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Abstract 
 
Introduction 
 
Large scale roll-out of combination antiretroviral therapy (cART) has been successful in 

improving the quality of life of HIV-1 infected individuals in South Africa (SA). However the 

development and transmission of drug resistance threatens the future success and longevity of 

cART in the country. Studies have shown that resistance to Protease inhibitors (PI’s), in the 

absence of mutations in Protease (PR), is increasing in SA. Whilst some studies attribute this to 

poor treatment adherence, others have shown that mutations in Gag contribute to PI resistance. 

The majority of these studies however have been conducted on HIV-1 subtype B, despite HIV-1 

subtype C being the most prevalent subtype globally. Given that Gag is highly polymorphic 

between subtypes, studies focusing on HIV-1 subtype C are required. Despite the high rate of 

virologic failure of patients on PI inclusive treatment regimens, no transmitted drug resistance 

(TDR) studies have identified PI associated TDR mutations. This could be due to the high 

fitness cost associated with PR mutations which would result in rapid reversion or low frequency 

of mutations within the viral quasispecies. Most TDR studies in SA, as in other resource limited 

settings, have used recently infected cohorts to measure TDR. It is however unlikely that rapidly 

reverting mutations would be detected in recent infection. Furthermore, these studies have all 

used Sanger sequencing which only detects mutations at frequencies >15-20%. With recent 

studies showing that low frequency mutations present at frequencies as low as 1% impact 

treatment outcomes, the elucidation of these mutations using deep-sequencing techniques is 

necessary. For a true measure of TDR, studies employing acute infection cohorts and deep-

sequencing techniques are required.  

 

The current study aimed to identify mutations in Gag-Protease associated with PI 

resistance/exposure, and to determine their impact on replication capacity and drug 

susceptibility. The prevalence of low frequency TDR mutations in an HIV-1 subtype C acute 

infection cohort was also investigated.  

 

Methods 
 
A cohort of 80 HIV-1 subtype C infected participants failing a PI inclusive treatment regimen (i.e. 

PCS cohort) from 2009–2013 in Durban, South Africa was used to assess the role of Gag in PI 

resistance. Gag mutations were divided into three groups: PI exposure associated Gag 



 

x 
 

mutations; resistance associated Gag mutations (rGag) and novel Gag mutations (nGag). 

Frequencies of each of these mutations were compared amongst: 80 PCS cohort sequences, 

2,481 HIV-1 subtype B treatment naïve sequences, 954 HIV-1 subtype C treatment naïve 

sequences and 54 HIV-1 subtype C sequences from acutely infected individuals, in order to 

identify PI associated mutations and natural polymorphisms. Next, recombinant viruses for all 80 

participants were generated by co-transfection of a CEM derived T-cell line (i.e. GXR cells) with 

an NL43-deleted-gag-protease (NL43∆gag-protease) backbone and patient derived Gag-

Protease amplicons. Thereafter, the replication capacity of each virus was assessed using a 

replication assay that employed a green fluorescent protein reporter cell line and flow cytometry. 

Associations between replication capacity and Gag-Protease mutations were established. 

Eighteen viruses with mutations of interest were then selected for use in drug susceptibility 

assays, where the impact of mutations on susceptibility to lopinavir (LPV) and darunavir (DRV) 

was assessed in a luciferase based assay.  Lastly, the impact of novel Gag mutations on 

replication capacity and drug susceptibility was validated by generating site-directed mutant 

viruses with mutations of interest and using these mutant viruses in replication capacity and 

drug susceptibility assays. Furthermore the cleavage profile of each site-directed mutant virus 

was established by western blotting.  

 

Samples available from 47 HIV-1 subtype C acutely infected individuals collected from 2007-

2014 in Durban, South Africa, was used to assess low frequency TDR mutations in HIV-1 

subtype C acute infection. Firstly the RT and PR region of each virus was genotyped using the 

Viroseq HIV-1 genotyping system in order to identify the prevalence of TDR in the cohort. 

Thereafter 14 participant samples were selected, based on the availability of plasma at one 

week after onset of plasma viremia (OPV), for sequencing by ultra-deep pyrosequencing 

(UDPS). This served to identify low frequency mutations. Comparisons in TDR prevalence was 

made between Sanger sequencing and UDPS. Thereafter, the impact of low frequency TDR 

mutations on treatment outcomes was assessed by comparing time to virologic suppression for 

two participants with low frequency mutations to that of four participants without low frequency 

mutations.  

 
Results 
Protease resistance associated mutations (RAMs) occurred in 34/80 (42.5%) participants, whilst 

Gag mutations associated with PI resistance in subtype B were detected in 67/80 (84%) 

participants. Overall, 12 Gag mutations associated with PI exposure (i.e. E12K, V35I, G62R, 

V370A/M, S373P/Q/T, A374P, T375N, I376V, G381S, I389T, I401T and H219Q), eight rGag 

mutations (i.e. R76K, Y79F, V128I, A431V, K436R, L449F, R452K and P453L) and four nGag 

mutations (i.e. Q69K, S111C/I, T239A/S and I256V) were identified in the PCS cohort. The 
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E12K, V370A/M, T375N, G381S, R76K and Y79F mutations all occurred as natural 

polymorphism in HIV-1 subtype C. The A431V, K436R, L449F, R452K, P453L, Q69K, S111C/I, 

T239A/S and I256V mutations were all associated with PI resistance/exposure. Interestingly all 

viruses with PR RAMs harboured rGag and nGag mutations, however rGag and nGag 

mutations were also found to occur without PR RAMs.  

 

Protease RAMs were associated with significantly reduced replication capacity. The K335R and 

A431V mutations were the only Gag mutations associated with significantly reduced replication 

capacity.  

 

Viruses with PR RAMs were associated with significantly reduced susceptibility to LPV (>15 FC 

in IC50) and DRV (>6 FC in IC50). Furthermore, the following combinations of rGag and nGag 

mutations were found to confer reduced susceptibility to LPV and DRV in the absence of PR 

RAMs: R76K+Y79F+K436R+L449P+I256V (5.2 fold increase in IC50 for DRV), R76K+R453L 

(23.88 fold increase in IC50 for LPV and a 6.73 fold increase in IC50 for DRV) and 

R76K+K436R+Q69K+S111C (7.40 fold increase in IC50 for LPV).  

 

Analysis of recombinant viruses showed that the Q69K nGag mutation rescued replication 

capacity of all viruses harbouring A431V+PR RAMs. This was validated by SDM, where Q69K 

rescued the replication capacity of site-directed mutant viruses harbouring A431V+V82A. The 

Q69K mutation was also associated with increasing polyprotein cleavage when found in 

conjunction with A431V+V82A. 

 

With regards to TDR, we demonstrated a prevalence of 57% of TDR mutations with UDPS and 

2.2% with Sanger sequencing. Sanger sequencing identified the K103N non-nucleoside reverse 

transcriptase inhibitor (NNRTI)-associated TDR mutation. In addition to K103N (frequency: 

>99%), the following low frequency mutations were detected by UDPS: the K65R (1-1.5%) and 

D67N (3.88%) nucleotide reverse transcriptase inhibitor (NRTI)-associated TDR mutations, the 

F53L (17.6%) and M46L (6.3%) Protease inhibitor (PI)-associated TDR mutations, and the T97A 

(2.90%) integrase strand transfer inhibitor (InSTI)-associated TDR mutations. Participants with 

low frequency TDR mutations took 40 days longer to achieve viral suppression than participants 

without low frequency TDR mutations, when placed on fixed dose combination antiretroviral 

therapy.  
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Conclusion 
 
Most participants experiencing PI failure did not harbour PR RAMs. The majority however did 

harbour Gag mutations which we show can confer resistance to PI’s in the absence or presence 

of PR RAMs. These Gag mutations can function either as primary resistance mutations, causing 

resistance to PI’s in the absence of PR RAMs, or as compensatory mutations where they 

enhance polyprotein cleavage which manifests as improved replication capacity. The presence 

of rGag mutations in the absence of PR RAMs suggests that the development of Gag mutations 

may precede the development of PR RAMs and could play a role in PR RAM development. Gag 

mutations could therefore be a precursor to indicate PI resistance and should thus be included 

in PI resistance algorithms. The significant variations in Gag between HIV-1 subtype B and HIV-

1 subtype C highlights that research on HIV-1 subtype B cannot always be translated to HIV-1 

subtype C. With regards to TDR, low frequency mutations to PI’s, NRTI’s, NNRTI’s and InSTI’s 

are common in HIV-1 subtype C acute infection and can impact treatment outcomes. Their 

identification however is dependent upon the use of deep sequencing technologies, highlighting 

the need for cost effective deep sequencing technologies for use in low income countries such 

as SA.   
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1. CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW 
 

1.1 Introduction 
 

Human immunodeficiency virus (HIV) is classified as a retrovirus from the Lentivirus genus 

and the Retroviridae family of viruses (1). The human immunodeficiency virus infects 

immune cells expressing the cluster of differentiation (CD)4 protein, causing progressive 

deterioration in immune function that results in a syndrome of neoplastic diseases and 

opportunistic infections, referred to as acquired immune deficiency syndrome (AIDS)  (2-

5). HIV is transmitted in blood and body fluids with most infections acquired via: 

heterosexual or homosexual intercourse, mother-to-child transmission during pregnancy, 

birth or breastfeeding and injection of blood or blood-derived products (6).  

 

The human immunodeficiency virus originated over three decades ago. More than 78 

million people have since been infected globally and approximately 39 million people have 

died from AIDS (7). In 2014, 36.9 million people (range: 34.3 to 41.1 million) have been 

reported to be living with HIV, with roughly 2 million new infections and a total of 1.2 million 

AIDS related deaths in 2014 alone (8). Sub-Saharan Africa remains the most severely 

affected region globally, with almost one in every 20 adults estimated to be HIV positive, 

accounting for over 70% of the global burden of HIV (Figure 1.1) (7).  

 

Within sub-Saharan Africa, South Africa (SA) has the highest burden of HIV (9), with an 

astounding 6.8 million (range: 6.5 to 7.5 million) people infected, equating to a prevalence 

of approximately 18.9% (range: 17.9 to 19.9%). An estimated 40% of these infected 

individuals reside in the province of Kwa-Zulu Natal (KZN), the site of this study (10). 

Despite having the world’s largest antiretroviral therapy (ART) program, reaching almost 

60% of all ART eligible patients in the country, the success and longevity of ART in SA 

may be compromised by the acquisition and transmission of drug resistance as a result of 

poor adherence and issues with access to treatment (11, 12).  
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Figure 1-1 Global distribution of HIV. Sub-Saharan Africa accounts for the most infections 
globally (approximately 24.7 million HIV infections), this is followed by south-east Asia (3.4 million 
HIV infections) and the Americas (3.2 million HIV infections). Taken from World Health Organisation 
2014 (13) 

 
The present study investigated the role of Gag-Protease mutations in Protease inhibitor 

(PI) drug resistance, with particular interest in identifying resistance associated mutations 

(RAMs) in Gag and protease (PR) and determining their impact on viral replication, drug 

susceptibility and cleavage. Additionally, the prevalence of transmitted drug resistance 

(TDR) mutations in acutely infected individuals was investigated and low frequency (i.e. 

minority variant) mutations were identified.  

 

In this chapter the history, origin and epidemiology of HIV are discussed. Additionally the 

structure of HIV-1, the protein constituents of the virus and their function and the viral 

replication cycle are detailed. Lastly the pathogenesis, treatment and drug resistance 

mechanisms of HIV-1 are also discussed.  
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1.2 The history of HIV 
 

AIDS was first recognized in 1981 following an increase in incidence of Kaposi’s Sarcoma 

(KS)1, and Pneumocystis carinii pneumonia2 (PCP), in previously healthy young 

homosexual men in Los Angeles and New York (2, 14, 15). The main symptoms of the 

illness amongst these men included severely depressed cell-mediated immunity 

accompanied by rare malignancies and opportunistic infections (15). The predominance of 

the illness in homosexuals drove the belief that the new entity of diseases only affected 

gay men. This however was disproved in 1982 when it was established that injecting drug 

users, recipients of blood transfusions and hemophiliacs were also affected. At this time, 

the Centre for Disease Control and prevention (CDC) named the group of disease entities 

AIDS (16).  

 

The first mother-to-child transmission of AIDS and the first AIDS-related death of an infant 

(aged 20 months) in 1982 indicated that AIDS was not caused by lifestyle3 issues, as 

originally believed, but rather was caused by an infectious agent transmissible in blood, 

blood products and body fluids (14, 17). 

 

The causative agent of AIDS was first described in 1983 when Françoise Barré-Sinoussi 

and Luc Montagnier from the Pasteur Institute in France announced that they had isolated 

a new retrovirus, named lymphadenopathy associated virus (LAV), and suggested that it 

could be the cause of AIDS. However no proof of causality was established at the time 

(18). One year later, Robert Gallo’s group from the national cancer institute announced 

that they had isolated the virus which causes AIDS and provided sufficient evidence to 

convince scientific and medical communities. This virus was named Human T-

lymphotropic virus type III (HTLV-III) (19). Gallo’s findings were confirmed three months 

later when Jay Levy’s group isolated an AIDS-associated retrovirus from 22 patients 

infected with AIDS revealing the close association of the virus with AIDS (20).  
 
By March 1985 whole genome sequencing of LAV, HTLV-III and the AIDS-associated 

retrovirus confirmed that they were variants of the same virus (21, 22), and the causative 
                                                           
1 Karposi’s sarcoma is a rare form of cancer which presents as purple lesions on the skin. It is usually rare 
in young individuals and results in the young looking older.  
2 PCP is a rare lung infection which is treatable with a 10 day course of pentamine. A healthy individual 
should easily fend off the infection. 
3 Lifestyle issues thought to cause AIDS encompass: immune overload from multiple infections, a 
reaction to semen, infection by an unknown fungus and multiple sex partners. 
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agent of AIDS was renamed HIV (23). In 1986 scientists isolated a second less virulent 

and prevalent retrovirus from West African patients presenting with clinical symptoms of 

AIDS, which was named HIV-type 2 (HIV-2). HIV was subsequently renamed to HIV-type 1 

(HIV-1) (24).  

 

1.3 Classification and origins of HIV 
 

HIV is classified into two major types: HIV-1 and HIV-2. HIV-1 is morphologically similar to 

HIV-2; it is more virulent and accounts for almost 95% of HIV infections globally (25, 26). 

HIV-1 is subdivided into four groups namely; M (Major), N (non-M, non-O) O (outlier) and 

P (26). The group M-strain, responsible for the pandemic spread of HIV-1, is further 

subdivided into nine subtypes (A-D, F-H, J and K), six sub-subtypes (A1-A4 and F1-F2) 

and approximately 54 circulating recombinant forms (CRFs) (26-30). HIV-2 is subdivided 

into eight groups (A-H), with groups A and B being the most predominant (26).  It has been 

estimated that the genetic diversity within a subtype is approximately 8–17% whilst the 

genetic diversity between subtypes is approximately 17–35% (31). 

 

Both HIV-1 and HIV-2 originated from independent zoonotic transfer of Simian 

immunodeficiency virus (SIV), from primates to humans in West central Africa, where 

primates were butchered for bush meat (Figure 1.2) (26, 32). Simian immunodeficiency 

virus is a lentivirus which naturally infects old world monkeys (25). The cross-species 

transfer of SIV between: old world monkeys and chimpanzees, and chimpanzees and 

gorillas have been responsible for the varieties of SIV from which HIV-1 originated (Figure 

1.2) (25). 

 

For HIV-1, strains M and N are related to SIV from the subspecies of chimpanzee (SIVcpz) 

Pan troglodytes troglodytes (25, 33, 34) whilst strain P and O, is related to SIV transfer 

from western gorillas (SIVgor) (26, 28, 32). HIV-2 is related to SIV from the sooty 

mangabey (SIVsmm) subspecies Cerocebus atys atys (33, 35) (Figure 1.2).  
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Figure 1-2 Origins of HIV-1 showing SIV in several old world monkeys which crossed the species 
barrier to infect chimpanzees, gorillas and humans. (Taken from Sharp et al., 2011) (25).  

 
Using the earliest available HIV-1 positive sequences (1959 – 1960) and statistical models 

to evaluate the rate of evolution, the estimated date of origin for HIV-1 group M, N and O 

were estimated to be 1908 (range: 1884 – 1924), 1963 (range: 1948 – 1977) and 1920 

(range: 1890 – 1940) respectively (25, 26, 31, 36). The estimated date of origin for HIV-2 

group A and B was 1932 (range: 1906 - 1955) and 1935 (range: 1907 - 1961) respectively 

(25, 32).  

 

Faria et al., (2014) showed that group M, which represents the oldest lineage of HIV-1, 

originated in Kinshasa and spread through central Africa, via the extensive use of railway 

networks by infected individuals at the time (37).  

 

Several studies suggest that the growth of cities in Africa, urbanization, migration and the 

improved ease of travel by the mid twentieth century contributed to the exponential growth 

of the HIV epidemic and the uneven global distribution of subtypes and CRFs (26, 32, 37) 

(Figure 1.3). For the purposes of this dissertation, the following sections will focus on 

aspects of HIV-1 infection.  
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1.4 Global distribution of HIV-1 
 

HIV-1 subtype B predominates in Europe, Australia and the Americas, CRF-01 (a 

combination of HIV-1 subtype A and E) predominates in most of Asia (Figure 1.3). Central 

Africa, the origin of HIV, has the greatest diversity of HIV subtypes and CRFs. In Africa the 

most prevalent subtypes of HIV-1 include, subtype C, A and D.  HIV-1 subtype C 

predominates in southern Africa and India and is increasing in frequency in China and 

eastern Africa (Figure 1.3) (9, 26). HIV-1 subtype C, the focus of the present study, is 

responsible for over 48% of global HIV infections (9, 26, 38, 39). Its rapid spread has been 

attributed to the reduced replicative fitness associated with HIV-1 subtype C compared to 

other HIV-1 group M subtypes (38).   

 

 

Figure 1-3 Global distribution of HIV-1.The surface area of the pie chart is representative of the 
number of people living with HIV-1 in a particular region. HIV-1 subtype C (blue) is the most 
predominant subtype and is responsible for over 48% of all HIV infections. Taken from Hemelaar et 
al., 2012 (39, 40). CRF – circulating recombinant form; URF – unique recombinant form. 
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1.5 Structure of HIV-1 
 

The virions of HIV-1 are spherical in morphology and are between 100-120 nm in diameter 

(41). The following section describes the: genomic organization of HIV-1, HIV-1 proteins 

and their function and the structure of HIV-1. 

 

1.5.1 The genomic organization of HIV-1 
 

The HIV-1 genome consists of approximately 9,700 base pairs (bp) divided into nine 

overlapping genes which are flanked on both the 5’ and 3’ ends by identical long terminal 

repeats (LTR, 634 bp) (42) (41). The 5’ LTR contains the HIV-1 promoter sequence 

located in the U3 region which initiates viral transcription whilst the 3’ LTR contains the 

polyadenylation signal required for dimerization and genome packaging (Figure 1.4a) (43, 

44).  

 

The nine genes of HIV-1 encode for three polyproteins and six smaller 

accessory/regulatory proteins (Figure 1.4a):   

 

 group specific antigen (gag, 1,503bp) which encodes for structural components of 

the virion, 

 polymerase (pol, 3,012 bp), responsible for encoding the PR, reverse transcriptase 

(RT) and integrase (INT) enzymes which are encapsulated within the virion, 

 envelope (Env, 2,571bp), which encodes for viral envelope glycoproteins (gp) 

expressed in the outer membrane envelope of the virion, 

 transactivator of transcription factor (Tat, 306 bp) and regulator of virion protein 

(Rev, 351 bp) which code for regulatory proteins and 

 viral infectivity factor (Vif, 579 bp), viral protein R (Vpr, 292 bp), viral protein U 

(Vpu, 249 bp) and the negative regulation factor (Nef, 621 bp) which encode for 

accessory proteins.  

 

1.5.2 HIV-1 proteins and their function 
 

Gag, Pol and Env, the three proteins shared by all retroviruses, are initially synthesized as 

polyprotein precursors. These polyprotein precursors require enzymatic cleavage in order 

to produce mature proteins (Figure 1.4a) (42).  
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1.5.2.1 Group specific antigen (Gag) 
 
The Gag polyprotein precursor named precursor of 55 kDa (Pr55Gag) is cleaved by viral 

Protease during maturation into p17 matrix (132 amino acids [aa]), p24 capsid (231 aa), p7 

nucleocapsid (55 aa), protein of 6 kDA (52 aa, p6) protein of 1 kDA (14 aa, p1) and protein 

of 2 kDA (16 aa, p2) (Figure 1.4) (42, 44-47). The p17 protein is responsible for: directing 

the Gag and Gag-Pol polyprotein precursors to the plasma membrane for virion assembly 

and for the incorporation of envelope glycoproteins into developing virions (48). The p24 

protein forms a cone-shaped structure which protects and encapsulates the viral genetic 

material and facilitates its delivery into the nucleus of the host cell (49) whilst p7 

encapsulates unspliced genetic material and has a nucleic acid chaperoning function in 

which it facilitates the structural rearrangement of genomic material during replication by 

RT (50). The p6 protein mediates the virus ESCRT (endosomal sorting complex required 

for transport) dependent budding via two late assembly domains (L-domains) and enables 

the integration of Vpr into virions (51).  

 

1.5.2.2 Polymerase (Pol) 
 
The Pol enzymes namely PR (99 aa), RT (560 aa) and INT (288 aa) are cleaved from the 

160 kDa Gag-pol polyprotein precursor by viral PR. The homodimeric PR is responsible for 

initiating viral maturation (52, 53). The heterodimer RT converts viral single stranded 

ribonucleic acid (ssRNA) into double stranded deoxyribose nucleic acid (dsDNA) after viral 

entry into a cell and has RNAse H activity which facilitates specific degradation of viral 

RNA from DNA-RNA duplexes (54). Integrase facilitates the incorporation of viral DNA into 

the host chromosomal DNA (55). 

 

1.5.2.3 Envelope (Env) 
 
The Env polyprotein precursor is cleaved by furin-like host cellular Protease into 

transmembrane glycoprotein 41 (gp41; 345 aa) and surface glycoprotein 120 (gp120; 511 

aa) subunits (56). The gp41 traverses the lipid bilayer and is non-covalently bound to 

gp120. The gp120 mediates virus attachment to host cells whilst gp41 facilitates entry of 

the virus into the host cell via fusion of host and viral cellular membranes (Figure 1.4) (57) 
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1.5.2.4  Transactivator of transcription factor (Tat) 
 
Transactivator of transcription factor is a RNA binding protein which recognizes and binds 

to a transactivator response element (TAR) sequence from the HIV-1 RNA molecule and 

activates transcription from the viral LTR promoter (58-60). 

 

1.5.2.5 Regulator of virion protein (Rev) 
 
Regulator of virion protein is a regulatory protein which binds to the Rev response element 

(RRE), a viral RNA element present on individual unspliced or partially spliced viral RNA 

molecules and initiates the transport of viral RNA transcripts (both spliced and unspliced) 

out of the nucleus and into the cytoplasm where they serve as transcripts for translation 

(61, 62).  

 

1.5.2.6 Viral infectivity factor (Vif) 
 
Viral infectivity factor is an accessory protein with a key role in increasing pathogenicity of 

HIV-1 virions. Its principal target is Apolipoprotein B mRNA-editing enzyme-

catalyticpolypeptide-like 3G (APOBEC3G), a member of the APOBEC family of 

deoxycytidine deaminases which function to suppress viral replication by inducing G to A 

hyper-mutations within newly synthesized viral DNA thereby inactivating the virus. Viral 

infectivity factor binds to APOBEC3G and coordinates its proteosomal degradation thereby 

inhibiting the packaging of APOBEC3G into budding virions (63, 64).  

 

1.5.2.7 Viral protein R (Vpr) 
 
Viral protein R is a second accessory protein which functions primarily to improve viral 

pathogenicity via: enhancing LTR transcription within infected cells, orchestrating the 

import of the reverse transcription complex (RTC)4 into the host cell nucleus and inducing 

cell cycle arrest. It is also involved in inducing apoptosis of T-lymphocytes (65-67). 

 

                                                           
4 Reverse transcription complex is a term used to describe the infectious viral unit, within which viral 
ribonucleoprotein enters the host cell and begins reverse transcription of the viral RNA genome (98). 
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1.5.2.8 Viral protein U (Vpu) and Negative regulation factor (Nef) 
 
Viral protein U and Nef are two additional accessory proteins which also contribute 

towards improving viral pathogenicity. Viral protein U serves to: promote the release of 

viral progeny from infected cells, downregulate CD4+ cells via the ubiquitin proteasome 

pathway and downregulate CD155 and natural killer cell receptors in order to evade 

natural killer cell (NKC) mediated immune responses (68, 69). The main function of the 

Nef protein is to reduce CD4 and major histocompatibility complex I and II (MHCI and 

MHCII) cell surface receptors thus facilitating immune evasion (70). Additionally, Nef has a 

role in the inhibition of apoptosis of infected cells thereby maintaining the longevity of 

infected cells and contributing to viral propagation and survival (70, 71). 

 

1.5.3 Structure of HIV-1 
 

Each HIV-1 viral particle is surrounded by a lipoprotein rich membrane (i.e. lipid bilayer) 

with heterodimer complexes comprised of trimers of surface gp120 (which protrudes from 

the lipid bilayer to the external region of the virion) and transmembrane gp41(which spans 

the interior of the lipid bilayer) bound together (41, 72). In general, virions have between 

14-74 trimers (73). The matrix (MA) protein is attached to the inner surface of the viral 

lipoprotein membrane. The inner core of the virus is enclosed by the capsid (CA) protein 

arranged in a fullerene conical structure (49, 74, 75). This structure has approximately 250 

CA hexameric rings arranged in a lattice and 12 pentamer rings (5 at the top end and 7 at 

the bottom end) which provide its conical fullerene structure (76, 77).  It encases the:  viral 

genetic material (i.e. a positive sense ssRNA) which is in contact with the nucleocapsid 

(NC), viral proteins (i.e. p6, Vpr, Vif and Nef), viral enzymes (i.e. PR, RT and INT) and 

cellular proteins (i.e. APOBEC3G and cyclophilin A [cypA]) (Figure 1.4b) (78-80). 

 

1.6 Replication cycle of HIV-1 
 

The replication cycle of HIV-1 takes approximately 24 hours and comprises of several 

sequential steps (depicted in figure 1.4c) including:  (1) virus entry (binding to respective 

receptors and subsequent fusion with the host cell membrane); (2) reverse transcription of 

the single stranded viral RNA genome to dsDNA; (3), uncoating of the viral capsid to 

release viral genetic material (i.e. RNA) and proteins; (4) nuclear entry of the RTC; (5) 

integration of viral DNA into host DNA; (6) transcription and nuclear export of new viral 
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RNA; (7) translation of proteins and its subsequent translocation to the cell surface; (8) 

viral assembly; (9) viral release/budding and (10) maturation (Figure 1.4c) (81). 

 

 
 

Figure 1-4 Genomic organization, virion structure and replication cycle of HIV-1. (a) Nine 

genes of HIV-1, flanked on either end by an LTR, within their respective reading frames. Regions 
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which code for the major proteins (i.e. gag, pol and env) are depicted in color. Regions which code 

for accessory proteins (i.e. vif, vpu, vpr and nef) are presented in white boxes and are denoted by 

an asterisk. Regions which code for regulatory proteins (i.e.tat and rev) are represented by 

patterned boxes. Adapted from Fanales-Belasio et al., 2010 (41) and Los Alamos National 

Laboratory database 2015 (82). (b) Structure of a mature infectious virion. Structural and enzymatic 

components are color coded to match the corresponding gene as depicted in Figure 1.4a above. 

Adapted from Robinson et al., 2002 (84) and Fanales-Belasio et al., 2010 (41, 83). (c) The ten 

steps of the HIV-1 replication cycle. Adapted from Fanales-Belasio et al., 2010 (42) and Engelman 

et al., 2012 (41, 84). Abbreviations: HIV-1 – human immunodeficiency virus 1; F1 – Frame 1; F2 – 

Frame 2; F3 – Frame 3; Gag – group specific antigen; LTR – Long terminal repeat; MA – Matrix; CA 

– Capsid, p2 – protein of 2 kDA, NC – nucleocapsid; P1 – protein of 1 kDA; P6 – protein of 6 kDA; 

pol – polymerase; PR – Protease, RT – reverse transcriptase; INT – integrase; Vif – viral infectivity 

factor; Vpr – viral protein R; Tat – transactivator of transcription factor; Rev – regulator of virion 

protein; Vpu – viral protein U; Env – envelope; gp120 – glycoprotein of 120 kDA, gp41 – 

glycoprotein of 41 kDA; Nef – negative regulation factor; RNA – ribonucleic acid; RTC – reverse 

transcription complex; NRTI – nucleoside reverse transcriptase inhibitor; NNRTI – non-nucleoside 

reverse transcriptase inhibitor; InSTI – integrase strand transfer inhibitor. 



 

14 
 

1.6.1 Virus entry 
 

The first step in viral entry is the adsorption of the virion to the host cell. This is mediated 

by cell attachment factors5 and either viral envelope proteins or proteins from the host cell 

membrane incorporated into the virion envelope (72, 85-89). This interaction brings the 

virion into close proximity to the host receptors and is associated with improving the 

efficiency of infection. However, attachment factors are not essential for virus entry and 

are not always employed (72, 85).  

 

The second step in viral entry involves the binding of HIV-1 gp120 to CD4+ receptors 

(expressed on the surface of T-helper cells, T-regulatory cells, macrophages, dendritic 

cells, Langerhans cells, microglial cells and monocytes) (75, 85).  This binding triggers 

several structural changes in gp120 required for co-receptor binding. Firstly, the variable 

loop 1 and 2 (V1/V2) region of gp120, located at its surface, moves from a central axis of 

symmetry toward the lateral aspect of the gp120 trimer subsequently moving the variable 

loop 3 (V3) stem toward the distal region of the trimer (72). This exposes the V3 region 

and brings it into direct contact with the host cell membrane. Secondly, the bridging sheet 

(a second co-receptor binding site) is formed via assembly of four antiparallel beta sheets 

(2 from the outer and 2 from the inner domains of gp120) (72). Thirdly, rearrangements 

within gp120 result in an outward rotation of the gp120 monomer which partially exposes 

the stalk of gp41. Collectively these structural rearrangements make the two co-receptor 

binding sites (i.e. the V3 region and the bridging sheet) more accessible to co-receptors.  

 

Co-receptor binding forms the third step of viral entry and serves as a trigger for activation 

of virion and host membrane fusion. Two co-receptors are predominantly used in this step: 

C-C chemokine receptor 5 (CCR5)6 or CXC chemokine receptor 4 (CXCR4)7 (90). These 

co-receptors can be used either individually or in combinations. Viruses which use CCR5 

only are termed R5, those which use CXCR4 only are termed X4 and those which use 

both are termed R5X4 (91). During co-receptor binding, the base of the V3 loop and 

bridging sheet is engaged by the N-terminus of the co-receptor. The extracellular loop 2 

(ECL2) of the co-receptor binds to the tip of the V3 loop resulting in the exposure of a 

                                                           
5 Cell attachment factors include: heparin sulfate proteoglycans, α4β7 integrin or dendritic cell–specific 
intercellular adhesion molecular 3-grabbing non-integrin (DC-SIGN) 
6 CCR5 receptors are predominantly found on the surface of: memory CD4+ T lymphocytes, macrophages 
and microglial cells. 
7 CXCR4 receptors are predominantly found on naïve CD4+ T lymphocytes.  
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hydrophobic fusion peptide, located in the amino terminal of gp41, which subsequently 

inserts into the host cell membrane triggering the last step of viral entry, membrane fusion 

(72, 85, 92-94).  

 

During membrane fusion, the amino terminal helical regions (HR-N) of each gp41 subunit 

arranges to form a triple stranded coiled structure. The three carboxy terminal helical 

regions of gp41 folds and packs in an antiparallel fashion into grooves at the interface of 

the three HR-N domains of gp41 resulting in the development of a six helix bundle (95, 

96). The six helix bundle brings the viral and host cell lipid bilayers into close proximity 

resulting in the development of a fusion pore via which the viral capsid is injected into the 

host cell cytoplasm (Figure 1.4c) (72, 94-96). 

 

1.6.2 Reverse transcription 
 

Following entry into the cytoplasm, the viral capsid remains intact and migrates towards 

the nuclear membrane using the microtubule network of the host cell (97). Reverse 

transcription8 occurs within the intact capsid, as part of a RTC (Figure 1.4c). The viral 

capsid has an important role in protecting the viral genome from host factors, immune 

identification and in maintaining a high stoichiometry of the RT enzyme thereby preventing 

its dissociation from its template (74, 75, 98, 99).  

 

Reverse transcription is initiated when the 3’ end of host transfer (t)RNAlys3  anneals to a 

primer binding site (pbs)9  located at the 5’ end of the single stranded viral RNA, facilitated 

by the NC protein (98, 100). The pbs is complementary to 18 nucleotides of the 3’ terminal 

of host tRNAlys3. Reverse transcriptase recognizes the tRNA-RNA initiation complex and 

initiates extension of the 3’ end of the primer using the RNA template to guide the 

synthesis of a minus-strand strong stop DNA segment ([-] ssDNA). The RNA from the 

newly synthesized RNA-DNA duplex is concomitantly degraded by RNase H (cleaved from 

RT) during DNA synthesis (98, 101).  

 

                                                           
8 Reverse transcription is defined as the process by which viral single stranded RNA is converted into 
linear double stranded DNA.  
9 The primer binding site comprises of approximately 180 nucleotides that are complementary to the 
tRNAlys3. 
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The resulting (-) ssDNA segment is released from the degraded RNA-DNA duplex and 

acts as a primer which binds to a complementary sequence at the 3’ end of the viral RNA. 

Hybridization of the (-) ssDNA segment and the 3’ end of the viral RNA, facilitated by 

complementary direct repeat (R) sequences on either segment, allows for DNA synthesis 

to resume (this is known as first strand transfer). Reverse transcriptase now facilitates the 

synthesis of a full length (-) ssDNA segment which serves as a template for (+) strand 

DNA synthesis. RNase H again degrades RNA from the RNA-DNA duplex, however two 

short purine rich sequences referred to as the polypurine tract (PPT), located at the 3’ end 

of the viral RNA and in the centre of the viral RNA (named 3’PPT and cPPT respectively), 

are resistant to RNase H and remain un-cleaved (88, 98, 101, 102).  

 

These un-cleaved segments serve as primers for plus (+) strand DNA synthesis. The 

complementary sequence of the PPT region adjacent to the 3’ end of the viral genome 

anneals to the newly synthesized nascent (-) ssDNA segment (i.e. template), this triggers 

RT action and synthesis of a (+) strand DNA segment. As part of (+) strand DNA synthesis 

the U3, R and U5 sequences of viral RNA and the first 18 nucleotides of the tRNAlys3 are 

also copied. Thereafter, the tRNA is partially degraded by RNase H. This exposes the pbs 

at the 3’ end of the (+) strand DNA which binds to the complementary pbs sequence at the 

3’ end of the (-) strand DNA leading to the second strand transfer (98, 101, 102).   

 

Reverse transcriptase facilitates the elongation of the (+) and (-) strands of DNA resulting 

in the synthesis of completed double stranded linear viral DNA. Termination of the (+) 

strand DNA synthesis occurs once the central termination signal (CTS) (i.e. a sequence at 

the end of the (-) strand DNA) is encountered (98, 101).  

 

The final steps of DNA syntheses is marked by the displacement of several nucleotides of 

(+) strand DNA, driven by the cPPT upstream of the CTS, to form the central DNA flap. 

The function of which remains unclear, however some studies claim that it may trigger 

uncoating of the viral capsid (103, 104) or have a role in translocation of viral DNA into the 

host cell’s nucleus (105).  

 

1.6.3 Uncoating 
 

Uncoating is defined as the process by which the viral CA is disassembled to reduce its 

size in order to facilitate nuclear import of viral genetic material (97). Historically it was 
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believed that uncoating occurred in the cytoplasm and that the RTC was imported into the 

nucleus in isolation of the CA (106, 107). This however is a controversial topic with recent 

models suggesting various locations for uncoating including: (1) rapid disassembly of the 

core in the cytoplasm (2) partial uncoating of the core in the cytoplasm followed by further 

uncoating in the nucleus (3) partial uncoating during reverse transcription immediately 

outside the nuclear pore complex (NPC)10 and final uncoating within the nucleus (108-

111). The latter two models being most favored (97, 112). 

 

Uncoating of the CA is mediated by a combination of: viral, cellular and host factors, and 

interactions/events within the capsid core. Several factors could account for viral 

uncoating, some of which are discussed below.  

 

Polymerized nascent viral DNA is thought to exert pressure on the capsid core since the 

flexible single stranded viral RNA is converted into rigid dsDNA, resulting in core 

remodelling to accommodate the genetic material. Additionally, RT and INT have been 

shown to provide stability to the CA core. It has been suggested that the onset of reverse 

transcription may result in the dissociation of RT from its stabilizing reactions with INT 

thereby resulting in some core disassembly (97).  

 

Cylophilin A11 is also associated with uncoating. It has been shown to interact with a 

conserved proline rich loop on the CA where it catalyses the cis-trans isomerization of the 

Gly89-Pro90 CA peptide bond. This results in conformational changes within the amino 

terminal domain terminal of CA, which could play a role in destabilization/disassembly of 

the CA (97, 113, 114). In addition to its role in uncoating, cypA is also associated with 

protecting HIV-1 from host restriction factors such as Tripartite motif-containing protein 5 

alpha (TRIM5α) and restriction factor 1 (REF1), which bind directly to CA and promotes 

premature uncoating resulting in abortion of viral replication. It is also thought to contribute 

towards the ability of HIV-1 to infect non-dividing cells (115).  

 

Cytoplasmic trafficking using dynein and kinesin-1 have also been identified to play a role 

in viral uncoating. It has been suggested that dynein facilitates the transport of the CA to 

the NPC where kinesin-1 mediates the CA uncoating (116, 117). 

                                                           
10 The nuclear pore complex is a multiprotein channel located on the nuclear envelop. It allows for 
selective trafficking of macromolecules between the cytoplasm and nucleus (81). 
11 Cylophin A is a host peptidyl prolyl isomerase which plays in role in viral uncoating and has been 
shown to protect HIV-1 from host restriction factors (98). 
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Lastly, nucleoporin 358 (NUP358), a NPC channel protein with a cypA homology-domain 

(118, 119) has been shown to interact with the viral CA triggering CA isomerization which 

suggest that NUP358 has a role in CA uncoating (115, 120). 

 

The process of uncoating, whilst unclear, remains an obligatory step in viral replication and 

is integral for the import of viral genetic material into the host nucleus.  

 

1.6.4 Nuclear import 
 

As part of nuclear import constituents of the RTC (i.e. viral DNA, Gag MA, Gag NC, Gag 

CA, RT, INT, Vpr and host cellular proteins) are translocated from the cytoplasm into the 

nucleus (97, 103, 112). 

 

Nuclear import is thought to be mediated by interactions between CA and several host 

cellular factors including (121-123): cleavage and polyadenylation specificity factor 6 

(CPSF6), transportin 3 (TNPO3), NUP358 (also referred to as RanBP2) and nucleoporin 

153 (NUP 153) (124-126) as described below. 

 

Cleavage and polyadenylation specificity factor 6, a host messenger (m)RNA processing 

protein, shuttles between the cytoplasm and nucleus and has been shown  to attach to 

binding pockets on the assembled CA to facilitate nuclear import of the RTC (97, 109, 127, 

128).  

 

Transportin 3, a member of the importin β family of proteins responsible for nuclear 

localization of serine-arginine rich proteins (129), has either a direct or indirect role in 

nuclear import. For the direct route and similarly to CPSF6, TNPO3 binds to the capsid 

binding pocket and facilitates nuclear import (97). As part of the indirect route, it has been 

suggested that TNPO3 mediates the nucleoplasmic localization of proteins required for 

nuclear import of the RTC, such as CPSF6 (97, 129). Additionally, it has been suggested 

that TNPO3 may also play a role in viral genome integration whereby it removes reminant 

CA from the RTC for integration (111).  

 

Nucleoporin 358 and NUP153 are two cellular factors associated with HIV-1 infection and 

nuclear import of the RTC. Both cellular factors are located within the NPC with NUP358 

projecting towards the cytoplasm and NUP153 projecting toward the nucleus (118, 119). 
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Whilst the mechanism of nuclear import associated with NUP358 remains unclear, 

research suggests that it interacts with the CA via a CA-cypA domain, on the cytoplasmic 

side of the NPC, to facilitate uncoating and stimulate perinuclear localization of the CA (97, 

112). The nucleoplasmic NUP153 protein appears to be involved in a finalization step 

which renders the RTC competent for integration, whilst this is an essential step for viral 

integration the exact mechanisms remains elusive (97, 130, 131). 

 

Even though the complete mechanism of nuclear import remains unclear, it is definite that 

a portion of the intact CA is included in the RTC where it plays an essential role in binding 

host factors, most likely in a sequential manner, to mediate nuclear import. The large array 

of host factors may either bind directly to CA or may function as signals to attract other 

host factors to a specific region.  

 

1.6.5 Integration 
 

Integration is the process by which viral DNA is irreversibly integrated into host DNA via 

steps catalyzed by retroviral INT. Retroviral INT catalyses two reactions: 3’ processing of 

the ends of viral DNA and a strand transfer reaction during which processed ends of viral 

DNA are integrated into host DNA (84, 132).  

 

In the first reaction, INT engages the LTR ends of viral DNA, shortly after its synthesis, and 

processes each end to yield a 3’ hydroxyl group. This point marks the transition from a 

RTC to a pre-integration complex (PIC)12 (133).  Integrase then cleaves host chromosomal 

DNA, using the 3’ hydroxyls,  in a staggered fashion and subsequently joins the 3’ ends of 

the viral DNA to the 5’ phosphates of the host target DNA (84, 132, 134). Thereafter host 

cell enzymes fill in the gaps between host and viral DNA and subsequently ligate the 5’ 

ends of un-joined viral DNA to host DNA yielding an integrated provirus (84, 132). 

 

1.6.6 Transcription and nuclear export 
 

Following integration into the host genome, the HIV-1 provirus acts as a template for 

transcription.  

                                                           
12 Pre-integration complex (PIC) describes a unit comprising of viral DNA and host and viral proteins 
which can integrate into host DNA. For this to occur, reverse transcribed DNA from the RTC undergoes 
integrase mediated endonuclease priming of both the 3’ and 5’ ends (98).   
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Transcription of HIV-1 is mediated by an individual promoter located in the 5’ LTR of the 

provirus. The LTR consists of 3 sub-regions (U3, R and U5) involved in transcription. The 

U3 region comprises of several cis-acting DNA elements which function as binding sites 

for cellular transcription factors (e.g. NF-kappa B) (135). The first nucleotide at the R 

region marks the point at which transcription begins, whilst the last nucleotide in the R 

region marks the point at which polyadenylation occurs. The U5 region comprises of the 

TAR region to which Tat binds to (136-138).  

 

The NF-kappa B family of cellular transcription factors, which enter the nucleus when the 

cell is activated, binds to the U3 region of the LTR and initiates transcription (135). Several 

short transcripts are formed in conjunction with some complete transcripts which enable 

the generation of Tat protein (139). The Tat protein then binds to the TAR element in the 

U5 region and significantly increases the transcription of viral RNA by recruiting positive 

transcription elongation factor b (PTEF-b) to the TAR element in viral transcripts (138). 

This induces phosphorylation of residues within RNA polymerase II stimulating elongation 

and increased transcription (84, 137, 138, 140-142).   

 

1.6.7 Assembly 
 

Virion assembly occurs at nucleation sites13 once Gag is synthesized and translocated to 

the inner leaflet of the host plasma membrane (i.e. the site of viral assembly), either as: a 

55 kDa Gag polyprotein, a 160 kDa Gag-Pol polyprotein or as a Gag-viral RNA duplex 

(143).  

Trafficking of Gag to the host plasma membrane is mediated by direct electrostatic 

interactions between residues 15-31 of Gag MA and phosphoinositide 

phosphatidylinositol-4,5-bisphosphate  (PtdIns(4,5)P2), a phospholipid present in large 

quantities within the inner leaflet of the plasma membrane (143, 144). The PtdIns(4,5)P2 

displaces viral RNA bound to some Gag polyproteins resulting in the exposure of the N-

terminal of MA myristate which subsequently anchors to the host plasma membrane (143, 

145).   

 

Molecules of Gag are aligned and oriented in a radial manner with the MA region bound to 

the inner leaflet of the plasma membrane and the carboxy region of Gag packed towards 
                                                           
13 Nucelation sites refer to plasma membrane lipid rafts which are enriched in cholesterol, 
sphingomyelin and plasmalogen-PE and have a higher saturated fatty acid concentration in comparison 
to other regions of the plasma membrane. 
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the centre of the virus particle (143).  The resultant immature viral particle comprises of a 

continuous Gag lattice with a few gaps that are void of Gag (143, 146-148). 

 

The incorporation of two strands of viral RNA into the nascent viral particle is mediated by 

the Gag NC (143). The exact mechanism remains elusive, however cross linking 

immunoprecipitation sequencing showed that Gag interacts with RNA in the cytosol and 

binds to several distinct sites at the 5’ untranslated region (UTR) and the RRE  of viral 

RNA (143, 149, 150). This directs RNA dimers, via the endosomal pathway, to the host 

plasma membrane where the zinc finger like domains of the Gag NC domain (particularly 

at residues 390 to 423) binds to a packaging signal near the 5’UTR of viral RNA (143, 151, 

152). This enables the NC to assemble around the RNA dimer resulting in immobilization 

of a usually dynamically moving RNA dimer (150). The binding of viral RNA to the zinc 

finger region triggers Gag multimerization which concentrates Gag monomers to the 

plasma membrane and provides the RNA framework for assembly (153).  Interactions 

between Gag CA domains results in the formation of CA hexamers that join to form a 

spherical structure which encases the viral RNA and viral and cellular proteins (154).   

 

The arrival of Gag at the plasma membrane also triggers the recruitment and  coalescence 

of lipid rafts, which are possibly involved in the incorporation of Env glycoproteins into the 

host plasma membrane (143). The Env glycoprotein is transported towards the host 

plasma membrane via the secretory pathway (155). During this process the host cellular 

enzyme furin cleaves the Env glycoprotein into gp120 and gp41 subunits. Complexes of 

gp120-gp41 segregate toward lipid rafts at the host cell plasma membrane (156). Here an 

unexplained interaction between the cytoplasmic tail of gp41 and MA (particularly residues 

6 to 17) occurs to facilitate the incorporation of the envelope proteins into the immature 

virus particle (157). Even though the exact mechanism of Env incorporation into virions is 

unclear, it is well established that several MA residues are essential for this process. 

These include residues: 8, 9, 13, 16, 17, 18, 31 and 35 (158-160). 

 

Interactions between the Gag p6 carboxy terminal and viral Vpr, Vif and Nef mediates the 

incorporation of these viral proteins into the nascent viral particle (161).  Several host 

proteins (such as cypA) are also incorporated into the nascent virion, however the exact 

mechanism of recruitment remains elusive.  
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1.6.8 Virion release 
 

Membrane scission, defined as the separation of the host plasma membrane and virion 

membrane, of HIV-1 is mediated by interactions between the host cellular ESCRT pathway 

and two late domain motifs located in Gag p6 (i.e. PTAP and YPXL) (143, 162).  

 

These late domain motifs bind and recruit factors that act early in the ESCRT pathway. 

The PTAP domain binds tumor susceptibility gene 101 (TSG101), a host cellular factor 

which is part of the ESCRT-1 complex whilst the YPXL domain binds ALG2-interacting 

protein (ALIX), an ESCRT-III factor (143, 162, 163). This binding recruits ESCRT-III 

proteins to the nascent viral particle (143, 162), where they assemble into circular spirals 

within the head of the budding virion. This is thought to assist in constriction of the 

membrane, at the neck of the bud, which drives membrane scission (164, 165). The 

ESCRT-III proteins also recruits host AAA ATPase vacuolar protein sorting 4 (VPS4) to 

complete fission via the hydrolysis of ATP (143).  

 

1.6.9 Maturation 
 

Virion maturation is driven by viral PR, an aspartyl PR comprising of two identical subunits 

with its active site situated in a cleft at the dimer interface (166-170). The PR active site 

comprises of two aspartic acid residues (i.e. one from each subunit) which are covered by 

two identical flexible flaps that open and close to regulate entry and exit of substrates and 

products (Figure 1.5a) (169-174). The substrate binding pocket is made up of residues 25-

32, 47-53, 76 and 80-84 (175). 

 

The mechanism by which PR recognizes its substrates is unclear with several studies 

suggesting that substrate recognition, in HIV-1, is based on shape/conformational 

structure of the substrate rather than identification of aa sequences (176-178). This is 

largely driven by variability of aa sequences in the Gag and Gag-pol polyprotein cleavage 

sites (CS’s), which will make these sites impossible to cleave if they were recognized 

solely by aa sequences (174, 177). Three to four aa residues on either side of the 

substrate cleavable peptide bond initiate substrate binding to the PR cleft. Following 

substrate binding, PR utilizes two aspartic acid side chains within an Asp-Thr-Gly motif for 

activation of a water molecule which catalyses peptide bond hydrolysis (169, 173, 174). 
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For maturation of HIV-1 virions, PR performs a total of 12 cleavages resulting in the 

production of structural proteins and viral enzymes which transforms the nascent viral 

particle into an infectious virion (169).  

 

Partially active PR in the nascent viral particle initiates autocatalysis of the Gag-pol p2↓p7 

junction, transframe region (TFR) and p6pol  junction (TFR↓p6 pol) and the p6 pol ↓PR 

junction sequentially (179, 180). This releases fully functional PR which is used in 

subsequent cleavage steps. HIV-1 pol is cleaved at three sites to yield RT, INT and PR 

enzymes, whilst it is known that PR is cleaved first the order of cleavage for INT and RT is 

unclear (Figure 1.5c) (169).  

 

The Gag polyprotein is cleaved at 5 sites to yield structural proteins (including: MA, CA 

and NC) in a highly conserved order (Figure 1.5b) (181). There are a total of three stages 

of Gag polyprotein cleavage. Primary processing occurs at the p2↓p7 site and yields p43 

(an intermediate comprising of p17-p24-p2) and p14 (intermediate for p7-p1-p6). 

Secondary processing of the p1↓p6 site and the p17p24 site occurs respectively and 

produces p17, p6, p8 (intermediate of p7 and p1) and p25 (intermediate of p24 and p2). 

Tertiary processing of p7↓p1 and p24↓p2 yields p1, p7, p24 and p2 (182).  

 

Cleavage of the Gag and Gag-pol polyproteins results in stabilization and condensation of 

the viral genome by the cleaved NC (154). Additionally, morphological changes within the 

virion occur with the MA domain of Gag remaining attached to the plasma membrane, 

whilst the CA domain rearranges to form a conical fullerene structure (143, 154). The 

process of maturation is essential for formation of infectious viruses (183). 
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Figure 1-5 Crystal structure of Protease and cleavage sites in the Gag and Gag-pol 
polyprotein precursor required to undergo cleavage for viral maturation. (a) The two identical 

subunits (i.e. homodimer) of Protease, showing the two flexible flaps which enable entry of the 

polyprotein substrate/ inhibitor into the active site. The substrate/ inhibitor binds to the active site of 

Protease. Two aspartate residues at position 25 (i.e. Asp 25) provide hydrolytic activity to the 

enzyme. Modified from Blundell et al., 2002 (184).(b) The ordered cleavage of the Gag polyprotein, 

at five sites, by Protease is illustrated. The primary cleavage site is at the p2↓p7 junction. The 

secondary cleavage sites include the p1↓p6 site and the p17↓p24 junctions. Tertiary processing 

occurs at the p7↓p1 and p24↓p2 junction. Cleavage of Gag at these five sites results in the 

 



 

25 
 

production of core structural proteins including: matrix, capsid, p2, nucleocapsid, p1 and p6. 

Adapted from Pettit et al., 2004 (180), Fun et al., 2012 (183) and de Olivera et al., 2003 (179, 182, 

185). (c) The cleavage of the Gag-pol polyprotein precursor. This process involves the use of 

endogenous Protease represented by an asterisk (*), to initially cleave the Gag-pol polyprotein at a 

few sites to release viral PR. These sites include: the p2↓p7 junction, the transframe and p6pol 

junction (TFR↓p6 pol) and the p6 pol ↓PR junction sequentially (179, 180). Thereafter Protease which 

is released is used to cleave the pol polyprotein at three sites PR↓RTp51, RTp51↓RTp6, 

RTp66↓INT. The final products from Gag-pol cleavage include, nucleocapsid, a transframe protein, 

p6pol, Protease, reverse transcriptase RNase H and integrase Adapted from Pettit et al., 2004 (180), 

Fun et al., 2012 (183) and de Olivera et al., 2003 (179, 182, 185).Abbreviations: Asp25 – Aspartate 

at position 25 of Protease; PI – Protease inhibitor; MA – matrix (p17), CA – capsid (p24); P2 – 

protein of 2 kDA; NC – nucleocapsid (p7);  p1 – protein of 1 kDA; p6 – protein of 6 kDA; TFP – 

transframe protein; PR – Protease; RT (p51) – reverse transcriptase (protein of 51 kDA); RT (p66) – 

reverse transcriptase (protein of 66 kDA). 
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The viral replication cycle takes approximately 24 hours, with a possible 1010 to 1011 virions 

produced daily in chronically infected treatment naïve individuals (183). Several genetic 

variations of HIV-1 are produced in each replication cycle as a result of the low fidelity 

error prone viral RT used in reverse transcription and the subsequent lack of an error 

correcting/ proof reading mechanism (25). Some of these mutations enable HIV-1 immune 

escape thereby contributing to variations in HIV-1 pathogenesis amongst infected 

individuals. 

 

1.7 HIV-1 pathogenesis 
 

Transmission of HIV-1 is usually established by a single founder virus and most commonly 

occurs via exposure of a mucosal membrane; however transmission can also be 

percutaneous, in-utero, or intravenous (9, 186, 187).  

 

Entry of HIV-1 into the genital or rectal submucosa is facilitated by: breaches in the 

epithelium caused by sexual intercourse, transcytosis through the mucosal epithelium, 

virus movement through epithelial intercellular spaces or interaction with intraepithelial 

dendritic cells (188). Signaling from mucosal epithelial cells recruits dendritic cells to the 

site of transmission. These dendritic cells secrete cytokines that attract activated CD4+ T-

lymphocytes, which are susceptible to HIV-1 infection, to the epithelium. Here, HIV-1 

preferentially infects CD4+ T-lymphocytes which co-express CCR5 receptors (189). The 

viral replication cycle begins once the viral gp120 protein binds to the cellular CD4+ 

receptor of a target cell (9). 

 

Irrespective of entry/transmission route, host and viral markers appear in an orderly 

pattern and help distinguish between stages of HIV-1 infection. In total there are three 

stages of HIV-1 infection: acute infection (i.e. primary infection), chronic infection (i.e. 

clinical latency) and advanced HIV-1 infection (also referred to as AIDS) (190), each of 

which is described below (Figure 1.6).  

 

1.7.1 Acute infection  
 

Acute HIV-1 infection occurs approximately 2 weeks after exposure to HIV-1 and ends 

once antibodies to HIV-1 are produced (9, 187, 188).  It lasts approximately three to four 

weeks and is divided into an eclipse phase and five Fiebig stages which are characterized 
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by the progressive appearance of viral markers and antibodies in the blood (Figure 1.6b) 

(187, 188). 

 

The eclipse phase represents the first 10 days after HIV-1 transmission, during which time 

the virus begins establishing itself in the local tissue at the site of exposure. At this time 

HIV-1 RNA is undetectable (187, 188). During this early phase, reservoirs of latently 

infected cells are established within CD4+ memory T-lymphocytes and macrophages (191-

193). These latently infected cells are able to carry HIV-1 without expressing antigens on 

their surface thereby enabling escape of host immune recognition and resistance to virus 

induced cytopathic effects (193). These viral reservoirs persist in the presence of ART and 

can be activated by cellular factors to produce infectious viruses (191, 193). 

 

By the tenth day, cell free virus and infected cells reach the draining lymph node, were 

they encounter additional CD4+ cells for infection (188). Dendritic cells internalize some 

viral particles and present them to activated CD4+ T-lymphocytes further augmenting 

infection (88). Increased interaction between HIV-1 and cells expressing CD4+ receptors 

results in increased cellular infection and a subsequent increased viral spread. This allows 

for dissemination of HIV-1 into the blood and lymphoid tissues, particularly the gut 

associated lymphoid tissue (GALT) where a significant fraction of CD4+ T-lymphocytes 

reside (194, 195).  

 

Replication of HIV-1 in the GALT and other lymphoid tissues results in an exponential 

increase in plasma viremia, which reaches a peak (i.e. > 1 million copies of virus per ml) 

between 21-28 days after infection (Figure 1.6) (188).  

 

In response to peak viremia, the acutely infected individual mounts an intense 

inflammatory immune response which is characterized by high cytokine and chemokine 

levels, often referred to as a “cytokine storm” (196). Both adaptive and innate immune 

responses are activated and collectively they contribute towards a decrease in viral load. 

As part of the adaptive immune response, CD8+ T-lymphocytes begin killing productively 

infected CD4+ cells shortly after infection. Some viruses develop mutations in varying 

epitopes, as a result of error prone de novo viral replication (see section 1.6.9), and are 

able to escape immune selection (197). The innate immune response, driven mainly by 

NKCs also plays a role in control of viral load. Viruses however can also develop 

mutations which restrict the antiviral effects of NKCs (198).  
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A combination of the immune response and programmed cell death in response to viral 

infection is thought to contribute towards a decline in CD4+ T-lymphocyte count and a 

decrease in viral load. Studies have shown that almost 80% of CD4+ T-lymphocytes in the 

GALT are depleted within the first three weeks of HIV-1 infection (199). Once CD4+ T-

lymphocyte decline occurs infected individuals may become symptomatic (i.e. fever, 

headache, muscle ache, rash, lymphadenopathy, oral candidiasis, esophageal ulceration 

or anal ulceration and pharyngitis) (Figure 1.6) (200, 201).   

 

Viral load continues to decrease until a point of stabilization is reached; this is referred to 

as the viral set-point and usually marks the onset of chronic HIV-1 infection (188). The viral 

set-point varies between individuals with a higher set-point associated with faster disease 

progression and lower viral set-point associated with slower disease progression. The 

maintenance of the viral set-point is facilitated by a balance between viral replication and 

host immune responses, with immune escape mutations being major contributors toward 

higher viral set-points (188). 

 

Fiebig et al., 2003, divided acute viremia and early seroconversion into six stages, referred 

to as Fiebig stages, based on the detection of host and viral markers (188, 202). During 

Fiebig stage I (i.e. between days 10–15) viral RNA becomes detectable in blood by 

polymerase chain reaction (PCR). As part of Fiebig stage II (i.e. days 15–20), the p2414 

antigen becomes detectable by enzyme linked immunosorbent assays (ELISA). During 

Fiebig stage III (i.e. days 20–25), the first HIV-1 antibodies, which are unable to block virus 

entry into cells, become detectable by sensitive immunosorbent assays (i.e. 

seroconversion occurs). Fiebig stage IV (days 25 – 30) marks the beginning of viremic 

decline, thought to be driven by CD8+ T-lymphocyte destruction of infected cells (9, 187, 

188). This stage is characterized by an indeterminate western blot result for p31. Fiebig 

stage V (i.e. days 30 – 100) is marked by a positive western blot for p31. Fiebig stage V 

and VI (i.e. day 100 onwards) are associated with a plateau in viremia (i.e. viral set-point) 

with Fiebig stage VI marking the beginning of chronic HIV-1 infection (Figure 1.6b) (188, 

202).  

 

                                                           
14 The p24 antigen, a viral core protein, appears in blood once viral load reaches approximately 10 000 
copies/ ml.  
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1.7.2 Chronic HIV-1 infection 
 

Chronic HIV-1 infection is usually asymptomatic with a variable duration. It is characterized 

by a gradual progressive decline in CD4+ T-lymphocyte count from the blood, mucosal 

tissue and lymphoid organs (203). This is mostly driven by: depletion of CD4+ and CCR5+ 

T-lymphocytes in the mucosa and lymphoid organs via direct or indirect viral cytopathicity 

(204, 205) and CD8+ T-lymphocyte mediated destruction of infected CD4+ T-lymphocytes 

and an eventual state of chronic immune activation (206). Viral replication continues during 

chronic infection, albeit at a steady rate mediated largely by the activated immune 

responses.  

 

Several factors contribute to the state of chronic immune activation including: continuous 

immune stimulation (207), systemic inflammation (207), depletion of virally infected 

regulatory T cells (Treg), direct activation of macrophages and T-lymphocytes by viral 

gp120, Nef and Tat, and allogeneic non-specific T-lymphocyte activation caused by 

molecular mimicry of the human leukocyte antigen (HLA) (188, 195, 203, 208-210). 

Continuous immune activation and systemic inflammation are explained further below.  

 

The persistent replication of HIV-1 and subsequent high antigen loads result in continuous 

stimulation of immune cells that directly recognize components of HIV-1. This eventually 

results in functional and clonal exhaustion of immune cells (207) . 

 

Translocation of microbial constituents (e.g. lipopolysaccharides [LPS], flagellin and 

cPGDNA) across the gut mucosa (driven by CD4+ T-lymphocyte depletion in the GALT) 

results in the release of pro-inflammatory mediators (namely; interleukin-6 [IL-6], 

interleukin-1 [IL-1], tumor necrosis factor [TNF] and macrophage inflammatory protein-1 

[MIP-1]) (203, 207, 211). These activate several subsets of immune cells including; CD4+ 

T-lymphocytes, CD8+ T-lymphocytes, NKC’s, polynuclear neutrophils, monocytes and B-

cells, which release inflammatory mediators and reactive oxygen species that 

subsequently drive systemic immune activation (203, 207).  

 

Creating an environment of continued immune activation in conjunction with CD4+ T-

lymphocyte depletion has been shown to cause reactivation of latent viruses including: 

hepatitis B, hepatitis C, cytomegalovirus and Epstein-Barr virus. These viruses are 

commonly found in HIV-1 positive individuals, with their reactivation accounting for viral co-
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infection seen in chronic HIV infection (203, 207). Additionally, latent HIV-1 reservoirs are 

also activated resulting in further viral replication and stimulation of uninfected CD4+ T-

lymphocytes (207). In the majority of cases, this leads to rapid apoptosis and has been 

considered as the biggest contributor to CD4+ T-lymphocyte depletion (208).   

 

The continuous HIV-1 infection of and replication in CD4+ T-lymphocytes results in 

prolonged stimulation of CD8+ T-lymphocytes which become exhausted and lose their 

cytokine secreting and cytolytic activity resulting in their depletion (198, 200). The control 

of viral propagation is ultimately impaired and even though CD4+ T-lymphocytes are 

mostly depleted, viral replication continues to thrive in macrophages (212).  

 

The state of chronic immune activation eventually culminates in immune exhaustion 

leaving an infected individual susceptible to opportunistic infections. Additionally, infected 

individuals may present with non-AIDS comorbidities including: cardiovascular disease, 

atherosclerosis, neurocognitive impairment and liver disease during this phase of HIV-1 

infection (203). This marks the onset of advanced HIV-1 disease (i.e. AIDS) (203).  

 

1.7.3 Advanced HIV-1 disease (AIDS) 
 

A CD4+ T-lymphocyte level of <200 cells/ mm3 in conjunction with one or more AIDS 

defining illnesses marks the onset of AIDS. Acquired immunodeficiency syndrome defining 

illnesses include: oral candidiasis, tuberculosis, Karposi’s sarcoma (caused by herpes 

simplex virus-8), lymphomas (caused by Epstein-Barr virus) and/or pneumococcal 

infections (207, 213, 214). Progression to AIDS usually takes between 8–10 years; this 

however is dependent on host and viral interactions (215). The progression to AIDS is 

divided into three categories: (1) fast, (2) intermediate or typical and (3) slow or long-term 

non-progression (213). Between 70-80% of infected individuals experience 

intermediate/typical progression to AIDS, whereby AIDS related illness occurs 6-10 years 

after HIV acquisition. In contrast 15% of infected individuals experience fast progression, 

whereby AIDS related illness occurs in <6 years. Furthermore, less than 5% of individuals 

are described as long term non-progressors, these individuals have been shown to 

develop AIDS related illness >10 years after HIV-1 acquisition (213).  

 

Irrespective of the type of progression, once an individual reaches the AIDS stage of 

infection, the immune system is unable to cope and death ensues.  
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Figure 1-6 Illustration of the three stages of HIV-1 infection and diagram highlighting the 
Fiebig stages of infection. (a) Variations in viral load (HIV-1 RNA levels) and CD4+ T-lymphocyte 

counts during the progression of HIV-1 to AIDS. The stages of HIV-1 infection are divided into: 

primary infection (i.e. acute infection); clinical latency (i.e. chronic infection) and AIDS which is 

marked by the development of constitutional symptoms and opportunistic infections that culminates 

in death. Taken from Perlmutter et al., 1999 (216). (b) Overview of changes in viral load during 

A 

B 
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various stages of acute infection (i.e. eclipse phase and Fiebig stage I, II, III, IV, V) and chronic 

infection (i.e. Fiebig stage VI). The five stages of acute infection are illustrated by roman numerals 

(i.e. Fiebig stage I, II, III, IV, V), with the sixth Fiebig stage representing the onset of chronic HIV-1 

infection. Diagnostic assays used to identify HIV-1 antigens and HIV-1 specific antibodies during 

the various stages of acute and chronic infection is provided in brackets. Taken from McMichael et 

al., 2010 (188). Abbreviations: HIV-1 – human immunodeficiency virus type 1; RNA – ribonucleic 

acid; CD4 – cluster of differentiation 4; PCR – polymerase chain reaction; ELISA – enzyme linked 

immunosorbent assay; p31 – protein of 31 kDA; ml – milliliters. 
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1.8 HIV pathogenesis and antiretroviral therapy 

 

Treatment of HIV-1 infected individuals with ART has however transformed HIV-1 infection 

from a fatal to a chronic illness by prolonging the progression of HIV to AIDS (217). 

Patients with CD4+ T-lymphocyte counts below 500 are treated with varying combinations 

of ART to decrease their viral load (i.e. to <50 copies/ml) (218). This enables significant 

immune reconstitution (measured as increase in CD4+ T-lymphocyte count) and thereby 

prolongs progression to AIDS (219, 220). The long-term virologic suppression of HIV-1 is 

however hindered by the in vivo viral diversity of HIV-1 and the subsequent development 

of drug resistance. An overview of ART, drug resistance, mechanism of action of ARV’s 

and their associated resistance pathways are discussed in the following section. 

 

1.9 Antiretroviral therapy  
 

There are currently 26 Food and Drug Administration (FDA) approved HIV-1 antiviral 

agents belonging to six drug classes namely: (1) NRTI’s; (2) NNRTI’s; (3) PI’s; (4) 

integrase inhibitors (INI’s); (5) fusion inhibitors (FI’s) and (6) chemokine receptor 

antagonists (CCR5 inhibitors) (170). Each of which either targets an enzyme or a particular 

step in the lifecycle of HIV-1 to inhibit/prevent viral replication thereby reducing viral load 

(Figure 1.4c) (175).  
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Figure 1-7 Site of action of antiretroviral drugs. The target site of: fusion inhibitors, CCR5 
inhibitors, integrase strand transfer inhibitors (InSTI’s), non-nucleoside reverse transcriptase 
inhibitors (NNRTIs), nucleotide transcriptase inhibitors (NRTIs) and protease inhibitors (PIs) are 
depicted by red boxes. Adapted from Fanales-Belasio et al., 2010 (42) and Engelman et al., 2012 
(41, 84).  

 

The first ARV approved by the FDA was Azidothymidine (AZT, Zidovudine), an NRTI, in 

1987 (221, 222). It was administered as monotherapy and found to select for drug 

resistance (see section 1.9) thereby rendering its long-term use ineffective (223-225). This 

prompted the development of additional NRTI’s in the early 1990’s, the first PI in 1995 and 

the first NNRTI in 1996 (226). The availability of several drug classes acting on different 

stages in the lifecycle of HIV-1, led to the decision to utilize a combination of ARVs, 

referred to as combination ART (cART), to treat HIV-1. As part of cART, a combination of 

three drugs from at least two drug classes is administered on a daily basis, in order to 

target variants of HIV-1 that may display reduced susceptibility to any drug in the regimen 

(227, 228).  

 

Currently high-income countries have access to all six classes of drugs, with the 

combination of drugs administered to a patient based upon their genotypic test results 

(229).  
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In contrast to high-income countries, most low income countries cannot afford to genotype 

patients prior to treatment initiation. Such countries usually only have access to three 

classes of HIV-1 drugs (namely: NRTI’s, NNRTI’s and PI’s) that are provided as 

standardized treatment regimens (229). Options for salvage regimens are thus limited.  

 

South Africa, a low-income country and the site of the present study, has access to four 

classes of HIV-1 drugs including:  NRTI’s, NNRTI’s, PI’s and InSTI’s (218). These are 

used in three varying regimens. The first regimen comprises of two NRTI’s and one 

NNRTI, provided as a fixed dose combination (FDC)15 pill. The second regimen comprises 

of two NRTI’s and a PI and the third treatment regimen comprises of an InSTI a PI and an 

NNRTI (Table 1.1) (218).  If a patient reacts adversely to any drug in the first two 

regimens, a clinician can change the drug based on remaining options and the South 

African National Department of Health (NDOH) guidelines (218).  

 

Interestingly, access to the third line regimen is limited and is managed centrally by the 

South African NDOH. Eligibility for the third line regimen stipulates that patients on a PI 

inclusive treatment for one year who have not achieved viral suppression must receive a 

genotype test. If PI resistance is detected, a full treatment history must be submitted to the 

NDOH where a committee reaches a consensus on the patient’s future treatment. If 

agreed that a patient should receive third line treatment, the combination of drugs are sent 

to the respective facility on a named patient basis (218). The purpose of this strategy is to 

control the use of certain drugs in order to prevent widespread drug resistance (described 

in section 1.9) and a situation in which all treatment options are exhausted. Details of 

available treatment regimens in SA are described in Table 1.1 below.  

                                                           
15 The fixed dose combination pill comprises of: Tenofovir, Efavirenz and either Lamivudine or 
Emitricitabine.  
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Table 1-1 Overview of available treatment options for first-line, second-line and third-line 
treatment regimens in SA. 

First-Line ARV regimen (2 NRTI’s + 1 

NNRTI) 

Second-Line ARV regimens (2 NRTI’s + 1 

Boosted PI) 

Third-line ARV regimen (1 NNRTI + 1 PI 

+ 1 InSTI) 

NRTI’s NNRTI’s NRTI’s PI with Booster  NNRTI PI InSTI’s 

Tenofovir (TDF) Nevirapine (NVP)  Zidovudine (AZT) Lopinavir (LPV)/ 

Ritonavir (r) (Kaletra)* 

Etravirine 

(ETR) 

Darunavir 

(DRV/r) 

Raltegravir 

(RAL) 

Emitricitabine (FTC) Efavirenz (EFV) Lamivudine (3TC) Atazanvir (ATV)/r **    

Lamivudine (3TC)  Tenofovir (TDF)      

Abacavir (ABC)  Emitricitabine (FTC)      

  Abacavir (ABC)     

NB* TDF + FTC/3TC + EFV are provided as 

a fixed dose combination pill and 

comprise the standard first-line 

treatment for HIV-1 infection. If patients 

do not respond to the FDC pill they can 

be placed on a combination of any 3 

ARVs available in the first line regimen 

list.  

 NB* combinations of other NNRTI’s and 

NRTI’s can be used in third line 

treatment depending on the patients 

resistance profile and ART history. 

* Protease inhibitors in regimen 2 are administered with a sub-therapeutic dose of Ritonavir to 
increase half-life.  
** Is only used when a patient presents with dyslipidaemia or intractable diarrhoea associated with 
LPR/r 
 

1.10 Drug resistance 
 

HIV-1 drug resistance is defined as the ability of HIV-1 to mutate and reproduce itself in 

the presence of ARV drugs (230). This occurs as a result of: (a) poor adherence to 

treatment; (b) inadequate potency of ARVs; (c) suboptimal drug levels and (d) pre-existing 

resistance.  

 

There are two categories of ARV drug resistance: acquired drug resistance and TDR. 

Acquired drug resistance occurs as a result of the development of resistance mutations, 

within the HIV-1 genome, due to drug-selection pressure in individuals receiving ARV 
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treatment. Transmitted drug resistance occurs when individuals who were not previously 

infected with HIV-1 become infected with a drug-resistant strain (231).  

 

The most important viral factors responsible for the development of drug resistance are: 

the error prone de novo replication of HIV-1 caused by the use of its low fidelity RT during 

reverse transcription, the absence of an error correcting/proofreading mechanism during 

viral replication, rapid rate of viral replication, collection of archived proviral reservoirs 

during infection and genetic recombination when viruses with two different sequences 

infect the same cell  (232-234).  

 

It has been estimated that on each replication cycle, up to five incorrect nucleotides could 

be incorporated into the HIV-1 genome copied, with the likelihood of every single-base 

mutation possible in the HIV-1 genome occurring on a daily basis (232, 233). Since HIV-1 

lacks error detection and correction mechanisms, these erroneous nucleotides cannot be 

corrected (235). The result is the production of HIV-1 virions which differ from wild-type 

(WT) HIV-1 (i.e. the quasispecies) in a matter of months after primary infection (232).  

 

In the instance where mutations in sequences which code for viral enzymes occur, the 

result is the production of enzymes which differ slightly from the wild-type (i.e. production 

of mutant variants). If viral enzymes are altered/include mutations, the action of ARV’s on 

these enzymes could be compromised thereby resulting in ARV resistance and prolonged 

viral replication (182). 

 

In the absence of ARV drugs, the dominating population of HIV-1 is the WT virus. Mutant 

viruses still continues to replicate but are found in low levels. Commencement of drug 

therapy exerts a selective pressure on the viral population in which the WT virus is 

prevented from replicating and the viral load decreases. If there is a mutant variant of HIV-

1 present, which displays resistance to the ARV treatment, replication will continue and the 

viral load of mutant virus will gradually increase. This can lead to failure of a regimen as 

well as the possible transmission of drug resistant variants (236, 237).  

 

The location and pattern of mutations determines the type of resistance conferred. In some 

cases only one mutation is required to cause drug resistance (low genetic barrier); whilst in 

other cases more than one mutation is required to cause drug resistance (high genetic 

barrier) (237-239). In either instance, drug resistance impacts the concentration of an ARV 
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required to reduce viral replication by 50% (i.e. IC50), with IC50 being greater in mutant 

viruses in comparison to the WT virus. 

 

The use of combination therapy to treat HIV-1 infection is employed to target as many viral 

variants as possible, even those which may be resistant to an ARV in the regimen. In 

doing so viral replication is controlled more efficiently and the chances of replication of 

mutant viruses and transmission of drug resistant strains of HIV-1 are less likely. 

Successful drug therapy however, is dependent upon high levels of adherence to 

treatment. Poor drug adherence leads to suboptimal concentrations of drugs which results 

in viral rebound (240). The subsequent ongoing viral replication increases the probability of 

RAMs developing and this in turn increases the risk of transmitting drug resistant viral 

variants (226, 232, 237).  

 

In order to monitor the emergence and transmission of drug resistance, the World Health 

Organization (WHO) implemented the global HIV drug resistance surveillance network in 

2004. This network aimed to monitor the prevalence of acquired and TDR and to use such 

information to inform decisions on treatment and management strategies for HIV in low 

and high income countries whilst access to ARV’s was scaled up (231).  

 

Data from the WHO has shown that, over time high-income countries have experienced an 

increase in the number of HIV-1 positive treated patients who have achieved full viral 

suppression. This has in turn reduced emergence and subsequent transmission of drug 

resistance within these countries (231). In contrast, some low-income countries, such as 

SA, are experiencing difficulty in achieving full viral suppression of HIV-1 positive patients 

on ARVs. As a result of this, acquired drug resistance continues to persist and TDR  is 

increasing, particularly in KZN, the site of the current study and the epicentre of the HIV 

epidemic (231, 241).  

 

According to the WHO, TDR related to NNRTI’s and NRTI’s, in KZN, has increased from a 

low threshold level (5%) to a moderate threshold level (5-15%) between 2007 and 2012 

(231). Two surveillance studies conducted in KZN in 2005 and 2009 identified TDR to be 

within the low threshold level (<5%), with the initial survey identifying no TDR and the 

follow up study showing one patient with an NNRTI associated TDR mutation (i.e. the 

K103N mutation) (231, 242). At the time of both surveys, <30% of HIV-1 infected 

individuals in SA were on cART and those who were receiving cART only did so for <5 
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years. Both surveys were thus in line with statistical models which suggested that the 5% 

(low) TDR threshold level may only be exceeded when >30% of HIV positive eligible 

individuals were on ARV treatment or 10 years after large scale rollout of ARV’s (243). The 

2012 WHO report, which showed an increase in TDR above 5%, was also in line with this 

model since SA had an ARV coverage of between 40-60% of HIV positive eligible 

individuals at the time of development of this survey (218). 

 

The majority of drug resistance associated mutations found in KZN thus far have been 

related to NNRTI’s and NRTI’s, with very few PI resistance mutations being identified.  

 

1.11 Overview of antiretroviral drugs  
 

The mechanism of action of each drug class, their target and resistance pathways are 

described below.  

 

1.11.1.1 Chemokine receptor antagonists (CCR5 inhibitors) 
 

There is currently only one CCR5 inhibitor approved by the FDA (i.e. Maraviroc, MVC). 

Maraviroc is used to treat HIV-1 infection in R5 tropic individuals. In contrast to all other 

classes of HIV-1 drugs, which utilise viral targets, MVC targets the host protein CCR5 

(244). It binds to an allosteric hydrophobic pocket produced by the transmembrane helices 

of host CCR5 and alters the conformation of the CCR5 co-receptor thereby rendering it 

unrecognizable to viral gp120 and preventing viral entry (245, 246).  

 

Two diverse resistance mechanisms against MVC therapy have been reported as part of 

in vitro and in vivo studies.  Moore et al., (2009) reported that HIV-1 can implement a 

tropism switch from CCR5 co-receptor use to CXCR4 co-receptor use in the presence of 

MVC, if CXCR4 co-receptors are available (247). This facilitates viral entry and enables 

the continuation of viral proliferation in the presence of bound MVC (247). The main path 

of resistance to MVC however involves the development of several mutations mostly in the 

V3 loop region of gp120 (248-250). These mutations enable the virus to utilize the CCR5 

co-receptors with MVC bound to it (248, 251). There is currently no consensus on 

mutations which contribute to MVC resistance.  
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1.11.1.2 Fusion inhibitors 
 

Fusion inhibitors target gp41, a transmembrane protein which anchors the viral envelop to 

the host cell membrane and undergoes conformational changes to facilitate the fusion of 

the host and viral lipid bilayers (252). As part of these conformational changes, the heptad 

repeat region 1 (HR-1) of gp41 folds onto its heptad repeat region 2 (HR-2). This shortens 

gp41 and is essential in the formation of a stable six helix bundle required for virus entry 

(described in section 1.6.1) (175).  

 

Enfuvirtide (T-20), the only FDA approved FI, functions by binding to the HR-1 region of 

gp41 (175). In doing so it prevents the interaction between HR-1 and HR-2 required for 

fusion thereby resulting in inhibition of viral entry (described in section 1.6.1) (253). 

Mutations within the HR-1 region of gp41, specifically at positions G36, I37 and V38 have 

been shown to be associated with reduced susceptibility to T-20 and reduced viral 

replicative capacity, since they prevent binding of T-20 to the HR-1 region (254). Several 

combinations of mutations in the HR-1 region have also been associated with T-20 drug 

resistance including: I37M/N43D, Q41R/N43D, V38E/N42S and G36V/N42D (255-257) 

(258). A list of mutations associated with T-20 drug resistance is provided in Table 1.2.  

 

1.11.1.3 Integrase strand transfer inhibitors 
 

There are currently three InSTI’s approved for use by the FDA namely: raltegravir (RAL), 

dolutegravir (DTG) and elvitegravir (EVG).  Each of these InSTI’s are referred to as 

integrase strand transfer inhibitors since they bind to the catalytic core of integrase (aa 50 

to 212) and inhibit the strand transfer step of the viral integration process (described in 

section 1.6.5)  (259). 

 

Resistance to InSTI’s is almost always caused by mutations within the integrase active site 

which is responsible for coordinating magnesium cofactors required in strand transfer 

(260, 261).  Clinical studies on RAL have shown three independent sets of primary 

mutations/ pathways associated with RAL drug resistance: Q148, N155 and the Y143 

pathway (262, 263). These primary mutations/pathways are accompanied by a variety of 

accessory mutations which either increase resistance to the drug or compensate for loss 

of activity caused by primary mutations (i.e. improves viral replication).   
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Position 148 of integrase is a critical component of the integrase active site. Mutations at 

this position (i.e. Q148K/H/R) cause reduced susceptibility to RAL and impair enzyme 

function resulting in a replication deficit. This deficit has been shown to be rescued by the 

G140S and/or the E138K INT compensatory/accessory mutations. Additional accessory 

mutations associated with the Q148 pathway include the: L74M, E92Q, T97A, G136R, or 

the V151I mutations (262, 263). 

 

Position 155 of INT is located at the base of the HIV-1 integrase catalytic site and is 

involved in metal binding. Mutations at this position (namely, N155H) cause reduced RAL 

susceptibility. Accessory mutations commonly found with the N155H primary mutation 

include the: L74M, T97A, E157Q or G163R/K mutations (264). Collectively, primary and 

accessory mutations in this pathway confer high level resistance to RAL with no 

compensation offered to viral replicative ability (262).  

 

The Y143 primary mutation/ pathway occurs less frequently than the N155 and Q148 

pathways. It is commonly accompanied with the: L74A/I, T97A or the G163K/R accessory 

mutation (265, 266). Mutations in this pathway work to collectively increase RAL 

resistance. 

 

The Q148 and N155 pathway also causes resistance to EVG (267, 268). Mutations at 

position 66 (T66A/I/K) and 92 (E92Q) have also been shown to cause direct resistance to 

EVG. Dolutegravir is thought to have a higher genetic barrier than RAL and EVG since it 

does not share their pathways to resistance (267). A list of InSTI-associated RAMs is 

provided in Table 1.2.  

 

1.11.1.4 Nucleoside reverse transcriptase inhibitors 
 

The term NRTI refers to both nucleoside and nucleotide reverse transcriptase inhibitors. 

This class of drug targets the action of RT, a multifunctional enzyme with both polymerase 

(i.e. DNA- and RNA dependent) and endonuclease (i.e. RNase H) activity (269). Reverse 

transcriptase is a heterodimer comprising of a 560 aa subunit (p66) and a 440 aa subunit 

(p51). Both subunits have the same aa sequences, the major difference being that p51 

lacks endonuclease activity and a nucleic acid binding cleft, and thus has a shorter aa 

sequence (270). The p66 subunit comprises of four subdomains, which serve to join the 

polymerase and RNase H domains, they are named: fingers (aa 1 to 85 and 118 to 185), 
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palm (aa 86 to 117 and  aa 156 to 236), thumb (aa 237 to 318) and connection (aa 319 to 

426) (270) (Figure 1.7a). The polymerase active site, (i.e. the target for NRTI’s) lies in the 

palm (Figure 1.7a, 1.7b).  

 

Nucleoside reverse transcriptase inhibitors are administered as inactive prodrugs which 

enter an HIV-1 infected cell either via passive diffusion or nucleoside transporters (271). 

Once in the cell, they require metabolic transformation (i.e. phosphorylation) by cellular 

kinases into its active 5’-triphosphate form in order to elicit an antiviral effect (272). In its 

active form NRTI’s mimic natural deoxynucleotide triphosphates (dNTP’s) and compete 

with them for incorporation into the 3’ end of the nascent viral DNA chain. The drugs’ 

incorporation into viral DNA is as a monophosphate which lacks a 3’ hydroxyl group at the 

sugar moeity. This prevents binding of further nucleotides culminating in the termination of 

chain elongation (175). The termination of chain elongation can occur during RNA or DNA 

dependent DNA synthesis and thus can inhibit the production of either the (-) or (+) strand 

of proviral DNA (273). 

 

The backbone of most treatment regimens generally comprise of variations of NRTI’s. 

Currently used NRTIs include: Lamivudine (3TC), Emiticitabine (FTC), Abacavir (ABC), 

Tenofovir (TDF) and Zidovudine (AZT). Stavudine (d4T) and Didanosine (ddI) are 

additional NRTI’s, which were used in the past, they are however no longer recommended 

in treatment of HIV-1 due to their associated toxicities and side-effects (175, 218, 274). 

 

Drug resistance to NRTI’s can occur via two mechanisms. In the first instance, 

discriminatory mutations in viral DNA occur. These weaken the binding affinity of NRTI’s 

whilst retaining the binding affinity of dNTP’s. The result is reduced incorporation of NRTI’s 

into viral DNA and continued incorporation of dNTPs into viral DNA resulting in ongoing 

viral proliferation (175, 272). The K65R, L74V, Q151M and M184V/I mutations are 

examples of discriminatory mutations which inhibit various NRTI’s (Table 1) (175).  

 

The second mechanism of NRTI drug resistance involves nucleotide excision by ATP 

dependent pyrophosphorolysis whereby RT utilizes co-substrates (i.e. either ATP or 

inorganic pyrophosphate) to remove the bound NRTI analogue monophosphate from the 

3’ end of the chain terminated viral DNA (275). This allows dNTP binding and chain 

elongation to resume, and thus viral proliferation continues in the presence of drug (276, 

277). Thymidine analogue mutations (TAM’s) are usually associated with 
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pyrophosphorolysis. There are two TAM pathways shown to cause drug resistance to 

NRTI’s. The M41L, T210W, T215Y, and sometimes the D67N mutations constitute the first 

pathway (i.e. TAM1), whilst the second pathway (TAM2) involves the D67N, K70R, T215F, 

and 219E/Q mutations (278-282). A list of NRTI-associated DRMs is provided in Table 1.2. 

 

1.11.1.5 Non-nucleoside reverse transcriptase inhibitors 
 

Non-nucleoside reverse transcriptase inhibitors also targets RT for inhibition of viral 

replication (Figure 1.7b and 1.7c). 

 

Non-nucleoside reverse transcriptase inhibitors bind to an allosteric hydrophobic site 

located at a distance of approximately 10 Å away from the RT polymerase active site 

(referred to as the NNRTI binding pocket [NBP]) (Figure 1.7b) (283). This induces 

conformational changes, whereby a hydrophobic pocket is formed proximal to the 

polymerase active site (284). The result is reduced polymerase activity and prevention of 

substrate alignment required for the formation of phosphodiester bonds (285, 286).  

 

The NBP only exists in the presence of NNRTI’s and consists of hydrophilic residues 

(including: K101, K103, S105, D192 and E224), hydrophobic residues (including: Y181, 

Y188, F227, W229 and Y232), residue E138 of the p55 domain and E224 of the p61 

domain (287, 288). Amino acid substitutions at various positions of RT including position 

100, 101, 103,  138, 179, 181 and 188 results in the incorrect formation of the NBP, this 

prevents NNRTI’s from binding and as such confers resistance to the drug (289). The 

three most common NNRTI mutations include the K103N, Y181C and G190A mutations. 

Each of which confers high level NNRTI resistance and eventually results in clinical failure 

(290). A list of NNRTI-associated DRMs is provided in Table 1.2. 

 

There are currently four NNRTI’s used in the treatment of HIV-1 including: Efavirenz 

(EFV), Nevirapine (NVP), Rilpivirine (RPV) and Etravirine (ETR) (175). Lower toxicity 

levels and fewer side-effects associated with NNRTI’s, in comparison to NRTI’s, have 

encouraged their broad use in cART. A pitfall to the use of NNRTI’s however is its low 

genetic barrier and ease with which drug resistance to NNRTI’s can develop. Drug 

resistance mutations associated with NNRTI’s generally have minimal effect on replicative 

ability of a mutant virus and have long reversion times in the absence of drug, making 

them easily transmissible (228). 
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Figure 1-8 Crystal structure of reverse transcriptase with an illustration on the mechanism of 
action of NRTI’s and NNRTI’s. (a) The crystal structure of reverse transcriptase is shown. Grey 

ribbons represent the p51 domain. The p66 domain comprises of four subdomains: fingers (green), 

palm (yellow), thumb (orange) and connection (light blue) which collectively joins the polymerase 

active site to RNase H (dark blue). The template and primer strand are also represented in shades 

of purple. Taken from Engelman et al., 2012 (84). (b) This figure shows binding sites for NRTI’s 

(red) and NNRTI’s (magenta). Dark blue ribbons represent the p51 domain whilst light blue ribbons 

represent the p66 domain. Taken from Iyidogan et al., 2014 (175). (c) A schematic representation of 

a chain terminated viral DNA product, as a result of NRTI binding at the dNTP binding site, is 

depicted. Taken from Pomerantz et al., 2003 (291).(d) Binding of an NNRTI to RT which results in 

RT conformational changes that prevent action of RT. Taken from Pomerantz et al., 2003 (291). 

Abbreviations: NNRTI – non-nucleoside reverse transcriptase inhibitor; dNTP – deoxynucleotide 

triphosphates; RNA – ribonucleic acid; DNA – deoxyribonucleic acid. 

D C 

A B 
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1.11.1.6 Protease inhibitors 
 

There are currently nine FDA approved PI’s including: Lopinavir (LPV), Nelfinavir (NFV), 

Darunavir (DRV), Saquinavir (SQV), Atazanavir (ATZ), Indinavir (IDV), Tipranavir (TPV), 

Fosamprenavir (FPV) and Ritonavir (RTV) (175). All PI’s, except NFV, are boosted/co-

administered with RTV, which inhibits the metabolism of PI’s by cytochrome P450 34A 

(CYP45034A), thereby increasing the bioavailability and half-life of PI’s (292, 293). 

 

Protease inhibitors target the action of HIV-1 PR, an enzyme required for cleaving the Gag 

and Gag-pol polyprotein precursors, in order to produce mature infectious viral particles 

(described in section 1.6.9, depicted in Figure 1.5) (170). All PI’s, except TPV, bind to the 

active site (i.e. substrate binding pocket) of the Protease homodimer and competitively 

inhibits binding of the Gag and Gag-pol polyprotein substrates for cleavage (175). This 

prevents cleavage of the polyprotein precursors and as such virions remain immature and 

non-infectious. In contrast, TPV contains a dihydropyrone ring as its central scaffold that 

interacts directly with the flaps of HIV-1 PR, impacting on substrate entry and indirectly 

preventing substrate cleavage (294, 295). Together with DRV, TPV also inhibits 

dimerization of PR the impact of which is not fully elucidated but is thought to provide 

these drugs with a higher genetic barrier (182, 296).  

 

Resistance to PI’s occurs even though they are considered as high genetic barrier drugs, 

with more than two mutations generally required to confer resistance. Polymorphisms have 

been detected in 49 out of 99 aa sites in PR, with over 20 aa substitutions in PR found to 

be associated with PI resistance (297).  

 

It has been suggested that PI associated drug resistance occurs in a stepwise manner 

with the initial development of primary mutations in PR (also referred to as major PI 

mutations) followed by the development of secondary mutations in PR and/or in Gag (also 

referred to as compensatory mutations) (175, 298). 

 

Initially primary mutations (including D30N, I50V, V82A and I84V) occur at or near the PR 

active site (i.e., substrate binding site or catalytic site) causing altered electrostatic and 

hydrophobic interactions between the PI and the amino acids in the active site. This results 

in a reduced affinity of the binding site for PI’s and a slightly reduced binding affinity of the 

binding site for the Gag and Gag-pol substrates which culminates in a deficit in replicative 
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ability of the virus (175, 299-301). Secondary mutations then arise in residues adjacent to 

the PR active site to either further inhibit PI resistance or to restore viral replication. For the 

latter, secondary mutations improve PR stability and activity to consequently restore viral 

replication (302-304).Viral replicative ability is also restored by the development of 

compensatory mutations in Gag and/or the evolution of Gag and Gag-pol CS’s and non-

cleavage sites (non-CS’s) (305-309). Certain mutations at CS’s can alter the Gag-pol 

frameshift resulting in the increased expression of pol products (i.e. more PR production, 

hence improved viral cleavage) (306). Mutations in non-CS’s can improve the access of 

PR to cleavage sites thereby improving cleavage and viral replication (310-312).  

 

The most common compensatory mutations in Gag have been shown to occur in the 

NC/p1 and p1/p6 cleavage sites, as these are the most variable sites in Gag after the 

p2/NC site (182, 311, 313). According to studies conducted on Subtype B, the L449F 

mutation in the p1/p6 cleavage site can only cause PI resistance in combination with the 

following PR mutations; D30N/ N88D, I50V and I84V (314).  Similarly the p1/p6 cleavage 

site mutation P452K only causes PI resistance in the presence of the I84V/ L90M mutation 

in PR (315) 

 

Mutations in Gag CS’s and non-CS’s can also occur as primary mutations to cause 

resistance to PI’s in the absence of mutations in PR (177, 316-318). Amongst the identified 

primary drug resistant cleavage site  mutations (CSM’s)  are A431V, I437V and the double 

mutation K436R and I437T, all located in the NC/p1 cleavage site of Gag (312, 315, 316, 

319, 320).  

 

A list of major and minor PI-associated RAMs in PR is given in Table 1.2, whilst mutations 

in Gag associated with PI resistance/exposure is summarized in Table 1.3 respectively. 
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Table 1-2 Overview of mutations associated with resistance to non-nucleoside reverse 
transcriptase inhibitors (NNRTI’s), nucleoside reverse transcriptase inhibitors, protease 
inhibitors (major and primary mutations) integrase strand transfer inhibitors and fusion 
inhibitors.  Adapted from the Stanford HIV drug resistance database (321) and the International AIDS 
society – USA (IAS-USA) database (322). 

 

 

All amino acid substitutions are expressed relative to HIV-1 subtype B consensus HXB2 (GenBank 
accession number: K03455). 
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Table 1-3 Protease inhibitor resistance/exposure associated mutations in Gag. Adapted 
from Fun et al., 2012 (182) and Li et al., 2014 (323). 

Gag Protein Gag amino acid substitutions and their location Reference 

Associated with PI resistance  Associated with PI exposure 

Matrix   E12K (310, 324) 

Matrix   G62R (325, 326) 

Matrix   L75R (310, 324) 

Matrix R76K   (327, 328) 

Matrix Y79F   (327, 328) 

Matrix T81A   (327, 328) 

Matrix   S125K (326) 

Matrix V128I/T/A/del   (323, 329, 330) 

Matrix Y132F   (323, 326, 331, 332) 

Capsid   H219Q/P (310, 324) 

Capsid   A360V (331) 

Capsid   V362I (333) 

Capsid   L363M/F/C/N/Y (325) 

P2   S368C/N (320, 334) 

P2   Q369H (334) 

P2   V370A/M/I/del (14,(335) 

P2   T371del (312) 

P2   S373P/Q/T (320, 334) 

P2   A374P/S/G/N/T (336-339) 

P2   T375N/S (331, 336, 339) 

P2   I376V (320, 331) 

Nucleocapsid   G381S (331) 

Nucleocapsid   I389T (312) 

Nucleocapsid   V390A/D (310, 324) 

Nucleocapsid   I401T/V (312, 334) 

Nucleocapsid   R409K (310, 325) 

Nucleocapsid   K415R (323) 

Nucleocapsid   Q430R (323, 340) 

Nucleocapsid A431V   (305, 312, 315, 316, 320, 323, 
331, 336, 341-345) 

P1   G435E/R (319, 346, 347) 

P1 K436E/R/N   (315, 316, 319, 338, 346, 347) 

P1 I437T/V/A   (315, 316, 319, 323, 325, 329, 
338, 345, 346) 

P1   W438R (319) 

P1   S440C (346) 

P6 L449F/P/V/Q   (312, 313, 315, 318, 323, 336, 
338, 343, 345, 346, 348, 349) 

P6   S451T/G/R/I/N (315, 323, 350) 

P6 R452K/S   (314, 315, 323, 343, 348) 
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Gag Protein Gag amino acid substitutions and their location Reference 

Associated with PI resistance  Associated with PI exposure 

P6 P453A/L/T   (312, 314, 315, 323, 341, 343, 
344, 351, 352) 

P6   E468K (310) 

P6   Q474L (16) 

P6   V484G/I/P/S (338) 

P6   A487S (16) 

P6   P497L (16) 

All amino acid substitutions are expressed relative to HIV-1 subtype B consensus HXB2 (GenBank 
accession number: K03455). 

 

1.12 Drug resistance testing 
 

Drug resistance testing is an essential component in the management of ARV treated 

individuals. It assists in identifying the appropriate treatment regimen for patients who are 

failing treatment as a result of drug resistant virus. In high-income settings, drug resistance 

testing is part of the standard of care of HIV positive individuals whereby each patient is 

prescribed a regimen based on the results from their drug resistance tests.  

 

Drug resistance tests serve to identify the genotype (actual DNA sequence of virus) or 

phenotype (behaviour or physical traits expressed by the genotype) of the predominant 

viral strain (353).  

 

Tests that are currently used to detect HIV-1 drug resistance include: viral genotyping (ie. 

Sanger sequencing, allele specific PCR, single genome amplification and ultra-deep 

pyrosequencing) and in vitro phenotypic drug resistance assays. Genotypic tests identify 

particular mutations/nucleotide substitutions associated with drug resistance in genes of 

interest whilst phenotypic tests measure the response (i.e. phenotype) of a virus to a 

particular ARV. Viral genotyping is generally the preferred method to monitor/test drug 

resistance due to its associated low cost, ease of use, availability and faster turnaround 

time. Various options are available for both genotypic and phenotypic testing as described 

below (304, 354).  
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1.12.1 Genotypic drug resistance testing 
 

Most laboratories utilize either in-house developed methods or commercially available kits 

for standard genotyping of the HIV-1 PR and RT genes. There are currently three 

commercially available genotyping kits including: ViroSeq (Applied Biosystems, California), 

GeneSeq (Virologic, South San Fanscisco, CA) and TruGene (Bayer, Pittsburgh, PA) used 

for genotyping the PR and RT genes. All three of these kits require: viral RNA isolation 

from plasma of an infected individual, reverse transcription of RNA to cDNA and 

amplification of cDNA by PCR in order to produce adequate quantities of DNA for 

Dideoxynucleotide sequencing (Sanger sequencing) (297, 353) 

 

As part of Sanger sequencing, amplicons are combined with a mixture of dNTPs, 

dideoxynucleotide triphosphates (ddNTPs), DNA polymerase and region specific primers. 

This mixture is subject to several thermal cycling steps to facilitate amplicon denaturation, 

primer annealing and dNTP incorporation into the growing strand.  The incorporation of a 

ddNTP, in the place of a dNTP, results in chain termination and production of several 

strands of DNA of varying lengths. These strands are then sequenced using an automated 

sequencer based on a fluorometric method dependent upon labelling of either the primer 

or ddNTPs (355).   

 

Sanger sequencing generates a consensus nucleotide sequence based on the most 

prevalent viral strain within a patient sample. This sequence is translated into a 

corresponding aa sequence and aligned to a reference sequence (i.e. WT strain, most 

commonly HXB2) (355). The input of the aligned sequence into one of several 

interpretation databases including: the Stanford HIV Drug Resistance Database (HIVdb), 

the Rega database (RegaDB) and the French AIDS research agency database (ANRS) 

produces a list of RAMs present in each sample and a score which predicts the level of 

drug susceptibility based on mutational patterns (356).  

 

Whilst Sanger sequencing is widely used, it lacks the ability to detect DRMs at frequencies 

below 15 – 20% (357, 358). Several studies have shown that mutations occurring at 

frequencies as low as 1% can impact the clinical outcomes of a patient, as such various 

sequencing approaches have been developed to allow the detection of low frequency 

mutations (i.e. minority variants) (359-367). These include: point mutation assays (i.e. 
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allele specific PCR and oligonucleotide ligation assays) (364, 368), single genome 

amplification (SGA) assays (358) and next generation sequencing (369).  

 

Point mutation assays generally employ specific probes/primers and/or labelled 

oligonucleotides to detect specific mutations of interest. Whilst the assay is very sensitive 

and can detect mutations present at frequencies between 0.1-1%, its major limit is only a 

few RAMs are detected in each run, rendering this method impractical for clinical settings 

where simultaneous detection of several RAMs is required per run. Additionally, the assay 

can be compromised by insensitivity of the template to primers and the large number of 

sequences which need to be analysed to detect low frequency mutations can be 

cumbersome (368, 370).  

 

Single genome amplification (also known as limiting dilution PCR) involves the generation 

of cDNA from a patient sample, dilution of cDNA to one copy, amplification of that single 

template by PCR and sequencing of amplicons representing only one viral strain (369). 

This method avoids the preferential amplification of the dominant viral strain and reduces 

polymerase induced recombination artefacts commonly seen in bulk sequencing. The 

pitfalls however are that SGA is expensive, labour-intensive and several SGA’s have to be 

conducted in order to achieve the same depth as that of multiple bulk PCRs (371). 

 

Ultra-deep pyrosequencing (UDPS) is a parallel sequencing approach which allows for the 

sequencing of a mixed sample at a coverage of more than 1,000 reads per base. As part 

of UDPS viral RNA is extracted from plasma, purified and quantified. This is followed by 

generation of cDNA and the amplification of cDNA which is tagged with multiplex 

identifiers (MIDs). Tagged amplicons are purified, quantified, normalized and pooled. The 

sample pool is clonally amplified and sequenced. The three most commonly used deep 

sequencing platforms include: Roche 454 (GS Junior and GS-FLX), Ion Torrent PGM and 

Illumina Miseq (372). Deep sequencing offers extremely high throughput and requires 

expertise in bioinformatics to manage and interpret the data. Platforms such as the Roche 

454 GS Junior and FLX are accompanied with built in bioinformatics tools which allows for 

user friendly data management and interpretation. A major benefit of UDPS is that all 

mutations in a region of interest can be identified and quantified in a single run making it 

suitable for use in clinical settings. Its major limitation however, particularly in resource 

limited settings, is its high cost (369, 370, 372).  
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1.12.2 Phenotypic drug resistance testing 
 

Phenotyping assays measure the susceptibility of a clinical HIV-1 isolate to ARVs of 

interest by comparing the concentration of ARV required to inhibit the clinical sample to 

that of an HIV-1 WT/reference strain. 

 

Similarly to conventional sequencing, phenotypic assays utilize viral RNA extracted from 

patient plasma for PCR in order to generate amplicons of the gene of interest. Amplicons 

are then used to generate recombinant viruses in a recombinant virus construct which has 

the analogous sequence deleted. A standard inoculum of recombinant virus is then used 

to infect a relevant cell line in the presence of varying concentrations of ARVs. The 

proliferation of the recombinant construct in the presence/absence of ARVs can be 

measured using either a single cycle phenotypic assay or a multiple cycle phenotypic 

assay. Results are obtained between  –10 days and are reported as a fold change (FC) in 

drug susceptibility of the test sample in comparison to the reference strain (373). 

 

As the name suggests, a single round infectivity assay is based on a single round of viral 

infection. A replication defective resistance test vector (RTV) is formed by cloning the 

region of interest from a patient sample into an HIV-1 expression vector which lacks the 

analogous region. Thereafter a cell line is co-transfected with a total of three plasmids: the 

RTV (comprising of the patient derived sequence), a vesicular stomatitis G protein 

expressing vector (this provides the Env region to the virus) and a reporter vector (this 

vector expresses luciferase which is used as a marker of viral replication and it also 

contains the HIV packaging sequence). The cell-line in conjunction with the three plasmids 

are exposed to varying concentrations of ARVs. The measurement of luciferase production 

in test samples versus the reference strain and drug control yields insight into viral 

replicative capacity and drug susceptibility.  

 

For a multiple cycle assay, replication competent virus is produced via homologous 

recombination in cell culture to incorporate a patient derived sequence into a molecular 

HIV clone (typically NL43 which lacks the analogous region). A standardized inoculum of 

virus is then added to an appropriate cell line and the drug susceptibility is measured via 

luciferase production or expression of a reporter gene such as 3-(4, 5-dimethylthiazol)—2, 

5 –diphenyltetrazolium bromide (MTT). 
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Whilst single cycle assays are performed in a shorter time and offer the benefit of accurate 

representation of the original virus, multiple cycle assays mimic in vivo conditions more 

closely and thus provide more accurate results.   

 

Both the single and multiple cycle assays measure the change in IC50 of an ARV required 

to inhibit 50% of viral growth and report variations in drug susceptibility as FC. The FC is 

calculated by dividing the IC50 of the test sample by the IC50 of the reference strain. 

 

There are currently two commercially available phenotyping kits: Antivirogram (Tibotec-

Virco, Mechelen, Belgium) and Phenosense (Virologic, South San Francisco, California) 

that are used to measure variations in drug susceptibility of the PR, RT and a portion of 

the Gag gene. Antivirogram is a multiple cycle assay, whilst Phenosense is a single cycle 

assay (373).  

 

1.13 Replication capacity and viral fitness 
 

The main aim of ART is to suppress viral replication in order to stimulate immune 

reconstitution and reduce AIDS associated morbidity and mortality. In patients with a 

history of ARV failure, the selection of RAMs may prevent complete suppression of HIV-1 

replication. Deeks et al., (2000) showed that when drug resistant viruses are selected 

under drug selection pressure, immunological stability can still be maintained despite 

ongoing slow viral replication (374). This has been attributed to mutations in genes such 

as PR and RT which induce structural changes that affect substrate binding and catalytic 

activity thereby impacting on the rate of viral replication (375-378). The effect of RAMs on 

viral replicative ability varies widely, with studies suggesting that clinical benefits can be 

derived from reduced viral replication (i.e. less fit viruses) particularly in resource limited 

settings where treatment options are limited (379). 

 

Viral fitness is a measure of the capacity of HIV-1 to produce infectious progeny in a given 

environment. Viral fitness in HIV-1 is not a fixed attribute. This is largely due to the 

inherent genetic variation of HIV-1 whereby alterations at certain nucleotides cause 

disparities in replicative ability between viral variants within a given environment (380). 

This is portrayed by variations in replicative capacity between viral strains in treated and 

untreated HIV-1 infected individuals. In ARV treated individuals, the resistant viral strain is 
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more fit and hence replicates more than the WT viral strain, the converse however applies 

to treatment naïve individuals infected with HIV-1 (381, 382).  

 

In most instances the evolution of viral fitness whilst on ARVs can be divided into two 

phases: (1) the development of primary mutations which drives reduced susceptibility and 

impacts negatively on replication capacity and (2) the development of secondary mutations 

(also referred to as accessory or compensatory mutations) which work in conjunction with 

primary mutations to improve the replication capacity of the virus (332).  

 

1.13.1 Viruses used in replication capacity assays 
 

Replication capacity assays make use of viruses in any one of the following forms: (1) site-

directed mutants; (2) recombinant viruses or (3) whole viral isolates. Each of which is 

discussed below.  

 

1.13.1.1 Site-directed mutants 
 

The impact of a particular mutation or a group of mutations on viral fitness can be 

measured by introducing a mutation or group of mutations into a laboratory adapted strain 

of HIV-1 by site-directed mutagenesis (SDM) and comparing replication capacity of the 

mutant virus to that of a WT strain (383-385). Engineering the laboratory strain with a 

reporter gene such as; jellyfish green fluorescent protein (GFP, detected by flow 

cytometry) or firefly luciferase (detected by luminescence) enables easy detection of viral 

proliferation (386-388). However viral replication can also be measured by direct detection 

of gene products such as p24 or by measuring RT-activity. A limitation to using site-

directed mutants is the oversight of other mutations which may contribute to viral kinetics. 

Whilst several mutations can be engineered into the laboratory strain at one time, there is 

still a chance that some mutations which work together are excluded (380). This holds 

particularly true for mutations in genomic regions omitted from the site-directed mutant. 

 

1.13.1.2 Recombinant viruses 
 

Recombinant viruses are generated by inserting an entire genomic region of interest into a 

standard viral backbone. This allows for links to be drawn between the viral region of 

interest and viral fitness (380). 
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A single clone or amplified pools of virus from a clinical sample can be used to generate 

recombinant viruses. Whilst single clones offer the advantage of using a precise known 

sequence, the use of amplified virus pools provides a sample that is more representative 

of in vivo viral diversity (380). 

 

Recombinant viruses can be constructed by using one of four methods: (1) yeast 

recombination systems; (2) restriction enzymes; (3) homologous recombination of a vector 

and virus genomic region of interest in a cell line or (4) gene complementation which 

produces pseudovirions (387, 389-391). Each of these methods has its pitfalls. 

 

Most yeast recombination systems usually require sub-cloning for viruses to be completely 

infective and are thus time-consuming and laborious (390, 392) . Restriction enzyme 

systems are limited by the variability in HIV-1 whereby restriction sites may not be 

available or may be unsuitable for use (390, 393). Homologous recombination systems are 

time-consuming and can result in poor recombination efficiency especially for eukaryotic 

samples (390). Gene complementation can result in the introduction of foreign genetic 

complements into the pseudovirus and generally produces viruses that can only be used in 

single cycle replication assays (see section 1.12.3) (390).  

 

A limitation of using recombinant viruses is that the incorporated genomic region is not in 

its natural context and interactions with other genes are not accounted for. For example 

interactions between Gag and PR would not be accounted for if only PR was included in a 

recombinant virus. The most reliable fitness results are thus obtained from using whole 

viral isolates (380, 386).  

 

1.13.1.3 Whole viral isolates 
 

Whole HIV-1 viral isolates can be extracted from patient plasma or peripheral blood 

mononuclear cells (PBMCs) (394). This however can be costly, time-consuming and 

extraction in certain strains can be difficult (380).  

 

Whole viral isolates can be applied to either PBMCs or cell lines to measure replication 

capacity. In PBMCs, replication capacity is measured by quantifying p24 (using ELISA) or 

by measuring RT-activity (386). If cell lines engineered to express reporter genes are 

used, measurement of replication capacity can be via flow cytometry (in the case of GFP) 
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or detection of luminescence (in the case of luciferase). The use of reporter gene 

engineered cell lines is less costly and simpler than using PBMCs (183, 395). 

 

1.13.2 The use of primary cells versus T-cell lines 
 

Replication capacity assays can utilize either primary cells (i.e. cells derived directly from 

human subjects such as PBMCs) or established T-cell lines (such as CEM-GXR cells). 

Studies have shown that results between PBMCs and cell-lines can differ (386, 396). 

Additionally results between different established cell lines can also differ (385). Whilst 

PMBCs supposedly offer results most representative of in vivo environments, they cannot 

be maintained for long times, they can be highly variable between donors and they require 

stimulation prior to use (183, 386). These limitations can be addressed by using 

established cell lines.  

 

1.13.3 Measuring viral replication capacity 
 

Viral fitness can be measured by in vivo and in vitro techniques. In vivo techniques involve 

comparing the quantity of mutant and WT virus detected within in vivo populations with the 

most commonly used sample being blood (397).  Whilst this technique mimics the hosts’ 

natural environment and provides the best estimate of viral fitness, it is limited by variation 

in quantities of viral variants in different compartments within the host (398). For example 

the most dominant quasispecies in the blood may differ from that in the lung. This limits its 

use in studies involving host genetics, immune response and drug resistance (398). 

 

In contrast to in vivo methods, in vitro techniques do not mimic the natural environment of 

the host. In vitro techniques employ either HIV-1 isolates or recombinant viruses in a 

specific controlled environment thereby making the method useful in the study of drug 

resistance. There are two types of in vitro assays: single cycle assays and multiple cycle 

assays. Both of which employs the use of recombinant viruses or pseudovirions.  

 

1.13.4 Single cycle replication capacity assays 
 

The single cycle assay involves the infection of a cell line with a recombinant virus, which 

encodes reporter genes, and the subsequent detection of the reporter gene in the cell line 

(either by luminescence or fluorescence) between 24–72 hours post infection (380, 383, 
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391, 399). Whilst this assay yields results quickly it is unable to measure the entire 

replication cycle and is thus less sensitive than multiple cycle assays (183).  

 

1.13.5 Multiple cycle replication capacity assays 
 

Multiple cycle replication capacity assays are divided into pairwise growth competition 

assays and parallel assays, both of which are described below.  

 

1.13.5.1 Pairwise growth competition assays 
 

For growth competition assays, two viral variants are mixed and added to the same 

experiment. Both viruses are exposed to identical experimental conditions and compete for 

the same resources (380). During several passages, the fitter virus out-competes the less 

fit variant to become the predominant population, the proportion of which can be measured 

by Sanger sequencing, heteroduplex tracking assays or real-time PCR (386).  These 

detection techniques are however expensive, labour intensive and produce data which is 

not easily analysed (183, 386). In order to overcome these pitfalls, cell lines or backbones 

of viruses (i.e. only in the case of recombinant viruses) can be engineered to include 

reporter genes which can be detected by fluorescent antibodies using flow cytometry (388, 

400). 

 

1.13.5.2  Parallel assays 
 

In contrast to pairwise growth competition assays, parallel assays involve the 

quantification of HIV-1 replication in parallel cultures (401, 402). Cell lines or PBMCs are 

infected with a particular virus; replication capacity is then quantified by measuring p24 

levels or RT-activity in the supernatant at various time-points (403, 404). Reporter genes in 

the backbone may also be used in detection. This method is simpler and less labor 

intensive than growth competition assays but it does not allow for the identification of 

subtle differences in replication kinetics between viruses that are tested, since cell 

populations in the parallel cultures may grow at slightly different rates thereby influencing 

the calculation of replicative capacity (380). Parallel assays are however more sensitive 

than single cycle assays.   
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1.14 The current study: Rationale, aims and objectives 
 

1.14.1 Study Rationale 
 

South Africa has the highest prevalence of HIV-1 worldwide, with one of the largest global 

ARV programs comprising of two main treatment regimens and limited access to an 

extremely costly third-line regimen (12, 218, 231, 405, 406). The main challenge in having 

a large ARV programme in a resource limited setting however is the development of 

acquired drug resistance and subsequent transmission of resistant variants. Evidence 

showing that acquired and transmitted drug resistance is increasing in SA is emerging 

(229, 231).  

 

A recent South African study showed that 40% of patients receiving a PI inclusive 

treatment regimen experienced virologic failure in the absence of PR mutations (229). 

Whist this could be attributed to poor treatment adherence, several studies have shown 

that mutations in Gag can confer primary resistance to PI’s in the absence of PR mutations 

(182, 311, 316, 328). The majority of studies investigating the role of Gag in PI resistance 

have however been conducted primarily on HIV-1 subtype B (182, 311, 316, 328), despite 

HIV-1 subtype C being the most prevalent subtype globally (407). With the polymorphic 

nature of Gag (408), a study employing an HIV-1 subtype C cohort to investigate the role 

of Gag in PI resistance is required.  

 

Despite the large number of patients experiencing virologic failure on a PI inclusive 

treatment regimen, TDR studies in SA have not reported the presence of TDR mutations in 

PR (231). This could be attributed to the high associated fitness cost of PR mutations 

which would either cause mutations to revert rapidly or exist at low frequencies in 

treatment naïve individuals (353, 409-417). The majority of studies in SA have utilised 

recently infected cohorts to study TDR (231, 242). Recent infection however is not well 

defined and in some instances can reflect samples collected from patients >3 months after 

onset of plasma viremia. This would mean that rapidly reverting TDR mutations are not 

identified. Since it has been reported that viral reservoirs form as early as 10 days after 

onset of clinical symptoms in primary HIV-1 infection, studying the earliest point of 

infection would be more representative of the TDR mutation population. Furthermore all 

TDR studies in SA to date have employed Sanger sequencing to identify TDR mutations. 

Sanger sequencing however can only detect mutations at frequencies >15-20% which 



 

59 
 

would mean that low frequency mutations (i.e. those present at a frequency of <15%) 

would remain undetected (357, 358). With several studies demonstrating that mutations 

present at frequencies as low as 1% can impact treatment outcomes (359-367), the use of 

deep sequencing technologies to detect these mutations is necessary. 

 

The focus of this study was to identify mutations in Gag-Protease that were associated 

with PI resistance/exposure and to determine the impact of these mutations on replication 

capacity, drug susceptibility and polyprotein cleavage, in an HIV-1 subtype C cohort of 

patients failing a PI inclusive treatment regimen from KwaZulu-Natal, South Africa. The 

presence of both high frequency and low frequency TDR mutations was also investigated 

using an HIV-1 subtype C acute infection cohort from KwaZulu-Natal.  

 

The data generated from this study, on acquired and transmitted drug resistance could be 

used to inform public health policy and to facilitate improved first and second-line 

treatment regimens in South Africa. It can also be used in the clinical management of 

patients. Such data could also contribute to the continued development of the national 

ARV roll-out programme. 
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1.14.2 Aims and objectives 
 

This study comprised of two main aims. 

 

1.14.2.1 Aim 1 
 

The first aim was to examine the hypothesis that mutations in both the amino and carboxy 

terminal of Gag contribute to reduced PI drug susceptibility and altered viral fitness in HIV-

1 subtype C infected participants who are failing a PI inclusive treatment regimen. The 

specific aims were to: 

 

 Identify mutations in Gag-Protease associated with PI exposure or resistance in 80 

HIV-1 subtype C infected participants who were failing a PI inclusive treatment 

regimen.  

 Determine the effect of Gag-Protease mutations on replication capacity in 80 HIV-1 

subtype C infected participants who were failing a PI inclusive treatment regimen. 

 Determine the effect of selected Gag-Protease mutations on PI drug susceptibility.  

 Determine the effect of particular mutations in Gag-Protease on replication 

capacity, polyprotein cleavage and drug susceptibility using 20 site-directed 

mutant viruses. 

 

The following specific objectives were fulfilled to address each of the above mentioned 

aims: 

 Resistance genotyping using Sanger sequencing was performed on 80 samples 

from patients failing a PI inclusive treatment regimen in order to identify PI 

associated RAMs and to elucidate mutations in Gag. This was conducted in 

collaboration with an MSC student (418). 

 Recombinant viruses encoding patient derived Gag-Protease sequences from 

patients failing a PI inclusive treatment regimen (n=80) were constructed by 

homologous recombination in a GFP-reporter CEM-GXR cell line.  

 Replication capacity of each recombinant virus was measured using a multiple 

cycle, parallel mono infection, flow cytometry based assay which employed a GFP 

reporter CEM-GXR cell line (n=80).   
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 Drug susceptibility of selected samples (n=18) was measured using a multiple 

cycle assay which employed a luciferase reporter TZMBL-cell line based 

phenotypic assay.  

 Mutant viruses were produced by the process of SDM to generate a total of 20 

mutants, which were subject to replication capacity, proteolytic cleavage and drug 

susceptibility assays.  

 

1.14.2.2 Aim 2 
 

The second main aim of the study was to examine the hypothesis that NRTI, NNRTI and 

PI associated RAMs exist at low frequencies in individuals acutely infected with HIV-1 

subtype C. The specific aim was to: 

 

 Determine the presence of low frequency mutations associated with TDR in a 

cohort of acutely infected participants.  

 

The specific objectives fulfilled to address this aim included: 

 Genotypic resistance testing (using Sanger sequencing) of RT and PR was 

conducted on 47 samples from an HIV-1 subtype C acute infection cohort.  

 UDPS of a subset of these samples (n=14) was performed to detect low frequency 

mutations in RT, PR and INT.  

 Exploratory analysis was conducted to determine the impact of low frequency 

mutations on treatment outcomes.  

 

1.15 Structure of thesis 
 

The current thesis is presented in seven chapters. Four of which are presented as 

manuscripts. The first chapter provides an introduction to the study and a literature view. It 

also highlights the study rationale and provides information on the aims and specific 

objectives addressed in this study. The second chapter identifies mutations in Gag and 

Protease which are associated with PI resistance/exposure and also identifies novel Gag 

mutations associated with PI resistance/exposure. In this chapter, the frequency of 

mutations was analysed and combinations of mutations were assessed. The third chapter 

investigates the impact of mutations identified in the second chapter on replication 

capacity and drug susceptibility. The fourth chapter validates the role of mutations 



 

62 
 

identified to be significantly associated with replication capacity or drug susceptibility in the 

third chapter. The fifth chapter comprises of a paper which has been submitted for review. 

This paper addresses the prevalence of TDR mutations in an acute cohort and includes an 

exploratory analysis on the impact of low frequency TDR mutations on treatment 

outcomes. The sixth chapter of this thesis comprises of a general discussion and the 

seventh chapter comprises of appendices.  
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2 CHAPTER 2: IDENTIFICATION OF GAG MUTATIONS 
ASSOCIATED WITH PI DRUG RESISTANCE/EXPOSURE  

IN HIV-1 SUBTYPE C 
 

2.1 Introduction 

 

Protease inhibitors have been described as the most effective class of drug employed in 

the treatment of HIV-1 (1-3), nonetheless their clinical benefits can be compromised by the 

development of drug resistance.  

 

A key feature in PI resistance is that mutations which confer resistance are not only 

confined to PR itself but also occur in its’ natural substrate (i.e. Gag) (4-7). Mutations in 

Gag can either confer primary resistance to PI’s (8-10) or work synergistically with PR to: 

restore, improve or maintain the replicative capacity of HIV-1 (4, 11). As such PR and Gag 

have been labelled as “partners in resistance” (4).  

 

Besides being “partners in resistance”, Gag and PR are also partners in viral maturation, 

whereby PR is required to cleave the Gag and Gag-pol polyproteins into their respective 

structural (MA, CA, NC and P6) and enzymatic (RT, PR and INT) proteins, in order to 

generate mature infectious virions (described in section 1.6.9). This essential role of PR 

has driven the design of PI’s, most of which bind to the active site of PR where they 

competitively inhibit substrate binding and cleavage thereby preventing the production of 

mature infectious viral particles (described in section 1.10.1.6).  

 

During exposure to PI’s, mutations can occur in Gag or PR to confer resistance (described 

in section 1.10.1.6) (8, 12, 13). Mutations at the PR active site alter interactions between 

PI’s and binding site amino acids, resulting in a decreased affinity of the binding site for 

PI’s. Consequently, the binding affinity for the natural substrate and subsequent viral 

replication is reduced (13-16). As a compensatory measure, secondary mutations are 

selected in PR or Gag in order to restore/improve cleavage and replicative capability, 

and/or in some cases enhance drug resistance (17-19). Compensatory mutations in Gag 

can occur at either CS's or non-CS's. In the case of CSMs, the Gag-pol frameshift is 

altered resulting in increased expression of pol products (i.e. more production of PR) which 

directly improves production of mature infectious virus (20). In contrast, non-CSMs 
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improve the access of PR to CS thereby improving cleavage and viral replication (17, 21, 

22). 

 

The majority of documented CSM's have been identified within the NC/p1 and p1/p6 Gag 

cleavage sites, since commercial kits were designed to include coverage of these regions 

when amplifying and sequencing the PR region (4, 17, 19). The L449F and R452K 

mutations are examples of Gag mutations at the p1/p6 cleavage site which work 

synergistically with PR RAMs to enhance resistance to PI’s (23, 24). Similarly, 

compensatory mutations in Gag non-cleavage sites such as R76K, Y79F and T81A have 

also been reported to occur in conjunction with PR RAMs to confer reduced susceptibility 

to PI’s and improve viral replication (11, 25). 

 

Mutations such as A431V, I437V and the double mutations K436E/R and I437T have been 

shown to cause primary resistance to PI’s in the absence of PR RAMs (8-10, 12, 22, 24, 

26, 27). Studies have also suggested that mutations in Gag could possibly lead to the 

development of mutations in PR (4). 

 

Even though HIV-1 subtype C is the most prevalent subtype globally (28), the majority of 

studies investigating the role of Gag in PI resistance have focused on HIV-1 subtype B 

(11, 23-26, 29, 30) and to a lesser extent, HIV-1 subtype A and D (6). Currently there are 

only two studies which investigated Gag mutations associated with PI resistance in HIV-1 

subtype C (31, 32). The first study used sequences downloaded from the Los Alamos 

database, to identify Gag amino acids associated with PI resistance in HIV-1 subtypes A1, 

B, C, D, F1, G, CRF01_AE and CRF01_AG. The authors showed that most Gag mutations 

associated with PI resistance occurred in the carboxy terminal of Gag (31). This study 

however did not have matched treatment data for each sequence therefore associations 

between Gag mutations and specific PI's could not be established. Such, information is 

integral for the development of gag resistance testing algorithms. The second study 

investigated Gag mutations associated with PI resistance in 20 paediatric patients (32). 

This study showed that the majority of paediatric patients failing treatment did not harbour 

PR mutations, but did harbour mutations in the Gag CS and non-CS, which could directly 

contribute to PI resistance. The limitation of this study however was the small sample size.  

 

In light of the limited number of studies on HIV-1 subtype C and the fact that subtype 

variation is associated with variance in the development of drug resistance (33), the need 
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for more HIV-1 subtype C studies investigating PI associated resistance mutations in gag, 

using larger cohorts with known treatment history’s', is recognised. Such data would be 

useful for the inclusion of Gag in resistance testing and interpretation algorithms.   

 

This current study aimed to identify Gag-Protease mutations associated with PI 

resistance/exposure in an HIV-1 subtype C cohort of 80 patients failing a PI inclusive 

treatment regimen between 2009-2013, from KwaZulu-Natal, South Africa. Briefly, the 

Gag-Protease region from a total of 80 HIV-1 subtype C infected participants failing a PI 

inclusive treatment regimen was genotyped. Mutations in PR and Gag known to be 

associated with PI resistance were identified. Novel Gag mutations possibly associated 

with PI resistance were identified by comparing Gag sequences from 80 HIV-1 subtype C 

infected individuals failing a PI inclusive treatment regimen (PCS cohort) to Gag 

sequences from: 54 HIV-1 subtype C acutely infected individuals, 954 HIV-1 subtype C 

treatment naïve individuals and 2,481 HIV-1 subtype B treatment naïve individuals. Once 

novel mutations were identified, we determined if these occurred in the absence or 

presence of PR DRMs. 

 

2.2 Methods 

 

2.2.1 Study participants/ sequences 
 

Study samples comprised of 80 samples from patients failing a PI inclusive treatment 

regimen, 2,481 HIV-1 subtype B treatment naïve sequences, 954 HIV-1 subtype C 

treatment naïve sequences and 54 HIV-1 subtype C sequences from acutely infected 

individuals, as discussed below.  

 

2.2.1.1 HIV-1 subtype C infected participants failing a PI inclusive treatment 
regimen (PCS cohort) 

 

Stored samples were obtained from 80 patients failing a PI inclusive treatment regimen. 

These patients were enrolled in the Protease Cleavage Site (PCS) study between 2009 

and 2013 and were recruited from King Edward VIII and McCords hospitals in Durban, 

South Africa. All participants received a PI- inclusive treatment regimen for at least six 

months and had a viral load >1000 copies/ml at the time of enrolment. Participant 

characteristics are presented in Table 2.1. 
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Viral load data was available for patients at virologic failure as part of routine clinical 

assessment. The Roche Amplicor version 1.5 assay (Roche Molecular Systems, 

Branchburg, New Jersey) was used to measure viral load. Adherence to cART was 

assessed by measuring levels of LPV of all participant samples using a mass spectrometry 

method validated and developed by the Division of Clinical Pharmacology, University of 

Cape Town, SA (34).  

 

The protocol for this study was approved by the biomedical research ethics committee of 

the University of Kwa-Zulu Natal (BREC: BE347/13) (Appendix 7.3). Written informed 

consent was obtained from all study participants.  

 

2.2.1.2 Control groups 
 

Control groups comprised of sequences from: HIV-1 subtype C acutely infected 

individuals, HIV-1 subtype C treatment naïve individuals and HIV-1 subtype B treatment 

naïve individuals as discussed below. 

 

2.2.1.2.1 HIV-1 subtype C acute sequences 
 

Fifty-four Gag-Protease sequences from HIV-1 subtype C acutely infected individuals were 

obtained from Dr Jaclyn Mann (HIV Pathogenesis Programme, University of Kwa-Zulu 

Natal). Accession numbers for 32 sequences are available (HQ696791-HQ696822), whilst 

the remaining sequences constitute a dataset which has not been included in GenBank as 

yet due to ongoing work and analysis. The median number of days post infection for all 

acute samples was 14 days (range: 14–31.75 days) (35). 

 

2.2.1.2.2 HIV-1 subtype C and B treatment naïve sequences 
 

A total of 954 plasma sequences from treatment naïve individuals infected with HIV-1 

subtype C from South Africa were downloaded from the Los Alamos sequence database 

(36). Additionally, 2,481 plasma sequences from treatment naïve HIV-1 subtype B infected 

individuals were downloaded from the Los Alamos sequence database (36). Accession 

numbers for all sequences from Los Alamos are provided in Appendix 7.1 and 7.2. The 

number of sequences which were used in this study as control groups represent all the 
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sequences found using the specific search criteria (i.e. all sequences had to be derived 

from plasma and had to be treatment naïve) that were available in Los Alamos.  

 

All sequences were aligned using ClustalX version 2.1 (37) and manually edited in Bioedit 

version 7.2.5 (38). Duplicate sequences were removed using the ElimDupes tool in Los 

Alamos (39). The Rega subtyping tool was used to confirm the subtype of each sequence 

(40, 41). 

 

An overview of all samples/sequences used in this study is depicted in Figure 2.1. 

 

 

.  

 

 

 

Figure 2-1 Overview of study participants and control groups utilized in this study. Study 
samples comprised of 80 participants failing a PI inclusive treatment regimen (PCS cohort), whilst 
the control group comprised of: 54 sequences from HIV-1 subtype C acutely infected individuals, 
954 sequences from HIV-1 subtype C treatment naïve individuals and 2,481 sequences from HIV-1 
subtype B treatment naïve sequences.  Accession numbers for all sequences downloaded and 
used in this study is provided in Appendix 7.1 and 7.2. 

 

All sequencing associated laboratory work, described below, for patients failing a PI 

inclusive treatment regimen (i.e. PCS cohort) was conducted in collaboration with MSC 

student K. Pillay (HIV Pathogenesis Programme, University of Kwa-Zulu Natal) (42).  

 

2.2.2 RNA Extraction 
 

Viral RNA from 80 PCS samples was extracted from 140 l of stored plasma using the 

Qiamp Viral RNA Mini Kit, as per manufacturer's instructions (Qiagen, Valencia, USA). 

Prior to commencement of manufacturer’s instructions, 500 l of stored plasma was 



 

108 
 

centrifuged at 25,000 RCF (Jouan MR23i, Thermo Scientific, USA) for 90 minutes at 4°C 

in order to concentrate the plasma. Thereafter, as per manufacturer’s instructions, 360 l 

of supernatant was removed and 560 l of lysis solution comprising of carrier-RNA16 and 

buffer AVL17 was added to the tube and incubated at room temperature for 10 minutes. 

This served to concentrate RNA and denature RNase molecules thereby facilitating the 

recovery of intact viral RNA.  

 

A total of 560 l of 96% ethanol was then added to each tube, to remove all degraded 

RNA. Tubes were vortexed for 5 seconds and centrifuged at 13,000 rpm's for 10 seconds. 

Supernatant was added to mini-columns and centrifuged at 13,000 rpm’s for 1 minute. 

Thereafter 500 l of buffer AW1 was added to each column and centrifuged at 13,000 rpm 

for 1 minute. This was followed by the addition of 500 l of buffer AW2 to the mini-column, 

which was subsequently centrifuged at 13,000 rpm’s for 1 minute. Viral RNA was then 

eluted in 50 l of buffer AVE and stored at -80C. 

 

2.2.3 Amplification of the Gag-Protease region of HIV-1 
 

Amplification of patient-derived Gag-Protease was performed using a previously described 

method (43) with minor amendments. Briefly, extracted viral RNA was reverse transcribed 

using the Superscript III one-step PCR kit (Invitrogen, Carlsbad, USA) and the following 

Gag-Protease specific primers: 5’ GAG ATC TCT CGA CGC AGG AC 3’ (HXB2 

nucleotide: 675 to 697, forward primer) and  5’ GGA GTG TTA Tat GGA TTT TCA GGC 

CCA ATT 3’ (HXB2 nucleotides: 2,696 to 2,725, reverse primer). The reverse transcription 

PCR (RT-PCR) reaction comprised of: 3 µl diethyl pyrocarbonate (DEPC) treated water, 

12.5 µl 2X reaction buffer (containing 0.4 mM of each dNTP and 3.2 mM MgSO4), 0.5 µl of 

each primer (10 pmol/µl), 1 µl of Superscript III RT/Platinum Taq enzyme (2 U/µl) and 7.5 

µl of RNA template. The RT-PCR reaction mix was incubated (GeneAmp PCR system 

9700, Applied Biosystems, Foster City, USA) at 55ºC for 30 minutes (cDNA synthesis) and 

94ºC for 2 minutes (initial denaturation), followed by 35 cycles of 94ºC for 15 seconds 

(denaturation), 55ºC for 30 seconds (annealing) and 68ºC for 2 minutes (extension), and 

ended with a 5 minute incubation at 68ºC (final extension). 

 

                                                           
16Carrier-RNA has two functions. Firstly it ensures maximum binding of RNA to the mini-column membrane thereby concentrating RNA within the column. 

Secondly, it prevents degradation of viral RNA by RNase molecules, which may have escaped degradation. 
17Buffer AVL comprises of detergents and chaotropic salts that function to denature RNase molecules thereby facilitating the isolation of intact viral RNA only. 
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Reverse transcription-PCR was followed by a second round of PCR using a Takara Ex 

Taq HS enzyme kit (Takara, Shiga, Japan) and 100-mer forward (5’ GAC TCG GCT TGC 

TGA AGC GCG CAC GGC AAG AGG CGA GGG GCG ACT GGT GAG TAC GCC AAA 

AAT TTT GAC TAG CGG AGG CTA GAA GGA GAG AGA TGG G 3’) and reverse (5’ 

GGC CCA ATT TTT GAA ATT TTT CCT TCC TTT TCC ATT TCT GTA CAA ATT TCT 

ACT AAT GCT TTT ATT TTT TCT GTC AAT GGC CAT TGT TTA ACT TTT G 3’) primers 

that were complementary to NL43∆gag-protease on either side.  

 

Two 50 µl PCR reactions were prepared per participant sample, each comprising of 37 µl 

DEPC water, 5 µl of 10X Ex Taq buffer (consisting of 20 mM MgCL2), 4 µl of dNTP’s, 0.8 

µl of each primer (10 pmol/µl), 0.25 µl of Takara Ex Taq (5 U/µl) and 2 µl of RT-PCR 

product. The following thermocycler conditions were used: 94ºC for 2 minutes (initial 

denaturation), 40 cycles of 94ºC for 30 seconds (denaturation), 60ºC for 30 seconds 

(annealing) and  72ºC for 2 minutes (extension) followed by a 7 minute hold at 72ºC (final 

extension). 

 

Amplification of the Gag-Protease region was confirmed by gel electrophoresis. A 1 % 

agarose gel was prepared by adding two agarose tablets (0.5 g) (Bioline, USA) to 100 ml 

of 1X Tris/Borate/EDTA solution (Sigma-Aldrich, USA) which was then heated to dissolve 

the agarose and cooled to room temperature prior to casting the gel. Gel loading dye was 

prepared by mixing 50 µl of gel loading buffer (Sigma-Aldrich, USA) to 1 µl of gel red 

(Sigma-Aldrich, USA). A total of 2 µl of gel loading dye (Sigma-Aldrich, USA) was mixed 

with 2 µl of PCR product and loaded onto the gel which was run at 120 V , 500 mA for 40 

minutes on an Electrophoresis Power Supply (EPS 301, Amersham Biosciences, 

Sweden). A low DNA mass ladder (2 µl) (Invitrogen, Carlsbad) (Figure 2.2) was also run 

on the gel to assist in viewing the approximately 1.7 kb Gag-Protease product (Figure 2.2). 

The GelVue UV Transilluminator (SynGene, London) was used to view the gel. 

 

A picture of the low mass ladder used in this study is presented in Figure 2.2 below.  



 

110 
 

 

Figure 2-2 Depiction of the Invitrogen low DNA mass ladder used to identify Gag-pro 
products which were approximately 1.7kb as demonstrated by the gel showing patient-
derived gag-protease product on the right.  

 

Once the presence of Gag-Protease product was confirmed, PCR products from the two 

50 µl reactions were pooled and stored at -20ºC until used in Sanger sequencing and 

generation of recombinant viruses (Chapter 3). 

 

2.2.4 Sanger sequencing of HIV-1 Gag-Protease amplicons 
 

Sanger sequencing was conducted using the BigDye terminator kit v3.1 (Applied 

Biosystems, Foster City, CA). A 1:10 dilution of each PCR product (generated in section 

2.2.3) was prepared in PCR grade water. Sequencing primers used included: 5’ CTT GTC 

TAG GGC TTC CTT GGT 3’ (HXB2 position: 1,078 – 1,098), 5’ CTT CAG ACA GGA ACA 

GAG GA 3’ (991 – 1010), 5’ GGT TCT CTC ATC TGG CCT GG 3’ (1462 – 1481), 5’ CCT 

TGC CAC AGT TGA AAC ATT T 3’ (1960 – 1981), 5’ TAG AAG AAA TGA TGA CAG 3’ 

(1817 – 1834), 5’ CTA ATA CTG Tat CAT CTG CTC CTG T 3’ (2328 – 2353), 5’ CCT 

GGC TTT AAT TTT TAC TGG 3’ (2,196 – 2,268). Individual sequencing reactions per 

primer were prepared in a 96-well Micro Amp plate (Applied Biosystems) with the following 

components: 1.6 µl PCR grade water, 2 µl 5X sequencing buffer, 1 µl primer (3.2 pmol/µl), 

0.4 µl BigDye RR mix and 5 µl of diluted PCR product (approximately 2 ng/µl). Thermal 

cycling conditions were as follows: 96ºC for 1 minute (initial denaturation) followed by 35 

cycles of 96ºC for 10 seconds (denaturation), 50ºC for 30 seconds (annealing) and 60ºC 

for 4 minutes (extension).  

 

Patient derived gag-protease product 
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Purification of sequencing products was conducted on the same day. Products were 

initially diluted in 1 µl ethylenediaminetetraacetic acid (EDTA; 125 mM, pH 8.01, Sigma-

Aldrich) and 26 µl of a sodium acetate mixture (comprising of 1 µl sodium acetate [3M, pH 

5.2, Sigma-Aldrich] and 25 µl of 99% ethanol). The plate was sealed, vortexed for 5 

seconds and centrifuged (Eppendorf centrifuge 5810R, Merck, Germany) at 3,000 x g for 

20 minutes. Sequencing products were then dried by inverting plates on a paper towel and 

centrifuging at 150 x g for 5 minutes. Thereafter pellets were immediately re-suspended in 

35 µl of a 70% ethanol solution and centrifuged at 3,000 x g for 5 minutes. Plates were 

once again inverted and centrifuged at 150 x g for 1 minute. Afterwards, the plate was 

dried at 50ºC for 5 minutes and stored at -20ºC. Prior to sequencing on the ABI 3130 XL 

genetic analyser (Applied Biosystems), sequencing products were re-suspended in 10µl 

HiDi-formamide, mixed and denatured at 95ºC for 3 minutes and cooled to 4ºC  for 3 

minutes in a thermocycler.  

 

2.2.5 Data analysis 
 

An overview of analysis tools used to analyse Gag-Protease sequences and identify novel 

Gag mutations is discussed below. Statistical analysis used in this study is also discussed.  

 

2.2.5.1 Sequence analysis 
 

Sequences were edited and visualized in Sequencher version 5.1 (Gene Codes 

Corporation, Ann Arbor, USA) and aligned to an HXB2 reference strain (GenBank 

accession number K03455) and a subtype C reference strain (GenBank accession number 

AY772699) using ClustalX version 2.1 (37) and Bioedit version 7.2.5 (38). For the purpose 

of quality control, a neighbor joining tree was drawn in Paup (44) and viewed in Figtree 

(http://tree.bio.ed.ac.uk/software/figtree/). Contamination was evaluated based on branch 

lengths viewed in the phylogenetic tree. The Rega HIV-1 subtyping tool was used to 

confirm sample subtypes (40, 41).  

 

Mutations in PR were identified using the Stanford HIVdb resistance interpretation 

algorithm (45) and the International AIDS Society-USA (IAS-USA) list of resistance 

mutations (46). The presence of mutations in Gag previously reported to be associated 

with PI resistance/exposure was identified based on information from literature (Table 1.3) 

(4, 21, 31).  

http://tree.bio.ed.ac.uk/software/figtree/
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2.2.5.2 Analysis of novel mutations 
 

Since Gag mutations in HIV-1 subtype C are not well documented, exploratory analysis 

was conducted, using the RegaDB sequence analysis tool 

(http://regatools.med.kuleuven.be/sequencetool/sequencetool.wt) and the Viral 

Epidemiology Signature Pattern Analysis (VESPA) tool 

(http://www.hiv.lanl.gov/content/sequence/VESPA/vespa.html) in order to  identify possible 

mutations in Gag associated with PI exposure or PI drug resistance.  

 

The RegaDB sequence analysis tool compared each sequence in the PCS cohort and 

HIV-1 subtype C control groups (i.e. acute and treatment naïve groups) to the reference 

sequence (HXB2) and scored each amino acid with a 1 (variation present) or a 0 (variation 

absent). A subtype C reference sequence was also included in the analysis. The program 

generated a table detailing the presence/absence of variations at each Gag codon. Each 

codon variation was summed and frequency was calculated by dividing the sum by the 

total number of sequences in the group. The frequency of variants at each codon was 

compared amongst sequences from: participants failing a PI inclusive treatment regimen 

(PCS cohort), HIV-1 subtype C treatment naïve individuals and HIV-1 subtype C acutely 

infected individuals. Variants with a difference of >5% amongst cohorts were flagged. The 

frequencies of these variants, in all 3 cohorts, was anlaysed using the Chi square statistic.  

 

The VESPA tool computed the frequency of amino acids at each position for two groups of 

sequences tested. It selected the position at which the most common amino acid in one 

group differs from the most common amino acid in the second group and output the 

frequencies of these amino acids for each group (47). Fishers exact tests were performed 

for all positions identified as signature patterns. Two sets of VESPA analysis was 

conducted. The first compared the viral signature patterns between the PCS cohort and 

the HIV-1 subtype C treatment naïve cohort. The second analysis compared viral 

signature patterns between the PCS cohort and the acute cohort.  

 

For amino acid substitutions to be considered as being associated with PI 

resistance/exposure, they were required to appear at a significantly higher frequency in the 

PCS cohort in comparison to the acute and treatment naïve cohorts. 

 

http://regatools.med.kuleuven.be/sequencetool/sequencetool.wt
http://www.hiv.lanl.gov/content/sequence/VESPA/vespa.html
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2.2.6 Statistical analysis 
 

Discrete data (e.g. mutation frequency) was analysed using the Fishers exact tests (for 

comparisons of 2 groups) or the Chi-square test (for comparisons of more than 2 groups). 

Multiple comparisons of mutation frequency were subject to Bonferonni’s correction (48). 

Statistical analysis was conducted using Graphpad Prism version 5 (Graphpad Software, 

California) and R statistics version 3.2.2 (49). Statistical significance was defined as p 

<0.05. All continuous data (e.g. age, viral load and LPV levels) is presented as the median 

with an interquartile range (IQR) unless otherwise stated.  

 

2.3 Results 

 

2.3.1 Participant characteristics 
 

Table 2.1 details participant characteristics for 80 participants from the PCS cohort. Of the 

80 participants, 40% were male whilst 60% were female. The median age at sampling was 

35 years (IQR: 26-42 years). The median viral load was 4.63 log10 copies/ml (IQR: 3.98 – 

5.26). Lopinavir levels were detectable in 61 participants (76.25%), a further 10 

participants had undetectable LPV levels (12.5%) whilst LPV levels were not available for 

9 participants (11.25%). 

 

Table 2-1 Overview of participant characteristics for 80 participants, infected with HIV-1 
subtype C, that failed a PI inclusive treatment regimen (i.e. PCS cohort). 

Characteristic Value (IQR) of parameter 

Gender (%) 
  Male 
  Female 

 
40 
60 

Median age at sampling (years) 35 (26 – 42) 

Median viral load at sampling (log10 copies/ml) 4.63 (3.98 – 5.26) 

Lopinavir levels (µg/ml) 
Detectable (n=61) 
Undetectable (n=10) 
No data (n=9) 

11.7 (5.9 – 17.8) 
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All 80 participants were infected with HIV-1 subtype C as established by the RegaDB 

sequencing tool and depicted in the neighbour joining tree in Figure 2.3 below.  

 

 

Figure 2-3 Neighbor joining tree (Paup 4.0) for PCS cohort participants. All sequences from the 
PCS cohort clustered with HIV-1 subtype C reference sequences indicating that all sequences are 
representative of HIV-1 subtype C infection.  

 

2.3.2 Identification of Protease DRMs in the PCS cohort 
 

As described in an associated study, 34 out of 80 participants from the PCS cohort 

presented with PR RAMs (i.e. 42.5%) (42).  

 

Figure 2.4 shows each of the 18 PR RAMs identified and lists the number of participants 

harbouring each RAM next to the mutation name. The I54V PR RAM occurred most 

frequently (29 out of 34), this was followed by the M46I (28 out of 34), V82A (27 out of 34) 

and L76V PR RAMs (22 out of 34) respectively. All other PR RAMs occurred in <4 

participants (Figure 2.4)  
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Figure 2-4 Overview of 18 PI associated resistance mutations in PR identified in the PCS 
cohort and the number of sequences in which each mutation was detected. Mutation names 
are followed by the number of participants presenting with the particular mutation.  

 

Ninety-four percent of participants with PR RAMs (32 out of 34) harboured more than one 

PR mutation (Table 2.3). The majority of participants harboured combinations of four PR 

RAMs (53%; 18 out of 34), 17% of participants harboured combinations of three PR RAMs 

(6 out of 34), 15% of participants harboured combinations of five PR RAMs (5 out of 34), 

6% of participants harboured combinations of either two or six PR RAMs (2 out of 34) 

whilst 3% of participants harboured one PR RAM only (1 out of 34) (Table 2.2).  

 

The V82A PR RAM was the only PR mutation found in isolation of other PR RAMs in two 

participants (Table 2.2). The most common pattern of PR RAMs included: 

M46I+I54V+V82A (highlighted in red in Table 2.2) which occurred in 22 out of 33 

participants (67%). Additionally, 16 out of 34 participants presented with the following 

pattern of PR mutations: M46I+I54V+V82A+L76V (highlighted in blue in Table 2.3) (47%) 

(Table 2.2). Most other participants presented with varied combinations of PR RAMs, with 

no specific pattern noted (Table 2.2).  
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Table 2-2 Illustration showing the combinations of PR RAMs for participants from the 
PCS cohort.  

Number 

of PR 

RAMsa Mutation combinations and number of participants with combination 

Total 

Ptntsb 

1 V82A (n=2)             2 

2 I54V, V82A (n=1)             1 

3 

I54V, L76V, V82A 

(n=1) 
M46I, I47A, I84V (n=1) 

M46I, I54V, 

V82A (n=3) 

M46L, I47A, 

N88S (n=1)       6 

4 

L24I, M46I, I54V, 

V82A (n=1) 

M46I, I50V, I54V, 

L90M (n=1) 

M46I, I50V, 

I54V, V82A 

(n=1) 

M46I, I54L, 

L76V, I84V 

(n=1) 

M46I, 

I54V, 

L76V, 

V82A 

(n=12) 

M46I, 

I54V, 

V82A, 

I85V 

(n=1) 

M46L, I54V, 

L76V, V82A 

(n=1) 

18 

5 

L24I, M46I, I54V, 

L76V, V82A 

(n=1) 

M46I, I47V, I54V, 

L76V, V82C (n=1) 

M46I, I54V, 

L76V,V82A, 

N83D (n=1) 

M46I, I54V, 

L76V, V82C, 

I84V (n=2)       5 

6 

M46I, F53L, 

I54V,L76V,V82A, 

L90M (n=1) 

V32I, 

M46I,I54V,L76V,V82A, 

L90M (n=1)           2 

a Represents the number of Protease resistance associated mutations (PR RAMs). b Represents the 

total number of participants with a particular number of PR mutations. Mutations highlighted in red 

represent the most common mutational pattern (M46I+I54V+V82A). Mutations highlighted in blue 

represents the addition of a 4th mutation (i.e. L76V) to the initial mutation combination (i.e. 

M46I+I54V+V82A+L76V), making it the second most commonly occurring mutation combination in 

the cohort. The number of participants (n) with a particular mutation or group of mutations is 

presented in brackets within each cell. Abbreviations: PR – Protease; RAMs – resistance 

associated mutations; ptnts – participants; n – number. 

 

These data suggests that it is uncommon for PR RAMs to occur in isolation of other PR 

RAMs.  

 

2.3.3 Identification of known Gag mutations associated with PI 
resistance/exposure in the PCS cohort 

 

A list of 43 Gag mutations collated from existing literature (Chapter 1, Table 1.3) was used 

as a reference to identify mutations in Gag that have been reported to be associated with 

PI  resistance or PI exposure.  
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These 43 mutations were divided into 2 groups (i.e. 11 mutations associated with PI 

resistance [i.e. rGag mutations] and 32 mutations associated with PI exposure) and their 

frequencies compared amongst sequences from the: PCS cohort, HIV-1 subtype C 

treatment naïve cohort, HIV-1 subtype C acute cohort and an HIV-1 subtype B treatment 

naïve cohort (Figure 2.5 and Figure 2.6).  

 

Figure 2.5 details the frequencies of known Gag mutations associated with PI resistance in 

the: PCS cohort (black bars), HIV-1 subtype C treatment naïve cohort (green bars), HIV-1 

subtype C acute cohort (acutes; red bars) and HIV-1 subtype B treatment naïve cohort 

(blue bars). Eight out of 11 Gag mutations known to be associated with PI resistance were 

detected in the PCS cohort (Table 2.1 and Figure 2.5). These included: R76K, Y79F, 

V128I, A431V, K436R, L449F/P, R452K and P453L which will be discussed below.  

 

The R76K and Y79F mutations occurred at high frequencies (>50% and >35% 

respectively) in all cohorts, suggesting that they are potentially natural polymorphisms in 

HIV-1 subtype C and possibly in HIV-1 subtype B as well.  

 

The A431V, L449F/P, R452K and P453L resistance associated Gag (rGag) mutations 

occurred at significantly higher frequencies in the PCS cohort in comparison to all other 

cohorts (p<0.0001 for all). This indicates that these mutations are likely associated with PI 

resistance in HIV-1 subtype C, as is the case with HIV-1 subtype B (4).  
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Figure 2-5 Comparison of Gag mutations reported to be associated with PI resistance, 
amongst sequences from the: PCS cohort, HIV-1 subtype C treatment naïve cohort, HIV-1 
subtype C acute cohort and HIV-1 subtype B treatment naive cohort. Significant differences 
are denoted by asterisks, where *** = p<0.0001 and ** = p<0.001. Color coded alphabets (which 
match the color of bars) located above the p value are representative of the group which presented 
with the significantly lower result. E.g. the A431V mutation occurred at a significantly lower 
frequency in the HIV-1 subtype B treatment naïve cohort (B), HIV-1 subtype C treatment naïve 
cohort (C) and the HIV-1 subtype C acute cohort (A) in comparison to the PCS cohort. 

 

Figure 2.6 provides an overview of the frequencies of Gag mutations reported to be 

associated with PI exposure within the: PCS cohort (black bars), HIV-1 subtype C 

treatment naïve cohort (green bars), HIV-1 subtype C acute cohort (acutes; red bars) and 

HIV-1 subtype B treatment naïve cohort (blue bars).  

 

Of the 32 PI exposure associated mutations identified in literature (Chapter 1, Table 1.3), 

12 were identified in the current study. The majority of these mutations occurred in the 

p2/NC cleavage site (Figure 2.5). Mutations for which significant differences were 

observed are discussed below. 

 

The E12K, V370A/M, T375N and G381S RAMs occurred at significantly higher 

frequencies in subtype C sequences (PCS, treatment naïve and acutes) in comparison to 

sequences from the HIV-1 subtype B cohort. Their high frequency in the acute and HIV-1 
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treatment naïve cohort could suggest that these mutations possibly occur as natural 

polymorphisms in HIV-1 subtype C.  

 

The V35I and I401T mutations were the only mutations to occur at a significantly higher 

frequency in the PCS cohort in comparison to other cohorts indicating that these mutations 

are likely to be related to PI exposure/resistance in HIV-1 subtype C.  
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Figure 2-6 Comparison of Gag mutations reported to be associated with PI exposure, 
amongst sequences from the: PCS cohort, HIV-1 subtype C treatment naïve cohort, HIV-1 
subtype C acute cohort and HIV-1 subtype B treatment naive cohort. Significant differences 
are denoted by asterisks, where *** = p<0.0001, ** = p<0.001 and * = p<0.01. Color coded 
alphabets (which correspond to the color of bars) located above the p value are representative of 
the group which presented with the significantly lower result. E.g. the V35I mutation occurred at a 
significantly lower frequency in the HIV-1 subtype B treatment naïve cohort (B) and the HIV-1 
subtype C treatment naïve cohort (C) in comparison to the PCS cohort. 

 

In summary, of the 43 Gag mutations shown to be associated with PI resistance/exposure 

in literature (Chapter 1, Table 1.3), 20 were detected in the PCS cohort (Figure 2.5 and 

2.6). Of these 20 mutations, the A431V, L449F/P/V, R452K, P453L, V35I and I401T rGag 

mutations were the only mutations to occur at significantly higher frequencies in the PCS 

cohort in comparison to other cohorts (Figure 2.5 and 2.6), suggesting that these 
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mutations are associated with PI exposure/resistance in HIV-1 subtype C. The presence of 

rGag mutations (R76K and Y79F) and PI exposure associated Gag mutations (E12K, 

V370A/M, T375N and G381S) at frequencies above 50% and 35% respectively,  in the 

acute and HIV-1 subtype C treatment naïve cohorts highlights the possibility of PI 

resistance/exposure associated mutations occurring as natural polymorphisms in HIV-1 

subtype C.   

 
2.3.4 Identification of novel Gag mutations associated with PI 

resistance/exposure 
 

Exploratory analysis was conducted to identify novel Gag (nGag) mutations associated 

with PI resistance/exposure in HIV-1 subtype C, using the RegaDB sequence analysis tool 

and the VESPA tool.  

 

2.3.4.1 RegaDB data analysis 
 

The frequency of amino acids occurring at each codon in Gag was compared between the 

80 sequences from participants failing a PI inclusive treatment regimen (PCS) and 

sequences from: 954 HIV-1 subtype C treatment naïve and 54 HIV-1 subtype C acutely 

infected individuals using the RegaDB sequence analysis tool (Figure 2.7).  

 

Four novel Gag amino acid substitutions (Q69K, S111C/I, T239A/S and I256V) were 

identified to occur at a significantly higher frequency in the PCS group than the HIV-1 

subtype C treatment naïve and acute infection groups (Q69K, p<0.0001; S111C/I, 

p<0.0001; T239A/S, p<0.0001 and I256V, p<0.01) (Figure 2.7). All four of these mutations 

occurred in the amino terminal of Gag with two occurring in MA (Q69K and S111C/I) and 

two occurring in CA (T239A/S and I256V). (Figure 2.7). 
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Figure 2-7 Overview of four novel Gag mutations identified using the RegaDB sequence 
analysis tool. Significant differences are denoted by asterisks, where *** = p<0.0001, ** = p<0.001 
and * = p<0.01. Color coded alphabets located above the p value are representative of the group 
which presented with the significantly lower result. E.g. the S54A mutation occurred at a 
significantly higher frequency in the PCS cohort and the acute cohort in comparison to the subtype 
C treatment naïve cohort (C).  

 

2.3.4.2 Vespa analysis 
 

The difference in viral signature patterns amongst sequences from the: PCS cohort, HIV-1 

subtype C infected treatment naïve cohort (Subtype C Txn Naïve) and HIV-1 subtype C 

acute infection cohort (acutes) is presented in Figure 2.8. 

 

Four variations in signature patterns were noted between sequences from the PCS cohort, 

treatment naïve cohort and the acute infection cohort at position 61, 69, 256 and 451 of 

Gag. For position 61, the consensus amino acid for subtype B is leucine (L), however 

subtype C reference sequences generally have an isoleucine (I) at this position. 

Interestingly sequences from the PCS and acute cohort had predominantly isoleucine at 

position 61 whilst the majority of sequences in the treatment naïve cohort had a 

methionine (M) at this position (p<0.010 for both) (Figure 2.8). Similarly, both HIV-1 

subtype B and C reference sequences have a Serine (S) at position 451 of Gag. Whilst 
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most sequences from the PCS cohort had serine at this position, sequences from both the 

treatment naïve (p<0.001) and acute (no significant difference) cohorts presented 

predominantly with asparagine (N) at this position. The substitution of a serine for 

asparagine at position 451 is documented to be associated with PI resistance/exposure 

(24, 31, 50) hence its predominance in the acute and treatment naïve cohort and 

subsequent lack in the PCS cohort was surprising.  

 

The Q69K and I256V Gag mutations occurred at significantly higher frequencies in the 

PCS cohort in comparison to the treatment naive (P<0.001) and acute (p<0.0001) cohorts, 

suggesting that these mutations may be associated with PI exposure/resistance (Figure 

2.8 and Figure 2.7).  

 

Interestingly, the S111I/C and T239A/S mutations identified by RegaDB analysis to occur 

at a significantly higher frequency in the PCS cohort in comparison to the acute and 

treatment naïve cohort, did not appear as signature patterns for the PCS cohort in VESPA 

analysis. This could be attributed to the fact that S111I was combined with S111C and 

likewise T239A was combined with T239S in Rega analysis thereby increasing the number 

of participants with these mutations whilst VESPA analysed each amino acid change 

individually.  

 

Overall, a combination of results from RegaDB and VESPA analysis highlighted four 

possible nGag mutations which could be associated with PI resistance/exposure in HIV-1 

subtype C. These included: Q69K, S111I/C, T239A/S and I256V. 
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Figure 2-8 Viral signature patterns highlighting sequence variation amongst sequences from 
the PCS cohort, the HIV-1 subtype C treatment naïve cohort and the HIV-1 subtype C acute 
cohort. The first line represents amino acids belonging to the subtype C reference sequence. 
Dashes represent amino acids which correspond to the consensus sequences. Where amino acids 
do not correspond to the consensus, the variable amino acid is highlighted in colored text. The 
frequency of amino acid variations was compared using the Fishers exact statistic. Significance is 
denoted by asterisks, were *= p<0.01, **= p<0.001 and ***=p<0.0001.  
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2.3.5 Assessing frequency of rGag, nGag and Gag exposure associated 
mutations in sequences with PR RAMs 

 

An overview of rGag mutations, PI exposure associated Gag mutations and nGag 

mutations is presented in Table 2.3 for all PCS sequences with PR RAMs. As described in 

section 2.3.2, the most common pattern of PR RAMs was M46I+I544V+V82A or 

M46I+I54V+L76V+V82A. The A431V rGag mutation was the most commonly occurring 

rGag mutation (i.e. present in 25 out of 34 participants, Section 2.3.3). All sequences with 

PR RAMs had nGag, rGag and Gag exposure associated mutations. The Q69K nGag 

mutation occurred most commonly (n= 21) followed by the S111I/C mutation (n=19).  

 

Table 2.3 highlights that all participants with PR RAMs harboured at least 1 rGag, nGag 

and PI exposure associated gag mutation. 

 
Table 2-3 Summary of: PR RAMs, Gag mutations identified in literature to be associated with 
PI exposure or resistance Gag (rGag) and novel Gag (nGag) mutations identified as part of 
this study in the PCS cohort.  

PID PR RAMs 
Gag mutations associated with PI 

exposure 

Gag mutations associated 

with PI resistance (rGag) 

Novel Gag mutations 

(nGag) 

PCS 002 

V32I, M46I, I54V, L76V, 

V82A, L90M E12K,H219Q, T375N, G381S R76K, A431V S111C, I256V 

PCS 003 I54V, L76V, V82A E12K,V370A, T375N,P497L Y79F, K436R S111C  

PCS 017 M46I, I54V, L76V, V82A V370A, T375N,P497L R76K, A431V Q69K, I256V 

PCS 019 V82A 

E12K, V370A, S373T, T375N, 

I376V,S451N,  L449F, R452K I256V 

PCS 033 

M46I, F53L, I54V, L76V, 

V82A, L90M 

E12K,V370A, S373T, T375N, 

G381S,S451T R76K, K436R Q69K, I256V 

PCS 040 

M46I, I54V, L76V, V82C, 

I84V E12K, V370A, T375N, I389T A431V I256V,T239S 

PCS 053 

M46I, I54V, L76V, V82A, 

N83D E12K, G62R, T375N, I389T, I401V A431V, K436R I256V, T239S 

PCS 056 I54V, V82A E12K Y79F, V128I, K436R, P453L Q69K, S111C 

PCS 061 M46L, I54V, L76V, V82A 

E12K, V370A, S373T, T375N, 

G381S, I401V, R76K, V128I, A431V, L449F Q69K, I256V, T239A 

PCS 064 M46I, I54V, V82A, I85V T375N,S451N R76K, A431V S111C 

PCS 069 M46I, I54V, L76V, V82A E12K,T375N, G381S,I401L R76K, A431V Q69K, S111C, I256V 
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PID PR RAMs 
Gag mutations associated with PI 

exposure 

Gag mutations associated 

with PI resistance (rGag) 

Novel Gag mutations 

(nGag) 

PCS 071 M46I, I54V, L76V, V82A 

E12K, H219Q, V370A, T375N, 

G381S R76K, Y79F, A431V Q69K, S111C, I256V 

PCS 076 V82A E12K,H219Q, T375N, I401V R76K Q69K, I256V 

PCS 086 

M46I, I47V, I54V, L76V, 

V82C E12K, G62R,T375N, G381S, S451N V128I T239A 

PCS 087 M46I, I54V, L76V, V82A E12K,T375N, G381S, I389T R76K, A431V Q69K 

PCS 089 M46I, I54V, L76V, V82A E12K,S373T, A374P, G381S R76K, A431V S111C 

PCS 090 M46I, I50V, I54V, V82A E12K, T375N, I376V, I401L A431V, P453L Q69K 

PCS 097 M46I, I50V, I54V, L90M E12K, T375N, G381S,I437V 

R76K, V128I, A431V, 

R452K Q69K, S111C, I256V 

PCS 098 

M46I, I54V, L76V, V82C, 

I84V 

E12K,H219Q, T375N, G381S, 

I389T Y79F I256V 

PCS 099 M46L, I47A, N88S E12K,H219Q, T375N, G381S V128I,A431V,K436R Q69K, T239A 

PCS 100 M46I, I54V, L76V, V82A E12K, T375N, G381S Y79F, V128I, A431V Q69K 

PCS 101R M46I, I54V, L76V, V82A E12K, T375N, G381S,S451N, I401L A431V Q69K, S111C, I256V 

PCS 108 M46I, I54V, L76V, V82A E12K,G381S, I401V R76K, A431V Q69K, S111C, T239S  

PCS 124 M46I, I54V, V82A 

E12K,H219Q, V370A, S373T, 

T375N,,S451N R76K, A431V S111I,  T239S  

PCS 130 M46I, I54V, V82A E12K, A374P, T375N,S51N R76K, Y79F, A431V,P453L Q69K, S111C 

PCS 133 L24I, M46I, I54V, V82A E12K,V370A, S373P Y79F, K436R Q69K, I256V 

PCS 134 M46I, I54V, L76V, V82A 

E12K, S373Q, A374S, T375N, 

G381S R76K, Y79F,A431V I256V, T239S 

PCS 136 M46I, I54V, L76V, V82A E12K, V370A, T375N, G381S, R76K, Y79F,A431V, L449F Q69K, S111C, I256V 

PCS 140 M46I, I54V, L76V, V82A E12K,T375N, I376V, G381S R76K, Y79F, V128I,A431V Q69K, S111I, I256V 

PCS 152 M46I, I47A, I84V E12K,V370A R76K S111C, I256V 

PCS 153 

L24I, M46I, I54V, L76V, 

V82A 

E12K, H219Q, V370A, T375N, 

G381S, S451N R76K, Y79F Q69K, I256V 

PCM 001 M46I, I54L, L76V, I84V 

E12K, V370A, T375N, I376V, 

G381S  R76K, Y79F,A431V 

Q69K, S111C, I256V, 

T239S 

PCM 002 M46I, I54V, V82A E12K, T375N, I376V, G381S,S451N R76K, Y79F,A431V S111C 

PCM 007 M46I, I54V, L76V, V82A E12K, V370A, T375N, G381S A431V Q69K, S111C 
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2.3.6 Assessing frequency of Gag mutations in PCS sequences without PR 
RAMs 

 

Lastly, the presence of rGag, nGag and Gag PI exposure associated mutations was 

assessed in sequences without PR RAMs (n=46) (Table 2.4). A total of 33 out of 46 

sequences (71.7%) without PR RAMs harboured rGag mutations (Table 2.4). Thirty-seven 

out of 46 sequences (80%) harboured at least one nGag mutation identified in this study, 

whilst all 46 sequences (100%) harboured at least one Gag mutation known to be 

associated with PI exposure.  

 

All rGag mutations, except A431V, were found at similar frequencies in sequences with PR 

RAMs and sequences without PR RAMs. The A431V rGag mutation was found at a 

significantly higher frequency in sequences with PR RAMs (n=24) than sequences without 

PR RAMs (n=1) (p<0.0001) (Table 2.4). These data show that rGag, nGag and Gag PI 

exposure associated mutations also occur independently of PR RAMs.  

 
Table 2-4 Summary of: Gag mutations associated with PI exposure, Gag mutations 
associated with PI resistance (rGag) and novel Gag mutations (nGag) identified in 
sequences from the PCS cohort which did not harbor PR RAMs.  

PID 
Gag mutations identified in literature Novel Gag mutations 

(nGag) Associated with PI exposure Associated with PI resistance (rGag) 

PCS 005 E12K, G62R, T375N, H219Q  R76K, Y79F  Q69K 

PCS 007 E12K, V35I, T375N, G381S, I389T  None  None 

PCS 011 E12K, T375N, G381S  L449P, R452K, P453L S111I/ I256V 

PCS 012 E12K, G381S  R76K  I256V 

PCS 014 E12K, V370A, T375N  Y79F  I256V 

PCS 016 E12K, G62R, S373Q, T375N, G381S P453L   None 

PCS 018 E12K, A374S, T375N, G381S R76K, Y79F  Q69K, S111I, I256V 

PCS 020 E12K, V370A, G381S  R76K, Y79F, K436R, L449P I256V 

PCS 021 E12K, T375N, H219Q   None S111C 

PCS 022 E12K, V35I, T375N   None Q69K 

PCS 023 S373P, I389T  P453L   None 

PCS 024 E12K, T375N, G381S  Y79F   None 
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PID 
Gag mutations identified in literature Novel Gag mutations 

(nGag) Associated with PI exposure Associated with PI resistance (rGag) 

PCS 030 E12K, S373T, T375N, G381S, H219Q R76K  Q69K 

PCS 036 E12K, V370A, T375N, H219Q  R76K  T239A 

PCS 042 E12K, V35I, V370A  Y79F   None 

PCS 047 E12K    None S111I/ I256V 

PCS 049 E12K, T375N, G381S  R76K, Y79F, A431V S111C 

PCS 052 E12K, S373T  R76K, Y79F  S111C 

PCS 058 E12K, T375N, G381S, I389T  R76K  S111C 

PCS 059 E12K, A374P, T375N, G381S  R76K  Q69K, S111C  

PCS 063 E12K, V370A, S373T, T375N  R76K, R452K  Q69K, I256V 

PCS 070 E12K, V35I, T375N  R76K, Y79F  I256V 

PCS 075 T375N, G381S  V128I  Q69K, I256V 

PCS 083 E12K, T375N, G381S  R76K, Y79F  S111C, I256V 

PCS 084 E12K, T375N, I376V Y79F  Q69K 

PCS 093 E12K, G62R, A374S, T375N, I376V R76K, P453L  S111C 

PCS 095 

E12K, G62R, V370A, S373T, T375N, 

H219Q   None T239A, I256V 

PCS 096 E12K, A374S, T375N   None Q69K, S111C  

PCS 104 E12K, G62R, V370A, T375N, G381S R76K, R452K  Q69K 

PCS 105 E12K, V370A, S373T, T375N, G381S K436R  Q69K, S111C  

PCS 112 E12K, V35I, S373Q, A374S, I389T Y79F, V128I  S111C 

PCS 114 

E12K, V35I, V370A, S373T, T375N, 

I401V  None I256V 

PCS 115 E12K, G381S, I389T, H219Q  R76K, L449P, P453L Q69K, T239A, I256V 

PCS 116 E12K, V370A, T375N, G381S, H219Q R76K   None 

PCS 118 E12K, T375N, H219Q  R76K, Y79F, V128I, L449P, P453L Q69K 

PCS 120 E12K, V35I, V370A, T375N, I389T R76K, K436R  Q69K, S111C  

PCS 128 E12K, V35I, T375N    None Q69K, I256V 
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PID 
Gag mutations identified in literature Novel Gag mutations 

(nGag) Associated with PI exposure Associated with PI resistance (rGag) 

PCM004 E12K, V35I, S373Q, T375N, G381S   None Q69K, I256V 

PCM009 E12K, V370A, T375N, H219Q    None S111C 

PCSM012 E12K, T375N, G381S    None Q69K, I256V 

PCSM013 E12K, V35I, T375N, I376V, G381S R76K, P453L  S111I  

PCSM020 E12K, V35I, T375N, I401V  R76K, Y79F    None 

PCM022 E12K, V370A, T375N, G381S, H219Q   None S111C 

PCM024 E12K, T375N, G381S    None   None 

PCM029 

E12K, G62R, V370A, T375N, I376V, 

I389T,  R76K, P453L    None 

PCM040 E12K, V370A, T375N, G381S  R76K, L449P  

Q69K, S111C, T239S, 

I256V 

 

 

Overall, 42.5% (34/80) of participants harboured PR RAMs.  Eighty-four percent (67 out of 

80) of participants harboured rGag mutations and 90% (72 out of 80) of participants 

harboured nGag mutations. All participants (i.e. 34 out of 34) with PR RAMs harboured 

rGag mutations whilst 71% (33 out of 46) of participants without PR RAMs harboured rGag 

mutations. Similarly, all participants with PR RAMs harboured nGag mutations whilst 76% 

(38 out of 46) of participants without PR RAMs harboured nGag mutations. This data 

showed that for the PCS cohort PR RAMs always occurred in conjunction with gag 

mutations, however gag mutations also occurred without PR RAMs. 

 

2.4 Discussion 

 

The role of Gag in PI resistance is well documented for HIV-1 subtype B, however 

information is limited for HIV-1 subtype C, the most prevalent subtype globally (28). In this 

study, PI RAMs, in both Gag and PR, were identified in an HIV-1 subtype C cohort of 

participants failing a PI inclusive treatment regimen. Both novel and previously identified 

Gag mutations associated with PI resistance/exposure were identified.  
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Results showed that 34 out of 80 participants (42.5%) failing a PI inclusive treatment 

regimen presented with PR RAMs linked to high level resistance to various PI’s. The most 

common pattern for PR RAMs was M46I+I54V+V82A (n=22) followed by 

M46I+I54V+L76V+V82A (n=16). These patterns were consistent with a recent study which 

investigated PR RAMs in HIV-1 subtype C sequences from South Africa and Israel (51, 

52). Previous studies reported that the M46I+I54V+L76V+V82A combination of PR RAMs 

confers reduced susceptibility to eight PI’s (ATV, FPV, IDV, LPV, NFV, RTV, SQV and 

TPV) (53-55). Unfortunately all of these studies were performed prior to the introduction of 

DRV (i.e. from 2003-2006) hence no data was available for DRV in these studies. 

However, various later studies showed that L76V confers reduced susceptibility to DRV, 

FPV, IDV and LPV (56-58). These findings indicate that participants with the 

M46I+I54V+L76V+V82A pattern of PR RAMs would display reduced susceptibility to all 

PI’s. This has implications on future treatment for these patients in SA, since third-line 

regimens (i.e. the only remaining treatment regimen for the treatment of HIV after second-

line regimen failure) comprises of an InSTI, a PI (generally DRV) and an NNRTI.  

 

Analysis of the Gag gene identified six rGag mutations that occurred at significantly higher 

frequencies in the PCS cohort versus the acute and treatment naive cohorts (Figure 2.5), 

two of which appeared to be natural polymorphisms (R76K and Y79F) whilst the remaining 

four (A431V, L449F/P, R452K and P453L), were associated with PI resistance/exposure. 

Parry et al., (2011) identified R76K and Y79F to be associated with improved replication 

capacity in PI resistance when they occurred in conjunction with each other, however they 

only exerted a minor effect on replication capacity when found individually. This could 

suggest that HIV-1 subtype C viruses may have a replicative advantage under PI drug 

selection pressure, however further experimental work using a subtype C backbone is 

required to confirm this.  

 

Of the four rGag mutations identified in this study to be associated with PI resistance (i.e. 

A431V, L449F/P, R452K and P453L), A431V was the only one to have been previously 

described to confer resistance to PI’s in the absence of PR RAMs. It is considered as both 

a primary and compensatory mutation in PI resistance (12, 17). This mutation was the 

most commonly occurring rGag mutation in the PCS cohort, and in 96% (24 out 25) of 

instances was found in conjunction with PR RAMs which have been previously associated 

with reduced susceptibility to various PI's (53, 54). Given that A431V can confer reduced 

susceptibility to PI's alone, combining it with PR RAMs would likely increase drug 
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susceptibility scores thereby providing a more accurate measure of PI drug susceptibility. 

The inclusion of Gag in PI resistance algorithms should thus be considered.  

 

Unlike A431V; L449F/P, R452K and P453L are not considered as primary resistance 

mutations, since they work to enhance PI resistance in the presence of PR RAMs (23, 24, 

59). The L449F/P, R452K and P453L mutations, all located at the p1/p6 CS of Gag (4) are 

often seen in PI resistance (9, 19, 22, 24, 28, 38, 40, 44, 46, 47,48, 49,51, 52,54, 55) and 

have been shown to occur together with the following PR mutations: D30N, N88D, I50V 

and/or I84V (24, 59, 60). In contrast to previous studies which showed that the L449F Gag 

mutation occurred in conjunction with the following PR mutations: D30N, I50V, I84V and 

N88D (4, 59, 60), the current study showed it to occur predominantly in isolation of PR 

RAMs. Thereafter it was commonly found with V82A alone and a combination of 

A431V+M46I+I54V+L76V+V82A. The R452K mutation was found in combination with the 

following PR RAMs: M46I, I50V, I54V, V82A and L90M, with the L90M PR RAM being the 

only PR mutation previously reported to occur with the R452K Gag mutation (24). The 

P453L Gag mutation was found to occur together with the following PR RAMs in the 

current study: M46I, 50V, I54V and V82A. It has however been previously reported to 

occur with the I84V, N88D and L90M PR RAMs (24, 59, 60). Overall, we highlight variation 

in PR RAMs associated with rGag mutations between this study and previous studies, 

which could be attributed to subtype variation since most of the previous studies have 

been conducted on HIV-1 subtype B. This highlights that subtype B studies may not 

always translate to subtype C and thus supports the need for more research on HIV-1 

subtype C.  

 

Whilst the current study identified A431V, L449F/P and R452K in participants failing a PI 

inclusive treatment regimen, a recent study by Li et al., (2014) in which 137 HIV-1 subtype 

C PI resistant Gag-Protease sequences were compared to 1,786 HIV-1 subtype C PI 

susceptible Gag-Protease sequences, did not show the occurrence of these mutations in 

subtype C sequences (31). The difference in data between the studies could potentially 

represent treatment specific variations where LPV could possibly be associated with the 

development of A431V, L449F and R452K in subtype C. This however could not be 

confirmed since the Li study did not have matched treatment data  for the sequences used 

in their study.  
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Several Gag mutations associated with PI exposure were also identified in this study. Four 

of these exposure associated mutations (E12K, V370A/M, T375N and G381S) were found 

at frequencies >40% in the PCS cohort and control groups (i.e. treatment naïve groups) 

(Figure 2.6) suggesting that they are natural polymorphisms in HIV-1 subtype C. The E12K 

mutation, located in matrix, was shown previously to occur in response to ATV treatment in 

HIV-1 subtype B. It has been suggested that it may have a role in improving viral fitness in 

the presence of PI’s (21). The V370A mutation, located in the p2 region of Gag, has been 

shown to accumulate during PI treatment, with its role in PI resistance remaining unclear 

(22, 61). Codon 375 and 381 are located in the p2/NC Gag CS which is known to control 

the rate and order of polyprotein cleavage (62). Although the role of these mutations in PI 

resistance is unclear, their presence as natural polymorphisms highlights that Gag in HIV-

1 subtype C differs from Gag in HIV-1 subtype B and further supports the need for subtype 

specific studies.  

 

The V35I and I401T exposure associated mutations occurred at significantly higher 

frequencies in the PCS cohort in comparison to the control groups indicating that both of 

these mutations may have a role in LPV resistance/exposure in HIV-1 subtype C. 

Gatanaga et al., (2012) demonstrated the development of V35I in response to ATV and 

suggested that it may have a compensatory role in viral replication in the presence of PI’s 

(21). Stray et al., (2013) showed the development of I401T several months after exposure 

to a test PI (GS-8374). Although clear that both these non-CS mutations occur under PI 

selection pressure, their exact roles in PI resistance are unknown, with further research 

required.    

 

The current study represents the first to identify four novel non-CS mutations in Gag (i.e. 

Q69K, S111I/C, T239A/S and I256V) associated with PI resistance/exposure (Figure 2.7). 

Interestingly, these four Gag mutations were found at similar frequencies in participants 

with and without PR RAMs indicating that their development is not dependent upon PR 

RAMs but is likely dependent on PI exposure. Their function in PI resistance is unclear and 

will be explored further in Chapter 3 and 4. 

 

Interestingly, this study showed that PR RAMs always occurred in conjunction with rGag, 

nGag and PI exposure associated Gag mutations, however these Gag mutations (i.e. 

rGag, nGag and PI exposure associated Gag mutations) were found to also occur without 

PR RAMs. This suggests that Gag mutations may develop before PR RAMs, and could 
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potentially facilitate the development of PR RAMs. Such a scenario has been suggested 

for rGag mutations in two previous studies. In the first, Bally et al., (2000) showed that the 

L449F Gag resistance mutation favours the development of the I84V PR RAM. In the 

second study, Gatanaga et al., (2002) reported that the H219Q Gag mutation preceded 

the development of PR RAMs and suggested that it may facilitate the development of PR 

RAMs (2002). There is however much debate on whether Gag or PR mutations appear 

first with further investigations required to elucidate the mechanisms of Gag-Protease co-

evolution in PI resistance. 

 

Furthermore, 89% of all participants with PR RAMs harboured a rGag mutation in either 

the NC/p1 or p1/p6 cleavage site. A study by Kolli et al., (2009) displayed a similar result, 

were all viruses with PR mutations within the active site, also harboured at least one Gag 

mutation in either the NC/p1 or p1/p6 Gag cleavage site (42). Mutations in the NC/p1 and 

p1/p6 CS have been shown to alter the structure of the CS's which enables sustained 

cleavage by the mutant PR in the presence of PI's (42). The high prevalence of rGag CS 

mutations occurring in conjunction with PR RAMs could thus suggest that Gag and 

Protease co-evolve during PI resistance. 

 

Overall, 58% of participants failing a PI inclusive treatment regimen did not harbour 

mutations in PR. All these participants however harboured either rGag and/or PI exposure 

associated Gag mutations, which have been previously reported to enhance PI resistance 

or viral replication in the presence of PR RAMs. This could suggest that Gag mutations in 

HIV-1 subtype C contribute to PI resistance in the absence of PR RAMs. Further work is 

however required to determine the role of these Gag mutations on viral replication capacity 

and PI drug susceptibility.  

 

2.5 Conclusion 
 

Variability in Gag and PR between HIV-1 subtype B and HIV-1 subtype C, highlights that 

research on subtype B cannot always be translated to subtype C. Protease RAMs always 

occurred in conjunction with Gag mutations, however Gag mutations were found to occur 

without PR RAMs, suggesting that Gag mutations may occur first and could have a role in 

facilitating the development of PR RAMs. Not all participants failing a PI inclusive 

treatment regimen harboured PR RAMs, a large proportion of these participants did 

however harbour rGag, nGag and PI exposure associated Gag mutations, suggesting a 
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possible role for Gag in PI resistance. Lastly four novel Gag mutations associated with PI 

resistance were identified, their role in PI resistance requires further investigation which 

will be addressed in Chapter 3.  

 



 

134 
 

2.6 References 
 

1. Lefebvre E, Schiffer CA. 2008. Resilience to resistance of HIV-1 Protease 

inhibitors: profile of darunavir. AIDS Rev 10:131-142. 

2. Volberding PA, Deeks SG. 2010. Antiretroviral therapy and management of HIV 

infection. Lancet 376:49-62. 

3. Thompson MA, Aberg JA, Cahn P, Montaner JS, Rizzardini G, Telenti A, Gatell 

JM, Gunthard HF, Hammer SM, Hirsch MS, Jacobsen DM, Reiss P, Richman DD, 

Volberding PA, Yeni P, Schooley RT, International AS-USA. 2010. Antiretroviral 

treatment of adult HIV infection: 2010 recommendations of the International AIDS 

Society-USA panel. JAMA 304:321-333. 

4. Fun A, Wensing AM, Verheyen J, Nijhuis M. 2012. Human Immunodeficiency Virus 

Gag and Protease: partners in resistance. Retrovirology 9:63. 

5. Clavel F, Mammano F. 2010. Role of Gag in HIV Resistance to Protease Inhibitors. 

Viruses 2:1411-1426. 

6. Sutherland KA, Parry CM, McCormick A, Kapaata A, Lyagoba F, Kaleebu P, Gilks 

CF, Goodall R, Spyer M, Kityo C, Pillay D, Gupta RK, Group DV. 2015. Evidence 

for Reduced Drug Susceptibility without Emergence of Major Protease Mutations 

following Protease Inhibitor Monotherapy Failure in the SARA Trial. PLoS One 

10:e0137834. 

7. Larrouy L, Chazallon C, Landman R, Capitant C, Peytavin G, Collin G, Charpentier 

C, Storto A, Pialoux G, Katlama C, Girard PM, Yeni P, Aboulker JP, Brun-Vezinet 

F, Descamps D, Group AS. 2010. Gag mutations can impact virological response 

to dual-boosted Protease inhibitor combinations in antiretroviral-naive HIV-infected 

patients. Antimicrob Agents Chemother 54:2910-2919. 

8. Gupta RK, Kohli A, McCormick AL, Towers GJ, Pillay D, Parry CM. 2010. Full-

length HIV-1 Gag determines Protease inhibitor susceptibility within in vitro assays. 

AIDS 24:1651-1655. 

9. Kolli M, Lastere S, Schiffer CA. 2006. Co-evolution of nelfinavir-resistant HIV-1 

Protease and the p1-p6 substrate. Virology 347:405-409. 

10. Prabu-Jeyabalan M, Nalivaika EA, Romano K, Schiffer CA. 2006. Mechanism of 

substrate recognition by drug-resistant human immunodeficiency virus type 1 

Protease variants revealed by a novel structural intermediate. J Virol 80:3607-

3616. 



 

135 
 

11. Parry CM, Kohli A, Boinett CJ, Towers GJ, McCormick AL, Pillay D. 2009. Gag 

determinants of fitness and drug susceptibility in Protease inhibitor-resistant 

human immunodeficiency virus type 1. J Virol 83:9094-9101. 

12. Nijhuis M, van Maarseveen NM, Lastere S, Schipper P, Coakley E, Glass B, 

Rovenska M, de Jong D, Chappey C, Goedegebuure IW, Heilek-Snyder G, Dulude 

D, Cammack N, Brakier-Gingras L, Konvalinka J, Parkin N, Krausslich HG, Brun-

Vezinet F, Boucher CA. 2007. A novel substrate-based HIV-1 Protease inhibitor 

drug resistance mechanism. PLOS Medicine 4:e36. 

13. Iyidogan P, Anderson KS. 2014. Current perspectives on HIV-1 antiretroviral drug 

resistance. Viruses 6:4095-4139. 

14. Mahalingam B, Louis JM, Reed CC, Adomat JM, Krouse J, Wang YF, Harrison 

RW, Weber IT. 1999. Structural and kinetic analysis of drug resistant mutants of 

HIV-1 Protease. Eur J Biochem 263:238-245. 

15. Croteau G, Doyon L, Thibeault D, McKercher G, Pilote L, Lamarre D. 1997. 

Impaired fitness of human immunodeficiency virus type 1 variants with high-level 

resistance to Protease inhibitors. J Virol 71:1089-1096. 

16. Gulnik SV, Suvorov LI, Liu B, Yu B, Anderson B, Mitsuya H, Erickson JW. 1995. 

Kinetic characterization and cross-resistance patterns of HIV-1 Protease mutants 

selected under drug pressure. Biochemistry 34:9282-9287. 

17. Dam E, Quercia R, Glass B, Descamps D, Launay O, Duval X, Krausslich HG, 

Hance AJ, Clavel F, Group AS. 2009. Gag mutations strongly contribute to HIV-1 

resistance to Protease inhibitors in highly drug-experienced patients besides 

compensating for fitness loss. PLoS Pathog 5:e1000345. 

18. Borman AM, Paulous S, Clavel F. 1996. Resistance of human immunodeficiency 

virus type 1 to Protease inhibitors: selection of resistance mutations in the 

presence and absence of the drug. J Gen Virol 77 ( Pt 3):419-426. 

19. Prado JG, Wrin T, Beauchaine J, Ruiz L, Petropoulos CJ, Frost SD, Clotet B, 

D'Aquila RT, Martinez-Picado J. 2002. Amprenavir-resistant HIV-1 exhibits 

lopinavir cross-resistance and reduced replication capacity. AIDS 16:1009-1017. 

20. Doyon L, Payant C, Brakier-Gingras L, Lamarre D. 1998. Novel Gag-Pol frameshift 

site in human immunodeficiency virus type 1 variants resistant to Protease 

inhibitors. J Virol 72:6146-6150. 

21. Gatanaga H, Suzuki Y, Tsang H, Yoshimura K, Kavlick MF, Nagashima K, Gorelick 

RJ, Mardy S, Tang C, Summers MF, Mitsuya H. 2002. Amino acid substitutions in 

Gag protein at non-cleavage sites are indispensable for the development of a high 



 

136 
 

multitude of HIV-1 resistance against Protease inhibitors. J Biol Chem 277:5952-

5961. 

22. Myint L, Matsuda M, Matsuda Z, Yokomaku Y, Chiba T, Okano A, Yamada K, 

Sugiura W. 2004. Gag non-cleavage site mutations contribute to full recovery of 

viral fitness in Protease inhibitor-resistant human immunodeficiency virus type 1. 

Antimicrob Agents Chemother 48:444-452. 

23. Yates PJ, Hazen R, St Clair M, Boone L, Tisdale M, Elston RC. 2006. In vitro 

development of resistance to human immunodeficiency virus Protease inhibitor 

GW640385. Antimicrob Agents Chemother 50:1092-1095. 

24. Kolli M, Stawiski E, Chappey C, Schiffer CA. 2009. Human immunodeficiency virus 

type 1 Protease-correlated cleavage site mutations enhance inhibitor resistance. J 

Virol 83:11027-11042. 

25. Parry CM, Kolli M, Myers RE, Cane PA, Schiffer C, Pillay D. 2011. Three residues 

in HIV-1 matrix contribute to Protease inhibitor susceptibility and replication 

capacity. Antimicrob Agents Chemother 55:1106-1113. 

26. van Maarseveen NM, Andersson D, Lepsik M, Fun A, Schipper PJ, de Jong D, 

Boucher CA, Nijhuis M. 2012. Modulation of HIV-1 Gag NC/p1 cleavage efficiency 

affects Protease inhibitor resistance and viral replicative capacity. Retrovirology 

9:29. 

27. Cote HC, Brumme ZL, Harrigan PR. 2001. Human immunodeficiency virus type 1 

Protease cleavage site mutations associated with Protease inhibitor cross-

resistance selected by indinavir, ritonavir, and/or saquinavir. J Virol 75:589-594. 

28. Alcalde R, Guimaraes ML, Duarte AJ, Casseb J. 2012. Clinical, epidemiological 

and molecular features of the HIV-1 subtype C and recombinant forms that are 

circulating in the city of Sao Paulo, Brazil. Virol J 9:156. 

29. Flynn WF, Chang MW, Tan Z, Oliveira G, Yuan J, Okulicz JF, Torbett BE, Levy 

RM. 2015. Deep sequencing of Protease inhibitor resistant HIV patient isolates 

reveals patterns of correlated mutations in Gag and Protease. PLoS Comput Biol 

11:e1004249. 

30. Sutherland KA, Mbisa JL, Cane PA, Pillay D, Parry CM. 2014. Contribution of Gag 

and Protease to variation in susceptibility to Protease inhibitors between different 

strains of subtype B human immunodeficiency virus type 1. J Gen Virol 95:190-

200. 

31. Li G, Verheyen J, Theys K, Piampongsant S, Van Laethem K, Vandamme AM. 

2014. HIV-1 Gag C-terminal amino acid substitutions emerging under selective 



 

137 
 

pressure of Protease inhibitors in patient populations infected with different HIV-1 

subtypes. Retrovirology 11:79. 

32. Giandhari J, Basson AE, Coovadia A, Kuhn L, Abrams EJ, Strehlau R, Morris L, 

Hunt GM. 2015. Genetic Changes in HIV-1 Gag-Protease Associated with 

Protease Inhibitor-Based Therapy Failure in Pediatric Patients. AIDS Res Hum 

Retroviruses 31:776-782. 

33. Evans D. 2013. Ten years on ART where to now. S Afr Med J 103:229-230. 

34. Moholisa RR, Schomaker M, Kuhn L, Meredith S, Wiesner L, Coovadia A, Strehlau 

R, Martens L, Abrams EJ, Maartens G, McIlleron H. 2014. Plasma lopinavir 

concentrations predict virological failure in a cohort of South African children 

initiating a Protease-inhibitor-based regimen. Antivir Ther 19:399-406. 

35. Wright JK, Novitsky V, Brockman MA, Brumme ZL, Brumme CJ, Carlson JM, 

Heckerman D, Wang B, Losina E, Leshwedi M, van der Stok M, Maphumulo L, 

Mkhwanazi N, Chonco F, Goulder PJ, Essex M, Walker BD, Ndung'u T. 2011. 

Influence of Gag-Protease-mediated replication capacity on disease progression in 

individuals recently infected with HIV-1 subtype C. J Virol 85:3996-4006. 

36. Los Alamos National Laboratory.  HIV sequence database. 

http://www.hiv.lanl.gov/content/sequence/HIV/MAP/landmark.html. Accessed 26 

September. 

37. Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the 

sensitivity of progressive multiple sequence alignment through sequence 

weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids 

Res 22:4673-4680. 

38. Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and 

analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 95-98. 

39. Los Alamos National Laboratory. 2015.  ElimDupes. 

http://www.hiv.lanl.gov/content/sequence/ELIMDUPES/elimdupes.html. Accessed 

April 2015. 

40. de Oliveira T, Deforche K, Cassol S, Salminen M, Paraskevis D, Seebregts C, 

Snoeck J, van Rensburg EJ, Wensing AM, van de Vijver DA, Boucher CA, 

Camacho R, Vandamme AM. 2005. An automated genotyping system for analysis 

of HIV-1 and other microbial sequences. Bioinformatics 21:3797-3800. 

41. Alcantara LC, Cassol S, Libin P, Deforche K, Pybus OG, Van Ranst M, Galvao-

Castro B, Vandamme AM, de Oliveira T. 2009. A standardized framework for 

http://www.hiv.lanl.gov/content/sequence/HIV/MAP/landmark.html
http://www.hiv.lanl.gov/content/sequence/ELIMDUPES/elimdupes.html


 

138 
 

accurate, high-throughput genotyping of recombinant and non-recombinant viral 

sequences. Nucleic Acids Res 37:W634-642. 

42. Pillay K. 2015. The impact of the p7/p1 cleavage site mutations on replication 

capacity and drug resistance in HIV-1 subtype C. Masters of Science. University o 

Kwa-Zulu Natal, South Africa. 

43. Wright JK, Brumme ZL, Carlson JM, Heckerman D, Kadie CM, Brumme CJ, Wang 

B, Losina E, Miura T, Chonco F, van der Stok M, Mncube Z, Bishop K, Goulder PJ, 

Walker BD, Brockman MA, Ndung'u T. 2010. Gag-Protease-mediated replication 

capacity in HIV-1 subtype C chronic infection: associations with HLA type and 

clinical parameters. J Virol 84:10820-10831. 

44. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New 

algorithms and methods to estimate maximum-likelihood phylogenies: assessing 

the performance of PhyML 3.0. Syst Biol 59:307-321. 

45. Liu TF, Shafer RW. 2006. Web resources for HIV type 1 genotypic-resistance test 

interpretation. Clin Infect Dis 42:1608-1618. 

46. Wensing AM, Calvez V, Gunthard HF, Johnson VA, Paredes R, Pillay D, Shafer 

RW, Richman DD. 2014. 2014 Update of the drug resistance mutations in HIV-1. 

Top Antivir Med 22:642-650. 

47. Korber B, Myers G. 1992. Signature pattern analysis: a method for assessing viral 

sequence relatedness. AIDS Res Hum Retroviruses 8:1549-1560. 

48. Storey JD. 2002. A direct approach to false discovery rates. . Journal of the Royal 

Statistical Society: Series B (Statistical Methodology) 64:479-498. 

49. R Core Team. 2012. R: A language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. 

50. Kaufmann GR, Suzuki K, Cunningham P, Mukaide M, Kondo M, Imai M, Zaunders 

J, Cooper DA. 2001. Impact of HIV type 1 Protease, reverse transcriptase, 

cleavage site, and p6 mutations on the virological response to quadruple therapy 

with saquinavir, ritonavir, and two nucleoside analogs. AIDS Res Hum 

Retroviruses 17:487-497. 

51. Van Zyl GU, Liu TF, Claassen M, Engelbrecht S, de Oliveira T, Preiser W, Wood 

NT, Travers S, Shafer RW. 2013. Trends in Genotypic HIV-1 Antiretroviral 

Resistance between 2006 and 2012 in South African Patients Receiving First- and 

Second-Line Antiretroviral Treatment Regimens. PLoS One 8:e67188. 

52. Grossman Z, Schapiro JM, Levy I, Elbirt D, Chowers M, Riesenberg K, Olstein-

Pops K, Shahar E, Istomin V, Asher I, Gottessman BS, Shemer Y, Elinav H, 

http://www.r-project.org/


 

139 
 

Hassoun G, Rosenberg S, Averbuch D, Machleb-Guri K, Kra-Oz Z, Radian-Sade 

S, Rudich H, Ram D, Maayan S, Agmon-Levin N, Sthoeger Z. 2014. Comparable 

long-term efficacy of Lopinavir/Ritonavir and similar drug-resistance profiles in 

different HIV-1 subtypes. PLoS One 9:e86239. 

53. Mo H, King MS, King K, Molla A, Brun S, Kempf DJ. 2005. Selection of resistance 

in Protease inhibitor-experienced, human immunodeficiency virus type 1-infected 

subjects failing lopinavir- and ritonavir-based therapy: mutation patterns and 

baseline correlates. J Virol 79:3329-3338. 

54. Baxter JD, Schapiro JM, Boucher CA, Kohlbrenner VM, Hall DB, Scherer JR, 

Mayers DL. 2006. Genotypic changes in human immunodeficiency virus type 1 

Protease associated with reduced susceptibility and virologic response to the 

Protease inhibitor tipranavir. J Virol 80:10794-10801. 

55. Gonzales MJ, Belitskaya I, Dupnik KM, Rhee SY, Shafer RW. 2003. Protease and 

reverse transcriptase mutation patterns in HIV type 1 isolates from heavily treated 

persons: comparison of isolates from Northern California with isolates from other 

regions. AIDS Res Hum Retroviruses 19:909-915. 

56. Rhee SY, Taylor J, Fessel WJ, Kaufman D, Towner W, Troia P, Ruane P, Hellinger 

J, Shirvani V, Zolopa A, Shafer RW. 2010. HIV-1 Protease mutations and Protease 

inhibitor cross-resistance. Antimicrob Agents Chemother 54:4253-4261. 

57. Vermeiren H, Van Craenenbroeck E, Alen P, Bacheler L, Picchio G, Lecocq P, 

Virco Clinical Response Collaborative T. 2007. Prediction of HIV-1 drug 

susceptibility phenotype from the viral genotype using linear regression modeling. 

J Virol Methods 145:47-55. 

58. De Meyer S, Hill A, Picchio G, DeMasi R, De Paepe E, de Bethune MP. 2008. 

Influence of baseline Protease inhibitor resistance on the efficacy of 

darunavir/ritonavir or lopinavir/ritonavir in the TITAN trial. J Acquir Immune Defic 

Syndr 49:563-564. 

59. Maguire MF, Guinea R, Griffin P, Macmanus S, Elston RC, Wolfram J, Richards N, 

Hanlon MH, Porter DJ, Wrin T, Parkin N, Tisdale M, Furfine E, Petropoulos C, 

Snowden BW, Kleim JP. 2002. Changes in human immunodeficiency virus type 1 

Gag at positions L449 and P453 are linked to I50V Protease mutants in vivo and 

cause reduction of sensitivity to amprenavir and improved viral fitness in vitro. J 

Virol 76:7398-7406. 



 

140 
 

60. Bally F, Martinez R, Peters S, Sudre P, Telenti A. 2000. Polymorphism of HIV type 

1 Gag p7/p1 and p1/p6 cleavage sites: clinical significance and implications for 

resistance to Protease inhibitors. AIDS Res Hum Retroviruses 16:1209-1213. 

61. Verheyen J, Verhofstede C, Knops E, Vandekerckhove L, Fun A, Brunen D, 

Dauwe K, Wensing AM, Pfister H, Kaiser R, Nijhuis M. 2010. High prevalence of 

bevirimat resistance mutations in Protease inhibitor-resistant HIV isolates. AIDS 

24:669-673. 

62. de Oliveira T, Engelbrecht S, Janse van Rensburg E, Gordon M, Bishop K, zur 

Megede J, Barnett SW, Cassol S. 2003. Variability at Human Immunodeficiency 

Virus Type 1 Subtype C Protease Cleavage Sites: an Indication of Viral Fitness? 

Journal of Virology 77:9422-9430. 

63. Rabi SA, Laird GM, Durand CM, Laskey S, Shan L, Bailey JR, Chioma S, Moore 

RD, Siliciano RF. 2013. Multi-step inhibition explains HIV-1 Protease inhibitor 

pharmacodynamics and resistance. J Clin Invest 123:3848-3860. 



 

141 
 

 

 

 

 

CHAPTER 3 
 

Effect of Gag-Protease mutations on replication 

capacity and drug susceptibility 

 



 

142 
 

3 CHAPTER 3: EFFECT OF GAG AND PR MUTATIONS ON 
REPLICATION CAPACITY AND DRUG SUSCEPTIBILITY 

 

3.1 Introduction 

 

The development and implementation of cART has enabled HIV-1 infected individuals to 

control viral replication thereby improving morbidity and mortality and reducing the risk of 

HIV-1 transmission. The development of drug resistance mutations however threatens the 

success of treatment.  

 

Drug resistance mutations occur as a result of: low fidelity viral DNA polymerase, high 

error rate of viral RT, treatment interruptions (caused mainly by poor adherence and poor 

access to treatment), suboptimal drug concentrations and viral recombination (discussed 

in Chapter 1, section 1.9) (1). Studies have shown that the development of drug resistance 

mutations in functional enzymes (i.e. PR, RT and INT) and their substrates may be 

associated with altered viral replication and drug susceptibility (1-5).  

 

This has been particularly well demonstrated for PR and Gag (1-4, 6-8), were several 

studies have shown that PR mutations are associated with reduced replication capacity 

and drug susceptibility to PI’s, however replication capacity can be rescued by mutations 

in Gag, with varying effects on drug susceptibility (1-4, 9-13).  

 

The majority of these studies have focused on the carboxy terminal of Gag (9, 12-18) with 

limited information available on the amino terminal of Gag (2, 4). A recent study, using site 

directed mutagenesis to insert mutations of interest into a subtype B backbone, showed 

that under PI drug selection pressure, three residues in the Gag amino terminal (i.e. R76K, 

Y79F and T81A) were associated with increased replication capacity when found in 

conjunction with PR RAMs. Additionally, these three residues caused a 5-7 fold reduction 

in drug susceptibility when found in the absence of PR RAMs (2). An additional study, 

employing six patient derived Gag-Protease viruses cloned into a subtype B backbone, 

showed that one participant with six Gag mutations, spanning the amino and carboxy 

terminal of Gag (V7I, G49D, R69Q, A120D, Q127K, N375S, I462S), displayed a reduced 

susceptibility to PI’s in the absence of PR RAMs (4). These data indicates that the amino 

terminal of Gag plays a role in PI resistance, as with the carboxy terminal and thus 
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encourages the use of full-length Gag in studies pertaining to PI resistance. To date there 

is only one study that has investigated the role of the amino and carboxy terminal of Gag 

in PI-resistance in HIV-1 subtype C (50). This study used a paediatric cohort of 20 patients 

to identify Gag-Protease mutations and measure their impact on PI drug susceptibility. it 

however did not investigate the impact of these mutations on repllication capacity. 

  

As part of the current study we sought to identify Gag codon substitutions significantly 

associated with altered replication capacity in HIV-1 subtype C infected patients failing a PI 

inclusive treatment regimen. Additionally, we investigated the impact of these codons and 

four novel Gag mutations (nGag; identified in Chapter 2) on replication capacity and drug 

susceptibility.  

 

This was achieved by constructing 80 recombinant viruses using patient-derived full length 

Gag-Protease amplicons. Thereafter the replication capacity of all 80 viruses was 

measured. A codon by codon analysis tool was used to identify mutations in Gag 

associated with significantly altered replication capacity. Additionally, the replication 

capacity of viruses with nGag mutations, occurring with or without PR RAMs, was 

compared to investigate the role of nGag mutations in PI resistance. Based on these 

results, 18 selected viruses, containing Gag mutations of interest, were subject to 

phenotypic drug susceptibility analysis in order to determine the impact of identified 

mutations on drug susceptibility. An overview of the approach of this study is provided in 

Figure 3.1 below. 
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Figure 3-1 Summary of study approach. Abbreviations: RC - replication capacity; nGag - novel 
Gag; RAMs - resistance associated mutations; RV's - recombinant viruses. 

 

3.2 Methods 

 

3.2.1 Generation of Gag-Protease recombinant virus stocks 

 

Recombinant viruses for 80 participant derived samples were generated by co-transfection 

of a CEM derived T-cell line (i.e. GXR cells) with an NL43-deleted-gag-protease 

(NL43∆gag-protease) backbone and patient derived Gag-Protease amplicons (generated 

in section 2.2.3) using a method previously described and validated (19-22).  

 

3.2.1.1 Generation of pNL43∆Gag-pro backbone 

 

A pNL43∆gag-protease plasmid, supplied in E. coli STBL3 cells by Dr Jaclyn Mann 

(University of KwaZulu-Natal, HIV Pathogenesis Programme, Durban, South Africa), was 

used as a backbone for generation of recombinant viruses. The plasmid contained a BstE 

II restriction enzyme recognition site in the Gag-Protease coding region, enabling 

linearization of the plasmid as required for recombination with patient-derived Gag-

Protease amplicons (19-21).  
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Large quantities of pNL43∆gag-pro plasmid stocks were generated by adding 30 µl of the 

pNL43∆gag-pro plasmid (in STBL3 cells) to a mixture of Luria-Bertani (LB) (Sigma Aldrich, 

St Louis, USA) broth and ampicillin (100 ml of LB broth and 100 µl ampicillin). This was 

incubated in a shaking incubator (Infors HT, Bottmingen, Switzerland) at 37ºC and 230 

rpm for 16 hours. Thereafter, the plasmid was extracted and purified using the Qiagen 

Plasmid Maxi kit (Qiagen) as per manufacturer’s instructions, and quantified using a 

nanodrop spectrophotometer (Thermo Scientific, Delaware, USA). Quantified plasmid was 

aliquoted and stored at -80ºC.   

 

3.2.1.2 Preparation of CEM-GXR25 cells 

 

A CEM-GXR25 green fluorescent protein (GFP) reporter T-cell line (i.e. GXR cells) (23) 

was supplied by Dr Mark Brockman (Simon Fraser University, Vancouver, Canada). GXR 

cells are replication competent as they express the CD4 receptor and both the CXCR4 and 

CCR5 co-receptors. Additionally, they encode a Tat-inducible HIV-1 LTR- GFP expression 

cassette, which is responsible for the expression of GFP during infection thereby 

facilitating detection of infected cells using flow cytometry (23). 

 

A frozen aliquot (i.e. 1 ml) of approximately 1 million GXR cells (stored in dimethylsulfoxide 

[DMSO], Sigma) was transferred from a liquid nitrogen freezer (Custom Biogenics 

Systems, Romeo, USA) directly into a preheated 37ºC water bath. The tube of cells was 

gently agitated in the water bath until the contents were completely thawed. Thereafter the 

tube of cells was transferred into a T25 flask (Corning-Costar, New York, USA) containing 

4 ml of pre-warmed R10 culture medium, and incubated at 37ºC and 5% CO2 for 24 hours 

in a humidified Heraeus incubator (Thermo Scientific). R10 media comprised of RPMI-

1640 (Sigma), supplemented with 50 U/ml penicillin streptomycin (Gibco, New York, USA), 

10 mM N-2-hydroxyethylpiperazine-N’-2ethanesulfonic acid (HEPES; Gibco), 2 mM L-

glutamine (Sigma) and 10% foetal bovine serum (FBS; Gibco).  

 

After 24 hours, the contents of the T25 flask was transferred into a 15 ml falcon tube and 

centrifuged at 1,500 rpm for 10 minutes (Heraeus multifuge 3SR+, Thermo Scientific) in 

order to remove DMSO. Cells were then re-suspended in 1 ml of pre-warmed R10 and 

transferred into a T25 flask containing 9 ml of pre-warmed R10. The flask was then 

incubated at 37ºC and 5% CO2 for a further 24 hours.  
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Following incubation, cells were counted by adding 10 µl of thoroughly mixed cell culture to 

10 µl of trypan blue (Bio-Rad, Hercules, USA). A total of 10 µl of this mixture was inserted 

into a TC20 cell counting slide (Bio-Rad) which was subsequently loaded into a TC20 

automated cell counter (Bio-Rad). The output of the TC20 cell counter was the cell 

concentration (i.e. cells/ml). The volume of cell culture used to obtain a required number of 

cells was calculated as follows: 

 

Volume of cell culture (ml) = number of cells required ÷ cell concentration (cells/ml) 
 

Cells were maintained at a concentration of 250 000 cells/ml in a final volume of 30 ml in a 

T75 flask (Corning). Cell growth was monitored every second day and if not used for 

experiments, 80% of the cell culture was removed and replaced with fresh pre-warmed 

R10. Cells were maintained for a maximum of two months, after which time a new aliquot 

of GXR cells were thawed and prepared for use.  

 

Aliquots of GXR cells were also stored in liquid nitrogen for use in future experiments, 

within two weeks of thawing. Briefly, 5 million GXR cells re-suspended in 900 µl of R10 

was added to a cryovial (Greiner Bio-One, Germany). Immediately thereafter, 100 µl of 

DMSO was added drop by drop with simultaneous gentle agitation. The DMSO functioned 

to prevent the formation of water crystals during cryopreservation (24). The cryovials were 

then stored in a strata-cooler (Agilent Technologies, Waldbronn, Germany) at -80ºC 

overnight. The Strata cooler functioned to gradually reduce the temperature of the cells to -

80ºC (at a controlled rate of 0.4-0.6ºC per minute) prior to transfer into a liquid nitrogen 

freezer (25).  

 

3.2.1.3 Co-transfection 

 

Recombinant viruses were prepared as previously described (26). Briefly, 2 hours prior to 

co-transfection, 10 µg of pNL43∆gag-pro plasmid (prepared in 3.2.1.1) was digested with 2 

µl of a 10 U/µl stock of BstE II enzyme (Promega, Madison, USA) for 2 hours in a water 

bath set to 60ºC. This functioned to linearize the plasmid. During this time, GXR cells were 

prepared (described in section 3.2.1.2). A total of 5 million cells were required for each co-

transfection. One million of which was re-suspended in 1 ml of R10 and 4 µl of polybrene 

(10 µg/µl)18 (Sigma) and subsequently added to an additional 8 ml of R10 in a T25 flask. 

                                                           
18 Polybrene functions to make the cell wall porous, in order to facilitate virus entry into the cell. 
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These flasks were incubated at 37ºC and 5% CO2. The remaining 4 million cells were re-

suspended in 300 µl of R10 and added to a 4 mm electroporation cuvette (Bio-Rad). 

 

A total of 80-90 µl of patient-derived Gag-Protease amplicons (i.e. 5-20 ng/µl) (generated 

in section 2.2.3), with either end of Gag and Protease exactly complementary to that of 

NL43, was thawed and added to the respective cuvette.  

 

Thereafter, approximately 15–20 µl of digested pNL43∆gag-pro plasmid (i.e. 10 µg of 

plasmid)  was added to the cuvette. The contents of the cuvette was mixed using a 200 µl 

pipette. This was followed by electroporation in a Gene Pulser II electroporator (Bio-Rad), 

with conditions set to 250 V and 950 µF. Electroporation served to temporarily disrupt the 

cell wall enabling virus and plasmid to enter cells (27). Cuvettes were left at room 

temperature for 5 minutes, to allow for cell recovery. Thereafter the contents of cuvettes 

were transferred into the T25 flask containing the 1 million GXR cells in 9 ml R10 and 4 µl 

polybrene.  

 

Flasks were incubated at 37ºC and 5% CO2 for five days. On the fifth day an additional 5 

ml of R10 was added to each flask followed by further incubation for five more days. On 

the tenth day, and every two days thereafter, 2 ml of culture was removed and replaced 

with 2 ml fresh pre-warmed R10. The 2 ml of culture removed was used to monitor viral 

growth.  

 

No more than 10 recombinant viruses were generated at a time. Additionally, each 

experiment included a negative control (GXR cells only) and a positive control (NL43-WT 

virus). The NL43-WT virus was generated as part of this study by transfection of GXR cells 

with 10 µg of NL43-WT plasmid.  

 

3.2.1.4 Monitoring viral growth by flow cytometry 

 

Viral growth was monitored from the tenth day since the linearized plasmid and Gag-

Protease amplicons required time to recombine and replicate (26). 

 

From the 2 ml of culture removed from each flask (see section 3.2.1.3), a total of 1 ml was 

added to matrix cluster tubes (Corning Costar) and centrifuged at 1,500 rpm for 10 

minutes, in order to pellet the cells. The majority of supernatant was discarded, leaving 
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behind very little residual supernatant to re-suspended the pelleted cells. Thereafter, 200 

µl of 2% paraformaldehyde (PFA) was added to each tube and vortexed to mix thoroughly. 

Paraformaldehyde was prepared by adding 10 g of paraformaldehyde powder (Sigma) to 

400 ml of Dulbecco’s phosphate buffered saline (PBS; Gibco) and incubating the mixture 

at 55ºC for 45 minutes in a water bath. Thereafter the pH was adjusted to 7–7.4 and 100 

ml more of Dulbecco’s PBS was added. The 2% PFA solution was aliquoted and stored at 

-20ºC. 

 

Following the 10 minute incubation of cells with PFA, matrix cluster tubes were inserted 

into FACs tubes (BD Biosciences, San Jose, USA), vortexed and flowed using the BD 

FACS Calibur (BD Biosciences). A negative control (i.e. GXR cells only) was always 

flowed first in order to gate live cells and distinguish between infected and uninfected cells 

(Figure 3.2). A total of 15,000 cells were gated. All data from the flow cytometer was 

further analysed using FlowJo (28). Figure 3.2 shows the gating of live cells; expression of 

>0.05% GFP indicated cell infection.  

 

 

Figure 3-2 Example of the gating strategy used to distinguish between live and dead GXR 
cells and infected versus uninfected GXR cells. (a) Gating of a negative control identified that 
87.3% of cells were alive. (b) The threshold to distinguish between infected and uninfected cells 
was set at 0.05% (c) Flow cytometry of a sample showed that a total of 3.15% of cells in one of the 
test samples was infected with HIV. 

 

3.2.1.5 Harvesting recombinant viruses 

 

Viruses were harvested once 25–30% of GXR cells were infected, as previously described 

(26). For harvesting, the contents of the T25 flask, containing the viral culture, was 

emptied into a falcon tube and centrifuged at 1,700 rpm and 4ºC for 5 minutes. The 
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supernatant was then aliquoted into cryovials (1 ml aliquots) and stored at -80ºC for use in 

titre, replication capacity and phenotyping assays. 

 

3.2.1.6 Validation of recombinant viruses  
 

A total of eight randomly selected recombinant viruses were subject to RNA extraction, 

amplification and sequencing of the Gag-Protease region (Chapter 2, section 2.2.2, 2.2.3 

and 2.2.4). Virus sequences were analysed in conjunction with matched HIV-1 RNA 

plasma sequences in order to determine if sequences of recombinant viruses were 

representative of the matched plasma sequences. This was achieved by using the 

highlighter tool in Los Alamos to quantify similarity between pairs of sequences (i.e. 

recombinant virus sequence and plasma sequence) (29). Sequences were also assessed 

for contamination using a neighbour joining tree drawn in Paup version 4.0 which was 

edited in Figtree version 1.4.2 (30).  

 

3.2.1.7 Validating consistency of the replication capacity assay 

 

The consistency of the replication capacity assay was also validated. Stored RT-PCR 

products from 10 samples which were analysed for replication capacity in a previous study 

conducted in 2008, at the HIV Pathogenesis Programme laboratory, (26) were used to 

generate recombinant viruses for the current study. These recombinant viruses were 

subject to replication capacity assays, conducted in duplicate. Replication capacity data 

from 2008 was then correlated to the replication capacity data for the same samples 

generated in 2014. 

 

3.2.2 Virus titration and replication capacity assays 

 

Methods used to titre viruses and measure their replication capacities were based on 

those previously described (21, 23, 26), and are described below. 

 

3.2.2.1 Virus titration 

 

Virus titres were conducted in duplicate for each of the 80 recombinant viruses generated. 

Titres served to determine the amount of virus required to achieve a multiplicity of infection 

(MOI) of 0.3% on day 2 of a replication capacity assay (21, 26).  
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Briefly, a total of 1 million GXR cells in 100 µl of R10 was added to each well of a 24 well 

culture plate (Corning Costar). This was followed by the addition of 400 µl of virus 

(harvested in 3.2.1.5 above). The culture plate was incubated at 37ºC and 5% CO2 for 24 

hours. Following incubation 1 ml of pre-warmed R10 was added to each well and the plate 

was incubated at 37ºC and 5% CO2 for a further 24 hours. Thereafter, the contents of each 

well was thoroughly mixed and 500 µl of culture was removed and prepared for flow 

cytometry (described in section 3.2.1.4) in order to determine the percent of cells infected. 

The percent of cells infected was used to calculate the amount of virus required to achieve 

an MOI of 0.3% on day two in subsequent replication capacity assays. The calculation 

employed was as follows: 

 

Volume of virus required (µl) = (0.3% ÷ % of cells infected)*400 µl 
 

3.2.2.2 Replication capacity assay 

 

Replication capacity assays (RCA's) were conducted to measure the exponential growth of 

viruses in GXR cells over a period of seven days. Each assay was conducted at least in 

duplicate, independently, for the 80 viruses generated in this study. Each assay included a 

negative control (GXR cells only) and a positive control (NL43-WT virus).  

 

For the assay, a total of 1 million GXR cells in 100 µl of R10 was added to each well of a 

24 well culture plate. One aliquot of stored virus was thawed. The relevant amount of virus 

(i.e. volume calculated as part of the titre step in 3.2.2.1) was diluted in R10 to achieve a 

final volume of 400 µl. The diluted virus was added to the respective wells of the 24 well 

culture plate, which was incubated at 37ºC and 5% CO2 for 24 hours. After 24 hours, 1 ml 

of pre-warmed R10 was added to each well and incubated for a further 24 hours. 

Following incubation, the contents of each well was mixed thoroughly and 500 µl of culture 

was removed for use in flow cytometry, to determine the percent of infected cells 

(described in section 3.2.2.1). The removed culture was replaced with 500 µl of fresh pre-

warmed R10.  

 

The removal of culture and subsequent replacement with R10 media was repeated for the 

next four days, with the removed culture used for flow cytometry on each day in order to 

determine the percent of infected cells within the culture over a period of five days.  
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In order to measure viral replication capacity, the exponential increase in percent infected 

cells from day 3–6 post infection was calculated using the semi-log method in Microsoft 

Excel. Thereafter the “logest” function in Excel was used to calculate a log10 exponential 

curve, with the best fit to the data. This returned a value representative of the slope of the 

curve, which was then converted to its’ natural log, since the natural log represents data 

which is commonly used in studying exponential growth in biology. All replication values 

for patient-derived viruses were normalised by dividing the slope of exponential growth of 

each virus by the slope of exponential growth of the NL43-WT reference strain. Duplicate 

slope values were averaged. 

 

3.2.3 Virus titration and phenotypic drug susceptibility testing 

 

Phenotypic drug susceptibility assays were conducted to determine the drug susceptibility 

profiles of 18 selected viruses. Two drugs were used; LPV and DRV (both obtained from 

the AIDS Research and Reference Reagent Programme, Division of AIDS, NIAID, NIH). 

Viruses employed in this assay were selected based on data from replication capacity 

assays and sequence analysis (described further in the results section).  

 

For the current study, a TZMBL cell based two-cycle phenotypic drug susceptibility assay 

was employed (31). A two-cycle assay was selected, since the inhibitory effect of PIs 

cannot be established in a single cycle. Viral titres were also conducted using a two-cycle 

assay (31). 

 

3.2.3.1 Preparation of TZMBL cells 

 

TZMBL cells are a luciferase reporter based HeLa cell line. These cells are adherent, they 

express CD4 and CCR5 and have been engineered to include a luciferase gene which is 

under the control of the HIV-1 promoter. As such they are replication competent and allow 

for detection of infected cells by luminescence. TZMBL cells, were obtained from the AIDS 

Research and Reference Reagent Programme, Division of AIDS, NIAID, NIH.  

 

An aliquot of TZMBL cells (1 ml) was removed from a liquid nitrogen freezer and 

immediately placed in a water bath at 37ºC. The cells were transferred to a 15 ml falcon 

tube containing 10 ml of pre-warmed Dulbecco’s Modified Eagle’s Medium (DMEM; 

Sigma), supplemented with 10% FBS (Gibco), 50 U/ml penicillin streptomycin and 10 mM 
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HEPES. The 15 ml falcon tube was centrifuged at 1,200 rpm for 10 minutes. Supernatant 

was removed, pellets were re-suspended in fresh DMEM (5 ml) and transferred to a T25 

flask containing an additional 5 ml of DMEM. The T25 flask was incubated at 37ºC and 5% 

CO2 for 48 hours. After 48 hours, cells were visualised using a Zoe® fluorescent imager 

(Bio-Rad). If cells were not 100% confluent, media was removed and replaced with fresh 

pre-warmed DMEM. If cells were 100% confluent, they were counted and used in 

experiments or seeded accordingly. 

 

Counting of cells required that they be dislodged from the monolayer. This was achieved 

by removing DMEM from the flask, rinsing the monolayer with PBS and adding 2.5 ml of 

0.25% trypsin-EDTA (Sigma) to the cell monolayer. The flask was incubated at room 

temperature for 2 minutes, followed by removal of trypsin-EDTA and subsequent 

incubation at 37ºC and 5% CO2 for 4 minutes. Thereafter, 10 ml of pre-warmed DMEM 

was added and the wall of the T25 flask, containing the cell monolayer, was repeatedly 

rinsed in order to dislodge cells. The contents of the flask was thoroughly mixed. Cells 

were then counted as described for GXR cells in section 3.2.1.2. 

 

The required number of cells were removed and used in experiments, whilst the remaining 

cells were maintained at 250,000 cells/ml in DMEM in a T25 culture flask, incubated at 

37ºC and 5% CO2. Cells were monitored by microscopy, fed and split every 48 hours. 

Cells were maintained for a maximum of one month, after which time a new aliquot of cells 

was prepared for use in experiments. 

 

3.2.3.2 Two-cycle virus titration  
 

As per Puertas et al., (2012), a two-cycle infection assay was conducted in the absence of 

drug, in order to determine the amount of virus required to obtain the mean 50% tissue 

culture infective dose (TCID50) of each virus. The main aim of this approach was to 

standardise the virus input thereby attaining a similar rate of infection for each virus stock 

in order to exclude failure of the experiment due to fitness costs inherently associated with 

PR RAMs (31). 

 

Virus titrations were set up in a 96 well tissue culture plate (Corning Costar). A total of 100 

µl of DMEM was added to all wells of the plate. Thereafter, 25 µl of virus (generated in 

3.2.1) was added to the first 3 wells (i.e. in triplicate). A 5-fold serial dilution was then 
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performed. All wells of column 12 were virus free; this served as the cell control. A total of 

10,000 TZMBL cells in 100 µl of DMEM and 0.05 g/µl of diethylaminoethyl-dextran 

hydrochloride (DEAE dextran; Sigma) was added to all wells. The plate was then 

incubated at 37ºC and 5% CO2 for 48 hours.  Following incubation, the contents of each 

well was mixed and 100 µl of supernatant was removed from each well and added to the 

corresponding wells of a new 96 well culture plate, containing 10,000 TZMBL cells in 100 

µl of DMEM and 0.05 g/µl of DEAE-dextran. The new culture plate was incubated at 37ºC 

and 5% CO2 for a further 48 hours.  After the second incubation (i.e. second-cycle of 

infection), 100 µl of culture medium was removed from each well and replaced with 100 µl 

of Bright Glo luciferase reagent (Promega). The plate was incubated at room temperature 

for 2 minutes, the contents of wells were thoroughly mixed and 100 µl of culture from each 

well was transferred to corresponding wells of a 96 well black solid bottom microplate 

(Promega). Luminescence (i.e. indicator of infectivity) was measured using a Glomax®-

Multi Microplate Multimode reader (Promega). 

 

Data expressed as relative light units (RLUs) was analysed according to the method by 

Reed and Muench (32). Positive infection was quantified using a cut-off of 2.5 times that of 

the background RLU.  

 

3.2.3.3 Two-cycle phenotypic drug susceptibility assay 

 

The two-cycle phenotypic assay was performed as previously described (31). Drug 

concentrations for LPV and DRV used in this study ranged from 1 µM to 0.00032 µM. 

These drug concentrations were within the range of that used in a previous susceptibility 

assay (33). Each assay comprised of a cell control (cells only, no virus or drug), a virus 

control (virus and cells only, no drug) and virus experiments (virus, cells and drug).  

 

Briefly, in the first round of infection 10,000 TZMBL cells (in 100 µl of DMEM, 0.05 g/µl of 

DEAE dextran) and 3-fold serial dilutions of the respective PI was infected with the 

relevant amount of virus that yielded 50 TCID50s (as calculated in 3.2.3.2), in a 96 well 

culture plate. The plate was incubated for 48 hours at 37ºC and 5% CO2. Following 

incubation, the contents of each well was mixed and 100 µl of culture was transferred to 

corresponding wells of a 96 well plate containing 10,000 TZMBL cells (in 100 µl of DMEM 

and 0.05 g/µl of DEAE dextran). The plate was once again incubated at 37ºC and 5% CO2 

for an additional 48 hours, this constituted the second cycle of infection. After 48 hours, 
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150 µl of supernatant was removed and replaced with 100 µl of Bright Glo reagent. The 

plate was incubated for 2 minutes at room temperature. Thereafter, the contents of each 

well was mixed and transferred to corresponding wells of a black solid bottom microplate. 

HIV-1 infection was measured by luciferase expression using the Glomax luminometer  

 

The extent to which the drug inhibited viral replication (i.e. percent inhibition) was 

calculated by determining the difference in RLUs between the test wells and the cell 

control wells (i.e. negative/cells only) and dividing this value by the difference between the 

virus control wells (i.e. virus without exposure to drugs) and the cell control well and 

multiplying the result by 100 for each virus. The calculation is given below: 

 

%inhibition = (test wells – cell control wells) ÷ (virus control wells – cell control 
wells) 
 

The concentration of drug required to inhibit viral replication by 50% (i.e. IC50) was 

calculated by fitting the percent inhibition data to a sigmoidal dose-response curve (with a 

variable slope) in GraphPad Prism.  

 

Fold change in drug susceptibility (i.e. variations in amount of drug required to achieve the 

IC50 between the virus of interest and a reference virus) was calculated by dividing the IC50 

of each virus by the IC50 of the NL43-WT reference strain, which was known to be 

susceptible to LPV and DRV.  

 

For this study, two classifications of drug susceptibility was used to categorize viruses 

these included: susceptible (S) and reduced susceptibility (RS). For viruses to be 

considered as susceptible, their FC was required to be below the lower FC cut-off 

established as part of this study. To be categorized as having reduced susceptibility the 

FC values were required to be greater than the lower FC cut-off level. 

 

The lower FC cut-off level for LPV and DRV was calculated using the 99th percentile of the 

average IC50 for the NL43-WT reference virus, which was known to be susceptible to LPV 

and DRV (50). This data was obtained from multiple (i.e. 20) independently repeated 

phenotypic susceptibility assays for both LPV and DRV. Table 3.1 shows the calculated 

lower FC cut-off values for LPV and DRV used in this study. The lower FC cut-off for LPV 

was 2.42 whilst DRV was 1.49. A previous study reported the lower biological cut-off for 
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LPV to be 1.6 and DRV to be 2, using the Antivirogram-Virco kit (33) whilst the clinical cut-

off for both LPV and DRV has been reported to be 10 (54). The cut-off values used in the 

current study are thus similar to those which have been previously reported.  

 

The drug susceptibility of each virus was measured in triplicate in each assay, with each 

virus being phenotyped in at least duplicate, in independently repeated experiments.  

 

Table 3-1Overview of data used in the calculation of the lower FC cut-off levels for 
lopinavir and darunavir 

  Lopinavir Darunavir 
Average 0.013 0.040 
Standard deviation 0.004 0.004 
95% confidence interval 0.011 0.038 
Number (n=) 20 20 
Minimum 0.010 0.033 
Median 0.012 0.040 
Maximum 0.024 0.048 
(Q1) 0.010 0.040 
(Q3) 0.013 0.042 
1st Percentile 0.010 0.033 
99th Percentile 0.024 0.048 
Lower FC cut-off 2.42 1.49 

 
Table 3-2 FC cut-off levels used to categorize viruses as being susceptible or conferring 
reduced susceptibility to LPV and DRV. 

  Susceptible (S) Reduced susceptibility (RS) 
Lopinavir <2.42 >2.42 
Darunavir <1.49 >1.49 

 

 

3.2.4 Data analysis 

 

3.2.4.1 Replication capacity assay: Codon by codon analysis 

 

In order to assess the association of replication capacity and codon variations, at each 

codon in Gag-Protease, a codon by codon analysis tool, developed by the Brockman 

group at the Simon Fraser University, was used (34). As part of the analysis several 

automated Mann Whitney U tests were conducted and p values were generated for each 

comparison of amino acid variation and replication capacity. Correction for multiple 

comparisons, which yielded a q value (i.e. the equivalent of the p value for false discovery 
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rate) was conducted.  All analysis with n<5 (i.e. occurrence of an amino acid variant less 

than five times) were excluded from further investigation in order to remove uncommon 

amino acid substitutions from the dataset. All variations with a p<0.05 and q<0.02 were 

considered to be significantly associated with replication capacity. These criteria were in 

line with two previous studies in which similar analysis was conducted (26, 35). 

 

3.2.4.2 Statistical analysis 
 

To measure concordance between data either a Pearson’s correlation test (for parametric 

data) or a Spearman’s Rank correlation test (for non-parametric data) was used. Students 

T-tests (for parametric data) or Mann Whitney U tests (for non-parametric data) were used 

to compare continuous data between two groups. For comparisons of continuous data 

between more than two groups, One-way Analysis of Variance (ANOVA) with Tukey post 

hoc testing (for parametric data) or Kruskall Wallis with the Dunns test for multiple 

comparisons (for non-parametric data) was used. All continuous data is presented as the 

median with an interquartile range unless otherwise stated. Statistical analysis was 

conducted using Graphpad Prism version 5 (Graphpad Software) and R statistics version 

3.2.2 (36). Statistical significance was defined as p<0.05.  

 

3.3 Results 

 

3.3.1 Replication capacity assay 

 
3.3.1.1 Validation of Recombinant viruses vs plasma derived HIV-1 RNA 

sequences 

 

Gag-Protease sequences from eight randomly selected recombinant viruses were 

compared to matched sequences from patient derived HIV-1 RNA plasma, in order to 

determine if sequences of recombinant viruses were representative of plasma sequences. 

Sequences had a median nucleotide similarity of 99.6% (IQR: 99.1% - 99.75%), as such 

plasma derived sequences were used for all further analysis. The neighbour joining tree 

showed clustering of recombinant viruses (red) and plasma sequences (green) for 

matched patient samples (Figure 3.3). No cross contamination occurred. 
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Figure 3-3 Neighbour joining phylogenetic tree (Paup version 4.0) representing matched 
sequences from plasma and recombinant viruses. Data shows clustering of plasma sequences 
(green) and recombinant virus sequences (red) for matched patient samples. 

 

3.3.1.2 Validating reproducibility of the replication assay 

 

Each replication assay was conducted in duplicate. Replicate assays were performed at 

least three days apart. All replication capacity values were normalised to the growth of 

NL43-WT. Pearson’s correlation of the duplicate assays showed high concordance of 

replication capacity between replicates (Pearson’s correlation: r=0.93, p<0.0001) (Figure 

3.4). This highlights the reproducibility of the assay. 
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Figure 3-4 Comparison of duplicated replication assays. Pearson’s correlation showed a 
high concordance between the two data sets indicating reproducibility of the assay. 

 
3.3.1.3 Validating replication assay consistency 

 
Replication capacity measured for samples in 2008 was compared to replication capacity 

of the same samples measured in 2014. Results showed a high concordance between 

data (Spearman’s correlation: rs=0.92, p<0.0001) indicating consistency in the 

performance of the assay (Figure 3.5).   
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Figure 3-5 Comparison between replication data generated for ten samples in 2008 and 2014. 
Spearman’s correlation showed a high concordance between datasets indicating consistency in 
performance of the assay.  
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3.3.1.4 Frequency distribution of replication capacity 

 

The Kolmogorov test for normality showed that RCA data approximated a normal 

distribution (KS = 0.08, p>0.05) (Figure 3.6). The mean for RCA data was 0.78 with a 

standard deviation of 0.17. 
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Figure 3-6 Frequency distribution of replication capacity in a cohort of 80 participants failing 
a PI inclusive treatment regimen. Data approximated a normal distribution with a mean of 0.78 
and a standard deviation of 0.17. 

 

3.3.1.5 Correlation of viral load and replication capacity  
 

The viral load and age of all 80 participants from the PCS cohort was correlated to 

replication capacity. Viral load showed no correlation to replication capacity (Pearson’s 

correlation: r=-0.02, p=0.8065) (Figure 3.7). This shows that viral load did not influence 

replication capacity.  
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Figure 3-7 Associations between replication capacity and viral load. Pearson’s correlation 
showed no concordance between data indicating that viral load did not influence replication 
capacity.  

 

3.3.1.6 Percent similarity to Gag-Protease consensus C vs replication capacity 
 

The percent similarity between a Gag and Protease consensus subtype C sequence and 

80 patient-derived Gag and Protease sequences was calculated using the similarity matrix 

tool in Bioedit. This data was correlated with replication capacity to determine if variations 

in Gag and Protease sequences were associated with replication capacity.  

 

There was no relationship between percent similarity of Gag sequences and replication 

capacity (Spearman’s correlation: rs= -0.03, p=0.7865) (Figure 3.8a). To determine if this 

was true for all regions in Gag, data was stratified to represent each of six regions in Gag 

(i.e. MA, CA, P2, NC, P1 and P6) (Figure 3.8c). The similarity of each stratified region to 

the consensus subtype C sequence was established and used in correlation analysis. 

Data showed no correlation between sequence similarity and replication capacity in each 

of the six regions analysed (Figure 3.8c).  

 

Interestingly, a borderline significant trend towards increased replication capacity for 

viruses which were more similar to the consensus C PR sequences was observed 

(Spearman’s correlation: rs=0.25, p=0.058) (Figure 3.8b). This indicates that viruses which 

diverge from the consensus are likely to be associated with reduced replication capacity 

(i.e. viruses with polymorphisms in PR are likely to be associated with lower replication 

capacity). Therefore for PR, the fittest viruses were the most similar to the consensus C 

PR sequence.  



 

161 
 

 

0.6 0.7 0.8 0.9 1.0 1.1
0.0

0.5

1.0

1.5 p = 0.7865
r = -0.03

% Similarity to consensus C Gag

R
ep

lic
at

io
n 

ca
pa

ci
ty

0.80 0.85 0.90 0.95 1.00 1.05
0.0

0.5

1.0

1.5 p = 0.058
r = 0.25

% Similarity to consensus C Protease

R
ep

lic
at

io
n 

ca
pa

ci
ty

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-8 Association between polymorphisms in Gag-Protease and replication capacity. (a) 
No relationship was noted between percent similarity of Gag sequences and replication capacity 
(Spearman’s correlation). (b) A borderline significant positive correlation was noted for viruses with 
polymorphic PR, i.e. more fit viruses had the most similar sequences to the consensus sequence. 
(c) No relationship between polymorphisms within the 6 regions of Gag (i.e. Matrix, capsid, p2, 
nucleocapsid, p1 and p6) and replication capacity was observed.  
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3.3.1.7 Number of mutations in Gag and Protease versus replication capacity 
 

The relationship between number of mutations in Gag and PR and replication capacity 

was assessed. The number of mutations in Gag (Figure 3.9a) and PR (Figure 3.9b) did not 

show an association with replication capacity (Spearman’s correlation: rs=-0.09, p=0.53 

and rs=-0.258 and p=0.14 respectively). This was unexpected for PR and could be 

attributed to a small sample size. 
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Figure 3-9 Overview of relationship between the number of mutations in Gag (a) and 
Protease (b) on replication capacity. The number of mutations in Gag and Protease did not 
correlate with replication capacity.  

 

3.3.1.8 Replication capacity: Gag-Protease mutations 
 

Replication capacity was compared between recombinant viruses with PR RAMs (n=34) 

and without PR RAMs (n=46). As expected, viruses with PR RAMs had a significantly 

lower replication capacity than viruses without PR RAMs (Student T-test: p<0.001) (Figure 

3.10a).  

 

Data was further stratified to determine the impact of combinations of PR RAMS and rGag 

mutations on replication capacity. For this analysis replication capacity was compared 

amongst: viruses harbouring PR RAMs and rGag mutations (n=34), viruses with rGag 

mutations only (n=33) and viruses without PR RAMs and rGag mutations (n=13). Viruses 

with PR RAMs and rGag mutations had a significantly lower replication capacity than 

viruses with rGag mutations only and viruses devoid of Gag and PR mutations (One-way 

ANOVA with Tukey test for multiple comparisons: p<0.01) (Figure 3.10b).  
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Collectively this data is in line with several previous studies, showing that PR RAMs occur 

at a fitness cost (37-39).  
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Figure 3-10 Comparison of the effect of combinations of Gag and PR RAMs on replication 
capacity. (a) Viruses with PR RAMs had a significantly lower replication capacity in comparison to 
viruses without PR RAMs (p<0.001). (b) Viruses with PR RAMs and and rGag mutations had a 
significantly lower replication capacity than viruses with rGag mutations only (p<0.01) and viruses 
without rGag or PR mutations (p<0.01). Abbreviations: PR – Protease, RAMs – resistance 
associated mutations.  

 

The effectof rGag and nGag mutations on RC when found in conjunction with PR RAMs 

could not be assessed since all viruses with PR RAMs harboured both rGag and nGag 

mutations. The impact of rGag and nGag mutations on replication capacity, in the absence 

of PR RAMs, was however assessed. Comparisons were made amongst: viruses with 

nGag mutations only (n=7), viruses with rGag mutations only (n=17), viruses with both 

rGag and nGag mutations (n=16) and viruses without Gag mutations (n=6) (Figure 3.11). 

Results showed no significant difference in replication capacity amongst these groups 

indicating that viral replication capacity may be unaffected by rGag or nGag mutations in 

the absence of PR RAMs.  
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Figure 3-11 Comparison of replication capacity amongst viruses harbouring novel Gag 
(nGag) mutations only, viruses harbouring resistance Gag (rGag) mutations only, viruses 
harbouring a combination of resistance and novel Gag mutations and viruses without Gag 
mutations. No significant difference in replication capacity was observed between all four groups 
that were compared. Abbreviations: rGag – resistance Gag mutations; nGag – novel Gag mutations 
associated with PI resistance/exposure. 

 

Overall, PR RAMs appear to be associated with significantly reduced replication capacity. 

In the absence of PR RAMs, rGag mutations were found to have no significant impact on 

RC indicating that wild-type PR can still cleave mutant Gag. This may suggest that un-

mutated PR recognises both mutated Gag and wild-type Gag.  

 
3.3.1.9 Replication capacity: amino acid variants 

 

The relationship between replication capacity and variations at each codon in Gag and PR 

was assessed next using the codon by codon analysis tool.   

 

A total of five amino acid variations were significantly associated with replication capacity 

prior to corrections for multiple comparisons (i.e. p<0.05; Table 3.3). These included: 

K28H, G62R, R91N, K335R and A431V (Table 3.1). The K28H, G62R and R91N amino 

acid substitutions were all associated with significantly increased replication capacity, 

whilst the K335R and A431V substitutions were associated with significantly reduced 

replication capacity (p<0.05). Following corrections for multiple comparisons, only two 

amino acid variations (i.e. K335R and A431V) remained to be significantly associated with 

replication capacity (i.e. p<0.05 and q<0.02) (Table 3.3). 
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Table 3-3 Amino acids associated with altered replication capacity in Gag-pro 
recombinant viruses derived from patients  

Gag protein 
  

Codon  
  

AA+ 
  

Consensus 
  

Median Replication Capacity Number of viruses p value 
  

q value 
  

AA+ Consensus AA+ Consensus 

Matrix 28 Q K 0.8605 0.7455 10 70 0.04969 0.884918 

Matrix 62 R G 0.9175 0.7485 8 72 0.04894 0.884918 

Matrix 91 N R 0.914 0.747 8 72 0.02983 0.871699 

Capsid 335 R K 0.727 0.907 63 17 0.000258 0.022609 

Nucleocapsid 431 V A 0.683 0.856 24 56 8.63E-05 0.022609 

 
Literature has shown that the A431V mutation is associated with PI resistance/exposure 

(discussed in Chapter 2), however no data is available in this regard for K335R. In order to 

determine if K335R is associated with PI resistance/exposure, comparisons in frequency 

of K335R amongst the PCS, HIV-1 subtype C treatment naïve and acute cohort were 

made (Figure 3.12). Results showed that the K335R substitution occurred at similar 

frequencies in all three groups, indicating that it is not associated with PI exposure, but is 

rather a natural polymorphism in HIV-1 subtype C.  
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Figure 3-12 Comparison of frequency of K335R and A431V amongst sequences from the: 
PCS cohort, HIV-1 subtype C treatment naïve cohort and the HIV-1 subtype C acute cohort. 
The A431V mutation occurred at a significantly higher frequency in the PCS cohort in comparison to 
subtype C treatment naïve (C) and acute (A) cohort. In contrast, the K335R mutation occurred at 
similar frequencies in all three HIV-1 subtype C cohorts analysed. Significant differences are 
denoted by asterisks, were *** represents p<0.0001. Alphabets (A and C) are used to denote the 
groups (i.e. acute [A] and HIV-1 subtype C treatment naïve [C]) with significant results.  
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In order to establish the impact of combinations of PR RAMs, K335R and A431V on 

replication capacity, one way ANOVA with Tukey post hoc testing was performed. Results 

showed that viruses with PR RAMs and K335 (consensus) had significantly higher 

replication capacity than viruses with PR RAMs and 335R (substitution) (p<0.01). Similarly, 

viruses with K335 in the absence of PR RAMs had a significantly higher replication 

capacity than viruses with 335R in the absence of PR RAMs (p<0.01). The 335R 

substitution is thus associated with reduced replication capacity both in the absence and 

presence of PR RAMs (Figure 3.13a).  

 

For A431V, the 431V substitution seldom occurred without PR RAMs (n=1), therefore its 

impact on replication capacity in the presence/absence of PR RAMs could not be 

established. Viruses harbouring A431 (i.e. consensus) in the absence of PR RAMs had a 

significantly higher replication capacity than viruses harbouring 431V in the presence of 

PR RAMs (p<0.001). Viruses with 431V and PR RAMs showed no difference in replication 

capacity when compared to viruses harbouring A431 and PR RAMs.  
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Figure 3-13 Effect of K335R and A431V on replication capacity when found in the presence 
(+PR RAMs) or absence (-PR RAMs) of Protease resistance associated mutations (PR 
RAMs). (a) Viruses with the 335R substitution were associated with significantly reduced replication 
capacity when found in the presence and absence of PR RAMs. (b) Viruses with the 431V 
substitution and PR RAMs showed no variation in replication capacity when compared to viruses 
with A431 and PR RAMs. Significance is denoted by asterisks, were * represents p<0.01, ** 
represents p <0.001 and *** represents p<0.0001. The number of viruses with each mutation 
combination is denoted by n.  

 
In summary, this data shows that the 335R substitution is associated with reduced 

replication in both the presence and absence of PR RAMs, however it occurs as a natural 

A B 
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polymorphism in HIV-1 subtype C and is thus not associated with PI exposure. The 431V 

substitution seldom occurs in the absence of PR RAMs and thus its effect on replication 

capacity when found without PR RAMs could not be established. Interestingly though, no 

significant difference in replication capacity was noted for viruses with A431+PR RAMs 

versus viruses with 431V+PR RAMs, suggesting that both an A or a V at position 431 have 

the same impact on replication capacity in the presence of PR RAMs.  

 
3.3.1.10 Replication capacity: Novel Gag mutations in the presence/absence of 

PR mutations 
 

Replication capacity of recombinant viruses harbouring nGag mutations (i.e. 69K, 111I/C, 

239A/S and 256V), with or without PR RAMs, was analysed next. This analysis aimed to 

determine if nGag mutations play a role in viral replication. 

 

Viruses with Q69 and T239 (i.e. consensus amino acids) were associated with significantly 

reduced replication capacity in the presence of PR RAMs in comparison to when they 

occurred without PR RAMs (p=0.0004 and p<0.001 respectively) (Figure 3.14). 

Substituting the amino acids at these codons with the mutant variant (i.e. 69K, or 239A/S), 

had no impact on replication capacity when the substitution occurred with/without PR 

RAMs. Interestingly though, viruses with 69K-PR RAMs had the same median replication 

capacity as viruses with Q69-PR RAMs therefore one would have expected to see a 

significantly reduced replication capacity when 69K (substitution) occurred together with 

PR RAMs, as did occur when Q69 was found with PR RAMs. Furthermore, it was 

observed that viruses with 69K+PR RAMs had a slightly higher median than viruses with 

Q69+PR RAMs. This could suggest that 69K helps to maintain or slightly improve 

replication capacity in the presence of PR RAMs (Figure 3.14).  

 

Viruses with 111I/C or 256V (i.e. substitution) displayed significantly lower replication 

capacity when found with PR RAMs in comparison to when found without PR RAMs 

(p=0.0189 and p=0.0016 respectively) (Figure 3.14).  
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Figure 3-14 Overview of the impact of novel Gag mutations found in combination 
with/without Protease resistance associated mutations (PR RAMs) on replication capacity 
within 80 recombinant viruses. The presence of a PR RAM is indicated as +PR RAM whilst the 
absence of a PR RAM is indicated as –PR RAM.  

 

3.3.1.11 Replication capacity: A431V and novel Gag mutations versus PR RAMs 
 

The next analysis performed aimed to determine if novel Gag mutations (69K, S111I/C, 

239A/S and 256V) played a role in replication capacity when found in conjunction with 

431V/335R and PR RAMs. 431V and 335R were selected for this analysis since they were 

both found to be significantly associated with reduced replication capacity (see 3.3.1.9). 

For these analysis Student’s T-tests were used to compare the replication capacity of 

viruses with 431V or 335R occurring in conjunction with PR RAMs in either the presence 

or absence of each nGag mutation.   

 

Viruses with 431V and PR RAMs (n=24) occurring in conjunction with the 69K (n=16) 

nGag mutation had a significantly higher replication capacity than viruses with 431V and 
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PR RAMs occurring without 69K (n=8) (p=0.0039) (Figure 3.15). This suggests that the 

69K mutation could have a compensatory role in replication capacity when found in the 

presence of PR RAMs and 431V (Figure 3.15). 

 

All other nGag amino acid substitutions (i.e. 111I/C, 239A/S and 256V) showed no 

association with altering replication capacity in the presence of PR RAMs and 431V, 

suggesting an alternate role for these amino acid substitutions in PI resistance/exposure 

(Figure 3.15).  

 

Whilst 69K appeared to play a role in improving replication capacity when occurring in 

conjunction with 431V and PR RAMs, no such role was evident for viruses with 335R and 

PR RAMs with any of these four nGag amino acid substitutions (data not shown). This 

data could indicate that compensatory mutations only function in the presence of rGag 

mutations (such as 431V) or that compensatory mutations only function in specific 

combinations of mutations.  
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Figure 3-15 Overview of the effect of novel Gag mutations (i.e. 69K, 111I/C, 239A/S and 256V) 
on replication capacity when occurring in conjunction with 431V and Protease resistance 
associated mutations (PR RAMs). Note all viruses used in these analysis harboured PR RAMs. 
Mutation combinations are represented with a (-) and (+) which denotes the absence or presence of 
a mutation respectively. 
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3.3.2 Phenotypic drug susceptibility 

 

Since the 69K nGag mutation and the 431V rGag RAM were found to be associated with 

altered replication capacity (Figure 3.15), their effect on susceptibility to LPV and DRV was 

assessed using 18 representative recombinant viruses.  

 

3.3.2.1 Quality control of the phenotypic drug resistance assay 

 

Drug susceptibility was measured in duplicate, for each of 18 recombinant viruses using 

DRV and LPV. Replicate assays were performed at least two days apart. The IC50 values 

for replicate one and replicate two, for both LPV and DRV based assays, showed good 

concordance indicating that the assay was reproducible (Spearman’s correlation:  

rs=0.8673 and p<0.0001; rs=0.9022 and p<0.0001 respectively) (Figure 3.16). 
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Figure 3-16 Comparison of replicate data for viruses phenotyped using lopinavir (LPV) and 
darunavir (DRV). Spearman’s correlation showed good concordance between data indicating that 
the assay was reproducible. 

 

3.3.2.2 Correlation of viral load, replication capacity and IC50 

 

No correlation between viral load and IC50, and replication capacity and IC50 was observed 

for viruses phenotyped with LPV or DRV. This indicated that IC50 was independent of viral 

load and replication capacity (Figure 3.17a-b).  
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Figure 3-17 Correlation of IC50 with viral load and replication capacity for viruses treated with 
(a) lopinavir (LPV) or (b) darunavir (DRV). No correlation between IC50 and viral load or 
replication capacity was demonstrated for both LPV and DRV.  

 
3.3.2.3 Number of mutations in Gag and Protease versus drug susceptibility 

 

The relationship between number of mutations in Gag and Protease and drug 

susceptibility was assessed. The number of PR RAMs correlated positively with LPV and 

DRV IC50 (i.e. the higher the number of PR RAMs, the higher the IC50 for LPV and DRV) 

(Spearman’s correlation: rs=0.7404, p=0.0004, and rs=0.7255, p=0.0007, respectively) 

(Figure 3.18a). Conversely, the number of mutations in Gag did not correlate significantly 

with the IC50 of LPV or DRV (Figure 3.18b). 
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Figure 3-18 Comparison between number of Protease (a) and Gag (b) resistance associated 
mutations and IC50 for lopinavir (LPV) and darunavir (DRV). (a) Spearman’s correlation showed 
that the number of PR RAMs correlated positively with IC50 for both LPV and DRV. (b) No 
significant correlation was noted between the number of Gag RAMs and IC50 for LPV or DRV. 

 

3.3.2.4 Percent similarity to consensus vs drug susceptibility 

 

The percent similarity of recombinant viruses to a consensus C sequence was computed. 

The values generated (as described in section 3.3.1.6) were correlated with IC50 of LPV 

and DRV treated viruses in order to establish if sequence variation was associated with 

IC50. 

 

There was a strong negative correlation between percent similarity of PR and IC50 for 

viruses treated with both LPV and DRV (Spearman’s correlation: rs=-0.7657, p=0.0009, 

and rs=-0.6762, p=0.0056 respectively) (Figure 3.19a).  This showed, as expected, that 

viruses with similar PR sequences to the consensus C sequence had lower IC50 for both 

LPV and DRV. No significant relationship between sequence variation in Gag and IC50 for 

both LPV and DRV was observed (Figure 3.19b). This indicated that variations in Gag 

A 
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were not significantly associated with altered IC50 for viruses treated with either LPV or 

DRV.  
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Figure 3-19 Correlation between percent similarity of sequences for both Protease (a) and 
Gag (b) and IC50 of viruses treated with LPV or DRV. (a) There was a strong negative correlation 
between percent similarity of PR and IC50 for LPV and DRV. (b) No correlation between percent 
similarity of Gag and IC50 for viruses treated with LPV or DRV was shown.  

 

3.3.2.5 Drug susceptibility of patient-derived Gag-Protease recombinant 
viruses 

 

The 18 recombinant viruses assessed were stratified according to the presence of PR 

RAMs, rGag mutations (including 431V) and nGag mutations (including 69K). Viruses 

were divided into five groups for analysis as follows:  

 

 Four viruses with PR and rGag mutations (all viruses included harbored the 431V 

rGag mutation. Referred to as PR + rGag in Table 3.4); 

 Four viruses with PR RAMs, rGag mutations and nGag mutations (all viruses 

included harbored 69K. Referred to as PR RAMs + rGag + nGag in Table 3.4); 

A 

B 
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 Four viruses with rGag RAMs only (all viruses included harbored any rGag 

mutation, since 431V only occurred in the absence of PR RAMs in 1 virus. 

Referred to as rGag in Table 3.4);  

 Three viruses with nGag mutations only (all viruses included harbored the 69K 

mutation. Referred to as nGag in Table 3.4) and  

 Three viruses with rGag and nGag mutations only (all viruses in this group 

harbored 69K. Referred to as rGag + nGag in Table 3.4).  

 

Table 3.4 provides an overview of the 18 viruses used in the phenotypic drug susceptibility 

assay. Information is provided on the PR RAMs, rGag mutations and nGag mutations 

harboured by each virus. The FC in IC50 and associated standard deviation, for LPV and 

DRV, is provided for each virus. Additionally, the resistance profile/classification of each 

virus is provided, where S represents susceptible viruses and RS represents viruses with 

reduced susceptibility (cut-off values are described in section 3.2.3.3, Table 3.2).  

 

Of the 18 viruses, ten (i.e. PCS002, PCSM002, PCS089, PCS134, PCS100, PCS071, 

PCS033, PCS153 and PCM029, PCS120) had reduced susceptibility to LPV and eight 

viruses (i.e. PCS011, PCS020, PCS049, PCS022, PCS096, PCS0128, PCS115 and 

PCS63) were susceptible to LPV (Table 3.4). Nine viruses that had reduced susceptibility 

to LPV also displayed reduced susceptibility to DRV, however the FC in IC50 was higher for 

LPV than DRV, suggesting that LPV IC50 is affected more so than DRV IC50 (Table 3.4). All 

eight viruses with PR RAMs displayed reduced susceptibility to LPV and DRV, indicating 

that viruses with PR RAMs require higher concentrations of PI’s to inhibit viral replication 

than that required by wild-type viruses. 

 

Of the four viruses with rGag associated mutations only, one displayed reduced 

susceptibility to LPV and DRV (PCM029) whilst three were susceptible to LPV (PCS011, 

PCS020 and PCS049). Interestingly PCS049 harboured the 431V Gag resistance 

associated mutation which has been previously shown to confer resistance to all PI’s 

except DRV in the absence of PR RAMs. Whilst this virus was susceptible to DRV, it did 

not show a reduced susceptibility to LPV which was surprising (6, 7).  

 

All three viruses harbouring the Q69K nGag amino acid substitution (PCS022, PCS096 

and PCS128), were susceptible to LPV and DRV.  
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Two out of three viruses with rGag associated mutations and nGag amino acid 

substitutions (PCS115 and PCS063), were susceptible to both LPV and DRV, however 

one virus harbouring R76K, K436R and Q69K (i.e. PCS120) showed an increase of 7.40 

fold in IC50 for LPV. This suggests that  combinations of Gag mutations may contribute to 

reduced susceptibility of PI’s in the absence of PR RAMs, as shown in previous studies (4, 

6, 7). 

 

Overall the data shows that viruses with PR RAMs require a higher concentration of 

LPV/DRV to inhibit viral replication by 50% when compared to viruses without PR RAMs. 
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Table 3-4 Overview of FC in IC50 of lopinavir and darunavir for viruses with combinations of novel Gag (nGag), resistance Gag (rGag) or Protease 
resistance associated mutations (RAMs). 

Mutation 
combination 

PID PR RAMs rGag RAMs nGag RAMs FC 
LPV 

STDEV Res 
profilea 

FC 
DRV 

STDEV Res 
profile 

PR RAMs + 
rGag 

PCS002 V32I, M46I, I54V, L76V, 
V82A, L90M 

A431V, K436R S111C, I256V 76.71 0.07715 RS 12.03 0.0689 RS 

PCM002 M46I, I54V, V82A R76K, Y79F, A431V, 
P453L 

S111C 27.33 0.08605 RS 7.51 0.0182 RS 

PCS089 M46I, I54V, L76V, V82A R76K, A431V S111C 39.91 0.01846 RS 7.31 0.1113 RS 

PCS134 M46I, I54V, L76V, V82A R76K, A431V T239A/S, I256V 36.44 0.01782 RS 7.04 0.0849 RS 

PR RAMs + 
rGag +nGag 

PCS100 M46I, I54V, L76V, V82A Y79F, V128I, A431V Q69K 23.13 0.00417 RS 6.15 0.0101 RS 

PCS071 M46I, I54V, L76V, V82A R76K, Y79F, A431V Q69K, S111C, I256V 31.08 0.0128 RS 20.00 0.0283 RS 

PCS033 M46I, F53L, I54V, L76V, 
V82A, L90M 

R76K, K436R Q69K, I256V 15.22 0.01068 RS 5.60 0.0011 RS 

PCS153 L24I, M46I, I54V, L76V, 
V82A 

R76K, Y79F Q69K, I256V 15.73 0.00346 RS 6.18 0.0023 RS 

rGag 

PCS011 None L449P, R452K, P453L S111C, I256V 0.39 0.00104 S 0.04 6E-05 S 

PCS020 None R76K, Y79F, K436R, 
L449P 

I256V 1.16 0.00072 S 5.26 0.2273 RS 

PCM029 None R76K, P453L None 23.88 0.02015 RS 6.73 0.0085 RS 

PCS049 None R76K, Y79F, A431V S111C 1.18 7.1E-05 S 0.99 0.0007 S 

nGag 

PCS022 None None Q69K 1.26 0.00443 S 0.39 0.0022 S 

PCS096 None None Q69K, S111C 1.26 0.00354 S 0.30 0.0001 S 

PCS128 None None Q69K, I256V 1.95 0.00243 S 0.71 0.0005 S 

rGag + nGag 

PCS115 None R76K, L449P, P453L Q69K, T239A/S, I256V 0.02 3.1E-05 S 0.08 0.0002 S 

PCS120 None R76K, K436R Q69K, S111C 7.40 0.00128 RS 0.78 0.0013 S 

PCS063 None R76K, R452K Q69K, I256V 1.52 0.00127 S 1.02 0.0006 S 
a Represents the resistance classification/profile of a virus. Abbreviations: PR – Protease, rGag – resistance Gag; nGag – novel Gag; RAMs – resistance 
associated mutations; PID – patient ID, LPV – lopinavir; DRV – darunavir; FC – fold change, Res profile – resistance profile; RS – reduced susceptibility; S – 
Susceptible; STDEV – Standard deviation
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3.4 Discussion 

 

3.4.1 Replication capacity 

 

Various studies have investigated the impact of Gag-Protease mutations on replication capacity 

and drug susceptibility in HIV-1 subtype B however no such study exists for HIV-1 subtype C.  

 

In the current study, replication capacity was measured for 80 recombinant viruses generated 

using patient derived full-length Gag-Protease amplicons. Analysis of replication capacity data 

and associated genotypic data (Chapter 2) resulted in the selection of 18 viruses which were 

used in phenotypic drug susceptibility assays. Collectively these data was used to investigate 

the impact of Gag-Protease mutations on replication capacity and drug susceptibility in an HIV-1 

subtype C cohort of participants failing a PI inclusive treatment regimen.  

 

Results showed a direct association between variability in PR and reduced Gag-Protease 

replication capacity. This was supported by analysis which demonstrated that an increase in 

number of PR mutations was associated with reduced replication capacity. Moreover, viruses 

with PR mutations had a significantly lower replication capacity than viruses without PR RAMs. 

This result could be attributed to amino acid variations in PR that alter its conformational 

structure thereby reducing cleavage of the natural substrate (i.e. Gag), which manifests as 

reduced viral replication (40). 

 

In contrast to PR, Gag mutations displayed no association with replication capacity. No 

difference in replication capacity was observed amongst viruses with rGag, nGag or no Gag 

mutations. Furthermore, no association between an increasing number of Gag mutations and 

replication capacity was observed. This suggests that cleavage of Gag can still occur despite 

variations in peptide sequences in cleavage and non-cleavage sites. Prabu-Jeyabalan and 

colleagues have demonstrated that PR recognizes the 3D structure of Gag rather than specific 

peptide sequences at CS (41). The variations in Gag noted in the current study may not have 

affected the 3D structure of the Gag CS to an extent where it becomes unrecognizable to PR 

and thus replication capacity may have remained unaltered. Bearing in mind that 42.5% of 

participants in this cohort had PR RAMs, it is also possible that variations in peptide sequences 

in Gag altered the CS 3D structure making it more recognizable to the mutant PR. Such a 

relationship has been previously demonstrated for the A431V rGag mutation and the V82A PR 

RAM (6, 42). However the study of Gag-Protease interactions on a structural level is suggested 

to elucidate the relationship between these two genes.  
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Interestingly, in the current study 89% of all viruses with PR RAMs harboured at least one rGag 

mutation in the NC/p1 (i.e. A431V) or p1/p6 (i.e. L449F, R452K or P453L) Gag CS (Chapter 2, 

Table 2.3). The A431V, L449F/P and P453L rGag mutations have all been previously identified 

to rescue viral replication capacity, which had been decreased by mutations in viral PR (9, 13, 

15, 42, 43). Although these rGag mutations are associated with rescuing/restoring replication 

capacity, the level to which they rescue/restore it is variable. This has been demonstrated by 

previous studies, one of which showed that viral replication was increased by 16% when the 

Protease mutations I50V and M46I occurred in conjunction with L449F, however this virus still 

had a replication capacity that was less than 20% of NL43-WT (43). Similarly Zhang et al., 

(1997) reported an increase from 32% to 73% in viral replication (relative to NL43-WT) when 

M46L+V82A PR RAMs occurred in conjunction with a Gag mutation at the p1/p7 Gag cleavage 

site (13). These studies highlight that the level to which replication capacity is rescued/restored 

by Gag mutations varies drastically and is dependent upon mutation combinations (i.e. high or 

low).    

 

It was thus not surprising to find that A431V was associated with significantly lower replication 

capacity in the current study, since 24/25 (96%) viruses with A431V also harboured at least 

three major PR RAMs which in itself would significantly impair Gag polypeptide processing. 

Interestingly we observed that the addition of the Q69K nGag mutation to viruses harbouring 

A431V and PR RAMs increased viral replication by 13%. This could suggest a potential 

compensatory role for the novel Q69K Gag mutation, which will be explored further by site-

directed mutagenesis in Chapter 4. The potential compensatory role of Q69K also highlights that 

non-CS mutations in the amino terminal of Gag could also be important in PI resistance. 

 

3.4.2 Drug susceptibility 

 

As with replication capacity, the number of mutations in Gag and the variability of Gag 

sequences, showed no association with IC50 for LPV or DRV indicating that Gag mutations, in 

this cohort, may not contribute directly toward reducing drug susceptibility.  

 

Variability in PR however, was significantly associated with increased IC50 for both LPV and 

DRV. This study demonstrated at least a 2.2 fold increase in LPV IC50 for every PR RAM found 

in the viruses analysed. This result was similar to a previous study which reported a 1.74 fold 

increase in LPV IC50 for every PR RAM added to a virus already harbouring three PR RAMs 

(44). The increase in IC50 associated with variability in PR could be attributed to a reduction in 

affinity of viral PR for PI’s. This is caused by PR RAMs which alter the conformational structure 
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of the PR active site, to which PI’s bind (7, 45-47). As a result the amount of PI required to 

inhibit 50% of viral replication would increase. 

 

All viruses with PR RAMs, displayed reduced susceptibility to LPV and DRV, however the FC in 

IC50 for LPV was higher than that for DRV. This could be attributed to the higher genetic barrier 

of DRV in comparison to LPV or it could possibly be due to variations in mutations which confer 

resistance to LPV and DRV. The only PR mutation in the 18 viruses analysed in this study, 

known to impact DRV susceptibility was L76V. Other key DRV associated PR RAMs including 

I47V, I50V and I84V were absent from viruses analysed (48, 49). In contrast all PR RAMs 

present in the viruses analysed in this study have been associated with reduced susceptibility to 

LPV (49). As such it would be expected for LPV to have higher FC in IC50 than DRV for the 

viruses selected in this study.  

 

Of the four viruses with rGag mutations only (i.e. no PR RAMs and no nGag mutations), two 

displayed reduced susceptibility to LPV and/or DRV. The first virus (PCM029) harboured the 

P453L Gag mutation whilst the second virus (PCS020) harboured the K436R and L449F Gag 

resistance associated mutations (Table 3.4). All three of these rGag mutations have been 

shown to be associated with reduced susceptibility to PI’s in the absence of mutations in PR 

(17, 50-52).  

 

Interestingly, all viruses harbouring the Q69K mutation (i.e. no PR RAMs or rGag mutations) 

were susceptible to LPV and DRV. This suggests that the Q69K mutation is not associated with 

reduced drug susceptibility. However further investigation using site-directed mutagenesis will 

follow in Chapter 4. Lastly, all viruses except one, which harboured rGag mutations and Q69K 

were susceptible to LPV and DRV. The one virus in this group with reduced susceptibility to LPV 

(i.e. PCS120) harboured the K436R rGag mutation, which has been previously associated with 

reduced susceptibility to PI’s (17, 51, 52). 

 

According to a previous study, the clinical cut-off for LPV and DRV was a FC in IC50 of ≥10 

(54). A total of nine viruses in the current study displayed a FC in IC50 of ≥10 to LPV whilst 

two viruses displayed a FC in IC50 of ≥10 to DRV (Table 3.4). This could imply that these 

patients would be resistant to LPV or DRV respectively.  

  

Overall 7 out of 10 viruses with rGag and nGag mutations only (i.e. no PR RAMs) remained fully 

susceptible to LPV and DRV. This would suggest that participants with these viruses 

experienced PI treatment failuer as a result of  either poor adherence or an alternate path of PI 

resistance. With all 7 of these viruses belonging to participants with detectable LPV levels, it is 
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more likely that failure ccured as a result of an alternate pathway. Interestingly, Rabi et al., 

(2013) reported that mutations in Env could cause resistance to PI's in the absence of mtuations 

in PR. Future studies should therefore consider inclusion of the viral Env when investigating PI 

resistance (53).  

 

No correlation was observed between drug susceptibility and replication capacity showing that 

replication capacity cannot be used as an indicator of treatment outcomes (Figure 3.17b). 

 

3.5 Conclusion 
 

Protease RAMs are responsible for reduced replication capacity in viruses harbouring PR RAMs 

and rGag mutations. These mtuations are also associated with significantly reducing drug 

susceptibility to LPV and DRV. Combinations of rGag mutations in the absence of PR RAMs 

can reduce drug susceptibility to LPV/DRV without altering replication capacity. The Q69K 

mutation is possibly a compensatory mutation in PI resistance, however its role in rescuing viral 

replication requires validation using site-directed mutagenesis. 
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4 CHAPTER 4: IMPACT OF Q69K AND A431V ON REPLICATION 

CAPACITY, DRUG SUSCEPTIBILITY AND CLEAVAGE 
 

4.1 Introduction 

  
The production of mature infectious viral particles is dependent upon the ordered cleavage of 

the Gag polyprotein into its core structural proteins by the viral Protease (detailed in Chapter 1, 

section 1.6.9) (1-3). Protease inhibitors function to inhibit this cleavage thereby reducing virus 

production (4). However mutations in PR (e.g. M46I/L, I54V, L76V, V82A, D30N and G48V) 

have been shown to inhibit the effect of PI’s (4-7). These mutations can cause reduced viral 

cleavage as a result of alterations to the conformational structure of the PR substrate binding 

cleft (4, 8). In order to compensate for this reduced cleavage, secondary/compensatory 

mutations occur in Gag and/or PR (9-11). The L10I/F and A71V mutations in PR are amongst 

the most well documented compensatory mutations in PR, whilst the A431V, L449F and P453L 

mutations in Gag are well known compensatory mutations in PI resistance (12-15). Interestingly, 

the A431V Gag mutation has also been identified as a primary PI resistance associated 

mutation, in that it can confer resistance to PI’s in the absence of PR RAMs (16, 17).  

 

Most compensatory and primary mutations in Gag have been identified through the use of SDM 

(16-19). Site-directed mutagenesis allows for the insertion of a mutation of interest into a double 

stranded DNA plasmid (20-22). The result is a mutant plasmid with the insert of interest which 

can be propagated as a recombinant virus and used in functional assays to assess the impact of 

a particular mutation on viral replication, drug susceptibility or cleavage.  

 

The role of Q69K, a novel Gag mutation found to occur at significantly higher frequencies in 

participants failing a PI inclusive treatment regimen than in treatment naïve individuals in 

Chapter 2, and thereafter found to be associated with improving replication capacity when found 

in combination with A431V+PR RAMs in patient samples in Chapter 3, is investigated in the 

current chapter. Site-directed mutants containing variations of Q69K, A431V and the following 

PR RAMs: M46I, I54V, L76V and V82A were prepared and subject to replication capacity, drug 

susceptibility and polyprotein cleavage assays. The purpose of which was to determine if Q69K 

has a compensatory role in PI resistance, when found in conjunction with A431V and PR RAMs.  
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4.2 Methods 

 
4.2.1 Generation of mutant viruses 

 

The QuikChange Multi site-directed mutagenesis kit (Agilent) was employed in this study. It 

allows for the insertion of up to five point mutations into a plasmid. The process of SDM involves 

amplification of a double stranded DNA vector (i.e. plasmid) by PCR, using primers containing 

the desired mutations. The resultant product is a mutant plasmid comprising of several 

staggered nicks. Parental DNA is then removed by Dpn1 digestion, which enzymatically digests 

methylated DNA. In this instance plasmid DNA isolated from E.coli is methylated and is thus 

digested whilst DNA generated by PCR remains intact. Thereafter the nicked mutant plasmid is 

transformed into bacterial cells and plated onto LB-agar plates containing ampicillin. Following 

propagation, colonies can be processed and sequenced to determine if the mutant plasmid 

contains the mutations of interest. Furthermore stocks of the mutant plasmid can be prepared by 

culturing a colony in LB broth followed by a mini-prep or maxi-prep to purify the plasmid.  

 

Since Q69K was found to increase the replication capacity of virsues harbouring A431V+PR 

RAMs, site directed mutatnts harbouring  Q69K, A431V and/or PR RAMs (i.e .M46I, I54V, L76V 

and V82A) were preapred individually and in combinations (Table 4.1) Of the 20 mutants 

produced, one was generated by MSC student J. Giandhari (Mutant 1) (23) and eight were 

generated by MSC student K. Pillay (Mutant 2-9) (24). Eleven mutants were produced as part of 

the current study (Mutant 10-20). 
 

Table 4-1 Overview of mutants generated for the current study. Mutants comprised of either Gag 
mutations only, Protease mutations only or combinations of Gag and Protease mutations.  

Mutant number Gag mutations Protease mutations 
Mutant 1 A431V None 
Mutant 2 A431V V82A 
Mutant 3 A431V V82A + I54V 
Mutant 4 A431V V82A + I54V + M46I 

Mutant 5 A431V V82A + I54V + M46I + L76V 

Mutant 6 None V82A 
Mutant 7 None V82A + I54V 
Mutant 8 None V82A + I54V + M46I 

Mutant 9 None V82A + I54V + M46I + L76V 

Mutant 10 Q69K None 
Mutant 11 Q69K V82A 
Mutant 12 Q69K V82A + I54V 
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Mutant number Gag mutations Protease mutations 
Mutant 13 Q69K V82A + I54V + M46I 

Mutant 14 Q69K V82A + I54V + M46I + L76V 

Mutant 15 Q69K + A431V None 
Mutant 16 Q69K + A431V V82A 
Mutant 17 Q69K + A431V V82A + I54V 
Mutant 18 Q69K + A431V V82A + I54V + M46I 

Mutant 19 Q69K + A431V V82A + I54V + M46I + L76V 

Mutant 20 Q69K + A431V None 
 

 

4.2.1.1 Primer design 

 

Primers were designed to be complementary to the Gag-Protease gene of a patient designated 

SK254 (GenBank accession number: HM593258). The Gag-Protease sequence of this patient 

was found to most closely resemble that of the consensus subtype C Gag-Protease sequence 

generated from several treatment naïve patient-derived sequences obtained in our laboratory 

(HIV Pathogenesis Programme, University of KwaZulu-Natal).    

 

Primers were designed using the web based QuikChange primer design program 

(www.genomics.agilent.com). All primers comprised of between 37-45 base pairs with the 

desired mutation flanked by at least 10 base pairs on either side. Each primer had a melting 

temperature of >75ºC, a minimum GC content of 40% and ended in a G or a C. Only primers for 

Q69K required to be generated for the current study as all other primers were already available 

(24).  

 

The primer sequence for Q69K which corresponds to HXB2 position 976 – 1011, is given below. 

Nucleotides shown in red represent alterations made to achieve a substitution of a glutamine 

(Q)  with a lysine (K) at position 69 of Gag:  

 

Forward: 5' CAGCTACAACCAGCTCTTAAGACAGGAACAGAGGAAC 3' 

Reverse: 5' GTTCCTCTGTTCCTGTCTTAAGAGCTGGTTGTAGCTG 3'  

 

All primers were HPLC purified.  

http://www.genomics.agilent.com/
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4.2.1.2 Plasmid vector preparation 

 

The Gag-Protease region of patient SK254 was cloned into a TOPO vector plasmid (pCR2.1-

TOPO) for use in SDM. Plasmid vectors were prepared as part of a previous study and donated 

for use in the present study (23). In total two plasmid vectors were used including: wildtype 

SK254 in TOPO and SK254 in TOPO containing the A431V Gag mutation.  

 

4.2.1.3 Mutagenic PCR 

 

The SK254 TOPO plasmid was mutated using the QuikChange Multi site-directed mutagenesis 

kit (Agilent) with relevant primers containing mutations of interest. Briefly, a PCR reaction for 

both mutant viruses and a positive control was prepared as per Table 4.2. Each PCR reaction 

was incubated in a thermocycler under the following conditions: 95C for 2 minutes, 30 cycles 

of: 95C for 20 seconds, 55C for 30 seconds and 65C for 2 minutes and 54 seconds followed 

by a 5 minute incubation at 65C and a 2 minute hold at 37C. Following completion of the PCR 

cycle, 1 µl of Dpn119 was added to each tube and incubated at 37ºC for 5–10 minutes in order to 

digest parental DNA.  

 
Table 4-2 Summary of PCR reaction mix components for both sample and control mutagenic 
reactions, using the QuickChange lightning site-directed mutagenesis kit.  

Component Sample (µl) Control (µl) Final concentration 

PCR water  16.75 18.5 -  

10x Quickchange lightning 
reaction buffer 

2.5 2.5 1x 

Quiksolution 0.75 0 - 

Fwd Primer 1 1 100 ng 

Rvs Primer 1 1 100 ng 

Control primer mix 0 1 Proprietary, no information in kit 

dNTPs 1 1 Proprietary, no information in kit 

Quickchange enzyme blend 1 1 1 U/µl 

ds-DNA template (SK254 in 
TOPO) 

1 0 100 ng/ µl 

ds-control plasmid 0 1 Proprietary, no information in kit 

Total 25 25  

 

                                                           
19 Dpn1 is a restriction endonuclease which functions to digest methylated and hemimethylated DNA. Plasmids 
used for SDM are generally isolated from E. coli. Bacterial cells contain methylated DNA, thus Dpn1 is able to digest 
the DNA.  
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4.2.1.4 Transformation  
 

XL10-Gold ultracompetent cells (Agilent) were used for plasmid transformation as per 

manufacturer’s instructions. A total of 45 µl of cells and 2 µl of beta-mercaptoethanol were 

incubated on ice for 10 minutes. Next, 1.5 µl of the digested mutant plasmid was added and 

incubated on ice for a further 30 minutes. The transformation reaction was then heat shocked at 

42ºC for 30 seconds and promptly transferred onto ice for 2 minutes. Super optimal broth with 

catabolite repression (SOC)20 medium (200 µl) was added to each reaction, followed by a 1 hour 

incubation at 37ºC and 250 rpm in a shaking incubator. Thereafter 100 µl of the transformation 

reaction was plated on LB-ampicillin agar plates which contained 40 µl of 5-bromo-4-chloro-3-

indolyl-β-D-galctopyranoside (X-gal) and 10 µl of 10 mM isopropyl-1-thio-β-D-galctopyranoside 

(IPTG), which collectively functioned to enable easy visualization of successfully transformed 

colonies (i.e. white colonies indicated successful transformation whilst blue colonies were not 

successfully transformed). Plates were incubated at 37ºC for 16 hours.  

 
4.2.1.5 Mutant screening 

 

Following incubation, five single white colonies were picked and touched to a master-plate prior 

to being boiled at 90ºC in 10 µl of PCR water. The master-plate was incubated at 37ºC for 16 

hours and stored thereafter at 4ºC. The DNA from the boiled colony was amplified by Gag-

Protese PCR (described in Chapter 2, section 2.2.3) and sequenced (Chapter 2, section 2.2.4), 

to confirm the presence of the mutation.  

 

Once the presence of the inserted mutation was confirmed the corresponding colony from the 

stored master-plate was picked and cultured in LB-broth at 37ºC for 16 hours. Purified, 

concentrated stocks of the mutant plasmid were then prepared using the Genejet plasmid mini-

prep kit (Thermo Scientific, USA) as per manufacturer’s instructions. DNA was quantified using 

the nanodrop and aliquots were stored at -80ºC.  

 

4.2.1.6 Generation of mutant virus 

 

Mutant viruses were generated as described in Chapter 3, section 3.2.1. Briefly, the mutated 

plasmid DNA (i.e. SK254 containing mutations of interest) was amplified by PCR, using 100-mer 

Gag-Protease primers (described in Chapter 2, section 2.2.3). GXR cells were then co-

transfected with the amplified DNA and an NL43∆gag-protease plasmid (as described in 

                                                           
20 SOC media is a nutrient rich media used in the recovery of E. coli competent cell transformations.  
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Chapter 3, section 3.2.1.3). The co-transfection product was cultured in R10 media until 25-30% 

of GXR cells were infected, at which point the viruses were harvested and stored at -80ºC. 

Validation of all mutant viruses was conducted by extracting RNA from each harvested virus, 

followed by amplification and sequencing of the Gag-Protease region as described in Chapter 2, 

section 2.2.2 - 2.2.4. 

 

4.2.1.7 Replication capacity and drug susceptibility assays 

 

Harvested viruses were titred and used in replication capacity (performed in at least triplicate) 

and phenotypic drug susceptibility assays (performed in at least duplicate), as described in 

Chapter 3, section 3.2.2 and 3.2.3 respectively. 

 
4.2.2 Western blot cleavage assay 

 

The western blot assay was used to assess the cleavage of Gag by Protease, as previously 

described (25). The replication capacity assay was scaled up by six times in order to produce 

enough material for western blotting. Briefly, 6 million GXR cells in 600 µl of R10 was infected 

with mutant virus at an MOI of 0.3% (viruses were diluted in 2.4 ml of R10) in a 6 well plate, and 

incubated at 37ºC and 5% CO2 for 24 hours. After 24 hours, 6 ml of R10 was added to each 

well and incubated for a further 24 hours at 37ºC and 5% Co2. A total of 3 ml of culture was 

removed from each well from the second day and every day thereafter for the next 5 days, this 

was replaced with 3 ml of fresh R10. Of the 3 ml removed, 500 µl was used to measure 

infectivity by flow cytometry whilst 2.5 ml was prepared for use in the western blot assay.  

 

4.2.2.1 Protein extraction and quantification 

 

Protein extraction was performed by centrifuging the 2.5 ml of culture, collected at day 5 and 6 

of the replication capacity assay, at 1,500 rpm and 4ºC for 10 minutes. The supernatant was 

then discarded. Pellets were rinsed in cold PBS and homogenised with a pipette, prior to 

centrifugation at 1,500 rpm and 4ºC for 10 minutes. Following centrifugation, the supernatant 

was removed and 150 µl of cold lysis solution containing a 1:200 dilution of cytobuster (Merck 

Millipore, Germany) and Protease inhibitor cocktail (Sigma) was added to each tube. The 

contents of each tube was thoroughly homogenised using a pipette and incubated on ice for 30 

minutes with intermittent vortexing. Tubes were then centrifuged at 4,600 rpm for 30 minutes to 

pellet the debris.  
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The supernatant containing proteins was removed and quantified using the Bradford assay as 

per manufacturer’s instructions (Bio-Rad). Briefly 10 µl of each protein lysate was added to a 

respective well of a 96 well plate. This was followed by the addition of 200 µl of Bradford 

reagent. The contents of each well was thoroughly mixed prior to the plate being read on a 

Biotek ELX 808 absorbance microplate reader (BioTek, Vermont, USA). Standard curves were 

generated using a 1 mg/ml BSA (Bio-Rad) standard diluted in PCR water. The standard curve 

was used to extrapolate protein concentrations for each sample.  

 

A total of 10 µg of protein was added to an equal volume of loading buffer. Loading buffer 

contained 50 µl of beta-mercaptoethanol (Bio-Rad) and 950 µl of Laemmli buffer (Bio-Rad). This 

was mixed thoroughly by vortexing and incubated at 95ºC in a thermal cycler to breakdown 

primary, secondary and tertiary structures of proteins.  

 

4.2.2.2 SDS-PAGE  
 

A total of 15 µl of protein lysate (containing 10 µg of protein) solution mixed in loading buffer was 

added to each well of a Mini-Protean® TGXTM precast gel (Bio-Rad). A Precision Plus ProteinTM 

WesternCTM molecular weight marker (5 µl) was added to each gel to enable protein 

identification. The gel was run at 150 V for 45 minutes in a Mini-Protean® tetra vertical 

electrophoresis cell (Bio-Rad) filled with running buffer containing 100 ml of Tris/Glycine/Sodium 

dodecyl sulphate (SDS) buffer (Bio-Rad) diluted in 900 ml of distilled water.  

 

4.2.2.3 Protein transfer 
 

Protein transfer was conducted using the Trans-Blot® TurboTM Mini polyvinylide fluoride (PVDF) 

transfer packs (Bio-Rad) as per manufacturer’s instructions. Briefly the SDS-PAGE gel was 

placed onto the first pre-assembled transfer stack. The PVDF membrane (activated in methanol 

and rinsed in distilled water) was placed over the gel. A second pre-assembled transfer stack 

was placed on top of the membrane. Air bubbles were removed and transfer conducted at 25 V 

for 10 minutes in a Trans-Blot® TurboTM transfer system. 
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4.2.2.4 Blocking, probing, viewing and analysis 

 

Following transfer the PVDF membrane was immediately placed in 50 ml of blocking agent 

containing 2.5 g milk powder (Bio-Rad) dissolved in 50 ml Tris Buffered Saline-(TBS)-Tween 

solution (prepared by adding 50 ml of 10 x TBS (Bio-Rad) to 450 ml of water and 250 µl Tween 

[Sigma]). This was incubated at room temperature for 1 hour on a shaking incubator. Following 

incubation the membrane was rinsed in 20 ml of TBS-Tween solution. The membrane was then 

probed with 5 µl of HIV p24 mouse monoclonal IgG Ab (Abcam, Massachusetts, USA) diluted in 

20 ml of Signalboost primary antibody immunoreaction enhancer solution (Merck Millipore) at 

4ºC overnight. Thereafter primary antibody was removed, the membrane was rinsed with TBS-

Tween and probed with Rabbit polyclonal secondary Ab to mouse IgG with horse raddish 

peroxidase (HRP) (Abcam) diluted in Signalboost secondary antibody immunoreaction enhancer 

solution (Merck Millipore) for 1 hour at room temperature.  

 

This was followed by removal of secondary antibody and rinsing of the membrane with TBS-

Tween. Next, 20 ml of LumiGLO chemiluminescent substrate, prepared as per manufacturer’s 

instructions, was added to the membrane and incubated at room temperature for 2 minutes prior 

to viewing on the ChemidocTM MP system (Bio-Rad). The Image Lab image acquisition and 

analysis software (Bio-Rad) was used to view bands and to calculate the density of bands. Band 

densitometry was used to calculate the p55/p24 ratio for samples representing day 5 and day 6 

of the replication capacity assay. The ratio was used to compare processing of p55 between 

mutant viruses. 

 
4.3 Results 

 
4.3.1 Validation of mutant viruses 

 

Of the 20 site-directed mutant viruses intended for use in this study only five were successfully 

propagated as recombinant viruses. The remaining 15 viruses were successfully inserted into 

plasmid vectors however these viruses never grew as recombinant viruses. Of these 15 viruses 

14 had PR RAMs which could have had a high associated fitness cost thereby preventing their 

growth as recombinant viruses especially in the absence of compensatory mutations. The 

fifteenth mutant that did not grow harbored a combination of Q69K and A431V without PR 

RAMs. It is possible that Q69K+A431V require other Gag or PR mutations to facilitate its growth. 

This was supported by the successful growth of Q69K+A431V in the presence of the V82A PR 

RAM in this study.  
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Despite the unsuccessful propagation of 15 viruses, the five viruses generated (A431V, V82A, 

Q69K, A431V+V82A and A431V+V82A+Q69K) (Table 4.3) were sufficient to determine the 

impact of Q69K on replication capacity, polyprotein cleavage and drug susceptibility.  

 

Sequencing of each mutant virus after harvesting confirmed that all viruses contained the 

mutations of interest. 

 

Table 4-3 Summary of mutants successfully generated in the current study. 

Mutant number Gag mutations Protease mutations 

Mutant 1 Q69K None 

Mutant 7 Q69K + A431V V82A 

Mutant 12 A431V None 

Mutant 13 A431V V82A 

Mutant 17 None V82A 

 

4.3.2 Replication capacity 

 

Replication capacity was compared amongst NL43-WT, SK254 and the following mutants: 

A431V, V82A, Q69K, A431+V82A and A431V+V82A+Q69K (Figure 4.1).  

 

Results showed that NL43-WT had a significantly higher replication capacity than SK254 

(p<0.001) and all mutant viruses (p<0.0001). Similarly SK254 had a significantly higher 

replication capacity than all mutant viruses (p<0.0001). Interestingly, Q69K had a significantly 

higher replication capacity than A431V, V82A, A431V+V82A and A431V+V82A+Q69K. This 

implies that the V82A and A431V mutation occurs at a fitness cost, and that even combining 

these mutations does not rescue replication capacity back to that of the wild-type virus (Figure 

4.1).  

 

As expected, V82A was associated with the lowest replication capacity possibly due to 

alterations it caused in the PR substrate binding cleft resulting in reduced cleavage of Gag.  The 

A431V Gag mutation was associated with the second lowest replication capacity. Combining 

A431V with V82A improved viral replication significantly demonstrating that A431V has a 

compensatory role in replication capacity, as shown in previous studies (13, 16, 17, 26). Adding 

Q69K to the A431V+V82A combination further increased replication capacity (Figure 4.1). This 

increase was significant and suggests that Q69K may function as a compensatory mutation 

when found together with A431V+V82A. The ranking of in vitro viral fitness for mutants analysed 
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in this study was  V82A < A431V< V82A+A4 31V < A431V+V82A+Q69K < Q69K <SK25 4 < 

NL43-WT. 
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Figure 4-1 Comparison of replication capacity between wild type viruses (i.e. NL43-WT and SK254) 
and mutant viruses. Mutant viruses contained the following mutations: A431V, V82A, Q69K, 
A431V+V82A and A431V+V82A+Q69K. The V82A mutation was the only Protease mutation analysed, all 
other mutations represent Gag mutations. Significant differences are denoted by asterisks were * 
represents p<0.01, ** represents p<0.001 and *** represents p<0.0001. Blue writing represents wild-type 
viruses whilst red writing represents mutant viruses. The right hand Y axis is labelled with virus names 
which correspond to significant differences denoted by stars above each bar. For example, NL43-WT had 
significantly higher replication than SK254 and all mutant viruses whilst Q69K had significantly higher 
replication capacity than A431V, V82A, A431V+V82A and A431+V82A+Q69K. 

 

4.3.3 Cleavage assay 

 

The western blot assay was used to assess variations in cleavage amongst mutant viruses. 

Culture from day five and six of a replication capacity assay was processed and used in the 

western blot assay. Two blots were run. The first included samples for day five and six of the 

following viruses: Q69K, Q69K+A431V+V82A, A431V and NL43-WT (Figure 4.2a). The second 

blot comprised of day five and six samples for the following viruses: V82A, A431V+V82A, 

SK254 and NL43-WT (Figure 4.2b). Band densitometry analysis was performed using the Image 

Lab Software, in order to calculate the p55 (Gag polyprotein)/p24 (processed polyprotein) ratio 
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for each virus (Figure 4.2c). In general, a lower ratio represents more efficient p55 processing 

and vice versa.  

 

Beta actin bands, representing the loading control, were similar for both blots, indicating that 

approximately equal amounts of protein was loaded for each sample (Figure 4.2a and b).  

 

SK254 (Lane 6,7, blot 2) and NL43-WT (Lane 8 and 9, blot 2) had the most prominent p55 and 

p24 bands in comparison to all other viruses, indicating that these two wild-type viruses had the 

highest virus production and cleavage (Figure 4.2b). Band densitometry analysis showed that 

the p55/p24 ratios for NL43-WT was lower than that for SK254, indicating more advanced 

polyprotein processing for NL43-WT than SK254. This suggests that NL43-WT had higher 

replication and cleavage than SK254, which is in line with replication capacity assay results 

(Figure 4.1).  

 

The mutant virus harbouring Q69K had a lower p55/p24 ratio than all other mutant viruses, (i.e. 

it had better polyprotein processing than other mutant viruses) (Figure 4.1c). The mutant virus 

harbouring V82A had the highest p55/p24 ratio in comparison to all mutant viruses. This ratio 

however was reduced when A431V occurred in conjunction with V82A and was further reduced 

when Q69K occurred in conjunction with both A431V and V82A (Figure 4.2c). These results 

support replication capacity data. Whilst A431V is known to act as a compensatory mutation 

when occurring in conjunction with PR RAMs, this is the first report suggesting that Q69K may 

have a role in improving polyprotein cleavage in the presence of V82A and A431V.  

 

The ranking of polyprotein clevage for mutants analysed in this study was the same as the   

ranking for in vitro replicationcapacity  V82A < A431V< V82A+A4 31V < A431V+V82A+Q69K < 

Q69K <SK25 4 < NL43-WT.   
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Figure 4-2 Western blot analyses for wild-type viruses (NL43-WT and SK254) and 5 mutant viruses. 
Mutant viruses harbouring the following mutations were used: A431V, V82A, Q69K, A431V+V82A 
and A431V+V82A+Q69K. (a) Western blot showing p55, p24 and beta actin bands for day 5 and 6 cell 
lysate samples representative of the NL43-WT virus and the following mutant viruses: Q69K, 
V82A+A431V+Q69K and A431V. (b) Western blot showing p55, p24 and beta actin bands for day 5 and 6 
cell lysate samples representative of: NL43 and SK254 and the following mutant viruses: A431V+V82A 
and V82A alone. (c) p55/p24 ratios for all mutant and wild-type virus samples blotted on day 5 and 6 of a 
replication capacity assay. 
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4.3.4 Phenotypic drug susceptibility assay 

 

All mutant viruses harbouring the Gag A431V and/or Protease V82A mutation, showed reduced 

susceptibility to Lopinavir (i.e. FC between 2.43 and 10). This was in line with previous studies 

which reported that viruses with V82A and A431V occurring either individually or in combination, 

confers reduced susceptibility to LPV (13, 16, 17, 19). The A431V mutant conferred a higer 

reduction in susceptibility to LPV (FC: 5.89) than the V82A mutant (FC: 3.79). This supports a 

previous study that showed that A431V could confer a level of resistance similar to that of a 

single PR RAM (27). 

 

Interestingly, mutant viruses harbouring the V82A or A431V mutation also showed reduced 

susceptibility to DRV (FC: 4.43 and 4.63 respectively). This was surprising, since a previous 

study reported that A431V confers reduced susceptibility to all PI’s except DRV (14, 17). 

Similarly the Stanford HIVdb and the IAS-USA list of mutations do not list V82A as a Protease 

mutation associated with DRV resistance (6, 28).  

 

In comparison to the mutant harbouring V82A alone, mutants harbouring a combination of 

A431V+V82A further increased IC50 of LPV by 2.67 fold suggesting that Gag mutations could 

increase drug susceptibility scores when considered together with PR RAMs. This however did 

not apply to DRV showing that the effect of mutations on drug susceptibility differs between 

drugs.  

 

The Q69K Gag mutation was not associated with reduced susceptibility to LPV or DRV when 

found in isolation of other mutations.  
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Table 4-4 Summary of drug susceptibility data for each mutant virus (i.e. V82A, A431V, Q69K, 
V82A+A431V, and A431V+V82A+Q69K). 
PID FC LPVa STDEVb Res 

Profilec 
FC DRVd STDEV Res Profile 

V82A 3.79 0.65 RS 4.43 0.09 RS 

A431V 5.89 0.004 RS 4.63 0.09 RS 

Q69 2.41 0.01 S 1.65 0.18 S 

V82A+A431V 6.46 0.11 RS 4.71 0.06 RS 

A431V+V82A+Q69K 4.63 0.02 RS 0.05 0.01 S 
a Represents the fold change in susceptibility of each virus to lopinavir (LPV) using NL43-WT as a 

reference. b Represents the standard deviation between duplicate fold change values for each virus. c 

Represents the resistance classification/profile of each virus described in Chapter 3, Table 3.2. d 

Represents the fold change in susceptibility of each virus to Darunavir (DRV) using NL43-WT as a 

reference. Abbreviations: PID – patient ID, LPV – lopinavir; DRV – darunavir; FC – fold change, Res 

profile – resistance profile; R – resistant, RS – reduced susceptibility; S – Susceptible; STDEV – standard 

deviation 

 

4.4 Discussion 

 

The role of Gag mutations in PI resistance is well documented, particularly for mutations in the 

NC/p1 and p1/p6 Gag cleavage sites (9, 29-31). There is however limited information on the role 

of Gag mutations in the matrix and capsid regions in PI resistance. Here we investigated the 

impact of a novel Gag mutation in the matrix region (i.e. Q69K), occurring individually and in 

combinations with the Gag A431V and PR V82A mutations, on viral replication, proteolytic 

cleavage and drug susceptibility. The Q69K mutation was identified to be associated with PI 

resistance/exposure in Chapter 2 and shown to significantly increase viral fitness when 

occurring in conjunction with A431V and PR RAMs in patient-derived recombinant viruses in 

Chapter 3.  Results from the current chapter showed that the Q69K mutation is associated with 

improving replication capacity and viral cleavage when found in conjunction with the V82A PR 

RAM and the A431V Gag NC/p1 cleavage site mutation.  

 

The V82A PR RAM was the only PR mutation that was successfully propagated both 

individually and in combination with both the A431V and Q69K Gag mutations. This could be 

explained by findings of a previous study which showed that the valine at codon 82 is not 

essential for substrate recognition and thus substrate cleavage could still be permitted (32). 

Although the mutant PR (containing the V82A mutation) can still recognise the substrate, its 

ability to cleave the substrate is slightly impaired, since the larger valine is replaced with a 

smaller alanine at positon 82 causing conformational changes in the structure of PR which have 
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been shown to reduce contact between viral PR and the NC/p1 region of Gag (13, 26). This 

conformational change also reduces the binding affinity of the PR active site for PI’s thereby 

conferring resistance to various PI’s (26). The NC/p1 Gag cleavage site has been shown to 

coevolve with V82A, both in the presence and absence of PI’s, in order to improve viral 

cleavage (13, 16, 17). In this instance, the replacement of a smaller alanine at position 431 of 

Gag with a larger valine creates a protrusion of the NC/p1 peptide into a region within the 

substrate binding domain of PR which is not usually occupied by the substrate (13, 26) This, 

allows for improved contact between the cleavage site and the mutant PR, which enables 

improved viral cleavage and virus production (26). This could explain the significantly higher 

replication capacity and lower p55/p24 ratios of mutant viruses harbouring V82A in conjunction 

with A431V in comparison to mutant viruses harbouring the V82A mutation alone (Figure 4.1 

and Figure 4.2). It also explains the reduced susceptibility to LPV and DRV for viruses 

harbouring V82A. 

 

Similarly, the reduced susceptibility seen with A431V alone could be attributed to the continued 

processing of the Gag polyprotein even in the presence of a PI bound PR, which is possibly 

facilitated by the protruding NC/p1 region into the substrate binding domain of PR  (13, 33, 34). 

 

An interesting result in this study was the identification of the Q69K Gag matrix mutation as a 

potential compensatory mutation. It was associated with significantly increased replication 

capacity and improved viral cleavage when found in conjunction with A431V+V82A. This 

significant increase was only seen at day 6 of the replication capacity assay, possibly due to the 

slow replicating nature of HIV-1 subtype C compared to HIV-1 subtype B. The Q69K mutation 

however, was not found to be associated with reduced drug susceptibility.  These data 

combined with data from Chapter 2, showing that Q69K only occurred in PI exposed 

participants, indicates that Q69K is associated with PI resistance and possibly occurs as a 

compensatory mutation. Whilst its mechanism of action for replication compensation is unclear, 

the Q69K mutation could play a role in altering alpha helical structures in MA which would 

improve accessibility of the MA/CA CS to mutated PR. Additionally such alterations could 

improve the affinity of PR for the mutated Gag substrate. Collectively, both these actions would 

improve viral cleavage which manifests as improved viral replication. Such a mechanism has 

been described for the R76K, Y79F and T81A MA non-CS mutations (35). This mechanism 

however requires further investigation for Q69K.  
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4.5 Conclusion 

 

This study confirmed that A431V functions as both a compensatory and primary resistance 

mutation in PI resistance. In line with other studies we also showed that V82A can occur in 

isolation of other PR RAMs and that PR can still conduct its enzymatic action on the Gag 

substrate despite the presence of V82A, however the rate of cleavage is reduced.  Lastly this 

study validated that the Q69K matrix mutation has a compensatory role in rescuing replication 

capacity and viral cleavage when found in conjunction with A431V+V82A. The mechanism of 

action of Q69K however requires further investigation. 
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5 CHAPTER 5: TRANSMITTED DRUG RESISTANCE IN HIV-1 
SUBTYPE C ACUTE INFECTION 

 

5.1 Enclosed article: Low frequency drug resistance mutations are common in HIV-1 
subtype C acute infection 

 

This chapter comprises of a journal article which has been submitted for review to AIDS. It 

details the prevalence of TDR with a HIV-1 subtype C acute infection cohort from KwaZulu-

Natal, Durban, South Africa. Results for Sanger sequencing and UDPS are presented. 

Transmitted drug resistance mutations present at both high and low frequency is discussed.  
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Abstract 
 
Objective: Widespread roll-out of combination antiretroviral therapy (cART) has improved the 

quality of life of HIV-1-infected individuals in South Africa but the extent of transmission and 

persistence of drug resistance mutations (DRMs) is largely unknown. We identified DRMs in 

individuals with acute HIV-1 subtype C infection in Durban, South Africa, and analysed the 

persistence of low frequency DRMs and explored their impact on treatment outcomes.  

 

Design and Methods: Sanger sequencing was performed on 45 samples; 32 obtained at a 

median of 14 days post infection and 13 obtained at a median of one day following onset of 

plasma viremia (DFOPV). Ultra-deep pyrosequencing (UDPS) was performed on a subset of 14 

samples, obtained 1 DFOPV, to identify low frequency DRMs. 
 

Results: Sanger sequencing revealed that one of 45 participants (2%) harbored the K103N 

non-nucleotide reverse transcriptase inhibitor (NNRTI)-associated DRM. UDPS detected low 

frequency DRMs in 8 of 14 participants (57%) including: the K65R (1-1.5%) and D67N (3.88%) 

nucleotide reverse transcriptase inhibitor (NRTI)-associated DRMs, the F53L (17.6%) and M46L 

(6.3%) Protease inhibitor-associated DRMs, and the T97A (2.90%) integrase strand transfer 

inhibitor-associated DRM. The K103N DRM persisted for over a year. All low frequency DRMs 

were transient.  

 

Conclusions: We showed a high prevalence of transmitted or spontaneous emergence of low 

frequency DRMs in acute infection which do not persist but may affect time to viral suppression 

for participants on cART. Follow-up of participants on cART is necessary to establish long-term 

effects of these mutations on treatment.  

 

Keywords  
Low frequency drug resistance mutations, HIV-1 subtype C, acute infection 
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Introduction 
Transmitted Drug Resistance (TDR) in HIV-1 presents a risk for the future success and 

longevity of cART, especially in resource-limited settings in which no genotypic testing is 

conducted prior to treatment initiation, and options for treatment and salvage therapy are limited.  

Most TDR studies utilize dideoxynucleotide (Sanger) sequencing for detection of DRMs. 

However, this method is limited in its ability to detect mutations at frequencies below 15 to 20% 

[1, 2]. Although the clinical significance of low frequency (i.e. minority variant) mutations remains 

controversial, studies show that DRMs present at frequencies as low as 1% can significantly 

impact clinical outcomes of patients on cART [3-11]. Several studies demonstrated that NNRTI-

associated DRMs present at <20% of the viral quasispecies were strongly associated with 

virologic failure of patients initiating an NNRTI-inclusive treatment regimen [1, 3, 6, 7, 12, 13]. 

This has been attributed to the rapid re-emergence of DRMs under drug selection pressure, and 

their subsequent dominance in the viral population [14-16].  

 
Whilst low frequency DRMs have been studied in chronically infected treatment naïve 

individuals [6, 7, 12, 17-19] and recently infected individuals [3, 12, 20] limited information exists 

for such DRMs in acute infection. The rapid reversion of some DRMs, due to associated high 

fitness costs [21-30], renders them undetectable during chronic and recent infection. The study 

of DRMs during acute infection could offer insight into these rapidly reverting low frequency 

DRMs that can potentially re-emerge from reservoirs under drug selection pressure and impact 

treatment outcomes [21-32]. 

 

One of the few studies using an acute cohort to identify low frequency DRMs, employed a point-

mutation assay to detect specific mutations of interest (viz. K103N, M184V and L90M) in an 

HIV-1 subtype B acutely infected cohort [33]. Point-mutation assays are limited in that they can 

only identify a restricted number of predetermined mutations in a single run [34, 35]. In contrast, 

deep-sequencing techniques are able to identify all mutations present within a specified 

genomic region, in a single instrument run [34, 36]. 

 

To our knowledge, there are currently no data available on the prevalence of low frequency 

DRMs in HIV-1 subtype C acute infection. HIV-1 subtype-specific differences in response to 

cART and development of drug resistance have been reported [37], and therefore information 

on low frequency DRMs in acute subtype C infection could be beneficial in understanding the 

landscape of viral diversity in subtype C. Such information could be used to inform decisions on 

future treatment strategies and clinical management of patients infected with HIV-1 subtype C, 

the most prevalent subtype globally [38].  
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Here we performed Sanger sequencing to identify TDR associated mutations in the reverse 

transcriptase (RT) and Protease (PR) genes from 47 participants acutely infected with HIV-1 

subtype C. Thereafter, selected samples were investigated for the presence of low frequency 

DRMs in RT, PR and integrase (INT) using the Roche 454 UDPS platform. We compared DRMs 

identified by Sanger sequencing and UDPS and determined which mutations persisted over 

time. Additionally we performed exploratory assessments of the impact of low frequency DRMs 

on treatment outcomes.  

 

Methods 
 
Study participants  

 

Samples were available from 47 individuals with acute HIV-1 subtype C infection, from Durban, 

South Africa, and PCR amplification was successful for 45 samples. Of the 47 individuals, 32 

were from the HIV Pathogenesis Programme’s (HPP) Acute Infection (AI) cohort [39] and 15 

participants were from the Females Rising through Education, Support and Health (FRESH) 

programme [40, 41]. As previously described, acute infection was defined as: a positive HIV-1 

RNA test, a negative or indeterminate rapid immuno-assay with subsequent confirmation of 

seroconversion by the western blot method [39].  

 

HPP AI study participants were identified by RNA screening of individuals who tested 

seronegative when presenting for routine HIV counselling and testing at outpatient clinics in the 

greater Durban area.  The date of infection for participants from this cohort was estimated to be 

14 days prior to the first HIV-1 positive RNA, as previously described [42].  In the FRESH 

programme, initiated in November 2012, 18-23 year old HIV uninfected sexually active women 

were offered a comprehensive empowerment curriculum designed to mitigate HIV infection risk 

and sampled twice weekly for HIV-1 RNA by finger prick blood draw. Blood samples were 

collected from participants with evidence of plasma viremia, usually within 24 hours of onset of 

plasma viremia (OPV) and at regular intervals thereafter [41].  

 

This study was approved by the Biomedical Research Ethics Committee at the University of 

KwaZulu-Natal. All study participants provided written informed consent before inclusion into the 

study. 
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HIV-1 drug resistance testing by Sanger sequencing 
 

Viral RNA was extracted from cryopreserved plasma samples, using the Qiamp Viral RNA Mini-

Kit, as per manufacturer’s instructions (Qiagen, Valencia, USA). The PR and RT coding regions 

(HXB2 coordinates 2,293 to 3,509) were amplified and sequenced using the Viroseq HIV-1 

genotyping system (Applied Biosystems, Foster City, CA). Sequences were run on the ABI 

3130XL genetic analyser (Applied Biosystems), edited in Sequencher version 5.1 and aligned 

using ClustalX version 2.1. The REGA HIV-1 subtyping tool (http://www.bioafrica.net/rega-

genotype/html/subtypinghiv.html) was used to confirm the subtype of all sequences. The 

International AIDS Society-USA (IAS-USA) list updates of DRMs [43], the World Health 

Organization (WHO) list of mutations for surveillance of TDR [44] and the Stanford HIV Drug 

Resistance Database (http://hivdb.stanford.edu/) were used to identify DRMs.  

 

HIV-1 drug resistance testing by UDPS resistance plate assay 
 
For this study, 15 samples from the FRESH cohort were analysed using UDPS to detect low 

frequency DRMs. Samples selected for UDPS were from recent transmissions (2013 – 2014) in 

comparison to the HPP AI cohort samples (2007 – 2012). Additionally, samples from the 

FRESH cohort represented earlier samples post-HIV transmission compared to the HPP AI 

cohort since participants in the former were tested more frequently.  

 

Ultra-deep pyrosequencing was performed according to instructions provided in the four Plate 

HIV-1 Drug Resistance Assay Manual – Collaborative Initiative version 3.0 (Roche, Life 

Sciences). Briefly, viral RNA was extracted using the Qiamp Viral RNA Mini Kit (Qiagen, 

Valencia) and purified using Agencourt RNAclean XP magnetic beads (Beckman Coulter, 

Beverly, MA). The cDNA was generated using cDNA synthesis primer plates (Roche, Life 

Sciences) and a Transcriptor First Strand cDNA Synthesis Kit (Roche, Applied Science). PCR 

was performed using PCR primer plates pre-spotted with five PCR primer pairs (Roche, Life 

Sciences), and a FastStart High Fidelity PCR System (Roche, Applied Science). The first four 

PCR primers overlapped to cover the PR and RT regions of pol (HXB2 coordinates: 2,279 to 

3,302) and the fifth primer covered the INT region (HXB2 coordinates: 4,352 to 4,739). Primers 

included a virus-specific sequence for PCR priming attached to a sample specific multiplex 

identifier sequence (MID) of approximately 10 bp and a 454 sequencing adaptor which allowed 

for either forward or reverse sequencing (Roche, Life Sciences) [34, 45].  

 

Amplicons were purified using Agencourt Ampure XP magnetic beads (Beckman Coulter, 

Beverly, MA) and quantified by the Quant-iT PicoGreen dsDNA assay kit (Invitrogen, Carlsbad, 

http://www.bioafrica.net/rega-genotype/html/subtypinghiv.html
http://www.bioafrica.net/rega-genotype/html/subtypinghiv.html
http://hivdb.stanford.edu/
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CA). Samples with concentrations below 5 ng/µl were run on the Agilent 2100 bioanlayzer 

(Agilent Technologies, Waldbronn, Germany). Samples with primer-dimer molar ratios above 

3:1 were excluded from further processing.   

 

Equimolar concentrations of all amplicons were pooled and 5 µl of the master-pool was clonally 

amplified by emulsion-PCR (emPCR) using a GS Junior emPCR Lib-A kit (Roche, Life 

Sciences). Between 100,000 to 500,000 DNA beads were prepared and loaded onto a picotitre 

plate (Roche-454, Life Sciences) and run on the GS Junior 454 sequencer, as per 

manufacturer’s instructions (Roche-454 Life Sciences).  

 

The GS Amplicon Variant Analyser software (AVA) (Roche-454 Life Sciences) was used to 

analyse and compute UDPS results as described elsewhere [1, 34, 46]. Briefly, the software 

recognizes MIDs and assigns relevant sequence reads to the corresponding amplicon and 

patient sample. Additionally it aligns each sequence read to a wild-type subtype C reference 

sequence (GenBank accession number AY772699), trims sequences and quantifies the 

frequency in variations of nucleotides at each position in the sample sequence relative to the 

reference sequence [1, 34]. The AVA software also corrects carry forward and incomplete 

extension errors [46]. Verification of mutations was conducted by manually inspecting flowgrams 

at positions of interest. Additionally, the frequency of mutations in both the forward and reverse 

strands were compared, using a two-tailed Fisher’s exact test. If variants were detected 

disproportionately (i.e. p < 0.001) in one direction they were not considered as low frequency 

DRMs [47].  

 

Identification of low frequency DRMs by UDPS 
 

Low frequency DRMs were defined as DRMs detected at frequencies between 1% and 20%, 

whilst high frequency DRMs were defined as DRMs detected at frequencies above 20%. The 

cut-off frequency to distinguish low frequency mutations from artifacts caused by technical error 

was ≥1%. This was consistent with several studies which have shown mutations at a frequency 

of 1% to be clinically relevant [1, 3, 6, 7, 12, 13, 48]. Validation of UDPS to detect minority 

variants at frequencies above 1% has been described previously by Vanderbroucke et al., 

(2011), with concordance and correlation of >0.97 demonstrated for inter and intra run 

reproducibility [49, 50]. The IAS-USA list updates of DRM’s and [43] the WHO list of mutations 

for surveillance of TDR [44] was used to identify TDR mutations in PR, RT and INT. 

 



 

214 
 

Quality control 
 
Negative and positive controls were included in all steps. Sequences generated using Sanger 

sequencing and UDPS were subjected to analysis for inter-sample and lab strain contamination 

using BLAST homology searches against each sample and against sequences available in the 

Los Alamos database (http://blast.ncbi.nlm.nih.gov/Blast.cgi). To visually assess sequences for 

cross-contamination, neighbor joining trees were drawn in Paup 4.0 and visualized in Figtree 

v1.1 [51]. A plasmid clone obtained from the Quality Control for Molecular Diagnostics (QCMD) 

2013 ENVA HIV Drug Resistance EQA Programme (www.qcmd.org), with known DRMs, was 

included in one UDPS run.  

 

Exploratory investigation of response to treatment 
 
Seven FRESH participants were initiated on fixed dose cART containing, Tenofovir, Efavirenz 

and Emtricitabine (2 participants with low frequency DRMs and 5 participants without low 

frequency DRMs. Six of these participants initiated treatment as per South African 2014 

guidelines (i.e.CD4 < 350 cells/mm3) [52], whilst one participant was placed on treatment a day 

after diagnosis. Response to treatment (i.e. viral load and CD4+ T-lymphocyte dynamics) was 

assessed using the Student’s T-test. Statistical significance was defined by P<0.05. 

 

RESULTS 
 
Participant characteristics 
 
Baseline characteristics of all study participants are summarized in Table 5.1. For the HPP AI 

cohort, the median viral load was 5.76 log10 copies/ml (IQR, 5.02 – 6.67 log10 copies/ml) and the 

median CD4+ T-lymphocyte count was 322 cells/mm3 (IQR, 289 – 519 cells/mm3). For the 

FRESH cohort, the median viral load was 4.89 log10 HIV-1 RNA copies/ml (IQR, 4.31 to 5.58 

log10 HIV-1 RNA copies per ml) and the median CD4+ T-lymphocyte count was 637 cells/mm3 

(IQR, 390 to 727 cells/mm3). 

 
Sanger sequencing 
 
A total of 45 out of 47 samples were successfully sequenced by Sanger sequencing with no 

cross-contamination observed (Figure 5.1a). Of the 45 samples sequenced, only 1 sample (2%) 

from participant 079 presented with a major TDR-associated DRM (viz. the K103N NNRTI-

associated DRM). Additional samples from this participant were bulk sequenced at the following 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.qcmd.org/
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time-points; two weeks after OPV, six months after OPV and one year after OPV. The K103N 

mutation persisted at all time-points sequenced. These data indicate that there is limited 

transmission of DRMs in this high prevalence setting. 

 
Detection of low frequency DRMs by UDPS during hyperacute HIV-1 infection 
 
Fourteen of 15 FRESH samples were sequenced with sufficient reads for data analysis. For 

these 14 samples, UDPS generated a median of 8,281 high quality reads per sample (range, 

7,377 to 11,091 reads per sample) with a median read length of 381 bases (range, 377 to 382 

bases). This resulted in a mean coverage of 1,783 reads per amplicon (range, 1,475 to 2,218 

reads per amplicon).   

 
Two of three UDPS runs were used to assess reproducibility. A concordance of >97% was 

demonstrated for inter-run reproducibility. All mutant variants were detected proportionately. All 

known DRMs in the QCMD plasmid clone were detected, including the M41L (85.2%), M184V 

(99.57%), L210W (99.35%) and T215Y (99.24%) NRTI-associated DRMs. Phylogenetic analysis 

showed no cross contamination (Figure 5.1b).   

 

Major/ Primary low frequency DRMs were identified in 8 of 14 participants (57%), at the earliest 

time-point sequenced (Table 5.2). Of the 8 participants, four (268, 272, 312 and 318) presented 

with the K65R NRTI-associated DRM only at 1.51%, 1.04%, 1.19% and 1.11% respectively. 

Participant 267 had the T97A (2.78%) integrase strand transfer inhibitor (InSTI)-associated 

DRM and the D67N (3.92%) NRTI-associated DRM whilst participant 271 had the F53L (17.6%) 

Protease inhibitor (PI)-associated DRM. Participant 079 had K103N (100%), consistent with 

Sanger sequencing, as well as the V90I (7.77%) NNRTI-associated DRM and the K65R (1.08%) 

NRTI-associated DRM. Participant 036 presented with the M46I/L (7%) PI-associated DRM 

(Table 2). These data demonstrate a high prevalence of low frequency DRMs in this cohort.  

 

Analysis of low frequency DRMs at additional time-points using UDPS  
 
A subset of participant samples with low frequency DRMs (267, 268, 271, 079 and 036), were 

sequenced by UDPS at additional time-points where available, including: peak viremia, 

presumed viral set-point, mid-time-point and/or the last available time-point (Figure 5.2).  

 

For participant 267, the T97A InSTI-associated DRM and D67N NRTI-associated DRM were 

detected at frequencies of 2.90% and 3.88% respectively, 2 days following OPV. Neither of 

these DRMs was detectable 19 days later (i.e. at peak viremia). 
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Participant 268 presented with the K65R NRTI-associated DRM (1.51%) one day following 

OPV. This DRM was undetectable by UDPS at the last time-point sequenced 164 days later. 

 

The F53L PI-associated DRM was detected one day following OPV in participant 271. This 

mutation was undetectable seven days later, which coincided with peak viremia. No additional 

DRMs were detected at day 15 (i.e. presumed viral set-point) or day 249 (i.e. last time-point).  

 

Participant 079 harbored the K103N (99.9%) and V90I (7.86%) NNRTI-associated DRMs as 

well as the K65R (1.08%) NRTI-associated DRM detected three days following OPV. The 

K103N mutation persisted at a high frequency (>99%). The participant also developed the 

K219R (8.17%) NRTI-associated DRM at the last sequenced time-point, 329 days after OPV.  

 

Participant 036 initially presented with the M46L (6.32%) PI-associated DRM, three days 

following OPV. This mutation was undetectable seven days later (peak viremia), at which point 

the K65R (1.16%) NRTI-associated DRM was detected. Again, the K65R mutation reverted 

seven days later (presumed viral set-point), with no additional DRMs detected by day 22. 

Interestingly, the Y143C (1.19%) InSTI-associated DRM and the K219Q (1.64%) NRTI-

associated DRM were detected at the last tested time-point, approximately 332 days after OPV.  

 

Overall, these data show a high prevalence of transmission or spontaneous emergence of low 

frequency DRMs during acute HIV-1 subtype C infection.  However, the majority of these DRMs 

do not persist within the host and are mostly transient. 

 
Response to treatment  
 
We next performed an exploratory assessment of whether the presence of low frequency DRMs 

compromised cART effectiveness in patients initiating therapy.  Two participants that harbored 

low frequency DRMs (267 and 036) achieved undetectable viral loads by day 156 and 120 

respectively (median: 138 days) (Figure 5.2a and 5.2e). Three of five participants with no low 

frequency DRMs (093, 208 and 309) had undetectable viral load by day 174, 70 and 98 

respectively (median: 98 days), whilst one participant (312) showed complete viral suppression 

by day 27 (Figure 5.3). This participant however received treatment one day after diagnosis and 

was therefore not compared to participants that only received treatment once their CD4+ count 

dropped below 350 cells/mm3. The fifth participant in this group never attained complete viral 

suppression (186), possibly due to non-adherence, and developed the K103N DRM 311 days 

after treatment initiation, indicative of poor adherence (Figure 5.3d).  
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Participants without low frequency DRMs had a significantly higher viral load at treatment 

initiation than participants with low frequency DRMs (p=0.0452), however they reached viral 

suppression 40 days sooner than participants with low frequency DRMs (i.e. median of 98 

versus 138 days). This however did not reach statistical significance in this small cohort. There 

were no significant differences in: number of days to treatment initiation, CD4+ T-lymphocyte 

counts at treatment initiation and CD4+ T-lymphocyte counts at viral suppression between the 

two groups. This data indicates that low frequency DRMs possibly impacts treatment outcomes. 

 

DISCUSSION 
 
The extent of TDR in resource-limited, high prevalence settings is largely unknown and yet has 

important public health implications. Here, we show a low prevalence of TDR mutations 

detected by Sanger sequencing (2%) in persons diagnosed with acute infection in KwaZulu-

Natal Province, South Africa, one of the highest incidence regions in the world, where treatment 

has been available in the public sector since 2004. However, UDPS revealed a high prevalence 

of low frequency TDR mutations (57%). Although these low frequency DRMs were transient, 

participants harboring them had lower viral loads than participants without DRMs, at treatment 

initiation, yet took longer to achieve complete viral suppression, suggesting that low frequency 

DRMs impacts treatment outcomes. While the small sample size is recognized as a limitation, 

these findings support previous studies [3-11].  

 

Variations in viral load and mutation persistence is likely attributable to fitness costs (measured 

as variation in replicative ability) associated with DRMs [21-27]. Generally mutant viruses have 

lower replicative fitness than wild-type virus [28]. In the absence of drug selection pressure, less 

fit viruses revert their mutations to improve replicative fitness [29, 30]. Over time, the more fit 

strain predominates and the mutant virus decreases in frequency [3, 28]. Here we show that 

K103N persisted at one year after OPV. This is in line with several studies which showed that 

K103N strains replicate at similar rates to wild-type viruses and persist at high frequencies for 

up to five years [53-56].  

 

Consistent with another study, we found that PI-associated DRMs revert rapidly (seven days) 

(Figure 1) [25]. This is likely due to high fitness costs associated with mutations in PR, which 

alter the structure of the PR binding pocket and subsequently impairs proteolytic cleavage of the 

natural substrate, resulting in reduced viral replication  [57, 58]. To our knowledge, this is the 

first study in South Africa (SA) to identify transmitted PI-associated DRMs. This is possibly 

driven by an increased number of patients receiving PI-inclusive treatment regimens. However 

PI-associated TDR could be under-reported in SA due to the combined use of Sanger 
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sequencing and recently infected cohorts (generally defined as being infected for 3 to 6 months) 

for TDR surveillance, both of which would hinder the identification of low frequency rapidly 

reverting PI-associated DRMs. [25, 59].  

 

The K65R NRTI-associated DRM was the most commonly occurring low frequency DRM 

(42.8%). These were all found at <2% of the viral population. Studies show that K65R is most 

prevalent in subtype C [60-63], due to sequence variations and RNA structure which favors its 

sporadic appearance [64]. Even though K65R can occur “sporadically”, this does not exclude 

the possibility of TDR [65]. Recent studies showed that transmitted low frequency DRMs are 

more likely to have clinical implications in comparison to “sporadically” appearing low frequency 

DRMs, largely attributable to faster disappearance of “sporadically” occurring DRMs [65]. Whilst 

unclear if K65R occurred sporadically or as a transmitted DRM, we show that it reverted seven 

days after first identification in participant 036 who achieved complete viral suppression 120 

days after treatment initiation with a Tenofovir inclusive regimen (Figure 2e). Further follow-up of 

participant 036 is suggested to confirm if low frequency DRMs impact treatment outcomes at a 

later stage.  

 

Although the use of InSTIs is limited in SA, our study detected two participants with InSTI-

associated DRMs: T97A in participant 267 and Y143C in participant 036, both of which are 

associated with Raltegravir resistance (Figure 2a and 2e). Whilst T97A could be a transmitted 

mutation, studies have shown that it occurs as a natural polymorphism in varying frequencies 

across subtypes [66, 67]. The Y143C DRM that occurred one year after OPV was possibly a 

result of error prone de novo replication and not TDR, as the absence of a second peak in viral 

load eliminates the possibility of dual infection or superinfection as its cause. The presence of 

InSTI-associated DRMs in this cohort could indicate that these mutations occur sporadically in 

subtype C. This could have implications on the efficacy of InSTI’s for treatment of HIV-1 subtype 

C.  

 

With studies showing that viral reservoirs are established earlier than 10 days after onset of 

clinical symptoms in primary HIV infection [31, 32], the probability of low frequency mutations 

identified in this study to exist in reservoirs are high. We recommend investigating viral diversity 

in reservoirs during acute infection to elucidate archived viral populations. Additionally, further 

work to determine the impact of low frequency PI and InSTI-associated mutations on clinical 

outcomes is suggested.  
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CONCLUSION 
 

Low frequency DRMs are common in HIV-1 subtype C acute infection. While most revert 

rapidly, they may still be present in viral reservoirs and could impact future therapy options. Low 

frequency DRMs may contribute to increased time to viral suppression. However two 

participants with low frequency DRMs showed viral suppression within 6 months. The long term 

outcomes of treatment have yet to be determined.  
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 Figure 5-1 Neighbor joining phylogenetic trees of sequences from participants belonging 
to the FRESH cohort and acute infection cohort. (a) Sanger sequences from FRESH cohort 
participants are represented by grey branches with a black circle containing an F at the end of 
each branch, whilst Sanger sequences from acute cohort sequences are represented by black 
branches with no label. Sequences at various time-points from participant 079 clustered 
together. This highlights the similarity of samples. No clustering was observed between all other 
sequences sequenced by Sanger sequencing. (b) Sanger sequences (grey branches) and ultra-
deep sequences (black branches) for all FRESH participants is depicted. Sequences ending 
with a U represents those generated by UDPS whilst those ending with an SS represents 
sequences generated by Sanger sequencing. The first three digits of the sample ID represents 
the patient ID. For selected participants, four additional digits follow the patient ID, this denotes 
the time-point sequenced. No unusual clustering between different PIDs were noticed indicative 
of no cross contamination. As expected samples at different time-points clustered with each 
other. Furthermore, Sanger sequences and sequences generated by UDPS, from the same 
participant, clustered together. 
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Figure 5-2 Graphical representation of CD4+ T-cell count (grey line), viral load (black line) 
and DRM’s found at selected time-points for participant 267, 268, 271, 079 and 036.Time-
points tested included; OPV: onset of plasma viremia (this represents the first sample obtained 
following initial detection of plasma viremia), PV: plasma viremia, VS: viral set-point, M: mid-
point, L: last tested time-point. Participant 267, 268 and 271 did not have any persistence of 
mutations following OPV. For Participant 079 the RT-K103N mutation persisted at the mid and 
last time-point sequenced. Additionally, participant 079 developed the RT-K219R mutation at 
the last sequenced time-point. Participant 036 developed the RT-K65R mutation at VS and the 
InSTI-Y143C DRM and RT-K219Q DRM at the last sequenced time-point. Participant 267 and 
036 were placed on cART. Both participants showed complete viral suppression by day 156 and 
120 post treatment initiation respectively.  
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Figure 5-3 Comparison of CD4+ T-cell counts (grey) and log viral load (black) of five 
participants with no low frequency DRMs that were placed on cART Four participants were 
placed on treatment as per government guidelines (093, 186, 208 and 309) whilst one 
participant (312) was placed on early treatment a day after diagnosis. The day of treatment 
initiation (Txn) is indicated by a black arrow. Black boxes below the x-axis indicate the number 
of days taken to reach complete viral suppression post treatment initiation. Participant 093 
reached complete viral suppression 174 days post treatment initiation, whilst participant 208 and 
309 had undetectable viral loads by day 70 and 98 post treatment initiation respectively. All 3 of 
these participants showed an increase in CD4+ T-cell counts which correlated with decreased 
viral load. Participant 186 received treatment for 429 days, during which time the viral load 
remained detectable and the CD4+ T-cell count continued to decline. This was likely due to poor 
adherence to treatment, as evidenced by the development of the RT-K103N DRM which was 
detected by Sanger sequencing 311 days after treatment initiation. Participant 312 displayed an 
undetectable viral load 27 days post treatment initiation with an accompanied gradual increase 
in CD4+ T-lymphocyte count.  
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Table 5-1 Overview of participant characteristics for the AI cohort and the FRESH cohort. 

Characteristic Acute Infection Cohort (n=32) 
Value (IQR) for the parameter  

FRESH Cohort (n=15) 
Value (IQR) for the 
parameter 

Gender (%) 
  Male 
  Female 

 
50 
50 

 
0 
100 

Median age at sampling (years) 29 (25 – 37.5) 21 (20 – 22) 
Fiebig Stage at time of testinga (%) 
  Stage I 
  Stage II   
  Stage V 
   

 
72 
3 
5 

87 
13 

Subtype% 
  Subtype C 

 
100 

 
100 

Median Number of days post infection 14 (14 – 32)b 1 (1 – 3)c 

Median viral load (log10 copies/ml) 5.8 (5.21 – 6.74) 4.76 (4.29 – 5.58) 

Median CD4+ T-Lymphocytes (cells/mm3) 322 (289 – 519) 668 (411 – 859) 

Median viral load set-pointd (log10 copies/ml) 4.8 (4.1 – 5.2) 4.72 (4.07 – 4.99) 
Median rate of CD4+ T-lymphocyte decline 
(cells/mm3 per month) -4.4 (-9.8 to -0.3) -4.1 (-7 to 5.4) 
aFiebig staging for 11 participants was as reported by Ndhlovu et al., 2015 [41], the remaining participants 
were staged as per Fiebig et al., 2003 [68]. bRepresents the number of days post infection, calculated by 
adding 14 days to the date of the first positive test as described previously [42]. cRepresents the number 
of days following onset of plasma viremia as described previously [41]. dThe viral load set-point was 
defined as the average viral load from 3 to 12 months post infection.  



 

228 
 

 

Table 5-2 Comparison between DRMs detected by Sanger sequencing and UDPS at the earliest 
available time-point after onset of plasma viremia (OPV).  

PID # Days 
after OPV 

Frequency of DRMs detected 
by UDPS and Sanger 
sequencing (% by UDPS)  

 Frequency of DRMs detected by UDPS only  
(% by UDPS) 

    NNRTI PRa  NRTI NNRTI PRa InSTI 
36 8 None None  K65R (1.16) None M46L (6.32) None 
39 6 None T74S (99.39)  None None None None 
79 8 K103N (99.93) A71V (0.3)  K65R (1.08) V90I (7.86) None None 

93 8 None None  None None None None 
102 8 None None  None None None None 
186 11 None None  None None None None 
198 22 None None  None None None None 
267 7 None None  D67N (3.88) None None T97A (2.90) 
268 7 None None  K65R (1.51) None None None 
271 5 None None  None None F53L (17.6)b None 
272 6 None None  K65R (1.04) None None None 
309 5 None None  None None None None 
312 9 None None  K65R (1.19) None None None 
318 6 None None  K65R (1.11) None None None 

aMajor PI DRMs are highlighted in bold.. bThe F53L PI-associated DRM is listed as a minor PR DRM in 
the IAS-USA list of DRMs and in the Stanford HIVdb, however it is listed as a PI TDR associated mutation 
in the World Health Organization list of mutations for surveillance of transmitted drug resistant HIV strains. 
Abbreviations: OPV, Onset of plasma viremia; DRM, drug resistance mutation; UDPS, ultra-deep 
pyrosequencing; PR, Protease, NNRTI, non-nucleo(s)tide reverse transcriptase inhibitors; NRTI, 
nucleo(s)tide reverse transcriptase inhibitor; InSTI, integrase strand transfer inhibitor 
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6 CHAPTER 6: GENERAL DISCUSSION AND CONCLUSIONS 
 

6.1 Discussion 

 

South Africa has one of the world’s highest HIV infection rates with approximately 6.8 million 

people (out of a population of 50.59 million) living with HIV (1). In addition to this, SA has one of 

the world’s largest ARV programs serving over 1.7 million people, and reaching almost 60% of 

HIV infected individuals that are eligible for ARV treatment in the country (1, 2). The country 

aims to have 80% of all HIV positive candidates who are eligible for ARV treatment on ARV’s by 

2016 as part of the National Strategic Plan on HIV/AIDS, Tuberculosis and Sexually Transmitted 

Infections. The major concern however, in having a large ARV program in a low-income country, 

is the development of drug resistance (i.e. acquired drug resistance) and its subsequent 

transmission. Acquired drug resistance occurs as a result of the development of resistance 

mutations within the HIV genome due to drug-selection pressure in individuals receiving ARV 

treatment. Transmitted drug resistance occurs when individuals who were not previously 

infected with HIV are infected with a drug-resistant variant of the virus (3). Adherence to 

treatment is the key to preventing/controlling acquired drug resistance which in turn would 

reduce the transmission of resistant variants of HIV. However several barriers to adherence 

exists which hamper the success of treatment. These include: poor service delivery, drug stock-

outs, stigma and discrimination associated with ARV use, drug toxicity, socio-economic issues 

and lack of knowledge on the importance of adherence (4). 

 

Within South Africa, reports of increased resistance to first-line regimens has been followed by 

concomitant increases in TDR to NRTI’s and NNRTI’s (3, 5). A recent report showed that NRTI 

and NNRTI TDR had increased from a low threshold level in 2007 to a moderate threshold level 

by 2008 (5-15%) (3). This increase would directly impact on the success of the country’s first-

line regimen, resulting in an increase in first-line failures and is likely to be accompanied by an 

increase in the number of patients receiving second line treatment. Currently, it is estimated that 

10% of all people receiving cART in SA are on a PI inclusive treatment regimen. Interestingly, a 

recent study reported that 40% of all patients on second line cART in SA experience virologic 

failure, in the absence of mutations in PR (6-10). Whilst this could be due to poor treatment 

adherence, studies have shown that resistance to PI’s can occur in the absence of mutations in 

PR (11-15). These studies recognise mutations in Gag as contributors to PI resistance (11, 13, 

14, 16). The majority of studies investigating the role of Gag in PI resistance have used HIV-1 

subtype B cohorts, despite HIV-1 subtype C being the most prevalent subtype globally (17). To 

date, only one study investigating the role of Gag in PI resistance exists for HIV-1 subtype C. 
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This study however had a small sample size (n=20) and was based on a paediatric cohort 

receiving RTV or LPV/r (18). Furthermore this study only investigated drug susceptibility with no 

analysis conducted on replication capacity, an integral component in PI resistance, since 

several studies have reported that mutations in Gag contribute to PI resistance via an increase 

in Gag polyprotein processing (19-25). Given that Gag is highly polymorphic amongst subtypes 

(26), a study investigating the role of Gag in PI resistance which addresses both replication 

capacity and drug susceptibility in HIV-1 subtype C is warranted.  

 

With the high rate of virologic failure to both first and second line treatment, as discussed above, 

the need for more studies on TDR is recognised. To date, the majority of data used to generate 

TDR reports has primarily employed Sanger sequencing, which means that only mutations 

occurring at frequencies >15-20% are accounted for (27, 28). With various studies reporting that 

RAMs present at frequencies as low as 1% in the viral quasispecies could significantly impact 

treatment outcomes, the use of more sensitive techniques to detect low frequency mutations 

would be beneficial (29-37). Furthermore, most TDR studies have used recently infected cohorts 

of patients to study TDR. With the high fitness cost associated with most RAMs, they revert 

rapidly and thus would be undetectable in recent infection (i.e. 3-6 months post infection). 

Collectively this data highlights the need for studies which investigate low frequency TDR 

mutations in acute infection.  

 

The current study used a two-pronged approach to address drug resistance surveillance within 

the context of acquired and transmitted drug resistance in SA. As part of the first approach; a 

cohort of 80 HIV-1 subtype C participants failing a PI inclusive treatment regimen (i.e. PCS 

cohort) were investigated to identify mutations in Gag and PR associated with PI 

resistance/exposure. Thereafter replication capacity of each virus was measured and selected 

viruses were used in drug susceptibility analysis in order to identify the impact of mutations on 

replication capacity and drug susceptibility. Lastly, the impact of selected mutations on 

replication capacity and drug susceptibility was validated using site-directed mutagenesis. As 

part of the second arm, prevalence of TDR mutations in a cohort of 45 HIV-1 subtype C acutely 

infected individuals was investigated using Sanger sequencing. Thereafter a subset of 14 

participant samples, selected based on sample availability, was sequenced by UDPS to identify 

low frequency mutations. Lastly, we explored the impact of low frequency TDR mutations on 

treatment outcomes by comparing treatment outcomes of two participants with low frequency 

mutations to that of five participants without low frequency mutations.  

 

Of the participants from the PCS cohort used in the current study, PR RAMs were detected in 

34 out of 80 participants  (i.e. 42.5%) (38). This implied that the remaining 57.5% (46/80) of 
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participants failed their PI inclusive treatment regimen as a result of either poor drug adherence 

or an alternate pathway of PI resistance. Of these 46 participants, only seven did not have 

detectable LPV levels suggesting that PI failure for the remaining participants was likely due to 

an alternate pathway of resistance. With the role of Gag in PI resistance being well documented 

(11, 13, 15), we investigated the Gag gene of each of these participants. Gag mutations were 

divided into three groups (a) PI exposure associated Gag mutations; (b) resistance associated 

Gag mutations (i.e. rGag) and (c) novel Gag mutations (i.e. nGag). Both rGag mutations and PI 

exposure associated Gag mutations used in this study were from existing literature (Chapter 1, 

Table 1.3) whilst nGag mutations represented mutations that occurred at a significantly higher 

frequency in the PCS cohort in comparison to the control cohorts (i.e. HIV-1 subtype C 

treatment naïve and acute infection cohorts).  

 

All participants in our cohort presented with PI exposure associated Gag mutations (i.e. E12K, 

V35I, G62R, V370A/M, S373P/Q/T, A374P, T375N, I376V, G381S, I389T, I401T and H219Q). 

The E12K, V370A, T375N and G381S mutations all occurred as natural polymorphisms in HIV-1 

subtype C (i.e. they were found at frequencies >50% in the treatment naïve cohorts). The role of 

these mutations in PI resistance is largely unknown, with one study suggesting that E12K may 

be involved in altering viral replication in the presence of PI’s (39) and a second study showing 

that V370A confers resistance to Bevirimat (40), whilst no information on T375N or G381S 

exists within this context. Although the role of these mutations in PI resistance is unclear, their 

high prevalence in subtype C viruses in comparison to subtype B viruses highlights the 

polymorphic nature of Gag between subtypes and shows that research on subtype B viruses 

may not always translate to subtype C viruses (41).  

 

We identified eight rGag mutations in this study (i.e. R76K, Y79F, V128I, A431V, K436R, 

L449F/P, R452K and P453L). The R76K and Y79F mutations appeared as natural 

polymorphisms in HIV-1 subtype C, further highlighting variations between HIV-1 subtype C and 

B Gag. Interestingly a previous study reported that a combination of R76K and Y79F was 

associated with increasing replication capacity in the presence of PR RAMs (16). This could 

suggest that HIV-1 subtype C viruses may have a replicative advantage in the presence of PR 

RAMs. The NC/p1 CS mutations: A431V and K436R, as well as the p1/p6 CS mutations: L449F 

and R452K, have all been associated with enhancing PI resistance in the presence of PR RAMs 

(13, 14, 20, 25). These CS mutations have been shown to alter CS structure thereby increasing 

accessibility of mutant PR to the substrate (19). This allows for continued substrate cleavage in 

the presence of PI’s and thus these rGag CS mutations are said to enhance PI resistance 

through improving polyprotein processing (13, 14, 20, 25) . Bearing in mind that previous studies 

showed all rGag mutations identified in this study to impact on polyprotein processing in the 
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presence of PR RAMs, it was interesting to find that all 34 participants with PR RAMs in our 

cohort harboured ≥1 rGag mutation. Having both rGag mutations and PR RAMs would enable 

sustained substrate recognition and cleavage by the mutated PR. The combined presence of 

rGag and PR RAMs in our cohort could suggest that Gag and Protease co-evolve under PI drug 

selection pressure. This is supported by a recent study which showed that L449F co-evolves 

with D30N and N88S in PR to enable continued cleavage in the presence of PI’s (23, 42).  

 

Whether Gag or PR mutations appear first in PI resistance is currently a leading area of interest 

within the field. Our study showed that 72% (i.e. 33/46) of participants without PR RAMs 

presented with ≥1 rGag mutation described above. This suggests that development of mutations 

in Gag may precede the development of mutations in PR and could indicate that Gag mutations 

may be required for PR RAMs to develop. This is supported by several studies which also 

showed Gag mutations to occur before PR RAMs (39, 43, 44). These findings indicate that 

genotypic testing of PR is not sufficient to identify PI resistance, and advocates for the inclusion 

of Gag mutations in resistance algorithms, since Gag mutations may be an indicator/predictor 

for the development of PR RAMs and PI resistance.  

 

The current study also identified four novel Gag mutations (i.e. Q69K, S111C/I, T239A/S and 

I256V), in the amino terminal of Gag, which were associated with PI resistance/exposure. 

Similar to rGag mutations, all 34 participants harbouring a PR RAM (and an rGag mutation) also 

harboured ≥1 nGag mutation, whilst 80% (i.e. 37/46) of participants without PR RAMs harboured 

≥1 nGag mutation. This shows similar development of nGag and rGag mutations and could 

indicate that nGag mutations also precede PR RAM development further supporting the theory 

that Gag mutations precede the development of PR RAMs. In exploring the role of nGag 

mutations in PI resistance, we found Q69K to be associated with significantly increased 

replication capacity when found together with A431V+PR RAMs. Investigations using SDM 

validated that Q69K is a compensatory mutation which increases replication capacity when 

found in conjunction with A431V+V82A. Interestingly though, Q69K had no impact on reducing 

drug susceptibility either individually or in combination (i.e. A431V+PR RAMs+Q69K). The 

mechanism of action of the Q69K mutation could thus be similar to other rGag mutations such 

as L449F, R452K and P453L which have all been shown to improve polyprotein processing in 

the presence of PR RAMs, but do not confer reduced PI drug susceptibility when found alone 

(20, 22, 25, 45).  

 

In exploring replication capacity of viruses with combinations of PR RAMs, rGag and nGag 

mutations, we showed that viruses with PR RAMs had a significantly lower replication capacity 

than viruses without PR RAMs. This was consistent with previous studies (46-48) and was 
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expected since PR RAMs alter the substrate binding cleft thereby reducing substrate cleavage 

(49-51). Viruses with PR RAMs+rGag mutations had a significantly lower replication capacity 

than viruses with rGag mutations only, suggesting that PR RAMs drive the reduction of viral 

fitness in PI resistance. A recent study also showed a similar result (46). Interestingly viruses 

with rGag mutations showed no variation in replication capacity when compared to: viruses with 

nGag mutations and viruses without Gag mutations. This was surprising since most rGag 

mutations are found in Gag CS’s and have been associated with altering CS structure to 

facilitate better recognition by mutant PR (11, 52). One would thus expect to observe a reduced 

replication capacity in viruses with rGag mutations and wild-type PR. This however was not the 

case and highlighted that wild-type and mutant PR can recognise and cleave Gag CS’s despite 

peptide variations.   

 

Analysis of drug susceptibility data for 18 selected patients demonstrated, as expected, that PR 

RAMs are associated with significantly reduced susceptibility to LPV (>15 FC in IC50) and DRV 

(>6 FC in IC50) (20, 23, 53). This is largely due to alterations in the PR active site caused by PR 

RAMs which reduces the affinity for PI’s thereby resulting in a higher IC50 (11). Interestingly, we 

showed that combinations of rGag mutations (in the absence of PR mutations) can also impact 

drug susceptibility, as demonstrated previously (16, 39, 54, 55). In our cohort, a virus with 

R76K+Y79F+K436R+L449P+I256V exhibited a 5.2 fold increase in IC50 for DRV. Similarly, a 

virus harbouring R76K+R453L had a 23.88 fold increase in IC50 for LPV and a 6.73 fold increase 

in IC50 for DRV. Lastly, a virus with R76K+K436R+Q69K+S111C displayed a 7.40 fold increase 

in IC50 for LPV. These data highlights that combinations of rGag mutations are associated with 

reduced PI susceptibility and further supports the recommendation to include Gag mutations 

associated with PI resistance in resistance algorithms.  

 

Whilst PI virologic failure can be explained for most of the participants in the PCS cohort by the 

presence of PR RAMs, rGag mutations and poor adherence, there were a few participants that 

did not harbour PR RAMs or rGag mutations for whom PI virologic failure is difficult to explain. 

Each of these patients had detectable LPV levels indicative of treatment adherence and 

suggestive of an alternate pathway to PI resistance. Interestingly, a recent study showed that 

sequence variation at the cytoplasmic tail of the Env protein conferred resistance to PI’s in the 

absence of mutations in PR (56). This region of HIV-1 is currently ignored in studies 

investigating PI resistance and thus we recommend future studies on PI resistance to include 

Env together with Gag and PR.  

 

The current study was the first to investigate the prevalence of low frequency TDR mutations in 

PR, RT and INT within an HIV-1 subtype C acute infection cohort. Low frequency TDR 
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associated mutations were identified in 57% of participants by UDPS. We showed the presence 

of TDR associated mutations in PR for the first time in a South African study (i.e. M46I and 

F53L). Interestingly both of these mutations reverted seven days after onset of plasma viremia, 

highlighting the high fitness costs associated with PR RAMs. Similarly, the T97A, D67N and 

K65R mutations also reverted within one to two weeks after onset of plasma viremia. The quick 

reversion of these TDR associated mutations, shows that their presence would go undetected in 

recently infected individuals. As such the prevalence of TDR mutations could be under 

estimated in SA, since most studies investigating TDR mutations have utilised recently infected 

cohorts (3, 57). In our study, UDPS detected TDR mutations in 57% of participants (i.e. 8/14) 

whilst Sanger sequencing detected TDR in 2.2% of participants (1/45). This highlights that 

Sanger sequencing does not provide a true reflection of TDR mutations and shows the 

importance of using deep sequencing methods to obtain a true view of TDR. Collectively this 

data shows that the best view of TDR mutations would be obtained by using acute infection 

cohorts and deep sequencing techniques. It is however important to note that the high 

prevalence of low frequency mutations as identified by UDPS (i.e. 57%), could be related to 

either transmission events or “sporadic” emergence of mutants as a result of de novo viral 

replication. If the latter is true, the data may not reflect transmission events and implications for 

resistance to regimens may be different. 

 

In exploring the impact of low frequency mutations on treatment outcomes, we found that on 

average, participants with low frequency TDR mutations who were initiated on FDC ART took 40 

days longer to reach viral suppression than participants without low frequency TDR associated 

mutations. Interestingly, these participants also had significantly lower viral load than 

participants without low frequency TDR mutations, however they still took a longer time to 

achieve viral suppression. These data concur with other studies that have reported that low 

frequency TDR mutations impacts treatment outcomes and highlights the need for deep 

sequencing based genotypic testing. The need for cost-effective next generation sequencing 

technologies in low income countries is thus recognised. 

 
6.2 Conclusions 

 

Variability in replication capacity and drug susceptibility is driven primarily by mutations in PR, 

with mutations in Gag playing mostly a compensatory role to enhance polyprotein processing. 

Mutations in Gag can however also confer reduced susceptibility to PI’s in the absence of PR 

RAMs either when found alone, as was the case for A431V, or when found in combinations. 

Furthermore Gag mutations may occur before PR RAMs and could be a precursor of PI 

resistance. Collectively this data advocates for the inclusion of Gag in PI resistance algorithms. 
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Deep sequencing technologies identify a significantly higher number of TDR associated 

mutations than Sanger sequencing as a result of the limit of detection associated with Sanger 

sequencing (i.e. it can only detect mutations present at a frequency >15-20%). Low frequency 

mutations impact treatment outcomes thereby highlighting the importance of genotypic 

screening prior to treatment initiation. The use of deep sequencing for genotypic screening 

would be more beneficial than using Sanger sequencing. There is thus a need for the 

development of cost-effective deep-sequencing technologies for use in resource-limited 

settings, like SA. 

 

Overall this study showed that both the carboxy and amino terminal of Gag play an important 

role in PI resistance. Furthermore, TDR mutations to all four drug classes (i.e. NRTI, NNRTI, PI 

and INI) exists in SA. Genotypic resistance testing using deep sequencing technologies would 

be beneficial in maintaining the success and longevity of cART in SA.  

 

6.3 Study limitations 

 

 Although we measured LPV levels for each patient as an indicator of treatment 

adherence, we do recognise that that “white-coat” adherence (i.e. cases were patients 

take treatment prior to clinic visits) is a problem and that measuring adherence is 

difficult and not always truly reflective of patient behaviour. 

 The high cost associated with drug susceptibility testing limited the number of patient 

samples we tested. Nonetheless, the study was designed to answer specific questions 

which could be addressed with the susceptibility analysis conducted.  

 The inability to calculate an upper limit of detection for phenotypic tests using lab-

derived viruses limited our drug resistance classifications to susceptible or reduced 

susceptibility only, without any intermediate categorisations of drug susceptibility. Whilst 

this is recognised as a limitation, it was not detrimental to our study since we wanted to 

determine if mutations affected drug susceptibility, a question which could be answered 

by describing only the FC in IC50 values for LPV or DRV. 

 The small sample size used in the study to detect low frequency TDR associated 

mutations is acknowledged as a limitation. It must however be recognised that the 

FRESH acute cohort is the first of its kind globally since participants were followed prior 

to developing HIV with bi-weekly tests conducted to identify HIV-1 infection at its 

earliest detectable point. Most patients in this cohort were thus identified as early as 

Fiebig stage 1 and are truly representative of acute infection. 
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 The Env region of HIV-1 was not included in the present study. As such mechanisms of 

PI failure in several patients could not be determined and it remains unclear if some of 

these patients failed treatment due to poor adherence or because of the Env based 

alternate pathway of PI resistance.  

 An additional limitation of this study was the insertion of subtype C patient derived gag-

protease into a subtype B backbone (pNL43) to create recombinant viruses which were 

used to assess viral fitness and drug susceptibility of patient derived gag-protease 

viruses. Ideally this study should have employed a subtype C backbone (e.g. pMJ4), 

however generation of recombinant viruses in pMJ4 has been a challenge in our 

laboratory. Whilst it is possible that some gag-protease mutations associated with 

replication capacity or drug susceptibility could have been influenced by other 

components of the subtype B backbone, previous studies have shown that the subtype 

of a backbone has no effect on replication capacity (58) or drug susceptibility results 

(59). 

 

6.4 Recommendations for future studies 

 

 Genotyping the Env region of HIV-1 for the PCS cohort is recommended in order to 

identify mutations in gp41 that are associated with PI resistance.  

 Including Env in Gag-Protease recombinant viruses is suggested. Employing these 

viruses in viral replication and drug susceptibility assays would be beneficial to 

determine how virus functionality is affected when these three regions are combined 

under drug selection pressure.  

 Identification of the quasispecies harboured in viral reservoirs is recommended in order 

to elucidate if drug resistant minority variant mutants are harboured in viral reservoirs. 
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7 APPENDIX 
7.1 HIV-1 subtype C treatment naïve sequence accession numbers 
 

HIV-1 subtype C treatment naïve sequences: Los Alamos accession numbers 

AY463217 DQ164107 DQ445634 HM593221 HM593341 HM593461 JF704305 JF704425 

AY463218 DQ164108 DQ445635 HM593222 HM593342 HM593462 JF704306 JF704426 

AY463219 DQ164109 DQ445637 HM593223 HM593343 HM593463 JF704307 JF704427 

AY463220 DQ164110 EU347706 HM593224 HM593344 HM593464 JF704308 JF704428 

AY463221 DQ164111 EU347707 HM593225 HM593345 HM593465 JF704309 JF704429 

AY463222 DQ164112 EU347708 HM593226 HM593346 HM593466 JF704310 JF704430 

AY463223 DQ164113 GQ999989 HM593227 HM593347 HM593467 JF704311 JF704431 

AY463224 DQ164114 HM593106 HM593228 HM593348 HM593468 JF704312 JF704432 

AY463225 DQ164115 HM593107 HM593229 HM593349 HM593469 JF704313 JF704433 

AY463226 DQ164116 HM593108 HM593230 HM593350 HM593470 JF704314 JF704434 

AY463227 DQ164117 HM593109 HM593231 HM593351 HM593471 JF704315 JF704435 

AY463228 DQ164118 HM593110 HM593232 HM593352 HM593472 JF704316 JF704436 

AY463229 DQ164119 HM593111 HM593233 HM593353 HM593473 JF704317 JF704437 

AY463230 DQ164121 HM593112 HM593234 HM593354 HM593474 JF704318 JF704438 

AY463231 DQ164122 HM593113 HM593235 HM593355 HM593475 JF704319 JF704439 

AY463232 DQ164126 HM593114 HM593236 HM593356 HM593476 JF704320 JF704440 

AY463233 DQ164127 HM593115 HM593237 HM593357 HM593477 JF704321 JF704441 

AY463234 DQ164129 HM593116 HM593238 HM593358 HM593478 JF704322 JF704442 

AY463236 DQ275642 HM593117 HM593239 HM593359 HM593479 JF704323 JF704443 

AY463237 DQ275643 HM593118 HM593240 HM593360 HM593480 JF704324 JF704444 

AY703908 DQ275644 HM593119 HM593241 HM593361 HM593481 JF704325 JF704445 

AY703909 DQ275645 HM593120 HM593242 HM593362 HM593482 JF704326 JF704446 

AY703910 DQ275646 HM593121 HM593243 HM593363 HM593483 JF704327 JF704447 

AY703911 DQ275647 HM593122 HM593244 HM593364 HM593484 JF704328 JF704448 

AY772690 DQ275648 HM593123 HM593245 HM593365 HM593485 JF704329 JF704449 

AY772691 DQ275649 HM593124 HM593246 HM593366 HM593486 JF704330 JF704450 

AY772692 DQ275650 HM593125 HM593247 HM593367 HM593487 JF704331 JF704451 

AY772693 DQ275651 HM593126 HM593248 HM593368 HM593488 JF704332 JF704452 
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AY772694 DQ275652 HM593127 HM593249 HM593369 HM593489 JF704333 JF704453 

AY772695 DQ275653 HM593128 HM593250 HM593370 HM593490 JF704334 JF704454 

AY772696 DQ275654 HM593129 HM593251 HM593371 HM593491 JF704335 JF704455 

AY772698 DQ275655 HM593130 HM593252 HM593372 HM593492 JF704336 JF704456 

AY772699 DQ275656 HM593131 HM593253 HM593373 HM593493 JF704337 JF704457 

AY772700 DQ275657 HM593132 HM593254 HM593374 HM593494 JF704338 JF704458 

AY878054 DQ275658 HM593133 HM593255 HM593375 HM593495 JF704339 JF704459 

AY878055 DQ275659 HM593134 HM593256 HM593376 HM593496 JF704340 JF704460 

AY878056 DQ275660 HM593135 HM593257 HM593377 HM593497 JF704341 JF704461 

AY878057 DQ275661 HM593136 HM593258 HM593378 HM593498 JF704342 JF704462 

AY878058 DQ275664 HM593137 HM593259 HM593379 HM593499 JF704343 JF704464 

AY878059 DQ351216 HM593138 HM593260 HM593380 HM593500 JF704344 JF704465 

AY878060 DQ351217 HM593139 HM593261 HM593381 HM593501 JF704345 JF704466 

AY878061 DQ351218 HM593140 HM593262 HM593382 HM593502 JF704346 JF704467 

AY878062 DQ351219 HM593141 HM593263 HM593383 HM593503 JF704347 JF704468 

AY878063 DQ351220 HM593142 HM593264 HM593384 HM593504 JF704348 JF704469 

AY878064 DQ351221 HM593143 HM593265 HM593385 HM593505 JF704349 JF704470 

AY878065 DQ351222 HM593144 HM593266 HM593386 HM593506 JF704350 JF704471 

AY878068 DQ351223 HM593145 HM593267 HM593387 HM593507 JF704351 JF704472 

AY878070 DQ351224 HM593146 HM593268 HM593388 HM593508 JF704352 JF704473 

AY878071 DQ351225 HM593147 HM593269 HM593389 HM593509 JF704353 JF704474 

AY878072 DQ351226 HM593148 HM593270 HM593390 HM593510 JF704354 JF704475 

AY901965 DQ351227 HM593149 HM593271 HM593391 JF704235 JF704355 JF704476 

AY901966 DQ351228 HM593150 HM593272 HM593392 JF704236 JF704356 JF704477 

AY901967 DQ351229 HM593152 HM593273 HM593393 JF704237 JF704357 JF704478 

AY901968 DQ351230 HM593153 HM593274 HM593394 JF704238 JF704358 JF704479 

AY901969 DQ351231 HM593154 HM593275 HM593395 JF704239 JF704359 JF704480 

AY901970 DQ351232 HM593155 HM593276 HM593396 JF704240 JF704360 JF704481 

AY901971 DQ351233 HM593156 HM593277 HM593397 JF704241 JF704361 JF704482 

AY901972 DQ351234 HM593157 HM593278 HM593398 JF704242 JF704362 JF704483 

AY901973 DQ351235 HM593158 HM593279 HM593399 JF704243 JF704363 JF704484 

AY901974 DQ351237 HM593159 HM593280 HM593400 JF704244 JF704364 JF704485 
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AY901975 DQ369976 HM593160 HM593281 HM593401 JF704245 JF704365 JF704486 

AY901976 DQ369977 HM593161 HM593282 HM593402 JF704246 JF704366 JF704487 

AY901977 DQ369978 HM593162 HM593283 HM593403 JF704247 JF704367 JF704488 

AY901978 DQ369979 HM593163 HM593284 HM593404 JF704248 JF704368 JF704489 

AY901979 DQ369980 HM593164 HM593285 HM593405 JF704249 JF704369 JF704490 

AY901980 DQ369981 HM593165 HM593286 HM593406 JF704250 JF704370 JF704492 

AY901981 DQ369982 HM593166 HM593287 HM593407 JF704251 JF704371 JF704494 

DQ011165 DQ369983 HM593167 HM593288 HM593408 JF704252 JF704372 JF704496 

DQ011166 DQ369984 HM593168 HM593289 HM593409 JF704253 JF704373 JF704497 

DQ011167 DQ369985 HM593169 HM593290 HM593410 JF704254 JF704374 JF704498 

DQ011169 DQ369986 HM593170 HM593291 HM593411 JF704255 JF704375 JF704499 

DQ011170 DQ369987 HM593171 HM593292 HM593412 JF704256 JF704376 JF704500 

DQ011171 DQ369988 HM593172 HM593293 HM593413 JF704257 JF704377 JF704501 

DQ011172 DQ369989 HM593173 HM593294 HM593414 JF704258 JF704378 JF704502 

DQ011173 DQ369990 HM593174 HM593295 HM593415 JF704259 JF704379 JF704503 

DQ011174 DQ369991 HM593175 HM593296 HM593416 JF704260 JF704380 JF704504 

DQ011175 DQ369992 HM593176 HM593297 HM593417 JF704261 JF704381 JF704505 

DQ011176 DQ369993 HM593177 HM593298 HM593418 JF704262 JF704382 JF704506 

DQ011177 DQ369994 HM593178 HM593299 HM593419 JF704263 JF704383 JF704507 

DQ011178 DQ369995 HM593179 HM593300 HM593420 JF704264 JF704384 JF704508 

DQ011179 DQ369996 HM593180 HM593301 HM593421 JF704265 JF704385 JF704509 

DQ011180 DQ369997 HM593181 HM593302 HM593422 JF704266 JF704386 JF704510 

DQ056404 DQ396364 HM593182 HM593303 HM593423 JF704267 JF704387 JF704511 

DQ056405 DQ396365 HM593183 HM593304 HM593424 JF704268 JF704388 JF704512 

DQ056406 DQ396366 HM593184 HM593305 HM593425 JF704269 JF704389 JF704513 

DQ056408 DQ396367 HM593185 HM593306 HM593426 JF704270 JF704390 JF704514 

DQ056409 DQ396368 HM593186 HM593307 HM593427 JF704271 JF704391 JF704515 

DQ056410 DQ396369 HM593187 HM593308 HM593428 JF704272 JF704392 JF704516 

DQ056411 DQ396370 HM593188 HM593309 HM593429 JF704273 JF704393 JF704517 

DQ056412 DQ396371 HM593189 HM593310 HM593430 JF704274 JF704394 JF704518 

DQ056413 DQ396372 HM593190 HM593311 HM593431 JF704275 JF704395 JF704519 

DQ056414 DQ396373 HM593191 HM593312 HM593432 JF704276 JF704396 JF704520 
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DQ056415 DQ396374 HM593192 HM593313 HM593433 JF704277 JF704397 JF704521 

DQ056416 DQ396375 HM593193 HM593314 HM593434 JF704278 JF704398 JF704522 

DQ056417 DQ396376 HM593194 HM593315 HM593435 JF704279 JF704399 JF704523 

DQ056418 DQ396377 HM593195 HM593316 HM593436 JF704280 JF704400 JF704524 

DQ093585 DQ396378 HM593196 HM593317 HM593437 JF704281 JF704401 JF704525 

DQ093586 DQ396379 HM593197 HM593318 HM593438 JF704282 JF704402 JF704526 

DQ093587 DQ396380 HM593199 HM593319 HM593439 JF704283 JF704403 JF704527 

DQ093588 DQ396381 HM593200 HM593320 HM593440 JF704284 JF704404 JF704528 

DQ093589 DQ396382 HM593201 HM593321 HM593441 JF704285 JF704405 JF704529 

DQ093590 DQ396383 HM593202 HM593322 HM593442 JF704286 JF704406 JF704530 

DQ093591 DQ396384 HM593203 HM593323 HM593443 JF704287 JF704407 JF704531 

DQ093592 DQ396385 HM593204 HM593324 HM593444 JF704288 JF704408 JF704532 

DQ093593 DQ396386 HM593205 HM593325 HM593445 JF704289 JF704409 JF704533 

DQ093594 DQ396387 HM593206 HM593326 HM593446 JF704290 JF704410 JF704534 

DQ093595 DQ396388 HM593207 HM593327 HM593447 JF704291 JF704411 JF704535 

DQ093596 DQ396389 HM593208 HM593328 HM593448 JF704292 JF704412 JF704536 

DQ093597 DQ396390 HM593209 HM593329 HM593449 JF704293 JF704413 JF704537 

DQ093598 DQ396391 HM593210 HM593330 HM593450 JF704294 JF704414 JF704538 

DQ093599 DQ396392 HM593211 HM593331 HM593451 JF704295 JF704415 JF704539 

DQ093600 DQ396393 HM593212 HM593332 HM593452 JF704296 JF704416 JF704540 

DQ093601 DQ396394 HM593213 HM593333 HM593453 JF704297 JF704417 JF704541 

DQ093602 DQ396395 HM593214 HM593334 HM593454 JF704298 JF704418 JF704542 

DQ093604 DQ396396 HM593215 HM593335 HM593455 JF704299 JF704419   

DQ093605 DQ396397 HM593216 HM593336 HM593456 JF704300 JF704420   

DQ093607 DQ396399 HM593217 HM593337 HM593457 JF704301 JF704421   

DQ164104 DQ445631 HM593218 HM593338 HM593458 JF704302 JF704422   

DQ164105 DQ445632 HM593219 HM593339 HM593459 JF704303 JF704423   

DQ164106 DQ445633 HM593220 HM593340 HM593460 JF704304 JF704424   
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7.2 HIV-1 subtype B treatment naïve sequence accession numbers 

 

HIV-1 subtype B treatment naïve sequence Los Alamos accession numbers 

AB428551 AB873242 AB873291 AB873340 AB873390 AB873440 AB873490 AB873539 

AB428552 AB873243 AB873292 AB873341 AB873391 AB873441 AB873491 AB873540 

AB428553 AB873244 AB873293 AB873342 AB873392 AB873442 AB873492 AB873541 

AB428554 AB873245 AB873294 AB873343 AB873393 AB873443 AB873493 AB873542 

AB428555 AB873246 AB873295 AB873344 AB873394 AB873444 AB873494 AB873543 

AB428556 AB873247 AB873296 AB873345 AB873395 AB873445 AB873495 AB873544 

AB428557 AB873248 AB873297 AB873346 AB873396 AB873446 AB873496 AB873545 

AB428558 AB873249 AB873298 AB873347 AB873397 AB873447 AB873497 AB873546 

AB428559 AB873250 AB873299 AB873348 AB873398 AB873448 AB873498 AB873547 

AB428560 AB873251 AB873300 AB873349 AB873399 AB873449 AB873499 AB873548 

AB428561 AB873252 AB873301 AB873350 AB873400 AB873451 AB873500 AB873549 

AB428562 AB873253 AB873302 AB873351 AB873401 AB873452 AB873501 AB873550 

AB873205 AB873254 AB873303 AB873352 AB873402 AB873453 AB873502 AB873551 

AB873206 AB873255 AB873304 AB873353 AB873403 AB873454 AB873503 AB873552 

AB873207 AB873256 AB873305 AB873354 AB873404 AB873455 AB873504 AB873553 

AB873208 AB873257 AB873306 AB873355 AB873405 AB873456 AB873505 AB873554 

AB873209 AB873258 AB873307 AB873356 AB873406 AB873457 AB873506 AB873555 

AB873210 AB873259 AB873308 AB873357 AB873407 AB873458 AB873507 AB873556 

AB873211 AB873260 AB873309 AB873358 AB873408 AB873459 AB873508 AB873557 

AB873212 AB873261 AB873310 AB873359 AB873409 AB873460 AB873509 AB873558 

AB873213 AB873262 AB873311 AB873360 AB873410 AB873461 AB873510 AB873559 

AB873214 AB873263 AB873312 AB873361 AB873411 AB873462 AB873511 AB873560 

AB873215 AB873264 AB873313 AB873362 AB873412 AB873463 AB873512 AB873561 

AB873216 AB873265 AB873314 AB873363 AB873413 AB873464 AB873513 AB873563 

AB873217 AB873266 AB873315 AB873364 AB873414 AB873465 AB873514 AB873564 

AB873218 AB873267 AB873316 AB873365 AB873415 AB873466 AB873515 AB873565 

AB873219 AB873268 AB873317 AB873366 AB873416 AB873467 AB873516 AB873566 

AB873220 AB873269 AB873318 AB873367 AB873417 AB873468 AB873517 AB873567 

AB873221 AB873270 AB873319 AB873368 AB873419 AB873469 AB873518 AB873568 
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AB873222 AB873271 AB873320 AB873369 AB873420 AB873470 AB873519 AB873569 

AB873223 AB873272 AB873321 AB873370 AB873421 AB873471 AB873520 AB873570 

AB873224 AB873273 AB873322 AB873371 AB873422 AB873472 AB873521 AB873571 

AB873225 AB873274 AB873323 AB873372 AB873423 AB873473 AB873522 AB873572 

AB873226 AB873275 AB873324 AB873373 AB873424 AB873474 AB873523 AB873573 

AB873227 AB873276 AB873325 AB873374 AB873425 AB873475 AB873524 AB873574 

AB873228 AB873277 AB873326 AB873375 AB873426 AB873476 AB873525 AB873575 

AB873229 AB873278 AB873327 AB873376 AB873427 AB873477 AB873526 AB873576 

AB873230 AB873279 AB873328 AB873377 AB873428 AB873478 AB873527 AB873577 

AB873231 AB873280 AB873329 AB873378 AB873429 AB873479 AB873528 AB873578 

AB873232 AB873281 AB873330 AB873379 AB873430 AB873480 AB873529 AB873579 

AB873233 AB873282 AB873331 AB873381 AB873431 AB873481 AB873530 AB873580 

AB873234 AB873283 AB873332 AB873382 AB873432 AB873482 AB873531 AB873581 

AB873235 AB873284 AB873333 AB873383 AB873433 AB873483 AB873532 AB873582 

AB873236 AB873285 AB873334 AB873384 AB873434 AB873484 AB873533 AB873583 

AB873237 AB873286 AB873335 AB873385 AB873435 AB873485 AB873534 AB873584 

AB873238 AB873287 AB873336 AB873386 AB873436 AB873486 AB873535 AB873585 

AB873239 AB873288 AB873337 AB873387 AB873437 AB873487 AB873536 AB873586 

AB873240 AB873289 AB873338 AB873388 AB873438 AB873488 AB873537 AB873587 

AB873241 AB873290 AB873339 AB873389 AB873439 AB873489 AB873538 AB873588 

AB873589 AY786818 AY786888 AY786937 EF121387 EU241975 EU242027 EU242078 

AB873590 AY786819 AY786889 AY786938 EF121388 EU241976 EU242028 EU242079 

AB873591 AY786830 AY786890 AY786939 EF121389 EU241977 EU242029 EU242080 

AB873592 AY786831 AY786891 AY786952 EF121390 EU241978 EU242030 EU242081 

AB873593 AY786832 AY786892 AY786962 EF121391 EU241979 EU242031 EU242082 

AB873594 AY786833 AY786893 DQ127534 EF121392 EU241980 EU242032 EU242083 

AB873595 AY786834 AY786894 DQ396398 EF121393 EU241981 EU242033 EU242085 

AB873596 AY786835 AY786895 DQ487188 EF121394 EU241982 EU242034 EU242086 

AB873597 AY786836 AY786896 DQ487190 EF175209 EU241983 EU242035 EU242087 

AB873598 AY786837 AY786897 DQ487191 EF175210 EU241984 EU242036 EU242088 

AB873599 AY786838 AY786898 DQ853436 EF175211 EU241985 EU242037 EU242089 

AB873600 AY786839 AY786899 DQ853437 EF175212 EU241986 EU242038 EU242090 
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AB873601 AY786840 AY786900 DQ853438 EU241938 EU241987 EU242039 EU242091 

AY314044 AY786841 AY786901 DQ853439 EU241939 EU241988 EU242041 EU242092 

AY314045 AY786842 AY786902 DQ853440 EU241940 EU241989 EU242042 EU242093 

AY314046 AY786843 AY786903 DQ853441 EU241941 EU241990 EU242043 EU242094 

AY314047 AY786844 AY786904 DQ853442 EU241942 EU241991 EU242044 EU242095 

AY314048 AY786845 AY786905 DQ853443 EU241943 EU241992 EU242045 EU242096 

AY314049 AY786846 AY786906 DQ853444 EU241944 EU241993 EU242046 EU242097 

AY314050 AY786848 AY786907 DQ853445 EU241945 EU241994 EU242047 EU242098 

AY314052 AY786849 AY786908 DQ853446 EU241946 EU241995 EU242048 EU242099 

AY786790 AY786850 AY786909 DQ853447 EU241947 EU241996 EU242049 EU242100 

AY786791 AY786851 AY786910 DQ853448 EU241948 EU241997 EU242050 EU242101 

AY786792 AY786852 AY786911 DQ853449 EU241949 EU241998 EU242051 EU242102 

AY786793 AY786853 AY786912 DQ853450 EU241950 EU242000 EU242052 EU242103 

AY786794 AY786854 AY786913 DQ853451 EU241951 EU242001 EU242053 EU242104 

AY786795 AY786855 AY786914 DQ853452 EU241952 EU242002 EU242054 EU242105 

AY786796 AY786856 AY786915 DQ853453 EU241953 EU242003 EU242055 EU242106 

AY786797 AY786857 AY786916 DQ853454 EU241954 EU242004 EU242056 EU242107 

AY786798 AY786858 AY786917 DQ853466 EU241955 EU242005 EU242057 EU242108 

AY786799 AY786859 AY786918 DQ853467 EU241956 EU242006 EU242058 EU242109 

AY786800 AY786870 AY786919 DQ853468 EU241957 EU242007 EU242059 EU242110 

AY786801 AY786871 AY786920 DQ853469 EU241958 EU242008 EU242060 EU242111 

AY786802 AY786872 AY786921 DQ853470 EU241959 EU242009 EU242061 EU242112 

AY786803 AY786873 AY786922 DQ853471 EU241960 EU242010 EU242062 EU242113 

AY786804 AY786874 AY786923 DQ853472 EU241961 EU242011 EU242063 EU242114 

AY786805 AY786875 AY786924 DQ853473 EU241962 EU242012 EU242064 EU242115 

AY786806 AY786876 AY786925 DQ853474 EU241963 EU242013 EU242065 EU242116 

AY786807 AY786877 AY786926 DQ853475 EU241964 EU242014 EU242066 EU242117 

AY786808 AY786878 AY786927 DQ996244 EU241965 EU242015 EU242067 EU242118 

AY786809 AY786879 AY786928 DQ996245 EU241966 EU242017 EU242068 EU242120 

AY786810 AY786880 AY786929 DQ996248 EU241967 EU242018 EU242069 EU242121 

AY786811 AY786881 AY786930 DQ996249 EU241968 EU242019 EU242070 EU242122 

AY786812 AY786882 AY786931 DQ996250 EU241969 EU242020 EU242071 EU242123 
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AY786813 AY786883 AY786932 DQ996252 EU241970 EU242021 EU242073 EU242124 

AY786814 AY786884 AY786933 DQ996253 EU241971 EU242022 EU242074 EU242125 

AY786815 AY786885 AY786934 DQ996254 EU241972 EU242023 EU242075 EU242126 

AY786816 AY786886 AY786935 EF121385 EU241973 EU242025 EU242076 EU242127 

AY786817 AY786887 AY786936 EF121386 EU241974 EU242026 EU242077 EU242128 

EU242129 EU242179 EU242229 EU242278 EU242329 EU242379 EU242432 EU242483 

EU242130 EU242180 EU242230 EU242279 EU242330 EU242380 EU242433 EU242484 

EU242131 EU242181 EU242231 EU242280 EU242331 EU242382 EU242434 EU242485 

EU242132 EU242182 EU242232 EU242281 EU242332 EU242383 EU242435 EU242486 

EU242133 EU242183 EU242233 EU242282 EU242333 EU242384 EU242436 EU242487 

EU242134 EU242184 EU242234 EU242283 EU242334 EU242385 EU242437 EU242488 

EU242135 EU242185 EU242235 EU242284 EU242335 EU242386 EU242438 EU242489 

EU242136 EU242186 EU242236 EU242285 EU242336 EU242387 EU242439 EU242491 

EU242137 EU242187 EU242237 EU242286 EU242337 EU242388 EU242440 EU242492 

EU242138 EU242188 EU242238 EU242287 EU242338 EU242389 EU242441 EU242493 

EU242139 EU242189 EU242239 EU242288 EU242339 EU242390 EU242442 EU242494 

EU242140 EU242190 EU242240 EU242289 EU242340 EU242391 EU242443 EU242495 

EU242141 EU242191 EU242241 EU242290 EU242341 EU242392 EU242444 EU242496 

EU242142 EU242192 EU242242 EU242291 EU242342 EU242393 EU242445 EU242497 

EU242143 EU242193 EU242243 EU242292 EU242343 EU242394 EU242446 EU242498 

EU242145 EU242194 EU242244 EU242293 EU242344 EU242395 EU242447 EU242499 

EU242146 EU242195 EU242245 EU242295 EU242345 EU242396 EU242448 EU242500 

EU242147 EU242196 EU242246 EU242296 EU242346 EU242397 EU242449 EU242501 

EU242148 EU242197 EU242247 EU242297 EU242347 EU242398 EU242450 EU242502 

EU242149 EU242198 EU242248 EU242298 EU242348 EU242399 EU242451 EU242503 

EU242150 EU242199 EU242249 EU242299 EU242349 EU242400 EU242452 EU242504 

EU242151 EU242200 EU242250 EU242300 EU242350 EU242401 EU242453 EU517762 

EU242152 EU242201 EU242251 EU242301 EU242351 EU242402 EU242454 EU517763 

EU242153 EU242203 EU242252 EU242302 EU242352 EU242403 EU242455 EU517764 

EU242154 EU242204 EU242253 EU242303 EU242353 EU242404 EU242456 EU517765 

EU242155 EU242205 EU242254 EU242304 EU242354 EU242405 EU242457 EU517766 

EU242156 EU242206 EU242255 EU242305 EU242355 EU242406 EU242458 EU517767 
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HIV-1 subtype B treatment naïve sequence Los Alamos accession numbers 

EU242157 EU242207 EU242256 EU242306 EU242356 EU242407 EU242459 EU517768 

EU242158 EU242208 EU242257 EU242307 EU242357 EU242408 EU242460 EU517769 

EU242159 EU242209 EU242258 EU242308 EU242358 EU242410 EU242461 EU517770 

EU242160 EU242210 EU242259 EU242309 EU242359 EU242412 EU242462 EU517771 

EU242161 EU242211 EU242260 EU242310 EU242360 EU242413 EU242463 EU517772 

EU242162 EU242212 EU242261 EU242311 EU242361 EU242414 EU242464 EU517773 

EU242163 EU242213 EU242262 EU242312 EU242362 EU242416 EU242465 EU517774 

EU242164 EU242214 EU242263 EU242313 EU242363 EU242417 EU242466 EU517775 

EU242165 EU242215 EU242264 EU242314 EU242364 EU242418 EU242467 EU517776 

EU242166 EU242216 EU242265 EU242315 EU242365 EU242419 EU242468 EU517777 

EU242167 EU242217 EU242266 EU242317 EU242366 EU242420 EU242469 EU517778 

EU242168 EU242218 EU242267 EU242318 EU242367 EU242421 EU242472 EU517779 

EU242169 EU242219 EU242268 EU242319 EU242368 EU242422 EU242473 EU517780 

EU242170 EU242220 EU242269 EU242320 EU242370 EU242423 EU242474 EU517781 

EU242171 EU242221 EU242270 EU242321 EU242371 EU242424 EU242475 EU517782 

EU242172 EU242222 EU242271 EU242322 EU242372 EU242425 EU242476 EU517783 

EU242173 EU242223 EU242272 EU242323 EU242373 EU242426 EU242477 EU517784 

EU242174 EU242224 EU242273 EU242324 EU242374 EU242427 EU242478 EU517785 

EU242175 EU242225 EU242274 EU242325 EU242375 EU242428 EU242479 EU517786 

EU242176 EU242226 EU242275 EU242326 EU242376 EU242429 EU242480 EU517787 

EU242177 EU242227 EU242276 EU242327 EU242377 EU242430 EU242481 EU517788 

EU242178 EU242228 EU242277 EU242328 EU242378 EU242431 EU242482 EU517790 

EU242129 EU242179 EU242229 EU242278 EU242329 EU242379 EU242432 EU242483 

EU242130 EU242180 EU242230 EU242279 EU242330 EU242380 EU242433 EU242484 

EU242131 EU242181 EU242231 EU242280 EU242331 EU242382 EU242434 EU242485 

EU242132 EU242182 EU242232 EU242281 EU242332 EU242383 EU242435 EU242486 

EU242133 EU242183 EU242233 EU242282 EU242333 EU242384 EU242436 EU242487 

EU242134 EU242184 EU242234 EU242283 EU242334 EU242385 EU242437 EU242488 

EU242135 EU242185 EU242235 EU242284 EU242335 EU242386 EU242438 EU242489 

EU242136 EU242186 EU242236 EU242285 EU242336 EU242387 EU242439 EU242491 

EU242137 EU242187 EU242237 EU242286 EU242337 EU242388 EU242440 EU242492 

EU242138 EU242188 EU242238 EU242287 EU242338 EU242389 EU242441 EU242493 



 

259 
 

HIV-1 subtype B treatment naïve sequence Los Alamos accession numbers 

EU242139 EU242189 EU242239 EU242288 EU242339 EU242390 EU242442 EU242494 

EU242140 EU242190 EU242240 EU242289 EU242340 EU242391 EU242443 EU242495 

EU242141 EU242191 EU242241 EU242290 EU242341 EU242392 EU242444 EU242496 

EU242142 EU242192 EU242242 EU242291 EU242342 EU242393 EU242445 EU242497 

EU242143 EU242193 EU242243 EU242292 EU242343 EU242394 EU242446 EU242498 

EU242145 EU242194 EU242244 EU242293 EU242344 EU242395 EU242447 EU242499 

EU242146 EU242195 EU242245 EU242295 EU242345 EU242396 EU242448 EU242500 

EU242147 EU242196 EU242246 EU242296 EU242346 EU242397 EU242449 EU242501 

EU242148 EU242197 EU242247 EU242297 EU242347 EU242398 EU242450 EU242502 

EU242149 EU242198 EU242248 EU242298 EU242348 EU242399 EU242451 EU242503 

EU242150 EU242199 EU242249 EU242299 EU242349 EU242400 EU242452 EU242504 

EU242151 EU242200 EU242250 EU242300 EU242350 EU242401 EU242453 EU517762 

EU242152 EU242201 EU242251 EU242301 EU242351 EU242402 EU242454 EU517763 

EU242153 EU242203 EU242252 EU242302 EU242352 EU242403 EU242455 EU517764 

EU242154 EU242204 EU242253 EU242303 EU242353 EU242404 EU242456 EU517765 

EU242155 EU242205 EU242254 EU242304 EU242354 EU242405 EU242457 EU517766 

EU242156 EU242206 EU242255 EU242305 EU242355 EU242406 EU242458 EU517767 

EU242157 EU242207 EU242256 EU242306 EU242356 EU242407 EU242459 EU517768 

EU242158 EU242208 EU242257 EU242307 EU242357 EU242408 EU242460 EU517769 

EU242159 EU242209 EU242258 EU242308 EU242358 EU242410 EU242461 EU517770 

EU242160 EU242210 EU242259 EU242309 EU242359 EU242412 EU242462 EU517771 

EU242161 EU242211 EU242260 EU242310 EU242360 EU242413 EU242463 EU517772 

EU242162 EU242212 EU242261 EU242311 EU242361 EU242414 EU242464 EU517773 

EU242163 EU242213 EU242262 EU242312 EU242362 EU242416 EU242465 EU517774 

EU242164 EU242214 EU242263 EU242313 EU242363 EU242417 EU242466 EU517775 

EU242165 EU242215 EU242264 EU242314 EU242364 EU242418 EU242467 EU517776 

EU242166 EU242216 EU242265 EU242315 EU242365 EU242419 EU242468 EU517777 

EU242167 EU242217 EU242266 EU242317 EU242366 EU242420 EU242469 EU517778 

EU242168 EU242218 EU242267 EU242318 EU242367 EU242421 EU242472 EU517779 

EU242169 EU242219 EU242268 EU242319 EU242368 EU242422 EU242473 EU517780 

EU242170 EU242220 EU242269 EU242320 EU242370 EU242423 EU242474 EU517781 

EU242171 EU242221 EU242270 EU242321 EU242371 EU242424 EU242475 EU517782 
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HIV-1 subtype B treatment naïve sequence Los Alamos accession numbers 

EU242172 EU242222 EU242271 EU242322 EU242372 EU242425 EU242476 EU517783 

EU242173 EU242223 EU242272 EU242323 EU242373 EU242426 EU242477 EU517784 

EU242174 EU242224 EU242273 EU242324 EU242374 EU242427 EU242478 EU517785 

EU242175 EU242225 EU242274 EU242325 EU242375 EU242428 EU242479 EU517786 

EU242176 EU242226 EU242275 EU242326 EU242376 EU242429 EU242480 EU517787 

EU242177 EU242227 EU242276 EU242327 EU242377 EU242430 EU242481 EU517788 

EU242178 EU242228 EU242277 EU242328 EU242378 EU242431 EU242482 EU517790 

EU517791 FJ155192 GQ371264 GQ371337 GQ371410 GQ371475 GQ371538 GQ371607 

EU517792 FJ155195 GQ371265 GQ371338 GQ371411 GQ371477 GQ371539 GQ371608 

EU517793 FJ155199 GQ371266 GQ371339 GQ371412 GQ371478 GQ371540 GQ371609 

EU517794 FJ155200 GQ371267 GQ371340 GQ371413 GQ371480 GQ371543 GQ371610 

EU517795 FJ155202 GQ371268 GQ371341 GQ371414 GQ371481 GQ371544 GQ371612 

EU517796 FJ155205 GQ371271 GQ371344 GQ371415 GQ371482 GQ371545 GQ371615 

EU517797 FJ155208 GQ371273 GQ371348 GQ371416 GQ371483 GQ371546 GQ371617 

EU517798 FJ155209 GQ371274 GQ371349 GQ371417 GQ371484 GQ371547 GQ371619 

EU517799 FJ155211 GQ371275 GQ371351 GQ371418 GQ371485 GQ371548 GQ371624 

EU517800 FJ670525 GQ371277 GQ371352 GQ371420 GQ371486 GQ371552 GQ371626 

EU517801 FJ670531 GQ371278 GQ371354 GQ371421 GQ371488 GQ371553 GQ371627 

EU517802 FJ853620 GQ371279 GQ371355 GQ371422 GQ371489 GQ371554 GQ371628 

EU517803 FJ853622 GQ371280 GQ371356 GQ371423 GQ371490 GQ371555 GQ371629 

EU517804 GQ371216 GQ371281 GQ371357 GQ371425 GQ371491 GQ371556 GQ371630 

EU517805 GQ371217 GQ371282 GQ371359 GQ371427 GQ371492 GQ371558 GQ371632 

EU517806 GQ371218 GQ371284 GQ371361 GQ371428 GQ371493 GQ371559 GQ371633 

EU517807 GQ371219 GQ371286 GQ371363 GQ371429 GQ371495 GQ371561 GQ371634 

EU517808 GQ371221 GQ371287 GQ371364 GQ371430 GQ371497 GQ371562 GQ371635 

EU517809 GQ371222 GQ371289 GQ371367 GQ371431 GQ371498 GQ371563 GQ371636 

EU517810 GQ371223 GQ371290 GQ371368 GQ371432 GQ371499 GQ371565 GQ371637 

EU517811 GQ371224 GQ371291 GQ371369 GQ371433 GQ371500 GQ371566 GQ371640 

EU517812 GQ371225 GQ371293 GQ371370 GQ371434 GQ371501 GQ371567 GQ371641 

EU517813 GQ371226 GQ371294 GQ371373 GQ371435 GQ371502 GQ371569 GQ371645 

EU517814 GQ371228 GQ371296 GQ371374 GQ371436 GQ371503 GQ371570 GQ371646 

EU786679 GQ371229 GQ371297 GQ371376 GQ371437 GQ371504 GQ371571 GQ371647 
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HIV-1 subtype B treatment naïve sequence Los Alamos accession numbers 

EU786680 GQ371234 GQ371298 GQ371378 GQ371438 GQ371505 GQ371574 GQ371648 

FJ155079 GQ371235 GQ371302 GQ371379 GQ371439 GQ371506 GQ371577 GQ371649 

FJ155087 GQ371236 GQ371303 GQ371380 GQ371440 GQ371507 GQ371578 GQ371651 

FJ155102 GQ371237 GQ371306 GQ371381 GQ371441 GQ371508 GQ371579 GQ371653 

FJ155114 GQ371239 GQ371307 GQ371382 GQ371442 GQ371510 GQ371580 GQ371655 

FJ155118 GQ371241 GQ371308 GQ371383 GQ371443 GQ371511 GQ371581 GQ371656 

FJ155120 GQ371242 GQ371309 GQ371384 GQ371444 GQ371512 GQ371583 GQ371658 

FJ155126 GQ371244 GQ371312 GQ371385 GQ371449 GQ371513 GQ371584 GQ371660 

FJ155131 GQ371245 GQ371313 GQ371386 GQ371450 GQ371514 GQ371585 GQ371662 

FJ155132 GQ371246 GQ371314 GQ371388 GQ371451 GQ371515 GQ371587 GQ371663 

FJ155136 GQ371248 GQ371315 GQ371389 GQ371452 GQ371516 GQ371588 GQ371664 

FJ155137 GQ371249 GQ371316 GQ371390 GQ371453 GQ371517 GQ371589 GQ371665 

FJ155142 GQ371250 GQ371318 GQ371391 GQ371454 GQ371520 GQ371591 GQ371666 

FJ155144 GQ371251 GQ371321 GQ371393 GQ371455 GQ371521 GQ371592 GQ371667 

FJ155147 GQ371253 GQ371323 GQ371396 GQ371457 GQ371522 GQ371593 GQ371668 

FJ155149 GQ371254 GQ371324 GQ371397 GQ371458 GQ371523 GQ371594 GQ371669 

FJ155150 GQ371256 GQ371325 GQ371399 GQ371459 GQ371524 GQ371596 GQ371670 

FJ155152 GQ371257 GQ371327 GQ371400 GQ371460 GQ371525 GQ371598 GQ371673 

FJ155169 GQ371258 GQ371328 GQ371401 GQ371462 GQ371526 GQ371599 GQ371674 

FJ155173 GQ371259 GQ371331 GQ371402 GQ371463 GQ371529 GQ371600 GQ371675 

FJ155175 GQ371260 GQ371332 GQ371403 GQ371466 GQ371532 GQ371601 GQ371676 

FJ155185 GQ371261 GQ371333 GQ371406 GQ371467 GQ371533 GQ371602 GQ371679 

FJ155186 GQ371262 GQ371334 GQ371407 GQ371468 GQ371535 GQ371605 GQ371681 

FJ155190 GQ371263 GQ371335 GQ371409 GQ371472 GQ371537 GQ371606 GQ371682 

GQ371683 GQ371754 JN024106 JN024163 JN024213 JN024268 JN024318 JN024368 

GQ371685 GQ371755 JN024108 JN024164 JN024214 JN024269 JN024319 JN024369 

GQ371686 GQ371756 JN024109 JN024165 JN024215 JN024270 JN024320 JN024370 

GQ371688 GQ371758 JN024110 JN024166 JN024216 JN024271 JN024321 JN024372 

GQ371689 GQ371759 JN024111 JN024167 JN024217 JN024272 JN024322 JN024373 

GQ371690 GQ371760 JN024112 JN024168 JN024218 JN024273 JN024323 JN024374 

GQ371693 GQ371761 JN024113 JN024169 JN024219 JN024274 JN024324 JN024375 

GQ371694 GQ371762 JN024114 JN024170 JN024220 JN024275 JN024325 JN024376 
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HIV-1 subtype B treatment naïve sequence Los Alamos accession numbers 

GQ371695 GQ371763 JN024115 JN024171 JN024222 JN024276 JN024326 JN024377 

GQ371696 GQ372988 JN024116 JN024172 JN024224 JN024277 JN024327 JN024378 

GQ371697 GQ372990 JN024117 JN024173 JN024226 JN024278 JN024328 JN024379 

GQ371698 GU331318 JN024118 JN024174 JN024227 JN024279 JN024329 JN024380 

GQ371699 GU331321 JN024119 JN024175 JN024228 JN024280 JN024330 JN024381 

GQ371700 GU331326 JN024121 JN024176 JN024229 JN024281 JN024331 JN024383 

GQ371703 GU331347 JN024122 JN024177 JN024231 JN024282 JN024332 JN024384 

GQ371704 GU331353 JN024123 JN024179 JN024232 JN024284 JN024333 JN024385 

GQ371706 GU331360 JN024124 JN024180 JN024234 JN024285 JN024334 JN024386 

GQ371708 GU331367 JN024125 JN024181 JN024235 JN024286 JN024335 JN024387 

GQ371709 GU331374 JN024126 JN024182 JN024236 JN024287 JN024336 JN024388 

GQ371710 GU331375 JN024127 JN024183 JN024237 JN024288 JN024337 JN024389 

GQ371711 GU331379 JN024128 JN024184 JN024238 JN024289 JN024338 JN024390 

GQ371712 GU331402 JN024130 JN024185 JN024239 JN024290 JN024339 JN024391 

GQ371713 GU331411 JN024131 JN024186 JN024241 JN024291 JN024340 JN024392 

GQ371715 GU362881 JN024132 JN024187 JN024242 JN024292 JN024341 JN024393 

GQ371716 GU362886 JN024133 JN024188 JN024243 JN024293 JN024342 JN024395 

GQ371718 HM586187 JN024134 JN024189 JN024244 JN024294 JN024343 JN024396 

GQ371719 HM586191 JN024135 JN024190 JN024245 JN024295 JN024344 JN024397 

GQ371721 HM586194 JN024136 JN024191 JN024246 JN024296 JN024345 JN024398 

GQ371722 HM586196 JN024137 JN024192 JN024247 JN024297 JN024346 JN024399 

GQ371723 HM586198 JN024138 JN024193 JN024248 JN024298 JN024347 JN024400 

GQ371724 HM586200 JN024139 JN024194 JN024249 JN024299 JN024348 JN024401 

GQ371725 HM586202 JN024140 JN024195 JN024250 JN024300 JN024349 JN024402 

GQ371726 HM586204 JN024141 JN024196 JN024251 JN024301 JN024350 JN024403 

GQ371729 HM586206 JN024142 JN024197 JN024252 JN024302 JN024351 JN024404 

GQ371730 HM586207 JN024143 JN024198 JN024253 JN024303 JN024352 JN024405 

GQ371731 HM586208 JN024144 JN024199 JN024254 JN024304 JN024353 JN024406 

GQ371732 HM586209 JN024145 JN024200 JN024255 JN024305 JN024354 JN024407 

GQ371733 HM586210 JN024146 JN024201 JN024256 JN024306 JN024355 JN024408 

GQ371734 HM586211 JN024147 JN024202 JN024257 JN024307 JN024356 JN024409 

GQ371736 HM586212 JN024148 JN024203 JN024258 JN024308 JN024357 JN024410 
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HIV-1 subtype B treatment naïve sequence Los Alamos accession numbers 

GQ371737 HQ215554 JN024150 JN024204 JN024259 JN024309 JN024358 JN024411 

GQ371740 HQ215556 JN024152 JN024205 JN024260 JN024310 JN024359 JN024412 

GQ371742 HQ215568 JN024154 JN024206 JN024261 JN024311 JN024360 JN024413 

GQ371744 HQ215577 JN024155 JN024207 JN024262 JN024312 JN024361 JN024414 

GQ371745 JN024100 JN024157 JN024208 JN024263 JN024313 JN024362 JN024415 

GQ371747 JN024101 JN024158 JN024209 JN024264 JN024314 JN024363 JN024416 

GQ371751 JN024103 JN024159 JN024210 JN024265 JN024315 JN024364 JN024418 

GQ371752 JN024104 JN024160 JN024211 JN024266 JN024316 JN024366 JN024419 

GQ371753 JN024105 JN024162 JN024212 JN024267 JN024317 JN024367 JN024420 

JN024421 JN024471 JN024524 JN400483 JX264249 JX264303 JX264354 JX264406 

JN024422 JN024472 JN024525 JN400490 JX264251 JX264304 JX264355 JX264407 

JN024423 JN024473 JN024526 JN400491 JX264252 JX264305 JX264356 JX264408 

JN024424 JN024474 JN024527 JN408075 JX264253 JX264306 JX264357 JX264409 

JN024425 JN024475 JN024528 JN408076 JX264254 JX264307 JX264358 JX264410 

JN024426 JN024477 JN024529 JN408077 JX264255 JX264309 JX264359 JX446795 

JN024427 JN024478 JN024530 JN704057 JX264256 JX264310 JX264360 JX446796 

JN024428 JN024479 JN024531 JN860769 JX264257 JX264311 JX264361 JX446797 

JN024429 JN024481 JN024532 JQ302321 JX264258 JX264312 JX264362 JX446798 

JN024430 JN024483 JN024533 JQ302402 JX264259 JX264313 JX264363 JX446799 

JN024431 JN024484 JN024534 JQ302403 JX264261 JX264314 JX264364 JX446800 

JN024432 JN024485 JN024535 JQ302440 JX264262 JX264315 JX264365 JX446801 

JN024434 JN024486 JN024536 JQ900848 JX264263 JX264316 JX264366 JX446802 

JN024435 JN024487 JN024537 JQ900850 JX264264 JX264317 JX264367 JX446803 

JN024436 JN024488 JN024538 JQ900857 JX264265 JX264318 JX264368 JX446804 

JN024437 JN024489 JN024539 JQ900861 JX264266 JX264319 JX264369 JX446805 

U69588 
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