
An Automated Apparatus for Non-Contact Inspecting of Mass 

Produced Custom Products 

Shaniel Davrajh-202500776 

School of Mechanical Engineering 

University of KwaZulu-Natal 

Submitted in fulfillment of the academic requirements for the degree of Master of Science in 

Engineering 

February 2009 

Supervisor: Professor Glen Bright 



I 

PREFACE 

I, Shaniel Davrajh, declare that: 

(i) The research reported in this thesis, except where otherwise indicated, is my 

original work, 

(ii) This thesis has not been submitted for any degree or examination at any other 

university, 

(iii) This thesis does not contain other persons' data, pictures, graphs or other 

information, unless specifically acknowledged as being sourced from other persons, 

(iv) This thesis does not contain other persons' writing, unless specifically 

acknowledged as being sourced from other researchers. Where other written 

sources have been quoted, then: 

a) their words have been re-written but the general information attributed to them 

has been referenced; 

b) where their exact words have been used, their writing has been placed inside 

quotation marks, and referenced. 

(v) Where I have reproduced a publication of which I am an author, co-author or editor, 

I have indicated in detail which part of the publication was actually written by 

myself alone and have fully referenced such publications, 

(vi) This thesis does not contain text, graphics or tables copied and pasted from the 

Internet, unless specifically acknowledged, and the source being detailed in the 

thesis and in the References sections. 



II 

Acknowledgement 

The work presented in this dissertation was carried out under supervision of Professor Glen 

Bright, at the School of Mechanical Engineering, University of KwaZulu-Natal. I would like to 

thank Professor Bright for going out of his way to not only develop my academic skills; but also 

for showing me how to apply my life skills to research and personal development. 

I wish to express my gratitude to the following people for various reasons: 

• My understanding and generous family for their everlasting support and encouragement. 

It is on their shoulders that I was able to stand and become who I am 

CSIR for their generous financial and material resources 

The National Research Foundation (NRF) and the University of KwaZulu Natal for all 

financial support received 

Mr Rathilall Sewsunker for his guidance from an electronic engineering perspective 

Dr. R Loubser for his ever-friendly assistance with mechanical modelling involved with 

the research 

Mr Riaan Stopforth for assistance with electronic hardware selection and design 

Mr Greg Loubser for assistance in producing certain electronic hardware 

Mr Seffat Chowdhury for immense assistance in software and modelling aspects of the 

project 

Mr Kumaran Moodley for his assistance in programming of microcontrollers 

The workshop staff from the Mechanical engineering department for fabricating 

mechanical components 

My loving future-wife for her tolerance, support, and encouragement through testing 

times 

My friends and colleagues who had an influence on my career 



Ill 

Abstract 

The evolution of the manufacturing industry may be viewed as proceeding from Dedicated 

Manufacturing Systems (DMS) to Reconfigurable Manufacturing Systems (RMS). Customer 

requirements change unpredictably, and so DMS are no longer able to meet modern 

manufacturing requirements. RMS are designed with the focus of providing rapid response to a 

change in product design, within specified part families. The movement from DMS to RMS 

facilitates mass-production of custom products. Custom parts require inspection routines that can 

facilitate variations in product parameters such as dimensions, shape, and throughputs. Quality 

control and part inspection are key processes in the lifecycle of a product. These processes are 

able to verify product quality; and can provide essential feedback for enhancing other processes. 

Mass-producing custom parts requires more complex and frequent quality control and inspection 

routines, than were implemented previously. Complex, and higher frequencies of inspection 

negatively impact inspection times, and inherently, production rates. For manufacturers to 

successfully mass-produce custom parts, processes which can perform complex and varying 

quality control operations need to be employed. Furthermore, such processes should perform 

inspections without significantly impacting production rates. A method of reducing the impact 

of high frequency inspection of customized parts on production rates is needed. 

This dissertation focuses on the research, design, construction, assembly, and testing of a Non-

Contact Automated Inspection System (NCAIS). The NCAIS was focused on performing quality 

control operations whilst maintaining the maximum production rate of a particular Computer 

Integrated Manufacturing (CIM) cell. The CIM cell formed part of a research project in the 

School of Mechanical Engineering, University of KwaZulu-Natal; and was used to simulate 

mass-production of custom parts. Two methods of maintaining the maximum production rate 

were explored. The first method was the automated visual inspection of moving custom parts. 

The second method was to inspect only specified Regions of Interest (ROIs). Mechatronic 

engineering principles were used to integrate sensor articulation, image acquisition, and image 

processing systems. A specified maximum production rate was maintained during inspection, 

without stoppage of parts along the production line occurring. The results obtained may be 

expanded to specific manufacturing industries. 



Table of contents 

IV 

Introduction 

1.1. Research background 1 

1.2. Motivation for the study 4 

1.3. Contribution of dissertation 5 

1.4. Project objectives 5 

1.5. Design specifications for apparatus 6 

1.6. Outline of dissertation 7 

1.7. Summary of chapter 1 7 

Existing inspection methods 

2.1. Contact and non-contact inspection 8 

2.2. AVIS structure and design overview 8 

2.3. Sensors for inspection 10 

2.3.1. Optical techniques 10 

2.3.1.1. Cameras 10 

2.3.1.2. Lasers 10 

2.3.2. Non-optical 

2.3.2.1. Eddy-current sensors 11 

2.3.2.2. Capacitive sensors 12 

2.3.2.3. Ultrasonic sensors 12 

2.4. Vision systems overview 13 

2.5. Summary of chapter 2 16 

Conceptualized system 

3.1. Mechatronic engineering approach 17 

3.2. CIM cell overview 20 

3.3. NCAIS operation 21 

3.4. Classification of parts 23 



1.4. Kinematic model 35 

1.5. X-axis design 44 

3.5. Inspection strategies 

3.6. Conceptualized subsystems 25 

3.7. Summary of chapter 3 26 

4. Mechatronic design 

4.1. Mechanical design 

4.1.1. Sensor manipulation 27 

4.1.1.1. Types of Sensor Manipulation 28 

4.1.1.2. Methods of actuation 31 

4.1.1.2 (a) Pneumatic actuation 31 

4.1.1.2 (b) Hydraulic actuation 32 

4.1.1.2 (c) Electrical actuation 32 

4.1.1.3. Manipulator selection 34 

4.1 

4.1 

4.1.1.6. Y-axis design 46 

4.1.1.7. Z-axis design 47 

4.1.1.8. Pan-tilt mechanism design 49 

4.1.1.9. Static analysis 49 

4.1.1.9 (a) X-axis 50 

4.1.1.9 (b) Y-axis 55 

4.1.1.9 (c) Z-axis 56 

4.1.1.9 (d) Pan-tilt mechanism 56 

4.1.1.10. Dynamic Analysis 57 

4.1.1.11. Vibration analysis 59 

4.1.2. Materials handling 61 

4.1.2.1. Conveyor system 61 

4.1.2.2. Part centralization system 62 

4.2. Electrical and electronic hardware 65 

4.2.1. Actuation 

4.2.1.1. Gantry and conveyor actuators 65 

4.2.1.2. Pan-tilt actuators 66 



VI 

4.2.2. Sensor selection 68 

4.2.2.1. Part identification sensors 68 

4.2.2.2. Part inspection sensors 69 

4.2.3. Motion control 73 

4.2.4. Lighting system 76 

4.2.4.1. Nature of light 76 

4.2.4.2. Lighting methods 76 

4.2.4.3. Lighting position 78 

4.2.4.4. Lighting design 79 

4.2.5. System layout 79 

4.3. Software design 80 

4.3.1.Matlab software 80 

4.3.2.0penCV Software 82 

4.3.2.1. Image data structure 85 

4.3.2.2. Image enhancement techniques 85 

4.3.2.2(a) Image deconvolution 86 

4.3.2.2(b) Colour to Grey-Scale conversion 86 

4.3.2.2(c) Histogram equalization 87 

4.3.2.3. Image analysis techniques 87 

4.3.2.3(a) Feature extraction 88 

4.3.2.3(b) Log-Polar transform 88 

4.3.2.3(c) Fourier correlation 89 

4.3.2.3(d) Image comparison 91 

4.3.3. Microcontroller software 91 

4.3.4. Simulation of kinematic model 91 

4.4. Summary of chapter 4 92 

5. Assembly 

5.1. Part Identification System 93 

5.2. Sensor Positioning System 93 

5.3. Materials Handling System 94 

5.4. Vision System 94 



5.5. System integration 95 

5.6. Summary of chapter 5 96 

Results and Discussion 

6.1. Kinematics simulation results 97 

6.2. Image processing algorithm results 98 

6.3. System Performance 101 

6.3.1.X-axis 101 

6.3.2. Y-axis 104 

6.3.3.Z-axis 107 

6.3.4.Overall performance 108 

6.4. NCAIS suitability to industrial applications 114 

6.5. Summary of chapter 6 115 

Conclusion 116 

References 119 

Appendices 

9.1. Appendix A 

9.1.1. System drawings 122 

9.1.2. Inspection routine of acceptable part 124 

9.2. Appendix B- Tabulated System Results 127 

9.3. Appendix C- Product datasheets and specifications 132 

9.4. Appendix D- System code 

9.4.1. Full Source Code for Kinematics Model and Associated 134 

Interactive Viewer 

9.4.2. Image Processing Utility Source Code 151 

9.4.3. OpenCV Timed Video/Frame Capture Source Code 161 

9.4.4. Example: Fast Fourier Transform (FFT ) 161 

9.4.5.MATLAB Source Codes 165 

9.4.6.Microcontroller code 187 



List of Figures 

Figure 2-1: The AVIS 

Figure 2-2: Principle of operation of eddy-current sensors [12] 

Figure 2-3: Typical layout of a vision system [23] 

Figure 3-1: Graphical representation of Mechatronic design approach [20] 

Figure 3-2: Sequence of design phases involved with Mechatronic Engineering design [24] 

Figure 3-3: Layout of CIM cell used to test NCAIS 

Figure 3-4: Flowchart showing proposed operation of the NCAIS 

Figure 3-5(a): Rectangular Volume 

Figure 3-5(b): Cylindrical Volume 

Figure 3-5(c): Cubic Part 

Figure 3-6: ROI for the respective part families 

Figure 3-7: Flowchart showing constituent subsystems of NCAIS 

Figure 4-l(a): Revolute joint [26] 

Figure 4-l(b): Prismatic joint [26] 

Figure 4-2(a): Serial manipulator [28] 

Figure 4-2(b): parallel manipulator [27] 

Figure 4-3 (a) Cartesian manipulator [29] 

Figure 4-3(b) gantry manipulator [30] 

Figure 4-4: Conceptual drawing of the Sensor Positioning System motion 

Figure 4-5 (a): Frame A and B locations 

Figure 4-5(b): Part configuration 

Figure 4-6: Sequential inspection for rectangular volume part inspection 

Figure 4-7: ROI on front face 

Figure 4-8: ROI on left face 

Figure 4-9: ROI on right face 

Figure 4-10: ROI on top face 

Figure 4-11: ROI on rear face 

Figure4-12: Geometry of a screw threads [34] 

Figure 4-13 (a) Designed x-axis mechanism 

Figure4-13 (b) enlarged view of the x-axis slider 

Figure 4-14(a) Constructed x-axis subassembly 



Figure 4-14(b) x-axis mounted onto frame 

Figure 4-15(a): Y-axis design 

Figure 4-15 (b): Constructed y-axis structure 

Figure 4-16(a): Constructed Z-axis components 

Figure 4-16(b): Full 3D gantry structure design 

Figure 4-17: Assembled components of the pan-tilt mechanism 

Figure 4-18: Vertical loading on x-axis 

Figure 4-19: Forces on x-axis bars 

Figure 4-20: Loading conditions for the support bars of the x-axis 

Figure 4-21: Shear loading of bolts for x-axis mounting bracket 

Figure 4-22: Loading conditions for pan-tilt mechanism 

Figure 4-23: Schematic of the drive system for the axes of the SPS 

Figure 4-24: Dynamic x-axis deflection simulation in Matlab 

Figure 4-25: Schematic drawing on conveyor operation 

Figure 4-26: Constructed conveyor system 

Figure 4-27. Undesired random pose of the part 

Figure 4-28: Desired predictable pose of the part 

Figure 4-29: Conceptual design for Part Centralisation System 

Figure 4-30: Constructed PCS 

Figure 4-31: Diagram showing layout of planetary gearing system [43] 

Figure 4-32: Components of a servo [45] 

Figure 4-33: Rotation of the shaft as a function of the pulse length 

Figure 4-34: Operation of CCD imaging sensor 

Figure 4-35: Layout of CMOS imaging sensor 

Figure 4-36(a): Open loop control components [51] 

Figure 4-36: (b) Closed loop control components [51] 

Figure 4-37(a): PWM motor driver 

Figure 4-37 (b) PWM motor driver components 

Figure 4-38: Layout of gantry system motor control circuit 

Figure 4-39: Comparison of three common machine vision lighting sources 

Figure 4-40 (a): Typical LED lighting arrangements [53] 

Figure 4-40(b): Backlighting system in operation [53] 



X 

Figure 4-41(a): Optimal sensor positioning for reducing glare 

Figure 4-41(b): Sensor positioning that increases glare 

Figure 4-42: Top view of NCAIS showing direction of lighting 

Figure 4-43: Layout of the main GUI for the system 

Figure 4-44: Sequence of operations required by the OpenCV software 

Figure 4-45: Resulting vector due to a Fourier correlation operation [16] 

Figure 5-1: Signal flow in assembled PIS 

Figure 5-2: Component layout showing signal flow of assembled SPS 

Figure 5-3: Layout of VS 

Figure 5-4: Illustration of the interdependencies of the core elements on each other 

Figure 6-1: Simulation of kinematic model showing motion of part and sensor 

Figure 6-2(a): Reference image 

Figure 6-2(b): Test Image 

Figure 6-3(a): Difference of aligned images 

Figure 6-3(b): Image differences after cleaning 

Figure 6-4(a): Non-conforming part 

Figure 6-4(b): Difference images 

Figure 6-4(c): Cleaned difference image of non-conforming part 

Figure 6-5: Graph used to obtain maximum x-axis velocity 

Figure 6-6(a): X-axis performance (y=0) 

Figure 6.6(b): X-axis performance (y=l) 

Figure 6-7(a): Measured error between actual and desired distances along the length of the 

structure (for y=0) 

Figure 6-7(b): Measured error between actual and desired distances along the length of the 

structure (for y=L) 

Figure 6-8: Y-axis motion characteristics 

Figure 6-9: Graph showing measured errors of y-axis motion 

Figure 6-10: Accuracy and Repeatability of Y-axis 

Figure 6-11: Motion performance of the Z-axis 

Figure 6-12: Graph showing errors of z-axis 

Figure 6-13: Three dimensional displacement errors involved with the sensor positioning process 

Figure 6-14(a): Reference part 

Figure 6-14(b): Defective part 



XI 

Figure 6-15(a): Operating NCAIS 

Figure 6-15(b): Top-face ROI inspection 

Figure 6-16(a): ROI 1 images 

Figure 6-16(b) ROI 2 images 

Figure 6-16(c): ROI 3 images 

Figure 6-16(d) ROI 4 images 

Figure 6-17: Graphical model used to simulate bottlenecking during operation 

Figure 6-18: Typical operating sequence for part inspection in RME 

Figure 9-1(a): ROI 1 of the test and reference parts 

Figure 9-1(b): ROI 2 on test and reference parts 

Figure 9-2: ROI 1 of reference and test part respectively 

Figure 9-3: Greyscale images of the acquired images as well as their difference after the 

comparison process for ROI 1 

Figure 9-4: ROI 2 of reference and test part respectively 

Figure 9-5: Greyscale images of the acquired images as well as their difference after the 

comparison process for ROI 2 



XII 

List of Tables 

Tablel-l: Comparison of different manufacturing systems for mass producing custom parts 

Table 4-1: Comparison of PKM and Serial manipulators 

Table 4-2: Comparison of different methods of actuation 

Table 4-3: Comparison of actuation and manipulation methods for meeting the system 

requirements 

Table 4-4: Calculated values of static analysis at x=L/2 

Table 4-5: Calculated values of static analysis at y=L/2 

Table 4-6 Calculated loading conditions for pan-tilt mechanism 

Table 4-7: Calculated values of dynamic loading 

Table 4-8: Comparison between Barcode scanning systems and RFID systems 

Table 4-9: Differences between CMOS and CCD imaging sensors 

Table 4-10 Summary of new part parameters 

Table 6-1: Kinematic simulation results for randomly sized parts 

Table 6-2: Repeatability of results for identical tests 



List of Abbreviations 

AGV: Automated Guided Vehicle 

AS/RS: Automated Storage Retrieval System 

AVIS: Automated Visual Inspection System 

CIM: Computer Integrated Manufacturing 

CMM: Coordinate Measuring Machine 

CS: Conveyor System 

CCD: Charge Coupled Device 

CMOS: Complimentary Metal Oxide Sensor 

DMS: Dedicated Manufacturing System 

DC: Direct Current 

FMS: Flexible Manufacturing System 

FOV: Field of View 

GUI: Graphical User Interface 

LED: Light Emitting Diode 

MCM: Mass Customisation Manufacturing 

MHS: Materials Handling System 

NCAIS:Non-Contact Automated Inspection System 

PCS: Part Centralization System 

PCM: Pulsed Coded Modulation 

PIS: Part Identification System 

PKM: Parallel Kinematic Manipulator 

PWM: Pulsed Width Modulation 

RFID: Radio Frequency Identification 

RME: Reconfigurable Manufacturing Environments 

RMS: Reconfigurable Manufacturing System 

RMT: Reconfigurable Manufacturing Tool 

ROI: Region of Interest 

S/N: Signal to Noise Ratio 

SPS: Sensor Positioning System 

UDL: Uniformly Distributed Load 

USB: Universal Serial Bus 



XIV 

USART:Universally Synchronous/Asynchronous Receiver Transmitter 

VAM: Value Added Manufacturing 

VS: Vision System 



1. Introduction 

1.1 Research background 

Quality control and part inspection are key manufacturing processes in the lifecycle of a 

product. These processes have many functions such as detection of flaws, and relaying 

information as to the nature and location of these flaws, thus providing for the improvement 

of the overall manufacturing process. No change is made to a product during inspection, in 

order to increase its value. Time and resources are spent on these processes, without a gain in 

profit. The advantage of quality control and part inspection is that customer loyalty through 

product integrity may be sustained. The disadvantage of these processes is that even though 

the lead time (time taken for products to reach customers) is increased, the product may not 

be sold at a higher price, since no value has been added [1]. The reduction of the time spent 

on these processes is therefore an attractive concept to any manufacturer. 

Product quality can be defined as the measure of the extent to which a product can satisfy a 

given function [2]. Quality control is the process of ensuring that a part lies within its design 

specifications. Quality control can be divided into inspection and testing. Testing a part 

involves examining the operation of that part, whilst performing its required application. Part 

inspection is the search for aspects of the product that do not lie within design tolerances, 

without operation of the part. Inspecting a part has three main applications, namely detection 

of flawed products; determining significance of flaws; and provision of process feedback [4]. 

Detection of significant flaws in products allows for prevention of further production of 

flawed products, thus minimizing materials wastage. The nature and location of detected 

flaws allows for the feedback of the operation of a process. Using this feedback, process 

parameters may be optimised in terms of costs and time. An example of where process 

feedback is essential is to justify the shift to cheaper materials in the design of a product. 

The manufacturing industry can be viewed as evolving from Dedicated Manufacturing 

Systems (DMS) to Intelligent Manufacturing systems. DMS are manufacturing systems that 

implement processes which perform only one specific operation, on a specific part [5]. An 

example of this type of manufacturing system is the manufacturing lines employed to 

manufacture cars in the mid 1900s. DMS are ideally suited for mass-producing identical 

products in high-volume batches. Producing identical parts in batches allows for the use of 

statistical inference as a method of quality control. This quality control method involves 



2 

inspection of a relatively small percentage of sample parts from a batch. Inspecting only a 

few samples may lead to consumer risk and producer risk [1]. Consumer risk is the 

acceptance of a batch of defective products, based on the sample set being within tolerances. 

Consumers may therefore be prone to purchasing defective products. Producer risk involves 

the possibility of rejecting a batch of acceptable products, based on the sample set consisting 

of defective products. This allows manufacturers to be vulnerable to significant financial 

losses, in terms of manufacturing time and other resources, by rejecting parts that lie within 

tolerances. 

Recent manufacturing trends are influenced by customer requirements to such an extent that 

modern products are now designed to meet each individual's needs. Due to the fact that 

product requirements may differ for each customer, products currently produced may often 

be unique and are often produced in small batches, which have varying product parameters. 

This makes the use of DMS ineffective. New products usually generate the highest revenue 

on their introduction to a market [6]. As the product matures, the number of competitors that 

are able to manufacture that particular product increase. This increase in competition leads to 

a decrease in profit margins for manufacturers. Therefore modern manufacturers need to be 

able to implement processes that have the capability to provide efficient, cost-effective and 

rapid response to changes in product design and customer requirements, in order to maintain 

a competitive edge. Flexible Manufacturing Systems (FMS) are systems that aim to produce 

a high variety of parts [5]. FMS are employed in situations where a high variety of a small 

number of products, is required. This type of system is not effective where a variety of parts 

in large volumes, is required. A strategy employed to handle production of a variety of parts 

in large volumes is Mass Customisation Manufacturing (MCM). MCM facilitates the 

concept of mass personalisation. Mass personalisation is the mass production of customised 

parts and part families [8]. MCM involves manufacturers allowing the customer to have a 

design input at various stages in the design process. Mass produced custom parts often vary 

in design parameters such as colour; dimensions; tolerances; assembly; finish; costs; and 

throughputs. 

A system that has been developed to cope with mass-producing custom parts is 

Reconfigurable Manufacturing Environments (RME). RME involve Reconfigurable 

Manufacturing Systems (RMS) that are designed for providing rapid response to sudden, 

unanticipated changes in product requirements [7]. An RMS may be composed of CNC 

machines, Reconfigurable Machine Tools, Reconfigurable Inspection Machines, and 



3 

Materials Handling Systems that facilitate part transportation from one machine to the next 

within the manufacturing environment. RMS and FMS differ, in that an FMS is implemented 

in environments that aim at producing small sets of a high variety of products, whereas the 

main focus of an RMS is to minimise the time taken for a manufacturing system to respond 

to varying market and customer requirements with respect to limited parts and part families. 

A part family can be considered as a group of parts, which have some aspect of their design 

in common These common aspects include similar shape, colour, dimensions, tolerances, 

manufacturing processes, cost, etc. The production volumes produced in an RMS may vary 

from low to high [6]. Tablel-1 shows the applicability of the different manufacturing 

systems to mass-producing custom parts, with the meeting of the requirements highlighted in 

yellow. It can therefore be deduced that RME are best suited to mass-producing custom parts 

since they meet all the key requirements, whereas other manufacturing systems don't. 

Requirements 

Production 
volume 

Part variety 

Ability to 
facilitate varying 

Inspection 
requirements 

Inspection Time-
efficiency 

Frequency of 
inspection 

VMS 

High 

Very low 

Low 

Usually 
High 

Infrequent 

FMS 

Low 

Very high 

High 

Low 

Very 
frequent 

RME 

Varying from 
low to high 
High within 

specified part 
families 

High within 
specified part 

families 

High 

Ranges from 
infrequent to 
very frequent 

Table1-1: Comparison of different manufacturing systems for mass producing custom parts 

There are six key characteristics that an RMS may hold at all levels of its design. These 

include: Modularity; Integrability; Customized flexibility; Scalability; Convertibility; and 

Diagnosability. Modularity may be viewed as the subdivision of a system into subsystems 

(modules), which are used to perform a given function. These modules allow for the 

partitioning of the machine service and maintenance requirements, the implementation of 

which lowers the life-cycle cost of the entire system. This reduction in life-cycle cost is 

attributed to the fact that modules are easier and more cost effective to maintain than an 

entire system. The upgrading of the system may often require only an upgrade of certain 



4 

modules, which again is more cost effective than the upgrade of the entire system. Factors to 

consider when designing a modular system are selection of the actual modules and 

integration of these modules (Integrability), which will affect performance of the system as a 

whole. Customized flexibility is a concept that involves the design of a system to be flexible 

within a given part or part family. This places various constraints on the design of the 

components of the system, in order to conform to requirements of specified parts and part 

families. The advantages of customized flexibility include faster throughput and higher 

production rates as opposed to the more general flexibility requirements for FMS, which do 

not have as many confined constraints. 

Convertibility is the capability of a system to change its operation to best suit a change in 

product requirements. An example of this concept is a machine inspecting two rectangular 

blocks of significantly different sizes, colour, and material. Implementation of this concept 

has an advantage of a single system being able to adapt to changes in product requirements 

without having to implement new or other existing systems, thereby reducing the overall 

process costs. Scalability is the ability of a system to adapt to a change in production 

capacity. This means that the inspection system would require the ability to inspect moving 

parts at velocities that sometimes differ. Diagnosability is the ability of a system to detect 

poor part quality, for manufacturing systems that may differ in process layout [7]. 

Another manufacturing strategy developed to increase throughputs is Value Added 

Manufacturing (VAM). This manufacturing concept is the process of retrofitting (modifying 

or making additions to) a base platform [9]. Often, the inspection requirements of these parts 

entail inspection of only areas of the part that were significantly affected by the modification 

process. The reason for this is that the platforms used, have already undergone quality 

control processes prior to supply of these parts. 

1.2 Motivation for the study 

Mass-producing custom parts does not allow for use of statistical inference as a method of 

quality control. This is due to the fact that batch sizes are reduced and often inconsistent; and 

products having different inspection requirements. These parts therefore require regular 

inspection in order to ensure high quality standards. Due to the nature of these parts, high 

frequency of often unique inspection routines, are required. These inspection routines require 

the capability to be reconfigured in order to handle variations in product parameters. The 



5 

required high frequency of inspection has significant impacts on inspection times and 

inherently, production rates. Manufacturers would therefore be required to invest more time 

and resources whilst inspecting mass-produced custom parts. This increased investment 

would decrease profit margins, discouraging manufacturers from performing extensive 

quality control procedures. 

Value Added Manufacturing (VAM) of parts awards manufacturers the option of performing 

quality control by inspection of only key modifications and additions to a part. This option 

awards manufacturers an advantage in that the inspection processes of these parts can be 

performed quicker, due to reduction in inspection requirements of the entire part. The 

maintaining of production rates during quality control of mass- producing custom parts and 

VAM of parts would make the quality control processes more feasible for manufacturers. A 

method of maintaining production rates whilst mass-producing custom parts and value added 

manufactured parts, during quality control processes, is thus needed. 

1.3 Contribution of the dissertation 

The contribution of this dissertation lies with the fact that current research does not focus on 

maintaining production rates whilst inspecting mass-produced custom parts. Furthermore, 

current inspection systems do not take advantage of the fact that value added manufactured 

parts often only require inspection of the modifications or additions that were made to a 

particular part. This dissertation details the inspection of ROI on moving custom parts for 

RME. The results of this research are limited to the inspection requirements of the 

manufacturing cell that the apparatus was tested in; however the inspection strategies may be 

applied to many industrial applications. 

1.4 Project objectives 

The objectives of this project were to use the Mechatronic engineering approach to: 

• Research, design, construct, and assemble the apparatus by which custom parts are 

visually inspected. The apparatus must display the ability to be integrated into an 

RME 

• Perform visual inspection of at least one part family by determining the 

presence/absence of features in a part; validating correct assembly of components; 



6 

validating correct finish with respect to part colour ( and to some extent, 

dimensions); determining the presence and significance of flaws 

• Research and implement machine intelligence that provides optimised inspection of 

user defined ROI 

• Provide dynamic access to various ROI in order to facilitate inspection of moving 

custom parts 

• Test and obtain results for maintaining production rates in a given CIM cell 

1.5 Design specifications for apparatus 

One of the requirements of the design was that the apparatus should integrate with the 

existing infrastructure (CIM cell) at the School of Mechanical Engineering, University of 

KwaZulu-Natal. The time allocated for inspection was therefore based on the maximum 

operating conveyor speed of the CIM cell. This speed was recorded as 0.02m/s. It was 

decided to use the existing Automated Visual Inspection System (AVIS), which was already 

designed to integrate into the infrastructure of the CIM cell, as a platform on which to base 

the design of the NCAIS. The following criteria were considered for the research, design, 

and development of the apparatus: 

• Inspection of a part moving at 0.02m/s must occur without the part having to stop 

during the inspection routine. 

• All faces except the bottom face of inspected parts needed to be accessible by the 

sensor at least once during an inspection routine. 

• The maximum height, width, and length of a part that would be inspected were 

200mm x 200mm x 200mm respectively. 

• Positioning and orientation of the sensor needed to be accurate and repeatable in 

order to inspect the appropriate ROI. Due to image processing software being able to 

correct positioning errors, an accuracy of within 8mm of the desired point, was 

acceptable. 

• Motion of the part during the inspection routine must occur at a constant velocity for 

synchronisation of the sensor and part pose 

• The inspection routine must be complete as the part exits the apparatus. This 

includes the decision about the acceptability of that part. Using the maximum 

conveyor speed and maximum part travel distance of 800mm, the allowable 

inspection time when running at maximum throughput was set to be 40s. 



7 

1.6 Outline of dissertation 

The layout of this dissertation is as follows: 

Chapter 1: Introduces the reader to the background of and motivation for the project. All 

objectives and specifications are explicitly stated in this chapter. 

Chapter 2: Informs the reader about different inspection methods used for quality control 

processes, and highlights the most appropriate inspection sensors for inspecting mass-

produced custom parts 

Chapter 3: Discusses proposed concepts for the design and operation of the apparatus 

Chapter 4: Details the design of the core elements of the apparatus and its subsystems using 

Mechatronic engineering 

Chapter 5: Deals with the assembly phase of the project 

Chapter 6: Quantifies system results and validates against system specifications. Discusses 

the obtained results for the system 

Chapter 7: Concludes the project and discusses flaws in the design as well as future 

improvements. 

Chapter 8: Provides references for information presented 

Chapter 9: Shows system drawings; system results; component specifications; and software 

coding 

1.7 Summary of chapter 1 

This chapter served to introduce the reader to the subject background for inspecting moving 

custom parts in RME. A motivation for the study; dissertation contributions; definition of 

project objectives; and definition of system specifications were all explicitly stated in this 

chapter. The outline of the dissertation was also described. 



8 

2. EXISTING INSPECTION METHODS 

2.1 Contact and non-contact inspection 

Methods of inspection can be divided into contact and non-contact inspection techniques. 

Non-contact methods for quality control and part inspection are generally quicker than 

contact methods, and deformable parts can also be inspected. The possibility of 

contamination due to contact between sensor and parts is eliminated when implementing 

non-contact methods of inspection. Coordinate Measuring Machines (CMMs) offer highly 

flexible methods of inspection, and have been employed by manufacturers who wish to 

minimise the cost of adapting to manufacturing changes [6]. These machines are used to 

physically measure the geometrical properties of a part. A probe is attached to a manipulator, 

and is used to acquire information about the size and location of features of interest on a part. 

This information is then used for dimensional measurement; profiling; and image 

construction [10]. The advantage of these machines is that they are highly flexible and are 

hence able to perform inspection of a high variety of parts. This reduces capital investment 

by manufacturers who require inspection of a variety of parts. 

The disadvantages of CMMs are that the inspection rates of these machines are often 

significantly less than production rates, and information obtained is limited to geometrical 

properties of the part [6]. Slow inspection rates cause bottlenecks and so inspection using 

these methods is often performed off-line, on an infrequent basis. Defective parts are 

therefore only detected after a significant number of these parts have been produced. This 

results in batches of parts being rejected as opposed to rejection of individual parts. CMMs 

are therefore not suited for mass producing custom parts. 

2.2 AVIS structure and design overview 

The AVIS was developed to perform automated multi-faced part inspection using PC based 

technology and a single digital camera. The sensor was mounted on a C shaped track (shown 

in Figure 2-1), perpendicular to the direction of flow of products within the machine. This 

was done to achieve various sensor heights. A rotational part manipulation platform allowed 

for the part to rotate relative to the sensor, allowing for multi-faced access. The AVIS was 

able to produce 2D images of a product, which were used for inspection purposes. The 

structural frame of the AVIS was designed to have high rigidity and vibration damping 



9 

characteristics, thus minimising vibrations imparted to the sensor, during operation of the 

machine. This allowed the inaccuracies associated with the acquisition of images to be 

reduced [2]. 

The AVIS was designed having a rectangular-volume base with a trapezoidal-volume upper-

half, which was used as the inspection workspace. Figure 2-1 shows the mechanical structure 

designed for the AVIS, along with the sensor housed on the track. The length, width, and 

height of the base were 800mm x 800mm x 600mm respectively. The trapezoidal volume 

available as a workspace had a base area of 800mm x 550mm; a top surface area of 450 mm 

x 550mm; and a height of 460mm. 

Figure 2-1: The AVIS 

The operation of the AVIS involved a part entering the machine and stopping at the centre at 

the part manipulation system. The camera would then be positioned at the required height to 

acquire an image of the part. Due to the single plane motion of the camera, the part was 

rotated for accessing different faces of the inspected part. Inspection routines required that 

the part be stationery during inspection, which impacted production rates. The conveyor 

system used was two parallel belts, driven by a single motor. These belts were found to 

move at different rates due to slipping, over a period of time, and this caused rotation of the 

part as it moved along the machine. This system was not acceptable for inspection of moving 

parts, when the inspection routine required a predictable part pose. The lighting system 

involved the use of two fluorescent lights fixed above the conveyor. This was not optimal for 

varying inspection routines. 



10 

2.3 Sensors for inspection 

Sensors are devices that are used to convert a physical property of an object into a signal that 

can be used by processing units [1]. Sensors that may be used for inspection purposes can be 

divided into contact and non-contact sensors. Contact sensors include CMM probes, which 

make contact with the part being inspected. Non-contact inspection methods involve a 

specified distance between the sensor and the part; and can be divided into optical and non-

optical technologies [11]. Laser systems; and cameras are amongst the most common optical 

methods found in industry. Non-optical sensors include eddy-current sensors; radiation 

sensors; and ultrasonic sensors. Non-contact sensors offer advantages of fast inspection 

times; and ability to inspect sensitive parts without any deformation occurring. 

2.3.1 Optical techniques 

Optical techniques for inspection allow for measurement and analyses of parts. Information 

about a part is obtained via reflectance; light scatter or diffusion; and laser technology. Due 

to high speeds of operation, these techniques allow for in-line inspection. 

2.3.1.1 Cameras 

A camera is an image sensor that is used for converting light into electric charge, and then 

processing it into electric signals [3]. Automated inspection image sensors can be divided 

into Charge Coupled Devices (CCDs) and Complementary Metal-Oxide Semiconductor 

(CMOS). Although not as fast as some other methods of inspection, these sensors allow for 

the highest amount of information to be extracted from a reading. These sensors can be used 

for obtaining information about dimensions; colours; shapes; and even surface finish to some 

extent. Since these sensors are able to provide such information about inspected parts, they 

are well suited toward inspecting custom parts. More detailed information about cameras is 

given in section 4.2.2.2 

2.3.1.2 Lasers 

A laser is a device that emits monochromatic, highly structured light; using a process called 

stimulated emission [3]. Laser sensors are used to determine the physical dimensions and 

profiles of an object. These systems are extremely fast and accurate. Inspection involving 



11 

lasers include time-of-flight; laser scanning; and structured lighting [11]. Time-of-flight 

sensors use the time delay of a reflected laser beam to determine the distance between the 

sensor and the object reflecting the beam. This method yields resolution of up to twenty-five 

microns. Laser scanning is based on triangulation methods to determine the distance of an 

object from two known locations, using trigonometric relationships between the sensor, light 

source, and object. Using this method, it is possible to obtain three-dimensional spatial data 

of an object, with a resolution in the region of thirty-five microns. The disadvantage of laser-

scanning systems is that they are prone to shading and occlusion problems. Structured 

lighting systems involve projecting coded light onto a surface and checking for fringes in the 

projected beam. Fringes will occur at variant surface profiles. This method of inspection is 

also prone to shading and occlusion problems. Laser sensors are very accurate and facilitate 

in-line inspection of parts; however only geometrical object data can be obtained [14]. This 

made sole use of laser sensors for inspection of custom parts unsuitable. 

2.3.2 Non-optical techniques 

2.3.2.1 Eddy-current sensors 

Eddy-current sensors are non-contact sensors that use magnetic fields for high resolution 

inspection of conductive objects. Eddy-currents are small currents which are induced in an 

object, due to electromagnetic induction, by an alternating current in a probe coil. These 

small currents create an opposing magnetic field, which resist the field initiated by the probe 

coil. This field interaction is proportional to the distance between the probe and the inspected 

object. A signal is generated when a change in current field interaction is sensed. These 

sensors are used for position measurement; drive shaft monitoring; and thread detection. 

Figure 2-2 shows the principle of operation of these sensors. 

Figure 2-2: Principle of operation of eddy-current sensors [12] 



12 

Eddy-current sensors can also be used to detect material thickness; coating thickness; 

conductivity measurements; and crack detection. Advantages of inspection using eddy-

current methods include detection of small cracks; portable equipment; minimum part 

preparation required; and high tolerances of dirty environments. Disadvantages of eddy-

current sensors are that only conductive materials can be inspected; they have high 

sensitivity to non-uniformities in material structure; and flaws that lie parallel to the probe, 

are often undetected [12]. Due to the fact that only conductive parts may be inspected using 

these sensors, the sole use of eddy-current sensors for inspecting mass-produced-custom 

parts is unsuitable. 

2.3.2.2 Capacitive sensors 

Capacitive sensors offer non-contact, high-resolution measurements of conductive targets. 

These methods of inspection involve measurement of the capacitance between two 

conductive surfaces. A change in capacitance would indicate a change in distance between 

the sensor and the part, and this can be used for profiling feedback. These sensors have the 

advantage of being extremely accurate (within nanometre accuracy); high tolerance to 

changes in materials; and are stable with temperature. The disadvantages of these sensors are 

that they are expensive and are not effective in dirty or wet environments. Applications of 

inspections involving capacitive sensors include precision vibration measurement; precision 

thickness measurement; and assembly validation. These sensors may also be used in 

inspection of non-conductive materials. This is achieved by placing the non-conductive 

material between the sensor and a reference conductive plate. Reference readings are 

acquired when running the sensor along the plate at a fixed distance. Any differences in 

sensor readings when a part is present can only be attributed to properties of the part [13]. 

Due to the high-cost factor, these sensors were not considered for this project. 

2.3.2.3 Ultrasonic sensors 

Inspections using ultrasonic sensors involve emitting and receiving of high frequency sound 

waves in order to detect and evaluate flaws; make dimensional measurements; and 

characterize materials [14]. Technological advancements have made these sensors more 

robust, flexible, and affordable. The operation of ultrasonic inspection relies on a sensor pair 

(emitter and receiver) to measure distances between sensors and inspected objects. Internal 

material properties may be examined by use of an appropriate coupling. Advantages of 



13 

ultrasonic sensors are that minimal part preparation is required; they are relatively 

inexpensive, and they are reasonably accurate. The disadvantage of ultrasonic inspection is 

that materials that are rough, irregular in shape, very small, non-homogenous, and materials 

with low densities, are all difficult to inspect. These disadvantages all contribute to the 

rejection of ultrasonic sensors for use as sole sensors of the NCAIS. 

2.4 Vision systems- overview 

Machine vision systems for manufacturing industries are primarily concerned with the 

automatic interpretation of images in order to obtain information about, and control, 

manufacturing processes [15]. An image can be defined as a spatially discrete scalar function 

of two independent variables, these two variables being spatially discrete as well. Images 

obtained may be due to visible light, x-ray, infra-red energy, and ultrasound information. The 

NCAIS used images based on visible light (light intensity), and so these systems will be 

discussed. The purpose of a light-image is to numerically represent a physical object in 

detail, by obtaining spatial (geometric) and spectral data about real world scenarios. The 

image can then be used to mathematically represent the image as a matrix of light intensity 

levels. This matrix is made up of picture elements which are referred to as pixels. Images 

can be classified into binary images; grey-scale images; and colour images [16]. 

Binary images allow a pixel value of either 1 or 0, corresponding to white or black 

respectively. The classification of a pixel value is set on a predefined light-intensity 

threshold value. These images require the least amount of memory for representation of all 

three images. Applications of binary imaging include those involving low memory-

applications for determining the presence or absence of an object; measurement of an object; 

and applications involving high speed processing. Grey-scale images are monochrome 

(usually 8-bit) images which allow for pixels to have a value ranging from 0 to 255. These 

pixel values are based on an adaptive thresholding technique that represents various shades 

of grey. The convention used is that a pixel value of 0 represents black; 255 represents white; 

and values in between represent the linear shade of grey. These images require more memory 

than binary images; however they have the advantage of distinguishing a wider variety of 

objects with different reflective and lighting properties. Colour images are images that 

represent an image on the Red, Green; and Blue (RGB) spectrums. These images may be 

thought of as the combination of three monochromatic images, one for each channel of the 

RGB spectrums. Consequently, these images require the most amount of information to be 



14 

represented, but they are able to provide the most accurate data from all three types of 

images. 

The output of a vision system is generally to make an inspection decision or to permit a 

comparison with other data. This output can be categorised into one of four machine vision 

applications namely: assembly verification; flaw detection; dimensional measurement; and 

positioning applications [17]. Vision systems consist of vision hardware and software. The 

key components of a vision system include a light source, an image capture device (camera), 

a digitising device, and a digital processing unit (vision computer). The light source, image 

capturing device, and digitising device, are responsible for the image acquisition and 

formation process. The processing unit is responsible for analysis of the acquired images. 

The signal to the processing unit may be either digital data or analogue data. In the case of 

analogue data transmission, a frame grabber is required for digitisation of the image. A 

schematic layout of a typical vision system, with the flow of the acquired signal, is shown in 

Figure 2-3. 

illumination 

analogue 

>Errhar 

VOLTAGE 
1 SIGNAL 

PHYSICAL 
WORLD 

digital * J DIGITAL 
DATA 

CAMERA 

I t i t t i 
I§1t1111 

kkjfjtj 
SJijtJLJIJ! 

amm 
IMAGE BUFFER 

(jnanjyofnumbts) 

VISION COMPUTER 

Figure 2-3: Typical layout of a vision system [23] 

The reliability and accuracy of a vision system are largely dependent on the images acquired. 

The quality of the images acquired depends on lighting and sensors used for the acquisition 

process. The acquisition process aims to produce images that have the following 

characteristics: 

• Well defined features/ ROI (high contrast with sufficient detail) 

• High signal to noise (S/N) ratios 

• High resistance to external disturbances 



15 

Well defined ROI allow for a more reliable and accurate operation as more data can be 

obtained for processing. High S/N ratios allow for more accurate representation of objects, 

allowing for more reliable image processing. A high resistance to external disturbances such 

as light and vibrations leads to clearer and more detailed images, again leading to more 

accurate and reliable image processing. 

Following acquisition of an image, processing is required for turning the information into 

usable data and then using that data for making a decision. Processing can be divided into 

image enhancement and image analysis. Image enhancement uses algorithmic transforms to 

provide a more reliable and accurate image for analysing. This is achieved by performing 

pixel operations to reduce or eliminate noise; enhance significant features; and suppress 

irrelevant background information. The objective of image analysis is to generate 

quantitative data, from the data supplied by the enhancement processes, for feature 

identification and extraction; assembly verification and dimensional conclusions. All this is 

to allow the system to make an accept/reject decision. The sequence of a few typical 

operations that an image undergoes, after acquisition has occurred, is shown below in Figure 

2-4. 

Acquired 

Vision 
application 

Vision system 
output/decision 

Figure 2-4: Typical sequence of operations on acquired images during processing 



16 

2.5 Summary of chapter 2 

This chapter highlights the various sensors used in inspection of products. Differences 

between non-contact and contact methods are stated. The AVIS used for previous inspection 

in the CIM cell was described. An overview of vision systems was discussed. 



17 

3. CONCEPTUALIZED SYSTEM 

3.1 Mechatronic engineering approach 

Mechatronic engineering can be defined as the holistic design of engineering systems which 

involve the integration of mechanical engineering, electrical and electronic engineering with 

software engineering, at all levels of the design [18]. This design approach was introduced 

in the late 1960's, and stemmed from the use of computer-based technologies to improve the 

level of performance of mechanical systems [20]. Concurrent engineering is a concept that 

encompasses a similar approach of considering different aspects of the design concurrently. 

The difference between Mechatronic engineering and concurrent engineering however, is 

that in the Mechatronic engineering approach, the interchange of functionality between each 

of the core elements is considered at conceptual stages of the design process. The core 

elements of Mechatronic engineering, along with their functional dependencies, are shown 

below in Figure 3-1 [20] 

Figure 3-1: Graphical representation of Mechatronic design approach [20] 

The mechanical aspect of a Mechatronic engineering approach entails consideration of 

spatial relationships and interactions between the various mechanical elements of the system. 

Such relationships and interactions include static and dynamic loading of members; spatial 

constraints for members induced by physical boundaries; and suitable materials selection for 

design optimisation. The electrical and electronic components of the approach involve 



18 

signal-processing and communication between these signal-processing components. The 

software aspects of the Mechatronic engineering approach involve processing of data and 

information. A Mechatronic system may not necessarily constitute of equal amounts of 

mechanical, electrical and electronic, and software components. The advantages of 

integrating the core elements of Mechatronic engineering include the design of systems that 

offer enhanced performance, better reliability, and safer operation than if these core elements 

were designed independently. This approach offers a commercial advantage to 

manufacturers. 

Design and implementation of a Mechatronic engineering system involves eight phases in 

their respective sequence. These phases are: defining system requirements; conceptualising 

the system hohstically and then subdividing into conceptualised subsystems; design of 

subsystems; construction of subsystems; testing of subsystems; assembly of subsystems to 

constitute the entire system; testing of the entire system; and operation of the system [21]. 

Defining system requirements is dependent upon the problem that is to be solved. This phase 

is responsible for defining system constraints with respect to part parameters such as 

throughputs, dimensions, and requirements. The next phase involves conceptualising the 

system as a whole, in order to operate within the constraints obtained in the previous phase. 

The subdivision of the system into subsystems allows for incorporation of a modular design. 

Each subsystem would then have to perform a certain function within an inherent set of 

constraints. All aspects of the core elements are initially interchanged in the 

conceptualisation phase. 

An example of this is the consideration of the automated speed control of a mechanical 

member. Given that an actuator has to move a mechanical member at a certain speed, an 

appropriate sensor and control hardware needs be selected for governing this given speed. 

Software that is able to provide sufficient control, via sensor feedback, needs to be 

implemented in order to maintain efficient response to system disturbances. On completion 

of system conceptualisation, the design phase is executed. The design of subsystems 

accounts for easy Integrability of subsystems in the assembly phase. Construction of the 

various subsystems involves manufacturing of customized parts as well as use of 

Commercial off the Shelf (COTS) products [23]. Once the construction of subsystems is 

complete, independent testing occurs to ensure that these subsystems perform their specific 

functions satisfactorily. The assembly phase involves the integration and optimisation of the 

subsystems. The system is considered as a single system from this phase. On completion of 



19 

full system integration, the system is tested to ensure that it performs the given function 

within the constraints that were defined in the initial phase. Operation of the system follows 

the testing phase. Refining of the system may still occur during the operation phase. Figure 

3-2 below shows the sequence of the different phases involved in a Mechatronic engineering 

design. 

Figure 3-2: Sequence of design phases involved with Mechatronic engineering design [24] 

Use of this approach places emphasis on a detailed and often lengthy conceptual design 

phases. The reason for this is that the overall number of design iterations and development 

costs may be significantly reduced. The conceptualisation and design of systems involves 

implementation of some sort of simulation Simulating a Mechatronic engineering design 

may be categorised into a combination of one or more of three representations, namely the 

physical model; mathematical model; and the computer graphics model [24]. Simulations 

based on use of a physical model are generally expensive, time consuming, difficult to 

modify, and impractical. These models are however, easy to understand, and are effective in 

identifying and isolating key aspects of the design. Mathematical models implement 

algorithms that are used to represent system behaviour and performance analytically. These 

models have proven to be accurate; however there is a large amount of difficulty incurred, in 

fully defining inherent complexities associated with interrelationships between various 

elements of a desiga A method of enhancing accuracy of mathematical models is to merge 

mathematical models with system hardware. Computer graphics simulations allow for real­

time analyses and visualisations of system performance. The use of this type of simulation 



20 

awards the designer to make critical changes in a design prior to major investment in 

constructing a prototype. 

3.2 CIM cell overview 

The CIM cell at the University of KwaZulu-Natal, in the School of Mechanical Engineering, 

comprised of an Automated Storage and Retrieval System (AS/RS); a conveyor system; a 

materials handling apparatus; an Autonomous Guided Vehicle (AGV); a Reconfigurable 

Machine Tool (RMT); and an AVIS (on which the NCAIS was developed). The AS/RS was 

used to store finished products and raw materials which were to be machined. The conveyor 

system was used to transport parts to the various components of the CIM cell. A Puma robot 

and indexing devices were used to handle materials at certain points along the conveyor, for 

transfer of parts. The AGV was used to autonomously transport parts between the conveyor 

and remote locations in the cell. The RMT performed off-line reconfigurable machining 

operations on parts, and these parts were then transported to the AVIS for inspection which 

occurred whilst the part was stationary [25]. Figure 3-3 below shows the layout of the CIM 

cell, with the AGV and AS/RS not in view. 

Figure 3-3: Layout of CIM cell used to test NCAIS 



21 

3.3 NCAIS operation 

The NCAIS was designed to integrate into the existing CIM cell. This constrained the 

operation of the apparatus to the operating parameters of the cell. Among the objectives of 

the CIM cell, were minimisations of the user input required; and optimisation of the process 

involved. Consequently, the NCAIS was designed to operate with minimal user input, and 

with the objective of optimising inspection routines. The operation of the system was based 

on inputs from the user with respect to the inspection routine parameters. Parts being 

inspected could have either been new or reproduced. New parts required that the user enter 

all the necessary information about the routine. Existing parts had the possibility of allowing 

for changes in inspection routines. In this instance, the user would edit only the parameters 

that require editing. The NCAIS inspection routines were designed to have a maximum of 

eight user inputs for a part. These inputs were: 

Defining whether the part is new or existing 

Part family that the part belongs to 

Conveyor speed of that batch 

Part dimensions 

Faces for inspection 

ROI on the selected faces 

Orientation of the part on the conveyor 

Type of inspection required 

The general sequence of operation of the inspection routine involved determining the 

presence of a new part by use of a line sensor; identifying the part present so that the 

inspection parameters could be loaded; loading and execution of the routine; obtaining part 

information; determining the acceptability of the inspected part based on predefined 

information; accepting or rejecting the inspected part. A flowchart of this operation is shown 

in Figure 3-4. 



22 

Start 

No 

Select part family 

Select conveyor 
speed 

Enter dimensions 

Faces for 
inspection 

Select ROI 

Select part 
orientation 

Type of 
inspection 
required 

*• Check line sensor * 

Circuit " \ No 
broken? 

Identify part 

y ^ Part \ ^ 
— identified? .S~ 

Nc 

Yes ± 
Load inspection 

parameters 

+ 
Acquire part data 

^^Part acceptable/^^ 

Yes I 

Accept part -

" 
Reject 
part 

1 ' 

Output to 
process 
control 

'' 

Figure 3-4: Flowchart showing proposed operation of the NCAIS 

The operation of the NCAIS was dependent upon two assumptions. The first assumption was 

that the inspected part arrived at a known orientation. Secondly, constant conveyor speed 

was assumed during inspection routines. Diagnosability, within a given time limit, was the 

main consideration in the design of the NCAIS. The successful diagnosis of an imperfect 

part can inform the user as to the location of flaws in the process layout. This information 

can be used to tune a newly configured process, or to change the configuration of an 

inefficient process layout. 



23 

3.4 Classifications of parts 

The concept of RME is that the manufacturing system is flexible with respect to a finite 

range of classified parts and part families. The inspection routines for RME should therefore 

account for these classes. Part families could be classified in terms of throughputs, 

dimensions, shape, colour, and type of inspection required. The most generic method of 

classification was classifying parts with respect to the shape of their volumes. Classifying 

parts in terms of their dimensions would facilitate parts that vary with respect to dimensions 

only. Changes in parameters such as part shape would not be accommodated for when 

classifying parts in terms of dimensions. This means that classifying parts in terms of 

dimensions will not be suitable for RME, as classes will need to be updated every time a 

change in product shape, colour, type of inspection, and throughput occurs. Throughputs of 

parts may change frequently. The throughput alone does not qualify as an intrinsic part 

property, but instead can be considered as a characteristic of the manufacturing process for 

that part. This opposes the classification of parts in terms of their throughputs. The colours 

of parts may be similar, yet the inspection routines may differ drastically. This makes 

classifying parts in terms of colour, ineffective for inspecting parts that vary in shape, 

dimensions, throughputs, and types of inspection. Classifying parts in terms of types of 

inspection would not be practical as changes in part shape, dimension, throughputs and 

colour, may not be accommodated. The most suitable method of classifying a part family 

within RME is to classify the parts according to the shape of their volumes. This type of 

classification facilitates variations in parameters such as dimensions, colour, throughputs, 

and types of inspection. 

The NCAIS was designed to accommodate the inspection of three part families. These part 

families were classified in terms of the shape of their volume. The three classes of volumes 

were rectangular volumes, cylindrical volumes, and cubic volumes. Assigning a part to a part 

family was achieved by the user selecting the part family that most closely matched the 

actual part volume to be inspected. An example of this assignment would be assigning a 

cylinder head to the rectangular volume part family. Another example would be to assign a 

spur gear or oil filter to the cylindrical part family. The execution of the inspection routines 

was based on these volumes moving at a constant velocity, relative to the machine. 

Diagrams of the three part families are shown in Figure 3-5 (a) to (c). 



24 

Figure 3-5(a): Rectangular Volume Figure 3-5(b): Cylindrical Volume Figure 3-5(c): Cubic Part 

The rectangular part family required the user to input the length, breadth, and height of the 

rectangular volume that the part fitted into. The cylindrical part family required the radius 

and height of the cylindrical volume that the part fitted into. The cubic family required the 

value of the side for the cubic volume that the part fitted into. Even though three part 

families were conceptualised, the testing of the machine was based on the rectangular part 

families. 

3.5 Inspection strategies 

Two strategies for system optimisation were considered. The first method was to inspect 

only significant Regions of Interest (ROI). The second method was to perform inspection of 

these ROI on moving parts. Not all aspects of a manufactured part require detailed 

inspection. It is more efficient to therefore concentrate inspection efforts toward localized 

regions of a part, rather than inspecting the part as a whole. The areas that require attention 

are referred to as ROI. Inspection of ROI allows for optimization of the inspection process 

by investing resources in only essential aspects that require inspection; and acquiring 

detailed information about localized regions as opposed to general information about the part 

as a whole. Mass-produced-custom products involve frequent changes in design, which 

results in frequent changes in inspection requirements. Reconfigurable inspection of ROI 

allows for facilitation of these changes in regions that require inspection. Inspection of ROI 

is also effective when considering the concept of Value Added Manufacturing (VAM), in 

which acceptable manufactured parts are used as platforms and built upon, resulting in new 

products with different functionalities. These value-added parts require inspection of only 

the additions or changes that occurred to the base product. The rectangular and cubic-

volume part families were allocated a 3x3 matrix of ROI on each face, whilst the cylindrical 

part family was divided into eight sections about its longitudinal axis, and divided into three 

segments along its length, as shown in Figure 3-6. The user was allowed to inspect a face as 

a whole if it was required. Dynamic access to these various ROI was proposed, in order to 



25 

acquire information whilst the part was moving. Since the objectives of this research were to 

perform inspections of only one part family, the testing and implementation of the system 

was to facilitate inspection of only rectangular parts. 

0 

b 1 

2 

/ 

( 0 , 0 ) 

( 0 , 1 ) 

( 0 , 2 ) 

( 1 . 0 ) 

( 1 , 1 ) 

( 1 . 2 ) 

( 2 . 0 ) 

( 2 , 1 ) 

( 2 , 2 ) 

/ 

/ 
1 

a 

Figure 3-6: ROI for the respective part families 

3.6 Conceptualized subsystems 

The NCAIS incorporated use of the Mechatronic Engineering approach when subdividing 

the system into subsystems. These subsystems were the Sensor Positioning System (SPS), 

Vision System (VS), Materials Handling System (MHS), Part Identification System (PIS), 

and the software for general system management. The SPS was conceptualized to perform 

sensor articulation for dynamic access to various ROI. The VS was conceptualized to 

perform image acquisition and processing for obtaining information about the part being 

inspected. The PIS was responsible for identifying the part present, in order to load the 

necessary inspection routine parameters. The MHS was responsible for materials handling 

applications, and consisted of a conveyor belt for moving the part through the machine; as 

well as a Part Centralization System (PCS) for aligning the centre of the part with the centre 

of the machine. This was proposed for ensuring predictable part pose. Figure 3-7 shows the 

layout of the subsystems of the NCAIS. 



26 

PROBLEM 

DEFINITION 
Define system 
reauirements 

MECHATRONIC DESIGN CONSIDERATIONS 

Mechanical Electrical/Electronic 

ASSEMBLY I 
Software 

' ' 
PIS 

" 
MHS 

i ' 

SPS 

" 
NCAIS 

" 
vs 

Figure 3-7: Flowchart showing constituent subsystems of NCAIS 

3.7 Summary of chapter 3 

This chapter describes the Mechatronic engineering approach taken in order to solve the 

problem. An overview of the CIM cell used as a testing environment is given. The intended 

method of operation for the NCAIS is also given, with the subsystems highlighted. Part 

families and ROI division on the different part families were discussed. 



27 

4. MECHATRONIC DESIGN 

4.1 Mechanical design 

4.1.1 Sensor manipulation 

The inspection process was required to perform part inspection whilst reducing the impact of 

high frequencies of inspections on the inspection times and hence the production rates 

involved with mass-producing custom parts. One method of doing this was to perform the 

inspection routine whilst the part was moving. Inspecting a moving part required the sensor 

being able to dynamically access the various ROI on that part. The mechanism for 

positioning the sensor required: 

• Accuracy 

• Repeatability 

• Dexterity 

• Efficiency in speed 

• Clean; and smooth operation 

The accuracy requirements for the sensor positioning system stemmed from the fact that the 

vision system relied upon the centre of the ROI being located at the centre pixel of the 

acquired image (within some tolerance). The aligning of the image centre and the ROI centre 

had to take into account the precise positioning of the camera centre as a function of time. 

Due to the fact that the inspection process involved comparison of the inspection image and 

the reference image, the positioning of the sensor had to be repeatable and consistent. This 

involved obtaining images of the objects from the same perspective and distance, so that the 

image differencing operation was more reliable. The fact that the apparatus was designed for 

the purpose of inspecting mass-produced custom parts meant that the sensor would have 

been required to access various features at various locations on the part. Access to various 

regions of the part required dexterous motion of the sensor. This indicated that the sensor 

positioning system would have to be dexterous in operation, and would therefore be required 

to have a large work envelope. The speed of the sensor relative to the part was an essential 

factor when designing the system. This relative speed needed to be large enough in order to 

facilitate dynamic access to various ROI, and to accommodate avoidance of collisions. In 

order to prevent contamination of the inspected part during the inspection routine, the 



28 

mechanical components of the inspection system were required to be clean in operation. The 

image acquisition process required that the vibrations experienced by the camera be 

minimised, in order to prevent blurring of pictures, resulting in a more reliable image 

acquisition process. This requirement meant that the motion of the camera, as it was moved 

from point to point, be smooth and fluent. The dexterous access to the various ROI and the 

speed of sensor motion were considered to be the most important factors in the design of the 

sensor positioning system. 

There are many concepts that need to be understood prior to modelling the behaviour of 

mechanical members of a robot. These include workspace; types of joints; accuracy; 

resolutioa The workspace of a manipulator is defined as the volume of space that the end-

effector is able to access. The workspace of a manipulator can be divided into a reachable 

workspace and dexterous workspace. The reachable workspace is the volume of space that 

the end-effector can access in at least one configuration. The dexterous workspace is the 

volume of space that is accessible to the end-effector in all possible orientations. Three 

common types of joints used in the design and construction of industrial robots are prismatic 

joints; revolute joints; and spherical joints. Prismatic joints (shown in Figure 4-l(b)) are 

joints that allow a single degree of freedom translation along an axis. Revolute joints (shown 

in Figure 4-l(a)) are one-degree-of-freedom joints that allow rotation about an axis. 

Spherical joints are joints that allow rotation about an infinite number of axes. 

Figure 4-1(a): Revolute joint [26] Figure 4-1(b): Prismatic joint [26] 

4.1.1.1 Types of Sensor Manipulation 

Robotic manipulators can be divided into Parallel Kinematic Manipulators (PKM) and Serial 

Manipulators [28]. The main purpose of a manipulator is to position and orientate an end-

effector. The selection of a method of manipulation is dependent on the shape of the 

allocated workspace. Parallel manipulators generally consist of a fixed platform (referred to 



29 

as the base), connected to parallel links. These links have actuated and non-actuated joints. 

Examples of actuated joints include prismatic and rotary joints. Universal and spherical 

joints are amongst the more common examples of non-actuated joints. The mechanical 

components in a parallel manipulator do not experience significant loading in the form of 

bending, as a result of their parallel architecture. This allows for lighter materials to be used, 

which then decreases the weight of the members. This decrease in weight allows for 

mechanical systems that are quicker and more accurate than mechanical systems with serial 

architectures. Due to the fact that the load of the end-effector is distributed amongst the 

parallel members, the motion capability bandwidth for the end-effector is high. The actuators 

for parallel manipulators can be fixed onto the motionless base. This reduces the inertia of 

moving members, which also contributes to the reduction in weight of moving members. 

The disadvantages of PKM involve limited workspace, due to collisions between mechanical 

members during certain configuration changes. PKM become unstable; uncontrollable; and 

experience loss of stiffness when accessing singular positions [27]. 

Serial manipulators are manipulators, which consist of a base connected to links that are 

connected in series. The advantages of serial manipulators are that they are able to access a 

large workspace with respect to their own volume [28]. The disadvantages of serial 

manipulators involve the low stiffness characteristics; accumulation of errors whilst 

operating; inaccuracies incurred by moving members with high inertia; and the relatively 

low effective load that they can manipulate. The low stiffness characteristic is a disadvantage 

due to the fact that the motion and positioning of the part may be prone to errors as a result 

of an open kinematic architecture. This open kinematic architecture also results in the errors 

induced by joint actuators, being accumulated along the chain through to the end-effector. 

The accuracy of the system is good but less than when compared to closed kinematic 

architectures. Serial manipulators require the actuators to be placed at joints. The inertia of 

the members is thus increased. As a result, the accuracy of the system may be influenced, 

and decreased. The fact that the weight of the end-effector is not distributed amongst 

multiple members, serial manipulators are able to only manipulate end-effectors with a low 

effective load. Typical serial and parallel manipulators are shown in Figure 4-2 (a) and (b) 

respectively. Table 4-1 shows the comparison between the characteristics of serial 

manipulators and PKM. 



30 

Figure 4-2(a): Serial manipulator [28] Figure 4-2(b): Parallel manipulator [27] 

Characteristic 

Speed of operation 

Load capacity 

Accuracy 

Workspace 

Ease of control 

Stiffness 

Bandwidth of motion 

capability 

PKM 

Excellent/high 

High 

Excellent 

Limited 

Difficult 

High 

Excellent 

Serial Manipulator 

Good 

Low 

Good 

Excellent 

Easy 

Low 

Good 

Table 4-1: Comparison of PKM and Serial manipulators 

Cartesian robots are robots that consist of at least three mutually perpendicular prismatic 

joints [29]. These robots are an industrial class of serial manipulators, although they may be 

considered as a combination of parallel and serial manipulators. The regional workspace of a 

Cartesian manipulator is a rectangular volume. Gantry robots are similar to Cartesian robots, 

however the difference between gantry robots and Cartesian robots are the way in which 

they are mounted. Gantry robots are mounted on rails, above their workspace. Cartesian 

robots are mounted below their workspace. The parallel aspects of the design allow high 

stiffness, since the axes are supported at both ends. Figure 4-3 (a) and (b) show typical 

Cartesian and gantry manipulators. 



31 

Figure 4-3 (a) Cartesian manipulator [29] Figure 4-3(b) Gantry manipulator [30] 

Gantry architectures allow for high-speed and high-accuracy operation. These structures are 

also generally associated with high repeatability. These are crucial characteristics when 

considering dynamic positioning of the camera. The control of gantry system is relatively 

easy, as the inverse positioning of the sensor is merely a vector subtraction operation; with 

no need for rotational transformation matrices. 

4.1.1.2 Methods of Actuation 

Actuators have the function of converting an input signal into a controlling action on a 

device [18]. The sensor positioning system was responsible for the accurate and repeatable 

positioning of the sensor. This depended largely upon the method of actuation selected for 

the design. Common industrial actuators can be categorised into three fields, namely 

pneumatic actuators; electric actuators; and hydraulic actuators. 

4.1.1.2 (a) Pneumatic Actuation 

Pneumatic actuation involves the use of compressed air to execute mechanical motion. This 

method of actuation is relatively inexpensive, and is able to perform at high speeds of 

operation. The process of pneumatic actuation is clean, which is important when inspecting 

parts that are easily contaminated. The use of compressed air as a driving force makes this 

form of actuation readily available. Current manufacturing buildings are commonly equipped 

for use of compressed air, which makes implementation of pneumatic actuators relatively 

easy [18]. The life expectancy of pneumatic equipment is generally high with respect to 

mechanical fracture, and actuators can stall without incurring any damage. The reason for 



32 

this is that the compressible air will absorb any shock, due to sudden motion or stopping of 

motion. The disadvantages of pneumatic systems involve low accuracy and difficult speed 

control of actuators. 

4.1.1.2 (b) Hydraulic Actuation 

Hydraulic actuation involves the use of an incompressible fluid for high power transmission 

[33]. The incompressibility of the fluid allows for the amplification of the applied force. This 

results in the ability of a system to move a heavy load using a relatively smaller applied 

force. The advantage of incompressible fluids is that the fluid itself does not absorb any of 

the applied energy. This means that relatively small tubes can be used for transmitting 

power, which would have been an advantage when considering the spatial constraints of the 

NCAIS. Another advantage of using hydraulic actuation is that a very high level of servo 

control can be achieved, without damage whilst stalling. The disadvantages of using 

hydraulic actuation methods involve the possibility of fluid leaks; high initial investment; 

and relatively slow operation. 

4.1.1.2 (c) Electrical actuation 

Electrical actuation involves the conversion of electrical power into some form of 

mechanical motion. Electrical actuators may be categorised into switching devices; solenoid 

type devices; and drive systems [33]. Switching devices use an input control signal to toggle 

a circuit on or off. Mechanical switches; diodes; thyristors; and transistors are all types of 

switching devices. Solenoid type actuators use an electrical input through a solenoid in order 

to actuate a soft iron core. This mechanism may be used for actuating hydraulic or pneumatic 

flow. An example of an electrical drive actuator is the input of power to a motor in order to 

obtain rotary motion. The advantages of electric actuation are that they are generally fast and 

accurate; relatively inexpensive; generally easy to control; have regular updates in designs; 

low weight; high torque; and rapid response time. The disadvantages include overheating in 

stalled conditions; have some sort of shaft play, which limits precision; and may be prone to 

electrical arcing. Table 4-2 lists the different types of actuation along with their advantages 

and disadvantages. 



33 

Actuation methods 

Pneumatic 

Hydraulic 

Electrical 

Advantages 

Relatively inexpensive 

High speed of operation 

Clean actuation 

Readily available 

Easily implemented 

High life expectancy 

Large lift capacity 

Very high level of servo 

control 

Fast and accurate 

Relatively inexpensive 

Easy to control 

Fast development times for 

new models 

Low weight 

High torque 

Rapid response time 

Disadvantages 

Low accuracy 

Difficult speed 

control 

Possible fluid leaks 

High initial 

investment 

Relatively slow speed 

of operation 

Overheat in stalled 

conditions 

Experience general 

play on motor shafts 

Prone to electrical 

arcing 

Table 4-2: Comparison of different methods of actuation 



34 

4.1.1.3 Manipulator selection 

Table 4-3 shows the extent to which the different types of actuation and manipulation meet 

the system requirements. 

Requirement 

Accurate positioning 

Fast operation 

Able to move a light 

load 

Easy to control 

Clean 

Cost effective 

Smooth operation 

Large Workspace 

Pneumatic 

Yes 

Yes 

Yes 

No 

Yes 

High initial 

investment 

Yes 

Hydraulic 

Yes 

Yes 

Yes 

Yes 

No 

No 

Yes 

Electrical 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Serial 

Reasonable 

Reasonable 

Yes 

Yes 

Yes 

Yes 

Yes 

PKM 

Yes 

Yes 

Yes 

No 

Yes 

Yes 

Limited 

Table 4-3: Comparison of actuation and manipulation methods for meeting the system requirements 

The method of actuation that best suited the requirements was electrical actuation. Since the 

positioning of the sensor had to be precise and repeatable, pneumatic actuators were not 

selected for the design of the sensor positioning system. The use of hydraulic actuation could 

have caused contamination to the parts being inspected. The costs involved with 

implementing pneumatic and hydraulic actuation were also deterrents in the selection of 

these methods of actuation. Due to the fact that one of the main requirements for the sensor 

positioning system was a large workspace, serial manipulation was chosen for the design of 

the sensor positioning system. The collision avoidance between sensor and part could be 

more easily implemented with serial manipulation than with PKM. 

The final design of the sensor positioning system was the merging of a gantry system with a 

pan-tilt mechanism. This structure was designed to have five degrees of freedom, with three-

degrees-of-freedom stemming from the gantry structure, and two-degrees-of-freedom from 

the pan-tilt mechanism. The combination of orthogonal-prismatic, and revolute joints in the 



35 

design allow for excellent workspace and dexterity characteristics. Figure 4-4 shows a 

conceptual drawing of the system's motion. 

Figure 4-4: Conceptual drawing of the Sensor Positioning System motion 

4.1.1.4 Kinematic model 

The sensor positioning system was required to position and orientate the sensor at calculated 

target points. Forward kinematics is used to determine the position and orientation of an end-

effector, given a sequence of joint movements. Inverse kinematics is used to determine the 

required joint movements to position and orientate the end-effector to a given pose. Since the 

motion of the gantry system was trivial subtractions, the use of intensive inverse kinematics 

was not considered. 

The kinematic model for the manipulator was designed for precisely calculating the required 

position and orientation of the sensor as a function of time and ROI, for rectangular parts. 

This model had to account for the fact that the part was moving. The first step in the design 

of the model was to define three sets of co-ordinate systems. The first co-ordinate system, 

labelled frame O, was the global co-ordinate system, and its origin was fixed on the 

stationary frame for use as a global reference point. The second co-ordinate system, labelled 

frame B, had its origin on the part and was referred to as the part co-ordinate system. The 

third co-ordinate system was frame A, representing the position of the camera. Frame B was 

relative to frame O, and frame A was relative to frame B. The model assumed that the part 

co-ordinate system was moving relative to the global co-ordinate system. The purpose of 

defining a part co-ordinate system was to track the moving part as it went through the 

machine. In doing so, the ROI on the part could also be tracked as a function of time. Frame 



36 

O had its origin at the bottom-left corner of the workspace as shown in Figure 4-5 (a) and 

(b), with frame A being omitted. 

Figure 4-5 (a): Frame A and B locations Figure 4-5(b): Part configuration 

The rectangular and cubic-volume part families could only be inspected on 5 faces. The 

reason for this was that the bottom face was not accessible to the sensor. Two modes of 

operation were considered for the manipulation of the sensor in space. These were sequential 

positioning and point-to-point positioning. The sequential positioning of the part was based 

on the sensor moving parallel to each face at different divisions of time. If a ROI were 

encountered along the trajectory, an image was acquired. This method of manipulation was 

flawed in that the sensor would still move along a face even if no ROI were present. This 

would have lead to time wastage, which was unacceptable for these inspection routines. 

Figure 4-6 depicts the operation of this mode of manipulation on the rectangular volume part 

families. The method of manipulating the sensor from point-to-point allowed for an optimal 

path to be selected (discussed further on) and so this method was selected for sensor 

manipulation. 



37 

r 
4 . 3 

Figure 4-6: Sequential inspection for rectangular volume part inspection 

Once the co-ordinate systems were defined, the user-defined ROI were converted into spatial 

co-ordinates, with respect to frame B. These local co-ordinates were then transformed into 

global co-ordinates by mapping the motion of frame B with respect to frame O. The NCAIS 

was designed to perform inspection on a part that had motion only in the direction of the 

conveyor. This meant that no lateral motion was incurred by the part. The motion of a point 

on the conveyor was therefore given by: 

y(t) = y0 + y'*t t4-1) 

where y(t) was the final position of that point on the y-axis; y0 was the initial position along 

the conveyor; and y *t was the distance moved along the conveyor after a time t. 

Consequently, the motion of frame B relative to frame O was calculated as a function of 

time, using equation 4.1. 

B(t) = 0.5(w-a)[ + y(t)i (4.2) 

where 'w' was the width of the manipulator workspace; and 'a' was the dimension of the 

volume in the x-direction. The equation accounts for the fact that the centre of the part runs 

along the centre of the workspace volume, in the y-direction. 

The position of the centre of a ROI, with respect to frame B, was described by the vector 

where the superscript denotes the frame that the particular vector was referenced to. 

yB 

ZB 

(4.3) 



38 

The ROI were rectangles which had dimensions proportional to the dimensions of the part 

volume. In order to obtain the exact co-ordinates of the centres of these ROI, relative to 

frame B (in order to determine the components of P_t, five cases were considered. The 

reason for considering five cases was to account for a ROI lying on each of the accessible 

faces. Assuming that the user selects a ROI that has co-ordinates (m,n) on each face of a part 

with volume (a,b,c), and f is the number of ROI in a row or column, the following equations 

apply. 

Case 1: ROI lies on front face: 

(a.b.c) 
m=3 

m=l 

ii=3 11= 2 11=1 
0 ? 

Figure 4-7: ROI on front face 

BP, = (M, -0.5)*ji + bi + {m,-0S)jk 

Case 2: ROI lies on left face 
(O.b.c) m=3 

ni=l 

n=3 n= 2 ii=l 

Figure 4-8: ROI on left face 

*£ = («,-o.5)-y + (w,. - o.5) y * 

Case 3: ROI lies on the right face 



39 

O x 

(a.b.c) 
Tm=3 

ni=l 

n=l n= 2 11=3 

— y 

Figure 4-9: ROI on right face 

BP, =ai + („:-0.5) j i + (m,-0.5) jk 

Case 4: ROI lies on top face 

(a.b.c) 
ni=3 

m=l 

it=3 11= 2 ii=l 
O z 

Figure 4-10: ROI on top face 

' £ , = ( « , - 0 . 5 ) y i +(m,.-0.5)y ; + c * 

Case 5: ROI lies on rear (back) face 

• 1 1 • 

(a.O.c) 

ni=3 

111=1 

11=1 11= 2 ii=3 

Figure 4-11: ROI on rear face 

* £ = ( « , - 0 . 5 ) y i + t o - 0 . 5 ) y * 



40 

The position of an ROI relative to frame O was then given by adding equation 4.2 and 

equation 2.3: 

° LXt)=B L,+° B{t) (4-4) 

The set points " Pf (i = 0.. .n) in equation 2.4 were considered as inspection points, and were 

used for predicting the position of the centre pixel during image acquisition. The focus of the 

camera lens was kept constant, so in order to obtain high quality clear images, a fixed 

distance d, between the camera centre and the inspection point, was implemented. The centre 

of the camera lens was placed orthogonal to the inspection point to reduce perspective errors 

incurred during image acquisition. Once the co-ordinates of the inspection points and 

directions of the normal vectors were determined, along with d, a set of target points were 

established. These target points were the co-ordinates at which the centre of the camera was 

required to be, in order to acquire an image. The target points were inherently, functions of 

time and ROI positions. The ith target point was determined: 

where N_t was the outward normal vector relative to frame B. The vector ° J , accounted 

only for the position of the camera as a function of time. The orientation of the camera was 

determined by considering the normal vectors for the target points. Due to the fact that 

inspection was assumed to have occurred on flat faces, five orientations were considered for 

the camera. The orientation of the camera lens facing the front face of the part as it entered 

the machine was taken to be the reference orientation. 

With the inspection points on the following faces, the orientation of the camera was as 

follows: 

Front face: orientation _ angle = 0° (face the negative y-direction) 

Left face: orientation _ angle = 90° (rotate about z-axis in positive right hand 

screw direction, parallel to y-z plane) 

Right face: orientation _ angle = -90 (rotate about z-axis in negative right hand 

screw direction, lens parallel to y-z plane) 

Top face: orientation _ angle = 90° (rotate about x-axis in positive right hand 



41 

screw direction, lens parallel to x-y plane) 

Rear face: orientation _ angle = 180° (rotate about z-axis in positive right hand 

screw direction, parallel to y-z plane) 

Once a set of target points for the camera was determined, an optimised path needed to be 

selected. The model operated on the assumption that the trajectory from one target point to 

the next would always be a linear path. Consequently, the method of finding the path from 

point to point was to subtract the linear distance of each axis of the gantry system. The 

shortest linear path between two points that may be followed is given by vector S, which was 

given by 

H. — L. final ~ i-initial 

or put into component form, 

0 S, = (x,. - *,_, )/ + (y, - >/,_, )j + (z, - z M )k 

For example, consider the centre of an end-effector with initial co-ordinates: 

"5 

'I, -initial 

25 

Suppose that we are required to move the end effector from this initial point, to a point: 

"19" 

1 1 -final 68 

13 

This yields the following translations: 

"19-
68-

13-

-5 " 
-8 

-25_ 
= 14/+ 60./+ (-12)* 



42 

For n target points, the number of possible linear paths was given by n!. In order to optimise 

the manipulator motion, the shortest overall distance from point O to point n, was 

considered. This allowed for selection of a path that involved the shortest inspection 

distance. Prior to selection of the shortest possible path, a collision detection algorithm 

needed to be implemented. A collision was defined as a point in the sensor spatial domain 

having identical co-ordinates to a point in the part volume, at the same instance of time 

during the inspection routine. A conservative minimum radius r was defined to represent the 

spherical volume of the camera, to account for all possible orientations of the camera. 

Thereafter, mathematical collision testing for each segment of a path was performed. If any 

segment of the path collided with the part, the path was rejected. A collision was defined as 

the camera being closer to any region of the part than the clearance r. The collision detection 

procedure depended on the part family and the dimension of the part. The camera was 

limited to a piecewise-linear path and so any single segment of a piecewise-linear path could 

be modeled parametrically as a ray with the parameter t, shown in equation 4.5. 

r (0 = r0+r„f ( 0 < t < | | r l - i O | | ) (4.5) 

where r0 = x0i + y0j + z0k was the starting point of the move and rl= xl i + yl j + zlk was 

the end point. The unit-vector ray-direction rd was defined, shown in equation 4.6. 

(r -r) 
IT H = xdi + ydj + zdk (4.6) 

The intersection of such a ray with the part was determined by solution of simultaneous 

equations. For example, given the ray r (t) and the plane x = c (for a rectangular part), 

intersection point ra - xj + yaj + zak could then be calculated by solving for tc (collision 

time) in the following equation (always taking positive values of tc only). 

x=c 
(c - xn) 

••xn+xJ„=>L =± ^ 

Using similar methods, collisions in the y and z axes were checked for. If a time existed 

where a collision occurred, the path was rejected. 



43 

Even though the research was aimed at rectangular part families, an algorithm was devised 

for facilitating inspection of cylindrical part families. The upright-cylindrical case was 

treated similarly to the rectangular-prismatic case. The cylinder equation was a function of 

the height (H) and radius (r) of the part, shown in equation 4.7. 

x2+y2 =(fl + r ) 2 ; 0 < z < ( H + r ) (4.7) 

where the addition of r to R was implemented to account for the cylinder radius plus the 

camera spherical radius. Collision detection was then performed by obtaining equation 4.8, 

equation using equation 4.7. 

(xo^dtcf+(y0 + ydtcy=(R + rf (4-8) 

Equation 4.8 may be re-written in the form 

At2 +Btr+C = 0 

where 

A = [x/ + y/\B = 2(xdx0 + ydy0),C = x2 + y0
2 -(R + rf 

The solution of the system was given by equation 4.9. 

-J3 + Vfi2 -4AC 
tc= (4.9) 

2A 

This approach required that an acceptable solution existed only if A was nonzero; the 

discriminant ( BA2 - 4AC) was positive; and if a positive solution was found. Meeting these 

requirements, tc was back-substituted to givexa, yaa.ndza. It was also checked to see if 

za lay within the interval [ 0, H + r J; and the plane z = H + r was also intersection-tested 

with the ray as described earlier. The point of intersection, if any, was checked to determine 

if it lay within a radius of ( R + r ) of the local origin in the x-y plane. If any one of these 

conditions was satisfied then it was assumed that the path was prone to collision. 



44 

4.1.1.5 X-axis design 

The mechanism facilitating motion in the x-direction was required to transport the load 

induced by the weight of the y-axis mechanism; the z-axis mechanism; the pan and tilt 

mechanism; and the sensor. The gantry setup required that motion in the x-direction be 

supported at two ends, with the y-axis mechanism sliding between these two supports. Use 

of a gantry system also required that the structure be placed above the part. Consequently, 

the structure had to be mounted onto the frame, which was at a constant slope of 70 degrees 

to the conveyor. In order to simplify the assembly of the structure, adapter brackets were 

designed to provide a vertical surface on which the structure could be mounted. These 

brackets were designed as bracket pairs which mounted on either side of the bar of the frame. 

Eight mountings were designed for two points of support on either end of the x-axis 

structure. These mounting brackets were designed to house the leadscrew and support bars, 

whist being secured onto the adapter brackets. This design was intricate as many holes had to 

be included in a small space, in order to facilitate fastening. Two of these mountings were 

designed for support on either end of the x-axis on the slider side of the gantry mechanism. 

An x-axis motor bracket was designed for mounting the drive motor onto the frame. Two x-

axis support bars were designed from stainless steel. The x-axis slider was responsible for 

motion of the sensor in the x-direction. This slider consisted of a brass nut, which provided 

the motion, fixed onto a frame used for support of the y-axis structure. 

Motion in the x-axis was driven by a motor attached to a leadscrew mechanism. Due to the 

high cost of ball screws, threaded bar was used to convert rotational motion into translational 

motion. The mechanism was then also referred to as a power screw. The geometry of a 

typical screw thread is shown in Figure 4-12. 

Pitch/2 
U »l 

Figure 4-12: Geometry of screw threads [34] 



45 

The major diameter of a thread is the cross-sectional distance between the outer ends of the 

thread, on opposing sides of the longitudinal axis of the bar. The cross-sectional distance 

between the roots of threads, is referred to as the minor diameter. The pitch diameter is half 

the sum of the inner and outer diameters. The pitch is defined as the distance, measured 

parallel to the longitudinal axis, between corresponding points in the same direction of 

adjacent thread surfaces, in the same axial plane [34]. 

The outer diameter of the threaded bar selected was 18mm and was made from high tensile 

steel. In order to prevent warping of the bar during operation, the drive mechanism included 

two support bars. These support bars lay on the same plane with their centres parallel to each 

other. In addition to vertical load distribution, these support bars also provided a rotational 

reaction force, preventing rotation of the x-axis slider. Figure 4-13 (a) shows the designed x-

axis mechanism with the enlarged view of the slider in Figure 4-13 (b). The threaded bar is 

shown in green in both figures. 

Figure 4-13 (a) Designed x-axis mechanism 

Figure4-13 (b) enlarged view of the x-axis slider 



46 

Figure 4-14 (a) shows the constructed x-axis components, and Figure 4-14(b) shows the 

mounting of the x-axis onto the NCAIS frame. 

Figure 4-14(a) Constructed x-axis subassembly Figure 4-14(b) x-axis mounted onto frame 

The height at which the y-axis slider was placed influenced, and was influenced by, the 

width and height of the part that could be inspected. The positioning of this y-axis slider also 

influenced its length. A height of 460mm was selected for positioning the centre of the y-

axis mechanism. Since the y-axis mechanism was fixed on the x-axis slider, the top surface 

of the x-axis mechanism was located at 440mm above the conveyor surface. The difference 

in heights between the adapter brackets was to accommodate the positioning of the rollers. 

4.1.1.6 Y-axis design 

The motion in the direction of the y-axis was one the main focuses in the design of the SPS. 

The reason for this was that the part only had a velocity in the y-direction. The motion in this 

direction had to be faster than the maximum conveyor speed in order to ensure that all ROI 

were dynamically accessible. The y-axis drive system was subject to loading conditions 

induced by mass of the z-axis mechanism and the sensor. This drive system was supported at 

either end of the frame. One side was supported by the x-axis slider. This was done to allow 

for vertical support; and motion of the drive system in the x-direction. The opposite side 

required support in the vertical direction, and minimal resistance to motion in the x-direction. 

Roller supports were selected for this application. The y-axis support bar, threaded bar, and 

y-axis slider were all similar to those designed for the x-axis. The design of the y-axis 

structure including all components of the x and y-axes is shown in Figure 4-15(a) and the 

constructed y-axis subassembly is shown in Figure 4-15(b). 



Figure 4-15(a): Y-axis design Figure 4-15 (b): Constructed y-axis structure 

4.1.1.7 Z-axis design 

The z-axis drive system was responsible for increasing and decreasing the height of the 

sensor. Using the height of the y-axis structure within the trapezoidal volume, the 

components of the z-axis drive system were designed. The constraints placed on the z-axis 

structure were due to the c-shaped tack. The design of the z-axis structure was different to 

the x and y-axes structures since the z-axis structure could only be supported at one end. The 

reason for this was essentially that the sensor would be positioned on the pan-tilt mechanism 

which lay on the end of the z-axis structure. The problem experienced with this requirement 

was the location of the fixed reference point which was used for motion in the z-axis. Three 

possibilities were considered for the design of this structure. 

The first was to have the camera fixed onto the leadscrew, and move the drive system 

vertically. The problem with this concept was that any motion above the gantry structure 

may have resulted in a collision between the drive system and the frame of the apparatus. 

The second concept was to fix the motor onto the y-axis slider, and attach the camera to 

move along the leadscrew. The problem with this concept was that the pan-tilt mechanisms 

would not be able to function properly, which would drastically reduce the sensor access to 

various ROI. The third concept explored was to fix the camera onto the y-axis slider, and 

design a slider extension mechanism for the z-axis. This extension mechanism would allow 

for a pan-tilt mechanism to be integrated into the design. 



48 

The components, except steel leadscrew and stainless steel support bars, designed for the z-

axis motion used Aluminium as the selected material. A motor mounting was designed to 

fix the motor onto the y-axis slider. The positioning of the motor had to account for the 

support bars and the leadscrew of the y-axis structure. A cylinder mounting bracket was 

designed to fix the cylinder onto the y-axis slider mechanism. The design of this component 

had to consider limited space between the components of the slider. Aluminium was the 

selected material for this design. The shape of this component had to account for the 

diameter of the cylinder and the maximum allowable diameter within the slider mechanism. 

A cylinder was designed for providing a fixed reference structure on which the slider 

extension could move along. Slots in this cylinder were designed to prevent rotational 

motion of the camera due to motion of the z-axis leadscrew. The slider-extension mechanism 

was responsible for moving the sensor vertically as a result of the rotation of the leadscrew. 

This mechanism was designed to consist of a brass nut; four support rods; and a base plate. 

The brass nut was used for moving up and down the fixed leadscrew. The support rods were 

rigidly attached to the brass nut through the slots of the cylinder at one end, and to the base 

plate at the opposite end. This allowed the base plate to follow the same motion as the brass 

nut, at a fixed distance from the nut. The constructed z-axis components are shown in Figure 

4-16(a) and the 3D design of the fully assembled structure is shown in Figure 4-16(b). 

Figure 4-16(a): Constructed Z-axis components Figure 4-16(b): Full 3D gantry structure design 



49 

4.1.1.8 Pan-tilt mechanism design 

The pan and tilt mechanism was designed to enable change in sensor orientation. This 

mechanism was fixed at the base of the z-axis slider extension. Due to the fact that the 

camera did not impose a heavy weight load, aluminium plating (2mm thick) was chosen for 

this structure. The constructed structure is shown below. This structure facilitated rotation 

about the z-axis and rotation about axes lying in a horizontal plane. The assembled 

components of this design are shown in Figure 4-17. 

Figure 4-17: Assembled components of the pan-tilt mechanism 

4.1.1.9 Static analysis 

A static analysis of the sensor positioning system was performed to determine the structural 

integrity of the members under static loading conditions. Structural failure of the system due 

to static loading could have occurred as a result of the following modes of failure: 

• Shear failure of members 

• Plastic deformation of members due to bending 

• Tensile failure of members 

Each mode of failure was considered, depending on the loading conditions of different 

members. Deflections and stresses were calculated to justify the dimensioning and material 

selection of the diameter of the support bars and threaded bar for the x and y-axes members. 



50 

Simple calculations were also performed to verify the design of the z-axis mountings and the 

pan-tilt mechanism. 

4.1.1.9 (a) X-axis 

The static loading conditions of the x-axis involved the weight of the members of the x-axis; 

y-axis; z-axis; pan-tilt mechanism; and sensor. This loading was distributed among the slider 

of the x-axis drive system and the roller on the opposite end, shown in Figure 4-18. This 

weight distribution was most uneven when the load was at either end of the y-axis. To 

incorporate some form of safety factor, the analysis used the entire weight as the loading 

condition, for both the slider and the roller ends. 

Figure 4-18: Vertical Loading on x-axis 

The slider end of the x-axis consisted of three parallel members rigidly fixed at each end. 

Two stainless steel rods were used as support bars. These bars each shared the vertical load 

induced. The support bars each had two contact points with the slider mechanism. The 

threaded bar was subjected to only the axial load induced by the friction involved with 

moving the load. This loading condition is shown in Figure 4-19. 



51 

Figure 4-19: Forces on x-axis bars 

The axial loading of the threaded bar was determined using equation 4.10 [35]. 

aW 
° = — (4.10) 

The numerator in equation 4.10 is the frictional force to be overcome in moving the load. 

Using a typical value for the frictional coefficient u. as 0.2 [40] whilst considering the 

diameter of the bar to be 18mm and estimating the load to be 30N, the axial force initiated in 

the bar was found to be O.llMPa. This value was negligible and so no further axial 

calculations were performed for the y-axis, as this axis had a smaller load to carry. The 

threaded bar was also analyzed for failure due to buckling. The critical load for buckling of 

the threaded bar was found using equation 4.11 [59]. 

_n2EI (4.n) 
cr L2 

Substituting E=200GPa, I=1.013*10~87W4, and L=0.55m into equation 4.11, the critical 

load for buckling of the threaded bar was found to be approximately 67kN which was well 

above the applied axial load (\\W = 6N). No buckling analysis was performed on the y-axis 

threaded bar since this bar had a smaller load. The design was thus found to be safe against 

failure due to buckling. 

The support bars were analyzed as having two point loads, a fixed distance apart, and a UDL 

due to the weight of the bars. These support bars were analyzed as statically indeterminate 

beams, as shown in Figure 4-20. The loading conditions for each support bar, including the 

bar on the opposite end of the y-axis were identical under maximum loading conditions and 

so analysis of one support bar was sufficient. The point load was due to the weight of the 



52 

members of the rest of the system. The UDL was due to the weight of the bars themselves. 

The worst loading condition involving bending occurred when the slider was placed at the 

centre of the beam, causing the greatest overall deflection and moment. 

- — / 
M A A A M 

\ « 

p p 

rfnlrrnlTrt 
. a 1 

b 1 R 
•+>x 

Figure 4-20: Loading conditions for the support bars of the x-axis 

The loads P were considered to be equal, and the conditions for each of the support bars 

were considered as identical due to the even load distribution between these two structures. 

Using McCauley's method [37], the moment of a point on the beam was modelled to be: 

EI 
d2y qx 

2 
2 = ~MA + RAx-^r-P(x-a)-P(x-b) 

ax 
(4.12) 

Integrating equation 4.19 yields the slope of the deflection being given by equation 4.13. 

EI-
dx 

2 3 

c qx 

~ ~6~ 

+ A 

The deflection of the support bars was then modelled by further integration of equation 4.13, 

resulting in equation 4.14. 

Ely M.X1
 | R^ gx^ p{x-ay pjx-by | Ax | B ( 4 1 4 ) 

24 

The boundary conditions were used to find the constants of integration and these constants 

were calculated to be zero (the method for calculating the values of these constants can be 

found in [36]). Using these equations, the reactions for the system were calculated as shown 

in equation 4.15 and equation 4.16 respectively. 

_ ql P{l-af{l + 2a) P(l-b)2(l + 2b) 
R . — 1 1 1 ; 

" 2 /3 /3 

_ql2 Pa(l-a)2 Pb(l-bf 
A 12 r- r-

(4.15) 



53 

(4.16) 

With the centre of the slider being in line with the middle of the beam, the value of a in 

metres was then given by equation 4.17. 

a= 0.05 
2 

The distance b was represented by equation 4.18. 

(4.17) 

Z> = - + 0.05 
2 

(4.18) 

Substituting equations 4.15, 4.16, 4.17, 4.18 into equation 4.14 resulted in the maximum 

deflection and moment represented by equation 4.19 and 4.20 respectively. 

y i 
x=— 

2 

ql* 
P^+0.05J(/-0.2) /^-0.05J(/ + 0.2) ^ 

384£/ 48£7 4SEI 

08*10' 

EI 
(4.19) 

M 

( 

EI 24 

+ 0.05 

2/ 

P | - - 0 . 0 5 
0.05P 

(4.20) 

Using equations 4.19 and 4.20, the following values shown in Table 4-4 were calculated for 

the static loading of the x-axis. 

x-axis support bars 

Deflection (mm) 

0.28 

Moment (Nm) 

15.9*10"3 

Bending Stress (kPa) 

162 

Table 4-4: Calculated values of static analysis at x=L/2 

It is important to emphasise that the calculated values in the above table assumed that the 

entire load was acting on each member. The two point loads on the support bars were 

assumed to be 15N each, as a result of symmetry. The loads on the support and threaded bars 

were unevenly distributed, and the deflections of these bars would have to be equal due to 



54 

the slider being rigid. The calculation therefore assumed a worst case loading condition in 

which the maximum loads were supported by each bar alone. 

The methods of failure analysed for the x-axis mechanism were: 

• Failure due to excessive bending stresses when the slider was at the centre of the 

structure 

• Shear of the bars due to the slider being at one end of the beam 

Analysing failure of the system due to bending stresses involved calculating the maximum 

moment for each bar and then used in the equation 4.21 [35] to determine the induced 

bending stress. 

CT bending ~ , (4.21) 

This induced bending stress was found to be 2.6kPa. This value was compared to the yield 

stress of the material, which was 290MPa [37]. The induced stress was much less than the 

yield stress and tensile stress of the material, and so the design was deemed safe against 

failure due to bending stresses. The method of failure due to shear was performed using the 

reaction forces calculated when the slider was at the end of either side of the beams. These 

reaction forces were then substituted in equation 4.22 [35]. 

F 
x = — (4.22) 

A 

The induced shear stress was then calculated and compared to the maximum allowable shear 

stress for the material. The calculated shear stress was 0.12Mpa for the threaded bar and 

0.19MPa for the support bars. This was well below the allowable shear stress value of 

330MPa and 186MPa respectively [37]. The design was then considered safe against shear 

loading. Since the loading conditions caused such minimal stresses, the method of failure 

due to crushing of members was disregarded. 

The adapter brackets used three steel bolts, 6mm in diameter, to secure the x-axis structure 

onto the frame of the apparatus. The worst case of loading for these brackets was when the 

slider mechanism was on either end of the x-axis. A maximum reaction force of 30N was 

assumed. The method of failure predicted for this loading was due to shear of the three bolts. 

The loading condition is shown in Figure 4-21. 



55 

Frame 

r shear 

Figure 4-21: Shear loading of bolts for x-axis mounting bracket 

The shearing force was calculated using equation 4.23. 

F - -
shear / 

Weight 

. tan20 . . 
1 + *sin70 

(4.23) 
I-sin /u 

tan 70, 

The shearing force was calculated to be 28.2N. This value was then used to calculate the 

shear stress involved using 4.29. The induced stress was calculated to be 1.4MPa, which was 

under the allowable shear stress of 200MPa [39]. All calculated values confirmed that the 

induced stresses were within the allowable stresses for the design, and this structure was safe 

against failure due to static loading. 

4.1.1.9 (b) Y- axis 

The y-axis loading conditions were identical in layout, to the slider end of the x-axis 

structure. The only difference was due to the actual weight supported by the structures. The 

y-axis mechanism had to support the weight of its own members; the z-axis structure; the 

pan-tilt structure; and the sensor. Using the same methods to verify the design of the slider 

end of the x-axis structure, the following values were calculated, which verified the design of 

the y-axis structure. 

y-axis support bar 

Deflections (mm) 

0.19 

Moment(Nm) 

12.2*10 3 

Bending Stress(kPa) 

124 

Shear Stress(kPa) 

480 

Table 4-5: Calculated values of static analysis at y=L/2 



56 

As explained for the x-axis analysis, these values assumed that the entire loading was 

supported by each member alone. The results all confirmed that the design was safe under 

static loading. 

4.1.1.9 (c) Z- axis 

The z-axis structure was mounted onto the y-axis slider, and so the only load on the z-axis 

structure was the weight of the pan-tilt mechanism. The force induced by the camera and 

components was measured to be ION. This load was used to calculate the tensile stress in the 

shaft, which was calculated to be 0.35MPa. Since this value was well below the elastic limit, 

no further analysis was performed. 

4.1.1.9 (d) Pan-Tilt mechanism 

The pan-tilt mechanism was subjected to bending stresses; with the pan motor shaft 

experiencing tensile loading, and the tilt motor shaft experiencing bending stresses due to the 

sensor. The bending stress on the structure was induced by the weight of the tilt motor and 

sensor. The loading conditions for this system are shown in Figure 4-22. The tensile force 

was estimated as 8N; Fl was estimated to be 5N; and F2 was estimated as 2.5N. Due to the 

small loads and high rigidity of the plate used to house the tilt motor, the deflection of the 

plate was not analyzed. 

I r 

( F-'~~TB= 

Figure 4-22: Loading conditions for pan-tilt mechanism 

The following values, shown in Table 4-6, were calculated for this system. The results all 

confirmed that the design was safe under static loading 

Force 

Tensile 

Fl 

F2 

Associated Stress 

l.lMPa 

17.1MPa 

8.8MPa 

Table 4-6 Calculated loading conditions for pan-tilt mechanism 



57 

4.1.1.10 Dynamic analysis 

A dynamic analysis was performed on the SPS to determine the maximum torque and speed 

required to drive the x; y; and z-axes. This model considered the motion of the sensor 

independently, as a point to point motion along each axis. The loading conditions reflected to 

the drive motors of the system were due to inertial and friedonal loading. The most crucial 

aspect of the motion of the SPS was the sensor velocity in the y-direction. The reason for this 

was that the part had only a y-velocity component, and the greatest overall distance would 

have to be travelled by this axis. It was decided that the sensors' lowest maximum y-velocity 

be equal to a parts maximum y-velocity. The y-axis drive system was therefore constrained 

to be able to operate at a velocity of at least 20mm/s. The required motor speed was 

dependent on the lead of the screw and the mass that was being moved. Figure 4-23 

illustrates the schematic layout of the drive system for the x; y; and z-axes of the SPS. 

i y 
— — • 

motor Load 
f ) 

K ' 
k i 
Y**-! 
\ J 

Figure 4-23: Schematic of the drive system for the axes of the SPS 

Using the parameters of the leadscrew, with n being the number of threads per revolution 

and p being the pitch of the threaded bar, the lead of the system was then calculated using 

equation 4.24 [40]. 

/ = np (4.24) 

The relationship between the rotational and translational velocities was then calculated using 

equation 4.25 [40]: 

y=lN (4.25) 

where N was the rate of rotation measured in revolutions per second. Using a thread pitch 

of 3.5mm on a single-thread leadscrew, and a translational velocity of 20mm/s, the required 

maximum angular speed for the system was calculated to be approximately 5.7 revolutions 

per second (342 rpm). The selected motor had to be able to operate at a speed of 342 rpm. 

The torque required to drive of the system was a function of the inertial torque of the 

leadscrew, and the torque required to move the load. The accelerating torque required for 



58 

the system was described in terms of the total system inertia; the angular acceleration; and 

the load friction, using equation 4.26[40] 

acceleration s-n* f 

60? 
(4.26) 

The friction torque T, was dependent on the weight (N) of the load being driven, the pitch 

(p) of the leadscrew; the efficiency (e) of the leadscrew, and the coefficient of friction 

between the leadscrew and the nut (a.. This relationship was described using equation 

4.27 [40]. 

Tf = 
2%e 

(4.27) 

The total inertia was the sum of the inertias of the load and the leadscrew shown in equation 

4.28 and 4.29 [40]. 

j mioad 
J load ~ 

_P_ 
2% 

Ju 
mieadscrew^ 

(4.28) 

(4.29) 

The values for the inertial and frictional loading, along with the component properties for 

each axis, are shown in Table 4-7. The efficiency and friction coefficient of a leadscrew with 

lubrication was listed as 0.55 and 0.15 respectively [40]. Setting the minimum acceleration 

time to be half the minimum move distance of 30mm at maximum velocity (0.02m/s), this 

acceleration time was calculated to be approximately 0.75s. Using this time and a maximum 

required angular speed of 342 rpm, the following values were obtained when substituting in 

equations 4.27,4.28, and 4.29. 

x-axis 

y-axis 

z-axis 

Efficiency 

0.55 

0.55 

0.55 

Load(N) 

30 

24 

10 

T 
friction 

(Nm) 

4.56*10~3 

3.65*10 3 

8.68 *10-4 

Jload^-

m2) 

1.69*10"* 

1.35*10"6 

1.84*10"7 

^ leadscrew 

(w4) 

4.86*10"5 

4.86*10 5 

5 * 1 0 - 6 

Max. Torque 

required 

(Nm) 

6.96 *10"3 

6.04*10 3 

1*10"3 

Table 4-7: Calculated values of dynamic loading 



59 

4.1.1.11 Vibration analysis 

A vibration analysis was performed for the x and y axes to determine the significance of the 

deflection caused during motion of the camera. This deflection would have contributed to 

errors in the positioning of the sensor at the time of image acquisition. Energy methods were 

used to determine the amplitude of the deflection. The analysis was applicable to both the x 

and the y-axis operation, using velocity and static deflections as parameters. The systems 

were modelled as a mass on a beam, with the axis slider being the mass and the leadscrew as 

the beam. The dynamic deflections were then in the vertical direction. Using v as velocity 

and 5 as deflection, the energy of the system whilst in motion was modelled as the sum of 

the kinetic (due to motion) and potential (due to deflection) energies. This was given by 

equation 4.30 [41]. 

KE + PE=^L + ^ (4.30) 
2 2 

The energy present at the time that the slider was stopped was modelled using equation 4.31. 

k represented the stiffness of the system and X0 was used to represent the amplitude of the 

vibratioa 

KE + PE=k(X°+d)>2 (4-31) 
2 

Using the principle of conservation of energy [41], and taking the stiffness of the system to 

be k = [41], equations 4.30 and 4.31 were equated to yield equation 4.32. 
8 

Xo= W+g?>) s (4.32) 

Figure 4-24 shows the results from a simulation performed in Matlab which was used as a 

vibration analysis of the x-axis. The maximum value of the dynamic deflection was 

calculated to be approximately 0.83mm. This calculated value was the deflection that would 

have been experienced by the system if the stopping procedure was instantaneous. The value 

obtained was well within the allowable deflection tolerances. 



60 

? c o g 

.1 i5" 
E 
S3, 
*. o 

u» 

""X 
\ 

.... ' \ 

•'" TO 

'^ 

SSdsrw!aci!j{nVs) 
static deflection (m) 

Figure 4-24: Dynamic x-axis deflection simulation in Matlab 

A similar simulation was performed on the y-axis and the value for the dynamic deflection 

was calculated to be 0.72mm, which was also within the acceptable limit. 

The critical speed of a shaft can be defined as the speed of the shaft at which harmonic 

vibration occurs. This speed for the leadscrew drive shafts were calculated using equation 

4.33 [39]. 
(1 21*108)*c/ critical speed = — (4.33) 

The critical speed was calculated to be 7195 rpm. This was well above the operating capacity 

of the motors, and so no further investigation was performed regarding vibration effects. 



61 

4.1.2 Materials handling system 

The materials handling system was responsible for facilitating motion of the part during an 

inspection routine. The two subsystems designed for materials handling purposes were the 

PCS and CS. 

4.1.2.1 Conveyor system 

The conveyor system was required to move the part at a constant velocity during its motion 

through the machine. This motion had to be precise and consistent in order to synchronize 

the positioning of the sensor and the part at the required time intervals. The previous 

conveyor system used in the AVIS consisted of two parallel belts that were a fixed distance 

apart. One of the problems associated with this design was that often, the belts ran at slightly 

different speed and had different slipping characteristics. As a result, the part was rotated 

during its motion through the machine. This was unacceptable for the NCAIS as the 

unpredictable pose of the part could not be analytically solved as a function of the time. A 

new conveyor system was therefore required. 

The conveyor system for the NCAIS was required to provide constant and smooth motion of 

a part, in adherence to the production rate. Many factors need to be considered when 

designing a conveyor system. These factors include belt width; drive selection; conveyor 

profile; and belt selection. A schematic drawing of the designed conveyor system is shown in 

figure 4-25. 

workpiece 

\xW 

Figure 4-25: Schematic drawing on conveyor operation 

The belt width was determined by the maximum width of the part to be transported. Given a 

predefined part width of 200mm, the width of the belt was selected to be 250mm. The 

constructed conveyor system is shown in Figure 4-26. 



62 

Figure 4-26: Constructed conveyor system 

4.1.2.2 Part centralization system 

The operation of the machine assumes that the part enters in a predictable pose. This would 

usually be an impractical assumption since there is always bound to be a small rotation of the 

part with respect to the assumed orientation, as well as some translation offset. A predictable 

pose can be assumed with implementation of a part centralisation system. The main function 

of this system is to ensure that the centre-axis of the part aligns with the centre of the 

machine with respect to the direction of product flow (y- axis of global frame), whilst 

maintaining the pre-defined orientation of the part. This concept is shown in Figure 4-27 and 

Figure 4-28. If the part enters the machine at some random pose, the acquired images would 

significantly vary from the reference image and this would lead to a less reliable inspection 

process. 

Centre of 
part 

NCAIS 

Direction offlow of parts 
Centre of 
machine 

Figure 4-27. Undesired random pose of the part 



Centre of 
machine 

Figure 4-28: Desired predictable pose of the part 

There were a number of conceptual designs that were considered for this application. The 

constraints for the designs were the speed of the product on the conveyor, as well as the 

dimensions of the conveyor-machine belt interface. The design of the system had to also 

account for the centralisation of parts and part families, which would vary in dimensions. 

This meant that the system could not be a fixed mechanism. These constraints were placed in 

order to ensure that the part was accurately posed in time, before entering the machine. The 

conveyor width was 320mm, and so the part centralisation mechanism had to operate within 

a range of 0mm - 320mm, taking into account the maximum part size of 200mm. The first 

concept considered was a belt system that could be fixed between the conveyor rollers and 

the machine belt. This system would have three conveyor belts. One of the belts would 

operate in the direction of the flow of parts. This would place the part onto the machine. The 

other two belts would act perpendicularly to the direction of flow so as to position the part to 

run along the central axis of the machine. Rail guides, which could vary their distance apart 

(d), would then be used to ensure alignment of the centre of the part and the machine. The 

converging ends of the guides would allow for initial directing of the part to the centre of the 

conveyor. This concept is shown in Figure 4-29. The conveyors would each have 

independent drive systems. The most likely selection of components for the drive systems 

would be belt and pulley systems, driven by separate motors. Each guide would use 

independent leadscrew assemblies, driven by motors with encoders for adjusting the distance 

between them to match the dimension of the part as it enters the machine. 

Centre of 
part 

NCAIS 

Direction gf flow of parts 



64 

Direction ci t'iow 

of parts 

Figure 4-29: Conceptual design for Part Centralisation System 

Due to the spatial CTM cell, this concept could not be implemented due to the allowable 

distance between the conveyor and the machine being too small. Physical design of such a 

system would therefore be impractical. The next concept that was considered was to 

implement rail guides, which mounted onto the machine itself. These guides would be driven 

by independent drive systems, similar to the concept discussed above. The consequence of 

implementing this system would be that the alignment of the part would only begin once the 

part has entered the machine. This would have a negative impact on the machine design 

since the inspection routine would only be able to commence once the part is aligned, and 

aligning the part after it enters the machine would delay the inspection routine. This would 

significantly reduce the time for the inspection routine. The concept was therefore 

considered unsuitable for this application. 

The layout of the concept that was selected for the part centralisation system is shown below 

in Figure 4-30. In this design, the moveable rail guides are placed on the conveyor, between 

the barcode scanner and the machine. These guides would also protrude a small distance into 

the machine. The operation of this subsystem was such that when a part entered the section 

of the conveyor at which the guides are placed, the actuators moved the guides toward each 

other (by an equal distance). The dimensions of the part would determine the distance that 

the guides move. This motion would force the part to run along the centre axis of the 

conveyor, and hence along the centre of the machine. The curvature of the conveyor can be 

neglected at the conveyor-machine interface. The selected positioning of the guides would 

allow for the simultaneous orientation and alignment of the part prior to the part entering the 

machine. This allows for the inspection process to commence as soon as the part enters the 

machine, thereby reducing any unnecessary delays. The protrusion of the guides into the 



65 

machine ensured that the part would remain in the reference pose whilst entering the 

machine without any significant response to disturbance at the machine-conveyor interface. 

Figure 4-30: Constructed PCS 

4.2 Electrical and electronic hardware 

The electrical and electronic components of the system were responsible for performing the 

following tasks: 

• Actuation of mechanical components 

• Feedback for image acquisition; part identification; speed control; part tracking 

• Electric power supply 

• Communication 

• Providing suitable lighting conditions 

These tasks were all controlled by software in the host PC. 

4.2.1 Actuation 

4.2.1.1 Gantry and conveyor actuators 

Actuation systems are elements of control systems which effect some action on a device, 

based on a control input [18]. The x and y-axes of the gantry system required high speed and 

high torque operation. The constraints considered were that the motors could not be very 



66 

large as space was limited; the cost of the components must be kept to a minimum; and the 

actuators must be easy to control. Stepper motors were considered for selection as actuators; 

however the torque requirements at high speeds and the cost factors were not met by these 

motors. The method of actuation for the x and y axes of the gantry system, was DC motors. 

These motors were required to produce a torque of 6.96 Nmm and do so at a speed of 

342rpm. The motors selected were a subassembly of a cordless drill [42], with its 

specifications given in Appendix C. The subassembly consisted of a DC motor coupled to a 

planetary gearbox, for torque amplification. A planetary gear system consists of small gears 

(referred to as planets) rotating at a fixed radius about a large central gear (referred to as the 

sun gear); and an outer ring (referred to as the annulus or ring) which meshes with the planet 

teeth [43]. The operation of this system involves the stationary annulus being used as a 

support, as the planet gears are rotated by the motor shaft. The planet gears then rotate the 

sun gear, which is seen as the output from the subassembly. The advantage of these gearing 

systems is that a large gear reduction can be achieved in a small volume. This system is 

shown below in Figure 4-31. 

Figure 4-31: Diagram showing layout of planetary gearing system [43] 

Due to the consistent low speed motion required by the conveyor, a DC motor that was 

commonly used as windscreen wiper motors was selected. The reason for this selection was 

that the conveyor was not as spatially constrained as the gantry system, and the low speed-

high torque combination of this motor along with its size, resulted in very smooth and 

constant motion. 

4.2.1.2 Pan- tilt actuators 

The methods of actuation for the pan-tilt mechanism did not require translational motion due 

to a leadscrew. The rotation of the sensor was of utmost importance however, since any 

rotational errors would have lead to significant perspective errors in the acquired image. The 

actuator selected for the panning operation was a DC servo. DC servos are actuators that can 

be accurately positioned using a control signal, which are pulses that vary in length from 



67 

lms to 2ms, in a 20ms cycle. The position of the servo shaft will remain constant (between 0 

and 180 degrees), provided the input signal is constant. Any change in input will result in a 

change in the position of the shaft. These actuators consist of a dc motor; gears; control 

circuitry; and the casing for these components; shown in Figure 4-32. 

Figure 4-32: Components of a servo [45] 

The operation of a servo involves use of a potentiometer (in the control circuitry) to provide 

feedback about the rotation of the servo shaft. This value is compared to the input signal, and 

the motor stops when the error between the two values is approximately zero. The input 

signal is defined using Pulse Coded Modulation (PCM) [45], in which the length of the input 

pulse determines the rotation. The relationship between the input signal and the rotation can 

be considered linear in that a pulse length of 1.5ms will result in a position of 90 degrees, 

and a pulse length of 2ms will result in a rotation of 180 degrees. This is shown below in 

Figure 4-33. 

< 
\ 
i 

o 
8 
a 

> f f r 

j 1 i i 

r r r 

1 I i 

1.50 ms: Neutral 

1.25 ms: 0 degrees 

1.75 ms: 180 degrees 

\£jP 

i § i 

Figure 4-33: Rotation of the shaft as a function of the pulse length 

The advantages of servos include high torque available in a low volume; reasonable time 

response; and low cost. The motor selection for the tilt operation of the camera was a 

straightforward DC motor. The reason for this selection was that the tilt angle of the camera 



68 

was required to be at either 0 (for perpendicular image of side, front, and back faces) or 90 

(for image of top face) degrees. 

4.2.2 Sensor selection 

Sensors were required for feedback of the following parameters in the system: 

• Part identification 

• Part inspection 

• Motor speed 

4.2.2.1 Part identification sensors 

The requirements of the sensors for part identification system were: 

• Rapid response for part identification process 

• Must be able to provide information about the part pose 

• Must be low cost 

There are various types of part identification sensors; however the three most common 

sensors used for part identification are Radio Frequency Identification (RFID) sensors; 

barcode scanners; and imaging sensors (cameras). RFID involves remotely storing and 

retrieving data from parts, using devices RFID tags. These tags consist of an antenna, a 

capacitor, a microchip with a unique identification number, and sometimes a battery [46]. 

Communication is established between a reader and a tag, allowing for detection through 

non-metallic mediums at a distance. This form of identification is mainly used in security 

and livestock applications. 

Part identification using barcode scanners involves the line-of-sight reading of a barcode by 

a barcode reader. A barcode consists of specific symbols, defined as a series of bars [45]. 

Barcodes often vary in aspect ratio (ratio of height to width), and variations in each bar 

denotes a unique alphanumeric character. Each barcode contains a fixed character to denote 

the starting and ending of the code. A barcode scanner consists of photo sensors which are 

able to detect the height and width of each bar, along with the spacing of that bar relative to 



69 

the barcode. The most common industrial type of scanner is the Charge Coupled Device 

(CCD) barcode scanner. This imaging sensor converts the detected signals into electrical 

pulses within milliseconds [48]. 

Cameras can be used for part identification, but the required complexity and processing time 

required for identifying parts that vary only slightly in dimension and geometry is too 

significant a factor when compared to RFID and barcode scanning methods. Table 4-8 lists 

the comparison of barcode scanning systems and RFID systems [45]. 

Barcode scanning systems 

Very low cost 

Barcode must be in line of sight of reader 

Distance between barcode and reader is low 

(averaging approximately 20cm) 

Barcodes are large and sensitive to aspect ratios 

Subject to degradation through handling 

Able to carry fixed limited amount of 

information 

RFID systems 

RFID tags are significantly more 

expensive than barcodes 

Can read tags even with obstructions 

Read distance is high 

(averaging 2m) 

Tags are small and can store varying 

amounts of data 

Robust against handing 

Tag data can be updated 

Table 4-8: Comparison between Barcode scanning systems and RFID systems 

The NCAIS operated on the assumption of a predictable part pose. Barcode scanning 

systems were able to provide this due to their line-of-sight operation. This attribute, coupled 

with the low cost involved with barcode scanners, led to the selection of barcode scanning 

sensors as the method of part identification. The barcode scanner selected was a PSC VS 

1200 barcode scanner. This barcode scanner was designed as a vertical scanner with 

capabilities of dense scan patterns for optimal reading of damaged or poorly printed barcode 

labels [49]. Communication to this device via a computer is achieved using the serial 

communications port. The specifications for this device are shown in Appendix C. 

4.2.2.2 Part inspection sensors 

The most appropriate sensors for part inspection were image sensors (cameras). Image 

sensors are responsible for measuring and recording incident light and converting those 



70 

recorded values into images. These sensors consist of various materials which generate a 

charge relative to the number of light photons striking them. The quality of the acquired 

image is essential to the operation of the vision system, and so selection of the appropriate 

sensor is crucial. An imaging sensor is divided into arrays of small areas called photosites, 

which convert measured light into a discrete value [22]. Images are considered arrays of 

these measured values. Many sensor characteristics need to be considered prior to selecting 

an imaging sensor. These characteristics include sensor resolution; aspect ratios; sensitivity; 

colour depth; fill rate; and frame rate. 

Sensor resolution can be considered as the number of pixels available to describe an image. 

This description is also related to the Field Of View (FOV) of the sensor. Higher resolutions 

lead to higher amounts of information that require processing. The advantage of high 

resolution sensors is that more detailed images can be acquired. The aspect ratio of a sensor 

is defined as the number of pixels available to describe the height of an image, to the number 

of pixels available to describe the width of that image. Typical sensor aspect ratios lie 

between 1 and 1.5 [50]. The colour depth of an imaging sensor is the number of bits used by 

that sensor to distinguish between colours in an image. The sensitivity of a sensor is 

described by the speed at which that sensor is able to convert light into an image. Higher 

sensitivities are more appropriate in high speed environments. The fill rate is defined as the 

percentage of pixel area that is used for converting light into a voltage. The higher the fill 

rate, the more accurate and less susceptible a sensor is to noise. The frame rate of a sensor is 

the time allowed for light to enter the sensor's photosites, before the sensor shutter closes. 

The higher the frame rate, the more sensitive the sensor needs to be in order to produce an 

image. High frame rates are used to produce sharper images which are less susceptible to 

blurring. 

The two most common types of imaging sensors available are Charge-Coupled Devices 

(CCDs) and Complimentary Metal Oxide Sensors (CMOS). The difference between these 

sensors is due to the way the charge is read out from the imaging sensor, resulting in 

different image formation processes. A CCD converts light into an image row by row of 

photosites, once the camera shutter is closed. Initially, the charges from the first row of 

pixels are transferred to a device called the read out register. This register is used for 

transferring data from the photosites to a signal amplifier, and then to an analogue to digital 

converter (usually a frame grabber). Once the data in the register has been read, the register 

is emptied and the values from the second row of photosites are stored in the register. The 



71 

transfer of data is sequential and so each row is processed individually, however these values 

are eventually coupled to form the image data. These sensors are able to produce high 

quality, low noise images since they have characteristically high fill factors, and good pixel-

to-pixel uniformity. Due to their complexity of design and the hardware required, 

implementing these sensors is generally associated with high capital costs. The operation of 

this type of sensor is shown in Figure 4-34 [22]. 

CCD sensor 

Figure 4-34: Operation of CCD imaging sensor [22] 

CMOS sensors are increasing in popularity due to their low-cost and wide range of 

availability. These sensors have an amplifier at each photosite, and so each photosite is read 

individually as opposed to contiguous rows of photosites. Due to use of CMOS technology 

[22], additional control circuitry is generally added to these sensor chips, allowing for on­

board digitization of images and light compensation circuitry. The implementation of 

amplifiers at each photosite decreases the fill factor of the sensor, making the sensor 

inappropriate under low lighting conditions. This is the reason for implementing light 

compensation circuitry. The heat generated at each photosite causes sensor noise which 

decreases the quality of the acquired image. These sensors have a low sensitivity and 

variations in photosite performance (due to methods of manufacture [50]), and this can result 

in noisy images being acquired. These sensors are generally small in size with high 

resolutions, allowing for use in intricate applications. The layout of a typical CMOS imaging 

sensor is shown in Figure 4-3 5 [22]. 



72 

t> 

0 
o 
t> 
o 
t> 
o 
t> 
t> 

> 

i> i> • > > 
> ^^> ^ 
_fe 
i> 
i> 
<> 
0 
t> 
> 
t> 

_£ 1> i> 
< > - • > { > • 

<> 
a 

•r> t> 
o & 

P- H> i> 

*1 oi ^ 
^ O {> 

_fcl 01 o 

o i> *> 1> t> 
> i> t - i> i> 
t> t> *> 1> {> 

€> t> i>- -t> t> 
> 
t> 
o 
t> 
> 
o 

>_£ 
fr t> 
i> t> 
f> 01 

•0 

£• 

t> 
<> 

•> i> 

> i> 
> <> i> {> 

{> o t> t> 

C M O S active pixel sensor 

Figure 4-35: Layout of CMOS imaging sensor [22] 

Table 4-9 lists the differences between CCD and CMOS sensors. 

Imaging Sensor Type 

CCD 

CMOS 

Advantages 

High quality, low noise 

pictures 

Good pixel-to-pixel 

uniformity 

High sensitivity 

High fill factor 

Low power consumption 

Additional control circuitry 

can be added onto CMOS 

chip 

Random pixel readout 

capability 

Low capital costs 

Small in size 

Disadvantages 

High power consumption 

Requires external hardware 

(frame grabbers) 

High complexity of design 

High capital cost 

Susceptible to noise 

Low sensitivity 

Low fill factor 

Table 4-9: Differences between CMOS and CCD imaging sensors 

The sensor required for the NCAIS was required to be: 

• Low cost 

• Small due to spatial constraints 

• Low-weight 



74 

disturbance disturbance 

REFERENCE 
or OUTPUT 

I — • 

Figure 4-36: (b) Closed loop control components [51] 

The required motion for each axis of the gantry structure was based on a constant spatial 

velocity to achieve the desired distance within the allocated time. Each axis was required to 

operate at different velocities for every point to point move. Operating different velocities 

meant that speed control was required, and this was achieved using Pulse Width Modulation 

(PWM) signals. The fact that the system was well defined in terms of its motion, allowed for 

the use of open loop control. The hardware for this motion control system consisted of 

motors; motor drivers; a power source, and a controller. The controller selected for 

generating the PWM signals was the ATMEGA32L microcontroller. This CMOS 

microcontroller is a high performance, low power; 8 bit controller based on enhanced AVR 

RISC (reduced instruction set computer) architecture [52]. The programming memory 

available for this chip was 32 kilobytes (KB), and serial communication to the computer was 

enabled via the Universally Synchronous/Asynchronous Receiver Transmitter (USART). 

This serial communication was required for receiving commands from the host PC and 

transmitting signals back to the host PC to indicate completion of the command. The 

microcontroller was equipped with four PWM outputs which meant that a single 

microcontroller was sufficient for speed control of the gantry system. 

The actual speed control of the system was achieved by testing each axis of the machine 

under various pulse lengths and obtaining the characteristic information of pulse length 

versus speed. To prevent overshoot, the PWM signal was stopped before the total time 

required. PWM signals were generated at frequencies of 10kHz. PWM motor drivers were 

purchased from the electrical engineering department at the university. The circuit layout and 

diagrams are shown in Figure 4-37 (a) and (b). These motor drivers consisted of transistors 

and relays for facilitating fast PWM switching up to a frequency of 20kHz, with capacitors 

for smoothing the output signal to the motors. 

DESIRED 
REFERENCE 
or INPUT T 

REFERENCE 
ERROR SJGN.iL 

Controller Plant 

ACTUAL REFEREiWE 
or FEEDBACK 

Reference Sensor * 

http://SJGN.iL


75 

^ 
p r 

Figure 4-37(a): PWM motor driver Figure 4-37 (b) PWM motor driver components 

The layout of this system showing the components and signals is shown in Figure 4-38. The 

reference rotational speed was inputted from higher level operating software. 

Desired 

Voltage 
regulator 

12V 

Figure 4-38: Layout of gantry system motor control circuit 

The pan motor was also operated using a PWM signal to the input pins of the servo. The 

built-in control circuitry of the servo compared the actual position to the desired position, 

and executed the necessary control actions. The tilt motor was operated using a simple relay 

circuit and a limit switch for the two reference angles (0 and 90 degrees). 



76 

4.2.4 Lighting system 

Suitable lighting conditions are essential to the operation of the image acquisition process. 

The lighting source determines the quality of the reflected light received by the sensor, and 

hence affects the quality of the acquired image. It is therefore necessary to determine an 

appropriate method of lighting when considering implementation of a vision system. 

4.2.4.1 Nature of light 

Light can be considered to have a dual nature; namely a transverse wave (electromagnetic 

radiation) and a particle nature (photons). The wave nature of light is used to explain the 

propagation of light through various mediums. The particle nature of light is used when 

explaining the interaction of light and matter, resulting in a change of energy (as in an 

imaging sensor). Lighting is crucial to image acquisition process as this allows for high 

contrasts between features of interest and the backgrounds in images. Reflected light 

(received by the imaging sensor) is a function of the colour of the incident light; the colour 

of the part; and the geometry of the part. White light contains a continuum of frequencies 

[53]. Since colour filtering can be performed in software, white light was considered most 

suited for general lighting conditions of the NCAIS. 

4.2.4.2 Lighting methods 

Methods of lighting are dependant upon the lighting source and lighting type. Common 

lighting sources, used in vision systems, include fluorescent lamps; Light Emitting Diodes 

(LEDs); and quartz halogen. A comparison of these lighting sources is shown in Figure 4-39. 

For information on the detailed operation of these sources, see [53]. 

Life Expectancy 

Cost Effectiveness (Mr) 

Heat output 

Stability 

Intensity 

Application Flexibility 

• LED 
• Quartz Halogen 
D Fluorescent 

Figure 4-39: Comparison of three common machine vision lighting sources [53] 



77 

The purchased USB camera, for use as the imaging sensor of the NCAIS, had an on-board 

light differencing compensation circuit. This feature was used to compensate for slight 

variations in lighting conditions. The compensation of variations in lighting conditions led to 

an inaccurate image acquisition process. This inaccuracy, along with the design objectives, 

set the main requirements of the lighting system to be consistent; low-cost in operation; and 

have long life-expectancy. Fluorescent lamps operate at a frequency of 50Hz. This frequency 

is significantly larger than the frame rates allowed by USB cameras (12-24 frames per 

second), and so the flickers produced by fluorescent light sources can be detected by USB 

cameras. This source of lighting was therefore deemed unsuitable for use in the NCAIS, as 

the image acquisition process would have been inconsistent. From Figure 4-39, it was 

deduced that quartz halogen light sources are generally expensive when compared to the 

other sources, and do not have a very long life cycle. These factors, coupled with the stability 

characteristics, makes quartz halogen lighting sources unsuitable for the lighting system of 

the NCAIS. LEDs have a high life cycle; are low cost; and most importantly, offer very 

stable and consistent lighting. These characteristics make LEDs the most suitable lighting 

source for the NCAIS, and so use of only these sources of light will be further discussed 

Lighting types can be classified by the shape of the light source. The common shapes of 

LED lighting types are ring lights; bar lights; back lights; and spot lights. Ring-shaped 

lighting types are generally placed around the imaging sensor. This form of lighting type 

offers uniform light intensity over the entire ring, and can be used to highlight a circular area 

of the ROI that the imaging sensor is focusing upon. Bar lights consist of an array of LEDs 

that form a linear or bar shape. This setup allows for uniform lighting in the shape of a 

rectangular area. The lengths of these arrays range from 20cm-200cm [53]. Spotlights 

contain high intensity LEDs that are used to focus light onto a specific circular region. This 

type of lighting structure differs from ring type LEDs in that the light is not uniform around 

the sensor; and the light is more concentrated and focused on smaller regions than with ring 

lights. Backlighting systems differ from the other lighting types in that this type of lighting 

involves placing the light source behind the object. This type of lighting usually consists of a 

matrix of LEDs, and is used for inspecting transparent objects, and obtaining single-planed 

geometric profiles of reflective parts. Figure 4-40 (a) shows typical ring light; bar light; and 

spot light shapes. Figure 4-40 (b) shows the operation of a backlighting system. 



78 

Figure 4-40 (a): Typical LED lighting arrangements [53] Figure 4-40(b): Backlighting system in operation [53] 

4.2.4.3 Lighting position 

The image of the surface of an object is greatly influenced by the position of the lighting 

source. The reason for this is that the light received by the imaging sensor is a function of the 

angle of the incident light, as well as the orientation of the camera relative to the reflected 

light. A significant factor when considering of angle of illumination is the glare caused by 

reflective surfaces. Glare can be defined as a relatively extreme light intensity level (much 

higher than the average intensity level), focused at a particular region in an image. This leads 

to inaccurate images being acquired. Reflected light (as perceived by the camera) can be 

divided into regular and diffuse reflections. Regular reflections consist of light waves that 

are reflected at the same angle as the source light; and are intensified on glossy areas 

(smooth, highly reflective glassy surfaces). Diffuse reflections consist of light waves that 

diffuse in random directions, and are intensified on non-glossy areas. In order to reduce the 

glare in an image, focus needs to be placed on capturing diffuse light waves. Figure4-41 (a) 

and (b) show the different sensor positions for reducing and increasing glare during image 

acquisition. 

light aourcQ 

Regular 
reflected 
light 

light source 
Diffuse s-^f camera 
reflected / > 
light Ay 

'/. Regular 
- ' reflected 

light 

Figure 4-41(a): Optimal sensor positioning 

for reducing glare [53] 

Figure 4-41(b): Sensor positioning that increases glare [53) 



79 

4.2.4.4 Lighting design 

The advantage of ring lights is that the lighting conditions are consistent as perceived by the 

imaging sensor. The disadvantage of these lighting types is that glare is experienced when 

obtaining an image at a close distance at a uniform intensity. This leads to inaccuracies in the 

images acquired. This made the use of ring light LED structures unsuitable for the NCAIS. 

Backlighting was not a desirable lighting type as the conveyor and parts inspected were not 

transparent. Spotlights were considered, however another positioning system would have 

been required for positioning this light source, which would have complicated the kinematic 

model and SPS design. White LED arrays were selected for the lighting system design. 

These lights were placed on each corner the NCAIS frame, at the angle of the frames, as 

illustrated in Figure 4-42. The direction of the lighting was focused toward a rectangular area 

at the centre of the apparatus. Eight LEDs per array allowed for an intensity value of 800 

lumens per array. This value was doubled when considering image acquisition of a face, 

since two arrays were active. 

Figure 4-42: Top view of NCAIS showing direction of lighting 

4.2.5 System layout 

A host processor was used to perform overall process supervision, with motion controllers 

performing low-level control operations. A single board computer could have been used as a 

dedicated host processor; however a desktop PC was used due to the availability of this 

hardware by the university. Serial communication between the PC and the microcontroller 

was facilitated by using a MAX232 level shifter. The function of the MAX232 chip is to 

perform signal conditioning operations on the RS232 output from the PC and adapt the 



80 

signal into TTL signals as used by the microcontroller. Communication between the host PC 

and the imaging sensor was facilitated via the USB communications port as no frame 

grabber was required. The output from the barcode scanner was via the RS232 serial 

communications protocol. Due to the PC having only one RS232 port, it was decided to 

purchase a USB to serial converter for signal conditioning purposes. 

4.3 Software design 

The system software was divided into high and low level operations. High level operations 

involved general system management. This level of software was used for coordinating and 

communicating with other levels of software for sequencing, processing, and decision 

making purposes. Low level software included software for motor control; image 

acquisition, and image processing. Different types of software were required for the 

operation of the NCAIS. Matlab V7 was selected for the general management of the system. 

OpenCV was selected for image acquisition and processing purposes. Low level motor 

control was performed using the ATMEGA32 microcontroller and CodeVision-AVR C 

compiler software. The software version of the kinematic model was written in C++ and 

complied with Borland C++ Builder. 

4.3.1 Matlab software 

The requirements of the system's high level software were to: 

• Provide a system-user interface which can provide real-time user feedback during 

system operation 

• Perform process control of system state, and system sequencing and operation 

• Execute file handling operations 

• Determine whether an inspected part was acceptable or not 

The system-user interface was required to be simple to implement, and easy to use. The most 

practical user-friendly software interfaces are Graphical User Interfaces (GUIs). MatlabV7 

allows for use of its Graphical User Interface Development Environment (GUIDE). This 

development environment makes use of object orientated programming techniques in which 

initializing system code is automatically generated for objects as an object is selected, which 

simplifies the GUI development. 



81 

The GUIs provided highly customizable options and settings for inspection routines, to the 

user. Using these GUIs, the desired inspection routine parameters were set by the user. These 

parameters included part family; part dimensions; conveyor speed; ROI; and required types 

of inspection. The GUI also allowed the user to repeat an inspection routine; edit an existing 

inspection routine; and perform an emergency stop of the system operation. The main GUI 

for the system is shown in Figure 4-43. 

Figure 4-43: Layout of the main GUI for the system 

The operation of the GUI involved calling of m-files that were written for performing 

specific tasks. These tasks included reading data from the barcode scanner; perform 

read/write file handling operations; system calibration; and decision making algorithms. The 

advantage of selecting MATLAB for use as the main software was that this software is able 

to access utility programs written in low-level languages. A utility program is defined as an 

independent program that produces an output on activation. Other high level languages such 

as Visual Basic (VB) are not able to interface with low-level languages as easily as 

MATLAB. 

M-files were written to access and write to existing text files in the system database. A file 

convention was used to develop a standardized data structure for data transfer between 

MATLAB and the other softwares. Files that were stored included golden and background 

images of ROI as well as the data file which stored the routine parameters. The barcode 

characters of parts inspected were intended to be unique, and so these characters were used 

for identifying the parts inspected. Inspection could only be conducted on a part if the 



82 

relevant file was located in the system database. Table 4-10 summarizes the information that 

was required by the system to register a new routine. 

Part parameter 

Bar code/part identifier 

Part family 

Part dimensions 

Conveyor speed 

Number of ROI 

ROI positions 

Types of inspection 

Inspection thresholds 

Data type 

String (alpha numeric characters) 

Integer (one of three part families) 

Integer 

Integer 

Integer 

Integer 

Integer 

Integer 

Table 4-10 Summary of new part parameters 

The kinematic model developed in C was used to output the sequence of actuator motions to 

MATLAB. The code for this model is shown in Appendix D. The sequencing of the system 

operation was performed by using special timer/clock functions in MATLAB. Outputs to the 

microcontroller software were used for sequencing the motion of each Utility file for image 

processing and acquisition algorithms were written using OpenCV, and these files were 

referenced by MATLAB whilst the inspection routine occurred. Based on the output from 

these utility programs, a decision was then made in MATLAB as to whether the part was 

acceptable or not. 

4.3.2 OpenCV Software 

OpenCV is an open source computer vision software libraries developed by Intel [54]. This 

software is based on the C++ programming language. The intended applications of this 

software include environments in which dynamic image processing with rapid response was 

required. Other software packages include image processing toolboxes. Popular software 

packages include Roborealm [55]; MATLAB; ERSP Vision; and Mathematica. OpenCV was 

most applicable for performing image processing operations during inspection, as this 

software was easily adaptable and operated in real time. 

The requirements of this low-level software were to: 

• Perform image acquisition when required by MATLAB 



83 

• Perform necessary image processing techniques as required by MATLAB 

• Compare test and reference images and output result to MATLAB 

Image acquisition was performed using the opencv.capture function. Due to the intended 

alignment of the centre of the ROI with the centre of the acquired image, some excess 

background information would have also been present in the image. This excess information 

would have increased the processing time, leading to inefficiencies in system operation. To 

minimize the effect of unnecessary background information in images, the acquired images 

were cropped. Cropping is a process wherein the outer rows and columns of an image are 

neglected, and the resulting image is a smaller subset of the acquired image. Cropped images 

contain less excess information and hence require less processing time than the original 

acquired images. Image enhancement and analysis operations were then performed on the 

acquired images to obtain data from the images for storage and comparison purposes. Once 

comparison between two images occurred, the output was then stored and accessed by 

MATLAB for decision making purposes. A flowchart of the sequence of operation for the 

OpenCV software, with the emphasised process for image analysis of test and reference 

parts, is shown in Figure 4-44. 



84 

Feature extraction for 
test part 

Read image of 
background 

' ' 

Read image of test part 
in background 

' ' 

Extract test part from 
background 

r 

Start 

Input from 
MATLAB 

Acquire image 

Crop image 

Image 
enhancement 

Image analysis 

Store image to file 

Read images from 
file and compare 

Output results of 
comparison to 

MATLAB 

End 

Feature extraction for 
reference part 

Read image of 
background 

" 

Read image of 
reference part in 

background 

i ' 

Extract reference part 
from background 

Figure 4-44: Sequence of operations required by the OpenCV software 



85 

4.3.2.1 Image data structure 

Prior to detailing the actual operations of the utility programs, the method of defining the 

image structure used for the process needs to be established. The structure, used for 

mathematical representation of an image, consisted of three spatially discrete scalar 

functions of two independent variables. This representation was used to represent the image 

on each of the three primary colour channels; namely Red, Green, and Blue (RGB). The 

inspection process used true-colour image representation; in that each of the three channels 

supported 8-bit data structures (0-255 shades of a single colour). The intensity value of each 

channel was then represented as individual functions of the form: 

Ir(x,y)=r 

Ig{x,y)=g 

Ib(x,y) = b 

where I h are each 2-D representations of the intensities on the RGB channels 

respectively. The number of pixels in an image are used to define the size of that image. The 

representation of the size of an image for inspections was defined to be X in the x dimension, 

and Y in the y dimension. This placed the following mathematical constraints on the images 

of the system. 

{r,g,b e [0,255];* e [0,X-1];y e [0,Y-\];x,y,r,g,b e Z) 

4.3.2.2 Image enhancement techniques 

Image enhancement techniques are used for highlighting features of interest in an image; and 

to transform data that is obscured in some way in order to allow for a more reliable and 

efficient image analysis. Highlighting features of interest are particularly useful when 

considering that the inspection routines of the NCAIS were based on images of parts in a 

background The isolation of the part from the background is essential for inspection 

purposes. This isolation was achieved by highlighting the pixels representing the part in the 

image. Obscured data may originate when poor image quality is achieved. The utility 

programs written for employing image enhancement techniques were image deconvolution; 

colour/grey-scale transforms; and histogram equalization. 



86 

4.3.2.2 (a) Image deconvolution 

Image deconvolution is an operation commonly used to reconstruct or recover an image that 

has been degraded or blurred. Blurring in images is caused by relative motion during image 

acquisition; unsuitable lens focus; and unsuitable lighting conditions [56]. Due to relative 

motion between the sensor and the part, the images acquired during inspection routines were 

prone to blurring. This led to increased possibilities of inaccuracies in inspection routines, 

and therefore needed to be accommodated. 

Blurred images can be modelled in the spatial domain as the convolution of the degradation 

system with additive noise. This model is represented by equation 4.34 [16]. 

g = H*f + n (4.34) 

where g is the blurred image; H is the distortion operator also referred to as the Point Spread 

Function (PSF); f is the desired image that has not been blurred; and n is the additive noise 

introduced during the image acquisition process [16]. The PSF describes the degree to which 

the vision system spreads a point of light in the spatial domain. The deconvolution of the 

blurred image with the PSF results in a deblurred image. For a more detailed explanation of 

the deconvolution process, see [56]. 

4.3.2.2 (b) Colour to Grey-scale conversion 

In order to accurately compare two images, colour images are often converted to normalized 

grey-scale images. This conversion is performed using the equation 4.35 [16]. The intensity 

of each colour channel is considered as an independent value of a three dimensional matrix. 

The resulting grey-scale image then consists of one 8-bit channel. 



87 

4.3.2.2 (c) Histogram equalization 

Histograms form the basis of numerous spatial domain processing techniques. Image 

histograms are used to characterize the distribution of the intensity values in an image. These 

histograms are represented as discrete functions of the form 

Krk) = nk 

where rk is the kih discrete intensity level; and nk is the number of pixels in the image having 

an intensity value of r (. An 8-bit grey-scale image histogram involves representing the 

distribution of 256 levels over the image, with the index of the values ranging from 0-255. 

The numbers of pixels that have a certain intensity value are stored in an index counter. 

Having an image with high contrasts allows for easier and more reliable distinguishing 

between the features of interest and the background. A method of increasing the overall 

contrast in an image is histogram equalization. Histogram equalization is a statistical 

operation in which the intensity values are normalized and redistributed across the range of 

intensity values possible. The effect of histogram equalization on a grey-scale image is given 

by: 

f _ n \yold ~ "min / 

' O — C 
max min 

where G: is the grey-scale value of pixel i; R is the range of possible greyscale values 

(usually 256); Gold is the previous grey-scale value of pixel i; and G ^ a n d G^ represent 

the maximum and minimum grey-scale value in the original image. Similar operations can 

be performed on each channel (RGB) for obtaining higher contrast in colour images. The 

OpenCV function cvCreateHist was used to read an image and then create the histogram of 

that image. The function cvNormalizeHist was used to perform histogram equalization 

on the histogram, and create a new normalized image which was stored in the same location 

as the original image. 

4.3.2.3 Image analysis techniques 

The software algorithms for image analysis were required to generate quantitative 

information about the image data produced by the image acquisition and enhancement 

processes. The main focus of the algorithms were to compute the statistical differences 

between the images of the reference part and the test part; and then quantify and output these 

file:///yold


88 

differences to MATLAB. Prior to comparing the test and reference part attributes, these parts 

needed to be isolated from the background and aligned with each other to compute the 

differences. The isolation of the part from its background was achieved by feature 

extraction, and alignment of the test and reference parts was achieved by performing image 

registration. Image registration is the process of transformation of the test image into the 

reference image's scale, translational, and rotational spaces. The operations used for image 

registration were Log-Polar and Fourier correlation transforms. 

4.3.2.3 (a) Feature extraction 

The goal of this process was to subtract the background from the part. Following image 

acquisition and enhancement, a difference image computation was performed. For feature 

extraction purposes, the difference between two images may be defined as the absolute 

pixel-wise difference in the normalized greyscale for colour-invariant comparisons; and 

grey-scale of the absolute pixel-wise difference in each colour channel for col our-variant 

comparisons (calculated in a manner similar to actual grey-scale image G(x,y)). The 

mathematical representation of this differencing between two pixels with identical 

coordinates is represented by: 

£W,g,*)(l,2) (*>>>) = \IKG,r,g,b)(x>y)-l2(G,r,g,b)(X,y)\ 

Based on this definition, the absolute pixel-wise difference metric for the entire image was 

defined as an indicator of the degree of direct correlation between two images. This image 

was given by equation 4.36 [16], with X and Y being the number of pixels in the x and y 

dimensions of the image. 

Au=(X*YyX£^D(G^mj)(x,y) (4-36) 

This difference yielded the isolation of the part from the background; however this process 

was prone to errors in that the background in the two images may have been misaligned. 

Log-polar and Fourier transforms were then implemented for improving system accuracy. 

4.3.2.3 (b) Log-Polar transform 

Image registration must be implemented when accounting for any inconsistencies in the 

image acquisition process. These inconsistencies may be present due to accumulated errors 



in the SPS, and initialization delays in system software. In the case of comparing two images 

that involve moving systems, rotational variances must be accounted for. The log-polar 

transform is a mathematical one-to-one mapping in 2D Cartesian space, used for eliminating 

rotational variances between two images of the same part. This transform is represented by. 

(r,a) <-> (x,y) 

r = log -J(x-xeY+{y-ycY 

a=tan-{i^4" 
{x-xc) 

where xcand .y^are the coordinates of the centre of the transformation. The centre of the 

transformation was set to be the centre of the image since the image resolution is best 

preserved at this point (due to convex lenses in the camera). The function of this transform is 

to convert rotation about the centre point as a translation along the a direction, and scaling 

about the centre point as a translation along the r direction. Using this transform, any 

scaling and rotational variances were converted into 2D translational errors. The cvLogPolar 

function was used for reading and transforming images; and then storing the transformed 

images. The code for this utility is shown in Appendix D. 

4.3.2.3 (c) Fourier correlation 

The second requirement of the registration process was to account for any translational 

inconsistencies between the reference and test images. Spectral analysis was the 

implemented method of eliminating errors in the log-polar transformed images. Images were 

transformed into the frequency domain using Fourier transforms. The Discrete Fourier 

Transform (DFT) of an image f(x,y) of size XY is defined below [16]. 

1 x-i y-i 
1 X - 1 V< r, s -j2n(uxlX+vylY) F(U,V)=—-S Y.f^yy 

X* 'x=0 y=0 

Similarly, given F\u,v) the inverse DFT of an image can be used to obtain f(x,y). The 

inverse DFT of an image is then given by: 

/M=Z E/^vy 0j2n(uxlX+vy/Y) 

v=0 v=0 



90 

These transforms can be calculated using one of many Fast Fourier Transform (FFT) 

algorithms available, which reduce the computational complexity of the transform. Although 

the Fourier transform operates on complex functions, the images used consisted of only real 

numbers, and hence by symmetry properties of the Fourier transform, the resulting inverses 

of transformed images are guaranteed to return purely real images. 

The translational shift between two images was required to be calculated very quickly. Given 

two similar images, the amount of translational shift between them may be determined using 

the Fourier correlation theorem. This theorem states that the Fourier transform of a 

correlation integral is equal to the product of the complex conjugate of the Fourier transform 

of the first function (F*) and the Fourier transform of the second function (G) [16]. This is 

represented by the following equation: 

C(f.g) = F*.G 

The only difference between this and the convolution theorem [16] is in the presence of a 

complex conjugate, which reverses the phase and corresponds to the inversion of the 

argument u-x. Figure 4-45 illustrates that if the two functions f and g contain similar 

features, but at a different position, the correlation function will have a large value at a 

vector corresponding to the shift in the position of the feature. 

y 

j* 
4 

X 

Figure 4-45: Resulting vector due to a Fourier correlation operation [16] 

Using the obtained information from this operation, the images resulting from the log-polar 

transforms were aligned to eliminate any translational differences. The code for the utility 

program that performed this operation can be found in Appendix D. 



91 

4.3.2.3 (d) Image comparison 

Following the feature extraction, log-polar transformation, and Fourier correlation 

operations; the inverse log-polar transform was required for returning the image back to its 

original form (Cartesian coordinates). Equation 4.36 was then used to perform a pixel-wise 

differencing operation to quantify the statistical difference between the reference and the test 

parts. Following the differencing algorithm, the resulting difference image was converted 

into a binary image to ensure that the differences were significant enough. This was 

constrained by a minimum preset threshold value of 5%. Following the binary 

transformation, it was possible that the areas showing differences in the images (difference 

regions) were due to noise in the system. To account for this problem, only differences 

higher than a certain number of pixels (5% or more of total number of pixels) were 

considered when computing the differences between the images. The utility program for 

comparing two images is shown in Appendix D. 

4.3.3 Microcontroller software 

The software package used for programming the microcontroller was CodeVision AVR, 

which offers the advantage of CodeWizard software that automatically generates the 

initializing code for the microcontroller as requested. This software is aimed solely for use 

on AVR microcontrollers programmed by the STK500 kit. The user simply enters the 

specific chip being used, the clock setting, the input/output port configuration, and the timer 

configurations; and the corresponding code is automatically generated and saved in a source 

file. The code implemented onto the microcontroller for motion control is shown in 

Appendix D. 

4.3.4 Simulation of Kinematic model 

A simulation of the kinematic model was written in C++. This model was designed to 

convert the ROI passed by MATLAB into moving coordinates. A sequence of the possible 

paths was then generated. Based on the convey speed input from MATLAB, the model 

calculated the sensor and part trajectories and checked for any possible collisions. Any 

collision-involved paths were rejected and the shortest possible path was selected as the 

optimal path. This sequence of motions was then returned to MATLAB which then 

performed the sequencing of this operation whilst communicating with the microcontroller 



92 

software. An animation of the optimal path was also performed. The code for this simulation 

is shown in Appendix D. 

4.4 Summary of chapter 4 

This chapter serves to highlight the core elements of Mechatronic engineering for various 

subsystems design. The mechanical components were designed base on information 

provided in the mechanical design section. The electrical components were selected and 

designed considering mechanical components. Software was developed based on the 

requirements of the other two core elements. System analysis was performed both 

analytically and using simulations. 



93 

5. ASSEMBLY 

The assembly phase of the project involved the physical integration of the subsystems to 

constitute the entire system. The assembly, along with the signal analysis of each subsystem, 

was performed prior to system integration. 

5.1 Part Identification System 

The PIS comprised of the barcode scanner linked up to the computer. No mechanical design 

was involved with this subsystem, apart from mounting the scanner onto the conveyor using 

the supplied bracket. The sequence of signal flow from the barcode scanner to the PC is 

shown in Figure 5-1. 

Figure 5-1: Signal flow in assembled PIS 

5.2 Sensor Positioning System 

The finalised constructed SPS consisted of the mechanical members used for positioning the 

sensor, the circuitry required for electronic control; the actuators (motors); and the software 

module for operating the different aspects of the subsystem. The component layout, 

including the sequence of the control signal of the SPS is shown in Figure 5-2. 



94 

Output from 
MATLAB 

j USB 

USB/Serial 
converter 

1 
MAX 
232 

1 , ' m 

5V power 
supply 

| PWM 

CodeVision 
AVR 

^ ^ B • ' 
' B 

t 

i 

Pan/Tilt 
Motors 

Gantry 
motors 

i 

12 V power 
supply 

Figure 5-2: Component layout showing signal flow of assembled SPS 

5.3 Materials Handling System 

The assembled MHS included an operating conveyor system and part centralisation system. 

The layout for this system was almost identical to the layout shown in Figure 5-2, with the 

exception of conveyor and PCS motors as opposed to gantry and pan-tilt motors. 

5.4 Vision System 

The layout of the assembled VS consisted of OpenCV and MATLAB software; and the 

imaging sensor. The various utility programs were called by the MATLAB program when 

specific operations were required. The layout of this system is shown in Figure 5-3. 



95 

High level software 

L«ar-:ev«i! 
OpcnCV 

Utility programs Colour/Grey-scale 
transforms 

Histogram 
equalization 

Log-Polar 
transform 

Figure 5-3: Layout of VS 

5.5 System integration 

Feature 
extraction 

Fourier 
correlation 

Image 
comparison 

The system integration can be explained by Figure 5-4. This diagram shows the 

interdependences between the core elements of Mechatronic engineering. An example of 

this interdependency was the operation of the motors and encoders. The selection of the 

speed sensor was dependent upon the speed of the motor. The motor speed was dependent on 

the required speed of operation. The speed of operation was dependent upon the speed of the 

part and the mass of the mechanical components. The actuation of the motors was dependent 

upon the software algorithms and electronic hardware. The output from the software was 

dependent upon the feedback from the sensors. 



96 

Mechanical 

Mechanical 

Loading 

Speed 

requirements 

High resolution 

motion 

Electrical/ 

Electronic 

Motor 

selection 

Encoder 

selection 

Motor 

drivers 

Camera 
pose 

Software 

Matlab 

OpenCV 

Image Capture 

Histogram 

normalizing 

Pketwise 

differencing 

Log-polar 

transforms 

DPT 

Motion 

algorithms 

Figure 5-4: Illustration of the interdependencies of the core elements on each other 

5.6 Summary of chapter 5 

This chapter highlights the assembly phase of the design. All subsystems were assembled to 

function as a single unit. The interdependencies of each element of the Mechatronic 

engineering design were highlighted and discussed. 



97 

6. RESULTS AND DISCUSSION 

6.1 Kinematics simulation results 

The kinematic model was used to simulate the overall trajectory of the sensor relative to the 

moving part. This simulation shows the order of the paths that could have been followed. 

These paths were based on the positions of the ROI on the part; the velocity of the part; and 

the dimensions of the part. For example, the path (0 12 3) means that the trajectory of the 

sensor would be starting from ROI 0, going through to ROI 3.The ROI that were selected for 

the simulation were strategically placed at the furthest location from the camera, on each 

face. The camera field of view was able to accommodate adjacent ROI centres on the same 

image. Consequently, no more than two ROI were place on a single face of a part smaller 

than 200mmx200mmx200mm. The outputs form the simulation were the number of free 

paths and the shortest possible path. The green lines represent the part boundary space as a 

function of time. The purple line represents the trajectory of the sensor as a function of time. 

If a collision between the sensor and the part ever occurred whilst following a specific path, 

the path was labelled as colliding (marked with an adjacent c) and hence rejected. The paths 

that did not collide were then analysed, and the path that offered the shortest total distance 

was selected and highlighted with an asterisk as shown in Figure 6-1. 

c 
c 

c 
c 
c 
c 
c 
c 
c 

c 

c 
c 
c 

c 

c 
c 

Figure 6-1: Simulation of kinematic model showing motion of part and sensor 



98 

The following results, shown in Table 6-1 were obtained for various part sizes, and the 

minimum possible inspection times indicate that higher conveyor speeds could have been 

facilitated for these inspection routine configurations. All dimensions were in mm. Four 

identical ROI were selected for each part. 

Part dimensions 

(LxBxH) 

100x100x100 

100x150x100 

200x100x100 

200x100x200 

Number of collision 

free paths 

8 

4 

16 

8 

Number of colliding 

paths 

16 

20 

8 

16 

Minimum inspection 

times 

26s 

27s 

20s 

22s 

Table 6-1: Kinematic simulation results for randomly sized parts 

6.2 Image processing algorithm results 

The image processing algorithms were used to compare reference images against images of 

both acceptable and unacceptable parts. Images used included still images (for testing just 

the algorithm), and images which involved relative motion between the sensor and the part 

(for testing the algorithms whilst the machine was operational). The acquired images differed 

in that the features of interest in the images were at different poses, and the lighting 

conditions varied slightly. The OpenCV utility programs written for reducing translational 

and rotational non-conformities of the test images were then employed by Matlab. 

The results of these image processing operations are shown in Figure 6-2(a) and (b). The 

component involved was a mounting bracket designed to fit onto a research platform in the 

CTM cell. A reference part was produced and an image of the top view of this component 

was acquired, as it passed along the conveyor belt at a speed of O.Olm/s. This part is shown 

in Figure 6-2(a). The same procedure was followed when a test part was manufactured, 

shown in Figure 6-2(b). The images shown in these figures are the corresponding images 

obtained after the feature extraction process. The ROI in this sample were the two holes, 

shown in green and red squares, used to house support bars in an assembly. 



99 

Figure 6-2(a): Reference image Figure 6-2(b): Test Image 

Once the images were acquired and the features extracted, the rotational and translational 

non-conformities were eliminated using the log-polar and Fourier-correlation utility 

algorithms. The difference between images resulting from these operations is shown in 

Figure 6-3(a). The difference between the images after the filtering algorithm is shown in 

Figure 6-3(b). The figures show that the difference between the test part and the reference 

part is negligible, and the part was therefore classified acceptable. 

Figure 6-3(a): Difference of aligned images Figure 6-3(b): Image differences after cleaning 

The same type of component was to be made, however the part was inspected prior to the 

drilling process on the ROI, and prior to an initial finishing process which ensured 

dimensional accuracy. This premature inspection routine was performed to verify that the 

algorithms would detect the non-conformities. The same reference image as shown in Figure 

6-2(a) was used. The image acquired of the non-conforming part, after feature extraction, is 

shown in Figure 6-4(a). The operations used to inspect the previous part were again used to 

check the non-conforming part. The difference images (Figures 6-4(b) and (c)) indicated 



100 

that the scale of the two parts was slightly off. This could have been due to different camera 

positions. The major differences highlighted in Figure 6-4(c) were at the location of the holes 

for the support bars. Based on the difference at this ROI, the part was classified 

unacceptable. 

Figure 6-4(a): Non-conforming part Figure 6~4(b): Difference images 

Figure 6-4(c): Cleaned difference image of non-conforming part 

The time taken, from image acquisition till the image processing result completion, was 

observed as being less than a second for each ROI. This high speed operation justified the 

used of inspection based on machine vision. 



101 

6.3 System performance 

The general performance of the system included analyzing the motion of the system coupled 

with the response times of the controlling and image processing software. During operation 

of the apparatus, it was observed that the technical effort required to ensure control; 

synchronization; and tracking, could have been significantly reduced by a more algorithmic 

and computational approach. Machine learning knowledge based systems would have been 

able to correlate 2D representations of 3D objects. This feature would have allowed for an 

increase in the degree of independence of the captured image from the physical pose of the 

camera, which would have then reduced the dexterity required by the sensor. This would 

have simplified the mechanical design of the system. The motion performance of the 

apparatus was tested with the system being tested initially in terms of each independent axis, 

and then as a whole for accuracy and repeatability. 

6.3.1 X-axis 

The x-axis drive system was operated with the pulse time equalling the duty cycle (full 

PWM signal) in order to quantify the maximum velocity of the axis. The maximum velocity 

was used since this velocity would result in the maximum overshoot. In this testing process, 

the drive system was operated alone at full speed, for a set of discrete times, ranging from 

0.1s till 17.5s. The distance moved as a result of this operation was then measured. The 

results of the distance versus the operating times are shown in Figure 6-5. These results are 

shown in Appendix B. The equation of the graph was found to be of the form 

y = 22.lx-\M 

The straight line graph below confirmed that the motion of the x-axis involved a linear 

relationship between the distance travelled and the time that the motor was operated at full 

speed, which then verified a constant average maximum velocity of 22.1mm/s. The reason 

that the graph did not pass through the point (0,0) was due to friction and inertial effects. 



102 

Graph of Distance vs Time (X-axis) 

450 
400 

^ 350 
300 
250 

£ 200 -| 
1 150 

100 
50 

y=22.1x-1,6A ^ 
^ -•• 

^*" 
~S*' 

. '".. ••: J * * * " -

' X^"'-.. ^^pi|^^^^Hi^^^!^C-:Si^^^|||illlll:S^S-is 

^ ^ 
>""" 

10 

Time(s) 

15 20 

Figure 6-5: Graph used to obtain maximum x-axis velocity 

Using this information, an estimated linear relationship between the desired speed and pulse 

length was established. This relationship was then used for acquiring an open loop model for 

the x-axis. A factor of concern was the performance of the x-axis when the y-axis slider was 

at different positions along the y-axis. The reason for this was that different slider positions 

would have varied the load distribution on the driving and support ends for motion along the 

x-axis. When the load was at y=0, the greatest deflection would have been experienced by 

the x-axis components. With the load at y=l, the smallest deflection would have been 

experienced by the x-axis. It was therefore decided to test the performance of the x-axis at 

extreme y-axis slider positions to see if any significant variations in performance occurred. 

The following results were obtained. 

Graph of Distance vs Time for X-axis (y=0) 

400 T; 
350 

? 300 
1-250 
\ 200 
| 150 
g 100 

50 
0 

,. • issasi l_ '. 
f ft J 

i 
Jvf •*'' I 

f I I 

. iflillf8 
i 

5 10 15 

Calculated time (s) 

20 

-Desired distance 

-Attempt 1 

Attempt 2 

Attempt 3 

Figure 6-6(a): X-axis performance (y=0) 



103 

Graph of Distance vs Time for X-axis (y=l) 

450 
- .400 
S-350 
| 300 
p 250 
| 200 
| 150 
•S 100 

I 

%WllI§llSff 

1 

„ ; • 

; 

V W 

. <K 

J 
I 

•,, 
*$M$$?if& 

—•— Desired Response 

-•—Attempt 1 

Attempt 2 

x Attempt 3 

5 10 15 

Distance(mtn) 

20 

Figure 6.6(b): X-axis performance (y=l) 

Figure 6-6(a) and (b) shows performance of the x-axis at y=0 and y=L. As shown in the 

graph, the slider position along the y-axis did not significantly affect the performance of the 

x-axis drive system The errors for the x-axis positioning are shown in figure 6-7(a) and 6-

7(b). 

Graph of Error vs Distance for X-axis (y=0) 

Desired Distance (mm) 

-•—Attempt 1 

-m~ Attempt 2 

Attmpet 3 

Figure 6-7(a): Measured error between actual and desired distances along the length of the structure 

(for y=0) 



104 

Graph of Error vs Distance for X-axis (y=L) 

~ 3-

£ 2 

b 
w 
•a 

I 
3 
M 
• 
ft 

s 

-Attempt 1 

-Attempt 2 

Attempt 3 

3 -

Desired Distance (mm) 

Figure 6-7(b): Measured error between actual and desired distances along the length of the structure 

(fory=L) 

From both sets of x-axis performance results (y=0 and y=L), the maximum error obtained 

was 3.5mm, which was within the specifications of a maximum error of 8mm. These values 

indicate that the accuracy and repeatability of the x-axis, with various y-axis slider positions, 

was acceptable. The deflection of the x-axis under the worst loading condition (x=L/2; y=0) 

was measured to be 0.12mm. This value was below the minimum calculated value of 

0.26mm. The difference between calculated and measured values was due to the fact that the 

static analysis accounted for each member sustaining the entire load alone; whereas in the 

measured value the load was shared amongst all the members accordingly. 

6.3.2 Y-axis 

The results for the motion of the y-axis are shown, Appendix B. The system was tested to 

quantify accuracy and repeatability, as well as estimate the losses due to friction and inertia, 

during operation of this axis. A graph of distance versus time, with the axis being driven at 

full pulse length, was plotted from the obtained results. The results confirmed that the 

distance travelled by the camera in the y-axis could be modelled as a linear function of time, 

and hence verified that the motor velocity could be modelled as being constant. The average 

velocity was estimated to be 22.92mm/s. This speed was acceptable as it was higher than the 

maximum part speed of 0.02m.s. A graph representing the motion characteristics of the y-

axis is shown in Figure 6-8. The equation of the graph was found to be 

y = 22.92x- 0.3208 



105 

Graph of Distance 

450 -

400 • 

350 -j 
E" 300 -
£ 
a, 250 
1 2 0 0 -
i 150-

100 -

50 -

y-22.e42x-C.320S 

vs Time (Y-axis) 

V * ^ 

j T ••• • 

S 

-»- Y-axis results 

— Linear (Y-axis 
results) 

•s-, ., y 
y 

0 5 10 

Time (s) 

15 20 

Figure 6-8: Y-axis motion characteristics 

The motion was then tested for accuracy and repeatability by inputting the required move 

distance, and then measuring the actual travelled distances. Three attempts were made to 

obtain results in order to verify repeatability. The graph shown in Figure 6-9 relates the 

errors in the actual distances to the desired distances. It can be seen that the maximum errors 

in the motion were approximately 3.5mm which is less than the acceptable 8mm as 

specified. The largest errors occurred at the middle and toward the end of the y-axis 

structure. 

The errors at the middle of the structure could have been as a result of the accumulation of 

inaccuracies in the estimated equation for the system. The undershoot toward the end of this 

structure, which influenced estimation of the open loop model, was most likely due to the 

structure having some form of deformation at these distances. Deformations could have been 

inherent during the manufacture of these components. These deformations would have 

increased the friction in the motion, leading to the travelled distance being less than the 

calculated distance. 

http://y-22.e42x-C.320S


106 

Graph of Errors vs Traveled distance 

-4 

y^ 

-200. 

" ^ 

-»- Attempt 1 
•*- Attempt 2 

Attempt 3 

Traveled distance (mm) 

Figure 6-9: Graph showing measured errors of y-axis motion 

The errors involved in positioning the y-axis were larger than the errors involved with the 

x-axis performance. This would have been largely due to the fact that the x-axis was rigidly 

fixed onto the frame of the NCAIS; whereas the y-axis structure was fixed onto a moving 

x-axis slider and a roller on the opposite side. Both these errors in positioning were 

acceptable despite a difference in the general performance of these axes. In order to obtain 

the accuracy of the axis, the percentage of the errors, for the different attempts, were plotted 

against the travelled distances. These results are shown in Figure 6-10. 

Graph of Percentage Error vs Distance traveled 
(Y-axis) 

^ 

100 
r~>— 
200 

at 
300 1400 

-•— Attempt 1 
-» Attempt 2 

Attempt 3 

Distance traveled (mm) 

Figure 6-10: Accuracy and Repeatability of Y-axis 

The axis errors showed an accuracy ranging from 97%-100%, which was essential for the 

motion of the y-axis. This high accuracy was crucial, as the greatest independent distance 



107 

would have to be travelled by this axis, and so error accumulation had to be kept to a 

minimum. It can also be seen from the graph that the errors were within 2% of each other 

which indicated a high repeatability characteristic of the axis. The deflection of the y-axis 

under the heaviest loading condition (y=L/2) was measured to be 0.08mm. This value was 

below the minimum calculated value of 0.18 mm. The difference between calculated and 

measured values was the same as explained for the x-axis deflection. 

6.3.3 Z-axis 

The z-axis was tested similar to the x and y axes. The operation of the z-axis was limited to 

an operating distance of less than 100mm due to physical constraints. The motion of the z-

axis did not require small movements due to the tilt function of the SPS. Consequently, only 

4 test distances were used as only large movements were required. A graph showing the 

distance versus time of the results is shown in Figure 6-11. The equation of the graph was 

found to be 

y = 5x-5 

100 -i 

? 
E. 80-

i 60 
S 
D 40-

20-

( 

Graph of Distance vs Time for Z-axis 

••• • •'*• S 

\, ' \ ) * -' 
s*^ 1 

j r -

r ' ' 

—•— Series 1 

—— Linear (Series 1) 

) 5 10 15 20 25 

Time (s) 

Figure 6-11: Motion performance of the Z-axis 

Figure 6-12 shows that the performance of the z-axis was within the specifications of general 

accuracy and repeatability. This axis was not as significant in functioning as the other two 

axes. The reason for this is that the pan-tilt mechanism would allow access to ROI from the 

allowable heights of the system. The reason for implementing a z-axis was then to illustrate 

the principle of collision avoidance. This could have been achieved by operating the z-axis 

until its maximum height was achieved, and so no precise movement was necessary in the z-



108 

axis as was required in the other two axes. Implementation of the NCAIS in actual practical 

industrial applications would however require the increased functionality of this axis. 

Graph of Measured Errors vs Distance 

E 3 

E 2 

V 
£ o 
1 - 1 
8 - 2 
« _ 
E -3 

-JT. 

-20_ 
^ - i — 

JflO 

- Attempt 1 

-Attempt 2 

Attempt 3 

4 J — __ 

Distance (mm) 

Figure 6-12: Graph showing errors of z-axis 

6.3.4 Overall performance 

The system was tested for overall three-dimensional spatial accuracy. Four random test 

points were selected as target points. The method of testing involved starting the camera at 

its datum point of coordinates (0, 0, 0), and then using the models to move the sensor to the 

desired location. The actual sensor position was then measured relative to the datum point. 

This test was conducted ten times for each of the four random target points which had 

coordinates (20, 20, 10); (35, 80, 5); (50, 50, 15); and (100, 70,10) respectively. The results 

of these tests are illustrated in the graph shown in Figure 6-13. This graph shows that the 

maximum spatial displacement (of 3 mm) was acceptable for the accuracy of the sensor 

positioning. 

The measured deflection of the camera was found to be within a 1mm radius and the change 

in tilt was estimated to be less than 1 degree. These measurements were made using a 

micrometer which was fastened at a fixed height. Due to the small magnitude in these 

measured values, the change in sensor pose due to deflections of the positioning system was 

therefore considered negligible. 



109 

Graph of Spatial Displacement Error vs Test 
Number 

—•— Point 1 

- • — Point 2 

Point 3 

—x— Point 4 

Test Number 

Figure 6-13: Three dimensional displacement errors involved with the sensor positioning process 

Inspection of a support bracket was conducted in order to test system accuracy and 

repeatability. Figure 6-14(a) shows the reference part used for the inspection routine. Figure 

6-14(b) shows the defective areas in the inspected part. This part was inspected with the 

conveyor operating at maximum speed. Four ROI were selected by the user in anticipation of 

defective ROI. Figure 6-15(a) and 6-15(b) show the machine whilst it was operating. 

Figure 6-14(a): Reference part Figure 6-14(b): Defective part 



110 

Figure 6-15(a): Operating NCAIS 

Figure 6-15(b): Top-face ROI inspection 

Figures 6-16(a) through (d) show the isolated images of the background, reference and test 

ROI, as well as the result after image comparison, from top to bottom respectively. The part 

was rejected due to significant differences between the reference and test images for the 

different ROI. The part would have been rejected even if only one ROI did not conform to 



I l l 

the specifications. The location of the ROI that were defective was then stored and this 

information could have been used to identify flaws in a manufacturing process that were 

implemented for these ROI. 

Figure 6-16(a): RO11 images Figure 6-16(b) ROI 2 images 



112 

Figure 6-16(c): ROI 3 images Figure 6-16(d) ROI 4 images 

Table 6-2 shows the results of the reference part being inspected and the defective test part 

inspections. The reference part was inspected to test whether the system would give 

erroneous results when an acceptable part was inspected. The results of an inspection routine 

on an acceptable part are shown in Appendix A. 



113 

Attempt Number 

1 

2 

3 

4 

4 

Status of perfect part 

Acceptable 

Acceptable 

Acceptable 

Acceptable 

Acceptable 

Status of defective part 

Unacceptable 

Unacceptable 

Unacceptable 

Unacceptable 

Unacceptable 

Table 6-2: Repeatability of results for identical tests 

The focus of the research was to maintain the maximum production rate of 0.02 m/s, in the 

CIM cell. This result was achieved for a particular part that resembled both a mass-produced 

custom part, and a part resulting from VAM (in which an Aluminium block would have 

value added to it by means of adding threaded holes at specified locations). The maximum 

production rate maintained was suitable for the research purposes of the CIM cell. Industrial 

applications may require faster, more accurate, and more precise quality control and 

inspection routines. This may be achieved by implementation of higher precision ball 

screws, better imaging sensors, and more specific imaging software. The results of the tests 

performed were specific to the operating parameters of the CIM cell; however the 

approaches of inspecting moving custom parts, and only key ROI on these parts, can be 

implemented in many industrial applications. 

In order to consider the practical application of the apparatus, production rates involving 

multiple parts needed to be considered. The inspection routines were conducted within the 

40 second time limit, averaging 35 seconds per inspection. An approximated average delay 

of 6 seconds (in addition to the inspection time) was required for the system to re-calibrate 

itself after each inspection routine for this particular product. This delay meant that the 

apparatus was prone to bottlenecking. A simulation was performed in Flexsim4 [57] to 

observe the operation of the apparatus in a manufacturing environment with production of 

multiple products. The model used for the simulation assumed that a part was produced 

every 30 seconds and a delay of 15 seconds to transport the part from the manufacturing 

process to the quality control apparatus. This 3D model is shown in Figure 6-17. The results 

from the simulation show that a bottleneck occurs at the NCAIS 600 seconds into operation 

under these conditions. After approximately 10000 seconds of operation, the bottleneck 

accumulates up to 5 items. This would be unacceptable to manufacturers since production 

rates are being hampered Adding another inspection apparatus eliminated the bottleneck 

under these conditions and no bottleneck was observed after 500 000 seconds of operation. 



114 

The specified production rate could therefore be maintained, with delays in the processes, by 

implementing 2 parallel inspection processes. 

Tie- £ * » w &*J £*ettife. ::»*&&©''••&**> VWndgW:;,+*lp.'- •'?•-• 
I iy i l i i f l 

QHH* G#Op»n Q S M BQ&MCM >flDNtam» f|1V«> g0^;%;: ^:("»«r*} Qscrtpt 

jttgrWaCtwcb ^TJ 

jfcjggL 

3k?* 

jjfjggggi^ 

g • o«» 
J ;A5R5wNdt_; 

fc 
*L« 

Conveyor 
delay 

<ia«i 

Inspection 
apparatus 

Bottleneck 
after 10000 

seconds 

Kf K**\ » I *\ # 8k» I M sm> I RinTmr.hWKKUW 

Figure 6-17: Graphical model used to simulate bottlenecking during operation 

6.4 NCAIS suitability to industrial applications 

An increased number of manufacturers will soon be forced to implement reconfigurable 

processes in all areas of manufacturing in order to maintain a competitive advantage. 

Amongst these areas is the requirement of quality control processes that must perform in-line 

inspection of moving parts. Manufacturing cells will have different throughputs and the 

inspection process must account for this. Furthermore, inspection requirements from each 

cell will differ and so the inspection process must be able to adapt for variations in 

inspection requirements without impacting significantly on production rates. 

The NCAIS may be viewed as a prototype apparatus that can be implemented in such an 

environment. Figure 6-18 shows the typical conditions that the NCAIS will be exposed to in 

an industrial application. Some parts may require only drilling operations, whilst other parts 



115 

may require drilling and turning operations. Manufacturing processes and layouts will have 

to be able to facilitate these requirements efficiently if high production rates are to be 

achieved. The differences in production rates for different parts must also be accounted for. 

Furthermore, inspection at various stages in the manufacture of a product must also be 

facilitated. The inspection process must then be able to facilitate inspections after drilling 

and turning. These inspections must not impede the production rates of the manufacturing 

process. The inspection process must also be able to measure any inconsistencies in parts as 

they progress through their manufacturing lifecycles. If there are any defective products 

being produced, then the manufacturing process must have the capability of early detection 

of these flawed products to minimise losses. 

0.03 ms 

Figure 6-18: Typical operating sequence for part inspection in RME 

6.5 Summary of chapter 6 

This chapter listed the obtained results of the various subsystems. The image processing 

results were obtained and discussed. The algorithms used for checking the differences 

between the reference and test images proved to be sufficient in operation. The accuracy and 

repeatability of the positioning of the sensor was found to be within the given specifications. 



116 

7. CONCLUSION 

The purpose of this project was to research, design, construct, assemble, and test an 

automated apparatus that would perform inspection of custom parts whilst defending 

production rates. Two methods of decreasing inspection times were conceptualised. The first 

method researched was to inspect only significant ROI. This method is effective and more 

accurate than inspecting an entire face of a large product. The implementation of ROI 

inspection meant that only features that required inspection were inspected. This increased 

overall system reliability and efficiency in terms of time. The second method that was 

researched was the inspection of ROI whilst the parts were moving. This allowed for in-line 

inspection, which required dynamic access to the various ROI. These two methods of 

decreasing inspection times required accurate and repeatable sensor positioning. Various 

methods of sensor manipulation were researched. Ultimately, a gantry structure with a pan-

tilt mechanism was implemented due to its suitability to the application, as well as the 

suitability of this structure to be implemented into the existing AVIS framework. 

The application of inspecting custom parts required a method of sensing that was diverse, 

time efficient, and low-cost. Non-contact sensing methods were preferred and in particular, 

visual inspection was implemented. Vision systems offer extreme diversity, and are low cost. 

The use of a vision system required research about the different types of vision sensors; the 

different types of lighting conditions; and the different types of software applications that 

were required for performing image processing operations. Inspection was based on template 

matching for which a reference part was required. Based on a predefined threshold, and 

comparison results between an inspected part and the reference part, a product was either 

accepted or rejected. CAD based inspections, involving 3D models of inspected parts, would 

have been more accurate and reliable, however the design and implementation of these 

models would have been required prior to the manufacturing process. Since the CIM cell did 

not implement such a design method, this form of inspection was not implemented. 

The Mechatronic engineering approach of system integration was used to research, design, 

construct, assemble, and test an apparatus that performed automated inspection of ROI on 

moving custom parts. The core elements of Mechatronic engineering were considered 

simultaneously in the design of subsystems. Using the Mechatronic engineering philosophy, 

the functionality of each subsystem on all levels of the design was considered to be 

interdependent. This approach allowed for the successful and optimal merging of vision, 



117 

sensor articulation, and control subsystems. Parts inspected were categorised into three part 

families. Mechanical sensor articulation components were merged with electronic hardware 

for feedback and control purposes. Imaging hardware was selected based on system 

constraints; the main constraints being spatial and cost. Motors were selected based on the 

torque requirements and required motion of the different applications such as conveyor 

operation and sensor positioning. Motor control hardware was implemented based on the 

characteristics of the motors. Software was developed in CVAVR to manage the low-level 

operation of the motors and sensors used for the inspection routine. OpenCV was used for 

image acquisition and processing, and formed the basis of the vision system software. Utility 

programs were written using this software for performing various image processing 

functions. These functions included log-polar and Fourier correlation algorithms for image 

registration; deconvolution operations for image deblurring; and image transformation 

algorithms for performing colour and greyscale image operations such as colour and 

intensity analyses. High level general system management was developed in MATLAB for 

coordinating the entire inspection process. This coordination involved the identification of 

the part that required inspection; loading the necessary inspection parameters; controlling the 

operation of the sensor articulation circuitry and mechanical members; synchronising the 

image acquisition process with the sensor positioning; implementing the appropriate image 

processing utility functions as required; as well as executing data transfers from sensors to 

the host PC and from the host PC to the slave microcontroller. 

The constructed apparatus was tested in a CIM cell that operated at a maximum conveyor 

speed of 20mm/s. The apparatus was able to perform in-line inspection of custom parts 

which were moving at the maximum speed. Inspection of ROI increased the reliability of the 

inspection process, and also informed about the location of flaws if detected. The operation 

of the SPS using open loop control introduced some errors in the positioning of the imaging 

sensor. These errors were not as significant as anticipated since the image processing 

allowed for registration of images, which increased the tolerances on the positioning 

requirements of the sensor. The apparatus displayed characteristics of a reconfigurable 

machine. It was modular in its mechanical design of the x and y axes. The electronic control 

circuits were modular. The machine was able to reconfigure itself to obtain images at 

different angles and sensor positions. The customized flexibility lay in the fact that the 

system was only designed for three part families. Ability to account for varying throughputs 

and part dimensions allowed the apparatus to display some form of scalability. The NCAIS 

also displayed potential to be efficiently employed in VAM environments by use of ROI 



118 

inspection. The speed of the CIM cell operation may not always be applicable to industrial 

applications. The prototype may however be modified to account for high speed operations. 

The mechanical modifications that can be implemented are the use of lead screws with a 

higher pitch. This would increase the translational speed as a function of the rotational input. 

The number of starting threads could also be increased. This would lead to a proportional 

increase in the translational velocity. For example, increasing the number of starting threads 

from one to two would double the translational velocity of the system. ROI inspection 

provided the capability of the system to provide feedback about the location of detected 

flaws. This information could have then been used to isolate inefficiencies in processes. Use 

of ROI inspection proved to be effective; however the manual selection of these ROI still 

required some form of human input in the process. In future, when implementing a CAD 

based model inspection system, an algorithm may be developed for identifying ROI, based 

on a stress analysis or predefined process information. Another deficiency in the system was 

the limitations of the implemented kinematic model. This model was limited to 8 ROI; 

however the path of the imaging sensor during inspection was dependent upon the speed of 

the part as well as the number of ROI. It was possible that the user selected ROI and part 

speeds that would only result in colliding paths which would have lead to rejection of the 

inspection routine itself. Future algorithms may implement machine learning techniques for 

mapping out a trajectory based on sensed information as opposed to predefined constraints. 

Even though research was aimed at one part family, the methods could have been extended 

to other part families, increasing system diversity. The research presented was based on the 

characteristics of the CIM cell that was used to test the apparatus, and was not focused on 

any particular manufacturing industry. Further research may involve more detailed analyses 

in support of a quality control apparatus for a specific manufacturing industry. 

In conclusion, the following were achieved: 

• Research, design, construction, implementation, and testing of an apparatus called 

the NCAIS for performing visual inspection of moving custom parts within RME 

• Inspection of rectangular-volume custom parts travelling at the specified maximum 

speed of 20mm/s without stopping the part at any point in time during the inspection. 

This allowed for the maximum production rate in the CIM cell to be maintained 

• Implementation of a kinematic model used for optimising the sensor trajectory to 

some extent. This allowed for incorporation of some form of intelligence to the 

machine 

• All design specifications were met 



119 

8. REFERENCES 

[I] Groover MP, "Fundamentals of Modern Manufacturing: Materials, Processes, and 

Systems", Prentice Hall, Upper Saddle River, New Jersey 07458, 1996. 

[2] Mayor J.R.S (2000), "Automated Visual Inspection Apparatus for Flexible 

Manufacturing System", Chapters 1, 3. In PhD dissertation, Department of 

Mechanical Engineering, University of Natal 

[3] Batchelor BG, Hill DA, Hodgson DC, " Automated Visual Inspection", IFS 

Publications Ltd, UK North-Holland, 1985. 

[4] SY Nof, "Handbook of industrial robotics", 1985, p.l 173-1240 

[5] Zhang HC, Alting L, "Computerized Manufacturing Process Planning Systems" 

Springer, 1994. 

[6] J Barhak, D Djurdjanovic, P Spicer, R Katz, "Integration of reconfigurable 

inspection with stream of variations methodology," Internationa] Journal of Machine 

Tools and Manufacture 45, 2005. 

[7] Merhabi MG, Ulsoy AG, Koren Y, "Reconfigurable Manufacturing Systems: Key to 

Future Manufacturing", Journal of Intelligent Manufacturing, Volume 11, 2004. 

[8] Tseng MT, Piller FT, 'The Customer Centric Enterprise: Advances in Mass 

Customization and Personalization", Springer, 2003. 

[9] G Bright, S Davrajh, "Intelligent quality control apparatus for inspection of moving 

custom parts", CARS&FOF Japan, July 2008, pp on CD 

[10] http://industrialpaints.globalspec.com/LearnMore/Manufacturing Process 

Equipment/Inspection_Tools_Instruments/Coordinate_Measuring_Machines_CMM. 

16 May 2007 

[II] Zhenhua Huang, AJ Shih, J Ni, 'Three-dimensional optical measurements for 

automotive manufacturing," International Conference on Competitive 

Manufacturing, COMA 2007, p35-39 

[12] http://www.lionprecision.com/inductive-sensors/index.html. 15 April 2007 

[13] http://www.lionprecision.com/capacitive-sensors/index.html. 15 April 2007 

[14] http://www.ferret. com.au/c/Micromax/Ultrasonic-sensors-provide-flexible-solutions-

n686554, 15 April 2007 

[15] Prasanthi Guda, Jin Cao, Jeannine Gailey and Ernest L, " Machine Vision 

Fundamentals", Prentice Hall, Center for Robotics Research, 2003, pp 6-61 

[16] RC Gonzalez, "Digital Image Processing", Prentice Hall, New Jersey, 2002. 

http://industrialpaints.globalspec.com/LearnMore/Manufacturing
http://www.lionprecision.com/inductive-sensors/index.html
http://www.lionprecision.com/capacitive-sensors/index.html
http://www.ferret
http://com.au/


120 

[17] http://www.machinevisi ononline.org/public/articles/ archivedetails.cfm?id=2870,12 

June 2007. 

[18] W Bolton, "Mechatronics electronic control systems in mechanical engineering", 

Addison Wesley Longman Limited, 1995. 

[19] W Stadler, "Analytical Robotics and Mechatronics", McGraw Hill Inc, 1995. 

[20] http://www.vaskawa.com/images/News/Mechatronics.ipg. 23 July 2007 

[21] http://www.nationmaster.com/encvclopedia/Mechatronics-engineering. 16 August 

2007 

[22] Bolhouse V, "Fundamentals of Machine Vision", Robotic Industries Assn, 1999. 

[23] DJ Carney, EJ Morris, PRH Place, "Identifying Commercial Off-the Shelf (COTS) 

Product Risks: The COTS Usage Risk Evaluation", Technical Report CMU/SEI TR 

023, 2003. 

[24] David Bradley, Derek Seward, David Dawson, and Stuart Burge, "Mechatronics and 

the design of intelligent machines and systems" Stanley Thornes, 2000. 

[25] http://www.und.ac.za/und/mechatron/cim_cell.htm. 28 November 

[26] http://virtualphvsics.imrc.kist.re.kr/pioint.gif. 12july2007 

[27] IRB 340 - Flex-Picker Datasheet from www.abb. com/robots. 13 September 2007 

[28] http://en.wikipedia.org/wiki/Serial_manipulator. 12 August 2007 

[29] http://www.directindustrv.com/industrial-manufacturer/cartesian-robot-63269.html, 

11 October 2007 

[30] http://www.americanrobot.com/images products/gantry 5 t.jpg. 11 October 2007 

[31 ] http://erc.engin.umich.edu/publications/KorenRMS.pdf. May 2007 

[32] http://www.directindustrv.com/industrial-manufacturer/actuator-67149.html. 12 

August 2007 

[33] http://www.secureusanet/product%20pdf7Electrics%20over%20Hvdraulics%20 

or%20Pneumatics.pdf. 20 November 2007 

[34] http://www.boltscience.com/pages/screw3.htm 

[35] JG Drotsky, "Strength of Materials for Technicians", Heinemann Publishers, 

Sandton, 2004. 

[36] RC Stephens, "Strength of Materials: Theory and examples", Edward Arnold Inc, 

London, 1974 

[37] http://www.aksteel.com/pdf/markets products/stainless/austenitic/304_304L_Data 

Bulletin.pdf, 23 November 2007 

[38] http://www.ami.ac.uk/courses/topics/0123 mpm/index.html, 12 October 2007 

[39] http://www.idcmotion.com/pdf/9009.pdf, 14 October 2007 

http://www.machinevisi
http://ononline.org/public/articles/
http://www.vaskawa.com/images/News/Mechatronics.ipg
http://www.nationmaster.com/encvclopedia/Mechatronics-engineering
http://www.und.ac.za/und/mechatron/cim_cell.htm
http://virtualphvsics.imrc.kist.re.kr/pioint.gif
http://www.abb
http://en.wikipedia.org/wiki/Serial_manipulator
http://www.directindustrv.com/industrial-manufacturer/cartesian-robot-63269.html
http://www.americanrobot.com/images
http://erc.engin.umich.edu/publications/KorenRMS.pdf
http://www.directindustrv.com/industrial-manufacturer/actuator-67149.html
http://www.secureusanet/product%20pdf7Electrics%20over%20Hvdraulics%20
http://www.boltscience.com/pages/screw3.htm
http://www.aksteel.com/pdf/markets
http://www.ami.ac.uk/courses/topics/0123
http://www.idcmotion.com/pdf/9009.pdf


121 

[40] http://www.motioncontrolonline.org/files/public/Motion Control Basics.pdf. 12 

October 2007 

[41] H McCallion,"Vibration of linear mechanical systems", Longman Group Ltd, 1973. 

[42] http://www.toolpartsdirect.com/tvpe/Cordless-Drill-Parts, 23 August 2008. 

[43] http://www.dliengineering.com/vibman/planetarygears.htra 11 December 2007 

[44] http://www.seattlerobotics.org/guide/servos.html. 23 November 2007 

[45] www.electrocom.com.au/pdfe/RFID%20vs%20Barcodes.pdf. 26 October 2007 

[46] www.indiabusinessweek.com/Opinion/Editorial/RFID.html, 26 October 2007 

[47] www.sensorcentral.com/vision/techO 1. 25 February 2008 

[48] http://www.barcodediscount.com/catalog/psc/vsl200.htm. 27 October 2007 

[49] http://ezinearticles.com/?How-Does-A-Barcode-Scanner-Work?&id=377318.26 

October 2007 

[50] http://www.kevence.com/enews/vision/cv/expert 2.php?en=081 lia. 27 July 2008 

[51] K Ogata, "Modern Control Engineering: Fourth edition", Prentice Hall Inc, Upper 

Saddle River, 2002 

[52] www.atmel.com/dvn/resources/prod documents/doc8162.pdf. 20 April 2008 

[53] www.graftek.com/pdfyMarketing/MachineVisionLighting.pdf. 28 February 2008 

[54] http://www.xpercept.com/opencv.htm 3 March 20008 

[55] http://www.roborealm.com/. 3 March 2008 

[56] http://www-structmed.cimr.cam.ac.Uk/Course/Convolution/convolutioahtml# 

corr theorem. 23 March 2008 

[57] http://www.automated@flexsim.com, 23 November 2008 

[58] http://www.misumiusa.com/uploadedFiles/Technical/METRICl 805-1806.pdf, 25 

February 2009 

[59] T Philpot, " Mechanics of Materials- An integrated learning system", John Wiley 

and Sons, 111 River Street, Hoboken, New Jersey, 2008, Chapter 16 

[60] http://www.ciao.com/MicrosoftLifeCamVX 6000 1522032l#productdetail. 25 
February 2009 

http://www.motioncontrolonline.org/files/public/Motion
http://www.toolpartsdirect.com/tvpe/Cordless-Drill-Parts
http://www.dliengineering.com/vibman/planetarygears.htra
http://www.seattlerobotics.org/guide/servos.html
http://www.electrocom.com.au/pdfe/RFID%20vs%20Barcodes.pdf
http://www.indiabusinessweek.com/Opinion/Editorial/RFID.html
http://www.sensorcentral.com/vision/techO
http://www.barcodediscount.com/catalog/psc/vsl200.htm
http://ezinearticles.com/?How-Does-A-Barcode-Scanner-Work?&id=377318.26
http://www.kevence.com/enews/vision/cv/expert
http://www.atmel.com/dvn/resources/prod
http://www.graftek.com/pdfyMarketing/MachineVisionLighting.pdf
http://www.xpercept.com/opencv.htm
http://www.roborealm.com/
http://www-structmed.cimr.cam.ac.Uk/Course/Convolution/convolutioahtml%23
http://www.automated@flexsim.com
http://www.misumiusa.com/uploadedFiles/Technical/METRICl
http://www.ciao.com/MicrosoftLifeCamVX


9. APPENDICES 
9.1 Appendix A 

9.1.1 System Drawings 

122 





124 

9.1.2 Inspection routine of acceptable part 

An Inspection routine was performed on two identical boxes to test the apparatus for 

inspection of an acceptable part. These boxes were used for housing circuits. The two ROI 

for each of these parts were the face containing the connections, as well as the face 

containing the fuse as shown in Figure 9-1 (a) and (b). One box was used as the reference 

part, and the second box was considered the test part. 

Figure 9-1 (a): ROI 1 of the test and reference parts Figure 9-1 (b): ROI 2 on test and reference parts 

The images acquired for ROI 1 are shown in Figure 9-2. The image processing involved 

with these images is discussed in section 6.2. Figure 9-3 shows the converted greyscale 

images of the original images, as well as the resulting difference between the two images 

after the comparison process from top to bottom respectively. A small difference between 

the images was found at the top left corner. This was most likely due to the difference in 

background as a result of imprecise camera positioning. Even though a difference between 

the images was obtained, the ROI was accepted due to the difference being insignificant. 

Figure 9-2: RO11 of reference and test part respectively 



125 

Figure 9-3: Greyscale images of the acquired images as well as their difference after the comparison 
process for RO11 

The images acquired for ROI 2 are shown in Figure 9-4. The image processing involved 

with these images were the same as discussed in section 6.2. Figure 9-5 shows the converted 

greyscale images of the original images and the difference between the two images, in the 

same layout as shown for ROI 1. Differences between the test and reference images were 

most likely due to the different background portions in the images. Due to the insignificant 

difference between the images after comparison, this ROI was also accepted. 

Figure 9-4: ROI 2 of reference and test part respectively 



126 

Figure 9-5: Grayscale images of the acquired images as well as their difference after the comparison 
process for ROI 2 

It can be seen that the apparatus was capable of outputting a successful result for acceptable 

parts. The ROI were accepted even thought there were translational, rotational, and lighting 

inconsistencies present between the two images. The limits at which the inconsistencies 

became significant were not explored because the accuracy of the Sensor Positioning System 

(see section 6.3.4) was within tolerances, as specified in section 1.5. The accuracy of the 

system was sufficient for the scope of the research, however, more extensive and conclusive 

tests may be performed when the system is applied to a specific industrial application. 



< 
CD 
-i 
0) 
CQ 
CD 
CD 

-A co ro -̂  eo 

Q Q O O O O O O O O O 0 0 0 0 0 0 ° - ' 

o o o o 
b en 

_ w CD 

en 
en o o 

- . r o t o r o - ^ - - r - r o r - ^ r o ^ . r ' i o ^ r k ? 
e n e n b c n e n o e n o O y , b o S 5 b o S o o o o o o © o o O o o o ° o o 0 " 

O M t O t O t O W J p t O M j f O j O J j , 
c n b b w c n b b i w w o b b b e n e n e n b i o i c j 
o o o o o o o o o o o o o o o o o o " 

CD 

3 

u u w w r o t o M i o r o - i - ' - > - i 
O O O J I O O O O C 5 ^ r 0 0 0 0 0 5 * . I O _ 
o o o o o o o o o o o o o o 

n CO O) ^ 
2 o o o 

I 
SB 

o s* 
CD i 

2.E. 
CD 

VO 

a 
a 

03 

e o w c o c o r o r o t o r o r o - k - ' - ' - i 
v l U l M O W O i l i N O C O O l U - ' 
c o o o t o - ^ - k O o r o - > . c o - » o o ^ i c o 

oo en eo to 
! 

o en o o o o e n b b e n e n b b c n o i e n o o o o o o o o o o o o 

o co oo 
en en en 
o o o en ft 

03 
D 
O 
CD 

c o c o c o w r o r o i o i o r o o o c n t o o o o c s M o o 
- i l O - i W t O I O - i J ^ 
b b b i b i b b i b i b c n 
o o o o o o o o o 

~ ^ r t r t c o o o o i c o 

o b <•" !-> © y 3 ^ Ol O 
o o o o 

o o o o 

I 
! 
ro 

c o o o r o r o r o c o - » o r o r o c o o o c o o . P P 
o i b b u i c n b b i b i o i b b b b b S o o o o o o o o o o o o o o o o ' - ' " ' - ' 

4 
i 

CO 



percentage error percentage 
error error 

7.50 
-3.75 
-0.83 
0.63 
0.00 
-0.42 
-1.79 
-0.94 
0.56 
1.50 
0.68 
1.04 
1.15 
0.36 
0.50 
0.63 
-0.42 
-0.26 

y-axis results 

Desired distance 
(mm) 

0 
20 
40 
60 
80 
100 
120 
140 
160 
180 
200 
220 
240 
260 
280 
300 
320 
340 
360 

Actual disti 
1 
0 

19.5 
40.5 
61.5 
82 

101.5 
121.5 
141.5 
161.5 
182.5 
202.5 
223 
243 

262.5 
283 

302.5 
320.5 
338 
357 

5.00 
-2.50 
-3.33 
1.88 
-1.00 
-1.67 
-1.07 
0.63 
1.11 
0.75 
0.45 
0.63 
0.96 
0.71 
0.83 
0.47 
-0.28 
0.26 

7.50 
-3.75 
-2.50 
1.88 
0.50 
-0.83 
-1.43 
-0.63 
1.11 
1.25 
0.23 
0.63 
1.15 
0.89 
0.83 
0.63 
-0.56 
-0.13 

Actual distance Actual distance 
2 
0 
20 

40.5 
60.5 
81.5 
101 
121 
142 
162 
182 
203 

223.5 
242.5 
263 

282.5 
302 
321 
339 
359 

3 
0 

19.5 
40 

60.5 
81 
101 
122 
141 
162 

181.5 
203 
223 
243 
263 
283 
303 
320 

338.5 
357.5 



Error (mm) 
0 

-0.5 
0.5 
1.5 
2 

1.5 
1.5 
1.5 
1.5 
2.5 
2.5 
3 
3 

2.5 
3 

2.5 
0.5 
-2 
-3 

Error (mm) 
0 
0 

0.5 
0.5 
1.5 
1 
1 
2 
2 
2 
3 

3.5 
2.5 
3 

2.5 
2 
1 
-1 
-1 

Error (mm) 
0 

-0.5 
0 

0.5 
1 
1 
2 
1 
2 

1.5 
3 
3 
3 
3 
3 
3 
0 

-1.5 
-2.5 

percentage 
error 
0.00 
-2.50 
1.25 
2.50 
2.50 
1.50 
1.25 
1.07 
0.94 
1.39 
1.25 
1.36 
1.25 
0.96 
1.07 
0.83 
0.16 
-0.59 
-0.83 

percentage 
error 
0.00 
0.00 
1.25 
0.83 
1.88 
1.00 
0.83 
1.43 
1.25 
1.11 
1.50 
1.59 
1.04 
1.15 
0.89 
0.67 
0.31 
-0.29 
-0.28 

percentage 
error 
0.00 
-2.50 
0.00 
0.83 
1.25 
1.00 
1.67 
0.71 
1.25 
0.83 
1.50 
1.36 
1.25 
1.15 
1.07 
1.00 
0.00 
-0.44 
-0.69 



Overall system results 

Attempt 
number 
Point 1 

1.00 
2.00 
3.00 
4.00 
5.00 
6.00 
7.00 
8.00 
9.00 
10.00 

kinematic model 
distance 

30.00 
30.00 
30.00 
30.00 
30.00 
30.00 
30.00 
30.00 
30.00 
30.00 

actual 
distance 

30.93 
31.13 
32.04 
31.38 
31.38 
31.38 
30.81 
30.60 
31.45 
31.25 

error 

0.93 
1.13 
2.04 
1.38 
1.38 
1.38 
0.81 
0.60 
1.45 
1.25 

percentage 
error 

3.10 
3.76 
6.80 
4.59 
4.62 
4.59 
2.70 
2.01 
4.84 
4.16 

Point 2 
1.00 
2.00 
3.00 
4.00 
5.00 
6.00 
7.00 
8.00 
9.00 
10.00 

87.46 
87.46 
87.46 
87.46 
87.46 
87.46 
87.46 
87.46 
87.46 
87.46 

90.27 
87.32 
87.06 
88.68 
86.69 
86.40 
87.03 
87.31 
87.03 
90.27 

2.81 
-0.14 
-0.41 
1.21 
-0.78 
-1.06 
-0.44 
-0.16 
-0.44 
2.81 

3.21 
-0.17 
-0.46 
1.39 
-0.89 
-1.21 
-0.50 
-0.18 
-0.50 
3.21 

Point 3 | 
1.00 
2.00 
3.00 
4.00 
5.00 
6.00 
7.00 
8.00 
9.00 
10.00 

Point 4 
1.00 
2.00 
3.00 
4.00 
5.00 
6.00 
7.00 
8.00 
9.00 
10.00 

72.28 
72.28 
72.28 
72.28 
72.28 
72.28 
72.28 
72.28 
72.28 
72.28 

122.47 
122.47 
122.47 
122.47 
122.47 
122.47 
122.47 
122.47 
122.47 
122.47 

71.71 
73.88 
71.47 
70.92 
71.70 
74.68 
73.88 
71.47 
71.70 
72.40 

122.14 
125.02 
124.90 
121.50 
120.50 
122.12 
122.21 
125.14 
125.12 
121.95 

-0.57 
1.59 
-0.82 
-1.37 
-0.58 
2.40 
1.60 

-0.81 
-0.59 
0.12 

MM 
-0.34 
2.55 
2.43 
-0.98 
-1.97 
-0.36 
-0.26 
2.67 
2.65 
-0.52 

-0.79 
2.21 
-1.13 
-1.89 
-0.80 
3.32 
2.21 
-1.12 
-0.81 
0.16 

-0.28 
2.08 
1.98 
-0.80 
-1.61 
-0.29 
-0.21 
2.18 
2.16 
-0.43 



Desired 
x 

distance 

20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 

35.00 
35.00 
35.00 
35.00 
35.00 
35.00 
35.00 
35.00 
35.00 
35.00 

50.00 
50.00 
50.00 
50.00 
50.00 
50.00 
50.00 
50.00 
50.00 
50.00 

100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 

Actual x 
distance 

19.50 
20.00 
21.50 
20.50 
21.00 
20.50 
20.00 
19.50 
20.00 
20.50 

37.00 
37.50 
36.00 
35.50 
36.00 
36.50 
37.00 
36.50 
37.00 
37.00 

48.50 
51.00 
49.00 
48.00 
50.00 
51.00 
50.50 
48.50 
49.50 
49.00 

100.00 
101.50 
101.00 
99.50 
98.00 
98.50 
100.50 
102.00 
101.50 
98.00 

Desired 
y 

distance 

20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 
20.00 

80.00 
80.00 
80.00 
80.00 
80.00 
80.00 
80.00 
80.00 
80.00 
80.00 

50.00 
50.00 
50.00 
50.00 
50.00 
50.00 
50.00 
50.00 
50.00 
50.00 

70.00 
70.00 
70.00 
70.00 
70.00 
70.00 
70.00 
70.00 
70.00 
70.00 

Actual y 
distance 

20.50 
20.00 
20.50 
20.50 
20.00 
20.50 
19.50 
20.00 
20.50 
20.00 

82.00 
78.50 
79.00 
81.00 
78.50 
78.00 
78.50 
79.00 
78.50 
82.00 

50.50 
51.00 
49.50 
50.00 
49.00 
52.00 
51.50 
50.00 
49.50 
51.00 

69.00 
72.00 
72.50 
68.50 
69.00 
71.00 
68.50 
71.50 
72.00 
71.50 

Desired 
z 

distance 

10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 

5.00 
5.00 
5.00 
5.00 
5.00 
5.00 
5.00 
5.00 
5.00 
5.00 

15.00 
15.00 
15.00 
15.00 
15.00 
15.00 
15.00 
15.00 
15.00 
15.00 

10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 

Actual z 
distance 

12.50 
13.00 
12.00 
12.00 
12.00 
12.00 
13.00 
12.50 
13.00 
12.50 

7.50 
7.50 
6.50 
6.50 
7.50 
7.00 
6.50 
7.00 
6.50 
7.50 

15.50 
16.00 
16.00 
15.00 
15.50 
16.50 
16.00 
16.00 
15.50 
15.50 

12.50 
12.00 
12.00 
13.00 
12.50 
13.00 
12.00 
12.00 
13.00 
12.50 



132 

9.3 Appendix C- Product datasheets and specifications 

Motor specifications [42] 

Keyless chuck- 10 mm 

No load speed- 0 to 400rpm, 0 tol250rpm 

Max drilling capacities: 

Wood- 20 mm 

Steel-10 mm 

Torque settings- 24 

Max Torque- 27Nm 

Weight-1.7 kg 

Barcode scanner specifications [48] 

VS1200&VS1000 
Vertical Scanners 
PSC are designed specifcally to optimize performance in vertical applications. 
Unlike many other so-called vertical scanners which are little more than horizontal scanners 
turned on their sides, the competitively priced VS1200 and VSIOOO are "true vertical" 
scanners. Aggressive, fast, and accurate each has a large, symmetrical scan volume with a 
generous "sweet spot" to maximize productivity and ergonomics. 
All VS models boast a small footprint and are easily installed onto any countertop with a 
simple stationary or flexible stand mount. 
Models For The Codes You Read... 
The VS1200 and the VSIOOO are each available in two formats. To select the VS scanner 
that's right for your application, first determine the codes that you will need to read in your 
environment. 
The VS1200 comes standard with UPC/EAN/JAN decoding and advanced EdgeTM software 
for reading torn or disfigured labels. With Edge disabled, the VS1200 reads the UPC family 
plus one additional industrial code, and reads poorly-printed labels with the help of 
AdaptiveTM software. Optionally, the VS1200 can be ordered with P2/P5 add-ons. Adaptive 
software is standard on the VSIOOO, which auto-discriminates between up to four codes 
including UPC/EAN/JAN with P2/P5 add-ons, and industrial symbologies such as ITF, Code 
128, and Code 39. 
...And How You Read Them 
Examine your scanning environment—the VS model you choose will depend on available 
counter space, the method used to scan items, and the rate at which items must be 
scanned. 
Both the VS1200 and the VSIOOO are available in "Sweep" and "Presentation-style" scanning 
models. In higher volume checkout environments with sufficient room for a left-to-right or 
right-to-left scanning motion, choose a sweep configuration. In lower volume scanning 
environments with limited counter space, the presentation configurations' deep, dense scan 
pattern will provide optimal performance. 
The VS1200 & VSIOOO: Optimized For Your Application 
Your scanning requirements are unique, and your scanner should be too. With the VS1200 
& VSIOOO, you can have an affordable vertical scanner that's just right for your environment— 
without sacrificing performance, ergonomics or valuable counter space. 
Ideal for: 
• Designed for POS applications such 
as grocery, drug, variety and 



134 

9.4 Appendix D - System code 

9.4.1 Full Source Code for Kinematics Model and Associated Interactive Viewer 

This program calculates the optimal camera path for a part given the part type, dimensions, 

conveyor belt velocity, camera clearance radius, initial camera position, the number of ROI 

present and the ROI positions. Other parameters that may be varied are the dimensions of the 

Cartesian robot and the physical dimensions of the camera (assuming it is box shaped). The 

output is an interactive (rotation and scaling can be keyboard controlled) line animation of 

the motion of camera and part. The output may be written to disk and accessed from 

MATLAB. Output consists of order of camera target positions, physical co-ordinates of 

camera target positions and the times the target positions must be reached. The reference 

time is the instant the front of the part enters the Cartesian robot and the reference origin is 

the lower left corner [looking in the direction of part motion] of the conveyor belt plane (i.e. 

bottom plane) of the Cartesian robot framework. The standard Borland C/C++ Compiler 

version 5.5 (Available free from [9] ) was used for compilation [No non-standard libraries 

are required]. The standalone Microsoft Windows application must be run from the root 

directory for the system [ Same as used for MATLAB]. For graphical output, screen 

resolution must be 1024x768 or greater. 

//MODEL CODE: 
//— -
#include <windows.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <fstream.h> 
#include <math.h> 
//-
struct vec3d 
{ 
double x,y,z; 

} ; 
struct vec3db 
{ 
byte x,y,z; 

} ; 
struct complex 
{ 
double x,y, 

}; 
// — -
void Initialize(void); 
void Draw(void); 
bool CreateWindowXX(char,int,int,int); 
WINAPI WinMain(HINSTANCE,HrNSTANCE,LPSTR,int); 
LRESULT CALLBACK WndProc(HWND,UINT,WPARAM,LPARAM); 



135 

//********************************************************************************* 
*********** 
vec3d StdVec(vec3d,vec3d); 
vec3d Sum(vec3d,vec3d); 
vec3d Multiply(vec3d,double); 
double Length(vec3d); 
vec3d Direction(vec3d); 
double Dot(vec3d,vec3d); 
vec3d Cross(vec3d,vec3d); 
vec3d VectorProjection(vec3d,vec3d); 
double ScalarProjection(vec3d,vec3d); 
double VectorAngle(vec3d,vec3d); 
double LinePtDist(vec3d,vec3d,vec3d); 
// 
vec3d Rotate(vec3d,vec3d); 
int RGBX(int,int,int); 
//-- - - -
// - - -
/ /********************************************************************************* 

#define FRONT 0 
#define BACK 1 
#define LEFT 2 
#define RIGHT 3 
#define TOP 4 
#define NUMROI4 
vec3dpts[NUMROI]; 
vec3d opt[NUMROI]; 
vec3d tgt[NUMROI]; 
vec3d spt[NUMROI]; 
double times[NUMROI]; 
double ctims[NUMROI]; 
double maxx=0.6; 
double maxy=0.8; 
double maxz=0.45; 
double xmax=0.2; 
double ymax=0.2; 
double zmax=0.2; 
double camx=0.04; 
double camy=0.07; 
double camz=0.04; 
double vset=0.04; 
double speedy=0.1; 
double radiusc=0.042; 
double d=0.2; 
vec3d vpart={0.0,0.01,0.0}; 
vec3d pinit; 
vec3d cinit={0.0,maxy*0.5,maxz*0.5}; 
introipts[NUMROI][3]; 
vec3d boxdim= {0.05,0.3,0.25}; 
double totaltime=maxy/vpart.y; 
introip[][3]={{FRONT,2,2},{BACK,l,2},{RlGHT,l,2},{RIGHT,l,l},{BACK,0,0},{TOP,0,2}}; 
int frames=0; 
//— - - -
bytescr[800*600*3]; 
double scd[800*600]; 
// - - - —-
// . 



136 

const double Pl=3.1415926539; 
const double rad=PI/180.0; 
const double deg=180.0/PI; 
/ / - — -— 
vec3d cam={0.0,-400.0,-200.0}; 
vec3dro1={-l 00.0,0.0,30.0}; 
const vec3d 
zerovectoi={0.0,0.0,0.0},ivector={1.0,0.0,0.0}jvector={0.0,1.0,0.0},kvector={0.0,0.0,1.0}; 
//-
double sa=0.0,ca=0.0,sb=0.0,cb=0.0,sc=0.0,cc=0.0; 
//- - - -
I/********************************************************************************* 

*********** 
HDC hDC=NULL; 
HWND hWnd=NULL; 
H1NSTANCE hInstance=NULL; 
J / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
*********** 
vec3d Rotate(vec3d pt,vec3d cp) 
{ 
vec3d rtp; 
double x,y,z,x2,y2,z2; 
x=pt.x-cp.x; 
y=pt.y-cp.y, 
z=pt.z-cp.z; 
x2=(x*cc*cb)-(y*sc*cb)+(z*sb); 
y2=(x*cc*sb*sa)+(x*sc*ca)+{y*cc*ca)-(y*sc*sb*sa)-(z*cb*sa); 
z2=(x*sc*sa)-(x*cc*sb*ca)+(y*sc*sb*ca)+(y*sa*cc)+(z*cb*ca); 
rtp.x=x2+cp.x; 
rtp.y=y2+cp.y; 
rtp.z=z2+cp.z; 
return rtp; 

} 
//---
vec3d Rotate3D(vec3d pt,vec3d cp,vec3d roto) 
{ 
double cas,sas,cbs,sbs,ccs,scs; 
vec3d rtp; 
double x,y,z,x2,y2,z2; 
cas=cos(roto. x *rad); 
sas=sin(roto.x*rad); 
cbs=cos(roto. y *rad); 
sbs=sin(roto.y*rad); 
ccs=cos(roto.z*rad); 
scs=sin(roto.z*rad); 
x=pt.x-cp.x; 
y=pt.y-cp.y, 
z=pt.z-cp.z; 
x2=(x*ccs*cbs)-{y*scs*cbs)+(z*sbs); 
y2=(x*ccs*sbs*sas)+(x*scs*cas)+(y*ccs*cas)-(y*scs*sbs*sas)-(z*cbs*sas); 
z2=(x*scs*sas)-{x*ccs*sbs*cas)+(y*scs*sbs*cas)+(y*sas*ccs)+(z*cbs*cas); 
rtp.x=x2+cp.x; 
rtp.y=y2+cp.y; 
rtp.z=z2+cp.z; 
return rtp; 

} 
// - -
int RGBX(int r.int g,int b) 



137 

{ 
return r+(g*256)+(b*65536); 

} 
/ /********************************************************************************* 
*********** 
vec3d StdVec(vec3d vl,vec3d v2) 
{ 
vec3d vr; 
vr.x=v2.x-vl.x; 
vr.y=v2.y-vl .y; 
vr.z=v2.z-vl.z; 
return vr; 

} 

// 
vec3d Sum(vec3d vl,vec3d v2) 
{ 
vec3d vr; 
vr.x=vl.x+v2.x; 
vr.y=vl.y+v2.y; 
vr.z=vl .z+v2.z; 
return vr; 

} 

// 
vec3d Multiply(vec3d vl ,double fac) 
{ 
vec3d vr; 
vr.x=vl .x*fac; 
vr.y=vl.y*fac; 
vr.z=vl .z*fac; 
return vr; 

} 

// — 
double Length(vec3d v) 
{ 
double 1; 
l=sqrt((v.x*v.x)+(v.y*v.y)+(v.z*v.z)); 
return 1; 

} 
// 
vec3d Direction(vec3d v) 
{ 
return Multiply(v,1.0/Length(v)); 

} 
//-- -
double Dot(vec3d vl,vec3d v2) 
{ 
return ((vl.x*v2.x)+(vl.y*v2.y)+(vl.z*v2.z)); 

} 

// 
vec3d Cross(vec3d vl,vec3d v2) 
{ 
vec3d vr; 
vr.x=(vl.y*v2.z)-{vl.z*v2.y); 
vr.y=(vl.z*v2.x)-(vl.x*v2.z); 
vr.z=(vl.x*v2.y)-(vl.y*v2.x); 
return vr; 

} 
// _ 



138 

double ScalarProjection(vec3d u,vec3d v) 
{ 
return Dot(u,Direction(v)); 

} 
// 
vec3d VectorProjection(vec3d u,vec3d v) 
{ 
return Multiply(v,Dot(u,v)/(Length(v)*Length(v))); 

} 

// _. 
double VectorAngle(vec3d vl,vec3d v2) 
{ 
double angle; 
if((Length(vl)!=0)&&(Length(v2)!=0)) 
{ 
angle=acos(Dot(vl,v2)/(Length(vl)*Length(v2))); 

} 
else 
{ 
angle=0; 

} 
return angle; 

} 

// 
double LinePtDist(vec3d lor,vec3d lde,vec3d pt) 
{ 
vec3d v=StdVec(lor,lde); 
return Length(Cross(StdVec(lor,pt),v))/Length(v); 

} 
// — — -
/ /********************************************************************************* 

complex Complex(double r,double i) 
{ 
complex c={r,i}; 
return c; 

} 
// 
double Mod(complex z) 
{ 
return sqrt(pow(z.x,2.0)+pow(z.y,2.0)); 

} 

// 
double Arg(complex z) 
{ 
double ang=0.0,pan; 
ifl;z.x=0.0){if(z.y>0.0){ang=Pl*0.5;} if(z.y<0.0){ang=PI* 1.5;}} 
if(z.y=0.0){if(z.x>0.0){ang=0.0;} if(z.x<0.0){ang=PI;J} 
irT.(z.x!=0.0)&&(z.y!=0.0)) 
{ 
pan=atan(fabs(z.y)/fabs(z.x)); 
ifl;(z.x>0.0)&&(z.y>0.0)){ang=pan;} 
ifl;(z.x<0.0)&&(z.y>0.0)){ang=PI-pan;} 
if((z.x<0.0)&&(z.y<0.0)){ang=Pl+pan;} 
if((z.x>0.0)&&(z.y<0.0)){ang=(2.0*PI)-pan;} 

} 
return ang; 

} 



139 

// 
complex Add(complex zl,complex z2) 
{ 
complex sum; 
sum.x=zl .x+z2.x; 
sum.y=zl .y+z2.y; 
return sum; 

} 
//-— -
complex Subtract(complex zl,complex z2) 
{ 
complex difference; 
differ ence.x=zl .x-z2.x; 
difference. y=zl .y-z2.y; 
return difference; 

} 

// 
complex Multiply(complex zl,complex z2) 
{ 
complex product; 
product.x=(zl .x*z2.x)-(zl .y*z2.y); 
product.y=(zl .x*z2.y)+(zl .y*z2.x); 
return product; 

} 

// 
complex Divide(complex zl,complex z2) 
{ 
complex quotient={0.0,0.0}; 
double den=pow(Mod(z2),2.0); 
if(den!=0.0) 
{ 
quotient.x=((zl.x*z2.x)+(zl.y*z2.y))/den; 
quotient. y=((zl .y*z2.x)-(zl .x*z2.y))/den; 

} 
return quotient; 

} 
// 
complex Exp(complex z) 
{ 
double mag=exp(z.x); 
complex expo; 
expo.x=mag*cos(z.y); 
expo.y=mag*sin(z. y); 
return expo; 

} 

/ / • 



3S[3 

! 
{:(q'g'j'i'[x)josjoid}(++I'Z^=>I- l*=i JUI)JOJ 

} 

} 
(0==xp)}! 

;[X-jX=Xp'ix-2x=xp jui 
tpBjg 3[qnop 

} 
(q JUl'g JUI'J lUl'jX }Ul'£X )Ul'[X IU1'[X JUl)g3Ur[A\B.IQ piOA 

n 
{ 

{ 

•q=[(H(e*( i -x+(oo8*(i -*))))]-»s 
!g=[l+(£*(l-x+(008*(l^))))]-i3s 
-j=[z+(e*(x -x+(oos*(i -^))))]-os 

} 
((009=>^)^^( l=<'<)3,3,(008=>x)5,3,(l =<x))f! 

} 
(q jui'S JUI'J jui'X JUI'X nnJiDSJOid piOA 

* * * * * * * * * * * 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / / 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / / 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / / 
; / 

H 
{ 

!((jz'([z)gcr[)Xidij[niAj)dxg umjsj 
} 

(jz xaiduxoo'jz x3[duioo)i3A\oj x3[duioo 
H 
{ 

•(ZI'(((§3Ui'z)^l(l!liniAj)dxg'((sodi'z>C[di}in^\[)dxg)ppv)3piAiaujn}ai 
• {(VO'O'Z} =Z* {0 '0'(V 1-}=§3UJ' {oo'O' I} =s°di x3iduioo 

} 
(z x3[dmo3)qso3 X3[duioo 

_ // 

{ 
•(^X((83^'z)^[diJin[Aj)dxg'((sodj'z)X[dij[nfAi)dxg)j3Bi}qns)3piAiaiuni3i 

•{0'0'0'S}=2-«'{0 0'0'I-}=33 lu '{0'0'0'l}=so4 lX3lduI03 

} 
(Z X3[dui03)qUlS X3)dui03 

II 
{ 

•(2-I'(((S3U!'z)^Id!llnPM)dx3'((I !'z>tldmnW)dx3)PPV)3PfAia "-n^3-1 

U0'l-'0'0}=33U!'{0"0'0'2}=3-l'{0-l'0'0}=nx3lduio3 
} 

(Z X3[dU100)SOQ X3[dU!03 

// 
{ 

;(ji'(((S3ui'z)X[dij[nj^[)dxg'((i i'z)X[dii[tnM)dxg)j3BJ4qns)3P!AiQ mnjsj 
•{0'l-'00}=33U!'{02'0'0}=SF'{0T0'0}=Ux3[dul03 

} 
(Z X3[dUi03)UfS X3[dlU03 

0M 



141 

for(int i=y2;i<=y 1 ;i++) {PlotScr(x 1 ,i,r,g,b);} 
} 

} 
ifl;dy==0) 

{ 
if(x2>=xl) 
{ 
for(inti=xl;i<=x2;i++){PlotScr(i,yl,r,g,b);} 

} 
else 
{ 
for(inti=x2;i<=xl;i++){PlotScr(i,yl,r,g,b);} 

} 
} 
ifUdx!=0)&&(dy!=0)) 
{ 
if(abs(dx)>=abs(dy)) 
{ 
grad=(double)dy/(double)dx; 
if(xl<=x2) 
{ 

for(inti=xl;i<=x2;i++){PlotScr(i,yl+(grad*(i-xl)),r,g,b);} 
} 
else 
{ 

for(int i=x2;i<=xl ;i++){PlotScr(i,y2+(grad*(i-x2)),r,g,b);} 
} 

} 
else 
{ 
grad=(double)dx/(double)dy; 
if(yl<=y2) 
{ 

for(int i=yl ;i<=y2;i++){PlotScr(xl+(grad*(i-yl)),i,r,g,b);} 
} 
else 
{ 

for(inti=y2;i<=yl;i++){PlotScr(x2+(grad*(i-y2)),i,r,g)b);} 
} 

} 
} 

} 
// 

bool CollideRect(vec3d pots[],double radius) 
{ 
bool col=false; 
double t,maxt,xx,yy,zz; 
vec3dptl,pt2,dir; 
double xmini=(0.5*(maxx-boxdim.x))-radius; 
double xmaxi=(0.5 *(maxx+boxdim. x))+radius; 
double ymini=-boxdim.y-radius; 
double ymaxi=radius; 
double zmaxi=maxz+radius; 
for(int i=0;i<NUMROI;i++) 
{ 
ptl=pots[i]; pt2=pots[i+l]; 



142 

dir=Direction(StdVec(ptl ,pt2)); 
maxt=Length(StdVec(ptl ,pt2)); 
if(dir.x!=0.0) 
{ 
t—(ptl.x-xmini)/dir.x; 
yy=ptl.y+(dir.y*t); 
zz=ptl.z+(dir.z*t); 
if((yy>=ymmi)&&(yy<=ymaxi)&&(zz<=zmaxi)&&(t>=0.0)&&(t<=maxt)){col=true;} 
t=-(pt 1 .x-xmaxi)/dir.x; 
yy=ptl.y+(dir.y*t); 
zz=ptl .z+(dir.z*t); 
ifl;(yy>=ymini)&&(yy<=ymaxi)&&(zz<=zmaxi)&&(t>=0.0)&&(t<=maxt)){col=true;} 

} 
if(dir.y!=0.0) 
{ 
t=-(pt 1 .y-ymini)/dir.y; 
xx=pt 1. x+(dir. x *t); 
zz=ptl .z+(dir.z*t); 
ifl;(xx>=xmini)&&(xx<=xmaxi)&&(zz<=zmaxi)&&(t>=0.0)&&(t<=maxt)){col=true;} 
t=-(pt 1 .y-ymaxi)/dir.y, 
xx=pt 1 .x+(dir.x*t); 
zz=ptl.z+(dir.z*t); 
if((xx>=xmini)&&(xx<=xmaxi)&&(zz<=zmaxi)&&(t>=0.0)&&(t<=maxt)){col=true;} 

} 
if(dir.z!=0.0) 
{ 
t=-(pt 1 .z-zmaxi)/dir. z; 
xx=pt 1 .x+(dir.x*t); 
yy=pt 1 .y+(dir.y*t); 

if((xx>=xmini)&&(xx<=xmaxi)&&(yy>=ymini)&&(yy<=ymaxi)&&(t>=0.0)&&(t<=maxt)){col=tru 
e;} 

} 
} 
return col; 

} 
// 
int Factorial(int n) 
{ 
ifl;n<=0) 
{ 
return 1; 

} 
else 
{ 
return n*Factorial(n-l); 

} 
} 
// - - — 
void InitDynamics(void) 
{ 
for(int i=0;i<NUMROI;i++) 
{ 
for(intj=0;j<3;j++) 
{ 
roipts[i][j]=roip[i][j]; 

} 
} 



vec3dpath[NUMROI+l]; 

int ssp[NUMROI]; 
int npos=Factorial(NUMROI),nfound; 
int *seqind=new int[NUMROI*npos]; 
double *seqdis=new double[npos]; 
int *routeind=new int[npos]; 
bool exists; 

vec3d vtemp; 

double deltat,mindist=l 00000.0,tdist; 
vec3d tgp,cup,normals[NUMROI]; 
int index,index2,route=0,maxind=0,tempind; 
double tims[NUMR01],totdist,tottime,fact=l .0/3.0; 
vec3dtgps[NUMROI]; 

double maxyv=-1000.0,maxxv=-1000.0,maxzv=-1000.0; 

for(int i=0;i<NUMROI;i++) 
{ 
ifl;roipts[i][0]=FRONT) 
{ 

normals[i]=j vector; 
pts[i].x=(((double)roipts[i][l]+0.5)*fact*boxdim.x)+(0.5*(maxx-boxdim.x)); 
pts[i].z=((double)roipts[i][2]+0.5)*fact*boxdim.z; 
pts[i].y=0.0; 

} 
if(roipts[i][0]=BACK ) 
{ 
normals[i]=Multiply(j vector,-1.0); 
pts[i].x=(((double)roipts[i][l]+0.5)*fact*boxdim.x)+(0.5*(maxx-boxdim.x)); 
pts[i].z=((double)roipts[i][2]+0.5)*fact*boxdim.z; 
pts [i]. y=-boxdim. y; 

} 
if(roipts[i][0]=LEFT) 
{ 
normals[i]=ivector; 
pts[i].y=(((double)roipts[i][l]+0.5)*fact*boxdim.y)-boxdim.y; 
pts[i].z=((double)roipts[i][2]+0.5)*fact*boxdim.z; 
pts[i].x=boxdim.x+(0.5*(maxx-boxdim.x)); 

} 
if(roipts[i][0]=RIGHT) 
{ 
normals[i]=Multiply(ivector,-1.0); 
pts[i].y=(((double)roipts[i][l]+0.5)*fact*boxdim.y)-boxdim.y; 
pts[i].z=((double)roipts[i][2]+0.5)*fact*boxdim.z; 
pts[i].x=0.0+(0.5*(maxx-boxdim.x)); 

} 
ifl;roipts[i][0]=TOP ) 
{ 
normals[i]=kvector; 
pts[i].x=(((double)roipts[i][l]+0.5)*fact*boxdim.x)+(0.5*(maxx-boxdim.x)); 
pts[i].y=(((double)roipts[i][2]+0.5)*fact*boxdim.y)-boxdim.y; 
pts[i].z=boxdim.z; 

} 
} 



144 

for(int i=0;i<NUMROI;i++) 
{ 
tgt[i]=opt[i]=zerovector; 

for(int i=0;i<NUMROI*npos;i++) {seqind[i]=0;} 
for(int i=0;i<NUMROI;i++) 
{ 
for(int j=0;j<(npos/Factorial(NUMROI-i-1 ))y++) 
{ 
nfound=0; 
for(int k=0;k<NUMROI;k++) 
{ 

exists=false; 
for(int m=0;m<i;m++) 
{ 
if(seqind[(j*FactoriaKNUMROI-i)*NUMROI)+m]=k){exists=rrue; break;} 

} 
if( [exists) 
{ 
ssp[nfound]=k; 
nfound++; 

} 
} 
for(int k=0;k<(Factorial(NUMROI-i)/Factorial(NUMROI-i-l ));k++) 
{ 

for(int m=0;rrKFactorial(NUMRO]-i-l );m++) 
{ 
seqind[((((j*Factorial(NUMROI-i))+(k*Factorial(NUMROI-i-

1 )))+m)*NUMROI)+i]=ssp[k]; 
} 

} 
} 

} 

char *ch; 
for(int i=0;i<npos;i++) 
{ 
for(int j=0;j<NUMROI;j++) 
{ 
ch=itoa(seqind[(i*NUMROI)+j]," ", 10); 
TextOut(hDC,820+0'*30),20+(i*20),ch,strlen(ch)); 

} 
} 

for(int i=0;i<npos;i++) 
{ 
totdist=0.0; 
for(int j=0;j<NUMROI;j++) 
{ 
iflj==0) 
{ 

index=seqind[(i*NUMROI)+j]; 
totdist+=Length(StdVec(cinit,Sum(pts[index],Multiply(normals[index],d)))); 
tims[j3=Length(StdVec(cinit,Sum(pts[index],Multiply{normals[index],d)))); 

} 



145 

else 
{ 

index=seqind[(i*NUMROI)+j-l ]; 
index2=seqind[(i*NUMR0I)+j]; 
totdist+=Length(StdVec(Sum(pts[index],Multiply(normals[index],d)),Sum(pts[index2],Multi 

ply(normals[index2],d)))); 
tims|j]=Length(StdVec(Suni(pts[index],Multiply(nonnals[index],d)),Sum(pts[index2],Multip 

ly(normals[index2],d)))); 
} 

} 
seqdis[i]=totdist; 
if(totdist<mindist) 
{ 
mindist=totdist; 
route=i; 
vset=totdist/totaltime; 
for(int j=OJ <NUMROIy++) 
{ 

times[j]=tims[j]/vset; 
ctims[j]=0.0; 

} 
ctims[0]=times[0]; 
fQr(intj=ly'<NUMROI;j++){ctims[j]=ctimsLJ-l]+times|j];} 
for(int j=0y<NUMROIy++) 
{ 

index=seqind[(route*NUMROI)+j]; 
tgt[j]=Sum(Sum(ptstindex],Multiply(noimals[index],d)),Multiply(vpart,ctims[j])); 
opt[j]=pts[index]; 
spt[j]=Sum(pts[index],Multiply(normals[index],d)); 

} 
} 

} 
for(int i=0;i<npos;i-H-){routeind[i]=i;} 
foi(int i=npos-2;i>=0;i~) 
{ 
for(intj=0;j<iy++) 
{ 
if(seqdis[)]>seqdis[j+l]) 
{ 

tempind=routeind[j ]; 
routeind[j]=routeind[j+l]; 
routeind[j+1 ]=tempind; 

} 
} 

} 

path[0]=cinit; 
for(int i=0;i<npos;i++) 
{ 
for(int j=1 ;j<=NUMROIy++) 
{ 
index=seqind[(i *NUMROI)+j-1 ]; 
path[j]=Sum(pts[index],Multiply(normals[index],d)); 

} 
if(CollideRect(path,radiusc)){ch="C";TextOut(hDC,995,2(H-(i*20),ch,strlen(ch));} 

} 

ch="*"; 



146 

TextOut(hDC,970,20+(route*20),ch,strlen(ch)); 
} 
// 
void DrawBox(vec3d blist[]) 
{ 
vec3d llist[24]; 
vec3dptl,pt2; 
int pxl,pyl,px2,py2; 
llist[ 0]=blist[0]; llist[ l]=blist[l]; 
llist[ 2]=blist[l]; llist[ 3]=blist[2]; 
llistf 4]=blist[2]; Uist[ 5]=blist[3]; 
llist[ 6]=blist[3]; llist[ 7]=blist[0]; 
llist[ 8]=b1ist[4]; llist[ 9]=blist[5]; 
llist[10]=blist[5]; llist[ 1 l]=blist[6]; 
llist[ 12]=blist[6]; llist[ 13]=blist[7]; 
llist[14]=blist[7];llist[15]=blist[4]; 
llist[16]=blist[0];llist[17]=blist[4]; 
llist[ 18]=blist[ 1 ]; llist[ 19]=blist[5]; 
llist[20]=blist[2];llist[21]=blist[6]; 
llist[22]=blist[3];llist[23]=blist[7]; 
for(int i=0;i<12;i++) 
{ 
ptl=llist[(i*2)+0]; 
pt2=llist[(i*2)+l]; 
ptl=Rotate(ptl ,zerovector); 
pt2=Rotate(pt2,zerovector); 
px 1 =400+int(pt 1 .x); py 1 =300+int(ptl .y); 
px2=400+int(pt2.x);py2=300+int(pt2.y); 
DrawLineE(pxl ,pyl ,px2,py 2,255,255,255); 

} 
} 
// 
void Graphics(void) 
{ 
complex diff; 
vec3db white={255,255,255}; 
vec3d blist[8]; 
ca=cos(rot.x*rad); 
sa=sin(rot.x*rad); 
cb=cos(rot.y*rad); 
sb=sin(rot.y*rad); 
cc=cos(rot.z*rad); 
sc=sin(rot.z*rad); 
double s£=400.0,timenow,tht=0.0,phi=0.0; 
vec3d campt,velo,target,camroto={0.0,0.0,0.0}; 
int stage=0; 
int pxl ,py 1 ,px2,py2; 
vec3dptl,pt2; 
for(inti=0;i<800*600;i++){scd[i]=100000.0;} 
for(int i=0;i<800*600*3;i++) {scr[i]=0;} 

for(int i=0;i<NUMROI;i++) 
{ 
ifl;i=o) 
{ 
ptl=Multiply(cinit,sf); 



147 

pt2=Multiply(tgt[i],sf); 
} 
else 
{ 
ptl=Multiply(tgt[i-l],sf); 
pt2=Multiply(tgt[i+0],sf); 

} 
ptl=Rotate(ptl ,zerovector); 
pt2=Rotate(pt2,zerovector); 
pxl=400+int(ptl .x); pyl =300+int(ptl .y); 
px2=400+int(pt2.x);py2=300+int(pt2.y); 
DrawLineE(pxl,pyl ,px2,py 2,255,0,255); 

} 
blist[0]=zerovector; 
blist[l]=Multiply(ivector,sf*maxx); 
blist[2]=Sum(Multiply(ivector,sfl'maxx),Multiply(jvector,sf*maxy)); 
blist[3]=Multiply(jvector,sf*maxy); 
blist[4]=Multiply(kvector,sf*maxz); 
blist[5]=Sum(Multiply(ivector,sf*maxx),Multiply(kvector,sf*maxz)); 

blist[6]=Sum(Suni(Multiply(ivector,sPmaxx),Multiply(jvector,sPmaxy)),Multiply(kvector,sf*rnaxz)) 

blist[7]=Sum(Multiply(jvector,sf*maxy),Multiply(kvector,sf*maxz)); 
DrawBox(blist); 
blist[0]=zerovector; 
blist[l]=Multiply(ivector,sf*boxdim.x); 
blist[2]=Sum(Multiply(ivector,sf*boxdim.x),Multip]y(jvector,sf*boxdim.y)); 
blist[3]=Multiply(jvector,sf*boxdim.y); 
blist[4]=Multiply(kvector,sf*boxdirn.z); 
blist[5]=Sum(Multiply(ivector,sf,,boxdim.x),Multiply(kvector,sf,:boxdim.z)); 

blist[6]=Sum(Sum(Multiply(ivector,sf*boxdim.x),Multiply(jvector,sPboxdim.y)),Multiply(kvector,sf 
*boxdim.z)); 
blist[7]=Sum(Multiply(jvector,sf*boxdim.y),Multiply(kvector,sf*boxdim.z)); 
for(inti=0;i<8;i-H-){blist[i].x+=(maxx-boxdim.x)*0.5*sf; blist[i].y-=boxdim.y*sf;} 
for(int i=0;i<8;i++) {blist[i]=Sum(blist[i],Multiply(vpart,frames*speedy*sf));} 
DrawBox(blist); 
blist[0]=zeTovector; 
blist[ 1 ]=Multiply(ivector,sfl< camx); 
blist[2]=Sum(Multiply(ivector,sf*camx),Multiply(jvector,sf*camy)); 
blist[3]=Multiply(jvector,sf*camy); 
blist[4]=Multiply(kvector,sf,Icamz); 
blist[5]=Sum(Multiply(ivector,sf*camx),Multiply(kvector,sf*camz)); 

blist[6]=Sum(Sum(Multiply(ivector,sPcamx),Multiply(jvector,sf*camy)),Multiply(kvector,sPcarnz)) 

blist[7]=Sum(Multiply(jvector,sf*camy),Multiply(kvector,sPcamz)); 
for(int i=0;i<8;i++){blist[i].x—sf*camx*0.5; blist[i].y-=sf*camy*0.5; blist[i].z-=sf*camz*0.5;} 

timenow=frames*speedy; 
for(int i=l;i<NUMROI;i++) 
{ 

if((timenow>ctims[i-l])&&(timenow<ctims[i])){stage=i;} 
} 
if(stage==0){ptl=cinit;pt2=spt[0];}else{ptl=spt[stage-l]; pt2=spt[stage];} 
target=Sum(opt[stage],Multiply(vpart,timenow)); 
campt=Sum(Multiply( vpart,timenow),pt 1); 
if( stage>0) {timen ow-=ctims [ stage-1 ];} 



148 

velo=Multiply(StdVec(pt 1 ,pt2), 1.0/times[stage]); 
campt=Sum(campt,Multiply(velo,timenow)); 
diff.x=target.x-campt.x; 
di ff. y=target. y-campt. y; 
tht=Arg(diff); 
diff.x=Mod(Complex(target.x-campt.x,target.y-campt.y)); 
difF.y=target.z-campt.z; 
phi=Arg(diff); 
campt=Multiply(campt,sf); 
camroto.z=(tht+0.5 *PI)*deg; 
camroto.x=phi*deg; 
for(inti=0;i<8;i++){blist[i]=Rotate3D(blist[i],zerovector,camroto);} 

if(frames<(100*ctims[NUMROI-l])){for(inti=0;i<8;i++){blist[i]=Sum(blist[i],campt);}} 
DrawBox(blist); 

for(int i=0;i<NUMROI;i++) 
{ 
ptl=Multiply(Sum(opt[i],Multiply(vpart,frames*speedy)),sf); 
pt2=Multiply(opt[i],sf); 
ptl=Rotate(ptl ,zerovector); 
pt2=Rotate(pt2,zerovector); 
px 1 =400+int(pt 1 .x); py 1 =300+int(pt 1 .y); 
px2=400+int(pt2.x);py2=300+int(pt2.y); 
DrawLineE(pxl,pyl,px2,py 2,0,255,0); 

} 
} 
//-
//********************************************************************************* 

*********** 

void Initialize void) 
{ 
InitDynamics(); 

} 
//- — 
void Draw(void) 
{ 
BITMAPINFO bi={40,800,600,1,24,0,0,0,0,0,0}; 
SendMessageA(hWnd,WM_PAINT,0,0); 
Graphics(); 
frames++; 
if(frames>=(maxy/(speedy*vpart.y))){frames=0;} 
StretchDIBits(hDC,2,2,800,600,0,0,800,600,&scr,&bi,DIB_RGB_COLORS,SRCCOPY); 

} 
// 
bool CreateWindowXX(char* title,int width,int height,int bits) 
{ 
HMENU hMenu,hSubMenu; 

UINT PixelFormat; 
WNDCLASS wc; 
DWORD dwStyle; 

hInstance=GetModuleHandle(NULL); 
wc.style=0; 
wc.lpftiWndProc=(WNDPROC)WndProc; 
wc.cbClsExtra=0; 
wc.cbWndExtra=0; 



149 

wc.hlnstance=hln stance; 
wc.hIcon=LoadIcon(NULL,IDI_WINLOGO); 
wc.hCursor=LoadCursor(NULL,IDC_ARROW); 
wc.hbrBackground=(HBRUSH)(COLOR_WINDOW+1); 
wc.lpszMenuName=NU LL; 
wc.lpszClassName="Seffat"; 
if( !RegisterClass(&wc)) 
{ 
MessageBox(NULL,"Failed To Register The Window 

Class.", "ERROR",MB_OK|MBJCONEXCLAMATION); 
return FALSE; 

} 

if(!(hWnd=CreateWindow("Seffat",title,WS_OVERLAPPEDWrNDOW,0,0,width,height,NULL,NU 
LL,hlnstance,NULL))) 

{ 
MessageBox(NULL,"Window Creation Error.","ERROR",MB_OK|MB_ICONEXCLAMAT10N); 
return FALSE; 

} 
static PKELFORMATDESCRIPTOR pfd= 
{ 

sizeof(PIXELFORMATDESCRIPTOR),l,PFD_DRAW_TO_WrNDOW|PFD_DOUBLEBUFFER,PF 
D_TYPE_RGBA,bits,0,0,0,0,0,0, 

0,0,0,0,0,0,0,32,0,0,PFD_MArN_PLANE,0,0,0,0 
}; 
if( !(hDC=GetDC(hWnd))) 
{ 
MessageBox(NULL, "Can't create a device 

context.","ERROR",MB_OK|MB_lCONEXCLAMATION); 
return FALSE; 

} 
if(!(PixelFormat=ChoosePixelFormat(nDC,&pfd))) 
{ 
MessageBox(NULL, "Can't find a suitable 

pixelformat.","ERROR",MB_OK|MB_ICONEXCLAMAT10N); 
return FALSE; 

} 
if(!SetPixelFormat(hDC,PixelFormat,&pfd)) 
{ 
MessageBox(NULL"Cant set the pixelformat.","ERROR",MB_OK|MB_ICONEXCLAMAT10N); 
return FALSE; 

} 
if(!DescribePixelFormat(hDC,PixelFormat,sizeof(PIXELFORMATDESCRIPTOR),&pfd)) 
{ 
MessageBox(NULL"Cant Describe 

PixelFormat","ERROR",MB_OK|MBJCONEXCLAMATION); 
return FALSE; 

} 

ShowWindow(hWnd,SW_SHOW); 
UpdateWindow(hWnd); 
SetForegroundWindow(hWnd); 
SetFocus(hWnd); 
lnitialize(); 
return TRUE; 

} 
// _ 



150 

LRESULT CALLBACK WndProc(HWND hWnd,UINT uMsg,WPARAM wParam,LPARAM 
lParam) 
{ 
switch (uMsg) 
{ 
case WM_CLOSE: 
{ 
PostQuitMessage(0); 
return 0; 

} 
case WMJCEYDOWN: 
{ 
if(wParam=VK_ESCAPE) 
{ 

PostQuitMessage(0); 
return 0; 

if(wParam='A') 

rot.x++; 

if(wParam='S') 

rot.x—; 

iflyParam—D') 

rot.y++; 

if(wParam='F') 

rot.y--; 

ifljwParam='G') 

rot.z++; 

iflwParam='H') 
{ 

rot.z—; 
} 

} 
} 
return DefWindowProc(hWnd,uMsg,wParam,lParam); 

} 
// 
WIN API WinMain(HINSTANCE hInstance,H!NSTANCE hPrevInstance,LPSTR lpCmdLine,int 
nCmdShow) 
{ 
MSG msg; 
bool done=false,ret=false; 
ret=CreateWindowXX("Radiosity by S.M.C.", 1024,737,32); 
if(ret=false) {done=true;} 
while(!done) 
{ 
ifl;PeekMessage(&msg,NULL,0,0,PM_REMOVE)) 
{ 
i^msg.message==WM_QUIT) 



151 

{ 
done=true; 

} 
else 
! 

TranslateMessage(&msg); 
DispatchMessage(&msg); 

} 
} 
else 
{ 
Draw(); 
SwapBuffers(hDC); 

} 
} 
return(msg. wParam); 

} 

9.4.2 Image Processing Utility Source Code 

This program performs takes image files and performs the described image processing operations as 
required. The input is the filenames of the image files and the operations that need to be performed. 
Currently, background subtraction, color verification, dimensional verification and assembly 
verifications are supported. In fact, dimensional verification and surface finish verifications are 
implicit in the process and need not be specified. Special ROI in the images may be specified and 
thresholds for rejection may be modified if required. The output is a binary result indicating whether 
the images have passed all the tests or not. In the case of background subtraction, the output is the 
foreground image with the background regions set to black. In the case of color verification the 
channel(s) that need to be verified must be specified as well. The standalone application requires 
Microsoft Windows XP with OpenCV Version 1.0 or higher to be installed. The OpenCV library is 
freely available from [10]. The compilation was performed with Dev C++ [version 4.9.9.2], a free 
C/C++ software development environment. 

// 
#include "cv.h" 
#include "highgui.h" 
// 
Ipllmage *imagl=0,*imag2=0; 
Ipllmage *smthl=0,*smth2=0; 
Ipllmage *histl=0,*hist2=0; 
Ipllmage *logpl=0,*logp2=0; 
Ipllmage *grayl=0,*gray2=0; 
Ipllmage *ilpil=0,*ilpi2=0; 
Ipllmage *idiff=0,*ibind=0; 
// — 
char *namel="colortest.jpg"; 
char *name2="colorgolden.jpg"; 
CvSizesize={640,480}; 
// 
int Coord(int ii,int jj,int sz) 
{ 
return ((jj-l)*sz)+ii-l; 

} 
//- - — -
void CleanBinaryImage(IplImage *imagi,CvSize sz,int thresh) 
{ 
bool one; 



152 

int sta,end,crd; 
int xs=sz.width,ys=sz.height; 

for(int i=l ;i<=xs;i++) 

{ 
one=false; 
sta=0;end=0; 
if(imagi->imageData[Coord(i,l,xs)]>0) 
{ 
one=true; 
sta=l; 

} 
foitintj=l;j<=ysy++) 
{ 
crd=Coord(ij,xs); 
if(imagi->imageData[crd]=0) 
{ 
if(one) 
{ 
one=false; 
end=j; 
if((end-sta)<thresh) 
{ 
for(int k=sta;k<end;k++) 
{ 
imagi->imageData[Coord(i,k,xs)]=0; 

} 
} 

} 
} 
else 
{ 
if(!one) 
{ 
sta=j; 
one=true; 

} 
} 

} 
} 
for(intj=ly<=ysy++) 
{ 
one=false; 
sta=0;end=0; 
if(imagi->imageData[Coord(l,j,xs)]>0) 
{ 
one=true; 
sta=l; 

} 
for(int i=l;i<=xs;i++) 
{ 
crd=Coord(ij,xs); 
if(imagi->imageData[crd]=0) 
{ 
if(one) 
{ 
one= false; 
end=i; 



153 

if((end-sta)<thresh) 
{ 
for(int k=sta;k<end;k++) 
{ 
imagi->imageData[Coord(kj,xs)]=0; 

} 
} 

} 
} 
else 
{ 
if(!one) 
{ 
sta=i; 
one=true; 

} 
} 

} 
} 

} 
// — 
void AbsDifferenceImage(IplImage *il,lpllmage *i2,Ipllmage *op,CvSize sz,int flag) 
{ 
int c; 
int nx=sz.width; 
int ny=sz.height; 
for(int i=l ;i<=nx;i++) 
{ 
for(intj=l;j<=nyy-H-) 

{ 
c=Coord(ij,nx); 
if[flag==l) 
{ 
op->imageData[(c*3)+0]=abs(il->imageData[(c*3)+0]-i2->imageData[(c*3)+0]); 
op->imageData[(c*3)+l]=abs(il->imageData[(c*3)+l]-i2->imageData[(c*3)+l]); 
op->imageData[(c*3)+2]=abs(il->imageData[(c*3)+2]-i2->imageData[(c*3)+2]); 

} 
if(flag==2) 
{ 
op->imageData[c]=abs(il->imageData[c]-i2->imageData[c]); 

} 
} 

} 
} 

// _. 
void GrayscaleOplImage *input,lpllmage *output,CvSize sz) 
{ 
int c; 
int nx=sz.width; 
int ny=sz.height; 
for(int i=l;i<=nx;i++) 
{ 
for(intj=l;j<=ny;j++) 
{ 
c=Coord(ij,nx); 
output->imageData[c]=byte(sqrt( 
pow(double(input->imageData[(c*3)+0]),2.0)+ 
pow(double(input->imageData[(c*3)+l]),2.0)+ 



154 

pow(double(input->irnageData[(c*3)+2]),2.0) 
)/sqrt(3.0)); 

} 
} 

} 

// _ 
void Convolve2D(Ipllmage *imagi,lpllmage *imago,CvSize sz,double k) 
{ 
int ipjp,imjm,cl,c2,c3,c4,c5,c6,c7,c8,c9,rc,gc,bc; 
int xsz=sz.width,ysz=sz.height; 
for(int i=l ;i<=xsz;i++) 
{ 
for(int j=1 ;j<=yszy++) 
{ 
im=i-l; if(im==0){im=l;} 
ip=i+l; if(ip==xsz+l){ip=xsz;} 
jnH-1; if{jm==0){jm=l;} 
jp=j+l; ifljP==ysz+l){jp=ysz;} 
c 1 =Coord(imj m,xsz); 
c2=Coord(iiry ,xsz); 
c3=Coord(imjp,xsz); 
c4=Coord(ijm,xsz); 
c5=Coord(ij,xsz); 
c6=Coord(i j p,xsz); 
c7=Coord(ipjm,xsz); 
c8=Coord(ipj,xsz); 
c9=Coord(ipjp,xsz); 
rc=(int)(-k*( 
imagi->imageData[(c 1 *3)+2]+imagi->imageData[(c2*3)+2]+imagi->imageData[(c3 *3)+2]+ 
imagi->imageData[(c4*3)+2]+imagi->imageData[(c6*3)+2]+ 
imagi->imageData[(c7*3)+2]+imagi->imageData[(c8*3)+2]+imagi->imageData[(c9*3)+2] 
)+((1 +(8 *k))*imagi ->imageData[(c5 *3)+2])); 
gc=(int)(-k*( 
imagi->imageData[(cl*3)+l]+imagi->imageData[(c2*3)+l]+imagi->imageData[(c3*3)+l]+ 
imagi->imageData[(c4*3)+l]+imagi->imageData[(c6*3)+l]+ 
imagi->imageData[(c7*3)+1 ]+imagi->imageData[(c8*3)+1 ]+imagi->imageData[(c9*3)+1 ] 
)+((1+(8*k))*imagi->imageData[(c5*3)+1 ])); 
bc=(int)(-k*( 
imagi->imageData[(cl*3)+0]+imagi->imageData[(c2*3)+0]+imagi->imageData[(c3*3)+0]+ 
imagi->imageData[(c4*3)+0]+imagi->imageData[(c6*3)+0]+ 
imagi->imageData[(c7*3)+0]+imagi->imageData[(c8*3)+0]+imagi->imageData[(c9*3)+0] 
)4{(l+(8*k))*imagi->imageData[(c5*3)+0])); 
if(rc<0){rc=0;} ii(rc>255){rc=255;} 
ifl;gc<0){gc=0;}ifl:gc>255){gc=255;} 
ifl;bc<0){bc=0;} if(bo255){bc=255;} 
imago->imageData[(c5*3)+2]=rc; 
imago->imageData[(c5*3)+l ]=gc; 
imago->imageData[(c5*3)+0]=bc; 

} 
} 

} 
//— — 
void FourierCorrelation(IplImage *iml,lpllmage *im2,IplImage *cres) 
{ 
Ipllmage *bufr,*covt; 
Ipllmage *rell,*imgl,*cmpl,*rel2,*img2,*cmp2; 
Ipllmage *crel,*cimg; 
int dftm,dftn,mi,mj,c,c2,iijj; 



155 

unsigned int maxi=0; 
CvMat *dftl,*dft2,*dftc,*filt,tmp; 
double m,M,radius; 
rel 1 =cvCreatelmage(cvGetSize(iml ),IPL_DEPTH_64F,1); 
imgl=cvCreateImage(cvGetSize(inil),IPL_DEPTH_64F,l); 
cmpl =cvCreateImage(cvGetSize(iml ),B°L_DEPTH_64F,2); 
rel2=cvCreate!mage(cvGetSize(im2),IPL_DEPTH_64F, 1); 
img2=cvCreatelmage(cvGetSize(im2),IPL_DEPTH_64F, 1); 
cmp2=cvCreateImage(cvGetSize(im2),IPL_DEPTH_64F,2); 
buft=cvCreateImage(cvGetSize(ini2),IPL_DEPTH_64F, 1); 
for(int i=l ;i<=im2->width;i++) 
{ 
for(int j= 1 ;j<=im2->heighty++) 
{ 
c=Coord(ij,im2->width); 
c2=Coord(im2->width-i+l,im2->height-j+l,im2->width); 
bufr->imageData[c]=im2->imageData[c2]; 

} 
} 
for{inti=0;i<((im2->width)*(im2->height));i++){im2->imageData[i]=bufr->imageData[i];} 
cvScale(iml,rell,1.0,0.0); 
cvScale(im2,rel2,1.0,0.0); 
cvZero(imgl); 
cvZero(img2); 
cvMerge(rel 1 ,imgl ,NULL,NULL,cmp 1); 
cvMerge(rel2,img2,NULL,NULL,cmp2); 

dftm=cvGetOptimalDFTSize(iml->height-l); 
dftn=cvGetOptimalDFTSize(inil->width-l); 
crel=cvCreatelmage(cvSize(dftn,dftm),IPL_DEPTH_64F, 1); 
cimg=cvCreateImage(cvSize(dftn)dftm),IPL_DEPTH_64F, 1); 
covt=cvCreateImage(cvSize(dftn,dftm),IPL_DEPTH_8U, 1); 
dftl=cvCreateMat(dftm,dftn,CV_64FC2); 
dft2=cvCreateMat(dftm,dftn,CV_64FC2); 
dftc=cvCreateMat(dftm,dftn,CV_64FC2); 
filt=cvCreateMat(dftm,dftn,CV_64FC2); 
for(inti=l;i<=dftn;i++) 
{ 
for(int j=1 ;j<=dftm;j++) 
{ 
ii=i-l;jj=j-l; 
if(i>((dftn+l)/2)){ii=dftn-i;} 
iflj>((dftm+l )/2)) {Jj=dftm-j;} 
radius=sqrt((ii*ii)+(jj*jj)); 
c=Coord(io,dftn); 
ifl;radius> 100.0) 
{ 
filt->data.db[(c*2)-K)]=0.0; 
filt->data.db[(c*2)+l]=0.0; 

} 
else 
{ 
filt->data.db[(c*2)+0]=1.0; 
filt->data.db[(c*2)+l]=1.0; 

} 
} 

} 
cvGetSubRect(dftl,&tmp,cvRect(0,0,iml->width,iml->height)); 



156 

cvCopy(cmpl ,&tmp,NULL); 
if^dftl ->cols>iml ->width) 
{ 
cvGetSubRect(dft 1 ,&tmp,cvRect(iml ->width,0,dft 1 ->cols-im l ->width,iml ->height)); 
cvZero(&tmp); 

} 

cvGetSubRect(dft2,&tmp,cvRect(0,0,ini2->width,im2->height)); 
cvCopy(cmp2,&tmp,NULL); 
if(dft2->cols>im2 ->width) 
{ 
cvGetSubRect(dft2,&tmp,cvRect(im2->width,0,dft2->cols-im2->width,im2->height)); 
cvZero(&tmp); 

} 
cvDFT(dft 1 ,dft 1 ,CV_DXT_FORWARD,cmpl ->height); 
cvDFT(dft2,dft2,CV_DXT_FORWARD,cmp2->height); 
cvMulSpectrums(dftl ,dft2,dftc,0); 
cvMulSpectrums(dftl ,filt,dftl ,0); 
cvMulSpectrums(dft2,filt,dft2,0); 
cvDFT(dftc,dftc,CV_DXT_INVERSE,cmpl->height); 
cvDFT(dft 1 ,dft 1 ,C V D X T I N VERSE,cmpl ->hei ght); 
cvDFT(dft2,dft2,CV_DXT_INVERSE,cmpl->height); 
cvSplit(dftc,crel,cimg,0,0); 
cvSpli t(dft 1 ,rel 1 ,img 1,0,0); 
cvSplit(dft2,rel2,img2,0,0); 
cvPow(crel,crel,2.0); 
cvPow(cimg,cimg,2.0); 
cvAdd(crel ,cimg,crel ,NULL); 
cvPow(crel,crel,0.5); 
cvMinMaxLoc(crel,&m,&M,NULL,NULL,NULL); 
cvScale(crel,crel,256.0/(M-m),256.0*(-m)/(M-m)); 
cvMinMaxLoc(rel 1 ,&m,&M,NULL,NULL,NULL); 
cvScale(rel 1 ,rel 1,256.0/(M-m),256.0*(-m)/(M-m)); 
cvMinMaxLoc(rel2,&m,&M,NULL,NULL,NULL); 
cvScale(rel2,rel2,256.0/(M-m),256.0*(-m)/(M-m)); 
cvConvertScaleAbs(crel,covt,l ,0); 
//cvConvertScaleAbs(rel 1 ,iml, 1,0); 
//cvConvertScaleAbs(rel2,im2,1,0); 
for(inti=l;i<=dftn;i++) 
{ 
for(int j=1 ;j<=dftm;j++) 
{ 
c=Coord(ij,dftn); 
iflXcovt->imageData[c])>=maxi) 
{ 
maxi=covt->imageData[c]; 
mi=i; 
mj=j; 

} 
} 

} 
covt->imageData[Coord(mi,mj,dftn)]=0; 
for(int i=l ;i<=im2->width;i++) 
{ 
for(int j=1 ;j<=im2->heighty'++) 
{ 
c=Coord(ij,im2->width); 
ii=im2->width-i+mi+l; 



157 

jj=im2->height-j+mj+l; 
if(ii>irn2->width){ii-=irn2->width; } if(ii<0){ii+=im2->width; } 
if(jj>im2->height){jj-=irn2->height;} ifUJ<0){jj+=im2->height;} 
c2=Coord(iijj,im2->width); 
cres->imageData[c]=im2->imageData[c2]; 

} 
} 
for(int i=l ;i<=im2->width;i++) 

! 
for(int j=l ;j<=im2->heighty'++) 
{ 
c=Coord(ij,im2->width); 
c2=Coord(im2->width-i+1 ,im2->height-j+1 ,im2->width); 
bufr->imageData[c]=im2->imageData[c2]; 

} 
} 
for(inti=0;i<((im2->width)*(im2->height));i++){ini2->imageData[i]=bufr->imageData[i];} 
cvNamedWindow("Fourier",CV_WINDOW_AUTOSIZE); 
cvShowImage("Fourier",covt); 
cvNamedWindow("Shifted",CV_WINDOW_AUTOSlZE); 
cvShowImage("Shifted",cres); 
cvSavelmage("fouriermap.jpg",covt); 
cvSaveImageC'shifted.jpg",cres); 

} 

// 
void DoContours(IplImage* img) 
{ 
double areal=0.0; 
Ipl Image* imgc=0; 
CvSeq* contours=0; 
imgc=cvCreateImage(cvGetSize(img),IPL_DEPTH_8U(3); 
CvMemStorage* storage=cvCreateMemStorage(0); 
cvFindContours(img,storage,&contours,sizeof(CvContour), 
CVRETR TREE,CV_CHAIN_APPROX_SIMPLE,cvPoint(0,0)); 
contours=cvApproxPoly(contours,sizeof(CvContour),storage,CV_POLY_APPROX_DP,3,l); 
cvDrawContours(imgc,contours,CV_RGB(255,0,0))CV_RGB(0,255,0), 
l,3,CV_AA,cvPoint(0,0)); 
area 1 =cvContour Area(contours,C VWHOLESEQ); 
cvNamedWindow("Contours",CV_WINDOW_AUTOSIZE); 
cvShowlmage("Contours",imgc); 
cvSaveImage("contour.jpg",imgc); 

} 

// 
bool CalcBinDiffMetr(IplImage* bim,double threshold) 
{ 
double tval=0.0,metr; 
bool res=true; 
CvSize sz=cvGetSize(bim); 
for(int i=0;i<sz.width*sz.height;i++) 
{ 
ifl;bim->imageData[i]!=0){tval++;} 

} 
metr=tval/double(sz.width*sz.height); 
if(metr>threshol d) {res=false;} 
return res; 

} 
//— - - - -
bool ColorTest(int channel) 



158 

double corr=0.0; 
bool result=true; 
Ipllmage *shftd=0; 
CvPoint2D32f cntr={size.width/2,size.height/2}; 
imag 1 =cvLoadImage(namel); 
imag2=cvLoadImage(name2); 
smthl=cvCreateImage(size,IPL_DEPTH_8U,3); 
smth2=cvCreateImage(size,IPL_DEPTH_8U,3); 
grayl=cvCreateImage(size,IPL_DEPTH_8U,l); 
gray2=cvCreateImage(size,IPL_DEPTH_8U, 1); 
hist 1 =cvCreateImage(size,IPL_DEPTH_8U, 1); 
hist2=cvCreateImage{size,IPL_DEPTH_8U, 1); 
idiff=cvCreateImage(size,IPL_DEPTH_8U,l); 
ibind=cvCreate!mage(size,IPL_DEPTH_8U, 1); 
shftd=cvCreateImage(size,IPL_DEPTH_8U, 1); 
cvSmooth(imagl ,smthl ,CVJ3AUSSIAN,5,0,0,0); 
cvSmooth(imag2,smth2,CV_GAUSSIAN,5,0,0,0); 
for(int i=0;i<size.width*size,height;i++) 
{ 
grayl ->imageData[i]=smthl ->imageData[(i*3)+channel]; 
gray2->imageData[i]=smth2->imageData[(i*3)+channel]; 

} 
cvEqualizeHist(grayl,histl); 
cvEqualizeHist(gray2,hist2); 
FourierCorrelation(grayl,gray2,shftd); 
AbsDifferenceImage(grayl,shftd,idiff,size,2); 
for(int i=0;i<size.width*size.height;i++) 
{ 
if(idiff->imageData[i]>40){ibind->imageData[i]=255;}else{ibind->imageData[i]=0;} 

} 
CleanBinaryImage(ibind,size,2); 
cvNamedWindow("Raw 1 ".CVWINDOWAUTOSIZE); 
cvNamedWindow("Raw2",CV_WINDOW_AUTOSIZE); 
cvNamedWindow("Difference",CV_WINDOW_AUTOSIZE); 
cvNamedWindow("CleanedDifference",CV_WINDOW_AUTOSIZE); 
cvNamedWindowC'Histogram Equalized l",CV_WINDOW_AUTOSIZE); 
cvNamedWindowC'Histogram Equalized 2",CV_WINDOW_AUTOSIZE); 
cvShowlmage("Raw l",grayl); 
cvShowImage("Raw 2",gray2); 
cvShowImage("DirTerence",idifr); 
cvShowImage( "Cleaned Difference",ibind); 
cvShowImage("Histogram Equalized l",histl); 
cvShowImage("Histogram Equalized 2",hist2); 
cvSave!mage("bdiff.jpg",ibind); 
cvSaveImage("cdiff.jpg",idifi); 
DoContours(ibind); 
result=CalcBinDirHvletr(ibind,0.2); 
return result; 

} 
// - — -
bool AssemblyTest(void) 
{ 
double corr=0.0; 
bool result=true; 
Ipllmage *shftd=0; 
CvPoint2D32fcntr={size.width/2,size.height/2}; 
imag 1 =cvLoadImage(namel); 



159 

imag2=cvLoadImage(name2); 
smth 1 =cvCreateImage(size,IPL_DEPTH_8U,3); 
smth2=cvCreateImage(size,IPL_DEPTH_8U,3); 
grayl=cvCreateImage(size,IPL_DEPTH_8U,l); 
gray2=cvCreateImage(size,IPL_DEPTH_8U, 1); 
histl =cvCreateIrnage(size,IPL_DEPTH_8U, 1); 
hist2=cvCreateImage(size,IPL_DEPTH_8U, 1); 
idiff=cvCreateImage(size,IPL_DEPTH_8U,l); 
ibind=cvCreateImage(size,IPL_DEPTH_8U, 1); 
shftd=cvCreateImage(size,IPL_DEPTH_8U, 1); 
cvSmooth(imagl ,smthl ,CV_GAUSSI AN,5,0,0,0); 
cvSmooth(imag2,smth2,CV_GAUSSlAN,5,0,0,0); 
Grayscale(smthl,gray 1,size); 
Grayscale(smth2,gray2,size); 
cvEqualizeHist(grayl ,histl); 
cvEqualizeHist(gray2,hist2); 
FourierCorrelation(grayl,gray2,shftd); 
AbsDifferencelmage{grayl,shftd,idiff,size,2); 
for(int i=0;i<size.width*size.height;i++) 
{ 
if^idiff->imageData[i]>40){ibind->imageData[i]=255;}else{ibind->imageData[i]=0;} 

} 
CleanBinaryImage(ibind,size,5); 
cvNamedWindow("Raw 1 ",CV_WINDOW_AUTOSIZE); 
cvNamedWindow("Raw2",CV_WINDOW_AUTOSIZE); 
cvNamedWindow("Difference",CV_WINDOW_AUTOSlZE); 
cvNamedWindow("CleanedDifference",CV_WINDOW_AUTOSIZE); 
cvNamedWindowC'Histogram Equalized 1 ",CV_WINDOW_AUTOSIZE); 
cvNamedWindowC'Histogram Equalized 2",CV_WINDOW_AUTOSIZE); 
cvShowlmage("Raw l",grayl); 
cvShowImage("Raw 2",gray2); 
cvShowImage("DirTerence",idirT); 
cvShowImage("Cleaned Difference",ibind); 
cvShowImage("Histogram Equalized l",histl); 
cvShowImage("Histogram Equalized 2",hist2); 
cvSavelmage("bdiff.jpg",ibind); 
cvSaveImage("cdiff.jpg",idiff); 
DoContours(ibind); 
result=CalcBinDifTMetr(ibind,0.25); 
return result; 

} 
// 
void SubtractBackground(char* fgndn,char* bgndn,int threshl,int thresh2,lpllmage* result) 
{ 
int c,rr,gg,bb; 
double magn; 
Ipllmage *fgnd=0,*bgnd=0; 
fgnd=cvLoadlmage(fgndn); 
bgnd=cvLoadImage(bgndn); 
CvSize sz=cvGetSize(fgnd); 
Ipllmage* difr=cvCreateImage(sz,IPL_DEPTH_8U,3); 
Ipllmage* binr=cvCreateImage(sz,IPL_DEPTH_8U, 1); 
result=cvCreateImage(sz,IPL_DEPTH_8U,3); 
AbsDifferencelmage(fgnd,bgnd,difr,sz, 1); 
for(int i=l;i<=sz.width;i++) 
{ 
for(int j=l ;j<=sz.heighty++) 
{ 



160 

c=Coord(ij,sz. width); 
rr=difr->imageData[(c*3)+2]; 
gg=difr->imageData[(c*3)+l ]; 
bb=difr->imageData[(c*3)+0]; 
magn=sqrt((rr*rr)+(gg*gg)+(bb*bb))/sqrt(3.0); 
ifl[magn>threshl) 
{ 
binr->imageData[c]=255; 
result->imageData[(c*3)+0]=fgnd->imageData[(c*3)+0]; 
result->imageData[(c*3)+1 ]=fgnd->imageData[(c*3)+1 ]; 
result->imageData[(c*3)+2]=fgnd->imageData[(c*3)+2]; 

} 
else 
{ 
binr->imageData[c]=0; 

} 
} 

} 
CleanBinaryImage(binr,sz,thresh2); 
for(int i=l;i<=sz.width;i++) 
{ 
for(int j= 1 ;j<=sz.heighty++) 
{ 
c=Coord(ij,sz.width); 
ifl;binr->imageData[c]=0) 
{ 
result->imageData[(c*3)+0]=0; 
result->imageData[(c*3)+l]=0; 
result->imageData[(c*3)+2]=0; 

} 
} 

} 
DoContours(binr); 
cvNamedWindowC'Background Subtraction",CV_WINDOW_AUTOSIZE); 
cvShowImage( "Background Subtraction",result); 
cvSaveImage("backsub.jpg",result); 
cvSaveImage("AbsDiff.jpg")difr); 

} 
// 
int main(void) 
{ 
bool rl=true,r2=true; 
Ipllmage* rubbish=0; 
SubtractBackground("222.jpg","l 1 l.jpg",40,3,rubbish); 
rl=AssemblyTest(); 
r2=ColorTest(2); 
cvWaitKey(); 
return 0; 



161 

9.4.3 OpenCV Timed Video/Frame Capture Source Code 

The following code captures timed frames from the video camera and saves them to disk. The 
requirements are the same as that of the image processing module in A 1.2. Initialization may be 
customized and graphical output is also available. 

#include "cv.h" 
#include "highgui.h" 

#include <stdlib> 
#include <stdio> 
#include <math> 
#include <fstream> 
#include <ctime> 

#defineNUMROI10 

void DrawFrame(void) 
{ 
c vGrabFrame(capture); 
frame=cvRetrieveFrame(capture); 
cvShowImage("Capture",frame); 

} 

int main(int argc,char** argv) 
{ 

randomize(); 
double times[NUMROrj; 
for(inti=0;i<NUMROI;i++){times[i]=random(10);} 
std::clock_t start,end; 
cvNamedWindow("Capture",CV_WINDOW_AUTOSrZE); 
capture = cvCreateCameraCapture(-l); 
start=std::clock(); 
while (cvWaitKey( 1000)=-1) 
{ 
ifl.(std::clock()-start)/(double)CLOCKS_PER_SEC>times[i]) 
{ 
DrawFrameO; 
start=std::clock(); 

} 
} 
cvWaitKey(); 
return 0; 

} 

9.4.4 Example: Fast Fourier Transform (FFT) 

The following code demonstrates the use of complex variable arithmetic to perform the Fast Fourier 
Transform (FFT). The algorithm used is a relatively common FFT algorithm known as the 'Divide 
and Conquer' algorithm or the Cooley-Tukey Algorithm. The input is a complex-number array with 
given dimensions and the output array is the Fourier transform of the input array. The array sizes 
along any dimension MUST be a power of two. Provision is made for the inverse transform as well. 
Both ID and 2D transforms are coded. The computational complexity is of 0(Nlog N) where A' is the 
total number of elements in the array. 

/ / * * # * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ] ^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

#include <math> 



162 

#include <string> 
#include <stdlib> 

struct complex 
{ 
double x,y, 

}; 

complex Complex(double r,double i) 
{ 
complex c={r,i}; 
return c; 

} 

// .._ _. _ 
complex Add(complex zl,complex z2) 
{ 
complex sum; 
sum.x=zl .x+z2.x; 
sum.y=zl .y+z2.y; 
return sum; 

} 
// — 
complex Multiply(complex zl,complex z2) 
{ 
complex product; 
product.x=(zl .x*z2.x)-{zl .y*z2.y); 
product.y=(zl .x*z2.y)+(zl .y*z2.x); 
return product; 

} 

// 
complex Exp(complex z) 
{ 
double mag=exp(z.x); 
complex expo; 
expo.x=mag*cos(z.y); 
expo.y=mag*sin(z.y); 
return expo; 

} 
//********************************************************************************* 
*********** 
void DFT(int N,complex* src,complex* des) 
{ 
for(int k=0;k<N;k++) 
{ 
des[k]=Complex(0.0,0.0); 
for(int n=0;n<N;n++) 
{ 
des[k]=Add(des[k],Multiply(Exp(Complex(0.0)-2.0*PI*(1.0/(double)N)*double(k*n))),src[n])); 

} 
} 

} 

// 
void FFT2(intNl,intN2,complex* src,complex* des,bool inv) 
{ 
int p,j,k; 
int log2nl=0; p=l; 



163 

while(p<N 1) {p*=2;log2n 1++;} 
intlog2n2=0;p=l; 
while(p<N2) {p*=2;log2n2++;} 
Nl=l«log2nl; 
N2=l«log2n2; 
for(int i=0;i<(N 1 *N2);i++) 
{ 
des[i]=src[i]; 

} 
for(int y=0;y<N2;y-H-) 
{ 
j=0; 
for(inti=0;i<Nl-l;i++) 
{ 
des[(N2*i)+y]=src[(N2*j)+y]; 
k=Nl/2; 
while(k<=j){j-=k;k/=2;} 
j+=k; 

} 
} 
complex t; 
for(int x=0;x<N 1 ;x++) 
{ 
j=0; 
for(inti=0;i<N2-l;i++) 
{ 
ifi;i<j) 
{ 
t=des[(N2*x)+i]; 
des[(N2*x)+i]=des[(N2*x)+j]; 
des[(N2*x)+j]=t; 

} 
k=N2/2; 
while(k<=j){j-=k;k/=2;} 
j+=k; 

} 
} 
for(intx=0;x<Nl;x-H-) 
! 
double CA=-1.0; 
double SA=0.0; 
int 11=1,12=1; 
for(intl=0;Klog2nl;l++) 
{ 
11=12; 
12*=2; 
double ul=1.0; 
double u2=0.0; 
for(intj=0y<ll;j++) 
! 
foi<inti=j;i<Nl;i+=12) 
{ 
intil=i+ll; 
double tl=(ul*des[(N2*x)+il].x)-(u2*des[(N2*x)+il].y); 
double t2=(ul*des[(N2*x)+il].y)+(u2*des[(N2*x)+il].x); 
des[(N2*x)+il].x=des[(N2*x)+i].x-tl; 
des[(N2*x)+il].y=des[(N2*x)+i].y-t2; 
des[(N2*x)+i].x+=tl; 



des[(N2*x)+i].y+=t2; 
} 
double z=(ul*CA)-(u2*SA); 
u2=(ul*SA)+(u2*CA); 
ul=z; 

} 
SA=sqrt((1.0-CA)/2.0); 
if(!inv){SA=-SA;} 
CA=sqrt((1.0+CA)/2.0); 

} 
} 
for(int y=0;y<N2;y++) 
{ 
double CA=-1.0; 
double SA=0.0; 
int 11 = 1,12=1; 
for(int I=0;l<log2n2;l++) 
{ 
11=12; 
12*=2; 
double ul=1.0; 
double u2=0.0; 
for(intj=0y<ll;j++) 
{ 
for(inti=j;i<Nl;i+=12) 
{ 
intil=i+ll; 
double tl=(ul*des[(N2*il)+y].x)-(u2*des[(N2*il)+y].y); 
double t2=(ul*des[(N2*il)+y].y)+(u2*des[(N2*il)+y].x); 
des[(N2*i 1 )+y].x=des[(N2*i)+y].x-t 1; 
des[(N2*i 1 )+y].y=des[(N2*i)+y].y-t2; 
des[(N2*i)+y].x+=tl; 
des[(N2*i)+y].y+=t2; 

} 
double z=(ul *CA)-(u2*SA); 
u2=(ul*SA)+(u2*CA); 
ul=z; 

} 
SA=sqrt((1.0-CA)/2.0); 
if(!inv){SA=-SA;} 
CA=sqrt((1.0+CA)/2.0); 

} 
} 
double dee; 
if(inv) {dee=N 1;} else{dee=N2;} 
for(intx=0;x<Nl;x++) 
{ 
for(int y=0;y<N2;y++) 
{ 
des[(N2*x)+y] .x/=dee; 
des[(N2*x)+y] .y/=dee; 

} 
} 



9.4.5 MATLAB Source Codes 

Image Acquisition and Synchronization 

function DelayFunc(timetodelay,steps) 
t=timer('TasksToExecute', steps, TimaFcn', 'My TimerFunction',... 
Period',timetodelay,'executionMode','fixedRate'); 
start(t); 
wait(t); 

end 

ntarget=10; 
times=zeros(ntarget, 1); 
rrame=zeros(480,640,3); 
for i=l:ntarget 
times(i)=i; 

end 
vid = videoinput("win video',l,'RGB24_640x480') 
for i=l:ntarget 

DelayFunc( 1 ,times(i)); 
frame=getsnapshot(vid); 
fham=[num2str(i),'.jpg]; 
imwrite( frame, mam/JPEG1); 

end 
delete(vid); 
clear vid; 

Serial Port Communication 

objl = instrfind(Type', 'serial', 'Port', 'COMl', 'Tag', "); 
if isempty(objl) 

objl =serial('COMl'); 
else 

fclose(objl); 
objl =objl(l) 

end 
fopen(objl); 
out="; 
while isempty(out) 

out=fscanf(objl,'%c',9) 
end 
fclose(objl); 
delete(objl); 

Graphical User Interface Source Code 

% 
function varargout = Cubedimensions(varargin) 
guiSingleton = 1; 
guiState = struct('gui_Name', mfilename,... 

'guiSingleton', guiSingleton,... 
'guiOpeningFcn', @Cube_dimensions_OpeningFcn,... 
'guiOutputFcn', @Cube_dimensions_OutputFcn,... 
'guiLayoutFcn', [ ] , . . . 
'guiCallback', []); 

if nargin && ischar(varargin{l}) 
guiState.guiCallback = str2func(varargin{ 1}); 

end 



166 

if nargout 
[varargout{l:nargout}] = gui_mainfcn(gui_State, vararginj:}); 

else 
gui_mainfcn(gui_State, varargin {:}); 

end 
function Cube_dimensions_OpeningFcn(hObject, eventdata, handles, varargin) 
handles.output = hObject; 
guidata(hObject, handles); 
function varargout = Cube_dimensions_OutputFcn(hObject, eventdata, handles) 
varargoutjl} = handles.output; 
function editl_Callback(hObject, eventdata, handles) 
function editl_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white1); 
end 
function pushbuttonl_Callback(hObject, eventdata, handles) 
Frontpage; 
close Cubedimensions 
function pushbutton2_Callback(hObject, eventdata, handles) 
side=get(handles.editl /string*); 
dim=str2num(side); 
if isempty(dim) 

errordlgCPlease enter a number for the side!',Bad Input','modal') 
return 

end 
ifdim<50 

errordlg(The dimension that you have entered is too low (Minimum 50mm)',Too low','modal") 
return 

end 
ifdim>200 

errordlgCThe dimension that you have entered is too high (Maximum 200mm)','Too high','modal") 
return 

end 
Cubefaces; 
% 
function varargout = Cube_faces(varargin) 
guiSingleton = 1; 
guiState = struct('gui_Name', mfilename,... 

'guiSingleton', guiSingleton,... 
'guiOpeningFcn', @Cube_faces_OpeningFcn,... 
'guiOutputFcn', @Cube_faces_OutputFcn,... 
'guiLayoutFcn', [] ,... 
'guiCallback', []); 

if nargin && ischar(varargin{1}) 
guiState.guiCallback = str2func( varargin {1}); 

end 
if nargout 

[varargout{l:nargout}] = gui_mainfcn(gui_State, varargin}:}); 
else 

gui_mainfcn(gui_State, varargin {:}); 
end 
function Cube_faces_OpeningFcn(hObject, eventdata, handles, varargin) 
figd= Cubedimensions; 
cubedata=guidata(figd); 
sidedim=get(cubedata. edit 1, 'string'); 
side=str2num(sidedim); 
set(handles.text2,'string',side); 
handles.output = hObject; 



167 

guidata(hObject, handles); 
function varargout = Cube_faces_OutputFcn(hObject, eventdata, handles) 
varargout {1} = handles.output; 
function checkbox l_Callback(hObject, eventdata, handles) 
function checkbox2_Callback(hObject, eventdata, handles) 
function checkbox3_Callback(hObject, eventdata, handles) 
function checkbox4_Callback(hObject, eventdata, handles) 
function checkbox5_Callback(hObject, eventdata, handles) 
function pushbuttonl_Callback(hObject, eventdata, handles) 
chckvall=get(handles.checkboxl,'value'); 
chckval2=get(handles.checkbox2,'value'); 
chckval3=get(handles.checkbox3,'value'); 
chckval4=get(handles.checkbox4,'value'); 
chckval5=get(handles.checkbox5,'value'); 
x=0; 
if chckvall 

x=x+l; 
end 
if chckval2 

x=x+l; 
end 
if chckval3 

x=x+l; 
end 
if chckval4 

x=x+l; 
end 
if chckvab 

x=x+l; 
end 
if not(x) 

errordlg('Please Select at least one face!','Bad Input',"modal') 
return 

end 
Cube_ROI; 
function pushbutton2_Callback(hObject, eventdata, handles) 
Frontpage; 
close Cubefaces 
function varargout = Cube_ROI( varargin) 
gui_Singleton = 1; 
guiState = struct('gui_Name', mfilename,... 

'guiSingleton', guiSingleton,... 
'guiOpeningFcn', @Cube_ROI_OpeningFcn,... 
'guiOutputFcn', @Cube_ROI_OutputFcn, ... 
'guiLayoutFcn', [] ,... 
'gui_Callback', []); 

if nargin && ischar(varargin{ 1}) 
guiState.guiCallback = str2func{ varargin {1}); 

end 
if nargout 

[varargout{l:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 

gui_mainfcn(gui State, varargin {:}); 
end 
function Cube_R01_OpeningFcn(hObject, eventdata, handles, varargin) 
fl =Cube_dimensions; 
cube_dimension_data=guidata(fl); 
a=get(cube_dimension_data.editl,'string'); 



set(handles.text6,'string',a); 
cubefig=Cube faces; 
cubefigdata=guidata(cubefig); 
chkl=get(cubefigdata.checkboxl,'value'); 
chk2=get(cubefigdata.checkbox2,'value'); 
chk3=get(cubefigdata.checkbox3,'value'); 
chk4=get(cubefigdata.checkbox4,'value'); 
chk5=get(cubefigdata.checkbox5,'value'); 
ifchkl 

set(handles.text 1 ,'visible','on'); 
set(handles.togglebuttonl,'visible','on'); 
set(handles.togglebutton2,'visible','on'); 
set(handles.togglebutton3,'visible','on'); 
set(handles.togglebutton4,'visible','onr); 
set(handles.togglebutton5,'visible',,onr); 
set(handles.togglebutton6,'visible','onl); 
set(handles.togglebutton7,'visible','onr); 
set^andles-togglebuttonS/visible'/on1); 
set(handles.togglebutton9,'visible','on'); 

end 
ifchk2 

set(handles.text2,'visible','on'); 
set(handles.togglebuttonlO,'visible','on'); 
set(handles.togglebuttonl 1 ,'visible','on'); 
set(handles.togglebutton 12,'visible','on'); 
set(handles.togglebutton 13,'visible','on'); 
set(handles.togglebuttonl4,'visible','on'); 
set(handles.togglebuttonl5,'visible','on'); 
set(handles.togglebuttonl6,'visible','on'); 
set(handles.togglebutton 17, 'visible', 'on'); 
set(handles.togglebuttonl 8,'visible','on'); 

end 
ifchk3 

set(handles.text3,'visible','on'); 
set(handles.togglebuttonl9,'visible','on'); 
set(handles.togglebutton20,'visible','on'); 
set(handles.togglebutton21 ,'visible','on'); 
set(handles.togglebutton22,'visible','on'); 
set(handles.togglebutton23,'visible','on'); 
set(handles.togglebutton24,'visible','on'); 
set(handles.togglebutton25,'visible','on'); 
set(handles.togglebutton26,'visible','on'); 
set(handles.togglebutton27,'visible','on'); 

end 
ifchk4 

set(handles.text4,'visible','on'); 
set(handles.togglebutton28,'visible','on'); 
set(handles.togglebutton29)'visible','on'); 
set(handles.togglebutton30,'visible','on'); 
set(handles.togglebutton31 ,'visible','on'); 
set(handles.togglebutton32,'visible','on'); 
set(handles.togglebutton33,'visible','on'); 
set(handles.togglebutton34,'visible','on'); 
set(handles.togglebutton35,'visible','on'); 
set(handles.togglebutton36,'visible','on'); 

end 
ifchk5 

set(handles.text5,'visible','on'); 



set(handles.togglebutton37,'visible','on'); 
set(handles.togglebutton38,'visible','on'); 
set(handles.togglebutton39,'visible','on'); 
set(handles.togglebutton40, 'visible', 'on'); 
set(handles.togglebutton41 ,'visible','on'); 
set(handles.togglebutton42,'visible','on'); 
set(handles.togglebutton43,'visible','on'); 
set(handles.togglebutton44,'visible','on'); 
set(handles.togglebutton45,'visible','on'); 

end 
handles.output = hObject; 
guidata(hObject, handles); 
function varargout = Cube_ROI_OutputFcn(hObject, eventdata, handles) 
varargout {1} = handles.output; 
function togglebuttonl_Callback(hObject, eventdata, handles) 
function togglebutton2_Callback(hObject, eventdata, handles) 
function togglebutton3_Callback(hObject, eventdata, handles) 
function togglebutton4_Callback(hObject, eventdata, handles) 
function togglebutton5_Callback(hObject, eventdata, handles) 
function togglebutton6_Callback(hObject, eventdata, handles) 
function togglebutton7_Callback(hObject, eventdata, handles) 
function togglebutton8_Callback(hObject, eventdata, handles) 
function togglebutton9_Callback(hObject, eventdata, handles) 
function togglebuttonlO_Callback(hObject, eventdata, handles) 
function togglebuttonl l_Callback(hObject, eventdata, handles) 
function togglebuttonl2_Callback(hObject, eventdata, handles) 
function togglebuttonl 3_Callback(hObject, eventdata, handles) 
function togglebuttonl4_Callback(hObject, eventdata, handles) 
function togglebuttonl5_Callback(hObject, eventdata, handles) 
function togglebuttonl6_Callback(hObject, eventdata, handles) 
function togglebuttonl 7_Callback(hObject, eventdata, handles) 
function togglebuttonl8_Callback(hObject, eventdata, handles) 
function togglebuttonl9_Callback(hObject, eventdata, handles) 
function togglebutton20_Callback(hObject, eventdata, handles) 
function togglebutton21_Callback(hObject, eventdata, handles) 
function togglebutton22_Callback(hObject, eventdata, handles) 
function togglebutton23_Callback(hObject, eventdata, handles) 
function togglebutton24_Callback(hObject, eventdata, handles) 
function togglebutton25_Callback(hObject, eventdata, handles) 
function togglebutton26_Callback(hObject, eventdata, handles) 
function togglebutton27_Callback(hObject, eventdata, handles) 
function togglebutton28_Callback(hObject, eventdata, handles) 
function togglebutton29_Callback(hObject, eventdata, handles) 
function togglebutton30_Callback(hObject, eventdata, handles) 
function togglebutton31_Callback(hObject, eventdata, handles) 
function togglebutton32_Callback(hObject, eventdata, handles) 
function togglebutton33_Callback(hObject, eventdata, handles) 
function togglebutton34_Callback(hObject, eventdata, handles) 
function togglebutton35_Callback(hObject, eventdata, handles) 
function togglebutton36_Callback(hObject, eventdata, handles) 
function togglebutton37_Callback(hObject, eventdata, handles) 
function togglebutton38_Callback(hObject, eventdata, handles) 
function togglebutton39_Callback(hObject, eventdata, handles) 
function togglebutton40_Callback(hObject, eventdata, handles) 
function togglebutton41_Callback(hObject, eventdata, handles) 
function togglebutton42_Callback(hObject, eventdata, handles) 
function togglebutton43_Callback(hObject, eventdata, handles) 
function togglebutton44_Callback(hObject, eventdata, handles) 



170 

function togglebutton45_Callback(hObject, eventdata, handles) 
function pushbutton l_Callback(hObject, eventdata, handles) 
Frontpage; 
close CubeROI 
function pushbutton2_Callback(hObject, eventdata, handles) 
Typesofinspectioncube; 
% 
function varargout = Cylinder_dimensions( varargin) 
guiSingleton = 1; 
guiState = struct('gui_Name", mfilename,... 

'guiSingleton', guiSingleton,... 
"guiOpeningFcn", @Cylinder_dimensions_OpeningFcn,... 
'guiOutputFcn', @Cylinder_dimensions_OutputFcn,... 
'gui_LayoutFcn', [] ,... 
'gui_Callback', []); 

if nargin && ischar(varargin{ 1}) 
guiState.guiCallback = str2func(varargin{ 1}); 

end 
if nargout 

[varargout{l:nargout}] = gui_mainfcn(gui_State, vararginj:}); 
else 

gui_mainfcn(gui_State, varargin {:}); 
end 
function Cylinder_dimensions_OpeningFcn(hObject, eventdata, handles, varargin) 
handles, output = hObject; 
guidata(hObject, handles); 
function varargout = Cylinder_dimensions_OutputFcn(hObject, eventdata, handles) 
varargout {1} = handles.output; 
function editl_Callback(hObject, eventdata, handles) 
function editl_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,"BackgroundColor"), get(0,'defaultUicontrolBackgroundColor')) 

se^hObject^ackgroundColor','white"); 
end 
function edit2_Callback(hObject, eventdata, handles) 
function edit2_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white"); 
end 
function pushbutton l_Callback(hObject, eventdata, handles) 
Frontpage; 
close Cylinderdimensions 
function pushbutton2_Callback(hObject, eventdata, handles) 
a=get(handles.editl,'string'); 
num 1 =str2num(a); 
if isempty(numl) 

errordlgCPlease enter a number for the radius!','Bad Input','modal') 
return 

end 
ifnuml<50 

errordlg(The radius that you have entered is too low (Minimum 50mm)',Too low",'modal') 
return 

end 
ifnuml>200 

errordlg(The radius that you have entered is too high (Maximum 200mm)',Too high',"modal") 
return 

end 
b=get(handles.edit2, "string"); 
num2=str2num(b); 



171 

if isempty(num2) 
errordlg(Please enter a number for height!','Bad Input','modal') 
return 

end 
ifnum2<40 

errordlg(The height that you have entered is too low (Minimum 40mm)',Too low','modal') 
return 

end 
ifnum2>200 

errordlg(The height that you have entered is too high (Maximum 200mm)','Too high','modal') 
return 

end 
Cylinder_faces; 
% 
function varargout = Cylinder_faces( varargin) 
guiSingleton = 1; 
guiState = struct('gui_Name', mfilename,... 

'gui_Singleton', gui_Singleton,... 
'guiOpeningFcn', @Cylinder_faces_OpeningFcn,... 
'guiOutputFcn', @Cylinder_faces_OutputFcn,... 
'guiLayoutFcn', [ ] , . . . 
'guiCallback', []); 

if nargin && ischar(varargin{ 1}) 
gui_State.gui_Callback = str2func(varargin{ 1}); 

end 
if nargout 

[varargout{l:nargout}] = gui_mainfcn(gui State, varargin{:}); 
else 

gui_mainfcn(gui_State, varargin {:}); 
end 
function Cylinder_faces_OpeningFcn(hObject, eventdata, handles, varargin) 
figurehandle=Cylinder_dimensions; 
dimension_data=guidata(figurehandle); 
a=get(dimension_data.edit 1 /string1); 
b=get(dimension_data.edit2,'string'); 
set(handles.text 1 ,'string',a); 
set(handles.text2,'string',b); 
handles.output = hObject; 
guidata(hObject, handles); 
function varargout = Cylinder_faces_OutputFcn(hObject, eventdata, handles) 
varargoutjl} = handles.output; 
function pushbutton l_Callback(hObject, eventdata, handles) 
Frontpage; 
close Cylinderfaces 
function pushbutton2_Callback(hObject, eventdata, handles) 
chckval 1 =get(handles.checkbox 1,'value'); 
chckval2=get(handles.checkbox2,'value'); 
chckval3=get(handles.checkbox3,'value'); 
chckval4=get(handles.checkbox4,'value'); 
chckval5=get(handles.checkbox5,'value'); 
x=0; 
if chckval 1 

x=x+l; 
end 
ifchckval2 

x=x+l; 
end 
if chckvaB 



172 

x=x+l; 
end 
if chckvaW 

x=x+l; 
end 
if chckval5 

x=x+l; 
end 
if not(x) 

errordlg('Please Select at least one face!','Bad Input','modal') 
return 

end 
CylinderROI; 
function checkboxl_Callback(hObject, eventdata, handles) 
function checkbox2_Callback(hObject, eventdata, handles) 
function checkbox3_Callback(hObject, eventdata, handles) 
function checkbox4_Callback(hObject, eventdata, handles) 
function checkbox5_Callback(hObject, eventdata, handles) 
%-
function varargout = Cylinder_ROI( varargin) 
guiSingleton = 1; 
guiState = struct('gui_Name', mfilename,... 

'guiSingleton', guiSingleton,... 
'guiOpeningFcn', @Cylinder_ROI_OpeningFcn,... 
'gui_OutputFcn', @Cylinder_ROI_OutputFcn,... 
'gui_LayoutFcn', [] ,... 
'gui_Callback', []); 

if nargin && ischar(varargin{l}) 
guiState.guiCallback = str2func(varargin{ 1}); 

end 
if nargout 

[varargout{l:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 

gui_mainfcn(gui_State, varargin {:}); 
end 
function Cylinder_ROI_OpeningFcn(hObject, eventdata, handles, varargin) 
figurehandle=Cylinder_dimensions; 
dimension_data=guidata(figurehandle); 
al=get(dimension_data.editl,'string'); 
bl=get(dimension_data.edit2,'string'); 
set(handles.text5,'string',al); 
set(handles.text6,'string',b 1); 
gui=Cylinder_faces; 
checkdata=guidata(gui); 
chkl=get(checkdata.checkbox 1,'value'); 
chk2=get(checkdata.checkbox2,'value'); 
chk3=get(checkdata.checkbox3,'value'); 
chk4=get(checkdata.checkbox4,'value'); 
chk5=get(checkdata.checkbox5,'value'); 
ifchkl 

set(handles.text 1 ,'visible','on'); 
setChandles.togglebuttonl/visible'.'on1); 
setChandles.togglebuttonS/visibleVon1); 

end 
ifchk2 

set(handles.text2,'visible','on'); 
set(handles.togglebuttonl2,'visible','on'); 
set(handles.togglebuttonl3,'visible','on'); 



173 

end 
ifchk3 

set(handles.text3,'visible','on'); 
set(handles.togglebutton6,'visible','onr); 
set(handles.togglebutton7,'visible','onr); 

end 
ifchk4 

set(handles.text4,'visible','on'); 
set(handles.togglebuttonlO,'visible','on'); 
set(handles.togglebuttonl 1 ,'visible','on'); 

end 
ifchk5 

set(handles.text7,'visible','on'); 
set(handles.togglebuttonl4,'visible','on'); 
set(handles.togglebuttonl5,'visible','on'); 

end 
handles.output = hObject; 
guidata(hObject, handles); 
function varargout = Cylinder_ROI_OutputFcn(hObject, eventdata, handles) 
varargout{l} = handles.output; 
function togglebuttonl_Callback(hObject, eventdata, handles) 
function togglebutton5_Callback(hObject, eventdata, handles) 
function togglebutton6_Callback(hObject, eventdata, handles) 
function togglebutton7_Callback(hObject, eventdata, handles) 
function togglebuttonl 0_Callback(hObject, eventdata, handles) 
function togglebuttonl l_Callback(hObject, eventdata, handles) 
function togglebuttonl 2_Callback(hObject, eventdata, handles) 
function togglebuttonl3_Callback(hObject, eventdata, handles) 
function pushbuttonl_Callback(hObject, eventdata, handles) 
TypesofinspectionCylinder; 
function pushbutton2_Callback(hObject, eventdata, handles) 
Frontpage; 
close CylinderROI 
function togglebuttonl4_Callback(hObject, eventdata, handles) 
function togglebuttonl5_Callback(hObject, eventdata, handles) 
% __ 
function varargout = Frontpage(varargin) 
guiSingleton = 1; 
guiState = struct('gui_Name', mfilename,... 

'guiSingleton', guiSingleton,... 
'guiOpeningFcn', @Frontpage_OpeningFcn,... 
'guiOutputFcn', @Frontpage_OutputFcn,... 
'gui_LayoutFcn', [ ] , . . . 
'gui_Callback', []); 

if nargin && ischar(varargin{l}) 
guiState.guiCallback = str2func(varargin{ 1}); 

end 
if nargout 

[varargout{l:nargout}] = gui_mainfcn(gui_State, vararginj:}); 
else 

gui_mainfcn(gui_State, varargin {:}); 
end 
function Frontpage_OpeningFcn(hObject, eventdata, handles, varargin) 
handles.output = hObject; 
guidata(hObject, handles); 
function varargout = Frontpage_OutputFcn(hObject, eventdata, handles) 
varargout {1} = handles.output; 
function pushbuttonl_Callback(hObject, eventdata, handles) 



174 

function pushbutton2_Callback(hObject, eventdata, handles) 
close 
function pushbutton3_Callback(hObject, eventdata, handles) 
function pushbutton4_Callback(hObject, eventdata, handles) 
select_part_family; 
close Frontpage; 
function pushbutton5_Callback(hObject, eventdata, handles) 
% 
function varargout = getserialdata(varargin) 
guiSingleton = 1; 
guiState = struct('gui_Name', mfilename,... 

'guiSingleton', guiSingleton,... 
'guiOpeningFcn', @getserialdata_OpeningFcn,... 
'guiOutputFcn', @getserialdata_OutputFcn,... 
'guiLayoutFcn', [] ,... 
'guiCallback', []); 

if nargin && ischar(varargin {1}) 
guiState.guiCallback = str2func(varargin{l}); 

end 
if nargout 

[varargout{l:nargout}] = gui_mainfcn(gui_State, vararginj:}); 
else 

gui_mainfcn(gui_State, varargin {:}); 
end 
function getserialdata_OpeningFcn(hObject, eventdata, handles, varargin) 
handles.output = hObject; 
guidata(hObject, handles); 
function varargout = getserialdata_OutputFcn(hObject, eventdata, handles) 
varargout {1} = handles.output; 
function pushbutton l_Callback(hObject, eventdata, handles) 
s = serial('COMl'); 
set(s,BaudRate',4800); 
fopen(s); 
fprintf(s,'*IDN?') 
out = fscanf(s); 
fclose(s) 
delete(s) 
clear s 
%--
function varargout = openfile(varargin) 
guiSingleton = 1; 
gui_State= struct('gui_Name', mfilename, ... 

'guiSingleton', guiSingleton,... 
'guiOpeningFcn', @openfile_OpeningFcn,... 
'guiOutputFcn', @openfile_OutputFcn, ... 
'guiLayoutFcn', [] ,... 
'gui_Callback', []); 

if nargin && ischar(varargin {1}) 
guiState.guiCallback = str2func( varargin {1}); 

end 
if nargout 

[varargout{ l:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 

gui_mainfcn(gui_State, varargin {:}); 
end 
function openfile_OpeningFcn(hObject, eventdata, handles, varargin) 
handles.output = hObject; 
guidata(hObject, handles); 



175 

function varargout = openfile_OutputFcn(hObject, eventdata, handles) 
varargout{l} = handles.output; 
function pushbutton l_Callback(hObject, eventdata, handles) 
fid = fopen('fgetl.m'); 
while 1 

tline = fgetl(fid); 
if-ischar(tline), break, end 
disp( tline) 

end 
fclose(fid); 
% 
function varargout = Reactangular_volume_faces_for_inspection( varargin) 
guiSingleton = 1; 
guiState = struct('gui_Name', mfilename,... 

'guiSingleton', guiSingleton,... 
'guiOpeningFcn', @Reactangular_volurne_faces_for_inspection_OpeningFcn,... 
'guiOutputFcn', @Reactangular_volume_faces_for_inspection_OutputFcn,... 
'gui_LayoutFcn', [ ] , . . . 
'guiCallback', []); 

if nargin && ischar(varargin{ 1}) 
guiState.guiCallback = str2func( varargin { 1}); 

end 
if nargout 

[varargout}lmargout}] = gui_mainfcn(gui_State, vararginj:}); 
else 

gui_mainfcn(gui_State, varargin {:}); 
end 
function Reactangularvolumefacesforinspection OpeningFcn(hObject, eventdata, handles, 
varargin) 
figurehandle=Rectangle_dimensions; 
dimension_data=guidata(figurehandle); 
a=get(dimension_data.edit 1,'string'); 
b=get(dimension_data.edit2,'string'); 
c=get(dimension_data.edit3,'string'); 
set(handles.text3,'string',a); 
set(handles.text4,'string',b); 
set(handles.text5,'string',c); 
handles.output = hObject; 
guidata(hObject, handles); 
function varargout = Reactangular_volume_faces_for_inspection_OutputFcn(hObject, eventdata, 
handles) 
varargoutjl} = handles.output; 
function pushbuttonl_Callback(hObject, eventdata, handles) 
Frontpage; 
close Reactangularvolumefacesforinspection 
function pushbutton2_Callback(hObject, eventdata, handles) 
chckval 1 =get(handles.checkbox 1 ,'value'); 
chckval2=get(handles.checkbox2,'value'); 
chckval3=get(handles.checkbox3,'value'); 
chckval4=get(handles.checkbox4,'value'); 
chckval5=get(handles.checkbox5,'value'); 
a=0; 
if chckval 1 

a=a+l; 
end 
if chckval2 

a=a+l; 
end 



176 

if chckvaB 
a=a+l; 

end 
ifchckval4 

a=a+l; 
end 
ifchckval5 

a=a+l; 
end 
ifnot(a) 

errordlg('Please Select at least one face!','Bad Input','modal') 
return 

end 
RectangleROI; 
function checkboxl_Callback(hObject, eventdata, handles) 
function checkbox2_Callback(hObject, eventdata, handles) 
function checkbox3_Callback(hObject, eventdata, handles) 
function checkbox4_Callback(hObject, eventdata, handles) 
function checkbox5_Callback(hObject, eventdata, handles) 
% — — 
function varargout = Rectangle_dimensions( varargin) 
guiSingleton = 1; 
guiState = struct('gui_Name', mfilename,... 

'guiSingleton', guiSingleton,... 
'gui_OpeningFcn', @Rectangle_dimensions_OpeningFcn, ... 
'guiOutputFcn', @Rectangle_dimensions_OutputFcn,... 
'guiLayoufFcn', [ ] , . . . 
'gui_Callback', []); 

if nargin && ischar(varargin{l}) 
guiState.guiCallback = str2func(varargin{ 1}); 

end 
if nargout 

[varargout{l:nargout}] = gui_mainfcn(gui_State, vararginj:}); 
else 

gui_mainfcn(gui_State, varargin {:}); 
end 
function Rectangle_dimensions_OpeningFcn(hObject, eventdata, handles, varargin) 
handles.output = hObject; 
guidata(hObject, handles); 
function varargout = Rectangle_dimensions_OutputFcn(hObject, eventdata, handles) 
varargout{l} = handles.output; 
function editl_Callback(hObject, eventdata, handles) 
function editl_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor', 'white1); 
end 
function edit2_Callback(hObject, eventdata, handles) 
function edit2_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor', 'white'); 
end 
function edit3_Callback(hObject, eventdata, handles) 
function edit3_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

set(hObject,"BackgroundColor','white1); 
end 
function pushbutton l_Callback(hObject, eventdata, handles) 
Frontpage; 



177 

close Rectangledimensions 
function pushbutton2_Callback(hObject, eventdata, handles) 
numl =get(handles.editl ,'string'); 
a=str2num(num 1); 
num2=get(handles.edit2,'string'); 
b=str2num(num2); 
num3=get(handles.edit3,'string'); 
c=str2num(num3); 
if isempty(a) %makes sure that the user enters numbers only for each dimension 

errordlg(Please enter numbers only!','Bad Input',"modal") 
return 

end 
if isempty(b) 

errordlg('Please enter numbers only!',"Bad Input',"modal") 
return 
end 
if isempty(c) 

errordlg('Please enter numbers only!1,"Bad Input','modal") 
return 
end 
if(a<50) 

errordlg(The minimum value for a is 50mm. Please enter a higher value",'Bad Input',"modal') 
return 

elseif(a>200) 
errordlg(The maximum value for a is 200mm. Please enter a lower value',"Bad Input","modal") 

return 
end 
if (b<30) 

errordlg(The minimum value for b is 30mm. Please enter a higher value','Bad Input","modal") 
return 

elseif(b>300) 
errordlg(The maximum value for b is 300mm. Please enter a lower value","Bad Input",'modal1) 

return 
end 
if(c<50) 

errordlg(Trie minimum value for c is 50mm. Please enter a higher value",'Bad Input","modal') 
return 

elseif(a>180) 
errordlg(The maximum value for c is 180mm. Please enter a lower value",Bad Input","modal") 

return 
end 
Reactangularvolumefacesforinspection; 
%- — -
function varargout = RectangleROI(varargin) 
gui_Singleton = 1; 
gui_State= struct('gui_Name', mfilename,... 

'guiSingleton', gui_Singleton,... 
"guiOpeningFcn", @Rectangle_ROI_OpeningFcn,... 
"guiOutputFcn", @Rectangle_ROI_OutputFcn,... 
"guiLayoutFcn", [ ] , . . . 
"guiCallback", []); 

if nargin && ischar(varargin{l}) 
guiState.guiCallback = str2func(varargin{ 1}); 

end 
if nargout 

[varargout{l:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 

gui_mainfcn(gui_State, varargin {:}); 



178 

end 
function Rectangle_ROI_OpeningFcn(hObject, eventdata, handles, varargin) 
figurehandle=Rectangle_dimensions; 
dimension_data=guidata(figurehandle); 
a 1 =get(di mensiondata. edit 1, 'string'); 
b 1 =get(dimension_data.edit2,'string'); 
cl=get(dimension_data.edit3, 'string'); 
a=str2num(al); 
b=str2num(bl); 
c=str2num(cl); 
set(handles.text6,'string',a); 
set(handles.text7,'string',b); 
set(handles.text8,'string',c); 
figh=Reactangular_volurne_faces_for_inspection; 
figdata=guidata(figh); 
chkl=get(figdata.checkboxl,'value'); 
chk2=get(figdata.checkbox2,'value'); 
chk3=get(figdata.checkbox3,'value'); 
chk4=get(figdata.checkbox4,'value'); 
chk5=get(fi gdata. checkbox5, 'value'); 
ifchkl 

set(handles.textl,'visible','on'); 
set(handles.togglebutton65,'visible','on'); 
set(handles.togglebutton66,'visible','on'); 
set(handles.togglebutton67,'visible','on'); 
set(handles.togglebutton68,'visible','on'); 
set(handles.togglebutton69,'visible','on'); 
set(handles.togglebutton70,'visible,,'on'); 
set(handles.togglebutton71 ,'visible','on'); 
set(handles.togglebutt on 72,'visible','on'); 
set(handles.togglebutton73,'visible','on'); 

end 
ifchk2 

set(handles.text2,'visible','on'); 
set(handles.togglebutton92,'visible','on'); 
set(handles.togglebutton93,'visible','on'); 
set(handles.togglebutton94,'visible','on'); 
set(handles.togglebutton95,'visible','on'); 
set(handles.togglebutton96,'visible','on'); 
set(handles.togglebutton97,'visible','on'); 
set(handles.togglebutton98,'visible','on'); 
set(handles.togglebutton99,'visible','on'); 
set(handles.togglebuttonl 00, Visible','on*); 

end 
ifchk3 

set(handles.text3,'visible','on'); 
set(handles.togglebuttonl01,Visible','on1); 
set(handles.togglebuttonl02, Visible','on*); 
set(handles.togglebuttonl 03, Visible','on"); 
set(handles.togglebuttonl04,Visible','on'); 
set(handles.togglebutton 105, Visible','on'J; 
set(handles.togglebuttonl06, Visible','on1); 
set(handles.togglebuttonl07,'visible','on1); 
set(handles. toggl ebutton 108, 'visible', 'on1); 
set(handles.togglebuttonl 09, Visible','on'); 

end 
ifchk4 

set(handles.text4,'visible','on'); 



179 

set(handles.togglebuttonl 10,'visible','on1); 
set(handles.togglebuttonl 11,Visible','on1); 
set(handles.togglebuttonl 12,Visible','on1); 
set(handles.togglebuttonl 13,'visible','on1); 
set(handles.togglebuttonll4,'visible','on"); 
set(handles.togglebuttonl 15, Visible','on1); 
set(handles.togglebuttonl 16, Visible','on1); 
set(handles.togglebuttonl 17,Visible','on*); 
set(handles.togglebuttonl 18,'visible', "on"); 

end 
ifchk5 

set(handles.text5,'visible','on'); 
set(handles.togglebuttonll9,'visible','on"); 
set(handles.togglebuttonl 20, Visible','on1); 
set(handles.togglebutton 121, Visible','on1); 
set(handles.togglebuttonl 22, Visible','on*); 
set(handles.togglebuttonl23,'visible','on1); 
set(handles.togglebuttonl24, Visible','on1); 
set(handles.togglebuttonl 25, Visible','on1); 
set(handles.togglebuttonl 26, Visible','on1); 
set(handles.togglebuttonl27, Visible','on1); 

end 
handles, output = hObject; 
guidata(hObject, handles); 
function varargout = Rectangle_ROI_OutputFcn(hObject, eventdata, handles) 
varargout {1} = handles.output; 
function pushbutton l_Callback(hObject, eventdata, handles) 
counterl=0; 
counter2=0; 
counter3=0; 
counter4=0; 
counter5=0; 
t65=get(handles.togglebutton65, Value'); 
t66=get(handles .togglebutton66, Value'); 
t67=get(handles.togglebutton67, Value"); 
t68=get(handles.togglebutton68, Value1); 
t69=get(handles.togglebutton69, Value'); 
t70=get(handles.togglebutton70, Value'); 
t71 =get(handles.togglebutton71,'value'); 
t72=get(handles.togglebutton72, Value"); 
t73=get(handles.togglebutton73, Value1); 
ift65 

counter 1 =counter 1+1; 
end 
if t66 

counter 1 =counter 1+1; 
end 
ift67 

counter 1 =counter 1+1; 
end 
ift68 

counter 1 =counter 1+1; 
end 
ift69 

counter 1 =counter 1 +1; 
end 
ift70 

counter 1 =counter 1+1; 



180 

end 
if t71 

counter 1 =counter 1+1; 
end 
ift72 

counter 1 =counter 1+1; 
end 
if t73 

counterl=counterl+l; 
end 
t92=get(handles.togglebutton92, Value1); 
t93=get(handles.togglebutton93,Value'); 
t94=get(handles.togglebutton94,Value'); 
t95=get(handles.togglebutton95,Value"); 
t96=get(handles.togglebutton96, Value"); 
t97=get(handles.togglebutton97, Value"); 
t98=get(handles.togglebutton98,Value'); 
t99=get(handles.togglebutton99, Value'); 
tlOO=get(handles.togglebuttonlOO, 'value'); 
if t92 

counter2=counter2+l; 
end 
if t93 

counter2=counter2+l; 
end 
ift94 

counter2=counter2+l; 
end 
ift95 

counter2=counter2+l; 
end 
ift96 

counter2=counter2+l; 
end 
ift97 

counter2=counter2+l; 
end 
if t98 

counter2=counter2+l; 
end 
ift99 

counter2=counter2+l; 
end 
iftlOO 

counter2=counter2+l; 
end 

1101 =get(handles.togglebutton 101,'value'); 
1102=get(handles.togglebutton 102,'value'); 
tl03=get(handles.togglebuttonl03,'value'); 
tl04=get(handles.togglebuttonl04,'value'); 
tl05=get(handles.togglebuttonl05,'value'); 
tl06=get(handles.togglebuttonl06,'value'); 
tl07=get(handles.togglebuttonl07,'value'); 
tl08=get(handles.togglebuttonl08,'value'); 
tl09=get(handles.togglebuttonl09,'value'); 
iftlOl 

counter3=counter3+l; 



181 

end 
if tl02 

counter3=counter3+l; 
end 
if tl03 

counter3=counter3+l; 
end 
if tl04 

counter3=counter3+l; 
end 
if tl05 

counter3=counter3+l; 
end 
if tl06 

counter3=counter3+l; 
end 
if tl07 

counter3=counter3+l; 
end 
if tl08 

counter3=counter3+l; 
end 
if tl09 

counter3=counter3+l; 
end 
tl 10=get(handles.togglebuttonl 10, 'value'); 
tl 1 l=get(handles.togglebuttonl 11,'value'): 
tl 12=get(handles.togglebuttonl 12,'value'): 
tl 13=get(handles.togglebuttonl 13,'value'); 
tl 14=get(handles.togglebuttonl 14,'value'); 
tl 15=get(handles.togglebuttonl 15,'value'); 
tl 16=get(handles.togglebuttonl 16,'value'); 
tl 17=get(handles.togglebuttonl 17, 'value'): 
tl 18=get(handles.togglebuttonl 18,'value'); 
if tl 10 

counter4=counter4+l; 
end 
if t i l l 

counter4=counter4+l; 
end 
if tl 12 

counter4=counter4+l; 
end 
if tl 13 

counter4=counter4+l; 
end 
if t l l4 

counter4=counter4+l; 
end 
if tl 15 

counter4=counter4+l; 
end 
if tl 16 

counter4=counter4+l; 
end 
iftl l7 

counter4=counter4+l; 
end 



182 

if tl 18 
counter4=counter4+l; 

end 
tl 19=get(handles.togglebuttonl 19,'value'); 
tl20=get(handles.togglebuttonl20,'value'); 
1121 =get(handles.togglebutton 121,'value'); 
1122=get(handles.togglebuttonl 22,'value'); 
1123=get(handles.togglebutton 123, 'value'); 
1124=get(handles.togglebutton 124, 'value'); 
tl25=get(handles.togglebuttonl 25, 'value'); 
tl26=get(handles.togglebuttonl26,'value'); 
tl27=get(handles.togglebuttonl27,'value'); 
if tl 19 

counter5=counter5+l; 
end 

iftl20 
counter5=counter5+l; 

end 
if tl21 

counter5=counter5+l; 
end 
if tl22 

counter5=counter5+l; 
end 
if tl23 

counter5=counter5+1; 
end 
iftl24 

counter5=counter5+l; 
end 
if tl25 

counter5=counter5+l; 
end 
iftl26 

counter5=counter5+l; 
end 
iftl27 

counter5=counter5+1; 
end 

total =counter 1 +counter2+counter3+counter4+counter5; 
if(total>8) 

errordlgCThe maximum number of ROIs allowed is S^Bad Input',"modal') 
return 
end 
if(total<l) 

errordlgCPlease select at least one ROI'.'Bad Input','modal') 
return 
end 
TypesofinspectionRectangle; 

function pushbutton2_Callback(hObject, eventdata, handles) 

Frontpage; 
close RectangleROI 
%-- -
function varargout = ResolutionforROI(varargin) 



183 

guiSingleton = 1; 
guiState = struct('gui_Name', mfilename,... 

'guiSingleton', guiSingleton,... 
'guiOpeningFcn', @Resolution_for_ROI_OpeningFcn,... 
'guiOutputFcn', @Resolution_for_ROI_OutputFcn,... 
'guiLayoutFcn', [ ] , . . . 
'guiCallback', []); 

if nargin && ischar(varargin {1}) 
guiState.guiCallback = str2func( varargin {1}); 

end 
if nargout 

[varargout{l:nargout}] = gui_mainfcn(gui_State, varargin}:}); 
else 

gui_mainfcn(gui_State, varargin {:}); 
end 
function Resolution_for_R01_OpeningFcn(hObject, eventdata, handles, varargin) 
handles.output = hObject; 
guidata(hObject, handles); 
function varargout = Resolution_for_ROI_OutputFcn(hObject, eventdata, handles) 
varargout{l} = handles.output; 
% 
function varargout = select_part_family(varargin) 
guiSingleton = 1; 
guiState = struct('gui_Name', mfilename,... 

'guiSingleton', guiSingleton,... 
'guiOpeningFcn', @select_part_family_OpeningFcn,... 
'guiOutputFcn', @select_part_family_OutputFcn,... 
'guiLayoutFcn', [] ,... 
'gui_Callback', []); 

if nargin && ischar( varargin {1}) 
guiState.guiCallback = str2func(varargin{ 1}); 

end 
if nargout 

[varargout{l:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 

gui_mainfcn(gui_State, varargin {:}); 
end 
function select_part_family_OpeningFcn(hObject, eventdata, handles, varargin) 
handles.output = hObject; 
guidata(hObject, handles); 
function varargout = select_part_family_OutputFcn(hObject, eventdata, handles) 
varargoutjl} = handles.output; 
function radiobuttonl_Callback(hObject, eventdata, handles) 
a=get(hObj ect,'value'); 
if a 

Rectangledimensions; 
set(handles.radiobutton2,'value',0); 
set(handles.radiobutton3,'value',0); 

end 
function pushbutton l_Callback(hObject, eventdata, handles) 
function pushbutton2_Callback(hObject, eventdata, handles) 
function radiobutton2_Callback(hObject, eventdata, handles) 
b=get(hObject,'valuel); 
ifb 

Cylinderdimensions; 
set(handles.radiobuttonl,'value',0); 
set(handles.radiobutton3,'value',0); 

end 



184 

function radiobutton3_Callback(hObject, eventdata, handles) 
c=get(hObject,'value'); 
ifc 

Cube_dimensions; 
set(handles.radiobutton2,'value',0); 
set(handles.radiobuttonl,'value',0); 

end 
function pushbutton3_Callback(hObject, eventdata, handles) 
Frontpage; 
close seleci_part_family; 
%— 
function varargout = Types_of_inspection( varargin) 
guiSingleton = 1; 
guiState = struct('gui_Name', mfilename,... 

'guiSingleton', guiSingleton,... 
'guiOpeningFcn', @Types_of_inspection_OpeningFcn,... 
'guiOutputFcn', @Tvpes_of_inspection_OutputFcn, ... 
'guiLayoutFcn', [ ] , ... 
'gui_Callback', []); 

if nargin && ischar(varargin{l}) 
gui_State.gui_Callback = str2func( varargin) 1}); 

end 
if nargout 

[varargout)l:nargout}] = gui_mainfcn(gui_State, varargin):}); 
else 

gui_mainfcn(gui_State, varargin {:}); 
end 
function Types_of_inspection_OpeningFcn(hObject, eventdata, handles, varargin) 
handles.output = hObject; 
guidata(hObject, handles); 
function varargout = Types_of_inspection_OutputFcn(hObject, eventdata, handles) 
varargout) 1} = handles.output; 
function checkboxl_Callback(hObject, eventdata, handles) 
function checkbox2_Callback(hObject, eventdata, handles) 
function checkbox3_Callback(hObject, eventdata, handles) 
function edit2_Callback(hObject, eventdata, handles) 
function edit2_CreateFcn(hObject, eventdata, handles) 
if ispc && isequaKge^hObjectjBackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

set(hObject,BackgroundColorVwhite'); 
end 
function pushbuttonl_Callback(hObject, eventdata, handles) 
Frontpage; 
close Types_of_inspection 
function pushbutton2_Callback(hObject, eventdata, handles) 
% -
function varargout = Types_of_inspection(varargin) 
gui_Singleton = 1; 
gui_State= struct('gui_Name', mfilename,... 

'guiSingleton', guiSingleton,... 
'gui_OpeningFcn', @Types_of_inspection_OpeningFcn,... 
'gui_OutputFcn', @Types_of_inspection_OutputFcn, ... 
'guiLayoutFcn', [] ,... 
'gui_Callback', []); 

if nargin && ischar( varargin} 1}) 
guiState.guiCallback = str2func{ varargin {1}); 

end 
if nargout 

[varargout{lmargout}] = gui_mainfcn(gui_State, varargin):}); 



185 

else 
gui_mainfcn(gui_State, varargin {:}); 

end 
function Types_of_inspection_OpeningFcn(hObject, eventdata, handles, varargin) 
handles.output = hObject; 
guidata(hObject, handles); 
function varargout = Types_of_inspection_OutputFcn(hObject, eventdata, handles) 
varargout {1} = handles.output; 
function checkboxl_Callback(hObject, eventdata, handles) 
function checkbox2_Callback(hObject, eventdata, handles) 
function checkbox3_Callback(hObject, eventdata, handles) 
function edit2_Callback(hObject, eventdata, handles) 
function edit2_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

set(hObject,BackgroundColor','white1); 
end 
function pushbutton l_Callback(hObject, eventdata, handles) 
Frontpage; 
close Typesofinspection 
function pushbutton2_Callback(hObject, eventdata, handles) 
% 
function varargout = Types_of_inspection(varargin) 
guiSingleton = 1; 
guiState = struct('gui Name', mfilename,... 

'guiSingleton', guiSingleton,... 
'guiOpeningFcn', @Types_of_inspection_OpeningFcn,... 
'gui_OutputFcn', @Types_of_inspection_OutputFcn,... 
'gui_LayoutFcn', [] ,... 
'gui_Callback', []); 

if nargin && ischar(varargin {1}) 
guiState.guiCallback = str2func( varargin {1}); 

end 
if nargout 

[varargout{l:nargout}] = gui_mainfcn(gui_State, varargin}:}); 
else 

gui_mainfcn(gui_State, varargin {:}); 
end 
function Types_of_inspection_OpeningFcn(hObject, eventdata, handles, varargin) 
handles.output = hObject; 
guidata(hObject, handles); 
function varargout = Types_of_inspection_OutputFcn(hObject, eventdata, handles) 
varargout {1} = handles.output; 
function checkboxl_Callback(hObject, eventdata, handles) 
function checkbox2_Callback(hObject, eventdata, handles) 
function checkbox3_Callback(hObject, eventdata, handles) 
function edit2_Callback(hObject, eventdata, handles) 
function edit2_CreateFcn(hObject, eventdata, handles) 
if ispc && isequaKgetthObjec^BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white'); 
end 
function pushbuttonl_Callback(hObject, eventdata, handles) 
Frontpage; 
close Types_of_inspection 
function pushbutton2_Callback(hObject, eventdata, handles) 
% 
function varargout = Types_of_inspection(varargin) 
guiSingleton = 1; 
guiState = struct('gui_Name', mfilename,... 



186 

'guiSingleton', guiSingleton,... 
'guiOpeningFcn', @Types_of_inspection_OpeningFcn,... 
'guiOutputFcn', @Types_of_inspection_OutputFcn,... 
'guiLayoutFcn', [ ] , . . . 
'gui_Callback', []); 

if nargin && ischar(varargin{ 1}) 
guiState.guiCallback = str2func( varargin {1}); 

end 
if nargout 

[varargout{l:nargout}] = gui_mainfcn(gui_State, vararginj:}); 
else 

gui_mainfcn(gui_State, varargin {:}); 
end 
function Types_of_inspection_OpeningFcn(hObject, eventdata, handles, varargin) 
rect_dim=Rectangle_dimensions; 
dim_info=guidata(rect_dim); 
diml =str2num(get(dim_info.editl,'string')); 
dim2=str2num(get(dim_info.edit2,'string')); 
dim3=str2num(get(dim_info.edit3,'string')); 
set(handles.text50,'string',diml); 
set(handles.text51 ,'string',dim2); 
set(handles.text52,'string',dim3); 
roi=Rectangle_RO!; 
roi_info=guidata(roi); 
handles.output = hObject; 
guidata(hObject, handles); 
function varargout = Types_of_inspection_OutputFcn(hObject, eventdata, handles) 
varargoutjl} = handles.output; 
function checkbox l_Callback(hObject, eventdata, handles) 
function checkbox2_Callback(hObject, eventdata, handles) 
function checkbox3_Callback(hObject, eventdata, handles) 
function edit2_Callback(hObject, eventdata, handles) 
function edit2_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white'); 
end 
function pushbutton l_Callback(hObject, eventdata, handles) 
Frontpage; 
close Typesofinspection 
function pushbutton2_Callback(hObject, eventdata, handles) 
% -— 



9.4. 6 Microcontroller code 

This program was produced by the 
CodeWizardAVR VI.24.5 Evaluation 
Automatic Program Generator 
© Copyright 1998-2005 Pavel Haiduc, HP InfoTech s.r.l. 
http: //www.hpinfotech. com 
e-mail: offi ce@hpinfotech. com 

Project: Davrajhl6PWM 
Version : 
Date : 2008/08/16 
Author : Freeware, for evaluation and non-commercial use only 
Company: 
Comments: 

Chip type : ATmegal6 
Program type : Application 
Clock frequency : 4.000000 MHz 
Memory model : Small 
External SRAM size : 0 
Data Stack size : 256 
a****************************************************/ 

//#include <megal6.h> 
#include <mega32.h> 
//#include "delay.h" 
// Standard Input/Output functions 
/* 
const unsigned char achMotorl[4] = {'M',T','r^0'}; 
const unsigned char achMotor2[4] = {'M',T,'2',\0'}; 
const unsigned char achMotor3[4] = {IM'>T,'3','\01}; 
*/ 

unsigned char uchSpeed3 = 0; 
unsigned int uiPWMO = 0; 
unsigned int uiPWMl = 0; 
unsigned int uiPWM2 = 0; 
unsigned char uchDelay = 0; 

void USART_Transmit( unsigned char data) 
{ 
/* Wait for empty transmit buffer */ 
while (!( UCSRA & (1«5)) ) 

/* Put data into buffer, sends the data */ 
UDR = data; 
} 

unsigned char USART_Receive( void ) 
{ 
/* Wait for data to be received */ 
while ( !(UCSRA & (1«7)) ) 

/* Get and return received data from buffer */ 

http://www.hpinfotech


188 

return UDR 
} 
#ifO 
void SPI_MasterInit(void) 
{ 
/* Set MOSI and SCK output, all others input */ 
DDRB = (1«5) | (1«7); 
/* Enable SPI, Master, set clock rate fck/16 */ 
SPCR = (1«6) |(1«4) |(1«0); 
} 

void SPl_MasterTransmit(char cData) 
{ 
/* Start transmission */ 
SPDR = cData; 
/* Wait for transmission complete */ 
while(!(SPSR&(l«7))) 

} 
#define ADCJVREFTYPE 0x20 
// Read the 8 most significant bits 
// of the AD conversion result 
unsigned char read_adc(unsigned char adcinput) 
{ 
ADMUX=adc_input|ADC_VREF TYPE; 
// Start the AD conversion 
ADCSRA|=0x40; 
// Wait for the AD conversion to complete 
while ((ADCSRA & 0xl0)==0); 
ADCSRA|=0xl0; 
return ADCH; 
} 
#endif 
// Declare your global variables here 

void main(void) 
{ 
unsigned char afMotor[3]; 
unsigned char achlnput[4] = {0,0,0,0}; 
unsigned char chtemp = 0; 
unsigned char uchSpeedl = 0; 
unsigned char uchSpeed2 = 0; 

// Declare your local variables here 

aflvlotor[0] = 0; 
afMotor[l] = 0; 
afMotor[2] = 0; 
// Input/Output Ports initialization 
// Port A initialization 
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Funcl=In Func0=ln 
// State7=T State6=T State5=T State4=T State3=T State2=T State 1=T State0=T 
PORTA=0x00; 
DDRA=0x00; 

// Port B initialization 



189 

// Func7=ln Func6=In Func5=In Func4=In Func3=In Func2=ln Funcl=In FuncO=ln 
// State7=T State6=T State5=T State4=T State3=T State2=T State 1=T StateO=T 
PORTB=0xFF; 
DDRB=OxFF; 

// Port C initialization 
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Funcl=In FuncO=In 
// State7=T State6=T State5=T State4=T State3=T State2=T Statel=T StateO=T 
PORTC=0x00; 
DDRC=0x00; 

// Port D initialization 
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Funcl=In FuncOIn 
// State7=T State6=T State5=T State4=T State3=T State2=T State 1=T StateO=T 
PORTD =0xFF; 
DDRD =0xFF; 

// Timer/Counter 0 initialization 
// Clock source: System Clock 
// Clock value: Timer 0 Stopped 
// Mode: Normal top=FFh 
// OCO output: Disconnected 
TCCR0= 0x6A ; //0x62; 
//0x02|0x40|0x20; 
TCNTO=0x00; 
OCR0=0xFA; 

// Timer/Counter 1 initialization 
// Clock source: System Clock 
// Clock value: Timer 1 Stopped 
// Mode: Normal top=FFFFh 
// OC1A output: Discon. 
// OC1B output: Discon. 
// Noise Canceler: Off 
// Input Capture on Falling Edge 
TCCRlA=0x01; 
TCCRlB=0x02; 
TCNTlH=0x00; 
TCNTlL=0x00; 
ICRlH=0x00; 
ICRlL=0x00; 
OCRlAH=0x00; 
OCRlAL=0x00; 
OCRlBH=0x00; 
OCRlBL=0xFA; 

// Timer/Counter 2 initialization 
// Clock source: System Clock 
// Clock value: Timer 2 Stopped 
// Mode: Normal top=FFh 
// OC2 output: Disconnected 
ASSR=QxOO; 
TCCR2=0x7A; 
TCNT2=0xOO; 
OCR2=0xF0; 

// External Interrupt(s) initialization 
// INTO: Off 



190 

// INT1: Off 
// INT2: Off 
MCUCR=0x00; 
MCUCSR=0x00; 

// Timer(s)/Counter(s) Interrupt(s) initialization 
TMSK=0x00; 

// USART initialization 
// Communication Parameters: 8 Data, 1 Stop, No Parity 
//USARTReceiver: On 
// USART Transmitter: On 
// USART Mode: Asynchronous 
//USART Baud rate: 9600 
UCSRA=0x00; 
UCSRB=0xl8; 
UCSRC=0x86; 
UBRRH=0x00; 
UBRRL=0xl9; 

// Analog Comparator initialization 
// Analog Comparator: Off 
// Analog Comparator Input Capture by Timer/Counter 1: Off 
#if0 
ACSR=0x80; 
SFIOR=0x00; 

// ADC initialization 
// ADC Clock frequency: 125.000 kHz 
// ADC Voltage Reference: AREF pin 
// ADC Auto Trigger Source: None 
// Only the 8 most significant bits of 
// the AD conversion result are used 
ADMUX=ADC VREFTYPE; 
ADCSRA=Ox85; 
#endif 
//SPI_MasterInit(); 
while (1) 

{ 
PORTB = OxOF; 
chtemp= USART_Receive(); 

#if0 
USART_Transmit(USART_Receive()); 
if (uchDelay = 1) 
{ 

OCR0 = (uiPWMO * 100)/255; 
OCRlAL = (uiPWMl * 100)/255; 
OCR2 = (uiPWMl * 100)/255; 
delay_ms((unsigned char)(chtemp*10)); /* centi seconds */ 
uchDelay = 0; 

} 
if(aflvlotor[0]) 
{ 

uchSpeedl = chtemp; 
uiPWMO = ((int)uchSpeedl *100)/209; 
afMotor[0] = 0; 

} 
elseif(afMotor[l]) 



191 

{ 
uchSpeed2 = chtemp; 
uiPWMl = ((int)uchSpeed2*100)/229; 
afMotor[l] = 0; 

} 
else if (afMotor[2]) 
{ 

uchSpeed3 = chtemp; 
uiPWM2 = ((int)uchSpeed3*100)/50; 
afMotor[2] = 0; 
uchDelay = 1; 

} 

if (chtemp = TvT ) 
{ 

achlnput[0] = chtemp; 
continue; 

} 
else if ((chtemp = T)&&(achInput[0] == TVI*)) 
! 

achlnput[ 1 ] = chtemp; 
continue; 

} 
else if ((achlnput[0] == tM')&&(achInput[l] == T)) 
{ 
if ((chtemp == 0)||(chtemp = l)||(chtemp == 2)) 
{ 

afMotor[chtemp] = 1; 
} 
else 
{ 

achlnput[0] = 0; 
achlnput[l] = 0; 
achlnput[2] = 0; 
achlnput[3] = 0; 

} 
continue; 

} 

// USART_Transmit(USART_Receive()); 
// PORTB = cVariable ; 
// cVariable+= 10; 
// PORTB &= OxFA; 
// OCR0 = cVariable; 
// 0CR1AL = cVariable; 
// OCR 1BL= cVariable; 
// OCR2 = cVariable; 

#endif 
/* 
#asm 

nop; 
nop; 
nop; 
nop; 

#endasm */ 
// Place your code here 
} ; 

} 


