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Thesis Abstract 

Sorghum [Sorghum bicolor (L.) Moench] is an important food, feed, and bioenergy crop widely 

grown in arid and semi-arid parts of sub-Saharan Africa, including Tanzania. In this region 

sorghum productivity is often low as a result of biotic and abiotic stresses, as well as socio-

economic constraints. Striga is one of the major biotic constraints, which typically causes yield 

losses of 30 to 90% in Tanzania. Both Striga hermonthica (Sh) and S. asiatica (Sa) are widely 

distributed in the country and severely impact on crop yields of sorghum, millet, maize and 

rice. Several cultural, biological, chemical and host resistance measures have been 

recommended to control Striga. However, these measures need to be integrated for effective 

control of the parasite and to improve sorghum productivity. The overall aim of this study was 

to improve sorghum yield by integrating host resistance and the use of a biological control 

agent, Fusarium oxysporum f.sp. strigae (FOS) to control Sh and Sa in the semi-arid parts of 

Tanzania.  

 

The specific objectives of this study were: 1) to investigate the constraints affecting sorghum 

production, and to document farmers’ approaches to Striga management in the semi-arid 

regions of Tanzania; 2) to screen and select farmers-preferred sorghum genotypes for Sh and 

Sa resistance, and for FOS compatibility, for resistance breeding under western Tanzanian 

conditions; 3) to identify promising sorghum parents and crosses that demonstrated FOS-

compatibility and Striga resistance and displayed high combining ability for grain yield and yield 

components for Integrated Striga Management (ISM); 4) to determine the gene action and 

inheritance of Striga resistance using genetically diverse populations of sorghum involving 

FOS treatment; and 5) to determine the gene action controlling maximum germination distance 

in sorghum genotypes. 

 

A participatory rural appraisal (PRA) study was also conducted involving three selected 

districts across six villages in semi-arid regions of Tanzania. The study identified Striga 

infestation, drought, storage pests, damage by birds, a lack of access to improved varieties, 

and a lack of access to production inputs, such as fertilizers, insecticides, fungicides and 

herbicides as the major constraints affecting sorghum production in these study areas.  

 

To achieve the second objective, 60 sorghum genotypes were evaluated under screen-house 

conditions using Sh and Sa infested field soils with controlled seed infestation, with or without 

treatment of the sorghum seeds with FOS. Inoculation of sorghum seeds with FOS significantly 

enhanced sorghum growth and productivity, and supressed Sh and Sa growth and allowed for 

the selection of FOS compatible sorghum genotypes.  
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To address objective three, one hundred sorghum families were developed through controlled 

crosses using the North Carolina Design II, which involved 10 female parents selected for their 

FOS compatibility and excellent agronomic performances, and 10 male parents selected for 

high levels of Striga resistance. The F1s and their parents were field evaluated at three 

locations in Tanzania known for their severe Striga infestation using a lattice experimental 

design with two replications. The following genotypes were identified as the best general 

combiners for yield and yield components 675 and 3424 (female parents), and AS426 and 

AS430 (male parents) Genotypes 672, AS436 and AS429 (male parents) and 3984 (female 

parents) were the best general combiners for Striga resistance, displaying smaller GCA effects 

in a desirable direction. Three promising families, 675 x 654, 3424 x 3933 and 4567 x AS426, 

were selected for further breeding as they displayed larger SCA effects for grain yield. Crosses 

selected with small SCA effects for Striga counts were 4567 x AS424 and 3984 x 672.  

 

To address objective four, gene action and inheritance of Striga resistance were investigated 

using genetically diverse populations of sorghum involving FOS treatment. Twelve sorghum 

parents were selected for Striga resistance, FOS compatibility or superior agronomic 

performances. These were crossed using a bi-parental mating scheme. The selected male and 

female parents and their F1 progenies, backcross derivatives and the F2 segregants were field 

evaluated at three locations in Tanzania known for their severe Striga infestations using a 

lattice experimental design with two replications. Results from the generation mean analysis 

(GMA) on days-to-50% flowering (DFL), seed yield per plant (SYP) and number of Striga plants 

per plant (SN) showed the preponderance of additive genetic action contributing to the total 

genetic variation in the evaluated sorghum populations. The additive genetic effect for DFL, 

SYP and SN, with and without FOS treatments, ranged from 72.02 to 86.65% and 41.49 to 

95.44%, 75.62 to 91.42% and 71.83 to 91.89%, and 77.35 to 93.56% and 72.86 to 95.84%, in 

that order. The contribution of non-additive genetic effects was minimal and varied among 

generations. FOS application reduced DFL and SN, and improved SYP in most of the tested 

sorghum populations. DFL of the sorghum populations was reduced by a mean of 8 days under 

FOS treatment compared to the untreated control in families such as 675 x 654, AS435 x 

AS426 and 1563 x AS436. FOS treatment improved SYP with a mean of 6.44 g plant-1 in 4567 

x AS 426, 3424 x 3993 and 3984 x 672. The numbers of Striga plants were reduced with a 

mean of 16 plants due to FOS treatment in the crosses of 675 x 654, 1563 x AS436, 4567 x 

AS424, and 3984 x 672. The study demonstrated that additive genes were predominantly 

responsible for the inheritance of Striga resistance in sorghum.  
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The last objective of this study was to determine the gene action controlling maximum 

germination distance (MGD) among sorghum families, with and without FOS, in an agar-gel 

assay. In this study additive, dominance and epistatic genetic action contributed significantly 

to the total genetic variation. The relative contribution of the additive, additive-by-additive and 

dominance-by-dominance genetic effect for MGD, with FOS, contributed to 20%, 33% and 

36% in treatments involving Sh, respectively. In a set with Sa, the relative contribution of 

additive, additive-by-additive and dominance-by-dominance genetic effect were 21%, 32% and 

35% with FOS treatment, respectively. The influence of dominance and the interaction of 

additive-by-dominance genetic effects were minimal. A mean MGD of 10 mm was reduced by 

FOS application in both Sh and Sa. In a pot experiment to evaluate the efficacy of FOS among 

sorghum families using roots and soil samples, FOS was abundantly detected on sorghum 

root and soil samples with variable colony forming unit (CFU) among the tested sorghum 

genotypes.  

 

Overall, these study determined constraints affecting sorghum production, farmers’ preference 

quality traits, and their perceptions on Striga management. It also identified the, gene actions 

controlling Striga resistance and inheritance. This is important for the implementation of ISM 

for the improvement of sorghum productivity. It also identified a number of useful parents and 

crosses for effective sorghum breeding to control Striga in the semi-arid areas of Tanzania. 

Cultivar development targeting reduced MGD, reduced Striga counts and famers’ traits of 

preferences in the selected populations, combined with compatibility with FOS could provide 

the basis available for integrated Striga management programme.   
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Introduction to Thesis 

Importance of sorghum 

 

Sorghum (Sorghum bicolor [L.] Moench, 2n=2x=20) is a multi-purpose cereal crop serving as 

a source of food, feed, bioenergy, vegetable oil, waxes, dyes and alcohol (Doggett, 1988). It 

is well adapted to arid and semi-arid environments under poor soil fertility and high 

temperature conditions, where other cereal crops, such as maize and wheat, fail to produce 

grain (Blum, 2004). Worldwide, sorghum is cultivated on an area of 42 million ha with a total 

production of 61.5 million tonnes of grain, of which 80% is produced in Africa and Asia. In East 

Africa, an area of 5 million ha is devoted to sorghum cultivation, with a mean productivity of 

1.3 tonnes ha-1. In Tanzania, an area of 6.2 million ha is used for cereal crop production, of 

which 0.9 million ha (15%) is under sorghum cultivation (FAOSTAT, 2013). However, mean 

grain yields of less than 1.0 tonnes ha-1 have been reported for Tanzania which is considerably 

below the mean yield of 1.3 tonnes ha-1 reported for east Africa as a whole (FAOSTAT, 2013).  

 

Sorghum production constraints 

 

The yield potential of sorghum is constrained by both abiotic and biotic stresses (Wortmann 

et al., 2006). Infestation by Striga, storage pests, damage by birds, a lack of access to 

improved varieties, and a lack of access to production inputs such as fertilizers, insecticides, 

fungicides and herbicides, and recurrent drought have been among the major identified 

production constraints affecting sorghum in the semi-arid areas of Tanzania. However, Striga 

infestation is the most important problem in these regions (Mrema et al., 2017). Therefore, this 

study focused on developing an integrated Striga management option in order to enhance 

sorghum productivity in Tanzania.  

 

Striga infestation 

 

Striga species belong to the family Orobanchaceae. Forty one species have been reported, 

and, 11 of these causes significant yield losses in cereal crops (Mohamed et al., 2007). Striga 

hermonthica (Del.) Benth and S. asiatica (L.) Kuntze have been reported to infest nearly one 

million ha of sorghum, and to cause severe yield losses of 20 to 80% worldwide (Hearne, 

2009). Yield losses reported from around the world tend to be lower than the losses of 30 to 

90% reported in Tanzania (Riches, 2003). The most severe infestations have been found 

along Lake Victoria in the Mwanza, Mara, Shinyanga, and Simiyu regions, in the western zone 

file:///C:/Users/Public/Documents/Thesis%20Development/Tracked%20Emmanuel%20Draft%20Thesis.docx%23_ENREF_6
file:///C:/Users/Public/Documents/Thesis%20Development/Tracked%20Emmanuel%20Draft%20Thesis.docx%23_ENREF_6
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including the Igunga in Tabora region, and in the central parts of Tanzania, such as in Dodoma 

and Singida.  

 

Striga infestation is intensified by poor soil fertility, use of a single management method, cereal 

mono-cropping, and the growing of susceptible varieties (Parker, 1991). Furthermore, Striga 

produces large quantities of small seeds estimated at 50,000 per Striga plant (USDA, 2011) 

that remain viable in the soil up to 20 years (Parker, 1991).  

 

Control options 

 

Several control methods have been recommended to reduce Striga infestations. These 

include the use of resistant varieties, biological agents, cultural practices, application of 

fertilizers and chemical control (Hearne, 2009). These methods can be effective in retarding 

germination and growth of juvenile Striga plants and improving host growth and development 

(Redda and Verkleij, 2004). However, the costs of implementing some of these measures are 

high, and this hinders their adoption by smallholder farmers. Furthermore, no single option 

on its own has proven to be effective and durable for sorghum production for resource poor 

farmers. The best options for successful Striga control lies in an integrated Striga 

management (ISM) approach (Hearne, 2009). That could include the use of resistant sorghum 

genotypes and a biological control agent (Rebeka et al., 2013; Mrema et al., 2017), among 

others.  

 

Rationale for integrated Striga management (ISM) 

 

Host resistance is potentially the acceptable control measure for resource-poor farmers (Rich 

et al., 2004). The method is affordable, and is more environmentally friendly than chemical 

control practices (Marley et al., 2004). However, reliance on host resistance alone is not ideal 

because complete resistance against Striga has not yet been attained through breeding 

(Gurney et al., 2002). Most of the improved sorghum varieties that have been developed so 

far have not been widely adopted by farmers, usually because they lack critical quality traits 

that farmers’ insist on, such as tall stems (Adugna, 2007; Mrema et al., 2017). One of the 

problems is that, sorghum landraces that posses the farmer preferred traits have not been 

used as a primary source of breeding material. In order to develop a viable ISM program, plant 

breeder will need to use information on farmers’ perceptions of sorghum production 

constraints, their Striga control practices, the quality traits of their preference and the variability 

present among the existing sorghum genotypes.  
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Biological control using Fusarium oxysporum f.sp. strigae (FOS), a biocontrol agent of Striga, 

is potentially an important component of ISM. The effectiveness of the pathogenic isolates of 

FOS in controlling Striga has been reported when the method is integrated with host resistance 

(Mrema et al., 2017). Sorghum seeds treated with FOS were reported to yield better and to 

have reduced Striga numbers and parasitic vigour relative to untreated sorghum plants 

(Rebeka, 2007). However, when applied individually these control options were not effective. 

The combined use of resistant varieties with the application of FOS was reported to be 

effective in controlling Striga (Mrema et al., 2017). Thus several options need to be integrated 

in order to achieve sustained and successful Striga control.  

 

An evaluation of potential ISM practices would involve the use of sorghum genotypes that are 

compatible with FOS, Striga resistant and with farmers preferred traits. Subsequently the 

sorghum genotypes compatible to FOS and with farmers’ traits of preference would be used 

as parents to be crossed with varieties with Striga resistance to generate progeny to be used 

in the ISM program. However, information related to the general and specific combining 

abilities and the mode of gene action responsible for controlling Striga resistance and yield of 

the selected parental lines is needed for this study. Therefore, there was need to study the 

combining ability, generation mean analysis (GMA) and maximum germination distances 

(MGD) after systematic crossing of selected parents using different mating designs, using 

family evaluations with and without FOS application, in several Striga infested environments. 

This would enable selection of promising parents and families for further breeding.   

 

Research aim and objectives 

 

The overall aim 

 

The overall aim of this study was to integrate host resistance to Striga spp. and the use of a 

biological control agent, Fusarium oxysporum f.sp. strigae (FOS), for the control of both Sh 

and Sa on sorghum in the semi-arid parts of Tanzania.  

 

The specific objectives 

 

The specific objectives of this study were:  

1. To investigate the constraints affecting sorghum production and farmers’ approaches 

to Striga management in the semi-arid regions of Tanzania. 
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2. To screen and select farmers-preferred sorghum genotypes for Sh and Sa resistance 

and FOS compatibility, to be used as parents for resistance breeding under Tanzanian 

conditions. 

3. To identify promising sorghum parents and crosses with FOS-compatibility and Striga 

resistance displaying high combining ability for grain yield and yield components for 

Integrated Striga Management (ISM). 

4. To determine the gene action and inheritance of Striga resistance using genetically 

diverse populations of sorghum, including FOS treatment. 

5. To determine the gene action controlling the maximum germination distance in 

sorghum genotypes. 

Research hypotheses 

1. It also identified Sorghum farmers in Tanzania have various perceptions of the 

challenges that they face, have varied quality preferences, and a range of ideals 

towards problem resolution and adoption of new technologies for Striga control in 

sorghum crop. 

2. Sorghum genotypes exist that have resistance to Striga infestations, and are 

compatible with a biocontrol agent, FOS.  

3. Crosses between selected sorghum genotypes will exhibit different levels of combining 

ability effects for Striga resistance. 

4. Crosses between selected sorghum genotypes will differ in gene action for the control 

of Striga resistance 

5. Crosses between selected sorghum genotypes will differ in gene action controlling 

maximum germination distances of Striga seed 

 

Outline of thesis 

 

This thesis consists of six distinct chapters in accordance with a number of activities related 

to the above objectives (Table 0.1). Chapters 2-6 are written in the form of discrete research 

chapters, each following the format of a stand-alone research paper. This is the dominant 

thesis format adopted by the University of KwaZulu-Natal. As such, there is some unavoidable 

repetition of references and some introductory information between chapters. 

 

The referencing system used in the chapters of this thesis is based on the Crop Science 

referencing system. The exception to this are Chapters 2, 3, 5, and 6 which have been already 

published in the journal of “International Journal of Pest Management”, “Acta Agriculturae 
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Scandinavica, Section B - Soil & Plant Science”, “Euphytica” and “Journal of Integrative 

Agriculture”, respectively.  

 

Table 0.1. Outline of thesis 

 

Chapter  Title  

-  Introduction to thesis  

1  A review of the literature  

2  Farmers’ perceptions of sorghum production constraints and Striga control 

practices in semi-arid areas of Tanzania 

3  Screening of sorghum genotypes for resistance to Striga hermonthica and S. 

asiatica and compatibility with Fusarium oxysporum f.sp. strigae 

4 Combining ability of yield and yield components among FOS-compatible and 

Striga-resistant sorghum genotypes 

5 Gene action controlling Striga resistance among sorghum genotypes 

6 Genetic analysis of maximum germination distance of Striga hermonthica and S. 

asiatica in sorghum with FOS 
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CHAPTER ONE  

 

A Review of the Literature 

 

1.1 Abstract  

 

In the semi-arid agro-ecologies of Tanzania potential yield of sorghum [Sorghum bicolor (L.) 

Moench] is curtailed due to several biotic and abiotic stresses and socio-economic constraints. 

Striga is one of the major biotic constraints that cause yield losses of 30 to 90% in Tanzania. 

Striga species, Striga hermonthica (Sh) and S. asiatica (Sa), are widely distributed in the 

country severely affecting yields of sorghum, millet, maize and rice. Integrated Striga 

management (ISM), which involves the use of sorghum genotypes resistant to Striga and 

compatible to Fusarium oxysporum f.sp. strigae (FOS), a biocontrol agent of Striga, has been 

advocated as an option to control Striga. This strategy is yet to be explored in Tanzania and 

most sub-Saharan Africa countries where sorghum is the staple crop of millions of households. 

The objective of this chapter was to provide a review of the literature on the major constraints 

affecting sorghum production and productivity, management of Striga in sorghum production, 

breeding sorghum for Striga resistance including a search for Striga resistant sorghum 

genotypes with compatibility to FOS, combining ability analysis, generation mean analysis, 

farmers’ preferences of sorghum varieties and participatory variety development. The 

literature presented supports the thesis research work and will provide background information 

for breeders emphasising the development of sorghum cultivars with Striga resistance, FOS 

compatibility and the inclusion of traits of farmers’ preferences. 

 

Keywords: Striga resistance, Fusarium oxysporum f.sp. strigae, integrated Striga 

management, sorghum, gene action 
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1.2 Introduction 

 

Sorghum (Sorghum bicolor [L.] Moench, 2n=2x=20) is a multi-purpose cereal crop serving as 

a source of food, feed, bioenergy, vegetable oil, waxes, dyes and alcohol (Doggett, 1988). 

Sorghum thrives under harsh growing conditions including those of arid and semi-arid regions, 

low soil fertility and high temperature conditions where maize and wheat fail to grow (Blum, 

2004; Rwebugisa, 2008). Sorghum is believed to have originated in the drier parts of eastern 

Africa, mainly in Ethiopia and Sudan (Doggett, 1988). In terms of total production and 

consumption, sorghum is ranked as the fifth leading cereal crop in the world after wheat 

(Triticum aestivum L), rice (Oryza sativum L), maize (Zea mays L) and barley (Hordeum 

vulgae) (Murty et al., 1994). In Tanzania sorghum is a key crop supporting millions of 

smallholder farmers, and is widely grown in the semi-arid areas including the Dodoma, Singida, 

Tabora, Shinyanga and Mwanza regions (Msambichaka, 1999).  

 

Globally an estimated area of 42 million ha of agricultural land is devoted to sorghum 

production. This provides a total production of 61.5 million tonnes of grain annually, of which 

80% is produced in Africa and Asia (FAOSTAT, 2014). In east Africa, an area of 5 million ha 

is allocated to sorghum cultivation with an average productivity of 1.3 t ha-1 (FAOSTAT, 2013). 

In Tanzania alone, an area of 6.2 million ha is being used annually for cereal crop production 

of which 0.9 million ha (15%) is under sorghum cultivation (FAOSTAT 2013). However, in the 

country a mean grain yield of 1.0 t ha-1 is achieved, which is far below the attainable yields of 

the crop, such as is achieved in other east African countries (FAOSTAT, 2014). 

 

1.3 Constraints to sorghum production and productivity 

 

Sorghum production is affected by abiotic stresses (e.g. poor soil fertility, drought) as well as 

biotic stresses [e.g. infestations by Striga, stem borers, and shoot fly (Atherigona soccata)] 

(Wortmann et al., 2006). Mrema et al. (2017) reported Striga infestation, recurrent drought, 

storage pests, damage by birds, a lack of access to improved varieties, and a lack of access 

to production inputs such as fertilizers, insecticides, fungicides and herbicides to be among the 

major production constrains of sorghum in the semi-arid areas of Tanzania. 

 

Among abiotic factors, poor soil fertility and drought are the main constraints limiting sorghum 

production and productivity (Roose, 1994). Most sorghum fields are poor in soil nutrition, due 

to soil erosion, mono-cropping, a lack of fertilizer application, a total removal of the crop’s 

biomass by farmers for diverse uses, overgrazing, and increased population pressure, among 
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others. In sub-Saharan Africa, frequent torrential rains cause movement of soil nutrients and 

fertile soils from slopes and hillsides to valley bottoms, where crop cultivation is often 

impossible. This has led to decreased cation exchange capacity and weakened soil physical 

structure, leading to inhanced soil infertility (Roose, 1994). An estimated 30% of global crop 

productivity is lost due to soil infertility (Cerdà, 2000). In Tanzania, most agricultural lands have 

been reported to have of low to moderate soil fertility (Lamboll et al., 2001). Interestingly, 

infertile soils where sorghum, maize and rice are cultivated are also heavily infested by Striga 

spp [Striga hermonthica (Del.) Benth (Sh) and S. asiatica (L.) Kuntze (Sa)] (Johnson et al., 

1997). Therefore, improved farming technologies that enhance soil fertility are critically 

required to boost sorghum yields and to minimize damage caused by Striga. Yield 

improvement in sorghum fields infested by Striga can be realised through application of 

recommended levels of inorganic fertilizers based on targeted soil tests. However, inorganic 

fertilizers are not accessible or affordable for most smallholder farmers, suggesting the need 

to develop innovative solutions to boost sorghum productivity under smallholder farming 

systems.  

 

Drought or limited water availability is an important abiotic stress factor affecting sorghum 

production and productivity. The frequency of drought occurrence and associated yield losses 

are pronounced in the semi-arid agro-ecologies. Sorghum is a relatively drought tolerant crop 

providing good yields under high temperature conditions ranging from 26 to 34°C (Maiti, 1996; 

Taylor, 2003). However, extreme drought and heat stress can reduce both vegetative and 

reproductive traits in sorghum. A yield loss of 7.8 to 8.4% has been reported due to a rise in 

temperature by 1°C above 34°C (Hatfield et al., 2008). 

 

In the semi-arid regions of Tanzania drought was the second most important yield limiting 

factor of sorghum after Striga infestation reported by 70%–75% of the respondent farmers 

(Mrema et al., 2016). Mixed farming systems, avoiding use of newly introduced sorghum 

varieties, and abandoning some landraces, particularly the late-maturing ones that fail to 

produce yield under reduced rainfall, were among the mitigation strategies adopted by 

smallholder farmers in Tanzania.   

 

The next major constraints to sorghum production are biotic factors, notably Striga infestation, 

storage pests, birds, lack of improved varieties with drought tolerance, and diseases. Among 

these stresses, Striga has been reported to be the main constraint affecting sorghum yields in 

the semi-arid regions of Tanzania (Riches, 2003; Mrema et al., 2016). Yield losses of 90 % 

have been reported due to infestation by Striga species [S. hermonthica and S. asiatica] 

(Riches 2003). The two weed species (Figure 1.1) are persistently present in cereal fields in 
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the Tabora, Mwanza and Shinyanga regions as reported by Riches (2003) and Mrema et al. 

(2016). Striga species belong to the family Orobanchaceae, damaging wild grasses and cereal 

crops such as rice (Oryza glaberrima Steudel and O. sativa L.), pearl millet (Pennisetum 

glaucum L. R. Br. or 16 P. americanum [L.] K. Schum), maize (Zea mays L.), and sorghum 

(S.bicolor [L.] Moench) (Johnson et al., 1997).  

 

 

Figure 1.1. The top two photos: sorghum (left) and maize (right) fields infested by Striga 
hermonthica at Mwanagwa village farm of Misungwi District, Mwanza Region in the Lake 
Victoria Zone of Tanzania. The bottom pictures show sorghum fields infested mostly by Striga 
asiatica at Mbutu village farm of Igunga District, Tabora Region in the Western Zone of 
Tanzania. 
 

Striga species are found in most sorghum and maize fields in semi-arid regions of Tanzania. 

Striga spp spread effieciently owing to their ability to produce many seeds (10,000 – 500,000 

seeds per plant). Moreover, their seeds are microscopic and they remain viable in dry soil for 

15 to 20 years (Koichi et al., 2010). Striga seeds can easily disperse by wind, water, cattle, 

man and farm machinery (Enserink, 1995). Striga seed germination may happen only when 
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there is a stimulant produced by the host plant. Also, some non-host species have been 

reported to produce stimulus for germination of Striga seed (Matusova et al., 2005). For 

instance, strigol, exuded by roots of cotton a non-host plant, induced germination of Striga 

seeds (Garcia-Garrido et al., 2009). Sorgolactone and alectrol the analogs of strigol which are 

produced from sorghum and cowpea roots, respectively, reportedly induced Striga germination 

(Matusova et al., 2005). Ethylene initiates Striga seed germination and can be used as Striga 

management technology where selective pre- or post-emergent herbicides cannot be applied 

to destroy the weed. Striga seedlings can die back owing to a lack of its host crops (Mourik et 

al., 2011). Striga seed germinates after passing a period of primary dormancy followed by seed 

preconditioning under humid condition (30 to 50% relative humidity) and warm temperatures 

(25-35°C) for two weeks (Parker and Riches, 1993). Also, secondary metabolites 

(xenognosins) released as root exudates from their hosts, is one of the requirements for Striga 

seed germination (Yoder, 2001). These metabolites are reported to direct the radicle of the 

Striga seedling towards the host root (Williams, 1961a, b). 

 

The amount of exudate produced by sorghum genotypes can be studied in agar-gel assays as 

developed by Hess et al. (1992). In their studies, preconditioned Striga seeds were dispersed 

in agar in petri dish, followed by inserting a sterilised sorghum seed at a centre of each dish. 

After 5 days the maximum germination distance (MGD) between the sorghum seed and a 

distantly germinated Striga were measured. Entries with a germination distance below 10 mm 

were classified as Striga-resistant. This technique is useful in screening sorghum genotypes 

for Striga resistance. 

 

Striga is an obligate parasite that requires host synthesized water and nutrients (Mohamed et 

al., 2001). After Striga seed germination is initiated by the host plant exudates, the radicle of 

the parasite seedling makes contact with the host root and enlarges to form a haustorium. This 

structure provides attachment of the parasite to the host. Using the haustorium, Striga 

penetrates the host and establish an intimate contact with the host, from which to derive 

nutrients and metabolites (Patrick and Ejeta, 2007). Failure of haustorium formation and or its 

development leads to the death of the parasite. The parasitic mode of life between Striga and 

sorghum enables the Striga to extract water, mineral nutrients and synthesized food from the 

vascular system of sorghum (Press and Stewart, 1987). The rate of absorption of nutrients in 

Striga is facilitated by its high transpiration rate that is greater than that of the host. This 

process speeds up the flow of food, water and nutrients from the host (Stewart et al., 1991). 

Furthermore, Striga is reported to produce a pathological effect through toxin production that 

retards growth and development of sorghum (Stewart and Press, 1990). Production of the toxin 

is associated with decreased cytokinin and gibberellins concentrations with a substantial 
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increase in abscisic acid in damaged plant tissues (Drennan and El Hiweris, 1979). Fischer et 

al. (1986) found that the rate of ribulose biphosphate carboxylation is reduced when the rate 

of abscisic acid in the xylem tissue is high.  

 

The ultimate outcome of Striga invasion in sorghum fields is decrease in growth rate, yellowing 

and wilting, failure of panicle formation and yield loss. Apart from the parasite competing with 

the host plant for natural resources such as water and nutrients, it also exerts its allelopathic 

effect to the host plant. These limit the ability of susceptible sorghum genotypes to express 

their genetic potential in yield performance. Understanding of the conditions required for Striga 

seed dispersal, germination, infection parasitism, and interaction with their hosts will allow 

plant breeders to develop varieties for the semi-arid areas of Tanzania. Knowledge on the 

association of the parasite with the host and non-host species will also help in designing 

cropping patterns and crop choices.  

 

1.4 Management of Striga in sorghum production 

 

1.4.1 Cultural practices 

 

Several cultural methods have been recommended to manage Striga in sorghum fields. The 

techniques have been reported to reduce the Striga seed bank in the soil and at the same 

time, improve soil fertility (Reda and Verkleij, 2007). Cultural practices facilitate the sorghum 

growth rate, and at the same time retards parasite seed germination and seedling development 

(Reda and Verkleij, 2007). Some of these practices include crop rotation (Oswald and Ransom, 

2001); mixed cropping (Udom et al., 2007); transplanting (Oswald et al., 2001); water 

management (Reda and Verkleij, 2007), fertilization (Jamil et al., 2011) and weeding (Ransom 

2000). Mrema et al. (2016) reported that early planting following the main rains, and the use 

of early maturing sorghum varieties, to be among farmers adopted practices for minimizing 

Striga in the semi-arid regions of Tanzania. Early planting using early maturing sorghum 

varieties was reported to escape heavy Striga infestation, which was reported to happen 

almost two months after planting (Mrema at al., 2017).  

 

Regardless of the nominal effectiveness of the cultural methods in Striga management, the 

methods were poorly adopted by smallholder farmers. The methods were not accessible, nor 

were they understood by the majority of smallholder farmers, and their implementation cost 

was higher in resources, time and labour. The poor performance of introduced sorghum 

varieties for critical traits such as resistance to bird and storage pest attack were among the 
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reasons for the poor adoption of most previously released early maturing, sorghum varieties 

in the semi-arid regions of Tanzania (Mrema et al., 2016). Their susceptibility to drought stress 

and their need for fertilizer were other negative attributes reported by farmers. Proper 

application rates and timing of fertilizer applications have not been adopted by the majority of 

sorghum growers in Tanzania. Development of a viable integrated Striga management 

program aiming at minimizing Striga and improving sorghum yield will require an 

understanding of the potential and limitations of the currently available management 

approaches.  

 

1.4.2 Chemical control  

 

Several herbicides are reported to control Striga infestation in sorghum (Kanampiu et al., 

2003). Among selective herbicides reported are 2,4-D and MCPA (2-methyl-4-

chlorophenoxyacetic acid) (Ejeta et al., 1996). Many herbicides have a residual effect in the 

soil but they are not effective in managing the parasite prior to emergence (Kanampiu et al., 

2003). Chemicals that allow Striga germination but subsequently kill the weed before 

attachment to the host would be extremely valuable for the control of Striga. Studies conducted 

in sorghum and maize has shown that treatment of sorghum seeds with 2, 4-D provides good 

control of Striga (Dembele et al., 2005). Development of transgenic herbicide resistant 

sorghum genotypes is an alternative approach (Kanampiu et al., 2003). Ndungu (2009) 

reported the effectiveness of sulfosulfuron herbicide seed coating applied to mutant sorghum 

lines for control of Striga. He reported that herbicide seed coating is a low cost treatment that 

is affordable for small-scale farmers, due to the requirement of only a small quantity of 

herbicide for seed dressing. However, this approach has not been adopted widely in the semi-

arid regions of Tanzania.  

 

The high price of herbicides, their limited availability, and the lack of technical knowledge on 

the use of agrochemicals for weed and pest management were identified as the main reasons 

for their limited use in sorghum production (Mrema et al., 2017). To improve sorghum yield 

under smallholder farmers conditions there is a need to develop a Striga management 

programme that is cheap enough for the farmers to adopt, and should involve technologies 

that they are willing to adopt. Among them is an integrated approach that involves the use of 

sorghum genotypes that are partially resistant to Striga, and at the same time, are compatible 

to Fusarium oxysporum f.sp. strigae (FOS), a biocontrol agent of Striga, which has been 

advocated as an option to control Striga (Rebeka et al., 2013; Mrema et al., 2017). 
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1.4.3 Biological control  

 

Biological agents are beneficial organisms that parasitize pest, pathogens or weeds 

(Templeton, 1982). Among the biological agents, microbes are host specific, highly aggressive, 

easly to mass produce and show maximum diversity (Ciotola et al., 2000). A biological agent 

has no residual effect in the soil or plant system, and is therefore more environmentally friendly 

than chemical control (Abbasher et al., 1998). FOS is an experimental biocontrol agent that 

has been reported to control Striga infestation in sorghum (Ciotola et al., 2000). It was reported 

to be effective in improving sorghum biomass and in controlling the parasite by 90% (Ciotola 

et al., 2000). Franke et al. (2006) reported an increase in sorghum yield of 50%, and reduction 

of Striga of 95% by using Striga resistant sorghum genotypes and seeds coated with FOS. 

Striga numbers can be significantly reduced by coating sorghum seeds with FOS (Rebeka et 

al., 2013; Mrema et al., 2017). These authors also reported a significant reduction in days to 

flowering and maturity for sorghum seed coated with FOS compared to their untreated 

controls. The use of FOS in Striga management in sorghum fields in Tanzania has not been 

reported previously, let alone implemented as a practical measure. There is no opportunity for 

integrated management of the parasite through host resistance and application of FOS to 

enhance production and productivity of sorghum and related cereals affected by Striga.  

 

1.4.4 Host resistance  

 

Striga management through the use of resistant cultivars has been reported in several crops 

including sorghum (Ejeta et al., 1992). Resistant cultivars were reported to reduce Striga 

emergence and subsequent Striga seed production. Also these genotypes supported fewer 

Striga plants and yielded better than susceptible counterparts under Striga infested fields 

(Doggett, 1988; Ejeta et al., 1992). Lower levels of production of germination stimulants, the 

presence of mechanical barriers, the inhibition of germ tube exoenzymes by root exudates, 

phytoalexin synthesis, Striga incompatibility, antibiosis, insensitivity to Striga toxins, and the 

avoidance of Striga infection through root growth habit are some of the reported Striga 

resistance mechanisms in sorghum (Ejeta et al., 1992; Ejeta and Butler, 1993; Berner et al., 

1995; Wegmann1996; Mrema et al., 2017). 

 

Hypersensitive reaction or necrotic tissue development, and phytoalexin production by 

sorghum plants are among the mechanisms for Striga resistance. Host tissues die at the point 

of attachment by the parasite, an event that limits the supply of water and nutrients to the 

parasite. A hypersensitive reaction like this is reported to be associated with the secretion of 
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phytoalexins that kills the parasite (Patrick et al., 2004). Genes for the hypersensitive response 

and for phytoalexin production have been reported in some sorghum genotypes (Mohamed, 

2002). A wild sorghum genotype, P47121, has been reported to have a stronger hypersensitive 

response to Striga infestation than cultivated sorghum genotypes (Mohamed et al., 2003). 

 

An incompatible response in some sorghum genotypes towards Striga infestation has been 

reported (Ejeta, 2007). Incompatible genotypes do not show any response towards Striga 

infestation at the time of attachment, is unable to infect the host tissue following initial host 

penetration (Grenier et al., 2001). This case, Striga plants are reported to die before the 

formation of the first leaf, or show sign of stunted growth, and do not survive beyond the early 

growth stages (Matusova et al., 2005).  

 

Sorghum varieties differ in root morphology due to difference in the amount of lignin formation 

(Mati et al., 1984), layers of cellulose deposition (Oliver et al., 1991), and encapsulation 

(Labrousse et al., 2001). Fewer Striga haustora penetrate the tougher roots of resistant 

sorghum genotypes than susceptible cultivars with tender roots. Developing sorghum 

genotype with tougher root systems that act as a developmental barrier, in addition to other 

resistance mechanisms, can reduce Striga infestation. However, the ability of Striga to damage 

the host plant before emergence and development makes the development of mechanical 

management impractical (Ejeta, 2007). 

 

The selection for a low haustorium initiation factor (LHF) present in some sorghum genotypes 

is one of the more effective methods reported in supressing Striga (Lynn and Chang, 1990). 

The presence of LHF (sorgolactones) has been reported from agar gel assay studies (Hess et 

al., 1992). Several wild and cultivated sorghum genotypes were verified to have gene mediated 

LHF. A recessive gene conditioning LHF has been reported in a wild sorghum accession, 

P47121, in which resistance was manifested before the parasite attachment (Mohamed et al., 

2003). Haussmann et al. (2000) reported a set of genes controlling LHF. A single dominant 

gene was reported to control LHF by Mohamed (2002). Haustoria do not form when the 

sorghum root carries the LHF gene, blockading infection by the parasite (Ejeta, 2007). The 

LHF gene can be introgressed into high yielding and broadly-adapted sorghum cultivars (Ejeta 

et al. 1997). Therefore, exploring the mode of gene action and inheritance of candidate Striga 

resistance genes is imperative to develop promising sorghum genotypes with multiple 

resistance genes adapted in the semi-arid environments of Tanzania.   
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1.4.5 Integrated Striga management (ISM) 

 

Striga management using a single control method is not very effective in sorghum production 

(Rebeka et al., 2013). A combination of several options can be more efficient and economical 

with better control of Striga (Tesso et al., 2007). The use of trap-cropping, fertilizer application 

and resistant genotypes are some of the effective tools in Striga management (Tesso, et al., 

2007). Also, several Fusarium spp. and vesicular arbuscular mycorrhizal (VAM) fungi have 

been reported to kill Striga and to enhance biomass production of hosts when integrated with 

resistance genes (Franke et al., 2006). The integrated use of Striga resistant sorghum 

genotypes compatible to FOS was reported to reduce Striga numbers and at the same time, 

to improve grain yield (Rebeka et al., 2013). Therefore, ISM should be developed as an 

effective way of managing Striga under smallholder farming systems for popularisation and 

ultimate adoption. An ISM that combines the use of Striga resistant sorghum varieties 

compatible with FOS should be cost effective, environmentally friendly and easily be adopted 

by smallholder farmers (Joel, 2000; Hearne, 2009).  

 

1.5 Breeding sorghum for Striga resistance 

 

1.5.1 Search for sorghum genotypes with Striga resistance and compatibility 

with FOS 

 

In sub-Saharan Africa (SSA) breeding for Striga resistance in sorghum started in 1953 in South 

Africa (Mohamed, 2002). This study identified several sorghum genotypes that were resistant 

to S. asiatica (Riches et al., 1987). Screening for Striga resistance was also conducted in 1970 

at the Institute for Agricultural Research (IAR) in Samaru, Nigeria (Lagoke et al., 1991). In 

1991, the International Crop Research Institute for the Semi-arid Tropics (ICRISAT) reported 

sorghum genotypes that were resistant to S. hermonthica in SSA (Obilana and Ramaiah, 

1992). ICRISAT released some sorghum varieties with resistance to S. asiatica in Botswana, 

Tanzania and Zimbabwe (Mabasa, 1996). Doggett (1953) and Haussmann et al. (2000) 

reported several genotypes that were resistant to both S. asiatica and S. hermonthica.   

 

Efforts in Striga resistance breeding were initiated in Tanzania in the East African Regional 

Sorghum Improvement Program, which started in 1958 (Obilana, 2004). From 1999 to 2003 

some preliminary evaluation studies were conducted on the control of Striga infestation 

through integrating resistant sorghum genotypes and improving the fertility status of soils 

(Riches, 2000). Two introduced sorghum varieties, namely, ‘’Hakika’’ and ‘’Wahi’’ were 
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identified as expressing adequate levels of Striga resistance when grown in fertile soils 

(Riches, 2000). The present performance of these genotypes is not adequate, particularly in 

areas with poor soil fertility and high levels of Striga infestation. Macia, a widely grown, high 

yielding variety with excellent seed quality, is highly susceptible under farmers’ field conditions 

and during screening trials (Mrema et al., 2016, 2017). Further studies are required in Tanzania 

to identify sorghum varieties with durable Striga resistance, expressed in low fertility soils, and 

which carry essential farmer preferred traits.   

 

The need to develop sorghum varieties with a combination of durable Striga resistance and 

compatibility with FOS is crucial in areas of high Striga infestation. Some sorghum genotypes 

are compatible with FOS (Mrema et al., 2017). Coating seeds of FOS incompatible sorghum 

genotypes has no significant influence on Striga management or yield improvement (Rebeka 

et al., 2013). Conversely, treating seeds of FOS compatible sorghum genotypes result in good 

control of the parasite which wilts, and dies soon after the host penetrated (Grenier et al., 

2001). Rebeka et al. (2013) reported several sorghum genotypes that were compatible to FOS 

among a diverse population of sorghum screened for FOS compatibility in Ethiopia. Presence 

of incompatible and compatible sorghum genotypes towards FOS has also been reported by 

Ejeta, (2007). However, there have been no prior reports of evaluation for FOS compatibility 

among cultivated sorghum genotypes in Tanzania.  

 

1.5.2 Combining ability studies in sorghum 

 

Integrated Striga management can involve the use of host resistance and FOS. This requires 

screening of sorghum genotypes for their combining ability for these two traits. The combining 

ability of parents is critical and determines their breeding value in cultivar development to 

enhance yield, and abiotic and biotic stress tolerance. General combining ability (GCA) effects 

of parents and specific combining ability (SCA) effects of their crosses are important in 

conditioning economic traits (Stoskopf et al., 1993). GCA is reported to represent mainly the 

additive and additive x additive types of genetic variance (Chapman et al., 2000; Kenga et al., 

2004), while SCA is mainly due to genes with dominance and/or epistatic effects. The North 

Carolina Design II (NCD II) is one of the commonly used genetic mating designs used to 

determine of the combining ability of genotypes for yield and yield-related traits, and pest and 

disease resistance. The technique helps to identify suitable parents and families from targeted 

crosses which can then be advanced in a breeding programme. It will also indicate optimal 

selection procedure to follow when breeding for Striga resistant sorghum genotypes.  
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1.5.3 Generation mean analysis 

 

Knowledge on the mode of gene action controlling Striga resistance among sorghum 

genotypes assists in determining the breeding method and the selection procedure to follow 

during ISM. The mode of gene action and the selection procedure to follow during ISM is not 

yet known in Tanzania. Generation mean analysis (GMA) is a useful technique for estimating 

gene effects (Anderson and Kempthorne, 1954; Mather and Jinks, 1971). The method requires 

male and female parents (P1 and P2), F1 progenies, F2 segregants, and backcrosses to parent 

one generation (BCP1) and parent two generation (BCP2) (Hayman, 1958). The mean 

response of these generations allows estimation of genetic effects such as additive, 

dominance and epistatic components, or their interactions. The technique is mostly used when 

the parents are divergent, possessing complementary and favourable alleles. GMA has been 

widely used to study gene action controlling biotic or abiotic stress tolerance or resistance, and 

yield and yield related traits in sorghum (Gamble, 1962), maize (Badu-Apraku et al., 2013) and 

rice (Gurney et al., 2006).  

 

1.5.4 Farmers’ preferences and participatory variety development 

 

Development of sorghum varieties with traits of farmer’ preferences require involvement of 

farmers at all breeding stages. Involvement of farmers’ in a breeding program should allow 

breeders to identify the constraints affecting sorghum production, traits preferences, and 

strategies for effective Striga management in the major sorghum production of the semi-arid 

regions of Tanzania. Understanding of the current farming systems, including the prevailing 

farming practices, farmer constraints, and the overall socio-economic aspects is needed as a 

basis for developing a strategy for managing the parasite. Successful development, release 

and adoption of new plant varieties are dependent on the quality of engagement with farmers’ 

and stakeholders.  

 

Participatory rural appraisal (PRA) is a set of multidisciplinary research techniques used to 

identify farmers’ perceived production constraints, preferred crop varieties, and required quality 

traits as a basis for deployment of production packages and crop varieties with a high potential 

for adoption by a farmers concerned. The techniques enable plant breeders to understand 

farmers’ knowledge, experience, and needs, and the crop constraints, and the preferred traits 

(Chambers, 1992). Over many years, sorghum varieties released in Africa have been poorly 

adopted by smallholder farmers because they lacked quality traits that farmers demand from 
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a successful variety (Ceccarelli et al., 2001; Mrema et al., 2016). To improve the level of 

adoption of newly released sorghum varieties, and to enhance the productivity of sorghum in 

Tanzania, it is essential to investigate farmers’ production constraints, and the traits of critical 

preference, before variety development is initiated.  

 

1.6 Conclusions  

 

Sorghum is an important multipurpose crop in the semi-arid parts of SSA where other cereal 

crops, such as maize, cannot perform due to parasitic weeds, and adverse environmental 

conditions, especially drought and heat stress. The yield of sorghum in SSA is low due to biotic 

and abiotic factors, including Striga. Several cultural practices and chemical control measures 

have been recommended by national and international agencies for the control of Striga. 

However, these have been poorly adopted by smallholder farmers due to the unavailability and 

unaffordability of herbicides, delayed hand weeding, lack of varieties with both Striga 

resistance and farmer preferred traits, land scarcity that prevents crop rotation and fallowing, 

and intercropping of crop species with similar growth requirements. Most of the previously bred 

and released sorghum varieties have lacked key traits of farmers’ preference. Consequently, 

they have not been adopted. Diverse local sorghum germplasm is already available in 

Tanzania, which could be screened for their Striga resistance and compatibility with FOS.  
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CHAPTER TWO  

 

Farmers’ perceptions of sorghum production constraints and Striga 

control practices in semi-arid areas of Tanzania 

 

2.1 Abstract 

 

Sorghum [Sorghum bicolor (L.) Moench] is an important food, feed, and bioenergy crop widely 

grown in arid and semi-arid parts of sub-Saharan Africa, including Tanzania. In this region 

sorghum productivity is low owing to biotic and abiotic stresses, as well as socio-economic 

constraints. The objectives of this study were to investigate constraints affecting sorghum 

production and farmers’ approaches of Striga management in the semi-arid regions of 

Tanzania. The study involved three selected districts across six villages. Focus group 

discussions based on a semi-structured questionnaire and observations following transect 

walks were used for data collection. About 65% of the farmers grew sorghum landraces and 

had not adopted newly released varieties. Only 35, 15, and 10% of the farmers from Igunga, 

Kishapu, and Meatu Districts, respectively, reported growing newly released varieties. The 

major constraints affecting sorghum production in the study areas included Striga infestation, 

drought, storage pests, damage by birds, a lack of access to improved varieties, and a lack of 

access to production inputs, such as fertilizers, insecticides, fungicides and herbicides. Hand 

weeding, crop rotation, fallowing, intercropping, and organic manure application were the most 

common practices of farmers for reducing Striga infestations, but most farmers (79.7%) had 

little knowledge of the best recommended Striga management practices. About 65% of the 

farmers did not use fertilizers and herbicides for soil fertility improvement and weed 

management, respectively, creating favourable conditions for Striga infestation, and for severe 

yield losses in sorghum. A systematic breeding program aiming at improving sorghum varieties 

for Striga resistance, including farmers’ preferred traits, should be designed and implemented 

to increase the adoption of these new varieties by the farmers. 

 

Key words: agro-ecology; pest control; survey, preferences; resistant varieties 
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2.2 Introduction 

 

Sorghum [Sorghum bicolor (L.) Moench, 2n=2x=20] is the fifth important cereal crop after 

wheat, rice, maize, and barley worldwide (FAOSTAT 2014). This crop is well adapted in arid 

and semi-arid environments under poor soil fertility and high temperature conditions, where 

other cereal crops, such as maize and wheat, fail to produce grain (Blum 2004). Globally, 

sorghum is grown for food, feed, and bioenergy on an area of 42 million ha, with a total 

production of 61.5 million tonnes of grain, of which 80% is produced in Africa and Asia. In East 

Africa, an area of 5 million ha is devoted to sorghum cultivation, with a mean productivity of 

1.3 tonnes ha-1. In Tanzania, sorghum is grown in almost all the semi-arid areas by subsistence 

farmers for food, feed, and beer. An area of 6.2 million ha is used for cereal crop production, 

of which 0.9 million ha (15%) is under sorghum cultivation (FAOSTAT 2013). However, low 

grain yield of less than 1.0 tonnes ha-1 has been reported, which is considerably below the 

mean yield of 1.3 tonnes ha-1 reported in east Africa (FAOSTAT 2013). 

 

The low yields of sorghum in Tanzania have been attributed to both abiotic stresses (e.g. poor 

soil fertility, drought) as well as biotic stresses [e.g. Striga infestation, stem borers, and shoot 

fly (Atherigona soccata)] (Wortmann et al., 2006). Among the biotic stresses, Striga [Striga 

hermonthica (Del.) Benth and S. asiatica (L.) Kuntze] often causes severe yield losses (Riches 

2003). Striga spp. are parasitic on the host plant (Press et al., 1996) and can infest a wide 

range of crops, including rice (Oryza glaberrima Steudel and O. sativa L.), pearl millet 

(Pennisetum glaucum L.), and maize (Zea mays L.) (Krittika & Adam 2008). There are 41 

Striga species belonging to the family Orobanchaceae, and of these, 11 are documented to 

cause significant yield losses in tropical cereals (Mohamed et al., 2007). Ejeta (2007) 

estimated that Striga affected 100 million ha in cereal fields in Africa. In Tanzania, Striga 

infestation has been reported in most parts of the country. The most severe infestations are 

found along Lake Victoria in the Mwanza, Mara, Shinyanga, and Simiyu regions, in the western 

zone, including Igunga Tabora region, and in the central parts of Tanzania, such as Dodoma 

and Singida. These are semi-arid parts of Tanzania, where sorghum cultivation remains the 

main farming activity. In these areas, sorghum and maize fields are severely infested by both 

Striga species (Riches 2003). Globally, nearly one million ha of sorghum fields has been 

reported to be infested with Striga, resulting in yield losses ranging from 20 to 80% (Hearne 

2009). Striga infestation is exacerbated by poor soil fertility, use of a single management 

method, cereal mono-cropping, and growing susceptible varieties (Parker 1991). Striga plants 

produce large quantities of small seeds that remain viable in the soil up to 20 years. A single 

plant can produce up to 500,000 seeds, which mature at different times (Koichi et al., 2010). 
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In the semi-arid areas of Tanzania, yield losses of sorghum have been estimated to be 

between 30% and 90% due to Striga infestation (Riches 2003). Doggett (1953) reported 70% 

to 100% yield losses in sorghum due to Striga infestation. The magnitude of yield losses 

depends on the extent of infestation, the prevailing climatic conditions, and the control 

measures implemented (Tesso et al., 2007). Understanding the biological and metabolic 

relations of the host and parasite may provide strategies for integrated control measures of 

Striga spp. (Ejeta, 2007). However, managing Striga spp. is difficult for smallholder farmers 

because they have limited access to production inputs. 

 

Several control practices have been recommended for reducing Striga infestation. These 

include the use of resistant varieties, cultural practices, and chemical control methods (Hearne 

2009). Cultural practices, such as the cultivation of different crops in the same piece of land in 

successive years, application of fertilizers, soil moisture management, and manual weeding, 

help to reduce Striga seed bank (Reda & Verkleij 2004). These strategies improve the soil 

structure and fertility, promote growth and development of the host plant, and retard growth 

and development of juvenile Striga plants (Reda & Verkleij 2004). However, the costs of 

implementing these measures are high and this fact hinders adoption by smallholder farmers. 

Some herbicides, such as 2,4-D, have been reported to be effective in reducing the buildup of 

Striga (Ejeta et al., 1996), while other herbicides were found less effective in controlling the 

effect of the parasite after emergence (Carsky et al., 1994). Furthermore, the cost of herbicides 

and spray units make this approach unaffordable for most smallholder farmers. An approach 

to the integrated management of Striga involves a combination of farmers’ knowledge, a bio-

control agent, and the use of resistant sorghum varieties. This is a relatively cheap option for 

smallholder farmers in the semi-arid regions of Tanzania.  

 

Little information exists on production constraints of sorghum, traits preferences, and 

strategies for effective Striga management in the major sorghum production regions of the 

semi-arid Tanzania. A research strategy for improving sorghum productivity requires detailed 

information regarding sorghum farming systems, including the prevailing farming practices, 

farmers’ constraints, and the overall socio-economic aspects. In turn, this strategy requires 

documenting current circumstances and constraints through farmers’ participatory methods 

across the farming systems. A sorghum improvement program should focus on the needs of 

smallholder farmers and their value chains to satisfy their demands, and to ensure the 

successful release and adoption of newly bred cultivars and production technologies, to deliver 

on the goal of securing production and improving livelihoods. 
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Participatory rural appraisal (PRA) is a set of multidisciplinary research techniques used to 

identify farmers’ perceived production constraints, preferred crop varieties, and traits for the 

deployment of production packages and suitable crop varieties. PRA is a useful method to 

understand farmers’ knowledge, experiences, constraints, preferred traits, and needs 

(Chambers 1992). Technologies to improve sorghum yields that neglect farmers’ needs and 

preferences have largely been ignored (Singh & Morris 1997). To improve adoption of newly 

released sorghum varieties and enhance productivity, it is important to investigate farmers’ 

production constraints and their traits of preference, before variety development is initiated 

(Ceccarelli et al., 2001). Therefore, the objective of this study was to investigate farmers’ 

production constraints and perceptions of Striga management practices by sorghum farmers 

in the semi-arid regions of Tanzania.  

 

2.3 Materials and methods 

 

2.3.1 Description of study sites 

 

The study was conducted in three regions: Tabora, Shinyanga, and Simiyu. These regions 

represent the semi-arid parts of Tanzania, where sorghum cultivation is constrained by both 

S. hermonthica and S. asiatica (Figure 2.1). The Tabora region was represented by the Igunga 

District, which is found in the western part of Tanzania. The area receives unimodal rainfall, 

with a mean of 880 mm per year that falls between November and April. It has a long dry 

season of about 5-6 months and temperatures ranging from 14.6oC in June to 32.5oC in 

October. The site is characterized by sandy to loamy soils.  

 

The Shinyanga and Simiyu regions were represented by Kishapu and Meatu Districts, 

respectively, which are located in the lake zone, 3°39′43″S and 33°25′23″E, with altitudes of 

1000 to 1200 m above sea level. The areas are characterized by the presence of undulating 

plains with rocky hills and low scarps. The regions have well drained soils with low fertility and 

a growing season running from December to March. The two sites experience temperatures 

ranging from a mean of 16oC in June to a mean of 33oC in October, with prolonged warm 

conditions.  
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2.3.2 Sampling method 

 

Purposive sampling was used for the study to increase the likelihood of including relevant sites 

and samples. Briefly, three districts were sampled, including Igunga (from Tabora region), 

Kishapu (from Shinyanga region) and Meatu (from Simiyu region), all situated in the semi-arid 

areas of northern Tanzania. The following six wards were sub-sampled: Mbutu and 

Isakamaliwa (from Igunga District), Mwataga and Kishapu (from Kishapu District), Mamshali 

and Mwagwila (from Meatu District). Each ward was represented by the following six villages: 

Mbutu, Kidalu, Lubaga, Isoso, Itongolyagamba, and Mwanyahina, in that order. The three 

districts, the six wards and the six villages were selected because of the type and severity of 

Striga infestation and the scale of sorghum production. In each village, twenty farmers were 

randomly sampled. This procedure provided a total of 120 farmers who were interviewed using 

a semi-structured questionnaire. Additionally, focus group discussions (FGDs) were held, 

involving eight focus groups comprising farmers, local leaders, and key informants. Each focus 

Figure 2.1. Striga distribution map within the boundaries of Tanzania (MacOpiyo et al. 
2009) and location of the three study districts. 
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group composed of eight representative farmers who were sampled based on their experience 

in sorghum production. A total of 48 farmers participated in the FGDs across the three districts. 

 

2.3.3 Data collection and analysis 

 

Data were collected through face-to-face interviews, observations made through transect 

walks across selected villages, and discussions with focus groups. The semi-structured 

questionnaire was formulated based on factors related to farmers’ preferences on sorghum 

traits, the socio-economic status of the households, the varieties grown and their performance, 

production constraints, Striga infestation, and control practices. Farmers’ varieties were 

identified by their local names, along with their merits and demerits. Farmers` preferred traits 

of sorghum were described and ranked using a pair-wise matrix technique. Identified traits 

were labelled and tallied in a matrix, both in rows and columns. Each trait was weighed and 

prioritized relative to the other based on one-on-one comparisons. Consequently, the values 

1 and 0 were assigned to the most and least preferred trait, respectively. Finally, the scores 

were counted and traits were ranked based on relative values.  

 

Key informant interviews were held with experienced sorghum farmers and community 

leaders. Forty eight farmers (16 from each district) who are known for their rich indigenous and 

technical knowledge on sorghum production, management, and utilization were selected and 

interviewed in all selected sites for secondary data collection. They were also involved in the 

FGDs, in which their observations and comments were recorded. Personal observations on 

land characteristics of sorghum fields and the importance of sorghum, were made during 

transect walks in the selected districts to provide complementary data.  

 

Quantitative and qualitative data collected through the questionnaire were coded and 

subjected to statistical analyses using the Statistical Package for Social Sciences software 

(SPSS Inc. 2005). Cross-tabulations tables were constructed and descriptive statistics were 

calculated to summarise data from the questionnaires or the FGDs. To make statistical 

inferences, contingency chi-square tests were computed at a given level of significance to 

analyse relationships between variables. This allowed empirical analyses and description of 

associations between the collected parameters across the three study districts.  

  



34 
 

2.4 Results and discussion 

 

2.4.1 Description of households 

 

A total of 120 smallholder farmers interviewed during the study and all indicated that their 

sorghum fields were affected by Striga infestation in 2014. Table 2.1 summarises the basic 

socio-demographic profile of the respondents.  

 

Table 2.1. Basic socio-demographic profile of the farmers 

 

Variable Class 
District 

Mean 
Igunga Kishapu Meatu 

Gender 

Male 87.5 87.5 82.5 85.8 

Female 12.5 12.5 17.5 14.2 

Age (years) 

> 18 30.0 35.0 35.0 33.3 

< 17 70.0 65.0 65.0 66.7 

Family size 
(number of 
individuals per 
family) 

< 3 22.5 35.0 30.0 29.2 

4-6 72.5 55.0 60.0 62.5 

>7 5.0 10.0 10.0 8.3 

Education level  

Primary 72.5 72.5 70.0 71.7 

Secondary 7.5 5.0 2.5 5.0 

Illiterate 20.0 22.5 27.5 23.3 

 

The proportion of males (85.8%) was greater than females (14.2%) in all the study districts. 

Male and female farmers usually differ in priority and ownership for some of the crops, land 

access, and management practices. Female farmers cultivate a range of crops, mostly for 

feeding their family and for sale to cater for some of their social needs, whereas the males 

owned fertile lands and grow crops mostly for selling.  

 

The mean family size in the study sites was 7.1 individuals. About 30% of the farmers had four 

children. Thirst percent of the farmers were older than 18 years in Igunga, whereas the 

respective proportion in Meatu and Kishapu Districts was 35%. Individuals older than 18 have 

decision-making power on the crop and variety to cultivate, the size of land to cultivate and the 

date of planting, which in turn have an impact on sorghum production. The number of 
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individuals per household influences farming operations that need human labour. Households 

with more than four family members were more efficient in sorghum farming than families with 

fewer members, which predominantly required outsourcing their labour needs from their 

communities. During the peak production events (e.g. planting, weeding, and harvesting) 

labour was one of the most important constraints affecting sorghum production. 

 

Most respondents (71.7%) had attended primary school and were able to read and write with 

the local language Kiswahili only, while 5% had attended secondary education and were able 

to read and write in both English and Kiswahili. The remaining 23.3% had not attended school 

(Table 2.1). The low level of education in the study areas indicated that extension and research 

service providers or ‘change agents’ are needed to verbally communicate the nature and value 

of any new technologies or agricultural inputs to these communities. The educated individuals 

(5%) could be useful agents in gathering information regarding farmers’ constraints, needs and 

priorities, who could act as facilitators of adoption of the new technologies of value to the 

smallholder farming communities in the study areas.  

 

2.4.2 Main socio-economic activities in the study districts  

 

Economic activity 

 

The roles of farmers in various economic activities are summarised in Table 2.2. Major 

economic activities identified in all surveyed districts were crop production, livestock 

production, and small businesses. There were non-significant (X2 = 3.533; P = 0.475) 

differences in the percentage of individuals engaged in different economic activities among the 

surveyed districts. About 75% of the farmers engaged in crop production, reflecting a greater 

contribution to the local economy compared with animal production (17.5%), and small 

business (7.5%) across the study districts. 
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Table 2.2. Major economic activities of the farmers 

 

Economic 
activity 

District 

Mean Df Chi-square P-value Igunga Kishapu Meatu 

Crop production 82.5 77.5 65.0 75.0 

4 3.533 0.475 
Livestock 
production 

12.5 15.0 25.0 17.5 

Small businesses 5.0 7.5 10.0 7.5 

Df = degrees of freedom 

 

Crop production 

 

Farmers practiced both crop and livestock production as major sources of food, feed, and cash 

income. The area of land being cultivated by each household during the interview period 

ranged from 0.4 to 12 ha, with a mean of 3.0 ha (SD = 5.8). Crops grown in the study districts 

included sorghum, maize, cotton, green gram, sunflower, rice, and beans (Figure 2.2). The 

majority of the farmers allocated most of their land to sorghum (33%), followed by cotton (23%), 

and maize (21%). Rice, green gram, and sunflower were each allocated about 5% of the 

cultivated land (Figure 2.2). 
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Figure 2.2. Different crops grown in 2013/2014 cropping season. 



37 
 

Mono-cropping, mixed cropping, and crop rotation were the major cropping systems practiced 

by most farmers in all study districts. Mono-cropping of sorghum was practiced by 70.5% of 

the farmers in Igunga, 67.0% in Kishapu, and 59.6% in Meatu. The remaining farmers 

intercropped sorghum with beans or sorghum with maize and green gram or sorghum with 

sunflower. Crop rotation was practiced by few individuals who had enough land for 

implementing this practice. Cropping systems that involve mono-cropping or mixed cropping 

using related crop species with similar growth requirements, such as soil moisture and 

fertilizers, are not sustainable because they draw nutrients without replacement. Such cropping 

systems contribute to the build-up of Striga infestation, pests and diseases, soil infertility, and 

thus yield reduction. By contrast, recommended cultural and chemical methods for the control 

of Striga may not be well adopted (Hearne 2009). This may be due to the high costs of the 

recommended technologies, a lack of information transfer about the new technologies, and 

also because these practices may not be compatible with farmers` preferred practices. The 

use of partially resistant sorghum lines, such as Wahi and Hakika, has not been effective in 

areas with high levels of Striga infestation in Tanzania. These lines were also reported to be 

low yielding, while the high-yielding varieties Pato and Tegemeo are susceptible to Striga 

(Hearne 2009). Introduced varieties, such as Macia and Serena, have not been adopted mostly 

because they are susceptible to Striga, birds, storage pests, and harsh environmental 

conditions, such as low rainfall and poor soil fertility. Low levels of adoption of introduced 

cultivars that lack some farmers’ preferred traits have been reported in Ethiopia (McGuire 2008; 

Sinafkish et al., 2010). To facilitate adoption of new sorghum varieties, it is important to select 

for farmers’ preferred traits during the breeding stages.  

 

Data from the group discussions revealed that early planting following the main rains, the use 

of early maturing and Striga resistant sorghum varieties, and the use of good agronomic 

practices were the main practices adapted to ensure high yields in all study areas. Planting 

was done in the middle of the main rainy season (December) to utilize the available moisture 

at the early stages of the plant development and to allow the crop to escape drought stress 

during grain filling in January.  

 

Observations made during transect walks were that farmers who planted early-maturing 

sorghum varieties in the beginning of the rains in mid-October achieved better yields than 

farmers who planted late in January. The latter group of farmers reported to lose much of their 

crop to drought and Striga infestation. Low yields were reported during group discussions, 

especially by the farmers who grew late-maturing varieties during 2013 to 2014. Planting times 

differed among farmers, depending on choice of variety, time of land preparation, and the onset 

of rain. Late-maturing landraces were grown by the majority of the smallholder farmers. These 
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were planted between December and early January, while improved early-maturing varieties 

that were grown by few farmers were planted in mid-October to November, following early 

seasonal rains. The need to replace late-maturing landraces with early-maturing ones, and 

Striga resistant introduced varieties was seen as a priority by most smallholder farmers. This 

was because late-maturing varieties have a long growing period, and they are therefore 

susceptible to drought events often occurring in most seasons in the semi-arid areas of 

Tanzania.  

 

2.4.3 Sorghum production  

 

The use of various inputs for the production of the primary crops is summarized in Table 2.3. 

Significant differences (X2 = 8.75; P = 0.013) were detected among respondents on the use of 

production inputs. The predominant seed sources used by most smallholder farmers were 

landraces, selected and kept by the farmers themselves from previous harvests. Only 35, 15, 

and 10% of the farmers in Igunga, Kishapu, and Meatu Districts, respectively, used seeds of 

introduced sorghum varieties from research institutes. The poor adoption of new varieties was 

most probably because of their susceptibility to Striga infestation, attack by birds, damage by 

storage pests, and susceptibility to drought. 

 

There were no significant differences (X2 = 6.867; P = 0.143) among farmers concerning the 

use of fertilizers in sorghum production across the surveyed districts (Table 2.3). About 66% 

of the farmers in all three districts did not apply fertilizers. Some farmers (24%) were aware of 

the need for the application of inorganic fertilizers in sorghum production. Application of such 

fertilizers was reported by farmers who mentioned that this practice increased stress to plants 

due to extreme drought that affect most of the late-maturing landraces. Other factors that 

limited the use of inorganic fertilizers in sorghum production were the high costs of inorganic 

fertilizers that made them unaffordable for smallholder farmers; the poor response of some 

landraces to these fertilizers; and a lack of information on optimising the application of 

inorganic fertilizers. Some farmers: 35, 25, and 35% in Igunga, Kishapu, and Meatu Districts, 

respectively, applied organic fertilizers, such as farmyard manure, boma manure or compost, 

as an alternative way of improving soil fertility (Table 2.3). Pesticide use was low in all surveyed 

districts: 22.5% in Igunga, 25.0% in Kishapu and 30.0% in Meatu. Few farmers (5, 14, and 

8.0% in Igunga, Kishapu and Meatu, respectively) applied pesticides in sorghum production. 

The high price of pesticides, their limited availability, and the lack of technical knowledge on 

the use of agrochemicals for pest management were identified as the main reasons for the 

limited use of pesticides in sorghum production, during the FGDs. 
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Table 2.3. Use of various inputs for cereal crop production 
 

Input Type/use 

District 

Mean Df Chi-square P-value Igunga Kishapu Meatu 

Fertilizers  

Inorganic 0.0 7.5 0.0 2.5 

4 6.867 0.143 Organic 35.0 25.0 35.0 31.7 

None 65.0 67.5 65.0 65.8 

Varieties 
Local 65.0 85.0 90.0 80.0 

2 8.750 0.013 
Improved 35.0 15.0 10.0 20.0 

Crop 
protection 
chemicals  

Yes 22.5 25.0 30.0 25.8 
2 0.609 0.738 

No 77.5 75.0 70.0 74.2 

D.f =degrees of freedom 

 

Table 2.4 presents the mean seeding rates and the mean yields of sorghum cultivated in the 

surveyed districts. Variations in sorghum yields could be ascribed to differences in soil type, 

weather conditions, management practices, farming systems, tillering ability of the varieties, 

and varietal tolerance to stresses. The overall mean and standard deviation of the seeding rate 

of sorghum used by the farmers was 13.2 ± 3.8 kg ha-1. The seeding rate used in the study 

areas was slightly higher than the recommended seeding rate of 12.5 kg ha-1 (FAOSTAT 

2013). The higher seeding rates used by the smallholder farmers were attributed to the 

inefficiency of seed broadcasting, efforts to maximize the probability of seed germination, and 

efforts to compensate losses by seed damage due to soil-borne diseases. In the study areas, 

farmers practiced ‘songa mbele’, a planting technique where the seeds are hand broadcasted 

followed by trampling the soil with oxen. This method requires more seed per unit area. A lack 

of knowledge about improved agronomic practices, such as row planting, is a significant 

limiting factor for sorghum production in the study areas.  

 

The mean sorghum yield achieved by the farmers during 2014 was 815.3 kg ha-1, which was 

lower than the estimated national yield of 1000 kg ha-1 for the same season (FAOSTAT 2014). 

Yields ranged from 786.0 to 837.5 kg ha-1 due to differences in sorghum varieties grown, 

variations in the extent of the environmental stresses (e.g. drought), soil types, inputs used, 

weeds, pests and diseases. In spite of the economic importance of sorghum in the study areas, 

yields remain low. These findings concur with the reports of Fisher and Wilson (1975), Dogget 

(1988), and Wortmann et al. (2006) who documented low yields of sorghum across Africa, 

despite its economic importance. Despite low yields, sorghum landraces are still widely 

cultivated by the smallholder farmers due to better adaptation to semi-arid environments, good 

grain quality, dual purpose uses (for food and brew), and resistance to pre- and post-harvest 

pests, birds, and fungal diseases. 

file:///C:/Users/Public/Documents/Thesis%20Development/Tracked%20Emmanuel%20Draft%20Thesis.docx%23_ENREF_6
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Table 2.4. Seeding rate and grain yield of sorghum during the survey season 
 

District 
Mean + standard deviation 

Seed rate (kg ha-1) Yield (kg ha-1) 

Igunga 12.4+4.4 837.5+157.9 
Kishapu 12.8+2.6 822.3+110.5 
Meatu 14.5+3.9 786.0+166.0 
Overall 13.2+3.8 815.3+147.2 

 

2.4.4 Constraints to sorghum production 

 

The major production constraints of sorghum in the study districts are summarized in Table 

2.5. These constraints included both biotic and abiotic stresses. Among the challenges that 

contributed to low yields, drought, low soil fertility, Striga infestation, storage pests, damage by 

birds, lack of improved varieties, lack of production inputs (fertilizers, insecticides, herbicides, 

fungicides, and improved seeds) as well as diseases were included.  

 

Farmers’ ranking of production constraints across districts showed that 75 to 85% of the 

respondents ranked Striga infestation as a highly important constraint. Striga caused serious 

yield losses in sorghum in all studied districts. The importance of this parasitic weed may be 

attributed to high occurrence due to the production of large numbers of seeds that remain 

viable for many years and the multiple dispersal mechanisms of the seeds by water, wind, 

cultivation equipment and animal movement (Koichi et al., 2010). Moderate infestations (15 to 

25%) were reported by some farmers, probably those who used fertilizers or who practiced 

regular weeding (at least three times in a season). The ranking of Striga infestation did not 

show significant differences (X2 = 1.781; P = 0.410) among districts. High severity of Striga 

was estimated at 85, 85, and 75% in Igunga, Kishapu, and Meatu, respectively. Such variation 

was rather expected due to differences in the levels of soil infertility, rainfall distribution, drought 

conditions, animal movement, Striga control methods, weeding events, and the farming system 

implemented. These all have a significant impact on Striga seed bank and seed movement in 

the soil. Generally, all the studied districts are Striga infested areas with low soil fertility. Such 

environmental conditions agree with the observations of Wortmann et al. (2006) who reported 

that low sorghum yields in  eastern Africa was associated with nutrient deficiencies, drought, 

Striga, stem borers, and shoot fly. 

 

After Striga infestation, the second most yield-limiting factor for sorghum production in the 

study areas was drought (Table 2.5). High severity of drought was reported by 70 to 75% of 

the respondents across all studied districts. Drought is associated with frequent changes of 

weather conditions in almost all semi-arid parts of Tanzania. To mitigate drought stress, 
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farmers adopted various strategies, such as mixed farming systems, use of a portion of the 

farmland, avoiding use of newly introduced sorghum varieties, and abandoning some 

landraces, particularly the late-maturing ones that fail to produce yield under reduced rainfall. 

Other constraints to sorghum production were storage pests, birds, lack of improved varieties 

with drought tolerance, lack of production inputs, low soil fertility, and diseases. The severity 

of these constraints varied from district to district and within a district (Table 2.5). 

Table 2.5. Major constraints to sorghum production  
 

Constraints Severity 

District  

Mean Df Chi-Square P-value Igunga Kishapu Meatu 
 

Drought HS 75.0 75.0 70.0  73.3 

4 2.345 0.673 MS 15.0 15.0 25.0  18.3 

LS 10.0 10.0 5.0  8.3 

Storage pests HS 15.0 20.0 30.0  21.7 

4 5.221 0.265 MS 85.0 75.0 65.0  75.0 

LS 0.0 5.0 5.0  3.3 

Striga  HS 85.0 85.0 75.0  81.7 
2 1.781 0.410 

MS 15.0 15.0 25.0  18.3 

Birds  HS 10.0 20.0 20.0  17.0 

4 1.940 0.747 MS 85.0 75.0 75.0  78.0 

LS 5.0 5.0 5.0  5.0 

Lack of 
improved 
varieties 

HS 20.0 0.0 10.0  10.0 

4 11.571 0.021 MS 25.0 15.0 20.0  20.0 

LS 55.0 85.0 70.0  81.7 

Poor soil fertility HS 10.0 0.0 5.0  5.0 

4 132.277 0.000 MS 20.0 5.0 15.0  13.3 

LS 70.0 95.0 80.0  81.7 

Lack of 
production 
inputs 

HS 5.0 0.0 15.0  7.0 

4 170.287 0.000 MS 25.0 90.0 65.0  60.0 

LS 70.0 10.0 20.0  33.0 

Diseases HS 0.0 0.0 5.0  1.7 

4 

219.628 0.000 

MS 95.0 0.0 80.0  58.3 

LS 5.0 100.0 15.0  40.0 

HS = high severity, MS = moderate severity and LS = low severity 

Df = degrees of freedom 

 

2.4.5 Striga infestation and control strategies  

 

Farmers in all surveyed districts reported Striga infestation as the major limiting factor for 

sorghum production, particularly when the crop is cultivated alone. The extent of infestation 

did not vary significantly (X2 = 1.781; P = 0.410) among districts. A high severity (75 to 85%) 

was reported in all surveyed districts (Table 2.5). At Igunga farmers used small quantities of 

inorganic and organic fertilizers and did not apply herbicides. This may be the reason for the 

high levels of Striga infestation in this district. Other crops cultivated in the study areas included 

green gram and beans, which have the ability to fix atmospheric nitrogen. These crops were 

cultivated in a mixed cropping system with sunflower and cotton in several areas. In these 

farming systems, there were lower levels of Striga infestation due to improved levels of soil 

fertility and inability of Striga seeds to germinate in soils with low levels of a germination 
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stimulus (e.g. strigol) released from the roots of sorghum plants (Parker 1991). The level of 

Striga infestations was reported to be increasing in sorghum crops in all surveyed areas (Table 

2.6). Previously, yield losses of 30 to 100% had been reported when sorghum was grown alone 

under severe Striga infestations. Tesso et al. (2007) reported yield loss of 65% under severe 

Striga infestation. In the three study areas, farmers indicated that Striga had been present for 

more than 30 years, but with no information as to the original source of the infestation. Farmers 

reported the emergence of the weed about 1 to 2 months after the emergence of sorghum 

seedlings. They also reported that the weed affected the host plants immediately after its 

emergence from the ground. According to farmers, the major symptoms of sorghum affected 

by Striga infestation were stunted growth, yellowing of the leaves, and death of the plant. 

 

Table 2.6. Farmers’ assessment of the levels of Striga infestation in sorghum 
 

Df = degrees of freedom 

 

Hand weeding, crop rotation, fallowing, intercropping, and organic manure application were 

some of the coping mechanisms reported by the farmers for reducing Striga infestations (Table 

2.7). About 25 to 30% of the farmers used hand weeding in their sorghum fields to reduce 

Striga infestation. Farmers tried to manage Striga without consideration of the growth stage of 

the parasite; some weeded before flowering, while others after flowering. Weeding after 

flowering of the parasite may contribute to a substantial increase in Striga seed bank in the 

soil and thus increase subsequent infestations. Most farmers (86, 79, and 76%) in Igunga, 

Kisapu, and Meatu Districts, respectively, reported that hand weeding was not very effective 

for the control of Striga. Woomer et al. (2004) reported that under high Striga infestation, 

traditional Striga management practices, such as hand weeding, were insufficient to protect 

cereal crops.  

 

Most farmers (79.7%) had little knowledge of the best recommended Striga management 

practices. Few farmers (15.8%) adopted Striga reducing practices, such as the use of organic 

and inorganic fertilizers, fallowing, intercropping of host plants with legumes, crop rotation, and 

the use of herbicides, such as 2,4-D (Table 2.7). Farmers were asked the main reasons why 

Infestation 

District 

Mean Df 
Chi-

Square P-value Igunga Kishapu Meatu 

None 0.0 0.8 2.5 1.1 

4 2.629 0.622 Mild 10.0 11.7 10.0 10.6 

Severe 90.0 87.5 87.5 88.3 
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they did not apply integrated Striga management systems. They reported the following 

limitations: i) little knowledge about Striga management, ii) land shortage, iii) little access to 

herbicides, iv) positive traits in Striga susceptible landraces, or v) limited access to seeds of 

improved varieties with resistance to birds, storage pests, and drought.  

 

Table 2.7. Farmers’ coping mechanisms for Striga management in sorghum 

 

Strategy 
District 

Mean 
 

Igunga Kishapu Meatu 
Df 

Chi-
Square P-value 

Hand weeding 30.0 25.0 30.0 28.3 

8 2.231 0.973 

Crop rotation 12.5 15.0 10.0 12.5 

Fallowing 10.0 15.0 15.0 13.3 

Organic manure 35.0 30.0 25.0 30.0 

Intercropping 12.5 15.0 20.0 15.8 

Df = degrees of freedom 

 

2.4.6 Farmers’ perceptions of Striga management options 

 

The level of Striga infestation and crop losses was considered to be increasing across the 

study districts. Farmers perceived that the use of fertilizers, fallowing, crop rotation, timely 

weeding, and intercropping sorghum with legumes may help in Striga management when used 

singly or in combination. However, farmers rarely adopt Striga control methods mainly due to 

limitations associated with the technology itself or because the technology is not available or 

affordable to them or because of a lack of detailed information about these control options. 

Most farmers followed sole cropping of sorghum and cultivated Striga susceptible and late- 

maturing varieties, resulting in an increasing Striga seed bank in the soil. Adoption of Striga 

resistant varieties has been slow, primarily due to a lack of i) farmers` preferred traits, ii) 

effective seed production, and iii) marketing mechanisms. This poor level of adoption requires 

the development of sorghum varieties with resistance to Striga including farmers` preferred 

traits, such as improved yield, and tolerance to drought stress, bird, and disease damages.  

 

2.4.7 Sorghum varieties grown in the study areas 

 

A description of the most popular cultivated sorghum varieties within the surveyed districts was 

recorded using their vernacular names (Table 2.8). Farmers reported several sorghum 

landraces that had been grown and maintained within and outside the districts. Macia, Serena, 
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Tegemeo, and Wahi are introduced sorghum varieties that had been grown by some farmers. 

Presently, these varieties were being cultivated by only few farmers. Various landraces were 

reported to be cultivated in a particular district, while others were grown in several districts. 

Most of the named landraces were maintained by the farmers from crop to crop. The reasons 

for the diversity of landraces in the study areas were for several specific traits, such as 

adaptability to environmental stresses, limited input requirements for growth, resistance to 

birds and storage pests, drought tolerance, weed tolerance, a high market value, good cooking 

quality, seed availability, and differences in climatic conditions among the studied zones of the 

semi-arid regions of Tanzania. The presence of diverse sorghum landraces in Ethiopia was 

found to be due to genetic variation, environmental adaptation, and farmers’ selections in a 

range of agro-ecologies (Tesso et al., 2007).  

 

Although there were several introduced high-yielding varieties developed within and outside 

the country, only few were mentioned by the farmers. These were Macia, Serena, Wahi, Pato, 

and Tegemeo. Low levels of adoption of the introduced varieties were reported probably 

because these varieties failed to match with farmers` preferred traits (Table 2.8). Macia, one 

of the introduced high-yielding sorghum varieties, is reported to be susceptible to birds, storage 

pests, and Striga infestation. The variety Wahi was meant to have Striga tolerance, but it was 

found to have no longer tolerance, especially under high levels of Striga infestation recorded 

in Tanzania.  

 

Rebeka et al. (2013) reported the adoption of a novel sorghum variety, Emahoy, which was 

selected for its high yield and resistance to Striga. Teshome et al. (2007) reported that the 

strong preference for landraces by smallholder farmers in Ethiopia was because the landraces 

matched with farmers’ preferred traits and had good adaptability to field conditions. For these 

reasons, it is important to include landraces in a breeding program to capture their valuable 

traits and to ensure the maximum adoption of newly developed varieties. 
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Table 2.8. Sorghum varieties grown and their associated characteristics 
 

Distri
cts 

Local names 
of varieties 

Suggested traits 

Preferred Non-preferred 

Igun
ga 

Kakula, 
Kenya, Mbiti, 
Gumi, 
Kombituna 

Drought tolerant and bird 
resistant 

Susceptible to Striga and late 
maturing 

Macia, 
Serena 

Early maturing, high yielding, and 
good food quality 

Susceptible to Striga, birds, 
and storage pests 

Kish
apu 

Bukula/Minin
gamela, 
Selemani, 
Kombituna, 
Mwanangudu
ngu 

Drought tolerant and bird 
resistant 

Susceptible to Striga 

Wahi, Macia, 
Serena 

Early maturing, high yielding, and 
good food quality 

Susceptible to Striga, birds, 
and storage pests 

Meat
u 

Galolo, 
Miningamela, 
Selemani, 

Drought tolerant and bird 
resistant 

Susceptible to Striga 

Pato, Macia, 
Tegemeo 

Early maturing, high yielding, and 
good food quality 

Susceptible to Striga, birds, 
and storage pests 

 

Farmers’ ranking of the traits of preference in sorghum varieties in the study regions is 

presented in Table 2.9. The preferences were related to Striga infestations, earliness, drought 

tolerance, grain yield, resistance to pests and diseases as well as resistance to bird attacks, 

all of which occur in the studied areas. In all districts, resistance to Striga was rated as the 

number one trait of preference. In Igunga District, farmers rated early maturity and drought 

tolerance as the second and third traits of preference, respectively. This was similar to 

preferences in Kishapu and Meatu Districts, in which drought tolerance and earliness were 

ranked as the second and third most preferred traits, respectively (Table 2.9). Mean ranks in 

all districts showed that grain yield, pest and disease resistance, bird repellence, and grain 

quality were the fourth, fifth, sixth, and seventh most preferred traits, respectively. The 

differences in the ranks between the districts could be attributed to variations in soil type, levels 

of annual rainfall, sorghum varieties grown, and the duration of dry spells.  

 

To cope with the situation, farmers prefer early maturing varieties that could escape drought 

period, high Striga infestations, and damage by birds. Most of the cultivated landraces were 

late-maturing ones and were susceptible to Striga. Developing sorghum varieties that perform 

better in harsh and un-predictable environments, with traits of farmers’ preference will 

maximize the adoption of such varieties in the study areas. Lacy et al. (2006) and Sinafkish et 

al. (2010) reported that farmers usually grew sorghum varieties with wide environmental 

adaptability and yield stability, and had other traits of preference. Yield improvement by 
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introducing new varieties that lack most of the traits preferred by the farmers did not work in 

most parts of Africa (Ouédraogo 2005). Incorporation of farmers’ knowledge, preferences, and 

use of their landraces as a basis for breeding programs will maximize the adoption of newly 

developed varieties (Mekbib. 2006; Gyawali et al., 2007; Nkongolo et al., 2008). 

 

Table 2.9. Farmers’ traits of preference (%) for sorghum varieties 
 

Traits 

District  

Mean Igunga Kishapu Meatu 

Striga resistance 45.0  42.5 52.5 46.7 

Earliness 17.5 15.0  13.5 15.3  

Drought tolerance 12.5 17.5  15.0 15.0  

Resistance to bird attack 11.0 5.0  2.5 6.2  

Pest and disease resistance 4.5  10.0 7.5 7.3  

Grain yield 6.0 7.5  9.0 7.5  

Grain quality 3.5 2.5  0.0 2.0  

 

2.5 Conclusions 

 

Sorghum is a valuable food security crop in the semi-arid regions of Tanzania owing to its 

ability to thrive under harsh growing environments. Its low production and productivity in the 

semi-arid regions of Tanzania can be attributed to both biotic and abiotic factors as well as 

socio-economic constraints. In the study areas, Striga infestation was the major biotic 

constraint limiting sorghum production. Unavailability and unaffordability of herbicides, delayed 

hand weeding, lack of Striga resistant, and farmers` preferred varieties, land scarcity to 

practice crop rotation and fallowing, and intercropping of crop species with similar growth 

requirements were the main reasons limiting the effectiveness of Striga management. Further, 

sole cropping of sorghum, low soil fertility, drought stress, and the limited use of fertilizers and 

herbicides were additional constraints in Striga management. These constraints can be solved 

through integrated research approaches by various disciplines and institutions. Other 

constraints may need further interventions, such as access to credit and entrepreneurship.  

 

Previously released Striga resistant varieties achieved a low level of adoption due to a lack of 

match to farmers’ preferred traits. Therefore, there should be a systematic breeding program 

aiming at improving sorghum varieties for Striga resistance, including farmers’ preferred traits, 

to increase the adoption of these new varieties by the farmers. There should be also other 

strategies, such as technology transfer to farmers through training on the importance of Striga 
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management options, to limit the spread and impact of this parasitic weed. This will help to 

increase the adoption of Striga resistant varieties and management options by the local 

communities to successfully fight this parasitic weed in sorghum production in the semi-arid 

regions of Africa. In the next chapter, sorghum genotypes were evaluated to identify varieties 

resistance to Striga hermonthica and S. asiatica and compatibility with Fusarium oxysporum 

f.sp. strigae 
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CHAPTER THREE  

Screening of sorghum genotypes for resistance to Striga 

hermonthica and S. asiatica and compatibility with Fusarium 

oxysporum f.sp. strigae 

 

3.1 Abstract  

 

In the semi-arid areas of Tanzania yield losses of sorghum [Sorghum biocolor (L.) Moench] is 

estimated to be 30 to 90% due to Striga hermonthica (Sh) and S. asiatica (Sa) infestations. 

The use of resistant sorghum varieties compatible with Fusarium oxysporum f.sp. strigae 

(FOS), a biocontrol agent of Striga, may supress the weed and enhance productivity of the 

crop. The objective of this study was to screen and select farmers-preferred sorghum 

genotypes for Sh and Sa resistance and FOS compatibility for resistance breeding under 

Tanzanian conditions. Sixty sorghum genotypes were evaluated. Evaluations were conducted 

under screen house conditions using Sh and Sa infested field soils with controlled seed 

infestation, with or without inoculation of the sorghum seeds with FOS. The experiment was 

laid out using a split-plot design; FOS being the main-plot and sorghum genotypes as the sub-

plot treatments. Data on crop growth and grain yield parameters, and Striga incidence were 

collected. Inoculation of sorghum seeds with FOS significantly enhanced sorghum growth and 

productivity, and supressed Sh and Sa growth and development. Twenty eight sorghum 

genotypes evaluated in Sh infested soil had increased seed yields of 9 g per plant; 30 

genotypes screened under Sa infestation had increased seed yields of 10 g per plant after 

FOS inoculation of the sorghum seeds compared to untreated controls. There were reductions 

of 1 to 4 Sh and Sa plants when sorghum seeds were inoculated with FOS. Overall, the present 

study selected 25 promising sorghum lines resistance to Sh and/or Sa, and FOS compatibility. 

The selected sorghum lines are valuable genetic resources for the development of Striga 

management in sorghum through the integrated use of host resistance and FOS inoculation.  

 

Keywords: bio-agent, integrated Striga management, genotypes, parasitic weed, host 

resistance 
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3.2 Introduction 

 

Striga species [Striga hermonthica (Del.) Benth and S. asiatica (L.) Kuntze], are obligate root 

parasites that cause severe yield losses of 30 to 90% in sorghum in Tanzania (Riches 2003). 

Striga spp. derives their nutrients from host plants and exert phytotoxic effects to their host. 

These retard growth and lowers sorghum yields (Press et al., 1996). Striga spp. also attack 

rice (Oryza glaberrima Steudel & O. sativa L.), pearl millet (Pennisetum glaucum L.) and maize 

(Zea mays L.) (Rodenburg et al., 2015). There are 41 Striga species in the family 

Orobanchaceae. Of these, 11 are documented to cause significant yield losses in tropical 

cereals (Mohamed et al., 2001; Mohamed et al., 2006). Ejeta (2007) reported that Striga affects 

some 100 x 106 ha of cereal fields in Africa. An on-going expansion of the areas affected by 

Striga spp. have been attributed to poor soil fertility, the use of a single method of Striga 

management and cereal mono-cropping (Parker 2009; Parker, 2012). Striga is perpetually 

occurring because of its ability to produce large quantities of very small seeds that remain 

viable in the soil for up to 20 years. A single plant can produce up to 500,000 seeds, which 

mature and germinate at different times (Rodenburg et al., 2006; van Mourik et al., 2008). 

 

Striga hermonthica (Sh) and S. asiatica (Sa) occur in several cereal crop growing parts of 

Tanzania. Both species are economically important in the Lake Victoria and the western zones 

of Tanzania. In these areas the weeds damage several crops including maize, sorghum, millet 

and upland rice across extensive agro-ecological areas (Rodenburg et al., 2015; Schut et al., 

2015). Doggett (1953) reported 70 to 100% yield losses in sorghum due to Striga infestation 

in Tanzania. Yield losses of 40% have been reported in other parts of Africa (Lagoke 1991; 

Parker 2009). The magnitude of yield losses depends on the extent of infestation, climatic 

conditions and control measures used (Tesso et al., 2007). Combined use of various Striga 

management option based on understanding of biological and metabolic relations of the host 

and parasite, may provide strategies to control the parasite (Ransom 2000; Tesso & Ejeta 

2011). However, managing Striga sp. is difficult for smallholder farmers because they have 

limited access to production inputs such as fertilizers and herbicides.  

 

Several control strategies have been recommended to reduce Striga infestations. These 

include the use of resistant varieties, biological agents, cultural practices and chemical control 

methods (Hearne 2009). Cultural practices such as the cultivation of several crops in the same 

piece of land in successive years, application of fertilizers, soil moisture management and 

manual weeding all help to reduce the Striga seed bank (Tesso & Ejeta 2011). These strategies 

improve the soil structure and fertility, promote growth and development of the host plant, and 

retard germination and growth of juvenile Striga plant (Redda & Verkleij 2004). However, their 
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costs of implementing these measures are high, and this hinders their adoption by smallholder 

farmers. Some herbicides such as 2,4-D are reported to be effective in reducing the build-up 

of Striga (Ejeta et al., 1996). But they are less effective in controlling the effect of the parasite 

after emergence (Carsky et al., 1994; Hearne 2009; Haussmann et al., 2000a). Furthermore, 

the cost of herbicides and spray units make this approach unaffordable for smallholder 

farmers. The use of resistant varieties is the cheapest and most environmentally friendly Striga 

management option for the smallholder farmers in the semi-arid regions, who depend on 

sorghum production for food security.  

 

Striga resistant sorghums can be a major component of integrated Striga control approaches 

if resistance is incorporated into well-adapted and productive cultivars (Haussmann et al., 

2000a). Resistant cultivars can reduce both new Striga seed production and the Striga seed 

bank in infested soils. The genotypes, when grown under conditions of Striga infestation, 

support significantly fewer Striga plants and have a higher yield than a susceptible cultivar 

(Doggett 1988; Ejeta et al., 1992). Several Striga resistance mechanisms have been reported, 

these involves low production of germination stimulant, mechanical barriers, inhibition of germ 

tube exoenzymes by root exudates, phytoalexine synthesis, incompatibility, antibiosis, 

insensitivity to Striga toxin, avoidance through root growth habit (Ejeta et al., 1992; Ejeta & 

Butler 1993; Berner et al., 1995; Wegmann1996). 

 

Integrated Striga management practices that encompass the use of resistant sorghum 

genotype and a biological control is one way of managing root parasitic weeds. This involves 

the use of microbes to control Striga as part of an integrated control strategy for smallholder 

farmers (Kroschel & Müller-Stöver 2004; Sauerborn et al., 2007). The method is affordable, 

and is more environmentally friendly than chemical control practices (Marley et al., 2004). 

Changes in biotic and abiotic conditions due to the presence of microbes surrounding the 

rhizosphere have been reported to retard the efficacy of Striga parasitism on the host plant 

(Kroschel & Müller-Stöver 2004; Sauerborn et al., 2007) and may stimulate plant growth 

(Kroschel & Müller-Stöver 2004; Sauerborn et al., 2007). Different microbial communities have 

been reported to have different impacts on Striga and the host (Sauerborn et al., 2007). 

Pathogenic isolates of Fusarium oxysporum f.sp. strigae (FOS) are reported to be effective 

bio-herbicides for management of Striga infestation in sorghum, particularly when the method 

is integrated with other control practices (Rebeka et al., 2013). Rebeka (2007) reported the 

ability of the biocontrol fungus to destroy Striga before it penetrates the roots of sorghum under 

Ethiopian conditions. The FOS biocontrol agent is reported to be host specific, highly 

aggressive against Striga, easy to mass produce and shows high level of genetic diversity 

(Ciotola et al., 2000). When sorghum seeds are treated with FOS, the fungus grows well in the 
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rhizosphere of the sorghum plants. It parasitizes Striga sp. inhibiting their growth and 

development stopping them from parasitizing the roots of host plants (Rebeka 2007). Breeding 

sorghum varieties for farmer-preferred traits, resistance to Striga infestation, and compatibility 

with FOS, would make a major contribution to the sorghum yields of farmers in the semi-arid 

parts of Tanzania. The potential for adoption of these improved varieties by small scale farmers 

would be high. Further, this approach contributes to the reduction of Striga infestations and will 

result in sorghum improved yields. Therefore, the objective of this study was to screen and 

select farmers-preferred sorghum genotypes for Sh and Sa resistance, and for FOS 

compatibility as the basis for effective breeding for Tanzania conditions.  

 

3.3 Materials and methods 

 

3.3.1 Plant materials  

 

The study used 60 sorghum genotypes consisting of landraces and introduced varieties. The 

genotypes were collected from varied sources such as farmers’ fields in Tanzania, the 

Tanzania National Gene Bank, the Institute of Biodiversity Centre (IBC)/Ethiopia and the 

International Crop Research Institute for the Semi-arid Tropics (ICRISAT)/India (Table 3.1). 

The sorghum genotypes acquired from ICRISAT were reported to be Striga resistant. An 

introduced sorghum variety, ‘Macia,’ which is widely grown in Tanzania, was included as, a 

susceptible control. The landraces were included because of their wide adaptability to varied 

growing environments, and because they have agronomic and quality traits preferred by 

smallholder farmers.  
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Table 3.1. List and sources of sixty sorghum genotypes used in the study. 
 

Entry  Accession number Source Entry 
Accession 
number 

Source 

1 77 Sumbawanga/Tanzania 31 AS 429 ACCI 
2 203 Sumbawanga/Tanzania 32 3424  Igunga/Tanzania 
3 476 Kondoa/Tanzania 33 5275  Kishapu/Tanzania 
4 483 Kondoa/Tanzania 34 AS 433 (Birhan) SARC/Ethiopia 
5 501 Dodoma rural/Tanzania 35 3904 Nachingwea/Tanzania 
6 536 Dodoma rural/Tanzania 36 2255  Meatu/Tanzania 
7 550 Manyoni/Tanzania 37 308  Manyoni/Tanzania 
8 207 Manyoni/Tanzania 38 3933 Serengeti/Tanzania 
9 575 Singida rural/Tanzania 39 3937 Serengeti/Tanzania 
10 AS 426 ACCI/South Africa 40 1580  Iramba/Tanzania 
11 594 Iramba/Tanzania 41 3984 Musoma/Tanzania 
12 612 Iramba/Tanzania 42 3993 Musoma/Tanzania 
13 630 Serengeti/Tanzania 43 AS 422 ACCI/South Africa 
14 654 Bunda/Tanzania 44 4023 Ukerewe/Tanzania 
15 672 Musoma rural/Tanzania 45 4027 Ukerewe/Tanzania 
16 675 Tarime/Tanzania 46 4031 Ukerewe/Tanzania 
17 AS 425 ACCI/South Africa 47 AS 423 ACCI/South Africa 
18 104 Kishapu/Tanzania 48 4396 Lindi/Tanzania 
19 AS 424 (Hormat)  SARC/Ethiopia 49 4368 Ngara/Tanzania 
20 AS 431  ACCI/South Africa 50 4543 Liwale/Tanzania 
21 714 Tarime/Tanzania 51 4572 Magu/Tanzania 
22 1563 Bukoba/Tanzania 52 AS 421 ACCI/South Africa 
23 P 40281  IBC/Ethiopia 53 4567 Magu/Tanzania 
24 AS 71 ACCI/ South Africa 54 4643 Misungwi/Tanzania 
25 2246 Kilwa Masoko/Tanzania 55 2379  Tarime/Tanzania 
26 AS 436  ICRISAT/India 56 105  Mwanza/Tanzania 
27 AS 434 IBC/Ethiopia 57 AS 427 Framida/ICRISAT 
28 AS 428 IBC/Ethiopia 58 AS 435 ACCI/South Africa 
29 2357 Mtwara/Tanzania  59 AS 432 ACCI/South Africa 
30 AS 430 ACCI/South Africa 60 PAN 8816 PSC/South Africa 

IBC = Institute of Biodiversity Conservation/Ethiopia; SARC = Sirinka Agricultural Research 
Centre/Ethiopia; ICRISAT = International Crop Research Institute for the Semi-arid Tropics/India; 
ACCI=African Centre for Crop Improvement; PSC = Pannar Seed Company 

 

3.3.2 Inoculation preparation   

 

A pathogenic strain of F. oxysporum f.sp. strigae (FOS), originally isolated from sorghum fields 

infested with Striga in north eastern lowlands of Ethiopia, was used (Rebeka et al., 2013). The 

taxonomic identification of FOS was confirmed by the Phytomedicine Department of Humboldt 

University in Berlin, Germany. Rebeka (2007) confirmed the pathogenicity and host specificity 

of the FOS isolate to Striga. The isolate was maintained on special nutrient agar (SNA) 

(Rebeka et al., 2013) medium kept at -40oC. Pure Fusarium spores were mass produced and 

formulated by Plant Health Products (pty) Ltd, Kwazulu-Natal, South Africa.  

 

3.3.3 Study sites, experimental design and trial establishment  

 

A trial was established at the Agriculture Research Institute - Tumbi (ARI-Tumbi), situated in 

the Western Zone of Tanzania. The experiment was laid out in a split plot design, with FOS 

being main-plot, and sorghum genotypes being the sub-plot treatment, with three replications. 
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A hole measuring 30 cm deep and 25 cm wide and positioned along the drip pipeline was dug 

in the screen house ground. A total of 1440 holes were divided in to two sets. A set of 720 

holes were allocated for S. hermonthica (Sh) and the other 720 for S. asiatica (Sa) screenings. 

Each hole was filled with field soils initially collected from two sites known for their heavy 

infestation by both Striga species. The soil was a mixture of forest top soil and sand soil in a 

ratio of 4:2, respectively. To ensure Striga infestation, top soil was uniformly infested with 25 

mg of Sh seeds, which was evenly distributed and planted 1 to 1.5 cm deep and covered with 

a thin layer of soil. Similarly, the remaining holes were infested with seeds from Sa. The Striga 

seeds were collected from Striga plants grown in the farmers’ fields. The fields were previously 

used for sorghum and maize production and had heavy and recurrent infestation by Sh and 

Sa. The collected seeds were stored in the Crop Science laboratory at ARI-Tumbi. 

 

After a ten days delay to precondition the Striga seed, sorghum seeds were planted. One set 

of the holes were planted with sorghum seeds dressed with 75 mg of FOS spores, while the 

other half was planted without Fusarium inoculation. After emergence the sorghum plants were 

thinned to one seedling per hole. Apart from Striga, other weeds were hand weeded when 

observed. Watering was done using a drip irrigation system for 30 minutes 4 times per week 

in the evening during the first and the second month of the trial establishment. The number of 

irrigations was then reduced to two per week. Other agronomic practices were done following 

recommendation for the areas.  

 

3.3.4 Data collection and analysis 

 

Data on both sorghum and Striga parameters were collected. Data on sorghum included days 

to 50% flowering, panicle weight (g/main panicle), fresh biomass (g/plant), seed yield (g/plant) 

and weight of 100 seeds (g/100 seed). Striga vigor was recorded on a scale of 0 to 9 

(Haussmann et al., 2000b). Collected data were assembled in Excel and subjected to analysis 

of variance (ANOVA) using the split-plot procedure of GENSTAT 14th Edition (Payne et al., 

2011). Independent samples t-test was used to assess the significance difference between 

FOS coated and uncoated sorghum genotypes’ performances and Striga vigour. Treatment 

means were separated using the Fisher’s Least Significant Difference procedure at the 5% 

probability level.  
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3.4 Results and discussion 

 

3.4.1 The effect of FOS on sorghum and Striga hermonthica growth and 

development  

 

Table 3.2 summarises the analysis of variance when 60 sorghum genotypes were evaluated 

under Sh infestation with and without FOS application. Sorghum genotypes differed 

significantly in yield, yield components and Sh counts among treated and untreated sets. 

Treating sorghum seeds with FOS significantly affected both crop and Striga parameters 

(Table 3.2). 

 

Table 3.3 summarises the response of tested sorghum genotypes with and without FOS 

application under Striga hermonthica infestation. FOS markedly suppressed the establishment 

and vigour of the parasite such that the number of Striga plant and mean Striga vigour were 

significantly (p<0.05) reduced compared to the non-inoculated treatments. Likewise, sorghum 

grain yields were significantly higher from holes with FOS treatment, yielding 5 g plant-1, which 

was higher than the untreated control and the susceptible check. This concurs with Rebeka et 

al. (2013) who found the yields were higher when sorghum seeds were treated with FOS. Crop 

maturity for some varieties was shortened by 7 days and weight of fresh biomass per plant 

increased by 31 g after FOS treatment (Table 3.3).  

 
Table 3.2. Mean squares and significance tests of the effect of Striga hermonthica and FOS 

treatment on sorghum and Striga parameters.  
 

Sources of 
variation 

D.F 
Sorghum parameters Striga parameters 

DFL PW BM SYP HSW SV NS 

Replication 2 573.35 395.93 4104 1870.41 2.51 9.98 6.61 

FOS  1 190.14** 1880.19* 172416.00* 4601.57** 68.84** 528.73* 789.61* 

Error (a) 2 25.84 1569.51 106130 2762.96 5.8 7.3 26.56 

Variety 59 322.92*** 1550.32*** 127429.00*** 956.62*** 2.43*** 1.76 4.12* 

FOS x Variety 59 154.99* 422.6* 33053* 487.16** 0.72* 1.51 3.2** 

Error (b) 236 141.08 419.77 38665 511.77 0.55 1.33 2.88 

Total 719               

*, and ***= denote significant differences at 0.05, and 0.01 probability levels, respectively; D.F = degrees 
of freedom; DFL = days to flowering; PW = panicle weight; BM = sorghum biomass; SYP = seed yield 
per plant; HSW = hundred seed weight; SV= Striga vigour; NS = number of Striga plants and FOS = 
Fusarium oxysporum f.sp. strigae 

  

Treatment of sorghum seeds with FOS in Striga control provided various responses among 

sixty sorghum genotypes (Table 3.3). The following genotypes such as 3933, 3993, 4031, 
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4643, AS 433 and AS 435 flowered 5 days earlier than untreated control. Seed treatment 

reduced days to flowering in 27 sorghum varieties varying from 1 to 12 days. Delayed flowering 

was observed in 29 sorghum genotypes with a mean of 7 days and ranged from 1 to 22 days. 

Conversely, no treatment effect on days to flowering was observed in 4 sorghum genotypes 

such as 203, 2246, 4572 and AS 424 where both treated and untreated seeds flowered at the 

same time (Table 3.3). The influence of FOS on days to flowering has been reported by 

Rebeka et al. (2013) who indicated that FOS treated sorghum genotypes matured 13 days 

earlier than untreated controls.  

Mean biomass and panicle weight, and seed yields of sorghum genotypes differed significantly 

due to FOS. Mean biomass weight gain of 66.75 g plant-1 was recorded for 24 sorghum 

genotypes. Panicle weight of 8.67g plant-1 for 22 sorghum genotypes was recorded through 

FOS application. Mean hundred seed yield and seed yield plant-1 of 0.73 and 12.21 for 54 and 

38 sorghum genotypes were observed due to FOS treatment, respectively (Table 3.3). Genetic 

differences and incompatibly of the host to FOS could be the results of lower productivity 

observed in some of the tested sorghum genotypes. FOS is reportedly host specific showing 

maximum genetic diversity and improving growth to some sorghum genotypes while retarding 

growth in others (Ciotola et al., 2000).   

 

Treating sorghum seeds with FOS significantly (P< 0.01) reduced Striga vigour and number. 

FOS application significantly reduced Striga vigour and rated from 1 to 4 in all sorghum 

genotypes (Table 3.3). Mean reduction of at least two Striga plants per sorghum plant in FOS 

treated plants has been counted in 58 genotypes (Table 3.3). A reduced Striga vigour and 

number were observed in the majority of sorghum genotypes evaluated in the present study. 

This could have been attributed to both genetic resistance present in some genotypes and the 

ability of the FOS in infecting the parasite and retarding its subsequent growth and 

development. Wilting and weakening Striga in holes treated with FOS was observed. Overall, 

the present study identified the following genotypes: 1563, 3937, 3984, 3993, 4031, 4390, 

4567, 4643, 630, 654, 672, 675, AS 422, AS 424, AS 426, AS 429, AS 430, AS 433, AS 435 

and AS 436 (Table 3.3). These genotypes showed better compatibility to FOS, supporting no 

or few Striga, with relatively higher seed yield and biomass. 
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Table 3.3. Mean agronomic characters among 60 sorghum genotypes, and Striga 
parameters, with (+) and without (-) FOS application under Striga hermonthica infestation 
  

Variety 
DF (d) PW (g) BM (g) SYP (g) HSW (g) SV (1-9) NS 

+ - + - + - + - + - + - + - 

104 60 56 53.43 54.98 211 296 44.95 27.80 2.69 1.82 1 3 1 4 
105 61 52 34.68 20.34 94 63 17.36 16.22 2.25 1.32 1 2 1 3 
1563 54 60 24.93 24.53 154 328 34.23 29.08 1.95 1.87 1 2 2 3 
1580 61 51 47.19 50.40 217 288 39.55 26.87 2.80 2.19 1 3 2 4 
203 58 58 39.60 30.39 162 216 30.78 18.52 2.45 2.41 1 3 2 3 
207 50 53 20.01 19.26 250 120 19.61 11.32 2.42 1.81 1 3 1 4 
2246 65 65 17.86 26.63 160 118 28.02 37.54 2.27 1.29 1 4 3 5 
2255 58 59 30.68 31.00 183 254 30.34 20.34 1.98 1.80 1 3 1 4 
2357 63 67 39.14 57.60 303 433 49.35 57.19 3.04 2.17 1 2 2 3 
2379 65 70 19.36 20.85 299 225 29.25 24.36 2.79 1.63 1 3 2 5 
308 51 61 47.55 37.12 180 164 35.46 40.17 2.46 2.00 1 4 2 5 
3424 61 60 20.79 16.30 262 143 18.33 31.03 2.32 1.73 1 3 2 4 
3904 70 62 16.95 37.51 393 363 15.51 26.94 2.66 2.18 1 4 2 6 
3933 57 67 42.64 63.44 364 441 39.64 38.20 3.50 2.75 1 3 2 4 
3937 64 57 52.67 41.34 135 301 47.84 30.69 2.40 1.93 1 3 2 4 
3984 69 56 55.90 48.49 236 372 50.74 36.22 2.69 1.49 1 3 1 4 
3993 54 65 43.16 43.66 516 304 44.23 49.19 2.49 2.10 1 2 2 3 
4023 72 63 24.40 28.16 189 374 17.55 16.29 2.39 1.23 1 3 1 5 
4027 53 58 32.13 34.43 149 239 33.82 30.45 2.24 1.63 1 4 2 5 
4031 51 63 30.38 26.99 257 281 52.41 21.57 3.12 2.62 1 3 2 4 
4368 71 61 20.67 27.96 240 431 25.42 26.49 2.30 1.80 1 2 2 3 
4396 65 57 59.93 38.17 234 220 49.44 30.72 2.58 1.47 1 2 2 3 
4543 58 60 31.73 42.77 268 404 67.88 38.71 2.57 1.90 1 3 2 4 
4567 66 63 49.63 36.14 205 185 41.47 23.70 2.43 1.77 1 3 2 4 
4572 65 65 23.63 29.59 154 195 31.21 24.74 2.35 1.67 1 2 2 3 
4643 56 63 44.84 57.30 243 272 43.59 37.19 2.85 2.44 1 3 1 4 
476 61 69 41.35 37.18 428 202 20.23 30.85 2.73 2.49 1 2 1 2 
483 68 60 18.19 36.84 329 512 24.67 11.45 2.50 2.49 2 3 4 5 
501 67 55 29.31 49.64 353 550 23.52 23.69 2.69 1.84 1 3 2 4 
5275 64 69 35.50 23.85 456 340 29.83 20.57 3.12 2.71 1 4 1 5 
536 64 66 22.80 26.09 389 552 28.98 35.30 2.77 1.90 1 2 1 2 
550 62 68 30.01 34.55 328 449 27.11 25.14 2.37 2.00 1 3 2 4 
575 60 67 17.87 29.50 305 207 26.12 17.29 2.66 2.76 2 3 2 3 
594 69 64 22.87 22.42 277 184 38.78 13.92 2.98 2.31 1 2 1 3 
612 57 71 40.14 37.74 427 481 41.32 21.83 3.42 2.40 1 2 2 3 
630 63 57 61.86 38.09 278 301 41.57 24.52 3.50 2.27 1 4 1 5 
654 58 59 41.07 28.90 332 216 36.64 22.53 2.61 1.21 1 3 2 4 
672 69 67 56.23 60.37 242 248 46.02 46.91 2.81 1.89 1 3 2 5 
675 58 52 24.21 37.19 71 187 29.34 24.85 2.13 1.26 1 3 1 4 
714 71 62 32.19 34.98 163 224 35.09 23.67 2.27 1.70 1 4 2 5 
77 62 55 8.67 22.62 518 490 19.43 26.37 1.65 1.91 1 2 3 2 
AS421 62 54 22.06 22.77 242 132 29.32 23.31 2.70 1.76 1 4 2 5 
AS422 40 44 31.43 22.89 81 74 23.58 24.60 2.36 1.72 1 2 2 2 
AS423 54 51 49.43 45.40 274 255 36.59 43.79 3.97 3.42 1 2 1 3 
AS424 50 54 42.34 53.53 205 208 40.20 16.06 2.56 2.28 1 2 2 3 
AS425 65 53 13.35 48.29 111 278 15.22 49.51 3.19 2.69 1 5 2 6 
AS426 63 54 30.81 34.89 191 173 29.50 27.73 2.65 2.77 1 4 2 5 
AS427 64 54 38.34 57.70 136 297 32.67 40.43 3.27 1.87 1 3 1 3 
AS428 65 60 43.22 66.10 277 317 38.46 44.21 3.35 2.47 1 2 1 2 
AS429 54 56 41.12 43.09 218 190 36.46 35.47 3.87 2.43 1 3 2 4 
AS430 52 59 44.45 60.53 293 312 45.41 53.58 2.89 3.49 1 4 2 5 
AS431 62 64 33.11 27.76 152 449 54.45 20.23 2.51 3.28 1 4 1 4 
AS432 62 48 39.02 42.78 164 197 26.47 26.52 3.14 2.62 1 2 2 3 
AS433 55 63 19.46 33.10 97 81 22.29 32.94 2.83 1.66 1 4 1 5 
AS434 65 65 33.41 39.50 139 203 29.16 29.73 3.16 2.59 1 2 1 3 
AS435 51 56 29.00 52.41 146 230 23.14 31.19 3.55 2.43 1 2 2 3 
AS436 52 50 34.46 24.38 153 133 31.39 25.45 4.13 2.73 1 2 2 3 
AS71 52 56 11.86 23.38 94 75 15.06 14.03 2.12 2.71 1 3 2 4 
P40281 58 48 29.79 18.56 134 135 42.28 13.50 2.61 1.71 1 3 1 3 
PAN8816 57 54 17.09 21.47 111 119 26.36 8.55 2.58 1.72 1 2 2 3 

Significance * *** *** *** *** *** *** 
LSD 1.19 14.98 19.60 2.18 0.09 0.13 0.18 

*, **and ***= denote significant differences at 0.05, 0.01, and 0.001 probability levels, respectively; DF = days to 
flowering; PW = panicle weight; BM = biomass; SYP = seed yield per plant; HSW = hundred seed weight; MGD = 
Maximum germination distance; SV= Striga vigour; and NS = number of Striga 

 
Bold text denotes selected genotypes.   
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The impact of FOS application on sorghum seed yield and number of Sh plant per hole in the 

60 sorghum genotypes is displayed in Figure 3.1. Count and vigour of Sh on hole without FOS 

inoculation was higher than in the treated holes (Figure 3.1). The FOS treated sorghum 

genotypes yielded significantly more than untreated controls. These could be the result of 

fewer Sh infestations and weak Striga vigour on the FOS treated holes. More Sh counts and 

robust Striga vigour were observed in holes grown with sorghum seeds without FOS treatment. 

This finding is supported by Fen et al (2007) who reported the effectiveness of the fungus 

(FOS) in managing Striga by surrounding the rhizosphere of sorghum root and retarding Striga 

parasitism to the host plant. Rebeka (2007) reported the ability of the fungus to destroy Striga 

before it penetrates the roots of sorghum.   

 

A few of the treated sorghum genotypes (105, 3424, 207, 3904, 4023, 77, AS 71 and AS 425) 

had yield performances that were not substantially different from some of the untreated 

genotypes (203, 575, P 40281, and PAN 8816), despite FOS treatment (Figure 3.1). This could 

be explained by the genotypes being not compatible with FOS and thus there was less 

colonization of FOS in the rhizosphere and therefore high Sh populations. The ability of FOS 

to work efficiently with some sorghum genotypes has been reported in earlier studies. Ciotola 

et al (2000) reported strains of FOS to be cultivar specific showing considerable genetic 

diversity and varying in aggressiveness against Striga. With some sorghum genotypes (77, 

476, 536, AS 422 and AS 428) there was a low Sh continuum with plants not treated with the 

FOS, which may reflect varietal resistance against the parasite (Figure 3.1). This was 

confirmed by poor Striga vigour and number of Sh observed. 

 

The number of days taken to flowering has a direct relationship with days to maturity. Early 

flowering genotypes may escape harsh environmental conditions such as drought stress and 

heavy Striga infestation at late stages of the crop. The number of days to flowering and maturity 

were observed to be negatively correlated to the number of germinated Striga. Any technique 

that reduces the number of Striga per plant will accelerate flowering, and indirectly improves 

seed yield in sorghum. Overall, breeding ideal sorghum genotypes with improved seed yields 

and Striga resistance requires selection of host genotypes with relatively heavy panicles and 

high seed yield, few and weak Striga counts (Table 3.3).   
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Figure 3.1. Effects of Fusarium oxysporum f.sp. strigae (FOS) application on sorghum grain yield (g/plant) and Striga hermontica count per hole 
on 60 sorghum genotype. 
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3.4.2 The influence of FOS on sorghum growth and yield, and Striga asiatica 

management 

 

The ANOVA of 60 sorghum genotypes evaluated under Sa infestation, with and without F. 

oxysporum application, is presented in Table 3.4. Sorghum genotypes differed significantly 

(p<0.001) in yield, yield components and Sa counts, under FOS treated and untreated 

conditions. The number of emerged Striga counts and mean Striga vigour were significantly 

(p<0.05) reduced as the result of inoculation with FOS (Table 3.5). Maturity of 31 sorghum 

genotypes was shortened by 6 days and biomass weight per plant increased by 69 g due to 

FOS inoculation when compared to the untreated plants (Table 3.5). This suggests that FOS 

adversely affected the parasite, improving sorghum growth and development, and improving 

seed yields (Table 3.5). Sorghum seed yields were significantly higher from holes planted to 

FOS treated seeds, providing seed yields of 15.13 to 64.85 g plant-1 .The yield harvested from 

untreated plants were relatively low, varying from 11.82 to 40.60 g plant-1. Previously Rebeka 

et al. (2013) reported that sorghum yields from Sh infested plots were higher when seeds were 

treated with FOS than in untreated plots. The lower seed yield and increased number of Striga 

associated with some sorghum varieties were due to incompatibility of the genotypes with FOS 

(Ciotola et al. (2000).   

 
Table 3.4. Mean square and significance tests of sorghum and Striga asiatica parameters 
when tested with and without FOS application. 
 

Sources of 
variation 

D.F 
Sorghum parameters Striga parameters 

DFL PW BM SYP HSW SV NS 

Replication 2 302.49 426.58 47573.2 4451.57 0.2576 40.58 80 

FOS 1 116.81* 806.05* 289799.6* 10931.32** 120.42* 288.8 464.01** 

Error (a) 2 350.8 908.37 61348.9 1997.5 6.18 45.34 58.94 

Variety 59 451.01*** 1094.58*** 130014.70*** 637.68** 2.40*** 1.11 1.94 

FOS x Variety 59 161.40* 514.73* 30531.2 370.47* 0.72* 1.38 2.67* 

Error (b) 236 117.47 518.19 24780.9 385.5 0.65 1.16 2.44 

Total 719               

*, **and ***= significantly different at 0.05, 0.01 and 0.001 probability levels, respectively; DF = degrees 
of freedom; DFL = days to flowering; PW = panicle weight; BM = biomass; SYP = seed yield per plant; 
HSW = hundred seed weight; SV= Striga vigour and NS = number of Striga 
 

Growing of sorghum seeds treated with FOS in the holes treated resulted in various responses 

among 60 sorghum genotypes tested (Table 3.5). Thirty one genotypes flowered 6 days earlier 

than the untreated control (Table 3.5). Delayed flowering was observed in 29 sorghum 

genotypes with a mean of 5 days. The influence of FOS on days to flowering in some sorghum 

genotypes was reported by Rebeka et al. (2013), who found that, some treated sorghum 

genotypes matured 13 days earlier than untreated genotypes. Compared to untreated seeds, 
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FOS dressing improved mean sorghum plant and panicle length by 29 cm for 20 genotypes 

and 2.9 cm for 29 genotypes, respectively (data not shown). The study recorded decreased 

mean plant and panicle lengths of 42 cm for 40 genotypes and 2.9 cm for 31 genotypes, 

respectively (Table 3.5). 

 

Mean biomass, panicle, and grain yields responses of sorghum genotypes differed significantly 

with FOS treatment. The mean biomass was 67 g plant-1 recorded in 17 sorghum genotypes. 

Increased panicle weights by 9 g plant-1 were observed for 26 sorghum genotypes due to FOS 

application. The FOS treatment caused higher mean hundred seed weight and seed yields 

plant-1 of 0.84 g and 11 g for 59 and 48 sorghum genotypes, respectively.  

 

Striga vigour and number were considerably reduced due to FOS application. Striga vigour 

was rated from 1 to 3 in all sorghum genotypes (Table 3.5). About 52 genotypes had two Striga 

plants per sorghum plant following FOS treatment. Reduction in Striga vigour and number were 

recorded for the majority of the sorghum genotypes due to both genetic resistance present in 

some genotypes and the ability of FOS to reduce the effect of the parasite. Overall, the present 

study identified the genotypes 104, 105, 1563, 1580, 3424, 3933, 3937, 3984, 3993, 4031, 

4390, 4567, 4643, 630, 654, 672, 675, AS 422, AS 424, AS 426, AS 429, AS 430, AS 433, AS 

435 and AS 436 showing good compatibility to FOS, supporting no or few Sa plants and 

improved seed yields and biomass (Table 3.5). 
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Table 3.5. Mean values of sorghum agronomic characters among 60 sorghum genotypes 
with (+) and without (-) FOS application under Striga asiatica infestation. 
 

Variety 
DF (d) PW (g) BM (g) SYP (g) HSW (g) SV (1-9) NS 

+ - + - + - + - + - + - + - 

104 62.83 52.67 31.97 38.06 172 200 28.08 22.46 2.62 1.86 1.17 1.67 2 3 
105 56.00 53.00 38.91 15.86 231 78 33.44 13.07 2.76 2.13 1.17 2.67 1 3 
1563 55.83 53.83 32.52 23.78 186 145 35.40 11.82 3.63 0.94 1.17 3.17 2 4 
1580 57.00 52.17 47.52 42.15 312 332 39.94 27.18 3.26 2.75 1.00 1.67 2 2 
203 52.67 52.33 24.63 26.48 125 136 23.28 22.03 2.35 1.80 1.17 1.83 1 2 
207 56.83 49.67 30.89 18.29 91 155 20.86 20.34 2.15 1.27 1.33 2.00 2 2 
2246 56.67 66.50 16.91 24.90 76 203 25.09 25.84 2.28 1.27 0.83 3.00 1 4 
2255 60.33 54.33 30.14 27.51 218 268 27.79 26.10 2.05 1.85 1.33 2.50 2 3 
2357 63.67 74.67 43.41 40.69 399 342 42.86 26.61 2.87 1.87 1.33 3.50 2 4 
2379 65.00 65.83 29.18 36.08 305 501 33.49 26.29 2.90 2.18 1.33 2.17 2 3 
308 52.83 54.67 44.60 39.69 128 183 30.28 31.69 2.40 1.80 1.17 1.83 2 2 
3424 62.00 64.00 27.12 21.69 284 250 24.89 22.17 2.40 1.52 1.00 2.17 2 3 
3904 64.50 58.67 27.53 30.90 397 328 35.29 21.46 2.79 1.98 1.00 3.83 2 5 
3933 67.33 65.83 31.88 40.69 215 313 16.51 26.67 3.08 2.85 1.17 1.83 2 3 
3937 62.83 62.83 22.01 40.12 85 263 28.78 28.16 2.99 1.88 1.00 3.00 2 4 
3984 62.00 68.33 29.74 59.93 238 286 45.03 37.97 3.10 1.81 1.00 3.00 1 4 
3993 57.83 63.33 54.89 60.73 318 292 47.48 40.40 2.83 1.63 1.00 2.33 1 3 
4023 60.67 70.17 22.86 35.19 337 241 36.45 21.23 2.29 1.31 1.17 2.17 2 4 
4027 59.00 54.50 33.69 43.04 153 169 26.01 32.97 1.90 1.68 1.17 3.17 2 5 
4031 61.00 59.50 37.43 31.89 240 244 30.08 23.92 2.96 2.57 1.17 2.33 2 4 
4368 66.67 72.50 31.74 35.67 457 535 57.69 20.41 3.11 2.22 1.00 2.00 2 3 
4396 54.50 59.33 25.98 33.26 208 246 26.49 21.54 2.77 1.53 1.17 2.17 2 3 
4543 69.00 66.67 48.75 51.27 369 356 51.33 36.57 2.66 1.95 1.00 2.17 2 3 
4567 55.00 61.00 28.75 55.89 179 304 36.16 36.12 2.32 2.12 1.17 2.17 2 3 
4572 63.83 69.17 43.73 23.60 128 163 21.85 19.13 2.31 1.60 1.33 3.00 2 4 
4643 57.17 54.17 68.96 44.61 295 200 55.89 31.29 2.84 1.78 1.33 2.00 2 3 
476 68.17 71.17 30.74 35.24 171 245 44.01 17.81 2.78 1.88 1.17 2.50 2 4 
483 58.67 69.33 18.87 27.87 295 550 15.86 22.78 2.56 1.32 1.17 2.00 2 3 
501 65.00 59.00 25.16 62.47 342 398 24.04 20.15 2.84 2.02 1.17 1.67 2 2 
5275 67.00 67.50 25.09 28.61 517 461 23.51 21.08 2.76 2.21 1.00 2.00 1 3 
536 64.67 71.33 16.68 44.17 354 629 21.06 24.22 3.21 2.15 1.00 2.50 2 3 
550 50.50 63.33 31.85 37.36 277 345 25.74 25.19 2.83 1.99 1.17 1.33 2 2 
575 58.83 71.67 41.66 31.25 188 520 26.99 16.87 2.73 2.39 1.17 2.83 2 4 
594 55.67 60.50 19.97 30.64 323 333 22.71 17.10 2.66 1.87 1.17 1.83 3 2 
612 59.83 68.83 38.67 37.79 341 403 30.08 29.14 3.85 2.75 1.00 3.00 2 5 
630 58.17 69.17 36.13 44.44 186 222 29.97 18.39 3.13 2.39 1.00 2.17 1 3 
654 55.50 54.67 35.36 24.20 145 202 31.44 27.01 2.73 1.60 1.17 2.33 2 3 
672 60.67 68.50 38.30 64.23 246 300 32.77 40.60 2.82 1.73 1.00 3.67 1 5 
675 55.50 51.67 35.50 33.10 137 184 23.00 30.51 2.48 1.72 1.00 2.33 2 3 
714 63.83 71.00 28.25 34.76 232 277 27.89 24.77 2.52 1.74 1.00 1.83 2 3 
77 61.83 65.67 31.84 20.58 337 641 24.33 18.61 1.84 1.72 1.33 2.83 2 4 
AS421 53.83 53.50 34.09 24.25 224 192 32.76 24.69 2.45 1.90 1.00 1.50 2 2 
AS422 39.83 31.17 25.63 22.91 51 89 21.47 13.23 2.97 1.81 1.00 2.50 1 4 
AS423 57.50 57.17 31.22 43.56 269 346 39.02 30.73 3.54 3.23 1.17 2.33 2 3 
AS424 54.83 49.83 33.87 36.18 119 274 32.08 24.22 3.74 2.78 1.17 2.83 1 4 
AS425 53.33 52.17 30.02 32.25 287 136 58.46 22.30 3.34 1.47 1.00 2.17 2 3 
AS426 66.50 49.67 33.02 26.55 215 165 29.55 21.08 3.19 2.48 2.67 2.00 2 2 
AS427 62.00 48.50 37.29 13.02 135 150 34.71 12.17 3.15 2.80 1.17 2.17 2 3 
AS428 62.50 69.83 34.77 50.13 248 342 28.86 29.33 3.37 2.78 1.00 1.67 1 2 
AS429 50.50 54.00 27.66 46.64 191 323 43.04 27.31 3.96 2.47 1.17 2.33 2 4 
AS430 64.33 59.00 62.51 59.44 353 275 64.85 27.14 3.07 2.57 1.17 2.33 1 3 
AS431 68.67 49.33 20.76 26.05 142 196 16.81 25.94 3.28 1.82 1.00 3.00 2 4 
AS432 49.50 53.67 40.15 35.90 195 257 36.98 31.79 3.92 3.27 1.00 2.17 2 3 
AS433 55.67 53.00 38.66 28.10 271 165 43.25 20.37 2.67 2.35 1.00 2.33 2 3 
AS434 60.67 63.50 34.88 52.93 225 361 33.40 28.18 2.81 3.29 1.33 2.67 2 3 
AS435 58.67 58.83 11.42 14.66 310 258 21.26 14.92 3.19 2.53 0.83 3.67 1 4 
AS436 52.50 68.67 35.26 31.06 130 140 36.97 31.55 3.31 2.07 1.33 1.83 2 2 
AS71 53.50 60.00 17.29 8.80 144 79 28.94 32.50 2.18 2.10 1.00 4.00 1 5 
P40281 64.17 53.83 41.23 24.17 176 140 51.51 25.11 3.81 1.92 1.00 2.67 1 3 
PAN8816 55.50 50.50 28.43 29.61 99 101 15.13 15.13 2.18 1.18 1.00 1.83 2 3 

Significance *** *** *** *** *** ** *** 
LSD 8.195 16.47 113.7 14.408 0.7325 1.0318 1.346 

*, **and ***= significantly different at 0.05, 0.01, and 0.001 probability levels, respectively; DF = days to 
flowering; PW = panicle weight; BM = biomass; SYP = seed yield per plant; HSW = hundred seed weight; 
SV = Striga vigour and NS = number of Striga 

Bold text denotes selected genotypes.  
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The Sa count on holes without FOS inoculation was higher than in the FOS treated holes 

(Figure 3.2). The impact of FOS application on sorghum grain yield and number of Sa plant 

per hole is depicted in Figure 3.2. Low Sa counts were observed for several sorghum 

genotypes with FOS application. The following genotypes 4396, AS431, 2357 and P40281, 

were relatively good seed yielders with FOS compatibility. The FOS treated sorghum 

genotypes yielded significantly higher (15.13 to 64.85 g plant-1) than the untreated genotypes 

(11.82 to 40.6 g per plant-1). The following genotypes:  3904, 4027. 612, 672, and AS 71, 

displayed higher numbers of Sa and robust Striga vigour in holes without FOS treatment. Fen 

et al. (2007) reported the effectiveness of FOS in supressing Striga infestation. The fungus 

surrounds the rhizosphere of sorghum root, subsequently retarding the efficacy of Striga 

parasitism to the host plant. Ciotola et al. (2000) pointed out that FOS is a highly host specific 

fungus with high levels of genetic diversity and varied levels of aggressiveness against Striga.  
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Figure 3.2. Effects of Fusarium oxysporum f.sp. strigae (FOS) application on sorghum grain yield (g/plant) and Striga asiatica count per hole on 

60 sorghum genotypes. 
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3.5 Conclusions 

 

The present study found a significant reduction of Striga count by 1 to 4 per sorghum plant due 

to a sorghum seed dressing with the bio-agent, F. oxysporum f.sp. strigae (FOS). Ten sorghum 

genotypes were identified with significant Striga resistance, while 15 genotypes had good seed 

yield and agronomic traits, when the genotypes were grown under controlled conditions with 

application of the bio-agent. The following sorghum genotypes: 3937, 3993, 630, 654, 672, AS 

424, AS 426, AS 429, AS 430 and AS 436 expressed  resistance to both S. hermonthica and 

S. asiatica. The FOS strain used in the current study was also effective in improving sorghum 

yield and yield components, simultaneously reducing the number and vigour of both S. 

hermonthica and S. asiatica. The present study demonstrated the potential of an integrated 

Striga management strategy that incorporates host plant resistance and biological control 

using FOS as a means to control S. hermonthica and S. asiatica. Further evaluations of 

selected sorghum genotypes and their families in the semi-arid ago-ecologies of Tanzania 

infested with Striga species with and without FOS application are required to develop sorghum 

varieties with FOS compatibility, Striga resistance and enhanced yield levels. In the next 

chapter, the combining ability of yield and yield components among FOS-compatible and 

Striga-resistant sorghum genotypes was investigated to find out promising families and parents 

for further breeding. 
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CHAPTER FOUR 

Combining ability of yield and yield components among FOS-

compatible and Striga-resistant sorghum genotypes 

 

4.1 Abstract 

 

Striga hermonthica (Sh) and S. asiatica (Sa) infestation is the leading yield limiting factor of 

sorghum [Sorghum biocolor (L.) Moench] production in the semi-arid areas of Tanzania. The 

use of Striga resistant sorghum varieties compatible with Fusarium oxysporum f.sp. strigae 

(FOS), a biocontrol agent of Striga, is a novel strategy to control the weed and to enhance 

sorghum production and productivity. The objective of this study was to identify promising 

sorghum parents and crosses with FOS-compatibility and Striga resistance displaying high 

combining ability for grain yield and yield components for Integrated Striga Management (ISM). 

Hundred sorghum families were developed through controlled crosses using the North 

Carolina Design II involving 10 female parents selected for their FOS compatibility and high 

agronomic performances, and 10 male parents possessing Striga resistance. The F1s and 

their parents were field evaluated at three locations in Tanzania known for their severe Striga 

infestation using a lattice experimental design with two replications. Significant (p<0.05) 

general combining ability (GCA) and specific combining ability (SCA) effects were recorded 

among the tested sorghum genotypes at both sites. The following genotypes: 675 and 3424 

(female parents), AS426 and AS430 (male parents) were identified as the best general 

combiners for yield and yield components. Genotypes 672, AS436 and AS429 (male parents) 

and 3984 (female parents) were the best general combiners for Striga resistance, displaying 

smaller GCA effects in a desirable direction. The following promising families: 675 x 654, 3424 

x 3933 and 4567 x AS426 were selected for further breeding because they displayed larger 

SCA effects for grain yield. Crosses selected with small SCA effects for Striga counts were 

4567 x AS424 and 3984 x 672. The selected sorghum parents and crosses are useful genetic 

resources for breeding, and for the implementation of ISM in sorghum.  

 

Keywords: biocontrol Striga control, combining ability, Fusarium oxysporum f.sp.strigae, 

resistance breeding, sorghum 
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4.2 Introduction 

 

Striga infestation is one of the main challenges affecting sorghum production in sub-Saharan 

Africa (Watson et al., 2007). Striga hermonthica [Del.] Benth and S. asiatica [L.] Kuntze, are 

the two main obligate parasitic weeds that inflict severe yield losses reaching up to 100% in 

susceptible sorghum varieties (Doggett, 1953; Lagoke et al., 1991; Riches, 2003). However, 

the level of yield losses depends on the level of infestation, climatic conditions and control 

measures (Tesso et al., 2007). Both Striga hermonthica and S. asiatica parasitize several 

cereal crops including maize, sorghum, millet, and upland rice across extensive agro-

ecological areas in sub-Saharan African countries including Tanzania. Poor soil fertility, use of 

a single method in Striga management and cereal mono-cropping are among the major causes 

of Striga perpetuation, and high yield losses in sorghum (Parker, 1991). Striga is highly 

productive, with each plant plant producing up to 5,000 to 84,000 seeds that remain viable in 

the soil for up to 20 years (van Mourik et al., 2008). Striga hermonthica (Sh) and S. asiatica 

(Sa) infestation has reached endemic proportions in the semi-arid areas of the Lake, Western, 

and Central Zones of Tanzania where the parasite is a serious threat to sorghum production. 

In these areas farmers are often compelled to abandon their farm lands to Striga, and switch 

to cultivation of non-host crop species. In some localities farmers grow unimproved sorghum 

landraces that are less susceptible to Striga (Mrema et al., 2016) 

 

The use of resistant varieties, biological agents, cultural practices and chemical control 

methods are important strategies to manage Striga infestation (Kenga et al., 2004). These 

strategies promote growth and development, and reduce germination and development of the 

juvenile Striga plants (Kenga et al., 2004). Combined use of various Striga management 

options, and understanding the biological and metabolic relationships between the host and 

parasite are important pre-requisites for the implementation of Integrated Striga Management 

(ISM) (Reda and Verkleij, 2004). The development use of resistant varieties is the most 

environmentally friendly and economical Striga management option for millions of smallholder 

farmers in sub-Saharan Africa who depend on sorghum production for their livelihoods.  

 

Biological control involves the use of microbes to control Striga and can be applied to 

smallholder farming systems (Rebeka et al., 2013). The method is more affordable and 

environmentally friendly than chemical control practices (Abbasher et al., 1998). Changes in 

biotic and abiotic conditions due to the presence of microbes surrounding the rhizosphere 

have been reported to retard the efficacy of Striga parasitism of the host plant (Beed et al., 

2007) and may stimulate host growth, development and productivity (Rebeka et al., 2013). 

Different microbial communities have been reported to have different impacts on Striga and 
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the host (Beed et al., 2007). Pathogenic isolates of Fusarium oxysporum f.sp. strigae (here 

after referred to as FOS) are reported to be effective bio-herbicides to manage Striga 

infestation in sorghum, particularly when the method is integrated with other control practices 

(Rebeka et al., 2013). The biocontrol fungus destroy Striga before it penetrates the roots of 

sorghum. FOS is reported to be host specific, its inoculum can be mass-produced easily and 

it shows high levels of genetic diversity (Ciotola et al., 2000). When sorghum seeds are treated 

with FOS, the fungus grows well in the rhizosphere of the sorghum plants. It infects and inhibits 

growth and development of Striga, stopping it from parasitizing the roots of the host plant 

(Rebeka, 2007).  

 

One of the main goal of sorghum breeding program is to develop sorghum genotypes that are 

resistant or tolerant to Striga with farmers’ trait of preferrence and compatible with FOS 

(Shayonowako et al., 2017). This requires an understanding of the genetics of sorghum 

parents and their crosses in order to devise an effective selection procedure. Crosses between 

parents from genetically unrelated populations or different heterotic groups may result in 

suitable genetic recombinants and superior transgressive segregants (Makanda et al., 2009; 

Konate et al., 2017). Equally important is the nature of gene action affecting the inheritance 

of quantitative and qualitative traits of economic importance.  

 

Both the general combining ability (GCA) effects of parents and specific combining ability 

(SCA) effects of their crosses are important in conditioning economic traits (Stoskopf, 1993). 

General combining ability represents mainly the additive and additive x additive type of genetic 

variance as reported by Kenga et al. (2004), while SCA is mainly due to genes with dominance 

and/or epistatic effects. Combining ability tests based on mating designs such as the North 

Carolina Design II (NCD II) and diallel methods, are useful in selecting suitable parents and 

transgressive segregants of given crosses to use in breeding programmes and to determine 

the subsequent selection procedure to follow.  

 

In an attempt to select Striga resistant and FOS compatible sorghum lines, promising 

genotypes were identified through controlled evaluations (Chapter 3). Some of the selected 

landraces were relatively poor yielders but adapted to the drier regions of Tanzania and 

possessed farmers-preferred traits. In contrast, some of the introduced sorghum genotypes 

had better yield potential and FOS compatibility, but they lacked farmers preferred traits. 

Previous studies employed several genetic parameters of sorghum genotypes under Striga 

infestation. The study reported the influence of additive and no-additive gene actions on the 

expression of Striga resistance, as well as the differential expression of heterosis and 

heritability of economictraits among varied populations (Mutengwa et al., 1999; Haussmann et 
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al., 2001). However, there is limited work that elucidate the genetic effect of Striga resistance 

in sorghum when integrating FOS as a biocontrol method of the parasite. This knowledge 

would serve as a selection guide for both Striga resistance and FOS compatibility to enhence 

integrated Striga management. Therefore, the objective of this study was to identify the nature 

of gene action controlling grain yield and yield components and to select promising sorghum 

crosses with FOS-compatibility and Striga resistance displaying high combining ability for 

these traits under Striga infestation with and without FOS application. The hypothesis being 

tested was that additive genetic effect could be important in controlling Striga resistance and 

that the new families could be selected with farmers preferred traits.  

 

4.3 Materials and methods 

 

4.3.1 Plant materials and crosses 

 

Hundred single cross hybrids developed using 10 female and 10 male sorghum lines and two 

checks were evaluated in the present study. Crosses were performed using the North Carolina 

Design II. A description of the 20 varieties used to generate the crosses is shown in Table 4.1. 

The genotypes were selected from previous evaluation studies (Chapter 3). These materials 

had different levels of reaction to both S. hermonthica and S. asiatica. Resistant lines exhibited 

less Striga counts, while tolerant lines yielded well under heavy Striga infestation compared to 

their comparative control. Other genotypes were FOS compatible, manifesting FOS 

proliferation and reduced Striga count under FOS treatment (Chapter 3).  Further, the selected 

lines had most of the farmers’ preferred traits in the semi-arid areas of Tanzania.  
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Table 4.1. List and descriptions of parental sorghum genotypes used in crosses  
 

Entry Name  Source Attributes Entry Name Source Attributes 

1 4567 Magu/Tanzania 
High yielding, medium maturing and 
FOS compatible 

11 AS 436  ICRISAT/India 
Early maturing, medium  yielding and 
Striga resistant  

2 675 Tarime/Tanzania Early maturing and FOS compatible 12 AS 426 ACCI/South Africa 
Medium maturing and yielding, and 
Striga tolerant 

3 1563 Bukoba/Tanzania 
FOS compatible, early maturing and 
high yielding 

13 672 Musoma Rural/Tanzania Medium maturing and Striga resistant  

4 AS 435 ACCI/South Africa High yielding and late maturing  14 3933 Serengeti/Tanzania Early flowering and Striga tolerant 

5 4643 Misungwi/Tanzania FOS compatible and early maturing 15 AS 430 ACCI/South Africa Early maturing and Stiga tolerant 

6 104 Kishapu/Tanzania 
Striga susceptible, early maturing and 
high yielding 

16 AS 429 ACCI 
Early maturing, Striga resistant, and 
medium yielding 

7 4031 Ukerewe/Tanzania Early flowering and high yielding 17 3937 Serengeti/Tanzania Striga resistant  

8 3424 Igunga/Tanzania FOS compatible and medium maturity 18 630 Serengeti/Tanzania Striga resistant  
9 AS 422 ACCI/South Africa High yielding and early maturing 19 654 Bunda/Tanzania Striga resistant  

10 3984 Musoma/Tanzania 
FOS compatible, high yielding and late 
maturing 

20 AS 424   SARC/Ethiopia Early maturing and Striga tolerant  

Entries 1 to 10 were used as female parents and 11 to 20 as male parents.  

SARC = Sirinka Agricultural Research Centre in Ethiopia; ICRISAT = International Crop Research Institute for the Semi-arid Tropics/India and ACCI=African 
Centre for Crop Improvement 

 



76 
 

4.3.2 Bio-control agent and inoculation preparation 

 

A pathogenic strain of F. oxysporum f.sp. strigae (FOS) originally isolated from sorghum fields 

infested with Striga in north eastern lowlands of Ethiopia was used (Rebeka et al., 2013). The 

strain was positively diagnosed at Humboldt University’s Phytomedicine Division and isolates 

were maintained at -40oC on Special Nutrient Agar (SNA). Previous reports confirmed the 

pathogenicity and host specificity of the FOS isolate to Striga (Rebeka et al., 2013; Mrema et 

al., 2017). Cultures were grown on potato dextrose agar (PDA) and pure chlamydospores were 

extracted and mass produced at Plant Health Products (pty) Ltd, South Africa and stored at 

the University of KwaZulu-Natal’s Plant Pathology Division. About 500 seeds of each sorghum 

genotype were surface sterilized using 70% ethanol and soaked in 1% sodium hypochlorite 

solution for 30min. The seed were dried under a laminar airflow. Dry seed were then coated 

with FOS using the procedure described by Elzein et al. (2006), involving film coating of each 

seed with a mixture of 40% Arabic gum and fresh spores and dried under a laminar airflow.  

 

4.3.3 Experimental sites 

 

One hundred sorghum hybrids and two standard check varieties were evaluated at three 

locations namely: Igunga, Misungwi and Kishapu of Tabora, Mwanza and Shinyanga Regions, 

respectively (Table 4.2). Evaluations were conducted during the main cropping season of 

December 2015 to April 2016. Field evaluations were conducted with and without FOS 

application. The study sites represent the semi-arid areas of Tanzania and known for their 

sorghum production and Striga infestation both by S. hermonthica and S. asiatica. However S. 

hermonthica (Sh) was the dominant species. An introduced sorghum variety ‘Macia’ widely 

grown in Tanzania and AS436 from ICRISAT India were included as susceptible and Striga, 

which is resistant checks, respectively. 

 

Table 4.2. Descriptions of the three locations used for evaluation of crosses and standard 
checks  
 
Location/site 
name Region 

Latitude 
(0South) 

Longitude 
(0East) 

Altitude 
(m) 

Rainfall 
(mm) 

Temp 
(Min, 0C) 

Temp  
(Max, 0C) 

Mbutu Tabora 4.23 33.91 1060 134 17.50 29 

Mwanangwa Mwanza 2.96 33.16 1176 235 19.33 28 

Isoso Shinyanga 3.62 33.84 1126 234 19.33 28 

Min=minimum; Max=maximum 
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4.3.4 Experimental design and trial establishment 

 

The crosses were field evaluated using a 10 x 10 alpha lattice experimental design, running 

separately for two FOS treatments, with two replications at each location using three row plots. 

Each row was 0.9m wide with total plot width of 2.7m and length of 5.1m. Each replication 

consisted of the 100 hybrids randomly allocated across 10 incomplete blocks, each with 10 

genotypes. However, the two parental genotypes were established in separated plots with two 

replications as comparative controls. The FOS treatments involved seeds treated with FOS, 

and a set planted without FOS inoculation. To ensure even distribution of Striga population, 

artificial Striga infestation was done according to Berner et al. (1997) by using a scoop of 1:99 

ratio of seed and sand mixture, respectively. This ensured delivery of about 5000 viable Striga 

seeds. This was done after preconditioning the seeds by drenching the mixture in water and 

incubating it for a week at room temperature. Sorghum genotypes were planted with inter-row 

spacing of 90 cm and intra-row spacing of 30 cm. Two seeds per hill were sown and later 

thinned to one seedling per hill, two weeks after planting, to have a plant density of 37,037 ha-

1. Also, 60 kgha-1 of NPK 20-10-5 fertiliser was applied three weeks after sowing. The crops 

were raised under rain-fed conditions. Apart from Striga, other weeds were hand weeded 

immediately when observed. To control stem borer, Attakan C344SE, a systemic insecticide, 

was mixed with water at a ratio of 15 ml of Attakan C344SE to 20 liters of water, and sprayed 

to the crop at a rate of 1 liter per 50 m2. During seed set and grain filling stages fungal diseases 

were controlled through two scheduled applications of Hexaconazole 5 EC, a systemic 

fungicide, at a rate of 30 ml per 20 litres of water. Bird scares were implanted at the middle 

and corner sections of each field to prevent bird damage. 

  

4.3.5 Data collection 

 

Data on sorghum and Striga parameters were collected. Seven sorghum plants from the 

middle rows on each plot were tagged for data collection. Data on sorghum parameters 

included days to 50% flowering (expressed in days [d]), plant height (expressed in cm) 

measured at 50% flowering, seed yield (g/plant) and weight of 100 seeds (g/100 seed). A 

quadrant of 0.09 m2 was placed around sample plants and the number of Striga plants in the 

quadrant were counted and recorded as Striga counts.  
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4.3.6 Data analysis 

 

Data collected were analysed using an alpha lattice procedure of the SAS (SAS, 2011). 

Combined analysis of variance (ANOVA) was performed following tests for normality of the 

data and homogeneity of variances. Genotypes are treated as fixed factors, while location, 

replication and incomplete blocks were treated as random factors.  

 

Estimation of combining ability effects 

 

Both the GCA and SCA effects were estimated from parental varieties and crosses, 

respectively. The standard checks were excluded while analysing combining abilities. The 

GCA effects of females and males, the SCA effect of crosses, and their interactions with the 

environment were determined following the NCD II mating design and using the following 

model: Yijk = μ + gi + gj + Sij +ek + (ge)ik +(ge)jk +(se)ijk, where Yijk = the performance of the 

hybrid developed with ith male and jth female, in the kth location, μ = the overall mean; gi = 

the effect of the ith male; gj = the effect of the jth female; sij = the interaction of the ith male 

with the jth female; ek = the effect of the kth environment; (ge)ik = the interaction of the gi and 

ek; (ge)jk = the interaction of the gj and ek; (se)ijk = the interaction of sij and ek. 

 

According to Hallauer and Miranda (1988), male (M) and female (F) main effects represent two 

independent estimates of GCA, which are designated GCAM and GCAF, respectively. The F x 

M component is equivalent to the SCA effect. The significance of GCA mean squares of males 

[GCA (M)] and that of the females [GCA (F)] in each location was determined using the M x F 

interaction as the error term while the significance of the M x F interaction (SCA) was 

determined using the error mean square as error term. Since the combining ability mean 

squares were calculated based on cross means of each genotype from each location, error 

mean squares calculated for crosses above were used to test the significance of GCA and 

SCA interactions with location (Singh and Chaudary, 1985). The proportional contributions of 

Males (GCAM), Females (GCAF), and their interaction (SCA MxF) to the sum of squares of 

crosses were calculated as the ratio between the sum of squares of each component and the 

cross sum of squares (Singh and Chaudary, 1985). The GCA effects of females and males 

were calculated as a deviation of the male and female mean from all hybrids mean as per 

Singh and Chaudary (1985). The SCA effects were calculated as a deviation of each cross 

mean from all hybrid means adjusted for corresponding GCA effects of parents, as suggested 

by Singh and Chaudary (1985). 
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Components of variance was partitioned from the mean square as follows: error variance (σw
2) 

= total variance (δ2
P) - covariance of full sibs (CovFS) = ½ δ2

A+ ¾ δ2
D + δ2

EW; female and male 

variance σ2
FM = covFS – 2covariance of half sibs (covHS) =

 
¼ δ2

D; male variance σ2
m = female 

variance σ2
F = Cov(HS)

 
= ¼ δ2

A; total variance (δ2
P) = σ2

W + σ2
FM + [(σ2

F + σ2
M)/2]; male additive 

variance (δ2
AM) = 4σ2

M; female additive variance (δ2
AF) = 4σ2

F; dominance variance (δ2
D) = 

4σ2
FM, environmental variance (δ2

EW) = σ2
w – (½δ2

A + ¾ δ2
D); heritability h2 = 2(σ2

F + σ2
M)/σ2

P = 

δ2
A/δ2

P; heritability in male (hM
2) = 4σ2

M/σ2
P = δ2

AM/δ2
P; and heritability in female (hF

2) = 4σ2
F/σ2

P 

= δ2
AF/δ2

P (Muhammad et al., 2010).  

 

4.4 Results and discussion 

  

4.4.1 Combined analysis of variance 

 

The analysis of variance across location showed highly significant (P<0.01) differences among 

the crosses for both sorghum and Striga parameters (data not shown). The results from 

combined analyses of variance for grain yield, yield related traits and Striga count are 

presented in Table 4.3. Highly significant differences (P<0.01) were detected among females, 

males, and females x males interaction with and without FOS application. These sources of 

variations had significant interactions with the testing sites for grain yield, hundred seed weight 

and Striga count. There were also highly significant differences (P<0.01) among females, 

males and females x males x environment interaction effects on plant height and days to 

flowering (Table 4.3).  

 

The significance of the mean squares of the GCA effects of females and males and the SCA 

effects of F x M indicated the importance of both additive and non-additive gene effects, 

respectively. This concurs with the findings reported by Hallauer and Miranda (1988). The GCA 

sum of squares of the interaction effects of females and males were greater than the GCA sum 

of squares of the main effects of females and males for all traits respectively, indicating that 

non-additive gene effects contributed more favourable genes towards high values for these 

traits. Significant mean squares (P<0.01) of environments for the traits revealed that the 

responses of the genotypes across the testing environments were different. The significance 

of mean squares due to genotypes (P<0.01) indicated the existence of genetic variability for 

breeding. 
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Table 4.3. Mean squares and significant tests of yield and yield related traits and Striga count of 100 sorghum hybrids derived from 10 x 
10 NCDII and evaluated with (+) and without (-)  Fusarium oxysporum application in three environments in Tanzania 
 

  
Source DF 

Sorghum parameters 

NS DFL PH  SYP  HSW  

+ - + - + - + - + - 

Env 2 1729.13** 2454.07** 116933.92** 38545.10** 2027.53** 1019.46** 14.60** 21.35** 35290.51** 84653.56** 

Rep(Env) 3 5.83** 26.56** 221.59* 309.07** 262.72** 164.13** 1.77** 1.27** 2.43 17.71 

GCAf 9 149.35** 165.72** 4958.92** 2234.51** 1181.62** 970.91* 2.78** 1.89** 935.04** 884.45** 

GCAM 9 102.76** 114.16** 3361.30* 612.11** 525.66** 556.76** 2.12** 1.95** 2477.42** 3192.39** 

SCA 81 104.54** 107.33** 2271.78** 1184.85** 786.44** 747.08 2.86** 1.78** 567.63** 1254.55** 

GCAF*Env 18 33.52** 29.49** 8565.46** 2960.94** 402.89** 297.40** 1.05** 1.01** 1171.08** 1419.31** 

GCAM*Env 18 37.33** 28.33** 1826.00** 1264.30** 538.78** 481.26** 1.92** 1.64** 2309.97** 3066.36** 

SCA*Env 162 36.93** 42.68** 2119.17** 1268.31** 307.22** 239.38** 1.56** 1.16** 564.12** 1233.46** 

Error 297 1.31 1.84 53.46 31.31 15.14 4.75 0.02 0.06 9.95 27.22 

SSGCAF 
%  

12.52 13.30 17.24 16.54 13.45 11.77 9.06 9.48 10.97 5.76 

SSGCAM 
%  

8.61 9.16 11.68 4.53 5.98 6.75 6.93 9.82 29.07 20.77 

SSSCA %  78.87 77.54 71.08 78.93 80.57 81.49 84.01 80.69 59.95 73.47 

* = significant at 0.05 probability level, ** = significant at 0.01 probability level, DF = degrees of freedom, DFL = days to flowering; PH = plant 
height at 50% flowering; SYP = seed yield per plant; HSW = hundred seed weight; NS = number of Striga plants 
 
Env = environment; Rep (Env) = replication within environment; GCAf = general combining ability of female; GCAm = general combining ability 
of male; SCA = specific combining ability; GCAf*Env = general combining ability of female x environment interaction; GCAm*Env = general 
combining ability of male x environment interaction; SCA*Env = specific combining ability x environment interaction; SSGCAF % = percentage 
sum square of the  general combining  ability of female; SSGCAm % = percentage sum square of the general combining ability of male; and 
SSSCA % = percentage sum square of the specific combining ability 
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4.4.2 Mean response of crosses and checks for agronomic traits and 

Striga resistance with and without Fusarium application 

 

The mean values of the 100 crosses and two standard checks for days to flowering, plant 

height, seed yield, hundred seed yield and number of Striga with and without FOS applications 

across three environments are presented in Table 4.4. Treatment of sorghum seeds with FOS 

for Striga control provided various responses among 100 crosses and standard check 

sorghum genotypes (Table 4.4) 

 

Seeds of sorghum crosses treated with FOS flowered earlier than the untreated control. FOS 

treatment enhanced early flowering by 1 to 9 days with a mean of 4 days. The following FOS 

treated sorghum crosses: 1563 x AS426, 675 x AS430 and 4643 x 630 flowered 9 days earlier 

than the untreated control. Early flowering has significance implications because early maturity 

provides for an escape mechanism against terminal drought and heavy Striga infestation, 

which typically occurs during the late stages of plant development. The influence of FOS on 

reducing days to flowering in some sorghum genotypes has been reported by Rebeka et al. 

(2013). The authors found that that FOS treated sorghum genotypes matured 13 days earlier 

than untreated controls. Selection of early maturing genotypes has been considered as one 

of the options to mitigate the negative effects of Striga and drought. Farmers’ preferences for 

early maturing genotypes has also been reported in earlier studies where moisture stress and 

variability were a common phenomenon (Kriegshauser et al., 2006; Rebeka et al., 2013; 

Mrema et al., 2016). 

 

FOS treated sorghum crosses had variable plant height that ranged from 18.67 to 145.67 cm 

with a mean of 65 cm. The crosses showing long plant heights due to FOS application included 

3984 x AS430, 3984 x AS426 and 3424 x AS424 measuring 132.67, 136 and 145.67 cm, 

respectively. This indicated the highest level of compatibility of the crosses with FOS resulted 

in taller plants. All plants have a positive relationship with improved biomass production, which 

is one of the most important farmer preferred attributes in sub-Saharan Africa (Kriegshauser 

et al., 2006). In the region sorghum is grown both for multiple uses with the grain for food and 

the stalk for animal feed, fire wood or construction material. 

 

Variation in seed yield and hundred seed weight was observed among families, with and 

without FOS. Mean grain yield plant-1 of 52.62, 77.44 and 82.98 gplant-1 were achieved by 

FOS treated crosses including 675 x AS430, 4567 x AS426 and 104 x AS429, respectively. 

The yield response of these crosses was markedly higher than AS436, the Striga resistant 
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check which provided 52.17 gplant-1 with FOS application. Such crosses could have suitable 

gene combination for high yield, Striga tolerance and FOS compatibility. Therefore, these are 

useful genetic stocks to be used for further selection and progeny evaluation. The mean 

hundred seed weight of 98 crosses increased from 0.05 to 1.58 g due to FOS treatment. 

Marked differences in genetic constitution and incompatibility of the sorghum crosses to FOS 

could have contributed to the observed variation in seed yield and hundred seed weight. FOS 

was found to be host specific, consequently differential responses and genetic plasticity noted 

among the tested genotypes. These resulted in positive responses towards some sorghum 

genotypes, while growth was retarded in others (Ciotola et al., 2000). 

 

Treating sorghum seeds with FOS significantly (P< 0.01) reduced the number of Striga per 

plant in the tested population. A mean reduction of 13 Striga plants per sorghum plant was 

recorded due to FOS treatment. A reduced number of Striga plants were observed in 99 

sorghum crosses (Table 4.4). Only 1 to 2 Striga per plants sorghum plant were counted for 

the following crosses: 3424 x AS430, 1563 x 3937, 4567 x 654, 104 x 630, 3984 x 630, 4567 

x 3993 and 3424 x 654. A mean of 4 Striga plants were counted in the resistant check, AS436, 

when its seeds were treated with FOS. The above experimental hybrids are useful genetic 

resources for direct production in Striga infested sorghum areas of Tanzania. Reduced Striga 

count in sorghum genotypes treated with FOS was also reported by Rebeka et al. (2013).  
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Table 4.4. Mean grain yield and yield components and number of Striga per plant under 
artificial Striga infestation with (+) and without (-) Fusarium oxysporum application among 
sorghum hybrids evaluated at three locations in Tanzania 

Genotypes 
DFL (d) PH (cm) SYP (g) HSW (g) NS 

+ - + - + - + - + - 

Crosses 

AS422 x 654 59.67 66.67 144.00 109.33 19.88 13.99 2.88 1.55 13.33 26.67 
4567 x AS424 52.00 57.33 161.50 124.00 16.84 12.86 1.50 1.18 5.17 14.17 
675 x 630 68.17 71.33 140.17 112.17 24.90 21.33 1.25 0.75 12.67 43.67 
AS422 x 672  67.17 73.33 111.17 92.50 27.62 23.41 2.60 2.00 10.50 20.00 
AS422 x AS429 66.00 67.83 115.50 66.83 29.13 23.54 1.73 1.43 4.00 13.83 
AS422 x AS436 67.67 71.17 111.67 75.17 24.77 20.15 2.22 1.65 4.67 12.00 
4567 x AS426 61.67 65.00 129.50 79.00 52.62 58.08 1.85 1.93 17.00 64.83 
4567 x 672 68.17 72.50 85.33 60.50 17.52 12.63 1.47 1.02 10.00 25.67 
4567  x AS430 67.33 69.83 105.17 59.33 41.41 31.58 2.10 1.58 19.83 25.17 
1563 x 3937 68.67 72.00 132.83 64.17 21.40 16.54 2.22 1.69 1.50 2.83 
4567 x 654 62.33 66.67 114.17 63.83 28.66 23.62 1.60 1.07 2.33 4.33 
4567 x 630 68.00 72.00 146.00 70.33 31.61 23.89 1.92 1.30 11.67 18.17 
3424 x AS426 68.50 72.33 123.00 61.50 24.38 19.38 3.58 2.87 7.83 19.33 
4567 x 3937 71.50 73.83 148.83 72.33 31.71 23.23 4.23 2.65 24.67 34.00 
104 x 672 70.00 72.83 149.83 60.00 31.02 26.17 1.67 1.10 24.50 40.67 
3424 x AS436 55.67 60.67 117.17 66.67 33.16 27.96 2.93 1.95 7.17 13.17 
1563 x 672 69.00 72.67 142.00 85.83 23.08 18.99 1.78 1.23 13.17 26.00 
AS422 x AS430 68.33 72.67 124.33 90.83 27.81 21.37 1.45 1.00 7.67 14.50 
4643 x 630 69.83 78.67 120.67 98.00 27.27 19.70 1.72 1.28 9.67 14.33 
104 x 3937 69.00 73.00 120.83 85.17 28.04 23.09 2.28 1.23 23.00 46.17 
3424 x 430 67.17 69.67 162.83 106.17 27.93 18.86 1.73 1.25 1.17 3.67 
1563 x 630 58.83 62.50 143.00 79.00 32.24 25.94 2.12 1.68 5.83 11.67 
1563 x 436 70.33 74.83 134.83 65.50 28.91 22.15 2.73 2.27 13.00 38.33 
AS435 x AS426 64.83 72.67 113.00 81.50 21.33 19.37 2.68 1.83 20.83 28.67 
675 x 654 64.17 66.50 126.50 77.50 49.16 40.30 3.03 2.43 19.83 22.67 
1563 x AS426 56.33 65.00 156.83 72.33 40.81 32.51 2.98 1.85 1.17 2.50 
AS435 x AS429 67.17 71.50 100.33 63.00 24.98 20.46 1.77 1.20 14.67 35.67 
1563 x AS430 71.00 75.67 99.33 73.33 19.28 15.07 1.57 1.00 12.00 21.50 
4643 x 430 65.00 69.67 130.00 76.67 31.15 23.13 1.52 0.97 8.00 38.67 
AS435 x 630 68.67 71.67 94.17 70.83 30.38 24.13 2.23 1.25 25.17 33.67 
104 x AS424 63.00 70.17 136.33 94.17 30.21 23.45 3.85 3.13 5.33 14.67 
104 x AS436 63.33 69.00 129.33 69.50 29.69 24.52 1.72 0.92 8.33 35.33 
104 x 630 62.33 66.00 119.83 72.17 31.68 27.12 1.80 1.22 1.17 3.50 
AS435 x 3993  65.00 69.17 128.83 98.33 32.56 29.42 2.23 2.02 13.50 19.33 
AS435 x 672 71.00 74.50 129.33 87.00 23.58 17.61 1.82 1.38 31.17 42.50 
4031 x 630 65.00 69.50 135.50 91.17 25.30 20.34 2.18 1.63 3.83 12.17 
4031 x 654 64.50 70.83 136.67 105.50 50.09 42.18 2.33 1.67 10.17 26.67 
4031 x AS426 69.67 74.17 134.67 83.50 44.06 41.47 2.82 1.95 8.00 19.50 
4031 x 3937 68.33 72.00 162.50 80.00 37.43 27.35 4.58 3.62 20.00 38.00 
AS422 x 3993 63.50 64.67 124.17 78.83 20.75 12.95 1.73 1.15 25.67 41.67 
AS422 x 630 54.00 60.33 128.67 63.00 24.96 19.64 2.23 1.30 8.50 36.67 
AS422 x 3937 58.67 60.50 145.17 65.00 28.11 21.55 2.10 1.25 8.17 17.00 
AS422 x AS424 58.50 61.00 170.33 86.17 23.32 17.63 1.73 1.58 3.83 8.83 
AS435 x 3937 70.33 74.33 141.50 85.17 26.74 21.37 1.87 1.27 7.67 10.17 
3424 x 672 70.33 73.17 143.00 87.17 27.60 23.60 1.88 1.40 15.17 42.83 
3424 x 3937 62.33 66.83 154.00 92.33 32.45 27.59 1.85 1.27 7.83 14.50 
3424 x AS429 53.33 55.83 152.17 95.50 51.39 53.19 2.50 1.55 4.67 18.83 
104 x AS426  70.00 71.67 143.83 99.50 49.84 42.59 2.88 2.28 20.50 34.50 
104 x AS429 63.33 65.83 124.83 79.00 82.98 65.50 2.95 1.73 4.50 13.33 
104 x 3993 66.17 70.33 133.67 73.67 24.35 16.63 1.42 0.93 20.00 31.67 
4031 x AS430  68.67 73.33 142.00 75.83 20.71 12.12 1.38 1.02 5.17 10.00 
3424 x 630 67.83 72.33 156.33 80.00 20.19 14.45 1.80 1.42 5.67 20.67 
3424 x 3993 59.33 63.00 149.00 83.00 22.74 15.26 1.62 1.13 2.17 5.50 
3984 x 3937 56.50 62.00 168.67 67.67 20.92 16.96 1.53 1.05 20.67 23.17 
3984 x 672 54.50 56.17 179.67 52.17 41.77 33.08 2.10 1.37 13.00 27.33 
3984 x 630 54.83 56.50 179.33 59.33 27.94 21.56 2.98 2.25 1.50 3.67 
3984 x AS430  65.83 71.50 194.00 61.33 28.26 25.10 1.98 1.48 9.17 16.00 
3984 x AS436 66.50 69.83 199.17 69.83 45.14 38.18 2.60 1.95 16.67 22.83 
3984 x AS429 64.17 64.50 113.17 66.83 24.95 19.15 1.68 1.23 9.83 16.67 
3984 x AS424 66.00 69.00 166.67 64.00 25.79 19.32 1.68 1.35 46.17 50.17 
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Table 4.4. Continued. 

Cross 
DFL (d) PH (cm) SYP (g) HSW (g) NS 

+ - + - + - + - + - 

3984 x AS426 64.67 67.00 195.83 59.83 29.71 22.51 2.45 2.40 5.83 10.67 
4643 x 654 68.17 71.17 196.33 79.83 30.18 25.42 1.58 1.35 28.50 33.50 
4643 x AS426 69.33 73.67 174.50 65.67 22.38 18.05 2.03 1.53 7.50 15.83 
4643 x 3937 64.00 66.67 134.67 71.00 28.28 21.17 1.53 1.13 15.50 22.50 
4643 x AS436 67.17 70.33 102.17 72.50 34.84 34.83 2.12 1.87 14.33 26.50 
4643 x 672 64.33 67.33 156.00 86.17 39.04 29.17 2.60 1.95 3.33 7.50 
4643 x AS424 67.00 70.50 139.83 79.67 22.99 19.66 1.83 1.40 13.33 16.83 
4396 x 3993 61.50 65.33 163.33 87.00 20.65 17.10 1.73 1.18 10.00 17.33 
AS435 x AS424 63.50 65.50 122.50 53.50 23.16 17.81 1.67 1.15 18.17 21.00 
AS435 x AS430 68.33 72.00 125.17 75.33 25.28 18.37 1.60 1.37 22.17 26.67 
AS435 x 654 70.67 74.17 127.83 80.00 20.31 14.87 1.58 1.03 4.67 9.67 
675 x 3993 62.17 64.50 173.00 72.83 35.90 27.71 2.47 1.55 24.00 34.17 
675 x 429 64.00 70.17 141.00 76.17 32.42 27.26 1.95 1.40 2.83 7.50 
675 x AS424 64.67 72.17 166.67 80.50 25.93 18.91 2.40 2.68 61.17 72.50 
675 x AS430 60.00 69.33 160.67 62.67 77.44 65.05 2.10 1.33 18.17 29.33 
675 x 3937 66.83 72.33 118.17 67.83 36.22 32.07 2.10 1.62 6.83 12.83 
675 x AS426 73.17 74.17 153.50 58.33 37.57 28.10 1.70 1.10 24.00 41.33 
675 x 672 64.83 70.67 147.83 75.67 51.71 40.48 2.20 1.45 59.17 69.33 
4031 x 3993 65.00 67.00 162.83 65.83 29.22 20.04 1.90 1.08 10.83 16.67 
4031 x AS436 63.83 71.17 155.17 58.00 17.66 13.11 1.30 0.85 12.33 16.83 
4031 x AS429 65.83 72.50 145.67 67.50 25.91 16.97 2.20 1.68 2.17 5.00 
4031 x 672 65.17 71.67 147.17 55.50 27.89 20.80 3.73 2.80 9.50 16.00 
4567 x 3993 56.33 63.00 156.50 58.33 21.58 16.77 1.48 1.12 1.83 4.00 
1563 x 654 66.33 70.67 123.83 61.33 31.60 33.90 2.90 1.95 55.50 62.67 
1563 x 3993 51.67 54.67 152.33 50.33 20.73 13.12 1.62 0.85 24.67 34.17 
1563 x AS 429 62.33 66.67 123.33 57.83 26.37 20.47 1.52 1.23 7.17 17.50 
4567 x AS 436 65.00 68.00 121.17 62.17 26.88 19.81 1.53 1.13 13.50 20.17 
1563 x 654 65.00 68.67 102.50 64.83 27.26 20.93 1.68 0.92 7.50 11.33 
AS 435 x AS 436 68.67 71.50 115.50 64.00 31.74 21.66 1.97 1.27 3.83 10.67 
4643 x AS429 69.00 72.33 136.67 82.83 29.25 24.98 1.68 1.25 6.17 9.17 
104 x 654 77.00 79.83 117.17 59.00 30.02 21.44 1.77 1.37 6.33 10.33 
104 x AS 430 73.83 75.83 123.50 68.33 33.41 25.54 2.13 1.38 4.00 10.83 
3424 x 654 74.67 77.67 125.17 74.00 25.59 22.90 2.22 1.35 2.00 4.83 
3424 x AS 424 54.67 57.33 189.17 43.50 37.30 27.71 2.23 1.47 12.33 21.83 
4567 x AS 429 75.33 75.67 126.83 71.33 27.08 20.98 1.82 1.23 7.17 12.67 
675 x AS 436 73.33 76.00 114.67 61.33 32.27 29.82 1.75 1.45 5.67 13.00 
4031 x AS 424 64.17 67.17 142.50 67.50 24.68 20.94 2.10 1.35 11.83 19.33 
AS 422 x AS 426 56.17 57.67 174.00 87.83 26.85 22.99 2.02 1.77 6.33 14.67 
3984 x 3993 65.83 68.67 171.00 86.67 22.52 16.00 2.42 1.45 9.50 64.00 
3984 x 654 65.17 68.00 132.67 53.83 31.27 26.83 2.53 1.68 7.83 11.17 

Checks           

Macia (104) 73.41 75.12 161.67 100.00 33.14 28.24 1.81 1.52 8.33 59.67 
AS 436 65.51 67.23 167.17 127.50 52.17 43.61 3.07 2.52 4.17 6.83 

Cross mean 65.08 68.99 139.85 74.56 30.46 24.50 2.11 1.52 12.78 22.76 
CV (%) 1.76 1.97 5.23 7.50 12.78 8.89 7.23 16.15 24.69 22.92 
LSD ( 0.05) 9.23 10.097 76.88 54.01 23.31 20.22 1.63 1.52 17.14 24.15 
F-Test *** *** *** *** *** *** *** *** *** *** 
Maximum 77.00 79.83 199.17 127.5 82.98 65.50 4.58 3.62 61.17 72.50 
Minimum 51.67 54.67 85.33 43.50 16.84 12.12 1.25 0.75 1.17 2.50 

 
***= significantly different at 0.001 probability level; DFL = days to 50% flowering; PH = plant height at 50% 
flowering; SYP = seed yield per plant; HSW = hundred seed weight; and NS = number of Striga per plant 

 

 4.4.3 General combining ability effects of females 

 

The GCA effects of ten female parents for sorghum and Striga parameters are summarized in 

Table 4.5. All female parents had positive and variable GCA effects for all the tested 

parameters, with and without FOS inoculation. This suggests that female parents were good 
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general combiners for most agronomic traits but not for Striga resistance. The genotypes 4643 

and AS435 had relatively low GCA values (4) for days to 50% flowering in a desirable direction, 

with and without FOS. The GCA effect for days to flowering was reduced and ranged from 0.33 

to 1.77 for eight female sorghum genotypes due to FOS application. Therefore, these parents 

are good combiners when breeding for early maturity. FOS application had no influence on 

days to flowering on the sorghum genotype 1563 but it delayed flowering in 675. Early maturing 

sorghum lines may easily escape from harsh environmental conditions such as drought and 

Striga infestation. Except genotype 675, FOS application improved the GCA values for plant 

height in a desirable direction. Female parents such as 3984, 1563 and 4643 had significantly 

larger GCA values of 42.99, 42.37 and 44.13 under FOS treatment, respectively. Therefore, 

they are good combiners for plant height improvement. Tall sorghum genotypes are highly 

preferred by sorghum growers in Tanzania for their dual purposes, its grain for food and stalk 

for animal feed. 

 

Female parents 675 and 3424 had a significantly large positive GCA effect for grain yield per 

plant and hundred seed weight, with and without FOS treatment. These genotypes are good 

combiners for grain yield. Also they displayed relatively low GCA effects (14.57 to 44.16) for 

Striga count. Lower GCA values of 6.14 and 28.57 were observed in sorghum genotype 3984 

with and without FOS. Female sorghum parents with high GCA for seed yield and low GCA 

values for days to flowering and Striga count are promising candidates for developing novel 

progenies possessing high yield potential, early maturity and significant levels of Striga 

tolerance. This will allow for the application of integrated Striga management in sorghum using 

Striga tolerant genotypes and seed treatment with FOS. In line with the current study, several 

authors have reported positive significant GCA effects for agronomic attributes of sorghum 

affecting its seed yield (Kenga et al., 2004; Tadesse et al., 2008; Makanda et al., 2009). 
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Table 4.5. Estimates of the GCA effects of ten sorghum genotypes used as female parents on 
days to flowering, plant height at flowering, seed yield per plant, hundred seed weight and 
number of Striga with (+) and without (-) FOS dressing in three environments. 
 

  
Female 

DFL (d) PH (cm)  SYP (g) HSW (g) NS 

+ - + - + - + - + - 

4567 6.91 7.01 45.97 35.09 18.94 17.64 1.21 1.02 12.66 36.13 

675 5.02 4.69 26.04 27.44 26.31** 24.22** 0.57 0.88 14.83 24.32 

1563 7.19 7.19 42.37 18.29 11.90 10.96 0.65 0.55 16.27 28.05 

AS 435 4.08** 4.61 38.57 21.11 8.59 7.48 0.51 0.45 19.42 30.05 

4643 3.96** 4.3 44.13 18.16 10.11 10.78 0.60 0.58 14.12 28.04 

104 5.37 5.56 41.21 33.93 8.97 6.80 1.30 1.12 23.06 24.46 

4031 4.90 6.67 40.54 38.92* 16.16 17.27 1.83** 1.49* 17.59 19.55 

3424 7.88 7.62 42.55 29.27 22.82** 18.78** 1.18 1.06 44.98 52.51 

AS 422 6.49 7.31 42.93 30.65 10.83 10.19 0.69 0.47 29.85 32.32 

3984 5.80 6.64 42.99 20.39 10.07 9.02 0.61 0.58 6.14 28.57 

DFL = days to flowering; PH = plant height at flowering; SYP = seed yield per plant; HSW = 
hundred seed weight; NS = number of Striga per plant 

 

4.4.4 General combining ability effects of males 

 

The GCA effects of the male parents for days to flowering, plant height, seed yield, hundred 

seed weight and Striga counts, with and without FOS application, are presented in Table 4.6. 

Significant positive GCA effects were observed for all measured traits. Genotype 3937 had 

lower GCA value for days to flowering under FOS treatment. The GCA value of days to 

flowering was found to be low after FOS treatment in seven genotypes. These genotypes are 

favourable candidates for breeding early maturing sorghum. The genotypes AS426 and AS430 

had significantly large positive GCA effects for plant height.  

 

All tested male parents showed positive GCA effects for seed yield. However, genotypes 672 

and 3933 had significantly large GCA values for grain yield, with and without FOS application. 

Interestingly, these genotypes expressed good GCA for early maturity and Striga resistance, 

with and without FOS application. Similarly, genotypes 672, AS 436 and AS 429 had low GCA 

values for the number of Striga, and therefore, they are good combiners for breeding for Striga 

resistance. Conversely, genotypes such as 3937 and 672 with low GCA effects for days to 

flowering and AS429 and AS436 with lower Striga count are good general combiners for Striga 

resistance and breeding for early maturity, and therefore, they were selected for future 

breeding program. 
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Table 4.6. Estimates of the GCA effects of ten sorghum genotypes used as male parents on 
days to flowering, plant height at flowering, seed yield per plant, hundred seed weight and 
number of Striga with (+) and without (-) FOS dressing evaluated in three environments 
 

  DFL (d) PH (cm)  SYP (g) HSW  (g) NS 

Male + - + - + - + - + - 

AS 436 7.06 6.82 39.05 29.73 10.58 10.99 0.56 0.55 8.57 20.98 

AS 426 6.11 6.91 44.74 26.42 21.18 21.18 1.15 1.04 18.37 26.97 

672 4.79 5.50 39.08 26.91 23.32 22.13 1.30 1.08 7.23 23.71 

3933 5.19 5.47 42.35 24.70 22.22 18.37 0.60 0.49 43.10 47.46 

AS 430 5.44 5.48 43.52 29.21 12.21 10.73 0.57 0.40 20.97 30.49 

AS 429 6.28 5.70 37.95 18.89 7.95 6.67 0.56 0.39 3.48 7.71 

3937 4.34 5.54 42.31 31.66 9.21 6.96 1.80 1.47 13.93 35.84 

630 6.52 6.18 41.47 32.07 14.16 13.27 0.79 0.75 31.07 35.29 

654 6.26 6.38 41.11 35.21 19.32 17.23 0.59 0.48 12.03 33.34 

AS 424 6.94 8.65 41.57 28.68 8.94 7.62 1.30 1.32 26.49 31.73 

DFL = days to flowering; PH = plant height at flowering; SYP = seed yield per plant; HSW = 
hundred seed weight; NS = number of Striga per plant 
 

4.4.5 Specific combining ability effects 

 

Estimates of the SCA effects of the 100 sorghum crosses averaged across three test locations 

for days to flowering, plant height, seed yield, hundred seed weight and number of Striga plants 

is presented in Table 4.7. All sorghum crosses had positive SCA values for the tested 

parameters at different levels when treated with FOS. Treatment of sorghum seeds with FOS 

contributed to the significantly lower positive SCA for days to flowering in the crosses of 1563 

x AS436 and AS435 x AS426. These are suitable cross combinations ideal for breeding for 

early maturity with FOS application. Most of the farmers in semi-arid region of Tanzania prefer 

early maturing crop genotypes because of poor and erratic rainfall distribution during the 

cropping season. Also, early flowering crosses may escape heavy Striga infestation, the 

leading problem affecting sorghum production in drier regions of Tanzania (Mrema et al., 

2016). Therefore these crosses can be recommended for further breeding.  

 

All tested crosses showed positive SCA values for plant height. Families including 1563 x 

AS426 and 3424 x AS424 had relatively significantly large SCA values when treated with FOS. 

Therefore, these families are a good source of improved and plant height, which is a key trait 

preferred by farmers for grain and feed stalk production. Relatively large and positive SCA 

values were recorded for seed yield in the following families: 675 x 654, 3424 x 3933 and 4567 

x AS426 with FOS application. Also, these crosses had large SCA values for hundred seed 

weight, making them ideal candidates for further breeding.  
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The newly developed sorghum crosses had relatively low SCA values for the number of Striga 

plants. This was recorded in the families of 4567 x AS424 and 3984 x 672 with FOS application. 

Therefore, these crosses are Striga tolerant and compatible to FOS application. Such crosses 

would be useful for cultivation in farmers’ fields infested by Striga. Families with high SCA 

effects for grain yield and yield components exhibited dominance genetic effects, but the 

expression of heterosis though epistasic genetic effects may not be ruled out (Kenga et al., 

2004).  



89 
 

Table 4.7. Estimates of specific combining ability effects of 100 sorghum hybrids for days to 
flowering, plant height, seed weight per plant, hundred seed weight and Striga count with (+) 
and without (-) Fusarium oxysporum (FOS) evaluated in three environments 

.Cross 
DFL (d) PH (cm) SWP (g) HSW (g)   NS 

+ - + - + - + - + - 

4567 x AS 436 4.34 6.62 19.77 53.30 3.69 2.91 0.42 0.28 23.91 44.76 
4567 x AS 426 4.80 4.52 60.09 39.44 44.77 35.90 0.73 0.73 1.60 4.40 
AS 4567 x 672 5.61 5.61 27.12 19.68 1.76 1.20 0.12 0.06 11.62 44.81 

4567 x 3933 6.22 3.08 31.15 11.02 9.53 6.59 0.57 0.16 8.69 9.34 
4567 x AS 430 6.28 7.66 21.52 14.77 23.78 16.65 0.33 0.22 1.26 11.07 
4567  x  AS 429 5.19 1.03 31.15 22.78 3.46 3.85 0.18 0.40 3.27 8.58 
4567 x 3937 2.99 1.03 55.53 33.49 6.11 2.12 2.32 2.30 17.54 80.71 
4567 x 630 6.89 6.28 54.66 45.67 12.53 10.56 0.10 0.42 8.29 26.73 
4567 x 654 4.23 8.96 57.99 43.15 18.18 13.46 0.52 0.50 18.14 20.44 
4567 x AS 424 2.32 4.17 38.28 6.71 4.11 3.90 0.15 0.08 0.55 0.98 
675 x AS 436 1.38 0.89 10.60 15.35 5.90 6.79 0.48 0.59 1.37 1.86 
675 x AS 426 2.86 1.41 9.56 19.73 11.26 8.23 0.31 0.15 5.57 4.88 
675 x 672 1.63 3.33 23.31 10.01 2.75 3.62 0.24 0.33 4.22 3.98 
675 x 3933 2.43 3.76 33.94 16.73 6.11 5.86 0.35 0.38 23.97 21.45 
675 x AS 430 5.27 2.48 16.79 15.78 7.63 10.94 0.69 0.10 25.93 41.58 
675 x AS 429 4.59 6.47 22.95 19.79 11.61 9.71 0.24 0.27 3.87 8.16 
675 x 3937 1.97 2.32 6.12 20.85 3.00 1.37 0.38 0.44 17.33 34.52 
675 x 630 5.27 4.68 39.77 58.29 10.74 9.30 0.57 0.29 3.61 5.89 
675 x 654 1.17 1.17 30.72 29.93 40.91 36.10 0.77 0.87 5.16 5.13 
675 x AS 424 5.33 3.31 17.57 15.78 6.63 3.00 0.32 2.45 15.56 38.74 
1563 x AS 436 0.84 1.21 39.31 5.49 2.65 1.89 0.42 0.51 0.75 0.82 
1563 x AS 426 9.58 6.79 72.93 9.18 31.07 24.04 0.82 0.38 4.07 6.92 
1563 x 672 4.03 4.59 43.67 40.44 4.22 3.70 0.71 0.40 14.44 46.64 
1563 x 3933 8.25 9.33 45.50 13.00 2.68 3.44 0.12 0.21 27.12 32.99 
1563 x AS 430 1.10 2.34 10.31 12.21 4.83 3.12 0.47 0.62 22.25 21.32 
1563 x AS 429 6.35 5.61 25.22 7.38 2.52 5.41 0.53 0.46 0.75 1.87 
1563 x 3937 1.94 4.23 64.02 11.09 7.05 5.25 0.61 0.66 17.43 37.55 
1563 x 630 7.51 7.63 31.39 7.80 6.71 4.04 0.20 0.22 3.10 4.28 
1563 x 654 7.64 6.85 16.19 22.08 4.01 3.89 0.31 0.08 7.04 37.63 
1563 x AS 424 5.35 6.63 43.95 16.19 3.38 1.17 0.36 0.27 23.97 24.92 
AS 435 x AS 436 5.27 5.85 11.30 12.48 2.99 2.82 0.14 0.10 4.18 14.15 
AS 435 x AS 426 0.89 0.82 46.01 28.27 10.79 9.56 0.46 0.40 11.52 50.49 
AS 435 x 672 2.37 2.59 41.00 27.09 12.11 9.12 0.77 0.53 0.75 2.07 
AS 435 x 3933 1.41 1.47 53.47 33.27 10.62 9.94 0.47 0.44 14.76 16.10 
AS 435 x AS 430 2.93 3.27 7.15 11.39 2.83 3.08 0.39 0.45 37.91 49.63 
AS 435 x AS 429 1.60 1.63 43.75 6.13 5.51 4.75 0.52 0.24 1.72 8.30 
AS 435 x 3937 3.06 5.05 25.99 8.41 3.06 2.82 0.24 0.20 8.98 28.33 
AS 435 x 654 3.58 4.56 24.51 18.02 12.17 10.17 0.74 0.38 2.97 6.80 
AS 435 x 630 1.47 2.23 35.92 16.09 2.52 3.50 0.20 0.34 21.74 34.86 
AS 435 x AS 424 4.71 6.62 30.35 5.20 2.65 3.11 0.24 0.23 32.04 32.56 
4643 x AS 436 3.58 3.76 2.94 8.99 19.14 24.84 0.46 0.97 7.87 40.27 
4643 x AS 426 2.42 2.45 17.33 6.51 5.85 6.41 0.84 0.69 5.34 7.56 
4643 x 672 2.34 3.08 64.96 6.99 9.50 8.87 0.78 0.67 1.83 4.36 
4643 x 3933 5.19 4.26 45.21 19.32 13.65 12.58 0.29 0.17 9.97 10.42 
4643 x AS 430 4.04 5.24 24.64 31.05 5.30 5.08 0.36 0.29 17.75 48.44 
4643 x AS 429 5.46 4.23 16.41 9.00 5.77 5.34 0.18 0.31 3.54 7.42 
4643 x 3937 3.31 2.26 26.32 6.08 4.87 2.86 0.12 0.13 5.82 25.10 
4643 x 630 0.89 1.79 52.37 16.16 10.84 6.91 0.23 0.32 25.24 33.72 
4643 x 654 2.17 3.69 36.34 13.60 8.81 9.15 0.21 0.56 4.85 15.00 
4643 x AS 424 1.05 1.38 32.22 36.04 6.01 3.10 0.55 0.18 26.78 37.87 
104 x AS 436 2.10 3.39 37.50 41.87 2.55 2.70 0.44 0.15 3.97 4.56 
104 x AS 426 3.54 3.43 26.07 20.44 5.05 4.01 0.18 0.20 4.23 18.04 
104 x 672 4.03 4.84 40.89 47.23 3.86 4.69 0.14 0.11 1.17 1.52 
104 x 3933 4.08 4.76 18.59 20.56 9.53 4.44 0.49 0.37 29.34 30.54 
104 x AS 430 8.71 7.42 65.91 22.61 4.21 4.76 0.34 0.14 9.86 15.20 
104 x AS 429 3.51 5.78 56.91 36.06 4.61 2.55 0.39 0.10 1.38 1.63 
104 x 3937 4.08 4.37 52.69 59.55 12.00 8.06 0.66 0.34 8.59 12.08 
104 x 630 3.08 5.40 12.59 11.70 2.73 5.02 0.11 0.22 18.10 18.08 
104 x 654 7.99 7.40 41.20 10.13 12.62 10.04 0.49 0.39 6.91 11.29 
104 x AS 424 4.84 4.55 19.12 8.35 11.65 8.51 3.35 3.04 54.39 55.17 
4031 x AS 436 4.17 4.97 46.09 10.94 12.99 11.45 0.69 0.34 4.17 5.01 
4031 x AS 426 6.09 6.68 43.01 42.44 22.14 24.92 0.40 0.24 42.24 46.89 
4031 x 672 1.38 2.76 35.57 5.06 2.53 2.19 3.06 2.63 5.36 9.00 
4031 x 3933 2.40 4.13 45.52 32.98 9.97 8.01 0.13 0.25 14.10 14.04 
4031 x AS 430 2.10 1.47 47.77 51.54 2.53 6.68 0.28 0.43 8.19 7.84 
4031 x AS 429 5.65 2.48 39.12 5.39 6.76 6.77 0.27 0.38 1.21 2.88 
4031 x 3937 1.38 4.54 41.28 51.35 9.74 4.37 3.64 3.09 9.09 8.66 
4031 x 630 4.96 6.28 22.42 6.79 10.14 7.97 0.70 0.54 13.59 21.35 
4031x 654 2.04 4.71 57.68 68.99 29.39 25.72 0.20 0.18 8.64 10.33 



90 
 

Table 4.7. Continued. 

 
DFL (d) PH (cm) SYP (g) HSW (g) NS 

+ - + - + - + - + - 

4031 x AS 424 4.26 9.28 32.55 43.58 3.51 4.05 0.23 0.19 23.89 25.23 
3424 x AS 436 8.43 9.20 29.30 17.20 5.61 5.20 0.41 0.70 4.37 8.87 
3424 x AS 426 6.63 7.47 57.35 31.68 7.03 5.31 2.96 2.71 34.49 47.65 
3424 x 672 1.41 1.87 10.53 32.04 10.25 10.61 0.45 0.78 1.33 4.04 
3424 x 3933 4.96 5.12 45.45 11.62 43.52 36.47 0.75 0.28 92.83 107.68 
3424 x AS 430 4.46 6.37 21.02 45.29 8.69 4.59 0.22 0.27 23.35 31.97 
3424 x AS 429 3.78 5.35 49.37 26.92 5.18 4.15 0.55 0.52 4.79 6.97 
3424 x 3937 1.75 0.52 23.67 18.78 6.73 7.12 0.51 0.24 26.62 40.93 
3424 x 630 3.58 2.66 39.15 39.28 23.53 20.65 0.95 0.86 85.88 93.92 
3424 x 654 1.41 1.67 26.76 12.22 1.68 3.58 0.12 0.08 15.33 21.65 
3424 x AS 424 11.00 12.63 78.78 24.32 3.65 1.86 0.17 0.19 17.27 21.85 
AS 422 x AS 436 3.78 5.27 54.45 20.69 10.97 7.29 0.65 0.16 0.98 2.00 
AS 422 x AS 426 5.47 6.66 28.59 15.46 3.36 2.32 0.22 0.21 5.24 8.81 
AS 422 x 672 1.33 1.03 26.64 28.50 11.73 11.39 1.09 0.93 1.17 1.10 
AS 422 x 3933 5.47 5.87 42.42 20.04 6.76 6.04 0.33 0.16 81.92 85.99 
AS 422 x AS 430 5.61 7.12 31.34 24.03 17.44 18.27 1.04 0.66 28.14 34.90 
AS 422 x AS 429 1.10 1.60 52.38 22.83 16.31 12.38 0.62 0.29 3.37 10.84 
AS 422 x 3937 1.21 2.66 48.96 10.26 1.28 1.84 0.43 0.17 9.44 10.87 
AS 422 x 630 7.06 1.75 39.92 24.69 3.42 3.39 0.64 0.37 1.64 3.83 
AS 422 x 654 7.23 8.87 48.78 49.19 3.06 1.25 0.32 0.34 0.98 3.78 
AS 422 x AS 424 2.53 3.33 14.79 54.16 6.71 7.01 0.11 0.08 1.83 3.60 
3984 x AS 436 5.61 4.14 57.44 17.40 11.75 10.13 0.62 0.53 5.09 5.05 
3984 x AS 426 3.60 5.75 39.87 11.92 12.30 11.78 0.50 0.49 1.26 5.53 
3984 x 672 9.97 12.56 39.70 13.95 9.26 7.68 0.29 0.36 0.63 0.75 
3984 x 3933 2.14 3.50 48.13 33.60 2.44 1.86 0.19 0.19 6.15 9.28 
3984 x AS 430 2.25 1.52 47.95 30.85 4.45 2.92 0.50 0.51 5.15 4.80 
3984 x AS 429 1.41 2.88 43.45 13.32 2.47 2.92 0.18 0.17 0.82 2.83 
3984 x 3937 7.63 8.86 42.96 15.03 2.68 1.81 0.14 0.27 5.42 9.44 
3984 x 630 9.83 9.78 44.79 16.06 14.97 12.52 0.41 0.36 5.99 6.86 
3984 x 654 1.47 2.83 33.40 18.56 2.36 2.44 0.30 0.16 8.24 78.26 
3984 x AS 424 4.36 3.94 32.11 10.65 9.77 7.08 0.52 0.36 10.25 12.80 

DFL = days to flowering; HFL = plant height at flowering; SYP = seed yield per plant; HSW = 
hundred seed weight; and NS = number of Striga per plant 
 

4.4.6 Estimates of genetic variance components and contribution of sorghum 

genotypes to the total phenotypic variance 

 

Estimates of genetic variance components and contribution of sorghum genotypes and their 

interaction to total variance with and without FOS are summarised in Table 4.8. Significant 

differences in variances among treatments with and without FOS were observed for days to 

flowering, plant height at flowering, seed yield per plant, hundred grain weight and number of 

Striga per plant with and without FOS application. Significant variance (δ2) among parents 

indicated that crosses differed from the parents significantly. Therefore, it can be inferred that 

traits could be transmitted to progenies as indicated by high value of broad sense heritability 

for each character. The value of variance of GCA (σ2
GCA) was less than variance of SCA (σ2

SCA) 

for all traits showing the preponderance of non-additive gene action. It was further supported 

by the ratio of σ2
GCA/σ2

SCA being less than unity one and degree of dominance, i.e., ratio of 

dominance variance (σ2
D) to additive variance (σ2

A) being greater than one. Preponderance of 

non-additive gene action for days to flowering, plant height, seed yield per plant, hundred seed 

weight and number of Striga per plant in sorghum have been reported by Kenga et al. (2004). 
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Table 4.8. Estimates of variance components for yield and yield related traits, and Striga count of 100 sorghum hybrids derived from a 10 x 10 NCDII and 
evaluated with (+) and without (-)  Fusarium oxysporum application in three environments in Tanzania 

 

  
Parameter 
  

Sorghum parameters 
Number of Striga 

DFL PH SYP HSW 

+ - + - + - + - + - 

δ2
GCAF 0.45 0.58 26.87* 10.50 3.95 2.24 -0.001 0.001 3.67 -3.70 

δ2
GCAM -0.02 0.07 10.90 -5.73 -2.61 -1.90 -0.01 0.002 19.1* 19.38* 

δ2
GCA(GCAF+GCAM) 0.43 0.65 37.77 4.77 1.34 0.34 -0.01 0.003 22.77 15.68 

δ2
SCA 5.16** 5.27** 110.92** 57.68** 38.57** 37.12** 0.14 0.09 27.88** 61.37** 

δ2
W (Error) 1.31 1.84 53.46* 31.31* 15.14 4.75 0.02 0.06 9.95 27.22 

δ2
GCA/δ2

SCA 0.08 0.12 0.34 0.08 0.03 0.01 -0.08 0.03 0.82 0.26 

δ2
A 0.86 1.30 75.54 9.54 2.68 0.68 -0.02 0.01 45.54 31.36 

δ2
D 20.64** 21.08** 443.68 230.72 154.28 148.48 0.56 0.36 111.52 245.48 

(δ2
D/δ2

A)1/2 4.90 4.03 2.42 4.92 7.59 14.78 -5.29 6.00 1.56 2.80 

δ2
AM -0.08 0.28 43.60 -22.92 -10.44 -7.60 -0.04 0.01 76.40 77.52 

δ2
AF 1.80 2.32 107.48 42.00 15.80 8.96 0.004 0.004 14.68 -14.80 

δ2
EW -14.6** -14.62** -317.07** -146.5** -101.91** -106.95** -0.01 -0.22 -96.46** -172.57** 

δ2
T 6.69 7.44 183.27 91.38 54.38 42.04 0.15 0.15 49.22 96.43 

H2 (δ2
A/δ2

T) 0.13 0.17 0.41* 0.10 0.05 0.02 -0.13 0.07 0.93** 0.33 

H2
M(δ2

AM/δ2
T) -0.01 0.04 0.24 -0.25 -0.19 -0.18 -0.27 0.07 1.55** 0.80** 

H2
F(δ2

AF/δ2
T) 0.27 0.31 0.59* 0.46* 0.29 0.21 0.03 0.03 0.30 -0.15 

* = significant at 0.05 probability level, ** = significant at 0.01 probability level DFL = days to flowering; PH = plant height at flowering; SYP = seed 
yield per plant; HSW = hundred seed weight; NS = number of Striga per plant; δ2

GCAF = additive variance of female; δ2
GCAM = additive variance of 

male; δ2
GCA = additive variance of female and male; δ2

SCA = additive variance for female and male interaction; δ2
A = additive variance in the 

population; δ2
D = dominance variance; δ2

AM = additive variance in males; δ2
AF = additive variance in female; δ2

EW = environmental variance; δ2
T = 

Total variance; H2 = broad sense heritability; H2
M = heritability due to males and H2

F = heritability due to female effect
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4.5 Conclusions  

 

The present study found promising sorghum crosses with significance levels of compatibility 

with FOS, Striga resistance and good agronomic performances. The levels of FOS 

compatibility was reflected by the diferential suppression of Striga infestation and varied 

performance of sorghum genotypes under FOS treatment when compared to the control grown 

under Striga infestation without FOS treatment. FOS application had a significant (p<0.05) 

influence on number of Striga, days to flowering, plant height and grain yield. Genotypes 

showed significant interactions with the testing environments. Also there were variations in the 

GCA and SCA effects of some lines across locations for sorghum and Striga parameters. Four 

genotypes; 672, AS436, AS429 and 3984, were identified as good combiners for Striga 

resistance, while another four, 675, 3424, AS426, AS430, had good GCA effects for grain yield 

when evaluated at three sites of the semi-arid regions of Tanzania. Three families were found 

to have relatively high SCA effects for grain yield, namely 675 x 654, 3424 x 3933 and 4567 

x AS426. The study identified Striga resistant hybrids, such as 4567 x AS424 and 3984 x 

672, with low SCA effects in a desirable direction. This implies the presence of both additive 

and non-additive genetic effects influencing these traits in the selected parents and crosses, 

in that order. Overall, the study identified promising sorghum parents and crosses useful for 

integrated Striga management breeding that combine the use of the resistant sorghum 

genotypes and hybrids with good agronomic traits that are compatible with FOS, a bio-control 

agent. Further stability tests and farmers participatory evaluation of the selected genotypes 

across representative growing environments are, however, needed for release and large scale 

production. 
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CHAPTER FIVE 

 

Gene action controlling Striga resistance among sorghum 

genotypes 

 

5.1 Abstract 

 

Striga is an important parasitic weed causing substantial economic losses in cereal and 

legume crop production in sub-Saharan Africa. Integrated Striga management approaches 

such as a combined use of Striga resistant varieties and Fusarium oxysporum f.sp. strigae 

(FOS), a biocontrol agent of Striga, are an option to control the parasite and to boost sorghum 

productivity. Understanding the gene action influencing Striga resistance, with or without FOS 

treatment, is key to developing improved sorghum varieties with durable resistance and high 

yield. The objective of this part of study was to determine the gene action and inheritance of 

Striga resistance using genetically diverse populations of sorghum involving FOS treatment. 

Twelve sorghum parents selected for Striga resistance, FOS compatibility or superior 

agronomic performances were crossed using a bi-parental mating scheme. The selected male 

and female parents and their F1 progenies, backcross derivatives and the F2 segregants were 

field evaluated at three locations in Tanzania known for their severe Striga infestations using 

a lattice experimental design with two replications. The following data were collected and 

subjected to generation mean analysis (GMA): days-to-50% flowering (DFL), seed yield per 

plant (SYP) and number of Striga per plant (SN). GMA showed the preponderance of additive 

genetic action contributing to the total genetic variation in the evaluated sorghum populations. 

The additive genetic effect for DFL, SYP and SN, with and without FOS treatments, ranged 

from 72.02 to 86.65% and 41.49 to 95.44%, 75.62 to 91.42% and 71.83 to 91.89%, and 77.35 

to 93.56% and 72.86 to 95.84%, in that order. The contribution of non-additive genetic effects 

was minimal and varied among generations. FOS application reduced DFL and SN and 

improved SYP in most of the tested sorghum populations. DFL of sorghum populations was 

reduced by a mean of 8 days under FOS treatment compared to the untreated control in 

families such as 675 x 654, AS435 x AS426 and 1563 x AS436. FOS treatment improved SYP 

with a mean of 6.44 g plant-1 in 4567 x AS 426, 3424 x 3993 and 3984 x 672. The numbers of 

Striga plants were reduced with a mean of 16 plants due to FOS treatment in the crosses of 

675 x 654, 1563 x AS436, 4567 x AS424, and 3984 x 672. The study demonstrated that 

additive genes were predominantly responsible for the inheritance of Striga resistance in 

sorghum. Pure line cultivar development targeting reduced DFL, SN and high SYP in the 
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selected populations may provide enhanced response to selection for integrated Striga 

management (ISM) programme.  

 

Key words: Fusarium oxysporum f.sp strigae, generation mean analysis, genetic effect, 

integrated Striga management, sorghum  

 

5.2 Introduction 

 

Striga damage is one of the main constraints to sorghum production in sub-Saharan Africa 

(Watson et al., 2007). Striga hermonthica [Del.] Benth (Sh) and S. asiatica [L.] Kuntze, (Sa) 

are obligate root parasites inflicting yield losses of 30 to 90% in sorghum in Tanzania (Riches, 

2003). Integrated Striga management (ISM) is a system that involves the use of resistant 

sorghum varieties, biological agents, cultural practices and chemical control methods to 

minimize losses incurred by Striga species (Hearne, 2009). Breeding Striga resistant sorghum 

is the cheapest and most environmentally friendly management option (Ejeta, 2007). 

Wegmann (1996) reported the following components of Striga resistance in sorghum: minimum 

production of Striga stimulants; mechanical barriers, inhibition of germtube exoenzymes by 

root exudates; phytoalexine synthesis; incompatibility, antibiosis, insensitivity to Striga toxins 

and avoidance through root growth habit. Reduced production of the germination stimulus for 

Sa has been reported to be controlled by a single recessive gene (Vogler et al., 1996). Single 

major gene and several minor genes have been reported to stimulate germination of Sh (Vogler 

et al., 1996). 

 

In contrast, Haussmann et al. (1996) reported the presence of quantitative genetic variation 

with a preponderance of additive genetic effects influencing stimulation of Sh seed 

germination. Significant genotype by environment interaction on Striga count was reported by 

Omanya et al. (2000). Heterosis for Striga resistance was also reported to be genotype-

dependent (Haussmann et al., 2000a). Partial or complete dominant genes for Striga 

susceptibility was also reported for sorghum hybrids derived from crosses between resistant 

and susceptible parents (Obilana, 1984).  

 

Based on the modes of gene action, gene effects are broadly classified into additive, 

dominance and epistasis. Further, additive x additive (aa), additive x dominance (ad) and 

dominance x dominance (dd) gene interaction effects are theoretically possible, affecting trait 

expression. The nature and type of gene action is important in designing an effective breeding 
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and gene deployment strategy in a Striga resistance breeding program (Falconer and McKay, 

1996).  

 

Generation mean analysis (GMA) is a useful technique for estimating gene effects (Anderson 

and Kempthorne, 1954; Mather and Jinks, 1971). The method requires the following six 

generations: male and female parents (P1 and P2), F1 progenies, F2 segregants, backcrosses 

to parent one (BCP1) and parent two (BCP2) (Hayman, 1958). The mean response of these 

generations allows estimation of genetic effects such as additive, dominance and epistasis 

components or their interactions. The technique is mostly used when the parents are divergent, 

possessing complementary and favourable alleles. GMA has been widely used to study gene 

action controlling biotic or abiotic stress tolerance or resistance, and yield and yield related 

traits in sorghum (Gamble, 1962), maize (Badu-Apraku et al., 2013) and rice (Gurney et al., 

2006). 

 

The mode of gene action responsible for controlling Striga resistance in sorghum in the semi-

arid regions of Tanzania has not been established previously. Integrated Striga management 

practices involving a combined use of resistant sorghum genotypes compatible with Fusarium 

oxysporum f.sp. strigae (FOS), a biocontrol agent of Striga, is an option to control the parasite 

and to boost sorghum productivity (Rebeka et al., 2013). Pathogenic isolates of FOS have 

been reported to be effective bio-herbicides in managing Striga infestation in sorghum, 

particularly when the method is integrated with other control practices (Rebeka et al., 2013). 

The FOS has been shown to be host specific, pathogenic and highly destructive against Striga, 

easy to mass produce and shows maximum genetic diversity (Ciotola et al., 2000). When 

sorghum seeds are treated with FOS, the fungus grows well in the rhizosphere of the young 

and developing sorghum plants, followed by parasitizing and inhibiting growth and 

development of Striga, barring it from attacking the roots of the host plant (Rebeka, 2007).  

 

Breeding sorghum varieties with farmer-preferred traits and possessing Striga resistance, and 

compatibility with FOS, could improve grain yield and reduce Striga infestation in the semi-arid 

parts of Tanzania. These could improve adoption of newly released varieties by farmers. The 

effectiveness of the FOS application to the selected compatible sorghum populations across 

Striga infested fields of the semi-arid areas of Tanzania is yet to be explored. Selection of 

desirable parents, their crosses and backcross derivatives with high yield and improved yield 

components and Striga resistance across the main agro-ecologies of sorghum may provide a 

foundation for a Striga management program. This requires understanding of the genetic 

variability and inheritance of Striga resistance and other traits of importance for effective 

selection in sorghum (Mrema et al., 2017).  
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In an effort to select Striga resistant and FOS compatible sorghum lines, promising genotypes 

were identified through controlled evaluations (Mrema et al., 2017). Some of the selected 

landraces were relatively poor yielders but were well adapted to the drier regions of Tanzania 

and possessed farmers-preferred traits (Mrema et al., 2016). In contrast, some of the newly 

released sorghum genotypes had better yields and FOS compatibility but lacked essential 

farmers preferred traits. Detailed information on the performance of the selected 

complementary parents, F1s, backcross derivatives and F2 populations were needed to 

establish the gene action influencing Striga resistance, with or without FOS treatment. 

Therefore, the objective of this part of the study was to determine the gene action and 

inheritance of Striga resistance using genetically diverse populations of sorghum involving 

FOS treatment. The hypothesis being tested was that additive, dominance or epistatic genetic 

effects were important in controlling Striga resistance and that the new families could be 

systematically selected to develop resistant pure line cultivars with FOS compatibility. Findings 

of this study may guide the sorghum breeding programme in Tanzania in deciding on parental 

sorghum genotypes to be used, the best selection technique to employ when breeding for 

Striga resistance and FOS compatibility with farmers preferred traits. 

 

5.3 Materials and methods 

 

5.3.1 Plant materials and crosses 

 

The study used 12 selected parents (Table 5.1) that were identified to have good general and 

specific combining ability effects for days-to-50% flowering, seed yield per plant and Striga 

resistance (Mrema et al., 2017). Also the selected parents were found to be resistant to both 

Sh and Sa, compatible to FOS and had most of the farmer preferred traits required for semi-

arid areas of Tanzania (Mrema et al., 2016). The 12 parents were divided into two sets (Set I 

consisting of six female parents and Set II into six male parents). The two sets were crossed 

using a bi-parental mating design providing the following 7 F1 and 7 F2 populations: 675 x 654, 

AS435 x AS426, 4567 x AS 426, 3424 x 3993, 1563 x AS436, 4567 x AS424 and 3984 x 672. 

Each F1 progeny was backcrossed to their corresponding parents to generate BCP1 and BCP2 

derivatives. The 7 F1 progenies were then selfed to develop F2 families. These constituted the 

six generation (P1, P2, F1, BCP1, BCP2 and F2) required for the present GMA study. The 

description of the parents used in generating the populations is shown in Table 5.1.   

 

  



100 
 

Table 5.1. Description of parental sorghum genotypes used in the bi-parental crosses for 
generation mean analysis 
 

Entry Name  Source Attributes 
Parentage in 
the cross 

1 4567 Magu/Tanzania High yielding, medium maturing and FOS compatible P1 

2 675 Tarime/Tanzania Early maturing and FOS compatible P1 

3 1563 Bukoba/Tanzania FOS compatible, early maturing and high yielding P1 

4 AS 435 ACCI/South Africa High yielding, late maturing and FOS compatible P1 

5 3424 Igunga/Tanzania FOS compatible and medium maturity P1 

6 3984 Musoma/Tanzania FOS compatible, high yielding and late maturing P1 

7 AS 436  ICRISAT/India Early maturing, medium  yielding and Striga resistant  P2 

8 AS 426 ACCI/South Africa Medium maturing and yielding, and Striga tolerant P2 

9 672 Musoma Rural/Tanzania Medium maturing and Striga resistant  P2 

10 AS 424   SARC/Ethiopia Early maturing and Striga resistant P2 

11 654 Bunda/Tanzania Striga resistant  P2 

12 3993 Musoma/Tanzania Striga tolerant P2 

Entries 1 to 6 were used as female parents (P1) and 7 to 12 were male parents (P2).  
SARC = Sirinka Agricultural Research Centre in Ethiopia; ICRISAT = International Crop Research Institute for the 
Semi-arid Tropics/India and ACCI = African Centre for Crop Improvement 
FOS= Fusarium oxysporum f.sp. strigae 

 

5.3.2 Bio-control agent and inoculum preparation   

 

A pathogenic strain of F. oxysporum f.sp. strigae (FOS) originally isolated from sorghum fields 

infested with Striga in north eastern lowlands of Ethiopia was used as a bio-control agent for 

Striga management (Rebeka et al., 2013). Taxonomic identification of FOS was confirmed by 

the Phytomedicine Department of Humboldt University in Berlin, Germany. Rebeka, (2007) 

confirmed the pathogenicity and host specificity of the FOS isolate to Striga. The isolate was 

maintained on Special Nutrient Agar (SNA) medium at -40oC. Pure Fusarium chlamydospores 

from cultures grown on potato dextrose agar (PDA) were sampled and mass produced at Plant 

Health Products (Pty) Ltd, Kwazulu-Natal, South Africa and preserved by the Discipline of Plant 

Pathology, University of KwaZulu-Natal.  

 

5.3.3 Experimental sites 

 

The six sorghum generations consisting of 6 P1, 6 P2, 7 F1, 7 F2, 6 BCP1, and 6 BCP2 were 

planted during the main cropping season of December 2015 to April 2016 at three locations, 

namely; Igunga situated in Tabora Region, Misungwi of Mwanza region and Kishapu of 

Shinyanga Region (Table 5.2). Field evaluations were conducted with and without FOS 

treatment. The three study sites represent the semi-arid areas of Tanzania known for their high 

levels of sorghum production and heavy Striga infestations, both by Sh and Sa, species. 

Therefore, natural infestation in the Striga hotspot areas was used for the study.  
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Table 5.2. Descriptions of the three study sites used for evaluation of the sorghum 
populations 
 

Location/sit
e name Region 

Latitude 
(0South) 

Longitude 
(0East) 

Altitude 
(m) 

Rainfall 
(mm) 

Temp (Min, 
0C) 

Temp  
(Max, 0C) 

Igunga Tabora 4.23 33.91 1060 134 17.50 29 

Misungwi Mwanza 2.96 33.16 1176 235 19.33 28 

Kishapu Shinyanga 3.62 33.84 1126 234 19.33 28 

Min=minimum; Max=maximum 

 

5.3.4 Experimental design and trial establishment 

 

The six generations were planted using a randomized complete blocks design with 2 

replications in each site. Each plot consisted of three rows of 2.7 m in width and 5.1 m length. 

Sorghum genotypes were planted at a spacing of 30 cm and 90 cm between plants and rows, 

respectively. Two sets of plots were prepared and used as follows: one set was planted with 

sorghum seeds treated with 75 mg of Fusarium chlamydospores, while the other set was 

planted to each genotype without Fusarium treatment. Two seeds per hill were initially sown 

and later thinned to one seedling per hill, two weeks after planting. This provided a plant density 

of 37,037ha-1. Fertilizer was applied at a dose of 60 kgha-1 NPK 20-10-5 by side dressing three 

weeks after sowing. Apart from Striga, other weeds were hand weeded immediately when 

observed. Other management practices were done according to the recommendations of the 

specific areas.  

 

5.3.5 Data collection 

 

Data on sorghum and Striga parameters were collected. Seven sorghum plants from the 

middle rows on each plot were selected at random and tagged for data collection. Data on 

sorghum parameters included days-to-50% flowering (expressed in days [d]) and seed yield 

(g/plant). Days taken from sowing to when 50% of the sorghum plants in a plot had completed 

flowering were counted from each plot for each tagged plant. Seeds separated from the panicle 

of each plant were weighed and the weight of the seeds was recorded and expressed in grams. 

A quadrant of 0.09 m2 (0.3 m width x 0.3 m length) was used for each sampled plant to 

determine its Striga count. This was done by counting the number of Striga that germinated 

within a quadrant of each plant two months after sorghum sowing, when 50% of the Striga 

from each plot germinated. 
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5.3.6 Data analysis 

 

Following separate analysis of variance and homogeneity of variance tests on the collected 

data on sorghum and Striga parameters, the data  were subjected to combined analysis of 

variance using the general linear model procedure (PROC GLM) in SAS version 9.3 (SAS 

Institute, 2011) to determine significance differences. The following model was used for data 

analysis Yijk = µ + Gi + Ej + G × E + rk (E) + eijk. Where Yijk = response on days-to- 50% 

maturity or seed yield per plant or Striga count of ith generation in jth environment of kth 

replication, µ = overall mean, Gi = generation mean, Ej = jth environment, G × E = generation 

× environment interaction, rk = kth replication within E environment and eijk = residual factor. 

Mean separation between generations was done in SAS version 9.3 (SAS Institute, 2011) 

using the least significance difference (LSD) procedure for pair-wise comparisons (P≤ 0.05), 

as suggested by Kang (1994).  

 

Data was subjected to GMA using the methodology proposed by Mather and Jinks (1971) 

following analysis of variance. GMA was performed using PROC GLM and PROC REG 

procedures in accordance with SAS macros described by Kang (1994). The genetic model 

used was: Y = m + a + d + 2aa + 2ad +2dd where;  and  are the coefficients for a 

and d, respectively, Y = generation mean, m = mean of the F2 generation as the base 

population and intercept value, a = additive genetic effect, d = dominance genetic effect, aa = 

additive x additive gene interaction effect, ad = additive x dominance gene interaction effect 

and dd = dominance x dominance gene interaction effect.  

 

A stepwise linear regression model was used to estimate the additive and dominance 

parameters. The regression analysis was carried out using PRO REG macros in SAS 

developed by Kang (1994). The regression analysis was weighted based on the inverse of the 

variance of means and matrix parameter (Checa et al., 2006). To establish the parameters 

that were acceptable within the model, R2 and F-test (goodness of- fit) were calculated 

(Ceballos et al., 1998). The F-test was calculated using the sums of squares (ss) and degrees 

of freedom (df) as used by Checa et al. (2006):  

 

FC = (SS general model) - (SS reduced model) /difference in df  
        SS residual from the general model / df residual from the general model  

Where, FC = F calculated, SS = sums of squares and df = degrees of freedom 

 

To determine the magnitude of additive, dominance and epistatic genetic effects, the model’s 

parameters were tested sequentially, one at a time, starting with additive effects and then in 
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combination with other parameters of the model (Ceballos et al., 1998). The importance of the 

gene effect estimates was based on the ratio between the sums of squares of each component 

and the total sums of square. Significance of the genetic estimates was also determined by 

dividing the estimated parameter values with their standard errors; if the value exceeded 1.96 

then it was considered significant (Singh and Chaudhary, 1995).  

 

Variance components (additive, dominance or environmental) were estimated as described by 

Mather and Jinks (1982) using the following equations: additive genetic variance = (2σ2F2) – 

σ2BCP1 + σ2BCP2, dominance genetic variance = σ2G (F2) - σ2A (F2) and environmental 

variance = 1/4 (σ2P1 + σ2P2 + (2σ2F1). Where: σ2P1 = variance of P1; σ2P2 = variance of P2; 

σ2F1 = variance of F1; σ2F2 = variance of F2; σ2BCP1 = variance of backcross to P1; σ2BCP2 = 

variance of backcross to P2.  

 

5.4 Results and discussion 

 

5.4.1 Combined analysis of variance of days to flowering, seed yield per plant 

and number of Striga per plant evaluated with and without FOS treatment in 

families of sorghum evaluated in three environments 

 

The analysis of variance for seven crosses (675 x 654, AS435 x AS426, 4567 x AS 426, 3424 

x 3993, 1563 x AS436, 4567 x AS424 and 3984 x 672) and six generations evaluated across 

three locations showed highly significant (P<0.01) differences (Table 5.3). The results from 

analyses of variance for DFL, SYP and NS are presented in Table 5.3. DFL in sorghum crosses 

675 x 654 and 3984 x 672 differed significantly (P<0.01), with and without FOS treatments, 

across the environments. Marked variations were recorded among generations in all test 

populations, which was confirmed by their larger percentage generation sum of squares (SSG 

%) (Table 5.3).  

 

SYP differed significantly (P<0.01) in crosses of 675 x 654 and 3424 x 3993.  SYP significantly 

differed between test environments in the crosses of 3984 x 672, 1563 x AS436 and 675 x 654 

due to FOS treatment. Further, the families AS435 x AS426 and 4567 x AS424 showed 

significant differences for SYP across test environments without FOS treatment. SYP showed 

significant difference (P<0.01) among generations in all the test populations. This difference 

was attributed to a larger generation sum of squares (Table 5.3). Generation by environment 

interaction showed significant difference, with and without FOS treatments, in populations of 

3984 x 672 and 675 x 654, respectively.  
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SN differed significantly (P<0.01) in populations of 675 x 654 and AS435 x AS426, with and 

without FOS treatments. Significant differences were further observed in the population 3424 

x 3993 with FOS treatment, while 675 x 654, 675 x 654, 4567 x AS424 and 3984 x 672 

exhibited significant differences without FOS treatment. Generations showed variable 

responses for SN owing to their larger percentage sums of squares when compared to their 

interaction with the environment.  

 

The significant variation revealed by sorghum genotypes among generations for DFL, SYP 

and SN in the testing environments indicated the presence of considerable genetic variation 

for DFL, SYP and Striga resistance. Difference in response of the genotypes across the testing 

environments may have partly contributed to the influence of the environment on expression 

of the genes controlling DFL, SYP and Striga resistance. These findings concurred with 

Ramaiah (1987) and Haussmann et al. (2000a) who reported variation in DFL, SYP and SN 

among sorghum genotypes grown under Striga infestation across varied environments. 
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Table 5.3. Mean squares and significant tests of days to flowering, seed yield per plant and 
number of Striga per plant evaluated with (+) and without (-) Fusarium oxysporum application 
in 7 families of sorghum across three environments 
 
Cross and source of 
variation DF 

Days to flowering Seed yield per plant Number of Striga per plant 

+ - + - + - 

675 x 654 
  

     
ENV 2 18.11** 35.03*** 16.41** 16.58* 44.19*** 516.19*** 
REP (ENV) 3 34.33*** 12.39*** 9.40* 10.39ns 2.50ns 14.83** 
Gen 5 202.31*** 104.44*** 94.25*** 138.93ns 200.51*** 777.71*** 
Gen x ENV 10 2.61ns 0.63ns 1.42ns 1.02ns 1.36ns 1.03ns 
SSEV% 2 3.37 11.70 6.33 4.49 8.00 20.94 
SSG% 5 94.20 87.24 90.92 94.13 90.77 78.86 
SSG x EV% 10 2.43 1.05 2.74 1.38 1.23 0.21 
Error 15 53.00 11.83 2.42 3.59 1.77 1.50 
Overall mean  58.94 63.89 59.63 60.5 13.39 46.78 
CV (%)  3.19 1.39 2.61 3.13 9.93 2.62 
R2 (%)   0.97 0.98 0.94 0.93 0.98 0.99 

AS435 x AS426        
ENV 2 4.75ns 6.25* 1.19ns 17.19** 30.53*** 35.36* 
REP(ENV) 3 4.58ns 5.72* 6.58ns 3.25 1.36ns 10.25ns 
Gen 5 161.18*** 53.87*** 79.69*** 138.89ns 186.36*** 261.03*** 
Gen x ENV 10 16.38ns 1.32ns 2.39ns 2.89ns 3.69ns 4.29ns 
SSEV% 2 0.97 4.24 0.56 4.54 5.93 4.98 
SSG% 5 82.30 91.30 93.80 91.64 90.48 91.99 
SSSG x EV% 10 16.73 4.46 5.64 3.82 3.59 3.03 
Error 15 9.58 1.52 2.78 1.78 1.49 5.65 
Overall mean  59.42 69.50 24.64 22.64 19.36 22.13 
CV (%)  5.21 1.78 6.77 5.90 6.31 10.74 
R2 (%)  0.87 0.93 0.91 0.97 0.98 0.94 

4567 x AS 426        
ENV 2 1.00ns 156.00** 8.08* 3.69ns 12.58ns 60.86** 
REP (ENV) 3 5.64ns 13.33ns 3.47ns 2.06ns 23.72ns 1.69ns 
Gen 5 128.18*** 56.53* 114.18*** 63.98*** 318.40*** 512.09*** 
Gen x ENV 10 3.23ns 18.03ns 1.82ns 17.59*** 15.68ns 9.83ns 
SSEV% 

 
0.30 40.26 2.67 1.47 1.42 4.38 

SSG% 
 

94.92 36.47 94.33 63.57 89.74 92.09 
SSG x EV% 

 
4.79 23.27 3.00 34.96 8.84 3.53 

Error 15 3.51 17.67 1.67 1.86 20.86 7.29 
Overall mean  59.92 60.67 49.58 43.28 18.00 18.97 
CV (%)  3.12 6.93 2.61 3.15 25.37 14.24 
R2 (%)  0.93 0.75 0.96 0.95 0.86 0.96 

3424 x 3993        
ENV 2 14.78ns 24.69** 62.69* 38.11** 2.69** 1.19ns 
REP(ENV) 3 17.00ns 26.61** 6.14ns 1.22ns 0.50ns 2.92ns 
Gen 5 131.11*** 104.04*** 395.03*** 146.98*** 9.18*** 18.23*** 
Gen x ENV 10 6.68ns 2.69ns 10.29ns 5.38ns 0.56ns 0.96ns 
SSEV% 

 
3.93 8.27 5.69 8.81 9.47 2.32 

SSG% 
 

87.19 87.2 89.64 84.97 80.66 88.37 
SSSG x EV% 

 
8.88 4.52 4.67 6.22 9.86 9.32 

Error 15 9.33 2.74 15.27 4.09 0.30 1.05 
Overall mean  57.56 57.89 27.52 18.94 2.44 4.31 
CV (%)  5.31 2.86 14.2 10.67 22.41 23.8 
R2 (%)  0.85 0.94 0.91 0.93 0.93 0.88 

1563 x AS436        
ENV 2 13.08ns 16.75* 37.03** 18.86ns 6.58ns 23.58ns 
REP (ENV) 3 13.50ns 10.06ns 4.14ns 3.06ns 8.50ns 32.47ns 
Gen 5 312.47*** 331.67*** 130.09*** 95.18** 79.47*** 1196.72*** 
Gen x ENV 10 29.05* 4.32ns 2.03ns 5.23ns 2.85ns 51.35ns 
SSEV% 

 
1.39 1.931 9.94 6.67 3.00 0.72 

SSG% 
 

83.15 95.581 87.33 84.10 90.51 91.43 
SSSG x EV% 

 
15.46 2.488 2.72 9.24 6.49 7.85 

Error 15 10.97 4.19 2.34 11.26 5.97 34.21 
Overall mean  62.33 67.33 27.86 24.06 10.00 26.58 
CV (%)  5.31 3.04 5.49 13.95 24.43 22.00 
 R2 (%)  0.92 0.97 0.96 0.77 0.84 0.93 
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Table 5.3. Continued. 
Cross and source of variation DF Days to flowering Seed yield per plant Number of Striga per plant 

+ - + - + - 

4567 x AS424        
ENV 2 7.19 64.19** 84.19ns 46.69** 1.75ns 21.33** 
REP (ENV) 3 50.39 5.03ns 26.14ns 14.58ns 3.39** 16.22** 
Gen 5 132.78*** 341.89*** 181.29** 173.89*** 43.73*** 125.27*** 
Gen x ENV 10 3.56 6.36ns 38.06ns 4.29ns 0.98ns 3.40ns 
SSEV% 

 
2.02 6.75 11.57 9.28 1.51 6.07 

SSG% 
 

93.00 89.90 62.28 86.45 94.25 89.09 
SSSG x EV% 

 
4.99 3.35 26.15 4.27 4.24 4.84 

Error 15 2.66 5.89 31.81 4.45 0.52 2.69 
Overall mean  53.44 55.53 21.03 20.64 4.33 8.00 
CV (%)  3.05 4.37 26.82 10.22 16.68 20.50 
R2 (%)  0.96 0.96 0.76 0.94 0.97 0.95 

3984 x 672        
ENV 2 24.69** 27.44** 20.08* 16.03ns 54.53** 259.19* 
REP (ENV) 3 0.81ns 8.53* 33.92** 14.58ns 13.50* 31.39ns 
Gen 5 112.56*** 134.23*** 169.52*** 94.09*** 303.24*** 154.64ns 
Gen x ENV 10 8.49* 8.21** 78.65*** 3.29ns 35.56*** 51.79ns 
SSEV% 

 
7.08 6.79 2.40 5.99 5.51 28.65 

SSG% 
 

80.73 83.05 50.62 87.86 76.54 42.73 
SSSG x EV% 

 
12.18 10.16 46.98 6.15 17.95 28.62 

Error 15 2.27 2.13 4.45 6.38 3.30 64.39 
Overall mean  56.19 56.19 37.92 33.47 9.56 18.89 
CV (%)  2.68 2.60 5.56 7.55 19.01 42.48 
 R2 (%)  0.95 0.96 0.96 0.86 0.98 0.66 

* = significant at the 0.05 probability level, ** = significant at the 0.01 probability level, *** = significant at 
the 0.001 probability level, DF = degrees of freedom,  
Env = environment; Rep (Env) = replication within environment; Gen = generation; Gen x Env = 
generation by environment interaction; SSEV % = percentage sum square of the environment; SSG % 
= percentage sum square of the generation; SSG % x Environment = percentage sum square by 
environment interaction 
CV= coefficient of variation; R2=coefficient of determination  

 

5.4.2 Response of test populations for sorghum and Striga parameters  

 

Days-to-50% flowering 

 

Mean performances and pair-wise contrasts on DFL among sorghum populations evaluated, 

with and without FOS treatments, in three environments are presented in Table 5.4. FOS 

application significantly reduced DFL in crosses 675 x 654, AS435 x AS426 and1563 x 

AS436. In these families, FOS treated entries flowered earlier, with a mean of 7 days less 

than their untreated controls. Reduced DFL was observed in FOS treated genotypes in all 

generations. Therefore, selection of individual plants with desirable characteristics within 

these families is important where early flowering is considered to be one of the Striga 

resistance components (Rebeka et al., 2013). Early flowering and FOS treated genotypes 

tended to escape Striga damage. Management of Striga through early maturing genotypes 

and FOS application of compatible sorghum genotypes was reported by Rebeka et al. (2013). 

FOS application did not exert a significant impact on sorghum families 3424 x 3993 and 

3984 x 672, where the mean DFL was similar among treated and untreated plots. These 

genotypes had FOS compatibility based on field observation of some generations (Table 

5.4). Differential response to FOS application on sorghum parameters has been reported by 
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Rebeka et al. (2013). The authors showed a significant reduction in DFL for some sorghum 

genotypes compatible with FOS.  

 

Sorghum seed yield 

 

SYP varied among test genotypes evaluated with and without FOS treatments in three 

environments (Table 5.4). Increased seed yield with a mean SYP of 6 g plant-1 was 

observed due to FOS treatment when compared to untreated controls of sorghum families 

4567 x AS 426, 3424 x 3993 and 3984 x 672. The effect of FOS was variable across test 

generations of all crosses.  The present findings support the report of Rebeka et al. (2013) and 

Mrema et al. (2017) who found significant increase in SYP in sorghum genotypes treated with 

FOS.  

 

Number of Striga plants per sorghum plant  

 

FOS treatment significantly reduced SN in sorghum family 675 x 654, 1563 x AS 436 and 3984 

x 672 (Table 5.4). The treatment led to a reduction of up to 20 Striga plants per sorghum plant 

in the test families. Selection of sorghum genotypes with farmers preferred traits and minimal 

SN among these families may improve SYP in areas infested by Striga. FOS treatment had no 

marked influence in the sorghum family 4567 x AS 426, where a mean of 18 Striga plants were 

counted per sorghum plant in both treated and untreated plots. A synergistic effect of FOS on 

some sorghum genotypes for reduced SN was observed by Mrema et al. (2017). The authors 

reported a significant reduction in SN in some FOS treated sorghum genotypes, while there 

were slight or no SN reduction in sorghum genotypes that were not compatible to FOS.  
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Table 5.4. Tukey’s multiple mean comparison and significant tests for days to flowering (DFL), 
seed yield per plant (SYP) and number of Striga per plant (SN) evaluated with (+) and without 
(-)  FOS treatment for seven pair-wise crosses and six generations evaluated in three 
environments in Tanzania.  
 
Cross and 
generation 

Days to 50% 
flowering Seed yield per plant Number of Striga plant 

+ - + - + - 

675 x 654             
P1 66.33a 70.33a 64.50a 6600a 21.83a 60.33a 
F1 65.00a 61.83c 61.45b 64.33a 15.50b 59.67a 
BCP1 60.3b 67.83b 62.83ab 61.83b 15.00cb 49.17b 
F2 54.67c 61.50c 58.67c 61.50b 13.50c 39.17c 
BCP2 54.50c 62.00c 55.67d 54.67c 9.83d 38.33c 
P2 52.83c 59.83d 54.67d 54.67c 4.67e 34.00c 
Mean 58.94 63.89 59.63 60.5 13.39 46.78 
LSD (5%) 2.3132 1.09 1.92 2.33 1.64 1.51 
AS435 x AS426       
P1 53.17b 73.33a 21.17d 31.00a 28.00a 32.00a 
F1 63.83a 71.50b 22.33cd 18.17d 19.17c 24.67b 
BCP1 54.67b 71.67b 22.50cd 24.67b 24.00b 26.00b 
F2 56.83b 67.00c 23.67c 22.50cb 15.50d 19.17c 
BCP2 62.50a 67.00c 27.67b 21.33c 15.67d 16.50cd 
P2 65.50a 66.50c 30.50a 18.17d 13.83e 14.50d 
Mean 59.42 69.50 24.64 22.64 19.36 22.13 
LSD (5%) 3.8095 1.52 2.053 1.64 1.5044 2.9251 
4567 x AS 426       
P1 55.17c 59.50ab 45.00e 40.17c 30.67a 32.83a 
F1 63.83ab 63.33a 47.83d 41.83c 18.33bc 22.67b 
BCP1 55.67c 55.83b 45.33e 40.33c 21.17b 24.50b 
F2 56.83c 59.00ab 50.67c 44.00b 14.83cd 14.00c 
BCP2 62.00b 63.17a 52.50b 44.50b 11.83d 10.83cd 
P2 66.00a 63.17a 56.17a 48.83a 11.17d 9.00d 
Mean 59.92 60.67 49.58 43.28 18.00 18.97 
LSD (5%) 2.30 5.17 1.59 1.68 5.62 3.32 
3424 x 3993       
P1 52.17d 55.17c 18.67c 13.67d 4.33a 7.00a 
F1 58.67bc 61.00b 22.83cb 15.50cd 2.17c 4.83b 
BCP1 55.00cd 53.67c 22.83cb 17.50c 3.50b 5.33b 
F2 54.50d 54.17c 26.00b 17.00c 2.00c 3.50c 
BCP2 59.83b 59.50b 35.33a 23.67b 1.67cd 2.50c 
P2 65.17a 63.83a 39.50a 26.33a 1.00d 2.67c 
Mean 57.56 57.89 27.52 18.94 2.44 4.31 
LSD (5%) 3.76 2.04 4.81 2.49 0.67 1.26 
1563 x AS436       
P1 73.50a 75.00a 34.17a 30.17a 15.33a 43.17a 
F1 66.67b 72.17b 25.83b 21.83b 11.00bc 36.17ab 
BCP1 63.33cb 70.17cb 33.00a 27.83a 12.50ab 33.67cb 
F2 60.67c 69.33c 26.00b 21.33b 8.50cd 27.33c 
BCP2 56.17d 62.67d 25.83b 22.83b 5.50d 10.50d 
P2 53.67d 54.67e 22.33cd 20.33b 7.17d 8.67d 
Mean 62.33 67.33 27.86 24.06 10.00 26.58 
LSD (5%) 4.08 2.52 1.88 4.13 3.00 7.20 
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Table 5.4. Continued.  

Cross and generation 
Days to 50% flowering Seed yield per plant Number of Striga plant 

+ - + - + - 
4567 x AS424       
P1 61.83a 65.17a 26.83ab 29.83a 8.83a 15.67a 
F1 51.67c 57.17c 18.17c 19.67c 4.67b 10.67b 
BCP1 55.33b 61.00b 28.33a 24.17b 5.50b 7.67c 
F2 52.33c 56.50c 21.33cb 17.50cd 3.67c 6.50c 
BCP2 51.33c 47.50d 15.83c 16.50d 1.83d 3.67d 
P2 48.12d 45.83d 15.67c 16.17d 1.50d 3.83d 
Mean 53.44 55.53 21.03 20.64 4.33 8.00 
LSD (5%) 2.01 2.99 6.94 2.60 0.89 2.02 
3984 x 672       
P1 63.83a 63.17a 45.50a 39.67a 22.50a 26.67a 
F1 53.83c 55.50c 32.67d 34.33b 11.17b 19.67ab 
BCP1 59.00b 60.33b 42.33b 35.17b 9.50cb 22.00ab 
F2 53.83c 55.17c 38.67c 33.17b 7.50c 17.83ab 
BCP2 53.50c 52.00d 36.17c 33.17b 4.00d 14.17b 
P2 53.17c 51.00d 32.17d 28.67c 2.67d 13.00b 
Overall mean 56.19 56.19 37.92 33.47 9.56 18.89 
LSD (5%) 1.86 1.80 2.60 3.11 2.24 9.87 

DF = degrees of freedom; P1 = parent one; P2 = Parent two; F1 = first filial generation (P1 x P2); BCP1 = Back cross 
to P1; BCP2 = back cross to P2; F2 = second filial generation 
Generation means for each cross and trait in a column followed by the same letter are not significantly different at 
p=0.05.  

 

5.4.3 Generation mean analysis 

 

Generation mean analysis for DFL, SYP and SN, with and without FOS treatment, is presented 

in Table 5.5. Additive genetic effect made highly significant (P<0.001) contributions to DFL in 

both treatments for all families. Dominant and epistatic effects exerted small contribution to 

genetic variation of families for DFL. Significant contributions of dominance genetic effect with 

FOS treatment was recorded in families 675 x 654, 4567 x AS 426, 4567 x AS424 and 3984 x 

672.  In 3984 x 672 and 4567 x AS424, the additive-by-additive gene effect was significant 

(P<0.05) due to FOS treatment. An additive-by-dominance interaction effect was the main 

contributor of genetic variation for DFL in 4567 x AS424 with FOS treatment. Dominance-by-

dominance interaction had non-significant (P>0.05) effects on DFL with FOS treatment for all 

test populations. This genetic effect had a significant influence on DFL in families 675 x 654 

and 1563 x AS436 without FOS treatment 

 

Additive gene effects were the most significant contributor (P<0.001) of genetic variation for 

SYP in all sorghum families. Also there were minimal or non-significant effects of epistatic 

genetic effects for SYP. Therefore SYP may be improved in these families through selection 

of high yielding sorghum genotypes in early generations. Dominance genetic effects were the 

significant genetic determinant (P<0.05) affecting SYP with FOS treatment in AS435 x AS426, 

3424 x 3993 and 4567 x AS 426. An additive-by-additive gene effect was noted in the cross 
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675 x 654 with FOS treatment. Additive-by-dominance showed a significant effect in the cross 

of AS435 x AS426 without FOS treatment. Dominance-by-dominance genetic effects were 

significant (P>0.05), with and without FOS treatment, in populations of 3424 x 3993 and 1563 

x AS436, and for 675 x 654 without FOS application. 

 

Additive genetic effects were the most significant (P<0.001) form of genetic variation in most 

test families, with and without FOS treatments. Significant dominant genetic effects were 

recorded in AS435 x AS426 with, and 675 x 654 and 1563 x AS436 without FOS. Additive × 

additive gene effects had significant effects (P<0.05) in AS435 x AS426, 1563 x AS436 and 

4567 x AS424 with FOS. Additive × dominance gene effects were significant (P<0.05) in 675 

x 654 and 1563 x AS436 with FOS treatment, whilst this genetic effect was significant (P > 

0.05) in 1563 x AS436 without FOS.  
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Table 5.5. Sum of squares and significant tests and genetic effects controlling days-to-50% 
flowering (DFL), seed yield per plant (SYP) and Striga number (SN) of sorghum genotypes 
evaluated in three environments in Tanzania  with (+) and without (-) FOS treatment  
 

Cross and genetic effect  

DFL SYP NS 

+ - + - + - 

675 x 654       

Replication 93.44*** 32.11** 16.91* 28.44** 7.11ns 44.44ns 
Additive (a) 646.82*** 432.02*** 432.02*** 534.02*** 936.15*** 2419.35*** 
Dominance (d) 48.34** 41.83** 7.71ns 36.76** 12.08ns 310.61** 
Additive × additive (aa) 306.35** 5.31ns 18.56* 22.88* 9.86ns 1099.59*** 
Additive × dominance (ad) 2.02ns 0.82ns 12.15ns 5.40ns 28.02** 13.07ns 
Dominance × dominance (dd) 8.03ns 42.25** 0.82ns 95.60*** 16.45ns 45.94ns 
Mean  58.94 63.89 59.63 60.50 13.39 46.77ns 
R2  (%) 0.90 0.86 0.84 0.89 0.89 0.77 
CV (%)  3.52 2.81 3.03 3.07 15.75 12.96 
AS435 x AS426       
Replication 12.25ns 9.00* 0.25ns 8.03ns 3.36ns 10.03ns 
Additive (a) 633.75*** 201.67*** 340.82*** 504.60*** 806.67*** 1188.15*** 
Dominance (d) 44.49ns 2.88ns 46.67** 148.04*** 23.14* 0.20ns 
Additive × additive (aa) 118.24** 59.40*** 0.01ns 10.97ns 68.00** 114.75** 
Additive × dominance (ad) 6.67ns 3.75ns 0.60ns 22.82* 3.75ns 1.35ns 
Dominance × dominance (dd) 2.77ns 1.63ns 10.38ns 8.03ns 30.25* 0.69ns 
Mean 59.42 69.50 24.64 22.64 19.36 22.14 
R2 (%) 0.72 0.83 0.82 0.88 0.89 0.86 
CV (%) 5.58 2.01 7.05 7.86 10.56 12.42 
4567 x AS 426       
Replication 12.25ns 28.44ns 0.25ns 1.78ns 0.11ns 0.03 
Additive (a) 470.40*** 129.07*** 522.15*** 277.35*** 1401.67*** 2257.07*** 
Dominance (d) 14.13* 3.76ns 29.78** 32.03* 64.06ns 0.08ns 
Additive × additive (aa) 151.01*** 67.56ns 5.56ns 0.77ns 122.08ns 295.60*** 
Additive × dominance (ad) 2.02ns 72.60ns 6.02ns 0.07ns 0.42ns 7.35ns 
Dominance × dominance (dd) 3.36ns 9.68ns 7.41ns 9.68ns 3.78ns 0.37ns 
Mean 59.92 60.67 49.58 43.28 18.00 18.97 
R2 (%) 0.88 0.29 0.89 0.60 0.74 0.88 
CV (%) 2.97 8.49 3.12 6.30 24.54 17.90 
3424 x 3993       
Replication 2.78ns 53.78** 0.25ns 2.78ns 0.44ns 8.03** 
Additive (a) 570.42*** 322.02*** 1760.42*** 595.35*** 43.35*** 79.35*** 
Dominance (d) 2.61ns 0.03ns 129.02** 65.36** 1.10ns 0.59ns 
Additive × additive (aa) 70.92* 190.00*** 6.76ns 0.92ns 0.37ns 9.69** 
Additive × dominance (ad) 6.67ns 5.40ns 10.42ns 0.07ns 0.07ns 1.07ns 
Dominance × dominance (dd) 4.94ns 2.78ns 68.52* 73.20** 1.00ns 0.44ns 
Mean 57.56 57.89 27.52 18.94 2.44 4.31 
R2 (%) 0.70 0.80 0.81 0.79 0.74 0.78 
CV (%) 5.44 3.84 14.71 13.59 30.91 23.01 
1563 x AS436       
Replication 0.44ns 4.00ns 4.69ns 1.00ns 25.00* 38.03ns 
Additive (a) 1316.02*** 1392.02*** 570.42*** 365.07*** 326.67*** 5096.82*** 
Dominance (d) 7.12ns 204.76*** 16.67ns 45.03* 4.76ns 252.37* 
Additive × additive (aa) 150.68** 0.04ns 0.00 6.15ns 40.79** 191.50* 
Additive × dominance (ad) 18.15ns 17.07ns 3.75ns 0.02ns 20.42* 84.02ns 
Dominance × dominance (dd) 70.37ns 44.44** 59.63** 59.63* 4.69ns 358.89** 
 Mean 62.33 67.33 27.86 24.06 10.00 26.58 
R2 (%) 0.75 0.91 0.83 0.64 0.76 0.84 
CV (%) 6.80 3.55 7.81 12.61 21.31 23.51 
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Table 5.5. Continued.  

Cross and genetic effect 
DFL SYP NS 

+ - + - + - 
4567 x AS424       
Replication 136.11*** 1.36ns 56.25ns 3.36ns 1.78ns 4.00ns 
Additive (a) 589.07*** 1632.82*** 728.02*** 735.00*** 201.67*** 459.27*** 
Dominance (d) 50.61** 6.08ns 23.14ns 68.67** 3.76ns 1.47ns 
Additive × additive (aa) 3.16ns 1.93ns 23.14ns 58.16* 10.46** 105.42** 
Additive × dominance (ad) 19.27* 35.27ns 114.82ns 1.67ns 0.00ns 8.82ns 
Dominance × dominance (dd) 1.78ns 33.38ns 17.36ns 5.98ns 2.78ns 51.36** 
Mean 53.44 55.53 21.03 20.64 4.33 8.00 
R2 (%) 0.88 0.85 0.48 0.78 0.88 0.80 
CV (%) 3.56 5.74 28.59 14.04 23.30 29.51 
3984 x 672       
Replication 0.25ns 8.03ns 0.03ns 17.36ns 40.11ns 1.00ns 
Additive (a) 432.02*** 640.27*** 646.82** 448.27*** 1224.02*** 742.02** 
Dominance (d) 102.94** 12.94ns 106.25ns 0.59ns 41.83ns 2.61ns 
Additive × additive (aa) 16.67ns 4.42ns 64.27ns 11.17ns 142.20** 22.62ns 
Additive × dominance (ad) 0.07ns 12.15ns 0.60ns 0.07ns 46.82ns 2.40ns 
Dominance × dominance (dd) 11.11ns 1.36ns 29.64ns 10.38ns 61.36ns 3.57ns 
Mean 56.19 56.19 37.92 33.47 9.56 18.89 
R2 (%) 0.77 0.78 0.46 0.72 0.75 0.27 
CV (%) 4.32 4.51 15.45 7.59 44.08 45.00 

* = significant at 0.05 probability level; ** = significant at 0.01 probability level; DF = degrees 
of freedom; CV = coefficient of variation; R2=coefficient of determination 
 

5.4.4 Relative contribution of genetic effects to sorghum and Striga parameters  

 

The relative contributions of gene effects following GMA for DFL, SYP and SN, with and without 

FOS treatment are presented in Table 5.6. The relative contribution of gene effect showed that 

the additive genetic effect was significant, with and without FOS treatment, for all test 

populations. Additive genetic effects contributed to 75% and 74% of the total genetic variation 

for DFL, with and without FOS, respectively. Dominance and epistatic genetic effects made 

small contributions to the total genetic variation for DFL. A dominance genetic effect (18%) 

was recorded with FOS treatment in families 3984 x 672. In 675 x 654 and 4567 x AS426, 

additive-by-additive gene effects contributed to 28% and 23% of the total genetic variation 

associated with FOS treatment, in that order. Additive-by-dominance and dominance-by-

dominance interactions made little contribution to the total genetic variation for DFL in all test 

populations.  

 

Likewise, the additive gene effect (83%) contributed the most to the total genetic variation for 

SYP in all sorghum families. Mean relative contributions of 85% and 81% of additive genetic 

variance was recorded for SYP in test populations, with and without FOS treatments, 

respectively. Dominance and epistatic genetic effects made relatively small contributions to 

the genetic variation of families for SYP. In some families such as AS435 x AS426, 4567 x AS 

426 and 3984 x 672 dominance genetic effects made significant contributions with the FOS 

treatment.   
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Also, the additive genetic effect provided a significant proportion of the genetic variation 

present for SN in most test families, with and without FOS treatments. This contribution 

amounted to 87% and 82%, with and without FOS, respectively. Dominance and epistatic 

genetic effects made relatively small contributions to SN. Overall, additive genetic effects 

contributed the most to the total genetic variation for DFL, SYP and SN. This outcome suggests 

the possibility of fixing additive genes through individual plant selection in the early segregating 

generation followed by pure line or single descent selection methods in advanced generations. 
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Table 5.6. Relative contribution of gene effect (%) for days to flowering (DFL), seed yield per 
plant (SYP) and Striga number (SN) of sorghum populations evaluated with (+) and without (-
) FOS in three environments in Tanzania  

Cross and genetic effect 

Days to 50% 
flowering Seed yield per plant Number of Striga 
+ - + - + - 

675 x 654       
Replication 0.86 5.79 3.46 3.93 0.70 1.13 

Additive (a) 58.54 77.93 88.5 73.85 92.72 61.51 
Dominance (d) 4.370 7.55 1.58 5.08 1.20 7.90 
Additive × additive (aa) 27.72 0.96 3.80 3.16 0.98 27.96 
Additive × dominance (ad) 0.18 0.15 2.49 0.75 2.77 0.33 
Dominance × dominance (dd) 0.73 7.62 0.17 13.22 1.63 1.17 
AS435 x AS426       
Replication 1.50 3.23 0.06 1.14 0.36 0.76 
Additive (a)  77.46 72.46 85.48 71.83 86.26 90.34 
Dominance (d) 5.44 1.04 11.70 21.07 2.47 0.02 
Additive × additive (aa) 14.45 21.34 0.00 1.56 7.27 8.72 
Additive × dominance (ad) 0.81 1.35 0.15 3.25 0.40 0.10 
Dominance × dominance (dd) 0.34 0.59 2.60 1.14 3.23 0.05 
4567 x AS 426       
Replication 1.88 9.14 0.04 0.55 0.01 0.00 
Additive (a) 72.02 41.49 91.42 86.22 88.04 88.15 
Dominance (d) 2.16 1.21 5.21 9.96 4.02 0.00 
Additive × additive (aa) 23.12 21.71 0.97 0.24 7.67 11.54 
Additive × dominance (ad) 0.31 23.34 1.05 0.02 0.03 0.29 
Dominance × dominance (dd) 0.51 3.11 1.30 3.01 0.24 0.01 
3424 x 3993       
Replication 0.42 9.37 0.01 0.38 0.96 8.10 
Additive (a) 86.65 56.10 89.12 80.71 93.56 80.02 
Dominance (d) 0.40 0.00 6.53 8.86 2.38 0.59 
Additive × additive (aa) 10.77 33.1 0.34 0.12 0.79 9.77 
Additive × dominance (ad) 1.01 0.94 0.53 0.01 0.14 1.08 
Dominance × dominance (dd) 0.75 0.48 3.47 9.92 2.16 0.45 
1563 x AS436       
Replication 0.03 0.24 0.72 0.21 5.92 0.63 
Additive (a) 84.21 83.74 87.06 76.55 77.35 84.64 
Dominance (d) 0.46 12.32 2.54 9.44 1.13 4.19 
Additive × additive (aa) 9.64 0.00 0.00 1.29 9.66 3.18 
Additive × dominance (ad) 1.16 1.03 0.57 0.00 4.83 1.40 
Dominance × dominance (dd) 4.50 2.67 9.10 12.50 1.11 5.96 
4567 x AS424       
Replication 17.01 0.08 5.84 0.39 0.81 0.63 
Additive (a) 73.63 95.44 75.62 84.21 91.48 72.86 
Dominance (d) 6.33 0.36 2.40 7.87 1.71 0.23 
Additive × additive (aa) 0.40 0.11 2.40 6.66 4.74 16.72 
Additive × dominance (ad) 2.41 2.06 11.93 0.19 0.00 1.40 
Dominance × dominance (dd) 0.22 1.95 1.8 0.68 1.26 8.15 
3984 x 672       
Replication 0.04 1.18 0.00 3.56 2.58 0.13 
Additive (a) 76.73 94.27 76.31 91.89 78.65 95.84 
Dominance (d) 18.28 1.91 12.54 0.12 2.69 0.34 
Additive × additive (aa) 2.96 0.65 7.58 2.29 9.14 2.92 
Additive × dominance (ad) 0.01 1.79 0.07 0.01 3.01 0.31 
Dominance × dominance (dd) 1.97 0.20 3.50 2.13 3.94 0.46 

* = significant at 0.05 probability level, ** = significant at 0.01 probability level, DF = degrees of freedom 
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5.5 Conclusions 

 

The present study examined the genetic effects controlling Striga resistance in a sorghum 

population. Additive genetic effects were responsible for most of the genetic variation present 

for DFL, SN and SYP in seven sorghum populations evaluated at three environments in 

Tanzania. Dominance and epistatic genetic effects made minor contributions in the test 

populations and environments. FOS treatment enhanced the expression of additive genes, 

which had a complementary effect on improved SYP, reduced SN and DFL. FOS application 

accelerated the primary contribution of additive genetic effect raising the possibility of breeding 

for Striga resistant sorghum genotypes with FOS compatibility. This may allow deployment of 

superior pure line sorghum cultivars adapted to Striga prone environments in Tanzania. The 

following crosses had improved levels of Striga resistance: 675 x 654, 1563 x AS436, 4567 x 

AS424 and 3984 x 672.  Families 675 x 654, AS435 x AS426 and 1563 x AS436 had reduced 

DFL. Crosses 4567 x AS 426, 3424 x 3993 and 3984 x 672 were selected with higher SYP. 

These crosses are useful genetic resources to advance integrated Striga management (ISM) 

in the semi-arid regions of Tanzania. Following this chapter is a study on the maximum 

germination distance (MGD) aimed to determine gene action influencing MGD of Striga 

hermonthica and S. asiatica among selected sorghum genotypes treated with a biocontrol 

agent, Fusarium oxysporum f. sp. strigae (FOS) for effective breeding with Striga resistance 

and FOS compatibility 
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CHAPTER SIX  

Gene action controlling maximum germination distance of Striga 

hermonthica and S. asiatica in sorghum  

6.1 Abstract 

 

Maximum germination distance (MGD) of Striga hermonthica (Sh) and S. asiatica (Sa) is one 

the important components of Striga resistance in sorghum. However, there is a lack of 

information on gene action controlling MGD of Striga, especially with the combined use of host 

resistance and Fusarium oxysporum f.sp. strigae (FOS), a biocontrol agent of the parasitic 

weed. Knowledge about the host gene action conditioning MGD of Striga, with or without FOS 

treatment, could be valuable for the development of improved sorghum varieties with Striga 

resistance and high yields. The objective of this part of study was to determine gene action 

controlling MGD of Sh and Sa in selected sorghum genotypes with FOS treatment. Twelve 

sorghum parents selected for Striga resistance, FOS compatibility or superior agronomic 

performances were crossed using a bi-parental mating design. The selected male and female 

parents and their F1 progenies, backcross derivatives and the F2 segregants were evaluated 

for their low haustorium initiation factor (LHF) on agar-gel assay in two sets. One set had Sh 

seed and the other set had Sa seed, both with and without FOS. Genotypes were evaluated 

using a split-plot design with three replications. MGD, was recorded for each treatment as the 

most distantly germinated Striga. This was followed by a pot experiment intended to evaluate 

the presence of FOS on sorghum roots and soil. Generation mean analysis showed the 

preponderance of additive, dominance and epistatic gene actions controlling MGD in the 

evaluated sorghum populations. In the set inoculated with Sh, the relative contribution of the 

additive, additive-by-additive and dominance-by-dominance genetic effect for MGD with FOS 

were 20%, 33% and 36%, respectively. In the set with Sa, the relative contribution of additive, 

additive-by-additive and dominance-by-dominance genetic effect were 21%, 32% and 35% 

with FOS, respectively. The influence of a dominance genetic effect and the interaction of an 

additive-by-dominance genetic effect were minimal. MGD was reduced by a mean of 1 cm due 

to FOS treatment in both sets involving Sh and Sa. There were varied FOS levels on sorghum 

root and soil samples, indicating variable colony forming units associated in the tested 

sorghum genotypes. This study demonstrated that additive, additive-by-additive and 

dominance-by-dominance genes were predominantly responsible for the inheritance of MGD 

of Sh and Sa in sorghum. Cultivar development exploiting these genetic effects contributing to 
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reducing MGD in the selected populations with FOS may provide enhanced response to 

selection for integrated Striga management (ISM) programme.  

 

Key words: Fusarium oxysporum f.sp strigae, genetic effect, integrated Striga management, 

Maximum germination distance, sorghum 

 

6.2 Introduction 

 

Productivity of sorghum [Sorghum bicolour (L.) Moench] is affected by various biotic and 

abiotic stresses notably by Striga infestation, drought, storage pests and damage by birds. 

Further, a lack of access to seeds of improved varieties, and a lack of access to production 

inputs, such as fertilizers, insecticides, fungicides and herbicides are the most important yield 

limiting factors of sorghum in sub-Saharan Africa (Mrema et al., 2017). Striga [Striga 

hermonthica (Del.) Benth and S. asiatica (L.) Kuntze] are obligate root parasites cause severe 

yield losses in cereal crops including sorghum, rice (Oryza glaberrima Steudel and O. sativa 

L.), pearl millet (Pennisetum glaucum L.) and maize (Zea mays L.) (Riches, 2003; Rodenburg 

et al., 2015).  

 

Integrated Striga management (ISM) in sorghum is a system that involves the use of resistant 

varieties, biological control agents, cultural practices and chemical control methods to minimize 

losses (Hearne, 2009). Breeding for Striga resistant sorghum is the cheapest and most 

environmentally friendly management option (Ejeta, 2007). Low haustorium initiation factor 

(LHF) reduced Striga germination stimulation, mechanical barriers, inhibition of germ tube 

exoenzymes by root exudates, phytoalexin synthesis, incompatibility, antibiosis, insensitivity 

to Striga toxins, and avoidance through root growth habits are reported to be important 

components of Striga resistance in sorghum (Wegmann,1996).  

 

The use of sorghum varieties that exude low levels of Striga germination factors or LHF is 

reported to be one of the most effective methods for Striga management (Lynn and Chang, 

1990). Sorghum genotypes with LHF have been reported to support few or no Striga at all 

(Hess et al., 1992; Ejeta et al., 1997). The agar-gel assay developed by Hess et al. (1992) is 

an effective tool for screening host genotypes for reduced levels of Striga germination factors. 

In this system, preconditioned Striga seeds are spread onto agar in petri dishes followed by 

sowing of sorghum seeds. The emerging radicles trigger the germination of Striga seed. The 

maximum distance between sorghum rootlets and germinated Striga seeds is referred to as 

maximum germination distance (MGD), one of the important components of Striga resistance. 
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Sorghum genotypes with a germination distance below 10 mm are classified as low 

germination stimulant types (Ejeta, 2000).  

 

Gene effects are broadly classified into additive, dominance and epistasis. Further, additive x 

additive (aa), additive x dominance (ad) and dominance x dominance (dd) interaction effects 

of genes govern trait expression. The nature and type of gene action is important in designing 

an effective breeding program and in the subsequent gene deployment strategy in a Striga 

resistance breeding program. Several minor genes have been reported to enhanced 

germination of Striga (Vogler et al., 1996). Haussmann et al. (1996) reported the presence of 

quantitative genetic variation with a preponderance of additive genetic effects influencing 

stimulation of Sh seed germination. Partial or complete dominant genes for Striga susceptibility 

were also reported for sorghum hybrids derived from crosses between resistant and 

susceptible parents (Obilana, 1984).  

 

Generation mean analysis (GMA) has been widely used for estimating gene effects. The 

method is based on the following six generations: female parent (P1) and male parent (P2), F1 

progenies, F2 segregants, backcrosses to P1 (BCP1) and P2 (BCP2) (Anderson and 

Kempthorne, 1954; Hayman, 1958). The mean response of these generations allows 

estimation of genetic effects such as additive, dominance and epistasis components or their 

interactions. The technique is mostly used when the parents are divergent, possessing 

complementary and favourable alleles. GMA has been widely used to study gene action 

controlling Striga resistance in sorghum (Gamble, 1962), maize (Badu-Apraku et al., 2013) and 

rice (Gurney et al., 2006). The mode of gene action responsible for controlling MGD of Striga 

in sorghum has not been widely reported. This information is necessary to exploit the nature 

of genetic effects in Striga resistance breeding or integrated striga management (ISM) 

programs.  

 

Integrated Striga management (ISM) that combines the use of resistant sorghum genotypes 

compatible with Fusarium oxysporum f.sp. strigae (FOS), a biocontrol agent of Striga, is an 

option to control the parasite and to bolster sorghum productivity (Rebeka et al., 2013). 

Pathogenic isolates of FOS have been reported to be effective bio-herbicides in managing 

Striga infestation in sorghum, particularly when the method is integrated with other control 

practices (Rebeka et al., 2013). FOS has been shown to be host specific, pathogenic and 

highly destructive against Striga, and easy to mass produce (Ciotola et al., 2000). When 

sorghum seeds are treated with FOS, the fungus grows well in the rhizosphere of the young 

and developing sorghum plants, and subsequently parasitizes Striga plant stopping them from 

successfully attacking the roots of the host plant (Rebeka, 2007).  
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Breeding sorghum varieties with the traits of Striga resistance combined with compatibility with 

FOS could improve grain yield and reduce Striga infestation. This could improve the adoption 

of newly released varieties by farmers. The effect of FOS application on the selected 

compatible sorghum parents as measured by MGD is yet to be explored. Selection of desirable 

parents, their crosses and backcross derivatives with reduced MGD and compatibility with FOS 

would provide the basis for an ISM. This requires understanding of the genetic variability and 

inheritance of MGD of Striga for effective selection in sorghum breeding programs (Mrema et 

al., 2017).  

 

In an effort to select Striga resistant and FOS compatible sorghum lines, promising genotypes 

were identified under controlled evaluation conditions (Mrema et al., 2017). Some of the 

selected landraces were relatively poor yielders but were well adapted to the drier regions of 

Tanzania and possessed farmers-preferred traits (Mrema et al., 2016). In contrast, some of 

the newly released sorghum genotypes had better yields and FOS compatibility but lacked 

essential farmer preferred traits. Detailed information on MGD of Striga of the selected 

complementary parents, F1s, backcross derivatives and F2 populations were needed to 

establish the gene action influencing MGD of Striga, with or without FOS treatment. Therefore, 

the objective of this study was to determine the gene action controlling the maximum 

germination distance of Sh and Sa of sorghum genotypes combined with FOS treatment. The 

hypothesis being tested was that additive, dominance or epistatic genetic effects were 

important in controlling MGD of Striga and that the new families could be systematically 

selected to develop resistant cultivars with FOS compatibility.  

 

6.3 Materials and methods 

 

6.3.1 Plant materials and crosses 

 

The study used 12 selected parents that were identified to have good general and specific 

combining ability effects for days-to-50% flowering, seed yield per plant and Striga resistance. 

Deatail descriptions of these materials are summarised in Chapter 4, Section 4.3.1  

 

6.3.2 Bio-control agent and inoculum preparation   

A pathogenic strain of F. oxysporum f.sp. strigae (FOS) originally isolated from sorghum fields 

infested with Striga in north eastern lowlands of Ethiopia was used as a bio-control agent for 

Striga management (Rebeka et al., 2013). The detail of the bi-control agent and inoculum 

preparation are outlined in Chapter 4, Section 4.3.2  
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6.3.3 Experimental site 

 

The six breeding generations consisting of six female parents (P1) and six male parents (P2), 

F1 progenies, F2 segregants, backcrosses to P1 (BCP1) and backcrosses to P2 (BCP2) were 

evaluated to determine the MGD of Sh and Sa and their compatibility to FOS. The study was 

conducted at the Plant Pathology screen-house facility and the African Seed Health Centre 

laboratory in the Crop Science Department of Sokoine University of Agriculture in Tanzania.  

 

6.3.4 Experimental design and trial establishment 

 

Screening of sorghum genotypes for LHF and compatibility with FOS 

 

Screening of sorghum genotypes to determine the MGD of Sh and Sa was carried out in two 

sets of experiments using an agar-gel assay developed by Hess et al. (1992). The two sets 

involved Sh or Sa, and both were with and without FOS treatment. The experiments were laid 

out in a split plot design with three replications. FOS was used as the main-plot factor and 

sorghum genotypes as the sub-plot factor.   

 

MGD was screened using the procedure developed by Hess et al. (1992). The Striga seeds 

require pre-treatment, they were first surface sterilized by soaking in a 1% sodium hypochlorite 

solution for 5 minutes and then washed with distilled water on filter paper on a funnel until the 

chlorine odour disappeared. Two layers of circular filter paper were placed in a Petri dish base 

of 9 cm diameter and wetted with distilled water. Five mm Discs of filter paper were made by 

a core of 5 mm diameter and arranged on the moist paper in the Petri dish base. The sterilized, 

dried Striga seeds were sprinkled on the discs and the Petri dishes were covered with the lid. 

The Petri dishes were kept under dark conditions by covering the Petri dish with aluminium 

foil. The Striga seeds were then incubated at 25°C for 15 days. For the MGD study involving 

sorghum seeds treated with or without FOS, the preconditioned Striga seeds were randomly 

sown onto water agar in Petri dishes followed by planting one sterilised sorghum seed in each 

Petri dish. Another dish was sown with Striga seed and one sorghum seed dressed with 75 

mg of FOS spores. Both sorghum and Striga seeds were left to germinate for 15 days. The 

maximum germination distance (MGD) was determined after 5 days by measuring the distance 

between the most distant germinated Striga and sorghum root.  
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Determination of the presence of FOS on sorghum roots and in soil  

 

The above six generations were planted in plastic pots in screen house conditions using a 

randomized complete design with 3 replications. Plastic pots of 4 kg capacity were filled with 

soil and arranged on benches of 1.5 m height. Each replication had 42 pots arranged in 6 lines, 

each with 7 pots. Each pot was randomly allocated to each genotype. Two seeds coated with 

75 mg of FOS product per variety were planted in each pot. Thinning was done after 

germination and one seedling per pot was allowed to grow. Fifty days after planting, soil and 

plant root samples were taken to monitor changes in FOS population and to determine the 

persistence of the FOS propagules in sorghum rhizosphere environments. The FOS 

propagules per gram of soil were determined using a modified serial dilution plate technique 

as described by Stapleton and Devay (1982). A cylindrical corer, 10 cm in depth and 1 cm in 

diameter, was used to remove sub-samples of soil from the infested top soil of each pot. Three 

subsamples, one from the centre and two from opposite sides of each pot were collected and 

mixed together to form a composite sample. The samples collected from each pot were air 

dried, crushed, mixed thoroughly and sieved using a 600 mm mesh. The samples were then 

diluted in 0.05% water agar and 1 ml aliquots were spread onto three peptone-

pentachloronitrobenzene agar (PPA). The cultures were incubated for 7 days, and then the 

concentration of colony forming units (CFU) per gram of sample was determined. 

 

The compatibility of FOS with sorghum roots was studied using root samples collected from 

each pot. The roots were cut into small pieces and surface sterilized in 5% sodium hypochlorite 

for 3 minutes. Then the samples were placed into petri dishes containing potato dextrose agar 

(PDA). The plates were incubated at 25oC for seven days for visible fungal growth. After the 

incubation period, microscopic observation was carried out to observe the number of CFU.  

 

6.3.5 Data analysis 

 

Separate analysis of variance and homogeneity of variance tests were conducted, followed by  

combined analysis of variance (ANOVA) using the general linear model procedure (PROC 

GLM) in SAS version 9.3 (SAS Institute, 2011) to determine significance differences. The 

following model was used for data analysis: Yijk = µ + Gi + Ej + G × E + rk (E) + eijk. Where 

Yijk = response on MGD of ith generation in jth FOS interaction of kth replication, µ = overall 

mean, Gi = generation mean, Ej = jth FOS interaction, G × FOS interaction = generation × 

FOS interaction, rk = kth replication within FOS and eijk = residual factor. Independent samples 

t-test was used to assess the significance difference between FOS coated and uncoated 

sorghum genotypes’ on MGD. Mean separation between generations for MGD and number of 
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CFU was done in SAS version 9.3 (SAS Institute, 2011) using the least significance difference 

(LSD) procedure for pair-wise comparisons (P≤ 0.05), as suggested by Kang (1994). 

To determine gene action, data was subjected to generation mean analysis (GMA) using the 

methodology proposed by Mather and Jinks (1971), following ANOVA. GMA was performed 

using PROC GLM and PROC REG procedures in accordance with SAS macros described by 

Kang (1994). The genetic model used was: Y = m + a + d + 2aa + 2ad +2dd, where  

and  are the coefficients for a and d, respectively; Y = generation mean; m = mean of the F2 

generation as the base population and intercept value; a = additive genetic effect, d = 

dominance genetic effect; aa = additive x additive gene interaction effect; ad = additive x 

dominance gene interaction effect; and dd = dominance x dominance gene interaction effect. 

A stepwise linear regression model was used to estimate the additive and dominance 

parameters. The parameters of the model were tested sequentially, starting with additive 

effects in order to determine the magnitude of additive, dominance and epistatic genetic effects 

as described by Ceballos et al. (1998). The importance of the gene effects was estimated as 

the ratio of the sums of squares of each component over the total sums of square. Significance 

of the genetic estimates was determined by dividing the estimated parameter values with their 

standard errors and was considered significant if the value exceeded 1.96 (Singh and 

Chaudhary, 1995). 

 

To determine the magnitude of additive, dominance and epistatic genetic effects, the model’s 

parameters were tested sequentially, one at a time, starting with additive effects and then in 

combination with other parameters of the model (Ceballos et al., 1998). The importance of the 

gene effect estimates was based on the ratio between the sums of squares of each component 

and the total sums of square. Significance of the genetic estimates was also determined by 

dividing the estimated parameter values with their standard errors; if the value exceeded 1.96, 

then it was considered significant (Singh and Chaudhary, 1995).  

 

6.4 Results and discussion 

 

6.4.1 Evaluation of mean germination distance (MGD) of Striga hermonthica in 

sorghum, with and Fusarium oxysporum f.sp. strigae (FOS)  

 

Analysis of variance of MGD among sorghum families, with and without FOS  

The analysis variance of the MGD among six sorghum crosses (675 x 654, AS435 x AS426, 

3424 x 3993, 1563 x AS436, 4567 x AS424 and 3984 x 672) and six generations, evaluated 

with and without FOS application differed, significantly (P<0.01) (Table 6.1). Except for the 
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following crosses: AS435 x AS426 and 4567 x AS 426, other families interacted significantly 

(P<0.01), with FOS application affecting MGD.  

 

The significant variation revealed by sorghum genotypes among generations for MGD 

indicated the presence of considerable genetic variation for LHF, which is an essential factor 

for Striga germination. These findings concurred with Hess et al. (1992) who reported variation 

in MGD for sorghum genotypes evaluated for Sh susceptibility in an agar-gel assay. Interaction 

between sorghum genotypes with FOS application indicated the variability in FOS compatibility 

among the sorghum genotypes. The presence of sorghum genotypes compatible with FOS 

was also reported in earlier studies conducted by Mrema et al. (2017). 
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Table 6.1. Mean squares and significance tests of the effect of FOS on germination distance between sorghum seed and the most distantly 
germinated Sh in six families of sorghum  
 

Source of Variation DF 
Families 

675 x 654 AS435 x AS426 3424 x 3993 1563 x AS436 4567 x AS424 3984 x 672 

Replication 2 0.50 0.37 0.20 1.08 1.21 1.19 

FOS  1 49.88*** 6.85*** 18.35*** 14.19* 12.02** 12.84* 

Error (a) 2 0.32 0.02 0.01 0.18 0.10 0.42 

Generation 5 2.21*** 11.24*** 15.59*** 20.48*** 15.79*** 17.06*** 

FOS x Generation 5 7.43*** 0.10ns 0.74** 1.22*** 1.17*** 1.05* 

Error (b) 20 0.17 0.09 0.18 0.13 0.23 0.31 

Total 35             

 
DF = degrees of freedom; FOS = Fusarium oxysporum f.sp. strigae. 
*Significant difference at .05 probability level. 
**Significant difference at .01 probability level. 

***Significant difference at .001 probability level. 
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6.4.2 Responses of the tested sorghum population in relation to MGD of Striga 

and FOS treatment 

 

Mean responses and pair-wise contrasts in relation to MGD of Striga among sorghum families 

evaluated, with and without FOS treatments, are presented in Table 6.2. Except for the 

sorghum family AS435 x AS426, FOS application significantly reduced MGD in all other 

crosses. In these families, FOS treated entries had reduced MGD measures as compared to 

their untreated controls. Sorghum genotypes with an MGD below 10 mm were reported to be 

Striga resistant (Ejeta, 2000). These genotypes were reported to support few or no Striga 

(Ejeta et al., 1997). Therefore, selection of individual plants with desirable characteristics within 

families with a reduced MGD and compatibility with FOS would control Striga infestation (Ejeta, 

2000; Mrema et al., 2017). 

 

Table 6.2. Mean maximum germination distance (MGD) of Sh among six sorghum families, 

with (+) and without (−) FOS application  

Generation 

675 x 654 AS435 x AS426 3424x3993 1563xAS436 4567xAS424 3984x672 

+ - + - + - + - + - + - 

P1 5.23 7.67 3.70 4.77 4.43 6.97 3.73 6.43 3.40 6.13 3.63 6.00 

P2 0.60 1.03 0.30 1.43 1.07 2.63 0.43 0.83 0.33 0.67 0.50 1.27 

F1 3.27 5.90 1.83 2.43 2.33 3.40 0.93 1.70 2.77 4.23 1.30 2.20 

F2 2.97 3.80 2.47 3.10 1.27 2.37 0.87 1.93 1.20 2.37 1.30 1.90 

BCP1 4.10 4.77 3.17 4.30 3.03 4.83 2.73 4.73 2.27 3.07 3.13 5.27 

BCP2 1.53 2.00 0.77 1.43 1.30 1.80 0.30 0.90 0.67 1.10 0.87 1.27 

Mean 2.95 4.20 2.04 2.91 2.24 3.67 1.50 2.75 1.77 2.93 1.79 2.99 

Significance test *** *** *** *** *** *** *** *** *** *** *** *** 

LSD (5%) 0.93 0.74 0.44 0.63 0.67 0.85 0.27 0.89 0.79 0.94 0.50 1.34 

***Significant difference at .001 probability level 

 

6.4.3 Generation mean analysis of MGD of Sh 

 

Generation mean analysis for MGD of Sh, with and without FOS, is presented in Table 6.3. 

Additive, dominant and epistatic effect contributed significantly to the outcomes of the MGD 

for sorghum population, evaluated with and without FOS. Additive genetic effect made highly 

significant (P<0.001) contributions to MGD in both treatments for all families. Dominant and 

epistatic effects also contributed to genetic variation among families for MGD. Significant 

contributions of dominance genetic effects with FOS treatment were recorded for families 675 

x 654, 3424 x 3993, 1563 x AS436 and 4567 x AS424. In all crosses, the additive-by-additive 

gene effect was significantly (P<0.001) higher after the FOS treatment. Additive-by-dominance 

interaction effects were the main contributor of genetic variation for MGD in AS435 x AS426, 
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3424 x 3993, 1563 x AS436, and 3984 x 672 with FOS treatment. Dominance-by-dominance 

interaction had significant (P<0.001) effects on MGD for all tested populations, with and without 

FOS treatments. 
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Table 6.3. Mean squares and significance tests for maximum germination distance between the sorghum seed, and the most distantly germinated 
Sh, evaluated with (+) and without (-) Fusarium oxysporum application for six families of sorghum 
 

Source/gene effect  

Families 

675 x 654 AS435 x AS426 3424 x 3993 1563 x AS436 4567 x AS424 3984 x 672 

+ - + - + - + - + - + - 

Replication 0.78 1.15 0.11 0.28 0.13 0.07 0.25 1.01 0.70 0.61 0.13 1.48 

Additive 7.11*** 6.08*** 5.29*** 6.53*** 5.90*** 11.91*** 8.97*** 27.27*** 0.77*** 5.38*** 7.60*** 17.33*** 

Dominance 2.23* 22.46*** 0.11ns 0.00ns 2.36** 3.69** 0.20* 0.44ns 4.79*** 20.24*** 0.00ns 0.00ns 

Additive x additive 10.87*** 24.19*** 4.08*** 6.29*** 12.96*** 24.19*** 11.12*** 26.24*** 9.60*** 16.52*** 9.59*** 29.74*** 

Additive x dominance 0.00ns 0.01ns 0.26*** 1.63** 0.80* 8.22*** 2.82*** 6.35*** 0.00ns 0.32ns 0.77** 4.33* 

Dominance x dominance 22.30*** 38.04*** 16.95*** 15.56*** 3.95*** 7.69*** 6.32*** 18.81*** 7.35*** 19.85*** 6.64*** 14.58*** 

R 2 0.94 0.98 0.98 0.96 0.95 0.96 0.99 0.97 0.93 0.96 0.97 0.93 

CV (%) 17.30 9.69 11.73 11.91 16.38 12.74 9.96 17.68 24.35 17.68 15.26 24.72 

 
*Significant difference at .05 probability level. 
**Significant difference at .01 probability level. 

***Significant difference at .001 probability level. 

R2= coefficient of determination  

CV= coefficient of variation 
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6.4.4 Relative contribution of the genetic effects on MGD of Sh 

 

The relative contributions of gene effects on MGD of Sh in treatments with and without FOS 

are presented in Table 6.4. The relative contribution of gene effect showed that additive, 

dominance and epistatic genetic effect were significant, with and without FOS treatment, for 

some of the tested families. Additive genetic effects contributed to 20% and 21% of the total 

genetic variation for MGD, with and without FOS, respectively. However, contribution was 

lower than the respective contribution from additive-by-additive and dominance-by-dominance 

gene effects. Dominance and an additive-by-dominance genetic effect made small 

contributions to the total genetic variation. A significant dominance genetic effect of 20% and 

32% was recorded for the cross 4567 x AS424 with and without FOS, respectively. Additive-

by-additive gene effects contributed to 33% and 32% of the total genetic variation for families 

with and without FOS, respectively. Additive-by-dominance interaction made little contribution 

to the total genetic variation for MGD for all tested families. Dominance-by-dominance 

interaction made higher contributions of 36% and 31% to the total genetic variation for MGD 

in all tested families with and without FOS, respectively.   

 

Overall, additive, dominance and non-additive genetic effects each contributed about 20-30% 

to the total genetic variation for MGD. Additive and epistasis gene effects have been found to 

make more significant contribution than dominance gene action in breeding for Striga 

resistance in sorghum (Kulkarni and Shinde, 1985). This study concurs with Kulkarni and 

Shinde (1985), who reported that Striga resistance was controlled by both additive and non-

additive gene action. This outcome suggests the possibility of fixing additive genes through 

individual plant selection in the early segregating generation, followed by pure line or single 

seed descent selection methods in advanced generations.  
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Table 6.4. Relative contribution of genetic effect (%) for maximum germination distance between the sorghum seed and the most distant 
germinated Sh evaluated with (+) and without (-) FOS in six sorghum populations 
 

Source/gene effect 

Families 

675 x 654 AS435 x AS426 3424 x 3993 1563 x AS436 4567 x AS424 3984 x 672 

+ - + - + - + - + - + - 

Replication 3.55 2.48 0.80 1.85 1.02 0.26 1.64 2.48 5.87 1.91 1.02 4.30 

Additive  16.13 6.53 19.67 21.37 22.47 21.32 29.97 33.61 3.21 8.46 30.58 25.13 

Dominance  5.05 24.13 0.42 0.00 9.01 6.61 0.66 0.54 20.05 31.87 0.00 0.00 

 Additive × additive  24.66 25.99 15.16 20.57 49.38 43.32 37.17 32.35 40.14 26.01 38.58 43.14 

Additive × dominance  0.01 0.01 0.97 5.34 3.05 14.71 9.43 7.83 0.00 0.50 3.09 6.28 

Dominance × dominance  50.6 40.87 62.98 50.88 15.06 13.78 21.13 23.19 30.72 31.24 26.72 21.15 
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6.4.5 Evaluation of MGD of Sa for sorghum populations, with and without FOS  

Analysis of variance of MGD of Sa for sorghum families, with and without application of 

FOS  

 

The analysis of variance for six sorghum crosses (675 x 654, AS435 x AS426, 3424 x 3993, 

1563 x AS436, 4567 x AS424 and 3984 x 672), and six generations, evaluated with and without 

FOS application for MGD were highly significantly (P<0.05) different (Table 6.5). Sorghum 

crosses such as 675 x 654, 1563 x AS436 and 4567 x AS424 interacted significantly (P<0.05) 

with FOS application.   

 

The significant variation revealed for sorghum genotypes among generations for MGD 

indicated the presence of considerable genetic variation for LHF secretion. These findings 

concurred with Hess et al. (1992) who reported variation in MGD among sorghum genotypes 

evaluated for Striga infestation on agar-gel assay. Interaction of sorghum genotypes with FOS 

application indicated variable compatibility among sorghum genotypes for FOS. The presence 

of certain sorghum genotypes compatible with FOS was reported in earlier studies conducted 

by Mrema et al. (2017).  
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Table 6.5. Mean squares and significance tests of the effect of FOS on the germination distance between sorghum seed and the most distant 
germinated Sa in six families of sorghum 
  

Source of Variation DF 
Families 

675 x 654 AS435 x AS426 4567 x AS 426 1563 x AS436 4567 x AS424 3984 x 672 

Replication 2 0.80 0.29 0.01 0.73 1.19 0.65 

FOS  1 11.45* 6.85* 0.87* 11.33* 12.84* 10.56* 

Error (a) 2 0.40 0.22 0.02 0.29 0.42 0.17 

Generations 5 14.68*** 9.43*** 3.63*** 12.04*** 17.06*** 12.31*** 

FOS x Generations 5 1.02* 0.12ns 0.02ns 0.59* 1.05* 0.39ns 

Error (b) 20 0.28 0.14 0.06 0.15 0.31 0.24 

Total 35             

Notes: DF = degrees of freedom; FOS = Fusarium oxysporum f.sp. strigae. 
*Significant difference at .05 probability level. 
**Significant difference at .01 probability level. 

***Significant difference at .001 probability level. 
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Response of sorghum populations for MGD of Sa, with and without FOS application 

 

Mean performances and pair-wise contrasts for MGD among the sorghum population 

evaluated, with and without FOS treatments, are presented in Table 6.6. There were 

significance (P<0.001) differences in mean MGD for the sorghum generation, with and without 

FOS. The significant variation on the sorghum genotypes among generations for MGD 

indicated the presence of considerable genetic variation for production of LHF which is 

essential for Striga germination. Ejeta (2000) showed that sorghum genotypes on MGD less 

than 10 mm were effectively Striga resistant, supporting few or no Striga infestations (Ejeta et 

al., 1997). 

 

Except for the sorghum families AS435 x AS426, FOS applications significantly reduced the 

MGD for other crosses. Selection of individual plants with desirable characteristics within 

families with minimum MGD, and compatible with FOS, should result in control Striga 

infestations (Ejeta, 2000; Mrema et al., 2017). 

 

Table 6.6. Mean maximum germination distance among six sorghum families with (+) and 
without (−) FOS application under Sa infestation 
 

Generation 

675 x 654 AS435 x AS426 3424 x 3993 1563 x AS436 4567 x AS424 3984 x 672 

+ - + - + - + - + - + - 

P1 4.37 6.50 3.63 4.63 4.80 6.60 3.10 5.17 3.07 5.33 3.33 5.23 

P2 0.87 1.30 0.40 1.47 1.10 2.70 0.53 1.00 0.43 0.83 0.40 1.27 

F1 2.67 4.90 2.10 2.33 2.30 3.47 0.83 1.83 2.63 4.00 1.27 2.30 

F2 2.57 3.27 1.90 2.97 1.40 2.37 0.83 1.80 1.27 2.20 1.20 1.87 

BCP1 3.47 4.20 2.80 4.00 3.17 4.47 2.40 4.07 2.10 2.83 2.87 4.33 

BCP2 1.53 2.07 0.80 1.47 1.33 2.03 0.47 1.03 0.70 1.33 0.70 1.27 

Mean 2.58 3.71 1.94 2.81 2.35 3.61 1.36 2.48 1.70 2.75 1.63 2.71 

Significance *** *** *** *** *** *** *** *** *** *** *** *** 

LSD 0.76 1.14 0.76 0.58 1.03 1.06 0.51 0.87 0.62 0.85 0.55 1.13 

***Significant difference at .001 probability level 

 

6.4.6 Generation mean analysis of MGD of Sa in sorghum families  

 

Generation mean analysis for MGD with and without FOS treatments is presented in Table 

6.7. Additive, dominant and epistatic effect contributed significantly in MGD among sorghum 

populations evaluated with and without FOS. Additive genetic effect made a significant 

(P<0.001) contribution to MGD in both treatments for all families. Significant contributions of 

dominance genetic effect with FOS treatment were recorded in families 675 x 654, 3424 x 

3993 and 4567 x AS424. In all crosses, the additive-by-additive gene effect was significantly 
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higher (P<0.001) due to FOS application. Additive-by-dominance interaction effect was the 

main contributor of genetic variation for MGD in 4567 x AS426, 1563 x AS436, and 3984 x 672 

with FOS treatment. Dominance-by-dominance interaction had significantly higher (P<0.001) 

effects on MGD in both treatments.   
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Table 6.7. Mean squares and significance tests for maximum germination distance between the sorghum seed and the most distantly germinated 
Sa evaluated with (+) and without (-) Fusarium oxysporum application in six families of sorghum 
 

  Families 

Source/gene effect 
675 x 654 AS435 x AS426 3424 x 3993 1563 x AS436 4567 x AS424 3984 x 672 

+ - + - + - + - + - + - 

Replication 0.16 1.05 0.10 0.40 0.57 0.46 0.17 0.85 0.41 0.63 0.09 0.74 

Additive 4.96*** 4.72** 4.49*** 6.35*** 8.22*** 9.41*** 5.99*** 13.47*** 0.39ns 3.01** 5.90*** 10.33*** 

Dominance 1.04* 12.93*** 0.67ns 0.03ns 2.61* 4.21** 0.03ns 0.21ns 3.82*** 14.85*** 0.01ns 0.25ns 

Additive × additive 6.12*** 15.88*** 4.44*** 5.18*** 13.60*** 19.01*** 7.08*** 16.61*** 6.82*** 12.07*** 8.42*** 18.81*** 

Additive × dominance  0.04ns 0.01ns 0.26ns 1.59** 1.24ns 5.99** 1.73*** 3.20** 0.00ns 0.03ns 0.65* 2.58* 

Dominance × dominance  11.91*** 20.91*** 12.06*** 12.67*** 4.81** 5.05** 3.62*** 11.20*** 6.05*** 12.72*** 6.40*** 10.18*** 

R 2 0.93 0.93 0.93 0.96 0.91 0.93 0.96 0.95 0.94 0.95 0.96 0.92 

CV (%) 16.30 16.92 21.67 11.39 24.03 16.08 20.68 19.33 19.89 16.86 18.62 22.85 

 
*Significant difference at .05 probability level. 
**Significant difference at .01 probability level. 

***Significant difference at .001 probability level. 

R2= coefficient of determination  

CV= coefficient of variation 
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6.4.7 Relative contribution of genetic effects 

 

The relative contributions of gene effects following MGD for sorghum families, with and without 

FOS, application are presented in Table 6.8. Additive, dominance and epistatic genetic effect 

were significant, with and without FOS treatment, for some of the tested population. Additive 

genetic effects contributed to 22% and 20% of the total genetic variation for MGD, with and 

without FOS, respectively. However, its contribution was lower than the contributions from 

additive-by-additive and dominance-by-dominance gene effects. Dominance and additive-by-

dominance genetic effects made small contributions to the total genetic variation. Significant 

dominance genetic effects of 21% and 34% were recorded for 4567 x AS424, with and without 

FOS, respectively. Additive-by-additive gene effects contributed to 32% and 33% of the total 

genetic variation associated with and without FOS treatment, respectively. Additive-by-

dominance interaction made little contribution to the total genetic variation for MGD in all test 

populations with FOS. Dominance-by-dominance interaction contributed to 35% and 30% of 

the total variation in all test populations, with and without FOS, respectively.  

 

Additive, dominance and non-additive genetic effects contributed the most to the total genetic 

variation for MGD. The current result agrees to the report of Kulkarni and Shinde (1985), who 

found that Striga resistance, was controlled by both additive and non-additive gene action. This 

outcome suggests the possibility of fixing additive genes through individual plant selection in 

the early segregating generation followed by pure line or single seed descent selection 

methods in advanced generations.  
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Table 6.8. Relative contribution of genetic effect (%) for maximum germination distance between the sorghum seed and the most distant 
germinated Sa of evaluated with (+) and without (-) FOS in six sorghum populations 
 

Source/gene effect 

Families 

675 x 654 AS435 x AS426 3424 x 3993 1563 x AS436 4567 x AS424 3984 x 672 

+ - + - + - + - + - + - 

Replication 1.29 3.72 0.91 3.04 3.61 2.07 1.78 3.67 4.60 2.88 0.84 3.38 

Additive 20.36 8.35 20.28 23.85 25.96 21.10 31.89 29.02 2.15 6.85 27.35 23.67 

Dominance 4.25 22.87 3.02 0.10 8.39 9.45 0.17 0.46 21.36 33.78 0.05 0.58 

Additive × additive 25.11 28.08 20.08 19.45 42.95 42.63 37.70 35.8 38.08 27.46 39.07 43.12 

Additive × dominance 0.17 0.00 1.18 5.96 3.92 13.42 9.21 6.90 0.02 0.08 2.99 5.92 

Dominance × dominance 48.82 36.98 54.53 47.6 15.18 11.32 19.26 24.14 33.79 28.95 29.69 23.33 
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6.4.8 Presence of FOS on sorghum roots and in the rhizosphere 

 

Quantification of FOS on sorghum roots and in the sorghum rhizosphere is summarised in 

Table 6.9.The numbers of colony forming units (CFU) found in soil and plant samples varied 

significantly (p<0.001)  among sorghum families. This variation indicated the differential 

response of FOS to the sorghum genotypes.  The multiplication of FOS was confirmed by the 

CFU counts recorded on the soil samples. Mean CFU values of 5.21 and 3.99 were recorded 

on sorghum roots and in soil samples, respectively. The number of CFU indicated the 

persistence of FOS on sorghum roots and on the rhizosphere. Its presence reduced the 

chances of successful attachment of Striga to its host, reducing the number of Striga 

infestations on treated plants. 
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Table 6.9. Tukey’s multiple mean comparison and significant tests for the number of CFU on sorghum root and soil for seven sorghum families 
  

Generation 
675 x 654 AS435 x AS426 3424 x 3993 1563 x AS436 4567 xAS424 3984 x 672 

Plant Soil Plant Soil Plant Soil Plant Soil Plant Soil Plant Soil 

P1 4.33 2 3.00 2.00 2.33 1.33 2.33 1.67 2.33 2.33 1.67 1.00 

P2 11.00 9 8.00 5.67 5.67 3.67 9.00 5.67 11.33 11.33 7.33 5.33 

F1 4.67 3 4.33 2.67 5.00 2.67 7.00 5.00 2.00 2.00 3.67 2.67 

F2 4.33 4 4.00 4.67 6.33 5.00 7.00 5.00 3.67 3.67 4.00 2.67 

BCP1 2.33 2 5.67 4.00 6.00 4.33 4.00 3.00 3.00 3.00 2.67 2.00 

BCP2 4.33 3 6.33 6.33 4.67 3.00 6.00 4.67 9.00 9.00 6.33 4.67 

Mean 5.17 3.83 5.22 4.22 5.00 3.33 5.89 4.17 5.22 5.22 4.28 3.06 

Significance *** *** *** ** *** ** *** *** *** *** *** *** 

LSD (5%) 1.66 1.73 1.81 1.93 1.45 1.49 1.09 1.37 1.90 1.90 1.62 1.32 

CFU = colony forming units 
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6.5 Conclusions 

 

The present study examined the genetic effects controlling maximum germination distance 

(MGD) among sorghum genotypes. Additive, additive-by-additive, and dominance-by-

dominance genetic effects were responsible for most of the genetic variation present for MGD 

in the evaluated sorghum families. Dominance and additive-by-dominance genetic effects 

made minor contributions in the test populations. FOS treatment enhanced the expression of 

additive, additive-by-additive and dominance-by-dominance genes, which had a 

complementary effect on reducing MGD. FOS application accelerated the primary contribution 

of additive genetic effect raising the possibility of breeding for Striga resistant sorghum 

genotypes with FOS compatibility. This will allow deployment of superior pure line sorghum 

cultivars with reduced MGD and compatible with the bioagent for ISM in Striga prone 

environments in Tanzania. The following crosses were identified to have reduced MGD in set 

with Sh and Sa through FOS application: 1563 x AS436, 4567 x AS424, and 3984 x 672. These 

crosses are useful genetic resources to advance in ISM in the semi-arid regions of Tanzania.  
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CHAPTER SEVEN  

An overview of the research findings 

 7.1 Introduction and objectives of the study  

Sorghum [Sorghum bicolor (L.) Moench] is an economic crop supporting some 500 million 

people predominantly in arid and semi-arid parts of sub-Saharan Africa (SSA). In SSA 

including Tanzania sorghum production and productivity is affected by diverse biotic and 

abiotic stresses, as well as socio-economic constraints. Striga is one of the major biotic 

constraints that causes yield losses of 30 to 90% in sorghum in Tanzania. Cultural, biological, 

chemical and host resistance measures have been recommended to control Striga. However, 

these measures need to be integrated for effective control of the parasite and to improve 

sorghum productivity, especially under the smallholder farming systems. A biological control 

agent based on Fusarium oxysporum f.sp. strigae (FOS) has shown promise in controlling 

Striga in SSA and can be integrated with resistant sorghum genotypes. Treatment of seeds of 

resistant sorghum genotypes with F. oxysporum reduces Striga numbers and vigour, and 

improves the agronomic performance and productivity of sorghum. A systematic breeding 

program aimed at improving sorghum varieties for Striga resistance, and which specifically 

includes farmers’ preferred quality traits, may be the best option for  developing new sorghum 

varieties that will be adopted by the farmers. This chapter highlights the objectives of the study 

followed by concise summary of major findings of each objective. Lastly, the inferences of the 

findings are presented for integrated Striga management (ISM) programme in the semi-arid 

parts of Tanzania.  

7.1.1 The objectives of this study were: 

1. To document the constraints affecting sorghum production and farmers’ approaches of 

Striga management in the semi-arid regions of Tanzania. 

2. To screen and select sorghum genotypes for Striga hermonthica (Sh) and S. asiatica 

(Sa) resistance and FOS compatibility for resistance breeding under Tanzanian 

conditions, including farmers-preferred quality traits. 

3. To identify promising sorghum parents and crosses with FOS-compatibility and Striga 

resistance, with a high combining ability for grain yield and yield components for ISM. 

4. To determine the gene action and inheritance of Striga resistance using genetically 

diverse populations of sorghum, including the interactions with FOS treatment. 

5. To determine the gene action controlling the maximum germination distance of Striga 

using diverse sorghum genotypes, combined with FOS treatment. 
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7.2 Research findings in brief 

Farmers’ perceptions of sorghum production constraints and Striga control 

practices in semi-arid areas of Tanzania 

This study was conducted across three selected districts and six villages involving 120 farmers 

in western Tanzania. Further focus group discussions based on a semi-structured 

questionnaire and observations following transect walks were used for data collection. The 

main findings of the study were: 

 

 About 65% of the farmers grew sorghum landraces and had not adopted newly released 

varieties. Only 35, 15, and 10% of the farmers from Igunga, Kishapu, and Meatu Districts, 

respectively, reported growing newly released varieties.  

 The major constraints affecting sorghum production in the study areas included Striga 

infestation, drought, storage pests, damage by birds, a lack of access to improved varieties, 

and a lack of access to production inputs such as fertilizers, insecticides, fungicides and 

herbicides.  

 Hand weeding, crop rotation, fallowing, intercropping, and organic manure application were 

the most common practices of farmers for reducing Striga infestations. 

 Most farmers (79.7%) had little knowledge of the best recommended Striga management 

practices.  

 About 65% of the farmers did not use fertilizers and herbicides for soil fertility improvement 

and weed management, respectively, creating favourable conditions for Striga infestation, 

and for severe yield losses in sorghum.  

 A systematic breeding program aiming at improving sorghum varieties for Striga 

resistance, including farmers’ preferred traits, should be designed and implemented to 

increase the adoption of these new varieties by the farmers. 

 

Screening of sorghum genotypes for resistance to Striga hermonthica and S. 

asiatica and compatibility with Fusarium oxysporum f.sp. strigae 

Sixty sorghum genotypes were evaluated under screen house conditions using S. hermonthica 

(Sh) and S. asiatica (Sa) infested field soils with controlled seed infestation, with or without 

inoculation of the sorghum seeds with FOS. The experiment was laid out using a split-plot 

design; FOS being the main-plot and sorghum genotypes as the sub-plot treatments. Data on 

crop growth and grain yield parameters, and Striga incidence were collected. The core findings 

of the study were: 
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 Inoculation of sorghum seeds with FOS significantly enhanced sorghum growth and 

productivity, and supressed Sh and Sa growth and development.  

 Compared to untreated controls, 28 sorghum genotypes evaluated in Sh infested soil 

had increased seed yields of 9 g per plant; 30 genotypes screened under Sa infestation 

had increased seed yields of 10 g per plant after FOS inoculation of the sorghum seeds.  

 There were reductions of 1 to 4 Sh and Sa plants when sorghum seeds were inoculated 

with FOS.  

 Overall, the present study selected 25 promising sorghum lines resistant to Sh and/or 

Sa, and FOS compatibility.  

 The selected sorghum lines are a valuable genetic resources for the development of 

Striga management in sorghum through the integrated use of host resistance and FOS 

inoculation.  

Combining ability of yield and yield components among FOS-compatible and 

Striga-resistant sorghum genotypes  

One hundred sorghum families were developed through controlled crosses using the North 

Carolina Design II, involving 10 female parents selected for their FOS compatibility and high 

agronomic performances, and 10 male parents possessing Striga resistance. The F1s and 

their parents were field evaluated at three locations in Tanzania known for their severe Striga 

infestation, using a lattice experimental design with two replications. Significant general 

combining ability (GCA) (p<0.05) and specific combining ability (SCA) effects were recorded 

among the tested sorghum genotypes at both sites. The main findings of the study were:  

 The best female parents were 675 and 3424 and the best male parents were AS426 

and AS430 for general combining ability for yield and yield components.  

 Genotypes 672, AS436 and AS429 (male parents) and 3984 (female parents) were the 

best general combiners for Striga resistance, displaying smaller GCA effects in a 

desirable direction.  

 The families 675 x 654, 3424 x 3933 and 4567 x AS426 were selected for further 

breeding as they had the greatest SCA effects for grain yield.  

 Crosses selected with small SCA effects for Striga counts were 4567 x AS424 and 

3984 x 672. These were found to have high levels of FOS compatibility, Striga 

resistance and good agronomic traits.  

 The selected sorghum parents and crosses are useful genetic resources for breeding, 

and for the implementation of ISM in sorghum.  
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Gene action controlling Striga resistance among sorghum genotypes 

Twelve sorghum parents selected for Striga resistance, FOS compatibility or superior 

agronomic performances were crossed using a bi-parental mating scheme. The selected male 

and female parents and their F1 progenies, backcross derivatives and the F2 segregants were 

field evaluated at three locations in Tanzania known for their severe Striga infestations using 

a lattice experimental design with two replications. The following data were collected and 

subjected to generation mean analysis (GMA): days-to-50% flowering (DFL), seed yield per 

plant (SYP) and number of Striga per plant (SN). The main findings of the study were:  

 GMA showed the preponderance of additive genetic action contributing to the total 

genetic variation in the evaluated sorghum populations.  

 The additive genetic effect for DFL, SYP and SN, with and without FOS treatments, 

ranged from 72.02 to 86.65% and 41.49 to 95.44%, 75.62 to 91.42% and 71.83 to 

91.89%, and 77.35 to 93.56% and 72.86 to 95.84%, in that order.  

 The contribution of non-additive genetic effects was minimal and varied among 

generations. FOS application reduced DFL and SN and improved SYP in most of the 

tested sorghum populations.  

 The DFL of sorghum populations was reduced by a mean of 8 days under FOS 

treatment compared to the untreated control in families such as 675 x 654, AS435 x 

AS426 and 1563 x AS436.  

 FOS treatment improved SYP with a mean of 6.44 g plant-1 in 4567 x AS 426, 3424 x 

3993 and 3984 x 672.  

 The numbers of Striga plants were reduced with a mean of 16 plants due to FOS 

treatment in the crosses of 675 x 654, 1563 x AS436, 4567 x AS424, and 3984 x 672.  

 The study demonstrated that additive genes were predominantly responsible for the 

inheritance of Striga resistance in sorghum.  

 Cultivar development targeting reduced DFL, SN and high SYP in selected populations 

may provide an enhanced response to selection for ISM in western Tanzania. 

 

Genetic analysis of maximum germination distance of Striga hermonthica and 

S. asiatica in sorghum treated with Fusarium oxysporum 

Twelve sorghum parents selected for Striga resistance, FOS compatibility or superior 

agronomic performances were crossed using a bi-parental mating design. The selected male 

and female parents and their F1 progenies, backcross derivatives and the F2 segregants were 

evaluated for their low haustorium initiation factor (LHF) in an agar-gel assay in two sets. One 

set had Sh seed and the other set had Sa seed, both with and without FOS. Genotypes were 

evaluated using a split-plot design with three replications. MGD, was recorded for each 
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treatment as the most distantly germinated Striga plant. This was followed by a pot experiment 

to evaluate the presence of FOS on sorghum roots and soil. Data were subjected to generation 

mean analysis (GMA). The core findings of the study were: 

 A generation mean analysis showed the preponderance of additive, dominance and 

epistatic gene actions controlling MGD in the evaluated sorghum populations.  

 In the set inoculated with Sh, the relative contribution of the additive, additive-by-

additive and dominance-by-dominance genetic effect for MGD with FOS were 20%, 

33% and 36%, respectively.  

 In the set with Sa, the relative contribution of additive, additive-by-additive and 

dominance-by-dominance genetic effects were 21%, 32% and 35% with FOS, 

respectively.  

 The influence of a dominance genetic effect and the interaction of an additive-by-

dominance genetic effect were minimal.  

 MGD was reduced by a mean of 1 cm due to FOS treatment in both sets involving Sh 

and Sa.  

 There were varied FOS levels on sorghum root and soil samples, indicating variable 

colony forming units associated with the tested sorghum genotypes.  

 The study demonstrated that additive, additive-by-additive and dominance-by-

dominance genes were predominantly responsible for the inheritance of MGD of Sh 

and Sa in sorghum. 

 Cultivar development with a reduced MGD in the selected populations, combined with 

FOS, may provide enhanced responses to selection for integrated Striga management. 

7.3 Implications of the study for breeding and integrated Striga   

management 

 The PRA study showed that farmers preferred to grow landraces than improved 

introduced varieties dictating targeted breeding using both germplasm sets. There is a 

need of improving farmers preferred varieties rather than relying on introduced new 

varieties that lack most of the farmers’ traits of preferences like Striga resistance, days 

to maturity and drought tolerance.  

 Farmers’ identified Striga infestations, earliness, drought tolerance, grain yield 

resistance to pests and diseases as well as resistance to bird attacks as their traits of 

preference. This shows the need to have a combined breeding objective aimed at 

integrating these traits of farmers-preference into developed varieties. 

 Inoculation of sorghum seeds with FOS significantly enhanced sorghum growth and 

productivity, and supressed Sh and Sa growth and development for FOS compatible 
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sorghum genotypes. Therefore, integration of this biocontrol agent with resistant 

sorghum genotypes could play a pivotal role in reducing Striga and improving sorghum 

productivity  

 Sorghum genotypes compatible with F. oxysporum were identified among the farmers 

preferred varieties collections of the semi-arid areas of Tanzania, providing an 

opportunity of exploiting the genetic resources for breeding towards ISM. 

 Both additive, dominance and epistatic genetic actions were detected as controlling 

sorghum agronomic traits and Striga resistance related parameters which is useful for 

further selection and in hybridization programs aiming to develop transgressive 

segregants and improved cultivars. A future hybrid sorghum breeding program could 

exploit heterosis displayed by some sorghum genotypes. 

7.4 Challenges in the implementation of ISM in sorghum 

 Access to the Bio-Control Agent (F. oxysporum f.sp strigae). There is a need to develop 

local capacity to mass produce the biocontrol agent (FOS) for effective and large scale 

application of the technology in Tanzania. Altenatively, there need to be the efficient 

transport of a formulated FOS product from an established biocontrol company with 

large scale production capacilty in another country.  

 Registration Requirements: regulatory requirements by Tanzania must be completed 

to allow for the introduction of FOS as a bio-herbicide to control Striga in sorghum and 

maize in Tanzania.  

 Distribution Network: one or more agents need to be appointed to manage the 

distribution and sale of the biocontrol agent in Tanzania. Delivery System: the seed 

coating delivery system is an efficient method for uniform application of Fusarium 

and can be done on-farm by the farmers immediately before planting. Farmers 

should be educated about the technology through formal local extension services. 

Also, the seed delivery system should be integrated with this novel approach. 

 Introduction of New Cultivars: Farmers should be educated about the new Striga 

resistant sorghum cultivars through the local extension services, using farmers’ 

days, and demonstration plots.  

 

 


