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AB675AC7 

One of the most challenging processes of the hydrological cycle to determine accurately 

especially in arid and semi-arid regions, is actual evapotranspiration (ETa). Numerous 

approaches are recognised and have been established to account for ETa at various spatial and 

temporal scales. Satellite earth observation (SEO) methods have been utilised as an alternative 

to conventional methods to estimate ETa, as they provide estimates over larger geographical 

scales.  

Satellite-based ET models have been shown to provide fairly reliable estimates of terrestrial 

fluxes and ETa. However, these models have the tendency to perform poorly in water stressed 

environments due to an inherent limitation in their conceptualisation, which relates to the 

temperature gradient (To-Ta). Due to the dynamic nature of the To-Ta gradient, the study aimed 

to establish whether the selection of an image based upon the satellite overpass time influences 

the accuracy of the modelled flux and ETa estimates. For this purpose, the Surface Energy 

Balance Systems (SEBS) model was implemented using SEO data using Moderate Resolution 

Imaging Spectroradiometer (MODIS) imagery. The simulated fluxes and ETa were compared 

against in-situ Eddy Covariance (EC) data, as well as ETa estimates obtained from MOD16 to 

quantify the influence of To-Ta. The study was undertaken during the 2015 dry period within 

the Luvuhu and Letaba Water Management Area, situated in the semi-arid north-eastern region 

of South Africa. This period coincided with a large El Niño induced drought, which provided 

an ideal opportunity to assess the model’s ability to adequately simulate ETa during conditions 

of water stress.    

The results of the investigations undertaken in this study indicated that both the ETTerra and 

ETAqua largely overestimated ETa when compared to in-situ riparian ETa measurements, 

yielding a Relative Volume Error (RVE) of -123.04% and -159.41%, respectively. Overall, the 

SEBS derived MODIS Aqua estimates compared relatively favourably with the in-situ 

measurements. The aggregated 8-day ETTerra and ETAqua generally overestimated ETa, whilst 

ETMOD16A2 tends to underestimate ETa during summer months when compared to in-situ ETa. 

The degree of overestimation of ETMOD16A2 was lower than the aggregated ETTerra and ETAqua 

estimates. The SEBS results and the MOD16 product emphasized the importance of the 

satellite overpass times and the limitations that are observed in the SEBS model. The MOD16 

product and satellite-based ET models can be used to assist in decision making and can provide 

long-term data records over remote areas.  
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1. IN75OD8C7ION 

1.1 Background and Significance 

South Africa is considered as a semi-arid and water-scarce country (Percival and Homer-

Dixon, 1998; Jarmain et al., 2009; Ramoelo et al., 2014), and global climate change has placed 

further strain on our limited water resources (Doll et al., 2003). Approximately 25% of the 

Earth’s surface is occupied by semi-arid and arid environments (Li et al., 2019). Fensholt et al. 

(2012) states that these environments are characterised by sparse vegetation, limited water 

availability and fragile ecosystems. More than 90% of the annual rainfall in these regions, 

returns to the atmosphere as actual evapotranspiration (Wilcox et al., 2003; Garcia et al., 2013). 

Actual evapotranspiration (ETa) is defined as the water that is transpired from the stomata of 

plants and lost from the upper layers of the soil (Thornthwaite, 1948; Allen et al., 1998; Denis, 

2013; Gu et al., 2017; Running et al., 2017). Ramoelo et al. (2014) states that large quantities 

of precipitation are lost as a result of ETa. It is imperative for us to understand this particular 

process of the hydrological cycle in greater detail, as it directly influences water resources 

management decisions.   

Accurate estimates and measurements of ETa are required for, inter alia, drought monitoring, 

water resources allocation, agricultural water management and climatic applications 

(Timmermans et al., 2013; Ramoelo et al., 2014; Ke et al., 2016; Gu et al., 2017). Actual 

evapotranspiration is one of the most challenging processes of the hydrological cycle to 

determine accurately, especially in arid and semi-arid regions, as there is a decline and limited 

access of monitoring hydrological variables in these regions (Wheater et al., 2007; Jovanovic 

et al., 2015).   

Numerous approaches have been established and recognised to quantify ETa at various spatial 

and temporal scales. The advancements of these techniques and tools assists decision makers 

on the sustainable management, use and planning of water resources (Ramoelo et al., 2014). 

Micro-meteorological methods are amongst the most frequently applied approaches to estimate 

ETa (Jarmain et al., 2009). These methods are used to acquire point or line averaged ETa 

estimates, allowing for the validation and calibration of several ETa models, which are used to 

assist in water resources management and decision making. However, whilst these techniques 

have demonstrated to be vital in increasing our understanding of water and energy fluxes, they 
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are unable to provide representative large-scale ETa estimates (Spittlehouse and Black, 1980; 

Courault et al., 2005; Li et al., 2009).  

Satellite earth observation (SEO) methods have been utilised as an alternative to conventional 

methods to estimate ETa, as the remotely sensed data has sufficiently longer data records 

compared to in-situ measurements, are easily accessible and provide inexpensive access to 

spatially representative data, at near-real time (Courault et al., 2005; Xue and Su, 2017; 

Indirabai et al., 2019). Montanari et al. (2013) states that remotely sensed data has the capacity 

to transform hydrological modelling approaches, especially in areas where meteorological 

networks and monitoring is sparse.   

1.2 Rationale 

Multiple approaches have been established to quantify ETa using SEO data. Jarmain et al. 

(2009) states, that the methods based on the parameterisation of the shortened energy balance 

equation are often applied, with the most frequently utilised selections including; the Surface 

Energy Balance Index (SEBI) (Menenti and Choudhury, 1993), the Surface Energy Balance 

Algorithm for Land (SEBAL) (Bastiaanssen et al., 1998), the Surface Energy Balance System 

(SEBS) (Su, 2002), Mapping Evapotranspiration with High Resolution and Internalised 

Calibration (METRIC) (Allen et al., 2007) and ETLOOK (Pelgrum et al., 2010). 

Although satellite-based ET models generally provide fairly reliable estimates of terrestrial 

fluxes and ETa, these models have the tendency to perform poorly in water stressed 

environments due to an inherent limitation in their conceptualisation, which relates to the 

temperature gradient (To-Ta). The temperature gradient (To-Ta) can be defined as, the difference 

between the land surface (To) and air temperature (Ta). As a result of the diverse meteorological 

conditions and the differences in To-Ta due to the differential heating of the land surface and 

air, variations and uncertainties are observed within the simulated and in-situ terrestrial flux 

estimates as a lag effect occurs (Gibson, 2013; Brenner et al., 2017). Therefore, indicating the 

importance of the time of day of image acquisition and the choice of satellite sensor (MODIS 

Terra or Aqua) being utilised, to estimate ETa and terrestrial flux estimates.  

Considering the aforementioned limitations as a point of departure, the study aimed to establish 

whether the selection of an image based upon the satellite overpass time influences the 

accuracy of the modelled flux and ETa estimates, as this is closely linked to the dynamic nature 

of To-Ta. Therefore, a model was implemented using satellite-derived input variables derived 
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from MODIS Terra and Aqua imagery, respectively. These imageries were utilised, as they are 

freely available and are obtained at different times during the day. The simulated fluxes and 

ETa were compared against in-situ data to quantify the influence of To-Ta on the modelled 

variables. 

The temperature gradient influences the latent heat flux (LE), net radiation (Rn), soil heat flux 

(Go) and sensible heat flux (H), which are components of the energy balance equation. 

Increased LE estimates result from a high land surface temperature (LST) and reduced relative 

humidity (Roxy et al., 2014). The latent heat flux (LE) is a function of available energy 

(climatic variables), soil moisture and vegetation characteristics. As SEBS does not calculate 

LE as the energy balance residual, but using the Evaporative Fraction (EF), this results in an 

increased LE. The difference between the roughness height for momentum transfer (Zom) and 

the scalar roughness height for heat transfer (Zoh) is described by the kB-1 factor. Earlier studies 

have stated uncertain characterisation of the kB-1 factor in water stressed and in sparse 

vegetation cover environments. The underestimation of H possibly occurs as a result of the 

overestimation of the kB-1 factor at low Leaf Area Indices (LAIs) (Chirouze et al., 2014). 

Overestimating the kB-1 factor in these environmental conditions would result in an 

overestimation of Zoh, therefore underestimating H and subsequently overestimating ETa.    

In arid and semi-arid regions, the overestimation of ETa usually arises when water availability 

limits ETa (Li et al., 2015). Therefore, by modifying the kB-1 value and introducing soil 

moisture corrections, the limitations of the overestimation of ETa using satellite-based ETa 

models, particularly in water stressed environments can be adjusted (Li et al., 2015). The kB-1 

factor can correct the differences between radiometric and atmospheric temperature and is 

influenced by numerous variables that relate to structural parameters and environmental 

conditions. Consequently, this method is utilised to correct the underestimation of sensible heat 

flux (H) proposed by Gokmen et al. (2012) to avoid the overestimation of LE and EF.  

To supplement these investigations, the MOD16A2 ETa product was acquired and evaluated. 

Since the MOD16 algorithm does not utilise To-Ta during the estimation of ETa, the use of the 

MOD16A2 product provides an ideal opportunity to further gauge the influence the satellite-

based energy balance ETa model conceptualisation has on the accuracy of the terrestrial flux 

estimates.    
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1.3 Aims and Objectives  

The aim of this study is to evaluate the influence which the land surface (To) and air temperature 

(Ta) gradient has on terrestrial fluxes and ETa estimates. 

The following objectives have been formulated, to fulfil the aims of this study: 

i. To evaluate the accuracy of satellite-derived ETa and terrestrial flux estimates against 

in-situ measurements.  

ii. To implement a satellite-based ETa model to estimate ETa and terrestrial fluxes.  

iii. Establish the influence of the land surface and air temperature gradient on ETa and 

terrestrial flux estimates through comparisons against in-situ measurements, as well as 

the MOD16 derived ETa. 

1.4 Research Questions  

i. How significant is the influence of the land surface and air temperature gradient on the 

accuracy of satellite-derived terrestrial fluxes and ETa estimates?  

ii. Does the MOD16 product produce more reliable estimates of ETa, since it is not 

influenced by land surface temperature?  

1.5 Research Hypotheses  

The null hypothesis (Ho) and alternate hypothesis (Ha) are stated as follows: 

i. 𝐻௢ : The gradient between land surface and air temperature does not significantly 

influence the accuracy of satellite-derived ETa and terrestrial flux estimates. 

ii. 𝐻𝑎 : The gradient between land surface and air temperature significantly influences the 

accuracy of satellite-derived ETa and terrestrial flux estimates. 

1.6 Organisation of Dissertation 

This dissertation comprises of five chapters, beginning with the introduction in chapter one, 

and ending with the conclusion and recommendations in Chapter 5. An outline of the 

dissertation is presented as follows:  

Chapter 2 includes the literature review on the use of satellite observed methods to estimate 

ETa. An explanation of the SEBS formulation and the MOD16 product formulation is provided, 
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to describe the process in estimating ETa and terrestrial flux estimates. This chapter concludes 

with a synthesis of the literature, which discusses research gaps that are found in the literature 

and lays the groundwork for the methodology. Chapter 3 contains a description of the study 

sites and a description of the satellite and meteorological data that are utilised in this study. A 

description of the processing techniques that are used to estimate ETa and the flux estimates 

are also subsumed within this chapter. Chapter 4 includes the results from the applied 

methodology and the discussion of the results obtained. The dissertation culminates with the 

conclusion, limitations experienced and recommendations for future studies in Chapter 5.     
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2. LI7E5A785E 5E9IE:  

2.1 Conventional Methods of Estimating Actual Evapotranspiration  

Conventional ETa estimation techniques have been applied to aid in data collection, water 

resources management and in decision making (Tsouni et al., 2008; Jarmain et al., 2009; 

Ramoelo et al., 2014).  Micro-meteorological methods are amongst the most widely used 

conventional techniques and are frequently applied to validate satellite earth observed estimates 

of ETa (Jarmain et al., 2009). These methods are based on the shortened surface energy balance 

equation, which is expressed as (Courault et al., 2005; Jarmain et al., 2009): 

𝑅௡  ൌ 𝐿𝐸 ൅ 𝐺 ൅ 𝐻                   (2.1) 

where Rn is the net radiation (W. m-2), LE is the latent heat flux (W. m-2), G is the soil heat flux 

(W. m-2) and H is the sensible heat flux (W. m-2). Advection and stored heat, water in the 

vegetation and water vapour in the air are omitted (Jarmain et al., 2009). The most frequently 

applied micro-meteorological techniques include, eddy covariance, scintillometry, the surface 

renewal method and the Bowen ratio. A brief description of a few of these methods is detailed 

in the proceeding subsections.   

2.1.1 The surface renewal method  

The surface renewal method is based on the ramp theory, which is based on the sweep and 

ejection mechanisms of air parcels, due to the change in air density (Qiu et al., 1995; Snyder 

et al., 1996; Jarmain et al., 2009). The air parcel located near the vegetation surface is replaced 

with an air parcel (ejection), which is sweeping from above.  

A net radiometer is used to measure Rn, and G is measured using soil heat flux plates. Fine-

wire thermocouples are used to measure air temperature at high frequencies, usually at 8 Hz 

(Snyder et al., 1996; Jarmain et al., 2009). The fundamental aspect of this approach is to derive 

H, together with Rn and G estimates, to compute LE as a residual of the shortened energy 

balance equation (Jarmain et al., 2009). The sensible heat flux density (𝐻𝑆𝑅) is expressed as 

(Jarmain et al., 2009):  

𝐻𝑆𝑅  ൌ  𝛼1𝑧𝜌𝑎𝐶௣
𝑎

௦భ+௟
                                                                                                                 (2.2)    
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Where HSR is the sensible heat flux density derived by the surface renewal method (W. m-2), 

𝛼1 is the coefficient of calibration, z is the measurement height (m), 𝜌𝑎 is the air density (Kg. 

m-3), 𝐶௣ is the specific heat capacity of air at constant pressure (J. Kg-1. K-1), a is the air 

temperature ramp amplitude (ºC), s1 is the quiescent ramp period and l is the increasing or 

decreasing air temperature ramp (s).  

Subsequently, LE is calculated as the residual of the shortened energy balance equation, which 

is expressed as: 

𝐿𝐸𝑆𝑅  ൌ  𝑅௡ െ 𝐺 െ  𝐻𝑆𝑅                                                                                                       (2.3) 

The measurement height, rate of change in air temperature and the weighting factor are required 

to apply the surface renewal method (Qiu et al., 1995; Snyder et al., 1996; Jarmain et al., 2009; 

Mengistu and Savage, 2010). The weighting factor, also known as the coefficient of calibration, 

must be determined, a priori, and is dependent on thermocouple size, measurement height and 

the type of vegetation (Jarmain et al., 2009; Mengistu and Savage, 2010).  

The advantages of the surface renewal method include; low cost of equipment, easy installation 

and low power requirements. However, the technique is limited to point-based spatial 

representativity of ETa estimates, fragile sensors, and expensive data logging equipment are 

required to acquire high frequency air temperature measurements (Jarmain et al., 2009).  

2.1.2 Scintillometry 

The scintillometer is an optical instrument which comprises of a transmitter and a receiver that 

measures the intensity fluctuations of a radiation beam (Thiermann and Grassl, 1992; Jarmain 

et al., 2009; Odhiambo and Savage, 2009). The receiver is made up of a detector and a data 

retrieval system. Radiation intensity fluctuations are the result of the refractive scattering of 

small air parcels that are located along the path of the radiation beam (Jarmain et al., 2009; 

Odhiambo and Savage, 2009). The fluctuations are measured at high frequencies under weak 

scattering conditions.  

The scintillometer method is based on the Monin-Obukhov Similarity Theory (MOST) 

empirical relationship, from which H is estimated (Thiermann and Grassl, 1992; Jarmain et al., 

2009; Odhiambo and Savage, 2009). There are various types of scintillometers, such as; (a) 

Surface Layer Scintillometer (SLS), (b) Large Aperture Scintillometer (LAS), (c) Extra-Large 
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Aperture Scintillometer (XLAS) and (d) Boundary Layer Scintillometer (BLS) (Jarmain et al., 

2009; Odhiambo and Savage, 2009). The path lengths vary for the SLS, LAS and XLAS; and 

range between 50 to 250 m, 0.25 to 5 km and 1 to 8 km, respectively for each scintillometer 

(Kohsiek et al., 2002; Timmermans et al., 2009). 

The advantages of using a scintillometer include; its ability to acquire measurements across 

large geographic extents, real-time monitoring and portability of the instrumentation (Dye et 

al., 2008; Jarmain et al., 2009).  However, the application of this approach can be limited by; 

the equipment costs, accurate information on the transect elevation is required as installation 

above tall canopies is challenging, additional evaluations of atmospheric stability to determine 

the direction of sensible heat flux, and turbulent conditions as the method is based on the weak 

scattering of the scintillometry beam (Jarmain et al., 2009). 

2.1.3 The eddy covariance method 

The eddy covariance method is widely used to measure energy fluxes that are situated within 

the atmospheric boundary layer (Glenn et al., 2007; Jarmain et al., 2009; Scott, 2010; Burba, 

2013). It was developed by Brutsaert (1982), to determine ETa, using high frequency 

measurements, ranging between  10 Hz to 20 Hz,  of water vapour and carbon dioxide above a 

canopy with a large and uniform fetch. Flux measurements consist of multiple rotating eddies 

and are used to approximate the exchange of heat and water (Burba, 2013). A flux is defined 

as the measure of an object which passes through a specific region within a specified time 

(Burba, 2013).  

The principle of the eddy covariance system is the movement of air parcels by an eddy at a 

certain speed. Burba (2013) states, that the atmospheric flux can be approximated if the wind 

speed is known, as each air parcel has a specific temperature, concentration and humidity. A 

3-dimensional sonic anemometer is used to measure the vertical wind speed and air 

temperature, which are in turn used for the estimation of H: 

𝐻 ൌ  𝜌𝑎𝐶௣𝜔′ 𝑇′തതതതതത                                                                                                                    (2.4) 

where ρa is the air density (Kg. m-3), Cp is the specific heat capacity of air at constant pressure 

(J. Kg-1. K-1), 𝜔ᇱ is the vertical wind speed (m. s-1) and T ′  is the air temperature (ºC). 
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The eddy covariance system can be applied indirectly to determine LE as a residual of the 

shortened energy balance equation, or directly using an Infrared Gas Analyser (IRGA) to 

determine LE (Baldocchi, 2003; Burba, 2013). Measurements of Rn are obtained using a net 

radiometer, whilst probes on a psychrometer are utilised to measure relative humidity and air 

temperature. The soil heat flux variable, G, is measured using soil heat flux plates at 8 cm 

beneath the ground surface (Baldocchi, 2003). The eddy covariance system is able to provide 

direct measurements of turbulent fluxes, and the advances in computer technology and data 

processing capacity has promoted the use of this system (Liang et al., 2012; Zitouna-Chebbi et 

al., 2018). However, the system is expensive, and challenges are experienced when setting up 

the system over tall, heterogenous tree canopies and on sloping surfaces (Monteith and 

Unsworth, 2013).  

The estimation of LE can be expressed as (Burba and Anderson, 2007): 

𝐿𝐸 ൌ 𝜆 
ಾೢ
ಾೌ
𝑃𝑎

  𝜌𝑎𝜔′ 𝑒′തതതതതത                                                                                                                    (2.5) 

where ρa is the air density (Kg. m-3), Ȝ is the latent heat of vapourisation (J. Kg-1), 𝜔ᇱ is the 

vertical wind speed (m. s-1), Mw is the mass of water (Kg) and Ma is the mass of air (Kg). 

There are certain corrections that are critical for the eddy covariance method, and the data 

obtained requires strict quality control and filtering, namely, anemometer tilt correction 

(coordinate rotation, planar fit), spike detection and trend removal (Meyers and Baldocchi, 

2005). Sensors are required to measure vertical wind speed, sonic temperature and atmospheric 

humidity with enough frequency response, to record the change in fluctuations that are needed 

in the diffusion process (Drexler et al., 2004).   

While the usage of the aforementioned conventional methods has proven invaluable to the 

measurement and monitoring of terrestrial fluxes and ETa, the application of these approaches 

over large geographic extents remains challenging due to, inter alia, the spatial representativity 

of these estimates as well as the extensive labour, skilled manpower and cost implications 

associated with setting up these monitoring networks. Subsequently, alternative approaches 

have been advocated to acquire spatially representative hydrological process information over 

large geographic extents (Spittlehouse and Black, 1980; Courault et al., 2005; Li et al., 2009).  
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2.2 Satellite Earth Observation Methods to Estimate Actual Evapotranspiration 

Satellite earth observation (SEO) methods have been identified as a suitable alternative to 

conventional approaches to acquire spatially representative hydrological process information 

over large geographic extents. It is used to measure and provide useful information regarding 

hydrological variables, such as precipitation, ETa and soil moisture (Schmugge et al., 2002).  

The advantages of using SEO data include; sufficiently longer data records as compared to 

conventional methods, easily accessible and inexpensive spatially representative data, at near-

real time (Courault et al., 2005; Xue and Su, 2017; Indirabai et al., 2019). Furthermore, the use 

of SEO technologies can be used to provide data for remote and data scarce regions, thereby 

allowing for improved hydrological decision making.  

The use of SEO technologies and associated data sets have frequently been applied for the 

estimation of ETa (Stancalie et al., 2010; Hollman et al., 2013; McCabe et al., 2019; Running 

et al., 2019). These methods can broadly be categorised as; empirical methods, deterministic 

methods, vegetation index methods and parameterisation of the shortened energy balance 

equation (Courault et al., 2005).  

The empirical method uses SEO data as an input into empirical models (Courault et al., 2005). 

This method is usually used to map ETa over large geographic areas, which is based on surface 

temperature (Jensen, 1967; Courault et al., 2005; Bicalho et al., 2016).  Deterministic (indirect) 

methods make use of complex models to estimate various elements of the energy budget 

(Courault et al., 2005). This method makes use of SEO data and aims to obtain the required 

parameters to estimate ETa (Courault et al., 2005; Zhao et al., 2013; Song et al., 2019).  

Vegetation index methods make use of a SEO derived reduction factor to estimate ETa 

(Courault et al., 2005). This is used in combination with a reference evaporation, to estimate 

ETa (Courault et al., 2005; Glenn et al., 2010).  

The methods based on the parameterisation of the shortened energy balance equation are 

among the most frequently applied approaches, with the most commonly utilised options being; 

the Surface Energy Balance Index (SEBI) (Menenti and Choudhury, 1993), the Surface Energy 

Balance Algorithm for Land (SEBAL) (Bastiaanssen et al., 1998), the Surface Energy Balance 

System (SEBS) (Su, 2002), Mapping Evapotranspiration with High Resolution and Internalised 

Calibration (METRIC) (Allen et al., 2007) and ETLOOK (Pelgrum et al., 2010). A summary 

of the key information associated with the abovementioned techniques are seen in Table 2.1.   
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Table 2.1 Satellite Earth Observation (SEO) methods based on the parameterisation of the 

shortened energy balance equation 

Method Attributes 

SEBI x Is a single-source model, which was proposed by Menenti and Choudhury (1993). 

x Makes use of planetary boundary layer scaling. 

x Is an altered Crop Water Stress Index (CWSI) approach.  

x ETa is derived from the evaporative fraction (EF), by estimating the difference between 

hot and cold pixels, also known as dry and wet pixels. 

x Requires in-situ data and is now outdated (Menenti et al., 2003; Li et al., 2009). 

SEBAL x Established by Bastiaanssen et al. (1998) to estimate ETa whilst using minimum in-situ 

measurements. 

x Foremost assumption is that the wet and dry pixels are present in the region being 

studied. 

x Visible and near-infrared input data are required to approximate the flux components of 

the shortened energy balance equation. 

x Assumes that the EF is constant throughout the day. 

x Calculates energy fluxes from various land covers and no prior knowledge is needed 

regarding the land cover. 

x Is a single-source model (Bhattarai et al., 2016). 

METRIC x Utilised for the mapping of ETa as a residual of the surface energy balance (Allen et al., 

2007). 

x Is a derivative of SEBAL, that is less influenced by climatic measurements to estimate 

ETa (Li et al., 2009; Awad, 2019; Kong et al., 2019). 

x Does not require prior knowledge of crop type (Allen et al., 2007).  

x Uses a daily soil water balance to prove that ETa is zero for hot pixels.  

x Cold pixels in an agricultural setting should have biophysical attributes similar to the 

alfafa reference crop. 

x Able to estimate ETa in topographically complex regions (Gibson et al., 2013). 

x Is a single-source model (Bhattarai et al., 2016). 

SEBS x Is a single-source model (Su, 2002; Gibson et al., 2013), which utilises remote sensing 

and meteorological data to estimate turbulent fluxes and EF. 

x Fairly accurately characterises the spatio-temporal dynamics in ETa (Su et al., 2005). 

x Open source and freely available.  
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The SEBS model was selected for application in this study, as it is an open source, freely 

available user-friendly software, which is accessible from the Integrated Land and Water 

Information System (ILWIS) (Gibson et al., 2013). 

 Prior studies have highlighted the reliability of the SEBS model, which can provide relatively 

credible estimates of ETa whilst making fewer assumptions when compared against other 

models. The SEBS model is viewed as a promising tool to assist in decision making and water 

resources management (Su, 2002, Gibson et al., 2011; Su and Wang, 2013). Meteorological, 

and biophysical data are required as inputs to the SEBS model to estimate ETa as depicted in 

Figure 2.1 (Su, 2002; Li et al., 2009; Jarmain et al., 2009; Gibson, 2013). Biophysical 

information is obtained from remotely sensed data (Jarmain et al., 2009), whilst meteorological 

data is acquired from in-situ measurements. The radiation data includes; downward solar and 

longwave radiation, which and is measured or estimated as a model output (Su et al., 2005; Li 

et al., 2009; Gibson, 2013). 

 

Figure 2.1 Estimation of actual evapotranspiration and flux estimates using the SEBS model 

(Szporak-Wasilewska et al., 2013) 
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2.3 SEBS Formulation 

The SEBS model is based on the parametrisation of the shortened energy balance equation 

expressed in Equation 2.1, which differentiates the available energy into H and LE (Su, 2002). 

The net radiation (Rn) equation is expressed in Equation 2.6 as (Su, 2002): 

𝑅௡  ൌ ሾሺ1 െ  𝛼ሻ𝑅𝑆௪𝑑ሿ ൅ ሾ𝜀𝑎𝑅𝐿௪𝑑 െ  𝜀௦𝜎𝑇𝑜4ሿ                                                                      (2.6) 

where 𝛼 is the land surface albedo, 𝑅𝑆௪𝑑 is the incoming solar radiation (W. m-2), 𝜀௦ is the 

surface emissivity, 𝜀𝑎 is the emissivity of the air, 𝑅𝐿௪𝑑 is the incoming longwave thermal 

wavelength (W. m-2), 𝜎 is the Stefan-Boltzman constant (5.670 x 10−8W. m-2. K-4) and 𝑇௢ is 

the surface temperature (K).  

The soil heat flux equation is expressed as (Su, 2002): 

𝐺௢  ൌ  ሺ𝑅௡ሻሾΓ𝑐 ൅ ሺ1 െ 𝑓𝑐ሻ. ሺΓ௦ െ Γ𝑐ሻሿ                                                                                  (2.7) 

where 𝐺௢ is the soil heat flux (W. m-2), 𝛤𝑐 is presumed to be 0.05 for a completely covered 

vegetated canopy (Monteith, 1973), 𝑓𝑐 is the fractional vegetative cover and 𝛤௦ is assumed to 

be 0.315 for a bare surface (Kustas and Daughtry, 1990). 

The SEBS model makes use of the Monin-Obukhov Similarity Theory (MOST) in the 

estimation of H (Su, 2002). The H is expressed in Equations 2.8 and 2.9, and the Obukhov 

length is expressed in Equation 2.10 (Su, 2002): 

𝑢 ൌ ቀ௨∗
௞

ቁ ൈ ሾln ቀ௭−𝑑೚
𝑍೚೘

ቁ െ Ψ௠ ቀ௭−𝑑೚
𝐿

ቁ ൅  Ψ௠ ቀ𝑍೚೘
𝐿

ቁሿ                                                            (2.8) 

𝜃௢ െ 𝜃𝑎 ൌ ൬ 𝐻
௞௨∗ఘ𝐶೛

൰ ൈ ሾln ቀ௭−𝑑೚
𝑍೚೓

ቁ െ  Ψℎ ቀ௭−𝑑೚
𝐿

ቁ ൅ Ψℎ ቀ௭೚೓
𝐿

ቁ ሿ                                              (2.9) 

𝐿 ൌ  െሺఘ𝐶೛௨∗యఏೡ

௞𝑔𝐻
ሻ                                                                                                                   (2.10) 

where 𝑢 is the wind velocity (m. s-1), 𝑢∗ is the friction velocity (m. s-1), 𝑘 is the von Karman’s 

constant with a value of 0.4, 𝑧 is the height above the surface (m), 𝑑௢ is the displacement height 

(m), 𝑍௢௠ is the roughness height for momentum transfer (m), 𝑍௢ℎ is the scalar roughness height 

for heat transfer (m), 𝛹௠ is the stability correction function for momentum (m), 𝛹ℎ is the 

stability correction function for sensible heat transfer (m), 𝜃௢ is the potential temperature at the 
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surface (K), 𝜃𝑎 is the potential temperature at height 𝑧 (K), 𝜌 is the air density (Kg. m-3), 𝐶௣ is 

the specific heat capacity of air at constant pressure (J. Kg-1. K-1), 𝐿 is the Obukhov length (m), 

𝑔 is the acceleration due to gravity (m. s-2) and 𝜃௩ is the virtual temperature near the surface 

(K).  

The Zom can be determined using empirical relationships with NDVI (Su and Jacobs, 2001). 

Brutsaert (1982) states that empirical relationships are used in the estimation of vegetation 

height (h) and do, and are expressed as:  

𝑍௢௠  ൌ  0.005 ൅ 0.5 ሺ 𝑁𝐷𝑉𝐼
𝑁𝐷𝑉𝐼೘ೌೣ

ሻ2.5                                                                                                                   (2.11) 

ℎ ൌ  𝑍೚೘
0.316

                                                                                                                                 (2.12) 

𝑑௢  ൌ  2
3

 ሺℎሻ                                                                                                                              (2.13) 

Aerodynamic resistance varies according to the condition of the environment at the time, as it 

influences sensible heat and latent heat fluxes and impacts ETa (Sugita and Kishii, 2002). The 

𝑍௢௠ and 𝑍௢ℎ are required to estimate H and are given as:  

𝑍௢ℎ  ൌ  𝑍೚೘
ୣ୶୮ ሺ௞𝐵షభሻ

                                                                                                                    (2.14) 

where kB-1 is the inverse Stanton number, which is a dimensionless heat transfer coefficient. 

Su (2002) stated that the kB-1 value is expressed in Equation 2.15 and 2.16 as: 

𝑘𝐵−1
𝑆𝐸𝐵𝑆  ൌ  ሺ𝑘𝐵−1

𝑐  ൈ 𝑓𝑐2ሻ  ൅  ሺ𝑘𝐵−1
௠  ൈ  𝑓𝑐𝑓𝑠ሻ  ൅  ሺ𝑘𝐵−1

௦  ൈ  𝑓𝑠2ሻ                              (2.15)    

 𝑘𝐵−1 ൌ ൥൭ ௞𝐶೏

4𝐶೟ൈ ೠ∗
ೠሺ೓ሻൈ൬1−𝑒ష ೙మ൰

൱ ൈ ൫ 𝑓2
𝑐൯൩ ൅ ቈቆ 

௞ ൈ ೠ∗

ೠሺ೓ሻ ൈ ೋ೚೘
೓

𝐶೟
∗ ቇ ൈ ൫𝑓2

𝑐൯ ൈ ൫𝑓2
௦൯቉ ൅

                  ൣሺ𝑘𝐵−1
௦  ൈ 𝑓2

௦൧                                                                                                     (2.16)                      

where Cd is presumed to have a value of 0.2 and it is the drag coefficient of foliage elements, 

u(h) is the horizontal wind speed at the top of the canopy, n is the within canopy wind profile 

extinction coefficient, fc and fs are the fractional canopy coverage and its compliment, 

respectively.  
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Ct is the heat transfer coefficient of the leaf which for most canopies and environmental 

conditions is bound between 0.005N൑ Ct ൑ 0.075N, where N is the number of sides of the leaf 

that is part of the heat transfer process.  

Ct* is the heat transfer coefficient of the soil, and is expressed as 𝐶௧
∗ ൌ  𝑃𝑟−మ

య  ൈ 𝑅𝑒∗−భ
మ, where 

Pr is the Prandtl number and Re* is the roughness Reynolds number and is estimated as 𝑅𝑒∗ ൌ

 ℎೞ  ൈ ௨∗
௩

 ,  hs is the roughness height of the soil and v is the kinematic viscosity of the air, and is 

expressed as (Massman, 1999),  𝑣 ൌ ሺ1.327 ൈ 10−5ሻ  ൈ ቀ௣೚
௣

ቁ  ൈ ቀ 𝑇
𝑇೚

ቁ
1.81

 , where p and T are 

the ambient pressure and temperature, and po is 101.3 kPa and To is 273.5 K, respectively.  

For bare soils, the kB-1 value is expressed in Equation 2.17 (Brutsaert, 1982) as: 

𝑘𝐵−1
𝑆  ൌ  2.46ሺ𝑅𝑒∗ሻ

భ
ర   െ lnሺ7.4ሻ                                                                                        (2.17)    

The actual H ranges between the sensible heat flux at the wet limit (Hwet) and the sensible heat 

flux at the dry limit (Hdry). At the wet limit, H possesses its minimum value, as evaporation can 

occur at near potential rates (Su, 2002). At the dry limit, H possesses its maximum value, and 

LE is zero as a result of being limited by soil moisture. Equations 2.18 and 2.19 are the 

equations for Hwet and Hdry is expressed as (Su, 2002): 

𝐻௪𝑒௧  ൌ  𝑅௡ െ  𝐺௢ െ  𝜆𝐸௪𝑒௧                                                                                                   (2.18) 

𝐻𝑑௥௬  ൌ  𝑅௡ െ  𝐺௢                                                                                                                   (2.19) 

The relative evaporation can be expressed as (Su, 2002): 

Λ௥ ൌ ሾ1 െ ሺ 𝐻− 𝐻ೢ೐೟
𝐻೏ೝ೤− 𝐻ೢ೐೟

ሻሿ                                                                                                        (2.20) 

where 𝛬௥ is the relative evaporation and H is the sensible heat flux (W. m−2ሻ. 

Su (2002) combined Equation 2.18 and a combination equation similar to the Penman 

combination equation, to determine the EF. As stated by Menenti (1984), when the resistance 

terms are classified into the bulk internal and external resistances, the combination equation is 

expressed as:  

λE ൌ  ൣ௦ ൈ ௥೐ ൈሺ𝑅೙− 𝐺೚ሻ + ఘ𝐶೛ ൈሺ𝑒ೞೌ೟ −𝑒ሻ൧
ሾ௥೐ ൈሺఊ + ∆ሻ + ఊ ൈ ௥೔ሿ                                                                                                               (2.21)    
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where 𝑠 is the rate of change of saturated vapour pressure with temperature (hPa. K-1), re is the 

external resistance (s. m-1), esat and e are the saturated and actual vapour pressure (hPa) 

respectively, 𝛾 is the psychometric constant (hPa. K-1) and ri is the external resistance (s. m-1).  

In Equation 2.21, it is presumed that the roughness lengths for heat and vapour transfer are 

equivalent (Brutsaert, 1982). Su (2002), states that the Penman-Monteith equation is only 

effective for a vegetated canopy, whilst Equation 2.16 is valid for a vegetated canopy and a 

soil surface with defined bulk surface internal resistance. The use of Equation 2.21 to determine 

the latent heat energy is complex, as a result of the difficulties in determining ri as this is 

regulated by the accessibility of soil moisture (Su, 2002). Therefore, Su (2002) suggested an 

alternative to the direct use of ri in estimating 𝜆𝐸.  

According to the definition, ri at the wet limit is equal to zero. By including this value into 

Equation 2.21, and amending the variable to reflect the wet limit conditions, the sensible heat 

flux is expressed as (Su, 2002):  

𝐻௪𝑒௧ ൌ  
ቂሺ𝑅೙− 𝐺೚ሻ − 

ഐ಴೛
ೝ೐ೢ

 ൈቀ೐ೞೌ೟ ష೐
ം ቁቃ

ቂቀ1 + ∆ംቁ ቃ
                                                                                                              (2.22)    

Where rew is the external resistance, which depends on the Obukhov length (L), and is a 

function of the sensible heat flux and the friction velocity (Su, 2002) Equation 2.8 - Equation 

2.10. The friction velocity and L, which have been previously determined are then utilised to 

estimate rew from Equation 2.9 as:  

𝑟𝑒 ൌ  1
௞௨∗

 ൈ ቂln ቀ௭ − 𝑑೚
௭೚೓

ቁ  െ  Ψℎ ቀ௭ − 𝑑೚
𝐿

ቁ  ൅  Ψℎ ቀ௭೚೓
𝐿

ቁቃ                                                                            (2.23)    

The external resistance at the wet limit is expressed as (Su, 2002): 

𝑟𝑒௪ ൌ  1
௞௨∗

 ൈ ቂln ቀ௭ − 𝑑೚
௭೚೓

ቁ  െ Ψℎ ቀ௭ − 𝑑೚
𝐿ೢ

ቁ ൅ Ψℎ ቀ௭೚೓
𝐿ೢ

ቁቃ                                                                         (2.24)    

The wet limit stability length is discussed in further detail in Su (2002) and is determined as: 

𝐿௪ ൌ  െ ௣௨∗
య

ቂ ೖ೒ ൈబ.లభ ൈሺೃ೙ష ಸ೚ሻ
ഊ ቃ

                                                                                                                                     (2.25)    

The evaporative fraction is expressed as (Su, 2002): 
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Λ ൌ  ሺఒ𝐸ሻ
ሺ𝑅೙ −𝐺ሻ

                                                                                                                         

     ൌ  ሺΛೝሻሺఒ𝐸ೢ೐೟ሻ
ሺ𝑅೙ −𝐺ሻ

                                                                                                                        (2.26)    

Assuming that the evaporative fraction is constant during the day, the daily actual 

evapotranspiration is expressed as (Su, 2002): 

𝐸𝑑𝑎௜௟௬ ൌ ሺ8.64 ൈ 107ሻ  ൈ ൫Λ௢
24൯  ൈ ሾሺ𝑅೙మర− 𝐺೚ሻ

ఒఘೢ
ሿ                                                                    (2.27) 

where 𝐸𝑑𝑎௜௟௬ is the daily total evaporation (mm. day-1), 𝛬௢
24 is the daily evaporative fraction, 

𝑅௡24 is the daily net radiation (W. m-2), 𝜆 is the latent heat of vaporization (J. kg-1) and 𝜌௪ is 

the density of water (Kg. m-3).   

2.3.1 Case studies on the application of the SEBS model  

Many studies have implemented the SEBS model to estimate ETa, and a select few relevant 

case studies have been presented in Table 2.2.  
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Table 2.2 Case studies on the application of the SEBS model 

Study Main objective Satellite Sensor  Key findings 

Su, 2002 

The estimation of atmospheric 

turbulent fluxes and the EF, whilst 

using remote sensing and field 

data. 

MODIS TERRA 

x The SEBS model resulted in accurate outputs; however, the model is sensitive to surface roughness. 

x The mean error of SEBS produced estimates is approximately 20 % relative to the mean sensible heat 

flux, provided that the input geometrical and physical variables are reliable.  

McCabe et al., 

2008 

 To utilise multi-sensor remote 

sensing data for water and energy 

cycle studies, to understand the 

variability and feedback of land 

surface and atmospheric processes.  

MODIS TERRA and 

MODIS AQUA 

 

x MODIS TERRA and MODIS AQUA data were used as inputs into the SEBS model to estimate ETa. 

x Soil moisture anomalies from the AMSR-E sensor indicate that there is a significant agreement with the 

sensible heat predictions.  

  

Pan et al., 2008 

To estimate the regional scale 

terrestrial water cycle using remote 

sensing, and the use of MODIS 

TERRA and MODIS AQUA as 

inputs into the SEBS model to 

estimate ETa.  

MODIS TERRA and 

MODIS AQUA 

x The SEBS derived ETa values are overestimated to a greater amount than the Variable Infiltration 

 Capacity (VIC) ETa estimates. 

x Challenging to improve the results by assimilating ETa estimated from remotely sensed data. 
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Study Main objective Satellite Sensor  Key findings 

Gibson et al., 

2011 

The use of SEBS to estimate ETa in 

a heterogeneous region, and the 

uncertainties experienced when 

using a pre-packaged SEBS model.   

MODIS TERRA and 

MODIS AQUA 

x Uncertainties were introduced due to model sensitivity, which resulted from land surface and air 

temperature gradients, heterogeneous vegetation, the selection of a fractional vegetation cover formula 

and the displacement height and height at which wind speed is estimated.  

x The fractional vegetation cover formula influenced the total evaporation by 0.7 mm. 

Lu et al., 2013 

To estimate the EF from MODIS 

TERRA and MODIS AQUA data 

using the SEBS model in a 

subtropical evergreen coniferous 

plantation. 

MODIS TERRA and 

MODIS AQUA 

x The SEBS estimated EF was higher than the measured EF, resulting from the lack of energy-balance 

closure.  

x The MODIS pixel size covers a larger region than the in-situ data, resulting in an overestimation of EF.  

x SEBS produced Rn was overestimated and produced an RMSE of 84.8 W. m-2. 

x SEBS estimated G was overestimated and produced an R2 of 0.042.  

Gokool et al., 

2016 

To validate satellite derived ETa 

estimates against the surface 

renewal method, and to assess the 

infilling techniques that produce a 

time series of daily satellite 

derived ETa.   

MODIS TERRA 

x The SEBS ETa estimates resulted in a R2 value of 0.33 and a RMSE value of 2.19 mm. d-1, when 

compared to in-situ ETa values.  

x The infilling techniques, the Kcact and the linear interpolation method resulted in a poor correlation 

between the SEBS ETa values, yielding a RMSE value of 1.96 mm. d-1 and 1.54 mm. d-1 respectively.  
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2.3.2 Limitations of satellite earth observation techniques and the SEBS model  

Although SEO techniques to estimate ETa are easily accessible, the acquisition of data does 

have limitations which include cloud cover, the revisit and repeat cycle of satellites, the 

analysis of images and human induced errors (Moran et al., 1997; Gokool et al., 2016). 

Depending on the satellite imagery being used, cloud coverage may reduce the quality of the 

images and the frequency at which the images are obtained, therefore resulting in an inadequate 

repeat coverage for applications such as intensive agricultural management among other 

applications (Moran et al., 1997; Gokool et al., 2016; Righini and Surian, 2018). Human 

induced errors are introduced, as humans select the data that is necessary, specify the 

resolution, determine the date of the image that is required and specify the processing method 

of the data (Righini and Surian, 2018).  

Additionally, these limitations may be further compounded by model specific limitations which 

further propagates uncertainty into the final model output. There are multiple model specific 

limitations in the pre-packaged version of the SEBS model that is available in ILWIS and are 

discussed in Gibson et al. (2013). The SEBS model is sensitive to the uncertainties related to 

the land surface and air temperature gradient (Gibson et al., 2013; Gokool et al., 2016), the 

fractional vegetation cover formula, the displacement height and the height of wind speed 

measurements (Gokool et al., 2016) and the diversity in topography and vegetation cover 

(Gibson et al., 2013; Gokool et al., 2016). The assumption that the EF is constant throughout 

the day is also considered as a limitation of the SEBS model (Su et al., 2005). 

2.3.3 Influence of the land surface and air temperature gradient derived using satellite 

earth observation data  

Satellite-based ETa estimation techniques frequently overestimate ETa in arid and semi-arid 

environments, where water stress limits ETa (Seneviratne et al., 2010). One of the main 

restrictions of models that are based on the shortened energy balance equation include the 

overestimation of ETa in water limited conditions. This occurs as a result of its inability to 

effectively account for soil moisture (Gokmen et al., 2012; Gibson et al., 2013; Yi et al., 2018; 

Dzikiti et al., 2019). 

Preceding studies have stated uncertain characterisation of the kB-1 factor in water limited and 

in sparse vegetation cover environments (Gokmen et al., 2012; Gibson, 2013; Paul et al., 2014; 

Bhattarai et al., 2018; Khand et al., 2019). In recent years modifications to the SEBS 
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formulation, have been carried out to account for the influence of soil moisture during the 

derivation of terrestrial fluxes and ETa, which is achieved through the integration of a stress 

factor to address the kB-1 factor (Gokmen et al., 2012; Pardo et al., 2014; Li et al., 2015). 

According to Gokmen et al. (2012), application of the modified SEBS formulation can improve 

the estimation of energy and water fluxes, in water-stressed regions. Zhuang et al. (2016) states 

that the kB-1 factor can correct the differences between the temperature gradient (To-Ta), and it 

is influenced by numerous variables that relate to structural parameters and environmental 

conditions.   

Days that have a large difference between radiometric and atmospheric temperature, may occur 

as a result of the To-Ta gradient. This influences the ETa and terrestrial flux estimates and would 

require a high kB-1 factor to moderate it (Brenner et al., 2017). A decrease in the kB-1 factor, 

would result in a higher land surface and air temperature gradient, and an increased EF, 

resulting in an increased ETa estimate. The land surface temperature (LST) estimate is 

influenced by the shortened energy balance equation, and spatially distributed ETa estimates 

are based on manipulating LST information obtained from thermal infrared remote (TIR) 

sensing located on satellite or airborne platforms (Brenner et al., 2017). As a result of the 

satellite overpass times, and the imagery being obtained at different times, as MODIS Terra 

satellite passes over the equator at 10:30 am (descending) (Muhammed, 2012), and the MODIS 

Aqua satellite passes over the equator at 1:30 pm (ascending) (Savtchenko et al., 2004), 

differences in ETa and terrestrial flux estimates may occur. This could occur as a result of the 

To-Ta gradient, which influences the ETa and terrestrial flux estimates. 

When a model estimated LST is less than the air temperature, a negative H value is obtained, 

indicating an underestimation of the parameter. According to Lu et al. (2013), this arises either 

from stable or strong horizontal advection conditions. The underestimation of H, and the 

overestimation of EF, either result from; a lack of the energy balance closure, the 

underestimation of Rn-G, land types with higher ETa in a MODIS pixel and incorrect 

calculation of the aerodynamic parameters (Lu et al., 2013). The SEBS model is highly 

complex, and a combination of several minor factors may result in the overestimation of ETa 

and terrestrial flux estimates. According to Kalma et al. (2008), the temperature gradient and 

LST impact LE, Rn, Go and H, which are components of the energy balance equation. The 

errors related with utilising surface temperature to estimate H, include; errors in observed 

meteorological data, errors in model assumption and the significant inaccuracies in radiometric 
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temperature estimation and the inequality between the land surface and air temperature gradient 

(Kalma et al., 2008).   

Satellite earth observation data have effectively been used to estimate the spatial distribution 

of the available energy from combined visible and TIR data, and the spatial distribution of H 

from thermal data (Troufleau et al., 1997). The H variable is usually related to the gradient 

between the land surface temperature and air temperature divided by an aerodynamic 

resistance. Satellites are able to provide information when ETa estimates are needed at high 

spatio-temporal resolutions. However, whilst these techniques have been proven to be valuable, 

there still exists an influence of the land surface and air temperature gradient on ETa and 

terrestrial flux estimates derived using SEO data.  

2.4 Satellite Earth Observation Evapotranspiration Products  

There is an increasing number of global and regional SEO products that are being developed 

and made available to account for ETa (Long et al., 2014; Karimi et al., 2019). Usually, the 

level of expertise that is needed to use these data products is much lower than those essential 

for conducting remote sensing analysis.  

The most frequently applied SEO ETa products include; Global Land Evaporation Amsterdam 

Model (GLEAM) (Miralles et al., 2011), Land Surface Analysis Satellite Applications Facility 

(LSA-SAF), MOD16 (Mu et al., 2007) and MOD16A2 (Mu et al., 2011). A summary of the 

key information of the abovementioned ETa products are presented in Table 2.3.  
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Table 2.3 Satellite earth observation ETa products 

ETa Product and 

Reference 
Availability Algorithm Input Data 

Temporal 

Resolution 
Spatial Resolution Data Source   

MOD16  

Mu et al. (2007) 
2000-2010 

Penman-

Monteith 

Land cover, albedo, LAI, air temperature, vapour 

pressure deficit, enhanced vegetation index. 

8-day, monthly, 

annual 
1 km MODIS, GMAO 

MOD16A2 

Estimated using Mu et al. 

(2007) improved 

algorithm, Mu et al. 

(2011) 

2000-Current  
Penman-

Monteith 

Land cover, albedo, LAI, air temperature, vapour 

pressure deficit, enhanced vegetation index. 
8-day 500 m  

MODIS, GMAO 

 

LSA-SAF 

LSA-SAF 2010 Product 

user manual, 

http://landsaf.meteo.pt/ 

2009-Current 

Surface Energy 

Balance 

Equation 

Air temperature, wind speed, dew point 

temperature, soil moisture, air pressure, land 

cover and specific humidity. 

Daily 

3-5 km,        

depending on latitude 

and distance to nadir 

view 

ECMWF, 

ECOCLIMAP,         

MSG SEVIRI 

GLEAM 

Miralles et al. (2011) 
1984-2007 

Priestley and 

Taylor 

Air temperature, precipitation, snow water 

equivalents, radiation fluxes, and soil moisture 

and vegetation optical depth. 

Daily 0.25o 

CMORPH NSIDC, 

GEWEX SRB,   

TMMI+AMSR-E  
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The MOD16A2 product was selected for application, as it is a freely available satellite-based 

product that contains readily available ETa. The MOD16A2 product utilises an algorithm that 

is based on the Penman-Monteith equation and comprises of daily inputs of meteorological 

reanalysis data and MODIS satellite products (Aguilar et al., 2018).  The MOD16A2 ETa data 

was acquired and evaluated as part of the investigation. The rationale for this can be attributed 

to the absence of the temperature data used during the derivation of ETa using the MOD16 

algorithm (Mu et al., 2007; Mu et al., 2011), and having the finest spatial resolution from the 

aforementioned ETa products. A study undertaken by Gibson et al. (2013), detailed the use of 

the SEBS model for agricultural and natural environments, and suggested the validation of 

current global ETa products in South Africa and promoted their use.  The validation of the 

MOD16 product is advantageous, as it avoids the use of thermal imagery (Gibson, 2013). This 

is beneficial, as the SEBS model is sensitive to To-Ta and the uncertainties related to the To 

estimation.  

2.5 MOD16 Product to Estimate Actual Evapotranspiration 

Running et al. (2017) states that the MOD16 produced ETa is as a result of the sum of ETa from 

daytime and night. The MOD16 product has a spatial resolution of 1 km and a temporal 

resolution of 8-day (mm. 8d-1), monthly and annual intervals (Running et al., 2017). The 8-day 

ETa value is a cumulative value of the ETa estimates obtained (Ramoelo et al., 2014). The 

MOD16 algorithm combines remotely sensed data on land use, land cover, albedo, Leaf Area 

Index (LAI) and fraction of photosynthetically active radiation (FPAR), with downward solar 

radiation (Rs), air temperature (Ta) and actual vapour pressure deficit (ea) to estimate global 

ETa (Mu et al., 2011).  

2.5.1 The MOD16 algorithm 

The satellite product used in this study was the MOD16A2 (MODIS TERRA Net 

Evapotranspiration 8-day Global 500 m resolution) product, which is a recently updated 

version of the MOD16 product (Mu et al., 2013). The algorithm that was utilised for the 

MOD16 product was based on the Penman-Monteith equation and comprises daily inputs of 

meteorological reanalysis data and the MODIS satellite-derived products, such as; vegetation 

property dynamics, albedo and landcover (Aguilar et al., 2018). The study therefore validated 

the MOD16A2 ETa (ETMOD16A2) estimates using in-situ data and examined if the MOD16A2 
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product identified and captured the variations in ETa within the different study sites, with 

varying vegetation cover and land types.   

The MOD16 algorithm was developed by Mu et al. (2007) and improved by Mu et al. (2011), 

and was based on the Penman-Monteith combination equation (Monteith, 1965; Allen et al., 

1998):  

𝜆ΕT ൌ  
௦୹ᇲ+ ఘ 𝐶೛ൈሺ೐ೞೌ೟ ష೐

ೝೌ
ሻ

௦ + ఊ ൈሺ1 + ೝೞ
ೝೌ

ሻ
                                    (2.28) 

Where 𝜆ΕT is the latent heat flux, 𝜆 is the latent heat of vapourisation of water (J. kg-1), 𝑠 ൌ

𝑑ሺ𝑒௦𝑎௧ሻ/𝑑𝑇, which is the slope of the curve relating saturated water vapour pressure (esat) to 

temperature, e is the actual water vapour (Pa), A′ is the available energy partitioned between 

sensible heat, latent heat and soil heat fluxes on land surface (J. m-2. s-1), 𝜌 is air density (kg. 

m-3), Cp is the specific heat capacity of air at constant pressure (J. kg-1. K-1), ra is the 

aerodynamic resistance to water vapour diffusing into the atmospheric boundary layer (s. m-1), 

𝛾 is the psychometric constant (0.066 kPa. K-1) and rs is the surface resistance to water vapour 

transfer (s. m-1) (Mu et al., 2011).  

Multiple improvements have been made to the MOD16 algorithm (Mu et al., 2011) in relation 

to its preceding algorithm (Mu et al., 2007), as seen in Figure 2.2 and Figure 2.3, and include: 

i. The canopy is separated into wet and dry surfaces and is able to provide water loss 

estimates of canopy evaporation and canopy transpiration from the wet and dry 

surfaces, respectively. 

ii. Day- and night-time ETa estimates are included in the revised algorithm.  

iii. Wet surfaces and soil moisture are included, and the ground surface evaporation 

includes potential evaporation from the wet surface and evaporation from the moist soil.  

iv. The concern of negative ETa and Potential Evapotranspiration (PET) values for some 

8-day and monthly data has been resolved (Running et al., 2017). 

v. The concern of invalid MODIS surface albedo values during the year for vegetated 

pixels, resulting from severe and constant cloudiness, has been resolved. An albedo 

value of 0.4 is specified to pixels, which is a typical value that is given to nearby 

rainforests with valid albedo values (Mu et al., 2007; Running et al., 2017). 



 

 26 

 

Figure 2.2 Flow diagram of the old MOD16 algorithm (Mu et al., 2007) 

 

Figure 2.3 Flow diagram of the improved MOD16 algorithm (Mu et al., 2011) 
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The MOD16 algorithm runs at a daily basis and the daily ETa is the sum of ETa from daytime 

and night. To acquire the average night-time air temperature (Tnight), it is assumed that the daily 

average air temperature (Tavg) is the average of the daytime air temperature (Tday). Therefore, 

the Tnight and Tday is the average air temperature when the downward solar radiation is above 

zero. Thus, Tnight is expressed in Equation 2.29 as:  

𝑇௡௜𝑔ℎ௧ ൌ 2 ൈ 𝑇𝑎௩𝑔 െ  𝑇𝑑𝑎௬                                    (2.29) 

In the improved ET algorithm, the stomata are assumed to close fully and the plant transpiration 

through the stomata is zero, except for the transpiration that occurs through the leaf boundary-

layer and the leaf cuticles.  

The net incoming solar radiation (Rnet) is expressed in Equations 2.30 and 2.31 as (Cleugh et 

al., 2007): 

𝑅௡𝑒௧ ൌ ሺ1 െ 𝛼ሻ ൈ ሺ𝑅௦௪𝑑ሻ  ൅  𝜎 ሾ𝜀𝑎 െ 𝜀௦ሿ ൈ ሺ273.15 ൅ 𝑇ሻ4                                   (2.30) 

Where 𝛼 is MODIS albedo, Rswd is the downward shortwave radiation, 𝜀௦ is the surface 

emissivity and is assumed to be 0.97, 𝜀𝑎 is the atmospheric emissivity and is expressed as ሺ1 െ

0.26𝑒−7.77ൈ10షర𝑇మሻ and Ta is the air temperature in ℃.  

In the preceding MOD16 algorithm, G was extracted from Rnet to obtain the net radiation 

partitioned in the ET process as expressed in Equation 2.31 as:  

𝐴 ൌ 𝑅௡𝑒௧  െ 𝐺                                             (2.31) 

Where A is the difference between the radiation partitioned on the soil surface and soil heat 

flux. 

In the improved MOD16 algorithm, there is no soil heat flux interaction between the soil and 

the atmosphere, if the ground is entirely covered with vegetation. The energy that is received 

by the soil is the difference between the radiation partitioned on the soil surface and G, as 

expressed in Equations 2.32, 2.33 and 2.34 as (Mu et al., 2011): 

𝐴 ൌ 𝑅௡𝑒௧                                                         (2.32) 

𝐴𝑐 ൌ 𝐹𝑐  ൈ 𝐴                                                         (2.33) 
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𝐴௦௢௜௟ ൌ ሺ1 െ 𝐹𝑐 ሻ  ൈ 𝐴 െ 𝐺                                                   (2.34) 

Where Ac is the part of A that is available to the canopy and Asoil is the part of A partitioned on 

the soil surface, and Fc is the vegetation cover fraction.  

When the daytime and night-time temperature is low (<5℃), there is no G. In the old MOD16 

algorithm G is zero, however it is now estimated as Equation 2.35 as (Mu et al., 2011): 

𝐺௦௢௜௟ ൌ  ൝
4.73𝑇௜  െ 20.87
0                          
0.39𝐴௜                

                  
𝑇min 𝑐𝑙𝑜𝑠𝑒  ൑ 𝑇𝑎𝑛𝑛𝑎௩𝑔 ൏ 25℃, 𝑇𝑑𝑎௬ െ  𝑇௡௜𝑔ℎ௧ ൒ 5℃                                     
𝑇𝑎𝑛𝑛𝑎௩𝑔 ൒ 25℃ 𝑜𝑟  𝑇𝑎𝑛𝑛𝑎௩𝑔  ൏    𝑇min 𝑐𝑙𝑜𝑠𝑒   𝑜𝑟  𝑇𝑑𝑎௬ െ  𝑇௡௜𝑔ℎ௧ ൒ 5℃   
𝑎𝑏𝑠ሺ𝐺௦௢௜௟ሻ ൈ 𝑎𝑏𝑠ሺ𝐴௜ሻ                                                                                                 

  

𝐺 ൌ 𝐺௦௢௜௟ሺ1 െ 𝐹𝑐 ሻ                                                            (2.35) 

Where Gsoil is the soil heat flux when Fc = 0, Ti is the average daytime or night-time in ℃, 

Tannavg is the annual average daily temperature and Tmin close is the threshold value below which 

the stomata will close completely and plant transpiration will cease (Mu et al., 2007; Running 

et al., 2004).  

In the old MOD16 algorithm, there was no difference between the ET on the saturated and 

moist bare soil surface, and there was no evaporation, however transpiration occurred on the 

canopy surface (Mu et al., 2007). In the modified MOD16 algorithm, the water cover fraction 

(Fwet) which is taken from the Fisher et al. (2008) ET model, modified to be constrained to zero 

when the relative humidity (RH) is less than 70%:  

𝐹௪𝑒௧  ൌ  ቄ 0.0
 𝑅𝐻4            𝑅𝐻 ൏ 70%                 

70% ൑ 𝑅𝐻 ൑ 100%                                                                       (2.36) 

When RH is less than 70%, 0% of the surface is covered by water (Mu et al., 2011). For the 

wet canopy and wet soil surface, the water evaporation is calculated as the potential 

evaporation, which is explained in further detail within the document.   

Evaporation of precipitation that is intercepted by the canopy cover forms a considerable 

amount of upward water flux in ecosystems with large leaf area index (LAI).  When the 

vegetation is covered with water, Fwet ് 0, water evaporation from the vegetation surface will 

occur. Evapotranspiration rates from the vegetation is regulated by the aerodynamic resistance 

and the surface resistance. The aerodynamic resistance (rhrc) and the wet canopy resistance 
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(rvc) to evaporated water on the wet canopy surface is expressed as Equation 2.39 and Equation 

2.40 as (Mu et al., 2011):  

𝑟ℎ𝑐 ൌ  1
𝑔௟_ೞ೓ൈ𝐿𝐴𝐼ൈ𝐹 ೐೟

                                                                                                          (2.37) 

𝑟𝑟𝑐 ൌ  ఘ ൈ𝐶೛

4 ൈ ఙ ൈ 𝑇೔
య                                                                                                                  (2.38) 

𝑟ℎ𝑟𝑐 ൌ  ௥ℎ𝑐 ൈ௥௥𝑐
௥ℎ𝑐 + ௥௥𝑐

                                                                                                                 (2.39) 

𝑟𝑣𝑐 ൌ  1
𝑔௟_೐_ೢೡ ൈ𝐿𝐴𝐼ൈ𝐹 ೐೟

                                                                                                       (2.40) 

Where rhc (s. m-1) is the wet canopy resistance to sensible heat, rrc (s. m-1) is the resistance to 

radiative heat transfer through air, gl_sh (s. m-1) is the leaf conductance to sensible heat per unit 

LAI, gl_e_wv (s. m-1) is the leaf conductance to evaporated water vapour per unit LAI and  𝜎  

(W. m-2. K-4) is the Stefan-Boltzmann constant.  

Succeeding the Biome-BGC model (Thornton, 1998), ET on a wet canopy surface is expressed 

as Equation 2.41 as:  

𝜆𝐸௪𝑒௧_𝑐  ൌ  
ቂሺ௦ ൈ 𝐴೎ ൈ 𝐹೎ሻ +ቀఘ ൈ 𝐶೛ ൈ 𝐹೎ ൈ ሺ೐ೞೌ೟ ష೐ሻ

ೝ೓ೝ೎ ቁቃ ൈ 𝐹 ೐೟

௦ +ቀ
ುೌൈ ಴೛ ൈೝೡ೎
ഊ ൈ ഄ ൈೝ೓ೝ೎ ቁ

                                                           (2.41) 

Where the resistance to latent heat transfer (rvc) is the sum of rhrc and rs in Equation 2.28.  

Plant transpiration occurs during both daytime and night-time, however night-time 

transpiration was ignored in the old MOD16 algorithm and is now included in the revised and 

updated MOD16 algorithm (Mu et al., 2011). In the previous version of the MOD16 algorithm, 

the surface conductance (Cc) was estimated using LAI to scale stomatal conductance (Cs) from 

the leaf leavel up to the canopy level (Landsberg and Gower, 1997; Mu et al., 2007), as 

expressed in Equation 2.42 and Equation 2.43 as:  

𝐶௦  ൌ  𝐶𝐿 ൈ 𝑚ሺ𝑇௠௜௡ሻ  ൈ 𝑚ሺ𝑉𝑃𝐷ሻ                                                                                      (2.42) 

𝐶𝑐  ൌ  𝐶௦ ൈ 𝐿𝐴𝐼                                                                                                                  (2.43) 

Where CL is the mean potential stomatal conductance per unit leaf area, m(Tmin) is a multiplier 

that limits potential stomatal conductance by minimum air temperatures (Tmin) and m(VPD) is 
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a multiplier used to reduce the potential stomatal conductance when VPD is high enough to 

reduce canopy conductance (Zhao et al., 2005; Mu et al., 2007). In the old MOD16 algorithm, 

CL was constant for all variations of biomes. However, in the improved MOD16 algorithm, CL 

varies according to the type of biome found, as shown in Kelliher et al. (1995); Schulze et al. 

(1994) and White et al. (2000).  

In the modified MOD16 algorithm, the method to estimate Cc has been revised. The canopy 

conductance to transpired water vapour per unit area LAI, results from the stomatal and 

cuticular conductance that are parallel with each other and are both in series with leaf boundary 

layer conductance (Thornton, 1998; Running and Kimball, 2006). 

𝑟𝑐௢௥௥  ൌ  1

ቀభబభయబబ
ುೌ

ቁ ൈቀ
೅೔ శమళయ.భఱ

మవయ.భఱ ቁ
భ.ళఱ 

  
                                                                                          (2.44) 

𝐺௦
1 ൌ  ൜𝐶𝐿 ൈ 𝑚ሺ𝑇௠௜௡ሻ ൈ 𝑚ሺ𝑉𝑃𝐷ሻ ൈ  𝑟𝑐௢௥௥

 0                                                             
                                     𝑖 ൌ 𝑑𝑎𝑦𝑡𝑖𝑚𝑒        

𝑖 ൌ 𝑛𝑖𝑔ℎ𝑡 െ 𝑡𝑖𝑚𝑒 

𝐺𝑐௨  ൌ 𝑔_𝑐𝑢 ൈ 𝑟𝑐௢௥௥                     (2.45) 

𝐺௦
2 ൌ  𝑔_𝑠ℎ                                        (2.46) 

𝐺𝑐_௜ ൌ  ቐቈ
𝐺௦

2  ൈ ൫𝐺௦
1 ൅  𝐺𝑐௨൯

𝐺௦
1  ൅  𝐺௦

2  ൅  𝐺𝑐௨
቉  ൈ 𝐿𝐴𝐼 ൈ ሺ1 െ 𝐹௪𝑒௧ሻ

 0                                                                           
                   

ሾ𝐿𝐴𝐼 ൐ 0, ሺ1 െ 𝐹௪𝑒௧ሻ ൐ 0ሿ
ሾ𝐿𝐴𝐼 ൌ 0, ሺ1 െ 𝐹௪𝑒௧ሻ ൌ 0ሿ      

𝑟௦_௜ ൌ 1
𝑐೎_೔

                                                                                                                                   (2.47) 

Where Pa is the atmospheric pressure, Gs
1 are daytime and night-time stomatal conductance, 

Gcu is the leaf cuticular conductance, g_cu is the cuticular conductance per unit LAI, which has 

a constant value of 0.0001 m.s-1 for all biomes, Gs
2 is the leaf boundary-layer conductance and  

g_sh is the leaf conductance to sensible heat per unit LAI and further information for each 

constant value is given in Mu et al. (2011).  

In the revised version of the MOD16 algorithm, Pa is calculated as a function of the elevation 

(Thornton, 1998) and is expressed as Equation 2.50 as: 

𝑡1  ൌ 1 െ  𝐿𝑅ೄ೅ವ ൈ𝐸௟𝑒௩
𝑇ೄ೅ವ

                                                                                                                  (2.48) 
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𝑡2  ൌ  𝐺ೄ೅ವ 

𝐿𝑅ೄ೅ವ ൈ ೃೃ
ಾಲ

                                                                                                                    (2.49) 

𝑃𝑎  ൌ  𝑃𝑆𝑇𝐷  ൈ 𝑡1
௧మ                                                                                                                       (2.50) 

Where LRSTD is the standard temperature lapse rate and has a constant value of 0.0065 K. m-1, 

TSTD is the standard room temperature at 0 m elevation and has a constant value of 288.15 K, 

GSTD is the standard gravitational acceleration and has a constant value of 9.82 m. s-2, RR is a 

gas law constant with a value of 8.3143 m3. Pa. mol-1. K-1, MA has a constant value of  

28.9644e-3 kg. mol-1 and is the molecular weight of air, and PSTD is the standard pressure at 0 

m elevation and has a constant value of 101325 Pa (Mu et al., 2011).  

The transfer of heat and water vapour from the dry canopy surface into the air above the canopy 

is determined by the aerodynamic resistance (ra), which is considered as a parallel resistance 

to convective (rh) and radiative (rr) heat transfer following Biome-BGC model (Thornton, 

1998). 

𝑟𝑎  ൌ  ௥ℎ ൈ௥௥
௥ℎ + ௥௥

                                                                                                                        (2.51) 

𝑟ℎ ൌ  1
𝑔௟್೗

                                                                                                                            (2.52) 

𝑟𝑟 ൌ  ఘ ൈ𝐶೛

4 ൈ ఙ ൈ ሺ𝑇೔ +273.15ሻయ                                                                                                     (2.53) 

Where glbl is the leaf-scale boundary layer conductance (m. s-1) and is equal to gl_sh and 𝜎       

(W. m-2. K-4) is the Stefan-Boltzmann constant. 

The plant transpiration (𝜆Etrans) is calculated as Equation 2.54 (Mu et al., 2011) as:  

𝜆𝐸௧௥𝑎௡௦ ൌ  
ቂሺ௦ ൈ𝐴೎ሻ+ ఘ ൈ 𝐶೛ൈ𝐹೎ ൈቀ೐ೞೌ೟ ష೐

ೝೌ
ቁቃൈሺ1−𝐹 ೐೟ሻ

ቂ௦ + ఊ ൈቀ1 + ೝೞ
ೝೌ

ቁቃ
                               (2.54) 

Where ra  is the aerodynamic resistance which was calculated in Equation 2.50.  

The potential plant transpiration (λEpot_trans) is calculated following the Priestly-Taylor 

(Priestley and Taylor, 1972), and is expressed as Equation 2.44 as:  

𝜆𝐸௣௢௧_௧௥𝑎௡௦ ൌ  ఈమൈ௦ ൈ 𝐴೎ ൈ ሺ1−𝐹 ೐೟ሻ
ሺ௦ + ఊሻ

                                                       (2.55) 
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Where 𝛼2 ൌ 1.26. 

The soil surface is separated into the saturated surface covered with water and the moist surface 

by Fwet. The soil evaporation includes the potential evaporation from the saturated soil surface 

and evaporation from the moist soil surface (Mu et al., 2011). The aerodynamic resistance to 

vapour transport (rtot) is expressed as Equation 2.55 (van de Griend and Owe, 1994; Mu et al., 

2007) as: 

𝑟௧௢௧ ൌ 𝑟௦  ൅ 𝑟௩                                                                              (2.56) 

Where rs is the surface resistance and rv is the aerodynamic resistance to water vapour. In the 

old MOD16 algorithm, rtot was assumed to be 107 s. m-1 globally (Wallace and Holwill, 1997), 

however it was corrected for atmospheric temperature (Ti) and pressure (Pa) (Jones, 1992) and 

is expressed in Equation 2.57 and Equation 2.58 as:   

𝑟𝑐௢௥௥ ൌ  1
భబభయబబ

ುೌ
 ൈ ቀ

೅೔ శమళయ.భఱ
మవయ.భఱ ቁ

భ.ళఱ                                                       (2.57) 

𝑟௧௢௧ ൌ 𝑟௧௢௧𝑐  ൈ  𝑟𝑐௢௥௥                                                                             (2.58) 

Where Ti and Pa are assumed to be 20℃ and 101300 Pa, respectively, rcorr is the correction for 

atmospheric temperature and pressure and rtotc is assumed to have a value of 107 (s. m-1). The 

aerodynamic resistance at the soil surface (ras) is parallel to the resistance to convective heat 

transfer (rhs) (s. m-1) and the resistance to radiative heat transfer (rrs) (s. m-1) (Choudhury and 

DiGirolamo, 1998) and is expressed as:  

𝑟𝑎௦  ൌ  ௥೓ೞ ൈ௥ೝೞ
௥೓ೞ + ௥ೝೞ

                                                                                                                     (2.59) 

𝑟ℎ௦ ൌ 𝑟௧௢௧                                                                                                      (2.60) 

𝑟௥௦  ൌ  ఘ ൈ𝐶೛

4 ൈ ఙ ൈ ሺ𝑇೔ +273.15ሻయ                                                                                                     (2.61) 

In the improved MOD16 algorithm, rtotc is not constant. For a specific biome type, there is a 

maximum (rblmax) and a minimum value (rblmin) for rtotc, and rtotc is a function of VPD.  

𝑟௧௢௧𝑐 ൌ  ൞

𝑟𝑏𝑙௠𝑎௫                                                                                                                                    𝑉𝑃𝐷 ൑  𝑉𝑃𝐷𝑐௟௢௦𝑒                            

𝑟𝑏𝑙௠𝑎௫  െ ൤ሺ௥𝑏௟೘ೌೣ−௥𝑏௟೘೔೙ሻൈሺ𝑉𝑃𝐷೎೗೚ೞ೐−𝑉𝑃𝐷ሻ
൫𝑉𝑃𝐷೎೗೚ೞ೐−𝑉𝑃𝐷೚೛೐೙൯

൨                                                                    𝑉𝑃𝐷௢௣𝑒௡ ൏  𝑉𝑃𝐷 ൏ 𝑉𝑃𝐷𝑐௟௢௦𝑒     

𝑟𝑏𝑙௠௜௡                                                                                                                                    𝑉𝑃𝐷 ൒  𝑉𝑃𝐷𝑐௟௢௦𝑒                           
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The values for rblmax and rblmin, VPDopen and VPDclose vary for different biomes and are 

discussed in Mu et al. (2011).  

The actual soil evaporation (𝜆Esoil) is expressed as Equation 2.64, using potential soil 

evaporation (𝜆Esoil_pot) and a soil moisture constraint function in the Fisher et al. (2008) ET 

model. This function defines the land-atmosphere interactions from air VPD and relative 

humidity (RH%) (Mu et al., 2011).  

𝜆𝐸௪𝑒௧_௦௢௜௟ ൌ  
ቂሺ௦ ൈ 𝐴ೞ೚೔೗ሻ+ቀఘ ൈ 𝐶೛ ൈ ሺ1−𝐹೎ሻൈೇುವ

ೝೌೞ
ቁቃ ൈ 𝐹 ೐೟

ሺ௦ + ఊሻൈೝ೟೚೟
ೝೌೞ

                                                    (2.62) 

𝜆𝐸௦௢௜௟_௣௢௧ ൌ  
ቂሺ௦ ൈ 𝐴ೞ೚೔೗ሻ+ቀఘ ൈ 𝐶೛ ൈ ሺ1−𝐹೎ሻൈೇುವ

ೝೌೞ
ቁቃ ൈ ሺ1−𝐹 ೐೟ሻ

ሺ௦ + ఊሻൈೝ೟೚೟
ೝೌೞ

                                                    (2.63) 

𝜆𝐸௦௢௜௟ ൌ  𝜆𝐸௪𝑒௧_௦௢௜௟  ൅ 𝜆𝐸௦௢௜௟_௣௢௧  ൈ ቀ 𝑅𝐻
100

ቁ
ೇುವ

ഁ                                                                  (2.64) 

Where the value of  𝛽 was 100 in the old MOD16 algorithm, and the value has been revised to 

200 in the improved MOD16 algorithm (Mu et al., 2011).  

The total daily ET and the potential ET (𝜆Epot) are expressed in Equation 2.65 and Equation 

2.66 respectively as (Mu et al., 2011):  

𝜆E ൌ  𝜆𝐸௪𝑒௧_𝑐  ൅ 𝜆𝐸௧௥𝑎௡௦  ൅ 𝜆𝐸௦௢௜௟                                                                             (2.65) 

𝜆𝐸௣௢௧ ൌ  𝜆𝐸௪𝑒௧_𝑐  ൅ 𝜆𝐸௣௢௧_௧௥𝑎௡௦  ൅ 𝜆𝐸௪𝑒௧_௦௢௜௟ ൅ 𝜆𝐸௦௢௜௟_௣௢௧                                               (2.66) 

Where 𝜆Ewet_c is the evaporation from the wet canopy surface, 𝜆Etrans is the transpiration from 

the dry canopy surface and 𝜆Esoil is the evaporation from the soil surface.  

The combination of ET with 𝜆Epot can assist in the determination of water stress and in the 

recognition of drought intensity (Mu et al., 2011), and it is able to provide important 

information on global terrestrial water and energy cycles and environmental variations (Mu et 

al., 2011).  

2.5.2 Case studies on the use of the MOD16 product 

Many studies have implemented the MOD16A2 product to estimate ETa, and a select few case 

studies have been presented in Table 2.4. 
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Table 2.4 Case studies on the application of the MOD16 and MOD16A2 product 

Study Main objective Key findings 

Mu et al., 2007 The development of a global ETa algorithm based 

on MODIS imagery and global meteorological 

data.  

x Revised the RS-PM algorithm by adding VPD and temperature constraints on stomatal 

conductance; utilising LAI to estimate canopy conductance from stomatal conductance; replaced 

NDVI with EVI and altered the equation to calculate the vegetation cover fraction; and the 

addition of a distinct soil evaporation component to ETa.  

x The revised RS-PM algorithm substantially reduced the RMSE of LE that was averaged over 19 

towers from 64.6 W. m-2 to 27.3 W. m-2. 

x The spatial pattern of the MODIS ETa agreed well with the MOD17 GPP/NPP. The highest ETa 

was produced over tropical forests, and the lowest ETa in dry regions with short growing seasons. 

Mu et al., 2011 The improvement of the MODIS global terrestrial 

ETa algorithm. 

x When comparing the improved algorithm with the old algorithm, the global annual ETa over the 

vegetated surface agreed well over the terrestrial land surface.  

x The improved algorithm reduced the MAE of ETa from 0.39 mm. d-1 to 0.33 mm. d-1, when 

compared against the old algorithm. 

Ramoelo et al., 2014 To validate the MOD16 ETa using 2 EC flux tower 

data for a 10-year period. 

x  The MOD16 ETa showed inconsistent comparisons with the Skukuza flux tower results.  

x R2 values of 0.58 and 0.85 was obtained for the years 2003 and 2007 respectively.  

x The Malopeni flux tower consisted of a shorter study period (one year), producing an 

overestimation of ETa. This resulted in an R2 value of 0.23 being obtained.   
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Study Main objective Key findings 

Aguilar et al., 2018 To evaluate the performance of the MOD16A2 

product by comparing it with EC data.  

x  In-situ data was available for five sites in North western Mexico, for a variety of landcovers.  

x The best performance observed over the shrubs yielded an R2 of 0.86, and an RMSE of 0.77 mm. 

d-1. 

x In most cases, MOD16 ETa values obtained were underestimated. 

Chang et al., 2018 To evaluate and improve the MOD16 algorithm for 

ETa estimation over an alpine meadow on the TP in 

China.  

x Results were validated against EC data.  

x The modified MOD16 2011 algorithm performed better than the original MOD16 algorithm.  

x The R2 value improved from 0.26 to 0.68, and the RMSE decreased by 0.86 mm. d-1. 

x The modified MOD16 algorithm was able to produce improved estimates of ETa.  

He et al., 2019 To improve the delineation of field scale ETa in 

CONUS croplands by making use of the 2011 

modified MOD16 algorithm framework.  

x Results obtained were validated again in-situ data. 

x The ETMOD16 (MODIS MOD16A2 global operational ETa product) yielded an R2 value 0.54, and 

an RMSE value of 0.82 mm. d-1. 

Dzikiti et al., 2019 A comparison was carried out between the Penman-

Monteith based MOD16 and the modified 

Priestley-Taylor (PT-JPL) model to estimate ETa 

over 3 biomes in South Africa. 

x R2 < 0.50 and RMSE> 0.80 mm. d-1 were observed during year with prolonged summer dry spells 

in summer rainfall regions. 

x Improvements were made to the MOD16 predictions. 

x Adjustments to the PT-JPL model produced minimal improvements.  
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2.6 Synthesis of Literature 

Ramoelo et al. (2014) states that large quantities of precipitation within South African 

environments are returned to the atmosphere through ETa. Therefore, it is imperative for us to 

understand this major process of the hydrological cycle in further detail, as it largely influences 

water resources management decisions (Timmermans et al., 2013; Ramoelo et al., 2014; Ke et 

al., 2016; Gu et al., 2017). 

Various methods have been developed to account for ETa in the hydrological cycle at different 

spatial and temporal scales. Satellite earth observation methods have been proposed and 

utilised as an alternative to conventional ETa estimation methods, as they are easily accessible 

and provide inexpensive access to spatially representative data, at near-real time (Courault et 

al., 2005). Montanari et al. (2013) states that remotely sensed data has the capacity to transform 

hydrological modelling approaches, especially in areas where meteorological networks and 

monitoring is sparse, such as South Africa where there is a deficiency of reliable ETa data.   

Multiple approaches have been established to estimate ETa using SEO data. Methods based on 

the parameterisation of the shortened energy balance are often applied, with the most frequently 

utilised selections including; ETLOOK, SEBI, SEBAL, METRIC and SEBS (Menenti and 

Choudhury, 1993; Bastiaanssen et al., 1998; Su et al., 2002; Allen et al., 2007; Jarmain et al., 

2009; Pelgrum et al., 2010). While these techniques have generally been shown to provide 

reliable estimates of terrestrial fluxes and ETa, there still exists an influence of the land surface 

and air temperature gradient on ETa and terrestrial flux estimates derived using SEO data.   

According to Kalma et al. (2008), the temperature gradient significantly impacts the LE, Rn, 

Go and H, which are components of the energy balance equation. In order to gauge, the 

influence which the model conceptualisation has on the accuracy of the estimates, the SEBS 

model was selected for application and implemented using satellite-derived input variables 

derived from MODIS Terra and Aqua imagery, respectively. As a result of the diverse 

meteorological conditions and the differences in To-Ta due to the differential heating of the land 

surface and air, variations and uncertainties are observed within the simulated and in-situ 

terrestrial flux estimates, as a lag effect occurs (Gibson et al., 2013; Brenner et al., 2017). 

Therefore, promoting the importance of the time of day of image acquisition and the choice of 

satellite sensor (MODIS Terra or Aqua) being utilised.   



 

 37 

Furthermore, ETMOD16A2 data was acquired and evaluated as part of these investigations, since 

this approach does not utilise To-Ta during the estimation of ETa. Subsequently, the use of the 

MOD16A2 product provides an ideal opportunity to further gauge the influence which the 

satellite-based energy balance ET model conceptualisation has on the accuracy of the terrestrial 

flux estimates.  

The following chapter provides a concise description of the required data and methods that 

were utilised in order to fulfil the specific objectives outlined in this study. 
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3. ME7HODOLOG< 

The literature review identified relevant models and methods to estimate ETa and terrestrial 

flux estimates in a South African context. This chapter reviews the general methodology, 

description of the study sites, as well as the in-situ and satellite earth observed data used with 

SEBS.   

3.1 General Methodology 

The general methodology implemented in this study was aimed at fulfilling the research 

objectives outlined in Chapter one, which included: 

i. Evaluating the accuracy of satellite-derived ETa and terrestrial flux estimates against 

in-situ measurements.  

ii. Implementing a satellite-based ETa model to estimate ETa and terrestrial fluxes.  

iii. Establishing the influence of the land surface and air temperature gradient on ETa and 

terrestrial flux estimates through comparisons against in-situ measurements, as well as 

the MOD16 derived ETa. 

The first section of this study was aimed at utilising MODIS Terra and MODIS Aqua satellite 

imagery to derive the requisite inputs used in the SEBS model. The SEBS derived MODIS 

Terra ETa (ETTerra), MODIS Aqua ETa (ETAqua) and terrestrial flux estimates were compared 

against ET in-situ data measured using an Eddy Covariance system.    

Following the validation of the SEBS derived satellite-based ETa and terrestrial flux estimates, 

using MODIS Terra and Aqua imagery, the influence of the land surface temperature on the 

estimates were obtained. This could occur as a result of the imagery being obtained at different 

times. Therefore, differences in ETa and terrestrial flux estimates may occur, resulting from the 

temperature gradient, which influences the ETa and terrestrial flux estimates. Thereafter, the 

ETTerra and ETAqua estimates were aggregated to 8-day ETa estimates. The MOD16A2 ETa 

(ETMOD16A2) estimate, and the aggregated ETTerra and ETAqua were thereafter compared against 

in-situ data at the riparian and savanna regions. Since the MOD16 algorithm does not utilise 

To-Ta during the estimation of ETa, the use of the MOD16A2 product provides an ideal 

opportunity to further gauge the influence which satellite-based energy balance ET model 

conceptualisation has on the accuracy of the terrestrial flux estimates.  
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The comparisons that were carried out in this study are summarised in Figure 3.1. The 

methodology is structured such that the research questions and the aims and objectives 

identified in Chapter one is addressed. The SEBS model was implemented using satellite-

derived input variables derived from MODIS Terra and Aqua imagery, respectively. Satellite 

earth observation data was collected during the period for which in-situ measurements were 

available (17th June to 12th August 2015 and 21st August to 21st October 2015). The EC system 

was initially installed near an irrigated farm, and measurements were obtained from the 17th 

June to 12th August 2015. Thereafter the system was relocated to a pristine protected region, 

1.2 km downstream and measurements were obtained from the 21st August to 21st October 

2015. 

It should be noted that this period also coincided with a large El Niño induced drought (Kogan 

and Guo, 2017). The simulated terrestrial fluxes and ETa were then compared against observed 

ETa to quantify the influence of the temperature gradient on the modelled estimates. Although 

satellite-based ET models generally provide fairly reliable estimates of terrestrial fluxes and 

ETa, these models have the tendency to perform poorly in water stressed environments, due to 

an inherent limitation in their conceptualisation which relates to To-Ta. As a result of the diverse 

meteorological conditions and the differences in To-Ta due to the differential heating of the land 

surface and air, variations and uncertainties are observed within the simulated and in-situ 

terrestrial flux estimates, as a lag effect occurs (Gibson et al., 2013; Brenner et al., 2017). 

Therefore, promoting the importance of the time of day of image acquisition and the selection 

of satellite sensor (MODIS Terra or Aqua) being utilised.   

 Thereafter, in order to determine, the influence which the model conceptualisation has on the 

accuracy of the estimates, ETMOD16A2 data was acquired and evaluated as part of these 

investigations. Since the MOD16 algorithm does not utilise To-Ta during the estimation of ETa, 

the use of the MOD16A2 product provides an ideal opportunity to further gauge the influence 

which satellite-based energy balance ET model conceptualisation has on the accuracy of the 

terrestrial flux estimates.  
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Figure 3.1 Graphical illustration of the methodology that was adopted in this study 

3.2 Description of the Study Sites  

The study area is situated in the Luvuhu and Letaba Water Management area within the 

Limpopo province, which is located in the north-eastern region of South Africa (Gokool et al., 

2017). Two study sites within this region were chosen to conduct the investigations. This was 

largely due to their contrasting environmental settings, as well as the availability of in-situ data 

records.  

The riparian area sites are situated within the Letaba catchment along the Groot Letaba River 

channel, between the Letaba Ranch (23.66°S and 31.05°Eሻ and the Mahale weirs (23.67°S and 

31.05°Eሻ, 332 m above sea level, as seen in Figure 3.2. Site 1 is located at 23.67°S and 31.02°E, 

whilst site 2 is located at 23.67°S and 31.03°E. Site 1 consists of a greater amount of bare soil 

than site 2, which is a much more pristine area, and is influenced by climatic conditions. The 

Groot Letaba River which flows through the Kruger National Park (Gokool et al., 2017), often 

experiences water shortages as a result of the increased water demands that is used for 

commercial agriculture in its upper reaches (Gokool et al., 2019).  

The Letaba catchment is regarded as being a semi-arid region, which frequently experiences 

water shortages (Pollard and du Toit, 2011).  The Mean Annual Temperature (MAT) ranges 
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between 18.00ºC and 28.00ºC, with the temperature varying from cooler conditions in the 

mountainous regions and warmer conditions in the eastern regions (Sinha and Kumar, 2015). 

The Mean Annual Precipitation (MAP) is approximately 417.50 mm, and seasonal rainfall 

occurs, with majority of the rainfall occurring in the summer months, between October to 

March (Katambara and Ndiritu, 2010; Pollard and du Toit, 2011a; Strydom et al., 2014), whilst 

the mean annual potential A-pan evaporation is approximately 2097.93 mm (Schulze et al., 

2008; Gokool et al., 2017).  

The study site is dominated by alluvial channel types (Heritage et al., 2001), and the Mean 

Annual Runoff (MAR) of the catchment is approximately 574 million m3 (Sinha and Kumar, 

2015). The catchment is dominated by savannah vegetation, and the soil structure is primarily 

sand, with most of the catchment being underlain with gneiss and granite rock (Heritage et al., 

2001; Pollard and du Toit, 2011). 

The Malopeni flux tower is located at 23.83ºS and 31.22ºE, is situated along a hot and dry 

broad-leaf Mopane savanna and is 384 m above sea level. The annual rainfall ranges between 

99.40 mm and 850.90 mm, whilst the MAP is approximately 472.00 mm (Kirton and Scholes, 

2012). The temperature ranges between 12.40ºC and 30.50ºC (Kirton and Scholes, 2012). The 

Malopeni flux tower was established in 2009 as part of the CARBOAFRICA network, which 

is part of the quantification, understanding and prediction of carbon cycle and other GHG gases 

in Sub-Saharan Africa project (CARBOAFRICA) network (Gokool et al., 2019). The 

CarboAfrica network is recognised as part of the global Fluxnet community, with strong 

connections to the CarboEurope network (Bombelli et al., 2009; Merbold et al., 2009).  

The vegetation at the site is dominated by Colophospermum mopane (Ramoelo et al., 2014), 

in addition Combretum apiculatum and Verchellia nigrescens are also abundant. The grass 

layer is dominated by Schmidtia pappophoroides and Panicum maximum. The underlying 

geology of the Malopeni study site is Archaean Basement granites and gneisses, with the soil 

texture primarily comprising of sandy loam (Kirton and Scholes, 2012).  
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Figure 3.2 Location of the study sites within the Letaba Catchment, Limpopo Province,      

South Africa  

3.3 Meteorological Data Acquisition for the SEBS Model 

Meteorological data was obtained from a study undertaken by Gokool et al. (2017). It should 

be noted that the data collected for site 1 and site 2 were combined and treated as one data set 

in order to provide a longer data record which could be used for analysis. The in-situ 

measurements were used in conjunction with satellite-earth observation data acquired during 
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this study to derive input parameters that were required to perform simulations within the SEBS 

model. The data included net radiation, solar radiation, soil heat flux density, soil temperature, 

relative humidity, horizontal wind speed and direction, air temperature and rainfall. Gokool et 

al. (2017) installed an EC system at two different sites along the Groot Letaba River. 

Measurements were taken at a frequency of 10 Hz and logged every 10 minutes on a CR3000 

data logger.  

A CSAT 3-D sonic anemometer was used to measure air temperature, wind speed and 3-D 

wind direction. The anemometer was located at 2 m above the soil surface and approximately 

1 m above the vegetation height (Gokool et al., 2017). Two Kipp and Zonen NR Lite-Z net 

radiometers were installed approximately 1 m above the bare soil and vegetation, to measure 

net radiation above these surfaces. The instrumentation also consisted of a Texas Tipping 

bucket raingauge, Licor LI200X Pyranometer, RM Young wind sentry, HMP60 temperature 

and relative humidity sensor, six HFP01 Hukse Flux soil heat flux plates, three pairs of soil 

temperature averaging probes and two CS616 soil water reflectometers (Gokool et al., 2017). 

The EC system located at the Malopeni study site utilised was a LiCOr 7500 IRGA, with a Gill 

WindPro sonic anemometer (Gokool et al., 2019). The EC sampling was undertaken at 8 m 

above ground level. The Decagon ECH2O EC-5 soil moisture probes were located at four soil 

depths throughout the profile (0.05, 0.15, 0.25 and 0.40 m) (Gokool et al., 2019). The Malopeni 

flux tower has been collecting data since 2008, however, due to equipment failure no data was 

recorded between January 2010 and January 2012 (Gokool et al., 2019). The EC measurements 

were obtained from the 17th June to 12th August 2015, and from 21st August to 21st October 

2015. The EC data that was considered, was from 6am until 6pm, assuming that ETa takes place 

from sunrise till sunset (Gribovski et al., 2010).  

3.4 Satellite Data Acquisition as an Input into the SEBS Model 

The water vapour content was attained from the NASA earth observatory website 

(https://earthobservatory.nasa.gov) and utilised as an input into the SEBS model. The SEBS 

model was implemented to estimate ETa and terrestrial flux estimates, and thereafter compared 

against in-situ EC data at the various study sites. The satellite-derived input variables obtained 

were used to derive input parameters, that were required to perform simulations within the 

SEBS model, as seen in  Figure 3.1. MODIS Terra and MODIS Aqua imagery were obtained 

for the corresponding period for which in-situ measurements were available. The pre-
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processing and processing of the MODIS bands were undertaken based on the procedures 

carried out by Su and Wang (2013) and USGS (2016).   

3.4.1 The pre-processing of MODIS Terra and Aqua satellite imagery 

The MODIS Terra and MODIS Aqua satellites are able to view the entire earth’s surface every, 

one to two days, therefore obtaining data in 36 spectral bands (Che et al., 2003; Xiong et al., 

2008). MODIS has a swath width of 2330 km and it provides a global coverage daily. The data 

is obtained in 36 high spectral resolution bands, between 0.415 and 14.235 µm, with spatial 

resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands) (Che et al., 2003; 

Savtchenko et al., 2004; Xiong et al., 2008).   

The MODIS instrument is located on the Terra (Earth Observing System (EOS) AM) and Aqua 

(EOS PM) satellites, which are in orbit approximately 705 km above the earth (Savtchenko et 

al., 2004; Xiong et al., 2009). The MODIS Terra and MODIS Aqua satellites were launched 

on 18 December 1999 and 4 May 2002, respectively (Xiong et al., 2008). The orbits of the 

satellites differ, as the MODIS Terra satellite orbits the earth from North to South and passes 

over the equator at 10:30 am (descending) (Xiong et al., 2008; Muhammed, 2012). Whilst the 

MODIS Aqua satellite orbits the earth from South to North and passes over the equator at 1:30 

pm (ascending) (Xiong et al., 2008; Savtchenko et al., 2004). Therefore, the orbital times are 

beneficial in providing earth observations in the late morning and early afternoon. Salomonson 

et al. (2001) stated that this would aid in the analysis of daily changes of different systems and 

it would provide a long-term and reliable data set, utilising the same geophysical parameters 

for the study of climate and global change. 

As a result of the imagery being obtained at different times, differences in ETa and terrestrial 

flux estimates may occur. This could possibly occur as a result of the temperature gradient, 

which influences the ETa and terrestrial flux estimates. This may arise, due to the inputs used 

in the SEBS model, such as; solar radiation, wind speed and air temperature, as these values 

vary for the acquisition times of MODIS Terra and Aqua imagery, respectively. The 

temperature gradient and land surface temperature impact LE, Rn, Go and H, which are 

components of the energy balance equation (Kalma et al., 2008). Kalma et al. (2008) states 

that there are errors related with utilising surface temperature to estimate H, such as; errors in 

observed meteorological data, errors in model assumption and the significant inaccuracies in 
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radiometric temperature estimation and the inequality between radiometric and aerodynamic 

surface temperature.  

According to Yagci and Santanello (2017), land surface temperature derived from thermal 

infrared (TIR) region is a significant variable, as it comprises of information regarding the 

surface energy balance, terrestrial water stress and ETa. Soil temperature, and consequently 

land surface temperature, increases with a decrease in soil moisture, while a deficiency of water 

content in plant root zones results in stomatal closure, to reduce water loss through 

transpiration, and ultimately increased canopy temperatures (Yagci and Santanello, 2017; 

Zheng et al., 2019). Therefore, this influences the results obtained, as the study was conducted 

during a period with a large El Niño induced drought. 

The use of MODIS imagery provides day and night images to be made available daily of the 

Earth (Hulley et al., 2012). Terra and Aqua MODIS Level 1B calibrated radiances 

(MOD21KM and MYD21KM), as well as geolocation (MOD03 and MYD03) files were 

downloaded and utilised to derive the requisite inputs to estimate daily ETa using SEBS.  It 

should be noted that the SEBS ETa output, is the output at the spatial scale of the thermal band, 

which is 1 km, as seen in Table 3.1. 

Table 3.1 Description of the MODIS Terra and Aqua imagery used in the SEBS model 

Sensors Product Level 1 Product Spatial Resolution 
(Thermal Band) 

Temporal 
Resolution 

MODIS TERRA 
MODO21KM Level 1B calibrated 

radiances 1 Km Daily 

MOD03 Geolocation 1 Km Daily 

MODIS AQUA 
MYDO21KM Level 1B calibrated 

radiances 1 Km Daily 

MYD03 Geolocation 1 Km Daily 

 

There are four main steps in the processing of MODIS data, viz; re-projection and conversion 

of MODIS data, importing of MODIS images into ILWIS, pre-processing of data for SEBS 

and extraction of data from SEBS. The MODIS Level 1B data needed to be re-projected to a 

standard projection from an orbit-based format, to be compatible with Geographic Information 

Systems (GIS) software (Su and Wang, 2013). The ModisSwath Tool was used to convert 

MODIS data into GeoTIFF data. Table 3.2 displays the bands that were extracted using the 

ModisSwath Tool and subsequently used in ILWIS.  
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Table 3.2 Bands that are extracted and utilised in ILWIS (adapted from Su and Wang, 2013) 

Input GeoTIFF filename Output filename in ILWIS 

EV_250_Aggr1KM_RefSB_b0.tif Band1_dn 

EV_250_Aggr1KM_RefSB_b1.tif Band2_dn 

EV_500_Aggr1KM_RefSB_b0.tif Band3_dn 

EV_500_Aggr1KM_RefSB_b1.tif Band4_dn 

EV_500_Aggr1KM_RefSB_b2.tif Band5_dn 

EV_500_Aggr1KM_RefSB_b4.tif Band7_dn 

EV_1KM_Emissive _b10.tif Band31_dn 

EV_1KM_Emissive _b10.tif Band32_dn 

SolarZenith.tif sza_dn 

SolarAzimuth.tif saa_dn 

SensorAzimuth.tif vza_dn 

SensorZenith.tif vza_dn 

Height.tif Height 

 

The MODIS Level 1B data was initially represented as a simplified integer (SI) number, which 

was required to be converted to obtain reflectance and radiance values. The conversion was 

conducted by applying a calibration coefficient, which was found in the metadata file and read 

using the HDFView software (Su and Wang, 2013). The zenith and azimuth maps were 

rescaled by finding the product between a scale factor of 0.01 and each map (Su and Wang, 

2013). 

The brightness temperature computation tool was used to convert bands 31 and 32 from 

radiances to blackbody temperatures by applying the Planck equation, expressed as Equation 

3.1 (Su and Wang, 2013): 

𝑇𝑐  ൌ  𝐶మ

ఒ೎ l୭୥ሺ ಴భ
ሺഊ೎ሻఱഏಽೞ

 +1ሻ
                                                                                                             (3.1) 

Where 𝑇𝑐 is the brightness temperature from a central wavelength, 𝜆𝑐 is the sensors central 

wavelength and 𝐶1 and 𝐶2 are the blackbody constants (Su and Wang, 2013). 

The Simplified Model for Atmospheric Correction (SMAC) was developed by Rahman and 

Dedieu (1994) and was utilised to correct the atmospheric and scattering of bands 1 to 5 and 

band 7 in the visible channels (Su and Wang, 2013). Thereafter, bands 1 and 2 from this 
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correction were used to calculate the Normalised Difference Vegetation Index (NDVI), as seen 

in Equation 3.2:  

𝑁𝐷𝑉𝐼 ൌ  𝐵೙೔ೝ − 𝐵ೝ೐೏
𝐵೙೔ೝ + 𝐵ೝ೐೏

                                                                                                                (3.2) 

The land surface albedo was determined using the atmospherically correct bands 1 to 5 and 

band 7, using the Equation 3.3 which was derived by Liang (2001) and Liang et al. (2003):  

𝐴𝑙𝑏𝑒𝑑𝑜 ൌ ሺ0.160 ൈ 𝑟1ሻ ൅ ሺ0.291 ൈ  𝑟2ሻ ൅ ሺ0.243 ൈ  𝑟3ሻ ൅ ሺ0.116 ൈ  𝑟4ሻ   ൅

                      ሺ0.112 ൈ  𝑟5ሻ ൅ ሺ0.018 ൈ  𝑟7  െ 0.0015ሻ                                                         (3.3) 

Where 𝑟1,𝑟2,  𝑟3,  𝑟4, 𝑟5 and 𝑟7 are bands 1 to 5 and band 7 in the visible channel.  

The land surface emissivity was calculated to produce the surface emissivity using the visible 

and near-infrared bands, which was based on the method described by Sobrino et al. (2003).  

The land surface temperature (LST) was estimated using a split window method, using 

Equation 3.4 derived by Sobrino et al. (2003):  

𝐿𝑆𝑇 ൌ  𝑏𝑡𝑚31  ൅ 1.02 ൅ ሺ1.79ሻ ൈ ሺ𝑏𝑡𝑚31 െ 𝑏𝑡𝑚32ሻ ൅ ሺ1.2ሻ ൈ ሺ𝑏𝑡𝑚31 െ 𝑏𝑡𝑚32ሻ2  ൅

               ሺ34.83 െ 0.68 ൈ 𝑊ሻ ൈ ሺ1 െ 𝜀௦ሻ ൅ ሺെ73.27 െ 5.19 ൈ 𝑊ሻ ൈ 𝑑𝑒                         (3.4) 

Where 𝑏𝑡𝑚31 and 𝑏𝑡𝑚32 are the brightness temperature, which were obtained from band 32 

and band 32, W is the water vapour content, 𝜀௦ is the surface emissivity and de is the surface 

emissivity difference (Su and Wang, 2013).   

Subsequent to the application of the SEBS model, statistical analysis was performed on the ETa 

and terrestrial flux estimates that were attained. The results are presented in the following 

chapter.  

3.5 Acquisition of The MOD16 Product  

The continuous improvement of SEO data and GIS technologies has provided an alternative to 

conventional data acquisition approaches and are able to provide information within a range of 

spatio-temporal scales, and in data-scarce regions (Gokool et al., 2016). However, challenges 

are experienced as a result of the application effort, technical expertise and information 

technology (IT) resources that are needed (Gorelick et al., 2017). 
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Subsequently, this has limited the use of SEO data to those that are skilled and knowledgeable 

(Gorelick et al., 2017). Recently, this situation has been altered with the introduction of Google 

Earth Engine (GEE). Gorelick et al. (2017) describes GEE as a cloud-based computing 

platform for planetary-scale geospatial analysis, which uses Google's computational power to 

process multi-petabyte curated collections of extensively used and freely available geo-spatial 

datasets (Sazib et al., 2018).  

In this study, GEE was used to obtain ETMOD16A2 data for the various study sites. To access 

GEE, a registration and signup was required from https://signup.earthengine.google.com/. 

Thereafter, the required dataset was selected from the data catalogue, obtained from 

https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD16A2. A 

shapefile was created consisting of the required study sites and uploaded onto GEE. Scripts 

were created for the required dataset in the code editor within the GEE platform. The 

‘filterDate’ code was used to specify the record length. Once the script was created, it was run, 

and the data was saved as a CSV file and opened in Microsoft Excel to be analysed.  

The ETMOD16A2 data was accessed via GEE, therefore reducing the computing time and making 

the satellite earth observed data readily available. Different datasets can be downloaded within 

GEE, such as; satellite, geophysical, weather images and demographic data (Sazib et al., 2018). 

Thereafter, the ETMOD16A2 estimates were validated against the aggregated in-situ EC data. This 

was recommended by Gibson (2013), as the MOD16 product does not require land surface 

temperature and observed data as inputs to obtain an ETa estimate, therefore reducing 

uncertainties and errors in the data obtained. The MOD16A2 product, which is the most recent 

version of MOD16 (Aguilar et al., 2018) was used in this study. An example of the script that 

was used within GEE is provided in Figure 7.1 of Appendix A.    

The results of the ETMOD16A2 estimates are presented in the subsequent chapter.   

3.6 Statistical Metrics Used in the Study 

In this study, satellite derived SEBS terrestrial flux estimates and ETTerra, ETAqua and ETMOD16A2 

were compared against in-situ data. The model performance was evaluated using the coefficient 

of determination (R2), Root Mean Square Error (RMSE) and Relative Volume Error (RVE) 

between the simulated ETa and terrestrial flux estimates and the corresponding in-situ data 

(Krause et al., 2005). The Pearson’s correlation coefficient (r) was used to evaluate the strength 

of the relationship between the simulated and observed estimates (Reusser et al., 2009), whilst 
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the Mean Absolute Difference (MAD) is a measure of statistical dispersion equal to the average 

absolute difference of two independent values drawn from a probability distribution (Willmott 

and Matsuura, 2005). Furthermore, the percentage of simulated ETa estimates within an 

acceptable accuracy range (AAR) of ± 30 %, when compared to in-situ observations were also 

determined (Kalma et al., 2008; Gibson, 2013). 

A Kruskal Wallis Test, which is a non-parametric test, was carried out, to identify significant 

relationships at the 95% significance threshold between the observed and simulated output (p-

value ≤ 0.05) (Kruskal and Wallis, 1952). The null and alternate hypothesis were stated as 

follows:  

H0: Simulated SEBS derived MODIS ETa = Observed EC ETa 

Ha: Simulated SEBS derived MODIS ETa ≠ Observed EC ETa 
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4. 5E68L76 AND DI6C866ION 

This chapter analyses and discusses the validation of ETa and terrestrial flux estimates obtained 

from implementing the SEBS model using satellite derived input variables obtained from 

MODIS Terra and Aqua imagery, against in-situ data from the riparian and savanna regions. 

Thereafter, the 8-day aggregated simulated ETTerra, ETAqua, and the ETMOD16A2 estimates were 

compared against in-situ data from the study sites.    

4.1 Terrestrial Flux Estimates at the Riparian Site  

The in-situ measurements that were utilised in the riparian region were a combination of two 

study sites between the Letaba Ranch (23.66°S and 31.05°Eሻ and the Mahale weirs (23.67°S 

and 31.05°Eሻ, therefore providing a data record of four months, as compared to two months 

had only one study site been observed.  

4.1.1 Net radiation 

Net radiation (W. m-2), Rn, is the total amount of radiation that reaches the earth’s surface and 

is estimated from downward solar radiation (Rswd), reflected solar radiation and emitted 

longwave radiation (Rlwd). The SEBS derived Rn estimates showed a comparable correlation 

with the observed Rn data for both MODIS Terra and Aqua imagery, as shown in Table 4.1. 

Comparisons between the simulated RnTerra and RnAqua against the observed Rn data yielded R2 

values of 0.63 and 0.77, respectively. Although the simulated RnAqua results were found to be 

marginally better than the RnTerra when compared against the observed measurements, there 

still exists a fair degree of error between the two data sets.   

Overall, SEBS was shown to overestimate Rn when compared against the in-situ 

measurements, as comparisons between RnTerra and RnAqua against the observed Rn data yielded 

Relative Volume Errors (RVE) of -56.06% and -53.09%, respectively. According to Lu et al. 

(2013), the main cause of the overestimation of Rn is the overestimation of the downward solar 

radiation. Therefore, the difference between the atmospheric, environmental and climatic 

conditions at the study sites may have resulted in the overestimation of Rn. 
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Table 4.1 Validation of Rn estimates obtained from implementing the SEBS model within the 

riparian region 

 

From Figure 4.1 and Figure 4.2, it can be seen that there is a greater overestimation of Rn for 

both RnTerra and RnAqua from August 21st until October 21st 2015. However, both RnTerra and 

RnAqua generally follow a similar trend as the in-situ data. The observed data used in this study 

for this particular region was acquired from two sites within the Letaba catchment, which were 

1.2 km apart. The rationale for this was to combine the data for this region in order to have a 

longer-term dataset which could be used for statistical evaluations.  

Study site 1 is strongly influenced by environmental conditions, such as land cover including 

bare soils, water limitations and atmospheric effects, whereas study site 2 within the riparian 

region is influenced by climatic conditions, as there is much more vegetation found in this 

region. Site 2 is a more pristine protected site, and livestock were prevented from grazing 

within this region (Gokool et al., 2017). Seasonal and climatic changes also influence stress 

conditions which may have contributed to the increased vegetation cover at site 2.  According 

to Gokool et al. (2017), the soil water availability along the section of the river that was studied 

was affected by the drought. Therefore, variations occurred in vegetation and canopy cover, 

and soil moisture status between site 1 and site 2, as discussed in Gokool et al. (2017). Small 

and Kurc (2001) state that in both grasslands and shrublands, when there is soil moisture, Rn 

and available energy both increase.  

 Rnin-situ RnTerra   Rnin-situ RnAqua    
AVERAGE (mm. d-1) 268.78 419.47  AVERAGE (mm. d-1) 329.79 504.88 

STD DEV 163.75 206.32  STD DEV 139.36 198.16 
RMSE (W. m-2) 195.78  RMSE (W. m-2) 201.80 

RVE (%) -56.06  RVE (%) -53.09 
MAD (mm. d-1) 101.32  MAD (mm. d-1) 73.24 

PEARSON 
CORRELATION 0.79  PEARSON 

CORRELATION 0.88 

R2 0.63  R2 0.77 
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Figure 4.1 A time series comparison of RnTerra estimates obtained from implementing the SEBS 

model and observed data at the riparian region 

 

Figure 4.2 A time series comparison of RnAqua estimates obtained from implementing the SEBS 

model and observed data at the riparian region 

Overall, the simulated Rn estimates overestimates the in-situ Rn. This could possibly be as a 

result of the difference in the spatial and temporal scale of the measurements, that are observed 

by the field instruments and/or the MODIS Terra and Aqua sensors (Oku et al., 2007). 

According to Tang et al. (2011), overestimations and uncertainties may also arise as a result of 

different spatial scales of remotely sensed data and in-situ data. The field instrument provides 

a point estimate, whilst SEO methods provide large scale estimates. The in-situ Rn 

measurements were determined using half-hourly averaged data, whilst the SEBS derived 

RnTerra and the RnAqua were estimated using radiation values at the instantaneous time of the 

MODIS imagery.   
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Differences in RnTerra and the RnAqua occur, as the MODIS Terra and MODIS Aqua imagery 

are obtained at different times, as a result of the different satellite overpass times. This may 

have an influence on the ETa and terrestrial flux estimates obtained, which could possibly occur 

as a result of the land surface and air temperature gradient, that influences ETa and terrestrial 

flux estimates. Regions consisting of sparse vegetation, are influenced by the amount of 

radiation reaching the soil and is highly dependent on the geometry of the sun and leaf 

orientations (Timmermans et al., 2013).  

According to Small and Kurc (2003), the relatively large EF fluctuations in semi-arid 

environments result in variations in surface temperature, which influences Rn through the 

influence of surface temperature on longwave radiation emitted from the surface. The Rn 

within the riparian region is overestimated, however, at site 2 (August 21st until October 21st 

2015), the albedo of vegetated areas is much lower compared to bare soils (Van der Kwast et 

al., 2009). According to Small and Kurc (2001), a lower albedo increases Rn, as a larger 

fraction of the incident short wave radiation is absorbed by the surface. In arid and semi-arid 

regions, the dry soil results in a higher albedo value, even though there are considerable 

variations in albedo under these conditions (Small and Kurc, 2001; Sumithranand et al., 2009). 

Kjærsgaard et al. (2009) states that Rn normally fluctuates substantially during the day. If the 

surface Rn is larger, then the discrepancy between the estimated and measured Rn will be larger 

(Tang et al., 2011).  

4.1.2 Soil heat flux 

The SEBS model was shown to overestimate Go as shown in Table 4.2, when compared against 

the in-situ measurements. Comparisons between the SEBS derived MODIS Terra soil heat flux 

estimate (GoTerra) and SEBS derived MODIS Aqua soil heat flux estimate (GoAqua) estimate 

against the observed Go data yielded a RVE of -220.03% and -49.36%, respectively. This 

indicates an overestimation of both Go estimates, but a greater overestimation of GoTerra 

estimates, when compared to the observed Go. The correlation between the data was 0.70 and 

0.71 for GoTerra and GoAqua respectively, indicating a positive association between the two 

variables. 

Comparisons between the simulated GoTerra and GoAqua, against the observed Go data yielded 

R2 values of 0.49 and 0.51, respectively. Whilst an RMSE difference of 61.15 W. m-2 was 

obtained between GoTerra and GoAqua. As presented in Table 4.2, the assessment of error in data, 
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was carried out with the use of the Mean Absolute Difference (MAD) statistical metric, and 

yielded values of 34.43 mm. d-1 and 31.19 mm. d-1 for GoTerra and GoAqua estimates, 

respectively. 

Table 4.2 Validation of Go estimates obtained from implementing the SEBS model within the 

riparian region 

 

From Figure 4.3 and Figure 4.4, it can be seen that there is a greater overestimation of Go for 

both GoTerra and GoAqua from August 21st until October 21st 2015. However, both GoTerra and 

GoAqua generally follow a similar trend as the in-situ data. Seasonal changes in the Go also affect 

the surface energy balance, and hence the estimation of ETa. The observed data used in this 

study for this particular region was acquired from two sites within the Letaba catchment, which 

were 1.2 km apart. 

Study site 1 is more strongly influenced by environmental conditions, whereas study site 2 

within the riparian region is influenced by climatic conditions, as there is much more vegetation 

found in this region. Site 2 is a more pristine protected site, and livestock were prohibited from 

grazing within this region (Gokool et al., 2017). Seasonal and climatic changes also influence 

stress conditions, which may have contributed to the increased vegetation cover at site 2.  

According to Gokool et al. (2017), the soil water availability along the section of the river that 

was studied was affected by the drought. Therefore, variations occurred in vegetation and 

canopy cover, and soil moisture status between site 1 and site 2. Consequently, site 2 resulted 

in a greater overestimation of Go as compared to site 1. Cloudiness also influences the flow of 

heat into the soil. Therefore, less clouding results in a higher influx of heat into the soil, 

resulting in increased Go estimates being obtained (Roxy et al., 2014).  

 Goin-situ GoTerra   Goin-situ GoAqua    
AVERAGE (mm. d-1) 38.74 123.99  AVERAGE (mm. d-1) 99.65 149.28 

STD DEV 38.21 57.87  STD DEV 36.99 57.19 
RMSE 94.72  RMSE 63.57 

RVE (%) -220.03  RVE (%) -49.36 
MAD (mm. d-1) 34.43  MAD (mm. d-1) 31.19 

PEARSON 
CORRELATION 0.70  PEARSON 

CORRELATION 0.71 

R2 0.49  R2 0.51 
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Figure 4.3 A time series comparison of GoTerra estimates obtained from implementing the SEBS 

model and observed data at the riparian region 

 

Figure 4.4 A time series comparison of GoAqua estimates obtained from implementing the SEBS 

model and observed data at the riparian region 

Soil heat flux (Go) is the quantity of radiant energy, that is either absorbed or released at the 

soil surface (Roxy et al., 2014). During non-rainy days, the net flow of heat is directed into the 

soil, and on rainy and cloudy days, the opposite occurs (Chacko and Renuka, 2002; Roxy et 

al., 2014). Most of the days during the study period were non-rainy days, therefore resulting in 

higher Go values being obtained, as compared to instances where there had been an increase 

in soil water content. Soil heat flux is generally positive when it is directed into the soil, and 

negative when it is in the opposite direction (Roxy et al., 2014).  

Gokool (2017) states that site 1, had a greater amount of exposed bare soil as compared to site 

2, and Riddell et al. (2017) states that the soils at site 1 was relatively drier than site 2.  

Therefore, the soil moisture and the amount of exposed bare soil influences the soil heat flux 
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density measured at the study sites (Sauer and Horton, 2005). In regions consisting of sparse 

vegetation, the amount of radiation reaching the soil depends on the geometry of the sun and 

leaf orientations (Timmermans et al., 2013). Huang et al. (2015) states that the SEBS model 

overestimates ETa in water limited conditions, whilst Pardo et al. (2014) and Gokmen et al. 

(2012) note that the overestimation of EF and LE in the SEBS model is higher, when the soil 

is dry and there is a reduced amount of vegetation cover. The direct soil evaporation component 

of ETa is large, when there are vast areas of bare soil and when the soil is wet (Small and Kurc, 

2003). According to Van der Kwast et al. (2009), the SEBS model is more sensitive to surface 

soil temperature than the surface aerodynamic parameters and was confirmed by Badola 

(2009).  

Uncertainties arise as a result of calibration errors and errors related with field measurements, 

including spatial variation differences. The uncertainties related to in-situ measurements of Go 

are dependent on the measurement errors due to variations in soil temperature from one 

measurement period to another and the uncertainty and errors in the measurement of soil water 

content (Savage et al., 2004). 

According to Xu et al. (2011), as satellite earth observed data is instantaneous, estimating the 

daily, monthly and annual fluxes may result in errors being observed. Tang et al. (2011) states 

that overestimations and uncertainties may arise due to the different spatial scales of the 

satellite earth observed data and in-situ data. Gibson et al. (2011) also emphasised the 

significance of the choice of satellite sensor being used, and therefore the pixel resolution and 

heterogeneity of the study area, as the uncertainties obtained are reflected in the estimation of 

ETa. 

4.1.3 Sensible heat flux  

The SEBS model was shown to underestimate H as shown in Table 4.3, when compared against 

the in-situ measurements, as comparisons between the SEBS derived MODIS Terra sensible 

heat flux estimate (HTerra)  and SEBS derived MODIS Aqua sensible heat flux estimate (HAqua) 

against the observed H data yielded a RVE of 14.17%  and 11.10%, respectively. This indicated 

an underestimation of both H estimates, but a greater underestimation of HTerra, when compared 

to the observed H.  

Comparisons between the simulated HTerra and HAqua, against the observed H data yielded R2 

values of 0.02 and 0.01, respectively, indicating a large degree of error between the two 
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datasets. The R2 and Pearson’s R coefficient, although very low for both HTerra and HAqua 

estimates, performed very similar with minimal difference between the values of both statistical 

indicators. Whilst the assessment of error in data, was carried out with the use of the Mean 

Absolute Difference (MAD) statistical metric, and yielded values of 34.73 mm. d-1 and 48.85 

mm. d-1 for HTerra and HAqua estimates, respectively.  

Table 4.3 Validation of H estimates obtained from implementing the SEBS model within the 

riparian region 

 

From Figure 4.5 and Figure 4.6, it can be seen that there is a greater overestimation of H for 

both HTerra and HAqua from August 21st until October 21st 2015. However, both HTerra and HAqua 

generally follow a similar trend as the in-situ data. Seasonal changes in H also affect the surface 

energy balance, and hence the estimation of ETa. The observed data used in this study for this 

particular region was acquired from two sites within the Letaba catchment, in order to have a 

longer-term dataset. Study site 1 is influenced by reduced land cover, increased amounts of 

bare soils, water limitations and atmospheric effects. Whilst site 2, is influenced by climatic 

conditions, and is a more pristine protected site, as livestock were prohibited from grazing 

within this region (Gokool et al., 2017). The soil water availability differs along the portion of 

the river that was observed, hence variations in vegetation, canopy cover and soil moisture 

occur.   

There is an extremely poor agreement between HTerra and HAqua estimates when compared to 

the in-situ data, at their respective satellite overpass times. The underestimation of H and the 

overestimation of Rn, may have resulted in an overestimation of the latent heat flux (LE), 

resulting from decreased soil moisture, and an increase in the ability of evaporation and sparse 

vegetation cover (Zhuang and Wu, 2015). From August 21st until October 21st 2015 (Site 2), 

there is a greater difference between simulated and observed H estimates. This discrepancy 

 Hin-situ HTerra   Hin-situ HAqua    
AVERAGE (mm. d-1) 70.76 60.73  AVERAGE (mm. d-1) 69.77 62.02 

STD DEV 30.26 60.07  STD DEV 30.94 65.21 
RMSE (W. m-2) 63.32  RMSE (W. m-2) 69.41 

RVE (%) 14.17  RVE (%) 11.10 
MAD (mm. d-1) 38.73  MAD (mm. d-1) 48.85 

PEARSON 
CORRELATION 0.16  PEARSON 

CORRELATION 0.10 

R2 0.02  R2 0.01 
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could have impacted on the remainder of the calculations carried out in the SEBS model, 

resulting in an increased EF, which results in an overestimation of ETa. Several single-source 

models, such as the SEBS model underestimate H, especially over a partial canopy (Zhuang 

and Wu, 2015).  

 

Figure 4.5 A time series comparison of HTerra estimates obtained from implementing the SEBS 

model and observed data at the riparian region 

 

Figure 4.6 A time series comparison of HAqua estimates obtained from implementing the SEBS 

model and observed data at the riparian region 

From Figure 4.7, it can be seen that the observed H estimate at the MODIS Aqua satellite 

overpass time, is much greater than the estimate obtained at the MODIS Terra satellite overpass 

time. This can be due to the difference in heating of the land, and the observed difference in 

land cover and vegetation found within the riparian region, as bare soil is dominant at site 1 

and vegetation at site 2.  
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Figure 4.7 A time series comparison of observed and simulated H values during the 2015 

measurement period, where the observed data is the in-situ H value at the 

instantaneous overpass time 

Sensible heat flux (H) (W. m-2), is the heat flux which heats the air above the soil and plant 

canopy surfaces and occurs as a result of the difference in temperatures between the surface 

and the air above (Mengistu, 2008). The H parameter is calculated in the SEBS model 

independently of the other surface energy balance terms, using wind speed, surface 

temperature, roughness lengths for heat and momentum transfer and the temperature at the 

reference height. Van der Kwast et al. (2009) stated that the SEBS estimates are less 

comparable to flux estimates, when the measurement footprint covers multiple land cover 

types. The SEBS model underestimates H, a phenomenon that usually occurs at high sensible 

heat flux rates when utilising one source models (Kustas et al., 1996; Huntingford et al., 2000).   

The SEBS derived ETa depends on air temperature (Ta) and land surface temperature (To). The 

sensitivity of H to the To-Ta gradient was reported by Su (2002), and Badola (2009) stated that 

the SEBS model was most sensitive to the To-Ta gradient. The land surface temperature variable 

assists in the determination of Rn and G, and its main contribution includes the aerodynamic 

resistance in the calculation of H. Lu et al. (2013) states that the main factors for the 

underestimation of H in SEBS and the overestimation of EF, results from the overestimation 

of ETa, which could be produced due to the lack of closure of the energy balance, the 

underestimation of Rn - G, the incorrect calculation of aerodynamic parameters and the various 

land covers in a MODIS pixel.   

The quantity of bare soil at a study site significantly impacts the available energy for the 

sensible and latent heat transfer (Huang et al., 2015). The poor performance of satellite-based 

ETa estimation models can largely be attributed to their inability to account for the influence 
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of soil moisture availability, land surface temperature (LST) and physical characteristics of 

vegetation during the estimation of fluxes (Gokmen et al., 2012; Pardo et al., 2014; Long et 

al., 2014; Li et al., 2015; Huang et al., 2015). The effect of soil moisture and vegetation fluxes, 

are included in input variables, disregarding the direct impact on ETa estimates (Gokmen et al., 

2012; Long et al., 2014; Huang et al., 2015, Dzikiti et al., 2019).  

The To-Ta gradient is used in the estimation of H, and H is inversely proportional to ETa (Gibson 

et al., 2013). The SEBS model was implemented using satellite-derived input variables derived 

from MODIS Terra and Aqua imagery, respectively. The simulated fluxes were compared 

against observed fluxes to quantify the influence of the temperature gradient on the modelled 

estimates. Gibson et al. (2013) states that as a result of the diverse meteorological conditions 

and the differences in To-Ta due to the differential heating of the land surface and air, variations 

and uncertainties would be observed within the simulated and observed flux estimates. The 

variation of To affects the key factors of H, and the temperature gradient between the surface 

and the atmosphere (Brenner et al., 2017). As a result of the difference in heating of the land 

differs to the heating of the air, and therefore To-Ta, a lag effect occurs, and the time of day of 

image acquisition may be important and the choice of satellite sensor (MODIS Terra or Aqua) 

utilised.   

Preceding studies have stated that there is uncertain characterisation of the kB-1 factor in water 

stressed and in sparse vegetation cover environments (Gokmen et al., 2012; Gibson, 2013; Paul 

et al., 2014; Bhattarai et al., 2018; Khand et al., 2019). Chirouze et al. (2014) states that the 

underestimation of H possibly occurs as a result of the overestimation of the kB-1 factor at low 

LAIs. Overestimating the kB-1 factor in these environmental conditions would result in an 

overestimation of Zoh, therefore underestimating H and subsequently overestimating ETa 

(Gokmen et al., 2012). According to Khand et al. (2019), a common source of error in 

estimating ETa from satellite imagery results from cloud cover. A layer of cloud or shaded area 

owing to cloud presence over nearby pixels may result in an underestimation of LST and 

consequently, overestimation of ETa. Studies have shown that a minor bias in LST can 

significantly influence H and eventually ETa (Khand et al., 2019).       

4.1.4 Latent heat flux  

The SEBS model was shown to overestimate LE when compared against the in-situ 

measurements for both MODIS Terra and Aqua imagery, as shown in  Table 4.4. Comparisons 
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between the SEBS derived MODIS Terra LE estimate (LETerra) and the SEBS derived MODIS 

Aqua LE estimate (LEAqua) estimate, against the observed LE data yielded a RVE of -47.57% 

and -84.34%, respectively. This indicates a greater overestimation of LEAqua estimates, when 

compared to the observed LE. The correlation between the data was 0.61 and 0.52 for the 

LETerra and the LEAqua respectively.  

Comparisons between the simulated LETerra and LEAqua, against the observed LE data yielded 

R2 values of 0.37 and 0.27, respectively. A RMSE difference of 44.09 W. m-2 was obtained 

between LEAqua and LETerra. As presented in Table 4.4, the assessment of error in data, was 

carried out with the use of the MAD statistical metric, and yielded values of 92.83 mm. d-1 and 

99.33 mm. d-1 for LETerra and LEAqua estimates, respectively.  

Table 4.4 Validation of LE estimates obtained from implementing the SEBS model within the 

riparian region 

 

According to Mengistu (2008) and Gibson (2013), the correctness of LE is dependent on the 

accuracy of Rn, Go and H assuming energy balance closure. From Figure 4.8 and Figure 4.9, 

it can be seen that there is a greater overestimation of LE for both LETerra and LEAqua from 

August 21st until October 21st 2015. However, both LETerra and LEAqua usually follow a similar 

trend as the in-situ data. In environments that contain sparsely vegetated surfaces, such as arid 

and semi-arid environments, single-source models may yield large errors in estimating 

terrestrial flux estimates (Cleugh et al., 2007; Li et al., 2019).  

The underestimation of H, could have resulted in an overestimation of LETerra and LEAqua 

values, resulting from decreased soil moisture, and an increase in the ability of evaporation 

over sparse vegetation cover (Zhuang and Wu, 2015). According to Roxy et al. (2014), the 

increased LE estimates result from a high LST and reduced relative humidity. A greater 

difference between simulated and observed LE estimates, has an impact on the remainder of 

 LEin-situ LETerra   LEin-situ LEAqua    
AVERAGE (mm. d-1) 159.07 234.75  AVERAGE (mm. d-1) 158.93 292.97 

STD DEV 128.42 130.19  STD DEV 119.85 127.40 
RMSE (W. m-2) 136.59  RMSE (W. m-2) 180.68 

RVE (%) -47.57  RVE (%) -84.34 
MAD (mm. d-1) 92.83  MAD (mm. d-1) 99.33 

PEARSON 
CORRELATION 0.61  PEARSON 

CORRELATION 0.52 

R2 0.37  R2 0.27 
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the calculations carried out in the SEBS model, resulting in an increased EF, resulting in an 

overestimation of ETa. 

 

Figure 4.8 A time series comparison of LETerra estimates obtained from implementing the SEBS 

model and observed data at the riparian region 

 

Figure 4.9 A time series comparison of LEAqua estimates obtained from implementing the SEBS 

model and observed data at the riparian region 

Timmermans et al. (2013) and Yi et al. (2018) recognized that uncertainties in the estimation 

of LE using the SEBS model were possible due to the uncertainties obtained for the heat transfer 

from the incorrect parameterisation of Zoh. The underestimation of H using the SEBS model 

has been conveyed by (McCabe and Wood, 2006; Chirouze et al., 2014; Ma et al., 2014), 

especially for bare soil and sparse vegetation environments, resulting in an overestimation of 

LE. The difference between Zom and Zoh is described by the kB-1 factor. The SEBS model is 
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sensitive to the Zoh or kB-1 factor, and consequently, differences in heat flux estimates under 

diverse treatments of roughness length for heat transfer occur (Gao and Long, 2008).     

According to Li et al. (2019), the estimation of the spatial and temporal distribution of ETa and 

LE is important for monitoring ecosystem health, and in improving water resources 

management in arid and semi-arid environments (Dinpashoh, 2006). Gibson et al. (2011) 

emphasised the importance of the selection of the satellite sensor being used, and therefore the 

pixel resolution and heterogeneity of the study area, as the uncertainties obtained are reflected 

in the estimation of ETa. Huang et al. (2015) states that the SEBS model overestimates ETa in 

water limited conditions, whilst Pardo et al. (2014) and Gokmen et al. (2012) note that the 

overestimation of EF and LE in the SEBS model is higher, when the soil is dry and there is a 

reduced amount of vegetation cover. Although LE is mainly affected by soil moisture, surface 

temperature is also an important factor to consider (Xu et al., 2011). As SEBS does not 

calculate LE as the energy balance residual, but by using the EF, this may have influenced the 

increase in the LE estimate (Timmermans et al., 2013).  

4.2 Analysis of the Actual Evapotranspiration Estimates  

A comparison of ETa estimates obtained from implementing the SEBS model and in-situ 

measurements at the riparian region are presented in Table 4.5. The SEBS model was shown 

to overestimate ETa when compared against the in-situ measurements, as comparisons between 

ETTerra and ETAqua against the observed ETa data yielded a RVE of -123.04% and -159.41%, 

respectively. This indicates an overestimation of both simulated ETa estimates, but a greater 

overestimation of ETAqua, when compared to the observed ETa, as seen in Table 4.5 and Figure 

4.11.    

The comparison between ETTerra and ETAqua against the observed ETa data yielded Pearson 

correlation values of 0.63 and 0.59, respectively. Whilst R2 values of 0.40 and 0.34 were 

obtained for ETTerra and ETAqua, respectively. A RMSE difference of 0.65 mm. d-1 was obtained 

between ETAqua and ETTerra when compared against observed ETa data. As presented in Table 

4.5, the MAD statistical metric yielded values of 0.96 mm. d-1  and 1.11 mm. d-1 for ETTerra and 

ETAqua estimates, respectively. A Kruskal Wallis test was carried out for both ETTerra and ETAqua 

estimates, and the p-values obtained indicated a significant difference between the simulated 

and in-situ ETa estimates.  
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Table 4.5 Validation of ETa estimates obtained from implementing the SEBS model within the 

riparian region 

 

From Figure 4.10, it can be seen that majority of the points are located above the 1:1 line, 

indicating an overestimation of ETa estimates obtained from implementing the SEBS model 

within the riparian region, which was analysed in Table 4.5. The degree of overestimation is 

higher at the lower value range. During drier periods ETa is low, and the satellite-based 

estimates are unable to account for the influence of water availability and subsequently ETa is 

overestimated.  

 

Figure 4.10 A comparison of ETa estimates obtained from implementing the SEBS model and 

observed data at the riparian region  

From Figure 4.11, it can be seen that there is a significant overestimation of ETa for both ETTerra 

and ETAqua from August 21st until October 21st 2015. However, both ETTerra and ETAqua 

generally follow a similar trend as the in-situ data. Results from study site 1 is more strongly 

influenced by bare soils, water limitations and atmospheric effects, whereas results from study 

site 2 within the riparian region is influenced by climatic conditions, as there is much more 

 ETin-situ ETTerra ETAqua  
AVERAGE (mm. d-1) 1.82 4.06 4.72 

STD DEV 1.24 1.59 1.69 
RMSE (mm. d-1)  2.56 3.21 

RVE (%)  -123.04 -159.41 
MAD  0.96 1.11 

PEARSON CORRELATION  0.63 0.59 
R2  0.40 0.34 

KRUSKAL WALLIS TEST  5.07 x 10-18 1.66 x 10-22 
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vegetation found in this region. Seasonal and climatic changes also influence stress conditions, 

which may have contributed to the increased vegetation cover at site 2.  According to Gokool 

et al. (2017), the soil water availability along the section of the river that was observed, was 

affected by the drought. Therefore, variations occurred in vegetation and canopy cover, and 

soil moisture status between site 1 and site 2, resulting in a greater overestimation of ETa at site 

2.  

 

Figure 4.11 A time series comparison of ETa estimates obtained from implementing the SEBS 

model and observed data at the riparian region  

In this study, the SEBS derived ETa was assessed using a ± 30% threshold (Kalma et al., 2008). 

Therefore, each observation in the in-situ dataset was increased and decreased by 30%, 

resulting in these values being utilised as the upper and lower thresholds, respectively. 

Although ETTerra yielded a lower RVE than the ETAqua when compared against in-situ data, 

(Figure 4.12), only 7.22%  and 8.25% of the simulated data from ETTerra and ETAqua data 

respectively, were located within the 30% threshold accuracy range.  
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Figure 4.12 Simulated ETa estimates obtained within an acceptable accuracy range (AAR) of 

± 30 % 

Overall, SEBS was shown to largely overestimate ETa when compared against the in-situ 

measurements, with the ETTerra overestimating to a lower degree than the ETAqua estimate at the 

riparian region. Inconsistencies in the results can be attributed to the distance between the 

meteorological station and the EC system, and a difference in spatial scales representative of 

SEO and in-situ data among others. As the spatial resolution of MODIS is 1 km, there is 

possibility of the other landcovers influencing the ETa estimate. Variations in environmental 

conditions during the study period, such as seasonal and climatic changes from winter to 

summer may have also influenced the ETa and terrestrial flux estimates. The retrieval of reliable 

data from EC stations is still a challenge, and  is affected by multiple factors, such as the lack 

of energy balance closure, the presence of vegetation in the field that is not being studied and 

the distributions of representative source areas, which are among the few that result in an 

uncertainty in the measurement of ETa (Sun et al., 2019). The ETTerra and ETAqua estimates seem 

unrealistic to obtain, however the observed ETa estimate is realistic, as the study was carried 

out during a drought period, hence producing low values of ETa. 

According to Huang et al. (2015), the SEBS model overestimates ETa in water limited 

conditions, whilst Pardo et al. (2014) and Gokmen et al. (2012) noted that the overestimation 

of the EF and LE in the SEBS model is higher, when the soil is dry and there is a reduced 

vegetation cover. Therefore, the soil moisture and the amount of exposed bare soil had an 
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impact on the overall estimated ETa value. Consequently, the SEBS calculated ETa was 

significantly higher than the in-situ ETa estimates.    

A comparison of ETa estimates obtained from implementing the SEBS model and in-situ at the 

savanna region are presented in Table 4.6. The SEBS model was shown to overestimate ETa 

when compared against the in-situ measurements, as comparisons between ETTerra and ETAqua 

against the observed ETa data yielded a RVE of -437.80% and -512.04%, respectively. This 

indicates an overestimation of both simulated ETa estimates, but a greater overestimation of 

ETAqua estimates, when compared to the observed ETa, as seen in Table 4.6 and Figure 4.14.    

The comparison between ETTerra and ETAqua against the observed ETa data yielded Pearson 

correlation values of 0.30 and 0.39, respectively. Whilst R2 values of 0.09 and 0.15 were 

obtained for ETTerra and ETAqua, respectively. A RMSE difference of 0.59 mm. d-1 was obtained 

between ETAqua and ETTerra against observed ETa data. As presented in Table 4.6, the MAD 

statistical metric yielded values of 1.14 mm. d-1 and 1.18 mm. d-1 for ETTerra and ETAqua 

estimates, respectively. A Kruskal Wallis test was carried out for both ETTerra and ETAqua 

estimates, and the p-values obtained indicated a significant difference between the simulated 

and in-situ ETa estimates.     

Table 4.6 Validation of ETa estimates obtained from implementing the SEBS model within the 

savanna region 

 

The majority of the points are located above the 1:1 line, as depicted in Figure 4.13, indicating 

a significant overestimation of ETa estimates obtained from implementing the SEBS model 

within the savanna region, which was analysed in Table 4.6. A higher degree of overestimation 

of ETa was observed at the lower value range. During drier periods ETa is low, however 

satellite-based estimates are unable to account for the influence of water availability and 

subsequently ETa is overestimated (Dzikiti et al., 2019). 

 ETin-situ ETTerra ETAqua  
AVERAGE (mm. d-1) 0.77 4.16 4.27 

STD DEV 0.57 1.51 1.73 
RMSE (mm. d-1)  3.68 4.27 

RVE (%)  -437.80 -512.04 
MAD (mm. d-1)  1.14 1.18 

PEARSON CORRELATION  0.30 0.39 
R2  0.09 0.15 

KRUSKAL WALLIS TEST  2.62 x 10-27 1.65 x 10-27 
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Figure 4.13 A comparison of ETa estimates obtained from implementing the SEBS model and 

in-situ data at the savanna region 

From Figure 4.14, there is a greater overestimation of ETAqua estimates when compared to 

observed values. However, both ETTerra and ETAqua follow a similar trend as the in-situ data. 

The savanna region is influenced by environmental and climatic conditions, such as land cover, 

bare soils, water limitations and atmospheric effects.    

 

Figure 4.14 A time series comparison of ETa estimates obtained from implementing the SEBS 

model and observed data at the savanna region 

The only results that were analysed for the Malopeni study site (savanna region), was the 

comparison of the satellite derived ETa with the observed (in-situ) ETa. This resulted from the 
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in-situ flux estimates undergoing a quality control procedure, to remove erroneous data. 

However, the dataset resulted in, inconsistent and large amounts of missing data.  

The SEBS model was shown to overestimate ETa when compared against the in-situ 

measurements. Whilst the ETTerra data overestimated to a lower degree than the ETAqua 

estimates. An overestimation of ETa could have resulted from the SEBS model ineffectively 

accounting for the influence of soil moisture (Gokmen et al., 2012; Gibson et al., 2013; Yi et 

al., 2018). It should be noted that the study period coincided with a large El Niño induced 

drought (Kogan and Guo, 2016; Gokool et al., 2017). 

The SEBS derived ETa depends on air temperature (Ta) and land surface temperature (To). The 

sensitivity of H to the To - Ta gradient was reported by Su (2002), and Badola (2009) stated that 

the SEBS model was most sensitive to the To - Ta gradient. The land surface temperature 

parameter assists in the determination of Rn and G, and its main contribution includes the 

aerodynamic resistance in the calculation of H. Lu et al. (2013) states that the main factors for 

the underestimation of H in SEBS and the overestimation of EF, which results in the 

overestimation of ETa include; the lack of closure of the energy balance, the underestimation 

of Rn - G, the incorrect calculation of aerodynamic parameters and the various land covers in 

a MODIS pixel.    

Higher ETa values are usually related with warm, dry conditions (Gush, 2016). The SEBS 

model does not particularly consider soil moisture and biophysical factors when estimating 

terrestrial fluxes, as it is included in the input variables, and does not consider the immediate 

influence on ETa approximations (Gokmen et al., 2012; Huang et al., 2015). The extent of 

exposed soil affects the amount of energy that is accessible for sensible and latent heat transfer 

(Huang et al., 2015). According to Gokmen et al. (2012) and Pardo et al. (2014), the 

overestimation of EF and LE in SEBS is higher, due to the lack of vegetation cover and drier 

soils.   

Both the ETTerra and ETAqua estimates performed poorly when compared to in-situ ETa 

estimates. The poor correlation was largely attributed to the inability of the SEBS model to 

adequately account for the influence of soil moisture, LST and biophysical parameters during 

the derivation of surface fluxes (Gokmen et al., 2012; Pardo et al., 2014; Gibson et al., 2013; 

Huang et al., 2015; Yi et al., 2018). Subsequently, the SEBS model tends to overestimate the 

EF and LE parameters for environments experiencing water stress, which results in an 
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overestimation of ETa. The influence of soil moisture and vegetation fluxes, are indirectly 

included in input variables, disregarding their direct impact on ETa estimates. A study carried 

out by Wagle et al. (2017) discussed that the SEBS model substantially overestimated ETa 

during dry conditions, and the model’s performance improved with an increase in soil moisture. 

This result is further supported by the overestimation of LE during the partitioning of available 

energy by SEBS during non-rainy days.  

The inconsistencies seen in the data can be attributed to the distance between the 

meteorological station and the EC system. At the savanna region, no solar radiation values 

were recorded. As a result, solar radiation values were obtained from the riparian region and 

used as inputs into the SEBS model for the savanna region. Tang et al. (2011) states that 

overestimations and uncertainties may arise as a result of different spatial scales representative 

of satellite earth observed and in-situ data, respectively. As the spatial resolution of MODIS is 

1 km, there is a possibility of other landcovers influencing the ETa estimate. Variations in 

environmental conditions during the study period, resulting from seasonal and climatic changes 

from winter to summer may have also influenced the ETa and flux estimates.   

Preceding studies have stated uncertain characterisation of the kB-1 factor in water limited and 

in sparse vegetation cover environments (Gokmen et al., 2012; Gibson, 2013; Paul et al., 2014; 

Bhattarai et al., 2018; Khand et al., 2019). According to Gokmen et al. (2012), application of 

the modified SEBS formulation can improve the estimation of energy and water fluxes, in 

water-stressed regions. Zhuang et al. (2016) states that the kB-1 factor has the ability to correct 

the differences between radiometric and atmospheric temperature and is influenced by 

numerous variables that relate to structural parameters and environmental conditions.   

Days that have a large difference between radiometric and atmospheric temperature, may occur 

as a result of the To-Ta gradient. The LST estimate is influenced by the shortened energy balance 

equation, due to the incoming and outgoing radiation, and spatially distributed ETa estimates 

are based on manipulating LST information obtained from thermal infrared remote (TIR) 

sensing located on satellite or airborne platforms (Brenner et al., 2017). Other sources of 

uncertainty include the satellite overpass times of the MODIS Terra and Aqua imagery, the 

atmospheric correction factor and the estimation of the water vapour content. As a result of the 

satellite overpass times, and the imagery being obtained at different times, differences in ETa 

and terrestrial flux estimates may occur. This may have resulted from the temperature gradient, 

which influences ETa and terrestrial flux estimates. 
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The SEBS model is highly complex, and a combination of several minor factors may result in 

the overestimation of ETa and terrestrial flux estimates. According to Kalma et al. (2008), the 

temperature gradient and land surface temperature impact LE, Rn, Go and H, which are 

components of the energy balance equation. The errors related with utilising surface 

temperature to estimate H, include; errors in observed meteorological data, errors in model 

assumption and the significant inaccuracies in radiometric temperature estimation and the 

inequality between radiometric and aerodynamic surface temperature (Kalma et al., 2008).  

Satellite earth observation data have effectively been used to estimate the spatial distribution 

of the available energy from combined visible and TIR data, and the spatial distribution of H 

from thermal data (Troufleau et al., 1997). The H variable is usually related to the gradient 

between the land surface temperature and air temperature divided by an aerodynamic 

resistance. 

4.2.1 Evaluation of the MOD16 product and the aggregated SEBS derived ETa estimates 

The SEBS model was implemented using satellite-derived input variables derived from 

MODIS Terra and Aqua imagery, respectively. The simulated fluxes and ETa were compared 

against observed ETa measurements, to quantify the influence of the temperature gradient on 

the modelled estimates. In order to further gauge, the influence which the model 

conceptualisation has on the accuracy of the estimates, the MOD16 product was acquired and 

evaluated as part of these investigations. The rationale for this can be attributed to the absence 

of the temperature data used during the derivation of ETa when using the MOD16 algorithm.  

Satellites are able to provide information when ETa estimates are needed at high spatio-

temporal resolutions. However, there still exists an influence of the land surface and air 

temperature gradient on ETa and terrestrial flux estimates derived using satellite earth observed 

data. In recent years, numerous global products and datasets derived from SEO, has been made 

available for public and private use. The ETMOD16A2 data was acquired and evaluated for the 

riparian and savanna region, and the 8-day aggregated ETTerra and ETAqua for each region was 

obtained, to determine the accuracy of each method used.  An example of the sample code that 

was used to extract ETMOD16A2 data from the MOD16A2 product for the Malopeni site (savanna 

region) is depicted in Figure 7.1, in Appendix A.  

A comparison of aggregated 8-day ETa estimates obtained from implementing the SEBS model 

and in-situ measurements at the riparian region are presented in Table 4.7. The SEBS model 
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was shown to overestimate ETa when compared against the in-situ measurements, as 

comparisons between ETAqua against the observed ETa data yielded a RVE of -159.39%. Whilst 

the ETMOD16A2 yielded a RVE of 50.36%, indicating an underestimation of ETa.  

The comparison between ETTerra, ETAqua and ETMOD16A2 against the 8-day aggregated observed 

ETa data yielded R2 values of 0.39, 0.34 and 0.16, respectively. As presented in Table 4.7, the 

MAD statistical metric yielded values of 5.11 mm. 8d-1, 5.42 mm. 8d-1 and 6.01 mm. 8d-1 for 

the ETTerra, ETAqua and ETMOD16A2 estimates, respectively. A Kruskal Wallis test was carried out 

for the ETTerra, ETAqua and ETMOD16 estimates, and the p-values obtained indicated a significant 

difference between the simulated and in-situ ETa estimates.   

Table 4.7 Validation of aggregated 8-day ETa estimates obtained from implementing the SEBS 

model within the riparian region 

 

From Figure 4.15, it can be seen that ETTerra and ETAqua overestimate ETa, whilst there is a good 

correlation between the ETMOD16A2 and the in-situ ETa until August 13th. There is a greater 

overestimation of ETa for both 8-day aggregated ETTerra and ETAqua estimates from August 21st 

until October 21st 2015. However, both ETTerra and ETAqua generally follow a similar trend as 

the in-situ data. However, the ETaMOD16A2 was underestimated during this period.   

  

 ETin-situ ETTerra ETAqua ETMOD16A2  
AVERAGE (mm. 8d-1) 10.90 24.31 28.28 5.41 

STD DEV 6.35 8.55 8.74 1.49 
RMSE (mm. 8d-1)  14.93 18.73 8.78 

RVE (%)  -122.98 -159.39 50.36 
MAD (mm. 8d-1)  5.11 5.42 6.01 

PEARSON CORRELATION  0.62 0.58 -0.40 
R2  0.39 0.34 0.16 

KRUSKAL WALLIS TEST  1.64 x 10-4 2.43 x 10-5 2.90 x 10-3  
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Figure 4.15 A time series comparison of aggregated 8-day ETa estimates obtained from 

implementing the SEBS model and in-situ data at the riparian region 

The various methods to estimate ETa for the 26th June 2015 are presented in Figure 4.16, with 

the ETa estimates depicted in Table 4.8. The ETAqua estimate is in the least agreement with the 

in-situ ETa measurement, whilst the MOD16 product has the best agreement with the observed 

data. The script that was utilised to obtain the ETMOD16A2 image is presented in Figure 7.2, in 

Appendix A. 

Table 4.8 A comparison of derived ETa estimates from various spatial resolutions for Site 1 for 

26 June 2015 

 Spatial Resolution (m) 8-day ETa (mm)  

In-situ ETa  6.68 

ETTerra 1000 29.36 

ETAqua 1000 33.49 

ETMOD16A2 500 6.50 
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Figure 4.16 A comparison of the MOD16 product and the aggregated 8-day ETa estimates 

obtained from implementing the SEBS model for 26 June 2015 

A comparison of aggregated 8-day ETa estimates obtained from implementing the SEBS model 

and in-situ measurements at the savanna region are presented in Table 4.9. The SEBS model 

was shown to overestimate ETa when compared against the in-situ measurements, as 

comparisons between ETTerra and ETAqua against the observed ETa data yielded a RVE of                

-159.39% and -492.07%, respectively. Whilst the ETMOD16A2 yielded a RVE of 9.46%, 

indicating an underestimation of ETa.  

The evaluation between ETTerra, ETAqua and ETMOD16A2 against the 8-day aggregated observed 

ETa data yielded R2 values of 0.27, 0.32 and 0.06, respectively. As presented in Table 4.9, the 

MAD statistical metric yielded values of 7.36 mm. 8d-1, 8.29 mm. 8d-1 and 2.22 mm. 8d-1 for 

the simulated ETTerra, ETAqua and ETMOD16A2 estimates, respectively. A Kruskal Wallis test was 

carried out and a p-value of 0.68 was obtained for the ETMOD16A2 estimate, indicating no 
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significant difference between the ETMOD16A2 and the in-situ ETa estimates.  However, the null 

hypothesis was rejected for the aggregated 8-day ETTerra and ETAqua estimates. 

Table 4.9 Validation of aggregated 8-day ETa estimates obtained from implementing the SEBS 

model within the savanna region 

 

The savanna region was analysed from June until October 2015. The daily ETTerra and ETAqua 

estimates were aggregated to 8-day ETa values. From Figure 4.17, an overestimation of the 

ETTerra and ETAqua estimates can be seen, whilst the ETMOD16A2 underestimates ETa during the 

summer months when compared to the in-situ ETa measurements. The ETTerra and ETAqua 

estimates generally follow a similar trend to the in-situ ETa measurements. 

 

Figure 4.17 A time series comparison of aggregated 8-day ETa estimates obtained from 

implementing the SEBS model and in-situ data at the savanna region 

The various types of land cover at the riparian and savanna regions may have resulted in the 

underestimation and overestimation of ETa when using ETTerra, ETAqua and MOD16 to estimate 

ETa. This results from the various landcovers requiring different amounts of water, impacting 

 ETin-situ ETTerra ETAqua ETMOD16A2  
AVERAGE (mm. 8d-1) 4.01 21.36 23.73 3.63 

STD DEV 2.34 10.24 10.72 1.17 
RMSE (mm. 8d-1)  19.51 21.78 2.79 

RVE (%)  -433.06 -492.07 9.46 
MAD  7.36 8.29 2.22 

PEARSON CORRELATION  0.52 0.56 -0.25 
R2  0.27 0.32 0.06 

KRUSKAL WALLIS TEST  6.40 x 10-5 1.93 x 10-5 679.18 x 10-3  
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the amount of ETa occurring. When utilising the MOD16 product, an increase in air 

temperature, resulted in a decrease in the ETMOD16A2 estimation. According to Allen et al. 

(1998), an increase in humidity of the air causes a decrease in the ETa demand, as plants can 

reduce ETa in response to increased VPD by closing their stomata (Massmann et al., 2019).  

The results indicated an underestimation of the ETMOD16A2 estimate, when compared against the 

observed ETa data, whilst the ETTerra and ETAqua overestimated the observed ETa data. It is 

apparent that the ETa values derived from the EC system are higher than the ETMOD16A2 values 

during warmer months and are closely related during colder months (June until mid-August). 

These results rather match with the results observed by Ramoelo et al. (2014).   

Aguilar et al. (2018) stated that soil moisture influences the aerodynamic or surface resistance 

of the vegetation and the resistance of the soil surface, which are important parameters in the 

MOD16 algorithm. Prior model validations of the MOD16 product presented comparable 

underestimations of ETa in sparse natural vegetation, namely; crops (Rodriguez, 2016), 

savanna (Mu et al., 2007) and grassland (Chi et al., 2017). The differences could have resulted 

from the uncertainty of the input variables (LAI or meteorological data) (Aguilar et al., 2018). 

The MOD16 product does not account for disturbance history or species composition and stand 

age, which could also add further uncertainty (Ramoelo et al., 2014). The algorithm assumes 

that the stomata close at night, whilst Musselman and Minnick (2000) have stated that the 

stomata open at night. This results in the underestimation of daily ETa, due to the bias imposed 

by transpiration occurring at night (Ramoelo et al., 2014).  Ramoelo et al. (2014) also states 

that the MOD16 is generally poor and the accuracy is inconsistent over a period in selected 

savanna ecosystem sites. According to Hu et al. (2015), the best performance of the MOD16 

product is observed in forested areas, whilst poorer performances are detected in arid and polar 

climates.  

The discrepancies in the SEBS derived ETa may have resulted from the spatio-temporal 

resolution of the MODIS Terra and Aqua imagery, as the correctness of the satellite products 

vary in space and time. The meteorological data that was utilised for the SEBS modelling was 

obtained from two EC systems, and each system collected meteorological data over different 

land cover and vegetation types. The differences between the ETMOD16A2 and the in-situ ETa 

estimates could be as a result of multiple factors such as; the flux tower footprint, the MODIS 

Terra, MODIS Aqua and MOD16 pixel size, remote sensing data and in-situ data. The EC 
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system instruments are also susceptible to errors in measurement through factors such as, 

malfunctioning instrumentation and errors in sensor configuration, and it also limited by 

regions of low wind speed (Spittlehouse and Black, 1980). The factors influencing the in-situ 

data may have affected the accuracy of the simulated results. According to Hartanto et al. 

(2017) other factors that may influence the accuracy of results obtained include; atmospheric 

conditions, the region of interest and local surface conditions.     
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5. CONCL86ION AND 5ECOMMENDA7ION6 

The conclusions and recommendations derived from this research study are discussed in this 

chapter.  

5.1 Conclusion 

South Africa is considered as a semi-arid and water-scarce country, and global climate change 

has placed further strain on its limited water resources. It is imperative to understand all 

processes of the hydrological cycle in detail, as it has a vital influence on water resources 

management.    

Several methods have been developed to account for ETa in the hydrological cycle at different 

spatial and temporal scales, with micro-meteorological methods being amongst the most 

frequently applied approaches. Despite the successful application of these techniques to 

develop an improved understanding of water and energy fluxes, they are limited in their ability 

to provide spatially representative information for large geographic extents and are expensive 

to use over long periods.  

The use of SEO methods and associated technologies have been proposed as a suitable 

alternative to conventional ETa estimation methods, largely due to their ability to capture 

spatially and temporally explicit hydrological process information, particularly in poorly 

gauged environments. However, it is important to take cognisance of the limitations associated 

with the satellite-based models and associated data sets prior to utilising these data sources and 

tools to guide decision making, as this ultimately influences the success of their intended use. 

Previous studies have successfully demonstrated how satellite-based energy-balanced ET 

models can provide fairly accurate estimates of terrestrial fluxes and ETa. However, it has also 

been shown that these models have the tendency to perform poorly in water stressed 

environments due to an inherent limitation in their conceptualisation which relates to the 

temperature gradient (To-Ta). Given this limitation, the study aimed to establish whether the 

selection of an image based upon the satellite overpass time would influence the accuracy of 

the modelled flux and ETa estimates, as this is closely linked to the dynamic nature of the 

temperature gradient.  
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The SEBS model was implemented using satellite-derived input variables derived from 

MODIS Terra and Aqua imagery, respectively. The simulated fluxes and ETa were then 

compared against observed ETa to quantify the influence of the temperature gradient on the 

modelled estimates. The SEBS derived ETa estimates indicated that both the ETTerra and ETAqua 

largely overestimated in-situ ETa measurements. After the evaluation of the individual 

terrestrial fluxes, the SEBS estimated Rn compared favourably with the in-situ estimates for 

both MODIS Terra and Aqua data. However, the RnAqua results performed better than the RnTerra 

estimates. The GoAqua estimate correlated better than the GoTerra estimate to the in-situ data. 

The HTerra and HAqua estimates showed no agreement with the in-situ results. Overall, the SEBS 

derived MODIS Aqua estimates compared favourably with the in-situ estimates, as compared 

to the MODIS Terra estimates.  

The simulated Rn overestimated the in-situ Rn estimates. This could have resulted from the 

difference in the spatial and temporal scale of the measurements, that are observed by the field 

instruments and the MODIS sensors. The different satellite overpass times has an influence on 

the ETa and terrestrial flux estimates obtained, which may have resulted from the To-Ta 

gradient. As a result of the diverse meteorological conditions and the differences in To-Ta due 

to the differential heating of the land surface and air, variations and uncertainties are observed 

within the simulated and in-situ terrestrial flux estimates, as a lag effect occurs. Therefore, 

promoting the importance of the time of day of image acquisition and the correction selection 

of the satellite sensor (MODIS Terra or Aqua) being utilised.   

Regions consisting of sparse vegetation, are influenced by the amount of radiation reaching the 

soil and is highly dependent on the geometry of the sun and leaf orientations. The soil moisture 

and the amount of exposed bare soil has an impact on Go measured at the study sites. The 

SEBS model overestimates ETa in water limited conditions, and the overestimation of the EF 

and LE in the SEBS model is higher, when the soil is dry and there is a reduced amount of 

vegetation cover. The direct soil evaporation component of ETa is large, as there are vast areas 

of bare soil within the study sites, and the SEBS model is more sensitive to surface soil 

temperature than the surface aerodynamic parameters and has been confirmed in earlier studies.  

Both HTerra and HAqua estimates were underestimated when compared to in-situ data. Several 

single-source models, such as the SEBS model underestimates H especially for bare soil and 

sparse vegetation environments. This resulted in an overestimation of LE, which occurred from 

a decrease in soil moisture, and an increase in the ability of evaporation and sparse vegetation 
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cover. Discrepancies obtained within the results may influence the remainder of the 

calculations carried out in SEBS, resulting in an increased EF and an overestimation of ETa.  

Increased LE estimates result from a high LST and reduced relative humidity. As SEBS does 

not calculate LE as the energy balance residual, but using the EF, this results in an increased 

LE. Earlier studies have stated uncertain characterisation of the kB-1 factor in water stressed 

and in sparse vegetation cover environments. The underestimation of H possibly occurs as a 

result of the overestimation of the kB-1 factor at low LAIs. Overestimating the kB-1 factor in 

these environmental conditions would result in an overestimation of Zoh, therefore 

underestimating H and subsequently overestimating ETa. The SEBS model is sensitive to the 

Zoh or kB-1 factor, consequently differences in heat flux estimates under diverse treatments of 

roughness length for heat transfer occur. Studies have shown that a minor bias in LST can 

significantly influence H and eventually ETa. Although LE is largely influenced by soil 

moisture, surface temperature is also an important factor to consider. Application of the 

modified SEBS formulation can improve the estimation of energy and water fluxes, in water-

stressed regions.  

The SEBS model is highly complex, and a combination of several minor factors may result in 

the overestimation of ETa and terrestrial flux estimates. The temperature gradient and land 

surface temperature impact LE, Rn, Go and H, which are components of the energy balance 

equation. Overall, results showed that the SEBS derived ETa were largely overestimated. 

Inconsistencies in the results can be attributed to the distance between the meteorological 

station and the EC system, and a difference in spatial scales representative of SEO and in-situ 

data, among a few. Variations in environmental conditions during the study period, such as 

seasonal and climatic changes from winter to summer influenced the ETa and terrestrial flux 

estimates, as the study period coincided with a large El Niño induced drought.  

Higher ETa values are usually related with warm, dry conditions. The extent of exposed soil 

affects the amount of energy that is accessible for sensible and latent heat transfer. Both the 

ETTerra and ETAqua estimates performed poorly when compared to in-situ ETa estimates at the 

savanna region. The poor correlation was largely attributed to the SEBS model being unable to 

adequately account for the influence of soil moisture, LST and biophysical parameters during 

the derivation of surface fluxes. The influence of soil moisture and vegetation fluxes, are 

indirectly included in input variables, ignoring their direct impact on ETa estimates.  
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The alternate hypothesis stating that the gradient between land surface and air temperature 

significantly influences the accuracy of satellite-derived ETa and terrestrial flux estimates is 

accepted. As days that have a large difference between radiometric and atmospheric 

temperature, may occur as a result of the To-Ta gradient. The LST estimate is influenced by the 

shortened energy balance equation, and spatially distributed ETa estimates are based on 

manipulating LST information obtained from thermal infrared remote (TIR) sensing located on 

satellite or airborne platforms.   

Satellites are able to provide information when ETa estimates are needed at high spatio-

temporal resolutions. In recent years, numerous global products and datasets derived from 

SEO, and have been made available for public and private use. The SEBS model was 

implemented using satellite-derived input variables derived from MODIS Terra and Aqua 

imagery, respectively. In order to further gauge, the influence which the model 

conceptualisation has on the accuracy of the estimates, the ETMOD16A2 data was acquired and 

evaluated. The rationale for this can be attributed to the absence of the temperature data used 

during the derivation of ETa using the MOD16 algorithm.  

The aggregated 8-day ETTerra and ETAqua overestimated the observed ETa measurements, whilst 

the MOD16 product tends to underestimate ETa during the summer months when compared to 

the in-situ ETa. It is apparent that the ETa values derived from the EC system are higher than 

the ETMOD16A2 values during warmer months and are closely related during colder months (June 

until mid-August). These results rather match with the results observed by previous studies that 

have been undertaken.  

Soil moisture influences the aerodynamic or surface resistance of the vegetation and the 

resistance of the soil surface, which are important parameters in the MOD16 algorithm. Prior 

model validations of the MOD16 product presented comparable underestimations of ETa in 

sparse natural vegetation, namely; crops, savanna and grassland. The differences could result 

from the uncertainty of the input variables (LAI or meteorological data). 

Earlier investigations and projects have stated that the ETMOD16A2 estimates are generally poor 

and the accuracy is inconsistent over a period in selected savanna ecosystem sites. According 

to previous studies, the best performance of the MOD16 product is observed in forested areas, 

whilst poorer performances are detected in arid and polar climates.  
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Preceding studies have stated that the estimation of the spatial and temporal distribution of ETa 

and LE is important for monitoring ecosystem health, and in improving water resources 

management in arid and semi-arid environments Future research should be undertaken, to 

include the soil moisture influence in the SEBS model, and to effectively represent the 

influence of water-stress in arid and semi-arid environments. The MOD16A2 product can be 

used to estimate regional water and energy balance, soil water status. Therefore, providing 

important information for water resources management, and the provision of long-term data 

records, that may assist in decision making.   

Whilst, the results in this study show unfavourable application of SEO data, other studies show 

favourable application of SEO data. The application of SEO data products in water resources 

management creates awareness and assists in the planning of water use and management 

operations. Current SEO data and products assist in the monitoring of and estimation of 

regional water and energy balance and soil moisture status. The use of GEE is enabling and 

empowering the scientific community to monitor, track and manage the Earth’s environment 

and its resources in an easy and time efficient manner (Gorelick et al., 2017). Therefore, 

providing important information towards water resources management 

5.2 Recommendations  

The recommendations listed below could be used to address the limitations of the study, and 

may assist and guide future studies: 

x A major limitation at the Malopeni study site (savanna region) was the unavailability 

of solar radiation, hence solar radiation values were used from nearby sites and used as 

an input into the SEBS model. Solar radiation estimates are rarely available from 

meteorological stations and are required in the estimation of ETa. A lack of solar 

radiation at study sites, requires the use of models to derive solar radiation estimates 

(Allen et al., 1998), and this increases uncertainty. Therefore, there is a need for stations 

to be able to provide solar radiation measurements. 

x The study sites were used, due to the availability of data. However, as this study was 

carried out during the large El Niño drought period, it was able to highlight important 

facts that should be considered during drought conditions when research and 

investigations are undertaken. Therefore, the study should be carried out in a region 

that is not water-stressed and not irrigated, and for a longer time period. This would 
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enable one to determine distinct differences and seasonal variations, out of drought 

periods, and a clearer insight into the use of MODIS Terra, MODIS Aqua and the 

MOD16 product to determine ETa and terrestrial flux estimates.  

x For future studies, the height of the net radiometer should be taken into consideration 

when placed above the ground, as overestimations and uncertainties may arise as a 

result of the differences between spatial scales of the SEO data and the in-situ data.  

x Large amounts of data are required to be processed, hence having the knowledge of 

coding and the ability to write scripts and the knowledge of python, would make the 

process much easier and less time consuming. The MOD16 product was accessed via 

GEE, reducing the computing time and making the satellite earth observed data readily 

available.  

x The validation of the MOD16 and MOD16A2 product should be carried out at multiple 

sites within arid and semi-arid environments, as this would improve the decisions about 

the precision of these products within these environments.  

x Plant water stress information can be presented into the sensible heat flux solution 

method, by modifying the kB-1 value with a scaling factor, that considers soil moisture 

and water stress level (Pardo et al., 2014; Li et al., 2015). Subsequently, this method is 

generally utilised to correct the underestimation of H proposed by Gokmen et al. (2012) 

to reduce the overestimation of LE and EF. Application of the modified SEBS 

formulation can improve the estimation of energy and water fluxes, in water-stressed 

regions. The kB-1 factor can correct the differences between To-Ta, as it is influenced by 

numerous variables that relate to structural parameters and environmental conditions. 

x Uncertainties are presented in the validation results, as micro-meteorological methods 

provide point-based estimates, as compared to SEO products, where a single pixel is 

larger than the field of view (Li et al., 2017). A dense network of meteorological 

stations is essential for a reasonable assessment of satellite and in-situ data; therefore, 

the study could be carried out in an area that contains a denser network of 

meteorological stations. 

x There are inherent weaknesses associated with every SEO sensor available, which are 

often associated with spatial and temporal resolution. MODIS has a coarse spatial 

resolution and a high temporal resolution; however, Landsat has a medium to fine 

spatial resolution and a course temporal resolution (Denis, 2013). Therefore, 

disaggregation techniques can be performed to address the limitation of the trade-off 
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between the spatial and temporal resolutions that are associated with satellite imagery 

(Hong et al., 2011; Spiliotopolous et al., 2013). This would produce better-quality SEO 

estimates when compared to in-situ data, reducing errors and uncertainty; hence 

assisting in improved water resources management decisions.  

x A correction factor or calibration can be introduced for areas with dry bare soil, 

therefore reducing the overestimation of simulated data when compared against 

observed data.  
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7. A33ENDICE6 

This chapter contains further information pertaining to the methodology of this study.  

7.1 Appendix A  

This section contains the acquisition of the ETMOD16A2 estimates and the conversion of the 

ETMOD16A2 product into a GeoTiff format. 

 

Figure 7.1 Sample of the code used to extract ETa data from the MOD16A2 product for the 

Malopeni (savanna) study site 
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Figure 7.2 The script used to export an image into a GeoTiff format  

 


