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ABSTRACT 

China has a limited area of cultivated land per capita and an increasing population. 

Maintaining a high crop yield is essential to meet the large food demand and to assure grain 

self-sufficiency. With the pace of economic development, the demand for vegetables keeps 

growing. In Southern China, many of the fields used to grow vegetables were previously under 

paddy production. Compared to the paddy production system, the vegetable production system 

is intensive with excessive use of nitrogen fertilizer. Excessive nitrogen fertilizer application 

has changed soil chemical properties and nutrient dynamics, and thus created a negative impact 

on sustainable agricultural development. 

A preliminary study was conducted in the absence of nitrogen fertilizer to determine the 

effect of field utilization conversion on soil nitrogen uptake by pakchoi. It was found that soil 

pH values and organic matter content decreased with intensive vegetable planting and nitrogen 

leaching loss was higher from vegetable soils compared to that from paddy soils. Although the 

soil mineral nitrogen content in vegetable soils was higher than that in paddy soils, nitrogen 

uptake by plants from vegetable soils was lower than that from paddy soils, and decreased 

quickly in the later growing seasons. The lower plant nitrogen uptake was attributed to the high 

nitrogen leaching loss and soil acidity caused by the excessive application of nitrogen fertilizer 

in vegetable production systems. Therefore, it is imperative to find suitable approaches to 

mitigate nitrogen leaching loss and soil acidity in vegetable production systems and promote 

nitrogen retention and vegetable nitrogen uptake for sustainable productivity.  

Biochar is a fine-grained and porous substance produced through pyrolysis processes, 

under oxygen-free conditions, from a wide range of biomass. In recent years, biochar has 

received more attention with regard to its capacity to increase crop yields by ameliorating the 

soil environment and regulating nutrient processes. According to previous studies, biochar is 

an option for mitigating soil acidity and nitrogen leaching problems in vegetable soils due to 

its alkalinity and adsorption properties. However, studies of biochar addition to vegetable 

production systems have not been well documented. The effect of biochar addition on leachate 

volume is still lacking. Whether the mineral nitrogen retained by biochar can be re-used by 

plants is still unknown. Few studies have investigated the effect of biochar addition on nitrogen 

processes and soil acidity under continuous growing conditions.  

Therefore, with the aim of determining the effect of biochar on soil nitrogen retention and 

vegetable nitrogen uptake, pakchoi was planted in a pot experiment during four continuous 
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growing seasons with three biochar addition rates (0, 1% w/w and 5% w/w). In the 1st, 2nd and 

3rd seasons, pakchoi was applied with 15N-labelled urea and in the 4th season no nitrogen 

fertilizer was provided. 

The results of this study were presented in four parts (soil nitrogen retention, soil acidity, 

vegetable nitrogen uptake and a distinction between two nitrogen sources in vegetable nitrogen 

uptake i.e. nitrogen left in the soil and nitrogen loss). The main conclusions are as follows: 

 Biochar addition significantly increased the soil mineral nitrogen content by enhancing 

nitrogen retention in soils and soil nitrogen mineralization. Part of the mineral nitrogen 

retained by biochar was still bioavailable for plant uptake in the soil. Biochar significantly 

reduced nitrogen leaching loss by decreasing leachate volumes and nitrate concentrations 

in the leachate. 

 Biochar addition significantly ameliorated or retarded soil acidity by promoting soil pH 

buffering capacity, reducing soil acidification rates and maintaining soil bases contents 

induced by biochar. The mitigation of soil acidity was not only as a result of biochar’s 

natural alkalinity but can also be attributed to the altered nitrogen processes (promotion of 

plant nitrate uptake, reduction of nitrification and nitrate leaching and maintaining soil 

bases contents) with the addition of biochar. Biochar’s mitigation of soil acidity was partly 

dependent on its effect on soil properties (such as bases contents) and processes (such as 

nitrification, nitrate leaching and plant nitrate uptake) rather than its natural alkalinity. 

 Biochar maintained pakchoi yields and nitrogen uptake during four growing seasons. The 

fertilizer nitrogen recovery efficency was improved with an increase in the recovery of 

fertilizer nitrogen in the soil and the decrease in the recovery of fertilizer nitrogen in 

leachate.  

 Fertilizer nitrogen was the major source for pakchoi nitrogen uptake, soil residual nitrogen 

and nitrogen leaching loss, while nitrogen from soil mineralization was the major nitrogen 

source for biochar retention. When nitrogen fertilizer was absent in the 4th season, the 

nitrogen fertilizer left in the soil from the 1st to 3rd seasons decreased sharply and fertilizer 

nitrogen retained by biochar was simultaneously released.  

The conclusion was that biochar addition could promote soil nitrogen retention and 

maintain high nitrogen uptake by vegetables in continuous growing seasons. However, the 

comprehensive effect of biochar on nitrogen loss still needs to be assesssed before 

recommending extended utilization of biochar in vegetable production systems in China. 
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THESIS INTRODUCTION 

Background 

China is the largest producer of vegetables in the world due to its temperate climate and 

economic development (Zhang and Liu, 2006). Vegetable crops such as cabbage (Brassica spp), 

tomato (Lycopersicum solanum) and bean (Phaseolus spp) are commonly grown and form an 

integral component of the Chinese diet. The total area under vegetable production in China is 

currently 20 million ha (NBS, 2015) and this is expected to increase due to increasing consumer 

demands and higher profits for the producers (Verburg and Chen, 2000; Xu et al., 2006).  

Nitrogen is an indispensable mineral element needed for vegetable growth and yield 

performance because of its importance during photosynthesis. The amount of available 

nitrogen depends on mineralization processes that transform nitrogen from an organic form in 

the natural soil (Stanford and Smith, 1972). Natural mineralization processes are not able to 

replenish enough mineral nitrogen to meet the productivity demand in the intensive vegetable 

production system. It is critical to add nitrogen fertilizer to vegetable production system in 

order to address the gap between vegetable nitrogen demand and the amount of mineral 

nitrogen supplied by soil fertility.  

The application of fertilizer used to supply nitrogen to the vegetable production system in 

China is very high. Despite the high demand for nitrogen by different types of vegetables, an 

increasing nitrogen fertilizer application does not consistently result in a yield increase (Zhang 

et al., 2008; Zhao et al., 2010). Reportedly there is a decreasing trend in vegetable yields in 

response to the application of excessive nitrogen fertilizer (Min and Shi, 2009). Less than 40% 

of total nitrogen input by fertilizer can be taken up by vegetables in any season (Huang et al., 

2009; Ning-Ning et al., 2010) . The rest of nitrogen gets lost from soil systems causing serious 

environmental problems and contributing to unhealthy soil condition. Excessive nitrogen 

fertilizer application is very common and extensive in intensive vegetable production systems 

in China (Sun et al., 2006; Ju et al., 2009; Min and Shi, 2009; Shi et al., 2009), which is far 

from the ‘sustainable agriculture’ goal being promoted by the Chinese government. At present, 
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there is an urgent need to find suitable ways of regulating nitrogen for higher nitrogen uptake 

efficiency and less nitrogen loss in vegetable production systems.  

Research problem statement 

What are the problems of vegetable production systems in China? 

There are a number of challenges that affect vegetable production in China. Firstly, 

vegetable fields are widely distributed with most of them concentrated in Eastern and Southern 

China. Individual farmers’ fields for vegetable production are small (often less than 0.05 ha) 

which can supply the needs of their family and surpluses for sale in the village market. In 

comparison, large agribusinesses companies can rent relatively large fields for production. 

Secondly, the decision as to which vegetables individual farmers planting is mostly influenced 

by their dietary habits, while the vegetables chosen by large agribusiness companies depend on 

vegetable market prices. Thirdly, production is very intensive. It is common to have 3-5 

growing seasons in a vegetable field per year and harvesting is done every 2-4 months. The 

intensive cultivation of vegetables results in a high rate of removal and large amounts of 

nutrients being removed from the soil. The problem is made worse because frequent vegetable 

planting means that the fields are occupied for more than 9 months per year and merely 2-3 

months are left to allow the soil to recover. Fourth, farmers without scientific advice hold the 

old opinion ‘high fertilizer input, high yield gain’, and because the market price of urea was 

relatively low, they fertilized as much as possible. 

Many problems are caused by excessive application of nitrogen fertilizer. Investigations 

show only 10%-40 % of the nitrogen input from fertilizer can be taken up by vegetables (Huang 

et al., 2006; Ju et al., 2009). With respect to low nitrogen uptake efficiency, most nitrogen from 

fertilizer is temporarily left in the soil profile (Ju et al., 2004; Shi et al., 2009) or lost into the 

atmospheric and hydrological systems(Moll et al., 1982). Generally more than half the total 

nitrogen fertilizer is lost from vegetable production systems China (Li et al., 2003; Zhu et al., 

2005; Hongmei et al., 2007; Min et al., 2011a). Among all the nitrogen processes, leaching is 

the primary nitrogen loss pathway in vegetable production systems, accounting for over 70% 
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of total nitrogen loss (Ju et al., 2004; Min et al., 2011a) and is one of the most important 

contributors to Chinese river eutrophication (Mkhabela et al., 2008; Ding et al., 2010; Yang et 

al., 2013). Data from China’s Yili river catchment shows nitrogen loss from vegetable 

production systems account for 18.8% of the total aquatic nitrogen load to agricultural non-

point pollution with only 8.7% of total planting area (Luo et al., 2015). In addition, soil 

acidification is another environmental problem caused by excessive nitrogen application. A 

great number of hydrogen ions, produced in the nitrification process, is left in the soil resulting 

in an accumulation of hydrogen ions (Malhi et al., 1998) and when leaching occurs, nitrate 

nitrogen is lost together with bases such as K, Na, Ca, Mg, resulting in increased soil acidity 

(Barak et al., 1997). After several years of planting vegetables, the decrease of soil pH value is 

significant (Liu, 2006; Sun et al., 2006). 

 It is difficult to maintain vegetable yields in soil with high nitrogen leaching loss and soil 

acidification. It was reported that yields may quickly decline if farmers reduce the application 

of nitrogen fertilizer to correspond to the amount taken up by the vegetables (Min and Shi, 

2009; Xue et al., 2011). Compared to the increasing price of vegetable, the expense of chemical 

fertilizer is relatively low. Vegetable farmers will prefer to keep applying excessive fertilizer to 

maintain yields thus ensuring their profits, which have created a vicious cycle contributing to 

soil degradation.  

Why cannot crop yields be maintained by reducing chemical nitrogen fertilizer application 

rates or replacing with organic manure in the long term? 

 Excessive application of chemical nitrogen fertilizer is the reason for problems of 

increased leaching and soil acidity. A number of studies have focused on the issues of reducing 

chemical nitrogen fertilizer application rates (Tilman et al., 2002; Zhao et al., 2006; Ju et al., 

2009) and replacing chemical fertilizer with organic manure (Tester, 1990; Wei et al., 2012). 

Reducing chemical nitrogen fertilizer application can effectively minimize nitrogen leaching 

losses and soil acidity in the short term. However, this is unlikely to maintain crop yields in the 

long term without adding sufficient quantities of nitrogen to supplement the residual nitrogen 
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content in the soil (Ju et al., 2009; Xue et al., 2014) to meet nitrogen crop requirements.   

On the other hand, applying organic manure will improve the soils physical structure 

(Tester, 1990), microbial activity (Xue et al., 2010) and address the problem of acidity (Wei et 

al., 2012). The benefit of organic manure to soil fertility improvement is accepted by many 

farmers, as this is evident in the history of crop cultivation in China. However, the lower 

nitrogen content of organic manure compared with chemical nitrogen fertilizer forces farmers 

to choose the latter to achieve high vegetable yields. It is estimated that the application rates of 

organic manure is over 10 times higher than those of chemical nitrogen fertilizer (urea) in order 

to supply the same amount of nitrogen. Similarly, the problems of soil acidity cannot be 

completely avoided replacing nitrogen chemical fertilizers with organic manure. This is 

because both organic and urea-form nitrogen undergo nitrification processes which leads to the 

production of hydrogen ions contributing to acidic conditions in soils. The soils acidic trend is 

inevitable as long as the hydrogen ion accumulated due to the nitrogen fertilizer application.  

It is clearly evident that reducing chemical nitrogen fertilizer application or replacing with 

organic manure cannot comprehensively address the existing problems (high nitrogen leaching 

losses and increased soil acidity) in China’s vegetable production system. There is therefore a 

need to think of new and innovative approaches such as the use of biochar as a soil amendment 

to maintain vegetable productivity, by reducing nitrogen leaching loss and mitigating soil 

acidity. 

 

Why could biochar be chosen as soil amendment to ameliorate the problems in vegetable 

production systems? 

Biochar is produced by biomass pyrolysis under low oxygen conditions, resulting in a 

porous, low density carbon rich material. It has been widely studied as a soil amendment fueled 

by its potential to change soil conditions (DeLuca et al., 2015) and improve crop yields (Van 

Zwieten et al., 2010; Spokas et al., 2012; Nguyen et al., 2016). Yin et al. (2012) observed that 

the results of vegetable or crop yields varied considerably after the application of biochar and 
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this was attributed to changes in soil nutrition supply, and microbial activity due to both 

biochar’s characteristics and the soil conditions. However, positive effects on yield generally 

occurred with a high nitrogen uptake efficiency when biochar addition could meanwhile 

mitigate or amend some soil problems such as soil acidification, soil sealing and soil organic 

contamination (Jeffery et al., 2011; Alburquerque et al., 2013; Schulz et al., 2013). Most 

biochar produced from biomass slow-pyrolysis are adsorptive and alkaline (Lehmann et al., 

2007). Meta-analysis shows alkaline biochar can reduce the concentration of iron and 

aluminum in the soil by liming agents and thus are effective at increasing biomass (Biederman 

and Harpole, 2013). Several literature reports found the effects of biochar addition on soil 

fertility could be correlated with improved nutrient retention. This could possibly be explained 

by biochar’s cation adsorption capacity (Liang et al., 2006) or a promotion of nitrogen 

transformation due to pH increase in acid soils through biochar’s acid neutralizing capacity 

(Van Zwieten et al., 2010). It is reasonable to expect that biochar could be a good option as an 

amendment that could regulate soil nitrogen retention while at the same time mitigating soil 

problems for vegetable production systems (converted from conventional crops system 

mentioned above). 

Lack of concern for biochar’s impact on nitrogen processes in vegetable production systems 

Data on biochar addition has not been well documented when it comes to vegetable 

production systems (Jia et al., 2012). It is unknown whether the nitrogen adsorbed on biochar 

still remains available and recovers in latter growing seasons. In addition, few studies have 

examined the effects of biochar on nitrogen leaching losses and soil acidity when vegetables 

are growing at the same time. Data referring to the effects of biochar on vegetable yield and 

nitrogen uptake in several continual growing seasons is lacking. Furthermore, the mineral 

nitrogen in vegetable soils is from two main sources: transferred by soil nitrogen mineralization 

and fertilizer application. It is not well understood, whether biochar is likely to interact with 

residual nitrogen as a result of soil mineralization processes or there would be preference for 

nitrogen provided by chemical commercial fertilizer sources. 
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Studies investigating biochar’s preference for nitrogen sources should be based on the 15N 

tracer technique over several continual growing seasons (Bai et al., 2015) with the aim of 

verifying and explaining the effects of biochar addition on nitrogen retention and uptake by 

vegetables in intensive vegetable production systems in China.  

 

Aim and objectives of research 

Aim 

The aim is to study whether using biochar as an amendment can have an effect on 

improving soil nitrogen retention and uptake by vegetable crops, and reducing acidity in 

vegetable soils in China. 

Objectives 

1. To determine the differences of soil chemical properties and nitrogen dynamics between 

vegetable soils and paddy soils.  

2.  To determine the effect of biochar addition on soil nitrogen retention in soils used for 

vegetable production in China. 

3. To determine the effect of biochar addition on soil acidity in soils used for vegetable 

production in China. 

4. To determine the effect of biochar addition on nitrogen uptake by vegetable (pakchoi) 

and yields. 

5. To examine the ratios of nitrogen fertilizer to total nitrogen (fertilizer nitrogen + soil 

mineralized nitrogen) and the recovery of nitrogen fertilizer in plants, soil and leachate with 

different biochar addition rates.  

Preconditions 

The current study was based on the following testing preconditions: 

1. Vegetable yield is associated with soil nitrogen supply when available phosphorus and 

potassium are sufficient in soil. 
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2. Pakchoi (Brassica chinensis L.), the most common vegetable, has a similar growing 

nitrogen demand as other leaf vegetables in the Tailake region, of China.  

3. Soil mineral nitrogen content in the vegetable production system is determined by soil 

nitrogen mineralization and nitrogen fertilizer application.  

4. The property of biochar is a resistant amendment. The effects of biochar on nitrogen 

contents and processes are constant.  

 

Outline  

This thesis consisted of six chapters, which are outlined below. The referencing system 

used in this thesis is based on the referencing style of the Journal of Agricultural Ecosystem 

Environment. The thesis is in the form of progressive research chapters. The thesis is in the 

form of discrete research chapters and each chapter follows the format of a stand-alone 

research paper (whether or not the data in the chapter has already been published). This is the 

dominant thesis format adopted by the University of KwaZulu-Natal. Thus, there is some 

unavoidable repetition of references and introductory information between chapters. The 

outcome of Chapter 2 has been published in Acta Pedologica Sinica (Volume 52, No. 4, 

2015). Part of data in Chapter 3 and Chapter 4 has been published in IOP Conf. Series: Earth 

and Environmental Science (Volume 42, 2016) and Research of Environmental Sciences 

(Volume 28, 2015). The data in Chapter 4 has been accepted by Environmental Science 

(2017). Application for a Chinese patent (No.201610035232.X) has been made for the 

research outcomes in Chapter 3. 

 

The structure of this thesis is outlined below: 

Chapter Title 

- Thesis Introduction 

1. Review of literature 

2. Comparison of soil chemical properties and nitrogen dynamics 
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between vegetable soils and paddy soils  

3. Effects of biochar addition on nitrogen retention in soils used 

for vegetable (pakchoi) production  

4. Effects of biochar addition on soil acidity in soil used for 

vegetable production 

5. Effects of biochar addition on vegetable (pakchoi) nitrogen 

uptake and recovery efficiency in vegetable production 

systems 

6 General conclusions 
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CHAPTER 1: REVIEW OF LITERATURE 

Abstract  

China has a limited area of cultivated land per capita and an increasing population, 

therefore maintaining a high crop yield is of great significance in order to meet the large food 

demand and to assure grain self-sufficiency. Therefore a primary goal of most farmers is to 

produce a high crop yield, and without adequate scientific advice they have always applied 

large amounts of nitrogen fertilizer to ensure sufficient mineral nitrogen in the soil for crop 

growth. Intensive cultivation is common in China, especially for the vegetable production 

system. The soil conditions under intensive cultivation was deteriorating even occurred 

degradation contributing to a reduction of farmland area. Therefore, the findings of nitrogen 

processes in vegetable soil from the existing studies needed to be reviewed and summarized 

for addressing the soil problems that restraining nitrogen retention in the vegetable production 

system. 

After summing up the main nitrogen processes of the vegetable production system, it was 

found that the nitrogen fertilizer applied during this process was usually 4-8 times higher than 

that of plant demand. Excessive nitrogen fertilizer application caused serious nitrogen leaching 

loss and soil acidity, which hampered sustainable production within this system. Nitrogen 

uptake by plants in the vegetable soil with these constraints was always 20%-40% of the 

nitrogen applied and the yield might be reduced easily by decreased the amount of nitrogen 

fertilizer. It is necessary to find an approach to mitigate nitrogen leaching loss and soil acidity 

in vegetable production systems and also promote nitrogen retention and vegetable nitrogen 

uptake for sustainable productivity.  

Biochar is a carbon-rich product derived from pyrolysis of organic material. It has been 

studied for its potential capacity to affect soil nitrogen content and soil nitrogen transformation 

processes such as mineralization and nitrification in the agricultural system. Biochar may be 

an option for mitigating soil acidity and nitrogen leaching problems in vegetable soil due to its 

alkalinity and adsorption properties.  
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There is sufficient agricultural residue which can serve as raw material for biochar 

production in China. Biochar production industries of different sizes are increasing by necessity 

in Chinese rural areas and biochar-based products (such as biochar-based fertilizer, biochar-

based amendments) are chosen as a priority in comparison to returning biochar to the fields 

directly. Large-scale addition of biochar is possible in China, which will assist in the 

agricultural residue returning to the field.  

However, studies in vegetable production systems are still lacking. Whether the positive 

effect found in short term experiments or incubation can be consistent or last long is unknown. 

It is necessary to carry out a study with continual growing seasons to verify and assess the 

effects of biochar addition on nitrogen retention and uptake by vegetables in intensive 

production systems in China. 

Key words: 

Vegetable production system, nitrogen fertilizer application, biochar addition, soil nitrogen 

content and transformation, vegetable uptake  
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1.1 Introduction 

National food security is a serious issue in China because of its large population and limited 

area of per capita cultivated land (Chen, 2007; Chen et al., 2013). High yields are expected 

from the limited cultivated fields to supply enough food for the large population. However, 

most Chinese farmers hold the traditional opinion ‘high fertilizer input, high yield gain’, 

resulting in a large nutrient flux in Chinese agricultural systems. Compared to conventional 

crops systems (such as paddy, wheat and maize), the vegetable production system is more 

intensive with a higher fertilizer input and more growing seasons in one year (Ju et al., 2009; 

Huang et al., 2006; Zhu et al., 2006). Excessive nitrogen fertilizer application is common in 

the vegetable production system, along with low nitrogen uptake efficiency (Huang et al., 2006; 

Ju et al., 2011; Zhu et al., 2005). Without fertilizer applied, soil mineral nitrogen is difficult to 

maintain and vegetable yield is likely to reduce by decreased nitrogen fertilizer application. In 

order to ensure sufficient mineral nitrogen in vegetable soil, farmers keep increasing fertilizer 

application, making soil conditions deteriorate. Cultivation of the fields may become 

unsuitable if soil degradation occurs (Shi et al., 2009; Zhang et al., 2005) and the Chinese 

government is trying to avoid a reduction in the availability of farmland (Chen, 2007). 

Therefore, it is critical to review the existing studies on soil nitrogen processes in vegetable 

soil in order to determine the major constraints of nitrogen retention in the soil and to find a 

feasible approach to address these problems in the vegetable production system. 

 

1.2 Conversion of field utilization patterns in China  

Utilization patterns of the fields are determined by food demand in the market. 

1.2.1 Food demand increases pressure on cultivated land 

Cultivated land is an irreplaceable and non-renewable resource that humans rely on to 

ensure a sufficient food supply and for survival. The Chinese population makes up 22% of the 

world's total population with less than 9% of the world's cultivated land (Chen, 2007; Chen et 
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al., 2013). A review of international literature shows that a decrease of cultivated land area is 

not only occurring in China, but also happening in other developing countries (Ramankutty et 

al., 2002). Countries in North America and Europe have a similar experience in terms of the 

loss of cultivated land during periods of economic development (Caradec et al., 1999; 

Ramankutty et al., 2002). Data from a Chinese investigation show that the reduced rate of 

cultivated land area in China is increasing rapidly. Since the economic structural changes in the 

late 1980s, urbanization and industrialization began to accelerate and large areas of cultivated 

land have been converted to non-agricultural usages such as industrialized or residential 

buildings (Chen, 2007). There were 0.2 million hectares of cultivated land converted to non-

agricultural usage annually during the period 1986-2000, and more than 1.5 million hectares 

annually after 2000 (Deng et al., 2006). However, food demand is still increasing with the large 

population, imposing a heavy burden on agricultural production. More gain is expected to be 

harvested per unit field. High yields and maintaining these high yields has become critical for 

ensuring national food security. 

1.2.2 Conventional crops field converts to vegetable field 

As people's standard of living has improved, the concern about food shortage has gradually 

changed into a demand for reasonable diets with an emphasis on vegetables and meat served 

with cereals. Vegetables have become a daily necessity as a dietary component and the price of 

vegetables have risen since the year 2000. Although the government has instituted policy 

measures to slow down the increasing costs, the price of vegetables continues to escalate due 

to market drivers (CCICED, 2004). Cultivation of vegetables can earn more than 8,000 USD/ 

ha per year in the east of China, while conventional crop farming earns approximately 3,000 

USD/ ha per year (conventional crops here mean those such as paddy, wheat and maize treated 

as staple food in the Chinese diet) (He et al., 2007). The field area used for vegetable planting 

was 20.4 million hectare in 2015, accounting for 12.5% of the Chinese total cultivated land 

area in that year compared to that in 2000, when the field area of vegetables increased by 33.6% 

and the planting rate increased by 27.8% (NBS, 2015) (Fig.1.1). The conversion of 
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conventional crop fields to vegetable fields in the Tailake region of China is more significant 

with an increase from 1% in 1981 to 18% in 2005 (Wang et al., 2008). This conversion will 

continue for several years because the demand for vegetables keeps growing with the pace of 

economic development in China. 

 

Fig. 1.1 Variation of cultivated land areas for conventional crops production and vegetable 

production from 1978 to 2015(NBS, 2015). 

Despite the conversion of field utilization patterns bringing more profit to Chinese farmers, 

many problems like acidification, salinization and degradation of the soil has arisen due to 

different nutrient demands (Yin et al., 2004; Zhang et al., 2005; Sun et al., 2006; Shi et al., 

2009). Compared to soil used for planting conventional crops, the nutrient content of soil for 

vegetable farming is significantly increased by the intensive cultivation practices (more 

fertilizer applied, more irrigation times and shorter growing seasons) (Jin et al., 2005b). Large 

amounts of nitrogen left in the soil and high nitrogen loss from leaching (Song et al., 2009; 

Min et al., 2011b; Luo et al., 2015) and ammonia volatilization (Fayun, 2005; Xi et al., 2010) 

are always features of a vegetable production system. Vegetable yields are difficult to maintain 

with the same nitrogen input every year, indicating that soil nitrogen supply declines with 

vegetable planting. If the application of nitrogen is not managed correctly, the soil will degrade 
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over a number of years and will therefore not be suitable for cultivation. 

1.3 Nitrogen processes in the vegetable production system 

Agricultural systems are affected by human activities. Farmers apply different materials 

and management methods to the planting of different crops, which changes the nitrogen 

processes after field utilization patterns conversion. Soil nitrogen processes affect both nitrogen 

uptake by the plant and nitrogen loss in the agricultural system. As Figure 1.2 shows, nitrogen 

in agricultural soil includes the processes of nitrogen input and output. Nitrogen fertilizer, 

deposition and mineralization processes are regarded as nitrogen input supplying mineral 

nitrogen for plant growing. Nitrogen output is consisted with nitrogen uptake by plant (crop 

harvest) and nitrogen loss. The major loss pathways in agricultural systems are leaching, 

ammonia volatilization and denitrification.  

 
Fig. 1.2 Nitrogen processes in agricultural system  
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1.3.1 Comparison of nitrogen input in a vegetable production system to that in a 

conventional crop system 

Nitrogen mineralization, fertilizer application and deposition are regarded as nitrogen 

inputs supplying mineral nitrogen for plant growing. 

1.3.1.1 Soil nitrogen mineralization and nitrification 

 Nitrogen in the soil is mostly organic nitrogen; only a small part of the soil nitrogen pool 

is mineral nitrogen. Almost all crops depend on mineral nitrogen supplementation; in other 

word, mineral nitrogen is the available form for crop uptake. Soil nitrogen mineralization is the 

most important nitrogen process, decomposing organic nitrogen into mineral forms that may 

be plant-available. Thus, soil nitrogen mineralization is regarded as the predominant nitrogen 

input process for the agricultural system.  

Essentially how much mineral nitrogen the soil can support for crop growth is determined 

by the nitrogen mineralization rate during the growing period. It is difficult to compare the real 

nitrogen mineralization rates in situ between vegetable production systems and conventional 

crops systems. Soil from vegetable fields seems to have a higher mineralization rate than that 

from conventional crops fields because fertilizer utilization efficiency in vegetable production 

system is lower than that in conventional crops systems (Zhu et al., 2005; Min et al., 2011b). 

As a result, nitrogen mineralization processes in a vegetable production system have to meet 

the vegetable nitrogen demand (Li et al., 2003).  

Soil properties can have an effect on the nitrogen mineralization rate. Firstly, the ratio of 

soil total carbon to total nitrogen (TC/TN) has a negative correlation with nitrogen 

mineralization rate (Sun et al., 2002). Most soil from vegetable fields has lower TC/TN than 

soil from conventional crop fields due to its high nitrogen inputs, inducing higher soil nitrogen 

mineralization rates. Secondly, although soil nitrogen mineralization is regarded as being 

insensitive to acidity, enhancement of nitrogen mineralization is commonly reported after 

liming of acid soils (Jin et al., 2005a). Acidification is one of the common soil problems 

occurring in vegetable soil. It implies that soil nitrogen mineralization rates in vegetable 
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production system may be reduced when soil becomes more acidic. Thirdly, soil nitrogen 

mineralization rate is also affected by soil moisture content. Soil nitrogen mineralization rate 

increases with soil moisture content increase till the 100% WFPS (Water-Filled Pore Space) in 

aerobic conditions (Jin et al., 2005a). However, anaerobic conditions will weaken and even 

restrain the soil nitrogen mineralization process. Negative nitrogen mineralization has even 

been found in paddy systems due to their flooded environment.  

The nitrification process alternately regulates mineral nitrogen forms from ammonium to 

nitrate and nitrite (trace amounts). Indeed, a high nitrification rate has often been considered as 

an index of soil fertility, because most crops (except paddy) are inclined to use nitrate as an 

accessible nitrogen source from soil (Haynes, 2012). Both soil chemical and physical properties 

have significant effects on the nitrification process when there is enough ammonium existing 

as substrate. It has been observed that nitrification has a positive relationship with soil pH, and 

stops when soil pH is less than 4.5 (Fan and Zhu, 2002). The soil moisture content is favorable 

for nitrification at 50 % - 60 % of WFPS (Water-Filled Pore Space) (Pihlatie et al., 2004; 

Bateman and Baggs, 2005).  

1.3.1.2 Nitrogen fertilizer application 

Fertilizer is the main source of nitrogen in the vegetable production system. Compared to 

the conventional crop system, 2-3 times greater amount of nitrogen fertilizers is applied as a 

nitrogen resource in order to ensure high yields in the vegetable production system in China 

and the amount of nitrogen application has been 4-8 times higher than that of plant demand 

(He et al., 2007). An investigation conducted in the north plains of China found that the average 

amount of nitrogen fertilizer is 1100-1500 kg N/ha in vegetable fields per year, whereas less 

than 500 kg N/ha was used in maize-wheat fields (Ma et al., 2000; Ju et al., 2009). Data from 

the Tailake region of China revealed that vegetable fields receive 900-1300 kg N /ha from 

nitrogen fertilizer, whereas paddy-wheat fields receive 400-600 kg N /ha (Huang et al., 2006; 

Zhu et al., 2006; Min et al., 2011b). Furthermore, organic manures are often applied randomly 

and most farmers do not consider organic manure as part of nitrogen fertilizer in vegetable 

fields (Huang et al., 2006; Ju et al., 2006). Nitrogen input from fertilizer in the vegetable 
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production system is 3-4 times higher than that in conventional crop systems (He et al., 2007). 

Despite the rate of nitrogen fertilizer application being varied due to different vegetable types 

and multiple cropping indices, excessive nitrogen fertilizer application is very common in 

intensive vegetable production systems in China. The amount of nitrogen fertilizers applied is 

usually much higher than the recommended amount in vegetable production systems (Zhu et 

al., 2006). 

When excessive nitrogen is applied in the vegetable production system, hydrogen ions, 

produced from the nitrogen nitrification process, gather in the soil profile and thereby increase 

soil acidity. The decline (0.7-1.96 unit) of soil pH values has been reported after the soil used 

to plant conventional crops was converted for planting vegetables (Yin et al., 2004; Zhang et 

al., 2005; Sun et al., 2006). If farmers are not given scientific advice they may apply more 

nitrogen fertilizer to maintain the yields in the following year, making soil acidity worse. 

1.3.1.3 Other input 

Irrigation water, wet deposition and seeds are also nitrogen inputs for the agricultural 

system. Nitrogen from wet deposition and seeds are very little in most condition of both 

vegetable production system and conventional crops system. However, contributions of 

irrigation water to nitrogen input are dependent. Compared to crops planted in dry fields, 

vegetables need a considerable amount of water for growing. Irrigation times and amounts of 

irrigated water used are more than for conventional crops planted in dry fields. An investigation 

conducted in the China north plain found that nitrogen from irrigation water input to the 

vegetable production system is 84 times higher than the input to the maize-wheat system; the 

nitrogen contribution from irrigation water represents over 10% of the nitrogen input in the 

vegetable production system, whereas the nitrogen contribution from irrigation water is less 

than 1% of the total nitrogen input in maize-wheat system (Ju et al., 2006). However, when 

compared to paddy planting in flooded conditions, results are very different. Studies in China’s 

Tailake region found that the nitrogen contributions of irrigation water are less than 1% and 3-

6% of the nitrogen input in the vegetable production system and paddy-wheat system, 

respectively (Min et al., 2011b; Xue et al., 2011). Not only the volume but also the nitrogen 
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concentration of the irrigation water determines the nitrogen contribution by irrigating. A 

nitrogen balance study carried out in Japan showed 30%-43% nitrogen contribution from 

irrigation water due to the high nitrogen content (4-12 mg/L) in underground water (Kyaw et 

al., 2005). Shallow groundwater used as an irrigation source in China’s north plain also has 

high nitrate concentrations resulting in a high nitrogen supply. Less nitrogen is taken into 

vegetable production system via irrigation in China’s Tailake region because river water is used 

instead of shallow groundwater. 

1.3.2 Comparison of nitrogen output in vegetable production systems with that in 

conventional crops system 

The process of nitrogen outputs can be used to determine the balance of nitrogen in the 

agricultural system and estimate whether the nitrogen input is adequate. There are three major 

aspects of nitrogen output in vegetable production system: nitrogen uptake by plants, nitrogen 

left in soil and nitrogen loss.  

1.3.2.1 Nitrogen uptake by plant  

The nitrogen uptake by the plant is considered as an effective part, calculated as uptake 

efficiency. Studies show that nitrogen unused by crops accounted for 41%-49% in the paddy-

wheat system (Zhao et al., 2009) and 45% in the maize-wheat system (Ju et al., 2006). The 

vegetable production system has a lower uptake efficiency than the conventional crop systems 

(Zhu et al., 2005) due to excessive fertilization (Li et al., 2003). Data in China’s Tailake region 

shows vegetables can take up 20%-40 % of the total nitrogen applied from fertilizer (Huang et 

al., 2006) and it falls to less than 10% in China’s north plain (Ju et al., 2011). 

 

1.3.2.2 Nitrogen left in soil  

Numerous studies have shown that yields do not increase significantly when the nitrogen 

fertilizer application rate exceeds a certain value, but the part of nitrogen left in soil increases 

sharply (Raun and Johnson, 1995; Bhogal et al., 2000). High nitrogen inputs and low plant 

uptake in the vegetable production system results in 4.5-5.2 times higher soil residual nitrogen 
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than that in conventional crop soil (Wang et al., 2002). Cao et al. (2008) evaluates that there is 

more than half of the nitrogen input from fertilizer temporarily left in the vegetable soil profile. 

Soil ammonia nitrogen content increased 21 times and nitrate nitrogen content increased 22 

times after soil planting patterns changed from paddy to vegetable (Yin et al., 2004). Nitrate 

nitrogen is the predominant residual nitrogen in soil, which is 5.9-6.2 times higher than 

ammonia nitrogen in vegetable soil (Wang et al., 2002). Most nitrate nitrogen is concentrated 

in the upper soil layer than in the rest of the profiles because of the nitrification of ammonium 

nitrogen and mineralization of organic matter occurring in the aerobic upper soil layer (Byrnes, 

1990). Remarked residual nitrate nitrogen occurred with content reaching 936 mg/kg in the top 

0.1 m of soil, and then the catch crop significantly reduces the average soil nitrate nitrogen to 

195 mg/kg during the fallow period (Shi et al., 2009). In addition, nitrate nitrogen in soil easily 

moves continuously downwards with the free flow of water in the soil profile as opposed to 

ammonium nitrogen. Ju et al. (2006) found the amount of residual nitrate nitrogen in the 0-90 

cm soil layer was 270-5038 kg N/ha in vegetable soil and 172-1452 kg N/ha in maize-wheat 

soil. The corresponding range of values in the 90-180 cm soil layer are 224-3273 kg N/ha in 

vegetable soil and 96-1993 kg N/ha in maize-wheat soil. The large amounts of residual nitrate 

nitrogen in the 90-180 cm soil layer indicates a substantial leaching potential of nitrate in the 

vegetable production system.  

1.3.2.3 Nitrogen loss 

Nitrogen loss is closely correlated with amounts of nitrogen application in the agricultural 

system. The rate of nitrogen loss in the vegetable production system can reach 52-75% (Li et 

al., 2003; Zhu et al., 2005) and the data of conventional crop systems depends on many 

practical factors. The nitrogen loss paths in two planting patterns are also quite different. 

Leaching, ammonia volatilization and denitrification are the main nitrogen loss pathways for 

both paddy and vegetable production systems.  

Paddy fields are more likely to have high ammonia volatilization loss induced by their 

flooded water. Many studies have reported that ammonia volatilization is the main nitrogen 

loss pathway in paddy fields (Cai, 1997; Wang et al., 2007; Xue et al., 2011; Xu et al., 2012), 
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accounting for up to 40% of the nitrogen input (Zhu and Chen, 2002). Additionally, it is also 

an important component of nitrogen loss in maize-wheat systems due to alkaline soil (Qian et 

al., 1997; Wang et al., 2004). A few studies have examined ammonia volatilization in vegetable 

production systems and found nitrogen loss from ammonia volatilization was relatively low 

(Liu et al., 2003; Xi et al., 2010; Min et al., 2011b). Soil planted with vegetables is usually 

more acidic than that planted with paddy. Ammonia volatilization could be remarkably 

restrained when the soil environment becomes acidified. The acidification trend may be used 

to explain the low rate of nitrogen loss via ammonia volatilization in vegetable production 

systems (Haruna Ahmed et al., 2008).  

Due to large soil residual nitrogen and frequent irrigation, vegetable production systems 

have a greater potential for nitrogen leaching compared to conventional crop systems 

(Thompson et al., 2007). For example, data from China’s Yili river catchment revealed that 

vegetable fields in that region contribute 18.8% of the total aquatic nitrogen load to agricultural 

non-point pollution with only 8.7% of total planting area (Luo et al., 2015). Previous studies 

showed that leaching is the primary nitrogen loss pathway in vegetable production system, 

accounting for over 70% of the total nitrogen loss (Min et al., 2011a). Min et al. (2011b) planted 

three vegetables successively and found the nitrogen loss via leaching was 9-17 kg N/ha, 84-

232 kg N/ha and 16-32 kg N/ha in tomato, cucumber and celery growing seasons, respectively. 

The considerable nitrogen loss via leaching ranging from 43-328 kg N/ha per year was also 

found in the maize-wheat system (Liu et al., 2003). Additionally, bases such as K+, Ca2+, Na+, 

Mg2+ get lost with nitrate nitrogen leaching, accelerating acidification in vegetable soil (Yin et 

al., 2004; Han et al., 2014).  

However, nitrogen loss via leaching in the paddy-wheat system is quite low, estimated at 

3-27 kg N/ha per year, accounting for 2% of nitrogen fertilizer application rates (Xing and Zhu, 

2000; Zhu et al., 2000; Zhu and Chen, 2002). 

Another possible pathway of nitrogen loss from vegetable production systems may be 

denitrification (He et al., 2007; Mei et al., 2009; Deng et al., 2012). More nitrogen loss may 

occur via denitrification from vegetable production systems than that lost from conventional 
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crop systems because of a high nitrogen fertilizer application rate, and proper aerobic 

conditions in vegetable production systems can provide major substrates for nitrous oxide 

production (Bouwman et al., 2002). Previous studies provide data that the loss rate of nitrous 

oxide emissions of the nitrogen input ranges from 0.3 to 4.9 % in rice-wheat systems (Zhu and 

Chen, 2002; Zou et al., 2005; Yao et al., 2009) and from 0.1 % to 11 % in vegetable production 

systems (Mei et al., 2009; Deng et al., 2012). Sometimes denitrification losses are negligible, 

and the variety of soil denitrification partly depends on changes in rainfall (Liu et al., 2003).  

 

1.4 Lack of concern for nitrogen processes in vegetable production systems 

 The lack of concern towards agricultural advice is always mentioned when foreign scholars 

and professors discuss excessive nitrogen fertilizer application in Chinese vegetable production 

systems. Indeed, inadequacy of nitrogen management has seriously affected soil health, 

creating a negative impact on sustainable agricultural development. Plenty of research focusing 

on soil nitrogen processes has been carried out, supported by government or public funds. 

However, three realistic problems pose a challenge to nitrogen reform in China. 

 Many small vegetable fields are located around individual farmers’ homes, making it 

difficult to institute mechanized production and regional scale management. Field 

management decisions, such as what to plant, when to till, how much and when to fertilize, 

are all decided by individual farmers (Fig. 1.3).  

 

  
 (a) Large conventional paddy field 

managed with agricultural 

(b) Small vegetable fields distributed 

around individual farmers’ houses 
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mechanization 

Fig. 1.3 Difference in size between conventional crop fields and vegetable production 

fields 

 

 Economic development has accelerated the urbanization process and, increasingly, young 

people born in villages move to the cities for a better education and profitable jobs, leaving 

the elders, who have a limited education, to farm. Most of these elders hold the outdated 

opinion that applying more fertilizer will reap higher yields. There are no standardized 

recommendations for fertilizer application in most agricultural areas in China, and 

individual farmers usually apply large amounts of nitrogen fertilizer in order to ensure high 

yields. 

 On the other hand, vegetable production expands rapidly, resulting in the appearance of 

large agribusiness companies. Large fields are rented for 3-5 years for vegetable 

production with the goal of making profits as soon as possible, with no attention being 

paid to soil health because they will leave and find another field when the soil condition is 

no longer suitable for planting. 

Perhaps some theoretical evidence from scientific research could be used to address the 

problems mentioned above. However, the best agricultural management will be useless if it is 

not incorporated into the processes that provide scientific advice to individual farmers and large 

agribusiness companies. The extension workers should provide advice based on the specific 

conditions of each field to ensure the suitability of the nitrogen management. Regulation of and 

policies pertaining to vegetable markets are also needed to avoid the overuse of vegetable fields 

by large agribusiness companies. 

 

1.5 Biochar addition changes nitrogen processes in cultivated system 

Biochar is defined as a carbon(C)-rich product derived from pyrolysis of organic material 

in the partial or total absence of oxygen at relatively low temperatures (Lehmann, 2009) (Fig. 
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1.4).The concept of biochar comes from Terra preta (black earth) of the Amazon basin, and is 

a type of dark, fertile anthropogenic soil with a high content of soil organic matter and other 

nutrients. Biochar contains condensed aromatic structures showing a high degree of chemical 

and microbial stability in the soil environment (Novak et al., 2009b; Kuzyakov et al., 2014). 

Thus, biochar could be used as a mechanism to sequester carbon as a tool for offsetting 

anthropogenic carbon dioxide emissions in the future (Lehmann et al., 2006). Woolf et al. 

(2010) assessed that implementing a sustainable biochar program globally could mitigate up to 

12% of current anthropogenic carbon dioxide emissions. Besides biochar’s potential to 

sequester fixed atmospheric carbon, its agronomic benefits have attracted interest in recent 

years (Lehmann, 2009; Spokas et al., 2012). The key physical property of most biochars is their 

highly porous structure, low density and large surface area with charged particles (Downie et 

al., 2009; Atkinson et al., 2010). This structure can influence the retention of important 

nutritive cations and anions (nitrogen and phosphorus) (Steiner et al., 2008; Dempster et al., 

2012b; Yao et al., 2012). It also can provide a special living space and resource for microbial 

growth (Lehmann et al., 2007; Kolb et al., 2009). Additionally, alkalinity is another important 

chemical property of most biochars that will influence the forms and transformations of soil 

elements (Lehmann et al., 2007). When added to soil, biochar will interact with the physical 

and biological components of the soil (Glaser et al., 2002; Steiner et al., 2008; Atkinson et al., 

2010), and create effects throughout the ecosystem. Although the effects vary depending on 

different soil types and biochar properties (determined by different raw material and pyrolysis 

methods), the addition of a new carbon source into the soil is bound to change nitrogen cycling 

in the soil. 
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Fig. 1.4 Different magnifications of biochar 

 

1.5.1 Effects of biochar addition on soil nitrogen content and transformations 

1.5.1.1 Adsorption  

Biochar’s porosity and the presence of both polar and nonpolar surface sites suggest it is 

possible to adsorb nutrients ions (Cao and Harris, 2010; Laird et al., 2010; Hale et al., 2013). 

In addition, biochar with a high TC/TN ratio has a greater potential for adsorption of nitrogen 

ions from soil to biochar inducing sustained higher nitrogen fertility in surface soils (Steiner et 

al., 2007). Many studies using biochar as a soil amendment to control nitrogen leaching loss 

showed that biochar can improve soil nitrogen retention by adsorbing ammonium, ammonia 

and nitrate nitrogen (Cao and Harris, 2010; Ding et al., 2010; Laird et al., 2010; Spokas et al., 

2012; Yao et al., 2012) and then still maintain bioavailability until subsequently utilized by the 

plant (Taghizadeh-Toosi et al., 2012). However, direct adsorption of ammonium and nitrate 

nitrogen biochar has not been extensively studied. Most data referred to here are calculated 

with the reductions of ammonium and nitrate nitrogen in leachate or solution. 

Some studies estimate biochar’s maximum adsorptive rate of ammonium nitrogen by 

kinetic models resulting in 0.85-3.24 mg N/g (Ding et al., 2010; Zhu et al., 2012). The 

maximum ammonium nitrogen adsorption from slurry at 1400 mg N/L can reach to 44.64 mg/g 

and 39.8 mg/g for wood and rice husk biochar (Kizito et al., 2015), which was attributed to the 

(a) Regular biochar                (b) SEM micrograph of wheat 
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adsorptive capacity of biochar’s superior BET surface area and presence of dissolved matter in 

the slurry (Saltalı et al., 2007). These results are much higher than those calculated in leaching 

experiments. Yao et al. (2012) examined biochar produced using different raw materials and 

pyrolysis temperatures and found biochar could remove ammonium nitrogen from solution 

with adsorptive rates ranging from 0.05 to 0.19 mg N/g and nitrate nitrogen with adsorptive 

rate ranging from 0.02 to 0.64 mg N/g. Dempster et al. (2012b) found that biochar would adsorb 

both ammonium nitrogen and nitrate nitrogen when added into an ammonium nitrate solution, 

with the adsorptive rate of ammonium nitrogen ranging from 0.02 to 0.25 mg N/g and the 

adsorptive rate of nitrate nitrogen ranging from 0.02 to 0.19 mg N/g. Compared to ammonium 

adsorption, nitrate adsorption of biochar has been reported to be insignificant in most 

studies(Lehmann et al., 2003; Jones et al., 2010; Hale et al., 2013). 

Adsorptive rates of ammonium nitrogen and nitrate nitrogen vary widely with biochar’s 

characteristics and the nitrogen contents of solutions, but there is a significant relationship that 

adsorptive rates of both ammonium nitrogen and nitrate nitrogen increase with increased 

nitrogen content of solution. Biochar produced using a high pyrolysis temperature has the 

potential for higher nitrate nitrogen absorption, because absorption of nitrate nitrogen is a result 

of base functional groups on biochar (Kameyama et al., 2012). Different from nitrate nitrogen, 

the reason generally given for the adsorption of ammonium nitrogen is cation exchange 

capacity (Cheng et al., 2008) and pore structures (Amonette and Joseph, 2009; Saleh et al., 

2012) of biochar.  

1.5.1.2 Mineralization, immobilization and nitrification  

Nitrogen mineralization and immobilization are transformation processes occurring at the 

same time and are affected by TC/TN ratios in both the soil and biochar. The result of these 

two transformation processes determines the mineral nitrogen content in soil. Typically as 

TC/TN ratio increases, nitrogen immobilization would be enhanced. With respect to the high 

TC/TN ratio in biochar, it may be speculated that nitrogen immobilization would be enhanced 

after biochar was added to soil. However, the effects of biochar addition on soil nitrogen are 

quite complicated. Various results have been reported that biochar addition increased nitrogen 
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mineralization (Castaldi et al., 2011; Bruun et al., 2012), decreased nitrogen mineralization 

(Dempster et al., 2012a), or had no effect on mineralization (Streubel et al., 2011). Two 

potential mechanisms presented below may be helpful to explain the effects of biochar on soil 

nitrogen mineralization. (1)The amount of labile carbon content in biochar may result in 

microbial-available soil nitrogen becoming immobilized (Bruun et al., 2012) and (2) the 

addition of biochar will stimulate soil nitrogen mineralization by mineralizing the nitrogen 

coming from a more recalcitrant fraction (Nelissen et al., 2012).  

Nitrification represents the oxidation of organic nitrogen (via heterotrophic organisms) or 

ammonium nitrogen to nitrate nitrogen by autotrophic bacteria and archaea (Leininger et al., 

2006; Jia and Conrad, 2009). Nitrification is the first and rate-limiting step in nitrogen cycling. 

Biochar addition to forest soils has been found to increase nitrification, whereas the effects in 

agricultural systems are inconsistent. Biochar was added to forest soils and it was found that 

promotion of soil nitrification was attributed to the alleviation of factors limiting nitrification 

by biochar addition instead of a result of limited substrate increasing (DeLuca et al., 2002; 

Berglund et al., 2004). A short-term increase in nitrification suggests that biochar can adsorb 

some organic compounds which inhibit nitrification or cause immobilization of ammonium 

nitrogen (DeLuca et al., 2006). The long-term effect of enhancing nitrification is found due to 

biochar addition after a forest fire, which has been ascribed to the promotion of soil conditions 

resulting in an increase in the abundance of ammonia-oxidizing bacteria (Ball et al., 2010).  

Different from forest soils, most soil in the agricultural system already contains high nitrate 

nitrogen and exhibits inherently high rates of nitrification before biochar addition. Some studies 

suggest that the content of ammonium nitrogen may be reduced by the absorption of biochar 

and thus the nitrification process may be affected because of limited substrate (Steiner et al., 

2007; Spokas et al., 2012). However, in contrast to this result it has been reported that a 

significant increase in nitrification rates with the addition of biochar and the increase in 

nitrification is attributed to a greater substrate for autotrophic nitrifying bacteria (Nelissen et 

al., 2012). Similarly, experiments using coastal alkaline soils show that biochar addition can 

enhance the abundance of both nitrifiers and alter the composition of ammonia oxidizers by 
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increasing the diversity of ammonia-oxidizing bacteria (Song et al., 2014). Improvement of 

nitrification may be partly explained by the change in soil chemical properties induced by 

biochar addition. Ulyett et al. (2014) found that biochar addition enhances nitrification with 

pH increase in the condition with nitrogen fertilizer application. 

1.5.2 Effects of biochar addition on plant growth 

Maintaining crop yields has a special meaning for China relating to its national stability 

and security. The possibility of negative impacts on crop yields caused by biochar would block 

the widespread promotion of biochar addition. However, crop yield is a result of the complex 

interaction between biochar and soil nutritive properties (Chan et al., 2008). Adding biochar to 

soils may produce effects on properties such as soil fertility, water retention or microbial 

activity (Atkinson et al., 2010; Lehmann et al., 2011; Spokas et al., 2012). In recent years, an 

increasing number of studies has highlighted concerns about the amending function of biochar 

(Chan et al., 2008; Novak et al., 2009a; Yao et al., 2012; Zhang et al., 2012). Benefits arising 

from biochar addition to degraded soil have been emphasized, however negative effects on 

crop yield have also been reported (Thomas et al., 2013). Spokas et al. (2012) reviews the 

inconsistent effects of biochar addition on agronomic yields and suggests that approximately 

50% of the compiled studies observed short-term positive yield or growth effects, 30% reported 

no significant differences and 20% noted negative yield or growth effects. Cranedroesch et al. 

(2013) sumarized the findings from 84 studies that the yield response increased over time since 

initial application, but characteristics of biochar (such as biochar pH, percentage carbon content, 

or temperature of pyrolysis) could be used as significant predictors of yield impacts. A meta-

analysis of 371 independent studies concluded that biochar addition to soils on average results 

in increased aboveground productivity, crop yield and total soil nitrogen, compared with 

control conditions (Biederman and Harpole, 2013). Negative yield impact was reported after 

biochar addition and attributed to the over-use of biochar in China (Cheng et al., 2016). The 

same retardation of quinoa growth was also found by Kammann et al. (2012) with a high 

biochar addition rate. It seemed that the short-term use of biochar was more possible to find 
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various effects on yield (Jay et al., 2015) and the reasons inducing negative plant effects have 

not been fully understood due to the lack of knowledge of biochar. However, it is more 

important to summarize the existing studies and find the potential reasons for the positive 

effects induced by biochar addition.  

To assess biochar’s role in improving nutrient supply in soils, the effect of biochar addition 

on soil nutrient retention and plant nutrient uptake should be noted especially (Sohi et al., 2010; 

Spokas et al., 2012). 

 Improvement of soil cation exchange capacity properties following biochar addition has 

been reported to have a close relationship to the reduction of nutrients leaching loss (Cheng 

et al., 2006; Novak et al., 2009a; Singh et al., 2010). Additionally, biochar can improve 

nutrition retention by increasing soil water-holding capacity (Lehmann et al., 2003; Laird 

et al., 2010) allowing more time for crop uptake.  

 Nutrient content in soil can be affected by biochar via two pathways: direct introduction, 

immobilization or adsorption and indirect regulation on transformation processes.  

 Direct introduction (bringing from the various raw material of the biochar production) 

(Hass et al., 2012), nitrogen immobilization (due to the high TC/TN ratios of biochar) 

(Rondon et al., 2007) and direct adsorption of soil nutrients (Steiner et al., 2008; Laird et 

al., 2010) mentioned in 1.3.1.1 changes the nutrient content in the soil. However, the 

nutrient content in the soil directly affected by biochar addition is slight and short-lived.  

 Indirect regulation through complex physiochemical reactions with soil particles play a 

dominant role in soil nutrient contents (Spokas et al., 2012). Analysis also demonstrates 

that biochar-induced changes of soil pH significantly affect crop productivity/ yield, and 

alkaline biochar seems to have a more pronounced and positive effect on crop productivity/ 

yield than acidic biochar (Biederman and Harpole, 2013). The improvement of soil mineral 

nutrient content induced by an increase in pH could be considered as one of the major 

reasons for this positive effect (Rondon et al., 2007; Steiner et al., 2008).  

Another way biochar may affect crop yield is through reducing the mobility of toxic 

elements. Liming of biochar decreases soil H+ content, changes the chemical valences of some 
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heavy metals (such as Al and Cd) and immobilizes organic contaminants in the soil, creating a 

more favorable soil environment for crop growth (Novak et al., 2009a; Hass et al., 2012). 

Delays in biochar-induced yield improvements have been reported, with a negative or no 

significant effect in the initial year followed by a yield increase in subsequent years (Gaskin et 

al., 2010; Major et al., 2010). Aging of the biochar is considered as an explanation to the 

alteration of biochar’s chemical property which changes the effects of biochar on yields (Cheng 

et al., 2006; Singh et al., 2010). 

1.5.3 Effects of biochar addition on nitrogen loss 

1.5.3.1 Nitrogen leaching 

Although biochar’s direct contribution to soil nitrogen content is small (Hass et al., 2012), 

a consensus that biochar addition can reduce nitrogen leaching loss when added with nitrogen 

fertilizer has almost been reached (Lehmann et al., 2003; Steiner et al., 2008; Ding et al., 2010; 

Major et al., 2010; Dempster et al., 2012b; Yao et al., 2012).  

However, the effects of biochar on nitrogen leaching loss is a result of the combination of 

physical, chemical, and biological processes (Laird et al., 2010), which leads to considerable 

variety in the reducing processes and the potential mechanisms due to different soil types.  

 Ammonium nitrogen 

A significant reduction of ammonium nitrogen leaching due to biochar addition has been 

confirmed by most studies (Lehmann et al., 2003; Ding et al., 2010; Singh et al., 2010; Kizito 

et al., 2015). The biochar-induced increase in cation exchange capacity (Liang et al., 2006; 

Cheng et al., 2008) could be partly responsible for the reduction of ammonium nitrogen 

leaching loss (Singh et al., 2010). Increasing the retention of water can also decrease nutrient 

movement and leaching (Major et al., 2010). Dempster et al. (2012b) found a significant 

decrease in ammonium nitrogen leaching by 20% following clay and biochar addition and this 

indicated an improved water-holding capacity resulting from the biochar addition playing a 

comparatively greater role in decreasing ammonium nitrogen leaching than ammonium 

nitrogen adsorption. Ding et al. (2010) found a similar result that a 0.5% biochar addition to 
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the surface soil layer retards the vertical movement of ammonium nitrogen into the deeper 

layers and thereby reduces ammonium nitrogen leaching loss by 15.2% to a depth of 20 cm. 

 Nitrate nitrogen 

There is no consensus about the effects of biochar addition on nitrate nitrogen leaching loss. 

Lehmann et al. (2003) and Kameyama et al. (2012) found no nitrate is adsorbed by biochar. 

Laird et al. (2010) found an increase of nitrate nitrogen leaching loss after incubation of 45 

weeks and attributed this promotion to enhanced mineralization of organic nitrogen stimulated 

by the high rate of biochar addition. However, other studies found significant decreases in 

nitrate nitrogen leaching loss following biochar addition (Dempster et al., 2012b; Yao et al., 

2012) ascribed to both sorption processes and an increased water-holding capacity. The high 

anion retention is likely to be due to the positive charge of biochar (Cheng et al., 2008). 

Alternatively, it may be due to the decrease in nitrification (Dempster et al., 2012a). It seems 

that the changes of nitrogen mineralization and nitrification by biochar addition will determine 

the trend of nitrate leaching loss. 

 Dissolved organic nitrogen 

Few studies have examined the effect of biochar on dissolved organic-nitrogen (DON) 

leaching. Dempster et al. (2012b) found that biochar had no effect on levels and argued that 

the dissolved organic nitrogen in leachate carrying a negative charge had a competitive relation 

to nitrate nitrogen for biochar adsorption. 

1.5.3.2 Nitrous oxide emissions 

Many studies have shown that biochar addition can mitigate nitrous oxide emissions from 

soil (Yanai et al., 2007; Steiner et al., 2010; Zhang et al., 2010), while a few studies find no 

difference (Scheer et al., 2011) or an increase (Clough et al., 2010) in nitrous oxide emissions 

due to biochar addition. The possible mechanisms influencing nitrous oxide emission or 

denitrification are proposed as follows: 

 Soil moisture can affect denitrification by regulating soil aeration (Case et al., 2012; 

Kammann et al., 2012) and a higher oxygen content induces denitrification inhibition. 

However, changes induced by biochar addition in soil moisture depend on both the type of 
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soil and biochar application rate (Van Zwieten et al., 2010a). 

 Biochar addition alters the amounts of mineral nitrogen content as a substrate for 

denitrification. A reduction in the soil mineral nitrogen content due to biochar’s adsorption 

and retention of ammonium nitrogen is always correlated with reduced nitrous oxide 

emissions (Singh et al., 2010; Steiner et al., 2010). Crop planting (assimilating nitrogen 

from soil) also creates competition with microbes for nitrogen utilization in the soil 

(Saarnio et al., 2013). On the contrary, promotion of nitrous oxide emissions is found when 

biochar increases mineral nitrogen content in soil (Clough et al., 2010). 

 Alkaline biochar increases soil pH and thus enhances nitrous oxide reductase activity 

(Yanai et al., 2007) that drives denitrification through to N2, resulting in the conversion of 

nitrite and nitrate to nitrous oxide (Van Zwieten et al., 2010b). 

However, most effects of biochar on nitrous oxide emissions are a result of short-term field 

studies and lab incubations. Results may be not persistent in the longer term with in situ 

experiments (Jones et al., 2012) due to the age of biochar (Liang et al., 2006) or other changes 

in soil nitrogen cycling. Because the effects on the physical properties of soil and microbes are 

lacking, it is difficult to assess and identify which mechanisms play more significant roles in 

nitrous oxide emissions. Therefore, long-term in situ experiments are needed to determine 

biochar’s role in mitigating N2O fluxes and its potential mechanisms. 

1.5.3.3 Ammonia volatilization 

Ammonia volatilization from agricultural soil was significantly related to the ammonium 

nitrogen content and the pH of the soil (Huijsmans et al., 2003; Xi et al., 2010). Since most 

biochar produced by pyrolysis is alkaline, soil pH will be affected following biochar addition 

(Yuan et al., 2011; Wu et al., 2012). Furthermore, the adsorption of biochar will decrease the 

ammonium nitrogen content in soil (mentioned in 1.3.1.1) (Ding et al., 2010; Kizito et al., 2015) 

and a direct adsorption of ammonia on biochar is also shown after exposure to ammonia gas 

resulting in an average 6.7 mg/g increase in the total nitrogen content of biochar (Taghizadeh-

Toosi et al., 2012). These interactional processes can influence the pH value and the 

ammonium/ammonia content in surface soil and thereby the final ammonia volatilization losses. 
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The rates of biochar addition also depend on the degree of the effect on ammonia volatilization 

induced by biochar. Feng et al. (2017) examined ammonia volatilization loss from paddy field 

with two additional rates of biochar and found that 3% biochar additions increased ammonia 

volatilization, and biochar added with 0.5% rate did not significantly increase the ammonia 

volatilization. A similar result was reported by Sun et al. (2017) who found no significant 

differences in ammonia volatilization loss when biochar was added at the rate of 0.5% and 1% 

to paddy soil, while a remarkable increase was detected when biochar was added at the rate of 

2% and 4%. The increased ammonia volatilization is attributed to increased pH of the soil and 

reduced nitrification processes induced by biochar application.  

However, the effects of biochar application on the ammonia volatilization in vegetable 

production systems have been neglected. Further studies on ammonia volatilization are still 

needed as data to assess the proper rate of biochar addition combined with consideration of the 

benefit of promoting yields and reducing nitrogen leaching (Zhang et al., 2012; Zhao et al., 

2014; Sun et al., 2017). 

 

1.6 Biochar in China: Status quo of research and trend of development 

1.6.1 Raw material 

Biochar has been very popular in research areas, but its effect on natural substance cycling 

is questionable for several reasons. One of the most important reasons is which raw materials 

should be used for biochar production. It is possible that forest may be demanded if hardwood 

is used as mainly raw material. This is the inevitable consideration in the process of 

marketization of biochar production. However, the answer to this question is clear in China, as 

agricultural residue (Fig. 1.5) will supply enough raw material for biochar production.  
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Fig. 1.5 Common agricultural residue can serve as raw material for biochar production in 

China 

 

For example, the straw production in China accounts for 20%-30% of the worldwide straw 

production (Wang et al., 2010). Chinese use straw as fodder for feeding livestock or as a 

building material from the ancient era. However, with the advance of agricultural 

modernization, most fodder and building material have been replaced by industrial production 

and therefore plenty of straw is left in the field. Data shows the annual straw produced from 

conventional crops (like maize, paddy and wheat) has reached up to 650 million tons in China, 

while less than 20% of straw is returned to field and the rest exceeding 50% is largely wasted 

(Li et al., 1998; Shi, 2011). The abandonment of straw brings serious non-point organic matter 

emissions and nutrient losses. If part of the wasted straw is used for producing biochar, carbon 

and nutrients can be returned into the agricultural system with biochar addition into soil. The 

pyrolysis process of biochar creates a link between agricultural residue and renewable 

resources, through the efficient utilization of agricultural residue.  

(a) Paddy straw               (b) Wheat straw             (c) Maize straw   

(d) Rice hull                     (e) Corn cob                 (f) Peanut shell 
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Furthermore, Chen et al. (2013) holds the view that not all of the agricultural residue 

should be used for biochar production in China. Some of agricultural residue has been 

effectively used for returning fields or compost. Only the agricultural residue that used to be 

treated as waste should be transferred to biochar for reuse. However, Meng et al. (2011) 

estimate that more than 30 million tons of biochar can be produced by using 20% of the straw 

in China. This amount of biochar (30 million tons) can be used as a carbon basis for processing 

fertilizer or other soil amendments, and then can be applied to the cultivated land with an area 

of up to 70 million ha. 

1.6.2 How to use 

1.6.2.1 Suitable fields 

Beneficial effects of biochar in terms of increased crop yield and improved soil quality 

have been widely reported (Glaser et al., 2002; Chan et al., 2008; Novak et al., 2009a; Yao et 

al., 2012; Zhang et al., 2012) and thus agricultural biochar production is rapidly developing in 

China (Meng and Chen, 2013). However, it is impossible that biochar can be applied to all 

cultivated fields. It means that farmers should be encouraged to add biochar to some special 

fields, where they can get more benefits from biochar addition. Fields with intensive production 

and fields with low fertility should be prioritized for biochar addition (Chen et al., 2013). 

Fields with intensive production always correspond with the soil having relatively high 

fertility. Vast crop biomass is harvested from intensive production systems every year. Massive 

amounts of nutrients are applied to ensure the nutrients supplying to crops growth. Plenty of 

nutrients, not utilized timely, are left in soil and then get lost. Soil nutrient retention reduces 

gradually and even soil fertility degrades with such large fluxes. Crop production from 

intensive fields plays a primary role in supplying food to meet the demand from the large 

Chinese population. It is critical to maintain sustainable development by recovering soil 

fertility of intensive fields. Biochar addition is helpful to improve nutrient retention in intensive 

planting and thereby creates benefits to stabilize yield and reduce loss.  

On the other hand, China uses 9% of the worlds cultivated fields to feed 22% of the world 
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population (Chen et al., 2013). The requirement of crop yields is high due to the low per capita 

cultivated area. However, the area of fields with low fertility accounts for 70% of total 

cultivated land in China (NBS, 2015), which has brought tremendous pressure on food supply. 

The main reasons for low fertility of Chinese agricultural soil are:  

 Poor soil physical condition. It is very difficult to preserve soil water when there is a high 

sand content and nutrients are inclined to be lost via leaching. Biochar addition can 

improve the hydraulic condition of sandy desert soil and increase crop yield by 22 Mg/ha 

(Laghari et al., 2015). However, Jeffery et al. (2015) reports a significant finding that the 

hydrophobicity of biochar can prevent water entering its internal pore structure resulting 

in no effect on sandy soil water retention. Jeffery et al. (2015) also points out that the 

hydrophobicity of biochar can be altered by improving the biochar production process. 

 Soil salinization is the accumulation of water-soluble salt in soil, usually along with 

intensive greenhouse agriculture, causing a deterioration or loss of soil function. Studies 

clearly show that biochar addition can mitigate negative effects of salt on plant growth by 

its strong adsorption (Thomas et al., 2013).  

 Soil pH value. Soil acidification is a common trend in Chinese intensive agricultural fields, 

while biochar is mostly neutral to basic. Thus, biochar is widely accepted as improving 

soil pH value or decreasing acidity. Meta-analysis results reveal that biochar addition can 

on average increase the soil pH value from 5.3 to 6.2 (Verheijen et al., 2010).  

 Soil heavy metal and organic pollution. Biochar has the potential to control contamination 

in situ. (Cao and Harris, 2010). It can be used as an additive for reducing the bioavailability 

and mobility of toxic trace metals (Beesley and Marmiroli, 2011; Uchimiya et al., 2011b), 

or used as a contaminant mitigation agent to control different soil organic pollutants 

(Beesley et al., 2010) in water and soil. The short-term effects of biochar on soil heavy 

metal mobility organic pollution are controlled by intraparticle diffusion and soil pH 

increase (Zhang et al., 2013). A recent study also provides evidence that the surface ligand 

and other function groups of biochar may make an effort to stabilize heavy metal (Cu, Ni, 

Cd and Pb) (Uchimiya et al., 2011a) or organic pollution in the long term (Zhang et al., 
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2013). 

In these low fertility soils, biochar is regard as a reliable soil amendment. It will be 

rewarding if there is an improvement in crop production with the addition of biochar and this 

can mitigate the negative constraints on soil fertility. 

1.6.2.2 Usage 

 Biochar, with its characteristics of small volume and light weight, is difficult to transport 

and add directly into soil. It is easy to get lost and produces serious dust (Meng and Chen, 2013) 

during transport. Additionally, much labor is needed to add biochar to soil because there is no 

special farm machinery for biochar addition in China. Most of the biochar remaining on the 

surface of the soil will be blown away by the wind and cause near-surface air pollution. Based 

on the existing agricultural facilities and measures, some studies recommend that biochar 

should be added into soil in the form of biochar-base products (Novak and Busscher, 2013). 

This usage mode avoids the need of special farm machinery and extra labor for biochar addition. 

For example, when the rate of biochar in biochar-based products accounts for approximately 

60% of the total weight, 0.5×103 kg/ha biochar is added into the soil with the application rate 

of biochar-based fertilizer or amendment at 0.8×103 kg/ha (Meng et al., 2011). With the 

increase in biochar addition times, the amount of biochar in soil is accumulating and its effects 

on soil properties and fertility gradually appears. 

 The specialized uses of biochar can further improve the economic prospects for biochar 

utilization (Novak and Busscher, 2013). Biochar can be impregnated with chemical fertilizers 

to serve as a slow-release fertilizer (Khan et al., 2008) and can also be blended with compost 

(Steiner et al., 2010), which increases biochar’s nutrient content (Cao and Harris, 2010). The 

alkalinity of biochar makes it possible to be a remediation tool for acid mine soils and biochar 

can also be used as a nutrient recovery agent due to its adsorption (Streubel et al., 2011). 

1.6.3 Biochar production patterns in China 

At present, in the Chinese biochar production industry there are two main patterns: 

centralized and distributed. Each of them develops according to the local agricultural 
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production pattern (individual farmers or large agribusiness companies) and transportation 

condition (convenient or not). Centralized biochar production industries are inclined to be built 

in some agricultural areas having large agribusiness companies which provide sufficient 

agricultural residues for biochar production. In addition, these areas are always accompanied 

by relatively complete agricultural production chains, decreasing the cost of labor and raw 

material transportation and promoting the development of centralized biochar production 

industries. 

However, in the other agricultural areas with individual farmers, it is hard to collect 

agricultural residue used as raw material for biochar production from small-sized fields. The 

agricultural residue such as straw decomposes easily due to environmental moisture. A novel 

production pattern is enabled. The suggestion is that small distributed biochar factories should 

be built nearby these agricultural fields (Chen et al., 2013). These small factories can offer 

initial biochar production by primary biochar production technology, which effectively cuts 

down the transportation cost of biochar production and utilization. Simultaneously, distributed 

biochar production could provide more work opportunities for local villagers that would further 

reduce labor costs.  

 

1.7 Conclusion 

Conversion of the fields cultivated pattern responses to the changes of dietary structure. 

More conventional crop fields have already been converted for planting vegetables to meet the 

increasing population demands, and the trend of land-use change will continue for several years. 

Compared to the conventional crop system, the vegetable production system is cultivated more 

intensively with much higher nutrient input, especially nitrogen. The amount of nitrogen 

fertilizer application is many times more than the amount of nitrogen uptake by vegetables in 

the Chinese vegetable production system. The excessive nitrogen application is causing high 

nitrogen leaching loss and also contributes to soil acidity. The yield of vegetables is difficult to 

maintain after soil degradation induced by excessive nitrogen application. Many studies find 
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that biochar addition can increase or maintain crop biomass/yield by improving the soil 

environment with promoted soil nitrogen retention and mitigated soil constraints. There are 

vast agricultural residue resources (like maize straw, wheat straw, paddy straw, corncob, rice 

hull etc.) that can serve as raw material for biochar production in China, and centralized and 

distributed biochar production industries are increasing based on practical conditions in some 

area. Biochar may be the appropriate amendment that can mitigate nitrogen leaching and soil 

acidity in China’s vegetable production system. At the same time, data on biochar’s effects on 

continual growing seasons in vegetable production system is still lacking. Thus, it is critical to 

conduct an experiment with several growing seasons to determine and evaluate the effects of 

biochar addition on the nitrogen retention and uptake by vegetables in intensive vegetable 

production systems in China. 
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CHAPTER 2: COMPARISON OF SOIL CHEMICAL PROPERTIES AND 

NITROGEN DYNAMICS BETWEEN VEGETABLE SOILS AND PADDY 

SOILS 

Abstract 

 The increasing demand for vegetables in China has led to intensive vegetable production 

and excessive use of inorganic nitrogen fertilizers. This has caused changes in soil chemical 

properties and a decline of soil fertility. In Southern China, many of the fields used to grow 

vegetables were previously under paddy production. The conversion of paddy fields to 

vegetable soils could have an effect on soil chemical properties and nutrient dynamics in 

relation to nitrogen availability. The objective of this study was to investigate changes in soil 

chemical properties and nutrient dynamics in vegetable fields after conversion from paddy 

fields.  

Topsoil (0-20cm) from typical vegetable fields (converted from paddy soil several years 

ago) and paddy soils from experimental sites were collected from China’s Tailake region. The 

soil samples were characterized to determine differences in the chemical properties between 

soils from the paddy fields and those previously used for paddy production and subsequently 

converted to vegetable production. An experiment was conducted in the absence of nitrogen 

fertilizer to determine the effect of field utilization conversion on soil nitrogen uptake by 

pakchoi and leaching loss. 

Results showed that soil pH values and organic matter content were lower in the vegetable 

soils compared with the paddy soils. Leaching loss was higher in three growing seasons from 

vegetable soils compared to that from paddy soils. Pakchoi uptake from vegetable soils was 

decreased during three growing seasons and lower than that from paddy soils in the 3rd season. 

The higher soil mineral nitrogen content might contribute more to the higher leaching loss. The 

lower nitrogen uptake from vegetable soils was attributed to lower soil pH value, lower soil 

organic matter and higher leaching loss. The potential of soil degradation in vegetable soils 

after conversion from paddy soils should be given more attention in further work.  
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2.1 Introduction 

Intensive vegetable production systems are very common in China (Ju et al., 2009; Liang 

et al., 2013). Maintaining a high vegetable crop yield per unit area is critical to meet the demand 

for vegetables from the large population. This is crucial because the land area available for 

vegetable cultivation is limited (Chen, 2007). Farmers often apply excessive chemical nitrogen 

fertilizer to maximize crop yields (Huang et al., 2006; Zhu et al., 2006; Ju et al., 2009; Min et 

al., 2011b). The large quantities of chemical nitrogen fertilizer applied can promote the amount 

of available nitrogen for immediate crop growth; however, it also causes remarkable changes 

in the soil nitrogen processes, resulting in decreased efficiency of nitrogen uptake (Li et al., 

2003; Zhu et al., 2005; Min et al., 2011a) and many negative environment effects, such as soil 

acidification (Ju et al., 2007; Shi et al., 2009; Guo et al., 2010; Liang et al., 2013; Han et al., 

2014), nutrient leaching loss (Song et al., 2009; Min et al., 2011a), and soil microbial 

community shifts (Zhang et al., 2008; Shen et al., 2010; Tian et al., 2011). After long-term 

application of chemical fertilizer, the changed soil processes lead to lower soil fertility and 

threaten future sustainable agriculture (Tilman et al., 2002; Chen, 2007; Ju et al., 2009; Shi et 

al., 2009).  

Many fields used for conventional crop (paddy, wheat and maize) production have been 

converted to vegetable production (pakchoi, cabbage, bean, kale, etc.) in recent years (Deng et 

al., 2006; Darilek et al., 2009; NBS, 2015). This trend is likely to continue for several years to 

meet the increasing demand of vegetable consumption. Compared with conventional crop 

production (such as paddy, wheat and maize), vegetable production often requires larger inputs 

of nutrients (especially nitrogen) and irrigation with more growing seasons (vegetable is grown 

three or five times in the same field per year). For example, paddy-wheat planting was always 

applied 500-600 kg/ha N in the Tailake region of China, while more than 800 kg/ha N was 

applied for vegetable planting (Jin et al., 2005; Huang et al., 2006; Shi et al., 2009). The soil 

properties (Zhang et al., 2005; She and Zhang, 2008; Han et al., 2014; Wang et al., 2014), soil 

microbial community (Lin et al., 2004; Shen et al., 2010) and of course soil nitrogen processes 

(Cao et al., 2004; Yin et al., 2004) are changed with the conversion of paddy fields to vegetable 
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production and excessive nitrogen fertilizer application. These investigations found that (1) soil 

ammonia nitrogen content increased 21 times and nitrate nitrogen content increased 22 times; 

(2) soil pH value declined 0.7-1.96 unit (Yin et al., 2004; Zhang et al., 2005; Sun et al., 2006). 

The increased soil mineral nitrogen content and soil acidity in the vegetable fields could pose 

challenges with respect to nitrogen losses occurring as a result of leaching (Cao et al., 2004; 

Min et al., 2011a) and contaminate surface and ground water bodies, thus causing more serious 

agricultural non-point pollution (Luo et al., 2015). The changes of soil nitrogen process in 

vegetable fields after conversion from paddy fields induced the negative effects mentioned 

above. 

Therefore, it is critical to understand the differences in soil nitrogen processes between 

paddy soils and vegetable soils (converted from paddy production fields) and find the best 

approach to improving vegetable soil fertility. Not many studies have focused on the 

comparison of nitrogen processes in fields used for vegetable production and those previously 

used for paddy production and recently converted to vegetable production. Furthermore, most 

studies on soil nitrogen processes of different agricultural soils were more concerned about 

various nitrogen application rates. In fact, the study conducted in the absence of fertilizer 

application can be more pronounced to represent the basic condition of soil nitrogen processes, 

but relative studies were relative scarce. 

Soil nitrogen processes include both nitrogen input and output processes. Nitrogen 

fertilization is the major ways in which the element is added into soil, except for biological 

nitrogen fixation and mineralization processes. Plant nitrogen uptake and nitrogen loss are the 

main methods of nitrogen output (Wen et al., 2017). Plant nitrogen uptake is also an important 

indicator of soil fertility. Several studies in the literature have reported that soil nitrogen losses 

through leaching contribute to more than half of nitrogen loss in vegetable soils (Min et al., 

2011a). Thus, plant nitrogen uptake and nitrogen losses through leaching can be used as 

indicators in the absence of nitrogen fertilizer application to describe the differences in soil 

nitrogen processes between paddy and vegetable soils.  

Considering that vegetable systems had no settled plant species and vegetable fields 
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applied with different amounts of nitrogen fertilizer, it is difficult to directly compare soil 

fertility by the data collected from different fields in different time. Therefore, in this study we 

conducted a laboratory experiment (paddy field and vegetable field were adjacent) with 

pakchoi planting on both paddy and vegetable soils, and paddy and vegetable soils were 

collected from adjacent fields. The comparison of the data from these soils described the 

varieties of (1) chemical properties in paddy and vegetable soils, and the differences in (2) 

nutrient dynamics including plant nitrogen uptake and nitrogen leaching loss in the absence of 

nitrogen fertilizer. Through this analysis, we wanted to determine the difference in soil 

chemical properties and nitrogen dynamics between vegetable soils and paddy soils.  

  

2.2 Sampling site background information 

 Paddy and vegetable soils were collected from the Tailake region in Jiangsu Province, 

China. The Tailake region is located in China’s major ancient agricultural regions due to its 

temperate climate and soil fertility. Paddy is the main conventional crop that has been cultivated 

for hundreds of years (Zheng, 2000) in this region. The Tailake region was famous for high 

paddy yields and surplus production from this region was transported to other areas of China 

in ancient times (Zhou, 2000).  

However, agricultural production has changed with economic development. A major 

proportion of the land area in the Tailake region is found in Jiangsu province, which is one of 

the most economically developed regions in China. Millions of young people from other 

provinces have been flocking into Jiangsu province and large areas of cultivated fields have 

been transformed into factory buildings and property construction, resulting in a reduction of 

available land for cultivation (Fig. 2.1 a) and greater pressure on agricultural production. To 

ensure the food supply, farmers in the Tailake region have increased the growing seasons and 

fertilizer application to produce a high crop grain yield per hectare per year. It has become one 

of the most intensive agricultural production regions in China, because both the multiple 

cropping indexes and the yield per hectare gain in this region have been placed at the highest 
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level in China (Fig. 2.1 b and c).  

 

       

(a) Cultivated field per capita (ha) (b) Multiple cropping index 

 
(c) Gain yield per hectare (kg) 

Fig. 2.1 Variation of area per capita, utilization intensity and productivity of cultivated 

field (NBS, 2015) 

 

Economic development has also changed the cultivated pattern in the Tailake region. 

Vegetables play an increasingly important role in Chinese people’s diet. Farmers are converting 

fields used for paddy production to vegetable cultivation to meet consumer demand. Vegetable 

cultivation has become the main agricultural activity due to its high profit. The area used for 

vegetable cultivation in the Tailake region has rapidly increased from 1% of the total cultivated 

field in 1981 to 18% in 2005 (Wang et al., 2008).  

The change in land use from growing conventional crops such as maize, wheat and rice 

to vegetable production is also occurring in Northern China, where farmers are planting 

vegetables in the fields previously used to plant maize and wheat. However, the main difference 

between paddy production and maize/wheat cultivation is that paddys are planted under 
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flooded anaerobic soil conditions, while maize /wheat are planted in dry land or irrigation 

environments, with aerobic soil conditions, similar to conditions for vegetable production. The 

effects on soil nitrogen processes are likely to be considerable when fields previously used for 

paddy production are converted into vegetable fields in the Tailake region rather than the 

conversion from maize /wheat field to vegetable production in Northern China. Furthermore, 

the average annual precipitation is more than 1,000 mm in the Tailake region, which is much 

higher than that in Northern China which is about 600 mm(He et al., 2007a), and the risk of 

nitrogen loss via leaching is much higher in the Tailake region. Therefore, soil collected from 

the Tailake region is more representative when comparing the differences of soil nitrogen 

processes between vegetable soils and conventional crop soils.  

 

2.3 MATERIALS AND METHODS 

2.3.1 Experimental site selection and description 

Three pairs of paddy-vegetable soils were collected (PS1-VS1, PS2-VS2 and PS3-VS3) 

from different cities in the Tailake region in Jiangsu Province (Fig 2.2 a). All soils are evolved 

from same pathway and classified as the same soil type. The vegetable fields where soil was 

sampled are alongside paddy fields (Fig 2.2 b) and were used for paddy cultivation for hundreds 

of years but have been converted to vegetable cultivation in the past 10 years. An investigation 

was carried out before sampling to study information from the crops planted in each field. The 

details are presented in Table 2.1. 
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(a) Sampling pairs in satellite photos (b) Picture of sampling place for pair 2 

Fig. 2.2 Locations of the three pairs (paddy soil & vegetable soil) of soil samples collected. VS 

means the place for sampling the vegetable soil. PS means the place for sampling the paddy 

soil. The number after VS and PS references the pair the soils belonged to. 

  

Tailake 

 

Paddy 

 

Vegetable 
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Table 2.1 Descriptions of the sampling at the experimental sites  

    Pair 1 Pair 2 Pair 3 
  PS1 VS1 PS2 VS2 PS3 VS3 
longitude and 
latitude 

31°31'35"N 
120°06'35"E 

31°17'18"N 
119°54'13"E 

31°24'28"N 
120°25'05"E 

Village  
Hudai town, 
Wuxi city 

Dingshu Town, 
Yixing city 

Wangting town, 
Suzhou city 

Climate Sub-tropical monsoon climate.  
Annual mean air temperatures are 15.5 ℃ in Hudai, 15.7 ℃ in 
Dingshu and 16.6 ℃ in Wangting. 
Annual mean rainfalls are 1068 mm in Hudai, 1177 mm in Dingshu 
and 1038 mm in Wangting. 

Soil type Gleyed paddy soil 
Evolved from lacustrine deposits 
Classified as Hydragric Anthrosols 
Surface soil layer : 0-20 cm 

Cultivated 
pattern (recent 
years) 

Fields of PS1 and PS2 are planted with the rotation of summer 
paddy (June-October) and winter wheat (November- following 
May). 
Fields of PS3 are planted with the rotation of summer paddy (June-
October) and rape (November- following May). 
Fields used for vegetable production of VS1, VS2 and VS3 are all 
planted with different vegetables rotations. The last year before soil 
was sampled, tomato, celery and lettuce were successively planted 
in VS1 field; pakchoi cabbage，tomato, cucumber and celery were 
successively planted in VS2 field; chilli, tomato and spinach were 
successively planted in VS3 field。 

Annual 
fertilizer 
application 
(kg/ha) 

N 500 1500 500 1000 500 900 
P 120 360 120 360 160 300 

K 150 450 90 450 90 400 

Duration >100 
years 

5 years 
>100 
years 

10 years 
>100 
years 

8 years 

 

2.3.2 Soil sampling  

Soil was sampled from the 3 experiment sites between June and July 2015. Each soil 

sample (20 kg) was collected from the top 0–20 cm by a combination of 10 pores for each field. 
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After thorough mixing, the soil was divided into two portions. One portion of the sample weight 

was used for testing the soil’s chemical properties. The other portion was air-dried and 

pulverized for the pot experiment. 

2.3.3 Pot experiment and plant sampling 

A pot experiment was carried out in the greenhouse at Jiangsu Agricultural Academy of 

Science (32°2'14"N, 118°51'58"N), Jiangsu, China. The greenhouse was maintained at a 

temperature between 15℃-30℃. Six soils from three paddy-vegetable pair fields were used 

for pakchoi (Brassica chinensis L.) planting. One pot was considered as an individual unit and 

each soil was used for planting with three replicates (in three respective pots). Each pot, 

measuring 28 cm in height, 15 cm in width and 10 cm in depth, was filled with 2 kg air-dried 

soil. Before the seed was sown, 85 mg P/kg and 120 mg K/kg chemical fertilizers were applied 

as base fertilizers to each pot at the beginning of each growing season. The seeds weighed 0.2 

g (about 50-60 seeds) and were sown into the soil of each pot. The germination time was 

calculated from planting date until more than 35 seeds had germinated (3-5 days after sowing). 

The water- holding capacities of six soil samples were examined before the pot experiment, 

and soil moisture in each pot was maintained at 60% water-holding capacity of each soil sample 

by irrigating twice a week during the whole period of experiment. The water added to each pot 

was determined by its soil moisture, tested by a soil moisture content analyser (Spectrum, USA). 

Pakchoi was harvested 35 days after germination time. After that, the soil in the pot was turned 

over and air-dried for 14 days. Then a new growing season began with the same process 

mentioned above. The experiment was conducted over three growing seasons without any 

nitrogen fertilizer application from the beginning of September 2015 until January 2016. The 

planting and management schedule is presented in Table 2.2. 
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Table 2.2 Dates of cultivation and management for the pot experiment 

Growing seasons Activity Date 
1st season Sowing and basal P,K fertilization 11 September, 2015 
 Germination 14 September, 2015 
 Four times over irrigation for 

simulating leaching 
20 September, 2015 
27 September, 2015 
4 October, 2015 
11 October, 2015 

 Harvest and air drying soil 18 October, 2015 
2nd season Sowing and basal P,K fertilization 27 October, 2015 
 Germination 30 October, 2015 
 Four times over irrigation for 

simulating leaching 
6 November, 2015 
13 November, 2015 
20 November, 2015 
27 November, 2015 

 Harvest and air drying soil 4 December, 2015 
3rd season Sowing and basal P,K fertilization 17 December, 2015 
 Germination 21 December, 2015 
 Four times over irrigation for 

simulating leaching 
28 December, 2015 
4 January, 2016 
11 January, 2016 
18 January, 2016 

 Harvest and air drying soil 25 January, 2016 

 

2.3.4 Simulation of leaching and leachate sampling 

The collection of leachates from the six soils was done by placing a tray under each pot 

to collect all the leachate flowing out from the three pores at the bottom of pots (Fig.2.3). 

Leachate from the six soils was collected via a tray placed under each pot, gathering the liquid 

flowing out of the three pores at the base of the pot. 

Increased irrigation was implemented four times (at the 7th, 14th, 21st and 28th days) in 

every growing season to simulate natural rainfall conditions in the glasshouse. The amount of 

deionized water was 1.05 L for every excessive irrigation (4.2 L every season) for each pot 

(equivalent to 25 mm precipitation per time and 100 mm precipitation in one growing season). 

Deionized water was added several times and in small quantities to avoid water flowing down 
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along the inner wall. The process of irrigation continued over a period of two hours and all 

leachate was collected from the trays 6 hours later.  

 

  
Fig. 2.3 Pot experiments leachate collecting 

 

2.4 Sample analysis 

2.4.1 Soil  

Soil samples collected from the three pairs were characterized by their chemical properties 

using the methods described below:  

Soil pH value was determined by using a sample of air-dried soil mixed with deionized 

water in a ratio of 1:2.5 (soil: water) and the pH value of the clear supernatant was measured 

using a pH electrode (Hach Corp., Italy). The determination of soil organic matter content 

(SOM) was calculated by multiplying the data of total organic carbon by 1.724. Total Organic 

Content (TOC) was measured using a TOC analyzer (Thermo Finnigan, Elk Grove Village, 

IL). Soil mineral nitrogen content (Mineral N) was calculated from the sum of ammonium and 

nitrate nitrogen. A fresh soil sample was extracted with 2 M KCl (soil: solution ratio was 1:10) 

for 1 h. The ammonium and nitrate concentrations of the extract were determined using a 

continuous-flow analyzer (Skalar Corp., Netherlands).  
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Soil available P: The air-dried soil sample was extracted with 0.5 M sodium bicarbonate 

(pH 8.5) and phosphate concentration of the extract was determined according to the method 

of Olsen (Olsen, 1954). 

Soil available K: The air-dried soil sample was extracted with 1 M ammonium acetate 

(soil:solution ratio was 1:10) for 1 h and K concentration of the extract was determined by 

flame-photometry. 

Soil total nitrogen content (Total N): The air-dried soil sample was used to determine Total 

N by the Kjeldahl method. 

Soil total phosphorus content (Total P): The air-dried soil sample was digested with 

potassium persulphate and 30% v/v sulphuric acid and phosphate concentration of the extract 

was measured using the acidic molybdate –ascorbic acid method (Zhou et al., 2001). 

Soil cation exchange capacity (CEC): The air-dried soil sample was used to determine the 

CEC using the ammonium acetate method (Sumner and Miller, 1996). 

2.4.2 Plant  

The pakchoi cabbage above ground was harvested on the 35th day of each growing season 

and sampled. Fresh pakchoi cabbage from each pot was respectively weighed and recorded as 

the yield. It was harvested and oven-dried at 70°C until it became a constant mass and then 

recorded as plant dry biomass. The dry biomass was then ground and filtered through a 0.149-

mm sieve for tissue nitrogen content analysis using an elemental analyzer (Thermo Finnigan, 

Elk Grove Village, IL). Plant nitrogen uptake by the plant was calculated using the following 

Equation 2.1: 

m (plant uptake)= m(plant)×w(tissue nitogen)                                                (Equation2.1)  

Where, m (plant uptake)= Nitrogen uptake by pakchoi in one season (mg/pot), m(plant)= the weight 

of plant dry biomass (g/pot) and w(tissue nitogen)= tissue nitrogen content (mg/g) 

2.4.3 Leaching  

 Leachate volumes were measured and recorded immediately after sampling from each 

pot. Each sample was filtered through a 0.45 lm membrane and the ammonium and nitrate 
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concentrations determined using a continuous-flow analyzer (Skalar Corp., Netherlands). The 

amount of nitrogen loss via leaching was calculated with the Equation 2.2 and 2.3: 

mn (leaching loss) =ρn (leachate nitrogen)×V n (leachate)                                     (Equation 2.2) 

Where, mn (leaching loss)= amount of nitrogen loss via leaching in n time (mg/pot), ρ(leachate nitrogen) 

=mineral nitrogen concentrations (ammonium concentration and nitrate concentration) of 

leachate in n time (mg/L), V(leachate) = volume of leachate in n time (L/pot) and n=1,2,3,4 means 

the data from 1st, 2nd, 3rd and 4th leaching in one growing season. 

m(leaching loss)=∑ 𝑚𝑚 4
𝑛𝑛=1 n (leaching loss)                                                   (Equation 

2.3) 

Where, m(leaching loss) = amount of nitrogen loss via leaching in one growing season (mg/pot). 

2.4.4 Nitrogen output 

Nitrogen output in this study was estimated by the sum of nitrogen uptake by pakchoi 

and nitrogen leaching loss with the Equation 2.4: 

m(output)= m (plant uptake)+m(leaching loss)                                                (Equation 2.4) 

Where, m (output) = Nitrogen output from one pot in one season (mg/pot). 

Yield scale nitrogen leaching loss was used to describe how much nitrogen will be lost 

via leaching for getting one gram yield of pakchoi growth. It was calculated with the ratio of 

nitrogen leaching loss to yield the Equation 2.5: 

Ratio(L/Y) = m(leaching loss) / Yield(plant)                                               (Equation 2.5) 

Where, Ratio(L/Y) = the ratio of nitrogen leaching loss to yield (mg/g), Yield(plant) = the pakchoi 

yield in one season (g/pot) 

2.4.5 Statistical analyses 

The mean and standard differences (presented in figures) of three replications were used 

to ascertain yield, nitrogen uptake by the plant, volumes of leachate, amount of nitrogen lost 

via leaching and total nitrogen output. A paired-T test was conducted to determine the 

significant difference between each pair of soils at the 5% level. Duncan multiple-range test 

was used to accomplish the significant differences in the value (of yield, nitrogen uptake, 
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leaching loss and total output) among three growing seasons at the 5% level (SPSS ver. 16.0 

for Windows, SPSS Inc., USA). 

 

2.5 Results 

2.5.1 Chemical properties of soils 

The soil pH, CEC, contents of organic matter (SOM), mineral nitrogen, available P, 

available K, total N and total P are the chemical properties offering good information of the 

soil fertility status, so these indicators were used to evaluate the soil environmental problems 

in this study. The main chemical properties of paddy and vegetable soils were measured 

immediately after sampling (Table 2.3). Average soil pH values were 6.61 and 5.81 for paddy 

and vegetable soils, respectively. Soil pH values of vegetable soils were significantly lower 

than paddy soils (P=0.013). Soil organic matter of paddy soils was on average 27.84 g/kg, 

which was significantly higher than 22.37 g/kg of vegetable soils (P=0.030). Soil mineral N of 

vegetable soils were significantly higher than paddy soils (P=0.036) with average soil mineral 

N of vegetable soils (94.57mg/kg) over 2 times higher than that in paddy soils (43.90mg/kg). 

Soil CEC of vegetable soils were marginally significantly lower than paddy soils (P=0.076). 

The other properties such as available P, available K, total N and total P did not differ 

significantly between paired paddy-vegetable soils (P>0.05). The corresponding average 

values for paddy and vegetable were 35.77 mg/kg and 94.87 mg/kg, 139.67 mg/kg and 140.63 

mg/kg, 1.85 g/kg and 1.35 g/kg 0.59 g/kg and 0.62 g/kg, respectively. 
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Table 2.3 Main chemical properties of the paddy soils and the vegetable soils 

  PS1 PS2 PS3 Mean(PS) VS1 VS2 VS3 Mean(VS) 

pH 6.99 6.20 6.65 6.61 6.09* 5.58* 5.76* 5.81 * 

SOM (g/kg) 31.90 24.80 26.80 27.83 28.30 17.90* 20.90* 22.37 * 

Mineral N (mg/kg) 37.40 53.20 41.10 43.90 87.20* 78.80* 117.70* 94.57 * 

Ammonium N (mg/kg) 2.10 7.60 3.70 4.47 4.10 6.30 8.00 6.03 

Nitrate N (mg/kg) 35.30 55.60 37.40 42.77 83.10 72.50 109.70 88.43* 

Available P (mg/kg) 37.90 48.90 20.50 35.77 187.00* 64.10 33.50 94.87 

Available K (mg/kg) 108.80 142.10 169.00 139.67 147.00 182.20 92.70* 140.63 

Total N (g/kg) 1.88 1.79 1.89 1.85 1.06 1.14 1.85 1.35 

Total P (g/kg) 0.61 0.62 0.55 0.59 0.56 0.60 0.69 0.62 

CEC(cmol/kg) 13.40 15.50 17.80 15.57 11.30 10.90* 11.20* 11.13 

Note: Data with the same color shading present the soils from the same pair. ‘*’ represents the significant differences of mean value between 

paddy and vegetable soils determined by paired-T test (P<0.05).
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2.5.2 Yield and nitrogen uptake by the vegetable plant 

Data was collected on pakchoi yields at the end of each growing season. The results 

showed a decreasing trend with respect to yield in the treatment without fertilizer application 

over the three continuous growing seasons (Fig. 2.4). The average yield of pakchoi was 20.39 

g/pot, 13.64 g/pot and 11.47 g/pot for the 1st, 2nd and 3rd growing season in vegetable soils, 

respectively (Fig. 2.4 d). The decrease of average pakchoi yield was significantly different 

between that in the 1st growing season and that in the2nd & 3rd growing seasons in vegetable 

soils. However, the yield of pakchoi in paddy soils remained unchanged over the three growing 

seasons with corresponding values of 16.31 g/pot, 16.66 g/pot and 16.13 g/pot. 

The yields of pakchoi between paddy and vegetable soils merely showed a significant 

difference in the 1st of pair-three soils (P=0.025, Fig. 2.4c) and 3rd seasons of pair-two soils 

(P=0.043, Fig. 2.4b). For the other growing seasons in different pairs, the yield of pakchoi 

between paddy and vegetable soils showed no significant difference (P >0.05). 

The results on the nitrogen uptake from vegetable soils showed significant decreasing 

trends in the three continuous growing seasons (Fig. 2.5). Average nitrogen uptake was 68.80 

g/pot, 41.77g/pot, 23.23g/pot for the 1st, 2nd and 3rd growing seasons, respectively (Fig. 2.5 d). 

The trend of nitrogen uptake by pakchoi in paddy soils showed a difference between the 

1st and 3rd seasons between different pairs. In pair 2, nitrogen uptake by pakchoi in paddy soils 

showed a decreasing trend, but in the other two pairs significant changes only occurred in the 

3rd growing season (Fig. 2.5 b). 
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(a) Pakchoi yield in pair-one soils (b) Pakchoi yield in pair-two soils 

 

(c) Pakchoi yield in pair-three soils (d) Average pakchoi yield 

Fig. 2.4 Pakchoi yields in three seasons. VS1= vegetable soil in pair 1; PS1= paddy soil in 

pair 1; VS2= vegetable soil in pair 2; PS2= paddy soil in pair 2; VS3= vegetable soil in pair 

3; PS3= paddy soil in pair 3. Bars represent the SD of the means (n = 3). ‘*’ represents the 

significant differences between paddy and vegetable soils in certain season determined by 

paired T test (P<0.05). SD in the same color with the same letters are not significantly 

different, determined by Duncan ’s multiple-range test (P<0.05). 

 

   

(a) Nitrogen uptake by pakchoi in pair 1 (b) Nitrogen uptake by pakchoi in pair 2 
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(c) Nitrogen uptake by pakchoi in pair 3 (d) Average nitrogen uptake by pakchoi 

Fig. 2.5 Nitrogen uptake by pakchoi plant in three seasons. Bars represent the SD of the means 

(n = 3). ‘*’ represents the significant differences between paddy and vegetable soils in certain 

season determined by paired T test (P<0.05). SD in the same color with the same letters are not 

significantly different, determined by Duncan ’s multiple-range test (P<0.05). 

 

The difference with regard to nitrogen uptake was significant between vegetable and 

paddy soils in the 1st growing season (P=0.031 in pair 1 and P=0.006 in pair 3) apart from the 

result for pair 2. In comparison to paddy soils, vegetable soils promoted nitrogen uptake by 

pakchoi by 72%-75% in pair 1 and pair 3. However, nitrogen uptake by pakchoi from vegetable 

soil was lower than that from paddy soil in the 3rd growing season although not significant 

(P>0.05). In the other growing seasons, the difference of nitrogen uptake by pakchoi between 

vegetable and paddy soils was not significant (P>0.05).  

2.5.3 Nitrogen leaching loss  

The excessive irrigation for stimulating leaching was precisely controlled at 4.2 L/pot 

every growing season. The leachate volumes in one season ranged between 0.83 and 1.41 L/pot 

from each pot, contributing 19.76%-33.57% of the total amount of water from over-irrigation 

(Fig. 2.6). The leachate volumes did not change much over the three growing seasons for both 

vegetable and paddy soils (Fig. 2.7). However, leachate volumes in vegetable soils were higher 

than in paddy soils, and differed significantly in the 1st season (P=0.02). Total leachate volume 

over the three seasons from vegetable soil averaged 19.80 % -21.00% and was higher than that 

from paddy soil (P=0.001 in pair 2 and P=0.033 in pair 3) in pair 2 and 3 (Fig. 2.6).  
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Fig. 2.6 Volumes of leachate in three seasons. Bars represent the SD of the means (n = 3). ‘*’ 

represents the significant differences between paddy and vegetable soils in certain pair 

determined by paired T- test (P<0.05). SD in the same color with the same letters are not 

significantly different, determined by Duncan’s multiple-range test (P <0.05). 

 

 

 

Fig. 2.7 Average volumes of leachate in vegetable and paddy soils. VS= vegetable soils; PS= 

paddy soils. Bars represent the SD of the means (n = 3). ‘*’ represents the significant 

differences between paddy and vegetable soils in certain season determined by paired T test 

(P<0.05). SD in the same color with the same letters are not significantly different, determined 

by Duncan ’s multiple-range test (P<0.05). 
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The volumes of leachate among three vegetable soils and three paddy soils were different. 

Generally, the volumes of leachate from pair 2 and pair 3 were higher than those from pair 1 

for both soils (Fig. 2.5). 

Mineral nitrogen concentrations in leachate were measured weekly at the same interval 

over the three growing seasons. The ammonium and nitrate nitrogen concentrations in the 

leachate ranged between 0.60-9.03 mg/L and 1.25-39.64 mg/L, respectively (Fig. 2.8). Nitrate 

nitrogen was the dominant form in the leachate, accounting for 55.24%-91.85% of the total 

mineral nitrogen concentration. Generally, the trends of both ammonium and nitrate nitrogen 

concentrations between vegetable and paddy soil were similar during the three seasons. The 

peak of both ammonium and nitrate nitrogen concentrations showed in 1st leachate 

measurement (1st week of 1st growing season). There were no significant differences (P < 0.05) 

between the vegetable and paddy fields with respect to ammonium nitrogen concentration in 

leachate. However, the nitrate nitrogen concentration in leachate from vegetable soils was 

much higher than that from paddy soils.  

The mineral nitrogen loss via leaching showed significant differences between vegetable 

and paddy soils. For all three pairs, leaching nitrogen loss from vegetable soil averaged 82.31% 

and was higher than that from paddy soil (Fig. 2.9). The differences of nitrogen loss between 

vegetable and paddy soil continued to dwindle from 15.25 mg/pot 1st growing season to 1.98 

mg/pot 3rd growing season. 
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Fig. 2.8 Mineral nitrogen concentrations in leachate. VS= vegetable soils; PS= paddy soils. 

There are four data in each season with interval every 7 days. Vertical lines represent the SD 

of the means (n = 3).  

 

Fig. 2.9 Mineral nitrogen loss from leaching. Bars represent the SD of the means (n = 3). ‘*’ 

represents the significant differences between paddy and vegetable soils in certain pair 

determined by paired T test (P<0.05). 

 

2.6 Discussion 

2.6.1 Changes in soil pH values, organic matter and mineral nitrogen contents between 

paddy and vegetable soils 

Soil pH values, organic matter and mineral nitrogen content were significantly affected 

by field utilization patterns conversion in this study (Table 2.3).  
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The increased content of mineral nitrogen in vegetable soils could be attributed to the high 

amounts of nitrogen fertilizer application before sampling from the vegetable fields. However, 

the data of mineral nitrogen content in vegetable soils in this study were 1.5-3 times of that in 

paddy soils, much lower than the data reported in other studies. Collection timing was one 

possible explanation for the lower mineral nitrogen content in vegetable soils. All vegetable 

soils used in this study were collected during June to July (rainy season) 2015 and more than 

two weeks from the previous vegetable growing season. It is well-known that mineral nitrogen 

in soil is very active and is easily transported with water to the deeper soil layers or is lost via 

volatilization in the fallow period. Similarly, Shi et al. (2009), Deng et al. (2006) and Yin et al. 

(2004) found the mineral nitrogen content in soil was more than 900 mg/kg after the vegetable 

harvest in the Tailake region. Moreover, it was speculated that plenty of mineral nitrogen got 

lost in the two weeks fallow period, which enhanced the differences between paddy and 

vegetable soils. 

In comparison to paddy soils, the significant decrease of pH value in vegetable soil was 

found in each pair. Although nitrification is one of the processes causing soil pH to decrease in 

all agricultural soils, most of the acidifying function of nitrification can be balanced out when 

the uptake of nitrate by plants could compensate the nitrate released by nitrification (Gijsman, 

1990; Shen et al., 2010). A previous study found an increase in soil pH values during the plant 

growing period due to nitrate uptake and assimilation by plants (Shi et al., 2009). However, 

nitrogen input from fertilizer was far beyond the demands of vegetable growth in vegetable 

production systems. It was speculated that the excessive hydrogen ion produced by nitrification 

would accelerate the process of acidification in the vegetable soil. In addition, the aerobic 

conditions of vegetable production systems promoted the nitrification process, while the 

flooded conditions in paddy field retarded it (Carreres et al., 2003; Ni et al., 2007). On the other 

hand, the part of mineral nitrogen not utilized by the vegetable plant increased the risk of 

leaching loss. Nitrate would be lost along with bases on the soil colloid, contributing to a 

relatively rapid decrease in soil pH. Furthermore, Huan et al. (2007) reported a high sulfate 

concentration in the vegetable soil during the mineralization of organic substances. 
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Nevertheless, in this study it was not possible to specify the contribution of each individual 

process to the decrease in soil pH. Soil pH value is widely accepted as a crucial factor regulating 

a range of soil nitrogen processes (Kemmitt et al., 2006; He et al., 2007b; Pietri and Brookes, 

2008; Shen et al., 2010) and affects other soil properties (Liang et al., 2006).  

It was really unexpected that the organic matter content in vegetable soils showed a 

significant decrease merely 5-10 years after field utilization was converted from paddy 

cultivation (Table 2.3), and the negative effect from vegetable cultivation on organic matter 

content seems to grow stronger over time. The major difference in organic matter content 

between the vegetable and paddy soils was found in pair 2, with vegetables having the longest 

cultivation time. It was acknowledged that the decomposing rate of organic matter was closely 

related to the aeration condition of the soil (Wang et al., 2014). There were more than three 

months per year that the soil planting paddy was in the anaerobic condition. The flooding 

inhibited the decomposition of organic matter in paddy soil and contributed to the accumulation 

of organic matter (Sheng et al., 2013; Wissing et al., 2013). However, the soil for vegetable 

cultivation was always under aerobic conditions and turned over (after every growing season) 

several times per year, both factors providing better conditions for organic matter 

decomposition (West and Post, 2002; Saha et al., 2011). On the other hand, the plant root 

residue was the direct organic matter added into soil. Compared to paddy, vegetable roots were 

shorter and fewer with lower root to shoot ratio (Bergqvist et al., 2014; Ju et al., 2015). 

Sometimes farmers uprooted the vegetable plant for harvesting and some vegetable roots were 

grown for food. Thus, the vegetable biomass left in the soil was very small. In addition, soil 

mineral nitrogen was a source for microbes as it was found that the high mineral nitrogen 

content may simulate microbial activity (Chen et al., 2014; Tian et al., 2015) and promote soil 

organic matter decomposition. 

The decrease in both soil pH value and organic matter content could be considered as an 

indication of soil fertility decline. Changes in the chemical properties of vegetable soils confirm 

that the current cultivated pattern within the vegetable production system is a threat to 

sustainable agricultural development in China. 
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2.6.2 Soil nitrogen output from the two fields  

In this study pakchoi uptake and leaching loss were the two chosen domain pathways to 

represent the nitrogen output. Nitrogen uptake by pakchoi was considered as an effective 

measure of nitrogen output while nitrogen leaching loss was considered unusable. 

With significant changes in pakchoi yield and nitrogen uptake, while no significant change 

of pakchoi yield was found in paddy soils (Fig. 2.4, Fig. 2.5). It was believed that high yield 

was contributed to the soil mineral nitrogen supply. Pakchoi assimilated less nitrogen from 

vegetable soils than from paddy soils in the 3rd season and much more mineral nitrogen was 

leached out from vegetable soils than from paddy soils during three seasons. It was implied the 

decreasing mineral nitrogen content caused by leaching could be the reason for lower yield in 

vegetable soils. It was indicated that although mineral nitrogen contents were higher in 

vegetable soil (Table 2.3), stable pakchoi yield was still difficult to maintain in the absence of 

nitrogen fertilizer. It might explain why farmers keep applying large amounts of nitrogen 

fertilizer every growing season to ensure the yield.  

The difference in soil nitrogen leaching loss was mainly determined by the mineral 

nitrogen content in soils between three soil pairs because no more nitrogen was applied in this 

experiment. As Table 2.3 shown, the significance of soil mineral content could be attributed to 

the difference in nitrate nitrogen content. In addition, nitrate nitrogen was the nitrogen form 

mineral assimilated by plant, the major left in soil profile and also the dominant form that 

mineral nitrogen loss via leaching (Fig. 2.8). It has been widely reported that an improper soil 

environment (Table 2.3, discussed in 2.6.1) was one factor weakening the effective nitrogen 

output from vegetable soils (Zhang et al., 2010; Fan et al., 2011; Shang et al., 2014).  

However, the total nitrogen output (the amount of nitrogen uptake by pakchoi and leaching 

loss) from vegetable soils was significantly higher than that from paddy soils (Fig. 2.10 a). It 

was demonstrated that the unusable nitrogen output from vegetable soil was higher than that 

from paddy soil. On the other hand, the significant difference between these two soils was only 

observed in the 1st season (Fig. 2.10 b), implying that the unusable nitrogen output could be 

reduced as long as fertilizer application was regulated.  
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(a) The total nitrogen output of three 

seasons in each pair 

(b) The average nitrogen output in 

each season 

Fig. 2.10 Nitrogen output. Bars represent the SD of the means (n = 3). ‘*’ represents the 

significant differences between paddy and vegetable soils in certain pair or season determined 

by paired T test (P<0.05). 

 

 Analyzing the yield and nitrogen leaching loss, it was interesting to find that more 

nitrogen was lost for pakchoi growth per gram yield from vegetable soils than from paddy 

soils (Fig. 2.11). This difference between vegetable and paddy soils was significant in the 1st 

and 2nd seasons. It suggests that high nitrogen leaching loss reduced the efficiency of nitrogen 

output in vegetable soils and the negative effect of leaching would weaken if the mineral 

nitrogen was limited. Therefore, leaching was another critical factor affecting nitrogen 

availability and uptake by pakchoi in vegetable production systems. 

  

  

(a) In three pairs (b) In three seasons 

Fig. 2.11 Yield-scale nitrogen leaching loss. Bars represent the SD of the means (n = 3). ‘*’ 

0

50

100

150

200

250

Pair 1 Pair 2 Pair 3

N
itr

og
en

 o
ut

pu
t 

vi
a 

pa
kc

ho
i 

up
ta

ke
 a

nd
 le

ac
hi

ng
   

(m
g/

po
t)

VS PS

* * *

0

20

40

60

80

100

120

1st season 2nd season 3rd season

N
itr

og
en

 o
ut

pu
t 

vi
a 

pa
kc

ho
i 

up
ta

ke
 a

nd
 le

ac
hi

ng
   

(m
g/

po
t)

VS PS

*

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pair 1 Pair 2 Pair 3

Yi
el

d-
sc

al
e 

ni
tr

og
en

 le
ac

hi
ng

 
lo

ss
   

(m
g/

g)

VS PS

*
* *

0.0

0.4

0.8

1.2

1.6

2.0

1st season 2nd season 3rd season

Yi
el

d-
sc

al
e 

ni
tr

og
en

 le
ac

hi
ng

 
lo

ss
   

(m
g/

g)

VS PS

*
*



 

71 

 

represents the significant differences between paddy and vegetable soils in certain pair or 

season determined by paired T test (P<0.05). 

 

2.7 Conclusion 

Vegetable production increased soil mineral nitrogen content and concurrently decreased 

soil pH value and organic matter content. These changes may reduce soil fertility and threaten 

the sustainable utilization of vegetable fields. The nitrogen output from vegetable soils was 

higher than that from paddy soils. However, the effective soil output for plant uptake was 

reduced and the unusable output via leaching loss was increased after the conversion from 

paddy to vegetable cultivation. Nitrogen output could be regulated by controlling fertilizer use 

in the short term. However, the low nitrogen efficiency of vegetable soil for supplying pakchoi 

growth was induced by both the improper soil environment and high nitrogen leaching loss. 

Consideration of soil chemical property problems and nitrogen processes in the vegetable 

production system are necessary, therefore a new approach should be a priority. 
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CHAPTER 3: EFFECTS OF BIOCHAR ADDITION ON NITROGEN 

RETENTION IN SOILS USED FOR VEGETABLE (PAKCHOI) PRODUCTION 

Abstract 

Low nitrogen retention and high leaching losses are major constraints limiting mineral 

nitrogen content in soils for uptake and use by vegetable plants during production. Vegetable 

farmers apply excessive amounts of fertilizer to replace the losses and application rates are very 

high in regions with heavy rainfall. It was hypothesized that biochar addition to soils used for 

vegetable production could improve nitrogen retention and reduce losses through leaching, thus 

making more nitrogen available for vegetable plant uptake.  

A pot experiment was conducted with soil collected from a vegetable field in the Tailake 

region. Three levels of biochar (0, 1% w/w, 5% w/w) were added into the soil in the no nitrogen 

and nitrogen conditions. The soil ammonium nitrogen content was increased due to biochar 

addition from 5.64 mg/kg to 12.47 mg/kg and 20.28 mg/kg to 34.54mg/kg in the no nitrogen 

and nitrogen conditions, respectively. It could be attributed to mineral nitrogen retention of 

biochar and enhanced soil nitrogen mineralization. Volume and nitrate concentration of 

leachate was significantly decreased in soils amended with biochar by 17%-58% and 6%-35%, 

respectively. Biochar addition could increase soil water retention capacity and residence time 

of nitrate nitrogen for pakchoi uptake. Our results also show that mineral nitrogen retained by 

biochar could be re-utilized by plants. The data suggest that biochar could be used as a potential 

soil amendment to improve soil nitrogen retention for vegetable production. Therefore, the 

nitrogen fertilizer application for maintaining vegetable yield may be reduced by biochar 

addition. Nonetheless, the correct additional rate of biochar addition needs to be further studied 

before large-scale application in vegetable production fields.  

Key words: 

Soil nitrogen retention, vegetable system, biochar addition, leaching, mineralization  
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3.1 Introduction  

Nitrogen is an indispensable nutrient element for crop growth and is found in soils mostly 

in organic forms. Just a small part of the soil nitrogen pool is in mineral form. Although most 

crops depend on mineral nitrogen supplementation as it is the available form for crop uptake, 

it is also active and easily lost from the soil environment by leaching and volatilization, and is 

removed with sediment. 

Compared to the production of conventional crops, maintaining optimum soil nitrogen 

quantities in vegetable fields is difficult due to the highly intensive and continuous cultivation 

commonly practiced during vegetable production (Min et al., 2011; Wang et al., 2014). 

Vegetable fields are usually plowed three to five times in one year after every harvest season 

(Huan et al., 2007; Shi et al., 2009; Qiu et al., 2010). Frequent cultivation destroys the soil 

aggregate structure and reduces soil nutrient retention (Qi et al., 2011; Yan et al., 2012; Wang 

et al., 2014). Nitrogen losses via leaching from vegetable soils can reach up to 50% of nitrogen 

fertilizer application rate (Zhao et al., 2010; Min et al., 2011; Yong-xia et al., 2015), while 

nitrogen loss via leaching from paddy fields, plowed twice a year, accounts for only 2% of total 

nitrogen loss (Xing and Zhu, 2000; Zhu and Chen, 2002). The risk of nitrogen losses through 

leaching is even higher in the Tailake region due to the higher annual precipitation (over 1,000 

mm).  

Vegetable production often requires a larger input of nitrogen and irrigation water (Shi et 

al., 2009; Qiu et al., 2010). Low nutrient retention capacity and high nitrogen leaching loss 

limits the soil mineral nitrogen content for vegetable plant uptake. Hence, vegetable farmers 

usually apply excessive nitrogen fertilizer into soils to meet the demand of vegetable nutrient 

requirements. Excessive nitrogen fertilizer application is not sustainable and cannot maintain 

high vegetable crop yields in the long-term. In addition, excessive nitrogen fertilizer 

application causes other environmental problems such as high nitrogen leaching (Camargo and 

Alonso, 2006; Ju et al., 2007; Shi et al., 2009), soil acidification (Kemmitt et al., 2006; Liang 

et al., 2013) and soil fertility decline (Ju et al., 2007; Darilek et al., 2009; Vitousek et al., 2009). 

In order to alleviate these problems and maintain high vegetable yields, it is necessary to 
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develop approaches (methods) to promote nitrogen retention in the soil and reduce nitrogen 

loss through leaching, in vegetable production fields. 

 Applying organic matter directly (Zhang et al., 2014) or reducing the chemical nitrogen 

fertilizer application (Agostini et al., 2010; Min et al., 2012) can meet this demand to some 

extent. However, restoring soil structure and aggregate properties is a complicated and slow 

process that requires a relatively long period (decades or even hundreds of years) (Diacono and 

Montemurro, 2010). In addition, nitrate nitrogen is the form of available nitrogen for most 

vegetable crops, and nitrate-N is also prone to leaching. Nitrogen losses via leaching can be 

decreased in the short term after reducing fertilizer application, but also may decrease yields if 

improperly managed (Ju et al., 2009; Min et al., 2012).  

 The addition of biochar into vegetable soils could offer an alternative for addressing the 

problems of poor nutrient retention and nitrogen loss through leaching by enhancing soil 

nitrogen retention capacity and decreasing leaching losses simultaneously (Steiner et al., 2008; 

Lehmann, 2009; Novak et al., 2009; Zheng et al., 2013). Biochar is a fine-grained and porous 

substance, similar to charcoal. However, unlike charcoal, biochar is produced through modern 

pyrolysis processes under oxygen-free or anoxic conditions at a relatively low temperature 

(450oC – 650oC) (Brown, 2009), from a wide range of biomass sources including woody 

materials and agricultural residues (Bird et al., 2011; Agrafioti et al., 2013). In recent years, 

biochar has received much attention with regard to optimizing production conditions (Sun et 

al., 2014) and raw materials (Zhao et al., 2013). Although biochar has a variety of physical-

chemical characterizations because of different manufacturing processes, it has the primary 

characteristic of high stability against decomposition (Lehmann et al., 2009; Kuzyakov et al., 

2014) and an excellent ability to absorb ions (Qiu et al., 2008; Gai et al., 2014) compared to 

other forms of soil organic matter. This is due to its greater surface area, negative surface charge, 

and charge density (Liang et al., 2006; Lehmann, 2007). Biochar could serve as a type of soil 

amendment in agricultural systems to increase crop yield by regulating nitrogen processes 

(Major et al., 2009; Clough and Condron, 2010; Singh et al., 2010; Steiner et al., 2010; Zhang 

et al., 2010; Dempster et al., 2012a; Zheng et al., 2013) and ameliorating the soil environment 
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(Novak et al., 2009; Zhang et al., 2010). Studies on the effect of biochar addition on soil 

nitrogen leaching found that ammonium concentration of leachate decreased and this was 

attributed to adsorption by biochar (Major et al., 2009; Laird et al., 2010; Hale et al., 2013). 

Furthermore, other studies also reported that biochar provided a fine water- retaining capacity 

(Spokas et al., 2012; Bruun et al., 2014; Ulyett et al., 2014). 

 According to previous studies, biochar may be a potential soil amendment for improving 

nitrogen retention in vegetable production systems. Nitrogen is lost mainly through leaching in 

the form of nitrate nitrogen (Min et al., 2011). However, the effects of biochar on nitrate 

nitrogen of leachate are inconsistent (Ding et al., 2010; Laird et al., 2010; Dempster et al., 

2012b; Yao et al., 2012; Hale et al., 2013). The effect of biochar addition on leachate volume 

has been ignored to some extent. It is still unknown whether the mineral nitrogen retained by 

biochar can be re-used by plants. The data on biochar addition to soils used for vegetable 

production under intensive cultivation systems, with excessive nitrogen application rates, has 

not been well documented. Therefore, there is an urgency to study the effect of biochar addition 

on soils used for vegetable production under intensive cultivation systems and to determine the 

effect on nitrogen retention (including soil mineral nitrogen content, the bioavailability of 

retained mineral nitrogen by biochar and nitrogen losses occurring as a result of leaching) in 

vegetable fields.  

 The objectives of this study were (1) to investigate the effect of biochar on soil mineral 

nitrogen retention, (2) to determine the bioavailability of mineral nitrogen retained by biochar, 

(3) to investigate the effect of biochar addition on nitrogen leaching loss. 

 

3.2 Materials and methods 

3.2.1 Soil description 

Soil used for the pot experiment in this study was collected from a vegetable field (31°17'N, 

119°54'E) in Yixing City, Jiangsu Province, China. This vegetable field was located in the 

Tailake region, with a subtropical monsoon climate, with an average annual temperature and 
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rainfall of 15.7 ℃ and 1,177 mm, respectively.  

This vegetable field has been under paddy production for hundreds of years before being 

converted to vegetable production in the past 10 years. In Tailake Region, vegetables are 

usually planted 3-4 times (seasons) in a year. Urea and compound fertilizer are commonly 

applied to supply nitrogen at the rate of 900 -1300 kg/ha per year (Zhu and Chen, 2002; Huang 

et al., 2006; Min et al., 2011). The soil is an Hydragric Anthrosols evolved from lacustrine 

deposits, with a pH (H2O) of 5.56; an organic matter (SOM) content of 18.2 g/kg; total N (TN) 

and phosphorus (TP) contents of 1.21and 0.62 g/kg, respectively; and mineral N, available 

phosphorus and potassium contents of 64.77, 73.0 and 152.3 mg/kg, respectively. 

3.2.2 Planting material  

Pakchoi (Brassica chinensis L.) is a type of Chinese cabbage, popular in southern China 

and Southeast Asia. The typical growing period for pakchoi is 20-35 days in a moderate climate 

(around 25 °C), and relatively prolonged to 40-50 days in cold weather (below 10 °C). Due to 

one month growth cycle, pakchoi can ensure market supply and also requires a lot of nitrogen 

input. The nitrogen applied on vegetable fields for the production of pakchoi planting is nearly 

200 kg/ha every season (Yuan et al., 2010) in the Tailake region.  

3.2.3 Biochar characterization 

Biochar used in this study was produced from wheat straw using a biogas-energy slow 

pyrolysis system. The reactor was heated via a step-wise procedure under oxygen-limited 

conditions. The temperature was increased to 450 °C at a rate of 5 °C per minute and was then 

maintained for over 5 hours until no visible smoke was emitted from the gas vent. The biochar 

properties in this study are as follows: total nitrogen (TN) and total carbon (TC) contents were 

12.5 and 503.1 g kg-1, respectively; ammonium and nitrate nitrogen contents were 1.8 and 3.0 

mg kg-1, respectively; pH 8.9; and BET 7.4 m2 g-1. The biochar was milled to pass through a 

0.25-mm sieve prior to experimental application. 

3.2.4 Pot experiment 

The pot experiment was carried out in the greenhouse at the Jiangsu Agricultural 

Academy of Sciences, with the temperature maintained between 25°C -35°C (The 
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temperature outside ranged from 15°C -40°C during this period.). Two hundred and fifty 

kilograms of soil were sampled from the 0-20 cm profile depth from a vegetable field 

(described in 3.2.1) two months after the harvesting of a celery crop. The collected soil was 

air-dried and 2 kg was used to fill pots with the following dimensions: 28 cm in height, 15 cm 

in width and 10 cm in depth. One pot was considered as an individual unit for sampling, 

harvesting and data analysis. The vegetable pakchoi was planted for four growing seasons 

beginning in April 2016 until November 2016. 

The experiment comprised three biochar addition levels (0, 1% w/w, 5% w/w) in the two 

nitrogen conditions (no nitrogen and nitrogen). The details of treatment are presented in Table 

3.1. The replicates for six treatments were different because of sampling requirements (Table 

3.1).  

 

Table 3.1 Treatments and their replicates in pot experiment with four growing seasons 
Treatments Rates of biochar addition  

(% w/w) 

Rates of nitrogen fertilizer 

application (mg N/kg soil) 

CK 0 0 

1%BC 1 0 

5%BC 5 0 

CKU 0 100 

U1%BC 1 100 

U5%BC 5 100 

Replicates: 

CK and CKU maintained 3 replicates (pots) for four seasons. 

1%BC, 5%BC, U1%BC and U5%BC had 12 replicates for 1st season, 9 

replicates for 2nd season, 6 replicates for 3rd season and 3 replicates for 4th season. The 

cost of each treatment is 3 replicates for biochar sampling. 

 

Experiment implemented with the process of growing season presented in Fig. 3.1. 
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Fig. 3.1 Process of one growing season (nitrogen fertilizer only applied in 1st to 3rd 

growing seasons) 

 
Biochar was weighted as the additional rate for each pot (20 g biochar for each pot of 1%BC 

and U1%BC treatments and 100 g biochar for each pot of 5%BC and U5%BC treatments). 

Three grams of biochar was separated, divided into three equal parts and then packed into three 

non-woven bags (1g/bag) which allowed water, nutrients and microbes, but not soil or biochar 

particles, to pass through. The rest of the biochar (17 g biochar for 1%BC and U1%BC 

treatments and 97 g biochar for 5%BC and U5%BC treatments) was mixed through with 2 kg 

air-dried soil (Fig. 3.2). All of the packs were buried 3 cm below surface soil at the beginning 

of pot experiment.  

 

Fig. 3.2 Method for biochar addition 

 

Soil and biochar were left standing for 10 days in a state of steady soil microbial activity 

with moisture being maintained by irrigation.  
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After that, 85 mg P/kg and 120 mg K/kg chemical fertilizers were applied as base fertilizers 

and 0.2 g (about 50-60 seeds) seeds were sown into each pot containing soil (P, K fertilizer 

application repeated every growing season). The germination time was calculated from 

planting date until more than 35 seeds had germinated (3-5 days after sowing).  
15N-labeled urea with 10 atom% 15N excess was used as the nitrogen chemical fertilizer. 

During 1st – 3rd seasons, 100 mg N/kg was applied into the pots of CKU, U1%BC and U5%BC 

treatments at the 14th day every season but no more nitrogen fertilizer was applied to any 

treatment in the 4th season.  

Soil moisture was maintained at 28% (60% of the maximum water holding capacity) by 

irrigating with deionized water every two days. The amount of water for irrigation was 

determined by the data from the soil moisture analyser (TZS-II, Tuopu Instrument Co.).    

Pakchoi was harvested on the 35th day, and another growing season began after pre-

treatment. 

3.2.5 Simulation of leaching 

Trays were placed under each pot to collect all the leachate flowing from the three pores 

at the base of the pots (Fig. 2.3). Since there was no natural rainfall in the greenhouse, excess 

irrigations were implemented four times (on the 7th, 14th, 21st and 28th days) during every 

growing season. An amount of 1.05 L deionized water was added for every irrigation event (4.2 

L every season) to each pot (equivalent to 25 mm precipitation per event and 100 mm 

precipitation in one growing season). Deionized water was added frequently in small quantities 

to avoid water flowing down along the inner wall. The process of irrigation was carried out 

over two hours.  

3.2.6 Sampling 

3.2.6.1 Soil sampling 

One composite soil sample was collected from each pot by mixing four soil cores after the 

pakchoi harvest in each growing season. The soil samples were air dried and then divided into 

two subsamples. One subsample was passed through a 2-mm sieve to remove large organic 

debris and then stored in plastic bags at 4 °C for subsequent determination of soil pH (data 

presented in Chapter 4), mineral nitrogen (ammonium and nitrate nitrogen) content, soil 
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nitrogen mineralization and nitrification rates. The other subsample was oven dried at 105 °C 

to a constant mass and then ground to pass through a 0.149-mm sieve; this subsample was 

analyzed for soil organic matter content and bases content (data presented in Chapter 4) 

3.2.6.2 Biochar sampling 

Biochar was sampled from 1%BC, 5%BC, U1%BC and U5%BC treatments by taking back 

the 3 buried non-woven bags after the pakchoi harvest. Three pots in each of these treatments 

would be used for biochar sampling every season and cannot be used for pakchoi planting for 

the next season. That is the reason for the decrease in pot replicates in these treatments (Table 

3.1). The biochar in the 3 non-woven bags was taken out and stored in plastic bags at 4 °C for 

subsequent determination of mineral nitrogen (ammonium and nitrate nitrogen) content. 

3.2.6.3 Leachate sampling 

Leachate was collected 6 hours after each excess irrigation event from the tray under each 

pot.  

 

3.3 Sample analysis 

The soil and leachate samples were collected from every pot with pakchoi in a specific 

season. Due to the decrease in replicates of biochar relative treatments (1%BC, 5%BC, 

U1%BC and U5%BC treatments), the number of soil and leachate samples changed with 

deceasing replicates. The mean value (and SD) of data from soil and leachate analysis was 

calculated based on all the samples collected in a specific season. However, biochar analysis 

was always based on the samples from the 3 replicates. 

3.3.1 Soil and biochar 

Mineral nitrogen in the soil or mineral nitrogen retained by biochar was extracted using a 

2 M KCl solution at a ratio of sample and solution=1:10, followed by shaking for 1 hour on the 

reciprocating shaker, and then filtering the extract. The extract was analyzed using an auto 
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analyser (Traacs 800, Bran & Luebbe, Hamburg) to determine the mineral nitrogen content in 

soils and the mineral nitrogen retained by biochar. 

The amount of the mineral nitrogen retained by biochar per kilogram soil was calculated 

using the following Equation 3.1, 3.2 and 3.3: 

w(AN on BC)= w(BC AN) × r                                                               (Equation 3.1) 

Where, w(AN on BC)=ammonium nitrogen retained by biochar per kilogram soil (mg/kg), w(BC AN) 

= ammonium nitrogen content per kilogram biochar(mg/kg), r =biochar additional rate (1% 

w/w and 5%w/w in this study)  

w(NN on BC)= w(BC NN) × r                                                               (Equation 3.2) 

Where, w(NN on BC)=nitrate nitrogen retained by biochar per kilogram soil (mg/kg), w(BC NN) = 

nitrate nitrogen content per kilogram biochar(mg/kg)  

w(MN on BC)= w(AN on BC)+ w(NN on BC)                                                  (Equation 3.3) 

Where, w(MN on BC)=mineral nitrogen retained by biochar per kilogram soil (mg/kg) 

The percentages of the mineral nitrogen retained by biochar to the mineral nitrogen in soil 

were calculated with the Equation 3.4, 3.5 and 3.6: 

PA(BC to soil)= w(AN on BC)/w(AN in S)                                                     (Equation 3.4) 

Where, PA(BC to soil) =the percentages of ammonium nitrogen from biochar, w(AN in S) =the 

ammonium nitrogen content in soil 

PN(BC to soil)= w(NN on BC)/w(NN in S)                                                   (Equation 3.5) 

Where, PN(BC to soil) =the percentages of nitrate nitrogen from biochar, w(NN in S) =the nitrate 

nitrogen content in soil 

PM(BC to soil)= w(MN on BC)/w(MN in S)                                           (Equation 3.6) 

Where, PM(BC to soil) =the percentages of mineral nitrogen from biochar, w(MN in S) =the mineral 

nitrogen content in soil 

Soil nitrogen mineralization and nitrification were determined by the incubation over a 35-

day period at 30°C. Nitrogen mineralization rates were calculated as the difference between 

final and initial soil mineral nitrogen content divided by 35 days (Stanford and Smith, 1972). 
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Nitrification rates were calculated as the difference in soil nitrate nitrogen content divided by 

the number of incubating days (Drury et al., 2008). 

3.3.2 Leachate 

 Leachate volumes were measured and recorded immediately after sampling from each 

pot. For the ammonium and nitrate analysis, every leachate sample was filtered through 0.45 

lm membranes respectively and the ammonium and nitrate concentrations were determined 

using a continuous-flow analyzer (Skalar Corp., Netherlands). The amount of nitrogen lost via 

leaching was calculated with the Equation 3.7 and 3.8: 

mn (leaching loss) =ρn (leachate N)×V n (leachate)                                          (Equation 3.7) 

Where, mn (leaching loss)= amount of nitrogen loss via leaching in n time (mg/pot), ρ(leachate N) 

=mineral nitrogen concentrations (ammonium concentration and nitrate concentration) of 

leachate in n time (mg/L), V(leachate) = volume of leachate in n time (L/pot) and n=1,2,3,4 means 

the data from 1st, 2nd, 3rd and 4th leaching in one growing season. 

m(leaching loss)=∑ 𝑚𝑚 4
𝑛𝑛=1 n (leaching loss)                                                  (Equation 

3.8) 

Where, m(leaching loss) = amount of nitrogen loss via leaching in one growing season (mg/pot). 

3.3.3 Statistical analyses 

The mean and standard differences (presented in figures), of three replications were used 

to ascertain soil mineral nitrogen contents, soil nitrogen mineralization and nitrification rates, 

the amount of mineral nitrogen retained by biochar and the amount of nitrogen loss. Significant 

differences were tested using the standard analysis of variance (ANOVA) by Duncan’s 

multiple-range test at the 5% level (SPSS ver. 16.0 for Windows, SPSS Inc., USA). 

 



 

88 

 

3.4 Results 

3.4.1 Mineral nitrogen contents in soils 

In the no nitrogen condition, biochar addition with 5% (5%BC treatment) significantly 

increased ammonium nitrogen content by 121% compared to no biochar treatment (CK 

treatment). The ammonium nitrogen contents in the soil during growing seasons were on 

average 5.64 mg/kg, 6.61 mg/kg, 12.47 mg/kg for CK, 1%BC and 5%BC treatments, 

respectively (Fig. 3.3 a). The ammonium nitrogen content showed slight changes over four 

continuous growing seasons. The nitrate nitrogen content in the soil were on average 10.88 

mg/kg, 10.25 mg/kg, 13.49 mg/kg for CK, 1%BC and 5%BC treatments, respectively (Fig. 3.3 

c). No significant differences were observed in nitrate nitrogen content of treatments in the no 

nitrogen condition. 
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(a) Ammonium nitrogen content in the no 

nitrogen condition 

(b) Ammonium nitrogen content in the 

nitrogen condition 

 
(c) Nitrate nitrogen content in the no nitrogen 

condition 

(d) Nitrate nitrogen content in the 

nitrogen condition 

Fig. 3.3 Mineral nitrogen content in soils during four growing seasons. CK=treatment with no 

biochar and no nitrogen fertilizer; 1%BC= treatment with 1% biochar addition; 5%BC= 

treatment with 5% biochar addition; CKU=treatment with nitrogen fertilizer application; 

U1%BC= treatment with 1% biochar addition and nitrogen fertilizer application; U5%BC= 

treatment with 5% biochar addition and nitrogen fertilizer application. Bars represent the SD 

of the means (n=3 for CK and CKU treatments; n = 12, 9, 6 and 3 for four biochar addition 

treatments in the 1st, 2nd, 3rd and 4th season, respectively.). SD in the same letters in one season 

are not significantly different, determined by Duncan’s multiple-range test (p<0.05). 
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Nitrogen fertilizer application increased both ammonium nitrogen and nitrate nitrogen 

content in the soil (Fig. 3.3 b, Fig. 3.3 d). Similar to the trend in the no nitrogen condition, 

biochar addition significantly promoted ammonium nitrogen content in soil in the nitrogen 

condition. The ammonium nitrogen content of U5%BC treatment was at a higher level than 

that of 1%BC treatment from the 2nd growing season. Ammonium nitrogen contents in the soil 

during the growing season were on average 20.28 mg/kg, 27.34 mg/kg, 34.54mg/kg for CKU, 

U1%BC and U5%BC treatments, respectively (Fig. 3.3 b). The differences of nitrate nitrogen 

in soil of CKU, U1%BC and U5%BC treatments were not significant during the 4 growing 

seasons, but showed similar trends. Nitrate nitrogen content of treatments with nitrogen 

fertilizer all sharply decreased in the 4th growing season (Fig. 3.3 d). Nitrate nitrogen content 

in the soil during the growing season were on average 74.10 mg/kg, 75.77 mg/kg, 70.79 mg/kg 

for CKU, U1%BC and U5%BC treatments, respectively. 

3.4.2 Mineral nitrogen retained by biochar 

The quantities of ammonium nitrogen retained by biochar attained maximum values in the 

4th season and 3rd season under a no nitrogen and nitrogen condition, respectively (Fig. 3.4 a & 

b) and the quantities of nitrate nitrogen reached the maximum values in the 1st season and 2nd 

season under a no nitrogen and nitrogen condition, respectively (Fig. 3.4 c & d). Ammonium 

nitrogen retained by biochar maintained 200 mg/kg in the no nitrogen condition (Fig. 3.4 a), 

while the ammonium content could be up to 600 mg/kg in the U5%BC treatment and 1200 

mg/kg in the U1%BC treatment. This decreased to 300 mg/kg in the 4th growing season (Fig. 

3.4b). Nitrate nitrogen retained by biochar showed a decreasing trend during four growing 

seasons (expect for the U1%BC treatment) (Fig. 3.4 c & d). Nitrate nitrogen retained by biochar 

was around 40 mg/kg and 80 mg/kg in the no nitrogen and nitrogen conditions, respectively. 

The significances between two addition rates were found in the ammonium and nitrate content 

in the 2nd, 3rd and 4th seasons in the nitrogen condition (Fig. 3.4 b & d) and merely in the 

ammonium content in the 3rd and 4th seasons in the no nitrogen condition (Fig. 3.4 a). 
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(a) Ammonium nitrogen content in the 

no nitrogen condition 

(b) Ammonium nitrogen content in 

the nitrogen condition 

 
(c) Nitrate nitrogen content in the no 

nitrogen condition 

(d) Nitrate nitrogen content in the 

nitrogen condition 

Fig. 3.4 Contents of mineral nitrogen retained by biochar during four growing seasons. Plots 

represent the SD of the means (n=3) 

 

The percentages represent how much mineral nitrogen was retained by biochar in the soils 

(Table 3.2). Generally, the percentages of ammonium, nitrate and mineral nitrogen were all 

higher in the no nitrogen condition than those in the nitrogen condition. Biochar retained 

21.25%-44.13% of the mineral nitrogen in the soil in the no nitrogen condition and 9.97%-

27.18 in the nitrogen condition. Furthermore, the percentages increased with the biochar 
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addition rates. The treatment with a 5% biochar addition (44.13%) had a significantly higher 

percentage than that of other treatments (p<0.05); this was the lowest percentage represented 

in the 1%BC treatment (9.97%). On average, the percentages of ammonium ranged from 33.77% 

to 72.34% of ammonium nitrogen, which consisted of 1.63% to 22.06% of nitrate nitrogen. 

The percentages of ammonium nitrogen of 5%BC and U5%BC treatments were around 70%, 

which was on average 38% for 1%BC and U1%BC treatments. 

 

Table 3.2 Percentages of mineral nitrogen retained by biochar to mineral nitrogen in the soil 

in the forms of ammonium, nitrate and mineral, respectively 

 Ammonium nitrogen Nitrate nitrogen Mineral nitrogen 

1%BC 42.67%±18.73%ab 6.38±3.62%b 21.25±11.26%b 

5%BC 68.97%±10.13%a 22.06%±18.00%a 44.13%±14.58%a 

U1%BC 33.77%±14.10%b 1.63%±0.34%b 9.94%±2.71%c 

U5%BC 72.34%±20.21%a 6.40%±1.72%b 27.81%±7.88%b 

Data value was represented by mean ± SD (n = 4, data from four seasons) and SD was 

represented across the columns. SD with the same letters are not significantly different, 

determined by Duncan’s multiple-range test (p<0.05).  

 

3.4.3 Nitrogen mineralization and nitrification rates in soils 

Biochar addition increased nitrogen mineralization rates in the 2nd and 3rd seasons in the 

no nitrogen condition (Fig.3.5 a) and in the 2nd, 3rd and 4th seasons in the nitrogen condition 

(Fig.3.5 b). However, a significant decrease in mineralization rates was observed in the 

treatments with biochar addition in the 1st season (Fig.3.5 a). Nevertheless, nitrification rates 

of U1%BC and U5%BC were higher than that of CKU treatment during four seasons (only 

significant in the 3rd and 4th seasons) (Fig. 3.5 d), but the rates were similar among the 

treatments in the no nitrogen condition. 
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(a) Nitrogen mineralization rates in the 

treatments in the no nitrogen condition 

(b) Nitrogen mineralization in the 

treatments in the nitrogen condition 

 
(c) Nitrification rates in the treatments in the 

no nitrogen condition 

(d) Nitrification rates in the 

treatments in the nitrogen condition  

Fig. 3.5 Nitrogen mineralization rates and nitrification rates of soils during four growing 

seasons. Bars represent the SD of the means (n=3 for CK and CKU treatments; n = 12, 9, 6 and 

3 for four biochar addition treatments in the 1st, 2nd, 3rd and 4th season, respectively.). SD with 

the same letters in same season are not significantly different, determined by Duncan’s 

multiple-range test (p<0.05). 
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3.4.4 Nitrogen leaching loss 

Leachate volumes were affected by the biochar addition but not with the nitrogen 

conditions. Similar values of leachate volume was observed between CK and CKU treatments, 

1%BC and U1%BC treatments, 5%BC and U5%BC treatments, respectively (Fig. 3.6).  

Biochar significantly reduced leachate volumes, and the reduction was higher at the 5% 

biochar addition rate. On average, 1% biochar addition (1%BC and U1%BC treatments) 

reduced leachate volume by 17%-48% and 5% biochar addition (5%BC and U5%BC 

treatments) reduced by 28%-58% compared to no biochar treatments (CK and CKU treatments). 

 

Fig. 3.6 Volume of leachate in four growing seasons. Bars represent the SD of the means (n=3 

for CK and CKU treatments; n = 12, 9, 6 and 3 for four biochar addition treatments in the 1st, 

2nd, 3rd and 4th season, respectively.). Duncan’s multiple-range test was used to determine the 

difference of the sum of leachate volume from four seasons. The same letters are not 

significantly different (p<0.05). 

 

In the no nitrogen condition, biochar addition increased ammonium nitrogen contents in 

the 2nd and 3rd growing seasons (Fig. 3.7 a) and its effect on nitrate nitrogen was different (Fig. 

3.7 c) during the four growing seasons. However ammonium nitrogen in leachate was reduced 

by 9%-51% in response to 1% biochar addition and 10%-68% in response to 5% biochar 

addition (Fig. 3.7 b), and nitrate nitrogen was reduced by 7%-33% in response to 1% biochar 

0

1

2

3

4

5

6

7

CK 1%BC 5%BC CKU U1%BC U5%BC

V
ol

um
es

 o
f l

ea
ch

at
e (

L
/p

ot
)

1st season
2nd season
3rd season
4th season

a a 

b b 

c 

bc 



 

95 

 

addition and 6%-35% in response to 5% biochar addition (Fig. 3.7 d) in the nitrogen condition. 

Furthermore, the effect of biochar on ammonium and nitrate concentrations leachate was more 

pronounced in the 4th season than those in the first three seasons  

 

 

(a) Ammonium nitrogen concentration 

in the no nitrogen condition 

(b) Ammonium nitrogen concentration 

in the nitrogen condition 

 

(c) Nitrate nitrogen concentration in 

the no nitrogen condition 

(d) Nitrate nitrogen concentration in 

the nitrogen condition 

Fig. 3.7 Dynamics of mineral nitrogen concentrations in leachate. Bars represent the SD of the 

means (n=3 for CK and CKU treatments; n = 12, 9, 6 and 3 for four biochar addition treatments 

in the 1st, 2nd, 3rd and 4th season, respectively.). 

 

Typically, nitrogen leaching loss in the nitrogen condition was 2.6-3.1 times higher than 

that in the no nitrogen condition (Fig. 3.8). The addition of biochar also reduced nitrogen loss 

via leaching by 37% and 55% in the 1%BC and 5%BC treatments compared to CK treatment. 
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While U1%BC reduced 42% and U5%BC reduced 52% nitrogen loss via leaching compared 

to CKU treatment. 

 

 

Fig. 3.8 Mineral nitrogen loss from leaching. Bars represent the SD of the means (n=3 for CK 

and CKU treatments; n = 12, 9, 6 and 3 for four biochar addition treatments in the 1st, 2nd, 3rd 

and 4th season, respectively.). Duncan’s multiple-range test was used to determine the 

difference of the sum of leachate volume from four seasons. The same letters are not 

significantly different (p<0.05). 

 

3.5 Discussion 

Our results show that biochar addition significantly increased soil mineral nitrogen 

contents mainly in ammonium nitrogen (Fig. 3.3). It may be attributed to biochar nitrogen 

retention (Fig. 3.4), the improvement of nitrogen mineralization (Fig. 3.5) and the reduction of 

nitrogen leaching loss (Fig. 3.8). 

3.5.1 Biochar nitrogen retention 

It was found that the biochar added with different rates show quite difference in the mineral 

nitrogen retentions (Fig. 3.4). The total amount of mineral nitrogen retained by biochar in soil 
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was increased by the increased biochar addition rate (Table 3.2) but the amount of mineral 

nitrogen retained by one unit biochar was lower in the treatments with higher biochar addition 

rate (Fig. 3.4). It was implied that the part of mineral nitrogen, which could be retained by 

biochar in soil, was limited and less than the maximum of biochar nitrogen retention. 

Additionally, adsorption conditions were different in the two nitrogen conditions (no 

nitrogen and nitrogen condition). In the no nitrogen condition, the content of ammonium 

nitrogen retained by biochar was 13-42 times higher than that in the soil (Fig. 3.4a). There was 

no significant decrease in the content of ammonium nitrogen retained by biochar, and also in 

the soil in the no nitrogen condition after planting pakchoi for four seasons. This indicates that 

(1) this part of ammonium nitrogen (200-400 mg N/kg biochar) was bonded relatively strongly 

and (2) soil nitrogen mineralization replenished ammonium nitrogen supply. In the nitrogen 

condition, there was 14-33 times the content of ammonium nitrogen retained by biochar than 

that in the soil (Fig. 3.4b). The ammonium nitrogen retained by biochar reached up to 1000 

mg/kg after the 1st growing season, but the content did not grow as much with further nitrogen 

fertilizer applications. It suggests that the available adsorption sites on biochar were being 

quickly saturated (Sarkhot et al., 2013). Contrary to the stable retention in the no-nitrogen soil, 

a sharp decrease (from 1200 mg/kg to 300 mg/kg) was observed when fertilization was stopped 

in the 4th season. It implies that there was more than one mechanism for biochar retention of 

ammonium nitrogen. Studies reveal that biochar’s surface is full of different functional groups 

which could attract positive ions (Mukherjee et al., 2011; Jiang et al., 2012). The large surface 

(Lehmann, 2007) with proper pore diameter (Spokas et al., 2012) could also supply space for 

ammonium ions and intermolecular forces could assist biochar bonding of ammonium ions (Du 

et al., 2016). In this study, it is difficult to specify the contribution of each individual 

mechanism to the ammonium nitrogen retained on biochar. However, these functions had 

different strengths for ammonium retention, contributing some ammonium nitrogen that was 

steadily retained by biochar, even in an environment of low content, but the other would release 

when pakchoi completing for that.  

Retention of mineral nitrogen by biochar has been widely reported. However, most 
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referred findings were based on column leaching experiments (Ding et al., 2010; Laird et al., 

2010; Yao et al., 2012; Gai et al., 2014) or solution adsorptive experiments (Sarkhot et al., 

2013). In this study, some biochar was re-collected from soil to test the mineral nitrogen content 

directly. It was interesting to find the enrichment of biochar on both ammonium and nitrate 

nitrogen resulting in 9.94-44.13% of mineral nitrogen in soil actually retained by biochar (Table 

3.2). However, the content of ammonium and nitrate nitrogen retained by biochar (from 

U1%BC and U5%BC, Fig. 3.4) decreased in the 4th season (no nitrogen fertilizer applied in 

that season). It might indicate that mineral nitrogen retained by biochar still displayed bio-

availability. Previous studies also revealed the potential use of biochar as a fertilizer with some 

of adsorbed nutrient recovery (Streubel et al., 2011; Spokas et al., 2012; Taghizadeh-Toosi et 

al., 2012). To some extent, the recovery of mineral nitrogen content from biochar (nitrate 

nitrogen in the no nitrogen condition and both ammonium and nitrate nitrogen in the 4th season) 

could be regarded as the response of biochar to the demands of vegetables or crops growing 

when the soil nitrogen supplement is low. The dynamic of mineral nitrogen content between 

soil and biochar reflected the continual transfer between soil-biochar environment and other 

nitrogen reservoirs. Compared to the decrease of nitrate nitrogen content in the soil, the change 

of nitrates retained by biochar was more significant. It was speculated that pakchoi might be 

inclined to assimilate nitrates from biochar. Further work is still needed to study the details of 

nitrogen source preference. 

3.5.2 Effect of biochar addition on nitrogen mineralization and nitrification 

The response of the mineralization process to biochar addition was inconsistent and 

changed with growing seasons under the two nitrogen conditions (Fig.3.6 a & b). The negative 

effect of biochar addition on nitrogen mineralization was observed in the 1st season (only 

significant in the no nitrogen condition). The high C:N ratio of biochar may be one reason to 

explain the decline of mineralization in the no nitrogen condition (Steiner et al., 2008; Streubel 

et al., 2011); however, in the nitrogen condition, soil C:N ratio may not have changed much 

due to the fertilizer application and therefore no significant effect was found in the 1st season. 
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The promotion of nitrogen mineralization was found from 2nd to 4th seasons (only significant 

in the nitrogen condition), providing more mineral nitrogen for soil retention. The trends of the 

treatments with different biochar additional rates were always similar. It indicated that biochar 

addition had no direct effect on these processes in the short term. Instead, long-term use of 

biochar could affect soil aeration (Clough and Condron, 2010; Ulyett et al., 2014), soil 

microbial biomass (Dempster et al., 2012a; Veksha et al., 2014), soil pH (Chan et al., 2008; 

Atkinson et al., 2010; Spokas et al., 2012), and then indirectly affect the nitrogen process. The 

long-term effects of biochar addition on vegetable soil need to be tested in further work. 

Furthermore, the effect of biochar on soil nitrification rate was merely observed in the 

nitrogen condition (Fig. 3.5). It was speculated that soil nitrification rate might related to the 

soil pH value (data and information of soil pH value would be provided in the next chapter). 

Previous study reported that soil acidity significantly reduce nitrification (de Boer and 

Kowalchuk, 2001) and Evidence for the influence of soil pH on nitrification was confirmed by 

Nicol et al. (2008), who demonstrated a positive correlation between soil pH and ammonia 

oxidizer (the dominant microbe to soil nitrification) abundance. Thus, the effect of biochar on 

soil acidity may be an important benefit of biochar addition to microbial biomass, especially 

for ammonia oxidizer, contributing the improvement of soil nitrification rate in the nitrogen 

condition. 

 

3.5.3 Effect of biochar addition on nitrogen leaching loss 

Unexpectedly, biochar addition increased the average ammonium concentrations of 

leachate in the no nitrogen condition but decreased nitrate concentrations in both nitrogen 

conditions. Promotion of nitrogen mineralization and weakening of nitrification may be 

possible explanations for the increased ammonium concentration. The adsorption may partly 

explain the decrease in nitrate concentration of leachate in previous studies (Mizuta et al., 2004; 

Cheng et al., 2008; Yao et al., 2012). However, the nitrate retained directly by biochar was 

slight (Table 3.2) and easily lost (Fig 3.5 d) implying directly retaining did not possibly reduce 
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the nitrate concentration of leachate by 21% in the nitrogen condition. Dempster et al. (2012a) 

attributed the decrease in nitrate concentration to the decrease in nitrification but the 

nitrification was promoted in some seasons in this study (Fig 3.6 d). It was believed that biochar 

addition increased the residence time of nitrate nitrogen in the root zone of plants and provided 

a greater opportunity for plant assimilation and thus decreased the nitrate loss via leaching 

(Kameyama et al., 2012; Bruun et al., 2014). In this study, the decline of leachate volumes due 

to biochar plays an important role in decreasing nitrogen leaching loss. Biochar is known to be 

highly porous with a good water retention capacity (Spokas et al., 2012; Bruun et al., 2014; 

Ulyett et al., 2014). A great reduction in leachate volumes was observed and the effect of 

biochar on decreasing leachate volumes was more pronounced at higher biochar application 

rate (Fig. 3.6). 

3.5.4 Biochar additional rates 

In this study, 5% biochar addition significantly increased soil ammonium content and had 

the lower leachate volume compared to 1% and no biochar addition. However, the difference 

between 1% and 5% biochar additions was not significant with respect to soil mineral nitrogen 

content, nitrogen mineralization and nitrification and leaching loss. Similar findings were also 

reported previously (Chan et al., 2008; Zhang et al., 2010; Biederman and Harpole, 2013). A 

negative effect of high biochar addition was also pronounced on ammonia volatilization (Feng 

et al., 2017). Determining the optimal biochar addition rate needs further exploration 

(Biederman and Harpole, 2013). Correspondingly, the correct addition rate of biochar should 

be studied by considering its effects on other nitrogen processes and on the soils’ properties. 

 

3.6 Conclusion 

Biochar increased soil mineral nitrogen content by enhancing nitrogen retention in soils 

and soil nitrogen mineralization. Part of the mineral nitrogen retained by biochar was still 

bioavailable for plant uptake in the soil. Biochar significantly reduced nitrogen leaching loss 

by decreasing leachate volumes and nitrate concentrations in the leachate. The mitigation of 
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leachate due to biochar addition was mainly attributed to the enhanced water retention capacity, 

nitrate adsorption and increased residence time of nitrate nitrogen for assimilation by pakchoi. 

These results indicate that biochar addition could enhance soil nitrogen retention and decrease 

nitrogen losses through leaching, and thus may decrease nitrogen fertilizer application rates 

necessary for maintaining high vegetable yields. 
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CHAPTER 4: EFFECTS OF BIOCHAR ADDITION ON SOIL ACIDITY IN 

SOIL USED FOR VEGETABLE PRODUCTION  

Abstract 

Accelerated soil acidification in vegetable fields in China could possibly be due to the 

intensive vegetable cultivation systems. Alkaline biochar could provide a new approach for 

mitigating acidity in soil used for vegetable production because it benefits both the nitrogen 

and carbon processes. However, few studies have examined the changes in soil acidity, with 

different acid-indicating indices, after biochar addition. The objective was to determine the 

effect of biochar addition on vegetable soil acidity. Soil samples were collected from a four 

season’s pot experiment. In this pot experiment, biochar was added to soil in which pakchoi 

was grown over four seasons. Soil samples were tested for soil pH value, pH buffering capacity, 

acidification rate and base contents in soil. Results showed that biochar addition increased soil 

pH values 0.06-0.10 in the no nitrogen condition and significantly retarded soil acidification in 

the nitrogen condition. Soil pH buffering capacity was promoted by 13%-32% and acidification 

rate was reduced by 3.42 to 4.24 kmol H+/ha a after biochar addition. The mitigation of soil 

acidity was not only as a result of biochar’s natural alkalinity but could also be attributed to 

some soil nitrogen processes such as promotion of plant nitrate uptake, reduction of 

nitrification and nitrate leaching, maintaining soil base contents, which are relative to soil 

acidity, but were changed by the addition of biochar. It was concluded that biochar could 

mitigate vegetable soil acidity. But effect of biochar on soil acidifying processes should be 

studied based on specific soil conditions. 

Key words: 

Soil acidity, biochar addition, pH values, pH buffering capacity, acidification rate, base 

contents 
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4.1 Introduction 

Soil acidification is a natural process; however, intensive agriculture speeds up 

acidification through many processes, such as nitrification, increased leaching and biomass 

removal. In China, a study by Guo et al. (2010) reported that over 90% of 154 agricultural 

fields showed soil pH decreased around 0.5 units from the 1980s to 2000s. Nitrogen fertilizer 

application has been considered the main contributor to soil acidification (Qu et al., 2014; Tian 

and Niu, 2015). Soil acidification in vegetable production systems is more significant (Yin et 

al., 2004; Sun et al., 2006; Shen et al., 2016; Yang et al., 2016) due to larger bases loss via 

leaching or bases removed with the plant biomass harvest (Duan et al., 2004; Hicks et al., 2008). 

The soil acidification would directly or indirectly affect plant growth, nutrient availability, 

organic matter and microbial activity (Kemmitt et al., 2006), and ultimately affect agricultural 

ecosystem sustainability.  

The optimal soil pH range for planting most crops is between 5.5 and 8 (Seufert et al., 

2012). Lime is commonly applied to raise soil pH values in different ecosystems (Rengel, 2003; 

Fageria and Baligar, 2008). In China, large amounts of ammonium fertilizer are added into 

soils each year. Theoretical calculations show that each kg of applied ammonium, leached as 

nitrate, demands 7 kg lime to neutralize (Porter, 1981). The continuous application of lime 

causes other problems, such as parched soils and acceleration of other cations leaching losses. 

Recently, it has been found that when lime rates exceed a certain amount, soil nitrification 

process are inhibited (Guo et al., 2017). This implies that lime application might not be the 

appropriate approach for dealing with soil acidification in the long term. Hence, in order to 

prevent soil acidification in agricultural fields used for vegetable production, lime should be 

applied with caution.  

Biochar, produced by pyrolysis of plant-derived biomass, contains alkaline substances and 

normally has an alkaline pH (Lehmann et al., 2007). The sole application of biochar, or 

application of biochar combined with lime, showed significant effects on controlling 

acidification of the soil (Masud et al., 2015). A meta-analysis revealed the alkalinity of biochar 

was one of the main mechanisms for improving crop productivity (Jeffery et al., 2011). In 
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addition, alkaline biochar is more effective at increasing biomass and at changing soil pH in 

acidic soils (Biederman and Harpole, 2013).  

However, the improvement of soil pH values following biochar addition was not found in 

every study. Other nitrogen processes affected by biochar addition may also have an effect on 

soil pH values. The acidifying effect of enhanced nitrification due to biochar addition may 

offset the liming effect of biochar (Zhao et al., 2014). The alkalinity of biochar may contribute 

to an increase in soil pH in the short term due to the interaction with soil compounds (Fidel, 

2012). The long-term pH effect of biochar could be attributed to the interaction of insoluble 

organic functional groups on biochar surfaces with the soil solution (Joseph et al., 2010). This 

implies that the effect of biochar on soil pH values may change as the growing season continues. 

On the other hand, most studies using pH unit to measure soil acidity. Soil pH is a calculation 

of hydronium ion concentration in the soil solution. But soil pH is buffered by several 

components of the solid phase, such as soil organic matter, bases, hydroxyl Al3+ and 

undissolved carbonate compounds (Eckert and Sims, 1995). When biochar is added, these 

buffering components may release acid to maintain the initial equilibrium. The change in soil 

pH value due to biochar addition may be much less than predicted. 

Therefore, with the aim to determine the effect of biochar on soil acidity, soil was collected 

during four continuous growing seasons with different biochar additions and then different 

acid-indicating indices were tested to comprehensively evaluate the effects of biochar addition 

on soil acidity. 

 

4.2 Material and Methods 

4.2.1 Soil and biochar description and characterization 

Soil used for the pot experiment in this study was collected from vegetable fields in the 

Tailake region of China. A detailed description of the soil was presented in Chapter 3-3.2.1. 

Biochar used in this study was produced from wheat straw. The method of pyrolysis was 

described in Chapter 3-3.2.3. The properties of soil and biochar were shown in Table 4.1. 
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Table 4.1 Main properties of soil and biochar 

 Soil Biochar 

TN (g/kg) 1.21 12.50 

TP (g/kg) 0.62 4.94 

Ammonium N (mg/kg) 9.73 1.81 

Nitrate N (mg/kg) 55.03 3.02 

Available P (mg/kg) 72.98 48.43 

Available K (mg/kg) 152.34 1836.40 

Exchangeable K (mmol/kg) 7.26 58.70 

Exchangeable Na (mmol/kg) 8.51 0.57 

Exchangeable Ca(mmol/kg) 52.57 310.40 

Exchangeable Mg (mmol/kg) 17.70 7.14 

Exchangeable Al (mmol/kg) 1.59 0.02 

Organic matter (g/kg) 18.20 443.12 

pH 5.56 8.90 

BET (m2/g) -- 7.63 

 

4.2.2 Experimental design 

A pot experiment was conducted under two nitrogen conditions with three biochar 

additional level: CK=treatment with no biochar and no nitrogen fertilizer; 1%BC= treatment 

with 1% biochar addition; 5%BC= treatment with 5% biochar addition; CKU=treatment with 

nitrogen fertilizer application; U1%BC= treatment with 1% biochar addition and nitrogen 

fertilizer application; U5%BC= treatment with 5% biochar addition and nitrogen fertilizer 

application (details showed in Chapter 3-Table 3.1). The former three treatments were grown 

without fertilization (no nitrogen addition); the latter three treatments were grown with 

fertilization (nitrogen addition). Pakchoi was planted for four growing seasons with simulated 
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leaching (Chapter 3-3.4.1, 3.4.2 and Fig. 3.1). Nitrogen fertilizer was applied in the CKU, 

U1%BC and U5%BC treatments in the 1st, 2nd and 3rd seasons and none was applied in the 4th 

season.  

4.2.3 Soil sampling 

Soil samples were collected from each pot by mixing four soil cores in each growing 

season after the pakchoi harvest. The soil samples were air-dried and then passed through a 2-

mm sieve to remove large organic debris and then stored in plastic bags at 4 °C for subsequent 

testing. 

 

4.3 Sample analysis 

Each pot was considered as an independent experimental unit. Due to the decrease in pots 

of biochar relative treatments (1%BC, 5%BC, U1%BC and U5%BC treatments), the number 

of soil samples changed with decreasing replicates (details shown in Chapter 3-Table 3.1). The 

mean value (and SD) of measured data from soil analysis was calculated based on all treatments 

with all soil samples collected in a specific season. Soil pH values were determined after each 

growing season. Soil pH buffering capacity, acidification rate, organic matter content and base 

contents were measured once after the 4th season with three replicates. 

4.3.1 Soil pH value, soil organic matter content and base contents 

Soil pH value was determined by using a sample of air-dried soil mixed with deionized 

water with a ratio of 1:2.5 (soil: water) and the pH value of the clear supernatant was measured 

by means of a pH electrode (Hach Corp., Italy). 

Soil organic matter content was calculated by multiplying the data of total organic carbon 

by 1.724. The content of total organic carbon (TOC) was measured by means of a TOC analyzer 

(Thermo Finnigan, Elk Grove Village, IL). 

Extraction of the soil sample was done with 1.0 m KCl, and titrated to pH 7.0 with 0.25 m 

NaOH to measure soil exchangeable Al3+ content (Lu, 2000). 
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Soil exchangeable base contents in extraction of soil sample were done with 1.0 m 

ammonium acetate (Lu, 2000). Contents of K+ and Na+ were determined by flame photometry 

(Sherwood Corp., UK) and contents of Ca2+ and Mg2+ by atomic absorption spectrometry 

(Shimadzu Corp., Japan). 

4.3.2 Soil pH buffering capacity 

The pH buffer capacities were determined by titrating 50 g of each soil sample in sealable 

polyethylene bags with H2SO4 and CaCO3 at rates of 0、1×10-2、2×10-2、4×10-2、6×10-2 and 

8×10-2 mol/L mol (H+ or 1/2CO3
-2)/L/kg. The rates of CaCO3 were added to the soils as a 

suspension in distilled water (Magdoff and Bartlett, 1985; Tarkalson et al., 2006). After H2SO4 

or CaCO3 were thoroughly mixed with soil, deionized water was added to each soil to reach 

60% of water holding capacity. The bags were sealed and stored in a dark incubator at a 

temperature of 25 ℃ for 30 days. The soils were then air-dried and the pH values determined. 

Regression analysis using the linear range of the titration curve was calculated with the 

Equation 4.1. 

pHBC=1/a ×10                                                 (Equation 4.1) 

Where, pHBC=pH buffer capacity of the soil in the 4th season (mmol H+/kg/pH), 1=one unit 

pH range used in calculation, a=slope of linear. 

4.3.3 Acidification rate 

Acidification rate was defined as the rate of acid acceleration calculated with the Equation 

4.2. 

AR= ΔpH× pHBC× BD×Vol/106                                (Equation 4.2) 

Where, AR=acidification rate (103 mol H+ /ha), ΔpH=difference value of the soil pH between 

present soil samples and the original soil sample (pH unit), BD=bulk density of the soil (kg/m3), 

Vol=volume of soil per unit area (m3/ha), BD×Vol=2.4×106 kg/ha in the soil type. 

4.3.4 Statistical analyses 

Duncan multiple-range test was used to determine the significant difference in soil pH 



 

115 

 

value, pH buffering capacity, acidification rate, organic matter content and bases content among 

treatments in one season or among four growing seasons for one treatment at a 5% level. The 

analysis of correlation relationships among soil acid-indicating indices and contents of organic 

matter, bases and aluminum were conducted by bivariate correlation analysis with significance 

levels of 5% or 1%(SPSS ver. 16.0 for Windows, SPSS Inc., USA). 

 

4.4 Results 

4.4.1 Soil pH among different treatments 

Nitrogen fertilizer application significantly decreased pH values of soils (P=0.001) with 

the pH values ranging from 5.61 to 5.73 in the no nitrogen condition and 5.21 to 5.62 in the 

nitrogen condition (Fig. 4.1).  

In the no nitrogen condition, pH values of soils were increased by 0.06-0.10 unit due to 

biochar addition from the 2nd season and no significant change was observed in the 1st season 

(Fig. 5.1a). The effect of biochar addition on pH values was significant in four seasons in the 

nitrogen condition (Fig. 5.1b). The difference caused by 1% and 5% biochar additional rates 

were only found in the 3rd season. 

 

 

(a) In no nitrogen condition (b) In nitrogen condition 
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Fig. 4.1 Dynamic of soil pH values. CK=treatment with no biochar and no nitrogen fertilizer; 

1%BC= treatment with 1% biochar addition; 5%BC= treatment with 5% biochar addition; 

CKU=treatment with nitrogen fertilizer application; U1%BC= treatment with 1% biochar 

addition and nitrogen fertilizer application; U5%BC= treatment with 5% biochar addition and 

nitrogen fertilizer application. Bars represent the SD of the means (n=3 for CK and CKU 

treatments; n = 12, 9, 6 and 3 for four biochar addition treatments in 1st, 2nd, 3rd and 4th season, 

respectively.). SD with the same letters in same season are not significantly different, 

determined by Duncan multiple-range test (p<0.05). 

 

The trends of pH values during four seasons were quite different in the six treatments (Fig. 

4.2). The pH values were significantly reduced (p<0.05) in the CKU and U1%BC treatments 

from 5.46 and 5.57 in the 1st season to 5.21 and 5.40 in the 4th season, respectively. But the 

reduction of pH values in the CKU treatment was 0.25 unit, 0.08 unit higher than that (0.17 

unit) in the U1%BC treatment. The pH value was significantly increased from 5.64 to 5.72 in 

the 2nd and 3rd season in the 1%BC treatment. There were no significant differences with respect 

to pH values between the 1st and 4th seasons. No significant change was found in the CK, 5%BC 

and U5%BC treatments during four growing seasons, ranging from 5.61 to 5.67, from 5.65 to 

5.72 and from 5.47 to 5.60 (P>0.05), respectively. 
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Fig. 4.2 Soil pH values during four growing seasons. Bars represent the SD of the means (n=3 

for CK and CKU treatments; n = 12, 9, 6 and 3 for four biochar addition treatments in 1st, 2nd, 

3rd and 4th season, respectively.). SD with the same letters in one treatment are not 

significantly different, determined by Duncan multiple-range test (p<0.05). 

 

4.4.2 Soil pH buffering capacity and acidification rates 

As shown in Fig. 4.3 the curves produced by H+ and OH- added had different slopes due 

to biochar addition. In the range of -2 (2mmol H+ /kg) to +2 (2mmol OH- /kg), pH values of 

soils changed rapidly from 3.39 to 8.23 in the no nitrogen condition and 2.08 to 8.30 in the 

nitrogen condition. In comparison to CK and CKU treatments, there was less change in pH 

value found in the 1%BC, 5%BC treatments ( Fig. 4.3 a) and U1%BC, U5%BC treatments 

( Fig. 4.3 b) with the same H+ or OH- added.  

 

(a) In no nitrogen condition (b) In nitrogen condition 

Fig. 4.3 Titration curves of soil pH value regulated by acidic and alkaline solutions. The 

positive and negative values in x-axis were corresponding to acid addition and base addition, 

respectively. The range between -2 (2mmol H+ /kg) to +2 (2mmol OH- /kg) is the area where 

soil pH values changed rapidly. 

 

The pH buffering capacity for soils was calculated from the slope of lines in the buffer 
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curves. Biochar addition significantly decreased the slope in the two nitrogen conditions and 

the effect of biochar on the slope was more significant in the treatments with 5% biochar 

addition than that with 1% biochar addition. With the same biochar addition, nitrogen fertilizer 

application increased the slope with the slope ranging from 0.86 to 1.14 in the no nitrogen 

condition and 1.02 to 1.28 in the nitrogen condition (Table 4.2). 
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Table 4.2 Soil pH buffering capacities and acidification rates after four growing seasons 

 
Slope ΔpH 

pHBC AR 

 mmol/ kg/pH kmol H+/ha 

CK 1.14±0.03b 0.09±0.03a 8.77±0.21b -1.87±0.70c 

1%BC 0.98±0.02cd 0.11±0.04a 10.17±0.19a -2.72±0.98c 

5%BC 0.86±0.03d 0.14±0.11a 11.56±0.34a -3.82±3.01c 

CKU 1.28±0.07a -0.30±0.06c 7.80±0.41c 5.53±0.83a 

U1%BC 1.14±0.09b -0.10±0.05b 8.82±0.67b 2.11±0.91b 

U5%BC 1.02±0.07c -0.05±0.05b 9.87±0.78ab 1.17±1.08b 

original 1.11±0.04 b  9.00±0.44 b  

Data value was represented by mean ± SD (n = 3). SD with the same letters are not significantly 

different, determined by Duncan multiple-range test (p<0.05). 

 

Compared to the soil pH value before this experiment (Table 4.1), the treatments in the no 

nitrogen fertilizer increased pH values (ΔpH was positive in Tables) while the treatments in the 

no nitrogen fertilizer decreased (ΔpH was negative in Table) after four growing seasons. The 

CKU treatment had a 0.30-unit decrease in pH value and biochar addition significantly 

decreased the difference resulting in 0.1 and 0.05 unit decreases in pH values of U1%BC and 

U5%BC treatments, respectively. No significant effect was found on the differences in the pH 

values in the no nitrogen condition with the addition of biochar.  

Soil pH buffering capacity was significantly decreased by fertilization between the CK and 

CKU treatments. Biochar addition increased soil pH buffering capacity by 16%-32% and 13%-

27% in the no nitrogen and nitrogen conditions, respectively. The highest rate of soil pH 

buffering capacity was observed in the 5%BC treatment.  

The calculated acidification rate for treatments in the no nitrogen condition (CK, 1%BC, 

5%BC) was negative, and suggested the pH of soil was becoming less acidic. Treatments in 

the nitrogen condition (CKU, U1%BC, U5%BC) were positive and suggested the soil was 

becoming acidic. Out of all the treatments, biochar addition reduced soil acidification rates 
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significantly (p<0.05), and the reduction of acidification rates were enhanced by higher rates 

of added biochar. Biochar addition reduced acidification rates by 3.42 and 4.24 kmol H+/ha at 

U 1%BC and U5%BC treatment, respectively. 

4.4.3 Soil organic matter content and major base content 

The organic matter content showed an increased trend following biochar addition, but was 

not significant (Table 4.3). Biochar addition significantly increased more base contents in the 

two nitrogen conditions. The contents of exchangeable K+, Na+ and Mg2+ in the 1%BC and 

5%BC treatments were significantly higher than that in the CK treatment. The exchangeable 

contents of K+, Na+, Ca2+ and Mg2+ in the U1%BC and U5%BC treatments were significantly 

higher than those in the CKU treatment. Further promotion of base contents was found in 

exchange of K+ between the 1%BC and 5%BC treatments. However, no significant effect 

between the 1% and 5% biochar additional rates (between the 1%BC and 5%BC treatments or 

between the U1%BC and U5%BC treatments) were found in exchangeable Na+, Ca2+ and 

Mg2+.The content of exchangeable Al3+ was not affected by biochar and showed an 

insignificant difference throughout the six treatments. 

4.4.4 Relationships among soil pH value, pH buffering capacity, acidification rate and bases 

contents 

Close relationships were found among soil pH value, pH buffering capacity and 

acidification rate (Table 4.4). In addition, only soil pH buffering capacity was significantly 

related to all the contents of exchangeable bases, while soil pH value was related to 

exchangeable K+ and Na+ and acidification rate was related to exchangeable K+ and Ca2+. 

Organic matter content showed significant relationships with Ca2+ and Mg2+.  
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Table 4.3 Contents of organic matter, base cations and exchangeable aluminum 

Data value was represented by mean ± SD (n = 3). SD with the same letters are not significantly different, determined by Duncan multiple-range 

test (p<0.05). 

 
  

 Organic matter Base cation ( mmol/kg) Exchangeable Al3+ 

( mmol/kg)  (g/kg) Exchangeable K+ Exchangeable Na+ Exchangeable Ca2+ Exchangeable Mg2+ 

CK 16.65±2.44a 4.02±1.26c 3.15±0.37b 52.57±4.11a 9.97±0.72c 3.66±0.63a 

1%BC 17.42±2.03a 5.95±0.76b 9.03±0.42a 40.11±2.19ab 14.71±3.87ab 3.90±0.21a 

5%BC 17.57±2.02a 8.43±1.00a 8.47±0.91a 37.75±3.68b 17.31±0.62b 3.54±0.22a 

CKU 16.21±1.69a 1.94±0.18d 3.31±0.34b 27.79±0.65c 8.57±0.50c 3.24±0.19a 

U1%BC 18.09±1.99a 6.16±0.89b 7.68±0.63a 42.24±2.13ab 19.79±4.08a 3.56±0.67a 

U5%BC 18.46±2.03a 4.87±0.78bc 8.16±0.95a 40.33±5.35ab 17.63±3.25ab 3.57±0.33a 

original 18.20±0.88 7.26±1.36 8.51±0,46 52.57±4.11 17.70±1.39 3.59±0.26a 
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Table 4.4 Significance of the relationships among soil acid-indicating indices and contents of organic matter, base cations and aluminum 

 pH 

values 

pH buffering 

capacity 

Acidification 

rate 

Organic 

matter 
K+ Na+ Ca2+ Mg2+ Al3+ 

pH values 1.00 0.72** -0.91** -0.10 0.65** 0.49* 0.17 0.27 0.40 

pH buffering capacity  1.00 -0.77** 0.34 0.77** 0.73** 0.47* 0.54* 0.40 

Acidification rate   1.00 0.09 -0.62** -0.43 -0.52* -0.25 -0.48 

Organic matter    1.00 0.36 0.19 0.56* 0.57* -0.12 

K+     1.00 0.69** 0.21 0.72** 0.21 

Na+      1.00 -0.04 0.84** 0.31 

Ca2+       1.00 0.12 0.30 

Mg2+        1.00 0.15 

Al3+         1.00 

* means p<0.05 and ** means p<0.01 determined by Duncan multiple-range test. 
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4.5 Discussion 

4.5.1 Factors affecting soil acidity by biochar 

Alkalinity is a direct way for biochar to affect soil acidity and biochar also can 

change soil properties (such as water holding capacity and base contents) and nitrogen 

processes (such as nitrification, denitrification, nitrate uptake by plant and nitrate 

leaching loss), which could indirectly influence soil acidity. Most studies found that the 

effect of biochar addition on agricultural soils were related to the liming effect of 

biochar (Jeffery et al., 2011; Yuan and Xu, 2011; Feng et al., 2017).  

In this study, the mitigation of soil acidity can be mainly attributed to biochar 

addition. While nitrate uptake and assimilation by plants (Marschner et al., 1991; 

Imsande and Touraine, 1994) and denitrification by soil microorganisms(Li et al., 2003) 

also act various effects on soil acidity changes. On the other hand, acceleration of soil 

acidity can be caused by several factors such as nitrification of ammonium-based 

fertilizers (Zhao et al., 2007), leaching of nitrate (Rengel et al., 2000) and removal of 

bases from the soil in the harvested plant (Duan et al., 2004). These process related to 

pH changes were studies widely in previous study, but in our study, biochar addition 

clearly was the most significant factor that improve soil pH environment. 

4.5.2 Effect of biochar addition on soil pH values in two nitrogen conditions 

In the no nitrogen condition, pH values were always higher than that of original 

soil samples. Mitigation of soil acidity can be explained by nitrate uptake and 

assimilation by pakchoi. This is an ongoing process lasting throughout pakchoi’s 

growth. Although no nitrogen fertilizer was applied in this condition, pakchoi also took 

up an amount of nitrates from the soil for biomass production. This explanation can be 

supported by the fact that soil nitrate content continued decreasing (Chapter 3 Fig 3.5 

c) with an increasing trend of soil pH values (Fig 4.2). On the other hand, biochar 

addition significantly promoted soil pH values significantly in a short period during the 

experiment. No difference in soil pH among treatments was observed in the 1st season 

and the effect of biochar addition rate on soil acidity was not significantly different in 
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the no nitrogen condition (Fig 4.1a), indicating that the natural alkalinity of biochar 

may not be enough to change the hydrogen ion concentration in the soil solution. 

However, biochar addition promoted nitrogen (nitrate) uptake by pakchoi (data will be 

listed in chapter 5) thus mitigating soil acidity. Furthermore, the nitrification from the 

1st to 3rd seasons was reduced to some extent by biochar addition, although not 

significantly (Chapter 3 Fig 3.6 c). As a result, the acidifying effect of nitrification was 

weakened because of biochar addition. In addition, the amount of exchangeable K+, 

Na+ and Mg2+ in the CK treatment were lower than those in the 1%BC and 5%BC 

treatments (Table 4.3) indicating that biochar addition retained more bases in the soil. 

This is consistent with the report of Xu et al. (2012), in which biochar addition with 5% 

w/w increased cation exchange capacity (CEC) 50%-80%, without leaching.  

In the nitrogen condition, a decreasing trend of soil pH values was observed during 

the four growing seasons suggesting nitrogen fertilizer application acidified vegetable 

soils in this study. Compared to treatments in the no nitrogen condition, nitrogen 

fertilizer application enhanced soil nitrification (Chapter 3 Fig 3.6 c and d) and 

increased nitrogen loss in CKU, U1%BC and U5%BC treatments, when compared with 

that in CK, 1%BC and 5%BC treatments, respectively (Chapter 3 Fig 3.9). In addition, 

higher biochar addition rate seems to more effectively maintain soil pH values although 

the significant difference between two biochar addition rates observed only in the 3rd 

season in the nitrogen condition (Fig. 4.1). It could be supposed as a cumulative effect 

from the difference in biochar addition rate and also indicated that the reduction in 

nitrogen leaching loss had a great impact on soil acidity. Thus, it is suggested that the 

acidifying effect of nitrification and leaching contributed to soil acidity in the nitrogen 

condition.  

Biochar addition effectively reduced soil acidity in the no nitrogen condition and 

maintained soil pH values in the nitrogen condition (Fig 4.1 & 4.2). The change of soil 

acidity due to biochar addition was a result of the combined effects of different 

processes. In the nitrogen condition, the change in soil acidity could be attributed to 

four processes: (1) enhancing nitrification (Chapter 3 Fig 3.6 d), (2) decreasing nitrate 
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leaching loss (Chapter 3 Fig 3.9) and bases loss (Table 4.3), (3) promoting soil pH 

buffering capacity (Table 4.2) and (4) increasing nitrate uptake by pakchoi (Chapter 5 

Fig 5.2). Enhanced nitrification is the process accelerating soil acidification; however, 

it seems to be compensated for by the other three processes. 

The significant increase of soil pH value (compared to original soil) was not 

observed at the beginning of 1st season in this study (Fig. 4.1), indicating the high 

buffering capacity of soil itself. However, differences between two nitrogen conditions 

were significant. Obia et al. (2015) reported 1.2 and 2.6 pH value increases after 1% 

and 5% biochar addition and held the opinion that the response of soil pH value to 

biochar addition were determined by soil buffering capacity. Moreover, after pakchoi 

planting and leaching happening, differences among treatments became evident. It was 

implied that nitrogen process might play a more pronounced than soil property. 

4.5.3 Effect of biochar addition on soil pH buffering capacity and acidification rate  

Soil pH, pH buffering capacity and acidification rate were the three indices used to 

assess soil acidity in this study. Different from soil pH value, pH buffering capacity is 

a soil characteristic determining the stability of soil pH values and acidification rates 

and is an indices predicting the trend of soil pH value in a changing environment. These 

three acid-indicating indices were significantly related to each other (Table 4.4).  

After four growing seasons, soil pH buffering capacity was increased on average 

by 20% and the acidification rate was significantly reduced due to biochar addition 

(Table 4.2). There was a close relationship between soil pH buffering capacity and bases 

contents (Table 4.4). Liang et al. (2006) showed that biochar addition could increase 

soil CEC. It was attributed to the oxygen-containing functional groups (e.g. –COO– 

and –O–) on biochar which could contribute considerably to a negative surface charge 

for adsorbing more bases (Yuan et al., 2011). It indicated that biochar addition increased 

soil pH buffering capacity via increasing soil base contents. Moreover, no significance 

of exchangeable Al3+ content was observed implying that soil acidification process in 

this study was still in the level of primary buffering system (Liao and Dai, 1991) and 

bases with charge of plus one or two (K+, Na+, Ca2+ and Mg2+) was already enough to 
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respond to the change of soil acidity. On the other hand, studies found biochar could 

absorb and provide hydrogen ions through association reactions in a low pH condition 

and dissociation reactions in a high pH condition (Xu et al., 2012) and thus buffered 

the change of soil pH values. 

4.5.4 How to evaluate the effect of biochar on soil acidity? 

The alkalinity of biochar was not the main factor for directly increasing soil pH 

values, because no significant difference were found between treatments with different 

biochar additional rates in the no nitrogen condition. Instead, many processes in the soil 

affected soil acidity in this study, as discussed above. Soil pH values may not reflect 

the change of soil acidity caused by soil processes (Fidel, 2012). Soil pH buffering 

capacity should be chosen as assistant indices for assessing biochar’s effect on soil 

acidity (Eckert and Sims, 1995). Additionally, the contributions of each individual 

process to soil acidity will be different with the various soil types and rates of nitrogen 

fertilizer application (Clough et al., 2013). The effect of biochar addition on soil acidity 

was not definite. The effects of biochar on each acidifying process of soil should be 

studied before biochar is used as an amendment for acid soils. 

 

4.6 Conclusion 

Soil pH value, pH buffering capacity and acidification rate were three acid-

indicating indices chosen in this study to assess biochar effect on soil acidity. It was 

found that biochar addition increased soil pH values in the no nitrogen condition and 

reduced soil acidification in the nitrogen condition. Biochar also significantly enhanced 

soil pH buffering capacity in the two nitrogen conditions and significantly reduced 

acidification rate in the nitrogen condition. Additionally, increasing the biochar addition 

rate could enhance the effect of reducing soil acidification in the nitrogen condition but 

with no significant effect on soil pH buffering capacity and acidification rate. Compared 

to soil pH values, soil pH buffering capacity was more sensitive to soil acidity in this 

study. Furthermore, biochar’s effect on soil acidity was partly dependent on its effect 
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on soil properties (such as base contents) and processes (such as nitrification, nitrate 

leaching and plant nitrate uptake) rather than its natural alkalinity. Plant nitrate uptake 

was promoted by biochar and resulted in soil acidity mitigation. Biochar could 

relatively reduce nitrification in the no nitrogen condition and significantly reduce 

nitrate leaching in the nitrogen condition, which also reduced soil acidification. In 

addition, biochar maintained soil base contents and thereby promoted soil pH buffering 

capacity. It was suggested that biochar could mitigate acidity in vegetable soil but each 

soil acidifying process should be studied separately, based on specific soil conditions, 

before biochar can be used as a soil acid amendment. 
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CHAPTER 5: EFFECTS OF BIOCHAR ADDITION ON VEGETABLE 

(PAKCHOI) NITROGEN UPTAKE AND RECOVERY EFFICIENCY IN 

VEGETABLE PRODUCTION SYSTEMS 

Abstract 

Nitrogen uptake by plants is an important process closely related to yield. 

Considering the amount of nitrogen lost during cultivation farmers are likely to apply 

excessive nitrogen fertilizer to ensure soil mineral nitrogen for vegetables. The nitrogen 

recovery efficiency (NRE) of vegetables is usually less than 40%, which leads to a high 

loss of nitrogen and large amounts of nitrogen being left in the soil.  

In order to promote vegetable nitrogen uptake and NRE in vegetable production 

systems, biochar was applied as a soil amendment. During four continuous growing 

seasons, pakchoi was planted with biochar addition at the levels of 0, 1% and 5%, to 

determine the effects on vegetable nitrogen uptake and NRE. By using the technique of 

stable isotope 15N-traced, the amount of nitrogen fertilizer in pakchoi soil and leachate 

was quantified and two major nitrogen sources (fertilization and soil mineralization) 

were separated.  

The results showed that with biochar addition, the pakchoi yield and nitrogen 

uptake in treatments remained unchanged during four growing seasons, whereas the 

yield and nitrogen uptake in treatments without biochar addition decreased after the 2nd 

season. The NRE and recovery of nitrogen fertilizer in the soil was promoted, and the 

recovery in leachate was reduced due to the biochar addition. Nitrogen from fertilizer 

was the major source for pakchoi nitrogen uptake (60.12%-76.00%), soil residual 

nitrogen (67.21%-97.97%) and nitrogen leaching loss (78.13%-97.50%). However, 

nitrogen from soil mineralization was the major nitrogen source for biochar retention 

(64.31%-86.40%). It was concluded that biochar addition could increase nitrogen 

uptake by plants, and its NRE, through decreasing nitrogen loss in continuous growing 

seasons. However, the effect of biochar on ammonia volatilization needs to be further 

studied. 
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5.1 Introduction 

Crop yields are strongly correlated with nitrogen uptake by plants (Schnier et al., 

1990). Maintaining high crop yields and nitrogen uptake are important for improved 

agricultural productivity. Nitrogen uptake by plants was the main index used to evaluate 

the effects on yield (Lukina et al., 2001; Masclaux-Daubresse et al., 2010). Nitrogen 

recovery efficiency (NRE) is defined as the ratio of the nitrogen uptake by plant to 

fertilizer nitrogen input. The index also measured both nitrogen uptakes by crops and 

environmental impact on crop growth (Dobermann, 2005; Liu et al., 2010; Qiao et al., 

2012).  

In consideration of nitrogen loss, farmers in China always apply excessive 

nitrogen fertilizer in vegetable production fields to ensure sufficient nitrogen in the soil 

for plant uptake, leading to high losses and low NRE in plants (Cassman et al., 2002; 

Ju et al., 2007). The rate of nitrogen fertilizer application has reached 1100-1500 kg 

N/ha in Northern China (Ma et al., 2000; Ju et al., 2009) and 900-1300 kg N /ha in the 

Tailake region of China (Huang et al., 2006; Zhu et al., 2006; Min and Shi, 2009). 

Typical NRE of plants range from 20% to 40% (Cassman et al., 2002; Zhu et al., 2005; 

Huang et al., 2006). Many studies focus on reducing the rate of nitrogen fertilizer 

application in vegetable production fields (Ju et al., 2004; Li et al., 2007; Min et al., 

2011a; Min et al., 2012). NRE could be promoted with reducing fertilizer application, 

but nitrogen uptake could then possibly decrease Nitrogen uptake by vegetables is 

influenced by the dynamic equilibrium status of vegetable production systems. 

Nitrogen in these systems are divided into several processes and are in a dynamic 

equilibrium status (Clough and Condron, 2010; Haynes, 2012). Because nitrogen is a 

limited nutrient in vegetable production, different types of nitrogen fertilizer and 

application rates would affect nitrogen processes and influence the dynamic 

equilibrium status. According to our study in the previous chapters, fertilization would 

immediately increase soil mineral nitrogen content (Chapter 3 Fig. 3.3). The active 

mineral nitrogen from fertilizer would accelerate the nitrification process, ammonia 

volatilization process and affect other related nitrogen processes in vegetable soils. 
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When excessive nitrogen fertilizer is applied, the vegetable crop may utilize a certain 

quantity and the rest would be left in the soil or lost (Zhu et al., 2005; Huang et al., 

2006; Shi et al., 2009). The low NRE in vegetable production systems indicates that 

35% of fertilizer nitrogen is residual or lost from ecosystems in various ways (Cao et 

al., 2008; Liu et al., 2010), and the remaining nitrogen in vegetable soils subsequently 

gets lost into the water system, causing non-point source pollution (Camargo and 

Alonso, 2006; Ju et al., 2007) and soil acidification (Guo et al., 2010; Liang et al., 

2013). Some studies report that nitrogen loss from vegetable fields contribute more 

aquatic nitrogen to agricultural non-point pollution than conventional crop fields (Ju et 

al., 2007; Zhao et al., 2010; Min et al., 2011a; Luo et al., 2015). A significant decline 

in soil pH values has been found after conventional crop fields are converted to 

vegetable production fields (Yin et al., 2004; Sun et al., 2006), and soil acidification 

was greatly accelerated with excessive nitrogen fertilizer application (Liang et al., 

2013). On the other hand, high nitrogen leaching loss and large amounts of nitrogen left 

in the soil may limit the NRE in vegetable production systems (Ding et al., 2010). 

Therefore, a comprehensive approach to promoting NRE should be developed 

considering nitrogen leaching loss and amounts of nitrogen left in the soil of vegetable 

production systems.  

Biochar is a potential energy product, but when applied to soils it could provide a 

stable carbon pool (Kuzyakov et al., 2014) and improve soil quality (Novak et al., 2009). 

For these reasons, the use of biochar as a soil amendment has gained interest worldwide. 

The positive effect of biochar on nitrogen uptake of crops and NRE has been widely 

reported, and is mainly attributed to a liming effect and high nitrogen retention 

(Atkinson et al., 2010; Ding et al., 2010; Basso et al., 2013; Biederman and Harpole, 

2013). It has also been shown that biochar addition could effectively decrease N2O 

emissions in vegetable production systems (Jia et al., 2012). It was believed that biochar 

addition would have a positive impact on nitrogen processes and thereby increase NRE 

and nitrogen uptake by vegetables. . 

Studies on crop nitrogen uptake and NRE in vegetable production systems are 
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limited. Existing studies found that different biochar addition rates might result in 

different responses in plant nitrogen uptake (Zhang et al., 2011; Jia et al., 2012). Given 

the variety of nitrogen uptake responses to biochar addition, this indicates that a number 

of interrelated nitrogen processes are involved. Few studies have investigated vegetable 

nitrogen uptake, nitrogen left in the soil and nitrogen loss. Furthermore, vegetable 

production systems are strongly modified by human activities and therefore the effect 

of biochar addition on nitrogen processes should be assessed under continuous growing 

conditions.  

A pot experiment was conducted with three biochar addition levels (0, 1% w/w 

and 5% w/w). Pakchoi was planted during four continuous growing seasons and in the 

1st, 2nd and 3rd seasons 15N-labeled urea was applied and in the 4th season no nitrogen 

fertilizer was added. Stable isotope 15N-traced fertilizer was used to (1) determine the 

effect of biochar on plant nitrogen uptake and plant yield, (2) investigate the recovery 

of nitrogen fertilizer in plants, soil and leachate with different biochar addition rates 

and (3) ascertain the sources of nitrogen (fertilization and soil mineralization) 

associated with vegetable nitrogen uptake, nitrogen left in the soil and nitrogen loss. 

These results would provide information to determine the effect of biochar addition on 

nitrogen uptake by vegetable plants, its recovery efficiency and increase our 

understanding of nitrogen processes related to biochar addition to soil used for 

vegetable production.  

 

5.2 Material and Methods 

5.2.1 Soil and biochar description and characterization 

Soil used for this study was collected from a vegetable field in the Tailake region 

of China. A detailed description of soil properties has been presented in Chapter 3-3.2.1 

and Chapter 4-4.2.1. Biochar was produced by slow pyrolysis of wheat straw, with 

procedure details and properties presented in Chapter 3-3.2.3 and Chapter 4-4.2.1. 
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5.2.2 Planting material 

In this study Pakchoi (Brassica chinensis L.) was chosen as a typical planted 

vegetable. A detailed description has been presented in Chapter 3-3.2.2. The length of 

one single growing season for pakchoi was 35 days. 

5.2.3Use of 15N tracing in comparing nitrogen sources  

A pot experiment consisted of six treatments: No nitrogen (CK, 1%BC, 5%BC), 

nitrogen (CKU, U1%BC and U5%BC) (details in Chapter 3-Table 3.1). Pakchoi was 

planted for four growing seasons with simulated leaching (Chapter 3-3.4.1, 3.4.2 and 

Fig. 3.1). The 15N labeled urea (urea-15N) at 10.18% abundance level (supported by 

Shanghai Research Institute of Chemical Industry) was used as nitrogen fertilizer 

applied in CKU, U1%BC and U5%BC treatments in the 1st, 2nd and 3rd seasons and no 

more nitrogen fertilizer was applied in the 4th season.  

5.2.4 Crop harvesting and biochar sampling 

Pakchoi was harvested on the 35th day of the growing season. The yield was 

determined based on the fresh aboveground biomass (Y, g/pot). Soil (or soil-biochar 

mixture) and biochar samples were collected from each pot after the harvest at the end 

of each growing season using the methods presented in Chapter 3.2.6.1 and 3.2.6.2. 

Leachate was collected from the tray placed under each pot after excessive irrigations. 

 

5.3 Analysis 

5.3.1 Plant tissue analysis 

The plant samples were then oven dried at 70 °C to a constant mass, weighed 

(Rdry-plant, %), ground to pass through a 0.149-mm sieve and rolled in a ball mill to 

analyse the nitrogen content (wN-plant,mg/g) (Flash EA 1112 series; Thermo Finnigan, 

Elk Grove Village, IL) and abundance of 15N(A, %) (Isotope mass spectrometer, 

MAT-251, USA). The amount of the nitrogen uptake by pakchoi per pot was 

calculated with the Equation 5.1: 
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Nplant=Y×Rdry-plant×wN-plant                                                 (Equation 5.1) 

Where, Nplant=the amount of pakchoi nitrogen (mg/pot), Y= the pakchoi yield in one pot 

(g/pot), Rdry-plant = the ratio of dry matter content (%), wN-plant= the nitrogen content per 

dry matter of pakchoi. 

The nitrogen utilization efficiency was calculated with the equation (Equation 5.2) 

(Moll et al., 1982): 

NUE= (Nplant-U- Nplant-CK)/F×100%                                     (Equation 5.2) 

Where, NUE=the nitrogen utilization efficiency (%), Nplant-U = the amount of pakchoi 

nitrogen in CKU, U1%BC or U5%BC treatment (mg/pot), Nplant-CK=the amount of 

pakchoi nitrogen in CK treatment(mg/pot), F=the amount of nitrogen applied 

(mg/pot)=200 mg/pot in the 1st, 2nd, 3rd growing seasons and 600 mg/pot in the four 

growing seasons. 

5.3.2 Soil and biochar analysis 

The soil and biochar samples were air dried, passed through a 2-mm sieve to 

remove large organic debris and then stored in plastic bags at 4 °C to analyze the 

mineral nitrogen content in the soil (w N-soil) and the mineral nitrogen content retained 

by biochar(w N-BC), with the method described in Chapter 3-3.3.1. The amount of 

mineral nitrogen left in the soil per pot was calculated with the Equations 5.3: 

Nsoil= ( wn N-soil- wn-1 N-soil) ×m                                            (Equation 5.3) 

If n=1, Nsoil= ( w1 N-soil- woriginal N-soil) ×m 

Where, Nleft= the amount of soil mineral nitrogen left (mg/pot), wn N-soil = mineral 

nitrogen content in soil from n season (mg/kg), n=1, 2, 3 or 4, m= weight of soil in one 

pot=2 kg/pot. 

5.3.3 Leachate analysis 

Nitrogen leaching loss (Nleaching) was calculated with the method described in 

Chapter 3-3.3.2. 
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5.3.4 15N testing 

The principal method of analysis for stable isotopes is mass spectrometry and the 

abundance of an element is the percentage of the number of atoms in the stable nuclide 

divided by the total number of atoms of the element. All 15N abundances in this study 

were measured with an isotope mass spectrometer (MAT-251, USA, with analytic error 

± 0.02%). The difference between the abundance of the stable nuclide (A) and the 

natural abundance (Anatural) is the atom percent excess of the element, which is also 

called enrichment. 

The 15N abundance of plants (Aplant) were directly determined. However, the 15N 

abundance of mineral nitrogen in leachate (Aleaching), soil (Asoil) or biochar (ABC) were 

determined using the crystal prepared with the method referred to by Zhang et al. (2009) 

and Lu (2000). 

5.3.5 Calculations  

The parameters related to 15N in this study are listed in Table 5.1 below. The 

parameter of N was obtained with the methods in 5.3.1, 5.3.2 and 5.3.3. The parameter 

of A was measured by an isotope mass spectrometer (5.3.4). The other parameters (Pf , 

Ps, Nf, Ns and NR) were all calculated with the values of N and A. 

The percentages of nitrogen from fertilizer and soil were calculated with the 

Equation 5.4 and 5.5 (Zhang et al., 2012). 

Pf = (A −Anatural)/(Afertilizer − Anatural)×100%                  (Equation 5.4) 

Ps =1- Pf                                                 (Equation 5.5) 

Where Pf = the percentage of nitrogen in plant, soil mineral, leachate and biochar from 

fertilizer (%), A is the abundance of plant, soil, leachate or biochar (%). Afertilizer = the 

abundance of 15N in the labeled urea (%) =10.18% in this study, Anatural= natural 

abundance of 15N (%)= 0.365%. Ps is the percentage of nitrogen from soil (%). 
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Table 5.1 Parameters related to 15N in this study 

 

The amounts of nitrogen from fertilizer and soil were calculated with the Equation 

5.6 and 5.7. 

Nf= Pf×N                                                 (Equation 5.6) 

Ns = N -Nf                                                (Equation 5.7) 

Where, Nf = the amount of nitrogen in plant, soil, leachate and biochar from fertilizer 

(mg/pot), N= the total amount of nitrogen obtained with the methods in 5.3.1, 5.3.2 and 

5.3.3 (mg/pot), Ns = the amount of nitrogen from soil (mg/pot). 

The recovery efficiencies of 15N-urea were calculated with the Equation 5.8. 

NR= Nf /F                                               (Equation 5.8) 

  
Nitrogen 
uptake by 
pakchoi 

Mineral 
residual 
nitrogen in 
soil 

Nitrogen 
loss  

Nitrogen 
loss via 
leaching 

Nitrogen 
loss via 
other 
pathways 

Nitrogen 
retained 
by biochar 

Amount of 
nitrogen 

(N, 
mg/pot) 

Nplant Nsoil Nloss Nleaching Nother loss   

15N abundance  (A,%) Aplant Asoil  Aleaching  ABC 

Percentage of 
nitrogen from 
fertilizer 

(Pf, %) Pf-plant Pf-soil  Pf-leaching  Pf-BC 

Percentage of 
nitrogen from 
soil 

(Ps, %) Ps-plant Ps-soil  Ps-leaching  Ps-BC 

Amount of 
nitrogen from 
fertilizer 

(Nf, 
mg/pot) 

Nf-plant Nf-soil Nf-loss Nf-leaching Nf-other loss   

Amount of 
nitrogen from 
soil 

(Ns, 
mg/pot) 

Ns-plant Ns-soil Ns-loss Ns-leaching Ns-other loss   

Nitrogen 
recovery of 
fertilizer 

(NR, %) 
NRplant=N
RE 

NRsoil  NRleaching    
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Where, NR= the recovery of applied 15N labeled urea in plant tissue, soil, leachate and 

biochar and F= the amount of nitrogen applied (mg/pot)=200 mg/pot in 1st, 2nd , 3rd 

growing seasons and 600 mg/pot in the four growing seasons. 

5.3.6 Statistical analyses 

The significant differences in yield, nitrogen uptake by pakchoi and NUE among 

treatments for four growing seasons and were the parameters related to 15N in plant, 

soil, leachate or biochar among treatments all analyzed using the Duncan multiple-

range test at a 5% level, respectively (SPSS ver. 16.0 for Windows, SPSS Inc., USA).  

 

5.4 Results 

5.4.1 Yields of pakchoi 

Biochar did not significantly affect pakchoi yields in the no nitrogen condition and 

yields were unchanged during the four growing seasons (Fig. 5.1a). Pakchoi yields were 

increased after nitrogen addition in the 1st growing season. However, the yield of the 

treatment, without biochar addition (CKU treatment), gradually decreased in the 

subsequent growing seasons (Fig. 5.1b). Biochar additions (U1%BC and U5%BC 

treatments) maintained pakchoi yields in the four growing seasons, with average yields 

of biochar addition treatments for 1st 2nd, 3rd, 4th being 32.87, 32.05, 32.64 and 31.59 

g/pot, respectively. The difference with respect to pakchoi yields between CKU and 

U1%BC / U5%BC treatments were significant in the 3rd (P=0.002) and 4th (P=0.007) 

seasons, while biochar addition rates did not show significant effect on yield.  
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(a) In the no nitrogen condition (b) In the nitrogen condition 

Fig. 5.1 Yields of pakchoi in four growing seasons. CK=treatment with no biochar 

and no nitrogen fertilizer; 1%BC= treatment with 1% biochar addition; 5%BC= 

treatment with 5% biochar addition; CKU=treatment with nitrogen fertilizer 

application; U1%BC= treatment with 1% biochar addition and nitrogen fertilizer 

application; U5%BC= treatment with 5% biochar addition and nitrogen fertilizer 

application. Bars represent the SD of the means (n=3 for CK and CKU treatments; n = 

12, 9, 6 and 3 for four biochar addition treatments in the 1st, 2nd, 3rd and 4th season, 

respectively.). SD with the same letters in same season are not significantly different, 

determined by Duncan's test (p<0.05). 

 

5.4.2 Nitrogen uptake by pakchoi and NUE 

The differences in nitrogen uptake by pakchoi were significantly different between 

the treatments (Fig. 5.2). Nitrogen uptake by vegetables in U1%BC and U5%BC were 

higher than that in 1%BC and 5%BC treatments. The calculated nitrogen uptake 

between U1%BC and U5%BC were similar during four growing seasons. Pakchoi 

nitrogen uptake decreased after the 1st growing season for the treatments (CK and CKU 

treatments) without biochar addition. Significant differences between treatments with 

and without biochar were observed in the 2nd and 3rd growing seasons in the no nitrogen 
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condition (Fig. 5.2 a), and in the 2nd, 3rd and 4th growing seasons in the nitrogen 

condition (Fig. 5.2 b). There were no significant differences found between treatments 

in 1% and 5% biochar addition rates.  

 

 
(a) In no nitrogen condition (b) In nitrogen condition 

Fig. 5.2 Nitrogen uptake by pakchoi in four growing seasons. Bars represent the SD of 

the means (n=3 for CK and CKU treatments; n = 12, 9, 6 and 3 for four biochar addition 

treatments in the 1st, 2nd, 3rd and 4th season, respectively.). SD with the same letters 

in same season are not significantly different, determined by Duncan's test (p<0.05). 

 

In the 1st, 2nd and 3rd seasons, the NUE was on average 10.92%, 22.39% and 21.95% 

in CKU, U1%BC and U5%BC treatments, respectively (Table 5.2). The NUE in the 

four seasons was higher than the average means of the 1st, 2nd and 3rd seasons, due to 

no nitrogen being applied in the 4th season. Biochar addition significantly increased 

nitrogen utilization efficiencies in U1%BC and U5%BC treatments. 
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Table 5.2 NUE in treatments with nitrogen fertilizer 

 CKU U1%BC U5%BC 

1st season 10.02%±2.34% a 15.94%±1.89% a 11.78%±0.34% a 

2nd season 13.00%±1.34% b 25.63%±3.43% a 30.35%±5.15% a 

3rd season 9.74%±0.87% b 25.61%±3.82% a 23.73%±3.51% a 

The four seasons 12.51%±1.50% b 30.95%±4.97% a 29.36%±5.98% a 

Data value was represented by mean ± SD (n=3 for CKU treatments; n = 12, 9, 6 and 3 

for U1%BC and U5%BC treatments in the 1st season, the 2nd season and the 3rd season 

and the four seasons, respectively.) and SD was represented across the rows. SD with 

the same letters are not significantly different, determined by Duncan's test (P<0.05).  

 

5.4.3 Nitrogen uptake by Pakchoi plants from two nitrogen sources (labeled fertilizer 

and soil mineralization) in soils amended using biochar  

In this study, the nitrogen uptake by pakchoi left in the soil, lost via leaching and 

adsorbed by biochar were mainly from 15N fertilizer and soil mineralization. Labeled 

fertilizer was applied during 1st, 2nd and 3rd seasons. As Fig. 5.3 shows, nitrogen from 

the fertilizer was the major source of nitrogen for pakchoi uptake, soil residual nitrogen 

and leaching loss during 1st, 2nd and 3rd seasons, contributing 60.12%- 76.00% of the 

total pakchoi nitrogen uptake (Fig. 5.3 a), 67.21%-97.97% of the total mineral nitrogen 

change in the soil (or soil-biochar mixture) (Fig. 5.3 b) and 78.13%-97.50% of the total 

nitrogen leaching loss (Fig. 5.3 c). However, soil mineralized nitrogen was the major 

source of mineral nitrogen retained by biochar; merely 13.60%-35.69% of the mineral 

nitrogen retained by biochar was from fertilizer (Fig. 5.3 d).  

From the 1st to 3rd seasons, biochar addition increased the amount and ratio of 

fertilizer nitrogen in pakchoi and the soil but decreased the amount and percentage in 

leaching loss. The amount of fertilizer nitrogen in pakchoi was decreased in the CKU 

treatment from the 1st season to the 3rd season, while no significant difference was found 

in U1%BC and U5%BC treatments (Fig. 5.3 a). In addition, the amount of mineral 
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nitrogen left by fertilizer in the soil decreased from the 1st season to the 3rd season. 

Biochar addition retained mineral nitrogen from fertilizer and the amount of mineral 

nitrogen from fertilizer was increased by increasing the biochar addition rate (The 

amount of mineral nitrogen from fertilizer in U5%BC was higher than that in U1%BC.) 

(Fig. 5.3 b). Furthermore, more nitrogen from fertilizer was lost via leaching in the 2nd 

and 3rd seasons compared to the 1st season (Fig. 5.3 c). Biochar addition indicated a 

potential to reduce the percentage of fertilizer nitrogen lost via leaching. 

In the 4th season, no labeled fertilizer was applied. The amount of 15N found in 

pakchoi, leachate and biochar were all from the remaining fertilizer in the 1st, 2nd and 

3rd seasons. The amount of nitrogen fertilizer in pakchoi was maintained in U1%BC 

and U5%BC treatments due to biochar addition in the 4th season, while the amount was 

quite low in the CKU treatment (Fig. 5.3 a). In addition, biochar addition decreased the 

percentage of nitrogen fertilizer lost via leaching in U1%BC and U5%BC treatments 

compared to the CKU treatment (Fig. 5.3 c). However, the change in soil mineral 

nitrogen content in the 4th season was mainly attributed to the decrease in mineral 

nitrogen from fertilizer (Fig. 5.3 b). Treatments with biochar addition (U1%BC and 

U5%BC) showed a higher amount and percentage of nitrogen fertilizer decrease in the 

4th season. A similar condition was observed in the mineral nitrogen retained by biochar. 

Most nitrogen released by biochar was the nitrogen from fertilizer rather than the 

nitrogen from soil mineralization in the 4th season (Fig. 5.3 d). 
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Fig. 5.3 Two sources of nitrogen (from fertilizer and from soil mineralization) in 

pakchoi, soil, leachate and biochar. Bars represent the SD of the means (n=3 for 

CKU treatment; n = 12, 9, 6 and 3 for U1%BC and U5%BC treatments in the 1st, 

2nd, 3rd and 4th season, respectively). The positive data in (c) means soil mineral 
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nitrogen content increased and the negative data means soil mineral nitrogen 

content decreased. The differences between two sources of nitrogen were 

significant for all treatments and all seasons. 

 

5.4.4 Recovery of fertilizer nitrogen (15N) 

The nitrogen recovery (NR) in pakchoi, soil and leachate ranged from 19.14% to 

43.51%, from 1.58% to 33.58% and from 10.62% to 48.67%, respectively and the rate 

of the total nitrogen loss ranged from 29.45%-71.73% (Table 5.3). The effect of biochar 

addition on NRE (NR in pakchoi) and NR in soil and leachate was similar over the four 

seasons. Biochar addition increased NRE and NR in soil and decreased NR in leachate, 

and the total rate of nitrogen loss. As Table 5.3 shows, the NRE in CKU treatment was 

less than 20% in the 2nd and 3rd season, while the NRE in biochar addition treatments 

(U1%BC and U5% BC) were over 30% in the 2nd and 3rd season and exceeded 40% in 

the four seasons. The NR in soil decreased sharply in the absence of fertilizer and 

merely 1.58%-4.60% of fertilizer nitrogen was left in the soil after four growing seasons. 

The rate of total nitrogen loss in the CKU treatment increased from 48.86% to 71.26% 

in the 2nd season, while biochar addition significantly decreased the NR in nitrogen loss 

to approximately 50%. The NR in leachate ranged from 22.95% to 48.67% in the CKU 

treatment, and from 10.62% to 25.58% in U1%BC and U5% BC treatment, respectively. 

However, besides leaching loss, fertilizer nitrogen loss from other pathways accounted 

for 16.97%-35.24%. The rate of nitrogen loss via other pathways was increased with 

the 5% biochar addition. 

The fertilizer nitrogen balance was calculated after 15N tracing. The part of 15N not 

found in the experiment system was treated as nitrogen loss from other pathways (Table 

5.3). The rate of nitrogen loss might be overestimated because some of the 

undetermined 15N might by immobilized by microbes and restored in an organic 

nitrogen form in the soil. The 15N abundance in total soil nitrogen content was tested in 

this study (data was not presented) but no statistical significant difference was found 

compared to natural abundance.



 

147 

 

Table 5.3 Recovery of fertilizer nitrogen in pakchoi, soil and leachate and rate of nitrogen loss during the four growing seasons 

 Notes: (1) ‘Unfound’ is the part of labeled nitrogen not found in the experiment system (soil, vegetable plant and leachate) and considered as 
the nitrogen loss from other pathways (such as nitrogen gas loss and nitrogen immobilization) not directly detected in this experiment. It is 
calculated by the difference value between mineral nitrogen applied from fertilizer and the other outputs (including mineral nitrogen uptake by 
vegetables, left in soil and leaching loss). (2) Total loss is calculated by sum of the data in leaching and unfound. Data value was represented 
by mean ± SD (n=3 for CKU treatment; n = 12, 9, 6 and 3 for U1%BC and U5%BC treatments in the 1st season, the 2nd season and the 3rd 
season and the four seasons, respectively.). SD with the same letters are not significantly different, determined by Duncan's test (P<0.05). 

Growing 
seasons 

Treatments 
15N application 

(mg/pot) 
NR in pakchoi (%) NR in soil (%) 

Rate of nitrogen loss(%) 

NR in leachate Unfound(1) Total(2) 
1st season CKU 200 30.21%±2.60% a 20.92%±2.77% b 22.95%±3.37% a 25.91%±3.42% a 48.86%±3.39% a 

 U1%BC 200 36.30%±3.28% a 34.25%±1.72% a 12.49%±1.55% b 16.97%±1.34% b 29.45%±1.46% c 
 U5%BC 200 29.83%±2.54% a 33.58%±4.85% a 10.62%±1.34% b 25.97%±2.76% a 36.58%±2.31% b 

2nd season CKU 200 19.14%±1.77% b 9.6%±1.06% b 44.80%±4.34% a 26.46%±2.67% a 71.26%±3.87% a 
 U1%BC 200 32.09%±3.75% a 15.51%±2.10% a 25.58%±1.55% b 26.82%±2.84% a 52.40%±2.13% b 
 U5%BC 200 36.12%±5.14% a 14.7%±1.15% a 21.10%±2.60% b 28.07%±1.66% a 49.18%±2.07% b 

3rd season CKU 200 19.71%±2.19% b 9.37%±0.95% b 48.67%±6.82% a 22.25%±1.81% b 70.91%±5.36% a 
 U1%BC 200 34.19%±2.76% a 7.06%±1.64% b 23.51%±3.14% b 35.24%±1.90% a 58.75%±2.40% b 
 U5%BC 200 32.96%±2.05% a 13.77%±0.85% a 21.21%±2.68% b 32.06%±4.52% a 53.27%±3.64% b 

Four 
seasons 

CKU 600 26.96%±2.30% b 1.58%±0.34% c 45.90%±5.82% a 25.56%±2.41% b 71.73%±5.08% a 
U1%BC 600 43.51%±4.18% a 3.75%±0.89% b 23.18%±2.46% b 29.55%±1.62%ab 52.74%±2.03% b 

 U5%BC 600 43.23%±5.33% a 4.60%±1.27% a 20.01%±1.91% b 32.16%±1.74% a 52.17%±1.82% b 
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5.4.5 Nitrogen outputs and their sources 

Nitrogen uptake by pakchoi, left in the soil and lost (including leaching) were the 

three pathways of nitrogen output that was the focus of this study (Table 5.4). In the no 

nitrogen condition the nitrogen uptake by pakchoi plants and in the leachate, was all 

from soil mineralized nitrogen. Biochar addition significantly increased nitrogen uptake 

by pakchoi plants and decreased losses via leaching. However, the effect of biochar 

addition on soil mineral nitrogen content was not significant. In the nitrogen condition, 

nitrogen taken up by pakchoi from soil mineralization was lower than that in the no 

nitrogen condition, and fertilizer contributed more nitrogen for pakchoi uptake and loss. 

Although part of fertilizer nitrogen was left in soil, it was found that the decrease in soil 

mineralized nitrogen was greater and thus the change of mineral nitrogen content 

ranged from -16.34 to 13.30 mg/pot. 
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Table 5.4 Nitrogen outputs from two sources during four growing seasons 

 Notes:(1) The positive data in the column ‘Mineral nitrogen left in soil’ means soil mineral nitrogen content increased and the negative date 

means soil mineral nitrogen content decreased. Data value was represented by mean (n=3). Statistical analysis was made in the no nitrogen and 

nitrogen conditions and represented by ‘letter’ and ‘(letter)’, respectively. Means followed by same letters were not significantly different, 

determined by Duncan's test (P<0.05). 
 

 

  

(mg/pot) Nitrogen uptake by pakchoi Mineral nitrogen left in soil (1) Nitrogen loss 

Leaching Other loss 

Sources 

from fertilizer 

from soil 

mineralization from fertilizer 

from soil 

mineralization from fertilizer 

from soil 

mineralization from fertilizer 

CK  179.09 b  -104.34 a  108.93 a  

1%BC  230.47 a  -103.54 a  68.47 b  

5%BC  224.67 a  -81.36 a  49.32 b  

CKU 161.76 (b) 92.40 (b) 9.46 (b) -25.80 (b) 275.39 (a) 39.02 (a) 153.39 (b) 

U1%BC 261.08 (a) 103.72 (a) 22.49 (a) -22.93 (b) 139.10 (b) 42.52 (a) 177.33 (ab) 

U5%BC 259.35 (a) 95.89 (b) 27.60(a) -14.30 (a) 120.00 (b) 30.77 (b) 193.05 (a) 
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5.5 Discussion 

Nitrogen uptake by plants is determined by the status of the ecosystem balance 

(Haynes, 2012). In this study, the amount of mineral nitrogen supplied to the vegetables 

came from chemical commercial fertilizer and soil mineralized nitrogen. Although the 

mineral nitrogen content in organic soil was up to 64.77 mg/kg (5.2.1), nitrogen 

fertilizer application still noticeably increased pakchoi nitrogen uptake (Fig. 5.2). The 

same trend between yield and nitrogen uptake by pakchoi was found in Fig. 5.1 and 

Fig.5.2. In the no nitrogen condition, the soil mineralized nitrogen had become the 

major nitrogen input and the stable yield (Fig. 5.1a) and mineral nitrogen content (Fig. 

3.3 a & c) implied that the system had reached a nitrogen balance. Furthermore, biochar 

addition significantly increased nitrogen uptake by pakchoi (Fig. 5.2 a) in the no 

nitrogen condition while no significant change was observed with respect to yield (Fig. 

5.1 a). Previous studies reported consistent findings that nitrogen content in plant tissue 

would increase with increasing amount of nitrogen application and yield might non-

significant or delayed response to that due to other factors such as tillage practice or 

fertilizer applied timing (Ahmad et al., 2009; Halvorson et al., 2006). It seemed that 

plant nitrogen uptake was more sensitive than yield to the increase in soil mineral 

nitrogen content than pakchoi yields. This implied that nitrogen uptake by plants could 

be used to estimate plant yield when the soil mineral content was changed.  

In this study, it was found that pakchoi was more inclined to use nitrogen supplied 

by the fertilizer than from soil mineralized nitrogen (Fig. 5.3); in the treatments where 

nitrogen fertilizer was applied, both yield and nitrogen uptake by pakchoi was increased 

by fertilizer in the 1st season. But in the treatment without biochar addition, both yield 

and nitrogen uptake of pakchoi decreased from the 2nd season. This suggests that (1) 

nitrogen fertilizer application contributed to the high pakchoi yield and nitrogen uptake; 

(2) soil nitrogen processes (such as nitrogen mineralization, nitrogen loss) and some 

properties (such as organic matter content, pH and CEC, Chapter 2 ) could be changed 

by continuous planting, leading to a decrease in pakchoi yield and nitrogen uptake.  

Excessive nitrogen fertilizer application is one of the most important challenges 

for Chinese vegetable production systems (Ju et al., 2007; Ding et al., 2010; Liang et 

al., 2013); however, the decisive role of nitrogen fertilizer in yield cannot be discounted 

(Zhu and Chen, 2002; Mosier et al., 2004). Reduction in nitrogen fertilizer application 

could only be feasible if plant yield and nitrogen uptake were not significantly affected. 
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Thus, improving NRE is a key approach in maintaining plant yield. 

Nitrogen uptake by plants is one of the processes in the vegetable production 

system and can be influenced by residual soil nitrogen, nitrogen losses and retention by 

biochar.  

It was interesting to find that there were almost no significant change in the soil 

mineral nitrogen content in treatments with nitrogen applied in the 1st, 2nd and 3rd 

seasons (CKU, U1%BC and U5%BC treatments). Previous studies observed nitrate 

nitrogen as the main form of fertilizer nitrogen left in the soil (Guo et al., 2008; Min et 

al., 2011b), which could easily be lost when leaching occurs. Compared to the 1st 

season, higher percentage loss in the 2nd and 3rd seasons via leaching loss (Fig. 5.3c 

and Table 5.3). It was believed the increase nitrogen loss via leaching was partly from 

the fertilizer nitrogen left in soil profile in the prior season because the percentage of 

nitrogen left in soil should be double after the 2nd season corresponding to the same 

loss. Actually, 20% of fertilizer nitrogen was found in soil after the 1st season, while 

only about 9% was found after the 2nd and 3rd season (Table 5.3). The delay of fertilizer 

nitrogen loss could also be confirmed by the nitrogen leaching loss in the 4th season 

when no more nitrogen fertilizer application (Fig. 5.3c). The planting of catch crops 

(Thorup-Kristensen et al., 2003; Guo et al., 2008; Shi et al., 2009) could also decrease 

residual nitrogen in the soil. In this study, pakchoi played a similar role as catch crops 

which were planted without nitrogen fertilizer application in the 4th season. Furthermore, 

leaching was triggered by excessive irrigations. As a result, the mineral residual 

nitrogen in soil from the first three fertilizer applications during the three seasons was 

depleted after the 4th season (Chapter 3, Fig. 3.3 d). It indicated that fertilizer nitrogen 

left in the soil did not affect nitrogen uptake by plants in this study. In addition, the 

amount of nitrogen retained by biochar was very slight and 48.70%-76.81% of the 

nitrogen was released in the 4th season (Fig. 5.3 d and Chapter 3, Fig. 3.4). The 

restriction of biochar retaining nitrogen on plant nitrogen uptake was negligible. 

Therefore, nitrogen loss was the main restriction influencing plant nitrogen uptake in 

this study. 

The decrease in NRE in pakchoi was found in the 2nd season corresponding to a 

large increase in nitrogen loss (Table 5.3). The decrease in pakchoi nitrogen uptake 

could be partly explained by the increased nitrogen loss. Some studies suggest that 

nitrogen losses through leaching limits the improvement of nitrogen efficiency (Rathke 
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et al., 2006; Ding et al., 2010). However, it was also likely that pakchoi assimilated less 

fertilizer nitrogen in the soil environment with pH values of 5.32 in the 2nd season (The 

original soil pH value was 5.56 at the beginning of the pot experiment, Chapter 4, Fig. 

4.1) and thus more fertilizer nitrogen was left in the soil inducing an increase in nitrogen 

loss. Similar results were reported that plant growth was affected by soil acidification 

resulting in low nitrogen uptake by plants (Ju et al., 2007; Shi et al., 2009; Liang et al., 

2013). Li et al. (2007) concluded that improving NRE could effectively reduce nitrogen 

leaching.  

In this study, biochar addition improved nitrogen uptake by pakchoi vegetable 

plants through ameliorating soil acidity (Chapter 4) and decreasing nitrogen loss (Table 

5.3). The maintenance of yield and nitrogen uptake by pakchoi plants (Fig. 5.1 and Fig. 

5.2) could be attributed to the stable pH environment of the soil (Chapter 4 Fig. 4.1) in 

the treatments with biochar addition. Furthermore, from the data in Chapter 3, it was 

thought that biochar increased pakchoi nitrogen uptake by prolonging nitrogen 

retention time in the soil (Kameyama et al., 2012), which could partly be supported by 

the improved soil water holding capacity (Spokas et al., 2012; Bruun et al., 2014), and 

the significant decrease in volume and nitrogen concentration of leachate (Chapter 3 

Fig.3.7 and Fig. 3.7). However, the nitrogen loss via other pathways was relatively 

increased by biochar addition (Table 5.3 ‘Unfound’). It was speculated that the part of 

15N loss via other pathways might consist of nitrogen loss via gas and nitrogen 

immobilization (from mineral nitrogen to organic nitrogen). Feng et al. (2017) reported 

that biochar addition at the rate of 3% would significantly enhance ammonia 

volatilization due to the increase in soil pH value. It may be a possible explanation for 

the increased nitrogen loss via gas in this study because the pH value in U1%BC and 

U5%BC treatments were significantly higher than that in CKU treatment (Chapter 4, 

Fig. 4.1). On the other hand, some studies reported biochar addition stimulated fertilizer 

nitrogen immobilization and thus reduced nitrogen availability (Clough and Condron, 

2010; Bruun et al., 2012). The results in this study may be different. The mineral 

nitrogen from soil mineralization did not achieve a balance in both nitrogen conditions 

(Table 5.4). The decrease in mineral nitrogen from soil mineralization in agricultural 
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soil was much lower than the amount of mineral nitrogen uptake by plant and leaching 

loss. This implies that soil mineralization contributed 100-200 mg/pot nitrogen for plant 

assimilation and loss. There was certainly some 15N (fertilizer nitrogen) immobilized 

and restored in an organic form in the soil but much more nitrogen was produced by 

soil mineralization due to biochar addition. 

 

5.6 Conclusion 

Biochar addition effectively maintained pakchoi yields and nitrogen uptake. The 

NR of 15N in pakchoi and soil ranged from 19.14% to 43.51% and from 1.58% to 

33.58%, respectively and the rate of 15N loss ranged from 29.45% to 71.73%. Biochar 

addition increased the NR in pakchoi and soil and decreased the NR in leachate and the 

rate of nitrogen loss. Compared to nitrogen left in the soil and retained by biochar, 

nitrogen loss had an obvious effect on plant nitrogen uptake in this study.  

Fertilizer nitrogen was the major source for pakchoi nitrogen uptake, residual soil 

nitrogen and nitrogen leaching loss; contributing 60.12%- 76.00% of the pakchoi 

nitrogen uptake, 67.21%-97.97% of the mineral nitrogen change in soil and 78.13%-

97.50% of the nitrogen leaching loss. However, soil mineralized nitrogen was the major 

source for biochar retaining nitrogen. In the absence of nitrogen fertilizer, the nitrogen 

fertilizer left in the soil from the 1st, 2nd and 3rd seasons decreased sharply and most 

fertilizer nitrogen retained by biochar was subsequently released .  

In conclusion, biochar can regulate the distribution of nitrogen fertilizer by 

decreasing nitrogen loss through leaching and thus increase nitrogen uptake by plants 

and maintain plant yield under intensive vegetable production systems, characterized 

by the continuous application of chemical commericial nitrogen fertilizers. However, 

biochar may increase the risk of nitrogen loss via ammonia volatilization. Further 

research on the effect of biochar on plant growth and nitrogen losses via various 

processes is still needed before biochar can be applied in vegetable production systems 

to mitigate the effect of excessive N fertilisier application by Chinese farmers 
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CHAPTER 6: GENERAL CONCLUSIONS 

6.1 Introduction 

With the pace of economic development, fields used for vegetable planting have 

increased considerably over the past decades in order to meet the large consumer 

demand in China (NBS, 2015). Maintaining high vegetable yields is of great 

significance because the land area available for vegetable cultivation is limited (Chen, 

2007; Chen et al., 2013).  

Farmers apply large amounts of nitrogen fertilizer to ensure sufficient nitrogen is 

available in the soil for vegetable growth (Huang et al., 2006; Ju et al., 2007; Shi et al., 

2009). Intensive cultivation is very common in vegetable production systems in China 

but excessive application of nitrogen fertilizer can change nitrogen processes (Zhu et 

al., 2005; Cao et al., 2008; Min et al., 2011; Luo et al., 2015) and some soil chemical 

properties(Yin et al., 2004; Sun et al., 2006), which can hamper sustainable production. 

However, neither reducing chemical nitrogen fertilizer application nor using organic 

nitrogen fertilizer can comprehensively address the existing problems (such as high 

nitrogen loss and soil acidity) in vegetable production fields (Ju et al., 2009; Xue et al., 

2010; Wei et al., 2012). Therefore, there is a need to consider new approaches with 

regard to soil chemical properties and nitrogen processes that could affect the nitrogen 

supply to the soil (including soil nitrogen retention, nitrogen mineralization and 

nitrogen loss) in vegetable production systems, to ensure better yields and higher 

nitrogen uptake and use efficiency. 

Biochar is a carbon rich product derived from biomass pyrolysis under low oxygen 

conditions, resulting in a porous, low density carbon rich material (Lehmann, 2009). It 

has been widely studied as a soil amendment fueled because of its potential to change 

soil conditions and improve crop yields (Atkinson et al., 2010; Ding et al., 2010; 

Spokas et al., 2012; Biederman and Harpole, 2013; Jeffery et al., 2015). The effects of 

biochar addition on soil nitrogen content and soil nitrogen transformation processes 

have been reported (Clough and Condron, 2010; Bruun et al., 2012; Dempster et al., 
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2012; Feng et al., 2017). Biochar may be an option for regulating nitrogen processes 

and mitigating soil acidity in vegetable soils due to its adsorption and alkalinity 

properties (Lehmann, 2007). In China, there are sufficient agricultural residues which 

can serve as raw materials for biochar production, and biochar production industries are 

increasing in Chinese rural areas.  

However, studies on biochar addition to soils used for vegetable production have 

not been well documented (Jia et al., 2012). It is still unknown whether the positive 

effect of biochar on soil nitrogen processes and soil chemical properties, found in short 

term experiments or incubation studies, can be consistent in the long-term. Information 

on the bioavailability of nitrogen retained by biochar is still lacking. It is not well 

understood whether biochar addition and its effect on nitrogen retention, plant uptake, 

residual soil nitrogen and nitrogen losses are influenced by the sources of nitrogen 

(nitrogen from soil mineralization processes or nitrogen from chemical fertilizer). 

Research is needed to study and assess the effects of biochar addition on nitrogen 

retention and uptake by vegetables produced under continuous and intensive cultivation 

systems in China. 

Therefore, the study was carried out as a pot experiment over a time period of four 

continuous growing seasons using the technique of stable isotope 15N-traced, with the 

aim of determining the effects of biochar addition on soil nitrogen retention and 

uptake by vegetables (pakchoi) in the intensive cultivation systems in China. 

6.2 Responses of major findings to the objectives of this study 

Objectives Major findings 

 To determine the differences of soil 

chemical properties and nitrogen 

dynamics between vegetable soils 

and paddy soils. 

 Chapter 2 (summarized in 6.2.1) 

 To determine the effect of biochar 

addition on soil nitrogen retention in 

 Chapter 3 (summarized in 6.2.2) 
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soils used for vegetable production 

in China. 

 To determine the effect of biochar 

addition on soil acidity in soils used 

for vegetable production in China. 

 Chapter 4 (summarized in 6.2.3) 

 To determine the effect of biochar 

addition on nitrogen uptake by 

vegetable (pakchoi) and yields. 

 Chapter 5 (summarized in 6.2.4) 

 To examine the ratios of nitrogen 

fertilizer to total nitrogen (fertilizer 

nitrogen + soil mineralized nitrogen) 

and the recovery of nitrogen 

fertilizer in plants, soil and leachate 

with different biochar addition rates. 

 Chapter 5 (summarized in 6.2.5) 

 

6.2.1 Differences in nitrogen processes and soil chemical properties between paddy 

soils and vegetable soils 

A pot experiment was conducted in the absence of nitrogen fertilizer to compare 

three pairs of soil samples (every pair included one paddy soil and one vegetable soil) 

collected from the Tailake region of China. The major findings were: 

 Soil pH values and organic matter content was lower in the vegetable soils 

compared with those in the paddy soils. 

 Nitrogen leaching loss from the vegetable soils was higher than that from the paddy 

soils and was attributed to the higher soil mineral nitrogen content of vegetable 

soils 

 Pakchoi nitrogen uptake in the vegetable soils was lower than that in the paddy 

soils due to the soil acidity and high nitrogen leaching loss in the vegetable soils. 
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6.2.2 Effect of biochar addition on soil nitrogen retention in vegetable soil 

Nitrogen retention in vegetable soils was studied by taking into consideration soil 

mineral nitrogen content, nitrogen retained and released by biochar and nitrogen 

leaching losses at three biochar additional rates (0, 1% and 5 %) over four continuous 

growing seasons. The major findings were: 

 Biochar addition significantly increased the soil mineral nitrogen content by 

enhancing nitrogen retention in soils and soil nitrogen mineralization.  

 The mineral nitrogen retained in soils amended with biochar could be reused by 

plants.  

 Biochar addition reduced nitrogen leaching losses in soils by decreasing the 

volume and nitrate concentration of leachate. 

6.2.3 Effect of biochar addition on vegetable soil acidity 

The soil pH value, pH buffering capacity, acidification rate and bases contents in 

soil were tested after planting the vegetable pakchoi in soils amended with biochar and 

used for vegetable production over four continuous seasons . The major findings were: 

 Biochar addition increased soil pH values or retarded soil acidification.  

 Biochar addition promoted soil pH buffering capacity and reduced acidification 

rate.  

 Biochar addition maintained soil bases content under leaching conditions. 

6.2.4 Effect of biochar addition on plant nitrogen uptake and yield 

Pakchoi nitrogen uptake and yield was measured in the four continuous seasons 

with nitrogen fertilizer being applied in the 1st, 2nd and 3rd seasons. The major findings 

were: 

 Biochar addition maintained pakchoi yield and nitrogen uptake, while pakchoi 

yield decreased in the treatments without biochar from the beginning of the 2nd 

season. 
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6.2.5 Amount of nitrogen from two sources and nitrogen recovery efficiency of plant 

nitrogen uptake, nitrogen residue in soil and nitrogen loss 

The technique of stable isotope 15N-traced was used to identify fertilizer nitrogen 

sources in plant nitrogen uptake, nitrogen residue in soil and nitrogen loss in four 

seasons (with labeled nitrogen fertilizer applied in the 1st, 2nd and 3rd seasons and no 

nitrogen fertilizer applied in the 4th season). The major findings were: 

 Chemical fertilizer provided the major source for pakchoi nitrogen uptake, soil 

residual nitrogen and nitrogen leaching loss, while soil mineralization processes 

provided the major source of nitrogen retained by the biochar.  

 Biochar addition increased the NRE of pakchoi and the recovery of fertilizer 

nitrogen in soil and reduced the recovery of fertilizer nitrogen in leachate.  

 In the absence of nitrogen fertilizer, the nitrogen fertilizer left in the soil from the 

1st, 2nd and 3rd seasons decreased sharply. Most nitrogen fertilizer retained by 

biochar was also released during this time.  

 

6.3 General conclusion  

The effects of biochar addition on nitrogen retention in soils used for vegetable 

production and nitrogen uptake by vegetable plants (pakchoi) were investigated. Based 

on the major findings, it can be concluded that: 

The effective soil output for plant uptake was reduced and the unusable output via 

leaching loss was increased after the conversion from paddy to vegetable cultivation. 

Biochar addition could promote soil nitrogen retention, decrease nitrogen fertilizer loss, 

retarded soil acidification and hence increased plant nitrogen uptake in continuous 

growing seasons in vegetable production systems. The use of biochar as an amendment 

for vegetable soil could maintain high vegetable yields and make it possible to reduce 

nitrogen fertilizer application rates. 
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6.4 Advices for future work 

There are plenty of study needed before extensive utilization of biochar in 

vegetable production systems. As the findings in the thesis were concluded from pot 

experiments, the effect of biochar on nitrogen processes should be assessed in the 

special field for several growing seasons. The additional method of biochar is the fields 

where studies are urgently needed now. 

6.4.1 How to determine whether the soil should be added biochar? 

It is important to define the role of biochar before answer this question. Biochar 

was firstly studied as a carbon-rich product for fixing atmospheric carbon in soil system. 

When biochar is used as a carbon storage material, it can be returned to any soils in 

natural systems.  

In recent years, increasing attentions have paid with regard the amending capacities 

of biochar (Seen detail in 1.5 Chapter 1). The characteristics of biochar produced from 

different original materials or pyrolysis conditions are different attributing to various 

amending functions. When biochar is treated as a soil amendment, its proper producing 

condition is the key to determine its effect on soil problem. Furthermore, biochar may 

not as effective as other specific amendments for certain soil problem (such as heavy 

metal pollution) and lots of biochar will be needed when biochar is the only amendment 

used for that problem. The expense, efficiency and the potential negative effect of 

biochar should be considered for determining whether biochar is the optimal choice. 

However, the problems in most cultivated soils are various and correlative and biochar 

addition could settle several soil problems at once. For example, high leaching loss, low 

nitrogen retention are the major two constraints for plant uptake nitrogen in this study. 

A significant promotion of plant nitrogen uptake was found in treatments with biochar 

addition in continuous growing seasons, which was contributed to the comprehensive 

effects of biochar on soil nitrogen retention, leaching loss and even soil pH maintaining 

(6.2 in Chapter 6). It was economical and environmentally friendly to use biochar as 

the soil amendment.  
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In our opinion, there is no need to add biochar to all kinds of fields. There are some 

questions that we suggest to ask before adding biochar to soil listed as below: 

 

What is biochar used as? 

A soil amendment A carbon storage material Other roles 

(1) What is the problem 

about the soil? 

(1) Where is the biochar 

from? 

(1) Why choose biochar 

for it? 

(2) Can the problem be 

alleviated / amended 

by biochar? 

(2) Is the producing 

technique low-

carbon? 

(2) What advantages does 

biochar have 

compared with 

previous methods? 

(3) How much biochar 

should be added for 

the problem? 

(3) Will the system be 

affected by biochar 

addition? 

… 

(4) Is there any negative 

effect or risks along 

with biochar addition 

rate? 

…  

(5) Is it economical to use 

biochar as the 

amendment for this 

problem? 

  

…   

6.4.2 How to determine the optimal biochar addition rate and frequency? 

When biochar treated as an amendment, its addition rate should be determined by 

the amending function of certain problem in theory. Unfortunately, the effect of biochar 

addition on problem amending is not commonly linear growth. For example, two 

addition rates (1% and 5% biochar) were used in this study. Soil leaching loss was 

further reduced by more biochar addition but no significant effect was found on soil 
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mineral nitrogen content, total nitrogen loss, soil pH value and plant nitrogen uptake 

between 1% and 5% biochar addition. Furthermore, Kammann et al. (2012) found 

quinoa growth was retarded with a high biochar addition and Feng et al. (2017) reported 

a significant increase in ammonia volatilization in paddy soil with 3% biochar addition. 

However, meta-analysis of biochar addition rates provided little insight into how 

biochar should best be applied (Biederman and Harpole, 2013). 

Furthermore, the frequency of biochar addition is another problems in practical 

application. For the field agricultural residue returned as the form of biochar, it will be 

added after every growing season. The rate of biochar addition may be low for one time 

but the rate of cumulated addition will be high and the long-term effects of multiple 

additions are still lack of study. 

In this study, it was found soil pH buffering capacity could be used to determine 

biochar addition rates by using the linear relationship between slope of titration curve 

and biochar addition rate. Additionally, biochar should be added again when soil pH 

values decrease and no significant difference was shown in the pH of the soil without 

the addition of biochar. Findings in Chapter 4 suggest that multiple additions of biochar 

are necessary to prevent acidification.  

Therefore, the proper biochar addition rate should be in the range of high efficiency 

rather than best effect on the aiming problem. The indicators related the aiming problem 

could be used to determine the time for adding biochar again. Moreover, the long-term 

effects on other soil physical / chemical characteristics and the response of plant to 

biochar addition need to be taken account and also studied further. 

6.4.3 Use biochar as a carrier for nitrogen transport 

The availability of mineral nitrogen retained by biochar has been demonstrated in 

this study. In addition, Taghizadeh-Toosi et al. (2012) has reported that the ammonia 

adsorbed on biochar could be utilized by plants again, thus implying that biochar could 

be used as a carrier for transporting nitrogen. 

Non-point pollution is a serious problem in China and nitrogen from agricultural 

fields contributes approximately 40% of the nitrogen in the water system (Yang et al., 
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2013). If biochar could be replaced with an environmental material to retain or adsorb 

nitrogen from the water system, it could be taken back and returned to the fields as a 

type of fertilizer.  

However, there is limited data available for the nitrogen adsorbing capacity of 

biochar in open water systems and the technology of collecting biochar from water 

systems is still unknown. 
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