internal computer's interface (a private network JP address), the listen will be local (passed

to the WinSock dll). If the JP address bound to the socket is that of the Microsoft Proxy

Server's Internet interface, the listen will be redirected.

When a listenO API is redirected, WinSock Proxy does the following:

• Listens for a socket connection on the WinSock Proxy service's Internet JP address and

the same port specified as the local port in the internal application's socket bind.

-76-

Chapter 5 THE CIM TELEOPERATION SYSTEM

• When an external site connects to the port, creates a socket connection between the

internal application (on the local port specified by the application), and the WinSock

Proxy service (on its internal IP address and an arbitrary port). This connection is

initiated by the WinSock Proxy service, because the internal application is listening

for an incoming connection.

Once an internal application's socket is bound to the Microsoft Proxy Server's Internet IP

address and an inbound connection is established, a getsocknameO API call by the application

will return the proxy's Internet IP address as the local IP address, and the Internet site's IP

address and port as the remote IP and port.

5.4.8 WinSock Proxy: UDP Redirection

UDP offers connectionless communications, and supports multiple applications

communicating with an application over the same UDP socket. A UDP-based application uses

sendtoO to send data, specifying the destination IP address, and recvfromO to receive data,

returning the source IP address (Figure 5.6).

When an internal application binds a UDP socket, the WinSock Proxy service binds a UDP

socket to its Internet IP address, and the same local port as used by the Client. This is the

socket used for communications between all Internet peers for the internal application.

I
Client

I

Server

~ •

sendtoO recvfromO
WinSock recvfromO sendtoO

from from r- from from
JP (WinSock) IP (Client) l- IP (Server) JP (WinSockProxy Service

Figure 5.6. The UDP communication layer.

-77-

Chapter 5 THE CIM TELEOPERATION SYSTEM

When an internal Client computer receives a packet over UDP from the Internet:

• The packet was actually forwarded by the WinSock Proxy service, and the source

address will be that of the computer running Microsoft Proxy Server.

• The WinSock Proxy Client dll needs to change the source port and JP address to that

ofthe actual Internet source before the internal application receives the data. However,

the problem is that for UDP there can be multiple sources of data sent to one

destination socket.

In other implementations, this problem is sometimes handled by having the Web Proxy

Service add a header to the data (which contains the original source port and JP address) before

forwarding it to the internal Client. The Client dll would then strip offthis header and modify

the source JP address and port passed to the application. This solution requires much work on

every data packet, including a buffer copy, and may even result in the buffer size being larger

than the maximum allowed. In this case, splitting the data into multiple packets needs to be

supported, as well as ordering and recombining at the destination. Also, this solution prevents

Win32 APls from working. (On Windows 2000, Win32 APls are not passed to Windows

Sockets.)

Instead, the problem of multiple-source JP addresses is solved by creating a separate UDP

socket in Microsoft Proxy Server for each Internet peer sending data to the Client. Each time

the first data packet is received from a new Internet port and JP address, WinSock Proxy

service creates a new UDP socket on a different local port, in Microsoft Proxy Server (bound

to the proxy's internal JP interface). The WinSock Proxy service maintains a table that maps

Internet ports and JP addresses to the port number of the WinSock Proxy Server's socket for

that Internet site. Each time it changes, the mapping table is forwarded to the WinSock Proxy

Client dll by using the control channel.

When the WinSock Proxy service receives data from an Internet application destined for the

Client, it sends the data to the Client by using the associated socket on the Microsoft Proxy

-78-

Chapter 5 THE CIM TELEOPERATION SYSTEM

Server. The WinSock Proxy Client dlllooks at the source (remote) port number of the data

packet (proxy-Server port number), and uses the table to map that to an Internet application's

port and IP address. The internal application is handed the Internet port and IP address as the

source.

The result is that handling UDP communications:

• Does not require extra control channels.

• Does not cause data packets to be modified.

• Does not require use ofthe control channel when data is sent from an Internet peer that

the WinSock Proxy service already knows about.

Win32 APls also work for reading and writing the socket.

When the internal application sends data to one of the remote peers, the WinSock Proxy dll

uses the mapping table to map the destination port and IP address (specified by the internal

application) to an WinSock Proxy Server port, and sends the data to the appropriate UDP

socket (port) on the WinSock Proxy Server computer.

Since this mechanism requires a new socket for each Internet peer application, extra resources

are used in the Microsoft Proxy Server when an internal application uses UDP to communicate

with many remote peers. Most Internet Client applications that use UDP (RealAudio,

VDOLive, and so on), communicate with a single Server application, so this is an efficient

trade-off. For other UDP Client applications, the number of Servers communicating with the

Client is usually small. (WinSock Proxywill limit the number ofmappings per socket, keeping

the most recentlyused, and re-establishing mappings as needed.). When an internal application

calls getsocknameO for a remote UDP socket, the local IP address returned is that of the

proxy's Internet interface.

-79-

Chapter 5 THE CIM TELEOPERATION SYSTEM

5.5 USING TCP/IP FOR THE CIM APPLICATION

In summation when using the WinSock control, the rust consideration was whether to use the

TCP or UDP protocol. The major difference between the two lies in the connection state:

• The TCP protocol is a connection-based protocol, and is analogous to a telephone. The

information transmitted using this protocol is secure and always reaches its destination.

This is important when network bandwidth is limited and the network is experiencing

collisions and congestion.

• The UDP protocol is a connectionless protocol, and the maximum data size of

individual sends is determined by the network. Data is not always secure and may

never reach it's destination.

The TCP/IP protocol was selected as the transmission protocol ofthe CIM Internet system, as

the data transmission is guaranteed.

5.6 THE SERVER MODULE

For the CIM cell Host computer to be a Server on the Internet, it had to have:

1. An address by which other computers could locate it.

2. The capability to understand and process various protocols.

When calling the Host Server on the Internet, the Server's associated domain name which is

the friendly addressing format was used. The Server domain name also contained the URL.

The URL address displayed the first Web page on the Server. It was the starting point from

which users accessed the Server Web page.

-80-

Chapter 5 THE CIM TELEOPERAnON SYSTEM

The software used on the physical computer to make the Server was called the Internet Server

Software. The particular software used for the CIM cell used the Windows® 2000 Server

operating system with the Microsoft® Internet Information Server (lIS) software installation.

Figure 5.7 shows the discrete conversations between a Client computer and an Internet or Web

Server.

. C1ient sends a request fot·
infonnation to an IP address

o
. /,,""~"'..,......,t. ~ from the server

o
IP address 206.124.023.142

Browser asks client compnter to send
reqnests out and interprets

incomming data

Server receives a request for
infonllation

••erver sends back the infonnation to
the calling IP address

WEB Server

IP address:
146.230.128.15

or
domain name:

www.W1d.ac.zalWldlmech

Figure 5.7. Shows the discrete conversation between a Client computer and an
Internet Server.

However using an lIS with VBScript on the Client and Server side, does not follow the

modular mechatronic design methodology. Ifthe appropriate Visual Basic software does not

reside on either the Client or Server side, and. If the Client does not have Internet Explorer

4 (IE4) or higher the application will not execute. The supervisory Internet control strategy

had to execute on all operating systems and Web browsers. However the Graphical User

-81-

Chapter 5 THE CIM TELEOPERATION SYSTEM

Interface (GUI) Web page for the supervisory CIM control had to reside on the lIS Server. For

the Web page publishing and information transfer between the Server and Client, a Server

application layer was required. This application layer consisted of a File Transfer Protocol

(FTP) and a Hyper Text Transfer Protocol (HTTP).

FTP makes it possible for a user to transfer files from one location to another over the Internet.

URLs of files on FTP Servers begin with ftp: 11.

HTTP is used by World Wide Web browsers and Servers to exchange information. The

protocol makes it possible for a user to use a Client program to enter a URL and retrieve text,

graphics, sound, and other digital information from a Web Server. URLs of files on Web

Servers begin with http://.

Figure 5.8 shows how these protocols fit together, during information transfer.

~~":;:;;;;~~~~~~~Application
f","~ layer

Internet
layer

Figure 5.8. Shows how protocols fit together, during information transfer [McGee].

Using FTP and HTTP allowed the supervisory control strategy to be simplified. When a user

accessed the CIM Web Server, an ActiveX executable file residing on the Server would be

downloaded to the Client computer over the Internet using the FTP. The Client would then

execute the ActiveX file, allowing a connection to be established between the Client and

Server through the TCP/IP protocols. The CIM control program was then imbedded in the

ActiveX programs. All the CIM controllers (CIM Clients) were also executing these ActiveX

programs, forming a link among all the control computers in the network. These included the

-82-

Chapter 5 THE CIM TELEOPERATION SYSTEM

Customer (Internet Client), Host Controller (Web Server), Robot Controller (Robot Client),

and Conveyer Controller (Conveyer Client). The transfer ofinformation was reduced to Client­

Server communication through the sending of short text messages between each machine.

Each continuously monitoring the network for the appropriate text messages in order to

execute a procedure or command. This supervisory framework is modular in design and can

be applied to any number of networked CIM components. Table 5.1 contains the system

specifications ofthe CIM cell Server / Host computer.

Operating System Microsoft Windows 2000 Server

Version 5.0.2195 Service Pack 2 Build 2195

System Name MR2G-HOST

Processor Genuine Intel PII~400 MHZ

BIOS Version Award Modular BIOS v4.60PGMA

Windows Directory C:\WINNT

Total Physical Memory 130,548 kB

Available Physical Memory 7,828 kB

Total Virtual Memory 398,516 kB

Available Virtual Memorv 96744 kB

Table 5.1. System specifications of the CIM cell Server / Host computer.

5.7 THE VISUAL FEEDBACK MODULE

The continuous and steady image stream feedback from the CIM cell was necessary for the

Internet user to control the CIM components.

The front-end imaging system ofthe visualfeedback module consisting ofthree modules, the

image sensor, the image acquisition and interface card and the computer processor. The visual

-83-

Chapter 5 THE CIM TELEOPERATION SYSTEM

feedback module consisting of four overhead cameras monitoring the CIM cell. The camera

image was relayed through a camera switch selector circuit. The camera selector circuit was

based on the relay power module circuit (ref. Chapter 4) and was controlled by the Camera

Selector Client. The appropriate camera view was selected by software algorithm to show the

optimum set-up camera view of the CIM process being executed.

The visual feedback module comprised of a camera array utilising four Tedelex Universal

analogue cameras. The system could use up to 8 cameras. The camera selection was controlled

by the Camera selector Client controller and the image capture process was controlled by the

Host Server. Each camera signal was relayed by cable to the camera selector circuit. The

selector circuit was controlled by an Advantech® PCL-836 digital I/O card (ref. Chapter 6).

The card was controlled using a Visual Basic software library.

Once the appropriate view was selected, the single camera view signal was then captured using

a FlashPoint3D frame grabber. The FlashPoint3D frame grabber card is a AGP board that

transfers images significantly faster than more conventional formats. For any PC system that

requires quality rendering of 2-D graphics, the minimum support is double buffering for up

to 800x600x16 bpp (bits per pixel). For any PC system that requires 3-D rendering in any

fashion, whether using software or hardware acceleration, the minimum requirements are

800x600x 16 bpp double-buffered, Z buffer, and 1.25-MB local texture cache. On AGP

systems, there is no requirement for local texture cache. FlashPoint3D captures and displays

superior-quality 24-bit colour and monochrome video at resolutions up to 1600x1200 with

simultaneous VGA and S-Video output. Microsoft® Visual Basic 6 (VB6) was used to

communicate with the FlashPoint3D frame grabber card, which was controlled via a library of

high level functions stored in the dynamic link library (dll),fp3d.dll. This dll was supported

by the Integral Software Developers Kit (SDK).

The visualfeedback module hardware had to produce a real-world representation of the CIM

cell under control. This visual representation had to consist of a real-time video feed. Three

possible Web-casting methods were researched:

-84-

Chapter 5 THE CIM TELEOPERATION SYSTEM

1. ITS Web-casting.

2. Videoconferencing.

3. Java applet.

5.7.1 IIS-Webcasting

The software used on the physical computer to make it a server that can speak to protocols of

the Internet and respond accordingly is called Internet server software. The particular Internet

server software manufactured by Microsoft is Internet Information Server (ITS). An ITS

application is a Visual Basic application that resides on the Web / Image Server and responds

from requests from the Client browser. An ITS application uses HTML to present its user

interface and uses compiled Visual Basic code to process requests and respond to events in the

browser.

To the user, an ITS application appears to be made up of a series of HTML pages. To the

developer, an ITS application is made up of a special type ofobject called a web-class, that in

turn contains a series of resources called web-items. The web-class acts as the central

functional unit ofthe application, processing data from the browser and sending information

to the users. A series of procedures is defined that determine how the web-class responds to

these requests. The web-items are the HTML pages and other data the web-class can send to

the browser in response to a request.

The Image Server would capture the live image stream and embed the video stream in the ITS

application Web page residing on the Server. The Client would then view the live video feed

upon request. This Web-casting method caused network overloading and congestion. The

University of Natal firewall would also not allow this type of video transmission, due to

network overloading.

-85-

Chapter 5 THE CIM TELEOPERATION SYSTEM

5.7.2 Videoconferencing

Microsoft® NetMeeting™ lets people communicate and collaborate over the Internet and

corporate intranets, holding real-time meetings where they can see, hear, and exchange

information with each other. NetMeeting supports industry standards and offers rich data

conferencing, audio conferencing, and video conferencing capabilities in a seamless, easy-to­

use client. NetMeeting also offers a platform forreal-time communication, enabling third-party

vendors to easily integrate Internet conferencing into their applications and services.

Microsoft NetMeeting delivers a complete Internet-conferencing solution for real-time

communication and collaboration over the Internet or corporate intranets. The new version of

NetMeeting offers new features and capabilities to make the product easier to use, more

powerful, faster, and more manageable. Support for the International Telecommunications

Union (ITV) H.323 and T.120 standards for audio and video conferencing, and multipoint data

conferencing, respectively, enables cross-vendor, cross-product, and cross-platform

interoperability. NetMeeting 2.0 includes the following key components:

•

•

Standards-based multipoint data conferencing. Users of NetMeeting can collaborate

and share information with two or more conference participants in real time. During

a conference, users can share applications on their computer and work together by

allowing other conference participants to see the same information on their screens,

thereby facilitating the review, editing, and presentation of information. In addition,

users can exchange and mark up graphics and draw diagrams with the electronic

whiteboard, communicate using written text with the NetMeeting chat program, and

send files to other conference participants.

Standards-based video conferencing. With a video-capture card and camera, users of

NetMeeting can send and receive video images for face-to-face communication during

a conference. The switchable audio and video feature ofNetMeeting allows users to

switch among participants they communicate with during a meeting. In addition,

-86-

Chapter 5 THE ClM TELEOPERATION SYSTEM

NetMeeting also offers support for Intel MMX technology, improving video and audio

performance during a call.

• Standards-based multipoint data conferencing. Using a sound card, microphone and

speakers, participants using NetMeeting can talk to friends, family, and business

associates over the Internet and corporate intranets. Internet phone discussions can be

enhanced using data- and video-conferencing capabilities.

NetMeeting is a novel way to transmit and receive live video streams over computer networks.

NetMeeting is readily available for download from the Microsoft® Web site and is available

on all the Windows® operating systems. NetMeeting 3 has enhanced features including a full

software developers kit (SDK). The SDK contains the Windows® Application Program

Interface (AP!), to embed a NetMeeting user interface ActiveX control in a Web page

application. The front-end ofthe application consists ofthe active Web page, while the back­

end contains the API control and image compression. For the Image to be transmitted to the

Client, the Client must have NetMeeting 3 or higher as default videoconferencing software.

The advantage ofusing NetMeeting 3 is that it is not a third party application. As with the lIS

Web-casting approach, network congestion was the major drawback to using this technology

as a CIM cell module. The video feed was not always available and image buffering caused

image transmission delays.

5.7.3 Java Applet

The Java programming language is both a high-level programming language and operating

platform. The Java programming language in unique in that a program is both compiled and

interpreted. The Java compiler fIrst translates a program into an intermediate language called

Java-bytecodes. The platform independent codes are interpreted by the interpreter on the Java

platform. The interpreter executes each Java-bytecode instruction on the computer.

Compilation occurs only once and interpretation occurs each time the program is executed.

Figure 5.9 illustrates how this works. Java-bytecodes make "write once, run anywhere"

-87-

Chapter 5 THE ClM TELEOPERATION SYSTEM

possible. The application program can be compiled on any platform that has a Java compiler.

The bytecodes can then be run on any implementation ofthe Java Virtual Machine (Java VM).

The Java VM is available on all Netscape Navigator
1

1\f and Microso:ft®Intemet Explorer Web

browsers. This Web-casting technique follows the modular design approach as the Java VM

allows the same program to run on Windows 2000, a Solaris workstation or on an lMAC.

rogram.java

Figure 5.9. Illustrates the compilation and interpretation of executed platform
independent program.

The visual feedback module used Server push technology, where the video was made up from

a stream of still images, and sent by a Java program to a Java applet via a socket, and

interpreted by the applet in JPEG format, as shown in Figure 5.10.

The FlashPoint3D frame grabber, captured a still image every 250 milliseconds and saved this

image to the image directory of the Web page on the image Server. The Java applet was

imbedded in the Image Server Web page. The Java applet allowed the image to be updated at

4 frames per second. The size ofthe still image was 15kB, which was easily transmitted to the

Client machine, without causing network congestion.

-88-

Chapter 5

: Client

THE CIM TELEOPERATION SYSTEM

,. ----- _... _. ---- _.. ~---------_.------- ... ------ .._--- ------_._--- -_... _- -------- -----------------_ ...--- -----~----------.- ----- ... -_._----- ----- --- -- ... --

i Server

'. ---.__---------------._._--------_ .._----_ .._---------._--------_ .. ----_ ..._---------.--------_._-------------------_.-._-_ .._-----------------_ .. -.-----.'

Figure 5.10. Video transmission diagram.

lfthe transmission of the video stream was not restricted by the University ofNatal firewall,

then using the NetMeeting video conferencing module would have been the best solution.

NetMeeting provides a low-cost embedded web solution, which does not relay on third party

software platforms.

-89-

CHAPTER 6

6 THE PC-BASED CONVEYER SYSTEM

In the design of the Computer Integrated Manufacturing systems or cells, the movement and

transfer of materials were regarded as the base structure to the design of the CIM system

layout. The assembly and production machines were interlinked through the chosen material

handling systems. This is best achieved by the optimal arrangement ofmachine centres and

equipment, with consideration to ergonomics, minimising the distance and trying to obtain a

line of flight between machine centres [Pemberton].

Time studies in material handling systems have shown that the average workpiece spends

95%-98% held in storage or in transit, whilst only 2%-5% of the time in assembly [Allegri].

The function ofmaterial handling is a non value adding entity to the product, and it accounts

for 30%-50% ofthe product cost [Allegri]. The key objective ofan efficient material handling

system is to get the right materials or parts to the right machines at the right time. Ifmaterials

arrive at the incorrect time intervals, machines either become idle or backed up, excess

inventory occurs.

The material handling transfer process within a CIM system can be defined as:

1. Continuous transfer.

2. Synchronous transfer.

3. Asynchronous transfer.

The transfer system implemented depends on the type of assembly operation performed.

Continuos transfer systems consist ofthe work and the assembly tool heads moving together.

Synchronous transfer systems involve all the work pieces moving together, whereas in

asynchronous transfer systems the workpiece only moves once the assembly operation is

completed.

-90-

Chapter 6 THE PC-BASED CONVEYER SYSTEM

The Mechatronics and Robotics Research Group (MR2G) at the University ofNatal School of

Mechanical Engineering, has developed a CIM cell. Investigating the material handling

functions within the manufacturing cell, revealed that it was the primary component which

linked each ofthe individual manufacturing cell operations. The material handling components

controlled using low-cost modular mechatronic modules were the conveyer and robot systems.

Figure 6.1 shows an overview of the CIM cell in the (MR2G) laboratory.

Figure 6.1. An overview ofthe CIM cell in the MR2G laboratory. Note the oval
roller conveyer system.

This chapter will detail the specific modular mechatronic sub-tasks used in the design and

implementation of the PC-based conveyer system for CIM Internet control.

-91-

Chapter 6 THE PC-BASED CONVEYER SYSTEM

6.1 ROLLER CONVEYERS

Roller conveyers are line restricted devices which consist ofroller elements mounted between

two side members. The roller elements are of tubular design which encase roller bearings,

positioned at either end. Roller conveyer systems are extremely common. Roller conveyer

simplicity of design as well as the flexibility and ease at which the system can be maintained

adds to the use of such systems, especially in high production industries. There are two types

of roller conveyer systems available, powered and unpowered (gravitational) rollers.

The roller conveyer system in the MR2G ClM cell used an interlinking drive method, where

the power is transmitted from a belt, to roller, and back to another belt. By using belts as the

driving medium the maintenance requirements and installation costs were reduced. This drive

method also allowed for the isolation ofconveyer sections for specific scheduling operations.

Figure 6.2 shows the interlocking belts ofthe powered roller conveyer system.

Figure 6.2. Diagram of the interlocking
belts of the powered roller conveyer
system.

The layout ofthe CIM conveyer system had been designed with modularity and flexibility in

mind.

-92-

Chapter 6 THE PC-BASED CONVEYER SYSTEM

6.2 THE PC-BASED ROLLER CONVEYER SYSTEM

The primary material handling system in the CIM cell was the continuous roller conveyer

system. The roller conveyers consisted of a series of tubes or rollers that were perpendicular

to the direction oftravel. The primary function ofthe roller conveyer was to transport the work

pieces between assembly, machining, and inspection stations. The CIM cell material handling

system consisted of an oval track conveyer type configuration. The conveyer system was

divided into six different tracks, combined to form the oval configuration. The conveyer

subsystem consisted of two straight sections (ref. Figure 6.3), each driven by a 12V DC

servomotor, which allowed for docking by the AGV, during material transfer. The remaining

four sections comprising 90° semicircular sections (ref. Figure 6.4), each driven by two

identical l2V DC servomotors. In total the conveyer system consisted of ten l2V DC

servomotors. The motors were required to drive inertial and frictional loads in both directions.

The motor drive circuit had to incorporate a logic decoding module that was capable of

accepting Transistor-Transistor Logic (TTL) input signals containing switch-on and direction

information (ref. Chapter 3). The design approach to the power electronics included a high

level of modularity. Rather than developing specific circuits, the design concentrated on

developing robust power electronic modules that could be flexible with respect to application

and implementation.

The point ofentrance and exit ofeach conveyer was monitored by a long range infra red sensor

(ref. Chapter 4). The conveyer section that was used to mate with the AGV had an additional

sensor, to determine whether the pallet transfer between the AGV and the conveyer was

successful. An additional sensor was placed at the section of the conveyer where the robot

would place or remove the workpiece during part manufacturing processes. In totall4 infra

red sensors were used.

-93-

Chapter 6 THE PC-BASED CONVEYER SYSTEM

1=

1=

1=

~. 1=

I:t I::

I:t 1=

~ 1=

t:l 1=

~ 1=

I=l. 1=

I:t 1=

t:I I:

I:

~

I:

F
1=

I:t 1=

I=l 1=

I:t 1=

.... ; ~

Figure 6.3. Conveyer straight section Figure 6.4. Conveyer 90° curved module.
module.

The control structure of the modular mechatronic PC-based conveyer system was

hierarchically arranged, with the Internet host controller at the top of the hierarchy. The PC

controller consisted of a PI 120Mhz computer, which served as the primary conveyer

controller computer. At the lower level was an Advantech® PCL-836 6-channel counter-timer

and digital I/O card. From the PC controller the PCL-836 interface card was connected to an

Advantech® PCLD-880 industrial terminal board. The terminal board was connected to the

power electronics cabinet via an interconnecting harness. The PC controller performed two

major tasks:

1. On-line user interaction and sub-task scheduling from the graphical user interface

(Gill).

2. Sub-task coordination with the servo control and interface cards.

Figure 6.5 shows the hierarchical control structure of the PC-based conveyer system.

-94-

Chapter 6 THE PC-BASED CONVEYER SYSTEM

Jl:
WWW Client -Console Agent

Remote

~
Remote User
Instructions

, - - Th~ PC-b~s~d ~o~~ey~r - - -
controller

The WEB Server PC

Supervisory Agent

Visual Feedback Module

Network Module

The Protocol Module

LAN

Primary Agent

PCL-836

PCLD-880

Conveyer Syetem

Figure 6.5. shows the hierarchical control structure of the PC­
based conveyer system.

The modular mechatronic PC-based conveyer system was integrated with the CIM cell as

shown in Figure 6.6. From Figure 6.6 it can be noted that the conveyer system consisted of

modular interchangeable sections, which were integrated with the machining, inspection and

assembly stations ofthe CIM. The conveyer sections, 1 to 10, were controlled and individually

connected to the system cabinet with interchangeable connectors, to allow for the change of

the conveyer configuration without any change of hardware.

-95-

Chapter 6 THE PC-BASED CONVEYER SYSTEM

6

1

Figure 6.6. Schematic ofthe conveyer system configuration. Note the conveyer integration and
interaction with the other CIM components.

6.3 DIGITAL I/O INTERFACING

The conveyer system implemented a digital I/O control system that was based on the

transistor-transistor-Ieve1 (TTL) system for the digital signal voltage ranges. The digital signals

conveyed the information in a conditional manner in which the information took on two states,

HIGHlLOW, TRUE/FALSE, ON/OFF etc. The two states ofthe digital standard were defined

by the voltage ranges, a high state range where a < V < b and a low state range where c < V

< d (ref. Figure 6.7). The precise values of the ranges varied amongst the different digital

signal standards. The level of the signal voltages therefore determined the state of the

information.

-96-

Chapter 6 THE PC-BASED CONVEYER SYSTEM

High State
a<V<b

d

c

Low State
c<V<d

....
t

Figure 6.7. A typical digital signal conveying
information on an event starting at time t1•

6.3.1 Interfacing Using the PCL-836 Interface Card

The PC-based control system for the conveyer was implemented using an Advantech® PCL­

836 digital I/O counter card. The PCL-836 was a general purpose counter/timer and digital

I/O card for PC/AT compatible computers. It provided six 16-bit counter channels. It also

included 16 digital outputs and 16 digital inputs. Two 8254 chips provided a variety of

powerful counter/timer function modes. The PCL-836 included a unique digital filter to

eliminate noise on the input signal. The frequency was adjustable to provide more stable

output readings. Figure 6.8 shows the PCL-836 card.

-97-

Chapter 6 THE PC-BASED CONVEYER SYSTEM

Figure 6.8. The PCL-836 I/O counter card.

The two digital ports were set as input ports, and two digital ports were set as output ports.

Ports that were configured as input ports reflected the digital inputs on the port when read.

Ports that were configured as outputs were set and latched to the state most recently written

to the port. The bit definitions for the three ports are given in Table 6.1.

I PORT I I/O BIT DEFINITION

27 26 25 24 23 22 21 2°

A INPUT A7 A6 A5 A4 A3 A2 Al AO

B INPUT B7 B6 B5 B4 B3 B2 BI BO

C OUTPUT C7 C6 C5 C4 C3 C2 Cl CO

D OUTPUT D7 D6 D5 D4 D3 D2 DI DO

Table 6.1. Bit definitions for the four 8-bit ports. The data refers to the line

number of the port.

-98-

Chapter 6 THE PC-BASED CONVEYER SYSTEM

During the control ofthe PC-based conveyer system the PCL-836 card was used to:

1. Receive the feedback information, for the long range IR (ref. Chapter 4) sensors.

2. Relay and control the actuation signals to the relay power modules (ref. Chapter 3) of

the system cabinet.

Microsoft® Visual Basic 6 (VB6) was used to communicate with the PCL-836 card, which was

controlled via a library of high level functions stored in the dynamic link library (dll),

driver.dU. This dll was supported by the Advantech Software Developers Kit (SDK). The

functions required for the control of the digital subsystem are listed in Table 6.2.

The I/O ports of the PCL-836 card a preset as input and output ports. When executing the

function calls, input port A is referred to as 0 and input port B is 1. The data written and read

by each port is interpreted as a decimal value.

Eg.

Line 0,3,6 are high, thus

20 + 23 + 26 = 1+ 8 + 64 = 73

The decimal output for lines 0,3 and 6 to go high is 73.

-99-

Chapter 6 THE PC-BASED CONVEYER SYSTEM

I DLL Function 11 Usage I
DRV DeviceOpen Opens the I/O card.

DRV GetAddress Finds the HEX address of the

board.

DRV DioWritePortByte Writes data to the output port.

DRV_DioReadPortByte Reads the entire input port.

DRV_GetErrorMessage Monitors the card for any errors.

DRV DeviceClose Closes the I/O card.

Table 6.2. The high level functions used to control the digital ports ofthe

PCL-836 card.

6.4 DESIGN SPECIFICATIONS OF THE CONVEYER CONTROL SYSTEM

• The control system had to ensure the smooth and coordinated functioning of the

conveyer system. The material handling function ofthe conveyer system had to ensure

accurate placement ofmaterial for robot interaction.

• The control system had to be computer-based. The conveyer control system had been

designed primarily as an Internet-based technology. The design of a computer-based

control system was required to facilitate the interaction of the conveyer system with

the other CIM components.

6.5 THE CONVEYER CONTROL MODULE

The feedback information for the conveyer material handling system was collected using the

byte array feedback technique. The control module for the conveyer material handling system

therefore required fourteen feedback signals to convey the position of the pallet along the

conveyer track (ref. Figure 6.9). A list of feedback signals used in the control module for the

conveyer system is given in Table 6.3.

-100-

Chapter 6 THE PC-BASED CONVEYER SYSTEM

Advantech
PCL-836

Pallet Position
Feedback

DC servomoto
driver module

P_FwdBkwds5

P]wdBkwds6

P_FwdBkwds4

P_OnJOtT6

P]wdBkwds2

P]wdBkwdsl

P]wdBkwds3

o
U
T
p
U
T
S

Figure 6.9. A block diagram depicting the structure of the conveyer control module.

The conveyer control module was required to generate 12 activation signals used to operate

the power electronics developed to control the DC motors. The activation signals for the

conveyer control module are listed in Table 6.4. A VB6 project, ConveyerClient. vbp, was

developed to implement the conveyer control algorithm.

-101-

Chapter 6 THE PC-BASED CONVEYER SYSTEM

IName IICoptrpl Fupctign IIPort :m=:
P Posl Entrance/Exit conveyer 7 A AO

P Pos2 Entrance/Exit conveyer 8 A Al

P Pos3 Entrance/Exit conveyer 9 A A2

P Pos4 Entrance/Exit conveyer 10 A A3

P]os5 Entrance/Exit conveyer I left A A4

P Pos6 Entrance/Exit conveyer I right A A5

P Pos7 Entrance/Exit conveyer 2 A A6

P]os8 Entrance/Exit conveyer 3 A A7

P Pos9 Entrance/Exit conveyer 4 B BO

P PosI0 Entrance/Exit conveyer 5 B BI

P]osll Entrance/Exit conveyer 6 right B B2

P Posl2 Entrance/Exit conveyer 6 left B B3

P Posl3 AGV docking B B4

Ip Po~14 ~ohot nickun station IB IB5

Table 6.3. The feedback signals used in the conveyer control module. The conveyer

numbers refer to Figure 6.6.

IName IIControl FUDctjon UPprt ~;:J
P FwdBkwdsI Reverse the direction of travel 7&8 A AO

P_On/Offl Start/Stop travel of conveyer 7&8 A Al

P FwdBkwds2 Reverse the direction of travel 9& I0 A A2

P_On/Off2 Start/Stop travel of conveyer 9&10 A A3

P FwdBkwds3 Reverse the direction of travel I A A4

P_On/OID Start/Stop travel of conveyer I A A5

P FwdBkwds4 Reverse the direction of travel 2&3 A A6

P_OnIOff4 Start/Stop travel of conveyer 2&3 A A7

P]wdBkwds5 Reverse the direction of travel 4&5 B BO

P_On/Off5 Start/Stop travel of conveyer 4&5 B El

P]wdBkwds6 Reverse the direction of travel 6 B B2

Ip ~ ,~~, travel of, -6 IB IB3

Table 6.4. The activation signals used in the conveyer control module.

-102-

Chapter 6 THE PC-BASED CONVEYER SYSTEM

The control logic for the conveyer control module was based on the value ofthe IpDioReadPort

variable which was continuously read from the input ports. The vale of IpDioReadPort was

continuously cross referenced to possible conveyer control events. Once the control algorithm

located the current system event the appropriate event handler was called.

6.6 THE SUPERVISORY CONVEYER CONTROL STRUCTURE

The conveyer control strategy allowed for a supervisory agent to control the conveyer system

remotely, or the conveyer could be controlled from the primaryPC-based controller (ref. Figure

6.5). Once the conveyerwas under the control ofthe supervisory Internet agent, a local operator

was not able to control the conveyer system.

The conveyer system was controlled using preprogrammed material handling processes. This

allowed for the Internet user to be part ofthe open-loop control structure, while the conveyer

controller was responsible for part scheduling and material handling. The scheduling strategy

included the continuous monitoring ofthe robot state and interacting with the host controller.

Chapter 9 provides a full operational review of the PC-based conveyer system.

-103-

CHAPTER 7

7 THE PC-BASED PUMA ROBOT

7.1 THE INTERDISCIPLlNARITY OF MECHATRONICS AND ROBOTICS

Mechatronics is an interdisciplinaryundertaking, where the knowledge from different domains

has to be integrated in an optimal way (ref. Figure 7.1) [Siegwart].

Mechanics

Computer
Science

Electronics

Figure 7.1. Mechatronics is the synergistic integration ofprecision mechanical engineering,
electronics, intelligent control, and systems.

Whereas until recently many engineers have been trained in one very specific discipline,

today's product designers need a more interdisciplinary education and knowledge in system

design [Siegwart]. Consequent to the revolutionary progress in microelectronics and computer

science of the last decades, the composition of existing products has undertaken a drastic

change (ref. Table 7.1).

-104-

Chapter 7 THE PC-BASED PUMA ROBOT

I
Products: 1960 and Today

I1960 I 2000

U Mechanics Electronics/ Mechanics Electronics/

Informatics Informatics

Car 90% 10% 50% 50%

Calculator 100% 0% 10% 90%

Camera 100% 0% 30% 70%

Table 7.1. The revolutionary progresses in microelectronics and computer science ofthe last

decades [Siegwart].

System integration in the development direction is very important since making valuable

products is one of the main objectives in the engineering field. For the study of advanced

modular mechatronic-based robotics, integration ofexisting technologies is crucial, including

mechanical and electrical engineering, computer science, and human science and engineering.

In today's competitive marketplace, there is a need for flexibility in the manufacturing

processes in order to respond quickly to market dynamics. Production speed, productivity and

efficiency must continually improve without compromising quality, customer satisfaction or

profitability. The field of computer-based automation allows for increased productivity and

the delivery of end products of uniform quality. Most automated manufacturing tasks are

carried out by special-purpose machines which are inflexible and programmed to

predetermined tasks, and these are referred to as hard automation systems [FU et.al.]. The

inflexibility and high cost of these machines have led to the use of robots capable of

performing a variety of tasks.

-105-

Chapter 7 THE PC-BASED PUMA ROBOT

In 1954 George C. Devo1 filed an US patent for a programmable method for transferring

articles between different parts in a factory. He wrote in part:

"The present invention makes available for the first time a more or

less general purpose machine that has universal applications to a

vast diversity ofapplications where cyclic control is required."[Stadler].

With this description he could have been describing any manufacturing machine. The Robot

Institute ofAmerica gives a more precise description of industrial robots:

"A robot is a reprogrammable multijunctional manipulator

designed to move materials, part tools, or specialised devices,

through variable programmed motions for the performance ofa

variety oftasks. "[FU et.al.].

In the field ofrobotics there is a general trend toward increased robot control and flexibility.

There is a need for a modular low cost industrial electronic system and software for robot

controlling and interfacing. Presently there is a limitation on robot control and flexibility

resulting from outdated controllers and power electronics. Standard robotic systems comprise

of a robot and dedicated controller. Robot performance is directly dependant on the

mechanical elements of the robot and more on the sophistication ofthe controller. With the

advances in modem electronics and computers, controller upgrading is the logical route to

follow for improved efficiency and accuracy. It then made sense to relinquish the dedicated

controller and replace the control with a PC-based system. This PC-based robot was integrated

and controlled in as modularmechatronic ClM cell using Internet manufacturing technologies.

This interdisciplinary integration allowed for the investigation into the field of modular

mechatronics. The integration of modular mechatronic across the traditional boundaries of

mechanical engineering produced more reliable, cost affective and flexible systems. When

moving away from the dedicated robot controller, a few practical problems presented

-106-

Chapter 7 THE PC-BASED PUMA ROBOT

themselves. A thorough investigation into power electronics and robot system requirements

revealed the need for driver circuits, feedback translation devices and a PC-based control

package. Incorporating a PC-based control package allowed for online robot manipulation and

programming, eliminating outdatedprogramming techniques which was downtime associated.

As the need for dedicated controllers were eliminated, a variety of robot systems could be

upgraded by simply changing geometric and power requirements. In many instances a mere

modification in the control and software would dramatically enhance the accuracy, flexibility

and capabilities of the industrial robot. These factors were crucial in the design and

implementation ofthe PC-based modularmechatronic robotic control system, described in this

section. This chapter will detail the specific modular mechatronic sub-tasks used in the design

and implementation of the PC-based PUMA robot for CIM Internet control.

-107-

Chapter 7 THE PC-BASED PUMA ROBOT

7.2 ROBOT KINEMATICS

Most mechatronic manipulators and actuators are modelled as open-loop articulated chains

with several links. In the PC-based robot application one end of the chain is the end-effector

which controls and positions the tool, while the other end is the base ofthe robot. Kinematics

is the modelling of the geometry ofmotion of the robot arm with respect to a fixed reference

coordinate as a function oftime without any regard for the forces and moments that cause the

motion. Before the PC-based system could be designed and implemented a thorough

investigation ofthe robot kinematics was required. There were two distinct kinematic modes

which are dissimilar but related to each other. The first was referred to as the direct or forward

kinematic problem while the second was the inverse kinematic solution. The inverse

kinematic solution was used more frequently as the task is usually stated in terms of the

reference coordinate frame. Figure 7.2 illustrates the relationship between the two kinematic

solutions.

Joint angles Position and orientation of end-effe...., Direct kinematics ,

" +
~ L ~ Decision equation.......

Error
J~ -

~ ARM, ELBOW, WRIST

Inverse kinematics ~
.......

ctor

Figure 7.2. The direct and inverse kinematic transfer function solution for the end-effector
position and orientation [FU et.al.].

-108-

Chapter 7 THE PC-BASED PUMA ROBOT

Denavit and Hartenberg proposed a systematic approach that utilised matrix algebra to

describe and represent the spatial geometry of the robot links. This method used a 4x4

homogeneous transformation matrix that related the 'spacial displacement of the hand

coordinate frame to the reference coordinate frame. This section summarises the works of[FU

et.al.] and reviews the fundamental concepts of robot kinematics.

7.3 THE DIRECT KINEMATIC SOLUTION

The development of a systematic and generalised approach to describe the location of the

robot arm links with respect to the fixed reference frame was referred to as the direct

kinematic solution. As the PUMA robot is a rotational robot, the direct kinematic solution was

reduced to finding a transformation matrix which related the body attached coordinate frames

to the reference frame. The rotation matrix was expanded to a 4x4 homogenous transformation

matrix to include the transnational operations. The Denavit and Hartenberg method was used

to represent a rigid mechanical link as the spacial geometry of the robot.

7.3.1 The Rotation Matrices

The 3x3 rotation matrix was defined as a transformation matrix which operates on a position

vector in a three-dimensional space with coordinates expressed in a rotated coordinate system

OUVW to the reference coordinate system OXYZ as in Figure 7.3.

Where 13 was a 3x3 identity matrix. The primary interest III developing the above

transformation matrix was to determine the rotation matrices that represented the rotation of

the OUVW coordinate system about each of the three principle axes of the reference

coordinate system OXYZ. When the OUVW coordinate system was rotated an angle ex about

the OX axis to arrive at a new location, then the point Puyw having coordinates (Pu,Pv,Pw? with

respect to the OUVW system would have different coordinates (Px' Py, pz)T with respect to the

reference system OXYZ.

-109-

Chapter 7 THE PC-BASED PUMA ROBOT

z

p

u

x

Figure 7.3. The rotation matrix reference and body­
attached coordinate system

The transformation matrix ~,a was referred to as the rotation matrix about the OX axis with

angle a. ~,a was derived from the above transformation matrix, with ix=iu and:

Pxyz = Rx,aPuvw

[i i
i 'J

i ·k 1 [1 0

-s:a1
x u x v

J: . k~v = 0R .. Jy. Jv cosa (7.10)x,a =] y . lu

k . i k . J k ·k 0 sma cosaz u z v z w

Similarly the 3x3 rotation matrix for rotation about the OY axis with angle <I> and about 02

axis with angle 8 were respectively represented in Figure 7.4. The matrices (~,a' R.y,<I>' ~e

) were referred to as the basic rotation matrices.

-110-

Chapter 7 THE PC-BASED PUMA ROBOT

z z

x

v
J..--+.,.....------ Y

a = 900

z

'"-~"---.-----I_-Y

z

X

I
I
I,

U 'w-------
Y X

V

z
V

X

I,
;-----

/

w

'JI-------"'----y
U

8 = 900

r-------,
I

o Y

x

Figure 7.4. The rotating coordinate systems.

-111-

Chapter 7 THE PC-BASED PUMA ROBOT

7.3.2 The Composite Rotation Matrix

The rotation matrices were multiplied together to represent a sequence offinite rotations about

the principle axes ofthe OXYZ coordinate system. The sequence ofmultiplication was very

important as matrix multiplications do not commute. The rotation ofthe angle ex about the OX

axis followed by a rotation angle 8 about the OZ axis followed by a rotation ofangle et> about

the OY axis, the resultant rotation matrix representing these rotations was:

R = Ry,~Rz,eRx,a =[C: ~ S:][~: -:: ~][~ ~a _~a]
- SifJ 0 CifJ 0 0 1 0 Sa Ca

[

cfjJCe SljJSa - CljJStra CfjJS()Sa + SfjJCa]

R = R ~R eR = se Ctra - C()Sa
y, z, x,a _ sfjJCe SljJStra + CfjJCa CfjJCa _ SljJS()Sa

CifJ == cosifJ; SifJ == sinifJ; ce == cos(f, se == sine Ca == cosa Sa == sina

7.3.3 Link and Joint Parameters

(7.12)

A mechanical manipulator consists of a sequence of rigid bodies, called links. Figure 7.5

illustrates these links for the Unimate PUMA robot.

Eachjoint link pair constituted 1 degree offreedom. For an N degree offreedom manipulator,

there were N joint-link pairs with link 0 attached to a supporting base where an internal

coordinate frame was established for the dynamic system, and the last link was attached to a

tool. The joints and links were numbered outwardly from the base. Joint 1 was the point of

connection between link 1 and the supporting base. Each link was connected to, at most, two

others so that no closed loops were formed.

-112-

Chapter 7

Joint 2

Link I

THE PC-BASED PUMA ROBOT

Link 4

Joint 5

/+y
,/

Joint 6

+z

Figure 7.5. The PUMA 560 series robot arm, showing the joints
and links.

A joint axis wa~ Joint i + I

8i+1

Figure 7.6. The link coordinate system and parameters.

-113-

Chapter 7 THE PC-BASED PUMA ROBOT

This joint axis had two normals connected to it, one from each of the links. The relative

position oftwo such connected links was given by di which was the distance measured along

the joint axis between the normals. The joint angle 8j between the normals was measured in

a plane normal to the joint axis. The variables di and 8i were called the distance and the angle

between the adjacent links respectively. They determined the relative position ofneighbouring

links. The significance ofthe links is, that they maintained a fixed configuration between their

joints which could be characterised by two parameters, ~ and (Xi' The parameter ~ was the

shortest distance measured along the common normal between the joint axes, and (Xi was the

angle between the joint axis measured in a plane perpendicular to ai• Thus ~ and (Xi were

called the length and the twist angle of the link i, respectively. These parameters determined

the structure oflink i.

7.3.4 The Denavit-Hartenberg Representation

To describe the transnational and rotational relationship between adjacent links, Denavit and

Hartenberg proposed a matrix method of systematically establishing a coordinate system to

each link of an articulated chain. The Denavit-Hartenberg representation resulted in a 4x4

homogeneous transformation matrix representing each link's coordinate system at the joint

with respect to the previous links coordinate system. Figure 7.7 illustrates the axes

configuration ofthe PUMA robot with six degrees offreedom. Table 7.2 displays the PUMA

robot arm coordinate parameters.

Figure 7.7. The link coordinate system for the
PUMA 560 series robot.

-114-

Chapter 7 THE PC-BASED PUMA ROBOT

I PUMA robot arm link parameters I
Joint i 8· 11 (X. 11 a· I d 11 Joint range l

1 90 -90 0 0 -160 to 160

2 0 0 431.8mm 149.09mm -225 to 45

3 90 90 20.32 0 -45 to 225

4 0 -90 0 433.07mm -110 to170

5 0 90 0 0 -100 to 100

6 0 0 0 56.25mm -266 to 266

Table 7.2. The link coordinate and parameter table of the PUMA 560 robot.

7.4 THE INVERSE KINEMATIC SOLUTION

In order to control the position and orientation ofthe end-effector ofthe six degree offreedom

robot, the inverse kinematic solution was more important. In other words, given the position

and orientation of the end-effector of a six-axis robot arm as °T6 and its joint and link

parameters, the corresponding joint angles Q=(Q\,Q2,Q3,Q4,qS,q6? of the robot had to be

calculated, so that the end-effector could be positioned as desired.

7.4.1 The Geometric Approach

This section presents the geometric approach to solving the inverse kinematic problem ofthe

PUMA robot. Similar as to human anatomy the robot was classified into a mechanical

manipulator having an ARM, ELBOW and WRIST. For the six-axis PUMA robot there was

four possible solutions for the first three joints and two for the last three joints. These

solutions were dependant on various arm configurations and their definitions. Definitions and

various arm configurations for the PUMA robot are shown in Figure 7.8. The configuration

definitions used for the PC-based PUMA robot were based on the configuration in Figure 7.9.

-115-

Chapter 7 THE PC-BASED PUMA ROBOT

Figure 7.8. The various arm definitions
and configurations of the PUMA 500
series robot.

...
""~:'r<76(')

1·',"'~
K, ~(.)

S, c.)

Figure 7.9. The configuration definition used for the PC­
based PUMA 560 series robot.

-116-

Chapter 7 THE PC-BASED PUMA ROBOT

• RIGHT (shoulder) ARM: Positive 82moved the wrist in the positive Zo direction while

joint 3 was not activated.

• LEFT (shoulder) ARM: Positive 82moved the wrist in the negative Zo direction while

joint 3 was not activated.

• ABOVE ARM (elbow above wrist): Position of wrist of the RIGHT/LEFT arm with

respect to the shoulder coordinate had a NEGATIVEIPOSITIVE coordinate value

along the Y2 axis.

• BELOW ARM (elbow below wrist): Position ofwrist of the RIGHT/LEFT arm with

respect to the shoulder coordinate had a POSITIVEINEGATIVE coordinate value

along the Y2 axis.

• WRIST DOWN: The s unit vector ofthe hand coordinate system and the Ys unit vector

of the (xs,ys,zs) coordinate system had a positive dot product.

• WRIST UP: The s unit vector of the hand coordinate system and the Ys unit vector of

the (xs,ys,zs) coordinate system had a negative dot product.

With respect of the above definitions of the arm configurations, two arm configuration

indicators were defined for each arm configuration. The indicators were combined to give one

possible solution for the four arm configurations as in Figure 7.9.

These indicators were defined as:

{
+ 1 RIGHT ARM}

ARM =
-1 LEFT ARM

{
+1 ABOVE ARM}

ELBOW =
-1 BELOW ARM

{
+ 1 WRIST DOWN}

WRIST =
-1 WRIST UP

-117-

Chapter 7 THE PC-BASED PUMA ROBOT

The inverse kinematic arm solutions for the respective joints were defmed using this simple

geometric approach.

JOINT 1 solution: Ifthe vector p was on the xo,yo plane, a solution for 8\ was calculated.

elL = fjJ- a

el
R

= Jr+ fjJ+ a

r = AB = ~p; + P~ - di

R = OB = ~p; + P~

OA= d2

Yo

/--­
/'

/
I

I

8f=1r+4>+a
I
I
\
\
\

"'
Right arm

Figure 7.10. The geometric solution ofjoint 1.

-118-

(7.17)

Chapter 7 THE PC-BASED PUMA ROBOT

JOINT 2 solution: For joint 2 project vector p on to the xl,y\ plane. For the RIGHT ARM

ABOVE the WRIST, ez=a+~.

ARM=+1 and ELBOW=+1

"

~~---+--xo

Figure 7.11. The geometric solution
ofjoint 2.

OA =dz AB =az BC =a3 EF =Px

EG= Py DE = pz CD= d4

AD =R =~P; + P~ + p; -di AE =r =~p; + P~ - di

. pz pz
srn a =- - =- -r==:==:=====

R ~P; +P~ +P; - di

ARM· r 1· ~P; + p; -di
cos a =- R = I z z z z

VPx +Py + pz - dz

aZ +RZ
_ (d z +aZ

)
cos f3 = Z 4 3 sin j3 = ~l- cosz j3

2azR

:. sinBz = sinacosj3+ (ARM· ELBOW) cosa sinj3

cosBz = sinacosj3- (ARM· ELBOW) sin a sinj3

-1[sinBz]e. = tan -- - Jr:OS; ()z :os; Jr
z cosBz

-119-

(7.18)

Chapter 7 THE PC-BASED PUMA ROBOT

JOINT 3 solution: For joint 3 the position vector p was projected onto the X2,Y2 plane.

c

A 0IlIIII:~ a..;2__"" .:.t4~h-

Figure 7.12. The geometric solution ofjoint 3.

AB= a2 BC= a3 CD= d4 BD= ~a; +d;

AD = R = ~p; +P~ +p; - d;

()3 = rP-f3

sin ()3 =sine rP - f3) =sin rP cos f3 - cos rP sin f3

cos ()3 =cos(rP - f3) =cos rP cos f3 + sin rP sin f3

[
sin rP3]

()3 = -- - Jr S; ()3 S; Jr
cos rP3

D

(7.19)

Knowing the first three joint angles the evaluation for the °T3 matrix was used extensively to

find the solution for the last three joints. The solution of the last three joints of the PUMA

robot was calculated by setting these joints to meet the following criteria:

-120-

Chapter 7 THE PC-BASED PUMA ROBOT

1. Set joint 4 such that a rotation about joint 5 would align the axis ofmotion ofjoint 6

with the given approach vector (a ofT).

2. Set joint 5 to align the axis of motion ofjoint 6 with the approach vector.

3. Set joint 6 to align the given orientation vector and normal vector.

Mechanically the criteria related to: JOINT 4

l------
I
I
I
I
I

...-----.....~~ Y3

Figure 7.13. The geometric
solution ofjoint 4

± (Z3 x a)
Z4 = II

z
3 x all a = (ax,ay,azf

a=zs s=Ys s=(sx,Sy,sz)T

sinB4 = -(Z4 . x3)

cosB4 = Z4 . Y3

(7.20)

(7.21)

-121-

Chapter 7 THE PC-BASED PUMA ROBOT

JOINT 5 solution: To find 8s, using the criterion that aligned the axis of rotation ofjoint 6

with respect to the approach vector:

n•

,-- - - - -::'~-----~Y4
I 85\.

I
I
I
I

Figure 7.14. The geometric solution ofjoint 5.

sinB5 = G' X 4 cosB5 = - (G . Y4)

Where x4and Y4 were the x and y column vectors ofoT4respectively and a was the approach

vector.

_j[CC\C23 C4 - Sj S4)G x +CSjC23 C4 +C\S4)G y - C4S23Gy]
Bs =tan

C\S23Gx +SlS23Gy +C23Gz

- Jr ~ B4 ~ Jr

(7.22)

JOINT 6 solution: The gripper had to be aligned with the object to ease picking up of the

object. Projecting the hand coordinate onto the (xs,ys) plane.

sin B6 = n· Y5 cos B6 = S' Y5

Where Ys was the y column vector ofoTs, nand s are the normal and sliding vectors ofoT
6

respectively.

-122-

Chapter 7 THE PC-BASED PUMA ROBOT

Figure 7.15. The geometric
solution ofjoint 6.

_1[(-SIC4 - CICz3S4)nx +(C;C4- SIC23S4)ny +(S4S23)nz]
(}6 = tan

(- SIC4 - CIC23S4)Sx + (C\C4- SIC23S4)Sy + (S4S23)Sz

-7(~ (}6 ~ 7(

(7.23)

Deriving the equations for the inverse kinematic solution, solutions for the joint orientations

(818283848586) were calculated. Comparing the forward and inverse kinematic solutions, , , , ,

to an orientation, allowed for the accurate position control ofthe PUMA robot. The difference

between the calculated forward kinematic solution and the comparative inverse kinematic

solution was known as the actuation position error as in Figure 7.16.

Joint angles Position and orientation of end-effector

Direct kinematics

Decision equation

ARM, ELBOW, WRIST

Inverse kinematics

-123-

Figure 7.16. Illustrates how the difference between the calculated forward
kinematic solution and the comparative inverse kinematic solution produced
the actuation position error.

Chapter 7 THE PC-BASED PUMA ROBOT

7.5 DYNAMIC ROBOT CONTROL

Determining the kinematic solution ofthe PC-based PUMA robot required large calculations

and processing speeds. The forward and inverse kinematic solutions had to be compared and

error adjustments had to be made. The error determined the mechanical actuation required for

the final arm position during which the P controller provided the dynamic control ofthe robot

arm. This section details the derivation of the transfer function of single joint of the PUMA

robot, from which a proportional controller was obtained. The servo control cards used for the

robot control were equipped with P controllers. The control strategy was initially developed

for a single joint of the PC-based robot and later applied to all six robot joints.

7.6 THE PC-BASED PUMA 560 SERIES ROBOT

For the PUMA 560 series robot arm, eachjoint was treated as a simple servomechanism, each

with a 40V permanent magnet DC servomotor equipped with an electromagnetic brake (ref.

Chapter 3). Each DC servomotor was monitored by a bidirectional encoder for incremental

position feedback and a 5V potentiometer for absolute position feedback during startup (ref.

Chapter 4). The robot was interconnected to the PC-based controller by a signal harness and

a power harness. The signal harness was responsible for all the low power signals, while the

power harness relayed all the high power signals between the controller and the robot arm.

The control structure was hierarchically arranged, with the Internet host controller at the top

of the hierarchy. For the modified modular mechatronic PC-based robot, the controller

consisted ofa PIT 500MHz computer, which served as the primary robot controller computer,

while the Internet control formed part ofthe supervisory control. At the lower level were the

two Advantech® PCL-832 3-axis servomotor control cards and one Eagle® PC-30GA interface

card. The PIT 500MHz computer performed two major functions:

-124-

Chapter 7 THE PC-BASED PUMA ROBOT

1. On-line user interaction and sub-task scheduling from the user, graphical user interface

(Gill) commands.

2. Sub-task coordination with the servo control and interface cards.

Figure 7.17 shows the modular mechatronic hierarchical control structure of the PC-based

PUMA 560 series robot.

WWW Client -Console Agent

r-----------------_

The PC-based PUMA robot '
controller

Remote User
Instructions

Primary Agent

PCL-832

PCL-832

PC-30GA

The WEB Server PC

Supervisory Agent

Visual Feedback Module

Network Module

The Protocol Module

LAN

'~

PUMA 560 Series
Robot

Figure 7.17. The modular mechatronic hierarchical control structure ofthe
PC-based PUMA 560 series robot.

-125-

Chapter 7 THE PC-BASED PUMA ROBOT

The on-line user interactions included passing, interpreting, and decoding the Gill commands,

in addition to reporting appropriate error messages to the user. Once the Gill command had

been decoded, various internal routines were called to perform scheduling and coordination

functions. These functions included:

1. Coordinate system transformations.

2. Joint-interpolated position updates to correspond to each set point to each joint every

25ms (programmable DDA cycle time).

3. Acknowledging from each servo control card that each axis ofmotion has completed

its required incremental position.

The PC-based robot control scheme was a proportional control method (P controller). It did

not have the capability ofupdating the feedback gains under varying payloads. This is an area

for further research. Since an industrial robot was a highly nonlinear system, the inertial

loading, the coupling betweenjoints and the gravity effects were all either position-dependant

or position- and velocity-dependant terms.

7.7 THE ROBOT I COMPUTER INTERFACE

The ability ofstandard desktop computers to interact with an environment was dependent on

the presence ofsome form ofinterfacing hardware [Demas]. The function ofthe hardware was

to obtain information from the environment with which the computer was interfacing and then

present this information to the central processing unit (CPU) ofthe controlling computer. The

PC-based control system adopted some fundamental interfacing principles to ensure the

effective interaction of the system with its environment. The transducers collected the

information from the environment. Modular mechatronic signal conditioning systems were

used to produce signals the PC-based controller could process to make control decisions. The

signal conditioned feedback information was passed as arguments to software coded decision

algorithms that generated the appropriate activation signals to effect system changes that were

required to maintain system stability.

-126-

Chapter 7 THE PC-BASED PUMA ROBOT

The computer central processing unit interpreted the feedback information and generated

activation signals that controlled the system actuation circuitry. The actuation signals were

analogue and digital in nature.

7.7.1 Control Using the PC-30GA Card

The PC-30GA series card was a low cost, high accuracy analogue and digital I/O card for the

IBM PC. The PC-30GA card had a throughput of 100 kHz, featuring four digital-to-analogue

converters (DAC). The card had 16 single ended or 8 differential analogue-to-digital inputs,

with programmable gains ofl,10, 100 and 1000. The card also had three digital I/O ports with

8 lines per port. Figure 7.18 shows the PC-30GA card.

Figure 7.18. The Eagle PC-30GA interface card.

The 3 digital ports could each be set as either input or output ports. Ports that were configured

as input ports reflected the digital inputs on the port when read. Ports that were configured as

outputs were set and latched to the state most recently written to the port. The bit definitions

for the three ports are given in Table 7.3.

-127-

Chapter 7 THE PC-BASED PUMA ROBOT

I PORT I BIT DEFINITIONS

27 26 25 24 23 22 21 2°

A A7 A6 A5 A4 A3 A2 Al AO

B B7 B6 B5 B4 B3 B2 B1 BO

C C7 C6 C5 C4 C3 C2 Cl CO

Table 7.3. Bit definitions for the three 8-bit ports. The data refers to the line

number of the port.

During the control of the PC-based PUMA robot the PC-30GA card was used to:

1. Receive the feedback information, for the angular position of each joint, from the

potentiometers during startup.

2. Release the electromagnetic brakes of the PUMA robot.

The PC-based PUMA robot implemented the simple analogue-to-digital (AD) ports ofthe PC­

30GA card, to sample the angular position states ofeach joint. Six AD ports were used, one

for each joint ofthe robot. Eachjoint returned a voltage between 0.5V and 5V corresponding

to its angular position. Each joints angular position to voltage ratios was different due to the

gearing ratios of each joint. During software coding each joint was calibrated as to afford the

appropriate voltage to an angular position ratio. Figure 7.19, 7.20, 7.21 and 7.22 show the

internal gearing mechanisms of the PUMA 560 series robot.

The PC-30GA interface card was also used to release the electromagnetic brakes of the

PUMA robot. All six the robot brakes were released at the same time as the brakes were all

interconnected. The brakes were released, from software, just before the robot operation

commenced.

-128-

Chapter 7

JTI MOTO

ITI IDLER ASS --,.u~.::..

THE PC-BASED PUMA ROBOT

Figure 7.19; The gear mechanism ofjoint 1. Figure 7.20. The gear mechanism of
joint 2.

JT4MOTOR -­

JT5MOTOR

WRIST

Figure 7.21. The gear mechanism ofjoint 3

-129-

Figure 7.22. The gear mechanism ofjoint
4,5, and 6.

Chapter 7 THE PC-BASED PUMA ROBOT

The brake release circuitry used a transistor-relay circuit that allowed a low power TTL

control input signal to a high power relay to energise the electromagnetic brakes from the

external power supply. The relay solenoid was connected to a collector-emitter circuit ofa low

cost, low power bipolar NPN-transistor. The TTL signals were applied to the base of the

transistor, setting the voltage bias ofthe base. When the PC-based control signal was a digital

high 2.8V dc < Vb< 5V dc the base was biassed such that the current flowed in the collector­

emitter circuit, energising the relay coil. Similarly if the control signal was a logic low 2.1 V

dc > Vb > 0.8V dc the biassing of the base would not allow current to flow through the

collector-emitter circuit, not allowing the coil to be energised. The switching state ofthe relay

was controlled by setting the appropriate control signal TTL levels to either high or low.

Figure 7.23 shows the robot brake release relay circuit diagram. During the robot shutdown

procedure the brakes are activated, preventing the robot from collapsing under its own load.

+12V

4001 Electromagnetic
Brakes

40V

Control 1kQ

10kQ
Ground

Figure 7.23. The circuit diagram for the brake release control module. The control signal was applied
to the base of the transistor, which energised the relay coil with the additional low power 12V DC
supply.

Microsoft® Visual Basic 6 (VB6) was used to communicate with the PC-30GA card, which

was controlled via a library of high level functions stored in the dynamic link library (dll),

-130-

Chapter 7 THE PC-BASED PUMA ROBOT

edr32.dll. This dll was supported by the Eagle EDR Software Developers Kit (SDK).

The PC-30GA interface card formed one part ofthe PC-based robot control strategy. The PC­

30GA card was responsible for two aspects ofthe control strategy. As the card was equipped

with a variety ofcontrol functions, it was ideal to use not only for the PC-based robot control,

but also as a modular mechatronic interface device. The decision logic of the PC-30GA

interface card with respect to the PC-based robot control is shown in Figure 7.24.

o
U AO

T
P
U
T
S

Eagle
PC-30GA

I
N
P
U
T
S

ChO

Chi

Ch2

Ch3

CM
Ch5

Angular Position
Pot. Feedback

Figure 7.24. The decision logic of the PC-30GA interface card.

The angular position feedback information was sampled via ChO-Ch5. The brake release relay

-131-

Chapter 7 THE PC-BASED PUMA ROBOT

module was controlled from the digital line AO.

7.7.2 The PCL-832 Servo Control Card

The PCL-832 3-axis servomotor control card was used as a sophisticated position controller.

The card's implementation provided high performance at an affordable price. The PCL-832

used digital differential analysis techniques to implement position control. Each axis had its

own position control chip, allowing completely independent control of up to three servo

motors.

The PCL-832's programming library supported high-level commands and functions, making

control easy. The library included commands to set the DDA cycle time and

acceleration/deceleration curve as well as functions for linear interpolation, circular

interpolation, return home and jog. Each PCL-832 3-axis servomotor control card was

capable of independent 3-axis servo control, affording control to the six independent robot

joints. The cards had fully continues closed-loop P offset controllers, with a differential

position encoder interface. Each card had three independent 12-bit digital-to-analogue (DAC)

outputs with ±10V ranges. Figure 7.25 shows the Advantech® PCL-832 3-axis servomotor

control card.

Microsoft® Visual Basic 6 (VB6) was used to communicate with the PCL-832 card, which

was controlled via a library of high level functions stored in the dynamic link library (dll),

PCL832.dll.

-132-

Chapter 7 THE PC-BASED PUMA ROBOT

Figure 7.25. The PCL-832 3-axis servomotor control card.

The PCL-832 servo control card was used as the servo motor control module ofthe PC-based

PUMA robot. Two cards were required for the overall robot control. Each robot joint had a

bidirectional encoder, which was connected to the encoder signal conditioning modules (ref.

Chapter 4) via the robot signal harness. The encoder signal conditioning modules were

interfaced to the PCL-832 servo control cards. The PCL-832 servo control signals from the

PC, were interfaced to the LM12 buffer circuit module (ref. Chapter 4). The LM12 buffer

circuit module was connected to the LM12 drive module (ref. Chapter 3), which produced the

high power servomotor control voltages. The PCL-832 card had two connectors. Table 7.4

shows the line definitions of the PCL-832 servo control card used. The decision logic of the

PCL-832 interface cards for the PC-based robot control is shown in Figure 7.26.

-133-

Chapter 7

o
U
T
P
U
T
S

Advantech
PCL-832

THE PC-BASED PUMA ROBOT

I
N
P
U
T
S

I
N
P
U
T
S

Advantech
PCL-832

o
U
T
P
U
T
S

LM12 Buffer
Circuit Module

Figure 7.26. The decision logic of the PCL-832 interface cards for the PC-based
PUMA robot.

-134-

Chapter 7 THE PC-BASED PUMA ROBOT

I/O ILINE ~FUNCTION I
INPUT - PCL-832 (1) I I

CHI CHlBi CHI Joint 1
Ain+ n+ INDEX

CH2 CH2 CH2 Joint 2CN2
Ain+ Bin+ INDEX

CH3 CH3 CH3 Joint 3
Ain+ Bin+ INDEX

DGND Digital Ground

IINPUT - PCL-832 (2)

CHI CHI CHI Joint 4
Ain+ Bin+ INDEX

CN2 CH2 CH2 CH2 Joint 5
Ain+ Bin+ INDEX

CH3 CH3 CH3 Joint 6
Ain+ Bin+ INDEX

DGND Digital Ground

10UTPUT - PCL-832 (1) I
CH IVCMD Joint 1

CNl
CH2VCMD Joint 2

CH3VCMD Joint 3

AGND Analogue Ground

UUTPUT - PCL-832 (2)

CH IVCMD Joint 4
CNl

CH2VCMD Joint 5

CH3VCMD Joint 6

AGND Analogue Ground

Table 7.4. The line definitions ofthe PCL-832 servo control cards.

-135-

Chapter 7 THE PC-BASED PUMA ROBOT

The decision logic and hardware system layout of the PC-based PUMA controller is shown

in Figure 7.27.

lo.o~

@,;
=0
~ ~r------------------.J
M_.....-
~B
...:l .=I-------------------.J

U

'"-=,"'0=0
.!:!i~
eLllOJ).. =", ..
'0=
00

~:E
~-g

o I-------l
U

1-----------------1

1 I
1 1

1 1

I I
1---'~------_____r-_____1 I

I
1INPUTS

INPUTS

PC30-GA

OUTPUTS

'" 1-----,-=,"'0=0
.!:!i~

,--------------'------1 eLl IOJ).. =", ..
'0=
00
""-.c

,---------'------1 ~ :g
o
U

INPUTS

OUTPUTS OUTPUTS

The PC-based PUMA
robot controller

r----~----------I

I I
I I
I h,---------------------_
I
I
I
J

J

I
I
I
I
I
I
1

I
1

1

I
1

1

J

I
1

I
I
J

J

I

1

1

1

1

1 PCL-832(1) PCL-832(2)
I
1

1

1

I
I
I

J

lo.o~

:=,;= 0
L-- --j ~ ::;:t-------------------1

M_.....-
~B

L.-------------j...:l .=t--------------------1
U

Figure 7.27. The decision logic and control modules of the PC-based PUMA controller.

-136-

Chapter 7 THE PC-BASED PUMA ROBOT

7.8 ROBOT CONTROL SYSTEM

The final control system for the PUMA robot was successfully developed as a PC-based

system that implemented digital and analogue interfacing techniques to control and coordinate

the functioning of the PUMA robot arm. The system was implemented using two control

strategies. The PUMA robot arm was controlled either by a remote supervisory agent or

locally, using the primary PC-based controller.

In keeping with the modular mechatronics design technique, the [mal control system of the

PUMA robot was developed by integrating the previously established control modules for

each ofthe motion systems. The control software ofthe PC-based PUMA robot included the

sequencing algorithms of the two control strategies. Each control strategy allowed for either

the robot joints to be controlled individually or the calling of a part manufacturing process

from memory. The operation ofthe PUMA robot control software package, RobotClient. vbp,

is reviewed in more detail in Chapter 9.

Incorporating a PC-based control package allowed for online robot manipulation and

programming, eliminating outdated programming techniques which was downtime associated.

As the need for dedicated controllers are eliminated, a variety of robot systems can be

upgraded by simply changing geometric and power requirements. The modification in the

control and software dramatically enhanced the accuracy, flexibility and capabilities of the

industrial robot.

-137-

CHAPTER 8

8 PERFORMANCE ANALYSIS OF THE INTERNET-BASED CIM SYSTEM

The functioning ofthe Internet-based CIM cell is dependant on the integrity ofthe networked

devices, and the efficiency ofthe communications system. This chapter presents the network

performance and data transmission results of the Internet-based control system.

The efficient supervisory control of the CIM components is dependant upon the network

performance and connectivity. The performance testing ofeach CIM Client with respect to the

Server has been reviewed separately, this was required as each CIM Client communicates with

the Server using different control commands. The rate ofnetwork transmission is dependant

on the length ofthe control word transmitted over the network. When transmitting data across

an open network the following communication requirements exist:

•

•

•

•

•

The network must have low latency.

The network must have a high throughput.

Any signals being transmitted over the network must be authenticated. The receiver

must know who sent the information.

The transmission of the data must be secure. The sender must be aware of who

receives the data.

The network must be fault-resilient.

The overall time optimised operation ofthe Internet control system is largely dependant on the

speed of data transmission and data integrity.

-138-

Chapter 8

8.1

PERFORMANCE ANALYSIS OF THE INTERNET-BASED CIM SYSTEM

MEASURING NETWORK PERFORMANCE

The performance ofthe Network is dependant on the transmission rate ofthe Network adapters

used by each CIM Client controller and the CIM Server. The laboratory standard, of the

Network adapters, used in the MR2G CIM cell is 10 Mbps (Mega bits per second). The rating

of the Network adapter is an indication of the operational limits of the adapter. The adapter

is able to receive data at 10Mbps, but cannot transmit at the same rate. The continuous

collisions on the network prevents this from happening. Bits per second is a measure of the

number of data bits (0 or 1) transmitted each second in a communication channel. This is

commonly referred to as bit rate. Individual characters (letters, numbers, etc.), also referred

to as bytes, are composed of several bits. The speed at which the Intra-connected machines

communicate is also known as the line speed of the network.

The speed at which data is transmitted across the Internet is dependant upon the bandwidth of

the transmitting device, either a modem or ISDN (Integrated Services Digital Network) line

used for Internet transmission. The bandwidth expresses the number ofdiscrete signals in one

second. Note that both bandwidth and bps (bits per second) refer to the rate at which the bits

within a single frame are transmitted. The gaps between the frames can be variable length.

For the performance analysis of the CIM Internet control system, the performance of the

network must be monitored and measured. A network analyser software package, called

LANScan, was used to monitor and measure Network performance. LANScan is a powerful

network monitoring and diagnostic tool, used to gain valuable information regarding network

performance, utilisation and faults.

LANScan applications depending on the network activity include:

•

•

•

•

Monitoring router performance.

Measuring network bandwidth utilisation.

Reporting Internet access.

Identifying applications that use network resources.

-139-

Chapter 8 PERFORMANCE ANALYSIS OF THE INTERNET-BASED CIM SYSTEM

• Locating faulty components, like broken cables, bad interface cards or failed network

ports.

• Identifying software problems, including incorrectly configured network drivers,

duplicate or missing network addresses or unexpected activity.

• Measuring network responses for local and wide area applications.

• Record long term network activity.

• Remote network monitoring.

Figure 8.1 shows the LANScan graphical user interfaced (GDI), launched on the CIM Server

computer.

• Reanek ATl8029tAS)·based PCI Et Realtek RIl 29(AS) ...
S·,,~ Bandwidth

. Last 1Olllecondsl
5Min.
1 Hour

: SHow
a,,·;:::! Top Hosts

l---!=! pro).;}I.und.ac.za
;.... ;:::.! _mashety.ee.und.ac.za

~." i'::~! 146.230.192.3
;'-"'i=1 146.230.193.37
j -;:j 146.230.193.34

i~I'~~ TopProlocols
. . (other Session layer protocols)

IP encapsulated NetB10S UDP IUser Datagram Proto .
("''' IP encapsulated NetBIOS NMP (Name Management P .
i ." BOOTP/DHCP (server)

DNS (Domain Name Service!

%
0.49%
0.00%
0.00%
0.00%

Tot Bytes
561634{21 %)
273850 [10%)
190996 (7%)
140520 {5%}
130942 (5%)

T01 Bytes
2441168 (92%)

77479 (3%)
43080 (2%)
28314 (1%)

(1%)

Bytes

61613
o
o
o

Tot Packets
1406[10%)

315{2%)
341 (2%)

1421 (10%)
2043 (14%)

Tat Packets
13191 {91%}

303 (2%)
446{3%)

79 (1%)
172 (1%)

Packets

457
o
o
o

Cur Bytes
1719 (3%)

o(O%)
128 (O%)

4158 (7%)
4992 (8%)
Cur Byles

44288 (72%)
3449 (6%)

259214%)
640[1%)

2163 (4%)

Figure 8.1. The LANScan graphical user interface (Gill).

Referring to Figure 8.1, the upper left corner of the Gill form displays the Network adapter

used. The Network adapter for the CIM Server is a Realtek RTL8029 PCI Network card. The

centre of the form displays the key parameters of the network. A tree displays real time

information about network bandwidth, top hosts, top protocols and events.

-140-

Chapter 8 PERFORMANCE ANALYSIS OF THE INTERNET-BASED CIM SYSTEM

8.2 NETWORK PERFORMANCE MEASUREMENTS

The performance ofcomputer network is also dependant on the packet size ofthe information

being transmitted, and the network congestion at a specific time of the day. Table 8.1 shows

the network bandwidth available for data transmission at different times ofthe day. During the

measuring of these values the CIM Client controllers were logged in to the CIM Host

controller. The averaged network performance was sampled over a period ofthree weeks. The

Network performance values were obtained using LANScan. Figure 8.2 shows a graph ofthe

network traffic performance for different times of the day.

ReadintJ # Time {CATI Bandwidth (Bvtes/Second)

1 08:00 73982

2 08:30 31273

3 09:00 28359

4 09:30 17362

5 10:00 10229

6 10:30 9872

7 11:00 12312

8 11:30 11099

9 12:00 8977

10 12:30 7306

11 13:00 4182

12 13:30 4774

13 14:00 5637

14 14:30 8648

15 15:00 10224

16 15:30 11239

17 16:00 13098

18 16:30 43897

19 17:00 65209

Table 8.1. The performance of the Network during the day.

-141-

Chapter 8 PERFORMANCE ANALYSIS OF THE INTERNET-BASED CIM SYSTEM

80000

70000

.....-
"'C
C 60000
0
()
Q)

Cl) 50000
...........
en
Q)...
>- 40000

CC--.s=. 30000...
"'C
;:

"'C 20000

C
CO

CC
10000

o I I I I I I I I I I I I I I I I I I I
8:00 8:30 9:00 9:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00 16:30 17:00

Time (CAT)
Central African Time (CAT)

Figure 8.2. Graph of the network traffic performance for an average day on the University
ofNatal Network.

Figure 8.2 shows how the network activity changes during the day. The significant change in

Network bandwidth affects the performance of the CIM Internet control system. Using

equation 8.1, the data transmission speed across the Network can be determined.

Bytes
-----= Time
Bandwidth

(8.1)

ego Ifthe CIM Host controller transmits a 26 Byte packet to the Robot Client at 15:30 (CAT)

then the transmission time would be:

26Bytes -3

11239Bytes / s = 2.313xlO s

-142-

Chapter 8 PERFORMANCE ANALYSIS OF THE INTERNET-BASED CIM SYSTEM

The 26 Byte packet reaches the Robot Client 2.313 milliseconds after transmission from the

CIM Host controller. Chapter 9 describes the operational review ofthe Modular Mechatronic

CIM Internet control system, including the tabulated commands for Client/Server interactions.

8.3 CIM COMMUNICATION PERFORMANCE

This section displays the performance ofthe data transfer between the CIM Host controller and

each Client controller. These calculations are based on the Network bandwidth results

described in Table 8.1. Each data transmission event across the network has an 18 Byte header

and trailer attached to the data packet. The header and trailer simply identifies the beginning

and the end of a transmitted data packet, including information about the origin of the

information.

8.3.1 The Camera Selector Client

Table 8.2 shows the command interaction between the CIM Host controller and the Camera

Selector Client. The time transmission performance of the commands are listed Table 8.3.

~ ndNumber CIM Host -+ Camera Selector Client Camera Selector Client -+ CIM Host

1 ClientCAM-CAMERA1

2 ClientCAM-CAMERA2

3 ClientCAM-CAMERA3

4 ClientCAM-CAMERA4

5 ClientCAM-EXIT

6 HostCAM-CAMERA1

7 HostCAM-CAMERA2

8 HostCAM-CAMERA3

9 HostCAM-CAMERA4

10 HostCAM-EXIT

Table 8.2. The command interactions between the CIM Host and the Camera Selector Client.

-143-

Chapter 8 PERFORMANCE ANALYSIS OF THE INTERNET-BASED CIM SYSTEM

CIM Host -+ Camera Selector Client Camera Selector Client -+ CIM Host

Commands Commands

TIME (CAT) 1 2 3 4 5 6 7 8 9 10

Number of Bytes (Including header and trailer) Number of Bytes (Including header and trailer)

35 35 35 35 32 33 33 33 33 30

Transmission Time (ms) Transmission Time (ms)

8:00 0.473 0.473 0.473 0.473 0.432 0.446 0.446 0.446 0.446 0.405

8:30 1.119 1.119 1.119 1.119 1.023 1.055 1.055 1.055 1.055 0.959

9:00 1.234 1.234 1.234 1.234 1.128 1.164 1.164 1.164 1.164 1.058

9:30 2.016 2.016 2.016 2.016 1.843 1.900 1.900 1.900 1.900 1.728

10:00 3.422 3.422 3.422 3.422 3.128 3.226 3.226 3.226 3.226 2.933

10:30 3.545 3.545 3.545 3.545 3.241 3.343 3.343 3.343 3.343 3.039

11:00 2.843 2.843 2.843 2.843 2.599 2.680 2.680 2.680 2.680 2.437

11 :30 3.153 3.153 3.153 3153 2.883 2.973 2.973 2.973 2.973 2.703

12:00 3.899 3899 3.899 3899 3.565 3.676 3.676 3.676 3.676 3.342

12:30 4.791 4.791 4.791 4.791 4.379 4.517 4.517 4.517 4.517 4.106

13:00 8.369 8.369 8.369 8.369 7.651 7.891 7.891 7.891 7.891 7.174

13:30 7.331 7.331 7.331 7.331 6.703 6.912 6.912 6.912 6.912 6.284

14:00 6.208 6.208 6.208 6.208 5.677 5.854 5.854 5.854 5.854 5.322

14:30 4.047 4.047 4.047 4.047 3.700 3.816 3.816 3.816 3.816 3.469

15:00 3.423 3.423 3.423 3.423 3.130 3.228 3.228 3.228 3.228 2.934

15:30 3.114 3.114 3.114 3.114 2.847 2.936 2.936 2.936 2.936 2.669

16:00 2.672 2.672 2.672 2.672 2.443 2.519 2.519 2.519 2.519 2.290

16:30 0.797 0.797 0.797 0.797 0.729 0.752 0.752 0.752 0.752 0.683

17:00 0.537 0.537 0.537 0.537 0.490 0.506 0.506 0.506 0.506 0.460

Table 8.3. The transmission time performance between the CIM Host controller and the

Camera Selector Client in milliseconds.

-144-

Chapter 8 PERFORMANCE ANALYSIS OF THE INTERNET-BASED CIM SYSTEM

The transmission time performance for each command between the CIM Host and Camera

Selector Client is plotted in Figure 8.3.

10------------------------------

\
8--------~/~---'-<:-,,~-:\------

f~'
6-------------------'-T----....:~'--'----------

It
"

I?
4------------------.-'·'-:-f-·---r----------\~--------

~ W
r-:-~ '.

;j~=--'~~

Q)

E
r-
e
o
en
en
E
en
c
ro
L..r-

..-
en
E

o I

8:00 8:30 9:00 9:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00 16:30 17:00

•
Time (CAT)

Command 10 - 30 bytes

Command 6,7,8,9 - 33 bytes

Command 5 - 32 bytes

Command 1,2,3,4 - 35 bytes

Figure 8.3. Graph ofthe transmission times between the CIM Host and the Camera Selector
Client.

From Figure 8.3. the maximum transmission time occurs as predicted during the times when

the network bandwidth is the lowest. The longest transmission time interval is 8.369

milliseconds, for a 35 byte data packet at 13:00 hours (CAT). The Camera Selector Client

receives the command to select a camera from the CIM Host in less than 9 milliseconds from

transmission. During off-peak times, 17:00 hours (CAT), this value drops below 600

microseconds.

-145-

Chapter 8 PERFORMANCE ANALYSIS OF THE INTERNET-BASED CIM SYSTEM

8.3.2 The Conveyer Client

Table 8.4 shows the command interaction between the CIM Host controller and the Conveyer

Client. The time transmission performance of the commands are listed Table 8.5.

II~ and Number kIM Host - Conveyer Client IConveverr Client - CIM Host

1 ClientCON-START

2 ClientCON-AGVAVIS

3 ClientCON-AVISAGV

4 ClientCON-AGVROBOT

5 ClientCON-ROBOTAGV

6 ClientCON-AVISROBOT

7 ClientCON-ROBOTAVIS

8 ClientCON-EXIT

9 HostCON-AGV

10 HostCON-ROBOT

11 HostCON-AVIS

12 HostCON-RUN

13 HostCON-EXIT

Table 8.4. The command interactions between the CIM Host and the Conveyer Client.

The transmission time performance for each command between the CIM Host and Camera

Selector Client is plotted in Figure 8.4.

-146-

Chapter 8 PERFORMANCE ANALYSIS OF THE INTERNET-BASED CIM SYSTEM

CIM Host - Conveyer Client Conveyer Client - CIM Host

Commands Commands

TIME 1 2 3 4 5 6 7 8 9 10 11 12 13

(CAT) Number of Bytes (Including header and trailer) Number of Bytes(Inc1uding header and

trailer)

33 35 35 36 36 37 37 32 29 31 30 29 30

Transmission Time (ms) Transmission Time (ms)

8:00 0.446 0.473 0.473 0.486 0.486 0.500 0.500 0.432 0.392 0.419 0.405 0.392 0.405

8:30 1.055 1.119 1.119 1.151 1.151 1.183 1.183 1.023 0.927 0.991 0.959 0.927 0.959

9:00 1.163 1.234 1.234 1.269 1.269 1.304 1.304 I.t28 1.022 1.093 1.058 1.022 1.058

9:30 1.901 2.016 2.016 2.073 2.073 2.131 2.131 1.843 1.670 1.786 1.728 1.670 1.728

10:00 3.226 3.422 3.422 3.519 3.519 3.617 3.617 3.128 2.835 3.03 2.933 2.835 2.933

10:30 3.342 3.545 3.545 3.647 3.647 3.748 3.748 3.241 2.938 3.140 3.039 2.938 3.039

11 :00 2.680 2.843 2.843 2.923 2.923 3.005 3.005 2.599 2.355 2.518 2.437 2.355 2.437

11 :30 2.973 3.153 3.153 3.243 3.243 3.333 3.333 2.883 2.613 2.793 2.703 2.613 2.703

12:00 3.676 3.899 3.899 4.010 4.010 4.122 4.122 3.565 3.230 3.453 3.342 3.230 3.342

12:30 4.517 4.791 4.791 4.927 4.927 5.064 5.064 4.379 3.969 4.243 4.106 3.969 4.106

13:00 7.891 8.369 8.369 8.608 8.608 8.847 8.847 7.651 6.934 7.413 7.174 6.934 7.174

13:30 6.912 7.331 7.331 7.540 7.540 7.75 7.75 6.703 6.075 6.493 6.284 6.075 6.284

14:00 5.854 6.208 6.208 6.386 6.386 6.563 6.563 5.677 5.144 5.499 5.322 5.144 5.322

14:30 3.816 4.047 4.047 4.163 4.163 4.278 4.278 3.700 3.353 3.585 3.469 3.353 3.469

15:00 3.228 3.423 3.423 3.521 3.521 3.619 3.619 3.130 2.836 3.032 2.934 2.836 2.934

15:30 2.936 3.114 3.114 3.203 3.203 3.292 3.292 2.847 2.580 2.759 2.669 2.580 2.669

16:00 2.519 2.672 2.672 2.748 2.748 2.825 2.825 2.443 2.214 2.367 2.290 2.214 2.290

16:30 0.752 0.797 0.797 0.820 0.820 0.843 0.843 0.729 0.661 0.706 0.683 0.661 0.683

17:00 0.506 0.537 0.537 0.552 0.552 0.567 0.567 0.490 0.445 0.475 0.460 0.445 0.460

Table 8.5. The transmission time performance between the CIM Host controller and the

Conveyer Client in milliseconds.

-147-

Chapter 8 PERFORMANCE ANALYSIS OF THE INTERNET-BASED CIM SYSTEM

10------------------------------

--(/)

E---Q)

E
i=
c
0
(/)
(/) 4

E
(/)
c
rn
L..

I- 2

o 1 I I I I I
8:00 8:30 9:00 9:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00 16:30 17:00

Time (CAT)

---11-- Command 9,12 - 29 bytes ---A - Command 11,13 - 30 bytes

Command 10 - 31 bytes --+- - Command 8 - 32 bytes

-x- Command 1 - 33 bytes -+-- Command 2,3 - 35 bytes

------- Command 4,5 - 36 bytes --- Command 6,7 - 37 bytes

Figure 8.4. Graph ofthe transmission times between the CIM Host and the Conveyer Client.

From Figure 8.4. the longest transmission time interval is 8.847 milliseconds, for a 37 byte

data packet at 13:00 hours (CAT). The Conveyer Client receives the command to start a

material handling routine from the CIM Host in less than 9 milliseconds from transmission.

During off-peak times, 17:00 hours (CAT), this value drops below 600 microseconds. Figure

8.4 and Figure 8.3 show the same characteristic graphical trends, as the bandwidth decreases

the transmission times increase.

-148-

Chapter 8 PERFORMANCE ANALYSIS OF THE INTERNET-BASED CIM SYSTEM

8.3.3 The Robot Client

Table 8.6 shows the command interaction between the CIM Host controller and the Robot

Client. The time transmission performance of the commands are listed Table 8.7.

ICommand Number rlCIM Host - Robot Client IRobot Client - CIM Host

1 ClientROB-START

2 ClientROB-XAYBZC

3 ClientROB-U-V-W-X-Y-Z

4 ClientROB-EXIT

5 HostROB-RUN

6 HostROB-XAYBZC

7 HostROB-U-V-W-X-Y-Z

8 HostROB-EXIT

Table 8.6. The command interaction between the CIM Host controller and the Robot Client.

The transmission time performance for each command between the CIM Host and Robot

Client is plotted in Figure 8.5.

-149-

Chapter 8 PERFORMANCE ANALYSIS OF THE INTERNET-BASED CIM SYSTEM

CIM Host - Robot Client Robot Client - CIM Host

Commands Commands

TIME 1 2 3 4 5 6 7 8

(CAT) Number of Bytes (Including header and trailer) Number of Bytes(Including header and trailer)

33 40 51 32 29 38 49 30

Transmission Time (ms) Transmission Time (ms)

8:00 0.446 0.541 0.689 0.432 0.392 0.514 0.662 0.405

8:30 1.055 \.28 1.631 1.023 0.927 1.215 \.567 0.959

9:00 1.163 1.410 1.798 1.128 1.022 1.34 \.728 \.058

9:30 1.901 2.304 2.937 \.843 \.670 2.189 2.822 \.728

10:00 3.226 3.910 4.986 3128 2.835 3.715 4.79 2.933

10:30 3.342 4.052 5.166 3.24\ 2938 3.849 4.964 3.039

11:00 2.680 3249 4.1423 2.599 2.355 3.086 3.98 2.437

11 :30 2.973 3.604 4.595 2.883 2.613 3.424 4.415 2.703

12:00 3.676 4.456 5.681 3.565 3.230 4.233 5.458 3.342

12:30 4.517 5.475 6.981 4.379 3.969 5.201 6.707 4.106

13:00 7.891 9.565 12.195 7.651 6.934 9.087 1\.717 7.174

13:30 6.912 8.379 10.682 6.703 6.075 7.96 10.263 6.284

14:00 5.854 7.096 9.047 5.677 5.144 6.74\ 8.693 5.322

14:30 3.816 4.625 5.897 3.700 3.353 4.39 5.666 3.469

15:00 3.228 3.912 4.988 3.130 2.836 3.72 4.793 2.934

15:30 2.936 3.559 4.538 2.847 2.580 3.38 4.36 2.669

16:00 2.519 3.054 3.894 2.443 2.214 2.901 3.741 2.290

16:30 0.752 0.911 1.162 0.729 0.661 0.866 1.116 0.683

17:00 0.506 0.613 0.782 0.490 0.445 0.583 0.751 0.460

Table 8.7. The transmission time performancebetweenthe CIM Host controller and the Robot
Client in milliseconds.

-150-

Chapter 8 PERFORMANCE ANALYSIS OF THE INTERNET-BASED CIM SYSTEM

14-~~~~~~~~~~~~~~~~~~~~~~~~~~~~-

12

.-
en
E 10

~"-
Q)

E
i= 8

C
0
en
en
E
en

4C
ro
L...

I--
2-~~~Lr:-~~~~~~~~~~~~~~~~~~~~~--,,'\'<:Y\---

o I I I I I I I I

8:00 8:30 9:00 9:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00 16:30 17:00

•
-x----

Command 5 - 29 bytes

Command 4 - 32 bytes

Command 6 - 38 bytes

Command 7 - 49 bytes

Time (CAT)

Command 8 - 30 bytes

Command 1 - 33 bytes

Command 2 - 40 bytes

Command 3 - 51 bytes

Figure 8.5. Graph of the transmission times between the CIM Host and the Robot Client.

From Figure 8.5. the longest transmission time interval is 12.195 milliseconds, for a 51 byte

data packet at 13:00 hours (CAT). The Robot Client receives the command to position each

robot joint at a specific angle from the CIM Host in less than 13 milliseconds from

transmission. During off-peak times, 17:00 hours (CAT), this value decreases below 800

microseconds. Figure 8.5 clearly shows how increase between the transmission times per byte

for low bandwidth (13:00) is greater than the increase at high bandwidth (08:00) times. This

is due to the fact that the relationship between data packet sizes are not linear due to the

addition of the header and trailer to each packet.

-151-

Chapter 8 PERFORMANCE ANALYSIS OF THE INTERNET-BASED CIM SYSTEM

8.3.4 The WEB Client

Icommand Number ~IcIMHost - WEB Client IIWEB Client - CIM Host I
A ClientWEB-START

B ClientWEB-AGVAVIS

B ClientWEB-AVISAGV

C ClientWEB-AGVROBOT

C ClientWEB-ROBOTAGV

D ClientWEB-AVISROBOT

D ClientWEB-ROBOTAVIS

E ClientWEB-CAM1

E ClientWEB-CAM2

E ClientWEB-CAM3

E ClientWEB-CAM4

F ClientWEB-XAYBZC

G ClientWEB-U-V-W-X-Y-Z

E ClientWEB-EXIT

H HostWEB-RUN

H HostWEB-AGV

I HostWEB-ROBOT

J HostWEB-AVIS

H HostWEB-CAMl

H HostWEB-CAM2

H HostWEB-CAM3

H HostWEB-CAM4

K HostWEB-XAYBZC

L HostWEB-U-V-W-X-Y-Z

J HostWEB-EXIT

Table 8.8. The command interactions between the CIM Host controller and the Web Client.

-152-

Chapter 8 PERFORMANCE ANALYSIS OF THE INTERNET-BASED CIM SYSTEM

Table 8.8 shows the command interaction between the CIM Host controller and the remote

WEB Client.. The time transmission performance of the commands are listed Table 8.9.

CIM Host - WEB Client WEB Client - CIM Host

Commands Commands

TIME A B C D E F G H I J K L

(CAT) Number of Bytes (Including header and trailer) Number of Bytes(Including header and trailer)

33 35 36 37 32 40 51 29 31 30 38 49

Transmission Time (rns) Transmission Time (ms)

8:00 0.446 0.473 0.486 0.500 0.432 0.541 0.689 0.392 0.419 0.405 0.514 0.662

8:30 1.055 1119 1151 1183 1.023 1.28 1.631 0.927 0.991 0.959 1.215 1.567

9:00 1163 1.234 1.269 1.304 1128 1.410 1.798 1.022 1.093 1.058 1.34 1.728

9:30 1.901 2.016 2.073 2.131 1.843 2304 2.937 1.670 1.786 1.728 2.189 2.822

10:00 3.226 3.422 3.519 3.617 3.128 3.910 4.986 2.835 3.03 2.933 3.715 4.79

10:30 3.342 3.545 3.647 3.748 3.241 4.052 5.166 2.938 3.140 3.039 3.849 4.964

11:00 2.680 2.843 2.923 3.005 2.599 3.249 4.1423 2.355 2.518 2.437 3.086 3.98

II :30 2.973 3.153 3.243 3.333 2.883 3.604 4.595 2.613 2.793 2.703 3.424 4.415

12:00 3.676 3.899 4.010 4.122 3.565 4.456 5.681 3.230 3.453 3.342 4.233 5.458

12:30 4.517 4.791 4.927 5.064 4.379 5.475 6.981 3.969 4.243 4.106 5.201 6.707

13:00 7.891 8.369 8.608 8.847 7.651 9.565 12.195 6.934 7.413 7.174 9.087 11.717

13:30 6.912 7.331 7.540 7.75 6.703 8.379 10.682 6.075 6.493 6.284 7.96 10.263

14:00 5.854 6.208 6.386 6.563 5.677 7.096 9.047 5.144 5.499 5.322 6.741 8.693

14:30 3.816 4.047 4.163 4.278 3.700 4.625 5.897 3.353 3.585 3.469 4.39 5.666

15:00 3.228 3.423 3.521 3.619 3.130 3.912 4.988 2.836 3.032 2.934 3.72 4.793

15:30 2.936 3.114 3.203 3.292 2.847 3.559 4.538 2.580 2.759 2.669 3.38 4.36

16:00 2.519 2.672 2.748 2.825 2.443 3.054 3.894 2.214 2.367 2.290 2.901 3.741

16:30 0.752 0.797 0.820 0.843 0.729 0.911 1162 0.661 0.706 0.683 0.866 1.116

17:00 0.506 0.537 0.552 0.567 0.490 0.613 0.782 0.445 0.475 0.460 0.583 0.751

Table 8.9. The transmission time performance between the CIM Host controller and the

remote WEB Client in milliseconds.

-153-

Chapter 8 PERFORMANCE ANALYSIS OF THE INTERNET-BASED CIM SYSTEM

Figure 8.6 shows the transmission times.

14~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-

15:30 16:00 16:30 17:0014:00 14:3011:00 11:30 12:00 12:30 13:00

o.:;..,~~~~---'-~-,-~-.------r~-,-~-.-----r~-,-~-.------r~-'-~-,-- __r---,~--,----,

8:00 8:30 9:00 9:30 10:00

6~~~~~~~~~~~~~----;-/!--~f'II-~~~~~~~~~~~~~-

<l>
E
~
c
o
enen
E
en
c
~
I--

12~~~~~~~~~~~~~~~~----:~~~~~~~~~~~~~-

...-en
E___ 10~~~~~~~~~~~~~~~~--r.-~~"""~~~~~~~~~~-

Time (CAT)

III Command H - 29 bytes ~- Command J - 30 bytes

Command I - 31 bytes ----+- - Command E - 32 bytes

-x- Command A - 33 bytes -+~- Command B - 35 bytes

• Command C - 36 bytes --- Command D - 37 bytes
- ~ + - - Command K - 38 bytes ------ -

Command F - 40 bytes
-- Command L - 49 bytes -+~- Command G - 51 bytes

Figure 8.6. Graph of the transmission times between the CIM Host and the WEB Client.

From Figure 8.6. the longest transmission time interval is 12.195 milliseconds, for a 51 byte

data packet at 13:00 hours (CAT), this value decreases below 800 microseconds. Figure 8.6

clearly shows how increase between the transmission times per byte for lowb~dwidth(13 :00)

is greater than the increase at high bandwidth (08:00) times.

This phenomenon is illustrated in Figure 8.7. The gradient ofeach time interval plot increases,

as the bandwidth value decreases. This result illustrates the constraints bandwidth restrictions

can place on Internet controlled manufacturing processes.

-154-

Chapter 8 PERFORMANCE ANALYSIS OF THE INTERNET-BASED CIM SYSTEM

14--------------------------------

12--------------------------..___-.'-"-----

10-----------------:.7'"7"'---------------

o I

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

Bytes

IiI 8:00 -------)(- 10:00 - -+ - 12:00 , 13:00-~ -

• 14:00 -------.i. - 16:00 11 17:00

Figure 8.7. Shows the gradient increase for lower bandwidth values.

-155-

Chapter 8 PERFORMANCE ANALYSIS OF THE INTERNET-BASED CIM SYSTEM

8.4 THE VISUAL FEEDBACK PERFORMANCE

Referring to Table 8.3, the perfonnance of the computer network is dependant on the packet

size of the infonnation being transmitted. The visual feedback module of the CIM Internet

control system relies on the available bandwidth of the network to transmit the live CIM cell

image over the Internet. During development of the system, the image was pushed across the

network at four frames per second.

The size ofthe image was 320 x 240pixels totalling 18.2 KB (18699 Bytes). Figure 8.8 shows

the perfonnance graph of the visual feedback system.

5000---------------------------

4000

--en
E--Q)

E 3000

i=
c

.Q
en
.~ 2000

E
en
c
cos....
~

1000

Time (CAT)

8:00 8:30 9:00 9:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00 16:30 17:00
o I I I i I I , I 1 , I I I I I I I I I

11 Command H - 29 byte

Figure 8.8. The visual feedback perfonnance graph.

-156-

Chapter 8 PERFORMANCE ANALYSIS OF THE INTERNET-BASED CIM SYSTEM

Referring to Figure 8.8, at 8:00 hours the Internet Image is updated every 252 ms. This result

is satisfactory as the Web image is updated every 250 ms. However during peak: times the

image is updated every 4.47 seconds. The bandwidth required to update the live image feed

is not sufficient to update the image every four seconds. The image overhead on the system

is 366 times greater than the largest control signal to the CIM cell. The immediate solution to

this problem lies in slower update speeds and reducing the size of the image.

-157-

CHAPTER 9

9 OPERATIONAL REVIEW OF THE MODULAR MECHATRONIC CIM

INTERNET CONTROL SYSTEM

This chapter discusses the implementation ofthe modular mechatronic Internet control system

in the elM environment. The modular mechatronic Internet control system was implemented

in a research-based computer integrated manufacturing cell in the School of Mechanical

Engineering at the University of Natal.

The chapter also presents two other applications ofthe operational procedures adopted by the

modular mechatronic Internet control system. The aim of this chapter is to enhance the

reader's understanding ofthe overall function ofthe Internet control system, and to higWight

the practical applications of the research presented.

-158-

Chapter 9 OPERATIONAL REVIEW OF THE MODULAR
MECHATRONIC CIM INTERNET CONTROL SYSTEM

9.1 IMPLEMENTATION OF THE MODULAR MECHATRONIC INTERNET

CONTROL SYSTEM IN THE CIM ENVIRONMENT

This section discusses the implementation of the modular mechatronic CIM Internet control

system in the computer integrated manufacturing environment. The Internet monitoring and

control system was implemented using a modular mechatronic design methodology. It was

fundamental that the computer-based technology could be integrated into a CIM environment.

The Internet control system was successfully integrated and used to control and monitor

various CIM systems online.

The communication between the various CIM Clients and CIM Host was achieved using the

TCP/IP communications protocol. The system used low-level control commands to instruct

the various CIM controllers to perform a task. The CIM controllers relied on primary machine

intelligence to perform the task. This control structure eliminated Internet lag problems

associated with the control ofmachines over vast network distances. The standardisation of

Mechatronic components simplified the control and monitoring of the various CIM

components. Figure 9.1 shows the command interactions between the various CIM Client

components and the CIM Host controller. Table 9.1 contains the control commands as

graphically illustrated in Figure 9.1.

The CIM Host controller communicates with the CIM Clients using one WinSock controller

for each Client. To connect to a WinSock controller requires an IP address and a port. On the

CIM Host controller the IP address stays fixed and each Client connects to a different Port

number. Simplyadding more Winsock Controls allows for more Clients to connect to the Host

controller, which provides the system with modularity. Ifthe connecting client tries to connect

using a conflicting port number, the Host controller will forcefully reject the connection.

-159-

Chapter 9 OPERATIONAL REVIEW OF THE MODULAR
MECHATRONIC CIM INTERNET CONTROL SYSTEM

Web Client

Camera Selector
Client

JP -146.230.195.78

;-------~---------I~I

CIM Host
JP -146.230.192.36

lA

I

UND Server
Gateway

JP -146.230.128.15

I
I
I
I
I
I
I
I
I
I
I
I
I
t

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I i
---------------------r- -------------------- J

I

Robot Client
JP -146.230.195.76

,--1
I I
I I
I I

I
I
I
I

I
I
I
I
t

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I Conveyer Client
i JP -146.230.195.230
IL _

Figure 9.1. The interactions between the various CIM Client components and the CIM Host
controller

-160-

Chapter 9 OPERATIONAL REVIEW OF THE MODULAR
MECHATRONIC CIM INTERNET CONTROL SYSTEM

Network Commands

Camera Selector Robot Client Conveyer Client Web Client

Client

ClientCAM-CAMERAl ClientROB-START ClientCON-START ClientWEB-START

CJientCAM-CAMERA2 ClientROB-XAYBIC ClienlCON-AGVA VIS ClientWEB-AGVAVlS

ChentC AM.-C/\MERAJ CliemROB-U-V-W-X-Y-I ClientCON-AVISAGV ClientWEB-AVlSAGV

ClienlCAM-CAMERA4 ClicntROB-EXIT ClientCON-AGVROBOT ClientWEB-AGVROBOT

ClientCAM-EXIT HostROB-RUN ClicntCON-ROBOTAGV ClientWEB-ROBOTAGV

HostCAM-CAMERi\l HostROB-XAYBlC ClientCON-AVlSROBOT ClientWEB-AVISROBOT

HostCAM-CAMERA2 HostROB-U-V-W-X-Y-l ClicntCON-ROBOTAVIS ChentWEB-ROBOTAVIS

HostCAM-CAJ\t1ERA3 HostROB-EXIT ClicnlCON-EXIT ClientWEB-CAM I

HostCAM-CAMERA4 HostCON-AGV ClicntWEB-CAM2

HostCAM-EXIT HostCON-ROBOT ClicntWEB-C·\.M3

HostCON-AVIS ClicntWEB-CAM4

HostCON-RUN ClientWEB-XAYBIC

HostCON-EXIT ClientWEB-U-V-W-X-Y-l

ClientWEB-EXJT

HostWEB-RUN

HostWEB-AGV

HostWEB-ROBOT

HostWEB-AVIS

HostWEB-CAM I

HostWEB-CAM2

HostWEB-CAM3

HostWEB-CAM4

HostWEB-XAYBZC

HostWEB-U-V-W-X-Y-Z

HostWEB-EXIT

Table 9.1. The control commands as graphically illustrated in Figure 9.1.

-161-

Chapter 9 OPERATIONAL REVIEW OF THE MODULAR
MECHATRONIC CIM INTERNET CONTROL SYSTEM

9.2 OPERATIONAL REVIEW OF THE SUPERVISORY CONTROL SYSTEM

9.2.1 The Remote Client Website

The CIM Internet control system is accessed via a Website hosted on the University ofNatal

shrike Server. The URL contains the hyperlink to CIM cell Host controller. When the URL

is invoked, the remote user loads the CIM home page to their browser. Figure 9.2 shows the

CIM Internet Control System home page.

The home page displays an overall picture of the CIM cell in the MR2G laboratory. The

remote user has the option to use anyone of the four navigation bars on the home page. Each

navigation bar contains a hyperlink to another page on the Website. Each page contains the

relevant information of the system and the applications needed to operate the CIM cell

remotely. These applications are distributed and installed on the remote Client machine as self

extracting executable applications. Figure 9.3 shows the CIM Video Feed Web page with a

hyperlink to the Video. html Web page on the CIM Host Controller. Figure 9.4 shows the live

video feed page, which is dynamically updated at four frames per second.

-162-

Chapter 9 OPERATIONAL REVIEW OF THE MODULAR
MECHATRONIC CIM INTERNET CONTROL SYSTEM

Figure 9.2. The CIM Control System home page.

elM VideO Feed

~ ~B"ACK-

B ~m .~ ~E:J :
i J

"'"The F15ShPOimJDlrama groobii;-caPfii"es aStiR-image~250 milsaeonds and saves ltislmage f6
111& image directOfY olll19 web page on tha image Server. The Jaw epple1 is irm$dded in !he Image'
ServerYVe!l'_~g&.1he ~~t~~ Jtl!Jm~eto ~~d<ited a~fr~ pei_sec~...1ll!l_~ ~
lh8 sUlllmag91S 25Kb. mc:hls trM,Srnm:edtolhe C1iertmaChJ~. wilhOl.C causingneMOOr congestion.

Figure 9.3(b). The CIM Video Feed Web
page 2.

J;"a is-an Qbiea!OliOOledJlf.09ramming Iang;aQed9~ from'C.... anc:!e)lJended bym~of a
coloction of libraries. ~ edditionIO_~ng~ app!ets thaI~ Ioadad.pver lhe Web I'lith the HTMl

-'page~lhe-~'erMronnell a1so-a1k;Jws for·lhe·aeooon·oI s'.andalone applicelions. Jave·Applels are-a·­
Java dass lhal is loaded and nilb1oo-~nQJava apPlication sudI as a Web broWser. Java

=:~~~~er~oi~==~~:~b b~er c;able of\fll9fPreting Java,-sueh as

, I
The J~a progar'nrring~ is.bottla higMevel programning Ianguaga and oper~ng pl8lform.
The Java p!"~ng~Uhglfill'uri~e i'l~ "jf~ogfifm is~boltlcompil9d arid ihterprelod.-The :
Java comptlerfilSl trartSla!:!3s-a pr0!7~rll'lnto an mterrneciate~ege caled Jav&-b)ol:a Cod!'S. The

~~7s~-!A~~c1~~~~~~~~co~t~~l~~e:t~~ereter~ -
irterpretation OCCU"S eac:h-'(jme the progMl is executed.

~eCocl8S:make_~t8once,~ ~e" possitje. ThE! ap..caJoo progsm cm be COOl!ile'd

.~~::~:~~:~~:a~(;~c;~::~:c:e~~gi:~~
W:ernet'Ellplor~ry.leb br~ ..rnsWeb-Casting.tecb1ique foklws the moa..l!erdesi!Jl approach as
1he~~.MeI~_~~~~~to~~~~~OWS~,8S0~,~lioo~on;~IMA~:__~

The 'oiSlJtllleed:iackmoduJe uses secver pUSh lecmo .wtIereltle 'oideo is made from 8 slreCl1l 0'- c,..- ~

Figure 9.3(a). The CIM Video Feed Web
page 1.

-163-

Chapter 9 OPERATIONAL REVIEW OF THE MODULAR
MECHATRONIC ClM INTERNET CONTROL SYSTEM

Figure 9.4. The live video feed Web page.

Figure 9.4 shows the image of camera 1. This camera view is transmitted over the Internet

using the server push technology as discussed in Chapter 5. Figure 9.5 shows the Conveyer

System Web page. This page contains the information regarding the workstation assignments

of the ClM conveyer system.

Figure 9.5(a). The Conveyer System Web
page 1.

Figure 9.5(b). The Conveyer System Web
page 2.

-164-

Chapter 9 OPERATIONAL REVIEW OF THE MODULAR
MECHATRONIC ClM INTERNET CONTROL SYSTEM

The position and movement ofthe pallet is controlled using preprogrammed algorithms. The

remote Client makes use ofthe supervisory control strategy, while the primary control tasks

are executed by the local conveyer Client. Figure 9.6 shows the PUMA Robot Web Page. This

page contains the information regarding the PUMA Robot.

Figure 9.6. The PUMA Robot Web page.

The Application Software Web page contains the remote Client software required to control

the ClM components over the Web. The software is downloaded to the remote Client machine

via the ClM Host ftp:// server. The application software was written in VB6 and uses ActiveX

and TCPIIP technology for Internet connectivity and control.

-165-

Chapter 9 OPERATIONAL REVIEW OF THE MODULAR
MECHATRONIC CIM INTERNET CONTROL SYSTEM

9.2.2 The Visual Feedback Module

The visual feedback module was designed as a robust online monitoring system and as a result

the operation of the module is greatly simplified. The Host Controller (Server) interacts and

controls the visual feedback module, using preprogrammed control algorithms. The Host

Controller interacts with the high level graphical user interface (GUn, MainServer. vbp and

Video.java, software installed on the host controller. The Host Controller also interacts and

communicates with the camera selector controller, to select and activate the appropriate

camera, using the CAMClient. vbp, software. The various visual feedback software modules

were developed as Windows 95/98/2000® applications. The software could be invoked from

the start menu ofthe Host and Camera Selector Controllers. The ServerMain. vbp software also

contained the TCPIIP communication backbone between the Host (Server) Controller and the

CIM cell controllers.

When the Visual Feedback Module is launched, the Gill [fflashptfrm] is shown on the screen.

The Gill displays the visual feedback information on the screen allowing manual control of

the visual feedback process and configures the FlashPoint3n frame grabber card (ref. Figure

9.7). Once the configuration functions have been completed, the [Serverfrm] is loaded, but

kept hidden from the desktop display. The Serverfrm control software monitors the entire

network for control signals from the Web Client, Robot Client, Conveyer Client and Camera

Selector Client controllers.

Figure 9.7. The FlashPoinen frame grabber card.
-166-

Chapter 9 OPERATIONAL REVIEW OF THE MODULAR
MECHATRONIC CIM INTERNET CONTROL SYSTEM

This process continuos for the entire duration ofthe manufacturing process. The fflashptfrm

is contained in the jlashptb.vbp project, which controls the Savelmgfrm. The Savelmgfrm

captures and saves the live video image to the c:/Inetpub/wwwroot/webcam32.jpg file on the

Web Server. This file is updated every 250ms, updating the live video feed at four frames per

second. The Serverfrm communicates with the Video Selector Client, which in turn selects

the appropriate camera as per a preprogrammed algorithm. Figure 9.8 shows the Serverfrm.

Figure 9.8. The Server.frm form. Note the server
has connected to IP address 146.230.195.78,
which is the Camera Selector Client.

As the webcam32jpg file is updated every 250ms, the image is loaded to the Videojava applet

which is imbedded in the Video.html web page that resides on the Web Server. The Java

applet has been programmed to update the Web browser on the client side every 250ms,

allowing the remote Web Client to view the CIM process at four frames per second. Figure

9.9 shows the Video.html page and the four different camera views of the CIM cell. The

performance of the Visual Feedback module was dependant on the network bandwidth

limitations at different operating times. Figures 9.9 (a)(b)(c)(d) shows the transmitted camera

views at 11 :00 hours. This produced an image update every second. This image update time

was sufficient to monitor the CIM cell while using the supervisory control structure.

-167-

Chapter 9 OPERATIONAL REVIEW OF THE MODULAR
MECHATRONIC ClM INTERNET CONTROL SYSTEM

Figure 9.9(a). Camera view 1.

Figure 9.9(c). Camera view 3.

Figure 9.9(b). Camera view 2.

Figure 9.9(d). Camera view 4.

The Host Controller communicates with the Camera Selector Client using five different

commands. These commands are shown in Table 9.1.

-168-

Chapter 9 OPERATIONAL REVIEW OF THE MODULAR
MECHATRONIC CIM INTERNET CONTROL SYSTEM

When the Host Controller transmits any messages across the network which does not match

the commands from Table 9.1, the Camera Selector Client ignores the erroneous messages.

The cameras are selected using the camera selector circuit, which uses the relaypower module

circuit to switch between the four installed cameras. Figure 9.10 shows the camera selector

circuit.

Figure 9.10. The camera selector circuit.

The circuit uses modular functionality as the circuit is capable of switching eight cameras.

9.2.3 The Web Client Control Software

The control software was written in VB6. As the modular Mechatronic design methodology

was used, the Internet control is achieved using the TCP/IP network backbone (ref. Figure

9.11).

InternetrClient 1..._<___ ----1

TCPIIP

• •
HTTP

Figure 9.11. The TCP/IP network backbone for CIM hardware control and monitoring.

-169-

Chapter 9 OPERATIONAL REVIEW OF THE MODULAR
MECHATRONIC CIM INTERNET CONTROL SYSTEM

The CIM Host Controller (Server) receives the supervisory control signals from the remote

Web Client and processes and relays the appropriate control signals to the robot Client,

conveyer client and camera selector client controllers. The Host Controller transmits the

control information across the entire CIM network, but only the appropriate CIM components

receive and use the information. The Client controller setup allows the Web Client to only

communicate with the Host Controller. The Host Controller receives the Web Client

commands and processes the information according to a preprogrammed algorithm.

Figure 9.12 shows the ActiveX Web Client control software Gill. The software is installed

as a self extracting executable file. The Web Client control software now resides on the

remote client web browser, and connects via the TCP/IP protocols to the Host controller in the

MR2G laboratory. The CIM control program connects to the Host controller through a

preprogrammed default IP address. The IP address is a fixed address, which simplifies

connectivity.

Figure 9.12. The ActiveX CIM control GUI.

-170-

Chapter 9 OPERATIONAL REVIEW OF THE MODULAR
MECHATRONIC ClM INTERNET CONTROL SYSTEM

Referring to Figure 9.12, the remote Client has the option to control the conveyer or robot on

the same control window. The supervisory control structure ofthe conveyer system allows the

remote Client to select a predetermined part process command. As the routine is executed, the

appropriate camera view is automatically selected. At the bottom of the screen two message

boxes show the messages relayed to and from the Host controller.

The ClM Client robot control is limited to positioning the robot end-effector at an XYZ

Cartesian coordinate. The robot can be controlled by entering the XYZ coordinates ofthe end­

effector or by individually rotating each of the six robot joints manually. The remote Client

controller can manually select the various cameras in the laboratory.

9.3 OPERATIONAL REVIEW OF THE PRIMARY CIM CONTROL SYSTEM

9.3.1 The Conveyer Controller

The ClM conveyer system is a computer based technology, which incorporates mechatronic

actuators, feedback devices and network hardware. The conveyer system is controlled

remotely using the supervisory control strategy. The primary conveyer controller contains the

machine logic to efficiently execute the supervisory control commands from the remote Web

Client. The control software was written in VB6.

The ClM Host Controller (Server) receives the supervisory control signals from the remote

Web Client and processes and relays the appropriate control signals to the conveyer Client

controller. The Host Controller transmits the control information across the entire ClM

network, but only the appropriate ClM components receive and use the information. The

conveyer Client controller setup allows the conveyer Client to only communicate with the

Host Controller. The Host Controller receives the conveyer Client feedback commands and

processes the information according to a preprogrammed algorithm.

-171-

Chapter 9 OPERATIONAL REVIEW OF THE MODULAR
MECHATRONIC CIM INTERNET CONTROL SYSTEM

Figure 9.13 shows the [conveyerfrm] fonn. The conveyer system can be controlled manually

or over the Internet. The conveyer fonn is located in the [conveyer. vbd] project. The conveyer

project also contains the rJrmTCPClientfrm] fonn. The frm TCPClient fonn is not visible to

the operator and continues to monitor the network for the appropriate control signals from the

CIM Host Controller.

Figure 9.13. The front panel of the conveyer controller.

(Ref. Figure 9.13) The CIM conveyer front panel provides the operator with preprogrammed

material handling tasks to choose from. Once the CIM conveyer is under Server Control the

manual control button is disabled allowing no manual control of any of the processes. The

control buttons on the conveyer front panel refer to the material handling task to be executed.

For example the [AGV-AVIS] control routine, moves the pallet from the AGV docking station

to the AVIS (Automated Visual Inspection System) part inspection station. When the conveyer

-172-

Chapter 9 OPERATIONAL REVIEW OF THE MODULAR
MECHATRONIC CIM INTERNET CONTROL SYSTEM

project is executed, the conveyer Client is automatically connected to the Host Controller.

Table 9.1 contains the control commands between the Host controller and the conveyer Client.

The conveyer Client continuously updates the Host Controller on network status and pallet

position. The remote Web Client can visually see ifthe conveyer system is operational, as the

conveyer system activates an amber warning light in the laboratory as the conveyer starts.

9.3.2 Operational Review of the PUMA Robot

The PUMA industrial robot is a computer-based technology, since the dedicated robot

controller was discarded and replaced with a PC-based controller. The PC-based PUMA robot

is initialised at the primary controller and controlled remotely, using the supervisory control

strategy. The robot control strategy is similar to the control strategy employed by the conveyer

system. The robot controller software was written in VB6, although the kinematic matrix

solver software was written in Visual C and compiled as a dynamic link library (DLL).

Figure 9.13 shows the front panel of the PC-based PUMA robot controller. The software for

the PUMA controller was contained in the RobotClient. vbp VB6 project. The front panel was

called frmlnvKinfrm. The project file also contained two other Gill's, the TCP/IP

communications form rJrmClientfrm] and the Advantech PLC-832 servo card initialisation

form rJrmPCL832frm]. Communication with the servo control cards was done by using the

funes.bas and PCL832.bas drivers.

Referring to Figure 9.14, Figure 9.15 shows the robot arm orientations with respect to the

world coordinate frame. The XY frame refers to the PLAN view. The:XZ frame refers to the

FRONT view, while the YZ frame represents the SIDE view ofthe robot arm.

-173-

Chapter 9 OPERATIONAL REVIEW OF THE MODULAR
MECHATRONIC CIM INTERNET CONTROL SYSTEM

resulting co-ords:
x:2.35
y:1.45
2:7.77
slrlline error is:407.22ileration 0
error = 8.249

ngle 1 is now ·147.344
ngle 2 is now ·35.163
ngle 3 is now 142.686
ngle 4 is now -180.00
ngle 5 is now ·72.477

Figure 9.14. The front panel ofthe PC-based PUMA robot controller.

Figure 9.16 shows the manual robot arm control panel, each command button rotates the

associated joint by ten degrees. The column on the right displays the current arm positions.

-174-

Chapter 9 OPERATIONAL REVIEW OF THE MODULAR
MECHATRONIC CIM INTERNET CONTROL SYSTEM

Figure 9.15. The three views of the robot arm.

Figure 9.16. Manual
control window.

Figure 9.17 shows the end-effector coordinate orientation. The operator can set the final

Cartesian coordinate of the end-effector as in colmnn P. the matrix NOA refers to the

orientation of the end-effector with respect to the coordinate frame.

-175-

Chapter 9 OPERATIONAL REVIEW OF THE MODULAR
MECHATRONIC CIM INTERNET CONTROL SYSTEM

Figure 9.17. The end­
effector position.

Figure 9.18 shows the arm configuration ofthe PUMA robot under control (ref. Chapter 7).

The ability of the operator to set the ann configuration shows the modularity of the control

software and how the software can be used on all Series 500 PUMA robots, irrespective ofthe

ann configuration. The default setting for the PUMA 560 robot is shown in figure 9.17.

Figure 9.18. The
ann configuration
ofthe PUMA robot.

Figure 9.19 shows the operator command functions available for the PUMA robot. At robot

startup the robot arm must be initialised. The operator uses the mouse cursor and clicks the

[Initialise Ann] button. This displays the PCL-832 initialisation fonn (ref. Figure 9.19). Once

the robot ann is initialised, the operator has the option to load a preprogrammed routine, or

to create a new routine. When the operator enters two coordinates for the end-effector to move

between, any set amount of interpolated points in-between can be calculated. The more

-176-

Chapter 9 OPERATIONAL REVIEW OF THE MODULAR
MECHATRONIC CIM INTERNET CONTROL SYSTEM

interpolated points the operator specifies, the smoother the robot motion becomes while

increasing the processing requirements to solve the kinematic solution.

Figure 9.19. The operator command buttons.

Figure 9.20 shows the rJrmPCL832.frm] initialisation form.

Figure 9.20. The rJrmPCL832frm] initialisation
form of the PUMA robot.

-177-

Chapter 9 OPERATIONAL REVIEW OF THE MODULAR
MECHATRONIC CIM INTERNET CONTROL SYSTEM

9.4 APPLICATIONS OF THE MECHATRONIC INTERNET CONTROL SYSTEM

The section presents two other applications of the operational procedures adopted by the

modular mechatronic Internet control system. The aim of this section is to highlight the

practical applications of the research presented.

9.4.1 Example 1 : Telecare and Telehealth

This section presents an example that discusses the application of the modular mechatronic

Internet control system in the Telehealth and Telecare sectors. This example is based on

research conducted by Prof. D. A. Bradley, Professor ofMechatronic Systems in the School

of Science and Engineering at the University of Abertay Dundee.

Remote or tele-operated systems present a particular problem for the designer of human­

machine interface in that they must not only provide information on the operator ofthe system

itself, but also ofits environment [Bradley et.a!']. This is particularly true for the telecare and

telehealth environments. It is difficult enough for the human-machine interface when the

operator is skilled, but in the case of online monitoring of the aged and frail the system

becomes more complex. Not only must the monitoring and human-machine interaction be

failsafe and intelligent, but also noninvasive.

The modular mechatronic Internet control system has applications in the design and

implementation offrail-care monitoring devices. Once the monitoring devices are in place the

required sensor information must be distributed on a widely accepted network system. The

network must be capable ofdelivering the required information to the appropriate health care

professionals and emergency services. Figure 9.21 shows the telecare system design strategy

using the modular mechatronic design methodology.

-178-

Chapter 9 OPERATIONAL REVIEW OF THE MODULAR
MECHATRONIC CIM INTERNET CONTROL SYSTEM

ADD - Automated Dispensing Device
m - Infra Red Sensor
PMD - Personal Monitoring Device

.~ \

~. Relatives

Figure 9.21. The telecare system design strategy.

The telecare system also allows relatives and friends to visually communicate with the house

bound patients, using the mechatronic visual feedback module. The module can be modified

to relay simple speech.

The telecare system shown in figure 9.21 has the following system functions.

•

•

•

•

•

•

Lifestyle monitoring - Automatic emergency assistance detection.

Emergency monitoring - Detecting possible unsafe situations.

Security - Monitor and activate security system.

Medical monitoring - Monitor medical needs and drug dispensing.

GP consultations - Consult with virtual GP.

Improved communication - Update database and communication with relatives.

The modular Internet monitoring system can be expanded to include more sensors and

-179-

Chapter 9 OPERATIONAL REVIEW OF THE MODULAR
MECHATRONIC CIM INTERNET CONTROL SYSTEM

actuators. These actuators and sensors could control more house functions as the patient might

not be mobile or capable of performing elementary household tasks.

9.4.2 Example 2 : The Networked House

Network technologies have started to invade the ordinary home- to carry telephone

conversations, television, signals from surveillance cameras, commands for controlling

appliances, and multimedia flow from the Internet (ref. Figure 9.22).

Boiler room heating

,I Surve.iIIance camera

Telephones

PC and data
. D.etwor..k" '

Desktop

Laptop

PDA - personal digital assistant TV Stereo System Telephone

Figure 9.22. Networks in the home will distribute data and entertainment signals that are
generated locally, as well as brought in from the Internet through a broadband connection.
[Dutta-Roy]

With home networking it is also possible for electric utilities to remotely control and monitor

the flow ofelectricity into individual homes. At the moment home networking falls into two

main categories:

-180-

Chapter 9 OPERATIONAL REVIEW OF THE MODULAR
MECHATRONIC CIM INTERNET CONTROL SYSTEM

• Computer interconnection - accessing the Internet, and connecting multiple PCs with

peripherals for communication and entertainment.

• Controlling items like lights, appliances, climate control systems and surveillance

cameras.

Currently the best candidates for home-based networks are homes with two or more

computers, using inexpensive Category 5 twisted pair network cables or voice-grade telephone

wiring. This scheme accounts for about 17 million homes in the United States alone [Dutta­

Roy]. To succeed home networks must be based on standard products operable with any form

ofmedia. For mass market appeal the, the networks have to be inexpensive, easy to install, and

he software easy to configure and operate.

The modular mechatronic Internet control system makes a significant contribution towards a

simplified networked environment. The backbone of the network once again relies on the

TCP/IP protocols, for communication and connectivity. The PC and data networks are

connected to the in-house Server, controlling the various peripherals in the home.

-181-

CHAPTER 10
10 CONCLUSION

The modem global manufacturing environment is characterised byproduct diversification and

intense competition. The competitiveness of the global consumer market has resulted in a

trend towards increased decentralisation of manufacturing processes with the increased

customisation of products. The need for greater product customisation has resulted in tele­

manufacturing systems being developed. Standard production-orientated manufacturing

systems are not suited to the degree of product diversification necessitated by the trend

towards increased customisation. Customisation requires the implementation of the latest

computer- and Internet-based manufacturing technologies in a flexible manufacturing

environment.

The field ofInternet-based manufacturing and multimedia manufacturing environments have

been an area of intense research during the last ten years. The result has been the enterprise

integration of decentralised manufacturing operations, using multimedia capable computer

networks. The modular design approach significantly simplified the implementation of the

modular mechatromc CIM Internet-based control system. The effective Internet control system

was based on a large-scale, integrated communications system across a variety of machine

platforms. The modular mechatronic design methodologywas integrated into the standardised

Internet developmental control environment.

The thesis described six specific design objectives for modular mechatronic CIM control for

Internet manufacturing and how these objectives were achieved.

1. Chapter 3 describes the design and development of the necessary power electronics

required to operate the motion systems of the conveyer material handling system and

the PC-based PUMA industrial robot. The power modules use lowcost electronic

components, which are inexpensive and commercially available. The power electronic

modules are flexible in their applications as they meet the power requirements of the

CIM cell components. The LM12 driver module has a power rating of 150W and

-182-

Chapter 10 CONCLUSION

operates within a broad voltage range, where speed control is crucial to system

stability. The relay modules' power ratings are dependant upon the relay selected to

power the required actuator. The relays are interchangeable and up-gradable as the

systems power requirement's change. This provides a high degree ofmodularity to the

actuator drive modules.

2. Chapter 4 describes the design and development ofthe mechatronicfeedback devices,

and the signal conditioning electronics required to monitor and control the motion

systems of the CIM cell components. Mechatronic systems require sensors and

measuring devices to acquire system information for data processing and information

ofthe dynamic system changes. The feedback modules designed and investigated have

applications in all areas of CIM control and monitoring.

3. Chapter 5 describes the Internet and network technologies used to communicate with

and control the individual CIM. components. The network module used the star

topology. This network topology was already in use as part ofthe University network.

The star network topology allows for the simple addition ofCIM Clients, with no extra

requirements from the network resources.

The TCP control protocol module was used as the network communication protocol.

The TCP protocol is a connection-based protocol. The data transmitted via this

protocol is secure from becoming corrupt and always reaches its destination, even with

changes in the network and bandwidth limitations. With the TCP protocol data

buffering does not occur as the data is sent as one complete packet, as apposed to the

UDP protocol which uses individual sends according to maximum data size. The

limitation ofthe TCP protocol is that each connection between a Client controller and

the Server require a WinSock connection with a varying port number. Each new Client

connecting to the Server requires a modification and the addition of a WinSock

communications proxy. If the Server side of the application is designed correctly, the

additional WinSock proxies can be added as modular software components.

-183-

Chapter 10 CONCLUSION

The Server module was used to communicate and control the individual CIM Client

controllers. The Server used the File Transfer Protocol (FTP) and the Hyper Text

Transfer Protocol (HTTP). These protocols contained the Web pages and control

programmes required for the CIM control over the Internet.

The visualfeedback module was designed to dynamically update the web page at four

frames per second. This update time is ideal for high network bandwidth conditions.

However, during periods of increased network congestion and activity the page

updates more slowly. The Web Client is still able to monitor the CIM process, as the

visual feedback module maintains system integrity.

4. Chapter 6 outlines the design of the PC-based controller for the conveyer material

handling system. The controller was programmed to perform preset material handling

routines while interacting with the Host controller. The control algorithm was designed

to receive a single phrase command from the Host controller, allowing the primary

machine intelligence to perform the task. This control strategy eliminated the

additional system resources required.

5. A desktop computer was used to control the six degree of freedom PUMA 560 series

robot. This PC-based controller was designed using lowcost PC plugin cards and low

cost driver power modules and electronics. The robot used the kinematic solutions

described in Chapter 7 for accurate end-effector positioning. Since the new robot

controller was a computer-based technology, networking the robot with the other CIM

components was achieved using the network technologies described in Chapter 5. The

control signals between the robot Client and the Host controllers were only related to

the new positional values of the robot end-effector. The robot receives the new

positional command and is responsible for the machine intelligence for final end­

effector positioning.

6. The PUMA robot and conveyer system were networked and controlled, using the

-184-

Chapter 10 CONCLUSION

supervisory control strategy. The CIM components were networked via a network

HUB to the Host controller and responded to direct TCP/IP control commands from

the Web Client supervisory controller.

The Internet-based control system has been developed to control and enhance computer

integrated manufacturing systems. The CIM control strategy detailed in this thesis has been

developed as a PC-based technologyusing the modular mechatronic design methodology, and

therefore represents an original and meaningful contribution to the fields of Internet

manufacturing technologies and modular mechatronic computer integrated manufacturing

systems.

10.1 INTERNET MANUFACTURING TECHNOLOGIES

Web-based manufacturing and Web teleoperations have applications not only in traditional

manufacturing environments but also in entirely new areas made possible by the lack of a

requirement for special equipment at the operator's end. These areas also include tele­

medicine and training. The challenge with information technology software tools and interface

design is to provide enough information to make interpretation easy while minimising

transmitted data and maintaining a simple modular layout.

This was achieved by restricting operator control to an open-loop control structure.

Minimising the time delay in communication and preventing the system instability problems

associated with traditional closed loop control situations. There was a significant improvement

of operator performance, when control was shared between the CIM cell controllers and the

human operator. The new control strategy relied on the exchange of discreet system

commands, rather than control algorithms. The supervisory control strategy allowed unskilled

operators to control CIM components safely without having any knowledge of the primary

control process.

The CIM conveyer system and PUMA robot were implemented as computer-based

-185-

Chapter 10 CONCLUSION

technologies. The advanced control algorithms required to sequence and coordinate the

interaction ofthe CIM components to perform the standard routines were developed and coded

in Microsoft Visual Basic 6 (VB6). The Web client graphical user interface (GUI) was

developed using a combination of VBScript, HTML and JAVA. The development of the

teleoperation control framework was detailed in Chapter 5. The functional capabilities ofthe

developed Internet control structure introduced a high level of flexibility for product

development and manufacturing.

10.2 MODULAR MECHATRONICS

The modular mechatronic design methodology optimised the development of the Internet­

based CIM environment. The modular mechatronic system building blocks were successfully

implemented in the control oftwo CIM part processes, and the rapid system development tool

provided a practical design solution for the mechatronic system development. The

standardisation of the design and control methodology simplified the manufacturing system

while minimising the system complexity.

The proposed modular design approach, using the functional decomposition ofthe project into

functional modules, was successfully developed. The functional modules were integrated

across two varying system platforms, hence minimising the development time. The various

project definitions were decomposed into independent sub-tasks according to the individual

mechatronic functionality of each module. The success of the modular mechatronic design

methodology was dependant on the computer-based integration of the various functional

mechatronic modules. The modular mechatronic design methodology allowed the CIM control

responsibilities to be organised in multiple levels, integrating Internet-based supervisory

control and general system management.

The integration ofthe modular mechatronic system in a software domain was achieved by the

development ofthe control algorithms that coordinated the interaction ofthe supervisory Web

controller with the individual CIM components. Figure 10.1 shows the flow chart of the

-186-

Chapter 10 CONCLUSION

hierarchical ClM control structure integration of the modular sub-tasks.

[~__W_E_B~CL_I_EN_T~~J

- -,,,,,,,,,,
,
,
,,
,,
,
,,

----------- 1

l elM HOST I IMAGE]SERVER

--------------~------------

Control Algorithms

I

VB6 HTML JAVA

LABORATORY I

1

1

1

I---------------------------~~~~~--------~~~------I

1

1

MR2G· 11

IP ADDRESS
146.230.192.36

-,-~~~~~~~~~~+-~~~~~~~~~---,------

I :---------------- --------------~ :---------------- --------------~

I I I I I
I I I I I
I I I I I
I I I I I
I I I I I

Interface : : : I Interface :
Digital : : : Digital :

I I I I
I I I I
I I I I

I : : : :

: ! i i :
I : : : :
I :------ :: : :------ :
I :: : : ::
I I: ! : :
I ~ ------------ ------- ------ ------: ~ --- --------- ------ --------- ----: ,- ------------ ---- --------------: I
I 1L ~ ~ ~__~ ~ _

Figure 10.1. A flow chart showing the hierarchical ClM control structure integration of the modular
mechatronic sub-tasks.

-187-

Chapter 10 CONCLUSION

The modular mechatronic control for Internet manufacturing produced an efficient and

effective solution to Computer Integrated Manufacturing processes. This approach allowed for

a remote user to monitor and control a manufacturing process in real time over the Internet.

10.3 SUGGESTIONS FOR FURTHER WORK

This thesis embodies the first steps towards the practical implementation of the low-cost

modular mechatronic CIM control system, using Internet technologies. Table 10.1 shows how

all the computer-based CIM technologies can be controlled using the modular sub-tasks

described in this thesis.

MODULAR CIM CONTROL FOR INTERNET MANUFACTURING

Module I Component ROBOT Conveyer ASIRS CMM AGV AVIA

Relay Power Drive V' V' V'

LM12 Power Drive V' V' V' V'

Potentiometers V'

IR Circuits V' V' V' V'

Encoders V' V' V'

Buffer Circuit V' V' V' V'

Encoder Signal V' V' V'

PC-30GA V' V' V'

PCL-836 V'

PCL-832 (servo card) V' V' V'

Network V' V' V' V' V' V'

Control Protocol TCPIIP TCP/IP TCPIIP TCPIIP TCPIIP TCPIIP

Server V' V' V' V' V' V'

Visual Feedback V' V' V' V' V' V'

Table 10.1. The Modular Mechatronic elM Sub-Tasks.

-188-

Chapter 10 CONCLUSION

The main steps that follow on from the work in this thesis are thus:

a) Networking all the CIM Client controllers to complete the CIM cell (ref. Table 10.1).

b) The Ethemet network used for the communication between the CIM Server and the

CIM Clients can be modified to use wireless network adapters. The wireless Intemet­

based multimedia system can be based on the standard IEEE 802.11b Ethemet

products. These include transceivers implementing a carrier radio frequency of 2.4

GHz. The maximum physical layer throughput of the system is 11 Mbits/sec.

c) The development of a high level computer system that should be able to create a data

base or defect log and report defect rates back to the upper level manufacturing

execution system.

d) The implementation of advanced camera tracking systems to follow machined

components around the CIM.

e) The development ofa generic view-planning algorithm that must be able to select the

optimum set of view points required for manufacturing and material handling

processes.

f) The use ofwireless cameras in conjunction with wireless Ethemet network adapters

to enhance the flexibility of the Computer Integrated Manufacturing environment.

-189-

GLOSSARY

A

AC: Area Controller.

Actuator: A device that transfonns a signal into a physical effect such as motion or force (or a

combination of the two). The same concept applies for other physical effects such as heating,

fluid motion, etc.

Acquisition Time: This tenn relates to sampling AIDs which utilize a track/hold amplifier on

the input to acquire and hold the analog input signal. Acquisition time is the time required by the

T/H amplifier to settle to its final value after it is placed in the track module.

Amplifier: A device which draws power from a source other than the input signal and which

produces as an output an enlarged reproduction of the essential features of its input.

Analog Ground: In high-speed acquisition applications, system ground is generally physically

separated into analog and digital grounds in an attempt to suppress digital switching noise and

minimize its effect on noise-sensitive analog signal processing circuitry. Input signal

conditioners, amplifiers, references, and AID converters are usually connected to analog ground.

Analog-to-Digital Converter (AiD or ADC): A device or circuit that outputs a binary number

corresponding to an analog signal level at the input.

ANSI: American National Standards Institute.

ASCII: American Standard Code for Infonnation Interchange. A seven or eight bit code used

to represent alphanumeric characters. It is the standard code used for communications between

data processing systems and associated equipment.

ASP: Active Server Page.

Autonomous vehicle: A vehicle that can substantially control its own motion, usually (but not

always) deciding where it is to travel. Mostly these are classified as robots, but often not, as in

'guided missile' for example. Typical examples: unmanned aerial vehicles (UAV), unmanned

underwater vehicle (UUV). A remotely operated vehicle (ROV) is usually not autonomous

because its motion is remotely controlled by a human operator. UAV's and UUY's are not

considered autonomous ifthey need to be controlled at all times by a human operator. However,

some maybe autonomous for part ofthe time, and controlled by a human operator at other times.

-190-

GLOSSARY

B

Backbone: A high-speed line or series of connections that fonns a major pathway within a

network. The tenn is relative as a backbone in a small network will likely be much smaller than

many non-backbone lines in a large network.

Baud: In common usage the baud rate of a modem is how many bits it can send or receive per

second. Technically, baud is the number of times per second that the carrier signal shifts value

- for example a 1200 bit-per-second modem actually runs at 300 baud, but it moves 4 bits per

baud (4 x 300= 1200 bits per second).

Baud Rate: The speed at which data is transmitted. Measured in symbols per second. This is not

the same as bits-per-second since each symbol can carry several bits of infonnation.

Binary: Refers to base 2 numbering system, in which the only allowable digits are 0 and 1.

Pertaining to a condition that has only two possible values or states.

Bit Rate: The rate oftransfer ofinfonnation necessary to ensure satisfactory reproduction ofthe

infonnation

Bit: Acronym for binary digit. The smallest unit ofcomputer infonnation, it is either a binary 0

or 1.

Bitmap: An image is displayed on the screen as a collection oftiny squares called pixels, which

together fonn a pattern. Each pixel in the image corresponds with one or more bits; the number

of bits per pixel detennines how many shades of gray or colours can be displayed

Bluetooth: A standardized, short-range radio link between infonnation appliances. Named after

a 10th century Danish king credited with uniting Denmark and Norway. It promises easy

connectivity between computers, peripherals, PDAs and other devices.

BMP: A Windows fonnat for a bitmapped graphics file.

BPS: Bits per second.

Byte: The representation of a character in binary. Eight bits in length.

-191-

GLOSSARY

c
Cache: A temporary storage area for frequently-accessed or recently-accessed data. Having

certain data stored in a cache speeds up the operation of the computer. There are two kinds of

cache: internal (or memory cache) and external (or disk cache). Internal cache is built into the

processor, and external cache is on the motherboard. When an item is called for, the computer

first checks the internal cache, then the external cache, and finally the slower main storage.

CAD: Computer Aided Design.

CADD: Computer Aided Design and Drafting.

CAE: Computer Aided Engineering.

CAP: Computer Aided Planning.

CAPP: Computer Aided Process Planning.

CAQ: Computer Aided Quality Control.

CC: Cell Controller.

Cell: An ATM packet that is 53 bytes in length with a 5 byte header and 48 byte payload.

CIM: Computer Integrated Manufacturing.

Client-Server Network: A network that uses a central computer (server) to store data that is

accessed from other computers on the network (clients).

Clock: The device that generates periodic signals for synchronization.

Codec: An abbreviation for Coder-Decoder. An analog-to-digital (AID) and digital-to-analog

(D/A) converter for translating the signals from the outside world to digital, and back again.

Computer vision: Use ofcamera to transmit one or more images to a computer which performs

some analysis on the image to obtain information, or to present the processed image to a human

operator. (see also "image sensor")

Control system: As most mechatronic systems involve control systems ofone kind or another,

only use this keyword where the control details are discussed.

Conveyor: A device that transfers people, material or parts from one place to another.

Counts: The number of time intervals counted by the dual-slope AID converter and displayed

as the reading of the panel metre, before addition of the decimal point.

CPU: Central processing unit. The part ofthe computer that contains the circuits that control and

-192-

GLOSSARY

perform the execution of computer instructions.

Cycle Time: The time usually expressed in seconds for a controller to complete one on/offcycle.

D

DAS: Data Acquisition System.

DC: Direct current; an electric current flowing in one direction only and substantially constant

in value.

Design: Use this keyword where there is some useful discussion or description of the design

process. All man-made objects are 'designed' so this keyword could easily be mis-used.

Differential Input: A signal-input circuit where SIG LO and SIG HI are electrically floating

with respect to ANALOG GND (METRE GND, which is normally tied to DIG GND). This

allows the measurement of the voltage difference between two signals tied to the same ground

and provides superior common-mode noise rejection.

Digital Filtering: The process ofsmoothing, or removing noise from a signal via mathematical

functions that are performed on the digital data stream.

Digital Output: An output signal which represents the size ofan input in the form ofa series of

discrete quantities.

Digital Signal Processor (DSP): This technology, when used in conjunction with mixed-signal

devices and embedded software, is referred to as a DSP Solution, and it collects, processes,

compresses, transmits and displays analog and digital data.

Digital-to-Analog Converter (DIA or DAC) A device or circuit to convert a digital value to an

analog signal

Dithering: The technique of adding controlled amounts of noise to a signal to improve overall

system loop control, or to smear quantizing error in an ND convertor application.

DLL: Dynamic Linked Library

DMA: Acronym direct memory access. A high speed data storage mode ofthe IBM Pc.

DNC: Direct Numerical Control.

DNS: Domain Name System. A mechanism used in the Internet for translating names of host

computers into addresses. The DNS also allows host computers not directly on the Internet to

have registered names in the same style.

-193-

GLOSSARY

Domain Name: The unique name that identifies an Internet site. Domain Names always have

2 or more parts, separated by dots. The part on the left is the most specific, and the part on the

right is the most general. A given machine may have more than one Domain Name but a given

Domain Name points to only one machine. For example, the domain names:

matisse.netmail.matisse.networkshop.matisse.netcan all refer to the same machine, but each

domain name can refer to no more than one machine. Usually, all of the machines on a given

Network will have the same thing as the right-hand portion oftheir Domain Names (matisse.net

in the examples above). It is also possible for a Domain Name to exist but not be connected to

an actual machine. This is often done so that a group or business can have an Internet e-mail

address without having to establish a real Internet site. In these cases, some real Internet machine

must handle the mail on behalf of the listed Domain Name.

DRAM: Dynamic Random Access Memory.

DSP: Digital signal processing or digital signal processor.

E

Electric machine: Motor, transformer, solenoid, relay or other form of electro-mechanical

device, sensor or actuator.

Email - (Electronic Mail): Messages, usually text, sent from one person to another via

computer. E-mail can also be sent automatically to a large number of addresses.

Ethernet: Xerox standard networking protocol used in local area networks, often connecting

dissimilar devices.

F

FAS: Flexible Manufacturing Assembly.

File: A set of related records or data treated as a unit.

Fire Wall: A combination ofhardware and software that separates a Network into two or more

parts for security purposes.

Firmware: Software that is embedded in a hardware device that allows reading and executing

the software, but does not allow modification, e.g., writing or deleting data by an end user.

FMC: Flexible Manufacturing Cell.

FMS: Flexible Manufacturing Systems.

-194-

GLOSSARY

Frequency Response: The range of frequencies over which the transducer voltage output will

follow the sinusoidally varying mechanical input within specified limits.

FTP- (File Transfer Protocol): A very common method ofmoving files between two Internet

sites. FTP is a way to login to another Internet site for the purposes of retrieving and/or sending

files. There are many Internet sites that have established publicly accessible repositories of

material that can be obtained using FTP, by logging in using the account name "anonymous",

thus these sites are called "anonymous FTP servers". FTP was invented and in wide use long

before the advent of the World Wide Web and originally was always used from a text-only

interface.

Fuzzy: A control method invented by Zadeh in 1965 in which the control actions can be

described by simple rules, for example: If error is "low and positive" set speed to "slow and

negative". Continuous membership functions define the relationship between a "crisp"

continuous variable and membership of certain "fuzzy" input or output classes.

G

Gain: The amount of amplification used in an electrical circuit. Gain is usually measured in

decibels, but it can also be expressed as the ratio of output power to input power.

Gateway: The technical meaning is a hardware or software set-up that translates between two

dissimilar protocols, for example America Online has a gateway that translates between its

internal, proprietary e-mail format and Internet e-mail format. Another, sloppier meaning of

gateway is to describe any mechanism for providing access to another system, e.g. AOL might

be called a gateway to the Internet.

GIF - (Graphic Interchange Format): A common format for image files, especially suitable

for images containing large areas ofthe same colour. GIP format files ofsimple images are often

smaller than the same file would be if stored in JPEG format, but GIP format does not store

photographic images as well as JPEG. GIP files are limited to 256 colours, but allow for

animated images.

Gigabyte: 1000 or 1024 Megabytes, depending on who is measuring.

Graphics: Use ofvisual communication, usually on operator displays, typically with computer

generated images.

-195-

GLOSSARY

Ground: 1. The electrical neutral line having the same potential as the surrounding earth. 2. The

negative side ofDC power supply. 3. Reference point for an electrical system.

GUI: Graphical user interface.

H

Handshake: An interface procedure that is based on status/data signals that assure orderly data

transfer as opposed to asynchronous exchange.

Header: The portion of a packet, preceding the actual data, containing source and destination

addresses and error-checking fields.

HTML - (HyperText Markup Language): The coding language used to create Hypertext

documents for use on the World Wide Web. HTML looks a lot like old-fashioned typesetting

code, where you surround a block of text with codes that indicate how it should appear. The

"hyper" in Hypertext comes from the fact that in HTML you can specify that a block oftext, or

an image, is linked to another file on the Internet. HTML files are meant to be viewed using a

"Web Browser". HTML is loosely based on a more comprehensive system for markup called

SGML.

HTTP - (HyperText Transfer Protocol): The protocol for moving hypertext files across the

Internet. Requires a HTTP client program on one end, and an HTTP server program on the other

end. HTTP is the most important protocol used in the World Wide Web (WWW).

Hub: A central node in a star network to which all other nodes are connected by means ofpoint­

to-point communications links.

I

IANA: Internet Assigned Number Authority

ICANN : Internet Corporation for Assigned Names and Numbers

Icon: A graphic functional symbol display. A graphic representation of a function or functions

to be performed by the computer

Image Processing: Enhancing an image or extracting information or features from an image.

Image Sensor: A device used to obtain images, for example a camera. May also refer to the

VLSI chip used to convert an image to electronic form. Also used for special applications, for

example an endoscope where obtaining a useful image is not simple.

-196-

GLOSSARY

IMAP - (Internet Message Access Protocol): !MAP is gradually replacing POP as the main

protocol used by email clients in communicating with email servers. Using IMAP an email client

program can not only retrieve email but can also manipulate message stored on the server,

without having to actually retrieve the messages. So messages can be deleted, have their status

changed, multiple mail boxes can be managed, etc. IMAP is defined in RFC 2060

Internet Protocol (IP): The network layer protocol for the Internet. It is the datagram protocol

defined by RFC 791.

Internet: The Internet is a network ofnetworks, linking computers to computers by speaking the

same language called TCP/IP protocol. Each computer runs software to provide or serve

information and/or to access and view information. The Internet includes a variety ofelectronic

services such as electronic mail (e-mail), Telnet (remote login), FTP (File Transfer Protocol for

downloading or uploading of files), Gopher (an early, text-only method for accessing Internet

documents), and the World Wide Web. The Internet was originally developed for the United

States military, and then became used for government, academic, and commercial research and

communications.

IP Number - (Internet Protocol Number): Sometimes called a dotted quad. A unique number

consisting of4 parts separated by dots, e.g. l65.ll3.245.2Everymachine that is on the Internet

has a unique IP number - ifa machine does not have an IP number, it is not really on the Internet.

Many machines (especially servers) also have one or more Domain Names that are easier for

people to remember.

ISA: Industry Standard Architecture (PC-AT Bus) or Instrument Society of America.

ISDN: Integrated Services Digital Network: A single communications vehicle that supports all

forms of signal traffic-low and medium-speed data, audio, and video--across a standardized

interface and on a single hardware platform. A communications network intended to carry

digitized voice and data multiplexed into the public telephone network

ISO: International Standards Organization.

ISP - (Internet Service Provider): An institution that provides access to the Internet in some

form, usually for money.

-197-

GLOSSARY

J

Java: Java is a network-friendly programming language invented by Sun Microsystems. Java is

often used to build large, complex systems that involve several different computers interacting

across networks, for example transaction processing systems. Java is also becoming popular for

creating programs that run in small electronic devices, such as mobile telephones. A very

common use of Java is to create programs that can be safely downloaded to your computer

through the Internet and immediately run without fear ofviruses or other harm to your computer

or files. Using small Java programs (called "Applets"), Web pages can include functions such

as animations, calculators, and other fancy tricks.

J avaScript: JavaScript is a programming language that is mostly used in web pages, usually to

add features that make the web page more interactive. When JavaScript is included in an HTML

file it relies upon the browser to interpret the JavaScript. When JavaScript is combined with

Cascading Style Sheets(CSS), and later versions of HTML (4.0 and later) the result is often

called DHTML.

JPEG (Joint Photographic Experts Group): Industry standard for compressing images. This

format provides lossy compression (you lose sharpness from the original) by dividing the image

into tiny pixel blocks, which are halved over and over until an adequate compression ratio is

achieved.

K

Kilobyte: A thousand bytes. Actually, usually 1024 (210) bytes.

Kinematics: Study ofmotion of objects without regard to the causes of this motion.

L

Lag: A time delay that occurs between the output ofa signal and the response ofthe instrument

to which the signal is sent.

LAN: Local Area Network. A network that takes advantage of the proximity of computers to

offer relatively efficient, higher-speed communications than long-haul or wide-area networks.

LAP: Link Access Protocol.

LED: Light Emitting Diode

-198-

GLOSSARY

M

Mechatronics: The introduction of electronic controls into mechanical components.

Megabyte: A million bytes. Technically, 1024 kilobytes. (or 1,048,576 bytes)

MIME - (Multipurpose Internet Mail Extension): Originally a standard for defining the types

of files attached to standard Internet mail messages. The MIME standard has come to be used in

many situations where one computer program needs to communicate with another program about

what kind of file is being sent. For example, HTML files have a MIME-type oftext/html, JPEG

files are image/jpeg, etc.

Modem: Modulator/Demodulator. A device that transforms digital signals into audio tones for

transmission over telephone lines, and does the reverse for reception.

Modular Mechatronics: Is a design approach that requires the decomposition ofa project into

separate modules, identifiable by their individual mechatronic functionality.

MOSFET: Metal Oxide Semiconductor Field Effect Transistor. A class of voltage driven

devices that does not require the large drive currents of bipolar devices. Used in products that

require large current levels to be switched electronically.

Motherboard: The pc board of a computer that contains the bus lines and edge connectors to

accommodate other boards in the system. In a microcomputer, the motherboard contains the

microprocessor and connectors for expansion boards.

MPEG (Motion Picture Experts Group): An industry standard for compressing video and

audio. MPEG I, used in video CDs, provides a standard image of 352x240 dots per inch, 30

frames per second, IS-bit colour and CD-quality sound. MPEG IT is an emerging standard for full

broadcast-quality video.

MRP: Material Resource Planning.

N

Netscape: A WWW Browser and the name of a company. The Netscape (tm) browser was

originally based on the Mosaic program developed at the National Centre for Supercomputing

Applications (NCSA).

Network: A group of computers that are connected to each other by communications lines to

share information and resources.

-199-

GLOSSARY

Nibble: One half of a byte.

NIC - (Network Information Centre): Generally, any office that handles infOlmation for a

network. The most famous ofthese on the Internet was the InterNIC, which was where most new

domain names were registered until that process was decentralized to a number of private

compames.

NNTP - (Network News Transport Protocol): The protocol used by client and server software

to carry USENET postings back and forth over a TCP/IP network. If you are using any of the

more common software such as Netscape, Nuntius, Internet Explorer, etc. to participate in

newsgroups then you are benefiting from an NNTP connection.

o
Op Amp: The Operational Amplifier is a general purpose integrated circuit used as a basic

building block for the implementation of linear functions. Op amps form the "front end" or

sensory apparatus ofmany electronics systems, capturing weak signals emanating from the real

world and amplifying and filtering them for processing. A typical use of an op amp is to take a

smaller signal and increase it by a specific amount to become a larger signal.

p

Packet Switching: The method used to move data around on the Internet. In packet switching

all the data coming out of a machine is broken up into chunks, each chunk has the address of

where it came from and where it is going. This enables chunks of data from many different

sources to co-mingle on the same lines, and be sorted and directed along different routes by

special machines along the way. This way many people can use the same lines at the same time.

You might think ofseveral caravans oftrucks all using the same road system. to carry materials.

PC Card: A computer device packaged in a small card approximately the size of a credit card

and conforming to the PCMCIA standard.

PCMCIA: Portable Computer Memory Card International Association

Precision: Precision is reproducibility. Saying "These measurements are precise" is the same as

saying, "The same measurement was repeated several times, and the measurements were all very

close to one another". Don"t confuse precision with accuracy.

Protocol: A formal definition that describes how data is to be exchanged.

-200-

GLOSSARY

R

Resolution: The smallest signal increment that can be detected by a measurement system,

expressed in bits, proportions, or as percentage offull scale reading; resolution in a video system

is the amount of detail in a graphic image.

Router: A special-purpose computer (or software package) that handles the connection between

2 or more Packet-Switched networks. Routers spend all their time looking at the source and

destination addresses ofthe packets passing through them and deciding which route to send them

on.

s
S-video: Separate luminance and chrominance

Sampling Rate: The rate at which an analog signal is sampled for conversion to and from the

digital domain. The sampling rate is measured as the number of samples per unit of time.

SCADA: Supervisory control and data-acquisition systems

Signal Conditioning: To process the form or mode of a signal so as to make it intelligible to,

or compatible with, a given device, including such manipulation as pulse shaping, pulse clipping,

compensating, digitizing, and linearizing.

Signal Ground: The common return or reference point for analog signals.

Signal: An electrical transmittance (either input or output) that conveys information.

T

T-l: A leased-line connection capable of carrying data at 1,544,000 bits-per-second. At

maximum theoretical capacity, a T-1 line could move a megabyte in less than 10 seconds. That

is still not fast enough for full-screen, full-motion video, for which you need at least 10,000,000

bits-per-second. T-1 lines are commonly used to connect large LANs to the internet.

T-3: A leased-line connection capable of carrying data at 44,736,000 bits-per-second. This is

more than enough to do full-screen, full-motion video.

TCP/IP: Transmission Control ProtocoVlnternet Protocol. This is a common shorthand which

refers to the suite of application and transport protocols which run over JP. These include FTP,

Telnet, SMTP, and UDP (a transport layer protocol).

-201-

GLOSSARY

TELNET: The Internet standard protocol for remote terminal connection service. Telnet allows

a user at one site to interact with a remote timesharing system at another site as if the user's

terminal was connected directly to the remote computer.

TTL: Transistor-to-transistor logic. A form of solid state logic which uses only transistors to

form the logic gates.

Twisted Pair: Two insulated wires, usually made from copper, that are twisted in a regular, six

turns per inch spiral pattern used to connect most telephones. Also used as a medium by several

local area networks.

u
UDP - (User Datagram Protocol): One of the protocols for data transfer that is part of the

TCP/IP suite of protocols. UDP is a "stateless" protocol in that UDP makes no provision for

acknowledgement ofpackets received.

User Interface: Related to ergonomics and human computer interaction. Discussion of the

displays and controls that enable a human to interact with a machine or process.

UUENCODE - (Unix to Unix Encoding): A method for converting files from Binary to Ascn

(text) so that they can be sent across the Internet via e-mail.

w
Web: World Wide Web - use keyword where web technology forms a specific part of a

process. Be careful to distinguish processes that rely on a specific web technology (such as a

browser, use ofHTML etc.) from those that simply use the internet for communication, but

do not use web-specific technologies. Sockets, for example, are used by web applications but

are an internet technology: they are not specific to web applications.

Wide Area Network (WAN): A group of computer networks connected together over long

distances. The Internet is a WAN.

Window: In computer graphics, a defined area in a system not bounded by any limits;

unlimited "space" in graphics.

Word: Number ofbits treated as a single unit by the CPU. In an 8-bit machine, the word

length is 8 bits; in a sixteen bit machine, it is 16 bits.

WWW: World Wide Web.

-202-

[Allegri]

[Auslander et.al.]

[Backes]

[Backes et.al.]

[Barnes]

[Bercea]

[Bolton]

[Bradleyet.al.]

REFERENCES

Allegri T.H., Materials handling: Principles and Practice. Van

Nostrand Reinhold Company Limited, London, UK, 1984

Auslander D.M. and KempfC,J., Mechatronics, Mechanical System

Interfacing, Prentice Hall, New Jersey, USA, 1996

Backes Po, Pathfinder Sojourner Rover Simulation Web Page:

http://mars. gm/wm. com/wits/

Backes Po, Tao K.S., Tharp G.K., Mars Pathfinder Mission Internet­

Based Operation Using WITS, IEEE Int. Conf. Robotics and

Automation, pp 284 - 291, May 1998

Bames J. Wesley., Statistical Analysisfor Engineers and Scientists: A

Computer-based Approach, McGraw-Hill, Highstown, New Jersey,

USA, 1994

Bercea N., The Attributes of a New Generation Tool for the

Calculation ofScrew Assemblies, 9th International DAAM Symposium,

1(1), Vienna, 1998, pp 039-040

Bolton W., Mechatronics : Electrical Control Systems in Mechanical

Engineering, Addison WesleyLongman Limited, Essex, England, 1995

Bradley Do, Seward D., Dawson So, Burge S., Mechatronics and the

Design of Intelligent Machines and Systems, Stanley Thomes

(Publishers) Ltd, United Kingdom, 2000

-203-

[Chamiak]

[Chen]

[Counsell et.al.]

[Craig]

[Dalton et.al.]

[Demas]

[Deitel et.al.]

[Dutta-Roy]

[Erden et.al.]

REFERENCES

Chamiak E., Introduction to Artificial Intelligence, Wiley, New York,

1986

Chen c., Fuzzy Logic and Neural Network Handbook, IEEE Press,

McGraw-Hill, USA, 1996

Counsell J., Porter1., Dawson D., DuffyM,. Schemebuilder: Computer

Aided Knowledge Based Design ofMechatronic Systems, Assembly

and Automation, Vol. 19, No. 2, pp 129 - 138, 1999

Craig K., is Anything Really New in Mechatronics Education?, IEEE

Robotics and Automation, Vol. 8, No. 2, pp 12 - 19, June 2001

Dalton B., Taylor K., Distributed Robotics over the Internet, IEEE

Robotics and Automation, Vol. 7, No. 2, pp 22 - 27, June 2000

Demas J.N. and Demas S.E., Interfacing and Scientific Computing on

Personal Computers, Allyn and Bacon, Massachusetts, USA, 1990

Deitel H.M, Deitel P.J. and Nieto T.R., Visual Basic 6 How to

Program, Prentice Hall Inc.,. New Jersey, USA, 1999

Dutta-Roy, A., Networksfor Homes, IEEE Spectrum, Vol. 36, No. 12,

pp 26 - 33, December 1999

Erden Z., Erkmen A. and Erden A., Modelling Job-resource

Interactions in Mechatronics Design Process by Petri Nets,

Proceedings of the International Conference on Engineering Design,

ICED '97, Tampere, 1997

-204-

[Ferretti et.al.]

[Fielding et.al.]

[FU et.al.]

[Groover]

[Gunasekeran]

[Harashima]

REFERENCES

Ferretti G., Filippi S., Maffezzoni C., Magnani G., Rocco P., Modular

Dynamic Virtual-Reality Modelling ofRobotic Systems, IEEE Robotics

and Automation, Vol, 6, No. 4, pp 13 - 23, December 1999

Fielding E.R., Illos E.D., P. C. Based Robotic Control System,

University ofWitwatersrand, South Africa, 1995.

FU KS., Gonzalez R.C., CSG. Lee, Robotics, Control, Sensing, Vision

and Intelligence, McGraw-Hill, London,1994

Groover M.P, Automation, Production Systems, and Computer

Integrated Manufacturing, Prentice Hall International, 1987

GunasekeranS.,AgileManufacturing: A Frameworkfor Research and

Development, International Joumal on Production Economics, Vol. 62,

No. 1, pp 87-105, 1999

Harashima F., Recent Advances ofMechatronics, Proceedings of the

IEEE International Symposium on Industrial Electronics, ISIE '96, Vol.

l.pp 1-5, 1996

[Haykin] Haykin S., Neural Networks

Macmillan, USA, 1994

A Comprehensive Foundation,

[Histand et.al.]

[Honekamp et.al.]

Histand M.B., Alciatore D.g., Introduction to Mechatronics and

Measurement Systems, McGraw-Hill, USA, 1999

Honekamp u., Stolpe R., Neumann R. and Luckel J., Structuring

Approachfor Complex Mechatronic Systems, Proceedings of the 30th

ISATA Conference, Florence, Italy, 1997

-205-

[Hu et.al.]

[Huang]

[Isennann]

[Johnson]

[Kalpakjian et.al.]

[Kaplan]

[KUO]

[McGarry]

REFERENCES

Hu H., Yu L., Tsui P.W., Zhou Q., Internet-based Robotic System for

Teleoperation, Assembly and Automation, Vol. 21, No. 2, pp 143 ­

151,2001

Huang Chun-Che, Overview of Modular Product Development,

Proceedings of the National Science Council, Republic of China, Part

A: Physical Science and Engineering, Vol. 24, No. 3, pp 149-165,2000

Isennann R., Modelling and Design Methodology for Mechatronic

Systems, IEEE/ASME Transactions on Mechatronics, Vol. 1, No. 1, pp

10-15, 1996

Johnson, G.W., LabView Graphical Programming, Practical

Applications in Instrumentation and Control, R R Donnelley and Sons

Company, USA, 1994

Kalpakjian S., Schmid S.R., Manufacturing Engineering and

Technology, 4th Edition, Prentice-Hall, 2001

Kaplan G., Industrial Electronics, IEEE Spectrum, Vol.31, No. 1, pp

74-76, 1994

Kuo, B., C., Automatic Control Systems, Fourth Edition, Prentice-Hall,

USA,1982

McGarry S.L, Acceptable Quality Levels Are Not Acceptable

Any-more, in Proceedings ofAutofact, Anaheim, CA, pp 15-1 - 15-13,

1984

-206-

[McGee]

[McKinney]

[NODA]

[Pemberton]

[Pennebaker]

[Parrish]

[Pomezny]

[Potgieter 1]

[Potgieter 2]

REFERENCES

McGee M., Web pages: a programmer's guide, Microsoft Press,

Redmond, Washington, 1997

McKinney B., Hardcore Visual Basic: 2nd Edition, Microsoft Press,

Wahington, USA, 1997

NODA A., Manufacturing Industries in the Internet Era, Proceedings

of 14th International Conference on Computer-Aided Production

Engineering, 1(1), Tokyo, 1998,31-36

Pemberton A.W.,Plant Layout and Materials Handling, Mcmillian

Press, London, 1984

Pennebaker W.B. and Mitchell J.1., lPEG Still Image Data

Compression Standard, Chapman & Hall, London, UK, 1993

Parrish D., Flexible Manufacturing, Butterworth-Heinemann, Oxford,

1993

Pomezny L., Visualisation ofTechnological Processes on Internet, 9th

International DAAM Symposium, 1(2), Vienna, 1998,401-402

Potgieter J. and Bright G. Robotic Internet Systemfor elM Processes,

SA Mechanical Engineer, South Africa, May 2000, pp 23 - 25

Potgieter J. and Bright G. PC-Based Mechatronic Robotic Plug and

Play System for Part Assembly Operations, IEEE International

Symposium on Industrial Electronics, Pretoria, South Africa, July,

1998, pp. 426 - 429

-207-

[Potgieter 3]

[Potgieter 4]

[Potgieter 5]

[Potgieter 6]

[Potgieter 7]

[Potgieter 8]

REFERENCES

Potgieter J. and Bright G. PC-Based Modular Robotic Systemfor Part

Assembly Operations, IASTED International Conference on Robotics

and Manufacturing, Banff, Canada, July 1998, pp. 86 - 88

Potgieter J. and Bright G. Operating System for part Assembly

Operations using PC-Based Plug and Play Mechatronic Technology,

9th DAAAM International Symposium on Intelligent Manufacturing,

Automation and Networking, Technical University Cluj-Napoca,

Romania, October, 1998, pp. 73 - 76

Potgieter J. and Bright G. Flexible PC-Based Modular Mechatronic

Operating Systemsfor Computer Integrated Manufacturing, The 15th

ISPE/IEE International Conference on CAD/CAM, Robotics and

Factories of the Future, Aguas de Lindoia, SP, Brazil, August, 1999,

pp. RF2-1 - RF2-4

Potgieter J. and Bright G. Mechatronic Modular Robotic Internet

Based Control System for Computer Integrated Manufacturing

Processes, 7th IASTED International Robotics and Applications 2000,

Honolulu, Hawaii, USA, August 2000

Potgieter J. and Bright G. Mechatronic Internet Based Control System

for Computer Integrated Manufacturing Processes, International

Conference on Competitive Manufacturing, COMA'01, Stellenbosch,

South Africa, February 2001

Potgieter J. and Bright G. Integrated Mechatronic Control Approach

for Global Manufacturing Enterprises, IASTED International

Conference on Robotics and Manufacturing (RM2001)

-208-

[Potgieter 9]

[Rahman et.al.]

[Rehg]

[Reselman et.al.]

[Schwarz et.al.]

[SGS-Thompson]

[Siegwart]

[Stadler]

[Taylor]

REFERENCES

Potgieter J. and Bright G. Mechatronic Control Approach for Global

Internet Manufacturing, The 17th ISPEIIEE International Conference

on CAD/CAM, Robotics and Factories of the Future, Durban, South

Africa, July 2001

Rahman SM., Sarker N., Internet for Higher Productivity in

Manufacturing, Proceedings of the 4th International Conference on

Computer Integrated Manufacturing, 1(1), Tokyo, 1998,269-278

Rehg J. A., Introduction to Robotics in CIM systems, Prentice Hall,

New Jersey, 1997

Reselman B. and Peasley R., Practical Visual Basic 6, QUE,

MacMillan Computer Publishing, Indiana, USA, 1999

Schwarz S.E. and Oldham W.G., ELECTRICAL ENGINEERING: An

Introduction, 2nd Edition, Oxford University Press, New York, 1993

SGS-Thompson, Power Linear Actuators, Databook, 1sI Edition, 1983

Siegwart, R., Grasping the Interdisciplinarity ofMechatronics, IEEE

Robotics and Automation, Vol. 8, No. 2, pp 27-34, June 2001

Stadler S., Analytical Robotics and Mechatronics, McGraw - Hill

series in electrical and computer engineering, New York, USA, 1995

Taylor J., Principles ofSignals and Systems, McGraw-Hill, New York,

1994

-209-

[Taylor et.al.]

[Van Gool et.al.]

[Zhang et.al.]

REFERENCES

Taylor K., Dalton B., Internet Robots: A New Robotics Niche, IEEE

Robotics and Automation, Vol. 7, No. 1, pp 27-34, March 2000

Van Gool L., Wounbacq P. and Oosterlinck A., Intelligent Robotic

Vision Systems, Intelligent Robotic Vision Systems (S.G. Tzafestas,

Ed.), Dekker, New York, pp 457-507, 1995

ZhangJ, GuJ., LiP, and Duan Z" Object-oriented modelling ofcontrol

system for agile manufacturing cells. International Journal on

Production Economics, Vol. 62, No. 1, pp 145-153, 1999

-210-

Appendix A

Code Listing for the Modular Mechatronic CIM Internet

Control System

This appendix list presents a listing of the source code of the Modular Mechatronic elM
Internet control software that was developed.

-211-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

Components of the control software

The software for the CIM Internet control system was developed using Visual Basic 6 and
JAVA. The individual software components are listed below with their forms and modules.

1.

2.

3.

4.

5.

6.

7.

Web Image

Host Controller

Camera Selector Client

Conveyer Client

Robot Client

Web Client

Image Capture

- Video.java

- TCPServerMain. vbp
- frmTCPServerMain
- frmTCPServer1
- frmTCPServer2
- frmTCPServerJ
- frmTCPServer4

- CAMClient. vbp
- frmCAMClient
- frmCAMSelect
- Driver. bas
- Global. bas

- ConveyerClient. vbp
- frmConveyer
- frmTCPClient
- Driver. bas
-Global. bas

- ROBOTClient.vbp
- frmRobotClient
-frmPCL832
-frmlnvkin
- PCL832.bas
- Dej2.bas
- Funcs.bas

- WEBClient. vbp
- frm WEBClient
- frm WEBTCPClient

- jlahptb. vbp
-frmConfig
- frmFlashPT
-frmGrab
- frmLoadlmage

-212-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

- frmPrint
- frmSavelmage
- frmVideo
- jjJ3d.bas
- jjJg.bas

-213-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

1 Code listing for the JAVA applet· Video.java

1**This video stream applet loads a new image every 250ms
*1

import java.applet.*;
import java.awt.*;
importjava.net*;
importjava.io.*;
import java.awt.event.*;
public class Video extends Applet implements Runnable{
private Image img,buffer;
private Thread video = null;
private URL url;
private MediaTracker tracker;
public synchronized void initO{
tracker = new MediaTracker(this);
try{url = new URL(getCodeBaseO,"webcam32.jpg");}
catch(MalformedURLException e){}
img = getImage(url);
tracker.addImage(img, 0);
buffer = createImage(320,240);
resize(320,240);
if(video!=null)retum;
video = new Thread(this,"VideoStream");
video.startO;
}
public synchronized void destroyO{
if(video!=null)video=null;
}
public void runO{
while(!Thread.interruptedO){
II Load new image.
try{tracker.waitForID(O);}
catch(InterruptedException e){}
II Draw new Image.
repaintO;
II Remove old image & add new one.
tracker.removeImage(img,O);
img.tlushO;
tracker.addImage(img,O);
II Sleep
try{Thread.sleep(250);}
catch(InterruptedException e){}
}
}
public synchronized void update(Graphics g){
Graphics bufGraph = buffer.getGraphicsO;
bufGraph.drawImage(img,O,O,this);
paint(bufGraph);
g.drawImage(buffer,O,O,this);
}
public void paint(Graphics g){
g.drawImage(buffer,O,O,this);
}
}

-214-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

2 Code listing tor the Host controller· TCPServerMain.vbp

2.1 frmTCPServerMain

Option Explicit
Dim MessageIN As String
Dim MessageOUT As String

Private Sub cmdSend_ClickO
MessageOUT = txtOut.Text
frmTCPServerl.txtSend.Text = MessageOUT
frmTCPServer2.txtSend.Text = MessageOUT
frmTCPServer3.txtSend.Text = MessageOUT
frmTCPServer4.txtSend.Text = MessageOUT

End Sub

Private Sub Form_LoadO
Load frmTCPServerl
Load frmTCPServer2
Load frmTCPServer3
Load frmTCPServer4
frmTCPServerl.Hide
frmTCPServer2.Hide
frmTCPServer3.Hide
frmTCPServer4.Hide

End Sub

2.2 trmTCPServer1

Option Explicit

Private Sub Form_LoadO
, set up local port and wait for connection
tcpServer.LocalPort = 5000
Call tcpServer.Listen

End Sub

Private Sub Form_TerminateO
Call tcpServer.Close

End Sub

Private Sub tcpServer_ConnectionRequest(_
ByVal requestID As Long)
, Ensure that tcpServer is closed
, before accepting a new connection
If tcpServer.State <> sckClosed Then

Call tcpServer.C1ose
End If

Call tcpServer.Accept(requestID) 'accept connection
txtOutput.Text = _

"Connection from IP address: " &
tcpServer.RemoteHostIP & vbCrLf&
"Port #: " & tcpServer.RemotePort & ~CrLf & vbCrLf

End Sub

Private Sub tcpServer_DataArrival(ByVal bytesTotal As Long)
Dim message As String
Call tcpServer.GetData(message) 'get data from client
txtOutput.Text = _

-215-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

txtOutput.Text & message & vbCrLf & vbCrLf
txtOutput.SelStart = Len(txtOutput.Text)
frmServerMain.lblln.Caption = message

End Sub

Private Sub tcpServer_CloseO
Call tcpServer.Close •client closed, server should too
txtOutput.Text = txtOutput.Text &_
"Client closed connection." & vbCrLf & vbCrLf
txtOutput.SelStart = Len(txtOutput.Text)
Call tcpServer.Listen •listen for next connection

End Sub

Private Sub tcpServer_Error(ByVal Number As Integer,_
Description As String, ByVal Scode As Long, _
ByVal Source As String, ByVal HelpFile As String, _
ByVal HelpContext As Long, CancelDisplay As Boolean)
Dim result As Integer
result = MsgBox(Source & ": " & Description,_
vbOKOnly, "TCP/lP Error")

End
End Sub

Private Sub txtSend_ChangeO
, send data to the client
Call tcpServer.sendData(txtSend.Text)

End Sub

2.3 frmTCPServer2

Option Explicit

Private Sub Form_LoadO
•set up local port and wait for connection
tcpServer.LocalPort = 5001
Call tcpServer.Listen

End Sub

Private Sub Form_TerminateO
Call tcpServer.Close

End Sub

Private Sub tcpServer_ConnectionRequest(_
ByVa) requestID As Long)
, Ensure that tcpServer is closed
•before accepting a new connection
If tcpServer.State <> sckClosed Then

Call tcpServer.Close
End If

Call tcpServer.Accept(requestID) 'accept connection
txtOutput.Text = _

"Connection from IP address: " &
tcpServer.RemoteHostIP & vbCrLf&
"Port #: " & tcpServer.RemotePort & ~CrLf& vbCrLf

End Sub

Private Sub tcpServer_DataArrival(ByVal bytesTotal As Long)
Dim message As String
Call tcpServer.GetData(message) 'get data from client
txtOutput.Text = _

-216-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

txtOutput.Text & message & vbCrLf & vbCrLf
txtOutput.SelStart = Len(txtOutput.Text)
frmServerMain.lbIIn.Caption = message

End Sub

Private Sub tcpServer_CloseO
Call tcpServer.Close 0 client closed, server should too
txtOutput.Text = txtOutput.Text &_
"Client closed connection." & vbCrLf & vbCrLf
txtOutput.SelStart = Len(txtOutput.Text)
Call tcpServer.Listen 0 listen for next connection

End Sub

Private Sub tcpServer_Error(ByVal Number As Integer,_
Description As String, ByVal Scode As Long,_
ByVal Source As String, ByVal HelpFile As String,_
ByVal HelpContext As Long, CancelDisplay As Boolean)
Dim result As Integer
result = MsgBox(Source & ": " & Description, _
vbOKOnly, "TCP/IP Error")

End
End Sub

Private Sub txtSend_ChangeO
o send data to the client
Call tcpServer.SendData(txtSend.Text)

End Sub

2.4 frmTCPServer3

Option Explicit

Private Sub Form_LoadO
, set up local port and wait for connection
tcpServer.LocalPort = 5002
Call tcpServer.Listen

End Sub

Private Sub Form_TerminateO
Call tcpServer.Close

End Sub

Private Sub tcpServer_ConnectionRequest(_
ByVal requestID As Long)
, Ensure that tcpServer is closed
, before accepting a new connection
If tcpServer.State <> sckClosed Then

Call tcpServer.Close
End If

Call tcpServer.Accept(requestID) 'accept connection
txtOutput.Text = _
"Connection from JP address: " &
tcpServer.RemoteHostJP & vbCrLf &_
"Port #: " & tcpServer.RemotePort & vbCrLf & vbCrLf

End Sub

Private Sub tcpServer_DataArrival(ByVal bytesTotal As Long)
Dim message As String
Call tcpServer.GetData(message) 0 get data from client
txtOutput.Text = _

txtOutput.Text & message & vbCrLf & vbCrLf

-217-

Appendix A CODE LISTlNG FOR THE MODULAR MECHATRONIC
CIM lNTERNET CONTROL SYSTEM

txtOutput.SelStart = Len(txtOutput.Text)
frmServerMain.JbJIn.Caption = message

End Sub

Private Sub tcpServer_CloseO
Call tcpServer.Close •client closed, server should too
txtOutput.Text = txtOutput.Text &_
"Client closed connection." & vbCrLf & vbCrLf
txtOutput.SelStart = Len(txtOutput.Text)
Call tcpServer.Listen 'listen for next connection

End Sub

Private Sub tcpServer_Error(ByVal Number As Integer,_
Description As String, ByVal Scode As Long,_
ByVal Source As String, ByVal HelpFile As String, _
ByVal HelpContext As Long, CancelDisplay As Boolean)
Dim result As Integer
result = MsgBox(Source & ": " & Description,_
vbOKOnly, "TCP/IP Error")

End
End Sub

Private Sub txtSend_ChangeO
, send data to the client
Call tcpServer.SendData(txtSend.Text)

End Sub

2.5 frmTCPServer4

Option Explicit

Private Sub Forrn_LoadO
•set up local port and wait for connection
tcpServer.LocalPort = 5003
Call tcpServer.Listen

End Sub

Private Sub Forrn_TerminateO
Call tcpServer.Close

End Sub

Private Sub tcpServer_ConnectionRequest(_
ByVal requestID As Long)
, Ensure that tcpServer is closed
, before accepting a new connection
If tcpServer.State <> sckClosed Then

Call tcpServer.Close
End If

. Call tcpServer.Accept(requestID) 'accept connection
txtOutput.Text = _

"Connection from IP address: " &
tcpServer.RemoteHostIP & vbCrLf&
"Port #: " & tcpServer.RemotePort & ~CrLf & vbCrLf

End Sub

Private Sub tcpServer_DataArrival(ByVal bytesTotal As Long)
Dim message As String
Call tcpServer.GetData(message) 'get data from client
txtOutput.Text = _

txtOutput.Text & message & vbCrLf & vbCrLf
txtOutput.SelStart = Len(txtOutput.Text)
frmServerMain.lblIn.Caption = message

-218-

Appendix A

End Sub

CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

Private Sub tcpServer_CloseO
Call tcpServer.Close 'client closed, server should too
txtOutput.Text = txtOutput.Text &_
"Client closed connection." & vbCrLf & vbCrLf
txtOutput.SelStart = Len(txtOutput.Text)
Call tcpServer.Listen 'listen for next connection

End Sub

Private Sub tcpServer_Error(ByVal Number As Integer,_
Description As String, ByVal Scode As Long, _
ByVal Source As String, ByVal HelpFile As String,_
ByVal He1pContext As Long, CancelDisplay As Boolean)
Dim result As Integer
result = MsgBox(Source & ":" & Description,_
vbOKOnly, "TCP/JP Error")

End
End Sub

Private Sub txtSend_ChangeO
, send data to the client
Call tcpServer.SendData(txtSend.Text)

End Sub

-219-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

3 Code listing for the Camera Selector Client· CAMClient.vbp

3.1 frmCAMClient

Option Explicit

Private Sub Form_LoadO
cmdSend.Enabled = False
, set up local port and wait for connection
tcpClient.RemoteHost = "146.230.192.36"
tcpClient.RemotePort = 5000 'server port
Call tcpClient.Connect 'connect to RemoteHost address

End Sub

Private Sub Form_TerminateO
Call tcpClient.Close

End Sub

Private Sub Form_Resize()
On Error Resume Next
Call cmdSend.Move(ScaleWidth - cmdSend.Width, 0)
Call txtSend.Move(O, 0, ScaleWidth - cmdSend.width)
Call txtOutput.Move(O, txtSend.Height, ScaleWidth,_

ScaleHeight - txtSend.Height)
End Sub

Private Sub tcpClient_Connect()
, when connection occurs, display a message
cmdSend.Enabled = True
txtOutput.Text = "Connected to Web Server at IP Address: " &

tcpClient.RemoteHostIP & vbCrLf & "Port #: " &
tcpClient.RemotePort & vbCrLf & vbCrLf

End Sub

Private Sub tcpClient_DataArrival(ByVal bytesTotal As Long)
Dim message As String
Call tcpClient.GetData(message) 'get data from server
txtOutput.Text = txtOutput.Text & message & vbCrLf & vbCrLf
txtOutput.SelStart = Len(txtOutput.Text)
frmCamSelect.txtMessage.Text = message

End Sub

Private Sub tcpClient_CloseO
cmdSend.Enabled = False
Call tcpClient.Close 'server closed, client should too
txtOutput.Text = _

txtOutput.Text & "Server closed connection." & vbCrLf
txtOutput.SelStart = Len(txtOutput.Text)

End Sub

Private Sub tcpClient_Error(ByVal Number As Integer, _
Description As String, ByVal Scode As Long,_
ByVal Source As String, ByVal HelpFile As String,_
ByVal HelpContext As Long, CancelDisplay As Boolean)

Dim result As Integer
result = MsgBox(Source & ": " & Description,_

vbOKOnly, "TCP/IP Error")
End

End Sub

Private Sub cmdSend_ClickO
, send data to server
Call tcpClient.SendData("CLIENT »> " & txtSend.Text)

-220-

Appendix A CODE LISTlNG FOR THE MODULAR MECHATRONIC
CIM lNTERNET CONTROL SYSTEM

txtOutput.Text = txtOutput.Text &_
"CLIENT »> " & txtSend.Text & vbCrLf & vbCrLf

txtOutput.SelStart = Len(txtOutput.Text)
txtSend.Text = ""

End Sub

3.2 frmCAMSelect

Option Explicit

Private Sub cmdCaml_ClickO
Text1.Text = "HALLO"
IpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 1 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
End Sub

Private Sub cmdCam2_ClickO
IpDioWritePort.Port = 0 'port number

IpDioWritePort.Mask = 255
IpDioWritePort.state = 2 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
End Sub

Private Sub cmdCam3_ClickO
IpDioWritePort.Port = 0 'port number

IpDioWritePort.Mask = 255
IpDioWritePort.state = 4 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
End Sub

Private Sub cmdCam4_ClickO
\pDioWritePort.Port = 0 'port number

IpDioWritePort.Mask = 255
IpDioWritePort.state = 8 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
End Sub

Private Sub cmdExit_ClickO
IpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 0 'line numbers bin to decimal

ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then
Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
End If

IpDioWritePort.Port = I 'port number

-221-

Appendix A CODE LISTlNG FOR THE MODULAR MECHATRONIC
CIM lNTERNET CONTROL SYSTEM

IpDioWritePort.Mask = 255
IpDioWritePort.state = 0 'line numbers bin to decimal

ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then
Call MsgBox(szErrMsg, vbOKOnly, "Error l !")
End If

ErrCde = DRV_DeviceClose(DeviceHandle)
If (ErrCde <> 0) Then

DRV_GetErrorMessage ErrCde, szErrMsg
Call MsgBox(szErrMsg, vbOKOnly, "Error!!")

End If
End
End Sub

Private Sub Forrn_LoadO
Dim Cameramessage As String
Load frmTCPClient
frrnTCPClient.Hide

'Open Advantech Card
ErrCde = DRV_DeviceOpen(O, DeviceHandle)
If (ErrCde <> 0) Then

.DRV_GetErrorMessage ErrCde, szErrMsg
Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

Else
bRun = True

End If
End Sub

Private Sub Textl_ChangeO

End Sub

Private Sub txtMessage_ChangeO
Dim Cameramessage As String
Let Cameramessage = txtMessage.Text
Select Case Cameramessage

Case "SERVER »> ClientCAM-CAMERAl ":
lpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
lpDioWritePort.state = 1 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
Case "SERVER >>> ClientCAM-CAMERA2":

IpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 2 1ine numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle, IpDioWritePort)
If (ErrCde<> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
Case "SERVER >>> ClientCAM-CAMERA3":

IpDioWritePort.Port = 0 'port number
\pDioWritePort.Mask = 255
\pDioWritePort.state = 4 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

-222-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

End If
Case "SERVER>>> ClientCAM-CAMERA4":

IpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 8 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
Case "SERVER »> ClientCAM-EXIT":

IpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 0 'line numbers bin to decimal

ErrCde = DRV_DioWritePortByte(DeviceHandle, IpDioWritePort)
If (ErrCde <> 0) Then
Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
End If

IpDioWritePort.Port = I 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 0 'line numbers bin to decimal

ErrCde = DRV_DioWritePortByte(DeviceHandle, IpDioWritePort)
If (ErrCde <> 0) Then
Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
End If

ErrCde = DRV_DeviceClose(DeviceHandle)
If (ErrCde <> 0) Then

DRV_GetErrorMessage ErrCde, szErrMsg
Call MsgBox(szErrMsg, vbOKOnly, "Error!!")

End If
End
End Select
End Sub

3.3 Driver.bas

'***
, Module Name: DRIVER.BAS
, Purpose: the declaration of functions, data structures, status codes,
, constants, and messages
'**

'**
, Constant Definition
'**
Global Const MaxDev = 255 ' max. # of devices
Global Const MaxDevNameLen = 49 ' original is 64; max lenght of device name
Global Const MaxGroup = 6
Global Const MaxPort = 3
Global Const MaxszErrMsgLen = 80
Global Const MAX_DEVICE_NAME_LEN = 64
Global Const MAX_DRIVER_NAME_LEN = 16
Global Const MAX_DAUGHTER_NUM = 16
Global Const MAX_DIO]ORT = 48
Global Const MAX_AO_RANGE = 16

Global ConstREMOTE = I
Global Const REMOTEI = REMOTE + 1
Global Const REMOTE2 = REMOTEI + 1
Global Const NONPROG = 0
Global Const PROG = REMOTE
Global Const INTERNAL = 0
Global Const EXTERNAL = I

, For PCL-818L JP? = 5V
'For PCL-818L JP? =IOV

-223-

Appendix A

Global Const SINGLEENDD = 0
Global Const DIFFERENTIAL = 1
Global Const Bll'OLAR = 0
Global Const UNll'OLAR = I
Global Const PORTA = 0
Global Const PORTS = I
Global Const PORTC = 2
Global Const INPORT = 0
Global Const OUTPORT = I

CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

'**~************************

Define board vendor ID
'***
Global Const AAC = &HO 'Advantech
Global Const KGS = &H4000
,******.*.************••*.*.*********.**************.************************

Define DAS I/O Board ID.
,**
Global Const NONE = &HO

'Advantech board ID

Global Const BD]CL836 = AAC Or &H54

, not available

, PCL-836

,**
Define subsection identifier

,**
Global Const DAS_AISECTION = &Hl
Global Const DAS_AOSECTION = &H2
Global Const DAS_DISECTION = &H3
Global Const OAS_DOSECTION = &H4
Global Const DAS_TEMPSECTION = &H5
Global Const DAS_ECSECTION = &H6
Global Const DASJMSECTION = &H7
Global Const DAS]OSECTION = &H8
Global Const OAS_ALSECTION = &H9
Global Const MT_AISECTION = &HA
Global Const MT_DISECTION = &HB

, AID subsection
, DIA sbusection
, Digital input subsection
, Digital output sbusection
, thermocouple section
, Event count subsection
•frequency measurement section
, pulse output section
, alarm section
, monitoring AID subsection
, monitoring Oil subsection

'***
Define Transfer Mode

'***
Global Const POLLED_MODE = &HO
Global Const DMA_MODE = &Hl
Global Const INTERRUPT_MODE = &H2

, software transfer
, DMA transfer
, Interrupt transfer

'***
Define Acquisition Mode

'***
Global Const FREE_RUN = 0
Global Const PRE_TRIG = I
Global Const POST_TRIG = 2
Global Const POSITION_TRIG = 3

'***
Define Comparator's Condition

'***
Global Const NOCONDITION = 0
Global Const LESS = I
Global Const BETWEEN = 2
Global Const GREATER = 3
Global Const OUTSIDE = 4

1**
Define Status Code

-224-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
ClM INTERNET CONTROL SYSTEM

'**
Global Const SUCCESS = 0
Global Const DrvErrorCode = I
Global Const KeErrorCode = 100
Global Const DnetErrorCode = 200
Global Const MemoryAllocateFailed = (DrvErrorCode + 0)
Global Const ConfigDataLost = (DrvErrorCode + I)
Global Const InvalidDeviceHandle = (DrvErrorCode + 2)
Global Const AIConversionFailed = (DrvErrorCode + 3)
Global Const A1ScaleFailed = (DrvErrorCode + 4)
Global Const SectionNotSupported = (DrvErrorCode + 5)
Global Const InvalidChannel = (DrvErrorCode + 6)
Global Const InvalidGain = (DrvErrorCode + 7)
Global Const DataNotReady = (DrvErrorCode + 8)
Global Const InvalidInputParam = (DrvErrorCode + 9)
Global Const NoExpansionBoardConfig = (DrvErrorCode + 10)
Global Const InvalidAnalogOutValue = (DrvErrorCode + 11)
Global Const ConfigIoPortFailed = (DrvErrorCode + 12)
Global Const CommOpenFailed = (DrvErrorCode + 13)
Global Const CommTransmitFailed = (DrvErrorCode + 14)
Global Const CommReadFailed = (DrvErrorCode + 15)
Global Const CommReceiveFailed = (DrvErrorCode + 16)
Global Const CommConfigFailed = (DrvErrorCode + 17)
Global Const CommChecksumError = (DrvErrorCode + 18)
Global Const InitError = (DrvErrorCode + 19)
Global Const DMABufAllocFailed = (DrvErrorCode + 20)
Global Const lllegalSpeed = (DrvErrorCode + 21)
Global Const ChanConflict = (DrvErrorCode + 22)
Global Const BoardIDNotSupported = (DrvErrorCode + 23)
Global Const FreqMeasurementFailed = (DrvErrorCode + 24)
Global Const CreateFileFailed = (DrvErrorCode + 25)
Global Const FunctionNotSupported = (DrvErrorCode + 26)
Global Const LoadLibraryFailed = (DrvErrorCode + 27)
Global Const GetProcAddressFailed = (DrvErrorCode + 28)
Global Const InvalidDriverHandle = (DrvErrorCode + 29)
Global Const InvalidModuleType = (DrvErrorCode + 30)
Global Const InvalidlnputRange = (DrvErrorCode + 31)
Global Const InvalidWindowsHandle = (DrvErrorCode + 32)
Global Const InvalidCountNumber = (DrvErrorCode + 33)
Global Const InvalidlnterruptCount = (DrvErrorCode + 34)
Global Const InvalidEventCount = (DrvErrorCode + 35)
Global Const OpenEventFailed = (DrvErrorCode + 36)
Global Const InterruptProcessFailed = (DrvErrorCode + 37)
Global Const InvalidDOSetting = (DrvErrorCode + 38)
Global Const InvalidEventType = (DrvErrorCode + 39)
Global Const EventTimeOut = (DrvErrorCode + 40)
Global Const InvalidDmaChannel = (DrvErrorCode + 41)
Global Const KelnvalidHandleValue = (KeErrorCode + 0)
Global Const KeFileNotFound = (KeErrorCode + I)
Global Const KelnvalidHandle = (KeErrorCode + 2)
Global Const KeTooManyCmds = (KeErrorCode + 3)
Global Const KelnvalidParameter = (KeErrorCode + 4)
Global Const KeNoAccess = (KeErrorCode + 5)
Global Const KeUnsuccessful = (KeErrorCode + 6)
Global Const KeConlnterruptFailure = (KeErrorCode + 7)
Global Const KeCreateNoteFailure = (KeErrorCode + 8)
Global Const KelnsufficientResources = (KeErrorCode + 9)
Global Const KeHalGetAdapterFailure = (KeErrorCode + 10)
Global Const KeOpenEventFailure = (KeErrorCode + 11)
Global Const KeAllocCommBufFailure = (KeErrorCode + 12)
Global Const KeAllocMdlFailure = (KeErrorCode + 13)
Global Const KeBufferSizeTooSmall = (KeErrorCode + 14)
Global Const DNlnitFailed = (DnetErrorCode + 1)
Global Const DNSendMsgFailed = (DnetErrorCode + 2)
Global Const DNRunOutOfMsgID = (DnetErrorCode + 3)

-225-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

Global Const DNInvalidInputParam = (DnetErrorCode + 4)
Global Const DNErrorResponse = (DnetErrorCode + 5)
Global Const DNNoResponse = (DnetErrorCode + 6)
Global Const DNBusyOnNetwork = (DnetErrorCode + 7)
Global Const DNUnknownResponse = (DnetErrorCode + 8)
Global Const DNNotEnoughBuffer = (DnetErrorCode + 9)
Global Const DNFragResponseError = (DnetErrorCode + 10)
Global Const DNTooMuchDataAck = (DnetErrorCode + 11)
Global Const DNFragRequestError = (DnetErrorCode + 12)
Global Const DNEnableEventError = (DnetErrorCode + 13)
Global Const DNCreateOrOpenEventError = (DnetErrorCode + 14)
Global Const DNIORequestError = (DnetErrorCode + 15)
Global Const DNGetEventNameError = (DnetErrorCode + 16)
Global Const DNTimeOutError = (DnetErrorCode + 17)
Global Const DNOpenFailed = (DnetErrorCode + 18)
Global Const DNCloseFailed = (DnetErrorCode + 19)
Global Const DNResetFailed = (DnetErrorCode + 20)
, define user window message
Global Const WM USER = &H400
Global Const WM_ATODNOTIFY = (WM_USER + 200)
Global Const WM_DTOANOTIFY = (WM_USER + 201)
Global Const WM_DIGINNOTIFY = (WM_USER + 202)
Global Const WM_DIGOUTNOTIFY = (WM_USER + 203)
Global Const WM_MTNOTIFY = (WM_USER + 204)
Global Const WM_CANTRANSMITCOMPLETE = (WM_USER + 205)
Global Const WM_CANMESSAGE = (WM_USER + 206)
Global Const WM_CANERROR = (WM_USER + 207)
o define the wParam in user window message
Global Const AD_NONE = 0 •AD Section
Global Const AD_TERMINATE = I
Global Const AD INT = 2
Global Const AD_BUFFERCHANGE = 3
Global Const AD_OVERRUN = 4
Global Const AD_WATCHDOGACT = 5
Global Const AD_TIMEOUT = 6
Global Const DA_TERMINATE = 0 'DA Section
Global Const DA DMATC = I
Global Const DA INT = 2
Global Const DA_BUFFERCHANGE = 3
Global Const DA_OVERRUN = 4
Global Const DI_TERMINATE = 0 0 DI Section
Global Const DI_DMATC = I
Global Const DI_INT = 2
Global Const DI_BUFFERCHANGE = 3
Global Const DI_OVERRUN = 4
Global Const DI_WATCHDOGACT = 5
Global Const DO_TERMINATE = 0 0 DO Section
Global Const DO_DMATC = 1
Global Const DO INT = 2
Global Const DO_BUFFERCHANGE = 3
Global Const DO_OVERRUN = 4
Global Const MT_ATOD = 0 'MT Section
Global Const MT_DIGIN = I
Global Const CAN_TRANSFER = 0 0 CAN Section
Global Const CAN_RECEIVE = 1
Global Const CAN_ERROR = 2
'**
, define service type for COMEscapeO
'**
Global Const EscapeFlushInput = I
Global Const EscapeFlushOutput = 2
Global Const EscapeSetBreak = 3
Global Const EscapeClearBreak = 4

'**

-226-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

, define gate mode
'**
Global Const GATE_DISABLED = 0 'no gating
Global Const GATE_HIGHLEVEL = I ' active high level
Global Const GATE_LOWLEVEL = 2 ' active low level
Global Const GATE_HIGHEDGE = 3 ' active high edge
Global Const GATE_LOWEDGE = 4 ' active low edge
'**
, define event type for interrupt and DMA transfer
'**

, interrupt
, buffer change
, termination

, overrun
, watchdog actived

, change state event
, alarm event

, port 0 event
, port 1 event

Global Const ADS_EVT_INTERRUPT = &Hl
Global Const ADS_EVT_BUFCHANGE = &H2
Global Const ADS_EVT3ERMINATED = &H4
Global Const ADS_EVT_OVERRUN = &H8
Global Const ADS_EVT_WATCHDOG = &HI0
Global Const ADS EVT CHGSTATE = &H20
Global Const ADS_EVT_ALARM = &H40
Global Const ADS_EVT]ORTO = &H80
Global Const ADS_EVT]ORTl = &H100

'**
, define event name by device number
,**
Global Const ADS_EVT_INTERRUPT_NAME = "ADS_EVT_INTERRUPT"
Global Const ADS_EVT_BUFCHANGE_NAME = "ADS_EVT_BUFCHANGE"
Global Const ADS_EVT_TERMINATED_NAME = "ADS_EVT_TERMINATED"
Global Const ADS_EVT_OVERRUN_NAME = "ADS_EVT_OVERRUN"
Global Const ADS_EVT_WATCHDOG_NAME = "ADS_EVT_WATCHDOG"
Global Const ADS_EVT_CHGSTATE_NAME = "ADS_EVT_CHGSTATE"
Global Const ADS_EVT_ALARM_NAME = "ADS_EVT_ALARM"

,**
, define FIFO size
,**
Global Const FIFO_SIZE = 512 , IK FIFO size (512* 2byte/each data)

,**
, Function ID Definition
,**
Global Const FID_DeviceOpen = 0
Global Const FID_DeviceClose = 1
Global Const FID_DeviceGetFeatures = 2
Global Const FID_AIConfig = 3
Global Const FID_AIGetConfig = 4
Global Const FID_AlBinaryln = 5
Global Const FID_AIScale = 6
Global Const FID_ANoltageIn = 7
Global Const FID_ANoltagelnExp = 8
Global Const FID_MAIConfig = 9
Global Const FID_MAlBinaryln = 10
Global Const FID_MANoltageIn = II
Global Const FrD_MAlVoltageInExp = 12
Global Const FID_TCMuxRead = 13
Global Const FID_AOConfig = 14
Global Const FID_AOBinaryOut = 15
Global Const FID_AOVoltageOut = 16
Global Const FID_AOScale = 17
Global Const FrD_DioSetPortMode = 18
Global Const FID_DioGetConfig = 19
Global Const FID_DioReadPortByte = 20
Global Const FID_DioWritePortByte = 21
Global Const FID_DioReadBit = 22
Global Const FID_DioWriteBit = 23
Global Const FID_DioGetCurrentDOByte = 24
Global Const FID_DioGetCurrentDOBit = 25

-227-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

Global Const FID_WritePortByte = 26
Global Const FID_WritePortWord = 27
Global Const Fill_ReadPortByte = 28
Global Const FID_ReadPortWord = 29
Global Const Fill_CounterEventStart = 30
Global Const FID_CounterEventRead = 31
Global Const FID_CounterFreqStart = 32
Global Const FID_CounterFreqRead = 33
Global Const FID_CounterPulseStart = 34
Global Const FID_CounterReset = 35
Global Const FID_QCounterConfig = 36
Global Const FID_QCounterConfigSys = 37
Global Const FID_QCounterStart = 38
Global Const FID_QCounterRead = 39
Global Const FID_AlarmConfig = 40
Global Const Fill_AlarmEnable = 41
Global Const FID_AlarmCheck = 42
Global Const FID_AlarmReset = 43
Global Const FID_COMOpen = 44
Global Const FID_COMConfig = 45
Global Const Fill COMClose = 46
Global Const FID_COMRead = 47
Global Const FID_COMWrite232 = 48
Global Const FID_COMWrite485 = 49
Global Const FID_COMWrite85 = 50
Global Const FID_COMlnit = 51
Global Const Fill_COMLock = 52
Global Const Fill_COMUnlock = 53
Global Const FID_WDTEnable = 54
Global Const FID_WDTRefresh = 55
Global Const FID_WDTReset = 56
Global Const FID]AIIntStart = 57
Global Const FID_FAIlntScanStart = 58
Global Const FID]AIDmaStart = 59
Global Const FID_FAIDmaScanStart = 60
Global Const FID_FAIDuaIDmaStart = 61
Global Const FID_FAIDuaIDmaScanStart = 62
Global Const FID]AICheck = 63
Global Const FID_FAITransfer = 64
Global Const FID]AIStop = 65
Global Const FID]AIWatchdogConfig = 66
Global Const FID]AIIntWatchdogStart = 67
Global Const FID]AillmaWatchdogStart = 68
Global Const FID]AIWatchdogCheck = 69
Global Const FID]AOlntStart = 70
Global Const FID]AODmaStart = 71
Global Const FID_FAOScale = 72
Global ConstFID]AOLoad = 73
Global Const FID]AOCheck = 74
Global Const FID]AOStop = 75
Global Const FID_ClearOverrun = 76
Global Const Fill_EnableEvent = 77
Global Const FID_CheckEvent = 78
Global Const FID_AllocateDMABuffer = 79
Global Const FID]reeDMABuffer = 80
Global Const FID_EnableCANEvent = 81
Global Const FID_GetCANEventData = 82

'***
• define gain listing
1**
Type GainList

usGainCde As Integer
fMaxGainVal As Single
fMinGainVal As Single

-228-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

szGainStr(O To 15) As Byte
End Type

'***
o Define hardware board(device) features.

o Note: definition for dwPermutaion member

Bit 0: Software Al
Bitl: DMAAI
Bit 2: Interrupt AI
Bit3: Condition AI
Bit 4: Software AO
BitS: DMAAO
Bit 6: Interrupt AO
Bit 7: Condition AO
Bit 8: Software DJ
Bit9: DMA DJ
Bit 10: Interrupt DJ
Bit 11: Condition DJ
BitI2: Software DO
BitI3: DMADO
Bit 14: Interrupt DO
BitIS: Condition DO
Bit 16: High Gain
Bit 17: Auto Channel Scan
Bit 18: Pacer Trigger
Bit 19: External Trigger
Bit 20: Down Counter
Bit2I: Dual DMA
Bit 22: Monitoring
Bit23: QCounter

'***
Type DEVFEATURES

szDriverVer(O To 7) As Byte 0 device driver version
szDriverName(O To (MAX_DRNER_NAME_LEN -1» As Byte' device driver name
dwBoardID As Long , board ID
usMaxAIDiffChl As Integer ' Max. number of differential channel
usMaxAISiglChl As Integer ' Max. number of single-end channel
usMaxAOChl As Integer 0 Max. number of DIA channel
usMaxDOChl As Integer ' Max. number of digital out channel
usMaxDJChl As Integer 0 Max. number of digital input channel
usDJOPort As Integer 0 specifies if programmable or not
usMaxTimerChl As Integer 0 Max. number of CounterlTimer channel
usMaxAlarmChl As Integer •Max number of alTam channel
usNurnADBit As Integer •number of bits for AID converter
usNurnADByte As Integer ' AID channel width in bytes.
usNumDABit As Integer 0 number of bits for D/A converter.
usNumDAByte As Integer •D/A channel width in bytes.
usNumGain As Integer •Max. number of gain code
glGainList(lS) As GainList ' Gain listing
dwPermutation(3) As Long •Permutation

End Type

1***
• AOSET Definition
'*********************'**
Type AOSET

usAOSource As Integer
fAOMaxVol As Single
fAOMinVol As Single

End Type

o O-intemal, I-external
•maximum output voltage
•minimum output voltage

1***

-229-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

DaughterSet Definition
,***
Type DAUGHTERSET

dwBoardID AI; Long
usNum As Integer
fGain As Single
usCards As Integer

End Type

, expansion board ID
, available expansion channels

, gain for expansion channel
, number of expansion cards

1**
Analog Input Configuration Definition

,**
Type DEVCONFIG_AI

dwBoardID As Long , board ID code
usChanConfig As Integer ' O-single ended, I-differential
usGainCtrMode AI; Integer ' I-by jumper, O-programmable
usPolarity As Integer 'O-bipolar, I-unipolar
usDasGain As Integer ' not used if GainCtrMode = I
usNumExpChan As Integer ' DAS channels attached expansion board
usCjcChannel As Integer ' cold junction channel
DaUghter(MAX_DAUGHTER_NUM - I) As DAUGHTERSET 'expansion board settings

End Type

,**
DEVCONFIG_COM Definition

,**
Type DEVCONFIG_COM

usCommPort AI; Integer
dwBaudRate As Long
usParity As Integer
usDataBits As Integer
usStopBits AI; Integer
usTxMode As Integer
usPortAddress AI; Integer

End Type

, serial port
'baud rate

, parity check
'data bits
'stop bits
, transmission mode
, communication port address

1**
TRIGLEVEL Definition

'**
Type TRIGLEVEL

fLow As Single
tHigh As Single

End Type

Type PT_DEVLIST
dwDeviceNum As Long
szDeviceName(O To 49) As Byte
nNumOfSubdevices As Integer

End Type

Type PT_DeviceGetFeatures
buffer As Long 'LPDEVFEATURES
size As Integer

End Type

Type PT_AIConfig
DasChan AI; Integer
DasGain AI; Integer

End Type

Type PT_AIGetConfig
buffer As Long 'LPDEVCONFIG_AI
size As Integer

End Type

-230-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

Type PT_AlBinaryIn
chan As Integer
TrigMode As Integer
reading As Long , USHORT far * reading

End Type

Type PT_AIScale
reading As Integer
MaxVolt As Single
MaxCount As Integer
offset As Integer
voltage As Long , FLOAT far *voltage

End Type

Type PT_AIVoltageIn
chan As Integer
gain As Integer
TrigMode As Integer
voltage As Long , FLOAT far *voltage

End Type

Type PT_AIVoltageInExp
DasChan As Integer
DasGain As Integer
ExpChan As Integer
voltage As Long 'FLOAT far *voltage

End Type

Type PT_MAIConfig
NumChan As Integer
StartChan As Integer
GainArray As Long • USHORT far *GainArray

End Type

Type PT_MAIBinaryIn
NumChan As Integer
StartChan As Integer
TrigMode As Integer
ReadingArray As Long 'USHORT far *Reading

End Type

Type PT_MAIVoltageIn
NumChan As Integer
StartChan As Integer
GainArray As Long 'USHORT far *GainArray
TrigMode As Integer
VoltageArray As Long 'FLOAT far *VoltageArray

End Type

Type PT_MAIVoltageInExp
NumChan As Integer
DasChanArray As Long 'USHORT far *DasChanArray
DasGainArray As Long •USHORT far *DasGainArray
ExpChanArray As Long 'USHORT far *ExpChanArray
VoItageAnay As Long' FLOAT far *VoltageArray

End Type

Type PT_TCMuxRead
DasChan As Integer
DasGain As Integer
ExpChan As Integer
TCType As Integer
TempScale As Integer
temp As Long , FLOAT far *temp

End Type

-231-

Appendix A

Type PT_AOConfig
chan As Integer
RefSrc As Integer
MaxValue As Single
MinValue As Single

End Type

Type PT_AOBinaryOut
chan As Integer
BinData As Integer

End Type

Type PT_AOVoltageOut
chan As Integer
OutputValue As Single

End Type

CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

Type PT_AOScale
chan As Integer
OutputValue As Single
BinData As Long • USHORT far *BinData

End Type

Type PT_DioSetPortMode
Port As Integer
dir As Integer

End Type

Type PT_DioGetConfig
PortArray As Long •SHORT far *PortArray
NumOfPorts As Integer

End Type

Type PT_DioReadPortByte
Port As Integer
value As Long , USHORT far *value

End Type

Type PT_DioWritePortByte
Port As Integer
Mask As Integer
state As Integer

End Type

Type PT_DioReadBit
Port As Integer
bit As Integer
state As Long , USHORT far *state

End Type

Type PT_DioWriteBit
Port As Integer
bit As Integer
state As Integer

End Type

Type PT_DioGetCurrentDOByte
Port As Integer
value As Long • USHORT far *value

End Type

Type PT_DioGetCurrentDOBit
Port As Integer
bit As Integer
state As Long , USHORT far *state

-232-

Appendix A

End Type

Type PT_WritePortByte
Port As Integer
ByteData As Integer

End Type

Type PT_WritePortWord
Port As Integer
WordData As Integer

End Type

CODE LISTING FOR THE MODULAR MECHATRONIC
ClM INTERNET CONTROL SYSTEM

Type PT_ReadPortByte
Port As Integer
ByteData As Long , USHORT far *ByteData

End Type

Type PT_ReadPortWord
Port As Integer
WordData As Long , USHORT far *WordData

End Type

Type PT_CounterEventStart
counter As Integer
GateMode As Integer

End Type

Type PT_CounterEventRead
counter As Integer
overflow As Long , USHORT far *overflow
Count As Long 'ULONG far *count

End Type

Type PT_CounterFreqStart
counter As Integer
GatePeriod As Integer
GateMode As Integer

End Type

Type PT_CounterFreqRead
counter As Integer
freq As Long 'FLOAT far *freq

End Type

Type PT_CounterPulseStart
counter As Integer
period As Single
UpCycle As Single
GateMode As Integer

End Type

Type PT_QCounterConfig
counter As Integer
LatchSrc As Integer
LatchOverflow As Integer
ResetOnLatch As Integer
ResetValue As Integer

End Type

Type PT_QCounterConfigSys
SysClock As Integer
TimeBase As Integer
TimeDivider As Integer
CascadeMode As Integer

End Type

-233-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

Type PT_QCounterStart
counter As Integer
InputMode As Integer

End Type

, USHORT far *overflow
'ULONG far *LoCount
'UWNG far *HiCount

Type PT_QCounterRead
counter As Integer
overflow As Long
LoCount As Long
HiCount As Long

End Type

Type PT_AlarrnConfig
chan As Integer
LoLimit As Single
HiLimit As Single

End Type

Type PT_AlarmEnable
chan As Integer
LatchMode As Integer
Enabled As Integer

End Type

Type PT_AlarrnCheck
chan As Integer
LoState As Long
HiState As Long

End Type

, USHORT far *LoState
, USHORT far *HiState

Type PT_WDTEnable
message As Integer
Destination As Long 'HWND Destination

End Type

Type PT]AIIntStart
TrigSrc As Integer
SampleRate As Long
chan As Integer
gain As Integer
buffer As Long
Count As Long
cyclic As Integer
IntrCount As Integer

End Type

Type PT_FAIlntScanStart
TrigSrc As Integer
SampleRate As Long
NumChans As Integer
StartChan As Integer
GainList As Long
buffer As Long
Count As Long
cyclic As Integer
IntrCount As Integer

End Type

Type PT]AIDmaStart
TrigSrc As Integer
SampleRate As Long
chan As Integer
gain As Integer
buffer As Long
Count As Long

-234-

Appendix A

End Type

Type PT]AIDmaScanStart
TrigSrc As Integer
SampleRate As Long
NumChans As Integer
StartChan As Integer
GainList As Long
buffer As Long
Count As Long

End Type

Type PT_FAIDualDmaStart
TrigSrc As Integer
SampleRate As Long
chan As Integer
gain As Integer
BufferA As Long
BufferB As Long
Count As Long
cyclic As Integer

End Type

Type PT_FAIDualDmaScanStart
TrigSrc As Integer
SampleRate As Long
NumChans As Integer
StartChan As Integer
GainList As Long
BufferA As Long
BufferB As Long
Count As Long
cyclic As Integer

End Type

Type PT_FAITransfer
ActiveBuf As Integer
DataBuffer As Long
DataType As Integer
start As Long
Count As Long
Overrun As Long

End Type

Type PT]AICheck
ActiveBuf As Long
stopped As Long
retrieved As Long
Overrun As Long
HalfReady As Long

End Type

TypePT_FArWaochdogConfig
TrigMode As Integer
NumChans As Integer
StartChan As Integer
GainList As Long
CondList As Long
LevelList As Long

End Type

Type PT]AIIntWatchdogStart
TrigSrc As Integer
SampleRate As Long
buffer As Long

CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

-235-

Appendix A

Count As Long
cyclic As Integer
IntrCount As Integer

End Type

Type PT_FAIDmaWatchdogStart
TrigSrc As Integer
SampleRate As Long
BufferA As Long
BufferB As Long
Count As Long

End Type

Type PT_FAIWatchdogCheck
DataType As Integer
ActiveBuf As Long
triggered As Long
TrigChan As Long
Triglndex As Long
TrigData As Long

End Type

Type PT]AOIntStart
TrigSrc As Integer
SampleRate As Long
chan As Integer
buffer As Long
Count As Long
cyclic As Integer

End Type

Type PT]AODmaStart
TrigSrc As Integer
SampleRate As Long
chan As Integer
buffer As Long
Count As Long

End Type

Type PT]AOScale
chan As Integer
Count As Long
VoltArray As Long
BinArray As Long

End Type

Type PT]AOLoad
ActiveBuf As Integer
DataBuffer As Long
start As Integer
Count As Long

End Type

Type PT]AOCheck
ActiveBuf As Long
stopped As Long
CurrentCount As Long
Overrun As Long
HalfReady As Long

End Type

Type PT_EnableEvent
EventType As Integer
Enabled As Integer
Count As Integer

CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

-236-

Appendix A

End Type

Type PT_CheckEvent
EventType As Long
Milliseconds As Long

End Type

Type PT_AllocateDMABuffer
CyclicMode As Integer
RequestBufSize As Long
ActuaIBufSize As Long
buffer As Long

End Type

CODE LISTING FOR THE MODULAR MECHATRONIC
ClM INTERNET CONTROL SYSTEM

,**
, Function Declaration for ADSAP132
,**
Declare Function DRV DeviceGetNumOfList Lib "adsapi32.dll" (NumOfDevices As Integer) As Long
Declare Function DRV=DeviceGetList Lib "adsapi32.dll" (ByVal devicelist As Long, ByVal MaxEntries As Integer, nOutEntries As
Integer) As Long
Declare Function DRV_DeviceGetSubList Lib "adsapi32.dll" (ByVal DeviceNum As Long, ByVal SubDevList As Long, ByVal
MaxEntries As Integer, nOutEntries As Integer) As Long
Declare Function DRV_DeviceOpen Lib "adsapi32.dll" (ByVal DeviceNum As Long, DriverHandle As Long) As Long
Declare Function DRV_DeviceClose Lib "adsapi32.dll" (DriverHandle As Long) As Long
Declare Function DRV_DeviceGetFeatures Lib "adsapi32.dll" (ByVal DriverHandle As Long, IpDevFeatures As
PT_DeviceGetFeatures) As Long
Declare Function DRV_BoardTypeMapBoardName Lib "adsapi32.dll" (ByVal BoardID As Long, ByVal ExpName As String) As Long
Declare Sub DRV_GetErrorMessage Lib "adsapi32.dll" (ByVallError As Long, ByVallpszszErrMsg As String)
Declare Function DRV_AIConfig Lib "adsapi32.dll" (ByVal DriverHandle As Long, AIConfig As PT_AIConfig) As Long
Declare Function DRV_AIGetConfig Lib "adsapi32.dll" (ByVal DriverHandle As Long, AIGetConfig As PT_AIGetConfig) As Long
Declare Function DRV_AIBinaryln Lib "adsapi32.dll" (ByVal DriverHandle As Long, AIBinaryln As PT_AIBinaryln) As Long
Declare Function DRV_AIScale Lib "adsapi32.dll" (ByVal DriverHandle As Long, AIScale As PT_AIScale) As Long
Declare Function DRV_AIVoltageln Lib "adsapi32.dll" (ByVal DriverHandle As Long, AIVoltageln As PT_AIVoltageln) As Long
Declare Function DRV_AIVoltagelnExp Lib "adsapi32.dll" (ByVal DriverHandle As Long, AIVoltagelnExp As PT_AIVoltageInExp)
As Long
Declare Function DRV_MAIConfig Lib "adsapi32.dll" (ByVal DriverHandle As Long, MAIConfig As PT_MAIConfig) As Long
Declare Function DRV_MAIBinaryln Lib "adsapi32.dll" (ByVal DriverHandle As Long, MAIBinaryln As PT_MAIBinaryln) As Long
Declare Function DRV_MAIVoltageln Lib "adsapi32.dll" (ByVal DriverHandle As Long, MAIVoltageln As PT_MAIVoltageln) As
Long
Declare Function DRV_MAIVoltagelnExp Lib "adsapi32.dll" (ByVal DriverHandle As Long, MAIVoltagelnExp As
PT_MAIVoltageInExp) As Long
Declare Function DRV_TCMuxRead Lib "adsapi32.dll" (ByVal DriverHandle As Long, TCMuxRead As PT_TCMuxRead) As Long
Declare Function DRV_AOConfig Lib "adsapi32.dll" (ByVal DriverHandleAs Long, AOConfig As PT_AOConfig) As Long
Declare Function DRV_AOBinaryOut Lib "adsapi32.dll" (ByVal DriverHandle As Long, AOBinaryOut As PT_AOBinaryOut) As Long
Declare Function DRV_AOVoltageOut Lib "adsapi32.dll" (ByVal DriverHandle As Long, AOVoltageOut As PT_AOVoltageOut) As
Long
Declare Function DRV_AOScale Lib "adsapi32.dll" (ByVal DriverHandle As Long, AOScale As PT_AOScale) As Long
Declare Function DRV_DioSetPortMode Lib "adsapi32.dll" (ByVal DriverHandle As Long, DioSetPortMode As PT_DioSetPortMode)
As Long
Declare Function DRV_DioGetConfig Lib "adsapi32.dll" (ByVal DriverHandle As Long, DioGetConfig As PT_DioGetConfig) As
Long
Declare Function DRV_DioReadPortByte Lib "adsapi32.dll" (ByVal DriverHandle As Long, DioReadPortByte As
PT_DioReadPortByte) As Long
Declare Function DRV_DioWritePortByte Lib "adsapi32.dll" (ByVal DriverHandle As Long, DioWritePortByte As
PT_DioWritePortByte) As Long
Declare Function DRV_DioReadBit Lib "adsapi32.dll" (ByVal DriverHandle As Long, DioReadBit As PT_DioReadBit) As Long
Declare Function DRV_DioWriteBit Lib "adsapi32.dll" (ByVal DriverHandle As Long, DioWriteBit As PT_DioWriteBit) As Long
Declare Function DRV_DioGetCurrentDOByte Lib "adsapi32.dll" (ByVal DriverHandle As Long, DioGetCurrentDOByte As
PT_DioGetCurrentDOByte) As Long
Declare Function DRV_DioGetCurrentDOBit Lib "adsapi32.dll" (ByVal DriverHandle As Long, DioGetCurrentDOBit As
PT_DioGetCurrentDOBit) As Long
Declare Function DRV_WritePortByte Lib "adsapi32.dll" (ByVal DriverHandle As Long, WritePortByte As PT_WritePortByte) As
Long
Declare Function DRV_WritePortWord Lib "adsapi32.dll" (ByVal DriverHandle As Long, WritePortWord As PT_WritePortWord) As
Long

-237-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

Declare Function DRV ReadPortByte Lib "adsapi32.dll" (ByVal DriverHandle As Long, ReadPortByte As PT_ReadPortByte) As Long
Declare Function DRV=ReadPortWord Lib "adsapi32.dll" (ByVal DriverHandle As Long, ReadPortWord As PT_ReadPortWord) As

Long
Declare Function DRV_CounterEventStart Lib "adsapi32.dll" (ByVal DriverHandle As Long, CounterEventStart As
PT CounterEventStart) As Long
D~lare Function DRV_CounterEventRead Lib "adsapi32.dll" (ByVal DriverHandle As Long, CounterEventRead As
PT CounterEventRead) As Long
De-;;-Iare Function DRV_CounterFreqStart Lib "adsapi32.dll" (ByVal DriverHandle As Long, CounterFreqStart As
PT CounterFreqStart) As Long
De-;;-Iare Function DRV_CounterFreqRead Lib "adsapi32.dll" (ByVal DriverHandle As Long, CounterFreqRead As
PT_CounterFreqRead) As Long
Declare Function DRV_CounterPulseStart Lib "adsapi32.dll" (ByVal DriverHandle As Long, CounterPulseStart As
PT CounterPulseStart) As Long
De-;;-lare Function DRV CounterReset Lib "adsapi32.dll" (ByVal DriverHandle As Long, ByVal counter As Integer) As Long
Declare Function DRV=QCounterConfig Lib "adsapi32.dll" (ByVal DriverHandle As Long, QCounterConfig As PT_QCounterConfig)
As Long
Declare Function DRV_QCounterConfigSys Lib "adsapi32.dll" (ByVal DriverHandle As Long, QCountereonfigSys As
PT_QCounterConfigSys) As Long
Declare Function DRV_QCounterStart Lib "adsapi32.dll" (ByVal DriverHandle As Long, QCounterStart As PT_QCounterStart) As
Long
Declare Function DRV_QCounterRead Lib "adsapi32.dll" (ByVal DriverHandle As Long, QCounterRead As PT_QCounterRead) As
Long
Declare Function DRV_AlarmConfig Lib "adsapi32.dll" (ByVal DriverHandle As Long, AlarmConfig As PT_AlarmConfig) As Long
Declare Function DRV_AlarrnEnable Lib "adsapi32.dll" (ByVal DriverHandle As Long, AlarmEnable As PT_AlarrnEnable) As Long
Declare Function DRV_AlarmCheck Lib "adsapi32.dll" (ByVal DriverHandle As Long, AlarmCheck As PT_AlarmCheck) As Long
Declare Function DRV_AlarmReset Lib "adsapi32.dll" (ByVal DriverHandle As Long, ByVal chan As Integer) As Long
Declare Function DRV_WDTEnable Lib "adsapi32.dll" (ByVal DriverHandle As Long, WDTEnable As PT_WDTEnable) As Long
Declare Function DRV_WDTRefresh Lib "adsapi32.dll" (ByVal DriverHandle As Long) As Long
Declare Function DRV_WDTReset Lib "adsapi32.dll" (ByVal DriverHandle As Long) As Long
Declare Function DRV_GetAddress Lib "adsapi32.dll" (JpVoid As Any) As Long

• Direct I/O Functions List
Declare Function DRV_outp Lib "adsapi32.dll" (ByVal DeviceNum As Long, ByVal Port As Integer, ByVal ByteData As Long) As
Long
Declare Function DRV_outpw Lib "adsapi32.dll" (ByVal DeviceNum As Long, ByVal Port As Integer, ByVal ByteData As Long) As
Long
Declare Function DRV_inp Lib "adsapi32.dll" (ByVal DeviceNum As Long, ByVal Port As Integer, ByteData As Long) As Long
Declare Function DRV_inpw Lib "adsapi32.dll" (ByVal DeviceNum As Long, ByVal Port As Integer, ByteData As Long) As Long

, High speed function declaration
Declare Function DRV]AIWatchdogConfig Lib "adsapi32.dll" (ByVal DriverHandle As Long, FAlWatchdogConfig As
PT]AlWatchdogConfig) As Long
Declare Function DRV]AllntStart Lib "adsapi32.dll" (ByVal DriverHandle As Long, FAlIntStart As PT]AlIntStart) As Long
Declare Function DRV]AlIntScanStart Lib "adsapi32.dll" (ByVal DriverHandle As Long, FAlIntScanStart As PT]AlIntScanStart)
As Long
Declare Function DRV]AIDmaStart Lib "adsapi32.dll" (ByVal DriverHandle As Long, FAIDmaStart As PT]AlDmaStart) As Long
Declare Function DRV_FAIDmaScanStart Lib "adsapi32.dll" (ByVal DriverHandle As Long, FAIDmaScanStart As
PT]AIDmaScanStart) As Long
Declare Function DRV]AIDualDmaStart Lib "adsapi32.dll" (ByVal DriverHandle As Long, FAIDualDmaStart As
PT_FAlDualDmaStart) As Long
Declare Function DRV]AIDualDmaScanStart Lib "adsapi32.dll" (ByVal DriverHandle As Long, FAIDualDmaScanStart As
PT_FAIDualDmaScanStart) As Long
Declare Function DRV]AllntWatchdogStart Lib "adsapi32.dll" (ByVal DriverHandle As Long, FAllntWatchdogStart As
PT]AlIntWatchdogStart) As Long
Declare Function DRV]AIDmaWatchdogStart Lib "adsapi32.dll" (ByVal DriverHandle As Long, FAIDmaWatchdogStart As
PT_FAIDmaWatchdogStart) As Long
Declare Function DRV_FAICheck Lib "adsapi32.dll" (ByVal DriverHandle As Long, FAlCheck As PT]AICheck) As Long
Declare Function DRV]AIWatchdogCheck Lib "adsapi32.dll" (ByVal DriverHandle As Long, FAlWatchdogCheck As
PT]AIWatchdogCheck) As Long
Declare Function DRV_FAITransfer Lib "adsapi32.dll" (ByVal DriverHandle As Long, FAITransfer As PT_FAITransfer) As Long
Declare Function DRV_FAlStop Lib "adsapi32.dll" (ByVal DriverHandle As Long) As Long
Declare Function DRV]AOIntStart Lib "adsapi32.dll" (ByVal DriverHandle As Long, FAOIntStart As PT]AOIntStart) As Long
Declare Function DRV_FAODmaStart Lib "adsapi32.dll" (ByVal DriverHandle As Long, FAODmaStart As PT]AODmaStart) As
Long
Declare Function DRV]AOScale Lib "adsapi32.dll" (ByVal DriverHandle As Long, FAOScale As PT_FAOScale) As Long

-238-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

Declare Function DRV_FAOLoad Lib "adsapi32.dJl" (ByVal DriverHandle As Long, FAOLoad As PT]AOLoad) As Long
Declare Function DRV]AOCheck Lib "adsapi32.dJl" (ByVal DriverHandle As Long, FAOCheck As PT]AOCheck) As Long
Declare Function DRV]AOStop Lib "adsapi32.dJl" (ByVal DriverHandle As Long) As Long
Declare Function DRV_ClearOverrun Lib "adsapi32.dJl" (ByVal DriverHandle As Long) As Long
Declare Function DRV_EnableEvent Lib "adsapi32.dll" (ByVal DriverHandle As Long, EnableEvent As PT_EnableEvent) As Long
Declare Function DRV_CheckEvent Lib "adsapi32.dJl" (ByVal DriverHandle As Long, CheckEvent As PT_CheckEvent) As Long
Declare Function DRV_AJlocateDMABuffer Lib "adsapi32.dJl" (ByVal DriverHandle As Long, AllocateDMABuffer As
PT_AJlocateDMABuffer) As Long
Declare Function DRV_FreeDMABuffer Lib "adsapi32.dll" (ByVal DriverHandle As Long, ByVal buffer As Long) As Long

, CAN bus function declaration
Declare Function CANPortOpen Lib "ads841.dJl" (ByVal DevNum As Integer, wPort As Integer, wHostID As Integer) As Long
Declare Function CANPortClose Lib "ads841.dJl" (ByVal wPort As Integer) As Long
Declare Function CANInit Lib "ads841.dll" (ByVal Port As Integer, ByVal BTRO As Integer, ByVal BTRI As Integer, ByVal usMask
As Byte) As Long
Declare Function CANReset Lib "ads841.dJl" (ByVal Port As Integer) As Long
Declare Function CANInpb Lib "ads841.dJl" (ByVal Port As Integer, ByVal offset As Integer, Data As Byte) As Long
Declare Function CANOutpb Lib "ads841.dJl" (ByVal Port As Integer, ByVal offset As Integer, ByVal value As Byte) As Long
Declare Function CANSetBaud Lib "ads841.dJl" (ByVal Port As Integer, ByVal BTRO As Integer, ByVal BTRI As Integer) As Long
Declare Function CANSetAcp Lib "ads841.dJl" (ByVal Port As Integer, ByVal Acp As Integer, ByVal Mask As Integer) As Long
Declare Function CANSetOutCtrl Lib "ads841.dJl" (ByVal Port As Integer, ByVal OutCtrl As Integer) As Long
Declare Function CANSetNormal Lib "ads841.dll" (ByVal Port As Integer) As Long
Declare Function CANHwReset Lib "ads841.dJl" (ByVal Port As Integer) As Long
Declare Function CANSendMsg Lib "ads841.dJl" (ByVal Port As Integer, ByVal TxBuf As String, ByVal Wait As Long) As Long
Declare Function CANQueryMsg Lib "ads841.dJl" (ByVal Port As Integer, Ready As Long, ByVal RcvBuf As String) As Long
Declare Function CANWaitForMsg Lib "ads841.dll" (ByVal Port As Integer, ByVal RcvBuf As String, ByVal uTimeValue As Long)
As Long
Declare Function CANQueryID Lib "ads841.dJl" (ByVal Port As Integer, Ready As Long, IDBuf As Byte) As Long
Declare Function CANWaitForID Lib "ads841.dJl" (ByVal Port As Integer, IDBuf As Byte, ByVal uTimeValue As Long) As Long
Declare Function CANEnableMessaging Lib "ads841.dll" (ByVal Port As Integer, ByVal Typel As Integer, ByVal Enabled As Long,
ByVal AppWnd As Long, RcvBuf As String) As Long
Declare Function CANGetEventNarne Lib "ads841.dJl" (ByVal Port As Integer, RcvBuf As Byte) As Long

3.4 Global.bas

Global Const MaxEntries = 255
Global DeviceHandle As Long
Global ptDevGetFeatures As PT_DeviceGetFeatures
GloballpDevFeatures As DEVFEATURES
Global devicelist(O To MaxEntries) As PT_DEVLIST
Global SubDevicelist(O To MaxEntries) As PT DEVLIST
Global ErrCde As Long -
Global szErrMsg As String * 80
Global bRun As Boolean
GloballpDioPortMode As PT_DioSetPortMode
GloballpDioWritePort As PT_DioWritePortByte
GloballpDioReadPort As PT_DioReadPortByte
Const ModeDir = 0 'for input mode

-239-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

4 Code listing for the Conveyer Client - ConveyerClient.vbp

4.1 frmConveyer

Option Explicit
Dim DiValue As Long
Dim counter_AGAV As Integer
Dim counter_AVAG As Integer
Dim counter_AGR As Integer
Dim counter_RAG As Integer
Dim counter_RAVIS As Integer
Dim counter_AVISR As Integer

Private Sub cmd_Exit_ClickO
Unload frrnTCPClient
timer AGAV.Enabled = False
timer AVAG.Enabled = False
timer_AGR.Enabled = False
timer_RAGV.Enabled = False
timer_RAVIS.Enabled = False
timer_AVISR.Enabled = False

IpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 0 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error! !")
End If
IpDioWritePort.Port = I 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 0 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle, IpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
End If
ErrCde = DRV_DeviceClose(DeviceHandle)
If (ErrCde <> 0) Then

DRV_GetErrorMessage ErrCde, szErrMsg
Call MsgBox(szErrMsg, vbOKOnly, "Error! !")

End If
End
End Sub

Private Sub cmd_Manual_ClickO
cmd_Start.Enabled = True

End Sub

Private Sub cmd_Server_ClickO
Load frrnTCPClient
frrnTCPClient.Hide
'Open Advantech Card

ErrCde = DRV_DeviceOpen(O, DeviceHandle)
If (ErrCde <> 0) Then

DRV_GetErrorMessage ErrCde, szErrMsg
Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

Else
bRun = True

End If

cmd_Start.Enabled = False

-240-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

cmd_AVIS_REnabled = False
cmd_R_AVIS.Enabled = False
cmd_R_AGV.Enabled = False
cmd_AGV_R.Enabled = False
cmd_AVIS_AGV.Enabled = False
cmd_AGV_AVIS.Enabled = False
'cmd_Manual.Enabled = False

End Sub

Private Sub cmd_Start_ClickO
cmd_Start.Enabled = False
cmd_AVIS_REnabled = True
cmd_R_AVIS.Enabled = True
cmd_~AGV.Enabled= True
cmd_AGV_R.Enabled = True
cmd_AVIS_AGV.Enabled = True
cmd_AGV_AVIS.Enabled = True

IpDioWritePort.Port = 1 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 16 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle, IpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error! !")
Exit Sub

End If
End Sub

Private Sub Form_LoadO
Dim Conveyermessage As String
cmd_Start.Enabled = False
cmd_AVIS_R.Enabled = False
cmd_R_AVIS.Enabled = False
cmd_R_AGV.Enabled = False
cmd_AGV_R.Enabled = False
cmd_AVIS_AGV.Enabled = False
cmd_AGV_AVIS.Enabled = False
Let counter_AGAV = 0
Let counter_AVAG = 0
Let counter_AGR = 0
Let counter_RAG = 0
Let counter_RAVIS = 0
Let counter_AVISR = 0

'Open Advantech Card
ErrCde = DRV_DeviceOpen(O, DeviceHandle)
If (ErrCde <> 0) Then

DRV_GetErrorMessage ErrCde, szErrMsg
Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

Else
bRun = True

End If

timer_AGAV.Enabled = False
timer_AVAG.Enabled = False
timer_AGREnabled = False
timer_RAGV.Enabled = False
timer_RAVIS.Enabled = False
timer_AVISR.Enabled = False

End Sub

Private Sub cmd_AGV_AVIS_ClickO
timer_AGAV.Enabled = True

End Sub

-241-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

Private Sub Textl_ChangeO
Dim Conveyermessage As String
Let Conveyermessage = Textl.Text
Select Case Conveyermessage

Case "SERVER >>> ClientCON-START"
cmd_Start.Enabled = False
cmd_AVIS_REnabled = True
cmd_R_AVIS.Enabled = True
cmd_~AGV.Enabled = True
cmd_AGV_REnabled = True
cmd_AVIS_AGV.Enabled = True
cmd_AGV_AVIS.Enabled = True
IpDioWritePort.Port = I 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 16 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error! !")
Exit Sub

End If

Case "SERVER >>> ClientCON-AGVAVIS":
IpDioWritePort.Port = I 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 16 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error! !")
Exit Sub

End If
timer_AGAV.Enabled = True

Case "SERVER »> ClientCON-AVISAGV":
IpDioWritePort.Port = I 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 16 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
timer_AVAG.Enabled = True

Case "SERVER »> ClientCON-AGVROBOT":
IpDioWritePort.Port = I 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 16 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle, IpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
timer_AGREnabled = True

Case "SERVER »> ClientCON-ROBOTAGV"
IpDioWritePort.Port = I 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 16 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle, IpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
timer_RAGV.Enabled = True

-242- .

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

Case "SERVER »> ClientCON-ROBOTAVIS"
IpDioWritePort.Port = I 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 16 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle, IpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
timer_RAVIS.Enabled = True

Case "SERVER »> ClientCON-AVISROBOT"
IpDioWritePort.Mask = 255
IpDioWritePort.state = 16 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If

timer_AVISR.Enabled = True

Case "SERVER »> ClientCON-EXIT":
timer_AGAV.Enabled = False
timer_AVAG.Enabled = False
timer_AGR.Enabled = False
timer_RAGV.Enabled = False
timer_RAVIS.Enabled = False
timer_AVISR.Enabled = False

IpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 0 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
End If
IpDioWritePort.Port = I 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 0 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
End If
ErrCde = DRV_DeviceClose(DeviceHandle)
If (ErrCde <> 0) Then

DRV_GetErrorMessage ErrCde, szErrMsg
Call MsgBox(szErrMsg, vbOKOnly, "Error! !")

End If
End

End Select
End Sub

Private Sub timer_AGAV_TimerO
IpDioReadPort.Port = 0
IpDioReadPort.value = DRV_GetAddress(DiValue)
ErrCde = DRV_DioReadPortByte(DeviceHandle,lpDioReadPort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If

AGVAVIS (DiValue)

-243-

Appendix A

End Sub

CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

Private Sub AGVAVIS(BitValue As Long)
If counter_AGAV = 0 Then

IpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 48 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle, IpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
End If

If DiValue = 16 Then
Let counter_AGAV = I
IpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 60 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error! !")
Exit Sub

End If
End If

If DiValue = 8 Then
Let counter AGAV = 2
IpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 12 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
End If

If DiValue = 0 Then
If counter_AGAV = 2 Then

IpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 12 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle, IpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
End If

End If

If DiValue = 4 Then
Let counter_AGAV = 3
IpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 15 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle, IpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
End If

If DiValue = 2 Then
Let counter_AGAV = 4

-244-

Appendix A

End If

CODE LISTING FOR THE MODULAR MECHATRONlC
ClM INTERNET CONTROL SYSTEM

IpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 3 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle, IpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If

If DiValue = 0 Then
If counter_AGAV = 4 Then

IpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 3 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
End If

End If

If DiValue = I Then
Let counter_AGAV = 5
IpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 0 'line numbers bin to decimal

• MATE WITH AVIS ..

ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
End If

End Sub

Private Sub cmd_AVIS_AGV_Click()
timer_AVAG.Enabled = True

End Sub

Private Sub timer_AVAG_Timer()
lpDioReadPort.Port = 0
lpDioReadPort.value = DRV_GetAddress(DiValue)
ErrCde = DRV_DioReadPortByte(DeviceHandle, IpDioReadPort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If

AVISAGV (DiValue)

End Sub

Private Sub AVISAGV(BitValue As Long)
Ifcounter_AVAG = 0 Then

IpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 0 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error! !")
Exit Sub

-245-

Appendix A

End If
End If

CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

If DiValue = I Then
Let counter_AVAG = 1
IpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 1 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
End If

If DiValue = 0 Then
Ifcounter_AVAG = 1 Then

IpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
lpDioWritePort.state = 1 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle, IpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
End If

End If

If DiValue = 2 Then
Let counter AVAG = 2
IpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 5 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
End If

If DiValue = 4 Then
Let counter_AVAG = 3
IpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 4 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
End If

If DiValue = 0 Then
If counter_AVAG = 3 Then

IpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 4 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
End If

End If

-246-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

If DiValue = 8 Then
Let counter_AVAG = 4
IpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 20 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!''')
Exit Sub

End If
End If

If DiVaIue = 16 Then
Let counter_AVAG = 5
IpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 16 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle, \pDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error'!")
Exit Sub .

End If
End If

If DiValue = 0 Then
If counter_AVAG = 5 Then

IpDioWritePort.Port = 0 'port number
lpDioWritePort.Mask = 255
IpDioWritePort.state = 16 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
End If

End If
End Sub

Private Sub cmd_AGV_R_ClickO
timer_AGR.Enabled = True

End Sub

Private Sub timer_AG~TimerO

lpDioReadPort.Port = 0
lpDioReadPort.value = DRV_GetAddress(DiValue)
ErrCde = DRV_DioReadPortByte(DeviceHandle,lpDioReadPort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If

AGVR (DiValue)
End Sub

Private Sub AGVR(BitValue As Long)
If counter_AGR = 0 Then

IpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 16 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If

-247-

Appendix A

End If

CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

If DiValue = 32 Then
Let counter_AGR = I
IpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 80 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle, IpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
End If

If DiValue = 64 Then
Let counter_AGR = 2
\pDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 64 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
End If

End Sub

Private Sub cmd_R_AGV_ClickO
timer_RAGV.Enabled = True

End Sub

Private Sub timer_RAGV_TimerO
IpDioReadPort.Port = 0
IpDioReadPort.value = DRV_GetAddress(DiValue)
ErrCde = DRV_DioReadPortByte(DeviceHandle,lpDioReadPort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOn\y, "Error!!")
Exit Sub

End If

RAGV (DiValue)
End Sub

Private Sub RAGV(BitValue As Long)

If counter_RAG = 0 Then
If counter_RAG = 0 Then

IpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state =] 92 'line numbers bin to decimal
ErrCde = DRY_DioWritePortByte(DeviceHandle, IpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
End If

End If

IfDiVa]ue = 64 Then
Let counter_RAG = I
IpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 240 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then

-248-

Appendix A

End If
End If

CODE LISTlNG FOR THE MODULAR MECHATRONIC
CIM lNTERNET CONTROL SYSTEM

Call MsgBox(szErrMsg, vbOKOnly, "Error! I")
Exit Sub

If DiValue = 32 Then
Let counter_RAG = 2
IpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 48 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle, IpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!I")
Exit Sub

End If
End If

If counter_RAG = 2 Then
IpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 48 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle, IpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
End If

End Sub

Private Sub cmd_R_AVIS_ClickO
timer_RAVIS.Enabled = True

End Sub

Private Sub timer_RAVIS_TimerO
IpDioReadPort.Port = I
IpDioReadPort.value = DRV_GetAddress(DiValue)
ErrCde = DRV_DioReadPortByte(DeviceHandle, IpDioReadPort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If

RAVIS (DiValue)
End Sub

Private Sub RAVIS(BitValue As Long)
If counter_RAVIS = 0 Then

If DiValue = 0 Then
lpDioWritePort.Port = 0 'port number
lpDioWritePort.Mask = 255
IpDioWritePort.state = 64 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
End If

End If

If DiValue = I Then
Let counter_RAVIS = I
IpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 64 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)

-249-

Appendix A

End If

CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

If (ErrCde <> 0) Then
Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
IpDioWritePort.Port = I 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 17 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle, IpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If

If DiValue = 2 Then
Let counter_RAVIS = 2
IpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
\pDioWritePort.state = 0 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle, IpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
IpDioWritePort.Port = I 'port number
IpDioWritePort.Mask = 255

IpDioWritePort.state = 17 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle, IpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
End If

If DiValue = 0 Then
If counter_RAVIS = 2 Then

IpDioWritePort.Port = I 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 17 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle, IpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
End If

End If

If DiValue = 4 Then
Let counter_RAVIS = 3
IpDioWritePort.Port = I 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 21 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
End If

If DiValue = 8 Then
Let counter_RAVIS = 4
IpDioWritePort.Port = I 'port number
lpDioWritePort.Mask = 255
IpDioWritePort.state = 20 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)

-250-

Appendix A

End If

CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

If (ErrCde <> 0) Then
Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
ExitSub

End If

If DiValue = 0 Then
If counter_RAVIS = 4 Then

IpDioWritePort.Port = I 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 20 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
End If

End If

If DiValue = 16 Then
IpDioWritePort.Port = 1 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 16 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
End If

End Sub

Private Sub cmd_AVIS_R_ClickO
timer_AVISR.Enabled = True

End Sub

Private Sub timer_AVISR_TimerO
IpDioReadPort.Port = 0
IpDioReadPort.value = DRV_GetAddress(DiValue)
ErrCde = DRV_DioReadPortByte(DeviceHandle,lpDioReadPort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If

AVISR (DiValue)

End Sub

Private Sub AVISR(BitValue As Long)
Ifcounter_AVISR = 0 Then

IpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
lpDioWritePort.state = 0 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
End If

If DiValue = 1 Then
Let counter_AVISR = 1
IpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255

-251-

Appendix A

End If

CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

IpDioWritePort.state = I 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If

If DiValue = 0 Then
If counter_AVISR = I Then

IpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
\pDioWritePort.state = 1 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
End If

End If

If DiValue = 2 Then
Let counter_AVISR = 2
IpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 5 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
End If

If DiValue = 4 Then
Let counter_AVISR = 3
IpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 4 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
End If

If DiValue = 0 Then
Ifcounter_AVISR = 3 Then

IpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 4 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
End If

End If

If DiValue = 8 Then
Let counter_AVISR = 4
IpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
\pDioWritePort.state = 20 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle, IpDioWritePort)
If (ErrCde <> 0) Then

-252-

Appendix A

End If
End If

CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

If DiValue = 16 Then
Let counter_AVISR = 5
IpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 16 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error! !")
Exit Sub

End If
End If

If DiValue = 0 Then
If counter_AVISR = 5 Then

IpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 16 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle, IpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
End If

End If

If DiValue = 32 Then
Let counter_AVISR = 6
IpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 80 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
End If

IfDiValue = 64 Then
Let counter_AVISR = 7
IpDioWritePort.Port = 0 'port number
IpDioWritePort.Mask = 255
IpDioWritePort.state = 64 'line numbers bin to decimal
ErrCde = DRV_DioWritePortByte(DeviceHandle,lpDioWritePort)
If (ErrCde <> 0) Then

Call MsgBox(szErrMsg, vbOKOnly, "Error!!")
Exit Sub

End If
End If

End Sub

4.2 frmTCPClient

Option Explicit

Private Sub Form_LoadO
cmdSend.Enabled = False
, set up local port and wait for connection

-253-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

tcpClient.RemoteHost = "146.230.192.36"
tcpClient.RemotePort = 5000 'server port
Call tcpClient.Connect 'connect to RemoteHost address

End Sub

Private Sub Form_TerminateO
Call tcpClient.Close

End Sub

Private Sub Form_ResizeO
On Error Resume Next
Call cmdSend.Move(ScaleWidth - cmdSend.Width, 0)
Call txtSend.Move(O, 0, ScaleWidth - cmdSend.Width)
Call txtOutput.Move(O, txtSend.Height, ScaleWidth, _
Sca1eHeight - txtSend.Height)

End Sub

Private Sub tcpClient_ConnectO
, when connection occurs, display a message
cmdSend.Enabled = True
txtOutput.Text = "Connected to Web Server at JP Address: " &
tcpClient.RemoteHostJP & vbCrLf & "Port #: " & _
tcpClient.RemotePort & vbCrLf & vbCrLf

End Sub

Private Sub tcpClient_DataArriva1(ByVal bytesTotal As Long)
Dim message As String
Call tcpClient.GetData(message) 'get data from server
txtOutput.Text = txtOutput.Text & message & vbCrLf & vbCrLf
txtOutput.SelStart = Len(txtOutput.Text)
Conveyer.Textl.Text = message

End Sub

Private Sub tcpClient_CloseO
cmdSend.Enabled = False
Call tcpClient.C10se 'server closed, client should too
txtOutput.Text = _

txtOutput.Text & "Server closed connection." & vbCrLf
txtOutput.SelStart = Len(txtOutput.Text)

End Sub

Private Sub tcpClient_Error(ByVal Number As Integer,_
Description As String, ByVal Scode As Long,_
ByVa1 Source As String, ByVal HelpFile As String,_
ByVal HelpContext As Long, CancelDisplay As Boolean)
Dim result As Integer
result = MsgBox(Source & ": " & Description,

vbOKOnly, "TCP/JP Error") -
End

End Sub

Private Sub cmdSend_ClickO
, send data to server
Call tcpClient.SendData("ClientCON »> " & txtSend.Text)
txtOutput.Text = txtOutput.Text &
"ClientCON >>>" & txtSend.Text &: vbCrLf & vbCrLf
txtOutput.SelStart = Len(txtOutput.Text)
txtSend.Text = ""

End Sub

-254-

Appendix A

4.3 Driver.bas

CODE LISTING FOR THE MODULAR MECHATRONlC
CIM INTERNET CONTROL SYSTEM

t***
, Module Name: DRIVER.BAS
, Purpose: the declaration of functions, data structures, status codes,

constants, and messages
'**

'**
Constant Definition

'**
Global Const MaxDev = 255 ' max. # of devices
Global Const MaxDevNameLen = 49 ' original is 64; max lenght of device name
Global Const MaxGroup = 6
Global Const MaxPort = 3
Global Const MaxszErrMsgLen = 80
Global Const MAX_DEVICE_NAME_LEN = 64
Global Const MAX_DRIVER_NAME_LEN = 16
Global Const MAX_DAUGHTER_NUM = 16
Global Const MAX_DIO]ORT = 48
Global Const MAX_AO_RANGE = 16

Global Const REMOTE = 1
Global Const REMOTEl = REMOTE + 1
Global Const REMOTE2 = REMOTE1 + 1
Global Const NONPROG = 0
Global Const PROG = REMOTE
Global Const INTERNAL = 0
Global Const EXTERNAL = 1
Global Const SINGLEENDD = 0
Global Const DIFFERENTIAL = 1
Global Const BIPOLAR = 0
Global Const UNIPOLAR = I
Global Const PORTA = 0
Global Const PORTB = 1
Global Const PORTC = 2
Global Const INPORT = 0
Global Const OUTPORT = I

, For PCL-818L JP7 = 5V
'For PCL-818L JP7 =IOV

'Advantech

'***
Define board vendor ID

'***
Global Const AAC = &HO
Global Const KGS = &H4000
t**

Define DAS I/O Board ID.
'**
Global Const NONE = &HO

'Advantech board ID

Global Const BD]CL836 = AAC Or &H54

, not available

, PCL-836

1**
Define subsection identifier

'**
Global Const DAS_AISECTION = &Hl
Global Const DAS_AOSECTION = &H2
Global Const DAS_DISECTION = &H3
Global Const DAS_DOSECTION = &H4
Global Const DAS_TEMPSECTION = &H5
Global Const DAS_ECSECTION = &H6
Global Const DAS]MSECTION = &H7
Global Const DAS]OSECTION = &H8

, NO subsection
, DfA sbusection
, Digital input subsection
, Digital output sbusection
, thermocouple section
, Event count subsection
, frequency measurement section
'pulse output section

-255-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

Global Const DAS_ALSECTION = &H9
Global Const MT AISECTION = &HA
Global Const MT_DISECTION = &HB

, alann section
, monitoring ND subsection
, monitoring D/l subsection

,***
, Define Transfer Mode
'***
Global Const POLLED_MODE = &HO
Global Const DMA_MODE= &Hl
Global Const INTERRUPT_MODE = &H2

, software transfer
, DMA transfer
, Interrupt transfer

1***
, Define Acquisition Mode
'***
Global Const FREE_RUN = 0
Global Const PRE_TRlG = 1
Global Const POST_TRlG = 2
Global Const POSITION_TRlG = 3

'***
, Define Comparator's Condition
'***
Global Const NOCONDITION = 0
Global Const LESS = 1
Global Const BETWEEN = 2
Global Const GREATER = 3
Global Const OUTSIDE = 4

'**
, Define Status Code
'**
Global Const SUCCESS = 0
Global Const DrvErrorCode = I
Global Const KeErrorCode = lOO
Global Const DnetErrorCode = 200
Global Const MemoryAllocateFailed = (DrvErrorCode + 0)
Global Const ConfigDataLost = (DrvErrorCode + I)
Global Const InvalidDeviceHandle = (DrvErrorCode + 2)
Global Const AIConversionFailed = (DrvErrorCode + 3)
Global Const AIScaleFailed = (DrvErrorCode + 4)
Global Const SectionNotSupported = (DrvErrorCode + 5)
Global Const InvalidChannel = (DrvErrorCode + 6)
Global Const InvalidGain = (DrvErrorCode + 7)
Global Const DataNotReady = (DrvErrorCode + 8)
Global Const InvalidInputParam = (DrvErrorCode + 9)
Global Const NoExpansionBoardConfig = (DrvErrorCode + 10)
Global Const InvalidAnalogOutValue = (DrvErrorCode + 11)
Global Const ConfigIoPortFailed = (DrvErrorCode + 12)
Global Const CommOpenFailed = (DrvErrorCode + 13)
Global Const CommTransmitFai1ed = (DrvErrorCode + 14)
Global Const CommReadFailed = (DrvErrorCode + IS)
Global Const CommReceiveFailed = (DrvErrorCode + 16)
Global Const CommConfigFailed = (DrvErrorCode + 17)
Global Const CommChecksumError = (DrvErrorCode + 18)
Global Const InitError = (DrvErrorCode + 19)
Global Const DMABufAllocFailed = (DrvErrorCode + 20)
Global Const llIegalSpeed = (DrvErrorCode + 21)
Global Const ChanConflict = (DrvErrorCode + 22)
Global Const BoardIDNotSupported = (DrvErrorCode +23)
Global Const FreqMeasurementFailed = (DrvErrorCode + 24)
Global Const CreateFileFailed = (DrvErrorCode + 25)
Global Const FunctionNotSupported = (DrvErrorCode + 26)
Global Const LoadLibraryFailed = (DrvErrorCode + 27)
Global Const GetProcAddressFailed = (DrvErrorCode + 28)
Global Const InvalidDriverHandle = (DrvErrorCode + 29)

-256-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

Global Const InvalidModuleType = (DrvErrorCode + 30)
Global Const InvalidInputRange = (DrvErrorCode + 31)
Global Const InvalidWindowsHandle = (DrvErrorCode + 32)
Global Const InvalidCountNumber = (DrvErrorCode + 33)
Global Const InvalidInterruptCount = (DrvErrorCode + 34)
Global Const InvalidEventCount = (DrvErrorCode + 35)
Global Const OpenEventFailed = (DrvErrorCode + 36)
Global Const InterruptProcessFailed = (DrvErrorCode + 37)
Global Const InvalidDOSetting = (DrvErrorCode + 38)
Global Const InvalidEventType = (DrvErrorCode + 39)
Global Const EventTimeOut = (DrvErrorCode + 40)
Global Const InvalidDmaChannel = (DrvErrorCode + 41)
Global Const KeInvalidHandleValue = (KeErrorCode + 0)
Global Const KeFileNotFound = (KeErrorCode + I)
Global Const KeInvalidHandle = (KeErrorCode + 2)
Global Const KeTooManyCmds = (KeErrorCode + 3)
Global Const KeInvalidParameter = (KeErrorCode + 4)
Global Const KeNoAccess = (KeErrorCode + 5)
Global Const KeUnsuccessful = (KeErrorCode + 6)
Global Const KeConInterruptFailure = (KeErrorCode + 7)
Global Const KeCreateNoteFailure = (KeErrorCode + 8)
Global Const KeInsufficientResources = (KeErrorCode + 9)
Global Const KeHalGetAdapterFailure = (KeErrorCode + 10)
Global Const KeOpenEventFailure = (KeErrorCode + 11)
Global Const KeAIIocCommBufFailure = (KeErrorCode + 12)
Global Const KeAIIocMdlFailure = (KeErrorCode + 13)
Global Const KeBufferSizeTooSmaII = (KeErrorCode + 14)
Global Const DNInitFailed = (DnetErrorCode + 1)
Global Const DNSendMsgFailed = (DnetErrorCode + 2)
Global Const DNRunOutOfMsgID = (DnetErrorCode + 3)
Global Const DNInvalidInputParam = (DnetErrorCode + 4)
Global Const DNErrorResponse = (DnetErrorCode + 5)
Global Const DNNoResponse = (DnetErrorCode + 6)
Global Const DNBusyOnNetwork = (DnetErrorCode + 7)
Global Const DNUnknownResponse = (DnetErrorCode + 8)
Global Const DNNotEnoughBuffer = (DnetErrorCode + 9)
Global Const DNFragResponseError = (DnetErrorCode + 10)
Global Const DNTooMuchDataAck = (DnetErrorCode + 11)
Global Const DNFragRequestError = (DnetErrorCode + 12)
Global Const DNEnableEventError = (DnetErrorCode + 13)
Global Const DNCreateOrOpenEventError = (DnetErrorCode + 14)
Global Const DNIORequestError = (DnetErrorCode + 15)
Global Const DNGetEventNameError = (DnetErrorCode + 16)
Global Const DNTimeOutError = (DnetErrorCode + 17)
Global Const DNOpenFailed = (DnetErrorCode + 18)
Global Const DNCloseFailed = (DnetErrorCode + 19)
Global Const DNResetFailed = (DnetErrorCode + 20)
, define user window message
Global Const WM_USER = &H400
Global Const WM_ATODNOTIFY = (WM_USER + 200)
Global Const WM_DTOANOTIFY = (WM_USER + 201)
Global Const WM_DIGINNOTIFY = (WM_USER + 202)
Global Const WM_DIGOUTNOTIFY = (WM_USER + 203)
Global Const WM_MTNOTIFY = (WM_USER +204)
Global Const WM_CANTRANSMITCOMPLETE = (WM_USER + 205)
Global Const WM_CANMESSAGE = (WM_USER + 206)
Global Const WM_CANERROR = (WM_USER + 207)
, define the wParam in user window message
Global Const AD_NONE = 0 ' AD Section
Global Const AD_TERMINATE = I
Global Const AD_INT = 2
Global Const AD_BUFFERCHANGE = 3
Global Const AD_OVERRUN = 4
Global Const AD_WATCHDOGACT = 5
Global Const AD_TIMEOUT = 6

-257-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

Global Const DA_TERMINATE = 0 ' DA Section
Global Const DA_DMATC = I
Global Const DA_INT = 2
Global Cons! DA_BUFFERCHANGE = 3
Global Const DA_OVERRUN = 4
Global Const DI_TERMINATE = 0 'DI Section
Global Const DI_DMATC = I
Global Const DI_INT = 2
Global Const DI_BUFFERCHANGE = 3
Global Const DI_OVERRUN = 4
Global Const DI_WATCHDOGACT = 5
Global Const DO_TERMINATE = 0 ' DO Section
Global Const DO_DMATC = I
Global Const DO_INT = 2
Global Const DO_BUFFERCHANGE = 3
Global Const DO_OVERRUN = 4
Global Const MT_ATOD = 0 ' MT Section
Global Const MT_DIGIN = I
Global Const CAN_TRANSFER = 0 ' CAN Section
Global Const CAN_RECEIVE = I
Global Const CAN ERROR = 2
'**
, define service type for COMEscapeO
'**
Global Const EscapeFlushlnput = I
Global Const EscapeFlushOutput = 2
Global Const EscapeSetBreak = 3
Global Const EscapeClearBreak = 4

t**
, define gate mode
'**
Global Const GATE_DISABLED = 0 ' no gating
Global Const GATE_illGHLEVEL = 1 ' active high level
Global Const GATE_LOWLEVEL = 2 ' active low level
Global Const GATE_illGHEDGE = 3 'active high edge
Global Const GATE_LOWEDGE = 4 'active low edge
'**
, define event type for interrupt and DMA transfer
'**

, interrupt
, buffer change
, termination

, overrun
, watchdog actived

, change state event
, alarm event

, port 0 event
'port I event

Global Const ADS_EVT_INTERRUPT = &HI
Global Const ADS_EVT_BUFCHANGE = &H2
Global Const ADS_EVT_TERMINATED = &H4
Global Const ADS_EVT_OVERRUN = &H8
Global Const ADS_EVT_WATCHDOG = &HIO
Global Const ADS_EVT_CHGSTATE = &H20
Global Const ADS_EVT_ALARM = &H40
Global Const ADS_EVT_PORTO = &H80
Global Const ADS_EVT]ORTl = &H100

'**
, define event name by device number
'**
Global Const ADS_EVT_INTERRUPT_NAME = "ADS_EVT_INTERRUPT"
Global Const ADS_EVT_BUFCHANGE_NAME = "ADS_EVT_BUFCHANGE"
Global Const ADS_EVT_TERMINATED_NAME = "ADS_EVT_TERMINATED"
Global Const ADS_EVT_OVERRUN_NAME = "ADS_EVT_OVERRUN"
Global Const ADS_EVT_WATCHDOG_NAME = "ADS_EVT_WATCHDOG"
Global Const ADS_EVT_CHGSTATE_NAME = "ADS_EVT_CHGSTATE"
Global Const ADS_EVT_ALARM_NAME = "ADS_EVT_ALARM"

'**
, define FIFO size
'**
Global Const FIFO_SIZE = 512 , lK FIFO size (512* 2byte/each data)

-258-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

,**
, Function ID Definition
'**
Global Const FID_DeviceOpen = 0
Global Const FID_DeviceClose = I
Global Const FID_DeviceGetFeatures = 2
Global Const FlD_AIConfig = 3
Global Const FID_AIGetConfig = 4
Global Const FlD_AIBinaryIn = 5
Global Const FlD_AIScale = 6
Global Const FID_AIVoltageIn = 7
Global Const FID_AIVoltageInExp = 8
Global Const FID_MAIConfig = 9
Global Const FID_MAIBinaryIn = 10
Global Const FlD_MAIVoltageIn = 11
Global Const FID_MAIVoltageInExp = 12
Global Const FlD_TCMuxRead = 13
Global Const FID_AOConfig = 14
Global Const FID_AOBinaryOut = 15
Global Const FID_AOYoltageOut = 16
Global Const FID_AOScale = 17
Global Const FID_DioSetPortMode = 18
Global Const FID_DioGetConfig = 19
Global Const FID_DioReadPortByte = 20
Global Const FID_DioWritePortByte = 21
Global Const FID_DioReadBit = 22
Global Const FID_DioWriteBit = 23
Global Const FID_DioGetCurrentDOByte = 24
Global Const FID_DioGetCurrentDOBit = 25
Global Const FID_WritePortByte = 26
Global Const FID_WritePortWord = 27
Global Const FID_ReadPortByte = 28
Global Const FID_ReadPortWord = 29
Global Const FID_CounterEventStart = 30
Global Const FID_CounterEventRead = 31
Global Const FID_CounterFreqStart = 32
Global Const FlD_CounterFreqRead = 33
Global Const FID_CounterPulseStart = 34
Global Const FID_CounterReset = 35
Global Const FlD_QCounterConfig = 36
Global Const FID_QCounterConfigSys = 37
Global Const FID_QCounterStart = 38
Global Const FID_QCounterRead = 39
Global Const FID_AlarmConfig = 40
Global Const FID_AlarmEnable = 41
Global Const FID_AIarmCheck = 42
Global Const FID_AlarrnReset = 43
Global Const FID_COMOpen = 44
Global Const FID_COMConfig = 45
Global Const FID_COMClose = 46
Global Const FID_COMRead = 47
Global Const FID_COMWrite232 = 48
Global Const FID_COMWrite485 = 49
Global Const FID_COMWrite85 = 50
Global Const FID_COMInit = 51
Global Const FID_COMLock = 52
Global Const FID_COMUnlock = 53
Global Const FID_WDTEnable = 54
Global Const FID_WDTRefresh = 55
Global Const FID_WDTReset = 56
Global Const FID_FAIIntStart = 57
Global Const FIDJAIIntScanStart = 58
Global Const FID_FAIDmaStart = 59
Global Const FID_FAIDmaScanStart = 60
Global Const FIDJ AlDualDmaStart = 61

-259-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

Global Const FID_FAIDuaIDmaScanStart = 62
Global Const FID_FAICheck = 63
Global Const FIDJ AITransfer = 64
Global Const FIDJ AIStop = 6S
Global Const FIDJAIWatchdogConfig = 66
Global Const FIDJ AIIntWatchdogStart = 67
Global Const FIDJ AlDmaWatchdogStart = 68
Global Const FIDJAIWatchdogCheck = 69
Global Const FIDJ AOIntStart = 70
Global Const FIDJ AODmaStart = 71
Global Const FID_FAOScale = 72
Global Const FIDJ AOLoad = 73
Global Const FIDJAOCheck = 74
Global Const FIDJAOStop = 75
Global Const FID_ClearOverrun = 76
Global Const FID_EnableEvent = 77
Global Const FID_CheckEvent = 78
Global Const FID_AlIocateDMABuffer = 79
Global Const FID_FreeDMABuffer = 80
Global Const FID EnableCANEvent = 81
Global Const FID_GetCANEventData = 82

,***
, define gain listing
'**
Type GainList

usGainCde As Integer
fMaxGainVal As Single
fMinGainVal As Single
szGainStr(O To IS) As Byte

End Type

1***
, Define hardware board(device) features.

, Note: definition for dwPerrnutaion member

Bit 0: Software AI
Bit 1: DMAAI
Bit 2: Interrupt AI
Bit 3: Condition AI
Bit 4: Software AO
BitS: DMAAO
Bit 6: Interrupt AO
Bit 7: Condition AO
Bit 8: Software DI
Bit 9: DMA DI
Bit 10: Interrupt DI
Bit 11: Condition DI
Bit 12: Software DO
Bit 13: DMA DO
Bit 14: Interrupt DO
Bit IS: Condition DO
Bit 16: High Gain
Bit 17: Auto Channel Scan
Bit 18: Pacer Trigger
Bit 19: External Trigger
Bit 20: Down Counter
Bit 21: Dual DMA
Bit 22: Monitoring
Bit 23: QCounter

'***
Type DEVFEATURES

szDriverVer(O To 7) As Byte ' device driver version

-260-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

szDriverName(O To (MAX_DRNER_NAME_LEN - 1» As Byte' device driver name
dwBoardID As Long , board ID
usMaxAIDiffChl As Integer ' Max. number of differential channel
usMaxAISiglChl As Integer ' Max. number of single-end channel
usMaxAOChl As Integer ' Max. number of DfA channel
usMaxDOChl As Integer ' Max. number of digital out channel
usMaxDlChl As Integer ' Max. number of digital input channel
usDlOPort As Integer ' specifies if programmable or not
usMaxTimerChl As Integer ' Max. number of CounterlTimer channel
usMaxAlarmChl As Integer ' Max number of alram channel
usNumADBit As Integer 'number of bits for ND converter
usNumADByte As Integer ' ND channel width in bytes.
usNumDABit As Integer 'number of bits for D/A converter.
usNumDAByte As Integer 'D/A channel width in bytes.
usNumGain As Integer ' Max. number of gain code
glGainList(l5) As GainList ' Gain listing
dwPermutation(3) As Long , Permutation

End Type

,***
AOSET Definition

,**
Type AOSET

usAOSource As Integer
fAOMaxVol As Single
fAOMinVol As Single

End Type

'O-internal, I-external
, maximum output voltage
, minimum output voltage

'***
DaughterSet Definition

'***
Type DAUGHTERSET

dwBoardID As Long
usNum As Integer
fGain As Single
usCards As Integer

End Type

, expansion board ID
, available expansion channels

, gain for expansion channel
, number of expansion cards

'**
Analog Input Configuration Definition

'**
Type DEVCONFIG_AI

dwBoardID As Long , board ID code
usChanConfig As Integer ' O-single ended, I-differential
usGainCtrMode As Integer ' I-by jumper, O-programmable
usPolarity As Integer 'O-bipolar, I-unipolar
usDasGain As Integer ' not used if GainCtrMode = I
usNumExpChan As Integer ' DAS channels attached expansion board
usCjcChannel As Integer ' cold junction channel
Daughter(MAX_DAUGHTER_NUM - I) As DAUGHTERSET 'expansion board settings

End Type

'**
DEVCONFIG_COM Definition

'**
Type DEVCONFIG_COM

usCommPort As Integer
dwBaudRate As Long
usParity As Integer
usDataBits As Integer
usStopBits As Integer
usTxMode As Integer
usPortAddress As Integer

End Type

, serial port
'baud rate

, parity check
, data bits
'stop bits
, transmission mode
, communication port address

-261-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

1**
, TRIGLEVEL Definition
'**
Type TRIGLEVEL

fLow As Single
tHigh As Single

End Type

Type PT_DEVLIST
dwDeviceNum As Long
szDeviceName(O To 49) As Byte
nNumOfSubdevices As Integer

End Type

Type PT_DeviceGetFeatures
buffer As Long , LPDEVFEATURES
size As Integer

End Type

Type PT_AlConfig
DasChan As Integer
DasGain As Integer

End Type

Type PT_AlGetConfig
buffer As Long 'LPDEVCONFIG_Al
size As Integer

End Type

Type PT_AIBinaryIn
chan As Integer
TrigMode As Integer
reading As Long , USHORT far * reading

End Type

Type PT_AIScale
reading As Integer
MaxVolt As Single
MaxCount As Integer
offset As Integer
voltage As Long •FLOAT far *voltage

End Type

Type PT_AIVoltageIn
chan As Integer
gain As Integer
TrigMode As Integer
voltage As Long , FLOAT far *voltage

End Type

Type PT_AIVoltageInExp
DasChan As Integer
DasGain As Integer
ExpChan As Integer
voltage As Long , FLOAT far *voltage

End Type

Type PT_MAIConfig
NumChan As Integer
StartChan As Integer
GainArray As Long 'USHORT far *GainArray

End Type

Type PT_MAIBinaryIn

-262-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

NumChan As Integer
StartChan As Integer
TrigMode As Integer
ReadingArray As Long 'USHORT far *Reading

End Type

Type PT_MAIVoltageIn
NumChan As Integer
StartChan As Integer
GainArray As Long 'USHORT far *GainArray
TrigMode As Integer
VoltageArray As Long 'FLOAT far *Vo[tageArray

End Type

Type PT_MAIVoltageInExp
NumChan As Integer
DasChanArray As Long 'USHORT far *DasChanArray
DasGainArray As Long' USHORT far *DasGainArray
ExpChanArray As Long' USHORT far *ExpChanArray
VoltageArray As Long' FLOAT far *VoltageArray

End Type

Type PT_TCMuxRead
DasChan As Integer
DasGain As Integer
ExpChan As Integer
TCType As Integer
TempScale As Integer
temp As Long , FLOAT far *temp

End Type

Type PT_AOConfig
chan As Integer
RefSrc As Integer
MaxValue As Single
MinValue As Single

End Type

Type PT_AOBinaryOut
chan As Integer
BinData As Integer

End Type

Type PT_AOVoltageOut
chan As Integer
OutputValue As Single

End Type

Type PT_AOScale
chan As Integer
OutputValue As Single
BinData As Long 'USHORT far *BinData

End Type

Type PT_DioSetPortMode
Port As Integer
dir As Integer

End Type

Type PT_DioGetConfig
PortArray As Long , SHORT far *PortArray
NumOfPorts As Integer

End Type

Type PT_DioReadPortByte

-263-

Appendix A

Port As Integer
value As Long

End Type

CODE LISTlNG FOR THE MODULAR MECHATRONIC
CIM lNTERNET CONTROL SYSTEM

• USHORT far *value

Type PT_DioWritePortByte
Port As Integer
Mask As Integer
state As Integer

End Type

Type PT_DioReadBit
Port As Integer
bit As Integer
state As Long , USHORT far *state

End Type

Type PT_DioWriteBit
Port As Integer
bit As Integer
state As Integer

End Type

Type PT_DioGetCurrentDOByte
Port As Integer
value As Long , USHORT far *value

End Type

Type PT_DioGetCurrentDOBit
Port As Integer
bit As Integer
state As Long , USHORT far *state

End Type

Type PT_WritePortByte
Port As Integer
ByteData As Integer

End Type

Type PT_WritePortWord
Port As Integer
WordData As Integer

End Type

Type PT_ReadPortByte
Port As Integer
ByteData As Long , USHORT far *ByteData

End Type

Type PT_ReadPortWord
Port As Integer
WordData As Long , USHORT far *WordData

End Type

Type PT_CounterEventStart
counter As Integer
GateMode As Integer

End Type

Type PT_CounterEventRead
counter As Integer
overflow As Long , USHORT far *overflow
Count As Long 'ULONG far *count

End Type

Type PT_CounterFreqStart

-264-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

counter As Integer
GatePeriod As Integer
GateMode As Integer

End Type

Type PT_CounterFreqRead
counter As Integer
freq As Long 'FLOAT far *freq

End Type

Type PT_CounterPulseStart
counter As Integer
period As Single
UpCycle As Single
GateMode As Integer

End Type

Type PT_QCounterConfig
counter As Integer
LatchSrc As Integer
LatchOverflow As Integer
ResetOnLatch As Integer
ResetValue As Integer

End Type

Type PT_QCounterConfigSys
SysClock As Integer
TimeBase As Integer
TimeDivider As Integer
CascadeMode As Integer

End Type

Type PT_QCounterStart
counter As Integer
InputMode As Integer

End Type

, USHORT far *overflow
'ULONG far *LoCount
'ULONG far *HiCount

Type PT_QCounterRead
counter As Integer
overflow As Long
LoCount As Long
HiCount As Long

End Type

Type PT_AlarmConfig
chan As Integer
LoLimit As Single
HiLimit As Single

End Type

Type PT_AlarmEnable
chan As Integer
LatchMode As Integer
Enabled As Integer

End Type

Type PT_AlarmCheck
chan As Integer
LoState As Long
HiState As Long

End Type

, USHORT far *LoState
, USHORT far *HiState

Type PT_WDTEnable
message As Integer
Destination As Long 'HWND Destination

-265-

Appendix A

End Type

Type PTJAIIntStart
TrigSrc As Integer
SampleRate As Long
chan As Integer
gain As Integer
buffer As Long
Count As Long
cyclic As Integer
IntrCount As Integer

End Type

Type PTJAIIntScanStart
TrigSrc As Integer
SampleRate As Long
NumChans As Integer
StartChan As Integer
GainList As Long
buffer As Long
Count As Long
cyclic As Integer
IntrCount As Integer

End Type

Type PT_FAIDmaStart
TrigSrc As Integer
SampleRate As Long
chan As Integer
gain As Integer
buffer As Long
Count As Long

End Type

Type PT_FAIDmaScanStart
TrigSrc As Integer
SampleRate As Long
NumChans As Integer
StartChan As Integer
GainList As Long
buffer As Long·
Count As Long

End Type

Type PTJAIDualDmaStart
TrigSrc As Integer
SampleRate As Long
chan As Integer
gain As Integer
BufferA As Long
BufferB As Long
Count As Long
cyclic As Integer

End Type

Type PT_FAIDualDrnaScanStart
TrigSrc As Integer
SampleRate As Long
NumChans As Integer
StartChan As Integer
GainList As Long
BufferA As Long
BufferB As Long
Count As Long
cyclic As Integer

CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

-266-

Appendix A

End Type

Type PT]AITransfer
ActiveBuf As Integer
DataBuffer As Long
DataType As Integer
start As Long
Count As Long
Overrun As Long

End Type

Type PT]AICheck
ActiveBuf As Long
stopped As Long
retrieved As Long
Overrun As Long
HalfReady As Long

End Type

Type PT_FAIWatchdogConfig
TrigMode As Integer
NumChans As Integer
StartChan As Integer
GainList As Long
CondList As Long
LevelList As Long

End Type

Type PT]AIIntWatchdogStart
TrigSrc As Integer
SampleRate As Long
buffer As Long
Count As Long
cyclic As Integer
IntrCount As Integer

End Type

Type PT]AlDmaWatchdogStart
TrigSrc As Integer
SampleRate As Long
BufferA As Long
BufferB As Long
Count As Long

End Type

Type PT]AIWatchdogCheck
DataType As Integer
ActiveBuf As Long
triggered As Long
TrigChan As Long
TrigIndex As Long
TrigData As Long

End Type

Type PT]AOIntStart
TrigSrc As Integer
SampleRate As Long
chan As Integer
buffer As Long
Count As Long
cyclic As Integer

End Type

Type PT]AODmaStart
TrigSrc As Integer

CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

-267-

Appendix A

SampleRate As Long
chan As Integer
buffer As Long
Count As Long

End Type

Type PT_FAOScale
chan As Integer
Count As Long
VoltArray As Long
BinArray As Long

End Type

Type PT]AOLoad
ActiveBuf As Integer
DataBuffer As Long
start As Integer
Count As Long

End Type

Type PT]AOCheck
ActiveBuf As Long
stopped As Long
CurrentCount As Long
Overrun As Long
HalfReady As Long

End Type

Type PT_EnableEvent
EventType As Integer
Enabled As Integer
Count As Integer

End Type

Type PT_CheckEvent
EventType As Long
MiUiseconds As Long

End Type

Type PT_AUocateDMABuffer
CyclicMode As Integer
RequestBufSize As Long
ActualBufSize As Long
buffer As Long

End Type

CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

'**
, Function Declaration for ADSAP132
'**
Declare Function DRV_DeviceGetNumOfList Lib "adsapi32.dU" (NumOfDevices As Integer) As Long
Declare Function DRV_DeviceGetList Lib "adsapi32.dU" (ByVal devicelist As Long, ByVal MaxEntries As Integer, nOutEntries As
Integer) As Long
Declare Function DRV_DeviceGetSubList Lib "adsapi32.dll" (ByVal DeviceNum As Long, ByVal SubDevList As Long, ByVal
MaxEntries As Integer, nOutEntries As Integer) As Long
Declare Function DRV_DeviceOpen Lib "adsapi32.dll" (ByVal DeviceNum As Long, DriverHandle As Long) As Long
Declare Function DRV_DeviceClose Lib "adsapi32.dU" (DriverHandle As Long) As Long
Declare Function DRV_DeviceGetFeatures Lib "adsapi32.dll" (ByVal DriverHandle As Long, IpDevFeatures As
PT_DeviceGetFeatures) As Long
Declare Function DRV_BoardTypeMapBoardName Lib "adsapi32.dll" (ByVal BoardID As Long, ByVal ExpName As String) As Long
Declare Sub DRV_GetErrorMessage Lib "adsapi32.dll" (ByVallError As Long, ByVallpszszErrMsg As String)
Declare Function DRV_AIConfig Lib "adsapi32.dll" (ByVal DriverHandle As Long, AIConfig As PT_AIConfig) As Long
Declare Function DRV_AIGetConfig Lib "adsapi32.dll" (ByVal DriverHandle As Long, AIGetConfig As PT_AIGetConfig) As Long
Declare Function DRV_AIBinaryln Lib "adsapi32.dU" (ByVal DriverHandle As Long, AIBinaryln As PT_AIBinaryln) As Long
Declare Function DRV_AIScale Lib "adsapi32.dU" (ByVal DriverHandle As Long, AIScale As PT_AIScale) As Long
Declare Function DRV_AIVoltageIn Lib "adsapi32.dU" (ByVal DriverHandle As Long, AIVoltageln As PT_AIVoltageln) As Long

-268-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
ClM INTERNET CONTROL SYSTEM

Declare Function DRV_AIVoltageInExp Lib "adsapi32.dll" (ByVal DriverHandle As Long, AIVoltagelnExp As PT_AIVoltageInExp)

As Long
Declare Function DRV MAIConfig Lib "adsapi32.dll" (ByVal DriverHandle As Long, MAIConfig As PT_MAIConfig) As Long
Declare Function DRV- MAIBinaryIn Lib "adsapi32.dll" (ByVal DriverHandle As Long, MAIBinaryIn As PT_MAIBinaryIn) As Long
Declare Function DRV=MAIVoltageIn Lib "adsapi32.dll" (ByVal DriverHandle As Long, MAIVoltageIn As PT_MAIVoltageIn) As

Long
Declare Function DRV_MAIVoltageInExp Lib "adsapi32.dll" (ByVal DriverHandle As Long, MAIVoltageInExp As

PT MAIVoltageInExp) As Long
De;;-Iare Function DRV TCMuxRead Lib "adsapi32.dll" (ByVal DriverHandle As Long, TCMuxRead As PT_TCMuxRead) As Long
Declare Function DRV- AOConfig Lib "adsapi32.dll" (ByVal DriverHandle As Long, AOConfig As PT_AOConfig) As Long
Declare Function DRV- AOBinaryOut Lib "adsapi32.dll" (ByVal DriverHandle As Long, AOBinaryOut As PT_AOBinaryOut) As Long
Declare Function DRV=AOVoltageOut Lib "adsapi32.dll" (ByVal DriverHandle As Long, AOVoltageOut As PT_AOVoltageOut) As

Long
Declare Function DRV_AOScale Lib "adsapi32.dll" (ByVal DriverHandle As Long, AOScale As PT_AOScale) As Long
Declare Function DRV_DioSetPortMode Lib "adsapi32.dll" (ByVal DriverHandle As Long, DioSetPortMode As PT_DioSetPortMode)

As Long
Declare Function DRV_DioGetConfig Lib "adsapi32.dll" (ByVal DriverHandle As Long, DioGetConfig As PT_DioGetConfig) As

Long
Declare Function DRV_DioReadPortByte Lib "adsapi32.dll" (ByVal DriverHandle As Long, DioReadPortByte As
PT_DioReadPortByte) As Long
Declare Function DRV_DioWritePortByte Lib "adsapi32.dll" (ByVal DriverHandle As Long, DioWritePortByte As
PT_DioWritePortByte) As Long
Declare Function DRY_DioReadBit Lib "adsapi32.dll" (ByVal DriverHandle As Long, DioReadBit As PT_DioReadBit) As Long
Declare Function DRV_DioWriteBit Lib "adsapi32.dll" (ByVal DriverHandle As Long, DioWriteBit As PT_DioWriteBit) As Long
Declare Function DRV_DioGetCurrentDOByte Lib "adsapi32.dll" (ByVal DriverHandle As Long, DioGetCurrentDOByte As
PT_DioGetCurrentDOByte) As Long
Declare Function DRY_DioGetCurrentDOBit Lib "adsapi32.dll" (ByVal DriverHandle As Long, DioGetCurrentDOBit As
PT_DioGetCurrentDOBit) As Long
Declare Function DRV_WritePortByte Lib "adsapi32.dll" (ByVal DriverHandle As Long, WritePortByte As PT_WritePortByte) As
Long
Declare Function DRV_WritePortWord Lib "adsapi32.dll" (ByVal DriverHandle As Long, WritePortWord As PT_WritePortWord) As

Long
Declare Function DRV_ReadPortByte Lib "adsapi32.dll" (ByVal DriverHandle As Long, ReadPortByte As PT_ReadPortByte) As Long
Declare Function DRV_ReadPortWord Lib "adsapi32.dll" (ByVal DriverHandle As Long, ReadPortWord As PT_ReadPortWord) As
Long
Declare Function DRV_CounterEventStart Lib "adsapi32.dll" (ByVal DriverHandle As Long, CounterEventStart As
PT_CounterEventStart) As Long
Declare Function DRV_CounterEventRead Lib "adsapi32.dll" (ByVal DriverHandle As Long, CounterEventRead As
PT_CounterEventRead) As Long
Declare Function DRY_CounterFreqStart Lib "adsapi32.dll" (ByVal DriverHandle As Long, CounterFreqStart As
PT_CounterFreqStart) As Long
Declare Function DRY_CounterFreqRead Lib "adsapi32.dll" (ByYal DriverHandle As Long, CounterFreqRead As
PT_CounterFreqRead) As Long
Declare Function DRY_CounterPulseStart Lib "adsapi32.dll" (ByVal DriverHandle As Long, CounterPulseStart As
PT_CounterPulseStart) As Long
Declare Function DRY_CounterReset Lib "adsapi32.dll" (ByVal DriverHandle As Long, ByVal counter As Integer) As Long
Declare Function DRV_QCounterConfig Lib "adsapi32.dll" (ByVal DriverHandle As Long, QCounterConfig As PT_QCounterConfig)
As Long
Declare Function DRY_QCounterConfigSys Lib "adsapi32.dll" (ByVal DriverHandle As Long, QCounterConfigSys As
PT_QCounterConfigSys) As Long
Declare Function DRV_QCounterStart Lib "adsapi32.dll" (ByVal DriverHandle As Long, QCounterStart As PT_QCounterStart) As
Long
Declare Function DRV_QCounterRead Lib "adsapi32.dll" (ByVal DriverHandle As Long, QCounterRead As PT_QCounterRead) As
Long
Declare Function DRV_AlarrnConfig Lib "adsapi32.dll" (ByVal DriverHandle As Long, AlarrnConfig As PT_AlarrnConfig) As Long
Declare Function DRV_AlarrnEnable Lib "adsapi32.dll" (ByVal DriverHandle As Long, AlarrnEnable As PT_AlarrnEnable) As Long
Declare Function DRY_AlarrnCheck Lib "adsapi32.dll" (ByVal DriverHandle As Long, AlarrnCheck As PT_AlarrnCheck) As Long
Declare Function DRV_AlarrnReset Lib "adsapi32.dll" (ByVal DriverHandle As Long, ByVal chan As Integer) As Long
Declare Function DRY_WDTEnable Lib "adsapi32.dll" (ByVal DriverHandle As Long, WDTEnable As PT_WDTEnable) As Long
Declare Function DRV_WDTRefresh Lib "adsapi32.dll" (ByVal DriverHandle As Long) As Long
Declare Function DRV_WDTReset Lib "adsapi32.dll" (ByVal DriverHandle As Long) As Long
Declare Function DRY_GetAddress Lib "adsapi32.dll" (lpVoid As Any) As Long

, Direct I/O Functions List
Declare Function DRV_outp Lib "adsapi32.dll" (ByVal DeviceNum As Long, ByVal Port As Integer, ByVal ByteData As Long) As

-269-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

Long
Declare Function DRV_outpw Lib "adsapi32.dll" (ByVal DeviceNum AB Long, ByVal Port As Integer, ByVal ByteData As Long) As

Long
Declare Function DRV_inp Lib "adsapi32.dll" (ByVal DeviceNum As Long, ByVal Port As Integer, ByteData As Long) As Long
Declare Function DRV_inpw Lib "adsapi32.dll" (ByVal DeviceNum As Long, ByVal Port As Integer, ByteData As Long) As Long

, High speed function declaration
Declare Function DRV]AIWatchdogConfig Lib "adsapi32.dll" (ByVal DriverHandle As Long, FAIWatchdogConfig As'

PT FAIWatchdogConfig) As Long
De;;-lare Function DRV FAlIntStart Lib "adsapi32.dll" (ByVal DriverHandle As Long, FAlIntStart As PT_FAlIntStart) As Long
Declare Function DRV=FAIIntScanStart Lib "adsapi32.dll" (ByVal DriverHandle As Long, FAIIntScanStart As PT]AIIntScanStart)

As Long
Declare Function DRV FAIDmaStart Lib "adsapi32.dll" (ByVal DriverHandle As Long, FAIDmaStart As PT]AIDmaStart) As Long
Declare Function DRV=FAIDmaScanStart Lib "adsapi32.dll" (ByVal DriverHandle As Long, FAIDmaScanStart As
PT]AIDmaScanStart) As Long
Declare Function DRV]AlDualDmaStart Lib "adsapi32.dll" (ByVal DriverHandle As Long, FAlDualDmaStart As
PT_FAlDuaIDmaStart) As Long
Declare Function DRV]AlDualDmaScanStart Lib "adsapi32.dll" (ByVal DriverHandle As Long, FAlDualDmaScanStart As
PT FAlDualDmaScanStart) As Long
D~lare Function DRV_FAlIntWatchdogStart Lib "adsapi32.dll" (ByVal DriverHandle As Long, FAlIntWatchdogStart As
PT]AlIntWatchdogStart) AB Long
Declare Function DRV_FAlDmaWatchdogStart Lib "adsapi32.dll" (ByVal DriverHandle As Long, FAlDmaWatchdogStart As
PT]AIDmaWatchdogStart) As Long
Declare Function DRV]AICheck Lib "adsapi32.dll" (ByVal DriverHandle As Long, FAICheck As PT]AICheck) As Long
Declare Function DRV]AIWatchdogCheck Lib "adsapi32.dll" (ByVal DriverHandle As Long, FAIWatchdogCheck As
PT_FAIWatchdogCheck) As Long
Declare Function DRV]AITransfer Lib "adsapi32.dll" (ByVal DriverHandle As Long, FAITransfer As PT_FAITransfer) As Long
Declare Function DRV]AIStop Lib "adsapi32.dll" (ByVal DriverHandle AB Long) As Long
Declare Function DRV]AOIntStart Lib "adsapi32.dll" (ByVal DriverHandle AB Long, FAOIntStart As PT]AOIntStart) AB Long
Declare Function DRV_FAODmaStart Lib "adsapi32.dll" (ByVal DriverHandle As Long, FAODmaStart As PT]AODmaStart) As
Long
Declare Function DRV]AOScale Lib "adsapi32.dll" (ByVal DriverHandle AB Long, FAOScale As PT]AOScale) AB Long
Declare Function DRV_FAOLoad Lib "adsapi32.dll" (ByVal DriverHandle As Long, FAOLoad As PT]AOLoad) AB Long
Declare Function DRV]AOCheck Lib "adsapi32.dll" (ByVal DriverHandle As Long, FAOCheck As PT]AOCheck) As Long
Declare Function DRV]AOStop Lib "adsapi32.dll" (ByVal DriverHandle As Long) As Long
Declare Function DRV_ClearOverrun Lib "adsapi32.dll" (ByVal DriverHandle As Long) As Long
Declare Function DRV_EnableEvent Lib "adsapi32.dll" (ByVal DriverHandle As Long, EnableEvent As PT_EnableEvent) As Long
Declare Function DRV_CheckEvent Lib "adsapi32.dll" (ByVal DriverHandle As Long, CheckEvent As PT_CheckEvent) As Long
Declare Function DRV_AllocateDMABuffer Lib "adsapi32.dll" (ByVal DriverHandle As Long, AllocateDMABuffer As
PT_AlIocateDMABuffer) As Long
Declare Function DRV_FreeDMABuffer Lib "adsapi32.dll" (ByVal DriverHandle As Long, ByVal buffer AB Long) As Long

, CAN bus function declaration
Declare Function CANPortOpen Lib "ads841.dll" (ByVal DevNum As Integer, wPort As Integer, wHostID As Integer) As Long
Declare Function CANPortClose Lib "ads841.dll" (ByVal wPort AB Integer) As Long
Declare Function CANInit Lib "ads841.dll" (ByVal Port AB Integer, ByVal BTRO As Integer, ByVal BTRl AB Integer, ByVal usMask
As Byte) AB Long
Declare Function CANReset Lib "ads841.dll" (ByVal Port As Integer) As Long
Declare Function CANInpb Lib "ads841.dll" (ByVal Port As Integer, ByVal offset As Integer, Data As Byte) As Long
Declare Function CANOutpb Lib "ads841.dll" (ByVal Port As Integer, ByVal offset As Integer, ByVal value As Byte) As Long
Declare Function CANSetBaud Lib "ads841.dll" (ByVal Port As Integer, ByVal BTRO As Integer, ByVal BTRI As Integer) As Long
Declare Function CANSetAcp Lib "ads841.dll" (ByVal Port As Integer, ByVal Acp As Integer, ByVal Mask As Integer) As Long
Declare Function CANSetOutCtrl Lib "ads841.dll" (ByVal Port As Integer, ByVal OutCtrl As Integer) As Long
Declare Function CANSetNormal Lib "ads841.dll" (ByVal Port As Integer) AB Long
Declare Function CANHwReset Lib "ads841.dll" (ByVal Port AB Integer) As Long
Declare Function CANSendMsg Lib "ads841.dll" (ByVal Port As Integer, ByVal TxBuf As String, ByVal Wait AB Long) As Long
Declare Function CANQueryMsg Lib "ads841.dll" (ByVal Port AB Integer, Ready As Long, ByVal RcvBuf As String) As Long
Declare Function CANWaitForMsg Lib "ads841.dll" (ByVal Port As Integer, ByVal RcvBuf As String, ByVal uTimeValue AB Long)
AB Long
Declare Function CANQueryID Lib "ads841.dll" (ByVal Port As Integer, Ready As Long, IDBuf AB Byte) As Long
Declare Function CANWaitForID Lib "ads84I.dll" (ByVal Port As Integer, IDBuf As Byte, ByVal uTimeValue As Long) As Long
Declare Function CANEnableMessaging Lib "ads841.dll" (ByVal Port As Integer, ByVal Typel As Integer, ByVal Enabled As Long,
ByVal AppWnd As Long, RcvBuf As String) As Long
Declare Function CANGetEventName Lib "ads841.dll" (ByVal Port As Integer, RcvBuf As Byte) As Long

-270-

Appendix A

4.4 Global.bas

CODE LISTING FOR THE MODULAR MECHATRONIC
ClM INTERNET CONTROL SYSTEM

Global Const MaxEntries = 255
Global DeviceHandle As Long
Global ptDevGetFeatures As PT_DeviceGetFeatures
GloballpDevFeatures As DEVFEATURES
Global devicelist(O To MaxEntries) As PT_DEVLIST
Global SubDevicelist(O To MaxEntries) As PT_DEVLIST
Global ErrCde As Long
Global szErrMsg As String * 80
Global bRun As Boolean
GloballpDioPortMode As PT_DioSetPortMode
GloballpDioWritePort As PT_DioWritePortByte
GloballpDioReadPort As PT_DioReadPortByte
Const ModeDir = 0 'for input mode

-271-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

5 Code listing for the Robot Client· ROBOTClient.vbp

5.1 frmRobotClient

Option Explicit

Private Sub Form_LoadO
cmdSend.Enabled = False
, set up local port and wait for connection
tcpClient.RemoteHost = "146.230.192.36"
tcpClient.RemotePort = 5000 'server port
Call tcpClient.Connect 'connect to RemoteHost address

End Sub

Private Sub Form_TerminateO
Call tcpClient.Close

End Sub

Private Sub Form_ResizeO
On Error Resume Next
Call cmdSend.Move(ScaleWidth - cmdSend.Width, 0)
Call txtSend.Move(O, 0, ScaleWidth - cmdSend.Width)
Call txtOutput.Move(O, txtSend.Height, ScaleWidth,_
ScaleHeight - txtSend.Height)

End Sub

Private Sub tcpClient_ConnectO
, when connection occurs, display a message
cmdSend.Enabled = True
txtOutput.Text = "Connected to Web Server at JP Address: " &
tcpClient.RemoteHostJP & vbCrLf & "Port #: " &
tcpClient.RemotePort & vbCrLf & vbCrLf

End Sub

Private Sub tcpClient_DataAnival(ByVal bytesTotal As Long)
Dim message As String
Call tcpClient.GetData(message) 'get data from server
txtOutput.Text = txtOutput.Text & message & vbCrLf & vbCrLf
txtOutput.SelStart = Len(txtOutput.Text)
Conveyer.Textl.Text = message

End Sub

Private Sub tcpClient_CloseO
cmdSend.Enabled = False
Call tcpClient.Close 'server closed, client should too
txtOutput.Text = _

End Sub

txtOutput.Text & "Server closed connection." & vbCrLf
txtOutput.SelStart = Len(txtOutput.Text)

Private Sub tcpClient_Error(ByVal Number As Integer,_
Description As String, ByVal Scode As Long,_
ByVal Source As String, ByVal HelpFile As String,_
ByVal HelpContext As Long, CancelDisplay As Boolean)
Dim result As Integer
result = MsgBox(Source & ": " & Description,_

vbOKOnly, "TCP/JP Error")
End

End Sub

Private Sub cmdSend_ClickO
, send data to server

Call tcpClient.SendData("ClientROB >>> " & txtSend.Text)

-272-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

txtOutput.Text = txtOutput.Text &_
"ClientROB »>" & txtSend.Text & vbCrLf & vbCrLf
txtOutput.SelStart = Len(txtOutput.Text)
txtSend.Text = ""

End Sub

5.2 frmPCL832

Option Explicit

Private DDAcount(1 To 6) As Integer
Private CounterO As Integer
Private Counterl AB Integer
Private ExitFlag As Boolean
Private RunningFlagO As Boolean
Private RunningFlagl AB Boolean
Private Overflows As Integer
Private TotalCounts As Double

Private Sub cmdClearO_ClickO
Dim error As Integer
Dim i AB Integer

For i = 1 To 3
error = PCL832~et_error(0, i)
pcI832_set---'pulse 0, i, -error

Nexti
Overflows = 0
TotalCounts = 0

End Sub

Private Sub cmdClearI_ClickO
Dim error As Integer

Dim i As Integer

For i = I To 3
error = PCL832_get_error(l, i)
pcl832_set---'pulse l, i, -error

Nexti
Overflows = 0
TotalCounts = 0

End Sub

Private Sub cmdDisp_ClickO
Dim i AB Integer
Dim error As Integer
Dim status AB String

Do
For i = 1 To 3

error = PCL832~et_error(0, i)
status = PCL832~et_status(0, i)
txtError(i).Text = error
txtStatus(i).Text = status
error = PCL832~et_error(I, i)
status = PCL832~eUtatus(I, i)
txtError(i + 3).Text = error
txtStatus(i + 3).Text = status
DoEvents

Nexti
Loop Until ExitFlag

End Sub

Private Sub cmdExit_ClickO

-273-

Appendix A

ExitFlag = True
PCL832_reset 0
PCL832Jeset 1
Unload Me

End Sub

Private Sub cmdGoO_ClickO
Dim i A5lnteger

CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

If Not RunningFlagO Then
'start running

cmdGoO.Caption = "Stop"
RunningFlagO = True
For i = 1 To 3

DDAcount(i) = Val(txtPulses(i).Text)
Nexti

Else
'stop running

cmdGoO.Caption = "Start"
RunningFlagO = False
For i = 1 To 3

DDAcount(i) = 0
Nexti

End If
'tmrMain.Enabled = Not tmrMain.Enabled

End Sub

Private Sub cmdGol_ClickO
Dim i As lnteger

If Not RunningFlagl Then
'start running

cmdGoI.Caption = "Stop"
RunningFlagl = True
For i = 4 To 6
DDAcount(i) = Val(txtPulses(i).Text)

Nexti
Else
'stop running

cmdGoI.Caption = "Start"
RunningFlagl = False
Fori =4 To 6

DDAcount(i) = 0
Nexti

End If
'tmrMain.Enabled = Not tmrMain.Enabled

End Sub

Private Sub cmdLeft_ClickO
Dim pulses(1 To 21) As lnteger
Dim i As lnteger

i=O
Do
DDAcount(I) = -214
CounterO = 0
Do

DoEvents
Loop Until CounterO > 0
i=i+ I
IblTota1.Caption = i

Loop Until i = 90
DDAcount(i) = 0

End Sub

-274-

Appendix A

Private Sub cmdHide_ClickO
Me.Hide

End Sub

Private Sub cmdMoveAll_ClickO
Dim i As Integer,j As Integer
Dim deg(l To 6) As Integer
Dim remainder(1 To 6) As Integer

CODE LISTING FOR THE MODULAR MECHATRONIC
ClM INTERNET CONTROL SYSTEM

For j = I To 6
deg(j) = Int(Abs(Val(txtDeg(j).Text») * Sgn(Val(txtDeg(j).Text»
Select Case j

Case I
'to calibrate, alter this value for each
'axis below
DDAcount(j) = 212 * Sgn(deg(j»

Case 2
DDAcount(j) = 212 * Sgn(deg(j»

Case 3
DDAcount(j) = 212 * Sgn(deg(j»

Case 4
DDAcount(j) = 212 * Sgn(deg(j»

Case 5
DDAcount(j) = 212 * Sgn(deg(j»

Case 6
DDAcount(j) = 212 * Sgn(deg(j»

End Select
IfVal(txtDeg(j).Text) = 0 Then

DDAcount(j) = 0
End If
'set fraction of a degree
remainder(j) = Int(DDAcount(j) * (Val(txtDeg(j).Text) - deg(j») * Sgn(deg(j»
deg(j) = Abs(deg(j»

Nextj
'keep doing this until all joints are at right angles

Do While «DDAcount(l) <> 0) Or (DDAcount(2) <> 0) Or (DDAcount(3) <> 0) Or (DDAcount(4) <> 0) Or (DDAcount(5) <> 0) Or
(DDAcount(6) <> 0»

CounterO = 0
Counter! = 0
Do

DoEvents
'wait for next dda cycle for both cards
Loop Until (CounterO > 0) And (CounterI > 0)
For j = I To 6

deg(j) = deg(j) - I
'if turned through whole degrees
If deg(j) = 0 Then

'then turn through fraction of a degree
DDAcount(j) = remainder(j)

'if turned through whole angle and fraction, then stop
ElseIf deg(j) = -I Then

DDAcount(j) = 0
End If

Nextj
IbIDDACO.Caption = DDAcount(l) & 00 00 & DDAcount(2) & 00 00 & DDAcount(3)
IbIDDAC1.Caption = DDAcount(4) & 00 00 & DDAcount(5) & 00 00 & DDAcount(6)

Loop
End Sub

Private Sub cmdMoveArm_Click(Index As Integer)
Dim i As Integer
Dim deg As Double
Dim frac As Double

-275-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

Select Case Index
Case 1

i=O
deg = Val(txtDeg(Index).Text)
Do While i < Abs(deg)

DDAcount(Index) = 212 *Sgn(deg)
CounterO = 0
Do

DoEvents
Loop Until CounterO > 0
i =i + I
'display number of steps turned this cycle
IblTotal.Caption = DDAcount(Index)

Loop
DDAcount(Index) = 0

Case 2
i=O
deg = Val(txtDeg(Index).Text)
Do While i < Abs(deg)

DDAcount(Index) = 212 * Sgn(deg)
CounterO = 0
Do

DoEvents
Loop Until CounterO > 0
i=i+1
IblTotal.Caption = DDAcount(Index)

Loop
DDAcount(Index) = 0

Case 3
i=O
deg = Val(txtDeg(Index).Text)
Do While i < Abs(deg)

DDAcount(Index) = 212 * Sgn(deg)
CounterO =0
Do

DoEvents
Loop Until CounterO > 0
i = i + I
IblTotal.Caption = DDAcount(Index)

Loop
DDAcount(Index) = 0

Case 4
i =0
deg = Val(txtDeg(Index).Text)
Do While i < Abs(deg)

DDAcount(Index) = 212 * Sgn(deg)
Counter! = 0
Do

DoEvents
Loop Until CounterI > 0
i = i + 1
IblTotal.Caption = DDAcount(Index)

Loop
DDAcount(Index) = 0

Case 5
i =0
deg = Val(txtDeg(Index).Text)
Do While i < Abs(deg)

DDAcount(Index) = 212 * Sgn(deg)
Counter1 = 0
Do

DoEvents
Loop Until Counter! > 0
i=i+1

-276-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

IblTotal.Caption = DDAcount(Index)
Loop
DDAcount(Index) = 0

Case 6
i=O
deg = Val(txtDeg(Index).Text)
Do While i < Abs(deg)

DDAcount(Index) = 212 * Sgn(deg)
Counterl = 0
Do

DoEvents
Loop Until Counterl > 0
i = i + 1
IblTotal.Caption = DDAcount(Index)

Loop
DDAcount(Index) = 0

End Select
End Sub

Private Sub cmdResetO_ClickO
Dim time As Integer
Dim i As Integer

ExitFlag = False
time = ResetO
For i = 1 To 3

DDAcount(i) = Val(txtPulses(i).Text)
Nexti
Overflows = 0
TotalCounts = 0

End Sub

Private Sub cmdResell_ClickO
Dim time As Integer
Dim i As Integer

ExitFlag = False
time = Resell
For i = 4 To 6

DDAcount(i) = Val(txtPulses(i).Text)
Nexti
Overflows = 0
TotalCounts = 0

End Sub

Private Sub cmdRighCClickO
Dim i As Integer

i =0
Do
DDAcount(l) = 214
CounterO = 0
Do

DoEvents
Loop Until CounterO > 0
i=i+l
IblTotal.Caption = i

Loop Until i = 90
DDAcount(l) = 0

End Sub

Private Sub cmdtestO_ClickO
Dim i As Integer

CounterO = 0

-277-

Appendix A

For i = 1 To 3
DDAcount(i) = Val(txtPulses(i).Text)
pcl832_set--pulse 0, i, DDAcount(i)

Nexti
Do

DoEvents
Loop Until CounterO = 1
For i = 1 To 3

DDAcount(i) = °
pcl832_set--pulse 0, i, DDAcount(i)

Next i
End Sub

Private Sub cmdTest1_ClickO
Dim i As Integer

CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

Counter1 = °
For i = 1 To 3

DDAcount(i + 3) = Val(txtPulses(i + 3).Text)
pcI832_set_pulse 1, i, DDAcount(i + 3)

Nexti
Do

DoEvents
Loop Until Counter! = 1
For i = 1 To 3

DDAcount(i + 3) = °
pcl832_set--pulse 0, i, DDAcount(i + 3)

Nexti
End Sub

Private Sub Form_Unload(Cancel As Integer)
ExitFlag = True

PCL832Jeset°
PCL832_reset 1

End Sub

Private Sub tmrMainO_TimerO
Dim i As Integer

For i = 1 To 3
pcl832_set--pulse 0, i, DDAcount(i)

Next i
'TotalCounts = TotalCounts + DDAcount

CounterO = CounterO + I
IbIDDACO.Caption = CounterO

End Sub

Private Function ResetOO As Integer
Dim time As Integer
Dim i As Integer

PCL832_reset°
time = PCL832_DDA_time(0, Val(txtTime(O).Text))
tmrMainO.lnterval = time
Fori = I To 3

PCL832_set_gain 0, i, Val(txtGain(i).Text)
Nexti

PCL832_DDA_enable°
tmrMainO.Enabled = True
RunningFlagO = True
ResetO = time

End Function

-278-

Appendix A

Private Function Resetl () As Integer
Dim time As Integer
Dim i As Integer

CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

PCL832Jeset I
time = PCL832_DDA_time(l, Val(txtTime(l).Text))
tmrMain I.lnterval = time
For i = I To 3

PCL832_set_gain I, i, Val(txtGain(i + 3).Text)
Nexti
PCL832_DDA_enable I
tmrMainl.Enabled = True
RunningFlagl = True
Reset! = time

End Function

Private Sub tmrMainl_Timer()
Dim i As Integer

For i = I To 3
pc1832_setyulse I, i, DDAcount(i + 3)

Nexti
'TotalCounts = TotalCounts + DDAcount

Counter! = CounterI + I
IbIDDACI.Caption = Counterl

End Sub

Private Sub tmrReset_Timer()
tmrReset.Enabled = False
tmrMain.Enabled = True

End Sub

5.3 frrnlnvkin
Option Explicit
Private ArmAng(1 To 6) As Double
Private OldArmAng(1 To 6) As Double
Private ArmLen(1 To 6) As Double
Private ArmDis(1 To 6) As Double
Private PI(O To 3) As Double
Private dx As Double, dy As Double, dz As Double
Private counter As Integer

Private Sub cmdExit_Click()
Unload Me

End Sub

Private Sub cmdGuess_Click()
dx = Val(lnputBox("Enter X co-{)rd (-9 to 9):", "Input Co-{)rds"))
dy = Val(lnputBox("Enter Y co-ord (-9 to 9):", "Input Co-ords"))
dz = Val(lnputBox("Enter Z co-ord (-9 to 9):", "Input Co-ords"))

txtdebug.Text = ""

tmrFuzzy.Enabled = True
'Fuzzy2lnvKin

End Sub

Private Sub cmdGuess2_C1ick()
counter = 0
If optFuzzy.value Then

dx = Val(txtP(O).Text)
dy = Val(txtP(1).Text)

-279-

Appendix A

dz = Val(txtP(2).Text)
txtdebug.Text = ""
tmrFuzzy.Enabled = True

Else
ConlnvKin2

End If
End Sub

Private Sub cmdInitArm_ClickO
Forml.Show
cmdMoveArm.Enabled = True
cmdPlayArm.Enabled = True

End Sub

Private Sub cmdMoveArm_ClickO
Dim i As Integer

CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

Fori = I To 6
'find difference between current pos, and wanted pos
'may need to change signs here or wiring to get
'correct direction
FormI.txtDeg(i).Text = Str(ArmAng(i) - OldArmAng(i))
'update current pos
OldArmAng(i) = ArmAng(i)

Nexti
cmdMoveArm.Enabled = False
cmdPlayArm.Enabled = False
cmdInitArrn.Enabled = False
'move the arm
FormI .cmdMoveAJI
cmdMoveArm.Enabled = True
cmdPlayArm.Enabled = True
cmdInitArrn.Enabled = True

End Sub

Private Sub cmdPathDel_ClickO
Dim i As Integer

'decrease number of points
NumPathPoints = NumPathPoints - 1
CurrentPathPoint = NumPathPoints
'check to see if last point deleted
lfNumPathPoints = I Then
cmdPathDel.Enabled = False

End If
'remove last point
ReDim Preserve ArmPath(l To NumPathPoints)

'update angles
For i = I To 6

ArmAng(i) = ArmPath(CurrentPathPoint).Angles(i)
Nexti

'draw
DrawAxis
DrawArm ArmAng, ArmLen, ArmDis
DrawPath

IblPath.Caption = Str(CurrentPathPoint) &" of" & Str(NumPathPoints)
End Sub

Private Sub cmdPathEdit_ClickO
Dim i As Integer

'update angles
For i = I To 6

-280-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

AnnPath(CurrentPathPoint).Angles(i) = ArmAng(i)
Nexti

'draw
DrawAxis
DrawAnn ArmAng, ArmLen, AnnDis
DrawPath
IblPath.Caption = Str(CurrentPathPoint) &" of" & Str(NumPathPoints)

End Sub

Private Sub cmdPathFirst_ClickO
Dim i As Integer

'increase current point
CurrentPathPoint = I
cmdPathNext.Enabled = True
cmdPathLast.Enabled = True
cmdPathPrev.Enabled = False
cmdPathFirst.Enabled = False

'update angles
For i = I T06

ArmAng(i) = AnnPath(CurrentPathPoint).Angles(i)
Nexti

'draw
DrawAxis
DrawAnn ArmAng, ArmLen, AnnDis
DrawPath
IblPath.Caption = Str(CurrentPathPoint) &" of" & Str(NumPathPoints)

End Sub

Private Sub cmdPathlnter_ClickO
Dim num As Integer
Dim p(O To 3) As Double

num = InputBox("Enter number of intermediate steps:", "Path Interpolate")
Ifnum > 0 Then

p(O) = PI(O)
p(l) = PI(I)
p(2) = PI(2)
p(3) = PI(3)

Interpolate p, num
End If

End Sub

Private Sub cmdPathLast_ClickO
Dim i As Integer

'increase current point
CurrentPathPoint = NumPathPoints
cmdPathNext.Enabled = False
cmdPathLast.Enabled = False
cmdPathPrev.Enabled = True
cmdPathFirst.Enabled = True

'update angles
For i = I To 6

ArrnAng(i) = AnnPath(CurrentPathPoint).Angles(i)
Nexti

'draw
DrawAxis
DrawAnn ArrnAng, ArmLen, AnnDis

-281-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

DrawPath
IblPath.Caption = Str(CurrentPathPoint) & " of" & Str(NumPathPoints)

End Sub

Private Sub cmdPathLoad_Click()
Dim i As Integer

CommonDialog.Filter = "Path files (*.pth)l*.pthlAll files (* *)1*. *"
CommonDialog.FiJeName = ""
CommonDialog.ShowOpen
IfCommonDialog.FileName = "" Then Exit Sub
OpenPath CommonDialog.FileName
MsgBox "Path Loaded"

CurrentPathPoint = 1
cmdPathFirst.Enabled = False
cmdPathPrev.Enabled = False
cmdPathEdit.Enabled = True
IfNumPathPoints> 1 Then
cmdPathDeI.Enabled = True
cmdPathNext.Enabled = True
cmdPathLast.Enabled = True

Else
cmdPathDel.Enabled = False
cmdPathNext.Enabled = False
cmdPathLast.Enabled = False

End If
'update angles
For i = 1 To 6

ArrnAng(i) = ArrnPath(CurrentPathPoint).Angles(i)
Nexti

'draw
DrawAxis
DrawArm ArrnAng, ArmLen, ArmDis
DrawPath
IblPath.Caption = Str(CurrentPathPoint) &" of" & Str(NumPathPoints)

End Sub

Private Sub cmdPathNext_Click()
Dim i As Integer

'increase current point
CurrentPathPoint = CurrentPathPoint + 1
'check if at end
IfCurrentPathPoint = NumPathPoints Then

cmdPathNext.EnabJed = False
cmdPathLast.Enabled = False

End If
cmdPathPrev.Enabled = True
cmdPathFirst.Enabled = True

'update angles
For i = 1 To 6

ArrnAng(i) = ArrnPath(CurrentPathPoint).Angles(i)
Nexti

'draw
DrawAxis
DrawArm ArrnAng, ArrnLen, ArmDis
DrawPath

IblPath.Caption = Str(CurrentPathPoint) & " of" & Str(NumPathPoints)
End Sub

-282-

Appendix A

Private Sub cmdPathPlay_ClickO
Dim i As Integer

CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

CurrentPathPoint = I
'update angles
For i = I To 6

ArmAng(i) = ArmPath(CurrentPathPoint).Angles(i)
Next i

'draw
DrawAxis
DrawAnn ArmAng, ArrnLen, ArrnDis
DrawPath
IblPath.Caption = Str(CurrentPathPoint) & " of" & Str(NumPathPoints)

'start animation
trnrAnim.Enabled = True

End Sub

Private Sub cmdPathPrev_ClickO
Dim i As Integer

'decrease current point
CurrentPathPoint = CurrentPathPoint - I
'check if at beginning
If CurrentPathPoint = I Then
cmdPathPrev.Enabled = False
cmdPathFirst.Enabled = False

End If
cmdPathNext.Enabled = True
cmdPathLast.Enabled = True
'update angles
For i = I To 6

ArrnAng(i) = ArmPath(CurrentPathPoint).Angles(i)
Nexti
'draw
DrawAxis
DrawAnn ArmAng, ArrnLen, ArrnDis
DrawPath

IblPath.Caption = Str(CurrentPathPoint) & " of" & Str(NumPathPoints)
End Sub

Private Sub cmdPathReset_ClickO
ReDim ArmPath(l To I)
NumPathPoints = 0
CurrentPathPoint = 0
IblPath.Caption = "0 of 0"
cmdPathFirst.Enabled = False
cmdPathPrev.Enabled = False
cmdPathNext.Enabled = False
cmdPathLast.Enabled = False
cmdPathDeI.Enabled = False
cmdPathEdit.Enabled = False
DrawAxis
DrawAnn ArmAng, ArrnLen, AnnDis

End Sub

Private Sub cmdPathSave_ClickO
CommonDialog.Filter = "Path files (*.pth)l*.pthlAll files (*. *)1*. *"
CommonDialog.FileName = ""

CommonDialog.ShowSave
IfCommonDialog.FileName = "" Then Exit Sub
SavePath CommonDialog.FileName
MsgBox "Path Saved"

End Sub

-283-

Appendix A

Private Sub cmdPathStore_ClickO
Dim i As Integer

CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

'add new point to path
NumPathPoints = NumPathPoints + 1
CurrentPathPoint = NumPathPoints
ReDim Preserve ArmPath(1 To NumPathPoints)

'store angle information in point
For i = 1 To 6

ArmPath(CurrentPathPoint).Angles(i) = ArrnAng(i)
Nexti
Fori = 0 To 3

ArmPath(CurrentPathPoint).Pos(i) = Pl(i)
Nexti

'redraw with path shown
DrawAxis
DrawArrn ArrnAng, ArmLen, ArrnDis
DrawPath
IblPath.Caption = Str(CurrentPathPoint) &" of" & Str(NumPathPoints)

'enable buttons
If NumPathPoints > 1 Then
cmdPathFirst.Enabled = True
cmdPathPrev.Enabled = True
cmdPathNext.Enabled = False
cmdPathLast.Enabled = False
cmdPathDel.Enabled = True

End If
cmdPathEdit.Enabled = True

End Sub

Private Sub cmdPlayArm_ClickO
Dim i As Integer

CurrentPathPoint = I
Do

'update angles
For i = 1 To 6

ArrnAng(i) = ArmPath(CurrentPathPoint).Angles(i)
Nexti

'draw
DrawAxis
DrawArrn ArrnAng, ArmLen, ArrnDis
DrawPath
IblPath.Caption = Str(CurrentPathPoint) &" of" & Str(NumPathPoints)

'start motion
cmdMoveArrn_Click
CurrentPathPoint = CurrentPathPoint + I
'continue until whole moion completed

Loop Until CurrentPathPoint > NumPathPoints
End Sub

Private Sub cmdReset_ClickO
counter = 0
ArmStart
DrawAxis
DrawArrn ArrnAng, ArmLen, ArrnDis

End Sub

Private Sub cmdRotACW_Click(Index As Integer)
ArrnAng(Index) = ArrnAng(Index) - 5

-284-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

o Select Case Index
o Case I:

If AnnAng(Index) < -160 Then AnnAng(Index) = -160
, Case 2:

If AnnAng(Index) < -225 Then AnnAng(Index) = -225
, Case 3:

If AnnAng(Index) < -45 Then AnnAng(Index) = -45
, Case 4:

If ArmAng(Index) < -110 Then ArmAng(Index) = -110
, Case 5:

IfAnnAng(Index) < -100 Then AnnAng(Index) = -100
, Case 6:

If AnnAng(Index) < -266 Then ArmAng(Index) = -265
• End Select

DrawAxis
DrawAnn ArmAng, ArmLen, AnnDis

End Sub

Private Sub crndRotCW_Cliek(Index As Integer)
AnnAng(Index) = AnnAng(Index) + 5

, Select Case Index
, Case I:

IfAnnAng(Index) > 160 Then AnnAng(Index) = 160
, Case 2:

IfArmAng(Index) > 45 Then AnnAng(Index) = 45
, Case 3:

If AnnAng(Index) > 225 Then AnnAng(Index) = 225
, Case 4:

If AnnAng(Index) > 170 Then ArmAng(Index) = 170
, Case 5:

If AnnAng(Index) > 100 Then AnnAng(Index) = 100
, Case 6:

If AnnAng(Index) > 266 Then AnnAng(Index) = 265
, End Select

DrawAxis
DrawAnn AnnAng, ArmLen, AnnDis

End Sub

Private Sub crndStop_CliekO
trnrFuzzy.Enabled = Not trnrFuzzy.Enabled

End Sub

Private Sub Fonn_LoadO
pieXY.Scale (-10,10)-(10, -10)
pieXZ.Scale (-10, 10)-(10, -10)
pieYZ.Seale (10, 10)-(-10, -10)

MakeFuzSets

AnnStart
DrawAxis
DrawAnn ArmAng, AnnLen, ArrnDis

'path initialization
NurnPathPoints = 0
CurrentPathPoint = 0
IblPath.Caption = "0 of 0"
crndPathFirst.Enabled = False
crndPathPrev.Enabled = False
crndPathNext.Enabled = False
crndPathLast.Enabled = False

End Sub

Private Sub DrawAxisO
picXY.Cls

-285-

Appendix A

pieXZ.Cls
pieYZ.Cls

'blue for X
pieXY.ForeColor = vbBlue
pieXZ.ForeColor = vbBlue
pieXY.Line (0, 0)-(2, 0)
pieXY.Line (2, 0)-(1, I)
pieXZ.Line (0, 0)-(2, 0)
pieXZ.Line (2, 0)-(1, I)

'red for Y
pieXY.ForeColor = vbRed
pieYZ.ForeColor = vbRed
pieXY.Line (0, 0)-(0, 2)
pieXY.Line (0, 2)-(-1, I)
pieYZ.Line (0, 0)-(2, 0)
pieYZ.Line (2, 0)-(1, I)

'yellow for Z
pieXZ.ForeColor = vbYellow
pieYZ.ForeColor = vbYellow
pieXZ.Line (0, 0)-(0, 2)
pieXZ.Line (0, 2)-(-1, I)
pieYZ.Line (0, 0)-(0, 2)
pieYZ.Line (0, 2)-(-1, I)

pieXY.Circle (0, 0), 5

'reset eolors
pieXY.ForeColor = vbBlaek
pieXZ.ForeColor = vbBlaek
picYZ.ForeColor = vbBlaek

End Sub

CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

Private Sub DrawVeet(MIO As Double, M20 As Double)
pieXY.Line (M 1(0), MI(l»-(M2(0), M2(1»
pieXZ.Line (M I(0), MI(2»-(M2(0), M2(2»
pieYZ.Line (Ml(l), MI(2»-(M2(1), M2(2»

End Sub

Private Sub DrawArm(AnglesO As Double, lengthsO As Double, disO As Double)
Dim P2(0 To 3) As Double
Dim 0(0 To 3) As Double
Dim temp2(0 To 3) As Double

Dim Tl(O To IS) As Double
Dim T2(0 To IS) As Double
Dim temp(O To IS) As Double

Dim r As Double
Dim i As Integer

'MakeT ArmAng(2), 0, ArmAng(I), Tl
MakeOAI ArmAng(I), ArmLen(l), ArmDis(l), Tl(O)
MakelA2 ArmAng(I), ArmLen(I), ArmDis(l), T2(0)
'temp =tl *t2 =OAI *1A2
MatrixMult4b4 Tl(O), T2(0), temp(O)
'gotOA2
GetCoords temp(O), 4, PI(O)
DrawPointo
DrawPoint PI
DrawVeet 0, PI

-286-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

Make2A3 ArmAng(l), AnnLen(l), ArmDis(I), T2(0)
't1 = temp*t2 = 0A2*2A3
MatrixMult4b4 temp(O), T2(0), T1(0)
'gotOA3
GetCoords Tl(O), 4, P2(0)
DrawPoint P2
DrawYect PI, P2

Make3A4 ArmAng(1), AnnLen(\), ArmDis(1), T2(0)
'temp = t1 *t2 = OA3*3A4
MatrixMult4b4 Tl(O), T2(0), temp(O)
'gotOA4
GetCoords temp(O), 4, Pl(O)
DrawPoint PI
DrawYect P2, PI

Make4A5 ArmAng(1), ArmLen(1), ArmDis(1), T2(0)
'tl = temp*t2 = OA4*4A5
MatrixMult4b4 temp(O), T2(0), T1(0)
'gotOA5
GetCoords T1 (0), 4, P2(0)
DrawPoint P2
DrawYect PI, P2
'for conInvKin2 pos

Make5A6 ArmAng(I), AnnLen(1), ArmDis(I), T2(0)
'temp = tl *t2 = OA5*5A6
MatrixMult4b4 Tl(O), T2(0), temp(O)
'got Oa6
GetCoords temp(O), 4, PI(O)
DrawPoint PI
DrawYect P2, PI

'draw manipulator
0(2) = I
0(1) = I
0(3) = I
'get I st point
MatrixMult4bl temp(O), 0(0), P2(0)
DrawYect PI, P2
0(1)=-1
'get 2nd point
MatrixMult4bl temp(O), 0(0), P2(0)
DrawYect PI, P2

r= Sqr(PI(O) " 2 + PI(I)" 2 + PI(2)" 2)
IblCoords.Caption = "P: (" & Format(Pl (0), "##0.000") &_

"," & Format(PI(I), "##0.000") &_
"," & Format(pI(2), "##0.000") & ")" & vbNewLine &
"r =" & Format(r, "##0.00") & vbNewLine

GetCoords temp(O), 1, temp2(0)
IblCoords.Caption = IblCoords.Caption & "N: (" & Format(temp2(0), "##0.0") &

"," & Format(temp2(1), "##0.0") & -
"," & Format(temp2(2), "##0.0") & ;;-)" & vbNewLine

GetCoords temp(O), 2, temp2(0)
IblCoords.Caption = lblCoords.Caption & "0: (" & Format(temp2(0), "##0.0") &

"," & Format(temp2(1), "##0.0") & -
"," & Format(temp2(2), "##0.0") & ;;-)" & vbNewLine

GetCoords temp(O), 3, temp2(0)
IblCoords.Caption = IblCoords.Caption & "A: (" & Format(temp2(0), "##0.0") &_

"," & Format(temp2(1), "##0.0") &
"," & Format(temp2(2), "##0.0") & ;;-)"

For i = 1 To 6

IblAng(i - 1).Caption = "A" & Str(i) & ": " & Format(ArmAng(i), "##0.00#")
Next i

-287-

Appendix A

End Sub

Private Sub DrawPoint(MO As Double)
picXY.DrawWidth = 2
picXZ.DrawWidth = 2
picYZ.DrawWidth = 2

picXy'PSet (M(O), M(1»
picXZ.PSet (M(O), M(2»
picYZ.PSet (M(1), M(2»

picXY.DrawWidth = 1
picXZ.DrawWidth = 1
picYZ.DrawWidth = 1

End Sub

Private Sub ArmStartO
~oint angles
ArmAng(1) = 0
ArmAng(2) = 0
ArmAng(3) = 90
ArmAng(4) = 0
ArmAng(5) = 0
ArmAng(6) = 0

'joint parameters ai
ArmLen(1) = 0
ArmLen(2) = 4.318
ArmLen(3) = -0.2032
ArmLen(4) = 0
ArmLen(5) = 0
ArmLen(6) = 0

~oint parameters di
ArmDis(1) = 0
ArmDis(2) = 1.4909
ArmDis(3) = 0
ArmDis(4) = 4.3307
ArmDis(5) = 0
ArmDis(6) = 0.5625

End Sub

CODE LISTING FOR THE MODULAR MECHATRONIC
ClM INTERNET CONTROL SYSTEM

Private Sub DrawSet(FuzSetO As Double)
Dim i As lnteger

For i = -(Range - Hangledist) To Range Step Hangledist

picOut.Line (i - Hangledist, FuzSet«(i - Hangledist) + Range) / Hangledist»-(i, FuzSet«i + Range) / Hangledist»
Nextl

End Sub

Private Sub Fuzzy2InvKinO
'sugeno model

Dim temp As Double
Dim ang1 error As Double
Dim ang2 As Double
Dim ang3 As Double
Dim lenError As Double
Dim p(O To 3) As Double
Dim T(O To 15) As Double

• txtdebugText = uu

'get current transform
MakeT06 ArmAng(1), ArmLen(1), ArmDis(1), T(O)
'get current end-point

-288-

Appendix A

GetCoords T(O), 4, p(O)

CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

'calculate errors
anglerror = Rad2Deg(arcTan(dy, dx)) - Rad2Deg(arcTan(p(l), p(O)))
'lenError = Sqr«dx - PI(O)) A 2 + (dy - PI(l)) A 2 + (dz - PI(2)) A 2)
lenError= Sqr(dx A 2 + dy A 2 + dz A 2) - Sqr(pI(O) A 2 + PI(l) A 2 + PI(2) A 2)

temp = Sqr«dx - PI(O)) A 2 + (dy - PI(I)) A 2 + (dz - PI(2)) A 2)
txtdebug.Text = txtdebug.Text & "error = "& Format(temp, "#0.000") & vbNewLine

If (Abs(dx - PI(O)) < tol) And (Abs(dy - PI(I)) < tol) And (Abs(dz - PI(2)) < tol) Then
tmrFuzzy.Enabled = False
txtdebug.Text = txtdebug.Text & "Solved in " & Str(counter) & " iterations" & vbNewLine
txtdebug.Text = txtdebug.Text & "resulting co-ords:" & vbNewLine_

& "x:" & Format(P I(0), "##0.00#") & vbNewLine_
& "y:" & Format(PI(l), "##0.00#") & vbNewLine_
& "z:" & Format(PI(2), "##0.00#") & vbNewLine_
& "desired position: " & vbNewLine _
& "x:" & Format(dx, "##0.00#") & vbNewLine _
& "y:" & Format(dy, "##0.00#") & vbNewLine_
& "z:" & Format(dz, "##0.00#")

counter = 0
Exit Sub

End If
counter = counter + I

'calculate angle I
ArrnAng(l) = ArrnAng(l) + FindAngleInc(anglerror)
txtdebug.Text = txtdebug.Text & "Angle I is now" & Str(ArrnAng(l)) & vbNewLine

IfAbs(ArrnAng(I)) > 360 Then ArrnAng(l) = -ArrnAng(l)

'calculate angle3
FindLenInc lenError * 10, ang2, ang3
ArrnAng(3) = ArrnAng(3) - ang3
txtdebug.Text = txtdebug.Text & "Angle 3 is now" & Str(ArrnAng(3)) & vbNewLine

IfAbs(ArrnAng(3)) > 360 Then ArrnAng(3) = -ArrnAng(3)

'get current transform
MakeT06 ArrnAng(I), ArrnLen(I), ArrnDis(I), T(O)
'get current end-point
'etCoords T(O), 4, p(O)

ang2 = Rad2Deg(arcTan(dz, Sqr(dx A 2 + dy A 2))) - Rad2Deg(arcTan(p(2), Sqr(p(O) A 2 + p(l) A 2)))
ArrnAng(2) = ArrnAng(2) - FindAngleInc(ang2)
txtdebug.Text = txtdebug.Text & "Angle 2 is now" & Str(ArrnAng(2)) & vbNewLine

If Abs(ArmAng(2)) > 360 Then ArrnAng(2) = -ArrnAng(2)

'draw
DrawAxis
DrawArm ArrnAng, ArrnLen, ArrnDis
temp = Sqr«dx - PI(O)) A 2 + (dy.- PI(I)) A 2 + (dz _PI(2)) A 2)
txtdebug.Text = txtdebug.Text & "resultmg co-ords." & vbNewLme

& "x:" & Format(p I(0), "##0.00#") & vbNewLine
& "y:" & Format(p I(I), "##0.00#") & vbNewLine
& "z:" & Format(PI(2), "##0.00#") & vbNewLine ­
& "strt line error is:" & Format(temp, "##0.0#") -

End Sub

Private Sub ConInvKin20
Dim p(O To 3) As Double
Dim N(O To 3) As Double

-289-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
ClM INTERNET CONTROL SYSTEM

Dim a(O To 3) As Double
Dim 0(0 To 3) As Double
Dim temp As Double, temp2 As Double
Dim i As Integer
Dim z3(0 To 3) As Double
Dim res(O To 3) As Double
Dim T03(0 To 15) As Double
Dim arml As Integer, arm2 As Integer, arm3 As Integer

For i = 0 To 3
p(i) = Val(txtP(i).Text)
N(i) = Val(txtN(i).Text)
a(i) = Val(txtA(i).Text)
o(i) = Val(txtO(i).Text)

Next i
arm1 = chkRight.value * 2 - I
arm2 = chkAbove.value * 2 - I
arm3 = chkDown.value * 2 - I

Fori =0 To 2
p(i) = p(i) - ArmDis(6) * a(i)

Nexti

ArmAng(l) = Rad2Deg(lNVKIN]indAnglel(p(0), ArmDis(2), arml))
ArmAng(2) = Rad2Deg(INVKIN]indAngle2(p(0), ArmDis(I), ArmLen(l), arml, arm2))
ArmAng(3) = Rad2Deg(INYKIN]indAngle3(p(0), ArmDis(l), ArmLen(l), armI , arm2))

MakeT03 ArmAng(I), ArmLen(I), ArmDis(l), T03(0)
GetCoords T03(0), 3, z3(0)
X]rod z3(0), a(O), res(O)
IfVectMag(res) = 0 Then

temp = 0
Else

temp2 = DotProd(o(O), res(O))
If temp2 = 0 Then

temp2 = DotProd(N(O), res(O))
End If
temp = temp2 / VectMag(res)

End If
i = Sgn(temp) * arm3
ArmAng(4) = Rad2Deg(1NVKIN]indAngle4(a(O), ArmAng(l), i))
ArmAng(5) = Rad2Deg(INVKIN_FindAngle5(a(0), ArmAng(I)))
ArmAng(6) = Rad2Deg(lNVKIN]indAngle6(N(0), 0(0), ArmAng(l)))

DrawAxis
DrawArm ArmAng, ArmLen, ArmDis
Fori = 0 To 3

p(i) = Val(txtP(i).Text)
Nexti
temp = Sqr«(P(O) - PI (0)) A 2 + (p(I) - PI(I)) A 2 + (p(2) _PI(2)) A 2)
txtdebug.Text = "resulting co-ords:" & vbNewLine

& "x:" & Format(PI(O), "##0.0#") & vbN-;;wLine
& "y:" & Format(pl(l), "##0.0#") & vbNewLine ­
& "z:" & Format(P I(2), "##0.0#") & vbNewLine ­
& "slrt line error is:" & Format(temp, "##0.0#") -

End Sub

Private Function VectMag(VO As Double) As Double
VectMag = Sqr(V(O) A 2 + V(I) A 2 + V(2) A 2)

End Function

Private Sub Form_Unload(Cancel As Integer)
Unload FormI

End Sub

-290-

Appendix A

Private Sub tmrAnim_TimerO
Dim i As Integer
Dim angErr As Double
Dim AtPos(1 To 6) As Boolean

CODE LISTING FOR THE MODULAR MECHATRONIC
ClM INTERNET CONTROL SYSTEM

'update angles
For i = I To 6
If Not AtPos(i) Then

angErr = ArrnPath(CurrentPathPoint).Angles(i) - ArmAng(i)
'added to remove circular movement
If angErr < -180 Then

ArrnPath(CurrentPathPoint).Angles(i) = ArrnPath(CurrentPathPoint).Angles(i) + 360
End If
If angErr > 180 Then

ArrnPath(CurrentPathPoint).Angles(i) = ArrnPath(CurrentPathPoint).Angles(i) - 360
End If
If angErr > 5 Then

ArmAng(i) = ArmAng(i) + 5
ElseIf angErr < -5 Then

ArrnAng(i) = ArmAng(i) - 5
Else

ArmAng(i) = ArmAng(i) + angErr
AtPos(i) = True

End If
End If

Next i

'draw
DrawAxis
DrawArrn ArrnAng, ArrnLen, ArrnDis
DrawPath
IblPath.Caption = Str(CurrentPathPoint) &" of" & Str(NumPathPoints)

'if at pos then move to next point
If AtPos(l) And AtPos(2) And AtPos(3) And AtPos(4) And AtPos(5) And AtPos(6) Then

'check if at end of path
IfCurrentPathPoint >= NumPathPoints Then

tmrAnim.Enabled = False
Else

'increase path point
CurrentPathPoint = CurrentPathPoint + I

End If
End If

End Sub

Private Sub tmrConv_TimerO
ConInvKin2

End Sub

Private Sub tmrFuzzy_TimerO
Fuzzy3InvKin

End Sub

Private Sub DrawPathO
Dim i As Integer

picXY.ForeColor = vbGreen
picXZ.ForeColor = vbGreen
picYZ.ForeColor = vbGreen

For i = 2 To NumPathPoints

picXY.Line (ArrnPath(i - 1).Pos(O), ArrnPath(i - 1).Pos(I»-_
(ArrnPath(i).Pos(O), ArrnPath(i).Pos(l»

picXZ.Line (ArrnPath(i - I).Pos(O), ArrnPath(i - I).Pos(2»- _

-291-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

(ArmPath(i).Pos(O), ArmPath(i).Pos(2»
picYZ.Line (ArmPath(i - 1).Pos(I), ArmPath(i - 1).Pos(2»- _

(ArmPath(i).Pos(I), ArmPath(i).Pos(2»
Nexti

picXY.ForeColor = vbBlack
picXZ.ForeColor = vbBlack
picYZ.ForeColor = vbBlack

End Sub

Public Sub Interpolate(NewPointO As Double, NumSteps As Integer)
Dim i As Integer
Dim delX As Double, delY As Double, delZ As Double

txtdebug.Text = ""
IfoptFuzzy.value Then

For i = I To NumSteps
delX = (NewPoint(O) - ArmPath(NumPathPoints).Pos(O» I (NumSteps - i + I)
delY = (NewPoint(l) - ArmPath(NumPathPoints).Pos(l» I (NumSteps - i + I)
delZ = (NewPoint(2) - ArmPath(NumPathPoints).Pos(2) I (NumSteps - i + I)

dx = ArmPath(NumPathPoints).Pos(O) + delX
dy = ArmPath(NumPathPoints).Pos(l) + delY
dz = ArmPath(NumPathPoints).Pos(2) + delZ
tmrFuzzy.Enabled = True
Do

DoEvents
Loop Until Not tmrFuzzy.Enabled
cmdPathStore_Click

Nexti
Else

For i = I To NumSteps
txtdebug.Text = txtdebug.Text & "point" & Str(i) & vbNewLine
delX = (NewPoint(O) - ArmPath(NumPathPoints).Pos(O») I (NumSteps - i + I)
txtdebug.Text = txtdebug.Text & "dx =" & Format(deIX, "#0.000") & vbNewLine
delY = (NewPoint(l) - ArmPath(NumPathPoints).Pos(I)) I (NumSteps - i + I)
txtdebug.Text = txtdebug.Text & "dy =" & Format(delY, "#0.000") & vbNewLine
delZ = (NewPoint(2) - ArmPath(NumPathPoints).Pos(2) I (NumSteps - i + I)
txtdebug.Text = txtdebug.Text & "dz =" & Format(deIZ, "#0.000") & vbNewLine

txtP(O).Text = Format«ArmPath(NumPathPoints).Pos(O) + deIX), "#0.000")
txtP(1).Text = Format«ArmPath(NumPathPoints).Pos(l) + deIY), "#0.000")
txtP(2).Text = Format«ArmPath(NumPathPoints).Pos(2) + delZ), "#0.000")
txtdebug.Text = txtdebug.Text & "Desired co-ords:" & vbNewLine_

& "(" & txtP(O).Text & "," & txtP(I).Text_
& "," & txtP(2).Text & ")" & vbNewLine

ConlnvKin2
'trnrConv.Enabled = True
'Do
, DoEvents
'Loop Until Not tmrConv.Enabled
cmdPathStore_Click
txtdebug.Text = txtdebug.Text & "Resultmg co-ords:" & vbNewLme

& "(" & txtP(O).Text & "," & txtP(1).Text_
& "," & txtP(2).Text & ")" & vbNewLine

Nexti
End If

End Sub

Private Sub Fuzzy3lnvKinO
'sugeno model
Dim temp As Double, temp2 As Double
Dim anglerror As Double

-292-

Appendix A

Dim ang2 As Double
Dim ang3 As Double
Dim lenError As Double
Dim p(O To 3) As Double
Dim T(O To 15) As Double
Dim N(O To 3) As Double
Dim a(O To 3) As Double
Dim 0(0 To 3) As Double
Dim i As Integer
Dim z3(0 To 3) As Double
Dim res(O To 3) As Double
Dim T03(O To 15) As Double
Dim arm3 As Integer

, txtdebug.Text = ""

CODE LISTING FOR THE MODULAR MECHATRONIC
ClM INTERNET CONTROL SYSTEM

'get current transform
MakeT06 ArmAng(l), ArmLen(l), ArmDis(l), T(O)
'get current end-point
GetCoords T(O), 4, p(O)

'calculate errors
anglerror = Rad2Deg(arcTan(dy, dx» - Rad2Deg(arcTan(p(I), p(O»)
'lenError = Sqr«dx - PI(O» A 2 + (dy - PI(I» A 2 + (dz - PI(2» A 2)
lenError = Sqr(dx A 2 + dy A 2 + dz A 2) - Sqr(pI(O) A 2 + PI(l) A 2 + PI(2) A 2)

temp = Sqr«dx - PI (0» A 2 + (dy - PI(l» A 2 + (dz - PI(2» A 2)
txtdebug.Text = txtdebug.Text & "iteration" & counter & " "

txtdebug.Text = txtdebug.Text & "error = " & Format(temp, "#0.000") & vbNewLine

If (Abs(dx - PI(O» < tol) And (Abs(dy - PI (I» < tol) And (Abs(dz - PI (2» < tol) Then
tmrFuzzy.Enabled = False
txtdebug.Text = txtdebug.Text & "Solved in "& Str(counter) & "iterations" & vbNewLine
txtdebug.Text = txtdebug.Text & "resulting co-ords:" & vbNewLine _

& "x:" & Format(PI(O), "##0.00#") & vbNewLine_
& "y:" & Format(PI(I), "##0.00#") & vbNewLine_
& "z:" & Format(pI(2), "##0.00#") & vbNewLine_
& "desired position: " & vbNewLine _
& "x:" & Format(dx, "##0.00#") & vbNewLine_
& "y:" & Format(dy, "##0.00#") & vbNewLine_
& "z:" & Format(dz, "##0.00#")

counter = 0
Exit Sub

End If
counter = counter + I

'calculate angle I
ArmAng(l) = ArmAng(l) + FindAngleInc(anglerror)

If Abs(ArmAng(I» > 360 Then ArmAng(l) = -ArmAng(l)

'calculate angle3
FindLenlnc lenError * 10, ang2, ang3
ArmAng(3) = ArmAng(3) - ang3

IfAbs(ArmAng(3» > 360 Then ArmAng(3) = -ArmAng(3)

'get current transform
MakeT06 ArmAng(l), ArmLen(l), ArmDis(l), T(O)
'get current end-point
'etCoords T(O), 4, p(O)

ang2 = Rad2Deg(arcTan(dz, Sqr(dx A 2 + dy A 2») - Rad2Deg(arcTan(p(2), Sqr(p(O) A 2 + p(l) A 2»)
ArmAng(2) = ArmAng(2) - FindAnglelnc(ang2)

-293-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

If Abs(ArmAng(2» > 360 Then ArmAng(2) = -ArmAng(2)

'1111111111111

For i = 0 To 3
N(i) = Val(txtN(i).Text)
a(i) = Val(txtA(i).Text)
o(i) = Val(txtO(i).Text)

Next i
arm3 = chkDown.value * 2 - I

MakeT03 ArmAng(l), ArmLen(l), ArmDis(l), T03(0)
GetCoords T03(0), 3, z3(0)
X]rod z3(0), a(O), res(O)
IfVectMag(res) = 0 Then

temp = 0
Else

temp2 = DotProd(o(O), res(O»
Iftemp2 = 0 Then

temp2 = DotProd(N(O), res(O»
End If
temp = temp2 I VectMag(res)

End If
i = Sgn(temp) * arm3
ArmAng(4) = Rad2Deg(INVK.IN]indAngle4(a(0), ArmAng(1), i»
ArmAng(5) = Rad2Deg(1NVKIN]indAngle5(a(0), ArmAng(I »)
ArmAng(6) = Rad2Deg(INVKIN_FindAngle6(N(0), 0(0), ArmAng(I»)
For i = I To 6

txtdebug.Text = txtdebug.Text & "Angle" & i & " is now" & Format(ArmAng(i), "##0.00#") & vbNewLine
Next i

'11111111
'draw
DrawAxis
DrawArm ArmAng, ArmLen, ArmDis

End Sub

5.4 PCL832.bas

Option Explicit
'kallyliu@iafrica.com
.email PCB designer

Declare Sub IO_outport Lib "IO.dll" (ByVal port As Integer, ByVal value As Integer)
Declare Function 10_inport Lib "IO.dll" (ByVal port As Integer) As Integer

Private Const ADDRI As Long = &H240
Private Const ADDR2 As Long = &H220

Public Sub PCL832Jeset(card As Integer)
If card = 0 Then

IO_outport ADDRI + &HIA, 0
Else

IO_outport ADDR2 + &HIA, 0
End If

End Sub

Public Sub PCL832_DDA_enable(card As Integer)
If card = 0 Then

IO_outportADDRI +&HI8,0

-294-

Appendix A

Else
10_outport ADDR2 + &HI8, 0

End If
End Sub

CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

Public Function PCL832_DDA_time(card As Integer, time As Integer) As Integer
Dim temp As Integer

temp = Int(time / 0.512)
If card = 0 Then

10_outport ADDRI + &H4, temp
Else

10_outport ADDR2 + &H4, temp
End If
PCL832_DDA_time = Int(temp * 0.512)

End Function

Public Sub PCL832_set_gain(card As Integer, channel As Integer, gain As Integer)
Dim temp As Integer

Select Case channel
Case I : temp = &H2
Case 2: temp = &HA
Case 3: temp = &Hl2
Case Else: Exit Sub

End Select
If card = 0 Then
10_outport ADDRI + temp, gain

Else
10_outport ADDR2 + temp, gain

End If
End Sub

Public Function PCL832~et_error(card As Integer, channel As Integer) As Integer
Dim temp As Integer
Dim error As Integer

Select Case channel
Case I: temp = &HO
Case 2: temp = &H8
Case 3: temp = &HIO
Case Else: Exit Function

End Select
If card = 0 Then

error = 10_inport(ADDRI + temp)
Else
error = la_inport(ADDR2 + temp)

End If
If error> 0 Then

PCL832_get_error = error - &H7000
Else
PCL832~et_error = error

End If
End Function

Public Function PCL832~et_status(card As Integer, channel As Integer) As String
DIm temp As Integer
Dim status As Integer
Dim out As String

Select Case channel
Case I: temp = &H2
Case 2: temp = &HA
Case 3: temp = &H12
Case Else: Exit Function

-295-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
ClM INTERNET CONTROL SYSTEM

End Select
If card = 0 Then

status = IO_inport(ADDRl + temp)
Else

status = IO_inport(ADDR2 + temp)
End If
'out = Str((status And &H8» & "-" & Str((status And &H2» & Str((status And I»
out = Hex(status)
PCL832_get_status = out

End Function

Public Sub pcl832~set-!,ulse(card As Integer, channel As Integer, pulses As Integer)
Dim temp As Integer
Dim t-!,ulse As Integer

Select Case channel
Case I: temp = &HO
Case 2: temp = &H8
Case 3: temp = &HIO
Case Else: Exit Sub

End Select
Ifpulses < 0 Then

t-!,ulse = -pulses
t-!,ulse = t-!,ulse + &H8000

Else
t_pulse = pulses

End If
Ifcard = 0 Then
10_outport ADDRI + temp, t-!,ulse

Else
10_outport ADDR2 + temp, t-!,ulse

End If
End Sub

5.5 Den.bas

Option Explicit

'Maths defs

Declare Sub MatrixMuIt4b4 Lib "Maths.dll" Alias "MATRIXMULT4B4" (a As Double, b As Double, c As Double)
Declare Sub MatrixMult4bl Lib "Maths.dll" Alias "MATRIXMULT4BI" (a As Double, b As Double, c As Double)
Declare Sub X Prod Lib "Maths.dlI" Alias "X PROD" (a As Double, b As Double, c As Double)
Declare Functi-;;n DotProd Lib "Maths.dll" Ali~ "DOTPROD" (a As Double, b As Double) As Double

Declare Function Rad2Deg Lib "Maths.dll" Alias "RAD2DEG" (ByVal r As Double) As Double
Declare Function Deg2Rad Lib "Maths.dll" Alias "DEG2RAD" (ByVal d As Double) As Double

Declare Sub Mat Lib "Maths.dll" Alias "MAT" (M As Double, ByVal r As Long, ByVal c As Long, ByVal V As Double)

Declare Sub MakeTArm Lib "Maths.dll" Alias "MAKETARM" (ang As Double, leng As Double, dis As Double, M As Double)
Declare Sub MakeTl Lib "Maths.dll" Alias "MAKETl" (ang As Double, leng As Double, dis As Double, M As Double)

Declare Sub MakeOAI Lib "Maths.dll" Alias "MAKEOAI" (ang As Double, leng As Double, dis As Double, M As Double)
Declare Sub MakelAZ Lib "Maths.dll" Alias "MAKEIAZ" (ang As Double, leng As Double, dis As Double, M As Double)
Declare Sub Make2A3 Lib "Maths.dll" Alias "MAKE2A3" (ang As Double, leng As Double, dis As Double, M As Double)
Declare Sub Make3A4 Lib "Maths.dlI" Alias "MAKE3A4" (ang As Double, leng As Double, dis As Double, M As Double)
Declare Sub Make4A5 Lib "Maths.dll" Alias "MAKE4A5" (ang As Double, leng As Double, dis As Double, M As Double)
Declare Sub Make5A6 Lib "Maths.dll" Alias "MAKE5A6" (ang As Double, leng As Double, dis As Double, M As Double)

Declare Sub MakeT03 Lib "Maths.dll" Alias "MAKET03" (ang As Double, leng As Double, dis As Double, M As Double)
Declare Sub MakeT36 Lib "Maths.dll" Alias "MAKET36" (ang As Double, leng As Double, dis As Double, M As Double)
Declare Sub MakeT06 Lib "Maths.dll" Alias "MAKET06" (ang As Double, leng As Double, dis As Double, M As Double)

-296-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

Declare Sub GetCoords Lib "Maths.dll" Alias "GETCOORDS" (T As Double, ByVal col As Long, M As Double)
Declare Function arcTan Lib "Maths.dll" Alias "ARCTAN" (ByVal y As Double, ByVal x As Double) As Double

, Fuzzy Logic Defs
Declare Sub SFUZMakeAngleSet Lib "sfuzzy.dll" (DescSet As Double, FuzSet As Double)
Declare Function SFUZevalAngleSet Lib "sfuzzy.dll" (ByVal x As Double, FuzSet As Double) As Double
Declare Sub SFUZAngleSetAND Lib "sfuzzy.dll" (Aset As Double, Bset As Double, Cset As Double)
Declare Sub SFUZAngleSetOR Lib "sfuzzy.dll" (Aset As Double, Bset As Double, Cset As Double)
Declare Sub SFUZminTnorrnAngle2var Lib "sfuzzy.dll" (ByVal x As Double, Aset As Double,_

ByVal y As Double, Bset As Double,_
Cset As Double, Mset As Double)

Declare Sub SFUZmaxCnorrnAngle2var Lib "sfuzzy.dll" (C I As Double, C2 As Double, Mset As Double)
Declare Function SFUZdefuzAngleSet Lib "sfuzzy.dll" (Fset As Double) As Double

, Inverse Kinematics Defs

Declare Function INVKIN]indAnglel Lib "OldInvKin.dll" (p As Double, ByVal d2 As Double, ByVal arm As Long) As Double
Declare Function INVKIN_FindAngle2 Lib "OldInvKin.dll" (p As Double, d As Double, a As Double, ByVal arm As Long, ByVal
elbow As Long) As Double

Declare Function INVKlN]indAngle3 Lib "OldInvKin.dll" (p As Double, d As Double, a As Double, ByVal arm As Long, ByVal
elbow As Long) As Double
Declare Function INVKIN]indAngle4 Lib "OldInvKin.dll" (a As Double, Angles As Double, ByVal M As Long) As Double
Declare Function INVKIN]indAngle5 Lib "OldInvKin.dll" (a As Double, Angles As Double) As Double
Declare Function INVKlN_FindAngle6 Lib "OldInvKin.dll" (N As Double, 0 As Double, Angles As Double) As Double

5.6 Funcs.bas

Option Explicit

Private Const MaxCount = 10

'types
Public Type ArmPosTp

Angles(l To 6) As Double
Pos(O To 3) As Double

End Type

'path
Public ArmPathO As ArmPosTp
Public NumPathPoints As Integer
Public CurrentPathPoint As Integer

'geometric arm conditions
Public Const LEFT = -I
Public Const RIGHT = I
Public Const ABOVE = I
Public Const BELOW =-1
Public Const UP = -1
Public Const DOWN = I

'fuzzy sets:
Public Const Hangledist = 2
Public Const Range = 360
Public Const NumValues = 360
Public Const tol = 0.001

Public AIZero(O To NumValues) As Double
Public Al SmallPos(O To NumValues) As Double
Public AI LargePos(O To NumValues) As Double
Public AISmaIlNeg(O To NumValues) As Double
Public Al LargeNeg(O To NumValues) As Double
Public LenZero(O To NumValues) As Double

-297-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

Public LenSmallPos(O To NumValues) As Double
Public LenLargePos(O To NumValues) As Double
Public LenSmallNeg(O To NumValues) As Double
Public LenLargeNeg(O To NumValues) As Double

Public Sub MatVB(MO As Double, r As Integer, c As Integer, V As Double)
M«r-I) * 4 + (c -I»=V

End Sub

Public Sub MakeT(Xang As Double, Yang As Double, Zang As Double, MO As Double)
Dim TrX(O To IS) As Double
Dim TrY(O To IS) As Double
Dim TrZ(O To IS) As Double
Dim temp(O To 15) As Double
Dim Cx As Double, Sx As Double
Dim Cy As Double, Sy As Double
Dim Cz As Double, Sz As Double

Cx = Cos(Deg2Rad(Xang»
Sx = Sin(Deg2Rad(Xang»
Cy = Cos(Deg2Rad(Yang»
Sy = Sin(Deg2Rad(Yang»
Cz = Cos(Deg2Rad(zang»
Sz = Sin(Deg2Rad(Zang»

MatTrX(O), I, I, 1
Mat TrX(O), 2, 2, Cx
Mat TrX(O), 2, 3, -Sx
Mat TrX(O), 3,2, Sx
Mat TrX(O), 3, 3, Cx
Mat TrX(O), 4, 4, 1

Mat TrY(O), 1, 1, Cy
Mat TrY(O), 1,3, Sy
Mat TrY(O), 2, 2, 1
Mat TrY(O), 3,1, -Sy
Mat TrY(O), 3, 3, Cy

Mat TrZ(O), 1, 1, Cz
Mat TrZ(O), 1,2, -Sz
Mat TrZ(O),2, I,Sz
Mat TrZ(O), 2, 2, Cz
Mat TrZ(O), 3, 3, 1
Mat TrZ(O), 4, 4, I

MatrixMult4b4 TrX(O), TrY(O), temp(O)
MatrixMult4b4 temp(O), TrZ(O), M(O)

End Sub

Public Sub MakeFuzSetsO
Dim DescSet(O To 8) As Double

'angle sets
'zero
DescSet(O) = 3
DescSet(l) = -10
DescSet(2) = 0
DescSet(3) = 0
DescSet(4) = 1
DescSet(5) = 10
DescSet(6) = 0
SFUZMakeAngleSet DescSet(O), AI Zero(O)

'small pos
DescSet(O) = 3

-298-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

DescSet(l) = 0
DescSet(2) = 0
DescSet(3) = 10
DescSet(4) = I
DescSet(5) = 100
DescSet(6) = 0
SFUZMakeAngleSet DescSet(O), A ISmallPos(O)

'large pos
DescSet(O) = 3
DescSet(l) = 10
DescSet(2) = 0
DescSet(3) = 100
DescSet(4) = I
DescSet(5) = Range
DescSet(6) = 1
SFUZMakeAngleSet DescSet(O), AI LargePos(O)

'small neg
DescSet(O) = 3
DescSet(1) = -I 00
DescSet(2) = 0
DescSet(3) = -10
DescSet(4) = I
DescSet(5) = 0
DescSet(6) = 0
SFUZMakeAngleSet DescSet(O), AISmallNeg(O)

'large neg
DescSet(O) = 3
DescSet(l) = -Range
DescSet(2) = I
DescSet(3) = -100
DescSet(4) = 1
DescSet(5) = -10
DescSet(6) = 0
SFUZMakeAngleSet DescSet(O), A I LargeNeg(O)

'length sets
'Ien zero
DescSet(O) = 3
DescSet(l) = -30
DescSet(2) = 0
DescSet(3) = 0
DescSet(4) = 1
DescSet(5) = -30
DescSet(6) = 0
SFUZMakeAngleSet DescSet(O), LenZero(O)

'len small pos
DescSet(O) = 3
DescSet(I) = 0
DescSet(2) = 0
DescSet(3) = 30
DescSet(4) = 1
DescSet(5) = 100
DescSet(6) = 0
SFUZMakeAngleSet DescSet(O), LenSmallPos(O)

1en large pas
DescSet(O) = 2
DescSet(l) = 30
DescSet(2) = 0
DescSet(3) = 100
DescSet(4) = I

-299-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

SFUZMakeAngleSet DescSet(O), LenLargePos(O)

'Ien small neg
DescSet(O) = 3
DescSet(l) = -100
DescSet(2) = 0
DescSet(3) = -30
DescSet(4) = I
DescSet(5) = 0
DescSet(6) = 0
SFUZMakeAngleSet DescSet(O), LenSmallNeg(O)

'Ien large neg
DescSet(O) = 2
DescSet(l) = -100
DescSet(2) = I
DescSet(3) = -30
DescSet(4) = 0
SFUZMakeAngleSet DescSet(O), LenLargeNeg(O)

End Sub

Public Function FindAngleInc(error As Double) As Double
Dim c(l To 5) As Double
Dim temp As Double
Dim w As Double

'rules
'1- If error is zero, increase = 0
'2- If error is small pos, increase = + I0
'3- If error is large pos, increase = + I00
'4- If error is small neg, increase = -10
'5- If error is large neg, increase = -100
w=O

'rule 1
temp = SFUZevaIAngleSet(error, AIZero(O»
c(l) = 0
w=w+temp

'rule 2
temp = SFUZevalAngleSet(error, AlSmallPos(O»
c(2) = temp * 10
w=w+temp

'rule 3
temp = SFUZevalAngleSet(error, Al LargePos(O»
c(3) = temp * 100
w=w+temp

'rule 4
temp = SFUZevalAngleSet(error, AlSmallNeg(O»
c(4) = temp *-10
w=w+temp

'rule 5
temp = SFUZevalAngleSet(error, Al LargeNeg(O»
c(5) = temp * -100
w=w+temp

temp = (c(l) + c(2) + c(3) + c(4) + c(5» / w
FindAngleInc = temp

End Function

Public Sub FindLenInc(error As Double, a2inc As Double, a3inc As Double)
Dim C2(1 To 5) As Double, c3(1 To 5) As Double

-300-

Appendix A

Dim temp As Double
Dim w As Double

CODE LISTING FOR THE MODULAR MECHATRONIC
ClM INTERNET CONTROL SYSTEM

'rules
'1_ Iflen error is zero, inc2 = 0, inc3 = 0
'2_ If len error is small pos, inc2 = +5, inc3 = +50
'3- If len error is large pos, inc2 = +20, inc3 = +100
'4_ If len error is small neg, inc2 = -5, inc3 = -50
'5_ Iflen error is large neg, inc2 = -20, inc3 = -lOO
w=O

'rule I
temp = SFUZevaIAngleSet(error, LenZero(O»
c3(1) = 0
w=w+temp

'rule 2
temp = SFUZevalAngleSet(error, LenSmallPos(O»
c3(2) = temp * 50
w=w+temp

'rule 3
temp = SFUZevalAngleSet(error, LenLargePos(O»
c3(3) = temp * lOO
w= w+ temp

'rule 4
temp = SFUZevalAngleSet(error, LenSmallNeg(O»
c3(4) = temp * -50
w=w+temp

'rule 5
temp = SFUZevaIAngleSet(error, LenLargePos(O»
c3(5) = temp * -100
w=w+temp

a3inc = (c3(1) + c3(2) + c3(3) + c3(4) + c3(5» I w
End Sub

Public Sub SavePath(fuame As String)
Dim i As Integer
Dim fu As Integer

fu = FreeFile
Open fuame For Binary As #fu

Put #fn, , NumPathPoints
For i = I To NumPathPoints

Put #fu, , ArrnPath(i)
Nexti

Close #fu
End Sub

Public Sub OpenPath(fuame As String)
Dim i As Integer
Dim fu As Integer

fu = FreeFile
Open fuame For Binary As #fu

Get #fu, , NumPathPoints
ReDim ArmPath(1 To NumPathPoints)
For i = I To NumPathPoints

Get #fu, , ArmPath(i)
Nexti

Close #fu
End Sub

-301-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

6 Code listing for the Web Client - WEBClient.vbp

6.1 frmWEBClient

Option Explicit
Dim messageln As String
Dim messageOut As String
Private Sub cmdAGVAVIS_ClickO
frmTCPClient.txtSend.Text = "ClientWEB-AGVAVIS"
texl.Text = "ClientWEB-AGVAVIS"
End Sub

Private Sub cmdAGVROBOT_ClickO
frmTCPClient.txtSend.Text = "ClientWEB-AGVROBOT"
texl.Text = "ClientWEB-AGVROBOT"
End Sub
Private Sub cmdAVISAGV_ClickO
frmTCPClient.txtSend. Text = "ClientWEB-AVISAGV"
texl.Text = "ClientWEB-AVISAGV"
End Sub
Private Sub cmdCONEXIT_ClickO
frmTCPClient.txtSend.Text = "ClientWEB-EXIT"
texl.Text = "ClientWEB-EXIT"
End
End Sub
Private Sub cmdCONSTART_ClickO
frmTCPClient.txtSend.Text = "ClientWEB-START"
tex1.Text = "ClientWEB-START"
End Sub

Private Sub cmdRjIp_ClickO
frmTCPClient.txtSend.Text = "ClientROB-" & jl.Text & j2.Text & j3.Text & j4.Text_
&j5.Text &j6.Text
tex1.Text = "ClientROB-" &j1.Text &j2.Text &j3.Text &j4.Text_
&j5.Text &j6.Text
End Sub

Private Sub cmdRj2p_ClickO
frmTCPClient.txtSend. Text = "ClientROB-" & j 1.Text & j2.Text & j3.Text & j4.Text_
&j5.Text &j6.Text
tex1.Text = "ClientROB-" & j 1.Text & j2.Text & j3.Text & j4.Text
&j5.Text&j6.Text -
End Sub

Private Sub cmdRj3p_ClickO
frmTCPClient.txtSend.Text = "ClientROB-" & j 1.Text & j2.Text & j3 .Text & j4.Text
&j5.Text &j6.Text -
tex1.Text = "ClientROB-" &j1.Text &j2.Text &j3.Text &j4.Text
&j5.Text &j6.Text
End Sub

Private Sub cmdRj4p_ClickO
frmTCPClient.txtSend.Text = "ClientROB-" & jl.Text & j2.Text & j3.Text & j4.Text_
&j5.Text &j6.Text
tex1.Text = "ClientROB-" &j1.Text &j2.Text &j3.Text &j4.Text
&j5.Text &j6.Text
End Sub

Private Sub cmdRj5p_ClickO
frmTCPClient.txtSend. Text = "ClientROB-" & j I.Text & j2.Text & j3.Text & j4.Text
&j5.Text&j6.Text -
tex1.Text = "ClientROB-" &j1.Text &j2.Text &j3.Text &j4.Text
&j5.Text&j6.Text -

-302-

Appendix A

End Sub

CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

Private Sub cmdRj6p_ClickO
frmTCPClient.txtSend.Text = "ClientROB-" &jl.Text &j2.Text &j3.Text &j4.Text_
&j5.Text &j6.Text
tex!.Text = "ClientROB-" &j!.Text &j2.Text &j3.Text &j4.Text_
&j5.Text&j6.Text
End Sub

Private Sub cmdROBOTAGV_ClickO
frrnTCPClient.txtSend.Text = "ClientWEB-ROBOTAGV"
texI.Text = "ClientWEB-ROBOTAGV"
End Sub

Private Sub cmdROBOTAVIS_ClickO
frrnTCPClient.txtSend.Text = "ClientROB-X" & xpos & "Y" & ypos_
& "Z" &zpos
texI.Text = "ClientROB-X" & xpos & "Y" & ypos _
& "Z" &zpos
End Sub

Private Sub cmdRxyz_ClickO
frrnTCPClient.txtSend.Text = "ClientWEB-AVISROBOT"
texI.Text = "ClientWEB-AVISROBOT"
End Sub

Private Sub OptionI_ClickO
Option2.Enabled = False
Option3.Enabled = False
Option4.Enabled = False
frrnTCPClient. txtSend.Text = "ClientWEB-CAM I"
tex!.Text = "ClientWEB-CAM I"
End Sub

Private Sub Option2_ClickO
Option I.Enabled = False
Option3.Enabled = False
Option4.Enabled = False
frmTCPClient.txtSend. Text = "ClientWEB-CAM2"
texl.Text = "ClientWEB-CAM2"
End Sub

Private Sub Option3_ClickO
Option2.Enabled = False
Option I.Enabled = False
Option4.Enabled = False
frrnTCPClient.txtSend.Text = "ClientWEB-CAM3"
tex I.Text = "ClientWEB-CAM3"
End Sub

Private Sub Option4_ClickO
Option2.Enabled = False
Option3.Enabled = False
Option I.Enabled = False
frrnTCPClient.txtSend.Text = "ClientWEB-CAM4"
texl.Text = "ClientWEB-CAM4"
End Sub

Private Sub Textl_ChangeO
Dim WEBmessage As String
Let WEBmessage = Textl.Text

End Sub

-303-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

6.2 frmWEBTCPClient

Option Explicit

Private Sub Form_LoadO
cmdSend.Enabled = False
, set up local port and wait for connection
tcpClient.RemoteHost = "146.230.192.36"
tcpClient.RemotePort = 5000 'server port
Call tcpClient.Connect 'connect to RemoteHost address

End Sub

Private Sub Form_TerminateO
Call tcpClient.Close

End Sub

Private Sub Form_ResizeO
On Error Resume Next
Call cmdSend.Move(ScaleWidth - cmdSend.Width, 0)
Call txtSend.Move(O, 0, ScaleWidth - cmdSend.Width)
Call txtOutput.Move(O, txtSend.Height, ScaleWidth,_

ScaleHeight - txtSend.Height)
End Sub

Private Sub tcpClient_ConnectO
, when connection occurs, display a message
cmdSend.Enabled = True
txtOutput.Text = "Connected to Web Server at IP Address: " &

tcpClient.RemoteHostIP & vbCrLf & "Port #: " &
tcpClient.RemotePort & vbCrLf & vbCrLf

End Sub

Private Sub tcpClient_DataArrival(ByVal bytesTotal As Long)
Dim message As String
Call tcpClient.GetData(message) 'get data from server
txtOutput.Text = txtOutput.Text & message & vbCrLf & vbCrLf
txtOutput.SelStart = Len(txtOutput.Text)
frrnWEBClient.Textl.Text = message

End Sub

Private Sub tcpClient_CloseO
cmdSend.Enabled = False
Call tcpClient.Close 'server closed, client should too
txtOutput.Text = _

txtOutput.Text & "Server closed connection." & vbCrLf
txtOutput.SelStart = Len(txtOutput.Text)

End Sub
Private Sub tcpClient_Error(ByVal Number As Integer,

Description As String, ByVal Scode As Long, _ ­
ByVal Source As String, ByVal HelpFile As String,_
ByVal HelpContext As Long, CancelDisplay As Boolean)

Dim result As Integer
result = MsgBox(Source & ": " & Description,_

vbOKOnly, "TCP/IP Error")
End

End Sub
Private Sub cmdSend_ClickO

, send data to server
Call tcpClient.SendData(txtSend.Text)
txtOutput.Text = txtOutput.Text &

txtSend.Text & vbCrLf & vbCrLf
txtOutput.SelStart = Len(txtOutput.Text)
txtSend.Text = ""

End Sub

-304-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

7 Code listing for frame grabber card - flahptb.vbp

7.1 frmConfig

Private Sub chkFieldRep_ClickO
Dim nRet As Integer
Dim Check As Integer
Rem check the value of field replicate
Check = frmConfig.chkScaleVideo.value
nReplicate = Check

End Sub

Private Sub chkRemoteGrab_ClickO
Dim nRet As Integer
Dim Check As Integer
Rem check the value of field replicate
Check = frmConfig.chkRemoteGrab.value
nRemoteGrab = Check

End Sub

Private Sub chkScaleVideo_ClickO
Dim nRet As Integer
Dim Check As Integer
Rem Turn on/offthe scale video
Check = frmConfig.chkScaleVideo.value
If Check = 0 Then

nRet = FPV_SetVideoWindow(-I, -I, -I, -I, False)
Else

nRet = FPV_SetVideoWindow(-I, -I, -I, -I, True)
End If

End Sub

Private Sub cmdConfigCancel_ClickO
Rem hide the config form! activate FlashPt form
frmConfig.Enabled = False
frmFlashPT.Enabled = True
frmConfig.Hide

End Sub

Private Sub cmdConfigOK.-ClickO
Dim nRet As Integer
Rem hide the config form! activateFlashpt form Iturn on video
frmFlashPT.Enabled = True
frmConfig.Enabled = False
frmConfig.Hide
nRet = FPV_VideoLive(True, ALIGN_ANY)

End Sub

Private Sub Form_Unload(Cancel As Integer)
frmFlashPT.Enabled = True
Unload frmConfig

End Sub

Private Sub hsbXCenter_ChangeO
Dim nRet As Integer
Rem change the X Center of the video
frmConfig. txtXCenter = Str(frmConfig.hsbXCenter.value)
nRet = FPV_SetInputOffset(frmConfig.hsbXCenter.value, frmConfig.hsbYCenter.value)

End Sub

Private Sub hsbYCenter_ChangeO
Dim nRet As Integer

-305-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

Rem Change the Y Center of the Video
frmConfig. txtYCenter = Str(frmConfig.hsbYCenter.value)
nRet = FPV_SetInputOffset(frmConfig.hsbXCenter.value, frmConfig.hsbYCenter.value)

End Sub

Private Sub opt200_ClickO
Dim nRet As Integer
frmConfig.opt200.value = True
frmFlashPTnAddress = 512 'in hex 200
nRet = FPV_CheckSwitch(nAddress, 0)
End Sub

Private Sub opt220_ClickO
Dim nRet As Integer
frmConfig.opt220.value = True
frmFlashPTnAddress = 544
nRet = FPV_CheckSwitch(nAddress, 0)
End Sub

Private Sub opt240_ClickO
Dim nRet As Integer
frmConfig.opt240.value = True
frmFlashPTnAddress = 576
nRet = FPV_CheckSwitch(nAddress, 0)
End Sub

Private Sub opt260_ClickO
Dim nRet As Integer
frmConfig.opt260.value = True
nAddress = 608
nRet = FPV_CheckSwitch(nAddress, 0)
End Sub

Private Sub opt280_ClickO
Dim nRet As Integer
frmConfig.opt280.value = True
frmFlashPTnAddress = 640
nRet = FPV_CheckSwitch(nAddress, 0)
End Sub

Private Sub opt2aO_ClickO
Dim nRet As Integer
frmConfig.opt2aO.value = True
frmFlashPTnAddress = 672
nRet = FPV_CheckSwitch(nAddress, 0)
End Sub

Private Sub opt2cO_ClickO
Dim nRet As Integer
frmConfig.opt2cO.value = True
frmFlashPT.nAddress = 704
nRet = FPV_CheckSwitch(nAddress,O)
End Sub

Private Sub opt2eO_ClickO
Dim nRet As Integer
frmConfig.opt2eO.value = True
frmFlashPT.nAddress = 736
nRet = FPV_CheckSwitch(nAddress, 0)
End Sub

7.2 frmFlashPT

Public nAddress As Integer

-306-

Appendix A

Option Explicit
Dim nFlashDelayField As Integer
Dim nAlign As Integer
Dim nFlashType As Integer
Dim nFlashDelayLine As Integer
Dim GrabBrightness As Integer
Dim GrabContrast As Integer
Dim GrabAutoIris As Integer
Dim nBrightness As Integer
Dim nContrast As Integer
Dim nHue As Integer
Dim nSaturation As Integer
Dim BaseAddress As Integer
Dim nSharpness As Integer
Dim nReplicate As Long
Dim nRemoteGrab As Integer
Dim FlashPTB As String

Private Sub Form_ActivateO
Dim nRet As Integer
Dim nScreenDepth As Integer
Dim hDC As Integer
Dim BitsPixel As Integer
Dim Planes As Integer

CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

If (nScreenDepth = 8) Then
nRet = FPV_SetPalette(SETPAL_SELHWND, frmFlashPT.hWnd)
End If

End Sub

Private Sub Form_LoadO
Dim nRet As Integer
Dim szInVid As String * 8
Dim nVidType As Integer, nVidStandard As Integer
Dim nVidSource As Integer, nSyncGreen As Integer
Dim nBrightnessDef As Integer, nContrastDef As Integer
Dim nHueDef As Integer, nSaturationDef As Integer
Dim szardef As String * 255
Dim szarval As String * 255
Dim I As Integer
Dim J As Integer
Dim ScreenDepth As Integer
Dim hDC As Integer
Dim BitsPixel As Integer, Planes As Integer
Dim nScreenDepth As Integer

Rem name of .ini file
FlashPTB = "FlashPTB.ini"

Rem Initialize
nRet = FPV_LoadConfig(ByVal &00)
nRet = FPV_InitO

nRet = FPV_GetMiscParm(MISCPARM_INPUTVID, ByVal szInYid)
If (nRet <> RET_ERROR) Then

nVidType = Asc(Mid$(szInVid, 1, 1»
nVidStandard = Asc(Mid$(szInVid, 2, I»
nVidSource = Asc(Mid$(szInVid, 3, I»
nSyncGreen = Asc(Mid$(szInVid, 4,1»

Else
nVidType = TYPE_COMPOSITE
nVidStandard = STANDARD NTSC
nVidSource = 1 -
nSyncGreen = False

End If

-307-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

IfnVidType = TYPE_COMPOSITE Then
fimVideo.optComposite.value = True
fimVideo.optSVideo.value = False
fimVideo.optRSI70.value = False

End If
IfnVidType = TYPE_SVIDEO Then

frmVideo.optSVideo.value = True
frmVideo.optComposite.value = False
fimVideo.optRS 170.value = False

End If
IfnVidType = TYPE_RSI70 Then
frmVideo.optSVideo.value = False
fimVideo.optComposite.value = False
frmVideo.optRSI70.value = True

End If

IfnVidStandard = STANDARD_NTSC Then
fimVideo.optNTSC.value = True
Else
fimVideo.optPAL.value = True
End If

Rem Check for 8-bit(256 Color)

'hDC = GetDC(GetDesktopWindow())

nScreenDepth = GetDeviceCaps(hDC, BitsPixel) * GetDeviceCaps(hDC, Planes)

If (nScreenDepth = 8) Then
nRet = FPV_SetPalette(SETPAL_CREATEGRAY8, frmFlashPT.hWnd)
Rem Twice to insure order
nRet = FPV_SetPalette(SETPAL_SELHWND, frmFlashPT.hWnd)
nRet = FPV_SetPalette(SETPAL_SELHWND, frmFlashPT.hWnd)

End If

ReleaseDC GetDesktopWindowO, hDC

Rem get initial video values
Rem setup display window
nRet = FPV_SetVideoConfig(nVidType, nVidStandard, nVidSource, False)

nRet = FPV_SetVideoWindow(O, 0, 320, 240, True)
nRet = FPV_AutoWindow(frmFlashPT.hWnd, 0, 0, 0, 0, AUTOWIN_CLIP + AUTOWIN]OS + AUTOWIN_SIZE +

AUTOWIN_ADJUSTWINDOW)

Rem set sync on green to false
SyncGreen = False

Rem Get Default values from EEPROM
For I = 0 To I

ForJ= 0 To 3

DefBrightness(I, J) = FPV_GetSTVideoAdjustments(I, J, ADJUST_BRIGHTNESS)
DefContrast(I, J) = FPV_GetSTVideoAdjustments(I, J, ADJUST_CONTRAST)
DefSaturation(I, J) = FPV_GetSTVideoAdjustrnents(I, J, ADJUST_SATURATION)
DefHue(I, J) = FPV_GetSTVideoAdjustments(I, J, ADJUST_HUE)

NextJ
Next I

Rem Get Initial values for Video

nBrightnessDef = FPV_GetSTVideoAdjustments(nVidStandard, nVidType, ADJUST_BRIGHTNESS)
fimVideo.vsbBrightness.value = nBrightnessDef
frmVideo.txtBrightness.Text = Str(fimVideo.vsbBrightness.value)
nContrastDef = FPV_GetSTVideoAdjustrnents(nVidStandard, nVidType, ADJUST_CONTRAST)
fimVideo.vsbContrast.value = nContrastDef
frmVideo.txtContrast. Text = Str(frmVideo.vsbContrast.value)
nHueDef= FPV_GetSTVideoAdjustrnents(nVidStandard, nVidType, ADJUST_HUE)

-308-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

frmYideo.vsbHue.value = nHueDef
frmYideo.txtHue.Text = Str(frmYideo.vsbHue.value)
nSaturationDef = FPY_GetSTVideoAdjustments(nYidStandard, nYidType, ADJUST_SATURATION)
frmYideo.vsbSaturation.value = nSaturationDef
frrnYideo.txtSaturation.Text = Str(frmYideo.vsbSaturation.value)
Rem set Default values
frmGrab.optnone = True
frmConfig.chkScaleYideo.value = 1
frmConfig.chkFieldRep.value = 1
frmConfig.opt200 = True
frmGrab.optAny = True
Rem load settings from .ini file
Rem ifno .ini then default values will be used
Rem load video standard
nRet = FPY_GetPrivateProfileString("Yideo", "NTSC", szardef, szarval, 80, FlashPTB)
IfYal(szarval) = 1 Then

nYidStandard = STANDARD]AL
frmYideo.optPAL.value = True

ElseIfYal(szarval) = 0 Then
nYidStandard = STANDARD_NTSC
frrnYideo.optNTSC.value = True

End If
Rem -I = True
Rem load video type
nRet = FPY_GetPrivateProfileString("Yideo", "Composite", szardef, szarval, 80, FlashPTB)
IfYal(szarval) = -1 Then

frmYideo.optComposite.value = True
nYidType = TYPE_COMPOSITE
nYidSource = I

End If
nRet = FPY_GetPrivateProfileString("Yideo", "RGB", szardef, szarval, 80, FlashPTB)
nRet = FPY_GetPrivateProfileString("Yideo", "SYideo", szardef, szarval, 80, FlashPTB)
IfYal(szarval) = -I Then

frmYideo.optSYideo.value = True
nYidType = TVPE_SYIDEO
nYidSource = I

End If

nRet = FPY_GetPrivateProfileString("Yideo", "RS 170", szardef, szarval, 80, FlashPTB)
IfYal(szarval) = -1 Then

frmYideo.optRSI70.value = True
nYidType = TYPE_RSI70
nYidSource = 1

End If

Rem Load the Brightness value from .ini File
szardef = Str(nBrightnessDef)

nRel = FPY_GetPrivateProfileString("Yideo", "Brightness", szardef, szarval, 80, FlashPTB)
frmYideo.vsbBrightness.value = Yal(szarval)
frmYideo.txtBrightness.Text = Str(frmYideo.vsbBrightness.value)
nBrightness = frmYideo.vsbBrightness.value
nRet = FPY_SetYideoAdjustments(ADJUST_BRIGHTNESS, frmYideo.vsbBrightness.value)

Rem Load the Contrast value from .ini
szardef = Str(nContrastDef)

nRet = FPY_GetPrivateProfileString("Yideo", "Contrast", szardef, szarval, 80, F1ashPTB)
frrnYideo.vsbContrast.vaIue = Yal(szarval)
frmYideo.txtContrast.Text = Str(frmYideo.vsbContrast.value)
nContrast = frrnYideo.vsbContrast.value
nRet = FPY_SetYideoAdjustments(ADJUST_CONTRAST, frrnYideo.vsbContrast.value)

Rem Load the Hue value from .ini
szardef = Str(nHueDef)

nRet = FPY_GetPrivateProfileString("Yideo", "Hue", szardef, szarval, 80, FlashPTB)
frmYideo.vsbHue.value = Yal(szarval)
frmYideo.lxtHue.Texl = Str(frmYideo.vsbHue.value)

-309-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

nHue = frmVideo.vsbHue.value
nRet = FPV_SetVideoAdjustments(ADJUST_HUE, nHue)

Rem load the saturation value from .ini
szardef = Str(nSaturationDef)
nRet = FPV_GetPrivateProfileString("Video", "Saturation", szardef, szarval, 80, FlashPTB)
frmVideo.vsbSaturation.value = Val(szarval)
frmVideo.txtSaturation.Text = Str(frmVideo.vsbSaturation.value)
nSaturation = frmVideo.vsbSaturation.value
nRet = FPV_SetVideoAdjustments(ADJUST_SATURATION, nSaturation)

Rem load the sharpness value from .ini
szardef = Str(O)
nRet = FPV_GetPrivateProfileString("Video", "Sharpness", szardef, szarval, 80, FlashPTB)
frmVideo.vsbSharpness.value = Val(szarval)
frmVideo.txtSharpness. Text = Str(frmVideo.vsbSharpness.value)
nSharpness = frmVideo.vsbSharpness.value
nRet = FPV_SetVideoAdjustments(ADJUST_SHARPNESS, nSharpness)

Rem Setup Grab settings from .ini filelif no .ini file then nothing win happen
szardef = Str(nBrightnessDef)
nRet = FPV_GetPrivateProfileString("Grab", "Brightness", szardef, szarval, 80, FlashPTB)
frmGrab.hsbGrabBrightness.value = Val(szarval)
frmGrab. txtGrabBrightness.Text = Str(frmGrab.hsbGrabBrightness.value)
szardef = Str(nContrastDef)
nRet = FPV_GetPrivateProfileString("Grab", "Contrast", szardef, szarval, 80, FlashPTB)
frmGrab.hsbGrabContrast.value = Val(szarval)
frmGrab. txtGrabContrast.Text = Str(frmGrab.hsbGrabContrast.value)
szardef = Str(O)
nRet = FPV_GetPrivateProfileString("Grab", "Field", szardef, szarval, 80, FlashPTB)
frmGrab.hsbGrabField.value = Val(szarval)
frmGrab. txtGrabField.Text = Str(frmGrab.hsbGrabField.value)
nRet = FPV_GetPrivateProfileString("Grab", "Line", szardef, szarval, 80, FlashPTB)
frmGrab.hsbGrabLine.value = Val(szarval)
frmGrab.txtGrabLine.Text = Str(frmGrab.hsbGrabLine.value)

Rem Set the Align for the grab from the .ini file
nRet = FPV_GetPrivateProfileString("Grab", "Even", szardef, szarval, 80, FlashPTB)
IfVal(szarval) = -I Then

frmGrab.optEven = True
nAlign = ALIGN_EVEN

End If

nRet = FPV_GetPrivateProfileString("Grab", "Odd", szardef, szarval, 80, FlashPTB)
IfVal(szarval) = -I Then

frmGrab.optOdd = True
nAlign = ALIGN_ODD

End If
nRet = FPV_GetPrivateProfileString("Grab", "Any", szardef, szarval, 80, FlashPTB)
IfVal(szarval) = -1 Then

frmGrab.optAny = True
nAlign = ALIGN_ANY

End If
Rem Set the type for the grab from the .ini file
nRet = FPV_GetPrivateProfileString("Grab", "None", szardef, szarval, 80, FlashPTB)
IfVal(szarval) = -1 Then

frmGrab.optnone = True
nAlign = FLASHTYPE_NONE

End If

nRet = FPV_GetPrivateProfileString("Grab", "Universal", szardef, szarval, 80, FlashPTB)
IfVal(szarval) = -1 Then

frmGrab.optUniversal = True
nAlign = FLASHTYPE_UNNERSAL

End If

nRet = FPV_GetPrivateProfileString("Grab", "Dual", szardef, szarval, 80, FlashPTB)
IfVal(szarval) = -I Then

-310-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

frmGrab.optDual = True
nAlign = FLASHTYPE_DUALFIELD

End If
nRet = FPV_GetPrivateProfileString("Grab", "CCD4000", szardef, szarval, 80, FlashPTB)

IfVal(szarval) = -1 Then
frmGrab.optCCD = True
nAlign = FLASHTYPE_CCD4000

End If
Rem load base address

nRet = FPV_GetPrivateProfileString("Address", "Serial", szardef, szarval, 80, FlashPTB)
nAddress = Val(szarval)

Rem set Config options from .ini file
Rem read in Xcenter value
szardef = Str(O)
nRet = FPV_GetPrivateProfileString("Config", "XCenter" , szardef, szarval, 80, FlashPTB)
frmConfig.hsbXCenter.value = Val(szarval)
frmConfig.txtXCenter.Text = Str(frmConfig.hsbXCenter.value)

Rem read in YCenter value
szardef = Str(O)
nRet = FPV_GetPrivateProfileString("Config", "YCenter", szardef, szarval, 80, FlashPTB)
frmConfig.hsbYCenter.value = Val(szarval)
frmConfig.txtYCenter.Text = Str(frmConfig.hsbYCenter.value)

Rem read in scale video value
szardef = Str(l)
frmConfig.chkScaleVideo.value = I
nRet = FPV_GetPrivateProfileString("Config", "ScaleVideo", szardef, szarval, 80, FlashPTB)
IfVal(szarval) = 0 Then

frmConfig.chkScaleVideo.value = 0
End If
Rem read in field rep value
szardef = Str(O)
frmConfig.chkFieldRep.value = 0

nRet = FPV_GetPrivateProfileString("Config", "FieldRep", szardef, szarval, 80, FlashPTB)
IfVal(szarval) = 1 Then

frmConfig.chkFieldRep.value = 1
End If

Rem get serial address
nRet = FPV_GetPrivateProfileString("Address", "x200", szardef, szarval, 80, FlashPTB)
IfVal(szarval) = -I Then

frmConfig.opt200 = True
nAddress = 512

End If
nRet = FPV_GetPrivateProfileString("Address", "x220", szardef, szarval, 80, FlashPTB)
If Val(szarval) = -1 Then

frmConfig.opt220 = True
nAddress = 544

End If
nRe! = FPV_GetPrivateProfileString("Address", "x240", szardef, szarval, 80, FlashPTB)
IfVal(szarval) = -1 Then

frmConfig.opt240 = True
nAddress = 576

End If

nRe! = FPV_GetPrivateProfileString("Address", "x260", szardef, szarval, 80, FlashPTB)
IfVal(szarval) = -1 Then

frmConfig.opt260 = True
nAddress = 608

End If

nRet = FPV_GetPrivateProfileString("Address", "x280", szardef, szarval, 80, FlashPTB)
IfVal(szarval) = -1 Then

frmConfig.opt280 = True
nAddress = 640

-311-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONlC
CIM INTERNET CONTROL SYSTEM

End If
nRet = FPV_GetPrivateProfileString("Address", "x2aO", szardef, szarval, 80, FlashPTB)
IfVal(szarval) = -I Then

fimConfig.opt2aO = True
nAddress = 672

End If
nRet = FPV_GetPrivateProfileString("Address", "x2cO", szardef, szarval, 80, FlashPTB)
IfVal(szarval) = -I Then

fimConfig.opt2cO = True
nAddress = 704

End If
nRet = FPV_GetPrivateProfileString("Address", "x2eO", szardef, szarval, 80, FlashPTB)
IfVal(szarval) = -I Then

fimConfig.opt2eO = True
nAddress = 736

End If
nRet = FPV_CheckSwitch(nAddress, 0)

Rem set FreezelLive menu option accordingly
mnuFreeze.Visible = True
mnuLive.Visible = False
Rem set reset(on Video Setup) to false
frmVideo.cmdVideoReset.Enabled = True

Rem set windows to specific location on screen
frmFlashPT.Left = 1440
frmFlashPT.Top = 1440
frmVideo.Left = 6735
frmVideo.Top = 1440

Rem Set Video Live
nRet = FPV_VideoLive(True, ALIGN_ANY}

Timer! .Enabled = True
End Sub

Private Sub Form_Unload(Cancel As Integer)
Dim nRet As Integer

Rem Cleanup actually makes sure video is off and
Rem AutoWindow is disabled
nRet = FPV_CleanupO
End
End Sub

Private Sub mnuAbout_ClickO
Rem Show the About Fonn/disable the FlashPT form
frmFlashPT.Enabled = False
frmAbout.Enabled = True
frmAbout.Show

End Sub

Private Sub mnuConfiguration_ClickO
Rem Show the Configuration fonn/Disable F1ashPT form
frmConfig.Show
frmFlashPT.Enabled = False
frmConfig.Enabled = True

End Sub

Private Sub mnuCopy_ClickO

Dim nRet As Integer
Dim nX As Integer
Dim nY As Integer
Dim nWidth As Integer

-312-

Appendix A

Dim nHeight As Integer

CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

Rem Put copy of current image on the Clipboard
nRet = FPV_GetVideoRect(DESTRECT, nX, nY, nWidth, nHeight)
nRet = FPV_VideoLive(False, ALIGN_ANY)
nRet = FPV WaitMS(32)
nRet = FPV=ScreenToDIB(nX, nY, nWidth, nHeight, STD_CLIPBOARD, ByVal &00)
nRet = FPV_VideoLive(True, ALIGN_ANY)

End Sub

Private Sub mnuExit_ClickO
Dim nRet As Integer
Rem exit the program
nRet = FPV_VideoLive(False, ALIGN_ANY)
nRet = FPV_AutoWindow(O, 0, 0, 0, 0, 0)
nRet = FPV_CleanupO
Unload Me
End

End Sub

Private Sub mnuFreeze_ClickO
Dim nRet As Integer
Dim nFlashParrn As Integer

Rem IfFlashType Universal or Dual Then Adjust Brightness/contrast
If ((nFlashType = FLASHTYPE_UNIVERSAL) Or (nFlashType = FLASHTYPE_DUALFIELD» Then

nRet = FPV_SetVideoAdjustrnents(ADJUST_BRIGHTNESS, GrabBrightness)
nRet = FPV_SetVideoAdjustrnents(ADJUST_CONTRAST, GrabContrast)

End If

Rem do grab if remote grab is on
If ((frmGrab.optDual.value = -I) And (frmConfig.chkRemoteGrab.value = I» Then

nFlashParrn = FLASHTYPE_WAITSWITCH
End If

Rem If the Field Rep is Checked then OR flashtype with FieldRep
If frrnConfig.chkFieldRep.value = 1 Then

nFlashParrn = nFlashType Or FLASHFLAG]IELDREP Or FLASHFLAG_REDGESMOOTH
Else

Rem Otherwise dont dont change parameters
nFlashParrn = nFlashType Or nFlashParrn

End If

Rem do the grab
nRet = FPV_VideoGrab(nAlign, nFlashParrn, nFlashDelayField, nFlashDelayLine)

Rem adjust menus
mnuFreeze.Visible = False
mnuLive.Visible = True

End Sub

Private Sub mnuGrab_ClickO
Rem Show the Grab form/disable F1ashPT form
frmGrab.show
frmFlashPT.Enabled = False
frmGrab.Enabled = True

End Sub

Private Sub mnuLive_ClickO
Rem turn video to live again

Dim nRet As Integer
nRet = FPV_VideoLive(True, ALIGN_ANY)
mnuFreeze.Visible = True
mnuLive.Visible = False

-313-

Appendix A

End Sub

CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

Private Sub mnuLoadlmage_ClickO
DimnRet
Rem show the load image fonn! plus turn off video live
nRet = FPV_VideoLive(False, ALIGN_ANY)
frmLoadImage.Enabled = True
fnnFlashPT.Enabled = False
frmLoadImage.Show
End Sub

Private Sub mnuPrint_ClickO
Rem show the print form
frmPrint.Show
End Sub

Private Sub mnuSaveImage_ClickO
Dim nRet As Integer
Rem Show the Save Image Form
nRet = FPV_VideoLive(False, ALIGN_ANY)
frmSaveImage.Enabled = True
fnnFlashPT.Enabled = False
frmSaveImage.show

End Sub

Private Sub mnuSaveSettings_ClickO
Dim nRet As Integer
Dim nVal As Integer

Rem save settings to .ini file
Rem save video standard
nVal = frmVideo.optNTSC.value
nRet = FPV_WritePrivateProfileString("Video", "NTSC", nVal, FlashPTB)
nVal = frmVideo.optPAL.value
nRet = FPV_WritePrivateProfileString("Video", "PAL", nVal, FlashPTB)
Rem save video type
nVal = frmVideo.optComposite.value
nRet = FPV_WritePrivateProfileString("Video", "Composite", nVal, FlashPTB)
nVal = frmVideo.optSVideo.value
nRet = FPV_WritePrivateProfileString("Video", "SVideo", nVal, FlashPTB)
nVal = frmVideo.optRS 170.value
nRet = FPV_WritePrivateProfileString("Video", "RS 170", nVal, FlashPTB)
Rem save serial address
nVal = frmConfig.opt200.value
nRet = FPV_WritePrivateProfileString("Address", "x200", nVal, FlashPTB)
nVal = frmConfig.opt220.value
nRet = FPV_WritePrivateProfileString("Address", "x220", nVal, FlashPTB)
nVal = frmConfig.opt240.value
nRet = FPV_WritePrivateProfileString("Address", "x240", nVal, FlashPTB)
nVal = frmConfig.opt260.value
nRet = FPV_WritePrivateProfileString("Address", "x260", nVal, FlashPTB)
nVal = frmConfig.opt280.value
nRet = FPV_WritePrivateProfileString("Address", "x280", nVal, FlashPTB)
nVal = frmConfig.opt2aO.value
nRet = FPV_WritePrivateProfileString("Address", "x2aO", nVal, FlashPTB)
nVal = frmConfig.opt2cO.value
nRet = FPV_WritePrivateProfileString("Address", "x2cO", nVal, F1ashPTB)
nVal = frmConfig.opt2eO.value
nRet = FPV_WritePrivateProfileString("Address", "x2eO", nVal, FlashPTB)

Rem save video adjustments
nVal = frmVideo.vsbBrightness.value
nRet = FPV_WritePrivateProfileString("Video", "Brightness", nVal, FlashPTB)
nVal = frmVideo.vsbContrast.value

-314-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

nRet = FPV_WritePrivateProfileString("Video", "Contrast", nVal, FlashPTB)
nVal = frrnVideo.vsbHue.value
nRet = FPV_WritePrivateProfileString("Video", "Hue", nVal, FlashPTB)
nVal = frrnVideo.vsbSaturation.value
nRet = FPV_WritePrivateProfileString("Video", "Saturation", nVal, FlashPTB)
nVal = frrnVideo.vsbSharpness.value
nRet = FPV_WritePrivateProfileString("Video", "Sharpness", nVal, FlashPTB)
nVaJ = frrnVideo.vsblrisLevel.value
nRet = FPV_WritePrivateProfileString("Video", "Iris Level", nVal, FlashPTB)
Rem save Grab settings
nVal = frmGrab.hsbGrabBrightness.value
nRet = FPV_WritePrivateProfileString("Grab", "Brightness", nVal, FlashPTB)
nVal = frmGrab.hsbGrabContrast.value
nRet = FPV_WritePrivateProfileString("Grab", "Contrast", nVal, FlashPTB)
nVal = frrnGrab.hsbGrabField.value
nRet = FPV_WritePrivateProfileString("Grab", "Field", nVal, FlashPTB)
nVal = frrnGrab.hsbGrabLine.value
nRet = FPV_WritePrivateProfileString("Grab", "Brightness", nVal, FlashPTB)
nVat = frmGrab.optEven.value
nRet = FPV_WritePrivateProfileString("Grab", "Even", nVal, FlashPTB)
nVal = frrnGrab.optOdd.value
nRet = FPV_WritePrivateProfileString("Grab", "Odd", nVal, FlashPTB)
nVal = frrnGrab.optAny.value
nRet = FPV_WritePrivateProfileString("Grab", "Any", nVal, FlashPTB)
nVal = frrnGrab.optnone.value
nRet = FPV_WritePrivateProfileString("Grab", "None", nVal, FlashPTB)
nVal = frrnGrab.optUniversal.value
nRet = FPV_WritePrivateProfileString("Grab", "Universal", nVal, FlashPTB)
nVal = frmGrab.optDual.value
nRet = FPV_WritePrivateProfileString("Grab", "Dual", nVal, FlashPTB)
nVal = frrnGrab.optCCD.vaJue
nRet = FPV_WritePrivateProfileString("Grab", "CCD4000", nVal, FlashPTB)
Rem Save configure settings
nVat = frmConfig.chkScaleVideo.value
nRet = FPV_WritePrivateProfileString("Config", "ScaleVideo", nVal, FlashPTB)
nVal = frmConfig.hsbXCenter.value
nRet = FPV_WritePrivateProfileString("Config", "XCenter", nVal, FlashPTB)
nVal = frmConfig.hsbYCenter.value
nRet = FPV_WritePrivateProfileString("Config", "YCenter", nVal, FlashPTB)
nVal = frmConfig.chkFieldRep.value
nRet = FPV_WritePrivateProfileString("Config", "FieldRep", nVal, FlashPTB)
Rem save base address
nVal = nAddress
nRet = FPV_WritePrivateProfileString("Address", "Serial", nVal, FlashPTB)

End Sub

Private Sub rnnuVideoSetup_ClickO
Rem show the video setup fonn/disable FlashPt form
frrnVideo.Show
frrnVideo.Enabled = True
frmFlashPT.Enabled = False

End Sub

Private Sub Timer1_TimerO
Dim nRet As Integer
nRet = FPV_VideoLive(False, ALIGN_ANY)
frrnFlashPT.Enabled = False

Dim nX As Integer
Dim nY As Integer
Dim nWidth As Integer
Dim nHeight As Integer
Dim TheFile As String
Rem show save image fonn/turn off flashpt form

-315-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

frrnSaveIrnage.Hide
frmFlashPT.Show
Rem the file selected by user
Open "c:\Inetpub\wwwroot\webcam32.jpg" For Output As #1
nRet = FPV GetVideoRect(DESTRECT, nX, nY, nWidth, nHeight)
nRet = FPV=SaveFile("c:\Inetpub\wwwroot\webcam32.jpg", nX, nY, nWidth, nHeight, 24, 0, ByVal 0&, -I)
Close #1
Rem disable save image / activate flashpt form! set menu accordingly

frmFlashPT.Enabled = True
frmFlashPT.mnuFreeze.Visible = False

nRet = FPV_VideoLive(True, ALIGN_ANY)
mnuFreeze.Yisible = True
mnuLive.Visible = False

End Sub

7.3 frmGrab

Private Sub cmdGrabOK_ClickO
Rem grab Setup menu
Rem hide Grab Setup menu/activate F1ashPt form again

frmFlashPT.Enabled = True
frrnGrab.Enabled = False
frrnGrab.Hide

End Sub

Private Sub cmdGrabReset_ClickO
Dim nGrabBrightnessDef As Integer
Dim nGrabContrastDef As Integer
Dim nVidType As Integer
Dim nVidStandard As Integer
Rem Reset the Grab value from their initial values
nVidType = FPV_GetVideoTypeO
nVidStandard = FPV_GetVideoStandardO
nGrabBrightnessDef = FPV_GetSTVideoAdjustrnents(nVidStandard, nVidType, ADJUST_BRIGHTNESS)
frrnGrab.hsbGrabBrightness.value = nGrabBrightnessDef
frrnGrab.txtGrabBrightness.Text = Str(frrnGrab.hsbGrabBrightness.value)
nGrabContrastDef = FPV_GetSTVideoAdjustrnenls(nVidStandard, nVidType, ADJUST_CONTRAST)
frrnGrab.hsbGrabContrasl.value = nGrabContrastDef
frrnGrab.txtGrabContraSI.Text = Str(frrnGrab.hsbGrabContraSl.value)

End Sub

Private Sub Field_ClickO
nReplicate.value

End Sub

Private Sub Form_Unload(Cancel As Integer)
frmFlashPT.Enabled = True
Unload frrnGrab

End Sub

Private Sub hsbGrabAutoIris_ChangeO
Rem change the value of the grab auto iris value appropiately
frrnGrab. txtGrabAutoIris.Text = Str(frrnGrab.hsbGrabAutoIris.value)
GrabAutoIris = frmGrab.hsbGrabAutoIris.value

End Sub

Private Sub hsbGrabBrightness_ChangeO
Rem change the brightness of the grab accordingly

-316-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

frmGrab.txtGrabBrightness.Text = Str(frmGrab.hsbGrabBrightness.value)
GrabBrightness = frmGrab.hsbGrabBrightness.value

End Sub

Private Sub hsbGrabContrast_ChangeO
Rem change the contrast of the grab accordingly
frmGrab. txtGrabContrast.Text = Str(frmGrab.hsbGrabContrast.value)
GrabContrast = frmGrab.hsbGrabContrast.value

End Sub

Private Sub hsbGrabField_ChangeO
Rem change the number of fields accordingly
frmGrab.txtGrabField.Text = Str(frmGrab.hsbGrabField.value)
nFlashDelayField = frmGrab.hsbGrabField.value

End Sub

Private Sub hsbGrabLine_ChangeO
Rem change the number oflines accrordingly
frmGrab.txtGrabLine.Text = Str(frmGrab.hsbGrabLine.value)
nFlashDelayLine = frmGrab.hsbGrabLine.value

End Sub

Private Sub Option1_ClickO

End Sub

Private Sub optAny_ClickO
Rem set the ALIGN_ANY to true
nAlign = ALIGN_ANY
optEven.value = False
optAny.value = True
optOdd.value = False

End Sub

Private Sub optCCD_ClickO
Rem set the flashtype to ccd4000
nFlashType = FLASHTYPE_CCD4000

End Sub

Private Sub optDual_ClickO
Rem set the flashtype to dualfield
nFlashType = FLASHTYPE DUALFIELD

End Sub -

Private Sub optEven_ClickO
Rem set the ALIGN_EVEN to true
nAlign = ALIGN_EVEN
optEven.value = True
optAny.value = False
optOdd.value = False

End Sub

Private Sub optnone_ClickO
Rem set the value of Flashtype to none
nFlashType = FLASHTYPE NONE

End Sub -

Private Sub optOdd_ClickO
Rem set ALIGN_ODD to true
nAlign = ALIGN_ODD
optEven.value = False
optAny.value = False
optOdd.value = True

End Sub

-317-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

Private Sub optUniversal_ClickO
Rem set flash type to universal
nFlashType = FLASHTYPE_UNIVERSAL

End Sub

7.4 frmLoadlmage

Private Sub cmdLoadCancel_ClickO
Rem cancel loading an image
Rem hide load image form view activate flashpt form
frrnLoadlmage.Hide
frmFlashPT.Enabled = True
frmLoadlmage.Enabled = False

End Sub

Private Sub cmdLoadOK-ClickO
Dim nRet As Integer
Dim nX As Integer
Dim nY As Integer
Dim nWidth As Integer
Dim nHeight As Integer

Rem load an image
Rem show load image form
frrnLoadImage.Hide
fimF1ashPT.show
Rem get size of video form(flashpt)
nRet = FPY_GetYideoRect(DESTRECT, nX, nY, nWidth, nHeight)
Rem load appropiate file
nRet = FPY_LoadFile(dirLookPath + "\" + filFind.FileName, nX, nY, nWidth, nHeight, 0, ByYal 0&, _I)
Rem freeze video/change menu accordingly
nRet = FPY_YideoLive(False, ALIGN_ANY)
frmFlashPT.mnuFreeze.Yisible = False
frmFlashPT.mnuLive.Yisible = True

frmFlashPT.Enabled = True
frmLoadlmage.Enabled = False
End Sub

Private Sub dirLook_ChangeO
Rem show files in current directory
filFind.Path = dirLookPath

End Sub

Private Sub drvChange_ChangeO
Rem show directories in current drive
dirLookPath = drvChange.Drive

End Sub

Private Sub filFind_DblClickO
Rem if double click on file then load file
cmdLoadOK_Click

End Sub

Private Sub Form_Unload(Cancel As Integer)
frmFlashPT.Enabled = True
Unload frmLoadlmage

End Sub

-318-

Appendix A

7.5 frmPrint

CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

Private Sub cmdPrintCancel_ClickO
Rem Hide Print Window, Enable F1ashPT window
frmprint.Hide
frmprint.Enabled = False
frmFlashPT.Enabled = True

End Sub

Private Sub cmdPrintOK_ClickO

Rem Print from the Clipboard
frmPrint.Enabled = True
frrnFlashPT.Enabled = False
Rem Check if Clipboard is empty
Rem If not print otherwise show warning
IfClipboard.GetFormat(vbCFBitmap) Then
frmFIashPT.Picture = Clipboard.GetData(O) 'Loads appropiate type
frrnFlashPT.PrintForm 'Prints the form
Else

frmWaming.Show
End If
Rem Hide Print window
frmprint.Hide
frmPrint.Enabled = False
frmFlashPT.Enabled = True

End Sub

Private Sub Form_Unload(Cancel As Integer)
frrnFlashPT.Enabled = True
Unload frmPrint

End Sub

7.6 frmSavelmage

Private Sub cmdSaveCancel_ClickO
Rem dont save anything! hide save image form
frmSavelmage.Hide
frrnSaveImage.Enabled = False
frrnFlashPT.Enabled = True

End Sub

Private Sub cmdSaveOK_ClickO
Dim nRet As Integer
Dim nX As Integer
Dim nY As Integer
Dim nWidth As Integer
Dim nHeight As Integer
Dim TheFile As String
Rem show save image form/turn offflashpt form
frrnSavelmage.Hide
frrnFlashPT.show
Rem the file selected by user

Open frmSaveImage.dirSaveFile.Path + "\" + frmSavelmage.txtSavelmageName.Text For Output As #1
nRet = FPY_GetYideoRect(DESTRECT, nX, nY, nWidth, nHeight)

nRet = FPY_SaveFile(frmSavelmage.dirSaveFile.Path + "\" + frmSavelmage.txtSavelmageName.Text, nX, nY, nWidth, nHeight, 24,
0, ByYal 0&, -I)

Close #1

Rem disable save image / activate flashpt form/ set menu accordingly
frmSavelmage.Enabled = False
frmFlashPT.Enabled = True
frmFlashPT.rnnuFreeze.Yisible = False

-319-

Appendix A

frmFlashPT.mnuLive.Visible = True
End Sub

Private Sub dirSaveFile_ChangeO
Rem show files in current directory
filFindSave.Path = dirSaveFile.Path

End Sub

CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

Private Sub drvSaveFile_ChangeO
Rem show current directories in current drive
dirSaveFile.Path = drvSaveFile.Drive

End Sub

Private Sub filFindSave_ClickO
Rem name the file to be saved
txtSaveImageName.Text = filFindSave.FileName

End Sub

Private Sub Form_Unload(Cancel As Integer)
frmFlashPT.Enabled = True
Unload frmSaveImage

End Sub

7.7 frmVideo

Private Sub chkGreenSync_ClickO
Dim nRet As Integer
Dim nStandard As Integer

nStandard = FPV_GetVideoStandardO
If SyncGreen = False Then

SyncGreen = True
ElseIf SyncGreen = True Then

SyncGreen = False
End If
nRet = FPV_SetVideoConfig(TYPE_RGB, nStandard, 0, SyncGreen)

End Sub

Private Sub cmdOK_Click()
Rem hide menu activate flashpt form
frmFlashPT.Enabled = True
frmVideo.Enabled = False
frmVideo.Hide

End Sub

Private Sub cmdVideoReset_ClickO

Dim nVidType As Integer
Dim nVidStandard As Integer
Dim nRet As Integer
Rem Reset the Video values to their default values
nVidType = FPV_GetVideoTypeO
nVidStandard = FPV_GetVideoStandardO
nVidSource = FPV_GetVideoSourceO
nRet = FPV_SetVideoConfig(nVidType, nStandard, nSource, False)
nRet = FPV_SetVideoAdjustments(ADJUST_BRIGHTNESS, DefBrightness(nVidStandard, nVidType»
frmVideo.vsbBrightness.value = DefBrightness(nVidStandard, nVidType)
frmVideo.txtBrightness.Text = Str(frmVideo.vsbBrightness.value)

nRet = FPV_SetVideoAdjustments(ADJUST_CONTRAST, DefContrast(nVidStandard, nVidType»
frmVideo.vsbContrast.value = DefContrast(nVidStandard, nVidType)
frmVideo.txtContrast.Text = Str(frmVideo.vsbContrast.value)

nRet = FPV_SetVideoAdjustments(ADJUST_HUE, DefHue(nVidStandard, nVidType»

-320-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

frmVideo.vsbHue.value = DefHue(nVidStandard, nVidType)
frmVideo.txtHue.Text = Str(frmVideo.vsbHue.value)

nRet = FPV_SetVideoAdjustrnents(ADJUST_SATURATION, DefSaturation(nVidStandard, nVidType))
frmVideo.vsbSaturation.value = DefSaturation(nVidStandard, nVidType)
frmVideo.txtSaturation.Text = Str(frmVideo.vsbSaturation.value)

End Sub

Private Sub Form_Unload(Cancel As Integer)
frmFlashPT.Enabled = True
Unload frmVideo

End Sub

Private Sub optRS170_ClickO
Dim nRet As Integer
Dim nStandard As Integer

nStandard = FPV_GetVideoStandardO
nRet = FPV_SetVideoConfig(TYPE_RS 170, nStandard, I, False)

nRet = FPV_GetVideoAdjustrnents(ADJUST_BRIGHTNESS)
frmVideo.vsbBrightness.va]ue = nRet
frmVideo.txtBrightness.Text = Str(frmVideo.vsbBrightness.value)
nRet = FPV_GetVideoAdjustments(ADJUST_CONTRAST)
frmVideo.vsbContrast.value = nRet
frmVideo.txtContrast.Text = Str(frmVideo.vsbContrast.value)
nRet = FPV_GetVideoAdjustrnents(ADJUST_HUE)
frmVideo.vsbHue.value = nRet
frmVideo.txtHue.Text = Str(frmVideo.vsbHue.value)
nRet = FPV_GetVideoAdjustrnents(ADJUST_SAIURATION)
frmVideo.vsbSaturation.value = nRet
frmVideo.txtSaturation.Text = Str(frmVideo.vsbSaturation.value)

frmVideo.optRS1 70.va]ue = True

End Sub

Private Sub optComposite_ClickO
Dim nRet As Integer
Dim nStandard As Integer

Rem set values back to default values
nStandard = FPV_GetVideoStandardO
nRet = FPV_SetVideoConfig(TYPE_COMPOSITE, nStandard, I, False)

nRet = FPV_GetVideoAdjustrnents(ADJUST_BRIGHTNESS)
frmVideo.vsbBrightness.va]ue = nRet
frmVideo.txtBrightness.Text = Str(frmVideo.vsbBrightness.value)
nRet = FPV_GetVideoAdjustrnents(ADJUST_CONTRAST)
frmVideo.vsbContrast.value = nRet
frmVideo.txtContrast.Text = Str(frmVideo.vsbContrast.va]ue)
nRet = FPV_GetVideoAdjustrnents(ADJUST_HUE)
frmVideo.vsbHue.value = nRet
frmVideo. txtHue.Text = Str(frmVideo.vsbHue.value)
nRet = FPV_GetVideoAdjustrnents(ADJUST_SATURATION)
frmVideo.vsbSaturation.value = nRet
frmVideo.txtSaturation.Text = Str(frmVideo.vsbSaturation.value)

frmVideo.optComposite.value = True
frmVideo.optRSI70.va]ue = False
frmVideo.optSVideo = False
frmVideo.vsbSaturation.Enabled = True
frmVideo.vsbHue.Enabled = True
frmVideo.chkGreenSync.value = False

-321-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
ClM INTERNET CONTROL SYSTEM

frmVideo.chkGreenSync.Enabled = False
frmVideo.vsbSharpness.Enabled = True

End Sub

Private Sub optGreenSync_Click()
Dim nRet As Integer
Dim nStandard As Integer

nStandard = FPV_GetVideoStandard()
nRet = FPV_SetVideoConfig(TYPE_RGB, nStandard, 0, True)

End Sub

Private Sub optNTSC_ClickO
Dim nVidType As Integer
Dim nVidSource As Integer
Dim nRet As Integer
Rem set the standard to NTSC
nVidType = FPV_GetVideoType()
nVidSource = FPV_GetVideoSource()
nRet = FPV_SetVideoConfig(nVidType, STANDARD_NTSC, nVidSource, SyncGreen)
nRet = FPV_GetVideoAdjustments(ADJUST_BRIGHTNESS)
frmVideo.vsbBrightness.value = nRet
frmVideo.txtBrightness.Text = Str(frmVideo.vsbBrightness.value)
nRet = FPV_GetVideoAdjustments(ADJUST_CONTRAST)
frmVideo.vsbContrast.value = nRet
frmVideo.txtContrast.Text = Str(frmVideo.vsbContrast.value)
nRet = FPV_GetVideoAdjustments(ADJUST_HUE)
frmVideo.vsbHue.value = nRet
frmVideo.txtHue.Text = Str(frmVideo.vsbHue.value)
nRet = FPV_GetVideoAdjustments(ADJUST_SATURAnON)
frmVideo.vsbSaturation.value = nRet
frmVideo.txtSaturation.Text = Str(frmVideo.vsbSaturation.value)

End Sub

Private Sub optPAL_ClickO
Dim nRet As Integer
Dim nVidType As Integer
Dim nVidSource As Integer
Rem set the standard to PAL
nVidType = FPV_GetVideoTypeO
nVidSource = FPV_GetVideoSourceO
nRet = FPV_SetVideoConfig(nVidType, STANDARD]AL, nVidSource, SyncGreen)
nRet = FPV_GetVideoAdjustments(ADJUST_BRIGHTNESS)
frmVideo.vsbBrightness.value = nRet
frmVideo.txtBrightness.Text = Str(frmVideo.vsbBrightness.value)
nRet = FPV_GetVideoAdjustments(ADJUST_CONTRAST)
frmVideo.vsbContrast.value = nRet
frmVideo. txtContrast.Text = Str(frmVideo.vsbContrast.value)
nRet = FPV_GetVideoAdjustments(ADJUST_HUE)
frmVideo.vsbHue.value = nRet
frmVideo.txtHue.Text = Str(frmVideo.vsbHue.value)

nRet = FPV_GetVideoAdjustments(ADJUST_SATURAnON)
frmVideo.vsbSaturation.value = nRet
frmVideo. txtSaturation.Text = Str(frmVideo.vsbSaturation .value)

End Sub

Private Sub optSVideo_Click()
Dim nRet As Integer
Dim nStandard As Integer

Rem set type to svideo
nStandard = FPV_GetVideoStandardO

-322-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

nRet = FPV_SetVideoConfig(TYPE_SVIDEO, nStandard, 1, False)
Rem adjust according to SVIDEO
nRet = FPV_GetVideoAdjustments(ADJUST_BRIGHTNESS)
frmVideo.vsbBrightness.value = nRet
frmVideo.txtBrightness.Text = Str(frmVideo.vsbBrightness.value)
nRet = FPV_GetVideoAdjustments(ADJUST_CONTRAST)
frmVideo.vsbContrast.value = nRet
frmVideo.txtContrast.Text = Str(frmVideo.vsbContrast.value)
nRet = FPV_GetVideoAdjustments(ADJUST_HUE)
frmVideo.vsbHue.value = nRet
frmVideo.txtHue.Text = Str(frmVideo.vsbHue.value)
nRet = FPV_GetVideoAdjustments(ADJUST_SATURATION)
frmVideo.vsbSaturation.value = nRet
frmVideo.txtSaturation.Text = Str(frmVideo.vsbSaturation.value)

frmVideo.vsbSharpness.Enabled = False
End Sub

Private Sub vsbBrightness_ChangeO
Dim nRet As Integer

Rem set brightness change
nRet = FPV_SetVideoAdjustments(ADJUST_BRlGHTNESS, frmVideo.vsbBrightness.value)
frmVideo.txtBrightness.Text = Str(frmVideo.vsbBrightness.value)
nBrightness = frmVideo.vsbBrightness.value
frmVideo.cmdVideoReset.Enabled = True

End Sub

Private Sub vsbContrast_ChangeO
Dim nRet As Integer

Rem set contrast change
nRet = FPV_SetVideoAdjustrnents(ADJUST_CONTRAST, frmVideo.vsbContrast. value)
frmVideo.txtContrast.Text = Str(frmVideo.vsbContrast.value)
nContrast = frmVideo.vsbContraSl.value
frmVideo.cmdVideoReset.Enabled = True

End Sub

Private Sub vsbHue_ChangeO
Dim nRet As Integer

Rem set the hue change
nRet = FPV_SetVideoAdjustments(ADJUST_HUE, frmVideo.vsbHue.value)
frmVideo.txtHue.Text = Str(frmVideo.vsbHue.value)
frmVideo.cmdVideoReset.Enabled = True

End Sub

Private Sub vsbSaturation_ChangeO
Dim nRet As Integer
Rem set the saturation change
nRet = FPV_SetVideoAdjustrnents(ADJUST_SATURATION, frmVideo.vsbSaturation.value)
frmVideo.txtSaturation.Text = Str(frmVideo.vsbSaturation.value)
frmVideo.cmdVideoReset.Enabled = True

End Sub

Private Sub vsbSharpness_ChangeO
Dim nRet As Integer
Rem set the sharpess change

nRet = FPV_SetVideoAdjustments(ADJUST_SHARPNESS, frmVideo.vsbSharpness.value)
frmVideo.txtSharpness.Text = Str(frmVideo.vsbSharpness.value)
frmVideo.cmdVideoReset.Enabled = True

End Sub

-323-

Appendix A

7.8 fp3d.bas

CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

'// FP3D.BAS FlashPoint 3D API
'// Public prototypes and declarations for fp3d32.dll
'//

'If ********** Global Constants ***********************

'If Libary return values
Global Const RET_SUCCESS = 0
Global Const RET_ERROR =-1
Global Const RET_INICONFIG = 0
Global Const RET_DEFCONFIG = I
Global Const RET_EEPROMCONFIG = 2
Global Const RET_AWFULLDCI = 0
Global Const RET_AWPARTIALDCI = I
Global Const RET_AWNODCI = 2
Global Const RET_UNSUPPORTED = I
Global Const RET_TIMEOUT = I

'// Input video sizes
Global Const NTSCVIDEOWIDTH = 640
Global Const NTSCVIDEOHEIGHT = 480
Global Const PALVIDEOWIDTH = 760
Global Const PALVIDEOHEIGHT = 570

'// Video standards
Global Const STANDARD_NTSC = 0
Global ConstSTANDARD]AL= I
Global Const FP_STANDARDS = 2

'If Video types
Global Const TYPE_COMPOSITE = 0
Global Const TYPE_SVIDEO = I
Global Const TYPE_RGB = 2
Global Const TYPE_BETA = 3
Global Const TYPE_RS170 = 4
Global Const TYPE]ROGRESSIVESCAN = &H80
Global Const MAXVITYPE = 4
Global Const FP_TYPES = 5

'// IRQ type for FPV_EnableIRQ() call
Global Const IR~VIDEO = 0
Global Const IR~VGA = I

'// Rect types used in calls to FPV_GetVideoRectO
Global Const ACQRECT = 0
Global Const SOURCERECT = I
Global Const DESTRECT = 2

'If I2C Addresses
Global Const MC4401IADDRW = &H8A
Global Const MC4401IADDRR = &H8B
Global Const EEPROMADDRW = &HAO
Global Const EEPROMADDRR = &HA I
Global Const TDA8444ADDRW = &H48
Global Const PCF8574CTRLADDRW = &H40
Global Const PCF8574CTRLADDRR = &H41
Global Const PCF8574DATAADDRW = &H42
Global Const PCF8574DATAADDRR = &H43
Global Const MV_DATA = &H44
Global Const MV_CONTROL = &H46
Global Const SAA7110ADDRW = &H9C

-324-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

Global Const SAA711 OADDRR = &H9D

'11 Special Flash delays
Global Const FLASHTYPE_NONE = 0
Global Const FLASHTYPE_UNIVERSAL = I
Global Const FLASHTYPE_CCD4000 = 2
Global Const FLASHTYPE_DUALFIELD = 3
Global Const FLASHTYPE_DUALPULSE = 4
Global Const FLASHTYPE_SONYLTE = 5
Global Const FLASHTYPE_WAITSWITCH = 6
Global Const FLASHTYPE_CANON = 7
Global Const FLASHTYPE_WAITFLASH = 8
Global Const FLASHTYPE_WAITFLASHFIELD = 9
Global Const FLASHTYPE_ASYNCRESET = 10 'Pulse low
Global Const FLASHTYPE_ASYNCRESETH = 11 'Pulse high

'11 Flash flags OR'ed with type
Global Const FLASHFLAG]IELDREP = &H8000
Global Const FLASHFLAG]IELDREPAVG = &H800
Global Const FLASHFLAG_REDGESMOOTH = &H4000
Global Const FLASHFLAG]IELDREPO = &H2000
Global Const FLASHFLAG]ORCELIVE = &HI 000

'11 Field alignment values
Global Const ALIGN_EVEN = 0
Global Const ALIGN_ODD = I
Global Const ALIGN_ANY = 2
Global Const ALIGN_NONE = 3
Global Const ALIGNFLAG_NOREFRESH = &H8000
Global Const ALIGNFLAG_LTE = &H4000

'11 VGA Mode depth flag
Global Const VGAMODE_VESA = -I

'11 Copy direction flag
Global Const COPYDIR_TOVGA = 0
Global Const COPYDIR]ROMVGA = 1
Global Const COPYDIR]ROMOFFSCREEN = 2
Global Const COPYDIR]ROMYUV = 4
Global Const COPYDIR]ROMYUV] ACKED = 4
Global Const COPYDIR_FROMYUV_UNPACKED = 5
Global Const COPYDIR_TOYUV = 6
Global Const COPYDIR TOYUV PACKED = 6
Global Const COPYDIR- TOYUV-UNPACKED = 7
Global Const COPYDIR=TODISPLAYMEM = 8
Global Const COPYDIR]ROMDISPLAYMEM = 9
Global Const COPYDIR_BLENDOVERLAYVIDEO = 10
Global Const COPYDIR]ROMOFFSCREENYUV = II
Global Const COPYDIR_TOOFFSCREENYUV = 12

'11 SaveFile flags
Global Const SAVEFILE_RLE = &H I00
Global Const SAVEFILE_GRAY8 = &H200
Global Const SAVEFILE_FLIPX = &H400
Global Const SAVEFILE_COLOR8 = &H800
Global Const SAVEFILE_FLIPY = &H I000
Global Const SAVEFILE]ROMOFFSCREEN = &H8000
Global Const SAVEFILE]ROMYUV = &H2000
Global Const SAVEFILE_BLENDOVERLAYVIDEO = &H4000

'11 Special RGB-YUV conversion constants
Global Const YUV]ULLSCALE = &HI 000 + 24
Global Const YUV_CCIR601 = &H2000 + 24
Global Const YUV_DEPTH = YUV_CCIR60 I

1* YUV444, full scale *1
1* YUV444, CCIR601 *1

1* Archaic. Use YUV_CCIR601 *1

-325-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

Global Const YUVFLAG]ACKED = &H4000 ' 1* Specifies that YUV is packed
Global Const YUVCONV_24 = &H8000
Global Const YUVCONV_16 = &H8
Global Const YUVCONV_8 = &H4
Global Const COLORDEPTH_YUV = &H5000 + 24

'11 Video adjustment types
Global Const ADJUST_HUE = 0
Global Const ADJUST_SATURAnON = I
Global Const ADJUST_BRIGHTNESS = 2
Global Const ADJUST_CONTRAST = 3
Global Const ADJUST_REDBRIGHT = 4
Global Const ADJUST_BLUEBRIGHT = 5
Global Const ADJUST_SHARPNESS = 6
Global Const ADJUST_COMPMONO = 7
Global Const ADJUST_SYNCMODE = 8
Global ConstADJUST]ILTER= 9
Global Const ADJUST_GREENBRIGHT = 10
Global Const ADJUST_GAIN = 11
Global Const ADJUST_REDCONTRAST = 12
Global Const ADJUST_BLUECONTRAST = 13
Global Const ADJUST_GREENCONTRAST = 14

'11 MIN and MAX adjust vals
Global Const MINADJUSTVAL = 0
Global Const MAXADJUSTVAL = &H3F
'11 IRIS level is 0-4095
Global Const MAXIRlSVAL = &HFFF

'11 Windows DCI window watch types for FPV AutoWindow
Global Const AUTOWIN]REEZE = &HI -
Global Const AUTOWIN_CLIP = &H2
Global Const AUTOWIN]OS= &H4
Global Const AUTOWIN_SIZE = &H8
Global Const AUTOWIN_ASPECT = &HIO
Global Const AUTOWIN_ADJUSTWINDOW = &H20
Global Const AUTOWlN]ORCEPAINT = &H40
Global Const AUTOWlN_OVERSIZE = &H80
Global Const AUTOWIN_REFRESH = &HlOO
Global Const AUTOWIN_TOPMOST = &H200
Global Const AUTOWIN_LIVEDACTWIN = &H400
Global Const AUTOWIN_LIVEDACTAPP = &H800
Global Const AUTOWIN]ORCEAWI = &HlOOO
Global Const AUTOWIN]ORCEAW2 = &H2000
Global Const AUOTWIN_MASKBLEEDFIX = &H4000
Global Const AUTOWIN_DCIFREEZEFIX = &H8000
Global Const AUTOWIN_DRAWKEY = &HIOOOO

'11 Screen to DIB flags
Global Const STD_ONSCREEN = &HO
Global Const STD_CLIPBOARD = &H I
Global Const STD_GRAY8 = &H200
Global Const STD_OFFSCREEN = &H8000
Global Const STD_OVERLAY = &H4000

'11 MaskDraw OPs
Global Const MD_INIT = 0
Global Const MD_CLEANUP = 1
Global Const MD_SETUP = 2
Global Const MD_RESET = 3
Global Const MD_UPDATE = 4
Global Const MD_LINE = 5
Global Const MD UNLlNE = 6
Global Const MD=BOX = 7
Global Const MD_UNBOX = 8

-326-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

Global Const MD_CROSSHAIR = 9
Global Const MD_UNCROSSHAIR = 10
Global Const MD_CIRCLE = 11
Global Const MD_UNCIRCLE = 12
Global Const MD_RECT = 13
Global Const MD_UNRECT = 14

'II Get/Set Misc indexes
'11 Return connected video input type - type,standard,source,sog
'11 in byteO,bytel,byte2,byte3
Global Const MISCPARM_INPUTVID = &HI
Global Const MISCPARM_AWSELBOX = &H2
Global Const MISCPARM_MEMPTR = &H3
Global Const MISCPARM_MEMSIZE = &H4
Global Const MISCPARM_MEMFRAMES = &H5
Global Const MISCPARM_SINGLEFIELD = &H6 'ALIGN_EVEN, ALIGN_ODD or ALIGN_ANY
Global Const MISCPARM_MEMPHYSADDR = &H7
Global Const MISCPARM_MEMOFFSET = &H8
Global Const MISCPARM_MEMCOPYOFFSET = &H9
Global Const MISCPARM_VIDEOLOCK = &HA
Global Const MISCPARM_AWBASEMASK = &HB
Global Const MISCPARM_OUTSWITCH = &HC
Global Const MISCPARM_WSTIMEOUT = &HD
Global Const MISCPARM]IXBUFDEPTH = &HE
Global Const MISCPARM_RESERVED = &HF
Global Const MISCPARM_ALWAYSLNE = &HI 0
Global Const MISCPARM_LTEMS = &H II
Global Const MISCPARM_CAMERATYPE = &H12
Global Const MISCPARM_SYNCMODE = &H13
Global Const MISCPARM_WAITFLASHPARMS = &H14

Global Const MISCPARM_AGCENABLE = &H15
Global Const MISCPARM]OWEROUT = &H16
Global Const MISCPARM_CLEARSWITCH = &H17
Global Const MISCPARM_INVERTVIDEO = &H18
Global Const MISCPARM_SELBOXWIDTH = &Hl9
Global Const MISCPARM_SELBOXCOLOR = &HlA

Global Const MISCPARM_UPDATEMASK = &Hl B
Global Const MISCPARM_AWKILLPAINTMSG = &Hl C
Global Const MISCPARM_ONEFIELD = &Hl D
Global Const MISCPARM_NONINTERLACED = &HlE
Global ConstMISCPARM_MIRRORVIDEO = &HlF
Global Const MISCPARM_FRAMEMASK = &H20
Global Const MISCPARM_IOTRIGGERS = &H21
Global Const MISCPARM_WINDOWNUMBER = &H22
Global Const MISCPARM_LATCHINSWITCH = &H23
Global Const MISCPARM_CURCONSECFRAME = &H24
Global Const MISCPARM_MICROPHWRESET = &H25
Global Const MISCPARM_CURCONSECFIELD = &H26
Global Const MISCPARM_KEYMODE = &H27
Global Const MISCPARM_KEYCOLORLOW = &H28
Global Const MISCPARM_KEYCOLORHIGH = &H29
Global Const MISCPARM_YUVCAPTUREWIDTH = &H2B
Global Const MISCPARM_YUVCAPTUREHEIGHT = &H2C
Global Const MISCPARM_YUVCAPTUREPITCH = &H2E
Global Const MISCPARM_CONVERT_LUMAONLY = &H2D
Global Const MISCPARM_BOARD = &H2E
Global Const MISCPARM_CCIR601 = &H30
Global Const MISCPARM_NOVIDOUTRESETONTERMINATE = &H3l
Global Const MISCPARM]ICVER = &H32
Global Const MISCPARM_INPUTLATCH = &H33
Global Const MISCPARM_FORCEONEFIELD = &H34
Global Const MISCPARM_MAXVIDSOURCES = &H35
Global Const MISCPARM_SCALEMODE = &H36

-327-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

Global Cons! MISCPARM]ORCEBOARD = &HlOO

'11 Se!Palette indexes
Global Cons! SETPAL_CREATEGRAY8 = &HO
Global Cons! SETPAL_DELGRAY8 = &Hl
Global Cons! SETPAL_SETCURRENT = &H2
Global Cons! SETPAL_SELHWND = &H3
Global Cons! SETPAL_DESELHWND = &H4
Global Cons! SETPAL_SELHDC = &H5
Global Cons! SETPAL_DESELHDC = &H6
Global Cons! SETPAL_ILUT = &H7
Global Cons! SETPAL_RSI70 = &H8
Global Cons! SETPAL_ILUT2 = &H9
Global Cons! SETPAL_ILUT3 = &HA
Global Cons! SETPAL_ILUT4 = &HB

'11 MISCREG Indexes
Global Cons! MISCREG_MMIO = &HI
Global Cons! MISCREG]ORTIO = &H2
Global Cons! MISCREG_BIOS = &H3

'11 Board config flags
Global Cons! CFG_INTPOLFIX = &HI
Global Cons! CFG_NOSERIAL = &H2
Global Cons! CFG]ROGFREQ = &H4
Global Cons! CFG_IRISCTRL = &H8
Global Cons! CFG_GRAY8 = &HIO
Global Cons! CFG_NORGB = &H20
Global Cons! CFG_MV = &H40
Global Cons! CFG_INVFLASH = &H80
Global Cons! CFG_MICROP = &HI 00
Global Cons! CFG_RS 170 = &H200
Global Cons! CFG_VIDOUT = &H400

'11 Camera Types
Global Cons! CAMTYPE_DC330 = &Hl
Global Cons! CAMTYPE_SONY950 = &H2
Global Cons! CAMTYPE_DAGESLG = &H3
Global Cons! GENERICMASTER = &H4000

'11 EEPROM byte count
Global Cons! EEPROMSIZE = 256

, key constants
Global Cons! KEYMODE_NONE = 0
Global Cons! KEYMODE_COLORKEY = I
Global Cons! KEYMODE_CHROMAKEY = 2
Global Cons! KEYMODE_DESKTOP_ONLY = 3

, YUV conversion flags
Global Cons! YUVCONV_LUMAONLY = &HI
Global Cons! YUVCONV_CCIR601 = &H2
YUV444)
Global Cons! YUVCONV]ACKED = &H4
Global Cons! YUVCONV_OUT32 = &H8

, FPV_Se!Cap!ureBuffer defines
Global Cons! CAPBUF]TRTOOFFSET = 0
Global Cons! CAPBUF_SETVIDEO = I
Global Cons! CAPBUF_SETVIDEODEFAULTS = 2
Global Cons! CAPBUF_SETOVERLAY = 3
Global Cons! CAPBUF_SETOVERLAYDEFAULTS = 4
Global Cons! CAPBUF_SINGLEBUFFER = 5
Global Cons! CAPBUF_DOUBLEBUFFER = 6
Global Cons! CAPBUF_TRIPLEBUFFER = 7

, Source/des! is luminance only
'Source/des! is compressed YUV422 CCIR601 (else assumes uncompressed

, Source/des! YUV is packed 422

-328-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

Global Const CAPBUF DEFAULTBUFFER = 8

, camera types
Global Const CUSTOMSYNC = &H8000
Global Const CS_WENRlSE = &HO 'WEN Polarity
Global Const CS_WENFALL = &Hl 0
Global Const CS_INTPIXCLK = &HO 'PIX elk
Global Const CS_EXTPIXCLK = &H20
Global Const CS]LLADCLK = &HO 'ADCLK
Global Const CS_711OADCLK = &H40
Global Const CS_TWOSYNC = &H80 'Sync on both edges of WEN
Global Const CS_HSCTLHREFPLL = &HO 'HSYNC control
Global Const CS_HSCTL711O = &HlOO
Global Const CS_HSCTLEXT = &H200
Global Const CS_HSCTLSSEP = &H300
Global Const CS_VSCTLSSEP = &HO 'VSYNC control
Global Const CS_VSCTL7110 = &H400
Global Const CS_VSCTLEXT = &H800
Global Const CS_VSCTLEXTPS = &HCOO

'If ********* TYPEDEFS *****************

'If Version info struct
Type VERSIONINFO

wLibVersion As Integer
wBetaVersion As Integer
wDebugStatus As Integer
wBusType As Integer
wVGAMem As Integer
wSClk As Integer
wBWidthLimit As Integer
wBIOSVersion As Integer
dwBoardCfg As Long
wBoardRev As Integer
dwSerialNum As Long
wScalerRev As Integer
wDecoderType As Integer
wEEPROMVer As Integer
wReserved(15) As Integer

End Type

'If File resolution info struct
Type FILERESINFO

wWidth As Integer
wHeight As Integer
wDepth As Integer
wFlags As Integer

End Type

'If AutoWindow info struct
Type AUTOWININFO

hWndAs Long
hRsv As Integer
IpMaskBuf As Long
wMaskWidth As Integer
wMaskHeight As Integer
wOccluded As Integer
bAWLive As Integer
IpRefreshBuf As Long
wMaskDelay As Integer
hWinWatch As Long
wReserved(18) As Integer

-329-

Appendix A

End Type

Type OVLINIT
IpSurface As Long
dwPitch As Long
dwWidth As Long
dwHeight As Long
dwReserved(12) As Long

End Type

CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

'I Allows setting video to different surfaces
Type CAPTUREBUFFERINFO

IpBuffer As Long
dwOffset As Long
wBufferNum As Integer
wPitch As Integer
dwReserved(12) As Long

End Type

'11 *********** Prototypes ***********************

'11 Library routines return 0 or value for success, <0 for failure

'11 Locate the FPV board, don't change any regs
Declare Function FPV_Locate Lib "fp3d32.dll" 0 As Integer
'11 Init the board using the currently loaded configuration
Declare Function FPV_Init Lib "fp3d32.dll" 0 As Integer
'11 Shut down in preparation for exit
Declare Function FPV_Cleanup Lib "fp3d32.dll" 0 As Integer

'11 Load configuration from .INI file. A NULL file name loads the default vals
Declare Function FPV_LoadConfig Lib "fp3d32.dll" (szIniFile As Any) As Integer
'11 Save configuration to .INI file
Declare Function FPV_SaveConfig Lib "fp3d32.dll" (ByVal szIniFile As String) As Integer

'11 Save current configuration to the EEPROM
'11 Developers should NOT make this call

Declare Function FPV_SaveConfigToEEPROM Lib "fp3d32.dll" (ByVal wValid As Integer, ByVal wBoardRev As Integer, ByVal
dwSerialNum As Long, ByVal dwBoardCfg As Long) As Integer

'11 Write an I2C register

Declare Function FPV_SetI2CReg Lib "fp3d32.dll" (ByVal nAddr As Integer, ByVal nSubAddr As Integer, ByVal nVal As Integer) As
Integer
'II Read an I2C register

Declare Function FPV_GetI2CReg Lib "fp3d32.dll" (ByVal nAddr As Integer, ByVal nSubAddr As Integer) As Integer
'11 Write a viper register

Declare Function FPV_SetViperReg Lib "fp3d32.dll" (ByVal nRegNum As Integer, ByVal nVal As Integer) As Integer
'11 Read a viper register

Declare Function FPV_GetViperReg Lib "fp3d32.dll" (ByVal nRegNum As Integer) As Integer
'11 Set the W32 read segment

Declare Function FPV_SetW32ReadSeg Lib "fp3d32.dll" (ByVal wSeg As Integer) As Integer
'II Set/Get !MA regs

Declare Function FPV_SetIMAReg Lib "fp3d32.dll" (ByVal nReg As Integer, ByVal nVal As Integer) As Integer
Declare Function FPV_GetIMAReg Lib "fp3d32.dll" (ByVal nReg As Integer) As Integer
'1lSend a Viper FS

Declare Function FPV_SendViperFS Lib "fp3d32.dll" (ByVal nAlign As Integer) As Integer
'liSet Viper in and out modes

Declare Function FPV_SetColorSpace Lib "fp3d32.dll" (ByVal nInSpace As Integer, ByVal nOutSpace As Integer) As Integer

'11 Return version info

Declare Function FPV_GetVersionInfo Lib "fp3d32.dll" (pVInfo As VERSIONINFO) As Integer

'11 Set the VGA mode (DOS only)

Declare Function FPV_SetVGAMode Lib "fp3d32.dll" (ByVal nMode As Integer, ByVal nBitsPerPix As Integer) As Integer
'11 Return the VGA mode (DOS only)

-330-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

Declare Function FPV_GetVGAMode Lib "fp3d32.dll" (ByVal bVESA As Integer) As Integer

'11 Convert pixel vals to a new resolution
Declare Function FPV_ConvertPixel Lib "fp3d32.dll" (ByVal nWidth As Integer, ByVal nDepthCur As Integer, ByVal nDepthNew As
Integer, IpValCur As Any, IpValNew As Any, IpCMap As Any) As Integer .
'11 Set a VGA pixel
Declare Function FPV_SetVGAPixel Lib "fp3d32.dll" (ByVal nX As Integer, ByVal nY As Integer, ByVallVal As Long) As Integer
'11 Set a VGA rectangle to a uniform value
Declare Function FPV_SetVGARect Lib "fp3d32.dll" (ByVal nX As Integer, ByVal nY As Integer, ByVal nWidth As Integer, ByVal
nHeight As Integer, ByVallVal As Long) As Integer
'11 Copy a VGA rectangle to or from main memory
'11 Direction O==to VGA l==from VGA
Declare Function FPV_CopyVGARect Lib "fp3d32.dll" (ByVal nX As Integer, ByVal nY As Integer, ByVal nWidth As Integer, ByVal
nHeight As Integer, hpPixBuf As Any, ByVal nPitch As Integer, ByVal nCopyDir As Integer) As Integer
'11 Create a DIB from a screen rectangle
Declare Function FPV_ScreenToDIB Lib "fp3d32.dll" (ByVal nX As Integer, ByVal nY As Integer, ByVal nWidth As Integer, ByVal
nHeight As Integer, ByVal nFlags As Integer, hpDIBBuf As Any) As Integer

'II Set the video type and standard
'11 Config types are: 0 source, I standard, 2 type
Declare Function FPV_SetVideoConfig Lib "fp3d32.dll" (ByVal nType As Integer, ByVal nStandard As Integer, ByVal nSource As
Integer, ByVal bSyncOnGreen As Integer) As Integer
'11 Get the video type, standard, or source
Declare Function FPV_GetVideoType Lib "fp3d32.dll" 0 As Integer
Declare Function FPV_GetVideoStandard Lib "fp3d32.dll" 0 As Integer
Declare Function FPV_GetVideoSource Lib "fp3d32.dll" 0 As Integer

'11 Get or set a misc value
Declare Function FPV_GetMiscParm Lib "fp3d32.dll" (ByVal nIndex As Integer, IpRetBuf As Any) As Integer
Declare Function FPV_SetMiscParm Lib "fp3d32.dll" (ByVal nIndex As Integer, ByVallVal As Long) As Integer

'11 Get or set a misc reg value

Declare Function FPV_SetMiscReg Lib "fp3d32.dll" (ByVal nIndex As Integer, ByVal dwReg As Long, ByVal dwVal As Long) As
Integer

Declare Function FPV_GetMiscReg Lib "fp3d32.dll" (ByVal nIndex As Integer, ByVal dwReg As Long) As Integer

'11 Set an 8 bit palette

Declare Function FPV_SetPalette Lib "fp3d32.dll" (ByVal nType As Integer, ByValIHandle As Long) As Integer

'11 Set input(source) video rect

Declare Function FPV_SetInputWindow Lib "fp3d32.dll" (ByVal nSrcX As Integer, ByVal nSrc As Integer, ByVal nSrcWidth As
Integer, ByVal nSrcHeight As Integer) As Integer
'11 Set X and Y offset into the input(source) window
Declare Function FPV_SetInputOffset Lib "fp3d32.dll" (ByVal nOff)(As Integer, ByVal nOffY As Integer) As Integer

'11 Set video window size and position
Declare Function FPV_SetVideoWindow Lib "fp3d32.dll" (ByVal nDstX As Integer, ByVal nDst As Integer, ByVal nDstWidth As
Integer, ByVal nDstHeight As Integer, ByVal bScale As Integer) As Integer
Declare Function FPV_VideoOffscreen Lib "fp3d32.dll" (ByVal nDstWidth As Integer, ByVal nDstHeight As Integer, ByVaJ
nDstDepth As Integer, ByVal bScale As Integer) As Integer

'11 Set video acquisition rectangle

Declare Function FPV_SetAcqRect Lib "fp3d32.dll" (ByVal nAcqX As Integer, ByVal nAcqY As Integer, ByVal nAcqWidth As
Integer, ByVal nAcqHeight As Integer) As Integer
'II Set and get the video x and y delays

Declare Function FPV_SetXYDelay Lib "fp3d32.dll" (ByVal nXDelay As Integer, ByVal nYDelay As Integer) As Integer
Declare Function FPV_GetXDelay Lib "fp3d32.dll" 0 As Integer
Declare Function FPV_GetYDelay Lib "fp3d32.dll" 0 As Integer

'11 Get various video rects

Declare Function FPV_GetVideoRect Lib "fp3d32.dll" (ByVal nRectType As Integer, pnX As Integer, pnY As Integer, pnWidth As
Integer, pnHeight As Integer) As Integer

'11 Vsync/LSync operations
'11 Get the current field type

-331-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

Declare Function FPV_GetFieldType Lib "fp3d32.dll" 0 As Integer
'11 Wait for a particular field type
Declare Function FPV_WaitFieldType Lib "fp3d32.dll" (ByVal nFieldType As Integer) As Integer
'11 Wait a specified number of fields
Declare Function FPV_WaitVSync Lib "fp3d32.dll" (ByVal nSyncCnt As Integer) As Integer
'11 Wait a specified number oflines
Declare Function FPV_WaitHSync Lib "fp3d32.dll" (ByVal nSyncCnt As Integer) As Integer
'11 Wait a specified number of milliseconds
Declare Function FPV_WaitMS Lib "fp3d32.dll" (ByVal nMSCnt As Integer) As Integer

'11 Adjust video parms
'11 Adjustment types are: O==hue I==sat, 3==bright, 4==contrast
Declare Function FPV_SetVideoAdjustrnents Lib "fp3d32.dll" (ByVal nType As Integer, ByVal nVal As Integer) As Integer
'11 Get current video parms
Declare Function FPV_GetVideoAdjustments Lib "fp3d32.dll" (ByVal nType As Integer) As Integer
'11 Get video parrns for any standard or type
Declare Function FPV_GetSTVideoAdjustments Lib "fp3d32.dll" (ByVal nStandard As Integer, ByVal nVideoType As Integer, ByVal
nType As Integer) As Integer

'11 Freeze video with or without flash
'11 Alignment values: ALIGN_ANY ALIGN_ODD ALIGN_EVEN
'11 Flash delay values: FLASHTYPE_NONE FLASHTYPE_AUTO FLASHTYPE_MANUAL
Declare Function FPV_VideoGrab Lib "fp3d32.dll" (ByVal nAlign As Integer, ByVal nFlashType As Integer, ByVal nFlashDelayF As
Integer, ByVal nFlashDelayL As Integer) As Integer
'11 Start live video
Declare Function FPV_VideoLive Lib "fp3d32.dll" (ByVal bLive As Integer, ByVal nAlign As Integer) As Integer
'11 Get live status
Declare Function FPV_GetLiveStatus Lib "fp3d32.dll" 0 As Integer

'11 Enable or Disable the video mask ram
Declare Function FPV_EnableVideoMask Lib "fp3d32.dll" (ByVal bEnable As Integer) As Integer
'11 Set the video mask ram
Declare Function FPV_SetVideoMask Lib "fp3d32.dll" (ByVal nX As Integer, ByVal nY As Integer, ByVal nWidth As Integer, ByVal
nHeight As Integer, ByVal nPitch As Integer, IpMaskBuf As Any) As Integer
'11 Change the mask write delay
Declare Function FPV_SetMaskDelay Lib "fp3d32.dll" (ByVal nMDelay As Integer) As Integer
'II Set the mask based on a key color
Declare Function FPV_VGARectToMask Lib "fp3d32.dll" (ByVal dwKeyColor As Long, ByVal nX As Integer, ByVal nY As Integer,
ByVal nWidth As Integer, ByVal nHeight As Integer, IpMaskBuf As Any, ByVal nPitch As Integer) As Integer
'11 Draw into video mask
Declare Function FPV_MaskDraw Lib "fp3d32.dll" (ByVal nOp As Integer, ByVal nXI As Integer, ByVal nYI As Integer, ByVal nX2
As Integer, ByVal nY2 As Integer, ByVal dwParaml As Long, ByVal dwParam2 As Long) As Integer

'11 Check external switch

Declare Function FPV_CheckSwitch Lib "fp3d32.dll" (ByVal nBaseAddr As Integer, ByVal nTimeOutMS As Integer) As Integer

'11 Enable or disable VGA or video VSync
Declare Function FPV_EnableIRQ Lib "fp3d32.dll" (ByVal nIRQType As Integer, ByVal nIRQNum As Integer, ByVal bEnable As
Integer, IpISR As Any) As Integer
'11 Clear an IRQ
Declare Function FPV_ClearIRQ Lib "fp3d32.dll" (ByVal nIRQType As Integer, ByVal nIRQNurn As Integer) As Integer
'11 Return the IRQ used
Declare Function FPV_GetIRQNumber Lib "fp3d32.dll" 0 As Integer

'11 Serial port functions

Declare Function FPV_SetupSerial Lib "fp3d32.dll" (ByVal nBaseIO As Integer, ByVal nIRQ As Integer, ByVal nBaud As Integer,
ByVal nDataBits As Integer, ByVal nParity As Integer, ByVal nStopBits As Integer) As Integer
Declare Function FPV_ReadSerialBytes Lib "fp3d32.dll" (lpRcvBuf As Any, ByVal nRcvCnt As Integer, ByVal nTimeOutMS As
Integer) As Integer

Declare Function FPV_WriteSerialBytes Lib "fp3d32.dll" (lpTxBuf As Any, ByVal nTxCnt As Integer, ByVal nTimeOutMS As
Integer) As Integer
Declare Function FPV_GetSerialReg Lib "fp3d32.dll" (ByVal nReg As Integer) As Integer
Declare Function FPV_SetSerialReg Lib "fp3d32.dll" (ByVal nReg As Integer, ByVal nRegVal As Integer) As Integer

'1lMimic Windows private profile functions

-332-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

Declare Function FPV_GetPrivateProfileString Lib "fp3d32.dll" (ByVallpszSection As String, ByVallpszEntry As String, ByVal
IpszDefault As String, ByVallpszReturnBuffer As String, ByVal cbRetumBytes As Integer, ByVallpszFileName As String) As Integer
Declare Function FPV_WritePrivateProfileString Lib "fp3d32.dll" (ByVallpszSection As String, ByVallpszEntry As String, ByVal
IpszString As String, ByVallpszFileName As String) As Integer
Declare Function FPV_OpenPrivateProfileString Lib "fp3d32.dll" (ByVallpszFileName As String, ByVal bWrite As Integer) As Integer
Declare Function FPV_ClosePrivateProfileString Lib "fp3d32.dll" (ByVal bWrite As Integer) As Integer

'11 Load and save file will call seperate Dlls based on the file extension
'11 This allows new file formats to be added without changing the main DLL
'11 For DOS .TGA and .DIB are supported
'11 A NULL hpPixBufwill cause the image to be loaded directly into VGA mem
Declare Function FPV]ileResInfo Lib "fp3d32.dll" (ByVal szPathName As String, IpFileRes As FILERESINFO) As Integer
Declare Function FPV_LoadFile Lib "fp3d32.dll" (ByVal szPathName As String, ByVal nX As Integer, ByVal nY As Integer, ByVal
nWidth As Integer, ByVal nHeight As Integer, ByVal nFlags As Integer, hpPixBuf As Any, ByVal nPitch As Integer) As Integer
Declare Function FPV_SaveFile Lib "fp3d32.dll" (ByVal szPathName As String, ByVal nX As Integer, ByVal nY As Integer, ByVal
nWidth As Integer, ByVal nHeight As Integer, ByVal nDepth As Integer, ByVal nFlags As Integer, hpPixBuf As Any, ByVal nPitch As
Integer) As Integer

'11 Available with programmable frequency boards
Declare Function FPV_SetVidFreq Lib "fp3d32.dll" (ByVal nNTSCBits As Integer, ByVal nPALBits As Integer) As Integer
'11 Available with programmable iris boards
Declare Function FPV_SetIrisLevel Lib "fp3d32.dll" (ByVal nIrisBits As Integer) As Integer

'11 Available under Windows with DCI
Declare Function FPV_AutoWindow Lib "fp3d32.dll" (ByVal hWnd As Long, ByVal nXOff As Integer, ByVal nYOff As Integer,
ByVal nWidthAdj As Integer, ByVal nHeightAdj As Integer, ByVallFlags As Long) As Integer
Declare Function FPV_AutoWindowlnfo Lib "fp3d32.dll" (pAWlnfo As Any) As Integer

'11 Only available in a debug build
Declare Function FPV_DumpViperRegs Lib "fp3d32.dll" 0 As Integer

'1111111111111111111111///11///111111111111111111111111111IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
'111IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

'11 Get occlusion mode

Declare Function FPV_GetKeyMode Lib "fp3d32.dll" 0 As Integer

'11 Set occlusion mode

Declare Function FPV_SetKeyMode Lib "fp3d32.dll" (ByVal nMode As Integer) As Integer

'11 Set occlusion color key I chroma key RGB value

Declare Function FPV_SetKeyValue Lib "fp3d32.dll" (ByVal nMode As Integer, ByVal nRedLow As Integer, ByVal nRedHigh As
Integer, ByVal nGreenLow As Integer, ByVal nGreenHigh As Integer, ByVal nBlueLow As Integer, ByVal nBlueHigh As Integer) As
Integer

'11 Get occlusion color key for a given mode

Declare Function FPV_GetKeyValue Lib "fp3d32.dll" (ByVal mode As Integer, pRedLow As Integer, pRedHigh As Integer,
pGreenLow As Integer, pGreenHigh As Integer, pBlueLow As Integer, pBlueHigh As Integer) As Integer

'11 Enable/disable video window
Declare Function FPV_OverlayEnable Lib "fp3d32.dll" (ByVal bEnable As Integer) As Integer

'11 Get video window enabled status
Declare Function FPV_IsOverlayEnabled Lib "fp3d32.dll" 0 As Integer

'II Get frame buffer selector
Declare Function FPV_GetFrameBufferPointer Lib "fp3d32.dll" 0 As Long

'11 Get capture buffer offset
Declare Function FPV_GetCaptureBufferOffset Lib "fp3d32.dll" 0 As Long

-333-

Appendix A CODE LISTING FOR THE MODULAR MECHATRONIC
CIM INTERNET CONTROL SYSTEM

'11 Set RS-170 Lookup Table value
Declare Function FPV_SetRSI70LUT Lib "fp3d32.dll" (ByVal ix As Integer, ByVal value As Integer) As Integer

'11 Read write to video, DOS only
Declare Function FPV_ReadVideoByte Lib "fp3d32.dll" (ByVal nAddress As Integer) As Integer
Declare Function FPV_WriteVideoByte Lib "fp3d32.dll" (ByVal nAddress As Integer, ByVal nByte As Integer) As Integer
Declare Function FPV_ReadVideoMemory Lib "fp3d32.dll" (ByVal nAddress As Integer, pDest As Any, ByVal nCount As Integer) As
Integer
Declare Function FPV_WriteVideoMemory Lib "fp3d32.dll" (ByVal nAddress As Integer, pSource As Any, ByVal nCount As Integer)
As Integer

'II Get library build number
Declare Function FPV_GetLibBuild Lib "fp3d32.dll" 0 As Integer

'II Read overlay data, converting to desired format
Declare Function FPV_GetOverlayRect Lib "fp3d32.dll" (ByVal x As Integer, ByVal y As Integer, ByVal nWidth As Integer, ByVal
nHeight As Integer, pDest As Any, ByVal nDestDepth As Integer, ByVal nPitch As Integer) As Integer

'11 Quickest way to read overlay memory
Declare Function FPV_ReadOverlayMemory Lib "fp3d32.dll" (ByVal nOffset As Long, ByVal nSize As Long, pDest As Any) As
Integer

"11 YUV conversion
Declare Function FPV_ConvertYuvToRgb Lib "fp3d32.dll" (pSource As Any, pDest As Any, ByVal nWidth As Integer, ByVal nHeight
As Integer, ByVal nSourcePitch As Integer, ByVal nDestPitch As Integer, ByVal nFlags As Integer) As Integer
Declare Function FPV_ConvertRgbToYuv Lib "fp3d32.dll" (pSource As Any, pDest As Any, ByVal nWidth As Integer, ByVal nHeight
As Integer, ByVal nSourcePitch As Integer, ByVal nDestPitch As Integer, ByVal nFlags As Integer) As Integer

'11 Procs to pack/unpack YUV 444/422
Declare Function FPV]ackYuv Lib "fp3d32.dll" (sSource As Any, sDest As Any, ByVal nWidth As Integer) As Integer
Declare Function FPV_UnpackYuv Lib "fp3d32.dll" (sSource As Any, sDest As Any, ByVal nWidth As Integer) As Integer

Global Const BOARD_LITE = 0
Global Const BOARD]LUS = I
Global Const BOARD]RO = 2
Global Const BOARD_UNKNOWN = &HI 0

7.9 fpg.bas

Option Explicit

Declare Function GetDeviceCaps Lib "GDI32" (ByVal hDC As Integer, ByVal nlndex As Integer) As Integer
Declare Function GetDesktopWindow Lib "User32" 0 As Long
Declare Function GetDC Lib "User32" (ByVal hWnd As Long) As Long
Declare Function ReleaseDC Lib "User32" (ByVal hWnd As Long, ByVal hDC As Long) As Long

Rem Arrays to hold Default values for the different standards and types
Public DefBrightness(O To I, 0 To 3) As Integer
Public DefContrast(O To 1,0 To 3) As Integer
Public DefHue(O To 1,0 To 3) As Integer
Public DefSaturation(O To 1,0 To 3) As Integer
Public SyncGreen As Boolean

-334-

Appendix B

Cost Breakdown of the Modular Mechatronic Internet

Control System

This appendix presents a breakdown of the manufacturing costs that are incurred in the

development ofInternet control system. The breakdown ofcosts are presented as a spreadsheet

in landscape format.

-335-

Cost Breakdown of the Modular Mechatronic Internet Control System

Network Peripherals
DE-809TC Ethernet Hub
Server network card (3Com Etherlink 1OBASE-T PCI card)
Camera Client network card (3Com Etherlink 1OBASE-T PCI card)
Conveyer Client network card (3Com Etherlink 1OBASE-T PCI card)
Robot Client network card (3Com Etherlink 1OBASE-T PCI card)
LAN Cables (Twisted Pair and RJ-45 connectors)
Cable Tray

Visual Feedback Module
Tedelex Private Eye Camera
Coaxial Cables
Camera Power Supply
Camera Selector Module

Host Server Module
PII-400 Computer
FlashPoint3D Frame Grabber

::amera Client Module
PI-166 Computer
PCL-836 I/O Card
PCLD-880 Terminal connector card

;onveyer Client Module
Power Cabinet power supply
Relay Power Modules
PI-120 Computer
PCL-836 I/O Card
PCLD-880 Terminal connector card

1000.00
150.00
150.00
150.00
150.00
300.00
125.00

Sub Total R 2,025.00

4x 250.00
350.00
230.00

65.00
Sub Total R 1,645.00

4500.00
5500.00

Sub Total R 10,000.00

3500.00
4200.00
1200.00

Sub Total R 8,900.00

4500.00
10x 35.00

3000.00
4200.00
1200.00 _

Sub Total R 13,250.00

Cost Breakdown of the Modular Mechatronic Internet Control System (Continue)

Robot Client Module
PIII-500 Computer
PCL-832 Servo Card
PC-30GA Interface card
Feedback circuitry switch mode power supply
LM 12 Driver circuit
Signal conditioning circuitry
Manufacturing and material cost of controller cabinet
Cabling

8500.00
2x 5500.00

3250.00
2500.00

6x 250.00
200.00
850.00
600.00 _

Sub Total R 28,400.00

Total Development Cost: R 64,220.00

	Potgieter_Johan-Gerhard_2002.front.p001
	Potgieter_Johan-Gerhard_2002.front.p002
	Potgieter_Johan-Gerhard_2002.front.p003
	Potgieter_Johan-Gerhard_2002.front.p004
	Potgieter_Johan-Gerhard_2002.front.p005
	Potgieter_Johan-Gerhard_2002.front.p006
	Potgieter_Johan-Gerhard_2002.front.p007
	Potgieter_Johan-Gerhard_2002.front.p008
	Potgieter_Johan-Gerhard_2002.front.p009
	Potgieter_Johan-Gerhard_2002.front.p010
	Potgieter_Johan-Gerhard_2002.front.p011
	Potgieter_Johan-Gerhard_2002.front.p012
	Potgieter_Johan-Gerhard_2002.front.p013
	Potgieter_Johan-Gerhard_2002.front.p014
	Potgieter_Johan-Gerhard_2002.front.p015
	Potgieter_Johan-Gerhard_2002.front.p016
	Potgieter_Johan-Gerhard_2002.front.p017
	Potgieter_Johan-Gerhard_2002.front.p018
	Potgieter_Johan-Gerhard_2002.front.p019
	Potgieter_Johan-Gerhard_2002.p001
	Potgieter_Johan-Gerhard_2002.p002
	Potgieter_Johan-Gerhard_2002.p003
	Potgieter_Johan-Gerhard_2002.p004
	Potgieter_Johan-Gerhard_2002.p005
	Potgieter_Johan-Gerhard_2002.p006
	Potgieter_Johan-Gerhard_2002.p007
	Potgieter_Johan-Gerhard_2002.p008
	Potgieter_Johan-Gerhard_2002.p009
	Potgieter_Johan-Gerhard_2002.p010
	Potgieter_Johan-Gerhard_2002.p011
	Potgieter_Johan-Gerhard_2002.p012
	Potgieter_Johan-Gerhard_2002.p013
	Potgieter_Johan-Gerhard_2002.p014
	Potgieter_Johan-Gerhard_2002.p015
	Potgieter_Johan-Gerhard_2002.p016
	Potgieter_Johan-Gerhard_2002.p017
	Potgieter_Johan-Gerhard_2002.p018
	Potgieter_Johan-Gerhard_2002.p019
	Potgieter_Johan-Gerhard_2002.p020
	Potgieter_Johan-Gerhard_2002.p021
	Potgieter_Johan-Gerhard_2002.p022
	Potgieter_Johan-Gerhard_2002.p023
	Potgieter_Johan-Gerhard_2002.p024
	Potgieter_Johan-Gerhard_2002.p025
	Potgieter_Johan-Gerhard_2002.p026
	Potgieter_Johan-Gerhard_2002.p027
	Potgieter_Johan-Gerhard_2002.p028
	Potgieter_Johan-Gerhard_2002.p029
	Potgieter_Johan-Gerhard_2002.p030
	Potgieter_Johan-Gerhard_2002.p031
	Potgieter_Johan-Gerhard_2002.p032
	Potgieter_Johan-Gerhard_2002.p033
	Potgieter_Johan-Gerhard_2002.p034
	Potgieter_Johan-Gerhard_2002.p035
	Potgieter_Johan-Gerhard_2002.p036
	Potgieter_Johan-Gerhard_2002.p037
	Potgieter_Johan-Gerhard_2002.p038
	Potgieter_Johan-Gerhard_2002.p039
	Potgieter_Johan-Gerhard_2002.p040
	Potgieter_Johan-Gerhard_2002.p041
	Potgieter_Johan-Gerhard_2002.p042
	Potgieter_Johan-Gerhard_2002.p043
	Potgieter_Johan-Gerhard_2002.p044
	Potgieter_Johan-Gerhard_2002.p045
	Potgieter_Johan-Gerhard_2002.p046
	Potgieter_Johan-Gerhard_2002.p047
	Potgieter_Johan-Gerhard_2002.p048
	Potgieter_Johan-Gerhard_2002.p049
	Potgieter_Johan-Gerhard_2002.p050
	Potgieter_Johan-Gerhard_2002.p051
	Potgieter_Johan-Gerhard_2002.p052
	Potgieter_Johan-Gerhard_2002.p053
	Potgieter_Johan-Gerhard_2002.p054
	Potgieter_Johan-Gerhard_2002.p055
	Potgieter_Johan-Gerhard_2002.p056
	Potgieter_Johan-Gerhard_2002.p057
	Potgieter_Johan-Gerhard_2002.p058
	Potgieter_Johan-Gerhard_2002.p059
	Potgieter_Johan-Gerhard_2002.p060
	Potgieter_Johan-Gerhard_2002.p061
	Potgieter_Johan-Gerhard_2002.p062
	Potgieter_Johan-Gerhard_2002.p063
	Potgieter_Johan-Gerhard_2002.p064
	Potgieter_Johan-Gerhard_2002.p065
	Potgieter_Johan-Gerhard_2002.p066
	Potgieter_Johan-Gerhard_2002.p067
	Potgieter_Johan-Gerhard_2002.p068
	Potgieter_Johan-Gerhard_2002.p069
	Potgieter_Johan-Gerhard_2002.p070
	Potgieter_Johan-Gerhard_2002.p071
	Potgieter_Johan-Gerhard_2002.p072
	Potgieter_Johan-Gerhard_2002.p073
	Potgieter_Johan-Gerhard_2002.p074
	Potgieter_Johan-Gerhard_2002.p075
	Potgieter_Johan-Gerhard_2002.p076
	Potgieter_Johan-Gerhard_2002.p077
	Potgieter_Johan-Gerhard_2002.p078
	Potgieter_Johan-Gerhard_2002.p079
	Potgieter_Johan-Gerhard_2002.p080
	Potgieter_Johan-Gerhard_2002.p081
	Potgieter_Johan-Gerhard_2002.p082
	Potgieter_Johan-Gerhard_2002.p083
	Potgieter_Johan-Gerhard_2002.p084
	Potgieter_Johan-Gerhard_2002.p085
	Potgieter_Johan-Gerhard_2002.p086
	Potgieter_Johan-Gerhard_2002.p087
	Potgieter_Johan-Gerhard_2002.p088
	Potgieter_Johan-Gerhard_2002.p089
	Potgieter_Johan-Gerhard_2002.p090
	Potgieter_Johan-Gerhard_2002.p091
	Potgieter_Johan-Gerhard_2002.p092
	Potgieter_Johan-Gerhard_2002.p093
	Potgieter_Johan-Gerhard_2002.p094
	Potgieter_Johan-Gerhard_2002.p095
	Potgieter_Johan-Gerhard_2002.p096
	Potgieter_Johan-Gerhard_2002.p097
	Potgieter_Johan-Gerhard_2002.p098
	Potgieter_Johan-Gerhard_2002.p099
	Potgieter_Johan-Gerhard_2002.p100
	Potgieter_Johan-Gerhard_2002.p101
	Potgieter_Johan-Gerhard_2002.p102
	Potgieter_Johan-Gerhard_2002.p103
	Potgieter_Johan-Gerhard_2002.p104
	Potgieter_Johan-Gerhard_2002.p105
	Potgieter_Johan-Gerhard_2002.p106
	Potgieter_Johan-Gerhard_2002.p107
	Potgieter_Johan-Gerhard_2002.p108
	Potgieter_Johan-Gerhard_2002.p109
	Potgieter_Johan-Gerhard_2002.p110
	Potgieter_Johan-Gerhard_2002.p111
	Potgieter_Johan-Gerhard_2002.p112
	Potgieter_Johan-Gerhard_2002.p113
	Potgieter_Johan-Gerhard_2002.p114
	Potgieter_Johan-Gerhard_2002.p115
	Potgieter_Johan-Gerhard_2002.p116
	Potgieter_Johan-Gerhard_2002.p117
	Potgieter_Johan-Gerhard_2002.p118
	Potgieter_Johan-Gerhard_2002.p119
	Potgieter_Johan-Gerhard_2002.p120
	Potgieter_Johan-Gerhard_2002.p121
	Potgieter_Johan-Gerhard_2002.p122
	Potgieter_Johan-Gerhard_2002.p123
	Potgieter_Johan-Gerhard_2002.p124
	Potgieter_Johan-Gerhard_2002.p125
	Potgieter_Johan-Gerhard_2002.p126
	Potgieter_Johan-Gerhard_2002.p127
	Potgieter_Johan-Gerhard_2002.p128
	Potgieter_Johan-Gerhard_2002.p129
	Potgieter_Johan-Gerhard_2002.p130
	Potgieter_Johan-Gerhard_2002.p131
	Potgieter_Johan-Gerhard_2002.p132
	Potgieter_Johan-Gerhard_2002.p133
	Potgieter_Johan-Gerhard_2002.p134
	Potgieter_Johan-Gerhard_2002.p135
	Potgieter_Johan-Gerhard_2002.p136
	Potgieter_Johan-Gerhard_2002.p137
	Potgieter_Johan-Gerhard_2002.p138
	Potgieter_Johan-Gerhard_2002.p139
	Potgieter_Johan-Gerhard_2002.p140
	Potgieter_Johan-Gerhard_2002.p141
	Potgieter_Johan-Gerhard_2002.p142
	Potgieter_Johan-Gerhard_2002.p143
	Potgieter_Johan-Gerhard_2002.p144
	Potgieter_Johan-Gerhard_2002.p145
	Potgieter_Johan-Gerhard_2002.p146
	Potgieter_Johan-Gerhard_2002.p147
	Potgieter_Johan-Gerhard_2002.p148
	Potgieter_Johan-Gerhard_2002.p149
	Potgieter_Johan-Gerhard_2002.p150
	Potgieter_Johan-Gerhard_2002.p151
	Potgieter_Johan-Gerhard_2002.p152
	Potgieter_Johan-Gerhard_2002.p153
	Potgieter_Johan-Gerhard_2002.p154
	Potgieter_Johan-Gerhard_2002.p155
	Potgieter_Johan-Gerhard_2002.p156
	Potgieter_Johan-Gerhard_2002.p157
	Potgieter_Johan-Gerhard_2002.p158
	Potgieter_Johan-Gerhard_2002.p159
	Potgieter_Johan-Gerhard_2002.p160
	Potgieter_Johan-Gerhard_2002.p161
	Potgieter_Johan-Gerhard_2002.p162
	Potgieter_Johan-Gerhard_2002.p163
	Potgieter_Johan-Gerhard_2002.p164
	Potgieter_Johan-Gerhard_2002.p165
	Potgieter_Johan-Gerhard_2002.p166
	Potgieter_Johan-Gerhard_2002.p167
	Potgieter_Johan-Gerhard_2002.p168
	Potgieter_Johan-Gerhard_2002.p169
	Potgieter_Johan-Gerhard_2002.p170
	Potgieter_Johan-Gerhard_2002.p171
	Potgieter_Johan-Gerhard_2002.p172
	Potgieter_Johan-Gerhard_2002.p173
	Potgieter_Johan-Gerhard_2002.p174
	Potgieter_Johan-Gerhard_2002.p175
	Potgieter_Johan-Gerhard_2002.p176
	Potgieter_Johan-Gerhard_2002.p177
	Potgieter_Johan-Gerhard_2002.p178
	Potgieter_Johan-Gerhard_2002.p179
	Potgieter_Johan-Gerhard_2002.p180
	Potgieter_Johan-Gerhard_2002.p181
	Potgieter_Johan-Gerhard_2002.p182
	Potgieter_Johan-Gerhard_2002.p183
	Potgieter_Johan-Gerhard_2002.p184
	Potgieter_Johan-Gerhard_2002.p185
	Potgieter_Johan-Gerhard_2002.p186
	Potgieter_Johan-Gerhard_2002.p187
	Potgieter_Johan-Gerhard_2002.p188
	Potgieter_Johan-Gerhard_2002.p189
	Potgieter_Johan-Gerhard_2002.p190
	Potgieter_Johan-Gerhard_2002.p191
	Potgieter_Johan-Gerhard_2002.p192
	Potgieter_Johan-Gerhard_2002.p193
	Potgieter_Johan-Gerhard_2002.p194
	Potgieter_Johan-Gerhard_2002.p195
	Potgieter_Johan-Gerhard_2002.p196
	Potgieter_Johan-Gerhard_2002.p197
	Potgieter_Johan-Gerhard_2002.p198
	Potgieter_Johan-Gerhard_2002.p199
	Potgieter_Johan-Gerhard_2002.p200
	Potgieter_Johan-Gerhard_2002.p201
	Potgieter_Johan-Gerhard_2002.p202
	Potgieter_Johan-Gerhard_2002.p203
	Potgieter_Johan-Gerhard_2002.p204
	Potgieter_Johan-Gerhard_2002.p205
	Potgieter_Johan-Gerhard_2002.p206
	Potgieter_Johan-Gerhard_2002.p207
	Potgieter_Johan-Gerhard_2002.p208
	Potgieter_Johan-Gerhard_2002.p209
	Potgieter_Johan-Gerhard_2002.p210
	Potgieter_Johan-Gerhard_2002.p211
	Potgieter_Johan-Gerhard_2002.p212
	Potgieter_Johan-Gerhard_2002.p213
	Potgieter_Johan-Gerhard_2002.p214
	Potgieter_Johan-Gerhard_2002.p215
	Potgieter_Johan-Gerhard_2002.p216
	Potgieter_Johan-Gerhard_2002.p217
	Potgieter_Johan-Gerhard_2002.p218
	Potgieter_Johan-Gerhard_2002.p219
	Potgieter_Johan-Gerhard_2002.p220
	Potgieter_Johan-Gerhard_2002.p221
	Potgieter_Johan-Gerhard_2002.p222
	Potgieter_Johan-Gerhard_2002.p223
	Potgieter_Johan-Gerhard_2002.p224
	Potgieter_Johan-Gerhard_2002.p225
	Potgieter_Johan-Gerhard_2002.p226
	Potgieter_Johan-Gerhard_2002.p227
	Potgieter_Johan-Gerhard_2002.p228
	Potgieter_Johan-Gerhard_2002.p229
	Potgieter_Johan-Gerhard_2002.p230
	Potgieter_Johan-Gerhard_2002.p231
	Potgieter_Johan-Gerhard_2002.p232
	Potgieter_Johan-Gerhard_2002.p233
	Potgieter_Johan-Gerhard_2002.p234
	Potgieter_Johan-Gerhard_2002.p235
	Potgieter_Johan-Gerhard_2002.p236
	Potgieter_Johan-Gerhard_2002.p237
	Potgieter_Johan-Gerhard_2002.p238
	Potgieter_Johan-Gerhard_2002.p239
	Potgieter_Johan-Gerhard_2002.p240
	Potgieter_Johan-Gerhard_2002.p241
	Potgieter_Johan-Gerhard_2002.p242
	Potgieter_Johan-Gerhard_2002.p243
	Potgieter_Johan-Gerhard_2002.p244
	Potgieter_Johan-Gerhard_2002.p245
	Potgieter_Johan-Gerhard_2002.p246
	Potgieter_Johan-Gerhard_2002.p247
	Potgieter_Johan-Gerhard_2002.p248
	Potgieter_Johan-Gerhard_2002.p249
	Potgieter_Johan-Gerhard_2002.p250
	Potgieter_Johan-Gerhard_2002.p251
	Potgieter_Johan-Gerhard_2002.p252
	Potgieter_Johan-Gerhard_2002.p253
	Potgieter_Johan-Gerhard_2002.p254
	Potgieter_Johan-Gerhard_2002.p255
	Potgieter_Johan-Gerhard_2002.p256
	Potgieter_Johan-Gerhard_2002.p257
	Potgieter_Johan-Gerhard_2002.p258
	Potgieter_Johan-Gerhard_2002.p259
	Potgieter_Johan-Gerhard_2002.p260
	Potgieter_Johan-Gerhard_2002.p261
	Potgieter_Johan-Gerhard_2002.p262
	Potgieter_Johan-Gerhard_2002.p263
	Potgieter_Johan-Gerhard_2002.p264
	Potgieter_Johan-Gerhard_2002.p265
	Potgieter_Johan-Gerhard_2002.p266
	Potgieter_Johan-Gerhard_2002.p267
	Potgieter_Johan-Gerhard_2002.p268
	Potgieter_Johan-Gerhard_2002.p269
	Potgieter_Johan-Gerhard_2002.p270
	Potgieter_Johan-Gerhard_2002.p271
	Potgieter_Johan-Gerhard_2002.p272
	Potgieter_Johan-Gerhard_2002.p273
	Potgieter_Johan-Gerhard_2002.p274
	Potgieter_Johan-Gerhard_2002.p275
	Potgieter_Johan-Gerhard_2002.p276
	Potgieter_Johan-Gerhard_2002.p277
	Potgieter_Johan-Gerhard_2002.p278
	Potgieter_Johan-Gerhard_2002.p279
	Potgieter_Johan-Gerhard_2002.p280
	Potgieter_Johan-Gerhard_2002.p281
	Potgieter_Johan-Gerhard_2002.p282
	Potgieter_Johan-Gerhard_2002.p283
	Potgieter_Johan-Gerhard_2002.p284
	Potgieter_Johan-Gerhard_2002.p285
	Potgieter_Johan-Gerhard_2002.p286
	Potgieter_Johan-Gerhard_2002.p287
	Potgieter_Johan-Gerhard_2002.p288
	Potgieter_Johan-Gerhard_2002.p289
	Potgieter_Johan-Gerhard_2002.p290
	Potgieter_Johan-Gerhard_2002.p291
	Potgieter_Johan-Gerhard_2002.p292
	Potgieter_Johan-Gerhard_2002.p293
	Potgieter_Johan-Gerhard_2002.p294
	Potgieter_Johan-Gerhard_2002.p295
	Potgieter_Johan-Gerhard_2002.p296
	Potgieter_Johan-Gerhard_2002.p297
	Potgieter_Johan-Gerhard_2002.p298
	Potgieter_Johan-Gerhard_2002.p299
	Potgieter_Johan-Gerhard_2002.p300
	Potgieter_Johan-Gerhard_2002.p301
	Potgieter_Johan-Gerhard_2002.p302
	Potgieter_Johan-Gerhard_2002.p303
	Potgieter_Johan-Gerhard_2002.p304
	Potgieter_Johan-Gerhard_2002.p305
	Potgieter_Johan-Gerhard_2002.p306
	Potgieter_Johan-Gerhard_2002.p307
	Potgieter_Johan-Gerhard_2002.p308
	Potgieter_Johan-Gerhard_2002.p309
	Potgieter_Johan-Gerhard_2002.p310
	Potgieter_Johan-Gerhard_2002.p311
	Potgieter_Johan-Gerhard_2002.p312
	Potgieter_Johan-Gerhard_2002.p313
	Potgieter_Johan-Gerhard_2002.p314
	Potgieter_Johan-Gerhard_2002.p315
	Potgieter_Johan-Gerhard_2002.p316
	Potgieter_Johan-Gerhard_2002.p317
	Potgieter_Johan-Gerhard_2002.p318
	Potgieter_Johan-Gerhard_2002.p319
	Potgieter_Johan-Gerhard_2002.p320
	Potgieter_Johan-Gerhard_2002.p321
	Potgieter_Johan-Gerhard_2002.p322
	Potgieter_Johan-Gerhard_2002.p323
	Potgieter_Johan-Gerhard_2002.p324
	Potgieter_Johan-Gerhard_2002.p325
	Potgieter_Johan-Gerhard_2002.p326
	Potgieter_Johan-Gerhard_2002.p327
	Potgieter_Johan-Gerhard_2002.p328
	Potgieter_Johan-Gerhard_2002.p329
	Potgieter_Johan-Gerhard_2002.p330
	Potgieter_Johan-Gerhard_2002.p331
	Potgieter_Johan-Gerhard_2002.p332
	Potgieter_Johan-Gerhard_2002.p333
	Potgieter_Johan-Gerhard_2002.p334
	Potgieter_Johan-Gerhard_2002.p335
	Potgieter_Johan-Gerhard_2002.p336
	Potgieter_Johan-Gerhard_2002.p337

