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Abstract 

To investigate the effect of environmental pollution on the health of children in 

the Durban South Industrial Basin (DSIB) due to its proximity to industrial activities, 

233 children from five primary schools were considered. Three of these schools were 

located in the south of Durban while the other two were in the northern residential 

areas that were closer to industrial activities. Data collected included the participants' 

demographic, health, occupational, social and economic characteristics. In addition, 

environmental information was monitored throughout the study specifically, measure­

ments on the levels of some ambient air pollutants. The objective of this thesis is to 

investigate which of these factors had an effect on the lung function of the children. 

In order to achieve this objective, different sample survey data analysis techniques 

are investigated. This includes the design-based and model-based approaches. The 

nature of the survey data finally leads to the longitudinal mixed model approach. 

The multicolinearity between the pollutant variables leads to the fitting of two 

separate models: one with the peak counts as the independent pollutant measures 

and the other with the 8-hour maximum moving average as the independent pollutant 

variables. In the selection of the fixed-effects structure, a scatter-plot smoother known 

as the loess fit is applied to the response variable individual profile plots. 

The random effects and the residual effect are assumed to have different covariance 

structures. The unstructured (UN) covariance structure is used for the random effects, 

while using the Akaike information criterion (AIC), the compound symmetric (CS) 

covariance structure is selected to be appropriate for the residual effects. To check the 

model fit, the profiles of the fitted and observed values of the dependent variables are 

compared graphically. The data is also characterized by the problem of intermittent 

missingness. The type of missingness is investigated by applying a modified logistic 
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regression model missing at random (MAR) test. 

The results indicate that school location, sex and weight are the significant factors 

for the children's respiratory conditions. More specifically, the children in schools 

located in the northern residential areas are found to have poor respiratory conditions 

as compared to those in the Durban-South schools. In addition, poor respiratory 

conditions are also identified for overweight children. 
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Chapter 1 

Introduction 

The Durban South Industrial Basin (DSIB) is one of the areas in South Africa 

characterized by a number of industries. It is located in the eastern coastal region of 

South Africa in the province of KwaZulu-Natal. Because of its geographic relationship 

with certain fixed sources of air pollutants, the DSIB is at a particularly high risk 

of exposure to significant ambient air pollution. Major emissions are from the so-

called fugitive air emissions at refineries, from industrial and passenger vehicles, from 

other industries in close proximity as well as the Durban airport. The two major 

refineries in the basin are the petroleum refineries Engen and Sapref. There,is also 

a pulp and paper manufacturer, Mondi. The recognition of this risk is reflected by 

an industry-funded South Durban Sulphur Dioxide Management Systems Committee 

(SDSDMSC) which, since June 2000, has been continuously monitoring one pollutant 

of concern, sulphur dioxide, at the Settlers Primary School. The available data on 

sulphur dioxide indicates that the average and/or maximum exposure at the Settlers 

school has frequently exceeded World Health Organization (WHO), the South African 

Department of Environmental Affairs (DEAT), and the SDSDMSC guidelines. 

In light of this background, the Center of Occupational and Environmental Health 
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of the Nelson R. Mandela School of Medicine and the University of Michigan, USA 

were contracted to conduct a large-scale study to look at the effects of pollution on 

the health of exposed communities in the Durban-South industrial/residential basin, 

on behalf of the Durban Metro. The two year project, fully funded by Durban Metro, 

was part of a national cabinet decision to address the problems of pollution in this part 

of Durban. 

The sole aim of this Durban-South health survey was to determine the health status 

of the Durban-South residents with specific reference to respiratory health outcomes 

and other chronic diseases. In addition, the project aim was to determine the relation­

ship between environmental pollution, these health outcomes and the quality of life 

within this community, particularly among susceptible populations. 

The study was conducted at seven primary schools namely: Nizam Road in Mere-

bank, Assegai primary in Austerville, Dirkie Uys primary in Bluff, Entuthukweni pri­

mary at Lamontville township, Ferndale primary in Newlands, Briardale primary at 

Newlands West and Ngazana at KwaMashu. However, because of the vast amount 

of incompleteness of the data from the schools Entuthukweni and Briardale, only five 

schools were utilized in the thesis. 

The focus of this thesis is to assess the relationship between the ambient air pollu­

tant sulphur dioxide, the children's demographic and health characteristics, and their 

respiratory conditions. The major objective of this thesis is to determine which of the 

child demographic characteristics, child health characteristics and their exposure to 

the pollutant are the significant factors for the respiratory condition of the children. 

The children's respiratory condition is measured by the lung function measure known 

as the forced expiratory volume at one second (FEV1) 

To achieve this objective, various sample survey analysis techniques will be explored, 
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more specifically the design-based and the model-based approaches. A choice will then 

be made of the most appropriate technique to accomplish the thesis objectives. 

This thesis will be organized as follows. In Chapter 2, the nature of the Durban-

South health survey data will be described in detail. This will also include the tech­

niques applied to summarize the massive repeated measurements; and the data clean­

ing and editing methodologies applied to the data. Chapter 3 will review the sample 

survey data analysis techniques available specifically looking at the design-based and 

model-based approaches. The model-based approach is chosen which leads to the de­

velopment of the longitudinal mixed model in Chapter 4. A review of the longitudinal 

mixed model with missing observations is also given in Chapter 4. The analysis and 

results of the Durban-South health survey will be dealt with in Chapter 5. Detailed in­

ference of the data will be undertaken in Chapter 6 and Chapter 7. Finally, in Chapter 

8, the findings of the thesis will be summarized. 



Chapter 2 

Durban-South health survey data 

2.1 The sampling design and data collection 

In the Durban-South health survey, seven communities were purposively consid­

ered for the study. Four were from Durban-South (Merebank, Lamontville, Went-

worth/Austerville and Bluff) and three from the northern residential areas of the 

metropolitan boundaries (Newlands West, Newlands East and KwaMashu). The four 

Durban-South communities were considered due to their proximity to the source(s) 

of pollution. In addition, the communities from the two regions had similar charac­

teristics, only differing in their status of industrialization, the Durban-South being 

more industrialized (the source of major environmental pollution) than the northern 

residential areas. 

One primary school was purposively selected from each community. The selected 

schools were: Nizam Road in Merebank, Assegai primary in Wentworth/Austerville, 

Dirkie Uys primary in Bluff, Entuthukweni primary at Lamontville township, Ferndale 

primary in Newlands, Briardale primary at Newlands West and Ngazana at KwaMashu. 

The choice of the school was also based on its proximity to the pollution source(s) as 
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well as the proximity of the residences of the school children to the pollution source(s) 

under consideration. However, only five of these seven primary schools are used in this 

thesis as will be explained in Section 2.3. 

Prom each school, one or two grade four classes were randomly selected and all 

children in this sample were included in the sample. An average of 70 children were 

expected from each school, therefore the second classroom was selected only if the 

first selected classroom was found to have a small number of children. In addition, all 

children with severe cases of asthma from grades 3 and 5 and the unselected grade 4 

classes were also included in the sample. However the targeted number of 70 children 

per school was not met for Assegai, Dirkie Uys and Ngazana schools who had an 

original sample of 63, 51 and 67 children respectively. A total of 81 and 97 children 

were selected in the original sample from Nizam Road and Ferndale schools. 

However, before any test could be performed or interviews conducted, informed 

consent was requested from the children's parents or guardians. It was made clear to 

all participants and their families that they were free to withdraw from the study at 

any time or refuse to participate in any aspect of the study without penalty. Informed 

consent included explanation of the expected benefits and risks of participation in each 

aspect of the study. Consent forms were therefore issued to the parents or guardians 

of the children in the sample and only those that offered their consent participated 

in the study. The percentage of the consented children in randomly selected grade 4 

classrooms in Nizam Road, Assegai, Dirkie Uys, Ferndale and Ngazana schools were 

72.31%, 70.45%, 34.78%, 68.67% and 81.03% respectively. Among the additional chil­

dren with severe cases of asthma in grade 3, 5 and the unselected grade 4 classrooms, 

only 72.0%, 38.89% and 50.0% respectively offered consent to participate in the study. 

The variables of interest in this thesis include the child forced expiratory volume 

at one second (FEV1), school location, sex, asthma status, height and weight and the 
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sulphur dioxide (SO2) pollutant measures. The main focus of this thesis is to determine 

which of the child characteristics namely school location, sex, asthma status, height 

and weight have an effect on the respiratory conditions of the children measured by 

the FEV1. Also to be investigated is whether the daily fluctuations in the ambient air 

pollutant SO2 measured at the schools are predictive of the fluctuations in pulmonary 

function measures that depict the respiratory condition of the child. 

2.2 The variables 

The response/dependent variable is the lung function measure FEV1. These re­

peated measurements are bihourly measures of the pulmonary function during the 

school day and they are aimed at measuring the respiratory condition of the child. 

They were obtained by use of a machine commonly known as an airwatch instrument. 

These measurements were obtained in four intensive phases, each phase being a period 

of three weeks. The thesis considers only the first of the four phases which spanned a 

total of fourteen days. The one missing day of the third week was a public holiday and 

since all measurements were made only at the school, no measurements were made on 

that holiday. 

In the three weeks, on each of the five school days during the week, the children 

performed airwatch maneuvers every 1^ to 2 hours (that is four times in the 5.5 hour 

school day which is approximately at 08h00, 09h45, llh30 and 13h20). At each blow 

time, the child blew five times into the machine making a total of twenty blows or 

readings for a child per day. For analysis purposes, this information is summarized 

into one reading a day per child utilizing one of the summary methods used in the 

Settlers primary school health study (Robins et a/., 2002). This is the within-day 
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variability (WDVarFEVl) calculated using the formula 

Best reading — Worst reading . * 
Best reading 

The best reading is the largest (maximum) of the day and the worst reading is the lowest 

(minimum) of the day. This reduces the respiratory measurements to a maximum of 

fourteen repeated measurements per child. 

The Settlers primary school health study was a Durban-based project with similar 

objectives to the Durban-South community project but was conducted on a much 

smaller scale. It was from the findings of the Settlers project that the decision to carry 

out the Durban-South project was made. 

Early research has shown that increased ambient air pollution levels, particularly of 

SO2 (Abbey et al., 1993; Katsouyanni et al., 1997) precipitate symptoms of asthma and 

increase emergency department visits and hospitalizations among children and adults 

with asthma and other chronic respiratory conditions (Schwartz et al, 1993a; Walters et 

al., 1994). Highly sensitive sub-populations such as asthmatics, the elderly and children 

are at increased risk. Exposure to ambient particulate matter (PM) and co-pollutants 

such as sulphur dioxide in the ambient environment may provide the critical factor 

in increased morbidity and mortality in these individuals in urban centers (United 

Stated Environmental Protection Agency, 1996; Schwartz, 1993b). Acid aerosal is 

closely associated with SO2 in the eastern U.S. and has been associated with increased 

respiratory hospitalizations (Thurston et al., 1994). 

Seven key ambient air pollutant exposures were investigated in the Durban-South 

health survey including the air pollutants sulphur dioxide (SO2) and ambient partic­

ulate matter (PM). The PM data was not readily available so only the SO2 data was 

considered in this thesis. The SO2 is the result of the combustion of fuels containing 

sulphur for example, coal and oil, gasoline production and oil refining, and smelting 
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ores. 

Monitors to register the SO2 readings were placed at each of the schools. Two 

assumptions were made in this case, one being that the children spent most of their 

day at school and the other being that the child resided close to their specific schools. 

Therefore the monitors situated at the schools registered their average exposure to the 

SO2 pollutant. These SO2 monitors recorded readings every 10 minutes, measured in 

parts per billion(ppb). A reading of 100 ppb means that 0.00001 percent of the air 

around the monitor is SO2 gas. For analysis purposes, this per 10-minute data was 

summarized into a per day reading utilizing the summary criteria used in the Settlers 

primary school health study (Robins et a/., 2002). The summary measures were the 

peak counts and the 8-hour maximum of the moving averages. 

To compute the peak counts, the pollutant measures obtained are compared with 

the national standard guidelines provided by the modern air quality monitoring network 

established in the Durban-South basin. These guidelines were designed to be protective 

of public health and are displayed by the modern air quality monitoring network in 

the weekly reports in the website www2.nilu.no/airquality/. From their most recent 

report (Report summary week 24, 2005 running from 13/June/2005 to 19/June/2005), 

the per 10-minute SO2 standard reading was 191 ppb. The per 10-minute SO2 readings 

were then compared with the 10-minute standard of 191 ppb to determine whether it 

was above or below the 191 ppb mark. Therefore a peak was any per 10-minute SO2 

reading above the per 10-minute standard of 191 ppb. 

In the calculation of the peak counts, the number of times the pollutant levels were 

above the standard guideUnes were counted. This was computed to correspond to the 

24 hours prior to the first airwatch blow. For example, the peaks corresponding to date 

6/14/2004 are the total number of times the pollutant levels went above the standard 

guidelines between 8am of 6/13/2004 and 7.55am of 6/14/2005. These peak counts are 

http://www2.nilu.no/airquality/
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referred to as 'peaks' throughout the thesis. 

In the Settlers primary school health study (Robins et al, 2002), possible lag effects 

(hours to days) were modelled to account for possible prior exposure effects. Examined 

models considered the effects of the lung function to exposures occurring earlier the 

same day (lag 0), the previous day (lag 1), and two days prior (lag 2). Prior one day and 

prior two days exposure to SO2 were found to be associated with highly statistically 

significant increases in the occurrence for lower respiratory symptoms. Due to this 

outcome, it seemed best to investigate the lag effects from the previous day (lag 1), 

two days prior (lag 2) to five days prior (lag 5) in this thesis. Thus, an additional four 

other pollutant variables were considered and these were the peak counts two days, 

three days, four days and five days prior to the day of the FEV1 measurement. 

The alternative summary pollutant measure was obtained by selecting the maxi­

mum of the 8-hour moving averages computed 24 hours before the first blow of the day. 

For example the 8-hour maximum measure corresponding to the 31st of May 2004 is 

calculates as follows: First attained is the average of the 10- minute readings from 0 

hours to 7:50 hours of the 30th of May 2004. There after 8-hour moving averages are 

computed for the next 24 hours that is up to 7:50hours of the 31st May. To correspond 

to the time of the first airwatch blow of the 31st of May, which was at 8:00 hours, the 

maximum of the moving averages in the 24 hours is attained to serve as the 8-hour 

maximum single record for that date. These values are referred to as '8-hour maxi­

mum' throughout the thesis. Still taking the lag effects into consideration, four other 

measures, which are the 8-hour maximum pollutant measures two days, three days, 

four days and five days prior to the day of the FEV1 measurement, were considered. 

Unlike the peaks pollutant measures that only represent the number of times the 

pollution measures go beyond the acceptable standards, the 8-hour maximum pollutant 

measures take into consideration the actual pollutant measurements averaging them 
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appropriately into one measure. 

Previous studies have shown that the taller the person is, the greater his/her lung 

volume (Buist, 1982; Buist and Vollmer, 1988). In addition the lung function decreased 

at both extremes of weight (Schoenberg, Beck and Bouhuys, 1978; Dockery et al, 

1985). After correcting for body size, girls appear to have higher expiratory flows than 

do boys, whereas adult men have larger volumes and flows than women (Buist, 1982; 

Schwartz, Katz, Fegley and Tockman, 1988a; 1988b). Since the lung function of the 

children was under consideration, it seemed appropriate to include the variables: child 

height, weight and sex in the analysis. 

The child height and weight data was obtained during the baseline spirometric as­

sessment and methacholine challenge tests that were administered to all the children in 

the child sample. These lung function tests were done using a spirometry instrument. 

From questionnaire instruments administered to the children and their guardians, in­

formation on the age and sex of the children was obtained. Using the asthma status 

classification criteria developed by the medical specialists, the asthma status of the 

child was determined from the child respiratory symptom responses in the question­

naires. The asthma status was categorized as being severe or, mild or normal. Children 

with severe cases were referred to as 'persistent asthmatics', those with a mild case of 

asthma as 'asthmatics' and those with no cases of asthma as 'normal'. 

In conclusion, the variables in the data set have the following structure: variable 

Child as the random factor; variables School, Asthma status, Age, Height, Weight and 

the 14 repeated S( )2 pollutant readings (the Peaks and the 8-hour maximum) as fixed 

factors; and the 14 repeated FEV1 measurements per child as the response variable. 

The data is therefore longitudinal in nature since the pollutant readings and the FEV1 

measurements were sequentially measured over time. 
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2.3 Data editing and cleaning 

In any survey, non-sampling errors cannot be avoided but their occurrence can 

be minimized. These errors occur at the data collection and processing stages of the 

survey operation (Dalenius, 1988; Hansen, Hurwitz and Madow, 1953; Thompson, 

1992; Lessler and Kalsbeek, 1992; and Kish, 1965). These errors have to be identified 

and dealt with before the analysis of the data. To ensure the collection of adequate 

data, all who were to be involved in the study went through a period of intense training 

in the areas in which they were going to participate. 

The FEVl measurements were obtained by children blowing into instruments known 

as airwatches which in turn produced readings that were later downloaded for analysis. 

Since the airwatch maneuvers were carried out at schools, both the children and their 

teachers were trained on the proper usage of the airwatch devices prior to the blow 

exercises. They were also trained on the proper handling and storage of the airwatch. 

The airwatches were also properly calibrated and adjusted appropriately before being 

handed over to the children. Each child had his/her airwatch labelled by name and 

serial number. 

Despite the intensive training received by both the respondents and the interviewers, 

an experience from the Settlers primary school health study (Robins et a/., 2002) was 

utilized to detect invalid blows. In this procedure, histograms of the FEVl values 

were plotted and extreme values truncated. The values that remained were compared 

with the baseline FEVl of the specific children. In was discovered that on average the 

remaining FEVl values lay between 30% and 120% of the baseline value. As a result 

all those outside the range were considered invalid FEVl readings. The aim was to 

have a symmetrical confidence interval of the FEVl readings. The baseline FEVl on 

the other-hand was computed during the lung function tests using prediction equations 
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of the race, sex, age and height. The aim of these equations was to predict what the 

reading of a specific child would be if he/she was normal. 

I spent a great amount time on the editing and cleaning of the data. Since every 

child was expected to blow 20 times a day for 14 days, a total of 280 records were 

expected per child. Each of these records were checked to make sure that they corre­

sponded to the correct time and date of the blow. Some data was found to correspond 

to dates and times outside the actual dates and times of blows. Cleaning of the times 

and dates was done by use of the check-lists kept by the interviewers during the FEV1 

blow exercises. However, there were times when the child did not have any airwatch 

reading or when an invalid reading was recorded. Such data was considered as missing 

data. 

The SO2 monitors, situated at each of the schools, were calibrated at the beginning 

of the study. Quality checks were then performed approximately weekly and at the 

end of the study. During the regular monitor calibrations and data downloads, abrupt 

hikes or falls in the readings were noted and appropriate adjustments were made. 

These extreme readings were commonly due to the malfunction of the monitors. Spot-

on repairs were therefore also made in such instances. Problems with calibrations were 

reported especially at the Entuthukweni and Briardale schools at the beginning of the 

study but were successfully sorted out later in the study. This however led to a vast 

amount of incompleteness in the data relating to the first intensive phase of the study 

known as phase 1. It is for this reason that data from these two schools is not considered 

in this thesis. However the other five schools also had a few cases of missing data. This 

meant that the handling of missing data needed to be included in the decision on the 

appropriate analysis technique chosen for the study. 

The child characteristics of age and sex were obtained from the questionnaires 

administered by trained interviewers. To minimize non-response, interviewers made 
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appointments with the school head teacher and teachers prior to the interviews. During 

the initial visits to the schools the interviewers informed the teaching staff about the 

advantages of the survey. They were encouraged to assist in the exercise as well as to 

encourage the parents or guardians of the children to participate in the study. 

Before data capture, all the questionnaires were carefully edited by trained project 

staff to ensure that all the required information was obtained by the interviewers. This 

information was then double-entered to minimize data entry errors. Double-entry of 

data is a technique in which data is captured twice with the second data entry being 

a form of check for any errors in the initial data entry. More cleaning was done on the 

captured data which in some cases resulted in some call-backs. 



Chapter 3 

Sample survey analysis 

In any statistical investigation, one has to decide whether to cover the whole 

population, or carry out the statistical investigation based on a sample. A complete 

enumeration of the whole population is known as a census. On the other hand a 

statistical inquiry based on a sample on which inferences are made about the population 

is known as a sample survey. In many fields of scientific study, most of the data is 

collected using sample surveys usually due to their advantages of being, quick, timely, 

manageable to carry out and less costly. The aims of a sample survey can be broadly 

classified as: to make inferences about the population parameter(s) of interest, and to 

investigate the relationships among the variates in the study. 

Over the years, numerous sampling schemes in sample survey have emerged and 

some of those in existence have been modified. For instance, in 1925 the use of simple 

random sampling in official statistics was accepted mainly because it obtained rep­

resentative samples but also because of the existence of the theory of measuring the 

uncertainty due to sampling (Smith, 1999). However, the difficulty of extending this 

theory to more complex sampling schemes led to the next major advancement in the 

sample survey methods by Neyman (1934). He changed the theoretical basis of sample 

14 
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survey inferences from being based on the hypergeometric likelihood function to being 

based on sampling errors with a randomization distribution. The latter is what was 

known as the design-based approach to survey inference. In this approach a researcher 

draws a probability sample from a finite population for making inferences about this fi­

nite population. The probability model for the sample data depends on how the sample 

was drawn by the researcher (Snijders and Bosker, 1999). Procedures which properly 

account for the design and population structure are then developed to make inferences 

about the parameters. (Skinner, Holt and Smith, 1989). Therefore, this approach is 

based on the randomization distribution induced by the survey design (Levin, 1999). 

In the 1950s and 1960s, theoreticians and scholars addressed the foundations of this 

design-based inference approach with a number of them largely holding negative views 

about the theory (Smith, 1999). This led to a search for an alternative model-based 

framework of survey inferences. In this approach, inferences are extended to include 

not only the survey variables of interest as explanatory variables but also the variables 

used in the survey design (Skinner et al, 1989). Thus, inferences are made using the 

best model that explains all structural and stochastic variations in the sample data. 

The approach assumes a probability model for the sample data and inferences are about 

some large and hypothetical super-population. The main aim of developing this model-

based inference approach was to enable the investigation of the relationships between 

variables in the survey population. This was done by taking the finite population to 

be a realization of an infinite super-population (Levin, 1999). A role is therefore seen 

for models in descriptive as well as analytic surveys. 
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3.1 Design-based approach to survey inference 

The design-based approach to survey inference is described in many texts for 

example Hansen, Hurwitz and Madow (1953), Kish (1965), Cochran (1977), and Lit­

tle (2004). The following description by Little (2004) is not completely general but 

captures the main features. 

For a population with N units, let the random vector Y be given by Y = (j/i, 

• • •. VN) where yi is the set of survey variables for unit i. Also let / = (Vi, . . . , IN) 

denote the set of inclusion indicator variables where /» = 1 if unit t is included in 

the sample and It = 0 if it is not included. Let V^. be the observed part of Y and 

Yexc the excluded part of Y. The design-based inference is based on the distribution of 

/ with the survey variables Y treated as fixed quantities. Inference about the finite 

population quantity say, Q = Q( Y) involves the following steps: 

(a) the choice of an estimator say, q = q\Yinc, I). This is a function of the observed 

part of Y that is unbiased or approximately unbiased for Q with respect to the 

distribution of /. The estimator gis a random variable as a function of /, not Y ^ 

which are fixed quantities. 

(b) the choice of a variance estimator v = v(Yinc, I) that is unbiased or approximately 

unbiased for the variance of gwith respect to the distribution of /. Inferences are 

then generally based on normal large sample approximation. For example, a 95% 

confidence interval for Q is q ± 1.96 y/v. 

To describe the above process for a stratified random sample, Little (2004) considers 

a simple case of estimating a finite population mean Y. Suppose that the population 

is divided into K strata, and that Ni is the known population count in stratum i while 

Yi is the unknown population mean of stratum i. Then the quantity of interest in this 
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case is 
K 

Q = K = E p * y -
« = 1 

where P< = N/N is the proportion of the population in stratum i. Assume that a 

random sample of size n< of Ni units is taken from stratum i and y^ : t= l , . . . , K\ j— 

1, . . . , ni denotes a set of sampled V-values from stratum i, then Yin,. — {Yij '• *=1. 

...,K, j=l, ..., n,•}. Stratified random sampling has the property that all possible 

samples of size rij from stratum i have the same probability of being selected which is 

given by 

(5) 
0 otherwise. 

The usual estimator of V in this setting is the stratified mean 

K ^ j y j "i * 1 1 "* 

t=i »=i j= i t=i ]=i 

The estimated variance of the stratified mean is 

**-i:*tt£-h (3i) 

where Sf is the sample variance for stratum i. The quantities yat and vst, given by 

(3.1) and (3.1), are used for constructing the 95% confidence interval for Y of the form 

yat ± 1.96 y/vat and for the hypotheses tests about the population mean Y. 

3.2 Model-based approach to survey inference 

The model-based approach to sample survey inference, on the other hand, requires 

a model for the survey outcomes Ymc- This model is then used to predict the non-

sampled values, Yexc, of the population and hence the finite population quantities, Q. 

Little (2004) divides the model-based approach into super-population modelling and 

Bayesian modelling. In super-population modelling (for example Royall 1970; and 
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Valliant, Dorfman and Royall, 2000), the population values of Y are assumed to be a 

random sample from a super-population with a probability distribution p( Y/9) indexed 

by a fixed parameter vector 9. Inferences are based on the joint distribution of Y and 

the inclusion indicator variables J. The Bayesian modelling approach, on the other 

hand, requires the specification of a prior distribution p( Y) of the population values 

(Ericson, 1969; Binder, 1982; Rubin, 1983,1987; Ghosh and Meeden, 1997). Inferences 

about the finite population quantities Q( Y) are then based on the posterior predictive 

distribution P(V^EC/Yinc) which is the distribution of non-sampled values (Veic) of Y 

given the sampled values (Yinc)- The specification of the prior distribution p( Y) is often 

achieved via a parametric model P( Y/6) indexed by parameters 9 combined with prior 

distribution p(0) for 9. 

The specification of p( Y/9) in this Bayesian formulation is the same as in para­

metric super-population modelling. In large samples, the likelihood based on this 

distribution dominates the contribution from the prior of 9. As a result, large-sample 

inferences from the super-population and Bayesian modelling approaches are often sim­

ilar. Model formulations thus do not involve the distribution of 7, but the distribution 

of Y alone. 

A key motivation for probability sampling from the modelling perspective is that 

it avoids the need to specify a model for the sampling mechanism even though the 

sampling distribution is not the basis for inference. Prom the Bayesian perspective, 

random sampling provides a justification for assumptions of exchangeability of the 

sampling units that underpin identically and independently distributed (iid) models. 

To describe the model-based inference for the mean from a stratified random sample, 

Little (2004) lets yy denote the value of Y for unit j in stratum i. A common baseline 

for continuous outcomes assumes that yy is normally distributed with mean m and 

variance of. A simple Bayesian specification in the absence of strong prior knowledge 
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about Hi and of yields a posterior mean that equals the stratified mean from the design-

based inference. For example, when of is replaced by Sf, the posterior variance is the 

same as the design-based variance. Thus for large samples, the posterior distribution 

of Y yields a 95% posterior probability interval that is the same as the design-based 

95% confidence interval. The former is interpreted as a probability statement about 

the unknown population mean and the latter as a confidence interval for the unknown 

population mean. 

3.2.1 The design-based and model-based approaches - How 

are they different? 

Different frameworks or approaches for inference depend on the assumptions about 

the processes which generate the sample data (Smith, 2001). The decision to use the 

model-based inference is a statement that the sample selection mechanism can be 

ignored for inference. Likewise, the decision to use the design-based inference is a 

statement that models have no relevance to the inferential framework. 

According to Little (2004), the design-based inference takes into account features 

of the survey design, and provides reliable inferences in large samples without the need 

for strong modelling assumptions. On the other hand this inference approach yields 

limited guidance for sample adjustments. For example, the stratified mean which 

sampled units by the inverse of their probability of selection. The Horvitz-Thompson 

(HT) estimator applies this idea more generally as follows. Consider inference about 

the population total Q( Y) — T = Y\ + . . . + YN and a sample survey design with a 

positive inclusion probability 7r< = E(I{/Y) > 0, i = 1, . . . , N. Then the HT estimator 

is 

i sampled * *=1 
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and is design unbiased for T since 

E$HT/Y\=f; murfe=jr*fi=jr,*=r. 
ft *i ft *< ft 

The unbiasedness of ?HT under very mild conditions conveys robustness to modelling as­

sumptions and makes it a mainstay/foundation of the design-based approach. However, 

the HT estimator has two major deficiencies. First, the choice of variance estimator 

is problematic for some probability designs such as systematic sampling. Second, the 

HT estimator can have a high variance, for example, when an outlier in the sample 

has a low selection probability and hence receives a large weight. On the other hand, 

independent and identically distributed (iid) models fail to account for sample survey 

design (Little 2004). 

The differences between the design-based and model-based inference approaches 

to statistical analysis arise early in the study of statistics, in the form of the role of 

weights in multiple regression (Little 2004). For example, the basic fitting algorithm for 

standard forms of normal linear regression is ordinary least squares (OLS). OLS is based 

on a model that assumes a constant residual variance for all values of the covariates. 

However, if the variance of the residual for unit i is <T2/ui for some known constant 

Ui, then better inferences are obtained by weighted least squares (WLS) with unit i 

weighted proportional to itj. This form of weighting is model-based since the linear 

regression model has been modified to incorporate a non-constant residual variance. 

A quite different form of weighting arises in survey sampling, based on the sample 

selection probabiUties. If unit i is sampled with selection probability 7r<, then the 

OLS is replaced by the WLS by weighting the contribution of unit i to the least square 

equations by the inverse of the probability of selection {wiCC±). This form of weighting 

is design-based, with 7T*, relating to the selection of units. Since unit i represents l/7r< 

units of the population, it receives a weight proportional to 1/TTJ, in the regression. 
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The model-based approach (under the appropriate super-population probability 

models) also differs from the conventional design-based one in that it focuses on the 

characteristics of particular samples rather than on plans for choosing samples (Roy-

all and Herson, 1973). The correctness of the results in the model-based approach 

depends on the super-population probability model whose perfect confidence in it is 

never justified. 

By paying close attention on the asymptotics, Kott (2002) improved abit on the 

variance estimator concentrating first on those situations where finite population cor­

rection matter and then on cases where the sample itself is not very large. As the 

population and then the sample become less large, it was necessary to make more as­

sumptions about the error structure of the model. Relying on randomization-based 

properties, which are asymptotic in nature makes little sense. Models can therefore 

help in ferreting out just when the sample may be too small to assert asymptotic nor­

mality to the pivotal (t/t/V when finite population correction is ignorable. Parameter 

t# represents the regression estimator; V is the model variance estimator of t^), a 

generally common and often an unjustified practice. 

The use of a particular model-based approach helps to provide guidance in the 

choice of sampling designs but it is difficult to determine how far it should dictate the 

choice of an estimation (Hedayat and Sinha, 1991). Also, any deviation from the true 

model would make it difficult to validate the survey estimates unless the estimators 

were robust in the appropriate sense. 

Kalton (1983) and Thomsen and Tesfu (1988), who have studied the use of the 

model-based approach in sample surveys, argue that although it is true that most 

sample surveys are aimed at providing estimates for simple descriptive parameters 

(like mean, variance) of the population of interest, typical sample surveys are multi­

purpose in nature and different parts of the multi-response survey data may need to be 
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analysed for different purposes. Even if a model is suitable for one survey variable, it 

may not be realistic for others. Therefore Kalton (1983) and Thomsen and Tesfu (1988) 

conclude that a complete reliance on a particular super-population is not advisable in a 

multi-response multi-purpose survey but may be used as a guiding factor for selecting 

a reasonable sampling strategy. 

The super-population parameters in the model-based approach may often be pre­

ferred to finite population parameters from the design-based approach as targets for 

inference in analytic surveys (Skinner et al., 1989). However, if the population size is 

large, there will often be little numerical difference between the two approaches. A 

difference will therefore only be expected as the population size gets smaller. On the 

other hand, samplers often mistrust the model-based approach to survey inferences 

when applied to large samples from complex populations due to the concerns about 

model misspecifications (Zheng and Little 2003). However, the approach can work very 

successfully in survey settings provided the chosen models take into account the sample 

design and avoid parametric assumptions thus in favor of the design-based approach. 

The model-based inferences are well equipped to handle complex design features 

such as cluster sampling through random cluster models, stratification through covari-

ates that distinguish strata, non-response (Little, 1982; Rubin, 1987; Little and Rubin, 

2002) and response errors. The model-based approach also allows for prior information 

to be incorporated when appropriate (Little, 2004). 

Another area where the model-based methods are widely used is in small domain 

estimation. This is because small sample sizes can be too small for the design-based 

approach to obtain reliable inferences. However, aggregating the small domains would 

surely result in the results being based on a large enough sample, thus enabling the 

design-based principles to offer some protection against model failure. Despite the fact 

that the model-based approach gives powerful inferences, grossly invalid inferences 
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would result if the assumed model were unrealistic (Cassel, Sarndal and Wretman, 

1977). 

But, all models are simplifications and are hence subject to some degree of mis-

specification. The major weakness of the model-based inference, therefore, is that if 

the model is seriously misspecified, it can yield inferences that are worse than the 

design-based inferences. A model for stratified sampling that ignores stratum effects 

is too misspecified for it to be a reliable basis for inference unless there are convincing 

reasons to believe that stratum effects are not present. 

The role of randomization in experimentation is also an important and essential 

one. Its basic function is that it reduces the number of assumptions required for the 

validity of statistical inference procedures (Royall, 1970). This function has many 

aspects and the three frequently described are: to protect against failure of certain 

probabilistic assumptions; to average out effects of unobserved or unknown random 

variables; and to guard against unconscious bias on the part of the experimenter. All 

these objectives contribute to the general goal of making the results of the experiment 

convincing to others. Two other arguments that advanced in support of randomization 

in sampling problems were: that it enabled the sampler to check the accuracy of the 

assumptions concerning the relation between the response and explanatory variables; 

and also enabled the sampler to estimate the variance of the estimate accurately. 

In practice, many survey statisticians, depending on the situation, have adopted 

both design-based and model-based philosophies of statistical analysis. For example, 

descriptive inferences about finite population quantities based on large probability sam­

ples are carried out using design-based methods but models are used for problems where 

this approach does not work such as non-response and small area estimation. This ap­

proach has increased in popularity, but as Little (2004) remarked, "one should not be 

satisfied with two competing statistical theories". This has led to the development of 
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approaches such as the model-assisted design-based approach and the randomization-

assisted model-based approach. 

3.3 Model-assisted design-based approach 

In the model-assisted design-based approach, the design-based inference is treated 

as the real goal of the survey sampling, but models axe employed to help choose between 

valid design-based alternatives. This leads to unbiased models and a small model-

expected randomization mean square error. Therefore, the super-population models 

axe not the basis for inference in the design-based approach, but axe useful in motivating 

the choice of estimator (Little, 2004). 

In particular, many of the classic estimators, such as the ratio estimator and the 

regression estimator, which incorporate covariate information, can be motivated as 

arising from linear super-population models. For example, the HT estimator can be 

regarded as a model-based estimator for the following linear model relating y< to TTJ: 

or equivalently 

where e< axe assumed to be iid normally distributed with mean zero and variance a2. 

These models lead to /3 = n - 1 ^,ieS yijta — tjir/n where n is the sample size. The 

corresponding prediction for unit i is yi = fai, and the prediction estimator of the 

total is thus 

N 

t = l ieS ieS 

This estimator differs from the design-based HT estimator mentioned in Section 3.2.1 

by a quantity that tends to zero with the sampling fraction n/N. This analysis suggests 
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that the HT estimator is likely to be a good estimator if the linear model relating y< to 

IT, adequately describes the population. However, this estimate will surely be inefficient 

if the linear model does not fit the population. 

3.4 Randomization-assisted model-based approach 

Unlike the model-assisted approach, the randomization-assisted model-based ap­

proach treats the model-based inference as the goal of the survey sampling. However, 

design-based methods are employed to protect against inevitable model failures. How­

ever, the choices for the estimation strategy and the variance estimator between the 

model-assisted and the randomization-assisted approaches do not change in typically 

large samples and population environments. In this approach the estimators are also 

design-consistent. 

Restricting attention to design-consistent estimation strategies assures that even 

when the model fails, the estimator will likely not be too far off from what it is 

estimating. Also for an estimation strategy (an estimator coupled with a sampling 

design) to be design-consistent, its mean square error should approach zero as the 

sample size becomes arbitrarily large. The emphasis of the randomization-assisted 

model-based approach is thus to make the bias small, thus leading to superior coverage 

estimates. In his paper, Kott(2002) concludes that although the dominant design-

based and model-assisted design-based approaches have been fruitful in many ways, 

they should be supplanted by the randomization-assisted model-based approach. This 

is because inference should be based on the actually observed sample rather than on av­

eraging over all potential samples. He warned that although the design-based methods 

provide some protection against model failure, their protection relies on invoking the 

asymptotic properties in a finite population. Thus, he argues that the model-assisted 
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routine actually makes more sense under the randomization-assisted model-based ap­

proach. However, the approach to handling multi-phase sampling designs from the 

randomization-assisted model-based viewpoint still needs to be developed. 

In conclusion, one can say that the model-assisted approach takes the model out 

of the shadows of design-based survey sampling and gives it a formal place in survey 

theory and practice. However, the real inference is deemed to be related to the sampling 

design and not to the model distribution. This is done by choosing among design-

consistent estimation strategies, by hypothesizing a reasonable and practical model, 

restricting attention to model-unbiased estimators, and by selecting that strategy with 

the minimum model-expected randomization mean square error. This routine however, 

makes even more sense under the randomization-assisted model-based approach. 

3.5 The multistage sampling design 

Most of the sources of variability in survey data are nested. Observations on 

children in classes, employees in firms, suspects tried by judges in courts, animals in 

litters, and longitudinal measurements on subjects are some of the examples of nested 

data structures (Snijders and Bosker, 1999). Data structures of this nature are viewed 

as multistage (or multilevel) samples from clustered populations. 

The model-based design allows the researcher to go beyond estimating the summary 

measures into the casual explanation of the processes that underlie the descriptive sur­

vey approach in the analysis of complex survey data (Skinner et al, 1989 Chapter 1). 

This makes the model-based design appropriate approach for a multistage sampling 

design. In addition, this modelling approach can be adopted to complex finite pop­

ulation structures and sampling schemes (Ericson, 1969; Scott and Smith, 1969; and 

Royall, 1970). Complexity in this context is defined by the degree of complexity of the 
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sampling design. 

Longitudinal data in particular are often highly unbalanced in the sense that the 

number of measurements per subject are unequal and/or that measurements are not 

taken at fixed time points. Due to their unbalanced nature, many longitudinal data 

sets cannot be analysed using multivariate regression techniques. The natural alter­

native arises from observing that subject-specific longitudinal profiles can often be 

approximated by using linear regression functions. In this case, the vector of repeated 

measurements for each subject is summarized by a vector of a relatively small number 

of estimated subject-specific regression coefficients. And in the second stage, multi­

variate regression techniques are used to relate these estimates to known covariates, 

classifications and baseline characteristics. 

The well known statistical model for multilevel analysis is the hierarchical linear 

regression model which is essentially an extension of the familiar multiple linear re­

gression model by including the nested random coefficients. This model is known in 

literature under a variety of names such as the hierarchical linear model (Bryk and 

Raudenbush, 1992), the variance-component model (Levin, 1999), and the random-

coefficient model (Longford, 1993). The hierarchical linear model is also very useful for 

analysing repeated measures or longitudinal data. Since the appearance of the path-

breaking paper by Laird and Ware (1982), the hierarchical linear model has been the 

main type of application of the hierarchical linear model in the biological and medical 

sciences (Snijders and Bosker, 1999). Its main advantage is that it effectively elabo­

rates the modelling of the random variability. However, of importance is its flexibihty 

to deal with unbalanced data structures or longitudinal data where measurements are 

made at different sets of time points. This is mainly possible because the model does 

not assume equal numbers of identical occasions for all subjects. Since the hierarchical 

linear regression model contains both random and fixed effects, it falls under the mixed 
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model family. 

3.5.1 The mixed model 

Models where some of the factors in the model structure are fixed and some factors 

are random effects are known as mixed models. The general linear mixed model can 

be represented in matrix form by 

y = X/3 + Zu + e, 

in which /? is a p x 1 vector of unknown constants (the fixed effects), X is an n x p 

design matrix of fixed numbers associated with /?, Z = [Z1IZ2I... |Zr] where Zi is an 

n x q, design matrix for the random effect factor i, u' = [u^u^l... |uj.], where u{ is a 

5i x 1 vector of independent random variables with a JV(0, of) distribution, i = 1, 2, 

. . . ,r, e is an n x 1 vector of error terms with a N(0, a\) distribution and u» and e are 

mutually independent. One may also write u ~ N(0, G), where G is a block diagonal 

with the i-th block of I,*, so that y has a multivariate normal distribution with E(y) 

= X0 and Var(y) = V, where V = 0% + ZGZ' = a%, + X)[=1 ̂ Z^ZJ (Zewotir and 

Galpin, 2004). 

In practice, the variance components a\ and of need to be estimated. This can 

be done by using either the analysis of variance (ANOVA), maximum likelihood (ML) 

or the restricted/residual maximum likelihood (REML) methods. For balanced data 

(where the number of observations in the subclasses of the data are the same), it is 

common practice to estimate the variance components using the ANOVA method. This 

is done by equating the sum of squares (or mean squares) in an ANOVA table to their 

expected values. However, this method has a limitation in that it is applicable only 

to balanced data. Another disadvantage is that it sometimes gives negative variance 

estimates. For unbalanced data however, Henderson (1953) describes three ways of 



29 

using the general ANOVA method for estimating the variance componentes. These are 

the Henderson's methods I, II and III. 

Henderson's method I also uses the sum of squares but is adjusted to handle un­

equal cluster sizes. Computed are the sum of squares as in the standard ANOVA of 

corresponding orthogonal data. The sum of squares are then equated to their expecta­

tions, obtained under the assumption of the model, to solve for the unknown variances. 

Despite this method being the simplest, it can only be used if it is assumed that, except 

for the general/overall mean, all the elements of the model are uncorrelated variables 

with means zero and variances a\ and of. This is because it leads to biased estimates 

if certain elements of the model are fixed or if some of them are correlated. Its for this 

reason that this method cannot handle mixed models. 

Henderson's method II tries to separate the random part from the general model 

so as to enable the application of the sum of squares method to the isolated random 

model. This is done by obtaining the least squared estimates of the fixed effects, 

correcting the data according to their fixed effects, using the corrected data in place of 

the original data, and then proceeding on as in Method I. In this method, the bias in 

estimating the variance components due to the assumption that fixed elements of the 

model are random variables is eliminated. At the same time the simplicity of Method 

I is retained. Although this method works well with mixed models, it cannot be used 

for models with interactions between the fixed and random factors. 

Henderson's method III, on the other hand, uses the sum of squares that arise in 

fitting an over-parameterized model and sub-models. In this method, the mean squares 

are computed by a conventional least squares analysis of non-orthogonal data (method 

of fitting constants, weighted squares of means for example). These mean squares are 

then equated to their expectations to solve for the unknown variances. This method 

yields unbiased estimates but the computations required may be excessive. This is 
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because it suffers the problem of many sum of squares. 

When it is computationally feasible, Method III is the most satisfactory of the three 

methods of estimating variance components. This is mainly because it gets around the 

difficulty of fixed elements in the model. In addition, it yields unbiased estimates 

even though certain elements in the model are correlated. Unfortunately, Method 

III is not likely to be computationally feasible in the non-orthogonal case unless the 

number of different classes is small or unless the design incorporates planned non-

orthogonality such that consequently the mean squares of the ANOVA can be computed 

without solving least square equations. However, these methods also have the problem 

of sometimes giving negative variance estimates. The relative sizes of the sampling 

variances of estimates obtained by these three methods are also unknown. 

The ML method maximizes the likelihood function using the Newton Raphson 

and/or Fisher's scoring algorithms to obtain the estimates. On the other hand, the 

REML method minimizes the likelihood function of a certain number of linearly inde­

pendent error contrasts using the Newton Raphson and/or Fisher's scoring algorithms 

to obtain the estimates of the variance components. 

According to Zewotir and Galpin (2004), working in terms of 7J = a\la\ eases the 

computational procedures associated with the model. Therefore, Vbr(y) can be writ­

ten as Var(y) = a2
eH where H = I„ + ZDZ' = I„ + £ L i 7«Z<Z$ and D = G/<7? (also 

see Wolfinger, Tobias and Sail, 1994; Lit tell et al., 1996). The best linear unbiased esti­

mate (BLUE) of pis (3 = ( X ' H ^ X ^ X ' H - V and the best linear unbiased predictor 

(BLUP) of u is u = DZRy where R = H"1 - H~1X(X'H-1X)-1X'H-1 . The ML and 

REML estimates of a* are b\ — y'Ry/n and a\ = y 'Ry/(n - p) respectively. If the 

variance components 7* are unknown, which is usually the case, the ML or REML es­

timated are simply substituted into the expressions. In this case the BLUE and BLUP 

acronyms no longer apply, but a qualifying empirical is often added to indicate such 
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approximation. 

The relative advantage of the ML over the REML method is that it provides esti­

mates of the fixed effects, while REML does not (Searl, Casella and McCulloch, 1992). 

However, REML estimators takes into account the degrees of freedom involved in esti­

mating the fixed effects, while the ML estimators do not. For balanced data, ANOVA 

and REML estimates are the same whereas for unbalanced data, ML and REML es­

timates are slightly more efficient than the ANOVA (Henderson's methods) estimates 

(Snijders and Bosker, 1999). 

3.5.2 The hierarchical linear model 

The hierarchical linear model is the best model for multilevel data because it 

accounts for the within-subject as well the between-subject variations in the data. The 

"subjects" refer to the units at the higher level of the nesting hierarchy. Using the 

description of the hierarchical linear model by Snijders and Bosker (1999): for i = 1, 

..., n and j = 1,. . . , miy let y^ and x -̂ be the respective measurements of the dependent 

and the independent variables made on the j t h unit in the iih subject. Further, let Zi (i 

= 1, ..., n) be the measurement of the independent variable made on the ith subject. 

The simplest model for yy is one without the random effect, which is the char­

acteristic of the classical multiple regression model. This classical multiple regression 

model states that the dependent variable can be expressed as a linear combination of 

the explanatory variables and the random residual as follows: 

Vij = Po + PiXij + fozi + Rij, (3.2) 

where the /?'s are the regression coefficients/parameters. Specifically, (3Q is the intercept 

(the value obtained when Xij and z* are zero); fa is the coefficient for the unit within 

subject variable X; fo is the coefficient for the subject variable Z; and variable Rtj is 
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the error term. 

Model (3.2) can be extended to include the cross-level interaction effect resulting 

in the regression model 

Vij = ft+ &*« + & * + &**« +fly- (3-3) 

The model assumes that the whole data structure can be fully be explained by the sub­

ject variable Z and the unit within subject variable X. However, the nesting structure 

is not completely described by this model. Additional effects of the nesting structure 

can be incorporated by letting the regression coefficients vary from subject to subject. 

This results in subject-dependent coefficients ft and fiu yielding the model 

Vij = Poi + Puxy + Rij- (3.4) 

These subject-dependent coefficients can be modelled as follows: 

ft = Too + 7oi* + Uw, and (3.5) 

Pu = 7io + 7n*i + d i (3.6) 

where 700 and 710 are the average intercepts, 701 and 711 are the regression coefficients, 

and Uoi and Uu are the subject-dependent deviations. If ft and fiu are found to be 

constant, then the nesting structure has no effect and one returns to the model (3.3) 

by substituting the subject-dependent coefficients (3.5) and (3.6) in (3.4) without the 

random effects U(h and Uu. In this case, the OLS regression offers a good approach for 

data analysis. If only ft is found to be random and fin is found to be constant, then 

the resulting model is known as the 'random intercept model'. This is the simplest 

case of the hierarchical model which after substituting (3.5) and (3.6) in (3.4), without 

the random effect Uu, is given by 

Vij = (7oo + 701* + Uoi) + (710 + jiiZiixq + Rij 

= 7oo + 701* + 7io*»j + TnZiXij + U& + Rij. 



33 

However, a more general case of the hierarchical linear model is where the slopes are 

also random (represented in Model (3.4)). Substituting (3.5) and (3.6) in model (3.4) 

leads to the model 

VH = (loo +101% + Uoi) + (yio + in* + Uu)xij + Rij 

= Too + 7oi* + 1/ioXij + 7n *iXij + U<H + Ui&ij + Rij-

This model can be extended to include more subject variables and more unit within 

subject variables. Suppose that there are p unit level explanatory variables X\, ..., 

Xp and q subject level explanatory variables Zi, ..., Z,, then the regression model 3.4 

becomes 

Vij = hi+PiiXui...+PpiXpij + Rij. (3.7) 

The subject-dependent coefficient /?« (h = 1, . . . , p), which can be known as the 

g-variable regression model for the t-th subject, is given by 

Phi = 7W) + 7fti*« + • • • + IhqZu + UM. (3.8) 

Substituting (3.8) in (3.7) and rearranging the terms in the model yields 

p q q p p 

Vij = 7oo + 5 ^ IhoXhij + ^2 lokZki + ^2 ^ IhkZkiXhij + UM + J ^ UhiXMj + Rij. 
h=l k=l fc=l h=l h=l 

The between subject variation is now characterized by p+1 random coefficients, I/a, 

Uu, ..., Upi. These random coefficients are independent between subjects, but may be 

correlated within subjects. It is assumed that the vector ([/« . . . Upi) is independent of 

the unit level error terms Rij and that all error terms have mean 0, given the values of 

all the explanatory variables. It is also assumed that the error term Rij has a normal 

distribution with constant variance a2 and (C/<K . . . Upi) has a multivariate normal 

distribution with a constant covariance matrix with the variances and covariances of 
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the subject random effects denoted as: 

Var(Uhi) = rhh = rji(h = l,...1p), 

Cov(Uhi,Uki) = Thk (h,k = l,...,p), 

Var(Uoi) = TOO = TQ , and 

Cov(Uoi, Uhi) = r0h(h = l,... ,p). 

Snijders and Bosker(1999), and Efron and Morris (1975) highlight a method known 

as the Emperical Bayes (EB) estimation which produces posterior means used to predict 

U(H (also known as latent variables). The basic idea of this method is that U(* is 

estimated by combining two kinds on information: the data from subject i; and the 

model assumption that the unobserved Uw is a random variable, therefore has a normal 

distribution with mean 0 and variance TQ. 

The hierarchical linear model also provides room for statistical testing, also known 

as model fitting, with the sole aim of obtaining a parsimonious model that fits reason­

ably well with the data. To get a parsimonious model, all the effects are tested and 

only the significant ones (at a predetermined level of significance) are included in the 

model. 



Chapter 4 

The longitudinal mixed model 

Verbeke and Molenberghs (2000) describe the longitudinal mixed model by com­

bining two stages of analysis into one single statistical model as follows. Let the random 

variable Yy denote the response of interest of the i-th subject, measured at time j , i 

= 1, . . . , N; j = 1, . . . , rii and let yf be the n^-dimensional vector of all repeated 

measurements on the z-th subject that is, y< = (yn, y<2, • • •, Vim)'- Then the first stage 

of the two-stage approach assumes that y< satisfies the linear regression model 

yi = ZiPi + eu (4.1) 

where Zi is an (rij X q) matrix of known covariates modelling how the response evolves 

over time for the i-th subject, while # is a g-dimensional vector of unknown subject-

specific regression coefficients and £* is a vector of the error term components, e#, j = l , 

. . . , rii. It is usually assumed that all £i are independent and normally distributed with 

mean vector zero and covariance matrix £*, where E< is the nj-dimensional matrix. In 

the second stage, a multivariate regression model, of the form 

/ ^ K ^ + bi, (4.2) 

35 
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is used to explain the observed variability between the subjects with respect to their 

subject-specific regression coefficients # with Ki as a (q x p) matrix of known covari-

ates and P as the p-dimensional vector of unknown regression parameters. Lastly, the 

bj's are assumed to follow a g-dimensional normal distribution with mean vector zero 

and general covariance matrix D. 

The regression parameters in the second stage model (4.2), which are of primary 

interest, can be estimated by sequentially fitting the stage one and two models. First, 

all Pi are estimated by fitting model (4.1) to the observed data vector y, of each 

subject separately, yielding estimates /?<. Then model (4.2) is fitted to the estimates 

Pi, providing inferences for p. 

As for any analysis of summary statistics, the two-stage analysis obviously suffers 

from problems. Firstly, information is lost in summarizing the vector j/j of the observed 

measurements on the i-th subject by # . Secondly, the random variability is introduced 
A 

when & in model (4.2) is replaced by its estimate Pi. Moreover, the covariance matrix 

of Pi depends strongly on the number of measurements made on the i-th subject as 

well as on the time points at which these measurements were taken. This is not taken 

into account at the second stage of analysis, but can be resolved by combining the 

two stages of analysis into one model commonly known as the linear mixed (-effects) 

model. The combination is done by replacing # in model (4.1) by its expression in 

model (4.2), yielding: 

Yi = Xip + Zibi + et (4.3) 

hi ~ iV(0,D), (4.4) 

£i ~ ^(O.Ei), (4.5) 

where &i, . . . , bw, ei, . . . , EN are independent, with D as a general (q x q) covariance 

matrix with (i, j) element dy = dp and £* is an (n< x n<) covariance matrix respectively. 
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Matrices X< (where Xi = ZiKi) and Z< are (n* x p) and (n< x q) dimensional 

matrices of known covariates respectively. The p-dimensional vector 0 represents the 

fixed effects while the ^-dimensional vector 6» are the subject-specific random effects. 

Although the random effects and the error term components are independent of each 

other, the subject-effects and the random effects are usually not independent but are 

correlated (Hallahar, 2004). The response vector y< is normally distributed with mean 

vector Xj/3 and covariance matrix V< = ZiDZJ + E<. 

4.1 The fixed-effects/mean structure 

In order to choose an appropriate fixed-effects structure for the longitudinal mixed 

model, one needs to examine how the profile for the relevant sub-populations of the 

subjects evolve over time. This enables the visualization of the data pattern over time. 

Individual and mean profiles of the subjects over time are commonly used to visualize 

these data patterns over time. Individual profiles are the responses of each subject 

plotted against time, while in the mean profiles are the mean responses of the subjects 

are plotted against time. 

However, it is difficult to determine the most appropriate functional form of the 

dependence of the response variable on time by merely looking at the profile plots. To 

solve this problem, a scatter-plot smoother known as the loess smother can be used. 

This smoother produces non-parametric curves that show the functional dependence 

without imposing parametric assumptions about the dependence. The loess smoother 

can be implemented by using the SAS PROC LOESS procedure. As described in 

SAS Institute Inc. (2000) and by Cohen (1999), PROC LOESS implements a non-

parametric method for estimating local regression surfaces. This method is commonly 

referred to as 'loess', which is the abbreviation for local regression. Assume that for i 
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= 1 to n, the ith measurement y< of the response y and the corresponding measurement 

Xi of the vector x of p predictors are related by 

where g is the regression function and ej is a random error. The idea of local regression is 

that the regression function g(x) can be locally approximated by the value of a function 

in some specified parametric class near x — XQ. Such a local approximation is obtained 

by fitting a regression surface to the data points within a chosen neighbourhood of 

the point xo- In the loess method, weighted least squares are used to fit linear or 

quadratic functions of the predictors at the centers of neighbourhoods. The radius of 

each neighbourhood is chosen so that the neighbourhood contains a specified percentage 

of the data points. The fraction of the data, called the smoothing parameter, in each 

local neighbourhood controls the smoothness of the estimated surface. Data points 

in a given local neighbourhood are weighted by a smooth decreasing function of their 

distance from the center of the neighbourhood. 

The loess fit, which is usually applied to a random sample of subjects (in large 

sample surveys), depends strongly on a smoothing parameter. The most appropri­

ate smoothing parameter is one which minimizes a criterion that incorporates both 

the tightness of the fit and the model complexity. To determine such a smoothing 

parameter, the Akaike information criteria (AIC) is used. The smoothing parame­

ter that provides the smallest AIC value is selected as the most appropriate. The 

values of AIC for all the potential smoothing parameters can be obtained from the 

"Fit summary" table of PROC LOESS provided that one of the options ALL, CLM, 

DFMETHOD=EXACT, STD, and T are specified in the model statement. 

The quality of the estimates in a model, as measured by their variances, can be 

adversely affected if the independent variables are closely related (that is highly cor-
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related) to each other (Sen and Srivastava, 1990). The more correlated the variables 

are, the more difficult it is to determine which of the related variables is producing 

the effect on the response variable. This problem is referred to as multicolinearity. 

Large absolute correlation coefficients between the independent variables indicate the 

presence of multicolinearity. 

Another method for detecting multicolinearity is to assess the degree to which each 

independent variable is related to all other independent variables (Sen and Srivastava, 

1990). If there are p independent variables, then this is done by examining the Rj (J = 

1, . . . , p), which is the sample coefficient of determination (R2), between the variable 

Xj and all the other independent variables. The tolerance TOLj is defined as 

TOL, = 1-R2. 

If Xj is not closely related to the other variables then tolerance TOLj will be close to 

1. The variance inflation factor VIFj is given by 

VIF, = TOLJ1. 

Clearly, a value of VTFj close to 1 indicates no linear relationship among the indepen­

dent variables, while larger values indicate presence of multicolinearity. VIFs larger 

than 10 imply serous problems with multicolinearity (Montgomery, Peck and Vining, 

2001). 

In a case of multicolinearity, the principal component analysis (PCA) can be applied 

on the data. In addition, a rotation can be applied to the PCA process. Its goal is to 

minimize the complexity of the component by making the large loadings larger and the 

small loadings smaller within each component (Wuensch, 2004). The most commonly 

used rotation is the VARIMAX rotation. However there are other rotation methods 

such as the QUARTIMAX and the EQUAMAX rotation. The QUARTIMAX rotation 

makes large loadings larger and small loadings smaller within each variable while the 
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EQUAMAX rotation is a compromise that attempts to simplify both components and 

variables. These are all orthogonal rotations, that is, the axes remain perpendicular, 

so the components are not correlated with one another. 

4.2 The covariance structure 

Most models assume that e< has a constant variance and can be decomposed 

as Ei = £(i)i + £(2)t in which e(i)< is the component of the measurement error and 

£(2)t is a component of serial correlation (Diggle et a/., 1994). This suggests that at 

least part of a subject's observed profile is a response to the time-varying stochastic 

processes operating within the subject. This type of random variation results in a 

correlation between serial measurements which are usually a decreasing function of 

the time separation between the repeated measurements. The component e ^ is an 

extra component of measurement error reflecting variation added by the measurement 

process itself. This yields three stochastic components which are the random effects, 

serial correlation effect and the measurement error, resulting in the linear mixed model 

y< = Xip + Zibi + e(1)< + e(2)i 

where: 

b< ~ N(0,D), 

£(i)i ~ N^o2!^), 

£(2)i ~ N(0yHt)t 

with b i , . . . , 6jv, e(i)i, • • •, 6(i)//, 6(2)1, • • •, 6(2)w independent and the correlation matrix 

Hi assumed to be a (rij x m) structure. However, in many applications, the effect 

of serial correlation is very often dominated by the combination of random effects and 

measurement error. This has led to fitted models in practice not including the serial 
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correlation. To check whether there is a need for serial correlation effect in the model, 

scatter plots of the residuals are constructed. Scatter plots of a circular shape indicate 

that serial correlation is not very strong (Fanta, 2003). 

4.3 Modelling the covariance structure 

In modelling the covariance structure, the SAS PROC MIXED procedure provides 

a rich assortment of covariance structures from which to select. However, three of 

the most commonly used structures in longitudinal mixed models are the compound 

symmetric (CS), autoregressive order one (AR(1)) and the unstructured (UN). To 

define these structures in terms of the longitudinal mixed model shown in (4.3), let R 

define the block diagonal of the covariance matrix S< with each block corresponding to 

a subject, then the variance-covariance matrix of the observations is given by var(y) 

= Z'GZ + R. 

In the case of the CS structure, E< = (Jp + I(l-p))a2 where I*, is an n* x n* 

identity matrix, Jni is an n< x rij matrix of ones (unit matrix) and p is the correlation 

between observations on the the i-th subject. 

In the case the of AR(1) structure, the correlation between observations, which are 

say w time periods apart, is assumed to be pw, where p is the correlation between the 

adjacent observations on the z-th subject. Therefore E< is given by: 

f 1 p p2 p*-1 N 

2 P 1 P P2 ••• P*-2 

KP'*-X P 1 > 

The correlations between the observations are dependent on the time periods between 

the observations. 
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For the UN structure, there are no mathematical constraints imposed on the ele­

ments of the covariance matrix. Thus unstructured means no structure. The prob­

lem now is how to decide which of the three covariance structures to assume in the 

model. This decision process can be assisted by using three model-fit criteria which are: 

the Akaike's Information Criterion (AIC), the finite-sample corrected version of AIC 

(AICC) and Schwarz' Bayesian Information Criterion (BIC). These are essentially log 

likelihood values penalized for the number of parameters estimated, hence the criteria 

reported here should only be used to compare models with the same mean structure 

but with different covariance structures. The BIC however imposes a heavier penalty 

than AIC. The covariance structure with the largest values of the criteria is considered 

most desirable. These values can be obtained from the "Fit Statistics" table after 

applying the SAS PROC MIXED procedure. The interest in the covariance structure 

is not for its own right but for obtaining a good model for the covariance structure so 

that computations and inferences about the fixed effects are valid. 

4.4 Model reduction 

Over-parameterization of the model structure leads to inefficient estimation and 

potentially poor assessment of standard errors for the estimates. This results in the 

need for model reduction of both the fixed and random parameters and this is commonly 

done by model comparisons. 

4.4.1 Tests for the significance of the fixed effects 

In the model reduction of fixed effects, a full model of all possible effects is com­

pared with reduced models in order to obtain the most appropriate parsimonious model. 

To compare the models, the likelihood ratio (LR) test is used. This is a classical sta-
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tistical test for the comparison of nested models with different mean structures. The 

LR test statistic is denned as: 

LML(QML,O) 
-21nAyv = -21n (4.6) 

where 0ML,O and OML are the respective maximum likelihood estimates which maximize 

the ML likelihood functions of the full and reduced models. The LR test statistic has 

a chi-square distribution with the degrees of freedom equal to the difference between 

the number of parameters in the two models. The above result is not valid if the 

models are fitted using the REML method (Snijders and Bosker, 1999). The -2 times 

the log likelihoods for the full and the reduced models can be obtained from the "Fit 

Statistics" table after running PROC MIXED for each of the two models. Then the 

LR test statistic is calculated using equation 4.6. 

The reduced model can be reduced even further by applying the backward elimina­

tion method. In this method, all the potential fixed effect variables are introduced in 

the model and the one with the largest p-value (or in other words the smallest F-value) 

is identified (Bowerman, O'Connell, and Dickey, 1986 pg 342; and Neter, Wasserman, 

and Kutner, 1990 pg 458). If this p-value is larger than a (where a is the level of 

significance), then this variable is removed /dropped from the model. The remaining 

variables are tested again and the variable with a p-value greater than a is removed 

from the model. The process continues until all the variables remaining in the model 

have p-values less than a. 

4.4.2 Tests for the significance of the random effects 

The LR test, however, does not exist for cases where the null hypothesis specifies 

that the parameter lies on the boundary of the parameter space, which is typically for 

variance component models for which the standard asymptotic theory does not apply 
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(Self and Liang, 1987). Using results of Self and Liang (1987) on nonstandard testing 

situations, Stram and Lee (1994, 1995) were able to show that the asymptotic null 

distribution for the LR test statistic for testing the hypothesis of the need for random 

effects is often a mixture of chi-squared distributions rather than the classical single 

chi-squared distribution. This is derived under the assumption of conditional indepen­

dence which states that all residual covariances Ej are of the form <r2I7li. Stram and 

Lee (1994, 1995) discuss the following specific LR tests. 

Case 1: No random effects versus one random effect: For testing Ho: D = 0 versus H^: 

D = dn, where dn is a non-negative scalar that represents the variance component 

of the random effect, then the asymptotic null distribution of -21n A// is a mixture of 

Xi and Xo with equal weights 0.5. The Xo distribution is the distribution which gives 

probability mass 1 to the value 0. 

Case 2: one versus two random effects: In this case, one wishes to test 

for strictly positive dn, versus H^ that D is a (2 x 2) positive semi-definite matrix. 

The asymptotic null distribution of -21n X^ is a mixture with equal weights 0.5 for X2 

andx?. 

Case 3: q versus q + 1 random effects: In this case, one wishes to test 

in which Dn is a (q x q) positive definite matrix, versus H.4 that D is a general ((q 

+ 1) x (q + 1)) positive semi-definite matrix. The large-sample behaviour of the null 
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distribution of -21n \N is a mixture of x%+i and x̂ > again with equal weights 0.5. 

Case 4: q versus q + k: In this case, one wishes to test the Ho in case 3 versus 

/ D u D12 \ 
HA : D = 

^ D ' 1 2 D 2 2 , J 

in which D is a general ((q + k) x (q + 1)) positive semi-definite matrix. The null 

distribution of -21n XN is a mixture of x2 random variables formed by the lengths of 

projections of multivariate normal random variables upon curved as well as flat surfaces. 

Note that, for all the cases above, if the classical null distribution is used, then all 

p-values would be overestimated. Therefore the null hypothesis would be accepted too 

often, resulting in incorrectly simplifying the covariance structure of the model, thus 

invalidating inferences (Altham, 1984). The correction for the boundary parameter 

values under the null hypotheses therefore reduces the p-values in order to protect 

against the use of an oversimplified or a too parsimonious covariance structure. 

Although the results in Stram and Lee (1994, 1995) were derived for the case of 

ML estimation, the same results apply for REML estimation (Morrell, 1998). In fact, 

the REML test statistic performs slightly better than the ML test statistic in the sense 

that, on average, the rejection proportions are closer to the nominal level for the REML 

test statistic than for the ML test statistic (Verbeke and Molenberghs, 2000). For the 

longitudinal mixed model, testing is done by deleting one random effect at a time from 

the model starting with the highest-order effect and testing for significance of whether 

the deleted random effect is needed in the model. 
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4.5 Estimation of the fixed and random effects 

Let a denote the vector of all the variance and covariance parameters (commonly 

known as variance components) in V< = ZiDZi + £j . And let 0 = (/?', a') be the 

vector of all parameters in the marginal model for y<. Then the classical approach 

to inference is based on estimators obtained from maximizing the marginal likelihood 

function 

LML(9) = ft {(27r)-^/2|V4(a)|5 x exp (±(y f - X ^ ' V " 1 (<*)(* - X,/?)) j (4.7) 

with respect to 6. If a is known, then the maximum likelihood estimator (MLE) of /?, 

obtained by maximizing (4.7) and conditional on a, is given by 

- i 

^ ( a ) = f f ^ X ; W j X i j f^XiWiYi, (4.8) 

where Wi = Vj"1 (Laird and Ware, 1982). However if a is not known but an estimate 

a is available, then Wi can be replaced by its estimate Wi — V4 = VJ"1(S). Two 

frequently used methods for estimating a are the MLE and the REML. The MLE of 

a is obtained by maximizing (4.7) with respect to a after the /? has been replaced by 

(4.8). 

In practice, the linear mixed models often contain many fixed effects. In such cases, 

it is important to estimate the variance components explicitly, taking into account the 

loss of the degrees of freedom involved in estimating the fixed effects. The REML 

method puts this into practice by applying the error contrasts as follows. First the N 

subject-specific regression models are combined into one model given by 

y = X/3 + Zb + e, (4.9) 

where the vectors y, b and e and the matrix X are obtained by stacking the vectors 

yif bi and €i and matrices Xi on each other. The matrix Z is the block-diagonal 
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matrix with blocks Zj on the main diagonal and zero elsewhere. The dimension of 

y is n = S i l i **»• The distribution of y is multivariate normal with mean X0 and 

covariance matrix V(a). The covariance matrix V(a) is also a block-diagonal matrix 

with blocks Vj on the main diagonal and zeros elsewhere. The REML estimator for 

the variance components o is obtained from maximizing the likelihood function of a 

set of error contrasts U = A'y where A is any (n x (n - p)) full-rank matrix with 

its columns orthogonal to the columns of the matrix X. The vector U has a normal 

multivariate distribution with mean vector zero and covariance matrix A' V(ct)A which 

is independent of 0. The likeUhood function of the error contrasts is given by 
1/2 

L(a) = (27r)-<n-p>/2 

N 

N 

t=i 
-1 /2 N 

»=i 
x Ex ivr l x^ 

i«=i 

x exp 

where 0 is given by (4.8) (Harville, 1974). This shows that the REML estimator a 

does not depend on the error contrasts (that is the choice of .A). 

This likelihood function also equals 
N 

L(a) = C X^WKa)* 
i = l 

-1/2 

LML(0(a),a)t (4.10) 

• v -

/ 
where C is a constant with respect to both a and 0, and LML(0, a) = LML(0) is the 

ML likelihood function in (4.7). Therefore, the REML estimators for a and 0 can also 

be found by maximizing the so-called REML likelihood function 

LREML(0) = 

N 

^ X J W ^ X , 
i = l 

-1/2 

LML{B) 

with respect to all parameters (a and 0) simultaneously. 

The main justification of the REML approach is that in the absence of information 

on 0, no information about a is lost when inference is based on the vector U rather than 
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on y (Patterson and Thompson, 1971). Prom a Bayesian point of view, using only error 

contrasts to make inferences about a is equivalent to ignoring any prior information 

about (3, and using all the data to make inferences about a (Harville, 1974). However, 

both ML estimation and REML estimation have the same merits of being based on the 

likelihood principle which leads to useful properties such as consistency, asymptotic 

normality and efficiency. 

In literature, several methods for the actual calculation of the ML or REML esti­

mates have been described. Dempster, Laird and Rubin (1977) for example, introduced 

the Expectation-Maximization (EM) algorithm for the calculation of the MLEs based 

on incomplete data and illustrated how it can be used for the estimation of variance 

components in mixed-models. Not only can the EM algorithm be used to calculate the 

MLEs, but it can also be used to calculate the REML estimates through the empirical 

Bayesian approach. However, slow convergence of the algorithm to the estimate of vari­

ance components is experienced especially when the maximum likelihood estimates are 

on or near the boundary of the parameter space (Laird and Ware, 1982). Therefore to 

circumvent these convergence problems, researchers use the Newton-Raphson (and/or 

the Fisher's scoring)-based procedures to estimate all parameters in the model. 

It is also useful to calculate estimates for the random effects b< since they reflect how 

much the subject-specific profiles deviate from the overall average profile. Since the 

random effects in the linear mixed effects model are assumed to be random variables, 

it is most natural to estimate them using the Bayesian techniques. Very often b, is 

estimated by the mean of a posterior distribution called the posterior mean of bi. This 
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estimate is given by: 

bi(9) = JS[b,|Y, = y i] 

= JbJibMdbi 

where Yi is the random vector of responses on subject i and j/i are the observed values 

of Y^ The covariance matrix of the corresponding estimator is given by 
- l 

Var(bi(0)) = DZJ < Wi -WiXi ( ^ x ^ x , j x ;Wi ZiD, 

which underestimates the variability of bi(6) - 6< since it ignores the variation of 6j. 

Therefore the inference of 6* is usually based on 

Var(bi(0) - hi) = D - Var(b<(0)) 

as an estimator for the variation of 6<(0) - 6< (Liard and Ware, 1982). The unknown 

parameters (3 and a are replaced by their ML or REML estimates. The resulting 

estimates for the random effects are called the Emperical Bayes (EB) estimates which 

can be denoted as 6*. However, the true variability in the estimate 6j is underestimated 

since the variability introduced by replacing the unknown parameter 6 by its estimate 

is not taken into account. 

Estimates of the 6< can also be obtained from solving a system of linear equations 

(Henderson et a/., 1959). Let the linear mixed model be as given by (4.9). If the 

variances D and E are block-diagonal matrices with the blocks in D and in E< on the 

main diagonal and zero elsewhere, then the estimates of the fixed effects /? and all the 

random effects represented by vector 6 can be obtained from solving the mixed model 

normal equations: 

X ' E ^ X X ' E ^ Z \ ( p \ ( X ' E ' V 

Z'E^X Z'E^Z + D"1 / l b / I Z'E-V 
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For large data sets, the computation of these equations may be expensive, making the 

Bayesian approach more efficient. 

Suppose that interest is in the estimation of a linear combination u = \'p8 + A{,b< 

of the vector 3 of fixed effects and the vector b< of the random effects for some known 

vectors Â  and At of dimension p and q respectively. Then the estimator of u is given 

by 

tya) = \'/}0(a) + \'bbi0(<*),<*), 

where 0(a) is the ML estimator of the fixed effects and bi(0, a) = 6<(0) is the EB esti­

mator of the random effects. The estimator u(a) is the best linear unbiased predictor 

(BLUP) of «. 

4.6 Test for normality 

One may, however, ask oneself if the normality assumption for the random effects 

and the residuals is appropriate. Normality checks using the probability plots, and 

tests using the Shapiro-Wilk test and the Kolmogorov-Smirnov test have been used 

over the years. Specifically the W-statistic (in the Shapiro-Wilk test), suggested by 

Shapiro and Wilk (1965) has been shown to be a good omnibus test of normality 

(Pearson, D'Agostino and Bowman, 1977). However, using simulations and analysis of 

a real data, Zewotir and Galpin (2004) showed that the inferences are hardly affected 

by the non-normality of the random effects. The inferences however, seemed to be 

sensitive to the distribution of the residual term only. This restricted sensitivity led 

to the conclusion that it is the normality of the residual term that is important in the 

inferences. 

The above mentioned normality tests are however based on independence of the 

random effects and residuals, an assumption often violated by longitudinal data. In 
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practice, histograms and scatter plots of components of 6< (EB estimates) and the 

residuals are often used for diagnostic purposes. Specifically, the scatter plots are 

used to pinpoint outlying observations which arise from subjects that seem to evolve 

differently from the other subjects in the sample. On the other hand, the histograms 

of the EB estimates and the residuals can be used to check for the normality of the 

random effects and the residuals respectively. The histogram has shown to be more 

informative than the normal tests for longitudinal data (Hallahar, 2004). 

4.7 Inference for fixed and random effects 

In practice, the fitting of a model is rarely the ultimate goal of a statistical analysis. 

Instead, the primary interest is to draw inferences about the parameters in a model in 

order to generalize results obtained from a specific sample to the general population 

from which the sample was taken. Both the fixed and the random parameters are 

tested to check for their significance in the model. The null hypothesis that a certain 

model parameter is 0, that is 

#0:7/1 = 0, 

can be tested using a <-test. The statistical estimation procedure obtains an estimate 

7h with an associated standard error S.E.(7/,). Their ratio is a t-value 

TM = 

One-sided as well as two-sided tests can be carried out on the basis of this test statistic. 

Under the null hypothesis, T(ih) has approximately a ^-distribution but with the 

degrees of freedom (df) different from those in multiple linear regression due to the 

presence of the fixed and random effects. 
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The estimate of the fixed effect in (4.8) follows a multivariate normal distribution 

with mean vector /? and variance-covariance matrix 

Var0) = (£XJW«X<J (f^XiW^VarfojW^J ( f ^ X j W A j (4.11) 

- 1 

(4.12) 

Inferences about this parameter can be done using the approximate wald test and the 

approximate i-tests and F-tests. The wald test, also known as the Z-test, is associated 

with the confidence interval of (3j, and is obtained by approximating the distribution 

(0j - 0j)/s.e(0j) with a standard univariate normal distribution for each parameter fy, 

j=l, ..., p. In general for any known full row rank matrix L, a test of the hypothesis 

H0: L/3 = 0 versus EA: L/3 ^ 0, 

follows from the fact that the distribution of 

0-fifL1 L^XjVr^SJX.J 1/ 
- i I - 1 

L0-0) (4.13) 

is approximately a chi-square distribution with rank (L) degrees of freedom. However, 

the wald test statistic is based on estimated standard errors which underestimate the 

true validity of /?. This is because they do not take into account the variability in­

troduced by a (Dempster, Rubin and Tsutakawa, 1981). In practice, this downward 

bias is often resolved by using approximate t- and F-tests for testing the hypothesis 

about /?. For each parameter fij in vector fi, j=l, ..., p, an approximate £-test and 

associated confidence interval can be obtained by approximating the distribution of (fy 

- f3j)/s.e(0j) with a ^-distribution. Testing the general linear hypothesis is thus based 

on an F-approximation to the distribution of 

(?- fin/ [L ( J 2 , xjvr1^)^)"1 L' 
F rr fc 

rank(L) 

UP-P) 
, (4.14) 
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with the numerator degrees of freedom equal to rank(Z), while the denominator degrees 

of freedom have to be estimated from the data. The same is true for the degrees of 

freedom in the ^-approximation. In practice, several methods are available for estimat­

ing the appropriate number of degrees of freedom needed for a specific t- or F-test. For 

example, the SAS PROC MIXED procedure includes five different estimation methods, 

one of which is based on the so-called Satterthwaite-type approximation. Kenward and 

Roger (1997) proposed a scaled wald statistic, based on an adjusted covariance estimate 

which accounts for the extra variability introduced by estimating o. They also show 

that its small sample distribution can be well approximated by an F-distribution with 

denominator degrees of freedom as obtained via a Satterthwaite-type approximation. 

A sufficient condition for /? to be unbiased is that the mean E(y») and marginal 

covariance matrix are correctly specified as Xtf and Vi = ZXDZ^ + Ei. Thus 

the estimate (3 is not robust with respect to model misspecification of the covariance 

structure. Liang and Zeger (1986) therefore propose inferential procedures based on 

the so-called sandwich estimator of var(/?) obtained by replacing var(j/i) by T\T*J where 

r< = j/i - XiP. The resulting estimator is also called the robust or empirical variance 

estimator, and is consistent if the mean is correctly specified in the model. This 

suggests that as long as interest is only in the inference about /?, one may put little 

effort in modelling the covariance structure provided the data set is sufficiently large. 

However, in practice, an appropriate covariance model may be of interest since it 

helps in interpreting the random variation in the data. Thus, robust versions of the 

approximate wald test, t-test and F-test as well as the associated confidence intervals 

can also be obtained by replacing the covariance matrix (4.12) in (4.13) and (4.14) 

with the robust covariance matrix in (4.11). Note that the robust standard errors are 

larger, thus leading to larger confidence intervals (Verbeke and Molenberghs, 2000). 
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4.8 Longitudinal mixed model with missing obser­

vations 

The problem of missing observations is common throughout statistical work, and 

is almost always present in the analysis of longitudinal or repeated measurement data. 

Missing data are indeed common in clinical trials, epidemiological studies, and fea­

ture very prominently in sample surveys. The most frequently encountered type of 

missingness in longitudinal modelling is "dropouts" which refers to the case where all 

observations on a subject are obtained until a certain point in time, after which all 

measurements are missing. Much of the treatment of missing data for longitudinal 

data is restricted to dropouts. Verbeke and Molenberghs (2000) highlighted the four 

reasons for this restriction. Firstly, the classification of the missing observation pro­

cesses has a simpler interpretation with dropouts than for patterns with intermittent 

missing observations. Secondly, it is easier to formulate models for dropout. Thirdly 

much of the literature on missing observations in longitudinal data are restricted to 

this setting. Finally, dropouts axe by far the most common modes of missingness in 

longitudinal studies. Missing values therefore occur as dropouts, otherwise one says 

that the missing values are intermittent (Diggle et al., 2002). 

Early work on missing values was largely concerned with algorithmic and compu­

tational solutions to the induced lack of balance or deviations from the intended study 

design. General algorithms, such as the Expectation-Maximization (EM) (Dempster 

et al, 1977), and data imputation and augmentation procedures (Rubin 2004, Tanner 

and Wong 1987), combined with powerful computing resources have largely provided 

solutions to this aspect of the problem. However, the difficult and important ques­

tion of assessing the impact of missing data on subsequent statistical inferences still 

remains. Conditions can be formulated under which an analysis that proceeds as if 



55 

the missing data are missing by design (that is ignoring the missing value process) can 

provide valid answers to study questions. 

The two common approaches to the handling of missing data are: to discard subjects 

with incomplete data; and simple imputation. The first approach has the advantage 

of simplicity, although the wide availability of more sophisticated methods of analysis 

minimizes the significance of this approach. It is also an inefficient use of information 

since some of the collected data is not used at all. 

There are several forms of simple imputation. For example, a cross-sectional ap­

proach replaces a missing observation by the average of the available observations at 

the same time from other subjects with the same covariates and treatment. A simple 

longitudinal approach carries the last available measurement from a subject forward, 

replacing the entire sequence of missing values. A more sophisticated version predicts 

the next missing value using a regression relationship established from the available past 

data. These methods share the same drawbacks, although not all to the same degree. 

The data set that results will mimic a sample from the population of interest, itself 

determined by the analysis, only under particular and potentially unrealistic assump­

tions. Further, these assumptions depend critically on the missing value mechanism(s). 

For example, under certain missing value mechanisms, the process of imputation may 

recover the actual marginal behaviour required, whereas under other mechanisms, it 

may be wildly misleading. It is also under the simplest and most ignorable mechanisms 

that the relationship between imputation procedure and assumption is most easily de­

duced. In addition, the analysis of the completed data set will underestimate the true 

variability of the data. 

One can therefore conclude that when there are missing values, simple methods of 

analysis do not necessarily imply simple or even accessible assumptions. Also, without 

properly understanding the assumptions being made in an analysis, adequate judge-
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ment of validity of the analysis may not be possible. 

4.9 Missing data mechanisms 

In order to incorporate incompleteness or missingness into the modelling process, 

the nature of the missing value mechanism and its implications for statistical inference 

needs to be known. Rubin (1976) and Little and Rubin (1987, Chapter 6) make 

important distinctions between different missing value processes. These are missing 

completely at random (MCAR), missing at random (MAR) and missing not at random 

(MNAR). 

4.9.1 Missing completely at random (MCAR) 

Missingness is said to be MCAR if the missing values are independent of both 

unobserved and observed data. Therefore, cases with complete data are indistinguish­

able from cases with incomplete data. Heitjan (1997) provides an example of MCAR 

missing data: the case of a research associate shuffling raw data sheets and arbitrarily 

discarding some of the sheets. 

4.9.2 Missing at random (MAR) 

Missingness is said to be MAR if conditional on the observed data, the missingness 

is independent of the unobserved measurements. In other words, cases with incomplete 

data differ from cases with complete data, but the pattern of missing data is traceable or 

predictable from other variables in the database rather than from the specific variable 

on which the data is missing. An example of MAR is the following: suppose research 

participants with low-esteem are less likely to return for follow-up sessions in a study 
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that examines anxiety levels over time as a function of self-esteem, and the researcher 

measures self-esteem at the initial session. Then self-esteem can then be used to predict 

the missingness pattern of the incomplete data. 

Another example of MAR is the following: suppose investigators administer a read­

ing comprehension test at the beginning of a survey, then research participants with 

lower reading comprehension scores are less likely to complete the entire survey. In 

both examples, the actual variables for which data are missing are not the cause of the 

incomplete data. Instead, the cause of the missing data is due to some other external 

influence. 

4.9.3 Missing not at random (MNAR) 

In this case the pattern of data missingness is non-random and it is not predictable 

from other variables in the database. For example, if a participant in a weight-loss study 

does not attend a weigh-in due to concerns about his weight loss, his data are missing 

due to non-ignorable factors. In contrast to the MAR situation outlined above where 

data missingness is explainable by other measured variables in a study, non-ignorable 

missing data arise due to the data missingness pattern being explainable by the very 

variable(s) on which the data are missing. 

Looking at these three missing data mechanisms further, assume that for subject i 

in the study, a sequence of measurements Yy is designed to be measured at occasions 

j = 1, . . . , T*f. Then the outcomes can be grouped into a vector Yi = (Yn, ..., Y^)'. 

In addition, for each occasion j , lets define the missing data indicators as: 

Rij=< 
1 if Yij is observed 

0 otherwise. 

These indicators can also be grouped into a vector Rt which is of the same length as Yj. 
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The vector Yi can then be partitioned into two sub-vectors such that Y"? is the vector 

containing those Yij for which Rij = 1 and Y™ contains the remaining components. 

These sub-vectors are referred to as the observed and missing components respectively. 

Statistical modelling thus begins by considering the full data density 

/ ( y ^ p C Z , , * , * ) = / ( y j X i . Z ^ / f a l t t . X ^ ) , (4.15) 

where X{ and Zi are the design matrices for the fixed and random effects respectively; 

6 and ij> are vectors that parameterize the joint distribution; and r< are the missing 

data indicators. Let 8 = (0',a') (fixed-effects and covariance parameters) and ^ de­

scribe the measurement and missingness processes respectively then the first factor of 

the factorization in 4.15 is the marginal density of the measurement process (measure­

ment model) and the second one is the marginal density of the missingness process 

(missingness model). The difference in the missing data mechanisms is specified in the 

second factor of (4.15), that is 

/(r«|y„X«,*) = / ( r i | y ? , y 7 \ X ^ ) . (4.16) 

If (4.16) is independent of the measurements, that is if it assumes the form f(ri\Xi,ip), 

then the process is termed MCAR. If (4.16) is independent of the unobserved (missing) 

measurements y™, but depends on the observed measurements yf, thereby assuming 

the form f(ri\y°,Xi,i(>), then the process is termed MAR. Finally when (4.16) de­

pends on the missing values j/J", the process is referred to as non-random missingness 

(MNAR). An MNAR is allowed to depend on y°. 

If interest is in the measurement model only, then the missingness model can be 

completely ignored. This means that under ignorability, MCAR and MAR have the 

same fitted measurement model. If missingness process is ignorable, then a valid anal­

ysis can be obtained through a likelihood-based analysis that ignores the missingness 

mechanism. This case, termed 'ignorable' by Rubin (1976), and Little and Rubin 
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(1987), leads to considerable simplification in the analysis (Diggle, 1989) 

In most instances, the reasons for missingness are many and vary. It is there­

fore very difficult to justify the assumption of random missingness. Arguably, in the 

presence of non-random missingness, a wholly satisfactory analysis of the data is not 

feasible. One approach is to estimate from the available data the parameters of a model 

representing a non-random missingness mechanism. It may be difficult to justify the 

particular choice of missingness model, and it does not necessarily follow that data 

will contain information on the parameters of the particular model chosen. But where 

such information exists, the fitted model may provide some insight into the nature of 

the missingness process and into the sensitivity of the analysis to assumptions about 

this process. This is the route taken by Diggle and Kenward (1994); Diggle, Liang and 

Zeger (1994, Chapter 11); and Verbeke and Molenberghs (2000, Section 12.4). Further 

approaches are proposed by Laird, Lange and Stram (1987); Wu and Bailey (1989); 

Wu and Carroll (1988); and Greenless, Reece and Zieschang (1982). An overview of 

the different modelling approaches is given by Little (1995). Baker and Laird (1988); 

Stasny (1986); Conaway (1992); Park and Brown (1994); and Molenberghs, Kenward 

and Lesaffre (1997) look at cases of categorical outcomes. One feature, that is, however 

common in all the more complex approaches is that they rely on un-testable assump­

tions about the relation between the measurement process (often the primary interest) 

and the missingness process. 
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4.10 Fitting the longitudinal mixed model with miss-

ingness 

The basic theory on which PROC MIXED is based holds even with unbalanced 

and missing data so long as the missing data is ignorable, since the PROC MIXED 

procedure allows routine fitting of ignorable models with the likelihood-based methods. 

From an interpretation given in Littell et al. (1996), the parameter estimates, standard 

errors and test statistics from a data set with ignorable missing data are not greatly 

different from those obtained using the complete data set. However, the degrees of 

freedom may be different. Therefore, before using the PROC MLXED procedure for 

analysis, one has to make sure that the ignorability assumption holds. 

A general MAR test for multivariate data was provided by Simon and Simonoff 

(1986). Commenting on this test, Little (1988) proposes that when missing values are 

confined to a single variable y, the standard procedure is to compare the distribution 

of the fully observed variables for respondents and non-respondents, either informally 

or formally, via t tests for the differences in means. 

In a regression setting, Simon and Simonoff (1986) explain how this test for MAR 

can be undertaken when only one independent variable has missing data while the 

other independent variables as well as the response variable have complete data. The 

model examined is the usual fixed-effects linear regression model y = X(3 + e, with 

X fixed and the error vector e distributed as N(0,o-2J). Examined in detail is the case 

in which data is missing in one column of the X matrix with the remaining columns 

complete. The vector y is considered to be complete as well. Since the missingness 

in Durban-South data set is on the dependent variable y, then this approach is not 

applicable to the problem at hand. 
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4.10.1 The logistic regression model MAR test 

A logistic regression model was proposed by Diggle and Kenward (1994) to model 

the dropout process. A dropout in this case would mean that observations are made 

on a subject upto a certain point in time and thereafter no measurements are obtained. 

The logistic regression model can be used to explore the missing data process as fol­

lows (Fanta, 2003; and Verbeke and Molenberghs, 2000). Assume that the dropout 

probability at occasion j depends on both the current outcome Y^ and the previous 

one Yij-i. This leads to the following model 

P(Rjj = Q|y<) In 
1 - P ^ = 0|y4) 

with Rij = < 

= <t>o + <t>iVij + fcyij-i, (4.17) 

1 if Yij is observed 

0 otherwise. 

The probability P(i?y=0|yi) is the conditional probability of subject i dropping 

out at time j , depending on the current outcome Y^, and the previous one Yy_i. 

The assumption imposed here is that the relationship among the measurements on a 

subject are the same, even if some of these measurements are unobserved due to non-

response. It is this assumption that allows one to infer about the informativeness of 

the process of missingness (Diggle and Kenward, 1994; Diggle et al, 2002; and Verbeke 

and Molenberghs, 2000). The full model (4.17) represents the MNAR model where the 

process of missingness depends on the unobserved measurements. The reduced models 

with <f>i = 0 and <f>\ = fa = 0 represent the MAR and MCAR models respectively. 

These three models are fitted and tested for significant difference. MAR missingness 

is assumed if the MNAR and MAR models are found not to be significantly differents. 

MCAR missingness is assumed if MNAR and MCAR models are found not to be 

significantly different. Comparisons are made by using the LR test. 
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4.10.2 The MAR tests for random dropouts 

Diggle (1989) and Ridout (1991) also provide testing procedures for random 

dropouts in repeated measurement data. Diggle (1989) provides a method for test­

ing the hypothesis of random dropouts within groups, in the sense of being unrelated 

to measurement history, when the experiment has a completely randomized design. 

In a reader reaction to Diggle (1989), Ridout (1991) pointed out the connection be­

tween Diggle's approach and a logistic regression analysis of the occurrence of dropouts. 

Ridout (1991) argued that, suppose there are r dropouts out of a total of R units that 

have not previously dropped out, then the test statistic proposed by Diggle would be 

the mean value of the covariate x for the r units that are about to drop out. This 

covariate is a function of the measurements taken before dropout occurs. However, 

Ridout (1991) conveniently considers the total of the covariate values, T say, rather 

than their mean. Under the null hypothesis, T is the total of a sample of size r drawn 

at random, without replacement, from the set of R values of the covariate x. It is this 

T statistic which is used in a conditional test of the hypothesis f3 = 0 in the logistic 

regression model 

logit(Pr(Dropout)) = a + px, (4.18) 

which provides a sensible reference distribution for calculating the significance level. 

Specifically the observed value of T is compared with other values that might have 

arisen for the given r dropouts. In addition, the conditional distribution of T does not 

depend on the nuisance parameter a. Ridout (1991) also alternatively considers the 

logistic regression model 

logit(Pr(Dropout)) = on + fix, (4.19) 

where i indexes the different group-time combinations. The conditional test for /? = 

0 involves the statistic T = £ Ti, evaluated conditionally on the number of dropouts 
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occurring in each group-time combination. The normal approximation for T is assumed 

and the test statistic along with the one-sided p-value (with 1 degree of freedom) is 

attained. Alternatively, the LR statistic for testing 0 = 0 referring to the chi-square 

distribution can be obtained which gives a two-tailed P-value. Equivalently, the signed 

square root of the LR statistic is asymptotically standard normal. Another alternative 

is to simply divide the maximum likelihood estimate of (3 by its standard error and 

this gives an asymptotically standard normal test statistic. 

Finally, the hypothesis that the set of P-values (say pu (u = 1 , . . . , t)) obtained by 

applying the above procedures to each time point within each group is a random sample 

from a uniform distribution on (0,1), is tested. As a general aid to interpretation, Diggle 

(1989) recommends the inspection of a probability plot of the pu. If the dropouts are 

random, the pu should behave like a random sample from a uniform distribution on 

(0, 1). For a formal test, the one-sided or two-sided Kolmogorov-Smirnov statistic can 

be used. Note that for the final stage of the test, the independence of the P-values 

under the hypothesis of random dropouts within groups relies on the fact that once a 

unit drops out, it never returns. Thus, this test is also not applicable for intermittent 

missing values. 



Chapter 5 

Identification of the model 

5.1 Preliminary analysis 

As discussed in Chapter 2, there are five independent child-specific variables of 

which School, Sex, and Asthma status are categorical variables; and Height and Weight 

are continuous variables. In addition, the repeated SO2 measurements, which are asso­

ciated with the response variables, also independent variables. The response variable is 

the within-day variability (WDVarFEVl), which is also a repeated measurement. To 

simplify the interpretation of the results of the analysis, it is best to use the categorized 

Height, and Weight measurements. 

5.1.1 Classification of the height and weight measurements 

To classify the measurements of the Height and Weight variables, the National 

Center for Health Statistics/World Health Organization (NCHS/WHO) reference stan­

dards are used. According to Cogill (2003), the NCHS/WHO reference standards 

are most commonly used to standardize measurements. They were developed by the 

NCHS in the United States of America and are recommended for international use 

64 
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by the WHO. The reference population chosen by NCHS was a statistically valid 

random population of healthy infants and children. The NCHS/WHO international 

reference tables have been used for standardizing anthropometric data around the 

world and can be found in the Food and Nutrition Technical Assistance (FANTA) 

website: www.fantaproject.org/publications/anthropom.shtml and the NCHS website: 

www.cdc.gov/nchs/about/major/nhanes/growthcharts. Anthropometry is the study 

of the technique of taking body measurements especially to assess and predict perfor­

mance, health and survival of individuals and reflect the economic and social well being 

of the population. 

These reference standards are used to standardize a child's measurement by com­

paring the child's measurement with the median or average measure for children of the 

same age and sex. For example, if the height of a nine year old boy is 130 cm, it is 

difficult to know if this is reflective of a healthy nine year old boy when there is no 

comparison to a reference standard. The reference or median height for a population 

of nine year old boys is 133.7 cm and the simple comparison of heights would conclude 

that the 130 cm tall child is almost 4 cm shorter than expected. 

However the 4 cm height difference with the reference for a nine year old boy is not 

the same as a 4 cm height difference with the reference for a seventeen year old boy 

because of their relatively different body sizes due to their difference in age. Taking 

the age and sex into consideration, differences in measurements can be expressed in a 

number of ways namely (1) standard deviation units or Z-scores; (2) percentage of the 

median and (3) percentiles. 

The Z-Score or standard deviation (SD) unit is defined as the difference between 

the value for an individual and the median value of the reference population with the 

same age or height as the individual, divided by the standard deviation of the values 

http://www.fantaproject.org/publications/anthropom.shtml
http://www.cdc.gov/nchs/about/major/nhanes/growthcharts
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of the reference population. This is, 

. Observed value — median value of reference population 

Standard deviation of reference population 

A positive Z-score means that the individual's measurement is higher than the reference 

median whereas a negative Z-score means that the individual's measurement is lower 

than the reference median. The distribution of Z-scores is a normal (bell-shaped or 

Gaussian) distribution (Cogill, 2003). 

The percentage of the median is defined as the ratio of a measured or observed 

value of the individual to the median value of the reference population with the same 

age or height for the specific sex as the individual, expressed as a percentage. That is, 

~ , ,. Observed value , . . 
Percentage of median = —— • —; ;—:— x 100. 

Median value of reference population 

If a child's measurement is exactly the same as the median of the reference population, 

then the child is said to be '100 of the median'. Lastly, the percentile is the rank 

position of an individual relative to the reference distribution, stated in terms of the 

percentage of the group the individual equals or exceeds. 

Cut-offs are then used to enable the different individual measurements to be con­

verted into prevalence statistics. Cut-offs are also used for identifying those children 

suffering from or at a higher risk of adverse outcomes. The most commonly used cut-off 

with Z-scores is -2 standard deviations, irrespective of the indicator used. This means 

that children with a Z-score below -2 SDs are considered to be moderately or severely 

malnourished for example children that are underweight (low weight-for-age), that are 

stunting (low height-for-age) or wasting (low weight-for-height). 

The low weight-for-age index identifies the condition of being underweight for a 

specific age while a deficit in height-for-age is referred to as stunting. A low weight-for-

height value helps to identify children suffering from current or acute undernutrition 

or wasting and is useful when exact ages are difficult to determine. 
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The cut-off points for different malnutrition classification systems are listed in Table 

5.1. The most widely used system is the WHO classification (Z-scores). The Road-

to-Health (RTH) system is typically seen in clinic-based growth-monitoring systems. 

The Gomez system was widely used in the 1960s and 1970s, but is only used in a few 

countries now. Mild, moderate and severe are different in each of the classification 

systems listed in Table 5.1. It is important that the same system is used to analyse 

and to present the data. The RTH and Gomez classification systems typically use 

weight-for-age. 

Table 5.1: Malnutrition Classification Systems 

System Cut-off Malnutrition classification 

WHO 

RTH 

GOMEZ 

< -1 to > -2 Z-score 

< -2 to > -3 Z-score 

< -3 Z-score 

> 80% of median 

60% - < 80% of median 

< 60% of median 

> 90% of median 

75% - < 90% of median 

60% • < 75% of median 

< 60% of median 

mild 

moderate 

severe 

normal 

mild-to-moderate 

severe 

normal 

mild 

moderate 

severe 
Sc«r(»:http^/www.fantaproject.org/publications/anthropom.shtml 

For this study, the Z-scores are used to classify the Weight and Height measure­

ments. The Weight variable is coded as follows: 1 for Risk of underweight (< -1.25 

Z-score); 2 for Normal (-1.25 < Z-score < 1.25); and 3 for Risk of overweight (> 1.25 

Z-score). The Height variable is coded as follows: 1 for Short (< -1.25 Z-score); 2 for 

Normal (-1.25 < Z-score < 1.25); and 3 for Tall (> 1.25 Z-score) 

http://www.fantaproject.org/publications/anthropom.shtml
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5.1.2 The distribution of the children by the child-specific 

variables 

In this section, the structural distribution of the five child-specific variables School, 

Sex, Asthma status and the classified variables Height and Weight is explored. A total 

of 233 children are considered for the analysis. Of these, 58 are from Nizam Road, 

46 are from Assegai, 16 are from Dirkie Uys, 59 are from Ferndale and 54 are from 

Ngazana as shown in Table 5.2. Dirkie Uys is represented by the least number of 

children which was due to high refusal rate of the parents and guardians for their 

children to participate in the study. Table 5.2 also shows that 58% of the 233 children 

are female while 24% of the total are persistent asthmatics and 27% are asthmatics. 

Table 5.2: The distribution of children by sex, asthma status and school 

School 

Nizam Road 

Assegai 

Dirkie Uys 

Ferndale 

Ngazana 

Total 

Sex 

Male 

29 

17 

9 

27 

17 

99 

Female 

29 

29 

7 

32 

37 

134 

Total 

58 

46 

16 

59 

54 

233 

Asthma status 

Persistent 
Asthmatics 

15 

17 

3 

10 

10 

55 

Asthmatics 

15 

9 

7 

17 

15 

63 

Normal 

28 

20 

6 

32 

29 

115 

Total 

58 

46 

16 

59 

54 

233 

Table 5.3 shows the distribution of children by Height and Weight. About 16% of 

the children in the study are too short for their age while 5.6% are too tall for their 

age. In addition, 18% are underweight while 15% are overweight. 
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Table 5.3: The frequency distribution of children by height, weight and school 

School 

Nizam Road 

Assegai 

Dirkie Uys 

Ferndale 

Ngazana 

Total 

Height-for-age classification 
Short-for­

age 

17 

5 

1 

4 

10 

37 

Normal-for­
age 

40 

35 

14 

53 

41 

183 

Tall-for­
age 

1 

6 

1 

2 

3 

13 

Total 

58 

46 

16 

59 

54 

233 

Weight-for-age classification 
Under­
weight 

27 

4 

5 

6 

42 

Normal-for­
age 

24 

35 

12 

45 

40 

156 

Over­
weight 

7 

7 

4 

9 

8 

35 

Total 

58 

46 

16 

59 

54 

233 

5.1.3 The data structure of the SO2 pollutant measures 

In this section, the pollutant measures are explored. Figure 5.1 and Figure 5.2 

present the pollutant measures for each school and for the Phase I blow exercise which 

was carried out between the 31st May 2004 and 18th June 2004. The summary mea­

surement displayed in Figure 5.1 are the peak counts for the 24 hours prior to the child's 

first blow of the day, while the 8-hour maximum of the moving averages computed 24 

hours prior to the child's first blow of the day are represented in Figure 5.2. 

As shown in both graphs, Nizam road, Assegai and Dirkie Uys schools recorded 

more SO2 activity when compared to Ferndale and Ngazana schools. Figure 5.1 shows 

that Nizam road registered the highest total number of times that the pollutant levels 

went beyond the standard guidelines, with 24 peaks. This is followed by Assegai, with 

19 peaks. Ngazana had the lowest total number of peaks, with 6 peaks. Dirkie Uys 

and Ferndale schools had 8 and 11 total number of peaks respectively. The actual 

peak counts are shown in Appendix A.l while the S02 readings that are above the 

standard guideline of 191ppb are shown in Appendix A.3. Despite Ngazana having the 

lowest number of peaks, it registered the highest pollutant levels followed by Ferndale, 



as shown in Appendix A.3. 
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Figure 5.1: The graphical representation of the peak counts. 
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Figure 5.2: The graphical representation of the 8-hour maximum of the SO2 moving averages. 

For the alternative pollutant measure, which is the 8-hour maximum of the moving 

averages, a graphical representation of all the 8-hour maximum values for each school 

on a particular date are shown in Figure 5.2. These are generated from the table in 

Appendix A.2. Figure 5.2 shows Nizam road and Assegai schools with the highest 
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values while Ngazana registered the lowest values with one hike on the 10th of June 

2004. The same conclusion can be drawn from the average and total of the 8-hour 

maximum values generated per school (Appendix A. 2). 

To account for the possible lag effects 1 - 5 day-lag pollutant variables are con­

sidered for each of the two summary measurements as described in Section 2.2. This 

results in a total of ten pollutant variables (five peaks and five 8-hour maximum vari­

ables) to be included in the model. However, before doing so, they are first tested for 

multicolinearity. This is first done by using their correlation coefficients shown in Table 

5.4. 

Variables Peakl to Peak5 are the 1 - 5 day-lag peaks pollutant variables while 

HrMaxl to HrMax5 represent the 1-5 day-lag 8-hour maximum pollutant variables. 

Most of the pollutant variables are significantly correlated at 5% significance level. 

Further more, the correlation between the peak and 8-hour maximum variables for the 

same lag period are large. That is to say, Peakl is highly correlated with the HrMaxl 

with correlation coefficient 0.85816, Peak2 is highly correlated with the HrMax2 with 

correlation coefficient 0.74655, PeakS is highly correlated with the HrMaxS with corre­

lation coefficient 0.85819, Peaty is highly correlated with the HrMax4 with correlation 

coefficient 0.88096, and Peak5 is highly correlated with the HrMax5 with correlation 

coefficient 0.83478. 
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Table 5.4: Pearson Correlation coefficients and prob > |r| under H0: p = 0 

Peakl Peak2 Peak3 Peak4 Peak5 HrMaxI HrMax2 HrMax3 HrMax4 HrMax5 

Peakl 

Peak2 

Peak3 

Peak4 

PeakS 

HrMaxI 

HrMax2 

HrMax3 

HrMax4 

HrMaxS 

1 

0.02107 

0.2289 

0.08337 

<.0001 

-0.07164 

<.0001 

-0.09304 

<.0001 

0.85816 

<.0001 

-0.00398 

0.8202 

0.10327 

<.0001 

-0.06256 

0.0003 

-0.09175 

<.0001 

0.02107 

0.2289 

1 

0.05799 

0.0009 

0.13168 

<0001 

-0.08571 

<.0001 

0.14936 

<.0001 

0.74655 

<.0001 

0.14214 

<.0001 

0.20534 

<.0001 

0.01059 

0.5453 

0.08337 

<.0001 

0.05799 

0.0009 

1 

-0.0063 

0.7192 

-0.05718 

0.0011 

0.19669 

<.0001 

0.27646 

<.0O01 

0.85819 

<.0001 

0.03917 

0.0253 

-0.01714 

0.3277 

-0.07164 

<.0001 

0.13168 

<.0001 

-0.0063 

0.7192 

1 

-0.05394 

0.0021 

0.02217 

0.2056 

0.17446 

<.0001 

0.13616 

<.0001 

0.88096 

<.0001 

-O.01892 

0.2799 

•0.09304 

<.0001 

-0.08571 

<.0001 

-0.05718 

0.0011 

-0.05394 

0.0021 

1 

-0.00778 

0.6571 

0.00229 

0.896 

•0.01349 

0.4411 

0.05307 

0.0024 

0.83478 

<.0001 

0.85816 

<.0001 

0.14936 

<.0001 

0.19669 

<.0001 

0.02217 

0.2056 

-0.00778 

0.6571 

1 

0.33236 

<.0001 

0.36109 

<.0001 

0.17087 

<.0001 

0.14697 

<.0001 

-0.00398 

0.8202 

0.74655 

<.0001 

0.27646 

<.0O01 

0.17446 

<.0001 

0.00229 

0.896 

0.33236 

<.0001 

1 

0.51485 

<.0001 

0.41953 

<.0001 

0.27879 

<0001 

0.10327 

<.0001 

0.14214 

<-0001 

0.85819 

<.0001 

0.13616 

<.0001 

-0.01349 

0.4411 

0.36109 

<.0O01 

0.51485 

<.0001 

1 

0.33003 

<.0001 

0.21201 

<.0001 

•0.06256 

0.0003 

0.20534 

•c.0001 

0.03917 

0.0253 

0.88096 

<.0001 

0.05307 

0.0024 

0.17087 

<.0001 

0.41953 

<.0001 

0.33003 

<.0001 

1 

0.26563 

<.0001 

-0.09175 

<.0001 

0.01059 

0.5453 

-0.01714 

0.3277 

-0.01892 

0.2799 

0.83478 

<0001 

0.14697 

<.0001 

0.27879 

<.0001 

0.21201 

•cOOOl 

0.26563 

<.0001 

1 

The alternative indicator of multicolinearity known as the variance inflation factor 

(VIF) is used to detect multicolinearity to the pollutant measures. As shown in Table 

5.5, all the VIF values are larger than one. However, a serious problem of multicolin­

earity is detected for variables Peakl, HrMaxS and HrMax4 as their VIF values are 

greater than 10. 
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Table 5.5: The Variance inflation factor for the 10 pollutant independent variables 

Variance Inflation 
Variable (j) Factor (VIF,) 

Peakl 8.51640 

Peak2 4.25317 

Peak3 8.27524 

Peak4 11.31774 

Peaks 6.20494 

HrMaxI 10.07748 

HrMax2 7.92122 

HrMax3 12.02757 

HrMax4 15.24270 

HrMax5 9.61287 

To solve the multicolinearity problem, the PCA is applied to the ten pollutant vari­

ables using the SAS PROC FACTOR procedure. The PCA is based on the correlation 

matrix of the pollutant variables given in Table 5.4. The eigenvalues of the pollutant 

correlation matrix are found to be 2.96853292, 1.98310222,..., 0.03028539 as shown in 

Table 5.6. These add up to 10, the sum of the diagonal terms in the correlation matrix. 

The corresponding eigenvectors are shown in Table 5.7 and are standardized so that 

the sum of the squares of the components is unity for each one of them. These eigen­

vectors provide the coefficients of the standardized pollutant variables in the principal 

components. 

The eigenvalue for a principal component indicates the variance that it accounts for 

out of the total variances of 10. Thus, the first principal component (Zi) accounts for 

(2.96853292/10)100% = (0.2969 x 100)% = 29.69% of the total variance, the second 

for 19.83%, the third for 17.76% and so on as shown in the column "Proportion" in 

Table 5.6. Clearly, the first component is more important than the others, the second 

is more important than the third and so on. Notice also that the first five principal 
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components (eigenvalues > 1) account for 94.5% of the total variance. The eigenvectors 

after rotation are shown in Table 5.8. 

Table 5.6: The eigenvalues of the correlation matrix for the 10 pollutant variables 

Component 
(Z) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Eigenvalue 

2.968533 

1.983102 

1.776366 

1.454928 

1.264508 

0.334569 

0.094515 

0.050307 

0.042888 

0.030285 

Proportion 

0.2969 

0.1983 

0.1776 

0.1455 

0.1265 

0.0335 

0.0095 

0.0050 

0.0043 

0.0030 

Cumulative 

0.297 

0.495 

0.673 

0.818 

0.945 

0.978 

0.988 

0.993 

0.997 

1.000 

Table 5.7: The eigenvectors of the correlation matrix for the 10 pollutant variables 

Eigenvector, coefficient of 

z 
1 

2 
3 
4 

5 
6 
7 

8 

9 
10 

Peakl 

0.25955 
-0.68350 

0.30158 
0.57364 

0.07036 
0.13921 
0.04480 
0.13733 
•0.01456 
0.00664 

Peak2 

0.51829 

0.01850 
-0.26121 
-0.00956 

-0.75762 
0.26681 
0.12484 
-0.04372 

-0.00459 
•0.00487 

Peak3 
0.54183 

-0.33755 
0.09191 
-0.64077 

0.33327 
0.21941 
•0.03218 
0.00816 
0.11174 
-0.02556 

Peak4 

0.44251 
0.39553 
-0.56738 
0.35874 
0.38609 

0.18644 
-0.05696 

-0.01434 
0.00632 
0.09911 

Peak5 
0.09756 

0.59726 
0.73295 
0.06103 
0.02046 

0.27253 
-0.10798 

-0.01071 
-0.06910 
-0.03993 

HrMaxI 

0.57286 

-0.53271 
0.33553 
0.48841 
0.02292 
-0.10265 
-0.05636 
-0.14850 

0.02418 
-O.00674 

HrMax2 

0.80182 

0.07728 
-0.09420 
-0.12464 
-0.50237 
-0.19257 
-0.17613 

0.07773 
0.00523 
0.01273 

HrMax3 

0.77988 

-0.19066 

0.10076 
-0.47336 
0.29400 
-0.09494 
0.08287 

-0.01191 
-0.13348 
0.03056 

HrMax4 

0.65610 

0.45753 
-0.38151 
0.31917 
0.29140 

-0.09881 
0.06289 

0.02316 
0.00997 
•0.11626 

HrMax5 

0.35194 

0.59419 

0.68736 
0.05245 
-0.02787 

-0.14294 
0.12635 

0.01937 

0.08262 
0.05906 

Table 5.8 shows that Zi (for component 1) is high if PeakS and HrMaxS are high. 

The other coefficients are very low which means that their values do not affect Z,. 

The same applies to the other principal components and as shown by the bold figures 

in Table 5.8. Since the first five principal components account for 94.5% of the total 
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variance, the other five principal components (that account for a small proportion of 

the variation in the data) can be discarded. 

Table 5.8: The rotated eigenvectors of the correlation matrix for the 10 pollutant variables 

Rotated eigenvector, coefficient of 

z 
1 
2 

3 

4 
5 
6 

7 
8 

9 

10 

Peakl 

0.01638 
-0.06071 

-0.08116 

0.97490 
-0.02601 
-0.09990 

-0.03017 
-0.01920 
•0.16431 
-0.00972 

HrMaxl 

0.17155 
0.06602 
0.06964 

0.93997 

0.13133 
0.14384 

0.04315 

0.03024 

0.19200 
0.01565 

PeaK2 
0.00837 

0.07551 
-0.04803 

0.03606 

0.98861 

•0.11486 
-0.00770 

-0.00330 

-0.00240 

-0.00190 

HrMax2 

0.29187 

0.18564 
0.11607 

0.08761 

0.79620 

0.47121 
0.04250 

0.02498 

0.02296 
0.01662 

Peak3 

0.97934 

-0.03670 
-0.04674 

0.05060 

0.04126 
-0.05783 

-0.05917 

-0.15996 

-0.01341 
-0.02190 

HrMax3 

0.92276 

0.16232 
0.07860 

0.13838 

0.14145 

0.15128 
0.08868 

0.20993 
0.02851 

0.03473 

Peak4 

0.00935 
0.98073 
-0.06337 

-0.02963 

0.04744 
-0.06690 

-0.07490 

-0.03512 

-0.01066 
-0.13965 

HrMax4 

0.10055 

0.94204 
0.12888 

0.03127 

0.15705 
0.13481 
0.10217 

0.05607 

0.02251 

0.16716 

Peak5 

-0.03457 

-0.01897 
0.96729 
-0.03658 

-0.04915 

•0.09120 
-0.22015 

-0.03765 
•0.01548 

-0.02474 

HrMax5 

0.06030 

0.07533 
0.94596 
0.01878 

0.06870 
0.14354 

0.25544 

0.05251 

0.02735 

0.03767 

Notice that the principal components combine the variables for the same lag period 

, for example, PeakS and HrMaxS are combined in the Zi, Peaty and HrMax4 are 

combined in the Z2 and so on. This limits the separate determination of the effect of 

the two summary measures (that is the peaks and the 8-hour maximum measures). 

As mentioned in Section 2.2, the peaks and the 8-hour maximum pollutant measures 

represent two different measures of the pollutant, therefore they are both useful in the 

analysis. 

To enable the separate determination of the effect of each of the pollutant measures, 

two summary measures (peaks and 8-hour maximum) are split such that an analysis 

of the five variables for each summary measure is done separately. That is to say, have 

two models, the first one with the peak variables Peakl to Peak5 as the pollutant 

independent variables and the second one with the 8-hour maximum variables HrMaxl 

to HrMaxS as the pollutant independent variables. 
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Table 5.9: The Variance inflation factor for the pollutant measures with the peaks and the 8-hour 

maximum computed separately 

Peaks 

Variable (j) 

Peakl 

Peak2 

Peaks 

Peak4 

Peaks 

Variance Inflation Factor 
(VIF,) 

1.02214 

1.02517 

1.01235 

1.02278 

1.02208 

8-hour maximum 

Variable (j) 

HrMaxI 

HrMax2 

HrMax3 

HrMax4 

HrMax5 

Variance Inflation Factor 
(VIF,) 

1.19418 

1.64405 

1.51251 

1.28202 

1.14945 

Table 5.4 shows that the correlations among the peaks variables, and among the 

8-hour maximum variables are low in absolute value but are significantly different from 

zero. However, the VIF values presented in Table 5.9 show that when the peaks and 

8-hour maximum measures are fitted separately, all the respective VTF values are close 

to one. This shows that there are weak linear relationships between variables Peakl, 

..., Peak5 as well as among the variables HrMaxI, ..., HrMax5. The significance of 

the correlations among the five peak variables and among the five 8-hour maximum 

pollutant variables can be attributed to the large size of the data. In conclusion, it was 

decided to fit two separate models, one with the five peaks pollutant measures as the 

pollutant variables and the other with the five 8-hour maximum pollutant measures as 

the pollutant variables. 

5.1.4 The fixed-effects structure 

In order to choose a fixed-effects structure for the longitudinal mixed model to be 

fitted, a profile of how relevant sub-populations evolve over time needs to be described. 

This aids one to visualize the pattern of the data over the different times (time being 

expressed by days in the study). The individual profiles for 30 randomly selected 
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children for each of the three asthma status categories are displayed in Figure 5.3. The 

mean profiles for each asthma status of all the children in the study are shown in Figure 

5.4. 

Figure 5.3: Individual profiles of 30 randomly selected children in the study. 

Figure 5.4: Mean profiles for the WDVarFEVl response variable. The solid line represents the 

persistent asthmatics, the dashed line the asthmatics and the bold line the normal children. 

By looking at the profile plots in Figure 5.3 and Figure 5.4, it is difficult to de­

termine the most appropriate functional form of dependence of the summary FEV1 

measure on time. The scatter-plot smoother described in Section 4.1 is therefore used 

to find the functional dependence without imposing parametric assumptions about the 

dependence. Using the SAS PROC LOESS procedure, the non-parametric curves dis-
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played in Figure 5.5 are constructed. This loess fit is applied to the randomly selected 

30 children for each asthma status sub-population. 

Persistent Asthmatics 
Smoothing parameter: 0.94 
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Figure 5.5: The Loess smooth curves of WDVarFEVl against day for the random sample of respec­

tive asthma status sub-populations. The smoothing parameter is chosen using the AIC criteria. 

Figure 5.5 shows that persistent asthmatics experience a sharp fall in the WDVar­

FEVl at the beginning of the phase, thereafter the decrease slows down. These curves 

suggest a curvilinear statistical relationship between the WDVarFEVl and time. Asth­

matics experience a sharp fall in WDVarFEVl at the beginning, reaching a minimum 

in the middle of the phase where it stabilizes up to the end of the phase. Asthmatic 

curves, therefore, also suggest a curvilinear statistical relationship between the WD­

VarFEVl and day. As for the normal children, there is approximately no change in 

WDVarFEVl throughout the phase except for a slight fall, then rise towards the end 

of the phase. In general, the curve for the normal children shows approximately no 

relationship between the WDVarFEVl and time. The patterns in Figure 5.5 therefore 

suggest that it would be reasonable to approximate the relationship by a quadratic 

function of time. 
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5.2 Selection of a preliminary mean and random-

effects structure 

The plot of individual profiles in Figure 5.3, mean profiles in Figure 5.4 and the 

loess smoothed curves in Figure 5.5 suggest that a polynomial of degree two seems 

adequate to explain the WDVarFEVl as a function of time. The preliminary infor­

mal analysis also indicates that the intercept and slopes are different for the different 

children. This leads to the inclusion of the child-specific regression coefficients, that 

represent the random effect, in the longitudinal mixed model. The first stage model 

can therefore be presented as a quadratic function over time, where the day is expressed 

as time of the model as follows: 

Yii = Ax + fluttf + Ajty + APeakly 

+/32Peak2ij + /?3Peak3y + /34Peak4y + /?5Peak5y + ey, 

where t= l , . . . , 233 refers to the i-th child and j=l, ...,rn refers to the j- th repeated 

measurements for the i-th child. The Peakl, ..., Peak5 are the SO2 peak count 

variables for the five day lags. In the alternative model, the SO2 variables considered 

are the 8-hour maximum measures denoted by HrMaxl, ..., HrMax5. The time and 

squared time points are represented by iy and ty respectively. 

In the second stage of the model development, the child-specific intercept (/30i) 

and slopes (0u, fei) are related to the child-specific categorical variables School, Sex, 

Asthma status, Height, and Weight. The model at the second stage then becomes: 
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AH = 7oiSchooln + 7o2School2i + 703School3i 

+7o4School4i + 7o5School5i 

+£oiSexi< + <Jo2SexM 

+0oiAsthmaStatusn + flojAsthmaStatusa + 5o3AsthmaStatus3j 

+A01 Weighty + A^ Weighty + Aosweight^ 

+a0xHeightu + a02Height2i + aosHeight^ + bw, 

0u = 7iiSchoolu + 7i2School2i + 713School3< 

+7i4School4i + 7i5School5i 

+5iiSexi» + <fi2SexM 

+0iiAsthmaStatusu + 0i2AsthmaStatus2i + 0i3AsthmaStatus3i 

+Ai1Weightli + Ai2 Weighty + Ai3weight3i 

+anHeight1< + Oi2Height2< + ^Heigh ta + bu, 

02% = TnSchoolii + 7^8^001^ + 723School3< 

+724School4i + 725SchoolM 

+<y2iSexu + foSexa 

+52iAsthmaStatusii + ^AsthmaStatusa + fl^AsthmaStatussj 

+A2iWeightli + A22 Weighty + A23weight3i 

+a2iHeightH + a22Height2i + a^Height^ + b2i, 

where Nizam Road, Assegai, Dirkie Uys, Femdale and Ngazana are the school factor 

levels; Male and Female are the sex factor levels; Persistent asthmatic, Asthmatic 

and Normal are the asthma status factor levels; Underweight, Normal weight and 
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Overweight are the weight factor levels; and Short, Normal height and Tall are the 

height factor levels. These second stage models can be rewritten as follows: 

s 2 

Pa = ^TocSchoolci + J^osSexsi 
c=i s=i 

3 3 3 

+ ^ 0ouAsthmaStatusui + ]T^ AowWeightWi + ^ a^Height^ + bo», 
u=i w=i h=i 

where c=l, . . . , 5 corresponds to Nizam Road, Assegai, Dirkie Uys, Ferndale and 

Ngazana respectively; a=l, 2 corresponds to Male and Female respectively; u=l , 2, 

3 corresponds to Persistent asthmatic, Asthmatic and Normal respectively; w=l, 2, 3 

corresponds to Underweight, Normal weight and Overweight respectively; and h=l, 2, 

3 corresponds to Short, Normal height and Tall respectively. Likewise, 

5 2 

&< = J^TicSchoolci + J^tfisSexsi 
c=i s=i 

3 3 3 

+ ^2 0iuAsthmaStatusut + ^ AiWWeightw< + ^ a^Height^ + bM, 
u=i w=i h=i 

and 

s 2 
#« = 5^72cSchoolci + 5^<J2sSexs< 

c=i s=i 
3 3 3 

+ ^2 02uAsthmaStatnsui + ^ A2wWeightWi + ^ a^Height^ + b2i. 
u=i w=i h = 1 



82 

The combined model in this case is 

5 2 

Yij = J^TocSchoolci + ^tfosSexsi 
c=i s=i 

3 3 3 

+ ^2 0ouAsthmaStatusui + ^ AowWeightWi + ^ a^Height^ 
u=i w=i h=i 

5 2 

+ ^2 7icSchoolCitij + ^2 *isSexs<t<j 
c=i s=i 

3 3 3 

+ ^2 ^iuAsthmaStatusui*<i + ^ AiW Weight,^- + ^ a inHeightnitij 
u=i w=i h=i 

5 2 

+ ^2 72cSchoolCit??. + J2 ^Sexai? 
C=l S = l 

9 3 3 

+ ^2 ^uAsthmaStatusui^j + J ^ *2wWeightWjt? + J ^ a2nHeightn<t?, 
U=7 W = l h = 1 

+/?1Peakly + /32Peak2ii + /^PeakSy + ftPeak^- + faPeak5ij 

+bw + biitij + b2<t?- + Eij. 

Let jji be the nj-dimensional vector of all the repeated measurements for the i-th child, 

that is |/t = (j/ii, jta) • • •, Vim)', then the model can be summarized as follows: 

Vi = Xifl + Zibi + ei 

bi ~ N(0, D) 

Vi ~ N ^ ^ Z ^ Z j + Ei), 

where the fixed effects parameter /? — (701, . . . , 705, <foi, 0̂2, 0oi, 002 ,003, Aoi, A02, Ao3, 

ttOli «02, "03) 7lli •••> 7l5, l̂l> #12, 011, #12) #13) An, A12, A13, an , <*12, ^13, 721,..., 

725, $21, fe, ^21, 022, 023, A2i, A22, A23, <*2i, <*22, <*23, fa, • • •, /%)' and the child-specific 

effects b{ are represented by b{ = (6ot, 6n, 62i)'. 

Random effects 61, . . . , 6jv, e\, . . . , EAT are assumed to be independent with D 

as a general (3 x 3) covariance matrix with (i, j) element dy = dji and E< as an 
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(n* x rii) covariance matrix respectively. A somewhat less crucial assumption is that 

these random effects are drawn from a normally distributed population. These child-

specific effects will usually not be independent but will be correlated. However, it is 

assumed that for different children, the pairs of the random effects, (&ot> bit, &2t)- a r e 

independent. The yi is thus also assumed to be normally distributed with mean vector 

Xif5 and covariance matrix V< = Z{DZi + Ej. 

The model with the peaks as the independent pollutant measures will be referred 

to as the 'peaks pollutant model' while the model with the 8-hour maximum as in­

dependent pollutant measures will be referred to as the '8-hour maximum pollutant 

model'. The peaks pollutant model will discussed in Chapter 6 and the 8-hour maxi­

mum pollutant model will be dealt with in Chapter 7. 



Chapter 6 

Analysis of the peaks pollutant 

model 

The peaks pollutant model for the j-th repeated measurement of the t-th child 

can be represented by 

5 2 3 3 

y^ = ^2 7ocSchoolCi + ^ , (fosSexsi + ^ ôu AsthmaStatusUi + ^ AowWeightw< 
c=i s=i u=i w=i 

3 5 2 3 

+ 5 Z a oh H e i 6 n t h< + ^2 7icSchoolc»tij + ^ ^lsSexsi^ + ^ 0iUAsthmaStatusUitij 
h=1 c=i s=i u=i 

3 3 5 2 

+ ^2 ^iwWeightWi^- + ^ a l h H e i g h t h i ^ + ^ 72CSchoolCi4 + J ^ ^ S e x s i ^ 
w=i h=1 c=i s=i 

9 3 3 

+ ^ ^uAsthmaStatusuitJ, + J ^ A2wWeightwjt?;. + J ^ a2hHeighth.t?, 
U=7 W=l h= l 

+/3iPeaklij + /32Peak2ij + ^PeakS^ + ftPeak^- + &Peak5ij 

+b<K + biitij + b2it?- + eih 

(6.1) 

where t= l , . . . ,233 are children in the study; j=l, ..., n* are the repeated measure­

ments; c=l , . . . ,5 corresponds to Nizam Road, Assegai, Dirkie Uys, Ferndale and 

84 
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Ngazana respectively; s=l , 2 corresponds to Male and Female respectively; u=l , 2, 

3 corresponds to Persistent asthmatic, Asthmatic and Normal respectively; u/=l, 2, 3 

corresponds to Underweight, Normal weight and Overweight respectively; and h=l, 2, 

3 corresponds to Short, Normal height and Tall respectively. The dependent variable 

WDVarFEVl is represented by y^; while the pollutant variables are the repeated mea­

surements Peaklij, Peak2ij, PeakZij, PeakAij and PeakSij. The time and squared 

time points are represented by ty and i y respectively; &o», hi and hi are the random 

effects; and ey is the measurement error. 

6.1 Exploring the covariance structure of the model 

In this type of longitudinal study, there are at least three possible components of 

variability namely: random effects, serial correlation and measurement error (Diggle et 

al, 1994; Fanta, 2003). Random effects are the effects that arise from the characteristics 

of the individual children. Therefore, these effects explain the stochastic variation 

between children. On the other hand, the repeated measurements (WDVarFEVl) 

on successive occasions of the same child are most likely to be serially dependent. 

Hence, one would not be able to extract as much information from these dependent 

measurements as one would be able to extract from the same number of independent 

measurements. That is, serial correlations mask part of the within-child variation 

in the data. Finally, because the WDVarFEVl measurements are determined using 

an airwatch machine during data collection, it is natural to expect the existence of 

measurement error. 

Figure 6.1 displays the graph of the estimated variance of the residuals versus 

time for each three asthma status sub-populations. The variance function seems to be 

relatively stable and hence a constant variance model is plausible. 
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Figure 6.1: Plot of the variance of residuals against time generated from the peaks pollutant model. 

The solid line represents the persistent asthmatics, the dashed line the asthmatics and the bold line 

the normal children. 

To gain insight into the association among the repeated measurements of WDVar-

FEV1 within-child, a scatter-plot matrix of the residuals is constructed using model 

(6.1). The scatter plots in Figure 6.2 have circular shapes indicating that the serial 

correlations are not very strong. Since the effect of serial correlation seems to be dom­

inated by the combination of random effects and the measurement error, the serial 

correlation is not included in the model. 

Conditional on the selected set of random effects, the covariance matrix D for the 

random effects bi and the covariance matrix E< for the error components e< needs to 

be specified. Although many possible covariance structures are available, Verbeke and 

Molenberghs (2000) suggest that for longitudinal data, the unstructured covariance 

structure is the preferred covariance structure for the random effects. 

For the covariance structure of the measurement error, a choice has to be made 

from among the three most commonly used structures in longitudinal mixed models 

that is: the compound symmetric (CS), autoregressive order one (AR(1)), and the un-
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mmm D14 

Time 

Figure 6.2: Scatter plot of residuals by time. The residuals are generated from the peaks pollutant 

model. Dl to D14 in the main diagonal represent the 14 repeated measurements. 

structured covariance (UN) structures. The application of the unstructured covariance 

structure to the data set in this study led to the failure of model convergence. Compar­

ison is therefore made only between the compound symmetry and the autoregressive 

covariance structures. The values of the criteria for the two covariance structures are 

shown in Table 6.1. Since the covariance structure with the largest values of the criteria 

is considered to be most desirable, all the three model-fit criteria point to the choice of 

CS. Therefore, the compound symmetry structure is chosen for the covariance matrix 

Ei. The CS covariance structure will therefore assume the form 

Ei = 

(T' + ai +<Z 

* + o* 

°2 + °lj 
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Table 6.1: Covariance structure criteria for the random effects of the peaks pollutant model 

Covariance Structure 

CS 

AR(1) 

AIC 

-2031.1 

-2040.3 

AICC 

-2031 

-2040.3 

BIC 

•2003.5 

-2012.7 

6.2 Model reduction 

6.2.1 Tests for the significance of the random effects 

Using the covariance structure chosen, an investigation is carried out to check the 

significance of the random effects represented in the model are needed in the model 

(6.1). In this procedure, all the reduced models obtained by deleting one random effect 

from model (6.1) are tested. The models and the associated log-likelihood values are 

shown in Table 6.2. Further more, Table 6.3 shows the LR test statistics for comparing 

the models. 

A mixture of two chi-squared distributions with ki and fo degrees of freedom, with 

equal weights 0.5, are therefore denoted by x^:**- F° r example, the p-values obtained 

under the ML estimation for the comparison of Model 2 versus Model 1 can then be 

calculated as 

P = P ( x L > 6 . 7 ) 

= \Pi& > 6-7) + ip (x§ > 6.7). 

The naive asymptotic null hypothesis is the one which follows from applying the 

classical likelihood theory, ignoring the boundary problem for the null hypothesis. In 

calculation of the p-values, the the covariance structure is simplified by deleting any 

of the random effects from the model if the computed p-values of the higher random 

effects are larger than the 5% level of significance. 
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Table 6.2: The four random-effects models for the peaks pollutant model 

Random effects 

Model 1: Intercepts, time, time2 

Model 2: Intercepts, time 

Model 3: Intercepts 

Model 4: No random effects 

The Maximum log-likelihood (ln[L(8)]) 

ML 

1232.15 

1228.80 

1220.35 

1220.35 

REML 

1023.55 

1019.60 

1009.50 

1009.50 

The comparison "Model 4 versus Model 3" has a result of-21n(A^)= 0 which means 

that there is no difference between models 4 and 3. The computations of the p-values 

are therefore done only for the comparisons "Model 2 versus Model 1" and "Model 3 

Versus Model 2" and these computed p-values are shown in Table 6.3. 

Table 6.3: The likelihood ratio statistic with the correct, the naive asymptotic null distributions for 

comparing random-effects models and the comparison p-values for the peaks pollutant model 

Hypothesis 

Model 2 versus Model 1 

Model 3 versus Model 2 

Model 4 versus Model 3 

Likelihood ratio statistic (-2ln[AfJ) 

ML 

6.7 

16.9 

0 

REML 

7.9 

20.2 

0 

Asymptotic null 
distribution 

Correct NaTve 

A 2 3 A 3 

A l a A 2 

X 0:1 X l 

P-value 

ML REML 

0.05859 0.03369 

0.00013 0.00002 

The REML procedure provides p-values that are smaller than 0.05 for all compar­

isons which means that for this procedure the covariance structure can not be simplified 

by deleting any of the random effects in model 1. The ML procedure, however, gives 

p-values that are larger than 0.05 for the comparison "Model 2 versus Model 1", and 

p-values that are smaller than 0.05 for the comparison "Model 3 versus Model 2". 

This means that using the ML procedure, the covariance structure can be simplified by 

deleting the highest random effect which is the squared time effect. However, since the 

REML estimation performs slightly better than the ML estimation method (Section 
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4.4.2), the results from the REML estimation are considered. Thus, no random effect 

is deleted from the model. 

6.2.2 Test for the significance of the fixed effects 

With the final covariance structure for the model selected, the preliminary mean 

structure can be improved. The mean structure is improved by including in the model 

significant interactions of the child-specific variables among themselves. Since there are 

five child-specific variables, then there are 10 possible 2-way interactions, 10 possible 

3-way interactions, 5 possible 4-way interactions, and 1 possible 5-way interaction. 

The LR test, using the ML procedure, is therefore used to see whether or not 

the model with the preliminary mean structure significantly performs better with the 

introduction of an additional interaction effects of the child-specific variables. As dis­

cussed in Section 4.4.1, this test can be used to compare models with different mean 

structures, and that test is only valid if the models are fitted using the ML procedure. 

Let the preliminary model be denoted by Mo and the model with the additional 

2-way interaction terms be denoted by Mi. To compare the two models, the -2 log-

likelihood values for the two models are obtained using the SAS software. Using these 

values, the LR test statistic -21n(Aw) is computed by calculating the difference (-21o) -

(-21i) where fo is the log-likelihood of model Mo and l\ is the log-likelihood of model 

Mi. 

Also calculated are the additional degrees of freedom (mi - mo) where mi and mo are 

the respective number of parameters in the models Mx and Mo . The LR test statistic is 

then compared with the chi-square value x | mi-mo* O^y those 2-way interactions with 

p-values less than 0.05 are retained in the model. The LR test statistic, the degrees of 

freedom and the p-values for testing the significance of the 2-way interactions among 



91 

the child-specific factors, 2-way interactions with time, and 2-way interactions with 

squared time are shown in Table 6.4. The reduced peaks pollutant model (without 

interactions among the child-specific factors) was found to have -2/n = -2464.3. The 

3-way to the 5-way interaction effects among the child-specific factors were found to 

be negligible. 

Interactions time*School*AsthmaStatus and time2 *'School*AsthmaStatus are found 

to be significant at a 5% level of significance and are thus added to the peaks pollutant 

model. In an attempt to reduce the model even further, the backward elimination 

method is applied. 

Table 6.4: The likelihood ratio test statistics and p-values for the 2-way interactions, 2-way inter­

actions with time, and 2-way interactions with squared time in the peaks pollutant model 

2-way interactions 

School'Sex 

SchocTAsthmaStatus 

School-Weight 

School'Heght 

Sex'AsthmaStatus 

Sex'Weight 

Sex'Height 

AsthmaStatus'Weight 

AsthmaStatus'Height 

WeighfHeight 

Additional 
degrees of 

freedom (ml 
mO) 

4 

8 

8 

8 

2 

2 

2 

4 

4 

4 

2-way interactions 

Likelihood 
ratio test 
statistic 

3.5 

14.5 

11.4 

6.4 

1.3 

0.2 

0.2 

5.6 

1.9 

1.6 

P-Value 

0.4779 

0.0696 

0.1800 

0.6025 

0.5220 

0.9048 

0.9048 

0.2311 

0.7541 

0.8088 

time * 2-way interactions 

Likelihood 
ratio test 
statistic P-Value 

4.3 0.3669 

15.7 0.0469 

2.3 0.9704 

13.0 0.1118 

3.6 0.1653 

0.3 0.8607 

0.0 1.0000 

3.8 0.4337 

5.8 0.2146 

0.4 0.9825 

time2 * 2-way 

Likelihood 
ratio test 
statistic 

4.2 

15.6 

2.1 

13.9 

4.6 

0.6 

0.1 

0.9 

4.9 

0.4 

interactions 

P-Value 

0.3796 

0.0485 

0.9778 

0.0844 

0.1003 

0.7408 

0.7518 

0.9246 

0.2977 

0.9825 

In this application, all the two potential 2-way interactions are introduced in the 

model and the one with the largest p-value is identified and removed from the model. 

Since the 2-way interactions time*School*AsthmaStatus and time2 * School*AsthmaStatus 

have p-values 0.1232 and 0.1260 respectively, time2 *School*AsthmaStatus is dropped 
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and the model fitted again. The p-value for the remaining 2-way interaction, time* 

School* AsthmaStatus, is 0.0469 which is less than 0.05, therefore this 2-way interaction 

is left in the peaks pollutant model. 

6.3 Missingness 

The data from the Durban-South health study is characterized by missingness in 

the response variable WDVarFEVl. Since 55 persistent asthmatics, 63 asthmatics and 

115 normal children were considered for analysis, then for each day a total of 55, 63 

and 115 responses were expected from these respective sub-populations. 

Figure 6.3: Graphical representation of the proportion of respondents to WDVarFEVl by time. 

The solid line represents the persistent asthmatics, the dashed line the asthmatics and the bold line 

the normal children. 

However, as shown in the Figure 6.3, not all responses were obtained either due to 

the FEV1 reading being invalid or due to the child not being at school to participate 

in the blows on that particular day. Figure 6.3 shows the least responses on time 5 

and time 9 which are the dates 04/06/2004 and 10/06/2004 respectively. The low 
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response on time 5 was due to non participation of the children in Nizam road in the 

blow exercise. Probably, Nizam road was closed on the particular date. However the 

low response on time 9 was mainly attributed to the invalid records registered by the 

children in Ferndale school. This probably could attributed to the malfunctioning of 

the airwatches or the improper use of the airwatches by the children. 

This is not a case of dropout since a child with no response at a particular time may 

have responses on the times that follow. Therefore, the missing values are intermittent. 

In order to effectively utilize the PROC MIXED procedure for analysis, the ignorability 

assumption of missingness has to hold. To test for the type of missingness, an MAR test 

is applied to the data set. Since the missingness exists for the response variable, then 

the MAR test for multivariate data cannot be applied since it deals with missingness in 

the independent variable. In addition, the missingness is intermittent, therefore before 

the logistic regression model MAR test can be applied, the test has to be modified. 

6.3.1 Applying the logistic regression model MAR test 

In order to apply the logistic regression model MAR test (Section 4.10.1) to the 

data set, the following alterations are made to the method. Since the data set is 

characterized by an intermittent mode of missingness, the missing data process can be 

explored by assuming that the probability of missingness P(/ly=(%i) at timej depends 

on both the current outcome y^ and the previous one yy_i. The values of yy and yy_i 

are obtained whenever there is a case of missingness. For example, whenever there is 

a missing value at yij+i, the outcomes ytJ and y%j-\ are included as observations to be 

applied to the model (4.17) for child i at timej. 

Values of the probabilities of the current and previous outcomes are applied to 

the model (4.17) which is the full model (representing MNAR) and the two reduced 
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models with fa = 0 and both fa = fa = 0 (representing MAR and MCAR respectively). 

These three models are fitted and tested for significant differences using the LR test. 

In this test, the -2xlog-likelihood values for each model are obtained and the difference 

compared with the chi-square value at 5% level of significance. The degrees of freedom 

is the difference in the number parameters of the models being compared. A model 

is said to be significantly different from the other when the attained p-values are less 

than 0.05. The parameter estimates, log-likelihood values and p-values are shown in 

Table 6.5. 

Table 6.5: The logistic regression model MAR test results for the response variable 

Parameter 

<Do 

<»i 

4>2 

log likelikehood 

-2log likelihood 

Difference with MAR 

P-Values 

Result 

Conclusion 

MCAR 

-1.5318 

0.0000 

0.0000 

-1654.3067 

3308.6134 

6.7466 

0.0094 

Reject MCAR 

MAR 

-1.5057 

0.0000 

-0.0619 

•1657.6800 

3315.3600 

MAR 

MNAR 

-1.4955 

-0.0434 

-0.0439 

•1659.5031 

3319.0062 

3.6462 

0.0562 

Reject MNAR 

The models for MCAR and MAR are significantly different. Therefore the larger 

model, which is the model representing MAR, is preferable. In comparing the models 

representing MAR and MNAR, the MAR is found to be preferable to the full model 

since the two models are found not to be significantly different. It can thus be concluded 

that the MAR assumption holds. Both MAR tests above show that, conditional to 

the observed information, the missingness is indeed independent of the unobserved 
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information. Since the ignorability (specifically MAR) assumption has been found to 

hold, the PROC MIXED procedure is appropriate to use for the analysis. 

6.4 Model checking 

To check whether the model fits the data set well, the observed and fitted/predicted 

WDVarFEVl profiles are compared (Fanta, 2003). In order to do this, the loess smooth­

ing technique is applied to summarize the trend of the observed and predicted WD­

VarFEVl values as a function of time. The superimposed observed and fitted profiles 

are shown in Figure 6.4. It can be seen that the profiles are very close together from 

which it can be concluded that the model fit the data set well. 

Figure 6.4: The observed and predicted/fitted profiles of the WDVarFEVl values for the peaks 

pollutant model. The observed profiles are represented by the solid line while the dotted line represents 

the fitted profiles. 

A simultaneous check for normality and outlier detection is also done for the random 

effects and the residuals. The histogram of the EB estimates and the residuals are 

shown in Figure 6.5 (a) and (b) respectively. Since both figures show just a symmetric 
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bell-shaped curve, then the normality assumption is not violated for both the random 

effects and the residuals 

(a) 
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Figure 6.5: Histogram of the (a) EB estimates (for the random effects) and the (b) residuals for the 

peaks pollutant model. 
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Figure 6.6: Scatter plots of the (a) EB estimates and (b) residuals for the peaks pollutant model. 

To identify the presence of outlying observations, the scatter plots of the EB esti-
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mates and the residuals, shown in Figure 6.6 are used. The scatter plots show just a few 

outlying EB estimates and residuals. In addition, the histograms of the EB estimates 

and residuals (Figure 6.5), which appear just slightly skewed to the left, indicate that 

there are just a few outliers which may not affect the inference for the model effects. 

6.5 Inference from the peaks pollutant model 

In this section the estimates of all the model parameters are determined. The 

REML estimates, standard deviations and p-values are shown in Table 6.6. The aim 

is to determining which model parameters have a significant effect on the independent 

variable WDVarFEVl. 

The table shows that all the intercepts in the model are significantly different from 

zero. More specifically, the intercepts for the children in schools Nizam, Assegai, Dirkie 

Uys, Ferndale and Ngazana; male and female children; persistent asthmatic, asthmatic 

and children with no case of asthma; underweight, overweight and children of normal 

weight; and short, tall and children of normal height, have an intercept significantly 

greater than zero at a 5% level of significance. The pollutant variable Peak5 has 

a significant effect on the independent variable at a 5% level of significance. In other 

words, a five day prior exposure to a unit increase in the pollutant measure significantly 

leads to a fall in the WDVarFEVl measure at a 5% level of significance. 

The WDVarFEVl measure of the following children have a significant linear rela­

tionship with time at a 5% level of significance: children in Ngazana; male and female 

children; children with no cases of asthma; overweight children and children of normal 

weight; short, tall and children of normal weight; asthmatic children in Ferndale; and 

children with no case of asthma in Ngazana. In addition the WDVarFEVl measure 

of the following children have a significant quadratic coefficient with time: children of 
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normal weight; short children; and children of normal height. 



Table 6.6: The REML estimates, standard deviation and p-values for the peaks pollutant model 

Effect 
Intercepts: 
School 

Sex 

AsthmaStatus 

Weight 

Height 

Pollutant: 

Time Effects: 
School 

Sex 

AsthmaStatus 

weignt 

Height 

School'Status 

Nizam Road 
Assegai 
Dirkie Uys 
Femdale 
Ngazana 
Male 
Female 
PAsthmatic 
Asthmatic 
Normal 
Underweight 
Normal weight 
Overweight 
Short 
Normal Height 
Tall 

Peakl 
Peak2 
Peak3 
Peak4 
Peak5 

Nizam Road 
Assegai 
Dirkie Uys 
Femdale 
Ngazana 
Male 
Female 
PAsthmatic 
Asthmatic 
Normal 
Underweight 
Normal weight 
Overweight 
Short 
Normal Height 
Tall 
Nizam'PAsthma 
Nizam'Asthma 
Nizam'Normal 
PAsthm'Assegai 
Asthma'Assegai 
Normal'Assegai 
PAsthma'Dirkie 
Asthma'Dirkie 
NormarDirkie 
PAsthm'Ferndale 
Asthma'Ferndale 
NormarFerndale 
PAsthrrTNgazana 
Asthma'Ngazana 
Normal"Ngazana 

Parametei 

Yoi 
Y« 
Yw 
Y04 

Yos 
Ooi 
602 

801 

B02 
On 
*oi 
A« 
Ao, 
On 
OOJ 

Qco 

Pi 
Pi 
Pa 
P« 
Ps 

Y11 
Y12 
Y11 
Yl4 
Yis 
6n 
Bit 
On 
0l2 
Oil 
An 
A12 

A,s 
C11 

a« 
a,3 
Y111 
Y111 
Vns 
Y121 

Y122 
Via 
Yl31 

Y i * 
Y133 

Yl41 
Yl42 
Vl43 
YlSI 
Via 
Y153 

I 
- Estimate 

0.5138 
0.5395 
0.3794 
0.5322 
0.5985 
0.6652 
0.5985 
0.5374 
0.5829 
0.5985 
0.4443 
0.5581 
0.5985 
0.7072 
0.6487 
0.5985 

0.001983 
0.001571 
-0.00076 
0.000114 
•0.0047 

•0.01414 
-0.0243 

0.007183 
-0.03158 
-0.03462 
-0.04026 
-0.03462 
-0.02581 
•0.03163 
-0.03462 
-0.02535 
-0.03382 
-0.03462 
-0.03976 
-0.03428 
-0.03462 
-0.00383 
•0.00911 
-0.01414 
•0.01161 
-0.02701 
-0.0243 
0.0185 

-0.00127 
0.007183 
-0.01696 
•0.03711 
-0.03158 
-0.02581 
-0.03163 
-0.03462 

°eaks (REML) 1 
Standard Error P-value 

0.05697 
0.05483 
0.06514 
0.05587 
0.05431 
0.05968 
0.05431 
0.05654 
0.05744 
0.05431 
0.0647 
0.05296 
0.05431 
0.05099 
0.03836 
0.05431 

0.001351 
0.002764 
0.001264 
0.001086 
0.00122 

0.01701 
0.01624 
0.01948 
0.0167 
0.01622 
0.01779 
0.01622 
0.01706 
0.0172 
0.01622 
0.01918 
0.01575 
0.01622 
0.01506 
0.01144 
0.01622 
0.01764 
0.0179 
0.01701 
0.01633 
0.01728 
0.01624 
0.01999 
0.01953 
0.01948 
0.01759 
0.01761 
0.0167 
0.01706 
0.0172 
0.01622 

<.0001 
<.0O01 
<.0001 
<.0001 
<.0001 
<.0001 
<.0001 
<0001 
<.0001 
<.0001 
<.0001 
<.0001 
<.0001 
<.0001 
<.0001 
<.0001 

0.1423 
0.5697 
0.5465 
0.9165 
0.0001 

0.4070 
0.1361 
0.7127 
0.0600 
0.0341 
0.0247 
0.0341 
0.1318 
0.0675 
0.0341 
0.1878 
0.0331 
0.0341 
0.0089 
0.0031 
0.0341 
0.8284 
0.6112 
0.4070 
0.4780 
0.1196 
0.1361 
0.3560 
0.9484 
0.7127 
0.3361 
0.0364 
0.0600 
0.1318 
0.0675 
0.0341 
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Table 6.6: The REML estimates, standard deviation and p-values for the peaks pollutant model 

(Continued) 

Effect 

Time2 Effects: 

School 

Sex 

AsthmaStatus 

Weight 

Height 

Nizam Road 

Assegai 

Dirkie Uys 

Femdale 

Ngazana 

Male 

Female 

PAsthmatic 

Asthmatic 

Normal 

Underweight 

Normal weight 

Overweight 

Short 

Normal Height 

Tall 

Covarlance of b,: 

Var(b0.) 

Cov(ba.b,i) 
Var(b„) 

Covtba.ba) 

CovCb^ba) 

Var(b2l) 

Residual variance: 

Var(Eij) 

cs 

Parameter 

fa 
Y22 

Va 
Y M 

Y« 

62, 

fe 
Oii 

fe 
e» 
Ati 

* • 
Aa 
a « 
Da 

t>23 

d,, 

di*-dai 
da 

d«"dsi 

da-daz 

On 

0* 

oc8 

Peaks (REML) 

Estimate 

0.000764 

0.001386 

•0.000510 

0.001763 

0.002028 

0.002100 

0.002028 

0.001400 

0.002101 

0.002028 

0.001751 

0.002014 

0.002028 

0.002120 

0.002016 

0.002028 

0.005974 

-0.000340 

0.000380 

0.000008 

-0.000020 

0.000002 

0.000453 

0.020610 

Standard 

Error 

0.001099 

0.001041 

0.001235 

0.001073 

0.001047 

0.001146 

0.001047 

0.001088 

0.001106 

0.001047 

0.001235 

0.001014 

0.001047 

0.000966 

0.000734 

0.001047 

0.002724 

0.000708 

0.000235 

0.000043 

0.000015 

0.000000 

0.000014 

0.000633 

P-value 

0.4878 

0.1844 

0.6809 

0.0983 

0.0541 
0.0685 

0.0541 

0.1998 

0.0589 

0.0541 

0.1580 

0.0484 

0.0541 

0.0294 

0.0066 

0.0541 

0.0141 

0.6329 

0.0530 

0.8540 

0.1345 

-

<.0001 

<.0O01 

To determine whether the mean effect of the Durban-South schools is equal to that 

of the schools located in the northern residential areas, the hypothesis 

H, 01 
701 + 702 + 703 704 + 705 

„ 701 + 702 + 703 _, 704 + 705 UA\ • 5 T- x 

is tested. The test results in an F-value of 8.33 and p-value of 0.0003. Since the p-value 

is less than 0.05, the null hypothesis Hoi is rejected in favour of H^i. Therefore, at 

a 5% level of significance, the mean effects of the schools in the two regions are not 

equal. 
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The hypothesis 

#02 : <foi = <*02 

#42 : <̂oi ¥" 0̂2 

can be used to test whether the mean effects of the male and female children are equal. 

The resulting F-value and p-value are 8.25 and 0.0045 respectively. Since the p-value 

is less than 0.05, the null hypothesis H02 is rejected in favour of H^- We therefore 

conclude that, at a 5% level of significance, the mean effects of the male and female 

children are not equal. 

To test if the mean effects of the three asthma status categories are equal, the 

hypothesis 

# 0 3 ^01 = $02 = ^03 

/-/,! 3 : At least two of the asthma status means are different 

is tested. The results show an F-value of 2.44 and p-value of 0.0898. Since the p-value 

is greater than 0.05, we fail to reject the null hypothesis, H03. The data therefore 

suggests that the mean effects of the three asthma status categories are equal. 

To compare if the mean effects of the three weight categories are equal, the hypoth­

esis 

# 0 4 : A01 = A02 = A03 

// A 1 : At least two of the mean effects are different 

is tested. The results provide an F-value of 5.98 and a p-value of 0.0030. Since the 

null hypothesis H04 is rejected in favour of H^ , a further investigation is carried out 
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to determine which mean effects are significantly different. The hypotheses tested are: 

# 0 5 '• ^01 = ^02 

HAS '• ^oi 7̂  ^02, 

Hoe '• \>i — ^03 

HA6 '• Aoi ^ Ao3, and 

#07 : A02 = A03 

HA? • A02 ^ Ao3-

The hypothesis H05 versus HAS tests whether the mean effects of the underweight 

children and children of normal weight are equal. The F-value of this test is found to 

be 9.49 while the p-value is found to be 0.0024. Since the p-value is very small, it can 

be concluded that the mean effects of the underweight and children of normal weight 

are not equal. 

The hypothesis Hoe versus H l i ; tests whether the mean effects of the underweight 

and overweight children are equal. The F-value and p-value of this test is found to 

be 11.02 and 0.0011 respectively. Prom this it can concluded that the mean effects of 

the underweight and overweight children are not equal. Finally, the hypothesis H07 

versus H .47 tests whether the mean effects of the overweight children and children of 

normal weight are equal. The F-value is found to be 1.6 while the p-value is found 

to be 0.2016. Since the p-value is large, we fail to reject the null hypothesis H07 and 

conclude that the overweight and children of normal weight have equal mean effects. 
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A comparison of the three height categories can be done by testing the hypothesis 

# 0 8 : <*oi = «02 = ao3 

HA& '• At least two of the mean effects are different. 

The results provide an F-value of 1.90 and a p-value of 0.1529. Since the p-value is 

greater than 0.05, we fail to reject the null hypothesis Hos concluding that the mean 

effects of the height categories are equal at a 5% level of significance. 

To compare the Unear slopes of the male and female children, the hypothesis 

# 0 9 '• ^11 = ^12 

HA9 '• 8n ¥" 1̂2 

is tested. The results provide an F-value of 0.68 and p-value of 0.4117 from which 

it can be concluded that the Unear slopes for the male and female children are equal 

at a 5% level of significance. The comparison of the Unear slopes for the three height 

categories is done by testing the hypothesis 

#oio : a n = aw = <*i3 

HAW : At least two of the slopes are different. 

This results in an F-value of 0.13 and p-value of 0.8740 from which it can be concluded 

that the Unear slopes for three height categories are equal at a 5% level of significance. 

To compare whether the linear slope for overweight chUdren is equal to that for 

children of normal weight, the hypothesis 

#011 '• A12 = A13 

# A I I : A12 ^ A13 

is tested. The resulting F-value and p-value are found to be 0.01 and 0.9330 respec­

tively. We fail to reject the nuU hypothesis and conclude that the linear slopes are 

equal. 
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For the quadratic coefficients, the coefficients of the short children and children of 

normal height are compared by testing the hypothesis 

Hon '• "21 = «22 

HAU • <*21 ^ <*22-

This results in an F-value of 0.02 and a p-value of 0.8780. Since the p-value is large, 

we fail to reject the null hypothesis and conclude that the quadratic coefficients are 

not equal. 

To compare the WDVarFEVl values of the children in the Durban-South schools 

and those in the schools located in the northern residential areas, a graphical repre­

sentation of superimposed fitted WDVarFEVl values for children in the two regions is 

used. To do this, the loess smoothing technique is applied to summarize the trend of 

the fitted WDVarFEVl values as a function of time. 

042 

•3 0» 

£ 0 48 

| 0" 

"S 0 44 

M t < 

0 4 

1 t * 4 S 6 7 • • 10 11 12 11 14 

Time 

Figure 6.7: The peaks pollutant model fitted profiles of the WDVarFEVl values for children in 

Durban-South schools and those located in the northern residential areas. The solid line represents 

the Durban-South profiles while the dotted line represents the northern residential area profiles. 

The superimposed graph shown in Figure 6.7 shows that the WDVarFEVl values of 
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the children in the Durban-South schools are on average greater than the WDVarFEVl 

values of the children in the schools located in the northern residential areas 
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Figure 6.8: The peaks pollutant model fitted profiles of the WDVarFEVl values for the male and 

female children. The solid line represents the profile for the male children while the dotted line 

represents the profile for the female children. 
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Figure 6.9: The peaks pollutant model fitted profiles of the WDVarFEVl values for children of 

the three weight categories. The solid line, dashed line and dotted line represent the profiles of the 

underweight children, children of normal weight and overweight children respectively. 
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Similarly, Figure 6.8 compares the profiles of the male and female children. It 

can be seen from this figure that indeed the males and female children do not have a 

common slope or intercept. Figure 6.9, which compares the profiles of the three weight 

categories, shows that the overweight children have the highest WDVarFEVl values 

followed by the WDVarFEVl values of the children of normal weight. 



Chapter 7 

Analysis of the 8-hour maximum 

pollutant model 

In this chapter, the 8-hour maximum model is discussed. First investigated is the 

covariance structure of the model 

5 2 
Yij = ^7ocSchoolc< + J ^ o s S e x a 

c=i s=i 
3 3 3 

+ 5 3 flouAsthmaStatusui + 5 3 A0wWeightwi + 5 3 ao nHeightn . 
u=i w=i h = 1 

5 2 

+ 5 3 7icSchoolc<tij + 5 3 *isSexsity 
C=l S=l 
3 3 3 

+ 5 3 ^iuAsthmaStatusu<<ti + 5 3 ^iwWeightwity + 5 3 aih^e*Snthi*»i 
u=i w=i h = 1 

5 2 
+ 5 3 72cSchoolcitij + 5 3 ^sSexsrfJ 

c=i s=i 
9 3 3 

+ 53(?uAsthmaStatusUiti>j + 5 3 A2wWeightw<t?, + 5 3 a2hH e iSn thi*ii 
u=7 w=i h = 1 

+/3iHrMaxlij + /^HrMax^- + ^HrMaxS^ + ftHrMax^ + /35HrMax50 

+bw + huUj + b2«*5 + eij, 

107 
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where the variables are the same as described in (6.1) except that the five pollutant 

variables in this case are the 8-hour maximum variables HrMaxl, . . . , HrMax5. A 

relatively stable variance function shown in Figure 7.1 shows that a constant variance 

is plausible for the model. The scatter-plot matrix of residuals in Figure 7.2 has a 

circular shape indicating that the serial correlation is not very strong. Therefore the 

serial correlation is not included in the model. 

Figure 7.1: Plot of the variance of residuals against time generated from the 8-hour maximum 

pollutant model. The solid line represents the persistent asthmatics, the dashed line the asthmatics 

and the bold line the normal children. 

For the random effects, the unstructured covariance structure is the preferred co-

variance structure. However, for the residual, all the three model-fit criteria shown in 

Table 7.1 point to the CS. Therefore, the compound symmetry structure is chosen for 

the covariance matrix E< in the model. 
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Figure 7.2: Scatter plot of residuals by time. The residuals are generated from the 8-hour maximum 

pollutant model. Dl to D14 in the main diagonal represent the 14 repeated measurements. 

Table 7.1: Covariance structure criteria for the random effects of the 8-hour nuMrfamiTn pollutant 

model 

Covariance Structure 

CS 

AR(1) 

AIC 

-2010.9 

-2020.6 

AICC 

-2010.9 

-2020.6 

BIC 

•1983.3 

-1993 

7.1 Model reduction of the model 

The models and the associated maximized log-likelihood values for the 8-hour 

maximum model are shown in Table 7.2, while Table 7.3 shows the LR statistics for 

dropping one random effect at a time, starting from the quadratic time effect. These 

tables show no difference between models 4 and 3. The computations of the p-values 
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are done for the comparisons "Model 2 versus Model 1" and "Model 3 Versus Model 

2" and the computed p-values are shown in Table 7.3. 

Table 7.2: The four random-effects models for the 8-hour maximum pollutant model 

Random effects 

Model 1: Intercepts, time, time2 

Model 2: Intercepts, time 

Model 3: Intercepts 

Model 4: No random effects 

The Maximum log-likelihood (ln[L(6)]) 

ML 

1234.45 

1231.10 

1222.65 

1222.65 

REML 

1013.45 

1009.50 

999.35 

999.35 

Table 7.3: The likelihood ratio statistic with the correct, the naive asymptotic null distributions 

for comparing random-effects models and the comparison p-values of the 8-hour mnyimiim pollutant 

model 

Hypothesis 

Model 2 versus Model 1 

Model 3 versus Model 2 

Model 4 versus Model 3 

Likelihood ratio statistic (-2ln[AN]) 

ML 

6.7 

16.9 

0 

REML 

7.9 

20.3 

0 

P-value 

ML 

0.05859 

0.00013 

REML 

0.03369 

0.00002 

All estimations in Table 7.3 provide p-values smaller than 0.05 except for the p-

values associated with the ML estimation for the comparison "Model 2 versus Model 1". 

Since the REML estimation performs slightly better than the ML estimation method, 

no random effect is deleted from the 8-hour maximum pollutant model. 
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Table 7.4: The likelihood ratio test statistics and p-values for the 2-way interactions, 2-way in­

teractions with time, and 2-way interactions with squared time in the 8-hour maximum pollutant 

model 

2-way interactions 

School'Sex 

SchoorAsthmaStatus 

School-Weight 

School'Heght 

Sex-AsthmaStatus 

Sex'Weight 

Sex-Height 

AsthmaStatus'Weight 

AsthmaStatus-Height 

Weight-Height 

Additional 
degrees of 

freedom (ml 
mO) 

4 

8 

8 

8 

2 

2 

2 

4 

4 

4 

2-way interactions 

Likelihood 
ratio test 
statistic 

3.5 

14.5 

11.2 

6.4 

1.2 

0.2 

0.1 

5.6 

1.8 

1.5 

P-Value 

0.4779 

0.0696 

0.1906 

0.6025 

0.5488 

0.9048 

0.9512 

0.2311 

0.7725 

0.8266 

time * 2-way 

Likelihood 
ratio test 
statistic 

4.2 

15.6 

2.2 

12.9 

3.6 

0.3 

0.0 

3.8 

5.7 

0.3 

nteractions 

P-value 

0.3796 

0.0485 

0.9743 

0.1153 

0.1653 

0.8607 

1.0000 

0.4337 

0.2227 

0.9898 

time2 • 2-way 

Likelihood 
ratio test 
statistic 

4.1 

15.5 

2.0 

13.8 

4.5 

0.5 

0.1 

0.8 

4.9 

0.3 

interactions 

P-Value 

0.3926 

0.0501 

0.9810 

0.0871 

0.1054 

0.7788 

0.7518 

0.9384 

0.2977 

0.9898 

For the model reduction of the mean structure, the reduced 8-hour maximum pollu­

tant model has -2/n = -2468.9. The only interaction found to be significant is the 2-way 

interaction with time time*School*AsthmaStatus, with a p-value = 0.0485. Therefore 

only time*School*AsthmaStatus is added to the 8-hour maximum pollutant model. 

7.2 Inference of the 8-hour maximum model 

Before the inference of the model is done, the model fit is checked by fitting 

observed and fitted WDVarFEVl profiles using the loess smoothing technique. The 

summarized trends of observed and predicted WDVarFEVl values as a function of time 

are shown in Figure 7.3. Since the profiles are very close together, it can be concluded 

that the model fit the data set well. 
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Figure 7.3: The 8-hour maximum pollutant model observed and predicted/fitted profiles of the 

WDVarFEVl values. The observed profiles are represented by the solid line while the dotted line 

represents the fitted profiles. 

In addition, the assumption of normality of the random effects and the residual is 

tested. The histogram of the EB estimates and the residuals are shown in Figure 7.4 (a) 

and (b) respectively. Both figures show a symmetric bell-shaped curve indicating that 

the normality assumption is not violated for both the random effects and the residuals. 

The scatter plots in Figure 7.5 for both the EB and residuals show just a few outliers 

which may not affect the inference of the model effects. The same conclusion can be 

drawn from the slight left skewness of the histograms in Figure 7.4. 
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Figure 7.4: Histogram of the (a) EB estimates (for the random effects) and the (b) residuals for the 

8-hour maximum pollutant model. 

(a) (b) 

Figure 7.5: Scatter plot of the (a) EB estimates and (b) residuals for the 8-hour maximum pollutant 

model. 
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Table 7.5: The REML estimates, standard deviation and p-values for the 8-Hour maximum pollutant 

model 

Effect 
Intercepts: 

School 

Sex 

AsthmaStatus 

Weight 

Height 

Pollutant: 

T ime Effects 
School 

Sex 

AsthmaStatus 

Weight 

Height 

Nizam Road 

Assegai 

Dirkie Uys 

Femdale 

Ngazana 

Male 

Female 
i PAsthmatic 

Asthmatic 

Normal 
Underweight 

Normal weight 
Overweight 

Short 

Normal Height 

Tall 

HrMaxI 
HrMax2 

HrMax3 

HrMax4 
HrMax5 

Nizam Road 

Assegai 

Dirkie Uys 

Femdale 
Ngazana 

Male 
Female 
PAsthmatic 

Asthmatic 

Normal 

Underweight 
Normal weight 

Overweight 

Short 
Normal Height 

Tall 
School'Status Nizam'PAsthma 

Nizam'Asthma 
Nizam'Normal 
PAsthm'Assegai 

Asthma'Assegai 
Normal"Assegai 

PAsthma'Dirkle 

Asthma'Dirkie 
Normal"Dirkie 

PAsthm'Femdale 

Asthma'Femdale 

NormarFerndale 

PAsthm'Ngazana 

Asthma'Ngazana 

NormarNgazana 

Paramete 

Voi 
YCK 

Yea 
Y<>4 

Y« 
Bm 
BK 
So, 

e» 
Bo* 
* O I 

A* 
A«3 

<>01 

Oat 
Oos 

Pi 
Pi 
P i 
P4 

Pi 

Y« 
Yu 
Y,a 

Y M 

Yl5 

«„ c,2 
On 

o« 
0,3 

Ail 
A,2 

^13 

0,1 
0,1 

a , s 

Y M , 

Y m 

Yl13 
Y H I 

V i a 

Yl23 
Yl31 

Y i » 
Yl33 

Y l « 
Y M 

Y143 

Ym 
YlK 
Y i n 

8-Hour Maximum (REML) 

r Estimate 

0.531500 

0.581400 
0.401600 
0.533000 

0.602100 

0.669000 
0.602100 

0.540700 
0.585800 
0.602100 

0.447700 
0.561000 
0.602100 

0.710600 
0.652600 

0.602100 

0.000184 

0.000130 
-0.000220 

-0.000O20 

-0.000470 

-0.015020 

-0.028430 

0.003781 

-0.031100 
-0.035030 

-0.040760 
-0.035030 

-0.026130 

-0.031880 

-0.035030 
-0.025630 
-0.034050 

-0.035030 
-0.040190 

-0.034740 
-0.035030 

-0.004570 
-0.009800 
-0.015020 
-0.015650 

-0.030970 
-0.028430 

0.015250 
-0.004400 

0.003781 
-0.016390 
-0.036480 

-0.031100 

-0.026130 
-0.031880 

-0.035030 

Standard Error P-value 

0.057650 

0.058940 
0.065550 

0.055900 

0.054330 

0.059710 
0.054330 

0.056570 

0.057460 
0.054330 

0.064740 
0.052980 

0.054330 
0.051010 
0.038360 
0.054330 

0.000115 
0.000196 
0.000113 

0.000097 

0.000112 

0.017060 

0.016180 
0.019510 
0.016720 

0.016230 
0.017810 

0.016230 

0.017070 
0.017220 

0.016230 

0.019190 
0.015770 
0.016230 

0.015080 
0.011460 

0.016230 

0.017680 

0.017940 

0.017060 
0.016270 

0.017230 
0.016180 

0.020030 

0.019560 
0.019510 
0.017620 

0.017640 
0.016720 

0.017070 

0.017220 
0.016230 

<.0001 

<.0001 
<.0001 

<.0001 

< 0 0 0 1 

<.0001 

<.0001 
<.0001 
<.0001 

<.0001 
<.0001 

<,0001 

<.0001 

<.0001 

<.0001 

<.0001 

0.1100 
0.5082 

0.0489 

0.8533 

<.0001 

0.3797 
0.0805 

0.8466 

0.0643 
0.0322 

0.0232 

0.0322 
0.1275 
0.0656 

0.0322 

0.1833 
0.0320 

0.0322 
0.0083 
0.0027 

0.0322 

0.7961 
0.5856 

0 .3797 
0.3372 
0.0738 
0.0805 

0.4474 
0.8221 
0.8466 

0 .3532 
0.0399 
0.0643 

0.1275 
0.0656 

0.0322 
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Table 7.5 continued 

Effect 
Time2 Effects: 

School 

Sex 

Nizam Road 

Assegai 

Dirkie Uys 

Ferndale 

Ngazana 

Male 

Female 

AsthmaStatus PAsthmatic 

Weight 

Height 

Asthmatic 

Normal 

Underweight 

Normal weight 

Overweight 

Short 

Normal Height 

Tall 

Covariance of b,: 

Var(ba) 

Cov(ba,b,J 

Var(b„) 

Covfba.ba) 

Cov(b,i,b2l) 

Var(b2:) 

Residual variance: 

Var(El]) 

CS 

Parameter 

Vti 

in 

Ya 

VM 

Ya 

On 
fa 
On 
022 

6a 
A21 

A» 

Aa 
021 

Ozz 

QB 

d„ 
di2=d2i 

fa 
di$-dji 
d23=d32 

d» 

0 * 

Oe« 

8-Hour Maximum (REML) 

Estimate 

0.000844 

0.001539 

-0.000330 

0.001765 

0.002058 

0.002137 

0.002058 

0.001423 

0.002121 

0.002058 

0.001769 

0.002032 

0.002058 

0.002153 

0.002047 

0.002058 

0.006040 

-0.000360 

0.000386 

0.000009 

-0.000020 

0.000002 

0.000469 

0.020570 

Standard 

Error 

0.001102 

0.001037 

0.001237 

0.001075 

0.001048 

0.0O1147 

0.001048 

0.001089 

0.001107 

0.001048 

0.001236 

0.001014 

0.001048 

0.000967 

0.000735 

0.001048 

0.002730 

0.0O0709 

0.000235 

0.000043 

0.000015 

0.000000 

0.000014 

0.00O632 

P-value 

0.4449 

0.1393 

0.7898 

0.1021 

0.0509 

0.0640 

0.0509 

0.1927 

0.0568 

0.0509 

0.1539 

0.0466 

0.0509 

0.0271 

0.0059 

0.0509 

0.0135 

0.6149 

0.0506 

0.8328 

0.1284 

-

<.0001 

<0O01 

Table 7.5 aims at investigating which factors in model have an effect on child res­

piratory conditions, represented by the independent variable WDVarFEVl. It can be 

seen that all the factor levels have significant mean effects, at a 5% level of significance. 

In addition, for the children in Ngazana; male and female children; children with no 

case of asthma; children of normal weight and overweight children; short, tall and chil­

dren of normal height; asthmatic children in Ferndale; and children with no case of 

asthma in Ngazana, it is found that WDVarFEVl has a linear relationship with time. 

For children of normal weight; short children; and children of normal height, there 

is a significant quadratic relationship between WDVarFEVl and time. The pollutant 

variables HrMaxS and HrMax5 have a significant effect on the dependent variable. In 
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other words, three day and five day prior exposure to a unit increase in the pollutant 

measure significantly results in a fall in the WDVarFEVl measure at a 5% level of 

significance, keeping all the other variables fixed. 

The effects of the Durban-South and northern residential area schools (F-value 4.85, 

p-value 0.0086); child sex (F-value 8.81, p-value 0.0033); and child weight (F-value 

6.33, p-value 0.0022) on WDVarFEVl are also found to be significant. The equality 

of the linear slopes for male and female children (F-value 0.74, p-value 0.3911); the 

height categories (F-value 0.14, p-value 0.8737); and the overweight and children of 

normal weight (F-value 0.01, p-value 0.9179) are found to be tenable at a 5% level of 

significance. In addition, the quadratic coefficients of the short children and children 

of normal weight (F-value 0.02, p-value 0.8761) are also found to be equal at a 5% 

level of significance. 
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Figure 7.6: The 8-hour maximum pollutant model fitted profiles of the WDVarFEVl values for 

children in Durban-South schools and those located in the northern residential areas. The solid line 

represents the Durban-South profiles while the dotted line represents the northern residential area 

profiles. 

Using the loess technique, a graphical comparison of the fitted WDVarFEVl values 
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Figure 7.7: The 8-hour maximum pollutant model fitted profiles of the WDVarFEVl values for the 

male and female children. The solid line represents the profile for the male children while the dotted 

line represents the profile for the female children. 
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Figure 7.8: The 8-hour maximum pollutant model fitted profiles of the WDVarFEVl values for 

children of the three weight categories. The solid line, dashed Une and dotted line represent the 

profiles of the underweight children, children of normal weight and overweight children respectively. 

of children in the Durban-South schools and those in the schools located in the northern 

residential areas (Figure 7.6); male and female children (Figure 7.7); and three weight 
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categories (Figure 7.8) is made. 

Figure 7.6 shows that on average children in the Durban-South schools have greater 

WDVarFEVl values than the WDVarFEVl values of the children in the schools located 

in the northern residential areas. Figure 7.7 confirms that indeed the male and female 

children do not have a common slope nor intercept. Finally, Figure 7.8 shows that the 

overweight children have the highest WDVarFEVl values followed by the WDVarFEVl 

values of the children of normal weight. 



Chapter 8 

Conclusion 

The objective of this thesis was to determine if there is a significant relationship 

between the ambient air pollutant SO2, the child characteristics and the respiratory 

condition of the children. To achieve this, the model-based approach was used. After 

exploring the mixed model and the hierarchical model, the longitudinal mixed model 

was used for the analysis of the survey data. To investigate the fixed effects mean 

structure, individual and mean profile plots of the dependent variable were considered. 

But since interpretation of these plots was not easy, the loess fit was considered. The 

aim of these non-parametric curves was to smoothen the profile plots in order to make 

the choice of the fixed-effects structure easier. To check for multicolinearity in the 

independent variables, correlations and the variance inflation factor (VIF) were used. 

These checks showed the presence of multicolinearity. To solve for the problem of 

multicolinearity, the principal component analysis (PCA) was considered as the remedy. 

The existence of multicolinearity between the two summary pollutant measures led 

to the fitting of two separate models for each of the pollutant measures. The model with 

the peaks as the independent pollutant measures was referred as the 'peaks pollutant 

model', and the model with the 8-hour maximum as independent pollutant measures 

119 
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was referred to as the '8-hour maximum pollutant model'. Since the pollutant summary 

measures were correlated, the best option would have been to drop one of summary 

measures and fit only one model with the preferred summary measure. However, it was 

of interest to see if the two pollutant have the same effect on the children's respiratory 

condition. 

The existence of serial correlation by use of a scatter plot of residuals was explored. 

A constant variance was also assessed for by use of the variance function. The com­

pound symmetric (CS), autoregressive order one (AR(1)) and the unstructured (UN) 

covariance structures were considered in the model selection. The compound symmet­

ric structure was selected as being the most appropriate covariance structure for the 

error term. For the random effects, the unstructured (UN) covariance structure was 

found to be the most appropriate. For the fixed effects inference, the likelihood ratio 

(LR) test was used. For the random effects inference, a method used by Stram and 

Lee (1994; 1995) was adopted. 

The profiles of the observed and fitted values indicated that model was a good fit. 

The normality for the random effects and residuals was assessed graphically. Since the 

histograms showed a symmetric bell-shaped curve, it was concluded that the normality 

assumption was not violated. The scatter plots for the random effects and residuals 

were assessed for outlier detection and for any symmetric pattern. All the plots were 

in favour of the goodness of the fit. Since the survey data was characterized by incom­

pleteness, the application of a modified logistic regression model MAR test resulted in 

the conclusion that the survey data had an MAR type of missingness. 

In general, school, sex and weight were found to have a significant effect on the 

respiratory condition of the children. Despite the fact that schools in Durban-South 

recorded higher pollutant measures as compared to those located in the northern res­

idential areas, the children attending school in the northern residential areas were 
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found to have poorer respiratory conditions as compared to those attending school in 

Durban-South. 

The male children and female children were found to differ in their respiratory 

conditions. This is in line with the conclusions drawn by Buist (1982) and Schwartz, 

Katz, Fegley and Tockman (1988a, 1988b) that that girls are found to have higher 

expiratory flows than boys after correcting for body size. 

The overweight children and children of normal weight; and underweight children 

and children of normal weight differ in their respiratory conditions. The poorest res­

piratory conditions were registered by the overweight children. This falls in line with 

the conclusions drawn by Schoenberg, Beck and Bouhuys (1978) and Dockery, et al. 

(1985) that lung function is decreases at both extremes of weight. 

The model also showed no evidence that a rise in the pollutant measures caused 

a significant deterioration in the respiratory condition of the children in the study. 

Instead, the results showed that a five day prior exposure to an increase in the pollutant 

levels led to an improvement in the respiratory conditions of the children. Results from 

the Settlers primary school health study (Robins et a/., 2002), however, showed that 

prior one day and/or two day exposure to increasing levels of the pollutant significant 

resulted in the deterioration of the respiratory conditions of the children considered. 

The difference in the results may be attributed to the fact that not all the survey 

factors considered in the Settlers primary school health study were considered in this 

thesis. 

The 8-hour maximum pollutant model offers the same conclusions as the peaks 

pollutant model which means that the two pollutant summary measures do provide 

similar results. 

Further study is needed on the development of MAR tests specifically for longitudi-
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nal data with an intermittent mode of missingness. In addition, future research should 

aim at including more child factors in the model. These factors include blood tests and 

their exposure to cigarette smoke. Other factors that could be included in the model 

would be the housing and family conditions. 
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Appendix A 

Appendix tables 

Table A.l: The peak counts of the SO2 measurements on a particular date per school 

Date 
5/26/2004 
5/27/2004 
5/28/2004 
5/29/2004 
5/30/2004 
5/31/2004 

6/1/2004 
6/2/2004 
6/3/2004 
6/4/2004 
6/5/2004 
6/6/2004 
6/7/2004, 
6/8/2004 
6/9/2004 

6/10/2004 
6/11/2004 
6/12/2004 
6/13/2004 
6/14/2004 
6/15/2004 
6/16/2004 
6/17/2004 
6/18/2004 
Average 

Total 

0 
0 
5 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

17 
0 
2 
0 
0 
0 
0 
1 

24 

0 
0 
0 

1 
5 
3 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

10 
0 
0 
0 
0 

0 
0 
0 

0.791666667 
19 

:nirkr« iiui* * 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
8 
0 
0 
0 
0 
0 
0 
0 

0 
0.333333333 

8 

; Ferndale • t> 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

11 
0 
0 
0 
0 
0 
0 
0 

0.458333333 
11 

C 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
6 
0 
0 
0 
0 
0 
0 
0 
0 

0.25 
6 
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Table A.2: The 8-hour maximum of the SO2 moving averages on a particular date per school 

5/26/2004 
5/27/2004 
5/28/2004 
5/29/2004 
5/30/2004 
5/31/2004 

6/1/2004 
6/2/2004 
6/3/2004 
6/4/2004 
6/5/2004 
6/6/2004 
6/7/2004 
6/8/2004 
6/9/2004 

6/10/2004 
6/11/2004 
6/12/2004 
6/13/2004 
6/14/2004 
6/15/2004 
6/16/2004 
6/17/2004 
6/18/2004 

Avwraga 

ToH 

10.1536 
28.0677 
85.2658 
44.9198 
11.1007 
9.1771 

11.3828 
11.7906 
43.9071 
33.1027 
40.2542 

33.8925 
27.9890 
29.9129 
10.6843 
8.4855 

17.2866 
211.2263 

40.4152 
59.5694 

41.4365 
14.7027 
10.4485 
23.6675 
38.7850 

8584390 

.;-' . - . . Prii 

24.4239 
62.9596 

64.6304 
83.2650 
90.6135 

105.6473 
27.6030 
26.8658 
34.9979 
44.7340 
54.2685 
35.2094 

34.7664 
37.7935 
45.7597 
22.0854 

128.4613 
38.1902 
39.0975 
33.8535 
34.0411 
20.3842 
30.2914 
23.4636 
47.6419 

1143.4063 

•n&rv- schools 

5.5709 
7.0601 

13.9535 

63.1702 
41.5627 

7.4935 
11.8914 
4.9856 
8.8470 

15.0948 

24.9118 
12.6995 
19.0134 
24.3106 
23.7021 
90.1278 
20.7058 
21.2300 
18.5814 
23.8160 
22.3100 
12.3301 
11.0384 
11.8282 
21.5098 

516.2348 

5.5833 
2.5313 
4.6413 

10.3034 
1.4493 
2.4462 
4.5208 
6.0521 
3.8854 
9.5833 

12.6563 
10.0521 
5.6979 
6.9479 
5.8316 
5.2211 

135.8172 
13.6563 
4.3125 
6.3333 
6.6563 

13.0000 
13.0000 
4.4688 

12.2770 
294.6474 

2.3555 

3.1208 
6.2136 

11.9144 
1.7273 
3.1358 
4.0098 
3.5540 
2.6772 
6.8086 
6.8044 
6.9992 
5.0569 
7.0019 
2.0722 

78.5806 
5.0334 

7.5739 
4.4525 
6.8632 
6.5275 
3.7753 
5.7555 
2.5859 
8.1083 

194.5992| 



Table A.3: The SO2 levels above the standard guideline of 191pb as well as the date, time and the 

school in which the high SO2 level occurs 

School Date Time S02 

Nizam 5/27/2004 2200 197 

5/27/2004 2310 213.2 

5/27/2004 2320 469.7 

5/27/2004 2330 364.2 

5/27/2004 2340 289 

6/11/2004 1120 315.1 

6/11/2004 1130 569.7 

6/11/2004 1140 591.9 

6/11/2004 1150 356.3 

6/11/2004 1200 577.6 

6/11/2004 1210 611.5 

6/11/2004 1220 621 

6/11/2004 1230 628.5 

6/11/2004 1240 636.2 

6/11/2004 1250 659.6 

6/11/2004 1300 687.8 

6/11/2004 1310 685.1 

6/11/2004 1320 586.3 

6/11/2004 1330 542.9 

6/11/2004 1340 463.7 

6/11/2004 1350 400.5 

6/11/2004 1400 345.8 

6/13/2004 1840 351.5 

6/13/2004 1850 436.9 

School Date 

Assegai 5/28/2004 

5/29/2004 

5 29/2004 

529/2004 

5,29/2004 

5/29/2004 

5/30/2004 

5/30/2004 

5/30/2004 

6/10/2004 

6/10/2004 

6/10/2004 

6/10/2004 

6/10/2004 

6/10/2004 

6/10/2004 

6/10/2004 

6/10/2004 

6/10/2004 

Time S02 

810 199.9 

1150 211.7 

1200 208.1 

1230 202.5 

1250 200.7 

1320 206.3 

1120 232 

1140 202.5 

1210 220.4 

1450 483 

1500 700 

1510 656.9 

1520 548.5 

1530 526.9 

1540 464.8 

1550 399.9 

1600 427.1 

1610 712 

1620 465.9 

School Date 

DirWeUys 6/9/2004 

6/9/2004 

6/9/2004 

6/9/2004 

6/9/2004 

6/9/2004 

6/9/2004 

6/9/2004 

Ferndale 6/10/2004 

6/10/2004 

6/10/2004 

6/10/2004 

6/10/2004 

6/10/2004 

6/10/2004 

6/10/2004 

6/10/2004 

6/10/2004 

Ngazana 6/9/2004 

6/9/2004 

6/9/2004 

6/9/2004 

6/9/2004 

6/9/2004 

Time S02 

1440 216.7 

1450 677 

1500 684.3 

1510 684.4 

1520 573.5 

1530 465.3 

1540 434.8 

1550 287.8 

1015 638.5 

1025 652 

1035 664.5 

1045 673 

1055 678.5 

1105 596 

1115 542.5 

1125 502.5 

1135 452 

1145 352 

1610 471.3 

1620 730 

1630 757 

1640 715 

1650 392.2 

1700 475.4 J 




