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Abstract

Quantum theory forms one of the most studied theories of nature. It has inevitably led
to a number of different research areas. One of the breakthroughs was the development
of quantum cryptography which now forms one of the most advanced subjects in this
field. One aspect of quantum cryptography known as quantum key distribution (QKD)
is the art of generating a secure key which is used to encode a secret message between two
legitimate parties conventionally known as Alice, the sender, and Bob, the receiver, in
the presence of an eavesdropper, known as Eve. The goal of QKD is to guarantee security
in the presence of an eavesdropper, who has access to the communication channel and
unlimited technology, to ensure she is unable to obtain useful information about the
message. Since the generated key is random and unknown to Eve, she is unable to learn
anything about the encoded message. The most interesting and amazing phenomenon
about a QKD scheme is that its security is based on the laws of physics rather than the
computational or mathematical algorithms as in classical cryptography.

The motivation behind this thesis is to provide a study of both theory and practical
methods of security in QKD protocols. Concerning theory, we briefly clarify how the
laws of physics allow the security of QKD protocols which are used for secret communi-
cation. Moreover, we give definitions, analysis and evaluation of tools used for proving
the security of different classes of QKD protocols. On the practical side, we show an
implementation of the Bennett 1992 (B92) protocol and a high dimensional mutually
unbiased basis QKD protocol.

In particular, we derive an irreducible lower bound of the uncertainty on the simul-
taneous measurement of observables when one use the Tsallis entropy to express the
quantum uncertainty relation. This shows a possibility of using the Tsallis entropies
for quantifying information in QKD protocols. We highlight that the Tsallis entropies
have not been extensively investigated for this application. We will also demonstrate
an implementation of the B92 QKD protocol by using the id3100 Clavis2 system at our
laboratory at the University of KwaZulu-Natal. The id3100 Clavis2 system has been
traditionally used for the implementation of the Bennett-Brassard 1984 (BB84) and
Scarani-Aćın-Ribordy-Gisin 2004 (SARG04) protocols. We investigate also the secure
key rates in the B92 protocol by using the Rènyi entropies and the uncertainty relations
which have been introduced recently. Lastly, we extend our work by showing an im-
plementation of a high dimensional filter based QKD protocol. This QKD protocol is
based on mutually unbiased bases (MUBs) which are implemented by means of photons
carrying orbital angular momentum (OAM). In particular, we show that by encoding
in high dimension of MUBs leads to an increase in the key generation rate per photon.

i



ii



Preface

The work described in this thesis was carried out in the School of Chemistry and Physics,
University of KwaZulu-Natal, Durban, from January 2011 to November 2013, under the
supervision of Professor Francesco Petruccione.

These studies represent original work of the author and have not otherwise been sub-
mitted in any form for any qualification to any University. Where use has been made
of the work of others it is duly acknowledged in the text.

iii



iv



Declaration 1- Plagiarism

I, declare that

i. The research reported in this thesis, except where otherwise indicated, is my original
research.

ii. This thesis has not been submitted for any degree or examination at any other
University.

iii. This thesis does not contain any other persons’ data , pictures, graphs or other
information, unless specifically acknowledged as being sourced from other persons.

iv. This thesis does not contain any other person’s writing , unless specifically acknowl-
edged as being sourced from other researchers. Where other written sources have
been quoted, then:

a. Their words have been re-written but the general information attributed to
them has been referenced;

b. Where their exact words have been used, their writing has been placed inside
quotations marks, and referenced.

v. This thesis does not contain text, graphics or tables copied and pasted from the
Internet, unless specifically acknowledged, and the source being detailed in the
thesis and in the References sections.

Signed:

v



vi



Declaration 2- Publications

This thesis is based on the following publications, which will be referred by their re-
spective letters:

Peer-Reviewed Journal Papers

M1 Mhlambululi Mafu, Angela Dudley, Sandeep Goyal, Daniel Giovannini, Melanie
McLaren, Miles J. Padgett, Thomas Konrad, Francesco Petruccione, Norbert
Lütkenhaus and Andrew Forbes, “Higher-dimensional orbital angular momentum
based quantum key distribution with mutually unbiased bases,” Physical Review
A 88, 032305 (2013).
My contributions: I conceived the idea of using mutually unbiased bases im-
plemented by orbital angular moment states in order to study security in high
dimensional QKD protocols. I interpreted the raw data from the experimental-
ist in order to extract the required security parameters to be used in the proofs.
The interpretation was done under the guidance of my collaborator Prof. N.
Lütkenhaus. I also provided the QKD theory to the corresponding author.

M2 Mhlambululi Mafu, Kevin Garapo and Francesco Petruccione, “Finite-size key
in the Bennet 1992 quantum-key-distribution for Rényi entropies,” Physical Re-
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Chapter 1

Overview and Motivation

1.1 Introduction

It took centuries for mathematicians to discover a system that would enable users to
exchange messages in absolute secrecy. It was until the 1940’s when Claude Shannon [3]
proved that this goal was possible if only the communicating parties shared a random
secret key that is as long as the message which they wish to communicate. However,
this had a constraint too. This disadvantage motivated the need to find a secure means
of key distributor. Quantum cryptography was initially proposed by Stephen Wiesner
[4] when he discovered that quantum mechanical effects (i.e., the no cloning theorem
[5] and the Heisenberg uncertainty principle [6, 7]) could be used to produce banknotes
that would be impossible to counterfeit. Owing to the fact that quantum information
cannot be cloned, a copy of a banknote that contained quantum information cannot be
produced.

Based on Wiesner’s ideas, Gilles Brassard and Charles Bennett came up with a quantum
protocol for two cryptographic primitives: for distributing secret keys among distant
parties and bit commitment. This gave birth to the first operable QKD protocol in
1984, now known as the BB84 protocol [8]. This protocol is based on the polarization of
single photons in which a stream of single photons are distributed between two parties
that are in turn used to develop a symmetric key. The BB84 protocol has been proven
to be unconditionally secure by using different approaches [9, 10, 11, 12]. In 1991,
Artur Ekert proposed an entanglement-based (EB) protocol known as the Ekert 1991
(E91) protocol [13]. In this protocol, entangled pairs of qubits are distributed between
two legitimate parties. The key bits are extracted by performing measurements on the
received qubits [14]. The security of the E91 protocol is based on the violation of Bell’s
inequalities. In 1992, Bennett-Brassard-Mermin (BBM92) recognized that a simpler
version of an EB QKD protocol can be converted to the BB84 protocol, where Alice
and Bob measures the qubit in one of two mutually unbiased bases [15]. Again in 1992,
Bennett developed a protocol in which Alice sends one of two the nonorthogonal states
to Bob and this protocol is commonly known as the B92 protocol [16]. This protocol
uses two weak coherent states together with a strong reference pulse. The B92 protocol
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has been proven to be unconditionally secure [17, 18]. In 1998, another variant of the
BB84 protocol which instead of using four states uses six states was proposed [19]. In
this protocol, Alice sends each qubit to Bob in one of six possible states. Later in
2004, Scarani and others by using the four states of the BB84 protocol with a different
encoding invented the SARG04 protocol [20]. This protocol has been proven to be
robust when attenuated laser pulses are used instead of the single photon sources. The
above protocols belong to a class called Discrete Variable (DV) protocols [14]. The DV
protocols have been greatly studied and their unconditional security proofs have also
been realized. However, due to demands in communication speeds at high bit rates,
another class called the Distributed-Phase-Reference protocols were proposed in 2002
[14]. Members of this class are the Coherent-One-Way protocol [21] and Differential-
Phase-Shift protocol [22] where the coherence of sequential pulses plays a crucial role in
the security. The Distributed-Phase-Reference protocols are tailored to work with weak
coherent pulses at high bit rates and have proven to be most practically implementable
in the existing communication fibre network. However, this class of QKD protocols has
not been proven to be unconditionally secure [23]. The current methods for proving
security as those used in qubit-based protocols cannot be applied in a straight forward
way to this class of protocols because they implement a completely different encoding.
Another class of protocols called the Continuous Variable (CV) protocols was developed
in 2002 [14]. In this class of protocols, information is encoded on the continuous variables
of the electromagnetic field. Alice sends squeezed states and Bob performs homodyne
measurements. The CV protocols show some good performance over large distances as
compared to DV protocols [24]. The security of these protocols has been considered in
[25, 26, 27].

This progress in QKD protocols has been followed by a series of review papers that dwell
on the theory and implementation of quantum cryptography. Moreover, these develop-
ments have led to commercialization of several QKD products [28, 29] and also several
QKD implementations notably the QKD-based network that was presented in October
2008 in Vienna, Austria [30] and the realization of long-term quantum cryptography in
Durban [31] and the high-rate QKD over 100 km [32], the Tokyo QKD Network [33]
and the SwissQuantum QKD [34].

Quantum cryptography, specifically QKD has been built based on physical concepts
associated with quantum mechanics. In contrast to conventional cryptography, whose
security is based on the complex computational and mathematical algorithms for se-
curity, it is founded on the uncertainty relations, Bell’s inequalities, entanglement or
non-locality [5]. The implementation of QKD consists of detectors, repeaters, quantum
memories, decoy states [35, 36, 37]. These concepts form the basis of security proofs
[38]. In order for Eve to obtain the secret key, she needs to break the laws of physics,
but this is impossible without her presence being detected. Since there is great need
for security in a communication system it is necessary to investigate security proofs for
QKD systems. This is one of the objectives of this thesis.

Regardless of the challenges that come with developing unconditional security proofs,
a lot of progress has been realised in the last two decades. An unconditional security
proof considers all kind of attacks that Eve can perform and incorporating this into
the security proof is a difficult task. However, a new technique for analysing collective



3

attacks due to an eavesdropper was developed in 1995 by Yao [39]. Later, Bennett and
others realised that if the legitimate parties possess a reliable quantum computer, they
can implement an entanglement distillation (ED) protocol to obtain a secure version of
an EB key distribution [40]. In 1998, based on this idea, Lo and Chau then developed
a formal security proof for the protocol [41]. By using the ideas of Mayers, Lo and
Chau then Shor and Preskill developed a simple proof of security for the BB84 protocol
in 2000 [42]. This was followed by a proof of Biham who was the second to show an
unconditional security proof [43]. In 1991, Biham’s proof was then used by Gottesman
and Preskill to prove the unconditional security proof of a continuous variable protocol
where Alice’s signals are sufficiently squeezed [44]. In the same spirit, Inamori et al.
showed the unconditional security proof of BB84 protocol where Alice’s source emits
weak coherent states and Bob’s detector remains uncharacterized [11]. However, a
complete security proof that is secure against arbitrary attacks by the eavesdropper and
full realistic implementation of the QKD protocol remains missing. But this progress
depicts that major achievements have been made in this field to prove that protocols
used in quantum communication are secure for sending messages. Amongst different
approaches to security proofs, a number of publications on composable security [45], de
Finetti’s theorem [38, 46], post-selection technique [47] and recently the finite-length
key analysis [12] are now available.

Regardless of enormous progress that has been made in QKD, there are still some
theoretical and experimental problems of communicating in absolute secrecy in the
presence of an eavesdropper. In particular, matching the theoretical security proofs
to real devices still remains unknown. The security proofs still contain assumptions
concerning the behavior of devices used by the communicating parties [48]. As a result of
this mismatch, an eavesdropper can learn part of the key shared by Alice and Bob, thus
rendering some schemes insecure over large distances. Moreover, the existing security
proofs have been derived in the asymptotic limit which is not very realistic. In fact, the
bits which are processed in QKD are necessarily of finite length. Therefore, thanks to
Valerio and Renner for introducing the general framework for the security analysis of
QKD with finite resources [12].

1.2 Setting the scene

We recall that the goal of QKD is to provide secure communication between Alice and
Bob in the presence of a potential eavesdropper, known as Eve. Alice and Bob use a
key to encrypt and decrypt their message either by symmetric key cryptography or an
asymmetric key cryptography. Encryption refers to the art of taking a message and
apply a mathematical algorithm so that it looks random to the eavesdropper. Decryp-
tion refers the process of taking that random data, apply a different operation and then
retrieve the original message. In a symmetric scheme, an identical key is distributed
between Alice and Bob. Both parties distribute and agree on the secrecy of the key
before any secure communication takes place. A function is then used to combine the
information with the key to produce a ciphertext (i.e., encryption). This function is
publicly known but the symmetric key is transferred privately. Since the key shared
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between Alice and Bob is secret, Alice simply compresses her message and XOR it with
the key. Alice then sends her result to Bob who XORs it again with the key to recover
the compressed message. This is called One-Time Pad (OTP) encryption [49]. Sym-
metric key cryptography is unconditionally secure only if the symmetrically distributed
key is unconditionally secure, while the security of the asymmetric scheme lies on the
assumption that factoring integers proves to be a difficult task.

The security of asymmetric cryptography depends on the existence of one-way functions
for example the RSA scheme [50], which is based on the prime factorization of large
integers. In the RSA scheme, an efficient algorithm multiplies two prime numbers
while a different algorithm is used to factor the product of the multiplication into its
individual prime numbers. One way functions allow easy computation of a result given
some parameters, while the reverse is rather a difficult task. Such functions are known
as trap door functions. Unfortunately, there exists no mathematical proofs for one-way
functions. In contrast to symmetric cryptography, in this scheme both a public and
private key is produced through these functions. The key for encrypting the data can
be made public while the key for decrypting the data should be kept private. When
given only the public key it is computationally difficult to retrieve the private key, but
the reverse is possible [50]. However, the factorisation algorithm proposed by Peter Shor
in 1994 offers an efficient quantum algorithm for such reverse functions [51]. Therefore,
with the development of quantum computers the security of asymmetric cryptosystems
calls for further investigation. Quantum computers promise to be a real threat to
classical cryptography.

The integrity of information between Alice and Bob relies on the ability to protect the
information from Eve. This means in order to achieve secure communication there has
to be a provable secret and a genuinely random binary key of specific length which is
going to be used to transfer information between Alice and Bob. However, there lies the
problem of distributing the key. The quantum approach to this distribution is therefore
called QKD. The quantum information that the approach uses is so fragile that one
cannot eavesdrop on a quantum channel without perturbing the quantum information
that is being transmitted. So, if Alice tries to transmit a piece of quantum information
to Bob, they can always check whether an eavesdropper is present or not. Thus, the
most outstanding phenomena about quantum cryptography is that it solves the problem
of key distribution considering that the information being transmitted should not be
found in the wrong hands of the eavesdropper. With QKD, it is possible for Alice and
Bob to perform a protocol that allows them to share an unconditionally secure key,
which means that the eavesdropper cannot learn anything about the message except
with some small probability.

As much as the theoretical and technological concepts stand to be true there still stands
unresolved problems in integrating them into the image of the real world for example,
sending secure keys for more that 300km and the problem of side channels.
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1.3 Thesis outline

This thesis is arranged as follows:

• Chapter 1 gives an overview and motivation of this thesis. This Chapter briefly
outlines the developments in the security of QKD and also sets the scene for this
study.

• Chapter 2 presents preliminaries that spells out some of the basic tools and for-
mulas which are going to be used throughout this thesis.

• In Chapter 3 a study of the various information measures and their application is
given. In particular, we explore the main concepts of classical information theory
and quantum information respectively and their definitions, which are going to
be used in our work to quantify information and also in various calculations and
derivations. These will also be necessary in order to understand the security of
QKD protocols.

• In Chapter 4, a review on QKD protocols is presented. The main concept and
principle of QKD on how it allows secure communication is also reviewed. The
security of protocols in the asymptotic and non-asymptotic regimes are presented.
In this thesis, we follow closely the security framework of Scarani and Renner in
[12].

• In Chapter 5, the derivation of security bounds for the Bennett 1992 protocol for
finite resources by using the Rényi entropies and uncertainty relations is presented.
This work appears in the publication M2.

• Chapter 6 studies the Tsallis entropies and their possible application in the security
of QKD protocols. This Chapter is based on the manuscript M9.

• In Chapter 7, we make a study of the implementation and security analysis of the
Bennett 1992 protocol by using the id3100 Clavis2 system at our laboratory. This
Chapter is based on the manuscript M3 & M6.

• In Chapter 8, an outline on the realization and security analysis of a high di-
mensional filter based QKD protocol by MUBs implemented using OAM states is
made. This Chapter appears in the publication M1 & M10.

• In Chapter 9, we draw a conclusion from the obtained results and present further
lines of investigation.
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Chapter 2

Preliminaries

The objective of this Chapter is to discuss the basic notions of mathematical foundations
of quantum mechanics for finite dimensions. The basic principles of linear algebra as
used in quantum information theory will also be outlined. We also give definitions and
basic formulation of other tools which are needed in the Chapters that follow.

2.1 Probability

Information theory is largely based on probability theory. Therefore, we come to intro-
duce briefly the concept of probability theory. A probability space or event space refers
to a set (Ω, P ) where Ω is a measurable space and P is a probability measure. This
means that to each subset, A ⊂ Ω (i.e., event) we associate the probability [52, 53, 54]

P (A) = probability of A, (2.1.1)

where 0 ≤ P (A) ≤ 1. The probability of the whole space is normalized to be P (Ω) = 1
and P (ø) = 0. For two disjoint events A and B, we have P (A ∪ B) = P (A) + P (B),
and for independent events A and B we have P (A ∩B) = P (A)P (B). The probability
that the event A occurs if we already know that the event B has occurred is known as
conditional probability. It is defined as [55]

P (A|B) =
P (A ∩B)

P (B)
. (2.1.2)

2.2 Hilbert Space

Based on the state space postulate of Quantum mechanics, one can associate any isolated
physical system with a Hilbert space, known as the state space of the system [5]. The
Hilbert space is a mathematical concept, it is a vector space over the complex numbers
C with a complex valued inner product or scalar product 〈·, ·〉 : H × H → C, which

7
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is complete with respect to the norm ||x|| =
√
〈x, x〉 where ||x|| is interpreted as the

length of vector x [52, 56]. In Quantum mechanics, elements of the Hilbert space are
called states kets. If |x〉 and |y〉 are arbitrary vectors in the Hilbert space H, then the
inner product is denoted as

〈x|y〉 = (
∑
i

xi|i〉,
∑
i

yj|j〉)

=
∑
ij

x∗i yj〈i|j〉

=
∑
ij

x∗yjδij

=
∑
i

x∗i yi (2.2.1)

for finite values of i, i.e., {|xi〉, |1, ..., n} and similarly for j, i.e., {|yj〉, |1, ..., n}. An inner
product satisfies three basis axioms which are:

1. positive definiteness 〈x, x〉 ≥ 0,

2. conjugate symmetry 〈x, y〉 = 〈y, x〉∗,

3. linearity in the second variable 〈x, αy+βz〉 = α〈x, y〉+β〈x, z〉 and 〈αx+βy, z〉 =
α∗〈x, z〉+ β∗〈x, z〉 where α, β ∈ C.

These axioms imply the Schwarz inequality, |〈x, y〉|2 ≤ 〈x, x〉〈y, y〉 [57].

2.3 Tensor product

In order to create a larger vector space from smaller vector spaces, a tensor product
operation is used. If |vi〉 and |wj〉 are two orthogonal bases in vector spaces V and W
(V ∩ W = ø), respectively, then two arbitrary vectors are denoted as |ψ〉 =

∑
i αi|vi〉

and |φ〉 =
∑

j βj|wj〉. The tensor product of these two vectors is given by [58]

|ψ〉 ⊗ |φ〉 = (
∑
i

αi|vi〉)⊗ (
∑
j

βj|wj〉)

=
∑
ij

αiβj|vi, wj〉. (2.3.1)

For example given the states |101〉 and |10〉 their tensor product is |101〉⊗|10〉 = |10110〉
[5].

Composite systems According to postulate of composite systems of Quantum me-
chanics, the state space of a composite physical system is a tensor product of the state
spaces of the component physical systems i.e., a tensor product of Hilbert spaces [5].
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Composite systems correspond to a system which is described by more than one sys-
tem, e.g., |ψ1〉 and |ψ2〉 and these are written in a tensor form as |ψ〉 = |ψ1〉 ⊗ |ψ2〉 or
|ψ〉 = |ψ1〉|ψ2〉. In the study of composite systems, we consider two theorems; Purifica-
tion and Schmidt decomposition [59]. These are briefly discussed below.

Purification Purification is a mathematical procedure which allows one to associate
pure states and mixed states. Suppose the state ρA on system A can be represented as
ρA =

∑
i pi|iA〉〈iA|. Then there exists an additional system R and a pure state |ψAR〉

on the joint system AR such that ρA = trR|ψ〉〈ψ|AR. The pure state |ψ〉AR is called a
purification of ρA. If {|iR〉}i is an orthonormal basis on the system R which has the
same dimension as A meaning 〈iR|jA〉 = δij, then the purification can be constructed
as [58, 60]

|ψ〉AR =
∑
i

√
pi|iA〉|iR〉. (2.3.2)

Schmidt decomposition The Schmidt decomposition is a mathematical tool used
to analyze a pure state and its partial trace [58]. Consider a pure state |ψ〉AB of a
bipartite system AB with the Hilbert space, HA ⊗ HB, dA=dimHA and dB=dimHB,
with orthonormal bases {|j〉A} and {|j′〉B} for HA and for HB, respectively, such that

|ψ〉AB =
∑
j

λj|j〉A|j′〉B, (2.3.3)

where λj(j = 1, ..., n) are non-negative real numbers satisfying
∑

j λj
2 = 1. The λj’s are

known as Schmidt coefficients [58]. Equation (2.3.3) is called the Schmidt decomposition
of |ψ〉AB. The number of non-vanishing eigenvalues is called the Schmidt number of
|ψ〉AB. The Schmidt number is an important property of a composite quantum system,
in the sense that it quantifies the amount of entanglement between system A and system
B. If the Schmidt number is greater than one, then the bipartite pure state is entangled
[59]. For the proof of the Schmidt decomposition, see Appendix A.

2.4 Linear Operator

The state change of qubits is performed by linear operators. A linear operator is a
transformation which makes a correspondence of vectors from V toW . We can describe
this function in the form of a matrix representation in finite dimensional case, A = m×n.
If this matrix is multiplied with a vector |v〉 ∈ Cn, it results in a new vector |w〉 ∈ Cm.
The claim for this representation of the operator in space α(Cn,Cm) is that it fulfills
the linearity equation

A(
∑
i

ai|vi〉) =
∑
i

aiA|vi〉. (2.4.1)

Let A : v 7→ w be the linear operator and |vi〉, ..., |vn〉 be a basis of V and |wi〉, ..., |wn〉
be a basis of W , then there exists complex numbers

A|vj〉 =
∑
i

Aij|wi〉 with 1 ≤ i ≤ m, 1 ≤ n, (2.4.2)
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which constitute a matrix representation of A.

2.5 States

Quantum play an important role in quantum communication. Quantum communication
allows secure transfer of classical messages by encoding information in quantum states.
Below we shall briefly review these quantum states by giving their definition, properties
as well as their applications.

2.5.1 Pure States

Based on the state space postulate of Quantum mechanics, associated to any isolated
physical system is a complex vector space with inner product known as a state space
of the system [5]. The system is completely characterized by its state vector which is
a unit vector in a Hilbert space. In quantum computation and quantum information
theory, the conventional unit is a qubit. This corresponds to a classical bit in classical
information theory. A classical bit has a state of either 0 or 1 while a qubit exists as a
combination (superposition) of the basis states |0〉 and |1〉. A pure state is a normalized
vector of C2 represented as:

|ψ〉 = α|0〉+ β|1〉, (2.5.1)

where α and β are complex numbers with |α|2 + |β|2 = 1. The basis states |0〉 and
|1〉 are also known as computational basis. If α and β are real, it can be represented
by means of a Bloch sphere. States correspond to density operators, ρ. The density
operator has the following properties (i) It is positive-semidefinite, ρ ≥ 0, (ii) It has
unit trace, tr(ρ)=1 and (iii) ρ = ρ† [61]: For a pure state, the density operator can be
written as ρ = |ψ〉〈ψ| and tr(ρ2) = 1 [52, 61].

2.5.2 Mixed States

A mixed state refers to a state which cannot be represented as a vector in a Hilbert
space |ψ〉. Mixed states are probabilistic mixtures of pure states and therefore form a
generalization of pure states. For example, if a quantum state has a probability of pj
to be in the state |ψj〉 for j = {1, 2, ...n}, then the system is an ensemble of pure states
{pj|ψj〉}j=1 and is described by a density matrix [59]

ρ =
n∑
j=1

pj|ψj〉〈ψj| ∈ B(H), with
n∑
j=1

pj = 1 and pj ≥ 0, (2.5.2)

where |ψj〉 ∈ H and B(H) is the bounded algebra on the Hilbert space [58, 43].
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2.5.3 Entangled States

Quantum mechanics attests that a set of particles can be in an entangled state even
if they are spatially separated. This means that a measurement performed on one
of the particles may uniquely determine the result of a measurement on the spatially
separated paired particle. This led to Einstein calling this phenomenon “spooky action
at a distance” [62]. This is because a measurement in one place seems to have an
instantaneous effect at another distant place. This forms a useful property in quantum
communication, particularly in teleportation [63]. An entangled quantum state contains
non-classical correlations which are called quantum correlations or Einstein-Podolsky-
Rosen (EPR) correlations. An entangled quantum state cannot be expressed as a tensor
product states of individual subsystems [58, 64, 55].

Quantum entanglement forms a precious computation and communication resource, it
yields a significant practical application in QKD where Alice and Bob generate a random
key through an unconditionally secure way [65]. Entanglement is also used in quantum
dense coding where two classical bits can be transmitted by using one qubit provided
Alice and Bob share an entangled state before the communication commences [66].
Also, quantum teleportation exploits a shared entangled state to transmit an arbitrary
quantum state from Alice to Bob using LOCC [67]. The quantum cryptography scheme
by Ekert [13] also relies on the distribution of entangled particles.

A pure state, that is a projector |ψAB〉〈ψAB| on a vector |ψAB〉 ∈ HA⊗HB, is a product
state if the states of local systems are also pure states, i.e., if |ψAB〉 = |ψ〉A ⊗ |ψ〉B.
However, if states cannot be written in this form then they are called entangled states.
An important example of an entangled state in HA⊗HB is the Bell state. A Bell state
is a maximally entangled quantum state of two-qubits. The two-qubit entangled state
consist of four Bell states [5]

|ψ+〉 =
1√
2

(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B),

|ψ−〉 =
1√
2

(|0〉A ⊗ |0〉B − |1〉A ⊗ |1〉B),

|Φ+〉 =
1√
2

(|0〉A ⊗ |1〉B + |1〉A ⊗ |0〉B),

|Φ−〉 =
1√
2

(|0〉A ⊗ |1〉B − |1〉A ⊗ |0〉B). (2.5.3)

The Bell states are also referred to as EPR pairs. They possess an important property
that their measurement outcomes are correlated [52, 63].

2.6 Quantum operations

Quantum operations play a major role in various aspects of quantum information-
theoretic techniques. As an example, they are used to describe any physical process
that a quantum mechanical system undergoes. These include; time evolution of the
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state of an open system, quantum data compression, and description of what happens
to quantum information when it is transmitted from a sender to receiver through a noisy
quantum channel. This is analogous to the transmission of information through a noisy
channel. In this view, a quantum operation (or superoperator) is also referred to as a
quantum channel [61, 68].

2.6.1 Unitary operations

The state |ψ〉 of a quantum system with the density matrix ρ, can be transformed by
applying a unitary operator U . The time evolution according to Schrödinger dynamics
gives rise to a unitary operation denoted as

ρ 7→ UρU †, (2.6.1)

where U is the unitary operator (i.e., U †U = 1), on the Hilbert space H, of the system.
Unitary operations are used to describe only the evolution of closed systems [69].

2.6.2 Quantum Channel

A quantum channel is a completely positive, trace preserving map. Quantum channels
are used to transmit quantum information as well as classical information. A quantum
channel can be represented as a map E [61].

E(ρ) =
∑
m

EmρE
†
m (2.6.2)

where E is a linear operator from HA to HB and
∑

mE
†
mEm ≤ 1. The term Em is

called the Kraus operator [70]. If E is a trace preserving process, then the completeness
relation holds ∑

m

E†mEm = 1. (2.6.3)

If the channel is unitary, then it satisfies the following∑
m

EmE
†
m = 1. (2.6.4)

2.7 Measurements

2.7.1 Projective Measurements

A projective measurement is described by an observable Ô, a Hermitian operator on the
state space of the system being observed. The observable has a spectral decomposition
given by [5]

Ô =
∑
m

emPm, (2.7.1)
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where em are measurement outcomes, Pm is a Hermitian projector (i.e., P †m = Pm and
P 2
m = Pm) onto the eigenspace of Ô with eigenvalue m. The expectation value of the

observable is given as

〈Ô〉 =
∑
m

emp(m), (2.7.2)

where p(m) is the probability of obtaining an outcome em of measuring the state |ψ〉,
and is expressed as [59]

p(m) = 〈ψ|Pm|ψ〉. (2.7.3)

If em occurred, the state of the quantum system after the measurement becomes

|ψ′〉 =
1√
p(λm)

Pm|ψ〉

=
1√

〈ψ|Pm|ψ〉
Pm|ψ〉. (2.7.4)

2.7.2 Positive Operator-Value Measurements (POVM)

General quantum measurements are objects of quantum information processing which
are described by positive operator-valued measure (POVM). For a finite set of Hermitian
operators {Em} with any Em being a positive operator ( meaning 〈ψ|Em|ψ〉 ≥ 0 for any
normalized state |ψ〉 ), satisfy the completeness relation [5]∑

m

Em = 1. (2.7.5)

The operators Em which satisfy the above condition are known as POVM operators.
The projection or von-Neumann measurements, with the set {Mm = |λm〉〈λm|} being
defined by the n eigenstates of an observable, represent a specific case of a POVM set.

2.7.3 Stinespring’s Dilation

The Stinespring’s factorization theorem or dilation theorem gives us a basic theorem for
quantum channels. It states that every completely positive and trace-preserving map
can be built from 3 basic operations [71]:

1. tensoring the input with a second system in a specified state which is convention-
ally called the ancilla system,

2. unitary transformation of the combined input-ancilla system,

3. reduction to a subsystem.

This theorem can be stated formally as:
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Theorem. Let E : S(H) 7→ S(H) be a CPTP map on a finite-dimensional Hilbert space
H. Then there exist a Hilbert space K and a unitary operation U on H⊗K such that:

E(ρ) = trKU(ρ⊗ |0〉〈0|)U †, (2.7.6)

for all ρ ∈ S(H). The ancilla space K can be chosen such that dim K ≤ dim H2.

This representation is unique up to a unitary equivalence [72, 73]. Therefore, the Stine-
spring’s dilation theorem gives a bound on the dimension of the Hilbert space of the
ancilla, and states that the representation is unique up to unitary equivalence [71].



Chapter 3

Information Measures

Information theory is the mathematical theory that allows one to quantify information
by deriving bounds on the processes such as acquisition, transmission and storage of
information [61]. The three important applications of information theory are: trans-
mission of data through specialised codes that enable error correction, compression and
encryption [59]. In this chapter we focus on one of the most important aspects of infor-
mation, i.e., measurement of information. Information can be measured according to its
degree of uncertainty, i.e., if an event is likely then we gain little information in learn-
ing that it finally occurred and the converse is true. This brings us to the concept of
entropy [53]. A brief review of classical and quantum entropy, the definition, properties
and applications are made in the following sections.

3.1 Classical Information Measures

3.1.1 Shannon entropy

The Shannon entropy was introduced by Claude E. Shannon in 1948 [3]. The Shannon
entropy is used to quantify the expected value of information contained in a message,
i.e., a specific realization of the random variable. Suppose, in a sequence of n letters
(where n is large), it is highly likely that many of these sequences depict the relative
frequencies within themselves. Therefore, the probability pi of choosing a letter xi occurs
with probability, pi = ni/n. There are n! ways of arranging n characters, then for a
character xi, there are ni permutations which leads to [59, 74]

Xn =
n!

n1!n2!...nN !
, (3.1.1)

sequences with
∑N

i=1 ni = n. In the case of an infinitely long text where n 7→ ∞, ni 7→
∞, then by using Stirling’s formula log(n!) = n log n − n + O(log n) for the logarithm

15
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of the number Xn, we arrive at

logXn 7→ n log n− n−
N∑
i=1

(ni log ni − ni)

= −n
N∑
i=1

pi log pi. (3.1.2)

By dividing the logarithm of the number Xn of possibilities by n in order to relate it to
the individual characters as an average value, we obtain the Shannon’s entropy H(X)
which is defined as

H(X) = lim
n7→∞

1

n
logXn

= −
N∑
i=1

pi log pi. (3.1.3)

By using the Stirling’s formula, the number Xn of possible of typical sequences is found
to be Xn = 2nH(X) [53, 75].

Properties of the Shannon entropy

If we assume a random source with an event space X, comprising of N elements or
symbols with probabilities pi(i = 1, ..., N), the Shannon entropy, H should meet the
following conditions [59]:

1. H = H(p1, p2, ..., pN) is a continuous function of the probability set pi.

2. H is monotonously increasing with N in the case where all probabilities are equal
i.e., (pi = 1/N).

3. H is additive. In the case of two independent variables X and Y , the characteristic
additivity of the Shannon entropy that is, H(X × Y ) = H(X) +H(Y ) [76, 60].

3.1.2 Joint entropy

The joint entropy is a measure of information content, or the average uncertainty asso-
ciated with each of the joint outputs of a pair of sources modeled by discrete random
variables X and Y . The joint entropy can be expressed as [5, 59]

H(X, Y ) = −
∑
x,y

p(x, y) log2(p(x, y)). (3.1.4)

If X and Y are independent

H(X, Y ) = H(X) +H(Y ), (3.1.5)

which shows the additivity property of the joint entropy.
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3.1.3 Relative Entropy/Kullback-Leibler distance

The relative entropy or the Kullback-Leibler distance between two probability distribu-
tions p and q of a discrete random variable is defined as [61]

D(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)
. (3.1.6)

The relative entropy is always non-negative, (D(p||q) ≥ 0) and is zero if and only if
p = q [53, 61]. It is the average of the logarithmic difference between p and q, where the
average is taken by using the probabilities p. However, it is not a true distance because
it is not symmetric between the probability distributions p and q i.e., D(p||q) 6= D(q||p)
and it also does not satisfy the triangle inequality.

In terms of the Kullback-Leibler distance in Equation (3.1.6), the relative entropy be-
tween two quantum systems with density operators ρ and σ can be written as [61]

S(ρ||σ) = tr(ρ log ρ)− tr(ρ log σ). (3.1.7)

The key property of relative entropy, S(ρ||σ) ≥ 0, is for the case where ρ = σ. This
property is referred to as Klein’s inequality [5, 77].

Properties of the relative entropy

The relative entropy has the following properties [52, 53]:

1. It is additive. For example, if X and Y are two independent random variables
and let p(x, y) and r(x, y) be two possible joint probability mass functions of X
and Y , then

D(p(x, y)||r(x, y)) = D(p(x)||r(x)) +D(p(y)||r(y)). (3.1.8)

For the proof of additivity of the Rényi entropy, see Appendix B.1.

2. It is convex for the pair (p, r) provided that (p1, r1) and (p2, r2) are two pairs of
probability mass functions

D(λp1 + (1− λ)p2)||λr1 + (1− λ)r2) ≤ λD(p1||r1) + (1− λ)D(p2||r2), (3.1.9)

3. D(p||r) ≥ 0 and D(p||r) = 0, if and only if when p = r. This gives us a fun-
damental inequality in the theory of information measures known as the Gibbs
inequality or divergence inequality [78]. This property follows from the Jensen’s
inequality [79].

4. The relative entropy is related to the Shannon entropy by

D(p||r) = −H(p)−
N∑
i=1

pi ln ri. (3.1.10)
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3.2 Quantum Information Measures

3.2.1 Conditional entropy

The conditional entropy represents the expected value of information content, or the av-
erage of uncertainty associated with the random variable Y given that X is known. The
conditional entropy of two information measures modeled by discrete random variables
X and Y is defined as [5, 52]

H(X|Y ) = −
∑
y

p(y)
∑
x

p(x|y) log2(p(x|y))

= −
∑
x,y

p(x, y) log2

p(x, y)

p(y)
. (3.2.1)

In the context of QKD, this can be interpreted as the amount of information that one
additionally obtains when considering both Alice (X) and Bob’s (Y ) source, and not
only Alice’s source X.

3.2.2 Mutual Information

The mutual information gives a reduction in the uncertainty about a random variable X,
due to the knowledge of the random variable Y . It is used to quantify the correlations
between X and Y . The mutual information of two random variables X and Y , with a
joint probability distribution function pX,Y (x, y), is defined as [5]

I(X;Y ) =
∑
x

∑
y

pXY (x, y) log
pXY (x, y)

pX(x)pY (y)
. (3.2.2)

The symmetry, I(X;Y ) = I(Y ;X) is a consequence of the definition of mutual infor-
mation. The mutual information and the conditional entropy are related by taking
pXY (x, y) = pX|Y (x|y)pY (y), then

I(X;Y ) = −
∑
x

∑
y

pXY (x, y) log pX(x) +
∑
x

∑
y

pXY (x, y) log pX|Y (x|y)

= H(X)−H(X|Y ). (3.2.3)

In this equation I(X;Y ) is equal to the information that can be obtained about X by
observing Y . In the case of X = Y , H(X|Y ) = 0, therefore I(X;Y ) = H(X). If X and
Y are independent then H(X|Y ) = H(X), therefore I(X;Y ) = 0. This means that the
two messages do not share any information.
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3.2.3 Conditional mutual information

The conditional mutual information of random variables X, Y and Z is defined as [5]

I(X;Y |Z) =
∑
x

∑
y

∑
z

pXY Z(x, y|z) log
pXY |Z(x, y|z)

pX|Z(x|z)pY |Z(y|z)
, (3.2.4)

then it follows that
I(X;Y |Z) = H(X|Z)−H(X|Y, Z). (3.2.5)

This gives the expected value of the mutual information of two random variables given
the value of the third random variable.

3.2.4 von Neumann entropy

The von Neumann entropy S(ρA), is used to describe the entropy of a quantum state
ρA. It is a function of the density matrix expressed as [52]

S(ρA) = −tr(ρA log ρA). (3.2.6)

If λx are the eigenvalues of ρA, then the von Neumann entropy can be calculated as

S(ρA) = −
∑
x

λx log2 λx. (3.2.7)

If we consider a composite system ρAB, the von Neumann entropy is expressed as

S(A,B) = −trAB(ρAB log2 ρAB). (3.2.8)

Suppose, we want to consider the correlations between a classical system X and a quan-
tum systemB which is described the classical-quantum state ρXB =

∑
x p(x)|x〉〈x|x ⊗ ρxB,

the joint entropy of this state is calculated as

S(X,B) = S(ρXB = H(X) +
∑
x

p(x)S(ρxB). (3.2.9)

The classical conditional entropy is expressed as

S(B|X) =
∑
x

p(x)S(ρxB). (3.2.10)

Therefore, the mutual information between X and B is expressed as

I(X : B) = S(ρB)−
∑
x

p(x)S(ρxB), (3.2.11)

where ρxB is Bob’s information state conditioned on x, and ρB =
∑

x p(x)ρxB. This
quantity is called the Holevo quantity, usually written as χ(X : B) [80]. The Holevo
bound gives an upper bound on the amount of classical mutual information I(X : B),
that can be accessed from a quantum ensemble used in encoding the information. The
mutual information gives a faction of error-free bits that can be extracted from the data
which is distributed according to a probability, p(x, y). This is a consequence of the
Shannon’s coding theorem.
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3.2.5 Rényi entropies

The Rényi entropies are a family of functions relating to probability distributions [81].
They quantify the uncertainty or the randomness of a system. The Rényi’s entropies
generalize the Shannon entropies [82]. They are usually used in the secret-key distillation
and for measuring entanglement [83, 84]. The Rényi entropy of order α with 0 < α <∞
and α 6= 1, of a discrete random variable X with possible outcomes 1, ..., n, is defined
as,

Hα(X) =
1

1− α
log2(

n∑
i=1

pi
α), (3.2.12)

where pi = Pr(X = i) for i = 1, ..., n. Three values of α are typically focused on
and these are α=0, 1, ∞. In the case when α = 0 the Rényi entropy corresponds to
the logarithm of the support size of X. When α = 1, the Rényi entropy corresponds
to the regular Shannon entropy. When α = ∞, it corresponds to the largest symbol
probability which is expressed as

H∞(X) = − log(max
i

(pi)). (3.2.13)

This entropy is also known as the min-entropy [85]. It has found some useful and
interesting application in quantum key distribution. For example, it provides a lower
bound in the security of QKD protocols by giving a guessing probability of the random
variable X [38]. A special case occurs when α = 2, which is in-fact the negative
logarithm of the collision probability [83]. This is expressed as,

2−H2(X) = 2log(
∑n−1
i=0 p

2
i )

=
n−1∑
i=0

p2
i . (3.2.14)

This entropy shows the probability that two i.i.d random variables will take on the same
value (i.e., collision probability). In Appendix B, we show that as α 7→ 1, the Rényi
entropy approaches the Shannon entropy.

3.3 Distance measures

In this section, we would like to find a way of distinguishing two quantum states. In oder
to do this, we need to consider distance measures and these are static and dynamic.
Static measures quantify how close two quantum states are and dynamic measures
quantify how well information has been preserved doing a dynamical process.
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3.3.1 Trace distance (classical)

The trace distance allows us to compare two probability distributions {pi} and {qi} over
the same index set. It is defined by [5]

D(pi, qi) ≡
1

2

∑
i

|pi − qi|. (3.3.1)

A distance measure must satisfy the properties of a metric:

1. It must be symmetric D(x, y) = D(y, x).

2. It must satisy the triangle inequality D(x, z) ≤ D(x, y) +D(y, z).

3. D(x, x) = 0.

4. D(x, y) = 0→ x = y.

3.3.2 Trace distance (quantum)

The trace distance between two quantum states ρ and σ is defined by [5]

D(ρ, σ) = 1
2
tr|ρ− σ|, (3.3.2)

where |A| =
√
A†A is the positive square root of A†A. When ρ and σ commute, in

which case they are diagonal in the same basis ρ =
∑

i ri|i〉〈i| and σ =
∑

i si|i〉〈i|, for
some orthonormal basis |i〉, the quantum trace distance between ρ and σ becomes equal
to the classical trace distance between the eigenvalues of ρ and σ.

D(ρ, σ) = 1
2
tr

∣∣∣∣∣∑
i

(ri − si)|i〉〈i|

∣∣∣∣∣
= 1

2
tr(
∑
i

|ri − si||i〉〈i||)

=
1

2

∑
i

|ri − si|

= D(ri, si). (3.3.3)

3.3.3 Fidelity (quantum)

The fidelity of state ρ and σ is defined as [5]

F (ρ, σ) = tr
√
ρ1/2σρ1/2. (3.3.4)
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In a special case when ρ and σ commute, i.e., are diagonal in the same basis, ρ =∑
i ri|i〉〈i| and σ =

∑
i si|i〉〈i|, for some orthonormal basis |i〉 we have

F (ρ, σ) = tr

√∑
i

risi|i〉〈i|

= tr
∑
i

√
risi|i〉〈i|

=
∑
i

√
risi

= F (ri, si). (3.3.5)

If ρ and σ commute, the quantum fidelity F (ρ, σ) reduces to the classical fidelity F (ri, si)
between the eigenvalue distributions ri and si of ρ and σ. The fidelity gives a practical
measure of “closeness” between two quantum states. This is a consequence of Uhlmann’s
theorem [86]. This theorem states that for any state ρ and σ and any purification |ψ〉
of ρ, there exists a purification |φ〉 of σ such that [5]

F (ρ, σ) = max
|ψ〉,|φ〉

|〈ψ|φ〉|. (3.3.6)

This equation shows that the fidelity between two mixed states can be interpreted as the
maximum overlap between two purifications of these states. Based on the Uhlmann’s
theorem, the properties of the quantum fidelity can be stated as:

1. 0 ≤ F (ρ, σ) ≤ 1. 1

2. F (ρ, σ)=1 if and only if ρ = σ,

3. It is symmetric in its arguments, i.e., F (ρ, σ) = F (σ, ρ).

1This is a consequence of the Cauchy-Schwarz inequality.



Chapter 4

Quantum Key Distribution and
Security

4.1 Introduction

In this chapter, we briefly cover the background of QKD and also define the basic
notion of security in QKD protocols. We recall that QKD is a technique that uses
the power of quantum mechanics in order to establish a string of random bits called a
key. This key is shared between Alice and Bob. Since the key is random and unknown
to an eavesdropper, Eve, she is unable to learn anything about the message simply
by intercepting the ciphertext. This phenomenon is beyond the ability of classical
information processing. Therefore, we investigate how quantum mechanics plays a role
in QKD and also in the security of QKD protocols. We will also study some of the tools
which are used in the derivation of security proofs for the infinite and finite-length key
limit. The security study is mainly based on the framework introduced by Devetak-
Winter, Csiszár-Körner and Renner security [38, 87]. For a detailed overview of QKD,
we refer the reader to [14, 23].

4.2 Quantum features

4.2.1 Detection of Measurements

Based on the measurement postulate of Quantum mechanics [88], it is impossible to per-
form a measurement on an unknown quantum state without introducing a disturbance
unless the state is an eigenstate to the observable being measured [58]. This means
that Eve is unable to perform a measurement on an unknown quantum state without
introducing a disturbance that can be discovered by Alice and Bob.

23
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4.2.2 Uncertainty principle

The uncertainty principle states that a measurement of one quantum observable intrin-
sically creates an uncertainty in other properties of the system. This means that it
is impossible to measure the simultaneous values of non-commuting observables on a
single copy of a quantum state [89]. This ensures that an eavesdropper cannot perform
measurements that leave the quantum state undisturbed [90]. This automatic detection
of an eavesdropper is impossible with classical cryptography.

4.2.3 No-Cloning Theorem

In Quantum mechanics, it is impossible to make a perfect copy of an unknown state
with perfect fidelity. This is called the no-cloning theorem [91]. This prevents an
eavesdropper from simply intercepting the communication channel and making copies
(so as to make measurements on them later) of the transmitted quantum states, while
passing on an undisturbed quantum state to Bob [92, 93]. Therefore, the no-cloning
theorem forms an important property in the security of QKD protocols [94].

4.2.4 Non-orthogonality principle

Suppose, we have quantum states |ψi〉 which are not orthogonal, then it can be proved
that there exists no quantum measurement that is able to distinguish states [88]. In
this case, a non-zero component of the state |ψ1〉 parallel to the state |ψ2〉 always gives
a non-zero probability of the measurement outcome associated with the state |ψ2〉 also
occurring when the measurement is applied to the state |ψ1〉. This is because |ψ2〉 can
be decomposed into a non-zero component parallel to |ψ1〉 and a component orthogonal
to |ψ1〉. Then, there is no measurement of any kind that can reliably determine which of
the two non-orthogonal quantum states was measured [16]. This feature is very useful
for cryptographic applications such as QKD [58].

4.3 QKD schemes

There are two major types of QKD schemes, namely, Prepare and Measure (P&M)
and Entanglement-Based (EB) schemes [14, 23]. A P&M scheme is based on individual
qubits while an EB scheme is based on entangled qubits. Either of these schemes can
be used by two parties in order to end up with a shared secret key. However, a P&M
scheme can immediately be translated into an EB scheme [23, 95]. Below, we will briefly
describe the processes for each scheme.
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4.3.1 Prepare and Measure (P&M) scheme

In a P&M scheme, Alice encodes some classical information into a set of quantum
states and sends them via an insecure quantum channel to Bob. Bob then performs
measurements on the quantum states he receives. This results in classical data generated
by quantum means being shared between Alice and Bob. Examples of protocols that
use this scheme are BB84 [96], B92 [16], six-state [19] and SARG04 [20] protocols.

4.3.2 Entanglement-Based (EB) scheme

In an EB scheme, a source prepares and distributes a maximally entangled quantum
state where one system is sent to Alice and another to Bob. Alice and Bob then
perform measurements in two mutually unbiased bases on their system respectively.
Upon measurement they obtain perfectly correlated outcomes which are completely
random. Since the source prepares a pure state, it means that this state cannot be
correlated with an eavesdropper. This implies secrecy of the key. An example of a
protocol which uses this scheme is the E91 protocol [13].

4.4 QKD procedure

In this section, we describe what happens in a P&M scheme, specifically in the BB84
protocol [96]. In this protocol, Alice and Bob are connected by two communication
channels, namely an insecure quantum channel and an authenticated classical channel
[14]. The quantum channel is used for the transmission of qubits and is controlled by
the eavesdropper. The classical channel is authenticated so that the eavesdropper can
only listen to the communication but cannot alter the messages being transmitted. This
ensures that Alice and Bob can prove that they are communicating between each other.
Otherwise, an eavesdropper could simply block all quantum and classical communication
between Alice and Bob and perform QKD with Alice while taking on Bob’s role and vice
versa. Therefore, Alice and Bob have to identify each message they send as originating
from themselves before any post-processing can begin.

4.4.1 Quantum Phase

In the quantum phase, Alice and Bob make use of the quantum channel. They employ
the quantum mechanical signals (i.e., qubits) and they also perform measurements.
Three subprotocols take place which are:

1. Signal preparation - Alice prepares a random sequence of strings which are drawn
from a set of four signal states and encodes each bit value in the state of a quantum
system. The basis states are horizontal, vertical, diagonal and anti-diagonal.
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2. Transmission - The encoded quantum system is sent to Bob via the quantum
channel.

3. Measurement - Bob applies a quantum measurement on the quantum system to
decode a bit value. The signals are measured in a random sequence of polarization
bases, either in the horizontal/vertical or diagonal/anti-diagonal bases.

Afterwards, Alice keeps the record of signal choices, Bob keeps the record of his basis
choices and the corresponding measurement result.

4.4.2 Classical phase

In this phase, Alice and Bob use some classical communication protocol in order to
distill a secret key from their correlated data. They achieve this by means of a discussion
over the authenticated classical channel. The key extraction procedure is described as
follows:

1. Parameter estimation - Alice randomly chooses some fraction of her signal slots
and announces for these slots to Bob which signal she sent. Bob announces the
measurement he performed and the outcome which he obtains. Depending on the
amount of errors which they obtain from their comparisons, they may also decide
whether to continue or abort the protocol.

2. Sifting - In the sifting protocol, Alice and Bob announce the polarization bases
they used for the preparation of the signals and which bits are discarded. In order
to prevent Eve from modifying the transmitted messages, Alice and Bob use the
authentication scheme. The remaining data is called sifted data. Alice and Bob
proceed to the reconciliation phase or error correction phase.

3. Key map - Alice and Bob discard the basis which they were using so that Eve
may not learn any information about the encoding. During key map, Alice and
Bob map their event records of the sifted data into a raw key. This step applies
to Prepare and Measure protocols.

4. Error correction - The sifted data may still contain some errors, therefore, Alice
and Bob execute a classical error correction protocol in order to reconcile their
data. They need to exchange additional information about their respective data
over the public channel. In addition, they need to authenticate this phase because
Eve is still able to modify the messages in this step. As a result of this protocol,
Alice and Bob agree now on a key which is identical with very high probability
but Eve might still have some small additional information about they key. After
this stage, privacy amplification takes place.

5. Privacy amplification - After Alice and Bob have reconciled their key, they can cut
the correlations between their key and Eve by using so-called privacy amplification.
In this stage, Alice and Bob map their string via a special family of functions called
universal hash functions to a shorter final key [38].
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4.5 Security in QKD

4.5.1 Security definition

A good definition of security would allow the key generated by a QKD protocol to
deviate by a small parameter ε, from a perfect key [14]. This definition should be able
to bound Eve’s knowledge about the final key. A perfect key refers to a uniformly
distributed bit string whose value is completely independent and remains unknown
to an eavesdropper [12]. The main requirement that the definition of security must
fulfill is composability [38]. The composable definition characterizes the security of a
protocol with respect to the ideal functionality. This means that the security of the
key generated could be used in any subsequent cryptographic task such as the one-time
pad for message encryption, where an ideal key is expected. However, there always
exist some challenges in constructing security proofs without making any assumptions
either about the devices or the parties. For example, attacks against practical schemes
exists, photon-number-splitting attacks (PNS) [97], time-shift attacks [98], and large
pulse attacks [99, 48], blinding attacks [100] and high-power damage attack [101]. Some
of the assumptions made in the definition of QKD security are [102]:

1. there should be no side-channels. Side channels are basically discrepancies between
the theoretical model and a practical implementation. They always exists if some
information about the raw key is encoded in degrees of freedom not considered in
the theoretical model. Therefore, this leads to a wrong assessment of the dimension
of the Hilbert space which describes the protocol,

2. there should be access to perfect or almost perfect randomness (locally),

3. quantum theory is correct and complete.

If there is randomness and quantum theory is correct then this leads to completion of
the security proofs. However, in classical cryptography the security is based on the
difficulty or complication of a certain mathematical algorithm to afford security of the
protocol. Therefore, the security is mainly based on the failure to solve the algorithm.
This can fail in four ways:

1. conjecture of hardness/difficulty in this case is wrong,

2. underlying computation model could be wrong or could be unphysical,

3. the algorithm is easy for many instances,

4. the computation could be small.

4.5.2 Security requirements

In this section, we shall follow closely the definitions in [38, 103]. A QKD protocol
outputs a key SA on Alice’s side and also a key SB on Bob’s side. The length of the key
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is ` >0, otherwise no key is extracted. The length of the key depends on the noise level
of the communication channel as well as security and on the correctness requirements
of the protocol. Depending on the deviation of the output key from the ideal one, the
protocol aborts in which case SA = SB = ⊥ [103].

1. Correctness

A QKD protocol is called “correct”, if, for any strategy by the eavesdropper SA = SB.
This occurs whenever Alice and Bob output the classical keys SA and SB, respectively,
such that Pr[SA 6= SB] ≤ εcor. The term εcor, is the maximum probability that the
protocol deviates from the behavior of the correct protocol. In order for correctness to
be achieved, the QKD devices must perform what they are supposed to do as according
to a specified model. The devices generate the correct correlations which they are
supposed to output, otherwise the protocol aborts. In other terms, the devices should
not send any other information to the outside world, in which it is not supposed to do
(i.e., devices work according to their specification),

2. Secrecy

A random variable S drawn from the set S is said to be ε-secure with respect to an
eavesdropper holding a quantum system E if

min
∈σE

1

2
tr|ρSE − ρU ⊗ σE| ≤ ε, (4.5.1)

where ρSE =
∑

s∈S Ps(s)|s〉〈s| ⊗ ρE|S=s is the actual state that contains some correla-
tions between the final key and Eve and ε gives the maximum failure probability of
the key extraction process. The state ρU =

∑
s∈S |s〉〈s||S| is the completely mixed

state on S and |S| is the size of S. Since the trace distance i.e., 1
2
tr|ρ0 − ρ1| refers to

the maximum probability of distinguishing between two quantum states (ρ0, ρ1), this
composable security definition naturally gives rise to the operational meaning that the
protocol is ε-secure, i.e., S is identical to an ideal key U except with probability ε [38].
Again, according to the Helstrom’s Theorem, the probability of distinguishing between
the two quantum states ρ0 and ρ1, is bounded by 1

2
+ 1

4
tr|ρ0 − ρ1| [104].

3. Robustness

A QKD protocol is said to be “not robust” if the protocol aborts even though the
eavesdropper is inactive. While correctness and secrecy is difficult to prove, robustness
can simply be proven by running the protocol.
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4.5.3 Infinite-length key security in QKD

Over the last decade, a lot of work in QKD has been devoted to the derivation of
unconditional security proofs [9, 10, 12, 105, 41, 106]. One of the main problems is
that Eve has the power to perform any type of eavesdropping strategy. In particular,
she can evade detection by attributing noise caused by her eavesdropping attack to
normal noise in the channel. Therefore, it remains difficult to accurately bound the
amount of information that Eve may obtain from the communication channel. The
most important resource which should be determined when constructing security proofs
for QKD protocols is the secret key rate. Therefore, all QKD protocols must be able to
provide a clear expression for the secret key rate, r. In the asymptotic limit, the secret
key rate is expressed as

r = lim
n→∞

`

n
, (4.5.2)

where ` is the length of the final secret key and n is a list of symbols called raw keys
[14]. This rate was established by Devetak and Winter [87]. The secret key rate against
collective attacks was derived by Kraus, Gisin and Renner [107] and is expressed as

r = I(X : Y )− χ(X : E) (4.5.3)

where I(X : Y ) = H(X)− (X|Y ) quantifies the amount of bits need to be satisfied for
error correction. The term χ(X : E) = H(X) + S(E) − S(X,E) refers to the Holevo
quantity, where H is the Shannon entropy and S is the von Neumann entropy [108, 109].
The Holevo quantity refers to the amount of privacy amplification required in order to
eliminate Eve’s information.

The upper bound on the secret key rate r, can be expressed as

r ≤ I(A : B ↓ E), (4.5.4)

where I(A : B ↓ E) is the intrinsic conditional mutual information (intrinsic informa-
tion for short) between two information sources held by Alice and Bob after Eve has
performed an optimal individual attack [110]. The intrinsic information between two in-
formation sources A and B given Ē is defined as, I(A : B ↓ E) = infĒI(A : B|Ē), where
the infimum is taken over all discrete random variables E such that AB → E → Ē is
a Markov chain [111]. It has been shown that I(A : B ↓ E) is an upper bound on the
rate S = S(A;B||E) at which such a key can be extracted [110].

4.5.4 Finite-length key security

Many efforts have been made to improve the bounds on the secret key rates for a
finite amount of resources [38, 112, 12, 113, 114, 84]. Since the tools for analysing the
security under non-asymptotic regime have become available there is need to provide
new security definitions. In this section, we follow closely the techniques demonstrated
in [12] to discuss some of the parameters used in the security of QKD for finite-length key
limit. The main goal of finite-length key security is to obtain a secret key rate r, based
on a certain number of signals, a security parameter ε, and certain losses from the error
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correction without making any assumptions about the post processing (sifting, error
correction and privacy amplification). For example, one can recognize that the limit in
this expression of Equation (4.5.2) is unrealistic because in all implementations of QKD
protocols finite resources are used. This is because in this scenario, N is assumed to
be large i.e., it approaches infinity, while in practice Alice and Bob exchange a limited
number of symbols or signals. In the non-asymptotic limit, the secret key rate can be
expressed as

r =
n

N
[Sξ(X|E)−4− leakEC/n]. (4.5.5)

This shows that only a fraction of n out of N signals exchanged contributes to the
key. This is because of the fact that m = N − n are used for parameter estimation
thus leading the presence of a pre-factor of n/N . The expression SξX(X|E) takes into
account the finite precision of the parameter estimation. Eve’s information is calculated
by using measured parameters, for example error rates. In the finite-key scenario, these
parameters are estimated on samples of finite length. The parameter 4 is related to
the security of privacy amplification. Its value is given by

4 ≡ (2 log2 d+ 3)

√
log2(2/ε̄)

n
+

2

n
log2

1

εPA

, (4.5.6)

where d is the dimension of the Hilbert space, ε̄ is a smoothing parameter, and εPA is the
failure probability of the privacy amplification procedure. Eve’s uncertainty is quantified
by a generalized conditional entropy called the smooth min-entropy and is denoted as
H ε̄

min(X(n)|E(N)) [38]. The smoothing parameter, ε̄ and εPA are parameters which should
be optimized numerically. The square-root term corresponds to the speed of convergence
of the smooth-min entropy which is used to measure the key length of an identical
and independently distributed (i.i.d) state toward the von Neumann entropy. In the
asymptotic limit, the smooth-min entropy of an i.i.d state is equal to the von Neumann
entropy. The second term εPA, is directly linked to the failure probability of the privacy
amplification procedure. Finally, leakEC/n corresponds to the amount of information
which needs to be exchanged by Alice and Bob during the reconciliation phase. This
quantity may not reach the Shannon limit, so leakEC ≥ nH(X|Y ). Typically,

leakEC ≈ fECH(X|Y ) +
1

n
log2(2/εEC), (4.5.7)

where fEC >1 depends on the code and εEC refers to the failure probability of the error
correction procedure.

Unlike in the asymptotic scenario, one needs to fix an overall security parameter ε,
for the QKD protocol. The parameter ε, corresponds to the maximum probability
failure that is tolerated on the key extraction protocol. This can be expressed as ε =
εPE+εEC+ ε̄+εPA, where εPE is the error in the parameter estimation step and the other
terms are as previously defined. All the parameters εPE, εEC, ε̄, εPA can independently
be fixed at arbitrarily low values.

As a result the overall security parameter ε can be chosen arbitrarily small, to a value
corresponding to Alice and Bob’s wishes, but this comes at a cost of decreasing the
final secret key rate. If m signals have been used to estimate the parameter λ, then the
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deviation of measurement outcomes λm obtained from measuring the m samples from
the ideal estimate λ∞ can be quantified by using the law of large numbers resulting
[38, 53].

|λm − λ∞| ≤ ξ(m, d) =

√
ln(1/εPE) + d ln(m+ 1)

2m
. (4.5.8)

The objective of the privacy amplification step is to minimize the quantity of correct
information which the eavesdropper may have obtained about Alice and Bob’s reference
raw key. After privacy amplification, the length of the raw key that remains will be

` ≤ Hε
min(X|E)− 2 log2(1/εPA), (4.5.9)

where Hε
min(X|E), expresses Eve’s uncertainty and εPA = 2−

1
2

[Hε
min(X|E)−`], is the error

in the privacy amplification step.
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Chapter 5

Tsallis entropy and uncertainty
measurements in QKD security

5.1 Introduction

In this chapter we study the Tsallis entropy. The Tsallis entropy defines an important
generalisation of the usual concept of entropy which depends on a parameter α. The
Tsallis entropy forms a generalisation of the standard Boltzmann-Gibbs entropy [115].
Our goal is to establish a connection between the quantum uncertainty principle and the
Tsallis entropy for single discrete observables. We show that there exist a generalised
uncertainty bound reached in order to appropriately express the quantum uncertainty
principle in terms of the Tsallis entropy. Later, we show a possible immediate application
of the Tsallis entropy on how they can be useful in quantifying information in QKD.
This kind of connection forms an initial important step towards finding an important
application of this α-entropy in the area of quantum communication for which entropies
like Shannon entropy and Rényi entropy have been used. This chapter is based on
manuscript M9.

Depending on the application, a number of entropic forms [116] and uncertainty relations
[7, 117, 118] have been derived. Many generalisations or versions of the Shannon entropy
have already been found and one of these is the Tsallis entropy [115]. The Tsallis
entropy was introduced by Havrda and Charvát in 1967 [119] and later studied by
Darcózy in 1970 [78]. It was in 1988 when Tsallis [115] exploited its features and placed
a physical meaning on this entropy as a basis for generalising the standard statistical
mechanics. Therefore, this entropy is now known as the Tsallis entropy. It has also
been established that the Tsallis and Shannon entropies can be connected by means
of some transformation [120]. Therefore, this connection between these two entropies
shows a possibility of interchangeability between these two entropies, however only up
to some bound. Similar to the Shannon entropy, the Tsallis entropy has also found
many interdisciplinary applications [120].
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5.2 Tsallis entropy

For a probability distribution pi, on a finite set, the Tsallis entropy, Sα(pi) of order α is
defined as [115]

Sα(pi) =
1

1− α

(∑
i

pαi − 1

)
, (5.2.1)

where 0 < α < ∞. At α = 1, Sα(pi) does not exist, therefore we use the L’Hospital’s
rule to show that the Tsallis entropy approaches the Shannon entropy as α 7→ 1, i.e.,
limα7→1 Sα(pi) = −

∑
i pi ln pi which is the Shannon entropy [121]. The proof is shown

in Appendix E. There is also a close relationship between the Rényi entropy and the
Tsallis entropy which is expressed as

Hα(pi) =
1

1− α
ln[1 + (1− α)Sα(pi)]

= ξ[Sα(pi)], (5.2.2)

where ξ(u) = 1/1− α ln[1 + (1 − α)u] and Hα(pi) is the Rényi entropy. The function
ξ(u) is well defined when 1 + (1− α)u > 0 and if its strictly increasing because

ξ′(u) =
1

1 + (1− α)u
> 0. (5.2.3)

When the entropy is maximized in a variational principle [122], it cannot make any
difference whether the Tsallis entropy functional is used or Rényi’s entropy. This is
because when one of the two reaches its maximum then the other will also be at its
maximal.

Similar to the Shannon entropy, the Tsallis entropy reaches its maximum for uniform
distribution. We can demonstrate this by maximizing it under some normalization
constraint

∑n
i=1 pn = 1, and by introducing a Lagrange multiplier λ as follows

0 =
∂

∂pi

[∑n
i=1 p

α
i − 1

1− α
− λ

(
n∑
i=1

pi − 1

)]
= − α

1− α
p1−α
i − λ. (5.2.4)

We can recognize it follows that

pi =

[
λ(1− α)

α

] 1
1−α

. (5.2.5)

Since this is independent of i, so by imposing the normalising constraint immediately
yields pi = 1/n.

Again, just like the Shannon and Rényi entropy, one can investigate the concavity
(α > 0) and convexity (α < 0) of the Tsallis entropy by finding its Hessian matrix as

∂2

∂pipj

[
Sα(p)− λ

(
n∑
k=1

pk−1

)]
= −αpα−2

i δij, (5.2.6)
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which is positive definite for α < 0 and negative definite for α > 0. Similar to the
concavity (0 < α < 1) property of the Rényi entropy, for two probability mass functions
p and r, the Tsallis entropy concavity property can be written as

Sα(λp+ (1− λr)) ≤ λSα(p) + (1− λ)Sα(r), (5.2.7)

for λ ∈ [0,1]. This follows from the Jensen’s inequality and concavity of (xα/(1 − α))
[79].

5.3 On the uncertainty relation

The uncertainty relation forms the most characteristic and fundamental result of Quan-
tum mechanics. The uncertainty relations have attracted a lot of attention for extensive
research since Heisenberg’s famous paper was published [6, 123]. An established and
well known approach is by Robertson [123]. The first uncertainty relation to be derived
was by Hirschman [124]. This uncertainty relation was a position-momentum relation
which is based on the Shannon entropy. In particular, Robertson showed that a prod-
uct of two standard deviations of two discrete observables A and B measured in the
quantum state |ψ〉 is bounded from below [123]. This is expressed as

4A · 4B ≥ 1

2
|〈ψ|[A,B]|ψ〉|, (5.3.1)

where 4A and 4B represent the standard deviation of the outcomes of the correspond-
ing observables. However, this Robertson’s uncertainty formulation comes with some
lacks. For example, it is impossible to use it in order to characterize randomness of
measurement outcomes by using the standard deviations. Furthermore, it cannot deal
with the most general types of measurements, i.e., POVMs. Again, it has also been
observed that this Robertson’s bound does not express all the features expected from
an uncertainty relation if the observables A and B are finite [125]. Following these
shortcomings, Deutsch [89] proposed an uncertainty relation which was based on the
Shannon entropy. We recall that the Shannon entropy can be expressed as

H(p) = −
∑
i

pi ln pi, (5.3.2)

where
∑

i pi = 1 and pi ≥ 0. For a general probability distribution p = (p1, ..., pN) and
q = (q1, ..., qN) on a set of N possible outcomes. The uncertainty relation proposed was
of the form

H(p) +H(q) ≥ −2 ln
1

2
(1 + c), (5.3.3)

where c = maxi,j |〈ai|bj〉|, defines the incompatibility of the two measurements. Kraus
conjectured that this relation can be improved to [126]

H(p) +H(q) ≥ −2 ln c. (5.3.4)

An advantage of this relation is that they are independent of the state vector ψ unlike in
the Robertson’s relation. These proposed uncertainty were later improved by Maassen
and Uffink [127] and they can be restated as

H(A|ρ) +H(B|ρ) ≥ −2 log max||A
1
2
aB

1
2
b ||1, (5.3.5)
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where A = {Aa} and B = {Bb} are POVM’s and H(A|ρ) and H(B|ρ) are the Shannon
entropy of the probability of the measurement outcome A and B in a state ρ respectively.

Recently, the entropic uncertainty relations have found several applications especially
in quantum information [128, 129]. Such applications are based on the properties of
the Shannon entropy. However, the Tsallis entropy has not been utilized in such ap-
plications. This might be due to a major difference which exists between the Shannon
and the Tsallis entropy, i.e., the Shannon entropy and Rényi entropies are additive
for independent probability distributions while the Tsallis entropy is non-additive or is
pseudo-additive [130]. This pseudo-additivity property in general is defined as

Sα(pi, pj) = Sα(pi) + Sα(pj) + (1− α)Sα(pi)Sα(pj), (5.3.6)

where pi and pj are probability distributions for independent random variables A and B
respectively. Similarly, if a system is composed of two subsystems which are independent
of each other say A and B with the probability distribution pi and pj respectively, then
the Rényi entropy Hα(p) is equal to the sum of Hα(pi) and Hα(pj) i.e.,

Hα(pi × pj) = Hα(pi) +Hα(pj). (5.3.7)

Therefore, this non-additivity property proves to be a challenge in trying to immediately
connect the Tsallis entropy to these applications in quantum information.

5.4 Tsallis entropy and Uncertainty Relations

In order to arrive at our goal, we start by summarizing the result of Ref [89]. Of
importance, Deutsch established that the generalized Heisenberg inequality does not
properly express the quantum uncertainty principle except in the canonically conjugate
observables. In general, he found that in order to properly quantify the quantum un-
certainty principle, there exists an irreducible lower bound in the result of uncertainty
of a measurement. This can be written quantitatively as

U(Â, B̂;ψ) ≥ B(Â, B̂), (5.4.1)

where U is the uncertainty in the measurement of Â and B̂ which are simultaneously
prepared observables, |ψ〉 is the outcome state and B is the irreducible lower bound as
according to Ref [89]. The function U(Â, B̂) depends only on the state |ψ〉 and the sets
{|a〉} and {|b〉} while B(Â, B̂) depends on the set {〈a|b〉} of inner products between the
eigenstates of A and B respectively.

Based on Ref [89], the most natural measure of uncertainty is the result of a measurement
or preparation of a single discrete observable which can be expressed in the entropic
form as

SÂ(|ψ〉) = −
∑
a

|〈a|ψ〉|2 ln |〈a|ψ〉|2. (5.4.2)

We can recognize that the right hand side of Equation (5.4.2) is expressed in terms of
the Shannon’s entropy where, pi = |〈ai|ψ〉|2 is the probability. It has been shown in Ref
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[126] that

U(Â, B̂;ψ) ≥ 2 ln
1

1 + c
. (5.4.3)

As stated previously, this bound was later improved by Maassen and Uffink [127] for
which they obtained

U(Â, B̂;ψ) ≥ 2 ln
1

c
, (5.4.4)

by considering measurements from two mutually unbiased bases. Therefore, we aim to
investigate whether the non-extensivity property of the Tsallis entropy will ever make a
difference on the requirements of B instead of using the Shannon entropy. Surprisingly,
we reach a bound which can be expressed in a similar manner as in Ref [89].

In our scenario, we again consider two observables Â and B̂ which are simultaneously
measured and a state |ψ〉 which represents the outcome of a measurement. In order to
find the bound on B(Â, B̂), we relate this function to the additivity of Tsallis entropy
instead of using additivity of Shannon entropy and without loss of generality we write
Equation (5.3.6) as

B(Â, B̂;ψ) = Sα(Â;ψ) + Sα(B̂;ψ) + (1− α)Sα(Â;ψ)Sα(B̂;ψ). (5.4.5)

Now, we can calculate the bound B by using the Tsallis entropy as an information
measure by proceeding as follows

B(Â, B̂;ψ) = − 1

1− α

[∑
a

|〈ψ|a〉|2α ln |〈ψ|a〉|2α −
∑
b

|〈ψ|b〉|2α ln |〈ψ|b〉|2α
]

+ (1− α)
∑
a

|〈ψ|a〉|2 ln |〈ψ|a〉|2
∑
b

|〈ψ|b〉|2 ln |〈ψ|b〉|2

= −
∑
ab

|〈ψ|a〉|2|〈ψ|b〉|2[ln |〈ψ|a〉|2 + ln |〈ψ|b〉|2)

− (1− α) ln |〈ψ|a〉|2 ln |〈ψ|b〉|2]. (5.4.6)

We can maximize Equation (5.4.6), by performing the following operations:

B(Â, B̂;ψ) = max
|ψ〉
|〈ψ|a〉〈b|ψ〉|

≤ |〈ψ|
(
|a〉〈a|+ |b〉〈b|

2

)
|ψ〉|.

(5.4.7)

In order to calculate the maximum eigenvalue of the expression in Equation (5.4.7), we
apply the following substitution

|a〉 =

(
1
0

)
, |b〉 =

(
cos θe−iα

sin θ

)
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and arrive at an expression of the form(
|a〉〈a|+ |b〉〈b|

2

)
=

1

2

(
1 0
0 0

)
+

1

2

(
cos2 θ cos θ sin θe−α

sin θ cos θe−iα cos2 θ

)
=

1
2

+
sin θ cosα

2
X − sin θ cos θ sinα

2
Y +

cos2 θ

2
Z, (5.4.8)

where X, Y and Z are the Pauli matrices.

Theorem: If we consider M = a1 + bX + cY + dZ where a, b, c, d ∈ R+ where m =
a±
√
b2 + c2 + d2 are the eigenvalues of M .

Based on Equation (5.4.6) find that a = 1
2
, b2 = sin2 θ cos2 θ cos2 α

4
, c2 = sin2 θ cos2 θ sin2 α

4
and

d2 = cos4 θ
4

. By substitution and some few algebraic steps we arrive at the value of

m =
1

2
± cos θ

2
. (5.4.9)

The maximum eigenvalue of M i.e., mmax = (1 + cos θ)/2 corresponds to |ψ〉 and occurs
midway between |a〉 and |b〉. Therefore, we can express this as a function

f(a, b) = B(Â, B̂) = −2 ln

[
1 + 〈a|b〉

2

]
= 2 ln

2

1 + 〈a|b〉
. (5.4.10)

Using the fact that
∑

a |〈ψ|a〉|2 = 1 and
∑

b |〈ψ|b〉|2 = 1, we can express∑
a,b

|〈ψ|a〉|2 · |〈ψ|b〉|2 · f(a, b) ≥ min
a,b

f(a, b)

≥ 2 ln
2

1 + 〈a|b〉
. (5.4.11)

Considering that

min

[
ln 2

1 + 〈a|b〉

]
=

ln 2

1 + max|〈a|b〉|
, (5.4.12)

we can put everything together as

B(Â, B̂) = Sα(Â;ψ) + Sα(B̂;ψ) + (1− α)Sα(Â;ψ)Sα(B̂;ψ)

≥ 1

1− α

[
1−

(
2

1 + max|〈a|b〉|

)2(α−1)
]
. (5.4.13)

If we take c = maxij|〈ai|bj〉|, where |ai〉 and |bj〉 are the eigenvectors of A and B
respectively, we obtain the bound

B(Â, B̂) ≥ 1

1− α

[
1−

(
2

1 + c

)2(α−1)
]
. (5.4.14)

With the help of the Riesz’s theorem [127, 131] in the region of 1/2 ≤ α ≤ 1, a better
hence tighter bound is obtained which can be expressed as

B(Â, B̂) ≥ 1

1− α

[
1−

(
1

c

)2(α−1)
]
. (5.4.15)
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This result has the same form as shown in Ref [89]. This gives an irreducible lower bound
(generalized uncertainty measure) of the uncertainty on the simultaneous measurement
of observables when one use the Tsallis entropy to express the quantum uncertainty
relation.

Based on this connection, one can directly use this result as an information measure
in QKD protocols where the two legitimate parties, Alice and Bob generate a secret
key based on the measurements of the states which they receive. However, this com-
munication takes place in the presence of an eavesdropper, Eve who tries to learn the
information being communicated. The eavesdropper can perform any kind of attack
on the communication channel but however is only limited by the laws of physics [23].
Provided the correlations are stronger between the measurements of the two legitimate
parties, they can still generate a secret key. We therefore appeal to the result by De-
vetak and Winter [87]. This result quantifies the amount of extractable key K, and is
expressed as

K ≥ H(X|E)−H(X|B), (5.4.16)

where K is the final shared secret key, H(X|E) is the amount of key that Alice can
extract from a string X when given the uncertainty of the adversary about X, and
H(X|B) is the amount of information that Bob needs to correct his errors, using optimal
error correction, given by his uncertainty about the shared string X.

Below we provide the heuristic bound for the secret key rate of QKD security proof.
We give this analogy because the irreducible lower bound for the Tsallis entropy has
the same form as that for the Shannon entropy, then a key bound should also follow.
Therefore, without loss of generality we can simply re-write this lower bound in terms
of Tsallis entropy as

K ≥ 1

1− α

[
1−

(
1

c

)2(α−1)
]
− Sα(X|B)− Sα(Y |B). (5.4.17)

Suppose that Alice’s measurements are represented by X and X ′ and Bob’s measure-
ments are represented by Y and Y ′, therefore in order to generate a secret key the two
parties need to communicate the choice of their measurements to each other. Based on
the property that measurements cannot decrease entropy [88] we can write

K ≥ 1

1− α

[
1−

(
1

c

)2(α−1)

− Sα(X|X ′)− Sα(Y |Y ′)

]
. (5.4.18)

By assuming symmetry i.e., Sα(X|X ′) = Sα(Y |Y ′), this gives us a simple proof against
collective attacks which was shown in Ref [42] for the BB84 protocol by using the
Shannon entropy.

5.5 Conclusion

We have shown that the quantum uncertainty principle can be expressed in terms of
the Tsallis entropy. We remark that this result preserves a form similar to an important
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result which was obtained by Deutsch [89]. Regardless of the Tsallis entropies being
non-additive, we have shown that a limit with a similar form can be reached as shown
by Deutsch’s derivation which is based on the Shannon entropy. We highlight this result
provides an initial step in finding more interesting applications of the Tsallis entropy
in the area of quantum information for example, as a measure of information in QKD
protocols for evaluating important parameters such as secret key rates.



Chapter 6

Finite-size key analysis in the B92
protocol using the Rényi entropies

6.1 Introduction

We recall that tools to study unconditional security in the finite-key regime for all
discrete variable protocols are now available in [12, 38]. Many efforts have been under-
taken to improve the bounds on the secret key rates for a finite number of resources
[113, 114, 132, 133, 84]. Recently, a technique involving the uncertainty relations for
smooth entropies has been realized [134]. This approach has proved to be elegant since
it provides bounds for general kinds of attacks rather than coherent attacks. The se-
curity bounds for the BB84 and the six-state protocols have been calculated using the
smooth min-entropies in Ref [38, 113]. The secret key rate for the six-state protocol via
Rényi entropies has been presented in Ref [84]. The B92 protocol has also been proven
to be unconditionally secure [18, 135]. A number of key implementations of the B92
protocol have also been performed [136, 137]. To our knowledge, this technique has
not been used for the B92 protocol [138]. Therefore, in this chapter we present bounds
on the achievable key length for the B92 protocol [138], which involves a preprocessing
step by using the uncertainty relations [134] and the Rényi entropies [139]. For a more
detailed study of the B92 protocol we refer the reader to Chapter 7. This chapter is
based on manuscript M2.

6.2 The B92 QKD Protocol

This protocol was proposed by Bennett in 1992 [138]. In contrast to the BB84 pro-
tocol which uses four states, the B92 protocol utilizes two non orthogonal states. By
encoding in the non orthogonal states of the quantum system, it is not possible for the
eavesdropper to make an exact copy of the system or to gain partial information about
the system without disturbing it. Below we describe the steps taken in the execution of
the B92 protocol.
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State preparation. Alice sends one of the two non-orthogonal states which we denote
by |ψ±〉, to Bob. Bob randomly chooses to measure in one of the two von Neumann
measurements. The first measurement projects onto the basis |ψ+〉 which consists of
the vectors {|ψ−〉, |ψ̃−〉}, where |ψ̃−〉 is orthogonal to |ψ−〉. The second measurement
similarly projects onto the basis |ψ−〉 which consist of the vectors {|ψ+〉, |ψ̃+〉}, where
|ψ̃+〉 is orthogonal to |ψ+〉. Then Bob announces an acceptance if he gets an outcome
which corresponds to |ψ̃±〉; otherwise, both parties discard the values that they recorded.

Sifting and measurement. Alice records the bit value 0 or 1 if she sends |ψ+〉 or
|ψ−〉, and Bob records 0 or 1 if he obtains |ψ̃−〉 or |ψ̃+〉, respectively. Alice sends each
quantum state with equal probability, while Bob randomly chooses between his two
measurements.

Parameter estimation. The role of parameter estimation is to minimize the set of
compatible states Γ, given m sample points. Let ΓεPE

be a set of states from which a key
is extracted with a non-negligible probability. The failure probability in the parameter
estimation step is denoted as εPE. The parameter estimation passes, although the raw
key does not contain sufficient secret information. In particular, if the statistics λm
are obtained by measuring m samples of ρAB (i.e., the entangled state shared by Alice
and Bob) according to a positive operator-valued measure (POVM) with d possible
outcomes and if λ∞(ρAB) denotes the perfect statistics in the limit of infinitely many
measurements, then for any state ρAB (see also Section 4.5.4) [12]

Γξ := {ρAB : ||λm − λ∞(ρAB)||1 ≤ ξ}, (6.2.1)

where by the law of large numbers [38]

ξ :=

√
ln(1/εPE) + 2 ln(m+ 1)

2m
. (6.2.2)

Error correction. The error-correction step serves the purpose of correcting all the
erroneously received bits and giving an estimate of the error rate. Alice and Bob hold
correlated bits strings denoted as Xn and Y n. The number of bits leaked during the
classical communication to an eavesdropper is given by [12, 113]

leakEC = fECnh(Q) + log2(
2

εEC

), (6.2.3)

where fEC is a constant larger than 1 (in practice, f ≈1.05 - 1.2), h(Q) is the bi-
nary Shannon entropy, Q is the quantum bit-error rate, (QBER), and εEC is the error
probability in the error-correction step.

Privacy amplification. The objective of this step is to minimize the quantity of
correct information which the eavesdropper may have obtained about Alice’s and Bob’s
raw key. Let Alice and Bob hold a perfectly correlated bit string Xn on which Eve may
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have some information. Alice chooses at random a function F from a two-universal
hash function and sends a description of F to Bob. Then Alice and Bob compute their
keys SA = F(Xn) and SB = F(X̂n). By using the result in [107], it has been found
that the achievable length of the secret key that can be computed from X by the two
universal hash function, F can be expressed as

` = H ε̄
max(X|E)−H ε̄

min(X|Y )− 2 log2(1/ε), (6.2.4)

where ε̄ = (ε/8)2 and ε quantifies the security of the final key.

6.3 Definitions

6.3.1 Rényi entropy

The Rényi entropies are a family of functions on probability distributions which quantify
the uncertainty or randomness of a system. For the definition of the Rényi we refer the
reader to Section 3.2.5. The min-Rényi entropy (i.e., α > 1) is defined as

Hε
α(A)ρ = min

ρ̄
Hα(A)ρ̄, (6.3.1)

and the max-Rényi entropy (i.e., α < 1) is defined as

Hε
α(A)ρ = max

ρ̄
Hα(A)ρ̄. (6.3.2)

The maximization in each case is over an ε-ball of states ρ̄ close to ρ [140].

6.3.2 Smooth Min-and Max-entropy

The idea of min- and max-entropy was introduced by Renner [38]. Since then, a lot
of efforts have been made to investigate various properties and applications in the area
of quantum information theory especially in the security of quantum cryptography and
related tasks such as information reconciliation. Smooth entropies are used to quantify
the number of uniform bits that can be extracted from a random source. The Rényi
entropy with α > 1 are close to the smooth min-entropy by considering that

Hε
min(X) ≥ Hα(X)− 1

α− 1
log2

1

ε
, α > 1, (6.3.3)

while those with α < 1 are close to the smooth-max entropy. The smooth min-entropy
is used to characterize the reliable transmission in one single use of a classical channel
while the smooth max-entropy is used to characterize data compression in a one-time
scheme. The smooth min-entropy can be interpreted as a guessing probability [140].
For a detailed overview of smooth conditional entropies and their basic properties we
refer to [38, 141].
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6.3.3 Min- and Max-entropy

We follow closely the definitions of the smooth min- and max-entropy as introduced
by Renner [38]. For a finite-dimensional Hilbert space H, we use P(H) to denote the
set of positive semi-definite operators on H. The set of normalized quantum states
S(H) := {ρ ∈ P(H) : trρ = 1} and the set of sub-normalized states S≤(H) := {ρ ∈
P(H) : trρ ≤ 1}. We use indices to denote multipartite Hilbert spaces for example,
HAB = HA ⊗HB.

Conditional min-entropy

Let ρAB ∈ S≤(HAB) and σAB ∈ S(HB); then the min-entropy of A conditioned on B of
state ρAB is defined as

Hmin(A|B)ρ|σ := max
σ

sup{λ ∈ R : ρAB ≤ 2−λ1A ⊗ σB}, (6.3.4)

where the maximum is taken over all states σ ∈ S≤(HB). Furthermore, we define

Hmin(A|B)ρ := max
σB∈S(HB)

Hmin(A|B)ρ|σ. (6.3.5)

The min-entropy, Hmin(A|B)ρ is finite if and only if supp{σB} ⊇ supp{ρB} and −∞
otherwise. The max-entropy is its dual with regards to a purification ρABC of ρAB on
an auxiliary Hilbert space HC .

Conditional max-entropy

Let ρABC ∈ S≤(HABC) be pure; then the max-entropy of A conditioned on B of state
ρAB is defined as

Hmax(A|B)ρ := −Hmin(A|C)ρ. (6.3.6)

The quantum entropies can be ordered as follows

Hmin(A|B)ρ ≤ H(A|B)ρ ≤ Hmax(A|B)ρ. (6.3.7)

In order to define smooth versions, we consider the set of states close to ρ in the following
sense. For ε > 0, we define an ε-ball of states around ρ ∈ S(H) as

Bε(ρ) := {ρ̃ ∈ S = (H) : D(ρ, ρ̃) ≤ ε}, (6.3.8)

where D(ρ, ρ̃) :=
√

1− F 2(ρ, ρ̃) is a distance measure based on the fidelity F (ρ, ρ̃) :=
tr|√ρ

√
ρ̃| introduced in Section 3.3. We use this choice of measure because it is invariant

under purifications and is directly related to the trace distance for pure states. Smoothed
versions of the min-entropy are then defined as:

Hε
min(A|B)ρ|σ := max

ρ̃∈Bε(ρAB)
Hmin(A|B)ρ̃|σ,

Hε
min(A|B)ρ := max

ρ̃∈Bε(ρAB)
Hmin(A|B)ρ̃, (6.3.9)

and similarly
Hε

max(A|B)ρ := min
ρ̃∈Bε(ρAB)

Hmax(A|B)ρ̃. (6.3.10)
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6.4 Results

6.4.1 Bound on the secure key rate

According to [38], for any ε ≥0, a final key S is said to be ε secure with respect to an
adversary Eve if the joint state ρSE satisfies (see also Section 4.5.2)

min
ρE

1

2
||ρSE − ρS ⊗ ρE||1 ≤ ε, (6.4.1)

where ρSE =
∑

s∈S Ps(s)|s〉〈s| ⊗ ρsE, {|s〉}s∈S is an orthonormal basis of some Hilbert
space Hs, ρS =

∑
s∈S Ps

1
|S| |s〉〈s| is a fully mixed state on Hs, ρE is the state held by

an eavesdropper and ||A||1 = tr|A| = tr
√
A†A is the trace distance. The parameter

ε, represents the maximum failure probability in which an adversary may have gained
some information on S, or it can be interpreted as the maximum failure probability in
which the extracted key deviates from the ideal key.

The secret key rate in the asymptotic regime is expressed as limN→∞ r = S(X|E) −
H(X|Y ), where S(X|E) and H(X|Y ) are the conditional von Neumann and Shannon
entropies [113]. However, in the non-asymptotic regime this equation becomes invalid
as we have a finite number of bits that Alice sends to Bob [12].

In order to determine the length ` of ε-secure key bits that can be generated by this
protocol we use the following results on the uncertainty relation [134]. The amount of
key that can be extracted from a string X is given by the uncertainty of the adversary
about X, measured in terms of the smooth Rényi entropies. The amount of information
B needs to correct his errors, using optimal error correction is given by his uncertainty
about A’s string, again measured in terms of the smooth Rényi entropies. Combining
these two results, we have [103]

H ε̄
min(X|E) +H ε̄

max(Z|B) ≥ log2

1

c
, (6.4.2)

where ε̄ ≥ 0 is the smoothing parameter and c quantifies the ‘incompatibility’ between
the measurements Z = Z⊗n and X = X⊗n. It is defined as c = −maxx,z||

√
MX

√
NZ ||2∞,

where {MX} and {NZ} are POVM elements for preparing the state corresponding to
the X and Z bases respectively [103]. This norm is called the Schatten p-norm where

p =∞. It is defined as ||A||p =
(∑min{m,n}

i=1 σpi

)
[52]. This definition also applies to the

entanglement based version of the protocol.

The definitions of the smooth min and max-entropies have been given above. The
measure of uncertainty for Bob’s measurement Hmax can only increase under information
processing such that

H ε̄
max(Z|B) ≤ H ε̄

max(Z|Z′), (6.4.3)

where the measurement Z′ = Z ′⊗n is made on Bob’s system [142]. The protocol does
not need to prescribe the actual measurements of Z and Z′. However, based on the
observed parameters we can replace the measurement on X and X′ in this hypothetical
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Figure 6.1: Lower bound on the secret key fraction, r, for the finite B92 protocol as a
function of the exchanged quantum signals N for bit errors Q = 0.5%, 2%, 2.5%, 5%.
The maximum failure probability of the protocol is ε = 10−5 and the failure probability
of the error-correction procedure is εEC = 10−10 [M2].

protocol by highly correlated measurements Z and Z′ respectively. This means that the
uncertainty in H ε̄

max(Z|Z) is small and the following bound on the smooth max-entropy

H ε̄
max(Z|Z′) ≤ nh(Q), (6.4.4)

holds, where Q is the QBER. This result follows the argument in [103].

6.4.2 Bound on the achievable key length

Let ρXBE be the state describing Alice’s bit string Xn and Bob’s string Bn as well as
Eve’s quantum information represented by ρEn . Let ε̄, εPA ≥0. If the length of the key
is such that

` ≤
(
Hmin(X|E)ρXBE − 2 log2

1

2ε̄
− 2 log2

1

2εPA

)
, (6.4.5)

then the protocol is secure.

Proof. Let ρXB ∈ P(HX⊗HB) be a density operator which is classical with respect to
an orthonormal basis {|x〉}x∈X of HX , let F be a two universal family of hash functions
from X to {0, 1}`, and let ε ≥ 0. Then the security of the key can be defined with
respect to the L1 distance as [38],

d(ρF (X)BF |BF ) ≤ 2ε+
1

2
2−

1
2

[Hε
min(X|B)−`]. (6.4.6)
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However, the L1 distance is equal to the composable definition of security then,

||ρF (X)BF − ρU ⊗ ρBF ||1 ≤ 2ε+
1

2
2−

1
2

[Hε
min(X|B)−`], (6.4.7)

where ρF (X)BF =
∑

f∈F PF (f)ρf(X)B ⊗ |f〉〈f | for ρF (X)BF ∈ P(HZ ⊗HB ⊗HF ).

By introducing the transcript of the classical communication C and without loss of
generality we have

||ρF (X)`ECF − ρU ⊗ ρECF || ≤ 2ε+ 2−
1
2

[Hε
min(X|B)−`], (6.4.8)

where ρF (Xn)`ECF =
∑

f∈F PF (f)ρf(Xn)`EC ⊗ |f〉〈f |. By using the triangle inequality
and using the fact that the trace distance does not increase after applying the partial
trace, we have

||ρF (X)`ECF − ρU ⊗ ρECF ||
≤ ||ρF (X)CEF − ρ̄F (X)CEF ||1 + ||ρ̄F (X)CEF

− ρU ⊗ ρ̄CEF ||1 + ||ρ̄CEF − ρCEF ||1
≤ 2ε̄+ ||ρ̄F (X)CEF − ρF (X)CEF ||1
≤ 2ε̄+ 2−

1
2

[Hε
min(X|B)−`]

≤ 2ε̄+ εPA. (6.4.9)

With the help of the data-processing inequality [38] and the uncertainty relation in
Equation (6.4.2) we obtain

Hε′

min(X|E ′) ≥ Hε′

min(X|E)− leakEC

≥ nq −H ε̄
max(Z|Z′)− leakEC

≥ nq − (1− 2δ)η + 2δ

2
[ε− (1− ε)h(x)]

− nh(Q)− leakEC, (6.4.10)

where q = log2 1/c is the quality factor and

x =
(1− 5δ)(1− δ)η(1− η)

[δ + (1− 2δ)η](1− δ)− (1− 5δ)η
,

In the above Equation, η = (2αβ)2, where α ∈ (0, 1√
2
) and β =

√
1− α2 are com-

plex numbers and δ = 2/3p, (0 < p < 1), where p describes the amount of noise
in the depolarizing channel. The error rate conditioned on acceptance is given by
ε = δ/(1− 2δ)η + 2δ [143]. By substitution of Eq (6.4.10) into Eq (6.4.5), we find
that the secret key rate r varies with the number of signals N , as shown in Figure 6.1.
Again, if we combine Eq (6.4.10) with the proposed bound on the achievable key length
in Eq (6.4.5) and also by using the quantum leftover hash lemma [144], we have

4 ≤ ε′ +
1

2

√
2`−H

ε′
min(X|E ′) ≤ 2ε̄+ εPA, (6.4.11)

where 4 = ε (from Equation 6.4.1), E ′ summarizes all information Eve learned about
X during the protocol, including the classical communication sent by Alice and Bob
over the authenticated channel.
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6.5 Conclusion

We have demonstrated how one can use results of the uncertainty relations and smooth
Rényi entropies to derive security bounds for the B92 QKD protocol when a finite
number of signals are used. The key rate is slightly lower than that for the BB84 protocol
derived from the same principles [103]. However, these results show that a minimum
number of approximately 104−106 of signals is required in order to extract a reasonable
length of the secret key in QKD protocols under realistic scenarios. Similar results
have also been discussed in [12, 113, 114, 133]. Therefore, the uncertainty relations and
the smooth Rényi entropies prove to be a powerful technique for the derivation of the
security bounds in QKD protocols in the finite-size-key regime.



Chapter 7

Implementation and security
analysis of the B92 protocol using
the id3100 Clavis system

7.1 Introduction

In this chapter, we present an experimental demonstration of the B92 QKD protocol
[16] by using the id300 Clavis2 system from idQuantique. Despite the B92 protocol [16]
being theoretically simpler to implement than the BB84 protocol [8], surprisingly this
advantage has not been fully exploited. For example, it uses only two states provided
they are non-orthogonal, hence it requires less resources. Therefore, we show in this
chapter the feasibility of implementing the B92 protocol by using the id3100 Clavis2

system. The system shows a secure key generation rate of 6.42 kilobits per second
and a quantum bit error rate of 1.1% at a mean photon number (µ) = 0.03 over an
optical line length of 30km. Our results scale similarly to BB84 protocol results thus
showing the feasibility of an implementation of a two-state protocol over a fibre network
in a system which was traditionally used for running the BB84 [8] and SARG04 [145]
protocols. This chapter is based on the manuscripts M3 & M6.

7.2 The B92 QKD protocol

Similar to the familiar BB84 protocol, the B92 protocol follows the usual QKD pro-
cedure, with a quantum phase and a classical phase. However, as opposed to the
BB84 protocol which makes use of four quantum states, the B92 protocol uses two
non-orthogonal quantum states to encode information. In principle, encoding infor-
mation between two non-orthogonal states makes it impossible for an eavesdropper to
distinguish between the two quantum states of the system [14]. Again, instead of single
photon states, the B92 protocol relies on the coherent states and also implements a
homodyne measurement at Bob [16]. Moreover, because of the type of encoding in the

49
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B92 protocol this makes it less tolerant to noise because of the high probability for Eve
to perform unambiguous discrimination of the encoded key bit. But, this is impossible
in the BB84 protocol because Alice’s encoding is chosen at random [146]. In the B92
protocol, Alice chooses one of two non-orthogonal states with a priori probability of 1/2.
The bits ‘0’ and ‘1’ are encoded into these two quantum states. The non-orthogonal
quantum states are encoded into weak coherent states | ± α〉 for α ∈ R, which are
accompanied by a strong reference pulse [14].

A number of theoretical and experimental progress has been reported in various papers
for this protocol in the last decade. In particular, an unconditional security proof of
the B92 protocol by first reducing it to an entanglement distillation protocol which
is initiated by a local filtering process was reported by Tamaki and Lütkenhaus in
2003 [147]. A proof against individual attacks over a realistic channel was obtained by
Tamaki, Koashi and Imoto [148]. An unconditional security proof for the B92 protocol
implemented by a strong phase-reference pulse instead of the weak pulse assumption was
shown by Koashi in 2004 [17]. Later, again Tamaki and Lütkenhaus showed that this
protocol over loss-free channel can be adapted to accommodate loss and they obtained an
unconditional security proof over a lossy and noisy channel. In the proof, it is assumed
that Alice and Bob employ an error discarding protocol [149]. However, when compared
to the BB84 protocol, the B92 protocol is very sensitive to channel noise. Therefore, in
order to compensate for channel noise, the protocol uses weak coherent states together
with a strong reference pulse. In particular, by using a strong reference pulse, the
eavesdropper, Eve is prevented from blocking the whole signal without causing any
errors. This is seen in Tamaki et al. where an unconditional security proof is reported
when this protocol is implemented with a strong reference pulse [18].

Regardless of the challenges that come with aligning and stabilising both interferometers
which makes the system very sensitive and a need for active control in the B92 scheme,
a successful implementation of the protocol was demonstrated in Ref [150]. Moreover,
a key distribution for over a 48 km optical length for both the B92 and BB84 protocols
was shown by Hughes et al. [136]. Notably, an experiment of the B92 protocol reaching
a distance of 122km of standard telecom fiber by Gobby et al. in 2000 [137]. Moreover,
a prototype of a free-space QKD scheme based on the B92 protocol was reported by
Canale et al. in Ref [151].

7.3 Plug and Play scheme

The Plug and Play scheme for QKD was introduced by Muller et al. [1]. Figure 7.1
shows the Plug and Play system. It features Bob’s equipment which consists of the laser,
couplers, Faraday rotators, FR, mirrors, Mi’s and a single photon detector, D0; while
Alice’s equipment consists of a coupler, C, classical detector, D, a phase modulator,
PM and a Faraday rotator, FR. In the scheme, Bob sends a classical signal to Alice
which she attenuates to an average of a single photon per pulse. She then encodes the
intended key value into the pulses of the received signal. Alice then sends the received
signal back to Bob who then performs measurements. This scheme automatically and
passively compensates for a phase drift during the signal transmission, thereby providing
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Figure 7.1: Plug and Play system as introduced by Muller et al. [1]. The system makes
use of the following components: single photon detector, D0; fiber coupler, Ci; phase
modulator, PM; Faraday rotator, FR; mirror, Mi; classical detector, D.

stability in optical fibre communication. A major advantage of the Plug and Play
system is that it does not require additional optical adjustment during operation. It
is justifiable to implement the B92 protocol on the Plug and Play system (which is an
interferometric set-up), since the original B92 protocol was based on an interferometric
set-up [16]. The scheme has has been shown to be robust against environmental noises
and there are still some outstanding security issues regarding this configuration [152].
However, an implementation of QKD for over 67 km by using a Plug and Play system
was demonstrated by Stucki et al. in 2002 [2]. Notably, the Plug and Play has also
been used as part of the devices in the SECOQC QKD network in Vienna [30].

7.4 Experimental setup

The Clavis2 system is a QKD research platform which was developed by idQuantique,
Switzerland. It is used to deploy the Plug and Play implementations of the QKD proto-
cols. It uses a proprietary auto-compensating optical platform which reduces the value
of the QBER. The system can provide secure key exchanges up to a distance of about
100km. Our system consists of a dual-computer Plug and Play configuration where two
separate computers are used to control the two quantum communication nodes; on the
left for Alice’s equipment and on the right for Bob’s equipment. The set-up is shown in
Figure 7.2. The two nodes are themselves connected by an optical fiber, which acts as a
quantum channel. The system operates at the telecommunication wavelength (λ=1500
nm). The classical channel is realized through the ethernet connection between the two
communicating computers.

For a four state QKD protocol when implemented by using the Clavis2 system, Alice
encodes the quantum system by applying a phase shift of 0, π, π

2
or 3π

2
. Bob then

completes the protocol by performing some measurements, where he chooses the mea-
surement basis by applying a phase shift of either 0 or π

2
and either π or 3π

2
. However,

in our experiment, we implemented a two state protocol by limiting the phase shift to
two states only. The phase modulators are adjusted in order to compensate for this
change. The voltages applied to the modulators define the phase shift applied to each
pulse. These voltages are adjusted such that Alice outputs only two relative phases in
accordance to the bit choice. Bob measurement basis induced an interference at the exit
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Figure 7.2: Experimental set-up for the id3100 Clavis2 System used for the implemen-
tation the B92 protocol. Two separate computers are used to control nodes: Alice on
the left and Bob on the right. The nodes are themselves connected by the optical fiber.
The system makes use of the following; laser, L; beam splitter, BS; polo arising beam
splitter, PBS; C, circulator; α, β, phase modulator; BP, bandpass filter; Di, quantum
detector; Faraday mirror, FM; coupler, C; delay line, DL; optical attenuator, VOA.

of the interferometer to provide discrete measurements upon a compatible basis choice.
The software was reprogrammed to accommodate these changes while no additional
hardware was required to be added to the system. We highlight that this step achieves
the realization of the B92 QKD protocol. Since the B92 protocol is very vulnerable to
bright-pulse attack [19], fortunately the Clavis2 system has a strong classical reference
frame. This enables a secure implementation of the B92 protocol.

Laser output power was measured to be -14 dB. Additionally, detection probabilities
were determined for different optical losses, together with the corresponding visibility
measurements, and the results are given in Table 7.5. The next step was the raw key
exchange session. This session is more or less similar to the one used for the SARG04
protocol in Clavis2 System. The difference is that for the B92 protocol, only one pair of
non-orthogonal states is used by Alice for state preparation, while the other pair is used
by Bob for measurement. This was followed by the key distillation step, from which
the QBER and secure key rates for different optical loses were determined. Finally,
key generation rates for the B92 protocol were compared to the key generation rates
for the BB84 protocol, in order to ascertain the utility of the B92 implementation.
Quantum signals were then detected at either detector D1 or D2 shown in Figure 7.2.
During initialization, the dark count probabilities of D1 and D2 were measured to be
5.78 ×10−5 and 5.60 ×10−5, respectively.

7.5 Results and Discussion

Table 7.1 presents the QKD parameters which we measured and are later used in the
security analysis. These parameters are loss, QBER, Ps probability of detecting a signal
and Pd dead time probability and V , visibility.

The number of photons n, in the pulse is Poisson distributed with a mean photon
number, µ. Therefore, the probability of finding n photons in a pulse P (n, µ) can be
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Loss (dB) QBER Ps Pd Visibility
1 0.0098324 0.1393725 0.0000500 99.65
2 0.0102556 0.1245905 0.0000596 99.55
3 0.0104741 0.1130995 0.0000545 99.30
4 0.0107115 0.105114 0.0000536 99.18
5 0.0109773 0.0947909 0.0000540 98.46
6 0.0110112 0.0856511 0.0000552 97.24
7 0.0110323 0.0417971 0.0000560 94.83

Table 7.1: Experimentally measured QKD parameters for the set-up shown in Fig 7.2.
The parameters are; Loss(dB), which is achieved by varying the attenuation of the
signal, Quantum Bit Error Rate (QBER) which is obtained by using Equation (7.5.6);
Pt refers to the overall probability of photon detection on Bob’s side. This probability
is evaluated from Equation (7.5.4); Pd refers to the dark count probability and V is the
visibility of the quantum channel in percentage.

expressed as [14]

P (n, µ) =
µne−µ

n!
. (7.5.1)

The signals sent through an optical fibre, in practice, suffer from losses as distance of
transmission increases. This loss is mainly due to scattering in the fibre. The most
important parameter which needs to be evaluated in any QKD system is the raw key
rate, Rraw [14]. The Rraw between Alice and Bob is expressed as

Rraw = qvµtABtBηB, (7.5.2)

where q relies on the implementation, v is the repetition frequency, µ is the average
number of photons per pulse, tAB is the transmission on the line between Alice and Bob,
tB is Bob’s internal transmission per pulse and ηB is the Bob’s detection efficiency (tB ≈
0.67) and ηB is Bob’s detection efficiency (ηB ≈ 0.1). The transmittivity t, of a fibre is
given by t = 10−αd/10, where α is the attenuation constant and is currently optimal at
α = 0.2 and d is the transmission distance in km [14]. The overall transmission can be
expressed similarly as η = tcηB where tc is the channel transmission. The probability
Ps of detecting a signal at the detector is expressed as

Ps = 1− e−ηµ. (7.5.3)

Now, we can evaluate the overall detection probability, Pt which can be expressed as

Pt = Ps + Pd − PsPd
∼= Ps + Pd, (7.5.4)

where Pd is the dark count probability and PsPd is the coincidence of detection between
signal and dark count and is usually neglected in the experiment.

In order to test the quality of our QKD scheme we use the quantum bit error rate
(QBER). The QBER is an important parameter in QKD because it is used to investigate
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the security in QKD protocols [14]. The QBER is simply the fraction of error bits fc to
the total number of bits tc. The QBER which is expressed as

QBER =
fc
tc

(7.5.5)

where fc are false counts and tc are total counts. The false counts, fc = e0Pd + Ps
where e0 is the error detection due to background and signal respectively while tc = Pt.
This is achieved through the use of some extra classical post-processing steps in order
to extract the secret key. The QBER can also be written as

QBER = QBERopt +QBERdark +QBERafter +QBERstray. (7.5.6)

In this expression, QBERopt is the probability that a photon hits the wrong detector.
This can also be used as a way to determine the optical alignment of the polarization
components and the stability of the fibre link. This is expressed as

QBERopt =
1− V

2
, (7.5.7)

where V is the visibility. The QBERdark is the error due to dark counts. The QBERdark

is expressed as

QBERdark
∼=

pdark

µtABtBηB
. (7.5.8)

The QBERdark forms the most important parameter in the sense that it increases with
distance and therefore limits the range of key distribution. Based on Table 7.1, as the
loss increases the QBER increases as well as the dark count probability. This leads to a
decrease in the secret key rate as distances increases. This is shown in Figure 7.3. The
QBERafter is the error due to after pulses. It is expressed as

QBERafter
∼=

n=1/pdet∑
n=0

pafter(τ +
n

v
), (7.5.9)

Due to the unavailability of a single photon source, we use a weak laser source. However,
this comes with costs as it is associated with some attacks from an eavesdropper called
the photon number splitting attacks [153]. This allows her to get full information
without being detected.

Based on our measured parameters, we can calculate the secret key generation rate r,
against the PNS attacks as

r = Pt[(1− ξ′)β − fECh(Q)], (7.5.10)

where ξ′ = ξ(Q/β) and again ξ(Q) = log2(1 + 4Q− 4Q2), β = (Pt−P ′)/Pt, fEC = 1.05
is the error correction efficiency and Q is the QBER. Again, in the expression, ξ is the
fraction of key discarded during privacy amplification and P ′ = 1 − (1 + µ + µ2/2 +
µ3/12)Q−µ. The term h(Q) is the binary entropy function and is expressed as h(Q) =
−Q log2(Q)− (1−Q) log2(1−Q). The variation of the secret rate against distance for
the B92 protocol is shown in Figure 7.3. The secret key rate obtained is slightly lower
than that of BB84 protocol as expected [23], however it still scales similarly with that
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Figure 7.3: Experimental secret key rate for the B92 and BB84 protocols as a function
of distance. In order to find the key rates, we use formalism developed in Ref [2].

of the standard BB84 protocol. The difference between the two mutual informations is
given as

ηdist = I(A : B)− I(A : E), (7.5.11)

where I(A : B) = 1 +D log2D+ (1−D) log2(1−D) and D is equal to the total QBER
and I(A : E) ∼= 0.03+I2v. I2v is a consequence of multi-photon pulses and is about 0.06,
014 and 0.40 for 5, 10 and 20dB losses respectively for µ=0.25dB/km. In Figure 7.4, we
show the variation of Shannon mutual information between Alice and Bob I(A : B) and
between Alice and Eve I(A : E) against optical loss. As the optical loss increases the
amount of noise in the channel also increases. This leads to an increase in the amount
of information which the eavesdropper gains. For simplicity, we attribute all the noise
to the eavesdropper. The secret key can only be extracted if I(A : B) > I(A : E).
Therefore, as I(A : E) increases the amount of secret key decreases as shown in Figure
7.3.

7.6 Conclusion

In this work we have experimentally demonstrated that we can adapt the set-up which
was originally designed to run the BB84 and SARG04 protocols and use it to implement
the B92 protocol. We have shown how the quantum bit error rate behaves as we vary
loss. In particular, we show that in our implementation we can achieve reasonable secret
key rates which scale similarly as the BB84 protocol for some reasonable communication
distance on a fibre optic network. In summary, these results show that it is possible to
implement the B92 QKD protocol using the Clavis2 system. This is very useful in the
sense that as opposed to the four state protocol, the B92 protocol uses less resources
hence it is simpler to implement thus extending the applicability of the Clavis2 system.
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Chapter 8

QKD in d-dimensions

8.1 Introduction

In this chapter, we present an experimental study of higher-dimensional QKD protocol
based on mutually unbiased bases (MUBs), implemented by means of photons carrying
orbital angular momentum (OAM). We perform (d+1) mutually unbiased measurements
in a classical P&M scheme and on a pair of entangled photons for dimensions ranging
from d = 2 to 5. In our analysis, we pay attention to the detection efficiency and photon
pair creation probability. As security measures, we determine from experimental data
the average error rate, the mutual information shared between the sender and receiver
and the secret key generation rate per photon. We demonstrate that increasing the
dimension leads to an increased information capacity as well as higher key generation
rates per photon up to a dimension of d = 4. This chapter is based on the manuscripts
M1 & M10.

8.2 Theory of MUB protocols

Generally, QKD protocols in higher dimensions primarily follow the same arguments
of the standard qubit based protocols. In particular, it has been found that MUBs
[154, 155, 156] for high-dimensional OAM states of photons can be used to encode bits
of information in the same way as in the BB84-based schemes [157, 158, 159, 160].
MUBs have found other applications in quantum state tomography [156, 161, 162, 163],
quantum entanglement [164] and quantum error-correction codes [165, 166] and also
appear useful in QKD protocols. The MUBs in QKD protocols offer greatest advantage
in the sense that encoding in the mutually unbiased bases of OAM states leads to
higher key generation rates thus providing increased security against an eavesdropper
[167]. Therefore, in the same spirit we propose and experimentally demonstrate a QKD
scheme that makes use of d MUBs for higher dimensional OAM states.

The simplest example of MUBs of dimension d = 2 are the horizontal or vertical, diag-

57



58

onal or anti-diagonal, and left- or right-handed polarization bases as they are unbiased
with respect to each other, forming a set of three MUBs. Although MUBs offer secu-
rity against eavesdropping, encoding states in the polarization degree of freedom only
allows a maximum of one bit of information transmitted per photon which results in
a limited key generation rate. Since systems with higher-dimensional Hilbert space
can store more information per carrier, the question arises whether QKD protocols us-
ing higher-dimensional MUBs also result in higher generation rates of secure key bits;
indeed, such protocols can be expected to be more robust in terms of abstract noise
measures [132, 168]. Their actual performance in terms of secure key rate however,
depends on whether the amount of noise in higher-dimensional implementations grows
faster with increasing dimension than their robustness against noise. This Chapter ad-
dresses this question for implementations using the OAM of photons. Beams that carry
OAM have an azimuthal angular dependence of exp(i`θ) [169] where ` is the azimuthal
index and θ is the azimuthal angle. It has been shown theoretically that MUBs for
higher-dimensional OAM states can be used to encode bits of information in alignment
with the BB84 protocol [157, 158, 159, 160]. A standard P&M implementation of a
generalized BB84 protocol, relying on 11 OAM states and superpositions of these 11
OAM states, has previously been performed [170], using 2 of the 12 available MUBs.

In this Chapter, we experimentally investigate an EB scheme for QKD encoded in com-
plete sets of higher-dimensional MUBs, which we first verify with a classically simulated
P&M scheme. Although we only focus on the quantum phase of the protocol and do not
execute the classical communication channel, we show that the quantum phase is good
enough such that one can execute the whole protocol. We implement our protocol with
MUBs encoded in OAM states and present values for the corresponding average error
rates, classical Shannon information and secret key rates. As with all OAM protocols,
our QKD protocol uses filter measurements that project onto one MUB element at a
time; we provide the connection between these protocols to the established theory for
protocols using full MUB measurements. To achieve this, we prove that the detection
efficiency depends only on the basis choice and not on the elements within a basis,
otherwise the security parameters of the protocol cannot be evaluated. This allows us
to map our protocol to the key rates, thus arriving at the standard MUB protocol.
By increasing the dimension d, we obtain an increase in the secret key rate which has
been theoretically observed in recent papers [132, 168], resulting in higher key gener-
ation rates for dimension d = 4. Similarly the Shannon mutual information increases,
demonstrating an improvement in the information capacity.

8.3 Mutually unbiased bases

Two orthonormal bases M1 = {|φ(1,i)〉, i = 0, 1, · · · , d − 1} and M2 = {|φ(2,j)〉, j =
0, 1, · · · , d − 1} of a d-dimensional Hilbert space Hd are said to be mutually unbiased
if, and only if, all pairs of basis vectors |φ(1,i)〉 and |φ(2,j)〉 satisfy

|〈φ(1,i)|φ(2,j)〉|2 =
1

d
. (8.3.1)
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Physically, this means that for a system prepared in the basis M1 and measured with
respect to basis M2, all outcomes are equally probable. This property of mutually
unbiased bases makes them important for QKD protocols.

Mutually unbiased bases were introduced by Schwinger [154] in 1960 as optimum in-
compatible measurement bases. In 1981, Ivonovic showed their application in quantum
state discrimination [155]. Later Wootters and Fields [156] gave a constructive proof
that there exist complete sets of MUBs for prime power dimensions and proved that
for any dimension d there are not more than d + 1 MUBs within any particular set of
MUBs.

The smallest prime dimension is 2, and for that an example of a complete set of MUBs
consists of the eigenstates of the three Pauli spin operators σz, σx, σy, i.e.,

{|0〉, |1〉}; (8.3.2){
1√
2

(|0〉+ |1〉) , 1√
2

(|0〉 − |1〉)
}

; (8.3.3){
1√
2

(|0〉+ i|1〉) , 1√
2

(|0〉 − i|1〉)
}
. (8.3.4)

Pauli operators can be generalized to higher dimension, known as the Weyl operators.
These are unitary operators of the form XkZ l for k, l ∈ {0, 1, · · · , d− 1}. The operator
Z is diagonal in the standard basis {|0〉, |1〉, · · · , |d− 1〉}:

Z =
d−1∑
i=0

ωi|i〉〈i|, (8.3.5)

with ω = exp(i2π/d) whereas, the operator X reads:

X =
d−1∑
i=0

|i+ 1 mod d〉〈i|. (8.3.6)

The eigenbases belonging to the different operators in the set {Z,XZ l|l ∈ {0, 1, · · · , d−
1}} form a complete set of MUBs for any prime number d as the dimension of the
underlying Hilbert space. For d = 2, the operator X is identical with the Pauli operator
σx and the operator Z is given by the Pauli operator σz.

In the present study of MUB based QKD a complete set of MUBs is implemented
following the recipe above by means of photons carrying OAM. The MUBs are obtained
by assuming that the standard basis (eigenbasis of the operator Z ) is realized by single-
photon states which correspond to an elementary excitation of Laguerre-Gauss modes
(LG`) carrying OAM value l~. For d = 2 we employ the LG` modes with ` = ±1 to
generate the standard basis.

For d = 3, our choice of the standard basis corresponds to LG` modes with OAM values
` = −1, 0, 1: | − 1〉 ≡

 1
0
0

 , |0〉 ≡

 0
1
0

 , |1〉 ≡

 0
0
1

 ; (8.3.7)
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The remaining three bases are given in matrix notation with respect to the standard
basis as:

1√
3

1 1 1
1 ω ω2

1 ω2 ω

 ,
1√
3

1 1 ω
1 ω 1
ω 1 1

 ,
1√
3

 1 1 ω2

1 ω2 1
ω2 1 1

 . (8.3.8)

Here each matrix represents a complete orthonormal basis with its columns reflecting
the basis vectors. In general, for prime dimension d, the standard basis consists of d LG`

modes, while the remaining d bases pertain to superpositions of the LG` modes. Exam-
ples of the LG` modes and their superpositions are given in Fig. (8.1), which contains
images of the measurement holograms and their corresponding intensity profiles.

8.4 Filter based MUB QKD protocol

We will now describe how our QKD protocol which is based on filter measurements
operates. In both scenarios, Alice (SLM A) prepares her mode in a state chosen ran-
domly from one of the (d + 1) bases, while Bob (SLM B) performs a measurement on
his mode by randomly selecting a state in one of the (d+ 1) bases chosen out of (d+ 1)2

different basis settings but biased towards one basis. Each party then announces from
which basis the filter measurement was chosen (sifting) and keeps measurements if they
all arrived in the same basis. They later make announcements as to whether photon
coincidences occurred (post-selection).

Figure 8.1: The states for each of the 4 MUBs for d = 3. The images on the left
represent the measurement filters (or holograms) for each of the 12 states. The images
in the middle and on the right contain the corresponding experimentally produced and
theoretically calculated intensity profiles of the LG` modes produced by each hologram
[M1].

A coincidence event represents a conclusive result, otherwise it becomes inconclusive.
This is followed by parameter estimation (error rate in the remaining data), error correc-
tion and privacy amplification. The announcement step allows our filter measurement
based QKD protocol to be mapped back to the original protocol which uses full MUB
measurements.

In standard EB QKD protocols both parties perform measurements on the states that
they receive, followed by a public announcement of their measurement basis. The two
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parties then compare a small portion of their measurements in order to obtain an esti-
mate of the average error rate. This quantifies the error in the QKD protocol resulting
from all sources of noise, such as noise in the transmission channel and errors in the
measurements. Moreover, the noise could also be caused by an eavesdropper. The error
rate refers to the probability that Alice sends the state |φ(β,k)〉, while Bob receives an
orthogonal state |φ(β,k′)〉. Given the MUB β, the corresponding average error rate in
each basis Qβ, is expressed as

Qβ =
∑
k,k′
k′ 6=k

tr
[
|φ∗(β,k)〉〈φ∗(β,k)| ⊗ |φ(β,k′)〉〈φ(β,k′)|ρAB

]
. (8.4.1)

The total average error rate is the total error obtained as an average over the different
MUBs, L [168] and is defined as

Q =
1

L
∑
β∈L

Qβ. (8.4.2)

We use the full set of available MUBs, therefore L = d+ 1.

The resulting key rate for this protocol is given as [132, 168]

rmin = log2 d+
d+ 1

d
Q log2

(
Q

d(d− 1)

)
+

(
1− d+ 1

d
Q

)
log2

(
1− d+ 1

d
Q

)
,(8.4.3)

The limit on the tolerable error rate that is safe for secret key generation can be improved
by implementing a full set of (d+ 1) MUBs [168, 160]. Using a full set of MUBs results
in an increase in the tolerable error rate in which we can still extract a reasonable secret
key without compromising the security of the protocol. However, this happens at the
cost of reducing the transmission rate which is proportional to the probability 1/(d+ 1)
that Alice and Bob choose the same basis. But in our protocol, this is not a problem
since we make use of the asymmetric [171] basis choice, so one does not pay the high
cost of sifting with MUBs. In order to calculate the maximum tolerable error rate,
Qmax, the secret key rate, rmin, is set to zero.

8.5 Experimental Setup

Our EB QKD protocol was implemented at the single photon level on entangled photon
pairs depicted in Fig. 8.2. A collimated 350 mW UV laser (Vanguard 355-2500) was
directed to pump a 3 mm-thick type-I BBO crystal, producing collinear frequency-
degenerate entangled photon pairs at 710 nm. A beam-splitter was used to separate the
collinear signal and idler photons (depicted by arms A and B) which were directed and
imaged (2×) from the plane of the crystal onto spatial light modulators (SLMs) by a 4-f
telescope. The SLMs were used to execute the filter measurements and were encoded
to manipulate both the phase and amplitude of the incident light [172, 173, 174, 175],
allowing only one particular superposition of the LG modes to be detected by the
detector, while all the others are blocked. False colour images of the types of filters
(or holograms) encoded on the SLMs are presented in Fig. 8.1. The projected mode
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obtained at the plane of the SLM, be it either Gaussian or non-Gaussian, depending on
whether the filter either does or does not match the state of the incident photon, was
imaged (0.004×) by a 4-f telescope onto a single-mode fibre. The fibres were connected
to avalanche photodiodes which detected the photon pairs via a coincidence counter.
The single count rates, SA and SB, and the coincidence count rates, C, were recorded
simultaneously and accumulated over an integration time of 10 s.

Figure 8.2: The experimental setup used to perform both the EB and P&M QKD
protocols. The plane of the crystal was relayed imaged onto SLMs A and B with the
use of lenses, L1 and L2 (f1 = 200 mm and f2 = 400 mm). Lenses L3 and L4 (f3 = 500
mm and f4 = 2 mm) were used to relay image the SLM planes to single-mode fibres
[M1].

An initial step in conducting our EB QKD protocol, was to test it classically in a P&M
based scheme. Our experimental setup for the P&M scheme can be illustrated with the
use of Figure 8.2 where the BBO crystal is considered to be reflective and the APD in
Arm A is replaced with a laser source and the APD in Arm B with a CCD camera. This
procedure is commonly referred to as back-projection or retrodiction [176]. Conducting
the protocol in this manner, provided a quicker and simpler method for the verification
of the experimental procedure.

8.6 Results and Discussion

By way of example we consider d = 3 in our P&M based protocol. We scanned through
all possible states, defined by Equations (8.3.7) and (8.3.8) and depicted in Figure 8.1, on
SLM A and SLM B. Figure 8.3 (a) contains the cross-sectional intensity profiles recorded
on the CCD (depicted in Figure 8.2) when SLM A and SLM B scanned through the
states pertaining to the first basis. It is evident that when SLM A and SLM B select the
same (different) states, a Gaussian mode (singularity) appears on axis. The normalized
on-axis intensities are depicted in Figure 8.3 (b) for the permutation of all the bases
elements for d = 3. We note that the diagonal elements are equal to 1/3 (1/d) and the
elements corresponding to different bases are found to be 1/9 (1/d2). This validates
the implementation of the filters (holograms) and their normalization. Our approach in
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Figure 8.3: (a) Cross-sectional intensity profiles of the field recorded on the CCD for
permutations of the first basis’s states encoded on SLM A and SLM B. White cross-hairs
mark the axis of propagation. (b) The normalized intensity recorded at the CCD when
SLM A (Alice) and SLM B (Bob) select one of the three states from one of the 4 bases
[M1].

obtaining the normalized joint probabilities is outlined in the Appendix F.

Following the successful implementation of the P&M scheme, we proceeded to the EB
scheme. For each permutation of the projective measurements by Alice and Bob in
the EB scheme, the single count rates and coincidence count rates were recorded and
the normalized joint probabilities calculated for d = 2, 3, 4 and 5 are given in Figure
8.4. In studying the data in Figure 8.4, it is evident that when the filter settings
are the same, anti-correlations in all the bases are observed (denoted by the white
diagonal elements). In performing the projective measurements, completely orthogonal
filter settings result in no correlations (an inconclusive measurement), while the overlap
between the remaining filter settings is given as the inverse of the dimension (i.e., 1/d).

Based on the results from the normalized joint probabilities, we calculated the average
error rate Q according to Equation (8.4.2). We find that for d = 2, 3, 4 and 5, the
average error rate, Q = 0.016, 0.040, 0.088, and 0.14, respectively. By using these
values of Q together with Equation (8.4.3) we calculate the secret key rate to be rmin =
0.7590, 1.123, 1.139 and 0.8606 for d = 2, 3, 4 and 5, respectively. Figure 8.5 contains
the measured secret key rates plotted as a function of the measured average error rates
for dimensions d = 2, 3, 4 and 5, denoted by the data points. The curves denote the
theoretical secret key rate as a function of the average error rate, plotted with the use
of Equation (8.4.3). For each dimension, d, the intersection between the dashed curves
and the horizontal axis (i.e., where rmin = 0) corresponds to the maximum permissible
error rate (Qmax) in order to enable the secure distribution of a secret key. Ideally, we
want to minimize the error rate Q in order to maximize the secret key rate rmin.

The Shannon information for d = 2, 3, 4 and 5 is calculated to be I(A : B) = 0.9999,
1.313, 1.478 and 1.487, respectively (depicted by the green data points in Figure 8.7),
while the Shannon mutual information increases monotonically, it seems to level off for
d = 4 and 5. On the other hand rmin first increases and then decreases for d = 5.
This means that we have reached a finite limit on the dimension in which the protocol
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Figure 8.4: The normalized joint probabilities when SLM A (Alice) and SLM B (Bob)
select one of the d states from one of the d+ 1 bases for the EB scheme [M1].

Figure 8.5: The secret key rate, rmin, as a function of the average error rate, Q, for
different dimensions. The solid data points denote the measured values and the dashed
curves the theoretical values calculated from Equation (8.4.3) [M1].

can encode, while still resulting in higher generation rates per photon. The difference
between these two quantities (I(A : B) and rmin) is the mutual information between
Alice and Eve, in other words the information that is shared between Alice and Eve
(denoted by the red lines in Figure 8.7). From our results it is evident that the noise
(attributed to a disturbance by Eve) grows faster than the correlations between Alice
and Bob that can be used to generate a key. As this is not expected theoretically,
this may be due to the complexity associated with encoding higher-dimensional states
holographically on pixelated, finite resolution, spatial light modulators. Our detection
efficiency is low because our filter measurements are based on intensity masking and
serve as a proof-of-principle experiment.
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Figure 8.6: The measured average error rate (Q) and the maximum permissible error
rate (Qmax) evaluated when rmin = 0 [M1].

Figure 8.7: The Shannon mutual information I(A:B) (green) and the secret key rate
rmin (blue) plotted as a function of the dimension [M1].

8.7 Conclusion

In this work, we have realized a P&M and an EB QKD protocol for d = 2 to 5 MUB
measurements encoded in the OAM degree of freedom. We show that our protocol
which is based on filter measurements can be mapped back into the original MUB
protocol which uses full measurements. In particular, we verify our claim that detection
efficiency depends on a basis choice and not on the element within a basis, an important
consideration for the protocol to work. We provide the proof of the claim in Appendix
F. We show this explicitly for d = 2 and attest to the fact that this dependency holds
for all dimensions. We infer from our measurements the average error rate, mutual
information and secret key generation rate per photon for each dimension. We observe
that encoding in higher-dimensional MUBs, leads to an increase in the encoding density
per photon and increased key generation rates per photon.
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Chapter 9

Conclusion

It is the objective of this thesis to review the tools used for quantifying information
in quantum communication and to derive security bounds for the B92 protocol in the
finite length analysis and also the bounds for a high dimensional protocol. We studied
various security methods used for proving the security of QKD protocols. From the
tools which we reviewed, we have shown how one can derive security bounds for various
QKD protocols. Although QKD protocols appear to be simple, proving their security
is not a trivial task.

In particular, we have shown that there exists a connection between the Tsallis entropy
and the quantum uncertainty relations in Ref M9. Previously, the Shannon entropy
and the Rènyi entropies have been used to express such a relationship. This shows
the possibility of using the Tsallis entropies in the security of QKD protocols. This is
based on their connection to the Shannon entropy and their generalizations to uncer-
tainty relations regardless of their non-additivity property. The question of whether the
Tsallis entropies provide better security bounds as compared to the Shannon and Rènyi
entropies remains work for the future research.

In M2, we have derived the security bounds for the B92 QKD protocol for finite re-
sources by using the Rènyi entropies and uncertainty relations. This shows further the
applicability and power of Rènyi entropies together with the elegant method of uncer-
tainty relations in providing security bounds for QKD protocols. Our results show that
a minimum of 104 − 106 signals are required in order to extract a reasonable secret
key. We highlight that these results have also been shown in various finite-length key
analysis papers.

Furthermore in M3 & M6, we have shown the possibility of the implementation and
security analysis of the B92 protocol by using the id3100 Clavis2 system at our labora-
tory. We highlight that this system has traditionally been used for the implementation
of the BB84 and SARG04 protocols. We exploited the commercial success and ease
of deployment of these “Plug and Play” systems. Such an implementation is that the
B92 protocol requires less resources when compared to the other two protocols. More-
over, we demonstrated that with our set-up we can achieve reasonable key rates which
scale similarly as in the BB84 protocol and send them over a distance of about 80km.
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This shows that one can implement the B92 QKD protocol by using the id3100 Clavis2

system. Such kind of an implementation offers a great advantage in the sense that it
requires less resources.

Finally, in M1 & M10, we have shown an implementation and the security analysis of
a high dimensional filter based QKD protocol by using MUBs implemented by OAM
states. We show that up to d = 5, we can achieve higher secret key generation rates.
We also give values of the average error rate and mutual information as our security
measures. In particular, we have shown that by encoding in higher dimensional MUBs
one can obtain high encoding density per photon which in turn leads to higher key
generation rates per photon.



Appendix A

Proof of the Schmidt decomposition

In this section we show the Schmidt decomposition for a tensor product of finite Hilbert
spaces. We consider an arbitrary pure-state |ψ〉AB. Let {|rA〉} be an orthonormal basis
in HA and {|αB〉} be an orthonormal basis in HB, and then we can write

|ψ〉AB =

dA∑
r=1

dB∑
α=1

arα|rα〉 ⊗ |αβ〉, (A.0.1)

where the coefficients arα can be considered to be the elements of a dA ⊗ dB matrix A.
The matrix formed by the coefficients arα can be written as

[A]r,α = ar,α. (A.0.2)

This matrix admits a singular value decomposition of the form A = U ∧ V where U is
a dA × dA unitary matrix, V is a dB × dB unitary matrix and ∧ is a diagonal dA × dB
matrix with non-negative entries with elements djβ = δjβdjj. If we denote the matrix
of U and V by urj and vβα, we have

arα =

dA∑
j=1

dB∑
β=1

urjvβα. (A.0.3)

By substitution in the Equation (A.0.1), we get

|ψAB〉 =

dA∑
j=1

dB∑
β=1

djβ

dA∑
r=1

urj|rA〉 ⊗
dB∑
α=1

vβα|αβ〉

=

dA∑
j=1

dB∑
β=1

δjβdjj

dA∑
r=1

|rA〉 ⊗
dB∑
α=1

vβα|αβ〉

=

min(dA,dB)∑
j=1

λj|jA〉|jB〉, (A.0.4)

where we defined the orthonormal basis on the A system as |jA〉 =
∑dA

r=1 urj|rA〉 and

similarly we define the orthonormal basis on the B system as |jB〉 =
∑dB

α=1 vjα|αβ〉 and
also λ = djj.
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Appendix B

Proof of the Rényi entropy as α 7→ 1

The Rényi entropy of the sample at α = 1 is undefined. Therefore, we apply the
L’Hospitals rule in order to evaluate the limit

lim
α 7→a

f(q)

g(q)
= lim

α 7→a

f ′(q)

g′(q)
, (B.0.1)

where in this case a = 1. Consider a sample of probabilities pi, such that
∑N

i=1 pi = 1

and by substitution, we write f(q) = ln
∑N

i=1 p
α
i and g(q) = 1 − α. On differentiation,

we have ∂
∂q
g(q) = −1, and by applying the chain rule

∂

∂q
f(q) =

1∑N
i=1 p

α
i

N∑
i=1

∂

∂q
pαi

=
1∑N
i=1 p

α
i

N∑
i=1

pαi ln pi. (B.0.2)

In the case when α 7→ 1 we have

∂

∂q
f(q) =

1∑N
i=1 p

a
i

N∑
i=1

pi ln pi. (B.0.3)

The probabilities pi, sum to unity hence

lim
α 7→1

ln
N∑
i=1

pαi = −
N∑
i=1

pi ln pi, (B.0.4)

which gives the Shannon entropy.

The Rényi entropy is a decreasing function of the parameter α depicted as

(1− α)2(
∑

p(i)α)
∂sα

∂α
= f(

∑
p(i)α) + (1− α)

∑
p(i)α ln p(i), (B.0.5)
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with f(x) = x lnx. The function f(x) is convex hence

f(
∑

p(i)α) ≤
∑

p(i)f(p(i)α−1)

=
∑

p(i)α ln p(i)α−1

= (α− 1)
∑

p(i)α ln p(i). (B.0.6)

The Rényi entropy can also be expressed by conditioning between the random variables
X and Y . This can be written as a chain rule Hα(Y |X) = Hα(X, Y )−Hα(X). Again,
from this definition it can be shown that the conditional Rényi entropy reduces to the
conditional Shannon entropy as α→1.

B.1 Proof of additivity of the Rényi entropy

If p(i, j) = pA(i)pB(j) then we can write

Hα(p) =
1

1− α
ln

(∑
i,j

p(i, j)α

)

=
1

1− α
ln

(∑
i

pA(i)α

)(∑
j

pB(j)α

)

=
1

1− α
ln

(∑
i

pA(i)α

)
+

1

1− α
ln

(∑
j

pB(j)α

)
= Hα(pA) +Hα(pB), (B.1.1)

which completes the proof.



Appendix C

Proof of the non negativity of the
Relative entropy

In order to prove that D(p||q) ≥ 0, we recall the definition of the relative entropy

D(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)

= − 1

ln 2

∑
x

p(x) ln
q(x)

p(x)

≥ − 1

ln 2

∑
x

p(x)

(
q(x)

p(x)
− 1

)
. (C.0.1)

We have used the inequality lnx ≤ x− 1 which is a convexity of the ln function. Then,
by using the fact that p(x) and q(x) sum to one, we get D(p||q) ≥ 0. The equality
property is achieved if and only if for all x,

ln
q(x)

p(x)
=
q(x)

p(x)
− 1, (C.0.2)

which is equivalent to p(x) = q(x) for all x.
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Appendix D

Proof of the Heisenberg uncertainty
principle

If two Hermitian operators represent physical observables are denoted by A and B in
an N -dimensional Hilbert space, their corresponding set of normalized eigenvectors can
be written as {|ai〉} and {|bi〉} with i = 1, ..., N [60]. Then according to the Uncertainty
principle, it is impossible for any quantum state |ψ〉 with probability distributions pi =
(p1, ..., pN) and q = (q1, ..., qN) which are defined as [60, 89]

pi = |〈ai|ψ〉|2

qi = |〈bi|ψ〉|2, (D.0.1)

to be measured accurately except with limited precision provided that A and B are
sufficiently non-commuting. Robertson formulated the uncertainty relations according
to the inequality

4Ap4Bp ≥
1

2
tr(ρ[Â, B̂]), (D.0.2)

where 4Ap and 4Bp represent the standard deviation of the outcomes of the corre-
sponding observables which can be expressed as

(4Ap)2 = 〈A2〉p − (〈A〉p)2

(4Bp)
2 = 〈B2〉p − (〈B〉p)2, (D.0.3)

and [Â, B̂] represents the commutator, [Â, B̂] ≡ ÂB̂ − B̂Â or the incompatibility of
the two operators Â and B̂. Therefore, in order to prove the Heisenberg uncertainty
principle let

|φ〉 := (A+ iγB)|ψ〉, (D.0.4)

where γ is a real parameter. By substitution we obtain

〈φ|φ〉 = 〈ψ|(A+ iγB)†(A+ iγB)|ψ〉
= 〈ψ|(A† − iγB†)(A+ iγB)|ψ〉
= 〈ψ|A†A|ψ〉+ iγ〈ψ|(A†B −B†A)|ψ〉+ 〈ψ|B†B|ψ〉
≡ 〈ψ|A2|ψ〉+ iγ〈ψ|[A,B]|ψ〉+ γ2〈ψ|B2|ψ〉
≥ 0. (D.0.5)

75



76

The commutator definition has been used and also the fact that the observables A and
B are Hermitian. For any observable X = A,B and state |ψ〉 we have 〈ψ|X2|ψ〉 (if
X = X†) as shown

〈ψ|X2|ψ〉 =

(∑
i

ξ̄i〈γi|

)
XX

(∑
j

ξ|γj〉

)
=

∑
i

∑
j

ξ̄iξjγiγjδij

=
∑
i

γi
2|ξi|2

≥ 0. (D.0.6)

This means that i〈ψ|[A,B]|ψ〉 must be real and should be equal to ±|〈ψ|[A,B]|ψ〉|.
The equation above (3rd from last) is of a polynomial form which corresponds to a
discriminant δ = b2 − 4ac so that we have

δ = |〈ψ|[A,B]|ψ〉|2 − 4〈ψ|A2|ψ〉〈ψ|B2|ψ〉
≤ 0. (D.0.7)

We use this result in the equality of form

〈ψ|A2|ψ〉〈ψ|B2|ψ〉 ≡ 〈A2〉〈B2〉

≥ 1

4
|〈ψ|[A,B]|ψ〉|2. (D.0.8)

For the observables A,B we define new observables Ã, B̃ according to

A = Ã− 〈ψ|Ã|ψ〉 ≡ Ã− 〈Ã〉

B = B̃ − 〈ψ|B̃|ψ〉 ≡ B̃ − 〈B̃〉.

By substituting these set of equations in the previous equation we arrive at

〈A2〉〈B2〉 = 〈(Ã− 〈Ã〉)2〈(B̃ − 〈B̃〉)2, (D.0.9)

which can also be written as

4Ã24B̃2 ≥ 1

4
|〈ψ|Ã, B̃|ψ〉|2, (D.0.10)

and this can be expressed as

4Ã4B̃ ≥ 1

2
|〈ψ|Ã, B̃|ψ〉|. (D.0.11)

For any operator X = A,B, it is found that 4X2 = 4X̃2 thus leading to the Heisen-
berg’s uncertainty relation

4A4B ≥ 1

2
|〈ψ|[A,B]|ψ〉|. (D.0.12)



Appendix E

Proof of the Tsallis entropy as α 7→ 1

Similar to the Rényi entropy at α = 1, the entropy fails and therefore we apply the
L’Hospital’s Rule

lim
α→a

f(q)

g(q)
= lim

α→a

f ′(q)

g′(q)
. (E.0.1)

By substitution, f(q) =
∑N

i=1 (pαi − 1) and g(q) = 1−α and taking a = 1, then by chain
rule we arrive at

∂

∂q
f(q) =

N∑
i=1

∂

∂q
pαi . (E.0.2)

We recall that ax can be differentiated with respect to x as

∂

∂x
ax =

∂

∂x
ex ln a ∂

∂x
x ln a = ax ln a. (E.0.3)

By following the same trick as in the Rènyi entropy in Section 3.2.5, for the above
equation we get

∂

∂x
f(q) =

N∑
i=1

pαi ln pi, (E.0.4)

of which in the limit α→ 1, we obtain

∂

∂q
f(q) =

N∑
i=1

pi ln pi, (E.0.5)

then we have

lim
α→1

1

1− α

(
N∑
i=1

pαi − 1

)
= −

N∑
i=1

pi ln pi, (E.0.6)

This shows that as α 7→ 1, the Tsallis entropy is equal to the Shannon entropy.
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Appendix F

Calculation of detection efficiencies

In this section, we show how to formalize and verify the claim that the detection ef-
ficiencies depend only on the bases but are the same for all elements within a basis.
We demonstrate the calculation of detection efficiencies by comparing the expected and
detected number of clicks for the case of qubit pairs (d = 2). For this purpose, we
first calculate the expected number of detection events by following the light beam from
the laser source to the detection device. Afterwords we relate them to the measured
counts. By comparing the single count rates and the coincidence count rates we obtain
an expression for the detection efficiency for each basis state.

F.0.1 Photon pair creation and action of the beam splitter

The state of the light exiting the laser source can be represented by a coherent state
with complex parameter α which specifies the intensity and phase of the light:

|α〉 = D(α)|0〉 = exp(αb†0 − α∗b0)|0〉, (F.0.1)

where |0〉 is the vacuum state, b0 and b†0 are annihilation and creation operators, re-
spectively, with index referring to OAM value l = 0. The operator D(α) is called a
displacement operator. The laser beam pumps a BBO crystal, creating pairs of pho-
tons with OAM values ±l by type I parametric down conversion. This process can be
modeled by the following transformation of creation operators

b†0 →
∑
`

√
χ`a

†
`a
†
−`, (F.0.2)

where χ` is the creation probability of a photon pair with OAM values ±` and a†±` are
the corresponding creation operators. After passing through the BBO crystal the light
is sent to a 50 : 50 beam splitter resulting in the transformation:

a†` →
1√
2

(
a†`,A + a†`,B

)
, (F.0.3)
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where A and B refer to the two beams exiting the beam splitter. Thus, the combined
action of the BBO crystal and the beam splitter reads

a†0 →
∞∑
`=0

√
χ`

(
a†`,A + a†`,B√

2

)(
a†−`,A + a†−`,B√

2

)
. (F.0.4)

It maps the displacement operator D(α) to a squeeze operator S(α
√
χ`) given by

S(α
√
χ`) = exp

(
α

∞∑
`=0

√
χ`

(
a†`,A + a†`,B√

2

)

×

(
a†−`,A + a†−`,B√

2

)
− α∗

∞∑
`=0

√
χ`

×
(
a`,A + a`,B√

2

)(
a−`,A + a−`,B√

2

))
. (F.0.5)

Thus, the initial coherent state is transformed into a (two-mode) squeezed vacuum state:
|α̃〉 = S(α

√
χ`)|0〉. For small value of α

√
χ` the state |α̃〉 can be approximated to the

first order in α
√
χ` as:

|α̃〉 ≈ N

[
1 + α

∞∑
`=0

√
χ`

(
a†`,A + a†`,B√

2

)

×

(
a†−`,A + a†−`,B√

2

)]
|0〉, (F.0.6)

where N is the normalization constant. The vacuum does not play any role as far as
photon detections are concerned, thus, one can ignore the vacuum component. This
results in the (unnormalized) state |ψ〉 which reads:

|ψ〉 = α

∞∑
`=0

√
χ`

(
a†`,A + a†`,B√

2

)(
a†−`,A + a†−`,B√

2

)
|0〉, (F.0.7)

=
α

2

∞∑
`=0

√
χ`(a

†
`,Aa

†
−`,A + a†`,Aa

†
−`,B

+ a†`,Ba
†
−`,A + a†`,Ba

†
−`,B)|0〉, (F.0.8)

F.0.2 Measurements

After the BBO crystal and the beam spitter filter measurements projecting onto indi-
vidual basis modes were carried out independently in both beams A and B. The signal
for each basis mode was detected by means of avalanche photodiodes. These detectors
respond to incident photons, but do not discriminate between a single photon and mul-
tiple photons. However, the probability for a click varies for different photon numbers.
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The probability to obtain a click in a filter measurement of mode s can be modeled by
the expectation value of the effect Ps defined by

Ps =
∞∑
n=1

η(n)
s |ns〉〈ns|, (F.0.9)

where η
(n)
s represents the probability for n photons in mode s to trigger a detector click

and reads [177]

η(n)
s = 1− (1− η(1)

s )n,

≈ nη(1)
s for small η(1)

s . (F.0.10)

Because of photon loss on the path from source to detector and non-ideal detection, only
a fraction of the detection events expected under ideal conditions is measured in the
experiment. We attribute any loss to non-ideal detection. The probability of coincidence
can be calculated as an expectation value of the operator Ps ⊗ Ps′ with respect to the
state |ψ〉 (cp. Eq. (F.0.8)) after the beam splitter.

From Eq. (F.0.8) it is clear that only the single photon components of state |ψ〉 can
yield a click of detector A for OAM value `, leading to a detection probability of

p`,A = 〈ψ|P` ⊗ I|ψ〉 = η
(1)
`,A|α|

2χ`/2 . (F.0.11)

Similarly, we can calculate the other probabilities as:

p−`,A = 〈ψ|P−` ⊗ I|ψ〉 = η
(1)
−`,A|α|

2χ`/2 , (F.0.12)

p`,B = 〈ψ|I⊗ P`|ψ〉 = η
(1)
`,B|α|

2χ`/2 , (F.0.13)

p−`,B = 〈ψ|I⊗ P−`|ψ〉 = η
(1)
−`,B|α|

2χ`/2 . (F.0.14)

The probability of the coincidence count in detector A with OAM value ` and in detector
B with OAM value −` amounts to

p`,A,−`,B = 〈ψ|P` ⊗ P−`|ψ〉 = η
(1)
`,Aη

(1)
−`,B|α|

2χ`/4 . (F.0.15)

For the measured count of clicks C`,A in detector A with OAM value `, and the measured
count C−`,B in detector B with OAM value −` we obtain the expressions:

C`,A = Np`,A, (F.0.16)

C−`,B = Np−`,B, (F.0.17)

C`,A,−`,B = Np`,A,−`,B, (F.0.18)

where N is the number of photon pairs created by consecutive pump pulses during
the measurement period. For the coincidence counts C`,A,−`,B in the last equation
it is assumed that photon loss in beam A and beam B are independent. Note that
p`,A,−`,B/p`,A = η

(1)
−`,B/2 and hence one can calculate the efficiencies as:

η
(1)
−`,B = 2

C`,A,−`,B
C`,A

, (F.0.19)

η
(1)
`,A = 2

C`,A,−`,B
C−`,B

. (F.0.20)
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Basis vectors Detector A Detector B
1 0.01504 0.02145
2 0.01517 0.02106
3 0.00536 0.00886
4 0.00503 0.00727
5 0.00508 0.00787
6 0.00556 0.00874

Table F.1: Detection efficiencies for different detectors projecting on different bases
vectors. Here the first two vectors belong to the σz basis, the following two to the σx
basis, and the last two to the σy basis.

For the SLM-filter setting (|`〉± |− `〉)/
√

2 which is a superposition of ±` OAM modes,
the corresponding creation operators read a†± ≡ (a†`,A± a

†
−`,A)/

√
2. Thus, we can repre-

sent a†`,A and a†−`,A in terms of a†± as:

a†±` =
a†+,A ± a

†
−,A√

2
. (F.0.21)

Substituting Eq. (F.0.21) in Eq. (F.0.8) we obtain:

|ψ〉 =
α

4

∞∑
`=0

√
χ`

(
√

2
(a†+,A)2

√
2
−
√

2
(a†−,A)2

√
2

+2a†+,Aa
†
+,B − 2a†−,Ba

†
−,A

+
√

2
(a†+,B)2

√
2
−
√

2
(a†−,B)2

√
2

)
|0〉. (F.0.22)

Thus, the probability of a click in detector A for the SLM setting + amounts to p+,A =

η
(1)
+,A|α|2χ`/2 while the coincidence probability for the SLM setting + in the detector A

and the detector B reads p+,A,+,B = η
(1)
+,Aη

(1)
+,B|α|2χ`/4. The observed number of clicks

are related to the expected detection counts as:

C+,A = Np+,A, (F.0.23)

C+,B = Np+,B, (F.0.24)

C+,A,+,B = Np+,A,+,B, (F.0.25)

Since p+,A,+,B/p+,A = η
(1)
+,B/2, if follows for the efficiencies that:

η
(1)
+,B = 2

C+,A,+,B

C+,A

, (F.0.26)

η
(1)
+,A = 2

C+,A,+,B

C+,B

. (F.0.27)
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Similarly for SLM settings (|`〉 ± i| − `〉)/
√

2 the state |ψ〉 can be rewritten as:

|ψ〉 =
α

4

∞∑
`=0

√
χ`(
√

2
(a†+y,A)2

√
2

+
√

2
(a†−y,A)2

√
2

+ 2a†+y,Aa
†
+y,B + 2a†−y,Ba

†
−y,A

+
√

2
(a†+y,B)2

√
2

+
√

2
(a†−y,B)2

√
2

)|0〉, (F.0.28)

where

a†±y,A =
a†`,A ± ia

†
−`,A√

2
. (F.0.29)

Thus, the relation for the efficiencies in this filter setting is obtained as:

η
(1)
+y,B = 2

C+y,A,+y,B

C+y,A

, (F.0.30)

η
(1)
+y,A = 2

C+y,A,+y,B

C+y,B

. (F.0.31)

Using the expressions derived above, we calculated the detection efficiencies for the case
of a two-level system for different SLM settings (cp. Table F.1). We found that even
though the detection efficiencies vary for different bases, the fluctuation in the values is
very small for all the basis vectors within each basis which proves the claim for qubits.

Furthermore, this method can be used to show that the detection efficiencies are inde-
pendent of the basis vectors within each basis, regardless of the dimension. However,
let us point out that the analysis of our measurement data indicated an anomaly for
the detection efficiency for the OAM value ` = 0, which is different from the other
values of OAM. Although not so important in the present context, this case has to be
investigated more carefully when it comes to actual key transmission and will be the
subject of future work.
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[6] Werner Heisenberg. Über den anschaulichen inhalt der quantentheoretischen kine-
matik und mechanik. Zeitschrift für Physik, 43(3-4):172–198, 1927.

[7] Paul Busch, Teiko Heinonen, and Pekka Lahti. Heisenberg’s uncertainty principle.
Physics Reports, 452(6):155–176, 2007.

[8] C.H. Bennett and G. Brassard. Quantum cryptography: Public key distribution
and coin tossing. In Proceedings of IEEE International Conference on Computers,
Systems and Signal Processing, volume 175. Bangalore, India, 1984.

[9] Stefan Wolf. Unconditional security in cryptography. In Lectures on data security,
pages 217–250. Springer, 1999.

[10] D. Mayers. Unconditional Security in Quantum Cryptography. Journal of the
ACM (JACM), 48(3):351–406, 2001.

[11] H. Inamori, N. Lütkenhaus, and D. Mayers. Unconditional security of practical
quantum key distribution. The European Physical Journal D-Atomic, Molecular,
Optical and Plasma Physics, 41(3):599–627, 2007.

[12] V. Scarani and R. Renner. Quantum cryptography with finite resources: Uncondi-
tional security bound for discrete-variable protocols with one-way postprocessing.
Physical Review Letters, 100(20):200501, 2008.

[13] A. K. Ekert. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett.,
67(6):661–663, 1991.

85



86
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Norbert Lütkenhaus, and Momtchil Peev. The security of practical quantum key
distribution. Rev. Mod. Phys., 81(3):1301–1350, Sep 2009.

[24] Nicolas J Cerf and Philippe Grangier. From quantum cloning to quantum key
distribution with continuous variables: A review. JOSA B, 24(2):324–334, 2007.
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sian attacks in continuous variable quantum cryptography. arXiv preprint quant-
ph/0608034, 2006.

[27] Anthony Leverrier, Frédéric Grosshans, and Philippe Grangier. Finite-size anal-
ysis of a continuous-variable quantum key distribution. Physical Review A,
81(6):062343, 2010.

[28] http://www.idquantique.com.

[29] http://www.magiqtech.com.



87

[30] Momtchil Peev, Christoph Pacher, Romain Alléaume, Claudio Barreiro, Jan
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