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Abstract

The evolution of the manufacturing industry may be viewed as proceeding from Dedicated
Manufacturing Systems (DMS) to Reconfigurable Manufacturing Systems (RMS). Customer
requirements change unpredictably, and so DMS are no longer able to meet modern
manufacturing requirements. RMS are designed with the focus of providing rapid response to a
change in product design, within specified part families. The movement from DMS to RMS
facilitates mass-production of custom products. Custom parts require inspection routines that can
facilitate variations in product parameters such as dimensions, shape, and throughputs. Quality
control and part inspection are key processes in the lifecycle of a product. These processes are
able to verify product quality; and can provide essential feedback for enhancing other processes.
Mass-producing custom parts requires more complex and frequent quality control and inspection
routines, than were implemented previously. Complex, and higher frequencies of inspection
negatively impact inspection times, and inherently, production rates. For manufacturers to
successfully mass-produce custom parts, processes which can perform complex and varying
quality control operations need to be employed. Furthermore, such processes should perform
inspections without significantly impacting production rates. A method of reducing the impact

of high frequency inspection of customized parts on production rates is needed.

This dissertation focuses on the research, design, construction, assembly, and testing of a Non-
Contact Automated Inspection System (NCAIS). The NCAIS was focused on performing quality
control operations whilst maintaining the maximum production rate of a particular Computer
Integrated Manufacturing (CIM) cell. The CIM cell formed part of a research project in the
School of Mechanical Engineering, University of KwaZulu-Natal; and was used to simulate
mass-production of custom parts. Two methods of maintaining the maximum production rate
were explored. The first method was the automated visual inspection of moving custom parts,
The second method was to inspect only specified Regions of Interest (ROIls). Mechatronic
engineering principles were used to integrate sensor articulation, image acquisition, and image
processing systems. A specified maximum production rate was maintained during inspection,
without stoppage of parts along the production line occurring. The results obtained may be

expanded to specific manufacturing industries.
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1. Introduction

1.1 Research background

Quality control and part inspection are key manufacturing processes in the lifecycle of a
product. These processes have many functions such as detection of flaws, and relaying
information as to the nature and location of these flaws, thus providing for the improvement
of the overall manufacturing process. No change is made to a product during inspection, in
order to increase its value. Time and resources are spent on these processes, without a gain in
profit. The advantage of quality control and part inspection is that customer loyalty through
product integrity may be sustained. The disadvantage of these processes is that even though
the lead time (time taken for products to reach customers) is increased, the product may not
be sold at a higher price, since ne value has been added [1]. The reduction of the time spent

on these processes is therefore an attractive concept to any manufacturer.

Product quality can be defined as the measure of the extent to which a product can satisfy a
given function [2]. Quality control is the process of ensuring that a part lies within its design
specifications. Quality control can be divided into inspection and testing. Testing a pant
involves examining the operation of that part, whilst performing its required application. Part
inspection is the search for aspects of the product that do not lie within design tolerances,
without operation of the part. Inspecting a part has three main applications, namely detection
of flawed products; determining significance of flaws; and provision of process feedback [4].
Detection of significant flaws in products allows for prevention of further production of
flawed products, thus minimizing materials wastage. The nature and location of detected
flaws allows for the feedback of the operation of a process. Using this feedback, process
parameters may be optimised in terms of costs and time. An example of where process

feedback is essential is to justify the shift to cheaper materials in the design of a product.

The manufacturing industry can be viewed as evolving from Dedicated Manufacturing
Systems (DMS) to Intelligent Manufacturing systems. DMS are manufacturing systems that
implement processes which perform only one specific operation, on a specific part [5]. An
example of this type of manufacturing system is the manufacturing lines employed to
manufacture cars in the mid 1900s. DMS are ideally suited for mass-producing identical
products in high-volume batches. Producing identical parts in batches allows for the use of

statistical inference as a method of quality contrel. This quality control method involves



inspection of a relatively small percentage of sample parts from a batch. Inspecting only a
few samples may lead to consumer risk and producer risk [1]. Consumer risk is the
acceptance of a batch of defective products, based on the sample set being within tolerances.
Consumers may therefore be prone to purchasing defective products. Producer risk involves
the possibility of tejecting a batch of acceptable products, based on the sample set consisting
of defective products. This allows manufacturers to be vulnerable to significant financial
losses, in terms of manufacturing time and other resources, by rejecting parts that lie within

tolerances.

Recent manufacturing trends are influenced by customer requirements to such an extent that
modem products are now designed to meet each individual’s needs. Due to the fact that
product requirements may differ for each customer, products currently produced may often
be unique and are often produced in small batches, which have varying product parameters.
This makes the use of DMS ineffective. New products vsually generate the highest revenue
on their introduction to a market [6]. As the product matures, the number of competitors that
are able to manufacture that particular product increase. This increase in competition leads to
a decrease in profit margins for manufacturers. Therefore modern manufacturers need to be
able to implement processes that have the capability to provide efficient, cost-effective and
rapid response to changes in product design and custorner requirements, in order to maintain
a competitive edge. Flexible Manufacturing Systems (FMS) are systems that aim to produce
a high varniety of parts [5]. FMS are employed in situations where a high variety of a small
number of products, is required. This type of system is not effective where a variety of parts
in large volumes, is required. A strategy employed to handle production of a variety of parts
in large volumes is Mass Customisation Manufacturing (MCM), MCM facilitates the
concept of mass personalisation. Mass personalisation is the mass production of customised
parts and part families [8). MCM involves manufacturers allowing the customer to have a
design input at various stages in the design process. Mass produced custom parts often vary
in design parameters such as colour; dimensions; tolerances; assembly; finish; costs; and

throughputs.

A system that has been developed to cope with mass-producing custom parts is
Reconfigurable Manufactuning Environments (RME). RME involve Reconfigurable
Manufacturing Systems (RMS) that are designed for providing rapid response to sudden,
unanticipated changes in product requirements [7]. An RMS may be composed of CNC

machines, Reconfigurable Machine Tocls, Reconfigurable Inspection Machines, and



Materials Handling Systems that facilitate part transportation from one machine to the next
within the manufacturing environment. RMS and FMS differ, in that an FMS is implemented
in environments that aim at producing small sets of a high variety of products, whereas the
main focus of an RMS is to minimise the time taken for a manufacturing system to respond
to varying market and customer requirements with respect to limited parts and part families.
A part family can be considered as a group of parts, which have some aspect of their design
in common These common aspects include similar shape, colour, dimensions, tolerances,
manufacturing processes, cost, etc. The production volumes produced in an RMS may vary
from low to high [6]. Tablel-1 shows the applicability of the different manufacturing
systems to mass-producing custom parts, with the meeting of the requirements highlighted in
yellow. 1t can therefore be deduced that RME are best suited to mass-producing custom parts

since they meet all the key requirements, whereas other manufacturing systems don’t.

DMS FMS RME
Requirements
Production High Low Varying from
volume low to high
Part variety Verylow | Veryhigh | High within
specified part
families
Ability to Low High High wathin
facilitate varying specified pat
Inspection farnilies
requirements
Inspection Time- |  Usually Low High
efficiency High
Frequency of Infrequent Very Ranges from
inspection frequent infrequent to
very frequent

Table1-1; Comparison of different manufacturing systems for mass producing custom parts

There are six key characteristics that an RMS may hold at all levels of its design. These
include: Modularity; Integrability; Customized flexibility; Scalability; Convertibility; and
Diagnosability. Modularity may be viewed as the subdivision of a system into subsystems
(modules), which are used to perform a given function. These modules allow for the
partitioning of the machine service and maintenance requirements, the implementation of
which lowers the life-cycle cost of the entire system. This reduction in life-cycle cost is
attributed to the fact that modules are easier and more cost effective to maintain than an

entire system. The upgrading of the system may often require only an upgrade of certain



modules, which again is more cost effective than the upgrade of the entire system. Factors to
consider when designing a modular system are selection of the actual modules and
integration of these modules (Integrability), which will affect performance of the system as a
whole. Customized flexibility is a concept that involves the design of a system to be flexible
within & given part or part family. This places various constraints on the design of the
components of the system, in order to conform to requirements of specified parts and part
families. The advantages of customized flexibility inciude faster throughput and higher
production rates as opposed to the more generat flexibility requirements for FMS, which do

not have as many confined constraints.

Convertibility is the capability of a system to change its operation to best suit a change in
product requirements. An example of this concept is a machine inspecting two rectangular
blocks of significantly different sizes, colour, and matenal. Implementation of this concept
has an advantage of a single system being able to adapt to changes in product requirements
without having to implement new or other existing systems, thereby reducing the overall
process costs. Scalability is the ability of a system to adapt to a change in production
capacity. This means that the inspection system would require the ability to inspect moving
parts at velocities that sometimes differ. Diagnosability is the ability of a system to detect
poor part quality, for manufacturing systems that may differ in process layout {7].

Another manvfacturing strategy developed to increase throughputs is Value Added
Manufacturing (VAM). This manufacturing concept is the process of retrofitting (modifying
or making additions to} a base platform [9]. Often, the inspection requirements of these parts
entail inspection of only areas of the part that were significantly affected by the modification
process. The reason for this is that the platforms used, have already undergone quality

control processes prior to supply of these parts.

1.2 Motivation for the study

Mass-producing custom parts does not allow for use of statistical inference as a method of
quality control. This is due to the fact that batch sizes are reduced and often inconsistent; and
products having different inspection requirements. These parts therefore require regular
inspection in order to ensure high quality standards. Due to the nature of these parts, high
frequency of often unique inspection routines, are required. These inspection routines require

the capability to be reconfigured in order to handle variations in product parameters. The



required high frequency of inspection has signmficant impacts on inspection times and
inherently, production rates. Manufacturers would therefore be required to invest more time
and resources whilst inspecting mass-produced custom parts. This increased investment
would decrease profit margins, discouraging manufacturers from performing extensive

quality control procedures.

Value Added Manufacturing (VAM) of parts awards manufacturers the option of performing
quality control by inspection of only key modifications and additions to a part. This option
awards manufacturers an advantage in that the inspection processes of these parts can be
performed quicker, due to reduction in inspection requirements of the entire part. The
maintaining of production rates during quality control of mass- producing custom parts and
VAM of parts would make the quality control processes more feasible for manufacturers. A
method of maintaining production rates whilst mass-producing custom parts and value added

manufactured parts, during quality contro! processes, is thus needed.

1.3 Contribution of the dissertation

The contribution of this dissertation lies with the fact that current research does not focus on
maintaining production rates whilst inspecting mass-produced custom parts. Furthermore,
current inspection systems do not take advantage of the fact that value added manufactured
parts often only require inspection of the modifications or additions that were made to a
particular part. This dissertation details the inspection of ROl on moving custom parts for
RME. The results of this research are limited to the inspection requirements of the
manufacturing ceil that the apparatus was tested in; however the inspection strategies may be
applied to many industrial applications.

1.4 Project objectives

The objectives of this project were to use the Mechatronic engineering appreach to:
s Research, design, construct, and assemble the apparatus by which custom parts are
visually inspected. The apparatus must display the ability to be integrated into an
RME
e Perform visual inspection of at least one part family by determining the

presence/absence of features in a part; validating correct assembly of components;



validating correct finish with respect to part colour ( and to some extent,
dimensions); determining the presence and significance of flaws

Research and implement machine intelligence that provides optimised inspection of
user defined ROI

Provide dynamic access to various ROI in order to facilitate inspection of moving
custom parts

Test and obtain results for maintaining production rates in a given CIM cell

1.5 Design specifications for apparatus

One of the requirements of the design was that the apparatus should integrate with the

existing infrastructure (CIM cell} at the School of Mechanical Engineering, University of

KwaZulu-Natal. The time allocated for inspection was therefore based on the maximum
operating conveyor speed of the CIM ceil. This speed was recorded as 0.02mvs. It was
decided to use the existing Automated Visual Inspection System (AVIS}, which was already

designed to integrate into the infrastructure of the CIM cell, as a platform on which to base

the design of the NCAIS. The following criteria were considered for the research, design,

and development of the apparatus:

Inspection of a part moving at 0.02m/s must occur without the part having to stop
during the inspection routine.

All faces except the bottom face of inspected parts needed to be accessible by the
sensor at least once during an inspection rowtine,

The maximum height, width, and length of a part that would be inspected were
200mm x 200mm x 200mm respectively.

Positioning and orientation of the sensor needed to be accurate and repeatable in
order to inspect the appropriate ROL Due to image processing software being able to
correct positioning errors, an accuracy of within 8mm of the desired point, was
acceptable.

Motion of the part during the inspection routine must occur at a constant velocity for
synchronisation of the sensor and part pose

The inspection routine must be complete as the part exits the apparatus. This
includes the decision about the acceptability of that part. Using the maximum
conveyor speed and maximum parnt travel distance of 800mm, the allowable

inspection time when running at maximum throughput was set to be 40s,



1.6 Outline of dissertation

The layout of this dissertation is as follows:

Chapter 1: Introduces the reader to the background of and motivation for the project. All
objectives and specifications are explicitly stated in this chapter.

Chapter 2: Informs the reader about different inspection methods used for quality control
processes, and highlights the most appropriate inspection sensors for inspecting mass-
produced custom parts

Chapter 3: Discusses proposed concepts for the design and operation of the apparatus
Chapter 4: Details the design of the core elements of the apparatus and its subsystems using
Mechatronic engineering

Chapter 5: Deals with the assembly phase of the project

Chapter 6: Quantifies system results and validates against system specifications. Discusses
the obtained results for the system

Chapter 7: Concludes the project and discusses flaws in the design as well as future
improvements.

Chapter 8: Provides references for information presented

Chapter 9;: Shows system drawings; system results; component specifications; and software
coding

1.7 Summary of chapter 1

This chapter served to introduce the reader to the subject background for inspecting moving
custom parts in RME. A motivation for the study; dissertation contributions; definition of
project objectives; and definition of system specifications were all explicitly stated in this

chapter. The ouiline of the dissertation was also described.



2. EXISTING INSPECTION METHODS

2.1 Contact and non-contact inspection

Methods of inspection can be divided into contact and non-contact inspection techniques.
Non-contact methods for quality control and part inspection are generally quicker than
contact methods, and deformable parts can also be inspected The possibility of
contamination due 10 contact between sensor and parts is eliminated when implementing
non-contact methods of inspection. Coordinate Measuring Machines (CMMSs) offer highly
flexible methods of inspection, and have been employed by manufacturers who wish to
minimise the cost of adapting to manufacturing changes [6]. These machines are used to
physically measure the geometrical properties of a part. A probe is attached to a manipulator,
and is used to acquire information about the size and location of features of interest on a part.
This information is then used for dimensional measurement; profiling; and image
construction [10]. The advantage of these machines is that they are highly flexible and are
hence able to perform inspection of a high variety of parts. This reduces capital investment

by manufacturers who require inspection of a variety of parts.

The disadvantages of CMMs are that the inspection rates of these machines are ofien
significantly less than production rates, and information obtained is limited to geometrical
properties of the part [6]. Slow inspection rates cause bottlenecks and so inspection using
these methods is often performed off-line, on an infrequent basis. Defective parts are
therefore only detected after a significant number of these parts have been produced. This
results in batches of parts being rejected as opposed to rejection of individual parts. CMMs

are therefore not suited for mass producing custom parts.

2.2 AVIS structure and design overview

The AVIS was developed to perform automated multi-faced part inspection using PC based
technology and a single digital camera. The sensor was mounted on a C shaped track (shown
in Figure 2-1), perpendicular to the direction of flow of products within the machine. This
was done to achieve various sensor heights. A rotational part manipulation platform allowed
for the part to rotate relative to the sensor, allowing for multi-faced access. The AVIS was
able to produce 2D images of a product, which were used for inspection purposes. The

structural frame of the AVIS was designed to have high ngidity and vibration damping



characteristics, thus minimising vibrations imparted to the sensor, during operation of the
machine. This allowed the inaccuracies associated with the acquisition of images to be

reduced [2].

The AVIS was designed having a rectangular-volume base with a trapezoidal-volume upper-
half, which was used as the inspection workspace. Figure 2-1 shows the mechanical structure
designed for the AVIS, along with the sensor housed on the track. The length, width, and
height of the base were 800mm x 800mm x 600mm respectively. The trapezoidal volume
available as a workspace had a base area of 800mm x 550mm; a top surface area of 450 mm

x 550mm; and a height of 460mm.

Figure 2-1: The AVIS

The operation of the AVIS involved a part entering the machine and stopping at the centre at
the part manipulation system. The camera would then be positioned at the required height to
acquire an image of the part. Due to the single plane motion of the camera, the part was
rotated for accessing different faces of the inspected part. Inspection routines required that
the part be stationery during inspection, which impacted production rates. The conveyor
system used was two parallel belts, driven by a single motor. These belts were found to
move at different rates due to slipping, over a period of time, and this caused rotation of the
part as it moved along the machine. This system was not acceptable for inspection of moving
parts, when the inspection routine required a predictable part pose. The lighting system
involved the use of two fluorescent lights fixed above the conveyor. This was not optimal for

varying inspection routines.



2.3 Sensors for inspection

Sensors are devices that are used to convert a physical property of an object into a signal that
can be used by processing units [1]. Sensors that may be used for inspection purposes can be
divided into contact and non-contact sensors. Contact sensors include CMM probes, which
make contact with the part being inspected. Non-contact inspection metheds involve a
specified distance between the sensor and the part; and can be divided into optical and non-
optical technologies [11]. Laser systems; and cameras are amongst the most common optical
methods found in industry. Non-optical sensors include eddy-current sensors; radiation
sensors; and ultrasonic sensors. Non-contact sensors offer advantages of fast inspection

times; and ability to inspect sensitive parts without any deformation occurring,

2.3.1 Optical techniques

Optical techniques for inspection allow for measurement and analyses of parts. Information
about a part is obtained via reflectance; light scatter or diffusion; and laser technology. Due
to high speeds of operation, these techniques allow for in-line inspection.

2.3.1.1 Cameras

A camera is an image sensor that is used for converting light into electric charge, and then
processing it into electric signals [3]. Automated inspection image sensors can be divided
into Charge Coupled Devices {CCDs) and Complementary Metal-Oxide Semiconductor
(CMOS). Although not as fast as some other methods of inspection, these sensors allow for
the highest amount of information to be extracted from a reading. These sensors can be used
for obtaining information about dimensions; colours; shapes; and even surface finish to some
extent. Since these sensors are able to provide such information about inspected parts, they
are well suited toward inspecting custom parts. More detailed information about cameras is

given in section 4.2.2.2
2.3.1.2 Lasers
A laser is a device that emits monochromatic, highly structured light; using a process called

stimulated emission [3]. Laser sensors are used to determine the physical dimensions and

profiles of an object. These systems are extremely fast and accurate. Inspection involving
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lasers include time-of-flight; laser scanning; and structured lighting [11]. Time-of-flight
sensors use the time delay of a reflected laser beam to determine the distance between the
sensor and the object reflecting the beam. This method yields resolution of up to twenty-five
microns. Laser scanning is based on triangulation methods to determine the distance of an
object from two known locations, using trigonometric relationships between the sensor, light
source, and object. Using this method, it is possible to obtain three-dimensional spatial data
of an object, with a resolution in the region of thirty-five microns. The disadvantage of laser-
scanning systems is that they are prone to shading and occlusion problems. Structured
lighting systems involve projecting coded light onto a surface and checking for fringes in the
projected beam. Fringes will occur at variant surface profiles. This method of inspection is
also prone to shading and occlusion problems. Laser sensors are very accurate and facilitate
in-line inspection of parts; however only geometrical object data can be obtained [14]. This

made sole use of laser sensors for inspection of custom parts unsuitable.

2.3.2 Non-optical techniques

2.3.2.1 Eddy-current sensors

Eddy-current sensors are non-contact sensors that use magnetic fields for high resolution
inspection of conductive objects. Eddy-currents are small currents which are induced in an
object, due to electromagnetic induction, by an alternating current in a probe coil. These
small currents create an opposing magnetic field, which resist the field initiated by the probe
coil. This field interaction is proportional to the distance between the probe and the inspected
object. A signal is generated when a change in current field interaction is sensed. These
sensors are used for position measurement; drive shaft monitoring; and thread detection.

Figure 2-2 shows the principle of operation of these sensors.

Figure 2-2: Principle of operation of eddy-current sensors [12]



Eddy-current sensors can also be used to detect material thickness; coating thickness;
conductivity measurements; and crack detection. Advantages of inspection using eddy-
current methods include detection of small cracks; portable equipment; minimum part
preparation required; and high tolerances of dirty environments. Disadvantages of eddy-
current sensors are that only conductive materials can be inspected; they have high
sensitivity to non-uniformities in material structure; and flaws that lie parallel to the probe,
are often undetected [12). Due to the fact that only conductive parts may be inspected using
these sensors, the sole use of eddy-current sensors for inspecting mass-produced-custom

parts is unsuitable.

2.3.2.2 Capacitive sensors

Capacitive sensors offer non-contact, high-resolution measurements of conductive targets.
These methods of inspection involve measwrement of the capacitance between two
conductive surfaces. A change in capacitance would indicate a change in distance between
the sensor and the part, and this can be used for profiling feedback. These sensors have the
advantage of being extremely accurate (within nanometre accuracy); high tolerance to
changes in materials; and are stable with temperature. The disadvantages of these sensors are
that they are expensive and are not effective in dirty or wet environments. Applications of
inspections involving capacitive sensors include precision vibration measurement; precision
thickness measurement; and assembly validation. These sensors may also be used in
inspection of non-conductive materials. This is achieved by placing the non-conductive
material between the sensor and a reference conductive plate. Reference readings are
acquired when running the sensor along the plate at a fixed distance. Any differences in
sensor readings when a part is present can only be attributed to properties of the part [13].

Due to the high-cost factor, these sensors were not considered for this project.

2.3.2.3 Ultrasonic sensors

Inspections vsing ultrasonic sensors involve emitting and receiving of high frequency sound
waves in order to detect and evaluate flaws; make dimensional measurements; and
characierize materials [14]. Technological advancements have made these sensors more
robust, flexible, and affordable. The operation of ultrasonic inspection relies on a sensor pair
(emitter and receiver) to measure distances between sensors and inspected objects. Internal

material properties may be examined by use of an appropnate coupling. Advantages of



ultrasonic sensors are that minimal part preparation is required; they are relatively
inexpensive, and they are reasonably accurate. The disadvantage of ultrasonic inspection is
that materials that are rough, irregular in shape, very small, non-homegenous, and materials
with low densities, are all difficult to inspect. These disadvantages all contribute to the

rejection of ultrasonic sensors for use as sole sensors of the NCAIS.

2.4 Vision systems- overview

Machine vision systems for manufacturing industries are primarily concerned with the
automatic interpretation of images in order to obtain information about, and control,
manufacturing processes [15). An image can be defined as a spatially discrete scalar function
of two independent variables, these two variables being spatially discrete as well. Images
obtained may be due to visible light, x-ray, infra-red energy, and ultrasound information. The
NCAIS used images based on visible light (light intensity), and so these systems will be
discussed. The purpose of a light-image is to numerically represent a physical object in
detail, by obtaining spatial (geometric) and spectral data about real world scenarios. The
image can then be used to mathematically represent the image as a matrix of light intensity
levels. This matrix is made up of picture elements which are referred to as pixels. Images

can be classified into binary images; grey-scale images; and colour images [16].

Binary images allow a pixel value of either 1 or 0, corresponding to white or black
respectively. The classification of a pixel value is set on a predefined light-intensity
threshold value. These images require the least amount of memory for representation of all
three images. Applications of binary imaging include those involving low memory-
applications for determining the presence or absence of an object; measurement of an object;
and applications involving high speed processing. Grey-scale images are monochrome
{usually 8-bit} images which allow for pixels to have a value ranging from 0 to 255, These
pixel values are based on an adaptive thresholding technique that represents various shades
of grey. The convention used is that a pixel value of 0 represents black; 255 represents white;
and values in between represent the linear shade of grey. These images require more memory
than binary images; however they have the advantage of distinguishing a wider variety of
objects with different reflective and lighting properties. Colour images are images that
represent an image on the Red, Green; and Blue (RGB) spectrums. These images may be
thought of as the combination of three monochromatic images, one for each channel of the

RGB spectrums. Consequently, these images require the most amount of information to be



represented, but they are able to provide the most accurate data from all three types of

images.

The output of a vision system is generally to make an inspection decision or to permit a
comparison with other data. This output can be categorised into one of four machine vision
applications namely: assembly verification; flaw detection; dimensional measurement; and
positioning applications [17]. Vision systems consist of vision hardware and software. The
key components of a vision system include a light source, an image capture device (camera),
a digitising device, and a digital processing unit (vision computer). The light source, image
capturing device, and digitising device, are responsible for the image acquisition and
formation process. The processing unit is responsible for analysis of the acquired images.
The signal to the processing unit may be either digital data or analogue data. In the case of
analogue data transmission, a frame grabber is required for digitisation of the image. A
schematic layout of a typical vision system, with the flow of the acquired signal, is shown in
Figure 2-3.
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Figure 2-3: Typical layout of a vision system [23]

The reliability and accuracy of a vision system are largely dependent on the images acquired.
The quality of the images acquired depends on lighting and sensors used for the acquisition
process. The acquisition process aims to produce images that have the following

characteristics:

¢ Well defined features/ ROI (high contrast with sufficient detail)
e High signal to noise (S/N) ratios

e High resistance to external disturbances



Well defined ROI allow for a more reliable and accurate operation as more data can be
obtained for processing. High S/N ratios allow for more accurate representation of objects,
allowing for more reliable image processing. A high resistance to external disturbances such
as light and vibrations leads to clearer and more detailed images, again leading to more

accurate and reliable image processing.

Following acquisition of an image, processing is required for turning the information into
usable data and then using that data for making a decision. Processing can be divided into
image enhancement and image analysis. Image enhancement uses algorithmic transforms to
provide a more reliable and accurate image for analysing. This is achieved by performing
pixel operations to reduce or eliminate noise; enhance significant features; and suppress
irrelevant background information. The objective of image analysis is to generate
quantitative data, from the data supplied by the enhancement processes, for feature
identification and extraction; assembly verification and dimensional conclusions. All this is
to allow the system to make an accept/reject decision. The sequence of a few typical
operations that an image undergoes, after acquisition has occurred, is shown below in Figure
2-4.

Acquired More relrable image
image

Vision
application

Vision system
output/decision

Figure 2-4: Typical sequence of operations on acquired images during processing
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2.5 Summary of chapter 2

This chapter highlights the various sensors used in inspection of products. Differences
between non-contact and contact methods are stated. The AVIS used for previous inspection

in the CIM cell was described. An overview of vision systems was discussed.
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3. CONCEPTUALIZED SYSTEM

3.1 Mechatronic engineering approach

Mechatronic engineering can be defined as the holistic design of engineering systems which
involve the integration of mechanical engineering, electrical and electronic engineering with
software engineering, at all levels of the design [18]. This design approach was introduced
in the late 1960’s, and stemmed from the use of computer-based technologies to improve the
level of performance of mechanical systems [20]. Concurrent engineering is a concept that
encompasses a similar approach of considering different aspects of the design concurrently.
The difference between Mechatronic engineering and concurrent engineering however, is
that in the Mechatronic engineering approach, the interchange of functionality between each
of the core elements is considered at conceptual stages of the design process. The core
elements of Mechatronic engineering, along with their functional dependencies, are shown

below in Figure 3-1 [20]

Electronic

Systems

Figure 3-1: Graphical representation of Mechatronic design approach [20]

The mechanical aspect of a Mechatronic engineering approach entails consideration of
spatial relationships and interactions between the various mechanical elements of the system.
Such relationships and interactions include static and dynamic loading of members; spatial
constraints for members induced by physical boundaries; and suitable materials selection for

design optimisation. The electrical and electronic components of the approach involve



signal-processing and communication between these signal-processing components. The
software aspects of the Mechatronic enpineering approach invelve processing of data and
information. A Mechatronic system may not necessarily constitute of equal amounts of
mechanical, electrical and electronic, and sofiware components. The advantages of
integrating the core elements of Mechatronic engineering include the design of systems that
offer enhanced performance, betier reliability, and safer operation than if these core elements
were designed independently. This approach offers a commercial advantage to

manufacturers.

Design and implementation of a Mechatronic engineenng system involves eight phases in
their respective sequence. These phases are: defining system requirements; conceptualising
the system holistically and then subdividing into conceptualised subsystems; design of
subsystems; construction of subsystems; testing of subsystems; assembly of subsystems to
constitute the entire system; testing of the entire system; and operation of the system {21].
Defining system requirements is dependent upon the problem that is to be solved. This phase
is responsible for defining system constraints with respect to part parameters such as
throughputs, dimensions, and requirements. The next phase involves conceptualising the
system as a whole, in order to operate within the constraints obtained in the previous phase.
The subdivision of the system into subsystems allows for incorporation of a modular design.
Each subsystem would then have to perform a cenain fumction within an inherent set of
constraints. All aspects of the core elements are initially interchanged in the

conceptualisation phase.

An example of this is the consideration of the automated speed control of a mechanical
member. Given that an actuator has to move a mechanical member at a centain speed, an
appropriate sensor and control hardware needs be selected for governing this given speed.
Software that is able to provide sufficient control, via sensor feedback, needs to be
implemented in order to maintain efficient response to system disturbances. On completion
of system conceptualisation, the design phase is executed. The design of subsystems
accounts for easy Integrability of subsystems in the assembly phase. Construction of the
various subsystems involves manufacturing of customized parts as well as use of
Commercial off the Shelf (COTS) products [23]. Once the construction of subsystems is
complete, independent testing occurs to ensure that these subsystems perform their specific
functions satisfactorily. The assembly phase involves the integration and optimisation of the

subsystems. The system is considered as a single system from this phase. On completion of



full system integration, the system is tested to ensure that it performs the given function
within the constraints that were defined in the initial phase. Operation of the system follows
the testing phase. Refining of the system may still occur during the operation phase. Figure
3-2 below shows the sequence of the different phases involved in a Mechatronic engineering

design.

Figure 3-2: Sequence of design phases involved with Mechatronic engineering design [24]

Use of this approach places emphasis on a detailed and often lengthy conceptual design
phases. The reason for this is that the overall number of design iterations and development
costs may be significantly reduced. The conceptualisation and design of systems involves
implementation of some sort of simulation Simulating a Mechatronic engineering design
may be categorised into a combination of one or more of three representations, namely the
physical model; mathematical model; and the computer graphics model [24]. Simulations
based on use of a physical model are generally expensive, time consuming, difficult to
modify, and impractical. These models are however, easy to understand, and are effective in
identifying and isolating key aspects of the design. Mathematical models implement
algorithms that are used to represent system behaviour and performance analytically. These
models have proven to be accurate; however there is a large amount of difficulty incurred, in
fully defining inherent complexities associated with interrelationships between various
elements of a design. A method of enhancing accuracy of mathematical models is to merge
mathematical models with system hardware. Computer graphics simulations allow for real-

time analyses and visualisations of system performance. The use of this type of simulation
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awards the designer to make critical changes in a design prior to major investment in

constructing a prototype.

3.2 CIM cell overview

The CIM cell at the University of KwaZulu-Natal, in the School of Mechanical Engineering,
comprised of an Automated Storage and Retrieval System (AS/RS); a conveyor system; a
materials handling apparatus; an Autonomous Guided Vehicle (AGV); a Reconfigurable
Machine Tool (RMT); and an AVIS (on which the NCAIS was developed). The AS/RS was
used to store finished products and raw materials which were to be machined. The conveyor
system was used to transport parts to the various components of the CIM cell. A Puma robot
and indexing devices were used to handle materials at certain points along the conveyor, for
transfer of parts. The AGV was used to autonomously transport parts between the conveyor
and remote locations in the cell. The RMT performed off-line reconfigurable machining
operations on parts, and these parts were then transported to the AVIS for inspection which
occurred whilst the part was stationary [25]. Figure 3-3 below shows the layout of the CIM
cell, with the AGV and AS/RS not in view.

Figure 3-3: Layout of CIM cell used to test NCAIS
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3.3 NCAIS operation

The NCAIS was designed to integrate into the existing CIM cell. This constrained the
operation of the apparatus to the operating parameters of the cell. Among the objectives of
the CIM cell, were mimmisations of the user input required; and optimisation of the process
involved. Consequently, the NCAIS was designed to operate with minimal user input, and
with the objective of optimising inspection routines. The operation of the system was based
on inputs from the user with respect to the inspection routine parameters. Parts being
inspected could have either been new or reproduced. New parts required that the user enter
all the necessary information about the routine. Existing parts had the possibility of allowing
for changes in inspection routines. In this instance, the user would edit only the parameters
that require editing. The NCAIS inspection routines were designed to have a maximum of

eight user inputs for a part. These inputs were;

* Defining whether the part is new or existing
+ Part family that the part belongs to

« Conveyor speed of that batch

s Part dimensions

¢ Faces for inspection

¢ ROI on the selected faces

»  Orientation of the part on the conveyor

» Type of inspection required

The general sequence of operation of the inspection routine involved determining the
presence of a new part by use of a line sensor; identifying the part present so that the
inspection parameters could be loaded; loading and execution of the routine; obtaining part
information; determining the acceptability of the inspected part based on predefined
information; accepting or rejecting the inspected part. A flowchart of this operation is shown

in Figure 3-4.
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Figure 3-4: Flowchart showing proposed operation of the NCAIS

The operation of the NCAIS was dependent upon two assumptions. The first assumption was
that the inspected part armived at a known oriemtation. Secondly, constant conveyor speed
was assumed during inspection routines. Diagnosability, within a given time himit, was the
main consideration in the design of the NCAIS. The successful diagnosis of an imperfect
part can inform the user as to the location of flaws in the process layout. This information
can be used to tune a newly configured process, or to change the configuration of an

inefficient process layout.
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3.4 Classifications of parts

The concept of RME is that the manufacturing system is flexible with respect to a fimte
range of classified parts ard part families. The inspection routines for RME shouid therefore
account for these classes. Part families could be classified in terms of throughputs,
dimensions, shape, colour, and type of inspection required. The most generic method of
classification was classifying parts with respect to the shape of their volumes. Classifying
parts in terms of their dimensions would facilitate parts that vary with respect to dimensions
only. Changes in parameters such as part shape would not be accommodated for when
classifying parts in terms of dimensions. This means that classifying parts in terms of
dimensions will not be suitable for RME, as classes will need to be updated every time a
change in product shape, colour, type of inspection, and throughput occurs, Throughputs of
parts may change frequently. The throughput alone does not qualify as an intrinsic part
property, but instead can be considered as a characteristic of the mamufacturing process for
that part. This opposes the classification of parts in terms of their throughputs. The colours
of parts may be similar, vet the inspection routines may differ drastically. This makes
classifying parts in terms of colour, ineffective for inspecting parts that vary in shape,
dimensions, throughputs, and types of inspection. Classifying parts in terms of types of
inspection would not be practical as changes in part shape, dimension, throughputs and
colour, may not be accommodated. The most suitable method of classifying a part family
within RME is to classify the parts according to the shape of their volumes. This type of
classification facilitates variations in parameters such as dimensions, colouwr, throughputs,

and types of inspection,

The NCAIS was designed to accommodate the inspection of three part families. These part
families were classified in terms of the shape of their volume. The three classes of volumes
were rectangular volumes, cylindrical volumes, and cubic volumes. Assigning a part to a part
family was achieved by the user selecting the part family that most closely matched the
actual part volume to be inspected. An example of this assignment would be assigning a
cylinder head to the rectangular volume part family. Another example would be to assign a
spur gear or oil filter to the cylindrical part family. The execution of the inspection routines
was based on these volumes moving at a constant velocity, relative to the machine.

Diagrams of the three part families are shown in Figure 3-5 (a) to ().
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Figure 3-5(a): Rectangular Volume  Figure 3-5(b): Cylindrical Volume  Figure 3-5(c): Cubic Part

The rectangular part family required the user to input the length, breadth, and height of the
rectangular volume that the part fitted into. The cylindrical part family required the radius
and height of the cylindrical volume that the part fitted into. The cubic family required the
value of the side for the cubic volume that the part fitted into. Even though three part
families were conceptualised, the testing of the machine was based on the rectangular part

families.

3.5 Inspection strategies

Two strategies for system optimisation were considered. The first method was to inspect
only significant Regions of Interest (ROI). The second method was to perform inspection of
these ROI on moving parts. Not all aspects of a manufactured part require detailed
inspection. It is more efficient to therefore concentrate inspection efforts toward localized
regions of a part, rather than inspecting the part as a whole. The areas that require attention
are referred to as ROL Inspection of ROI allows for optimization of the inspection process
by investing resources in only essential aspects that require inspection; and acquiring
detailed information about localized regions as opposed to general information about the part
as a whole. Mass-produced-custom products involve frequent changes in design, which
results in frequent changes in inspection requirements. Reconfigurable inspection of ROI
allows for facilitation of these changes in regions that require inspection. Inspection of ROI
is also effective when considering the concept of Value Added Manufacturing (VAM), in
which acceptable manufactured parts are used as platforms and built upon, resulting in new
products with different functionalities. These value-added parts require inspection of only
the additions or changes that occurred to the base product. The rectangular and cubic-
volume part families were allocated a 3x3 matrix of ROl on each face, whilst the cylindrical
part family was divided into eight sections about its longitudinal axis, and divided into three
segments along its length, as shown in Figure 3-6. The user was allowed to inspect a face as

a whole if it was required. Dynamic access to these various ROl was proposed, in order to
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acquire information whilst the part was moving. Since the objectives of this research were to
perform inspections of only one part family, the testing and implementation of the system

was to facilitate inspection of only rectangular parts.
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Figure 3-6: ROI for the respective part families

3.6 Conceptualized subsystems

The NCAIS incorporated use of the Mechatronic Engineering approach when subdividing
the system into subsystems. These subsystems were the Sensor Positioning System (SPS),
Vision System (V8), Materials Handling System (MHS), Part Identification System (PIS),
and the software for general system management. The SPS was conceptualized to perform
sensor articulation for dynamic access to various ROL The VS was conceptualized to
perform image acquisition and processing for obtaining information about the part being
inspected. The PIS was responsible for identifving the part present, in order to load the
necessary inspection routine parameters. The MHS was responsible for materials handling
applications, and consisted of a conveyor belt for moving the part through the machine; as
well as a Part Centralization System (PCS) for aligning the centre of the part with the cenire
of the machine. This was proposed for ensuring predictable part pose. Figure 3-7 shows the
layout of the subsystems of the NCAIS.
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Figure 3-7: Flowchart showing constituent subsystems of NCAIS

3.7 Summary of chapter 3

This chapter describes the Mechatronic engineenng approach taken in order to solve the
problen. An overview of the CIM cell used as a testing environment is given. The intended
method of operation for the NCAIS is also given, with the subsystems highlighted. Part
families and ROI division on the different part families were discussed.
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4. MECHATRONIC DESIGN

4,1 Mechanical design

4.1.1 Sensor manipulation

The inspection process was required to perform part inspection whilst reducing the impact of
high frequencies of inspections on the inspection times and hence the production rates
involved with mass-producing custom parts. One method of doing this was to perform the
inspection routine whilst the part was moving. Inspecting a moving part required the sensor
being able to dynamically access the various ROI on that part. The mechanism for

positioning the sensor required:

¢ Accuracy

*  Repeatability

¢ Dexterity

e Efficiency in speed

* Clean; and smooth operation

The accuracy requirements for the sensor positioning system stemrned from the fact that the
vision system relied upon the centre of the ROI being located at the centre pixel of the
acquired image (within some tolerance). The aligning of the image centre and the ROI centre
had to take into account the precise positioning of the camera centre as a function of time.
Due to the fact that the inspection process involved comparison of the inspection image and
the reference image, the positioning of the sensor had to be repeatable and consistent. This
involved obtaining images of the objects from the same perspective and distance, so that the
image differencing operation was more reliable. The fact that the apparatus was designed for
the purpose of inspecting mass-produced custom parts meant that the sensor would have
been required to access various features at various locations on the part. Access to various
regions of the part required dexterous motion of the sensor. This indicated that the sensor
positioning system would have to be dexterous in operation, and would therefore be required
to have a large work envelope. The speed of the sensor relative to the part was an essential
factor when designing the system. This relative speed needed to be large enough in order to
facilitate dynamic access to various ROL and to accommodate avoidance of collisions. In

order to prevent comtamination of the inspected part during the inspection routine, the
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mechanical components of the inspection system were required to be clean in operation. The
image acquisition process required that the vibrations experienced by the camera be
minimised, in order to prevent blurring of pictures, resulting in a more reliable image
acquisition process. This requirement meant that the motion of the camera, as it was moved
from point to point, be smooth and fluent. The dexterous access to the various ROl and the
speed of sensor motion were considered to be the most important factors in the design of the

sensor positioning system.,

There are many concepts that need to be understood prior to modelling the behaviour of
mechanical members of a robot. These include workspace; types of joints; accuracy;
resolution. The workspace of a manipulator is defined as the volume of space that the end-
effector is able to access. The workspace of a manipulator can be divided into a reachable
workspace and dexterous workspace. The reachable workspace is the volume of space that
the end-effector can access in at least one configuration. The dexterous workspace is the
volume of space that is accessible to the end-effector in all possible orientations. Three
common types of joints used in the design and construction of industrial robots are prismatic
joints; revolute joints; and spherical joints. Prismatic joints (shown in Figure 4-1(b)) are
joints that allow a single degree of freedom translation along an axis. Revolute joints (shown

in Figure 4-1(a)) are one-degree-of-freedom joints that allow rotation about an axis.

Spherical joints are joints that allow rotation about an infinite number of axes.

>

Figure 4-1(a): Revolute joint [26] Figure 4-1(b): Prismatic joint [26]

4.1.1.1 Types of Sensor Manipulation

Robotic manipulators can be divided into Parallel Kinematic Manipulators (PKM) and Serial
Manipulators [28]. The main purpose of a manipulator is to position and orientate an end-
effector. The selection of a method of manipulation is dependent on the shape of the

allocated workspace. Parallel manipulators generally consist of a fixed platform (referred to
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as the base), connected to paralle]l links, These links have actuated and non-actuated joints.
Examples of actuated joints include prismatic and rotary joints, Universal and spherical
joints are amongst the more common examples of non-actuated joints. The mechanical
components in a parallel manipulator do not experience significant loading in the form of
bending, as a result of their parallel architecture. This allows for lighter materials to be used,
which then decreases the weight of the members. This decrease in weight allows for
mechanical systems that are quicker and more accurate than mechantcal systems with seral
architectures. Due to the fact that the load of the end-effector is distributed amongst the
parallel members, the motion capability bandwidth for the end-effector is high. The actuators
for parallel manipulators can be fixed onto the motionless base. This reduces the inertia of
moving members, which also contributes to the reduction in weight of moving members,
The disadvantages of PKM involve limited workspace, due to collisions between mechanical
members during certain configuration changes. PKM become unstable; uncontrollable; and

experence loss of stiffness when accessing singular positions [27].

Serial manipulators are manipulators, which consist of a base connected to links that are
connected in series. The advantages of serial manipulators are that they are able to access a
large workspace with respect to their own volume [28]. The disadvantages of serial
manipulators involve the low stiffness characteristics; accumulation of erors whilst
operating; inaccuracies incurred by moving members with high inertia; and the relatively
low effective load that they can manipulate. The low stiffness characteristic is a disadvantage
due to the fact that the motion and positioning of the part may be prone to errors as a result
of an open kinematic architecture. This open kinematic architecture also results in the errors
induced by joint actuators, being accumulated along the chain through to the end-effector.
The accuracy of the system is good but less than when compared to closed kinematic
architectures. Serial manipulators require the actuators to be placed at joints. The inertia of
the members is thus increased. As a result, the accuracy of the system may be influenced,
and decreased. The fact that the weight of the end-effector is not distributed amongst
multiple members, serial manipulators are able to only manipulate end-effectors with a low
effective load. Typical serial and parallel manipulators are shown in Figure 4-2 (a) and (b)
respectively. Table 4-1 shows the comparison between the characteristics of serjal

manipulators and PKM.
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Figure 4-2(a): Serial manipulator [28] Figure 4-2(b): Parallel manipulator [27)
Characteristic PKM Serial Manipulator
Speed of operation Excellent/high Good
Load capacity High Low
Accuracy Excellent Good
Workspace Limited Excellent
Ease of control Difficult Easy
Stiffness High Low
Bandwidth of motion Excellent Good
capability

Table 4-1: Comparison of PKM and Serial manipulators

Cartesian robots are robots that consist of at least three mutually perpendicular prismatic
joints [29]. These robots are an industrial class of serial manipulators, although they may be
considered as a combination of parallel and serial manipulators. The regional workspace of a
Cartesian manipulator is a rectangular volume. Gantry robots are similar to Cartesian robots,
however the difference between gantry robots and Cartesian robots are the way in which
they are mounted. Gantry robots are mounted on rails, above their workspace. Cartesian
robots are mounted below their workspace. The parallel aspects of the design allow high
stiffness, since the axes are supported at both ends. Figure 4-3 (a) and (b) show typical

Cartesian and gantry manipulators.
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Figure 4-3 (a) Cartesian manipulator [29] Figure 4-3(b) Gantry manipulator [30]

Gantry architectures allow for high-speed and high-accuracy operation. These structures are
also generally associated with high repeatability. These are crucial characteristics when
considering dynamic positioning of the camera. The control of gantry system is relatively
easy, as the inverse positioning of the sensor is merely a vector subtraction operation; with

no need for rotational transformation matrices.

4.1.1.2 Methods of Actuation

Actuators have the function of converting an input signal into a controlling action on a
device [18]. The sensor positioning system was responsible for the accurate and repeatable
positioning of the sensor. This depended largely upon the method of actuation selected for
the design. Common industrial actuators can be categorised into three fields, namely

pneumatic actuators; electric actuators; and hydraulic actuators.

4.1.1.2 (a) Pneumatic Actuation

Pneumatic actuation involves the use of compressed air to execute mechanical motion. This
method of actuation is relatively inexpensive, and is able to perform at high speeds of
operation. The process of pneumatic actuation is clean, which is important when inspecting
parts that are easily contaminated. The use of compressed air as a driving force makes this
form of actuation readily available. Current manufacturing buildings are commonly equipped
for use of compressed air, which makes implementation of pneumatic actuators relatively
easy [18]. The life expectancy of pneumatic equipment is generally high with respect to

mechanical fracture, and actuators can stall without incurring any damage. The reason for
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this is that the compressible air will absorb any shock, due to sudden motion or stopping of
motion. The disadvantages of pneumatic systems involve low accuracy and difficult speed

control of actuators.

4.1.1.2 (b) Hydraulic Actnation

Hydraulic actuation invelves the use of an incompressible fluid for high power transmission
[33]. The incompressibility of the fluid allows for the amplification of the applied force. This
results in the ability of a system to move a heavy load using a relatively smaller applied
force. The advantage of incompressible fluids s that the fluid itself does not absorb any of
the applied energy. This means that relatively small tubes can be used for transmitting
power, which would have been an advantage when considering the spatial constraints of the
NCAIS. Another advantage of using hydraulic actuation is that a very high level of servo
control can be achieved, without damage whilst stalling. The disadvantages of using
hydraulic actuation methods involve the possibility of fluid leaks; high initial investment;

and relatively slow operation.

4.1.1.2 (c) Electrical actuation

Electrical actuation involves the conversion of electrical power into some form of
mechanical motion. Electrical actuators may be categorised into switching devices; solenoid
type devices; and drive systems [33]. Switching devices use an input control signal to toggle
a circuit on or off. Mechanical switches; diodes; thyristors; and transistors are all types of
switching devices. Solenoid type actuators use an electrical input through a solenoid in order
to actuate a soft iron core. This mechanism may be used for actuating hydraulic or pneumatic
flow. An example of an electrical drive actuator is the input of power to a motor in order to
obtain rotary motion. The advantages of electric actuation are that they are generally fast and
accurate; relatively inexpensive; generally easy to control; have regular updates in designs;
low weight; high torque; and rapid response time. The disadvantages inciude overheating in
stalled conditions; have some sort of shaft play, which limits precision; and may be prone to
electrical arcing. Table 4-2 lists the different types of actuation along with their advantages
and disadvantages.



Actuation methods Advantages Disadvantages
Pnevmatic Relatively inexpensive Low accuracy
High speed of operation Difficult speed
control
Clean actuation
Readily available
Easily implemented
High life expectancy
Hydraulic Large lift capacity Possible fluid leaks
Very high level of servo High initial
control investment
Relatively slow speed
of operation
Electrical Fast and accurate Overheat in stalled
conditions
Relatively inexpensive Experience general
play on motor shafts
Easy to control Prone to ¢lectrical
arcing
Fast development times for
new models
Low weight
High torque
Rapid response time
Table 4-2: Comparison of different methods of actuation
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4.1.1.3 Manipulator selection

Table 4-3 shows the extent to which the different types of actuation and manipulation meet

the system requirements.
Requirement Pneumatic Hydraulic | Electrical Scm PKM
Accurate positioning Yes Yes Yes Reasonable ‘ Yes
Fast operation Yes Yes Yes Reasonable |  Yes
Able to move a light Yes Yes Yes Yes Yes
lead
Easy to control No Yes Yes Yes No
Clean Yes No Yes Yes Yes
Cost effective High initial No Yes
investment
Smooth operation Yes Yes Yes Yes Yes
Large Workspace . . . Yes Limited

Table 4-3: Comparison of actuation and manipulation methods for meeting the system requirements

The method of actuation that best suited the requirements was electrical actuation. Since the
positioning of the sensor had to be precise and repeatable, pneumatic actuators were not
selected for the design of the sensor positioning system. The use of hydraulic actuation could
have caused contamination to the parts being inspected. The costs involved with
implementing pneumatic and hydraulic actuation were also deterrents in the selection of
these methods of actuation. Due to the fact that one of the main requirements for the sensor
positioning system was a large workspace, serial manipulation was chosen for the design of
the sensor positioning system. The collision avoidance between sensor and part could be

more easily implemented with serial manipulation than with PKM.

The final design of the sensor positioning system was the merging of a gantry system with a
pan-tilt mechanism. This structure was designed to have five degrees of freedom, with three-
degrees-of-freedom stemming from the gantry structure, and two-degrees-of-freedom from

the pan-tilt mechanism. The combination of orthogonal-prismatic, and revolute joints in the
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design allow for excellent workspace and dextenty charactenistics. Figure 4-4 shows a

conceptual drawing of the system’s motion.
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Figure 4-4: Concepiual drawing of the Sensor Positioning Systern motion

4.1.1.4 Kinematic model

The sensor positioning system was required to position and orientate the sensor at calculated
target points. Forward kinematics is used to determine the position and orientation of an end-
effector, given a sequence of joint movements. Inverse kinematics is used to determine the
required joint movements to position and orientate the end-effector to a given pose. Since the
motion of the gantry system was trivial subtractions, the use of intensive inverse kinematics

was not considered.

The kinematic model for the manipulator was designed for precisely calculating the required
position and orientation of the sensor as a function of time and RO, for rectangular parts.
This model had to account for the fact that the part was moving. The first step in the design
of the model was to define three sets of co-ordinate systems. The first co-ordinate system,
labelled frame O, was the global co-ordinate system, and its origin was fixed on the
stationary frame for use as a global reference point. The second co-ordinate system, labelled
frame B, had its origin on the part and was referred to as the part co-ordinate system. The
third co-ordinate system was frame A, representing the position of the camera. Frame B was
relative to frame O, and frame A was relative to frame B. The model assumed that the part
co-ordinate system was moving relative to the global co-ordinate system, The purpose of
defining a part co-ordinate system was to track the moving part as it went through the
machine. In doing so, the ROI on the part could also be tracked as a function of time. Frame
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O had its origin at the bottom-left corner of the workspace as shown in Figure 4-5 (a) and
(b), with frame A being omitted.

direction
of flow §

Figure 4-5(b): Part configuration

The rectangular and cubic-volume part families could only be inspected on 5 faces. The
reason for this was that the bottom face was not accessible to the sensor. Two modes of
operation were considered for the manipulation of the sensor in space. These were sequential
positioning and point-to-point positioning. The sequential positioning of the part was based
on the sensor moving parallel to each face at different divisions of time. If a ROI were
encountered along the trajectory, an image was acquired. This method of manipulation was
flawed in that the sensor would still move along a face even if no ROI were present. This
would have lead to time wastage, which was unacceptable for these inspection routines.
Figure 4-6 depicts the operation of this mode of manipulation on the rectangular volume part
families. The method of manipulating the sensor from point-to-point allowed for an optimal
path to be selected (discussed further on) and so this method was selected for sensor

manipulation.
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5

Figure 4-6: Sequential inspection for rectangular volume part inspection

Once the co-ordinate systems were defined, the user-defined ROI were converted into spatial
co-ordinates, with respect to frame B. These local co-ordinates were then transformed into
global co-ordinates by mapping the motion of frame B with respect to frame O, The NCAIS
was designed to perform inspection on a part that had motion only in the direction of the
conveyor. This meant that no lateral motion was incurred by the part. The motion of a point
on the conveyor was therefore given by:

Y=y +y ¥t @.n
where ¥(t) was the final position of that point on the y-axis; y, was the initial position along

the conveyor; and y *1 was the distance moved along the conveyor afier a time t.

Consequently, the motion of frame B relative to frame O was calculated as a function of

time, using equation 4.1.

B() = 0.5(w~a)i+ y(t) j (4.2)

where ‘w’ was the width of the manipulator workspace; and *a’ was the dimension of the
volume in the x-direction. The equation accounts for the fact that the centre of the part uns

along the centre of the workspace volume, in the y-direction.

The position of the centre of a RCI, with respect 1o frame B, was described by the vector

Xg
B
£] - yB (4.3)
Zg

where the superscript denotes the frame that the particular vector was referenced to.
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The ROI were rectangles which had dimensions proportional to the dimensions of the part
volume. In order to obtain the exact co-ordinates of the centres of these ROI, relative to
frame B (in order to determine the components of i L., five cases were considered. The
reason for considering five cases was to account for a RO! lying on each of the accessible
faces. Assuming that the user selects a ROI that has co-ordinates (m,n) on each face of a part
with volume (a,b,c), and f is the number of ROl in a row or column, the following equations

apply.

Case 1: ROI lies on front face:

(ab.c) -

=2

=l 5

= =2 1 |
=3 = Lol oy

Figure 4-7: ROI on fronl face
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Case 2: ROI lies on left face
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Figure 4-8: ROl on left face
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Case 3: ROI lies on the right face
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Figure 4-& ROl on right face
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Case 4: ROI lies on top face
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Figure 4-10: ROl on fop face
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Case 5: ROT lies on rear (back) face
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Figure 4-11; ROl on rear face
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The position of an ROI relative to frame O was then given by adding equation 4.2 and

equation 2.3
"P()="P,+"BU) @4

The set points ° P, (i = 0...n) in equation 2.4 were considered as inspection points, and were
used for predicting the position of the centre pixel during image acquisition. The focus of the
camera lens was kept constant, so in order to obtain high quality clear images, a fixed
distance d, between the camera centre and the inspection point, was implemented. The centre
of the camera lens was placed orthogonal to the inspection point to reduce perspective errors
incurred during image acquisition. Once the co-ordinates of the inspection points and
directions of the nonmal vectors were determined, along with d, a set of target points were
established. These target points were the co-ordinates at which the centre of the camera was
required to be, in order to acquire an image. The target points were inherently, functions of

time and ROI positions. The i"" target point was determined:

Oz,-:o!i,-(fﬁsﬂfd
where °N , was the outward normal vector relative to frame B. The vector ° T, accounted

only for the position of the camera as a function of time. The orientation of the camera was
determined by considering the normal vectors for the target points. Due to the fact that
inspection was assumed to have occurred on flat faces, five orientations were considered for
the camera. The orientation of the camera lens facing the front face of the part as it entered

the machine was taken to be the reference orientation.

With the inspection points on the following faces, the orientation of the camera was as

follows:

Front face: orientation _angle = 0° (face the negative y-direction)

Left face: orientation _angle = 90° (rotate about z-axis in positive right hand
screw direction, parallel to y-z plane}

Right face; orientation _angle = -90°  (rotate about z-axis in negative right hand

screw direction, lens paralle] to y-z plane)

Top face: orientation _angle = 96° (rotate about x-axis in positive right hand
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screw direction, lens parallel to x-y plane}
Rear face: orientation _angle =180°  (rotate about z-axis in positive right hand

screw direction, parallel to y-z plane)

Once a set of target points for the camera was determined, an optimised path needed to be
selected. The model operated on the assumption that the trajectory from one target point to
the next would always be a linear path. Consequently, the method of finding the path from
point to point was to subtract the linear distance of each axis of the gantry system. The
shortest linear path between two points that may be followed is given by vector S, which was
given by

a§ =ozﬂm!__oT

= imitial
or put into component form,

o

S, ={x, ~x, i+ “y;-1)£+(zj —z)k

For example, consider the centre of an end-effector with initial co-ordinates:

5
(}mea.‘ = 8
25

Suppose that we are required to move the end effector from this initial point, to a point:
19
OZ Sfinal =68
13

This vields the following translations:
19-5

’S =|68~8 |=14i+60;+(-12)k
13-25
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For n target points, the number of possible linear paths was given by n!. In order to optimise
the manipulator motion, the shorest overall distance from point O tw point n, was
considered. This allowed for selection of a path that involved the shortest inspection
distance. Prior to selection of the shortest possible path, a collision detection algorithm
needed to be implemented. A colliston was defined as a point in the sensor spatial domain
having identical co-ordinates to a point in the part volume, at the same instance of time
during the inspection routine. A conservative minimum radius r was defined to represent the
spherical volume of the camera, to account for all possible orientations of the camera.
Thereafier, mathematical collision testing for each segment of a path was performed. If any
segment of the path collided with the part, the path was rejected. A collision was defined as
the camera being closer to any region of the part than the clearance r, The collision detection
procedure depended on the part family and the dimension of the part. The camera was
limited to a piecewise-linear path and so any single segment of a piecewise-linear path could

be modeled parametrically as a ray with the parameter t, shown in equation 4.5,
riy=ry+rg (0<t<||rl-10]|) 4.5)

where r) = x0 i + y0 j + z0 k was the starting point of the move and r1=x1 i+ yl j+ z1k was

the end point. The unit-vector ray-direction rd was defined, shown in equation 4.6.

__("l"'o)

= =x,i+y, j+z,k (4.6)
I -7l

vy

The intersection of such a ray with the part was determined by solution of simultaneous

equations. For example, given the ray r (1} and the plane x = ¢ (for a rectangular part),

intersection point r, = x,i + y,j + 2,k could then be calculated by solving for 7, (collision

time) in the following equation {always taking positive values of ¢, only).

_ (c_xo)

X, SC= X+ X 0, DL, = .
o

Using similar methods, collisions in the y and z axes were checked for. If a time existed

where a collision occurred, the path was rejected.
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Even though the research was aimed at rectangular part families, an algorithm was devised
for facilitating inspection of cylindrical part families. The uwpright-cylindrical case was
treated similarly to the rectangular-prismatic case, The cylinder equation was a function of

the height (H) and radius (r) of the part, shown in equation 4.7.
x2+y2=(R+r)2;0<z<(H+r) 4.7)

where the addition of r to R was implemented to account for the eylinder radius plus the
camera spherical radius. Collision detection was then performed by obtaining equation 4.8,

equation using equation 4.7,

b, +x,0. ¥ +(py +y,0. Y =(R+7) (4.8)
Equation 4.8 may be re-written in the form
At + Bt +C=0
where
A= (xdz + ydle = z(xdxo "‘J’dyo}’c = Io2 + }’02 - (R"* ")2
The solution of the system was given by equation 4.9.
; _—B+\/32—4Ac 9

¢ 24

This approach required that an acceptable solution existed only if 4 was nonzero; the
discriminant ¢ 8°2 — 44C ) was positive; and if a positive solution was found. Meeting these
requirernents, f, was back-substituted to givex,, y, andz,. It was also checked to see if
z, lay within the interval / ¢, H + r J; and the plane z = H + r was also intersection-tested
with the ray as described earlier. The point of intersection, if any, was checked to determine
if it Jay within a radius of { R + r } of the local origin in the x-y plane. If any one of these

conditions was satisfied then it was assumed that the path was prone to collision.
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4.1.1.5 X-axis design

The mechanism facilitating motion in the x-direction was required to transport the load
induced by the weight of the y-axis mechanism; the z-axis mechanism; the pan and tilt
mechanism; and the sensor. The gantry setup required that motion in the x-direction be
supported at two ends, with the y-axis mechanism sliding between these two supports. Use
of a gantry system also required that the structure be placed above the part. Consequently,
the structure had to be mounted onto the frame, which was at a constant slope of 70 degrees
to the conveyor. In order to simplify the assembly of the structure, adapter brackets were
designed to provide a vertical surface on which the structure could be mounted. These

brackets were designed as bracket pairs which mounted on either side of the bar of the frame.

Eight mountings were designed for two points of support on either end of the x-axis
structure. These mounting brackets were designed to house the leadscrew and support bars,
whist being secured onto the adapter brackets. This design was intricate as many holes had to
be included in a small space, in order to facilitate fastening. Two of these mountings were
designed for support on either end of the x-axis on the slider side of the gantry mechanism.
An x-axis motor bracket was designed for mounting the drive motor onto the frame. Two x-
axis support bars were designed from stainless steel. The x-axis slider was responsible for
motion of the sensor in the x-direction. This slider consisted of a brass nut, which provided

the motion, fixed onto a frame used for support of the y-axis structure.

Motion in the x-axis was driven by a motor attached to a leadscrew mechanism. Due to the
high cost of ball screws, threaded bar was used to convert rotational motion into translational
motion. The mechanism was then also referred to as a power screw. The geometry of a

typical screw thread is shown in Figure 4-12.

Major Crest
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Figure 4-12: Geometry of screw threads [34)
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The major diameter of a thread is the cross-sectional distance between the outer ends of the
thread, on opposing sides of the longitudinal axis of the bar. The cross-sectional distance
between the roots of threads, is referred to as the minor diameter. The pitch diameter is half
the sum of the inner and outer diameters. The pitch is defined as the distance, measured
parallel to the longitudinal axis, between corresponding points in the same direction of

adjacent thread surfaces, in the same axial plane [34].

The outer diameter of the threaded bar selected was 18mm and was made from high tensile
steel. In order to prevent warping of the bar during operation, the drive mechanism included
two support bars. These support bars lay on the same plane with their centres parallel to each
other. In addition to vertical load distribution, these support bars also provided a rotational
reaction force, preventing rotation of the x-axis slider. Figure 4-13 (a) shows the designed x-
axis mechanism with the enlarged view of the slider in Figure 4-13 (b). The threaded bar is

shown in green in both figures.

Figure 4-13 (a) Designed x-axis mechanism

Figure4-13 (b) enlarged view of the x-axis slider
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Figure 4-14 (a) shows the constructed x-axis components, and Figure 4-14(b) shows the

mounting of the x-axis onto the NCAIS frame.

Figure 4-14(a) Constructed x-axis subassembly Figure 4-14(b) x-axis mounted onto frame

The height at which the y-axis slider was placed influenced, and was influenced by, the
width and height of the part that could be inspected. The positioning of this y-axis slider also
influenced its length. A height of 460mm was selected for positioning the centre of the y-
axis mechanism. Since the y-axis mechanism was fixed on the x-axis slider, the top surface
of the x-axis mechanism was located at 440mm above the conveyor surface. The difference

in heights between the adapter brackets was to accommodate the positioning of the rollers.
4.1.1.6 Y-axis design

The motion in the direction of the y-axis was one the main focuses in the design of the SPS.
The reason for this was that the part only had a velocity in the y-direction. The motion in this
direction had to be faster than the maximum conveyor speed in order to ensure that all ROl
were dynamically accessible. The y-axis drive system was subject to loading conditions
induced by mass of the z-axis mechanism and the sensor. This drive system was supported at
either end of the frame. One side was supported by the x-axis slider. This was done to allow
for vertical support; and motion of the drive system in the x-direction. The opposite side
required support in the vertical direction, and minimal resistance to motion in the x-direction.
Roller supports were selected for this application. The y-axis support bar, threaded bar, and
y-axis slider were all similar to those designed for the x-axis. The design of the y-axis
structure including all components of the x and y-axes is shown in Figure 4-15(a) and the

constructed y-axis subassembly is shown in Figure 4-15(b).
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Figure 4-15(a): Y-axis design Figure 4-15 (b): Constructed y-axis structure

4.1.1.7 Z-axis design

The z-axis drive system was responsible for increasing and decreasing the height of the
sensor. Using the height of the y-axis structure within the trapezoidal volume, the
components of the z-axis drive system were designed. The constraints placed on the z-axis
structure were due to the c-shaped tack. The design of the z-axis structure was different to
the x and y-axes structures since the z-axis structure could only be supported at one end. The
reason for this was essentially that the sensor would be positioned on the pan-tilt mechanism
which lay on the end of the z-axis structure. The problem experienced with this requirement
was the location of the fixed reference point which was used for motion in the z-axis. Three

possibilities were considered for the design of this structure.

The first was to have the camera fixed onto the leadscrew, and move the drive system
vertically. The problem with this concept was that any motion above the gantry structure
may have resulted in a collision between the drive system and the frame of the apparatus.
The second concept was to fix the motor onto the y-axis slider, and attach the camera to
move along the leadscrew. The problem with this concept was that the pan-tilt mechanisms
would not be able to function properly, which would drastically reduce the sensor access to
various ROI. The third concept explored was to fix the camera onto the y-axis slider, and
design a slider extension mechanism for the z-axis. This extension mechanism would allow

for a pan-tilt mechanism to be integrated into the design.



48

The components, except steel leadscrew and stainless steel support bars, designed for the z-
axis motion used Aluminium as the selected material. A motor mounting was designed to
fix the motor onto the y-axis slider. The positioning of the motor had to account for the
support bars and the leadscrew of the y-axis structure. A cylinder mounting bracket was
designed to fix the cylinder onto the y-axis slider mechanism. The design of this component
had to consider limited space between the components of the slider. Aluminium was the
selected material for this design. The shape of this component had to account for the

diameter of the cylinder and the maximum allowable diameter within the slider mechanism.

A cylinder was designed for providing a fixed reference structure on which the slider
extension could move along. Slots in this cylinder were designed to prevent rotational
motion of the camera due to motion of the z-axis leadscrew. The slider-extension mechanism
was responsible for moving the sensor vertically as a result of the rotation of the leadscrew.
This mechanism was designed to consist of a brass nut; four support rods; and a base plate.
The brass nut was used for moving up and down the fixed leadscrew. The support rods were
rigidly attached to the brass nut through the slots of the cylinder at one end, and to the base
plate at the opposite end. This allowed the base plate to follow the same motion as the brass
nut, at a fixed distance from the nut. The constructed z-axis components are shown in Figure

4-16(a) and the 3D design of the fully assembled structure is shown in Figure 4-16(b).

Figure 4-16(a): Constructed Z-axis components Figure 4-16(b}: Full 3D gantry structure design
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4.1.1.8 Pan-tilt mechanism design

The pan and tilt mechanism was designed to enable change in sensor orientation. This
mechanism was fixed at the base of the z-axis slider extension. Due to the fact that the
camera did not impose a heavy weight load, aluminium plating (2mm thick) was chosen for
this structure. The constructed structure is shown below. This structure facilitated rotation
about the z-axis and rotation about axes lying in a horizontal plane. The assembled

components of this design are shown in Figure 4-17,

Figure 4-17: Assembled components of the pan-tilt mechanism

4.1.1.9 Static analysis

A static analysis of the sensor positioning system was performed to determine the structural
integrity of the members under static loading conditions. Structural failure of the system due

to static loading could have occurred as a result of the following modes of failure:

e  Shear failure of members
e Plastic deformation of members due to bending

e Tensile failure of members

Each mode of failure was considered, depending on the loading conditions of different
members. Deflections and stresses were calculated to justify the dimensioning and material

selection of the diameter of the support bars and threaded bar for the x and y-axes members.
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Simple calculations were also performed to verify the design of the z-axis mountings and the

pan-tilt mechanism.

4.1.1.9 (a) X-axis

The static loading conditions of the x-axis involved the weight of the members of the x-axis;
y-axis; z-axis; pan-tilt mechanism; and sensor. This loading was distributed among the slider
of the x-axis drive system and the roller on the opposite end, shown in Figure 4-18. This
weight distribution was most uneven when the load was at either end of the y-axis. To
incorporate some form of safety factor, the analysis used the entire weight as the loading

condition, for both the slider and the roller ends.

Figure 4-18: Vertical Loading on x-axis

The slider end of the x-axis consisted of three parallel members rigidly fixed at each end.
Two stainless steel rods were used as support bars. These bars each shared the vertical load
induced. The support bars each had two contact points with the slider mechanism. The
threaded bar was subjected to only the axial load induced by the friction involved with

moving the load. This loading condition is shown in Figure 4-19.
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Figure 4-19: Forces on x-axis bars

The axial loading of the threaded bar was determined using equation 4.10 [35].

uw
c=—

1 (4.10)

The numerator in equation 4.10 is the frictional force to be overcome in moving the load.

Using a typical value for the frictional coefficient p as 0.2 [40] whilst considering the
diameter of the bar to be 18mm and estimating the load to be 30N, the axial force initiated in
the bar was found to be 0.11MPa. This value was negligible and so no further axial
calculations were performed for the y-axis, as this axis had a smaller load to carry. The
threaded bar was also analyzed for failure due to buckling. The critical load for buckling of
the threaded bar was found using equation 4.11 [59].

_m’El (4.11)

Substituting E=200GPa, 1=1.013*10%m*, and L=0.55m into equation 4.11, the critical
load for buckling of the threaded bar was found to be approximately 67kN which was well
above the applied axial load (uW = 6N ). No buckling analysis was performed on the y-axis
threaded bar since this bar had a smaller load. The design was thus found to be safe against

failure due to buckling,

The support bars were analyzed as having two point loads, a fixed distance apart, and a UDL
due to the weight of the bars. These support bars were analyzed as statically indeterminate
beams, as shown in Figure 4-20. The loading conditions for each support bar, including the
bar on the opposite end of the y-axis were identical under maximum loading conditions and

so analysis of one support bar was sufficient. The point load was due to the weight of the
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members of the rest of the system. The UDL was due to the weight of the bars themselves.
The worst loading condition involving bending occurred when the slider was placed at the

centre of the beam, causing the greatest overall deflection and moment.
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Figure 4-20: Loading conditions for the support bars of the x-axis
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The loads P were considered to be equal, and the conditions for each of the support bars
were considered as identical due to the even load distribution between these two structures.
Using McCauley’s method [37], the moment of a point on the beam was modelled to be;

3

Y _ M+ Rx~£—P(x-a)- P(x-b) @.12)

T
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Integrating equation 4.19 yields the slope of the deflection being given by equation 4.13.

2 3 _ 2 _ 2
E]ﬂ.:-MAx.,.gf__ﬂ_P(x a) P(x-b) i 4.13)
dx 2 6 2 2

The deflection of the support bars was then modelled by further integration of equation 4.13,
resulting in equation 4.14.

Ely— M’ (R _gx* P(x-a) PG-b)’

6 24 6 6

+Ax+ B (4.14)

The boundary conditions were used to find the constants of integration and these constants
were calculated to be zero (the method for calculating the values of these constants can be
found in [36]). Using these equations, the reactions for the system were calculated as shown

in equation 4.15 and equation 4.16 respectively.
N2 _y?
R, =q?l+ P(l a)P(I +2a) & Pl b)ls(t‘ +2b) (4.15)
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M,



53

(4.16)

With the centre of the slider being in line with the middle of the beam, the value of a in

metres was then given by equation 4.17,

a=t_00s @17
2

The distance b was represented by equation 4.18.

b =%+0.05 @.18)

Substituting equations 4.13, 4.16, 4.17, 4.18 into equation 4.14 resulted in the maximum
deflection and moment represented by equation 4.19 and 4.20 respectively.

I : I :
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Using equations 4.19 and 4.20, the following values shown in Table 4-4 were calculated for

the static loading of the x-axis.

Deflection (mm) | Moment (Nm) | Bending Stress (kPa)

X-axis support bars 0.28 15.9*10°° 162

Table 4-4: Calculated values of static analysis at x=L/2

It is important to emphasise that the calculated values in the above table assumed that the
entire load was acting on each member. The two point lcads on the suppert bars were
assumed to be 15N each, as a result of symmetry. The loads on the support and threaded bars

were unevenly distributed, and the deflections of these bars would have to be equal due to
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the slider being rigid. The calculation therefore assumed a worst case loading condition in

which the maximum loads were supported by each bar alone.

The methods of failure analysed for the x-axis mechanism were:
¢ Failure due to excessive bending stresses when the slider was at the centre of the
structure

¢  Shear of the bars due to the slider being at one end of the beam

Analysing failure of the system due to bending stresses involved calculating the maximum
moment for each bar and then used in the equation 4.21 [35] to determine the induced

bending stress.

M
S sending = E 4.21)
This induced bending stress was found to be 2.6kPa. This value was compared to the yield
stress of the material, which was 290MPa [37]. The induced stress was much less than the
yield stress and tensile stress of the material, and so the design was deemed safe against
failure due to bending stresses. The method of failure due to shear was performed using the
reaction forces calculated when the slider was at the end of either side of the beams. These

reaction forces were then substituted in equation 4.22 [35].
T=— {4.22)

The induced shear stress was then calculated and compared to the maximum allowable shear
stress for the matenial. The calculated shear stress was 0.12Mpa for the threaded bar and
0.19MPa for the support bars. This was well below the allowable shear stress value of
330MPa and 186MPa respectively [37]. The design was then considered safe against shear
loading. Since the loading conditions caused such minimal stresses, the method of failure

due to crushing of members was disregarded.

The adapter brackets used three steel bolts, 6mm in diameter, to secure the x-axis structure
onto the frame of the apparatus. The worst case of loading for these brackets was when the
slider mechanism was on either end of the x-axis. A maximum reaction force of 30N was
assumed. The method of failure predicted for this loading was due to shear of the three bolts.

The loading condition is shown in Figure 4-21.
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Fshear

Figure 4-21: Shear loading of bolts for x-axis mounting bracket

The shearing force was calculated using equation 4.23.

F Weight

F;bear =
14820 14 in 70
tan 70

The shearing force was calculated to be 28.2N. This value was then used to calculate the

(4.23)

shear stress involved using 4.29. The induced stress was calculated to be 1.4MPa, which was
under the allowable shear stress of 200MPa [39]. All calculated values confirmed that the
induced stresses were within the allowable stresses for the design, and this structure was safe

against failure due to static loading.

4.1.1.9 (b) Y- axis

The y-axis loading conditions were identical in layout, to the slider end of the x-axis
structure. The only difference was due to the actual weight supported by the structures. The
y-axis mechanism had to support the weight of its own members; the z-axis structure; the
pan-tilt structure; and the sensor. Using the same methods to verify the design of the slider
end of the x-axis structure, the following values were calculated, which verified the design of

the y-axis structure.

Deflections (mm) Moment(Nm) Bending Stress(kPa) | Shear Stress(kPa)

y-axis suppont bar 0.19 122%10°° 124 480

Table 4-5: Calculated values of static analysis at y=L/2
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As explained for the x-axis analysis, these values assumed that the entire loading was
supported by each member alone. The results all confirmed that the design was safe under

static loading.

4.1.1.9 (¢) Z- axis

The z-axis structure was mounted onto the y-axis slider, and so the only load on the z-axis
structure was the weight of the pan-tilt mechanism. The force induced by the camera and
components was measured to be 10N. This load was used to calculate the tensile stress in the
shaft, which was calculated to be 0.35MPa. Since this value was well below the elastic limit,
no further analysis was performed.

4.1.1.9 (d) Pan-Tilt mechanism

The pan-tilt mechanism was subjected to bending stresses; with the pan motor shaft
experiencing tensile loading, and the tilt motor shaft experiencing bending stresses due to the
sensor. The bending stress on the structure was induced by the weight of the tilt motor and
sensor. The loading conditions for this system are shown in Figure 4-22. The tensile force
was estimated as 8N; F1 was estimated to be SN; and F2 was estimated as 2.5N. Due to the
small loads and high rigidity of the plate used to house the tilt motor, the deflection of the

plate was not analyzed.

Talt otor

Figure 4-22: Loading conditions for pan-tilt mechanism

The following values, shown in Table 4-6, were calculated for this system. The results all

confirmed that the design was safe under static loading

Force Associated Stress
Tensile 1.1MPa
Fl1 17.1MPa
F2 8.8MPa

Table 4-6 Calculated loading conditions for pan-tiit mechanism
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4.1.1.10 Dynamic analysis

A dynamic analysis was performed on the SPS to determine the maximum torque and speed
required to drive the x; ¥; and z-axes. This model considered the motion of the sensor
independently, as a point to point motion along each axis. The loading conditions reflected to
the drive motors of the system were due to inertial and frictional loading. The most crucial
aspect of the motion of the SPS was the sensor velocity in the y-direction. The reason for this
was that the part had only a y-velocity component, and the greatest overall distance would
have to be travelled by this axis. It was decided that the sensors’ lowest maximum y-velocity
be equal to a parts maximum y-velocity. The y-axis drive system was therefore constrained
to be able to operate at a velocity of at least 20mm/s. The required motor speed was
dependent on the lead of the screw and the mass that was being moved Figure 4-23
illustrates the schematic layout of the drive system for the x; y; and z-axes of the SPS.

o
o

motor Load }

Figure 4-23: Schematic of the drive system for the axes of the SPS

Using the parameters of the leadscrew, with n being the number of threads per revolution
and p being the pitch of the threaded bar, the lead of the system was then calculated using
equation 4.24 [40].

I=np (4.24)

The relationship between the rotational and translational velocities was then caleulated using
equation 4.25 [40]:

*

y=IiN (4.25)

where N was the rate of rotation measured in revolutions per second. Using a thread pitch
of 3.5mm on a single-thread leadscrew, and a transtational velocity of 20mm/s, the required
maximum angular speed for the system was calculated to be approximately 5.7 revolutions
per second (342 rpm). The selected motor had to be able to operate at a speed of 342 mpm.
The torque required to drive of the system was a function of the inertial torque of the

leadscrew, and the torque required to move the load. The accelerating torque required for
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the system was described in terms of the total system inertia; the angular acceleration; and

the load friction, using equation 4.26[40]

nt, N

T, cevteranon = ——-6—'6‘;'—’— +7; (4.26)

The friction torque T, was dependent on the weight (N) of the load being driven, the pitch

{p) of the leadscrew; the efficiency (e} of the leadscrew, and the coefficient of friction

between the leadscrew and the nutp . This relationship was described using equation

4.27 [40).

7 P

= 4,27
77 ome ( )

The total inertia was the sum of the inertias of the load and the leadscrew shown in equation
4.28 and 4.29 [40].

b
= Plogy [ P
S toat = e [Zn } {4.28)
J L (4.29)
leadicrew 2

The values for the inertial and frictional loading, along with the component properties for
each axis, are shown in Table 4-7. The efficiency and friction coefficient of a leadscrew with
lubrication was listed as 0.55 and (.15 respectively [40]. Setting the minimum acceleration
time to be half the minimum move distance of 30mm at maximum velocity (0.02m/s), this
acceleration time was calculated to be approximately 0.75s. Using this time and a maximum
required angular speed of 342 rpm, the following values were obtained when substituting in
equations 4.27, 4.28, and 4.29.

Efficiency | Load(N} Tj J i (Ke- S o Max. Torque
s required
(Nm) m?) om*y (Nm)
X-axis 0.55 30 456%107] 1.69*10° | 4.86*107° | 6.96*10
y-axis 055 24 3.65%10 | 1.35*%10°° | 4.86*107° | 6.04*107°
Z-axis (.55 10 8.68*10™ 1.84*10'? 5$10-6 1*10—3

Table 4-7: Calculated values of dynamic loading
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4.1.1.11 Vibration analysis

A vibration analysis was performed for the x and y axes to determine the significance of the
deflection caused during motion of the camera. This deflection would have contributed to
errors in the positioning of the sensor at the time of image acquisition. Energy methods were
used to determine the amplitude of the deflection. The analysis was applicable 10 both the x
and the y-axis operation, using velocity and static deflections as parameters. The systems
were modeiled as a mass on a beam, with the axis slider being the mass and the leadscrew as
the beam. The dynamic deflections were then in the vertical direction Using v as velocity
and 3 as deflection, the energy of the system whilst in motion was modelled as the sum of
the kinetic {due to motion) and potential {due to deflection) energies. This was given by
equation 4.30 [41].

2 2
KE+pE=’;”§’-+£2—- (4.30)

The energy present at the time that the slider was stopped was modelled using equation 4.31.
k represented the stiffness of the system and X, was used to represent the amplitude of the

vibration.

b
KEJ,pE:"_(X_aZ‘fﬂ 431)

Using the principle of conservation of energy [41], and taking the stiffness of the system to

be k = %31 [41], equations 4.30 and 4.31 were equated to yield equation 4.32.

v P s (4.32)
= -

g
Figure 4-24 shows the results from a simulation performed in Matlab which was used as a
vibration analysis of the x-axis. The maximum value of the dynamic deflection was
calculated to be approximately 0.83mm. This calculated value was the deflection that would
have been experienced by the system if the stopping procedure was instantancous. The value

obtained was well within the allowable deflection tolerances.
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Figure 4-24: Dynamic x-axis deflection simulation in Matlab

A similar simulation was performed on the y-axis and the value for the dynamic deflection

was calculated to be 0.72mm, which was also within the acceptable limit.

The critical speed of a shaft can be defined as the speed of the shaft at which harmonic
vibration occurs. This speed for the leadscrew drive shafts were calculated using equation

4.33 [39].

critical speed =

(1.21 *1308)*0' 433)

The critical speed was calculated to be 7195 rpm. This was well above the operating capacity

of the motors, and so no further investigation was performed regarding vibration effects.
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4.1.2 Materials handling system

The materials handling system was responsible for facilitating motion of the part during an
inspection routine. The two subsystems designed for materials handling purposes were the

PCS and CS.
4.1.2.1 Conveyor system

The conveyor system was required to move the part at a constant velocity during its motion
through the machine. This motion had to be precise and consistent in order to synchronize
the positioning of the sensor and the part at the required time intervals. The previous
conveyor system used in the AVIS consisted of two paralle] belts that were a fixed distance
apart. One of the problems associated with this design was that often, the belts ran at slightly
different speed and had different slipping characteristics. As a result, the part was rotated
during its motion through the machine. This was unacceptable for the NCAIS as the
unpredictable pose of the part could not be analytically solved as a function of the time. A

new conveyor system was therefore required.

The conveyor system for the NCAIS was required to provide constant and smooth motion of
a part, in adherence to the production rate. Many factors need to be considered when
designing a conveyor system. These factors include belt width; drive selection; conveyor

profile; and belt selection. A schematic drawing of the designed conveyor system is shown in

figure 4-25.
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Figure 4-25: Schemalic drawing on conveyor operation

The belt width was determined by the maximuom width of the part to be transported. Given a
predefined part width of 200mm, the width of the belt was selected to be 250mm. The

constructed conveyor system is shown in Figure 4-26.
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Figure 4-26: Constructed conveyor system

4.1.2.2 Part centralization system

The operation of the machine assumes that the part enters in a predictable pose. This would
usually be an impractical assumption since there is always bound to be a small rotation of the
part with respect to the assumed orientation, as well as some translation offset. A predictable
pose can be assumed with implementation of a part centralisation system. The main function
of this system is to ensure that the centre-axis of the part aligns with the centre of the
machine with respect to the direction of product flow (y- axis of global frame), whilst
maintaining the pre-defined orientation of the part. This concept is shown in Figure 4-27 and
Figure 4-28. If the part enters the machine at some random pose, the acquired images would

significantly vary from the reference image and this would lead to a less reliable inspection

process.
Centre of
et NCAIS
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machine

Figure 4-27. Undesired random pose of the part
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Figure 4-28: Desired predictable pose of the part

There were a number of conceptual designs that were considered for this application. The
constraints for the designs were the speed of the product on the conveyor, as well as the
dimensions of the conveyor-machine belt interface. The design of the system had to also
account for the centralisation of parts and part families, which would vary in dimensions.
This meant that the system could not be a fixed mechanism. These constraints were placed in
order to ensure that the part was accurately posed in time, before entering the machine. The
conveyor width was 320mm, and so the part centralisation mechanism had to operate within
a range of Omm — 320mm, taking into account the maximum part size of 200mm. The first
concept considered was a belt system that could be fixed between the conveyor rollers and
the machine belt. This system would have three conveyor belts. One of the belts would
operate in the direction of the flow of parts. This would place the part onto the machine. The
other two belts would act perpendicularly to the direction of flow so as to position the part to
run along the central axis of the machine. Rail guides, which could vary their distance apart
(d), would then be used to ensure alignment of the centre of the part and the machine. The
converging ends of the guides would allow for initial directing of the part to the centre of the
conveyor. This concept is shown in Figure 4-29. The conveyors would each have
independent drive systems. The most likely selection of components for the drive systems
would be belt and pulley systems, driven by separate motors. Each guide would use
independent leadscrew assemblies, driven by motors with encoders for adjusting the distance

between them to match the dimension of the part as it enters the machine.
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Figure 4-29: Conceptual design for Parl Centralisation System

Due to the spatial CIM cell, this concept could not be implemented due to the allowable
distance between the conveyor and the machine being too small. Physical design of such a
system would therefore be impractical. The next concept that was considered was to
implement rail guides, which mounted onto the machine itself. These guides would be driven
by independent drive systems, similar to the concept discussed above. The consequence of
implementing this system would be that the alignment of the part would only begin once the
part has entered the machine. This would have a negative impact on the machine design
since the inspection routine would only be able to commence once the part is aligned, and
aligning the part after it enters the machine would delay the inspection routine. This would
significantly reduce the time for the inspection routine. The concept was therefore

considered unsuitable for this application.

The layout of the concept that was selected for the part centralisation system is shown below
in Figure 4-30. In this design, the moveable rail guides are placed on the conveyor, between
the barcode scanner and the machine. These guides would also protrude a small distance into
the machine. The operation of this subsystem was such that when a part entered the section
of the conveyor at which the guides are placed, the actuators moved the guides toward each
other (by an equal distance). The dimensions of the part would determine the distance that
the guides move. This motion wouid force the part to run along the centre axis of the
conveyor, and hence along the cenire of the machine. The curvature of the conveyor can be
neglected at the conveyor-machine interface. The selected positioning of the guides would
allow for the simultaneous orientation and alignment of the part prior to the part entering the
machine. This allows for the inspection process to commence as soon as the part enters the

machine, thereby reducing any unnecessary delays. The protrusion of the guides into the



65

machine ensured that the part would remain in the reference pose whilst entering the

machine without any significant response to disturbance at the machine-conveyor interface.

Figure 4-30: Constructed PCS

4.2 Electrical and electronic hardware

The electrical and electronic components of the system were responsible for performing the

following tasks:

Actuation of mechanical components

Feedback for image acquisition; part identification; speed control; part tracking
Electric power supply

Communication

Providing suitable lighting conditions

These tasks were all controlled by software in the host PC.

4.2.1 Actuation

4.2.1.1 Gantry and conveyor actuators

Actuation systems are elements of control systems which effect some action on a device,

based on a control input [18]. The x and y-axes of the gantry system required high speed and

high torque operation. The constraints considered were that the motors could not be very



large as space was limited; the cost of the components must be kept to a minimum; and the
actuators must be casy to control. Stepper motors were considered for selection as actuators;
however the torque requirements at high speeds and the cost factors were not met by these
motors, The method of actuation for the x and y axes of the gantry system, was DC motors.
These motors were required to produce a torque of 6.96 Nmm and do so at a speed of
342rpm. The motors selected were a subassembly of a cordless drill [42], with its
specifications given in Appendix C. The subassembly consisted of a DC motor coupled to a
planetary gearbox, for torque amplification. A planetary gear system consists of small gears
{referred to as planets) rotating at a fixed radius about a large central gear (referred to as the
sun gear); and an outer ring {referred to as the annulus or ring) which meshes with the planet
teeth {43]. The operation of this system involves the stationary annutus being used as a
support, as the planct gears are rotated by the motor shaft. The planet gears then rotate the
sun gear, which is seen as the output from the subassembly. The advantage of these gearing
systems is that a large gear reduction can be achieved in a small volume. This system is

shown below in Figure 4-31.

Planets
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Figure 4-31: Diagram showing layout of planetary gearing system [43]

Due to the consistent low speed motion required by the conveyor, a DC motor that was
commonly used as windscreen wiper motors was selected. The reason for this selection was
that the conveyor was not as spatially constrained as the gantry system, and the low speed-
high torque combination of this motor along with its size, resuited in very smooth and

constant motion.
4.2.1.2 Pan- tilt actuators

The methods of actuation for the pan-tilt mechanism did not require translational motion due
to a leadscrew. The rotation of the sensor was of utmost importance however, since any
rotational errors would have lead to significant perspective errors in the acquired image. The
actuator selected for the panning operation was a DC servo. DC servos are actuators that can

be accurately positioned using a control signal, which are pulses that vary in length from
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1'ms to 2ms, in a 20ms cycle. The position of the servo shaft will remain constant (between 0
and 180 degrees), provided the input signal is constant. Any change in input will result in a
change in the position of the shaft. These actuators consist of a dc motor; gears; control

circuitry; and the casing for these components; shown in Figure 4-32.

Figure 4-32: Components of a servo [45]

The operation of a servo involves use of a potentiometer (in the control circuitry) to provide
feedback about the rotation of the servo shaft. This value is compared to the input signal, and
the motor stops when the error between the two values is approximately zero. The input
signal is defined using Pulse Coded Modulation (PCM) [45], in which the length of the input
pulse determines the rotation. The relationship between the input signal and the rotation can
be considered linear in that a pulse length of 1.5ms will result in a position of 90 degrees,

and a pulse length of 2ms will result in a rotation of 180 degrees. This is shown below in

Figure 4-33.
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Figure 4-33: Rotation of the shaft as a function of the pulse length

The advantages of servos include high torque available in a low volume; reasonable time
response; and low cost. The motor selection for the tilt operation of the camera was a

straightforward DC motor. The reason for this selection was that the tilt angle of the camera
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was required to be at either O (for perpendicular image of side, front, and back faces) or 90

(for image of top face) degrees.

4.2.2 Sensor selection

Sensors were required for feedback of the following parameters in the system:

+ Part identification
¢ Part inspection

¢ Motor speed

4.2.2.1 Part identification sensors

The requirements of the sensors for part identification system were:

¢ Rapid response for part identification process
s Must be able to provide information about the part pose
e Must be low cost

There are various types of part identification sensors; however the three most comimon
sensors used for part identification are Radio Frequency Identification (RFID) sensors;
barcode scanners; and imaging sensors (cameras). RFID involves remotely storing and
retrieving data from parts, using devices RFID tags. These tags consist of an antenna, a
capacitor, a microchip with a unique identification number, and sometimes a battery [46].
Communication is established between a reader and a tag, allowing for detection through
non-metallic mediums at a distance. This form of identification is mainly used in security

and livestock applications.

Pan identification using barcode scanners involves the line-of-sight reading of a barcode by
a barcode reader. A barcode consists of specific symbols, defined as a series of bars [45].
Barcodes often vary in aspect ratio (ratio of height to width), and variations in each bar
denotes a unique alphanumeric character. Each barcode contains a fixed character to denote
the starting and ending of the code. A barcode scanner consists of photo sensors which are

able to detect the height and width of each bar, along with the spacing of that bar relative to



69

the barcode. The most common industrial type of scanner is the Charge Coupled Device
(CCD) barcode scanner. This imaging senisor converts the detected signals into electrical
pulses within milliseconds [48}].

Cameras can be used for part identification, but the required complexity and processing time
required for identifying parts that vary only slightly in dimension and geometry is too
significant a factor when compared to RFID and barcode scanning methods. Table 4-8 lists
the comparison of barcode scanning systems and RFID systems [45].

Barcode scanning systems RFID systems
Very low cost RFID tags are significantly more
expensive than barcodes
Barcode must be in line of sight of reader Can read tags even with obstructions
Distance between barcode and reader is low Read distance is high
(averaging approximately 20cm) (averaging 2m)

Barcodes are large and sensitive to aspect ratios | Tags are small and can store varying

amounis of data

Subject to degradation through handling Robust against handing
Able to carry fixed limited amount of Tag data can be updated
information

Table 4-8: Comparison between Barcode scanning systems and RFID systems

The NCAIS operated on the assumption of a predictable part pose. Barcode scanning
systems were able to provide this due to their line-of-sight operation. This attribute, coupled
with the Jow cost involved with barcode scanners, led to the selection of barcode scanning
sensors as the method of part identification. The barcode scanner selected was a PSC VS
1200 barcode scanner. This barcode scanner was designed as a vertical scanper with
capabilities of dense scan paiterns for optimal reading of damaged or poorly printed barcode
labels [49). Communication to this device via a computer is achieved using the serial

communications port. The specifications for this device are shown in Appendix C.

4.2.2.2 Part inspection sensors

The most appropriate sensors for part inspection were image sensors (cameras). Image

sensors are responsible for measuring and recording incident light and converting those
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recorded values into images. These sensors consist of various materials which generate a
charge relative to the number of light photons stnking them. The quality of the acquired
image is essential to the operation of the vision system, and so selection of the appropriate
sensor is crucial. An imaging sensor is divided into arrays of small areas called photosites,
which convert measured light into a discrete value [22]. Images are considered arrays of
these measured values. Many sensor characteristics need to be considered prior to selecting
an imaging sensor. These charactenistics include sensor resolution; aspect ratios; sensitivity;

colour depth; fill rate; and frame rate.

Sensor resolution can be considered as the mumber of pixels available 1o describe an image.
This description is also related to the Field Of View (FOV) of the sensor. Higher resolutions
lead to higher amounts of information that require processing. The advantage of high
resclution sensors is that more detailed images can be acquired. The aspect ratio of a sensor
is defined as the number of pixels available to describe the height of an image, to the number
of pixels available to describe the width of that image. Typical sensor aspect ratios lie
between 1 and 1.5 [50). The colour depth of an imaging sensor is the number of bits used by
that sensor to distinguish between colours in an image. The semsitivity of a sensor is
described by the speed at which that sensor is able to convert light into an image. Higher
sensitivities are more appropriate in high speed environments. The fill rate is defined as the
percentage of pixel area that is used for converting light into a voltage. The higher the fill
rate, the more accurate and less susceptible a sensor is to noise. The frame rate of a sensor is
the time allowed for light to enter the sensor’s photosites, before the sensor shutter closes.
The higher the frame rate, the more semsitive the sensor needs to be in order to produce an
image. High frame rates are used to produce sharper images which are less susceptible to

blurring.

The two most common types of imaging sensors available are Charge-Coupled Devices
(CCDs) and Complimentary Metal Oxide Sensors (CMOS). The difference between these
sensots is due to the way the charge is read out from the imaging sensor, resulting in
different image formation processes. A CCD converts light into an image row by row of
photosites, once the camera shutter is closed. Initially, the charges from the first row of
pixels are transferred to a device called the read out register, This register is used for
transferring data from the photosites to a signal amplifier, and then to an analogue to digital
converter {usually a frame grabber). Once the data in the register has been read, the register

is emptied and the values from the second row of photosites are stored in the register. The
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transfer of data is sequential and so each row is processed individually, however these values
are eventually coupled to form the image data. These sensors are able to produce high
quality, low noise images since they have characteristically high fill factors, and good pixel-
to-pixel uniformity. Due to their complexity of design and the hardware required,
implementing these sensors is generally associated with high capital costs. The operation of

this type of sensor is shown in Figure 4-34 [22].
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Figure 4-34: Operation of CCD imaging sensor [22]

CMOS sensors are increasing in popularity due to their low-cost and wide range of
availability. These sensors have an amplifier at each photosite, and so each photosite is read
individually as opposed to contiguous rows of photosites. Due to use of CMOS technology
[22], additional control circuitry is generally added to these sensor chips, allowing for on-
board digitization of images and light compensation circuitry. The implementation of
amplifiers at each photosite decreases the fill factor of the sensor, making the sensor
mappropriate under low lighting conditions. This is the reason for implementing light
compensation circuitry. The heat generated at each photosite causes sensor noise which
decreases the quality of the acquired image. These sensors have a low sensitivity and
variations in photosite performance (due to methods of manufacture [50]), and this can result
in noisy images being acquired. These sensors are generally small in size with high
resolutions, allowing for use in intricate applications. The layout of a typical CMOS imaging

sensor is shown in Figure 4-35[22].
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Table 4-9 lists the differences between CCD and CMOS sensors.

Imaging Sensor Type Advantages Disadvantages
CCD High quality, low noise High power consumption
pictures

Good pixel-to-pixel Requires external hardware

uniformity (frame grabbers)
High sensitivity High complexity of design

High fill factor High capital cost

CMOS Low power consumption Susceptible to noise

Additional control circuitry
can be added onto CMOS
chip

Low sensitivity

Random pixel readout
capability

Low fill factor

Low capital costs

Small in size

Table 4-8: Differences between CMOS and CCD imaging sensors

The sensor required for the NCAIS was required to be:

e Low cost

¢  Small due to spatial constraints

e Low-weight
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Figure 4-36: (b} Closed |oop control components [51]

The required motion for each axis of the ganiry structure was based on a constant spatial
velocity to achieve the desired distance within the allocated time. Each axis was required to
operate at different velocities for every point to point move. Operating different velocities
meant that speed control was required, and this was achieved using Pulse Width Modulation
(PWM) signals. The fact that the system was well defined in terms of its motion, allowed for
the use of open loop control. The hardware for this motion control system consisted of
motors; motor drivers; a power source, and a controller. The controller selected for
generating the PWM signals was the ATMEGA32L microcontroller. This CMOS
microcontroller is a high performance, low power; 8 bit controiler based on enhanced AVR
RISC (reduced instruction set computer) architecture [52]. The programming memory
available for this chip was 32 kilobytes (KB), and serial communication to the computer was
enabled via the Universally Synchronous/Asynchronous Receiver Transmitter (USART).
This senal communication was required for receiving commands from the host PC and
transmitting signals back to the host PC to indicate completion of the command. The
microcontroller was equipped with four PWM outputs which meant that a single

microcontroller was sufficient for speed control of the gantry system.

The actual speed control of the system was achieved by testing each axis of the machine
under various pulse lengths and obtaining the characteristic information of pulse length
versus speed. To prevent overshoot, the PWM signal was stopped before the total time
required. PWM signals were generated at frequencies of 10kHz, PWM motor drivers were
purchased from the electrical engineering department at the university. The circuit layout and
diagrams are shown in Figure 4-37 (a} and (b). These motor drivers consisted of transistors
and relays for facilitating fast PWM switching up to a frequency of 20kHz, with capacitors

for smoothing the output signal to the motors.
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Figure 4-37(a): PWM motor driver

The layout of this system showing the components and signals is shown in Figure 4-38. The

reference rotational speed was inputted from higher level operating sofiware.

Voltage 12V
4._ . ——
Desired regulator
4pesd 5V

PWM

X-axis Y -axis Z-axis
motor motor motor

Figure 4-38: Layout of ganiry system motor control circuit

The pan motor was also operated using a PWM signal to the input pins of the servo. The
built-in control circuitry of the servo compared the actual position to the desired position,
and executed the necessary control actions. The tilt motor was operated using a simple relay

circuit and a limit switch for the two reference angles (0 and 90 degrees).
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4.2.4 Lighting system

Suitable lighting conditions are essential to the operation of the image acquisition process.
The lighting source determines the quality of the reflected light received by the sensor, and
hence affects the quality of the acquired image. It is therefore necessary to determine an

appropriate method of lighting when considering implementation of a vision system.

4.2.4.1 Nature of light

Light can be considered to have a dual nature; namely a transverse wave (electromagnetic
radiation) and a particle nature (photons). The wave nature of light is used to explain the
propagation of light through various mediums. The particle nature of light is used when
explaining the interaction of light and matter, resulting in a change of energy (as in an
imaging sensor). Lighting is crucial to image acquisition process as this allows for high
contrasts between features of interest and the backgrounds in images. Reflected light
(received by the imaging sensor) is a function of the colour of the incident light; the colour
of the part; and the geometry of the part. White light contains a continuum of frequencies
[53]. Since colour filtering can be performed in software, white light was considered most

suited for general lighting conditions of the NCAIS.

4.2.4.2 Lighting methods

Methods of lighting are dependant upon the lighting source and lighting type. Common
lighting sources, used in vision systems, include fluorescent lamps; Light Emitting Diodes
(LEDs); and quartz halogen. A comparison of these lighting sources is shown in Figure 4-39.

For information on the detailed operation of these sources, see [53].

Life Expectancy

Cost Effectiveness (hr) Intensity

Heat Output Applicaton Flexibility

Stabllity mLED
m Quarz Halogen
o Fluorescent

Figure 4-39: Comparison of three common machine vision lighting sources [53]
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The purchased USB camera, for use as the imaging sensor of the NCAIS, had an on-board
light differencing compensation circuit. This feature was used to compensate for slight
variations in lighting conditions. The compensation of variations in lighting conditions led to
an inaccurate image acquisition process. This inaccuracy, along with the design objectives,
set the main requirements of the lighting system to be consistent; low-cost in operation; and
have long life-expectancy. Fluorescent lamps operate at a frequency of 50Hz. This frequency
is significantly larger than the frame rates allowed by USB cameras (12-24 frames per
second), and so the flickers produced by fluorescent light sources can be detected by USB
cameras. This source of lighting was therefore deemed unsuitable for use in the NCAIS, as
the image acquisition process would have been inconsistent. From Figure 4-39, it was
deduced that quartz halogen light sources are generally expensive when compared to the
other sources, and do not have a very long life cycle. These factors, coupled with the stability
characteristics, makes quartz halogen lighting sources unsuitable for the lighting system of
the NCAIS. LEDs have a high life cycle; are low cost; and most importantly, offer very
stable and consistent lighting. These characteristics make LEDs the most suitable lighting
source for the NCAIS, and so use of only these sources of light will be further discussed

Lighting types can be classified by the shape of the light source. The common shapes of
LED lighting types are ring lights; bar lights; back lights; and spot lights. Ring-shaped
lighting types are generally placed around the imaging sensor. This form of lighting type
offers uniform light intensity over the entire ring, and can be used to highlight a circular area
of the ROI that the imaging sensor is focusing upon. Bar lights consist of an array of LEDs
that form a linear or bar shape. This setup allows for uniform lighting in the shape of a
rectangular area. The lengths of these armmays range from 20cm-200cm [53]). Spotlights
contain high intensity L.EDs that are used to focus light onto a specific circular region. This
type of lighting structure differs from ring type LEDs in that the light is not uniform around
the sensor; and the light is more concentrated and focused on smaller regions than with ring
lights. Backlighting systems differ from the other lighting types in that this type of lighting
involves placing the light source behind the object. This type of lighting usuaily consists of a
matrix of LEDs, and is used for inspecting transparent objects, and obtaining single-planed
geometric profiles of reflective parts. Figure 4-40 (a) shows typical ring light; bar light; and
spot light shapes. Figure 4-40 (b} shows the operation of a backlighting system.
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Ring Haht

Figure 4-40 (a): Typical LED lighting arrangements [53] Figure 4-40(b): Backlighting system in operation [53]

4.2.4.3 Lighting position

The image of the surface of an object is greatly influenced by the position of the lighting
source. The reason for this is that the light received by the imaging sensor is a function of the
angle of the incident light, as well as the orientation of the camera relative to the reflected
light. A significant factor when considering of angle of illumination is the glare caused by
reflective surfaces. Glare can be defined as a relatively extreme light intensity level (much
higher than the average intensity level), focused at a particular region in an image. This leads
to inaccurate images being acquired. Reflected light (as perceived by the camera) can be
divided into regular and diffuse reflections. Regular reflections consist of light waves that
are reflected at the same angle as the source light; and are intensified on glossy areas
(smooth, highly reflective glassy surfaces). Diffuse reflections consist of light waves that
diffuse in random directions, and are intensified on non-glossy areas. In order to reduce the
glare in an image, focus needs to be placed on capturing diffuse light waves. Figure4-41 (a)

and (b) show the different sensor positions for reducing and increasing glare during image

acquisition.
camera
Ditiuse camera
Diftuse reflected
light source '“;&“’lﬂ“ light source light

Rﬁmr / Regular

| T / 'ﬁ%m
Figure 4-41(a): Optimal sensor positioning Figure 4-41(b): Sensor positioning that increases glare [53]

for reducing glare  [53]
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4.2.4.4 Lighting design

The advantage of ring lights is that the lighting conditions are consistent as perceived by the
imaging sensor. The disadvantage of these lighting types is that glare is experienced when
obtaining an image at a close distance at a uniform intensity. This leads to inaccuracies in the
images acquired. This made the use of ring light LED structures unsuitable for the NCAIS.
Backlighting was not a desirable lighting type as the conveyor and parts inspected were not
transparent. Spotlights were considered, however another positioning system would have
been required for positioning this light source, which would have complicated the kinematic
model and SPS design. White LED arrays were selected for the lighting system design.
These lights were placed on each corner the NCAIS frame, at the angle of the frames, as
illustrated in Figure 4-42. The direction of the lighting was focused toward a rectanguiar area
at the centre of the apparatus. Eight LEDs per array allowed for an intensity value of 800
lumens per array. This value was doubled when considering image acquisition of a face,

since two arrays were active.

Figure 4-42: Top view of NCAIS showing direction of lighting

4.2.5 System layout

A host processor was used to perform overall process supervision, with motion controllers
performing low-level control operations. A single board computer could have been used as a
dedicated host processor; however a desktop PC was used due to the availability of this
hardware by the university. Serial communication between the PC and the microcontroller
was facilitated by using a MAX232 level shifter. The function of the MAX232 chip is to
perform signal conditioning operations on the RS232 output from the PC and adapt the
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signal into TTL signals as used by the microcontroller, Communication between the host PC
and the imaging sensor was facilitated via the USB communications port as no frame
grabber was required. The output from the barcode scanner was via the RS232 serial
communications protocol. Due to the PC having only one RS232 port, it was decided to

purchase a USB to serial converter for signal conditioning purposes.

4.3 Software design

The system software was divided inte high and low level operations. High level operations
involved general system management. This level of software was used for coordinating and
communicating with other levels of software for sequencing, processing, and decision
making purposes. Low level sofiware included sofiware for motor control; image
acquisition, and image processing. Different types of sofiware were required for the
operation of the NCAIS, Matlab V7 was selected for the general management of the system.
OpenCV was selected for image acquisition and processing purposes. Low level motor
control was performed using the ATMEGA32 microcontroller and CodeVision-AVR C
compiler software. The software version of the kinematic model was written in C++ and

complied with Borland C++ Builder.

4.3.1 Matlab software

The requirements of the system’s high level software were to:
s Provide a system-user interface which can provide real-time user feedback during
system operaton
¢ Perform process control of system state, and system sequencing and operation
¢ Execute file handling operations

¢ Determine whether an inspected part was acceptable or not

The system-user interface was required to be simple to implement, and easy to use. The most
practical user-friendly software interfaces are Graphical User Interfaces (GUIs). MailabV'7
allows for use of its Graphical User Interface Development Environment (GUIDE). This
development environment makes use of object orientated programming techniques in which
initializing system code is automatically generated for objects as an object is selected, which

simplifies the GUI development.
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The GUIs provided highly customizable options and settings for inspection routines, to the
user. Using these GUISs, the desired inspection routine parameters were set by the user. These
parameters included part family; part dimensions; conveyor speed; ROI; and required types
of inspection. The GUI also allowed the user to repeat an inspection routine; edit an existing
inspection routine; and perform an emergency stop of the system operation. The main GUI

for the system is shown in Figure 4-43.

! Fromipane

Figure 4-43: Layout of the main GUI for the system

The operation of the GUI involved calling of m-files that were written for performing
specific tasks. These tasks included reading data from the barcode scanner; perform
read/write file handling operations; system calibration; and decision making algorithms. The
advantage of selecting MATLAB for use as the main software was that this software is able
to access utility programs written in low-level languages. A utility program is defined as an
independent program that produces an output on activation. Other high level languages such
as Visual Basic (VB) are not able to interface with low-level languages as easily as

MATLAB.

M-files were written to access and write to existing text files in the system database. A file
convention was used to develop a standardized data structure for data transfer between
MATLAB and the other softwares. Files that were stored included golden and background
images of ROI as well as the data file which stored the routine parameters. The barcode
characters of parts inspected were intended to be unique, and so these characters were used

for identifying the parts inspected. Inspection could only be conducted on a part if the
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relevant file was located in the system database. Table 4-10 summarizes the information that

was required by the system to register a new routine.

Part parameter Data type

Bar code/part identifier | String (alpha numeric characters)
Part family Integer {one of three part families)

Part dimensions Integer

Conveyor speed Integer

Number of ROI Integer

ROI positions Integer

Types of inspection Integer

Inspection thresholds Integer

Table 4-10 Summary of new part parameters

The kinematic model developed in C was used to output the sequence of actuator motions to
MATLAB. The code for this model is shown in Appendix D. The sequencing of the system
operation was performed by using special timer/clock functions in MATLAB. Qutputs to the
microcontroller software were used for sequencing the motion of each Utility file for image
processing and acquisition algorithms were written using OpenCV, and these files were
referenced by MATLAB whilst the inspection routine occurred. Based on the output from
these utility programs, a decision was then made in MATLAB as to whether the part was

accepiable or not.

4.3.2 OpenCV Software

OpenCV is an open source computer vision software libraries developed by Intel [54]. This
software is based on the C++ programming language. The intended applications of this
software include environments in which dynamic image processing with rapid response was
required. Other software packages include image processing toolboxes. Popular software
packages include Roborealm [55]; MATLAB; ERSP Vision; and Mathematica. OpenCV was
most applicable for performing image processing operations duning inspection, as this

software was easily adaptable and operated in real time.

The requirements of this low-level software were to:

¢ Perform image acquisition when required by MATLAB
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*  Perfonm necessary image processing techniques as required by MATLAB

¢ Compare test and reference images and output result to MATLAB

Image acquisition was perfonined using the opencv.capture function. Due to the intended
alignment of the centre of the ROI with the centre of the acquired image, some excess
background information would have also been present in the image. This excess information
would have increased the processing time, leading to inefficiencies in system operation. To
ntinimize the effect of unnecessary background information in images, the acquired images
were cropped. Cropping is a process wherein the outer rows and columns of an image are
neglected, and the resulting image is a smaller subset of the acquired image. Cropped images
contain less excess information and hence require less processing time than the original
acquired images. Image enhancement and analysis operations were then performed on the
acquired images to obtain data from the images for storage and comparison purposes. Once
companson between two images occurred, the output was then stored and accessed by
MATLAB for decision making purposes. A flowchart of the sequence of operation for the
OpenCV software, with the emphasised process for image analysis of test and reference

parts, is shown in Figure 4-44.
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Figure 4-44; Sequence of operations required by the OpenCV solware
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4.3.2.1 Image data structure

Prior to detailing the actual operations of the utility programs, the method of defining the
image structure used for the process needs to be established. The structure, used for
mathematical representation of an image, consisted of three spatially discrete scalar
functions of two independent variables. This representation was used to represent the image
on each of the three primary colour channels; namely Red, Green, and Blue (RGB). The
inspection process used true-colour image representation; in that each of the three channels
supported 8-bit data structures (0-255 shades of a single colour). The intensity value of each

channel was then represented as individual functions of the form:

L(xy)=r
Ig(x)y)= g
Ib(‘x,y):b

where [, , are each 2-D representations of the intensities on the RGB channels

respectively, The number of pixels in an image are used to define the size of that image. The
representation of the size of an image for inspections was defined to be X in the x dimension,
and Y in the y dimension. This placed the following mathematical constraints on the images

of the system.

(r,g,b €10,255);x €[0, X -1,y €[0,¥ —1]:x,p,7,8,b € Z)

4.3.2.2 Image enhancement techniques

Image enhancement techniques are used for highlighting features of interest in an image; and
to transform data that is obscured in some way in order to allow for a more reliable and
efficient image analysis. Highlighting features of interest are particularly useful when
considering that the inspection routines of the NCAIS were based on images of parts in a
background. The isclation of the part from the background is essential for inspection
purposes. This isolation was achieved by highlighting the pixels representing the part in the
image. Obscured data may originate when poor image quality is achieved. The utility
programs written for employing image enhancement techniques were image deconvolution;

colour/grey-scale transforms; and histogram equalization.
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4.3.2.2 (a) Image deconvolution

Image deconvolution is an operation commonby used 10 reconstruct or recover an image that
has been degraded or blurred. Blurring in images is caused by relative motion during image
acquisition; unsyitable iens focus; and unsuitable lighting conditions [56]. Due to relative
motion between the sensor and the part, the images acquired during inspection routines were
prone to blurring, This led to increased possibilities of inaccuracies in inspection routines,

and therefore needed to be accommodated.

Blurred images can be modelled in the spatial domain as the convolution of the degradation

system with additive noise. This model is represented by equation 4.34 [16].

g:H*f+n (434)

where g is the blurred image; H is the distortion operator also referred to as the Point Spread
Function (PSF); f is the desired image that has not been blurred; and n is the additive noise
introduced during the image acquisition process [16]. The PSF describes the degree to which
the vision system spreads a point of light in the spatial domain. The deconvolution of the
blurred image with the PSF results in a deblurred image. For a more detailed explanation of

the deconvolution process, see [56].

4.3.2.2 (b) Colour to Grey-scale conversion

In order to accurately compare two images, colour images are often converted to normalized
grey-scale images. This conversion is performed using the equation 4.35 [16]. The intensity
of each colour channel is considered as an independent value of a three dimensional matrix.

The resulting grey-scale image then consists of one 8-bit channel.

G(x,y)= J(L(x,y))l + (Ig (x?:y)): +(fb(x,y))2 (4.35)
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4.3.2.2 (c) Histogram equalization

Histograms form the basis of numerous spatial domain processing techniques. Image
histograms are used to characterize the distribution of the intensity values in an image. These
histograms are represented as discrete functions of the form

h(r, ) = n;

where r, is the k" discrete intensity level; and n, is the number of pixels in the image having

an intensity value of r,.  An 8-bit grey-scale image histogram involves representing the

distribution of 256 levels over the image, with the index of the values ranging from 0-255.
The numbers of pixels that have a certain intensity value are stored in an index counter.
Having an image with high contrasts allows for easier and more reliable distinguishing
between the features of interest and the background. A method of increasing the overall
comirast in an image is histogram equalization. Histogram equalization is a statistical
operation in which the intensity values are nornalized and redistributed across the range of

intensity values possible. The effect of histogram equalization on a grey-scale image is given

by:
G = (Gou _ Gmin )
' Grax = Guin
where G, is the grey-scale value of pixel #; R is the range of possible greyscale values

(usvally 256); G, is the previous grey-scale value of pixel /; and G, and G, represent
the maximum and minimum grey-scale value in the original image. Similar operations can
be performed on each channel {RGB) for obtaining higher contrast in colour images. The
OpenCV function evCreateHist was used to read an image and then create the histogram of
that image. The function cvNormalizeHist was used to perform histogram equalization
on the histogram, and create a new normalized image which was stored in the same location

as the original image.
4.3.2.3 Image analysis techniques

The software algorithms for image analysis were required to generate quantitative
information about the image data produced by the image acquisition and enhancement
processes. The main focus of the algorithms were t0 compute the statistical differences

between the images of the reference part and the test part; and then quantify and output these
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differences to MATLAB. Prior to comparing the test and reference part attributes, these parts
needed to be isolated from the background and aligned with each other to compute the
differences. The isolation of the part from its background was achieved by feature
extraction, and alignment of the test and reference parts was achieved by performing image
registration. Image registration is the process of transformation of the test image into the
reference image’s scale, translational, and rotational spaces. The operations used for image

registration were Log-Polar and Fourier correlation transforms.

4.3.2.3 (a) Feature extraction

The goal of this process was to subtract the background from the part. Following image
acquisition and enhancement, a difference image computation was performed. For feature
extraction purposes, the difference between two images may be defined as the absolute
pixel-wise difference in the normalized  greyscale for colour-invariant comparisons; and
grey-scale of the absolute pixel-wise difference in each colour channe! for colour-vanant
companisons (calculated in a manner similar to actual grey-scale image G(x,y)). The
mathematical representation of this differencing between two pixels with identical

coordinates is represented by:

D r g%y} = |11(G.r,g,a1 (x,») - IZ(G,rg,b)(x’y)|

Based on this definition, the absolute pixel-wise difference metric for the éntire image was
defined as an indicator of the degree of direct correlation between two images. This image
was given by equation 4.36 [16], with X and Y being the number of pixels in the x and y

dimensions of the image.

X-1¥=1
Biy= (X *Y) 'Lz D{G,r,g.b)u,j;(xay) (4.36)

x=0 y=0

This difference yielded the isolation of the part from the background; however this process
was prone to errors in that the background in the two images may have been misaligned.

Log-polar and Fourter transforms were then implemented for improving system accuracy.
4.3.2.3 (b) Log-Polar transform

Image registration must be implemented when accounting for any inconsistencies in the

image acquisition process. These inconsistencies may be present due to accumulated errors
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in the SPS, and initialization detays in system software. In the case of comparing two images
that involve moving systems, rotational variances must be accounted for. The log-polar
transform is a mathematical one-to-one mapping in 2D Cartesian space, used for eliminating

rotational variances between two images of the same part. This transform is represented by:

(r.a) < (x,y)

r=tog[{s-x. Y + (- ».¥ ]

where x_and y are the coordinates of the centre of the transformation. The centre of the

transformation was set to be the cemtre of the image since the image resolution is best
preserved at this point (due to convex lenses in the camera). The function of this transform is
to convert rotation about the centre point as a translation along the ¢ direction, and scaling
about the centre point as a translation along the » direction. Using this transform, any
scaling and rotational variances were converted into 2D translational errors. The cvLogPolar
function was used for reading and transforming images; and then storing the transformed

images. The code for this utility is shown in Appendix D,
4.3.2.3 (c) Fourier correlation

The second requirement of the registration process was to account for any translational
inconsistencies between the reference and test images. Spectral analysis was the
implemented method of eliminating emors in the log-polar transformed images. Images were
transformed into the frequency domain using Fourier transforms. The Discrete Fourier
Transform (DFT) of an image f(x,y) of size XY is defined below [16].

=1 ¥l

1 —fImd X+
Flun)=-L5 3 fia, ppe-retorsonn
=0 yp=0

Similarly, given F(u, v) the inverse DFT of an image can be used to obtain f{x,y). The

inverse DFT of an image is then given by:

X-1 ¥-

flny)=2 2Ryt tmm

u=0  v=l)
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These transforms can be calculated using one of many Fast Fourier Transform (FFT)
algorithms available, which reduce the computational complexity of the transform. Although
the Fourier transform operates on complex functions, the images used consisted of only real
mumbers, and hence by symmetry properties of the Fourier transform, the resulting inverses

of transformed images are guaranteed to retum purely real images.

The translational shift between twoe images was required to be calculated very quickly. Given
two similar images, the amount of translational shift between them may be determined using
the Fourier correlation theorem. This theorem states that the Fourier transform of a
correlation integral is equal to the product of the complex conjugate of the Fourier transform
of the first function (F*) and the Fourier transform of the second function (G) [16]. This is
represented by the following equation:

C(feg)=F*G

The only difference between this and the convolution theorem [16] is in the presence of a
complex conjugate, which reverses the phase and comesponds to the inversion of the
argument u-X. Figure 4-45 illustrates that if the two functions f and g contain simijlar
features, but at a different position, the correlation function will have a large value at a

vector corresponding to the shift in the position of the feature,

: <
Q u

Figure 4-45: Resulting vector due o a Fourier correlation operation [16]

Using the obtained information from this operation, the images resulting from the log-polar
transforms were aligned to eliminate any translational differences. The code for the utility

program that performed this operation can be found in Appendix D.
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4.3.2.3 (d) Image comparison

Following the feature extraction, log-polar transformation, and Fourier correlation
operations; the inverse log-polar transform was required for retuming the image back to its
original form {Cartesian coordinates). Equation 4.36 was then used to perform a pixel-wise
differencing operation to quantify the statistical difference between the reference and the test
parts. Following the differencing algorithm, the resulting difference image was converted
into a binary image to ensure that the differences were significant enough. This was
constrained by a minimum preset threshold value of 5%. Following the binary
transformation, it was possible that the areas showing differences in the images (difference
regions) were due to noise in the system. To account for this problem, only differences
higher than a certain number of pixels (5% or more of total number of pixels) were
considered when computing the differences between the images. The utility program for

comparing two images is shown in Appendix D.

4.3.3 Microcontroller software

The software package used for programming the microcontroller was CodeVision AVR,
which offers the advantage of CodeWizard software that automatically generates the
initializing code for the microcontroller as requested. This software is aimed solely for use
on AVR microcontrollers programmed by the STK500 kit. The user simply enters the
specific chip being used, the clock setting, the input/output port configuration, and the timer
configurations; and the corresponding code is antomatically generated and saved in a source
file. The code implemented onto the microcontroller for motion control is shown in

Appendix D.

4.3.4 Simufation of Kinematic model

A simulation of the kinematic model was written in C++. This model was designed to
convert the ROI passed by MATLAB into moving coordinates. A sequence of the possible
paths was then generated. Based on the convey speed input from MATLAB, the model
calculated the sensor and part trajectories and checked for any possible collisions. Any
collision-involved paths were rejected and the shortest possible path was selected as the
optimal path. This sequence of motions was then returmed to MATLAB which then

performed the sequencing of this operation whilst communicating with the microcontroller
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software, An animation of the optimal path was also performed. The code for this simulation

is shown in Appendix D.

4.4 Summary of chapter 4

This chapter serves to highlight the core elements of Mechatronic engineering for various
subsystems design. The mechanical components were designed base on information
provided in the mechanical design section. The electrical components were selected and
designed considering mechanical components. Software was developed based on the
requirements of the other two core clements. System analysis was performed both

analytically and using simulations.
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S. ASSEMBLY

The assembly phase of the project involved the physical integration of the subsystems to
constitute the entire system. The assembly, along with the signal analysis of each subsystem,

was performed prior to system integration.

5.1 Part Identification System

The PIS comprised of the barcode scanner linked up to the computer. No mechanical design
was involved with this subsystem, apart from mounting the scanner onto the conveyor using
the supplied bracket. The sequence of signal flow from the barcode scanner to the PC is

shown in Figure 5-1.

12V power
supply

Host
PC

Figure 5-1: Signal flow in assembled PIS

5.2 Sensor Positioning System

The finalised constructed SPS consisted of the mechanical members used for positioning the
sensor, the circuitry required for electronic control; the actuators (motors); and the software
module for operating the different aspects of the subsystem. The component layout,
including the sequence of the control signal of the SPS is shown in Figure 5-2.



Qutput from
MATLAB
5V power
j, USB Supgly
USB/Serial Il
CoRyertE | Pan/Tit
”| Motors
MAX
232
l Gantry
motors
ConleVision o oA 12V power
AVR supply

Figure 5-2: Component layout showing signal flow of assembled SPS

5.3 Materials Handling System

The assembled MHS included an operating conveyor system and part centralisation system.
The layout for this system was almost identical to the layout shown in Figure 5-2, with the

exception of conveyor and PCS motors as opposed to gantry and pan-tilt motors.
5.4 Vision System
The layout of the assembled VS consisted of OpenCV and MATLAB software; and the

imaging sensor. The various utility programs were called by the MATLAB program when

specific operations were required. The layout of this system is shown in Figure 5-3.
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High level software

Figure 5-3: Layout of VS

5.5 System integration

The system integration can be explained by Figure 5-4. This diagram shows the
interdependencies between the core elements of Mechatronic engineering. An example of
this interdependency was the operation of the motors and encoders. The selection of the
speed sensor was dependent upon the speed of the motor. The motor speed was dependent on
the required speed of operation. The speed of operation was dependent upon the speed of the
part and the mass of the mechanical components. The actuation of the motors was dependent
upon the software algorithms and electronic hardware. The output from the software was

dependent upon the feedback from the sensors.
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Figure 5-4: lllustration of the inlerdependencies of the core elements on each other
5.6 Summary of chapter 5
This chapter highlights the assembly phase of the design. All subsysiems were assembled to

function as a single unit. The interdependencies of each element of the Mechatronic

engincering design were highlighted and discussed.
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6. RESULTS AND DISCUSSION

6.1 Kinematics simulation results

The kinematic model was used to simulate the overall trajectory of the sensor relative to the
moving part. This simulation shows the order of the paths that could have been followed.
These paths were based on the positions of the ROI on the part; the velocity of the part; and
the dimensions of the part. For example, the path {0 1 2 3) means that the trajectory of the
sensor would be starting from ROI 0, going through to ROI 3. The ROI that were selected for
the simulation were strategically placed at the furthest location from the camera, on each
face. The camera field of view was able to accommodate adjacent ROI centres on the same
image. Consequently, no more than two ROI were place on a single face of a part smaller
than 200mmx200mmx200mm. The outputs form the simulation were the number of free
paths and the shortest possible path. The green lines represent the part boundary space as a
function of time. The purple line represents the trajectory of the sensor as a function of time.,
If a collision between the sensor and the part ever occurred whilst following a specific path,
the path was labelled as colliding (marked with an adjacent ¢) and hence rejected. The paths
that did not collide were then analysed, and the path that offered the shortest total distance
was selected and highlighted with an asterisk as shown in Figure 6-1.

R T R LT L N I N e X E N ]
L R R R L T TR R e ]
N R R Y I LR R T
R e R O e D W LD R D b N oo R W R A

Figure 6-1: Simulation of kinematic model showing motion of part and sensor
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The following results, shown in Table 6-1 were obtained for various part sizes, and the
minimum possible inspection times indicate that higher conveyor speeds could have been
facilitated for these inspection routine configurations. All dimensions were in mm. Four

identical ROI were selected for each part.

Part dimensions Number of collision | Number of colliding | Minimum inspection
(LxBxH) free paths paths times
100x100x100 8 16 26s
100x150x100 4 20 27s
200x100x100 16 8 20s
200x100x200 8 16 22s

Table 6-1: Kinematic simulation results for randomly sized pans

6.2 Image processing algorithm results

The image processing algorithms were used to compare reference images against images of
both acceptable and unacceptable parts. Images used included still images (for testing just
the algorithm), and images which involved relative motion between the sensor and the part
(for testing the algorithms whilst the machine was operational). The acquired images differed
in that the features of interest in the images were at different poses, and the lighting
conditions varied slightly. The OpenCV utility programs written for reducing translational

and rotational non-conformities of the test images were then employed by Matlab.

The results of these image processing operations are shown in Figure 6-2(a) and (b). The
component involved was a mounting bracket designed to fit onto a research platfonn in the
CIM cell. A reference part was produced and an image of the top view of this component
was acquired, as it passed along the conveyor belt at a speed of 0.01m/s. This part is shown
in Figure 6-2(a). The same procedure was followed when a test part was manufactured,
shown in Figure 6-2(b). The images shown in these figures are the corresponding images
obtained afier the feature extraction process. The ROl in this sample were the two holes,

shown in green and red squares, used to house support bars in an assembly.
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Figure 6-2(a): Reference image Figure 6-2(b): Test Image

Once the images were acquired and the features extracted, the rotational and translational
non-conformities were eliminated using the log-polar and Fourier-correlation utility
algorithms. The difference between images resulting from these operations is shown in
Figure 6-3(a). The difference between the images after the filtering algorithm is shown in
Figure 6-3(b). The figures show that the difference between the test part and the reference
part is negligible, and the part was therefore classified acceptable.

Figure 6-3(a): Difference of aligned images Figure 6-3(b): Image differences after cleaning

The same type of component was to be made, however the part was inspected prior to the
drilling process on the ROl and prior to an initial finishing process which ensured
dimensional accuracy. This premature inspection routine was performed to verify that the
algorithms would detect the non-conformities. The same reference image as shown in Figure
6-2(a) was used. The image acquired of the non-conforming part, after feature extraction, is
shown in Figure 6-4(a). The operations used to inspect the previous part were again used to

check the non-conforming part. The difference images (Figures 6-4(b) and (¢)) indicated
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that the scale of the two parts was slightly off. This could have been due to different camera
positions. The major differences highlighted in Figure 6-4(c) were at the location of the holes
for the support bars. Based on the difference at this ROIl, the part was classified

unacceptable.

Figure 6-4(a): Non-conforming part Figure 6-4(b): Difference images

Figure 6-4(c): Cleaned difference image of non-conforming part

The time taken, from image acquisition till the image processing result completion, was
observed as being less than a second for each ROl This high speed operation justified the

used of inspection based on machine vision.
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6.3 System performance

The general performance of the system included analyzing the motion of the system coupled
with the response times of the controlling and image processing software. During operation
of the apparatus, it was observed that the technical effort required to ensure control;
synchronization; and tracking, could have been significantly reduced by a more algorithmic
and computational approach. Machine learming knowledge based systems would have been
able to correlate 2D representations of 3D objects, This feature would have allowed for an
increase in the degree of independence of the captured image from the physical pose of the
camera, which would have then reduced the dexterity required by the sensor. This would
have simplified the mechanical design of the system. The motion performance of the
apparatus was tested with the system being tested initially in terms of each independent axis,

and then as a whole for accuracy and repeatability.

6.3.1 X-axis

The x-axis dnive system was operated with the pulse time equalling the duty cycle (full
PWM signal) in order to quantify the maximum velocity of the axis. The maximum velocity
was used since this velocity would result in the maximum overshoot. In this testing process,
the drive system was operated alone at full speed, for a set of discrete times, ranging from
0.1s till 17.5s. The distance moved as a result of this operation was then measured. The
results of the distance versus the operating times are shown in Figure 6-5. These results are

shown in Appendix B. The equation of the graph was found to be of the form

y=22.1x-1.64

The straight line graph below confirmed that the motion of the x-axis invelved a linear
relationship between the distance travelled and the time that the motor was operated at full
speed, which then verified a constant average maximum velocity of 22. lmmvs. The reason

that the graph did not pass through the point {0,0) was due to friction and inertial effects.
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Graph of Distance vs Time (X-axis)
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Figure 6-5: Graph used to obtain maximum x-axis velocity

Using this information, an estimated linear relationship between the desired speed and pulse
length was established. This relationship was then used for acquiring an open loop model for
the x-axis. A factor of concern was the performance of the x-axis when the y-axis slider was
at different positions along the y-axis. The reason for this was that different slider positions
would have varied the load distribution on the driving and support ends for motion along the
x-axis. When the load was at y=0, the greatest deflection would have been experienced by
the x-axis components. With the load at y=1, the smallest deflection would have been
experienced by the x-axis. It was therefore decided to test the performance of the x-axis at
extreme y-axis slider positions to see if any significant variations in performance occurred.

The following results were obtained.

Graph of Distance vs Time for X-axis (y=0)
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Figure 6-6(a): X-axis performance (y=0)
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Graph of Distance vs Time for X-axis (y=l)
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Figure 6.6(b): X-axis performance (y=l)

Figure 6-6(a) and (b) shows performance of the x-axis at y=0 and y=L. As shown in the
graph, the slider position along the y-axis did not significantly affect the performance of the
x-axis drive system. The errors for the x-axis positioning are shown in figure 6-7(a) and 6-

7(b).

Graph of Error vs Distance for X-axis (y=0)
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Figure 6-7(a): Measured error between actual and desired distances along the length of the structure
(for y=0)
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Figure 6-7(b): Measured error between actual and desired distances along the length of the structure
(for y=L1)

From both sets of x-axis performance results (y=0 and y=L), the maximum error obtained
was 3.5mm, which was within the specifications of a maximum error of 8mm. These values
indicate that the accuracy and repeatability of the x-axis, with various y-axis slider positions,
was acceptable. The deflection of the x-axis under the worst loading condition (x=L/2; y=0)
was measured to be 0.12mm. This value was below the minimum calculated value of
0.26mm. The difference between calculated and measured values was due to the fact that the
static analysis accounted for each member sustaining the entire load alone; whereas in the

measured value the 1oad was shared amongst all the members accordingly.

6.3.2 Y-axis

The results for the motion of the y-axis are shown, Appendix B. The system was tested to
quantify accuracy and repeatability, as well as estimate the losses due to friction and inertia,
during operation of this axis. A graph of distance versus time, with the axis being driven at
full pulse length, was plotted from the obtained results. The results confirmed that the
distance travelled by the camera in the y-axis could be modelled as a linear function of time,
and hence verified that the motor velocity could be modelled as being constant. The average
velocity was estimated to be 22.92mmy/s. This speed was acceptable as it was higher than the
maximum part speed of 0.02m.s. A graph representing the motion characteristics of the y-
axis is shown in Figure 6-8. The equation of the graph was found to be
y=22.92x-0.3208



105

[ Graph of Distance vs Time (Y-axis)
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Figure 6-8: Y-axis motion characteristics

The motion was then tested for accuracy and repeatability by inputting the required move
distance, and then measuring the actual travelled distances. Three attempts were made to
obtain results in order to verify repeatability. The graph shown in Figure 6-9 relates the
errors in the actual distances to the desired distances. It can be seen that the maximum errors
in the motion were approximately 3.5mm which is less than the acceptable 8mm as
specified. The largest errors occurred at the middle and toward the end of the y-axis

structure,

The errors at the middle of the structure could have been as a result of the accumulation of
inaccuracies in the estimated equation for the system. The undershoot toward the end of this
structure, which influenced estimation of the open loop model, was most likely due to the
structure having some form of deformation at these distances. Deformations could have been
inherent during the manufacture of these components. These deformations would have
increased the friction in the motion, leading to the travelled distance being less than the

calculated distance.
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Graph of Errors vs Traveled distance
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Figure 6-9: Graph showing measured errors of y-axis motion

The errors involved in positioning the y-axis were larger than the errors involved with the
x-axis performance. This would have been largely due to the fact that the x-axis was rigidly
fixed onto the frame of the NCAIS; whereas the y-axis structure was fixed onto a moving
x-axis slider and a roller on the opposite side. Both these errors in positioning were
acceptable despite a difference in the general performance of these axes. In order to obtain
the accuracy of the axis, the percentage of the errors, for the different attempts, were plotted

against the travelled distances. These results are shown in Figure 6-10.

Graph of Percentage Error vs Distance traveled
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Figure 6-10: Accuracy and Repeatability of Y-axis

The axis errors showed an accuracy ranging from 97%-100%, which was essential for the

motion of the y-axis. This high accuracy was crucial, as the greatest independent distance
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would have to be travelled by this axis, and so error accumulation had to be kept to a
minimum. [t can also be seen from the graph that the errors were within 2% of each other
which indicated a high repeatability characteristic of the axis. The deflection of the y-axis
under the heaviest loading condition (y=L/2) was measured to be 0.08mm. This value was
below the minimum calculated value of 0.18 mm. The difference between calculated and

measured values was the same as explained for the x-axis deflection.

6.3.3 Z-axis

The z-axis was tested similar to the x and y axes. The operation of the z-axis was limited to
an operating distance of less than 100mm due to physical constraints. The motion of the z-
axis did not require small movements due to the tilt function of the SPS. Consequently, only
4 test distances were used as only large movements were required. A graph showing the
distance versus time of the results is shown in Figure 6-11. The equation of the graph was

found to be
y=5x-5
Graph of Distance vs Time for Z-axis
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Figure 6-11: Motion performance of the Z-axis

Figure 6-12 shows that the performance of the z-axis was within the specifications of general
accuracy and repeatability. This axis was not as significant in functioning as the other two
axes. The reason for this is that the pan-tilt mechanism would allow access to ROI from the
allowable heights of the system. The reason for implementing a z-axis was then to illustrate
the principle of collision avoidance. This could have been achieved by operating the z-axis

until its maximum height was achieved, and so no precise movement was necessary in the z-
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axis as was required in the other two axes. Implementation of the NCAIS in actual practical

industrial applications would however require the increased functionality of this axis.

Graph of Measured Errors vs Distance
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Figure 6-12: Graph showing errors of z-axis

6.3.4 Overall performance

The system was tested for overall three-dimensional spatial accuracy. Four random test
points were selected as target points. The method of testing involved starting the camera at
its datum point of coordinates (0, 0, 0), and then using the models to move the sensor to the
desired location. The actual sensor position was then measured relative to the datum point.
This test was conducted ten times for each of the four random target points which had
coordinates (20, 20, 10); (35, 80, 5); (50, 50, 15); and (100, 70,10) respectively. The results
of these tests are illustrated in the graph shown in Figure 6-13. This graph shows that the
maximum spatial displacement (of 3mm) was acceptable for the accuracy of the sensor

positioning,

The measured deflection of the camera was found to be within a 1 mm radius and the change
in tilt was estimated to be less than 1 degree. These measurements were made using a
micrometer which was fastened at a fixed height. Due to the small magnitude in these
measured values, the change in sensor pose due to deflections of the positioning system was

therefore considered negligible,
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Graph of Spatial Displacement Error vs Test
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Figure 6-13: Three dimensional displacement errors involved with the sensor positioning process

Inspection of a support bracket was conducted in order to test system accuracy and
repeatability. Figure 6-14(a) shows the reference part used for the inspection routine. Figure
6-14(b) shows the defective areas in the inspected part. This part was inspected with the
conveyor operating at maximum speed. Four ROI were selected by the user in anticipation of

defective ROL. Figure 6-15(a) and 6-15(b) show the machine whilst it was operating.

Figure 6-14(a): Reference part Figure 6-14(b): Defective
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Figure 6-15(b): Top-face ROI inspection

Figures 6-16(a) through (d) show the isolated images of the background, reference and test
ROL, as well as the result after image comparison, from top to bottom respectively. The part
was rejected due to significant differences between the reference and test images for the

different ROL. The part would have been rejected even if only one ROI did not conform to
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the specifications. The location of the ROI that were defective was then stored and this
information could have been used to identify flaws in a manufacturing process that were

implemented for these ROI.

Figure 6-16(a): ROl 1 images Figure 6-16(b) ROl 2 images
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Figure 6-16(c): ROI 3 images Figure 6-16(d) ROI 4 images

Table 6-2 shows the results of the reference part being inspected and the defective test part
inspections. The reference part was inspected to test whether the system would give
erroneous results when an acceptable part was inspected. The results of an inspection routine

on an acceptable part are shown in Appendix A.



113

Attempt Number Status of perfect part Status of defective part
! Acceptable Umacceptable
2 Acceptable Unacceptable
3 Acceptable Unacceptable
4 Acceptable Unacceptable
4 Acceptable Unacceptable

Table 8-2: Repeatabilily of results for identical tests

The focus of the research was to maintain the maximum production rate of .02 mvs, in the
CIM cell. This result was achieved for a particular part that resembled both a mass-produced
custom part, and a part resulting from VAM (in which an Alumunimm block would have
value added to it by means of adding threaded holes at specified locations). The maximum
production rate maintained was suitable for the research purposes of the CIM cell. Industrial
applications may require faster, more accurate, and more precise quality control and
inspection routines. This may be achieved by implementation of higher precision ball
screws, better imaging sensors, and more specific imaging software. The results of the tests
performed were specific to the operating parameters of the CIM cell; however the
approaches of inspecting moving custom parts, and only key ROI on these parts, can be

implemented in many industrial applications.

In order to consider the practical application of the apparatus, production rates involving
multiple parts needed to be considered. The inspection routines were conducted within the
40 second time limit, averaging 35 seconds per inspection. An approximated average delay
of 6 seconds (in addition to the inspection time) was required for the system to re-calibrate
itself after each ingpection routine for this particular product. This delay meant that the
apparatus was prone to bottlenecking, A simulation was performed in Flexsim4 [57) to
observe the operation of the apparatus in a manufacturing environment with production of
nultiple products. The model used for the simulation assumed that a part was produced
every 30 seconds and a delay of 15 seconds to transport the part from the manufacturing
process to the quality control apparatus. This 3D model is shown in Figure 6-17. The results
from the simulation show that a bottleneck occurs at the NCAIS 600 seconds into operation
under these conditions. After approximately 10000 seconds of operation, the bottleneck
accumulates up to 5 items. This would be unacceptable to manufacturers since production
rates are being hampered. Adding another inspection apparatus eliminated the bottieneck

under these conditions and no bottleneck was observed after 500 000 seconds of operation.
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The specified production rate could therefore be maintained, with delays in the processes, by

implementing 2 parallel inspection processes.
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Figure 6-17: Graphical model used to simulate bottlenecking during operation

6.4 NCALIS suitability to industrial applications

An increased number of manufacturers will soon be forced to implement reconfigurable
processes in all areas of manufacturing in order to maintain a competitive advantage.
Amongst these areas is the requirement of quality control processes that must perform in-line
inspection of moving parts. Manufacturing cells will have different throughputs and the
inspection process must account for this. Furthermore, inspection requirements from each
cell will differ and so the inspection process must be able to adapt for variations in

inspection requirements without impacting significantly on production rates.

The NCAIS may be viewed as a prototype apparatus that can be implemented in such an
environment. Figure 6-18 shows the typical conditions that the NCAIS will be exposed to in

an industrial application. Some parts may require only dnlling operations, whilst other parts
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may require drilling and turning operations. Manufacturing processes and layouts will have
to be able to facilitate these requirements efficiently if high production rates are to be
achieved. The differences in production rates for different parts must also be accounted for.
Furthermore, inspection at various stages in the manufacture of a product must also be
facilitated. The inspection process must then be able to facilitate inspections after drilling
and turning. These inspections must not impede the production rates of the manufacturing
process. The inspection process must also be able to measure any inconsistencies in parts as
they progress through their manufacturing lifecycles. If there are any defective products
being produced, then the manufacturing process must have the capability of early detection

of these flawed products to minimise losses.

0.06m's

Inspection

0.03m's

Figure 6-18: Typical operating sequence for part inspection in RME

6.5 Summary of chapter 6

This chapter listed the obtained results of the various subsystems. The image processing
results were obtained and discussed. The algorithms used for checking the differences
between the reference and test images proved to be sufficient in operation. The accuracy and

repeatability of the positioning of the sensor was found to be within the given specifications.
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7. CONCLUSION

The purpose of this project was to research, design, construct, assemble, and test an
autornated apparatus that would perform inspection of custom parts whilst defending
production rates. Two methods of decreasing inspection times were conceptualised. The first
method researched was to inspect only significant ROl This method is effective and more
accurate than inspecting an entire face of a large product. The implementation of ROI
inspection meant that only features that required inspection were inspected. This increased
overall system reliability and efficiency in terms of time. The second method that was
researched was the inspection of RO1 whilst the parts were moving. This allowed for in-line
inspection, which required dynamic access to the vanious ROI. These two methods of
decreasing inspection times required accurate and repeatable sensor positioning. Vanous
methods of sensor manipulation were researched. Ultimately, a gantry structure with a pan-
tilt mechanism was implemented due to its suitability to the application, as well as the

suitability of this structure to be implemented into the existing AVIS framework.

The application of inspecting custom parts required a method of sensing that was diverse,
time efficient, and low-cost. Non-contact sensing methods were preferred and in particular,
visual inspection was implemented. Vision systems offer extreme diversity, and are low cost.
The use of a vision system required research about the different types of vision sensors; the
different types of lighting conditions; and the different types of software applications that
were required for performing image processing operations. Inspection was based on template
matching for which a reference part was required. Based on a predefined threshold, and
comparison results between an inspected part and the reference part, a product was either
accepted or rejected. CAD based inspections, involving 3D models of inspected parts, would
have been more accurate and reliable, however the design and implementation of these
models would have been required prior to the manufacturing process. Since the CIM cell did

not implement such a design method, this form of inspection was not implemented.

The Mechatronic engineering approach of system integration was used to research, design,
construct, assemble, and test an apparatus that performed automated inspection of ROl on
moving custom parts. The core elements of Mechatronic engineering were considered
simultaneously in the design of subsystems. Using the Mechatronic engineering philosophy,
the functionality of each subsystem on all levels of the design was considered to be

interdependent. This approach allowed for the successful and optimal merging of vision,



17

sensor articulation, and control subsystems. Parts inspected were categorised into three part
families. Mechanical sensor articulation components were merged with electronic hardware
for feedback and control purposes. Imaging hardware was selected based on system
constraints; the main constraints being spatial and cost. Motors were selected based on the
torque requirements and required motion of the different applications such as conveyor
operation and sensor positioning. Motor control hardware was implemented based on the
characteristics of the motors. Software was developed in CYAVR to manage the low-level
operation of the motors and sensors used for the inspection routine, OpenCV was used for
image acquisition and processing, and formed the basis of the vision system software. Utility
programs were written using this software for performing various image processing
functions. These functions included log-polar and Fourier correlation algorithms for image
registration; deconvolution operations for image deblurring; and image transformation
algorithms for performing colour and greyscale image operations such as colour and
intensity analyses. High level general system management was developed in MATLAB for
coordinating the entire inspection process. This coordination involved the identification of
the part that required inspection; loading the necessary inspection parameters; controlling the
operation of the sensor articulation circuitry and mechanical members; synchronising the
image acquisition process with the sensor positioning; implementing the appropriate image
processing utility functions as required; as well as executing data transfers from sensors to
the host PC and from the host PC to the slave microcontroller,

The constructed apparatus was tested in a CIM celt that operated at a maximwm conveyor
speed of 20mm/s. The apparatus was able to perform inline inspection of custom parts
which were moving at the maximum speed. Inspection of ROI increased the reliability of the
inspection process, and also informed about the location of flaws if detected. The operation
of the SPS using open loop control introduced some errors in the positioning of the imaging
sensor. These errors were not as significant as anticipated since the image processing
allowed for registration of images, which increased the tolerances on the positioning
requirements of the sensor. The apparatus displayed characteristics of a reconfigurable
machine. It was modular in its mechanical design of the x and y axes. The electronic control
circuits were modular. The machine was able to reconfigure itself 1o obtain images at
different angles and sensor positions. The customized flexibility lay in the fact that the
system was only designed for three part families. Ability to account for varying throughputs
and part dimensions allowed the apparatus to display some form of scalability. The NCAIS
also displayed potential to be efficiently employed in VAM environments by use of ROl
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inspection. The speed of the CIM cell operation may not always be applicable to industrial
applications. The prototype may however be modified to account for high speed operations.
The mechanical modifications that can be implemented are the use of lead screws with a
higher pitch. This would increase the translational speed as a function of the rotational input.
The number of stanting threads could also be increased. This would lead to a proportional
increase in the translational velocity. For example, increasing the number of starting threads
from one to two would double the translational velocity of the system. ROI inspection
provided the capability of the system to provide feedback about the location of detected
flaws. This information could have then been used to isolate inefficiencies in processes. Use
of ROI inspection proved to be effective; however the manual selection of these ROI still
required some form of human input in the process. In future, when implementing a CAD
based model inspection system, an algorithm may be developed for identifying RO, based
on a stress analysis or predefined process infonmation, Another deficiency in the system was
the limitations of the implemented kinematic model. This model was limited to 8 ROI;
however the path of the imaging sensor during inspection was dependent upon the speed of
the part as well as the number of ROL It was possible that the user selected ROI and part
speeds that would only result in colliding paths which would have lead to rejection of the
inspection routine itself. Future algorithms may implement machine learning techniques for
mapping out a trajectory based on sensed information as opposed to predefined constraints.
Even though research was aimed at one part family, the methods could have been extended
to other part families, increasing system diversity. The research presented was based on the
characteristics of the CIM cell that was used to test the apparatus, and was not focused on
any particular manufacturing industry. Further research may involve more detailed analyses

in support of a quality control apparatus for a specific manufacturing industry.

In conclusion, the following were achieved:

* Research, design, construction, implementation, and testing of an apparatus called
the NCAIS for performing visual inspection of moving custom parts within RME

¢ Inspection of rectangular-volume custom parts travelling at the specified maximum
speed of 20mmy's without stopping the part at any point in time during the inspection.
This allowed for the maximum production rate in the CIM cell to be maintained

+ Implementation of a kinematic model used for optimising the sensor trajectory to
some extent. This allowed for incorporation of some form of intelligence to the
machine

*  All design specifications were met
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9. APPENDICES
9.1 Appendix A
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9.1.2 Inspection routine of acceptable part

An Inspection routine was performed on two identical boxes to test the apparatus for
inspection of an acceptable part. These boxes were used for housing circuits. The two ROI
for each of these parts were the face containing the connections, as well as the face
containing the fuse as shown in Figure 9-1 (a) and (b). One box was used as the reference

part, and the second box was considered the test part.

Figure 9-1(a). ROI 1 of the test and reference pans Figure 9-1(b): ROl 2 on test and reference pans

The images acquired for ROl 1 are shown in Figure 9-2. The image processing involved
with these images is discussed in section 6.2. Figure 9-3 shows the converted greyscale
images of the original images, as well as the resulting difference between the two images
after the comparison process from top to bottom respectively. A small difference between
the images was found at the top left corner. This was most likely due to the difference in
background as a result of imprecise camera positioning. Even though a difference between

the images was obtained, the ROI was accepted due to the difference being insignificant.

Figure 9-2: ROI 1 of reference and test part respectively
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Figure 9-3: Greyscale images of the acquired images as well as their difference after the comparison
process for ROI 1

The images acquired for ROI 2 are shown in Figure 9-4. The image processing involved
with these images were the same as discussed in section 6.2. Figure 9-5 shows the converted
greyscale images of the original images and the difference between the two images, in the
same layout as shown for ROI 1. Differences between the test and reference images were
most likely due to the different background portions in the images. Due to the insignificant

difference between the images after comparison, this ROI was also accepted.

Figure 9-4: ROI 2 of reference and test part respectively
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Figure 9-5: Greyscale images of ihe acquired images as well as their difference after the comparison
process for ROl 2

It can be seen that the apparatus was capable of outputting a successful result for acceptable
parts. The ROl were accepted even thought there were translational, rotational, and lighting
inconsistencies present between the two images. The limits at which the inconsistencies
became significant were not explored because the accuracy of the Sensor Positioning System
(see section 6.3.4) was within tolerances, as specified in section 1.5. The accuracy of the
system was sufficient for the scope of the research, however; more extensive and conclusive

tests may be performed when the system is applied to a specific industrial application.
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x-axis results

Desired

distance
20
40
60
80
100
120
140
160
180
200
220
240
260
280
300
320

actual distance 1
21.50
38.50
52.50
80.50
100.00
119.50
137.50
158.50
181.00
203.00
221.50
242.50
263.00
281.00
301.50
322.00
358.50
379.00

error
1.50
-1.50
-0.50
0.50
0.00
-0.50
-2.50
-1.50
1.00
3.00
1.50
250
3.00
1.00
1.50
2.00
-1.50
-1.00

average error

actual distance 2 actual distance 3

21.00

39.00

58.00

81.50

99.00

118.00
138.50
161.00
182.00
201.50
221.00
241.50
262.50
282.00
302.50
321.50
359.00
381.00

emor
1.00
-1.00
-2.00
1.50
-1.00
-2.00
-1.50
1.00
2.00
1.50
1.00
1.50
2.50
2.00
2.50
1.50
-1.00
1.00

0.55

21.50

38.50

58.50

81.50

100.50
118.00
138.00
159.00
182.00
202.50
22050
241.50
263.00
282,50
302.50
322.00
358.00
379.50

error
1.50
-1.50
-1.50
1.50
0.50
-1.00
-2.00
-1.00
2.00
2.50
0.50
1.50
3.00
2.50
2.50
2.00
-2.00
-0.50
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percentage emor percentage percentage

efror error
7.50 5.00 7.50
-3.75 -2.50 -3.75
-0.83 -3.33 -2.50
063 1.88 1.88
0.00 -1.00 0.50
0.42 -1.67 -0.83
-1.79 -1.07 -1.43
-0.94 0.63 -0.63
0.56 1.1 1.11
1.50 0.75 1.25
0.68 0.45 0.23
1.04 0.63 0.63
1.15 0.96 1.15
0.36 0.71 0.89
0.50 0.83 0.83
0.63 047 0.63
-0.42 -0.28 .56
-0.26 0.26 -0.13

y-axis results

Desired distance Actual distance  Actual distance  Actual distance

{mm} 1 2 3
0 V) 1] 0
20 19.5 20 19.5
40 40.5 405 40
60 61.5 60.5 60.5
80 82 815 81
100 101.5 101 101
120 121.5 121 122
140 1415 142 141
160 161.5 162 162
180 182.5 182 181.5
200 202.5 203 203
220 223 2235 223
240 243 2425 243
280 2625 263 263
280 283 282.5 283
300 3025 302 303
320 3205 321 320
340 338 339 338.5

360 357 359 357.5
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Error {mm) Error {mm) Error {mm}
0 0 0
-0.5 0 -0.5
0.5 0.5 0
15 0.5 05
2 1.5 1

15 1 1
1.5 1 2
1.5 2 1
15 2 2
25 2 15
25 3 3
3 35 3
3 25 3
25 3 3
3 2.5 3
25 2 3
0.5 ] 0
-2 -1 -1.5
-3 -1 -2.5
percentage percentage percentage
error efror eror
0.00 0.00 0.00
-2.50 0.00 -2.50
1.25 1.25 0.00
250 0.83 0.83
2.50 1.88 1.25
1.50 1.00 1.00
1.25 0.83 1.67
1.07 143 0.71
0.94 125 1.26
1.39 1.11 0.83
1.25 1.50 1.50
1.36 1.59 1.36
1.25 1.04 1.2
0.96 1.156 1.15
1.07 0.89 1.07
0.83 0.67 1.00
0.16 0.31 0.00
-0.59 -0.29 -0.44

-0.83 -0.28 -0.69



Overall system results

Attempt
number
Point 1
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
Point 2
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
Point 3
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
Point 4
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00

kinematic model
distance

30.00
30.00
30.00
30.00
30.00
30.00
30.00
30.00
30.00
30.00

87.46
87.46
87.46
87.46
87.46
87.46
87.46
87.46
87.46
87.46

72.28
72.28
72.28
72.28
72.28
72.28
72.28
72.28
72.28
72.28

122.47
122.47
122.47
122.47
122.47
122.47
122.47
122.47
122.47
122.47

actual
distance

30.93
31.13
32.04
31.38
31.38
31.38
30.81
30.60
31.45
31.25

90.27
87.32
87.06
88.68
86.69
86.40
87.03
87.31
87.03
90.27

7.7
73.88
71.47
70.92
71.70
74.68
73.88
71.47
71.70
72.40

122.14
125.02
124.90
121.50
120.50
12212
122.21
125.14
125.12
121.95

error

0.93
1.13
2.04
1.38
1.38
1.38
0.81
0.60
1.45

281

-0.14
-0.41
1.21
-0.78
-1.06
-0.44
-0.16
-0.44
2.81

-0.57
1.59
-0.82
-1.37
-0.58
2.40
1.60
-0.81
-0.59
0.12

-0.34
2.55
243
-0.98
-1.97
-0.36
-0.26
2.67
265
-0.52

percentage
error

3.10
3.76
6.80
4.59
4.62
4.59
270
2.01
4.84
4.16

321
-0.17
-0.46

1.39
-0.89
-1.21
-0.50
-0.18
-0.50

3.21

-0.79
221
-1.13
-1.89
-0.80
3.32
2.21
-1.12
-0.81
0.16

-0.28
2.08
1.98

-0.80

-1.61

-0.29

-0.21
2.18
2.16

-0.43



Desired
X
distance

20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00

35.00
35.00
35.00
35.00
35.00
35.00
35.00
35.00
35.00
35.00

50.00
50.00
50.00
60.00
50.00
50.00
50.00
50.00
50.00
50.00

100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00

Actual x
distance

19.50
20.00
21.50
20.50
21.00
20.50
20.00
19.50
20.00
20.50

37.00
37.50
36.00
35.50
36.00
36.50
37.00
36.50
37.00
37.00

48.50
51.00
49.00
48.00
50.00
51.00
50.50
48.50
49.50
49.00

100.00
101.50
101.00
99.50
98.00
98.50
100.50
102.00
101.50
98.00

Desired Actualy Desired Actualz

y
distance

20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00

80.00
80.00
80.00
80.00
80.00
80.00
80.00
80.00
80.00
80.00

50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00
50.00

70.00
70.00
70.00
70.00
70.00
70.00
70.00
70.00
70.00
70.00

distance

20.50
20.00
20.50
20.50
20.00
20.50
19.50
20.00
20.50
20.00

82.00
78.50
79.00
81.00
78.50
78.00
78.50
79.00
78.50
82.00

50.50
51.00
49.50
50.00
49.00
52.00
51.50
50.00
49.50
51.00

69.00
72.00
72.50
68.50
69.00
71.00
68.50
71.50
72.00
71.50

Z
distance

10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00

5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00

15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00

10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00

distance

12.50
13.00
12.00
12.00
12.00
12.00
13.00
12.50
13.00
12.50

7.50
7.50
6.50
6.50
7.50
7.00
6.50
7.00
6.50
7.50

156.50
16.00
16.00
15.00
15.50
16.50
16.00
16.00
15.50
15.50

12,50
12.00
12.00
13.00
12.50
13.00
12.00
12.00
13.00
12.50

131



9.3 Appendix C- Product datasheets and specifications

Motor specifications [42]
Keyless chuck- 10 mm
No load speed- 0 to 400rpm, 0 to1250pm

Max drilling capacities:
Wood- 20 mm

Steel- 10 mm

Torque settings- 24

Max Torque- 27Nm
Weight- 1.7 kg

Barcode scanner specifications [48]

V51200 & V51000

Vertical Scanners

PSC are designed specifcally to optimize performance in vertical applications.

Unlike many other so-called vertical scanners which are little more than horizontal scanners
turned on their sides, the competitively priced V51200 and V51000 are “true vertical”
scanners. Aggressive, fast, and accurate each has a large, symmetrical scan volume with a
generous “sweet spol” to maximize productivity and ergonomics.

All' VS models boast a small footprint and are easily installed onto any countertop with a
simple stationary or flexible stand mount.

Models For The Codes You Read...

The V51200 and the VS1000 are each available in two formats. To select the VS scanner
that’s right for your application, first determnine the codes that you will need to read in your
environment.

The VS1200 comes standard with UPC/EAN/JAN decoding and advanced EdgeTM software
for reading tom or disfigured labels. With Edge disabled, the VS1200 reads the UPC family
plus one additional industrial code, and reads pootly-printed labels with the help of
AdaptiveTM software. Optionally, the V31200 can be ordered with P2/P5 add-ons. Adaptive
software is standard on the VS1000, which auto-discriminates between vp to four codes
inciuding UPC/EAN/JAN with P2/P5 add-ons, and industrial symbologies such as ITF, Code
128, and Code 39.

...And How You Read Them

Examine your scanning environment—the VS model you choose will depend on available
counter space, the method used to scan items, and the rate at which items must be

scanned.

Both the V81200 and the VS1000 are available in “Sweep” and *“Presentation-style™ scanning
models. In higher volume checkout environments with sufficient room for a left-to-right or
right-to-left scanning motion, choose a sweep configuration. In lower volume scanning
environments with limited counter space, the presentation configurations’ deep, dense scan
pattern will provide optimal performance.

The V81200 & VS1000: Optimized For Your Application

Your scanning requirements are unique, and your scanner should be too. With the V51200
& V51000, you can have an affordable vertical scanner that’s just right for your environment—
without sacrificing performance, ergonomics or valuable counter space.

Ideal for:

» Designed for POS applications such

ag grocery, drug, variety and
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9.4 Appendix ) — System code
9.4.1 Full Source Code for Kinematics Model and Associated Interactive Viewer

This program calculates the optimal camera path for a part given the part type, dimensions,
conveyor belt velocity, camera clearance radius, initial camera position, the number of ROI
present and the ROI positions. Other parameters that may be varied are the dimensions of the
Cartesian robot and the physical dimensions of the camera (assuming it is box shaped). The
output is an interactive {rotation and scaling can be keyboard controlled} line animation of
the motion of camera and part. The output may be written to disk and accessed from
MATLAB. Output consists of order of camera target positions, physical co-ordinates of
camera target positions and the times the target positions must be reached. The reference
time is the instant the front of the part enters the Cartesian robot and the reference origin is
the lower left corner [looking in the direction of part motion] of the conveyor belt plane (i.c.
bottom plane) of the Cartesian robot framework. The standard Borland C/C++ Compiler
version 5.5 (Available free from [9] ) was used for compilation [No non-standard libraries
are required]. The standalone Micrescfi Windows application must be run from the root
directory for the system [ Same as used for MATLAB). For graphical output, screen

resolution must be 1024x768 or greater.

#MODEL CODE:
i
Ainclude <windows.h>
#include <stdio.h>
#include <stdlib.h>
#include <string h>
#include <fstream.h>
#include <math.h>

i
struct vec3d

double x,y,z;
L
struct vec3db
{

byte x.y.Z;
K

struct complex

doubie x,y;
IH
i
void Initialize{void);

void Draw(void);

bool CreateWindowX X(char,int,ink,int);

WINAPI WinMain(HINSTANCE,HINSTANCE LPSTR, int);

LRESULT CALLBACK WndProc(HWND,UINT, WPARAM,LPARAM);




135

”*************#*** RS PSR 2SS LS E L SRS SIS RS L L S L T LT
FRREFFERE KK

vec3d StdVec(vec3dd,vecdd);

veedd Sumivec3d, vecid);

vec3d Multiply(vec3d.double);

double Length{ vec3d);

vec3d Direction{ vec3d);

double Dot{ vec3d, vec3d);

vee3d Cross{vecid,vecid);

vec3d VectorProjection( vec3d,vec3d);
double ScalarProjection( vec3d,vec3d);
double VectorAngle{vec3d,vec3d),
double LinePtDist(vec3d,vecld, vec3d);
#
vec3d Rotate{ vec3d, vee3d);
int RGBX(int,int,mr);

i
i

i T g T P s P r T T
Pt Tt T

#define FRONT 0

#define BACK 1

#define LEFT 2

#define RIGHT 3

#define TOP 4

#define NUMRO1 4

vee3d ptsNUMROT];

vec3d opt{NUMROI];

vee3d tgt[NUMROI];

vee3d spt[NUMROI];

double times[NUMROI]:

double ctims] NUMROI];

double maxx=0.6;

double maxy=0.8;

double maxz=0.45;

double xmax=0.2;

double ymax=0.2;

double zmax=0.2;

double camx=0.04;

double camy=0.07;

double camz=0.04;

double vset=0.04;

double speedy=0.1;

double radiusc=0.042;

double d=0.2;

vec3d vpart={0.0,0.01,0.0};

vec3d pinit;

vec3d cinit={0.0,maxy*0.5,maxz*0.5};

int roipts[ NUMROT][3];

vee3d boxdim={0.05,0.3,0.25};

double totaltime=maxy/vpart.y;

int roip[J[3]={{FRONT,2,2},4BACK,1,2},{RIGHT, 1,2}, {RIGHT,1,1},{BACK,0,0},{ TOF,0,2} };
int frames=0;

I
byte scr[R00%600*3],
double scd[80(*600];
i
i
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const double P1I=3.1415926539;
const double rad=PI/150.0);
const doubte deg=180.0/P1;

i
vec3d cam={0.0,-400.0,-260.0};

vec3d rot={-100.0,0.0,30.0};

const vec3d

zerovector={0.0,0.0,0.0} ivector={ 1.0,0.0,0.0} jvector={0.0,1.0,0.0} . kvector={0.0,0.0,1.0};
i
double sa=0.0,ca=0.0,5b=0.0,cb=0.0,8¢=0.0,cc=0.0;
-

P e e e e
RAEREEREERA R

HDC hDC=NULL,
HWND hWnd=NULL;
HINSTANCE hlnstance=NULL;

J T
R Ak
vec3d Rotate{ vec3d pt,vec3d cp)
{

vec3d rtp;

double x,y,z,x2,¥2,22;

X=pl.x-cp.X;

Y=pt-y-cp.%;

Z=P.2Z-CP.Z;

x2=(x*cc*cb){y*sc*ch)y{z*sb);

y2=(x*cc*sb¥sa)Hx*sc*ca{y*cc*ca)-(y¥sc¥sh*sa){ z*cb*sa);

22=(x*sc*sa)-{x *eo*sh¥ca)yH y*sc*sb*ca)+{y*sa*ccH{ z*cb*ca),

np.x=x2+cp.x;

p.y=y2+cp.y;

rp.z=z2+cp.z;

return rip;
!
i
vec3d Rotate3D{vec3d pt,vec3d ep,vec3d roto)

double cas,sas,.cbs,sbs,ces,scs;

veedd rtp;

double x,y,z,x2,y2,22;

cas=cos(roto.x*rad);

sas=sin(roto.x*rad);

cbs=cos(roto.y*rad);

shs=sin{ roto. y*rad);

ccs=cos(roto.z*rad);

scs=sin(roto.z*rad);

*=pt.x-Cp.X;

y=pl.y-cp.y,

Z=pt.z-cp.z;

x2={x*ccs*chs ) y*scs*chs HH{z%sbs);

y2=(x*ccs*shs*sasH{x¥scs*cas)H y*ees*cas)-{ y*scs*sbs*sas)-{ z¥cbs*sas);

Z2=(x*scs*sas)-{x*ecs*shs*cas)H y*ses*shs*cas)+( y*sas*ces H{z*cbs *cas);

np.x=x2+cp.x;

Tp.y=y2+ep.y;

rtp.z=z2+¢p.z;

retumn rtp;
:
i
int RGBX(int r,int g,int b)




{
return rH{g*256)Hb*65536);

H RN EETERREEE TR [3TELTSITT]
LET ISR £

vec3d StdVec(vec3d vl,vec3d v2)
{

veedd w;

vr.x=VZ2.x-vl.x;

vr.y=v2.y-vlLy;

w.z=v2.zvl.z;

return vr;

;
1

vec3d Sum(vec3d vl,vec3d v2)
{
veedd v
vr.x=v0Lx+v2.x;
vr.y=vlL.ytvl.y;
w.z=v].zHv2.z;
return vr;
1
#

vec3d Multiply(vec3d v1,double fac)

veedd vr;
vr.x=v1.x*fac;
wr.y=vl.y*fac;
vr.z=v1.z*fac;
return vr;
}
#

double Length(vec3d v)

double 1;
lesqri{(v.x * v vy ¥y Hv.2* v 2));
reium 1;

¥
b

vec3d Direction{vec3d v)
{
return Multiply(v,1.0/Length(v));

1
"

double Dot(vec3d vl,vee3d v2)

{
return {((v1.x*v2 (vl y¥*v2.yyH vl.z¥v2.2));

}

i
vee3d Cross(vec3d v, vec3d v2)
{
veedd w;
wax=(viLy*v2.z){v1.z*v2.¥);
vr.y=(v1.z*v2.x){v1.x*v2.2);
vr.z=(v1. x*v2. y){ vl.y*v2.x);
return vr,

)
i

137

R R Rk



double ScalarProjection{vec3d u,vec3d v)
|

refurn Dot(u, Direction{v));
]
i
vee3d VectorProjection{ vec3d u,vec3d v}

{

return Multiply( v,Dot(u,v)/{ Length( v)*Length(¥)));
}
i
double VectorAnglel{ vee3d vl,vec3d v2)

double angle;
if{{Length({v1)I=0&&(Length(v2)!=0))
{

angle=acos(Dot(v1,v2)/( Length{v1)*Length{x2));
H

else
{
angle=0;

}

refumn angle;
b
i
double LinePtDist{vec3d lor,vec3d lde,vec3d pt}

1

veeld v=SidVec(lor,\de);

return Lengtiv Cross(StdVec(lor,pt), v)¥Length(v};
]
i

i [TETT
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EEFEFEERER K
complex Complex(double r.double i)

{
complex ¢={r,i};
return ¢;
}
i
double Mod(complex z)
{
return sqri(pow{z.x,2.0+pow(z.y,2.0));

#
double Arg{complex z)

double ang=0.0,pan;

if{zx=0.0){iflz y>0.0){ang=P1*0.5;} ifz.y<0.0){ang=P*].5;}}

iz y=0.00{if{ z.x>0.00{ ang=0.0;} if{z.x<0.0){ang=Pl;}}

if{(z.x!=0.0}&&(z y!=0.0))

{
pan=atan{ fabs(z.y)/fabs(z.x}};
ifi(z.x>0.0)&&(2.y>0.0)){ang=pan:)
ifi(z.x<0.0)&&{z.y>0.0)) {ang=Pl-pan; }
1Rz x<0.0)& &z, y<0.0)) {ang=PHpan;}
iff(z.x>0.0)&&(z.y<0.0)H{ ang=(2.0*PI)-pan;}

H

return ang,

}

TTITTTY



i

complex Add(complex zi,complex z2)
!

complex sum;

sum.x=zl.x+z2.x;

sumy=zl.yt+z2.y;

return sum;

}
I

complex Subtraci{complex zi,complex z2)

complex difference;
difference.x=zl.x-22.x;
difference.y=z1.y-z2.y;
retumn difference:

}

i
comptex Multiply(complex z1.complex z2)

complex product;
product.x=(z1.x*z2.x)-(z1.y*22.y);
product. y=(zl .x*z2.y)Hzl.y*z2.x);
retum product;
'
i

complex Divide{complex zl,complex z2)
{
complex quotient={0.0,0.0};
double den=pow({Mod(22),2.0);
f{den!=0.0)
{
quotient x={(z}.x*z2 x)Hzl.y*22.y))/den;
quotient. y=<{(zl.y*z2.x)-(z1.x*22.y))/den;
}
return quotient;
!
i

complex Exp{complex z)
{
double mag—=exp(z.x);
complex expo;
expo.x=mag*cos(z.y);
expo.y=mag*sin(z y);
return expo,

}

#
complex Log{complex z)
{
double mag=Mod(z);
complex loga={0.0,0.0%;
if{ mag>0.0)
{
loga. x=log{mag),
loga. y=Arg(z);
!
return loga;
!
i
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for(int i=y2;i<=yL;i++){PlotScr(x1,i,r,g,b);}
1

]
i{f{dy=0)
if{x2>=x1)
1
for(int i=x1;i<=x2;i++}{ PlotSer(i,yl .r,g.bk}
}

else

{
for(int i=x2;i<=x1;i++){PlotSer(i,yl,r.gb);}
, 1
I (dx 1=0)&&(dy!=0))
{
if{abs{dx)>=abs{dy))

{
grad=(double)dy/(double)dx;
iflx1<=x2)

{

}

else

for(int i=x1;1<=x2;i++) { PlotScr(i,y ] H grad*(i-x 1 )),r,2.0;}

for(int i=x2;i<=x1;i++){PlotScr(i,y2H grad*(i-x2)),r,g.b); }
}
i

¢lse

!
grad=(double)dx/(double)dy;
iflyl<=y2)

H

for(int =y ;i<=yZ;i++){PlotScr(x 1 +( grad*(i-y1)),i,1.2,b) }
}
else

{

]
}
}

}
#

for(int i=y2;i<=y1;i++) { PlotScr(x2-H grad*(i-y2)},i,r,g,b); }
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bool CollideRect(vec3d pots(},double radius)
{
hool col=false;
double t,maxt,xx,yy,zz;
veedd ptl,pt2,dir;
double xmini=(0, 5*(maxx-boxdim.x))-radius;
double xmaxi=(0.5*(maxx+boxdim.x)rradius;
double ymini=-boxdim.y-radius;
double ymaxi=tadius;
double zmaxi=maxz-+radius;
for{int i=0;i<NUMROL;i++)

{
pt1=pots{i}; pt2=pots[i+1];

XN



dir=Direction(StdVec(pt1,pt2))
maxt=Length(StdVec(ptl,pt2));
if{dir.x!=0.0)
{
t={(ptl. x-xmini)/dir.x;
yy=pt LyHdir.y*t);
zz=ptl.z+H{dir.z*t);
IR (yy>=ymini)&&(yy<=ymaxi)& &(zz<=zmaxi) & &{1>=0.0) & &{t<=maxt)) { col=true; }
t=(pt1.x-xmaxi)/dir.x;
yy=ptl.y+(dir.y*);
zz=ptl .z +H(dir.z*t);
i yy==ymini)& &(yy<=ymaxi&&(zz<=zmaxi)&&{t>=0.0)&E&(t<=maxt)}|col=true;}

!
idir.y!=0.0)
{
t=(pt . y-ymini)/dir.y;
xx=pt LxHdir.x%),
zz=ptl.zHdir.z*t);
if{(xx>=xmini)& &{xx<=xmaxi&&(zz<=zmaxi )& &{t>=0.00& &(t<=maxt)}{col=true; }
t=(ptl.y-ymaxiydir.y;
xx=ptl.x+(dir.x%);
zz=pt] z+(dir.z*t);
if(xx>=xmini J&&(xx<=xmaxi)&&(zz<=zmaxi)&&(t>=0.0)& &(t<=maxt)) { col=true;}
}
it dir.z!=0.0}
{
t=(ptl.z-zmaxiydir.z;
xx=pt Lx+(dir.x*®);
yy=ptL.y+(dir.y*);

142

if{{(xx>=xmini)&&(xx<=xmaxi)&E&(yy>=ymini}& & yy<=ymaxi)&&(t>=0.0)& & t<=maxt)) { col=tru

€}
!

H
return col;

#
int Factorial{int n)

{
ifl <=0)
{
retwrn |;

'

else

{

retarn n*Factorial(n-1);
L3
¥

void InitDynamics(void)
{
for(int i=0;i<NUMROLi++)
{
for(int j=0;j<3;j+t)
{

}roipts[i][i}=roip[i][j];
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vec3d path[NUMROH1]:

int ssp{ NUMROI;

int npos=Factoriall NUMROD,nfound;
int *seqind=new int NUMRO1*npos];
double *seqdis=new double[npos];
nt *routeind=new int[npos];

bool exists;

vecld viemp;

double deltat,mindist=100000.0,tdist;

vec3d tgp,cup,normalsfNUMROI];

int index,index2 route=0, maxind=0,tempind;,
double tims[ NUMROI], totdist tottimne, fact=1.0/3.4;
vee3d tgps[NUMROI);

double maxyv=-1000.0,maxxv=-1000.0,maxzv=-1000.0;
for(int i=0;i<NUMROLi++)

{

iflroipts[i])[0}=FRONT)

{

normals[i]=jvector;

pis[i].x=({{double)roipts[i][ 1]+0.5y*fact*boxdim. x)H Q. 5*(maxx-boxdim. X)),
pts[i]. z={{double)roipts[i}{2]+0.5 Y*fact*boxdim.z;

pts[i].y=0.0;

!
iftroipts[i][0}—BACK )
{

normals[i]=Multiphyjvector,-1.0);

pls[i). x=(({double)roipts[iJ[ 1TH0.5*fact*boxdim. x ) H . 5%(maxx-boxdim. x));
pts[i).z=({double)roipts[i][2]+0.5)*fact*boxdim.z;

pts[i]).y=-boxdim.y;

}
iftroiptsfi)[0)=LEFT )
¢

normals[il=ivector;

ptsfi}.y=(({double)roipts[i][ 1}+}.5)*fact*boxdim.y)-boxdim.y;
pts[i).z={{double)roipts[i][2]+0.5)* fact*boxdim.z;
pts[i].x=boxdim. x+{.5*(maxx-boxdim.x))

}
if{roipts[i][0)=—RIGHT)
{

normals[il=Multiply(ivector,-1.09;

pis[i].y={{{(doubledroipts[i][ 1]+0.5)*fact*boxdim.y}-boxdim.y,
pts[i].z=({doublejroipts{i][21+).5) *fact*boxdim.z;

ptsfil. x=0.0H0. 5% maxx-boxdim.x))

}
if(roipts[i][0]=TOP )
{

normals[i]=kvector;
pis[i].x={{(double)roipts[i][ 1 ]H0.5)*fact*boxdim. x)H (. 5*(maxx-boxdim. x));
pis[i].y=({{double)roipts[i][2]+0.5)*fact*boxdim.y)-boxdim. y,
pts[i].z=boxdim.z;
}
}



for(int i=0;i<NUMROLi++)

tgt[i]=optli]=zerovector;

for(int i=0;i<NUMROI*npos;i++) {seqind[i]=0;}
for{int i=0;i<NUMROLi++)

{
for(int j=0;j<(npos/Factorial( NUMROI-i-1));j++)

nfound=0,
for(int k=0;k<NUMROLk++)
{
exists=false;
for(int m=0;m<i;m++)
{
ifl seqind[(§*Factorial{ NUMROI- *NUMR OD+m]==k){ exists=true; break;}
}
if{ lexists)
{
ssp{nfound)=k;
nfound++;
H
H
for(int k=0:k<(Factoriall NUMROI-i¥Factorial(NUMR.O%i-1));k++)
for(int m=0;m=<Factornal( NUMROI-i-1);m++)
{
seqind[((((j*Factorial NUMROI-i)}+(k*Factorial NUMROL-i-
IMHM*NUMROI)+i)=ssplk];
}

!
i
H

char *ch;
for(int i=0;i<npos;i+t)

for(int j=0;j<NUMROL;j++)
1
ch=itoa(segind[(i*NUMROD+]," ",10);
TextOut(hDC,820+(*30),20+(1%20),ch,strlen(ch));
}

T
£

for(int i=(:i<npos;i++)

totdist=0.0;
for{int j=0;j<NUMROLj++)

{
iffj=—0)
{
index=seqind[(i*NUMROI/j];
totdist+=Length{StdVec(cinit,Sum{pts[index],Multiply{ normals[ index],d))));
tims[j]=Length{ StdVec(cinit,Sum( pts[index], Multiply(normals{index],d)));
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else
{
index=seqind[(I*NUMROI)+-11;
index2=seqind[(i* NUMROI}];
totdist+=Length{ StdV ec( Sum(ps[index], Multiply(normals[index],d)), Sumi{pts[index2],Multi
ply(normals[index2],d})));
tims[j]=Length(StdVec{ Sum(pts(index],Multiply(normals(index,d)), Sum(pts[index2 [ Multip
Iy{normals[index2].d))));
}

}

seqdis[i]=totdist;

if{totdist<mindist}

{
mindist=totdist;
route=1;
vset=totdist/totaltime;
for(int j=0;j<NUMROIL;j++)
H

times[j]=tims[j)/vset;
ctims[j]=0.0;
1
ctims[0)=times{0];
for(int j=13<NUMROLj++){ctims[j]=ctims[j-1]+times[j];}
for(int j=0;j<NUMROLj++}

index=seqind[{route*NUMROIy];
tgt[i]=Sum{ Sum(pts[index ], Multipl y{normals[index],d)),Multipl v vpart,ctims[}]));
opt[jl=pts[index];
spt(i1=Sum(pts(index],Multiply(normals[index],d));
H
i
!
for(int i=0;i<npos;i-++){routeind{i]=1;}
for(int i=npos-2;i>=0;i--)
{
for(int j=0:j<ij++)
{

if{seqdis{j)>seqdis[j+1])
{

tempind=routeind(j];
routeind[j)=routeind[j+1];
routeind[j+1)=tempind;
}
)
}

path[0]=cinit;
for{int i=0;i<npos;i++)
{
for(int j=1,j<=NUMROL;j++)
{
index=segind[(i*NUMRON+j-1];
path[j]=Surm{pts[index],Multipl W normals[index].d));

}
iff CollideRect{path,radiusc)){ch="C"; TextOut(hDC,995 20+(i*20),ch,strlen(ch)); }

ch:n*n;



TextOut(hDC,970,20+(route*20),ch,strlen({ch));

}
i

void DrawBox(vec3d blist[])

¢
vec3d Ihist[24];
vec3d ptl,pt2;
int pxI,pyl,px2,py2;
ist] 0]=blist[0]; NMist[ 1]=blist{1];
Nist] 2]=blist[1]; Nist[ 3]=blist[2];
ist{ 4]=blisi[2]; Mist[ 5]=blist[3];
Nist[ 6]=blist[3); llist{ 7}=blist[0];
Nist[ 81=blist[4]; Niset[ 9]=blist]5];
Nist] 10]=blist[ 5}; Nist] ) 1]=blist[6];
Nist[ 12)=blist[6]; Nisif 1 3}=blist[7];
Tist{ 141=blist 7]; Nist{15]1=blist[4];
Nist[16)=blist[0]; Nlist[17)=blist[4];
Llist{ 181=blist[ 1]; thist{ 19)=blist[5];
TNist{20]=blist[2]; Mist21]=blist[6];
Wist{22)=blist[3); Nist[23)=blist[7];
for(int i=05i<12;i++)

{
pe1=Mlist[(i*2)+0];
pr2=list{(i*2)+1];
pt1=Rotate(pt] ,zerovector);
pt2=Rotate(pt2,zerovector),
px1=400+int(ptl.x}; pyl=300-+int{ptl.y);
Px2=400+int{pt2.x}; py2=300Hint(pt2_y);
DrawLineE(px1,pyl,px2,py2,255,255,255%;
H

}
/"

void Graphics(void)

complex diff;

vec3db white={255,255,255};

vec3d blist[8];

ca=cos(rot.x*rad);

sa=sinrot.x*rad);

¢b=cos(rot.y*rad),

sb=sin{rot.y*rad);

cc=cos(rot. Z*rad);

sc=sinf{rot.z*rad);

double sf=400.0,timenow tht=0.0,phi=0.0;

vec3d campt,velo,target,camroto={0.0,0.0,0.0};

int stage=0;
int px1,py1,px2,py2;
vec3d ptl pt2;

for{int i=0;i<800*600;i++) { scd[i]=100000.0;}
for(int i=0;i<800*600*3;i++) {seri]=0,}
for(int i=0;i<NUMROLi++)

ifli=0)

{
pti=Multiply{cinit,sf);
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pt2=Multiply(tgt[i].sf);
h

clse

{
pt1=Multiply(tgt[i-1],s1);
pt2=Multiply(tgt{i+0],sf);
}
pt1=Rotate(pt1,zerovector);
pt2=Rotate(pt2 zerovector),
px 1=400+int(pt1.x); pyl=300+int(ptl.y);
px2=400+int{pt2.x); py2=300+int(pt2.y};
DrawLineE(px 1,pyl.px2,py2,255,0,255);
!
blist[0]=zerovector;
blist[ 1}=Multiply(ivector,sP*maxx);
blist[2]=Sum({Multiply{ivector,sf*maxx),Multipty(jvector,sf*maxy));
blist[3]=Multiply(jvector,sf*maxy),
blist[4]=Multiply{kvector,sf*maxz);
Blist[5}=Sum(Multiply(ivector sP*maxx),Multipty(kvector, st¥maxz));

blist{ 6 ]=Sum{ Sum{Multipl W{ivector,sf*maxx), Multiply(jvector, sf*maxy)), Multiply(k vector,sf*maxz))

blist[ 7]=Sum{Multiply(jvector,sPtmaxy), Multiply(kvector sF*maxz));
DrawBox(blist);

blist[0]=zerovector;

blist[ 1 )=Multiply(ivector,sf*boxdim.x);
blist[2}=Sum{Multiply(ivector,sP*boxdim.x),Multiply(jvector,sf*boxdim.y));
blist[3]=Multiply{jvector,sf*boxdim. y);
blist[4]=Multipiy(kvector,sf*boxdim.z);

blist[5]=Sum{ Multiply(ivector,sf*boxdim.x), Multiply{ kvector,st*boxdim.z)),

blist[6]=Sum{Sum{ Multiply(ivector,s*boxdim. x),Multiply(jvector sf*boxdim. )}, Multiply(kvector,sf
*boxdim.z));
blist[ 7]=Sum{Multiply(jvector,sf*boxdim.y), Multiply(kvector,sf*boxdim.z));
for(int i=0;i<8;i++){blist[i).x+=(maxx-boxdim.x)*0.5*sf, blist[i].y-=boxdim.y*sf;}
for(int i=0;i<8;i++}{blist[i]=Sur(blist]i),Multiply( vpart,frames*speedy*sf)};}
DrawBox(blist);
blist[0]=zerovector;
blist{ 1]=Multiply(ivector,sf*camx);
blist[2]=Sum{Multiply(ivector,sf¥camx). Multiply(jvector,sP*camy));
blist[3]=Multiply(jvector,sf*camy);
blist[4]=Multiply( kvector,sf*camz);
blist]5]=Sum{Multiply{i vector,s f*camx), Multiply{ kvector,sf*camz));

blist[6]=Sum{ Sum{Multiply(ivector,sf*camx), Multiply(jvector,sf*camy)), Multiply(kvector,s f*camz))

, blistf 7]=Sum{ Multiply{(j vector,sF*camy),Multiply{kvector,sf*camz));
for(int i=(i<8;i++){blist[i].x=sP*camx*(.5; blist[i].y-=sf*camy*(.5; blist[i).z-=sf*camz*{.5;}

timenow="frames*speedy;
for(int i=1;i<NUMROLi++)
{

b

if{ stage==0) {pt1=cinit; pt2=spt[0]; } else{ pt1=spt[stage-1]; pt2=spi[stage];}
targe=Sum{ opt[stage] Multiply( vpart,timenow));

camp=Sum{ Multiply{ vpart,timenow),pt1);

if{ stage>({timenow-=ctims(stage-1]; }

ifi (timenow>ctims[i-1])&&(timenow<ctims[i])}{stage=y; }



velo=Multiply(StdVec(pt 1,pt2).1.0/times[stage]);
campt=Sum{ campt,Multiply{ velo,timenow));
diff.x=target. x-campi.x;

diff. y=target.y-campt.y;

thi=Arg{diff);

diff. x=Mod{Complex(target. x-campt.x, target.y-campt.y)};
diff.y=target.z-campt.z;

phi=Arg(diff);

campt=Multiply{campt,sf);

camroto.z=(tht+0.5*PT)*deg;

camroto, x=phi*deg;

for(int i=0;i<8;i++){blist[i]=Rotate3D(blistfi],zerovector,camroto); }

ifi frames<( 100*ctims[ NUMROI- [ 1) {for(int i=0;i<8;i++){blist{i]=Sum(blist{i],campt); } }
DrawBox(blist);

for(int i=G;i<NUMROLi++)

1
pt1=Multipl v Sumy opt[i],Multiphy{ vpart, frames*speedy)),sf);
pt2=Multiply{opt{i}.sf);
pt1=Rotate(pt] ,zerovector);
pt2=Rotate(pt2,zerovector);
p1=400+int(pt].x}; py] =300+int{ptl.y});
px2=400+int{pt2.x); py2=300+int(pt2.y);
DrawLineE(px1,pyl,px2,py2.0,255,0;

b

)
"
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void Initialize(void)

InitDynamics();
}
i
void Draw(void)

{

BITMAPINFO bi={40,800,600,1,24.0,0,0,0,0,0};

SendMessageA(hWnd, WM_PAINT,0,0);

Graphics();

frames++;

il frames>={maxy/(speedy*vpart.y))){ frames=0; }

StretchDIBits(hDC,2,2,800,600,0,0,800,600,&scr,&bi,DIB_RGB_COLORS,SRCCOPYY;
}
i
bool CreateWindowXX(char* titleint width,int height,int bits)

{
HMENL) hMenu,hSubMenu;

UINT PixelFormat;
WNDCLASS wc;
DWORD dwStyle;

hinstance=GetModuteHandle(NULLY;
we.style=0,

we. lpfaWndProc=( WNDPROC)WndProc;
we.cbClsExtra=0;

we.cbWndExtra=0;
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wc.hinstance=hiInstance;
we.hleon=Loadlcon{NULL,IDI_WINLOGOY;
wc.hCursor=LoadCursor{NULL,IDC_ARROW),
wc hbrBackground=(HBRUSH)YCOLOR WINDOW+1),
wc.lpszMenuName=NULL;
we.lpszClassName="SefTat";
if{ {RegisterClass(&wc))
{
MessageBox{NULL, "Failed To Register The Window
Class.","ERROR" MB_OK|MB_ICONEXCLAMATIONY;
return FALSE:
H

if((hWnd=CreateWindow("Seffat" title, WS_OVERLAPPEDWINDOW,0,0,width,height, NULLNU
LL hinstance NULLY)

{
MessageBox(NULL,"Window Creation Error.”,"ERROR",MB_OK|MB_ICONEXCLAMATIONY;

return FALSE;

)
static PIKELFORMATDESCRIPTOR pfd=
{

sizeoff PIXELFORMATDESCRIPTOR), | ,.PFD_DRAW TO WINDOW|PFD_DOUBLEBUFFER PF
D_TYPE_RGBA,bit3,0,0,0,0,0,0,
0,0,0,0,0,0,0,32,0,0,PFD_MAIN_PLANE,0,0,0,0
I
iff (hDC=GeaDC(hWnd))}
{
MessageBox({NULL,"Can' create a device
context.","ERROR"MB_OK|MB_ICONEXCLAMATION);
return FALSE;
H
ifl {PixelFormat=ChoosePixelFormayhD{C &pfd)))
1
MessageBox(NULL,"Cant find a suitable
pixelformat.”,"ERROR"MB_OKMB_ICONEXCLAMATION),
return FALSE;

}
if{ 1SetPixelFormatthDC PixelFormat,&pfd))

{
MessageBox(NULL,"Can' set the pixelformat.”,"ERROR”,MB_OK|MB_ICONEXCLAMATION);

return FALSE;
}
if{ 'DescribePixelFormat(hDC,PixelFormat,sizeofl PIXELFORMATDESCRIPTOR ), &pfd))

{
MessageBox{NULL,"Can't Describe
PixelFormat”,"ERROR"MB_OKMB _ICONEXCLAMATIONY;,
return FALSE;
¢

ShowWindow(hWnd, SW_SHOW);
UpdateWindow(hWnd);
SetForegroundWindow(hWnd);
SetFocus(thWnd);

Initialize();

return TRUE;

i




LRESULT CALLBACK WndProce{ HWND hWnd,UINT uMsg, WPARAM wParam,LPARAM
IParam)

H
switch {uMsg}

{
case WM_CLOSE:

PostQuitMessage{0);
return Q;

H

case WM_KEYDOWN:

{
iffwParam—VK_ESCAPE)

PostQuitMessage( 0);
return 0;

!
ifwParam=—A"

{

rot.x++;

!
if{wParam=="5"
{

TOLX--;

]
if{wParam=="D"
{

!
ifwParam=—F"

{

oL y++;

tot.y--;

}
i wParam—='G")
{

rot.z++,

1
ifiwParam—'H")
{

b
i

}

return DefWindowProo{ hWnd,uMsg, wParam,|Param);
H
H
WINAPI WinMain(HINSTANCE hinstance, HINSTANCE hPrevinstance, LPSTR IpCmdLine,int
nCmdShow)

rot.z--

MSG msg;
bool done=false,ret=false;
re=CreateWindowX X("Radiosity by S.M.C.",1024,737,32);
iflre—=false}{done=true; }
while(!done}
{
it PeckMessage(&msg, NULL,0.0PM REMOVE))

{
ifimsg.message==WM_QUIT)
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3
}

else

done=true;

TranslateMessage{ &msg);
DispatchMessage(&msg);
}
!

else

{
Draw();
SwapBuffers(hDC);
}
}
retumn{msg. wParamy);

b

9.4.2 Image Processing Utility Source Code

This program performs takes image files and performs the described image processing operations as
required. The input is the filenames of the image files and the operations that need to be performed.
Currently, background subtraction, color verification, dimensional verification and assembly
verifications are supported. In fact, dimensional verification and surface finish verifications are
implicit in the process and need not be specified. Special RO! in the images may be specified and
thresholds for rejection may be modified if required. The output is a binary result indicating whether
the images have passed all the tests or not. In the case of background subtraction, the output is the
foreground image with the background regions set to black. In the case of color verification the
channel(s} that need to be verified must be specified as well. The standalone application requires
Microsoft Windows XP with OpenCV Version 1.0 or higher to be installed. The OpenCV library is
frecly available from [10]. The compilation was performed with Dev C++ [version 4.9.9.2], a free
C/C++ software development environment.

i
#include "cv.h"
#include "highgui.h”
H
Ipllmage *imagl=0,*imag2=0,
Ipllmage *stnth1=0,*smth2=0;
Ipllmage *hist1=0,*hist2=0;
Iplimage *logpl=0,*logp2={;
Ipllmage *gray1=0,*gray2=(;
Iplimage *ilpil=0,*ilpi2={);
IplImage *idiff=0,*ibind=0;
i
char *namet="colortest.jpg";
char *name2="colorgolden.jpg";
CvSize size={640,450};
i
int Coord(int ii,int jj,int sz}
{

return {(jj- 1 Psz)ii-1;
}
i
void CleanBinarylmage(Iptlmage *imagi,CvSize sz, int thresh)

bool one;



int sta,end.crd;
int xs=sz. width,ys=sz.height;

for{int i=1;i<=xs;i++)
{
one=false;
sta=(;end=0;
if{imagi->imageData[Coord(i, 1 ,xs)j>0)
{
one=true;
sta=|;
h
for(int j=1;j<=ys:j++)
{
crd=Coord(1,j,x8);
iflimagi->imageData crd]=0)
!
if(one)
[
one=false;

end=j;
if{(end-sta)<thresh}

for(int k=sta;k<end;k++)
{
imagi->imageData[ Coord(i,k,xs)]=0;

for(int j=1;j<=ys{j++)
{
one=false,

sta=0;end=0;
if{limagi->imageData[Coord(1,),xs)]>0)
{

one=true;
sta=1,

for{int i=1;i<=xs;i++)

{
crd=Coord(i,j,xs);
iflimagi->imageData| crd]==0}

if{one)

{
one=false;
end=i;
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ift{end-sta)<thresh)
|
for(int k=sta;k<end;k++)

{
imagi->imageData[ Coord(k,j,xs)1=0;

i
void AbsDifferencelmage(IplImage *il,lpllmage *i2,Ipllmage *op,CvSize sz,int flag}
{

int ¢;

int nx=sz.width;

int ny=sz.height;

for{int i=1;i<=nx;i++}

for(int j=1;j<=ny;j++)

¢=Coord(i,j,nx);

ififlag==1)

{
op->imageData[{c*3)+H0]=abs(il ~>imageData[ (c*3)}+0]-i2->imageData[(c*3)+0]);
op->imageData[{c*3)+1]=abs(il->imageData[(¢*3)+1]-i2->imageData[(c*3)+1]);
op-rimageData[(c*3)+2]=abs{il->imageData[{c*3)+2]-i2->imageData{(c*3}+2]};

}
ififlag==2)
H
op->imageData[c}=abs(il->imageData[c]-i2->imageDatafc]);
}
}
1

}
W

void Grayscale(1pllmage *input,Ipllmage *output,CvSize s7)
{
int c;
int nx=sz.width;
it ny=sz.height;
for(int i=1:i<=nx;i++)
{
for(int j=1;j<=ny;j++)
{
¢=Coord(1,j,nx);
output->imageData[c]=byte(sqri(
pow{double(input-=imageData[(c*3)+0]),2.0)+
pow{double(input->imageData[(¢c*3H1]),2.0)+
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pow(double( input->imageData[(c*3)+2]),2.0)
Ysqr(3.03);
1
H

}
i

void Convolve2D{ Ipllmage *imagi,Ipllmage *imago,CvSize sz.double k)
{
int ip,jp.imjm,cl,c2,c3,c4,c5,c6,c7,¢8,c9re,gc,be;
int xsz=sz.width,ysz=sz height;
for{int i=1;i<=xsz;i++)
{
for(int j=1;j<=ysz;j++)
¢
im=i-1; ifim==0){im=1;}
ip=it1; if{ip==xsz+1){ip=xsz;}
jm-1; ifgm==0){jm=1;}
i s il jp=ysz+ | H{ip=ysz;}
¢1=Coordimjm,xsz),
€2=Coord(im,j,xsz);
c3=Coord{im,jp,xsz);
e4=Coord(i,jm.xsz);
¢5=Coord(i,],xsz);
c6=Coord(i,jp,xs2);
¢7=Coord(ip,jm,xsz};
o8=Coord(ip,j,xsz);
e9=Coord(ip,jp,xs2);
re=(int Y -k*(
imagi->imageData[(c] *3I2]+imagi->imageData[{c2*3)+2]+imagi->imageData[{c3*3H 2]+
imagi->imageData[{c4*3H 2] +Himagi->imageData[(c6*3)+2]+
imagi->imageData[(¢7*3)+2]+imagi->imageDataf{c8*3 )+ 2}+imagi->imageData[{c9*3)+2]
WH(IH(8*k)*imagi->imageData[(c5*33+2]));
ge=(int)J¥(
imagi->imageData[(c1*3)+ 1 [+imagi->imageData[(c2*3)+1}Himagi->imageData[(c3*3)+1]+
imagi->imageData[(c4*3)+ 1 [ Himagi->imageData[(c6*3)+1]+
imagi->imageData[{c7*3)+ 1 [+imagi->imageData[(c8*3)+1)+imagi->imageData[(c9*3)+1]
W1 +(8*k))Himagi->imageDataf(c5*3)+ D)
be=(imt)-k*{
imagi->imageDatal{c] ¥3)+-0]+imagi->imageData[(c2*3)+0}+Himagi->imageData[(c3*3)+0]+
imagi->imageData[{c4*3}+0]+imagi->imageData[{c6%3)+0]+
imagi->imageData[(c7*3)+0]+imagi->imageData[ (¢8*3)+0}+imagi->imageData[{c9*3)+0)
YO HE*) yimagi-=imageDatal(c5*3H0]));
if{re<0){re=0;} ifre=255)fre=255;}
iflge<0){ge=0;} if gc>255){ge=255;}
ifbc<0}be=0;} iRbc>255)}{be=255;)
imago->imageData[(c5*3)+2)=r¢;
imago->imageData[(¢5*3)+1 ]=gc;
imago->irnageDataf(c5*3)+H)]=bc;
1
}

)
/"

void FourierCorrelation( lplImage *im]1,IplImage *im2,IplImage *cres)

Ipllmage *bufr,*covt,

Iplimage *rell, *imgl, *cmpl *rel2 *img2, *cmp2;
Iplimage *erel, *cimg;

int dftm,dfin,mi,mj,c,c2.1ij;
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unsigned int maxi=0;
CvMat *dftl *dfi2, *dftc, *filt tmp;
double m,M,radius;
rell=cvCreatelmage( cvGetSize(im1),IPL_DEPTH_64F.1);
imgl=cvCreatelmage(cvGetSize{im1),IPL_DEPTH_64F,1);
cmpl=cvCreatelmage(cvGetSize{iml),IPL DEPTH 64F,2);
rel2=cvCreatelmage{ cvGetSize(im2),IPL_DEPTH_64F,1);
img2=cvCreatelmage(cvGetSize{im2),IPL_DEPTH_64F, 1),
emp2=cvCreatelmage(cvGetSize{im2),[PL_DEPTH_64F,2),
bufr=cvCreatelmage{cvGetSize(im2),JPL,_DEPTH_64F,1);
for(int i=1;i<=im2->width;i++)
{

for(int j=1;j<=im2->height;j++)

c=Coord(i,j,im2->width);
¢2=Coord{im2->width-i+1,im2->height-j+1,im2->width);
bufr->imageData[c]=im2->imageData[c2];
1
}

for(int 1=0;i<((im2->width)*(im2->height));i++){im2->imageData[i}=bufr->imageData[i);}

cvScale(iml,rell,1.0,0.0%;
cvScale(im2,rel2,1.0,0.0);

cvZero(imgl);

cvZero(img2);

cvMerge(rell,imgl NULL NULL cmipl);
cvMerge(rel2,img2 NULL NULL cmp2);

ditm=cvGetOptimalDF TSize(imi ->height-1);
ditn=cvGetOptimalDF TSize(im1->width-1);
crel=cvCreatelmage( cvSize(dfin,dfim),IPL_DEPTH_64F,1);
cimg=cvCreatelmage(cvSize(dfin,dftm),[IPL_DEPTH_64F,1);
covt=cvCreatelmage( cvSize( dfin,dfim),IPL_DEPTH_8U,1),
dft1=cvCreateMat(dfim,dfin,CV_64FC2);
dfi2=cvCreateMat(dfim,dfin,CV_64FC2);
dfic=cvCreateMat{dfm,dftn,CV_64FC2);
filt=cvCreateMat(dftm,dfin,CV_64FC2),

for(int i=1;i<=dfin;i++)

for(int j=1;j<=dftm;j++)
{

ii=i-1; jj=j-1;
ii=>((dfin+1)/2)){ii=dfin-i;}
iRj>((dfm~+1)/2)){jj=dftm-j;)
radius=sqri({ii*ii)}+(j*));
c=Coord(i,j.dfin);
ifiradius>100.0)

{
filt>data.db{(c*2)+0]=0.0;
filt>data.db[(c*2)+1]=0.0;

!

else

{
filt->data.db[{c*2)+0]=1.0;
filt->data.db[(c*2)+1]=1.0;

i

}

3
¢vGetSubRect(dft1,8tmp,cvRect(0,0,im] ->width,im1-<>height));
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evCopy(cmpl ,&tmp,NULL),
if{dft1->cols>im1 ~>width)

cvGetSubRect(dit 1, &anp.cvRect{im] ->width,0,dft1->cols-im 1 ->width,im] ->height));
cvZero &mp);

cvGetSubRect(df2, & tmp,cvRect(0,0,im2->width,im2->height));
evCopy(emp2,&tmp,NULLY),
f{dfi2->cols>im2->width)
{
cvGet SubRect(dft 2, S&ctmp,cvR ect(im2 ->widih,0,dft2->cols-im2->width,im2->height));
cvZero{ &tmp);
;
cvDFT(dft1,dft1,CV_DXT_FORWARD,cmpl ->height);
oVDFT(dft2,df12,CV_DXT_FORWARD,cmp2->height);
cvMulSpectrums(dfil,dfi2,dfic,0);
cvMulSpectrums(dft], filt,dft1,0);
cvMulSpectrums({dft2,fili,dft2,0);
cvDFT(dftc,dftc,CV_DXT_INVERSE,cmpl <>height);
cvDFT(dft1,dft1,CV_DXT INVERSE,cmpl->height);
cvDFT(dfi2,df2,CV_DXT INVERSE,cmpl ->height);
cvSpli(dfic,crel cimg,0,0),
cvSplit(dftl rell,img1,0,0
cvSplit(dft2,rel2,img2,0,0);
cvPow(crel,crel,2.0);
evPow(cimg,cimg,2.0%;
cvAdd(crel cimg,crel NULL);
cvPow(crel,crel, 0.5);
cvMinMaxLoc{erel, &m,&M,NULLNULL NULL);
cvicale(crel,crel, 256 04 M-m),256.0%(-m )/ (M-m));
cvMinMaxLoc(rell,&m, &M NULLNULLNULLY);
cvScale(rel 1, rell 256,04 M-m),256.0*(-m)y/(M-m)};
cevMinMaxLoc{rel2, &m, &M NULL NULL NULL);
cv3cale(rel2,rel2, 256 0AM-m),256.0*(-m)/(M-m)),
cvConvertScaleAbs(crel covt,1,0);
HevConveniScaleAbs(rell,iml,1,0);
HevConventScaleAbs(rel2,im2,1,0);
for(int i=1 ji<=dfin;i++)
i
for(int j=1;j<=dftm;j++)

{
c=Coord(i,j,dfin);
if{{covt->imageData[c]y>=maxi}
{
maxi—covi->imageData[c];
mi=i;
mj=j;
}
H
}
covt->imageData[ Coord(mi,mj,dftn)]=0;
for(int i=1;i<=im2->width;i++)

{
for(int j=1;j<=im2->height;j++)
i

c=Coord(i,j,im2->width);
ii=im2->width-i+mi+1;
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ji=im2->height-j+mj+1;

ifizim2->width Y{ii-=im2->width; } if{ii<0){ii+=im2->width; }
if(jj=im2->height){jj=im2->height;} if(jj<0){j+=im2->height;}
c2=Coord(ii,jj,im2->width);
cres->imageData[c]=im2->imageData[c2];

:

for(int i=1;i<=im2->width;i++)
{
for(int j=1;j<=im2->heighi;j++)

e=Coord(i,j,im2->width);
¢2=Coord{im2->width-i+1,im2->height-j+1,im2->width);
bufi->imageData[c]=im2->imageDatafc2];
i
1
for(int i=0;i<((im2->width)*(im2->height));i++){im2->imageData[i]=bufr->imageData[i];}
evNamedWindow("Fourier",CV_WINDOW_AUTOSIZE),
cvShowlmage( "Fourier",covt);
evNamedWindow("Shified",CY_WINDOW_AUTOSIZE);
evShowlmage("Shifted",cres);
cvSavelmage("fouriermap.jpg",covt);
cvSavelmage("shifted jpg" cres);
!
i
void DoContours(IplImage* img)

double areal=0.0;

Ipllmage* imge=0;

CvSeq* contours=();

imge=cvCreatelmage{cvGetSize{img),[IPL._DEPTH_RU,3);

CvMemStorage* storage=cvCreateMemStorage(();

cvFindContours{img, storage,&contours,sizeof{ CvContour),

CV_RETR_TREE,CV_CHAIN_APPROX_SIMPLE,cvPoint(0,0});

contours=cvA pprox Poly({contours,sizeof] CvContour),storage,CV_POLY_APPROX_DP,3,1);

cvDrawContours(imge,contours,CV_RGB{255,0,0),CV_RGB((,255,0),

1,3,CV_AA cvPoint(0,0));

areal =cvContour Area contours, CV_WHOLE_SEQ);

cvNamedWindow("Contours”,CV_WINDOW_AUTOSIZE),

cvShowlmage("Contours",imgc);

cvSavelmage("contour.jpg”,imge),
H
i
bool CaleBinDiffMetr{Iplimage* bim,double threshold}

i

double tval=0.0,metr;

bool res=true;

CvSize sz=cv(GetSize(bim);

for(int i=0;i<sz width*sz height;i++)

H

if{bim->imageData[i)!=0){tval++;}

H

metr=tval/double{sz. width*sz.height),

if{metr>threshold) {res=false; }

return res;
]
i
bool ColorTest(int channel)




double com=0.0;
bool result=true;
[piimage *shftd=0;
CvPoint2D32f cntr={size. width/2 size.height/2} ;
imagl=cvlLoadlmage(namel };
imag2=cvLoadImage(name2);
smthl=cvCreatelmage(size,IPL_DEPTH_8U,3);
smth2=cvCreatelmage(size,IPL_DEPTH_8U,3);
grayl=cvCreatelmage(size,I’PL_DEPTH_8U, 1),
gray2=cvCreatelmage(size, [PL_DEPTH_8U,1);
hist1=cvCreatelmage(size,JIPL_DEPTH_8U,1%;
hise2=cvCreatelmage(size,[PL. DEPTH_8U.,1);
idiff=cvCreatelmage(size,IPL_DEPTH_8U,1);
ibind=cvCreatelmage(size,IPL_DEPTH_8U,1);
shfid=cvCreatelmage(size,IPL. DEPTH_8U.,1};
cvSmooth(imagl,smth1,CV_GAUSSIAN,S,0,0,0);
cvSmooth(imag2,smth2,CV_GAUSSIAN,S,0,0,0%
for(int i=0;i<size.width*size height;i++)
{
grayl->imageData[i}=smth1 ->imageData[(i*3)}+channel];
gray2->imageData[ i]=smth2->imageData[(i*3)+channel];

!

cvEqualizeHist(gray1 histl);
cvEqualizeHist(gray2,hist2);
FourierCorrelation(gray 1, gray2,shftd);
AbsDifferencelmage{ gray 1 ,shitd,idiff size,2);
for(int i=0;i<size.width*size.height;i++)

iflidiff->imageData[i]>40}{ibind->imageData[i}=255;} else{ibind->imageData[i]=0;}

}

CleanBinarylmage{ibind,size,2);

cvNamedWindow({"Raw 1",CV_WINDOW_AUTOSIZE);

cvNamedWindow("Raw 2",CV_WINDOW_AUTOSIZE);

cvNamedWindow("Difference",CV_WINDOW_AUTOSIZE);

cviNamedWindow{"Cleaned Difference”,CY_WINDOW AUTOSIZE);

cvNamedWindow("Histogram Equalized 1",CV_WINDOW_AUTOSIZE),

cvNamedWindow("Histogram Equalized 2",CV_WINDOW_AUTOSIZE),

cvShowlmage( "Raw 1", grayl);

cvBhowlmage("Raw 2", gray2?);

cvShowlmagel( "Difference”,idiff);

cvShowlmage( "Cleaned Difference”,ibind);

cvShowlmage("Histogram Equalized 1" hist]1};

cvBhowlmage( "Histogram Equalized 2" hist2);

cvSavelmage("bdiff jpg".ibind);

cvSavelmage( "cdift jpg",idiff);

DoContours{ibind);

result=CalcBinDiffiMetr{ibind 0.2);

return result;
}
#
boel AssemblyTest{ void)

{
double corr=0.0;
bool result=true;
Ipllmage *shftd=0;
CvPoint2D32f entr={size, width/2,size.height/2];
imagl=cvLoadlmage(namel);
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imag2=cvLoadlmage(name2);
smthl=¢vCreatelmage(size,IPL. DEPTH_8U.3);
smth2=cvCreatelmage(size,[IPL_DEPTH_8U,3);
grayl=cvCreatelmage(size,IPL._DEPTH_8U,1%;
gray2=cvCreatelmage(size,IPL_DEPTH_8U,1};
hist]=cvCreatelmage(size,IPL_DEPTH_8U,I1%
hist2=cvCreatelmage(size,IPL DEPTH _8U.1);
idiff=cvCreatelmage(stze, IPL_DEPTH_8U, I);
ibind=¢vCreatelmage(size,IPL. DEPTH_8U.,1);
shftd=cvCreatelmage(size,IPL. DEPTH_BU.1);
cvSmooth(imagl,smth]1,CY_GAUSSIAN,5,0,0,0);
cvSmooth(imag2,smth2,CV_GAUSSIAN,5,0,0,0);
CGrayscale(smth].grayl size);
Grayscale(smth2,gray2 size);
cvEqualizeHist(gray1,hist]);
cvEqualizeHist({gray2,his2);
FourierCorrelation{gray | ,gray2,shitd);
AbsDritferencelmaged{ gray 1,shftd,idiff size,2};
for{int i=0;i<size.width*size. height;i++)

{
if{idiff->imageDatafi}>40){ibind->imageData[i]=255;} else{ibind->imageData[i]=0;}

1

CleanBinarylmage(ibind,size,5);

cvNamedWindow("Raw 1",CV_WINDOW_AUTOSIZE),

cvNamedWindow("Raw 2",CV_WINDOW_AUTOSIZE);

cvNamedWindow("Difference",CV_WINDOW_AUTOSIZE);

cvNamedWindow("Cleaned Difference",.CV_WINDOW_AUTGSIZE),

cvNamedWindow("Histogram Equalized 1",CV_WINDOW_AUTOSIZE),

cvNamedWindow("Histogram Equalized 2",CV_WINDOW_AUTOSIZE),

cvShowlmage("Raw 1°,grayl),

cvShowlmage{ "Raw 2",gray2);

cvShowlmage( "Difference",idiff);

cevShowlImage{ "Cleaned Difference”,ibind);

cvBhowlmage( "Histogram Equalized 17 histl);

cvShowlImage("Histogram Equalized 2" hist2);

cvSavelmage({"bdiff jpg",ibind);

cvSavelmage("cdiffjpg",idiff);

DoContours{ibind);

result=CalcBinDiffMetr(ibind,0.25);

return result;
H
I
void SubtractBackground(char* fgndn,char* bgndn,int threshl,int thresh2,Iplimage* result)

int <., gg.bb;
double magn;
Iplimage *fgnd=0,*bgnd=0,
fgnd=cvLoadlmage(fgndn);
bgnd=cvLoadlmage(bgndn);
CvSize sz=cvGetSize( fgnd);
Ipllmage* difr=cvCreatelmage(sz,[PL_DEPTH_8U,3);
Iptimage* binr=cvCreatelmage{sz IPL_DEPTH_8U. 1),
result=cvCreatelmage(sz,IPL_DEPTH_8U,3);
AbsDifferencelmage(fend,bgnd,difr,sz,1%;
for{int i=1;i<=sz. width;i++)}
{

for(int j=1;j<=sz.height;j++)

{
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c=Coord(ij,sz.width),
rr=difr->imageData[(c*3)+2];
ge=difr->imageData[(c*3)+1];
bb=difr->imageDataf{c*3)0];
magn=sqrt((rr*m)yHgg*gg)Hbb3bb)Vsqr (3.0},
iflmagn>thresh1)
{
binr->imageData{c]=255;
result->imageData[(c*3)+0]=fgnd->imageDataf(c*3)+0];
result->imageData[{c*311]=fgnd->imageData[{c*3)+1];
result->imageData[{c*3)+2]=fgnd->imageDatal(c*3+2];
1
else
{
binr->imageData{c]=0;
}
H
!
CleanBinaryImage(binr, sz thresh2);
for(int i=1;i<=sz, width;i++)
{
for(int j=1;j<=sz.height,j++}
[
c=Coord(i,j,sz.width);
ifibinr->imageData[c]==0}
{
result->imageData[{c*3+0]=0;
result->imageData[(c*3}+1]=0;
result->imageData[(c*3)+2]=0,
H
}
]
DoContours{binr);
cvNamedWindow("Background Subtraction”,CV_WINDOW_AUTOSIZE);
cyShowlmage( "Background Subtraction”,result);
cvSavelmage{ "backsub.jpg".result};
cvSavelmage( "AbsDiff.jpg" difr),
]
i
int main void)

bool rl1=true,r2=tro;

Ipllmage* rubbish=0;
SubtractBackground("222.jpg"."1 11 jpg".40,3,rubbish};
rl=AssemblyTest();

r2=ColorTest(2);

cvWaitKey();

retumn O;
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9.4.3 OpenCV Timed Video/Frame Capture Source Code

The following code captures timed frames from the video camnera and saves them to disk. The
requirements are the same as that of the image processing module in A1.2. Initialization may be
customized and graphical output is also available.

#include “cv.h"
#include "highgui.h"

Hinclude <stdlib>
#include <stdio>
#include <math>
#include <fstream>
#include <ctime>

#define NUMROI1 10
void DrawFrame{ void)

{
evGrabFrame{capture);
frame=cvRetrieveFrame(capture);
cvShowlmage("Capture”,frame);

}

int main{int arge,char** argv)
{
randomize();
double times[NUMROI]};
for(int i=0;i<NUMROEi+){ times[i]=random{ 10);}
std::clock_t start,end;
cvNamed Window( "Capture”,CV_WINDOW_AUTOSIZE);
capture = cv(CreateCamneraCapture(-1);
start=std::clock();
while (cvWaitKey( 1000)—-1}

{
ifi{std::clock()-start)/(double)CLOCKS_PER_SEC>times[i)}

{
DrawFrame();
start=std::clock();

!

i
cvWaitKey();
return 0;

i

9.4.4 Example: Fast Fourier Transform (FFT)

The following code demonstrates the use of complex variable arithmetic to perform the Fast Fourier
Transform (FFT). The algorithm used is a relatively common FFT algorithm known as the ‘Divide
and Conquer’ algorithm or the Cooley-Tukey Algorithm. The input is a complex-number array with
given dimensions and the output array is the Fourier transformn of the input array. The array sizes
along any dimension MUST be a power of two. Provision is made for the inverse transform as well.
Bath 1D and 2D transforms are coded. The computational complexity is of O(N log N) where N is the
total number of elements in the array,

ﬁ*************#*****!ﬂnﬁl * REEE YT FTY
EEL T2 2L LR ]

#include <math>



#include <string=>
#include <stdlib=
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struct complex

{
double x,y;

>

H***************************************************************#*****t***********
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complex Complex{double r,double i)

complex e={r,i};
return ¢;

)
"

complex Add(complex zl,complex z2)
H

complex sum;

sum.x=zl.x+z2.x;

sumy=zl.y+z2.y,

return sum,;

}

i
complex Multiply(complex z],complex z2)
{
complex product;
product.x=(zl.x*z2,x}(z].y*z2.y);
product.y=(zl.x*z2.yY)Hzl.y*z2.x);
returm product;
}
#

complex Exp{complex z)

{
double mag=exp(z.x);
complex expo;
expo.x=mag*cos(z.y);
expo.y=mag*sin{z.y);
Tetumn expo;

H

P *%
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void DFT(int N,complex* src,complex* des)

{
for(int k=sk<N;k++)
{
des[k]=Complex(0.0,0.0);
for(int n=0;n<N;n++}

RS L 222 2 s 2 SRR SRR LR LS L LR 2

{
des[k]=Add(des[k],Multiply{ Exp{ Complex(0.0,-2.0*P1*( 1.0/(double)N y*double{k *n))},srcin] ¥
!

}

)
/"

void FFT2(int N1,int N2, comptex* src,complex* des,bool inv)

{
int pj.k;
int log2n1=0; p=1;



while(p<N1}{p*=2;logZnl++:;}
int log2n2=0; p=1;
while(p<N2)}{ p*=2;log2n2++;}
Nl=[<<log2ni;
N2=l<<logn2;
for(int i=0;i<(N1*N2);i++)
{

des(i]=src[i);

}
for{int y=0,y<N2Z;y+t)
{

=0
for(int i=0;i<N1-1;i++)

{
des[(N2*i)+yl=src[(N2¥jF+y):
k=N1/2;
while{k<=j){j=k;k/=2;}
=k

!

1
complex t;
for(int x=;x<N1;x++)
{
=0,

for(int i=0;i<N2-1;++)

H
iffi<j)

1
t=des[(N2*x)+i};
des[(N2*x)+i]=des[(N2*x)+j);
des[(N2*x)+j)=t;

}

k=N2/2;

while(k<=j)tj-=k;k/=2;}

e

}
for(int x=0;x<N1;x++)

{
double CA=-1.0;
double SA=0.0;
int11=1,12=1;
for(int 1=0;1<logZnl;l++)

{
11=12;
12*=2;
double ul=1.0;
double u2=0.0;
for(int j=03j<1 1;j++)
{
for(int i=f;1<N1;i+=12)
i
intil=i+ll;
double t1=(u) *des[(N2*)+i1].x)-(u2*des[(N2*x )+ .y);
double 2=(ul*des[{N2*x)+i1].y}H(u2*des[(N2*x)+i1}.x);
des[(N2*x)+i 1. x=des[(N2¥x)H].x-1;
des[(N2#x)+il]. y=des[{(N2*x)+i].y-2;
des[(N2*x)+i].x+=tl;
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des[(N2*x)+].y+=i2,

)
double zZ=(uE*CA}M{(u2*SA),
wW2=ul*SAYHu2Z*CA);
ul=z,
H
SA=sqri((1.0-CA)2.0);
ifflinv}{SA=-8A;}
CA=sqrt({ 1.0+ CA)2.0;

}
for(int y=0;y<N2;y+)
{

double CA=-1.0;

double SA=0.0;
int11=1,12=1;

for(int I=0;1<log2n2;14++)

¢
11=12;
12%=2;
double ul=1.0;
double u2=0.0;
for(int j=05j<l 1;j++)
{

for(int i=j;i<N1;i+=12)

{
int il=iHI;
double ti=(ul*des[(N2*i 1 }+y].x)-{u2*des[(N2*il }+y].y);
double 2=(u] *des[(N2*i 1 }+v].yyHu2*des[(N2*i1 }+y)x);
des{{N2*i1 y+v]. x=desf{NZ* Hy].x-t];
des[(N2*i +y]. y=des[(N2%)+y].y-2;
des[(N2*)ty].x+=t1;
des[{N2*iy+y].y+=t2;

!

double z<(u1*CA)(u2*SA);

u2=(ul *SAH{u2*CA);

ul=z,

!
SA=sqrt{(1.0-CA)2.0),
if{linv){SA=S8A;}
CA=sqrt((1.0+-CAY2.0);
}
!
double dee;
if{inv){dee=N1,}elseidec=N2;}
for(int x=0;x<N1;x++)
!
for(int y=0;y<N2;y++)

{
des[(N2*x)+y].x/=dee;
des[(N2*x)+y].y/=dec:
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94.5 MATLAB Source Codes
Image Acquisition and Synchronization

function DelayFunc(timetodelay,steps)

t=timer{'TasksToExecute',steps, TimerFen', MyTimerFunction',...

Period’ timetodelay,'executionMode’, 'fixedRate™);
start(t),
wait(t);

end

ntarget=1{;

times=zeros(ntarget,1);

frame=zeros(480,640,3),

for =1:ntarget

times({1)=i,

end

vid = videoinput{*winvideo',1,'RGB24_640x480%

for i=1:ntarget
DelayFunc( 1 times(i));
frame=getsnapshot( vid);
fnam={num2str(i),"jpg;
imwrite( frame, fnam, JPEG"Y:;

end

delete(vid),

clear vid;

Serial Port Communication

objl = instrfind('Type', serial’, Port’, 'COMI', 'Tag!, "%

if isempty(obj1}
objl = serial('COM1";
else
fclose{oy1);
abjl = abjl(1)
end
fopen(obj1);
out=",

while isempty{out}
out=fscanf{obj1,"%c",9)

end

fclose{objl);

delete(oby1);

Graphical User Interface Source Code

0,

function varargout = Cube_dimensions(varargin)

gui_Singleton = 1;

gui_State = struct{'gui_Name’,  mfilename, ...
‘gui_Singleton’, gui_Singleton, ...

gui_OpeningFen', @Cube_dimensions OpeningFen, ...
‘gui_OutputFen', @Cube_dimensions_QuiputFcn, ...

'gui_LayoutFen', i, ...
'gui_Callback’, {])
if nargin &4& ischar{varargin{l))
gui_State gui_Callback = str2func({varargin{1});
end
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if nargout
[varargouti1:nargout}] = gui_mainfen(gui_State, varargin{:});
else
gui_mainfen(gui_State, varargin{:});
end
function Cube_dimensions_OpeningFen(hObygect, eventdata, handles, varargin)
handles.output = hObject;
guidata(hObject, handles);
function varargout = Cube_dimensions_OutputFen(hObject, eventdata, handles)
varargout{ 1} = handles.output;
function edit]_Callback(hObject, eventdata, handles)
function edit]_CreateFen(hObject, eventdata, handles)
if ispe && isequal(get{ hObject, BackgroundColor), get(0, 'defaultUicontrolBackgroundColor'))
set{hObject, BackgroundColor','white);
end
function pushbutton]l_Callback(hObject, eventdata, handles)
Frontpage;
close Cube_dimensions
fonction pushbutton2_Callback(hObject, eventdata, handles)
side=get(handles.edit],'string’);
dim=str2num(side);
if isernpty(dim)
errordlg('Please enter a number for the side!, Bad Input’,'modal’)
retum
end
if dim=50
errordlg{"The dimension that you have entered is too low (Minimum 50mm)’,'Too low','modal)
return
end
if dim=>200
errordlg{ The dimension that you have entered is too high {(Maximum 200mm)",'Too high','modal”
retum
end
Cube_faces;

o,

[

function varargout = Cube_faces(varargin}
gui_Singleton = 1
gui_State = struct('gwi_Name!,  mfilename, ...
‘gui_Singleton’, gui_Singleton, ...
"gui_OpeningFen', @Cube_faces OpeningFen, ...
'zui_OutputFen', @Cube_faces QutputFen, ...
'‘gui_LayoutFen', {], ...
'gui_Callback’, []);
if nargin && ischar(varargin{t}}
gui_State.gui_Callback = str2fund varargin{1});
end
if nargout
[varargout{ l:nargout}] = gui_mainfen{gui_State, varargin{:});
else
gui_mainfen{gui_State, varargin{:});
end
function Cube_faces_OpeningFen(hObject, eventdata, handles, varargin}
figd= Cube_dimensions;
cubedata=guidata( figd),
sidedim=get{cubedata.edit ], string";
side=str2numysidedim);
set{ handles.text2, 'string',side);
handles.output = hObject;
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guidata(hObject, handles);
function varargout = Cube_faces_OutputFen(hObject, eventdata, handles)
varargout{ 1} = handles.output;
function checkbox]_Callback(hObject, eventdata, handles)
function checkbox2_Callback(hObject, eventdata, handles)
function checkbox3 _Caliback(hObject, ¢ventdata, handles)
function checkboxd4_Callback(hObject, eventdata, handles)
function checkbox5_Calthack(hObject, eventdata, handles}
function pushbutton]_Callback(hObject, eventdata, handles)
chckvall=get(handles.checkbox 1, 'value'y;
chckval2=get(handles.checkbox2,'value'),
chckval3=get(handles.checkbox3, 'value');
chckvald=get(handles.checkbox4, 'value');
chekval5=get(handles.checkbox 3, 'value");
x=0;
if chekvall
=x+l;
end
if chekval2
x=x+1;
end
if chekval3
x=x+1;
end
if chckvald
x=x+1;
end
if chckval$s
=x+i;
end
if not(x)
errordlg('Please Select at least one face!',Bad Input','modal’)
retum
end
Cube_ROI;
function pushbuiton2_Callback(hObject, eventdata, handles)
Frontpage;
close Cube_faces
function varargout = Cube_ROI(varargin)
gui_Singleton = 1;
gui_State = struct(’gui_Name',  mfilename, ...
‘gui_Singleton', gui_Singleton, ...
‘gui_OpeningFen', (@Cube_ROI_OpeningFen, ...
‘gui_OutputFen', @Cube_ROI_QutputFen, ...
‘gui_LayoutFen’, [], ...
‘gui_Callback!, [))
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func{varargin{1});
end
if nargout
[varargout{ F:nargout }] = gui_mainfen{gui_State, varargin{:});
else
gui_mainfen{gui_State, varargin{:});
end
function Cube_RO!_OpeningFen(hObject, eventdata, handles, varargin)
f1=Cube_dimensions;
cube_dimension_data=guidata(f1);
a=get(cube_dimension_data.edit1,string’);



set(handles. text6,'string’,a);
cubefig=Cube_faces;
cubefigdata=puidata(cubefig);
chk1=get(cubefigdata.checkbox,'value'),
chk2=get({cubefigdata.checkbox2,'value'),
chik3=get(cubefigdata.checkbox3, value’);
chkd=gei{cubefigdata.checkbox4,'value):
chk5=get(cubefigdata. checkbox 3, value');
if chkl

set(handles.text],'visible','on";

set{ handles, togglebuttonl,'visible','on");
set( handles.toggiebutton2,'visible','on);
set{handles.togglebutton3,visible','on";
set(handles. togglebuttond,visible','on™;
set(handles.togglebutton3, 'visible','on";
set(handles.togglebutton6, "visible','on");
setthandles.togglebutton?,visible','on);
set(handles. togglebutton8, visible','on;
set{ handles.togglebutton?,'visible','on’);

end
if chk2

set{ handles.text2, 'visible','on");

seti handles.togglebutton 10, visible','on’);
setthandles.togglebutton] 1,'visible','on");
set{ handles. togglebutton 1 2, visible','on");
set{ handles.togglebuiton 13,'visible','on’);
set{ handles.togglebutton 14, 'visible','on');
set(handles.togglebutton15,'visible','on');
set(handles.togglebutton16,visible','on");
set(handles. togglebutton 17, visible','on');
set( handles. togglebutton18,'visible','on";

end
if chk3

set{handles.text3, visible','on");

set(handles.togglebutton19,'visible','on");
set{ handles. togglebutton2(, visible','on");
set(handles. togglebutton2 1, 'visible','on";
set(handles.togglebutton22, 'visible','on");
set{ handles.togglebutton2 3, visible','on");
seti handles.togglebutton24,'visible','on"™;
set(handles.togglebutton2 5, visible','on");
set{ handies. toggiebutton26, visible’,'on™;
set(handles.togglebunton27,'visible','on');

end
if chkd

set(handles, textd, visible','on');

set{ handles, togglebunton28, 'visible','on");
set(handles.togglebutton29, visible','on");
set(handles. toggl ebutton30, visible','on");
set(handies. togglebutton3 ], visible','on’);
set(handles.togglebutton32,'visible','on’);
set{handles. togglebutton3 3, visible','on");
set(handles.toggl ebutton34, 'visible','on");
set(handles.togglebutton3 5, 'visible','on";
set(handles.togglebutton36,'visible''on";

end
if chk5
set(handles.text5, visible','on');
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set{ handles.togglebutton3 7. 'visible','on");
set{ handles.togglebutton38, 'visible','on’);
set{ handles.togglebutton39, 'visible','on’);
set{ handles. togglebuttond0,'visible','on’);
set(handles.togglebuttond |, isible’'on');
set(handles.togglebuttond 2, 'visible','on);
set(handles.togglebuttond 3, 'visible','on’);
set{handles.togglebutton44, 'visible','on’);
set(handles.togglebuttond 5, 'visible','on');

end

handles.output = hObject;

guidata(hObject, handles);

function varargout = Cube_ROIL_OQutputFen(hObject, eventdata, handles)

varargout {1} = handles.output;

function togglebuitonl_Catlback{hObject, eventdata, handles)
function togglebutton2_Callback(hObject, eventdata, handles)
function togglebutton3_Callback{hObject, eventdata, handles)
function togglebuttond_Callback{hObject, eventdata, handles)
function togglebutton3_Callback{hObject, eventdata, handles)
function togglebuttond_Callback{hObject, eventdata, handles)
function togglebuiton7_Callback{hObject, eventdata, handles)
function togglebuttond_Callback(hObject, eventdata, handles)
function togglebutton9_Callback(hObject, eventdata, handles)
function togglebutton10_Callback(hObject, eventdata, handles)
function togglebuttonl 1_Callback(hObject, eventdata, handles)
function togglebuttonl2_Callback(hObject, eventdata, handles)
function togglebutton13_Callback(hObject, eventdata, handles)
function togglebutton14_Callback(hObject, eventdata, handles)
function togglebutton15_Caliback{hObject, eventdata, handles)
function togglebuttonio_Callback(hObject, eventdata, handies)
function togglebutton17_Callback(hObject, eventdata, handles)
function togglebutton18_Callback{hCbject, eventdata, handles)
function togglebutton19_Callback(hObject, eventdata, handles)
function togglebutton20_Callback{hObject, eventdata, handles)
function togglcbutton2 |_Callback(hObject, eventdata, handles)
function togglebutton22_Callback(hObject, eventdata, handles)
function togglebutton23_Callback{hObject, eventdata, handles)
function togglebutton24_Callback(hObject, eventdata, handles)
function togglebutton25_Callback(hObject, eventdata, handles)
function togglebutton26_Callback(hObject, eventdata, handles}
function togglebutton27_Callback{hObject, eventdata, handles)
function togglebutton28_Callback(hObject, eventdata, handles)
function togglebutton29_Callback{hObject, eventdata, handles)
function togglebutton30_Callback{hObject, eventdata, handles)
function togglebutton31_Callback{hObject, eventdata, handles)
function togglebutton32_Callback(hCbject, eventdata, handles)
function togglebutton33_Callback(hObject, eventdata, handles)
function togglebutton34_Callback{hObject, eventdata, handles)
function togglebutton33_Callback(hObject, eventdata, handles)
function togglebutton36_Callback{hObject, eventdata, handles)
function togglebutton37_Callback(hObject, eventdata, handles)
function togglebutton38_Caltback(hObject, eventdata, handles)
function togglebutton39_Callback(hObject, eventdata, handles)
function togglebutton40_Callback{hObject, eventdata, handles)
function togglebuttond1_Callback{hObject, eventdata, handles)
function togglebuttond2_Callback(hObject, eventdata, handles)
function togglebutton43_Callback({hObject, eventdata, handles)
function togglebuttond4 _Callback(hObject, eventdata, handles)
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function togglebuttond3_Callback(hObject, eventdata, handles)
function pushbutton1_Callback(hObject, eventdata, handles)
Fronipage;

close Cube ROl

function pushbutton2_Callback(hObject, eventdata, handles)
Types_of_inspection_cube;

0,

function varargout = Cylinder_dimensions(varargin)
gui_Singleton = 1;
gui_State = struct{'gui_Name’,  mfilename, ...
'gui_Singleton’, gui_Singleton, ...
‘gui_OpeningFen', @Cylinder_dimensions_OpeningFen, ...
'qui_OutputFen', @Cylinder_dimensions QutputFen, ...
'gut_LayoutFen', [], ...
‘gui_Callback’, []%
if nargin && ischar(varargin{i}}
gui_State gui_Callback = su2func( varargin{1});
end
if nargout
[varargout{ 1 nargout}] = gui_mainfen{gui State, varargin{:});
else
gui_mainfen{gui_State, varargin{:});
end
function Cylinder_dimensions_OpeningFen(hObject, eventdata, handles, varargin)
handles.output = hObject;
guidata(hObject, handles);
function varargout = Cylinder_dimensions_QOutputFen(hObject, eventdata, handles)
varargout}1} = handles.output;
function editl_Callback(hObject, eventdata, handles)
function edit] _CreateFen(hObject, eventdata, handies)
if ispc && isequal(get{hObject, BackgroundColor", get(0,'defaultUicontrolBackgroundColor')
setlhObject,'BackgroundColor','white');
end
function edit2_Callback(hObject, eventdata, handles)
function edit2_CreateFen(hObject, eventdata, handles)
if ispc && isequal{get(hObject, BackgroundColor"), get(0,'defaultUicontrolBackgroundColor'))
set( hObject, BackgroundColor', 'white);
end
function pushbutton]_Callback{hObject, eventdata, handles)
Frontpage;
close Cylinder_dimensions
function pushbutton2 Callback(hObject, eventdata, handles)
a=get(handles.editl, 'string";
num | =str2numa);
if isempty(num1)
errordig( Please enter a number for the radius!’,'Bad Input’,'modal’)
return
end
if num1<5Q
errordig(‘The radius that you have entered is too low (Minimum 50mm)’, Too low’,'modal)
retum
end
if num1=>200
errordlg("The radius that you have entered is too high (Maximum 200mm)",'Too high', modal’)
returm
end
b=get(handles.edit2, string";
numZ=strznumib);



if isermnpty{num2)
errordlg{ Please enter a number for height!','Bad Input','modal’)
returmn

end

if num2<40
errordlg('The height that you have entered is too low (Minimum 40mm)', Too low','modal’}
return

end

if num2>200
errordlg(The height that you have entered is too high (Maximum 200mm)','Too high','modal”
returmn

end

Cylinder _faces;

1)

function varargout = Cylinder_faces(varargin)
gui_Singleton = 1;
gui_State = struct('gui_Name',  mfilename, ...
'gui_Singleton’, gui_Singleton, ...
'gui_OpeningFen’, @Cylinder_faces_OpeningFen, ...
'qui_OutputFen', @Cylinder faces_OutputFen, ...
'gui_LayouiFen', ], ...
‘gui_Callback’, []);
if nargin && ischar(varargin{i})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{ 1:nargout}] = gui_mainfen{gui_State, varargin{:});
else
gui_mainfen{gui_State, varargin{:});
end
function Cylinder_faces_OpeningFen(hObject, eventdata, handles, varargin}
figurehandle=Cylinder_dimensions;
dimenston_date=guidata(figurchandle);
a=get(dimension_data.edit1,'string’);
b=get{dimension_data.edit2,'string);
set(handles.textl,'string’,a);
set(handles.text2,'string',b);
handles.output = hObject;
guidata(hObject, handles);
function varargout = Cylinder_faces_OutputFen(hObject, eventdata, handles)
varargout {1} = handles.output;
function pushbutton1_Callback(hObject, eventdata, handles)
Fronipage;
close Cylinder faces
function pushbutton?_Callback{hObject, eventdata, handles)
chckval l=get(handles.checkbox1,'value®),
chekval2=get(handles.checkbox 2, value';
checkval3=get(handles.checkbox3,'value'y;
chekvald=get{handles.checkbox4,'value");
chckval5=get(handles.checkbox 5, 'value');
=0
if chekvall
x=xtl;
end
if chckval2
x=x+1;
end
if chckval3
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=x+1;
end
if checkvald
x=x+1;
end
if chckval3
=x+1;
end
if not(x)
errordlg('Please Select at least one face!,Bad Input','modal’)
refurn
end
Cylinder RO
function checkbox 1 Callback(hObject, eventdata, handles)
function checkbox2_Callback(hObject, eventdata, handies)
function checkbox3_Callback(hObject, eventdata, handles)
function checkbox4_Callback(hObject, eventdata, handles)
function checkbox5_Callback(hObject, eventdata, handles)
Yo
function varargout = Cylinder_ROI(varargin)
gui_Singleton = 1;
gui_State = siruet{'gui_Name',  miilename, ...
‘mui_Singleton’, gui_Singleton, ...
‘gui_OpeningFen', @Cylinder_RO1 OpeningFen, ...
‘gui_OutputFen', @Cylinder_RO1 OutputFen, ...
‘gui_LayoutFen', (], ...
‘gui_Callback’, []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func( vararginj1}});
end
if nargout
[varargout{ ] :nargout}] = gui_mainfcn{gui_State, varargin{:});
else
gui_mainfcn{gui_State, varargin{:});
end
function Cylinder_ROI_OpeningFen(hObject, eventdata, handles, varargin)
figurehandle=Cylinder_dimensions;
dimension_data=guidata( figurehandle});
al=get{dimension_data.editl,'string");
bl=get(dimension_data.edit2,'string");
set{ handles.text5,'string’,al};
set{ handles.text6,'string’, b1 );
gui=Cylinder_faces;
checkdata=guidata gui);
chkl=get(checkdata.checkbox1,'value"),
chk2=get({checkdata.checkbox2,'value’);
chk3=get(checkdata.checkbox3,'value');
chk4=get({checkdata.checkbox4,value’y,
chk5=get{checkdata.checkbox3,'value");
if chkl
set{ handles.text],'visible',’'on";
set(handles.togglebutton], visible','on");
set{handles.togglebuttons, visible','on");
end
if chk2
set(handies.text2, visible','on");
set(handles.togglebutton 12, "visible','on'");
set(handles.togglebutton 13, visible','on");




end
if chk3
set(handles.text3,"visible','on’);
set(handles.togglebutton, visible''on’);
set( handles.togglebutton?, 'visible','on);
end
if chii4
set(handles. textd, 'visible!,'on'");
set(handles.togglebutton 10, "visible','on");
set{ handles.togglebutton11,visible','on’);
end
if chk5
set(handles. text 7, 'visible','on");
set(handles.togglebutton14,'visible','on");
set(handles.togglebutton 15, visible','on’);
end
handles.output = hObject;
guidata(hObject, handles);
function varargout = Cylinder ROI_OutputFcn{hObject, eventdata, handles)
varargout{1} = handles.output;
function togglebutton]_Callback(hObject, eventdata, handles)
function togglebutton$_Callback{hObject, eventdata, handles)
function togglebuiton6_Callback(hObject, eventdata, handles)
function togglebutton? Callback(hObject, eventdata, handles)
function togglebutton10_Callback(hObject, eventdata, handles)
function togglebutonl1_Callback(hObject, eventdata, handles)
function togglebutton12_Callback(hObject, eventdata, handles)
function togglebutton13_Callback(hObject, eventdata, handles)
function pushbutton] _Callback{hObject, eventdata, handles)
Types_of_inspection_Cylinder;
function pushbutton2_Callback(hObject, eventdata, handles)
Frontpage;
close Cylinder_ROI
function togglebutton14_Callback(hObject, eventdata, handles)
function togglebutton]15_Callback{hObject, eventdata, handles}
0,

function varargout = Frontpage( varargin)
gui_Singleton = [;
gui_State = struct('gui_Name',  mfilename, ...
'gui_Singleton’, gui_Singleton, ...
'gui_OpeningFen', (@Frontpage_OpeningFen, ...
'gui_OutputFen', @Frontpage_OutputFen, ...
‘mii_LayoutFen’, [], ...
"gui_Callback’, []);
if nargin && ischar{varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfen{gui_State, vararging:}),
else
gui_mainfen{gui_State, varargin{:});
end
function Frontpage_OpeningFen(hObject, eventdata, handles, varargin)}
handles.output = hOhject;
guidata(hObject, handles);
function varargout = Frontpage_OutputFen(hObject, eventdata, handles)
varargout{]} = handles.owiput;
function pushbutton]_Callback(hObject, eventdata, handles)
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function pushbutton2_Callback(hObject, eventdata, handles)
close

function pushbutton3_Callback(hObject, eventdata, handles)
function pushbuttond _Callback(hObject, eventdata, handles)
select_part_family;

close Frontpage;

function pushbutton5_Callback(hObject, eventdata, handles)
%%

function varargout = getserialdata( varargin)

gui_Singleton = 1;

gui_State = struct{'zwi_Name’,  mfilename, ...
'zui_Singleton’, gui_ Singleton, ...
'gui_OpeningFen’, @getsenialdata OpeningFen, ...
‘mui_OutputFen', @getserialdata_OutputFen, ...
‘gui_LayoutFen', {], ...
‘gui_Callback’, [])%
if nargin && ischar({varargin{l}}
gui_State.gui_Callback = str2func(varargini1});
end
if nargout
[varargout{ 1:nargout}] = gui_mainfen(gui_State, varargin{:});
else
gui_mainfen{gui_State, varargin{:});
end
function getserialdata OpeningFen(hObject, eventdata, handles, varargin)
handles.output = hObject;
guidata(hObject, handles);
function varargout = getserialdata OutputFen{hObject, eventdata, handles)
varargout{ 1} = handles.output;
function pushbuttoni_Cailback{hObject, eventdata, handles)
s = serial('COM1";
set(s, BaudRate' 4800);
fopen(s),
fprintf{s,"*IDN?)
out = fscanf{s);
felose(s)
delete(s)

clear s
L)

firnction varargout = openfile{ varargin)
gui_Singleton = I;
gui_State = struct('gui_Name',  mfilename, ...
‘gui_Singleton', gui_Singleton, ...
‘gui_OpeningFen', {@openfile_OpeningFen, ...
"gui_OutputFen', @opentile_OutputFen, ...
'zui_LayoutFen', [], ...
‘gui_Callback’, (I);
if nargin && ischar{varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{ I:nargout}] = gui_mainfen{gui_State, varargin{:});
else
gui_mainfen{gui_State, varargin{:}};
end
function openfile_OpeningFen(hObject, eventdata, handles, varargin)
handles.output = hObject;
guidata(hObject, handles);



function varargout = openfile_OutputFen(hObject, eventdata, handles)
varargout} 1} = handies.output;
function pushbutton]_Callback({hObject, eventdata, handles)
fid = fopen('fgetl.m”;
while |
tline = fgetl(fid);
if ~ischar(tline), break, end
disp(tline)
end
felosel(fid);
9,

fiunction varargout ~ Reactangular_volume_faces for_inspection(varargin)
gui_Singleton = 1;
gui_State = struct('gui_Name',  mfilename, ...

'gui_Singleton’, gui_Singleton, ...

'gui_OpeningFen', @Reactangular_volume_faces_for_inspection_OpeningFen, ...

'gui_OutputFen', @Reactangular_volume_faces_for_inspection_OutputFen, ...
'gui_LayoutFen', [], ...
'gui_Callback’, (1)
if nargin && ischar(vararginil})
gui_State gui_Callback = str2func( varargin{1});
end
if nargout
[varargout} 1:nargout}] = gui_mainfen{gui_State, varargin{:});
¢clse
gui_mainfen{gui_State, varargin{:});
end
function Reactangular_volume_faces_for_inspection_OpeningFen(hObject,  eventdata,
varargin)
figurehandle=Rectangle_dimensions;
dimension_data=guidata(figurehandle);
a=get{dimension_data.edit1,string’);
b=get{ dirmension_data.edit2,'string");
c=get{dimension_data.edit3,'string”);
set{handles.text3,'string',a);
set(handles.textd4,'string'b);
set( handles.text5, string',c);
handles.output = hObject;
guidata(hObject, handles);
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handles,

function varargout = Reactangular_volume_faces_for_inspection_QOutputFen{hObject, evenidata,

handles}
varargout {1} = handles.output;
function pushbuttonl_Callback{hObject, eventdata, handles)
Frontpage;
close Reactangular_volume_faces_for_inspection
function pushbutton2_Callback{hObject, eventdata, handles)
chekvali=get(handles, checkbox 1, 'value™),
chekval2=get(handles.checkbox2,'value'y;
chckval3=get(handles.checkbox3,'value'),
chckvald=get(handles.checkboxd, 'value');
chckval5=get(handles.checkbox 5, value'),
a=0),
if chekvall

a=a+l;
end
if chekval2

a=atl;
end



if chckval3
a=atl;
end
if chckvald
a=g+l;
end
if chekvals
a=at+l;
end
if not{a)
errordlg('Please Select at least one face!','Bad Input','modal’}
return
end
Rectangle_ROI,
function checkbox 1_Caliback(hObject, eventdata, handles)
function checkbox2_Callback(hObject, eventdata, handles)
function checkbox3_Callback{(hObject, evemdata, handles)
function checkbox4_Callback(hObject, eventdata, handles)
function checkbox5_Callback(hObject, eventdata, handles)

0,

function varargout = Rectangle dimensions(varargin)
gui_Singleton = |
gui_State = struct(’gui_Name',  mfilename, ...
'gui_Singleton', gui_Singleton, ...
‘gui_OpeningFen’, @Rectangle dimensions_OpeningFen, ...
‘gui_OutputFen', @Rectangle_dimensions_CutputFen, ...
'‘gui_LayoutFen', [], ...
'gui_Callback’, [1);
if nargin && ischar(varargin{1}}
gui_State.gui_Callback = sw2func{varargin{1}}
end
if nargout
[varargout{ | :nargout}] = gui_mainfon(gui_State, varargin{:});
else
gui_mainfen{gui_State, varargin{:});
end
function Rectangle dimensions_OpeningFcn(hObject, eventdata, handles, varargin)
handles.output = hObject;
guidata(hObject, handles);
function varargout = Rectangle_dimensions QutputFen(hObject, eventdata, handles)
varargout{ 1} = handies.output;
function editl_Callback{hObject, eventdata, handles)}
function editl_CreateFen(hObject, eventdata, handles)
if ispc && isequal{getthObject, BackgroundColor'), get(0,'defaultUicontrolBackgroundColor™)
set{hObject, BackgroundColor', white);
end
function edit2_Callback(hObject, eventdata, handles)
function edit2_CreateFen{hObject, eventdata, handles)
if ispc &4& isequal(gethObject, BackgroundColor"), get(0,'defaultUicontrolBackgroundColor'))
set{ hObject, BackgroundColor','white");
end
function edit3_Callback{hObject, eventdata, handles)
function edit3_CreateFen{hObject, eventdata, handles)
if ispe && isequal(get{hObject, BackgroundColor'), get(0,'defaultUicontrol BackgroundColor))
set(hObject, BackgroundColor', 'white'),
end
function pushbutton 1_Callback{hObject, eventdata, handles)

Frontpage:
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close Rectangle_dimensions
function pushbutton2_Callback(hObject, eventdata, handles)
num[=get(handles.editl,'string");
a=str2num{numl);
num2=get(handles.edit2,'string");
b=str2num(pum);
num3=get(handles.edit3,'string");
c=sir2num(mum3};
if isempty(a) %emakes sure that the user enters numbers only for each dimension
errordlg(Please enter numbers only?,'Bad Input','modal’)
refurn
end
if isempty{b)
errordlg(*Please enter numbers only!,'Bad Input’,'modal’)
return
end
if isempty(c)
errord| g 'Please enter numbers only!',Bad Input','modal’)
return
end
if (a<50)
errordlg("The minimum value for a is 50mm. Please enter a higher value’,'Bad Input','modal’}
returm
elseif (a=200)
errordlg( The maximum value for a is 200mm. Please enter a lower value',Bad Input’,'modal’)
return
end
if (b<30}
errordlg( The minimum vatue for b is 30mm. Please enter a higher value','Bad Input’,'modal’)
return
elseif (b>300)
errordlg('The maximum vajue for b is 300mm. Please enter a lower value’, Bad Input’,'modal?)
refurn
end
if (£<50)
errordl2("The minimum value for ¢ is 50mm. Please enter a higher value’,'Bad Input’,'modal™
return
elseif (a>180)
errordlg{'The maximum value for c is 180mm. Please enter a lower value',Bad Input’,'modal’y
repamn
end

Reactangular_volume_faces_for_inspection;
L)

function varargout = Rectangle_ROI{varargin)

gui_Singleton = 1;

gui_State = struct('gui Name’,  mfilename, ...
‘gui_Singleton', gui_Singleton, ...
‘gui_OpeningFcn', @Rectangle_ROI_OpeningFen, ...
‘gui_OutputFen', @Rectangle_ROI_OutputFen, ...
'gui_LayoutFen', [], ...
'wui_Callback’, [1)

if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2finc{ varargin{1});
end
if nargout
[varargout{ I:nargout}] = gui_mainfen{gui_State, varargin{:} )
else

gui_mainfcn(gui_State, varargin{:}};
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end
function Rectangle_ROI_OpeningFen(hObject, eventdata, handles, varargin)
figurchandle=Rectangle_dimensions;
dimension_data=guidata(figurehandle);
al=get(dimension_data.editl,'string’);
bl=get(dimension_data.edit2,'string’);
cl=get(dimension_data.edit3,'string’);
a=str2Znum(al);
b=str2num(bl);
c=str2numicl);
set{ handles.text6, 'string’,a);
set{handles.text7,'string’,b);
set(handles.texi8, string’,¢);
figh=Reactangular_volume_faces_for_inspection;
figdata=guidata{ figh);
chk1=gei(figdata.checkbox1,'value');,
chk2=get{ figdata.checkbox2,'value');
chk3=get{figdata.checkbox3,'value');
chkd=get(figdata.checkbox4,'value”);
chkS=get(figdata.checkbox5,'value'),
if chkl
set{handles.texi1,'visible','on');
set(handles.togglebutton63, visible','on');
set(handles. toggl cbutton66, 'visible','on’);
set{handles.togglebuttoné 7, visible','on');
set(handles.togglebutton68, 'visible','on");
set(handles.togglebutton69, 'visible','on");
set(handles.togglebutton 70, 'visible','on’);
set{handles.togglebutton 71, 'visible','on");
setihandles.togglebutton 72, 'visible','on"y,
setthandles.togglebutton 73, 'visible','on’);
end
if chk2
set{ handles.text2, 'visible','on™);
set{handles.togglebutton92 'visible','on");
set{handles. togglebutton93, visible','on");
set(handies.toggiebutton94, 'visible','on");
set{handles.togglebutton?3, 'visible','on");
set(handles.togglebutton 96, visible','on");
set{handles.togglebutton 97, visible','on");
sef(handles.toggicbutton98, 'visible','on’);
set( handles.toggtebutton®9, 'visible','on");
set(handles.togglebutton 1, 'visible','on’);
end
if chik3
set(handles. text3, 'visible','on");
set(handles. togglebutton101, 'visible','on");
set(handles. togglebutton1 02, 'visible','on™y;
set{ handles.togglebutton[ 03, visible','on;
set{handles.togglebuttonl 04, visible','on');
set{handles.togglebutton 103, visible','on");
set{handles.togglebutton 106, visible','on");
set( handles. togglebutton 107, 'visible','on");
set(handles.togglebutton 108, visible','on");
set{handles.togglebutton109,visible''on');
end
if chkd
sci{handles.text4,'visible','on");



set{ handles.togglebutton1 10, visible!,'on”);
set(handles.togglebutton ] [ 1, visibie','on’);
set{handles.togglebutton1 12, visible','on");
set{handles.togglebutton1 13, visible','on"y;
setthandles.togglebutton ] 14, visible','on’);
set{handles.togglebutton 115, visible','on’);
set{ handles.togglebutton116,'visible','on");
set(handles.togglebutton 117, 'visible','on’;
set{ handles.togglebutton 118, visible','on’);

end
if chk5

set{ handles.text5, visible’,'on');

set handles.togglebutton ] 19,'visible','on’);
set{ handles.togglebutton 120, 'visible','on’);
set(handles.togglebutton121, visible','on");
set( handles.togglebutton 122, visible','on),
set{ handles.togglebutton 123, 'visible','on’);
set(handles.togglebuttonl24,'visible!,'on";
set{handles.togglebutton123, visible!,'on");
set(handles.togglebutton126, visible','on);
seti handles.togglebutton 127, visible', 'on’);

end
handles.output = hObject;
guidata(hObject, handies);

function varargout = Rectangle_ROI_OutputFen(hObject, eventdata, handles)

varargout {1} = handles.output;

function pushbuttonl_Callback(hObject, eventdata, handles)

counter1=();
counter2={);
counter3={);
counterd=0;
counter5=0;
t65=get( handles.togglebuttons, 'value');
t66=get(handles.togglebuttond6, value’);
t67=get(handles.togglebution67, value'y,
t68=get( handles.toggleburton68, value’);
t69=get(handles.togglebutton69,'value?),
t70=get( handies.togglebutton70,'value”);
t71=get(handles.togglebutton71,'value’;
72=get(handles.togglebutton72, value?;
t73=get{handles.togglebutton73, 'value’,
if t65

counter1=counter1+I;
end
if tH6

counter 1=counter] +1;
end
if t67

counterl=counterl+1;
end
if t68

counteri=counter1+1;
end
if 169

counter |=countert+1;
end
if 170

counter I=counterl+1;
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end
if t71
counter1=counter]+1I;
end
if t72
counter 1=counter]+];
end
ift73
counter1=counter]+1;
end

192=get(handles.togglebutton92,value');
t93=get(handles.togglebutton93,'value'y;
t94=get(handles.togglebutton94, ‘value’);
t95=get( handles.togglebution93, ‘value’);
196=get(handles.togglebutton96, value');
t97=get( handles.togglebutton97, 'value');
198=get(handles.togglebutton98, value";
t99=get(handles.togglebutton99, value’);
t100=get{handles.togglebutton100,value";

if 192
counter2=counter2+1;

end

if 193
counter2=counter2+1;

end

if 194
counter2=coumter2-+1;

end

if t95
counter2=counter2+i;

end

if t96
counter2=counter2+1;

end

if 197
counter2=counter2+1;

end

if 198
coanter2=counter2+1;

enid

if 199
counter2=counter2+1;

end

if t100
counter2=counter2—+1,;

end

t101=get{ handles.togglebutton101, value");
t102=get(handles.togglebutton102,'value");
t103=get(handles.togglcbutton 103, 'value');
t104=get(handles.togglebutton104,'value’);
t105=get(handles.togglebutton105, value");
t106=get(handles.togglebutton106, value");
1107=get(handles.togglebutton1(7.'value");
t108=get(handles.togglebutton108,'value');
t109=get(handles.togglebutton109,'value');

if 10l
counter3=counter3+1;
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end
if t102
counter3=counter3+1;
end
if t103
counter3=counter3+1;
end
if t104
counter3=counter3+1;
end
if t105
counter3=counter3+1;
end
if t106
counter3=counter3+1;
end
if t107
counter3=counter3+1;
end
if 1108
counter3=counter3+1;
end
if t109
counter3=counter3+1;
end
t110=get( handles.togglebutton] 10, 'value®,
t11 1=get{ handles.togglebutton] 11,'value’),
t112=get( handles.togglebutton1 12, 'value’);
t! 1 3=get(handles.togglebutton] 13, 'value”);
t1 14=ger(handles.toggtebutton] 14,'value?);
t115=get(handles.togglebutton] 15,'value’),
t116=get( handles.togglebuttonl 16,'value’),
t117=get(handles.togglebuttoni 17,'value');
t118=get(handles.togglebutton] 18, value');
ift110
counterd=counterd+1;
end
ift1l1
counterd=counterd+1;
end
ift112
counterd=counterd+1;
end
iftl13
counterd=counterd—+1;
end
iftl114
counterd=counterd+1;
end
ifells
counterd=counterd+1;
end
iftl 6
counterd=counterd+1;
end
iftl17
counterd=counterd+1;
end
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ift118

counter4=counterd—+1;
end
t119=get(handles.togglebutton] 19,'value');,
t120=get{handles.togglebutton120,'value’);
t121=get(handles.togglebutton12 1, value";
t122=get(handles.togglebutton 122, 'value”),
t123=get{handles.togglebutton]23, 'value”);
t124=get(handles.togglebutton]124, 'value’);
t125=get(handles.togglebutton125, value');
t126=get(handles.togglebutton 126, value");
t127=get(handles.togglebutton 127, 'value”);
1119

counter5=counter5+1;
end

ift120
counters=counters+1;

end

ift121
counterS=counter5+1;

end

ift122
counterS=counters+1;

end

ift123
counterS=counters+1;

end

ift124
counterS=counters+1;

end

ift125
counters=counters+1i;

end

if 1126
counterS=counter5+1;

end

ift127
counterS=counter3+1;

end

total=counter | +counter2+counter 3+counterd-+counters;
if (total>8)
errordlg("The maximum number of ROIs allowed is 8','Bad Input’,‘'modal’)
retum
end
if (total<1)
errordlg{Please select at least one RO, Bad Input','modal")
return
end
Types_of_inspection_Rectangle;

function pushbutton2_Callback(hObject, eventdata, handles}

Frontpage;
close Rectangle ROI
o,

o

function varargout = Resolution_for ROI{varargin)
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gui_Singleton = 1;
gui_State = struct('gui_Name',  mfilename, ...
'gui_Singleton’, gui_Singleton, ...
'gui_OpeningFen', @Resolution_for RO!_OpeningFen, ...
'gui_OutputFen', @Resolution_for RO OutputFen, ...
‘gui_LayoutFen', ], ...
‘gui_Callback’, (1%
if nargin && ischar(varargin{l}}
gui_State.gui_Callback = str2func(varargini1});
end
if nargout
[varargout{|:nargout}] = gui_mainferdgui_State, varargin{:});
else
gui_mainfen(gui_State, vararging:});
end
function Resolution_for RO1 OpeningFen(hObject, eventdata, handies, varargin)
handles.output = hObject;
guidata(hObject, handles);
function varargout = Resolution_for_ ROI_OutputFen(hObject, eventdata, handles)
varargout{1} = handles.output;
%
function varargout = select_part_family( varargin)
gui_Singleton = [;
gui_State = struct('gui_Name’,  mfilename, ...
‘mui_Singleton’, gui_Singleton, ...
'gui_OpeningFen', @select_part_family OpeningFen, ...
'gui_OutputFen', @select part_family OutputFen, ...
'gui_LayoutFen', 1, ...
'ei_Callback!, [J¥%
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{ | });
end
if nargout
[varargout{ ] :nargout}] = gui_mainfen({gui_State, varargint:});
else
gui_mainfen(gui_State, varargin{:});
end
function select_part_family_OpeningFen(hObject, eventdata, handles, varargin)
handles.output = hObject;
guidata(hObject, handles);
function varargout = select_part_family_OutputFen(hObject, eventdata, handles)
varargout{1} = handles.output;
function radiobutton]_Callback{hObject, eventdata, handles)
a=get{hObject,'value";
ifa
Rectangle dimensions;
set{handles.radiobutton2,'value',();
set(handles.radiobutton3, ‘value’,0);
end
function pushbuttonl Callback{hObject, eventdata, handles)
function pushbutton2_Callback{hObject, eventdata, handles)
function radiobutton2_Callback{hOhject, eventdata, handles)
b=get(hObject,"value");
ifb
Cylinder_dimensions;
set(handles.radiobuttonl,'value',09;
set{ handles.radiobutton3, 'value',0);,
end




function radiobutton3_Callback{hObject, eventdata, handles)
c=get(hObject,'value";
ife
Cube_dimensions;
set(handles.radiobutton?,'value',0);
set(handles.radiobutton],value',0);
end
function pushbutton3_Callback(hObject, eventdata, handles)
Frontpage;
close select_part_family;
0,
function varargout = Types_of_inspection( varargin)
gui_Singleton = 1;
gui_State = struct(’gui_Name',  mfilename, ...
‘gui_Singleton’, gui_Singleton, ...
‘gui_OpeningFen', @Types_of_inspection_OpeningFen, ...
‘wui_OutputFen', @Types of inspection QuiputFen, ...
"gui_LayoutFen', (], ...
‘gui_Callback’, (i)
if nargin && ischar({varargin{1})
gui_State. gui_Callback = str2func(varargini1});
end
tf nargout
[varargout{1:nargout}] = gui_mainfen(gui_State, varargini:});
else
gui_mainfon{gui_State, varargin{:});
end

function Types_of_inspection_OpeningFen(hObject, eventdata, handles, varargin)

handles.output = hObject;
guidatathObject, handles);

function varargout = Types_of_inspection_OutputFen{hObject, eventdata, handles)

varargout{ 1} = handles.output;

function checkbox]_Calback{hObject, eventdata, handles)
function checkbox2_Callback(hObject, eventdata, handles)
function checkbox3_Callback(hObject, eventdata, handles)
function edit2_Callback{hObject, eventdata, handles)
function edit2_CreateFen(hObject, eventdata, handles)

if ispe && isequal{get{hObject, BackgroundColor'), get(0, defaultUicontrolBackgroundColor'))

set(hObject, BackgroundColor','white');
end
function pushbuttonl_Callback(hObject, eventdata, handles)
Frontpage;
close Types_of_inspection
function pushbutton2 Callback(hObject, eventdata, handles)

L)

]

function varargout = Types_of_inspection(varargin)
gui_Singleton = |;
gui_State = struct{'gui_Name',  mfilename, ...
'gui_Singleton’, gui_Singleton, ...
‘gui_OpeningFen', @Types_of_inspection_OpeningFen, ...
‘gui_OutputFen', @Types_of_inspection_OutputFen, ...
'gui_LayoutFen', [], ...
'gui_Callback’, []);
if pargin && ischar(varargin{1})
gui_State.gui_Callback = str2func{ varargin{1)});
end
if nargout
[varargout{ 1:nargout}] = gui_mainfer{gui_State, varargin{:});
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else
gui_mainfen{gui_State, varargin{:});

end

function Types_of_inspection_OpeningFcen(hObject, eventdata, handles, varargin)

handles.output = hObject;

guidata(hObject, handles);

function varargout = Types_of inspection_OutputFen(hObject, eventdata, handles)

varargout$ 1} = handles.output;

function checkbox]_Callback(hObject, eventdata, handles)

function checkbox2_Callback(hObject, eventdata, handles)

function checkbox3 Callback(hObject, eventdata, handles)

function edit2_Callback(hObject, eventdata, handles)

function edit2_CreateFen(hObject, eventdata, handles)

if ispc && isequal{get(thObject, BackgroundColor"), get(0,' defaultUicontrolBackgroundColor'y)
set{hObject, BackgroundColor','white™;

end

function pushbuttoni_Callback(hObject, eventdata, handles)

Frontpage;

close Types_of_inspection

function pushbutton2_Callback(hObject, eventdata, hiandles)

1,

function varargout = Types_of_inspection(varargin}
gui_Singleton = 1;
gui_State = struct('guwi_Name',  mfilename, ...
‘guiSingleton’, gui_Singleton, ...
‘gui_OpeningFen’, @Types_of_inspection_OpeningFen, ...
'gui_OutputFen', @Types_of_inspection OutputFen, ...
'gui_LayoutFen', (], ..
'gui_Callback’, [1);
if margin && ischar{varargin{1}}
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{ 1:nargout}] = gui_mainfen{gui_State, varargin{:}
else
gui_mainfen(gwi_State, varargin{:});
end
function Types_of _imspection_OpeningFen(hObject, eventdata, handles, varargin)
handles.output = hObject;
guidata(hObject, handles);
function varargout = Types_of_inspection_OutputFen{hObject, eventdata, handles)
varargout{ i } = handles.output;
function checkbox_Callback({hObject, eventdata, handles)
function checkbox2_Callback(hObject, eventdata, handles)
function checkbox3_Callback(hObject, eventdata, handles)
fimction edit2_Callback(hObject, eventdata, handles)
function edit2_CreateFen(hObject, eventdata, handles)
if ispc && isequal{ getthObject, BackgroundColor'), get(0,'defaultUicontrolBackgroundColor"))
set{hObject, BackgroundColor','white";
end
tunction pushbuttonl_Caliback(hObject, eventdata, handles)
Frontpage;
close Types_of_inspection
function pushbutton?_Cailback(hObject, eventdata, handles)
oy

function varargout = Types_of inspection{varargin)
gui_Singleton = 1;
gui_State = struct('gui_Name',  mfilename, ...
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‘gui_Singleton’, gui_Singleton, ...
‘gui_OpeningFen’, @Types_of_inspection_OpeningFen, ...
‘zui_OutputFen', @Types_of_inspection_OutputFen, ...
‘gui_LayoutFen!, [], ...
'gui_Callback’, [I)%
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargini!}});
end
if nargout
[varargout{ 1:nargout}] = gui_mainfen{gui_State, varargin{:})
else
gui_mainfen{gui_State, varargin{:});
end
function Types_of _inspection_OpeningFen{hObject, eventdata, handles, varargin}
rect_dim=Rectangle_dimensions;
dim_info=guidata(rect_dim);
dim]=str2mun{get(dim_info.edit1,'string’));
dim2=str2num(get(dim_info.edit2, 'siring"y);
dim3=str2num(get(dim_info.edit3,'string");
set{ handles.text50,'string' . diml );
set(handles.text51,'string' . dim2);
set{ handles.text52 'string' . dim3);
roi=Rectangle_ROI;
roi_info=guidata(rot};
handles.output = hQbject;
guidata(hObject, handles);
function varargout = Types_of_inspection_QutputFen(hObject, eventdata, handles)
varargout {1} = handles.output;
function checkbox1_Caltback(hObject, eventdata, handles)
function checkbox2_Callback(hObject, eventdata, handles)
function checkbox3_Callback(hObject, eventdata, handles)
function edit2_Callback(hObject, eventdata, handles}
function edit2_CreateFerd hObject, eventdata, handles)
if ispc && isequal(get{hObject, BackgroundColor"), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor’,'white”);
end
function pushbuttonl_Callback{hObject, eventdata, handles)
Frontpage;
close Types_of inspection
function pushbutton2 Callback(hObject, eventdata, handles)
a,

186



187

9.4. 6 Microcontroller code

KR Rk k ks Rk ok

This program was produced by the

CodeWizardAVR V1.24.5 Evaluation

Automatic Program Generator

© Copyright 1998-2005 Pavel Haiduc, HP InfoTech s.r.l.
http://www.hpinfotech.com
e-mail:officef@hpinfotech.com

Project : Davrajh16PWM

Version :

Date : 2008/08/16

Author : Freeware, for evaluation and non-commercial use only
Company :

Comments:

Chip type s ATmegalé
Program type : Application
Clock frequency : 4.000000 MHz
Memory model : Small
External SRAM size : 0

Data Stack size ;256

R g A R e e e

it#include <megal6.h>

#include <mega32.h>

/finclude "delay.h”

# Standard Input/Output functions
J{t

const unsigned char achMotor1{4] = {M\'T,'',"0'};
const unsigned char achMotor2[4] = {'M,'T."2',\0"};
const unsigned char achMotor3[4] = {'M,'T,'3,0');

*/

unsigned char uchSpeed3 = {;
unsigned int WiPWMO0=0;
unsigned int iPWMI1 = 0;
unsigned int wiPWM2 = (;
unsigned char uchDelay = §;

void USART_Transmit{ unsigned char data )

H
/* Wait for empty transmit buffer */

while ( {{ UCSRA & (1<<5)})

:'* Put data into buffer, sends the data */
UDR = data;
H

unsigned char USART_Receive( void }

/* Wait for data 1o be received */
while { KUCSRA & (1<<T1})

:’* Get and return received data from buffer */


http://www.hpinfotech

return UDR;

1

#if 0

void SPI_Masterlnit(void}

§

/* Set MOSI and SCK output, all others input */
DDRB = (1<<8)|(1<<T),

/* Enable SP1, Master, set clock rate fck/16 */
SPCR = (1<<@)|(1<<4)l{ 1<<0);

}

void SP1_Master Transmit{char cData)
{

/* Start transmission */

SPDR = cData;

/* Wait for transmission complete */
while(}(SPSR & (1<<7))

’

i

#define ADC_VREF_TYPE 0x20

// Read the 8 most significant bits

/1 of the AD conversion result

unsigned char read_ade(unsigned char ade_input)
¢

ADMUX=adc_input| ADC_VREF_TYPE,;
f Start the AD conversion
ADCSRA[FOx4(y,

/f Wait for the AD conversion to complete
while ((ADCSRA & 0x10y—=0);
ADCSRA|=0x10;

retum ADCH,

i

#Hendif

// Declare your global variables here

void main(void)

{

unsigned char afMotor]{3];

unsigned char achlnput[4] = {0,0,0,0};
unsigned char chtemp = (;

unsigned char uchSpeed! = (;
unsigned char uchSpeed2 = 0

# Declare your local variables here

afMotor[0] = 0;

afMotor[1]=0;

afMotor[2] = 0;

# Input/Cutput Ports initialization
/f Port A initialization

/ Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Funci=In FuncO=In
#/ State7=T State6=T State5=T Stated=T State3=T State2=T State!=T State0=T

PORTA=0x00;,
DDRA=0x00;

/f Port B initialization
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# Func7=In Func6é=In Func5=In Funcd=In Func3=In Func2=In Func1=In FuncO=In
// State7=T State6=T State5=T Stated=T State3=T State2=T State1=T State(0=T
PORTB=0xFF;

DDRB=0xFF;

/ Port C initialization

/f Func7=In Funcé=In Func5=In Funcd=In Func3i=In Func2=In Func1=In Func{=In
/1 State7=T Sitatct=T Statc5=T Stated=T State3=T Statc2=T Statel=T StaicO=T
PORTC=0x00;

DDRC=0x({:

{/f Port D initialization

/f Func7=In Funcé=In Func5=In Funcd=In Func3=In Func2=In Func1=In FuncO=In
/f State7=T State6=T State3=T Stated=T State3=T State2=T Statel=T State(0=T
PORTD =0xFF;

DDRD =0xFF;

# Timer/Counter 0 imitialization
# Clock source: System Clock
/f Clock value: Timer 0 Stopped
/t Mode: Normal top=FFh

# OCO output; Disconnected
TCCRO= 0x6A ; //0x62;
H0x02{0x40/0x20;
TCNTO=0x00;

OCRO=0xFA,

/f Timer/Counter 1 initialization
/t Clock source: System Clock
/1 Clock value: Timer 1 Stopped
/f Mode: Normal top=FFFFh

# OC1A output: Discon.

/ OC1B output: Discon.

/f Noise Canceler: Off

/f Input Capture on Falling Edge
TCCR1A=0x01;
TCCRI1B=0x(2;
TCNT 1 H=0x00;
TCNTI1L=0x04;

ICR 1H=0x{4);

ICR1L=0x00;

OCR1AH=0x0);
OCRIAL=0x00,
OCR1BH=0x{},
OCRI1BL=0xFA;

# Timer/Counter 2 initialization
# Clock source: System Clock
/I Clock value: Timer 2 Stopped
/f Mode: Normal top=FFh

# OC2 output: Disconnected
ASSR=0x00;

TCCR2=0x7A;

TCNT2=0x00;

OCR2=0xF(,

# External Interrupt(s) initialization
# INTO: Off
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# INT1: Off
/FINT2: Off
MCUCR=0x00;
MCUCSR=0x00;

# Timer{s)/Counter(s} Interrupt(s) initialization
TIMSK=0x(X});

# USART initialization

# Communication Parameters: § Data, 1 Stop, No Parity
# USART Receiver: On

# USART Transmitter: On

## USART Mode: Asynchronous
# USART Baud rate: 9600
UCSRA=0x00;

UCSRB=0x13;

UCSRC=0x36;

UBRRH=0x00;

UBRRL=0x19;

{f Analog Comparator initialization

/# Analog Comparator; Off

// Analog Comparator Input Capture by Timer/Counter 1: Off
#if 0

ACSR=0x30;

SFIOR=0x00;

/# ADC initialization
/t ADC Clock frequency: 125.000 kHz
# ADC Voltage Reference: AREF pin
/ ADC Auto Trigger Source: None
# Only the 8 most significant bits of
// the AD conversion result are used
ADMUX=ADC_VREF_TYPE;
ADCSRA=x83;
#endif
J/8P1_Masterlnit();
while {1}
{
PORTB = 0x0F ;
chtemp = USART_Receive();
#Hif 0
USART Transmit(USART Receive());
if (uchDelay = 1)
i
OCRO = (uiPWMO * 100)/255;
OCRIAL = (uiPWMI * [100)/255,
OCR2 = (uiPWMI * 100)/255,
delay_ms((unsigned char)(chtemp*10}); /* centi seconds */
uchDelay = 0;

}

if (atMotor[0])

H
uchSpeedl = chtemp;
uiPWMO = ((int)uchSpeed1 *100)/209;
afMotor{0] = 0;

H
else if (afMotor[1])
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”

{
uchSpeed2 = chtemp;

niPWMI1 = ({intjuchSpeed2*100)/229;
aMotor[1]=0;

}
else if {afMotor[2])
{
uchSpeed3 = chtemp;
wiPWM2 = ((inthuchSpeed3*100Y/50;
afMotor{2] = 0;
uchDelay =1,
!

if (chtemp=— M')

{
achlnput[0] = chtemp;
continue;

H
else if ({chtemp = TY)&&(achInput[(] — M%)}

{
achlnput[1] = chtemp;
continue;

}
else if ((achInput[0] == M} &(achinput[1] =="T")
{

if {{chtemp == (||(chterap — 1)||(chtemp —2))

i
alMator[chtemmp] = 1;

!

¢lse

{
achinput[0] = O;
achlnput[1] = 0;
achlnput[2] =0
achlnput[3}=0;

!

continue;

;

USART_Transmit{USART_Receive());
PORTR = cVariable ;

cVariable += 10;

PORTB &= OxFA:

QCRO = cVariable;

OCRIAL = cVariable;

OCRIBL = ¢Variable;

OCR2 = cVariable;

tendif

Hasm

nop;
nogy;
nop;
nop;

#endasm */
/f Place your code here

|

t
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