

THE IMPACT OF TECHNOLOGICAL INNOVATION ON THE ROLE OF THE QUANTITY SURVEYOR IN INDUSTRY

by

Sanjivi Naidoo

216075681

A dissertation submitted in fulfilment of the requirements for the degree of

Master of Science in Construction Management

College of Agriculture, Engineering and Science, School of Engineering, Construction Studies Discipline,

University of KwaZulu-Natal

12 December 2017

Supervisor: Prof TC Haupt

COLLEGE OF AGRICULTURE, ENGINEERING AND SCIENCE **DECLARATION - PLAGIARISM**

I, Sanjivi Naidoo, declare that:

1. The research reported in this thesis, except where otherwise indicated or acknowledged, is my original work;

2. This thesis has not been submitted in full or in part for any degree or examination

to any other university;

3. This thesis does not contain other persons' data, pictures, graphs or other information, unless specifically acknowledged as being sourced from other

persons;

4. This thesis does not contain other persons' writing, unless specifically

acknowledged as being sourced from other researchers. Where other written sources have been quoted, then:

a. Their words have been re-written but the general information attributed to

them has been referenced;

b. Where their exact words have been used, their writing has been placed

inside quotation marks, and referenced;

5. This thesis does not contain text, graphics or tables copied and pasted from the Internet, unless specifically acknowledged, and the source being detailed in the thesis and in the

References sections.

A and as

Signed: Mr S Naidoo

Date: December 12 2017

As the candidate's Supervisors we agree to the submission of this thesis.

Signed: Prof T. Haupt

Date: December 12, 2017

ACKNOWLEDGEMENTS

To my Teacher, **Prem Rawat**, thank you for helping me keep my Focus – the War not the Battle. My morale was high because of your direction.

To my wife, **Belinda Naidoo**, thank you for your love, understanding, support, motivation and faith in me throughout my master's year.

To my mom and dad, **Mr and Mrs CP Naidoo**, thank you for always watching over me and giving me your support, strength and persistence.

To my sons, **Tiaryn and Traesan**, thank you for your understanding and assistance toward my share of the chores. I strive to be a positive role model in your life, and the master's study is a part of that Journey.

To my family and friends, thank you for all your support, patience, love and understanding in this journey.

To my supervisor, **Prof Theo Haupt**, thank you for all your guidance and support given to me.

I would sincerely like to thank my colleagues, particularly Jan and Ravi for every bit of your support during my master's year.

Thank you to all the QS professionals (the best profession in the World) for your participation in this study.

ABSTRACT

Rapid advancements in information technology has created a variety of new construction-related software packages and applications that have a significant influence on the role of quantity surveying. The extent of these developments need to be determined, as well as the examination of mitigating influences, which might have an effect on technology usage. The main objectives of this study was to determine whether emergent new technologies duplicated the activities of traditional QSs, and what, if any, areas and services rendered by QSs might be affected if new software packages and applications were embraced. The study examined whether these new technologies were used by QSs in their firms and practices to advance the range of the services they rendered to the construction industry, and whether QSs were embracing their full potential.

This study used quantitative methods and utilised questionnaires as the survey instrument for data collection. Relevant previous studies on technology and its potential to affect operations in construction were researched to guide the research design and methods. The collected data were statistically analysed using the Statistical Package for the Social Sciences (SPSS) v 25.

A sample of 178 QSs were drawn from the Durban area who were self-employed QSs as well as QS professionals employed in industry. The Association of South African Quantity Surveyors (ASAQS) and the South African Council for Quantity Surveying Professionals (SACQSP) databases provided the contact information of registered QSs practicing in Durban, KwaZulu-Natal. QSs without professional affiliations were also surveyed.

The findings of the study sought to improve the services currently offered by QSs and the potential of technological advancements and developments. This research found that larger firms in terms of annual turnover, employed more QSs; barriers to new technology adoption created limitations on technology acceptance; and high performance expectancies increased the ease of the use of technology/effort expectancy and subsequent acceptance of new technological advances. Further, the study found that new construction-related software packages and applications did not duplicate and affect the roles, functions, activities and services of traditional QS in the construction sector and that QSs had in fact embraced new technology and the potential it offered. The study also found that the acceptance determinants of technology usage affect the adoption of new technology by QSs, and in particular, social influence and top management support were the primary determinants for user acceptance of new technology in the QS industry. The findings also suggest that qualification has emerged as the biggest agitator to determinants of technology use, and that social influence and top management support are the biggest proponents for user acceptance of new technology in the QS industry; and this requires further investigation.

KEYWORDS: Quantity surveying, technology acceptance, Software, Innovation

ACRONYMS AND ABBREVIATIONS

AO: Area of Operation

ASAQS: Association of South African Quantity Surveyors

Ba: Barriers
Be: Benefit

BIM: Building Information Modelling

BoQ: Bills of Quantities

EE: Effort Expectancy

Exp: Experience

IBM: Internal Business Machines

IRC: Individual Resistance to Change

IT: Information Technology

LIMIT: Limitations

MM: Measurement Methods

NTA: New Technology Adoption

PE: Performance Expectancy

QS: Quantity Surveyor

QSs: Quantity Surveyors

Qualifications

RICS: Royal Institute for Chartered Surveyors

SACQSP: South African Council for Quantity Surveying Professionals

SI: Social Influence

SNE: Size in terms of Number of Permanent Employees

SAT: Size in terms of Annual Turnover

SPSS: Statistical Package for the Social Sciences

TDS: Technology Driven Services

TMS: Top Management Support

TP: Technology Potential

VU: Voluntariness of Use

TABLE OF CONTENTS

		PAGE
	Title Page	i
	Declaration – Plagiarism	ii
	Acknowledgements	iii
	ABSTRACT	iv
	Acronyms & Abbreviations	v
	CHAPTER ONE: INTRODUCTION	1
1.1.	Introduction	1
1.2.	Problem Statement/ Goal	3
1.3.	Hypothesis	3
1.3.1.	Sub-hypothesis	3
1.4.	Objectives	4
1.5.	Methodology	4
1.6.	Limitations	5
1.7.	Assumptions	5
1.8.	Ethical consideration	5
1.9.	Structure of the study	5
1.10.	Summary	6
	CHAPTER TWO: LITERATURE REVIEW	7
2.1.	Introduction	7
2.1.1.	Single rate approximate estimation	7
2.1.1.1.	Unit method	8
2.1.1.2.	Cube method	8
2.1.1.3.	Superficial method	8
2.1.1.4.	Storey enclosure method	8
2.1.1.5.	Approximate quantities	8
2.1.1.6.	Elemental cost analysis	8
2.1.1.7.	Comparative estimates method	8
2.1.1.8.	Interpolation method	9

	Cost planning	9
2.1.3.	Procurement advice	9
2.1.4.	Measurement and quantification	9
2.1.5.	Document preparation	10
2.1.6.	Cost control during construction	10
2.1.7.	Interim valuations and payments	11
2.1.8.	Financial statements	12
2.1.9.	Final account preparation	12
2.1.10.	Settlement of contractual claims	12
2.2.	Evolving roles	13
2.3.	Opportunities	14
2.4.	Challenges	16
2.5.	Acceptance models	17
2.5.1.	Performance Expectancy	17
2.5.2.	Effort Expectancy	17
2.5.3.	Facilitating Conditions	18
2.5.4.	Social Influence	18
2.5.5.	Top Management Support	18
2.5.6.	Individual Resistance to Change	18
2.6.	Mitigating Influences / Demographic Profile	19
2.6.1.	Age	19
2.6.2.	Area of Operation	19
2.6.3.	Experience	20
2.6.4.	Gender	20
2.6.5.	Qualification	20
2.6.6.	Size of firm	20
2.6.7.	Voluntariness of use	20
2.7.	Chapter Summary	21
	2.1.4. 2.1.5. 2.1.6. 2.1.7. 2.1.8. 2.1.9. 2.1.10. 2.2. 2.3. 2.4. 2.5. 2.5.1. 2.5.2. 2.5.3. 2.5.4. 2.5.5. 2.5.6. 2.6. 2.6.1. 2.6.2. 2.6.3. 2.6.4. 2.6.5. 2.6.6. 2.6.7.	2.1.4. Measurement and quantification 2.1.5. Document preparation 2.1.6. Cost control during construction 2.1.7. Interim valuations and payments 2.1.8. Financial statements 2.1.9. Final account preparation 2.1.10. Settlement of contractual claims 2.2. Evolving roles 2.3. Opportunities 2.4. Challenges 2.5. Acceptance models 2.5.1. Performance Expectancy 2.5.2. Effort Expectancy 2.5.3. Facilitating Conditions 2.5.4. Social Influence 2.5.5. Top Management Support 2.5.6. Individual Resistance to Change 2.6. Mitigating Influences / Demographic Profile 2.6.1. Age 2.6.2. Area of Operation 2.6.3. Experience 2.6.4. Gender 2.6.5. Qualification 2.6.6. Size of firm 2.6.7. Voluntariness of use

	CHAPTER THREE: RESEARCH METHODOLOGY	22
3.1.	Research design	22
3.2.	Research approach	22
3.2.1.	Qualitative approach	22
3.2.1.1.	Qualitative Research Methods	24
3.2.2.	Quantitative approach	25
3.3.	Research methods	27
3.4.	Instrument design	28
3.5.	Population and sample	29
3.5.1.	Population	29
3.5.2.	Sample and sampling method	30
3.6.	Instrument administration	31
3.6.1.	Data collection and analysis	31
3.6.2.	Follow-up techniques	31
3.7.	Chapter summary	32
	CHAPTER FOUR: FINDINGS AND ANALYSIS	33
4.1.	Introduction	33
4.2.	Profile of Respondents	33
4.3.	Reliability	34
4.4.	Categorisation of scales	34
4.5.	Descriptive Statistics	35
4.5.1.	Determinants of technology usage	39
4.5.2.	Technology Potential	40
4.5.3.	Limitations	40
4.5.4.	Technology Driven Services	41
4.5.5.	Measurement Methods	41
4.5.6.	Benefits	42
4.5.7.	Barriers	42
4.6.	Adapted Acceptance Model	43
4.7.	Tests of Normality	46
4.8.	Bivariate Distribution	49
4.8.1.	SNE vs SAT	55

4.8.2.	Ba vs LIMIT	55
4.8.3.	PE vs EE	55
4.8.4.	PE vs IRC	55
4.8.5.	TMS vs FC	56
4.8.6.	TMS vs SI	56
4.8.7.	SAT vs SI	56
4.8.8.	Qual vs SI	57
4.8.9.	LIMIT vs SI	57
4.8.10.	Qual vs TMS	57
4.8.11.	Qual vs LIMIT	57
4.8.12.	Qual vs TP	58
4.8.13.	Qual vs Exp	58
4.8.14.	AO vs Ba	58
4.8.15.	Exp vs AO	59
4.8.16.	AO vs TDS	59
4.8.17.	VU vs AO	59
4.8.18.	VU vs Ba	60
4.8.19.	VU vs TMS	60
4.8.20.	VU vs LIMIT	60
4.8.21.	VU vs Exp	60
4.8.22.	Age vs TDS	61
4.8.23	Age vs Ba	61
4.8.24.	Age vs LIMIT	61
4.8.25.	MM vs TDS	62
4.8.26.	Be vs TDS	62
4.8.27.	FC vs Be	62
4.8.28.	Gender vs TP	62
4.8.29.	AO vs TDS	63
4.9.	Regression	63
4.10.	Chapter Summary	72

	CHAPTER FIVE: CONCLUSIONS AND	73
	RECOMMENDATIONS	
5.1.	Introduction	73
5.2.	The Problem Statement	73
5.3.	Hypotheses	73
5.3.1.	Sub-hypotheses	74
5.4.	Objectives	74
5.5.	Hypothesis Testing	75
5.6.	Sub-Hypothesis Testing	76
5.7.	Conclusion	78
5.8.	Recommendations / Further Testing	79
	REFERENCES	81
	APPENDIX A – ETHICAL APPROVAL	87
	APPENDIX B – INFORMED CONSENT :	89
	APPENDIX C – SURVEY QUESTIONNAIRE	93
	APPENDIX D – DATA SUMMARY & KEY	99
	ANALYSIS	

List of Figures

Description	Title	Page No.
Figure 1	Adapted User Acceptance Model	19
Figure 2	Evolved User Acceptance Model	43
Figure 3	Developed User Acceptance Model	70

List of Tables

Description	Description	Page
		No.
Table 1	Profile of Respondents	33
Table 2	Factors / Influence affecting Quantity Surveying	35
Table 3	Descriptive Statistics	37
Table 4	Instrument Measurement Analysis	44
Table 5	Normality Test	46
Table 6	Correlations between Constructs	50
Table 7	Qual vs SI – Model Summary	63
Table 8	Qual vs SI – Anova	63
Table 9	SAT vs SI – Model Summary	63
Table 10	SAT vs SI –Anova	64
Table 11	LIMIT vs SI – Model Summary	64
Table 12	LIMIT vs SI –Anova	64
Table 13	SAT & Qual vs SI – Model Summary	65
Table 14	SAT & Qual vs SI – Anova	65
Table 15	Qual vs TMS – Model Summary	66
Table 16	Qual vs TMS – Anova	66
Table 17	VU vs TMS – Model Summary	67
Table 18	VU vs TMS – Anova	67
Table 19	VU & Qual vs TMS – Model Summary	67
Table 20	VU & Qual vs TMS – Anova	68
Table 21	Total Variance Explained	68

CHAPTER ONE

INTRODUCTION

1.1. Introduction

Historically, in most construction projects, it is typically the Quantity Surveyor (QS) who determined the amount of work to be undertaken from the architects' drawings/plans, with full descriptions and quantities required of the material to be used in various construction activities. These descriptions and quantities for the entire project were contained in a document known as the Bills of Quantities (BoQ) (Odeyinka, 2009). Before the introduction of this comprehensive BoQ, each contractor and tradesman was required to develop their own particular BoQ. Over time, a consultant specialising in the production of BoQs came into being - namely a Quantity Surveyor. A single QS or QS firm compiled one BoQ document, which was then utilized by all project stakeholders as a means to manage the construction project finances and costs. The costs related to these services was shared between them (Othman & Mia, 2008). This development resulted in the current practice where the costs of the QS and resulting BoQ are borne by the client, the ultimate beneficiary of this arrangement. QSs are adept at dealing with all financial matters related to construction projects, from start to finish as well as being responsible, for example, for calculating the materials and labour used or to be used, preparing the legal and contract documentation and controlling all project-related costs (University, 2010). The QS produces a total shopping list essential for the built environment and project completion and preparation of final account (Rashid, Mustapa & Wahid, 2006).

Currently, QS functions involve numerous activities, which include the following traditional and evolved roles, namely:

Traditional Roles:

- Providing Approximate Cost Estimates;
- Advice on Procurement:
- Cost Planning;
- Measuring Items on Site;
- Preparing Bills of Quantities;
- Preparing Schedules of Works;
- Preparing Financial Statements;
- Controlling Costs Throughout Project; and

Assessing and Negotiating Tenders.

Evolved Roles:

- Investment Appraisal;
- Analysis of Financial Risks;
- Project Planning;
- Contractual Dispute Resolution;
- Facilities Management;
- Project Management;
- Insurance Valuations:
- Providing Insolvency Services;
- Measuring Environmental Impact and Costs;
- Managing Maintenance Programmes; and
- Cash Flow Accounting Forecasts (Fanous, 2012).

It is these activities that distinguish the discipline of quantity surveying from that of simple "brick counting." (Moss 2004 as cited by Cunningham, 2014). Quantity surveyors may be described as the cost managers of construction, who are initially involved with the capital expenditure phase of a building or facility which comprises the feasibility, design and construction phases, as well as the extension, refurbishment, maintenance and final demolition of a facility. QSs give guidance on design costs and budgets, prepare bills of quantities, check tenders, prepare interim valuations and advise on the value of variations. The contract price/sum is more often than not based on a bill of quantities which quantifies, as far as possible, every aspect of the works. The work activities of a QS include getting involved in interdisciplinary work, such as process engineering, chemical engineering plants or oil rigs, and as such need to understand all aspects of construction over the whole life of a building or facility (RICS, 2015).

The rapid growth and development of comprehensive user-friendly technology for the construction industry that include estimating software present a possible threat to the traditional roles of the QS in the construction sector. For example, the core traditional role of estimating the amount of resources required for a building project or measure and quantify all elements of a project can now be automatically performed by various software systems (Fanous, 2012). Consequently QSs have had to re-examine and re-evaluate the scope and types of services that they provided in the past. These include services such as facilities management, development

management, supply chain management, strategic development and portfolio advice, insurance valuations and building surveying, construction law, and construction and project management (Frei & Mbachu, 2009). Rapid technological innovative practices assist embracing organizations to achieve competitive advantage while at the same time remaining relevant (Kulasekara, 2013). Further, technology has replaced the many mundane elements of traditional quantity surveying by automating or assisting in these tasks while removing human error as far as is possible and increasing efficiency and promoting collaboration (Zhou etal, 2012).

1.2. Problem statement

The dynamic and rapidly evolving world of IT and the consequent development of many new construction-related software packages and applications which will potentially have a significant influence on the role of quantity surveying in the overall construction process demand a response from quantity surveyors operating in the KwaZulu-Natal province of South Africa in terms of whether these developments are perceived as an advancement, opportunity or threat to the QS profession, the extent of which has as yet not been determined in terms of performance expectancy, effort expectancy, facilitating conditions, social influence, top management support, individual resistance to change and the effects of factors such as gender, age, and experience.

1.3. Hypothesis

- Many new construction-related software packages and applications duplicate and affect activities and services of traditional QSs.
- Many QSs view the advent of new technology as a threat to their roles and functions in the construction sector.
- QSs regard the new technology as an opportunity to advance the range of their services that they render the construction industry.
- QSs have not embraced the new technology and its potential to improve and expand their service delivery.
- Several factors affect the willingness to adopt new technology in QS firms and practices.

1.3.1. Sub-hypotheses

- Performance expectancy affects the adoption of new technology by QSs
- ➤ Effort expectancy affects the adoption of new technology by QSs
- Facilitating conditions affect the adoption of new technology by QSs

- > Social influence affects the adoption of new technology by QSs
- > Top management support affects the adoption of new technology by QSs
- ➤ Individual resistance affects the adoption of new technology by QSs
- ➤ Gender affects the adoption of new technology by QSs
- Age affects the adoption of new technology by QSs
- Experience affects the adoption of new technology by QSs

1.4. Objectives

The primary objectives of the study are:

- To explore whether emergent new technologies duplicate the activities of traditional QSs.
- To determine the areas and services rendered by QSs that will be affected if new software packages and applications are embraced.
- To establish the extent of the perceived threat of technological changes to the roles and functions of QSs in construction.
- To examine whether the new technologies are used by QSs to advance the range of their services that they render the construction industry.
- To analyse the reasons why QSs are not embracing the potential that new technology offers.
- To examine the impact of performance expectancy, effort expectancy, facilitating conditions, social influence, top management support, individual resistance to change and other factors such as gender, age, and experience on the adoption of new technologies by QSs.

1.5. Methodology

The methodology to achieve the objectives of this research consist of:

- Data gathering.
- Data analysis and interpretation

The research adopted will be based on quantitative methods so that numerical data can be transformed into useable statistics and generalize results from a larger sample population. The sources of information will include workshop reports, books, seminars, newspapers, journals and newsletters. During the research, questionnaires will be the primary instrument to collect quantitative data because of the quantitative approach. The literature review will be from relevant previous studies on technology and its potential to affect operations in construction Collected data will be statistically analysed using the latest version of Statistical Package for

the Social Sciences (SPSS). The findings from this analysis will be discussed and compared with the literature reviewed. Conclusions will be drawn from the analysis and recommendations will be made derived from the findings of the study.

1.6. Limitations

- The sample will only include a representative sample of quantity surveyors practicing in KwaZulu Natal province;
- The study will be done over a limited time period of 18 months, from July 2016 to December 2017.

1.7. Assumptions

The study is based on the assumptions that:

• All participants in this study will give accurate and comprehensive responses to the issues around new technology that impact their work and practices;

and

• That respondents are aware of the range of new technology that exists and how it may affect the QS profession.

1.8. Ethical Considerations

To comply with internationally accepted ethical standards, no reference to actual names of individuals or companies will be recorded. In this way, no individual or company can be linked to particular research completed research instruments, thus ensuring anonymity. Respondents will not receive any monetary compensation in any manner or form for participation in this study. Quality assurance will be executed in the following manner:

- Accuracy of data capturing; and
- Accuracy in calculations.

1.9. Structure of the study

Chapter one introduces the research problem addressed by this study. It also sets out the hypotheses and research objectives evolving from the problem. This chapter briefly describes the literature and research methodology and notes assumptions, limitations and importance of the study to the construction project environment. The terms and abbreviations used in the study are also presented.

The second chapter reviews relevant literature and previous studies concerned with the historical development and sustainability of the QS discipline, range of services and impact/influence of the emergence of technological innovation.

Chapter three describes the research design and methodology employed to achieve the objectives of the study and test the various hypotheses.

Chapter Four presents the findings of the study after data analysis. Descriptive and inferential statistical analysis of the data demonstrates/confirms the trend relative to the uptake of technological innovation in the discipline.

Using literature to substantiate the findings, Chapter Five summarizes and concludes the study including hypotheses testing and draws inferences and conclusions with possible recommendations for further study.

1.10. Summary

This chapter contributes to the foundation of the thesis, portraying the range in QS services and the impact of technological innovation on the profession. The reason for the review is that QSs have not yet embraced new technology to the level that it needs to. In fact many QSs may view new technology adoption as a threat to their roles and functions. NTA has the potential to improve and expand service delivery of the profession, however several factors clearly emerge as hindering the uptake of NTA in the QS profession. These factors need to be analysed and investigated holistically so that solutions to these obstacles could be formulated; this will be conducted with the major aim being the evolution of the QS profession as well as securing its rightful place in the future of the construction industry.

CHAPTER TWO

LITERATURE REVIEW

2.1. Introduction

The motivation behind this literature review is to present a generic review of technological innovation on the role of the QS in industry. Technologies rapid advance has been especially impactful on the construction industry and on the roles of its professionals. The initial segment of this section illustrates a brief analysis of traditional roles undertaken by QS professionals and explores the effects of technological advancement on these roles. Thereafter, the opportunities as well as the challenges presented by the advent of NTA are reviewed. In conclusion, a review of associations between previous research in the form of the acceptance model and its mitigating influences are provided.

2.2. Traditional Roles

According to Ashworth (2010), and Ashworth, Hogg and Higgs (2013), traditional quantity surveying roles involve:

- 2.2.1. Single rate approximate estimation;
- 2.2.2. Cost planning;
- 2.2.3. Procurement advice;
- 2.2.4. Measurement and quantification;
- 2.2.5. Document preparation, especially bills of quantities;
- 2.2.6. Cost control during construction;
- 2.2.7. Interim valuations and payments;
- 2.2.8. Financial statements;
- 2.2.9. Final account preparation;
- 2.2.10. Settlement of contractual claims.

2.2.1. Single rate approximate estimation

QSs are involved in developing estimates for various purposes during the life cycle of a construction project. The single price rate technique alludes to the diverse techniques which rely on a solitary rate connected at the pre-design phase to create a surmised estimate with the restricted data accessible at this early phase of the planning stage. (Kirkham, 2007, as cited by Soutos & Lowe, 2011).

The most generically utilized estimation techniques are the unit, superficial and approximate techniques. Different techniques incorporate cube, storey enclosure, elemental cost examination, comparative assessments and interpolation techniques.

The decision of the technique utilized is regularly impacted by the data and time accessible, the skill of the surveyor and the sum and type of cost information accessible to him (Smith 1995b as cited by Soutos & Lowe, 2006).

The diverse techniques include:

- **2.2.1.1. Unit method** This strategy is regularly viewed as a method for establishing a correlation between structures so as to appease the design team that the expenses are justifiable in comparison to different structures of a comparative sort (Cartlidge, 2002).
- **2.2.1.2.** Cube method It used to be a technique broadly utilized by architects, they used to keep a cube book for estimating reasons; when the agreement was signed between the owner and the contractor, its expenses would be divided by the cubic content, then logged into the office costing book, and the cost of another occupation could then be controlled by figuring its volume and choosing a suitable rate from the book (Haron, 2015).
- **2.2.1.3. Superficial method** The cost of a building is ascertained similar to the cube technique; however, instead of volume, the area is utilized and the aggregate cost is then the result of the cumulative floor area of all the floors, multiplied by the unit rate per meter squared (Soutos & Lowe, 2006).
- **2.2.1.4. Storey enclosure method** This technique raises the value of the proposed structure in relation to the amount of storeys a building has; the total storey enclosure unit in the building are based on square meters; the product is then boosted by the unit rate from past comparable undertakings (Ibid).
- **2.2.1.5. Approximate quantities** Viewed as the most dependable and precise technique for estimation, providing there's adequate data to utilize, and, that the surveyor is adequately experienced, quick estimation can be conducted fast utilizing composite rates and this would reduce time (Cartlidge, 2002).

2.2.1.6. Elemental cost analysis - This procedure developed on the premise of correlating the estimation of a proposed structure with other finished structures so as to ensure its feasibility. (Kirkham, 2007, as cited by Soutos & Lowe, 2011).

2.2.1.7. Comparative estimates method - This technique depends on the price of components for built structures linking comparable categories while instituting price changes for every one of them by implementing changes in materials and constructional strategies (Soutos & Lowe, 2006).

2.2.1.8. Interpolation method - Interpolation method is based on the same idea as the comparative estimates method with the difference that the cost per meter square is given for the whole building rather than elements of it (Ibid).

2.2.2. Cost planning

Elemental cost planning is the breakdown of the cost limit into cost targets for each element of the building. It provides a statement of how the design team proposes to distribute the available budget among the elements of the building, and a frame of reference from which to develop the design and maintain cost control (BCIS, 2009 as cited by Song, 2014).

Expense forecasting including asset evaluation, life-cycle pricing and price analysis demonstrates supervising the cost of a venture so that the offered price is within the parameters of the initial estimate. Cost planning alludes to assigning a value to money on a project (Othman & Mia, 2008). Efficient price forecasting grew in urgency, ever since the depression that occurred in the year 2000 (Matipa, Cunningham, & Naik, 2010).

2.2.3. Procurement advice

QSs develop significant parts of the tender documents that needs to be utilized by contractors in the tender process, overseeing and mediating tenders and finally in tender awards (Mbachu, 2015). Procurement can be separated into two primary choices, price ahead of time strategies and cost-repayment techniques. Many other procurement techniques are utilized which are based on cost influences, the impact of cost and time, and customer's needs and spending plans. Therefore, the QS may endorse multi-procurement strategies which also empowers the customer to oversee the impacts of cost and cost, while proceeding to permit space for managed plans, advancement, successful expert administration and contractor inclusion. Crucial to this technique, is the prompt procurement of reports which will sanction the acquisition of the

primary contractor who will supervise the assigned sub - contractors; although the key to this strategy is common comprehension and an intimate working connection between all part players. The QS plays an imperative undertaking in the completion of the development (Ashworth, 2004 as cited by Beukes, 2012).

2.2.4. Measurement and quantification

Measurement and quantification alludes to the computation of the quantities of the work products that must be finished to complete a venture utilizing specifications and drawings as contribution and in addition unit value calculation of measured work products (Ogunsina, Ugochukwu & Udoye, 2015).

2.2.5. Document preparation

A BoQ is a document or a "book" prepared by the QS, consisting of a comprehensive account of the entire list of items and processes required for construction. Every one of these items contains a full summary of workmanship, material and labour needed for the work process and its accompanying quantity (Rashid, Mustapa & Wahid, 2006). It is essentially arranged with the specification, list of drawings, and form of tender and preliminary bill creating a tender document. The start of the QS profession is traced back to England to early 1800's, and the term "Quantity Surveyor" was coined in 1859. The BoQ also surfaced in the 1800s, shortly after the Industrial revolution; initially QSs represented master tradesmen, measuring the work after completion, good for use in making payments to staff as well as the preparation of final accounts for the client to claim for payment (ASAQS, 2006). Each contractor had to produce precise estimates for the development value, required for submitting a bid or tender, which was produced by measuring and quantifying the amount required of all materials and labour needed to finish the construction, described as preparing a BoQ for the project. This created multiple duplications of effort, as each contractor prepared their own individual BoQ for the same project, utilising quantities from the architect's drawings. It was more economical to employ one surveyor who measured the work and prepared the one set of BoQ for the entire project and its role players. Once prepared, the potential contractors price the BoQ with calculated rates per unit for each measurable item and then submit these as tenders to compete for the development. The QS cost will be shared between them or the successful contractor will pay the surveyor and include the payment in their bids (Rashid, Mustapa & Wahid, 2006). The BoQ remains the document in use with the exception of a few small adjustments as well as the fact

that the client now pays for this service. NT has transformed this lengthy procedure to a more efficient automated one (Ibid).

2.2.6. Cost control during construction

A decent cost control and auditing framework provides the customer with a full oversight of all expenses as well as warning him of potential budgetary overruns.

The two goals for cost control and auditing remain, an estimation of the ramifications of the possible changes, as well as that of such changes on the total contract cost (Architectural, 2006). Cost control exists to assure that the customer secures great quality and benefits (Seeley, 1997 as cited by Gee, 2010). Cost control should be actioned constantly over the whole development. The QS is the professional that controls the cost of the development in the post-contract phase. He does this by observing any variations to the agreement, executing a budgetary control framework and accounting on the development position status on a month to month premise, which is set up by the QS to give an account of the monetary status of the development, keeping in mind that appropriate monetary control necessitates continuous cost accounting (Gee, 2010).

QSs are accountable for undertaking the costing of works of a development. Other roles include cost control and construction supervision. Hiew & Ng (2017) determined that as soon as a variation order is given, pricing of works must occur; forming a part of a rigorous cost control routine. Later in the build, when time is limited, less costly decisions need to be utilised; here the QS needs to recommend cheaper trade-offs to variations which would assist in final account preparation (Bakar, 2016). Tradition prescribes that devising a spending plan features a three stage budgetary design (Ferry, 2003) affect the procedure constructively (Kinney and Soubiran, 2004 as cited by Matipa, Kelliher & Keane, 2008) analysing fulfilment of the outline and simplifying the development scheme; supplying fundamentals for cost engineering, usability investigation, and model changes; creating model construction plans; and illumination of planning procedures and accompanying issues. Step two: pricing projections and supervision of the model procedures. This comprises of creation of the guideline; determination of an acceptable outcome; and price supervision of the construction plan. Step three: price supervision of the acquisition and development phases (Matipa, Kelliher & Keane, 2008).

2.2.7. Interim valuations and payments

This involves the checking of the primary contractor's claims for any inadequacies such as; any increases in the costs of labour, raw materials, fees, additions and taxes.

This can also involve, the application of cost modification change formulas to totals contained in the interim valuation (Sui Pheng, 2013). A QS will develop the interim valuations when required by the architect who reasons them to be necessary in order to ascertain the amount in an interim certificate (Bakar, 2016).

2.2.8. Financial statements

Once construction starts, it is the job of the QS/estimator to constantly review and communicate a customer's financial injection into a development, this particular format is called a financial statement (FS) (Olatunji, 2012). QSs produce these statements on a monthly or quarterly basis together with the total cost of the project when finished. The QS has to check financial implications of changes plus other modifications to the build (Cartlidge, 2002).

2.2.9. Final account preparation

A final account is a report that outlines every item which determined the costs of the project including the computation of the final project development cost (Gee, 2010).

Final accounts and the resolution of contractual disagreements alludes to computation and payment of the applicable equity surplus outstanding at the completion of a development. Generally contractors will present claims if the computed amount is not equivalent to the work done, which will be examined by the QS. The QS will be called upon to give advice and act as mediators in disagreements (Othman & Mia, 2008).

Final account development shows the connection between development budgets and costs. Additionally, they control temporary stipends, floats, and funds set aside for emergencies as well as contract supervision. The role that information technology plays is insignificant; this is due to the high level of human contact required in the quality assessment process of the final account preparation (Olatunji, 2012).

2.2.10. Settlement of contractual claims

Seeley (1997 as cited by Sabitu Oyegoke, 2006) characterizes a claim as a petition or demand by the contractor as compensation for outlay or damage he has endured or as an avoidance strategy to not pay the reduced and calculated damages. A claim is said to happen when the normal work process is delayed. A claim is a complex and troublesome issue which requires professional arbitration in order to get to the root of the matter. According to Ashworth (1991) a project is successful if the building is delivered at the right time, at the appropriate price and

quality standards, and provides the client with a high level of satisfaction (Sabitu Oyegoke, 2006). One important factor that will influence the achievement of those standards and discourage dispute is the type of procurement method sort (Ibid). The QS has to gain and utilise efficient arbitration abilities, when settling contractual claims (Hiew & Ng, 2007).

2.3. Evolving Roles

Following the potential demise of bills of quantities additional and potential new roles evolved and include the following, namely:

- Investment appraisal;
- Advice on cost limits and budgets;
- Whole life costing;
- Value management;
- Risk analysis;
- Insolvency services;
- Cost engineering services;
- Subcontract administration:
- Environmental services measurement and costing;
- Technical auditing;
- Planning and supervision;
- Valuation for insurance purposes;
- Project management;
- Facilities management;
- Administering maintenance programs; and
- Advice on contractual disputes (Ibid).

Other classifications have referred to the roles as being traditional (six roles) (Ashworth, 2010), evolved (ten roles) (Frei and Mbachu, 2009) and emerging (five roles) (Fanous, 2012) with the traditional roles being regarded as the most important (Sonson and Kulatunga, 2014). The list under each classification in order of importance is:

Traditional role

- Quantification and costing of construction works;
- Project financial control and reporting;
- Procurement and tendering;

- Contract practice;
- Cost planning; and
- Construction technology and environmental services.

Evolved role

- Valuation (property, rental, etc.);
- Contract administration;
- Consultancy services;
- Project management;
- Insurance;
- Facilities management;
- Risk management;
- Management and dispute resolution procedures;
- Development/investment appraisal; and
- Research methodologies and techniques.

In this list of issues, the increased use of technologies to improve efficiency and effectiveness of QSs relative to many of them is possible. However, the primary concern is that there are still many that have to be done the traditional way involving QSs directly with their professional skillset. The challenge is to get QSs to embrace the opportunities that technologies present and focus on those other opportunities that allow them to demonstrate their skill and value to the construction and property sectors.

2.4. Opportunities

NTA in the form of various propriety software packages provides the opportunity to immediately produce measurements gained instantaneously out of an electronic design, which is usually a prolonged process. QSs need to be completely mindful of the effect that NTA could have on their immediate and eventual functions (Song, 2014). Two dimensional space (2D) refers to the traditional approach given to construction drawings depicting length and breadth to buildings; three dimensional space (3D) exist to show geometrical representation or the length, breadth and depth of an element in space; while four dimensional space (4D) includes the element of time in an extra layer of a 3D model (Van Oosterom & Stoter, 2010). The use of NTA in the construction sector fosters a creative, cooperative atmosphere. Its multi-faceted

disposition promotes designing in countless dimensions, which is termed 'nD BIM', involving multiple layers of information within the same model. These include 3D - object model, 4D - time, five dimensional layer (5D) - cost, six dimensional layer (6D) - facility management, seven dimensional layer (7D) - sustainability and eight dimensional layer (8D) – health and safety. A variety of professionals use information from the smart 3D designs. NTA affords QSs and owners opportunities that include system integration as well as increasing the benefits offered (Harrison, 2015 as cited by Boon & Prigg, 2012). In addition, NTA offers the added potential for QS to broaden their offerings to the owners or clients. According to the National Bim Survey (2012), measurement might be computerised, but the expertise of the QS will still be required. This is an added opportunity for the QS to provide more information to the owner (Paine & Marasini, 2013).

NTA s potential can be characterized as:

- Improved construction effectiveness;
- Augmented ability for construction companies regarding lowered model preparation durations;
- Practically eradicating calculation and model conformity flaws;
- Supplying added assistance for clients and contractors such as visualisation for conceptual design, rapid and accurate quantity take-off and estimating, data for monitoring and managing production and erection (Bavafa, 2015).

The added opportunities of NTA provide increased cooperation and fusion, and QSs need to focus on client gratification and increased duration of project effectiveness is now the focal point and as a result of this focus, construction companies are developing greater composure and cooperation directly attributed to NTA (Ballesty et al., 2007, Eastman et al., 2011). NTA has brought added dimensions for estimators. Their growth in future roles will also include BIM project management, technique visualisation, virtuality and amplified reproduction (Olatunji, 2012). Augmented reality (AR) is a new computer-based application, designed to simplify on-site 4D construction organisations through interconnecting with 3D construction plans and accompanying building information data. NTA in the form of augmented reality (AR) produces possibilities that fast-tracks growth in 4D AR management that involve all members of the project team. AR also provides the possibility to increase function and job

output in the construction sector. NTA would also offer scope for comment and development (Moore, 2013).

As a result of using 3D computer-aided design (CAD), the QS enjoys many benefits, with the most noticeable benefit, being the implementation of electronic quantities. This along with the potential of high productivity, results in 80% of time being saved in tenders' preparation, estimates of budget and cost planning (Smith, 2002). Increased NTA also brings with it increased complexity, as QSs using 3D CAD BoQs need to be careful to share data correctly, as it could result in major losses (Viljoen, 2012).

2.5. Challenges

A major challenge revolves around ownership of the model – architects had ownership before (Goldswain, 2016). Now each stakeholder can give input directly into the 3D CAD model produced by the architect. New forms of contract or agreement will have to be developed in this new environment to protect the interests of all parties (Gyarteng, 2014). Although the construction sector is generally conventional and resistant to change, studies indicate that QSs may be the most conventional in terms of new technology adoption. The refusal to advance and re-design procedures with regards to new technology advancement will impact negatively on QSs evolution. In a survey investigating the regular processes of Australian QS professionals in firms, spanning a period of six years, targeting attitudes as well as usage of NTAs respondents felt that leaders of many firms were not inspired enough to change and reengineer processes in order to take full advantage of technological advances because they were too concerned with immediate ratification. Other respondents commented that this was the case due to companies being run by elderly leaders ready for retirement and were therefore not up to the challenge of the benefits of NTA even though this remains crucial for the future of the profession. The unavailability of an established industry median forces companies to develop their own unsynchronized methods in terms of NTA. This approach greatly reduces the positive impact of NTA on the QS profession, as unsynchronized advancement utilises software that is not in sync with those utilised by other companies. Also, the small mark ups on services offered by QSs does not assist NTA at all. Adequate experience in QS as a basic is vital. New employees require sufficient in service training. It is this experience that is vital to the longevity of the QS profession as NTA increases (Smith, 2002).

For technological advances to be accepted by QS practices, there needs to be a tangible benefit coupled with a willingness to embrace these. This may result in some of these traditional roles as described, becoming more efficiently executed, some being done simultaneously and others discontinued. Providing it is accepted that there are benefits in embracing QS technology in QS practices, it then becomes important to understand why there is resistance to such technology.

2.6. Acceptance Models

According to (Venkatesh etal, 2003), who in a study examined eight models of acceptance based on acceptance theory. The results of this study suggested that six constructs were important to consider when trying to introduce new technologies and systems. Providing these six factors are taken into account satisfactorily, resistance to NTA can be greatly reduced, namely

- Performance expectancy (PE);
- Effort expectancy (EE);
- facilitating conditions (FC);
- Social influence (SI);
- Top management support (TMS); and
- Individual resistance to change (Disabilities).

The key elements of the final (Venkatesh etal, 2003) acceptance model are briefly described below.

2.6.1. Performance Expectancy

PE is described as the degree to which a specific innovation will help QSs achieve benefits in occupation execution; it embodies anticipated benefits, additional inspiration, work competency, preferred support and results forecasts. The theory behind PE is that it impacts on QSs adoption of new technology (Venkatesh et al, 2003), PE has a marked constructive impact on QSs intention to use an information technology (Sargent, 2012).

2.6.2. Effort Expectancy

EE alludes to the ease of use attached to utilizing an innovation (Ibid). Ease of use is described as the extent that a QS trusts that utilizing a specific system would be free of physical and

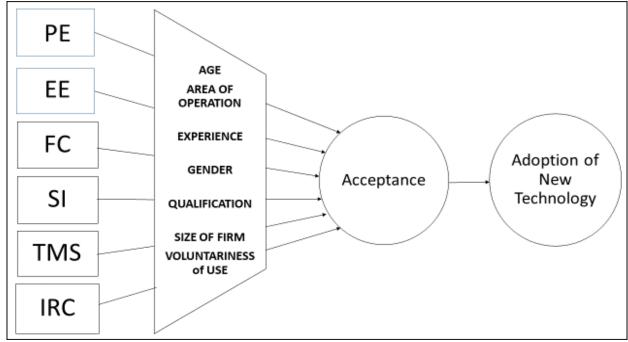
mental exertion (Moore & Benbasat, 1991). EE suggests a constructive impact on PE (Sung etal, 2015).

2.6.3. Facilitating Conditions

FC is described as the level to which a user believes that adequate organizational support structures are in place to support usage of the system, as a result, FC will have a constructive impact on QSs willingness toward NTA and usage (Sargent, 2012). It came to light that FC was identified as impacting QS decisions in adopting NTAs (Lu, Yu, & Liu, 2005).

2.6.4. Social Influence

SI describes the level to which a QS observes that critical role players expect utilization of new technology, SI will have a constructive impact on QSs willingness toward NTA and usage (Sargent, 2012) (Wang, 2009).


2.6.5. Top Management Support

TMS in terms of usage approval and encouragement is required if QSs are to receive and make use of innovations (Peansupap & Walker, 2005); this includes supervisors committing resources toward innovations with regards to expenses and possibilities, and also looking into arrangements, observing outcomes and encouraging the supervision issues required with coordinating the innovation with the supervision procedure of the organization (Young, 2008). TMS also supports better client execution, impacts positive client recognitions and enhances the general innovation selection take-up (Dong, Neufeld & Higins, 2009). Furthermore, TMS surfaced as one of the biggest empowering agents on advancement execution in construction firms (Gambatese & Hallowell, 2011).

2.6.6. Individual Resistance to Change

Individual RTC is defined as an individual's frame of mind to resist change and anticipate reactions to specify change (Oreg, 2003). Described as an innate aspect of the organisational development procedure, an individual's resistance to change takes place as a result of the adjustment from the known to the unknown (Bovey & Hede, 2001). In attempting to understand RTC, the following observations were considered; because people are different, they exhibit different reactions, ranging from resisting or adopting new technology implementation. Further exploration of research will be useful to discover why some people are more inclined than others to try to implement and use new technologies (Roberson, Collins, & Oreg, 2005). A

comparison of the six elements in a previous study, showed that individual resistance to change had the weakest influence on acceptance of change in technology by QSs (Haupt, 2016). It is likely that the influence of performance expectancy, effort expectancy, facilitating conditions, social influence, top management support and individuals resistance to change will be moderated by the mitigating influences of age, experience, gender, qualification, size of firm

and voluntariness of use, such that the effects will impact on NTA (Venkatesh etal, 2003). Individuals have many distinguishing attributes, which are, age, computer self-efficacy, gender and level of education, and these may have a sizeable impact on users' acceptance of social media marketing (Mulero, 2012); additionally, experience and voluntariness of use; were identified as factors that impact on the four key constructs that affect usage intention and behaviour (Arning & Ziefle, 2009).

FIGURE 1 –Adapted User Acceptance Model (Venkatesh et al., 2003)

2.7. Mitigating Influences / Demographic Profile

2.7.1. Age

Age influence is where people of differing ages analyses facts in dissimilar ways which directly impacts NTA; the more mature a person, the more vulnerable they are to the physical aspects of ageing (Chen & Chan, 2011). Similarly, older people are less likely to have computer experience, be less open to change, and consequently, be more susceptible to computer anxiety (Igbaria, 1990 as cited by Abbasi, 2015), which reduces NTA among older or more mature participants.

2.7.2. Area of Operation

Intuitively, whether the firm or practice is a small local one, provincial operation, national or multinational one is likely to impact on the acceptance of new technology in a quantity surveying firm or practice.

2.7.3. Experience

(Venkatesh etal, 2003) found that experience in using technology serves as a critical factor in determining technology acceptance (Porter & Donthu, 2006). The differences between experienced and inexperienced users with regards to NTA was found to be substantial, as this impacted on users' perceived ease of use and usefulness (Moore & Benbasat, 1991).

2.7.4. Gender

Gender is a factor in technology acceptance, according to Mulero (2012); women find social media marketing simpler to use than their male counterparts. However, males tend to use technology more frequently than women. This finding is further supported by Li (2011) who found that the gender-based difference is attributed to the approach each sex has to NTA, as women see the social value and usefulness of technology to be higher than men do, but find it more difficult to use than men, only because men and women see and use technology differently (Ford etal., 1996; Venkatesh and Davis, 2000; Adamson and Shine, 2003; Faja and Trimi, 2008 as cited by Li & Lai, 2011).

2.7.5. Qualification

Qualification or level of schooling has an influence on NTA. Employees with no formal qualification, generally created management issues regarding inefficient use of technology (Nguyen, 2009). Professional qualification has a sizeable impact on perceived usefulness and users attitudes towards NTA. A higher professional qualification produces more favourable usefulness and attitudes toward NTA (Dharmarajan & Gangadharan, 2013).

2.7.6. Size of firm

The size of firm is yet another demographic that influences NTA; described in terms of an organization's turnover and or number of employees employed, it remains one of the most important determining factors of NTA; the larger the firm, the greater the tendency to action NTA (Ghobakhloo, 2011).

2.7.7. Voluntariness of use

Voluntariness of use is defined as "the degree to which, use of the innovation is perceived as being voluntary, or of free will" (Moore and Benbasat, 1991, p. 195 as cited by Donaldson, 2011), and was found to be a significant predictor of behavioural intention (Donaldson, 2011).

2.8. Chapter Summary

This chapter discussed both the traditional and evolving roles of the QS, the introduction of technology including both the opportunities and challenges that QSs face, the six constructs of the technology user acceptance model, influence mitigating conditions. The research methodology will be discussed in the next chapter.

CHAPTER THREE

RESEARCH METHODOLOGY

3.1. Introduction

The research methodology provides a review of research techniques used in this thesis. This chapter then presents data on the respondents, where, how and who they were, as well as the standards used for their incorporation in the thesis. The chosen research design is then portrayed, together with the purposes behind this decision. The next step, illustrates the research instrument that was utilised, and the subsequent reasoning for such. Thereafter, the methods used for the evaluation of this data is also discussed. Finally, the ethical issues utilised are then examined.

3.1. Research Design

Research alludes to an exploration for wisdom and can also be characterised as a logical and deliberate exploration for relevant data on a particular subject matter. The literal translation of the word research means, a cautious examination or request for new data across all avenues of knowledge (Kothari, 2004). Research design can be characterized as a structure adopted by analysts that provide solutions to their questions. It is important to set up a work design or outline, prior to gathering or analysing data. Research design alludes to the system or structure of a research. Blakstad & Knudsen (2008) characterized research design as the framework of experimental tasks, and stated that there are both diverse interests and deficiencies for each research design. (Bakar, 2016).

3.2. Research Approach

Four optional research approaches exist, namely logical theoretical research, participatory action research, qualitative observational research, and quantitative experimental research.

3.2.1. Qualitative Approach

The qualitative survey focuses on the way in which society uses alternative ways of embracing complex real world issues, and is able to incorporate a variety of opinions by studying general conduct in a regular everyday environment, therefore exploitation of inconsistencies did not exist. The emphasis was on information that could not be conveyed with arithmetic's, as well

as on definitions and explanations, which could not translate into the creation of unique hypotheses.

There are five types of qualitative approaches, namely:

- Narrative research researching the existence of a person. Advantages encompass the capability to vocalise and approve the encounters of individuals. Disadvantages include the fact that narrative is very labour intensive (Moriarty, 2011).
- Phenomenology Lester (1998) noticed that phenomenology relates to circumstances beyond a person's control (Husserl, 1983 as cited by Hossain, 2015). Phenomenology actually implies the investigation of experiences (Education, 2010). The advantages are that it produces a profound comprehension of an experience; understanding of basic encounters is important to related professions and policies; involves an efficient method of information accumulation; assists in creating an organized approach to new analysts (Pinnegar & Daynes, 2006). Disadvantages include the fact that phenomenology can be challenging to grasp; this method is harsh, basic, and regular; a novice analyst has to find a tutor in order to adopt this approach (Speziale, Streubert and Carpenter, 2011).
- Grounded theory includes the continuous description and union of groupings of content obtained from reports, and is composed from the procedure of grouping recognition, synthesis and its output (Willig, 2013). Advantages include the fact that it abstains from making suppositions; receives a more impartial perspective of human activity in a social setting (Simmons, 2006); creates a system to produce an awareness of social experiences which isn't predetermined or pre-hypothetically created with current speculations and ideal models (Engward, 2013); and it's also appropriate for examining social procedures that have invited limited previous study consideration (Milliken, 2010). Disadvantages are that the grounded theory neglects to diagnose the commitment of the analyst while blurring his information development and understanding (Bryant & Charmaz, 2007); techniques tend to create excessive information, which is problematic to oversee; problematic for novice analysts to use; lack of guidelines for the understanding of groupings (Milliken, 2010).

- Ethnography learning from the study of humans and their culture. Advantages include the portrayal of a gaudy, ordered image of a particular situation; results are established on communities' lives; valuable when research has complicated themes; and ethnography can be used for studies that require a prolonged term. Disadvantages are that its very taxing on the researcher; ethnography deals with narration; results are difficult to duplicate; and are not greatly developed (Gulten, 2014).
- Case study A case study is a thorough investigation from various points of view of the multifaceted and exclusive nature of a specific undertaking, approach, foundation, program or framework in a live setting (Simons 2009 as cited by Moriarty, 2011). Case studies are also not used to test theories, but rather theories might be created from case studies (Flyvbjerg, 2006). Advantages include case study's capacity to manage a full assortment of proof, inclusive of reports, objects, meetings and research (Merriam, 1988), as well as being a capable method of describing the project to an external audience. Yin (1994) introduced four functions:
- 1. To clarify multiple unconventional practical relationships;
- 2. To depict the genuine setting in which the mediation has happened;
- 3. To depict the interference itself; and
- 4. To investigate the circumstances in which the interference being assessed has ambiguous results (Tellis, 1997). Disadvantages are that its tedious to gather data, to arrange and examine it and for in-depth analysis of data (Anderson, 2010).

3.2.1.1. Qualitative Research Methods

There are a variety of instruments utilized in research. Qualitative research incorporates interviews, focus groups (Wilkinson & Birmingham, 2003), observation and document review (Mason, 2002).

1. Interviews - described as a discussion between two individuals, and includes an arrangement of suppositions and acceptances about the circumstance which are ordered. Interviews are used as a method for collecting valuable data about a particular theme. The interview method is adopted when alternative research techniques are unsuitable, for instance, it is impractical to expect respondents with low literacy levels to finish a long survey. Advantages include importance of gathering knowledge and background into a subject, participants are able to portray what is critical to them, convenient for collecting

references and information. Disadvantages are that interviews are not a simple alternative, it is prone to favouritism, absorbs a lot of time, costly in comparison to other techniques and can be viewed as invasive to survey participants (Anderson, 2010).

- 2. Focus groups discussions are planned beforehand by a group of people who will form a panel (interviewers); the interviewees will be seated opposite the panel, and interviewees are expected to answer whatever questions are put to them by the panel. The panel's members have some idea of what counts as positive or negative responses to each of their discussion points, and interviewees are required to provide answers to these. Advantages include Advantages include fast and simple to set up, Group elements can give helpful data that individual information accumulation does not produce, helpful in gathering knowledge into a subject where its problematic via their information gathering strategies (Anderson, 2010). Disadvantages encompass the fact that most individuals end up feeling that they did not freely express themselves, comprehension of panels questions are not fully absorbed due to setup, process is stressful, participants feel isolated, responses are criticised, rivalry between interviewees and process is not transparent (Wilkinson & Birmingham, 2003).
- 3. Observation alludes to information creation techniques that involve analysts intricately engaging in live research surroundings with the goal of direct monitoring and understanding of the various facets linked to these surroundings (Mason, 2002). Advantages encompass the gathering of information where and when an experience or project is occurring, it does not depend on an individual's eagerness to supply data, and focuses on an individual's actions. Disadvantages include its vulnerability to observer bias, individuals performances are staged as they are aware of being observed Hawthorne impact, and this technique does not provide more clarity on why individuals act the way they do (Anderson, 2010).
- 4. Document Review an extensive technique for social analysis, contributing significant and fitting information via a wide range of methods inclusive of the Internet. Examples of information gained from existing documents include acts of parliament; bank statements and the internet (Mason, 2002). Advantages are is its comparatively cheap, reliable pool of foundation data, low-key, highlights undisclosed background information, and identifies gaps overlooked in other methods. Disadvantages include concerns that data might be

inappropriate, chaotic, and inaccessible or outdated, biased, fragmented, and tedious to collate and audit (Anderson, 2010).

3.2.2. Quantitative Approach

The quantitative survey focusses on employment of methods that explain how everyday regularities can be interpreted and accepted through generic legislation, embracing complex real world issues by specific description of the planned processes which negates external interferences and exploitation of dependant inconsistencies; however, exploitation of independent inconsistencies does occur. The emphasis was on information that could be conveyed with statistics and numbers as well as on cause and effect, which does not create, instead, it used samples to evaluate a hypotheses, which meant that the research method had to be pre-planned (Hancock, 2007).

There are four main types of quantitative research designs (Grand Canyon, 2017):

- 1. Descriptive a descriptive design seeks to describe the current status of a variable or phenomenon. The researcher does not begin with a hypothesis, but typically develops one after the data is collected, and data collection is mostly observational in nature.
- 2. Correlational a correlational design explores the relationship between variables using statistical analyses. However, it does not look for cause and effect and therefore, is also mostly observational in terms of data collection.
- 3. Quasi-experimental a Quasi-Experimental Design (often referred to as Causal-Comparative) seeks to establish a cause-effect relationship between two or more variables. The researcher does not assign groups and does not manipulate the independent variable. Control groups are identified and exposed to the variable. Results are compared with results from groups not exposed to the variable.
- 4. Experimental Experimental Designs, often called true experimentation, use the scientific method to establish cause-effect relationship among a group of variables in a research study. Researchers make an effort to control for all variables except the one being manipulated (the independent variable). The effects of the independent variable on the dependent variable are collected and analysed for a relationship (Ibid).

Information gathering techniques allude to instruments used to gather information, of which examples include interviews and questionnaires (Leedy & Ormrod, 2001).

- Interviews quantitative research interviews are more organized than for qualitative research. In an organized interview, the analyst will only solicit a standard set of inquiries.
 Types of interviews include face to face, computer assisted telephone interviewing (CAPI) and telephone interviews.
 - 1.1. Telephone interviews advantages include it being less tedious, less costly, analyst is able to access individuals who have a landline phone, higher reaction rate than the mail questionnaires, can be completely electronic, saving preparation time. Disadvantages are the reaction rate isn't as high as face-to-face, the specimen might be one-sided.
 - 1.2. Face-to-face interviews advantages include allowances for relationships between the researcher and participants and improve collaboration, produces the most efficient reaction rates, promotes clarification of responses. Disadvantages are not practical for bigger samples, as well as it can be tedious and costly.
 - 1.3. Computer assisted personal interviewing (CAPI) is a type of personalised interviewing, where the researcher takes a laptop for data entry for instantaneous input onto the system. Advantages include time saved in information preparation and no need to carry hard copies. Disadvantages are costly to initiate and the researcher must possess IT skills (Leedy & Ormrod, 2001).
- 2. Questionnaires questionnaires are described as an information gathering technique which is composed of multiple statements, questions and other stimuli that illicit information collection from participants. Created by Sir Francis Galton, the primary methods of targeting respondents via the questionnaire technique are personal contact, group of focus interview, email-based questionnaires, telephone interview (Abawi, 2013). Advantages included the fact that the supervision of data was relatively inexpensive, this simplified the collection of large volumes of data even when it traversed a wide geography; surveys also lower the risk bias, as all respondents can be asked identical questions; the majority of respondents were already familiar with surveys, ensuring ease of use. Due to the impersonal nature of surveys, respondents tended to be more receptive to using surveys as opposed to interviews; the collection and calculation of results was made simple and quick, as questions were manipulated to encourage closed or specific answers (Asante, 2016). Disadvantages of the survey questionnaire approach are; the questionnaire will be standardized, as such, there was no room for further explanations, necessary for clarification purposes; it was possible to have had some of the questions as open-ended, which produced too much of information and affected processing time; survey respondents

could respond carelessly if the survey was too long, also, if respondents felt that their honest opinions prejudiced them, they then answered questions in such a manner which was not entirely transparent (Milne, 1999). This research used the quantitative approach.

3.3. Research Methods

Research Methodology is described as an efficient approach to tackling an issue. It is the discipline of examining the experimentation process and refers to the strategies by which researchers approach the task of depicting, clarifying and anticipating experience. The purpose of research methodology is to provide the work design of research (Rajasekar, Philominathan & Chinnathambi 2006). The research methodology is an important precursor to research organisation. Careful thought should be given to the research outcome with respect to the adoption of research techniques (Adnan, 2011 as cited by Bakar, 2016).

The questionnaire survey approach was used, as it is often used to gather data on attitudes and behaviour; surveys were also very useful when it came to descriptive designs that did not require any experiments and stuck to reality, which was the case in this research (<u>Mathers</u>, <u>2007</u>). Quantitative information was provided by questionnaires, which presented objective information for investigation. Respondents were provided with a generic cover letter, furnishing them with research specifics and their required input.

3.4. Instrument Design

Precise and orderly information accumulation is fundamental to managing logical research. Information accumulation enables gathering of data about research objects, depending on research technique, types of information gathering embodied; observation, documents review, measuring, questioning, or a mix of various strategies (Abawi, 2013). Research instruments are the mechanisms for information gathering, and the effectiveness of a research greatly hinges on the suitability of the instrument selected (Annum, 2017). The questionnaire was devised to analyse the argument highlighted in the research objectives hypotheses.

With reference to technological innovation and its impact on the role of the QS in industry, a series of questions were devised to analyse these distinct hypotheses. The questionnaire was devised following an analysis of the research relevant to the domain in which QS professionals were supposed to be knowledgeable. The instrument design centred around the adapted user acceptance model of new technology, based on a foundation in data framework, brain research and behavioural science, which clarified the fluctuation in individuals' aims to utilize

innovation. (E.g. Davis et al 1989; Taylor and Todd 1995b; Venkatesh and Davis 2000 as cited by Venkatesh et al, 2003).

All participants were required to submit their assessment of technology and roles and the impact of this to the profession. The literature and anecdotal evidence formed the basis of the questions pertaining to technological innovation. All respondents were asked to rate their perception of the impact of technological innovation on the various roles of the QS in industry. The reasons behind why QSs may not be readily adopting technology were issues measured as well. The benefits of technology adoption and the barriers to technology innovation were also probed. These are all issues that have been highlighted in the literature. Factors that determine technology usage as well as the barriers to technology acceptance were also gauged. The literature review formed the basis of this section of the questionnaire.

The instrument questions made use of a Level of agreement Likert-Type Scale Response Anchors (Vagias, 2006), and was a mixture of open ended and closed ended questions. Great care was taken to ensure that questionnaire statements/questions were clear, properly phrased, sensitive or embarrassing questions were avoided, and speculative questions were also averted. The instrument is made up of two types of questions, namely open ended and closed ended questions:

Open Ended Questions:

- Refers to questions that do not contain prearranged reactions, require opinions and have more than one answer. Open ended questions are utilised to promote greater dialect usage, recognizes that numerous answers can exist for one issue, and promotes open responses.
- The instrument contains does not contain any open ended questions.

Close Ended Questions:

- Generally exist as multiple choice questions. Closed ended questions permit a set amount
 of answers, ruling out the offering of extra data; they involve awareness and a decision
 among answer choices. Used for more prominent accuracy, consistency, less demanding
 review for the respondent, simpler classification and examination (Ibid).
- The instrument contains five closed questions, designed to obtain responses to indicate their level of agreement on factors or influence of technology adoption to QS; benefits of technology to QS; barriers of technology to QS; determinants of technology use;

knowledge and experience of technology, software and innovation; of technology on quantity surveying. (Abawi, 2013).

3.5. Population and sample

3.5.1. Population

Parahoo (1997) characterizes a population as community from which information can be gathered (as cited by Slevin & Sines, 2000). Population can be further defined as the total number of components meeting the standards for investigation in a research (Burns and Grove, 2010).

3.5.2. Sample and sampling method

A sample is defined as a limited segment of a measurable populace whose peculiarities are studied in order to learn about the whole (Webster, 1985 cited by Mugo, 2002). In the case of people, it can be characterized as a group or groups of participants chosen from a bigger populace when conducting a survey. There are essentially three groups of samples;

- Convenience sampling analysts choose participants that are free and accessible and will be able to participate for that specific time (Flick, 2008).
- Random sampling a method of selecting a sample (random sample) from
 a statistical population in such a way that every possible sample that could be selected has
 a predetermined probability of being selected. Under random sampling, each member of
 the subset carries an equal opportunity of being chosen as a part of the sampling process;
 and
- Judgement sampling varies in the way in which the basic units are selected and is derived as a result of the vigilance of somebody familiar with the qualities of the populace (Mugo, 2002).

Judgemental sampling is also known as purposive sampling. Purposive sampling is composed of seven categories, which are unique to their own investigative objective (Crossman, 2017):

- homogeneous purposive sample;
- maximum variation/heterogeneous purposive sample;
- extreme/deviant case sampling;
- typical case sampling;
- expert sampling;

- critical case sampling; and
- total population sampling.

This research opted for random sampling method. The standards for consideration in this research included the population of QSs in the Durban area of Kwa Zulu Natal registered with QS professional bodies include 126 members from the South African Council for the Quantity Surveying Profession (SACQSP), 19 nineteen members from Association of South African Quantity Surveyors (ASAQS), and 33 members from the Royal Institute of Chartered Surveyors (RICS), totalling 178 members. This population is small enough to comprise the whole sample. A total of 109 out of the 178 targeted sample size responded to the surveys.

3.6. Instrument Administration

Questionnaires were emailed directly to participants. An appeal was made to QS professionals working in the industry to assist in the research, as they had a direct stake in the outcome of the research. Participants who responded early were then targeted to assist further by recommending other QS professionals / colleagues in order to increase responses. The data was collected over a period of two months.

3.6.1. Data collection and analysis

One hundred and seventy eight quantity surveyors either employed or practicing for themselves in the Durban area of the KwaZulu-Natal province of South Africa were surveyed about their views of the impact of technological innovation on the role of the QS in industry. The sample of QSs were drawn using the South African Council for the Quantity Surveying Profession (SACQSP) database. The use of emailing respondents was adopted.

The data was collected via quantitative questionnaire surveys comprising of several sections such as knowledge and experience of technology, benefits, barriers and readiness. Almost all questions took the form of statements around the various themes which required a scaled response of agreement. Descriptive statistics were—derived using the latest version of IBM SPSS and presented including measures of central tendency and dispersion.

3.6.2. Follow-up techniques:

The database of email addresses was from SACQSP, ASAQS, RICS and QS professionals either working or self-employed. For the first month, questionnaires were emailed to these databases every fortnight. In the second month, participants were emailed or and telephoned weekly. In survey research, response rate, also known as completion rate or return rate, is the number of people who answered the survey divided by the number of people in the sample. It is usually expressed in the form of a percentage. Initial responses were relatively slow, and totalled approximately ten (35.8%) responses per week, for the second month, due to the combined effort of emails and telephone calls, this number rose to approximately 18 (64.2%) per week. The total response rate was 109 out of 178 which represents 61% of the sample population (Shah, 2011).

3.7. Chapter Summary

This chapter outlined the research approach which was discussed in several sections. The population and sample size was identified as well as the sampling method. The background to the research instrument design was developed, and data analysis criteria identified. Early response individuals in organisations was used to promote survey completions with staff member. Use of easier survey input methods were adopted e.g. survey monkey. The next chapter will focus exclusively on data analysis.

CHAPTER FOUR

RESEARCH FINDINGS & ANALYSIS

4.1. Introduction

Information is accumulated utilising numerous procedures and techniques. Information in isolation has no benefit until it is analysed and effectively deciphered so that conclusions may be drawn. Researchers typically analyse gathered data so that patterns and general perspectives of respondents can be distinguished which could then be projected beyond the objective populace.

4.2. Profile of Respondents

Table 1. Profile of Respondents

Variable		Sample (n = 108)		
	Minimum	21	years	
Age	Maximum	65 years		
	Median	31	years	
Gender	Male	74	68.5%	
	Female	34	31.5%	
Qualifications	Cert.	1	0.9%	
	Dip/deg.	13	11.9%	
	HD/Hon	88	80.7%	
	Masters	7	6.4%	
Experience	Minimum	1 year		
	Maximum	45	years	
	Median	6	years	
Area	W.Cape	1	0.9%	
Of	E.Cape	2	1.8%	
Operation	KZN	90	82.6%	
(n=98)	Mpumalanga	2	1.8%	
	Gauteng	3	2.8%	
Size in terms of	Minimum	R500	,000,000	
Annual	Maximum	R350,000 R5,000,000		
T/O	Median			
(n=43)				
Size in terms of	Minimum	150 employees		
Number	Maximum	1 employee		
Permanent	Median	8 em	ployees	

Employees		
(n=75)		
Voluntariness	Yes	104
Of		
OI .	No	4
Use		
(n=108)		

The results from Table 1 show that the median age of participants was 31 years, ranging from 21 years to 65 years. The majority of respondents were male (68.5%). Most respondents, (80.7%) possessed a higher diploma or honours degree qualification. The median working experience as QSs' was six years, ranging from 1 year to 45 years. Almost all QS's area of operation was KZN (82.6%), and the majority of QS firms had a median annual turnover of R500,000, ranging from R350,000 to R5,000,000. Most QS firms' size in terms of number of employees over the last three years was a median of eight staff, ranging from one to 150. Finally, the overall majority of QSs (104) considered themselves open to new technological advances.

4.3. Reliability

Cronbach Alpha was developed by Lee Cronbach in 1951 to provide a measure of the internal consistency of a test or scale; it is expressed as a number between 0 and 1. The Cronbach Alpha statistic which is greater than the rule-of-thumb 0.70 for acceptable internal scale consistency. Cronbach's standard guideline for internal uniformity is as follows, namely if the reliability coefficient is less than and equal to 0.9 = excellent; less than 0.9, but more than and equal to 0.8 = good; less than 0.8, but more than and equal to 0.7 = acceptable; less than 0.7, but more than and equal to 0.6 = questionable; less than 0.6, but more than and equal to 0.5 = poor; less than 0.5 = unacceptable (Cronbach, 1951).

4.4. Categorisation of scales

In order to simplify the interpretation of the mean responses to the various statements presented to respondents using the 5-point scale the following categories were used (Al-Damen, 2017), namely:

- 1 to 2.33 = Low (L) level of agreement or satisfaction;
- 2.34 to 3.66 = Medium (M) level of agreement or satisfaction and;
- 3.67 to 5 = High (H) level of agreement or satisfaction.

4.5. Descriptive Statistics

Table 2 illustrates the results and factor loadings of the eight constructs; technology potential (TP), limitations (LIMIT), technology driven services (TDS), measurement methods (MM), benefits (Be), barriers (Ba), and mitigating influences, separated into the separate components, such as age, gender, qualification (Qual), experience (Exp), area of operation (AO), size in terms of annual turnover (SAT), size in terms of number of permanent employees (SNE), and voluntariness of use (VU) (dependant variables & components), which contribute to determinants of technology use (DTU), further separated into, performance expectancy (PE), effort expectancy (EE), social influence (SI), facilitating conditions (FC), top management support (TMS), and individual resistance to change (IRC) (independent variables & components). The IBM SPSS tools used, involved; dimension reduction, factor analysis, with Eigen values > 1, Varimax rotation, as well as suppressing small coefficients to an absolute value of below 0.30.

Table 2. Factors / Influence affecting Quantity Surveying

		Research	Cor.	Item
Constructs	Description		Item to	Loadings
		Used	Total	
	Performance Expectancy	PE	0.182	0.710
	Effort Expectancy	EE	0.323	0.813
DTU	Social Influence	SI	0.234	0.708
	Facilitating Conditions	FC	0.344	0.683
	Top Management Support	TMS	0.380	0.612
	Individual Resistance to Change	IRC	0.048	0.339
	Cost estimation can be improved	TP1	0.337	0.667
TP	Technology increases program certainty at the tender	TP2	0.508	0.786
	stage			
	Technology reduces the amount of variations during the	TP3	0.626	0.927
	construction phase			
	Technological developments can streamline the	TP4	0.514	0.892
	procurement process			
	QS practices are too small to embrace technology	LIMIT1	0.595	0.710
	Financial and time commitment from small practices is	LIMIT2	0.650	0.813
	too large			
LIMIT	Upfront costs are too high	LIMIT3	0.629	0.708
	Additional costs of training make technology prohibitive	LIMIT4	0.572	0.683
	There is no client demand	LIMIT5	0.444	0.612
	There are problems with legal ownership of information	LIMIT6	0.440	0.339
	Roles and responsibilities of quantity surveyors will	LIMIT7	0.452	0.367
	change			
	There is a scarcity of available training	LIMIT8	0.308	0.315
	Procurement advice can be executed using technology	TDS1	0.639	0.648
	alone			
	Measurement and quantification can be executed using	TDS2	0.644	0.493
TDS	technology alone			
	Document preparation can be executed using technology	TDS3	0.755	0.688
	alone			

	Cost control during construction can be executed using technology alone	TDS4	0.821	0.878
	Interim valuations and payments can be executed using technology alone	TDS5	0.804	0.862
	Financial statements can be executed using technology alone	TDS6	0.709	0.556
	Final account preparation can be executed using technology alone	TDS7	0.793	0.791
	Settlement of contractual claims can be executed using technology alone	TDS8	0.647	0.582
	Unit method can be executed using technology alone	MM1	0.786	0.755
	Cube method can be executed using technology alone	MM2	0.886	0.836
MM	Superficial method can be executed using technology alone	MM3	0.834	0.816
	Storey enclosure method can be executed using technology alone	MM4	0.766	0.828
	Approximate quantities can be executed using technology alone	MM5	0.824	0.806
	Elemental cost analysis can be executed using technology alone	MM6	0.627	0.546
	Improved efficiency	Be1	0.278	_
	Accurate measurement	Be2	0.407	0.718
	Co-ordination of all design information	Be2	0.524	0.831
Be	Visual aid	Be4	0.444	0.811
	Cost plan production	Be5	0.586	0.645
	Automatic schedule/program production	Be6	0.490	0.579
	Cost effective	Be7	0.413	0.929
	Standardization of routine tasks	Be8	0.526	0.837
	Removed need for a quantity surveyor	Ba1	0.448	0.787
	Liability concerns	Ba2	0.392	0.874
	High cost/extra capital investment	Ba3	0.606	0.637
Ba	Less familiarity with project	Ba4	0.699	0.797
	Lack of software application interfaces	Ba5	0.750	0.838
	Software complexity	Ba6	0.695	0.831
	Lack of standards	Ba7	0.628	0.823
	Threat to services conventionally provided by quantity	Ba8	0.566	0.640
	surveyors			
	Age	Age	0.224	0.496
	Gender	Gender	0.089	0.699
	Qualifications	Qual	0.301	0.700
	Experience	Exp	0.212	0.544
	Area of operation	AO	0.273	0.756
	Size in terms of annual turnover	SAT	0.304	0.872
	Size in terms of number of permanent employees	SNE	0.288	0.872
	Voluntariness of use	VU	0.269	0.715

Table 3 presents the scale and subsequent ranking according to mean and standard deviations. Scale categorization was calculated using the 5-point Likert scale questionnaire survey, where respondents were asked to indicate their level of agreement with 1=strongly disagree, 2=disagree, 3=neutral, 4=agree and 5=strongly agree. Their responses were then ranked in descending order within each construct.

 ${\bf Table.~3.-Descriptive~Statistics}$

		Research	Mean	Std.	Scale	Ranking
	Description	Items Used		Dev.		Tuming
	Individual Resistance to Change	DTU6	3.337	1.319	Medium	1
	Social Influence	DTU3	3.058	1.105	Medium	2
DTU	Top Management Support	DTU5	3.000	1.380	Medium	3
	Facilitating Conditions	DTU4	2.683	0.968	Medium	4
	Effort Expectancy	DTU2	2.279	0.970	Low	5
	Performance Expectancy	DTU1	2.154	1.147	Low	6
	Cost estimation can be improved	TP1	3.856	0.696	Medium	1
TP	Technological developments can streamline the procurement process	TP4	3.385	0.938	Medium	2
	Technology increases program certainty at the tender stage	TP2	3.144	0.726	Medium	3
	Technology reduces the amount of variations during the construction phase	TP3	2.606	0.933	Medium	4
	Upfront costs are too high	LIMIT3	3.453	1.122	Medium	1
	Additional costs of training make technology prohibitive	LIMIT4	3.255	1.130	Medium	2
	Financial and time commitment from small practices is too large	LIMIT2	2.981	1.163	Medium	3
LIMIT	There is a scarcity of available training	LIMIT8	2.953	1.099	Medium	4
	There are problems with legal ownership of information	LIMIT6	2.849	1.067	Medium	5
	Roles and responsibilities of quantity surveyors will change	LIMIT7	2.632	1.090	Medium	6
	There is no client demand	LIMIT5	2.557	0.957	Medium	7
	QS practices are too small to embrace technology	LIMIT1	2.208	1.119	Medium	8

	F:	TDCC	2.662	1 212	M . 1'	1
	Financial	TDS6	2.663	1.212	Medium	1
	statements can be					
	executed using					
	technology alone					
	Measurement and	TDS2	2.635	1.278	Medium	2
	quantification can					
	be executed using					
	technology alone					
	Document	TDS3	2.462	1.157	Medium	3
		1033	2.402	1.137	Medium	3
TTD C	preparation can be					
TDS	executed using					
	technology alone					
	Procurement	TDS1	2.404	1.057	Medium	4
	advice can be					
	executed using					
	technology alone					
	Final account	TDS7	2.356	1.174	Medium	5
		IDS/	2.330	1.1/4	Medium	3
	preparation can be					
	executed using					
	technology alone					
	Cost control	TDS4	2.308	1.124	Low	6
	during					
	construction can					
	be executed using					
	technology alone	FD 0 #	2.270	1.057	-	
	Interim valuations	TDS5	2.279	1.065	Low	7
	and payments can					
	be executed using					
	technology alone					
	Settlement of	TDS8	2.096	0.990	Low	8
	contractual claims					-
	can be executed					
	using technology					
	alone	1016	2.514	1.100	3.6.12	4
	Elemental cost	MM6	2.514	1.128	Medium	1
	analysis can be					
	executed using					
	technology alone					
	Approximate	MM5	2.495	1.153	Medium	2
	quantities can be					_
	executed using					
1						
	technology alone	107	2 400	1.010	3.6. **	
	Storey enclosure	MM4	2.400	1.043	Medium	3
	method can be					
MM	executed using					
1	technology alone					
	Cube method can	MM2	2.314	1.050	Low	4
1	be executed using	1.11.12	2.51	1.050	20	•
	technology alone					
		10.62	2.214	1.050	т -	
1	Superficial	MM3	2.314	1.050	Low	5
	method can be					
1	executed using					
	technology alone					
	Unit method can	MM1	2.267	1.068	Low	6
	be executed using	2.21.21	,	1.000	20	•
	technology alone		4 455	7.200	TT' 1	
1	Improved	Be1	4.477	5.289	High	1
	efficiency					
	Visual aid	Be4	3.935	0.914	High	2

	Co-ordination of all design information	Be2	3.776	0.828	High	3
Be	Accurate measurement	Be2	3.645	0.893	Medium	4
	Automatic schedule/program production	Be6	3.645	0.914	Medium	5
	Standardization of routine tasks	Be8	3.607	0.866	Medium	6
	Cost plan production	Be5	3.542	0.850	Medium	7
	Cost effective	Be7	3.383	0.928	Medium	8
	High cost/extra capital investment	Ba3	3.402	1.189	Medium	1
	Software complexity	Ba6	3.065	1.215	Medium	2
Ba	Lack of software application interfaces	Ba5	3.047	1.208	Medium	3
	Less familiarity with project	Ba4	2.944	1.148	Medium	4
	Lack of standards	Ba7	2.850	1.164	Medium	5
	Liability concerns	Ba2	2.822	1.330	Medium	6
	Threat to services conventionally provided by quantity surveyors	Ba8	2.617	1.146	Medium	7
	Removed need for a quantity surveyor	Ba1	1.972	1.209	Low	8

4.5.1. Determinants of Technology Usage (DTU)

Four of the six (67%) DTUs had medium levels of agreement relative to the acceptance determinants for use of technology by QSs', namely:

determinants for use of technology by QSs, namely:
\square Individual resistance to change (IRC) (mean = 3.337);
\square Social influence (SI) (mean = 3.058);
\square Top management support (TMS) (mean = 3.000); and
\square Facilitating conditions (FC) (mean = 2.683).
There were low levels of agreement relative to the remaining acceptance determinants for use
of technology by QSs, namely:
\square Effort expectancy (EE) (mean = 2.279); and
\square Performance expectancy (PE) (mean = 2.154).
The levels of agreement suggest that OSs were unconvinced about the influence or impact of

The levels of agreement suggest that QSs were unconvinced about the influence or impact of these determinants on their acceptance of new technological advancements in their organizations.

4.5.2. Technology Potential (TP)

Only one o	f the six (16.7%) DTUs had high levels of agreement relative to the acceptance
determinant	s for use of technology by QSs, namely:
	Cost estimation can be improved (CE) (mean = 3.856).
There were	medium levels of agreement with the remaining statements about the potential of
technology	adoption in their firms, namely:
	Technological developments can streamline the procurement process (mean = 3.385);
	Technology increases program certainty at the tender stage (mean = 3.144); and
	Technology reduces the amount of variations during the construction phase (mean $= 2.606$.
Although pa	articipants agreed that cost estimation can be improved, their responses to the three
remaining s	statements (medium levels of agreement) suggested they had neutral sentiments
about the po	otential of technology adoption in their organizations.
	eations (LIMIT) medium levels of agreement with seven of the eight (88%) statements about
	for use of technology by QSs, namely
	Upfront costs are too high (mean = 3.453);
	Additional costs of training make technology prohibitive (mean = 3.255);
	Financial and time commitment from small practices is too large (mean = 2.981);
	There is a scarcity of available training, cost estimation can be improved (mean =
	2.953);
	There are problems with legal ownership of information (mean $= 2.849$);
	Roles and responsibilities of quantity surveyors will change (mean $= 2.632$); and
	There is no client demand (mean $= 2.557$).
There was le	ow level of agreement relative to the remaining statement about limitations for use
of technolog	gy by QSs, namely:
	QS practices are too small to embrace technology (mean $= 2.208$).
Participants	responses to the seven statements (medium level of agreement), indicated that they
had in the m	nain neutral sentiments about the limitations to technology adoption in the QS firms
they were a	ssociated with

4.5.4. Technology Driven Services (TDS)

Five of the	eight (62.5%) TDSs' had medium levels of agreement relative to the statements
about techn	ology driven services in their QSs firms, namely:
	Financial statements can be executed using technology alone (mean $= 2.663$);
	Measurement and quantification can be executed using technology alone (mean =
	2.635);
	Document preparation can be executed using technology alone (mean $= 2.462$);
	Procurement advice can be executed using technology alone (mean $= 2.404$); and
	Final account preparation can be executed using technology alone (mean $= 2.356$).
There were	low levels of agreement relative to the remaining statements about technology
driven servi	ces in their QSs firms, namely:
	Cost control during construction can be executed using technology alone (mean =
	2.308);
	Interim valuations and payments can be executed using technology alone (mean =
	2.279); and
	Settlement of contractual claims can be executed using technology alone (mean =
	2.096).
The majorit	y of respondents had neutral sentiments about technology driven services being
implemente	d or offered by their QS firms.
4.5.5. Meas	urement Methods (MM)
Three of the	e six (50.0%) statements had medium levels of agreement relative to methods of
measuremen	nt being executed by technology alone, namely:
	Elemental cost analysis can be executed using technology alone (mean $= 2.514$);
	Approximate quantities can be executed using technology alone (mean $= 2.495$);
	and
	Storey enclosure method can be executed using technology alone (mean $= 2.400$).
There were	low levels of agreement relative to the remaining methods of measurement being
executed by	technology alone, namely:
	Cube method can be executed using technology alone (mean $= 2.314$);
	Superficial method can be executed using technology alone (mean $= 2.314$); and
	Unit method can be executed using technology alone (mean $= 2.267$).
Participants	were unconvinced that measurement methods could be executed using technology
alone in the	ir QS firms and practices.

4.5.6. Benefits (Be)

Three of the	e eight (37.5%) statements had high levels of agreement relative to the benefits of
the use of te	echnology by QSs in their firms and practices, namely:
	Improved efficiency (mean $= 4.477$);
	Visual aid (mean $= 3.935$); and
	Co-ordination of all design information (mean $= 3.776$).
There were	medium levels of agreement relative to the remaining benefits of the use of
technology	by QSs in their firms and practices, namely:
	Automatic schedule/program production (mean = 3.645);
	Standardization of routine tasks (mean $= 3.607$);
	Cost plan production (mean $= 3.542$); and
	Cost effective (mean $= 3.383$).
In the main,	participants recognized some of the benefits while having neutral sentiments about
others.	
4.5.7. Barri	ers (Ba)
Seven of the	e eight (87.5%) statements had medium levels of agreement relative to the barriers
that would a	affect the use of technology in QS firms, namely:
	High cost/extra capital investment (mean $= 3.402$);
	Software complexity (mean $= 3.065$);
	Lack of software application interfaces (mean = 3.047);
	Less familiarity with project (mean = 2.944);
	Lack of standards (mean = 2.850);
	Liability concerns (mean $= 2.822$); and
	Threat to services conventionally provided by quantity surveyors improved
	efficiency (mean $= 2.617$).
There was l	ow level of agreement relative to the remaining barrier that would affect the use of
technology	in QS firms, namely:
	Removed need for a quantity surveyor (mean = 1.972).
In the main	, participants had neutral sentiments about the barriers to technology adoption in
their firms a	and practices.

4.6. Adapted Acceptance Model

Figure 2 shows the relationships the relationships between the different independent and dependant variables.

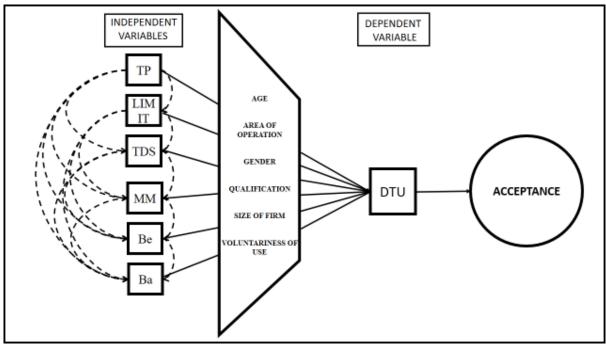


Figure 2. – EVOLVED USER ACCEPTANCE MODEL

Independent Variables

•	TP	Technology Potential
•	LIMIT	Limitations
•	TDS	Technology Driven Services
•	MM	Measurement Methods
•	Be	Benefits construct

Dependent Variables

Ba

• DTU Determinants of Technology Usage

Barriers construct

QSs remain unconvinced about the influence or impact of the determinants of technology usage on their acceptance of new technological advancements in their organizations; they were undecided about the potential of technology adoption in their organizations. QSs were not clear about the limitations to technology adoption in the QS firms they were associated with; they also remained unconvinced about technology driven services being implemented or offered by their QS firms. Participants were unconvinced that measurement methods could be executed

using technology alone in their QS firms and practices. In the main, participants recognized some of the benefits, even though they were undecided about the others; they were also not clear about the barriers to technology adoption in their firms and practices.

TABLE 4. Instrument Measurement Analysis

		Research	Cor.	Cronbachs	C.R.	AVE	Item
Constructs	Description	Items	Item to	α Value			Loadings
		Used	Total				
	Performance Expectancy	PE	0.182				0.710
	Effort Expectancy	EE	0.323				0.813
	Social Influence	SI	0.234				0.708
DTU	Facilitating Conditions	FC	0.344				0.683
	Top Management Support	TMS	0.380				0.612
	Individual Resistance to Change	IRC	0.048				0.339
	Cost estimation can be improved	TP1	0.337				0.667
	Technology increases program certainty at the tender stage	TP2	0.508				0.786
TP	Technology reduces the amount of variations during the construction phase	TP3	0.626	0.726	0.725	0.669	0.927
	Technological developments can streamline the procurement process	TP4	0.514				0.892
	QS practices are too small to embrace technology	LIMIT1	0.595				0.710
	Financial and time commitment from small practices is too large	LIMIT2	0.650				0.813
	Upfront costs are too high	LIMIT3	0.629				0.708
	Additional costs of training make technology prohibitive	LIMIT4	0.572				0.683
LIMIT	There is no client demand	LIMIT5	0.444	0.808	0.699	0.357	0.612
	There are problems with legal ownership of information	LIMIT6	0.440				0.339
	Roles and responsibilities of quantity surveyors will change	LIMIT7	0.452				0.367
	There is a scarcity of available training	LIMIT8	0.308				0.315
	Procurement advice can be executed using technology alone	TDS1	0.639				0.648
	Measurement and quantification can be executed using technology alone	TDS2	0.644				0.493
	Document preparation can be executed using technology alone	TDS3	0.755				0.688
	Cost control during construction can be executed using technology alone	TDS4	0.821				0.878

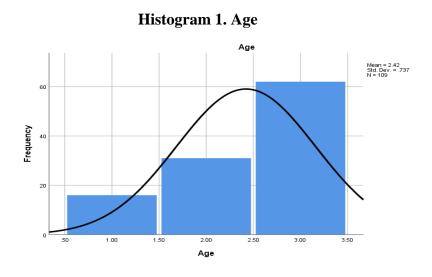
	Interim valuations and	TDS5	0.804				0.862
TDS	payments can be executed			0.912	0.687	0.490	*****
	using technology alone						
	Financial statements can be	TDS6	0.709				0.556
	executed using technology						
	alone	ED 07	0.702				0.504
	Final account preparation can	TDS7	0.793				0.791
	be executed using technology alone						
	Settlement of contractual	TDS8	0.647				0.582
	claims can be executed using	1000	0.047				0.362
	technology alone						
	Unit method can be executed	MM1	0.786				0.755
	using technology alone						
	Cube method can be executed	MM2	0.886				0.836
	using technology alone						
	Superficial method can be	MM3	0.834				0.816
	executed using technology						
	alone	3074	0.7.6				0.000
MM	Storey enclosure method can	MM4	0.766	0.933	0.765	0.595	0.828
1V11V1	be executed using technology alone			0.933	0.703	0.595	
	Approximate quantities can be	MM5	0.824				0.806
	executed using technology	IVIIVIS	0.024				0.800
	alone						
	Elemental cost analysis can be	MM6	0.627				0.546
	executed using technology						0.5 10
	alone						
	Improved efficiency	Be1	0.278				-
	Accurate measurement	Be2	0.407				0.718
	Co-ordination of all design	Be2	0.524				0.831
	information						
D	Visual aid	Be4	0.444	0.061	0.660	0.522	0.811
Be	Cost plan production	Be5	0.586	0.861	0.669	0.522	0.645
	Automatic schedule/program	Be6	0.490				0.579
	production	D-7	0.412				0.020
	Cost effective Standardization of routine	Be7 Be8	0.413				0.929
	tasks	Deo	0.320				0.657
	Removed need for a quantity	Ba1	0.448		+		0.787
	surveyor	Dai	0. r-t0				0.707
	Liability concerns	Ba2	0.392				0.874
	High cost/extra capital	Ba3	0.606				0.637
	investment						
Ba	Less familiarity with project	Ba4	0.699	0.861	0.778	0.613	0.797
	Lack of software application	Ba5	0.750				0.838
	interfaces						
	Software complexity	Ba6	0.695				0.831
	Lack of standards	Ba7	0.628				0.823
	Threat to services	Ba8	0.566				0.640
	conventionally provided by						
	quantity surveyors	Λ ~~	0.224				0.406
	Age Gender	Age Gender	0.224				0.496
	Qualifications	Qual	0.089			}	0.700
	Experience	Exp	0.301			ŀ	0.700
	Area of operation	AO	0.212			ŀ	0.756
	Size in terms of annual	SAT	0.304				0.872
	Dize in terms of annual	DA I	0.304				0.072

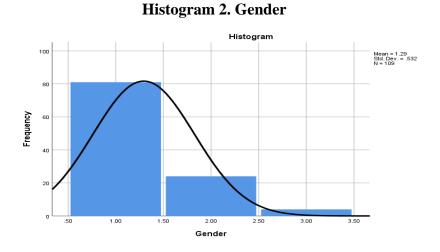
Size in terms	of number of	SNE	0.288	0.872
permanent em	ployees			
Voluntariness	of use	VU	0.269	0.715

Table 4 illustrates the instrument measurement model, factor and reliability analyses including Cronbachs alpha and corrected item-to-total correlations, composite reliability (CR), convergent validity, average variance extracted (AVE) and discriminant validity which should be less than the square root of AVE. The reliability statistics are also shown.

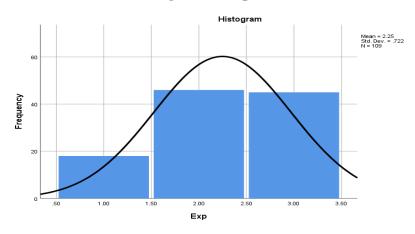
The Cronbach's alpha co-efficient for the scaled responses of each of the constructs ranges from. 0.547 to 0.933 which suggests that there is an acceptable degree of internal consistency for the scales used for all the constructs, namely a Cronbach Alpha statistic which is greater than the rule-of-thumb 0.70 for acceptable internal scale consistency, except for DTU (0.547).

4.7. Tests of Normality

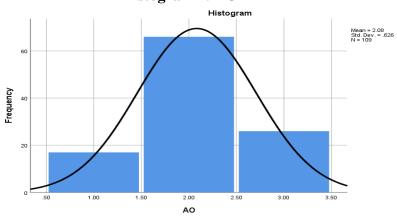

TABLE 5. Normality


		Tests of Normality ^{c,d,e,f,g,h,i,j,k,l,m,n} Kolmogorov-Smirnov ^a													
Component		Statistic	df	Sig.	Statistic	df	hapiro-Wilk Sig.								
TP	2.979	0.736		0.546	1.179	8	0.227								
LIMIT	2.877	0.274	5	0.077	0.832	6	0.418								
TDS	2.537	0.293	5	0.057	0.824	13	0.321								
MM	2.718	0.281	6	0.038	0.844	7	0.404								
Be	3.627	0.298	6	0.049	0.817	6	0.379								
Ba	2.793	0.294	4	0.082	0.823	4	0.372								
Age	2.000	0.224	34	0.013	0.870	34	0.023								
Gender	2.000	0.262	34	0.010	0.845	34	0.004								
Qual	2.000	0.223	34	0.007	0.861	34	0.263								
Exp	2.000	0.227	34	0.008	0.861	34	0.020								
AO	2.000	0.243	34	0.006	0.849	34	0.039								
SAT	2.000	0.243	34	0.006	0.849	34	0.022								
SNE	2.000	0.224	34	0.004	0.862	34	0.091								
VU	2.000	0.229	34	0.005	0.859	34	0.011								

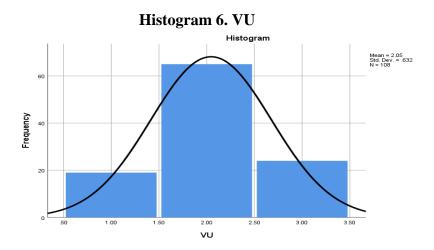
A significance (p) level of 0.05 was chosen, meaning that normal >0.05 and for not normal p<0.05. Therefore, if p<0.05, then the null hypothesis is rejected and there is evidence that the data tested are not from a normally distributed population; in other words, the data are not normal and the Spearman, non-parametric test must be used for correlation. On the contrary, if


the *p*-value is greater than the chosen alpha level, then the null hypothesis that the data came from a normally distributed population cannot be rejected and the Pearson parametric correlation must be used.

Eight of the fourteen components (TP, LIMIT, TDS, MM, Be, Ba, Qual, and SNE) showed a significance of p>0.05. The <u>null-hypothesis</u> of this test is that the components for the evolved user acceptance model (TP, LIMIT, TDS, MM, Be, Ba, Qual, and SNE) are normally distributed and as such cannot be rejected. These results are shown in Table 5.




Histogram 3. Exp



Histogram 4. AO

Histogram 5. SAT

Histograms 1 to 6 illustrate AO, SAT, SNE and VU, providing proof that they were in fact normally distributed. Their significance levels, p>0.05, denoting 'normal' distributions.

4.8. Bivariate Distribution

The components of DTU all showed a significance p>0.05. Therefore, Pearson parametric correlation (normal >0.05) was utilised to predict the levels of significance between the components of DTU (PE, EE, SI, FC, TMS and IRC) (dependant variables) and TP, LIMIT, TDS, MM, Be, and Ba and the components that also have an effect on DTU; Age, Gender, Qualification (Qual), Experience (Exp), Area of operation (AO), Size in terms of annual turnover (SAT), Size in terms of number of permanent employees (SNE), and Voluntariness of use (VU) (independent variables), as well as between TP, LIMIT, TDS, MM, Be, Ba, Age, Gender, Qual, Exp, AO, SAT, SNE, and VU (independent variables), and between PE, EE, SI, FC, TMS and IRC (dependant variables), investigating the correlation between each construct or and components. DTU & MI were separated into their various components; DTU - PE, EE, SI, FC, TMS as dependant variables and IRC; and MI - Age, Gender, Qual, Exp, AO, SAT, SNE, and VU, dependant variables; magnifying exactly where the significant correlations are, so that further exploration can be undertaken. The coefficient is located between -1 > r < +1standard of either a perfect negative or a, perfect positive correlation i.e. exact straight line and level of significance between the constructs and components. According to Cohen's conventions to interpret effect size, a correlation coefficient of 0.10 is thought to represent a weak or small association; a correlation coefficient of 0.30 is considered a moderate correlation; and a correlation coefficient of 0.50 or larger is thought to represent a strong or large correlation. A significance (p) level of 0.05 was chosen, meaning that p>0.05 means that the correlation is not statistically significant as opposed to a p<0.05, which suggests that the correlation is statistically significant.

The various correlations are discussed as follows in terms of their statistical significance as shown in Table 6.

4.8.1. SNE vs SAT

correlation coefficient is positive (0.636); and
the significance is (0.000).

The correlation between SNE and SAT indicates a strong positive correlation between SNE and SAT (0.636), (when SNE increases SAT increases proportionately and vice versa). It is statistically significant (0.000), as there is evidence to suggest a strong correlation exists in the population.

Therefore, the larger the firm or practice in terms of annual turnover, the greater the size firm or practice will be in terms of number of permanent employees.

4.8.2. Ba vs LIMIT

correlation coefficient is positive (0.566); and
the significance is (0.000).

The finding shows that the correlation between Ba and LIMIT indicates a strong positive correlation between Ba and LIMIT (0.566), (when Ba increases LIMIT increases proportionately and vice versa). It is statistically significant (0.000), as there is evidence to suggest a large correlation exists in the population.

Therefore, the greater the barriers to new technology, the greater the limitations to acceptance of new technological advances.

4.8.3. PE vs EE

correlation coefficient is positive (0.509); and
the significance is (0.000).

The finding shows that the correlation between PE and EE indicates a strong positive correlation between PE and EE (0.509), (when PE increases EE increases proportionately and vice versa). It is strongly statistically significant (0.000), as there is evidence to suggest a large correlation exists in the population. Therefore, the greater the performance expectancy, the greater the ease of use of technology and acceptance of new technological advances.

TABLE 6. Correlations between Constructs

									Correla	ations											
		PE	EE	SI	FC	TMS	IRC	TP	LIMIT	TDS	MM	Be	Ba	Age	Gender	Qual	Exp	AO	SAT	SNE	VU
PE	Pearson	1																			
	Correlation																				
	Sig. (2-tailed)																				
	N	108																			
EE	Pearson	.509**	1																		
	Correlation																				
	Sig. (2-tailed)	.000																			
	N	108	108																		
SI	Pearson	.098	.107	1																	
	Correlation																				
	Sig. (2-tailed)	.315	.270																		
	N	107	107	108																	
FC	Pearson	.116	.131	.184	1																
	Correlation																				
	Sig. (2-tailed)	.238	.181	.059																	
	N	106	106	106	107																
TMS	Pearson	.110	.111	.251**	.336**	1															
	Correlation																				
	Sig. (2-tailed)	.258	.255	.009	.000																
	N	108	108	108	107	109															
IRC	Pearson	228*	.044	.006	.101	.165	1														
	Correlation																				
	Sig. (2-tailed)	.018	.653	.950	.304	.088															
	N	107	107	107	106	108	108			_											

TP	Pearson	.047	.063	081	.011	.095	115	1										
	Correlation																	
	Sig. (2-tailed)	.636	.528	.418	.913	.339	.246											
	N	103	103	103	102	104	103	104										
LIMIT	Pearson	.036	.069	.215*	.107	.001	027	.049	1									
	Correlation																	
	Sig. (2-tailed)	.716	.486	.028	.279	.996	.784	.630										
	N	105	105	105	104	106	105	101	106									
TDS	Pearson	.118	.128	067	134	.031	.039	.142	138	1								
125	Correlation	.110	.120	.007	.131	.031	.037	.1 12	.130	1								
	Sig. (2-tailed)	.237	.198	.501	.176	.753	.691	.161	.167									
	N	103	103	103	104	104	104	99	101	104								
MM	Pearson	.028	.052	063	176	.013	.107	.059	.009	.656**	1							
141141	Correlation	.028	.032	003	170	.013	.107	.037	.007	.030	1							
	Sig. (2-tailed)	.775	.601	.528	.076	.893	.277	.562	.927	.000								
	N	104	104	104	103	105	104	100	103	101	105							
-			104									1						
Be	Pearson	042	-	204*	244*	110	140	.131	171	.272**	.196*	1						
	Correlation		.003															
	Sig. (2-tailed)	.667	.973	.036	.012	.259	.151	.189	.083	.006	.047							
	N	106	106	106	105	107	106	102	104	102	103	107						
Ba	Pearson	.016	.087	.170	.210*	.011	.088	091	.566**	110	.210*	-	1					
	Correlation											.173						
	Sig. (2-tailed)	.874	.375	.081	.032	.914	.370	.361	.000	.270	.033	.078						
	N	106	106	106	105	107	106	102	104	102	103	105	107					
Age	Pearson	.012	-	.052	.123	.045	.013	153	.217*	-	137	.120	.245*	1				
	Correlation		.133							.284**								
	Sig. (2-tailed)	.904	.170	.592	.207	.646	.893	.121	.025	.003	.162	.218	.011					

108 .019 n led) .842 108025 n led) .801	.045 .642 108	.263 108 .282**	.051 .603 107	.084	.357	.006	.030	.106	080	.082	107 144	.012	1						
n .842 108 025	.642 108	.263	.603	.386	.357				080	.082	144	.012	1						
.842 108 025	.642 108	108				.006	750					.012							
108 025	108	108				.006	750												
025	-		107	109			.133	.285	.420	.402	.139	.902							
n e	- 015	.282**			108	104	106	104	105	107	107	109	109						
	015		.191*	.335**	.032	.230*	.305**	.050	082	-	.196*	.113	.165	1					
(ad) 801	.015									.122									
.801	.882	.003	.049	.000	.743	.019	.002	.613	.408	.211	.044	.242	.089						
107	107	107	106	108	107	103	105	103	104	106	106	108	108	108					
.116	.017	.100	005	080	030	039	077	025	070	.116	.139	.080	.050	.231*	1				
n																			
led) .232	.857	.302	.961	.410	.761	.694	.432	.801	.479	.234	.152	.407	.606	.016					
108	108	108	107	109	108	104	106	104	105	107	107	109	109	108	109				
.051	.057	089	044	117	.000	.052	.203*	245*	.102	-	.435**	.185	073	.022	.344**	1			
n										.010									
led) .603	.559	.362	.656	.225	1.000	.599	.036	.012	.300	.922	.000	.054	.448	.820	.000				
108	108	108	107	109	108	104	106	104	105	107	107	109	109	108	109	109			
.044	-	.329**	.027	.133	072	034	.083	.039	.001	-	022	.151	.080	.181	045	010	1		
n	.008									.031									
led) .650	.932	.001	.786	.169	.458	.732	.399	.696	.989	.749	.823	.116	.407	.061	.642	.916			
108	108	108	107	109	108	104	106	104	105	107	107	109	109	108	109	109	109		
.117	.071	.186	.036	.204*	003	142	.162	076	091	1	.144	.099	.128	.079	095	.104	.636**	1	
n										.091									
led) .226	.466	.053	.710	.033	.972	.152	.096	.446	.354	.351	.139	.308	.184	.416	.325	.283	.000		
							106					109					109	109	
	.034	071	126	_	009	033	.257**	167	061	.004	.303**	.179	069	.155	.221*	.348**	.014	.052	1
n				.257**				•							·				
	led) .232 108 .051 n led) .603 108 .044 n led) .650 108 .117 n led) .226 108024	.116 .017 n led) .232 .857 108 108 .051 .057 n led) .603 .559 108 108 .044 - n .008 led) .650 .932 108 108 .117 .071 n led) .226 .466 108 108 024 .034	.116 .017 .100 n	116 .017 .100 005 .005 .005 .005 .005 .006 .005 .006 .007 .008 .008 .008 .008	116 .017 .100 005 080 .0ed .232 .857 .302 .961 .410 .051 .057 089 044 117 .051 .057 089 044 117 .084 .085 .362 .656 .225 .088 .088 .087 .027 .133 .008 .008 .008 .008 .008 .	116 .017 .100 005 080 030	116 .017 .100 005 080 030 039 108 108 108 107 109 108 104 108 108 108 107 109 108 104 108 108 108 107 109 108 104 108 108 108 107 109 108 104 108 108 108 107 109 108 104 108 108 108 107 109 108 104 108 108 108 107 109 108 104 108 108 108 107 109 108 104 108 108 108 107 109 108 104 108 108 108 107 109 108 104 109 108 108 109 108 108 109 108 108 109 108 108 109 108 108 100 100	116 .017 .100 005 080 030 039 077 12d .232 .857 .302 .961 .410 .761 .694 .432 108 108 108 107 109 108 104 106 .051 .057 089 044 117 .000 .052 .203* 12d .603 .559 .362 .656 .225 1.000 .599 .036 108 108 108 107 109 108 104 106 .044 329** .027 .133 072 034 .083 12d .650 .932 .001 .786 .169 .458 .732 .399 12d .650 .932 .001 .786 .169 .458 .732 .399 12d .117 .071 .186 .036 .204* 003 142 .162 12d .226 .466 .053 .710 .033 .972 .152 .096 12d .024 .034 071 126 009 033 .257**	116 .017 .100 005 080 030 039 077 025 1	116 .017 .100 005 080 030 039 077 025 070 1ed) .232 .857 .302 .961 .410 .761 .694 .432 .801 .479 108 108 108 107 109 108 104 106 104 105 108 .051 .057 089 044 117 .000 .052 .203* 245* .102 108 108 108 107 109 108 104 106 104 105 108 108 108 107 109 108 104 106 104 105 108 .044 329** .027 .133 072 034 .083 .039 .001 108 108 108 107 109 108 104 106 104 105 108 108 108 107 109 108 104 106 104 105 117 .071 .186 .036 .204* 003 142 .162 076 091 108 108 108 107 109 108 104 106 104 105 108 108 108 107 109 108 104 106 104 105 108 108 108 107 109 108 104 106 104 105 108 108 108 107 109 108 104 106 104 105 108 108 108 107 109 108 104 106 104 105 108 108 108 107 109 108 104 106 104 105 108 108 108 107 109 108 104 106 104 105 108 108 108 107 109 108 104 106 104 105 108 108 108 107 109 108 104 106 104 105 108 108 108 107 109 108 104 106 104 105 108 108 108 107 109 108 104 106 104 105 108 108 108 107 109 108 104 106 104 105 108 108 108 107 109 108 104 106 104 105 108 108 108 107 109 108 104 106 104 105 108 108 108 107 109 108 104 106 104 105 108 108 108 107 109 108 104 106 104 105 108 108 108 107 109 108 104 106 104 105 108 108 108 107 109 108 104 106 104 105 108 108 108 107 109 108 104 106 104 105 108 108 108 108 107 109 108 104 106 104 105 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108	116 .017 .100 005 080 030 039 077 025 070 .116 108 108 108 107 109 108 104 106 104 105 107 108 108 108 107 109 108 104 106 104 105 107 108 108 108 107 109 108 104 106 104 105 107 108 108 108 107 109 108 104 106 104 105 107 108 108 108 107 109 108 104 106 104 105 107 108 108 108 107 109 108 104 106 104 105 107 108 108 108 107 109 108 104 106 104 105 107 108 108 108 107 109 108 104 106 104 105 107 108 108 108 107 109 108 104 106 104 105 107 108 108 108 107 109 108 104 106 104 105 107 108 108 108 107 109 108 104 106 104 105 107 108 108 108 107 109 108 104 106 104 105 107 108 108 108 107 109 108 104 106 104 105 107 108 108 108 107 109 108 104 106 104 105 107 108 108 108 107 109 108 104 106 104 105 107 108 108 108 107 109 108 104 106 104 105 107 108 108 108 107 109 108 104 106 104 105 107 108 108 108 107 109 108 104 106 104 105 107 108 108 108 107 109 108 104 106 104 105 107 108 108 108 107 109 108 104 106 104 105 107 108 108 108 107 109 108 104 106 104 105 107 108 108 108 107 109 108 104 106 104 105 107 108 108 108 107 109 108 104 106 104 105 107 108 108 108 107 109 108 104 106 104 105 107 108 108 108 107 109 108 104 106 104 105 107 108 108 108 107 109 108 104 106 104 105 107 108 108 108 107 109 108 104 106 104 105 107 108 108 108 108 107 109 108 104 106 104 105 107 108 108 108 108 108 108 108 108 1	116 .017 .100 005 080 030 039 077 025 070 .116 .139 18ed .232 .857 .302 .961 .410 .761 .694 .432 .801 .479 .234 .152 108 108 108 107 109 108 104 106 104 105 107 107 .051 .057 089 044 117 .000 .052 .203* 245* .102 - .435*** 18ed .603 .559 .362 .656 .225 1.000 .599 .036 .012 .300 .922 .000 108 108 108 107 109 108 104 106 104 105 107 107 108 .044 - .329** .027 .133 072 034 .083 .039 .001 - 022 108 108 108 107 109 108 104 106 104 105 107 107 107 .117 .071 .186 .036 .204* 003 142 .162 076 091 - .144 108 108 108 107 109 108 104 106 104 105 107 107 109 .226 .466 .053 .710 .033 .972 .152 .096 .446 .354 .351 .139 108 108 108 107 109 108 104 106 104 105 107 107 024 .034 071 126 - 009 033 .257** 167 061 .004 .303**	116 .017 .100 005 080 030 039 077 025 070 .116 .139 .080 126	116 .017 .100 .005 .080 .030 .039 .077 .025 .070 .116 .139 .080 .050 108 .232 .857 .302 .961 .410 .761 .694 .432 .801 .479 .234 .152 .407 .606 108 108 108 107 109 108 104 106 104 105 107 107 109 109 108 .051 .057 .089 .044 .117 .000 .052 .203* .245* .102 . 435** .185 .073 108 .063 .559 .362 .656 .225 1.000 .599 .036 .012 .300 .922 .000 .054 .448 108 108 108 107 109 108 104 106 104 105 107 107 109 109 109 .044 . 329** .027 .133 .072 .034 .083 .039 .001 022 .151 .080 108 108 108 107 109 108 104 106 104 105 107 107 109 109 108 108 108 107 109 108 104 106 104 105 107 107 109 109 109 .117 .071 .186 .036 .204* .003 .142 .162 .076 .091 014 .099 .128 108 108 108 108 107 109 108 104 106 104 105 107 107 109 109 109 .091	116 .017 .100 005 080 030 039 077 025 070 .116 .139 .080 .050 .231* 128 108 108 108 107 109 108 104 106 104 105 107 107 109 109 108 129 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120	116 .017 .100 .005 .080 .030 .039 .077 .025 .070 .116 .139 .080 .050 .231* 1	116 .017 .100 .005 .080 .030 .039 .077 .025 .070 .116 .139 .080 .050 .231* 1	116 .017 .100 .005 .080 .030 .039 .077 .025 .070 .116 .139 .080 .050 .231* 1	1.16 0.17 0.100 0.005 0.080 0.030 0.039 0.077 0.025 0.070 0.116 0.139 0.80 0.050 0.231* 1 0.08

Sig. (2-tailed)	.803	.725	.464	.197	.007	.927	.743	.008	.092	.538	.965	.002	.064	.480	.111	.021	.000	.885	.597	
N	107	107	107	106	108	107	103	106	103	104	106	106	108	108	107	108	108	108	108	108

^{**.} Correlation is significant at the 0.01 level (2-tailed).

4.8.4. PE vs IRC

 \square correlation coefficient is negative (-0.228); and

 \Box the significance is (0.018).

The finding shows that the correlation between IRC and PE indicates a small negative correlation between IRC and PE (-0.228), (when IRC increases PE decreases proportionately and vice versa). It is statistically significant (0.018), as there is evidence to suggest a small correlation exists in the population.

Therefore, the greater the performance expectancy, the less likely for an individual to resist change and improving acceptance of technological advances.

4.8.5. TMS vs FC

 \square correlation coefficient is positive (0.336); and

 \Box the significance is (0.009).

The finding shows that the correlation between TMS and FC indicates a moderate positive correlation between TMS and FC (0.336), (when TMS increases FC increases proportionately and vice versa). It is statistically significant (0.009), as there is evidence to suggest a moderate correlation exists in the population.

Therefore, the greater the top management support, the more likely that adequate organisational structures will be put in place to facilitate and support usage of technology increasing the acceptance of new technological advances into the firm or practice.

^{*.} Correlation is significant at the 0.05 level (2-tailed).

4.8.6. PE vs IRC

correlation coefficient is negative (-0.228); and
the significance is (0.018).

The finding shows that the correlation between IRC and PE indicates a small negative correlation between IRC and PE (-0.228), (when IRC increases PE decreases proportionately and vice versa). It is statistically significant (0.018), as there is evidence to suggest a small correlation exists in the population.

Therefore, the greater the performance expectancy, the less likely for an individual to resist change and improving acceptance of technological advances.

4.8.7. TMS vs FC

correlation coefficient is positive (0.336); and
the significance is (0.009).

The finding shows that the correlation between TMS and FC indicates a moderate positive correlation between TMS and FC (0.336), (when TMS increases FC increases proportionately and vice versa). It is statistically significant (0.009), as there is evidence to suggest a moderate correlation exists in the population.

Therefore, the greater the top management support, the more likely that adequate organisational structures will be put in place to facilitate and support usage of technology increasing the acceptance of new technological advances into the firm or practice.

4.8.8. TMS vs SI

correlation coefficient is positive (0.252); and
the significance is (0.009).

The finding shows that the correlation between TMS and SI indicates a small positive correlation between TMS and SI (0.252), (when TMS increases SI increases proportionately and vice versa). It is statistically significant (0.000), as there is evidence to suggest a small correlation exists in the population.

Therefore, the greater the top management support for increasing the use of technology and acceptance of new technological advances, the greater the social influence within the firm or practice.

4.8.9. SAT vs SI

correlation coefficient is positive (0.329); and
the significance is (0.001).

The finding shows that the correlation between SAT and SI indicates a moderate positive correlation between SAT and SI (0.329), (when SAT increases SI increases proportionately and vice versa). It is strongly statistically significant (0.001), as there is evidence to suggest a moderate correlation exists in the population.

Therefore, the larger the firm in terms of annual turnover, the greater the social influence within the firm or practice and acceptance of technological advances.

4.8.10. Qual vs SI

□ correlation coefficient is positive (0.282); and
 □ the significance is (0.003).

The finding shows that the correlation between Qual and SI indicates a small positive correlation between Qual and SI (0.282), (when Qual increases SI increases proportionately and vice versa). It is strongly statistically significant (0.003), as there is evidence to suggest a small correlation exists in the population.

Therefore, the higher the qualification of the QS, the greater the social influence within the firm or practice, and acceptance of new technological advances.

4.8.11. LIMIT vs SI

 \square correlation coefficient is positive (0.215); and \square the significance is (0.028).

The finding shows that the correlation between LIMIT and SI indicates a small positive correlation between LIMIT and SI (0.215), (when LIMIT increases SI increases proportionately and vice versa). It is statistically significant (0.028), as there is evidence to suggest a small correlation exists in the population.

Therefore, the greater the limitations imposed on technological innovation, the greater the likelihood that social influence will have to grow.

4.8.12. Qual vs TMS

Ш	correlation coefficient is positive (0.335); and
	the significance is (0.000).

The finding shows that the correlation between Qual and TMS indicates a moderate positive correlation between Qual and TMS (0.335), (when Qual increases TMS increases proportionately and vice versa). It is strongly statistically significant (0.000), as there is evidence to suggest a moderate correlation exists in the population.

Therefore, the more qualified the QS the greater the top management support which will influence acceptance of technological advances.

4.8.13. Qual vs LIMIT

□ correlation coefficient is positive (0.305); and □ the significance is (0.002).

The finding shows that the correlation between Qual and LIMIT indicates a moderate positive correlation between Qual and LIMIT (0.305), (when Qual increases LIMIT increases proportionately and vice versa). It is statistically significant (0.002), as there is evidence to suggest a moderate correlation exists in the population.

Therefore, the more qualified a QS is, the more likely that acceptance of new technology advances will be limited.

4.8.14. Qual vs TP

□ correlation coefficient is positive (0.245); and □ the significance is (0.011).

The finding shows that the correlation between Qual and TP indicates a small positive correlation between Qual and TP (0.234), (when Qual increases TP increases proportionately and vice versa). It is statistically significant (0.011), as there is evidence to suggest a weak correlation exists in the population.

Therefore, the more qualified the QS is, the greater the likelihood that technology potential increases.

4.8.15. Qual vs Exp

□ correlation coefficient is positive (0.231); and □ the significance is (0.016).

The finding shows that the correlation between Qual and Exp indicates a small positive correlation between Qual and Exp (0.231), (when Qual increases Exp increases proportionately and vice versa). It is statistically significant (0.016), as there is evidence to suggest a weak correlation exists in the population.

Therefore, the more qualified the QS, the more likely that experience with technology will increase.

4.8.16. AO vs Ba

 \square correlation coefficient is positive (0.435); and

 \Box the significance is (0.000).

The finding shows that the correlation between AO and Ba indicates a moderate positive correlation between AO and Ba (0.435), (when AO increases Ba increases proportionately and vice versa). It is statistically significant (0.000), as there is evidence to suggest a moderate correlation exists in the population.

Therefore, the greater the area of operation, the greater the barriers are likely to be to acceptance of new technological advances.

4.8.17. Exp vs AO

 \Box correlation coefficient is positive (0.344); and

 \Box the significance is (0.000).

The finding shows that the correlation between Exp vs AO indicates a moderate positive correlation between Exp vs AO (0.344), (when Exp increases OA increases proportionately and vice versa). It is statistically significant (0.000), as there is evidence to suggest a moderate correlation exists in the population.

Therefore, the greater the range of experience of the QSs, the greater the likelihood of a larger area of operation.

4.8.18. AO vs TDS

 \Box correlation coefficient is positive (-0.245); and

 \Box the significance is (0.012).

The finding shows that the correlation between AO vs TDS indicates a small negative correlation between AO vs TDS (-0.245), (when AO increases TDS decreases proportionately and vice versa). It is statistically significant (0.012), as there is evidence to suggest a weak correlation exists in the population.

Therefore, the greater the area of operation, the greater the range of technological driven services that will be offered by the firm or practice, which impacts the adoption of new technological advances.

4.8.19. VU vs AO

 \square correlation coefficient is positive (0.348); and

 \Box the significance is (0.000).

The finding shows that the correlation between VU and AO indicates a moderate positive correlation between VU and AO (0.348), (when VU increases AO increases proportionately and

vice versa). It is statistically significant (0.000), as there is evidence to suggest a moderate correlation exists in the population.

Therefore, the more the voluntary use of new technology is permitted in the firm, the greater the likelihood that the area of operation will have to grow.

4.8.20. VU vs Ba

□ correlation coefficient is positive (0.303); and□ the significance is (0.002).

The finding shows that the correlation between VU and Ba indicates a moderate positive correlation between VU and Ba (0.303), (when VU increases Ba increases proportionately and vice versa). It is statistically significant (0.002), as there is evidence to suggest a weak correlation exists in the population.

Therefore, the more the voluntary use of new technology is permitted in the firm, the greater the likelihood that there will be barriers to acceptance of new technological advances.

4.8.21. VU vs TMS

□ correlation coefficient is negative (-0.257); and
 □ the significance is (0.007).

The finding shows that the correlation between VU and TMS indicates a small negative correlation between VU and TMS (-0.257), (when VU increases TMS decreases proportionately and vice versa). It is strongly statistically significant (0.007), as there is evidence to suggest a small correlation exists in the population.

Therefore, the more a QS feels that use of technology is voluntary the less likely there will be top management support for acceptance of technological advances.

4.8.22. VU vs LIMIT

correlation coefficient is positive (0.257); and
the significance is (0.008).

The finding shows that the correlation between VU and LIMIT indicates a weak positive correlation between VU and LIMIT (0.257), (when VU increases LIMIT increases proportionately and vice versa). It is statistically significant (0.008), as there is evidence to suggest a weak correlation exists in the population.

Therefore, the more the voluntary use of new technology is permitted in the firm, the greater the likelihood that acceptance will be limited.

4.8.23. VU vs Exp		
\square correlation coefficient is positive (0.221); and		
\Box the significance is (0.021).		
The finding shows that the correlation between VU and Exp indicates a small positive correlation		
between VU and Exp (0.221), (when VU increases Exp increases proportionately and vice versa).		
It is statistically significant (0.021), as there is evidence to suggest a weak correlation exists in the		
population.		
Therefore, the greater the voluntary use of new technology is permitted in the firm, the greater the		
range of experience the QSs have to possess.		
4.8.24. Age vs TDS		
\square correlation coefficient is negative (-0.284); and		
\Box the significance is (0.003).		
The finding shows that the correlation between Age and LIMIT indicates a weak negative		
correlation between Age and TDS (-0.284), (when Age increases TDS decreases proportionately		
and vice versa). It is statistically significant (0.003), as there is evidence to suggest a small		
correlation exists in the population.		
Therefore, the older the QS, the less likely that technology driven services will grow.		
4.8.25. Age vs Ba		
\square correlation coefficient is positive (0.245); and		
\Box the significance is (0.011).		
The finding shows that the correlation between Age and Ba indicates a small positive correlation		
between Age and Ba (0.245), (when Age increases Ba increases proportionately and vice versa).		

n It is statistically significant (0.011), as there is evidence to suggest a weak correlation exists in the population.

Therefore, the greater the age of the QS, the more likely that barriers to technology adoption will increase.

4.8.26. Age vs LIMIT

correlation coefficient is positive (0.217); and
the significance is (0.025).

The finding shows that the correlation between Age and LIMIT indicates a moderate positive correlation between Age and LIMIT (0.217), (when Age increases LIMIT increases

proportionately and vice versa). It is statistically significant (0.025), as there is evidence to suggest a weak correlation exists in the population.

Therefore, the older the QS, the more likely that limitations to technology adoption will increase.

4.8.27. MM vs TDS

□ correlation coefficient is positive (0.656); and
 □ the significance is (0.000).

The finding shows that the correlation between MM and TDS indicates a strong positive correlation between MM and TDS (0.656), (when MM increases TDS increases proportionately and vice versa). It is statistically significant (0.000), as there is evidence to suggest a strong correlation exists in the population.

Therefore, the more the measurement methods dependent on technology increases, the greater the scope for technology driven services that will increase acceptance of new technological advances.

4.8.28. Be vs TDS

 \square correlation coefficient is positive (0.272); and \square the significance is (0.006).

The finding shows that the correlation between Be and TDS indicates a small positive correlation between Be and TDS (0.272), (when Be increases TDS increases proportionately and vice versa). It is statistically significant (0.006), as there is evidence to suggest a small correlation exists in the population.

Therefore, the more visible and tangible the benefits of new technological advances the greater the scope for and range of technology driven services, increasing acceptance of new technological advances.

4.8.29. FC vs Be

correlation coefficient is negative (-0.244); and
the significance is (0.012).

The finding shows that the correlation between Be and FC indicates a small negative correlation between Be and FC (-0.244), (when Be increases FC decreases proportionately and vice versa). It is statistically significant (-0.244), as there is evidence to suggest a small correlation exists in the population.

Therefore, the greater the facilitating conditions the greater the likelihood of benefits of new technology being recognized and acceptance of new technological advances growing.

4.8.30. Gender vs TP

correlation coefficient is positive (0.269); and
the significance is (0.006).

The finding shows that the correlation between Gender and TP indicates a small positive correlation between Gender and TP (0.269), (when Gender increases TP increases proportionately and vice versa). It is statistically significant (0.006), as there is evidence to suggest a small correlation exists in the population.

Therefore, the gender of the QS will affect the technological potential within the firm or practice, thereby impacting the potential of technology acceptance.

4.8.31. AO vs TDS

correlation coefficient is negative (-0.245); and
the significance is (0.012).

The finding shows that the correlation between AO vs TDS indicates a small negative correlation between AO vs TDS (-0.245), (when AO increases TDS decreases proportionately and vice versa). It is statistically significant (0.012), as there is evidence to suggest a weak correlation exists in the population.

Therefore, the greater the area of operation, the less likely the range of technological driven services within the firm.

4.9. Regression

Regression assesses how well the independent variables explain the dependent variable. Two linear regression models were run utilising only the significant relationship derived from correlations. Linear regression was used because a visual inspection of normal probability plots (P-P plots) showed that the variables visibly shared a linear relationship and are suitable for regression analysis.

The Model summary' table provides information about the regression line's ability to account for the total variation in the dependent variable. For model summary we interpret the Adjusted R Square.

Anova table /analysis of variance, is a statistical method in which the variation in a set of observations is divided into distinct components. The key focus in Anova is the F test. The null hypothesis means that the model has 'no' explanatory power, which means that all the coefficients on the independent variable's (IV) = 0. Measure whether the IV can predict the

dependant variable (DV), p < 0.05 for the model to be of value, if p > 0.05, there isn't any need to produce the coefficients table.

The Coefficients Table provides information about the relationship between the IV's and the DV's through the coefficients. By default, the null for the T statistic in regression is that the coefficient for the IV = 0, i.e. the IV does not help predict the DV.

TABLE 7. Qual vs SI

Model Summary ^b									
	Adjusted R Std. Error of the								
Model	R	R Square	Square	Estimate					
1	.282ª	.080	.071	1.05315					
a. Predictors: (Constant), Qual									
b. Depend	b. Dependent Variable: SI								

П	The ad	insted I	R sa	mare :	= 0.0)71.	and
_	THC au	jusicu i	IX DU	uarc -	– ບ.ເ	,,,	anu

- \square 7.1% of the total variability in SI is explained by Qual.
- \square The R square = 0.080, and
- \square R square over estimates the total variability by 0.9%.

TABLE 8. Qual vs SI

	ANOVA ^a									
					_					
Model		Sum of Squares	df	Mean Square	F	Sig.				
1	Regression	10.083	1	10.083	9.091	.003 ^b				
	Residual	116.459	105	1.109						
	Total	126.542	106							
a. Dependent Variable: SI										
b. Predi	ctors: (Constant)	, Qual								

 $\hfill\Box$ There is evidence (p < 0.003) to reject the null, the model has explanatory power, and

 \square Qualification affects social influence significantly.

A multiple linear regression was calculated to predict SI (component of the dependant variable) based on (significant factors from the correlation analysis). Qual (component of the independent variable), investigating the degree to which Qual impacts / predicts SI as shown in Tables 7 and 8. The adjusted R square is 0.071, which means that 7.1% of the total variability in SI is explained by Qual, also, the regression value was significant (p=0.003), as p<0.05, the null is rejected. Qual has explanatory power on SI.

TABLE 9. SAT vs SI

Model Summary ^b							
Adjusted R Std. Error of the							
Model	R	R Square	Square	Estimate			
1	.329a	.108	.100	1.03652			
a. Predictors: (Constant), SAT b. Dependent Variable: SI							

	The adj	justed I	R sq	uare	=	0.1	00,	and
--	---------	----------	------	------	---	-----	-----	-----

 \square 10.0% of the total variability in SI is explained by SAT.

 \square The R square = 0.108, and

 \square R square over estimates the total variability by 0.8%.

TABLE 10. SAT vs SI

ANOVA ^a										
Model		Sum of Squares	df	Mean Square	F	Sig.				
1	Regression	13.782	1	13.782	12.828	.001b				
	Residual	113.884	106	1.074						
	Total	127.667	107							
a. Depe	endent Variable: S	I								
b. Pred	lictors: (Constant),	SAT								

 \Box There is evidence (p < 0.003) to reject the null, the model has explanatory power, and

☐ Size in terms of annual turnover influences social influence significantly.

A multiple linear regression was calculated to predict SI (component of the dependant variable) based on (significant factors from the correlation analysis). SAT (component of the independent variable), investigating the degree to which SAT impacts / predicts SI as shown in Tables 9 and 10. The adjusted R square is 0.100, which means that 10.0% of the total variability in SI is explained by SAT, also, the regression value was significant (p=0.001), as p<0.05, the null is rejected. SAT has explanatory power on SI.

TABLE 11. LIMIT vs SI

	Model Summary ^b							
Adjusted R Std. Error of the								
Model	R	R Square	Square	Estimate				
1	.215a	.046	.037	1.08241				
a. Predicto	a. Predictors: (Constant), LIMIT							
b. Depend	b. Dependent Variable: SI							

The adjusted R square $= 0.037$, and
3.7% of the total variability in SI is explained by LIMIT.
The R square $= 0.046$, and
R square over estimates the total variability by 0.9%.

TABLE 12. LIMIT vs SI

ANOVA ^a									
Model		Sum of Squares	Sum of Squares df M		F	Sig.			
1	Regression	5.857	1	5.857	4.999	.028b			
	Residual	120.677	103	1.172					
	Total	126.533	104						
	a. Dependent Variable: SI b. Predictors: (Constant), LIMIT								

- \square There is evidence (p < 0.003) to reject the null, the model has explanatory power, and
- ☐ Limitations influences social influence significantly.

A multiple linear regression was calculated to predict SI (component of the dependant variable) based on (significant factors from the correlation analysis). LIMIT (component of the independent variable), investigating the degree to which LIMIT impacts / predicts SI as shown in Tables 11 and 12. The adjusted R square is 0.037, which means that 3.7% of the total variability in SI is explained by LIMIT, also, the regression value was significant (p=0.003), as p<0.05, the null is rejected. LIMIT has explanatory power on SI.

TABLE 13. SAT & Qual vs SI

TIDLL	201 2111	c Quai "		1			
		Model Su	ımmary ^b				
			Adjusted R	Std. Error of the			
Model	R	R Square	Square	Estimate			
1	.397a	.158	.142	1.01234			
a. Predicto	a. Predictors: (Constant), SAT, Qual						
b. Depend	b. Dependent Variable: SI						

- \square The adjusted R square = 0.142, and
- ☐ 14.2% of the total variability in SI is explained by SAT & Qual.
- \square The R square = 0.158, and
- \square R square over estimates the total variability by 1.6%.

TABLE 14. SAT & Qual vs SI

			ANOVAa			
Model		Sum of Squares	Sum of Squares df		F	Sig.
1	Regression	19.959	2	9.979	9.737	.000b
	Residual	106.583	104	1.025		
	Total	126.542	106			
•	endent Variable: S					
b. Pred	ictors: (Constant),	SAT, Qual				

 \Box There is evidence (p < 0.003) to reject the null, the model has explanatory power, and \Box Size in terms of annual turnover and qualification influences social influence

significantly.

A multiple linear regression was calculated to predict SI (component of the dependant variable) based on (significant factors from the correlation analysis). SAT & Qual (components of the independent variable), investigating the degree to which SAT & Qual impacts / predicts SI as shown in Tables 13 and 14. The adjusted R square is 0.142, which means that 14.2% of the total variability in SI is explained by SAT & Qual, also, the regression value was significant (p=0.003), as p<0.05, the null is rejected. SAT & Qual has explanatory power on SI. Therefore the individual relationships (18.8%) have greater influence than the combination (14.2%).

TABLE 15. Oual vs TMS

		Model St	ımmary ^b			
			Adjusted R	Std. Error of the		
Model	R	R Square	Square	Estimate		
1	.335a	.112	.104	1.30049		
a. Predictors: (Constant), Qual						
b. Dependent Variable: TMS						

 \square The adjusted R square = 0.104, and

□ 10.4% of the total variability in TMS is explained by Qual.

 \square The R square = 0.112, and

 \square R square over estimates the total variability by 0.8%.

TABLE 16. Oual vs TMS

1111	EL 10. Qua	VB IIVID				
			ANOVAa			
Mode	1	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	22.688	1	22.688	13.414	.000 ^b
	Residual	179.275	106	1.691		
	Total	201.963	107			

a. Dependent Variable: TMS	
b. Predictors: (Constant), Qual	
\Box There is evidence (p < 0.003) to reject the null, the model has explanatory p	ower, and
☐ Qualification influences total management support significantly.	

A multiple linear regression was calculated to predict TMS (component of the dependant variable) based on (significant factors from the correlation analysis). Qual (component of the independent variable), investigating the degree to which Qual impacts / predicts TMS as shown in Tables 15 and 16. The adjusted R square is 0.104, which means that 10.4% of the total variability in TMS is explained by Qual, also, the regression value was significant (p=0.003), as p<0.05, the null is rejected. Qual has explanatory power on TMS.

TABLE 17. VU vs TMS

		Model St	ummary ^b				
			Adjusted R	Std. Error of the			
Model	R	R Square	Square	Estimate			
1	.257a	.066	.057	1.33388			
a. Predicto	a. Predictors: (Constant), VU						
b. Depend	b. Dependent Variable: TMS						

- \square The adjusted R square = 0.057, and
- \Box 5.7% of the total variability in TMS is explained by VU.
- \square The R square = 0.066, and
- \square R square over estimates the total variability by 0.9%.

TABLE 18. VII vs TMS

	Sum of Squares	df	M 6		
		uı	Mean Square	F	Sig.
ression	13.364	1	13.364	7.511	.007b
dual	188.599	106	1.779		
1	201.963	107			
	1		1 201.963 107	1 201.963 107	1 201.963 107

- \square There is evidence (p < 0.003) to reject the null, the model has explanatory power, and
- □ Voluntary use influences total management support significantly.

A multiple linear regression was calculated to predict TMS (component of the dependant variable) based on (significant factors from the correlation analysis). VU (component of the

independent variable), investigating the degree to which VU impacts / predicts TMS as shown in Tables 17 and 18. The adjusted R square is 0.057, which means that 5.7% of the total variability in TMS is explained by VU, also, the regression value was significant (p=0.003), as p<0.05, the null is rejected. VU has explanatory power on TMS.

TABLE 19. VU & Qual vs TMS

TIBLE 19: Ve ta Quar VS TIVIS							
		Model St	ımmary ^b				
			Adjusted R	Std. Error of the			
Model	R	R Square	Square	Estimate			
1	.462a	.213	.198	1.23607			
a. Predictors: (Constant), VU, Qual							
b. Dependent Variable: TMS							

- \square The adjusted R square = 0.198, and
- ☐ 19.8% of the total variability in TMS is explained by VU.
- \square The R square = 0.213, and
- \square R square over estimates the total variability by 1.5%.

TABLE 20. VU & Oual vs TMS

			ANOVA			
Mode	1	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	43.063	2	21.532	14.093	.000 ^b
	Residual	158.899	104	1.528		
	Total	201.963	106			

□ Voluntary use and qualification influences total management support significantly.

A multiple linear regression was calculated to predict TMS (component of the dependant variable) based on (significant factors from the correlation analysis). VU & Qual (component of the independent variable), investigating the degree to which VU & Qual impacts / predicts TMS as shown in Tables 19 and 20. The adjusted R square is 0.198, which means that 19.8% of the total variability in TMS is explained by VU & Qual, also, the regression value was significant (p=0.003), as p<0.05, the null is rejected. VU & Qual has explanatory power on TMS. Therefore in combination (19.8%), they have a greater influence than individually (16.1%).

A summary of all regression results are shown in Table 23 below.

Table 21. Total Variance Explained

				To	tal Varian	ce Explained							
					ation Sums	•							
	Initial Eigenvalues			Loadings				Variable Percentages					
											TMS	SAT	VU &
		% of	Cumulative		% of	Cumulative					&	Qual	
	Total	Variance	%	Total	Variance	%	PE	SI%	FC		Qual		
PE	2.699	13.493	13.493	1.421	7.107	7.107							
EE	2.501	12.503	25.995	1.046	5.232	12.339							
SI	1.928	9.638	35.633	1.035	5.174	17.513					14.2%		
FC	1.639	8.193	43.826	1.030	5.150	22.664							
TMS	1.509	7.545	51.371	1.018	5.091	27.755						19.8%	
IRC	1.400	7.000	58.372	1.018	5.091	32.846	4.3%						
TP	1.192	5.961	64.333	1.018	5.089	37.935							
LIMIT	1.156	5.780	70.113	1.016	5.079	43.013		3.7%					
TDS	.970	4.849	74.962	1.013	5.067	48.081							
MM	.798	3.991	78.953	1.013	5.065	53.146							
Be	.748	3.742	82.695	1.010	5.050	58.196			5.0%				
Ba	.651	3.256	85.951	1.009	5.047	63.242							
Age	.573	2.863	88.814	1.006	5.031	68.273							
Gender	.525	2.627	91.441	1.000	4.998	73.271							
Qual	.448	2.240	93.680	.996	4.980	78.251		7.1%		10.4%			
Exp	.340	1.702	95.382	.993	4.964	83.216							
AO	.290	1.448	96.830	.991	4.956	88.171							
SAT	.250	1.251	98.081	.981	4.905	93.076		10%					
SNE	.234	1.168	99.249	.905	4.527	97.604							
VU	.150	.751	100.000	.479	2.396	100.000				5.7%			

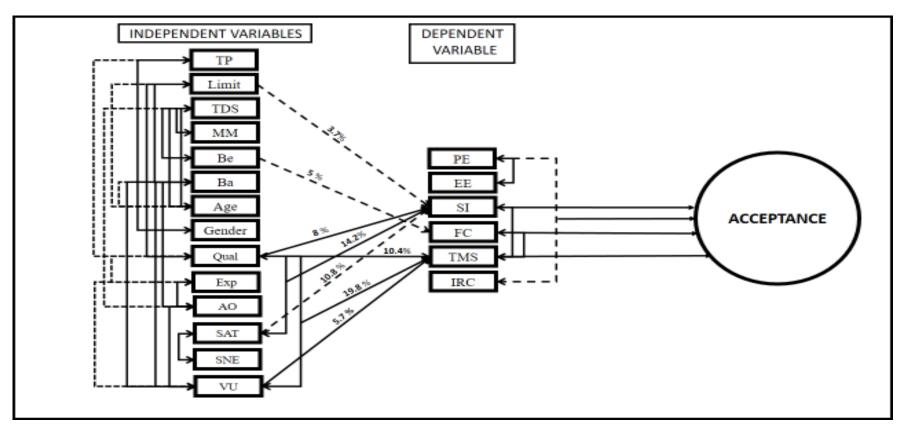


Figure 3. Developed User Acceptance Model

Figure 3 illustrates significant relationships only derived from Table 6 namely correlation between significant constructs. The solid lines between EE vs PE, TMS vs SI, TMS vs FC, MM vs TDS, Be vs TDS, Ba vs LIMIT, Age vs TDS, Gender vs TP, Qual vs SI, SAT vs SI, Qual vs TMS, VU vs TMS, Qual vs LIMIT, AO vs Ba, AO vs Exp, SNE vs SAT, VU vs LIMIT, VU vs Ba, and VU vs AO; depict strong correlations with significance levels p<0.01. The relationship between IRC vs PE, LIMIT vs SI, and Be vs FC is weak Age vs LIMIT, Age vs Ba, Qual vs TP, Exp vs Qual, AO vs TDS, and VU vs EXP, represented by broken lines, show correlations with significance levels, p>0.01. The dependant variables interact / impact on Acceptance significantly at SI, FC, TMS, and PE vs IRC (solid line).

Figure 3 also illustrates results arrived at from the regression analysis via the model summary and Anova Tables 6 to 21. These show the strength of the relationships in percentages only between the independent and the dependant variables, namely:

- Qual & Vu vs TMS = 19.8%;
- Qual & SAT vs SI = 14.2%;
- SAT vs SI = 10.0%;
- Qual vs TMS = 10.4%;
- Qual vs SI = 7.1%;
- VU vs TMS = 5.7%;
- Be vs FC = 5.0%; and
- LIMIT vs SI = 3.7%

4.10. Chapter Summary

Chapter Four analysed the data from the questionnaire survey by utilising SPSS v 23, and a series of tests were undertaken. The profile of the sample was processed to provide a deeper insight into the respondents. Cronbach Alpha and factor analysis was conducted in order to work with stronger groupings for a more concise result. Descriptive statistics were presented in order to clearly identify the more prominent statements of responses, so that we could analyse them further. This directed the research toward an evolved acceptance model explain visually the various inter relationships of the constructs developed from the questionnaire via analyses. The correlations between the independent and dependent variables separated the stronger relationships from the initial variables that were responsible for technology acceptance. These stronger relationships were further analysed to produce the regression models which zoned in on the emerged fact that qualification was the strongest variable that correlated with determinants of technology usage, which could then effectively propagate NTA.

CHAPTER FIVE

CONCLUSIONS AND RECOMMENDATIONS

5.1. Introduction

Chapter five concludes the study and summarizes the key findings and suggests areas for further research.

5.2. The Problem Statement

The problem statement driving the study was:

The accelerated growth of Information technology has an effect on construction-related software packages and applications, creating an impact on the role of the quantity surveyor in industry, and this demands a response from quantity surveyors operating in the KwaZulu-Natal province of South Africa in terms of whether these developments are perceived as an advancement, opportunity or threat to the QS profession, the extent of which has as yet not been determined in terms of performance expectancy, effort expectancy, facilitating conditions, social influence, top management support, individual resistance to change and the effects of factors such as gender, age, and experience.

5.3. Hypotheses

The hypotheses to be tested in this study were:

> H1

Many new construction-related software packages and applications duplicate and affect activities and services of traditional QSs.

> H2

Many QSs view the advent of new technology as a threat to their roles and functions in the construction sector.

> H3

QSs regard the new technology as an opportunity to advance the range of their services that they render the construction industry.

> H4

QSs have not embraced the new technology and its potential to improve and expand their service delivery.

Several factors affect the willingness to adopt new technology in QS firms and practices.

5.3.1. Sub-hypotheses

The sub-hypotheses to be tested in this study were:

> SH1

Performance expectancy affects the adoption of new technology by QSs.

> SH2

Effort expectancy affects the adoption of new technology by QSs.

> SH3

Facilitating conditions affect the adoption of new technology by QSs.

> SH4

Social influence affects the adoption of new technology by QSs.

> SH5

Top management support affects the adoption of new technology by QSs.

> **SH6**

Individual resistance affects the adoption of new technology by QSs.

> SH7

Gender affects the adoption of new technology by QSs.

> SH8

Age affects the adoption of new technology by QSs.

> SH9

Experience affects the adoption of new technology by QSs.

5.4. Objectives

The primary objectives of the study are:

- To explore whether emergent new technologies duplicate the activities of traditional QS.
- To determine the areas and services rendered by QS that will be affected if new software packages and applications are embraced.
- To establish the extent of the perceived threat of technological changes to the roles and functions of QS in construction.
- To examine whether the new technologies are used by QS to advance the range of their services that they render the construction industry.
- To analyse the reasons why QS are not embracing the potential that new technology offers.
- To investigate the impact of performance expectancy, effort expectancy, facilitating conditions, social influence, top management support, individual resistance to change and other factors such as gender, age, and experience on the adoption of new technologies by QS.

5.5. Hypothesis Testing

• H1: Many new construction-related software packages and applications duplicate and affect activities and services of traditional QS.

The majority of QSs disagreed that any of the unit method, cube method, superficial method, storey enclosure method, approximate quantities, elemental cost analysis, comparative estimates method, and that interpolation method could have been executed with technology alone.

Therefore the hypothesis that many new construction-related software packages and applications duplicate and affect activities and services of traditional QSs is rejected.

• H2: Many QSs view the advent of new technology as a threat to their roles and functions in the construction sector.

The majority of QS disagreed (64.5%) that technology was a threat to the services conventionally provided by QSs.

Therefore the hypothesis that many QSs view the advent of new technology as a threat to their roles and functions in the construction sector is rejected.

• H3: QSs regard the new technology as an opportunity to advance the range of their services that they render the construction industry.

In this study the majority of QSs agreed that technology automated taking off and that BoQ production was important. They also agreed that technology increased the efficiency of quantity surveying. QSs strongly agreed that adoption of technology software reduced the time to produce BoQs. The majority of QSs were neutral with regards to whether technological innovations promoted collaboration between stakeholders. QSs were also neutral about the barrier of new technology acceptance by QSs being a threat to services conventionally provided by QS.

Therefore the hypothesis that QSs regard new technology as an opportunity to advance the range of their services that they render the construction industry cannot be rejected.

• H4: QSs have not embraced new technology and its potential to improve and expand their service delivery.

The majority of QSs were neutral about whether they resisted the introduction and adoption of new technology. Most QSs considered themselves open to the introduction and adoption of new technology to quantity surveying despite the threats that it might present.

Therefore the hypothesis that QSs have not embraced the new technology and its potential to improve and expand their service delivery is rejected.

• H5: Several factors affect the willingness to adopt new technology in QS firms and practices.

The majority of QSs agreed that technological advances required new skills and knowledge. They also agreed that financial and time commitment from small practices were too large; that upfront costs were too high, and that additional costs of training made new technology adoption prohibitive. QSs strongly disagreed that QS practices were too small to embrace new technology; that there were problems with legal ownership of information; and that their roles and responsibilities had changed. Further, they were neutral about there being no client demand and a scarcity of available appropriate training.

Therefore the hypothesis that several factors affect the willingness to adopt new technology in QS firms and practices cannot be rejected.

5.6. Sub - Hypothesis Testing

> SH1: Performance expectancy affects the adoption of new technology by QS.

Most QSs held that performance expectancy was significant as a determinant of the use of technology in QS practices and therefore influenced the adoption of technology. Performance expectancy significantly impacted on an individual's resistance to change and improved technology acceptance. Performance expectancy also impacted on effort expectancy and increased technology acceptance

Therefore the sub-hypothesis that performance expectancy affects the adoption of new technology by QSs cannot be rejected.

> SH2: Effort expectancy affects the adoption of new technology by QSs.

Most QSs responded that effort expectancy was significant as a determinant to the use of technology in QS practices.

Therefore the hypothesis that effort expectancy affects the adoption of new technology by QS cannot be rejected.

> SH3: Facilitating conditions affect the adoption of new technology by QSs.

Most QSs considered facilitating conditions to be significant as a determinant to the use of technology in QS practices.

Therefore the hypothesis that facilitating conditions affects the adoption of new technology by QS cannot be rejected.

> SH4: Social influence affects the adoption of new technology by QSs.

The majority of QSs were neutral about facilitating conditions as a most significant and significant determinant to the use of technology in QS practices, however 28.7% of QSs considered facilitating conditions to be both insignificant and least significant.

Therefore the hypothesis that social influence affects the adoption of new technology by QSs is rejected.

> SH5: Top management support affects the adoption of new technology by QSs.

The majority of QSs responded that top management support affected the adoption of new technology by QSs. However, 38.5% of QSs considered top management support as both insignificant and least significant.

Therefore the hypothesis that top management support affects the adoption of new technology by QSs cannot be rejected.

> SH6: Individual resistance affects the adoption of new technology by QSs.

The study found that most QSs regarded individual resistance as being insignificant relative to the adoption of new technology by their forms or practices.

Therefore the hypothesis that individual resistance affects the adoption of new technology by QSs is rejected.

> SH7: Gender affects the adoption of new technology by QSs.

The overall majority of QSs reported that gender affected the adoption of new technology by QS firms and practices.

BREC UKZN Oct 2008

Therefore the hypothesis that gender affects the adoption of new technology by QS cannot be rejected.

> SH8: Age affects the adoption of new technology by QS.

Most QSs considered age to affect the adoption of new technology by QS firms and practices.

Therefore the hypothesis that age affects the adoption of new technology by QS cannot be rejected.

> SH9: Experience affects the adoption of new technology by QS

Most respondents viewed experience as affecting the adoption of new technology by QS.

Therefore the hypothesis that experience affects the adoption of new technology by QS cannot be rejected.

5.7. Conclusion

In the main, results as shown in chapter four, depict the existence of strong relationships between effort expectancy and performance expectancy; top management support and social influence facilitating conditions, qualifications and voluntariness of use; technology driven services and measurement methods, benefits, and age; qualifications and social influences and limitations; barriers and limitations, area of operation and voluntariness of use; gender and technology potential; size in terms of annual turnover and social influence, size in terms of number of employees; area of operation and experience and voluntariness of use; and voluntariness of use and limitations.

In summary, the study found that the larger the firm or practice in terms of annual turnover, the greater the likelihood that the number of permanent employees; the greater the barriers to new technology, the greater the probability of limitations to acceptance of new technological advances; and when the performance expectancy was greater, the possibility of ease of use of technology/effort expectancy and acceptance of new technological advances was also potentially greater.

Further, the study found that new construction-related software packages and applications did not duplicate and affect the roles, functions, activities and services of traditional QS in the construction sector; and QSs had embraced new technology and its potential to improve and

expand their service delivery. The study also found that the acceptance determinants of QS; performance expectancy; effort expectancy; facilitating conditions; and top management support affected the adoption of new technology by QSs. However, the acceptance determinants, social influence; and individual resistance did not affect the adoption of new technology by QSs. Additionally, the mitigating influence components; qualifications, age, gender, area of operation, experience and size of the firm or practice affected to varying degrees the adoption of new technology by QSs.

5.8. Recommendations / Further Testing:

It is apparent from the findings of this research, as shown in chapter 4, that several factors exist that can affect technology acceptance by quantity surveyors. It is imperative to embark on further studies in order to investigate in greater detail with a larger sample across all provinces in South Africa to determine whether these same relationships manifest themselves, their comparative strength and impact on technology adoption. For example, it would be important to establish whether social influence and top management support are universally the major drivers of user acceptance of new technology in the QS industry.

There were relationships which were unexpected which need further investigation such as, for example, the relationship between limitations imposed on technological innovation and social influence and that between voluntariness of use and top management support to establish whether they were universal and if so what the underlying reasons might be. The relationship and their impact in the broader South African context need to be further examined of mitigating factors such as age, experience, firm's size and areas of operation and the determinants of technology adoption and use.

Further, the finding that QSs in this study claimed that new construction-related software packages and applications did not duplicate nor affect their roles as QSs in the industry needs further study to determine which particular software packages and applications were in use and what aspects of QS they were designed to target. Such a study would more definitively provide insight into these claims.

REFERENCES

- Abbasi, M.S., Tarhini, A., Hassouna, M. and Shah, F., 2015. Social, Organizational,
 Demography and Individuals' Technology Acceptance Behaviour: A Conceptual Model.

 European Scientific Journal, ESJ, 11(9).
- Abawi, L., 2013. School meaning systems: The symbiotic nature of culture and 'language-in-use'. *Improving Schools*, 16(2)
- Adamson, I. and Shine, J., 2003. Extending the new technology acceptance model to measure the end user information systems satisfaction in a mandatory environment: A bank's treasury. *Technology Analysis and strategic management*, 15(4), pp.441-455.
- Al-Damen, R., 2017. Health Care Service Quality and Its Impact on Patient Satisfaction "Case of Al-Bashir Hospital". *International Journal of Business and Management*, 12(9), p.136. Anderson, C., 2010. Presenting and evaluating qualitative research. *American journal of pharmaceutical education*, 74(8), p.141.
- Annum, G. 2017. 'Research instruments for data collection.' Kwame Nkrumah University of Science and Technology (KNUST).

 http://campus.educadium.com/newmediart/file.php/1/giilmadstore/ugradResearch/acaResearch_index.htm
- Arning, K. and Ziefle, M., 2009, November. Different perspectives on technology acceptance: The role of technology type and age. In *Symposium of the Austrian HCI and Usability Engineering Group* (pp. 20-41). Springer, Berlin, Heidelberg.
- Ashworth, A. 2010. Cost Studies of Building, Pearson Education Ltd., England
- Ashworth, A., Hogg, K. and Higgs, C., 2013. Willis's practice and procedure for the quantity surveyor. John Wiley & Sons.
- Association of South African Quantity Surveyors. 2006. The History of Quantity Surveying. www. Asaqs.co.za/?page=history [Accessed: 16 June 2017].
- Bakar, A.B.A., 2016. Re-Measurement and Valuation of Works: Issues and Challenges faced by Quantity Surveyors.
- Ballesty, S., Mitchell, J., Drogemuller, R., Schevers, H., Linning, C., Singh, G. and Marchant, D., 2007. Adopting BIM for facilities management: Solutions for managing the Sydney Opera House. *Cooperative Research Centre (CRC) for Construction Innovation, Brisbane, Australia.*
- Bavafa, M., 2015. Enhancing information quality through building information modelling implementation within UK structural engineering organisations (Doctoral dissertation, University of Salford).

- Boon, J. and Prigg, C., 2012. Evolution of quantity surveying practice in the use of BIM–the New Zealand experience. In *Joint CIB International Symposium of W055*, W065, W089, W118.
- Bovey, W.H. and Hede, A., 2001. Resistance to organisational change: the role of defence mechanisms. *Journal of managerial psychology*, 16(7).
- Bryant, A. and Charmaz, K. eds., 2007. The Sage handbook of grounded theory. Sage.
- Burns, N. and Grove, S.K., 2010. *Understanding Nursing Research-eBook: Building an Evidence-Based Practice*. Elsevier Health Sciences.
- Cartlidge, D., 2006. New aspects of quantity surveying practice. Routledge.
- Chen, K. and Chan, A.H., 2011. A review of technology acceptance by older adults. *Gerontechnology*, 10(1), pp.1-12.
- Clandinin, D.J. ed., 2006. *Handbook of narrative inquiry: Mapping a methodology*. Sage Publications.
- Cronbach, L.J., 1951. Coefficient alpha and the internal structure of tests. *Psychometrika*, *16*(3), pp.297-334.
- Crossman, A., 2017. Understanding purposive sampling: An overview of the method and its applications. *Retrieved July*, 28, 2017.
- Cunningham, T., 2014. The Work and Skills Base of the Quantity Surveyor in Ireland-An Introduction.
- Davis, F.D., Bagozzi, R.P. and Warshaw, P.R., 1989. User acceptance of computer technology: a comparison of two theoretical models. *Management science*, *35*(8), pp.982-1003.
- Davis, P. and Baccarini, D., 2004. The use of bills of quantities in construction projects-an Australian survey. In *Proceedings of the COBRA 2004 International Construction Research Conference of the Royal Institution of Chartered Surveyors*. RICS Foundation.
- Dharmarajan, B. and Gangadharan, K., 2013. Applying Technology Acceptance (TAM) model to determine the acceptance of Nursing Information System (NIS) for Computer Generated Nursing Care Plan among nurses. *International Journal of Computer Trends and Technology*, 4(8), pp.2625-2629.
- Donaldson, R.L., 2010. Student acceptance of mobile learning. The Florida State University.
- Dong, L., Neufeld, D. and Higgins, C., 2009. Top management support of enterprise systems implementations. *Journal of Information technology*, 24(1), pp.55-80.
- Eastman, C.M., Eastman, C., Teicholz, P. and Sacks, R., 2011. *BIM handbook: A guide to building information modelling for owners, managers, designers, engineers and contractors*. John Wiley & Sons.

- Education and Culture Lifelong Learning Programme, 2010. Methodology of Qualitative Research for Consumers Organizations Handbook. Education, Research and Consultancy Center (Lithuania) & Research and Consultancy Institute (Cyprus).
- Engward, H., 2013. Understanding grounded theory. *Nursing Standard*, 28(7), pp.37-41.
- Fanous, A., 2012. Surveying the Field: Changes in Quantity Surveying.
- Fink, D., 1998. Guidelines for the successful adoption of information technology in small and medium enterprises. *International journal of information management*, 18(4), pp.243-253.
- Flick, U., 2008. Designing qualitative research. Sage.
- Flyvbjerg, B., 2006. Five misunderstandings about case-study research. *Qualitative* inquiry, 12(2), pp.219-245.
- Frei, M. and Mbachu, J., 2009, August. The future of quantity surveying in New Zealand: Likely changes, threats and opportunities. In *13th Pacific Association of Quantity Surveyors Congress*.
- Gambatese, J.A. and Hallowell, M., 2011. Enabling and measuring innovation in the construction industry. *Construction Management and Economics*, 29(6), pp.553-567.
- Gee, C., 2011. The influence of building information modelling on the quantity surveying profession.
- Ghobakhloo, M., Sabouri, M.S., Hong, T.S. and Zulkifli, N., 2011. Information technology adoption in small and medium-sized enterprises; an appraisal of two decades literature. *Interdisciplinary Journal of Research in Business*, *1*(7), pp.53-80.
- Goldswain, C.P., 2016. *BIM as a tool to quantify the impact of change on labour productivity* (Doctoral dissertation, Stellenbosch: Stellenbosch University).
- Grand Canyon University, 2017. *Center for innovation in research and teaching* [Online].

 Available:

 https://cirt.gcu.edu/research/developmentresources/research_ready/quantresearch/approa
- Gyarteng, K.A., 2014. An Evaluation of the Impact of Building Information Modelling (BIM) on Project Performance in the UK Construction Industry. MSc Dissertation. Coventry
- Gulten, B. and Awan, Z., (2014) Ludwig Maximilians-Universitat Munchen. 'Ethnography' https://www.medien.ifi.lmu.de/lehre/ss14/swal/presentations/topic6-guelten_awan-
 Ethnography.pdf [Accessed on 10 May 2017]
- Hancock, B., Windridge, K., and Ockleford, E. *An Introduction to Qualitative Research*. The NIHR RDS EM/ YH, 2007.

ches [Accessed: 25 June 2017].

University, UK.

- Harinarain, N. and Haupt, T.C., 2016. Mission: studio based learning in construction. The University of KwaZulu-Natal case study. *Journal of Engineering, Design and Technology*, *14*(1), pp.160-181.
- Hiew, H. and Ng, P., 2007. How the QS can create values in the procurement of construction works in Hong Kong. *Proceedings of Strategic Integration of Surveying Services in FIG Working Week* 2007, pp.13-17.
- Hossain, M.K., 2015. Investigating the relationship between the culture of construction project-based organisations and the implementation of Building Information Modelling (BIM) (Doctoral dissertation, School of Science and Engineering, University of Dundee).
- Kothari, C.R., 2004. Research methodology: Methods and techniques. New Age International.
- Kulasekara, G., Jayasena, H.S. and Ranadewa, K.A.T.O., 2013, June. Comparative effectiveness of quantity surveying in a building information modelling implementation. In *The Second World Construction Symposium*, *Socio-Economic Sustainability in Construction* (pp. 14-15).
- Leedy, P.D. and Ormrod, J.E., 2001. Practical research: Planning and research. *Upper Saddle*.
- Lester, D., 1998. Phenomenological description of sub selves using George Kelly's Repertory Grid. *Perceptual and motor skills*, 86(2), pp.537-538.
- Li, H. and Lai, M.M., 2011. Demographic differences and internet banking acceptance. *MIS Review*, 16(2), pp.55-92.
- Li, S. and Lund, R., 2012. Multiple changepoint detection via genetic algorithms. *Journal of Climate*, 25(2), pp.674-686.
- Lu, J., Yu, C.S. and Liu, C., 2005. Facilitating conditions, wireless trust and adoption intention. *Journal of Computer Information Systems*, 46(1), pp.17-24.
- Malleson, A., 2012. BIM Survey: Summary of findings. *National BIM Report*, pp.8-15.
- Mason, J., Qualitative researching. 2002.
- Matipa, W.M., Cunningham, P. and Naik, B., 2010, October. Assessing the impact of new rules of cost planning on building information model (BIM) schema pertinent to quantity surveying practice. In *26th Annual ARCOM Conference*, *viewed*, 6-8 September 2010, Leeds, UK, Association of Researchers in Construction Management, 625-632.
- Matipa, W.M., Kelliher, D. and Keane, M., 2008. How a quantity surveyor can ease cost management at the design stage using a building product model. *Construction Innovation*, 8(3), pp.164-181.
- Mbachu, J., 2015. Quantity Surveyors" Role in the Delivery of Construction Projects: A Review. *Quantity Surveyors (NZIQS)*, 25.
- Milliken, P.J., 2010. Grounded theory. *Encyclopedia of research design*, 1, pp.548-553.

- Milne, J., 1999. Questionnaires: advantages and disadvantages. Evaluation cookbook.
- Moore, G.C. and Benbasat, I., 1991. Development of an instrument to measure the perceptions of adopting an information technology innovation. *Information systems research*, 2(3), pp.192-222.
- Moore, N., 2013. A model based system for contextual on-site construction planning in augmented reality (Doctoral dissertation, University of Wolverhampton).
- Moriarty, J., 2011. Qualitative methods overview.
- Mugo, F.W., 2002. Sampling in research.
- Mulero, S.O., 2012. Acceptance and impact of social networks marketing using extended technology acceptance model (Doctoral dissertation).
- Nguyen, T.H., 2009. Information technology adoption in SMEs: an integrated framework. *International Journal of Entrepreneurial Behaviour & Research*, 15(2), pp.162-186.
- Odeyinka, H., Kelly, S. and Perera, S., 2009. An evaluation of the budgetary reliability of bills of quantities in building procurement. In *COBRA 2009: Construction and Building Research Conference of the Royal Institution of Chartered Surveyors, University of Cape Town*, 10-11 September 2009 (pp. 435-446).
- Ogunsina, O., Ugochukwu, S. and Udoye, A.R., 2015. An Experimental Evaluation of the Benefits of Automated Quantification of Construction Works. In Global Journal of Advanced Research, Nmamdi Azikiwe University, Nigeria, 30 November 2015, 2 (11), pp 1770-1781.
- Olatunji, O.A., 2012. The impact of building information modelling on estimating practice: analysis of perspectives from four organizational business models.
- Oreg, S., 2003. Resistance to change: developing an individual differences measure. *Journal of applied psychology*, 88(4), p.680.
- Othman, A.A.E. and Mia, B., 2008. Corporate social responsibility for solving the housing problem for the poor in South Africa. *Journal of Engineering, Design and Technology*, 6(3), pp.237-257.
- Oyediran, O.S. and Odusami, K.T., 2005. A study of computer usage by Nigerian quantity surveyors. *Journal of Information Technology in Construction (ITcon)*, 10(20), pp.291-303.
- Paine, K. and Marasini, R., 2013. Adoption of building information modelling (BIM): an evaluation through a case study of a regional contractor.

- Peansupap, V. and Walker, D.H., 2005. Factors enabling information and communication technology diffusion and actual implementation in construction organisations. *Journal of Information Technology in Construction (ITcon)*, 10(14), pp.193-218.
- Porter, C.E. and Donthu, N., 2006. Using the technology acceptance model to explain how attitudes determine Internet usage: The role of perceived access barriers and demographics. *Journal of business research*, 59(9), pp.999-1007.
- Premkumar, G., 2003. A meta-analysis of research on information technology implementation in small business. *Journal of organizational computing and electronic commerce*, 13(2), pp.91-121.
- Premkumar, G. and Roberts, M., 1999. Adoption of new information technologies in rural small businesses. *Omega*, 27(4), pp.467-484.
- Rajasekar, S., Philominathan, P. and Chinnathambi, V., 2006. Research methodology. *arXiv* preprint physics/0601009.
- Rashid, R.A., Mustapa, M. and Wahid, S.N.A., 2006. Bills of quantities-are they still useful and relevant today? In *International Conference on Construction Industry, Padang, Indonesia.* Retrieved from: http://eprints. utm. my/511/1/BQ_paper_Padang_12_6_06_Rosli.pdf.
- Roberson, Q.M., Collins, C.J. and Oreg, S., 2005. The effects of recruitment message specificity on applicant attraction to organizations. *Journal of Business and Psychology*, 19(3), pp.319-339.
- Royal Institute of Chartered Surveyors, 2015 'Quantity Surveying and Construction Professional Group' 28.05.2017. www.rics.org/za/about-rics/professional-groups/rics-quantity-surveying--contstruction-professional-group_94/
- Sabitu Oyegoke, A., 2006. Building competence to manage contractual claims in international construction environment: The case of Finnish contractors. *Engineering, Construction and Architectural Management*, 13(1), pp.96-113.
- Scarpa, R., 2012. Guidance for the design of quantitative survey-based evaluation.
- Shah, R.K., 2011. Innovative methodology for location-based scheduling and visualisation of earthworks in road construction projects.
- Simmons, O.E., 2006. Some professional and personal notes on research methods, systems theory, and grounded action. *World Futures*, 62(7), pp.481-490.
- Slevin, E. and Sines, D., 2000. Enhancing the truthfulness, consistency and transferability of a qualitative study: utilising a manifold of approaches. *Nurse Researcher*, 7(2), pp.79-98.
- Smith, P., 2002. The Utilisation of Information Technology by the Australian Quantity Surveying Profession. In *Verified OK*. The Australian Institute of Quantity Surveyors.

- Sonson, S.J. and Kulatunga, U., 2014. Quantity surveying role and environmental influences in Saint Lucia. In *Proceedings of the International Conference on Construction in a Changing World, CIB International Conference* (pp. 4-7). Kandalama, Sri Lanka: CIB.
- Soutos, M.K., 2006. Forecasting Elemental Building cost percentages using regression analysis and neural network techniques (Doctoral dissertation, University of Manchester).
- Soutos, M. and Lowe, D., 2011. Elemental cost estimating: an investigation into the form and level of detail of cost analysis currently undertaken in the UK.
- Speziale, H.S., Streubert, H.J. and Carpenter, D.R., 2011. *Qualitative research in nursing:*Advancing the humanistic imperative. Lippincott Williams & Wilkins.
- Sui Pheng, L. and Hui Ming, K., 1997. Formulating a strategic marketing mix for quantity surveyors. *Marketing Intelligence & Planning*, 15(6), pp.273-280.
- Sung, H.N., Jeong, D.Y., Jeong, Y.S. and Shin, J.I., 2015. The relationship among self-efficacy, social influence, performance expectancy, effort expectancy, and behavioural intention in mobile learning service. *International Journal of u-and e-Service, Science and Technology*, 8(9), pp.197-206.
- Taylor, S. and Todd, P.A., 1995. Understanding information technology usage: A test of competing models. *Information systems research*, 6(2), pp.144-176.
- Tellis, W.M., 1997. Results of a case study on information technology at a university. *The qualitative report*, *3*(4), pp.1-25.
- Van Oosterom, P. and Stoter, J., 2010. 5D data modelling: full integration of 2D/3D space, time and scale dimensions. *Geographic information science*, pp.310-324.
- Vagias, W.M., 2006. Likert-type Scale Response Anchors. Clemson International Institute for Tourism. & Research Development, Department of Parks, Recreation and Tourism Management, Clemson University.
- Wu, S., Wood, G., Ginige, K. and Jong, S.W., 2014. A technical review of BIM based cost estimating in UK quantity surveying practice, standards and tools. *Journal of Information Technology in Construction (ITCon)*, 19(31), pp.534-562.
- Van Manen, M., 2016. Researching lived experience: Human science for an action sensitive pedagogy. Routledge.
- Venkatesh, V. and Davis, F.D., 2000. A theoretical extension of the technology acceptance model: Four longitudinal field studies. *Management science*, 46(2), pp.186-204.
- Venkatesh, V., Morris, M.G., Davis, G.B. and Davis, F.D., 2003. User acceptance of information technology: Toward a unified view. *MIS quarterly*, pp.425-478.
- Viljoen, D., 2012. *Dynamic building model integration* (Doctoral dissertation, Stellenbosch: Stellenbosch University).

- Wang, Y.S., Wu, M.C. and Wang, H.Y., 2009. Investigating the determinants and age and gender differences in the acceptance of mobile learning. *British journal of educational technology*, 40(1), pp.92-118.
- Willig, C., 2013. Introducing qualitative research in psychology. McGraw-Hill Education (UK).
- Wilkinson, D. and Birmingham, P., 2003. *Using research instruments: A guide for researchers*. Psychology Press.
- Yin, R., 1994. Case study research: Design and methods. Beverly Hills.
- Young, R. and Jordan, E., 2008. Top management support: Mantra or necessity? *International Journal of Project Management*, 26(7), pp.713-725.
- Zhou, L., Perera, S., Udeaja, C. and Paul, C., 2012. Readiness of BIM: a case study of a quantity surveying organisation.

Appendix A - Ethical Approval

5 October 2017

Mr Sanjivi Naidoo 216075681 School of Engineering Howard College Campus

Dear Mr Naidoo

Protocol reference number: HSS/1599/017M

Project title: The impact of technological innovation on the role of the quantity surveyor in industry

Full Approval - Expedited Application

In response to your application received 1 September 2017, the Humanities & Social Sciences Research Ethics Committee has considered the abovementioned application and the protocol has been granted **FULL APPROVAL**.

Any alteration/s to the approved research protocol i.e. Questionnaire/Interview Schedule, Informed Consent Form, Title of the Project, Location of the Study, Research Approach and Methods must be reviewed and approved through the amendment /modification prior to its implementation. In case you have further queries, please quote the above reference number.

PLEASE NOTE: Research data should be securely stored in the discipline/department for a period of 5 years.

The ethical clearance certificate is only valid for a period of 3 years from the date of issue. Thereafter Recertification must be applied for on an annual basis.

take this opportunity of wishing you everything of the best with your study.

Yours faithfully

Dr Shamila Naidoo (Deputy Chair)

Humanities & Social Sciences Research Ethics Committee

/pm

cc Supervisor: Prof Theo C Haupt

cc Academic Leader Research: Professor C Trois

cc. School Administrator: Ms N Dłamini

Humanities & Social Sciences Research Ethics Committee

Dr Shenuka Singh (Chair)

Westville Campus, Govan Mbeki Building

Postal Address: Private Bag X54001, Durban 4000

Telephone: +27 (0) 31 260 3587/8350/4557 Facsimile: +27 (0) 31 260 4609 Email: ximbap@ukzn.ac.za / snymanm@ukzn.ac.za / mohunp@ukzn.ac.za

Website: www.ukzn.ac.za

Appendix B - Informed Consent

UKZN HUMANITIES AND SOCIAL SCIENCES RESEARCH ETHICS COMMITTEE (HSSREC)

APPLICATION FOR ETHICS APPROVAL For research with human participants

INFORMED CONSENT RESOURCE TEMPLATE

Information Sheet and Consent to Participate in Research

Date: 02 August 2017

Greeting: Dear Colleague

My name is Sanjivi Naidoo (Mr.), an MSc Construction Management candidate from the Construction Studies discipline in the School of Engineering, College of Agriculture, Engineering and Science, UKZN, sanjivi@mut.ac.za, 0794933782, and 0318199316.

You are being invited to consider participating in a study that involves research on the impact of technological innovation on the role of the quantity surveyor in industry. The aim and purpose of this research is to determine the influence that technology has on the role of quantity surveying in the overall construction process. It is important to collate responses from quantity surveyors in terms of whether these developments are perceived as an advancement, opportunity or threat to the QS profession, the extent of which has as yet not been determined The study is expected to involve 100 quantity surveyors, operating in the KwaZulu-Natal province of South Africa. It will involve the following procedures: the samples of OSs will be drawn using the database of The South African Council for the Quantity Surveying Profession (SACQSP). The use of emailing respondents will be adopted, via attached surveys. The duration of your participation if you choose to participate will be no more than 15 minutes. The study is funded by my employer, Mangosuthu University of Technology. We hope that the study will create the following benefits; awareness of the many benefits that new technology offers, and therefore realise or re-think the value offered and kick start the improvement of new technology uptake by the profession. These benefits include; improved efficiency, accurate measurement, co-ordination of all design information, visual aid, cost plan production, automatic schedule/program production and cost-effective standardization of routine tasks.

This study has been ethically reviewed and approved by the UKZN Humanities and Social Sciences Research Ethics Committee (approval number HSS/1599/017M). In the event of any problems or concerns/questions you may contact the researcher at (sanjnaidoo@gmail.com) or the UKZN Humanities & Social Sciences Research Ethics

Committee, contact details as follows:

HUMANITIES & SOCIAL SCIENCES RESEARCH ETHICS ADMINISTRATION

Research Office, Westville Campus Govan Mbeki Building Private Bag X 54001 Durban 4000

KwaZulu-Natal, SOUTH AFRICA

Tel: 27 31 2604557- Fax: 27 31 2604609

Email: HSSREC@ukzn.ac.za

This survey is designed to determine the extent to which the quantity surveying discipline has been impacted by technology and innovation. Participation is both voluntary and anonymous.

as well as at no cost to you and may be withdrawn at any point; further, there will be no penalty or loss incurred.
CONSENT
I (Name) have been informed about the study entitled the impact of technological innovation on the role of the quantity surveyor in industry by Mr. S Naidoo.
I understand the purpose and procedures of the study.
I have been given an opportunity to answer questions about the study and have had answers to my satisfaction.
I declare that my participation in this study is entirely voluntary and that I may withdraw at any time without affecting any of the benefits that I usually am entitled to.
I have been informed about any available compensation or medical treatment if injury occurs to me as a result of study-related procedures.
If I have any further questions/concerns or queries related to the study I understand that I may contact the researcher at sanjnaidoo@gmail.com.
If I have any questions or concerns about my rights as a study participant, or if I am concerned about an aspect of the study or the researchers then I may contact:
HUMANITIES & SOCIAL SCIENCES RESEARCH ETHICS ADMINISTRATION Research Office, Westville Campus Govan Mbeki Building Private Bag X 54001 Durban 4000 KwaZulu-Natal, SOUTH AFRICA Tel: 27 31 2604557 - Fax: 27 31 2604609 Email: HSSREC@ukzn.ac.za

Date

BREC UKZN Oct 2008 91

Signature of Participant

THE IMPACT OF TECHNOLOGICAL INNOVATION ON THE ROLE OF THE QUANTITY SURVEYOR IN INDUSTRY

Thank you for taking the time to complete this questionnaire. Your input is of great value and will be used in understanding technology and its effects on the QS profession.

Your anonymity is of utmost importance and therefore all responses in this questionnaire will remain completely confidential.

Please email the completed questionnaire to the following email address: sanjnaidoo@gmail.com

Interviewer Contact Details: Telephone (Cell): 0794933782

Email Address: sanjnaidoo@gmail.com

Appendix C - Survey Questionnaire

THE IMPACT OF TECHNOLOGICAL INNOVATION ON THE ROLE OF THE QUANTITY SURVEYOR IN INDUSTRY

Thank you for taking the time to complete this questionnaire. Your input is of great value and will be used in understanding technology and its effects on the QS profession.

Your anonymity is of utmost importance and therefore all responses in this questionnaire will remain completely confidential.

Please email the completed questionnaire to the following email address: sanjnaidoo@gmail.com

Interviewer Contact Details: Telephone (Cell): 0794933782

Email Address: sanjnaidoo@gmail.com

This survey is designed to determine the extent to which the quantity surveying discipline has been impacted by technology and innovation.

Participation is both voluntary and anonymous, as well as at no cost to you and you may withdraw at any point. Further, there will be no penalty or loss incurred

. Please indicate your level of agreement with each of the following statements about technology and

quantity surveying with 1 = strongly disagree and 5 = strongly agree:

No	Factor/Influence	1	2	3	4	5
1	Technological developments are only for architects and designers					
2	Information and Communication Technologies (ICT) are too					
	expensive					
3	Technology potentially removes many mundane elements of					1
	traditional quantity surveying					
4	Technology automates taking off and BoQ production					
5	Software reduces the time to produce BoQs					
6	Technology removes human errors from quantity surveying					
7	Technology increases efficiency of quantity surveying					
8	Technological innovations promote collaboration between stakeholders					
9	Cost estimation can be improved					
10	Technology increases program certainty at the tender stage					
11	Technology reduces the amount of variations during the					
	construction phase					
12	Technological developments can streamline the procurement					1
	process					
13	Technology enhances life cycle costing data provision to clients					
14	Technological advances require new skills and knowledge					
15	QS practices are too small to embrace technology					
16	Financial and time commitment from small practices is too large					
17	Upfront costs are too high					
18	Additional costs of training make technology prohibitive					
19	There is no client demand					
20	There are problems with legal ownership of information					
21	Roles and responsibilities of quantity surveyors will change					
22	There is a scarcity of available training					
23	Technology allows the quantity surveyor to focus on strategic activities					
24	Quantity surveyors resist the introduction and adoption of new technology					
25	Organizational inertia prevents the adoption of new technology					
26	Single rate approximate estimation can be executed using					
	technology alone					
27	Cost planning can be executed using technology alone					
28	Procurement advice can be executed using technology alone					

29	Measurement and quantification can be executed using technology alone		
30	Document preparation can be executed using technology alone		
31	Cost control during construction can be executed using technology		
	alone		
32	Interim valuations and payments can be executed using		
	technology alone		
33	Financial statements can be executed using technology alone		
34	Final account preparation can be executed using technology alone		
35	Settlement of contractual claims can be executed using technology		
	alone		
36	Unit method can be executed using technology alone		
37	Cube method can be executed using technology alone		
38	Superficial method can be executed using technology alone		
39	Storey enclosure method can be executed using technology alone		
40	Approximate quantities can be executed using technology alone		
41	Elemental cost analysis can be executed using technology alone		
42	Comparative estimates method can be executed using technology		
	alone		
43	Interpolation method can be executed using technology alone		

2. To what extent do you agree with the following benefits of technology to quantity surveyors with 1 = strongly disagree and 5 = strongly agree.

	Benefit	1	2	3	4	5
1	Improved efficiency					
2	Accurate measurement					
3	Co-ordination of all design information					
4	Visual aid					
5	Cost plan production					
6	Automatic schedule/program production					
7	Cost effective					
8	Standardization of routine tasks					

3. To what extent do you agree that the following are barriers of technology acceptance to quantity surveyors with 1 = strongly disagree and 5 = strongly agree.

	Barriers	1	2	3	4	5
1	Removed need for a quantity surveyor					
2	Liability concerns					
3	High cost/extra capital investment					
4	Less familiarity with project					
5	Lack of software application interfaces					
6	Software complexity					
7	Lack of standards					
8	Threat to services conventionally provided by quantity surveyors					

4. Rank the following in terms of their significance in determining the use of technology in quantity surveying practices with 1 = most significant and 5 = least significant.

Determinants of technology usage	1	2	3	4	5
Performance expectancy					
(degree to which a particular technology will help individuals					
attain gains in job performance)					
Effort expectancy					
(degree of ease associated with use of the system)					

Social influence			
(degree to which an individual perceives that important others			
believe he or she should use the new system)			
Facilitating conditions			
(degree to which an individual believes that organizational and			
technical infrastructure exists to support use of the system)			
Top management support			
Individual resistance to change			

5. To what extent do you expect the following to impact technology acceptance by quantity surveyors with 1 = no impact, 2=some impact and 3 = major impact.

	Mitigating Influences	1	2	3
1	Age			
2	Gender			
3	Qualifications			
4	Experience			
5	Area of operation			
6	Size in terms of annual turnover			
7	Size in terms of number of permanent employees			
8	Voluntariness of use			

6. How many years have you been practicing / practiced as a quantity surveyor?

7.	What	is	vour	абе?
/.	vvIIat	13	youi	age:

8. Do you consider your practice/firm to be technology ready?

9. How do you rate your knowledge and experience of technology, software and innovation with 1 = very low and 5 = very high?

	1	2	3	4	5
Knowledge					
Experience					

10. Do you consider yourself open to the introduction and adoption of new technology to quantity surveying despite the threats that it might present?

Yes	'es
No	lo

11. What best describes your highest qualification achieved? Select only ONE box.

Qualification	Place ticks below
Matriculation exemption	
Certificate	

Diploma / Degree	
Higher Diploma / BTech / Honours	
Masters	
Doctorate	
Other (please specify)	

12. Indicate your area of operation (where you do or get most of your work), Select only ONE box.

Province	Place ticks below
Northern Cape	
Western Cape	
Eastern Cape	
Kwazulu-Natal	
Free State	
Mpumalanga	
Limpopo	
North West	
Gauteng	

13.	What is the average annual turnover of your firm/practice in Rand value over the last 3 years?
14.	State the average number of permanent staff employed in your company over the last 3 years.

15. Please select your gender:

MALE	
FEMALE	

Appendix D – Data Summary and Key Analysis

Descriptives

		Desc	riptive Statistics		
	N	Minimum	Maximum	Mean	Std. Deviation
Q1.1	109	1.0	5.0	1.761	1.0265
Q1.2	108	1.0	5.0	3.176	1.1342
Q1.3	109	1.0	5.0	3.220	1.1969
Q1.4	108	1.0	5.0	3.426	1.1777
Q1.5	109	1.0	5.0	4.119	1.0517
Q1.6	108	1.0	5.0	2.750	1.1771
Q1.7	105	1.0	5.0	3.848	.9383
Q1.8	108	1.0	5.0	3.519	.9617
Q1.9	106	1.0	5.0	3.849	.8484
Q1.10	107	1.0	5.0	3.150	.9596
Q1.11	109	1.0	4.0	2.606	.9331
Q1.12	109	1.0	5.0	3.376	1.0522
Q1.13	108	1.0	5.0	3.352	.8998
Q1.14	108	1.0	5.0	3.759	.9655
Q1.15	109	1.0	5.0	2.211	1.1228
Q1.16	109	1.0	5.0	3.000	1.1547
Q1.17	109	1.0	5.0	3.450	1.1425
Q1.18	109	1.0	5.0	3.284	1.1311
Q1.19	108	1.0	5.0	2.565	.9597
Q1.20	108	1.0	5.0	2.852	1.0662
Q1.21	109	1.0	5.0	2.651	1.0919
Q1.22	108	1.0	5.0	2.954	1.0970
Q1.23	109	1.0	5.0	3.642	.8663
Q1.24	109	1.0	5.0	2.642	1.1265

Q1.25	109	1.0	5.0	3.193	1.1585
Q1.26	109	1.0	5.0	2.807	.9951
Q1.27	107	1.0	5.0	2.636	1.0675
Q1.28	108	1.0	5.0	2.370	1.0554
Q1.29	106	1.0	5.0	2.651	1.2727
Q1.30	109	1.0	5.0	2.523	1.1674
Q1.31	108	1.0	5.0	2.361	1.1394
Q1.32	107	1.0	5.0	2.318	1.0781
Q1.33	109	1.0	5.0	2.679	1.2009
Q1.34	109	1.0	5.0	2.394	1.1865
Q1.35	108	1.0	5.0	2.139	1.0181
Q1.36	109	1.0	5.0	2.330	1.1060
Q1.37	109	1.0	5.0	2.339	1.0560
Q1.38	109	1.0	5.0	2.358	1.0587
Q1.39	109	1.0	5.0	2.440	1.0491
Q1.40	105	1.0	5.0	2.495	1.1530
Q1.41	109	1.0	5.0	2.578	1.1571
Q1.42	109	1.0	5.0	2.495	1.1436
Q1.43	109	1.0	5.0	2.450	.9669
Q2.1	108	2.0	58.0	4.481	5.2640
Q2.2	107	2.0	5.0	3.645	.8929
Q2.3	109	2.0	5.0	3.761	.8266
Q2.4	109	1.0	5.0	3.917	.9242
Q2.5	109	2.0	5.0	3.514	.8673
Q2.6	109	2.0	5.0	3.624	.9208
Q2.7	108	1.0	5.0	3.370	.9332
Q2.8	109	2.0	5.0	3.587	.8736

Q3.1	109	1.0	5.0	1.982	1.2017
Q3.2	109	1.0	5.0	2.817	1.3205
Q3.3	109	1.0	5.0	3.404	1.1950
Q3.4	109	1.0	5.0	2.945	1.1372
Q3.5	109	1.0	5.0	3.046	1.1971
Q3.6	109	1.0	5.0	3.064	1.2040
Q3.7	109	1.0	5.0	2.853	1.1613
Q3.8	107	1.0	5.0	2.617	1.1463
Q4.1	108	1.0	5.0	2.148	1.1341
Q4.2	108	1.0	5.0	2.296	.9595
Q4.3	108	1.0	5.0	3.056	1.0923
Q4.4	107	1.0	5.0	2.692	.9944
Q4.5	109	1.0	5.0	2.982	1.3675
Q4.6	108	1.0	5.0	3.333	1.3042
Q5.1	109	1.0	3.0	2.422	.7365
Q5.2	109	1.0	3.0	1.294	.5323
Q5.3	108	1.0	3.0	2.000	.6698
Q5.4	109	1.0	3.0	2.248	.7221
Q5.5	109	1.0	3.0	2.083	.6255
Q5.6	109	1.0	3.0	2.275	.6922
Q5.7	109	1.0	3.0	2.119	.7035
Q5.8	108	1.0	3.0	2.046	.6322
Q6	108	1.0	45.0	8.870	8.0226
Q7	108	21	65	33.50	8.589
Q8	108	1.0	2.0	1.204	.4046
Q9.1	108	2.0	5.0	3.769	.7564
Q9.2	108	2.0	5.0	3.630	.7924

Q10	108	1.0	2.0	1.037	.1897
Q11	109	2.0	5.0	3.927	.4656
Q12	98	2.0	9.0	4.153	.9454
Q13	43	350000	29500000000	717290697.67	4495057660.686
Q14	75	1	150	17.31	24.516
Q15	108	1.0	2.0	1.315	.4666
Valid N (listwise)	24				

Frequency Tables					
	Taskuslas				
	1 ecnnolog	gical developments are only for architects and desi	gners		
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	58	53.2	53.2	53.2
	Disagree	31	28.4	28.4	81.7
	Neutral	11	10.1	10.1	91.7
	Agree	6	5.5	5.5	97.2
	Strongly Agree	3	2.8	2.8	100.0
	Total	109	100.0	100.0	
	Information	and Communication Technologies (ICT) are too e	xpensive		
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	10	9.2	9.3	9.3
	Disagree	16	14.7	14.8	24.1
	Neutral	42	38.5	38.9	63.0
	Agree	25	22.9	23.1	86.1
	Strongly Agree	15	13.8	13.9	100.0

	T= .		<u> </u>		
	Total	108	99.1	100.0	
Missing	99.0	1	.9		
Total		109	100.0		
	Technology potentially	removes many mundane elements of traditional	quantity surveying		
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	11	10.1	10.1	10.1
	Disagree	17	15.6	15.6	25.7
	Neutral	36	33.0	33.0	58.7
	Agree	27	24.8	24.8	83.5
	Strongly Agree	18	16.5	16.5	100.0
	Total	109	100.0	100.0	
	Tecl	nnology automates taking off and BoQ production			
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	8	7.3	7.4	7.4
	Disagree	16	14.7	14.8	22.2
	Neutral	27	24.8	25.0	47.2
	Agree	36	33.0	33.3	80.6
	Strongly Agree	21	19.3	19.4	100.0
	Total	108	99.1	100.0	
Missing	99.0	1	.9		
Total		109	100.0		
		Software reduces the time to produce BoQs			

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	4	3.7	3.7	3.7
	Disagree	4	3.7	3.7	7.3
	Neutral	18	16.5	16.5	23.9
	Agree	32	29.4	29.4	53.2
	Strongly Agree	51	46.8	46.8	100.0
	Total	109	100.0	100.0	
	Technolo	ogy removes human errors from quantity surveyin	g X		
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	20	18.3	18.5	18.5
	Disagree	25	22.9	23.1	41.7
	Neutral	31	28.4	28.7	70.4
	Agree	26	23.9	24.1	94.4
	Strongly Agree	6	5.5	5.6	100.0
	Total	108	99.1	100.0	
Missing	99.0	1	.9		
Total		109	100.0		
	Tecl	hnology increases efficiency of quantity surveying			
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	2	1.8	1.9	1.9
	Disagree	4	3.7	3.8	5.7
	Neutral	31	28.4	29.5	35.2
	Agree	39	35.8	37.1	72.4
	Strongly Agree	29	26.6	27.6	100.0

	Total	105	96.3	100.0	
Missing	99.0	4	3.7		
Total	1	109	100.0		
	Technologica	al innovations promote collaboration between stake	eholders	-	
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	3	2.8	2.8	2.8
	Disagree	11	10.1	10.2	13.0
	Neutral	37	33.9	34.3	47.2
	Agree	41	37.6	38.0	85.2
	Strongly Agree	16	14.7	14.8	100.0
	Total	108	99.1	100.0	
Missing	99.0	1	.9		
Total	•	109	100.0		
		Cost estimation can be improved			
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	1	.9	.9	.9
	Disagree	6	5.5	5.7	6.6
	Neutral	23	21.1	21.7	28.3
	Agree	54	49.5	50.9	79.2
	Strongly Agree	22	20.2	20.8	100.0
	Total	106	97.2	100.0	
Missing	99.0	3	2.8		
Total		109	100.0		

	Techno	ology increases program certainty at the tender sta	ge		
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	4	3.7	3.7	3.7
	Disagree	23	21.1	21.5	25.2
	Neutral	40	36.7	37.4	62.0
	Agree	33	30.3	30.8	93.
	Strongly Agree	7	6.4	6.5	100.0
	Total	107	98.2	100.0	
Missing	99.0	2	1.8		
Total		109	100.0		
	Technology red	luces the amount of variations during the construc	tion phase		
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	17	15.6	15.6	15.6
	Disagree	26	23.9	23.9	39.4
	Neutral	49	45.0	45.0	84.4
	Agree	17	15.6	15.6	100.0
	Total	109	100.0	100.0	
	Technologic	al developments can streamline the procurement	process		
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	7	6.4	6.4	6.4
	Disagree	14	12.8	12.8	19.:
	Neutral	31	28.4	28.4	47.
	Agree	45	41.3	41.3	89.0

	Strongly Agree	12	11.0	11.0	100.0
	Total	109	100.0	100.0	
	Technolo	ogy enhances life cycle costing data provision to cli	ents		
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	3	2.8	2.8	2.8
	Disagree	13	11.9	12.0	14.8
	Neutral	44	40.4	40.7	55.6
	Agree	39	35.8	36.1	91.7
	Strongly Agree	9	8.3	8.3	100.0
	Total	108	99.1	100.0	
Missing	99.0	1	.9		
Total		109	100.0		
	Techn	ological advances require new skills and knowledg	ge		
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	2	1.8	1.9	1.9
	Disagree	11	10.1	10.2	12.0
	Neutral	21	19.3	19.4	31.5
	Agree	51	46.8	47.2	78.7
	Strongly Agree	23	21.1	21.3	100.0
	Total	108	99.1	100.0	
Missing	99.0	1	.9		
Total	,	109	100.0		
	Q	S practices are too small to embrace technology			

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	36	33.0	33.0	33.0
	Disagree	35	32.1	32.1	65.1
	Neutral	19	17.4	17.4	82.6
	Agree	17	15.6	15.6	98.2
	Strongly Agree	2	1.8	1.8	100.0
	Total	109	100.0	100.0	
	Financ	cial and time commitment from small practices is too	large		
		Process is too			
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	13	11.9	11.9	11.9
	Disagree	24	22.0	22.0	33.9
	Neutral	31	28.4	28.4	62.4
	Agree	32	29.4	29.4	91.7
	Strongly Agree	9	8.3	8.3	100.0
	Total	109	100.0	100.0	
		Upfront costs are too high			
					G 1.:
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	8	7.3	7.3	7.3
	Disagree	12	11.0	11.0	18.3
	Neutral	33	30.3	30.3	48.6
	Agree	35	32.1	32.1	80.7
	Strongly Agree	21	19.3	19.3	100.0
	Total	109	100.0	100.0	

	Ac	lditional costs of training make technology prohibitiv	e		
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	6	5.5	5.5	5.5
	Disagree	23	21.1	21.1	26.6
	Neutral	31	28.4	28.4	55.0
	Agree	32	29.4	29.4	84.4
	Strongly Agree	17	15.6	15.6	100.0
	Total	109	100.0	100.0	
		There is no client demand			
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	16	14.7	14.8	14.8
	Disagree	32	29.4	29.6	44.4
	Neutral	46	42.2	42.6	87.0
	Agree	11	10.1	10.2	97.2
	Strongly Agree	3	2.8	2.8	100.0
	Total	108	99.1	100.0	
Missing	99.0	1	.9		
Total		109	100.0		
	Ti	nere are problems with legal ownership of information	1		
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	10	9.2	9.3	9.3
	Disagree	31	28.4	28.7	38.0
	Neutral	41	37.6	38.0	75.9

	1.		T	T	
	Agree	17	15.6	15.7	91.7
	Strongly Agree	9	8.3	8.3	100.0
	Total	108	99.1	100.0	
Missing	99.0	1	.9		
Total		109	100.0		
	Rol	es and responsibilities of quantity surveyors will char	nge		
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	17	15.6	15.6	15.6
	Disagree	31	28.4	28.4	44.0
	Neutral	42	38.5	38.5	82.6
	Agree	11	10.1	10.1	92.7
	Strongly Agree	8	7.3	7.3	100.0
	Total	109	100.0	100.0	
		There is a scarcity of available training	T		
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	12	11.0	11.1	11.1
	Disagree	23	21.1	21.3	32.4
	Neutral	39	35.8	36.1	68.5
	Agree	26	23.9	24.1	92.6
	Strongly Agree	8	7.3	7.4	100.0
	Total	108	99.1	100.0	
Missing	99.0	1	.9		
Total		109	100.0		
	•				

	Technology al	llows the quantity surveyor to focus on strategic a	ctivities		
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	1	.9	.9	.9
	Disagree	10	9.2	9.2	10.1
	Neutral	31	28.4	28.4	38.5
	Agree	52	47.7	47.7	86.2
	Strongly Agree	15	13.8	13.8	100.0
	Total	109	100.0	100.0	
	Quantity survey	yors resist the introduction and adoption of new t	echnology		
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	20	18.3	18.3	18.3
	Disagree	29	26.6	26.6	45.0
	Neutral	36	33.0	33.0	78.0
	Agree	18	16.5	16.5	94.5
	Strongly Agree	6	5.5	5.5	100.0
	Total	109	100.0	100.0	
	Organizat	tional inertia prevents the adoption of new techno	logy		
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	11	10.1	10.1	10.1
	Disagree	16	14.7	14.7	24.8
	Neutral	38	34.9	34.9	59.6
	Agree	29	26.6	26.6	86.2
	Strongly Agree	15	13.8	13.8	100.0

	Total	109	100.0	100.0	
	Single rate app	proximate estimation can be executed using technological	ogy alone		
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	11	10.1	10.1	10.1
	Disagree	30	27.5	27.5	37.0
	Neutral	40	36.7	36.7	74
	Agree	25	22.9	22.9	97.2
	Strongly Agree	3	2.8	2.8	100.
	Total	109	100.0	100.0	
	Cos	t planning can be executed using technology alone			
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	16	14.7	15.0	15.
	Disagree	35	32.1	32.7	47.
	Neutral	32	29.4	29.9	77.
	Agree	20	18.3	18.7	96.
	Strongly Agree	4	3.7	3.7	100.
	Total	107	98.2	100.0	
Missing	99.0	2	1.8		
	99.0	2 109	1.8 100.0		
	99.0				
			100.0		
Missing Total		109	100.0	Valid Percent	Cumulative Percent

30 33 16	27.5 30.3	27.8 30.6	53.7
	30.3	20.6	
16		30.0	84.3
- 1	14.7	14.8	99.1
1	.9	.9	100.0
108	99.1	100.0	
1	.9		
109	100.0		
ısing technolog	gy alone	·	
	Percent	Valid Percent	Cumulative Percent
25	22.9	23.6	23.6
28	25.7	26.4	50.0
19	17.4	17.9	67.9
27	24.8	25.5	93.4
7	6.4	6.6	100.0
106	97.2	100.0	
3	2.8		
109	100.0		
technology alo	one		
	Percent	Valid Percent	Cumulative Percent
24	22.0	22.0	22.0
34	31.2	31.2	53.2
27	24.8	24.8	78.0
18	16.5	16.5	94.5
6	5.5	5.5	100.0
109	100.0	100.0	
	1 108 1 109 109	1 99.1 108 99.1 1 99.1 109 100.0 using technology alone Percent 25 22.9 28 25.7 19 17.4 27 24.8 7 6.4 106 97.2 3 2.8 109 100.0 technology alone recent 24 22.0 34 31.2 27 24.8 18 16.5 6 5.5	1 .9 .9 108 99.1 100.0 1 .9 .9 109 100.0 using technology alone Percent Valid Percent 25 22.9 23.6 28 25.7 26.4 19 17.4 17.9 27 24.8 25.5 7 6.4 6.6 106 97.2 100.0 3 2.8 109 109 100.0 100.0 technology alone Valid Percent 24 22.0 22.0 34 31.2 31.2 27 24.8 24.8 18 16.5 16.5 6 5.5 5.5

	Cost control du	ring construction can be executed using technolog	y alone	<u>, </u>	
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	28	25.7	25.9	25.9
	Disagree	36	33.0	33.3	59.3
	Neutral	27	24.8	25.0	84.3
	Agree	11	10.1	10.2	94.4
	Strongly Agree	6	5.5	5.6	100.0
	Total	108	99.1	100.0	
Missing	99.0	1	.9		
Total		109	100.0		
	Interim valuati	ons and payments can be executed using technolog	y alone		
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	28	25.7	26.2	26.2
	Disagree	35	32.1	32.7	58.9
	Neutral	30	27.5	28.0	86.9
	Agree	10	9.2	9.3	96.3
	Strongly Agree	4	3.7	3.7	100.0
	Total	107	98.2	100.0	
Missing	99.0	2	1.8		
Total		109	100.0		
	Financial	statements can be executed using technology alone	e		
		Frequency	Percent	Valid Percent	Cumulative Percent

Valid	Strongly Disagree	21	19.3	19.3	19.3
	Disagree	29	26.6	26.6	45.9
	Neutral	32	29.4	29.4	75.2
	Agree	18	16.5	16.5	91.7
	Strongly Agree	9	8.3	8.3	100.0
	Total	109	100.0	100.0	
	Final acco	unt preparation can be executed using technology	alone		
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	30	27.5	27.5	27.5
	Disagree	33	30.3	30.3	57.8
	Neutral	25	22.9	22.9	80.7
	Agree	15	13.8	13.8	94.5
	Strongly Agree	6	5.5	5.5	100.0
 	Total	109	100.0	100.0	
	Settlement of	contractual claims can be executed using technological	ogy alone		
	_	_	_		Cumulative
Valid	Strongly Disagree	Frequency 32	Percent 29.4	Valid Percent 29.6	Percent 29.6
	Disagree	43	39.4	39.8	69.4
	Neutral	22	20.2	20.4	89.8
	Agree	8	7.3	7.4	97.2
	Strongly Agree	3	2.8	2.8	100.0
	Total	108	99.1	100.0	100.0
Missing	99.0	100	.9	100.0	
Total		109	100.0		
		109	100.0		

	Unit	t method can be executed using technology alone			
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	28	25.7	25.7	25.7
	Disagree	38	34.9	34.9	60.6
	Neutral	27	24.8	24.8	85.3
	Agree	11	10.1	10.1	95.4
	Strongly Agree	5	4.6	4.6	100.0
	Total	109	100.0	100.0	
	Cub	e method can be executed using technology alone			
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	25	22.9	22.9	22.9
	Disagree	41	37.6	37.6	60.6
	Neutral	28	25.7	25.7	86.2
	Agree	11	10.1	10.1	96.3
	Strongly Agree	4	3.7	3.7	100.0
	Total	109	100.0	100.0	
	Superfi	cial method can be executed using technology alor	ne		
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	26	23.9	23.9	23.9
	Disagree	36	33.0	33.0	56.9
	Neutral	33	30.3	30.3	87.2
	Agree	10	9.2	9.2	96.3
	Strongly Agree	4	3.7	3.7	100.0

	Total	109	100.0	100.0	
	Storey en	closure method can be executed using technology a	alone	-	
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	21	19.3	19.3	19.3
	Disagree	39	35.8	35.8	55.0
	Neutral	34	31.2	31.2	86.2
	Agree	10	9.2	9.2	95.4
	Strongly Agree	5	4.6	4.6	100.0
	Total	109	100.0	100.0	
	Approxi	mate quantities can be executed using technology a	lone		
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	22	20.2	21.0	21.0
	Disagree	37	33.9	35.2	56.2
	Neutral	24	22.0	22.9	79.0
	Agree	16	14.7	15.2	94.3
	Strongly Agree	6	5.5	5.7	100.0
	Total	105	96.3	100.0	
Missing	99.0	4	3.7		
Total		109	100.0		
	Element	al cost analysis can be executed using technology a	lone		
	<u> </u>				G. 1.:
		Frequency	Percent	Valid Percent	Cumulative Percent

Neutral 29 26.6 26.6 77.1						
Agree 19 17.4 17.4 94.5 Strongly Agree 6 5.5 5.5 100.0 Total 109 100.0 100.0		Disagree	33	30.3	30.3	50.5
Strongly Agree 6 5.5 5.5 100.0		Neutral	29	26.6	26.6	77.1
Total 109 100.0		Agree	19	17.4	17.4	94.5
Comparative estimates method can be executed using technology alone Valid Strongly Disagree 25 22.9 22.9 22.9		Strongly Agree	6	5.5	5.5	100.0
Frequency Percent Valid Percent Percen		Total	109	100.0	100.0	
Frequency Percent Valid Percent Percen						
Strongly Disagree Frequency Percent Valid Percent Percent		Compara	tive estimates method can be executed using technological	ogy alone		
Strongly Disagree 25 22.9 22.9 22.9 Disagree 33 30.3 30.3 30.3 53.2 Neutral 27 24.8 24.8 78.0 Agree 20 18.3 18.3 96.3 Strongly Agree 4 3.7 3.7 100.0 Total 109 100.0 100.0 Total 109 100.0 100.0 Strongly Disagree 20 18.3 18.3 18.3 Frequency Percent Valid Percent Percent Percent Valid Percent Percent Percent Percent Percent Percent Percent Percent Percent Percent Percent Percent Percent Percent Percent Percent Percent Percent Percent Percent Percent Percent Percent Percent Percent Percent Percent Percent Percent Percent Percent Percent Percent Percent Percent Percent			Frequency	Percent	Valid Percent	
Disagree 33 30.3 30.3 30.3 53.2	Valid	Strongly Disagree				22.9
Agree 20 18.3 18.3 96.3		Disagree	33	30.3	30.3	53.2
Strongly Agree		Neutral	27	24.8	24.8	78.0
Total 109 100.0 100.0 100.0		Agree	20	18.3	18.3	96.3
Interpolation method can be executed using technology alone Frequency Percent Valid Percent Percent		Strongly Agree	4	3.7	3.7	100.0
Strongly Disagree 20 18.3 18.3 18.3 18.3 18.3		Total	109	100.0	100.0	
Strongly Disagree 20 18.3 18.3 18.3 Disagree 34 31.2 31.2 49.5 Neutral 44 40.4 40.4 40.4 89.9 Agree 8 7.3 7.3 97.2 Strongly Agree 3 2.8 2.8 100.0 Total 109 100.0 100.0		Inte	rpolation method can be executed using technology a	lone		
Valid Strongly Disagree 20 18.3 18.3 18.3 Disagree 34 31.2 31.2 49.5 Neutral 44 40.4 40.4 89.9 Agree 8 7.3 7.3 97.2 Strongly Agree 3 2.8 2.8 100.0 Total 109 100.0 100.0			_			
Disagree 34 31.2 31.2 49.5 Neutral 44 40.4 40.4 89.9 Agree 8 7.3 7.3 97.2 Strongly Agree 3 2.8 2.8 100.0 Total 109 100.0 100.0	Valid	Strongly Disagree				
Neutral 44 40.4 40.4 89.9 Agree 8 7.3 7.3 97.2 Strongly Agree 3 2.8 2.8 100.0 Total 109 100.0 100.0	, and					
Agree 8 7.3 7.3 97.2 Strongly Agree 3 2.8 2.8 100.0 Total 109 100.0 100.0						
Strongly Agree 3 2.8 2.8 100.0 Total 109 100.0 100.0						
Total 109 100.0 100.0						
						100.0
Frequency Table			107	100.0	100.0	
	Frequency Table					

Percent	Valid Percent	Cumulative Percent
3.7	3.7	3.7
23.9	24.1	27.8
41.3	41.7	69.4
29.4	29.6	99.1
.9	.9	100.0
99.1	100.0	
.9		
100.0		
	<u>, </u>	
Percent	Valid Percent	Cumulative Percent
9.2	9.3	9.3
34.9	35.5	44.9
35.8	36.4	81.3
18.3	18.7	100.0
98.2	100.0	
1.8		
100.0		
Percent	Valid Percent	Cumulative Percent
Percent	vana i cicciii	1 CICCIII
4.6	4.6	4.6
<u> </u>	3.7 23.9 41.3 29.4 .9 99.1 .9 100.0 Percent 9.2 34.9 35.8 18.3 98.2 1.8 100.0	3.7 3.7 23.9 24.1 41.3 41.7 29.4 29.6 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .1 100.0

	Agree	44	40.4	40.4	70.0
	Strongly Agree	44	40.4	40.4	79.8
		22	20.2	20.2	100.0
	Total	109	100.0	100.0	
		Visual aid			
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	1	.9	.9	.9
	Disagree	5	4.6	4.6	5.5
	Neutral	30	27.5	27.5	33.0
	Agree	39	35.8	35.8	68.8
	Strongly Agree	34	31.2	31.2	100.0
	Total	109	100.0	100.0	
		Cost plan production		,	
					Cumulative
		Frequency	Percent	Valid Percent	Percent
Valid	Disagree	10	9.2	9.2	9.2
	Neutral	50	45.9	45.9	55.0
	Agree	32	29.4	29.4	84.4
	Strongly Agree	17	15.6	15.6	100.0
	Total	109	100.0	100.0	
	·	Automatic schedule/program production			
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Disagree	12	11.0	11.0	11.0
	Neutral	38	34.9	34.9	45.9
	<u>I</u>			1	

	Agree	20	24.0	210	00.5
		38	34.9	34.9	80.7
	Strongly Agree	21	19.3	19.3	100.0
	Total	109	100.0	100.0	
		Cost effective			
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	1	.9	.9	.9
	Disagree	18	16.5	16.7	17.6
	Neutral	42	38.5	38.9	56.5
	Agree	34	31.2	31.5	88.0
	Strongly Agree	13	11.9	12.0	100.0
	Total	108	99.1	100.0	
Missing	99.0	1	.9		
Total		109	100.0		
		Standardization of routine tasks			
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Disagree	10	9.2	9.2	9.2
	Neutral	43	39.4	39.4	48.6
	Agree	38	34.9	34.9	83.5
	Strongly Agree	18	16.5	16.5	100.0
	Total	109	100.0	100.0	
	I				
Frequency Table					
		Removed need for a quantity surveyor			_

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	53	48.6	48.6	48.6
	Disagree	24	22.0	22.0	70.6
	Neutral	20	18.3	18.3	89.0
	Agree	5	4.6	4.6	93.6
	Strongly Agree	7	6.4	6.4	100.0
	Total	109	100.0	100.0	
		Liability concerns			
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	24	22.0	22.0	22.0
	Disagree	20	18.3	18.3	40.4
	Neutral	31	28.4	28.4	68.8
	Agree	20	18.3	18.3	87.2
	Strongly Agree	14	12.8	12.8	100.0
	Total	109	100.0	100.0	
		High cost/extra capital investment			
					G 1.:
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	6	5.5	5.5	5.5
	Disagree	21	19.3	19.3	24.8
	Neutral	30	27.5	27.5	52.3
	Agree	27	24.8	24.8	77.1
	Strongly Agree	25	22.9	22.9	100.0
	Total	109	100.0	100.0	

		Less familiarity with project			
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	11	10.1	10.1	10.1
	Disagree	29	26.6	26.6	36.7
	Neutral	35	32.1	32.1	68.8
	Agree	23	21.1	21.1	89.9
	Strongly Agree	11	10.1	10.1	100.0
	Total	109	100.0	100.0	
		T. J. A. G. W. H. H. A. A.			
		Lack of software application interfaces			
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	12	11.0	11.0	11.0
	Disagree	22	20.2	20.2	31.2
	Neutral	41	37.6	37.6	68.8
	Agree	17	15.6	15.6	84.4
	Strongly Agree	17	15.6	15.6	100.0
	Total	109	100.0	100.0	
		Software complexity			
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	10	9.2	9.2	9.2
	Disagree	29	26.6	26.6	35.8
	Neutral	30	27.5	27.5	63.3
	Agree	24	22.0	22.0	85.3
	Strongly Agree	16	14.7	14.7	100.0
		1			

	Total	109	100.0	100.0	
		Lack of standards			
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	13	11.9	11.9	11.9
	Disagree	30	27.5	27.5	39.4
	Neutral	39	35.8	35.8	75.2
	Agree	14	12.8	12.8	88.1
	Strongly Agree	13	11.9	11.9	100.0
	Total	109	100.0	100.0	
	Threat to se	ervices conventionally provided by quantity surv	reyors		
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Strongly Disagree	21	19.3	19.6	19.6
	Disagree	28	25.7	26.2	45.8
	Neutral	36	33.0	33.6	79.4
	Agree	15	13.8	14.0	93.5
	Strongly Agree	7	6.4	6.5	100.0
	Total	107	98.2	100.0	
Missing	99.0	2	1.8		
Total		109	100.0		
Frequency Table					
Trequency rable					
		Performance expectancy		l	

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Most Significant	40	36.7	37.0	37.0
	Significant	30	27.5	27.8	64.8
	Neutral	24	22.0	22.2	87.0
	Less Significant	10	9.2	9.3	96.3
	Least Significant	4	3.7	3.7	100.0
	Total	108	99.1	100.0	
Missing	99.0	1	.9		
Total		109	100.0		
		Effort expectancy			
		Enort expectancy			
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Most Significant	25	22.9	23.1	23.1
	Significant	38	34.9	35.2	58.3
	Neutral	34	31.2	31.5	89.8
	Less Significant	10	9.2	9.3	99.1
	Least Significant	1	.9	.9	100.0
	Total	108	99.1	100.0	
Missing	99.0	1	.9		
Total		109	100.0		
		Social influence			
		Social influence	1		
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Most Significant	8	7.3	7.4	7.4
	Significant	23	21.1	21.3	28.7
	Neutral	46	42.2	42.6	71.3

	Less Significant	17	15.6	15.7	87.0
	Least Significant	14	12.8	13.0	100.0
	Total	108	99.1	100.0	100.0
Missing	99.0	1	.9		
Total		109	100.0		
		Facilitating conditions			
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Most Significant	15	13.8	14.0	14.0
	Significant	28	25.7	26.2	40.2
	Neutral	40	36.7	37.4	77.6
	Less Significant	23	21.1	21.5	99.1
	Least Significant	1	.9	.9	100.0
	Total	107	98.2	100.0	
Missing	99.0	2	1.8		
Total		109	100.0		
		Top management support			
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Most Significant	21	19.3	19.3	19.3
	Significant	21	19.3	19.3	38.5
	Neutral	24	22.0	22.0	60.6
	Less Significant	25	22.9	22.9	83.5
	Least Significant	18	16.5	16.5	100.0
	Total	109	100.0	100.0	

		Individual resistance to change			
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Most Significant	10	9.2	9.3	9.3
	Significant	20	18.3	18.5	27.8
	Neutral	31	28.4	28.7	56.5
	Less Significant	18	16.5	16.7	73.1
	Least Significant	29	26.6	26.9	100.0
	Total	108	99.1	100.0	
Missing	99.0	1	.9		
Total		109	100.0		
		,	,		
Frequency Table					
		Age			
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	No impact	16	14.7	14.7	14.

		Age			
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	No impact	16	14.7	14.7	14.7
	Some impact	31	28.4	28.4	43.1
	Major impact	62	56.9	56.9	100.0
	Total	109	100.0	100.0	
		Gender			
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	No impact	81		74.3	74.3
	Some impact	24	22.0	22.0	96.3
	Major impact		3.7	3.7	100.0

	Total	109	100.0	100.0	
		Qualifications	1	1	
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	No impact	24	22.0	22.2	22.2
	Some impact	60	55.0	55.6	77.8
	Major impact	24	22.0	22.2	100.0
	Total	108	99.1	100.0	
Missing	99.0	1	.9		
Total		109	100.0		
		Experience			
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	No impact	18	16.5	16.5	16.5
	Some impact	46	42.2	42.2	58.7
	Major impact	45	41.3	41.3	100.0
	Total	109	100.0	100.0	
		Area of operation			
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	No impact	17	15.6	15.6	15.6
	Some impact	66	60.6	60.6	76.1
	Major impact	26	23.9	23.9	100.0
	Total	109	100.0	100.0	

		Size in terms of annual turnover			
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	No impact	15	13.8	13.8	13.8
	Some impact	49	45.0	45.0	58.7
	Major impact	45	41.3	41.3	100.0
	Total	109	100.0	100.0	
		Size in terms of number of permanent employees			
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	No impact	21	19.3	19.3	19.3
	Some impact	54	49.5	49.5	68.8
	Major impact	34	31.2	31.2	100.0
	Total	109	100.0	100.0	
		Voluntariness of use			
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	No impact	19	17.4	17.6	17.6
	Some impact	65	59.6	60.2	77.8
	Major impact	24	22.0	22.2	100.0
	Total	108	99.1	100.0	
Missing	99.0	1	.9		
Total	1	109	100.0		
Frequency Table					
rrequency rable					

	How many y	ears have you been practicing / practiced as a quantit	y surveyor?		
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	1.0	2	1.8	1.9	1.9
	1.5	1	.9	.9	2.8
	2.0	1	.9	.9	3.
	2.5	1	.9	.9	4.
	3.0	9	8.3	8.3	13.
	4.0	17	15.6	15.7	28.
	5.0	17	15.6	15.7	44.4
	6.0	8	7.3	7.4	51.9
	7.0	7	6.4	6.5	58
	8.0	8	7.3	7.4	65.
	9.0	4	3.7	3.7	69.4
	10.0	8	7.3	7.4	76.9
	11.0	4	3.7	3.7	80.
	12.0	3	2.8	2.8	83.:
	13.0	3	2.8	2.8	86.
	14.0	1	.9	.9	87.0
	15.0	2	1.8	1.9	88.9
	17.0	1	.9	.9	89.8
	18.0	1	.9	.9	90.′
	19.0	2	1.8	1.9	92.
	20.0	2	1.8	1.9	94.
	25.0	1	.9	.9	95.4
	30.0	1	.9	.9	96.3
	37.0	1	.9	.9	97.2
	39.0	1	.9	.9	98.1

	41.0	1	.9	.9	99.1
	45.0	1	.9	.9	100.0
	Total	108	99.1	100.0	
Missing	99.0	1	.9		
Total		109	100.0		
	-	What is your age?			
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	21	1	.9	.9	.9
	24	2	1.8	1.9	2.8
	25	4	3.7	3.7	6.5
	26	7	6.4	6.5	13.0
	27	12	11.0	11.1	24.1
	28	8	7.3	7.4	31.5
	29	6	5.5	5.6	37.0
	30	8	7.3	7.4	44.4
	31	6	5.5	5.6	50.0
	32	2	1.8	1.9	51.9
	33	8	7.3	7.4	59.3
	34	9	8.3	8.3	67.6
	35	8	7.3	7.4	75.0
	36	6	5.5	5.6	80.6
	37	3	2.8	2.8	83.3
	38	1	.9	.9	84.3
	39	4	3.7	3.7	88.0
	42	1	.9	.9	88.9
	43	1	.9	.9	89.8
	44	1	.9	.9	90.7

		1	.9	.9	91.7
	47	2	1.8	1.9	93.5
	48	1	.9	.9	94.4
	58	1	.9	.9	95.4
	60	2	1.8	1.9	97.2
	62	2	1.8	1.9	99.1
	65	1	.9	.9	100.0
	Total	108	99.1	100.0	
Missing	99	1	.9		
Total		109	100.0		
	Do you	consider your practice/firm to be technology reac	ly?		
					Cumulative
	1	Frequency	Percent	Valid Percent	Percent
Valid	Yes	86	78.9	79.6	79.6
	No	22	20.2	20.4	100.0
	Total	108	99.1	100.0	
Missing	99.0	1	.9		
Total		109	100.0		
Frequency Table					
		Knowledge			
		Frequency	Percent	Valid Percent	Cumulative Percent
77 11 1	T				

.9

3.7

31.2

48.6

4

34

53

.9

3.7

31.5

49.1

91.7

3.7

35.2

84.3

BREC UKZN Oct 2008 133

Low

High

Average

Valid

46

	Very High	17	15.6	15.7	100.0
	Total	108	99.1	100.0	
Missing	99.0	1	.9		
Total		109	100.0		
		Experience			
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Low	8	7.3	7.4	7.4
	Average	37	33.9	34.3	41.7
	High	50	45.9	46.3	88.0
	Very High	13	11.9	12.0	100.0
	Total	108	99.1	100.0	
Missing	99.0	1	.9		
Total	•	109	100.0		
Frequency Table					
Do you con	nsider yourself open to the introdu	action and adoption of new technology to quantity surve	eying despite the threa	ats that it might presen	t?
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Yes	104	95.4	96.3	96.3
	No	4	3.7	3.7	100.0
	Total	108	99.1	100.0	
Missing	99.0	1	.9		
Total	•	109	100.0		

	What bes	st describes your highest qualification achieved	?		
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Certificate	1	.9	.9	.9
	Diploma / Degree	13	11.9	11.9	12.8
	Higher Diploma / BTech / Honours	88	80.7	80.7	93.6
	Masters	7	6.4	6.4	100.0
	Total	109	100.0	100.0	
	Indicate your are	a of operation (where you do or get most of you	ır work).		
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Western Cape	1	.9	1.0	1.0
	Eastern Cape	2	1.8	2.0	3.1
	Kwazulu-Natal	90	82.6	91.8	94.9
	Mpumalanga	2	1.8	2.0	96.9
	Gauteng	3	2.8	3.1	100.0
	Total	98	89.9	100.0	
Missing	99.0	11	10.1		
Total		109	100.0		
	What is the average annual	turnover of your firm/practice in Rand value o	ver the last 3 years?		
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	350000	1	.9	2.3	2.3
	650000	1	.9	2.3	4.7
	2000000	2	1.8	4.7	9.3

	3000000	5	4.6	11.6	20.9
	3500000	1	.9	2.3	23.3
	4000000	6	5.5	14.0	37.2
	4500000	2	1.8	4.7	41.9
	5000000	5	4.6	11.6	53.5
	6000000	5	4.6	11.6	65.1
	8000000	1	.9	2.3	67.4
	9000000	1	.9	2.3	69.8
	10000000	3	2.8	7.0	76.7
	20000000	4	3.7	9.3	86.0
	25000000	1	.9	2.3	88.4
	30000000	1	.9	2.3	90.7
	5000000	1	.9	2.3	93.0
	500000000	2	1.8	4.7	97.7
	29500000000	1	.9	2.3	100.0
	Total	43	39.4	100.0	
Missing	99	66	60.6		
Total	·	109	100.0		
	State the average nu	nber of permanent staff employed in your company	over the last 3 years.		
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	1	1	.9	1.3	1.3
	3	5	4.6	6.7	8.0
	4	7	6.4	9.3	17.3
	5	17	15.6	22.7	40.0
	6	1	.9	1.3	41.3
	7	3	2.8	4.0	45.3
		•			

		, ,	1	
	7	6.4	9.3	54.7
9	3	2.8	4.0	58.7
10	3	2.8	4.0	62.7
11	1	.9	1.3	64.0
12	5	4.6	6.7	70.7
14	2	1.8	2.7	73.3
15	3	2.8	4.0	77.3
20	2	1.8	2.7	80.0
30	2	1.8	2.7	82.7
35	3	2.8	4.0	86.7
40	2	1.8	2.7	89.3
50	4	3.7	5.3	94.7
70	1	.9	1.3	96.0
80	1	.9	1.3	97.3
100	1	.9	1.3	98.7
150	1	.9	1.3	100.0
Total	75	68.8	100.0	
99	34	31.2		
•	109	100.0		
	Please select your gender:			
	Frequency	Percent	Valid Percent	Cumulative Percent
Male	74	67.9	68.5	68.5
Female	34			100.0
Total	108	99.1	100.0	
99.0	1	.9		
1	109	100.0		
	11 12 14 15 20 30 35 40 50 70 80 100 150 Total 99	9 3 10 3 11 1 11 2 5 14 2 15 3 20 2 30 2 30 2 35 3 40 2 50 4 70 1 80 1 100 1 150 1 150 1 Total 75 99 34 Please select your gender: Please select your gender: Frequency Male 74 Female 34 Total 108 99.0 1	9 3 2.8 10 3 2.8 11 1 .9 12 .5 4.6 14 2 1.8 15 3 2.8 20 2 1.8 30 2 1.8 35 3 2.8 40 2 1.8 35 3 2.8 40 2 1.8 50 4 3.7 70 1 .9 980 1 .9 100 1 .9 100 1 .9 100 1 .9 100 1 .9 100 1 .9 100 1 .9 100 1 .9 100 1 .9 100 1 .9 100 100 1 .9 100 1 .9 100 1 .9 100 1 .9 100 1 .9 100 1 .9 100 1 .9 100 1 .9 100 1 .9 100 100 1 .9 100 100 1 .9 100 100 1 .9 100 100 1 .9 100 100 1 .9 100 100 1 .9 100 100 1 .9 100	9 3 2.8 4.0 10 3 2.8 4.0 11 1 9 1.3 12 5 4.6 6.7 14 2 1.8 2.7 15 3 2.8 4.0 20 2 1.8 2.7 30 2 1.8 2.7 35 3 2.8 4.0 40 2 1.8 2.7 35 3 2.8 4.0 40 2 1.8 2.7 50 4 3,7 5.3 70 1 9 1.3 80 1 9 1.3 100 1 9 1.3 150 9 1.3 Total 75 68.8 100.0 99 34 31.2 99 34 31.2 100 100 100.0 100 100.0 11 99 100.0 11 99 100.0 12 100.0 13 100.0 14 10.9 1.3 150 1 1 9 1.3 150 1 1 9 1.3 150 1 1 9 1.3 150 1 1 9 6.8 100.0 100 1 1 9 6.8 100.0 100 1 1 9 6.8 100.0 100 1 1 9 6.8 100.0 100 1 1 9 6.8 100.0 100 1 1 9 6.8 100.0 100 1 1 9 1.3 100 1 1 9 1.3 100 1 1 9 1.3 100 1 1 9 1.3 100 1 1 9 1.3 100 1 1 9 1.3 100 1 1 9 1.3 100 1 1 9 1.3 100 1 1 9 1.3 100 1 1 9 1.3 100 1 1 9 1.3 100 1 1 9 1.3 100 1 1 9 1.3 100 1 1 9 1.3 100 1 1 9 1.3 100 1 1 9 1.3 100 1 1 9 1.3 100 1 1 9 1.3 100 1 1 9 1.3 100 1 1 1 9 1.3 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

				Total Var	iance Explained	_			
		Initial Eigenvalue	es	Extraction Sums of Squared Loadings			Rotat	ion Sums of Squared	Loadings
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	10.725	24.943	24.943	10.725	24.943	24.943	6.855	15.942	15.942
2	4.861	11.305	36.248	4.861	11.305	36.248	5.249	12.206	28.148
3	3.417	7.947	44.196	3.417	7.947	44.196	3.275	7.616	35.764
4	2.888	6.717	50.913	2.888	6.717	50.913	2.576	5.991	41.755
5	2.248	5.229	56.141	2.248	5.229	56.141	2.391	5.560	47.315
6	1.809	4.206	60.347	1.809	4.206	60.347	2.314	5.380	52.696
7	1.610	3.743	64.091	1.610	3.743	64.091	2.085	4.849	57.545
8	1.422	3.306	67.397	1.422	3.306	67.397	2.030	4.722	62.267
9	1.288	2.994	70.391	1.288	2.994	70.391	1.877	4.366	66.632
10	1.246	2.897	73.288	1.246	2.897	73.288	1.852	4.308	70.940
11	1.095	2.546	75.834	1.095	2.546	75.834	1.719	3.997	74.937
12	1.046	2.433	78.266	1.046	2.433	78.266	1.432	3.329	78.266
13	.930	2.164	80.430						
14	.880	2.047	82.477						
15	.782	1.818	84.294						
16	.711	1.652	85.947						
17	.592	1.377	87.324						
18	.567	1.318	88.642						
19	.507	1.178	89.820						
20	.466	1.083	90.903						
21	.397	.924	91.828						
22	.381	.886	92.714						
23	.348	.809	93.523						
24	.333	.774	94.297						

BREC UKZN Oct 2008

					_	1	
25	.320	.744	95.041				
26	.288	.670	95.710				
27	.273	.634	96.344				
28	.228	.530	96.874				
29	.202	.470	97.344				
30	.189	.440	97.785				
31	.153	.355	98.140				
32	.148	.343	98.483				
33	.127	.295	98.778				
34	.105	.245	99.023				
35	.097	.226	99.249				
36	.083	.192	99.442				
37	.058	.136	99.578				
38	.047	.110	99.687				
39	.046	.108	99.795				
40	.033	.076	99.871				
41	.028	.066	99.938				
42	.016	.036	99.974				
43	.011	.026	100.000				
Extraction Metho	od: Principal Comp	onent Analysis.			 		
		•					

	Rotated Component Matrix ^a											
	Component											
	1	2	3	4	5	6	7	8	9	10	11	12
Q1.1												.791
Q1.2										.427	.538	

	1		1			1	1		T	1	
Q1.3										.688	
Q1.4					.849						
Q1.5					.539	.381					
Q1.6					.634						
Q1.7							.807				
Q1.8							.819				
Q1.9	334		.386	.457			.422				
Q1.10				.741							
Q1.11				.865							
Q1.12				.678					.356		
Q1.13									.736		
Q1.14						.593			.302		
Q1.15		.710)								.315
Q1.16		.813	3								
Q1.17	471	.708	3								
Q1.18	309	.683	.312								
Q1.19		.612	2								
Q1.20		.339)							.670	
Q1.21		.36	7					.580			
Q1.22		.31:	5						.523		.310
Q1.23						.818					
Q1.24								.731			
Q1.25								.689			
Q1.26			.812								
Q1.27	.346		.738								
Q1.28	.648		.390		.304						
Q1.29	.493				.443						

Q1.30	.688	.394						
Q1.31	.878							
Q1.32	.862							
Q1.33	.556	.482	.462					
Q1.34	.791							
Q1.35	.582	.519						
Q1.36	.380	.755						
Q1.37	.420	.836						
Q1.38	.398	.816						
Q1.39		.828						
Q1.40		.806						
Q1.41	.406	.546			.300			347
Q1.42	.734	.446		·				
Q1.43	.759	.406						

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.^a

a. Rotation converged in 14 iterations.

KMO and Bartlett's Test								
Kaiser-Meyer-Olkin Measure of	.444							
Bartlett's Test of Sphericity	Approx. Chi-Square	66.107						
	df	6						
	Sig.	.000						

Communalities								
	Initial Extraction							
TP	1.000	.475						
LIMIT	1.000	.643						
TDS	1.000	.860						
MM 1.000 .800								
Extraction Method: Principal								

Component Analysis.

Scale: ALL VARIABLES

Case Processing Summary				
		N	%	
Cases	Valid	104	95.4	
	Excludeda	5	4.6	
	Total	109	100.0	

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics				
	Cronbach's Alpha			
	Based on			
	Standardized			
Cronbach's Alpha	Items	N of Items		
.706	.705	4		

Reliability

Scale: ALL VARIABLES

Case Processing Summary					
N %					
Cases	Valid	106	97.2		
	Excludeda	3	2.8		
	Total	109	100.0		

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics				
	Cronbach's Alpha			
	Based on			
	Standardized			
Cronbach's Alpha	Items	N of Items		
.801	.799	8		

Item Statistics				
	Mean	Std. Deviation	N	
Q1.15	2.208	1.1188	106	
Q1.16	2.981	1.1628	106	
Q1.17	3.453	1.1223	106	
Q1.18	3.255	1.1302	106	
Q1.19	2.557	.9570	106	
Q1.20	2.849	1.0672	106	
Q1.21	2.632	1.0896	106	
Q1.22	2.953	1.0988	106	

	Inter-Item Correlation Matrix							
	Q1.15	Q1.16	Q1.17	Q1.18	Q1.19	Q1.20	Q1.21	Q1.22
Q1.15	1.000	.545	.433	.380	.425	.361	.282	.256
Q1.16	.545	1.000	.510	.460	.437	.374	.325	.245
Q1.17	.433	.510	1.000	.674	.410	.280	.356	.141
Q1.18	.380	.460	.674	1.000	.273	.182	.363	.232
Q1.19	.425	.437	.410	.273	1.000	.158	.244	.098
Q1.20	.361	.374	.280	.182	.158	1.000	.353	.319
Q1.21	.282	.325	.356	.363	.244	.353	1.000	.168
Q1.22	.256	.245	.141	.232	.098	.319	.168	1.000

Summary Item Statistics							
					Maximum /		
	Mean	Minimum	Maximum	Range	Minimum	Variance	N of Items
Item Means	2.861	2.208	3.453	1.245	1.564	.157	8

	Item-Total Statistics					
	Scale Mean if	Scale Variance if	Corrected Item-	Squared Multiple	Cronbach's Alpha	
	Item Deleted	Item Deleted	Total Correlation	Correlation	if Item Deleted	
Q1.15	20.679	24.220	.595	.394	.765	
Q1.16	19.906	23.362	.650	.454	.755	
Q1.17	19.434	23.867	.629	.550	.759	

Q1.18	19.632	24.368	.572	.512	.769
Q1.19	20.330	26.719	.444	.286	.788
Q1.20	20.038	26.094	.440	.285	.789
Q1.21	20.255	25.830	.452	.236	.787
Q1.22	19.934	27.281	.308	.156	.808

Scale Statistics				
Mean Variance Std. Deviation N of Items				
22.887	32.025	5.6591	8	

Case Processing Summary					
N %					
Cases	Valid	104	95.4		
	Excludeda	5	4.6		
	Total	109	100.0		

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics				
	Cronbach's Alpha			
	Based on			
	Standardized			
Cronbach's Alpha	Items	N of Items		
.916	.917	8		

	Item Statistics								
	Mean	Std. Deviation	N						
Q1	2.404	1.0568	104						
.28									
Q1	2.635	1.2776	104						
.29									
Q1	2.462	1.1569	104						
.30									
Q1	2.308	1.1241	104						
.31									
Q1	2.279	1.0654	104						
.32									
Q1	2.663	1.2117	104						
.33									

Q1		2.356		1.1735				104
.34								
Q1		2.096			.9904	104		
.35								
	Iı	ıter-I	tem (Corre	lation	Mat	rix	
	Q1.2	Q1.2	Q1.3	Q1.3	Q1.3	Q1.3	Q1.3	Q1.3
	8	9	0	1	2	3	4	5
Q1	1.00	.571	.473	.483	.528	.456	.588	.528
.28	0							
Q1	.571	1.00	.687	.532	.468	.484	.502	.404
.29		0						
Q1	.473	.687	1.00	.733	.611	.583	.572	.529
.30			0					
Q1	.483	.532	.733	1.00	.892	.597	.741	.566
.31				0				
Q1	.528	.468	.611	.892	1.00	.660	.720	.582
.32					0			
Q1	.456	.484	.583	.597	.660	1.00	.706	.496
.33						0		
Q1	.588	.502	.572	.741	.720	.706	1.00	.580
.34							0	
Q1	.528	.404	.529	.566	.582	.496	.580	1.00
.35								0

Summary Item Statistics									
					Maximum /				
	Mean	Minimum	Maximum	Range	Minimum	Variance	N of Items		
Item Means	2.400	2.096	2.663	.567	1.271	.035	8		

	Item-Total Statistics										
	Scale Mean if	Scale Variance if	Corrected Item-	Squared Multiple	Cronbach's Alpha						
	Item Deleted	Item Deleted	Total Correlation	Correlation	if Item Deleted						
Q1.28	16.798	42.124	.639	.509	.912						
Q1.29	16.567	39.976	.644	.558	.913						
Q1.30	16.740	39.670	.755	.705	.903						
Q1.31	16.894	39.183	.821	.878	.897						
Q1.32	16.923	40.033	.804	.846	.899						
Q1.33	16.538	39.707	.709	.610	.907						
Q1.34	16.846	39.005	.793	.707	.899						
Q1.35	17.106	42.659	.647	.453	.911						

Scale Statistics								
Mean	Variance	Std. Deviation	N of Items					
19.202	52.007	7.2116	8					

Case Processing Summary								
		N	%					
Cases	Valid	105	96.3					
	Excludeda	4	3.7					
	Total	109	100.0					

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics						
	Cronbach's Alpha					
	Based on					
	Standardized					
Cronbach's Alpha	Items	N of Items				
.925	.926	6				

Item Statistics									
	N								
Q1.36	2.267	1.0676	105						
Q1.37	2.314	1.0499	105						
Q1.38	2.314	1.0499	105						
Q1.39	2.400	1.0433	105						
Q1.40	2.495	1.1530	105						
Q1.41	2.514	1.1276	105						

Inter-Item Correlation Matrix										
	Q1.36	Q1.37	Q1.38	Q1.39	Q1.40	Q1.41				
Q1.36	1.000	.920	.885	.603	.587	.412				
Q1.37	.920	1.000	.930	.674	.704	.528				
Q1.38	.885	.930	1.000	.674	.649	.439				
Q1.39	.603	.674	.674	1.000	.769	.584				
Q1.40	.587	.704	.649	.769	1.000	.801				
O1.41	.412	.528	.439	.584	.801	1.000				

Summary Item Statistics								
					Maximum /			
	Mean	Minimum	Maximum	Range	Minimum	Variance	N of Items	

Item Means	2.384	2.267	2.514	.248	1.109	.011	6

	Item-Total Statistics										
	Scale Mean if	Scale Variance if	Corrected Item-	Squared Multiple	Cronbach's Alpha						
	Item Deleted	Item Deleted	Total Correlation	Correlation	if Item Deleted						
Q1.36	12.038	21.768	.786	.860	.912						
Q1.37	11.990	21.086	.886	.926	.898						
Q1.38	11.990	21.510	.834	.882	.905						
Q1.39	11.905	22.125	.766	.646	.914						
Q1.40	11.810	20.752	.824	.807	.906						
Q1.41	11.790	22.725	.627	.661	.933						

Scale Statistics								
Mean	Variance	Std. Deviation	N of Items					
14.305	30.733	5.5437	6					

Case Processing Summary						
		N	%			
Cases	Valid	107	98.2			
	Excludeda	2	1.8			
	Total	109	100.0			

Reliability Statistics							
		Cr	onbach's Alpha				
			Based on				
			Standardized				
Cronbac	h's Alpha		Items	N	N of Items		
	.530		.846		8		
Item Statistics							
	Mean		Std. Deviation		N		
Q2.1	4.477		5.2886		107		
Q2.2	3.6	45	.892	29	107		
Q2.3	3.7	76	.8277		107		
Q2.4	3.9	35	.913	39	107		
Q2.5	3.5	42	.849	99	107		
Q2.6	3.6	45	.913	38	107		
Q2.7	3.3	83	.928	30	107		
Q2.8	3.6	07	.860	51	107		

	Inter-Item Correlation Matrix									
	Q2.1	Q2.2	Q2.3	Q2.4	Q2.5	Q2.6	Q2.7	Q2.8		
Q2.1	1.000	.192	.210	.196	.234	.199	.197	.214		
Q2.2	.192	1.000	.581	.307	.443	.480	.223	.294		
Q2.3	.210	.581	1.000	.679	.577	.443	.322	.521		
Q2.4	.196	.307	.679	1.000	.605	.469	.152	.408		
Q2.5	.234	.443	.577	.605	1.000	.615	.583	.638		
Q2.6	.199	.480	.443	.469	.615	1.000	.373	.561		
Q2.7	.197	.223	.322	.152	.583	.373	1.000	.694		
Q2.8	.214	.294	.521	.408	.638	.561	.694	1.000		

Summary Item Statistics										
					Maximum /					
	Mean	Minimum	Maximum	Range	Minimum	Variance	N of Items			
Item Means	3.751	3.383	4.477	1.093	1.323	.112	8			

	Item-Total Statistics										
	Scale Mean if	Scale Variance if	Corrected Item-	Squared Multiple	Cronbach's Alpha						
	Item Deleted	Item Deleted	Total Correlation	Correlation	if Item Deleted						
Q2.1	25.533	20.949	.278	.080	.861						
Q2.2	26.364	56.139	.407	.473	.488						
Q2.3	26.234	55.256	.524	.665	.475						
Q2.4	26.075	55.504	.444	.629	.481						
Q2.5	26.467	54.327	.586	.674	.464						
Q2.6	26.364	54.913	.490	.509	.474						
Q2.7	26.626	55.802	.413	.593	.485						
Q2.8	26.402	54.884	.526	.647	.471						

Scale Statistics								
Mean Variance		Std. Deviation	N of Items					
30.009	62.387	7.8985	8					

Case Processing Summary						
		N	%			
Cases	Valid	107	98.2			
	Excludeda	2	1.8			
	Total	109	100.0			

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics							
	Cronbach's Alpha						
	Based on						
	Standardized						
Cronbach's Alpha	Items	N of Items					
.853	.855	8					

	Item Statistics								
	Mean Std. Deviation								
Q3.1	1.972	1.2089	107						
Q3.2	2.822	1.3304	107						
Q3.3	3.402	1.1885	107						
Q3.4	2.944	1.1479	107						
Q3.5	3.047	1.2083	107						
Q3.6	3.065	1.2152	107						
Q3.7	2.850	1.1640	107						
Q3.8	2.617	1.1463	107						

	Inter-Item Correlation Matrix										
	Q3.1	Q3.2	Q3.3	Q3.4	Q3.5	Q3.6	Q3.7	Q3.8			
Q3.1	1.000	.466	.251	.250	.343	.316	.272	.367			
Q3.2	.466	1.000	.380	.327	.304	.182	.153	.209			
Q3.3	.251	.380	1.000	.515	.545	.543	.446	.329			
Q3.4	.250	.327	.515	1.000	.716	.517	.615	.493			
Q3.5	.343	.304	.545	.716	1.000	.640	.682	.422			
Q3.6	.316	.182	.543	.517	.640	1.000	.587	.648			
Q3.7	.272	.153	.446	.615	.682	.587	1.000	.381			
Q3.8	.367	.209	.329	.493	.422	.648	.381	1.000			

Summary Item Statistics									
					Maximum /				
	Mean	Minimum	Maximum	Range	Minimum	Variance	N of Items		
Item Means	2.840	1.972	3.402	1.430	1.725	.175	8		

Item-Total Statistics							
	Scale Mean if	Scale Variance if	Corrected Item-	Squared Multiple	Cronbach's Alpha		
	Item Deleted	Item Deleted	Total Correlation	Correlation	if Item Deleted		
Q3.1	20.748	37.473	.448	.330	.852		

Q3.2	19.897	37.414	.392	.339	.861
Q3.3	19.318	35.558	.606	.438	.833
Q3.4	19.776	34.779	.699	.616	.823
Q3.5	19.673	33.600	.750	.674	.816
Q3.6	19.654	34.209	.695	.650	.823
Q3.7	19.869	35.492	.628	.544	.831
Q3.8	20.103	36.414	.566	.510	.838

Scale Statistics					
Mean Variance Std. Deviation N of Items					
22.720	45.562	6.7500	8		

Case Processing Summary				
		N	%	
Cases	Valid	104	95.4	
	Excludeda	5	4.6	
	Total	109	100.0	
a				

Reliability Statistics				
	Cronbach's Alpha			
	Based on			
	Standardized			
Cronbach's Alpha	Items	N of Items		
.478	.497	6		

Item Statistics					
	Mean	Std. Deviation	N		
Q4.1	2.154	1.1471	104		
Q4.2	2.279	.9700	104		
Q4.3	3.058	1.1045	104		
Q4.4	2.683	.9681	104		
Q4.5	3.000	1.3795	104		
Q4.6	3.337	1.3191	104		

Inter-Item Correlation Matrix						
	Q4.1	Q4.2	Q4.3	Q4.4	Q4.5	Q4.6

Q4.1	1.000	.519	.100	.141	.117	240
Q4.2	.519	1.000	.103	.116	.116	.047
Q4.3	.100	.103	1.000	.172	.268	.007
Q4.4	.141	.116	.172	1.000	.334	.138
Q4.5	.117	.116	.268	.334	1.000	.181
Q4.6	240	.047	.007	.138	.181	1.000

Summary Item Statistics							
					Maximum /		
	Mean	Minimum	Maximum	Range	Minimum	Variance	N of Items
Item Means	2.752	2.154	3.337	1.183	1.549	.217	6

Item-Total Statistics						
	Scale Mean if	Scale Variance if	Corrected Item-	Squared Multiple	Cronbach's Alpha	
	Item Deleted	Item Deleted	Total Correlation	Correlation	if Item Deleted	
Q4.1	14.356	10.717	.182	.359	.464	
Q4.2	14.231	10.432	.323	.303	.397	
Q4.3	13.452	10.503	.234	.086	.436	
Q4.4	13.827	10.319	.344	.141	.388	
Q4.5	13.510	8.447	.380	.186	.339	
Q4.6	13.173	11.232	.048	.150	.547	

Scale Statistics					
Mean	Variance	Std. Deviation	N of Items		
16.510	13.398	3.6603	6		

Case Processing Summary					
N %					
Cases	Valid	107	98.2		
	Excludeda	2	1.8		
	Total	109	100.0		

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics				
	Cronbach's Alpha			
	Based on			
	Standardized			
Cronbach's Alpha	Items	N of Items		

507	501	0
.527	.521	8

Item Statistics					
	Mean	Std. Deviation	N		
Q5.1	2.411	.7391	107		
Q5.2	1.280	.5102	107		
Q5.3	2.009	.6658	107		
Q5.4	2.243	.7248	107		
Q5.5	2.075	.6250	107		
Q5.6	2.271	.6946	107		
Q5.7	2.112	.7048	107		
Q5.8	2.047	.6352	107		

Inter-Item Correlation Matrix								
	Q5.1	Q5.2	Q5.3	Q5.4	Q5.5	Q5.6	Q5.7	Q5.8
Q5.1	1.000	033	.126	.076	.178	.148	.092	.180
Q5.2	033	1.000	.159	.069	066	.103	.148	070
Q5.3	.126	.159	1.000	.249	.044	.198	.098	.155
Q5.4	.076	.069	.249	1.000	.334	057	109	.221
Q5.5	.178	066	.044	.334	1.000	025	.088	.348
Q5.6	.148	.103	.198	057	025	1.000	.631	.014
Q5.7	.092	.148	.098	109	.088	.631	1.000	.051
Q5.8	.180	070	.155	.221	.348	.014	.051	1.000

Summary Item Statistics							
					Maximum /		
	Mean	Minimum	Maximum	Range	Minimum	Variance	N of Items
Item Means	2.056	1.280	2.411	1.131	1.883	.116	8

Item-Total Statistics							
	Scale Mean if	Scale Variance if	Corrected Item-	Squared Multiple	Cronbach's Alpha		
	Item Deleted	Item Deleted	Total Correlation	Correlation	if Item Deleted		
Q5.1	14.037	5.282	.224	.078	.504		
Q5.2	15.168	6.104	.089	.066	.538		
Q5.3	14.439	5.230	.301	.144	.474		
Q5.4	14.206	5.354	.212	.207	.508		
Q5.5	14.374	5.406	.273	.234	.485		
Q5.6	14.178	5.147	.304	.433	.472		
Q5.7	14.336	5.169	.288	.434	.478		
Q5.8	14.402	5.394	.269	.164	.486		

Scale Statistics					
Mean Variance		Std. Deviation	N of Items		
16.449	6.589	2,5670	8		