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PREFACE 

 
 
This thesis is divided into eight chapters: 
 
Chapter 1:  

This is an introductory chapter that addresses the background, rationale and relevance of the 

study as well as the proposed aim and objectives. The general outline and structure of the thesis 

concludes this chapter. 

 

Chapter 2: 

This chapter gives a comprehensive background on the immune system, the component and 

cells of the immune system. This chapter also describes immune system disorders and the 

regulation of the immune system. A brief description of cancer immunotherapy is also 

discussed in this chapter. Furthermore, this chapter highlights three different immune proteins 

that can and have been targeted in cancer immunotherapy by both humanized antibodies and 

small molecule inhibitors. 

 

Chapter 3: 

This chapter discuses in-silico techniques that have aided and facilitated the drug design and 

development pipeline. Molecular modeling, molecular dynamic simulation, virtual screening, 

identification of non-synonymous Single Nucleotide Polymorphism (nsSNPs) are some of the 

techniques discussed in this chapter. 

 

Chapter 4: (Published work- this chapter is presented in the required format of the 

journal and is the final version of the accepted manuscript): 

This chapter presents result from the study entitled “ Recruiting monomer for dimer formation: 

Resolving the antagonistic mechanisms of novel immune check point inhibitors against 
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Programmed Death Ligand-1 in cancer immunotherapy”. This research has been published in 

Molecular Simulation. 

 

Chapter 5: (Published work- this chapter is presented in the required format of the 

journal and is the final version of the accepted manuscript): 

This chapter presents result from the study entitled “Drug Promiscuity: Exploring the 

polypharmacology potential of 1, 3, 6-trisubstituted 1, 4-diazepane-7-ones as an Inhibitor of 

the ‘god father’ of Immune Checkpoint”. This research was published Computational Biology 

and Chemistry in 2019. 

 

Chapter 6: (Published work- this chapter is presented in the required format of the 

journal and is the final version of the accepted manuscript): 

This chapter presents result from the study entitled “From Genomic Variation to Protein 

Aberration: Mutational Analysis of Single Nucleotide Polymorphism present in ULBP6 gene 

and Implication in Immune Response”. This research was published in Computers in Biology 

and Medicine in 2019. 

 

Chapter 7: (Published work- this chapter is presented in the required format of the 

journal and is the final version of the accepted manuscript): 

This chapter is a review on application of bioinformatics in cancer immunotherapy, it is entitled 

“Integrating Bioinformatics strategies in cancer immunotherapy: Current and future 

perspectives”. This research was published in Combinatorial Chemistry & High Throughput 

Screening in 2020. 

 

Chapter 8: 

This is the final chapter that proposes future work and concluding remarks. 
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ABSTRACT 

 
 

The immune system carries out pivotal functions in the protection of the body from damaging 

substances, microbes, and cellular alteration that could affect the health of an individual. The 

component of the immune system comprises of proteins, cells, and diverse organs. Individuals 

remain in a good state of health and wholeness if the immune system is working optimally, but 

if it becomes incapacitated toward fighting off germs or other harmful foreign substances, a 

diseased state set in. The innate and adaptive systems are the two sub-categories of the immune 

system. They work synergistically in the defence of the body and fighting off germs that 

triggered an immune response.  

 

Several proteins have been discovered to play pivotal roles in immune evasion and have 

therefore become attractive targets. Three of these proteins form the core of this thesis.  

Programmed death-ligand 1 (PD-L1), is an immune checkpoint protein which upon binding 

with another inhibitory checkpoint protein programmed cell death protein 1 (PD-1), elicit a 

cascade of reaction that leads to the reduction of proliferating antigen-specific T cells. The 

upregulation of PD-L1 can therefore, lead to evasion of the immune system by cancer cells.   

 

Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) is made up of three parts (a 

transmembrane part, extracellular part, and a cytoplasmic part). CTLA-4 has been implicated 

in the downregulation of immune response and blocking CTLA-4 activity results in a surge in 

immune functions. It has also been found that CTLA-4 negatively controls the T-cells.  

 

Natural killer group 2, member D (NKG2D) is located on the surface of immune cells where it 

acts as an activating receptor and regulator of the adaptive and innate immune system upon 

binding to its constitutive ligands such as UL16-binding protein (ULBP6). ULBP6 is a highly 
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polymorphic protein, hence, the interaction between NKGD2 and ULBP6 is often altered. This 

effect has a great impact on the function of NKGD2 as a regulator of the immune system. 

 

Various humanized antibodies have been developed to specifically target PD-L1 and CTLA4.  

Some have been approved while others are at different phases of clinical trial. Ipilimumab and 

tremelimumab are designed as CTLA-4 inhibitors. Durvalumab and atezolimab are designed  

as anti-PD-L1 inhibitor. However, due to the limitations that have characterized the use of 

humanized antibodies inhibitors such as production cost, instability, and low tumour 

penetration, etc, small molecule inhibitors have been considered as a better alternative to 

humanized antibodies inhibitors.  

 

This thesis explored the mechanism of inhibition of newly synthesised PD-L1 inhibitors (BMS-

1166 and BMS-1001). Also, per-residue based virtual screening was employed to predict 

potential CTLA-4 inhibitors. Computational methods such as molecular docking, molecular 

dynamic simulation, virtual screening, and SNPinformatics were employed. These 

computational techniques revealed that BMS-1166 and BMS-1001 caused a motional 

movement in the monomers of PD-L1 to form a dimer, thereby preventing PD-L1-PD-1 

interaction. Although the PD-L1 monomers have the same residues, their affinity for the BMS 

compounds differ. Two compounds ZINC04515726 and ZINC08985213 were identified as 

possible targets of CTLA-4. These two compounds elicited favourable interaction with CTLA-

4 facilitated by some crucial residues. Furthermore, the non-synonymous Single Nucleotide 

Polymorphism (nsSNPs) associated with ULBP6 were identified, and the effect of these 

nsSNPs on the interaction between NKGD2 and ULBP6 was also investigated.  

 

The first study (Chapter 4) investigates the structural dynamics and also provides insights into 

the mechanism of inhibition of BMS-1166 and BMS-1001 on PD-L1. 
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The second study (Chapter 5) determines the binding site landscape of CTLA-4 and also 

employs binding site similarities between unrelated proteins to repurpose an inhibitor to target 

CTLA-4.  

 

The third study (Chapter 6) identifies deleterious polymorphisms associated with ULBP6. The 

effect of these polymorphisms on NKGD2-ULBP6 binding as a consequent on immune 

response is also explored in this chapter. 

 

Chapter 7 gives a detailed report on how the use of bioinformatics tools and strategies have 

aided and advanced the field of cancer immunotherapy. 

 

This study provides a thorough insight into the in-silico design, development and mechanism 

of action of small molecule inhibitors of PD-L1 and CTLA-4. Furthermore, this study gives 

insight into the polymorphic nature of ULBP6. Thence, the work presented in this study would 

serve a s a platform towards the design of small molecule inhibitors  of CTLA-4 and PD-L1 

with high therapeutic and less toxicity. 
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CHAPTER 1 

 

1.0 Introduction 

1.1 Background and Rational 

The immune system is an advanced system comprising of specialized cells, tissues, and proteins 

that fights off malignancies, toxins, and pathogens [1]. The immune system is grouped into innate 

and adaptive immune responses. The main function of the immune system is in defence of the host 

against foreign assaults [2]. Once the functions of the immune system are compromised, it leads 

to the onset of diseases. However, on the flip side, hypersensitive diseases could result if the 

immune system produces excessive and unwanted reactions. 

 

Immune proteins produced by different immune cells perform various immunological functions in 

the body. Ranging from immunosuppression, activation of other immune proteins, and the 

pathogenesis of diseases. Up-regulation/downregulation or aberration of some of these proteins 

could lead to the onset of diseases. Examples of these proteins include major histocompatibility 

complex, Interleukin 6, T-cell receptor, Fc receptor, Interleukin 4, C1Q complex, Interleukin 18, 

IL1B, PD-L1, CTLA-4, PD-1, and Perforin, etc. Immune checkpoint proteins like PD-L1, CTLA-

4, PD-1, LAG-1, etc. have been implicated in the onset of cancer, hence they have become an 

attractive target in cancer immunotherapy [3,4].  

 

Although great success has been recorded in the target of some immune proteins using humanized 

antibodies, the production cost, elimination of immunogenicity, improved tumour penetration, 

stability, and amenability for oral administration, small-molecular weight compounds has been 
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looked to as a therapeutic option for the otherwise costly humanized antibodies. However, the 

exploration of small molecular weight compounds is still at its infancy, therefore, the use of 

computational strategies could facilitate this process and provide a template for the tailored design 

of immune protein inhibitors. This process could also provide insight into the mechanism of 

actions of these drugs which otherwise may have not been possible. 

1.2 Aims and Objectives 

The aims and objectives of this research are listed as follow: 

1. To unravel the mechanism of inhibition and structural perturbation of PD-L1 upon binding 

to BMS-1166 and BMS-1001. This will provide a cognizant understanding into how BMS-

1166 and BMS-1001 disrupt PD-1-PD-L1 interactions. This will be achieved by: 

1.1 Performing molecular docking and extended molecular dynamic simulation run on the 

BMS-1001/BMS-1166 bound PD-L1 and the apoenzyme PD-L1. 

1.2 Using Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PB-SA) 

thermodynamic calculation to compute the differential binding of BMS-1166 and 

BMS-1001 on PD-L1. 

2. To use a Per-residue decomposition-based virtual screening to propose potential small 

molecular weight inhibitors of CTLA-4 by:  

2.1 Using active site similarity drug repurposing approach to identify proteins possessing 

similar binding sites as CTLA-4 and to identify a potential lead compound. 

2.2 Performing an initial molecular dynamic simulation to determine structural ensembles 

and pharmacophoric moieties on CTLA-4 and a lead compound. 

2.3 Performing a library search of a compound database (ZINC database), to identify 

potential hits based on the pharmacophoric moieties identified.  
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2.4 Assessing the drug likeness of the hits compounds by carrying out chemoinformatic 

analysis.  

2.5 Validating the hit compounds by estimating their binding energy and structural 

stability. 

3. To identify and assess the impact of non-synonymous Single Nucleotide Polymorphism 

(nsSNPs) present in ULBP6 by: 

3.1 Retrieving all nsSNPs associated with ULBP6 present in NCBI-dbSNPs database 

3.2 Investigating whether the SNPs retrieved are damaging, disease-causing, deleterious, 

benign or neutral through the use of some computational tools. 

3.3  Using molecular dynamics simulation to investigate the structural impact of the       

identified SNPs. 

 

1.3 Novelty and Significance of Research 

Despite the successes that have been recorded in the use of humanized antibodies as inhibitors for 

CTLA-4 and PD-L1, the limitations that have characterized humanized antibodies drugs has 

necessitated the introduction of small molecule inhibitors. Nevertheless, the design and 

development of small-molecular weight inhibitors still lie behind humanized antibodies drugs. 

Identification of potential small molecule inhibitors and unraveling their mechanism of inhibition 

using in-silico strategies could facilitate the drug development pipeline of some forms of cancer.  
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CHAPTER 2 

 

2. Background on Immune System 

2.1  Introduction 

 

The normal homeostasis of humans is constantly threatened by pathogenic and non-pathogenic 

microbes which in themselves contain an array of allergenic and toxic substances [1]. These 

microbes comprise of obligate and beneficial microorganism which are necessary for the normal 

functioning of organs and tissue, however, their activities are always regulated [2]. Pathogenic 

microbes possess diverse means with which they replicate, spread, and elicit a detrimental effect 

on the host [2]. As the host immune system eliminates these pathogenic microbes, some protective 

mechanisms are also put in place to avoid damage to the host tissue and beneficial microbes [3,4]. 

The host immune system leverage on the distinct structural difference that exists on the toxin or 

pathogen to distinguish it from the host system [3,4]. This discriminatory host-pathogen/toxin 

mechanism is quite important to enable the host to eliminate external assaults without causing 

damage to its tissues or organs.  

 

In general, the immune system comprises of an aggregate of cells, chemicals, and process that 

protects intestinal tracts, respiratory passages, skin and other parts of the body from foreign bodies 

such as viruses, cancer cells, and microbes. Aside from the chemical and structural barriers 

employed by the body for defence, the immune system is broadly divided into adaptive immunity 

and innate immunity. The innate immune system is always the first line of defence against foreign 

assaults, the innate immune response is usually activated immediately there is contact with a 
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foreign body. The innate immune system does not have immunological memory, hence unable to 

recognise the antigen in the event of future exposure [3,4]. The adaptive immune system can keep 

memory of antigen on the first contact, hence facilitating effective and rapid response during future 

infection  [2].  

 

2.2 The innate immunity  

 

The innate immune system comprises of defensive barriers, anatomical, physiological, 

endocytic/phagocytic, and inflammatory defence. The anatomical barrier includes mucous 

membrane, skin, physiologic barriers mediated by temperature, low pH, and chemical mediators. 

Specialized cells like neutrophils, blood monocytes, and macrophages make up the 

phagocytic/endocytic barrier system [3]. Innate immunity helps in recruiting immune cells to 

points of inflammation and infection by producing chemokines and cytokines. Cytokines released 

early at the infection stage are tumour necrosis factor (TNF), interleukin 1 (IL-1), and interleukin 

6 (IL-6). Dysregulated production of IL-6, TNF, and IL-1 has been implicated in autoimmune 

diseases or inflammation, making them an attractive therapeutic target in the treatment of 

autoimmune diseases. As stated above, several cells are required for innate immunity, such as 

basophils, dendritic cells, innate lymphoid cells, phagocytes, mast cells,  eosinophils, and natural 

killer (NK) cells [2,3]. Macrophages and neutrophils are two sub-division of phagocytes that act 

in engulfing and killing of pathogens [5,6]. Neutrophils exterminate pathogens via enzymatic 

degradation and phagocytosis. They are the highest-circulating leukocytes found in the body [7]. 

Macrophages have been found to play the most central and important activity in the innate immune 

response. Mature macrophages differentiate from monocytes and localize at site that is prone to 
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pathogenic assaults, once a pathogen is encountered, macrophages activate microbial effector 

pathways [8]. 

Dendritic cells functions unify the adaptive and innate immunity [9]. Mast cells (MC) are a 

derivative of CD34+ hematopoietic progenitors, they are typically not found in the circulation [10]. 

MCs perform important function in acute inflammatory response [10]. Basophils are granulocytes 

emanating from progenitor cells in bone marrow, they are not always found in tissues, they are 

usually recruited to inflammatory sites [11]. Eosinophils, are eosinophilic or “acid-loving” as a 

result of their large acidophilic cytoplasmic granules. They destroy parasites that are too large for 

phagocytosis [12]. Like any other granulocytes, development and differentiation occur in the bone 

marrow [12]. Natural Killer (NK) cells perform crucial function in the destruction of virus-infected 

cells, this is carried out via releasing granzyme and perforins into the blood circulation. NK cells 

exhibit wide tissue distribution and phenotypic viability [13]. 

 

2.3 Adaptive Immunity  

The adaptive immune response is activated when the innate immune response fails to eliminate 

pathogenic assault. The major role of the adaptive immune system is to discriminate self-antigen 

and non-self-antigen, production of effector pathways that annihilate definite pathogens, and 

establishment of memory cells that can eliminate pathogens should the cells get infected again [2]. 

B lymphocytes, antibody-producing cells, and effectors of cellular response are the major cells of 

adaptive immunity. T-lymphocytes emanate and mature at the hematopoietic cells and the thymus. 

T-cells receptors (TCR) are distinctive antigen-binding receptors expressed on the membrane of 

T-cells which are responsible for recognising antigens from tumours, pathogens, and the 

environment [14]. Peripheral T-Cells encompasses naïve T cells which have the potential of 
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responding to fresh antigens [15]. T-cells do not perform the same function throughout life stages, 

they are found in practically every organ and tissue in the body including mucosal and barrier sites, 

lymphoid tissue, exocrine organs, fat, and the CNS [14,15]. Most of the T-cells are found within 

the mucosal sites, lymphoid tissues, and the skin. B cells originate from hematopoietic stem cells, 

unlike other cells, B cell expresses B cell receptors (BCR) on their membrane, these receptors 

enable B cell to recognise and bind to a specific antigen, against which it elicits antibody response 

[16,17]. At the developmental stage in the bone marrow, B-cells undergoes positive and negative 

selection. The positive selection takes place through a signalling that is independent of antigen 

using pre-BCR and the BCR [17]. B-cell development and signalling are halted when BCR and 

ligand interaction are not exhibited [16,17]. Negative selection is facilitated when self-antigen 

binds with BCR, upon this binding, B cells undergo the following, receptor editing, anergy, clonal 

deletion, or it disregards signal and carry on with development [16]. B cells also produce antibodies 

that have also help in facilitating effective immune response [2,18]. IgA, IgD, IgE, IgG, and IgM 

are the major antibodies produced by B cells. These antibodies perform a different biological 

function and their recognition patterns are different [18,19]. 
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Figure 2.1 A schematic depiction of the immune system 

 

2.4 Physiological control of the immune System 

In conjunction with other systems, the immune system performs a vital task in the physiological 

control of the host system. This pathological regulation is facilitated by nutrition and diet, 

hormones, vitamin D, repair and regeneration, and sleep and rest. Hormones function as 

immunomodulators by disrupting the responsiveness of the immune system [20]. The female sex 

hormones act as immunostimulators while the male hormones act as immunosuppressants [21]. 

Nutrition has also been implicated in immune response, there is a correlation between diseases 

such as obesity and diabetes which has been reported to impact immune response. Mineral 

deficiency can also affect the immune response [22]. 

 

 

2.5 Disorders of human immunity 

As much as the immune system acts in body defence, the immune system can also be overwhelmed 

or overcome by foreign bodies. Some mutations also have been reported to disrupt the immune 

response [23]. These disorders/diseases are categorized into autoimmunity, immunodeficiencies, 

and hypersensitivities [23]. Immunodeficiencies are characterized by the inability of the immune 

system to elicit immune response due to the inactivation of some immune system components [23]. 

Autoimmunity is described as the inability of the immune system to differentiate between self-

antigen and foreign-antigen thus attacking itself. The set of disorders that arise due to this immune 

malfunction is called autoimmune disorders. Hypersensitivity is an immune phenomenon where 

immune response destroys the body’s own tissue cells. Four classes of hypersensitivity  (I-IV) 

have been identified, this identification is based on the mechanism elicited and the duration of the 



 

 10 

hypersensitivity [24,25]. Type 1 hypersensitivity is characterized by a quick response and is  

facilitated by IgE. Type II is facilitated by IgG and IgM, this hypersensitivity is brought about by 

antibody-antigen binding which marks the host’s cell for annihilation. [24,25]. Type III 

hypersensitivity is triggered by complement proteins, IgG, antigens, and IgM. Unlike Type 1 

hypersensitivity which is immediate, type IV is triggered between 2 to 3 days. For this reason, it 

is called delayed-type or cell-mediated hypersensitivity [24,25]. Inflammation can arise without 

any known cause, although it is the first immune response to infections [24,25]. 

 

 

2.6 Cancer and the Immune System 

Cancer is a deadly disease resulting from unregulated cell division, about a century and half ago, 

the connection between cancer and the immune system was first detailed by Rudolph Virchow 

[26]. The immune system respond to cancerous cell by employing three basic mechanisms which 

include: 1) detection of foreign substances “non-self” antigens or aberrant cells, 2) activation of 

effector activity of cells such as macrophages, natural killer cells, etc to target and annihilate the 

corrupted/aberrated cells, and 3) establishment of memory cells through the adaptive immune 

responses for future defence of the body against the same assault. However, over the years, cancer 

cells have developed mechanisms with which they use in evading immune responses and 

subsequent destruction by immune cells. This birthed a new treatment option in the field of cancer 

therapy called cancer immunotherapy [26]. 
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2.7 Cancer and Cancer Immunotherapy (CI) 

Immune surveillance which is the  ability of the host’s immune system to annihilate malignant  

cells during initial transformation have been leveraged on in treating cancer cells  [26]. Genetic 

and epigenetic changes have been implicated in the onset of tumourigenesis and subsequently the 

hallmarks of cancer [26]. These epigenetic and genetic changes also elicit the production of neo-

antigen which makes the neoplastic cells noticeable by the immune system and targeted for 

destruction [26,27]. Despite all the mechanisms launched by the immune system to obliterate 

aberrated cells, tumour cells still bypass identification and consequent destruction by the immune 

system [26,27]. This immune escape is possible through the development of multiple resistance 

mechanisms such as induction of tolerance, immune invasion, and coordinated destruction of T 

cell signalling [26,27]. Over the years, scientists have come to understand that cancerous cells are 

efficient in repressing the host’s immune response, this has necessitated treatment options such as 

surgery, chemotherapy, and radiation therapy to be explored in cancer treatment [26]. The approval 

of sipuleucel-T and ipilimumab has revitalized the field of CI. CI was adjudged the “breakthrough 

of the year” by Science in 2013 due to the success rate recorded from different treatments in the 

clinical phase [26]. William Coley in 1893 conceptualized the idea that the immune system can 

recognize and control tumour growth using live bacteria as an immune stimulant to treat cancer. 

Tumour cells evade immune recognition and elimination using diverse mechanisms, this has 

limited the therapeutic efficiency of CI [28]. Mechanisms employed by tumour cells to bypass 

immune surveillance include augmented differentiation of immune effector cells, production of 

immunosuppressive cytokines, an intrusion of myeloid-derived suppressor cells, and tumour-

related macrophages and decreased expression of MHC antigens [29]. The major objective of CI 

is to revive the repressed immune system to reactivate dormant immune response mechanisms to 

fight tumour cells thereby eliminating cancer [26]. 
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2.8  Cancer immune cycle 

For a cancer cell to be effectively annihilated by an immune response, a sequential process which 

is interlinked must be initiated and permitted to proceed. Chen and Mellman described this process 

and called it the cancer-immunity cycle [30]. The cancer immune cycle is described stepwise 

below [31]:  

1. Neoantigens produced via oncogenesis are seized by DCs for processing. 

2. The captured antigens arrested by DCs present on MHC1 and MHCII molecules are 

presented to T cells. 

3. This presentation to T cells leads to priming and activation of effector T cell responses. 

4. The T cells are trafficked to the tumour cells 

5. Infiltration of tumour cells by T cells 

6. Identification of tumour cells by T cells 

7. Tumour cells are killed (Figure 2.2). 
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Figure 2.2 The cancer immune cycle highlighting molecules involved in each step [30]. 

 

2.9 Cytotoxic T-lymphocyte-associated antigen 

Cytotoxic T-lymphocyte-associated antigen (CTLA-4) was first discovered by Pierre Goisten and 

his team [32],  shortly after that, a group published their findings on the ability of CTLA-4 to act 

as a negative controller of T cell activation through gene knockout in mice [33,34]. CTLA-4 also 

referred to CD152, is a glycoprotein type membrane protein produced by activated effector T cells 

(Teffs) [35], whose major function is the negative control of T-cell activity [36]. CTLA-4 

comprises three important regions, ectodomain, a transmembrane domain, and cytoplasmic tail 
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[37]. 

 

Figure 2.3 3D structure of human apo-CTLA-4 monomer showing the A’GFCC’C’’ sheet and BED 
making up the extracellular domain (PDB ID: 3OSK ). 

 

The homodimeric form connected by disulphide bond is always found in the membrane while the 

monomeric form is soluble [36]. The extracellular domain has two beta-sheets comprising the 

A’GFCC’C’’ loop and the ABED strands (Figure 2.3). The dimeric nature of CTLA-4 is due to 

the covalent disulphide bond formed by the cysteine residues (Cys122) found within the stabilizing 

loop connecting the ectodomain and the transmembrane domain. The polyproline part (MYPPPY) 

found in the loops connecting the F and G strands, serves as the ligand-binding sites, B7-1 and B7-

2 [38] (Figure 2.4). CTLA-4 is located in the intracellular compartment during the resting phase 

of T-cells. Upon activation by binding to CD28, CTLA-4 moves to the surface of T-cells where it 
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is expressed [39–41]. The amount of transported and expressed CTLA-4 on the surface of T cell 

is dependent on how strong the stimulatory signal is [42]. Upon expression on T cell surface, 

inhibition by CTLA-4 is facilitated when B7-1 and B7-2  present on triggered monocytes, and B 

cells binds. CTLA-4 activity goes beyond costimulation blockade, it has been reported that CTLA-

4 activation impedes IL-2 transcription inside active T cells, consequently altering their 

advancement in the cell cycle [43].  

 

Figure 2.4: Symmetric apo-CTLA-4 homodimer (B), showing the polyproline motif (C) which is an 
attractive target site for ligands and the stabilizing loop, showing an interaction between the Cys122 
residues of both monomers (A). 

 

In addition, CTLA-4 is also involved in the dephosphorylation of important TCR signalling 

kinases and RAS pathway proteins such as ZAP-70, LCK, FYN, SHP-1, PP2A, and SHP-2 [41]. 

Traces of CTLA-4 has also been found in expressed Tregs [41]. Tumour cells can alter the 

activation of immune costimulatory pathways hence, represses antitumour immune response. 

Kwon et al., used tumour cells gotten from TRAMP (transgenic adenocarcinoma of the mouse 

prostate) mouse to reveal that in-vivo blocking of CTLA-4 can strengthen T-cell assisted reversion 
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of subcutaneous prostate cancer in C57BL/6 mice [44]. Allison et al. demonstrated that the 

blocking of CTLA-4 by antibodies incubated with tumour lysate-enriched dendritic cells lowered 

Tregs, impeded metastatic growth, and increased CD8+ lymphocytes [41,45]. Anti-CTLA-4 

humanized antibodies strengthened anti-prostate cancer immune response in tumour infected cells 

and consequently slowing down tumour growth [41]. IgG1k (ipilimumab) and IgG2 

(tremelimumab) antibodies have been developed to target CTLA-4 in patients with cancer [46].  

Table 2.1 : Activity of CTLA-4 antibody in metastatic melanoma patients 

Antibody Combination Dose Reference 

Ipilimumab None 3 mg/kg [47] 

Ipilimumab Gp100 peptides 3 mg/kg [46,48] 

Ipilimumab Gp100, tyrosinase, MART-1 

peptides 

0.3-3 mg/kg [49] 

Ipilimumab Il-2 0.1-3 mg/kg [50] 

Ipilimumab None 3-9 mg/kg [51] 

Tremelimumab None 0.01-15 mg/kg [52] 

Tremelimumab None 10-15 mg/kg [53] 

 

 

 

2.10 Programmed Death Ligand -1 

Programmed death-ligand 1 (PD-L1) is an immune checkpoint protein translated from the human 

gene CD274 [54]. It is made up of 290 amino acid residues translated from the Cd274 gene, with 

7 exons, and it is found on chromosome 9 [54]. PD-L1 is a 40kDa type 1 transmembrane protein 



 

 17 

also referred to as cluster of differentiation 279 that is critical in repressing the immune system 

and self-tolerance promotion via T cell inflammatory activity suppression [55,56]. This T cell 

suppression helps to avert autoimmune diseases however, the capability of the immune system to 

annihilate cancerous cells is altered [55]. Structurally, it has two extracellular regions, cytoplasmic 

domain, and a transmembrane domain  (Figure 2.5). 

 

Figure 2.5: 3-dimensional structure of PD-L1protein with monomer A highlighted in aquamarine, 
monomer B in cyan, and a small compound bound to the binding interface between monomer A and 
monomer B. PDB: 5NIX [19] 

 



 

 18 

PD-L1 was initially referred to as a regulatory protein B7-H1 but was renamed PD-L1after it was 

discovered to bind PD-1 as a ligand [58]. The binding of PD-L1 to its receptor PD-1 modulates 

inhibition or activation of myeloid cells, B cells, and T cells. This binding activates a cascade of 

reaction that involves the obstruction of TCR-mediated T cell proliferation and IL-2 synthesis. It 

has been found that PD-L1 binds to other receptors such as B7 (CD80) [59]. 

The expression of PD-L1 is upregulated in different forms of cancer, it often contributes to poor 

prognosis and a great determinant of anti-PD-1/PD-L1 antibodies [59]. Cells that do not express 

PD-LI on their surfaces have also been found to react to anti-PD-1 antibodies.  Regulation of PD-

L1 expression is mediated by interferons, macrophages, monocytes, microRNAs, and epigenetic 

regulation [60]. 

 

Immune checkpoint inhibitors (ICI), principally those targeting PD-L1 and PD-1 showed 

favourable therapeutic activity against various hematologic diseases and malignancies [54]. The 

binding of  PD-1 and PD-L1 represses T cell movement, proliferation, and production of cytotoxic 

agents. Anti-PD-1/PD-L1 agents interrupt the PD-L1/PD-1 interactions consequently causing the 

reversal of T cell repression, and intensify the constitutive antitumour immune response to release 

long-term anti-tumour response [55]. There are three PD-L1 inhibitors ratified by the FDA for the 

treatment of different forms of cancers. There are however, other different PD-L1 inhibitors still 

undergoing clinical trials.  

 

Atezolizumab is an anti-PD-L1 IgG monoclonal Ab that is wholly humanized. The Fc domain is 

engineered with an alteration that abolishes antibody-dependent cell toxicity to avert exhaustion 

of T cells exhibiting PD-L1. Atezolizumab occludes the binding of PD-L1 with PD-1 on tumour-
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infiltrating immune cells. Induction of change in the level of cellular cytokine and temporary 

increase in CXCL11, IL-18, and  IFNg through an increased level of circulating CD8+ T cells has 

been detailed in preclinical investigations [61,62]. Via the blockade of PD-L1, atezolizumab 

minimizes immunosuppressive communications and concurrently elevates T cell-assisted immune 

response [61]. Durvalumab is an anti-PD-L1 IgG monoclonal Ab that is wholly humanized 

possessing strong binding and selectivity for PD-L1. It disrupts the binding of CD80 and PD-1 

[63]. Durvalumab is modified to intercept antibody-dependent cell toxicity on T cells exhibiting 

PD-L1. The progression of human tumour cells in a xenograft model accommodating co-implanted 

human T cells was significantly halted by durvalumab [63]. Avelumab is yet another anti-PD-L1 

IgG monoclonal Ab that is wholly humanized. It averts the binding of PD-L1 with T cell receptors, 

B7.1, and PD-1 thereby facilitating T cell resuscitation and cytokine production [63,64]. Avelumab 

possesses a wild-type IgG1 Fc region with which it interacts with Fc-g receptor on NKC and 

generates tumour-guided antibody-dependent cell toxicity in preclinical studies [64]. 

 

PD-L1 comprises of three parts, IgC-like extracellular domain, a transmembrane domain, and 

cytoplasmic region. In the interaction of PD-L1 with PD-1, some crucial residues have been 

implicated. For instance, Q75 of PD-1 forms 3 pairs of H-bond with D26 and R125 of PD-L1. T76 

of PD-1 forms a bond with Y123 of PD-L1. These bonds serve as a molecular platform for the 

design of small molecular weight inhibitors. Small molecular weight inhibitors that have been 

designed to target PD-L1 are listed in (Table 2.2). 
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Table 2.2: Small molecule inhibitors designed to target PD-L1 

Drug Stage Treatment Reference 

AUNP-12 Preclinical Phase Melanoma [65] 

DPPA-1 Preclinical Phase Colon cancer [66] 

TPP-1 Preclinical Phase LCLC [67] 

BMS-202 Preclinical Phase  [65,68] 

CA-170 Clinical Phase NSCLC [69] 

JQ1 Clinical Phase Lymphoma [70] 

eFT508 Clinical Phase Liver cancer [71] 

Osimertinib Preclinical Phase NSCLC [72] 

PlatycodinD Preclinical Phase NSCLC [73] 

PD-LYLSO Preclinical Phase  [74] 

Curcumin Preclinical Phase Breast cancer [75] 

Metformin Preclinical Phase Breast cancer [76] 

 

 

2.11 UL16-Binding Protein 

NH group 2, member D (NKG2D) is a crucial immune protein that is involved in anti-cancer and 

anti-pathogen immune responses [77]. It is usually expressed in NKC, abT, and gdT of human 

cells [77]. A characteristic feature of NKG2D is its binding with an array of various NKG2D 

ligands found of the cell surface [78].  

The interacting partner of NKG2D in humans are the MICA/B and ULBP proteins. ULBP was 

discovered recently to be one of the highly polymorphic NKG2D ligands. The two haplotypes 
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ULBP0601 and ULBP0602 make up about 70% of the human population [77,79]. ULBP/RAET 

gene is located on chromosome 6q24.2-q25.3. The polymorphic forms of ULBP6 have been 

implicated in alopecia areta [80] and nephropathy [81]. ULB6 has ten loci [77], four are 

pseudogenes while five are translated into functional transcripts [77]. ULBP0601 and ULBP0602 

have different binding ability with NKG2D, this disparity enhances different capacity to trigger 

effector cells [78]. The proposed mechanism of this differential binding is via a highly 

polymorphic amino acid change at R106L [78]. As revealed by the structure of NKG2D-

ULBP0602, ULBP0602 inserts R106L into a non-polar cavity of NKGD2 to form a unique 

interface with hydrophobic hotspot [78]. 

 

The capability of NKGD2 to bind with different constitutive ligands (ULBP1 to ULBP6, MICA, 

and MICAB) has been suggested to be via rigid body adaptation or induced fit [78], however, 

ULBP3 and ULBP6 bind distinctly with NKGD2 [78].  Despite the difference in interaction 

profiles between NKGD2 and its ligands, E96 and D189  of ULBP6  interacts with K of patch A 

and B of NKGD2 respectively. The involvement of ULBP1 in cancer immune response has been 

established, for instance, Kamei et al., pointed out that the expression level of ULBP1 and NKG2D 

influence the overall survival of patients with gastric cancer [82] . Also, Rolle et al., discovered 

that the defence mechanism of the host to Human Cytomegalovirus infection is via the expression 

of ULBPs [83].  
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Figure 2.6: 3-dimensional structure of ligand ULBP6 in complex with two chains of NKGD2D (PDB ID: 
4S0U) [78]. 
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CHAPTER 3 

3.0 Computational Strategies Used in Drug Design and SNPinformatics approach for 
nsSNPs Identification 

 

3.1 Introduction 

 

Over the past decades, the process of drug discovery, design, and development has gained 

admirable attention due to the cost implication, time, and manpower required of the traditional 

drug discovery pipeline [1]. It has been estimated that the traditional route of drug development 

cost around 1 billion dollars and it takes about 10-15 years [1,2]. These limitations necessitated 

the introduction of computer-aided drug design (CAAD). With this technique, the production cost 

of a new drug could be reduced by 50% [1,2]. 

 

Molecular modelling is one of the CADD methods used in drug design and discovery process. 

Other computational methods employed in the drug design and pipeline include molecular 

docking, virtual screening, homology modelling, molecular dynamic simulation, quantitative 

structure-activity relationship models (QSAR), etc. Molecular modelling details the generation, 

description, and engineering of the three-dimensional architecture of a compound and its 

corresponding physicochemical properties [3]. Molecular Modelling incorporates a wide range of 

computer-aided techniques and experimental data to speculate biological and molecular properties 

[3]. The concept of molecular modelling emanated from the postulation of molecular orbitals and 

classical mechanical programs [3]. Molecular mechanics (MM) and quantum mechanics (QM) are 

the two forms of molecular modelling theory used in elucidating the structural change and 

thermodynamics of a system.  
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3.2 Quantum Mechanics (QM) 

Classical mechanics originate from examination of matter at the macroscopic level. In classical 

mechanics, an atom has a designated location in space that can be identified. The description of 

the atom is only limited by the reliability of the instruments used for measurement [4]. The 

classical mechanical system can be solved using different techniques such as Newtonian and 

Hamiltonian mechanics. Due to the identification of particles that cannot be effectively described 

by classical mechanics, quantum mechanics was introduced. Quantum mechanics describe the 

study and characteristics of matter and its relationship with energy at the atomic and subatomic 

levels [4].  

 

Quantum mechanics can be used to explain some biological processes, most especially during 

bond formation and breakage, atom transfer and electron excitation. QM can also be used to 

describe the behaviour of particles at the sub-atomic level in the 3D-space of a molecule. Electrons 

are portrayed with the aid of continuous electron density techniques and the thermodynamic 

characteristics of the system are computed using Schrödinger’s wave function theory. For a system 

that cannot be described by the Schrödinger’s wave function theory, such as large systems, the 

energetics and electron density can be computed with the aid of Born-Oppenheimer approximation 

theory [4]. 
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3.2.1 Schrödinger’s wave function theory 

Erwin Schrödinger hypothesized the quantum mechanical model of an atom. Building upon the 

Bohr atomic model, which pontificate that electrons revolve around the orbits of a nucleus. Using 

a mathematical model, Schrödinger expresses the possibility of finding an electron on a particular 

path. QM describes particles as a wave function without a definite position or momentum. The 

possibility of each observation may be detected by wave function [4,5]. The Schrödinger equation 

is described below: 

                                  (Eq 3.2.1) 

Where H = Hamiltonian operator.  

E = Energy eigenvalues of the system  

 =  wave function.  

 

H = T + V      (Eq 3.2.2) 

           (Eq 3.2.3) 

 

 

3.2.2 The Born-Oppenheimer approximation 

It possesses some advantages over Schrödinger’s equation. In the description of characteristics of 

atoms in computational chemistry, it is paramount to have a clear cut distinction between the 

electronic and nuclear motions. The nuclei revolve slowly around the orbit, unlike the electrons 

which travel at the speed of light. Born-Oppenheimer approximation permits the Schrödinger 

equation to be distinctly expressed as an electronic and nuclear equation. The Hamiltonian 

operator of Born-Oppenheimer approximation is expressed as:  
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                            (Eq 3.2.4) 

 

3.2.3 Potential Energy Surface (PES) 

PES is a mathematical description of the interconnection between the vibrational energy, 

geometry, and nuclear probability distribution of a molecule computed by deciphering the time-

dependent Schrödinger equation. PES is borne out of the Born-Oppenheimer approximation. 

PES graphically describes the ratio of the potential energy to the geometry of a molecule. 

Mathematically, it can be said that the potential energy is directly proportional to the 

geometry[6,7]. 

 

Figure 3.1: Descriptive illustration of 2D PES [7]. 
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3.3 Molecular Mechanics (MM) 

 

MM is an experimental method used in the computation of properties of molecules such as heat of 

formation, vibrational frequencies, dipole moment, strain energy, and molecular geometry [8]. 

MM or force field methods employ traditional models to project the kinetics of a molecule as a 

function of its structural configuration. This gives room for prediction of (1) relative energies 

between conformers (2). Equilibrium geometries and transition states [8]. MM has been 

successfully used in the description of complex structures especially those in the biological system. 

It engages the traditional Newtonian mechanics to detail large biological systems such as 

hydrocarbons, large molecular weight proteins, and membrane fragments [8]. 

 

In the studied system, the atomic nuclei are described as an isolated system while the electrons are 

omitted. Elimination of electrons and the treatment of nuclear and electronic motion as a different 

system is important as suggested by Born-Oppenheimer approximation. The deferential energy of 

the systems is more critical than potential energy values. The total potential energy can be 

estimated by the equation below: 

Etot = Estr + Ebend + Etor + Evdw + Eelec.               (Eq 3.2.4.1) 

Where: 

Etot = Total potential energy 
Estr = Bond-stretching energy 
Ebend = Bond angle-bending energy 
Etor = Torsional energy 
Evdw = van der Waals interactions 
Eelec = Electrostatic interactions 
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3.3.1 Force Field 

The force field is a mathematical expression that is used in the description of the relationship that 

exists between the coordinates of particles in a molecule and the energetics of the system. The 

most commonly used forcefields in molecular modelling simulation include AMBER [9], 

GROMOS [10], NAMD, and CHARMM [11]. However, they differ in the number of cross-terms, 

functional form and information for parameter fittings. Force fields used in simulating systems 

such as protein or DNA, use basic functional forms without cross-terms and use Lennard-Jones 

potential as van der Waals energy called harmonic/diagonal force fields. For the simulation of 

small or medium-size molecules, a high degree of accuracy is required, hence, they possess several 

cross-terms and exponential-type potential for van der Waals. They are known as class II force 

fields. 

3.4 The Concept of Molecular Dynamic Simulation 

Since the introduction of Molecular Dynamic Simulation (MDS) in the 70s [12,13], it has moved 

beyond the mere simulation of several hundreds of atoms to biological systems such as proteins in 

solution, membrane-embedded proteins, nucleosomes, DNA, ribosomes [14,15]. Simulating a 

system having 50,000-100,000 atoms has become conventional, also, simulating systems with a 

larger amount of atoms like 500,000 has become possible with the right computer resources. This 

advancement is due to the simplification of MD calculations (Figure 3.2) and the introduction of 

high-performance computing (HPC).  
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Figure 3.2: Molecular dynamic simulation basic algorithms and motion calculation [16]. 

 

The model used for simulation is gotten from structural modelling data or experimental structures 

such as those from X-ray crystallography and Nuclear Magnetic Resonance [17]. The simulated 

system can either be represented with atomistic representation or coarse-grained representation. 

The best production is obtained using atomistic representation while coarse-grained representation 

is employed when huge systems and extended simulations are necessary. Furthermore, Newton’s 

equation of motion is used to generate the atomic trajectories of the different particles present in 

the system. It is mathematically expressed as:  

                             (Eq 3.3.1) 
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Where ri (t) is defined as the particle position vector,  

t = time-evolution 
m =mass of the particle 
Fi.  = Interacting force 
 

3.4.1 Molecular Dynamics Trajectory Analysis 

MD trajectories are generated during the simulation run. They are defined as the successive 

snapshots having velocity vectors and positional coordinates and time evolution of the system. The 

nature of the study determines the kind of trajectory analysis to be carried out.  For this study, post-

analysis carried out are tailored to the study scope.  

The convergence of a system is used to describe the dynamics of a protein using bond angles 

gyration and bond types in the course of protein unfolding. The level of deviation of a system 

termed Root Mean Square Deviation (RMSD) can be determined by estimating the distance of the 

backbone atoms of superimposed systems. RMSD can also be used in estimating the distance of 

atomic backbone of other non-protein systems such as small organic compounds. RMSD is 

mathematically represented as:  

                           (Eq 3.4.1) 

Where: N = Number of atoms in the system 

Ri = Vector position of particle i 

O = Initial conformation 
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The Radius of Gyration (RoG) is defined as the root mean square distance of the atoms relative to 

their centre of gravity. It can been used to determine the level of compactness of a protein or in the 

estimation of protein folding/unfolding dynamics. It is represented as : 

         (Eq 3.4.2) 

Where : 

ri = position of ith atom 
r = centre of gravity of atom i. 
 

Conformational characteristics of a system can be estimated with the aid of Root Mean Square 

Fluctuations (RMSF). RMSF is the estimation of the divergence of a particle in relation to its 

reference position over a period of time. It can also be used to determine the level of fluctuations 

of protein residues. Mathematically, it is expressed with the equation below: 

                         (Eq 3.4.3) 

Where : RMSFi  = RMSF of the ith residue 

RMSF = Average RMSD 

Principal Component Analysis (PCA) is a standard mathematical parameter used in the evaluation 

of the correlations between a large data set. It can be used to determine the displacement of a loop 

or any region of interest in a protein. PCA application in MDS is referred to as essential dynamics 

because only important motional movement of a data is retrieved from the millions of structural 

snapshots. This structural motions are subsequently filtered from the highest to lowest fluctuations 

and represented graphically with the aid of the covariance matrix [18]. The newly generated data 

coordinates are described as principal components and are ordered along at least two principal 

components [18]. 
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3.5 Binding Free Energy 

The computation of the binding free energy between a protein and a ligand is crucial in drug design 

and development [19] as it can be used to unravel the mechanism of binding between the protein 

and a compound. The most widely used free energy calculation method is the Molecular 

Mechanics/Poisson-Boltzmann Surface Area (MM/PB-SA) and Molecular 

Mechanics/Generalized Born Surface Area (MM/GBSA) [20]. Other free energy calculation 

methods include thermodynamic integration [21], free energy perturbation [22], and replica 

exchange [23]. The estimation of binding free energy is dependent on the molecular dynamic 

simulation and the force field employed. Using an explicit force field produces precise binding 

affinities. The binding free energy between a ligand and receptor can be expressed with the 

equation below:  

                          

    (Eq 3.4.1.1) 

                (Eq 3.4.1.2) 

                            (Eq 3.4.1.3) 

     (Eq 3.4.1.4) 

     (Eq 3.4.1.5) 

Where: Egas = Gas phase energy 
Eint = Internal Energy 
Eele = Coulomb energy 
Evdw.  = van der Waals energies 
Gsol  = Solvation free energy 
SASA = Solvent accessible surface area 
GSA  = non-polar solvation energy 
TS = Total entropy S of the solute at temperature T 
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3.6 Molecular Docking 

Molecular docking is a method that explores the interactivity between a compound and a protein, 

it helps to unravel the interaction pattern of a compound in the active site of a protein [24]. There 

are two basic steps necessary to carry out molecular docking: assessment of the ligand 

configuration and orientation within the binding site (sampling methods) and the estimation of the 

binding score (scoring schemes). The success of any docking process is dependent on the 

availableness of a 3-dimensional structure either obtained from homology modelling,  X-Ray 

crystallography or NMR. The location and knowledge of the binding site are also important. The 

binding site of a protein is usually known before docking, the binding cavity of a protein can as 

well be predicted by comparison with protein with similar structure and functions. In the absence 

of these, binding site determining tools such as POCKET [25], GRID [26], PASS [27], MMC [28], 

SurfNet [29], MetaPocket [30], SiteMap [31], etc can be engaged in characterizing the binding 

cavity. Blind docking is a docking process without the full knowledge of the binding site. When 

the protein and the compound are both handled as inflexible entities, it is referred to as rigid ligand 

and rigid receptor docking process. The search space only considers the three rotational and 

translational degrees of freedom. Software which adopt this method include DOCK [18],  FLOG 

[32], and FTDOCK [33]. FlexX ([34] and AutoDock [35], use a docking technique where the 

compound is flexible and the receptor remains inflexible. The receptor and the ligand can be both 

flexible. 

3.7 Virtual Screening 

Virtual screening (VS) is the prediction of potentially bioactive compounds from a library of small 

molecules using computational tools [36]. VS has become a desired computational method in the 

field of drug design and development as various in-silico based strategies are constantly being 

developed, improved,  and publicly available for use [36]. Being an easy-to-use technique, public 
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and private organisations employ VS methodologies to save resources and time [37]. VS is always 

carried out in a sequential workflow integrating various methodologies, which filters and discards 

unwanted compounds. Compounds that go through the filtering process are referred to as hit 

compounds and tested experimentally to evaluate their biological activities. VS methods are 

classified as ligand-based (leverages on similarities between the compound of interest with active 

compounds) and receptor based (uses complementarity between the compound of interest with the 

target protein binding site).  

 

Pharmacophore based virtual screening is a new form of VS that employs pharmacophoric features 

of a compound’s functional groups such as hydrogen bond acceptors, hydrogen bond donors, 

cations, hydrophobic areas, aromatics. These pharmacophoric moieties are then used to such a 

library of compounds to retrieve compounds with similar pharmacophoric properties. 

3.8 Identification of Deleterious nsSNPs 

Structural and functional analysis is the end point of investigating nsSNPs. Knowledge of the 

architectural change within a protein can help provide insight into the pathogenesis of a disease 

and further identification of therapeutics [38]. The structure-function balance of a protein has been 

found to be disrupted as a result of nsSNPs [39].  

Sorting Intolerant from Tolerant (SIFT) [40], Protein Variation Effect Analyzer (PROVEAN) [41], 

Polymorphism Phenotyping v2 (Polyphen2) [42], and PhD-SNP [43], can be used to determine 

deleterious nsSNPs.  
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Abstract 

The design of small molecule antagonists against Programmed Death Ligand-1 (PD-L1) has been 

the recent highlight of the immune checkpoint blockade therapy. This interventive approach has 

been potentiated by the development of BMS compounds; BMS-1001 and BMS-1166, which exert 

their therapeutic activity by inducing dimerization of PD-L1; a molecular mechanism that has 

remained unclear. For the first time, we resolve the dynamical events that underlie the antagonistic 

mechanisms of BMS-1001 and BMS-1166 when bound to PD-L1. Our findings revealed that upon 

binding a PD-L1 monomer, the BMS-compounds gradually facilitated the ‘inbound’ motion of 

another PD-L1 monomer in the same conformational phase space up till dimer formation. 

Moreover, the non-liganded PD-L1 monomer exhibited the highest structural flexibility and 

atomistic motions relative to the BMS-liganded monomer. Interestingly, the BMS compounds 

exhibited mechanistic transitions from the monomeric binding site (monomer A) where they were 

initially bound, to the second monomeric site (monomer B) where they were strongly bound, 

followed by eventual high-affinity interactions at the tunnel-like binding cleft formed upon the 

dimerization of both PD-L1 monomers. These findings present a model that describes the 

mechanism by which the BMS compounds induce PD-L1 dimerization and could further enhance 

the design of highly selective and novel monomeric recruiters of PD-L1 in cancer immunotherapy. 

Keywords: Cancer Immunotherapy, Immune Checkpoint, Programmed Death Ligand-1, Binding 

cleft, Molecular Dynamic Simulation 
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4.1 Introduction 

Over the years, traditional anticancer therapeutic strategies have been categorized under three 

pillars namely; surgery, radiation and chemotherapy. Although these therapeutic approaches have 

offered substantial interventions in the eradication primary tumor  the problem of relapse still 

persist, which result from residual malignant cells and/or tumor metastases [1][2]. This 

necessitated a new approach regarded as cancer immunotherapy, which provides potent and 

alternative treatment options [3] that involve the utilization of naturally derived or synthetically 

generated compounds to stimulate or enhance the immune system to fight cancer [4]. Hence, 

cancer immunotherapy was described by science magazine as “2013’s breakthrough of the year” 

due to the recorded success in cancer treatment [5]. The basic role of the immune system is to 

protect the body against foreign pathogens and infections, and more importantly, the humoral 

immunity employs antibodies produced by the B cells to neutralize and eradicate foreign pathogens 

and toxins [6] while cellular immunity responds through recognition of antigens, activation of 

antigen presenting cells (APCs), activation and proliferation of T cells [7].  Cancer immunotherapy 

has shown its potency among numerous therapeutic options [1], with the incorporation of cancer 

vaccinations, chimeric antigen receptor (CAR) T cell therapy and immune checkpoint blockade 

(ICB) therapy [8]. Immune checkpoint inhibitors are a class of drugs that have been designed to 

increase immune response against cancer cells [9]. Moreover, in the immune system, there are 

different checkpoints pathways that focus on the activation of T cells, [1] and are crucially 

regulated by biomolecules such as CTLA-4, PD-L1, lymphocyte activation gene-3 (LAG-3) and 

T cell immunoglobulin and mucin domain containing protein 3 (Tim-3) [10].  These, over the 

years, have become attractive targets for driving the cytotoxic T cells attack of malignant cells for 

destruction due to the hypo-responsive and exhaustive influence they have on the immune system 

via regulation [11], [12]. According to the classic checkpoint hypothesis, immune checkpoint 
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inhibitors activate the immune system by blocking the expression of co-inhibitory molecules such 

as CTLA4, PD-1 and PD-L1 which in turn re-activate the pre-existing tumor response [9], [13]. 

As previously reported, antagonizing the interaction between PD-1 and PD-L1 reverts T cell 

phenotypic exhaustion, which in turn leads to the efficient killing of cancer cells [14] . In recent 

years, antibodies were widely employed to antagonize the interactions between PD-1 and PD-L1, 

a biological association that promotes immunosuppressiveness, which is employed by cancer cells 

to evade T-cell induced death [15], [16]. However, due to lower production costs, higher stability, 

improved tumor penetration, amenability for oral administration and elimination of 

immunogenicity, small-molecular weight inhibitors present a more viable option in place of 

antibodies as immune check point inhibitors [17]. Most recently, two small molecule antagonists 

(BMS-1001 and BMS-1166) that directly and selectively disrupt the association between PD-1 

and PD-L1 have been identified and patented by Bristol-Myers Squibb (BMS) [18]. 

 

Figure 4.1: 2D structure of soluble immune checkpoint inhibitors; [A] BMS-1001 and [B] BMS-1166. 

According to previous reports, these BMS compounds bind to and induce PD-L1 dimerization 

thereby preventing canonical interactions with PD-1. Mechanistically, these compounds bind to a 

PD-L1 monomer (APD-L1) and facilitate the recruitment of another PD-L1 monomer (BPD-L1) to 

form a ABPD-L1 thereby blocking interactions with the naturally occurring PD1. In other words, 

the ability of these compounds to induce the formation of PD-L1 dimers underlies its antagonistic 
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functions since PD-L1 dimerization presents a hurdle for the canonical interactions between PD-

L1 monomers and its intrinsic ligand, PD-1, resulting in the activation of T cells [19], [20]. 

 

Figure 4.2: 3D structure of PD-L1 monomer A (Blue) and monomer B (Gray), in complex with BMS-
1001 (Red) and BMS-1166 (Green) at the tunnel-like binding cleft formed upon dimerization. PDB: 
5NIX [19]. BMS-1001 was superimposed on the crystal structure. 

Therefore, the development and use of these novel small molecule inhibitors in ICB therapy 

present an attractive prospect to understand the underlying structural and molecular events 

involved in the blockage of PD-1 and PD-L1. Molecular elucidation of the transient mechanisms 

by which BMS compounds (BMS-1001 and BMS-1166) induce PD-L1 dimerization following an 

initial interaction with a PD-L1 monomer would provide a model that would be helpful to achieve 

the structure-based design of monomeric binders. Therefore, in this study, we employed a 

computational paradigm to investigate the structural and molecular events associated with PD-L1 

dimerization as induced by antagonistic BMS compounds; BMS-1001 and BMS-1166. We believe 

this model would provide essential insights and interesting possibilities towards the future design 
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of novel high-affinity small-molecule antagonists and monomeric recruiters of PD-L1 in ICB 

therapy. 

 

4.2 Computational Methods 

4.2.1. System Preparation 

X-ray crystallographic structures of dimerized PD-L1s in complex with BMS-1001 and BMS-

1166 were retrieved from Protein Data Bank with entries 5NIU and 5NIX respectively [19]. These 

were prepared by the removal of co-crystallized molecules such as 1,2-ethanediol (EDO) and 

crystallographic water using UCSF Chimera [21]. Moreover, missing residues which majorly 

constituted terminal amino acids were added with the aid of MODELLER, an in-silico tool used 

for structural remodeling [22]. In order to elucidate the mechanisms of BMS-1001/BMS-1166-

induced dimerization, which was in line with the aim of this study, it was important to obtain a 

starting structure that could possibly reflect the recruitment of a PD-L1 monomer in the presence 

of another BMS-bound PD-L1 monomer as experimentally depicted in a previous study [19]. To 

this effect, the ligand-dimer complexes were first separated into non-complexed monomers using 

the Graphical User Interface (GUI) of UCSF Chimera. The BPD-L1 was first removed from the 

dimerized complex (5NIU) leaving a BMS-1001-bound APD-L1. This was followed by the 

molecular protein-protein repositioning of BPD-L1 using UCSF-Chimera integrated Autodock 

Vina interface on manually defined co-ordinates which differs from the crystallized ‘dimer’ 

structure. The same paradigm was employed for preparing BMS-1166 bound systems (5NIX) to 

generate the desirable starting structures which entail ligand-bound APD-L1s with a distant BPD-

L1 monomer in the same conformational space phase as shown in Figure 4.3. In the same vein, a 

replica system devoid of the small molecule antagonists (BMS-1001/BMS-1166) was prepared, 
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representative of the unbound form. This was necessary to clearly define the dimerizing effects of 

both BMS compounds, which underlies their antagonistic functions.  Altogether, these systems 

were set up for an MD simulation of 150ns using in-house protocols previously reported [23]–

[25]. The Graphical Processor Unit (GPU) version (Particle Mesh Ewald Molecular Dynamics - 

PMEMD) of the AMBER14 software in addition to its integrated modules were used to perform 

MD simulations [26]. The ANTECHAMBER module was used to parameterize the ligands and 

generate atomic partial charges (Gasteiger - gaff) using the bcc charge scheme while the FF14SB 

force-field was used to define the PD-L1 parameters [27]. Protein modification, renaming and 

protonation (histidine) were done using the in-house pdb4amber script. This was followed by the 

generation of topology and parameter files for the respective PD-L1-BMS1001/BMS1166 

complexes using the LEAP module. This was also used for system neutralization via the addition 

of counter ions at a constant pH (cpH) and solvation within a TIP3P water box of 10Å. Using a 

restraint potential of 500kcal/mol Å, partial minimization of 2500 steps was carried out followed 

by 5000 full minimization steps without energy restraints. Gradual system thermalization from 0-

300k was also carried out in a canonical ensemble (NVT) for 50ps with the aid of a Langevin 

thermostat and a 5kcal/mol Å2 harmonic restraint. System equilibration was then carried out for 

1000ps at 300k without restraints while atmospheric pressure was maintained at 1bar using the 

Berendsen barostat [28]. This was followed by an MD production run of 150ns where all atomic 

hydrogen bonds were constricted using the SHAKE algorithm [29]. Moreover, at every 1ps, 

resulting coordinates and trajectories were saved, which were analyzed with the integrated 

CPPTRAJ and PTRAJ modules [30]. Furthermore, data plots were made with Origin data 

analytical tool [31] while the Graphical User Interface (GUI) of UCSF Chimera was used for visual 

analysis. 
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Cij =   ˂ ∆ri * ∆rj ˃ / (˂ ∆r2i ˃ ˂ ∆r2j ˃) 1/2 
 

4.2.2. Binding free energy estimation 

The Molecular Mechanics/ Poisson-Boltzmann Surface Area (MM/PBSA) method was used to 

estimate the differential binding of BMS-1001 and BMS-1166 to PD-L1 [32]. This is an end-point 

energy calculation that can be used to predict binding strength and affinities of small molecules 

towards their respective target proteins. MM/PBSA is mathematically represented as follows; 

            (1)      ∆Gbind = Gcomplex - Greceptor - Gligand                                   

              (2)      Egas = Eint + Evdw + Eele                                              

              (3)      Gsol = GGB   + GSA                                                                                    

            (4)      GSA = γSASA                                                                 

Where Egas, the gas-phase energy, Eint is the internal energy; Eele and Evdw are the Coulomb and van 

der Waals energies, respectively. Also, Gsol is the solvation free energy and GGB is the polar 

solvation contribution. GSA is the non-polar solvation contribution and was estimated by the solvent 

accessible surface area (SASA) determined using a water probe radius of 1.4 Å. The surface 

tension constant γ was set to 0.0072 kcal/(mol·Å2).  

4.2.3. Dynamic cross-correlation matrix (DCCM)  

This is graphically employed to represent dynamical motions of constituent protein residues in 

correlation with time [33], [34]. Therefore, in this study, we investigated the inter-residue 

dynamics and motions of PD-L1 when bound by BMS-1001 and BMS-1166 with respect to their 

antagonistic activities. We generated the DCCM to estimate the cross-correlated displacement of 

protein backbone atoms from the resulting trajectories across the MD simulation time based on the 

equation below: 

 



 

 57 

From the equation, ∆ri and ∆rj depict the mean displacement the ith and jth atoms which are 

represented by i and j respectively. Cij is the coefficient of cross-correlation which varies from -1 

to +1, which corresponds to strongly correlated (+) and anti-correlated (-) motions of constituent 

residues during the period of MD simulation. This analysis was performed using the integrated 

CPPTRAJ module [30] of AMBER14 and resulting matrices were plotted with the aid of the Origin 

data analysis software [31]. 

4.2.4. Principal component analysis (PCA) 

This was carried out to obtain necessary insights into the 3D conformational and dynamical 

changes that occurred in PD-L1 when distinctively bound by both BMS-1001 and BMS-1166. 

This method is used to describe the magnitude and direction of protein motions which are depicted 

by eigenvalues and eigenvectors respectively [25], [35]. Hence, with the aid of the integrated 

CPPTRAJ module in AMBER14, we computed the first two principal components (PC1 and PC2) 

from the dynamics of the protein C-α atoms. Moreover, the conformational behaviors of the 

unbound and bound PD-L1 systems were projected along the first two eigenvectors (ev1/PC1vs 

ev2/PC2) using the Cartesian coordinates of C-α atoms. 
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4.3. Results and Discussion 

4.3.1 Monomeric binding of BMS compounds (BMS-1001 and BMS-1166) induced systematic 
PD-L1 dimerization  

The mechanisms by which the selective ‘monomeric’ targeting of PD-L1 by BMS compounds 

cause structural dimerization has remained unresolved till date even though it underlies the basis 

of ICB therapy. According to previous reports, PD-L1 exist in a single monomeric state where it 

is able to exhibit canonical interactions with PD-1 resulting in cancer immunosuppression and 

evasion of T-cell induced death [15], [16]. Moreover, BMS compounds reportedly binds initially 

to a PD-L1 monomer (APD-L1) and elicit monomeric recruitment (BPD-L1) to form a dimer with 

a tunnel-like binding cleft in between [19]. Firstly, we visually examined the structural events that 

occurred along the MD trajectories to monitor the dynamics of monomeric recruitment with 

regards to the binding of the BMS compounds. 
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Figure 4.3: Structural dynamics of BMS-1001/BMS1166 bound PD-L1s and unbound PD-L1 over the 
150ns MD simulation period. Red boxes depict the monomeric motions of BMS-1001-bound PD-L1 while 
green boxes depict the dynamics of the BMS-1166-bound PD-L1 system. However, blue boxes depict the 
unbound PD-L1 system. [A] Starting structure averaged over 0-20ns [B] averaged intermediate structure 
60-90ns and [C] averaged end structure 90-150ns.  

 

Interestingly, in the BMS-bound systems, we observed that the arrangements of the starting 

structures were maintained until about 20ns where monomeric distances gradually reduced, and 

the monomers existed in close proximities. These dynamical monomeric motions in the 

conformational phase space then proceeded until 90ns where we observed that both monomers 

associated to form a PD-L1 dimer and a tunnel-like cleft at the region where the BMS compounds 

were bound (Figure 4.3). This was evidenced by the gradual decrease in monomeric distances as 
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shown in Figure 4.3, which is derived from measuring distances between ATyr39 and BVal185. As 

estimated, in the starting structure, positional distances between the two monomers (APDL1 and 

BPDL1) were 76.79Å and 72.83Å for the BMS-1001- and BMS-1166-bound systems respectively, 

which gradually decreased in the average intermediate structure to 65.14Å (BMS-1001) and 

69.23Å (BMS-1166) prior to eventual dimerization. On the contrary, while these events gradually 

occurred in the BMS-bound systems, the unbound PD-L1 system maintained its monomeric 

arrangement over the simulation period indicating that the PD-L1 dimerization is solely based on 

the presence of the BMS compounds (Figure 4.3).  

 

Figure 4.4: Monomeric distances, tunnel formation and mechanistic transition of BMS-1001 and BMS-
1166 across both A and B PD-L1 monomers. [A] Tunnel formation and monomeric distance of BMS-1001 
bound PD-L1 [B] Tunnel formation and monomeric distance of BMS-1166 bound PD-L1. 
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Another interesting finding was the concurrent dynamical ‘switch’ or exchange of both BMS 

compounds at each monomeric binding sites. At trajectory 30-55ns, averaged structure revealed 

that BMS-1001 was bound to selected site residues such as Met224, Val185, Ile163 and Val177 

on monomer A via weak interactions (Figure 4.5A). Presumably, the nature of these interactions 

permitted a possible transition to monomer B which occurred at about 60-90ns and characterized 

by the occurrence of high-affinity interactions, which include the strong hydrogen bonds and 

attractive salt bridge with Arg108 and Asp105 respectively (Figure 4.5B). Relative to BMS-1166, 

a similar ligand transition pattern between both APD-L1 and BPD-L1 monomers was observed 

along the trajectories as revealed by the averaged structures; where Thr3, Phe2, Lys107 contributed 

to the binding of BMS-1166 via high-affinity and strong hydrogen interactions while Met98 

formed attractive salt-bridge as shown in (Figure 4.5D). Moreover, the mechanistic transitions of 

both BMS compounds occurred prior to the eventual formation of the tunnel-like binding cleft 

upon PD-L1 dimerization. We could propose that the dynamical motions of the PD-L1 monomers 

was accompanied by a concurrent binding site interchange of the BMS compounds prior to 

dimerization. 
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Figure 4.5: Visual representation of the monomeric active site residues interaction of BMS-1001 and BMS-
1166 at 30-55ns (A, C) and 60-90ns (B, D).  

 

4.3.2 BMS compounds induced high conformational flexibility favorable for monomeric 
motion and dimerization 

4.3.2.1.Conformational stability and residual fluctuation 

We proceeded to measure the dynamical events that accompany the formation of ABPD-L1 dimer 

as induced by the monomeric-binding of BMS-1001 and BMS-1166 respectively. We believe these 

insights would provide structural details that characterize the monomeric recruitment of PD-L1 in 

the presence of the BMS compounds and mechanistic details into their motions in the 

conformational phase space. To understand these distinct dynamical motions in relation to the 

binding of these antagonists, we employed metrics such as the root mean square deviation 

(RMSD), Cα root mean square fluctuation (RMSF) and radius of gyration (RoG), which are 
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appropriate to determine Cα atomistic deviations and structural stability with the target protein 

over the MD simulation time. 

Structural stability was first investigated among the unbound and BMS-bound systems using the 

C-α RMSD parameter in order to ensure that systems were appropriately equilibrated. Our findings 

showed that the systems converged and attained stability early in the production run (~10ns) until 

about 100ns where there was a distinct separation in atomistic motions among the three systems 

until the end of the simulation period (Figure 4.6). Interestingly, in agreement with the results 

earlier presented (Section 3.1), this dynamic event correlates with the dynamic of the   

molecules. In other words, the association of the PD-L1 monomers in both BMS-1001 and BMS-

1166-bound systems involved considerable conformational alterations and instability, a structural 

attribute that characterize biological protein-protein interactions. These could further indicate that 

the binding of the BMS compounds played a crucial role in facilitating the interactions between 

both monomers with respect to PD-1 blockade.  
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Figure 4.6: Conformational analysis plot showing stability and atomistic motions among unbound (blue), 
BMS-1001 (red) and BMS-1166 (green) bound systems. [A] Whole-structure comparative C-α RMSD 
plot of the three systems. Blue highlight depicts post-equilibration periods (100-150ns) where distinct 
separation in motions occurred [B] Comparative C-α RMSD plot (post-equilibration → 100-150ns) 
showing distinct variations in structural stability among the three systems [C] C-α RMSD plot showing 
active site stability among the unbound (blue), BMS-1001- (red) and BMS-1166- (green) bound systems  

According to the plot, the unbound system maintained a stable structure throughout the simulation 

time (RMSD < 2Å) while the binding of BMS-1001 caused a notable deviation in PDL-1 structure 

(RMSD ~5.5Å). Likewise, atomistic deviation (RMSD) of ~4Å characterized the overall structure 

of PD-L1 when bound by BMS-1166. Taken together, we can suggest that the binding of these 

compounds induced notable instability in the structure of PD-L1 relative to inhibition. On the 

average, unbound PDL-1 system had RMSD value of 1.66Å while BMS-1001- and BMS-1166-

bound systems had mean RMSD values of 2.28Å and 2.21Å.  
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In order to accurately measure the degree of structural instability induced by both PD-L1 

antagonists, we carried out time-specific investigations into the occurrences from ~100ns where 

distinct separation in motion occurred among the three systems. This is clearly presented in Figure 

4.6B, and accordingly, structural instability was highly induced in PD-L1 when bound by both 

BMS-1001 and BMS-1166, which is highly favourable for structural dimerization. In addition, we 

evaluated the distinct motions of the BMS compounds over the simulation period in relation to 

their roles in dimerization from the separate monomeric PDLs, most importantly from the period 

at which we presumed dimer formation (~100ns → ~150ns). As estimated, relative to their 

respective positioning and motions at the tunnel-like binding cleft upon PD-L1 dimerization, 

BMS-1001 has a RMSD value of 2.28Å while BMS-1166 exhibited a deviation of 2.21Å. 

However, the disparate motions exhibited by both compounds lasted until ~140ns where they both 

attained stability in dynamical motion (Figure 4.6A). Therefore, from this plot we can deduce that 

the deviations in motions early in the simulation period could be related to their ‘monomeric 

interchange’ as earlier mentioned earlier, which was later stabilized by the formation of the binding 

tunnel and corresponding interactions with constituent residues. Moreover, the dynamics of the 

PD-L1 binding sites were evaluated from ~100ns in relation to the non-active sites region. Our 

findings showed that while the non-active site regions exhibited high structural instability 

favorable for dimerization, the BMS-bound active sites showed lower motions indicative of the 

stabilizing effects of BMS-1001 and BMS-1166 respectively (Figure 4.6C).  
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Figure 4.7: Structural stability, positioning and motion of BMS-1001 and BMS-1166 at the tunnel-like 
binding cleft of PDL-1. [A] Superposition of BMS-1001 (red) and BMS-1166 (green) as they transverse 
the binding tunnel [B] Comparative C-α RMSD plot depicting the stability and motion of both BMS-1001 
(red) and BMS-1166 (green) during the post-equilibration MD-simulation period (100ns-150ns). 

Accordingly, while the active site (C-α) of unbound PD-L1 had an RMSD of ~2.4Å, the BMS-

bound systems had lower deviations at their active site regions. On the average, BMS-1001- and 

BMS-1166-bound systems had active site RMSDs of 1.4Å and 1.7Å respectively. In addition, a 

reduction in atomistic motions among active site residues could be due to the inward pulling effects 

elicited by complementary interactions with the bound BMS compounds. Further structural 

insights were provided by measuring the radius of gyration (RoG) with regards to the time-specific 

structural events (~100ns-150ns post convergence) in the active and non-active site regions with 

reference to the RMSD. According to previous studies, high RoG value indicates an increase in 

motion of constituent residues around their C-α atoms, which also corresponds to a notable loss in 

structural compactness [23], [36]–[38]. On the contrary, a low RoG value suggests a structurally 

compact protein with minimal motions in constituent atoms. Our findings revealed that the binding 

of BMS-1001 and BMS-1166 induced considerably high atomistic motions across the secondary 
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structure of PD-L1 as compared to the unbound system with low RoG (Figure S1). Also, these 

could imply that while unbound PD-L1 was structurally compact (due to limited motions), the 

binding of these compounds increased structural motions and activity which could in turn favour 

dynamical motions of both monomers with respect to dimer formation which corroborates earlier 

results and previous experimental reports [19], [20]. As estimated, unbound PD-L1 had mean RoG 

values of 18.7Å while BMS-1001- and BMS-1166-bound PD-L1 had mean RoG values of 20.2Å 

and 20.0Å respectively. Estimations of the root mean square fluctuation (RMSF) and DCCM for 

all simulated models were also conducted to gain additional insights into PD-L1 structural 

occurrences when bound by BMS-1001 and BMS-1166. With regards to RMSF analyses, both 

monomers (A and B) were evaluated differently in order to define the distinct monomeric motions 

relative to dimerization as induced by the binding of the BMS compounds. As observed in Figure 

4.8, high residual fluctuation occurred concurrently in both monomers of PD-L1 when bound by 

BMS-1001 and BMS-1166, depictive of a structural characteristic that is important for the 

dynamical motions of proteins with regards to biological interactions with other biomolecules. As 

estimated, both monomers (APD-L1 and BPD-L1s) for the BMS-1001 and BMS-1166 systems was 

highly flexible in structure over the simulation period in contrast to the unbound system which 

demonstrated low structural flexibility and motion. This is in agreement to the results presented 

above and further indicates that the binding of these compounds induced structural flexibility in 

PD-L1 monomers which is suitable for dimerization. On the other hand, low flexibility in the 

unbound system could be due to minimal structural and monomeric motions in the absence of the 

BMS compounds. 
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Figure 4.8: Structural flexibility induced simultaneously at both PDL-1 monomers (A and B) by the binding 
of BMS-1001 (red) and BMS-1166 (green). [A] Superposed monomers A and corresponding C-α RMSF 
plot showing the degree of flexibility among the unbound (blue), BMS-1001- (red) and BMS-1166- 
(green) bound PDL-1 systems [B] Superposed monomers B of unbound (blue), BMS-1001- (red) and 
BMS-1166- (green) bound PDL-1 systems coupled with corresponding C-α RMSF plot showing the degree 
of flexibility.  

Upon the presumed dimer formation, we further estimated the per-residue fluctuation of specific 

binding cleft residues that played key interactive roles with BMS-1001 and BMS-1166 (Table 4.1). 
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Our findings revealed that these residues exhibited high fluctuation, which, suggestively, could be 

due to the traversing motions and optimal positioning of both compounds at the tunnel-like binding 

cleft. Taken together, high structural flexibility induced in both PD-L1 monomers with regards to 

the respective binding of BMS-1001 and BMS-1166 could indicate high structural activity, an 

occurrence that could in turn enhance PD-L1 protein-protein interactions (dimerization). This 

reflected the characteristic antagonistic activity elicited by both compounds as previously reported 

[11], [19], [20].  

 

Table 4.1: Per-residue fluctuation values of crucial binding cleft residues in the unbound and bound PD-L1 
systems. 

 
Core active loop residues 

Unbound 
PD-L1 

BMS-1001-bound PD-
L1 

BMS-1166-bound 
PD-L1 

 Per-residue 
fluctuation (Å) 

 

ATyr56 3.13 4.01 5.45 

AMet115 2.63 4.93 5.13 

AAla121 4.83 9.47 6.70 

AAsp122 4.08 8.35 5.48 

ATyr123 3.32 6.94 6.08 

ALys124 3.55 7.14 5.21 

AArg125 3.85 7.73 7.05 

BIle54 5.91 14.09 9.81 

BTyr56 4.38 15.70 9.72 

BAsn63 5.05 16.28 11.65 

BVal68 6.61 16.95 10.04 

BVal76 5.58 19.75 10.87 

BMet115 4.33 15.57 9.26 

BAla121 5.36 15.96 9.17 

 

On the average, BMS-1001-bound APD-L1 had a mean RMSF values of 9.1Å while the 

corresponding BPD-L1 had 15.2Å while it was 7.8Å and 17.0Å in the BMS-1166-bound APD-L1 

and BPD-L1 respectively. Also, it is important to mention that in comparison to the BMS-bound 
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APD-L1s, the non-liganded BPD-L1s exhibited higher flexibility prior to dimerization which could 

indicate that structural motions were higher in relation to monomeric recruitment. In other words, 

BPD-L1s exhibited higher motions than the liganded-APD-L1s in the conformational phase space, 

which could correlate with the mechanisms of BMS-induced dimerization as previously reported 

[19]. On the contrary, unbound APD-L1 and BPD-L1 had lower RMSF values of 5.1Å and 7.6Å 

respectively, predictive of a relatively low structural flexibility. Taken together, the binding of 

both compounds concurrently induced characteristic flexibility in PD-L1 structure across both 

monomers, favourable for dimerization.  

To further investigate the inhibitory impact of BMS-1001 and BMS-1066 on the inter-residual 

dynamics and motions of PD-L1, dynamic cross correlation matrix (DCCM) analysis was 

performed. This method was used to obtain necessary insights into the correlated and anti-

correlated motions of constituent residues with respect to their C-α atoms over the simulation 

period. Positive correlated motions were depicted by a yellow to deep red coloration whereas anti-

correlated (negative) motions where represented by a cyan to black coloration. Plots generated for 

the simulated protein models (across both monomers) are displayed in Figure S2. As shown, 

correlated motions were highly prominent in the PD-L1 systems bound by BMS-1001 and BMS-

1166 as compared to the unbound system which had lesser correlated motions but higher 

dominance of anti-correlated residual motions (cyan/blue colorations). In agreement with reports 

earlier presented, these findings depict that the binding of these antagonists induce high motions 

among the constituent atoms of PD-L1 which correspond to high structural activity.  
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3.2.2. Principal component analysis of structural dynamics and motion 

PCA also known as essential dynamics analysis is one of the most important post-dynamic analysis 

used to study the trajectory of a system over a simulation period [39]. The most significant 

fluctuation modes of a protein together with the motion of the system in terms of planarity of 

motion (eigenvectors) and its magnitude (eigenvalues) can be determined using PCA. PCA 

analysis was performed on the protein C-α atoms using the CPPTRAJ module in AMBER14 to 

compute the first two components (PC1 and PC2). Figure 4.8 shows the overall motional shifts 

across two principle components for the free proteins and ligand-protein complex. 

To gain insights into the significance of such motions with regards to our study, the conformational 

attributes of unbound and bound PD-L1 systems were projected directionally along the first two 

principal components or eigenvectors (ev1/PC1 vs ev2/PC2). Accordingly, distinct conformations 

and motions were observed in the essential subspace along both principal components. The plot 

showed a clear and distinct separation of motion among the three systems, with the BMS-bound 

PD-L1 exhibiting a highly dispersed motion as compared to the unbound system, which showed a 

more compact motion. Induced dispersion among the protein systems bound by BMS-1001 and 

BMS-1166 could only imply that the binding of these compounds enhanced structural activity 

unlike in the unbound system which maintained structural compactness across the simulation 

period. These findings further corroborates above-presented results which altogether reflects that 

the binding of these compounds stabilized a high activity conformation favorable for dimerization 

as previously reported [18]–[20]. Suggestively, high activity conformation relative to PD-L1 

dimerization as induced by these BMS antagonistic could disallow its association with PD-1 

relative to immune checkpoint activities in T cell exhaustion. 
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4.3.3. BMS-1001 and BMS-1166 exhibited ‘monomeric interchange’ and systematic high-
affinity binding prior to PD-L1 dimerization 

The antagonistic mechanism of the BMS-compounds towards PD-L1 is centered on their ability 

to induce dimerization thereby preventing an association with PD-1 which promotes tumor 

progression and survival by escaping tumor neutralizing immune surveillance. Association of PD-

L1 with PD-1 of T-cells lead to T Cell dysfunction, exhaustion, neutralization, and interleukin-10 

(IL-10) production in tumor mass [13]. 

According to previous reports, the BMS-compounds bind to a PD-L1 monomer and facilitate 

monomeric recruitment leading to the formation of a dimer molecule [19]. Interestingly, from our 

previous findings, as presented in Section 3.1 above, we proposed a model that possibly depicted 

the dynamical motions of the respective monomers in the conformational phase with respect to the 

starting structure employed in this study. Moreover, we observed that the BMS-compounds 

systematically transited from the initial monomer (APD-L1), to which they were first bound, onto 

the second monomer prior to dimerization (Figure 4.4 and 5). As shown in the initial trajectory (0-

30ns), the BMS-compounds maintained their starting position at the first monomeric binding site 

(APD-L1) until 30ns where we observed that it was bound at a similar binding site on monomer 

BPD-L1, and eventually at the tunnel-like binding cleft upon the formation of PD-L1 dimer. This 

could represent an important insight into the mechanistic occurrences that accompany BMS-

induced dimerization of PD-L1 in cancer immunotherapy. The MM/PBSA analysis was further 

employed to deduce the binding strength and affinity of the BMS compounds with regards to the 

dimerized protein form. This estimated the binding free energies involved in complex formation 

in relation to their antagonistic activities. Using trajectories at which the PD-L1 dimer was formed 

in both BMS-1001 and BMS-1166-bound systems, our estimations revealed that both compounds 

exhibited considerably high and favorable negative energies indicative of a strong and high affinity 
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binding. Accordingly, BMS-1001 had a ΔG value of -20.5kcal/mol while BMS-1166 had a ΔG 

value of -18.1kcal/mol. Relatively, we estimated the monomeric ΔG values of the BMS 

compounds to each monomer at the respective simulation periods. We observed that both BMS-

1001 and BMS-1166 exhibited similar ΔG towards the PD-L1 monomers even when interchanged 

at their respective ‘monomeric’ binding sites as earlier mentioned. BMS-1001 had an estimated 

ΔG of 23.64kcal/mol and 23.75kcal/mol at the initial (0-30ns) and intermediate (60-90ns) 

trajectories while BMS-1166 had 23.43kcal/mol and 23.66kcal/mol respectively. At the final 

trajectory, BMS-1001 and BMS-1166 had ΔG values of 23.78 kcal/mol and 25.96kcal/mol 

respectively. MM/PBSA estimations for the distinct MD simulation periods are presented in Table 

4.2. Therefore, these considerably high negative free energy values could correlate with a high-

affinity binding that is essential for the systematic dimerization of PD-L1 in the presence of the 

respective BMS-compounds [19].  

Table 4.2: MM/PBSA binding free energy profiles of BMS-1001 and BMS-1166 to PD-L1 

Complexes ΔEvdw 
(kcal/mol) 

ΔEele 
(kcal/mol) 

ΔGgas 
(kcal/mol) 

ΔGsol 
(kcal/mol) 

ΔGbind 
(kcal/mol) 

MD1 BMS-1001 -35.9 39.12 36.0 28.1 23.64 

MD2 BMS-1001 -28.12 45.12 34.0 27.1 23.75 

MD3 BMS-1001 -34.8 -27.9 -42.7 30.8 23.78 

MD1 BMS-1166 -26.78 40.15 37.92 26.87 23.43 

MD2 BMS-1166 -27.42 44.91 38.00 27.32 23.66 

MD3 BMS-1166 -27.9 -48.0 -39.0 29.7 25.96 
ΔEele = electrostatic energy; ΔEvdW = van der Waals energy; ΔGbind = total binding free energy; 

ΔGsol = solvation free energy ΔG = gas phase free energy. 
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Upon dimerization, additional insights into the interactions and positioning of BMS-1001 and 

BMS-1166 at the tunnel-like binding cleft were gained by molecular visualizations using the 

Graphical User Interface of UCSF Chimera and Discovery Studio 2016 Client [40]. These revealed 

intermolecular interactions that occurred at the ‘dimeric’ binding cleft of PD-L1, which is 

systematically induced after the binding of a BMS compound (BMS-1001/BMS-1166) to a PD-

L1 monomer, as elucidated in the model presented in this study. As observed at each of the 

‘dimeric’ binding sites, both compounds transversed the tunnel-like binding cleft while high-

affinity interactions occurred between constituent ligand groups and key residues lying on either 

side of the monomers within and outside the tunnel to achieve optimal binding modes and stability. 

Outside the tunnel, key residues such as AAsp122, ATyr123, ALys124 and AArg125 formed strong 

high-affinity interactions with the (2R)-2-amino-3-hydroxypropanoic acid and 3-cyanobenzyl 

substituents; which majorly constitute hydrogen bonds and attractive charge (ionic) interactions 

that account for the stability of BMS-1001 at this region. Moreover, key interactions that accounted 

for high-affinity binding and stability of BMS-1001 at the other side of the tunnel (binding cleft) 

were elicited by deep hydrophobic pocket residues; BAla121 (π-alkyl) and BAsp122 (CH--O), with 

the buried 2,3-dihydro-1,4-benzodioxine moiety. 

 Also, the orientations of ATyr56 and BTyr56 played important roles in the stability of BMS-1001 

at the binding cleft of PD-L1 possibly via ring π-π stacking. Likewise, BMS-1166 had a similar 

orientation at the binding cleft of PD-L1 wherein it transverses the tunnel-like binding cleft and 

elicit high-affinity interactions at both sides of the tunnel. At the outer region of the tunnel, residues 

such as BAsp122, BTyr123 and BLys124, BArg125 existed in high-affinity (hydrogen and ionic) 

interactions with the (2R, 4R)-4-hydroxypyrrolidine-2-carboxylic acid moiety while π-π stacking 
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of the 3-cyanobenzyl ring by BTyr123 complements its role in BMS-1166 stability around this 

region.  

The role of ATyr56 was also crucial to the stability of BMS-1166 while it transverses the tunnel 

possibly due to its involvement in ring π-π stacking interactions with the intermediate 5-

chlorophenyl ring. Likewise, the contributions of ATyr123 (NH--O) and AAsp122 (CH--O) towards 

the stability of BMS-1166 encompass their interactions with the 2,3-dihydro-1,4-benzodioxine 

moiety at the deep hydrophobic pocket. Furthermore, per-residue energy decomposition analyses 

were used to estimate the individual energy contributions of these crucial residues to the stability 

of BMS-1001 and BMS-1166 respectively at the binding cleft., Energy contributions towards 

BMS-1001 stability at the binding cleft were considerably high among key tunnel residues (inside 

and outside) as earlier mentioned in comparison with other interacting residues.  

Outside the tunnel, AAsp122, ATyr123, ALys124, and AArg125 had high electrostatic energy 

contributions of -10.5kcal/mol, -5.4kcal/mol, -10.1kcal/mol and -6.9kcal/mol respectively, which 

could be due to the occurrence of strong hydrogen and ionic interactions. Inside the tunnel, key 

residues such as BAla121 and BAsp122 that interacted with the buried 2,3-dihydro-1,4-

benzodioxine moiety of BMS-1001 had van der Waals and electrostatic energies of -3.6kcal/mol 

and -3.4kcal/mol respectively. In addition, ATyr56 (inside: 2,3-dihydro-1,4-benzodioxine) and 

BTyr56 (outside: 4-methylphenoxy ring) which elicited ring π-π stacking of BMS-1001 at the 

binding tunnel had van der Waals energy contributions of -2.6kcal/mol and -3.4kcal/mol 

respectively. Similarly, residues such as AAsp122 and ATyr123 had high electrostatic energies of -

5.3kcal/mol and -6.2kcal/mol respectively. Likewise, crucial residues at the outer tunnel region 

that interacted with the (2R, 4R)-4-hydroxypyrrolidine-2-carboxylic acid moiety and the 3-

cyanobenzyl ring had considerably high energy contributions, which further substantiate high-
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affinity interactions earlier reported (Figure 4.6A). Accordingly, BAsp122, BLys124 and BArg125 

had electrostatic energy contributions of -9.5kcal/mol, -10.7kcal/mol, and -12.4kcal/mol 

respectively while BTyr123 and ATyr56 had van der Waals energy contributions of -4.2kcal/mol 

and -3.2kcal/mol respectively. Taken together, considerably high energy contributions among 

these crucial residues at the target site of PD-L1 account for high-affinity binding and stability of 

both BMS-1001 and BMS-1166 while they transverse the tunnel-like binding cleft to elicit their 

antagonistic functions. 

4.4 Conclusion 

The use of small molecule compounds as immune checkpoint inhibitors represent a paradigm shift 

in the cancer immunotherapy (immune checkpoint blockade - ICB). This therapeutic strategy is 

being initiated with the identification of novel BMS compounds; BMS-1001 and BMS-1166 which 

specifically target PD-L1 and prevents its association with PD-1 resulting in the reactivation of T 

cells and effective killing of cancer cells. Hence it was necessary to investigate the activities of 

these antagonistic compounds coupled with the mechanisms by which they induce monomeric 

recruitment of the distinct PD-L1 monomers, so as to obtain necessary insights which could aid 

the future design of highly effective antagonists and monomeric recruiters in ICB therapy. 

Appropriate investigations were carried out using MD simulation and MM/PBSA techniques, 

which are sufficient to provide structural and molecular occurrences associated with the binding 

of these compounds to PD-L1. Using a structurally separated starting structures for the unbound 

and BMS-bound systems, our result revealed that the BMS-1001 and BMS-1166 bound monomers 

elicited the recruitment of the other monomer, as the simulation  progresses, there was ligand 

exchange from the monomer A to monomer B, this is due to the weak binding interaction that 

existed between the ligands and monomer A active site residues, however, monomer B active site 
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residues provided a much stronger interaction. MM/PBSA estimations revealed that both 

compounds were bound to PD-L1 with considerably high-affinities as evidenced by relatively high 

∆G values. Moreover, molecular visualization revealed that both compounds were positioned 

across the tunnel-like binding cleft, and while they traversed this region, they maintained high-

affinity interactions (strong hydrogen and ionic bonds) with key active site residues both within 

and outside the tunnel via their substituent groups. More importantly were the high affinity 

interactions elicited by AAsp122, ATyr123, ALys124 and AArg125 with the (2R)-2-amino-3-

hydroxypropanoic acid and 3-cyanobenzyl substituents of BMS-1001 outside the tunnel and 

BAla121 and BAsp122, inside the tunnel (deep hydrophobic pocket). Also, with regards to BMS-

1166, high-affinity interactions occurred outside the tunnel between BAsp122, BTyr123, BLys124 

and BArg125 with the 3-cyanobenzyl and (2R, 4R)-4-hydroxypyrrolidine-2-carboxylic acid 

substituents while at the other side of the tunnel, ATyr123 and AAsp122 played crucial role in 

stabilizing BMS-1166 via interactions with its 2,3-dihydro-1,4-benzodioxine moiety. The 

important roles of these residues were further revealed by per-residue decomposition analyses 

which estimated high individual energy contributions and could underlie the considerable binding 

strength and stability demonstrated by these compounds. Comparative insights into the structural 

dynamics and motions of PD-L1 in its unbound and bound states were provided by post-MD 

conformational analysis using C-α RMSD, C-α RMSF, C-α RoG, DCCM and PCA. An interesting 

and consistent pattern observed was that the binding of both compounds induced distinctively high 

structural motions and activity in contrast to the unbound model which demonstrated structural 

compactness and rigidity across the MD simulation period. Binding of the ligand to a monomer 

elicited the recruitment of the other monomer inducing dimerization of the monomers, there was 

also a ligand exchange from monomer A unto monomer B. This transition in the structural 
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dynamics and motion of PD-L1 when bound by BMS-1001 and BMS-1166 could be seen as the 

mechanism of PD-L1-/PD-1 association. High per-residue fluctuation of key residues that 

interacted with the substituents of both compounds along the tunnel-like binding cleft could as 

well imply their high activity and contributions towards the favorable positioning and binding of 

BMS-1001 and BMS-1166. Taken together, BMS-1001 and BMS-1166 bind strongly to PD-L1 

due to high-affinity interactions with crucial residues at the tunnel-like binding cleft and induce 

high structural activity favorable for dimerization, which could in turn prevent association with 

PD-1. 
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FigureS1: Radius of gyration of the whole system (A) and post equilibration (B) RoG. 

 

FigS2:  Correlated motion plot of simulated protein models (across both monomers) over the 

simulation period 
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Abstract 

High production cost, instability, low tumor penetration are some of the shortcomings that have 

characterized and undermined the use of antibodies as a target for Cytotoxic T-lymphocytes 

associated protein 4 (CTLA-4). Design and discovery of small molecule inhibitors have therefore 

become a sine qua non in targeting immune proteins implicated in immune disorders. In this study, 

we utilized a drug repositioning approach to explore the characteristic feature of unrelated proteins 

to have similar binding sites and the promiscuity of drugs to repurpose an existing drug to target 

CTLA-4. CTLA-4 and Kallikrein-7 were found to have similar binding sites, we therefore used 1, 

3, 6-trisubstituted 1, 4-diazepane-7-ones (TDSO) which is an inhibitor of Kallikrein-7 as our lead 

compound. High throughput screening using TDSO as a lead compound resulted in 9 hits with 

ZINC04515726 and ZINC08985213 having the highest binding score. We went ahead to 

investigate the interaction of these compounds with CTLA-4 by conducting a molecular dynamic 

simulation. Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) estimations 

revealed that TDSO had the highest binding energy value of -28.51Kcal/mol, with ZINC04515726 

and ZINC08985213 having -23.76Kcal/mol and -21.03Kcal/mol respectively. The per-residue 

decomposition highlighted Tyr24, Ala25, Gly28, Ala30, Tyr53 and Asn72 as having significantly 

high electrostatic energy contributions and the main contributing residues to the binding of TDSO, 

ZINC04515726 and ZINC08985213 to Cytotoxic T lymphocytes CTLA-4. Summarily, from the 

results gathered, we proposed that TDSO can be an effective immune check point small molecule 

inhibitor against the suppression of T-cell activation, proliferation, and tumor cell eradication.  

  

Keywords: Cytotoxic-lymphocytes associated protein 4, Drug repurposing, Polypharmacology, 
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5.1 Introduction 

Cancer Immunotherapy has become a standard treatment for a wide range of cancer malignancies 

and is considered to be the “fifth pillar” of cancer therapy, after surgery, chemotherapy, radiation 

and targeted therapy 1. Immune system does not just prevent the body against infectious organisms 

but also help in eradicating malignancies when stimulated 2,3 through strengthening the host 

immune responses against tumors, annihilating signals produced by cancer cells that repress 

immune responses, or supplying modified immune system components 4. With the understanding 

of the functionality of the immune system, small molecules, peptides, recombinant antibodies, 

vaccines and cellular therapeutic modalities are being employed in manipulating the immune 

system for cancer treatment 5. The use of immune checkpoint inhibitor in cancer immunotherapy 

include generating antibodies against the cytotoxic T-lymphocytes associated protein 4 (CTLA-

4), the programmed death receptor 1 (PD-1) or its ligand (PD-L1)6.  CTLA-4 is mainly expressed 

on activated CD8+ effector T Cells and negates the early-stage T-cell activation and cell cycle 

progression. CTLA-4 is homologous to CD28, and it possesses the same ligands, including B7-1 

(CD80) and B7-2 (CD86), thus blocking the activation and proliferation of antigen-activated T 

cells secondary to CD28/B7 interaction 7 (Figure 5.1). The inhibition of CTLA-4 signaling is 

extremely promising to recover the suppression of T-cell activation, proliferation, and infiltration 

into tumors. This process can result in enhanced anti-tumor immunity and tumor cell eradication 

8. FDA in 2011 approved anti-CTLA-4 antibodies ipilimumab and tremelimumab for the treatment 

of metastatic melanoma; this marked the beginning of a new era for cancer immunotherapy 9. 

Ipilimumab and tremelimumab work by blocking the binding of CTLA-4 to its ligand (CD80 AND 

CD86) 10. Due to the lower production costs, higher stability, improved tumor penetration, 

amenability for oral administration and elimination of immunogenicity, small-molecular weight 

inhibitors are expected to be a viable option in place of antibodies as immune check point inhibitors 
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11. Unfortunately, there are no available small molecule inhibitors that targets CTLA-4. Hence, we 

used drug repositioning and pharmacophore approach to propose drugs that can effectively serve 

as an inhibitor of CTLA-4. 

 

 

Figure 5.1: 3D crystal structure of CTLA-4. The CC’-Loop is highlighted in green, G-strand in red and 
the FG-loop in orange.  (PDB:5TRU) 12 

 

5.2 Computational Method 

5.2.2 Binding site similarity identification 

The complexity of protein and the dynamics of their active site have made it possible for drugs to 

modulate multiple targets implicated in diseases. This binding site similarity has been explored in 

repurposing drugs for effective therapeutic potentials. We used Binding DB database 

(bindingdb.org/bind/index.jsp), a publicly accessible database which contains approximately 

20000 experimentally determined binding affinities of protein-ligand complexes, chemical 
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structures, substructure and similarity13.  Therefore this drug repositioning methodology which 

identifies novel target for existing drugs using bioinformatics databases and algorithms as 

described by Heinrich et al., 2010 was used 14 . This structural approach explores binding site 

similarities between the target protein and other related/unrelated proteins to predict novel binders. 

Therefore, we employ a similar principle to identify small molecule compounds/antagonists that 

are likely to block the immune checkpoint activity of CTLA-4. 

5.2.3 Pharmacophore Model Creation using Per Residue Energy Decomposition (PRED) Based 
Approach 

Identification of small molecule CTLA-4 antagonists was followed up by the modeling of novel 

compounds that could also act in a similar inhibitory capacity towards the target protein.   

Contrary to other conventional pharmacophore modelling methods, we used an in house PRED 

approach to define the pharmacophoric architecture of the ligand- receptor in order to retrieve a 

more tailored potential hit 15,16. This pharmacophore model explore both the structural features of 

the proteins as well as the chemical features of ligands15. To generate a PRED-based 

pharmacophore model, PRED decomposition was computed from MM/PBSA calculations after 

20ns MD simulations of the (TDSO-CTLA-4) complex. Pharmacophoric features based on the 

receptor-ligand interaction obtained from this short run MD simulation was selected. Residues 

Ala25, Ala30, Thr31, Val33, Met55, Gly71 and Asn72 were found to be the highest contributing 

residues that interact with the ligand (FigS5A). These ligand features were set as a query to 

generate a PRED-based pharmacophore model in ZINCPharma 17. Furthermore, the PRED-based 

pharmacophore model (Figure S1) was used to screen the ZINC database 18 for compounds with 

similar features to obtain the novel hits. The filter was set to query Zinc purchasable compounds 
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of molecular weight ≤ 500 for hit screening while rotatable bonds was set at ≤ 10. Lipinski’s “rule 

of five” was also set as cut-off. Hits were sorted by increasing RMSD Scores. 

 

5.2.4 Drug Likeliness Assessment 

An Online software SwissADME 19 was used to determine the physiochemical descriptors, 

pharmacokinetic properties and drug-like nature of the screened compounds. SwissADME uses 

the “Brain or Intestinal Estimated permeation, (BOILED-Egg)” method which computes the 

lipophilicity and polarity of small molecules. 

5.2.6 System preparation and Molecular dynamic (MD) simulations 

The x-ray crystal structure of CTLA-4 in complex with an antibody check point inhibitor 

Ipilimumab with Protein Data Bank code (5TRU) 12 was obtained from RSCB Protein Data Bank 

20. The Ipilimumab was deleted to obtain an unbound CTLA-4 protein. CTLA-4 preparation as 

well as visualization was conducted in Chimera 21 and Avogadro Visualization 22 software. 2D-

structure of the ligands were setup for auto-optimization using UFF forcefield and steepest descent 

algorithm on Avogadro 1.2.0 22. This was carried out to adjust inter-connective bonds and eliminate 

clashes. Further preparations of the ligands and CTLA-4 were carried out using the Molegro 

Molecular Viewer (MMV) software 23. The ligands were docked into the protein using automated 

Autodock Tools docking procedure which entails grid box ‘active-site’ definition 24. The docking 

score was validated by re-docking using Chimera 25  and HADDOCK 26 . The results are presented 

in TableS1. The MD simulation was performed using the GPU version of the PMEMD engine 

provided with AMBER package, FF14SB variant of the AMBER force field was used to describe 

the protein. ANTECHAMBER was used to generate partial charges for the ligand by utilizing the 
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restrained electrostatic potential (RESP) and the General Amber Force Field (GAFF) procedures. 

The leap module of AMBER 14 allowed the addition of hydrogen atoms, as well as Na+ and Cl- 

counter ions for neutralization to both the Apo and bound system. An orthorhombic box of TIP3P 

water molecules at a distance of 9Å from all the protein atoms was used to solvate all the systems 

prior to simulation 27. An initial minimization of 2000 steps were carried out within an applied 

restraint potential of 500 kcal mol-1 Å-2 for both solutes were performed for 1000 steps using a 

steepest decent method followed by a 1000 step of conjugate gradients. An additional full 

minimization of 10000 steps was further carried out by conjugate gradient algorithm without 

restrain. 

A gradual heating MD simulation from 0 k to 300 K was executed for 50ps, such that the system 

maintained a fixed number of atoms and fixed volume, i.e., a canonical ensemble (NVT). The 

solutes within the system are imposed with a potential harmonic restraint of 10 kcal mol-1 Å -2 

and collision frequency of 1.0 ps-1. Following heating, an equilibration estimating 500ps of each 

system was conducted; the operating temperature was kept constant at 300 k. Additional features 

such as number of atoms and pressure were also kept constant mimicking an isobaric-isothermal 

ensemble (NPT). The system pressure was maintained at 1 bar using Berendsen barostat. 

The total time for the MD simulation was 150 ns. In each simulation the SHAKE algorithm was 

employed to constrict the bonds of hydrogen atoms. The step size of each simulation was 2 fs and 

an SPFP precision model was used. The simulations coincided with isobaric-isothermal ensemble 

(NPT), with randomized seeding, constant pressure of bar maintained by the Berendsen barostat, 

a pressure-coupling constant of 2ps, a temperature of 300 K and Langevin thermostat with collision 

frequency of 1.0ps-2. 



 

 91 

5.2.6 Post-dynamic analysis 

The trajectories were saved and further analysis done using PTRAJ 28 module, CPPTRAJ 28 module 

was used to analyze Radius of Gyration, root-mean-square deviation (RMSD) and root-mean-

square fluctuation (RMSF). 

5.2.7 Thermodynamic Calculation 

The free binding energy of the CTLA-4 active site was analyzed by the Molecular Mechanics/ 

Poisson-Boltzmann Surface Area (MM/PBSA) 29. Binding free energy calculation is an endpoint 

energy calculation that provides valuable information about ligand-receptor association. 

Calculation of binding free energies considered 1500 snapshots from each 10ns trajectory with the 

average values of the trajectories being computed. From each snapshot, binding free energy 

(∆Gbind) was computed from the following: 

            (1)      ∆Gbind = Gcomplex - Greceptor - Gligand                                  

            (2)      Egas = Eint + Evdw + Eele                                              

             (3)      Gsol = GGB   + GSA                                                                                    

            (4)      GSA = γSASA                                                                 

Where Egas, the gas-phase energy, was calculated using the FF99SB force field; Eint is the internal 

energy; Eele and Evdw are the Coulomb and van der Waals energies, respectively. Gsol is the solvation 

free energy. GGB is the polar solvation contribution. GSA is the non-polar solvation contribution and 

was estimated by the solvent accessible surface area (SASA) determined using a water probe radius 

of 1.4 Å. The surface tension constant γ was set to 0.0072 kcal/(mol·Å2).  
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5.3 Results and Discussion 

5.3.1 Binding Site Prediction and Validation  

The binding site of CTLA-4 was predicted using site map 30 , and cross-validated with the aid of 

MetaPocket site identification tool 31. A binding pocket was predicted, and constitutive residues 

are shown in Table 5.1. This binding pocket was chosen based on the drugabbility (Dscore) score, 

which measures the ability of a protein to tightly bind small molecules. 

 

Table 5.1: Constituent residues of predicted CTLA-4 binding site 

 
 Binding site identification  

(residues) 
Biological target                        Site Map                      MetaPocket 

CTLA-4 Tyr24, Ala25, Ser26, Gly28, Lys29, 
Ala30, Thr31, Val33, Tyr53, Met55, 
Gly56, Ser69, Gly71,    Asn72,     Leu 
95 

Tyr24, Val33, Tyr53, Met55, Gly56,  
Gly73,   Asn74, Ala30, Ser71, Ser72, 
Thr31, Gln75,     Lys29, Gly28, Leu97, 
Ser26, Ala25, Met54     Asn57 

 

According to the methods of Heinrich 2010, CTLA-4 was queried on a binding database 

(www.bindingdb.org) to obtain proteins similar in binding site to CTLA-4 13. In this regard, a 

protein with an identical binding site to CTLA-4 was identified, which had a small molecule; 1, 3, 

6-trisubstituted 1, 4-diazepane-7-ones (TDSO) bound to it. Moreover, in relation to CTLA-4, 

binding site residues in Kallikrein 7 include Asn189, Gly193, Ser146, Val149, Ala183, and Thr96 

(Figure 5.2) indicative of a unique similarity. 
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Figure 5.2: Graphical representation of kallikrein and CTLA-4 binding site similarity between Kallikrein 
7 and CTLA-4. Similar binding site residues are highlighted in red  

 

5.3.1.2 Pharmacophore Model Creation 

The similarity between CTLA-4 and TDSO-bound Kallikrein 7 (PDB: 5Y9L) binding sites 

informed its (TDSO) selection as the lead compound used in modeling novel antagonists of CTLA-

4. To obtain complementary structural architecture of the steric and electronic features that were 
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important to ensure supramolecular interaction of TDSO with CTLA-4, an intermediate 20ns MD 

simulation was carried out on the TDSO-CTLA-4 complex. Afterwards, a pharmacophore model 

or theory was obtained as shown in FigS1, which highlights the fundamental pharmacophoric 

features that served as a starting point for virtual screening to identify potential CTLA-4 

antagonists.  

5.3.1.3 Generation of Ligands 

The pharmacophoric moieties that exhibited the most significant interaction with complementary 

residues of the binding pocket were employed to screen for novel compounds with similar 

structural and chemical features in Zinc database (contains 4.6 million small molecules). In 

addition, the Lipinski’s Rule of Five 32 was used as a search criteria to streamline the resulting 

compounds to drug-like substances, which were then screened virtually using Autodock Vina’s 

with an exhaustiveness set at 8.0. The grid box coordinates X, Y, and Z are centered on 16.62, 

18.77, and 17.57 respectively while generated results were saved in the pdbqt format. This 

pharmacophore-based query led to the generation of 9 structurally similar compounds that belong 

to the ZINC Purchasable Subset.  Further selection was carried out based on comparative binding 

energies, which led to the identification and retrieval of two compounds with the highest negative 

binding energies (ZINC04515726 and ZINC08985213) in relation to others (Fig.5.3).  

 

Figure 5.3: 2D structures of ZINC04515726 and ZINC08985213 
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5.3.2 Drug Likeliness Assessment of TDSO, ZINC04515726 and ZINC08985213 

5.3.2.1 ADME Result 

To access the physiochemical descriptors, pharmacokinetic properties and drug likeliness of 

TDSO, ZINC04515726 and ZINC08985213, SwissADME 19 was used. In the design of 

therapeutics, the pharmacokinetic properties, safety, potency and selectivity are always 

considered. Lipophilicity (LogP) is a very essential feature to be considered in the interaction 

between a chemical compound and its biological target. The permeability of a compound across 

the lipid bilayer is a function of the value of its lipophilicity, hepatic clearance or solubility 33. A 

chemical compound having a LogP value between 2 and 3 shows a highly favorable potential of 

achieving permeability and first pass clearance 111. From Table 2 below, it is seen that 

ZINC04515726, ZINC08985213 and TDSO have LogP values of 2.43, 2.38 and 2.53 respectively, 

indicating that these three compounds have the potential to achieve membrane permeability and 

first pass clearance. The gastrointestinal absorption of the compounds is high indicating that they 

can easily be absorbed by the GIT, which is favorable for their respective biological transport 

towards CTLA-4. Likewise, their inability to pass through the blood brain barrier (BBB) could 

indicate their suitability for targeting cancers cells not found in the central nervous system (CNS). 
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Table 5.2: Comparative analyses of the pharmacokinetic profile of TDSO, ZINC04515726, and   
ZINC08985213 

 TDSO ZINC04515726 ZINC08985213 
Molecular 
Formula 

C24H28OClN5O5 C2OH2ON4O4 C18H14Cl2N4O4 

Molecular 
Weight (g/mol) 

501.96 380.40 421.23 

Lipophilicity 
(LogP) 

2.53 2.43 2.38 

Water Soluble Soluble Moderately Soluble Poorly Soluble 
GIT absorption High High High 
BBB 
Permeability 

Not Permeable Not Permeable Not Permeable 

Bioavailability 
Score 

0.55 0.55 0.55 

Synthetic 
accessibility 

4.24 3.30 3.18 

Druglikeness 
(Lipinski) 

Yes Yes Yes 

 
 
 
 
“Bioled egg” 
structure 

  

    

 

 

 

5.3.3  Post-Molecular Dynamics Simulation Analysis 

3.3.1 Differential binding of TDSO, ZINC04515726 and ZINC08985213 to CTLA-4 

The MM/PBSA is used to calculate the free energy difference between two different solvated 

conformations of the same molecule 34. To determine the effect of inhibitor binding to CTLA-4, 

post-dynamic calculation of MM/PBSA was carried out. These binding affinities provide us with 
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the information of each amino acid residue toward the total binding affinity. As estimated, the 

three compounds exhibited favorable binding as evidenced by their high negative energies. From 

Table 3, TDSO had a ΔG value of -28.51kcal/mol while ZINC04515726 and ZINC08985213 have 

ΔG values of -23.76 kcal/mol and -21.03 kcal/mol respectively, which could suggest strong and 

high affinity binding.  

Table 5.3: MM/PBSA binding free energy profiles of TDSO, ZINC04515726, and ZINC08985213 to 
CTLA-4 

 ∆Eele  

(kcal/mol) 
∆Evdw  

(kcal/mol) 

∆Egas  

(kcal/mol) 

 

ΔGsol (kcal/mol) ΔGbind 
(kcal/mol) 

 TDSO -6.35 ± 3.41 -36.01 ± 3.41 -42.36 ± 7.88 13.86 ± 6.80 -28.51 ± 3.57 

ZINC04515726 -5.48 ± 5.51 -33.28 ± 4.70 -38.76 ± 6.02 15.00 ± 5.12 -23.76 ± 4.66 

ZINC08985213 -8.41 ± 7.93 -26.18 ± 5.46 -34.59 ± 10.04 13.56 ± 7.73 -21.03 ± 5.43 

ΔEele = electrostatic energy; ΔEvdW = van der Waals energy; ΔGbind = total binding free energy; ΔGsol = solvation 
free energy ΔEgas = gas phase free energy. 
 
Furthermore, we investigated key binding site residues and their respective roles in the differential 

binding of TDSO, ZINC04515726 and ZINC08985213 towards CTLA-4. This was carried out by 

decomposing the ΔG binding free energy into electrostatic, van der Waals and total energies using 

an MMPB/SA-integrated per-residue energy decomposition method. As shown in Figure 5A, 6A 

and 7A, Tyr24, Ala25, Gly28, Ala30, Tyr53 and Asn72 play crucial roles in the binding of the 

respective compounds as evidenced by considerably high electrostatic energy contributions. 

Tyr24, Ala25, Gly28, Ala30, Tyr53 and Asn72 had electrostatic contributions of -7.63, -8.23, -

7.76, -8.76, -7.99 and -7.92 kcal/mol respectively towards TDSO, while in ZINC04515726, energy 

contributions of these residues were -7.4, -8.18, -7.27, -8.67, -7.6, and -80.4 kcal/mol respectively. 

These residues also had -7.63, -8.13, -7.75, -8.85, -7.58 and -7.68 kcal/mol electrostatic energy 

contributions towards ZINC08985213 binding to CTLA-4. Moreover, in the three systems, there 

were appreciable van der Waals energy contributed by Tyr24, Tyr53, and Leu95, TDSO had -1.34, 
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-1.41 and -1.1 kcal/mol contributed respectively. ZINC08985213 had -1.43, -1.41 and -1.06 

kcal/mol contribution, while Tyr53, and Leu95 contributed mostly to the van der Waals energy in 

the binding of ZINC04515726 to CTLA-4 with energy contributions of 1.41 and 1.11 kcal/mol 

respectively. 

The nature and types of the occurring interactions were further visualized with the aid of Discovery 

studio 2016 Client to gain additional insights into the mechanistic interactions of the respective 

ligands with key active site residues with respect to high-affinity binding and stability. As shown 

in Figures 5.4B, 5.5B and 5.6B, strong hydrogen bonds (NH--O, CH--O and OH--O) as well as 

weak pi-pi stacked, pi-alkyl and pi-sulfur interactions were observed, which altogether contributed 

to the binding of the respective ligands to CTLA-4. These high-affinity interactions could also 

account for the high electrostatic energies observed on the per residue decomposition plot which 

altogether could possibly underlie the high-affinity inhibitory activity of these compounds towards 

CTLA-4. Although the mechanisms of charge transfer or complementary bond formation were not 

investigated in this study, we propose that the use of other quantitative techniques such as QM or 

QM/MM in future studies would provide more insights. 
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Figure 5.4: Individual energy contributions of crucial binding site residues to high-affinity binding and 
stabilization of TDSO. [A] Per-residue decomposition plot showing energy contributions of interacting 
residues [B] Molecular interactions between essential residues and reactive substituent on TDSO.  

 

 

Figure 5.5: Individual energy contributions of crucial binding site residues to high-affinity binding and 
stabilization of ZINC04515726. [A] Per-residue decomposition plot showing energy contributions of 
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interacting residues [B] Molecular interactions between essential residues and reactive substituent on 
ZINC04515726. 

 

Figure 5.6: Individual energy contributions of crucial binding site residues to high-affinity binding and 
stabilization of ZINC04515726. [A] Per-residue decomposition plot showing energy contributions of 
interacting residues [B] Molecular interactions between essential residues and reactive substituent on 
ZINC04515726. 

 

5.3.3.2 Structural elucidation in the binding of TDSO, ZINC04515726, and ZINC08985213 to 
CTLA-4 

To understand the structural events associated with the inhibitory activity of TDSO, 

ZINC04515726, and ZINC08985213 towards CTLA-4, it was necessary to analyze the structural 

stability of the simulated systems. As such, the root of mean square deviation (RMSD) of C-α 

atom across the 150ns simulation period was monitored. As shown in Figure 5.7A, the systems 

converged early in the simulation period until about 10ns where the systems showed distinct 

separations in motions. Whole structural RMSD analyses revealed that unbound CTLA-4 

exhibited the highest C-α deviation (RMSD ≥ 2Å) compared to the bound protein-forms which 

had lower motions (Figure 5.7A). Moreover, the binding of the respective ligands elicited notable 

structural perturbations on the proteins correlative of their conformational instabilities. This could 
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also have possible effects on protein motions thereby impeding their involvements in pathologic 

interactions. Estimated mean values for unbound CTLA-4 was 1.48Å while values of 1.05Å, 

1.16Å and 1.13Å were estimated for TDSO-, ZINC08985213- and ZINC04515726-bound systems 

respectively. 

We also investigated the impacts of the respective compounds on the architecture of CTLA-4 

binding pocket with respect to their antagonistic roles. As presented in Figure 5.7B, atomistic 

motions were higher at the active site of unbound CTLA-4 while the presence of the ligands 

lowered C-α motions of constituent active site residues. This could be due to possible ‘pulling-

effects’ elicited by complementary ligand-residual interactions that are crucial for high-affinity 

binding (Figure 5.7B). 

 

Figure 5.7: Conformational analysis plot showing stability and atomistic motions among unbound 
(black), TDSO (red), ZINC04515726 (green) and ZINC08985213 (blue) bound systems. [A] Whole-
structure comparative C-α RMSD plot of the four systems. 

 

The motions of the respective ligands at the binding pockets of CTLA-4 was also estimated as 

presented in Figure 5.8. Findings revealed that the compounds showed uniform and stable motions 
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until about 90ns where the patterns of motions appeared distinct. While TDSO showed a more 

stable motion at the binding pocket, the identified hits; ZINC04515726 and ZINC08985213, 

demonstrated similar alterations in motions. Consequently, the smaller sizes of both hits, relative 

to TDSO could favor their optimal motions at the binding cavity.  

 

Figure 5.8: [A] C-α RMSD plot showing active site stability among unbound (black), TDSO (red), 
ZINC04515726 (green) and ZINC08985213 (blue) bound systems. [B] Comparative C-α RMSD plot 
depicting the stability and motion of TDSO (red), ZINC04515726 (green) and ZINC08985213 (blue). 
[C]Superimposition of TDSO (red), ZINC04515726 (green) and ZINC08985213 (blue) 

 

Under physiological conditions, proteins like any other molecules undergo fluctuations in their 

structures35. Therefore, the dynamics of a protein is equally as important as its structure. The 

interaction with a protein active site can alter the protein’s functions. RMSF is calculated to 

determine the mobility of individual residues within a protein22. To understand and explore the 

structural dynamics (fluctuations) that occur upon ligand binding, RMSF was carried out on the 

systems. Figure 5.9 clearly shows high residual fluctuations of the ligand when compared to 
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CTLA-4. However, TDSO had a lower flexibility from residues 80 – 114. This residual fluctuation 

is possibly due to the impact of the ligands upon binding.  

 

Figure 5.9: Structural flexibility induced by the binding of TDSO (red), ZINC04515726 (green) and 
ZINC08985213 (blue) to unbound (black). 

 

5.4  Conclusion 

Antibodies have always been used in restoring T-Cell exhaustion, but due to the financial cost 

incurred in the production of these antibodies, small molecule inhibitors are thought to be a viable 

option to monoclonal antibodies. A drug repositioning and pharmacophore modeling approach 

was used to discover 1, 3, 6-trisubstituted 1, 4-diazepane-7-ones which is an inhibitor of 

Kallikrien-7. The chemoinformatic analysis of ZINC04515726 and ZINC08985213 showed they 

are drug-like having obeyed the Lipinski rule of five. MMGBSA revealed that 1, 3, 6-trisubstituted 
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1, 4-diazepane-7-ones has the highest binding energy value compared to ZINC04515726 and 

ZINC08985213. The aforementioned results suggest that 1, 3, 6-trisubstituted 1, 4-diazepane-7-

ones can be a good anti-CTLA-4. 
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FigS1: 1, 3, 6-trisubstituted 1, 4-diazepane-7-ones showing the interacting pharmacophoric moieties after 
a 20ns simulation with CTLA-4 
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FigS2: PRED contribution of different residues at the active site (A). 2D ligand interaction plot (B), and 
(C) Pharmacophore features responsible for FBE contributions 

 
 
Table S1: Binding energy scores of TDSO, ZINC04515726, ZINC08985213 with TDSO 
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 Chimera HADDOCK 

TDSO -5.3 -5.4 

ZINC04515726  -5.5 -5.4 

ZINC08985213 -5.1 -5.3 
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Abstract 

Background: Genetic polymorphisms have been identified as one of the underlying factors in 

disease pathogenesis and drug resistance since they account for protein dysfunctionality, or in 

some cases, aberrancy. This explains the high degree of inactivity that characterize the 

polymorphic variants of ULBP6 binding protein, which in turn disrupts its primary interaction 

with human Natural Killer Group 2-member D (NKG2D) and accounts for an impediment to 

immuno-surveillance. The possible identification of deleterious non-synonymous Single 

Nucleotide Polymorphisms (nsSNPs) present in the ULBP6 gene is essential for the development 

of novel gene therapies to prevent the translation of dysfunctional protein variants. 

Methods/Results: In this study, for the first time, we employed an SNP-informatics approach 

(SNPs retrieval, pathogenic/mutational analysis, phenotypic analysis and structural analysis) and 

molecular dynamics techniques to identify and characterize undesirable SNPs coupled with their 

impact on ULBP6 structural activities relative to dysfunctionality. V52F was predictively 

pathogenic amongst SNPs studied. Conformational and dynamic studies revealed that in 

comparison to wildtype ULBP6 (ULBP6wt), pathogenic ULBP6V52F demonstrated considerable 

structural inactivity, which could in turn impede biological protein-protein interactions. Moreover, 

ULBP6V52F showed relatively limited motions in the conformational space as deduced from 

estimations of structural stability, fluctuations and principal components. Conclusion: This study 

provides a workable paradigm for investigating pathological nsSNPS using computational 

platforms which findings present ULBP6V52F as a novel and attractive immunotherapeutic target in 

combatting immune associated disorders. This study also provides an insight into future 

investigations of pathological nsSNPS using computational platforms. 

Keywords: Single Nucleotide Polymorphism, ULBP6, Bioinformatics, Molecular Dynamic 

Simulation, Mutation 
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6.1 Introduction 

The human immune defense is a well-developed system that has evolved over time in the 

protection of the body against invading pathogenic assaults and toxins (1). Basically, there are four 

mechanisms with which this protection is elicited. Firstly, through physical barrier such as skin 

and mucosal tissues that protects internal tissues from assault (2). The second line of defense is 

mediated by antimicrobial enzymes such as lysozyme, anti-microbial peptides such as defensins 

(3), and the action of the complement system, this line of defense helps to initiate the third line of 

defense, the innate immune system. Complement binding to a pathogen marks it for destruction 

by phagocytes, which initiate an inflammatory response (4). Inflammation recruits monocytes and 

dendritic cells, which through activation of their Toll-like receptors (TLRs) recruit a range of 

cytotoxic effector cells such as neutrophils, lymphocytes and natural killer (NK) cells (5). These 

cells elicit the last defense mechanism, which is recruitment of cells that specifically target 

pathogen and form immune memory in case of repeat infection (6). NK cells possess surface 

receptors that recognize ligands that are up-regulated on the surface of infected or transformed 

cells (5).  

 Natural Killer group 2, member D (NKG2D), is one of the receptor that is expressed on the surface 

of NK cells, (7), NKG2D is activated upon binding to its complementary ligands, MHC class-I 

chain related proteins (MIC) A, MICB and  UL-16-binding proteins (ULBP1-6) (8). The ULBP6 

gene cluster is found on chromosome 6q24.2-q25.3 and comprises of ten loci (9). ULBP1-6 is one 

of the recently discovered human NKG2D ligands and is highly polymorphic, with two variants 

(ULBP0601 and ULBP0602)(8). This high polymorphic tendencies is probably due to evolutionary 

attempts to maintain viral resistance, and cancer immunoediting (10) Eagle et al., reported the 
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absence of ULBP6 in primary human fibroblasts, however, upon infection with two different 

strains of HCMV,  ULBP6 transcript was expressed (11). ULBP6 polymorphisms have also been 

implicated in diabetic nephropathy (12), alopecia areata (AA) (13) and endometriosis (8). 

 

 

Figure 6.1: 3-D crystallography structure of ULBP6 protein in complex with NKG2D (PDB ID: 4S0U 
(14) 

 

In the binding of ULBP6 and NKG2D, some amino acids play crucial role in enhancing the binding 

potential of the two proteins. Zuo et al., 2017, describes this binding and highlighted K186, E201, 

K197 of NKG2DA as forming hydrogen bond interactions with residues E154, Y184 and D189 of 

ULBP6. Likewise, in the NKG2B monomer, residues S151, N207 and K197 formed hydrogen 

interaction with D99, E103 and R44 of ULBP6 residues (14). Furthermore, binding analysis 

revealed that the binding of NKG2D to ULBP6 is quite similar to ULBP3  (15). 
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Single nucleotide polymorphisms (SNPs) account for most genetic variation  observed in humans 

(16). This genetic disparity caused by SNPs occurring at genomic exons alters the translation result 

leading to structural and functional changes in the mutated protein. However, not all SNPs affect 

the structure and function of a protein, some are pathogenic while others nonpathogenic (16). 

Taking cognizant of the role ULBP6 play in immune response, a study of the impact of its 

polymorphism will contribute immensely to scientific research. Therefore, in this study we used 

computational and bioinformatics analysis (Fig 6.2) to map out the most deleterious and disease-

associated SNP in the ULBP6 gene, putting into account their structural consequences at the 

molecular level. We used SIFT (17), PolyPhen (18), PhD-SNP (19), PMut (20) and SNP&GO (21) 

tools to prioritize the deleterious disease-associated SNPs from the available SNP datasets 

obtained from  dsSNPs database. To examine the molecular and structural basis of predicted 

disease-associated SNP, we then carried out molecular dynamics simulation of the native and 

mutant ULBP6. 
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Figure 6.2: A schematic computational workflow 

6.2 Material and Methods 

6.2.1 SNPs Retrieval 

Human ULBP6 (accession ID: Q5VY80) protein sequence was retrieved from Uniprot database 

(22). SNP data used for our computational analysis was obtained from dsSNPs 

(http://www.ncbi.nlm.nih.gov/snp/) (23). 3-D crystallography structure of ULBP6 was obtained 

from Protein Data Bank (PDB ID: 4S0U) (24). In order to build the mutant ULBP6, a point 

mutation was induced at position 52 of the wild ULBP6 protein using UCSF chimera (25). 

6.2.2 Analysis of the functional impact of coding SNP 

Single nucleotide polymorphism occurring in a protein coding region may impact some structural 

defect on the 3D structure and consequently leading to some pathological effects. We used SIFT 

(26) and Polyphen2 (27)  to study the functional impact of the nsSNPs occurring in ULBP6. SIFT 
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is a sequence-based homology program that evaluates amino acids substitution (26). The input 

SNPs’ rs-ID retrieved from nsSNPs database were submitted to SIFT server for analysis. SIFT 

uses the query sequence to execute multiple alignment in order to predict amino acids substitution 

present in the sequence and further classify them as either tolerated or deleterious. Prediction is 

given as tolerance index (TI) score ranging from 0.0 to 1. SNPs with TI score under 0.05 were 

regarded to be deleterious; those more pronounced than or equal to 0.05 were considered to be 

tolerated. SIFT has a sensitivity and specificity of 83% and 52% respectively (17). PolyPhen 

determines if the amino acid substitution in the sequence occurs in a conserved region and predicts 

if the substitution has any deleterious impact on the structure of the protein (27). PolyPhen employs 

the position-specific independent count (PSIC) score to ascertain the functional and structural 

impact of the substitution. A PSIC score of 1.0 is regarded as damaging. The SNPs are classified 

as benign, possibly damaging and probably damaging (27). To get an accurate prediction, we used 

nsSNPS that were jointly predicted by the two servers to be deleterious and damaging. Predicted 

damaging SNPs were further analyzed using SNP&GO (28), PhD-SNP (29). SNPs&GO  retrieves 

data from protein sequence, evolutionary information, and functions as encoded in the gene 

ontology terms (28). It predicts if the SNP is neutral or pathological with the reliability index score 

(29). PhD-SNP is a support vector machine-based classifier that employs a supervised learning 

strategy to categorize the disease-causing mutation that are present in a query dataset.  PhD-SNP 

is a neural network-based program which is trained on large database of neutral and pathological 

mutation. It employs three functions including, mutation parameters, solvent accessibility, and 

residue and sequence properties to calculate the pathogenicity index of a SNP ranging from 0 to 

1. Mutation with index greater than 0.5 are regarded to be pathologically significant (19). 
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6.2.3 Impact of mutation on protein-protein interaction and Molecular Dynamics Simulation 

Particle Mesh Ewald Molecular Dynamics - PMEMD of the AMBER18 software in addition to its 

integrated modules were used to perform MD simulations (30). FF14SB force-field was used to 

define the proteins (31). ULBP6 modification, renaming and protonation (histidine) were done 

using an in-house pdb4amber script. Parameter and topology files were generated for ULBP6 

using the LEAP module. This was also used for system neutralization. Restraint potential of 

500kcal/mol Å, partial minimization of 2500 steps was carried out and a full minimization of 5000 

steps. Gradual system thermalization from 0-300k was also carried out. System equilibration was 

then carried out for 1000ps at 300k without restraints while atmospheric pressure was kept constant 

at 1bar using the Berendsen barostat (32). Afterwards, an MD run of 100ns was carried out (33). 

At every 1ps, coordinates and trajectories generated were saved. They were further analysed  using 

CPPTRAJ and PTRAJ (34). 

6.2.4  Principal Component Analysis (PCA) 

We used PCA to obtain necessary insights into the 3D conformational and dynamical changes that 

occurred in the wild and mutant proteins. This method is used to describe the magnitude and 

direction of protein motions which are depicted by eigenvalues and eigenvectors respectively 

(35,36). Hence, with the aid of the integrated CPPTRAJ module in AMBER18, we computed the 

first two principal components from the dynamics of the protein C-α atoms.  
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6.3 Results 

6.3.1 Identification of deleterious and damaging SNPs 

Identification of pathological genetic variants in proteins are useful in the foundation of genome 

level study especially in cancer and some neurodegenerative diseases, this provide a better insight 

for personalized and targeted based drug administration. We retrieved a total of 23 SNPs from the 

dbSNP database to identify deleterious point mutation in ULBP6 gene. We simultaneously run the 

23 predicted SNPs on SIFT, PolyPhen, SNP&GO, Pmut and Phd-SNP. The SIFT server was used 

to determine the tolerance index of all 23 retrieved SNPs by evolutionary conservation analysis. 

A SIFT score value of <0.05 was considered to be deleterious. Out of the input polymorphic data 

from the 23 SNPs, 8 were predicted to be deleterious with a tolerance index score less than or 

equal to 0.05. To further analyze the structural impact of SNPs, the 23 SNPs retrieved from dbSNP 

were submitted to the PolyPhen server. A total of 12 were predicted to be damaging having a PSIC 

score of >1.5 while 11 were considered as benign. 2 SNPs were predicted to be disease causing 

with SNP&GO, 3 SNPs were predicted as diseased with Phd-SNP (Table 6.1). Taken together, 

only rs145336297 with V52F was jointly predicted by 4 out of the 5 tools as disease causing.
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Table 6.1: Damaging and Deleterious SNPs predicted by SIFT, PolyPhen, SNP&GO, Pmut and Phd-SNP with their corresponding scores. 

 

 

            
SNP ID Amino Acid 

Change 
SIFT Score PolyPhen Score SNP$GO Score PMut Score Phd-SNP Score 

rs1543547 R26G Tolerated 1 Probably Damaging 0.976 Neutral 9 Neutral 0.02 Neutral 8 
rs61730071 T147I Tolerated 0.862 Benign 0.001 Neutral 9 Neutral 0.15 Neutral 7 
rs61748301 M157V Tolerated 0.112 Probably Damaging 0.636 Neutral 8 Neutral 0.22 Neutral 7 
rs7989700 V74I Tolerated 0.588 Probably Damaging 0.021 Neutral 9 Neutral 0.06 Neutral 5 

rs137965307 T38I Tolerated 0.106 Probably Damaging 0.984 Neutral 7 Neutral 0.15 Neutral 3 
rs138504598 L62P Deleterious 0.001 Probably Damaging 1.000 Disease 7 Neutral 0.34 Disease 0 
rs139656748 F151L Deleterious 0.001 Probably Damaging 0.998 Neutral 2 Neutral 0.08 Neutral 9 
rs139983884 P76S Tolerated 0.351 Benign 0.167 Neutral 8 Neutral 0.08 Neutral 1 
rs140013602 I143I Deleterious 0.037 Benign 0.020 Neutral 8 Neutral 0.10 Neutral 7 
rs140239332 E58Ter Tolerated 0.322 Probably Damaging 1.000 Neutral 8 Neutral 0.08 Neutral 9 
rs141330153 D99N Tolerated 0.062 Possibly Damaging 0.877 Neutral 7 Neutral 0.15 Neutral 6 
rs141345751 G192E Tolerated 1 Benign 0.005 Neutral 6 Neutral 0.01 Neutral 8 
rs141551402 M1V Deleterious 0 Benign 0.000 Neutral 9 Neutral  Neutral 8 
rs141680152 L231F Tolerated 0.741 Benign 0.001 Neutral 10 Neutral 0.12 Neutral 5 
rs145336297 V52F Deleterious 0.042 Probably Damaging 1.000 Disease 5 Neutral 0.08 Disease 0.73 
rs145690445 A123E Deleterious 0.003 Probably Damaging 0.999 Neutral 5 Neutral 0.23 Neutral 2 
rs147008347 I191T Tolerated 0.595 Benign 0.000 Neutral 8 Neutral 0.07 Neutral 7 
rs147287797 M180T Tolerated 0.348 Benign 0.027 Neutral 7 Neutral 0.02 Neutral 8 
rs147068392 S208G Deleterious 0.008 Probably Damaging 0.945 Neutral 10 Neutral 0.31 Neutral 4 
rs147812292 P207T Tolerated 0.645 Benign 0.086 Neutral 9 Neutral 0.09 Neutral 7 
rs148198102 E173K Deleterious 0.004 Probably Damaging 0.983 Neutral 7 Neutral 0.20 Disease 4 
rs151006207 P76H Tolerated 0.318 Benign 0.045 Neutral 8 Neutral 0.08 Neutral 5 
rs151268095 C232Y Tolerated 1.000 Benign 0.006 Neutral 7 Neutral 0.13 Neutral 6 
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6.3.2  Phenotype Analysis 

SNPeffect4.0 tool (37) was used to detect the phenotypic changes induced by the V52F mutation. The 

results are predicted in the form of TANGO, LIMBO, WALTZ and ddG scores for the mutant protein. 

 LIMBO prediction 

LIMBO is a chaperone binding site predictor of Hsp70 chaperones, designed from peptide 

binding data and structural modeling. The total LIMBO score for ULBP6 is 1409.53 and mutation can 

increase (dLIMBO >50), decrease (dLIMBO <-50) or not affect chaperone 

binding (dLIMBO between -50 and 50). In this case, dLIMBO equals 0.00 which means that 

the mutation does not affect the chaperone binding tendency of ULBP6. 

In figure 6.3.9 and 6.3.10, the position of LIMBO stretches in the wild type and variant 

proteins can be seen, represented by a bar or profile representation. In table 

2, the short stretches are listed for both wild type and mutant. To compare the effect of the 

mutation to the WT, we also show a difference profile (Figure 6.3C), that plots the difference 

between WT protein and the variant. 
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Figure 6.3: Profile representation of LIMBO stretches in the mutant (V52F) (A), Wild (B), difference in 
LIMBO chaperone propensity between the mutant and wild protein (C) and molecular visualization of LIMBO 
chaperone-binding sites colored in pink (D). 

 
Table 6.2: LIMBO regions in variant and wild type. For each LIMBO region, the start, end, sequence and score 
are given. 

 
Number Start End Stretch Score 

Wild Type     

1 54 62 VTMAWKAQ 99.99 

2 168 174 FLMGMD 95.34 

Mutant     
1 54 62 VTMAWKAQ 99.99 

2 168 174 FLMGMD 95.34 

 

 

Waltz and Tango prediction 

WALTZ is an algorithm that accurately and specifically predicts amyloid-forming regions in protein 

sequences. The total WALTZ score predicted for ULBP6 is 618.25 and the impact of mutation can 

increase (Dwaltz > 50), decrease (Dwaltz < -50) or not affect amyloid propensity (Dwaltz between -50 

and 50). ULBP6 has a Dwaltz score of 0.01, this suggests that the mutation has no effect on the amyloid 

propensity of ULBP6. We further showed the difference in WALTZ score between the mutant and 

native protein (Figure 6.4C). TANGO predicts the aggregation prone region in a protein sequence. The 

total TANGO score for ULBP6 is 234.67. Mutation can increase (dTANGO > 50), decrease (dTANGO 

<-50) or not affect aggregation propensity (dTANGO between -50 and 50). For V52F mutation, 

dTANGO equals 0.00, this signify that the mutation has no effect on the aggregation tendency of the 

protein. To compare the effect of the mutation to the native protein, we presented the difference in 

TANGO score in Figure 6.4C. 
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Figure 6.4: Profile representation of WALTZ and TANGO stretches present in the mutant (A), WALTZ and 
TANGO stretches present in the wild type (B). Difference in WALTZ amyloid propensity and difference in 
TANGO aggregation between WT and variant (C).  

 

Table 6.3: TANGO regions in variant and wild type. For each TANGO region, the start, end, sequence and score 
are given. 

 
 

 Number Start                         End Stretch Score 
    
Wild Type             No TANGO stretches present   
    
 Mutant             No TANGO stretches present   

 
 
Table 6.4: WALTZ regions in variant and wild type. For each WALTZ region, the start, end, sequence and score 
are given. 

 
Number Start End Stretch Score 

Wild Type     

1 31 37 TFLHYD 10.45 

2 80 86 QLENYT 2207 

3 110 116 WQFSID 15.09 

 118 124 TFLLFD 50.67 

Mutant     
1 31 37 TFLHYD 10.45 
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2 80 86 QLENYT 22.07 

3 110 116 WQFSID 15.09 

4 118 124 TFLLFD 50.67 

 
 
 
 

6.3.3 Investigation of ULBP6 Gene’s interactions and Appearance in Networks in STRING Database 

For better comprehension of a gene’s function, knowledge of its specific interacting partners is 

important. We used STRING database (http://string-db.org) to study the interacting genes with ULBP6. 

STRING database provides a critical assessment and integration of protein-protein interactions, 

including direct (physical) as well as indirect (functional) associations. From the interaction network, 

ULBP6 has direct interaction with killer cell lectin-like receptor subfamily K member 1 (KLRK1) (Fig. 

6.5). 

 

Figure 6.5: Functional interaction between ULBP6 and its related genes. 
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6.3.4  Impact of V52F polymorphism on structural integrity of ULBP6  

The formation of protein complex plays an essential role in the regulation of numerous biological 

processes (38). Availability of computational tools to evaluate the impact of mutations on protein-

protein binding can therefore be a valuable tool (38). Here we used BeAtMuSiC to predict the effect of 

V52F mutations on NKG2D-ULBP6 binding. BeAtMuSiC is a coarse-grained predictor of changes in 

binding free energy induced by point mutation. BeAtMuSiC (38) predicted the binding affinity to be 

1.79kcal/mol. The empirical protein design forcefield FoldX was used to calculate the difference in 

free energy of the mutation ddG (delta delta G). The mutation from Val to Phe at position 52 resulted 

in a ddG of 8.54kcal/mol. This implies that the mutation severely reduces the protein stability and alters 

the NKG2D-ULBP6 interaction. Residue interaction network was investigated using Cytoscape (39). 

The interaction network showed that residue V52 in the wild protein formed hydrogen bonds with 

Ser151 and Val 97, it also elicited van der Waals interaction with Met125 and Asp107, however in the 

mutant, phenylalanine formed hydrogen bond with Tyr64, Val98, Val39 (Fig 6.6). In order to 

investigate the changes in secondary structure of the proteins during the simulation period, we used 

STRIDE (40) to predict the secondary structure change at 10ns, 50ns and 100ns.  As shown in Fig. 6.7, 

the major differences observed in the mutant in relative to the wild protein is observed in Pro176, 

Asn177 and Leu178. These residues were seen to change from a helix configuration in the wild protein 

to a coil in the mutant protein. 
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Figure 6.6: Residue interaction network analysis of the wild protein (green) and mutant protein (red). 

 

Figure 6.7: DSSP analysis of the mutant and wild protein at 10ns, 50ns and 100ns. 
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6.3.5 Investigation of Structural conformation in ULBP6 

To understand the structural impact of V52F mutation, we carried out protein-protein docking using 

FRODOCK (41) and PRODIGY (44), afterwards, we carried out a molecular dynamic simulation of 

the wild and mutant protein. We calculated RMSD for all the Cα atoms from the initial structure using 

the equation: 

 

N represents the total number of atoms in the complex. Ri denotes the vector position of the Cα atom in the reference 

conformation of particle i. This is calculated after aligning the structure to the initial conformation (O) using the least 

square fitting.  

RMSF was estimated using the equation:  

 

RMSFi represents the RMSF of the ith residue, from which the average RMSF is subtracted. This is then divided by the 

RMSF’s standard deviation to yield the resultant standardized RMSF. 

 The backbone RMSD values of the wild and Mutant protein during the production phase relative to the starting structures 

were plotted (Figure 6.8A) to obtain an estimate of the MD trajectory quality and convergence.  

 

Figure 6.8: Backbone RMSDs are depicted as a function of time for the wild and mutant ULBP6, the mutant is 
represented with a red colour while the wild as green (A). RMSF of the C-α of the mutant (red) and wild 
(green) (B). Radius of gyration of C-α atoms of native and mutant ULBP6 versus time at 300k (C). Projection 
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of the motion of the mutant and wild proteins in phase space along the first two principal eigenvectors at 300k 
(D).  

 
 The RMSD result showed that the mutant protein had an average RMSD value of 4.46Å while the wild 

protein had an average value of 3.07Å. This showed that the wild protein had lesser motional movement 

when compared to the mutant protein. We used RMSF to explore the residual movement of the systems 

in the course of the simulation period. As seen in the plot, the mutant exhibited higher residual 

fluctuation with an average RMSF value of 2.33Å while the wild protein showed a lesser residual 

fluctuation with an average RMSF of 1.62Å (Figure 8A).  The PCA showed that the mutant protein 

occupies more area in the conformational space with higher trace value and changes in direction of the 

clusters when compared to the wild protein (Figure 6.8D). Furthermore, the ROG plot of the two 

systems showed dissimilar compactness trend between the mutant and wild ULBP6 (Figure 6.8C). The 

mutant protein had an average ROG value of 22.2Å while the wild protein exhibited a lower ROG 

average value of 21.1Å. In order to have an insight into the structural impact of V52F mutation on 

protein-protein interaction, we monitored the distance between the hotspot residues present in the 

mutant and wild protein in the course of the simulation. In the mutant protein, the distance between 

S151 and D99 increased from 1.67Å at 20ns to 8.0Å at 100ns. N207-E103 increased from 11.2Å at 

20ns to 14.2Å at 100ns and K197-R44 increased from 13.3Å at 20ns to 14.7Å at 100ns (Fig. 6.9). In 

the wild protein, these distances were seen to remain almost constant from the beginning of the 

simulation to the end. This suggests that the mutation caused high motional movement of the mutant 

proteins, this corroborate the high residual fluctuations seen in the RMSF plot.  
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Figure 6.9: Schematic diagram depicting change in distance of the interacting domain residue in the course of 
the simulation run. 

6.4 Discussion 
Alteration in genetic sequences can be spontaneous, evolutionary adaptation, or chemical induction. 

This alteration has been classified under two broad categories; mutation and polymorphism (42). While 

mutation in most cases lead to the onset of diseases, impact of polymorphic variant varies (42).  The 

structure-function of a protein is greatly affected when the SNP occur in the protein coding region, 

consequently leading to a pathogenic state (43). As a result of the roles they play, attention has been 

focused on them. The effect of these SNPs can be determined using bioinformatics tools. In this present 

study, we used PolyPhen, SIFT, SNP&GO, Phd-SNP and PMut to determine the effect of SNPs found 

in ULBP6. The SNPs data was retrieved from Uniprot dbSNPS. V52F with SNP ID rs145336297 was 

predicted by the tools to be deleterious and damaging. We performed a protein-protein docking and 

further ran a 100ns MD simulation to reveal the effect of V52F mutation on NKGD-ULBP6 binding.  
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Protein-Protein docking using PRODIGY (44), showed the wild protein had a binding affinity of -

8.6kcalmol-1 while the mutant had 6.3kcalmol-1. This result corroborated the prediction of BeAtMuSiC 

(38). Protein-protein interaction as revealed by STRING indicated that ULBP6 has direct interaction 

with killer cell lectin-like receptor subfamily K member 1 (KLRK1), which functions as an activating 

and costimulatory receptor involved in immune surveillance upon binding to various cellular stress-

inducible ligands. The interaction network showed that residue V52 in the wild protein formed 

hydrogen bonds with Ser151 and Val 97, it also elicited van der Waals interaction with Met125 and 

Asp107, however in the mutant, phenylalanine formed hydrogen bond with Tyr64, Val98, and Val39. 

These hydrogen bond elicited between Phe52 and surrounding residues could provide an explanation 

why the instability at the protein-protein hot spot was high in the mutant as compared to the wild. 

Molecular dynamic simulation is a powerful computational tool that has been used in the study of 

diseases and macromolecule behavior (45–47). It is cheaper and fast when compared to experimental 

studies, it also provide a framework upon which experimental studies can be designed (48–50). Of 

notice in the MD simulation studies is the change in distance between S151-D99, N207-E103 and 

K197-R44 (Fig 6.9). Zou et al., 2017, has also highlighted these residues to be paramount to the 

mechanistic binding between NKG2D and ULBP6 (14).  As the simulation progresses, the distance 

between these residues increased in the mutant, however in the wild protein, the distance remained 

slightly unchanged from the beginning of the simulation to the end.  Interaction between NKG2D and 

ULBP6 facilitate the cytotoxicity of NK cells and acts as a co-stimulatory component of T cells (51), 

if this interaction is distorted, NKG2D-ULBP6 will be unable to perform its role as immune system 

regulator. Taken together, our results showed that the instability of NKG2D-ULBP6 as a result of V52F 

mutation could lead to the dislodgement of ULBP6, resulting to inability of NKG2D to perform its 

immune-regulatory role. 

 

 

 

 



 

 131 

6.5 Conclusion 
Non-synonymous SNPs (nsSNPS) is responsible for most human pathological conditions and they are 

mostly found in the exons of protein. In this study, ULBP6 gene was investigated to evaluate the 

influence of functional SNPs through computation methods. 23 nsSNPS were retrieved from the dbSNP 

database to identify deleterious point mutation in ULBPS gene. Taken together, with the arrays of 

bioinformatics tools employed and computational analysis carried out, we predicted V52F to have a 

possible impact on NKG2D-ULBP6 binding, although it is not located in the interacting region.  
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Abstract  
For the past few decades, the mechanism of immune response to cancer has been exploited extensively 

and a significant attention has been given into tackling the therapeutic potential of the immune system. 

Cancer immunotherapy has been established as a promising innovative treatment for many forms of 

cancer. Immunotherapy has gained its prominence through various strategies including; cancer 

vaccines, monoclonal antibodies (mAbs), adoptive T cell cancer therapy and the immune checkpoint 

therapy. However, the full potential of cancer immunotherapy is yet to be attained. Recent studies have 

identified the use of bioinformatics tools as a viable option to  help transform the treatment paradigm 

of several tumors by providing a therapeutically efficient method of cataloging, predicting and selecting 

immunotherapeutic targets which are known bottlenecks in the application of immunotherapy. Herein, 

we gave insightful overview of the types of immunotherapy techniques used currently, their 

mechanisms of action and discussed some bioinformatics tools and databases applied in the 

immunotherapy of cancer. This review also provides some future perspective in the use of 

bioinformatics tools for immunotherapy. 

 

Keywords: Cancer Immunotherapy, immune system, Monoclonal antibody, Bioinformatics.  
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7.0 Introduction 
Cancer is still a major global health concern due to its high incidence and rapid mortality rate for the 

past decades [1]. Cancer is a broad term for a collection of related diseases that involves abnormal cell 

growth with the tendency of spreading to other parts of the body [1, 2]. The global statistics of cancer 

reported for 2018 identifies cancer as the second leading cause of mortality ranking behind 

cardiovascular disease worldwide [3]. The report also suggests cancer has the potential of becoming 

the leading cause of death worldwide with a projected increase of 18.1million new cases by the 21st 

century [3]. Cancer is known to develop in various parts of the body including the lung, breast, prostate 

area, liver, cervix and many more. Among the common cancer types, lung cancer is identified to be 

frequently diagnosed among populations and is reported to be the leading cause of mortality with an 

estimated 18.4% of all cancer deaths [3]. female breast cancer closely followed this with an estimated 

11.6% and then prostate cancer with 7.1% of the total cancer deaths [3]. 

Current available therapeutic strategies employed in treating cancer include surgery, radioactivity, 

targeted therapy, immunotherapy and chemotherapy [4, 5]. These treatment options has provided 

notable advances towards eradicating primary tumors, however the prevalence of disease relapse 

remain on the rise as a result of residual malignant cells [6, 7]. As such the surge for viable therapeutic 

options that will eliminate resistant malignant tumor cells is warranted.  Cancer results in the formation 

of many abnormal cells comprising of old and ruptured cells as well as the formation of unwanted new 

cells which collectively grow and become malignant cells known as tumors [8]. Cancer cells develop 

when the gene that controls growth and differentiation in a normal cell undergoes alterations [9]. The 

implicated genes are categorized as oncogenes where they aid cell growth and reproduction and Tumor 

suppressor genes where they impede cell division and survival. Targeting these tumor cells has been 

exploited to be important towards developing therapeutic agents to eliminate the cancer epidemic[10]. 

The immune system has proven to be an attractive route for defeating cancer in recent times due to its 

ability to induce anti-tumor response [11–14]. 
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7.1 The immune system’s mechanism of action against cancer 
Clinical studies suggests the existence of a close relationship between the immune systems and the 

treatment of cancer [7, 9]. The body’s Immune response comprises the humoral and cellular 

immunities, both of which are mediated by the B and T lymphocytes also known as B cells and T cells 

respectively[7, 15]. The B cells produces antibodies that neutralizes extracellular microbes and toxins 

whiles T cells are responsible for eliminating intracellular microbes by recognizing antigens and also 

activates antigen presenting cells (APCs)[16, 17]. The immune system plays a very important role 

towards eliminating cancer through innate immunity and adaptive immunity[18]. It has been 

established that cancer as a genetic entity triggers both the innate and adaptive immune response during 

its evolution[16, 19].  The innate immune system can stimulate the response from B cells and T cells 

by releasing signals [19]. While the adaptive immune system is known to consist of  B cells, CD8+ 

cytotoxic T cells as well as CD4+ helper T cells [16]. Antigen presenting cells (APCs) play a crucial 

role in the immune process as it bridges the innate and adaptive immune systems by identifying 

unfamiliar antigens and presenting them to T lymphocytes during an immune response. The natural 

killer (NK) cells of the T lymphocyte produces a pleiotropic cytokine known as interferon gamma (IFN-

γ)[20]. This IFN-γ plays an important role on the interface of innate and adaptive immune systems by 

signaling an increase in expression of Major histocompatibility complex (MHC I) and also induce the 

expression of MCH II molecules on target cells, and therefore increases their ability to display antigenic 

peptides to the cytotoxic T lymphocytes to trigger an immediate immune response[21]. Incase these 

peptides are derived from a tumor associated antigen (TAA), IFN-γ could result in increased TAA- 

specific cytolytic CD8+  T lymphocytes (CTLs) activation and T cell mediated tumor killing[20, 21]. 

The CTLs form the basis of immune response towards combating cancer [22]. Cancer immunotherapy 

encompass a wide scope of techniques that aim to improve the immune response against tumors. As 

such we focus on the techniques employed in cancer immunotherapy and give an overview of 

bioinformatics strategies applied in cancer immunotherapy as well as some future perspectives in 

cancer immunotherapy. 
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7.2 Techniques used in immunotherapy of cancer 
The last few decades have witnessed ground breaking research geared towards immuno-oncology 

studies. This has provided an intriguing advances that suggests tumors are recognized by the immune 

system and the growth of these tumors can be restrained for a longer period through the process of 

immune-surveillance [23]. The early efforts to harness the immune system in cancer control was 

pioneered by Dr William B. Coley in the 1890’s. Coley worked on the first immunotherapy to treat 

cancer by using toxins extracted  from Streptococcus erysipelatis and Bacillus prodigious [24]. 

However, there was a limited clinical efficacy as a result of the tumor cells evading the immune system 

unrecognised. As such there has been tireless efforts by researchers to provide insights on how cancer 

evades the immune system with the aim of developing novel pathways to eliminate the disease. Cancer 

immunotherapy has been categorized into active and passive immunotherapies based on their ability to 

engage the immune system of a host against cancer. As shown in Figure 7.1. Passive and active 

immunotherapy has further been divided in various strategies. The cancer immunotherapy strategies 

discussed in this review include; checkpoint therapy, cancer vaccines, adoptive T cell therapies and 

monoclonal antibodies. 

  

Figure 7.1: Classification of cancer immunotherapy  
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7.3 Immune checkpoint inhibitors and Monoclonal Antibodies 

7.3.1 Immune checkpoint Inhibitors. 

The application of Immune checkpoint inhibitors has gained recognition as the most advanced approach 

to therapeutically explore the antitumor activity in cancer cells[25, 26]. The immune checkpoint 

strategy has a lot of recent clinical success especially towards patients with several malignant cancer 

types. This type of immunotherapeutic strategy focuses on target identification and is mediated by 

ligand-receptor interactions. The strategy derives its idea from the ability of the immune system to 

clearly distinguish between normal cells of the body and foreign ones in order to trigger an immune 

response[27, 28]. As such the immune system has checkpoints which enables easy identification of 

foreign cells to initiate an attack. Some of the suitable immune checkpoint targets include; Programmed 

death 1 (PD-1), T-cell immunoglobulin and mucin domain-3 (TIM-3), Lymphocyte-activation gene 3 

(LAG-3) and Cytotoxic antigen-4 (CTLA-4)[29, 30]. However, Programmed death 1 (PD-1) and 

Cytotoxic antigen-4 (CTLA-4) are the most widely studied[27, 31]. However, cancer cells usually 

develop ways to use these checkpoints to evade attacks from the immune system. As such drugs that 

target these checkpoints are readily developed and hold a lot of promise as cancer treatment. The 

checkpoint immune technique has been identified as one of the most remarkable immunodulating 

therapies of present-day [32]. 

PD-1 is a checkpoint protein found on T cells of the immune system. It helps in keeping the immune 

response on check by acting as an off control to prevent T cell from eliciting an attack on other body 

cells [33]. This is possible when it binds to another protein known as Programmed Death-Ligand 1 

(PD-L1), which helps to prevent the T cells from killing other cells. Some cancer cells are known to 

possess large amounts of PD-L1, an adaptation that helps in evading attacks from the immune 

system[33–35]. However this binding of PD-1 to PD-L1 can be blocked by some specific antibodies 

known as monoclonal antibodies [19]. Several drugs have been developed that target PD-1 and are very 

promising towards treating cancer. Examples of drugs that target PD-1 include; Pembrolizumab 

(Keytruda)[36], Nivolumab (Opdivo) [37], Cemiplimab (Libtayo)[38]. Also, examples of drugs that 

target PD-L1 include; Atezolizumab (Tecentriq) [39], Avelumab (Bavencio)[40], Durvalumab 

(Imfinzi) 3D structure shown in figure 7.2C [41]. The CTLA-4 checkpoint protein is expressed in the 
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regulatory T cells but is only upregulated in the conventional T cell activation. It also acts an “off 

switch” when bound to CD08 and CD86 on the surface of antigen-presenting cells (APCs)[42]. 

Ipilimumab is known inhibitor of CTLA-4 protein (shown in Figure 7.2A) and acts by keeping this 

protein active to enable an attack on cancer cells [12][43]. A summary of checkpoint inhibitors and the 

cancer type involved are shown in table 7.1. Nonetheless, some notable setbacks in the use of immune 

checkpoint therapies is that, some patients fail to respond to this technique and also the drugs used in 

this therapy can cause failure of the immune system to identify cancer cells and may rather attack body 

cells causing  undesirable outcomes [32]. 

 

 

 

Figure 7.2: 3D structures of A) Cytotoxic antigen – 4 receptor CTLA-4(Light green) in complex with 
Ipilimunab (brown) PDB code: 5TRU B) Programmed Death 1(PD-1) in complex with Programmed Death 
Ligand 1 (PD-L1) PDB code: 3BIK C) PD-L1 in complex with Durvalumab inhibitor (PDB code: 5X8M). 

 

 

Table 7.1: Checkpoint inhibitors 

Cancer Type Drug name Status  Reference   

Melanoma Ipilimumab FDA approved [44][45][46]  

Pembrolizumab FDA approved [47] 

Melanoma, prostate Enoblituzumab Phase I-III [48][49]  

 Ipilimumab Phase I-III [50] 



 

 144 

 

 

 

 

Multiple cancers 

Tremelimumab Phase I-III [51] 

Nivolumab Phase I-III [52] 

Pembrolizumab Phase I-III                [36]   

AMP-224 Phase I [53]  

Pidilizumab Phase I-III [54]  

Atezolizumab Phase I-III [55]  

Avelumab Phase I-III [56]  

BMS-936559 Phase I [57]  

IMP321 Phase I [58]  

BMS-986016 Phase I [59]  

Renal Cell Carcinoma Ipilimumab FDA approved [50] 

 

 

7.3.2 Monoclonal Antibodies (mAbs) 

This cancer treatment strategy has been acknowledged as one of the most successful therapeutic 

strategies for both hematologic malignancies and solid tumors for the past decade[7, 60, 61]. 

Monoclonal antibodies are identical antibodies produced in the laboratory from a single clone of 

immune cells. During the process, a mouse is vaccinated with the target antigen. This stimulates the B 

cells in the spleen to produce antibodies against the target antigen. The spleen of the mouse is removed 

and the B cells isolated and fused with a tumor cell to form hybridoma cells. This is reportedly 

necessary because tumor cells divide more easily and rapidly than B cells. These hybridoma cells then 

reproduce rapidly to make cloned cells which all constitute the same antibody. The resulting antibodies 

are purified and directed to target a specific part of deregulated signals transduction pathways in cancer 

or hinder with immunological processes [61, 62] . MAbs have a high specificity as such they easily 

recognize and bind to a single antigen binding site making them useful in diagnosing and treating 

disease. They can combine with an anticancer drug to accurately locate and target only the cancer cells 

whilst avoiding the healthy ones. In addition to this, mAbs carry special markers which enable easy 

detection of where cancerous cells are starting to build. Monoclonal antibodies can be used to trigger 

the body’s own immune system to recognize and eliminate cancer cells. Recently, FDA approved quite 

a number of mAbs for the treatment of both solid tumors and hematological malignancies [61, 63]. 

Available reports suggests that using monoclonal antibodies against PD1 and CTLA-4 has been 
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regarded as an important breakthrough in cancer immunotherapy[64]. This strategy proved to be 

efficacious towards patients with metastatic melanoma evidenced by the antitumor response and an 

increased in survival rate overall of patients treated with ipilimumab, a known monoclonal antibody 

that targets CTLA-4 in humans [64]. Clinical trials of monoclonal antibodies are ongoing for several 

types of cancers.  

Table 7.2: A summary of some monoclonal antibodies used in immunotherapy of cancer.  

EGFR: Epidermal Growth Factor Receptor, VEGF: Vascular Endothelial Growth Factor, HER2: Human Epidermal 

Growth Factor Receptor 2 

 

 

7.4 Cancer Vaccine 
Another immunotherapeutic technique used in treating cancer is the use of vaccines. Most vaccines 

work by introducing a non-infectious version of a disease-causing microbe into an individual, thus 

providing a better stimulus to activate disease-specific T cells and to develop immunological memory. 

Immune memory cells can destroy microbes rapidly, and prevent infection. This form of procedure 

resulted in eradicating smallpox disease[69]. Cancer vaccine therapy differs from immunotherapies in 

that it initiates the immune system’s activation in other to re-gain equilibrium between tumor cells and 

normal cells of the body [11, 70]. Like viral-targeted vaccines, cancer vaccines do not prevent infection 

but rather activate the immune system to combat a disease that already exists [69]. Most cancer vaccines 

are made of cancer cells, cell parts or pure antigens. The immune cells of a patient are often isolated 

and exposed to antigens of cancer, and once activated, these immune cells are reintroduced into the 

patient's body and are better able to suppress cancer cells [69]. Cancer cells develop from normal body 

    

  Antibody  

 

Mechanism 

 

Uses 

 

   Target 

Current Status References  

   Cetuximab Binds to and inhibits 

EGFR 

Metastatic colorectal 

,Head & Neckcancer  

  EGFR FDA approved  [65] 

 Bevacizumab Blocks angiogenesis 

by inhibiting VEGF 

Glioblastoma, Lung, 

Colon cancer  

VEGF FDA approved [66] 

Trastuzumab Targets HER2 to 

induce an immune 

response 

Metastatic Breast 

cancer 

HER2 FDA approved [67] 

Panitumomab Binds to EGFR to 

prevent its activation 

Metastatic colorectal 

cancer 

EGFR FDA approved [68] 
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cells, these cancer cells can be recognized as antigens (foreign substance) by immune cells known as 

dendritic cells  [71]. These dendritic cells act as a commander to the immune system by initiating 

phagocytosis of cancer cells. Signals are sent to the lymphocytes to fight against these foreign 

substances [72]. The first anticancer vaccine was approved in 2010 by the Food and Drugs Authority 

(FDA). The vaccine is known as sipuleucel-T (Provenge) and is actively used for patients with 

metastatic, castration-resistant prostate cancer (CRPC)[73]. Sipuleucel-T is developed to stimulate T-

cell immune responses against prostatic acid phosphatase (PAP), an antigen that is expressed on most  

prostate cancer cells [74]. Recently, the FDA gave approval for the use of hepatitis B virus vaccines 

(HBV) and human papilloma virus vaccines (HPV) , these two vaccines work by stimulating the 

immune system with tumor peptides and antigens [9]. Cancer vaccines have varying side effects from 

patient to patient however the regularly reported side effect include the inflammation at the site of the 

administered injection [72]. 

 

7.5 Adoptive T-cell therapy (ACT) 
In this immunotherapy strategy, T-cells are infused into a cancer patient with the aim of identifying, 

targeting and eliminating tumor cells from the body [75]. The mechanism of action in this technique 

involve, extracting specific tumor cytotoxic T cells from a patient’s blood and developing at the 

laboratory and then infused back to the patient to attack cancer cells as shown in figure 7.3 [76]. This 

mechanism helps the immune system in fighting cancer cells. The T cells can sometimes be subjected 

to a genetic modification and cultured in the laboratory to be more specific in targeting cancer cells[77, 

78]. Adoptive T cell therapy consists of chimeric antigen receptor T-cell (CAR T-cell) and tumor-

infiltrating lymphocyte (TIL)[76, 77]. The main difference between these two types relies on the 

laboratory modifications. In the TILs method, tumor specific cytotoxic T cells are extracted from the 

patients tumor and modified in the laboratory with substances that easily activates lymphocytes and 

then given back to the patient whiles in the CAR T-cell method T cells extracted from a patient’s blood 

is modified by adding  a gene that targets a special receptor known as chimeric antigen receptor which 

is known to bind to a protein on cancer cells [33, 79]. Large quantities of these activated lymphocytes 

as well CAR T cells are then infused back to the patient to help the immune system fight cancer [43, 
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79].  ACT has gained prominence as a substantial strategy and shows a great potential of being a 

curative technique for several cancers [76]. Nonetheless, the widespread to solid tumors of this therapy 

is one of ACT's main future goals due to the difficulties in finding suitable target antigens and also for 

tumor immunosuppression and complex tumor microenvironment. Furthermore, ACT requires 

optimization to reduce toxicity and increase the effectiveness of anti-tumors. Recent reports suggests 

several ACT-based therapies are currently in the late-phase clinical testing, and some T cell therapies 

are already attaining regulatory approval for the treatment of patients with B cell malignancies.  

 

 

Figure 7.3: Adoptive T cell therapy 

 

7.6 Combinatorial cancer immunotherapy 
Regardless of the notable clinical success of immunotherapy over other cancer treatment options, the 

approach is only favorable to some patients as such patients whose immune system fail to elicit an 

immune response or faced by immune evasion are left untreated[80]. This has led to the development 

of a combinatorial cancer treatment approach in recent times. This approach involves combining cancer 

immunotherapy along with other existing anticancer treatment strategies, an approach which has gained 

prominence significantly in preclinical or clinical studies[32]. A combinatorial strategy involving the 
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checkpoint inhibitors with drugs that increase tumor immunogenicity, reduce tumor burden and reverse 

tumor mediated immune suppression has recently been shown to be an effective and long-lasting 

antitumor response technique[15, 80]. This approach has shown remarkable success in several cancers 

and is beneficial to patients who fail to respond to checkpoint monotherapy. 

Anticancer treatment strategy such as radiotherapy is mostly used in combination with surgeries or 

chemotherapy, however there are emerging regimens involving a combination of radiotherapy and 

immunotherapy treatments for cancer[81]. Ongoing studies suggest a combinatorial therapy of 

radiotherapy and immunotherapies has a high potential of boosting abscopal response rates and will 

possibly expand the use of radiotherapy in the treatment for both local and metastatic disease [82, 83]. 

Nonetheless, various preclinical studies are continuously being carried out to explore the role of 

radiation in combination with immune checkpoint inhibitors. Also, a combination of epigenetic therapy 

and immunotherapy such as checkpoint immunotherapy has gained a significant recognition in recent 

studies [84]. Epigenetic modulators in combination with checkpoint inhibitors are known to increase T 

cell infiltration in tumor microenvironments (TME), reduce Myeloid-derived suppressor cells (MDSC) 

in TME and augment surface expression of immune checkpoints[84]. 

 

7.7 Application of Bioinformatics strategies in Cancer immunotherapy 
Recent studies have shown the increase in the development of tumor tolerance to immunotherapy after 

a limited period of successful treatment. Cataloging, predicting, and selecting immunotherapy targets 

can be extensively addressed using existing bioinformatics tools and biological databases.  

Identification and selection of antigens has many different features that depends both on the type and 

on the application of antigens. Identification of potential antigens de novo from genomic sequence 

using bioinformatics tools is very difficult, since the expression of proteins is regulated by an array of 

complex regulatory mechanisms, many of which are poorly understood[85]. As part of a long-

established practice, tumor antigens are identified in vitro from serum by screening cDNA phage 

libraries using immunoassays [86] or proteomics-based screening [87], but bioinformatics tools are 

perfectly suited to aid this process, either by actively recognizing novel tumor antigens or by organizing 

and accessing information about known tumor antigens in accessible databases. The techniques 
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discussed in this review include Next generation sequencing, Epitope prediction, integrated data 

analysis and network modelling, HLA typing, Sampling Heterogeneity and Modeling of tumor–

immune cell interactions (Figure 7.4 ). All these techniques employ various tools in executing their 

function. 

                         

  Figure 7.4: Bioinformatics tools for cancer immunology and immunotherapy 

 

7.8 Next Generation Sequencing 
Next Generation Sequencing (NGS), a largely parallel sequencing technology that has revolutionized 

the biological sciences [88] [85]. NGS Provides quantitative insights into the tumor cell's molecular 

machinery, Improves transcript and gene expression profiling as well as detection of alternative splicing 

and enables the discovery of single nucleotide (SNV) variants, insertions, amplifications, deletions and 

inter chromosome rearrangements throughout the genome and transcriptome [85]. NGS uses tools such 
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as HugeSeq, a fully integrated pipeline for NGS analysis from aligning reads to identification and 

annotation of all types of variants (SNPs,Indels, CNVs, SVs)[89]. Sailana and colleagues applied 

HugeSeq to investigate the association of HSG with alopecia and mental retardation syndrome [90]. 

From this research they were able to map a novel gene (APMR2) to chromosome 3q26.2-q26.31 [90].  

Furthermore, using the same techniques, APMR3 gene was mapped on chromosome 18q11.2-q12.2 

[90].  Another tool used in NGS is the SIMPLEX, an autonomous analysis pipeline for the analysis of 

NGS exome data, covering the workflow from sequence alignment to SNP/DIP identification and 

variant annotation[85]. It supports input from various sequencing platforms and exposes all available 

parameters for customized usage[85].   

 

7.9 Integrated data analysis and network modelling technique 
The integrated data analysis and network modelling technique enables one to comprehensively study 

molecular mechanisms of cancer cells and their interactions within the immune system [91]. The tools 

used in implementing this technique include: ARACNe[92] and MINDy[93] aids in the reconstruction 

of gene co-expression networks, genes (nodes) with comparable global expression profiles over 

samples (tumor/patients). These tools may also be integrated to identify key transcriptional regulators 

[91]. ARACNe was used to obtain database of transcriptional interactions by using Arabidopsis thaliana 

root samples. Using ARACNe, Montes et al discovered that the transcriptional regulatory networks 

derived from this newly constructed database successfully recover previously identified root 

transcriptional modules and to propose new transcription factors for the short root/scarecrow and 

plethora pathways [94]. DriverNet[95], PARADIGM and CONEXIC[96] are additional tools for 

implementing the integrated data analysis and network modelling technique which are used to address 

the functional importance of specific genome alterations, identify which pathways are affected. As well 

as identify mutations likely to be drivers in tumor progression [91]. Figure 7.4 summarizes examples 

of bioinformatics techniques and tools for immunology and immunotherapy. DriverNet was used to 

identify driver genes through the integration of multi-omics data such as somatic mutation, gene 

expression, and copy number alterations [97].  
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7.10 HLA Typing 
HLAs possess very high polymorphic region and has been touted as the most polymorphic segment 

present in the human genome  [98]. This high polymorphism has made it difficult in unraveling HLA-

mediated immunogenic correlation of immuno-pathologies [98]. HLA typing is basically employed in 

organ transplants to get a corresponding potential donor that match with a patient [99]. As technology 

advances, HLA typing as concurrently advanced; HLA typing was originally carried out using 

hybridization strategy, serological typing, cellular typing, DNA-based typing and restriction fragment 

length polymorphism (RFLP) techniques. Polymerase Chain Reaction approach and direct sequencing 

capillary electrophoretic analyses were later employed [100], with current development in computation, 

second and third generation sequencing platforms are now employed in HLA typing. This current 

approach has shown great potential and high predictability [100, 101]. Several HLA typing platforms 

have been reported such as HISAT genotype [102], xHLA [99], HLA-HD [103], HLAscan [104]. There 

has been rise in the amount of HLA sequences and new alleles deposited in HLA databases such as the 

IMG/HLA database [105], CWD HLA allele [106]. HLA typing software which have been developed 

for easy and rapid HLA typing include ATHLATES [107], POLYSOLVER [108], OpiType [109]. 

HLA typing of genes have been applied to unreported haplotypes with the aim of unraveling the 

complexity of HLA-related pathological conditions and associated clinical subtypes. A typical example 

in the application of HLA typing in psoriasis, novel associations of HLA-DPB1 and BTNL2 genes and 

five loci among HLA-C, -B, -DPB1, and BTNL2 were discovered with the aid of NGS [98]. 

Furthermore, specific HLA associations were also reported for the overall risk of psoriasis vulgaris and 

risk of its specific subphenotypes, such as psoriatic arthritis and cutaneous psoriasis [98]. 
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7.11 Epitope Prediction 
B-cells are very important component of the adaptive system, this is due to the long-lasting protection 

they provide to combat foreign assault or pathogenic onslaught [110]. Some cancer treatment and 

prevention strategies involve the use of vaccines. Bioinformatics have provided easy and fast means of 

vaccine development, however, it is expedient to first distinguish between epitopes that are immuno-

protective and those that are not [111]. B-cell identification is paramount in many medical, biological 

and immunological applications such as development of vaccines, control of disease and diagnosis 

[112]. Experimental techniques used in the identification of epitope include protein crystallography, 

ELISA and peptide-chip however, these methods are time consuming, low-accuracy, expensive and 

low throughput generation [110]. Due to these experimental shortcomings, computational strategies 

have been developed to corroborate or as stand-alone tool for epitope prediction. BepiPred [113, 114], 

DiscoTope [114, 115], CBtope [116], and ABCpred [117]. Epitope prediction has found useful 

application in the design of vaccines against some diseases. Qamar et al designed used some in silico 

bioinformatic approaches to design epitope-based vaccines against middle east respiratory syndrome 

coronavirus [118]. They identified conserved B and -T cell for the MERS-COV spike (S) protein that 

may perform a significant role in eliciting the resistance response to MERS-COV infection [118]. 

 

7.12 Sample heterogeneity 
Deconvolution is the estimation of the relative immune cells that is present in a sample after DNA/RNA 

sequencing [119].  This is made possible through the recognition of biomarkers and  employing their 

level of expression to discriminate cell types [120]. Tools used in deconvolution evaluation include 

CIBERSORT [121], TIMER [122], and MCP-counter [123]. They make use of expression data gotten 

from cell types generated by Immunological Genome Project (ImmGen) [124]. TIMER has the capacity 

to evaluate 6 immune subtypes, CIBERSORT evaluate 22 immune cell subtypes and MCP-counter 

evaluates 8 immune cell subtypes and 2 stromal cell subtypes. MCP-counter evaluates absolute 

abundances while CIBERSORT and TIMER evaluates relative frequencies of immune cell subtypes, 

while [125].  
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 7.13 Modeling of tumor–immune cell interactions 
There is long history of theoretical studies and simulation techniques involving mathematical and 

computational approaches to study tumor progression and tumor–immune cell interaction. 

Computational modeling has provided essential insight into studying intra-tumor heterogeneity and the 

vital interplay between the tumor and the surrounding microenvironment [126]. Computational models 

allow the investigation the tumor-enhancing effects of the immune system providing indispensable 

insight aiding in the management of tumor-immune interactions.  Modeling has consecutively provided 

a quantitative time- and cost-effective avenue to study the physical and chemical interactions in tumor 

initiation growth[127]. The integration of molecular modeling techniques further complements 

experimental platforms by providing in-depth knowledge into clonal dynamics and 

microenvironmental cues over time. There are various number of techniques which include 

deterministic models, stochastic models, Petri nets, cellular automata, agent-based model, and hybrid 

approaches [128]. Integration of one or more of these models will help improve immunotherapies for 

cancer treatment. 

 

7.14 Future Perspectives 
The advent of computational methods in immunotherapy of cancer has helped transform the treatment 

paradigm of several tumors and is expected to influence the therapeutic efficiency of 

immunotherapeutic strategies in future. The application of computational methods in cancer 

immunotherapy however has some limitations. Firstly, the identification of T cell epitopes using 

computational techniques are not yet as accurate as peptide binding prediction algorithms. Moreover, 

the availability of tumor sequences represents a hold-up in conservation and variability, nonetheless a 

remedy for this limitation is plausible in the near future as high-throughput screening is becoming 

readily affordable and more efficient. Additionally, these current methods may not adequately capture 

the issue of intra-tumor genetic diversity as such may affect the efficacy of immunotherapy and other 

cancer therapies alike. The use of proteomics analyses in immunotherapy has shown to be more prolific 

in the past years in contrast to genomic analyses. Some promising advances are currently being made 
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in the wet laboratory to address these limitations through diverse ways. This will progressively boost 

the need for bioinformatics tools in cancer immunotherapy. 

7.16 Conclusion 
Cancer immunotherapy has gained a lot of recognition since its incision in the past decades by 

introducing very efficient strategies using the body’s own immune response. The active cancer vaccine, 

immune checkpoint inhibitors, T cell adoptive therapies and the like are among these developments 

that have contributed to increased survival rate among patients. Despite these advances emerging 

research in the interdisciplinary fields of bioinformatics, immunotherapy and immunology is 

significant to further enhance therapeutic advantage and reduce side effects. Studies presented in this 

review provide a general overview of cancer immunotherapy giving some insights in the relationship 

of cancer and the immune system. Further to this, some immunotherapeutic strategies were discussed 

including cancer vaccine, immune checkpoint inhibitors, T cell adoptive therapies, monoclonal 

antibodies and combinatorial cancer immunotherapy. Finally, we discussed some of the application of 

bioinformatics tools in cancer immunotherapy and some future perspectives. As tumor cells’ response 

to immunotherapies is gradually being unravelled and the body of biological tumor data grows, so will 

the need for bioinformatics to organize, store, and analyse these data. 
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CHAPTER 8 

8.1 Conclusion 
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We used a computer algorithm and extended simulation strategy to explore the mechanism of inhibition 

of newly synthesized small molecule inhibitors (BMS-1166 and BMS-1001) on immune checkpoint 

PD-L1 protein. Furthermore, at the time of this research, there is no small molecule inhibitor designed 

to target the immune checkpoint CTLA-4 protein. We carried out a per-residue based pharmacophore 

base virtual screening leveraging on active site similarity to identify potential small molecule CTLA-4 

inhibitors. Natural Killer group 2, member D (NKG2D), is one of the receptors that is expressed on the 

surface of NK cell and it plays a crucial role in the immune response. NKG2D is activated upon binding 

to its complementary ligands,  UL-16-binding proteins (ULBP6). In the binding of ULBP6 and 

NKG2D, some amino acids play a crucial role in enhancing the binding potential of the two proteins. 

Mutation in any of these mutations alters NKG2D-ULBP6 interaction. The results presented in this 

thesis could be used as a platform for the design of small molecular weight inhibitors for immune 

proteins. 

   Our findings revealed that : 

1. The mechanism of action of BMS-1001 and BMS-1166 could be via eliciting a motional 

movement between the PD-L1 monomers which led to the formation of a dimer. 

2. This PD-L1 dimer formation disrupted the PD-L1-PD-1 interaction, hence preventing 

immunosuppression activity of PD-L1-PD-1. 

3. The unbound PD-L1 monomer had the highest flexibility and atomic motion when compared 

to the bound PD-L1 monomer 

4. Even though the monomers have the same residues. BMS-1001 and BMS-1166 showed a 

mechanistic transition from monomer A to monomer B, this suggests that monomer B has a 

stronger affinity for BMS-1001 and BMS-1166 than monomer A.  

5. Binding sites similarities between CTLA-4 and Kallikrein-7 proteins could be leveraged on to 

repurpose a Kallikrein-7 inhibitor as an anti-CTLA-4. 

6. 9 hits were identified when 1, 3, 6-trisubstituted 1, 4-diazepane-7-ones (TDSO) was used in 

high throughput screening of a large compound database. Two compounds, ZINC04515726 and 

ZINC08985213 had the highest binding affinity for CTLA-4. 
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7. V52F mutation in ULBP6, identified by SNPinformatics strategy altered NKGD2-ULBP6 

interaction. 

8. The mutant ULBP6 elicited high structural inactivity when compared to the wildtype ULBP6.  

 

8.2 Future Perspective 

The utilization of small molecular weight molecules as an alternative to humanized antibodies for 

targeting immune proteins especially immune checkpoint proteins constitutes a paradigm shift in 

immunotherapy. Although BMS-1001 and BMS-1166 have been experimentally validated. 

ZINC04515726 and ZINC08985213 which were identified by screening a library need to be validated 

experimentally both in-vivo and in-vitro to explore their therapeutic effect. A structure based virtual 

screening can be carried out on ULBP6 to identify inhibitors with the potential of reversing the effect 

of the mutation V52F. Furthermore, a mutagenesis study may be carried out to have an in-depth 

understanding of the effect of V52F on the activity of ULBP6. 
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ABSTRACT 
The design of small molecule antagonists against Programmed Death Ligand-1 (PD-L1) has been the 
recent highlight of the immune checkpoint blockade therapy. This interventive approach has been 
potentiated by the development of BMS compounds; BMS-1001 and BMS-1166, which exert their 
therapeutic activities by inducing dimerisation of PD-L1; a molecular mechanism that has remained 
unclear. For the first time, we resolve the dynamical events that underlie the antagonistic mechanisms of 
BMS-1001 and BMS-1166 when bound to PD-L1 using an all-atom molecular dynamics (MD) simulations 
approach and free binding energy Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) 
calculations. Time-scale dynamical findings revealed that upon binding a PD-L1 monomer, the BMS-
compounds gradually facilitated the ‘inbound’ motion of another PD-L1 monomer in the same 
conformational phase space up till dimer formation. Moreover, the non-liganded PD-L1 monomer exhibited 
the highest structural flexibility and atomistic motions relative to the BMS-liganded monomer as revealed 
by post-MD trajectory analyses using root mean square deviation (RMSD) and root mean square 
fluctuations (RMSF) parameters. Trajectory investigations into ligand motions also revealed that the BMS 
compounds exhibited mechanistic transitions from the monomeric binding site (monomer A) where they 
were initially bound, to the second monomeric site (monomer B) where they were strongly bound, followed 
by eventual high-affinity interactions at the tunnel-like binding cleft formed upon the dimerisation of both 
PD-L1 monomers. These findings present a model that describes the mechanism by which the BMS 
compounds induce PD-L1 dimerisation and could further enhance the design of highly selective and novel 
monomeric recruiters of PD-L1 in cancer immunotherapy. 
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1. Introduction 
 
Over the years, traditional anticancer therapeutic strategies have 
been categorised under three pillars namely; surgery, radiation and 
chemotherapy. Although these therapeutic approaches have 
offered substantial interventions in the eradi-cation primary 
tumour the problem of relapse still persist, which result from 
residual malignant cells and/or tumour metastases [1,2]. This 
necessitated a new approach regarded as cancer immunotherapy, 
which provides potent and alterna-tive treatment options [3] that 
involve the utilisation of natu-rally derived or synthetically 
generated compounds to stimulate or enhance the immune system 
to fight cancer [4]. Hence, cancer immunotherapy was described 
by science maga-zine as ‘2013s breakthrough of the year’ due to 
the recorded success in cancer treatment [5]. The basic role of the 
immune system is to protect the body against foreign pathogens 
and infections, and more importantly, the humoral immunity 
employs antibodies produced by the B cells to neutralise and 
eradicate foreign pathogens and toxins [6] while cellular immu-
nity responds through recognition of antigens, activation of antigen 
presenting cells (APCs), activation and proliferation of T cells [7]. 
Cancer immunotherapy has shown its potency  

 
 

 
among numerous therapeutic options [1], with the incorpor-ation 
of cancer vaccinations, chimeric antigen receptor (CAR) T cell 
therapy and immune checkpoint blockade (ICB) therapy [8]. 
Immune checkpoint inhibitors are a class of drugs that have been 
designed to increase immune response against cancer cells [9]. 
Moreover, in the immune system, there are different checkpoints 
pathways that focus on the activation of T cells, [1] and are 
crucially regulated by biomolecules such as CTLA-4, PD-L1, 
lymphocyte activation gene-3 (LAG-3) and T cell 
immunoglobulin and mucin domain containing protein 3 (Tim-3) 
[10]. These, over the years, have become attractive tar-gets for 
driving the cytotoxic T cells attack of malignant cells for 
destruction due to the hypo-responsive and exhaustive influ-ence 
they have on the immune system via regulation [11,12]. According 
to the classic checkpoint hypothesis, immune check-point 
inhibitors activate the immune system by blocking the expression 
of co-inhibitory molecules such as CTLA4, PD-1 and PD-L1 
which in turn re-activate the pre-existing tumour response [9,13]. 
As previously reported, antagonising the inter-action between PD-
1 and PD-L1 reverts T cell phenotypic exhaustion, which in turn 
leads to the efficient killing of cancer cells [14]. In recent years, 
antibodies were widely employed to 
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antagonise the interactions between PD-1 and PD-L1, a bio-
logical association that promotes immunosuppressiveness, 
which is employed by cancer cells to evade T-cell induced 
death [15,16]. However, due to lower production costs, higher 
stability, improved tumour penetration, amenability for oral 
administration and elimination of immunogenicity, small-mol-
ecular weight inhibitors present a more viable option in place 
of antibodies as immune check point inhibitors [17]. Most 
recently, two small molecule antagonists (BMS-1001 and 
BMS-1166) that directly and selectively disrupt the association 
between PD-1 and PD-L1 have been identified and patented by 
Bristol-Myers Squibb (BMS) [18] (Figure 1).  

According to previous reports, these BMS compounds bind 
to and induce PD-L1 dimerisation thereby preventing canonical 
interactions with PD-1. Mechanistically, these com-pounds 
bind to a PD-L1 monomer (APD-L1) and facilitate the 
recruitment of another PD-L1 monomer (BPD-L1) to form a 
ABPD-L1 thereby blocking interactions with the natu-rally 
occurring PD1. In other words, the ability of these com-pounds 
to induce the formation of PD-L1 dimers underlies its 
antagonistic functions since PD-L1 dimerisation presents a 
hurdle for the canonical interactions between PD-L1 mono-
mers and its intrinsic ligand, PD-1, resulting in the activation 
of T cells [19,20] (Figure 2).  

Therefore, the development and use of these novel small 
molecule inhibitors in ICB therapy present an attractive pro-
spect to understand the underlying structural and molecular 
events involved in the blockage of PD-1 and PD-L1. Molecu-
lar elucidation of the transient mechanisms by which BMS 
compounds (BMS-1001 and BMS-1166) induce PD-L1 
dimerisation following an initial interaction with a PD-L1 
monomer would provide a model that would be helpful to 
achieve the structure-based design of monomeric binders. 
Monomeric recruitment has been previously reported as the 
mechanism by which vascular endothelial growth factors 
(VEGFs) dimerises in the presence of Zn2+, Co2+ or Cu2+ to 
form interlocked hydrophobic surfaces [21]. Maschio et al., 
also used MD simulation to explore the dimerisation 
mechanism of β2-microglobulin, they proposed initiation of 
salt bridges between monomers leading to a ‘zipping-like’ 
mechanism [22]. Therefore, in this study, we employed a 
computational paradigm to model the structural and molecu-lar 
events associated with PD-L1 dimerisation as induced by 
antagonistic BMS compounds; BMS-1001 and BMS-1166. 
Many of the immune checkpoint proteins are very difficult  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. (Colour online) 3D structure of PD-L1 monomer A (Blue) and 
monomer B (Gray), in complex with BMS-1001 (Red) and BMS-1166 
(Green) at the tunnel-like binding cleft formed upon dimerisation. PDB: 
5NIX [20]. BMS-1001 was superim-posed on the crystal structure.  
 
to target with small molecule inhibitors due to unresolved 
mechanistic mode of action. We believe this model would 
provide essential insights into this mechanism and interesting 
possibilities towards the future design of novel high-affinity 
small-molecule antagonists and monomeric recruiters of PD-
L1 in ICB therapy.  

Molecular dynamics (MD) simulation in recent years has 
metamorphosed from simulating several hundreds of atoms to 
systems with biological activity, including entire proteins in 
solution with explicit solvent representations, membrane 
embedded proteins, or large macromolecular complexes [23]. 
Other recent applications of MD simulation has been reported 
in the study of disease associated nsSNPs [24–27]. 
 
 
2. Computational methods 
 
2.1. System preparation 
 
X-ray crystallographic structures of dimerised PD-L1s in com-
plex with BMS-1001 and BMS-1166 were retrieved from 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. 2D structure of soluble immune checkpoint inhibitors; [A] BMS-1001 and [B] BMS-1166. 
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Protein Data Bank with entries 5NIU and 5NIX respectively [20]. 
These were prepared by the removal of co-crystallized molecules 
such as 1,2-ethanediol (EDO) and crystallographic water using 
UCSF Chimera [28]. Moreover, missing residues which majorly 
constituted terminal amino acids were added with the aid of 
MODELLER, an in-silico tool used for structural remodelling 
[29]. In order to elucidate the mechanisms of BMS-1001/BMS-
1166-induced dimerisation, which was in line with the aim of this 
study, it was important to obtain a starting structure that could 
possibly reflect the recruitment of a PD-L1 monomer in the 
presence of another BMS-bound PD-L1 monomer as 
experimentally depicted in a previous study [20]. To this effect, the 
ligand-dimer complexes were first separated into non-complexed 
monomers using the Graphical User Interface (GUI) of UCSF 
Chimera. The BPD-L1 was first removed from the dimerised 
complex (5NIU) leav-ing a BMS-1001-bound APD-L1. This was 
followed by the mol-ecular protein-protein repositioning of BPD-
L1 using UCSF-Chimera integrated Autodock Vina interface on 
manually defined co-ordinates which differs from the crystallized 
‘dimer’ structure. The same paradigm was employed for pre-paring 
BMS-1166 bound systems (5NIX) to generate the desir-able 
starting structures which entail ligand-bound APD-L1s with a 
distant BPD-L1 monomer in the same conformational space phase 
as shown in Figure 3. In the same vain, a replica system devoid of 
the small molecule antagonists (BMS-1001/ BMS-1166) was 
prepared, representative of the unbound form. This was necessary 
to clearly define the dimerising effects of both BMS compounds, 
which underlies their antag-onistic functions. Altogether, these 
systems were set up for an MD simulation of 150 ns using in-house 
protocols previously reported [30–32]. The Graphical Processor 
Unit (GPU) version (Particle Mesh Ewald Molecular Dynamics - 
PMEMD) of the AMBER14 software in addition to its integrated 
modules were used to perform MD simulations [33]. The 
ANTECHAM-BER module was used to parameterise the ligands 
and generate atomic partial charges (Gasteiger - gaff) using the bcc 
charge scheme while the FF14SB force-field was used to define the 
PD-L1 parameters [34]. Protein modification, renaming and 
protonation (histidine) were done using the in-house pdb4am-ber 
script. This was followed by the generation of topology and 
parameter files for the respective PD-L1-BMS1001/BMS1166 
complexes using the LEAP module. This was also used for sys-
tem neutralisation via the addition of counter ions at a constant pH 
(cpH) and solvation within a TIP3P water box of 10 Å. Using a 
restraint potential of 500kcal/mol Å, partial minimis-ation of 2500 
steps was carried out followed by 5000 full minimisation steps 
without energy restraints. Gradual system thermalisation from 0 to 
300 k was also carried out in a canonical ensemble (NVT) for 50ps 
with the aid of a Langevin ther-mostat and a 5kcal/mol Å2 
harmonic restraint. System equilibration was then carried out for 
1000ps at 300k without restraints while atmospheric pressure was 
maintained at 1bar using the Berendsen barostat [35]. This was 
followed by an MD production run of 150 ns where all atomic 
hydrogen bonds were constricted using the SHAKE algorithm 
[36]. Moreover, at every 1ps, resulting coordinates and trajectories 
were saved, which were analyzed with the integrated CPPTRAJ 
and PTRAJ modules [37]. Furthermore, data plots were made 
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with Origin data analytical tool [38] while the Graphical User 
Interface (GUI) of UCSF Chimera was used for visual analysis. 
 
 
2.2. Binding free energy estimation 
 
The Molecular Mechanics/ Poisson-Boltzmann Surface Area 
(MM/PBSA) method was used to estimate the differential bind-
ing of BMS-1001 and BMS-1166 to PD-L1 [39]. This is an 
end-point energy calculation that can be used to predict binding 
strength and affinities of small molecules towards their respect-
ive target proteins. MM/PBSA is mathematically represented 
as follows:  

D
G

bind = 
G

complex − 
G

receptor − 
G

ligand (1) 
E

gas = 
E

int + 
E

vdw + 
E

ele (2) 
G

sol = 
G

GB + 
G

SA (3) 

GSA = gSASA (4) 
where Egas, the gas-phase energy, Eint is the internal energy; Eele 
and Evdw are the Coulomb and van der Waals energies, respect-
ively. Also, Gsol is the solvation free energy and GGB is the polar  
solvation contribution. GSA is the non-polar solvation contri-
bution and was estimated by the solvent accessible surface area 
(SASA) determined using a water probe radius of 1.4 Å. The 
surface tension constant γ was set to 0.0072 kcal/(mol·Å2). 

 
2.3. Dynamic cross-correlation matrix (DCCM) 
 
This is graphically employed to represent dynamical motions 
of constituent protein residues in correlation with time [40,41]. 
Therefore, in this study, we investigated the inter-residue 
dynamics and motions of PD-L1 when bound by BMS-1001 
and BMS-1166 with respect to their antagonistic activities. We 
generated the DCCM to estimate the cross-correlated dis-
placement of protein backbone atoms from the resulting trajec-
tories across the MD simulation time based on the equation 
below: 
 

Cij = , Dri∗Drj . /(, Dr2i ., Dr2j .)1/2 
 
From the equation, ri and rj depict the mean displacement the 
ith and jth atoms which are represented by i and j respect-ively. 
Cij is the coefficient of cross-correlation which varies from −1 
to + 1, which corresponds to strongly correlated (+) and anti-
correlated (−) motions of constituent residues during the period 
of MD simulation. This analysis was performed using the 
integrated CPPTRAJ module [37] of AMBER14 and resulting 
matrices were plotted with the aid of the Origin data analysis 
software [38]. 
 
 
2.4. Principal component analysis (PCA) 
 
This was carried out to obtain necessary insights into the 3D 
conformational and dynamical changes that occurred in PD-L1 
when distinctively bound by both BMS-1001 and BMS-1166. This 
method is used to describe the magnitude and direc-tion of protein 
motions which are depicted by eigenvalues and eigenvectors 
respectively [31,42]. Hence, with the aid of the 
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integrated CPPTRAJ module in AMBER14, we computed the first 
two principal components (PC1 and PC2) from the dynamics of 
the protein C-α atoms. Moreover, the confor-mational behaviours 
of the unbound and bound PD-L1 systems were projected along 
the first two eigenvectors (ev1/PC1vs ev2/ PC2) using the 
Cartesian coordinates of C-α atoms. 
 
 
3. Results and discussion 
 
3.1. Monomeric binding of BMS compounds (BMS-1001 
and BMS-1166) induced systematic PD-L1 dimerisation 
 
The mechanisms by which the selective ‘monomeric’ targeting of 
PD-L1 by BMS compounds cause structural dimerisation has 
remained unresolved till date even though it underlies the basis of 
ICB therapy. According to previous reports, PD-L1 exist in a 
single monomeric state where it is able to exhibit canonical 
interactions with PD-1 resulting in cancer immunosuppression and 
evasion of T-cell induced death [15,16]. Moreover, BMS 
compounds reportedly binds initially to a PD-L1 monomer (APD-
L1) and elicit monomeric recruitment (BPD-L1) to form a dimer 
with a tunnel-like binding cleft in between [20]. Firstly, we 
visually examined the structural events that occurred  

 

 
along the MD trajectories to monitor the dynamics of mono-
meric recruitment with regards to the binding of the BMS com-
pounds. (Figure 3)  

Interestingly, in the BMS-bound systems, we observed that 
the arrangements of the starting structures were maintained 
until about 20 ns where monomeric distances gradually 
reduced, and the monomers existed in close proximities. These 
dynamical monomeric motions in the conformational phase 
space then proceeded until 90 ns where we observed that both 
monomers associated to form a PD-L1 dimer and a tunnel-like 
cleft at the region where the BMS compounds were bound 
(Figure 3). This was evidenced by the gradual decrease in 
monomeric distances as shown in Figure 4, which is derived 
from measuring distances between ATyr39 and B-Val185. As 
estimated, in the starting structure, positional dis-tances 
between the two monomers (APDL1 and BPDL1) were 76.79 
Å and 72.83 Å for the BMS-1001- and BMS-1166-bound 
systems respectively, which gradually decreased in the average 
intermediate structure to 65.14 Å (BMS-1001) and 69.23 Å 
(BMS-1166) prior to eventual dimerisation. On the contrary, 
while these events gradually occurred in the BMS-bound 
systems, the unbound PD-L1 system maintained its monomeric 
arrangement over the simulation period indicating 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. (Colour online) Structural dynamics of BMS-1001/BMS1166 bound PD-L1s and unbound PD-L1 over the 150 ns MD simulation period. Red boxes depict the 
monomeric motions of BMS-1001-bound PD-L1 while green boxes depict the dynamics of the BMS-1166-bound PD-L1 system. However, blue boxes depict the unbound 
PD-L1 system. [A] Starting structure averaged over 0–20 ns [B] averaged intermediate structure 60–90 ns and [C] averaged end structure 90–150 ns. 
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Figure 4. (Colour online) Monomeric distances, tunnel formation and mechanistic transition of BMS-1001 and BMS-1166 across both A and B PD-L1 monomers. [A] 
Tunnel formation and monomeric distance of BMS-1001 bound PD-L1 [B] Tunnel formation and monomeric distance of BMS-1166 bound PD-L1. 

 
 
that the PD-L1 dimerisation is solely based on the presence of 
the BMS compounds (Figure 3).  

Another interesting finding was the concurrent dynamical 
‘switch’ or exchange of both BMS compounds at each mono-
meric binding sites. At trajectory 30–55 ns, averaged struc-ture 
revealed that BMS-1001 was bound to selected site residues 
such as Met224, Val185, Ile163 and Val177 on monomer A via 
weak interactions (Figure 5A). Presumably, the nature of these 
interactions permitted a possible tran-sition to monomer B 
which occurred at about 60–90 ns and characterised by the 
occurrence of high-affinity inter-actions, which include the 
strong hydrogen bonds and attractive salt bridge with Arg108 
and Asp105 respectively (Figure 5B). Relative to BMS-1166, a 
similar ligand transition pattern between both APD-L1 and 
BPD-L1 monomers was observed along the trajectories as 
revealed by the averaged structures; where Thr3, Phe2, Lys107 
contributed to the binding of BMS-1166 via high-affinity and 
strong hydrogen interactions while Met98 formed attractive 
salt-bridge as shown in (Figure 5D). Moreover, the mechanistic 
transitions of both BMS compounds occurred prior to the 
eventual for-mation of the tunnel-like binding cleft upon PD-
L1 dimeri-sation. We could propose that the dynamical motions 
of the PD-L1 monomers was accompanied by a concurrent 
binding site interchange of the BMS compounds prior to 
dimerisation. 

 
 
3.2. BMS compounds induced high 
conformational flexibility favourable for 
monomeric motion and dimerisation 
 
3.2.1. Conformational stability and residual fluctuation  
We proceeded to measure the dynamical events that accom-pany 
the formation of ABPD-L1 dimer as induced by the mono-meric-
binding of BMS-1001 and BMS-1166 respectively. We believe 
these insights would provide structural details that characterise the 
monomeric recruitment of PD-L1 in the pres-ence of the BMS 
compounds and mechanistic details into their motions in the 
conformational phase space. To understand these distinct 
dynamical motions in relation to the binding of these antagonists, 
we employed metrics such as the root mean square deviation 
(RMSD), Cα root mean square fluctu-ation (RMSF) and radius of 
gyration (RoG), which are appro-priate to determine Cα atomistic 
deviations and structural stability with the target protein over the 
MD simulation time.  

Structural stability was first investigated among the unbound 
and BMS-bound systems using the C-α RMSD par-ameter in order 
to ensure that systems were appropriately equi-librated. Our 
findings showed that the systems converged and attained stability 
early in the production run (∼10 ns) until about 100 ns where there 
was a distinct separation in atomistic motions among the three 
systems until the end of the simu-lation period (Figure 6). 
Interestingly, in agreement with the 
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Figure 5. (Colour online) Visual representation of the monomeric active site residues interaction of BMS-1001 and BMS-1166 at 30–55 ns (A, C) and 60–90 ns (B, D). 
 
 
results earlier presented (Section 3.1), this dynamic event cor-
relates with the duration at  

molecules. In other words, the association of the PD-L1 
monomers in both BMS-1001 and BMS-1166-bound systems 
involved considerable conformational alterations and instabil-
ity, a structural attribute that characterise biological protein-
protein interactions. These could further indicate that the bind-
ing of the BMS compounds played a crucial role in facilitating 
the interactions between both monomers with respect to PD-1 
blockade.  

According to the plot, the unbound system maintained a 
stable structure throughout the simulation time (RMSD <  
* Å) while the binding of BMS-1001 caused a notable 
deviation in PDL-1 structure (RMSD ∼5.5 Å). Likewise, 
atomistic devi-ation (RMSD) of ∼4 Å characterised the overall 
structure of PD-L1 when bound by BMS-1166. Taken together, 
we can suggest that the binding of these compounds induced 
notable instability in the structure of PD-L1 relative to 
inhibition. On the average, unbound PDL-1 system had RMSD 
value of 1.66 Å while BMS-1001- and BMS-1166-bound 
systems had mean RMSD values of 2.28 Å and 2.21 Å.  

In order to accurately measure the degree of structural 
instability induced by both PD-L1 antagonists, we carried out 
time-specific investigations into the occurrences from ∼100 ns 
where distinct separation in motion occurred among the three 
systems. This is clearly presented in Figure 6B, and 
accordingly, structural instability was highly induced in PD-L1 
when bound by both BMS-1001 and BMS-1166, which is 
highly favourable for structural dimerisation. In addition, we 
evaluated the distinct motions of the BMS com-pounds over the 
simulation period in relation to their roles in 

 
 
dimerisation from the separate monomeric PDLs, most 
importantly from the period at which we presumed dimer for-
mation (∼100 ns → ∼150 ns). As estimated, relative to their 
respective positioning and motions at the tunnel-like binding 
cleft upon PD-L1 dimerisation, BMS-1001 has a RMSD value 
of 2.28 Å while BMS-1166 exhibited a deviation of 2.21 Å. 
However, the disparate motions exhibited by both compounds 
lasted until ∼140 ns where they both attained stability in 
dynamical motion (Figure 6A). Therefore, from this plot we 
can deduce that the deviations in motions early in the simu-
lation period could be related to their ‘monomeric inter-change’ 
as earlier mentioned earlier, which was later stabilised by the 
formation of the binding tunnel and corre-sponding 
interactions with constituent residues. Moreover, the dynamics 
of the PD-L1 binding sites were evaluated from ∼100 ns in 
relation to the non-active sites region. Our findings showed that 
while the non-active site regions exhib-ited high structural 
instability favourable for dimerisation, the BMS-bound active 
sites showed lower motions indicative of the stabilising effects 
of BMS-1001 and BMS-1166 respect-ively (Figure 6C). 
(Figure 7)  

Accordingly, while the active site (C-α) of unbound PD-L1 had 
an RMSD of ∼2.4 Å, the BMS-bound systems had lower 
deviations at their active site regions. On the average, BMS-1001- 
and BMS-1166-bound systems had active site RMSDs of 1.4 Å 
and 1.7 Å respectively. In addition, a reduction in ato-mistic 
motions among active site residues could be due to the inward 
pulling effects elicited by complementary interactions with the 
bound BMS compounds. Further structural insights were provided 
by measuring the radius of gyration (RoG) with regards to the 
time-specific structural events (∼100ns- 
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Figure 6. (Colour online) Conformational analysis plot showing stability and atomistic motions among unbound (blue), BMS-1001 (red) and BMS-1166 (green) bound 
systems. [A] Whole-structure comparative C-α RMSD plot of the three systems. Blue highlight depicts post-equilibration periods (100–150 ns) where distinct separation 
in motions occurred [B] Comparative C-α RMSD plot (post-equilibration → 100–150 ns) showing distinct variations in structural stability among the three systems [C] C-
α RMSD plot showing active site stability among the unbound (blue), BMS-1001- (red) and BMS-1166- (green) bound systems. 

 
150 ns post convergence) in the active and non-active site regions 
with reference to the RMSD. According to previous studies, high 
RoG value indicates an increase in motion of con-stituent residues 
around their C-α atoms, which also corre-sponds to a notable loss 
in structural compactness [32,43– 45]. On the contrary, a low RoG 
value suggests a structurally compact protein with minimal 
motions in constituent atoms. Our findings revealed that the 
binding of BMS-1001 and BMS-1166 induced considerably high 
atomistic motions across the secondary structure of PD-L1 as 
compared to the unbound system with low RoG. Also, these could 
imply that while unbound PD-L1 was structurally compact (due to 
limited motions), the binding of these compounds increased 
structural motions and activity which could in turn favour 
dynamical motions of both monomers with respect to dimer 
formation which corroborates earlier results and previous 
experimental reports [19,20]. As estimated, unbound PD-L1 had 
mean RoG values of 18.7 Å while BMS-1001- and BMS-1166-
bound PD-L1 had mean RoG values of 20.2 Å and 20.0 Å 
respectively. Estimations of the root mean square fluctuation 

 
(RMSF) and DCCM for all simulated models were also con-
ducted to gain additional insights into PD-L1 structural occur-
rences when bound by BMS-1001 and BMS-1166. With regards 
to RMSF analyses, both monomers (A and B) were evaluated 
differently in order to define the distinct monomeric motions 
relative to dimerisation as induced by the binding of the BMS 
compounds. As observed in Figure 8, high residual fluctuation 
occurred concurrently in both monomers of PD-L1 when bound 
by BMS-1001 and BMS-1166, depictive of a structural 
characteristic that is important for the dynamical motions of 
proteins with regards to biological interactions with other bio-
molecules. As estimated, both monomers (APD-L1 and BPD-L1s) 
for the BMS-1001 and BMS-1166 systems was highly flexible in 
structure over the simulation period in contrast to the unbound 
system which demonstrated low structural flexi-bility and motion. 
This is in agreement to the results presented above and further 
indicates that the binding of these com-pounds induced structural 
flexibility in PD-L1 monomers which is suitable for dimerisation. 
On the other hand, low flexi-bility in the unbound system could be 
due to minimal 
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Figure 7. (Colour online) Structural stability, positioning and motion of BMS-1001 and BMS-1166 at the tunnel-like binding cleft of PDL-1. [A] 
Superposition of BMS-1001 (red) and BMS-1166 (green) as they transverse the binding tunnel [B] Comparative C-α RMSD plot depicting the 
stability and motion of both BMS-1001 (red) and BMS-1166 (green) during the post-equilibration MD-simulation period (100ns–150 ns). 
 
 
Table 1. Per-residue fluctuation values of crucial binding cleft residues 
in the unbound and bound PD-L1 systems.   
Core active loop Unbound PD- BMS-1001-bound BMS-1166-bound 
residues L1 PD-L1 PD-L1 
  Per-residue  
  fluctuation (Å)  
    

ATyr56 3.13 4.01 5.45 
AMet115 2.63 4.93 5.13 
AAla121 4.83 9.47 6.70 
AAsp122 4.08 8.35 5.48 
ATyr123 3.32 6.94 6.08 
ALys124 3.55 7.14 5.21 
AArg125 3.85 7.73 7.05 
BIle54 5.91 14.09 9.81 
BTyr56 4.38 15.70 9.72 
BAsn63 5.05 16.28 11.65 
BVal68 6.61 16.95 10.04 
BVal76 5.58 19.75 10.87 
BMet115 4.33 15.57 9.26 
BAla121 5.36 15.96 9.17 
 
 
structural and monomeric motions in the absence of the BMS 
compounds (Figure 8).  

Upon the presumed dimer formation, we further estimated the 
per-residue fluctuation of specific binding cleft residues that played 
key interactive roles with BMS-1001 and BMS-1166 (Table 1). 
Our findings revealed that these residues exhibited high fluctuation, 
which, suggestively, could be due to the tra-versing motions and 
optimal positioning of both compounds at the tunnel-like binding 
cleft. Taken together, high structural flexibility induced in both 
PD-L1 monomers with regards to the respective binding of BMS-
1001 and BMS-1166 could indi-cate high structural activity, an 
occurrence that could in turn enhance PD-L1 protein-protein 
interactions (dimerisation). This reflected the characteristic 
antagonistic activity elicited by both compounds as previously 
reported [11,19,20]. 

 
On the average, BMS-1001-bound APD-L1 had a mean 

RMSF values of 9.1 Å while the corresponding BPD-L1 had 
15.2 Å while it was 7.8 Å and 17.0 Å in the BMS-1166-bound 
APD-L1 and BPD-L1 respectively. Also, it is important to 
mention that in comparison to the BMS-bound APD-L1s, the 
non-liganded BPD-L1s exhibited higher flexibility prior to 
dimerisation which could indicate that structural motions were 
higher in relation to monomeric recruitment. In other words, 
BPD-L1s exhibited higher motions than the liganded-A-PD-
L1s in the conformational phase space, which could corre-late 
with the mechanisms of BMS-induced dimerisation as 
previously reported [20]. On the contrary, unbound APD-L1 
and BPD-L1 had lower RMSF values of 5.1 Å and 7.6 Å 
respectively, predictive of a relatively low structural flexibility. 
Taken together, the binding of both compounds concurrently 
induced characteristic flexibility in PD-L1 structure across both 
monomers, favourable for dimerisation.  

To further investigate the inhibitory impact of BMS-1001 and 
BMS-1066 on the inter-residual dynamics and motions of PD-L1, 
dynamic cross correlation matrix (DCCM) analysis was 
performed. This method was used to obtain necessary insights into 
the correlated and anti-correlated motions of con-stituent residues 
with respect to their C-α atoms over the simu-lation period. 
Positive correlated motions were depicted by a yellow to deep red 
colouration whereas anti-correlated (nega-tive) motions where 
represented by a cyan to black colouration. Plots generated for the 
simulated protein models (across both monomers) are displayed in 
Figure S6. As shown, correlated motions were highly prominent 
in the PD-L1 systems bound by BMS-1001 and BMS-1166 as 
compared to the unbound sys-tem which had lesser correlated 
motions but higher dominance of anti-correlated residual motions 
(cyan/blue colorations). In agreement with reports earlier 
presented, these findings depict 
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Figure 8. (Colour online) Structural flexibility induced simultaneously at both PDL-1 monomers (A and B) by the binding of BMS-1001 (red) and 
BMS-1166 (green). [A] Superposed monomers A and corresponding C-α RMSF plot showing the degree of flexibility among the unbound (blue), 
BMS-1001- (red) and BMS-1166- (green) bound PDL-1 systems [B] Superposed monomers B of unbound (blue), BMS-1001- (red) and BMS-1166- 
(green) bound PDL-1 systems coupled with corresponding C-α RMSF plot showing the degree of flexibility. 
 
 
that the binding of these antagonists induce high motions 
among the constituent atoms of PD-L1 which correspond to 
high structural activity. 

 
 
components (PC1 and PC2). Figure 8 shows the overall 
motional shifts across two principle components for the free 
proteins and ligand-protein complex.  

To gain insights into the significance of such motions with  
3.2.2. Principal component analysis of structural regards to our study, the conformational attributes of unbound 
dynamics and motion and bound PD-L1 systems were projected directionally along 
PCA also known as essential dynamics analysis is one of the the first two principal components or eigenvectors (ev1/PC1 
most important post-dynamic analysis used to study the trajec- vs ev2/PC2). Accordingly, distinct conformations and motions 
tory of a system over a simulation period [46]. The most signifi- were observed in the essential subspace along both principal 
cant fluctuation modes of a protein together with the motion of components. The plot showed a clear and distinct separation 
the system in terms of planarity of motion (eigenvectors) and of motion among the three systems, with the BMS-bound 
its magnitude (eigenvalues) can be determined using PCA. PD-L1 exhibiting a highly dispersed motion as compared to  
PCA analysis was performed on the protein C-α atoms using the unbound system, which showed a more compact motion. 
the CPPTRAJ module in AMBER14 to compute the first two Induced dispersion among the protein systems bound by 
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BMS-1001 and BMS-1166 could only imply that the binding 
of these compounds enhanced structural activity unlike in the 
unbound system which maintained structural compactness 
across the simulation period. These findings further corrobo-
rates above-presented results which altogether reflects that the 
binding of these compounds stabilised a high activity con-
formation favourable for dimerisation as previously reported 
[18–20]. Suggestively, high activity conformation relative to 
PD-L1 dimerisation as induced by these BMS antagonistic 
could disallow its association with PD-1 relative to immune 
checkpoint activities in T cell exhaustion. 

 
3.3. BMS-1001 and BMS-1166 exhibited ‘monomeric 
interchange’ and systematic high-affinity binding prior 
to PD-L1 dimerisation 
 
The antagonistic mechanism of the BMS-compounds towards PD-
L1 is centred on their ability to induce dimerisation thereby 
preventing an association with PD-1 which promotes tumour 
progression and survival by escaping tumour neutralising immune 
surveillance. Association of PD-L1 with PD-1 of T-cells lead to T 
Cell dysfunction, exhaustion, neutralisation, and interleukin-10 
(IL-10) production in tumour mass [13].  

According to previous reports, the BMS-compounds bind to a 
PD-L1 monomer and facilitate monomeric recruitment lead-ing to 
the formation of a dimer molecule [20]. Interestingly, from our 
previous findings, as presented in Section 3.1 above, we proposed 
a model that possibly depicted the dynamical motions of the 
respective monomers in the conformational phase with respect to 
the starting structure employed in this study. Moreover, we 
observed that the BMS-compounds sys-tematically transited from 
the initial monomer (APD-L1), to which they were first bound, 
onto the second monomer prior to dimerisation (Figures 4 and 5). 
As shown in the initial trajec-tory (0–30 ns), the BMS-compounds 
maintained their starting position at the first monomeric binding 
site (APD-L1) until  
  ns where we observed that it was bound at a similar binding 
site on monomer BPD-L1, and eventually at the tunnel-like binding 
cleft upon the formation of PD-L1 dimer. This could represent an 
important insight into the mechanistic occur-rences that 
accompany BMS-induced dimerisation of PD-L1 in cancer 
immunotherapy. The MM/PBSA analysis was further employed to 
deduce the binding strength and affinity of the BMS compounds 
with regards to the dimerised protein form. This estimated the 
binding free energies involved in complex formation in relation to 
their antagonistic activities. Using tra-jectories at which the PD-
L1 dimer was formed in both BMS-1001 and BMS-1166-bound 
systems, our estimations revealed that both compounds exhibited 
considerably high and favour-able negative energies indicative of 
a strong and high affinity  
binding. Accordingly, BMS-1001 had a G value of 
−20.5kcal/mol while BMS-1166 had a G value of −18.1kcal/ 
mol. Relatively, we estimated the monomeric G values of the 
BMS compounds to each monomer at the respective simu-
lation periods. We observed that both BMS-1001 and BMS-
1166 exhibited similar G towards the PD-L1 monomers even 
when interchanged at their respective ‘monomeric’ bind-ing 
sites as earlier mentioned. BMS-1001 had an estimated G of 
23.64kcal/mol and 23.75kcal/mol at the initial (0–30 ns) and 

 

 
Table 2. MM/PBSA binding free energy profiles of BMS-1001 and BMS-
1166 to PD-L1.   
 Evdw Eele Ggas Gsol Gbind 
Complexes (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) 
       

MD1 BMS-1001 −35.9 39.12 36.0 28.1 23.64  
MD2 BMS-1001 −28.12 45.12 34.0 27.1 23.75  
MD3 BMS-1001 −34.8 −27.9 −42.7 30.8 23.78  
MD1 BMS-1166 −26.78 40.15 37.92 26.87 23.43  
MD2 BMS-1166 −27.42 44.91 38.00 27.32 23.66  
MD3 BMS-1166 −27.9 −48.0 −39.0 29.7 25.96  

Eele = electrostatic energy; EvdW = van der Waals energy;  Gbind = total binding 
free energy; Gsol = solvation free energy G = gas phase free energy. 

 
 
intermediate (60–90 ns) trajectories while BMS-1166 had 
23.43kcal/mol and 23.66kcal/mol respectively. At the final tra-
jectory, BMS-1001 and BMS-1166 had G values of 23.78 kcal/ 
mol and 25.96kcal/mol respectively. MM/PBSA estimations for 
the distinct MD simulation periods are presented in Table 2. 
Therefore, these considerably high negative free energy values 
could correlate with a high-affinity binding that is essential for the 
systematic dimerisation of PD-L1 in the presence of the respective 
BMS-compounds [20]. 

Upon dimerisation, additional insights into the inter-actions 
and positioning of BMS-1001 and BMS-1166 at the tunnel-like 
binding cleft were gained by molecular visualisa-tions using 
the Graphical User Interface of UCSF Chimera and Discovery 
Studio 2016 Client [47]. These revealed inter-molecular 
interactions that occurred at the ‘dimeric’ binding cleft of PD-
L1, which is systematically induced after the binding of a BMS 
compound (BMS-1001/BMS-1166) to a PD-L1 monomer, as 
elucidated in the model presented in this study. As observed at 
each of the ‘dimeric’ binding sites, both compounds transversed 
the tunnel-like binding cleft while high-affinity interactions 
occurred between con-stituent ligand groups and key residues 
lying on either side of the monomers within and outside the 
tunnel to achieve optimal binding modes and stability (Figure 
S2). Outside the tunnel, key residues such as AAsp122, 
ATyr123, ALys124 and AArg125 formed strong high-affinity 
interactions with the (2R)-2-amino-3-hydroxypropanoic acid 
and 3-cyanoben-zyl substituents; which majorly constitute 
hydrogen bonds and attractive charge (ionic) interactions that 
account for the stability of BMS-1001 at this region (Figure 
S2B). More-over, key interactions that accounted for high-
affinity binding and stability of BMS-1001 at the other side of 
the tunnel (binding cleft) were elicited by deep hydrophobic 
pocket resi-dues; BAla121 (π-alkyl) and BAsp122 (CH–O), 
with the bur-ied 2,3-dihydro-1,4-benzodioxine moiety.  

Also, the orientations of ATyr56 and BTyr56 played impor-tant 
roles in the stability of BMS-1001 at the binding cleft of PD-L1 
possibly via ring π-π stacking (Figure S2B). Likewise, BMS-
1166 had a similar orientation at the binding cleft of PD-L1 
wherein it transverses the tunnel-like binding cleft and elicit high-
affinity interactions at both sides of the tunnel (Figure S3). At the 
outer region of the tunnel, residues such as BAsp122, BTyr123 and 
BLys124, BArg125 existed in high-affinity (hydrogen and ionic) 
interactions with the (2R, 4R)-4-hydroxypyrrolidine-2-carboxylic 
acid moiety while π-π stacking of the 3-cyanobenzyl ring by 
BTyr123 complements its role in BMS-1166 stability around this 
region. 
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The role of ATyr56 was also crucial to the stability of BMS-
1166 while it transverses the tunnel possibly due to its involve-
ment in ring π-π stacking interactions with the intermediate 5-
chlorophenyl ring. Likewise, the contributions of ATyr123 
(NH–O) and AAsp122 (CH–O) towards the stability of BMS-
1166 encompass their interactions with the 2,3-dihydro-1,4-
benzodioxine moiety at the deep hydrophobic pocket. Further-
more, per-residue energy decomposition analyses were used to 
estimate the individual energy contributions of these crucial 
residues to the stability of BMS-1001 and BMS-1166 respect-
ively at the binding cleft. As shown in Figure S4, energy contri-
butions towards BMS-1001 stability at the binding cleft were 
considerably high among key tunnel residues (inside and out-
side) as earlier mentioned in comparison with other interacting 
residues.  

Outside the tunnel, AAsp122, ATyr123, ALys124, and A-
Arg125 had high electrostatic energy contributions of 
−10.5kcal/mol, −5.4kcal/mol, −10.1kcal/mol and −6.9kcal/ 
mol respectively, which could be due to the occurrence of 
strong hydrogen and ionic interactions as shown in Figure S4B. 
Inside the tunnel, key residues such as BAla121 and B-Asp122 
that interacted with the buried 2,3-dihydro-1,4-benzo-dioxine 
moiety of BMS-1001 had van der Waals and electrostatic 
energies of −3.6kcal/mol and −3.4kcal/mol respectively. In 
addition, ATyr56 (inside: 2,3-dihydro-1,4-ben-zodioxine) and 
BTyr56 (outside: 4-methylphenoxy ring) which elicited ring π-
π stacking of BMS-1001 at the binding tunnel had van der 
Waals energy contributions of −2.6kcal/ mol and −3.4kcal/mol 
respectively. Similarly, residues such as AAsp122 and ATyr123 
had high electrostatic energies of −5.3kcal/mol and 
−6.2kcal/mol respectively (Figure S5).  

Likewise, crucial residues at the outer tunnel region that 
interacted with the (2R, 4R)-4-hydroxypyrrolidine-2-car-
boxylic acid moiety and the 3-cyanobenzyl ring had consider-
ably high energy contributions, which further substantiate high-
affinity interactions earlier reported (Figure 6A). Accord-ingly, 
BAsp122, BLys124 and BArg125 had electrostatic energy 
contributions of −9.5kcal/mol, −10.7kcal/mol, and −12.4kcal/ 
mol respectively while BTyr123 and ATyr56 had van der Waals 
energy contributions of −4.2kcal/mol and −3.2kcal/ mol 
respectively. Taken together, considerably high energy 
contributions among these crucial residues at the target site of 
PD-L1 account for high-affinity binding and stability of both 
BMS-1001 and BMS-1166 while they transverse the tun-nel-
like binding cleft to elicit their antagonistic functions. 

 
4. Conclusion 
 
The use of small molecule compounds as immune checkpoint 
inhibitors represent a paradigm shift in the cancer immu-notherapy 
(immune checkpoint blockade - ICB). This thera-peutic strategy is 
being initiated with the identification of novel BMS compounds; 
BMS-1001 and BMS-1166 which specifically target PD-L1 and 
prevents its association with PD-1 resulting in the reactivation of 
T cells and effective killing of cancer cells. Hence it was necessary 
to investigate the activi-ties of these antagonistic compounds 
coupled with the mechan-isms by which they induce monomeric 
recruitment of the distinct PD-L1 monomers, so as to obtain 
necessary insights 
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which could aid the future design of highly effective antagonists 
and monomeric recruiters in ICB therapy. Appropriate investi-
gations were carried out using MD simulation and MM/PBSA 
techniques, which are sufficient to provide structural and mol-
ecular occurrences associated with the binding of these com-
pounds to PD-L1. Using a structurally separated starting structures 
for the unbound and BMS-bound systems, our result revealed that 
the BMS-1001 and BMS-1166 bound monomers elicited the 
recruitment of the other monomer. As the simu-lation progresses, 
there was ligand exchange from the mono-mer A to monomer B, 
this is due to the weak binding interaction that existed between the 
ligands and monomer A active site residues, however, monomer B 
active site residues provided a much stronger interaction. 
MM/PBSA estimations revealed that both compounds were bound 
to PD-L1 with con-siderably high-affinities as evidenced by 
relatively high G values. Moreover, molecular visualisation 
revealed that both compounds were positioned across the tunnel-
like binding cleft, and while they traversed this region, they 
maintained high-affinity interactions (strong hydrogen and ionic 
bonds) with key active site residues both within and outside the 
tunnel via their substituent groups. More importantly were the 
high affinity interactions elicited by AAsp122, ATyr123, ALys124 
and AArg125 with the (2R)-2-amino-3-hydroxypropanoic acid 
and 3-cyanobenzyl substituents of BMS-1001 outside the tunnel 
and BAla121 and BAsp122, inside the tunnel (deep hydrophobic 
pocket). Also, with regards to BMS-1166, high-affinity 
interactions occurred outside the tunnel between B-Asp122, 

BTyr123, BLys124 and BArg125 with the 3-cyanoben-zyl and (2R, 
4R)-4-hydroxypyrrolidine-2-carboxylic acid substituents while at 
the other side of the tunnel, ATyr123 and AAsp122 played crucial 
role in stabilising BMS-1166 via interactions with its 2,3-dihydro-
1,4-benzodioxine moiety. The important roles of these residues 
were further revealed by per-residue decomposition analyses 
which estimated high individual energy contributions and could 
underlie the con-siderable binding strength and stability 
demonstrated by these compounds. Comparative insights into the 
structural dynamics and motions of PD-L1 in its unbound and 
bound states were provided by post-MD conformational analysis 
using C-α RMSD, C-α RMSF, C-α RoG, DCCM and PCA. An 
interesting and consistent pattern observed was that the binding of 
both compounds induced distinctively high struc-tural motions 
and activity in contrast to the unbound model which demonstrated 
structural compactness and rigidity across the MD simulation 
period. Binding of the ligand to a monomer elicited the recruitment 
of the other monomer inducing dimer-isation of the monomers, 
there was also a ligand exchange from monomer A unto monomer 
B. This transition in the structural dynamics and motion of PD-L1 
when bound by BMS-1001 and BMS-1166 could be seen as the 
mechanism of PD-L1-/PD-1 association. High per-residue 
fluctuation of key residues that interacted with the substituents of 
both compounds along the tunnel-like binding cleft could as well 
imply their high activity and contributions towards the favourable 
positioning and binding of BMS-1001 and BMS-1166. Taken 
together, BMS-1001 and BMS-1166 bind strongly to PD-L1 due 
to high-affinity interactions with crucial residues at the tunnel-like 
binding cleft and induce high structural activity favourable 
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for dimerisation, which could in turn prevent association with 
PD-1. Our results describe the model with which BMS -1001 
and BMS-1166 recruit other monomer for dimer formation. 
This mechanism can further provide an explanation into the 
mechanism of dimer formation of protein and can be explored 
in the design of small molecule inhibitors of PD-L1. 
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ABSTRACT  
 
High production cost, instability, low tumor penetration are some of the shortcomings that have characterized and undermined 

the use of antibodies as a target for Cytotoxic T-lymphocytes associated protein 4 (CTLA-4). Design and discovery of small 

molecule inhibitors have therefore become a sine qua non in targeting immune proteins implicated in immune disorders. In this 

study, we utilized a drug repositioning approach to explore the characteristic feature of unrelated proteins to have similar binding 

sites and the promiscuity of drugs to re-purpose an existing drug to target CTLA-4. CTLA-4 and Kallikrein-7 were found to 

have similar binding sites, we therefore used 1, 3, 6-trisubstituted 1, 4-diazepane-7-ones (TDSO) which is an inhibitor of 

Kallikrein-7 as our lead compound. High throughput screening using TDSO as a lead compound resulted in 9 hits with 

ZINC04515726 and ZINC08985213 having the highest binding score. We went ahead to investigate the inter-action of these 

compounds with CTLA-4 by conducting a molecular dynamic simulation. Molecular Mechanics/ Poisson-Boltzmann Surface 

Area (MM/PBSA) estimations revealed that TDSO had the highest binding energy value of -28.51Kcal/mol, with 

ZINC04515726 and ZINC08985213 having -23.76Kcal/mol and -21.03Kcal/mol respectively. The per-residue decomposition 

highlighted Tyr24, Ala25, Gly28, Ala30, Tyr53 and Asn72 as having significantly high electrostatic energy contributions and 

the main contributing residues to the binding of TDSO, ZINC04515726 and ZINC08985213 to Cytotoxic T lymphocytes CTLA-

4. Summarily, from the results gathered, we proposed that TDSO can be an effective immune check point small molecule 

inhibitor against the suppression of T-cell activation, proliferation, and tumor cell eradication.  
 
 
 
1. Introduction 
 

Cancer Immunotherapy has become a standard treatment for a wide range 
of cancer malignancies and is considered to be the “fifth pillar” of cancer 
therapy, after surgery, chemotherapy, radiation and targeted therapy 
(Chatamra, 1991). Immune system does not just prevent the body against 
infectious organisms but also help in eradicating malig-nancies when 
stimulated (Mc Granahan et al., 2016; Soremekun et al., 2019) through 
strengthening the host immune responses against tu-mors, annihilating signals 
produced by cancer cells that repress im-mune responses, or supplying 
modified immune system components (Chen et al., 2018). With the 
understanding of the functionality of the immune system, small molecules, 
peptides, recombinant antibodies, vaccines and cellular therapeutic modalities 
are being employed in manipulating the immune system for cancer treatment 
(Marin-Acevedo et al., 2018). The use of immune checkpoint inhibitor in 
cancer  
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immunotherapy include generating antibodies against the cytotoxic T-
lymphocytes associated protein 4 (CTLA-4) (Fig. 1), the programmed death 
receptor 1 (PD-1) or its ligand (PD-L1) (Thallinger et al., 2018). CTLA-4 is 
mainly expressed on activated CD8+ effector T Cells and negates the early-
stage T-cell activation and cell cycle progression. CTLA-4 is homologous to 
CD28, and it possesses the same ligands, in-cluding B7-1 (CD80) and B7-2 
(CD86), thus blocking the activation and proliferation of antigen-activated T 
cells secondary to CD28/B7 inter-action (Shen and Ren, 2017). The inhibition 
of CTLA-4 signaling is extremely promising to recover the suppression of T-
cell activation, proliferation, and infiltration into tumors. This process can result 
in enhanced anti-tumor immunity and tumor cell eradication (Bielinska et al., 
2014). FDA in 2011 approved anti-CTLA-4 antibodies ipilimumab for the 
treatment of metastatic melanoma; this marked the beginning of a new era for 
cancer immunotherapy (Barbee et al., 2015). Ipilimumab and tremelimumab 
work by blocking the binding of CTLA-4 to its ligand 
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Fig. 1. 3D crystal structure of CTLA-4. The CC’-Loop is highlighted in green, G-strand 

in red and the FG-loop in orange. (PDB:5TRU) (Ramagopal et al., 2017). 

 
(CD80 AND CD86) (Aspeslagh et al., 2015). Due to the lower produc-tion 
costs, higher stability, improved tumor penetration, amenability for oral 
administration and elimination of immunogenicity, small-mo-lecular weight 
inhibitors are expected to be a viable option in place of antibodies as immune 
check point inhibitors (Zhan et al., 2016). Un-fortunately, there are no available 
small molecule inhibitors that targets CTLA-4. Hence, we used drug 
repositioning and pharmacophore ap-proach to propose drugs that can 
effectively serve as an inhibitor of CTLA-4. 
 
 
2. Computational method 
 
2.1. Binding site similarity identification 
 

The complexity of protein and the dynamics of their active site have made 
it possible for drugs to modulate multiple targets implicated in diseases. This 
binding site similarity has been explored in repurposing drugs for effective 
therapeutic potentials. We used bindingdb database, a publicly accessible 
database which contains approximately 20,000 experimentally determined 
binding affinities of protein-ligand com-plexes, chemical structures, 
substructure and similarity (Liu et al., 2007). Therefore this drug repositioning 
methodology which identifies novel target for existing drugs using 
bioinformatics databases and al-gorithms as described by Heinrich et al., 2010 
was used (Henrich et al., 2010). This structural approach explores binding site 
similarities be-tween the target protein and other related/unrelated proteins to 
predict novel binders. Therefore, we employ a similar principle to identify 
small molecule compounds/antagonists that are likely to block the immune 
checkpoint activity of CTLA-4. 
 
 
2.2. Pharmacophore Model Creation using Per Residue Energy 
Decomposition (PRED) Based Approach 
 

Identification of small molecule CTLA-4 antagonists was followed up by 
the modeling of novel compounds that could also act in a similar inhibitory 
capacity towards the target protein.  

Contrary to other conventional pharmacophore modelling methods, we 
used an in house PRED approach to define the pharmacophoric architecture of 
the ligand- receptor in order to retrieve a more tailored 
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potential hit (Cele et al., 2016; Kumalo and Soliman, 2016). This 
pharmacophore model explore both the structural features of the pro-teins as 
well as the chemical features of ligands (Cele et al., 2016). To generate a 
PRED-based pharmacophore model, PRED decomposition was computed from 
MM/PBSA calculations after 20 ns MD simulations of the (TDSO-CTLA-4) 
complex. Pharmacophoric features based on the receptor-ligand interaction 
obtained from this short run MD simulation was selected. Residues Ala25, 
Ala30, Thr31, Val33, Met55, Gly71 and Asn72 were found to be the highest 
contributing residues that interact with the ligand (Fig. S2A). These ligand 
features were set as a query to generate a PRED-based pharmacophore model 
in ZINCPharma (Koes and Camacho, 2012). Furthermore, the PRED-based 
pharmacophore model (Fig. S1) was used to screen the ZINC database (Irwin 
and Shoichet, 2006) for compounds with similar features to obtain the novel 
hits. The filter was set to query Zinc purchasable compounds of mole-cular 
weight ≤500 for hit screening while rotatable bonds was set at ≤10. Lipinski’s 
“rule of five” was also set as cut-off. Hits were sorted by increasing RMSD 
Scores. 
 
 
2.3. Drug likeliness assessment 
 

An Online software SwissADME (Daina et al., 2017) was used to 
determine the physiochemical descriptors, pharmacokinetic properties and 
drug-like nature of the screened compounds. SwissADME uses the “Brain or 
Intestinal Estimated permeation, (BOILED-Egg)” method which computes the 
lipophilicity and polarity of small molecules. 
 
2.4. System preparation and Molecular dynamic (MD) simulations 
 

The x-ray crystal structure of CTLA-4 in complex with an antibody check 
point inhibitor Ipilimumab with Protein Data Bank code (5TRU) (Ramagopal 
et al., 2017) was obtained from RSCB Protein Data Bank (Skalniak et al., 
2017). The Ipilimumab was deleted to obtain an un-bound CTLA-4 protein. 
CTLA-4 preparation as well as visualization was conducted in Chimera (Yang 
et al., 2012) and Avogadro Visualization (Hanwell et al., 2012) software. 2D-
structure of the ligands were setup for auto-optimization using UFF forcefield 
and steepest descent algo-rithm on Avogadro 1.2.0 (Hanwell et al., 2012). This 
was carried out to adjust inter-connective bonds and eliminate clashes. Further 
prepara-tions of the ligands and CTLA-4 were carried out using the Molegro 
Molecular Viewer (MMV) software (Windows, M. M. V and X, 2010). The 
ligands were docked into the protein using automated Autodock Tools docking 
procedure which entails grid box ‘active-site’ definition (Trott and Olson, 2010). 
The docking score was validated by re-docking using Chimera (Pettersen et al., 
2004) and HADDOCK (Dominguez et al., 2003). The results are presented in 
Table S1. The MD simulation was performed using the GPU version of the 
PMEMD engine provided with AMBER package, FF14SB variant of the 
AMBER force field was used to describe the protein. ANTECHAMBER was 
used to generate partial charges for the ligand by utilizing the restrained 
electrostatic potential (RESP) and the General Amber Force Field (GAFF) 
proce-dures. The leap module of AMBER 14 allowed the addition of hydrogen 
atoms, as well as Na+ and Cl− counter ions for neutralization to both the Apo 
and bound system. An orthorhombic box of TIP3P water mo-lecules at a 
distance of 9 Å from all the protein atoms was used to solvate all the systems 
prior to simulation (Jorgensen et al., 1983). An initial minimization of 2000 
steps were carried out within an applied restraint potential of 500 kcal mol-1 
Å−2 for both solutes were per-formed for 1000 steps using a steepest decent 
method followed by a 1000 step of conjugate gradients. An additional full 
minimization of 10,000 steps was further carried out by conjugate gradient 
algorithm without restrain. 
 
 

A gradual heating MD simulation from 0 k to 300 K was executed for  
50 ps, such that the system maintained a fixed number of atoms and fixed 
volume, i.e., a canonical ensemble (NVT). The solutes within the system are 
imposed with a potential harmonic restraint of 10 kcal mol- 
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1 Å −2 and collision frequency of 1.0 ps-1. Following heating, an According to the methods of Heinrich 2010, CTLA-4 was queried on 
equilibration estimating 500 ps of each system was conducted; the op- a binding database (www.bindingdb.org) to obtain proteins similar in 
erating temperature was kept constant at 300 k. Additional features binding site to CTLA-4 (Liu et al., 2007). In this regard, a protein with 
such as number of atoms and pressure were also kept constant mi- an identical binding site to CTLA-4 was identified, which had a small 
micking an isobaric-isothermal ensemble (NPT). The system pressure molecule; 1, 3, 6-trisubstituted 1, 4-diazepane-7-ones (TDSO) bound to 
was maintained at 1 bar using Berendsen barostat.  it. Moreover, in relation to CTLA-4, binding site residues in Kallikrein 7 

The total time for the MD simulation was 150 ns. In each simulation include Asn189, Gly193, Ser146, Val149, Ala183, and Thr96 (Fig. 2) 
the SHAKE algorithm was employed to constrict the bonds of hydrogen indicative of a unique similarity. 
atoms. The step size of each simulation was 2 fs and an SPFP precision  
model was used. The simulations coincided with isobaric-isothermal 

3.1.1. Pharmacophore model creation 
ensemble (NPT), with randomized seeding, constant pressure of bar 

The similarity between CTLA-4 and TDSO-bound Kallikrein 7 (PDB: 
maintained by the Berendsen barostat, a pressure-coupling constant of 

5Y9L) binding sites informed its (TDSO) selection as the lead compound 
2 ps, a temperature of 300 K and Langevin thermostat with collision used  in  modeling  novel  antagonists  of  CTLA-4.  To  obtain  com- 
frequency of 1.0ps−2. 

 

 plementary structural architecture of the steric and electronic features 
  

  that were important to ensure supramolecular interaction of TDSO with 
2.5. Post-dynamic analysis  CTLA-4, an intermediate 20 ns MD simulation was carried out on the 
  TDSO-CTLA-4 complex. Afterwards, a pharmacophore model or theory 

The trajectories were saved and further analysis done using PTRAJ was obtained as shown in Fig. S1, which highlights the fundamental 
(David, 2012) module, CPPTRAJ (David, 2012) module was used to pharmacophoric features that served as a starting point for virtual 
analyze Radius of Gyration, root-mean-square deviation (RMSD) and screening to identify potential CTLA-4 antagonists. 
root-mean-square fluctuation (RMSF).   

  3.1.2. Generation of ligands 
2.6. Thermodynamic calculation  The pharmacophoric moieties that exhibited the most significant 
  interaction with complementary residues of the binding pocket were 

The free binding energy of the CTLA-4 active site was analyzed by employed to screen for novel compounds with similar structural and 
the Molecular Mechanics/ Poisson-Boltzmann Surface Area (MM/PBSA) chemical features in Zinc database (contains 4.6 million small mole- 
(Kollman et al., 2000). Binding free energy calculation is an endpoint cules). In addition, the Lipinski’s Rule of Five (Lipinski et al., 1997) was 
energy calculation that provides valuable information about ligand- used as a search criteria to streamline the resulting compounds to drug- 
receptor association. Calculation of binding free energies considered like substances, which were then screened virtually using Autodock 
1500 snapshots from each 10 ns trajectory with the average values of Vina’s with an exhaustiveness set at 8.0. The grid box coordinates X, Y, 
the trajectories being computed. From each snapshot, binding free en- and Z are centered on 16.62, 18.77, and 17.57 respectively while 
ergy ( Gbind) was computed from the following:  generated results were saved in the pdbqt format. This pharmacophore- 

G
bind = 

G
complex 

- G
receptor 

- G
ligand (1) 

based query led to the generation of 9 structurally similar compounds 
that belong to the ZINC Purchasable Subset. Further selection was 

E
gas = 

E
int 

+ E
vdw 

+ E
ele (2) 

carried out based on comparative binding energies, which led to the 

identification and retrieval of two compounds with the highest negative G
sol 

= G
GB 

+ G
SA (3) binding energies (ZINC04515726 and ZINC08985213) in relation to 

GSA = γSASA (4) 
others (Fig. 3). 

 

Where Egas, the gas-phase energy, was calculated using the FF99SB 3.2. Drug likeliness assessment of TDSO, ZINC04515726 and 
force field; Eint is the internal energy; Eele and Evdw are the Coulomb and ZINC08985213 
van der Waals energies, respectively. Gsol is the solvation free energy.  
GGB is the polar solvation contribution. GSA is the non-polar solvation 3.2.1. ADME result 
contribution and was estimated by the solvent accessible surface area To access the physiochemical descriptors, pharmacokinetic proper- 
(SASA) determined using a water probe radius of 1.4 Å. The surface ties and drug likeliness of TDSO, ZINC04515726 and ZINC08985213, 
tension constant γ was set to 0.0072 kcal/(mol Å2). 

 

 SwissADME (Daina et al., 2017) was used. In the design of therapeutics, 
  the pharmacokinetic properties, safety, potency and selectivity are al- 
3. Results and discussion  ways considered. Lipophilicity (LogP) is a very essential feature to be 
  considered in the interaction between a chemical compound and its 
3.1. Binding site prediction and validation  biological target. The permeability of a compound across the lipid bi- 
  layer is a function of the value of its lipophilicity, hepatic clearance or 

The binding site of CTLA-4 was predicted using site map (Halgren, solubility (Sciences, H., 2009). A chemical compound having a LogP 
2009), and cross-validated with the aid of MetaPocket site identifica- value between 2 and 3 shows a highly favorable potential of achieving 
tion tool (Huang, 2009). A binding pocket was predicted, and con- permeability and first pass clearance (Muheem et al., 2016). From 
stitutive residues are shown in Table 1. This binding pocket was chosen Table 2 below, it is seen that ZINC04515726, ZINC08985213 and TDSO 
based on the drugabbility (Dscore) score, which measures the ability of have LogP values of 2.43, 2.38 and 2.53 respectively, indicating that 
a protein to tightly bind small molecules.  these three compounds have the potential to achieve membrane 
Table 1  
Constituent residues of predicted CTLA-4 binding site.   

Binding site identification (residues)  
 

Biological target Site Map MetaPocket 
CTLA-4 Tyr24, Ala25, Ser26, Gly28, Lys29, Ala30, Thr31, Val33, Tyr53, Tyr24, Val33, Tyr53, Met55, Gly56, Gly73, Asn74, Ala30, Ser71, Ser72, Thr31, Gln75, 

 Met55, Gly56, Ser69, Gly71, Asn72, Leu 95 Lys29,Gly28, Leu97, Ser26, Ala25, Met54 Asn57 
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Fig. 2. Graphical representation of kallikrein and CTLA-4 binding site similarity between Kallikrein 7 and CTLA-4. Similar binding site residues are highlighted in red. 

 
 
permeability and first pass clearance. The gastrointestinal absorption of the 
compounds is high indicating that they can easily be absorbed by the GIT, 
which is favorable for their respective biological transport towards CTLA-4. 
Likewise, their inability to pass through the blood brain barrier (BBB) could 
indicate their suitability for targeting cancers  

 
 
cells not found in the central nervous system (CNS). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. 2D structures of ZINC04515726 and ZINC08985213. 
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Table 2  
Comparative analyses of the pharmacokinetic profile of TDSO, ZINC04515726, and ZINC08985213.   
 TDSO ZINC04515726 ZINC08985213 
    

Molecular Formula C24H28OClN5O5 C2OH2ON4O4 
C

18
H

14
C

l2
N

4
O

4 

Molecular Weight (g/mol) 501.96 380.40 421.23 
Lipophilicity (LogP) 2.53 2.43 2.38 
Water Soluble Soluble Moderately Soluble Poorly Soluble 
GIT absorption High High High 
BBB Permeability Not Permeable Not Permeable Not Permeable 
Bioavailability Score 0.55 0.55 0.55 
Synthetic accessibility 4.24 3.30 3.18 
Druglikeness (Lipinski) Yes Yes Yes 
“Bioled egg” structure     

 
 
 
 
 
 

 
Table 3  
MM/PBSA binding free energy profiles of TDSO, ZINC04515726, and ZINC08985213 to CTLA-4.   
 Eele (kcal/mol) Evdw (kcal/mol) Egas (kcal/mol) Gsol (kcal/mol) Gbind (kcal/mol) 
       

TDSO −6.35 ± 3.41 −36.01 ± 3.41 −42.36 ± 7.88 13.86 ± 6.80 −28.51 ± 3.57 
ZINC04515726 −5.48 ± 5.51 −33.28 ± 4.70 −38.76 ± 6.02 15.00 ± 5.12 −23.76 ± 4.66 
ZINC08985213 −8.41 ± 7.93 −26.18 ± 5.46 −34.59 ± 10.04 13.56 ± 7.73 −21.03 ± 5.43 

   

Eele = electrostatic energy;  EvdW = van der Waals energy;  Gbind = total binding free energy; Gsol = solvation free energy Egas = gas phase free energy.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Individual energy contributions of crucial binding site residues to high-affinity binding and stabilization of TDSO. [A] Per-residue decomposition plot showing energy contributions 

of interacting residues [B] Molecular interactions between essential residues and reactive substituent on TDSO. 

 
3.3. Post-molecular dynamics simulation analysis 
 
3.3.1. Differential binding of TDSO, ZINC04515726 and ZINC08985213 to 
CTLA-4  

The MM/PBSA is used to calculate the free energy difference be-tween two 
different solvated conformations of the same molecule (Genheden and Ryde, 
2015). To determine the effect of inhibitor binding to CTLA-4, post-dynamic 
calculation of MM/PBSA was carried out. These binding affinities provide us 
with the information of each amino acid residue toward the total binding 
affinity. As estimated, the three compounds exhibited favorable binding as 
evidenced by their 

 
high negative energies. From Table 3, TDSO had a G value of  
−28.51 kcal/mol while ZINC04515726 and ZINC08985213 have G values of 
−23.76 kcal/mol and −21.03 kcal/mol respectively, which could suggest strong 
and high affinity binding.  

Furthermore, we investigated key binding site residues and their respective 
roles in the differential binding of TDSO, ZINC04515726 and ZINC08985213 
towards CTLA-4. This was carried out by decomposing the G binding free 
energy into electrostatic, van der Waals and total energies using an MMPB/SA-
integrated per-residue energy decom-position method. As shown in Figs. 5A–
7 A, Tyr24, Ala25, Gly28, Ala30, Tyr53 and Asn72 play crucial roles in the 
binding of the respective 
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Fig. 5. Individual energy contributions of crucial binding site residues to high-affinity binding and stabilization of ZINC04515726. [A] Per-residue decomposition plot showing energy 

contributions of interacting residues [B] Molecular interactions between essential residues and reactive substituent on ZINC04515726.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Individual energy contributions of crucial binding site residues to high-affinity binding and stabilization of ZINC04515726. [A] Per-residue decomposition plot showing energy 

contributions of interacting residues [B] Molecular interactions between essential residues and reactive substituent on ZINC04515726. 

 
compounds as evidenced by considerably high electrostatic energy 
contributions. Tyr24, Ala25, Gly28, Ala30, Tyr53 and Asn72 had electrostatic 
contributions of −7.63, −8.23, −7.76, −8.76, −7.99 and −7.92 kcal/mol 
respectively towards TDSO, while in ZINC04515726, energy contributions of 
these residues were −7.4, −8.18, −7.27, −8.67, −7.6, and −80.4 kcal/mol 
respectively. These residues also had −7.63, −8.13, −7.75, −8.85, −7.58 and 
−7.68 kcal/mol electrostatic energy contributions towards ZINC08985213 
binding to CTLA-4. Moreover, in the three systems, there were appreciable van 
der Waals energy contributed by Tyr24, Tyr53, and Leu95, TDSO had −1.34, 
−1.41 and −1.1 kcal/mol con-tributed respectively. ZINC08985213 had −1.43, 
−1.41 and −1.06 kcal/mol contribution, while Tyr53, and Leu95 contributed 
mostly to the van der Waals energy in the binding of ZINC04515726 to CTLA-
4 with energy contributions of 1.41 and 1.11 kcal/mol respec-tively. 
 
 

The nature and types of the occurring interactions were further vi-sualized 
with the aid of Discovery studio 2016 Client to gain additional 

 
insights into the mechanistic interactions of the respective ligands with key 
active site residues with respect to high-affinity binding and sta-bility. As 
shown in Figs. 4B–6 B, strong hydrogen bonds (NHeO, CHeO and OHeO) as 
well as weak pi-pi stacked, pi-alkyl and pi-sulfur inter-actions were observed, 
which altogether contributed to the binding of the respective ligands to CTLA-
4. These high-affinity interactions could also account for the high electrostatic 
energies observed on the per residue decomposition plot which altogether could 
possibly underlie the high-affinity inhibitory activity of these compounds 
towards CTLA-  
  Although the mechanisms of charge transfer or complementary bond 
formation were not investigated in this study, we propose that the use of other 
quantitative techniques such as QM or QM/MM in future stu-dies would 
provide more insights. 
 
3.3.2. Structural elucidation in the binding of TDSO, ZINC04515726, and 
ZINC08985213 to CTLA-4  

To understand the structural events associated with the inhibitory activity 
of TDSO, ZINC04515726, and ZINC08985213 towards CTLA-4, 
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Fig. 7. Conformational analysis plot showing stability and atomistic motions among unbound (black), TDSO (red), ZINC04515726 (green) and ZINC08985213 (blue) bound 

systems. [A] Whole-structure comparative C-α RMSD plot of the four systems. 

 
Fig. 8. [A] C-α RMSD plot showing active site stability among 

unbound (black), TDSO (red), ZINC04515726 (green) and 

ZINC08985213 (blue) bound systems. [B] Comparative C-α RMSD 

plot depicting the stability and motion of TDSO (red), ZINC04515726 
(green) and ZINC08985213 (blue). [C]Superimposition of TDSO 
(red), ZINC04515726 (green) and ZINC08985213 (blue).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
it was necessary to analyze the structural stability of the simulated systems. As 
such, the root of mean square deviation (RMSD) of C-α atom across the 150 ns 
simulation period was monitored. As shown in Fig. 7A, the systems converged 
early in the simulation period until about 10 ns where the systems showed 
distinct separations in motions. Whole structural RMSD analyses revealed that 
unbound CTLA-4 ex-hibited the highest C-α deviation (RMSD ≥ 2 Å) 
compared to the bound protein-forms which had lower motions (Fig. 7A). 
Moreover, the binding of the respective ligands elicited notable structural 
perturba-tions on the proteins correlative of their conformational instabilities. 
This could also have possible effects on protein motions thereby im-peding 
their involvements in pathologic interactions. Estimated mean values for 
unbound CTLA-4 was 1.48 Å while values of 1.05 Å, 1.16 Å and 1.13 Å were 
estimated for TDSO-, ZINC08985213- and ZINC04515726-bound systems 
respectively. 
 

We also investigated the impacts of the respective compounds on the 
architecture of CTLA-4 binding pocket with respect to their antag-onistic roles. 
As presented in Fig. 7B, atomistic motions were higher at 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
the active site of unbound CTLA-4 while the presence of the ligands lowered 
C-α motions of constituent active site residues. This could be due to possible 
‘pulling-effects’ elicited by complementary ligand-re-sidual interactions that 
are crucial for high-affinity binding (Fig. 7B). 

The motions of the respective ligands at the binding pockets of CTLA-4 
was also estimated as presented in Fig. 8. Findings revealed that the compounds 
showed uniform and stable motions until about 90 ns where the patterns of 
motions appeared distinct. While TDSO showed a more stable motion at the 
binding pocket, the identified hits; ZINC04515726 and ZINC08985213, 
demonstrated similar alterations in motions. Consequently, the smaller sizes of 
both hits, relative to TDSO could favor their optimal motions at the binding 
cavity.  

Under physiological conditions, proteins like any other molecules undergo 
fluctuations in their structures (Fuglebakk et al., 2012). Therefore, the dynamics 
of a protein is equally as important as its structure. The interaction with a 
protein active site can alter the pro-tein’s functions. RMSF is calculated to 
determine the mobility of in-dividual residues within a protein (Hanwell et al., 
2012). To understand 
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Fig. 9. Structural flexibility induced by the binding of TDSO (red), ZINC04515726 

(green) and ZINC08985213 (blue) to unbound (black). 

 
and explore the structural dynamics (fluctuations) that occur upon li-gand 
binding, RMSF was carried out on the systems. Fig. 9 clearly shows high 
residual fluctuations of the ligand when compared to CTLA-  
[14] However, TDSO had a lower flexibility from residues 80 – 114. This 
residual fluctuation is possibly due to the impact of the ligands upon binding. 

 
4. Conclusion 
 

Antibodies have always been used in restoring T-Cell exhaustion, but due 
to the financial cost incurred in the production of these anti-bodies, small 
molecule inhibitors are thought to be a viable option to monoclonal antibodies. 
A drug repositioning and pharmacophore modeling approach was used to 
discover 1, 3, 6-trisubstituted 1, 4-diazepane-7-ones which is an inhibitor of 
Kallikrien-7. The che-moinformatic analysis of ZINC04515726 and 
ZINC08985213 showed they are drug-like having obeyed the Lipinski rule of 
five. MMGBSA revealed that 1, 3, 6-trisubstituted 1, 4-diazepane-7-ones has 
the highest binding energy value compared to ZINC04515726 and 
ZINC08985213. The aforementioned results suggest that 1, 3, 6-tri-substituted 
1, 4-diazepane-7-ones can be a good anti-CTLA-4. 
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Abstract: For the past few decades, the mechanisms of immune responses to cancer have been 
exploited extensively and significant attention has been given into utilizing the therapeutic potential 

of the immune system. Cancer immunotherapy has been established as a promising innovative 

treatment for many forms of cancer. Immunotherapy has gained its prominence through various 

strategies, including cancer vaccines, monoclonal antibodies (mAbs), adoptive T cell cancer therapy, 

and immune checkpoint therapy. However, the full potential of cancer immunotherapy is yet to be 

attained. Recent studies have identified the use of bioinformatics tools as a viable option to help 

transform the treatment paradigm of several tumors by providing a therapeutically efficient method 

of cataloging, predicting and selecting immunotherapeutic targets, which are known bottlenecks in 

the application of immunotherapy. Herein, we gave an insightful overview of the types of 

immunotherapy techniques used currently, their mechanisms of action, and discussed some 

bioinformatics tools and databases applied in the immunotherapy of cancer. This review also 

provides some future perspectives in the use of bioinformatics tools for immunotherapy. 
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1. INTRODUCTION  

Cancer is still a major global health concern due to its 
high incidence and rapid mortality rate for the past decades 
* Cancer is a broad term for a collection of related diseases 
that involves abnormal cell growth with the tendency of 
spreading to other parts of the body [1, 2]. The global 
statistics, reported for the year 2018, identified cancer as the 
second leading cause of mortality ranking behind 
cardiovascular diseases, worldwide [3]. The report also 
suggested that cancer has the potential of becoming the 
leading cause of death worldwide with a projected increase of 
18.1million new cases by the 21st century [3]. Cancer is 
known to develop in various parts of the body, including the 
lung, breast, prostate area, liver, cervix, and many more. 
Among the common cancer types, lung cancer is identified to 
be frequently diagnosed among populations and is reported to 
be the leading cause of mortality with an estimated 18.4% of 
all cancer deaths [3]. Female breast  
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cancer closely followed this with an estimated 11.6% and then 
prostate cancer, with 7.1% of the total cancer deaths [3].  

Current available therapeutic strategies employed in 
treating cancer include surgery, radioactivity, targeted 
therapy, immunotherapy, and chemotherapy [4, 5]. These 
treatment options have provided notable advances towards 
eradicating primary tumors, however, the prevalence of 
disease relapse remains on the rise as a result of residual 
malignant cells [6, 7]. A search for viable therapeutic options 
that will eliminate resistant malignant tumor cells is 
warranted. Cancer results is a result of of many abnormal 
cells, and includes old and ruptured cells as well as the 
formation of unwanted new cells, which collectively grow and 
become malignant cells known as tumors [8]. Cancer cells 
develop when the gene that controls growth and 
differentiation in normal cells undergoes alterations [9]. The 
implicated genes are categorized as oncogenes, where they aid 
cell growth and reproduction and tumor suppressor genes that 
impede cell division and survival. Targeting these tumor cells 
has been exploited to be important in developing therapeutic 
agents to eliminate the cancer epidemic[10]. The immune 
system has proven to be an attractive route for defeating 
cancer in recent times due to its ability to induce anti-tumor 
response [11-14]. 
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Fig. (1). Classification of cancer immunotherapy. 

 
1.1. The Immune System’s Mechanism of Action Against 

Cancer 
 

Clinical studies suggest the existence of a close relationship 
between the immune systems and the treatment of cancer [7, 9]. 
The body’s immune response comprises the humoral and cellular 
immunities, both of which are mediated by the B and T 
lymphocytes, also known as B cells and T cells, respectively [7, 
15]. The B cells produce antibodies that neutralize extracellular 
microbes and toxins, while T cells are responsible for eliminating 
intracellular microbes by recognizing antigens and activate 
antigen- presenting cells (APCs)[16, 17]. The immune system 
plays a very important role in eliminating cancer through innate 
and adaptive immunity [18]. It has been established that cancer, 
as a genetic entity, triggers both the innate and adaptive immune 
response during its evolution [16, 19]. The innate immune system 
can stimulate the response from B cells and T cells by releasing 
signals [19]. While the adaptive immune system is known to 
consist of B cells, CD8+ cytotoxic T cells, as well as CD4+ 
helper T cells [16]. Antigen -presenting cells (APCs) play a 
crucial role in the immune process as they bridge the innate and 
adaptive immune systems by identifying unfamiliar antigens and 
presenting them to T lymphocytes during an immune response. 
The natural killer (NK) cells of the T lymphocyte produce a 
pleiotropic cytokine known as interferon-gamma (IFN-γ)[20]. 
This IFN- 
 
  plays an important role in the interface of innate and 
adaptive immune systems by signaling an increase in 
expression of Major histocompatibility complex (MHC I) and 
induce the expression of MCH II molecules on target cells and 
therefore, increasing their ability to display antigenic peptides 
to the cytotoxic T lymphocytes to trigger an immediate 
immune response[21]. Incase these peptides are derived from 
a tumor-associated antigen (TAA), IFN -γ could result in 
increased TAA- specific cytolytic CD8+ T lymphocytes 
(CTLs) activation and T cell-mediated tumor killing[20, 21]. 
The CTLs form the basis of the immune response towards 
combating cancer [22]. Cancer immunotherapy encompasses 
a wide scope of techniques that aim to improve the immune 
response against tumors. This review focuses on the 
techniques employed in cancer immunotherapy and gives an 
overview of bioinformatics strategies applied in cancer 
immunotherapy as well as some future perspectives in cancer 
immunotherapy. 

 
1.2. Techniques used in Immunotherapy of Cancer 
 

The last few decades have witnessed groundbreaking 
research geared towards immuno-oncology studies. This has 
provided intriguing advances that suggest tumors are 
recognized by the immune system and the growth of these 
tumors can be restrained for a longer period through the 
process of immune -surveillance [23]. The early efforts to 
harness the immune system in cancer control were pioneered 
by Dr. William B. Coley in the 1890s. Coley worked on the 
first immunotherapy to treat cancer by using toxins extracted 
from Streptococcus erysipelatis and Bacillus prodigious  
[15] However, there was a limited clinical efficacy as a result 
of unrecognized tumor cells evading the immune system. 
Since then, there has been tireless efforts by researchers to 
provide insights on how cancer evades the immune system 
with the aim of developing novel pathways to eliminate the 
disease. Cancer immunotherapy has been categorized into 
active and passive immunotherapies, based on their ability to 
engage the immune system of a host against cancer. As shown 
in Fig. (1). passive and active immunotherapy has further been 
divided in various strategies. The cancer immunotherapy 
strategies discussed in this review include; checkpoint 
therapy, cancer vaccines, adoptive T cell therapies and 
monoclonal antibodies. 
 
1.3. Immune Checkpoint Inhibitors and Monoclonal 

Antibodies 
 
1.3.1. Immune Checkpoint Inhibitors 
 

The application of immune checkpoint inhibitors has 
gained recognition as the most advanced approach to 
therapeutically explore the antitumor activity in cancer cells 
[25, 26]. The immune checkpoint strategy has a lot of recent 
clinical success, especially towards patients with several 
cancer types. This type of immunotherapeutic strategy focuses 
on target identification and is mediated by ligand-receptor 
interactions. The strategy derives its idea from the ability of 
the immune system to clearly distinguish between normal 
cells of the body and foreign ones to trigger an immune 
response [27, 28]. The immune system has checkpoints that 
enable easy identification of foreign cells to initiate an attack. 
Some of the suitable immune checkpoint targets include; 
Programmed death 1 (PD-1), T-cell 
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Fig. (2). 3D structures of A) Programmed  Death  1(PD-1)  in  complex  with  Programmed  Death  Ligand  1  (PD-L1) PDB  code:  3BIK B) 
PD-L1  in  complex  withDurvalumab inhibitor (PDB code: 5X8M) C) Cytotoxic antigen – 4 receptor CTLA-4(Light green) in complex with 

Ipilimunab (brown) PDB code: 5TRU 
. 
 
immunoglobulin and mucin domain-3 (TIM-3), Lymphocyte-
activation gene 3 (LAG- 3), and Cytotoxic antigen-4 (CTLA-
4) [29, 30]. However, Programmed death  
[10] (PD-1) and Cytotoxic antigen-4 (CTLA-4) are the 
most widely studied [27, 31]. Cancer cells usually develop 
ways to use these checkpoints to evade attacks from the 
immune system. Therefore the drugs that target these 
checkpoints are readily developed and hold a lot of promise 
as a cancer treatment. The checkpoint immune technique has 
been identified as one of the most remarkable 
immunomodulating therapies of present-day [32].  

PD-1 is a checkpoint protein found in T cells of the 
immune system. It helps in keeping the immune response in 
check by acting as an off control to prevent T cells from 
eliciting an attack on other body cells [33]. This is possible 
when it binds to another protein known as Programmed 
Death-Ligand 1 (PD-L1) as shown in Fig 2A, which helps to 
prevent the T cells from killing other cells. Some cancer cells 
are known to possess large amounts of PD-L1, an adaptation 
that helps in evading attacks from the immune system [33-
35]. However, this binding of PD-1 to PD- L1 can be blocked 
by some specific antibodies known as monoclonal antibodies 
[19]. Several drugs have been developed that target PD- 1 and 
are very promising towards treating cancer. Examples of 
drugs that target PD-1 include Pembrolizumab (Keytruda) 
[36], Nivolumab (Opdivo) [37], cemiplimab (Libtayo)[38]. 
Examples of drugs that target PD-L1 include Atezolizumab 
(Tecentriq) [39], Avelumab (Bavencio)[40], Durvalumab 
(Imfinzi), their 3D structure shown in Fig. (2B) [41]. The 
CTLA-4 checkpoint protein is expressed in the regulatory T 
cells but is only upregulated in the conventional T cell 
activation. It also acts as an “off switch” when binding to 
CD08 and CD86 on the surface of antigen-presenting cells 
(APCs)[42]. Ipilimumab is a known inhibitor of CTLA-4 
protein (shown in Fig. 2C) and acts by keeping this protein 

 
active to enable an attack on cancer cells [12, 43]. A summary 
of checkpoint inhibitors and the cancer type involved are 
shown in Table 1. Some notable setbacks in the use of immune 
checkpoint therapies are: some patients fail to respond to this 
technique and also the drugs used in this therapy can cause the 
failure of the immune system to identify cancer cells and may 
rather attack body cells causing undesirable outcomes [32]. 
 
1.4. Monoclonal Antibodies (mAbs)  

This cancer treatment strategy has been acknowledged as 
one of the most successful therapeutic strategies for both 
hematologic malignancies and solid tumors for the past 
decade [7, 60, 61]. Monoclonal antibodies are identical 
antibodies produced in the laboratory from a single clone of 
immune cells. During the process, a mouse was vaccinated 
with the target antigen. This stimulated the B cells in the 
spleen to produce antibodies against the target antigen. The 
spleen of the mouse was removed and the B cells were isolated 
and fused with a tumor cell to form hybridoma cells. This was 
necessary because tumor cells divide more easily and rapidly 
than B cells. These hybridoma cells then reproduced rapidly 
to make cloned cells, which all constituted the same antibody. 
The resulting antibodies were purified and directed to target a 
specific part of deregulated signals transduction pathways in 
cancer or hinder immunological processes [61, 62]. MAbs 
have a high specificity as they easily recognize and bind to a 
single antigen- binding site making them useful in diagnosing 
and treating a disease. They can combine with an anticancer 
drug to accurately locate and target only the cancer cells whilst 
avoiding the healthy ones. In addition to this, mAbs carry 
special markers that enable easy detection of where cancerous 
cells are starting to build. Monoclonal antibodies can be used 
to trigger the body’s immune system to 
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Table 1. Checkpoint inhibitors.  

Cancer Type Drug name Status Reference 
    
    

Melanoma 
Ipilimumab FDA approved [44][45][46] 

   

Pembrolizumab FDA approved [47]  
    

Melanoma, Prostate Enoblituzumab Phase I-III [48][49] 
    

 Ipilimumab Phase I-III [50] 
    

 Tremelimumab Phase I-III [51] 
    

 Nivolumab Phase I-III [52] 
    

 Pembrolizumab Phase I-III [36] 
    

 AMP-224 Phase I [53] 
    

Multiple cancers Pidilizumab Phase I-III [54] 
    

 Atezolizumab Phase I-III [55] 
    

 Avelumab Phase I-III [56] 
    

 BMS-936559 Phase I [57] 
    

 IMP321 Phase I [58] 
    

 BMS-986016 Phase I [59] 
    

Renal Cell Carcinoma Ipilimumab FDA approved [50] 
     
 
Table 2. A summary of some monoclonal antibodies used in immunotherapy of cancer.  

Antibody Mechanism Uses Target Current Status References 
      
      

Cetuximab 
Binds to and inhibits Metastatic colorectal ,Head & 

EGFR FDA approved [65] EGFR Neck cancer     
      

Bevacizumab 
Blocks angiogenesis by Glioblastoma, Lung, Colon 

VEGF FDA approved [66] inhibiting VEGF cancer     
      

Trastuzumab 
Targets HER2 to induce 

Metastatic Breast cancer HER2 FDA approved [67] an immune response      
      

Panitumumab 
Binds to EGFR to prevent 

Metastatic colorectal cancer EGFR FDA approved [68] its activation      
       
EGFR: Epidermal Growth Factor Receptor, VEGF: Vascular Endothelial Growth Factor, HER2: Human Epidermal Growth Factor Receptor 2. 

 
recognize and eliminate cancer cells. Recently, the FDA 
approved several mAbs for the treatment of both solid tumors 
and hematological malignancies [61, 63]. Available reports 
suggest that using monoclonal antibodies against PD1 and 
CTLA-4 has been regarded as an important breakthrough in 
cancer immunotherapy [64]. This strategy proved to be 
efficacious towards patients with metastatic melanoma 
evidenced by the antitumor response and an increase in 
overall survival rate of patients treated with ipilimumab, a 
known monoclonal antibody that targets CTLA-4 in humans 
[64]. Clinical trials of monoclonal antibodies are ongoing for 
several types of cancers. 
 
1.5. Cancer Vaccine 
 

Another immunotherapeutic technique used in treating 
cancer is the use of vaccines. Most vaccines work by 
introducing a non-infectious version of a disease-causing 
microbe into an individual, thus providing a better stimulus to 
activate disease-specific T cells and to develop 
immunological memory. Immune memory cells can destroy 
microbes rapidly and prevent infection. This form of 
procedure has resulted in eradicating smallpox disease [69]. 

 
Cancer vaccine therapy differs from immunotherapies in that 
it initiates the immune system’s activation in order to regain 
equilibrium between tumor cells and normal cells of the body 
[11, 70]. Like viral-targeted vaccines, cancer vaccines do not 
prevent infection but rather activate the immune system to 
combat a disease that already exists [69]. Most cancer 
vaccines are made of cancer cells, cell parts, or pure antigens. 
The immune cells of a patient are often isolated and exposed 
to antigens of cancer, and once activated, these immune cells 
are reintroduced into the patient's body and so that they are 
better able to suppress cancer cells [69]. Cancer cells develop 
from normal body cells, these cancer cells can be recognized 
as antigens (foreign substance) by immune cells known as 
dendritic cells [71]. These dendritic cells act as a commander 
to the immune system by initiating phagocytosis of cancer 
cells. Signals are sent to the lymphocytes to fight against these 
foreign substances [72]. The first anti-cancer vaccine was 
approved in 2010 by the Food and Drugs Authority (FDA). 
The vaccine is known as sipuleucel-T (Provenge) and is 
actively used for patients with metastatic, castration-resistant 
prostate cancer (CRPC)[73]. Sipuleucel-T is developed to 
stimulate T-cell immune responses against prostatic acid 
phosphatase (PAP), 
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Fig. (3). Adoptive T cell therapy. 

 
an antigen that is expressed on most prostate cancer cells  
[39] Recently, the FDA approved the use of hepatitis B virus 
vaccines (HBV) and human papillomavirus vaccines (HPV). 
These two vaccines work by stimulating the immune system 
with tumor peptides and antigens [9]. Cancer vaccines have 
varying side effects from patient to patient, however, the 
regularly reported side effect includes the inflammation at the 
site of the administered injection [72]. 
 
1.6. Adoptive T-cell Therapy (ACT) 
 

In this immunotherapy strategy, T- cells are infused into a 
cancer patient to identify, target, and eliminate tumor cells 
from the body [75]. The mechanism of action in this technique 
involves extracting specific tumor cytotoxic T cells from a 
patient’s blood and developing in the laboratory and then 
infused back into the patient to attack cancer cells, as shown 
in Fig. (3 ) [76]. This mechanism helps the immune system in 
fighting cancer cells. The T cells can sometimes be subjected 
to genetic modification and cultured in the laboratory to be 
more specific in targeting cancer cells [77, 78]. Adoptive T 
cell therapy consists of chimeric antigen receptor T -cell 
(CAR T-cell) and tumor-infiltrating lymphocyte (TIL)[76, 
77]. The main difference between these two types relies on 
laboratory modifications. In the TILs method, tumor-specific 
cytotoxic T cells are extracted from the patients' tumor and 
modified in the laboratory with substances that easily activate 
lymphocytes and then given back to the patient, while in the 
CAR T-cell method, T cells extracted from a patient’s blood 
are modified by adding a gene that targets a special receptor 
known as chimeric antigen receptor, known to bind to a 
protein on cancer cells [33, 79]. Large quantities of these 
activated lymphocytes, as well as CAR T cells, are then 
infused back to the patient to help the immune system fight 
cancer [43, 79]. The ACT has  

 
gained prominence as a substantial strategy and shows great 
potential of being a curative technique for several cancers  
[38] Nonetheless, the widespread of this therapy in solid 
tumors is one of ACT's main future goals due to the 
difficulties in finding suitable target antigens and also for  
tumor immunosuppression and complex tumor 
microenvironment. Furthermore, ACT requires optimization 
to reduce toxicity and increase the effectiveness of anti-
tumors. Recent reports suggest that several ACT-based 
therapies are currently in the late-phase clinical testing, and 
some T cell therapies are already attaining regulatory approval 
for the treatment of patients with B cell malignancies. 
 
1.7. Combinatorial Cancer Immunotherapy 
 

Regardless of the notable clinical success of 
immunotherapy over other cancer treatment options, the 
approach is only favorable to some patients, as patients whose 
immune system fails to elicit an immune response, or faced by 
immune evasion, are left untreated[80]. This has led to the 
development of a combinatorial cancer treatment approach in 
recent times. This approach involves combining cancer 
immunotherapy along with other existing anticancer treatment 
strategies, an approach that has gained prominence 
significantly in preclinical or clinical studies[32]. A 
combinatorial strategy involving the checkpoint inhibitors 
with drugs that increase tumor immunogenicity, reduce tumor 
burden, and reverse tumor mediated immune suppression has 
recently been shown to be an effective and long-lasting 
antitumor response technique[15, 80]. This approach has 
shown remarkable success in several cancers and is beneficial 
to patients who fail to respond to checkpoint monotherapy. 



 

 

6 Combinatorial Chemistry & High Throughput Screening, 2020, Vol. 23, No. 2 Washah et al.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. (4). Bioinformatics tools for cancer immunology and immunotherapy. 

 
Anticancer treatment strategy such as radiotherapy is 

mostly used in combination with surgeries or chemotherapy, 
however, there are emerging regimens involving a 
combination of radiotherapy and immunotherapy treatments 
for cancer[81]. Ongoing studies suggest that a combination of 
radiotherapy and immunotherapies has a high potential of 
boosting abscopal response rates and will possibly expand the 
use of radiotherapy in the treatment for both local and 
metastatic diseases [82, 83]. Nonetheless, various preclinical 
studies are continuously being carried out to explore the role 
of radiation in combination with immune checkpoint 
inhibitors. A combination of epigenetic therapy and 
immunotherapy, such as checkpoint immunotherapy, has 
gained significant recognition in recent studies [84]. 
Epigenetic modulators, in combination with checkpoint 
inhibitors, are known to increase T cell infiltration in tumor 
microenvironments (TME), reduce Myeloid -derived 
suppressor cells (MDSC) in TME and augment surface 
expression of immune checkpoints [84]. 
 
1.8. Application of Bioinformatics Strategies in Cancer 

Immunotherapy 
 

Recent studies have shown an increase in the development 
of tumor tolerance to immunotherapy after a limited period of 
successful treatment. Cataloging, predicting, and selecting 
immunotherapy targets can be extensively addressed using 
the existing bioinformatics tools and biological databases. 
Identification and selection of antigens have many different 
features that depend both on the type and the application of 
antigens. Identification of 

 
potential antigens de novo from genomic sequence using 
bioinformatics tools is very difficult since the expression of 
proteins is regulated by an array of complex regulatory 
mechanisms, many of which are poorly understood [85]. As 
part of a long-established practice, tumor antigens are 
identified in vitro from serum by screening cDNA phage 
libraries, using the immunoassays [86] or proteomics -based 
screening [87], but bioinformatics tools are perfectly suited to 
aid this process, either by actively recognizing novel tumor 
antigens or by organizing and accessing information about the 
known tumor antigens in databases. The techniques discussed 
in this review include next-generation sequencing, epitope 
prediction, integrated data analysis and network modeling, 
HLA typing, sampling heterogeneity and modeling of tumor–
immune cell interactions (Fig. 4 ). All these techniques 
employ various tools in executing their function. 
 
1.9. Next-Generation Sequencing 
 

Next-Generation Sequencing (NGS) is a large parallel 
sequencing technology that has revolutionized the biological 
sciences [88] [85]. NGS provides quantitative insights into the 
tumor cell's molecular machinery, Improves transcript and 
gene expression profiling as well as detection of alternative 
splicing and enables the discovery of single nucleotide (SNV) 
variants, insertions, amplifications, deletions and inter 
chromosome rearrangements throughout the genome and 
transcriptome [85]. NGS uses tools such as HugeSeq, a fully 
integrated pipeline for NGS analysis from aligning reads to 
identification and annotation of all types of 
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variants (SNPs, Indels, CNVs, SVs)[89]. Sailana and 
colleagues applied HugeSeq to investigate the association of 
HSG with alopecia and mental retardation syndrome [90]. 
From this research, they were able to map a novel gene 
(APMR2) to chromosome 3q26.2-q26.31 [90]. Furthermore, 
using the same techniques, the APMR3 gene was mapped on 
chromosome 18q11.2 -q12.2 [90]. Another tool used in NGS 
is the SIMPLEX, an autonomous analysis pipeline for the 
analysis of NGS exome data, covering the workflow from 
sequence alignment to SNP/DIP identification and variant 
annotation[85]. It supports input from various sequencing 
platforms and exposes all available parameters for customized 
usage [85]. 
 
1.10. Integrated Data Analysis and Network Modeling 

Technique 
 

The integrated data analysis and network modeling 
technique enables one to comprehensively study molecular 
mechanisms of cancer cells and their interactions within the 
immune system [91]. The tools used in implementing this 
technique include ARACNe[92] and MINDy[93], which aid 
in the reconstruction of gene co-expression networks, genes 
(nodes) with comparable global expression profiles over 
samples (tumor/patients). These tools may also be integrated 
to identify key transcriptional regulators [91]. ARACNe was 
used to obtain a database of transcriptional interactions by 
using Arabidopsis thaliana root samples. Using ARACNe, 
Montes et al. discovered that the transcriptional regulatory 
networks, derived from this newly constructed database,  
successfully recover previously identified root transcriptional 
modules and propose new transcription factors for the short 
root/scarecrow and plethora pathways  
[33] DriverNet[95], PARADIGM, and CONEXIC[96] are 
additional tools for implementing the integrated data analysis 
and network modeling technique that are used to address the 
functional importance of specific genome alterations, identify 
which pathways are affected. As well as identify mutations 
likely to be drivers in tumor progression  
[41] Fig. (4) summarizes examples of bioinformatics 
techniques and tools for immunology and immunotherapy. 
DriverNet was used to identify driver genes through the 
integration of multi-omics data, such as somatic mutation, 
gene expression, and copy number alterations [97].  
1.11. HLA Typing  

HLAs possess very high polymorphic region and have 
been touted as the most polymorphic segments present in the 
human genome [98]. This high polymorphism has made it 
difficult to unravel the HLA-mediated immunogenic 
correlation of immuno-pathologies [98]. HLA typing is 
employed in organ transplants to get a corresponding potential 
donor that matches with a patient [99]. As technology 
advances, HLA typing has concurrently advanced. It was 
originally carried out by using hybridization strategy, 
serological typing, cellular typing, DNA-based typing and 
restriction fragment length polymorphism (RFLP) 
techniques. Polymerase Chain Reaction approach and direct 
sequencing capillary electrophoretic analyses were later 
employed [100]. Wth current development in computation, 
second and third-generation sequencing platforms are now 
employed in HLA typing. This current approach has shown 
great potential and 

 
high predictability [100, 101]. Several HLA typing platforms 
have been reported, such as HISAT genotype [102], xHLA 
[99], HLA-HD [103], HLAscan [104]. There has been a rise 
in the amount of HLA sequences and new alleles deposited in 
HLA databases, such as the IMG/HLA database [105], CWD 
HLA allele [106]. HLA typing software, which has been 
developed for easy and rapid HLA typing, includes 
ATHLATES [107], POLYSOLVER [108], and OpiType  
[48] HLA typing of genes has been applied to unreported 
haplotypes to unravel the complexity of HLA-related 
pathological conditions and associated clinical subtypes. A 
typical example is the application of HLA typing in psoriasis, 
novel associations of HLA-DPB1 and BTNL2 genes and five 
loci among HLA-C, -B, -DPB1, and BTNL2 were discovered 
with the aid of NGS [98]. Furthermore, specific HLA 
associations were also reported for the overall risk of psoriasis 
vulgaris and the risk of its specific subphenotypes, such as 
psoriatic arthritis and cutaneous psoriasis [98]. 
 
1.12. Epitope Prediction 
 

B-cells are a very important component of the adaptive 
system, this is due to the long-lasting protection they provide 
to combat foreign assault or pathogenic onslaught [110]. 
Some cancer treatment and prevention strategies involve the 
use of vaccines. Bioinformatics has provided easy and fast 
means of vaccine development, however, it is expedient to 
first distinguish between epitopes that are immuno-protective 
and those that are not [111]. B-cell identification is paramount 
in many medical, biological, and immunological applications, 
such as the development of vaccines, control of disease and 
diagnosis [112]. Experimental techniques used in the 
identification of epitope include protein crystallography, 
ELISA, and peptide-chip, however, these methods are time-
consuming, , expensive, have a low-accuracy and low 
throughput generation [110]. Due to these experimental 
shortcomings, computational strategies have been developed 
to corroborate or as a stand-alone tool for epitope prediction. 
BepiPred [113, 114], DiscoTope [114, 115], CBtope [116], 
and ABCpred [117]. Epitope prediction has found useful 
applications in the design of vaccines against some diseases. 
Qamar et al. used some in silico bioinformatic approaches to 
design epitope-based vaccines against middle east respiratory 
syndrome coronavirus [118]. They identified conserved B and 
-T cells for the MERS-COV spike (S) protein that may 
perform a significant role in eliciting the resistance response 
to MERS-COV infection [118]. 
 
1.13. Sample Heterogeneity  

Deconvolution is the estimation of the relative immune 
cells that are present in a sample after DNA/RNA sequencing 
[119]. This is made possible through the recognition of 
biomarkers and employing their level of expression to 
discriminate cell types [120]. Tools used in deconvolution 
evaluation include CIBERSORT [121], TIMER [122], and 
MCP-counter [123]. They make use of expression data gotten 
from cell types generated by the Immunological Genome 
Project (ImmGen) [124]. TIMER has the capacity to evaluate 
6 immune subtypes, CIBERSORT evaluates 22 immune cell 
subtypes, and MCP- 
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counter evaluates 8 immune cell subtypes and 2 stromal cell 
subtypes. MCP-counter evaluates absolute abundances, while 
CIBERSORT and TIMER evaluate relative frequencies of 
immune cell subtypes [125]. 
 
1.14. Modeling of Tumor–immune Cell Interactions 
 

There is a long history of theoretical studies and 
simulation techniques involving mathematical and 
computational approaches to study tumor progression and 
tumor–immune cell interaction. Computational modeling has 
provided essential insight into studying intra-tumor 
heterogeneity and the vital interplay between the tumor and 
the surrounding microenvironment [126].. Computational 
models allow the investigation of the tumor-enhancing effects 
of the immune system providing indispensable insight aiding 
in the management of tumor-immune interactions. Modeling 
has consecutively provided a quantitative time- and cost-
effective avenue to study the physical and chemical 
interactions in tumor initiation growth[127]. The integration 
of molecular modeling techniques further complements 
experimental platforms by providing in-depth knowledge into 
clonal dynamics and microenvironmental cues over time. 
There are a number of techniques which include deterministic 
models, stochastic models, Petri nets, cellular automata, agent 
-based model, and hybrid approaches [128]. The integration 
of one or more of these models will help improve 
immunotherapies for cancer treatment. 
 
1.15. Future Perspectives 
 

The advent of computational methods in immunotherapy 
of cancer has helped transform the treatment paradigm of 
several tumors and is expected to influence the therapeutic 
efficiency of immunotherapeutic strategies in the future. The 
application of computational methods in cancer 
immunotherapy, however, has some limitations. First, the 
identification of T cell epitopes, using computational 
techniques, is not yet as accurate as peptide binding prediction 
algorithms. Moreover, the availability of tumor sequences 
represents a hold-up in conservation and variability, 
nonetheless, a remedy for this limitation is plausible in the 
near future as high-throughput screening is becoming readily 
affordable and more efficient. Additionally, these current 
methods may not adequately capture the issue of intra -tumor 
genetic diversity as such may affect the efficacy of 
immunotherapy and other cancer therapies alike. The use of 
proteomics analyses in immunotherapy has shown to be more 
prolific in the past years in contrast to genomic analyses. 
Some promising advances are currently being made in the wet 
laboratory to address these limitations in diverse ways. This 
will progressively boost the need for bioinformatics tools in 
cancer immunotherapy. 
 
CONCLUSION  

Cancer immunotherapy has gained a lot of recognition 
since its incision in the past decades by introducing very 
efficient strategies of using the body’s own immune response. 
The active cancer vaccine, immune checkpoint inhibitors, T 
cell adoptive therapiesare among these 

 
developments that have contributed to increased survival rate 
among patients. Despite these advances, emerging research in 
the interdisciplinary fields of bioinformatics, immunotherapy, 
and immunology is significant to further enhance therapeutic 
advantage and reduce side effects. Studies presented in this 
review provide a general overview of cancer immunotherapy 
giving some insights into the relationship of cancer and the 
immune system. Furthermore, some immunotherapeutic 
strategies were discussed, including cancer vaccine, immune 
checkpoint inhibitors, T cell adoptive therapies, monoclonal 
antibodies, and combinatorial cancer immunotherapy. Finally, 
we discussed some of the applications of bioinformatics tools 
in cancer immunotherapy and some future perspectives. As 
tumor cells’ response to immunotherapies is gradually being 
unraveled and the body of biological tumor data grows, so will 
the need for bioinformatics to organize, store, and analyze 
these data. 
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