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Abstract

To investigate the effect of environmental pollution on the health of children in
the Durban South Industrial Basin (DSIB) due to its proximity to industrial activities,
233 children from five primary schools were considered. Three of these schools were
located in the south of Durban while the other two were in the northern residential
areas that were closer to industrial activities. Data collected included the participants’
demographic, health, occupational, social and economic characteristics. In addition,
environmental information was monitored throughout the study specifically, measure-
ments on the levels of some ambient air pollutants. The objective of this thesis is to

investigate which of these factors had an effect on the lung function of the children.

In order to achieve this objective, different sample survey data analysis techniques
are investigated. This includes the design-based and model-based approaches. The
nature of the survey data finally leads to the longitudinal mixed model approach.

The multicolinearity between the pollutant variables leads to the fitting of two
separate models: one with the peak counts as the independent pollutant measures
and the other with the 8-hour maximum moving average as the independent pollutant
variables. In the selection of the fixed-effects structure, a scatter-plot smoother known

a8 the loess fit is applied to the response variable individual profile plots.

The random effects and the residual effect are assumed to have different covariance
structures. The unstructured (UN) covariance structure is used for the random effects,
while using the Akaike information criterion (AIC), the compound symmetric (CS)
covariance structure is selected to be appropriate for the residual effects. To check the
model fit, the profiles of the fitted and observed values of the dependent variables are

compared graphically. The data is also characterized by the problem of intermittent

missingness. The type of missingness is investigated by applying a modified logistic



regression model missing at random (MAR) test.

The results indicate that school location, sex and weight are the significant factors
for the children’s respiratory conditions. More specifically, the children in schools
located in the northern residential areas are found to have poor respiratory conditions
as compared to those in the Durban-South schools. In addition, poor respiratory
conditions are also identified for overweight children.
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Chapter 1

Introduction

The Durban South Industrial Basin {(DSIB) is one of the areas in South Africa
characterized by a number of industries. It is located in the eastern coastal region of
South Africa in the province of KwaZulu-Natal. Because of its geographic relationship
with certain fixed sources of air pollutants, the DSIB is at a particularly high risk
of exposure to significant ambient air pollution. Major emissions are from the so-
called fugitive air emissions at refineries, from industrial and passenger vehicles, from
other industries in close proximity as well as the Durban airport. The two major
refineries in the basin are the petroleum refineries Engen and Sapref. There is also
a pulp and paper manufacturer, Mondi. The recognition of this risk is reflected by
an industry-funded South Durban Sulphur Dioxide Management Systems Committee
(SDSDMSC) which, since June 2000, has been continuously monitoring one pollutant
of concern, sulphur dioxide, at the Settlers Primary School. The available data on
sulphur dioxide indicates that the average and/or maximum exposure at the Settlers
school has frequently exceeded World Health Organization (WHO), the South African
Department of Environmental Affairs (DEAT), and the SDSDMSC guidelines.

In light of this background, the Center of Occupational and Environmental Health



of the Nelson R. Mandela School of Medicine and the University of Michigan, USA
were contracted to conduct a large-scale study to look at the effects of pollution on
the health of exposed communities in the Durban-South industrial /residential basin,
on behalf of the Durban Metro. The two year project, fully funded by Durban Metro,
was part of a national cabinet decision to address the problems of pollution in this part

of Durban.

The sole aim of this Durban-South health survey was to determine the health status
l of the Durban-South residents with specific reference to respiratory health outcomes
and other chronic diseases. In addition, the project aim was to determine the relation-
ship between environmental pollution, these health outcomes and the quality of life

within this community, particularly among susceptible populations.

The study was conducted at seven primary schools namely: Nizam Road in Mere-
bank, Assegai primary in Austerville, Dirkie Uys primary in Bluff, Entuthukweni pri-
- mary at Lamontville township, Ferndale primary in Newlands, Briardale primary at
Newlands West and Ngazana at KwaMashu. However, because of the vast amount
of incompleteness of the data from the schools Entuthukweni and Briardale, only five
schools were utilized in the thesis.

The focus of this thesis is to assess the relationship between the ambient air pollu-
tant sulphur dioxide, the children’s demographic and health characteristics, and their
respiratory conditions. The major objective of this thesis is to determine which of the
child demographic characteristics, child health characteristics and their exposure to
the pollutant are the significant factors for the respiratory condition of the children.
The children’s respiratory condition is measured by the lung function measure known

as the forced expiratory volume at one second (FEV1)

To achieve this objective, various sample survey analysis techniques will be explored,
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more specifically the design-based and the model-based approaches. A choice will then

be made of the most appropriate technique to accomplish the thesis objectives.

This thesis will be organized as follows. In Chapter 2, the nature of the Durban-
South health survey data will be described in detail. This will also include the tech-
niques applied to summarize the massive repeated measurements; and the data clean-
ing and editing methodologies applied to the data. Chapter 3 will review the sample
survey data analysis techniques available specifically looking at the design-based and
model-based approaches. The model-based approach is chosen which leads to the de-
velopment of the longitudinal mixed model in Chapter 4. A review of the longitudinal
mixed model with missing observations is also given in Chapter 4. The analysis and
results of the Durban-South health survey will be dealt with in Chapter 5. Detailed in-
ference of the data will be undertaken in Chapter 6 and Chapter 7. Finally, in Chapter
8, the findings of the thesis will be summarized.



Chapter 2

Durban-South health survey data

2.1 The sampling design and data collection

In the Durban-South health survey, seven communities were pﬁrposively consid-
ered for the study. Four were from Durban-South {Merebank, Lamontville, Went-
‘ worth/Austerville and Bluff) and three from the northern residential areas of the
metropolitan boundaries (Newlands West, Newlands East and KwaMashu). The four
Durban-South communities were considered due to their proximity to the source(s)
of pollution. In addition, the communities from the two regions had similar charac-
teristics, only differing in their status of industrialization, the Durban-South being
more industrialized (the source of major environmental pollution) than the northern

residential areas.

One primary school was purposively selected from each community. The selected
schools were: Nizam Road in Merebank, Assegai primary in Wentworth/Austerville,
Dirkie Uys primary in Bluff, Entuthukweni primary at Lamontville township, Ferndale
primary in Newlands, Briardale primary at Newlands West and Ngazana at KwaMashu.
The choice of the school was also based on its proximity to the pollution source(s) as



well as the proximity of the residences of the school children to the pollution source(s)
under consideration. However, only five of these seven primary schools are used in this

thesis as will be explained in Section 2.3.

From each school, one or two grade four classes were randomly selected and al)
children in this sample were included in the sample. An average of 70 children were
expected from each school, therefore the second classroom was selected only if the
first selected classroom was found to have a small number of children. In addition, all
children with severe cases of asthma from grades 3 and 5 and the unselected grade 4
classes were also included in the sample. However the targeted number of 70 children
per school was not met for Assegai, Dirkie Uys and Ngazana schools who had an
| original sample of 63, §1 and 67 children respectively. A total of 81 and 97 children
were selected in the original sample from Nizam Road and Ferndale schools.

However, before any test could be performed or interviews conducted, informed
consent was requested from the children’s parents or guardians. It was made clear to
all participants and their families that they were free to withdraw from the study at
any time or refuse to participate in any aspect of the study without penalty. Informed
consent included explanation of the expected benefits and risks of participation in each
aspect of the study. Consent forms were therefore issued to the parents or guardians
of the children in the sample and only those that offered their consent participated
in the study. The percentage of the consented children in randomly selected grade 4
classrooms in Nizam Road, Assegai, Dirkie Uys, Ferndale and Ngazana schools were
72.31%, 70.45%, 34.78%, 68.67% and 81.03% respectively. Among the additional chil-
dren with severe cases of asthma in grade 3, 5 and the unselected grade 4 classrooms,

only 72.0%, 38.89% and 50.0% respectively offered consent to participate in the study.

The variables of interest in this thesis include the child forced expiratory volume

at one second (FEV1), school location, sex, asthma status, height and weight and the



sulphur dioxide {SO,) pollutant measures. The main focus of this thesis is to determine
which of the child characteristics namely school location, sex, asthma status, height
and weight have an effect on the respiratory conditions of the children measured by
the FEV1. Also to be investigated is whether the daily fluctuations in the ambient air
pollutant SO, measured at the schools are predictive of the fluctuations in pulmonary

function measures that depict the respiratory condition of the child.

2.2 The variables

The response/dependent variable is the lung function measure FEV1. These re-
peated measurements are bihourly measures of the pulmonary function during the
school day and they are aimed at measuring the respiratory condition of the child.
They were obtained by use of a machine commonly known as an airwatch instrument.
These measurements were obtained in four intensive phases, each phase being a period
of three weeks. The thesis considers only the first of the four phases which spanned s
total of fourteen days. The one missing day of the third week was a public holiday and

since all measurements were made only at the school, no measurements were made on

that holiday.

In the three weeks, on each of the five school days during the week, the children
performed airwatch maneuvers every 1% to 2 hours (that is four times in the 5.5 hour
school day which is approximately at 08h00, 09h45, 11h30 and 13h20). At each blow
time, the child blew five times into the machine making a total of twenty blows or
readings for a child per day. For analysis purposes, this information is summarized
into one reading a day per child utilizing one of the summary methods used in the
Settlers primary school health‘ study (Robins et al, 2002). This is the within-day



variability (WDVarFEV1) calculated using the formula

Best reading — Worst reading 1)
Best reading ' '

The best reading is the largest (maximum) of the day and the worst reading is the lowest
(minimum) of the day. This reduces the respiratory measurements to a maximum of

fourteen repeated measurements per child.

The Settiers primary school health study was a Durban-based project with similar
objectives to the Durban-South community project but was conducted on & much
smaller scale. It was from the findings of the Settlers project that the decision to carry
out the Durban-South project was made.

Early research has shown that increased ambient air poliution levels, particularly of
SO (Abbey et al., 1993; Katsouyanni et al., 1997) precipitate symptoms of asthma and
increase emergency department visits and hospitalizations among children and adults
| with asthma and other chronic respiratory conditions (Schwartz et al., 1993a; Walters et
al., 1994). Highly sensitive sub-populations such as asthmatics, the elderly and children
are at increased risk. Exposure to ambient particulate matter (PM) and co-pollutants
such as sulphur dioxide in the ambient environment may provide the critical factor
in increased morbidity and mortality in these individuals in urban centers (United
Stated Environmental Protection Agency, 1996; Schwartz, 1993b). Acid aerosal is
closely associated with SO; in the eastern U.S. and has been associated with increased
respiratory hospitalizations (Thurston et al, 1994).

Seven key ambient air pollutant exposures were investigated in the Durban-South
health survey including the air pollutants sulphur dioxide (SO;) and ambient partic-
ulate matter (PM). The PM data was not readily available so only the SO, data was
considered in this thesis. The SO, is the result of the combustion of fuels containing

sulphur for example, coal and oil, gasoline production and oil refining, and smelting



ores.

Monitors to register the SO, readings were placed at each of the schools. Two
assumptions were made in this case, one being that the children spent most of their
day at school and the other being that the child resided close to their specific schools.
Therefore the monitors situated at the schools registered their average exposure to the
S0, pollutant. These SO, monitors recorded readings every 10 minutes, measured in
parts per billion(ppb). A reading of 100 ppb means that 0.00001 percent of the air
around the monitor is SO, gas. For analysis purposes, this per 10-minute data was
summarized into a per day reading utilizing the summary criteria used in the Settlers
primary school health study (Robins et al., 2002). The summary measures were the
| peak counts and the 8-hour maximum of the moving averages.

To compute the peak counts, the pollutant measures obtained are compared with
the national standard guidelines provided by the modern air quality monitoring network
established in the Durban-South basin. These guidelines were designed to be protective
of public health and are displayed by the modern air quality monitoring network in
the weekly reports in the website www2.nilu.no/airquality/. From their most recent
report {Report summary week 24, 2005 running from 13/June/2005 to 19/June/2005),
the per 10-minute SO, standard reading was 191 ppb. The per 10-minute SO readings
were then compared with the 10-minute standard of 191 ppb to determine whether it
was above or below the 191 ppb mark. Therefore a peak was any per 10-minute SO,

reading above the per 10-minute standard of 191 ppb.

In the calculation of the peak counts, the number of times the pollutant levels were
above the standard guidelines were counted. This was computed to correspond to the
24 hours prior to the first airwatch blow. For example, the peaks corresponding to date
6/14/2004 are the total number of times the pollutant levels went above the standard
guidelines between 8am of 6/13/2004 and 7.55am of 6/14/2005. These peak counts are


http://www2.nilu.no/airquality/

referred to as ‘peaks’ throughout the thesis.

In the Settlers primary school health study (Robins et al., 2002), possible lag effects
{bours to days) were modelled to account for possible prior exposure effects. Examined
models considered the effects of the lung function to exposures occurring earlier the
same day (lag 0), the previous day (lag 1}, and two days prior (lag 2). Prior one day and
prior two days exposure to SO2 were found to be associated with highly statistically
significant increases in the occurrence for lower respiratory symptoms. Due to this
outcome, it seemed best to investigate the lag effects from the previous day (lag 1),
two days prior (lag 2) to five days prior (lag 5) in this thesis. Thus, an additional four
other pollutant variables were considered and these were the peak counts two days,

three days, four days and five days prior to the day of the FEV1 measurement.

The alternative summary pollutant measure was obtained by selecting the maxi-
mum of the 8-hour moving averages computed 24 hours before the first blow of the day.
~ For example the 8-hour maximum measure corresponding to the 31st of May 2004 is
calculates as follows: First attained is the average of the 10- minute readings from 0
hours to 7:50 hours of the 30th of May 2004. There after 8-hour moving averages are
computed for the next 24 hours that is up to 7:50hours of the 31st May. To correspond
to the time of the first airwatch blow of the 31st of May, which was at 8:00 hours, the
maximum of the moving averages in the 24 hours is attained to serve as the 8-hour
maximum single record for that date. These values are referred to as ‘8-hour maxi-
mum’ throughout the thesis. Still taking the lag effects into consideration, four other
measures, which are the 8-hour maximum pollutant measures two days, three days,

four days and five days prior to the day of the FEV1 measurement, were considered.

Unlike the peaks pollutant measures that only represent the number of times the
pollution measures go beyond the acceptable standards, the 8-hour maximum pollutant

measures take into consideration the actual pollutant measurements averaging them
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appropriately into one measure.

Previous studies have shown that the taller the person is, the greater his/her lung
volume {Buist, 1982; Buist and Vollmer, 1988). In addition the lung function decreased
at both extremes of weight (Schoenberg, Beck and Bouhuys, 1978; Dockery et al.,
1985). After correcting for body size, girls appear to have higher expiratory flows than
do boys, whereas adult men have larger volumes and flows than women (Buist, 1982;
Schwartz, Katz, Fegley and Tockman, 1988a; 1988b). Since the lung function of the
children was under consideration, it seemed appropriate to include the variables: child

height, weight and sex in the analysis.

The child height and weight data was obtained during the baseline spirometric as-
sessment and methacholine challenge tests that were administered to all the children in
the child sample. These lung function tests were done using a spirometry instrument.
From questionnaire instruments administered to the children and their guardians, in-
formation on the age and sex of the children was obtained. Using the asthma status
classification criteria developed by the medical specialists, the asthms status of the
child was determined from the child respiratory symptom responses in the question-
naires. The asthma status was categorized as being severe or, mild or normal. Children
with severe cases were referred to as ‘persistent asthmatics’, those with a mild case of

asthma as ‘asthmatics’ and those with no cases of asthma as 'mnormal’.

In conclusion, the variables in the data set have the following structure: variable
Child as the random factor; variables School, Asthma status, Age, Height, Weight and
the 14 repeated SO, pollutant readings (the Peaks and the 8-hour maximum) as fixed
factors; and the 14 repeated FEV1 measurements per child as the response variable.
The data is therefore longitudinal in nature since the pollutant readings and the FEV1

measurements were sequentially measured over time.
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2.3 Data editing and cleaning

In any survey, non-sampling errors cannot be avoided but their occurrence can
be minimized. These errors occur at the data collection and processing stages of the
survey operation (Dalenius, 1988; Hansen, Hurwitz and Madow, 1953; Thompson,
1992; Lessler and Kalsbeek, 1992; and Kish, 1965). These errors have to be identified
and dealt with before the analysis of the data. To ensure the collection of adequate
data, all who were to be involved in the study went through a period of intense training
in the areas in which they were going to participate.

The FEV1 measurements were obtained by children blowing into instruments known
as airwatches which in turn produced readings that were later downloaded for analysis.
Since the airwatch maneuvers were carried out at schools, both the children and their
teachers were trained on the proper usage of the airwatch devices prior to the blow
exercises. They were also trained on the proper handling and storage of the airwatch.
The airwatches were also properly calibrated and adjusted appropriately before being
handed over to the children. Each child had his/her airwatch labelled by name and
serial number.

Despite the intensive training received by both the respondents and the iﬁterviewers,
an experience from the Settlers primary school health study (Robins et al, 2002) was
utilized to detect invalid blows. In this procedure, histograms of the FEV1 values
were plotted and extreme values truncated. The values that remained were compared
with the baseline FEV1 of the specific children. In was discovered that on average the
remaining FEV1 values lay between 30% and 120% of the baseline value. As a result
all those outside the range were considered invalid FEV1 readings. The aim was to
have a symmetrical confidence interval of the FEV1 readings. The baseline FEV1 on

the other-hand was computed during the lung function tests using prediction equations
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of the race, sex, age and height. The aim of these equations was to predict what the

reading of a specific child would be if he/she was normal.

I spent a great amount time on the editing and cleaning of the data. Since every
child was expected to blow 20 times a day for 14 days, a total of 280 records were
expected per child. Each of these records were checked to make sure that they corre-
sponded to the correct time and date of the blow. Some data was found to correspond
to dates and times outside the actual dates and times of blows. Cleaning of the times
and dates was done by use of the check-lists kept by the interviewers during the FEV1
blow exercises. However, there were times when the child did not have any airwatch

reading or when an invalid reading was recorded. Such data was considered as missing

data.

The SO, monitors, situated at each of the schools, were calibrated at the beginning
of the study. Quality checks were then performed approximately weekly and at the
~ end of the study. During the regular monitor calibrations and data downloads, abrupt
hikes or falls in the readings were noted and appropriate adjustments were made.
These extreme readings were commonly due to the malfunction of the monitors. Spot-
on repairs were therefore also made in such instances. Problems with calibrations were
reported especially at the Entuthukweni and Briardale schools at the beginning of the
study but were successfully sorted out later in the study. This however led to a vast
amount of incompleteness in the data relating to the first intensive phase of the study
known as phase 1. It is for this reason that data from these two schools is not considered
in this thesis. However the other five schools also had a few cases of missing data. This
meant that the handling of missing data needed to be included in the decision on the

appropriate analysis technique chosen for the study.

The child characteristics of age and sex were obtained from the questionnaires

administered by trained interviewers. To minimize non-response, interviewers made
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appointments with the school head teacher and teachers prior to the interviews. During
the initial visits to the schools the interviewers informed the teaching staff about the
advantages of the survey. They were encouraged to assist in the exercise as well as to

encourage the parents or guardians of the children to participate in the study.

Before data capture, all the questionnaires were carefully edited by trained project
staff to ensure that all the required information was obtained by the interviewers. This
information was then double-entered to minimize data entry errors. Double-entry of
data is a technique in which data is captured twice with the second data entry being
a form of check for any errors in the initial data entry. More cleaning was done on the

captured data which in some cases resulted in some call-backs.



Chapter 3

Sample survey analysis

In any statistical investigation, one has to decide whether to cover the whole
population, or carry out the statistical investigation based on a sample. A complete
enumeration of the whole population is known as a census. On the other hand a
statistical inquiry based on a sample on which inferences are made about the population
is known as a sample survey. In many fields of scientific study, most of the data is
collected using sample surveys usually due to their advantages of being, quick, timely,
manageable to carry out and less costly. The aims of a sample survey can be broadly
classified as: to make inferences about the population parameter(s) of interest, and to

investigate the relationships among the variates in the study.

Over the years, numerous sampling schemes in sample survey have emerged and
some of those in existence have been modified. For instance, in 1925 the use of simple
random sampling in official statistics was accepted mainly because it obtained rep-
resentative samples but also because of the existence of the theory of measuring the
uncertainty due to sampling (Smith, 1999). However, the difficulty of extending this
theory to more complex sampling schemes led to the next major advancement in the

sample survey methods by Neyman (1934). He changed the theoretical basis of sample

14
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survey inferences from being based on the hypergeometric likelihood function to being
based on sampling errors with a randomization distribution. The latter is what was
known as the design-based approach to survey inference. In this approach a researcher
draws a probability sample from a finite population for making inferences about this fi-
nite population. The probability model for the sample data depends on how the sample
was drawn by the researcher (Snijders and Bosker, 1999). Procedures which properly
account for the design and population structure are then developed to make inferences
about the parameters. (Skinner, Holt and Smith, 1989). Therefore, this approach is

based on the randomization distribution induced by the survey design (Levin, 1999).

In the 1950s and 1960s, theoreticians and scholars addressed the foundations of this
design-based inference approach with a number of them largely holding negative views
about the theory (Smith, 1999). This led to a search for an alternative model-based
framework of survey inferences. In this approach, inferences are extended to include
not only the survey variables of interest as explanatory variables but also the variables
used in the survey design (Skinner et al, 1989). Thus, inferences are made using the
best model that explains all structural and stochastic variations in the sample data.
The approach assumes a probability model for the sample dats and inferences are about
some large and hypothetical super-population. The main aim of developing this model-
based inference approach was to enable the investigation of the relationships between
variables in the survey population. This was done by taking the finite population to
be a realization of an infinite super-population (Levin, 1999). A role is therefore seen
for models in descriptive as well as analytic surveys.
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3.1 Design-based approach to survey inference

The design-based approach to survey inference is described in many texts for
example Hansen, Hurwitz and Madow (1953), Kish (1965), Cochran {1977), and Lit-
tle (2004). The following description by Little (2004) is not completely general but

captures the main features.

For a population with N units, let the random vector ¥ be given by Y = (1,
..., YN) where y; is the set of survey variables for unit i Alsolet I = (I3, ..., Iy)
denote the set of inclusion indicator variables where I; = 1 if unit ¢ is included in
the sample and I; = 0 if it is not included. Let ¥;,. be the observed part of ¥ and
Yez. the excluded part of Y. The design-based inference is based on the distribution of
I with the survey variables Y treated as fixed quantities. Inference about the finite

population quantity say, Q = Q(Y) involves the following steps:

(a) the choice of an estimator say, § = q{Yinc, 7). This is a function of the observed
part of ¥ that is unbiased or approximately unbiased for Q with respect to the
distribution of 7. The estimator § is a random variable as a function of I, not Y,

which are fixed quantities.

(b) the choice of a variance estimator ¥ = %(Y;,., /) that is unbiased or approximately
unbiased for the variance of § with respect to the distribution of I, Inferences are
then generally based on normal large sample approximation. For example, a 95%

confidence interval for Q is § + 1.96 /.

To describe the above process for a stratified random sample, Little (2004) considers
a simple case of estimating a finite population mean ¥. Suppose that the population
is divided into K strata, and that N; is the known population count in stratum ¢ while

Y. is the unknown population mean of stratum i. Then the quantity of interest in this
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case is P
Q=YY= 21 PY;,,
=

where P; = N;/N is the proportion of the population in stratum i Assume that a
random sample of size n; of N; units is taken from stratum £ and y;; : i=1, ..., K; j=
1, ..., n; denotes a set of sampled Y-values from stratum ¢, then Y, = {y;; : i=1,
....K, j=1, ..., n;}. Stratified random sampling has the property that all possible
samples of size n; from stratum i have the same probability of being selected which is
given by )
d{)‘ if 2;:1 Iij =

0 otherwise.

P(Igj 1) =

The usual estimator of ¥ in this setting is the stratified mean

T=V, “'Zpsyi ZN 12 Z E!fi.r

j=1 i-l

The estimated variance of the stratified mean is
S 1 1 S
) =§:p?3?_.__’ )
Vgt — [ i(n‘ M) (31)

where 57 is the sample variance for stratum i. The quantities 7,, and ¥,;, given by
(3.1) and (3.1), are used for constructing the 95% confidence interval for ¥ of the form
T, = 1.96 \/T,, and for the hypotheses tests about the population mean Y.

3.2 Model-based approach to survey inference

The model-based approach to sample survey inference, on the other hand, requires
a model for the survey outcomes Y;,.. This model is then used to predict the non-
sampled values, Y., of the population and hence the finite population quantities, Q.
Little (2004) divides the model-based approach into super-population modelling and
Bayesian modelling. In super-population modelling (for example Royall 1970; and
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Valliant, Dorfman and Royall, 2000), the population values of ¥ are assumed to be a
random sample from a super-population with a probability distribution p( Y /8) indexed
by a fixed parameter vector §. Inferences are based on the joint distribution of ¥ and
the inclusion indicator variables I. The Bayesian modelling approach, on the other
hand, requires the specification of a prior distribution p(Y’) of the population values
(Ericson, 1969; Binder, 1982; Rubin, 1983, 1987; Ghosh and Meeden, 1997). Inferences
about the finite population quantities Q(Y') are then based on the posterior predictive
distribution P(Yezc/Yinc) Which is the distribution of non-sampled values (Yezc) of ¥
given the sampled values (Y;,c). The specification of the prior distribution p(Y') is often
achieved via a parametric model P(Y /@) indexed by parameters # combined with prior
distribution p(#@) for 8.

The specification of p(Y /8) in this Bayesian formulation is the same as in para-
metric super-population modelling. In large samples, the likelihood based on this
distribution dominates the contribution from the prior of 8. As a result, large-sample
inferences from the super-population and Bayesian modelling approaches are often sim-
ilar. Model formulations thus do not involve the distribution of I, but the distribution
of YV alone.

A key motivation for probability sampling from the modelling perspective is that
it avoids the need to specify a model for the sampling mechanism even though the
sampling distribution is not the basis for inference. From the Bayesian perspective,
random sampling provides a justification for assumptions of exchangeability of the
sampling units that underpin identically and independently distributed (#id) models.

To describe the model-based inference for the mean from a stratified random sample,
Little (2004) lets y;; denote the value of Y for unit j in stratum & A common baseline
for continuous outcomes assumes that y;; is normally distributed with mean g, and

variance o?. A simple Bayesian specification in the absence of strong prior knowledge
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about y; and o7 yields a posterior mean that equals the stratified mean from the design-
based inference. For example, when o7 is replaced by S?, the posterior variance is the
same as the design-based variance. Thus for large samples, the posterior distribution
of Y yields a 95% posterior probability interval that is the same as the design-based
95% confidence interval. The former is interpreted as a probability statement about
the unknown population mean and the latter as a confidence interval for the unknown

population mean.

3.2.1 The design-based and model-based approaches - How

are they different?

Different frameworks or approaches for inference depend on the assumptions about
the processes which generate the sample data (Smith, 2001). The decision to use the
model-based inference is a statement that the sample selection mechanism can be
ignored for inference. Likewise, the decision to use the design-based inference is a

statement that models have no relevance to the inferential framework.

According to Little (2004), the design-based inference takes into account features
of the survey design, and provides reliable inferences in large samples without the need
for strong modelling assumptions. On the other hand this inference approach yields
limited guidance for sample adjustments. For example, the stratified mean which
sampled units by the inverse of their probability of selection. The Horvitz-Thompson
(HT) estimator applies this idea more generally as follows. Consider inference about
the population total Q(Y) =T = Y; + ...+ Yy and a sample survey design with a
positive inclusion probability #; = E(L;/Y) > 0,i =1, ..., N, Then the HT estimator
is

tyr = -—= —

- 3 Y, LY
i sampled b i

i=]



and is design unbiased for T since

N v, My &

Eftyr/Y) = ZE(L'/Y)"—: = Z’fa‘;i = ZYE =T.

. t=1 tasl i=1
The unbiasedness of £ ;7 under very mild conditions conveys robustness to modelling as-
sumptions and makes it a mainstay/foundation of the design-based approach. However,
the HT estimator has two major deficiencies. First, the choice of variance estimator
is problematic for some probability designs such as systematic sampling. Second, the
HT estimator can have a high variance, for example, when an cutlier in the sample
has a low selection probability and hence receives a large weight. On the other hand,
independent and identically distributed {iid) models fail to account for sample survey
design (Little 2004).

The differences between the design-based and model-based inference approaches
to statistical analysis arise early in the study of statistics, in the form of the role of
weights in multiple regression (Little 2004). For example, the basic fitting algorithm for
standard forms of normal linear regression is ordinary least squares {OLS). OLS is based
on a model that assumes a constant residual variance for all values of the covariates.
However, if the variance of the residual for unit ¢ is ¢?/u; for some known constant
u;, then better inferences are obtained by weighted least squares (WLS) with unit ¢
weighted proportional to ;. This form of weighting is model-based since the linear
regression model has been modified to incorporate a non-constant residual variance.

A quite different form of weighting arises in survey sampling, based on the sample
selection probabilities. If unit ¢ is sampled with selection probability =;, then the
OLS is replaced by the WLS by weighting the contribution of unit i to the least square
equations by the inverse of the probability of selection (w; o 'l‘). This form of weighting
is design-based, with =, relating to the selection of units. Since unit ¢ represents 1/x;

units of the population, it receives a weight proportional to 1/, in the regression.
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The model-based approach (under the appropriate super-population probability
models) also differs from the conventional design-based one in that it focuses on the
characteristics of particular samples rather than on plans for choosing samples (Roy-
all and Herson, 1973). The correctness of the results in the model-based approach
depends on the super-population probability model whose perfect confidence in it is
never justified.

By paying close attention on the asymptotics, Kott (2002) improved abit on the
variance estimator concentrating first on those situations where finite population cor-
rection matter and then on cases where the sample itself is not very large. As the
population and then the sample become less large, it was necessary to make more as-
sumptions about the error structure of the model. Relying on randomization-based
properties, which are asymptotic in nature makes little sense. Models can therefore
help in ferreting out just when the sample may be too small to assert asymptotic nor-
mality to the pivotal (tg/V when finite population correction is ignorable. Parameter
tp represents the regression estimator; V is the model variance estimator of tz), a

generally common and often an unjustified practice.

The use of a particular model-based approach helps to provide guidance in the
choice of sampling designs but it is difficult to determine how far it should dictate the
choice of an estimation (Hedayat and Sinha, 1991). Also, any deviation from the true
model would make it difficult to validate the survey estimates unless the estimators

were robust in the appropriate sense.

Kalton (1983) and Thomsen and Tesfu (1988), who have studied the use of the
model-based approach in sample surveys, argue that although it is true that most
sample surveys are aimed at providing estimates for simple descriptive parameters
(like mean, variance} of the population of interest, typical sample surveys are multi-

purpose in nature and different parts of the multi-response survey data msay need to be
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analysed for different purposes. Even if a model is suitable for one survey variable, it
may not be realistic for others. Therefore Kalton {1983) and Thomsen and Tesfu (1988)
conclude that a complete reliance on a particular super-population is not advisable in a
multi-response multi-purpose 3ﬁmy but may be used as a guiding factor for selecting

a reasonable sampling strategy.

The super-population parameters in the model-based approach may often be pre-
ferred to finite population parameters from the design-based approach as targets for
inference in analytic surveys (Skinner et al., 1989). However, if the population size is |
large, there will often be little numerical difference between the two approaches. A
difference will therefore only be expected as the population size gets smaller. On the
other hand, samplers often mistrust the model-based approach to survey inferences
when applied to large samples from complex populations due to the concerns about
model misspecifications (Zheng and Little 2003). However, the approach can work very

successfully in survey settings provided the chosen models take into account the sample

design and avoid parametric assumptions thus in favor of the design-based approach.

The model-based inferences are well equipped to handle complex design festures
such as cluster sampling through random cluster models, stratification through covari-
ates that distinguish strata, non-response (Little, 1982; Rubin, 1987; Little and Rubin,
2002) and response errors. The model-based approach also allows for prior information

to be incorporated when appropriate (Little, 2004).

Another ares where the model-based methods are widely used is in small domain
estimation. This is because small sample sizes can be too small for the design-based
approach {o obtain reliable inferences. However, aggregating the small domains would
surely result in the results being based on a large enough sample, thus enabling the
design-based principles to offer some protection against model failure. Despite the fact
that the model-based approach gives powerful inferences, grossly invalid inferences
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would result if the assumed model were unrealistic (Cassel, Sirndal and Wretman,

1977).

But, all models are simplifications and are hence subject to some degree of mis-
specification. The major weakness of the model-based inference, therefore, is that if
the model is seriously misspecified, it can yield inferences that are worse than the
design-based inferences. A model for stratified sampling that ignores stratum effects
is too misspecified for it to be a reliable basis for inference unless there are convincing
reasons to believe that stratum effects are not present.

The role of randomization in experimentation is also an important and essential
one. Its basic function is that it reduces the number of assumptions required for the
validity of statistical inference procedures (Royall, 1970). This function has many
aspects and the three frequently described are: to protect against failure of certain
probabilistic assumptions; to average out effects of unobserved or unknown random
© variables; and to guard against unconscious bias on the part of the experimenter. All
these objectives contribute to the general goal of making the results of the experiment
convincing to others. Two other arguments that advanced in support of randomization
in sampling problems were: that it enabled the sampler to check the accuracy of the
assumptions concerning the relation between the response and explanatory variables;

and also enabled the sampler to estimate the variance of the estimate accurately.

In practice, many survey statisticians, depending on the situation, have adopted
both design-based and model-based philosophies of statistical analysis. For example,
descriptive inferences about finite population quantities based on large probability sam-
ples are carried out using design-based methods but models are used for problems where
this approach does not work such as non-response and small area estimation. This ap-
proach has increased in popularity, but as Little (2004) remarked, “one should not be
satisfied with two competing statistical theories”. This has led to the development of
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approaches such as the model-assisted design-based approach and the randomization-

assisted model-based approach.

3.3 Model-assisted design-based approach

In the model-assisted design-based approach, the design-based inference is treated
as the real goal of the survey sampling, but models are employed to help choose between
valid design-based alternatives. This leads to unbiased models and a small model-
expected randomization mean square error. Therefore, the super-population models
are not the basis for inference in the design-based approach, but are useful in motivating

the choice of estimator (Little, 2004).

In particular, many of the classic estimators, such as the ratio estimator and the
regression estimator, which incorporate covariate information, can be motivated as
arising from linear super-population models. For example, the HT estimator can be

regarded as a model-based estimator for the following linear model relating y; to ;:
¥ = B + mie;,

or equivalently
z = y/m = Pe;.
where ¢; are assumed to be iid normally distributed with mean zero and variance o2
These models lead to § = n~!' Y, c4:/m = tyr/n where n is the sample size. The
corresponding prediction for unit i is g = Br;, and the prediction estimator of the
total is thus .
Twea =D Gi+ 3 _Wi— gy =tur + > (0 — %)

i=1 @S ieS
This estimator differs from the design-based HT estimator mentioned in Section 3.2.1

by a quantity that tends to zero with the sampling fraction n/N. This analysis suggests
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that the HT estimator is likely to be a good estimator if the linear model relating y; to
w; adequately describes the population. However, this estimate will surely be inefficient

if the linear model does not fit the population.

3.4 Randomization-assisted model-based approach

Unlike the model-assisted approach, the randomization-assisted model-based ap-
proach treats the model-based inference as the goal of the survey sampling. However,
design-based methods are employed to protect against inevitable model failures. How-
ever, the choices for the estimation strategy and the variance estimator between the
model-assisted and the randomization-assisted approaches do not change in typically
large samples and population environments. In this approach the estimators are also
design-consistent. '

Restricting attention to design-consistent estimation strategies assures tilat even
when the model fails, the estimator will likely not be too far off from what it is
estimating. Also for an estimation strategy (an estimator coupled with a sampling
design) to be design-consistent, its mean square error should approach zero as the
sample size becomes arbitrarily large. The emphasis of the randomization-assisted
model-based approach is thus to make the bias small, thus leading to superior coverage
estimates. In his paper, Kott(2002) concludes that although the dominant design-
based and model-assisted design-based approaches have been fruitful in many ways,
they should be supplanted by the randomization-assisted model-based approach. This
is because inference should be based on the actually observed sample rather than on av-
eraging over all potential samples. He warned that although the design-based methods
provide some protection against model failure, their protection relies on invoking the

asymptotic properties in a finite population. Thus, he argues that the model-assisted
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routine actually makes more sense under the randomization-assisted model-based ap-
proach. However, the approach to handling multi-phase sampling designs from the
randomization-assisted model-based viewpoint still needs to be developed.

In conclusion, one can say that the model-assisted approach takes the model out
of the shadows of design-based survey sampling and gives it a formal place in survey
theory and practice. However, the real inference is deemed to be related to the sampling
design and not to the model distribution. This is done by choosing among design-
consistent estimation strategies, by hypothesizing a reasonable and practical model,
restricting attention to model-unbiased estimators, and by selecting that strategy with
the minimum model-expected randomization mean square error. This routine however,

makes even more sense under the randomization-assisted model-based approach.

3.5 The multistage sampling design

Most of the sources of variability in survey data are nested. Observations on
children in classes, employees in firms, suspects tried by judges in courts, animals in
litters, and longitudinal measurements on subjects are some of the examples of nested
data structures (Snijders and Bosker, 1999). Data structures of this nature are viewed

as multistage {or multilevel) samples from clustered populations.

The model-based design allows the researcher to go beyond estimating the summary
measures into the casual explanation of the processes that underlie the descriptive sur-
vey approach in the analysis of complex survey data (Skinner et al,1989 Chapter 1).
This makes the model-based design appropriate approach for & multistage sampling
design. In addition, this modelling approach can be adopted to complex finite pop-
ulation structures and sampling schemes (Ericson, 1969; Scott and Smith, 1969; and

Royall, 1970). Complexity in this context is defined by the degree of complexity of the



sampling design.

Longitudinal data in particular are often highly unbalanced in the sense that the
number of measurements per subject are unequal and/or that measurements are not
taken at fixed time points. Due to their unbalanced nature, many longitudinal data
sets cannot be analysed using multivariate regression techniques. The natural alter-
native arises from observing that subject-specific longitudinal profiles can often be
approximated by using linear regression functions. In this case, the vector of repeated
measurements for each subject is summarized by a vector of a relatively small number
of estimated subject-specific regression coefficients. And in the second stage, multi-
variate regression techniques are used to relate these estimates to known covariates,
classifications and baseline characteristics. ‘ |

The well known statistical model for multilevel analysis is the hierarchical linear
regression model which is essentially an extension of the familiar multiple linear re-
~ gression model by including the nested random coefficients. This model is known in
literature under a variety of names such as the hierarchical linear model (Bryk and
Raudenbush, 1992), the variance-component model (Levin, 1999), and the random-
coefficient model (Longford, 1993). The hierarchical linear model is also very useful for
analysing repeated measures or longitudinal data. Since the appearance of the path-
Brea.king paper by Laird and Ware {1982), the hierarchical linear model has been the
main type of application of the hierarchical linear model in the biological and medical
sciences (Snijders and Bosker, 1999). Its main advantage is that it effectively elabo-
rates the modelling of the random variability. However, of importance is its flexibility
to deal with unbalanced data structures or longitudinal data where measurements are
made at different sets of time points. This is mainly possible because the model does
not assume equal numbers of identical occasions for all subjects. Since the hierarchical
linear regression model contains both random and fixed effects, it falls under the mixed
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3.5.1 The mixed model

Models where some of the factors in the model structure are fixed and some factors
are random effects are known as mixed models. The general linear mixed model can

be represented in matrix form by
y = X8+ Zu+e,

in which 8 is a p x 1 vector of unknown constants (the fixed effects), X isann x p
design matrix of fixed numbers associated with 8, Z = [Z,|Z;|...|Z,] where Z; is an
n X g; design matrix for the random effect factor i, v’ = [u}|u)). .. |u}], where u; is a
g: x 1 vector of independent random variables with a N(0, ¢?) distribution, i = 1, 2,
...,fy eisan n x 1 vector of error terms with a N(0, ¢2) distribution and v; and ¢ are
mutually independent. One may also write u ~ N(0, G), where G is a block diagonal
with the i-th block 671, so that ¥ has a multivariate normal distribution with E(y)
= XpB and Vor(y) = V, where V = 021, + ZG2Z' = o2, + 3., 0?Z;Z] (Zewotir and
Galpin, 2004).

In practice, the variance components ¢ and o7 need to be estimated. This can
be done by using either the analysis of variance (ANOVA), maximum likelihood (ML)
or the restricted/residual maximum likelihood (REML) methods. For balanced data
(where the number of observations in the subclasses of the data are the samej), it is
common practice to estimate the variance components using the ANOVA method. This
is done by equating the sum of squares (or mean squares) in an ANOVA table to their
expected values. However, this method has a limitation in that it is applicable only
| to balanced data. Another disadvantage is that it sometimes gives negative variance

estimates. For unbalanced data however, Henderson (1953) describes three ways of
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using the general ANOVA method for estimating the variance componentes. These are

the Henderson's methods I, II and IIL

Henderson's method I also uses the sum of squares but is adjusted to handle un-
equal cluster sizes. Computed are the sum of squares as in the standard ANOVA of
corresponding orthogonal data. The sum of squares are then equated to their expecta-
tions, obtained under the assumption of the model, to solve for the unknown variances.
Despite this method being the simplest, it can only be used if it is assumed that, except
for the general/overall mean, all the elements of the model are uncorrelated variables
with means zero and variances o2 and o7. This is because it leads to biased estimates
if certain elements of the model are fixed or if some of them are correlated. Its for this
reason that this method cannot handle mixed models. ‘

Henderson’s method II tries to separate the random part from the general model
so as to enable the application of the sum of squares method to the isolated random
~ model. This is done by obtaining the least squared estimates of the fixed effects,
correcting the data according to their fixed effects, using the corrected data in place of
the original data, and then proceeding on as in Method L In this method, the bias in
estimating the variance components due to the assumption that fixed elements of the
model are random variables is eliminated. At the same time the simplicity of Method
I is retained. Although this method works well with mixed models, it cannot be used
for models with interactions between the fixed and random factors.

Henderson’s method III, on the other hand, uses the sum of squares that arise in
fitting an over-parameterized model and sub-models. In this method, the mean squares
are computed by a conventional least squares analysis of non-orthogonal data (method
of fitting constants, weighted squares of means for example). These mean squares are
then equated to their expectations to solve for the unknown variances. This method

yields unbiased estimates but the computations required may be excessive. This is



because it suffers the problem of many sum of squares.

When it is computationally feasible, Method III is the most satisfactory of the three
methods of estimating variance components. This is mainly because it gets around the
difficulty of fixed elements in the model. In addition, it yields unbiased estimates
even though certain elements in the model are correlated. Unfortunately, Method
III is not likely to be computationally feasible in the non-orthogonal case unless the
number of different classes is small or unless the design incorporates planned non-
orthogonality such that consequently the mean squares of the ANOVA can be computed
~ without solving least square equations. However, these methods also have the problem
of sometimes giving negative variance estimates. The relative sizes of the sampling

variances of estimates obtained by these three methods are also unknown.

The ML method maximizes the likelihood function using the Newton Raphson
and/or Fisher’s scoring algorithms to obtain the estimates. On the other hand, the
REML method minimizes the likelihood function of a certain number of linearly inde-
pendent error contrasts using the Newton Raphson and/or Fisher’s scoring algorithms

to obtain the estimates of the variance components.

According to Zewotir and Galpin (2004), working in terms of 4; = 0?/0? eases the
computational procedures associated with the model. Therefore, Var(y) can be writ-
ten as Var(y) = c2H where H= 1, + ZDZ' =1, + Y°7_, %Z;Z! and D = G/o? (also
see Wolfinger, Tobias and Sall, 1994; Littell et al., 1996). The best linear unbijased esti-
mate (BLUE) of 8 is § = (X’H~!X)~!X’H~y and the best linear unbiased predictor
(BLUP) of uis & = DZRy where R = H™1 - H)X(X’H™!X)*'X'H~!. The ML and
REML estimates of o2 are 62 = y'Ry/n and 2 = y'Ry/(n — p) respectively. If the
variance components -; are unknown, which is usually the case, the ML or REML es-
timated are simply substituted into the expressions. In this case the BLUE and BLUP -

acronyms no longer apply, but a qualifying empirical is often added to indicate such



31

approximation.

The relative advantage of the ML over the REML method is that it provides esti-
mates of the fixed effects, while REML does not {Searl, Casella and McCulloch, 1992).
However, REML estimators takes into account the degrees of freedom involved in esti-
mating the fixed effects, while the ML estimators do not. For balanced data, ANOVA
and REML estimates are the same whereas for unbalanced data, ML and REML es-
timates are slightly more efficient than the ANOVA (Henderson’s methods) estimates

(Snijders and Bosker, 1999).

3.5.2 The hierarchical linear model

The hierarchical linear model is the best model for multilevel data because it
accounts for the within-subject as well the between-subject variations in the data. The
“subjects” refer to the umits at the higher level of the nesting hierarchy. Using the
description of the hierarchical linear model by Snijders and ].303ker (1999): for ¢ = 1,
..onandj=1,..., my, let y; and z;; be the respective measurements of the dependent
and the independent variables made on the % unit in the i** subject. Further, let 2 (i

=1, ..., n) be the measurement of the independent variable made on the ** subject.

The simplest model for y; is one without the random effect, which is the char-
acteristic of the classical multiple regression model. This classical multiple regression
model states that the dependent variable can be expressed as a linear combination of

the explanatory variables and the random residual as follows:
¥i = Bo+bzy+ Hhu+ Ry, (3.2)

where the 3’s are the regression coefficients/parameters. Specifically, B is the intercept
(the value obtained when z;; and z; are zero); f; is the coefficient for the unit within

subject variable X; B, is the coefficient for the subject variable Z; and variable R;; is
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the error term.

Model (3.2) can be extended to include the cross-level interaction effect resulting

in the regression model
Y5 = Bo+ Pz + Bozi + Pazixi; + Ry (3.3)

The model assumes that the whole data structure can be fully be explained by the sub-
ject variable Z and the unit within subject variable X. However, the nesting structure
is not completely described by this model. Additional effects of the nesting structure
can be incorporated by letting the regression coefficients vary from subject to subject.
This results in subject-dependent coefficients Gy and By; yielding the model

¥ = Do+ Buxi; + Ry, (3.4)
These subject-dependent coefficients can be modelled as follows:

Boi = Yoo+ Y1z + Upi, and : - (3.9)

Bu

o + 1% + Uy (3.6)

where vy and 719 are the average intercepts, <y and 4;; are the regression coefficients,
and Uy and Uy; are the subject-dependent deviations. If Gy and B); are found to be
constant, then the nesting structure has no effect and one returns to the model (3.3)
by substituting the subject-dependent coefficients (3.5) and (3.6) in (3.4) without the
random effects Uy; and Uy;. In this case, the OLS regression offers a good approach for
data analysis. If only By is found to be random and f; is found to be constant, then
the resulting model is known as the ‘random intercept model’. This is the simplest
case of the hierarchical model which after substituting (3.5) and (3.6} in (3.4}, without

the random effect Uy, is given by

¥ = (v0+mz+ Un) + (10 + Tuzi)zy; + Ry

= Y0 +Y012% + T0%i; + Mm%z + Ui + Ryj.
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However, a more general case of the hierarchical linear model is where the slopes are
also random (represented in Model (3.4)). Substituting {3.5)} and (3.6) in model (3.4}
leads to the model

vi; = (Y00 + % + Ui} + (110 + M1z + Uni)zis + Ryj

= 70 + Y% + No%g + Mm%y + Uos + Unzy; + Ry;.

This model can be extended to include more subject variables and more unit within
subject variables. Suppose that there are p unit level explanatory variables X,, ...,
X, and ¢ subject level explanatory variables Z;, ..., Z,, then the regression model 3.4

becomes
Yii = Boi+Buxij... + Butp; + Rij. 3.7

The subject-dependent coefficient G;; (h = 1, ..., p), which can be known as the

g-variable regression model for the i-th subject, is given by
Bri = o+ T2+ ...+ g2+ Uni. (3.8)

Substituting (3.8) in (3.7) and rearranging the terms in the model yields

P q q P 14
Vii = Yot E’Ym-‘%‘j + Z?Okzki + E Em.kzk.-zw + Upi + 2 UM:BMJ' + R”
h=1 k=1 k=1 A=l h=1

The between subject variation is now characterized by p+1 random coefficients, Uy,
Ui, . .., Upi. These random coefficients are independent between subjects, but may be
correlated within subjects. It is assumed that the vector (Uy; ... Uy) is independent of
the unit level error terms R;; and that all error terms have mean 0, given the values of

all the explanatory variables. It is also assumed that the error term R;; has a normal |
distribution with constant variance o2 and (Uy ... Uy) has a multivariate normal

distribution with a constant covariance matrix with the variances and covariances of



the subject random effects denoted as:

Var(Us) = mw=mi (h=1,...,p),
Cov(Upi, U) = ma (Bk=1,...,p),
Var(Ux) = 70 =13, and

Cov(Upi,Upi) = man(h=1,...,p).

Snijders and Bosker(1999), and Efron and Morris (1975) highlight a method known
as the Emperical Bayes (EB) estimation which produces posterior means used to predict
Us: (also known as latent variables). The basic idea of this method is that Uy is
estimated by combining two kinds on information: the data from subject i; and the
model assumption that the unobserved Uy, is a random variable, therefore has a normal

distribution with mean 0 and variance 73.

The hierarchical linear model also provides room for statistical testing, also known
. as model fitting, with the sole aim of obtaining & parsimonious model that fits reason-
ably well with the data. To get a parsimonious model, all the effects are tested and
only the significant ones (at a predetermined level of significance) are included in the
model.‘



Chapter 4

The longitudinal mixed model

Verbeke and Molenberghs {2000) describe the longitudinal mixed model by com-
bining two stages of analysis into one single statistical model as follows. Let the random
variable ¥;; denote the response of interest of the i-th subject, measured at time j, ¢
=1..., N;j=1, ..., n; and let y; be the n;-dimensional vector of all repeated
measurements on the i-th subject that is, ; = (%1, ¥i2, - - ., ¥in,)’- Then the first stage

of the two-stage approach assumes that y; satisfies the linear regression model
Yi=ZiBi+ e, . (4.1)

where Z, is an (n; x ¢) matrix of known covariates modelling how the response evolves
over time for the i-th subject, while 8; is a g-dimensional vector of unknown subject-
specific regression coefficients and ¢; is a vector of the error term components, g, j=1,
.oy By It is usually assumed that all €; are independent and normally distributed with
mean vector zero and covariance matrix L;, where L, is the n;-dimensional matrix. In

the second stage, a multivariate regression model, of the form

B =KB+bs, (42)
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is used to explain the observed variability between the subjects with respect to their
subject-specific regression coefficients 5; with K, as a (¢ x p} matrix of known covari-
ates and f as the p-dimensional vector of unknown regression parameters. Lastly, the
bs’s are assumed to follow a ¢-dimensional normal distribution with mean vector zero

and general covariance matrix D.

The regression parameters in the second stage model (4.2), which are of primary
. interest, can be estimated by sequentially fitting the stage one and two models. Firat,
all §; are estimated by fitting model (4.1) to the observed data vector y; of each
subject separately, yielding estimates ﬁ, Then model (4.2) is fitted to the estimates
E;, providing inferences for 5.

As for any analysis of summary statistics, the two-stage analysis obviously suffers
from problems. Firstly, information is lost in summarizing the vector y; of the observed
measurements on the i-th subject by B. Secondly, the random variability is introduced
~ when §; in model (4.2) is replaced by its estimate 5. Moreover, the covariance matrix
of fi: depends strongly on the number of measurements made on the i-th subject as
well as on the time points at which these measurements were taken. This is not taken
into account at the second stage of analysis, but can be resolved by combining the
two stages of analysis into one model commonly known as the linear mixed (-effects)
model. The combination is done by replacing §; in model {4.1) by its expression in

model (4.2}, yielding:

Vi = Xif+2bit+¢ (4.3)
bi ~ N(O) D)& (4.4)
e ~ N(O,L), ' (4.5)
where by, ..., b, €3, ..., &y are independent, with I as a general (¢ x ¢) covariance

matrix with (¢, 7) element d;; = dj; and Z; is an (n; X n;) covariance matrix respectively.
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Matrices X; (where X; = Z,K,) and Z; are (n; x p) and (n; x ¢) dimensional
matrices of known covariates respectively. The p-dimensional vector § represents the
fixed effects while the g-dimensional vector b; are the subject-specific random effects.
Although the random effects and the error term components are independent of each
other, the subject-effects and the random effects are usually not independent but are
correlated (Hallahar, 2004). The response vector y; is normally distributed with mean

vector X0 and covariance matrix V; = Z, D2/ + Z,.

4.1 The fixed-effects/mean structure

In order to choose an appropriate fixed-effects structure for the longitudinal mixed
model, one needs to examine how the profile for the relevant sub-populations of the
subjects evolve over time. This enables the visualization of the data pattern over time.
Individual and mean profiles of the subjects over time are commonly used to visualize
' these data patterns over time. Individual profiles are the responses of each subject
plotted against time, while in the mean profiles are the mean responses of the subjects

are plotted against time.

However, it is difficult to determine the most appropriate functional form of the
dependence of the response variable on time by merely looking at the profile plots. To
solve this problem, a scatter-plot smoother known as the loess smother can be used.
This smoother produces non-parametric curves that show the functional dependence
without imposing parametric assumptions about the dependence. The loess smoother
can be implemented by using the SAS PROC LOESS procedure. As described in
SAS Institute Inc. (2000) and by Cohen {1999), PROC LOESS implements a non-
parametric method for estimating local regression surfaces. This method is commonly

referred to as ‘loess’, which is the abbreviation for local regression. Assume that for ¢
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= 1 to n, the ith measurement y; of the response y and the corresponding measurement

x; of the vector z of p predictors are related by
¥ = g(z:) + &,

where g is the regression function and ¢; is a random error. The idea of local regression is
that the regression function g(z) can be locally approximated by the value of a function
in some specified parametric class near £ = xp. Such a local approximation is obtained
by fitting a regression surface to the data points within a chosen neighbourhood of
the point zy. In the loess method, weighted least squares are used to fit linear or
quadratic functions of the predictors at the centers of neighbourhoods. The radius of
each neighbourhood is chosen so that the neighbourhood contains a specified percentage
of the data points. The fraction of the data, called the smoothing parameter, in each
local neighbourhood controls the smoothness of the estimated surface. Data points
in a given local neighbourhood are weighted by a smooth decreasing function of their

distance from the center of the neighbourhood.

The loess fit, which is usually applied to a random sample of subjects (in large
sample surveys), depends strongly on & smoothing parameter. The most appropri-
ate smoothing parameter is one which minimizes a criterion that incorporates both
the tightness of the fit and the model complexity. To determine such a smoothing
parameter, the Akaike information criteria (AIC) is used. The smoothing parame-
ter that provides the smallest AIC value is selected as the most appropriate. The
values of AIC for all the potential smoothing parameters can be obtained from the
“Fit summary” table of PROC LOESS provided that one of the options ALL, CLM,
DFMETHOD=EXACT, STD, and T are specified in the model statement.

The quality of the estimates in a model, as measured by their variances, can be
adversely affected if the independent variables are closely related (that is highly cor-



39

related) to each other (Sen and Srivastava, 1990). The more correlated the variables
are, the more difficult it is to determine which of the related variables is producing
the effect on the response variable. This problem is referred to as multicolinearity.
Large absolute correlation coefficients between the independent variables indicate the

presence of multicolinearity.

Another method for detecting multicolinearity is to assess the degree to which each
independent variable is related to all other independent variables (Sen and Srivastava,
1990). If there are p independent variables, then this is done by examining the R? (j =
1, ..., p), which is the sample coefficient of determination (R?), between the variable

z; and all the other independent variables. The tolerance TOL; is defined as
TOL; =1- R3.

If z; is not closely related to the other variables then tolerance TOL; will be close to
1. The variance inflation factor VIF; is given by |

VIF; = TOL;™.

Clearly, a value of VIF; close to 1 indicates no linear relationship among the indepen-
dent variables, while larger values indicate presence of multicolinearity. VIFs larger
than 10 imply serous problems with multicolinearity (Montgomery, Peck and Vining,
2001).

In a case of multicolinearity, the principal component analysis (PCA) can be applied
on the data. In addition, a rotation can be applied to the PCA process. Its goal is to
minimize the complexity of the component by making the large loadings larger and the
small loadings smaller within each component (Wuensch, 2004). The most commonly
used rotation is the VARIMAX rotation. However there are other rotation methods
such as the QUARTIMAX and the EQUAMAX rotation. The QUARTIMAX rotation
makes large loadings larger and small loadings smaller within each variable while the
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EQUAMAX rotation is a compromise that attempts to simplify both components and
variables. These are all orthogonal rotations, that is, the axes remain perpendicular,

so0 the components are not correlated with one another.

4.2 The covariance structure

Most models assume that &; has a constant variance and can be decoml:;oeed
as & = €q) + £@)x in which g); is the component of the measurement error and
€(2): is a component of serial correlation (Diggle et al, 1994). This suggests that at
least part of a subject’s observed profile is a response to the time-varying stochastic
processes operating within the subject. This type of random variation results in a
correlation between serial measurements which are usually a decreasing function of
the time separation between the repeated measurements. The component ey is an
extra component of measurement error reflecting variation added by the measurement
process itself. This yields three stochastic components which are the random effects,
serial correlation effect and the measurement error, resulting in the linear mixed mode]

Yi = XiB+Zb; +eqy+e@y

where:
b, ~ N(0,D),
eay ~ N(0,0%,,),
ean ~ N(O,7°H,),
with by, ..., by, €)1y -+ -5 EQ)N, E@)L - - -, E2)v independent and the correlation matrix

H; assumed to be a (n; x n;) structure. However, in many applications, the effect
of serial correlation is very often dominated by the combination of random effects and

measurement error. This has led to fitted models in practice not including the serial
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correlation. To check whether there is a need for serial correlation effect in the model,
scatter plots of the residuals are constructed. Scatter plots of a circular shape indicate

that serial correlation is not very strong (Fanta, 2003).

4.3 Modelling the covariance structure

In modelling the covariance structure, the SAS PROC MIXED procedure provides
a rich assortment of covariance structures from which to select. However, three of -
the most commonly used structures in longitudinal mixed models are the compound
symmetric (CS), autoregressive order one (AR(1)) and the unstructured {UN). To
define these structures in terms of the longitudinal mixed model shown in (4.3), let R
define the block diagonal of the covariance matrix ¥; with each block corresponding to
a subject, then the variance-covariance matrix of the observations is given by var(y)
=2Z2'GZ + R. |
In the case of the CS structure, I; = (Jp + I(1-p))o® where I, is an n; x n;
identity matrix, J,, is an n; x n; matrix of ones (unit matrix}) and p is the correlation
between observations on the the i-th subject.
In the case the of AR(1) structure, the correlation between observations, which are
say w time periods apart, is assumed to be p*, where p is the correlation between the

adjacent observations on the i-th subject . Therefore Z; iz given by:

( 1 p 2 ... ... p"“l\
L, =0 £ Lo i
\p""“ ...... e p 1 )

The correlations between the observations are dependent on the time periods between

the observations.
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For the UN structure, there are no mathematical constraints imposed on the ele-
ments of the covariance matrix. Thus unstructured means no structure. The prob-
lem now is how to decide which of the three covariance structures to assume in the
model. This decision process can be assisted by using three model-fit criteria which are:
the Akaike's Information Criterion (AIC), the finite-sample corrected version of AIC
(AICC) and Schwarz’ Bayesian Information Criterion (BIC). These are essentially log
likelihood values penalized for the number of parameters estimated, hence the criteria
reported here should only be used to compare models with the same mean structure
- but with different covariance structures. The BIC however imposes a heavier penalty
than AIC. The covariance structure with the largest values of the criteria is considered
most desirable. These values can be obtained from the “Fit Statistics” table after
applying the SAS PROC MIXED procedure. The interest in the covariance structure
is not for its own right but for obtaining a good model for the covariance structure so

that computations and inferences about the fixed effects are valid.

4.4 Model reduction

Over-parameterization of the model structure leads to inefficient estimation and
potentially poor assessment of standard errors for the estimates. This results in the
need for model reduction of both the fixed and random parameters and this is commonly

done by model comparisons.

4.4.1 'Tests for the significance of the fixed effects

In the model reduction of fixed effects, a full mode] of all possible effects is com-
pared with reduced models in order to obtain the most appropriate parsimonious model.
To compare the models, the likelihood ratio (LR) test is used. This is a classical sta-
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tistical test for the comparison of nested models with different mean structures. The
LR test statistic is defined as:

=2lnAy = —2In LLL(&“!L-_") , (4.6)
L (One)

where 3&11.,0 and By, are the respective maximum likelihood estimates which maximize
the ML likelihood functions of the full and reduced models. The LR test statistic has
a chi-square distribution with the degrees of freedom equal to the difference between
the number of parameters in the two models. The above result is not valid if the
models are fitted using the REML method (Snijders and Bosker, 1999). The -2 times
the log likelihoods for the full and the reduced models can be obtained from the “Fit
Statistics” table after running PROC MIXED for each of the two models. Then the
LR test statistic is calculated using equation 4.6.

The reduced model can be reduced even further by applying the backward elimina-~
tion method. In this method, all the potential fixed effect variables are introduced in
the mode] and the one with the largest p-value (or in other words the smallest F-value)
is identified (Bowerman, O’Connell, and Dickey, 1986 pg 342; and Neter, Wasserman,
and Kutner, 1990 pg 458). If this p-value is larger than o (where « is the level of
significance), then this variable is removed /dropped from the model. The remaining
variables are tested again and the variable with a p-value greater than o is removed
from the model. The process continues until all the variables remaining in the model

have p-values less than a.

4.4.2 Tests for the significance of the random effects

The LR test, however, does not exist for cases where the null hypothesis specifies
that the parameter lies on the boundary of the parameter space, which is typically for

variance component models for which the standard asymptotic theory does not apply
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(Self and Liang, 1987). Using results of Self and Liang {1987) on nonstandard testing
situations, Stram and Lee (1994, 1995) were able to show that the asymptotic null
distribution for the LR test statistic for testing the hypothesis of the need for random
effects is often a mixture of chi-squared distributions rather than the classical single
chi-squared distribution. This is derived under the assumption of conditional indepen-
dence which states that all residual covariances T; are of the form ¢?I,,. Stram and
Lee (1994, 1995) discuss the following specific LR, tests.

Case 1: No random effects versus one random effect: For testing Hy: D = 0 versus H,:
D = dj;, where d); is a non-negative scalar that represents the variance component
of the random effect, then the asymptotic null distribution of -2ln Ay is a mixture of
x? and x¢ with equal weights 0.5. The xZ distribution is the distribution which gives

probability mass 1 to the value 0.

~ Case 2: one versus two random effects: In this case, one wishes to test

Hy:D = dy 0
0 0

for strictly positive dy;, versus H, that D is a (2 x 2) positive semi-definite matrix.
The asymptotic null distribution of -2In Ay is a mixture with equal weights 0.5 for x3

and x2.

Case 3: ¢ versus ¢ + 1 random effects: In this case, one wishes to test

Du 0
Ho:D= )
o 0

in which Dy, is a (¢ X q) positive definite matrix, versus H, that D is a general ((g
+ 1) x (¢ + 1)) positive semi-definite matrix. The large-sample behaviour of the null



distribution of -2In Ay is a mixture of x3,, and X3, again with equal weights 0.5.

Case 4: ¢ versus ¢ + k: In this case, one wishes to test the Hy in case 3 versus

Hy:D = Dy Dy ’

D'n Dﬁ:

in which D is a general {(¢ + k) x (g + 1)) positive semi-definite matrix. The null
distribution of -2ln Ay is a mixture of x> random variables formed by the lengths of
projections of multivariate normal random variables upon curved as well as flat surfaces.

Note that, for all the cases above, if the classical null distribution is used, then all
p-values would be overestimated. Therefore the null hypothesis would be accepted too
often, resulting in incorrectly simplifying the covariance structure of the model, thus
invalidating inferences {Altham, 1984). The correction for the boundary parameter
values under the null hypotheses therefore reduces the p-values in order to protect

against the use of an oversimplified or a too parsimonious covariance structure.

Although the results in Stram and Lee (1994, 1995) were derived for the case of
ML estimation, the same results apply for REML estimation (Morrell, 1998). In fact,
the REML test statistic performs slightly better than the ML test statistic in the sense
that, on average, the rejection proportions are closer to the nominal level for the REML
test statistic than for the ML test statistic {Verbeke and Molenberghs, 2000). For the
longitudinal mixed model, testing is done by deleting one random effect at a time from
the model starting with the highest-order effect and testing for significance of whether
the deleted random effect is needed in the model.



4.5 Estimation of the fixed and random effects

Let a denote the vector of all the variance and covariance parameters (commonly
known as variance components) in V; = Z,DZ/ + Z;. And let § = (#, a’) be the
vector of all parameters in the marginal model for g;. Then the classical approach
to inference is based on estimators obtained from maximizing the marginal likelihood

function

N
Lin® = [T {@m) ™ 21vialt x exp (53 - X0V @0 - X))} (42
=]l
with respect to 8. If « is known, then the maximum likelihood estimator (MLE) of 8,
obtained by maximizing {4.7) and conditional on &, is given by
-~ o -1 N ' . .
Blo) = (Z: x:-w‘x.-) 3 XiWy, (48)

i=1 i=l
where W; = V! (Laird and Ware, 1982). However if a is not known but an estimate
_ @ is available, then W can be replaced by its estimate W = V, = V[ }(&). Two
frequently used methods for estimating a are the MLE and the REML. The MLE of
« is obtained by maximizing (4.7) with respect to a after the 8 has been replaced by
(4.8).

In practice, the iinear mixed models often contain My fixed effects. In such cases,
it is'importa.nt to estimate the variance components explicitly, taking into account the
loss of the degrees of freedom involved in estimating the fixed effects. The REML
method puts this into practice by applying the error contrasts as follows. First the N

subject-specific regression models are combined into one model given by
y=X8+2Zb+s¢, ‘ (4.9)

where the vectors y, b and ¢ and the matrix X are obtained by stacking the vectors

v, b; and &; and matrices X; on each other. The matrix Z is the block-diagonal
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matrix with blocks Z; on the main diagonal and zero elsewhere. The dimension of
yisn= Eﬁln,-. The distribution of y is multivariate normal with mean X £ and
covariance matrix V(a). The covariance matrix V() is also a block-diagonal matrix
with blocks V; on the main diagonal and zeros elsewhere. The REML estimator for
the variance components a is obtained from maximizing the likelihood function of a
set of error contrasts U = A’y where A4 is any (n x (n - p)) full-rank matrix with
its columns orthogonal to the columns of the matrix X. The vector U has a normal
multivariate distribution with mean vector zero and covariance matrix A’ V{a)A which
is independent of 8. The likelihood function of the error contrasts is given by

N 1/2
d XX,

im]

-1/2 5

H |Vi|_l;2

=l

Le) = (zm) o2

N
XX,
f=}

N
X exp {—‘;‘ Z(Yi = xiﬁ)"’:()’i - xiﬁ)} 3
=1

where 3 is given by (4.8) (Harville, 1974). This shows that the REML estimator &

X

does not depend on the error contrasts (that is the choice of A).

This likelihood function also equals

N
D XWi(a)X;

oy ‘-l -

1
where C is a constant with respect to both o and 8, and Las(8, a) = Las(8) is the

-1/2

Le)=C Lau@e)e) (4.10)

ML likelihood function in (4.7). Therefore, the REML estimators for a and 8 can also

be found by maximizing the so-called REML likelihood function
-1/2

Leremr(0) = La(0)

N
Z XiWi(e)X;
i=1

with respect to all parameters (o and ) simultaneously.

The main justification of the REML approach is that in the absence of information

on A, no information about a is lost when inference is based on the vector U rather than
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on y (Patterson and Thompson, 1971). From a Bayesian point of view, using only error
contrasts to make inferences about o is equivalent to ignoring any prior information
about A, and using all the data to make inferences about a (Harville, 1974). However,
both ML estimation and REML estimation have the same merits of being based on the
likelihood principle which leads to useful properties such as consistency, asymptotic
normality and efficiency.

In literature, several methods for the actual calculation of the ML or REML esti-
mates have been described. Dempster, Laird and Rubin (1977) for example, introduced |
the Expectation-Maximization {(EM) algorithm for the calculation of the MLEs based
on incomplete data and illustrated how it can be used for the estimation of variance
components in mixed-models. Not only can the EM algorithm be used to calculate the
MLESs, but it can also be used to calculate the REML estimates through the empirical
Bayesian approach. However, slow convergence of the algorithm to the estimate of vari-
ance components is experienced especially when the maximum likelihood estimates are
| on or near the boundary of the parameter space (Laird and Ware, 1982). Therefore to
circumvent these convergence problems, researchers use the Newton-Raphson (and/or

the Fisher's scoring)-based procedures to estimate all parameters in the model.

It is also useful to calculate estimates for the random effects b, since they reflect how
much the subject-specific profiles deviate from the overall average profile. Since the
random effects in the linear mixed effects mode] are assumed to be random variables,
it is most natural to estimate them using the Bayesian techniques. Very often b; is

estimated by the mean of a posterior distribution called the posterior mean of b;. This
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estimate is given by:
bi(6) = EbiY:=y)]

= / bif(bely )b

DZ,-W,-(a)(yi - x-tﬁ)a

where Y, is the random vector of responses on subject i and y; are the observed values

of Y;. The covariance matrix of the corresponding estimator is given by
N -1
Var(b;(8)) = DZ; {W; - W.X; (EX:W.X.) X;'W.} Z.,D,
i=1

which underestimates the variability of 3;(9) - b; since it ignores the variation of b;.

Therefore the inference of b; is usually based on
Var(bi(6) — b;) = D - Var(b;(6))

as an estimator for the variation of b;(8) - b; (Liard and Ware, 1982). The unknown
parameters J and o are replaced by their ML or REML estimates. The resulting
estimates for the random effects are called the Emperical Bayes (EB) estimates which
can be denoted as 3,‘. However, the true variability in the estimate 3,- is underestimated
since the variability introduced by replacing the unknown parameter # by its estimate

is not taken into account. |
Estimates of the b; can also be obtained from solving a system of linear equations
(Henderson et al, 1959). Let the linear mixed model be as given by (4.9). If the
variances D and T are block-diagonal matrices with the blocks in D and in Z; on the
main diagonal and zero elsewhere, then the estimates of the fixed effects # and all the
random effects represented by vector b can be obtained from solving the mixed model

normal equations: |
X'z2-1X X'z-1zZ g X'z-ly
ZrT'X Z'z'Zz+D7 b Z'sly
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For large data sets, the computation of these equations may be expensive, making the

Bayesian approach more efficient.

Suppose that interest is in the estimation of a linear combination u = X368 + A;b;
of the vector 8 of fixed effects and the vector b; of the random effects for some known
vectors Ag and )\, of dimension p and g respectively. Then the estimator of u is given
by

e) = XB(a) + Nbi(B(e), ),
where B(a) is the ML estimator of the fixed effects and b;(8, a) = b;(8) is the EB esti-
mator of the random effects. The estimator %(«) is the best linear unbiased predictor

(BLUP) of u.

4.6 Test for normality

One may, however, ask oneself if the normality assumption for the random effects
and the residuals is appropriate. Normality checks using the probability plots, and
tests using the Shapiro-Wilk test and the Kolmogorov-Smirnov test have been used
over the years. Specifically the W-statistic (in the Shapiro-Wilk test), suggested by
Shapiro and Wilk (1965) has been shown to be a good omnibus test of normality
{Pearson, D’Agostino and Bowman, 1977). However, using simulations and analysis of
a real data, Zewotir and Galpin (2004) showed that the inferences are hardly affected
by the non-normality of the random effects. The inferences however, seemed to be
sensitive to the distribution of the residual term only. This restricted sensitivity led
to the conclusion that it is the normality of the residual term that is important in the

inferences.

The above mentioned normality tests are however based on independence of the

random effects and residuals, an assumption often violated by longitudinal dsta. In
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practice, histograms and scatter plots of components of b, {EB estimates) and the
residuals are often used for diagnostic purposes. Specifically, the scatter plots are
used to pinpoint outlying observations which arise from subjects that seem to evolve
differently from the other subjects in the sample. On the other hand, the histograms
of the EB estimates and the residuals can be used to check for the normality of the
random effects and the residuals respectively. The histogram has shown to be more‘
informative than the normal tests for longitudinal data (Hallahar, 2004).

4.7 Inference for fixed and random eﬂ'ecte

In practice, the fitting of a model is rarely the ultimeate goal of a statistical analysis.
Instead, the primary interest is to draw inferences about the parameters in a model in
order to generalize results obtained from a specific sample to the general population
from which the sample was taken. Both the fixed and the random parameters are
 tested to check for their significance in the model. The null hypothesis that a certain

model parameter is 0, that is
Ho:v=0,

can be tested using a ¢-test. The statistical estimation procedure obtains an estimate

%» with an associated standard error S.E.(%,). Their ratio is a t-value

One-sided as well as two-sided tests can be carried out on the basis of this test statistic.
Under the null hypothesis, T'(7,) has approximately a t-distribution but with the
degrees of freedom (df) different from those in multiple linear regression due to the

presence of the fixed and random effects.
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The estimate of the fixed effect in (4.8) follows a multivariate normal distribution
with mean vector § and variance-covariance matrix

N -1 s N N -1
Var(B) = (Z) x;W.-x,-) (Z)qinN(Ya)Wa‘Xi) (Z x:w.-x‘-) (411)
f=]

] =1

N -1 .
- (g x;w‘xi) . (4.12)

i=1
Inferences about this parameter can be done using the approximate wald test and the
approximate t-tests and F-tests. The wald test, also known as the Z-test, is associated
with the confidence interval of §;, and is obtained by approximating the distribution
(B} - 8;) /éf'é(@) with a standard univariate normal distribution for each parameter g,
j=1, ..., p. In general for any known full row rank matrix L, a test of the hypothesis

Ho: L8 = 0 versus Hy: LS # 0,

follows from the fact that the distributi;)n of
N -1 7!

@-pr [L (;, x:vs‘(a)m) L'] L(8 - B) (4.13)
is approximately a chi-square distribution with rank {L) degrees of freedom. However,
the wald test statistic is based on estimated standard errors which underestimate the
true validity of E This is because they do not take into account the variability in-
troduced by o (Dempster, Rubin and Tsutakawa, 1981). In practice, this downward
bias is often resolved by using approximate {- and F-tests for testing the hypothesis
about B. For each parameter §; in vector 8, j=1, ..., p, an approximate {-test and
associated confidence interval can be obtained by approximating the distribution of (B}
- B;)/5°(B;) with a t-distribution. Testing the general linear hypothesis is thus based

on an F-approximation to the distribution of

@-ov L (zhxvi@x) v LE-p

F= kD) . , (4.14)
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with the numerator degrees of freedom equal to rank({L), while the denominator degrees
of freedom have to be estimated from the data. The same is true for the degrees of
freedom in the t-approximation. In practice, several methods are available for estimat-
ing the appropriate number of degrees of freedom needed for a specific ¢- or F-test. For
example, the SAS PROC MIXED procedure includes five different estimation methods,
one of which is based on the so-called Satterthwaite-type approximation. Kenward and
Roger (1997) proposed a scaled wald statistic, based on an adjusted covariance estimate
which accounts for the extra variability introduced by estimating a. They also show
that its small sample distribution can be well approximated by an F-distribution with

denominator degrees of freedom as obtained via a Satterthwaite-type approximation.

A sufficient condition for § to be unbiased is that the mean E(y;) and marginal
covariance matrix are correctly specified as X, and V; = Z,DZ; + Z;. Thus
the estimate E is not robust with respect to model misspecification of the covariance
structure. Liang and Zeger (1986) therefore propose inferential procedures based on
the so-called sandwich estimator of var(ﬁ) obtained by replacing var(y;} by r;r; where
ri=y;-X .E The resulting estimator is also called the robust or empirical variance
estimator, and is consistent if the mean is correctly specified in the model. This
suggests that as long as interest is only in the inference about 3, one may put little
effort in modelling the covariance structure provided the data set is sufficiently large.
However, in practice, an appropriate covariance model may be of interest since it
helps in interpreting the random variation in the data. Thus, robust versions of the
approximate wald test, {-test and F-test as well as the associated confidence intervals
can also be obtained by replacing the covariance matrix (4.12) in (4.13)} and (4.14)
with the robust covariance matrix in (4.11). Note that the robust standard errors are

larger, thus leading to larger confidence intervals (Verbeke and Molenberghs, 2000).
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4.8 Longitudinal mixed model with missing obser-
vations

The problem of missing observations is common throughout statistical work, and
is almost always present in the analysis of longitudinal or repeated measurement data.
Missing data are indeed common in clinical trials, epidemiological studies, and fea-
ture very prominently in sample surveys. The most frequently encountered type of
missingness in longitudinal modelling is “dropouts” which refers to the case where all
" observations on a subject are obtained until a certain point in time, after which all
measurements are missing. Much of the treatment of missing data for longitudinal
data is restricted to dropouts. Verbeke and Molenberghs (2000) highlighted the four
reasons for this restriction. Firstly, the classification of the missing observation pro-
cesses has a simpler interpretation with dropouts than for patterns with intermittent
missing observations. Secondly, it is easier to formulate models for dropout. Thirdly
much of the literature on missing observations in longitudinal data are restricted to
this setting. Finally, dropouts are by far the most common modes of missingness in
longitudinal studies. Missing values therefore occur as dropouts, otherwise one says

that the missing values are intermittent (Diggle et al., 2002).

Early work on missing values was largely concerned with algorithmic and compu-
tational solutions to the induced lack of balance or deviations from the intended study
design. General algorithms, such as the Expectation-Maximization (EM) (Dempster
et al, 1977), and data imputation and augmentation procedures (Rubin 2004, Tanner
and Wong 1987}, combined with powerful computing resources have largely provided
solutions to this aspect of the problem. However, the difficult and important ques-
tion of assessing the impact of missing data on subsequent statistical inferences still

remains. Conditions can be formulated under which an analysis that proceeds as if
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the missing data are missing by design (that is ignoring the missing value process) can
provide valid answers to study questions,

The two common approaches to the handling of missing data are: to discard subjects
with incomplete data; and simple imputation. The first approach has the advantage
of simplicity, although the wide availability of more sophisticated methods of analysis
minimizes the significance of this approach. It is also an inefficient use of information

since some of the collected data is not used at all.

There are several forms of simple imputation. For example, a cross-sectional ap-
| proach replaces a missing observation by the average of the available observations at
the same time from other subjects with the same covariates and treatment. A simple
longitudinal approach carries the last available measurement from a subject forward,
replacing the entire sequence of missing values. A more sophisticated version predicts
the next missing value using a regression relationship established from the available past
data. These methods share the same drawbacks, although not all to the same degree.
The data set that results will mimic a sample from the population of interest, itself
determined by the analysis, only under particular and potentially unrealistic assump-
tions. Further, these assumptions depend critically on the migsing value mechanism(s).
For example, under certain missing value mechanisms, the process of imputation may
recover the actual marginal behaviour required, whereas under other mechanisms, it
" may be wildly misleading. It is also under the simplest and most ignorable mechanisms
that the relationship between imputation procedure and assumption is most easily de-
duced. In addition, the analysis of the completed data set will underestimate the true
variability of the data.

One can therefore conclude that when there are missing values, simple methods of
analysis do not necessarily imply simple or even accessible assumptions. Also, without

properly understanding the assumptions being made in an analysis, adequate judge-
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ment of validity of the analysis may not be possible.

4.9 Missing data mechanisms

In order to incorporate incompleteness or missingness into the modelling process,
the nature of the missing value mechanism and its implications for statistical inference
needs to be known. Rubin (1976) and Little and Rubin (1987, Chapter 6) make
important distinctions between different missing value processes. These are missing
completely at random (MCAR), missing at random (MAR) and missing not at random

(MNAR).

4.9.1 Missing completely at random (MCAR)

Missingness is said to be MCAR if the missing values are independent of both
. unobserved and observed data. Therefore, cases with complete data are indistinguish-
able from cases with incomplete data. Heitjan (1997) provides an example of MCAR
missing data: the case of a research associate shuffling raw data sheets and arbitrarily

discarding some of the sheets.

4.9.2 Missing at random (MAR)

Missingness is said to be MAR if conditional on the observed data, the missingness
is independent of the unobserved measurements. In other words, cases with incomplete
data differ from cases with complete data, but the pattern of missing data is traceable or
predictable from other variables in the database rather than from the specific variable
on which the data is missing. An example of MAR is the following: suppose research

participants with low-esteem are less likely to return for follow-up sessions in a study
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that examines anxiety levels over time as a function of self-esteern, and the researcher

measures self-esteem at the initial session. Then self-esteem can then be used to predict

the missingness pattern of the incomplete data.

Another example of MAR is the following: suppose investigators administer a read-
ing comprehension test at the beginning of a survey, then research participants with
lower reading comprehension scores are less likely to complete the entire survey. In
both examples, the actual variables for which data are missing are not the cause of the

incomplete data. Instead, the cause of the missing data is due to some other external

" influence.

4.9.3 Missing not at random (MNAR)

In this case the pattern of data missingness is non-random and it is not predictable
from other variables in the database. For example, if a participant in a weight-loss study
does not attend a weigh-in due to concerns about his weight loss, his data are missing
due to non-ignorable factors. In contrast to the MAR situation outlined above where
data missingness is explainable by other measured variables in a study, non-ignorable
missing data arise due to the data missingness pattern being explainable by the very

variable(s} on which the data are missing.

Looking at these three missing data mechanisms further, assume that for subject ¢
in the study, a sequence of measurements Y;; is designed to be measured at occasions
j =1, ..., n;. Then the outcomes can be grouped into a vector Y, = (Ya, ..., Yis,)-

In addition, for each occasion j, lets define the missing data indicators as:

1 if Yy is observed

j
0 otherwise.

These indicators can also be grouped into a vector R; which is of the same length as Y';.
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The vector Y; can then be partitioned into two sub-vectors such that Y7 is the vector
containing those Y;; for which Ri; = 1 and Y* contains the remaining components.
These sub-vectors are referred to as the observed and missing components respectively.

Statistical modelling thus begins by considering the full data density
ForlX, 2i,0,9) = filXi, 2, 0) f(eilys, Xiy9), (4.15)

where X ; and Z; are the design matrices for the fixed and random effects respectively;
@ and v are vectors that parameterize the joint distribution; and »; are the missing
data indicators. Let @ = (#',0') (fixed-effects and covariance parameters) and ¥ de-
scribe the measurement and missingness processes respectively then the first factor of
the factorization in 4.15 is the marginal density of the measurement process (measure-
ment model) and the second one is the marginal density of the missingness process
(missingness model). The difference in the missing data mechanisms is specified in the

second factor of (4.15), that is
FElys Xe, ) = fnlys, @ X, ¢). | (4.16)

If (4.16) is independent of the meaéurements, that is if it assumes the form f(r;| X ¢},
then the process is termed MCAR. If (4.16) is independent of the unobserved (missing)
measurements y7*, but depends on the observed measurements y¢, thereby assuming
the form f(r;|y?,X %), then the process is termed MAR. Finally when (4.16) de-
pends on the missing values y*, the process is referred to as non-random missingness

(MNAR). An MNAR is allowed to depend on y?.

If interest is in the measurement model only, then the missingness model can be
completely ignored. This means that under ignorability, MCAR and MAR have the
same fitted measurement model. If missingness process is ignorable, then a valid anal-
ysis can be obtained through a likelihood-based analysis that ignores the missingness
mechanism. This case, termed ‘ignorable’ by Rubin (1976), and Little and Rubin
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(1987), leads to considerable simplification in the analysis (Diggle, 1989)

In most instances, the reasons for missingness are many and vary. It is there-
fore very difficult to justify the assumption of random missingness. Arguably, in the
presence of non-random missingness, a wholly satisfactory analysis of the data is not
feasible. One approach is to estimate from the available data the parameters of a model
representing a non-random missingness mechanism. It may be difficult to justify the
particular choice of missingness model, and it does not necessarily follow that data
will contain information on the parameters of the particular model chosen. But where
" such information exists, the fitted model may provide some insight into the nature of
the missingness process and into the sensitivity of the analysis to assumptions about
this process. This is the route taken by Diggle and Kenward (1994); Diggle, Liang and
Zeger (1994, Chapter 11); and Verbeke and Molenberghs (2000, Section 12.4). Further
approaches are proposed by Laird, Lange and Stram (1987); Wu and Bailey (1989);
Wu and Carroll {1988); and Greenless, Reece and Zieschang (1982). An overview of
the different modelling approaches is given by Little (1995). Baker and Laird (1988);
Stasny (1986); Conaway (1992); Park and Brown (1994); and Molenberghs, Kenward
and Lesaffre (1997) look at cases of categorical outcomes. One feature, that is, however
common in all the more complex approaches is that they rely on un-testable assump-
tions about the relation between the measurement process {often the primary interest)

and the missingness process.
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4.10 Fitting the longitudinal mixed model with miss-
ingness

The basic theory on which PROC MIXED is based holds even with unbalanced
and missing data so long as the missing data is ignorable, since the PROC MIXED
procedure allows routine fitting of ignorable models with the likelihood-based methods.
From an interpretation given in Littell et al. (1996), the parameter estimates, standard
errors and test statistics from a dats set with ignorable missing data are not greatly
different from those obtained using the complete data set. However, the degrees of
freedom may be different. Therefore, before using the PROC MIXED procedure for

analysis, one has to make sure that the ignorability assumption holds.

A general MAR test for multivariate data was provided by Simon and Simonoff
(1986). Commenting on this test, Little (1988) proposes that when missing values are
_ confined to a single variable y, the standard procedure is to compare the distribution
of the fully observed variables for respondents and non-respondents, either informally

or formally, via ¢ tests for the differences in means.

In a regression setting, Simon and Simonoff (1986) explain how this test for MAR
can be undertaken when only one independent variable has missing data while the
other independent variables as well as the response variable have complete data. The
model examined is the usual fixed-effects linear regression model ¥ = X + e, with
X fixed and the error vector e distributed as N(0,02I). Examined in detail is the case
in which data is missing in one column of the X matrix with the remaining columns
complete. The vector y is considered to be complete as well. Since the missingness
in Durban-South data set is on the dependent variable y, then this approach is not

applicable to the problem at hand.
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4.10.1 The logistic regression model MAR test

A logistic regression model was proposed by Diggle and Kenward (1994) to model
the dropout process. A dropout in this case would mean that observations are made
on a subject upto a certain point in time and thereafter no measurements are obtained.
The logistic regression model can be used to explore the missing data process as fol-
lows (Fanta, 2003; and Verbeke and Molenberghs, 2000). Assume that the dropout
probability at occasion j depends on both the current outcome Yi; and the previous

one Y;;_1. This leads to the following model

In [ P(Ry; = Oly)
1 - P(R; = Oly;

)] — b0+ b + daghi, - @1

with R.;j =
0 otherwise.

The probability P(R;;=0]y:) is the conditional probability of subject i dropping
out at time j, depending on the current outcome Y;;, and the previous one ¥;;_;.
The assumption imposed here is that the relationship among the measurements on a
subject are the same, even if some of these measurements are unobserved due to non-
response. It is this assumption that allows one to infer about the informativeness of
the process of missingness (Diggle and Kenward, 1994; Diggle et al., 2002; and Verbeke
and Molenberghs, 2000). The full model (4.17) represents the MNAR model where the
process of missingness depends on the unobserved measurements. The reduced models
with ¢; = 0 and ¢; = ¢2 = O represent the MAR and MCAR models respectively.
These three models are fitted and tested for significant difference. MAR missingness
is assumed if the MNAR and MAR models are found not to be significantly differents.
MCAR missingness is assumed if MNAR and MCAR models are found not to be
significantly different. Comparisons are made by using the LR test.
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4.10.2 The MAR tests for random dropouts

Diggle (1989) and Ridout (1991) also provide testing procedures for random
dropouts in repeated measurement data. Diggle (1989) provides a method for test-
ing the hypothesis of random dropouts within groups, in the sense of being unrelated

to measurement history, when the experiment has a completely randomized design.

In a reader reaction to Diggle (1989), Ridout {1991) pointed out the connection be-
tween Diggle’s approach and a logistic regression analysis of the occurrence of dropouts.
Ridout (1991) argued that, suppose there are r dropouts out of a total of R units that
have not previously drdpped out, then the test statistic proposed by Diggle would be
the mean value of the covariate z for the r units that are about to drop out. This
covariate is a function of the measurements taken before dropout occurs. However,
Ridout (1991) conveniently considers the total of the covariate values, T say, rather
than their mean. Under the null hypothesis, T is the total of a sample of size r drawn
at random, without replacement, from the set of R values of the covariate z. It is this
T statistic which is used in a conditional test of the hypothesis # = 0 in the logistic

regression model
logit{Pr(Dropout)) = a + 8z, (4.18)

which provides a sensible reference distribution for calculating the significance level.
Specifically the observed value of T is compared with other values that might have
arisen for the given r dropouts. In addition, the conditional distribution of T does not
depend on the nuisance parameter a. Ridout (1991) also alternatively considers the

logistic regression model
logit{Pr(Dropout)) = &; + 8z, (4.19)

where { indexes the different group-time combinations. The conditional test for § =

0 involves the statistic T = 3_ T;, evaluated conditionally on the number of dropouts
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occurring in each group-time combination. The normal approximation for T is assumed
and the test statistic along with the one-sided p-value (with 1 degree of freedom) is
attained. Alternatively, the LR statistic for testing 8 = 0 referring to the chi-square
distribution can be obtained which gives a two-tailed P-value. Equivalently, the signed
square root of the LR statistic is asymptotically standard normal. Another alternative
is to simply divide the maximum likelihood estimate of 8 by its standard error and

this gives an asymptotically standard normal test statistic,

Finally, the hypothesis that the set of P-values (say p, (s =1, ..., ) obi;a.ined by
applying the above procedures to each time point within each group is a random sample
from a uniform distribution on (0,1), is tested. As a general aid to interpretation, Diggle
(1989) recommends the inspection of a probability plot of the p,. If the dropouts are
random, the p, should behave like a random sample from a uniform distribution on
(0, 1). For a formal test, the one-sided or two-sided Kolmogorov-Smirnov statistic can
be used. Note that for the final stage of the test, the independence of the P-values
‘ under the hypothesis of random dropouts within groups relies on the fact that once a
unit drops out, it never returns. Thus, this test is also not applicable for intermittent

missing values.



Chapter 5

Identification of the model

5.1 Preliminary analysis

As discussed in Chapter 2, there are five independent child-specific variables of
which School, Sez, and Asthma status are categorical variables; and Height and Weight
are continuous variables. In addition, the repeated SO» measurements, which are asso-
ciated with the response variables, also independent variables. The response variable is
the within-day variability ( WDVarFEV1), which is also a repeated measurement. To
simplify the interpretation of the results of the analysis, it is best to use the categorized

Height, and Weight measurements.

5.1.1 Classification of the height and weight measurements

To classify the measurements of the Height and Weight variables, the National
Center for Health Statistics/World Health Organization (NCHS/WHO) reference stan-
dards are used. According to Cogill (2003), the NCHS/WHO reference standards
are most commonly used to standardize measurements. They were developed by the

NCHS in the United States of America and are recommended for international use

64
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by the WHO. The reference population chosen by NCHS was a statistically valid
random population of healthy infants and children. The NCHS/WHO international
reference tables have been used for standardizing anthropometric data around the
world and can be found in the Food and Nutrition Technical Assistance (FANTA)
website: www.fantaproject.org/publications/anthropom shtml and the NCHS website:
www.cdc.gov/nchs/about /major /nhanes/growthcharts. Anthropometry is the study
of the technique of taking body measurements especially to assess and predict perfor-
mance, health and survival of individuals and reflect the economic and social well being

of the population.

These reference standards are used to standardize a child’s measurement by com-
paring the child’s measurement with the median or average measure for children of the
same age and sex. For example, if the height of a nine year old boy is 130 cm, it is
difficult to know if this is reflective of a healthy nine year old boy when there is no
comparison to a reference standard. The reference or median height for a population
| of nine year old boys is 133.7 cm and the simple comparison of heights would conclude
that the 130 cm tall child is almost 4 cm shorter than expected.

However the 4 cm height difference with the reference for a nine year old boy is not
the same as a 4 cm height difference with the reference for a seventeen year old boy
because of their relatively different body sizes due to their difference in age. Taking
the age and sex into consideration, differences in measurements can be expressed in a
number of ways namely (1} standard deviation units or Z-scores; (2) percentage of the
median and (3) percentiles.

The Z-Score or standard deviation (SD) unit is defined as the difference between

the value for an individual and the median value of the reference population with the

same age or height as the individual, divided by the standard deviation of the values


http://www.fantaproject.org/publications/anthropom.shtml
http://www.cdc.gov/nchs/about/major/nhanes/growthcharts

of the reference population. This is,

Observed value — median value of reference population
Standard deviation of reference population )

Z-score (or SD-score) =

A positive Z-score means that the individual’s measurement is higher than the reference
median whereas a negative Z-score means that the individual’s measurement is lower
than the reference median. The distribution of Z-scores is a normal (bell-shaped or

Gaussian) distribution (Cogill, 2003).

The percentage of the median is defined as the ratio of a measured or observed
~ value of the individual to the median value of the reference population with the same
age or height for the specific sex as the individual, expressed as a percentage. That is,

Observed value x 100
Median value of reference population

Percentage of median =

If a child’s measurement is exactly the same as the median of the reference population,
then the child is said to be ‘100 of the median’. Lastly, the percentile is the rank
position of an individual relative to the reference distribution, stated in terms of the

percentage of the group the individual equals or exceeds.

Cut-offs are then used to enable the different individual measurements to be con-
verted into prevalence statistics. Cut-offs are also used for identifying those children
suffering from or at a higher risk of adverse outcomes. The most commonly used cut-off
with Z-scores is -2 standard deviations, irrespective of the indicator used. This means
that children with a Z-score below -2 SDs are considered to be moderately or severely
malnourished for example children that are underweight (low weight-for-age}, that are
stunting (low height-for-age) or wasting (low weight-for-height).

The low weight-for-age index identifies the condition of being underweight for a
specific age while a deficit in height-for-age is referred to as stunting. A low weight-for-
height value helps to identify children suffering from current or acute undernutrition

or wasting and is useful when exact ages are difficult to determine.
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The cut-off points for different malnutrition classification systems are listed in Table
5.1. The most widely used system is the WHO classification (Z-scores). The Road-
to-Health (RTH) system is typically seen in clinic-based growth-monitoring systems.
The Gomez system was widely used in the 1960s and 1970s, but is only used in a few
countries now. Mild, moderate and severe are different in each of the classification
systems listed in Table 5.1. It is important that the same system is used to analyse
and to present the data. The RTH and Gomez classification systems typically use

weight-for-age.

Table 5.1: Malnutrition Classification Systems

System Cut-off Malnutrition classification
WHO <-110 > -2 Z-score mikd
< -2to » -3 Z-score moderate
< <3 2-score severs
RTH > 80% of median normal
60% - < 80% of median mild-to-moderate
< 60% of median severe
GQOMEZ > 90% of median normal
75% - < 90% of median mild
60% - < 75% of median moderate
« 60% of median severe

— Source: hitpJ/www.lantaproject.org/publications/anthropom.shimi

For this study, the Z-scores are used to classify the Weight and Height measure-
ments. The Weight variable is coded as follows: 1 for Risk of underweight (< -1.25
Z-score); 2 for Normal (-1.25 < Z-score £ 1.25); and 3 for Risk of overweight (> 1.25
Z-score). The Height variable is coded as follows: 1 for Short (< -1.25 Z-score); 2 for |
Normal (-1.25 < Z-score < 1.25); and 3 for Tall (> 1.25 Z-score)


http://www.fantaproject.org/publications/anthropom.shtml
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5.1.2 The distribution of the children by the child-specific

variables

In this section, the structural distribution of the five child-specific variables School,

Sex, Asthma status and the classified variables Height and Weight is explored. A total

of 233 children are considered for the analysis. Of these, 58 are from Nizam Road,

46 are from Assegai, 16 are from Dirkie Uys, 59 are from Ferndale and 54 are from

Ngazana as shown in Table 5.2. Dirkie Uys is represented by the least number of

children which was due to high refusal rate of the parents and guardians for their

children to participate in the study. Table 5.2 also shows that 58% of the 233 children

are female while 24% of the total are persistent asthmatics and 27% are asthmatics.

Table 5.2: The distribution of children by sex, asthma status and school

Sex Asthma status
Persistent

School Male | Female | Total | Asthmatics | Asthmatics | Normal ] Total
Nizam Road 29 29 58 15 15 28 58
Assegal 17 29 46 17 9 20 46
Dirkie Uys 9 7 18 3 7 6 1 16
Femcdale 27 32 58 10 17 32 58
[Ngazana 17 37 54 10 15 29 54
Total 99 134 | 233 55 62 15 | 233

Table 5.3 shows the distribution of children by Height and Weight. About 16% of

the children in the study are too short for their age while 5.6% are too tall for their

age. In addition, 18% are underweight while 15% are overweight.



Table 5.3: The frequency distribution of children by height, weight and school

Height-for-age classification Weight-for-age classification
Short-for- | Normal-for-] Tall-for- Under- [ Normal-for-| Over-

School age age age | Total | weight age weight | Tatal
Nizam Road 17 40 1 58 27 24 7 86
Assegai 5 35 8 46 4 as 7 46
Dirlde Uys 1 14 1 16 12 4 16
Ferndale 4 53 2 59 s 45 9 659
N 10 41 3 54 ] 40 8 54
Tota! 87 183 13 233 42 156 35 233

5.1.3 The data structure of the SO; pollutant measures

In this section, the pollutant measures are explored. Figure 5.1 and Figure 5.2
present the pollutant measures for each school and for the Phase I blow exercise which
was carried out between the 31st May 2004 and 18th June 2004. The summary mea-
surement displayed in Figure 5.1 are the peak counts for the 24 hours prior to the child’s
first blow of the day, while the 8-hour maximum of the moving averages computed 24
hours prior to the child’s first blow of the day are represented in Figure 5.2.

As shown in both graphs, Nizam road, Assegai and Dirkie Uys schools recorded
more SO; activity when compared to Ferndale and Ngazana schools. Figure 5.1 shows
that Nizam road registered the highest total number of times that the pollutant levels
went beyond the standard guidelines, with 24 peaks. This is followed by Assegai, with
19 peaks. Ngazana had the lowest total number of peaks, with 6 peaks. Dirkie Uys
and Ferndale schools had 8 and 11 total number of peaks respectively. The actual
peak counts are shown in Appendix A.1 while the SO2 readings that are above the
standard guideline of 191ppb are shown in Appendix A.3. Despite Ngazana having the

lowest number of peaks, it registered the highest pollutant levels followed by Ferndale,



as shown in Appendix A.3.
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Figure 5.1: The graphical representation of the peak counts.
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Figure 5.2: The graphical representation of the 8-hour maximum of the SO, moving averages.

For the alternative pollutant measure, which is the 8-hour maximum of the moving
averages, a graphical representation of all the 8-hour maximum values for each school
on a particular date are shown in Figure 5.2. These are generated from the table in

Appendix A.2. Figure 5.2 shows Nizam road and Assegai schools with the highest
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- values while Ngazana registered the lowest values with one hike on the 10th of June
2004. The same conclusion can be drawn from the average and total of the 8&hour

maximum values generated per school (Appendix A.2).

To account for the possible lag effects 1 - 5 day-lag pollutant variables are con-
sidered for each of the two summary measurements as described in Section 2.2. This
results in a total of ten pollutant variables (five peaks and five 8-hour maximum vari-
ables) to be included in the model. However, before doing so, they are first tested for
multicolinearity. This is first done by using their correlation coefficients shown in Table

- b4,

Variables Peak! to Peak5 are the 1 - 5 day-lag peaks pollutant variables while
HrMaz! to HrMaz5 represent the 1 - 5 day-lag 8-hour maximum pollutant variables.
Most of the pollutant variables are significantly correlated at 5% significance level.
Further more, the correlation between the peak and 8-hour maximum variables for the
same lag period are large. That is to say, Peak! is highly correlated with the HrMax!
with correlation coefficient 0.85816, Peak? is highly correlated with the HrMaz2 with
correlation coefficient 0.74655, Peak8 is highly correlated with the HrMaz8 with corre-
lation coefficient 0.85819, Peak{ is highly correlated with the HrMaz{ with correlation
coefficient 0.88096, and Peak5 is highly correlated with the HrMaz5 with correlation
coefficient 0.83478.



Table 5.4: Pearson Correlation coefficients and prob > |r| under Hy: p = 0

Peak1 Poak2 Peak3 Poakd Poak$ Heiax)  HriMa@  HeMax3d  HriMax4  HrMax5
Peakl 1 0.02107 008337 007164 -0.00304 085816 -0.00398 0.10327 -0.06256 -0.0917%
0.2289 <.0001 <0001 «.0001 <0001 08202 <0001 0.0003 «.0001
Poak2 0.02107 1 005799 0.13188 -0.08571 0.14936 (.74655 (.14214 020534 0.01059
0.2280 0.0009 «.0001 «.0001 <0001 «,0001 «,0001 <0001 0.5453
Peak3 0.08337 0.05799 1 00063 005718 019669 027646 085819 0.03917 001714
<0001 0.0009 0.7192 0.0011 «<.0001 <.0001 <0001 0.0253 0.3277
Peakd -0.07164 0.13168  .0.0063 1 0.05394 002217 0.17446 01306 0.88096 -0.01892
<0001 <0001 0.7192 0.0021 0.2056 <0001 <0001 <0001 0.2799
Poalis -0.09304 -0.08571 -0.05718 -0.05334 1 0.0077¢ 000229 -0.01349 0.05307 0.83478
<0001 <0001 0.0011 0.0021 0.6571 0.89¢ 04411 00024 <0001
HrMax1 0.85816 0.14638 0.19869 0.02217 -0.00778 1 033236 036109 017087 0.146%7
<0001 «.0001 <0001 02056  0.6857 <0001 «<.0001 <0001 <0001
MHeMax2 -0.00398 0.74855% 0.27848 0.17440- 0.0022¢ 0.33236 1 0.51485 041853 027879
0.8202 <0001 <0001 <0001 0.896 <.000% <0001 <0001 «.0001
Hivax3 010327 01414 085818 013816 -0.01349 036109 051485 1 0.33003 0.21201
«.0001 <0001 «.0001 «.0001 0.4411 <0001 <.0001 <0001 <0001
Hriviax4 -0.06256 0.20534 0.03917 0.88096 0.05307 0.17087 0.41953 0.33003 1 0.26563
0.0003 <0001 0.0253 <0001 0.0024 <000 <0001 <0001 <.0001
Hdaxs -0.09175 0.0105% -001714 001892 083478 0.14697 027879 0.21201 0.26563 1
<.0001 0.5453 0.3277 0.2798 <.0001 <.0001 <0001 <0007 <.0001

The alternative indicator of multicolinearity known as the variance inflation factor

(VIF) is used to detect multicolinearity to the pollutant measures. As shown in Table

5.9, all the VIF values are larger than one. However, a serious problem of multicolin-

earity is detected for variables Peak{, HrMaz3 and HrMazx{ as their VIF values are

greater than 10.



Table 5.5: The Variance inflation factor for the 10 pollutant independent variables

Variance Inflation
Variable (j) Factor (VIF)

Peak1 8.51640
Peak2 4256317
Peakd 8.27524
Peakd 11.31774
Peaks 6.20494
Heax1 10.07748
HiMax2 7.92122
Hrivad 12.02757
Heax4 15.24270
HrMax5 9.61287

To solve the multicolinearity problem, the PCA is applied to the ten pollutant vari-
ables using the SAS PROC FACTOR procedure. The PCA is based on the correlation
matrix of the pollutant variables given in Table 5.4. The eigenvalues of the pollutant
correlation matrix are found to be 2.96853292, 1.98310222, ..., 0.03028539 as shown in
Table 5.6. These add up to 10, the sum of the diagonal terms in the correlation matrix.
The corresponding eigenvectors are shown in Table 5.7 and are standardized so that
the sum of the squares of the components is unity for each one of them. These eigen-
vectors provide the coefficients of the standardized pollutant variables in the principal

components.

The eigenvalue for a principal component indicates the variance that it accounts for
out of the total variances of 10. Thus, the first principal component (Z,) accounts for
(2.96853292/10)100% = (0.2969 x 100)% = 29.69% of the total variance, the second
for 19.83%, the third for 17.76% and so on as shown in the column ”Proportion” in
Table 5.6. Clearly, the first component is more important than the others, the second

is more important than the third and so on. Notice also that the first five principal
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components (eigenvalues > 1) account for 94.5% of the total variance. The eigenvectors

after rotation are shown in Table 5.8.

Table 5.6: The eigenvalues of the correlation matrix for the 10 pollutant variables

Component

(4] Eigenvalue  Proportion  Cumulative
2.968533 0.2969 0.297

2 1.983102 0.1983 0.495

3 1.776366 01776 0.673

4 1.454928 0.1455 0.818

1.264508 0.1265 0.945
0.334569 0.0336 0.978

*® O

7 0.094515 0.0095 0.968
8 0.050307 0.0050 0.993
L 0.042888 0.0043 0.897
10 0.030285 0.0030 1.000

Table 5.7: The eigenvectors of the correlation matrix for the 10 pollutant variables

Elganvector, coefficlent of
Poaki Poal2 Poakd Peakd Peaks HriMax? HrMax2 HrMax3 HrMax4 HrMaxs
0.25955 051829 054183 0.44251 0.09756 057286 0.80182 0.77988 0.85610 0.35194
0.68350 001850 -0.33755 038553 0.59726 -0.53271 007728 -0.18066 0.45753 0.59419
030158 -0.28121 006191 -0.56738 0.73285 033553 -0.09420 0.10076 -0.3815t 0.668736
057364 -0.00956 -0.64077 035874 0.06103 048841 -0.12464 -0.47336 0.31917 0.05245
0.07036 -0.75762 0.33327 0.38609 0.02046 0.02292 -0.50237 0.25400 0.29140 -0.02787
013821 0.26881 0.21941 0.18644 027253 010265 -0.19257 -0.00494 -0.09881 -0.14294
004480 0.12484 -0.03218 -0.05696 -0.10798 -0.05636 -0.17613 0008287 006283 0.12635
093733 004372 000816 -0,01434 -0.01071 -0.14850 0.07773 -0.01191 002316 001937
001458 -0.00459 0.11174 000632 -0.08910 002418 000523 013348 0.00007 0.08262
0.00664 -0.00487 -0.0255¢ 009911 -0.03083 -0.00674 0.01275 0.03056 -0.11626 0.05906

2PN Rs@n <N

Table 5.8 shows that Z; (for component 1} is high if Peak3 and HrMaz3 are high.
The other coefficients are very low which means that their values do not affect Z,.
The same applies to the other principal components and as shown by the bold figures
in Table 5.8. Since the first five principal components account for 94.5% of the total
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variance, the other five principal components (that account for a small proportion of

the variation in the data) can be discarded.

Table 5.8: The rotated eigenvectors of the correlation matrix for the 10 pollutant variables

Rotated eigenvector, coefficient of
HrMax1  Peak2 HrMax2 Peak3 HrMax3 Peak4d HrMax4 Peak5  HrMax5
0.01638 0.17155 0.00837 0.29187 0.97934 0.92276 0.00935 0.10055 -0.03457 0.06030
-0.06071 0.06602 0.07551 0.18564 -0.03670 0.16232 0.98073 0.94204 -0.01897 0.07533
-0.08116 0.06964 -0.04803 0.11607 -0.04674 0.07860 -0.06337 0.12888 0.96729 0.94596
0.97490 0.93997 0.03606 0.08761 0.05060 0.13838 -0.02963 0.03127 -0.03658 0.01878
-0.02601 0.13133 0.98861 0.79620 0.04126 0.14145 0.04744 0.15705 -0.04915 0.06870
-0.09990 0.14384 -0.11486 0.47121 -0.05783 0.15128 -0.06690 0.13481 -0.09120 0.14354
-0.03017 0.04315 -0.00770 0.04250 -0.05917 0.08868 -0.07490 0.10217 -0.22015 0.25544
-0.01920 0.03024 -0.00330 0.02498 -0.15996 0.20993 -0.03512 0.05607 -0.03765 0.05251
-0.16431 0.19200 -0.00240 0.02296 -0.01341 0.02851 -0.01066 0.02251 -0.01548 0.02735
-0.00972 0.01565 -0.00190 0.01662 -0.02190 0.03473 -0.13965 0.16716 -0.02474 0.03767

:

W OO e W =N

-
(=]

Notice that the principal components combine the variables for the same lag period
, for example, Peak3 and HrMaz8 are combined in the Z,, Peak{ and HrMazj are
combined in the Z, and so on. This limits the separate determination of the effect of
the two summary measures (that is the peaks and the 8-hour maximum measures).
As mentioned in Section 2.2, the peaks and the 8-hour maximum pollutant measures
represent two different measures of the pollutant, therefore they are both useful in the
analysis.

To enable the separate determination of the effect of each of the pollutant measures,
two summary measures (peaks and 8-hour maximum) are split such that an analysis
of the five variables for each summary measure is done separately. That is to say, have
two models, the first one with the peak variables Peak! to Peak5 as the pollutant
independent variables and the second one with the 8-hour maximum variables HrMaz1

to HrMaz5 as the pollutant independent variables.
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Table 5.9: The Variance inflation factor for the pollutant measures with the peaks and the 8-hour

maximum computed separately
Poaks 8-hour maximum
Variance Inflation Factor Variance Inflation Factor
Variable () (VIF) Variable (j) (VIE)
Peakil 1.02214 Hriax1 1.19418
Peak2 1.02517 HriMax2 1.64405
Peak3 101235 HrMax3 1.51251
Paak4 1.02278 Hrilax4 1.28202
Peak5 1.02208 HrMaxh 1.14945

Table 5.4 shows that the correlations among the peaks variables, and among the
8-hour maximum variables are low in absolute value but are significantly different from
zero. However, the VIF values presented in Table 5.9 show that when the peaks and
8-hour maximum measures are fitted separately, all the respective VIF values are close
to one. This shows that there are weak linear relationships between variables Peakl,
..., Peak5 as well as among the variables HrMaz1, ..., HrMaz5. The significance of
the correlations among the five peak variables and among the five 8-hour maximum
pollutant variables can be attributed to the large size of the data. In conclusion, it was
decided to fit two separate models, one with the five peaks pollutant measures as the
pollutant variables and the other with the five 8-hour maximum pollutant measures as

the pollutant variables.

5.1.4 The fixed-effects structure

In order to choose a fixed-effects structure for the longitudinal mixed model to be
fitted, a profile of how relevant sub-populations evolve over time needs to be described.
This aids one to visualize the pattern of the data over the different times (time being
expressed by days in the study). The individual profilez for 30 randomly selected
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children for each of the three asthma status categories are displayed in Figure 5.3. The

mean profiles for each asthma status of all the children in the study are shown in Figure

0.4.
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Figure 5.4: Mean profiles for the WDVarFEV1 response variable. The solid line represents the

persistent asthmatics, the dashed line the asthmatics and the bold line the normal children.

By looking at the profile plots in Figure 5.3 and Figure 5.4, it is difficult to de-
termine the most appropriate functional form of dependence of the summary FEV1
measure on time. The scatter-plot smoother described in Section 4.1 is therefore used
to find the functional dependence without imposing parametric assumptions about the

dependence. Using the SAS PROC LOESS procedure, the non-parametric curves dis-
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played in Figure 5.5 are constructed. This loess fit is applied to the randomly selected
30 children for each asthma status sub-population.

Porsistent Asthwatios : Asthmatics Normal chitdren
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Figure 5.5: The Loess smooth curves of WDVerFEV1 against day for the random sample of respec-
tive asthma status sub-populations. The smoothing parameter is chosen using the AIC criteria.

Figure 5.5 shows that persistent asthmatics experience a sharp fall in the WDVar-
FEV1 at the beginning of the phase, thereafter the decrease slows down. These curves
suggest a curvilinear statistical relationship between the WDVarFEV1 and time. Asth-
matics experience a sharp fall in WDVarFEV1 at the beginning, reaching a minimum
in the middle of the phase where it stabilizes up to the end of the phase. Asthmatic
curves, therefore, also suggest a curvilinear statistical relationship between the WD-
VarFEV1 and day. As for the normal children, there is approximately no change in
WDVarFEV1 throughout the phase except for a slight fall, then rise towards the end
of the phase. In general, the curve for the normal children shows approximately no
relationship between the WDVarFEV1 and time. The patterns in Figure 5.5 therefore
suggest that it would be reasonable to approximate the relationship by a quadratic

function of time.
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5.2 Selection of a preliminary mean and random-

effects structure

The plot of individual profiles in Figure 5.3, mean profiles in Figure 5.4 and the
loess smoothed curves in Figure 5.5 suggest that a polynomial of degree two seems
adequate to explain the WDVarFEV1 as a function of time. The preliminary infor-
mal analysis also indicates that the intercept and slopes are different for the different
children. This leads to the inclusion of the child-specific regression coefficients, that
represent the random effect, in the longitudinal mixed model. The first stage model
can therefore be presented as a quadratic function over time, where the day is expressed

as time of the model as follows:

Yy = Bo+ Buti + Bait?; + ByPeakly

+3;Peak2;; + BsPeak3;; + ﬁ4Peak4,-,- + BsPeakb;; + €45,

where i=1, ..., 233 refers to the ¢-th child and j=1, ..., n; refers to the j-th repeated
measurements for the i-th child. The Peakl, ..., Peak5 are the SO, peak count
variables for the five day lags. In the alternative model, the SO, variables considered
are the 8-hour maximum measures denoted by HrMazl, ..., HrMaz5. The time and
squared time points are represented by t;; and % respectively.

In the second stage of the model development, the child-specific intercept (o)

and slopes (), B2;) are related to the child-specific categorical variables School, Sexz,
Asthma status, Height, and Weight. The model at the second stage then becomes:



Boi = Y01Schooly; + Ye2Schooly; + YosSchooly;
+704Schooly; + yosSchools;
+do1Sexy; + SpzSexg;
+8y; AsthmaStatus,; + fp2 AsthmaStatusy; + Oy9 AsthmaStatusg,
| +Apy Weight,; + Aoz Weight,; + Agsweights,

B = ~11Schooly + 7128chooly + m3Schools;
+74Schooly; + 715Schools
+8115ex); + Gy28exy;
+61; AsthmaStatusy; + §12AsthmaStatusy; + 6 3AsthmaStatusy;
+A1 Weight,, + Aj2Weight,, + Azweights,

+ay;Height,; + ajyoHeight,; + ajgHeights; + by,

B2 = <y21Schooly; + yaeSchooly; + ¥e3Schooly;
+7243chooly; + YosSchoolg;
+8215ex); + d228exy;
+8;) AsthmaStatus,; + §x»AsthmaStatusy; + 83 AsthmaStatuss,
+Ag Weight,; + AzaWeight,; + Axsweight,
+ag Height,; + axHeight,; + azsHeightg; + by,
where Nizam Road, Assegai, Dirkie Uys, Ferndale and Ngazana are the school factor

levels; Male and Female are the sex factor levels; Persistent asthmatic, Asthmatic
and Normal are the asthma status factor levels; Underweight, Normal weight and
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Overweight are the weight factor levels; and Short, Normal height and Tall are the
height factor levels. These second stage models can be rewritten as follows:

- 2
Boi = D ocSchoolg; + Y dpsSexs;
Sm=]

Cm=]

3 3 3
+ Y GpuAsthmaStatusy; + »_ dowWeightw; + 3 o Heightp, + bos,

u=t Wal h=1
where ¢=1, ..., 5 corresponds to Nizam Road, Assegai, Dirkie Uys, Ferndale and
Ngazana respectively; s=1, 2 corresponds to Male and Female respectively; u=1, 2,
3 corresponds to Persistent asthmatic, Asthmatic and Normal respectively; w=1, 2, 3
| corresponds to Underweight, Normal wetght and Overweight respectively; and h=1, 2,
3 corresponds to Short, Normal height and Tall respectively. Likewise,

5 2
Bu = 3 mcSchoole; + Y disSexs;
=1 s=1

3 3 3
+)_ 6uAsthmaStatusu; + 3 AiwWeighty; + 3 o, Heighty,, + by,
u=1 W=l h=1

5 2
Bu = D vecSchoole+ ) dosSexe
S=]1

C=1

3 3 3
+ ZomAsthmaStatusug + z: AowWeightyy,, + Z azhHeighth‘ + ba;.
U=} .

Wax] h=1
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The combined model in this case is
5 2
Vi = 3 vcSchoolci + ) dosSexs;
c=1 8=1

3 3 3
+  fouAsthmaStatusu; + ) dowWeightyy + ) _ @y Heighty,

U=] W=] hﬁi
s 2
+ E TieSchooleit;; + E d1sSexsity;
c=1 g=1

3 3 3
+_ BruAsthmaStatusuiti; + ) AvwWeightwti; + Y oy Heighty, ti;

5 2
+ 3 1acSchooleit]; + D _ SzsSexsit];
c=1 8=1
9 3 ' 3
+ ) 6uAsthmaStatusyity; + 3 dgwWeightwt?; + ) a,p, Heighty, 2

U=7 W=l h=1
+B1Peakly; + frPeak2,; + BsPeak3;; + B,Peakd;; + BsPeakd;

+bo; + bitj + batd; + €45

Let y; be the n;-dimensional vector of all the repeated measurements for the i-th child,

that is y; = (¥, ¥i2, - . - %in,)’, then the model can be summarized as follows:

X8+ Zb; +¢;

b ~ N(0,D)

v;

& o~ N(oa 21)

v ~ N(X.8,Z2,DZ;+ %),

Where the ﬁxed eﬂe‘:ts parameter ﬁ = (1013 s ooy Y055 601; 6021 901: 002 ’9033 ’\Ols ’\02) ’\O{h
&01, Qo Xo3y Yily -+ -3 N15» Jlb 612$ oll! elﬁa 913& 'xlla /\l2$ '\13$ o1y, 012y O3, Y210
Ya5, 021, 892, 01, 020, O23, Aoy, A2z, A3, 1, i, @23, fh, ..., Ps)’ and the child-specific
effects b; are represented by b; = (boi, by, bai).

Random effects by, ..., by, &1, ..., &€y are assumed to be independent with D

as a general (3 x 3) covariance matrix with (¢, j) element d;; = d;; and T; as an
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(n; x n;) covariance matrix respectively. A somewhat less crucial assumption is that
these random effects are drawn from a normally distributed population. These child-
gpecific effects will usually not be independent but will be correlated. However, it is
assurned that for different children, the pairs of the random effects, (by:, by, by;), are
independent. The y; is thus also assumed to be normally distributed with mean vector
X3 and covariance matrix V; = Z,DZ, + L.

The model with the peaks as the independent pollutant measures will be referred
to as the ‘peaks pollutant model’ while the model with the 8-hour maximum as in-
dependent pollutant measures will be referred to as the ‘8-hour maximum pollutant
model’. The peaks pollutant model will discussed in Chapter 6 and the 8-hour maxi-

mum pollutant model will be dealt with in Chapter 7.



Chapter 6

Analysis of the peaks pollutant

model

The peaks pollutant model for the j-th repeated measurement of the i-th child

can be represented by

. . 5 2 3 3
Vi = 3 vcSchoolei+ Y dosSexsi + _ ouAsthmaStatusy; + Y dowWeighty

C=l 8=] U=1 W-l

+ z aohHelghth‘ + 2 ’YlCSChOO]c,ti_, + z JlsSexs.t., + Z GmAsthmaSt.atusu,t;,

S=1 Um=]

+ z Maw Weighty,t:; + Z a,, Heighty t:; + Z ~acSchooleit?; + Z SxsSexsit?;

w=1 h=1 $=1
+ E GuAsthmaStatusu.tu + Z: Awaelghtw,t‘j + Z azhHelghth‘ i
U=7 h=1

+131Pea.k1.-,- + ﬁgPea.k2ij + ﬁaP&&kﬁij + )34Pea.k4;j + ﬁsPeak&,

+bos + bagti; + baitd; + €45,

(6.1)

where i=1, ...,233 are children in the study; j=1, ..., n; are the repeated measure-

ments; ¢=1, ...,5 corresponds to Nizam Road, Assegai, Dirkie Uys, Ferndale and

84
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Ngazana respectively; s=1, 2 corresponds to Male and Female vespectively; u=1, 2,
3 corresponds to Persistent asthmatic, Asthmatic and Normal respectively; w=1, 2, 3
corresponds to Underweight, Normal weight and Overweight respectively; and h=1, 2,
3 corresponds to Short, Normal height and Tall respectively. The dependent variable
WDVarFEV1 is represented by ¥;; while the pollutant variables are the repeated mea-
surements Peakl;;, Peak2;;, Peak3;;, Peakd;; and Peak5;;. The time and squared
time points are represented by &; and ¢ respectively; by, by; and by, are the random

effects; and &,; is the measurement error.

6.1 Exploring the covariance structure of the model

In this type of longitudinal study, there are at least three possible components of
variability namely: random effects, serial correlation and measurement error (Diggle et
al., 1994; Fanta, 2003). Random effects are the effects that arise from the characteristics
" of the individual children. Therefore, these effects explain the stochastic variation
between children. On the other hand, the repeated measurements (WDVarFEV1)
on successive occasions of the same child are most likely to be serially dependent.
Hence, one would not be able to extract as much information from these dependent
measurements as one would be able to extract from the same number of independent
measurements. That is, serial correlations mask part of the within-child variation
in the data. Finally, because the WDVarFEV1 measurements are determined using
an airwatch machine during data collection, it is natural to expect the existence of
measurement error.

Figure 6.1 displays the graph of the estimated variance of the residuals versus
time for each three asthma status sub-populations. The variance function seems to be

relatively stable and hence a constant variance model is plausible,
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Figure 6.1: Plot of the variance of residusls against time generated from the peaks pollutant model.
The solid line represents the persistent asthmatics, the dashed line the asthmatics and the bold line

the normal children.

To gain insight into the association among the repeated measurements of WDVar-
FEV1 within-child, a scatter-plot matrix of the residuals is constructed using model
{(6.1). The scatter plots in Figure 6.2 have circular shapes indicating that the serial
correlations are not very strong. Since the effect of serial correlation seems to be dom-
inated by the combination of random effects and the measurement error, the serial

correlation is not included in the model.

Conditional on the selected set of random effects, the covariance matrix D for the
random effects b; and the covariance matrix I; for the error components &; needs to
be specified. Although many possible covariance structures are available, Verbeke and
Molenberghs {2000) suggest that for longitudinal data, the unstructured covariance

structure is the preferred covariance structure for the random effects.

For the covariance structure of the measurement error, a choice has to be made
from among the three most commonly used structures in longitudinal mixed models

that is: the compound symmetric (CS), autoregressive order one (AR(1}), and the un-
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Figure 6.2: Scatter plot of residuals by time. The residuals are generated from the peaks pollutant

model. D1 to D14 in the main diagonal represent the 14 repeated measurements.

structured covariance (UN) structures. The application of the unstructured covariance
structure to the data set in this study led to the failure of model convergence. Compar-
ison is therefore made only between the compound symmetry and the autoregressive
covariance structures. The values of the criteria for the two covariance structures are
shown in Table 6.1. Since the covariance structure with the largest values of the criteria
is considered to be most desirable, all the three model-fit criteria point to the choice of
CS. Therefore, the compound symmetry structure is chosen for the covariance matrix

¥;. The CS covariance structure will therefore assume the form

(02+03 crf +a§ \
o2 o*+0? o?




Table 6.1: Covariance structure criteria for the random effects of the peaks pollutant model

Covariance Structure AIC AICC BIC
CS -2031.1 -2031 -2003.5
AR(1) -2040.3 -2040.3 -2012.7

6.2 Model reduction

6.2.1 Tests for t_he significance of the random effects

Using the covariance structure chosen, an investigation is carried out to check the
significance of the random effects represented in the model are needed in the model
(6.1). In this procedure, all the reduced models obtained by deleting one random effect
from model (6.1) are tested. The models and the associated log-likelihood values are
shown in Table 6.2. Further more, Table 6.3 shows the LR test statistics for comparing
the models.

A mixture of two chi-squared distributions with k; and %, degrees of freedom, with
equal weights 0.5, are therefore denoted by Xi;:bz- For example, the p-values obtained
under the ML estimation for the comparison of Model 2 versus Model 1 can then be

calculated as

P0is > 6.7)

%P(xg >6.7) + %P(xg > 6.7).

-
I

The naive asymptotic null hypothesis is the one which follows from applying the
classical likelihood theory, ignoring the boundary problem for the null hypothesis. In
calculation of the p-values, the the covariance structure is simplified by deleting any
of the random effects from the model if the computed p-values of the higher random
effects are larger than the §% level of significance.



Table 6.2: The four random-effects models for the peaks poliutant model

The Maximum log-#kehood (NL{BI]
Random effects ML REML
Model 1: intercepts, time, time® 1232.15 1023.55
Model 2: Intercepts, time 1228.80 1019.60
Model 3: Intercepts 1220.3% 1009.50
Model 4: No random effects 1220.35 1008.80

The comparison “Model 4 versus Model 3" has a result of -2In{Ay)= 0 which means
that there is no difference between models 4 and 3. The computations of the p-values
are therefore done only for the comparisons “Model 2 versus Model 1” and “Model 3
Versus Model 2" and these computed p-values are shown in Table 6.3.

Table 6.3: The likelihood ratio statistic with the correct, the naive asymptotic null distributions for
comparing random-effects models and the comperison p-values for the peaks pollutant model

Likelihood ratio statistic (-2 'M_ distributio:u P-value
Hypothesis ML REML Comect  Nalve ML REML
Model 2 versus Model 1 67 79 Caa e 0.05859  0.03369
Model 3 versus Model 2 16.9 202 Ciz e 0.00013  0.00002
Model 4 versus Model 3 0 0 ﬁ, ft — o

The REML procedure provides p-values that are smaller than 0.05 for all compar-
isons which means that for this procedure the covariance structure can not be simplified
by deleting any of the random effects in model 1. The ML procedure, however, gives
p-values that are larger than 0.05 for the comparison “Model 2 versus Model 1”7, and
p-values that are smaller than 0.05 for the comparison “Model 3 versus Model 2”.
This means that using the ML procedure, the covariance structure can be simplified by
deleting the highest random effect which is the squared time effect. However, since the

REML estimation performs slightly better than the ML estimation method {Section
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4.4.2), the results from the REML estimation are considered. Thus, no random effect
is deleted from the model.

6.2.2 Test for the significance of the fixed effects

With the final covariance structure for the model selected, the preliminary mean
structure can be improved. The mean structure is improved by including in the model
significant interactions of the child-specific variable; among themselves. Since there are

five child-specific variables, then there are 10 possible 2-way interactions, 10 possible

3-way interactions, 5 possible 4-way interactions, and 1 possible 5-way interaction.

The LR test, using the ML procedure, is therefore used to see whether or not
the model with the preliminary mean structure significantly performs better with the
introduction of an additional interaction effects of the child-specific variables. As dis-
cussed in Section 4.4.1, this test can be used to compare models with different mean
structures, and that test is only valid if the models are fitted using the ML procedure.

Let the preliminary model be denoted by M, and the model with the additional
2-way interaction terms be denoted by M,;. To compare the two models, the -2 log-
likelihood values for the two models are obtained using the SAS software. Using these
values, the LR test statistic -2ln(\y) is computed by calculating the difference (-2lg) -
(-21;) where { is the log-likelihood of model M, and !; is the log-likelihood of model
M,.

Also calculated are the additional degrees of freedom (m, - my) where m; and my are
the respective number of parameters in the models M, and M, . The LR test statistic is
then compared with the chi-square value x2 1y, . Only those 2-way interactions with
p-values less than 0.05 are retained in the model. The LR test statistic, the degrees of

freedom and the p-values for testing the significance of the 2-way interactions among
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the child-specific factors, 2-way interactions with time, and 2-way interactions with
squared time are shown in Table 6.4. The reduced pesks pollutant model {without
interactions among the child-specific factors) was found to have -2ly = -2464.3. The
3-way to the 5-way interaction effects among the child-specific factors were found to
be negligible.

Interactions time*School *AsthmaStatus and time? *School*AsthmaStatus are found
to be significant at a 5% level of significance and are thus added to the peaks pollutant
model. In an attempt to reduce the model even further, the backward elimination
method is applied.

Table 6.4: The likelihood ratio test statistics and p-values for the 2.way interactions, 2-way inter-
actions with time, and 2-way interactions with squared time in the peaks pollutant mode!

2-way interactions  {time * 2-way interactions Iﬁmo’ * 2-way intoractions
Additional

degrees of | Likefihood Likelihood Likelihood

fregdom (M1 | ratio test ralio test ratio test
2-way interactions m} siatistic P-Value statistic P-Value slatistic P-Valus
School*Sex 4 35 04779 43 0.3669 42 0.3796
School*AsthmaStatus 8 145 0.0698 15.7 0.0469 158 0.0483
School*Weight 8 114 0.1800 23 0.9704 24 0.9778
School*Heght 8 5.4 0.6025 13.0 01118 139 0.0844
Sex*AsihmaStatus 2 1.3 0.5220 3s 0.1653 4.6 0.1003
Sex'Weight 2 0.2 0.9048 0.3 0.6807 06 0.7408
Sex“Height 2 0.2 0.9048 0.0 1.0000 0.1 0.7518
AsthmaStatus*Weight 4 5.6 0.2314 38 0.4337 0.9 0.9246
AsthmaStatus“Height 4 19 0.7541 58 0.2146 4.9 0.2977
Weight”Heignt 4 1.6 0.8088 0.4 0.9625 0.4 0.9825

In this application, all the two potential 2-way interactions are introduced in the
model and the one with the largest p-value is identified and removed from the model.
Since the 2-way interactions time*School*AsthmaStatus and time? *School*AsthmaStatus
have p-values 0.1232 and 0.1260 respectively, time? *School*AsthmaStatus is dropped
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and the model fitted again. The p-value for the remaining 2-way interaction, time*

School* AsthmaStatus, is 0.0469 which is less than 0.05, therefore this 2-way interaction

is left in the peaks pollutant model.

6.3 Missingness

The data from the Durban-South health study is characterized by missingness in
the response variable WDVarFEV1. Since 55 persistent asthmatics, 63 asthmatics and
115 normal children were considered for analysis, then for each day a total of 55, 63

and 115 responses were expected from these respective sub-populations.

Figure 6.3: Graphical representation of the proportion of respondents to WDVarFEV1 by time.
The solid line represents the persistent asthmatics, the dashed line the asthmatics and the bold line

the normal children.

However, as shown in the Figure 6.3, not all responses were obtained either due to
the FEV1 reading being invalid or due to the child not being at school to participate
in the blows on that particular day. Figure 6.3 shows the least responses on time 5

and time 9 which are the dates 04/06/2004 and 10/06/2004 respectively. The low
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response on time 5 was due to non participation of the children in Nizam road in the
blow exercise. Probably, Nizam road was closed on the particular date. However the
low response on time 9 was mainly attributed to the invalid records registered by the
children in Ferndale school. This probably could attributed to the malfunctioning of

the airwatches or the improper use of the airwatches by the children.

This is not a case of dropout since a child with no response at a particular time may
have responses on the times that follow. Therefore, the missing values are intermittent.
In order to effectively utilize the PROC MIXED procedure for analysis, the ignorability
assumption of missingness has to hold. To test for the type of missingness, an MAR test
is applied to the data set. Since the missingness exists for the response variable, then
the MAR test for multivariate data cannot be applied since it deals with missingness in
the independent variable. In addition, the missingness is intermittent, therefore before
the logistic regression model MAR test can be applied, the test has to be modified.

6.3.1 Applying the logistic regression model MAR test

In order to apply the logistic regression model MAR test (Section 4.10.1) to the
data set, the following alterations are made to the method. Since the data set is
characterized by an intermittent mode of missingness, the missing data process can be
explored by assuming that the probability of missingness P(R;;=0|y;) at time j depends
on both the current outcome y;; and the previous one y;;_;. The values of y;; and y;;_;
are obtained whenever there is a case of missingness. For example, whenever there is
a missing value at g;;41, the outcomes y;; and y;;-) are included as observations to be

applied to the model (4.17) for child ¢ at time j.

Values of the probabilities of the current and previous outcomes are applied to

the model (4.17) which is the full model (representing MNAR) and the two reduced
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models with ¢; = 0 and both ¢; = ¢, = 0 (representing MAR and MCAR respectively).
These three models are fitted and tested for significant differences using the LR test.
In this test, the -2xlog-likelihcod values for each model are obtained and the difference
compared with the chi-square value at 5% level of significance. The degrees of freedom
is the difference in the number parameters of the models being compared. A model
is said to be significantly different from the other when the attained p-values are less
than 0.05. The parameter estimates, log-likelihood values and p-values are shown in
Table 6.5.

Table 6.5: The logistic regression model MAR test results for the response variable

Parameter MCAR MAR llNAlj_l
P, -1.5318 +1.5057 -1.4855

@, 0.0000 0.0000 -0.0434;
P, 0.0000 -0.0619 -0.0439
log tikelikehood -1654.3067 -1657.6800 -1659.5031

.2log likelihood 33086134 3315.3600 3319.0062
Difference with MAR 6.7466 : 3.6462

P-Values 0.0094 . 0.0562
Result Reject MCAR Reject MNAR
Conclusion MAR

The models for MCAR and MAR are significantly different. Therefore the larger
model, which is the model representing MAR, is preferable. In comparing the models
representing MAR and MNAR, the MAR is found to be preferable to the full model
since the two models are found not to be significantly different. It can thus be concluded
that the MAR assumption holds. Both MAR tests above show that, conditional to

the observed information, the missingness is indeed independent of the unobserved
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information. Since the ignorability (specifically MAR) assumption has been found to
hold, the PROC MIXED procedure is appropriate to use for the analysis.

6.4 Model checking

To check whether the model fits the data set well, the observed and fitted /predicted
WDVarFEV1 profiles are compared (Fanta, 2003). In order to do this, the loess smooth-
ing technique is applied to summarize the trend of the observed and predicted WD-
VarFEV1 values as a function of time. The superimposed observed and fitted profiles
are shown in Figure 6.4. It can be seen that the profiles are very close together from
which it can be concluded that the model fit the data set well.

Obasrved and Mied WDVarFEV! velues

S5 TS ES8852t5

1 2 3 L -] L ] ? [ & W " 17 1

Figure 6.4: The observed and predicted/fitted profiles of the WDVarFEV1 values for the peaks
pollutant model. The observed profiles are represented by the solid line while the dotted line represents
the fitted profiles.

A simultaneous check for normality and outlier detection is also done for the random
effects and the residuals. The histogram of the EB estimates and the residuals are
shown in Figure 6.5 (a) and (b) respectively. Since both figures show just a symmetric
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bell-shaped curve, then the normality assumption is not violated for both the random

effects and the residuals
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Figure 6.5: Histogram of the (a) EB estimates (for the random effects) and the (b) residuals for the

peaks pollutant model.

(a) (b)

Figure 6.6: Scatter plots of the (a) EB estimates and (b) residuals for the peaks pollutant model.

To identify the presence of outlying observations, the scatter plots of the EB esti-
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mates and the residuals, shown in Figure 6.6 are used. The scatter plots show just a few
outlying EB estimates and residuals. In addition, the histograms of the EB estimates
and residuals (Figure 6.5), which appear just slightly skewed to the left, indicate that
there are just a few outliers which may not affect the inference for the model effects.

6.5 Inference from the peaks pollutant model

In this section the estimates of all the model parameters are determined. The |
REML estimates, standard deviations and p-values are shown in Table 6.6. The aim
is to determining which model parameters have a significant effect on the independent
variable WDVarFEV1.

The table shows that all the intercepts in the model are significantly different from
zero. More specifically, the intercepts for the children in schools Nizam, Assegai, Dirkie
Uys, Ferndale and Ngazana; male and female children; persistent asthmatic, asthmatic
| and children with no case of asthma; underweight, overweight and children of normal
weight; and short, tall and children of normal height, have an intercept significantly
greater than zero at a 5% level of significance. The pollutant variable Peak5 has
s significant effect on the independent variable at a 5% level of significance. In other
words, a five day prior exposure to a unit increase in the pollutant measure significantly
leads to a fall in the WDVarFEV1 measure at a 5% level of significance.

The WDVarFEV1 measure of the following children have a significant linear rela-
tionship with time at a 5% level of significance: children in Ngazana; male and female
children; children with no cases of asthma; overweight children and children of normal
weight; short, tall and children of normal weight; asthmatic children in Ferndale; and
children with no case of asthma in Ngazana. In addition the WDVarFEV1 measure
of the following children have a significant quadratic coefficient with time: children of



normal weight; short children; and children of normal height.

98
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Table 6.6: The REML estimates, standard deviation and p-values for the peaks pollutant model

paramees “EG S Bt P

Effect
Intercepts:
School Nizam Road Yor 0.5138 0.05697  <.0001
Assegal Yoo 0.5395 0.05483  <.0001
Dirkie Uys Yos 0.3794 0.06514  <.0001
Femdale Yos 0.5322 0.05587  <.0001
Ngazana Yos 0.5985 0.05431 <.0001
Sex Male Bo1 0.6652 0.05968 <.0001
Female Bge 0.5985 0.05431 <.0001
AsthmaStatus PAsthmatic Bg1 0.5374 0.05654  <.0001
Asthmatic B2 0.5829 0.05744  <.0001
Normal Bgy 0.5985 0.05431 <.0001
Weight Underweight Aot 0.4443 0.0647 <0001
Normal weight Aoz 0.5581 0.05296 <.0001
Overweight Aoa 0.5985 0.05431 <.0001
Height Short Qg 0.7072 0.05099 <.0001
Normal Height Ooz 0.6487 0.03836  <.0001
Tall Qg 0.5985 0.05431 <.0001
Poliutant:
Peaki B 0.001983 0.001351  0.1423
Peak2 Bz 0.001571  0.002764  0.5697
Peak3 Ba -0.00076 0.001264 0.5485
Peak4 Ba 0.000114 0.001086 0.9165
Peak5 Bs -0.0047 0.00122 0.0001
Time Effects:
School Nizam Road Y11 -0.01414 0.01701 0.4070
Assegai Yiz -0.0243 0.01624  0.1361
Dirkie Uys Yia 0.007183 0.01948 0.7127
Fermndale Yia -0.03158 0.0167 0.0600
Ngazana Yis -0.03462 0.01622  0.0341
Sex Male Bq4 -0.04026 0.01779 0.0247
Female B2 -0.03462 0.01 0.0341
AsthmaStatus PAsthmatic % -0.02581 0.01706 0.1318
Asthmatic 842 -0.03163 0.0172 0.0675
Normal 843 -0.03462 0.01622  0.0341
Weight Underweight A -0.02535 0.01918 0.1878
Normal weight A2 -0.03382  0.01575 0.0331
Overweight A3 -0.03462 0.01 0.0341
Height Short ayq -0.03976  0.01506 0.0089
Normal Height a2 -0.03428 0.01144  0.0031
Tall O3 -0.03462 0.01622  0.0341
School*Status  Nizam*PAsthma Yin1 -0.00383 0.01764  0.8284
Nizam*Asthma Y112 -0.00811 0.0179 0.6112
Nizam*Normal Yiia -0.01414  0.01701 0.4070
PAsthm*Assegai Y121 -0.01161 0.01633 0.4780
Asthma*Assegai Yizz -0.02701 0.01728 0.1196
Normal*Assegai Yiza -0.0243 0.01624 0.1361
PAsthma*Dirkie Yia1 0.0185 0.01999  0.3560
Asthma*Dirkie Yis2 -0.00127 0.01953  0.9484
Normal*Dirkie Y133 0.0071 0.01948  0.7127
PAsthm*Ferndale Yia1 -0.01696 0.01759  0.3361
Asthma*Ferndale Yiaz -0.03711 0.01761 0.0364
Normal*Ferndale Y143 -0.03158 0.0167 0.0600
PAsthm*Ngazana Yis1 -0.02581 0.01706 0.1318
Asthma*Ngazana Yis2 -0.03163 0.0172 0.0675
Normal*Ngazana Yis3 -0.03462 0.01 0.0341
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Table 6.6: The REML estimates, standard deviation and p-values for the peaks pollutant model

(Continued})
Peaks (REML)
Standard
Etfect Panmetec  Estimats Esror P-vale
Time" Effects:
School Nizam Road ¥n 0.000764 0.001000 0.4878
Assegai Yar 0001388 0.001041  D.1844
Dirkia Uys Yo 0000510 0.001238 0.6809
Ferndale T 0001783 0.001073  0.0683
Ngazana Yas 0002028 0.001047 00541
Sox Mals [ ™ 0002100 0001148 0.0685
Famaia Oy 0002028 0001047  0.0541
AsthmaStatus  PAsthmatic B 0.001400 0001088 0.1998
Asthmatic O 0.002101 0001108  0.058%
Nermal 0 0002028 0.001047  0.0541
Weight Underweight Ay 0.001751 0.001235 0.1580
Narmal weight Ax 0.002014 0.001014  0.0484
Qvenweight Ay 0002028 0001047 0.0541
Helght Shon an 0.002120 0.000966  0.0294
Normal Height ag 0.00201€ 0.000734 0.0066
Tal [+ 29 0.002028 0.001047  0.0541
Covarlance of by
Variby Oy 0.005974  0.002724  0.0141
Covibg.byd gy 0000340 0.000708  0.6329
Varib,) Oy 0.000380 0.000235  0.0530
Cov(bg,bz) Oygmly 0.000008 0.000043 08540
Cov{b,,by) Opymatlyy 0000020 0.000015 0.1345
var(b,) ds 0.000002  0.000000 .
Rasidusl variance:
Var(ei) ot 0.000453  0.000014  <.0001
cs ot 0020810  0.000833 <0001

To determine whether the mean effect of the Durban-South schools is equal to that

of the schools located in the northern residential aress, the hypothesis

Yor + Yoz + Yo ___’roa'i"?os

Hy,

3 2
+ 02 + +
Ha Yol 7302 Yo3 £ Yo4 : “Yos

is tested. The test results in an F-value of 8.33 and p-value of 0.0003. Since the p-value
is less than 0.05, the null hypothesis Hyy is rejected in favour of Hyy. Therefore, at
a 5% level of significance, the mean effects of the schools in the two regions are not

equal.
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The hypothesis

Hoz : 0oy = bpe
Har : S0 # b2

can be used to test whether the mean effects of the male and female children are equal.
The resulting F-value and p-value are 8.25 and 0.0045 respectively. Since the p-value
is less than 0.05, the null hypothesis Hy, is rejected in favour of Hsp. We therefore
conclude that, at a 5% level of significance, the mean effects of the male and female
children are not equal.

To test if the mean effects of the three asthma status categories are equal, the

hypothesis

Hos : 0oy = 02 = 63

Hys : At least two of the asthma status means are different

is tested. The results show an F-value of 2.44 and p-value of 0.0898. Since the p-value
is greater than 0.05, we fail to reject the null hypothesis, Hos. The data therefore

suggests that the mean effects of the three asthma status categories are equal.
To éompare if the mean effects of the three weight categories are equal, the hypoth-
esis
Hoy : Aox = Az = Ags

Haq : At least two of the mean effects are different

is tested. The results provide an F-value of 5.98 and a p-value of 0.0030. Since the

null hypothesis Hyq is rejected in favour of H,y, a further investigation is carried out
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to determine which mean effects are significantly different. The hypotheses tested are:

Hos : Aot = A
HAﬁ : ’\OI#AOQJ
Ho : Aor = Aoz

HAG : AOI #Aog, and

Hor : 2oz =Aos
Har : doz # dos.

The hypothesis Hys versus H,s tests whether the mea.ﬁ effects of the underweight
children and children of normal weight are equal. The F-value of this test is found to
be 9.49 while the p-value is found to be 0.0024. Since the p-value is very small, it can
be concluded that the mean effects of the underweight and children of normal weight

are not equal.

The hypothesis Hys versus H,¢ tests whether the mean effects of the underweight
and overweight children are equal. The F-value and p-value of this test is found to
be 11.02 and 0.0011 respectively. From this it can concluded that the mean effects of
the underweight and overweight children are not equal. Finally, the hypothesis Hyy
versus H 4 tests whether the mean effects of the overweight children and children of
normal weight are equal. The F-value is found to be 1.6 while the p-value is found
to be 0.2016. Since the p-value is large, we fail to reject the null hypothesis Hyy and
conclude that the overweight and children of normal weight have equal mean effects.
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A comparison of the three height categories can be done by testing the hypothesis

Hog : op = gz = oy
Hag : At least two of the mean effects are different.
The results provide an F-value of 1.90 and a p-value of 0.1529. Since the p-value is

greater than 0.05, we fail to reject the null hypothesis Hog concluding that the mean
effects of the height categories are equal at a 5% level of significance.

To compare the linear slopes of the male and female children, the hypothesis
Hop : on=dp
Hao @ on#bp2
is tested. The results provide an F-value of 0.68 and p-value of 0.4117 from which
it can be concluded that the linear slopes for the male and female children are equal
at a 5% level of significance. The comparison of the linear slopes for the three height
categories is done by testing the hypothesis
Hopo @ ay=oanx=a
Hao : At least two of the slopes are different.

This results in an F-value of 0.13 and p-value of 0.8740 from which it can be concluded
that the linear slopes for three height categories are equal at a 5% level of significance.

To compare whether the linear slope for overweight children is equal to that for
children of normal weight, the hypothesis

Honn : Aa=Mgs
Han : Az # A

is tested. The resulting F-value and p-value are found to be 0.01 and 0.9330 respec-
tively. We fail to reject the null hypothesis and conclude that the linear slopes are

equal.
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For the quadratic coefficients, the coefficients of the short children and children of

normal height are compared by testing the hypothesis

Hoyy : o =axn

HAu : 32175022.

This results in an F-value of 0.02 and a p-value of 0.8780. Since the p-value is large,
we fail to reject the null hypothesis and conclude that the quadratic coefficients are

not equal.

To compare the WDVarFEV1 values of the children in the Durban-South schools
and those in the schools located in the northern residential areas, a graphical repre-
sentation of superimposed fitted WDVarFEV1 values for children in the two regions is
used. To do this, the loess smoothing technique is applied to summarize the trend of
the fitted WDVarFEV1 values as a function of time.

Fitted WOVAFEV1 valuse
t £ &

1 2 93 4 % & 7T 8 % 1 11 1 13 U

Figure 6.7: The peaks pollutant model fitted profiles of the WDVarFEV1 values for children in
Durban-South schools and those located in the northern residential areas. The solid line represents
the Durban-South profiles while the dotted line represents the northern residential area profiles.

The superimposed graph shown in Figure 6.7 shows that the WDVarFEV1 values of
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the children in the Durban-South schools are on average greater than the WDVarFEV1
values of the children in the schools located in the northern residential areas

:

1 4 3 4 5 & ? & 1w 1 2 12 M

Figure 6.8: The peaks pollutant model fitted profiles of the WDVarFEV1 values for the male and
female children. The solid line represents the profile for the male children while the dotted line
represents the profile for the female children. “

3

Fitted WOVArFEVY valuss
g8 &

1 = 32 4 § s 7 8 1 W 1 12 U Hu

Figure 6.9: The peaks pollutant model fitted profiles of the WDVarFEV] values for children of
the three weight categories. The solid line, dashed line and dotted line represent the profiles of the
underweight children, children of normal weight and overweight children respectively.
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Similarly, Figure 6.8 compares the profiles of the male and female children. It
can be seen from this figure that indeed the males and female children do not have a
common slope or intercept. Figure 6.9, which compares the profiles of the three weight
categories, shows that the overweight children have the highest WDVarFEV1 values
followed by the WDVarFEV1 values of the children of normal weight.



Chapter 7

Analysis of the 8-hour maximum

pollutant model

In this chapter, the 8-hour maximum model is discussed. First investigated is the

cova.r- iance structure of the model
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where the variables are the same as described in (6.1) except that the five pollutant
variables in this case are the 8-hour maximum variables HrMaz!, ..., HrMaz5. A
relatively stable variance function shown in Figure 7.1 shows that a constant variance
is plausible for the model. The scatter-plot matrix of residuals in Figure 7.2 has a
circular shape indicating that the serial correlation is not very strong. Therefore the

serial correlation is not included in the model.
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Figure 7.1: Plot of the variance of residuals against time generated from the 8-hour maximum
pollutant model. The solid line represents the persistent asthmatics, the dashed line the asthmatics
and the bold line the normal children.

For the random effects, the unstructured covariance structure is the preferred co-
variance structure. However, for the residual, all the three model-fit criteria shown in
Table 7.1 point to the CS. Therefore, the compound symmetry structure is chosen for

the covariance matrix L; in the model.
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Figure 7.2: Scatter plot of residuals by time. The residuals are generated from the 8-hour maximum
pollutant model. D1 to D14 in the main diagonal represent the 14 repeated measurements.

Table 7.1: Covariance structure criteria for the random effects of the 8-hour maximum pollutant

model
Covariance Structure AIC AICC BIC
CS -2010.9 -2010.9 -1983.3
AR(1) -2020.6 -2020.6 -1993

7.1 Model reduction of the model

The models and the associated maximized log-likelihood values for the 8-hour
maximum model are shown in Table 7.2, while Table 7.3 shows the LR statistics for
dropping one random effect at a time, starting from the quadratic time effect. These

tables show no difference between models 4 and 3. The computations of the p-values
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are done for the comparisons “Model 2 versus Model 17 and “Model 3 Versus Model

2” and the computed p-values are shown in Table 7.3.

Table 7.2: The four random-effects models for the 8-hour maximum pollutant model

The Maximum log-likelihood (InfL(6)])
Random effects : ML REML
Mode! 1: Intercepts, time, time® 123445 1013.45
Model 2: Intercepts, time 1231.10 1009.50
Model 3: Intercepts 1222.65 999.35
Model 4: No random effects 1222.65 990.35

Table 7.3: The likelihood ratio statistic with the correct, the naive asymptotic null distributions

for comparing random-effects models and the comparison p-values of the 8-hour maximum pollutant
model

Likelihood ratio statistic (-2In[Ay]) P-value
thesis ML REML ML REML
Mode! 2 versus Mecdel 1 8.7 7.9 0.05859 | 0.03369
Model 3 versus Model 2 169 203 0.00013 | 0.00002
Model 4 versus Maodel 3 0 0

All estimations in Table 7.3 provide p-values smaller than 0.05 except for the p-
values associated with the ML estimation for the comparison “Model 2 versus Model 1”.
Since the REML estimation performs slightly better than the ML estimation method,

no random effect is deleted from the 8-hour maximum pollutant model.
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Table 7.4: The likelihood ratio test statistics and p-values for the 2-way interactions, 2-way in-

teractions with time, and 2-way interactions with squared time in the 8-hour maximum pollutant

model
2-way interactions time * 2@ inleractions * 2-way inleractions
Additional
degrees of | Likelihood Likelihood Likelihood
freedam {m1| ratio test ratio test ratio test
2-way interactions mo} siatistic P-Value statistic P-Value siatistic P-Value
School*Sex 4 a5 04779 42 0.3798 41 0.3826
School*AsthmaStaws 8 145 0.0636 15.6 0.0485 155 0.0501
School*'Weight 8 11.2 0.1906 2.2 0.9743 20 0.9810
School*Hegh 8 6.4 0.6025 128 0.1153 138 0.0871
Sex"AsthmaSiaus 2 12 0.5408 3.6 0.1653 45 0.1054
Sex"Weight 2 0.2 0.9048 0.3 0.8807 0.5 0.7788
Sex*Helght 2 0.1 0.9512 0.0 1.0000 0.1 0.7518
AsthmaSlatus*Weight 4 5.6 0.2 a8 0.4337 0.8 0.8354
AsthmaStatus*Height 4 18 0.7725 57 02227 4.9 0.2977
Weight"Height 4 15 0.80266 0.3 0.9696 0.3 0.9698

For the model reduction of the mean structure, the reduced 8-hour maximum pollu-

tant model has -2l = -2468.9. The only interaction found to be significant is the 2-way

interaction with time time*School*AsthmaStatus, with a p-value = 0.0485. Therefore

only time*School*AsthmaStatus is added to the 8-hour maximum pollutant model.

7.2 Inference of the 8-hour maximum model

Before the inference of the model is done, the model fit is checked by fitting

observed and fitted WDVarFEV1 profiles using the loess smoothing technique. The

summarized trends of observed and predicted WDVarFEV1 values as a function of time

are shown in Figure 7.3. Since the profiles are very close together, it can be concluded

that the model fit the data set well.
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Figure 7.3: The 8-hour maximum pollutant model observed and predicted/fitted profiles of the
WDVarFEV1 values. The obeerved profiles are represented by the solid line while the dotted line

represents the fitted profiles.

In addition, the assumption of normality of the random effects and the residual is
tested. The histogram of the EB estimates and the residuals are shown in Figure 7.4 (a)
and (b) respectively. Both figures show a symmetric bell-shaped curve indicating that
the normality assumption is not violated for both the random effecta and the residuals.
The scatter plots in Figure 7.5 for both the EB and residuals show just a few outliers
which may not affect the inference of the model effects. The same conclusion can be
drawn from the slight left skewness of the histograms in Figure 7.4.
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Figure 7.4: Histogram of the (a) EB estimates (for the random effects) and the (b) residuals for the

8-hour maximum pollutant model.

EB estimates (8-hour maximum model)

02

=]

s
-

Residuals (8-hour maximum model)
-]
h

&
o™

0.8

(a)

(b)

Figure 7.5: Scatter plot of the (a) EB estimates and (b) residuals for the 8-hour maximum pollutant

model.
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Table 7.5: The REML estimates, standard deviation and p-values for the 8-Hour maximum pollutant

model

8-Hour Maximum )
Effect Parameter _Estimate Standard “value
Intercepts:
School Nizam Road Yo 0531500 0.057650  <.0001
Assegai Yoz 0.581400 0.058940  <.0001
Dirkie Uys Yoo 0.401600 0.065550 <.0001
Femndale Yos 0.533000 0.055900 <.0001
Ngazana Yos 0.602100 0.054330 <.0001
Sex Male [ 0.669000 0.059710 <.0001
Female Oge 0.602100 0.054330 <.0001
AsthmaStatus PAsthmatic By, 0.540700 0.056570 <.0001
Asthmatic B2 0.585800 0.057460 <.0001
Normal Boa 0.602100 0.054330  <.0001
Weight Underweight Agy 0.447700 0.064740  <.0001
Normal weight Aoz 0.561000 0.052980 <.0001
Overweight Ags 0.602100 0.054330 <.0001
Height Short Qg 0.710600 0.051010 <.0001
Normal Height Ogz 0.652600 0.038360 <.0001
Tall Oga 0.602100 0.054330 <.0001
Pollutant:
HrMax1 By 0.000184 0.000115 0.1100
HrMax2 Bz 0.000130 0.000196 0.5082
HrMax3 Ba -0.000220 0.000113  0.0489
HrMax4 Ba -0.000020 0.000097 0.8533
HrMax5 Bs -0.000470 0.000112 <.0001
Time Effects:
School Nizam Road Y11 -0.015020 = 0.017080 0.3797
Assegai Yiz -0.028430 0.016180 0.0805
Dirkie Uys Yis 0.003781 0.019510 0.8466
Femndale Yia -0.031100 0.016720 0.0643
Ngazana Yis -0.035030 0.01 0.0322
Sex Male Oyy -0.040760 0.017810  0.0232
Female 042 -0.035030 0.016230 0.0322
AsthmaStatus PAsthmatic B4y -0.026130 0.017070 0.1275
Asthmatic (- 1%} -0.031880 0.017220 0.0656
Normal 043 -0.035030 0.016230 0.0322
Weight Underweight Ay -0.025630 0.019190 0.1833
Normal weight A2 -0.034050 0.015770  0.0320
Overweight Ay -0.035030 0.016230 0.0322
Helght Short Ty -0.040190 0.015080  0.0083
Normal Height Oy -0.034740 0.011460 0.0027
Tall O3 -0.035030 0.016230 0.0822
School*Status Nizam*PAsthma Y11 -0.004570 0.017680  0.7961
Nizam*Asthma Y112 -0.009800 0.017940 0.5856
Nizam*Normal Y113 -0.015020 0.017060 0.3797
PAsthm*Assegai Y121 -0.015650 0.016270 0.3372
Asthma“*Assegai Yize -0.030970 0.017230 0.0738
Normal*Assegali Yiza -0.028430 0.016180 0.0805
PAsthma*Dirkie Y131 0.015250 0.020030 0.4474
Asthma*Dirkie Yisz -0.004400 0.019560  0.8221
Normal*Dirkie Yiaa 0.003781 0.019510 0.8466
PAsthm*Ferndale Yia1 -0.0163%0 0.017620 0.3532
Asthma*Ferndale Yiaz -0.036480 0.017640  0.0399
Normal*Ferndale Y143 -0.031100 0.016720 0.0643
PAsthm*Ngazana Yis1 -0.026130 0.017070 0.1275
Asthma*Ngazana Yis2 -0.031880 0.017220 0.0656
Normal*Ngazana Yise -0.035030 0.016230 0.0322




Table 7.5 continued

8-Hour Maximum (REML)

Standard
Effect Parameter Estimam Error P-value
Time” EHects;
Sehool Nizam Road Yo 0.000844 0.001102  0.4449
Assegai Yor 0.001539 0.001037 0.1393
Dirkie Uys k] -0.000330 0.001237 0.7898
Femdale Yae 0,001765  0.001075 0.1021
Ngazana ¥ 0.002058 0001048  0.0509
Sax Male On 0.002137 0.001147 0.0640
Fernate Ogs 0.002058 0.001048  ©.0509
AsthmaStatus PAsthmatic Byy 0.001423 0.001088 0.1927
Agthmatic [ ™ 0002121 0001107  0.0568
Normal O 0.002058 0001048  0.0509
Wolght Underweight A 0.001769 0.001236 0.1539
Normal weight Ay 0.002032 0.001014  0Q.0468
Overweight Agy 0.002058  0.001048 0.0509
Height Short [ ™ 0.002153 0.000967 0.0z
Normal Height [ 0.002047 0.000735 0.005%
Tall - 0002058 0001048  0.0509
Covarlance of b;:
Var(bg) dyy 0.006040 0002730 00135
Cov({bu.by) dig=dy,  -0.000360 0.000708  0.5149
Var(by) dz 0.000388 0.000235 0.0508
Cov{b,ba) dyedy, 0.000008 0000043 0.5328
Cov(b,,by) Cypymlys -0.000020 0.000015 01284
Var(by) Oy 0.000002  0.000000 .
Residual variancs:
Var{el) o 0.000489  0.000014  <.0001
cs agt 0.020570 _ 0.000632 __ <.0001

115.

Table 7.5 aims at investigating which factors in model have an effect on child res-

piratory conditions, represented by the independent variable WDVarFEV!. It can be

seen that all the factor levels have significant mean effects, at a 5% level of significance.

In addition, for the children in Ngazana; male and female children; children with no

case of asthma,; children of normal weight and overweight children; short, tall and chil-

dren of normal height; asthmatic children in Ferndale; and children with no case of

asthma in Ngazana, it is found that WDVarFEV1 has a linear relationship with time.

For children of normal weight; short children; and children of normal height, there

is a significant quadratic relationship between WDVarFEV1 and time. The pollutant

variables HrMaz8 and HrMaz5 have a significant effect on the dependent variable. In
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other words, three day and five day prior exposure to a unit increase in the pollutant
measure significantly results in a fall in the WDVarFEV1 measure at a 5% level of
gignificance, keeping all the other variables fixed.

The effects of the Dﬁrba.n-South and northern residential area schools ( F-value 4.85,
p-value 0.0086); child sex (F-value 8.81, p-value 0.0033); and child weight (F-value
6.33, p-value 0.0022) on WDVarFEV1 are also found to be significant. The equality
of the linear slopes for male and female children (F-value 0.74, p-value 0.3911); the
height categories (F-value 0.14, p-value 0.8737); and the overweight and children of
normal weight (F-value 0.01, p-value 0.9179) are found to be tenable at a 5% level of
significance. In addition, the quadratic coefficients of the short children and children
of normal weight (F-value 0.02, p-value 0.8761) are also found to be equal at a 5%

level of significance.
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Figure 7.6: The &hour maximum pollutant model fitted profiles of the WDVarFEV1 values for
children in Durban-South schools and those located in the northern residential areas. The solid line
represents the Durban-South profiles while the dotted line represents the northern residential area
profiles,

Using the loess technique, a graphical comparison of the fitted WDVarFEV1 values
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Figure 7.7: The 8-hour maximum pollutant model fitted profiles of the WDVarFEV1 values for the
male and female children. The solid line represents the profile for the male children while the dotted
line represents the profile for the female children.
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Figure 7.8: The 8hour maximum pollutant model fitted profiles of the WDVarFEV1 values for
children of the three weight categories. The solid line, dashed line and dotted line represent the
profiles of the underweight children, children of normal weight and overweight children respectively.

of children in the Durban-South schools and those in the schools located in the northern
residential areas (Figure 7.6); male and female children (Figure 7.7); and three weight



118

categories (Figure 7.8) is made.

Figure 7.6 shows that on average children in the Durban-South schools have greater
WDVarFEV1 values than the WDVarFEV1 values of the children in the schools located
in the northern residential areas. Figure 7.7 confirms that indeed the male and female
children do not have a common slope nor intercept. Finally, Figure 7.8 shows that the
overweight children have the highest WDVarFEV1 values followed by the WDVarFEV1

values of the children of normal weight.



Chapter 8

Conclusion

The objective of this thesis was to determine if there is a significant relationship
between the ambient air pollutant SO,, the child characteristics and the respiratory
condition of the children. To achieve this, the model-based approach was used. After
exploring the mixed model and the hierarchical model, the longitudinal mixed model
was used for the analysis of the survey data. To investigate the fixed effects mean
structure, individual and mean profile plots of the dependent variable were considered.
But since interpretation of these plots was not easy, the loess fit was considered. The
aim of these non-parametric curves was to smoothen the profile plots in order to make
the choice of the fixed-effects structure easier. To check for multicolinearity in the
independent variables, correlations and the variance inflation factor (VIF) were used.
These checks showed the presence of multicolinearity. To solve for the problem of

multicolinearity, the principal component analysis (PCA) was considered as the remedy.

The existence of multicolinearity between the two summary pollutant measures led
to the fitting of two separate models for each of the pollutant measures. The model with
the peaks as the independent pollutant measures was referred as the ‘peaks pollutant

model’, and the model with the 8hour maximum as independent pollutant measures

119
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was referred to as the ‘8-hour maximum poliutant model’. Since the pollutant summary
measures were correlated, the best option would have been to drop one of summary
measures and fit only one model with the preferred summary measure. However, it was
of interest to see if the two pollutant have the same effect on the children’s respiratory

condition.

The existence of serial correlation by use of a scatter plot of residuals was explored.
A constant variance was also assessed for by use of the variance function. The com-
pound symmetric (CS), autoregressive order one (AR(1}} and the unstructured (UN)
covariance structures were considered in the model selection. The compound symmet-
ric structure was selected as being the most appropriate covariance structure for the
error term. For the random effects, the unstructured (UN) covariance structure was
found to be the most appropriate. For the fixed effects inference, the likelihood ratio
(LR) test was used. For the random effects inference, a method used by Stram and

Lee (1994; 1995) was adopted.

The profiles of the observed and fitted values indicated that model was a good fit.
The normality for the random effects and residuals was assessed graphically. Since the
histograms showed a symmetric bell-shaped curve, it was concluded that the normality
assumption was not violated. The scatter plots for the random effects and residuals
were assessed for outlier detection and for any symmetric pattern. All the plots were
in favour of the goodness of the fit. Since the survey data was characterized by incom-
pleteness, the application of a modified logistic regression model MAR test resulted in
the conclusion that the survey data had an MAR. type of missingness.

In general, school, sex and weight were found to have a significant effect on the
respiratory condition of the children. Despite the fact that schools in Durban-South
recorded higher pollutant measures as compared to those located in the northern res-

idential areas, the children attending school in the northern residential areas were
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found to have poorer respiratory conditions as compared to those attending school in

Durban-South.

The male children and female children were found to differ in their respiratory
conditions. This is in line with the conclusions drawn by Buist (1982) and Schwartz,
Katz, Fegley and Tockman (1988a, 1988b) that that girls are found to have higher

expiratory flows than boys after correcting for body size.

The overweight children and children of normal weight; and underweight children '
and children of normal weight differ in their respiratory conditions. The poorest res-
piratory conditions were registered by the overweight children. This falls in line with
the conclusions drawn by Schoenberg, Beck and Bouhuys (1978) and Dockery, et al.
(1985} that lung function is decreases at both extremes of weight.

The model also showed no evidence that a rise in the pollutant measures caused

& significant deterioration in the respiratory condition of the children in the study.

. Instead, the results showed that a five day prior exposure to an increase in the pollutant

levels led to an improvement in the respiratory conditions of the children. Results from
the Settlers primary school health study (Robins et al, 2002), however, showed that
prior one day and/or two day exposure to increasing levels of the pollutant significant
resulted in the deterioration of the respiratory conditions of the children considered.
The difference in the resuits may be attributed to the fact that not all the survey
factors considered in the Settlers primary school health study were considered in this

thesis.
The &hour maximum pollutant model offers the same conclusions as the peaks
pollutant model which means that the two pollutant summary measures do provide

similar results.

Further study is needed on the development of MAR tests specifically for longitudi-
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nal data with an intermittent mode of missingness. In addition, future research should
aim at including more child factors in the model. These factors include blood tests and
their exposure to cigarette smoke. Other factors that could be included in the model
would be the housing and family conditions.
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Appendix A

Appendix tables

Table A.1: The peak counts of the SO, measurements on a particular date per school
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Table A.2:

138

The 8-hour maximum of the SO, moving averages on a particular date per school

24.4239 5.5709 5.5833 2.3555
62.9596 7.0601 25313 3.1208
64,6304 13.9535 48413 6.2136
83.2650 63.1702 10.3034 11.9144
90.6135 41.5627 1.4493 1.7273
105.6473 7.4935 2.4462 3.1358
27.6030 11.8914 45208 4.0098
26.8658 4.9856 6.0521 3.5540
34.9979 8.8470 3.8854 2.6772
44,7340 15.0948 9.5833 6.8086
54,2685 249118 12.6563 6.8044
35.2094 12.6995 10.0521 6.9992
34.7664 19.0134 5.6979 5.0569
37.7935 24.3106 6.9479 7.0019
45.7597 23.7021 5.8316 2.0722
220854  90.1278 5.2211 78.5806
128.4613 207058  135.8172 5.0334
38.1902 21.2300 13.6563 7.5739
39.0975 18.5814 43125 4.4525
33.8535 23.8160 6.3333 6.8632
34,0411 22.3100 6.6563 6.5275
20.3842 12.3301 13.0000 3.7753
30.2914 11.0384 13.0000 5.75565
23.4636 11.8282 4.4688 2.5859
47.6419 21.5008 12.2770 8.1083|
1143.4063 5162348 294.6474 194,500
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Table A.3: The SO; levels above the standard guideline of 191pb as well as the date, time and the

‘ school in which the high SO; level occurs

SOQlSehool

School  Date  Time S02 |School Dale  Time Date  Time SO2
Nizam  5/27/2004 2200 197 |Assegai 5/28/2004 810 199.9|DirkIeUys 6/9/2004 1440 216.7
6/27/2004 2310 2132 5/20/2004 1150 211.7 6/9/2004 1450 677
5/27/2004 2320 469.7 5/20/2004 1200 208.1 6/9/2004 1500 6843
8/27/2004 2330 3642 §/20/2004 1230 2028 €/6/2004 1510 684.4
8§/27/2004 2340 289 5/2/2004 1250 200.7 6/9/2004 1520 5735
6/11/200¢ 1120 315.1 5/29/2004 1320 208.3 6/9/2004 1530 4853
6/11/2004 1130 569.7 5/30/2004 1120 232 8/9/2004 1540 434.8
6/11/2004 1140 501.9 5/30/2004 1140 2025 6//2004 1550 287.8
6112004 1150 356.3 5/30/2004 1210 2204 |Femdale 6/10/2004 1015 6385
6/11/2004 1200 577.8 6/10/2004 1450 483 610/2004 1025 652
6/11/2004 1210 611.5 6/10/2004 1500 700 6/10/2004 1035 6645
811/2004 1220 821 6/10/2004 1510 656.9 8/10/2004 1045 673
6/11/2004 1230 6285 6/10/2004 1520 5485 6/10/2004 1055 6785
6/11/2004 1240 6362 102004 1590 526.9 S10/2004 1105 596
6/11/2004 1250 659.6 G/1/2004 1540 464.8 10/2004 1115 5425
8/11/2004 1300 687.8 6/1072004 1550 399.9 &10/2004 1125 5025
€/11/2004 1310 685.1 S10/2004 1800 427.1 6/10/2004 1135 452
&1172004 1320 586.3 &10/2004 1810 712 &/10/2004 1145 352
6/11/2004 1330 5429 €10/2004 1620 465.9 [Ngazana 6/9/2004 1610 471.3
6/11/2004 1340 483.7 8/9/2004 1620 730
6/11/2004 1350 4005 6/%/2004 1630 757
6M1/2004 1400 3458 6/9/2004 1840 718
6/13/2004 1840 351.5 8/0/2004 1850 392.2
6/13/2004 1850 436.9 6/9/2004 1700 475.4






