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Our lives are not determined by what happens to us,  

But how we react to what happens to us, not by what life 

brings us, but by the attitude we bring to life.  

A positive attitude causes a chain reaction of positive 

thoughts, events and outcomes. The chain rule is not used to 

differentiate that given attitude. It is a spark that creates 

extraordinary results. 
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ABSTRACT 

 

The main issue in this study is how students conceptualise mathematical learning in 

the context of calculus with specific reference to the chain rule. The study focuses on 

how students use the chain rule in finding derivatives of composite functions 

(including trigonometric ones). The study was based on the APOS (Action-Process-

Objects-Schema) approach in exploring conceptual understanding displayed by first 

year University of Technology students in learning the chain rule in calculus. 

The study consisted of two phases, both using a qualitative approach.  Phase 1 was the 

pilot study which involved collection of data via questionnaires which were 

administered to 23 previous semester students of known ability, willing to participate 

in the study. The questionnaire was then administered to 30 volunteering first year 

students in Phase 2. A structured way to describe an individual student's 

understanding of the chain rule was developed and applied to analyzing the evolution 

of that understanding for each of the 30 first year students. Various methods of data 

collection were used namely: (1) classroom observations, (2) open-ended 

questionnaire, (3) semi-structured and unstructured interviews, (4) video-recordings, 

and (5) written class work, tests and exercises.  

The research done indicates that it is essential for instructional design to 

accommodate multiple ways of function representation to enable students to make 

connections and have a deeper understanding of the concept of the chain rule. 

Learning activities should include tasks that demand all three techniques, Straight 

form technique, Link form technique and Leibniz form technique, to cater for the 

variation in learner preferences. It is believed that the APOS paradigm using selected 

activities brought the students to the point of being better able to understand the chain 

rule and informed the teaching strategies for this concept. 



 
 

In this way, it is believed that this conceptualization will enable the formulation of 

schema of the chain rule which can be applied to a wider range of contexts in 

calculus. There is a need to establish a conceptual basis that allows construction of a 

schema of the chain rule. The understanding of the concept with skills can then be 

augmented by instructional design based on the modified genetic decomposition. This 

will then subject students to a better understanding of the chain rule and hence more 

of calculus and its applications.
 
 

 

 

 

 

 

 

 

 

 



 
 

 

CHAPTER 1 

INTRODUCTION 

 

 

In this chapter, the researcher sets out to present the research process as it unfolded. 

This chapter provides an overview of the study.  The background and purpose of this 

research project is detailed first. The motivation for doing this research, the nature of 

mathematics with respect to this study and the subject didactics of mathematics are 

discussed. The research questions and key terms in the study are introduced. This is 

followed by summaries of successive chapters. Later in this chapter, the significance 

of the results of this study in the current era in South Africa is indicated. 

 

 

In my experience and discussions held with other lecturers, despite being one of the 

most basic tools for a mathematician, the chain rule is also one of the most 

complicated, calculus tools.  Calculus is one of the topics introduced to matric 

learners at high school, yet a large number of them receive inadequate mathematics 

education and join the university mostly under-prepared for the study of differential 

calculus.  Furthermore the chain rule is not part of the South African school syllabus. 

In my experience many first year university students have difficulty in understanding 

the chain rule in differentiation. This phenomenon was also observed by Orton (1983) 

who indicated that students: (1) had problems in the understanding of the meaning of 

the derivative when it appeared as a fraction or the sum of two parts and application 

of the chain rule for differentiation, and (2) had little intuitive understanding of 

1.1 Overview 

1.2 Background 



 
 

derivative as well as fundamental misconceptions about the derivative. Also in my 

experience some teachers at high school are less comfortable with calculus and its 

applications. 

The engineering course done by the participants of this study does not require 

Mathematics as a specialization course at the University of Technology.  

Mathematics, as offered by the Mathematics department, is used only as a tool for 

servicing the engineering course. The mathematics courses offered are a semester 

course at levels 1, 2, and 3. The semester course outline for mathematics level 1 

requires that differentiation and integration be taught within a period of 4 weeks. This 

relatively little time spent on teaching mathematics contributes to weak preparation 

and lack of appreciation and understanding of integration and differentiation in 

calculus. In an attempt to equip engineering students with mathematical skills, that are 

useful in their career, calculus is one of the many topics that are taught to them.  

 

 

The main issue in this study is how students conceptualise mathematical learning in 

the context of calculus with specific reference to the chain rule. The study focuses on 

how students use the chain rule in finding derivatives of composite functions 

(including trigonometric ones). The study was based on the APOS (Action-Process-

Objects-Schema) approach in exploring conceptual understanding displayed by first 

year University of Technology students in learning the chain rule in calculus. 

Dubinsky & McDonald (2001) suggested that APOS theory as a tool can be used 

objectively to explain students‟ difficulties with a broad range of mathematical 

concepts and recommended ways in which students can learn these concepts. They 

further argued that this theory can point us towards pedagogical strategies that lead to 

marked improvement in (1) student learning of complex or abstract mathematical 

concepts, and (2) students‟ use of these concepts to prove theorems, provide 

examples, and solve problems.  

1.3 Purpose of the study 



 
 

The aim of this study was to find out whether students can construct an 

underlying structure of the chain rule in dealing with composition or 

decomposition of functions. 

This focus was accomplished by:  

     (1) A discussion of the types of structures constructed by students when learning    

 the chain rule with the view to clarifying their understanding: (i) of the 

 composition of function and (ii) of the derivative. 

(2) Finding out how the lack or availability of these structures hamper or assist 

students‟ understanding of the chain rule. This was done to check whether 

they had a coherent understanding of composition of single-valued functions 

and the derivative. 

(3) Determining the students‟ actual engagement with tasks and how these tasks 

link with the expected outcomes highlighted in the initial genetic 

decomposition. 

(4) Informing possible modifications to the initial genetic decomposition. 

 

 

This study was motivated by: (1) the researcher‟s personal experience and interest, (2) 

the understanding a mathematical concept, (3) the learners‟ difficulties in 

understanding the chain rule in calculus, and (4) the learners‟ preference of procedural 

methods rather than conceptual understanding in calculus. The focus on (2), (3) and 

(4) is covered in Chapter 2. Below (1) is explained in detail. 

1.4.1 Researcher’s personal experience and interest 

 

The researcher has been a mathematics teacher of grades 10-12 learners, from 1986 to 

2006.  In 2007, she had the privilege of teaching mathematics to first year engineering 

1.4 Motivation 



 
 

students at a University of Technology. She also taught engineering mathematics to 

Extended Curriculum Program (ECP) and Pre-tech students registered for the bridging 

course at the university.   

The first year engineering class was composed of a mixture of students from the Pre-

tech programme, (students who did a bridging course to upgrade their matric symbols 

for a period of six months at the university), Extended Curriculum Programme (ECP), 

(students who took a foundation programme for a year at the university), and students 

with excellent matric symbols who did not receive any prior instruction at the 

university. The total number of students in the researcher‟s class was 197 all 

registered for civil engineering.  

The researcher noticed that in her class, whilst teaching, most students took down 

notes and paid little or no attention to the lesson. This made the researcher recall what 

Felder (1996) asserted. Students learn in many ways, either, by seeing and hearing, 

reflecting and acting, reasoning logically and intuitively, or memorizing and 

visualizing.  He further suggested that how much a student learns in class is governed 

partly by the compatibility of his characteristic approach to learning and the 

instructor‟s characteristic approach to teaching. Some instructors lecture and others 

demonstrate some focus on rules and others on examples, some emphasize memory 

and others understanding.  However, research (Claxton & Murrell, 1987) indicates 

that the more a person understands his or her particular strengths and weaknesses in 

various learning contexts, the better he or she can take appropriate action to optimize 

learning. What processes were used by students to build their knowledge and 

application of the chain rule in differential and integral calculus was of interest to this 

study. 

The chain rule is the underlying concept in many applications of calculus: implicit 

differentiation, solving related rate of change problems, applying it in the fundamental 

theorem of calculus and solving differential equations.  Research (Hassani, 1998) into 

the nature of students' understanding of the concepts underlying the calculus showed 



 
 

significant gaps between their conceptual understanding of the major ideas of calculus 

and their ability to perform procedures based on these ideas. The chain rule states that 

if )(xg   is a function differentiable at c and f is a function differentiable at )(cg , then, 

the composite function fog  given by ))(())(( xgfxfog    is differentiable at c and 

that )()).(()()( ''' cgcgfcfog  .  Cottrill (1999) asserted that: (1) conventional wisdom 

holds that students‟ conception of the chain rule (as with other rules) is that of symbol 

manipulation, (2) the conception of the chain rule appeared to be a straight-forward 

manipulation of symbols which could easily be applied in problem situations and (3) 

concluded that an application based on symbol manipulation carries a heavy 

requirement for the function to be given by an expression, fostering students‟ 

tendencies toward instrumental understanding, where they are unable to apply the 

chain rule. Hassani (1998) examined students' understandings on graphical, numerical 

(tabular), and algebraic/symbolic presentations of composition of functions and the 

chain rule.  His study revealed that first-year undergraduate calculus students have a 

very meager understanding of the concept of composition of functions and their 

ability to explain or apply the chain rule is significantly related to their algebraic 

manipulative skills and their general knowledge of function concepts and function 

composition. 

 

The researcher was motivated by the poor performance of first year engineering 

students in differentiation involving the use of the chain rule. This then culminated in 

an interest for the researcher to find out how students construct mathematical 

knowledge when learning the concept of chain rule in calculus.  Conceptual 

knowledge as defined by Hapasaalo (2004) denotes knowledge of and a skillful 

“drive” along particular networks, the elements of which can be concepts, rules (for 

example algorithms and procedures), and even problems given in various 

representation forms. 

The researcher‟s observations on students‟ performance in calculus using the chain 

rule had always revealed a difficulty in understanding and applying the concept as 



 
 

compared to other sections (exponential and logarithmic functions, trigonometry and 

complex numbers) in first year engineering mathematics. This led to an interest of 

how learners conceptualized the chain rule and how they could learn this concept 

effectively.  This study therefore aims at assisting the students to understand and 

apply the chain rule and to inform the researcher‟s teaching for her future role in the 

classroom and the effective learning of students. 

 

1.4.2   Learners’ difficulties in understanding the chain rule in    

 calculus  

 

The chain rule is one of the hardest ideas conveyed to students in calculus (Gordon, 

2005).  It is difficult to motivate, as most students do not really understand its source.  

It is difficult to express in symbols even after it is developed, and it is awkward to put 

into words, so that many students cannot remember it, and so cannot apply it 

correctly.  

Swanson (2006) asserted that the complexity of the chain rule deserves exploration 

because students struggle to understand it and because of its importance in the 

calculus curriculum. Despite the importance of the chain rule in calculus and its 

difficulty for students, the chain rule has been scarcely studied in mathematics 

educational research (Clark et al, 1997; Gordon, 2005; Uygur & Ozdas, 2007; 

Webster, 1978).  These student difficulties include the inability to apply the chain rule 

to functions and also with composing and decomposing functions (Clark et al, 1997; 

Cottrill, 1999; Hassani, 1998).    

Previous research emphasized the importance of function composition in the 

understanding of the chain rule, but the ability to say more than that has been elusive 

(Clark et al, 1997; Cottrill, 1999; Hassani, 1998).  This study was therefore designed 

to focus on how students understand the function composition as seen through the 



 
 

chain rule problems using functions that are familiar, somewhat familiar and 

unfamiliar to them.   

The derivative is an inherently difficult concept for many students (Uygur & Ozdas, 

2005).  This becomes clear especially when the function considered is a composite 

function, students‟ difficulties increase and get worse (Tall 1993). One of the 

problems is with the use of the Leibniz notation,
dx

dy
, whether it is a fraction or a 

single indivisible symbol. It causes serious conceptual problems, but this notation is 

indispensable in calculus. According to Tall (1993), the difficulty with the notion of 

the chain rule is the dilemma of whether du  can be cancelled in the equation:

dx

du

du

dy

dx

dy
. . Cottrill (1999) also studied the correlation between a student‟s 

understanding of the composition functions and understanding the chain rule. In his 

study, there was a small amount of evidence supporting the hypothesis which states 

that the understanding of composition of functions is the key to understanding the 

chain rule.  Cottrill indicated a new study was needed to address this hypothesis. 

It is evident from the above discussion that, many well-known functions have simple 

expressions for their derivatives while composite functions require the use of the 

chain rule for differentiation. Functions having fairly complicated expressions have 

explicit formulae for derivatives. It was the development of formulas and rules such 

as the chain rule enabling mathematicians to calculate the derivative that motivated 

the use of the name calculus for this mathematical discipline. These illustrations of 

learners‟ difficulty in using the chain rule probed my research in this direction as 

outcomes from this study will inform better instructional techniques. Also, it is hoped 

to address the hypothesis of Cotrill noted above. 



 
 

            1.4.3   Understanding a mathematical concept 

 

This section presents some perceptions of understanding from a variety of theoretical 

perspectives.  It ends by giving the operational definition of „understanding‟ for this 

study.  Duffin and Simpson (2000) have identified and named three components of 

understanding as (1) the building, (2) the having, and (3) the enacting. They defined 

„building understanding‟ as the formation of connections between internal mental 

structures.  „Having understanding‟ is said to be the state of these connections at any 

particular time and „enacting understanding‟ as the use of the connections available at 

a particular moment to solve a problem or construct a response to a question. Thus 

this is the type of understanding that may be visible from students‟ work when 

responding to mathematical tasks. Duffin and Simpson also talked about the breadth 

and depth of understanding. They described the breadth of understanding to be 

determined by the number of different possible starting points that the learner may 

have in solving a problem. The depth may be evidenced by the way the learners could 

unpack each stage of their solution in more detail by referring to more concepts.  

 

In relating these theories of Duffin and Simpson (2000) to mathematical content an 

example that follows may be considered. Imagine a situation where one is given a 

function say, 23 )5()( xxxf   to differentiate. A learner may identify this function as 

being represented structurally as )5)(5( 33 xxxx  , and may expand the expression 

before differentiating. This learner might then use the product rule to differentiate the 

resulting expression.  Another learner who recognizes the function in the form of 

23 )5())(( xxxgf  where 2)( xxf   and xxxg 5)( 3  , he/she may the use the 

chain rule to differentiate )(xf . A learner who sees this function to be represented 

structurally in one form only lacks breadth of understanding. Such a learner may even 

deny that the given equivalent forms of the function to be differentiated represent the 

same function. The depth of understanding in this case could be determined by the 



 
 

learner‟s ability to state at each stage what is happening in mathematical terms.  For 

example, a learner could indicate the stages at which the power rule, the product rule 

or the chain rule have been applied, that is, alongside the work shown in performing 

the mathematical task. This demonstrates a deeper understanding of solving the task 

than in a case where the structures will be manipulated by applying a rule with no 

explanations at all. Reasons for applying or doing certain procedures could also be 

given. A learner who instrumentally carries out manipulations is likely to be unaware 

of the mistakes he or she has committed.  

 

On the contrary the understanding of a mathematical concept is explained in this 

study with the help and adoption of APOS. APOS ascertains that to understand a 

mathematical concept, one must begin with manipulating previously constructed 

mental or physical objects in the learner‟s mind to form actions; actions would then be 

interiorised to form processes which are then encapsulated to form objects.   These 

objects could be de-encapsulated back to the processes from which they are formed, 

which would be finally organized in schemas.  

 

This philosophy of understanding initiated in this study led to understanding of the 

concept of the chain rule which was explored through the development of schema 

relevant to it. These led to the design of relevant activities. Students were provided 

with activities in class that were designed to induce them to make the suitable mental 

constructions suggested in the initial genetic decomposition. The tasks used in this 

study helped students gain experience in constructing actions corresponding to the 

chain rule. 

This experience was built upon in subsequent activities where students were asked to 

reconstruct familiar actions as general processes. Lastly, the students were then 

provided with complicated activities where they needed to organize a variety of 

previously constructed objects, like functions and derivatives of composition of 



 
 

functions, into a schema that could be applied to chain rule problem situations.  More 

specifically the researcher examined students‟ attempts to answer the tasks given in 

class, their tests, exercises with regard to their understanding of functions, 

composition of functions and the chain rule. 

 Although this was in the form of pencil and paper work, of importance to the 

researcher was the procedure used to answer the questions and not whether answers 

were correct or wrong. In addition to the tasks, interviews were conducted so as to 

substantiate the level of student understanding of the concept. These interviews were 

more valuable than the written assessment instruments because one student could 

have displayed correct written work while the transcript revealed little understanding 

and vice versa. A full range of understanding was obtained by selecting students who 

gave correct, partially correct and incorrect responses on the written work. Some 

students showed evidence of constructing very little mental connections while others 

had constructed bits and pieces and others seemed to have made all the constructions 

proposed in the genetic decomposition.  The latter showed evidence of understanding 

the concept. They showed evidence of possessing a schema for the chain rule. This 

interrogation of what understanding is will imply how students learn the chain rule 

and hence inform my teaching of the chain rule. 

             1.4.4 The students’ preference of procedural methods   

 rather than conceptual understanding in calculus.  

 

Tall (1997) refers to students developing coping strategies, like computational and 

manipulative skills when they are faced with conceptual difficulties. Students at the 

University of Technology spent little time in studying mathematics since mathematics 

was not required as a specialization.  Mathematics 1 for engineering students is a 

semester course. Also large classes contributed to the weak preparation and disinterest 

in the subject. Students then resorted to methods and techniques that would just help 

them to pass mathematics. These included manipulative approaches and drill which 

helped the students to pass the examinations without engaging in problems that 



 
 

involved insight and understanding.  This concurs with Smith & Moore (1991) who 

assert that much of what students have actually leant precisely, is a set of coping skills 

for getting past the next assignment, the next quiz and the next examination.  They 

therefore have no real advantage of understanding mathematics.  Naidoo (2007) 

recommended that a need for alternate methods of instruction to enhance teaching and 

understanding of calculus was essential. 

Amongst other things that were identified by Tall (1992) as some difficulties students 

encountered were (a) preference for procedural methods rather than conceptual 

understanding and (b) restricted mental images of functions.  Perhaps this was 

because mathematics lessons at the University of Technology focussed on standard 

methods, rules and procedures. Students‟ understanding is the key factor to how 

understanding of a concept unfolds itself.  When students see a concept for the first 

time, they are limited to an action conception of that concept. For example, first year 

students may understand differentiation as an action on polynomials following certain 

rules applied in a particular sequence. As the student interacts more with 

differentiation, he or she would then understand differentiation as a more general 

process that is not limited to a set of rules applied to individual functions.  These tasks 

designed in this study were designed to allow for both acquisitions of conclusions 

about both procedural and conceptual understanding. 

                         

 

In this study an assumption about the nature of mathematical knowledge and how it is 

acquired grounds the theory (APOS) implemented. Individuals learnt mathematical 

concepts indirectly. They applied mental structures to make sense of each concept. 

Dubinsky (2010) claimed that appropriate mental structures for a given mathematical 

concept led to automatic, easy learning of the said concepts, while in their absence 

learning was almost impossible. Pedagogy should then aim at helping students build 

1.5 What is learning in mathematics?  



 
 

relevant mental constructions. The APOS theory presents the afore-mentioned 

constructions as actions, processes, objects and schemas. 

A description of actions, processes, objects and schemas and their relationships that 

might be involved in a construction of a mathematical concept is called the genetic 

decomposition of the particular concept. In the case of the chain rule for example, this 

could begin with students understanding the composition of two or more functions.  

These would then be transformed to one composite function. They would also have to 

understand the derivative concept of the composite functions. The two processes 

would then be coordinated to obtain this derivative which would then be encapsulated 

to using the chain rule for differentiation. 

 

 

Ernest (1991) asserts that Mathematics Education understood in its simplest and most 

concrete sense concerns the activity or practice of teaching mathematics.  He further 

asserts that learning is inseparable from teaching.  This process involves the exercise 

of the mind and intellect in thought, enquiry, and reasoning.  Similarly, the 

interpretive research paradigm seeks to explore real human and social situations and 

uncover the meanings, understandings and interpretations of the actors involved. It 

was therefore evident that in exploring how students conceptualized the understanding 

of the chain rule, APOS could be used objectively to (1) explain students‟ difficulties 

with the chain rule and (2) suggest ways that students can learn the chain rule. More 

specifically APOS could lead us towards pedagogical strategies that in turn lead to 

marked improvement in (1) student learning of the chain rule and (2) students‟ use of 

this concept to solve problems in calculus.  

The principles of effective mathematics teaching drawn from educational theories of 

Piaget illustrated that learning required interaction to develop: (1) a deep conceptual 

1.6 Subject Didactics of Mathematics  



 
 

understanding, (2) positive relationships and (3) a classroom community. This social 

interaction leads to gradual, incremental changes in thought and behaviour of learners 

and through which interaction with other learners, allows them to examine, clarify and 

change their conceptual understanding. This study sought to explore how actions, 

processes and objects of the chain rule schema could be coordinated as mental 

structures to enhance the learning of the concept and access it in situations where it 

needs to be applied. 

 

 

This study used the APOS (Action-Process-Objects-Schema) approach in exploring 

conceptual understanding displayed by first year University of Technology students in 

learning the chain rule in calculus. The research question addressed by this study is: 

How do students construct various structures to recognize and apply the chain 

rule to functions in the context of calculus? 

This is with the view of clarifying: 

1.  students’ understanding of the function concept 

2. students understanding of function composition 

3. students’ understanding of the derivative 

4.  students’ difficulties in using  the chain rule 

5. students’ schema alignment with the genetic decomposition of the chain rule 

6. the triad stage of schema development in which students are operating with 

respect to the chain rule, and 

7. students’ identification of the reverse application of the chain rule in the 

substitution technique for integration. 

 

1.7 Research questions and focus of enquiry 



 
 

 

 

The terms and concepts used in this study are outlined here. Further on in the study, 

these terms are discussed in detail. 

1.8.1 Nature of Mathematics 

 

Mathematics in this study refers to the language of engineering essential to understand 

how engineering mathematics works in order to master the complex relationships 

present in modern engineering systems and products. It is a human activity that deals 

with patterns, problem solving, logical thinking, in an attempt to understand the world 

and make use of that understanding. 

           1.8.2   Calculus 

 

Calculus refers to the study in mathematics of the behaviour of function, for example, 

limits, rate of change, the functions‟ maxima and minima composition. It involves 

operations of differential and integral calculus. 

1.8.2 Chain rule 

 

The chain rule is the underlying concept in many applications of calculus: implicit 

differentiation, solving related rate problems, and solving differential equations. The 

rule states that, if )(xg   is a function differentiable at c and f is a function 

differentiable at )(cg , then, the composite function gf   given by 

))(())(( xgfxgf    is differentiable at c and that )()).(()()( ''' cgcgfcgf  .   

 

1.8 Terminology and concepts 



 
 

1.8.4 APOS 

APOS refers to the main mental mechanisms interiorisation and encapsulation, for 

building mental structures of actions, processes, objects and schema (Dubinsky, 2010; 

Weller et al., 2003).  More concise definitions of APOS in provided in Chapter 3. 

1.8.5 Genetic decomposition 

 

Genetic decomposition is a set of mental constructions that a student might make to 

learn the concept and accessing it when needed. These are a result of a set of 

instructions which are designed to help students make the mental constructions and 

relate them to the mathematical concept desired. 

 

 

In finding a suitable approach to the theses, the following structure has been adopted 

and used.  The thesis comprises eight chapters, the bibliography and appendices.  The 

chapters are as follows: 

Chapter One introduces the background and purpose of this study. In addition the 

motivation for doing this research, the nature of mathematics with respect to this 

study and the subject didactics in mathematics is discussed. The research questions 

and key terms in the study are introduced. The conclusion gives the significance of 

the results of this study in the current era in South Africa. 

Chapter Two presents the relevant literature reviewed based on the area of 

exploration. Functions, processes on functions and their relevance to the chain rule, 

misconceptions on the chain rule, classroom instructional design and the implications 

1.9 Overview of this study 



 
 

of literature reviewed is explored. Studies based on APOS in the South African 

context are summarized. 

Chapter Three presents the theoretical framework for this research study. The theory 

that impacts on this study is discussed. More specifically the APOS theory, as an 

extension to reflective abstractions forms the framework for this research study. The 

triad mechanism that is used to explain students‟ understanding is presented. The 

relevance of APOS to the study is clearly indicated. 

Chapter Four focuses on the research design, the research methodology and the 

procedures undertaken to conduct this study.  The outline, the summary of the 

research design and the research instruments used are presented. The preliminary 

process which involved the pilot study, research paradigm and how it fits with the 

study, data sources, data collection and analysis methods together with the study 

limitations are also discussed. 

Chapter Five concentrates on the validation of the research instrument used in the 

Phase 1 of the study. The findings on this preliminary study are outlined in detail and 

how this affected the initial genetic decomposition is indicated in this chapter. 

Chapter Six discusses analysis of video recordings. 

Chapter Seven presents an analysis based on interviews and written questionnaires 

where collaborative learning versus individual learning is indicated in contrast. 

Chapter Eight presents the conclusions that were drawn based on the overall study. 

The limitations and recommendations of the study are also presented. 

 

 



 
 

 

 

In this chapter, the researcher has discussed the rationale that prompted my interest in 

conducting this research. The researcher has shown what led her in choosing the 

APOS approach in exploring conceptual understanding displayed by first year, 

University of Technology students in learning the chain rule in calculus. In the next 

chapter the literature reviewed is discussed while the theory that informs this study is 

reviewed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.10    Synopsis 



 
 

 

CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

 

In this chapter the literature and some relevant studies on the learning and teaching of 

the chain rule are cited and discussed.  At the time of the study evidence presented by 

an American study supported the principle that understanding of composition of 

functions was the key to understanding of the chain rule (Clarke et al, 1997). In the 

study by Cotrill et al (1999), cooperative learning was used. Also computers were 

used to assist students to make the mental constructions proposed by the APOS 

framework.  The present study on the chain rule has not been conducted in South 

Africa before. Other recent South African studies on APOS are summarised later in 

the chapter. 

 

This chapter commences with defining the perspective and context of this study. This 

is followed by a discussion of the function as a concept, its importance and how it 

informs the understanding of the chain rule. Moreover composition of functions, 

whose understanding has served a purpose in understanding the chain rule in 

differentiation, is discussed. Thereafter rules of differentiation and the complexity of 

the chain rule which lead to misconceptions are outlined. The chapter concludes with 

a summary of other recent studies on APOS, a discussion on designing classroom 

instruction whilst teaching and the implications of the literature reviewed for this 

research. 

 



 
 

2.2 The perspective and context of the study 

 

In this study an interactive lecture method, instead of computers was used.  At the 

University of Technology in this study there were no mathematics computers that 

were used by mathematics students due to the historically disadvantaged nature of the 

university. Through experience as a lecturer at this university, the researcher was 

aware that the lecture method used in the lecture classrooms was not very interactive.  

Only a few students could ask questions in a lecture due to the space constraint of the 

classroom and the short time allocated to each topic in the curriculum. Most of the 

time, the talking was done by the lecturer.  However, the interaction became possible 

when the students attended tutorials in smaller divisions of an average of 30 in a 

classroom in a 
2

1
1

 
hour slot every Friday afternoon where exercises on the concept 

taught were revisited.  In the studies done on APOS using computers by (Cotrill et al, 

1996), it was shown that students were in a better position to make mental 

constructions using computers when finding graphically the limits of certain 

functions. The study was not sure about certain mental constructions not being 

constructed. It is hoped that this engagement would fill in doubtful gaps of such a 

study.  

 2.3 Functions 

Functions have been discussed under the following headings: 

2.3.1 The function concept 

 

The concept of function is central to undergraduate mathematics, a foundation to 

modern mathematics, and essential in related areas of sciences. Formally, a function f 

is defined as „ yyxf /);(  (the dependent variable) is assigned, by prescription or 

rule, to each element of the domain (independent variable) one and only one element 



 
 

of the range‟ (Dreyer, 1985, p 73).   Dreyer (1985) further asserts that the elements of 

the domain are usually referred to as „objects‟ while the process which associates each 

object with its image is called a function.  It has also been a major focus of attention 

for the mathematics education research community over the past decades 

(Evangelidou et al, (2004); Sfard, (1992); Sierpinska, (1992), Vinner & Dreyfus, 

(1989). Various domains regarding functions have been addressed. Elia & Spyrou, 

(2006) had interest on (1) the concept image of the function definition in the students‟ 

minds and (2) the students‟ ability to connect different representations of the function, 

based on students‟ construction of meaning and understanding of mathematical 

concepts. Sierpinska, (1992) was more interested in (1) exploring university students‟ 

conceptions of functions on the basis of their concept definitions and examples of the 

notion, (2) students‟ performance in recognizing functions in their different forms of 

representation and transfer from one representation to the other, (3) exploring the 

relationship between their conceptions of functions and (4) their ability to represent 

different representations of functions. Thus in this study (Sierpinska, 1992), students‟ 

constructions of definition and examples for the concept of function were 

distinguished from the transformation of representations.  

 

Several studies show that learning of the function concept is often facilitated by the 

early consideration of an action and its interpretation as a process (Briedenbach et al, 

1992). According to Sfard (1989), the development of abstract mathematical objects 

was the product of the comprehension of processes; although some researchers 

suggested models that were not strictly sequential (Slavit, 1997, p. 268; Artigue, 

1998); the important notion of procept (process-concept) underlines symbols‟ roles 

(Gray &Tall, 1994). Cotrill (1996) suggested a review of the notation used to 

represent functions and that functions should be presented as both arrows and 

relations between variables that should be used to illustrate the complementary roles 

of functions, such as !x  (read as x factorial) and variable expressions, such as 2x

(implying the second entry of x). He further asserted that while many concepts were 



 
 

best described in functional notation, many calculations were best done in variable 

notation and that while the arrow diagrams provided a good way to introduce and 

work with the concepts early, relations between variable expressions should not be 

neglected because many difficult calculations are more amenable to those techniques.   

 

Dubinsky and Harel (1992) presented an exhaustive review of research papers which 

focus on student conceptions of function, understanding the notion of function, 

algebraic and graphical functions and the use of pedagogical software in 

understanding the functions. They further asserted that functions can be viewed either 

in terms of the relationship between dependent and independent variables, using 

graphs to represent functions or a special kind of correspondence between two sets. 

 

Tall (2004) distinguished different modes of mathematical thinking, through the 

theory of the three worlds in mathematics emphasizing (1) the construction of mental 

representations of concepts that emerged from several theories on concept 

development, such as Sfard‟s (1991) work on encapsulation of processes to objects 

and (2) Piaget‟s abstraction theories (Tall, 2004). He described these worlds as 

hierarchical since there is a development from just perceiving a concept through 

actions to formal comprehension of the concept. He identified the following: (1) the 

„embodied world‟ where individuals use their physical perceptions of the real world to 

perform mental experiments to build mental conceptions of mathematical concepts 

e.g. students‟ explorations of intuitive perceptions of limits of functions, (2) the 

„proceptual world‟, where individuals start with procedural actions on mental 

conceptions from the first world, which by using symbols become encapsulated as 

concepts, and  (3) the „formal world‟ where properties are expressed with formal 

definitions as axioms. Nevetheless Tall (2004) found that concept images change on 

account of outer and inner stimuli, such as discussions, thoughts and problem solving, 

and that there is no static model that can constantly describe students‟ concept 

developments of limits of functions. 



 
 

2.3.2 The action and process views of functions 

 

Dubinsky and Harel, (1992) chose to view functions as actions or process 

conceptions.  Here actions would be referring to manipulations required to obtain the 

value of the function from its definition.  In a study that they conducted with 

undergraduate students, they found that students possess the following restrictions 

about what a function is, (1) manipulation restriction occurs when one is unable to 

perform manipulations or you do not have a function, (2) quantity restriction occurs 

when the inputs and outputs must be numbers and (3) the continuity restriction that a 

graph representing a function must be continuous.  Due to the complex nature of the 

concept of function, they found that the students‟ prior experiences with specific 

situations that involve functions and the level of their abstraction were essential to 

construct the function schema. They further added that students start with an action 

conception of function prior to moving to process and object.  

 

Dubinsky (2010) asserted that an individual requires an explicit mathematical 

expression before she/he considers the presence of a function at an action 

understanding stage. The only transformations that could be performed consisted of 

substitution of numerical values or other expressions for variables in the expression 

and calculating and simplifying. Dubinsky further asserted that it is after such actions 

and reflection on them, that an individual may construct mental structures abstractly 

in the process conception of the function. This led to a situation where the individual 

reverses and transforms operations on functions leading to conception of their 

inverses and composition of two or more functions. The coherence might then lie in 

the understanding that to have a function, there must be a domain, a range set, and a 

means of transforming elements of the domain set to elements of the range set. 

 

 



 
 

2.3.3 The importance of the function concept 

 

Functions occur throughout mathematics and are used in very diverse ways, and much 

has been written on learning and teaching this concept. Cotrill (1996) asserted that 

functions were a central part of the pre-calculus and calculus curriculum and that 

three representations for functions were frequently presented: algebraic, graphic and 

numeric (tabular). While Thompson (1994) presented valid criticism of this 

presentation, there was also evidence that working with students to develop 

connections between these representations had helped students to understand the 

function concepts (Romberg et al, 1992).  

 

Carlson & Jacobs (2000) asserted that functions are fundamental and foundational for 

understanding major concepts in advanced mathematics including calculus. It is 

therefore important for students to understand both the symbolic manipulations and 

procedural techniques of functions to comprehend a mapping of input values to a set 

of output values. Carlson, Jacobs, Coe, Larson, & Hsu (2002) saw a function as an 

entity that accepts input and produces output enabling reasoning about dynamic 

mathematical content and scientific contexts. Carlson et al (2002) suggest that 

algebraic and procedural methods of function should be connected to conceptual 

learning, such that students would be better equipped to apply their algebraic 

techniques appropriately in solving problems and tasks. 

 

Students needed to understand functions as general processes that accept input and 

produce output. It was important that they attend to the changing value of output as 

the independent variable varied through an interval in the domain. Also understanding 

limits and continuity requires a student to make judgments about the value of a 

function on intervals on the graphs. Definitions of derivatives, integral functions, the 

relationships between average and instantaneous rates of change, graphical analog 



 
 

between secant and tangent lines and many other topics in calculus all require 

students to have a clear understanding of the concept of a function.  

 

2.3.4 Functions and properties 

With regard to a property-oriented approach to function concept Kieran (1990), (1) 

noted that (1) a function can be described with reference to its local and global 

properties and (2) the study of properties is fundamental in order to characterize 

classes of functions. A property-oriented approach dealt with learners‟ ability to 

establish connections between different function representations (Monk & 

Nemirowsky, 1994).  Different features of visual and symbolic representations can 

bring learners to different possibilities of the interpretation of functions. According to  

Slavit (1997) learners frequently used either approach based on the consideration of a 

real correspondence (action view- repeatable physical or mental manipulation that 

transforms mental or physical objects to obtain other objects, operational view- 

looking at a given notion as referring to a certain process rather than to an object) or 

property-oriented approaches. Nonetheless it has been observed that there were no 

studies proving whether a property-oriented approach effectively improves the 

development of an object-oriented conception of function (Slavit, 1997). 

 

Functions are used in the comparison of abstract mathematical structures, for example 

in calculus, 4)(sin xy  , is a typical trigonometric function relevant to first year 

differentiation.  Selden and Selden (1994) asserted that the function concept, having 

evolved with mathematics, now plays a central and unifying role. Thus, the 

importance of attaining a broad understanding of the function concept is greater than 

might be apparent from considering the use of functions in a standard beginning 

calculus course.  

Brijlall and Maharaj (2009b) in their analysis of students‟ constructions of the concept 

of continuity of a single-valued function assert that on perceiving functions as 



 
 

mathematical entities, students could manipulate these entities, which were 

understood as a system of operations. They further asserted that verifying and refining 

the construction of the continuity concept required conceptualization of the concept of 

continuity as a meaningful mathematical entity. This conceptualization enabled 

formulation of new mathematical ideas which can be applied in a wider range of 

contexts. Indeed conceptualization of the function concept enables understanding of 

the composition of functions, which can be applied in a wider range of contexts, 

including the chain rule. 

2.4 Students understanding of functions 

 

Naidoo (1996) noted that (1) first year mathematics students studied by rules, (2) the 

students did not enjoy mathematics, (3) the students were de-motivated and (4) 

lecturers tended to teach mechanistically and do standard type solutions to standard 

type problems. Thompson (1994) said that it may be incorrect to focus on graphs, 

expressions or tables as representations of function, rather functions should be seen as 

representations of something that is representable, such as aspects of a specific 

situation from students‟ perspective, with context based functions.  He further claimed 

that if students do not see something remain the same as they move among different 

representations, then they see each representation as learnt in isolation. 

 

Akkoc & Tall (2003) contrasted the mathematical simplicity of the function concept 

that is appreciated by some students with the spectrum of cognitive complication that 

most students have in coping with function definition in its many representations. 

They distinguished categories of students who have a simple grasp of the core 

function applicable to the full range of representations to those who see only 

complicated details in different contexts without any grasp of the conceptual structure. 

Tall (1996) has noted that (1) the function concept is the underlying concept for the 

whole mathematics curriculum, from primary school through to university and (2) that 



 
 

this might only be possible for an expert who is able to see the role of function 

concept throughout the whole of mathematics. However, the story is different for a 

student. A student needs to construct new ideas on previously constructed 

mathematical concepts. For instance, students first meet functions in the form of a 

linear assignment for example 12  xy  where the value of y is found from x  by 

doubling x  and then adding one. By having such experiences, students develop 

conceptual understanding which identify functions as formulas in which values of x  

are entered to calculate the value of y  (Akkoc & Tall, 2005). 

 

 Tall (2004), in his theory of the three worlds emphasized (1) the construction of 

mental representations of concepts that emerged from several theories on concept 

development, such as Sfard‟s (1991) work on encapsulation of processes to objects 

and (2) Piaget‟s abstraction theories (Tall, 2004). Uygur (2010) in his study on 

cognitive development of applying the chain rule through the three worlds of 

mathematics noted that to progress in cognitive development of the chain rule, the 

formulas of the chain rule in the function and the Leibniz notations should be related 

in the symbolic world and that this relation should be embodied. Incorporating the 

theory of the three worlds in mathematics, (Tall, 2004), this study designed a „chain 

rule‟ model highlighted in Figure 2.1. 

 

According to Dubinsky (1991), understanding a concept has to do with relations 

between the mental constructs together with the interconnections that an individual 

uses to understand a concept, and the way in which an individual uses (or fails to use) 

them in problem situations. Dubinsky (1991) indicated that an understanding of 

functions as objects and as processes is necessary for understanding function 

composition beyond evaluating each function at specific points with a formula. For 

example to understand a function such as xxf cos)(  , one needs a process 

conception of associating a real number x with its cosine function value.  



 
 

 

 

 

 

           

 

 

 

  

 

 

 

 

 

Figure 2.1: A „chain rule‟ model  

Calculus is the mathematical foundation for much of the science, mathematics, and 

engineering curriculum at a university. The students‟ starting point for building 

differential calculus is their knowledge of algebra. Thus the algebraic objects which 
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include various functions contained in trigonometric expressions to be differentiated 

in a mathematical activity are the building blocks. Now the student has to process 

these functions and differentiate them one by one to give the required derivative. It is 

therefore appropriate to suggest that this procedure could be described as actions, 

which according to Dubinsky (1991a), are step-by-step procedures related by routines 

external to the mind of the subject.  It is imperative though, that procedures learnt 

with meaning are those linked to conceptual knowledge-concept image and definition 

which is everything associated in somebody‟s mind related to mental pictures, 

properties, mental representation, contexts of applications and even statements 

(Hiebert & Lefevre, 1986). The above implies that understanding students and how 

they learn is a priority and by no means an easy endeavour. 

Tall et al (2000) agreed (1) to the complexity of the function concept and (2) to 

explore a function machine as a cognitive root for it which embodies both its process-

object duality and also its multiple representations.  They thought that the function 

machine already had iconic, visual aspects, embodying both an object-like status and 

also the process aspect from input to output. The usual representations of function 

(table, graph, formula, procedure, verbal formulation, etc) could also be seen as ways 

of representing or calculating the input-output relationship. In developing their theory, 

they noted that the function concept itself is rarely a concept of study. Instead, the 

term “function” usually applies to a special kind of function, e.g. linear, quadratic, 

trigonometric, given by a formula and differentiable functions. They refer to such 

concepts as “function plus”, where the “plus” refers to the relevant additional 

properties which significantly change the nature of a function. (For instance, a linear 

function only requires two distinct pairs of input-output values to determine its 

defining rule uniquely). 

Zandieh (2000) viewed the concept of derivative in three layers; ratio, function and 

limit. However, she viewed the limit and function as process-object pairs. In 

describing the process –object framework, she indicated that the underlying structure 

of any representation of the derivative concept could be seen as a function whose 



 
 

value at any point x is the limit of the ratio of differences
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These three layers can be viewed as dynamic processes and as static objects.  Also, 

each of these layers can be represented graphically, verbally physically and 

symbolically. When a student lacks a structural conception of one of the layers the 

pseudo-structural term is used to describe an object with no internal structure. 

Likwambe & Christiansen, (2008) extended Zandieh‟s framework which only dealt 

with perceived connections between the various components of the concept image of 

the derivative existing for an individual. Likwambe & Christiansen, (2008) included 

the exposure of strong concept images that exist in connections across layers and 

representations of the derivative concept.  They therefore expanded Zandieh (2000) to 

include instrumental understanding where they argue that some learners master rules 

or procedures without any insights or reasons that make the rule work. The 

instrumental understanding serves to explain the ability to use a rule. Thus Likwambe 

& Christiansen, (2008) used Zandieh‟s framework as a starting point and added three 

aspects namely (i) instrumental understanding, (ii) reflection of connections among 

representations and (iii) a non- layer added to reflect situations where the responses 

they got could not be classified in any of Zandieh‟s three layers. 

2.4 Composition of functions 

 

The chain rule is used to find the derivatives of composite functions.  Kaplan (1984) 

referred to it as a function of functions.  A composite function is a function that is 

composed of two or more functions. For the two functions f and g, the composite 

function or the composition of f and g, is defined by ))(())(( xgfxgf  .    

The function )(xg  is substituted for x  into the function )(xf . For example, the 

function 4)93()(  xxh  could be considered as a composition of the functions, 

4)( xxf   and 93)(  xxg . However, it could also be written as a composition



 
 

4)3()( xxf  and 3)(  xxg . Often, a function can be written as a composition of 

several, different combinations of functions. One must be careful to consider the 

domain of the respective functions. 

The chain rule allows us to find the derivative of composite functions. The chain rule 

states that if f and g are differentiable functions and )),(()( xgfxF   then F is 

differentiable and the derivative of F  is given by )()'()('))((')(' xfogxgxgfxF 

In Leibniz notation, if ),(ufy   )(xgu   and y  and u  are differentiable functions, 

then
dx

du

du

dy

dx

dy
. . Kaplan (1984) chose to call this rule, the composition rule since 

the function to be differentiated is a composition of other functions. The same applies 

when a function is a product we use the product rule to get its derivative. The first 

year syllabus deals with a combination of a maximum of five functions that can be 

used in the composition. We can have more than one composition in a problem.  The 

students should now be able to decompose the given function into its elementary 

pieces one step at a time. Kaplan then proposed the following table of derivatives with 

all possible compositions of functions. All of the formulas in the table were derived 

from the general chain rule with f(x) as one of the main functions, 

xxxex xn cos;sin;ln;;  and an arbitrary function g(x). 

Power rule 
)]([).(.)]([ 1 xg

dx

d
xgnxg

dx

d nn   

Exponential rule 
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d
ee

dx

d xgxg   

Natural Logarithm rule 
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1
)]([ln xg
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xg
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d
  

Sine rule 
)]([).(cos)]([sin xg

dx

d
xgxg

dx

d
  

Cosine rule 
)]([).(sin)]([cos xg

dx

d
xgxg

dx

d
  

Table 2.1:    Rules for differentiation of functions 



 
 

The chain rule is of important use to other areas of calculus. These include: (1) 

Finding the marginal Physical Productivity Function of the workers in Business 

economics (
dx

dP
) for ,10)23(10 3  xP  (2) Revenue changing when given a 

revenue function like ,520)2(25)( 2  xxxR (3) Higher order differentiation 

used to calculate demand, cost and profit in business and (4) Calculations of rates on 

physical body relationships including body weight and surface area, cell growth, 

blood flow and other physical quantities. It is important for the students at this stage 

to know which formula to use and how to use it without computing the derivatives of 

the component functions. They must be able to identify whether a constant times a 

function, sum of functions, product, quotient, composition or piecewise functions are 

given in the problem. The implication here is that they should be well versed with 

function algebra. 

2.6 Misconceptions about the chain rule 

 

Oehrtman (2002) said that learning new ideas does not necessarily obliterate old ones, 

so students may often retain early misconceptions alongside more acceptable, 

subsequently developed interpretations. This relates to Piaget‟s concept of 

accommodation and assimilation.  Accommodation is Piaget‟s term for modifying 

existing concepts or adoption of new ways of thinking in order to encompass new 

information, (Mwamwenda, 1989).    Assimilation is defined as the process of 

incorporating new information to fit existing categories or ways of thinking. Thus, 

when students present incorrect conceptualization of the chain rule for example, they 

do not necessarily lack the correct one. Rather the issue is often the selection of which 

idea (or combination of ideas) to retrieve. The chain rule is one of the hardest ideas to 

convey to students in calculus (Gordon, 2005).  It is difficult to motivate, such that 

most students do not really understand where it comes from.  It is difficult to express 



 
 

in symbols even after it is developed, and it is awkward to put into words, so that 

many students cannot remember it, and so cannot apply it correctly.  

We recall that Swanson (2006) asserted that the complexity of the chain rule deserves 

exploration because students struggle to understand it and because of its importance in 

the calculus curriculum as indicated previously on page six. Despite the importance of 

the chain rule in differential calculus and its difficulty for students, the chain rule has 

been scarcely studied in mathematics educational research (Clark et al, 1997; Gordon, 

2005; Uygur & Ozdas, 2007; Webster, 1978).  Students‟ difficulties included the 

inability to apply the chain rule to functions and also with composing and 

decomposing functions (Clark et al, 1997; Cottrill, 1999, Hassani, 1998). It cannot be 

disputed that even at the University of Technology students experience most problems 

in differential calculus. 

Previous research emphasized the importance of function composition in the 

understanding of the chain rule, but the ability to say more than that has been elusive 

(Clark et al, 1997; Cottrill, 1999; Hassani, 1998).  Hassani, (1998) in his research into 

the nature of students' understanding of the concepts underlying calculus has shown 

significant gaps between their conceptual understanding of the major ideas of calculus 

and their ability to perform procedures based on these ideas. The results showed that 

first-year undergraduate calculus students' ability to explain or apply the chain rule is 

significantly related to their algebraic manipulative skills and their general knowledge 

of function concepts and function composition.  

This exploratory study was therefore designed to focus on how students understand 

function composition as seen through the chain rule problems using functions that are 

familiar, somewhat familiar and unfamiliar to them.  Examples of familiar functions 

include polynomials and trigonometric functions. Exponential and logarithmic 

functions are somewhat familiar to students because they have experienced their use 

outside the calculus paradigm and they have had no direct experience yet in calculus.  

Unfamiliar ones are the compositional functions, for example,  )tan(ln 2xy  .  



 
 

The inherent difficulty of the derivative concept experienced by many students 

(Uygur & Ozdas, 2005) and the students‟ difficulties that increase and get worse (Tall 

1993) becomes clear, especially when the function is a composite function. Students 

experience problems in with the use of the Leibniz notation,
dx

dy
, whether it is a 

fraction or a single indivisible symbol. Although this notation is indispensable in the 

calculus, it remains as a serious misconception. Tall further associates this difficulty 

regarding use of the chain rule with the dilemma of whether the du  can be cancelled 

in the equation: 
dx

du

du

dy

dx

dy
. .  A small amount of evidence supporting the hypothesis 

which states that, the understanding of composition of functions is the key to 

understanding of the chain rule emerged in the study by Cottrill (1999).  His study 

investigated the correlation between a student‟s understanding of the composition of 

functions and understanding the chain rule.  

2.7 Designing classroom instruction 

 

Burke, Erickson, Lott & Obert (2001), assert that there is growing research support 

for designing classroom instruction that focuses on developing deep knowledge about 

mathematics procedures. When instruction is focused only on skillful execution, 

students develop automated procedural knowledge that is not strongly connected to 

any conceptual knowledge network (Star, 2000). This instruction resulted in 

procedures not executed “intelligently” and systematically.  Understanding could be 

achieved, however, if students were given opportunities to develop a framework for 

understanding appropriate relationships, extended and applied what they knew, 

reflected on their experiences, and made mathematical knowledge their own 

(Carpenter & Lehrer, 1999). They further asserted that (1) when mathematical 

knowledge is understood, that knowledge is more easily remembered and more 

readily applied in a variety of situations (Hiebert & Carpenter, 1992; Kieran, 1992), 

(2) when a unit of knowledge is part of a well-connected network of mathematical 



 
 

understandings, parts of the network can facilitate recall (and even recreation) of other 

parts and (3) when knowledge is understood it becomes easier to incorporate new 

knowledge into existing networks, so that current understanding facilitates future 

learning (Hiebert & Carpenter, 1992). It is therefore important to develop teaching 

methods that help students develop mathematical understanding. 

 

When students deal with functions, they need to understand relationships and 

mathematical connections between them as composite functions, and this knowledge 

can be easily incorporated into future learning of the chain rule.  Kendal (2001) used 

Computer Algebra Systems software to (1) identify teachers‟ privileged 

characteristics and (2) facilitated analysis of learning in relation to the teaching of 

derivatives. He found that a conceptual teaching method and student-centered style 

supported the development of the understanding of the concept of derivatives. Felder 

(1996) argued that it is good for educators to be aware of the importance of learning 

styles to encourage a more flexible and empowering approach to diverse learning 

contexts.  Studies by Claxton & Murrell (1987) suggested, that (1) helping the 

students to expand their repertoire of learning ways, assists students to take more 

responsibility for their own learning and (2) they become actively involved in the 

learning process and hopefully thereby build a positive attitude towards lifelong 

learning.  

Vygotsky (1986) noted that the possibilities of genuine education depend both on the 

knowledge and experience already existing within the student (level of development) 

as well as on the student‟s potential to learn.  Engelbregcht, Harding & Potgieter 

(2010) interpreted this as approaching mathematics from a conceptual system rather 

than as a collection of discrete procedures.  Students used conceptual understanding 

of mathematics when they identified and applied principles, knew and applied facts 

and definitions and compared and contrasted related concepts. 



 
 

Clark, et al (1997) who studied students‟ understanding of the chain rule and its 

applications concluded that the difficulties with the chain rule for a large number of 

students could be attributed to student difficulties in dealing with the composition and 

decomposition of functions. This hypothesis was confirmed by Cotrill (1999) in his 

study of correlation between a student‟s understanding of composition of functions 

and understanding the chain rule; that understanding of the composition of functions 

is the key to understanding the chain rule. Both studies conducted in an American 

context and using computer programming to help students to make relevant mental 

constructs indicated a need for further research. This study is further research on how 

students understand the concept of the chain rule.  

The chain rule is included in several studies in mathematics education literature. 

Some of them are about teaching of the chain rule (Lutzer, 2003; Mathews, 1989; 

Thoo 1995; Uygur & Ozdas, 2007) while others are on understanding the rule. Uygur 

(2010) who studied the cognitive development of applying the chain rule through the 

three worlds of mathematics suggested that the instructional way of presenting the 

chain rule changed focus to encourage students to obtain the chain rule with some 

life-related problem situations. In contrast, verifying the chain rule by using either or 

both graphing software or graphics calculator and an algebraic approach was 

considered for developing teaching and learning strategies of the chain rule in the 

mathematics teaching program of South Australia (SACE Board of South Australia, 

2009). Uygur (2010) further noted that as much as there was an absence of studies on 

structural development of the chain rule, there was also a need for a study on students' 

applying the chain rule to second order derivatives and to two-variable composite 

functions. It was noted also, that the prerequisite knowledge of composite function is 

another significant notion for applying the chain rule by raising awareness of the 

relation among various cases. Uygur inferred that variable notion is another 

significant prerequisite knowledge in the embodied world of the cognitive 

development of the chain rule. Novotna and Hoch (2008) had indicated the 

importance of structural knowledge in applying the chain rule in the cognitive 



 
 

development of mathematical concepts. Students‟ application of the chain rule was 

analyzed within Tall‟s (2007) framework containing three levels of understanding 

which considered symbolic development. Their study addressed the structural 

development of the chain rule. On the contrary this study focused on the discussion of 

the types of structures constructed by students when learning the chain rule with the 

view to clarifying their understanding: (i) of the composition of function and (ii) of 

the derivative. 

Anderson et al (2001) suggested a refined form of Bloom‟s taxonomy where he 

described some cognitive processes that are likely to occur in a mathematics 

classroom. These processes were categorized by Anderson et al (2001) as: (1) 

Remember, (2) understand, (3) Apply, (4) Analyze, (5) Evaluate and (6) Create. He 

further outlines the category of remember as having two sub-categories, namely, 

recognising and recalling. The category of understand is about processes of 

constructing meaning from instructional messages, including verbal, written and 

graphical representations. There are seven subcategories attached to understand, 

namely, interpreting, exemplifying, classifying, summarizing, inferring comparing 

and explaining. The category of apply concerns the processes of carrying out or using 

a procedure in a given situation with subcategories, executing and implementing. The 

category of analyze deals with the processes of breaking down material into its 

constituent parts and determining how the parts relate to each other and to an overall 

structure and purpose. It has three subcategories, namely, differentiating, organising 

and attributing. The category of evaluate concerns the processes of making 

judgements based on criteria and standards, where checking and critiquing are 

involved. Lastly the category creates deals with putting elements together to form a 

coherent or functional whole; re-organising elements into a new pattern or structure 

with subcategories, generate, planning and producing.  Remembering encompasses 

retention of knowledge whilst the other categories mentioned are related to furthering 

and transferring knowledge.  



 
 

Maharaj (2010) asserted that the main use of an APOS analysis is to point to possible 

pedagogic strategies. This is true even though explanations given by APOS are 

limited to descriptions of the thinking which an individual might be capable of 

making. This does not explain what is happening in an individual‟s mind at a 

particular instance. There is also no guarantee that an individual possessing a certain 

mental structure will access it and apply it when necessary in a given situation.  

Classroom instruction should therefore be designed so as to foster the students‟ 

development of mental structures called for by the APOS analysis of the chain rule 

suggested in the chapter three. The pedagogical approach based on APOS theory and 

the hypothesis on learning and teaching, is a repeated cycle consisting of three 

components: (1) Activities, (2) Classroom discussions and (3) Exercises. The 

activities, discussions and exercises in this study followed after a formal lecture 

instruction given in the three sequential lessons.  

2.8 Learning mathematics 

 

Various frameworks on how students learn mathematics have been suggested. 

Conceptual and procedural learning of mathematics have been addressed by for 

example, Piaget cited in (Baker and Czarnocha, 2002).  Engelbrecht, Harding and 

Potgieter, (2010) argued that in the learning process, the process of understanding is 

an ongoing process that converges to full understanding but does not reach the limit of 

full understanding. He further asserts that the dynamic process of understanding new 

mathematics takes place in layers in which with every layer the student understands 

deeper. He claims that the students have got to expose themselves repeatedly to gain 

deeper understanding of a particular concept.  He sees mathematics learning as 

consisting of two processes namely (1) first time exposure and (2) consolidation 

process. He believes that doing more problems of a certain type brings repeated 

exposure and deeper understanding. This study defines learning in mathematics 

according to APOS proposed by Dubinsky (1991).  These repeated exposures would 



 
 

be necessary for students operating in the action stage regarding understanding the 

chain rule concept. 

2.9 Recent South African studies using APOS 

 

To come up with the theoretical framework, I was motivated by literature that used 

APOS in studies in South Africa. Below I discuss some of those studies. 

Brijlall and Maharaj (2009a) used the APOS theory in a study where they investigated 

fourth-year undergraduate teacher trainee students‟ understanding of the two 

fundamental concepts monotonicity and boundedness of infinite real sequences. This 

was research done at the Edgewood Campus of the University of KwaZulu Natal in 

South Africa. They designed worksheets based on examples and non-examples 

approach to foster collaborative learning. They (Brijlall and Maharaj) were interested 

to find out how the implementation of a structured worksheet design using APOS 

theory, to promote collaborative learning, influence the construction of concepts in 

real analysis.  

An examples and non-examples approach discussed by Cangelosi (1996) was used in 

the structured design. They focused on (1) sorting, (2) reflecting and explaining, (3) 

generalizing, (4) verifying and refining, and (5) extension of generalization. Their 

method of data collection involved a few stages: (1) design of worksheets, (2) 

facilitation of group-work, (3) capturing of written responses and (4) interviews. 

Worksheets were designed to allow students to talk about their thoughts and support 

each other in constructing new mathematical knowledge. The worksheets were 

designed in accordance with ideas postulated for a guided problem solving linear 

model suggested by the work of Cangelosi (1996). The model had three levels 

captured in Figure 2.2. (1) inductive reasoning, (conceptual level), (2) inductive and 

deductive reasoning (simple knowledge and knowledge of a process level) and (3) 

deductive reasoning (application level). 



 
 

 

 

 

 

 

 

 

 

Figure 2.2: Guided problem-solving linear model 

In conclusion, Brijlall & Maharaj (2009b) found that: (1) the structured worksheets 

encouraged group work and fostered an environment conducive to reflective 

abstraction, (2) the students demonstrated the ability to apply symbols, language, and 

mental images to construct internal processes as a way of making sense of the 

concepts of monotonocity and boundedness of sequences, (3) the students could apply 

actions on objects (sequences) which were interiorized into a system of operations, 

and (4) the conceptualization of the concept of boundedness of sequences and 

monotonocity enabled the formulation of new schema which could be applied in 

various contexts. 

Engelbrecht, Harding & Potgieter (2010) investigated students‟ performance and 

confidence in the conceptual and procedural skills of first year calculus students. They 

asserted that conceptual understanding consisted of those relationships constructed 

internally and connected to already existing ideas. In their discussion of comparisons 
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of the relationship between procedural and conceptual thinking, they claim that 

students‟ conceptual knowledge will necessarily increase procedural proficiency. 

Reference is made in this study to Andersons (1995)‟s model of learning. Anderson 

asserted that, (1) learning begins with actions existing on conceptual knowledge and 

(2) the student begins to internalize the procedures involved, leaving aside the 

conceptual knowledge from which the procedures arose. Byrnes and Wasik (1991) 

cited in this study noted that for Piaget, after the student has gained proficiency in 

procedural knowledge, a process of reflection begins resulting in acquisition of new 

conceptual knowledge. Baker and Czarnocha (2002) argued that in the Piaget model 

procedural efficiency is a requirement for meta-cognition and conceptual thought. 

This was contrary to what culminated out in their study. They found that conceptual 

thought is independent of an individual‟s ability to apply his or her procedural 

knowledge, supporting Vygotsky (1986)‟s view that the development can proceed 

through reflection upon existing conceptual knowledge independently of the 

reflection due to repeated actions.    

Engelbrecht et al (2010) noted that Dubinsky recognized the distinction of conceptual 

knowledge to procedural proficiency and introduced the idea of processes being 

encapsulated as objects. They describe the features of APOS model as representing an 

increasing level of learning. They define a schema as when objects and processes 

from more than one area can be combined in more than one way. Their study 

indicated that students performed better in conceptual problems than procedural 

problems. The general opinion that „doing‟ was easier than „thinking‟ was disputed. 

They emphasized the thought that the teaching approach must be directed to 

cultivating conceptual thinking.    

Brijlall and Maharajh (2010) explored APOS to develop insight into pre-service 

mathematics students‟ mathematical reasoning about aspects of the derivative 

concept. The study tried to address the question: how is the concept of continuity 

understood by pre-service mathematics students or does the continuity concept 

becomes for each of them a complete mathematical object? Ideas of student 



 
 

centeredness, collaborative learning and self discovery were used to strengthen the 

qualitative nature of the study. APOS theory guided the study in finding whether pre-

service mathematics students use different interpretations of the concept of continuity 

correctly and effectively in their reasoning. APOS was used specifically to establish 

whether these students were able to construct a coherent view of continuity or if they 

presented different separate interpretations as pieces of knowledge. 

APOS theory offered direction and became the basis for generalization (Brijlall & 

Maharajh, 2010) and provided the researchers with an opportunity to develop the 

genetic decomposition of the continuity concept.  Pedagogy based on collaborative 

instructional design worksheets helped the students to make mental constructs. They 

further assert that the important aspect in preparing student teachers for mathematics 

education is to ensure that the students have the necessary content knowledge of the 

derivative concept. They also found that the instructional treatment and methods used 

in their study had a positive influence on the student teachers‟ derivative schema 

development. This echoed what Maharajh, Brijlall & Govender (2008, p104) noted 

that‟ the explicit pedagogic strategy ensured that most student teachers realized that to 

make sense of the visual tasks presented on the design worksheets, they needed to 

„dissect‟ the tasks and bring the previously leant ideas in small „packets‟ to find a 

solution. Results in their study indicated that the participants had good potential for 

learning the concept of continuity when they are allowed to collaborate in small 

groups using their tools to think with. Brijlall and Maharajh (2010) claim that the 

structured worksheets encouraged group work which fostered an environment 

conducive to reflective abstractions.  

Bowie (2000) analyzed students‟ errors through the lens of existing theories in order 

to begin to build a picture of the processes students use to build knowledge. Her study 

explored the errors that students made in the special mathematics course at the 

University of Cape Town in 1996. She also claimed a duality of mathematical 

concepts as both „processes‟ and „objects‟ was central to the work on advanced 

mathematical thinking over the past two decades ( Dubinsky (1991a; Harel & Kaput, 



 
 

1991; Sfard, 1987; Dubinsky & Harel, 1992; Tall, 1991). She agreed that the various 

proponents of these theories differ in their details of approach, but claims that their 

theoretical perspective is similar. 

She then offered an outline of Sfard‟s reification theory and Dubinsky‟s APOS 

theory. These are discussed in detail in the following chapter under construction in 

reflective abstraction. „The learning theories of Sfard and Dubinsky highlight the 

importance of both an operational and structural understanding of mathematical 

concepts, arguing that encapsulation of processes into objects is an important step in 

being able to build further mathematical knowledge.‟ She thus argued that the 

students‟ errors in algebra demonstrate a pseudo-structural approach to algebra. The 

modes of construction employed by the students resonated with the five kinds of 

construction which explain how new objects, processes and schemas can be built from 

existing ones, as outlined by Dubinsky (1991a).  

Bowie, (2000) define pseudo-objects as the algebraic „objects‟ that students employ as 

their building blocks that seem totally arbitrary. She then associated these with 

actions, which in the sense that Dubinsky uses them are step-by-step procedures with 

the steps only related by routines and not by any relationships that exist in the mind of 

the subject.  She then claims that an action that works in a number of cases is 

rehearsed into a rule and many correct rules emerge from the process. A rule is 

applied as a mechanistic manipulation of pseudo-objects according to Bowie (2000), 

and differs from a process, in that the latter is given meaning through a familiarity 

with the objects on which it is performed. She also found that concatenation, reversal 

and overgeneralization were three strategies that students used to reduce the number 

of rules required. Concatenation represents the grouping of concepts on the basis of 

surface level cues, (p10). In conclusion, she suggested that (1) learning material that 

fosters the development of an object conception of a mathematical concept must be 

continually developed, and (2) a learning environment that encourages students to 

persevere with the intellectual effort that is required must be provided.  



 
 

APOS theory used in a study by Maharaj (2010) culminated in a proposed genetic 

decomposition of students‟ understanding of the limit concept in calculus. His study 

focused on: (1) how the teaching of the limit of functions should be approached, and 

(2) the insight that an APOS analysis of students‟ understanding of the limit of a 

function would reveal. In addition to the assumption made by Asiala (2004) cited and 

quoted in Jojo et al (2011, p338), Maharaj (2010) noted the hypothesis on learning, 

that an individual does not learn mathematical concepts directly. This is drawn from 

Piaget (1964) who asserted that the individual applies mental structures to make sense 

of a concept. Maharaj claims that learning is facilitated if the individual possesses 

mental structures appropriate for a given mathematical concept, and that if the 

appropriate mental constructs are absent, learning the concept becomes almost 

impossible. 

Maharaj (2010) detected the following genetic decomposition relevant to both the 

limit of a function concept and types of limit problems encountered by participants in 

his study. At an action level a student confronted with the limit of a function, 

),(lim xfax can do little than substitute values of x close to a, for the variable in the 

expression f(x) and manipulate it, and may or may not see the pattern emerging.  A 

process understanding of the function ),(lim xfax ; emerges as a student constructs a 

mental process for values of x close to a and thinks in terms of inputs, possibly 

unspecified and transformations of those inputs to produce outputs. At the object 

level, the student sees the string as a totality and can perform mental or written actions 

on one-sided limits of given functions, the process understanding is encapsulated and 

converted to an object, ),(lim xfax which may or may not exist. At the schema level, 

the actions, processes, and objects are organized and linked into a coherent 

framework. The framework includes possible techniques for evaluating ),(lim xfax

where a, could be or -∞. 

Data were analyzed based on APOS using the above genetic decomposition. The 

findings in the study included the following: (1) the limit of a function concept is one 



 
 

that students found difficult to understand suggesting why many students could not 

produce appropriate mental constructions suitable for the process, object or schema 

levels, and (2) the teaching design needs to be given more time. The teaching process 

according to Maharaj (2010) should focus on: (1) verbal and graphical approaches to 

finding limits of functions, (including split-functions in symbolic form) (2) the 

unpacking of structures given in symbolic form, and (3) modeling possible schema.  

All these studies indicated that more work needed to be done in exploring APOS as a 

theory relevant to analyzing mental constructions that could be made by students in 

learning various concepts in calculus. Also pedagogic methods are emphasized in 

each study as the main focus in prompting the relevant mental constructs. Many other 

studies done exploring APOS theory in the understanding of different concepts have 

been read. No study focused on analysis of the understanding of mental constructions 

made when learning the chain rule in calculus. This study seeks to address that gap.   

2.10   Implications of the literature review for this research 

 

The concept of function is important to mathematics and not well understood by our 

students. These studies and those about which they report were searched for evidence 

of explorations of composition of functions and for discussions of the chain rule. 

While many of the studies of students‟ understanding of function relate to this study, 

little was found (Cotrill 1996; Clark et al, 1997 and Horvath, 2007); regarding 

students‟ understanding of composition of functions explicitly, and no studies were 

found on their understanding of the chain rule in the Southern African countries.  

It is evident from the above discussion that, many well- known functions have simple 

expressions for their derivatives while composite functions require the use of the 

chain rule for differentiation. Functions having fairly complicated expressions have 

explicit formulas for derivatives. It was the development of formulas and rules such as 



 
 

the chain rule enabling mathematicians to calculate derivative that motivated the use 

of the name calculus for this mathematical discipline.  

2.11 Conclusion 

In this chapter the researcher provided an overview of literature on functions, their 

properties, understanding of functions as concepts and the importance of instructional 

design in general. Following this discussion, it became clear that for current 

understanding to facilitate future learning, new knowledge should be incorporated 

into existing related networks. Key aspects relating to composition of functions have 

been explored. The chapter concluded by reflecting on the implication of the literature 

reviewed for this study. Chapter three focuses on the theoretical framework informing 

this study. 

 

 

 

 

 

 

 



 
 

                                   CHAPTER 3 

THEORETICAL FRAMEWORK 

3.1  Introduction 

 

In this chapter the framework used in this study that was developed through attempts 

to understand the ideas of Piaget concerning reflective abstraction, is discussed. In the 

previous chapter, literature informing this research was introduced and discussed.  

This chapter begins with an initial theoretical analysis focussing on: (a) what it means 

to understand a concept, (b) how understanding of a concept can be constructed by a 

learner, (c) a description of schema, and (d) the statement of the initial genetic 

decomposition.   

 A description of the specific framework for research and its components, according 

to which this study has been conducted is outlined together with previous research 

conducted using the APOS theory. Next, the researcher discusses the concept of 

reflective abstraction as proposed by Dubinsky (1991a) as a powerful tool in the study 

of advanced mathematical thinking. A description of the heart of the theoretical 

framework used in this study, the APOS theory, is presented together with an outline 

of previous research conducted using the APOS theory. Finally, because the APOS 

theory and Piaget‟s triad mechanism provided the theoretical framework for the 

presentation and analysis of data in chapters five, six and seven respectively, a 

detailed account of how APOS theory has emerged in this study is outlined. 

3.2  Mathematical knowledge and its construction 

 

Piaget‟s work concentrated on the development of mathematics knowledge with 

children in early ages, and rarely going beyond adolescence. Also, pedagogical 

strategies are almost absent from the totality of Piaget‟s work (Asiala et al, 2004). He 



 
 

suggested though that the same approach can be extended to more advanced topics in 

higher mathematics and beyond. Dubinsky (1991) suggested that usually it becomes 

necessary that the genetic decomposition in the original theoretical analysis is revised 

as a result of empirical data. He therefore believes that the incorporation of the triad 

concept of Piaget and Garcia (1989) led to better understanding of the construction of 

schema. The understanding of schemas as described in reflective abstractions was not 

adequate to provide a satisfactory explanation of the collected data on the genetic 

decomposition of the chain rule. This is revealed by (Clark et al, 1997), who report on 

students‟ understanding of the chain rule; Cottrill, (1999) on the chain rule and its 

relation to composition of functions and Baker, et al (submitted), on the relations 

between the graph of a function and properties of its first and second derivatives. The 

elaboration of a deeper understanding of schemas and better explanations of the data 

was explained by the introduction of the triad.  

At the University of Technology, students do first year mathematics over a period of 

six months. This comes after spending a year or a semester being prepared in the 

foundation course. This allows more time for developing concepts and the 

prerequisite knowledge required for first year mathematics. This study also considers 

the fact that students are not taught the concepts of limits and continuity in full, which 

to me forms the basis of calculus.  Also emphasis is placed on the use of standard 

formulae for derivatives without deriving them due to time constraints, and thus the 

notion of limits recede into the background. The researcher felt that the emphasis on 

exploring the use of chain rule with trigonometric functions and verbal 

representations of calculus concepts can be fostered through reflective abstractions 

following Dubinsky‟s (1991b) model of conceptual understanding. He believes that 

the concept of reflective abstraction that was introduced by Piaget (Berth & Piaget, 

1966) can be a powerful tool to describe the development of the study of advanced 

mathematical thinking and that it could be used to analyze any mathematical 

knowledge applicable to higher education. This study has therefore adopted the APOS 

approach (Dubinky, 1991a), based on intuitive appeal as there has been little 



 
 

empirical research done documenting its impact on students‟ conceptual 

understanding of the chain rule in the African continent. Also, APOS has been used in 

research focusing on understanding of various mathematical concepts, (Pascual, 2004; 

Sfard, 1991; Tall, 1994; Dubinsky, 1991a; De Vries, 2001; Gray & Tall, 2002; Clark 

et al, 1997). 

 The argument is that this theoretical perspective has been very useful in attempting to 

understand students‟ learning of a broad range of topics in calculus, abstract algebra, 

statistics, discrete mathematics, and other areas of undergraduate mathematics 

(Dubinsky et al, 1991). Tall, (1999) agreed that APOS could be used to explain topics 

in calculus but would fall short in describing how students constructed concepts in 

Geometry. He argued that the sequence is not actions-process-objects-schema, but 

rather that geometry starts as an object based and in such a case there are processes 

involved  (e.g. drawing, measuring, construction), and that those processes focus on 

gaining knowledge about the objects. The researcher is of the opinion that this view 

has to be explored in empirical research before coming to such conclusions. She 

further agrees though that the growth of knowledge in algebra and as such calculus 

begins with empirical abstraction and hence follows an APOS sequence. Tall (1999)  

also asserted that APOS theory had already shown its strength in designing 

undergraduate mathematical curricula but questions its universal applicability in the 

formal construction of knowledge from definitions to deductions in advanced 

mathematical thinking. He agreed though that APOS formed the basis of the only 

curriculum project that had a coherent cognitive perspective in the calculus reform 

and offers a major contribution to the analysis of various topics in advanced 

mathematics.  The researcher used APOS to describe the observations of student 

behaviors when learning chain rule and to develop instruction to help students make 

the relevant mental constructions in developing the chain rule schema. She believes 

that it can provide a theoretical basis that supports and contributes to the 

understanding of how the students think and can suggest explanations of the difficulty 

experienced by students with mathematical concepts, including the chain rule. 



 
 

3.3  Research Framework 

 

This study was conducted according to a specific framework for research and 

curriculum development in advanced mathematics education, which guided the 

systematic enquiry of how students acquire mathematical knowledge and what 

instructional interventions contribute to student learning. The framework consists of 

three components: theoretical analysis, instructional treatment, and observations and 

assessment of student learning as proposed by Asiala et al (2004) and illustrated in 

Figure 3.1. 

 

 

 

 

 

  

 

 Figure 3.1: Theoretical Framework for Research 

3.3.1  Theoretical analysis 

 

The first step in this approach was to conduct an initial theoretical analysis of the 

chain rule concept relative to specific mental constructions that a learner made in 
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order to develop his understanding of the chain rule.  The result of this analysis was a 

model of change called genetic decomposition of the concept in this case, the chain 

rule, (Clark et al, 1997).  The genetic decomposition defined what it means to 

understand the chain rule concept and how that understanding can be constructed by 

the student.  This led to a design of instructional treatment that focused directly on 

trying to get students to make constructions in the initial genetic decomposition of the 

chain rule. The last step engaged implementation of instruction leading to collection 

of data, which was analysed in the context of the theoretical perspective. More 

complete description of the research framework used in this study can be found in 

Asiala, Brown, De Vries, Dubinsky, Mathews, and Thomas (2004). Hence we define 

the following APOS concepts for clear understanding of the genetic decomposition of 

the chain rule.   

*Actions- This refers to a repeatable physical or mental manipulation that transforms 

objects by reacting to external cues that give precise details on what steps to take. For 

example, for most students who interpret the idea of a function as contained in the 

„formula‟ Dubinsky (1991a) for computing values, is restricted to the action concept 

of function. 

*Process- When the action is repeated and the student reflects upon it, an action that 

takes place entirely in the mind is internal, and may be interiorised as the process.  

With the process conception of a function, an individual can link two or more 

processes to construct a composition, or reverse the process to obtain inverse 

functions. It is expected that students attempting the chain rule at least work at this 

level. 

*Objects- This process is perceived as an entity upon which actions and processes 

can be made. The student here can reflect on operations applied to a particular 

process, becomes aware of the process as a totality, realizes those transformations and 

is able to construct such transformations. We say that the process has been 

encapsulated to an object. 



 
 

*Schema- This is a collection of cognitive objects, their connections and internal 

processes for manipulating these processes.  Schemas themselves can be treated as 

objects and included in the organization of higher order schemas. Asiala et al, (2004) 

asserts that an individual‟s schema is the totality of knowledge which for him is 

connected consciously or unconsciously to a particular mathematical topic, for 

example an individual may have a function schema, derivative schema, or a chain rule 

schema.   

3.3.1.1  Understanding a mathematical concept 

 

Hiebert & Carpenter (1992) asserted that learning mathematics with understanding 

involves making connections among ideas, and that those connections are considered 

to facilitate the transfer of prior-knowledge to novel situations.  With regard to the 

psychological approach to learning, the constructivist idea is that understanding is a 

continuing activity of individuals organizing their own knowledge structures, a 

dynamic process rather than an acquisition of categories of knowing (Confrey, 1994; 

Gagnon & Collay, 2001; Pirie & Kieren, 1994). According to Bransford, Brown & 

Cocking, (2000), a mathematical idea or procedure or fact is understood if it is part of 

an internal network. More specifically, the mathematics is understood if its mental 

representation is part of a network of representations. They further asserted that the 

degree of understanding is determined by the number and the strength of the 

connections made with previously acquired mathematics. Thus a mathematical idea, 

procedure, or fact is understood thoroughly if it is linked to existing networks with 

stronger or more numerous connections. It is therefore assumed that well-connected 

and conceptually grounded ideas enable their holders to both remember them and see 

them as part of a larger whole within which each part shares reciprocal relationships 

with other parts, (Pirie & Kieren, 1994). 

Wiggins, (1993) defined understanding as something different that emerges when we 

are required to reflect upon achievement, in verifying or criticizing, re-thinking and 



 
 

re-learning what we know. In this process we question the assumptions upon which 

prior learning was based. The new definitions of understanding a mathematical 

concept involve knowing facts and concepts and how they connect and this should be 

related to knowing how and when to use skills and strategies. Wiggins & McTighe 

(1998) further identified several inter-related aspects of understanding including (1) 

explanation, (2) interpretation, (3) contextual applications, (4) perspective, (5) 

empathy and (6) self-knowledge. Not all of these apply to each learning situation and 

they are not hierarchical or mutually exclusive. Students who can explain their ideas 

justify understanding by making connections and inferences. Those who apply 

knowledge demonstrate their ability to use what they have learnt in complex 

situations. Lastly, those who show self-knowledge recognize the limits of their 

understanding.  

Conceptual knowledge as defined by Hapasaalo (2004) denotes knowledge of and a 

skillful “drive” along particular networks, the elements of which can be concepts, 

rules (algorithms, procedures, etc.), and even problems (a solved problem may 

introduce a new concept or rule) given in various representation forms. Dubinsky 

(1991) asserted that understanding a mathematical concept begins with manipulating 

previously constructed mental or physical objects to form actions; actions are 

interiorised to form processes which are then encapsulated to form objects.  Those 

objects could be de-encapsulated back to the processes from which they are formed, 

which would be finally organized in schemas.  

Understanding of the concept of the chain rule was explored in relation to the 

development of schema relevant to it. Students were provided with activities in class 

that were designed to induce them to make the suitable mental constructions as 

suggested by the initial genetic decomposition. The tasks used in this study helped 

students gain experience in constructing actions corresponding to the chain rule. 

This experience was built upon in subsequent activities where students were asked to 

reconstruct familiar actions as general processes. Lastly the students were provided 



 
 

with complicated activities where they needed to organize a variety of previously 

constructed objects, like functions and derivatives of composition of functions, into a 

schema applied to chain rule problem situations.  More specifically the researcher 

examined students‟ attempts to answer the tasks given in class, their tests, and 

exercises with regard to their understanding of functions, composition of functions 

and the chain rule. 

 Although this was in the form of pencil and paper work, of importance to the 

researcher was the procedure used to answer the questions and not whether answers 

were correct or not. In addition to the tasks, interviews were conducted to substantiate 

the level of student understanding of the concept.  These interviews were more 

valuable than the written assessment instruments because one student could have 

displayed correct written work while the transcript revealed little understanding and 

vice versa. A full range of understanding was obtained by selecting students who gave 

correct, partially correct and incorrect responses on the written work. Some students 

showed evidence of constructing very little while others constructed bits and pieces 

and yet others seemed to have made all the constructions proposed in the genetic 

decomposition.  The latter showed evidence of understanding the concept and of 

possessing a schema for the chain rule.  

3.3.1.2 Schema  

 

A schema is a more or less logical connected collection of objects and processes 

(Dubinsky, 1991).  Each individual may have a number of different schemas in order 

to deal with, understand, organize or make sense of a perceived problem situation 

using her knowledge of an individual concept in mathematics. A schema for a certain 

mathematical concept is an individual‟s collection of actions, processes, objects and 

other schemas which are linked by some general principles to form a framework in 

the individual‟s mind that may be brought to bear upon a problem situation involving 

that concept (Dubinsky & Mc Donald, 2000).  Asiala et al, (2004) asserted that an 



 
 

individual‟s schema is the totality of knowledge which for her is connected 

consciously or unconsciously to a particular mathematical topic, for example an 

individual may have a function schema, derivative schema, chain rule schema.  Those 

schemas were interrelated in a large complex organization within the individual‟s 

mind.  

They further asserted that an individual‟s schema for a concept includes his/her 

version of the concept described by the genetic decomposition, as well as other 

concepts that are perceived to be linked to the concept in the concept of problem 

situation.  A genetic decomposition representing one reasonable way that students 

might use to construct a particular concept is formed by isolating small portions of the 

complex structure and giving explicit descriptions of possible relations between 

schemas.  

The existence of a schema is inseparable from its continuous construction and 

reconstruction. A calculus student may have interiorized the action of taking the 

derivative of a function and may be able to do this with a vast number of examples 

using various techniques that are often taught and occasionally learnt in calculus 

courses.  If the process is interiorized from relevant actions, the student might be able 

to reverse it to solve problems in which a function is given and it is desired to find a 

function whose derivative is the original function, (integration). A process of 

understanding a certain mathematical concept using APOS can therefore be attributed 

to a successful students‟ construction of schemas for that concept.  The essential tool 

to induce these constructions was chosen instructions and activities given in class that 

were relevant to the chain rule. 

 3.3.1.3    The development of the chain rule schema 

 

A structured set of mental constructs which might describe how the concept can 

develop in the mind of an individual is called the genetic decomposition of that 



 
 

particular concept. The mental constructions that the learner might make include 

actions, processes, objects and schemas. The genetic decomposition of the concept of 

the chain rule given here guided my teaching instruction in class and the construction 

of the interview tasks. The chain rule schema develops through the levels of the Triad: 

Intra-, Inter-, and Trans-.   

3.3.1.3.1 The Intra- stage 

 

In the first stage, the Intra- stage, the student had a collection of rules for finding 

derivatives of functions in various situations, but had no recognition of the 

relationships between them. This collection might include some special cases of the 

chain rule, and perhaps even the general formula which was perceived as a separate 

rule rather than a generalization of the others. Students who were in the Intra- stage of 

chain rule schema development were those who saw the various rules for 

differentiation as not related. They were able to solve some of the problems by simply 

applying rules which had been memorized and in some cases not remembered 

correctly. Those were students who were skilled at algebraic manipulations, easily 

able to assimilate rules and procedures in a cognitive structure that consisted of a list 

of unconnected actions, processes and objects to produce correct answers.  

3.3.1.3.2 The Inter-stage 

 

 The Inter-stage was characterized by the student‟s ability to begin to (mentally) 

collect all different cases and recognized that those were related.  At that stage the 

collection of elements in the chain rule schema was being formed, and the collection 

is called a pre-schema. Students in the Inter- stage showed evidence of having 

collected some or all the differentiation and integration  rules in a group and perhaps 

provided the general statement of the chain rule without yet constructing the 

underlying structure of the relationships, Jojo et al.. (2010). A student could tackle 



 
 

dx

dy
of 2tan3 )(cos xexecy  , by applying the power rule, not sure that she was using 

the chain rule. This student during interviews and with further questioning explained 

the connection between his/her general statement of the chain rule and its 

applicability.  

3.3.1.3.3 The Trans- stage 

 

 At the Trans- stage a student had constructed the underlying structure of the chain 

rule. He/she linked the composition and decomposition of functions to differentiation, 

and recognized various forms of the chain rule as linked in the sense that they 

followed from the same general rule through function composition.   It was only at 

this stage of development that the underlying structure of the chain rule schema was 

constructed through reflection on relationships between various objects from previous 

stages. At Trans- level the elements in the schema must go beyond being described 

essentially by a list, to being described by a single rule (Clark et al., 1997).  A student 

who displayed coherence of understanding of a collection of derivative rules and 

understanding of composition of functions as a schema had moved to the Trans- stage 

of development. He/she was able to reflect on the explicit structure of the chain rule 

and he/she was capable of operating on the mental constructions which made up 

his/her collection. Without stating the chain rule this student was able to use it 

proficiently. Jojo et al (2010) assert that this student was at this stage able to link 

function composition and decomposition to differentiation and integration and was 

able to link the two. Based on the above, the researcher arrived at the following 

genetic decomposition 

For a student to have his or her function schema 

(i) He/she had developed a process or object conception of a function and 

(ii) Has developed a process or object conception of a composition of 

functions. 



 
 

For a derivative schema, 

(iii)  He/she had developed a process conception of differentiation 

(iv)  The student then uses the previously constructed schemas of functions, 

composition of functions and derivative to define the chain rule. In this 

process the student recognized a given function as the composition of two 

functions, took their derivatives separately and the multiplied them. 

(v) The student recognized and applied the chain rule to specific situations. 

The initial genetic decomposition is modeled in Figures 3.2 and 3.3 in the 

following section.  

            

                                                   

 

 

                                                 

                                               

 

                                                          

Figure 3.2: Initial genetic decomposition of the chain rule 

3.3.2 Design and implementation of instruction 

 

Once a week, the class met in groups of 30 for tutorial lessons and on the other days 

in a regular classroom as a cluster of 197 for lessons. Homework was given at the end 
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of each lesson and was completed during class supervision. Understanding of the 

concept of the chain rule was explored through the development of schema relevant to 

it. Students were provided with activities in class that were designed to induce them to 

make the suitable mental constructions as suggested by the initial genetic 

decomposition. The tasks used in this study helped students to gain experience in 

constructing actions corresponding to the chain rule. 

Subsequent activities were provided to help students build experiences of 

reconstructing familiar actions as general processes. Those activities were followed 

by higher order activities where the students needed to organize a variety of 

previously constructed objects, like functions and derivatives of composition of 

functions, into a schema that could be applied to problem situations involving the 

chain rule.  More specifically their understanding of functions, composition of 

functions and the chain rule were evident from the students‟ attempts to answer the 

tasks given in class, their tests, and exercises. 

 It was not important whether the answers given in the form of pencil and paper work 

were correct or wrong, of importance to the researcher was the procedure used to 

answer the questions. In addition to the tasks, to substantiate the level of student 

understanding of the concept, interviews were conducted. Those interviews were 

more valuable than the written assessment instruments because one student could 

have displayed correct written work while the transcript might reveal little 

understanding and vice versa. Students who gave correct, partially correct and 

incorrect responses on the written work were selected to cover a full range of 

understanding. Some students showed evidence of possessing a schema for the chain 

rule.  They had made all the constructions proposed in the genetic decomposition, 

while others, showed evidence of constructing very little and others had constructed 

bits and pieces. The first group showed evidence of understanding the concept.   



 
 

3.3.3 Collection and analysis of data 

 

The pedagogical strategy used in this study was embodied in the ACE (Activities, 

Class discussions and Exercises) teaching cycle. 

  3.3.3.1    Activities 

 

  Activities designed to help students make the mental constructions in the proposed 

genetic decomposition were given to students in the form of a tutorial test. Students 

worked collaboratively and some individually. Through these activities the students 

gained experience with mathematical issues related to understanding the chain rule.   

3.3.3.2 Classroom Discussions 

 

Class discussions came after the students had received three consecutive lessons on 

the chain rule and its applications.  Those lessons and instruction were video-taped 

and later video clips of discussions related to mental constructions of the chain rule 

and the thought process were recorded. They form part of Appendix B.  Here 

classroom tasks were given and discussed with the students.  A questionnaire 

consisting of 12 items was then presented to a sample of 30 students who volunteered 

to participate in the study. Some students of the 30 volunteers were then interviewed 

and encouraged to describe his/her solution displayed on some of the tasks. The 

interviews were audio-taped and later transcribed and all written work was collected. 

These interview transcriptions are analyzed in detail in Chapter 7. The transcripts and 

written work were later coded and searched for issues related to understanding of the 

chain rule in calculus.  



 
 

3.3.3.3 Exercises 

 

Exercises were assigned to the students in the form of homework done outside of 

classroom supervision at the end of each of the consecutive lessons taught on chain 

rule definition and use in calculus. The purpose of the exercises was for students to 

reinforce the ideas and concepts constructed in class and to use and apply the chain 

rule they had learnt. Exercises in the learning of the chain rule were also given in the 

form of written questions and answers in the form of tests, the specially designed 

questionnaire and in-depth interviews of students chosen according to answers given 

in the pen and paper exercises. 

3.4   The structure of the genetic decomposition of the chain               

 rule 

Based on the theoretical analysis in the previous sections, a structure of the genetic 

decomposition of the chain rule is presented in this section. Differentiation also 

depended on the kinds of functions we had.  This is a description often displayed as a 

diagram, of the actions, processes, objects and schemas and their relationships, that 

might be involved in the formation of mental constructs. Analysis of results in this 

study incorporate APOS extended with the use of the Piaget‟s Triad mechanism to 

explain constructs which cannot be explained as actions, processes, objects and or 

schema. Figure 3.3 illustrates this extension. 

3.5   Reflective abstraction in advanced mathematical thinking 

 

Reflective abstraction is a concept introduced by Piaget to describe the construction of 

logico-mathematical structures by an individual during the course of cognitive 

development. He made two important observations: first, reflective abstraction has no 

absolute beginning, but is present at the earliest ages in the coordination of the 

sensori-motor structures (Beth & Piaget, 1966) and second, that it continues on up 



 
 

through higher mathematics to the extent that the entire history of the development of 

mathematics from antiquity to the present day may be considered as an example of the 

process of reflective abstraction. 

Piaget distinguished three major kinds of abstraction which are not independent of 

each other.  He talks of empirical knowledge which derives knowledge from 

properties of objects, (Beth & Piaget, 1966). According to Piaget, (Piaget & Garcia, 

1983), this kind of abstraction leads to extraction of common properties of objects and 

extensional generalizations that is, the passage from specific to general. Pseudo-

empirical is intermediate between empirical and reflective abstraction and it spells out 

properties that the actions of the subject have introduced into objects, (Piaget, 1985).  

Finally, reflective abstraction is drawn from what Piaget (1980) called general co-

ordinations of actions by the subject internally.  He asserts that this kind of abstraction 

leads to a very different sort of generalization which is constructive and results in new 

syntheses in the midst of which particular laws acquire new meaning (Piaget & 

Garcia,1983). 

There were many examples of instances of reflective abstractions, but we can site that 

when a student was given a problem like, Differentiate:  y ec x e x cos tan3 2
, he 

performed several individual actions in his mind to identify the different functions 

involved. He would then interiorise and coordinate the actions to form a total ordering 

of where to start differentiating. Those actions would form new actions, and 

ultimately new objects (which may no longer be physical but rather mathematical 

such as a new function derived from the original one). Piaget (1972) further asserted 

that it is reflective abstractions in its most advanced form that leads to the kind of 

mathematical thinking by which form or process is separated from the content and 

that processes themselves are converted, in the mind of the mathematician, to objects 

of content, (Piaget, 1972). Empirical abstraction therefore deals with action as 

opposed to objects and it differs from pseudo-empirical abstraction in that it is 



 
 

concerned, not so much with the actions themselves, but with interrelationships 

among actions, which Piaget (1975) called „general co-ordinations.‟ 

According to Piaget, the first part of reflective abstractions consists of drawing 

properties from mental or physical actions at a particular level of thought (Beth & 

Piaget, 1966). He says that this involves consciousness of the actions, and can include 

the act of separating a form from its content. Whatever is abstracted is projected onto 

a higher plane of thought where other actions are present as well as more powerful 

modes of thought. 

3.5.1 Construction in reflective abstraction 

Piaget‟s notion of reflective abstraction is central to APOS which is Dubinsky‟s 

theory which would be important for advanced mathematical thinking (Dubinsky 

1991b). Reflective abstraction has two components: (a) a projection of existing 

knowledge onto a higher plane of thought and (b) the reorganization of existing 

knowledge structures (Dubinsky, 1991a). Reflective abstraction is therefore a process 

of construction and Dubinsky outlines five kinds of construction in reflective 

abstraction: 

1. Interiorisation: Here actions and objects are interiorised into a system of 

operations. This is parallel to Sfard‟s (1991) theory of reification, who, is of 

the idea that different mathematical notions can be conceived, either, 

structurally, as objects and procedurally as processes. She describes the route 

from processes to objects as involving three stages: interiorisation, 

condensation and reification. For Sfard (1991), during the phase of 

interiorisation a student becomes familiar with a process and can carry it out 

through mental representations. 

 

 



 
 

 

       

 

 

 

 

 

                                                                                

                                                                                

 

 

 

 

 

 

                                                                                                                                                                                                                                                                                                             

  

 

 

  

Figure 3.3: APOS theory extended 
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2. Co-ordination: Two or more processes are co-ordinated in order to form a 

new process, e.g. the chain rule for differentiation requires the co-ordination of 

composition of functions with derivatives (Bowie, 2003). Sfard (1992) refers 

to this as condensation where there is a gradual quantitative change in which a 

sequence of mathematical operations is dealt with in terms of „input and 

output without necessarily considering its component steps‟. 

3. Encapsulation: This is where the construction of mathematical understanding 

extends from one level to the other, where new forms of the process are built 

drawing from the previous ones to form an object. This echoes Sfard‟s notion 

of reification which involves the student‟s „mind‟s eyes ability to envisage the 

results of the processes as permanent entities in their own right‟. (Sfard & 

Linchevski, 1994). This shift occurs when the student is able to detach the 

understanding from the processes that produced it and see it as an object. 

(Dubinky et al, 1989) proposed that composition of functions is a binary 

operation that acts on two functions, considered as objects to form a third one. 

They then assert that the student has to unpack these functions, reflect on 

corresponding processes, and interiorise them. Then the two processes can be 

encapsulated into an object which is the function that results from the 

composition. Dubinsky rates this process as the most complicated one than 

simple substitution and agrees that students have a problem with the chain rule 

for differentiation where it is necessary to co-ordinate the view of composition 

of the function with the notion of derivative.    

4. Generalisation: An existing schema is applied to a wide range of contexts. 

This would happen for example when the student is able to see that after 

finding the derivatives of the various functions in a composition, they now 

have to be multiplied to put the chain rule into application. 



 
 

5. Reversal: An interiorised process can be thought of in reverse. A new process 

can be constructed by means of reversing the existing one. For example, 

  dxx 2)13(  where the reversal of the chain rule would be used. 

3.6  The APOS framework 

 

The theory on reflective abstraction and the triad suggested by Piaget and Garcia 

(1983) are important for higher mathematics as they were useful to explain children‟s 

logical thinking.  In extension of this theory, Dubinsky et al (1991) isolated some 

essential features of reflective abstractions reorganized and reconstructed them and 

formed a coherent theory of mathematical knowledge and its construction, APOS.  

This study adopted the APOS approach (Dubinsky 1991a), based on its intuitive 

appeal as there has been little empirical research done documenting the use of it on 

students‟ conception of various mathematical concepts. This approach, through which 

this study was conducted, began with a statement of an overall perspective of what it 

means to learn and know something in mathematics as prescribed by Asiala et al 

(2004): „An individual‟s mathematical knowledge is his tendency to respond to 

perceived mathematical problem situations by reflecting on problems and their 

solutions in a social context and by constructing and reconstructing mathematical 

actions, processes and objects and organizing these in schemas to use in dealing with 

the situations.‟ They further believe that understanding a mathematical concept begins 

with manipulating previously constructed mental or physical objects to form actions; 

actions are then interiorised to form processes which are then encapsulated to form 

objects. They say that these objects could be de-encapsulated back to the processes 

from which they are formed, which would be finally organized in schemas. The 

formation of these objects in understanding the chain rule is explained in Figure 3.4.  

The overview of the following model is that one begins with two functions F and G 

and transforms them into a single function, FoG. The transformation begins by de-

encapsulation of F and G back to the process F(x) and G(x) from which it came. The 



 
 

two processes are then coordinated to obtain the process x on F(G(x)), which is then 

encapsulated to the object FoG.   

                          Object F                                                         Object G 

  

                                                                                                                                                                     

De-encapsulation 

                                     Process                                    Process 

                                                                                                   

                                          Coordination 

                                               ))(( xgf Encapsulation                    )(xfog Object 

    Figure 3.4: Illustration of the composition of functions 

For the chain rule the above diagram is taken further to a process of finding the 

derivative of F and G separately and then multiplying the result represented as

)()).((' ' xgxgf . 

Figure 3.5 illustrates that to find the derivative of a composite function, )(xgf  we 

find the derivative off, and the derivative of g, and then we multiply them together. 

The tricky part is in identifying the function )(xg as a single entity in )(xf . The x in

)(xf  is not x but another function in x. Thus the derivative )(' xg has to evaluated 

first and then multiplied by the derivative, ))((' xgf to get )(')).((' xgxgf . To avoid 

the confusion of the two functions in x, one may represent the function g(x) as u. This 

Function  Function  



 
 

will then enable us to find separately the derivatives )(' xg  and )(' uf . Result would 

then be found when we multiply )(')(' ufxg  . 

                                            Object F                                                 Object G 

                                                 

 

                    Process (differentiation)                                     Process (differentiation)               

                                                                                             

                          

 

 

                               Encapsulation as                                        an object 

Figure 3.5: A model of the chain rule 

 

This would safe guard against two errors which the students usually make, namely: 

(1) Finding )(')(' xgxf  , for example the derivative,

)46.(sin)543cos( 2  xxxx but is )46).(543sin( 2  xxx . (2) Finding 

))('(' xgf where one derivative is plugged onto the other one. For example the 

derivative of 324 12sec)3tan( xx  but is .12).3(sec 342 xx   

Function    Function

   

    

  

  



 
 

The students interiorise their actions by discussing their actions with others 

collaboratively. They must also write verbal descriptions of their actions using their 

own words. Mental constructions that a learner makes include actions, processes, 

objects and schema of the chain rule. The following figure illustrates a model 

developed to explain within the APOS context. 

                                                                                                                                 

                                                                                                             

                    

 

              

 

 

   

 

  

Figure 3.6: A model for the chain rule in the context of APOS 

3.7  Piaget’s Triad mechanism 

 

The Triad mechanism consists of three stages, referred to as Intra, Inter, and Trans in 

the development of connections an individual can make between particular constructs 

      Actions 

Schema   Processes 

    Objects 

 Interiorisation and 

 Reflection on actions 

 Connections to the 

chain rule & collection 

of objects 

 Totality of actions 

 Encapsulation of 

processes in totality 

 



 
 

within the schema, as well as the coherence of these connections, (Dubinsky, 1991). 

These stages have been discussed in detail (pp 42-43) as part of the proposed genetic 

decomposition of the chain rule. 

 

 

 

 

 

 

Figure 3.7: The stages of Piaget‟s Triad mechanism 

The Intra stage focuses on „a single object‟, followed by inter which is „study of 

transformations between objects‟ and Trans- noted as „schema development 

connecting actions, processes and objects‟. Tall (1997) argues though that the 

confinement by Dubinsky to the order of „action, process and objects, was mean, in 

the sense that it avoids other widely used terms such as, „Inter-‟ including the study of 

the properties of objects, or „Intra-‟ being concerned with the relationship between 

them. He argues that there is no transformation that takes place when a child 

compares the sizes of objects. Zingiswa, et al, (2005) assert that the idea of 

transformation is a tool the teacher can use, a tool that does not dehumanise learning 

because it corresponds to one aspect of the voluntary activities of the students‟ mind. 

Dubinsky (1991) believes that an individual at the Trans- stage for the function 

concept could construct various systems of transformations such as rings of functions, 

together with the operations included in such mathematical structures.  

Intra- 

        Inter- 

             Trans- 



 
 

3.8   Conclusion 

 

Based on the initial genetic decomposition of how the chain rule concept may be 

learned, an interpretation of the mental constructions using APOS were made in this 

chapter. A student was said to understand the chain rule once his/her collection of 

derivative rules and understanding of function composition was capable of operating 

on mental constructions acquired, and was able to reflect on the explicit structure of 

the chain rule which these constructions were implicitly containing. The existence of 

the chain rule schema is inseparable from its construction and reconstruction. This 

schema is a collection of actions, processes and objects conceptions and other 

previously constructed schema which were coordinated and synthesized to form 

mathematical structures that were applied when chain rule is needed. 

The students‟ mathematical knowledge of the chain rule depends on relations between 

mental constructs together with the interconnections that the student uses to 

understand the concept or rule, and the way in which he/she uses or fails to use that 

concept in problem situations. In this statement it is acknowledged that what a person 

knows and is capable of doing is not always available to him at a given moment and 

in a given situation. It may happen that a student misses a question in a test or 

examination not because he doesn‟t know it but perhaps because he could not access 

it at that moment. With a question or a little assistance the answer may be accessed 

and used correctly by the student. Also the student would respond to perceived 

problem situations by applying and using the knowledge of chain rule acquired. 

The APOS theory and Piaget‟s Triad mechanism which provided the theoretical 

framework for the presentation and analysis of data in the following three chapters 

has been discussed in full in this chapter.  The following chapter gives an outline of 

the methodology used in this study, the participants and limitations of the study.  



 
 

CHAPTER 4 

 RESEARCH METHODOLOGY AND PROCEDURE 

4.1 Introduction 

Chapter 3 provided an overview of APOS theory as the theoretical framework used in 

this study. This chapter resumes with the reintroduction of the critical research 

questions and presents the subjects and instrument used in this study. Further on, 

methodological framework used, and research paradigm within which the study was 

located is described. How the paradigm fits with this study, data sources and data 

collection processes and analysis in Phase 2 are presented. In addition the chapter 

outlines the limitations governing the study and then concludes with a brief summary 

of the methodology used.  

4.2 The critical research questions 

The study proposed the APOS (Action-Process-Objects-Schema) approach in 

exploring the conceptual understanding displayed by first year the University of 

Technology students in learning the chain rule in calculus. The research question 

addressed by this study was: 

How do students construct various structures to recognize and apply the chain rule in 

the context of calculus? 

This was with the view of clarifying: 

8. the students’ understanding of the function concept, 

9. the students understanding of function composition, 

10. their understanding of the derivative, 

11. the students’ difficulties in using  the chain rule, 



 
 

12. students’ schema alignment with a genetic decomposition of the chain rule, 

13. the triad stage of schema development in which students are operating with 

respect to the chain rule, and 

14. the students’ identification of the reverse application of the chain rule in the 

substitution technique for integration. 

4.3 Subjects 

The subjects for this study were first year engineering students (197) at the University 

of Technology who had been taught more than half of calculus concepts. Sections 

done included limits of functions, the rate of change of a function, finding the 

derivatives of polynomials and algebraic together with trigonometric functions and 

also use of product together with quotient rules in calculus. Some of these students 

had been through a foundation course including introduction to calculus for a period 

of six months at the university (Pre-tech students), Extended Curriculum Programme 

(ECP), (students who have undergone a foundation programme for a year at the 

university), while others had good matric symbols and were registered for first year 

without going through any foundation course. All students in class, (197) had given 

written consent and allowed the researcher to conduct the study. This was done 

because video-taping of the three sequential lessons took place in class. A small 

sample of 30 volunteering students were selected, because (1) interpretive case studies 

depend on descriptive foundation, and (2) this type of research takes a lot of time.  All 

of the students were registered for the engineering course and mathematics was not 

one of their majors. They registered for mathematics as an aid to assist them in 

understanding their other engineering courses. 



 
 

4.4 Instruments for collection of data  

4.4.1 Phase 1 

The study was composed of two Phases. Phase 1 was comprised of the pilot study. 

The subjects in this phase were second year students who volunteered to participate in 

the study. Those students had already written and passed an examination in first year 

calculus. A questionnaire was administered to 23 volunteered subjects. The pilot 

study was conducted for purposes of validating the questionnaire for purposes of the 

main study. Some of those participants were selected and then interviewed to explain 

their responses to the questionnaires. The participants interviewed were chosen based 

on their written responses on the questionnaire. The results of the pilot study are 

included in this study in Appendix A and discussed in full in Chapter 5.  

4.4.2 Phase 2 

There were no revisions done on the questionnaire used in the Pilot study. The 

questionnaire was then administered to 30 first year students covering categories 

including definition of functions, composition and decomposition of functions, 

derivatives and chain rule embedded in the structure of the integrand. The other 

instruments included activities, class work exercises and tutorial tests. After each 

written exercise, a sample of six participants were selected, interviewed and asked to 

explain some of their responses to selected questions. 

The questions in the questionnaire tested the understanding of: (1) definition of 

function using domain and range, (2) definition of function using graphical methods, 

(3) composition of functions, (4) decomposition of composed functions, (5) the 

derivative, and (6) the applications of chain rule. 

The students volunteered their time up to 
2

1
1  hours to complete the questionnaire.  A 

student-numeric code was used to identify all of the written work collected as data on 

each questionnaire. This code was also used on all audio–tape transcriptions made 



 
 

during interviews on selected students. This code is used in this report with 

confidentiality not compromised. 

4.4.3 Tools used for data collection 

Data was collected using a questionnaire comprised of 12 questions on functions, 

their composition, derivative and the structure of the integrand. Interviews of certain 

subjects based on their responses to the questionnaire provided the main source of 

understanding as the participants justified their responses. Some questions used in the 

interview included: (1) There you are, just working it out. Were you perhaps using 

any rule in your differentiation? (2) Can you state the chain rule? (3) What do you 

mean by right through? (4) I want you to be explicit in explaining your understanding 

of the chain rule. What does it say? Can you write it down maybe? (5) If for example 

I give you, this function, 12 2

3(tan  xexy to differentiate, what would be the 

derivative of y? 

4.5 Qualitative research  

By its nature, qualitative research methodology allows one to use different research 

strategies to collect data. It also allows for the voice of the participants to be heard. 

Romberg (1992) asserted that when no numbers are used in categorising, organizing 

and interpreting the relevant information that have been gathered, then the method is 

said to be qualitative. Qualities of this type of research were outlined by Fouche‟ & 

Delport (2002, p.79) as follows (1) Qualitative research elicits participants accounts 

of meaning, experience or perceptions about a concept, (2) It produces descriptive 

data,  (3) Qualitative approaches allow for more diversity in responses as well as the 

capacity to adapt to new developments or issues, (4) In qualitative methods, forms of 

the data collected can include interviews and group discussions, observation and 

reflection field notes, various texts, pictures, and other materials. 

This study is qualitative in nature.  There is a wide range of approaches to qualitative 

research used at present.  Asiala et al, (2004) suggested that in considering the variety 



 
 

of approaches being used, two aspects have to be addressed: (1) the theoretical 

perspective taken by researchers using that approach, and (2) the actual methods by 

which data is collected and analysed.  Woods (2006) in contrast outlines four features 

of a qualitative research as: (1) focussing on natural settings, (2) interest in meanings, 

perspectives and understandings, (3) process and inductive analysis, and (4) grounded 

theory. In this study the researcher describes a qualitative methodological framework 

that has been used with the concern for theoretical and empirical aspects together with 

applicability to the real classroom situation in the form of instructional treatments. 

              4.5.1 The theoretical perspective 

The perspective taken in this study seeks to describe a set of specific mental 

constructions that a student might make in order to develop his/her understanding of 

the chain rule concept. The result of this analysis is known as a genetic 

decomposition of the concept. This analysis was influenced by the researcher‟s own 

understanding of the chain rule and the previous experience in learning and teaching 

it.  

 The theoretical perspective used in this study of what it means to learn and to know 

something in Mathematics is based on the following assumption outlined in Asiala, et 

al (2004, p 7).  

 „„An individual‟s mathematical knowledge is his/ her tendency to respond to 

perceived mathematical problem situations by reflecting on problems and their 

solutions in a social context and by constructing and reconstructing mathematical 

actions, processes and objects and organizing these in schemas to use in dealing with 

the situations.‟‟  

 A full discussion on this statement can be found in Asiala et al (2004). The main 

issue in this study was how students learn the chain rule concept and access it when 

needed.  Byers (1980, pp 5-6) believed that it is impossible to understand a piece of 

mathematics in the absence of pre-requisite knowledge. He further asserted that the 



 
 

understanding of mathematics deepens with the acquisition of new mathematical 

knowledge and that understanding involves availability for ready retrieval.  Thus to 

understand the chain rule goes beyond the ability to use it in calculations, but to be 

able to remember or reconstruct its knowledge to form a collection of processes and 

objects that can be organized in a structured manner to form a schema of the chain 

rule. 

4.5.2 The actual methods used for data collection and analysis 

The study consisted of two phases, both using a qualitative approach.  Phase 1 was the 

pilot study which involved collection of data via questionnaires which were 

administered to 23 previous semester students of known ability, willing to participate 

in the study.  These were students who had already written an examination on first 

year calculus and passed it.  This was done to check for errors, validity and reliability 

in the instrument, (Jojo et al, (2011)).  Some of the students were interviewed for 

clarity on their written responses. The results of the pilot study are outlined in the next 

chapter.  

The questionnaire was then administered to 30 volunteering first year students in 

Phase 2.  A structured way to describe an individual student's understanding of the 

chain rule was developed and applied to analyzing the evolution of that understanding 

for each of the 30 first year students. Various methods of data collection were used 

namely: (1) classroom observations, (2) open-ended questionnaire, (3) semi-structured 

and unstructured interviews, (4) video-recordings, and (5) written class work, tests 

and exercises.  

The study followed an APOS approach where the participants were observed in 

action. This approach allowed the researcher to select the examples that illustrate the 

points that he or she wished to make (Cohen & Manion, 2000). Those researchers 

asserted that the analysis of the individual student answers consists of a construction 

of taxonomies, resulting from the various observation sessions of each student‟s work. 



 
 

Since the main aim of this study was to analyze students‟ mathematical thinking in the 

context of the chain rule, an interpretive paradigm was used. 

4.5.3 The interpretive paradigm 

Schultz (1962) suggested that interpretivists share the following beliefs about the 

nature of knowing and reality: 

(1) Relativist ontology - assumes that reality as we know it is constructed inter-

subjectively through the meanings and understandings developed socially and 

experientially.   

(2) Transactional or subjectivist epistemology - assumes that we cannot separate 

ourselves from what we know.  The investigator and the object of 

investigation are linked such that who we are and how we understand the 

world is a central part of how we understand ourselves, others and the world. 

(3) Findings emerge through dialogue in which conflicting interpretations are 

negotiated among members of a community. 

(4) Fostering a dialogue between researchers and respondents is critical.  It is 

through this dialectical process that a more informed and sophisticated 

understanding of the social world can be created. 

Angen (2000), claimed that the interpretivists assume that the researcher‟s values are 

inherent in all phases of the interview and the truth is negotiated right through the 

interview process.  He further outlined the following as characteristics of the 

interpretive paradigm: (1) interpretive approaches rely heavily on naturalistic methods 

(interviewing, observations and analysis of existing texts), (2) 

these methods ensure an adequate dialogue between the researchers and those with 

whom they interact in order to collaboratively construct a meaningful reality, (3) 

generally, meanings are emergent from the research process, and 

(4) qualitative methods are used.   



 
 

 Cohen et al (2000) asserted that an interpretive paradigm model works explicitly 

from within the human perspective. As noted earlier, the nature of research questions 

in this study indicated an interpretive action research design with the unit of analysis 

being the students work.  According to Cohen et al (2000), the interpretive enquiry 

interprets and discovers the perspectives of the participants in the study and the 

answers to the enquiry are practically dependent on the context. More specifically the 

researcher examined students‟ attempts to answer the tasks given in class, their tests 

and exercises with regard to their understanding of functions, composition of 

functions and the chain rule. 

4.5.4 How the paradigm fits with my study 

Interpretive approaches rely heavily on interviewing, observations and analysis of 

existing texts (Cohen, et al 2000). They also asserted that these approaches ensure an 

adequate dialogue between the researcher and those with whom he/she interacts to 

construct a meaningful reality and derive meanings from the research process. It was 

of importance to this study to analyze students‟ mathematical thinking in the context 

of the chain rule with the aim of explaining students‟ misconceptions and difficulties 

identified. It was also of significance to note whether students understand and could 

correctly interpret the structural representations of embedded functions. This concerns 

differentiation of composition of different functions like exponential and 

trigonometric functions in calculus. It was of importance here to see how students 

used the chain rule when constructing their knowledge of derivatives.  

4.6 Methodological framework  

The instructional approach to fostering conceptual thinking in mathematics was seen 

by Dubinsky (1991) as having four steps, namely: (1) observation of students in the 

process of learning a particular topic to see their developing conceptual structures or 

images, (2) analyze the data, using these observations along with APOS theory to 

develop the genetic decomposition of the concept under study, (3) design of 

instruction in relation to the proposed genetic decomposition, and (4) develop 



 
 

activities suitable to induce students to make the specific reflective abstractions 

relevant to the concept. This approach was used in this study. Three sequential lessons 

on learning the chain rule by first year engineering students were presented and video-

taped to help students develop an understanding of the concept of the chain rule. The 

instruction designed for the lessons followed aspects repeated by the proposed genetic 

decomposition. Activities suitable for students to make abstractions regarding the 

chain rule were then selected and given to students to do during three consecutive 

tutorial lessons which took place on Friday afternoons. This was then followed by two 

written test exercises on differentiation using the chain rule and integral calculus.      

4.7 Data sources 

Data for this analysis included results from the Pilot study. It also included analysis of 

students‟ performances in the tasks given regarding their understanding of the 

function, derivative, composition of functions and the chain rule. Interviews were 

conducted to analyze students‟ responses on written tasks and class discussions. After 

the analysis of the tasks in Phase1, there was a video recording of three sequential 

lessons on the chain rule. This time students‟ engagement with the lesson was of 

importance.  Audio-recording was employed while interacting with the students, and 

when guiding individual students. Students worked individually and collaboratively.  

There were also classroom observations where the researcher observed how students 

worked through the tasks in providing answers to class works, tests and exercises on 

the chain rule concepts. 

4.8  Data collection procedures 

Data was collected using a multi-method approach. A Pilot study was used to validate 

the questionnaire to be used in the study.  Reports on it are found in the next chapter. 

Three sequential lessons on derivatives, the chain rule and its applications were then 

video-taped. Also, class observations, questionnaires, interviews audio-taped, tests 

and exercises were other sources of data. In the next subsections the researcher 

discusses each data collection tool that was used in the study.  



 
 

                 4.8.1 Classroom observations 

Observing is the process of studying classroom activities to determine teaching 

strategies and student responsiveness. It can be used to gain insight into planning, 

organization, methods of presentation, behaviour management techniques and 

individual student differences (Olsen, 2008). Observation in this study was used as a 

tool to obtain information that could later be analyzed to gain a better understanding 

of instructional procedures and classroom interactions. Such understanding helps to 

inform and refine the teaching skills. 

 The researcher through observations noted methods to motivate students and kept 

them focussed on instructional classroom activities. Observations in this study were 

structured such that the researcher and student movement was documented using a 

seating chart and arrows to show movement throughout the lesson. Notes were made 

on the chart to record conversations and activities at various locations in the 

classroom. Also, a question and answer record sheet was used to record all the 

questions the researcher asked and the corresponding student responses. Data from 

this observation gave insight into the type of questioning used to elicit higher level 

thought from the student. Observations are theory driven. They allow the researcher to 

see substance in the data (Olsen, 2008).  

                      4.8.2 Interviews 

Qualitative interviews are defined by Sewell (2002, p 27) as „„an attempt to 

understand the world from the participants‟ point of view, to unfold the meaning of 

the people‟s experiences and to uncover their world prior to scientific explanations‟‟.  

In this study, selected participants were interviewed for clarity and explanations on 

their written responses.  Those were responses in the form of answers given to 

classroom activities, written exercises, tutorials and tests. Interviews engaged in meta-

analysis and extracted more data.  The extent of abstraction, critical thinking, 

insightfulness conceptualization and imagination levels were measured through 

interviews.  The interviews in this study were used as a research tool and open-ended 



 
 

questions were prepared in advance and used to extract information from the 

participants.   

Kvale (1996) agrees that in qualitative research interviews help in understanding 

something from the subjects‟ point of view and to uncover the meaning of their 

experiences. Frey (1994) distinguishes various forms of interviewing as (1) individual 

or group face-to face verbal exchange, (2) mailed or self-administered questionnaires, 

and (3) telephone surveys. Lankshear and Knobel (2004) assert that structured 

interviews aim to maximise comparisons across responses to questions of the 

interview, characterised by a pre-set list of questions asked in a fixed order with no 

deviations from the list regardless of the response to the question asked. Unstructured 

interviews aim to solicit as much information as possible without confining the 

respondent to particular themes or topics. Semi-structured interviews included a list of 

prepared questions that were used as guide only and follows up on relevant comments 

made by the interviewee.  The duration of an interview could be five minutes or hours 

or span over days depending on the purpose of the interview.  

Phase 2 used in-depth, task based interviews with six of the students, for clarity on 

some of their written responses. Two fold types of interviews were conducted: (1) to 

get feedback on how students perceive chain rule, and (2) to fulfil a verification 

purpose where the individual student‟s written response was clarified. This was done 

in an attempt to describe how these students constructed the concept of the chain rule.  

Participants were chosen based on their scores on the instrument. The interviews 

followed a guide designed to elicit the students‟ understanding of the chain rule based 

on the tasks given in the questionnaire.  

In this study the interviews were conducted at the university over a number of days 

depending on the availability of the participants. Those interviews were semi-

structured and the questions were mostly open-ended. Open ended questions allowed 

the participants to express freely their way of thinking when they wrote the answers 

and allowed them to change or add some information, they deemed fit.  



 
 

Class work exercises given for homework included the following problems. Some of 

the students‟ responses to the given exercises are included in Appendix C.  These 

exercises included: 

1. Determine the derivatives of: (i)  )12tan(  xy  

                      (ii)   xxf 2sin)( 2  

                      (iii)   xxxy 2cos42sin4   

                      (iv)    xexf tanln)(       

   2.  Determine   dxxe x )2sin(cos   

This was done to minimise the mismatches that existed between the learning styles of 

most students in the class and the teaching style of the lecturer. Successful 

achievement of the latter could increase the students‟ comfort level and willingness to 

learn and understand the chain rule when these are later assessed.  

4.9 Challenges of doing classroom based research. 

These are discussed under the following headings. 

           4.9.1 Validity and reliability 

Validity determines whether a research instrument investigates what is intended to be 

investigated, while reliability refers to how consistent the results are. The issues of 

validity concerns in my research study span over the two broad areas: Triangulation 

and Participation. 

             4.9.2 Triangulation 

Triangulation is a process of verification that increases the validity by incorporating 

three different viewpoints and methods (Rubin & Rubin 1995).  It is often used to 



 
 

indicate that more than two methods are used in a study with a view to double (or 

triple) checking results. Several researchers have given different definitions of 

triangulation. Cohen and Manion (2000, p37) define triangulation as an "attempt to 

map out, or explain more fully, the richness and complexity of human behavior by 

studying it from more than one standpoint."
 
 Altrichter et al. (2008, p46) contend that 

triangulation "gives a more detailed and balanced picture of the situation." According 

to O‟Donoghue and Punch (2003, 54), triangulation is a “method of cross-checking 

data from multiple sources to search for regularities in the research data."
  

Denzin (1978) distinguished four types of triangulation: (1) data triangulation which 

involves time, space and persons, (2) investigator triangulation which involves 

multiple researchers in an investigation, (3) theory triangulation which involves using 

more than one theoretical scheme in the interpretation of the phenomenon and (4) 

methodological triangulation which involves more than one method to gather data, 

such as interviews, observations, questionnaires and documents.  

This study triangulated data over time, space (classroom and interviews), different 

learners interviewed and different research methods used. Data were collected over a 

period of time. Three sequential lessons covering the teaching of derivatives were 

video-taped. Questionnaires were used to collect data. It was not important whether 

the answers were correct or wrong, but it was essential to get the thinking behind the 

displayed answers. Selected students were also interviewed based on their scores on 

the written instrument. This was done to validate the answers given by the students in 

the written instrument.  

           4.9.3 Participation 

The subjects for this study were 197 first year engineering students at a University of 

Technology registered from different backgrounds as outlined in Chapter One. A 

small sample of 30 volunteering students were selected as participants in this study 

because (1) interpretive action research depends on descriptive foundation, and (2) 

this type of research takes a lot of time. The students participated on their own free 



 
 

will in the study to ensure that the data collected had validity. Those who did not want 

to be part of the sample were not forced to be included. 

4.10 Quality standards and procedures  

A number of factors and procedures to ensure that the data accurately reflect students‟ 

thinking were considered.  Data was collected throughout an academic year in two 

semesters of the first year course. The informed consent form was read and explained 

to all subjects (197) in this study. The volunteers were expected to complete the 

questionnaire in a one and a half hour duration slot. Students were assured that all 

their responses would be treated with strict confidentiality and that their performance 

in the study was in no way to be used to determining their expertise in the course. The 

same applied to the classroom exercises and tutorial tests given as they were not used 

for their regression or progression in the course but only served as data for the study. 

4.11 Trustworthiness and Ethical issues 

The criteria for judging the overall trustworthiness of a qualitative study were 

selected. The table below adapted from Krefting (1991, p 217) gives a summary of the 

strategies and criteria used in this study to establish trustworthiness. 

Ethical clearance was granted for my study. The ethical clearance approval number is 

HSS/0862/09D. Thereafter written permission for conducting this study in the 

institution was granted by the research directorate of the institution. This was granted 

after a summary of the proposal was presented to the institution‟s research committee. 

Participants in this study were notified that their participation in the study was 

completely voluntary and they could withdraw at any stage, if they wished to. All the 

participants in the study were promised confidentiality and anonymity. The nature, 

process and purpose of the study were outlined to all the subjects. Fictitious names 

were used to protect the identity of the participants. Students were also invited to ask 

questions to seek clarity on any issue or any uncertainty they were experiencing 



 
 

during the course of the study. A letter of consent which is included in Appendix A2 

was presented and read to all subjects. The letter requested permission from the all 

students to participate in the study and to be interviewed if for clarity of the written 

responses where necessary. This was ensured since the sequential video-tapes were 

done in class in the presence of volunteers and non-volunteers. 

Delport (2002) asserts that qualitative data methods include questionnaires, checklists, 

indexes and scales. He further notes that certain principles and procedures have to be 

followed in the construction of the various methods. This would afford these 

measuring instruments reliability and validity. These principles and procedures 

provide strategies for improving the trustworthiness of the inquiry.  

 

 

 

 

 

 

 

 

 

 



 
 

Strategy Criteria  Application 

Credibility Prolonged and varied field 

experience 

Triangulation 

Interview Technique 

Participants‟ written 

responses from the 

questionnaire, written 

class activities 

Digital voice recordings of 

interviews 

Transferability Dense description Extraction of participant‟s 

written responses to 

questions used in 

unstructured interviews 

Verbatim quotes from 

interviews 

 

Dependability Dependability audit 

Triangulation 

Interview transcripts 

Participants‟ responses to 

questionnaire 

Confirmability Confirmability audit  

Triangulation 

Checking of transcripts 

Checking of participants‟ 

responses 

Verbal questions to be 

checked 

Table 4.1 Strategies for establishment of trustworthiness in the study 



 
 

4.12 Limitations of the study 

Since the subjects were volunteers, there was no control over their range of abilities.  

Also since the study followed the interpretive paradigm, the samples were small. Only 

a set of students‟ understanding was described and not the whole population of first 

year engineering students. Issues regarding students‟ characteristics, like health and 

their industrial specialization, were not considered by this study.   

4.13  Conclusion 

In this chapter, methodological issues pertaining to this study were considered. The 

critical research questions and research instruments were shown to be in line with the 

dictates of some experts in the field of education research. The qualitative paradigm 

was discussed and shown to co-inside with the theoretical framework adopted. The 

data capture methods are aligned to a qualitative approach. Certain mechanisms are 

identified and applied to assure reliability and validity compliance. In the following 

chapter, the researcher discusses the preliminary results of Phase 1 conducted to 

validate the research instrument. 

 

 

 

 

 



 
 

CHAPTER 5 

 THE VALIDITY OF THE QUESTIONNAIRE 

5.1  Introduction 

 

In the previous chapter, the research design, methodology and procedures used in this 

study were discussed. A detailed description of each tool of inquiry and data sources 

was provided. In addition the data analysis process was revealed. In this chapter, 

discussions and results on the pilot study conducted are presented.  

Qualitative methods were employed and data collected via a questionnaire 

administered to a group of calculus students' (n = 23). The questionnaire was designed 

to give an insight into their knowledge of and skill with functions, composition of 

functions, differentiation and the chain rule. The data were analyzed to investigate 

their performance on the composition of functions items as related to that of the chain 

rule. Follow-up interviews based on some questionnaire responses were conducted 

with five subjects. The second part of the pilot study involved interviews with some 

participants who answered the questionnaire. This was done to describe how those 

students constructed the concept of the chain rule. The six participants in the 

interviews were chosen based on their scores in Part 1, covering a range of chain rule 

scores and a range of overall scores. The interview followed a structure designed to 

elicit the student‟s understanding of the rule based on tasks from the previous 

instrument. 

5.2  Analysis and discussion of items from questionnaire 

 

A questionnaire consisting of twelve items was administered to the 23 students.  The 

items addressed the following skills in the given sequence: (1) Items 1 and 2 focused 

on whether a given graph represented a function or not, (2) Items 3 and 4 focused on 



 
 

the understanding of composition of functions, (3) Items 5.1 to 5.6 dealt with 

students‟ applications of rules for derivatives, including the chain rule, and (4) Items 

6.1and 6.2 focused on integration where the chain rule is embedded in the structure of 

the integrand. The 12 items were coded (scored) using a 5 point rubric based on the 

following guidelines adapted and modified from Carlson (1998). 

                 

Score 

Description of mental action Behaviors 

5 Made all the mental constructions 

proposed in the genetic 

decomposition regarding the 

concept tested 

A complete response to all aspects of 

the item and indicating complete 

mathematical understanding of the 

concept 

4 Made most of the bits and pieces of 

mental constructions of the concept  

A partially complete response with 

minor computational errors, 

demonstrating understanding of the 

main idea of the problem 

3 Displaying few mental constructions 

of the concept, with some 

explanations 

Not totally complete in response to 

all aspects of the item and 

incomplete reasoning. 

2 Displaying few mental constructions 

with no explanations 

No reasoning to justify written 

response 

1 Showed no mental constructions of 

concept at all 

No written response 

Table 5.1: Scoring codes used 



 
 

These guidelines were used to construct specific rubrics for each item. The analysis of 

the results was based on two considerations: (1) the initial genetic decomposition of 

the concept of the chain rule was used to guide the researcher‟s teaching instruction in 

class and guided the construction of the interview tasks used, and (2) Piaget‟s Triad 

mechanism which consists of three stages. These are referred to as Intra-; Inter- and 

Trans- which display the development of connections an individual can make between 

particular constructs within the schema, as well as the coherence of these 

constructions, Dubinsky (1991). The Intra stage focuses on „a single object‟ followed 

by Inter which is „study of transformations between objects‟ and Trans noted as 

„schema development connecting actions, processes and objects‟, Dubinsky (1991). 

 Learners‟ written work served as a critical source of validation for the questionnaire. 

By analysing what the learners wrote, the researcher gained an understanding of how 

students negotiated the mathematics embedded in the context. Figure 5.1 gives the 

summary of the scores gained by the participants in each category based on the above 

description. 

Figure 5.1: Bar graph displaying mean scores for each category 
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From the above graph the scores revealed a lower mean score on answers displayed 

for composition of functions and a higher mean score for the derivative category. This 

indicates that most students presented correct answers for the latter category even 

though they did not clearly understand the composition and decomposition of 

functions. 

5.3  Category A: Functions 

 

This category had two items focusing on whether a given graph indicated a function 

or not.  The scoring codes indicated in Table 1 were adapted for this category, as 

indicated in Table 5.2. 

Score 1 2 3 4 5 

Indicator Yes, with 

incorrect 

or no 

response 

Yes, but 

shows some 

understanding 

of function 

concept 

No, with 

incorrect 

explanation 

No, with 

use of 

vertical line 

test, without 

elaboration 

No, with a 

correct 

explanation 

Table 5.2: Category A:  Attainment of mean scores 

Scores were allocated as follows:  5 for “No” with a correct explanation; 4 for “No” 

and use of the vertical line test (without elaboration); 3 for “No” and incorrect 

explanations; 2 for “Yes” but response shows knowledge of function concept and 1 

for “Yes” and any other incorrect or no explanation. 

 

 



 
 

 

5.3.1 Item 1 

 

Is a student correct to identify the following as a function? 

 Explain.  

Figure 5.2: Graph for item 1 

The item was designed to test students‟ understanding of the concept of functions 

represented graphically. It was of interest to know if they would mention the vertical 

test line with elaboration, continuity of the functions or show misunderstanding of the 

closed circles in their explanations.   

 

 

 

 

 

Extract 5.1: Written response of S 17 

 



 
 

The results showed that 13 students out of 23 displayed a clear understanding of 

graphical representation of a function.  They gave a complete response to all aspects 

of the item indicating a good mathematical understanding of functions represented 

graphically. For example the response of S17, who was given a score of 3, is shown in 

Figure 5.1. He had one reason though for the graph to be classified as a non-function. 

Two students also mentioned that the presence of the zigzag part in the graph as a 

non- function. The revised questionnaire would therefore still have closed dots in the 

graph, and a zigzag on the right lower side. We could claim that according to APOS, 

the students showed a development of process or object conception of a function 

concept.  According to the Triad, these students were operating in the Trans- stage 

since they were able to explain the features of a function both graphically and by use 

of ordered pairs. These were not separate entities for them. Here the action had been 

interiorised into a function object. 

In an interview with S4, she indicated that if a vertical test line was done, it would 

touch the graph more than once on the zigzag part of the graph. Questioned further, 

she said: 

Researcher: Would it make any difference if one of the dots was opened? 

S4: To me no difference, I don’t really understand what the dots mean. 

In the main study questionnaire it was decided that Item 1 would not be revised and a 

diagram with the closed dots will be presented with the zigzag part of the graph. This 

would ensure understanding of the vertical line test and the understanding of 

continuity of the function. 

 

 

 



 
 

 

5.3.2 Item 2 

A given correspondence associates 3 with each positive number, -3 with each 

negative number and 1 with 0. A student has marked the afore-mentioned relationship 

as a function.  Is that correct, support your answer? 

This item focused on the students‟ understanding of the concept of a function 

represented as a set of ordered pairs.   

It was important to know whether students would associate elements in the domain 

with those in the range using mapping and interpreting.  This would indicate whether 

they are the process, object, or schema stage of APOS. The responses to Item 2 

indicated that most students had forgotten about the mapping concept of a function.  

Even those students, who knew that the relationship was not a function, could not 

substantiate their decisions with explanations reflecting knowledge of functions using 

mapping.  Only 5 out of 23 students displayed understanding of the function concept 

for this item. Interestingly all 5 students gave full explanations for Item1. This 

suggests that they had adequately connected schema which incorporated vertical line 

test, continuity and mappings. Item 2 is a very suitable item and it was decided that it 

would be included without changes in the main instrument. 

5.4  Category B: Composition of functions 

 

This category consisted of two items focusing on composition of functions. This 

category is included to establish whether the students had a process or object 

understanding with regards to composition of functions. Item 3 dealt with 

composition and of functions using the „ ‟ notation.  

 



 
 

 

                                                     5.4 1 Item 3 

 Given two functions, )(xf , and )(xg such that xexf 4)(  and xxg sin3)(  . Find 

.)( gf   

The scores were allocated as indicated in Table 5.3. 

Score 1 2 3 4 5 

Indicator for 

evaluating 

)(f and

)(g , and 

stopped 

without 

further 

computation 

for 

subtraction 

of 

functions 

and then 

evaluating 

at  

for finding

))(( fg   

for arriving at

 sin34))(( egf   

a 

completely 

correct 

response 

Table 5.3: Item 3 attainment of mean scores 

The results showed that most students experienced difficulty in dealing with the 

composition of functions (only 8 out of 23 displayed complete understanding of 

composition of functions). Even more students experienced problems with their 

decompositions. Most of them indicated that they did not understand the „ ‟ in 

between the functions and hence could not come up with the correct computations. It 

was noticed that the few students who showed evidence of working with composite 

functions at the object stage of APOS were operating in the action stage when they 

had to decompose the functions. They lacked the ability to reverse their thought 

processes of previously interiorised actions. Those students were restricted to the 

action stage of the concept of a function concept. Their idea of a function was 



 
 

 

contained in a „formula‟ (Dubinsky, 1991a). The process of co-ordination of 

composition of functions with derivatives was incomplete and thus the new process of 

decomposition could not be formed.  Sfard (1992) refers to this as condensation where 

there is a gradual quantitative change in which a sequence of mathematical operations 

component steps‟ (p 28).                                                      

 5.4.2 Item 4 

Given that xxxgf 5cos5sin10))((    

4.1    Find functions f and g  that satisfy this condition. 

4.2   Is there more than one answer to part (a)? Explain.    

This item required decomposition of a composite function and was scored Table 5.4.  

Score 1 2 3 4 5 

Indicator left blank for correct 

expressions 

unlabeled 

and 1 for 4 

for “No” 

for part 4.2; 

reversed 

labels 

(process); 

or incorrect 

answer for 

4.1 and 

“Yes” for 

4.2 

misunderstanding 

the „  ‟notation 

but indicated 

understanding of 

composition 

for two 

correctly 

labeled 

pairs for  

4.1 and 4.2 

Table 5.4: Item 4 attainment of mean scores 



 
 

 

Only 3 out of 23 students found correct functions for 4.1 and displayed complete 

understanding of decomposition of the given composite function. With the process 

conception of a function, an individual can link two or more processes to construct a 

composition, or reverse the process to obtain the original functions. It was expected 

that students attempting the chain rule at least work at this level. It was found that 15 

students operated in the action stage of APOS regarding decomposing the given 

function. They did not know which steps to take because they were restricted to the 

formula interpretation of the composed function.  Those students were unable to come 

up with two or more functions to reverse the given composed function. It was decided 

that this item would be included in the main instrument for the study, without 

changes.  

5.5  Category C:  Derivative 

 

This category consisted of six items dealing with differentiation of functions.  

                                               5.5.1 Item 5.1 to 5.6 

Differentiate the following, with respect to x : 

5.1       xx eexy 52sin3 cos                       5.4       )4(sin cos222 exexy   

 5.2      3)52cos(  xy                                       5.5      )7cos(ln)( xxf      

5.3     )4(sin)( 3 xxf                                         5.6     2tan3 )(cos xexecy                                                                                  

For item 5.1 score allocation followed the guide in Table 5.5. 

 



 
 

Score 1 2 3 4 5 

Indicator a guessed 

answer 

not using 

appropriate 

rule; or 

compound 

errors with 

rules 

involving 

elementary 

differentiation 

rules 

error with 

derivative of 

trigonometric 

functions 

correct 

answer 

Table 5.5: Item 5.1 attainment of mean scores 

Most students differentiated correctly in this item, (16 out of 23). They mostly 

operated in the object stage of APOS regarding this item with minor errors of signs 

occasionally. One would say that the action of differentiating was applied to the 

process and the process of differentiation was correctly encapsulated to form an object 

for each student.  

Items 5.2 to 5.6 dealt with evaluation of the derivative using the chain rule. Scores 

were allocated as indicated in Table 5.6. 

Score 1 2 3 4 5 

Indicator no 

evidence of 

considering 

chain rule. 

applied chain rule 

indiscriminately; or 

attempted to avoid 

chain rule by 

expanding/rearranging 

terms (Item 5.2) 

If computed 

mixing 

composition 

a minor 

error such 

as 

dropping 

(−) sign or 

arithmetic 

errors; or 

applied 

chain rule 

but error 

with 

derivative 

rule 

a 

correct 

answer 

Table 5.6: Attainment of mean scores for items 5.2 to 5.6 



 
 

 

S16 (Mzi‟) wrote an explanation of how he got to his answers. 

 

 

Extract 5.2: Mzi‟s response to Items 5.2 and 5.3 

When Mzi was asked what he meant in question 5.2 when he wrote differentiation has 

to be like peeling an onion, he said: 

Mzi: To me differentiating such a function that is so loaded with many other functions 

is like peeling an onion, taking it layer by layer until you get to the inner one.  

Researcher: What do you mean? 

Mzi: In 5.6 for example, you can start off with the power outside, differentiate with 

respect to it. Jaa…., You have to imagine everything inside the bracket as one 

function, effect the power first and then come inside the bracket.  



 
 

Researcher: Then what? 

Mzi: Oh Ma….am, you see now, all you do is to attend to each function, find its 

derivative and keep on multiplying with every result until you finish.  

Researcher: Is there some rule that guided you in your differentiation? 

Mzi: Ja, the chain rule. 

Researcher: What does it say? 

Mzi: Do you want me to put it in symbols? 

Researcher: Yes if you can. 

Mzi: I cannot be able to put it in symbols. But I can show you another way of doing 

the same problem.  

Researcher: How? 

Mzi: Where you substitute all the functions inside with symbols u, v. w. etc and then 

find the different derivatives, after which you multiply each result you get, it works 

just like the chain rule, but it’s too long, I don’t like it. 

Mzi was scored 2 for 5.2 and 3 for 5.3. Figure 5.2 shows some of Mzi‟s written 

responses. He knew the chain rule but did not apply it correctly in 5.2.  Indeed in his 

explanation, one could say he displayed an object stage understanding of the chain 

rule. He seemed to have learnt and knew the chain rule and was applying it with 

understanding to different problems except 5.2, as he explained. He was (1) able to 

access the chain rule as per need, (2) able to reflect on it by paying conscious 

attention to techniques and algorithms used in dealing with chain rule, and (3) able to 



 
 

understand all the procedures involved in performing calculations involving the chain 

rule when interviewed.  

Three of the students interviewed acknowledged learning the chain rule, and could not 

express it though they were able to apply it correctly. Also during interviews it was 

clear that, about 60% of the students except Mzi, interchanged function composition 

with function multiplication.  

Claire (S20) only thought about revisiting her answer in function decomposition and 

wrote it correctly. She said it then came to her that the previous question dealt with 

function compositions. Even though she had a good idea of how the chain rule 

worked, she regarded the structure of the Items 5.2 and 5.3 as the same. She was 

therefore operating in the action stage of APOS where she had a problem with how 

the different composition of functions was displayed. Thus although she seemed okay 

in explaining how differentiation could be done, she could not do it because she did 

not understand the composition of functions. This supports the finding of Frid (2004), 

who found that some subjects committed errors in applying the differentiation rules. 

He further found that in differentiating a composite function, the subjects did not 

apply the chain rule appropriately as they could not recognize a composite function, 

and the subjects did not differentiate an inner function after the outer function. 

S23, S8 and S13 displayed a schema understanding of differentiation. S8 chose to use 

natural logarithms after which she applied the chain rule correctly. When she was 

asked why she used this method, she explained that she had problems dealing with the 

cosine of a function cubed, and wanted to be sure that the cosine itself was not cubed. 

She also claimed that Items 5.3, 5.4 and 5.5 were simple for her, as she just had to use 

the chain rule.  She had developed a process conception of differentiation. She then 

used the previously constructed schemas of functions, composition of functions and 

derivative to apply the chain rule. This student also recognized a given function as the 

composition of two or more functions, took their derivatives separately and then 

multiplied them. Her work for Item 5.6 is displayed in the following extract. 



 
 

 

 

 

Extract 5.3: S 8‟s response to item 5.6 

S13 presented the use of the chain rule as in Figure 13 

 

Extract 5.4: S13‟s response to item 5.4 

When interviewed student S13 had difficulty in stating the chain rule in symbols, but 

was able to explain how he applied it. When asked why he could not state the rule, he 

responded: 

S13: Why should I learn it? It’s never asked for in any examination or test. As long as 

I know how it works and can get my sums correctly, why bother? 



 
 

Thus, in terms of understanding the chain rule and relating it to function-composition, 

S13 was operating in the process stage of APOS. His was able to interpret functions 

as objects to develop processes corresponding to differentiation and to put it all 

together and apply the chain rule. 

Loyiso‟s (S23) responses on this category were captured as follows: 

Researcher: Tell me, or explain how did you come up with your answer in question 

5.2? 

Loyiso: You see, eh, in 3)52cos(  xy , I simply expanded the angle, and multiplied 

out. 

Researcher: Why would you do that? 

Loyiso: Because it was easier for me that way. 

Loyiso was scored 5 in this question as he was able to differentiate the resulting 

function after expansion correctly. He avoided using the chain rule in finding the 

desired derivative and there was no evidence of interiorisation of actions in that 

regard. Loyiso displayed encapsulation of the processes of differentiation in totality 

besides using the chain rule. This is a feature that was identified by Bransford et al 

(2000), that understanding a mathematical concept involves a connection to mental 

representations which are part of an internal network. These networks of previously 

acquired mathematical knowledge were used by Loyiso in responding to Item 5.2. 

The researcher‟s continued interview with Loyiso in the next tasks revealed more:  

Researcher: And in 5.3? 

Loyiso: I did the same thing, I tried to expand the function, so I split it up as, 

)4sin()4(sin)( 2 xxxf  . 



 
 

Researcher: And then? 

Loyiso: Ngabon’ ukuthi ngisebenzise ama identities, lapho u x4sin 2 ngimenze u 

)8cos(21 x , ngabe sengiya multiplaya ngo x4sin , maqede ke ekugcineni ngathola 

iderivative. (I thought that I must use the identities where I changed x4sin 2 to be

)8cos(21 x , I then multiplied with x4sin 2  , worked out until I got the derivative. 

Researcher: So did you do the expansion in order to avoid the chain rule? Do you 

know the chain rule? 

Loyiso: Chain rule, I don’t know that, I remember it vividly, I don’t know it. 

Researcher: Have you ever heard about it? 

Loyiso: Oh mehm, that was last year, I have forgotten about it and moreover 

ngangingayizwanga kahle ukuthi ithini noma isebenza kanjani. (I never really 

understood what it said or how it works).  

Unfortunately, it became explicit as Loyiso was interviewed further that the chain rule 

was not a popular concept for him. He deliberately avoided it in his calculations. The 

following functions in Items, 5.4, 5.5 and 5.6 were all composite functions where no 

substitutions could be made other than using the chain rule. He was scored 2 in both 

Items 5.2 and 5.3. 

Researcher: And in 5.4, what was your approach? 

Loyiso: That was too difficult for me, I just differentiated 4x
2
 to get 8x. I then moved 

to the other function and differentiated it bit by bit.  

Researcher: What do you mean bit by bit? 

Loyiso: The other functions had to be differentiated too one by one. 



 
 

Researcher: Are you sure you did not use the chain rule? 

Loyiso: I dont know, I just differentiated. 

He thus differentiated each function and multiplied the result. His work in Item 5.4 

displayed a correct complete response. In other words he applied the chain rule 

without knowing it. This was not evident from the written response and he was scored 

5 for Item 5.4. It was therefore interesting to find out why he was not using the chain 

rule in the other tasks. Loyiso‟ concept of differentiation using all other rules except 

the chain rule was complete. His actions of differentiation were not transformed in his 

mind such that the processes of differentiation could not be encapsulated in totality. 

He had no process or object conception of a composition of functions. This became 

most evident as he was interviewed further. 

Researcher: Alright then, tell me how you approached 5.5 

Loyiso: Well in 5.5, there were three functions, ln, cos7x and 7x itself. You just have 

to differentiate each one of them and multiply. 

Researcher: If that is the case, why did you not differentiate 7x? 

Loyiso: „Eish……… I simply forgot, but there are three functions there and eh…, aah, 

there should have been a seven multiplying, I overlooked that.  

Researcher: Tell me what you did in question 5.6 

Loyiso: In 5.6, I thought I must square the function first, expand it. But now when I 

got cosec
6
x, I thought there must be a problem and stopped. 

Researcher: Why did you not differentiate further? 

Loyiso: I wasn’t sure what to do, so I left it. 



 
 

    

 

6.2  

He could not differentiate 2tan3 )(cos xexecy   further, after expanding it to be

2tan36 )(.cos2cos
tan xeexecxecy

x

 . One would say that Loyiso has interiorized 

his actions and objects into a system of operations. He is familiar with a process of 

differentiation and can carry it out through mental representations. His co-ordination 

is failing though because he is unable to co-ordinate the composition of functions with 

derivatives and this is required for the chain rule. Hence he could not use it and tried 

to avoid it each time. With him the object stage of the chain rule could not be formed 

because the construction of the chain rule concept understanding was not complete. 

Although he has a function schema and recognizes the composition of functions, he 

does not have the chain rule schema. According to the Triad mechanism of Piaget, he 

is operating in the Inter stage. 

Over 60% of students scored 4 and above in this category.  Only 42% of those 

students used the chain rule in their responses though. Quite a number of students 

tried to avoid use of the chain rule in their responses. These items will be included 

without change in the main instrument. 

5.6  Category D: The structure of the integrand 

 

This category focused on integration where the chain rule is embedded in the structure 

of the integrand. It consisted of two items. 

                                           5.6.1 Items 6.1 and 6.2 

Evaluate: 

6.1 dxxx  212  

 



 
 

 

It was important to find out how students would use the chain rule, to find the answer 

to the given problems. The table of standard integrals was therefore not given to them. 

Scores were allocated as indicated in Table 5.7. 

Score 1 2 3 4 5 

Indicator  incorrect 

answer 

not 

interpreting 

the root sign 

correctly 

minor 

errors of 

putting 

incorrect 

signs 

identifying 

the function, 

its derivative 

and then 

applying 

standard 

integrals 

for correct 

answer 

using chain 

rule 

Table 5.7: Allocation of scores for category D 

For Items 6.1 and 6.2, S13 displayed what Piaget refers to as applying an existing 

schema to a wide range of contexts. He could deal with reversal of the chain rule 

where the new process response required by questions 6.1 and 6.2 was constructed.  

But for Loyiso, it was a different story. In a continuation of the interview the 

researcher had with Loyiso, he said: 

Researcher: Would you explain to me how you did 6.1? 

Loyiso: I just looked at what is inside the bracket 

Researcher: Which bracket? 



 
 

Loyiso: This root sign (pointing at the question). I think of 2x, the derivative of x
2
. 

Researcher: What about it? 

Loyiso: If it was   dxxx 213  (he writes down roughly), I would write down 

  dxxx 213
3

1
to make up for the derivative, uuhm… no, I will put dxxx  212

3

2
, 

now it would be right because it will be like that one in the table. 

Researcher: Which table are you talking about? Also, aren‟t you referring to 6.2?  

Loyiso: Yes, I am now confused. The table is the one that is always given when we 

write, with standard integrals.  

Researcher: Would you by any chance use the chain rule? 

Loyiso: No, I told you I don’t remember anything about the chain rule. Why should I 

use it anyway, because I think, ekufanele ngikwenze wuku- organiz(a) (what I should 

do is to organize) what has been given to me, suit one of the integrals given in the list 

(standard integrals) and when I find it, just write down the answer.  

Loyiso seems to be relying mostly on the table of standard integrals and thus it is not 

easy to assert that he used the chain rule in his calculations even though he got correct 

answers to Items, 6.1 and 6.2.  

Students in the Inter- stage will show evidence of having collected some or all the 

differentiation and integration rules in a group and perhaps provide the general 

statement of the chain rule without yet constructing the underlying structure of the 

relationships. That student would tackle 
dx

dy
of 2tan3 )(cos xexecy  , by applying the 

power rule, not sure that he/ she is using the chain rule. This student during 

interviews, and further questioning would explain the connection between his general 



 
 

statement of the chain rule and its applicability. Lastly a student who displays 

coherence of understanding of a collection of derivative rules and of composition of 

functions as a schema will have moved to the Trans- stage of development. He will be 

able to reflect on the explicit structure of the chain rule and he/she will be capable of 

operating on the mental constructions which makes up his collection. Without stating 

the chain rule, this student will be able to use it proficiently. The student should at this 

stage be able to link function composition and decomposition to differentiation and 

integration and to link the two. 

5.7  Conclusions and Implications 

 

This chapter provided the preliminary results on the pilot study conducted to validate 

the research instrument. It was evident from the results displayed and interviews that 

followed that even though students wrote down the correct answer, they were not 

always thinking of the correct answer. There was no need for major revisions to the 

questionnaire. The data obtained from the written responses to the items provided 

sufficient information to understand the mental constructions students made in 

conceptualizing the chain rule. The responses also provided evidence that coincided 

with the proposed genetic decomposition of the chain rule.  

In the next chapter, the report on three sequential video-taped lessons presented by the 

researcher on the chain rule and its applications is discussed. The analysis of data is 

discussed in detail in the chapters that follow. 

 



 
 

   CHAPTER 6 

ANALYSIS OF VIDEO RECORDINGS 

            6.1 Introduction 

 

This chapter reports on instructional design video-recorded in three sequential 

lessons based on the introduction and use of the chain rule to first year university 

engineering students in the first semester of 2011.  The lessons were video 

recorded during class time in slots of 1 hour duration. Those lessons followed 

immediately after the students had done an introduction to calculus, 

differentiation using the product and quotient rules. Here the researcher discusses 

the presentation of those lessons and the interactions between the researcher and 

the students, in the classrooms. Confidentiality and anonymity has been 

ascertained by changing the names of the subjects and using fictitious names for 

all participants in the study. 

      6.2 The structure of the lessons 

 

The purpose of the first lesson was to introduce the learners to the concept of the 

chain rule and how it could be used to differentiate composite trigonometric 

functions. This was done using instructional design as part of the research 

framework, proposed in chapter three. It was important to know how an APOS 

analysis could help the researcher to understand the learning process by providing 

explanations on phenomena observed when students tried to construct 

understanding of the chain rule. Weyer (2010) asserts that the first circumstance 

to happen should be something that happens as a result of instructional practice. 

Also constructivists, Piaget (1966) and Vygotsky (1986) have insisted that the 

mental constructions that a person uses to understand a mathematical concept are 



 
 

made in a social context and with considerable intervention from teachers and 

fellow students. Thus mathematics pedagogy based on the said theories 

approaches mathematics as a conceptual system rather than discrete procedures. 

Genuine education depends both on the knowledge and experience already 

existing within a student‟s level of development as well as on the student‟s 

potential to learn (Vygotsky, 1986). Beth and Piaget, (1966) argue that if we 

observe a person moving from „not understanding a concept‟ to „understanding 

it‟, we cannot be able to see what mental mechanisms are used, also we cannot 

tell if these mechanisms are used to construct the concept or to gain access to it. 

Thus we felt it necessary to video-record the students in action so that we could 

go beyond observation and consider their conversations, written texts and their 

interactions with peers and instructor. 

The main features of lesson one and the other two lessons are discussed in detail 

in the following sections. Students in the three sequential lessons were instructed 

with the intention of increasing their understanding of the chain rule to the object 

or schema stages of APOS.   Lesson one took place in a laboratory where thirty 

first year civil students assembled for their tutorial lesson. Other sub-groups of 

such students were having parallel sessions of tutorials in other classrooms 

conducted by other lecturers in the department of mathematics. All these 

subgroups were introduced to the chain rule and its applications by the different 

instructors. Lesson two mainly dealt with exposing students to differentiation 

using the chain rule in the context of logarithmic equations. In lesson three the 

researcher issued learners with tasks on worksheets where learners worked 

collaboratively with each other. Those tasks were given to (1) consolidate the 

work done in the two previous lessons, (2) allow reflection as a major source of 

mathematical knowledge, (3) find out the types of structures constructed by 

students when learning the chain rule, and (4) determining the students‟ actual 

engagement with tasks and how these tasks link with the expected outcomes 

highlighted in the initial genetic decomposition.  



 
 

    6.3 Lesson one: Presentation and discussions 

 

 The students were seated around small tables that were arranged to fit the 

rectangular shape of the laboratory. Tables were arranged in this classroom such 

that six students occupied seats around each table. This was a suitable venue for 

them when they attend their tutorial lessons. 

The first lesson started with students listening to the introduction and definition 

of the chain rule by the researcher. After the discussion of four examples on the 

whiteboard, the students were given time in class to work on the solutions of 

problems based on the use of the chain rule. Volunteers for some examples were 

requested to write their answers on the whiteboard. This happened when the 

lecturer (researcher) moved from desk to desk looking at how the rest of the 

students presented the solutions in their workbooks.  

Activities to construct the relevant mental structures for concepts necessary prior 

to the study of the chain rule were deemed covered. So our belief was that most 

students had the necessary mental constructions described in the genetic 

decomposition before they were introduced to the chain rule. The chain rule was 

then defined clearly for purposes that the students should not only know it but 

have to remember it, use it and apply it to various problems.  At this stage 

students were discouraged from copying problems solved on the whiteboard as 

the emphasis was on understanding the chain rule.  Students usually wrote notes 

while the lecturer explained because the whiteboard used in the classroom was 

small and they wanted to capture everything written on it before the information 

was erased to accommodate other examples. This partly contradicts Felder (1996) 

who suggested that the extent to which a student learns depend on the 

compatibility of his characteristic approach to learning and the instructor‟s 

characteristic approach to teaching. The instructor in this lesson used the 



 
 

demonstration method to enforce understanding of the concept of the chain rule 

in this class.  

The only available resource we had for the lessons were either a whiteboard or 

chalkboard.  Interventions and selected approaches were used to strengthen the 

learning aspirations of the students. As an experienced lecturer I had to use 

scaffolding to help the learners to move from one level of mathematical 

understanding to another. Tools and strategies which assist students to attain a 

higher level of understanding by encouraging creative and divergent thinking are 

known as scaffolds (Brush & Saye, 2001; Mccosker & Diezman, 2009). 

Anghileri (2006) asserts that students actively construct meaning as they engage 

significantly within established mathematical practices. These tools in a 

mathematics classroom could include diagrams, pictures, technology, 

mathematics formulas and hints for an effective solution process. 

Peer collaboration was encouraged by allowing students to work on mathematical 

tasks given during the lesson. This collaboration, when combined with effective 

sequencing and pacing of the lesson, contributes to the teaching and learning of 

mathematics. Pacing and sequencing refers to the way the lecturer moves from 

one concept to the next within the mathematics topic to ensure maximum use of 

instruction time. Feedback was also used by the lecturer to create an appropriate 

milieu for effective teaching and learning.  There was greater lecturer-student 

interaction promoted as students were encouraged to verbalise what they saw and 

thought. They were motivated to explain and justify their written answers. It was 

through the students‟ comments, questions and answers that their mental 

constructions regarding the chain rule were accessed. This was done in an attempt 

to answer the question, ‘How do students construct various structures to 

recognize and apply the chain rule in the context of calculus? ’ 

The comparisons between three different techniques were made in chain rule 

differentiation. The first technique was the one using „Leibniz form technique‟. 



 
 

The second one was the one where we differentiate from the innermost function 

and move outwards. We shall henceforth refer to this method of chain rule 

differentiation as a „link form technique‟ of the chain rule. The third one involves 

straight application of the chain rule in differentiation. We shall refer to this 

method of differentiation as a ‘straight form technique’. In this technique 

students used the chain rule mechanically by finding the derivatives of all the 

functions starting with the function on the outside of the given problem and 

multiplying out.  For example, consider differentiating .sinln 3xy   We have 

characterized the three forms of the chain rule: (1) Leibniz form technique gives, 

we let ;
1

;ln
udu

dy
thenuy   where ;sin vu  and 

3xv   so that 

,cos;3 2 u
dv

du
andx

dx

dv
  and

23cos
1

xu
udx

dv

dv

du

du

dy

dx

dy
 . This would 

give
3

32

sin

cos3

x

xx
. (2) Link form technique gives, we get .

sin

1
cos3

3

32

x
xx  (3) 

Using the Straight form technique we get, .3cos
sin

1 23

3
xx

x


 
Answers using 

the three techniques were simplified to see if they were the same.  

The lesson was introduced by discussion of the differentiation of the problem, „
33 )3(  xy ‟.  The given function was identified as a composite function and a 

Leibniz form of differentiation was used where 33 x was represented by u.  Its 

derivative was then indicated as 23x
dx

du
 . The function, 3u ,was then 

differentiated to get 23u
du

dy
 and 

dx

du

du

dy

dx

dy
.  22 3.3 xu 223 3.)3(3 xx  .

232 )3(9  xx  The presentation on the whiteboard was captured in the video-

clip of Figure 6.1. 



 
 

 

Figure 6.1: Leibniz, straight and link form techniques of the chain rule 

application.  

Various examples on differentiation using the chain rule were discussed with the 

students in this class. These included differentiation of composite functions like: 

(1) )3sin(tan)( xxf  ; (2) )cos(cos xxecy   (3) )4(sin3 xy   (4) 

)cos.ln( 2 xxy   (5) 
xxxf 2)(  and (6)

)1(

)1(
ln)(

3

625

xx

xx
xf




 .  The other tasks 

that the students had to engage in appear in Appendix B3. 

After the second problem, one of the students asked, „Is it a must that all the time 

when differentiating we start at the end of the problem, can’t we start from the 

beginning, will that make a difference?’ The technique used to differentiate 

)cos(cos xxecy   was the straight form technique (see Figure 6.1, number 3). 

Differentiation using the chain rule proceeded from the outward function to the 

innermost function. This was then presented as a solution,

)).sin(1).(coscot()cos(cos' xxxxxecy   After the researcher explained 

that this would come to the same answer whichever way it was done, a further 

question came from the same student, „Ngamany’amazwi bowubalekel’ibracket? 

(In other words you did not want to use the bracket?) To this the researcher 



 
 

responded:  „Not really, but I was trying to show you that you can also start 

differentiating the given function from the left to the right as long as you are going to 

differentiate each function.‟ This meant that differentiation using the chain rule 

starting from the innermost function (x + cos x) contained in the brackets and 

then multiplying by the derivative of the outward function cosec of (x + cos x) 

would come to the same solution.  

 A mental or physical transformation of mental or physical objects is considered 

to be an action when it is a reaction to stimuli which the subject perceives as 

external (Dubinsky, (1991). This student perceived and reflected on a repeated 

action of differentiation and wanted to establish control over it. This is why she 

wanted to verify the direction and steps to be followed when differentiating.  The 

student operated in the action stage at that moment and was thinking about the 

problem in a step-by-step manner and was looking at one step at a time. The 

interiorisation of the action then started when the mental mechanism of 

differentiating composite functions was converted to a process that took place 

internally in the student‟s mind. Interiorisation had not been experienced by the 

said student at that point in time. 

The students were working on their own after which they exchanged books for 

corrections. They then worked collaboratively as unorganized pairs as they 

compared their solutions. A student who had finished doing the first problem on 

his own would then exchange his book with another one who had also finished, 

for marking. The discussion on how one student, arrived at his solution, would 

then ensue between the two. At this stage each one of the students justified how 

he or she arrived at his own solution. Most of the time sounds like, „oooohh…‟ 

were heard as one of them realized his/her mistake.  A student working 

individually on one of the problems given can be viewed in the video-frame of 

Figure 6.2. 



 
 

 

Figure 6.2: Student working individually 

Of most interest was the argument that ensued as each of the students in a pair 

argued for the correctness of his response and the other one also claiming his 

presentation to be correct. They then called for the researcher to resolve their 

dispute.  The dispute was around the different approaches that the two had 

followed in finding the solution to: Differentiate )4(sin3 xy  . One of the 

students presented his solution as )4(sin3).4cos(.4 2 xx while the other one gave

4).4cos().4(sin3 2 xx . They knew that the two solutions would give the same 

answer )4cos().4(sin12 2 xx . The main argument surrounded the direction of 

differentiation. The representational way of seeing the chain rule, was operational 

(seeing it from the inside) for one of them, while the other student saw it in a 

linear way, where he dealt with the differentiation one by one in a straight line. 

The latter student used the straight form technique of the chain rule while the 



 
 

former used the link form technique. Those students are said to be reacting to 

stimuli perceived as external in the action stage. They were treating 

differentiation as a formula. When they finally realised that both their solutions 

were correct, the action understanding was converted to process understanding 

where transformations were interiorised in their minds. Each one of them 

compared and learnt from each other the difference in approach to the same 

problem.     

Several times the researcher stopped at the tables and assisted the students with 

their queries without giving them straight answers (see Figure 6.3).  Students also 

raised their hands to get attention of the researcher to answer queries or 

questions.  

 

Figure 6.3: Picture of students in the learning laboratory 



 
 

In the classroom, the students worked collaboratively on mathematics tasks 

designed to help them apply the mental structures that they were expected to 

build on in understanding the chain rule. In some cases students worked 

individually, in pairs or as a group in trying to negotiate a group solution to the 

problem or sometimes compared their solutions. This is illustrated by the still 

photo in Figure 6.4. 

 

Figure 6.4: Students working in pairs 

After much explanation on how the chain rule works, the problem based on 

)cos.ln( 2 xxy    was given as an exercise to try out in class on an individual 

basis.  As a pair of students indicated that they had finished they were instructed 

to exchange books and to mark each other‟s work. This allowed them to then 

work collaboratively. As the other student marked his companion‟s work, he 

would shout for the return of his book to correct his own mistake which he 

detected as he was marking. As the researcher went round from desk to desk 



 
 

checking on the answers displayed, she noticed how one student was arguing 

with his companion who marked him wrong for a presentation he thought was 

correct. The answer is displayed in Extract 6.1.  

                 

               Extract 6.1: Senzo‟s response 

  

The marker, Sbu, drew a circle and question mark in the problem above arguing 

that Senzo (the owner of the book he marked) could not represent 
dx

dy
with a 

function in u and x at the same time. Initially he questioned even the method used 

by Senzo. When he was reminded of the Leibniz form technique used by Senzo 

who was comfortable with the substitution method, he (Sbu) exclaimed that „It’s 

a long method anyway.‟ Sbu was operating in the action stage. He only knew 

how to perform operations on differentiation from memory or clearly given 

instruction. Senzo had a process conception since he displayed transformation of 

physical or mental objects perceived as relatively internal and totally under his 

control. Senzo‟s error was to write the derivative of y = ln u as 
udu

dy

ln

1
  instead 



 
 

of
u

1
. He was able to convince and justify by explaining to Sbu how he found his 

derivative without deviating from the method used by Sbu in his own solution. It 

was during redoing the problem and trying to convince Sbu that he noted his 

mistake and rewrote the derivative as .
1

u  
The argument was most interesting as 

Senzo revisited his presentation to convince Sbu that he understood the use of the 

Leibniz form technique and preferred it over the other techniques.  Senzo used 

conceptual understanding as he identified and applied differentiation principles.  

The students operating in the action stage care about getting the solution correctly 

and cannot justify how they arrived at their answers. They think about procedure 

in terms of its individual steps. They also could not link and adjust their steps of 

operations to differentiate functions comprising of multiple compositions.  Senzo 

had interiorized actions since he was able to use the process as an internalized 

procedure.   

Problems involving the differentiation of a composite of a greater number of 

functions were then given so that those who had finished were kept occupied. 

Often, they would report their results to the class.  Sometimes the students lifted 

up their hands to draw the lecturer‟s attention to their questions. It was interesting 

to see that some students pay attention to the explanations given to their 

companions even though they hadn‟t posed any questions. In this way lecturer-

student interaction was enhanced. The video-frame in Figure 6.5 captures one of 

the interactions between the lecturer and a student during the tutorial period.  



 
 

 

Figure 6.5: Student-lecturer interaction 

Throughout the teaching process, the emphasis was on discussion, reflection, 

explanations by the lecturer where appropriate, success in completing the tasks 

and understanding the chain rule. 

Some of the class work problems given are displayed in Figure 6.6. 

 

Figure 6.6: Other problems given 

The greatest challenge in this classroom was the use of a small white board which 

was the only means to aid my teaching. After two or more problems I had to 



 
 

erase it time and again as the lesson developed. Buhle asked after the discussion 

of .
)1(

)1(
ln)(

3

625

xx

xx
xf




  ‘Was it going to be wrong to first differentiate with 

respect to ln function and then after that use the product rule for the other 

functions? This would be as a result of slicing the composite function into pieces 

and not recognizing the ln function as an instructing function in the composite. 

According to APOS the process of differentiation had been encapsulated to an 

object.  This student understood that the derivative with respect to ln function 

was

3

625

1(

)1(

1

xx

xx




. He was prepared to then differentiate the remaining composite 

function using the product and quotient rules. The researcher tried to discourage 

students from this long chain of differentiation as she feared that they would 

make unnecessary mistakes, like omitting brackets where they were due.  The 

students were mostly encouraged to first use the logarithmic laws in interpreting 

the function. This was because logarithmic differentiation was also tested 

specifically on this section. The construction of mental structures was very 

spontaneous at first where the student differentiated with respect to the logarithm 

first and seeing the  
)1(

)1(

3

625

xx

xx




 as one composite function. Specific mental 

constructions where the encapsulation of the processes of differentiation 

including the product and quotient rules together with the chain rule were 

employed by this student successfully. This student is said to be having a schema 

of the chain rule. For him its‟ not the complexity of the problem that determines 

application of the chain rule but rather, actions, processes, objects and a 

coherence of other schema. He was able to jump back and fourth among the four 

stages even though they are made in a partially ordered sequence. He showed 

coherence relative to the concept of the chain rule in the sense that the student 

had devised some means, explicit or implicit of deciding to stick to the use of the 

chain rule to sidestep the application of logarithmic rules.   



 
 

The explanation given by the researcher was that ln was the one that was 

commanding the other functions on how to behave and that the function given 

could not be rearranged anyhow.  An example similar to the original one was 

given to assist in explaining the operations with logarithmic functions.  Perhaps 

the identification of the dominant function, if there be one, would help the 

students to eliminate misconceptions before they differentiate.  

After twenty five minutes, the problem „Differentiate 









xx

xe
y

x

tan

sin.
ln was given 

as an activity to be done in class. Zonke volunteered to do its solution on the 

whiteboard (see Figure 6.7), but did not want to give any explanations to the class 

on how she did the problem. After her clear illustration to the above problem she 

instructed the class to inspect her solution and pose questions that she would 

attend to if they needed further clarity. This student is said to be thinking of the 

chain rule as an object because, she reflects on a need to apply the derivative as a 

series of manipulations. The mental constructions in the procedures involved in 

differentiation using the chain rule were transformed by some action into an 

object that could be seen as a total entity. Encapsulation of the process to object 

stage was complete. She was aware of the differentiation of this problem as a 

totality as she constructed transformations on the given problem.  



 
 

 

Figure 6.7: Presentation by Zonke 

During the lesson the researcher socially interacted with the students to promote 

learning. Social interaction and use of Zulu language was used by the researcher 

to engage with the students in order to promote learning. Vygotsky‟s (1986) 

learning theory on scaffolding agrees with this. This theory asserts that learning is 

enhanced through social interaction between the student and the teacher. 

Vygotsky views the teacher as the one who is able to lift the students‟ 

achievement level, and he also claims that immediate assistance whilst 

supervising the students also lifts their performance. 



 
 

The activities on differentiating (1) )(cot 353 2 xexy and (2) )5(tan 222  xxey

were given as exercises to be done for homework away from class without the 

researcher‟s supervision. It was very interesting to mark Lutho‟s response to the 

first homework question displayed as follows in Extract 6.2. 

 

Extract 6.2 Lutho‟s response 

When I asked Lutho to tell me how he arrived at his answer, he said, „First I take 

care of the power, mhm…… 

Researcher: yes, go on… 

Lutho: Ngiya differentiyeyitha ipower kuqala, bese wonke ama functions 

engingekawenzi, ngiloko ngibhala u 
dx

d
 for everything that I have not 

differentiated njalo, ngize ngiqede. (I differentiate with respect to the power first, 

and always write 
dx

d
for every function that I haven’t differentiated until I finish). 



 
 

Angithi yiyona ichain rule leyo, mangabe ngizwe kahle? (Is that not the chain 

rule?) 

Researcher: Oh well I am impressed except that the last part, (pointing at 2)… 

Lutho: Sorry mhem, iphutha lami,(my mistake), supposed to be 2x. (He said that 

grabbing his pen quickly and rectifying the mistake, putting 2x instead of 2. 

In step two of his solution he left out the second bracket but recaptured it back in 

the following steps. This was a common error made by other students regarding 

change in operations after differentiation. Also Lutho presented the derivative of 

32 x as
 

)3(
2

1 2 x instead of .)3(
2

1
2

1

2


x  The latter error led him to multiply 

2
2

1
  and got  ).3( 2 x  Lutho‟s solution is a guided notation using the link form 

technique of chain rule application and was used with caution by him initially. He 

demonstrated his mental construction of the chain rule as an object. At this point 

in his development he displayed the ability to reverse certain processes. He could 

trace back his steps of which functions were already and still to be differentiated. 

According to the Triad, Lutho operated in the Inter- stage with regards to chain 

rule application since he displayed construction of the underlying structure of the 

chain rule as an object through reflection on relationships between various 

processes from previous stages. This was done by putting 
dx

d
 before functions 

still to be differentiated. The two errors are not associated with chain rule 

applications but ascertain that he did not verify his response. He seemed excited 

and sure about chain rule application. 

 

 



 
 

               6.4 Lesson two: Presentation and discussions 

 

This was a follow up lesson with the same class the following day in a lecture 

hall at the University of Technology. First year engineering students (197) were 

assembled in one lecture hall of capacity three hundred students. Not all students 

attended the lecture, some were absent.  All students had already been introduced 

to the chain rule and its applications during the previous lesson by different 

lecturers. Exercises were given to students to consolidate the understanding of the 

concept of the chain rule and to ascertain that all students in the group shared the 

same understanding of the concept and its applications.  The exercises were done 

in class. Exercises ranged in their level of difficulty from the simple one to more 

complicated differentiation problem. 

 A part of the lecture hall where the students were seated in rows is indicated in 

Figure 6.8. 

 

Figure 6.8: Students seated in a lecture hall 



 
 

The main activities in the lecture included discussion of examples on 

differentiation in calculus, using the chain rule.  

It was promising to learn that the students were able to pronounce correct 

answers, telling the researcher what to write on the chalkboard for most of the 

simple problems. Regarding the problem ,
tan

sin.
ln

4

xx

xe x

 I noticed that students 

were so keen to use the straight form technique of the chain rule. Zuko said, „it 

will be one over everything.‟  

Researcher: What is everything? And why are you saying one over? 

Zuko: Look mhem, You differentiate with respect to ln and it becomes one over 

that whole function, (pointing at
xx

xe x

tan

sin.4

) 

Researcher: Then what? 

Zuko: You just multiply by eh, eh…….. 

Researcher: What? 

Zuko: The derivative yale eseleyo ifunction (the remaining function), using 

product and quotient rule. This is what it will look like: (he then wrote, see 

Extract 6.3): 

 

 

 



 
 

 

Extract 6.3: Zuko‟s response 

Researcher: Wow! What about interpreting the ln function first? 

Zuko: ‘Well even that can work but anything wrong with using the chain rule 

straight, ngoba mina angifuni kwenza amamistakes using ama ln laws egingekho 

sure ngawo.’ (I don‟t want to make mistakes by incorrectly using the ln laws 

because I am not sure of them). 

Researcher: And eh…. Ar‟nt you scared that this is too long? 

Zuko: No mhe…em, as long as I am sure that it’s correct, because I 

differentiated everything. 

Zuko used the link form technique of the chain rule to differentiate at first.  He 

then incorporated the straight form technique applying the product and quotient 



 
 

rule correctly. We could say that Zuko has a schema of the chain rule. He has 

internalized all the processes of differentiation as a procedure.  He sees the 

procedure of differentiation as a whole and applies the chain rule freely. 

According to APOS, the process has been encapsulated into an object of the 

concept of the chain rule.  He sees the chain rule as a total entity that can be acted 

upon by actions and processes and transformed as he applies the product and 

quotient rules.  He looked at the given problem as an object where the product 

and the quotient rule could be exercised. He was able to jump back and forth 

between a collection of actions, processes, objects and other schemas of 

differentiation during the use of the chain rule.  According to the Piaget‟s Triad, 

the student has moved to the Trans- stage of development. He showed evidence 

of reflecting on the explicit structure of the chain rule, being able to operate on 

the mental constructions which made up his collection, by using the chain rule 

proficiently. He had constructed the underlying structure of the chain rule and 

reflected on relationships between various objects from previous stages. So he 

had a chain rule schema. 

During the lesson each student who had finished doing his/her problem was 

asked to read out his/her answer so that the researcher displayed it on the 

chalkboard (see Figure 6.9). This was done to ensure that all the students in class 

got the correct solution to each problem with discussions and explanations of 

how one arrived at his/her answer. It was emphasized that in the solutions that 

were read out by students, it was not about a correct or wrong answer, but rather 

how he/she arrived at the particular answer. All the solutions to the given 

problems were displayed on the chalkboard. This helped even other students to 

check with their own solutions regarding each problem. These can be viewed in 

the video clip captured in Figure 6.9. 



 
 

 

Figure 6.9: Presentation of students‟ responses in lesson two 

The list of problems attempted by the students in class, are listed in Appendix B3.  

   6.5 Lesson three: Presentation and discussion 

 

The third lesson involved integration by substitution using the chain rule. Various 

examples were demonstrated by the researcher with full explanations on the u-

substitution (see Figure 6.10). Worksheets with a number of exercises (see 

Appendix B2) on the use of the chain rule were then issued to students. There 

was space provided below each task in the worksheet for students‟ responses.  

This was done to reinforce the learning that took place in the three sequential 

lesson components. The aim was to provide students with opportunities to make 

applications of the chain rule they learnt and prepare them for the mathematics in 

which chain rule would be applied. This time students worked collaboratively. 

The activities were designed to foster the students‟ development of mental 

structures called for in the initial genetic decomposition. The genetic 



 
 

decomposition assumed the actions, processes, and objects that play a role in the 

construction of a mental schema for dealing with the chain rule.  

 

Figure 6.10: Discussions on Integration 

Whilst working in groups students discussed their results and listened to 

explanations given by fellow students. The students worked collaboratively on 

mathematics tasks designed to help them use the mental structures that they had 

built during the two previous lessons. In some cases, students worked on a task as 

a group, whilst in other cases they worked as individuals and then compared 

notes, and then negotiated a group solution to the problem. They then reported 

their results in the class. During this process, the emphasis was on: (1) 

discussions, (2) reflection explanations by the researcher where appropriate, (3) 

completion of the tasks by the students, and (4) understanding the use and 

application of the chain rule.  

As the researcher moved from group to group, she noticed that some students 

used a lead pencil to record their responses on the worksheet. They were trying to 

avoid mistakes and allow correction of an incorrect response without spoiling the 

worksheet. In some groups, after transcriptions of agreed responses, all the 



 
 

members of the group satisfied themselves that the submitted response was 

appropriate. They argued from time to time of the positions where brackets 

should be inserted. Even after submissions of completed worksheets, other 

students continued convincing and teaching the inquisitive students on how the 

chain rule works. This can be seen in the still photo in Figure 6.11. 

              

Figure 6.11: Students explaining to each other in groups. 

It was so interesting to watch the students refering back to their notes in their 

books before attempting the questions. Asked about this Zazi answered: I 

remember a problem that you did for us, it looked like this one. So I want to 

compare and then differentiate this one. Although Zazi is operating in the action 

stage, he needed to gain experience constructing actions similar and 

corresponding to differentiating using the chain rule. The experience of 

differentiation using the chain rule was built upon in subsequent activities like 

those in the worksheet, where he was asked to reconstruct familiar actions as 

general manipulations.  

The researcher noticed that students in some groups would first copy a task in the 

worksheet onto their books. They would then work on it as individuals after 



 
 

which they compared their answers. Students argued and agreed upon certain 

responses. Individuals justified how they arrived at their responses. This way they 

taught each other and gave verbal descriptions of actions taken in their own 

words. They then repeated the actions many times with different tasks in their 

books and in the worksheet. Thus the worksheet helped the students interiorise 

the actions. 

It was also noticed that most students in different groups were operating in the 

Intra- stage of the Triad. They had a collection of rules of differentiation with no 

recognition of relationships between them. Those students were helped by others 

who reflected on using the chain rule by applying actions to dynamic processes. 

The latter group had created an object of the chain rule. At the same time they 

applied actions on differentiation and as such the process of differentiating using 

the chain rule was encapsulated to form an object.   

The worksheets were analyzed for meaning which is one of the mechanisms 

necessary for understsnding a concept. These included detecting (1) the 

connections made by students to other concepts, (2) calculations made using the 

chain rule, (3) the chain rule technique used, and (4) mental images on which the 

chain rule is based.    

All the groups applied the chain rule to the first task y = tan
2
 (3x + e

12x

 )   

correctly using the straight form technique although only two out of twelve 

groups presented a solution with brackets, when they differentiated the composite 

function inside the brackets in the given task. One of the groups who left out the 

bracket then went on to detach the derivative 3 of 3x from the + sign. This 3 now 

multiplied the first two functions (see Extract 6.4).  



 
 

 

Extract 6.4: One group‟s presentation of task 1  

This mistake was not detected by any of the other members of the same group. 

Those students struggled with the connection of previously learnt algebraic skills 

like use of brackets where appropriate and manipulation of algebraic terms in a 

function. The calculations presented after differentiating using the chain rule 

successfully were therefore not correct for seven out of twelve responses 

received. The mental images constructed by the seven groups in using the chain 

rule were incomplete. Although the actions were interiorized into processes, the 

processes were not encapsulated to objects. This could partly be attributed to 

previous knowledge of algebraic skills which were just actions and never 

interiorized. According to the Triad students in the said groups saw the chain rule 

as a procedure of differentiation which could not be connected or related to other 

processes applied to functions. Thus most students operated in the Intra- stage 

regarding task 1. This concurs with what Lakof & Nunez (1997) asserted that 

mathematics begins with direct human experience and ends there for some 

people. According to APOS, we observed that some students could only go as far 

as the action stage.  

The second problem y = (cos
2 

x + e 
sin x

) 
2
 was presented correctly by nine out of 

twelve groups. Only one group avoided the use of the chain rule by squaring the 

given function and then differentiating. This was a brilliant idea but still required 
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them to apply the chain rule on the individual terms, cos
4
x, 2cos

2
x e 

sin x 
and e

2sin x
.  

They then used straight form technique to differentiate. Those students were 

connecting the given function to a square of a binomial. Thus a part of 

understanding the concept of the chain rule is a mental process involving sorting 

out the given function, dealing with its composition, and connecting the two to 

find the derivative. They indicated a process construction of mental images since 

they transformed the given function to a trinomial which was operated on by 

repeating the actions of differentiation. Their work has been captured in Extract 

6.5. 

 

Extract 6.5 Chain rule application after squaring a binomial 

The third task required students to differentiate 

implicitly using the chain rule. Five groups out of twelve groups introduced 

natural logarithms on both sides of the equation before differentiating. They 

explained that they connected the relationships of exponentials in the right hand 

side function with logarithms which would get rid of the exponent. In this way 

they ended up with simple expressions on both sides and thus allowed them to 

use the straight form technique of chain rule differentiation (see Extract 6.6).  



 
 

 

Extract 6.6: Differentiation using natural logarithms 

Their calculations indicated a full understanding of the use of the chain rule. 

They operated in the Trans- stage of the triad since they could reflect on 

relationships between various objects from previous stages. They displayed 

coherence of understanding of differentiation rules and composition of functions. 

Three of the five groups presented responses of full construction of mental 

images of the chain rule and a connection between understanding of algebraic 

manipulations of the derivative and function composition. The other seven groups 



 
 

applied the chain rule directly using the straight form technique and then 

processed the resulting function to get the derivative. Two of the responses 

indicated a transition from an operational to a structural mode of thinking since 

they brought the concept of the chain rule into existence and used it with caution, 

and preferred it over other methods of differentiation (see Extract 6.7). 

 

Extract 6.7: Straight form technique used in differentiation 

The last task involved differentiating                          by applying the chain rule.
 

Generally, one of two strategies was employed by students. The first form 

technique called for a specific connection between application of natural 

logarithms and differentiation. 
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Extract 6.8: Group 3‟s response on logarithmic differentiation 

Only two groups displayed a coherent collection of the logarithmic rules  and 

differentiation. Those groups were operating in the Trans- stage since they 

reflected on the explicit structure of the chain rule and were also able to operate 

on the mental constructions which made up their collection. Those students 



 
 

presented responses showing internal processes for manipulating logarithmic 

objects. Their schema enabled them to understand, organize, deal with and make 

sense out of application of the product rule, quotient, logarithmic rules and the  

chain rule. The other three groups could not apply logarithmic rules correctly and 

as such could not process the differentiation of the given task.  This is illustrated 

in Extract 6.8 where students resolved the surd form of the function correctly and 

took natural logarithms both sides of the equation. The interpretation of 

logarithms was then incorrect since a bracket was left out in step three of the 

response. Thus the function differentiated was not the originally given one. Even 

in their process of differentiation some brackets were still left out when they 

should have been there. Also the derivative of  the last term,  -ln(x2  +  1)   in step 

four was recorded as                      instead of                         . In the next step the 

subtraction sign has been left out and then restored back again in the following 

one. The students in this group‟s actions indicated that they knew which steps to 

follow when differentiating. Their mental manipulations did not react to external 

cues of basic algebraic manipulations and as such transformation was not 

complete and  their actions were not interiorized. Those students did not 

recognize the relationships between application of natural logarithms and 

algebraic manipulations resulting in multiplications when they were due and 

subtractions where appropriate. They perceived differentiation as a separate 

entities and even the rules applied were not remembered correctly. These were 

operating in the Intra- stage of the Triad. Their response is illustrated in Extract 

6.9. 
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Extract 6.9: Incorrect application of chain rule in differentiation 

The other group employed the straight form technique after converting the surd 

form to its exponential form. However, they did not then utilize the product and 

quotient rules appropriately. Their actions were not interiorized with regards to 

logarithms and this had an impact on applying the chain rule in the given task. 

Their mental images could not be related to the string of symbols forming the 

expression, since they could not interpret both the symbols and or manipulations. 



 
 

Since calculations reflect the active part of mental constructions, the rules for 

these students were not perceived as entities on which actions could be made. 

Dubinsky (2010) asserts that in such cases the difficulty does not depend on the 

nature of the formal expressions, but rather in the loss of the connections between 

the expressions and the situation instructions. 
 

          6.6 Conclusion 

 

The students‟ responses discussed above indicate that the instructional pedagogy 

should accommodate presentation of tasks that evoke rigorous deductive 

reasoning enabling the students to write and reflect on how they construct various 

mental images. A wide range of interactions between students themselves and 

between students and the researcher were discussed. In the next chapter I present 

analysis of interviews of selected subjects based on their responses to the written 

instrument.  

 

 

 

 

 



 
 

CHAPTER 7 

ANALYSIS OF WRITTEN RESPONSES AND 

INTERVIEWS 

         7.1 Introduction 

 

In chapter six, video-recording, interactions between students, between students 

and the researcher, and instructional design were outlined. In this chapter, a 

transcription of the students‟ interviews on selected tasks based on their written 

responses is presented. The selected subjects were asked various questions in an 

effort to extract how they constructed various mental structures. It was of 

importance to detect whether they recognized and applied the chain rule in the 

context of the given tasks. This chapter reports the analysis of six interviews 

based on the descriptions of the Triad and mental constructions called upon in the 

initial genetic decomposition. The Triad mechanism is used to interpret the 

observations, and the data for each subject is described by a level in the Triad in 

conjunction with APOS. 

          7.2 The structure and analysis of the interviews 

 

Semi-structured interviews of 30 minutes to 1 hour duration each were conducted 

by the researcher with each of the six participants selected from the 30 first year 

students. An interview schedule was prepared with the participants of the study to 

use their and the researcher‟s time appropriately. The purpose of the interview 

was explained each time to each selected subject prior to conducting the 

interview. The confidentiality of their names and the time needed was also 

specified. Fictitious names for the participants have been used to ascertain 

confidentiality and anonymity. 



 
 

 The interviews were audio-taped. It was sometimes required of the participants 

to write their answers on a worksheet besides expressing them verbally to explain 

their thinking even if the answers were incorrect. Some sub-questions related to 

the notions: (1) the definition of a function, (2) the chain rule, (3) composite 

function, (4) relationship between the chain rule and the composition of functions 

and (5) the structure of the integrand. These were asked at the convenient 

moment according to the way the interview was going.  Probing questions were 

used to elicit information on the chain rule more fully. This question type was 

used extensively in this study because the researcher wanted to explore students‟ 

thinking processes.  Misconceptions and difficulties that emerged during the 

interviews were analyzed with the view of establishing how students construct 

various structures to recognize and apply the chain rule in the context of calculus. 

The different categories of: functions, composite functions, derivative and the 

structure of the integrand were searched, for the mental construction in relation to 

the proposed initial genetic decomposition in Chapter Three. It was also of 

importance to establish whether the students‟ category schema aligned with the 

genetic decomposition. The Triad stage of schema development in which the 

students were operating with respect to the chain rule and their identification of 

the reverse application of the chain rule in the substitution technique for 

integration were of significance to this study. Some of the questions in the 

interview were geared at finding out if students were just using memorized rules 

of special composite functions (such as power functions and trigonometric 

functions). Was the chain rule user-friendly as a way for finding derivatives of 

composite functions? 

 

 



 
 

      7.3 Analysis and discussion of written responses and    

               interviews. 

 

In addition to classroom observations when students did activities, class work 

exercises and tutorials on the chain rule applications, semi-structured and 

unstructured interviews were conducted with six subjects based on their 

responses to the different activities in the questionnaire. The objective of the 

interviews was to (1) get clarity on the written responses, (2) classify the chain 

rule schema development with respect to the Triad, (3) check for encapsulation of 

processes to objects or de-encapsulation of those processes, and (4) the 

development of mental constructions in relation to the proposed genetic 

decomposition. 

It was requested that some students who struggled with explanations write down 

their answers during the interview to justify their mental constructions. In these 

interviews the students were asked to respond in an open-ended fashion to the 

following issues: (1) justifying their responses to particular questions in the 

research instrument, (2) the rule they used in differentiating, (3) stating the chain 

rule, and (4) identifying the students‟ preferential methods in integration. Some 

of the common questions asked in order to assess the student's conceptual 

understanding included: (1) State the chain rule? (2) Could you write down a 

mathematical general formula for the chain rule? The instrument whose 

reliability was validated that was used in the pilot study was administered to 30 

first year students, who volunteered to partake in this of the study. The skills 

addressed by the questionnaire per item and the scoring code distribution in 

analysis, was illustrated in Table 5.1 (on page 86). The summary of the scores 

gained by each participant, in each category indicated higher scores than the 

scores on the Phase 1 of the study.  Figure 7.1 represents this illustration. 



 
 

It is evident from the graph above that the least category understood by students 

is composition of functions. A higher score of 3.0 is recorded than a previous 

evaluation with students who had already passed the course, which recorded a 

mean score of 2.7. The increase in scores would be associated with the 

instructional treatment offered in the three sequential lessons given on the chain 

rule. Also students did not make sense of tasks on functions as this section was 

not popular in examinations. Again we face the problem that students only study 

for marks and not concept understanding. The highest score of 4.7 was recorded 

for the derivative indicating an increased understanding of differentiation, using 

the chain rule.  Once more the high scores indicate that students provided more 

correct responses for derivatives even though they could not make sense of 

composition or decomposition of functions. 
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Figure 7.1: Mean scores for all categories 

The scores for each category and coding used for displayed mental constructions 

were outlined in detail in Chapter Five in Tables 5.1 to 5.6. This coding was 

adopted in the main study since the instrument tested out to be valid and reliable.  

                                    7.3.1   Category A: Functions 

 

Two items in this category were used to find mental constructs displayed by 

students in the understanding of functions.  

                                                        7.3.1.1     Item 1  

The task for Item 1 appears below. 

 

Is a student correct to identify the following as a function? 

 Explain.  

About 60% of the 30 students gave correct responses to this Item. One of the 

responses indicated two vertical lines introduced on the graph. Extract 7.1 

captures this response. An interview with her indicated: 



 
 

Researcher: I noticed that you drew two lines in the given graph in question 1. 

Could you justify that?  

Sindi: Mahm engikwenzileyo lana, ngibone kunamajiko-jiko, nalana 

kunamagqudu avalekile, (I was showing the zig-zag part and then the closed 

dots), so I wanted to show that any of the two parts would lead the given graph 

not to be a function. That is why I drew the two lines.  

She indicated the closed dots and later explained that drawing the second line was 

to ascertain that the closed dots were in line. This for her implied that the graph 

was continuous which was incorrect. Not only that, Sindi knew that the zig-zag 

part of the graph did indicate a function. Sindi‟s actions of understanding of 

graphical representations had not been interiorized to a process She was mixing 

two issues, continuity of a function which was not applicable to the given graph 

and the definition of a function. This was evident from the complete response and 

the contradicting explanation given when interviewed, where she indicated 

continuity and vertical line test as necessary characteristics for a graph to be a 

function. Sindi was initially scored 5 since she showed all the mental 

constructions proposed in the genetic decomposition regarding the graphical 

representation of a function in the written response.  



 
 

 

Extract 7.1: Sindi‟s response to Item 1 

Sindi was one of 6 students who gave complete written responses. All the others 

displayed correct responses without reasons. This suggests that those students 

operated on the action stage of APOS. The response, No, could have just been a 

guess. That was confirmed by Nodi, asked to justify why he thought the graph 

was not a function. He indicated: I just looked at it and decided it’s not a 

function, was I correct? 

Even though Nodi indicated a correct response, he had no idea of what a function 

is. He was at the Intra- stage of the Triad. He had no idea of the relationships and 

properties that a graph should display for it to be a function. Figure 7.2 illustrates 

the number of students versus score performance explanations. It is revealed in 

the graph that many students displayed few mental constructions with no 

reasoning and explanations to justify the written response. Nodi‟s score fell in 

this range. 



 
 

 

Figure 7.2: Bar graph illustrating student scores for item1 

Zwayi gave only one reason on why the graph in Item 1 did not represent a 

function. He was scored 3, since he did not mention anything regarding the 

zigzag part of the graph. It was interesting to learn that when he was interviewed, 

he pointed to the zigzag part of the graph before giving an explanation about 

closed dots in the graph closed. Dubinsky (2000) proposed a set of mechanisms 

for constructing mathematical concepts. He asserted that these mechanisms 

involve mental steps such as interiorization to reinterpret an action as a process. 

Zwayi displayed a process understanding of a function when he wrote the 

activity. The encapsulation of this process to an object was incomplete. During 

the interview encapsulation and de-encapsulation were completed and Zwayi, 

displayed a better understanding of graphical representation of a function. This 

was not the case with Zandi. The interview transcription with her can be accessed 

in Appendix A. Zandi interpreted the given graph as two graphs since it was 

broken. The concept of continuity could not be evoked even by the questions 

asked during the interview. This was a new concept that had to be taught from 

scratch. Zandi was scored 1 since she showed no appropriate mental construction 

for graphs, at all. 
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A different case ensued with Popo. During the interview he explained and 

rectified some of his work. He had drawn a line to join the two dots in the 

diagram but labeled the line as horizontal. In an interview with him when he was 

asked to explain his use of vertical lines to draw conclusions, he responded: 

Popo: If the vertical line meets the graph more than once, then not a function. 

Researcher: Could you explain why you labeled „horizontal line there?‟(pointing 

at the label in the diagram). 

Popo: My mistake there mheem, angazi kwenzekeni kumina, (I don’t know what 

was wrong with me) I wanted to write vertical line. 

Researcher: What about the zig-zag part?  

Popo: That part is obvious, not a function, I just wanted to be sure that the graph 

was continuous. 

Now Popo is coming up with the property of continuity of functions which was 

not mentioned or implied in her answer. Thus in terms of APOS analysis I 

suggest that looking at the graph and deciding with an indication of vertical line 

test fully understood by a student is a process. The action of determining 

continuity would have led to encapsulation of this process and the selection of the 

whole figure as an object function if the function was continuous. 

                                                        7.3.1.2      Item 2 

The statement for Item 2 follows. 

A given correspondence associates 3 with each positive number, -3 with each 

negative number and 1 with 0.  A student has marked afore - mentioned 

relationship as a function, is that correct, support your answer. 



 
 

Only 5 students out of 30 gave a complete response indicating complete 

mathematical understanding of domain and range of the function. Those students 

were scored 5, also gave a complete response for Item 1. Figure 7.3 illustrates the 

number of students who attained the different scores. Twelve students could not 

make sense of whether a function was represented by a set of ordered pairs.  A 

few students when interviewed indicated that this concept was not part of the 

examinable content in course 1, mathematics, so they did not think it was 

important. When Zwayi was interviewed further for mental constructions 

involved in Item 2, he displayed the same discourse as he had in Item 1. The 

discourse was noticed with interpretation of Item 2, where he had to explain a 

function using the domain and range. When he was interviewed he gave the 

following explanations: 

Researcher: This second one, pointing at Item 2, is that a function? 

Zwayi: Yes, it’s a function. 

 

Figure 7.3: Bar graph showing number of students and scores for Item 2 
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Researcher: Why? 

Zwayi: Because the members of the domain are not repeated. 

Researcher: Which members form the domain? 

Zwayi: The x- values. 

Researcher: Which ones are the x-values?  

Zwayi: We have (3; 1); (3;2)… Hayi akuyona ifunction. (No it’s not a function) 

idomain iphindene. (domain entities have been repeated mapping with other 

entities for the range) 3….; 3….;. 

Zwayi went back to Item 2, read it again, listed a set of ordered pairs, and then 

made his decision based on his definition of a function regarding domain and 

range. Apparently, he knew this definition, but did not make sense of it regarding 

the task in the questionnaire.  Sfard cited in Dubinsky (2000) explains that for an 

individual to understand a process as an object, nouns, new names or new 

symbols have to be introduced to refocus discourse. She claims that this new 

signifier will help students for example in going from a function conception of an 

input/output machine to functions as objects that can be acted upon. Zwayi has a 

process understanding of a function. He knows the descriptions of a function but 

cannot relate those descriptions to a given situation. According to the Triad, 

Zwayi is operating in the inter stage since he displayed the ability to begin to 

(mentally) collect all different cases regarding a function in his verbal 

explanations, and recognized that these were related. He shows evidence of 

having collected some or all the interpretations of a function without yet 

constructing the underlying structure of their relationships. 

 

Popo (see Extract 7.2) knows that a definition of function in terms of ordered 

pairs requires non-repetition of the domain entity. He gave all the rules for an 



 
 

ordered pair relationship to be a function, but makes no meaning of them. This 

action is not interiorized into a process leading him to present a contradicting 

response. The action of mapping is not complete in his mind. 

 

Extract 7.2: Popo‟s response to item 2 

The explanation to repetition in his case does not refer to domain entities, but to 

the 3 whether positive or negative. The researcher believes that the student failed 

to make sense of the given scenario in the question. Language might be one of 

the barriers to understanding for this student. He is said to operate in the intra 

stage with respect to the Triad. His response was coded one. A response that 

displayed a totality of encapsulation of a process is listed in Appendix C4. This 

response was scored 5 as it gave all the explanations, interpretations and 

contextual applications on the graphical representation of a function.  

Zandi had seen the graph in item 1 as one graph. She was further interviewed to 

explain her response to item 2. 

Researcher: Alright Zandi, can you now justify your answer to question 2.  

Zandi read her response displayed as Extract 7.3, and said: 



 
 

 

Extract 7.3: Zandi‟s response to item 2 

Zandi: Jah…..I see, kusho ukuthi bengithatha ngokuthi u 3 uhamba ne number 

ezingu 3, kodwa ngabuye ngabona ukuthi u 1 uhamba no 0, bese ngicabanga 

ukuthi sengathi kuthathw’ inumber ezikwi ( I thought that 3 mapped to three other 

numbers, but noticed that 1 mapped to 0. So I thought the numbers belonged to) 

turning point just like in this diagram.  

Researcher: In other words the graph that you have drawn here illustrates the 

description given in the task.  

Zandi: Yes. 

Zandi has an idea of a definition of a function regarding mapping of domain and 

range. The reasons and the sketch provided, rejects this claim. Thus according to 

APOS, the actions of mapping have not been interiorized into a process. Zandi 

can‟t relate any of the descriptions of mapping with graphical representations. 

For Zandi, these are two separate entities not related in any way.  

Sindi on the other hand operated in the Trans- stage. Her explanations indicated 

that she had made all the mental constructions regarding a function definition as 

she did with graphical representations of functions.  She had a collection of the 



 
 

objects and processes of a function, and had constructed the underlying structure 

of a function. She constructed the function schema through reflections on 

relationships of graphical representations and mappings, using domain and range. 

In an interview with her: 

Researcher: I was also impressed by the response you gave in question 2. Would 

you want to explain how you came up with it? 

Sindi: I wasn’t sure at first, which is why I wrote the ordered pairs. 

Ngicabangu’ukuthi iyaqhubeka ufake amanye amapositive numbers 

mamanegative numbers (I think this is continuing, where you map with positive 

numbers and then with negative numbers). What I am trying to say is that, if you 

repeat the x-coordinate, mapping it with other numbers, it won’t be a function. 

The summary of the scores in this category is outlined in Figure 7.4. 

 

Figure 7.4: Bar graph showing a summary of mean scores for items 1 & 2 
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they could interpret a function in terms of domain and range elements, (tested in 

Item 2). 

7.3.2 Category B: Composition of Functions 

                                                  7.3.2.1     Item 3  

The task for Item 3 appears below. 

Given two functions, )(xf , and )(xg such that xexf 4)(  and xxg sin3)(  . 

Find ).)(( gf   

The results showed that most students experienced difficulty in dealing with the 

composition of functions (only 5 out of 30 displayed complete understanding of 

composition of functions). About 48% of the students were scored one for this 

item since they only evaluated f (π) and g(π)  and stopped without further 

computations. Twelve out of thirty students were able to find ).)(( gf    

The summary of the scores for this item is illustrated in Figure7.5   

 

Figure 7.5: Bar graph showing scores for task 3 
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Sindi displayed complete understanding of this item and was scored 5. A 

conversation with her revealed: 

Researcher: That is well said Sindi, could you explain how you did question 3? 

Sindy: I think yilaa ufike uxhume khona ifunction kwenye ebivele ikhona (I think 

this is where you insert one function in another so as to get a composite function.) 

So I inserted 3sin x in the place of x in the function f and then evaluated to get 4. 

                                    7.3.2.2           Item 4 

The question for Item 4 appears below. 

Given that xxxgf 5cos5sin10))((    

4.1    Find functions f and g  that satisfy this condition. 4.2   Is there more than 

one answer to part (a)? Explain.   

This item required decomposition of a composite function and very few students 

(10%) displayed complete understanding of decomposition of the given 

composite function. 12 out of 30 students were scored 1 as some of them left the 

question blank and others displayed irrelevant constructions for Item 4. 

Nonetheless in a continued interview with Sindi who was scored 4 for this item 

and had displayed more than one answer, she explained: 

Sindi: I was not sure at first and ngaze ngacabang’ ukuthi kukhona namanye 

amafunctions engingase ngiwafake, (then I figured out later on and decided to 

include all relevant functions). Sindi‟s response for Item 4 is displayed in Extract 

7.4. 



 
 

 

 Extract 7.4: Sindi‟s response to item 4 

Sindi had been scored 4 in item 4 since she just gave a correct response without 

explanations. She was amongst those students who had made all the mental 

constructions regarding decomposition of functions. After the full explanation 

she was scored 5. This suggests that she has an object conception of composition 

and decomposition of functions. She could reflect on operations applied to the 

composition process and was able to reverse it. She displayed awareness of the 

process as a totality and could construct transformations on the functions. The 

process had been encapsulated into an object. 

Twelve students were scored 1 for this item. They operated in the action stage 

regarding decomposing the given function to f and g that satisfied the condition. 

They did not know which steps to take because they were restricted to the 

formula interpretation of the composed function. A summary of the scores in this 

category is illustrated in Figure 7.6. 



 
 

 

 

Figure 7.6: Summary of scores for category B 

7.3.3 Category C: Derivative 

This category consisted of six items dealing with differentiation of functions, 

which follows:  

                                       Differentiate the following, with respect to x : 

                                      5.1       xx eexy 52sin3 cos       

                                      5.2      3)52cos(  xy    

                                      5.3     )4(sin)( 3 xxf   

                                      5.4       )4(sin cos222 exexy   

                                      5.5      )7cos(ln)( xxf    

                                      5.6     2tan3 )(cos xexecy   
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The results indicated high scores for this category. The category dealt with 

differentiation of functions and consisted of six items outlined above. The items 

ranged from simple tasks to overloaded composite functions requiring use of 

chain rule for differentiation. This category recorded a mean score of 4.7 higher 

than all the categories.  This suggests that decomposition and composition of 

functions is not a pre-requisite for the understanding of the chain rule in 

differentiation. A summary of the scores for the different items in this category is 

displayed in Figure 7.7. 

 

Figure 7.7: Summary of scores for Category C 

                                                        7.3.3.1   Item 5.1 

 

It is evident from Figure 7.8 that a higher number of scores was clustered around 

a mean score of 4. Although most of the students (19 out of 30) differentiated 

correctly, brackets and format of the response were neglected. Some students 
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misrepresented the derivative of xcos  as ,sin x  they left out the negative sign. 

Those students were just differentiating as an action not taking care and without 

constructing a meaning into it. For them it‟s just using rules and knowing that the 

derivative of this function is just that. There were no processes coordinated. 

Those students were operating in the action stage since they saw the given 

function as a formula and the errors of signs left out where they should be, meant 

that those actions were not interiorized to processes.  

 

Figure 7.8: Scores for item 5.1 

Responses to Item 5.1 revealed a mean score of 3.1 being the lowest of all the 

other tasks in this category. Most students missed the correct signs, recording the 

derivative of –3sin x as 3cos x instead of –3cos x. Most interestingly, the term,

xecos2 which involved application of the chain rule was differentiated correctly by 

70% of the students. 

                                            7.3.3.2  Items 5.2 to 5.6 

These items dealt with evaluation of the derivative using the chain rule. Scores 

were allocated specifically for correct application of chain rule, or trying other 
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means to avoid it, for example expanding the given function and then 

differentiating. Item 5.2 had least number of correct responses while Item 5.5 

enjoyed the highest number of correct presentations. In a continuation with 

Zwayi: 

Researcher: Let us now check how you did Item 5.2. Can you explain? 

Zwayi: Oh yes,  

Researcher: Which rule are you using there? 

Zwayi: Chain rule? 

Researcher: Can you state the chain rule? 

Zwayi: mh….You find the derivative of cos first and write it as – sin this thing 

(pointing at (2x -5)
2
)
 
bese ungena phakathi udifferentiate the power ye angle and 

then the angle. (you then proceed inside the bracket and differentiate with respect 

to the power of the angle and then the angle itself. 

Researcher: Yes, I understand how you came up with your answer to Item 5.2. 

My question is can you state the chain rule.  

Zwayi: You mean I must write it down.  Kungeko sibalo, kungekho lutho. (When 

there is no calculation just general) 

Researcher: Given ))(( xgf . Find the derivative 

He took his pen preparing to write, then shook his head and said: 



 
 

 Zwayi: „Iyangihlula ke mayigeneral, kodwa nje makuyesinye isibalo 

ngiyayishaya.’ (I have problems with the general form, but if given another 

problem in context, I can gladly apply it.) 

Researcher: Now back to 5.2, would it make any difference if you were given 

)52(cos 2  xy to differentiate? 

Zwayi: Oh yes, in this case it’s the function that is squared, so I would start with 

the power, to get 2 cos(2x -5) and then multiply by the derivative of the function 

cos and then times derivative of angle 2x -5. 

Zwayi could not state the chain rule. He was nonetheless able to apply it with 

reasonable explanations and displayed full understanding of the concept. He had 

been scored 5 as per explanation he gave on how he arrived at his answer. The 

reflection on operations applied to differentiation, realization of transformations, 

and being able to construct the transformations proved that Zwayi had an object 

conception of the chain rule. The totality of the concept was complete though he 

couldn‟t state the rule. This concurs with Naidoo (2007), who asserted that the 

correct answers given by students do not necessarily prove that students 

understand the concept. Buhle gave response displayed in Extract 7.5, and tried to 

justify the method he used differentiating 5.2 as opposed to 5.3. 



 
 

 

 Extract 7.5: Buhle‟s response to 5.2 

Buhle: Lapha ku 5.2, the angle is cubed, so I thought maybe I could make a 

mistake if I do straight differentiation. So I decided to do substitution using u and 

use the chain rule. The following problem looks more, simpler to me, because in 

5.3 it’s the function, that is cubed. 

Researcher: By function what do you mean? 

Buhle: I am referring to the sin function in 5.3, kanti (but) in 5.2 it’s the angle, 

2x…mh….2x – 5 that is cubed. 

Researcher: In 5.4 you wrote, „I make sure that I differentiate all the functions 

one by one until I finish.‟ What do you mean by that? 

Buhle: Phela mhem lapho ngisho ukuthi kufanele uqale la ekuqaleni, kukhona 

ipower, then ubese uya kwi function lena ye trig, mawuqeda lapho bese uya 

kumabrackets uqhubeke noku differentiatha, uloko umultiplaya. Konke nje, 

kanye, kanye, sengathi uhlubula amalayers (Look ma‟hm, I mean that you should 

start from the beginning with the power, then differentiate the trigonometric 



 
 

function. After you finish, get into the brackets and go on differentiating and 

multiplying each time. You do this one by one as if you are peeling layers.) 

Buhle used Leibniz form technique of differentiation in Item 5.2. In his 

explanation he links the composition and decomposition of functions to 

differentiation. He is clear of the function affected by the power rule and 

demarcates between the Item 5.2, where the angle is squared compared to Item 

5.3 where the trigonometric function is cubed.  In 5.3 to 5.6 he used straight form 

technique of chain rule differentiation and application of the chain rule without u-

substitution. He ran back and forth applying differentiation freely and correctly. 

The process of differentiation has been encapsulated to an object derivative. He 

displayed coherence of understanding of a collection of derivative rules and 

understanding of a composition of function. According to the Triad he is 

operating in the Trans- stage since he recognized various forms of the chain rule 

as linked. Buhle scored 5 in all the items involving use of the chain rule, 

composition and decomposition of functions. Some of his work is illustrated in 

Appendix D2. The summary of scores for Item 5.2 is given in Figure 7.9. Only 5 

students could not make the relevant mental constructions while 12 out of 30 

students displayed complete understanding showing all the aspects of mental 

constructions proposed in the genetic decomposition. 



 
 

 

Figure 7.9: Scores allocation for item 5.2. 

Almost all students gave a correct response for Item 5.3. This is illustrated by 

Figure 7.10 where 17 out of 30 students gave a complete response. No students 

mixed composition of functions or attempted to avoid the chain rule by 

expanding or rearranging the terms. Only 1 student displayed a response with no 

evidence of considering the chain rule. We could say that a collection of pre-

schema for the chain rule was formed since the collection of elements in the 

chain rule was identified in their responses. With such a task we cannot conclude 

that the underlying structure of the chain rule was formed. Most of these students 

operated in the Inter- stage of the Triad since there was evidence of students‟ 

ability to (mentally) collect and relate the different cases of the chain rule. Some 

of the students during interviews, and further questioning explained the 

connection between the general statement of the chain rule and its applicability to 

the task.  
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Figure 7.10 Scores for Item 5.3 

Looking at the responses displayed by first year students the researcher noticed 

that the complexity of the function to be differentiated from 5.4 to 5.6 was 

indirectly proportional to the scores gained by students. Item 5.5 recorded the 

highest complete responses displaying all mental constructions made regarding 

the chain rule.  The graphs displaying the scores of these performances can be 

found in Appendix D3. In an interview with Dube on how he managed to give 

correct responses on every item in differentiation, the following transpired:  

Researcher: Looking at Item 5.4, I can see that you did it correctly, together with 

5.5 and 5.6, using the chain rule in differentiation. What would you advise a 

person with problems of applying the chain rule in 5.4? 

Dube: Akabheke ipower le kuqala, athole iderivative yayo, then the function sin, 

Bese engena ngaphakathi, (let the person start with the power, and find the 

derivative of the sin function, after which he/she must get inside the bracket)  

differentiate one by one and multiply by each derivative until aqede (he/she 

finishes). 
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Researcher: Maybe. Why is it called the chain rule? 

Dube: I can say it’s because you find the each derivative uloko u(time)zile 

ugcin’usuthola ichain lamadervatives in a product ( and always multiply each of 

the derivative to get a chain of them).  

Unlike 4 students interviewed who acknowledged learning the chain rule but 

could not state or express it although they applied it correctly, Dube knew the 

chain rule. He (1) understood all the procedures involved in doing calculations 

involving the chain rule, (2) was able to access the chain rule when he needed it, 

(3) was paying conscious attention to algorithms and techniques used in dealing 

with the chain rule and as such reflect on it and (4) jumped back and forth from 

Leibniz form technique by using the u-substitution and differentiating function by 

function without substitution. Some of his work is displayed in Extract 7.6. 

 

  Extract 7.6: Dube‟s response to item 5.4 

Researcher: I want you to be explicit in explaining your understanding of the 

chain rule. What does it say? Can you write it down maybe? 



 
 

    

 

6.2  

Dube: Angikhon’ ukuyichaza kodwa ngiyazi ukuyisebenzisa. (I am unable to 

explain it but I can use it) 

Researcher: If for example I give you, ))(( xgfy  , to differentiate, what would 

be the derivative of y? 

Dube: It would be, let me write it down, f prime g, then g prime, and we multiply. 

(He wrote: )).('()(' xgxgf   

In responding to Item 5.4, Dube used the link form technique of the chain rule for 

differentiation. Dube also explained that he differentiates the first function with 

respect to the power and writes 
dx

d
 for every function that has not been 

differentiated yet. This helped him with knowing functions already differentiated 

and those still to be differentiated. This concise explanation convinced the 

researcher that he has a schema of the chain rule. He used previously constructed 

schemas of functions and derivatives to express the concept of the chain rule. He 

also recognized the given functions in Items 5.2 to 5.6 as composition of two or 

more functions, took their derivatives separately and then multiplied them. Part of 

this is the explanation he gave when he was asked on how he would help other 

students to deal with the chain rule. According to the Triad, Dube operated in the 

Trans- stage since he used the chain rule proficiently. 

7.3.4 Category D: The structure of the integrand 

 

                                                      7.3.4.1 Items 6.1 and 6.2 

Evaluate: 

6.1 dxxx  212  



 
 

 

In this category, the chain rule was embedded in the structure of the integrand. 

The scores for mental construction made were allocated according to Table 5.7. 

This category aimed at reinforcing the use of the chain rule in expressions where 

it was embedded in the structure of the integrand. The table of standard integrals 

was for this reason not issued to the students. The summary of the scores in this 

category is illustrated by Figure7.11. 

  

Figure: 7.11: Summary of scores for Category D 

Dube used the u-substitution with the chain rule to respond to Items 6.1 and 6.2. 

He argued during the interview that they normally dealt with tasks in integration 

by referring to a table of standard integrals, which was not issued for this study. 

About 75% of the responses indicated the use of chain rule via Leibniz form 

technique of differentiation, reversing the process and then integrating. More 

complete responses were reflected for Item 6.2 than 6.1. All students who made 

relevant mental constructions for Item 6.1 also gave correct responses for 6.2. 

Most students operated in the Inter- stage in this category. This is encapsulation 
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implied by Piaget‟s notion of reflective abstraction where the construction of the 

chain rule extends to another level and includes new forms of the process being 

built, drawing from previous ones to form an object. 75% of those students were 

able to think of the interiorized action a reverse and indicated evidence of 

constructing a new process in reverse. 

7.4 Conclusion 

 

Students were prompted through guiding questions to collect sets of tightly 

associated elements of the chain rule to examine their (1) knowledge structures, 

(2 internal representations, (3) how these were coordinated, and (4) the mental 

models they formed. The interviews conducted with the different subjects on 

various selected items to clarify some responses presented on the written 

instrument, helped the students in constructing and reconstructing mental objects. 

It was evident from their explanations that when the questions were revisited they 

had to think deeply about the functions and application of the chain rule. By the 

cycle of APOS theory students were led to reflection and reconstruction of 

operations important in differentiation of composite functions.  

This chapter gave explanations of how students in the first year engineering 

course constructed concepts of functions and their derivatives using the chain 

rule. Analysis presented in graphs and students‟ written work extracts served to 

explore the conceptual understanding of these concepts using APOS and the 

stages on which mental constructs on the chain rule were made with regards to 

the Triad mechanism. The next chapter concludes the study by discussing the 

findings, researcher‟s thoughts, recommendations and limitations of the study. 

 

 



 
 

CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS 

           8.1 Introduction 

 

This chapter presents (1) the findings and conclusions of this study, (2) 

recommendations, (3) limitations of this study, and (4) themes for further 

research. 

          8.2   Findings and Conclusions 

 

The findings and conclusions on the main research question addressing how      

students constructed various structures to recognize and apply the chain rule to 

functions in the context of calculus, which answer the sub-questions indicated in 

Chapter 1,  are presented in a structured discussion under the following headings: 

(1) students understanding of the function concept, (2) students understanding of 

function composition, (3) students‟ understanding of the derivative (4) students‟ 

difficulties in using  the chain rule, (5) students‟ schema alignment with the 

genetic decomposition of the chain rule, (6) the triad stage of schema 

development in which students are operating with respect to the chain rule, (7) 

students‟ identification of the reverse application of the chain rule in the 

substitution technique for integration, and (8) possible modifications of the 

proposed genetic decomposition.  

 

 



 
 

 8.2.1 Students’ understanding of the function concept 

 

The mean scores for the understanding of functions revealed a score of 0.8 higher 

than that of composition of functions. During interviews with the chosen subjects, 

it was evident that the 60% correct written responses received for the Item 1 on 

functions did not reveal students‟ understanding of a function. Also, a lower 

percentage (16,7)% correct responses was recorded for the Item 2 which was 

based on the concept of domain and range of a function. These findings indicate 

that most students displayed inadequate understanding of the function 

conception. When analyzing their responses it was evident that they only could 

manipulate and quantify functions since they emphasized numbers. They mostly 

operated in the process stage of APOS since they could make general arguments 

about functions, imagining transformations and performing actions without 

external stimuli. This understanding is insufficient to help students to deal with 

higher order calculus requiring understanding of the concept of function. 

8.2.2   Students’ understanding of function composition 

  

Students in this category could not go beyond plugging in or substituting the one 

function for a variable in the other function. The mean scores revealed an action 

stage conception of composition and decomposition of functions. Some students 

interpreted composition as multiplication where they multiplied functions as 

objects. In this case ))((( xgf  was interpreted as, ).().(( xgxf   Students not only 

multiply numbers but also multiplied entities such as functions. The process of 

substitution was treated as an entity which then became the objects of other 

actions and procedures of multiplication. This misconception was also evident in 

the pilot study. 



 
 

 There were a few misunderstandings hidden in the notation in function 

composition and the use of the „  ‟ notation. Results showed little evidence 

(33%), where students treated ))(( xgf  as a binary operation on two functions f 

and g, resulting in a new function )( gf  . These functions were the objects acted 

upon as a result of replaced processes. The processes were encapsulated to 

objects.  Some students who operated in the Inter- stage of the Triad where they 

showed evidence of understanding composition of functions, operated in the 

Intra- stage regarding decomposition. They knew the rules of substitution to form 

the composite function but were unable to reverse the actions. Although 

instructional design accommodated intervention on stressing the understanding of 

the concepts of composition and decomposition of functions after the pilot study, 

the little difference of 0,3 in mean scores still indicates a lack of understanding of 

these concepts. The results indicated that 67% of student operated in the Intra- 

stage. They had a collection of rules for substituting in algebraic expressions in 

various situations but had no recognition of identifying the explicit functions that 

made the composite. Students who are in the Intra- stage of composition of 

functions schema development were those who saw the various rules of 

composition and decomposition as not related. Those were students who were 

skilled at algebraic manipulations, easily able to assimilate rules and procedures 

in a cognitive structure that consisted of a list of unconnected actions, processes 

and objects to produce correct answers. The actions had not been interiorized to 

processes. This was evident from the answers and responses given during 

interviews by students who left blank responses for those items indicating they 

knew nothing about decomposing a function. Success in composition and 

decomposition of functions is not a necessary requirement for successful 

application of chain rule. This is supported in the data illustrated in figure 7.1. 

 



 
 

8.2.3   Students’ understanding of the derivative 

 

The highest mean score (4.7) recorded for this category indicated that most 

students displayed an object understanding of differentiation. The first item 

addressed finding the derivative of xx eexy 52sin3 cos  . This item recorded 

the least number of correct responses in this category with a mean score of 3.5 

despite the fact that only the middle term called for differentiation using the chain 

rule. A common error where students recorded the derivative of cos x correctly as 

– sin x but left out the brackets to end up with xx exexy 5sin2cos3 cos   

was observed. Such students‟ actions of differentiation are detached from the 

basic algebraic operational signs. The multiplication sign left out indicates the 

absence of links between actions and procedures. Knowing the derivative of a 

particular function is not an indication of conceptual understanding since the 

relationships constructed internally were not connected to existing ideas. This 

understanding should also involve the knowledge and application of 

mathematical ideas and procedures related to basic arithmetic facts.  

About a quarter of the students, (8 out of 30) were scored 1, indicating a guessed 

response and neglecting the application of the chain rule when differentiating the 

middle term .2 cos xe  Those subjects were operating in the Intra- stage of the Triad 

since they could not realize that the middle term was a composite function. Their 

responses displayed a mixture of not using appropriate rules when differentiating 

and making compound errors with rules used. According to APOS, they were 

reacting to external cues that give precise details on what steps to take. For 

example, most students interpreted the idea of differentiating cos x to get sin x 

which is incorrect since the negative sign has been left out, and indicates a void 

in their understanding of derivatives of trigonometric functions. During 

interviews, students would recall and want to rectify omissions of signs and 

brackets that they left out in their written responses. This could be as a result of 



 
 

differentiation from first principles not forming part of examinable topics in first 

year mathematics. On the contrary, 9 out of 30 students‟ responses displayed a 

schema understanding of differentiation regarding this item. Their responses 

indicated a collection of cognitive objects, their connections and internal 

processes for manipulating the processes of differentiation and operation signs 

correctly.  

Items 5.2 to 5.6 dealt with differentiation using the chain rule. The findings are 

discussed and classified according to the techniques followed by the students in 

applying the chain rule. Most students, who used the straight form technique in 

differentiating, ,)52cos( 3 xy  treated the trigonometric function as being 

cubed instead of the angle (2x – 5). They indicated an action understanding of the 

given function where the existing schema of powers and a function of an angle 

were not taken to account. It was only during interviews with some of them that 

they took note of this. The students in the Pilot study who indicated and 

associated using the chain rule as peeling an onion, could state the chain rule, but 

displayed an incorrect response using the straight form technique to solve Item 

5.2 as indicated in chapter 5 of this study. The 12 out of 30 subjects who used 

either the Leibniz form technique or the link form technique displayed correct 

responses. Also they indicated a totality of understanding of the chain rule with 

regard to this item.  

Item 5.3 with a mean score of 4.8 recorded the highest in this category. Only one 

student used the Leibniz form technique to differentiate, )4(sin)( 3 xxf  . The 

other students used the straight form technique correctly. Mistakes with two 

students‟ responses occurred as they left out the square function after 

differentiation. Their responses were displayed as )4(sin3.4)(
'' xxf  instead of 

).4(sin12)( 2' xxf   Also the different subjects interviewed indicated that they 

used the chain rule to differentiate. Even those students, who used the Leibniz 

form and link form techniques for Item 5.2, used the straight form technique to 



 
 

deal with Item 5.3. Evidence of schema understanding of this item was indicated 

by 57% of the subjects in interviews and in written responses while 36% had the 

processes of differentiation encapsulated as objects. Those students could reflect 

on operations applied to differentiation, realized transformations and were able to 

construct such transformations in totality.   

The responses by first year students to more complex functions for example, 

,)(cos 2tan3 xexecy  indicated that the complexity of the function differentiated 

was indirectly proportional to the scores gained by students. The more complex 

the item differentiated, the higher the scores, to the extent that, Item 5.5 recorded 

the highest complete responses displaying all mental constructions made 

regarding the chain rule. The students interviewed also indicated full 

understanding of the chain rule and being able to state it and use it. A number of 

students used the straight form technique in differentiating these tasks. In this 

manner differentiation of each function in the composite function was 

accomplished. Students either operated in the Inter- or Trans stages of the Triad. 

Those students in the Inter- stage showed evidence of having collected some or 

all the differentiation rules in a group and perhaps provided the general statement 

of the chain rule without yet constructing the underlying structure of the 

relationships. Minor errors such as dropping (−) signs or arithmetic errors; or 

applied the chain rule but making an error with the derivative rule were common. 

Such students during interviews, and further questioning explained the 

connection between their general statements of the chain rule and its 

applicability. About 50% of the subjects were able to reflect on the explicit 

structure of the chain rule and were capable of operating on the mental 

constructions which made up their collection. Without stating the chain rule those 

students were able to use it proficiently. They operated at the Trans stage of 

Triad. 



 
 

8.2.4 Students’ difficulties in using the chain rule 

 

The main difficulties noticed in using the chain rule in this study were not 

connected to differentiation. Data analyzed disputed the fact that to understand 

the chain rule, one needs decomposition of function schema. The fact that 

students differentiated correctly using the chain rule rejects this hypothesis. 

Students struggled with manipulation of algebraic terms. This involved leaving 

brackets where they were required and minor errors of inserting a – sign instead 

of a + sign. For example, in differentiating ,)(cos 2tan3 xexecy  responses like, 

,sec.cos3(cos2 2tan2tan3 xexecexec
dx

dy xx  without closing the first bracket 

after the first e
tanx

 , and just continuing with addition instead of multiplication or 

opening another bracket before 3 cosec
2
x. Nonetheless, high scores were 

recorded for differentiation against the lowest scores attained for decomposition 

of functions. In this study it was found that students who had an inadequate 

understanding of composition of functions, performed well in the application of 

the chain rule. This confirms studies by Clark et al, (1997); Cottrill, (1999), and 

Hassani, (1998) who acknowledged that students‟ difficulties include the inability 

to apply the chain rule to functions and also with composing and decomposing 

functions. It cannot be disputed that students have shown significant gaps 

between their conceptual understanding of the major ideas of calculus and their 

ability to perform procedures based on these ideas.  Some of the students' 

difficulties (about 60%) could be attributed to their difficulties with prerequisite 

knowledge of composite function or the derivative function notion. This finding 

is consistent with Capistran's (2005) result in which he stated that most students 

do not like or understand the Leibniz notation. This finding already overlooks the 

framework of three worlds of mathematics in which 
dx

dy
 is regarded as a process 

and a concept, and therefore is a procept. The procedural actions of application of 



 
 

the chain rule in the proceptual world did not depend on finding of individual 

derivatives of the complex composite functions from the embodied world. The 

derivatives were found but not proved in the formal world because of mistakes 

done either in the form of signs or algebraic manipulations like leaving out the 

brackets when required.  

8.2.5    Students’ schema alignment with the genetic decomposition     

 of the chain rule  

 

To have a schema of the chain rule one has to master the use of multiplication 

and brackets used in function composition. These results were similar to the 

results of Webster (1978) in that students who are successful solvers of routine 

chain rule problems are not necessarily successful solvers of non-routine 

problems. Some of them knew the chain rule but could not access it when it was 

needed and only remembered during interviews the correct answers they could 

have provided. Also it was revealed from the interviews with the students that 

they only concern themselves with concepts that are examined. Students though 

recognize and apply the chain rule to different situations. They were able to 

differentiate some functions by simply applying rules which they memorized, and 

in some cases recalled incorrectly. Those students were skilled at algebraic 

manipulations, easily able to assimilate rules and procedures in a cognitive 

structure that consists of a list of unconnected actions, processes and objects to 

produce correct answers. Such students performed mechanically without 

displaying understanding. 

A schema for the chain rule is an individual‟s collection of actions, processes, 

objects as well as other concepts that are perceived to be linked to the chain rule. 

These concepts include students‟ understanding of functions, composition of 

functions, derivatives and use of the chain rule. Results revealed that students 

who operated in the Intra- stage with regard to understanding of functions and 



 
 

their compositions, operated in the Trans- stage with regard to differentiation. 

They displayed coherence of understanding of a collection of derivative rules 

even though they did not understand composition of functions. Also, results 

revealed most difficulties were related to symbolic or structural difficulties. 

Obviously, the difficulties could not be attributed to only having the structural or 

conceptual prerequisite knowledge, but also relating them. This could account for 

the difference in Triad stages in which a particular student is operating. 

If a student having the formula of the chain rule cannot (1) associate the 

derivatives of specific composite functions with the formula, (2) make the 

relations, (3) take specific composite function derivatives as unrelated by using 

memorized rules, he is in the Intra- stage of the Triad. When the student can 

collect the various derivative rules in a group and might provide the general 

statement of the chain rule, but he or she has not yet constructed the underlying 

structure of the relationships of the functions, he operates in the Inter- stage of the 

Triad. One of the participants explained during interviews that he differentiated 

the first function with respect to the power and wrote 
dx

d
 for every function that 

had not been differentiated yet. This helped him with knowing functions already 

differentiated and those still to be differentiated. He used the link form technique 

in differentiating the given loaded function. In Item 5.2 he had correctly used the 

Leibniz form technique. The concise explanation convinced the researcher that he 

had a schema of the chain rule. He used previously constructed schemas of 

functions and derivatives to define the chain rule. He also recognized the given 

functions in 5.2 to 5.6 as composition of two or more functions, took their 

derivatives separately and then multiplied them. Part of this is the explanation he 

gave when he was asked on how he would help other students to deal with the 

chain rule. According to the Triad, such student operated in the Trans- stage since 

he used the chain rule proficiently. That student was also able to choose the 



 
 

appropriate form technique to use per task given and his work displayed correct 

application of the chain rule in each case. 

8.2.6   The triad stage of schema development in which students 

are operating with respect to the chain rule 

 

Written responses indicated that over 60% of students had a process 

understanding of the chain rule. Their actions of differentiation had been 

interiorized and transformed explicitly from memory and followed step-by-step 

instructions using the straight form technique to differentiate composite 

functions. The students who were confined to the straight form technique often 

made errors associated with basic arithmetic operations. Those students were 

operating in the Intra- stage of the Triad since they used a collection of rules for 

differentiation but failed to apply knowledge acquired from basic algebraic 

manipulations and observations of correct signs where needed. Those students 

showed evidence of constructing very little while others constructed bits and 

pieces of the concept of chain rule.  

Students who used the straight form technique together with the link and Leibniz 

form techniques based on the type of composition of the function indicated a 

schema understanding of the chain rule. They were aware of the processes of 

differentiation and integration in totality and realized that transformations could 

act on it. In integration they preferred to use the Leibniz form technique while 

they used either the link or straight form techniques in differentiation of 

composite functions. Those students operated in the Trans- stage of the Triad. 

They mastered the multiplication and brackets used in function composition. 

Those students displayed all the constructions proposed in the genetic 

decomposition. They showed evidence of understanding and possessing a schema 

for the chain rule.  



 
 

8.2.7 Students’ identification of the reverse application of the 

chain rule in the substitution technique for integration 

 

About75% of the responses displayed the use of the chain rule via the Leibniz 

form technique of differentiation, reversing the process and then integrating. All 

students who made relevant mental constructions for Item 6.1 also gave correct 

responses for Item 6.2. Most students operated in the Inter- stage in this category. 

The subjects interviewed indicated the inconvenience they suffered as they were 

not issued with standard integral tables. They cited this as the reason that forced 

them to use the u-substitution and hence the Leibniz form technique. The scores 

in this category were lower than those in the derivative category. No evidence 

was found of the use of the link and the straight form techniques in integration. 

The written responses indicated that where existing schemas were applied such 

that after finding the derivatives of the various functions in a composition, they 

now had to be multiplied to put the chain rule into application. Examples include, 

  dxx 6)23( , where some students represented 23 x as u such that we have

 .6duu  The derivative, 3
dx

du
 was found where .

3
dx

du
  This allows for the  

replacement of the composite function, and multiplication by the newly formed 

derivative and as such reversing integration using the Leibniz form technique. 

New processes were constructed by means of reversing the existing chain rule 

schema.  

8.2.8 Possible modifications of the proposed genetic 

decomposition 

 

The initial genetic decomposition proposed for the chain rule suggested amongst 

other things that for a chain rule schema, a student needed to have schemas of 

functions, composition of functions, derivatives and use of chain rule. Results 



 
 

show that decomposing a composite function is not a pre-requisite for applying 

the chain rule. Thus the proposed genetic decomposition has been modified as: 

For a student to have his or her function schema 

(i) He or she had developed a process or object conception of a function and 

(ii) Has developed an action or process conception of a composition of functions. 

For a derivative schema, 

(iii)  He or she had developed an object conception of differentiation 

(iv)  The student then uses the previously constructed schemas of functions, 

composition of functions and derivative to define the chain rule. In this process, 

the student recognized a given function as the composition of two functions, took 

his derivatives separately and then multiplied them. 

(v) The student recognized and applied the chain rule to specific situations using either the 

straight, link or Leibniz form techniques. The student could think of an interiorised 

process of differentiation in reverse to construct a new process by reversing the existing 

one  

8.3 Recommendations 

 

To present these in a structured manner, they have been documented under the 

following sub-headings: (1) sampling, (2) re-visiting content for first year 

calculus, (3) form techniques for the chain rule learning in calculus, and (4) use 

of APOS in exploring other concepts. 

 

 



 
 

8.3.1 Sampling 

 

A sample of 30 volunteering first year University of Technology civil 

engineering students were participants in this study. This implies that the data 

used in the analysis have been based purely on those students‟ written responses 

from the questionnaire administered, video recordings and interview schedules 

with six of those subjects. In addition data were also collected from tutorial 

worksheets on the chain rule presented collaboratively. While this has been 

adequate in using the APOS approach in exploring conceptual understanding 

displayed by first year, University of Technology students in learning the chain 

rule in calculus, for future research it is recommended that broader research that 

includes more first year students within the university be conducted. Samples can 

also be drawn for this research from electrical, chemical and mechanical 

engineering first year students in the university. Alternatively, this study may be 

extended to any first year engineering student of any university. All first year 

engineering students not only must they learn the chain rule, but ought to be 

brought to a schema level of understanding to enable its successful application in 

calculus.  

8.3.2 Revisiting content for first year calculus 

 

All first year students should be taught the concept of functions and their 

behaviour explicitly and these should be examinable. They should be guided 

through instructional design to a level of understanding functions that is past the 

process stage. Students should realize that some actions can be carried out 

resulting in some transformation on a function. The encapsulations of those 

processes would then result in students operating in the object stage of this 

concept. It is then a collection of all the actions on functions, processes, objects 

together with other schemas and their relationships will help the students to 



 
 

process the composition of functions. Processes like continuity, limits, mappings, 

graphical representations, composite functions and their decomposition as a 

totality should be a firm background knowledge on which first year students 

build their understanding of the chain rule. It is therefore recommended that the 

content for first year engineering mathematics accommodate this. 

8.3.3 Form techniques for the chain rule learning in calculus 

 

Also from the findings in this study, it is recommended that students be taught all 

three form techniques of chain rule differentiation identified in this research. This 

is because students exposed to all techniques indicated full understanding on how 

to use the chain rule. The straight form technique which involved straight 

application of the chain rule was easily used by students who had a schema of the 

chain rule. This involved a collection of actions on algebraic manipulations and 

use of multiplication and correct signs where necessary. Students who struggle 

with signs and use of brackets would be advised to stick to the link form 

technique where differentiation starts from the innermost function and moves 

outwards. Students struggling with the chain rule can always in any given 

composite function, use the Leibniz form technique where they substitute for 

various functions, differentiate and multiply. 

8.3.4 Use of APOS in exploring other concepts 

 

While APOS was used to explore the conceptual understanding of the chain rule 

in this study resulting in a genetic decomposition of the concept, it is 

recommended that for future research, researchers explore the conceptual 

understanding of other mathematical concepts, for example, product and quotient 

rule in calculus, exponential and natural logarithm rule, and understanding of 

algebraic functions. This would result in instructional treatment that would guide 



 
 

students to make mental constructions relevant to those concepts and as such 

improve their understanding of mathematics. This would result in the genetic 

decomposition of many other concepts in mathematics. Time spent learning for 

understanding is another factor. Students with deeper understanding of a concept 

are more likely to be able to transfer that concept to other situations.   

The most important contribution that we obtain from the APOS analysis, in this 

study and in many others, is an increased understanding of mental mechanisms 

made by students as they dealt with the chain rule in calculus. This involves 

interiorization of actions to processes which are then transformed and 

encapsulated as objects. Based on the proposed genetic decompositions, these 

processes should then point us to effective pedagogy. It is therefore suggested 

that APOS be used to explore the understanding of other concepts taking into 

consideration the prerequisite concepts on which the understanding of the 

concept under scrutiny is based. Pedagogical strategies based on the analysis in 

this study and focusing at helping students to interiorize actions repeated without 

end, to reflect on seeing the chain rule in differentiation as a totality.  

8.4 Limitations 

 

This was a small-scale study. Only aspects directly related to the sample of first 

year engineering students participating and their responses to the written 

instrument, interviews and video-recordings in their mathematics classroom were 

investigated. Needless to say, there were other issues that could have been 

investigated however those were not within the scope of this doctoral study. 

Also, since this study has been conducted in a University of Technology with 

only one group of first year engineering students that was purposely chosen 

because the researcher was their lecturer, the situations with other first year 



 
 

groups may differ. This may be the case because variables differ from one 

discipline to the other.  

Also, in order to gain access to do research with the participants and gain their 

consent to proceed, the study was registered first with University of 

Technology‟s research department. The institution was informed the intentions, 

details and processes that would be followed in conducting this research. The 

consent forms were then read to each participant and explained in detail in terms 

of what they were expected to do for the study. This might have influenced the 

way they presented their responses on the questionnaires and worksheets. The 

responses could have been structured in the way they thought the researcher was 

anticipating. However, the researcher has addressed this possible bias by 

interviewing selected subject based on written responses and observations done 

when students interacted with the worksheet collaboratively. 

The students who took part in the study were volunteers.  The researcher had no 

choice but to work with responses that they gave. The researcher chose subjects 

for interviews from the volunteered sample. The students were not chosen 

according to performance in class or any other criterion. 

In addition the tutorial sessions took place in laboratories. Those venues did not 

have instruments and space for instructional treatment records to be documented 

for students. This generated some concern for students about copying from the 

whiteboard before it was erased instead of interacting with the content presented. 

During Lesson Two, for example, the lecture in which the students were 

accommodated did not allow for the researcher to observe each student‟s work 

due to the seating arrangement in the lecture hall. Students had to call out their 

answers to the given activities. 

Finally, on interrogating each video recording, it may have been beneficial to use 

two video cameras where one would focus on the lesson presented and the other 



 
 

on the learners. This would have captured the learners‟ responses together with 

their expressions especially in situations that were considered critical moments in 

each lesson. This would have captured relevant learner responses when the 

learners argued for correctness of their responses against each other as they 

exchanged their books.  

8.5 Themes for further research 

 

This study had a conceptual understanding focus. In the APOS exploration of the 

understanding of the concept of the chain rule in calculus, it was found that the 

following, amongst others, influence the teaching and learning of the chain rule: 

(1) understanding of the basic manipulation of algebraic symbols and operations 

by students, (2) accommodation of multiple ways of function representation in 

instructional design to enable students to make connections and have deeper 

understanding of the concept of function, (3) selecting activities to inform 

teaching strategies in the use of APOS paradigm for object stage understanding 

of the chain rule, (4) relating of the three worlds of mathematics where students 

have the general statement of the chain rule , relationship between the formulas 

of the chain rule in the function and the Leibniz form technique in the symbolic 

world, (5) formulation of the schema of the chain rule to be applied to a wider 

range of contexts in calculus, and (6) augmentation of the chain rule by 

instructional design based on the modified genetic decomposition for better 

understanding of the chain rule concept with skills. These have informed the 

following possible themes for further research: 

(1) Continuation of research including all first years within the university on their 

understanding of the chain rule. Explore how we can bring first year students 

to a schema level of understanding of the chain rule to enable successful 

application of calculus. 



 
 

(2) Investigations on the effect of use of multiple ways of function 

representations in the understanding of the chain rule by first year students. 

Explore whether this would result in students attaining a deeper 

understanding of the chain rule or other concepts in calculus. 

(3) The effect of using the modified genetic decomposition in the teaching of the 

chain rule. Explore whether instructional design based on this genetic 

decomposition can help students to operate in the Trans- stage of the Triad? 

(4) The use of APOS in exploring the other first year mathematical concepts to 

enhance the development of the genetic decomposition of various concepts, in 

a South African context. 
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APPENDIX B1 

 Activity worksheet 1 

 

 

Student Number…………………………… 

 

Instructions: 

 

 The following questions are designed to explore your range of understanding on a 

number of concepts in differential calculus. Please answer all questions to the best 

of your ability. Show all your working. 

 For each question show in detail how you obtained your answer. Attempt all 

questions. If you like to write additional notes explaining how you got your 

answer, feel free to use the back of the page. 

 Please do not write your name in any of the pages of this worksheet. 

 

Question 1 

Is a student correct to identify the following as a function? Explain.  

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Question 2 

A given correspondence associates 3 with each positive number, -3 with each 

negative number and 1 with 0. A student has identified the afore-mentioned 

relationship as a function. Is that correct? Explain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Question3 

 

xexf 4)(   and ,sin3)( xxg   Find f( o g) ( )  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Question 4 

 

Given that (f  o g) xxx 5cos5sin10)(    

      4.1    Find functions f  and g  that satisfy this condition. 

 4.2   Is there more than one answer to 4.1 above? Explain.        

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Question 5 

       

Differentiate the following with respect to x:   

 

5.1       xx eexy 52sin3 cos       

 

 

 

 

 

 

 

 

 

 

            

        



 
 

        

     5.2          3)52cos(  xy    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

  5.3     )4(sin)( 3 xxf   

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

5.4       )4(sin cos222 exexy   

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

5.5      )7cos(ln)( xxf   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 5.6     2tan3 )(cos xexecy   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Question 6 

 

Determine the following: 

 

6.1   dxxx 212       

 

 

 

 

 

 

 

 

 

 

 

 



 
 

6.2   Evaluate:    dxx 6)23( . 

          

 

 

 

 

 

 

 

 

 

 



 
 

 

 

APPENDIX B2 

ACTIVITY WORKSHEET 

Group Number:…………….. 

INSTRUCTIONS: 

 The following questions are designed to explore your range of understanding 

on the chain rule. Please answer all questions to the best of your ability. 

 For each question show in detail how you obtained your answer. 

 Do not write your names on any of the pages. 

 One student from each group may be chosen to present the negotiated answers 

on the chalkboard. 

Question 1 

Differentiate:  

12 2

3(tan  xexy )  

 

 

 

 



 
 

1.2 
2sin2 )(cos xexy   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Question 2 

Differentiate implicitly: 

xyeyx 22

)sin(   

 

 

 

 

 

 

 

 

 

 

 



 
 

 

Question 3 

Use logarithms to differentiate: 

3
2 )1(

)2(






x

xx
y  

 

 

 

 

 

 

 

 

 

 

 

 



 
 

APPENDIX B3 

EXERCISES 

The list of problems for chain rule differentiation included: 

1. )3(tan 12 2 xexy  

2. 
3)3(  xy  

3. )3sin(tan)( xxf   

4. )cos(cos xxecy   

5. )4(sin3 xy   

6. )cos.ln( 2 xxy   

7. 
xxxf 2)(   

8. 
3

625

1(

)1(
ln)(

xx

xx
xf




  

9. 353 2

(cot  xexy  

10. 5(tan 222  xxey  

11. 12 2

3(sin  xexy  

12. 









xx

xe
y

x

tan

sin.
ln  

13. xexy x tan34  

14. 
xy cossin  

 

 

 



 
 

 

APPENDIX C 

1. Interviews with Zwayi 

Researcher: You indicated no for task 1, why do you think the graph is not a 

function? 

Zwayi: Because uma ubek’ istraight line la (pointing at the zig-zag part of the 

graph in task 1) sizotatsha igraph kathathu. (If you draw a straight line 

here, it will touch the graph three times) 

Researcher: So what? 

Zwayi: The vertical line test requires that a line drawn parallel to the y-axis 

should cut the graph only once for a function. This one is not a function. 

Researcher: Is that all? 

 



 
 

Zwayi: Also, both dots are closed, so this graph is continuous, the line will cut 

twice, all in all this is not a function.  

Researcher: Closed dots do not indicate continuity.  

2. Interview with Zandi 

 

Researcher: Your answer to task 1, was yes it is a function. Is it? 

Zandi: Yes ma ubheke lena igraph (yes if you are looking at this one) pointing 

at the upper part of the given graph in item 1. 

Researcher: How many graphs do we have in item 1? 

Zandi: Two 

Researcher: Do you know anything about the concept of continuity? 

Zandi: Yes 

Researcher: When a graph is discontinuous at a point, does it split to two 

graphs? 

Zandi: No, ok….there is one graph, now I see? 

Researcher: What do you see? 

Zandi: That this is not a function. 

Researcher: Oh! Why are you changing now? 

Zandi: I had just looked at the structure and decided without thinking.  



 
 

Researcher: How is that possible?  

Zandi: Jaa, sometimes…….mh 

Researcher: Alright Zandi, can you now justify your answer to question 2. 

Zandi read her response again and said: 

Zandi: Jah…..I see, kusho ukuthi bengithatha ngokuthi u 3 uhamba ne number 

ezingu 3, kodwa ngabuye ngabona ukuthi u 1 uhamba no 0, bese ngicabanga 

ukuthi sengathi kuthathw’ inmber ezikwi ( I thought that 3 mapped to three 

other numbers, but noticed that 1 mapped to 0. So I thought the numbers 

belonged to ) turning point just like in this diagram.  

 

Researcher: In other words the graph that you have drawn here illustrates the 

description given in the task.  

Zandi: Yes. 

Researcher: Ok, that‟s interesting, I have never thought of it like that. 



 
 

 

Researcher: in question 4, you are wrote that f(x) = -10x and g(x) is that. What 

are the other f‟s and g‟s that can satisfy this condition? Are you in a position to 

think about any other functions that we can use. Please, identify them. 

Zandi‟s answer to item was given by: 

 

Zandi: You know what mhem, I know they are there, but I can’t think of them 

now. 

Researcher: Ok then, let‟s jump to item 5.2. 

Zandi: I started with finding a derivative for the cosine function, followed by 

the derivative of the angle, then inside the brackets after which I multiplied 

everything. 

Researcher: There you are, just working it out. Were you perhaps using any 

rule in your differentiation? 

Zandi: I cannot say I was using product rule because there is only one 

function here, I was just differentiating. 

Researcher: You were not using any rule, even though in your explanation you 

are saying you started with that, followed by that….eh…. 



 
 

Zandi: I used the chain rule. 

Researcher: Can you state the chain rule? 

Zandi: Yes 

Researcher: What does it say? 

Zandi: You just differentiate right through.  

Researcher: What do you mean by right through? 

Zandi: I mean its not like the product rule where you differentiate one 

function, live the other one,  add and take the derivative of another one, you 

just differentiate okokoko (right through) and multiply 

Researcher: I want you to be explicit in explaining your understanding of the 

chain rule. What does it say? Can you write it down maybe? 

Zandi: Angikhon’ ukuyichaza kodwa ngiyazi ukuyisebenzisa. (I am unable to 

explain it but I can use it) 

Researcher: If for example I give you ))(( xgfy  , to differentiate, what 

would be the derivative of y? 

 

Zandi: It would be, let me write it down, f prime g, then g prime, and we 

multiply. (She wrote: )(')(' xgxgf   

Researcher: Excellent, this is correct. 



 
 

Zandi: Jaaa mhem, ngikutshelile ukuthi ndiyayazi lento. (yes maa’m, I told you 

that I know this thing.  

Researcher: How different is the problem in 5.3 as compared to the one in 5.2/ 

Zandi: In 5.3 the power affects the angle only, but in 5.2 the power is for the 

trigonometric function. 

Reaseacher: Can you now explain me how you differentiated item 5.5. Tell me 

the rule you used and how you used it.  

Zandi: Chain rule, ngiqale nga(differentiater) ipower ka sin, (I first 

differentiated with respect to the power of the sin function), then the sin itself, 

then got to the bracket, there I differentiate everything and just keep on 

multiplying. 

Researcher: How would you advise other students to do when differentiating 

using the chain rule? 

Zandi: Aqale abheke ukuthi usebenzisa yiphi irule ( Decide on which rule to 

use first), they must also decide on what kind of a function is given.  

Researcher: Then? 

Zandi: When differentiating abheke (must look)….mhm…..Mhem konje oosin 

noo cos sibabiza ngokuthi ngama trig functions? ( ma’hm, by the way do we 

call sin and cos trig functions?) 

Researcher: Yes 



 
 

Zandi: Identify if there is a power, start with differentiating with respect to the 

power, function, unpack everything contained in the function and differentiate 

all functions step by step, and multiplying by each result. 

Researcher: In question 6, did you use the chain rule to do your solutions? 

Zandi: I do not think I understand much of the process of integrating, I just 

refer to standard integrals. 

Researcher: Thank you very much for your time.  

3. Interview with Nodi 

Researcher: Your response presented for the first question does not indicate a 

reason, why do you think the graph is not a function?  

Nodi: I just looked at it and saw that it was not a function. 

Researcher: Ok, then can we jump to question 5, I need some explanations to 

your work. 

Researcher: Can you tell me how you obtained your answers to question 5.4. 

Nodi: Ja  mhem, I know I did not do my best.  

Researcher: Its not about that, but I am asking you because you did not explain 

in the worksheet how you arrived at your answers.  

Nodi: Ok then mhem. 

Researcher: For example, in 5.4 which rule did you use? 

Nodi: Chain rule 



 
 

Reseacher: How do you know that you should use the chain rule? 

Nodi: Let us say for the product rule you have a function multiplying another 

function. But now when you have a function kwenye ifunction (in another 

function), you use the chain rule. 

Researcher: All right then, explain how you used the chain rule in 5.4. 

Nodi: Start with the power, then the function, then go inside and just multiply 

each result you get, no plus as in product rule. 

Researcher: Can you state the chain rule 

Nodi: Ja, you just find f’ and then g’ then u (time)ze (you multiply). 

Researcher: What exactly do you mean? 

Nodi: That kwi chain rule you just differentiate one way uloko (and always) u 

multiplier by each derivative. 

Researcher: Explain how you arrive at your answer for 5.2. 

Nodi: I think you use the product rule here. 

Researcher: What would be the second function? 

Nodi: You have cos as a function and then (2x -5)
3
 as another one.  

Researcher: Which one is the angle for cos? 

Nodi: Oh I see now, my mistake, I should have used the chain rule. We are 

differentiating a composite function. 



 
 

Reseacher:  How come? 

Nodi: I should have differentiated the cosine function first. Then, I multiply by 

the derivative of the angle. 

Researcher: Let us visit your answer to ln[cos(7x)]. Which rule should be used 

for differentiation here? 

Nodi: I should have used the product rule. 

Researcher: Why? What are the function being multiplied? 

Nodi: ln and cos 7x. 

Researcher: ln of what? 

Nodi: No mhem, I am confused, let me admit, the chain rule is the one to be 

used.  

Researcher: I was surprised, because you differentiated correctly in the 

worksheet using the chain rule correctly. 

Researcher: Ok then thank you for now. 

For Nodi, it was more of a learning curve as he used the interview session also 

to pose questions of concern to him. For example, he asked at one stage, „Is it 

wrong for me to change the given function, sin
3
4x and write it as sin

2
4x 

multiplied by sin4x and differentiate using the product rule? This concurs with 

Horvath (2007) findings that  students replaced function composition with 

function multiplication for functions that they had experienced in precalculus, 

but had not yet encountered in calculus (e.g., exponential, logarithm, and 

inverse trigonometric).  



 
 

     4. Research Interview with Popo 

 

Researcher: There are a few questions that I would like to ask from you so as 

to get clarity on some of the answers given in your worksheet. Is that ok with 

you? 

Popo: Yes, no problem ma’hm. 

Researcher: Could you explain how you did task  

           Popo: If the vertical line meets the graph more than once, then not a 

function. 

          Researcher: Could you explain why you labeled „horizontal line        

 there?‟(pointing at the label in the diagram). 

Popo: My mistake there mheem, angazi kwenzekeni kumina, (I don’t know 

what was wrong with me) I wanted to write vertical line. 

Researcher: What about the zig-zag part?  

Popo: That part is obvious, not a function, I just wanted to be sure that the 

graph was continuous. 

 

Reseacher: Could you please clarify the main difference between questions 5.2 

and 5.3. 

Popo: Kahle kahle, (truly speaking), other than it being a cos or sin functions, 

in 5.2 icube yeye angle ayiwukhavi u cos kanti ngala ucube ngowe function 



 
 

sine, ( it’s the angle that is expanded and in the case of 5.3), and we could 

write it as sin 4x multiplied by sin 4x and again by sin 4x.   

Researcher: I noticed that in almost all the subsections of item 5, you have 

indicated that you would use the chain rule. Can you state the chain rule? I am 

giving you f(g(x)) to differentiate. 

Popo: y = ……., may I write it down,  

He wrote: 

Researcher: Did you use the chain rule to do questions 6.1 and 6.2? 

Popo: Oh yes! 

Researcher: It looks like you are comfortable with the chain rule and its 

applications. How would you assist a student who is struggling to do question 

5.4? 

Popo: Find the derivative yayo yonke into nga one, nga one, nga one. 

Ngiqond’ukuthini ngalokho (of everything one by one. What do I mean by 

that)? Start with the power, uqede ngayo (and finish with it), then find the 

derivative of the sin function and continue differentiating each function in the 

bracket until you finish. Remember to multiply by each derivative. 

Researcher: Thank you Popo for your time and explanations. 

      5.  Interview with Dube 

 

Researcher: Dube , do you know what is a composite function? 

Dube: Ish……..let us say a loaded function 



 
 

Researcher: How loaded? 

Dube: Like one function f, say, f = 2a and a = 3x + 5. Now you take a as 

stipulated and insert it in f, so f will now be composite. 

Researcher: Let us talk about the chain rule, can you state it.  

Dube: Haaawu, ngeke kodwa ma unginika isibalo  (No I can’t, but if you give 

me a problem) I can use it. 

 Researcher: Can you explain how you can help another student who has 

problems in using the chain rule. Use question 5.6 for your explanation. 

Dube: Ngingathi, (I can say), start with the power rule for the square outside, 

then inside the bracket start with the cosec and differentiate everything in a 

line. 

Researcher: What do you mean by, in a line? 

Dube:  I mean each function has to be differentiated one by one and multiply 

the result each time. 

Researcher: Let us look at the interesting way in which you did integration in 

5.6 and 5.7. Can you explain? 

Dube: There I thought I must let one of the functions be u. I then differentiated 

to get 
dx

du
. I then expressed du in terms of dx so that I could go back and 

substitute. I then worked everything out. 

Researcher: Would you say you used the chain rule in the process? 



 
 

Dube: Yes, that is exactly why I chose to use substitution by u. I wanted to use 

the chain rule. 

Researcher: But you said earlier on that you could not state it. 

Dube: Jaa that’s correct, I assumed that there would never be question 

requiring the statement of the chain rule. Kodwa ke I think if you are given 

f(g(x)). Say for example you are given f(x) = 2x
2
 and g(x) = 3x, then u fog(x) is 

2(3x)
2
.  Then we now use the chain rule.  

5. Interview with Sindi 

 

Researcher: I noticed that you drew two lines in the given graph in question 1. 

Could you justify that? 

Sindi: Mahm engikwenzileyo lana, ngibone kunamajiko-jiko, nalana 

kunamagqudu avalekile, (I was showing the zig-zag part and then the closed 

dots), so I wanted to show that any of the two parts would lead the given 

graph not to be a function. That is why I drew the two lines.  Sindy’s response 

is displayed below. 



 
 

 

 

Researcher: I was also impressed by the response you gave in question 2. 

Would you want to explain how you came up with it? 

Sindi: I wasn’t sure at first, which is why I wrote the ordered pairs. 

Ngicabangu’ukuthi iyaqhubeka ufake amanye amapositive numbers 

mamanegative numbers (I think this is continuing, where you map with 

positive numbers and then with negative numbers). What I am trying to say is 

that, if you repeat the x-coordinate, mapping it with other numbers, it won’t be 

a function. 

Researcher: That is well said Sindy, the explanation to question 3. 

Sindi: I think yilaa ufike uxhume khona ifunction kwenye ebivele ikhona (I 

think this is where you insert one function in another so as to get a composite 

function. So I inserted 3sin x in the place of x in the function f and then 

evaluated to get 4. 



 
 

Researcher: I have noticed that you listed a lot of functions in task 4. Could 

you explain. 

Sindi: I was not sure at first and ngaze ngacabang’ ukuthi kukhona namanye 

amafunctions engingase ngiwafake, (then I figured out later on and decided to 

include all relevant functions).  

Sindi‟s response for question 4 is displayed below. 

 

  

Researcher: Ok fine! Can we now go to question 5.  I have no queries in your 

answers but I am very much interested in question 5.2 , the method you used 

which differs from the one you used in 5.3. Can you explain? 



 
 

Sindi: Lapha ku 5.2, the angle is cubed, so I thought maybe I could make a 

mistake if I do straight differentiation. So I decided to do substitution using u 

and use the chain rule. The following problem looks more, simpler to me, 

because in 5.3 it’s the function, that is cubed. 

Researcher: By function what do you mean? 

 

Sindi: I am referring to the sin function in 5.3, kanti (but) in 5.2 it’s the angle, 

2x…mh….2x – 5 that is cubed. 

Her work is captured in the extract below. 

 

Researcher: In 5.4 you wrote, „I make sure that I differentiate all the functions 

one by one until I finish.‟ What do you mean by that? 

Sindi: Phela mhem lapho ngisho ukuthi kufanele uqale la ekuqaleni, kukhona 

ipower, then ubese uya kwi function lena ye trig, mawuqeda lapho bese uya 



 
 

kumabrackets uqhubeke noku differentiatha, uloko umultiplaya. Konke nje, 

kanye, kanye, sengathi uhlubula amalayers (Look ma‟hm, I mean that you 

should start from the beginning with the power, then differentiate the 

trigonometric function. After you finish, get into the brackets and go on 

differentiating and multiplying each time. You do this one by one as if you are 

peeling layers.) 

Researcher: Ok then let‟s go to question six. I notice that you also used 

substitution. Why? 

Sindi: Mhem you did not give us the standard integral table, but I knew that if 

I use the chain rule, the other form, I will not go wrong, So I did substitution 

to be sure that I am correct. 

 

 

Researcher: You have been mentioning the chain rule right true. Do you know 

it or can you state the chain rule? 

Sindi: Eish mhe…m, Ja I think I know it. 

Researcher: What is it?  What does it say? 



 
 

Sindi: Maybe if I write it down.  

This is what she wrote. 

 

 

Researcher: Thank you for your time. 

 

 

 

 

 

 



 
 

APPENDIX D1 

EXTRACTS FOR THE PILOT STUDY 

Students who participated in the pilot study were named as S1 up to S23.  

3.9  Responses for Item 1 

 

1. Is the student correct to mark the following as a function? Explain.  

Some of the students‟ responses were:  

S17, for example wrote,  



 
 

 

 

S15 on the other hand wrote: 

 



 
 

4.13 Response to item 4 

 



 
 

PS16 (Mzi‟) wrote an explanation of how he got to his answers.

 

When Mzi was asked what he meant in question 5.2 when he wrote differentiation has 

to be like peeling an onion, he said: 

Mzi: To me differentiating such a function that is so loaded with many other functions 

is like peeling an onion, taking it layer by layer until you get to the inner one.  

Researcher: What do you mean? 



 
 

Mzi: In 5.6 for example, you can start off with the power outside, differentiate with 

respect to it. Jaa…., You have to imagine everything inside the bracket as one 

function, effect the power first and then come inside the bracket.  

Researcher: Then what? 

Mzi: Oh Ma….am, you see now, all you do is to attend to each function, find its 

derivative and keep on multiplying with every result until you finish.  

Researcher: Is there some rule that guided you in your differentiation? 

Mzi: Ja, the chain rule. 

Researcher: What does it say? 

Mzi: do you want me to put it in symbols? 

Researcher: Yes if you can. 

Mzi: I cannot be able to put it in symbols. But I can show you another way of doing 

the same problem.  

Researcher: How? 

Mzi: Where you substitute all the functions inside with symbols u, v. w. etc and then 

find the different derivatives, after which you multiply each result you get, it works 

just like the chain rule, but it’s too long, I don’t like it. 

Researcher: Ok then let‟s not do it, thanks for your time 



 
 

S13 presented the use of the chain rule as

 

 

 

 

 

 

 



 
 

APPENDIX D2 

EXTRACTS FROM THE MAIN STUDY 

 

 

 

 



 
 



 
 



 
 



 
 



 
 



 
 

 

 

 

 

 

 

 



 
 

APPENDIX D3 

GROUP DISCUSSIONS IN THE MAIN STUDY 

 

 



 
 



 
 



 
 

 

 

 

 

 

 

 

 

 

 

 

 


