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Abstract 
 
Longitudinal data tend to be correlated and hence posing a challenge in the analysis 

since the correlation has to be accounted for to obtain valid inference. We study 

various statistical methods for such correlated longitudinal binary responses.  These 

models can be grouped into five model families, namely, marginal, subject-specific, 

transition, joint and semi-parametric models.  Each one of the models has its own 

strengths and weaknesses.  Application of these models is carried out by analyzing 

data on patient’s adherence status to highly active antiretroviral therapy (HAART).  

One other complicating issue with the HAART adherence data is missingness.  

Although some of the models are flexible in handling missing data, they make certain 

assumptions about missing data mechanisms, the most restrictive being missing 

completely at random (MCAR).  The test for MCAR revealed that dropout did not 

depend on the previous outcome.  
 

A logistic regression model was used to identify predictors for the patients’ first 

month’s adherence status.  A marginal model was then fitted using generalized 

estimating equations (GEE) to identify predictors of long-term HAART adherence.  

This provided marginal population-based estimates, which are important for public 

health perspective.  We further explored the subject’s specific effects that are unique 

to a particular individual by fitting a generalized linear mixed model (GLMM).  The 

GLMM was also used to assess the association structure of the data.  To assess 

whether the current optimal adherence status of a patient depended on the previous 

adherence measurements (history) in addition to the explanatory variables, a 

transition model was fitted.  Moreover, a joint modeling approach was used to 

investigate the joint effect of the predictor variables on both HAART adherence 

status of patients and duration between successive visits.  Assessing the association 

between the two outcomes was also of interest.  Furthermore, longitudinal 

trajectories of observed data may be very complex especially when dealing with 

practical applications and as such, parametric statistical models may not be flexible 

enough to capture the main features of the longitudinal profiles, and so a semi-

parametric approach was adopted.  Specifically, generalized additive mixed models 

were used to model the effect of time as well as interactions associated with time 

non-parametrically.  
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Chapter 1 

Introduction 
 

Highly active antiretroviral therapy (HAART) has dramatically reduced morbidity and 

mortality among HIV-infected individuals (Kalichman, Ramachandran & Catz, 1999; 

Berg et al., 2004; Gill et al., 2005), and requires strict adherence to attain optimal 

clinical and survival benefits (Paterson et al., 2000).  Patients who take 95% or more 

of their prescribed medication benefit more from treatment than those who take less 

than 95% (Paterson et al., 2000).  Identifying and overcoming factors that reduce 

adherence to HAART is therefore critical if optimal clinical and survival benefits are 

to be attained.  Optimal adherence to HAART is often influenced by a variety of 

factors, comprising of social, demographic, economic and behavioural issues 

(Chesney, 2000; Ferguson et al., 2002).  There have however been inconsistent 

findings regarding the association between adherence, demographic and economic 

factors.  For instance, some studies have shown an association between adherence 

and age (Penedo et al., 2003; Murphy et al., 2004), while others did not find such a 

relationship (Roca, Lapuebla & Vidal-Tegedor, 2005).  Income has also been 

associated with HAART adherence in some studies (Kleeberger et al., 2001; Laniece 

et al., 2003) while others have concluded that there was no link between the 

adherence and income (Mohammed et al., 2004).  Social factors that include family 

support have been reported to have an association with adherence (Ammassari et 

al., 2002).  The fact that an association between adherence and demographic and 

economic factors are observed inconsistently, highlights the need for an evaluation 

and understanding of how these factors interact among themselves, and how they 

interact with other social, clinical and behavioural factors.   

 

Moreover, adherence to medication generally is problematic when therapeutic 

regimens are employed for prolonged periods (Godin et al., 2005; Mehta et al., 

1997).  Adherence to antiretroviral medication is no exception; patients are required 

to take several pills each day for an undefined period of time (Godin et al., 2005).  

Therefore, not only high levels of adherence at a point in time are required, but also 

sustained adherence to antiretroviral medication is critical.  This necessitates 

evaluating determinants of optimal HAART adherence over time, which gives rise to 
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a longitudinal study, in this case with a binary response defined by whether a patient 

is or is not optimally adherent to medication.   

 

In a longitudinal study, individuals are observed over a period of time, and for each 

individual, data are collected at multiple time points.  That is, the defining feature of a 

longitudinal study is that multiple or repeated measurements of the same variables 

are made for each individual in the study over a period of time.  For example, with 

the HAART adherence study, information related to each patient’s adherence is 

recorded at every (monthly) visit to the clinic until the patient ceases to visit the clinic.  

A key characteristic of longitudinal data is that observations within the same 

individual may be correlated, and this motivates most of the statistical methods for 

the analysis of longitudinal data (Diggle, et al., 2002; Fitzmaurice, Laird and Ware, 

2004).  Note that longitudinal data sets differ from time series data sets in that 

longitudinal data usually consists of a large number of short series of time points 

whereas time series data sets consist of a single, long series of time points (Diggle, 

et al., 2002).  Longitudinal studies allow the direct study of change over time and the 

factors that influence this change, as well as assessing within-subject changes 

(Lindsey, 1999; Twisk, 2003; Fitzmaurice et al., 2004).  Moreover, longitudinal data 

can also provide information about individual change.  Statistical estimates of 

individual trends can be used to better understand heterogeneity in the population, 

the determinants of growth and change at the individual level.  Furthermore, in some 

longitudinal studies, although one time-varying outcome may be of primary interest, 

several related processes may also be measured, and the association between a 

primary outcome and another related outcome can reveal a great deal of insight 

about the mechanism of behavioural change. 

 

Despite the strengths of a longitudinal study, there are challenges in the analysis that 

need to be addressed accordingly.  The set of measurements on one subject tends 

to be correlated, measurements on the same subject close in time tend to be more 

highly correlated than measurements far apart in time, and the variances of 

longitudinal data often change with time (Diggle et al., 2002; Fitzmaurice et al., 

2004).  These potential patterns of correlation and variation may combine to produce 

a complicated covariance structure.  Accordingly, this covariance structure must be 

taken into account in order to draw reliable conclusions from the data   Thus, unlike 
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in the classical setting where there exists a single source of variation between 

subjects, the heterogeneity between clusters introduces an additional source of 

variation and complicates the analysis.  That is, the analysis is complicated by the 

presence of the within subject correlation among the repeated observations on the 

same subject.  Therefore, standard regression models may produce invalid results 

because two of the parametric assumptions (independent observation and equal 

variances) may not be valid.  More complex statistical models have to be used to 

account for the dependence in the data.  This leads to parameter estimation that can 

be computationally intensive.  Sometimes there is a lack of available computer 

software for the application of these more complex statistical models, or the level of 

statistical sophistication required of the user is beyond the typical level of the 

practitioner (Hedeker and Gibbons, 2006).   

 

Note that if observations are positively correlated, which often occurs with 

longitudinal data (Crowder and Hand, 1990; Davis, 2002), then variances of time 

independent variables (variables that estimate group effect or between-subject 

effect) are underestimated if the data are analyzed as though the observations are 

independent.  That is the Type I error rate (rejecting the null hypothesis which is true, 

i.e. a false positive) is inflated for these variables (Dunlop, 1994).  For time-

dependent predictor variables (variables that measure the time effect or within-

subject effect), ignoring positive correlation leads to a variance estimate that is too 

large.  That is, the Type II error rate (failing to reject the null hypothesis when it is 

false, i.e. a false negative) is inflated for these variables (Dunlop, 1994).  Because 

the variances of the group effects will be underestimated and the variance of the 

time effects will be overestimated if positive correlation is ignored, it is again evident 

that correlated outcomes must be accounted for to obtain valid analyses. 

 

Missing data are a common problem in longitudinal studies.  Study participants do 

not always appear for a scheduled observation or simply leave the study before its 

completion.  When some observations are missing, data are necessarily unbalanced 

over time since not all individuals have the same number of repeated measurements 

obtained at a common set of occasions.  One of the consequences of lack of 

balance and/or missing data is that it requires some care to recover within-individual 

change (Fitzmaurice et al., 2004).  For instance, when data are missing, especially 
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when there is attrition of subjects whose responses are different from those who 

remain in the study, then the mean response over time can be misleading; changes 

over time may reflect the pattern of missingness or attrition, and not within-individual 

change.  Thus with missing data, one will need to examine assumptions about the 

reasons for missingness and the appropriateness of the analysis to determine the 

validity inferences.  Also the data may be unbalanced due to mistimed 

measurements, as a result, models used for analysis must be able to handle data 

which are unbalanced.  

 

One other thing to consider is that the longitudinal trajectories of observed data may 

be very complex especially when dealing with practical applications.  Although the 

parametric regression models provide a powerful tool for modeling the relationship 

between a response variable and the covariates in longitudinal studies, they suffer 

from inflexibility in modeling complicated relationships between the response and 

covariates in various applications of practical longitudinal data.  Consequently, semi-

parametric or nonparametric statistical models become an attractive alternative for 

many applications.  However, the presence of the within-subject correlation among 

repeated measures over time presents major challenges in developing 

nonparametric regression methods for longitudinal data. 

 

Although many approaches to the analysis of longitudinal data have been studied, 

most are restricted to the setting in which the response variable is normally 

distributed.  Methods for continuous normal data are the best developed and the 

linear mixed model (Laird and Ware, 1982) has played a prominent role in extending 

the general linear model to handle correlated continuous data.  Many of the earlier 

linear models for analysis of longitudinal data were based on the analysis of variance 

(ANOVA) techniques (Fitzmaurice et al., 2004; Longford, 1993).  These included the 

univariate ‘Mixed Model’ ANOVA (univariate repeated-measures ANOVA) and the 

Multivariate Analysis of Variance (MANOVA) for repeated measures.  These 

methods had drawbacks that restricted their effectiveness in many applications.  The 

univariate repeated measures ANOVA assumes a compound symmetry form for the 

covariance structure, i.e. that variances are constant across time and the correlation 

between any pair of measurements is the same regardless of the time interval 

between measurements.  Repeated measures ANOVA also assume sphericity, 
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which is a more general form of compound symmetry.  It relates to the equality of the 

variances of the differences between the levels of the repeated measures factor 

(Anderson, 1958) and Mauchly’s test is commonly used to test this assumption. 

Moreover, measurements should be made at a common set of occasions for all 

individuals, all covariates must be discrete factors and data must be complete.  Even 

though the repeated MANOVA does not make restrictive assumptions on the 

covariance among the longitudinal responses on the same individual, it cannot be 

used when the design is unbalanced over time (Hedeker and Gibbons, 2006).  Both 

these procedures focus on the estimation of group trends over time but provide little 

help in understanding how specific individuals change over time (Hedeker and 

Gibbons, 2006). 

 

Due to the above mentioned limitations and other reasons, linear mixed models have 

recently provided an alternative for analysis of longitudinal data.  With these models, 

the inclusion of random subject effects in the model account for the influence on 

individuals on their repeated observations.  In addition, linear mixed models are even 

more appealing in the analysis of longitudinal data because individuals are not 

assumed to be measured on the same number of time-points; as a result, individuals 

with incomplete data across time are included in the analysis.  Again, since time is 

treated as a continuous variable, individuals do not have to be measured at the 

same time-points.  Both time-invariant and time-varying covariates can be included 

in the model (Hedeker and Gibbons, 2006).  Owing to the elegant properties of the 

multivariate normal distribution, linear mixed models’ theory and implementation are 

greatly simplified.  Software programs, such as SAS use the procedure MIXED 

(Littell et al., 2006) to fit this kind of model. 

 

One other attractive feature of mixed models is that they have a close connection 

with smoothing splines.  Because linear mixed models are so well developed, 

researchers have exploited the connection with splines by incorporating a 

nonparametric time function in linear mixed models (Zeger and Diggle, 1994; Zhang 

et al., 1998; Verbyla et al., 1999) to capture more complex longitudinal trajectories. 

 

In contrast, when the longitudinal response is discrete (e.g. binary), the issue that 

arises is the lack of discrete analogue to the multivariate normal distribution.  
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Complete specification of the joint distribution of the response vector becomes more 

problematic and fully likelihood-based methods are generally awkward.  Also 

modeling time non-parametrically for non-Gaussian outcomes has been a challenge.  

Consequently, the main of objective of this study is to critically assess the binary 

longitudinal methodologies and apply these methods to identify the causal factors for 

optimal HAART adherence among HIV positive adults who are on treatment.  

Specifically, the study seeks to survey statistical methods for longitudinal binary 

responses with a view to highlighting issues that arise at implementation and employ 

these methods to determine predictors of long-term optimal HAART adherence, and 

assess whether factors affecting baseline adherence also influence long-term 

HAART adherence.   

 

Since many longitudinal measurements in health sciences and other fields that 

include social sciences are discrete (binary, count etc), and unsuitable for linear 

modeling, the results from this study can assist data analysts in choosing alternative 

appropriate models that are within reach.  Moreover, the use of most statistical 

models is usually illustrated using simple and ‘convenient’ datasets, e.g. balanced 

data with a small number of subjects and a few covariates.  In practice, researchers 

face ‘messy’ data that have a large number of subjects together with a large number 

of covariates (to control for potential confounders) in addition to unbalancedness, 

irregularly spaced observations and missing values.  In such instances, the choice of 

the statistical procedure as well as its implementation may be far from obvious.  

Demonstrating analyses and implementation of the longitudinal statistical methods 

for binary data using practical data with all features mentioned will highlight important 

issues that a data analyst should be aware off.  To this end, the results of our study 

can help clarify the substantive questions which data analysts can address with each 

approach while at the same time being fully conscious of the merits and limitations of 

each method of analysis.   

 

With application of the surveyed statistical methods for analysis of longitudinal binary 

data, predictors of HAART adherence will be identified.  The knowledge and 

understanding of such factors is particularly important if increased enrolments to 

treatment are to be maintained in therapy, as well as aiding in the avoidance of 

starting patients with the 2nd line regimen, which is not affordable to governments in 
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developing countries.  In addition, the findings will be useful in developing tools to 

assist clinicians in the identification of factors related to poor adherence prior to 

initiating treatment as well as during therapy.  That is, HAART programmes would 

need to take the identified factors into account in the design and implementation of 

short- and long-term adherence strategies.  The findings can also help identify 

specific groups or sub-populations of patients at risk of less than optimal adherence 

and they can be targeted with long-term adherence boosting sessions. 

 

The rest of the thesis is organized as follows.  In Chapter 2, we give a full description 

of the HAART adherence data.  We further undertake the exploratory work where 

adherence trend and data dependence are assessed.  Moreover, the issue of 

missing data is dealt with in detail.  Chapter 3 presents the exploration of factors 

affecting initial optimal HAART adherence using the generalized linear models.  In 

Chapter 4, we present marginal models for longitudinal data where the emphasis is 

on the generalized estimating equations (GEEs) method and application of this 

method to optimal HAART adherence.  Chapter 5 presents a comprehensive review 

of the generalized linear mixed models (GLMMs) as a special case of random effects 

models.  Moreover, GLMMs are fitted to the HAART adherence data to explore 

subject specific effects of long-term optimal adherence.  In Chapter 6, a review and 

fitting of transition models to HAART adherence data is presented.  Review and 

fitting of joint modeling of adherence and visit interval is presented in Chapter 7.  

Chapter 8 presents the semi-parametric approaches to longitudinal data, specifically 

generalized additive mixed models (GAMMs).  Finally, in Chapter 9, the discussions 

and conclusions as well as implications and avenues for future research are 

presented.  
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Chapter 2 

The data 
 

The data used in this study are secondary data from the Centre for the AIDS 

Programme of Research in South Africa (CAPRISA).  CAPRISA started a HAART 

rollout programme in 2004.  The CAPRISA AIDS Treatment (CAT) Programme offers 

HIV care services at two sites in KwaZulu-Natal, South Africa, namely the eThekwini 

Clinical Research site located adjacent to the Prince Cyril Zulu Communicable 

Disease Clinic in the center of Durban, and the Vulindlela Clinical Research site, 

located in a rural area outside the town of Howick, approximately 95 km from 

Durban.  The programme started providing free HAART through a President’s 

Emergency Plan for AIDS Relief (PEPfAR) grant at a time when access to HAART in 

the public sector was limited.  Adult patients with a CD4+ count below 200 cells/�L, 

or patients with World Health Organisation (WHO) stage 4 of the HIV disease, were 

eligible for HAART initiation.   

 

During the first month, patients visited the clinic once a week for the first two weeks 

and again two weeks later for intensive clinical monitoring.  Thereafter, patients 

visited the treatment sites monthly to collect their treatment and to undergo a clinical 

examination.  Prior to HAART initiation, all patients received three sessions of 

adherence education, motivation and preparedness training.  All patients were on 

regimens containing two nucleoside reverse transcriptase inhibitors and one non-

nucleoside reverse transcriptase inhibitor.  Patients in the urban clinic received 

Efavirenz (EFV), Lamivudine (3TC) and Didanosine (ddI or ddI-EC).  This regimen 

was chosen as it can be co-administered with anti-tuberculosis (TB) medication. The 

regimen in the rural clinic consisted of EFV, 3TC and Stavudine (d4T), which is 

recommended according to the South African HIV treatment guidelines (South 

African National Department of Health, 2004).  A few pregnant patients (3.8%) 

received Nevirapine (NVP) rather than EFV.  

 

Patient information was recorded on data collection sheets at the clinics; it 

underwent two levels of quality control, and was faxed to a central data management 
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centre.  Approval for the data collection and analysis was obtained from the 

University of KwaZulu-Natal Biomedical Research Ethics Committee. 

 

The variables used for analyses in this study include optimal HAART adherence 

status of the patients, which is the outcome variable.  Optimal adherence has been 

measured using the pill counts data.  Adherence at every visit for all the drugs is 

calculated as the total number of drugs dispensed, minus the total number of drugs 

returned, divided by the total number of days between clinic visits, times the daily 

dose.  Patients are then classified as optimally adherent if they took at least 95% of 

the prescribed drugs in a given regimen (Paterson et al., 2000), otherwise they are 

considered to be non-adherent.  At each visit, the response variable is binary, 

indicating whether a patient is optimally adherent or not. 

 

Independent covariates comprise of baseline demographic and socio-economic 

variables that include age (in years); gender (1 = female, 0 = male); educational 

status (2 = no schooling, 1 = primary and 0 = secondary and higher); treatment site 

(1 = urban, 0 = rural); whether or not a patient lived with a partner (1 = living with a 

partner, 0 = not living with a partner); whether or not the patient was the source of 

household income (1 = source of household income, 0 = not a source of household 

income); access to tap water (1 = yes, 0 = no) and electricity (1 = yes, 0 = no), and 

whether a patient owned a cell phone (1 = yes, 0 = no).  Other variables recorded at 

baseline and included in the analysis were World Health Organisation (WHO) HIV 

stages (3 = stage 1, 2 = stage 2, 1 = stage 3 and 0 = stage 4), CD4+ cell count 

(cells/�L), and patient’s weight (in kilograms).  Patients were asked why they did an 

HIV test and their responses included being unwell, testing for no specific reason, 

testing because a partner died of HIV, being ill and unfaithfulness.  Reason for 

testing was therefore classified as follows: (2 = possible exposure to HIV, 1 = no 

specific reason and 0 = unwell).   

 

Since adherence has been monitored very closely after initiation of HAART, 

compared to subsequent visits, the baseline optimal adherence (first month optimal 

adherence) was treated as a covariate in the longitudinal analyses.  One of the 

advantages of including a baseline response as a covariate in a longitudinal study is 

that it permits the use of each subject as their own control to assess the effect of 
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treatment over time (Milliken and Johnson, 2002; Littell et al., 2006).  Consequently, 

baseline adherence was classified as follows: (1 = optimally adherent at baseline; 0 

= not optimally adherent at baseline). 

 

Time-varying covariates included time, which was measured as a continuous 

variable representing monthly follow-up visits to the treatment site.  The variable time 

starts with the value 1 for the first follow-up visit, 2 for the second visit, up to 17 for 

the seventeenth follow-up visit.  Weight (kg) was measured at every follow-up visit 

and was thus modeled as a time-varying covariate. 

 

2.1. Baseline characteristics of study population 

The data analyzed consisted of a retrospective review of patients’ records in the CAT 

programme between June 2004 and September 2006.  Only patients with pill count 

data for the initial visit, and at least one other clinic visit for the defined study period, 

were included in the analysis.  During the said period, 1,184 patients were enrolled in 

the CAT programme, 411 (35%) at the urban site, and 773 (65%) at the rural site.  A 

total of 688 patients, 369 (54%) from the urban site and 319 (46%) from the rural site 

were included in the analysis.  There were no differences between those included in 

the study and those excluded with regard to age (mean: included=34.1 years, 

excluded=34.0 years; t-value=0.13, p=0.90), gender (males: included=30.0%, 

excluded=31.8%; chi-square-value = 0.43, p=0.51) and baseline CD4+ cell count 

(mean: included=107.6 cells/�L, excluded=111.5 cells/�L; t-value=0.72, p=0.47).  

Furthermore, power calculations were performed for the available sample size (688 

patients) to detect a difference in proportion of adherent patients between the first 

follow-up visit and the final follow-up visit of 0.27.  With a sample size of 600, this 

gave more than 90% power when a test of proportions was done.  The baseline 

socio-demographic and clinical characteristics of patients included in the analysis are 

presented in Table 2.1.   
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Table 2. 1: Baseline socio-demographic and clinical characteristics of the HAART patients (n 
= 688) 
Characteristic     Median (Q1-Q3)  n (%) 

Age (years)     32.5 (28–38) 
Gender:  

Men         206 (30%) 
Women        482 (70%) 

Education: 
No schooling         74 (12%) 
Primary school       116 (19%) 
Secondary school or higher      429 (69%) 

Treatment site: 
Urban         369 (54%) 
Rural         319 (46%) 

Living with or without a partner:  
Living with a partner       168 (25%) 
Living without a partner      510 (75%) 

Contribution to household income:  
Source of income       186 (28%) 
Not source of income       489 (72%) 

WHO stage of HIV disease: 
Stage 1          71 (10%) 
Stage 2        121 (16%) 
Stage 3        438 (64%) 
Stage 4          58 (8%) 

Baseline CD4+ count (cells/�L)  108 (52–159) 
Baseline weight (kg)      60 (53–69) 
Reason for taking HIV test:  

Unwell         374 (56%) 
No specific reason       170 (26%) 
Possible exposure to HIV      121 (18%) 

Household access to tap water:  
Yes         611 (91%) 
No           59 (9%) 

Household access to electricity: 
Yes         607 (91%) 
No           63 (9%) 

Cell phone ownership:  
Yes         281 (42%) 
No         389 (58%) 

First-month optimal HAART adherence: 
 Optimally adherent       546 (79%) 
 Not optimally adherent      142 (21%) 
 

Table 2.1 shows that the median age of patients was 32.5 years (lower (Q1) and 

upper (Q3) quartiles were 28 and 38 years respectively), 30% were male and 75% 

were not living with a partner.  Over two thirds of the patients had attained secondary 

or higher level of education (69%), and 28% of patients were classified as sources of 

their household income.  Over 90% of the patients stayed in households that had 

access to tap water and electricity, while 42% of the households had cell phones.  At 
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enrolment, the median weight was 60kg (Q1 and Q3 were 53 and 69kgs 

respectively), median CD4+ cell count was 108 cells/�L (Q1 and Q3 were 52 and 

159 cells/ �L respectively) and 64% of patients were classified as WHO stage 3.  

Over half of the patients (56%) reported to have taken an HIV test as they were not 

well, while 26% reported no specific reason for testing and 18% took an HIV test as 

they were concerned that they had been exposed to HIV.  In the initial month of 

treatment, 79% of the patients were at least 95% adherent to HAART.   

 

2.2 Exploring HAART adherence over time 

The optimal HAART adherence and non-adherence rates over the follow-up visits 

are presented in Figure 2.1.   

 

Figure 2. 1: Optimal HAART adherence and non-adherence rates over the follow-up visits 
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It is indicated that in general, optimal adherence has been increasing over the follow-

up visits.  To this end, Figure 2.1 shows that the proportion of patients who were at 

least 95% adherent (optimally adherent) to HAART increased from 58% at the first 

follow-up visit to 86% at the last follow-up visit.  This observed trend of optimal 

adherence over the follow-up visits was tested using the Cochran-Armitage test for 

trend (Agresti, 2002) and the results provide a strong evidence of an increasing 

optimal HAART adherence rate over time (Z-statistic=17.52 with p-value<0.0001). 
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Moreover, Figure 2.2 presents optimal adherence over the follow-up visits classified 

by some of the explanatory variables that include treatment site, gender, cell phone 

ownership, living with/without a partner as well as educational attainment and 

reasons for taking an HIV test.  We again observe an increasing trend in optimal 

adherence over time although the rate of increase seems to differ for the different 

groups. 
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 Figure 2. 2: Optimal adherence over time classified by some of the explanatory variables 

(a)  Optimal adherence classified by treatment site 
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(b)  Optimal adherence classified by gender 
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(c)  Optimal adherence classified by cell phone ownership 
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(d)  Optimal adherence classified by partner 
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(e)  Optimal adherence classified by education status 
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(f)  Optimal adherence classified by reason for testing 
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2.3. Exploring the dependence of HAART adherence data 

As was mentioned earlier, in a longitudinal study, repeated responses are obtained 

on the same individuals over time; as a result, responses from the same individual 

tend to be correlated.  Although in most longitudinal studies, the main interest is in 

the changes in the mean response over time and how these changes depend upon 

covariates, correlation among the repeated responses cannot be ignored.  Failure to 

adequately account for the correlation among repeated measures leads to 

misleading inferences.  For instance, suppose we are to estimate the change in the 

mean response over time considering only two responses from the same individual.  

The estimate of the change in the mean response over time is given by 

12 ˆˆˆ µµδ −= , 

where 

�
=

=
N

i
ijj y

N 1

1µ̂ . 

In order to obtain the standard errors, we need to estimate the variability of this 

estimate of change in the mean response and is given by 

( ) ( ) ( )12
2
2

2
1

1
12 2

11ˆ σσσδ −+=
�
�
�

�
�
� −= �

= N
yy

N
varvar

N

i
ii . 

The inclusion of the last term accounts for the correlation among the two repeated 

measures.  If we assume that the two repeated measures are uncorrelated, when in 

fact, there is a strong positive correlation among them, we would obtain incorrect 

estimates of the variance.  This would lead to overestimation of the variability of the 

estimate of change in the mean response.  This shows that in general, failure to 

account for the correlation among repeated measures, specifically for contrasts, 

leads to incorrect standard errors, that is, standard errors that are too large.  With 

incorrect standard errors, test statistics and p-values will also be incorrect, which 

leads to incorrect inferences about the regression parameters (Fitzmaurice et al., 

2004; Weiss, 2005).  Thus, accounting for the correlation among the repeated 

measures increases the efficiency or precision with which the regression parameters 

can be estimated.  It is therefore important to model the covariance structure as 

accurately as possible.  Accordingly, exploring dependence among outcomes in the 

same subject might be a useful guide for selecting an appropriate covariance 

structure to be used for further analysis.  In order to explore the degree of 
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association in the longitudinal data, the effects of explanatory variables are usually 

removed by first regressing the response, ijy , on the explanatory variables, ijx , to 

obtain residuals, β̂ijijij yr x′−=  (Diggle et al., 2002).   

 

With continuous outcomes, association can be explored in terms of correlations 

using a scatterplot matrix in which ijr  is plotted against ikr  for all nkj ,,1 �=<  when 

observations are made at equally spaced times (Diggle et al., 2002).  Alternatively, a 

sample variogram can be used to describe the association among repeated values 

for unequally spaced observations (Diggle et al., 2002).  In this case, the residuals 

are extracted from the model for all points i ; the observed half-squared differences 

between pairs of residuals from the relevant regression model at time j  and k  

(where kj < ) are calculated  

( )2

2
1

ikijijk rr −=ν  

and the corresponding time intervals are obtained as 

ikijijk tt −=υ . 

 

For a binary outcome, a correlation-based approach is not feasible as the range of 

correlation is constrained by the means.  However, association between binary 

variables can be modelled using the pairwise odds ratio Ψ , which are not 

constrained (Diggle et al., 2002; Fitzmaurice et al., 2004).  For two binary outcomes, 

say 1y  and 2y , the odds ratio is given by 

( ) ( ) ( )
( ) ( )�	



�
�




====
====

=Ψ
1 ,0Pr0 ,1Pr
0,0Pr1 ,1Pr

,
2121

2121
21 yyyy

yyyy
yy . 

 

The advantage of the odds ratio is that they are strictly positive and unbounded.  The 

logarithm of the odds ratio is taken to yield the entire real line as the range of 

possible outcomes.  For a longitudinal sequence 
iini yy , ,1 �  with measurement times 

iini tt , ,1 � , Heagerty and Zeger (1998) proposed using the marginal pairwise log-odds 

ratio to describe the serial dependence for binary responses where they define a 

‘Lorelogram’ as  
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( ) ( )ikijikij yyttLOR ,log, Ψ= . 

 

To explore dependence in the adherence data, the crude odds ratios from 2x2 tables 

with different time lags were calculated and the results are presented in Figure 2.3.  

The pattern of the crude odds ratio (Figure 2.3) suggests a decreasing association 

between measurements as the time separation increases. 

 

Figure 2. 3: Crude odds ratios from 2x2 tables for all patients 
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Moreover, a Lorelogram was drawn using the adherence data and is presented in 

Figure 2.4.  The x-axis (index) is the time lag between two measurements.  From 

Figure 2.4, the log odds ratio also appears to decrease with increasing lag between 

repeated responses.  Thus the First-Order Autoregressive (AR-1) correlation 

structure may be appropriate for describing the relationship between adherence 

scores at different visits.   
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Figure 2. 4:  Lorelogram for the optimal HAART adherence data over the follow-up visits 

 
 
2.4 Missingness 

The problem of dealing with missing values is a challenge in any analysis of data, 

and is almost always present in the analysis of longitudinal data.  Although 

investigators may devote substantial effort to minimize the number of missing values, 

some amount of missing data is inevitable when studies are designed to collect data 

on every individual in the sample at each time of follow-up period.  Missing data are 

characterized by missing data patterns and mechanisms.  There are different 

missingness patterns and they can be classified into three categories, namely, 

monotone (dropout), intermittent and mixed.  Monotone (dropout) missingness 

occurs when the data are available at every assessment until a time the patient 

drops out and provides no further assessment.  This is the most frequently 

encountered pattern of missingness in longitudinal data (Fitzmaurice et al., 2004). 

Intermittent missingness occurs if there is a missing observation in between 

assessments.  A mixed pattern occurs when a period of intermittent missingness is 

followed by monotone missingness.   
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With regard to adherence data, the number of follow-up visits differed per patient, 

because some patients started treatment earlier and therefore had more visits.  

Further, the adherence data like most repeated measurements data had missing 

data.  Figure 2.5 indicates that the missingness pattern of adherence was 

characterized by dropout, i.e where a patient never came back to the clinic for the 

monthly review (at least in the period of study).   

 

Figure 2. 5: Total number of patients expected at every visit classified by the 
number of patients who actually attended the clinic (non-dropouts) and 
those who dropped out 
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It is shown in Figure 2.5 that the proportion of patients who dropped out increased 

gradually over the follow-up period.  That is, the proportion of dropout increased from 

8% at follow-up visit 2 to 24% in the 17th follow-up visit.   

 

Fitzmaurice et al., (2004) argue that missing data have three important implications 

for longitudinal analysis.  First, when longitudinal data are missing, the data set is 

necessarily unbalanced over time since not all individuals have the same number of 

repeated measurements at a common set of occasions.  As a result, methods of 

analysis that require balanced data cannot be used when data are missing.  Second, 

when data are missing, there is also some loss of information.  That is, missing data 

cause a reduction in efficiency or drop in the precision with which changes in the 
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mean response over time can be estimated.  Third, under certain circumstances, 

missing data can introduce bias and thereby led to misleading inferences about 

changes in the mean response.  Consequently, the reasons for any missing data, 

often referred to as the ‘missingness mechanism’, must be carefully considered.  In 

fact, reasons for missing data may or may not be related to the outcome of interest.  

When it is unrelated to the outcome of interest, the impact of missing data is 

relatively mild and does not complicate the analysis.  When it is related to the 

outcome, greater care is required because there is potential for bias when individuals 

with missing data differ in important ways from those with complete data.  

 

The missing data mechanism characterizes the reasons for missing data.  That is, 

the mechanism addresses the basic question of why the data are missing.  In order 

to obtain valid inferences from incomplete longitudinal data, the nature of missing 

data mechanism should be considered.  Since missing data mechanism is not under 

the control of the investigators and is often not well understood, assumptions are 

made about the missing data mechanism and the validity of the analysis depends on 

whether these assumptions hold (Fitzmaurice et al., 2004; Hedeker and Gibbons, 

2006).  Rubin (1976) and Little and Rubin (2002) give important distinctions between 

different missing data mechanisms.  These are missing completely at random 

(MCAR), which refers to missingness if the missing values are independent of both 

unobserved and observed data.  There is also missing at random (MAR) and occurs 

if conditional on observed data, the missingness is independent of the unobserved 

measurements.  The other mechanism of missingness is referred to as missing not 

at random (MNAR).  In this case the missing data process is neither MCAR nor MAR 

but is non-random. 

 

Looking at these three missing data mechanisms further, assume that for subject  i  

in the study, a sequence of measurements ijy  is designed to be measured at 

occasions inj ,,1 �= .  Then the outcomes can be grouped into a vector 

( )′=
iinii yy ,,1 �y .  Furthermore, for each occasion j , the missing data indicators can 

be defined as follows: 
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�
�
�

=
 .         otherwise    0

observed is y if  1  ij
ijr  

           (2.1). 

The indicators can also be grouped into a vector ir  which is of the same length as 

iy .  The vector iy  can be partitioned into two sub-vectors such that o
iy  is the vector 

containing those ijy  for which 1=ijr  and m
iy  contains the remaining components.   

 

When the data are incomplete, statistical modeling begins by considering the full 

data density 

( )��WZXry ,,,,|, iiiiif , 

where iX , iZ  and iW  are design matrices for fixed effects, random effects  and 

missing data process respectively; and �  and �  are vectors that parameterize the 

joint distribution.  Let ( )′′′= αβ ,�  (fixed effects and covariance parameters) and �  

describe the measurement and missingness process respectively.   

 

The classification of missingness mechanism by Rubin (1976) and Little and Rubin 

(2002) is based on the selection modeling framework where factorization equals 

( ) ( ) ( )�Wyr�ZXy��WZXry ,,|,,|,,,,|, iiiiiiiiiii fff =  (2.2). 

The first factor is the marginal density of the measurement process and the second 

one is the density of the missingness process, conditional on the outcomes.  The 

second factor describes one’s self-selection mechanism to either continue or leave 

the study.  The differences in the missing data mechanism is specified through the 

second factor of (2.2), that is  

( ) ( )�Wyyr�Wyr ,,,|,,| i
m
i

o
iiiii ff = . 

Under MCAR mechanism, the probability of an observation being missing is 

independent of responses: 

( ) ( )�Wr�Wyr ,|,,| iiiii ff = , 

and therefore (2.2) simplifies to 

( ) ( ) ( )�Wr�ZXy��WZXry ,|,,|,,,,|, iiiiiiiiii fff = , 

implying that both components are independent.  The implication is that the joint 

distribution of o
iy  and ir  becomes 
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( ) ( ) ( )�Wr�ZXy��WZXry ,|,,|,,,,|, iiii
o
iiiii

o
i fff = . 

In this case, the processes of generating missing values can be ignored regardless 

of whether the data are analyzed using a frequentist, likelihood or Bayesian 

procedure.  It should be noted that the above definition is conditional on covariates.   

 

Under MAR mechanism, the probability of an observation being missing is 

conditionally independent of the unobserved outcomes, given the values of the 

observed outcomes: 

( ) ( )�Wyr�Wyr ,,|,,| i
o
iiiii ff = . 

Again, the joint distribution of the observed data can be partitioned: 

( ) ( ) ( )�Wyr�ZXy��WZXry ,,|,,|,,,,|, i
o
iiiiiiiiii fff = , 

and hence at the observed data level: 

( ) ( ) ( )�Wyr�ZXy��WZXry ,,|,,|,,,,|, i
o
iiii

o
iiiii

o
i fff = . 

 

In the MNAR case, neither MCAR nor MAR holds.  Under the MNAR, the probability 

of a measurement being missing depends on unobserved outcomes.  The joint 

distribution of measurements and the missingness process is written as 

( ) ( ) ( ) m
iiiiiiiiiii

o
i dfff y�Wyr�ZXy��WZXry  ,,|,,|,,,,|, �= , 

and no simplification of this joint distribution is possible. 

 

Implications for analysis of longitudinal data when the missing data mechanism is 

MCAR, is that individuals with missing data are a random subset of the sample.  In 

this case the observed values of the responses are a random subsample of all 

values of the responses and no bias will arise with almost any method of analysis of 

the data (Fitzmaurice et al., 2004).  When the missing data mechanism is MAR, 

individuals with missing data are no longer a random subset of the sample.  

Likewise, the observed values are not necessarily a random subsample of all 

responses.  This implies that analysis restricted to data from completers will yield 

biased estimates.  In fact, when data are MAR, not MCAR, complete case methods 

yield biased estimates.  In contrast, likelihood-based methods that correctly specify 

the entire distribution of the responses yield valid estimates when missing data are 

MAR.  Molenberghs and Verbeke (2005) show through consideration of the 
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likelihood that under MAR, much of the missing value problem tends to disappear.  

That is, the full data likelihood contribution for unit i  takes the form: 

( ) ( )��WZXryryWZX�� ,,,,|,,,,,|, iiiiiiiiii fL ∝∗ . 

Since inference has to be based on what is observed, the full data likelihood ∗L  

needs to be replaced by the observed data likelihood L : 

( ) ( )��WZXryryWZX�� ,,,,|,,,,,|, iiii
o
iiiiii fL ∝ , 

with 
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Under an MAR process, we obtain 

( ) ( ) ( )
( ) ( ).,,|,,|                       

,,|,,|,,|,

�Wyr�ZXy

y�Wyr�ZXyy��ry

i
o
iiii

o
i

m
ii

o
iiii

m
i

o
ii

o
i

ff

dfff

=

= �
 

The likelihood factors into two components of the same functional form as the 

general factorization (2.2) of the complete data.  If further, �  and �  are disjoint in 

the sense that the parameter space of the full vector ( )′′′ �� ,  is the product of the 

parameter spaces of �  and � , then inferences can be based solely on the marginal 

observed data density.  This requirement is referred to as separability condition.  In 

essence, under the assumption of MAR and the mild separability condition, likelihood 

based analysis is valid, provided all available data are analyzed (Molenberghs and 

Kenward, 2007).  On the other hand, since the standard GEE is not a likelihood-

based method, the MAR mechanism will not generally hold for the observed data, 

compromising the validity of the analysis.  Nonetheless, Robins, Rotnitzky and Zhao 

(1995) have proposed a class of weighted estimating equations to allow for MAR, 

extending GEE.  The basic idea of weighted generalized estimating equations 

(WGEE) is to weight each subject’s contribution in the GEEs by the inverse 

probability that a subject drops out at the time he dropped out.  For more details refer 

to Molenberghs and Verbeke, 2005; Jansen et al., 2006).  Furthermore, when 

missing data are NMAR, multiple imputation techniques with pattern mixture models 

can be used, among others. 
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Testing MCAR assumption 

Since any method of analysis will yield valid inferences when missing data are 

MCAR, it would be quite useful to test the validity of MCAR assumption in HAART 

adherence data.  The distinction between MCAR and MAR is that with MCAR, 

missingness cannot depend on the observed values of the dependent variable, o
iy  

but it can with MAR.  As a result, tests of whether MCAR is reasonable or not can 

therefore be based on analyses involving o
iy .  

 

There have been a number of tests proposed to test the MCAR assumption when a 

missingness pattern is characterized by dropout and these include tests proposed by 

Little (1988) and Diggle (1989).  The basic idea behind these tests is that if dropout 

happens completely at random at each time point, the group of subjects who dropout 

represent the random sample selected from the set of all subjects still in the study at 

that time.  To illustrate these tests, consider an example with two data points for 

each subject and all subjects have data at time 1, but some are missing at time 2.  

Let us define 1=ir  for subjects with data at both time-points and 0=ir  for those that 

only have data for the first time-point.  Then a simple t-test can be used to compare 

the 1iy  means between the two groups (that is, 1=ir  versus 0=ir ).  If the missing 

data are MCAR, the means for the two groups will not differ.  More generally, 

because MCAR allows missingness to depend on covariates, the following 

regression can be performed (Hedeker and Gibbons, 2006) 

iiiiy εβββ +++= xr 2101 , 

where 2β  is the vector of regression coefficients for the set of covariates included in 

ix .  We can also form interactions of the dropout variable with the covariates to yield 

iiiiiiy εββββ +×+++= )(32101 xrxr , 

where 3β  is the vector of regression coefficients for the interactions of dropout with 

covariates.  In this model MCAR would specify that 031 == ββ , which means that 

dropout does not depend on the observed response. 

 

Ridout (1991) noted that it is helpful to turn this question around and to specifically 

model dropout in terms of logistic regression.  The model could be given as 
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where 2α  and 3α  represent vectors of regression coefficients for the set of 

covariates ix  and their interaction with 1iy .  MCAR would specify that 031 == αα .  

This logistic regression model can be generalized to more than two time points.  

Assume that dropout probability at occasion j  depends on the previous outcome 

1−ijy  in place of 1iy .  This leads to the following model: 
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where the missing data indicators for each j  occasion has been defined in (2.1) as 

�
�
�

=
          otherwise    0

observed is y if  1  ij
ijr  

The probability )|0( iijrP y=  is the conditional probability of subject i  dropping out at 

time j .  Again, here 2φ  and 3φ  represent vectors of regression coefficients for the 

set of covariates ix  and their interaction with 1−ijy .  Here 031 == φφ  indicates MCAR, 

i.e. that dropout does not depend on the previous outcome. 

 

In order to assess whether dropout depends on the previous outcome for adherence 

data, a logistic regression model for the dropout indicator proposed by Ridout (1991) 

and illustrated by Hedeker and Gibbons (2006) is adapted.  The logistic regression 

model is built in terms of the previous response adjusting for baseline age and 

gender as well as treatment site and time.  That is, we consider a dropout model at 

occasion j  as follows: 

( )
( ) ijiiiij

iij

iij tSGAy
rP

rP
5432110|01

|0
log ββββββ +++++=
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, 

with 
�
�
�

=
.          otherwise    0

observed is  if  1  ij
ij

y
r  

where 1−ijy  is the previous outcome at which the jth  measurement is taken for the 

ith  subject, iA  is the baseline age for subject i , iG  is the indicator for gender (male, 

female) for subject i , iS  is the indicator of the treatment site (urban, rural) for subject 
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i  and ijt  is the time point at which the jth  measurement is taken for the ith  subject.  

MCAR would dictate that 01 =β . 

 

In addition to all the main effects in the model, 2-way interactions of the previous 

outcome with the other covariates were added to the model one at a time and their 

significance assessed.  None of the interactions were significant at 5% level and 

therefore we present the results for the main effects only in Table 2.2. 

 

Table 2. 2: Parameter estimates (standard errors) for a logistic 
regression model to describe dropout. 

 

Parameter 

 

Estimate 

Standard 

error 

 

p-values 

Intercept 

Previous outcome (ref=not adherent) 

Adherent 

Gender (ref=female) 

Male 

Treatment site (ref=rural) 

Urban 

Age 

Time 

-3.480 

 

0.0664 

 

-0.0366 

 

0.0733 

-0.0059 

-0.0398 

0.446 

 

0.208 

 

0.199 

 

0.182 

0.011 

0.021 

<.0001 

 

0.7482 

 

0.8543 

 

0.6867 

0.6028 

0.0577 

 

The results in Table 2.2 show that after controlling for gender, site, age and time, 

previous outcome is not significant.  This implies that there is no evidence against 

MCAR in favor of MAR.  It thus, can be concluded that MCAR assumption holds for 

missingness in adherence data, and as a result, any method of analysis for 

longitudinal data will yield valid estimates. 

 

2.5 Summary 

The exploratory data analysis suggests that overall, optimal HAART adherence is 

increasing over time, even though the rate at which it is increasing might be different 

for the different sub-populations.  Moreover, the exploration of the dependence 

structure suggests that AR-1 might be the appropriate covariance structure for these 

data. Further, it has also been established that the adherence data is characterized 

by dropout and the evaluation of the impact of dropout indicated that the data are 
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MCAR.  This result paves the way for longitudinal models that will be used in 

subsequent chapters for analyses of adherence data.   

 

Since the commonly used longitudinal methods for discrete (e.g binary) data are a 

direct extension of generalized linear models for independent observations to the 

context of correlated data, a review of these models is provided in the next chapter 

to lay a foundation for longitudinal models to be considered in later chapters.  At the 

same time, these models will be fitted to the adherence data to identify factors that 

affect initial (one month after initiation of HAART) optimal HAART adherence, as the 

need for strict HAART adherence is required from the onset of treatment in order to 

maintain prolonged clinical benefits. 
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Chapter 3 

Initial adherence assessment using generalized linear 
models 

 

3.1 Introduction 

The generalized linear model (GLM) is a generalization of the linear model 

(Nelder and Wedderburn, 1972; McCullagh and Nelder, 1989).  In its simplest 

form, a linear model specifies the linear relationship between a response variable 

and a set of predictor (independent) variables.  Consider a linear model of the 

form  

εβ += Xy ,     (3.1) 

where y  is an )1( ×n  vector of values of the response variable, X  is an )( pn ×  

matrix of the known explanatory variables generally including a column of ones, β  is 

a )1( ×p  vector of unknown parameters to be estimated and ε  is an 1×n  vector of 

independent variables assumed to be normally distributed with mean zero and 

constant variance I2σ .  Despite the fact that linear models (3.1) have a number of 

advantages, including computational simplicity, they make a set of restrictive 

assumptions.  These models assume that (a) observations are independent, (b) the 

mean of the observations is a linear function of explanatory variables and 

parameters, and (c) the observations are normally distributed with a constant 

variance (Jiang, 2007).  GLMs relax the assumptions (b) and (c).  These models 

allow response variables that have distributions other than the normal distribution; 

they may even be categorical rather than continuous (Lindsey, 1997; Fahrmeir and 

Tutz, 1994).  In fact, one of the advances in statistical theory has been the 

recognition that many of the ’nice’ properties of the normal distribution are shared by 

a wider class of distributions known as the exponential family of distributions 

(Dobson, 2001).  Thus GLMs involve a variety of distributions selected from the 

exponential family of distributions.  In addition, the variance of observations is no 

longer constant but is a function of the mean.  Moreover, the relationship between 

the mean of the observations and explanatory variables need not be of the simple 

linear form in GLMs.  They involve the transformation of the mean, through what is 

called a ‘link function’, linking the regression part to the mean of one of the 
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distributions from the exponential family (Nelder and Wedderburn, 1972; McCullagh 

and Nelder, 1989).   

 

Since one of the objectives is to explore determinants of HAART adherence after the 

first month (baseline) of initiation into therapy, data analysis using GLMs seems to 

be appropriate.  This is because we are not only faced with a binary outcome but we 

also have one datum point at baseline (response) for each patient (cross-sectional 

data) where we assume that their responses are independent.   

 

3.2 Generalized linear models 

A complete specification of a generalized linear model nyy ,,1 �  involves three 

components, namely: 

a. the distribution (belonging to the exponential family of distributions) of the 

responses, 

b. the systematic component, as well as 

c. link function 

and they are discussed below. 

 

a)  The exponential family of distributions 

A probability distribution is said to be a member of the exponential family if its 

probability density function can be written in the form 

( ) ( ) ( )
�
�
�

�
�
�

+−== φ
φ

θψθφθ ,exp,|)( yc
y

yfyf   (3.2) 

where )(⋅ψ  and ),( ⋅⋅c  are specific functions; θ  and φ  are unknown parameters 

commonly known as a natural location parameter and a scale or dispersion 

parameter respectively.  The mean and variance of this distribution is derived by 

making use of the property � = 1),|( dyyf φθ  and taking the first- and second-order 

derivatives with respect to θ  from both sides of the equation (3.2) so that we obtain 

[ ] 0),|()( =′−� dyyfy φθθψ , 

[ ]{ } 0),|()()( 21 =′′−′−�
− dyyfy φθθψθψφ . 
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It therefore follows that the mean, )( yE=µ  is equal to )(θψ ′  and the variance 

)(2 yvar=σ  is given by )(θψφ ′′ .  This implies that in general, the mean and variance 

are related through [ ] )()(12 µφυµψψφσ =′′′= −  for an appropriate function )(µυ  

known as the variance function (Molenberghs and Verbeke, 2005). 

 

In some cases, a quasi-likelihood approach is used.  Even though we have seen that 

the relation between the mean and variance immediately follows from the density 

(3.2), in the quasi-likelihood perspective, one starts from specifying a mean and a 

variance function, 

µ=)( yE , 

)()( µφυ=yvar . 

The variance function )(µυ  is chosen in accordance with a particular member of the 

exponential family.  Since the distributional assumptions are not specified, 

parameters cannot be estimated using maximum likelihood principles.  Instead, a set 

of estimating equations needs to be specified, the solution of which is referred to as 

the quasi-likelihood estimates (Molenberghs and Verbeke, 2005).  One such 

approach is the method of generalized estimating equations (GEE) which is 

discussed in detail in Chapter 4. 

 

b)  Systematic component 

The systematic component of the generalized linear model specifies the effects of 

the explanatory variables, on the mean through a linear predictor.  Associated 

with each response iy  is a vector ),,,( 121 ′= ipii xxx �x  of values of p  explanatory 

variables, then the distribution of the response variable iy  depends on ix through 

the linear predictor iη  where 

  

2211

�     

�x    

x�x�x��

i

j
jij

ippiii

x′=

=

+++=

�
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and )�,(�� p ′= �1  is a vector of fixed but unknown parameters describing the 

dependence of iy  on ix .  This shows that a linear predictor is simply a linear 

combination of the unknown regression parameters and the explanatory 

variables.  It describes how the location of the response distribution changes with 

the explanatory variables (McCullagh and Nelder, 1989; Dobson, 2001; Fahrmeir 

and Tutz 1994). 

 

c)  The link function 

For specifying the pattern of dependence of the response variable on the 

explanatory variables, GLMs take a suitable transformation of the mean response 

and relate the transformed mean response to the explanatory variables.  The link 

between the distribution of iy  and the linear predictor iη  is provided by the link 

function (.)g  such that, , n,   i ) g(�� ii �1   , ==  where ( )ii yE=µ , , n,  i �1= .  

As a result, the dependence of the distribution of the response on the explanatory 

variables is given by 

,  ..., n i �  �)g(� iii 1     =′== x . 

This shows that the link function describes the relation between iµ , the mean of 

iy  and the linear predictor i� .  That is, the use of the link function in GLMs allows 

the model parameters to be included in the model linearly just as in the ordinary 

linear models (Brown and Prescott, 2006; Collett, 2003).  Moreover, Fitzmaurice 

et al., (2004) show that the primary motivation for considering link functions other 

than the identity is to ensure that the linear predictor produces predictions of the 

mean response that are within the allowable range.  Generally, any function (.)g  

can be chosen to link the mean of iy  to the linear predictor.  However, every 

distribution that belongs to the exponential family has a special link function 

called the canonical link function.  The canonical link function is defined as 

ii �)g(� = , where i�  is the natural location parameter in (3.2).  Thus, the 

canonical link function is that function which transforms the mean to a canonical 

location parameter of the exponential family of distributions.  Although other links 

are possible, the canonical links are the most commonly used in practice. 
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3.2.1. Logistic regression for binary data 

The logistic regression model is a member of the generalized linear models that are 

used to model binary data.  Binary data can be specified either as a series of zeros 

and ones (Bernoulli form) or aggregated as frequencies of successes out of a certain 

number of trials (Binomial form).  We will illustrate generalized linear model 

formulation and interpretation using the logistic regression model because of its 

relevance to HAART adherence data used in this study. 

 

Let y  be Bernoulli distributed with success probability µ== )1( yP , then the density 

takes the form: 

�
�
�

�
�
�
�

�
−+��

�

�
��
�

�

−
= )1ln(

1
lnexp)( µ

µ
µ

yyf . 

This is in the form of (3.2), which follows that the Bernoulli distribution belongs to the 

exponential family with the natural parameter 
µ

µθ
−

=
1

ln , scale parameter 1=φ  and 

with mean, µ=)( yE  and variance function )1()( µµµυ −= .  The canonical link 

function is the logistic or logit link function and this gives the logistic regression 

model as follows 

β
µ

µµ ilogit x′=��
�

�
��
�

�

−
=

1
log)( ,    (3.3) 

where )(~ ii Bernoulliy µ , ix′  ),,1( ni �=  is the ith  row of the covariates matrix X  

and β  is a vector of unknown parameters associated with X .  The logit 

transformation ensures that the probabilities lie within the interval (0, 1) for any 

values of βix′  from ∞−  to ∞ .  If we solve for µ  in (3.3), the result is 

)exp(1
)exp(
β

βµ
i

i

x
x

′+
′

= , 

which indicates the marginal mean as a function of the covariates.  The function 

exp(.)1exp(.) + is the inverse link function, that is, the inverse logit.  The other link 

functions (non-canonical) for binary data not considered here are probit and 

complementary log-log functions. 
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Next we consider the interpretation of the logistic model coefficients.  Let us consider 

a model given by 

x101
log ββ

µ
µ +=��

�

�
��
�

�

−
.   (3.4) 

The logistic regression intercept, 0β  has interpretation as the log odds of success 

)1( =y  when 0=x  and 1β  represents the logistic regression slope.  Suppose a 

predictor variable, x  is a dichotomous variable taking values of 0 and 1, the logistic 

regression coefficient 1β  associated with x  compares the log odds of success when 

1=x  to the log odds of success when 0=x .  That is 

11010 ))0(())1(()0|()1|( βββββµµ =+−+==−= xlogitxlogit . 

 

Thus )exp( 1β  has interpretation as the odds ratio of the response for two possible 

values of the covariates.  This is obtained by converting the log odds model to the 

odds model by taking the anti-log of µ
µ
−1log  as follows.  The odds that 1=y  for 1=x  

is )exp( 10 ββ +  and the odds that 1=y  for 0=x  is )exp( 0β .  So the model is, 

)exp()|1( 10 xxyodds ββ +== .  If we construct a ratio of these odds, we obtain 

)exp(
)exp(

)exp(
)0(
)1(

1
0

10 β
β

ββ =+=
=
==

xodds
xodds

OR . 

That is, the odds ratio (OR) depends only on model parameter 1β .  Note that when 

there is no group effect, 01 =β  and 1=OR .  When subjects in group 1 ( 1=x ) have 

increased odds of the event of interest ( 1=y ), then 1>OR  and 01 >β .  Likewise, 

when group 1 subjects have less odds of the event of interest ( 1=y ) then 1<OR  

and 01 <β . 

 

For a continuous predictor variable x , the logistic regression coefficient 1β , 

associated with x  has interpretation as the change in the log of odds of success for 

a unit change in x .  The relationship between the response and predictor can again 

be expressed as a ratio of odds  

)exp(
)exp(

))1(exp(
)(

)1(
1

10

10 β
ββ

ββ
=

+
++

=
=

+==
x

x
xXodds

xXodds
OR . 
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Clearly when 01 >β  there is increasing odds as x  increases, when 01 <β  there is 

decreasing odds as x  increases, and when 01 =β  there is no relationship between 

the predictor x  and the response. 

 

If we extend model (3.4) by including another predictor variable such that the logistic 

regression model is written as 

221101
log xx βββ

µ
µ ++=��

�

�
��
�

�

−
, 

where 1x  and 2x  are dichotomous predictor variables both taking only values 0 and 

1.  1β  can be interpreted as the change in the log odds ratio as 1x  changes from 0 to 

1 while holding 2x  constant.  Likewise 2β  can be interpreted as the change in the log 

odds ratio as 2x  changes from 0 to 1 while holding 1x  constant.  Using the odds, the 

logistic regression model is of the form: )exp()1( 22110 xxyodds βββ ++== .  The odds 

ratio for 1x  when 2x  is fixed is given as 

)exp(
))0(exp(
))1(exp(

),0(
),1(

1
2210

2210

21

21 β
βββ
βββ

=
++
++

=
=
=

=
x
x

xxodds
xxodds

OR . 

 

Note that the odds ratio for 1x  does not depend on the value of 2x .  If we include an 

1x 2x  interaction term in the model, we obtain a logistic regression model of the form 

)exp()1( 21322110 xxxxyodds ββββ +++== .  In this case the odds ratio for 1x  is given 

as 

)exp(
))0(exp(

))1(exp(
),0(
),1(

231
2210

232210

21

21 x
x

xx
xxodds
xxodds

OR ββ
βββ

ββββ
+=

++
+++

=
=
=

= . 

Contrary to when there is no interaction term between the two predictor variables, 

the odds ratio for 1x  is a function of 2x  and thus the relationship between 1x  and the 

response depends on the level of 2x .  The results can be generalized to cases 

where predictor variables have more than two categories and where there are 

continuous predictor variables. 
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3.3 Parameter estimation and inference 

The method of maximum likelihood estimation is usually used for estimating the 

parameters of the generalized linear models.  The following derivation follows 

that of Molenberghs and Verbeke (2005).  Assuming independence of the 

observations, the log-likelihood can be expressed as follows 

( )[ ] ( )�� +−=
= i

i

N

i
iii ycy φθψθ

φ
φβ ,

1
),(

1

� . 

The score equations obtained from equating the first order derivatives of the log-

likelihood to zero take the form  

( ) 0])([S =′−
∂
∂

=�
i

ii
i y θψ

β
θβ . 

Since )(i iθψµ ′=  and )()( iii θψµυυ ′′== , we have that 

β
θυ

β
θθψ

β
µ

∂
∂

=
∂
∂′′=

∂
∂ i

i
i

i
i )( , 

which implies the following score equations 

( ) ( ) 0S 1 =−
∂
∂

=� −
ii

i
i

i y µυ
β
µβ .   (3.5) 

These score equations are solved iteratively.  That is, an initial solution of the 

equations (0)β̂  is guessed and then updated until iterative algorithm converges to 

the solution β̂ , called the maximum likelihood estimate of β .  The two most 

popular and widely used iterative algorithms for the maximum likelihood 

estimation are the Fisher’s scoring and Newton-Raphson.  The Fisher’s scoring 

method is equivalent to the iterative reweighted least squares (Schabenberger 

and Pierce, 2002; Kutner et al., 2005).  The Newton-Raphson method solves 

maximum likelihood estimates iteratively using the standard least-squares 

methods (McCullagh and Nelder, 1989).  These iterative algorithms are available 

in most statistical packages, such as SAS, STATA, GenStat etc. 

 

Once the maximum likelihood estimates have been obtained, classical inference 

based on asymptotic likelihood theory becomes available, including Wald-type 

tests, likelihood ratio tests and the score tests, all asymptotically equivalent 

(Molenberghs and Verbeke, 2005).  Moreover, with some models such as the 

logistic regression model, φ  is a known constant.  In other models, such as the 
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linear normal model, estimation of φ  may be required to estimate the standard 

errors of the elements in β .  There are several ways of estimating φ , one of 

which is given by  

( ) ( )ii
i

iipN
µυµφ ˆ/ˆ1ˆ 2

� −
−

= y  

where N  is the total number of observations and p  is the number of parameters 

in the model. 

 

3.4 Model selection and diagnostics 

Model Selection 

Since there can be a number of models that describe a given data set, it is 

important to select the simplest reasonable model that adequately describes such 

data (Lindsey, 1997).  There are three procedures that are commonly used for 

the selection of variables that enter the model and these are the backward, 

forward and stepwise methods.  Backward selection starts with a saturated model 

(a model with all explanatory variables) and drops one explanatory variable at a 

time while forward selection starts with the null model (no explanatory variables) 

and enters one explanatory variable at a time.  The stepwise selection procedure 

uses the same approach as the forward selection, but has the advantage over 

the forward selection in that the variables already in the model are considered for 

exclusion each time another variable enters the model.  Consequently, when 

there are many variables under consideration, the stepwise is mostly preferred 

because it has an advantage of minimizing the chances of keeping redundant 

variables and leaving out important variables in the model.   

 

With all the procedures, a variable that leads to a significant change in the 

deviance (measure of goodness-of-fit described subsequently) when added to or 

dropped from the model is retained, otherwise it is dropped.  The contribution of 

each variable to the deviance reduction is given by the type 1 and type 3 

analyses of effects.  The type 1 analysis of effects depends on the sequence in 

which variables enter the model, whilst type 3 considers the overall model and 

assesses the contribution of each variable to the deviance reduction irrespective 

of the sequence in which variables enter the model.  This method of model 
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selection is referred to as deviance analysis and is used to test the model for 

goodness-of-fit. 

 

Model Checking 

The main tools used for assessing the goodness-of-fit of a fitted generalized 

linear model are the log-likelihood ratio (deviance) and the Pearson’s chi-square 

statistics (Jiang, 2001; Kutner et al., 2005).  They measure the discrepancy of fit 

between the maximum log-likelihood achievable and the achieved log-likelihood 

by the fitted model.  The deviance is presented below to illustrate the use of 

these measures.  It is given by 

{ });ˆ();(2)ˆ,( yyyy µµ �� −=D , 

where );( yy�  is the log-likelihood under the maximum achievable (saturated) 

model and );ˆ( yµ�  is the log-likelihood under the current model.  The aim is to 

minimize D  (i.e. )ˆ,( µyD ) by maximizing );ˆ( yµ� .  The hypothesis about the 

goodness-of-fit of the model is given by 

 :0H model is adequate vs  :1H model is not adequate. 

0H  will be rejected if 2
,αχ pnD −> , where n  is the number of observations, p  is the 

number of parameters and α  is the given level of significance.  Note that the 

deviance D  cannot be used as a measure of goodness-of-fit for ungrouped 

binary data (Collett, 2003).  However, it can still be used to identify important 

predictors as discussed earlier.  The appropriate test in this case is the Hosmer-

Lemeshow goodness-of-fit test.  For this test, firstly, the predicted probabilities 

),,1,'ˆ( nisi �=µ  obtained using the current model being checked are used to 

form g  groups with approximately gn /  subjects.  One grouping strategy is the 

percentile strategy and it is given as (Hosmer and Lemeshow, 2000): 

i) Group 1 subjects are approximately gn /  subjects whose si 'µ̂  are less 

than or equal to the thg
100  percentile of all the si 'µ̂ . 

ii) Group 10 subjects are approximately gn /  subjects whose si 'µ̂  are 

more than ( ) thg 1001 1 ×−  percentile of all the si 'µ̂ . 
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iii) For 1,,3,2 −= gj � , group j  subjects are approximately gn /  whose 

si 'µ̂  are greater than the thg
j 1001 ×−  percentile and less than or equal to 

the thg
j 100×  percentile of all the si 'µ̂ . 

For large n  (number of subjects), the frequently recommended g  is 10  (Hosmer 

and Lemeshow, 2000; Dobson, 2001; and Vittinghoff et al., 2005) in order for the 

different analysts to get consistent conclusions. 

 

Secondly, for each group the observed and expected frequencies of the 

responses 0=y  and 1=y  are determined as follows (Hosmer and Lemeshow, 

2000).  For the gj ,,2,1 �= , 

i) The respective observed frequencies of the responses 1=y  and 0=y  

are =jO1  number of subjects with responses 1=y  and 

jj OgnO 10 / −= . 

ii) The respective expected frequencies of the responses 1=y  and 0=y  

are ×= gnE j /1 average of si 'µ̂  in group j  and jj EgnE 10 / −=  

 

Consequently, the Hosmer-Lemoshow statistic 2
HLX  for testing the goodness-of-fit 

of the model is given by 

��
= =

−
=

g

j i ij

ijij
HL E

EO
X

1

1

0

2
2 )(

. 

The 2
HLX  has a chi-square distribution with 2−g  degrees of freedom.  As a 

result, the statistic 2
HLX  is compared with the critical value of the chi-square 

distribution with 2−g  degrees of freedom )( 2
),2( αχ −g  for checking goodness-of-fit 

of the model.  Thus, if the 2
HLX  is statistically significant, then it indicates lack-of-

fit of the model, whereas a non-significant one indicates goodness-of-fit of the 

model. 

 

The appropriateness of the link function can be assessed by refitting the model 

with the linear predictor obtained from the original model and the square of the 

linear predictor as explanatory variables (Vittinghoff et al., 2005).  If the linear 



39 
 

predictor is statistically significant and the squared linear predictor term is 

insignificant, then the link function is appropriate.  This means that, prediction 

given by the linear predictor is not improved by adding the squared linear 

predictor term which is basically used to evaluate the null hypothesis that the 

model is adequate.  Alternatively, the original model can be estimated with an 

extra constructed variable, where for an adequate model the extra variable will be 

statistically insignificant (Williams, 1987).  Moreover, the appropriateness of the 

link function can also be checked graphically by plotting the residuals against the 

fitted values and for an appropriate link, the plot should not exhibit any systematic 

pattern (Collett, 2003).  

 

Outliers, influential and high-leverage points also have to be assessed.  An outlier 

is a datum point that differs from the general trend of the data and is not 

necessarily influential (Lindsey, 1997).  With an influential point, a slight change 

or omission of such an observation leads to a substantial effect on parameter 

estimates of the model.  The magnitude of influence is measured by the leverage 

(denoted by iih ), which is the ith  diagonal element of the hat-matrix )(H  (Kutner 

et al., 2005; Lindsey, 1997).  For generalized linear models, the hat-matrix is 

given by 

2
1

2
1

)( −− ′′= WXWXXXWH , 

where X  is the design matrix of the known covariates and W  is a diagonal 

weight matrix with ith  diagonal element given by  

2)]()[(
1

ii
i gyvar

w
µ′

= . 

The commonly used measure for detection of influential data points is the Cook’s 

distance, which is approximated by 

)1()1(

2

2

2

ii

iip

ii

iip
i h

hr

h

hr
C isi

−
=

−
= , 

where iiip yhr
i

)1( −=  is the Pearson’s residual and 
ii

ip

is h

r
pr

−
=

1
 is the standardized 

Pearson’s residual (Moeti, 2007).  A large iC  implies that the ith  observation has 

undue influence on the set of parameter estimates.  The most widely used cut-off 

value for iC  is 1, however, some authors (Rousseeuw and Leroy, 2003; Skovgaard 
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and Ritz, 2007) suggest considering the data points that depart from the rest as 

influential when examining the index plot of iC . 

 

3.5 Fitting the logistic regression model to adherence data 

Let the response 1=iy  if the i th patient )688,,1( �=i  has been optimally adherent 

to HAART and 0=iy  otherwise.  Then the fitted logistic regression model (3.3) is 

given as 

β
µ

µµ i
i

i
ilogit x′=��

�

�
��
�

�

−
=

1
log)( , 

where )1()( === iii yPyEµ , ix′  is a vector of appropriately coded values of the 

explanatory variables and β  is a vector of unknown parameters.  The 13 baseline 

variables presented in Chapter 2 were used together with their interaction terms as 

explanatory variables in the model.  The deviance analysis was used for model 

selection.  To control for potential confounding, all the main effects were retained in 

the model.  It was then assessed as to whether any interaction terms needed to be 

incorporated into the model.  This was examined by fitting each of the product terms 

formed from all the predictor variables, one at a time, to the model that had all the 13 

variables.   

 

Three interactions reduced the deviance by a relatively large amount: age*cell phone 

ownership led to a deviance reduction of 6.79 on 1 degree of freedom and a 

corresponding p-value of 0.009, gender*reported reason for taking an HIV test and 

treatment site*source of household income reduced the deviance by 11.08 (p-value 

= 0.004) and 8.38 (p-value = 0.004) on 2 and 1 degrees of freedom respectively.  To 

see if all three could be retained in the model, they were all fitted at the same time 

and they reduced the deviance by 25.5 on 4 degrees of freedom (p-value = <0.001).  

Since the reduction in the deviance is significant, all the three interactions were then 

retained in the model.  Consequently, the final model included all the main effects 

and the three interaction terms.  The results from type 3 analysis of the effects for 

this model are presented in Table 3.1.   
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Table 3. 1:  Type 3 analysis of effects for the logistic model 
Effect DF Wald Chi-square p-values 

Age 

Gender 

Educational attainment 

Treatment site 

Living with/without partner 

Contribution to household income 

WHO staging of disease 

Baseline CD4+ count (cells/�L) 

Baseline weight (kg) 

Reason for taking HIV test 

Household access to tap-water 

Household access to electricity 

Cell-phone ownership 

Age*cell-phone ownership 

Gender*reason for taking the test 

Treatment site*household income 

1 

1 

2 

1 

1 

1 

3 

1 

1 

2 

1 

1 

1 

1 

2 

1 

2.8226 

4.6331 

4.0392 

19.339 

0.1218 

6.0316 

2.1298 

5.4553 

0.0440 

4.2281 

0.0975 

0.0021 

6.1334 

5.4662 

8.5540 

7.5991 

0.0929 

0.0314 

0.1327 

<.0001 

0.7271 

0.0141 

0.5459 

0.0195 

0.8338 

0.1207 

0.7548 

0.9632 

0.0133 

0.0194 

0.0139 

0.0058 

 

Before the final model was accepted, diagnostics were performed to see whether it 

fits the data well.  The goodness-of-fit was assessed using the Hosmer-Lemeshow 

test.  The observed and expected frequencies are given in Table 3.2.  The 

goodness-of-fit statistic was 6.45 with 8 degrees of freedom and the corresponding 

p-value of 0.597.  The very large p-value for this test shows that the model fits the 

data well (i.e. the predicted probabilities correspond with the observed values). 

 

Table 3. 2:  Partition for the Hosmer-Lemeshow Goodness-of-Fit test 
Group Total Event = adherent Non-event = non adherent 

Observed Expected Observed Expected 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

54 

54 

54 

54 

54 

54 

54 

54 

54 

54 

23 

34 

40 

46 

44 

49 

46 

47 

52 

53 

25.27 

34.56 

39.39 

42.82 

44.65 

46.01 

47.73 

49.04 

50.02 

54.52 

31 

20 

14 

8 

10 

5 

8 

7 

2 

4 

28.73 

19.44 

14.61 

11.18 

9.35 

7.99 

6.27 

4.96 

3.98 

2.48 
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The appropriateness of the link function was tested by refitting the model with a 

linear predictor and its square (i.e. the squared linear predictor) as independent 

variables and the results are given in Table 3.3. 

 

Table 3. 3: The Logit link function test 
Variable DF Chi-square p-value 

Constant 

Linear predictor 

Squared linear predictor 

1 

1 

1 

0.0104 

67.609 

0.0643 

0.919 

<.0001 

0.800 

 

The very small p-value for the linear predictor and a very large p-value for the 

squared linear predictor variables in Table 3.3 suggest that the link is appropriate, 

and this confirms the goodness-of-fit test that the model fits the data well. 

 

Influential observations were assessed by plotting the Cook’s distance statistic 

against the observations and this index plot is presented in Figure 3.1.   
 

Figure 3. 1:  Index plot of the Cook’s distance for the fitted model 
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Note: ‘Cookd’ = Cook’s distance and ‘obs’ = observation number 
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The plot indicates that none of the Cook’s distance values for the fitted model are 

greater than 1, which suggests that there are no observations with undue influence 

on parameter estimates.  To confirm this result, the three observations with the 

largest Cook’s distance values were further investigated by re-fitting the model with 

each one of them deleted one at the time (referred to as a single-case deletion).  

These observations were numbers 32, 158 and 305 with Cook’s distance values of 

0.0359257227, 0.0394773227 and 0.0449326732 respectively.  When these 

numbers were deleted one at a time, the results were the same as those obtained 

from fitting the model to the full data set.  This reaffirms that these three observations 

with the largest Cook’s distance values do not have undue influence on the 

parameter estimates of the model. 

 

The final chosen model is as follows: 

( )

. _ _                                  

                                    

__ 4_                                  
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__|1[
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+++++== x

 
The parameter estimates and the corresponding confidence limits for the above 

model are presented in Table 3.4.  Gender, treatment site, source of income, cell 

phone ownership and baseline CD4+ cell count are all found to be significant main 

effects.  There are three significant interaction terms: between age and cell phone 

ownership; between gender and reported reason for taking an HIV test; and between 

treatment site and source of household income.  All significant main effects, except 

baseline CD4+ cell count, were involved in significant interaction terms (Table 3.4).  

For a unit (cells/�L) increase in CD4+ cell count, the odds of HAART adherence 

decreased by 5% (adjusted Odds ratio [aOR = 0.995 ( 005.0−e ), p=0.019]).   
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 Table 3. 4:  Parameter estimates for the chosen logistic regression model 

Effect Estimates Std errors p-value 95% C.I.  
Lower  Upper 

Intercept 
Age 
Gender (ref=male) 

female 
Education (ref=sec & higher) 

No schooling 
Primary 

Treatment site (ref=rural) 
Urban 

Living with partner (ref=no) 
Yes 

Income (ref=not source) 
Source of income 

WHO staging (ref=stage4) 
Stage1 
Stage2 
Stage3 

Baseline CD4+ count 
Baseline weight 
Reason for testing (ref=unwell) 

No specific reason 
Exposed to the risk 

Access to tapwater (ref=yes) 
No 

Househld with electricity (ref=yes) 
No 

Cell phone ownership (ref=yes) 
No 

Age*cell-phone (ref=yes) 
No cell phone 

Gender*reason (ref=male & unwell) 
Female*no specific reason 
Female*exposed to the risk 

Site*income (ref=rural & not source) 
Urban*source of income 

-0.862 
0.046 

 
0.712 

 
-0.520 
0.394 

 
1.470 

 
-0.096 

 
1.342 

 
0.454 
-0.187 
-0.151 
-0.005 
0.002 

 
-0.488 
1.200 

 
0.141 

 
-0.019 

 
2.744 

 
-0.076 

 
0.879 
-1.921 

 
-1.756 

1.150 
0.028 

 
0.331 

 
0.390 
0.365 

 
0.334 

 
0.275 

 
0.547 

 
0.655 
0.562 
0.506 
0.002 
0.010 

 
0.417 
0.830 

 
0.455 

 
0.408 

 
1.108 

 
0.033 

 
0.584 
0.895 

 
0.637 

0.454 
0.093 

 
0.031 

 
0.182 
0.280 

 
<.0001 

 
0.727 

 
0.014 

 
0.488 
0.739 
0.766 
0.019 
0.834 

 
0.242 
0.148 

 
0.755 

 
0.963 

 
0.0133 

 
0.019 

 
0.132 

0.0318 
 

0.0058 

-3.116 
-0.008 

 
0.064 

 
-1.284 
-0.321 

 
0.826 

 
-0.635 

 
0.271 

 
-0.829 
-1.289 
-1.143 
-0.008 
-0.018 

 
-1.304 
-0.427 

 
-0.755 

 
-0.819 

 
0.572 

 
-0.140 

 
-2.266 
-3.674 

 
-3.004 

1.392 
0.101 

 
1.361 

 
0.243 
1.110 

 
2.125 

 
0.443 

 
2.414 

 
1.737 
0.915 
0.842 
-0.001 
0.022 

 
0.329 
2.826 

 
1.037 

 
0.781 

 
4.915 

 
-0.012 

 
2.024 
-0.160 

 
-0.507 

 

The interaction effects are presented below.  It should be noted that for the 

interaction terms that involve two categorical variables, the meaningful odds ratios 

for comparison need to be further calculated from the parameter estimates in Table 

3.4.  Thus post-hoc effects of interactions between gender and reported reason for 

taking an HIV test as well as between treatment site and source of household 

income are reported in Tables 3.5 and 3.6 respectively. 

 

a) Interaction between patient age and cell phone ownership 

As age of patients increased, optimal HAART adherence was less likely for patients 

without cell phones than those with cell phones [aOR = 0.927 ( 076.0−e ), p-
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value=0.019] (Table 3.4).  More specifically, optimal HAART adherence rate 

increased with age for patients with cell phones whereas it decreased as age 

increased for patients without cell phones (Figure 3.2).  Figure 3.2 further shows that 

the gap in optimal adherence between patients with and without cell phones widened 

with increasing age.  

 

Figure 3. 2:  Log odds ratio associated with optimal HAART adherence and age for patients 
with and without cell phones  
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b) Interaction between gender and the reported reason for taking an HIV test 

Optimal HAART adherence was significantly higher for females than males with 

patients who reported no specific reason for taking an HIV test [aOR = 4.911, p-

value=0.001] as well as those who reported to have tested because they were not 

well [aOR = 2.039, p-value=0.031] (Table 3.5).  There was however, no significant 

difference in optimal HAART adherence between females and males who reported to 

have tested for HIV because they felt exposed to the risk of contracting the disease 

[aOR = 0.299, p-value=0.145] (Table 3.5).  It is also shown that for males, HAART 

adherence was significantly lower for patients who reported no specific reason for 

taking an HIV test than those who tested because they felt exposed to risk of 

contracting the HIV disease [aOR = 0.185, p-value=0.049] (Table 3.5).  These 
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results confirm the observed proportions of optimal HAART adherence for gender 

classified by reported reason for taking an HIV test depicted in Figure 3.3. 
 

Table 3. 5: Post-hoc effects of the interaction between gender and reported reason for taking 
an HIV test (adjusted odds ratio [AOR] with 95% confidence interval [CI]) 

Interaction effect estimate aOR p-

value 

95% CI (OR) 

lower Upper 

Women versus men 

No specific reason 

Risk of exposure 

Unwell 

Men 

No specific reason versus risk of exposure to HIV 

No specific reason versus unwell 

Risk of exposure to HIV versus unwell 

Women 

No specific reason versus risk of exposure to HIV 

No specific reason versus unwell 

Risk of exposure to HIV versus unwell 

 

1.5915 

-1.2073 

0.7125 

 

1.6874 

-0.4878 

1.1997 

 

-0.8871 

0.3914 

1.1997 

 

4.911 

0.299 

2.039 

 

0.185 

0.614 

3.319 

 

0.446 

1.479 

3.319 

 

<.0001 

0.145 

0.031 

 

0.0429 

0.242 

0.148 

 

0.383 

0.345 

0.148 

 

1.892 

0.059 

1.066 

 

0.035 

0.271 

0.653 

 

0.073 

0.657 

3.319 

 

12.75 

1.519 

3.900 

 

0.993 

1.389 

16.88 

 

2.739 

3.330 

16.88 

 

Figure 3.3:  Percentage adherence associated with gender and reported reason for taking an 
HIV test (based on observed proportions of optimal HAART adherence) 
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c) Interaction between treatment site and whether patient is a source of 

household income 

Optimal HAART adherence was significantly higher in the urban treatment site than 

in the rural treatment site for patients who were not sources of household income 

[aOR = 4.347, p-value=<0.001] (Table 3.6), whereas, with patients who were 

sources of household income, there was no difference between treatment sites [aOR 

= 0.751, p-value=0.628] (Table 3.6).  For the rural treatment site, optimal HAART 

adherence was significantly higher for patients who were a source of household 

income than those who were not a source of household income [aOR = 3.828, p-

value=0.014] (Table 3.6).  These results confirm the observed proportions of optimal 

HAART adherence for treatment site classified by contribution to household income 

depicted in Figure 3.4. 

 

Table 3. 6: Post-hoc effects of the interaction between HAART treatment site and patient’s 
contribution to household income (adjusted odds ratio [aOR] with 95% confidence interval 
[CI]) 

 

Interaction effect 

 

estimate 

 

aOR 

p-

value 

95% CI (OR) 

lower Upper 

Urban vs rural treatment site 

Source of household income 

Not source of household income 

Source vs not source of household income 

Urban treatment site 

Rural treatment site 

 

-0.2863 

1.4694 

 

-0.4125 

1.3423 

 

0.751 

4.347 

 

0.662 

3.828 

 

0.628 

<.001 

 

0.219 

0.014 

 

0.237 

2.258 

 

0.342 

3.828 

 

2.385 

8.369 

 

1.278 

11.17 
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Figure 3. 4:  Percentage adherence associated with treatment site and whether a patient is a 
source of household income (based on observed proportions of optimal HAART adherence) 
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3.6 Summary 

The generalized linear models using logistic regression provided a tool for assessing 

factors that affect initial HAART adherence.  The results, revealed three significant 

two-way interaction terms between a) age and cell phone ownership, b) gender and 

reported reason for taking an HIV test, as well as c) treatment site and household 

source of income.  The baseline CD4+ count was also shown to be negatively 

associated with optimal HAART adherence.  Maqutu et al., (2010a) provides a full 

discussion of these results (attached in the Appendix A).  The next step leads us to 

survey statistical longitudinal approaches for binary responses to be used for the 

evaluation of adherence data in order to gain greater insight into the long-term 

predictors of optimal HAART adherence.  Specifically, we begin by reviewing 

marginal models for longitudinal settings and use them to evaluate the explanatory 

variables of long-term optimal HAART adherence in Chapter 4. 
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Chapter 4 
Marginal models application to treatment adherence  

 

4.1 Introduction 

One of the aims of this study is to identify predictors of long-term optimal HAART 

adherence, and assess whether factors affecting initial adherence also influence 

long-term HAART adherence.  The result is that a longitudinal study and a straight 

forward application of GLMs is no longer appropriate because of a lack of 

independence among observations obtained from the same subject.  It is therefore, 

necessary to extend these models in order to account for correlated observations.  

For the generalized outcomes in a longitudinal study, one must distinguish between 

three broad model families, namely, marginal models, subject-specific models and 

transition models.  A marginal model is one in which marginal probabilities of the 

response are directly modeled.  That is, responses are modeled marginalized over 

all other responses, and the association structure is typically captured using a set of 

association parameters, such as correlations, odds ratios, etc.  These models are 

also called population-averaged models because the parameters characterize the 

marginal expectation.  The marginal models include an extensive range of 

possibilities, especially, those that use methods based on likelihood such as the 

Bahadur model, or log-linear models (Molenberghs and Verbeke, 2005).  In this 

thesis, we will focus on marginal models in which the dependence between 

observations within each individual is modeled using correlation structure matrices, 

and generalized estimating equations (GEE) to obtain estimates.  Their theoretical 

aspects and characteristics as well as their application to HAART adherence are the 

focus of this chapter. 

 

4.2 Marginal models for longitudinal data 

When inferences based on the mean parameters or population-average are of 

interest, a marginal model is adequate to analyze the data originating from a 

longitudinal study.  A marginal model specifies the mean of the response variable, or 

marginal expectation and the association structure separately.  The specification of a 

marginal model can be summarized as follows (Diggle et al., 2002; Fitzmaurice et 
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al., 2004).  Consider the outcome, ijy  for the thi  subject in the thj  measurement.  

The general form of the model relating to the response and its mean can be defined 

as 

ijijijy εµ += . 

Then, a marginal model can be formulated as follows: 

a) The marginal expectation of the response variable )( ijij yE=µ  and a linear 

combination of the covariates are related by means of 

( ) βµ ijijij yEgg x′== )]([ ,  

where  

ijy  is the response for subject i  at time j , 

ijx  is a 1×p  vector of covariates associated with subject i  at time j , 

β  is a 1×p  vector of unknown regression coefficients, and 

( ).g  is a known link function. 

b) The marginal variance of ijy  is described as a function of the mean 

)()( ijijyvar µφυ= , 

where  

( )⋅υ  is the variance function, 

φ  is the dispersion parameter 

c) The correlation between observations on the same subject, 

);,(),( αµµρ ikijikij yycorr =  depends on the marginal means, and on a 

parameter vector α .  This correlation is modeled using a correlation structure 

matrix called a ‘working correlation matrix’ )(αiR  for each iy .  It is assumed 

that the correlation matrix )(αiR  depends on a vector of association 

parameters, α  and is also assumed to be the same for all subjects. 

 

The first two components of the marginal model specification correspond to the GLM 

for independent data discussed in Chapter 3 but without distributional assumptions 

about the responses.  The extension of longitudinal data is represented by the third 

component which incorporates the correlation among the repeated responses.  Note 

that full distributional assumptions about the vector of the responses can still be 
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made with marginal models such that the likelihood can be specified and the method 

of maximum likelihood can be applied for estimation and inference.  The association 

parameters from such models are however constrained by the marginal probability, 

and are dependent on high order associations that are usually not of interest 

(Pendergast et al., 1996).  That is, unlike a continuous response that has a 

multivariate normal distribution where the joint distribution of responses is fully 

specified by the mean, variance and the correlations; this is not the case with 

discrete data.  Instead, the joint distribution requires the specification of the mean 

vector, two-way associations, as well as three- and higher- way associations among 

repeated responses (Fitzmaurice et al., 2004; Molenberghs and Verbeke, 2005).  As 

a result, the number of association parameters increases as the number of 

responses increase which will often far exceed the number of subjects enrolled in the 

study.  For instance, suppose iy  is a vector of binary responses with 10=in , the 

joint distribution of iy  has 1, 013 ( )110210 −−  two-way, three-way, four-way and 

higher-way association parameters.  In general, specification of joint distribution for 

discrete longitudinal data is difficult, even in cases where it might be possible to 

specify the joint distribution, the likelihood can be too complicated to evaluate.   

 

Alternatively, the distributional assumptions about the vector of responses can be 

avoided and a marginal model based only on the mean response, the variances and 

pairwise associations can be specified.  This leads to the method of generalized 

estimating equations.   

 

4.3 Generalized Estimating Equations (GEE) 

When interest is in the first-order marginal parameters, McCullagh and Nelder (1989) 

have shown that a full likelihood procedure can be replaced by quasi-likelihood 

based methods.  Wedderburn (1974) shows that the likelihood and quasi-likelihood 

theories coincide for exponential families and that the quasi-likelihood estimating 

equations provide consistent estimates of regression parameters β  in any 

generalized linear model, even for choices of link and variance functions that do not 

correspond to exponential families.  Consequently, Liang and Zeger (1986) proposed 

the method of generalized estimating equations (GEE) as an extension of GLM to 

accommodate correlated data using quasi-likelihood approach.  Rather than 
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assuming a particular distribution for the response, GEE method requires a correct 

specification of the mean as well as how the variance depends on the mean.  One of 

the desirable properties of the GEE method is that it yields consistent and 

asymptotically normal solutions even with the misspecification of the covariance 

structure (Liang and Zeger, 1986; Zeger and Liang, 1986; Davis, 2002).  The 

covariance structure is treated as a nuisance.   

 

For the i th subject, let iA  be the ii nn ×  diagonal matrix with )( ijµυ  as the j th 

diagonal element.  Also let )(αiR  be the ii nn ×  ‘working’ correlation matrix for the 

i th subject.  Then the working variance-covariance matrix of iy  is given by 

2
1

2
1

)()()( βαβφ iiii ARAV = .   (4.1) 

Then GEE estimate of β  is the solution of 

( ) ( ) 0yVD =−′ −� iii
i

i µ1 ,    (4.2) 

where βµ ∂∂= iiD .  Note that (4.2) is an extension of the estimating equations for 

β  in GLM, which is given by (3.5) where the variance-covariance matrix of iy  can be 

re-written in the form  

2
1

2
1

)()( ββφ inii i
AIAV = .    (4.3). 

That is, an extension of (3.5) that would account for the correlation is obtained by 

replacing the identity matrix 
inI  in (4.3) by a correlation matrix )(αiR  to obtain (4.1).  

Note that although )(βiA  follows directly from the marginal mean model, β  

commonly contains absolutely no information about iR  hence the reason why iR  

had to be parameterized by an additional parameter vector: )(αii RR = .  Thus while 

the first moment completely specifies the second and higher order moments, this is 

only partially so in the correlated data setting, variances are still specified by the 

marginal means but the correlations are not.  This demonstrates the key difference 

between the correlated data and their univariate counterparts in a generalized linear 

model setting.   

 

Recall that our aim is to restrict model specification to the first moments only but we 

are faced with the second moments.  If we would model the second moments, we 
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would have to address the third and fourth moment as well.  This then leads to the 

full specification of the joint distribution which we have been trying to avoid.  In order 

to overcome this problem, Liang and Zeger (1986) suggest that while still 

acknowledging the need for )(αiR  in iV  (4.1), one is allowed to specify an incorrect 

structure or the so called ’working correlation’ matrix.  

 

The estimating equations given by (4.2) depends on unknown parameters β , α  and 

φ .  Liang and Zeger (1986) propose moment-based estimates for α  and φ .  These 

are estimated using functions of standardized Pearson residuals 

)( ij

ijij
ij

y
e

µυ
µ−

= .    (4.4) 

Some of the popular choices for the working correlations and their moment based 

estimators are presented in Table 4.1.  Similarly, the dispersion parameter can be 

estimated by 

� �
= =

=
N

i

n

j
ij

i

i

e
nN 1 1

211φ̂ .    (4.5) 

 

Table 4. 1: Popular choices of working correlation assumptions in standard GEE and 
moment based estimators 

Structure   ),( ikij yyCorr    Estimator 

Independence  0     - 

Exchangeable  α     � �= ≠−= N

i kj ikijnnN ee
ii1 )1(

11α̂  

AR(1)    || kj−α     � �= −≤ +−= N

i nj jiijnN
ii

ee
1 1 1,)1(

11α̂  

Unstructured    jkα     � =
= N

i ikijN ee
1

1α̂    

 

Some of the commonly used matrices of ( )αiR  under each covariance structure are 

illustrated by considering a study with 4 measurements )4( =in  taken through time.  

The ( )αiR  for each subject i  are given by the following: 
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Independence structure: 

��
�
�
�

�

�

��
�
�
�

�

�

=

1000
0100
0010
0001

iR . 

The independence model adopts the working assumption that repeated observations 

for a subject are independent.  In this case the GEE simplifies to the GLM estimating 

equations in (3.5). 

 

Exchangeable or Compound Symmetry structure: 

��
�
�
�

�

�

��
�
�
�

�

�

=

1
1

1
1

ααα
ααα
ααα
ααα

iR . 

The exchangeable working correlation specification assumes a constant correlation 

between any two measurements within a subject, regardless of the time interval 

between the measurements.  This structure may not be appropriate in a longitudinal 

study where the correlations are expected to decay with increasing separation in 

time (Fitzmaurice et al., 2004).  The exchangeable structure may be more 

appropriate with data sets that have clustered observations such that there may be 

no logical ordering of observations within a cluster (Horton and Lipsitz, 1999). 

 

First-order auto-regressive (AR-1) structure: 

�
�
�
�
�

�

�

�
�
�
�
�

�

�

=

1
1

1
1

23

2

2

32

ααα
ααα
ααα
ααα

iR . 

The AR-1 correlation structure depends on the distance between the measures.  The 

correlations decline over time as the separation between pairs of repeated measures 

increases.  This structure assumes that the measurement occasions are equally 

spaced (Molenberghs and Verbeke, 2005; Fitzmaurice et al., 2004).  
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m -dependent structure: 

�
�
�
�
�

�

�

�
�
�
�
�

�

�

=

10
1

01
01

12

112

11

21

αα
ααα

αα
αα

iR . 

With the m -dependent structure, the correlations depend on the distances between 

measures; eventually they diminish to zero for mt ≥ .  With mistimed measurements, 

this structure may be reasonable to consider since the correlation is a function of the 

time between observations (Stokes, Davis and Koch, 2000; Horton and Lipsitz, 

1999). 

 

Unstructured: 

�
�
�
�
�

�

�

�
�
�
�
�

�

�

=

1
1

1
1

434241

343231

242321

141312

ααα
ααα
ααα
ααα

iR . 

When the correlation matrix is completely unspecified, there are ( ) 2/1−ii nn  

parameters to be estimated.  It provides the most efficient estimator for β  but is 

useful only when the number of observation times is relatively few (Stokes et al., 

2000).  One of the disadvantages of assuming the unstructured covariance is that 

the number of parameters to be estimated increases with the number of 

measurement occasions.  Consequently, the estimates tend to be unstable when the 

number of covariance parameters to be estimated is large relative to the sample size 

(Fitzmaurice et al., 2004).  That is, with too many covariance parameters to be 

estimated from the limited amount of data available affects negatively the precision 

with which the regression parameters of interest will be estimated.  Moreover, when 

there are missing data and/or irregularly measured occasions, an estimation of a 

complete correlation structure may result in a non-positive definite matrix and 

parameter estimation may not proceed (Stokes et al., 2000). 

 

In order to estimate β  from the score equations in (4.2), estimates of α  and φ  are 

required whereas, the moment based estimates for α  (Table 4.1) and the 



56 
 

expression (4.5) for φ  depend on β  (since )(βijij ee =  through )(βµµ ijij =  and 

therefore also through )( ijµυ ).  In order to overcome this circularity stumbling block, 

an iterative procedure is used for estimation.  Therefore, Liang and Zeger (1986) 

suggest computing the GEE estimates using a standard iterative procedure as 

follows: 

i. Compute initial estimates for β  using a univariate GLM, that is, assuming 

independence among the in  responses for subject i . 

ii. Compute standardized residuals ije  using (4.4). 

iii. Compute estimates for α  (some examples are given in Table 4.1). 

iv. Compute an estimate of φ  using (4.5). 

v. Compute )(αiR  under a given assumption of the correlation structure. 

vi. Compute 2
1

2
1

)()()(),,( βαβφφαβ iiii ARAV = . 

vii. Update the estimate for β : 

( )iii

N

i
ii

N

i
i

tt µββ −′×�
	



�
�


 ′−= −

=

−
−

=

+ �� yVDDVD 1

1

1
1

1

)()1( . 

viii. Repeat 2 – 7 until convergence is reached. 

 

Currently, there are many statistical software packages for fitting GEE models for 

longitudinal data, such as SAS PROC GENMOD procedure, gee and geepack R 

libraries, STATA, SPSS and others. 

 

Let β̂   be the solution to the generalized estimating equations (4.2), then β̂  has the 

following properties: 

a).  β̂  is a consistent estimator of β .  That is, with very high probability, β̂  is 

close to the population regression parameters β  in large samples (Fitzmaurice et 

al., 2004).  Note that β̂  has a very appealing robustness property of producing a 

consistent estimate of β  even if the working correlation matrix is specified as 

long as the model for the mean response has been correctly specified. 
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b).  The estimator β̂  is asymptotically normally distributed with mean β  and 

asymptotic variance-covariance matrix: 

1

1

1

1

11
1

1

1 )()ˆ(
−

=

−

=

−−
−

=

− �
�

�
�
�

� ′�
�

�
�
�

� ′�
�

�
�
�

� ′= ���
N

i
ii

N

i
iiiii

N

i
ii varvar DVDDVyVDDVDβ ,  (4.6) 

which can be presented notationally as follows 

1
01

1
0)ˆ( −−= MMMβvar . 

The )( ivar y  in (4.6) is typically replaced by ))(( ′−− iiii µµ yy .  The variance 

estimator, )ˆ(βvar  expressed by (4.6) is commonly referred to as the sandwich or 

empirical or robust estimator.  Regardless of whether or not the working correlation 

structure is correct, the point estimates and standard errors based on (4.6) are 

asymptotically correct (Molenberghs and Verbeke, 2005).  If the variance matrix iR  

is correctly specified, then the variance-covariance matrix )ˆ(βvar  reduces to 

1
0

1

1

1)ˆ( −
−

=

− =�
�

�
�
�

� ′= � MDVD
N

i
iivar β ,   (4.7) 

and is usually referred to as a ‘model-based’ estimator.  With the misspecification of 

the covariance structure, the standard errors based on the model based estimator 

(4.7) are not valid and therefore cannot be used.  In fact, Molenberghs and Verbeke 

(2005), suggest that model based standard errors can be used as an indication of 

the ‘distance’ between the working assumptions for the correlation and the true 

structure.  When both standard errors are far apart, this can be seen as an indication 

of a poor choice of working correlation assumptions.   

 

4.4 Model selection 

Model selection is an essential part of any practical data analysis.  A common 

challenge encountered by many researchers dealing with regression is the selection 

of variables to be included in the model.  That is, faced with a large number of 

covariates that include higher order terms, the challenge is selecting a subset to be 

included in the regression model.  For instance, in observational studies, excluding 

some important risk factors (i.e. confounders) may result in misleading estimates of 

the effects of other risk factors while on the other hand, including all covariates as 
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well as higher order terms may lead to a too complex model which would be difficult 

to interpret and with less precise parameter estimates (Pan, 2001). 

 

With repeated measures data, model selection becomes even more complicated 

because one does not only deal with variable selection but also a selection of a 

covariance structure among many available structures to account for the fact that 

data might be correlated.  For instance, it has been noted earlier that the GEE 

method offers asymptotically consistent parameter estimates even if the covariance 

structure of repeated measurements is not correctly specified (Liang and Zeger, 

1986; Fitzmaurice et al, 2004).  However, if the working correlation matrix is correctly 

specified, the resulting parameter estimates are efficient (Hardin and Hilbe; 2003).  

In other words, a poor working correlation assumption is not wrong but may hinder 

efficiency of the obtained estimators, thus there is a need to choose a working 

correlation that approximates as much as possible the true structure.  This clearly 

poses a model-selection challenge in selecting the working correlation structure for 

GEE models. 

 

There are a number of techniques available to compare models based on the 

likelihood and asymptotic properties of maximum likelihood estimator (MLE).  These 

include the likelihood ratio test (LRT) and Akaike’s Information Criterion (AIC) 

(Akaike, 1974) for nested and non-nested models respectively.  Since the GEE 

method is based on quasi-likelihood procedures, there is no associated likelihood 

underlying the model and thus LRT and AIC are not directly applicable.  To 

overcome this problem, a selection criterion termed ‘quasi-likelihood under the 

independence model criterion’ (QIC) was proposed by Pan (2001) to select the best 

fitting model in the GEE analysis.  The QIC is an extension of AIC measure to GEE.  

Since in general, the GEE estimator has different asymptotic properties from those of 

the MLE, a modification to the penalty term in the usual AIC is necessary.   

 

The following summarizes QIC (Pan, 2001) starting with a brief review of the quasi-

likelihood approach.  Given a generalized linear model, �g(� ix′=) , the quasi-

likelihood takes the following form (McCullagh and Nelder, 1989) 
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dt
t
ty

Q
y�

−=
µ

φυ
µ

)(
)( , 

where )( yE=µ  and )()( µφυ=yvar  with φ  being the dispersion parameter.  

Examples of the variance function )(µυ  for the commonly used distributions and the 

quasi-likelihood )(µQ  that follows are presented in Table 4.2. 

 

Table 4.2: The variance function and quasi-likelihood of commonly used 

distributions in the exponential family 

Distribution   )(µυ     )(µφQ  

Normal   1    ( )2

2
1 µ−− y  

Bernoulli   ( )µµ −1    [ ] )1ln()1/(ln µµµ −+−y  

Poisson   µ     µµ −)ln(y  

 

The Akaike information criterion may be calculated based on (ML or REML) log-

likelihood, LL  of a fitted model as follows 

pLLAIC 22 +−= , 

where p  is the total number of parameters being estimated in the model.  The AIC 

penalizes the fit of a model for the number of parameters being estimated by adding 

p2  to the log-likelihood.  The QIC is a modification to AIC for the GEE method in 

that the likelihood function value of the AIC is replaced by the quasi-likelihood 

function value obtained under independence correlation structure and the penalty 

term is adjusted.  It is defined as 

( ) ( )RI VI ˆ 2;ˆ2 1−Ω+= trace �Q -QIC ,   (4.8) 

where I  represents the independent correlation structure and R  is the specified 

working correlation structure (Pan, 2001).  The p -dimensional matrices 1ˆ −Ω I  and RV̂  

are variance estimators of the regression coefficients under the correlation 

structures I  and R  respectively.  The QIC value is computed based on the quasi-

likelihood estimate µ̂ .  Here ( ).Q  is the quasi-likelihood function and examples from 

different distributions are presented in Table 4.2.  To calculate the QIC value, one 

needs to run the GEE model twice, one with the independent correlation structure I  

and the other with the correlation structure R  in order to obtain the generalized least 
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squares estimator 1ˆ −Ω I  and the empirical variance estimator RV̂  (Cui and Feng, 

2009; Cui and Qian; 2007).   

 

The QIC value in (4.8) can be used to select the best fitting correlation structure as 

well as the best model in terms of the subset of variables to be included in the 

model.  The best correlation is usually selected first and is done based on the full 

model with all the explanatory variables (Hardin and Hilbe, 2003).  The correlation 

structure with the smallest QIC value is selected as the most optimal correlation 

structure.  Then, based on the chosen correlation structure, the mean response 

model with the smallest value of QIC is regarded as the most appropriate GEE 

model. 

 

Note that in general, the choice of the correlation structure should be guided by the 

subject matter, for instance, there are time dependent correlation structures (e.g 

autoregressive) and those that are not (e.g exchangeable).  Then, if there are 

competing correlation structures, the QIC measure can be used to determine the 

appropriate one (Hardin and Hilbe, 2003). 

 

Also of note is the fact that although the QIC method was published in 2001 and 

included in the book by Hardin and Hilbe (2003), few applications of this method 

have been published.  One possible reason is that the issue of model selection in 

GEE has been largely neglected (Pan, 2001; Cantoni, Flemming and Ronchetti, 

2005).  The other possible reason is that perhaps no commercial software such as 

SAS, Stata, SPSS or SPLUS had a program to calculate the QIC value at the time 

when Pan’s (2001) article was published (Cui and Qian, 2007).  Nonetheless, in 

recent years there seem to be an increasing use of QIC for selection of the best 

model in GEE.  Examples include Kuchibhatla and Fillenbaum (2003), Ballinger 

(2004), Martus et al (2004), Hwang and Takane (2005), Cui and Qian (2007), Lin 

and Chen (2009) and Cui and Feng (2009).  Again in most commercial software that 

includes SAS and Stata, calculation of the QIC has been implemented. 

 

The generalized Wald tests can be used to compare models with different subsets of 

the regression parameters.  That is, one can use the generalized Wald tests to test 
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the joint null hypothesis that a set of regression parameters β s are equal to zero 

(Hedeker and Gibbons 2006).  In general, for any matrix L  a test for hypothesis can 

be written as follows 

0L =β:0H    versus   0L ≠β:AH , 

where L  is a pq ×  indicator matrix of ones and zeros.  Here, p  is equal to the 

number of regressors in the full model (including the intercept) and q  equals the 

number of parameters in the generalized Wald test (that is, the difference in 

regressors between the full and reduced models).  The Wald statistic is a quadratic 

form defined as follows 

( ) βββ ˆ)(ˆ 12 LLLLW −′′′= var ,   (4.9) 

and is distributed as 2χ  with q  degrees of freedom under the null hypothesis.  With 

a single regression coefficient to be tested, the dimension of matrix L  is p×1  thus 

the equation (4.9) reduces to 

( )
2

2

ˆ

ˆ
�
	



�
�



=

β
β

SE
W , 

with one degree of freedom. 

 

4.5 Evaluation of HAART adherence predictors using the GEE 

method 

The aim is to determine the predictors of long-term optimal adherence, and evaluate 

whether factors affecting first month (initial) adherence also influence long-term 

HAART adherence.  Letting 1=ijy  if the ith  patient is classified adherent to 

medication at the jth  follow-up visit, and 0=ijy  otherwise, we assume that the 

marginal probability of adherence at each visit follows the logistic model 

βµ ijijlogit x′=)( , 

where )1()( === ijijij yPyEµ , ijx′  is a vector of explanatory variables and β  is a 

vector of unknown parameters.  In addition to the 13 baseline variables used for the 

evaluation of initial HAART adherence (Chapter 3), optimal HAART adherence 

status at baseline was now used as a covariate.  Moreover, the other additional 
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variables included weight at every visit and time (follow-up visits).  They have all 

been described in Chapter 2.  This specifies the first component of the marginal 

model, the model for the mean response.  Next we assume that  

)1()( ijijijyvar µµ −= , 

which specifies the second component, the variance function and known scale 

parameter ( )17,,1,1 �== jjφ .  Moreover, an assumed correlation structure between 

observations on the same subject has to be chosen. 

 

Since model selection criteria for the mean response depend upon the correct 

specification of the model for the covariance, the first step is to choose a suitable 

model for the covariance.  Because the observations are measured repeatedly on 

the same subject over time, the choice of the working correlation is based on the 

correlation structures that have time dependence.  For this reason, the m-dependent 

structure and the Autoregressive (AR-1) structure were used.  The two correlation 

structures were also contrasted with the independence structure where the 

assumption is made that the repeated observations for a subject are independent.  

The different correlation structures were fitted using the same mean structure 

composed of all the main effects.  Then QIC (Pan 2001) was used to select the 

model with the best fitting correlation structure and the results are as follows: 

 

   Correlations    QIC 

   Independent    22328.3090 

   AR-1     22312.3316 

   1-dependent    22318.9656 

   2-dependent    22317.1215 

   3-dependent    22318.6152 

 

The QIC measure leads to the selection of AR-1 correlation structure since it has the 

smallest QIC value. 

 

The next step is to evaluate the mean structure.  In order to check whether factors 

that affect baseline adherence are still important when adherence is studied over 

time, a model with all the main effects was compared with a model that contained all 
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the main effects plus the three two-way interactions that were significant in the 

analysis of baseline adherence in Section 3.4.  The two-way interaction terms were 

between age and cell phone ownership, gender and patient’s reported reason for 

taking an HIV test as well as treatment site and whether or not a patient is the source 

of household income.  The generalized Wald test was used to test the joint null 

hypothesis that the three interaction terms are equal to zero.  The test produced a 

Wald statistic of 4.78 with 4 degrees of freedom (p-value=0.3105) and is not 

significant.  Additionally, none of the two-way interactions of the three variables were 

significant (age*cell phone: p-value=0.6613; gender*reason: p-value=0.4434; 

treatment site*income: p-value=0.0710). 

 

A new model was then built by fitting all the main effects and then each of the two-

way interaction terms formed from the predictor variables were added to the model 

one at a time.  The significance of each interaction term was assessed using the 

Wald test.  Only five of the two-way interactions were significant, of which three of 

the two-way interactions involved time.  Three variables which interact with time 

were treatment site, gender and reason for taking an HIV test.  The other two 

interaction terms involved age with gender and with education.  Then the generalized 

Wald test was used to test the joint null hypothesis that the five interaction terms are 

equal to zero.  The test produced a Wald statistic of 45.38 with 7 degrees of freedom 

(p-value = <.0001), which is significant.  We further checked if higher order 

interactions were significant.  However, the Wald test has never favoured three-way 

and higher interaction terms.  Consequently, the final model contained five two-way 

interaction terms and all the main effects.  The results from the type 3 analysis of 

effects for this model are presented in Table 4.3. 
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Table 4. 3 :  Type 3 analysis of effects for the GEE model 
Effect DF Wald Chi-square p-values 

Age 

Gender 

Educational attainment 

Treatment site 

Living with/without partner 

Contribution to household income 

WHO staging of disease 

Baseline CD4+ count (cells/�L) 

Baseline weight (kg) 

Reason for taking HIV test 

Household access to tap-water 

Household access to electricity 

Cell-phone ownership 

Baseline adherence 

Weight 

Time 

Time*gender 

Time*treatment site 

Time*reason for test 

Age*gender 

Age*educational attainment 

1 

1 

2 

1 

1 

1 

3 

1 

1 

2 

1 

1 

1 

1 

1 

1 

1 

1 

2 

1 

2 

3.93 

12.28 

10.03 

52.7 

8.33 

0.01 

4.86 

0.39 

0.34 

7.89 

0.52 

0.01 

6.64 

1.72 

0.02 

145.59 

13.56 

8.18 

7.74 

6.68 

6.58 

0.0474 

0.0005 

0.0066 

<.0001 

0.0039 

0.9338 

0.1825 

0.5320 

0.5570 

0.0194 

0.4689 

0.9751 

0.0100 

0.1903 

0.8902 

<.0001 

0.0002 

0.0042 

0.0209 

0.0098 

0.0372 

 

The final model was re-checked for the correlation structure choice and the model 

re-affirmed the AR-1 structure.  The final accepted model is given by 
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           (4.10) 

 

All the results are presented in Table 4.4.  The significant main effects (that were not 

involved in significant two-way interaction terms) were cell phone ownership and 

living with a partner.  The interpretation of results on all the significant main effects 
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that are involved in significant interaction terms will be restricted to post-hoc probing 

of the interaction effects. 

 

Table 4. 4: Adjusted odds ratio (aOR) from the GEE model with associated 95% 
confidence intervals (CI) 

Parameter Estimates aOR p-value 95% C.I. (aOR) 
Lower  Upper 

Intercept 
Age 
Gender (ref=male) 

female 
Education (ref=sec & higher) 

No schooling 
Primary 

Treatment site (ref=rural) 
Urban 

Staying with partner (ref=no) 
Yes 

Income (ref=not source) 
Source of income 

WHO staging (ref=stage4) 
Stage1 
Stage2 
Stage3 

Baseline CD4+ count 
Baseline weight 
Reason for testing (ref=unwell) 

No specific reason 
Exposed to the risk 

Access to tapwater (ref=no) 
Yes 

Household with electricity (ref=no) 
Yes 

Cell phone ownership (ref=no) 
Yes 

Initial adherence (ref=not adherent) 
Adherent 

Weight at follow-up 
Time 
Time*gender (ref=male) 

Female 
Time*treatment site 

Urban site 
Time*reason (ref= unwell) 

No specific reason 
Exposed to the risk 

age*gender (ref=male) 
Female 

Age*education (ref=secondary) 
No schooling 
Primary 

 0.589 
-0.012 

 
-3.507 

 
 1.617 
 0.099 

 
 1.173 

 
 0.289 

 
 0.008 

 
-0.334 
-0.251 
-0.108 
 0.001 
-0.004 

 
-0.027 
-0.486 

 
 0.108 

 
 0.004 

 
 0.231 

 
-0.140 
 0.001 
 0.100 

 
 0.071 

 
-0.057 

 
-0.011 
 0.056 

 
 0.024 

 
-0.033 
-0.002 

1.802 
0.988 

 
0.030 

 
5.038 
1.104 

 
3.233 

 
1.335 

 
1.008 

 
0.716 
0.778 
0.898 
1.000 
0.996 

 
0.973 
0.615 

 
1.114 

 
1.004 

 
1.260 

 
0.869 
1.001 
1.105 

 
1.074 

 
0.945 

 
0.989 
1.058 

 
1.024 

 
0.968 
0.998 

0.146 
0.147 

 
0.001 

 
0.002 
0.856 

 
<.001 

 
0.004 

 
0.934 

 
0.091 
0.147 
0.492 
0.532 
0.557 

 
0.877 
0.007 

 
0.469 

 
0.975 

 
0.010 

 
0.190 
0.890 
<.001 

 
<.001 

 
0.004 

 
0.624 
0.018 

 
0.010 

 
0.012 
0.875 

0.832 
0.972 

 
0.155 

 
1.837 
0.378 

 
2.355 

 
1.097 

 
0.828 

 
0.486 
0.554 
0.660 
0.998 
0.981 

 
0.685 
0.431 

 
0.831 

 
0.786 

 
1.056 

 
0.704 
0.987 
1.059 
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The results show that after controlling for other variables in the model, optimal 

adherence was significantly higher when patients had cell phones than when they 

did not have cell phones [aOR = 1.260, p-value= 0.010] and when they lived with a 

partner compared to when they did not live with a partner [aOR = 1.335, p-value = 

0.004] (Table 4.4).   

 

The results further reveal that optimal HAART adherence increased on average over 

time, however, the rate at which optimal adherence increased differed by treatment 

site, gender and the patient’s reported reason for taking an HIV test.  Age interacted 

significantly with gender and education.  The interaction effects are presented below. 

 

a) Interaction between gender and time 

Optimal HAART adherence increased over time for both males and females.  

However, the rate of increase was not the same for males and females after 

controlling for other covariates in the model.  The rate of increase was 7.4% higher 

for females than for males [aOR = 1.074, p-value<0.001] (Table 4.4).  The estimated 

probabilities for this interaction are presented in Figure 4.1. 

 

Figure 4. 1: Estimated probability of optimal adherence interaction between gender and 
time 
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It is shown in Figure 4.1 that the estimated probabilities of optimal adherence were 

higher for males at the beginning of the follow-up visits, but by the end of the study 

period (17th follow-up visit), they were similar for both groups.  

 

b) Interaction between treatment site and time 

The rate at which optimal adherence increased over time differed in the urban and 

rural treatment sites.  After controlling for other variables in the model, the rate of 

increase in optimal adherence was 6% higher in the rural treatment site than in the 

urban treatment site [aOR = 1.06, p-value=0.004] (Table 4.4).  The estimated 

probability of optimal adherence for this interaction is presented in Figure 4.2.  It is 

shown (Figure 4.2) that the estimated probability of optimal adherence at the first 

follow-up visit was 66% at the rural site and 86% at the urban site.  Since the rate of 

increase was higher in the rural site relative to the rate of increase in the urban site, 

the gap in adherence between the treatment sites gradually decreased over time 

until, by the end of the study, the estimated optimal adherence probabilities were 

similar (at 91% and 92%, respectively). 

 

Figure 4. 2: Estimated probability of optimal adherence interaction between treatment site 
and time 
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c) Interaction between reason for taking an HIV test and time 

Optimal adherence increased over time, but the rate at which it increased differed 

with the patient’s reported reason for taking an HIV test.  The rate of increase in 

optimal adherence was 5.8% higher over the study period for patients who tested 

due to possible exposure to HIV, than for patients who tested because they were 

unwell [aOR=1.058, p-value=0.016] (Table 4.4).  There was however no significant 

difference in the rate of change of optimal adherence between patients who tested 

because they were unwell and those who reported no specific reason for taking an 

HIV test [p-value=0.666] (Table 4.4).  Further analysis revealed that the rate of 

increase in optimal adherence over the study period was 7% higher for patients who 

tested due to possible exposure to HIV, than for those who reported no specific 

reason for taking an HIV test [aOR=1.069, 95% CI: (1.016, 1.126), p-value=0.0107).  

Figure 4.3 presents the estimated probabilities for this interaction. 

 

Figure 4. 3: Estimated probability of optimal adherence interaction between reason for 
taking an HIV test and time 
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It is shown in Figure 4.3 that estimated probabilities of optimal adherence for patients 

who tested because they were unwell, and those who reported no specific reason for 

taking an HIV test, were similar throughout the study.  It is again shown in Figure 4.3 
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that at the beginning of the follow-up period, estimated probabilities of optimal 

adherence for patients who tested due to possible exposure to HIV were less than 

the estimated probabilities of patients who reported no specific reason for taking an 

HIV test, as well as those who tested as they were unwell.  However, during the 

middle of the follow-up visits, estimated probabilities were similar for all the reported 

reasons.  Towards the end of the study, the probabilities of optimal adherence were 

higher for patients who tested due to possible exposure to HIV than those who 

reported no specific reason for testing for HIV, or those who tested as they were 

unwell. 
 

d) Interaction between age and gender 

Optimal HAART adherence differed by age for males and females.  As the age of 

patients increased, females tend to adhere better to HAART than males [aOR: 

1.024; p-value=0.010] and estimated probabilities are presented in Figure 4.4.   

 

Figure 4. 4: Estimated probability of optimal adherence between age and gender 
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It is shown in Figure 4.4 that the estimated probabilities of optimal adherence were 

higher with younger males than with younger females, whereas with older patients, 

estimated probabilities were higher with females than males.  
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e) Interaction between age and education 

Optimal HAART adherence differed by age at different education levels.  Among 

older patients, those with no schooling were less likely to achieve optimal HAART 

adherence than those with secondary and higher education [OR=0.97, p-

value=0.012] (Table 4.4).  There was, however, no significant difference in optimal 

HAART adherence between patients with secondary education and patients with 

primary education, regardless of age [p-value=0.875)] (Table 4.4).  Further analysis 

revealed that as patients got older, those with primary education were more likely to 

achieve optimal adherence than those with no schooling [aOR=1.03, 95% CI: (1.002, 

1.070); p-value=0.048].  The estimated probabilities are presented in Figure 4.5. 

 

Figure 4. 5: Estimated probability of optimal adherence interaction between age and 
educational attainment 
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Figure 4.5 indicates that the estimated probabilities of optimal adherence by patients 

decreased with age.  More specifically, the probability of optimal adherence for 

patients with secondary and primary education was similar for all ages, whereas 

probabilities of optimal adherence for those with no schooling were higher for 

younger ages and lower for older ages, relative to those with primary and secondary 

schooling. 
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4.6 A note on GEE extensions 

A number of extensions to the standard GEE or (GEE1) introduced by Liang and 

Zeger (1986) have been proposed.  We have seen that the standard GEE 

methodology combines an estimating equation for regression (first-moment) 

parameters with moment-based estimators for the association (second-moment) 

parameters α .  Prentice (1988) and Prentice and Zhao (1991) extends Liang and 

Zeger’s work by replacing the moment-based approach to estimating second-

moment parameters with an ‘ad-hoc’ estimating equations for these quantities.  That 

is, this method allows for estimation of both parameter vectors, β  and α  but 

proposes estimating equations for both sets of parameters.  Second order GEE 

(GEE2) have been proposed by Zhao and Prentice (1990), using correlations, and 

by Liang, Zeger and Qaqish (1992), using odds ratios.  They consider an alternative 

equation for simultaneous estimation of the regression parameters β  and 

covariance parameters α .  This requires modeling the third and fourth moments of 

ijy  instead of just the mean and variance.   

 

Lipsitz, Laird and Harrington (1991) proposed a different approach to modeling the 

GEE1 association parameters.  For binary outcomes, they used the odds ratio as the 

measure of association instead of Pearson’s correlation coefficient.  Liang et al., 

(1992) did the same for GEE2.  Carey, Zeger and Diggle (1993) developed an 

approach for binary repeated measurements similar to that of Lipsitz et al. (1991).  

The alternating logistic regression (ALR) methodology Carey et al. (1993) 

simultaneously regresses the response on explanatory variables as well as modeling 

the association among responses in terms of pairwise odds ratios.  The ALR 

algorithm iterates between a logistic regression using first-order generalized 

estimating equations to estimate regression coefficients and a logistic regression of 

each response on others from the same subject using an appropriate offset to 

update the odds-ratio parameters.  The ALR algorithm is now implemented in the 

SAS GENMOD procedure. 
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4.7 Summary 

The GEE approach is appealing for analysis of binary (discrete) data because of its 

computational simplicity compared to the maximum likelihood-based approaches.  

The marginal GEE model for adherence data was fitted with ease using the SAS 

GENMOD procedure.  However, because there is no likelihood function, likelihood-

based methods are not available for testing fit, comparing models and conducting 

inference about parameters.  Instead inference can only use Wald statistics 

constructed with asymptotic normality of the estimators together with their estimated 

covariance matrix.  Moreover, even though GEE estimates are consistent with 

misspecification of the covariance structure, it is important to choose the covariance 

structure that closely approximates the true underlying one for greater efficiency.  

However, because of the lack of the likelihood function, tests such as AIC and 

likelihood ratio test cannot be used to guide the selection of the appropriate form of 

non-nested and nested covariance structures respectively.  Nonetheless, the quasi-

likelihood information criterion (QIC) (Pan, 2001), has been advocated with the GEE 

for choosing a reasonable working correlation structure.  QIC is a modified AIC for 

GEE, where the likelihood is replaced by the quasi-likelihood and the penalty also 

takes a modified form.  The QIC macro implemented within the GENMOD procedure 

was used to select the best fitting covariance structure among the competing ones in 

the adherence data. 

 

Application of the GEE method to adherence data to evaluate long-term predictors of 

optimal adherence revealed that five of the two-way interactions were significant.  

These were between: time and treatment site, time and gender, time and reported 

reason for taking an HIV test, age and gender as well as age and educational level.  

Also, cell phone ownership and living with a partner were positively associated with 

optimal adherence.  A detailed discussion of these results can be found in Maqutu et 

al., (2010b) attached in Appendix B.  Next, in Chapter 5 we explore subject-specific 

effects that are associated with optimal adherence by reviewing and fitting 

generalized linear mixed models.  

 

Note that GEEs are flexible in handling missing data in the sense that there are no 

restrictions on the number of observations per individual; subjects who are missing 
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at a given assessment are not excluded from the analysis.  However, these models 

make a very restrictive assumption about the missing data mechanism, i.e., that data 

are missing completely at random (MCAR).  Evaluation of the impact of dropout in 

the adherence data suggests that there is no evidence against MCAR, and we 

therefore conclude that the GEE estimates are valid. 
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Chapter 5 

Generalized linear mixed models 
 

5.1 Introduction 

In the previous chapter, we adopted a GEE modeling approach for analysis of 

adherence data.  This entailed a population-averaged modeling formulation that 

provided population average estimates of overall trends in adherence.  In this 

chapter, the goal of the analyses is to determine subject specific changes in 

medication adherence over time and explore factors that influence such adherence.  

In addition, the association structure of data is of interest, that is, we seek to 

examine the correlation structure among the repeated measures.  Much as the GEE 

method provided marginal population averaged evolutions, which are important from 

the public health perspective, it cannot provide evolution of each subject separately.  

Moreover, in the GEE approach, the correlation assumptions are allowed to be 

incorrect, which does not affect the validity of the estimates but hinders formal 

inferences about the correlation structure.  Moreover, the GEEs by themselves do 

not help separate out different sources of variation.  It is often an advantage to be 

able to attribute variation as being associated with different factors (McCulloch, 

2003).  In this chapter, we present an alternative approach using subject-level terms 

in the model.  The inclusion of subject-specific term leads us to random effects 

models which have conditional interpretations (referred to as subject-specific), that 

are a direct contrast with the GEE models which have population-averaged 

interpretations.  

 

Linear mixed models as a special case of random effects models are well 

established.  By contrast, only recently have random effects been used much in 

models for discrete data (Molenberghs and Verbeke, 2005).  In this chapter, we 

extend generalized linear models (presented in Chapter 3) to include random effects.  

This leads to the generalized linear mixed model (GLMM), which is a special case of 

the random effects models and is the most frequently used model for analysis of 

discrete data.  The GLMMs are basically suitable for analysis of longitudinal data 

where the objective is to study how subject specific effects change over time and 
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what characteristics influence such changes.  The advantages of GLMMs over GEEs 

are that they are more robust in cases where there are missing data and where there 

are unbalanced clusters.  GLMMs can also estimate variances at different levels. 

 

5.2 Model formulation 

Suppose ijy  is the jth  response for subject i , Ni ,,1 �= , inj ,,1 �=  and iy  is the 

in -dimensional vector of all measurements available for subject i .  Conditionally on 

random effects ib , it is assumed that the elements of ijy  for iy  are independent, 

following a generalized linear model, but with the linear predictor appended with 

subject-specific regression parameters ib .  Specifically, it is assumed that all ijy  

have densities of the form 

( )
�
�
�

�
�
�

+
−

= ),(
)()(

exp,,| φ
φ

θψθ
φβ ij

ijijij
iiji yc

y
yf b ,  (5.1) 

where ijµ , the conditional mean of ijy  is modeled through a linear predictor 

containing fixed regression parameters β  as well as subject specific parameters ib , 

that is 

iijijiijij yEgg bzxb ′+′== �)]|([)(µ ,   (5.2) 

where ijx  and ijz  are p -dimensional and q -dimensional vectors of known covariate 

values corresponding to the fixed and random effects β  and ib  respectively, through 

a known link function g(.) .  Furthermore, conditionally on random effects ib , the 

responses ijy  are independent and it is also assumed that the random effects ib , 

are ),( G0N .  The variance of observations, iy , conditional on the random effects, ib  

is given by 

( ) ( ) ( )ijijiij ayvar µυφ=b| , 

where ( ).υ  is the variance function that relates the conditional means and variances, 

and φ  is a dispersion parameter.   

 

It is important to note that the model specification in (5.1) and (5.2) is made 

conditional on the value ib .  The consequences of including the random effects in 

the model can better be appreciated by studying the first two moments of the 
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marginal distribution of ijy .  With linear mixed models, the marginal mean of iy  

coincide with the conditional mean given that 0=ib .  However, this property is not 

necessarily true in GLMMs.  The marginal mean, variance and co-variances are 

given (McCulloch and Searle, 2001) as follows. 

 

The marginal mean of ijy  is given by 
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which in general cannot be simplified due to the nonlinear function 1−g .  In a linear 

mixed model, the induced marginal mean is reduced to βijijyE x′=)( .  The marginal 

variance of ijy  induced by the random effects has the following expression 
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this again cannot be simplified in most cases without making specific assumptions 

about the form of ( ).g  and/or the conditional distribution of ijy .  The induced marginal 

variance in a linear mixed model is reduced to iiiijyvar RZGZ +′=)( .  Finally, 

assuming conditional independence of iy , the marginal covariance is given by 

( ) [ ] [ ]( ) ( )[ ]
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iikijiikiijikij
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Similarly, in a linear mixed model, the above equation is reduced to 

( ) ikijiikij yycov zzG ′=, .  If the linear mixed model has only a random intercept, the 

marginal covariance is ( ) 2, bikij yycov σ=  where 2
bσ  is the variance of the random 

intercept. 

 

For illustration, we consider a Poisson GLMM with a random intercept distributed 

normally with zero mean and variance 2
bσ .  Suppose we have a log link so that 
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)log()( µµ =g  and }{)(1 xexpxg =− .  Then the induced marginal mean of ijy  is equal 

to 
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and the marginal variance and covariance leads to 
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respectively.  This shows that although the conditional distribution of ijy  given ib  is 

Poisson, the marginal distribution cannot be.  For instance, the term in parentheses 

for the marginal variance is greater than 1, therefore, the variance is larger than the 

mean.  Thus, although iijy b|  follows a regular Poisson distribution, the marginal 

distribution of ijy  is over-dispersed.  Again, the marginal covariance expression 

shows that due to random intercept, observations on the same subject are no longer 

independent. 

 

In general, it should be appreciated that the consequence of adding random effects 

in a generalized linear model complicates the evaluation of the first two moments of 

the marginal distribution. 

 

The random intercept model 

The random intercept model is the simplest case of a mixed effects model.  In the 

case of non-normal data, a random-intercept model is simply a generalized linear 

model with randomly varying subject effect.  In this model, each subject is assumed 

to have an underlying level of response that persists over time.  Assume that there 

are Ni ,,1�= subjects and inj ,,1�=  repeated observations for each subject.  A 
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random-intercept model augments the linear predictor with a single random effect for 

subject i , 

iijij b+′= βη x  

where ib  is a random effect for each subject.  These random effects represent the 

influence of subject i  on his/her repeated observations that is not captured by the 

observed covariates.  The random effects are commonly assumed to be normally 

distributed with mean zero and constant variance 2
bσ .  The parameter 2

bσ  indicates 

the variance in the population distribution and therefore the degree of heterogeneity 

of subjects.   

 

The generalized linear mixed model for a binary response is used here as an 

illustration of a random intercepts model because of its relevance to the adherence 

data in this study.  Suppose that ijy  is a binary response, taking values of 0 or 1.  A 

logistic mixed effects model for ijy  is given as follows (Fitzmaurice et al., 2004): 

a) Conditional on single random effects ib , the ijy  are independent and have a 

Bernoulli distribution, with ( ){ }iijiijiij byEbyEbyvar |(1|)|( −=  with 1=φ . 

b) The conditional mean of ijy  depends upon fixed and random effects via the 

following linear predictor 

iijiijijij bb +′=′+′= ββη xzx , 

 where 1=ijz  for all Ni ,,1�= , and inj ,,1�=  with  
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)|1Pr(
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That is, the conditional mean of ijy  is related to the linear predictor by a logit 

link function. 

c) The single random effect ib  is assumed to have a univariate normal 

distribution, with zero mean and the variance, say 11g  because in this case G  

is of dimension 11× . 

 

This example illustrates a simple logistic regression model with randomly varying 

intercepts.  The model shows that there is a natural heterogeneity in individuals’ 
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propensity to respond positively that persists throughout all the binary responses 

obtained on any individual. 

 

The randomly varying intercepts and slopes model 

The random intercepts model can be extended to include multiple random effects.  

Denote ijz  as the 1×r  vector of variables having random effects (a column of ones 

is usually included for the random intercept).  The vector of random effects ib  is 

assumed to follow a normal distribution with the mean vector 0  and the variance-

covariance matrix G .  The linear predictor is now written as 

iijijij bzx ′+′= βη , 

where now the conditional mean is specified in terms of the vector of random effects, 

i.e [ ]ijiijyE xb ,| .  For instance, it is common to have a random subject intercept and 

a random slope in longitudinal problems.  Our earlier illustration of the random 

intercepts model for binary data can be extended to incorporate random slopes as 

follows:   

a) Conditional on a vector of random effects ib , the ijy  are independent and are 

assumed to have a Bernoulli distribution, with 

( ){ }iijiijiij yEyEyvar bbb |(1|)|( −=  with 1=φ . 

b) The conditional mean of ijy  depends upon fixed and random effects via the 

following linear predictor 

iijijij bzx ′+′= βη , 

 where ( )ijijij t ,1=′=′ zx  for all Ni ,,1�= , and inj ,,1�=  with  
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c) The random effects are assumed to have a bivariate normal distribution, with 

zero mean and a 22 ×  covariance matrix G . 
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This example illustrates a logistic regression model with randomly varying intercepts 

and slopes.  The model shows that there is a natural heterogeneity among 

individuals in both their baseline level and changes in the expected outcome over 

time. 

 

5.3 Interpretation of model parameters 

Fixed part: conditional and marginal relationships 

Although the introduction of random effects can simply be thought of as a means of 

accounting for correlation among longitudinal responses, it has important 

implications for the interpretation of the regression coefficients in generalized linear 

mixed models (Fitzmaurice et al., 2004).  The regression parameters, β , have 

somewhat different interpretations than the regression parameters in the marginal 

models considered in Chapter 4.  Molenberghs and Verbeke (2005) also show that 

the severe differences in results obtained from marginal and random effects follow 

from the fact that parameters in both models have completely different 

interpretations.  To appreciate the nature of the difference between the two models 

where we have a non-linear link function, let us consider an example using a binary 

outcome variable and assume a random-intercepts logistic model with linear 

predictor ( )[ ] iiij btbyPlogit ++== 10|1 ββ  where t  is the time covariate.  The 

conditional means ( )iij byE | , as a functions of t , are given by 
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The model assumes that the conditional means all satisfy a logistic model, with the 

same slope 1β but with different intercepts ib+0β  for all subjects.  The marginal 

average evolution is as follows 
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This shows that there is no straightforward relationship between estimated 

parameters in both random effects models and marginal models. 
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Consequently, parameter interpretation in generalized linear mixed models has 

subject specific interpretations.  That is, they represent the influence of covariates on 

a specific subject’s mean response.  In particular, the regression coefficients are 

interpreted in terms of the effects of covariates on changes in an individual’s 

transformed mean response, while holding the remaining covariates constant 

(Fitzmaurice et al., 2004).   

 

Random part: 

(a) Measures of heterogeneity 

It has been suggested that one way of interpreting estimated standard deviations of 

the random effects is to produce percentiles of the effects based on the normality 

assumption (Hedeker and Gibbons, 2006; Rabe-Hesketh and Skrondal, 2008).  For 

instance, for a covariate with an estimated fixed coefficient kβ̂  and a random 

coefficient ikb , form the approximate 2.5th and 95.5th percentiles using kkk ĝ96.1ˆ ±β  

to express the range of effects that are likely to occur.  In a random intercept model, 

for instance, 000 ˆ96.1ˆ g±β  gives a range of intercepts which can be converted to a 

range of conditional expectations ijµ  (e.g probabilities for dichotomous responses) 

by plugging particular covariate values into the linear predictor and applying the 

inverse link function.  The same approach can be used in random coefficient models 

by using the standard deviation of iij bz ′  at particular values of ijz ′ . 

 

(b) Measures of dependence 

The introduction of random subject effect, can be seen to induce correlation (within-

subject dependence) among the repeated measures.  For a random intercept model, 

the between subject variance is often expressed in terms of an intraclass correlation.  

Given that the covariance between any pair of repeated measurements is bσ , the 

correlation is  

( )
22

2

,
σσ

σ
+

=
b

b
ikij yyCorr , 

also known as the intra-class correlation.  This can also be interpreted as the 

proportion of the total residual variance that is due to unobserved between-subject 

heterogeneity.  In linear random coefficient models, the covariance matrix of the total 
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residuals is a function of time and there is no simple measure.  For instance, in the 

model with randomly varying intercepts and slopes, the covariance between any pair 

of repeated measurements depend on the measurements of time (Fitzmaurice et al., 

2004; Longford, 1993), that is  

( ) ( ) 221211, gttgttgyyCorr ikijikijikij +++= . 

However, for GLMMs, the correlations ( )ikij yyCorr ,  generally depends on covariates 

even if only a random intercept is included and are therefore not useful measures of 

dependence.  Fortunately, the correlations of latent responses in logit and probit 

random intercept models are constant and obtained by simply substituting either 1 

(probit) or 32π  (logit) for 2
bσ  (Rabe-Hesketh and Skrondal, 2008). 

 

5.4  Estimation of model parameters 

To fit a GLMM, it is possible to use two alternatives: Bayesian approach and 

maximum likelihood estimation approach.  In the Bayesian approach, it is necessary 

to specify the prior densities for β , G  and φ  denoted by )(βf , )(Gf  and )(φf  

respectively.  Once priors have been specified, the posterior distribution can be 

found (Molenberghs and Verbeke, 2005).  It is pointed out that an attractive feature 

of Bayesian approach is its flexibility for full assessment of the uncertainty in the 

estimated random effects and functions of model parameters, however, the potential 

drawbacks include the intensive computations (which require fairly sophisticated 

computer programs) and questions about when the sampling process has achieved 

equilibrium (Breslow and Clayton, 1993; Agresti et al., 2000). 

 

On the other hand, it has been argued that maximum likelihood is a well-established 

and well-respected method of estimation that has a variety of optimality properties 

and as such it is usually the default technique for estimating parameters (Searle, 

Casella and McCulloch, 2006).  Our focus will be on this method of estimation.  We 

have seen that the estimation method of fixed effects in GLMs is based on the well 

defined log-likelihood and it is simple to construct an objective function based on the 

independence of the data (Section 3.3).  In linear mixed models, estimation of 

parameters is based on the marginal likelihood of the data and can be evaluated 

analytically (Verbeke and Molenberghs, 2000).  With GLMMs, to obtain maximum 
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likelihood estimates, one would maximize the marginal likelihood, obtained by 

integrating over the random effects.   

 

The complete likelihood function for GLMM can be obtained from the product of the 

known distributions of by |  and b .  The true likelihood function can be written as 

follows (Demidenko, 2004) 

)()|(),( bbyby LLL =    (5.3) 

 

If we assumed that b  has a multivariate normal distribution ),( G0N , then 

�
�

�
�
�

� ′−∝ −− bGbGbyby 1

2
1

exp||)|(),( 2
1

LL .  (5.4) 

 

Based on (5.4), the marginal likelihood of y  could be obtained by integrating over 

the random effects b .  However, this is not always possible because the resultant 

integral of the right side of (5.4) does not always have an analytical solution, that is, it 

must be solved using numerical methods. 

 

5.4.1 Approximations to the likelihood function in GLMM 

The GLMM can be fitted by maximizing the marginal likelihood obtained by 

integrating over the random effects.  The contribution of the ith  subject to the 

likelihood is given by (Molenberghs and Verbeke, 2005) 

( ) ( ) ( ) ii

n

j
iijijiii dfyffL

i

bGbbGy |,,|,,|
1

�∏
=

== φβφβ   (5.5) 

Thus, the likelihood function L  can be written as: 

  ( ) ( )∏ �∏∏
= ==

==
N

i
ii

n

j
iijij

N

i

dfyfLL
i

i
1 11

|,,| bGbb φβ    (5.6) 

where iy  is the −in dimensional vector containing all the measurements available 

for the ith  subject.  Notice that (5.5) has the form of (5.3).  This integration is done 

over the −q dimensional distribution of b .  In some cases, (5.6) can be worked out 

analytically, for example probit-normal model (Molenberghs and Verbeke, 2005).  In 

other cases, such as the logistic mixed model, the integral in (5.6) cannot be 

evaluated in closed form.  Therefore, numerical approximation is necessary in order 
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to evaluate the likelihood.  The numerical approximations for the integral of the 

marginal likelihood in (5.6) can be divided into those based on the approximation of 

the integrand, those based on the approximation of the integral itself and those 

based on an approximation of the data. 

 

Approximation of the integrand: Laplace Approximation 

Laplace approximation is a well known method to approximate integrals where the 

exact likelihood is difficult to evaluate.  To illustrate how Laplace approximation 

works, let us suppose that we want to approximate integrals of the form 

(Molenberghs and Verbeke, 2005) 
( )

�
−= bb deI Q , 

and that b̂  is the value of b  for which Q  is minimized.  Then, the second-order 

Taylor expansion of )(bQ  around b̂  is of the form 

    )ˆ)(()ˆ(
2
1

)ˆ()( bbbbbbb −′′′−+≈ QQQ   (5.7) 

where )ˆ(bQ ′′  is equal to the Hessian of Q , i.e the matrix of the second order 

derivatives of Q , evaluated at b̂ .  The integral I  can be approximated using (5.5), 

thus 

    )ˆ(
21

2/ )ˆ()2( bb Qq eQI −−
′′≈ π .    (5.8) 

In this case, it is considered that (.)Q  is unimodal.  When Q  is bimodal, it is 

necessary to use an improved Laplace approximation (Demidenko, 2004).  In this 

method, the approximation to the integral uses many different estimates of b  as 

necessary according to the different modes of the Q  function.  The integral in (5.6) is 

proportional to an integral I  in (5.8), for a )(bQ  function given by 

( ) ( ) ( ) ( )[ ] bGbbzxbzxb 1

1

1

2
1 −

=

− ′−′+′−′+′= �
in

j
ijijijijiji yaQ βψβφ , 

such that Laplace’s method can be applied here. 

 

Approximation to the integral: Gauss-Hermite quadrature 

The Gauss-Hermite quadrature is often used for numerical integration in statistics, 

because of its relation to Gaussian densities (Liu and Pierce, 1994).  In a particular 
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context of random effects models, the Gauss-Hermite quadrature can be used for 

performing maximum likelihood estimation.  We will consider the classical Gaussian 

and adaptive Gaussian quadratures, designed to approximate integrals of the form 

dsscsh�  )()( ,     (5.9) 

for a known function )(sh  and for )(sc  the density of the univariate or multivariate 

standard normal distribution.  Thus, random effects have to be standardized such 

that they get the identity covariance matrix.  Let i�  be equal to ii bG�
21−= .  Then i�  

is normally distributed with mean 0  and covariance I , and the linear predictor 

becomes iijijij �Gzx 21′+′= βθ .  Consequently, the variance components in G  are 

now contained in the linear predictor.  Then the likelihood contribution for subject i  is 

given by 

( ) ( ) ( ) ii

n

i
iijijii dfyff

i

bGbbGy |,,|,,|
1

�∏
=

= φβφβ  

( ) ( ) ( ) ii

n

i
iijijii dfyff

i

�G��Gy |,,| ,,|  
1

�∏
=

= φβφβ ,  (5.10) 

where the random effects ib  are assumed to be normally distributed with mean 0  

and covariance G .  Expression (5.10) is the form of (5.9) as required to apply the 

Gaussian quadratures (Molenberghs and Verbeke, 2005; Antonio and Beirlant, 

2007). 

 

Classical Gaussian quadrature approximates an integral of the form (5.9) by a 

weighted sum, namely 

��
=

≈
Q

q
qq shwdzscsh

1

)( )()( .    (5.11) 

where Q  is the order of the approximation, the qs  are solutions of the Qth  order 

Hermite polynomial and qw  are corresponding weights.  The nodes or quadrature 

points qs  and the weights qw  are reported in Tables (e.g Abramowitz and Stegun, 

1972).  Alternatively, an algorithm to compute qs  and qw  for any value Q  is given in 

Press et al., (1992).  The quadrature points used in (5.11) do not depend on )(sh  

such that it is possible that only very few nodes lie in the region where most of the 

mass of )(sh  is, which would lead to poor approximations (Antonio and Beirlant, 



86 
 

2007).  However, if adaptive Gaussian quadrature rule is used, the nodes would be 

rescaled and shifted such that the integrand is sampled in a suitable range.  That is, 

the quadrature points are rescaled as if the dsscsh�  )()(  is a normal distribution with 

the mean of this distribution being the mode ẑ  of [ ])()(ln scsh  and the variance would 

equal to 

( ) ( )[ ]
1

2

2

ˆ
ln

−

�
	



�
�




∂
∂−

= ss
scsh

s
. 

Then the new quadrature points are given by  

( ) ( )[ ] qq sscsh
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with corresponding weights 
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ˆ
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In this case, then the integral is approximated by 

( ) ( ) ( )��
=

++≈
Q

q
qq shwdsscsh

1

.    (5.12) 

(Molenberghs and Verbeke, 2005). 

 

It has been shown that when (5.12) is applied with only one node, the result is 

equivalent to approximating the integrand using the Laplace approximation (Liu and 

Pierce, 1994).  Some simulation results suggest that in the classical Gaussian 

quadrature, a larger number of quadrature points (100 or more) are necessary to 

obtain high accuracy while the adaptive quadrature provides good accuracy with 20 

or fewer quadrature points (Diggle et al., 2002).  Nonetheless, the adaptive Gaussian 

quadrature is much more time consuming than the classical Gaussian quadrature.  

This is due to the fact that the adaptive Gaussian quadrature requires calculation of 

ŝ  for each unit in the dataset, hence the numerical maximization of N  functions of 

the form (5.9) (Molenberghs and Verbeke, 2005).  Moreover, since these functions 

(5.9) depend on the unknown parameters β , G  and φ , the quadrature points as 

well as the weights used in the adaptive Gaussian quadrature depend on those 

parameters, and hence the need to be updated in every step of the iterative 

procedure (Molenberghs and Verbeke, 2005).  
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Once the problem of the intractable integral is solved, the actual maximization of the 

likelihood is carried out using algorithms such as Newton-Raphson and Fisher 

scoring (Tuerlinckx et al., 2006).  The numerical integration methods work relatively 

well with GLMMs that have low-dimensional random effects distributions such as 

single random effect or two or three nested random effects (Diggle et al., 2002).  

However, none of the numerical methods have been made computationally practical 

for models with random effects distributions with 5>q .  This limitation makes 

numerical integration using quadrature prohibitive for GLMMs that have serial 

random effects for instance, which greatly limits its application to categorical 

longitudinal data analysis (Diggle et al., 2002). 

 

Approximation to the data: penalized and marginal quasi-likelihood 

For GLMs, quasi-likelihood is attractive because of its ability to generate highly 

efficient estimators without making precise distributional assumptions (McCulloch 

and Searle, 2001).  The quasi-likelihood does not specify a distribution, only the 

mean and the variance (Agresti, 2002).  For GLMMs, optimization of the quasi-

likelihood function (which involves the first- and second-order conditional moments) 

is augmented with a penalty term on the random effects and therefore, it is called 

Penalized Quasi-likelihood (PQL) (Molenberghs and Verbeke, 2005).  PQL can be 

considered as an approximated inference method in GLMM.  There have been a 

number of proposed versions of this approximate method.  We will confine our 

discussion to the widely used methods, namely, algorithms proposed by Breslow and 

Clayton (1993), Schall (1991) and Wolfinger and O’Connell (1993).  The similarities 

and differences between these methods will be highlighted.   

 

The method proposed by Breslow and Clayton (1993) can be summarized as follows 

(Jiang, 2007).  In the GLM context, and based on (5.3), for any type of GLMM, the 

quasi-likelihood form is given by 

)()|(),,( bbyby LQLQL =β  

and the integrated quasi-likelihood function is given as 

( ) bbGbG dydL
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where the subscript Q  indicates quasi-likelihood, and 

du
ua

u
yd

i

iy
i

i
iii �

−
−=

µ

υφ
µ

)()(
2);(

y
   (5.14) 

is known as the (quasi-) deviance.  If y  is Gaussian and 1−g  is the identity, the 

integral in (5.14) is normal and may be evaluated in closed form.  If not, this 

expression contains integrals that must be solved using numerical methods.   

 

Expression (5.13) has the form �
−− bG b dec Q )(2

1

|| , with a constant term c  and Q  is a 

function of b .  Therefore the Laplace method can be used to approximate the 

integral in (5.13).  Using the result in (5.8), the logarithm of QL , denoted by Ql  is 

given by 

)ˆ()ˆ(log
2
1

log
2
1 bbG qqclQ −′′−−≈ , 

where )(bq  is defined as 
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that minimizes )(bq .  In addition, the second derivative of q  is given by 

( )
( ) ( ) ( ){ }

1

1
2

1 −

=

− +′≈+
′

′
+=′′ � GWZZ

zz
Gb r

ga
q

n

i iii

ii

µµυφ
, 

where the term r  has expectation 0, Z  is the matrix whose ith  row is iz′  and W  is 

the NN ×  diagonal matrix with diagonal terms { } 12)]ˆ()[ˆ(
−′= iiii gaw µµυφ .  Therefore, 

the log quasi-likelihood is given by 

bGbWZGZIG ˆˆ
2
1

)ˆ,(
2
1

||log
2
1

||
2
1 1−′−−′+−−≈ �

i
iiiQ ydl µ

φ
, 

where b̂  is chosen to maximize the last two terms, I  is the identity matrix.  This 

expression leads to the PQL algorithm to estimate β  and θ .  Differentiating with 

respect to β  and b , the score equations for the mean parameters are 
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( )
( ) ( ) ( ) 0

xy
=

′
−

�
=

n

i iii

iii

ga1 µµυφ
µ

,   (5.15) 

and 

( )
( ) ( ) ( ) 0bG

zy
=−

′
− −

=
� 1

1

n

i iii

iii

ga µµυφ
µ

.  (5.16) 

Breslow and Clayton (1993) propose an iterative procedure for solving (5.15) and 

(5.16).  The attractive feature of the proposed procedure is that it exploits a close 

correspondence with well known mixed model equations (Henderson et al., 1959), 

which leads to the best linear unbiased prediction (BLUP) in linear mixed models. If 

we define the working vector *
iy  with components ( )( )iiiii g µµη −′+= yy * , and where 

iη  and iµ  are evaluated at the current estimators of β  and b .  Then the solution to 

(5.15) and (5.16) using Fisher’s scoring may be expressed as the iterative solution to 

the system 

�
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′
′

=��
�

�
��
�

�
��
�

�
��
�

�

+′′
′′

− *
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1 WyZ
WyX

bGWZZWXZ
WZXWXX β

.  (5.17) 

Expression (5.17) is the same as in the linear mixed models equations (see Verbeke 

and Molenberghs, 2000).  It should be noted that because W  depends on β  and b , 

it has to updated at each iteration.  Equivalently, the solution to (5.17) may be 

expressed as follows: 

( ) *111 yVXXVX −−− ′′=β , 

( )βXyVZGb −′= − *1 , 

where ZZGWV ′+= −1 . 

 

The other version of PQL algorithm was developed by Schall (1991) in the context of 

longitudinal data.  This method proposes to use a linearization of the conditional 

mean as a function of fixed and random effects.  This method is based on a 

decomposition of the data into the conditional mean and an appropriate error term 

with Taylor series expansion of the mean that is a non-linear function of the linear 

predictor (Molenberghs and Verbeke, 2005).  Consider the decomposition 

( ) ijiijijijijij gy εβεµ +′+′=+= − bzx1   (5.18) 

where ijy  is the thj  outcome for the thi  subject.  The )()( ijijyvar µφυ=  for )(⋅υ is the 

variance function.   
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Consider a linear Taylor expansion of (5.18) (summarized by Molenberghs and 

Verbeke, 2005) around current estimates β̂  and ib̂  of the fixed effects and random 

effects respectively.  Thus, 
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( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ijiiijijijijij

ijiiijiijij

ijiijij

iijijij

g

g

gy

εµυββµυµ

εβ

βββ

β

+−′+−′+=

+−′′+′′+

−′′+′′+

′+′≈

−

−

−

bbzx

bbzbzx

xbzx

bzx

ˆˆˆˆˆ      

ˆˆˆ)(          

ˆˆˆ)(         

ˆˆ

1

1

1

 

where ijµ̂  equals the current predictor ( )iijijg bzx ˆˆ1 ′+′− β  for the conditional mean 

)|( iijyE b .  Rewriting the above expression in vector notation, it becomes 

( ) ( ) iiiiiiiii εββµ +−+−+≡ bbZVXVy ˆˆˆˆˆ . 

For appropriate design matrices iX  and iZ , and with iV̂  equal to the diagonal matrix 

with diagonal entries equal to ( )ijµυ ˆ .  Reordering the terms yields 

** ˆˆ)ˆ)(ˆ( iiiiiiiiiii g εββµµ ++≈++−′≡ bZXbZXyy ,  (5.19) 

where )ˆ(ˆ 1
ii g µ′=−V  and iii g εµε )(* ′= , with zero mean.  Expression (5.19) can be 

viewed as a linear mixed model for the pseudo data *
iy  with fixed effects β , random 

effects ib  and the error terms *
iε .  This result yields an algorithm for fitting a GLMM.  

Given the starting values for the parameters β , G  and φ  in the marginal likelihood, 

empirical Bayes estimates are calculated for ib  and pseudo data *
iy  are computed.  

Then the approximate linear mixed model presented in (5.19) is fitted (for fitting of 

linear mixed models, see Verbeke and Molenberghs, 2000), and then the estimates 

of the parameters are updated.  This process is iterated until convergence is 

reached.  The resulting estimates are called penalized quasi-likelihood estimates 

because they are obtained from optimizing the quasi-likelihood function using 

approximations of first and second order.   

 

An alternative approximation is very similar to PQL method, but is based on a linear 

Taylor expansion of the mean ijµ  around the current estimates of β̂  for the fixed 
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effects and around 0b =i  for the random effects.  This produces similar expressions 

to PQL but ijµ̂  takes the form ( )β̂1
ijg x′−  rather than ( )iijijg bzx ˆˆ1 ′+′− β .  The pseudo 

data are now of the form βµµ ˆ)ˆ)(ˆ(*
iiiii g Xyy +−′≡ , and satisfy the approximate 

linear mixed model 
**
iiiii εβ ++≈ bZXy . 

The resulting estimates are called marginal quasi-likelihood estimates (MQL).  

Similar to PQL estimates, MQL can be obtained by optimizing a quasi-likelihood 

function which only involves first- and second-order moments, but now evaluated at 

the linear predictor ( )β̂ijx′  rather than the conditional linear predictor ( )iijij bzx ˆˆ ′+′ β . 

 

A similar approximation method was proposed by Wolfinger and O’Connell (1993).  

They introduced pseudo-likelihood (PL) and restricted pseudo-likelihood (REPL) 

procedures for estimation.  Their approach to PL/REPL is also based on a Gaussian 

approximation and Taylor’s linearization theorem, already discussed in Schall’s 

(1991) approach.  That is, the non-linearity of a GLMM is removed by applying a 

first-order Taylor expansion to ( )iijijg bzx ′+′− β1  about the current values of β  and ib .  

This results in a weighted linear mixed model (5.19) that can be estimated with the 

standard linear mixed model methods.  The estimates of β  and ib  are used to 

update the pseudo-data and the process is repeated until convergence.   

 

Wolfinger and O’Connell (1993) show that implementation of PQL and MQL 

procedures by Breslow and Clayton (1993) may be achieved with their algorithm.  In 

fact Littell et al., (2006) argue that Breslow-Clayton and Wolfinger-O’Connell‘s 

procedures are similar in that they both use the generalized mixed model equations 

(5.19) for solutions of β  and ib .  Nonetheless, one of the differences between the 

two procedures is primarily based on the fact that Breslow and Clayton motivate their 

estimation procedures from a quasi-likelihood viewpoint using approximations based 

on Laplace’s method whereas Wolfinger and O’Connell‘s approach to PL/REPL is 

based on a Gaussian approximation and Taylor’s theorem (Wolfinger and O’Connell, 

1993).  Moreover, Littell et al., (2006) points out that the other difference between 

what Breslow and Clayton (1993) term PQL and what Wolfinger and O’Connell 
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(1993) term PL/REPL lies in the estimation of the parameter φ .  In the Breslow-

Clayton procedure, the scale parameter is fixed at 1=φ , whereas in the Wolfinger-

O’Connell procedure, it is always estimated.   

 

5.4.2 A note on modeling serial correlation in GLMM 

Using the linearization approach to estimation (Schall, 1991; Wolfinger and 

O’Connell, 1993) the linear mixed model for the pseudo data given in (5.19) is 
** ˆˆ)ˆ)(ˆ( iiiiiiiiiii g εββµµ ++≈++−′≡ bZXbZXyy , 

where iii g εµε )ˆ(* ′= , which has mean zero.  The ( ) iiiiiE bZXby += β|*  and 

( ) )ˆ()ˆ(|*
iiiii ggvar µµ ′′= �by  where )ˆ( iii var µ−= y� .  The variance function can be 

expressed such that 

2
1

2
1

2
1

2
1

)( ΦΦ= iiiivar ARAε , 

where Φ  is the diagonal matrix with over dispersion parameters along the diagonal, 

iA  is a diagonal matrix containing the variances from the model specification of ijy  

given the random effects ib  and iR  is the correlation matrix.  The distribution of *
iε  

with a Gaussian distribution has approximately the same first two moments as the 

distribution of iε  (Wolfinger and O’Connell, 1993).  In particular, it is assumed that 

*
iε  is Gaussian with mean 0  and variance 2

1
2

1
2

1
2

1 ΦΦ iii ARA .  Then the marginal 

variance of the linear pseudo-model is defined as 

( ) 2
1

2
1

2
1

2
1* ΦΦ+′== iiivar ARAZZGVy . 

That is, the pseudo response variable *y  takes the form of a weighted linear mixed 

model with the diagonal weight matrix 21 )]ˆ([ˆ −− ′= µgAW .  Then an iterative algorithm 

in which a linear mixed model is fitted to get estimates of β  and b  is used.  The use 

of this estimation algorithm allows the introduction of autocorrelation at the level of 

the linear predictor in modeling the pseudo response variable *
iy  at each step of the 

iterative process.  This takes the advantage of well-established correlation structures 

used with linear mixed models, which include an AR-1 structure if measurements are 

equally spaced (see Chapter 4) and spatial correlation models which are appropriate 

when time points do not occur at pre-determined intervals (Brown and Prescott, 

2006).  With spatial correlation models, the correlation is specified as a continuous 
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function of the absolute difference in times between two observations (Weiss, 2005).  

There are a number of ways of defining covariances from the time interval.  For 

instance, the spatial power and spatial Gaussian correlations for four time points are 

defined as  

 

�
�
�
�
�

�

�

�
�
�
�
�

�

�

= −

−−

−−−

1
1

1
1

)(
||

||||

||||||

2

43

4232

413121

tt

tttt

tttttt

icov
ρ
ρρ
ρρρ

σy  

and  

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

=
�
�

�

�

�
�

�

� −

�
�

�

�

�
�

�

� −
�
�

�

�

�
�

�

� −

�
�

�

�

�
�

�

� −
�
�

�

�

�
�

�

� −
�
�

�

�

�
�

�

� −

1
1

1

1

)(

2

2
43

2

2
42

2

2
32

2

2
41

2

2
31

2

2
21

||

||||

||||||

2

ρ

ρρ

ρρρ

σ
tt

tttt

tttttt

i

e

ee

eee

cov y  

respectively. 

 

Note that as much as the random effects and residual correlation enter the pseudo 

data in (5.19) side by side, the residual error of the pseudo data is now a 

transformed version of the original error iε .  Therefore the autocorrelation parameter 

obtained using this approach has to be considered only as an approximate of the 

underlying correlation structure of its working variate (Molenberghs and Verbeke, 

2005). 

 

5.5 Model selection 

The primary objective of model selection is to choose the simplest model that 

provides the best fit to the data.  West, Welch and Galecki; (2007) pointed out that 

the process of building a model with both fixed and random effects given a set of 

longitudinal or clustered data is an iterative one, a series of model fitting steps and 

investigations are required, which include the selection of appropriate mean and 

covariance structures for the observed data.  Model building typically involves a 

balance of statistical and subject matter considerations; there is no single strategy 

that applies to every application (West et al., 2007).  A generalized linear mixed 



94 
 

model can be fitted with a variety of possible covariance structures for G  and iR .  

Unless robust inference is used, an appropriate covariance model is essential to 

obtain valid inferences for the parameters in the mean structure, hence the need for 

careful model building.   

 

The recommended general guidelines for model building (Verbeke and Molenberghs, 

2000) are as follows.  First, a preliminary mean structure has to be selected by fitting 

an over-elaborated model.  This is to remove the systematic trends in the data that 

cannot be explained by the covariance structure.  Second, a preliminary random 

effects structure is then selected.  The hierarchical nature of random effects has to 

be taken into account when a model is fitted.  For instance, the design matrix of the 

random effects should not contain a polynomial effect if not all hierarchically inferior 

terms are included.  Third, a residual covariance structure is then selected 

conditional on the preliminary structure of the selected random effects.  Accordingly, 

based on the selected residual covariance structure, the need for random effects 

should be re-assessed.  With the selected covariance structure, tests for the fixed 

effects can then be carried out.   

 

In the process of model selection, one has to be wary of over-parameterization of the 

model structure that would lead to inefficient estimation and potentially poor 

assessment of standard errors for the estimates (Verbeke and Molenberghs, 2000).  

As a result, a model reduction exercise of both the fixed and random parameters is 

essential in order to achieve a parsimonious model.  Model reduction is commonly 

done by comparing tests of significance in different models.  With model selection of 

fixed effects, the likelihood ratio (LR) test is commonly used for comparison of two 

models when one model is a special case of the other.  That is, it compares two 

models with different mean structure but with the same covariance structure. The LR 

test for two nested models is constructed by comparing the maximized log-

likelihoods for the full and reduced models respectively and the test statistic is 

defined as 
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where 0,
ˆ

MLθ  and MLθ̂  are respective maximum likelihood estimates which maximize 

the ML likelihood functions of the reduced and full models.  The asymptotic null 

distribution of the LR test statistic is a chi-square distribution with the degrees of 

freedom equal to the difference between the number of parameters in the two 

models.  Small values of Nln  2- λ  are obtained when the reduced model is similar to 

the full model, indicating that the reduced model is a good one.   

 

Similarly, with hypothesis testing of variance components, the LR test can be derived 

for comparing nested models with different covariance structures but with the same 

mean.  Also, the asymptotic null distribution of the LR test statistic is a chi-square 

distribution with the degrees of freedom equal to the difference between the number 

of parameters in the two models.  However, the normal approximation fails if the 

variance parameter to be tested takes values on the boundary of the parameter 

space.  Self and Liang (1987) and Stram and Lee (1994, 1995) show that the 

asymptotic null distribution for the LR test statistic for testing the hypothesis of the 

need for random effects is often a mixture of chi-squared distributions rather than the 

classical single chi-squared distribution.  This is derived under the assumption of 

conditional independence assumption.  The specific LR tests are presented as 

follows (Verbeke and Molenberghs, 2000): 

 

Case 1 - No random effects versus one random effect:  For testing 0:0 =GH  versus 

11: gH A =G , where 11g  is non-negative scalar that represents the variance 

component of the random effect.  Then the asymptotic null distribution of Nln  2- λ  is 

a mixture of 2
1χ  and 2

0χ  with equal weights of 0.5.  The 2
0χ  distribution is the 

distribution that gives probability mass 1 to value 0. 

 

Case 2 – One versus two random effects:  In the case where one wishes to test 

��
�

�
��
�

�
=

00
0

: 11
0

g
H G , 

for strictly positive 11g , versus AH  that G  is a )22( ×  positive semi-definite matrix.  

The asymptotic null distribution of Nln  2- λ  is a mixture with equal weights of 0.5 for 

2
2χ  and 2

1χ . 
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Case 3 - q  versus 1+q  random effects:  In the case where one wishes to test 

��
�

�
��
�

�

′
=

0
: 11

0 0
0G

GH , 

for which 11G  is a )( qq × positive definite matrix, versus AH  that G  is a general 

))1()1(( +×+ qq  positive semi-definite matrix.  The large sample behaviour of the null 

distribution of Nln  2- λ  is a mixture of 2
1+qχ  and 2

qχ  again with equal weights of 0.5. 

 

Case 4 - q  versus kq +  random effects:  In this case, one wishes to test the 0H  in 

case 3 versus 

��
�

�
��
�

�

′
=

2212

1211:
GG
GG

GAH , 

in which G  is a general ))()(( kqkq +×+ positive semi-definite matrix.  The null 

distribution of Nln  2- λ  is a mixture of 2χ  random variables formed by the lengths of 

projections of multivariate normal random variables upon curved as well as flat 

surfaces. 

 

It should be noted that if the classical null distribution is used for the cases presented 

above, then all the p -values would be overestimated.  Consequently the null 

hypothesis would be accepted too often, resulting in incorrectly simplifying the 

covariance structure of the model, thus invalidating inferences (Altham, 1984).  The 

correction for the boundary parameter values under the null hypotheses therefore 

reduces the p -values in order to protect against the use of an oversimplified or a too 

parsimonious covariance structure.   

 

A set of useful tools in model selection of non-nested models are usually referred to 

as Information Criteria (IC).  Recall that the idea behind the LR test for comparing 

model A to a more extended model B is to select model A if the increase in likelihood 

under model B is small compared to an increase in complexity.  Likewise, with the 

comparison of non-nested models, the model with the largest likelihood is selected 

provided it is not too complicated.  Under the IC method, the model with the highest 

penalized log-likelihood )(#θΓ−l  for some penalty function (.)Γ  dependent on the 
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number of parameters, θ#  is selected.  That is, the IC provides a way to assess the 

fit of the model based on its optimum log-likelihood value after applying a penalty for 

the number of parameters that are estimated in the model (West et al.; 2007).  

Different forms of (.)Γ  lead to different criteria and some commonly used functions 

are presented in Table 5.1 (Verbeke and Molenberghs, 2000).   

 

 Table 5. 1 Commonly used information criteria 
Criteria     Definition of (.)Γ  

 Akaike (AIC)     θθ # )(# =Γ  

 Schwarz (BIC)    2/*)ln(#)(# nθθ =Γ  

 Hannan and Quinn (HQIC)   *)ln(ln#)(# nθθ =Γ  

 Bozdogan (CAIC)    2/)1*(ln# )(# +=Γ nθθ  

 n* is equal to the total number �= =
N
i inn 1  of observations or equal to pn− , depending on whether 

 ML or REML estimation was used in the calculations respectively. 

 

Note from Table 5.1 that, except for the Akaike information criterion (AIC), the other 

IC involve the sample size.  This shows that differences in likelihood need to be 

viewed, not only relative to the differences in the numbers of parameters but also 

relative to the number of observations included in the analysis.  As the sample size 

increases, more severe increases in the likelihood are required before a complex 

model will be preferred over a simple model.  It should be emphasized that IC are 

not formal testing procedures, they only provide rules of thumb to discriminate 

between several statistical models (Verbeke and Molenberghs, 2000). 

 

Note however, that with the linearization estimation techniques where parameters 

are estimated by fitting linear mixed models to pseudo-data  (e.g PQL, MQL), nested 

as well as non-nested models cannot be compared using values based on the 

likelihood computation (Molenberghs and Verbeke, 2005).  This is because when 

one changes the error structure, then the linearized response also changes.  Since 

the values for the likelihood ratio test and information criteria are based on the 

likelihood, they cannot be used to compare models with the linearization estimation 

techniques.  One can only compare likelihood values across models when the 

response variable for each model is the same.  Nonetheless, tests that include 
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approximate Wald tests can still be used to test hypotheses about both fixed effects 

and random effects as discussed in the next section.  

 

5.6 Inference for fixed and random effects 

The ultimate goal in statistical analysis is to draw inferences about the parameters in 

a model in order to generalize results obtained from a specific sample to the general 

population from which the sample was drawn.  Since fitting of GLMMs is based on 

maximum likelihood principles, inferences for parameters are obtained from classical 

maximum likelihood theory.  Assuming that the fitted GLMM is appropriate, the 

obtained estimators are asymptotically normally distributed with the correct values as 

means, and with the inverse Fisher information matrix as covariance matrix 

(Molenberghs and Verbeke, 2005).  As a result, Wald-type tests can be performed 

for comparing standardized estimates to the standard normal distribution.  Also 

composite hypotheses can be tested using the more general formulation of the Wald 

statistic, which is a standardized quadratic form that is compared to the chi-squared 

distribution.  Alternatively, likelihood ratio and score test can be used.  

 

As discussed in Section 5.4, the parameters in GLMMs are often estimated by fitting 

linear mixed models to pseudo-data.  Therefore, precision estimates for the fixed 

effects and for the random effects are often calculated using linear mixed model 

methodology (Molenberghs and Verbeke, 2005).  Accordingly, tests for the fixed 

effects include the approximate Wald test (also referred to as the Z -test) and the 

approximate t -tests and F -tests and they are summarized by Verbeke and 

Molenberghs (2000) as follows.  For fixed effects, approximate Wald test (also 

known as the Z -test) can be obtained from approximating the distribution of 

)ˆ)/s.e.(-ˆ( jjj ���  by a standard univariate normal distribution for each parameter 

pj� j ,,1, �= .  More generally, it may be of interest to construct confidence intervals 

and tests of hypotheses about certain linear combinations of the components of � .  

For instance, given any known matrix L , a test for the hypothesis 

 �H 0L =:0  versus  �H 0L ≠:0     (5.21) 

follows from the fact that the distribution of  
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follows a chi-squared distribution with rank )(L  degrees of freedom.  However, it 

should be noted that the Wald test statistic is based on estimated standard errors 

which underestimate the true variability of �̂ .  This is because the variability 

introduced by estimating the variance parameters is not taken into account.  This 

downward bias can be resolved by using approximate t - and F -tests for testing the 

hypothesis about � .  For each parameter j�  in vector � , pj ,,1 �= , an 

approximate t-test and associated confidence interval can be obtained by 

approximating the distribution of )ˆ)/s.e.(-ˆ( jjj ���  by an appropriate t -distribution.  

Testing general linear hypotheses of the form (5.21) is thus based on an F -

approximation to the distribution of 
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with the numerator degrees of freedom equal to rank(L ), while the denominator 

degrees have to be established from the data.  There are several methods that are 

available for estimating the denominator degrees of freedom; one of which is the 

Satterthwaite approximation.  Note that even though different methods for the 

degrees of freedom may lead to severe differences in the resulting p -values, in the 

context of longitudinal data, whatever estimation method used, lead to very similar 

p -values.  This is due to the fact that in a longitudinal setting, different subjects 

contribute independent information, which results in numbers of degrees of freedom 

which are typically large enough to lead to very similar p -values. 

 

With regard to inference for variance components G , classical Wald, likelihood ratio 

and score tests can be used, as long as the hypotheses to be tested are not on the 

boundary of the parameter space (that is, testing the hypothesis that the variance of 

the population distribution is zero).  Because variances cannot be negative, zero is at 

the boundary of the parameter space and as such, only a one-sided hypothesis test 

can be carried out (Verbeke and Molenberghs, 2003).  For instance, the classical 
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Wald test (based on standard normal approximation) would no longer be valid if one 

were to test whether the variance 11g  of a single random effect is equal to zero, i.e 

0: 110 =gH  versus 0: 11 ≥gH A .  Thus, under 0H  the Wald statistic is asymptotically 

equivalent and 2
1χ  in 50% of the cases, and equal to zero in the other 50% of the 

cases.  Hence the null distribution is a mixture of the 2
0χ  (with all probability mass at 

zero) and 2
1χ , with equal probability 0.5 (Molenberghs and Verbeke, 2005).  

Consequently, the p -value is obtained by halving the classical p -value that is 

obtained when testing a hypothesis for a single parameter.  Similar properties can be 

obtained for the one-sided likelihood ratio test (Self and Liang, 1987; Stram and Lee, 

1994) and the one-sided score test (Silvapulle and Silvapulle, 1995; Verbeke and 

Molenberghs, 2003).  Moreover, even with the information criteria, there are still 

concerns about the boundary effects and estimation of degrees of freedom for 

random effects (Vaida and Blanchard, 2005). 

 

5.7 Evaluating adherence using GLMMs 

The conditional independence model was fitted to the data first.  The conditional 

independence model refers to the context where it is assumed that the correlation 

between measurements on the same subjects is modeled only by the random effects 

while conditionally upon them, the repeated measurements are assumed to be 

independent.  This model has been presented in Section 5.2, expression (5.2).  With 

both fixed and random effects in the model, model selection requires a series of 

model fitting steps and investigations on the appropriateness of mean and 

covariance structure of the observed data.  In fitting such a model, a preliminary 

covariance structure of the random effects was evaluated using the preliminary 

mean structure which includes all the main effects (fixed) in the data.  All the main 

effects were used in the preliminary structure in order to remove, as much as 

possible, the systematic trends in the data that cannot be explained by the 

covariance structure.  Once the preliminary covariance structure was selected, the 

mean structure was evaluated by carrying out tests for fixed effects.  Then with the 

selected mean structure, the need for random effects was re-assessed. 
 

The results of fitting models to the adherence data using different maximum 

likelihood estimation techniques as discussed in Section 5.4, are presented and 
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compared.  In particular, the models are fitted with penalized quasi likelihood (PQL), 

with Laplace approximation as well as classical Gaussian and adaptive Gaussian 

quadrature.  The data is analyzed using SAS (version 9.1.3) procedures; GLIMMIX 

and NLMIXED.  PQL is an approximation method to the data and has been 

implemented in the SAS procedure GLIMMIX.  The classical Gaussian and adaptive 

Gaussian quadrature, as approximations to the integral in the marginal likelihood 

have been implemented in the SAS procedure NLMIXED.  Model fitting based on the 

Laplace approximation for the integrals in the marginal likelihood can be specified by 

choosing adaptive Gaussian quadrature with one quadrature point.  One advantage 

of estimation methods implemented in NLMIXED is that they offer a true log-

likelihood whereas the methods implemented in GLIMMIX offer pseudo-likelihood.  

The advantage of GLIMMIX on the other hand, is that it allows greater flexibility in 

the types of models that can be estimated and the number of random effects that 

can be specified.  For instance, GLIMMIX is flexible enough to fit complex models 

that accommodate serial correlation in addition to random effects, whereas 

NLMIXED cannot accommodate such models.   

 

Evaluation of random effects structure 

For adherence data, the hypothesis of interest is that random intercepts and random 

slopes for the linear time effect are needed in the model.  We tested our hypothesis 

by adding one random effect at a time to the mean model.  The following models 

(fixed effects only, fixed effects plus random intercepts and fixed effects, random 

intercepts and random slopes) are considered:   
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           (5.24) 

 

where 1=ijy  if the ith  ( 688,,1 �=i ) patient adheres to medication in the jth  time 

(follow-visits) ( 17,,1 �=j ) and 0=ijy  otherwise.  Fixed effects are represented by 

the 2021 ,,, βββ � , ib0  represents random intercepts and ib1  represents random 

slopes.  In model (5.23), it is assumed that random intercepts ib0  are normally 

distributed with mean zero and variance 11g  whereas in model (5.24), it is assumed 

that the random intercepts and slopes ( )′= iii bb 10 ,b  have a bivariate normal 

distribution with zero mean and 22 ×  covariance matrix G . 

 

Results from integral approximation methods 

We first present the results from fitting the models (5.22), (5.23) and (5.24) using the 

classical Gaussian and adaptive Gaussian quadrature as well as the Laplace 

approximation.  Recall that with these methods, the likelihood obtained is based on 

the numerical integration of the actual observed data; therefore the likelihood ratio 

test can be used to compare the nested models.  However, it should be noted that 

with classical Gaussian and adaptive Gaussian quadrature, the obtained log-

likelihood value equals the maximum of the approximation to the model likelihood, 

which implies that log-likelihoods corresponding to different quadrature points are not 
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necessarily comparable.  As a result, for model building purposes, we need to 

assess the effect of the different numbers of quadrature points used on the estimates 

with a view to selecting a specific number of quadrature points that provide good 

accuracy in order to compare different nested models. 

 

The impact of the number of quadrature points used in the estimates of a fitted 

model when using classical Gaussian and adaptive Gaussian quadrature was 

assessed by fitting a single model (5.23) for varying numbers of quadrature points, 

Q = 3, 5, 10 and 20.  The different values for quadrature points, Q  did not lead to 

considerable differences in the parameter estimates nor the standard errors.  As the 

quadrature points, Q , were increased from 3 to 5, a minimal change in estimates 

and their corresponding standard errors was observed with adaptive Gaussian 

quadrature.  However, the estimates and their standard errors were similar with 5, 10 

and 20 quadrature points.  On the other hand, with classical Gaussian quadrature, 

there were slight differences in estimates when quadrature points were increased 

from 3 to 5.  For instance, the increase of Q  from 3 to 5 increased the estimate for 

the variance of the random intercepts, 11g  from 0 to 0.2852.  Nonetheless, the 

estimates and their corresponding standard errors were similar for 10 and 20 

quadrature points.  Consequently, for model selection, 10 and 20 quadrature points 

were then used for adaptive Gaussian and classical Gaussian quadrature 

respectively.   

 

As was discussed earlier, it is worth noting that our results confirm to a certain 

degree the fact that with classical Gaussian quadrature, a larger number of 

quadrature points are necessary to obtain high accuracy while the adaptive 

Gaussian quadrature provides good accuracy with fewer quadrature points.  On the 

other hand, in fitting the model (5.23), there was a huge difference in terms of the 

time taken by the two estimation methods to converge.  The adaptive Gaussian 

quadrature was much more time consuming than the classical Gaussian quadrature.  

As the number of quadrature points were increased, the time consumed by adaptive 

Gaussian quadrature escalated compared to classical Gaussian quadrature.  This 

was not surprising because as discussed in Section 5.4, the adaptive Gaussian 
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quadrature requires calculation of the mode ( ŝ ) for each unit in the dataset, hence 

the numerical maximization of N  functions of the form (5.9). 

 

The different random effects models were fitted and their associated minus twice log-

likelihood values from Laplace approximation, adaptive and classical Gaussian 

quadrature are presented in Table 5.2 whereas the likelihood ratio tests for the 

different models are presented in Table 5.3.  Since the log-likelihood values for 

adaptive Guassian and classical Guassian quadrature are the same (Table 5.2), the 

likelihood ratio test was computed using only one of them, which is the adaptive 

Guassian quadrature. 

 

Table 5. 2: Random effects models with associated value for the log-likelihood value for 
Laplace, adaptive Gaussian and classical Gaussian quadrature estimation 
techniques 

 

 

Random effects 

-2 Log-likelihood values 

Laplace 

approximations 

Gaussian quadrature  

Adaptive (Q =10) Classical (Q =20) 

Model 5.22:  

Model 5.23: Intercepts 

Model 5.24: Intercepts, time 

4542.3 

4504.2 

4650.5 

4542.3 

4503.1 

4668.2 

4542.3 

4503.1 

4668.2 

 
Table 5. 3: Likelihood ratio statistics for comparing random effects models and the 

associated null distribution (a mixture of chi-squared distribution) for Laplace 
approximation and adaptive Gaussian quadrature 

 

Hypothesis 

Likelihood ratio statistics 

Null distribution Laplace Adaptive Gaussian 

Model 5.22 vs Model 5.23 

Model 5.23 vs Model 5.24 

2
12

12
02

1 χχ +  
2
22

12
12

1 χχ +  

38.1 (p<0.001) 

33.5 (p<0.001) 

39.2 (p<0.001) 

34.9 (p<0.001) 

 
The need for the random intercepts in the model was assessed by carrying out tests 

that compare models 5.22 and 5.23.  The likelihood ratio tests from Laplace and 

adaptive Gaussian quadrature (computed from the minus twice log-likelihood values 

in Table 5.2) yield values of 38.1 and 39.2 respectively (Table 5.3).  These are highly 

significant (p<0.0001) indicating that the random intercepts are needed in the model.   
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Next, we evaluated whether in addition to the random intercepts, the inclusion of the 

random slopes in the model is necessary, i.e model 5.23 versus model 5.24.  The 

likelihood ratio tests from Laplace and adaptive Gaussian quadrature yielded 

statistics of 33.5 and 34.9 respectively (see Table 5.3).  These are highly significant 

(p<0.0001).  The other half of the null distribution (Table 5.3) with this test has two 

degrees of freedom because we are testing the null hypothesis that the slope 

variance 22g  and slope-intercept covariance 12g  are jointly equal to zero.  In this 

case the null hypothesis is rejected, indicating that both random intercepts and 

slopes are needed in the model. 

 

Penalized quasi-likelihood results 

With the PQL estimates, the approximate Wald test is used to test the significance or 

otherwise of the variance components.  In this instance, the likelihood ratio tests 

cannot be used because the likelihood computation is based on the linear mixed 

models for pseudo-data.  To evaluate whether the random intercepts are necessary, 

the hypothesis to be tested is 0: 110 =gH  versus 0: 11 ≥gH A .  The Wald statistic for 

random intercepts is 29.6 (p<0.0001) which is significant, indicating that the random 

effects are necessary.  It should be noted that since the null hypothesis of the 

variance component to be tested was on the boundary of the parameter space, a 

mixture of chi-square distribution as illustrated in Table 5.3 (for Laplace and classical 

Gaussian quadrature) was used to carry out this test.   

 

Then, we evaluated whether in addition to the random intercepts, the inclusion of the 

random slopes in the model is necessary, i.e model 5.23 versus model 5.24.  More 

specifically, the hypothesis to be tested is 0: 22120 == ggH , which is still on the 

boundary of the parameter space.  The observed value for the Wald statistic equals 
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which is significant when compared to a mixture of two chi-squared distributions with 

1 and 2 degrees of freedom, with equal weights of 0.5 (p<0.0001).  

 

All the estimation techniques suggest a similar preliminary conclusion, i.e that a 

model with randomly varying intercepts and slopes fitted the data well. 

 

Evaluation of the mean structure 

The mean structure is examined by first, evaluating whether factors that affect initial 

adherence are still important when adherence is studied over time at a subject 

specific level.  Recall that the final model for initial adherence (Section 3.4) contained 

all the main effects as well as three two-way interaction terms, which were between 

age and cell phone ownership, gender and patient’s reported reason for taking an 

HIV test as well as treatment site and whether or not a patient is the source of 

household income.  To evaluate whether the three two-way interactions in the 

baseline model are still significant, the following model was compared with model 

(5.24). 
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Likelihood ratio tests were calculated using the Laplace approximation, classical 

Gaussian and Adaptive Gaussian quadrature.  Let model (5.24) be denoted by 0M  

and model (5.25), with additional interactions from the initial analysis model, be 

denoted by 1M .  To compare the two models, the likelihood ratio test statistic is 

computed by calculating the difference )2()2( 10 ll −−−  where 0l  is the log-likelihood of 

model 0M  and 1l  is the log-likelihood of model 1M .  In addition, the degrees of 

freedom 01 mm −  are calculated where 1m  and 0m  are the respective number of 

parameters in the models 1M  and 0M .  The likelihood ratio statistics is then 

compared with the chi-squared value 2
, 01 mm −αχ .  
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The results showed that the likelihood ratio tests from all the estimation methods 

were insignificant. The likelihood statistics with their corresponding p-values from 

Laplace was 5.5 (p=0.103) whereas the likelihood statistics for adaptive Gaussian 

and classical Gaussian quadrature was 5.6 (p=0.105) at 4 degrees of freedom.  

Again the results from classical ( 20=Q ) and adaptive ( 10=Q ) Gaussian quadrature 

were the same. 

 

With the penalized quasi-likelihood estimation method, the multi-parameter or 

generalized Wald test is computed to test the joint null hypothesis that the three 

interaction terms are equal to zero.  That is, to compare models (5.24) and (5.25), 

the null hypothesis being tested is  

0242322210 ===== ββββH . 

In order to carry out the generalized Wald test, let us define a pq ×  indicator matrix 

C  of ones and zeros to select the parameters of interest.  Here p  equals the 

number of regressors in model (5.25), i.e., the full model (including the intercept) and 

q  equals the number of parameters in the multi-parameter test (i.e., the difference in 

regressors between model (5.25) and model (5.24).  Each row of C  contains a 1 in 

only one location, and zeros elsewhere, in order to select one of the parameters that 

comprise this test.  In fact, there are q  rows in this matrix because each row is used 

to uniquely select one of the q  parameters.  For comparing models (5.25) and 

(5.24), q = 4, p = 24 and the indicator matrix is given as  

�
�
�
�

	




�
�
�
�

�




=

100000000000000000000000
010000000000000000000000
001000000000000000000000
000100000000000000000000

C  

 

Then the generalized Wald test equals 

βββ ˆ))ˆ((ˆ 12 CCCCX −′′′= Var , 

which is distributed as 2χ  with q  degrees of freedom under the null hypothesis.  The 

test produced a Wald statistic of 5.20 with 4 degrees of freedom (p=0.2653) and is 

not significant.  Additionally, none of the two-way interactions of the three variables 
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were significant (age*cell phone: p=0.5841; gender*reason: p=0.2560; treatment 

site*income: p=0.0880).   

 

All the estimation techniques give similar results, that is, the additional two-way 

interaction terms that were significant when adherence was modeled at month one of 

initiation into therapy are no longer significant when adherence is modeled over time 

and at a subject specific level. 

 

We then proceeded to assess whether factors that determined adherence at the 

population level using the GEE are still valuable when adherence is assessed over 

time at a subject specific level.  The results from the GEE model (4.10) includes all 

the main effects and five two-way interaction terms.  Three of the two-way interaction 

terms involved time with gender, treatment site and patient’s reported reason for 

taking an HIV test.  The other two interactions were between age and gender as well 

as age and educational level.  A following random effects model was fitted with the 

same mean structure from the marginal model results (GEE results): 
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           (5.26) 

 

For evaluating whether factors that affect adherence at the population level still affect 

adherence at a patient specific level, models (5.26) and (5.24) were compared using 

results from the different estimation methods.  With the Laplace approximation, 

classical Gaussian and adaptive Gaussian quadrature, likelihood ratio tests 

(computed in the same way as in the section above) were used to compare the 

models (5.26) and (5.24).  The likelihood ratio statistics from Laplace was 25 

(p=0.0003) and adaptive Gaussian and classical Gaussian quadrature have the 

same value of 26.4 (p=0.0004), all at 5 degrees of freedom.  These likelihood ratio 
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tests indicate that the additional interactions from the population average model are 

significant. 

 

With the penalized quasi-likelihood estimation method, the multi-parameter or 

generalized Wald test (computed in the same manner as in the section above) is 

used to test the joint null hypothesis that the five interaction terms are equal to zero.  

That is, to compare models (5.24) and (5.26), the null hypothesis being tested is  

0272625242322210 ======== βββββββH , 

where the parameters are in model (5.5).  The test produced a Wald statistic of 

48.26 with 5 degrees of freedom (p<0.0001), which is significant.  Further, the results 

show that individual two-way interactions were significant (time*gender: p<0.0001; 

time*site: p<0.0001; time*reason: p=0.0255; age*gender: p=0.0125) except for the 

interaction between age and educational level (p=0.2555).   

 

Consequently, the model with the GEE results (5.26) was the preferred model since 

all the estimation techniques give similar results, that is, the additional two-way 

interaction terms that were significant when adherence was modeled at the marginal 

level are still significant when adherence is modeled over time and at a subject 

specific level. 

 

Re-assessment of the preliminary covariance structure 

All the estimation techniques give similar results, indicating that the additional two-

way interactions in the GEE model are significant.  Consequently, the model with the 

GEE results was the preferred model.  Then the preliminary covariance structure 

(random intercepts and slopes) was re-assessed with the now confirmed mean 

structure (GEE results).  This was done by re-fitting model (5.26) but with the 

randomly varying slopes using different estimation techniques.  The likelihood ratio 

tests from Laplace and adaptive Gaussian quadrature yielded statistics of 26.5 and 

25.4 respectively.  These were highly significant (p<0.0001), and therefore re-

affirmed the presence of the random intercepts and random slopes in the model 

(5.26).   
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With the PQL estimates, we evaluated whether in addition to the random intercept, 

the inclusion of the random slopes in the model is necessary by testing the 

hypothesis that 0: 22120 == ggH , which is still on the boundary of the parameter 

space.  The observed value for the Wald statistic equals 
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which is significant when compared to a mixture of two chi-squared distributions with 

1 and 2 degrees of freedom, with equal weights of 0.5 (p=0.004).  

 

All the estimation techniques suggest a similar finding, i.e that the GEE model with 

randomly varying intercepts and slopes fits the data well. 

 

Interpretation of the results 

The results of the final model (fixed effects and covariance parameters) from three 

estimation methods, Laplace approximations, adaptive Gaussian quadrature and 

PQL are presented in Table 5.4.  There was virtually no difference with the 

parameter estimates between the numerical based methods, classical Gaussian 

( 10=Q ) and adaptive Gaussian ( 20=Q ) quadrature, therefore only the results of 

adaptive Gaussian quadrature are presented.  The estimation methods provided 

similar results in terms of the significance or otherwise of the estimates.  It is 

however noted that generally PQL provided smaller estimates while adaptive 

Gaussian quadrature has the largest estimates, even though the margin of the 

difference is minimal.  PQL and Laplace methods are known to perform poorly in 

cases with a relatively small number of repeated binary observations available for all 

subjects (Wolfinger, 1998).  But in this case, both methods’ performance was not 

relatively poor when compared to adaptive Gaussian quadrature.  This might be due 

to sufficiently large number of repeated measurements per patient.  Nonetheless, the 
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interpretation of the results will be done using estimates from an adaptive Gaussian 

quadrature.   

 

There are four (two-way) significant interaction terms and two significant main effects 

(not involved in significant interaction).  Three of the significant interactions involved 

time, namely time and gender, time and treatment site as well as time and reason for 

taking an HIV test.  The other significant interaction is between age and gender.  The 

significant main effects are cell phone ownership and whether or not a patient stays 

with a partner.   

 

The results indicate that a typical patient (i.e. a patient with a random effect of zero) 

with a cell phone tends to adhere to medication 1.25 ( 233.0e ) times more than a typical 

patient without a cell phone.  Again, it is shown that a typical patient who does not 

stay with a partner is 0.45 ( 7524.0−e ) times less likely to adhere to medication than a 

typical patient who stays with a partner.  The results also show that conditional on 

random effects, adherence to medication is generally increasing, though the rate of 

increase differs by gender, treatment site and the patient’s reported reason for taking 

an HIV test.  The interaction terms are summarized below. 
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Table 5. 4:  Parameter estimates (standard errors) for conditional independence model on HAART adherence 
         Estimate (std error) 
 
       Laplace   adaptive  
Effect     Parameter Approx   Gaussian  PQL 

Intercept    0β   0.880 (0.301)  1.6064 (0.306)  0.852 (0.510) 

Gender (ref = male) 
Female      1β   -1.563 (0.535)*  -1.555 (0.546)*  -1.269(.428)* 

 
Education (ref= sec+) 
No schooling    2β   1.692 (0.522)*  1.505 (0.534)*  1.538 (.643)* 

Primary     3β   -0.112 (0.699)  -0.108 (0.510)  0.064 (0.551) 

 
Treatment Site (ref=rural) 
Urban site    4β   1.283 (0.201)*  1.290 (0.204)*  1.258 (.165)* 

 
Income (ref= not source of income) 
Source of income    5β   0.053 (0.116)  0.053 (0.118)  0.038 (0.098) 

 
Access to tap water (ref = No) 
Yes     6β   0.089 (0.182)  0.089 (0.185)  0.044 (0.153) 

 
Having electricity (ref = No) 
Yes     7β   0.053 (0.156)  0.055 (0.159)  0.001(0.139) 

 
Cell phone ownership (ref = No) 
Yes     8β   0.224 (0.104)*  0.223 (0.106)*  0.255 (.089)* 

 
WHO staging of disease (ref = stage 4) 
Stage 1     9β   -0.459 (0.256)  -0.482 (0.280)  -0.351(0.228) 

Stage 2     10β   -0.359 (0.246)  -0.361 (0.250)  -0.250(0.199) 

Stage 3     11β   -0.253 (0.229)  -0.256 (0.232)  -0.091(0.180) 
 
Partner (ref = living with partner) 
living without a  partner   12β   -0.023 (0.301)*  -0.5524 (0.306)*  -0.329(.102)* 

 
Reason for taking HIV test (ref = unwell) 
VCT     13β   -0.095 (0.215)  -0.093 (0.221)  -0.015(0.182) 

Exposed to the virus   14β   -0.534 (0.241)*  -0.535 (0.245)*  -0.485(.201)* 

 
Initial adherence (ref = not adherent) 
Adherent    15β   -0.118 (0.123)  -0.119 (0.125)  -0.138(0.105) 

 
Time (visit)    16β   0.133 (0.025)*  0.133 (0.025)*  0.123 (.021)* 

 
Age     17β   -0.021 (0.014)  -0.021 (0.014)  -0.015(0.011) 

 
Baseline CD4 Cell Count   18β   -0.001 (0.001)  -0.001 (0.001)  -.0003(0.001) 

 
Baseline weight    19β   -0.008 (0.008)  -0.008 (0.008)  -0.006(0.006) 

 
Weight at follow-up visit   20β   0.004 (0.005)  0.004 (0.005)  0.004 (0.006) 

 
* significant at 5% level 
 
 
 
 
 
 



113 
 

 
Table 5.4: (cont) Parameter estimates for standard GLMM on HAART adherence 

         Estimate (std error) 
 
       Laplace   adaptive  
Effect     Parameter Approx   Gaussian  PQL 
 
Time*gender (ref = male) 
Female     21β   0.053 (0.024)*  0.055 (0.024)*  0.069 (.020)* 

 
Time*treatment site (ref = rural) 
Urban     22β   -0.055 (0.023)*  -0.055 (0.023)*  -0.050(.020)* 

 
Time*reason for taking the test (ref = unwell) 
VCT     23β   -0.001 (0.026)  -0.001 (0.025)  -0.014(0.022) 

Exposed to the risk of HIV   24β   0.065 (0.030)*  0.065 (0.030)*  0.056 (.025)* 

 
Age*education (ref= sec+) 
No schooling    25β   -0.035 (0.189)  -0.036 (0.019)  -0.030(0.015) 

Primary     26β   0.002 (0.019)  0.002 (0.019)  -0.001(0.015) 

 
Age*gender (ref = male)   
Female     27β   0.035 (0.146)*  0.035 (0.015)*  0.026 (.011)* 

 
Random Effects 

)( 0ibvar     11g   0.680 (0.228)  0.565 (0.246)  0.562 (0.150) 

)( 1ibvar     22g   0.010 (0.003)  0.011 (0.003)  0.009 (0.002) 

),( 10 ii bbcov     12g   -0.065 (0.024)  -0.054 (0.036)  -0.055(0.018) 

 

),( 10 ii bbcorr       -0.810   -0.810   -0.553 

 
* significant at 5% level 
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a) Interaction between gender and time 

The results show that the rate of increase in adherence is higher with females than 

males conditional on the random effects (Table 5.4).  This is illustrated graphically in 

Figure 5.1.  As time increases by one additional follow-up visit, the odds of 

adherence for females increases by 1.06 ( 0555.0e ) times more than the odds of 

adherence for males.  Therefore, the wide gap in adherence between males and 

females observed at the beginning of the follow-up period narrows down as the 

number of follow-up visits increases. 

 

Figure 5. 1: Log of odds of adherence to HAART between the interaction of gender and 
time 
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b) Interaction between treatment site and gender 

Conditional on random effects, adherence is increasing both in the urban and rural 

treatment site, but the rate of increase is higher in the rural treatment site than the 

urban treatment site (Figure 5.2). With one additional follow-up visit, the odds of 

adherence in the rural treatment site increases by 1.055 ( 0552.0e ) times more than the 

odds of adherence in the urban treatment site (Table 5.5).  Therefore, as the number 

of visits increases, the gap in adherence between both treatment sites narrows 

down. 
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Figure 5. 2: Log odds of HAART adherence between the interaction of treatment site and 
time 
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c) Interaction between reported reason and time 

Adherence has been increasing over time; however, the rate of increase is highest 

with patients who reported to have tested for HIV because they felt exposed to the 

risk of contracting the disease.  With the patients who reported to have been 

exposed to the risk of contracting HIV, the rate of increase in the odds of adherence 

are 1.05 times more likely to adhere to medication than those who reported to have 

tested because they were unwell and because they had taken an HIV test for no 

specific reason.  There is no significant difference in the odds of adherence between 

patients who have reported to have tested because they were unwell and those who 

have tested for no specific reason (see Figure 5.3).  These are conditional on 

random effects. 

 

d) Interaction between age and gender 

The results show that as age increases, the rate at which adherence increases 

differs by gender.  It is shown in Table 5.4 that with one additional year in age, the 

rate of increase in the odds of adherence for females is 1.04 ( 037.0e ) times more likely 

than the odds of adherence for males. 
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Figure 5. 3: Log odds of HAART adherence between the patient’s reported reason for 
taking an HIV test and time 
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logit(adherence) = 1.6064 + 0.1332time
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Covariance parameters 

The estimated covariance parameters and their standard errors are also presented 

in Table 5.4.  Although the overall estimates of the variance components are not 

large, there is a noticeable individual heterogeneity in terms of both the intercepts 

and slopes.  For instance, the estimated individual random intercepts ranged from -

0.869 and 0.900, whereas the estimated individual random slopes indicated that 

heterogeneity in the rate of adherence over time from patient-to-patient ranged from 

-0.2182 and 0.1028.  Moreover, the correlation between the random intercepts and 

slopes is very strong, with a correlation coefficient of -0.81.  The negative correlation 

between the random intercepts and slopes suggests that there was a decline over 

time in adherence rates of patients who had high levels of adherence at the baseline 

follow-up visit and vice versa.  The empirical Bayes estimates of the intercept and 

slope for each patient are presented in Figure 5.4 
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Figure 5. 4: Empirical Bayes estimates for the intercept and slope 

 
Figure 5.4 reveals the nature of the negative covariance between the random 

intercepts and slopes.  That is, patients with more negative intercepts (less likely to 

adhere to medication at the baseline follow-up visit) have more positive slopes (more 

likely to adhere to medication over time). 

 

Assessment of serial correlation 

With the selected structure of random effects as well as the mean structure in model 

(5.26), different residual covariance structures were fitted with the view to selecting 

the best fitting one.  There are many possible covariance structures that are 

available.  Unfortunately, apart from the information criteria, there are generally no 

simple techniques available to compare all these models (Verbeke and 

Molenberghs, 2000).  The method of estimation used is PQL (with linearized pseudo-

data) because it accommodates models with serial correlation.  As noted earlier, in 

the case where parameters are estimated by the linearization method, the 

information criteria is not applicable since the ‘pseudo-information’ criteria (e.g 

pseudo-AIC) techniques cannot be used for selection of non-nested models.  Since 

there is no formal testing, the selection of the residual structure is based on roughly 

observing how the parameter estimates and their corresponding standard errors 

change as a consequence of the amount of variability explained by the introduction 

of auto-correlated errors. 
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Convergence difficulties were encountered when fitting the different residual 

structures in addition to the random effects.  These include structures such as 

compound symmetry, unstructured, general toeplitz, spatial power as well as spatial 

exponential.  Molenberghs and Verbeke (2005) have shown that convergence 

failures are relatively common when modeling of the covariance structure involves 

joint specification of the random effects, serial correlation and measurement error, 

simply because these components of variability cannot easily be disentangled.  

Nonetheless, models that were fitted with random effects plus AR-1, toeplitz(2) and 

toeplitz(3) as well as spatial Gaussian, converged successfully and the results are 

presented in Table 5.5.  With toeplitz structures, only toeplitz(3) is presented and 

also the results from the conditional independence (PQL estimates in Table 5.4) are 

presented for ease of reference. 

 

The results (Table 5.5) in all the fitted models showed negligible presence of residual 

serial correlation in addition to random effects.  That is, all fitted models (random 

effects with AR-1, toeplitz(3) and spatial Gaussian) indicate that correlation between 

any two measurements one visit apart is roughly 0.03 (It should be noted that with 

SAS parameterization, the correlation between two measurements one unit apart for 

spatial Gaussian structure is obtained by �
�

�
�
�

�−==
θ

ρρ 1
)1( exp ).  Thus there is no 

impact on the parameter estimates of the fixed effects.  For instance, there is no 

reduction in the standard errors when one compares the random effects model and 

the other three models with residual serial correlation.  There is a slight reduction in 

the Toeplitz structure but it is not meaningful.  One disadvantage of including 

residual covariance in the GLMM-based approach is that the calculation of the 

overall variance or the overall correlation is not straightforward because as noted 

earlier, the random effects and the autocorrelation structure enter at different places 

into the model irrespective of whether one consider the direct outcomes or the 

pseudo data derived from them (Molenberghs and Verbeke, 2005).  In this case the 

conditional independence model presented is the preferred model.   

 

 

 



119 
 

Table 5. 5: Parameter estimates (standard errors) for the random intercepts and slopes (RIAS) models with 
different residual structures for the adherence to HAART data 

       RIAS +   RIAS +   RIAS + 
Effect    RIAS   AR(1)   toep(3)   spatial Gaus 
Intercept   0.852 (0.510)  0.823(0.515)  0.830(0.499)  0.824(0.515) 
Gender (ref = male) 
Female     -1.269(0.428)*  -1.268(0.434)*  -1.255(0.418)*  -1.269(.433)* 

 
Education (ref= sec+) 
No schooling   1.538 (0.643)*  1.525(0.652)*  1.526(0.625)*  1.525(0.651)* 

Primary    0.064 (0.551)  0.088(0.559)  0.055(0.555)  0.085(0.558) 
 
Treatment Site (ref=rural) 
Urban site   1.258 (0.165)*  1.282(0.165)*  1.264(0.163)*  1.281(0.165)* 

 
Income (ref= not source of income) 
Source of income   0.038 (0.098)  0.041(0.099)  0.035(0.095)  0.041(0.099) 
 
Access to tap water (ref = No) 
Yes    0.044 (0.153)  0.035(0.156)  0.041(0.149)  0.034(0.156) 
 
Having electricity (ref = No) 
Yes    0.001(0.139)  0.010(0.141)  0.005(0.136)  0.009(0.141) 
 
Cell phone ownership (ref = No) 
Yes    0.255 (.089)*  0.260(0.090)*  0.255(0.086)*  0.260(0.090)* 

 
WHO staging of disease (ref = stage 4) 
Stage 1    -0.351(0.228)  -0.360(0.230)  -0.354(0.222)  -0.360(0.230) 
Stage 2    -0.250(0.199)  -0.254(0.201)  -0.252(0.194)  -0.253(0.200) 
Stage 3    -0.091(0.180)  -0.090(0.181)  -0.093(0.156)  -0.090(0.181) 
 
Partner (ref = living with partner) 
living without a  partner  -0.329(.102)*  -0.335(0.103)*  -0.329(0.099)*  -0.333(.103)* 

 
Reason for taking HIV test (ref = unwell) 
VCT    -0.015(0.182)  -0.009(0.185)  -0.010(0.181)  -0.010(0.184) 
Exposed to the virus  -0.485(0.201)*  -0.485(0.203)*  -0.482(0.199)*  -0.486(\.203)* 

 
Initial adherence (ref = not adherent) 
Adherent   -0.138(0.105)  -0.133(0.109)  -0.134(0.104)  -0.132(0.108) 
 
Time (visit)   0.123 (0.021)*  0.130(0.022)*  0.126(0.022)*  0.130(0.022)* 

 
Age    -0.015(0.011)  -0.016(0.011)  -0.015(0.011)  -0.016(0.011) 
 
Baseline CD4 Cell Count  -.0003(0.001)  -.0003(0.001)  -.0003(.0005)  -.0003(0.001) 
 
Baseline weight   -0.006(0.006)  -0.006(0.005)  -0.006(0.005)  -0.006(0.005) 
 
Weight at follow-up visit  0.004 (0.006)  0.004(0.006)  0.004(0.006)  0.004(0.006) 
 
Time*gender (ref = male) 
Female    0.069 (.020)*  0.069(0.020)*  0.069(0.020)*  0.069(0.020)* 

 
Time*treatment site (ref = rural) 
Urban    -0.050(.020)*  -0.053(0.020)*  -0.051(0.019)*  -0.053(.020)* 

 
Time*reason for taking the test (ref = unwell) 
VCT    -0.014(0.022)  -0.015(0.023)  -0.014(0.022)  -0.015(0.023) 
Exposed to the risk of HIV  0.056 (0.025)*  0.055(0.026)*  0.055(0.026)*  0.055(0.026)* 

 
Age*education (ref= sec+) 
No schooling   -0.030(0.015)  -0.030(0.015)  -0.030(0.016)  -0.030(0.015) 
Primary    -0.001(0.015)  -0.002(0.015)  -0.002(0.014)  -0.002(0.015) 
 
Age*gender (ref = male)   
Female    0.026 (0.011)*  0.025(0.012)*  0.026(0.011)*  0.025(0.011)* 

 
* significant at 5% level 
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Table 5.5(cont): Parameter estimates (standard errors) for the random intercepts and slopes (RIAS) models with 
different residual structures for the adherence to HAART data 

       RIAS +   RIAS +   RIAS + 
Effect    RIAS   AR(1)   toep(3)   spatial Gaus 
 
Random Effects 

)( 0ibvar    0.562 (0.150)  0.813(0.185)  0.661(0.185)  0.802(0.185) 

)( 1ibvar    0.009 (0.002)  0.012(0.003)  0.011(0.003)  0.012(0.003) 

),( 10 ii bbcov    -0.055(0.018)  -0.059(0.020)  -0.068(0.020)  -0.058(0.020) 

 
Residual 
Autocorr. par. θ       0.029(0.0158)  0.030(0.014)  0.541(0.035) 
          0.019(0.014) 
 

Autocorr. 2σ       0.839(0.0150)  0.845(0.018)  0.839(0.015) 
 
* significant at 5% level 
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5.8 Comparing marginal and random effects’ estimates 

The random effects models are conditional models (subject specific), as both 

within- and between-cluster effects apply conditional on the random effect value.  

By contrast, the effects in the marginal models are averaged over all subjects 

(i.e. population averaged), so those effects do not refer to a comparison at a 

fixed value of a random effect (Agresti, 2002).  For instance, a marginal gender 

contrast compares the mean among men to that among women, while a 

conditional gender contrast compares the mean among men to that among 

women holding the same value of a random effect.  With linear models, it is 

possible to formulate the two regression approaches to have coefficients with the 

same interpretation.  That is, coefficients from random effects models can have 

marginal interpretations as well.  To develop this idea, briefly consider the linear 

mixed model 

iiiii εβ ++= bZXy ,     (5.27) 

where ),,( 1 ′=
iinii yy �y , ),,( 1 ′=

iinii xxX � , ),,( 1 ′=
iinii zzZ �  ),,( 1 ′=

iinii εεε � , 

and where 0b =)( iE , Gb =)( icov , I2)( σε =icov , and 0b =),( iicov ε .  Note that 

the subject-specific coefficient for the ith  individual is ib+β .  Since 0b =)( iE , β  

has interpretation as the typical subject-specific parameter.  Alternatively, (5.27) 

can be expressed as  

βiiE Xy =)( , iiicov ZGZIy ′+= 2)( σ . 

Here, β  has the interpretation as the rate of change in the population-averaged 

y  with X .  The random effects in the linear mixed model do not alter the 

marginal expectation of y , the marginal covariance matrix.  Hence, β  has both a 

subject-specific and population-averaged interpretation. 

 

With non-linear link functions such as the logit, the parameters from marginal and 

random-effects models have completely different interpretations.  To expand on 

this point, recall an example in Section 5.2 of a binary outcome variable that 
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assumes a random intercepts logistic model with a linear predictor 

iijiij bbPlogit +′== βxy )]|1([ .  The conditional means are given by  

)exp(1

)exp(
)|(

iij

iij
iij b

b
bE

+′+
+′

=
β

β
x

x
y . 

The marginal average evolution is  

�
�
	




�
�
�




+′+
+′

==
)exp(1

)exp(
)]|([)(

iij

iij
iijij b

b
EbEEE

β
β

x
x

yy , 

which does not have the form  

)exp(1

)exp(

β
β

ij

ij

x
x

′+
′

, 

except when ib  has a degenerate distribution, i.e. 0)( =ibvar  (Agresti, 2002). 

 

Nonetheless, approximate relationships exist between the estimates from the 

random effects and marginal models.  Neuhaus, Kalbfleisch and Hauck (1991) 

show that if 0)( >ivar b , then the elements of the marginal )( Mβ  and random 

effects )( REβ  regression vector satisfy: 

 a) |||| RE
k

m
k ββ ≤ , for all k . 

b) Equality holds if and only if 0=REβ , or 0=τ , where τ  is the 

standard deviation of ib . 

c) The discrepancy between )( Mβ  and )( REβ  increases with )( ivar b . 

In particular, if ib  is assumed to follow a Gaussian distribution with mean zero 

and variance 2τ  in a logistic model with random intercept, Zeger, Liang and 

Albert (1988) showed that if  
RE

ijij cylogitE βτ x′+≈ −
2

1

)1()( 22 , 

where )15/(316 π=c  so that 

REM c βτβ 2
1

)1( 22 −+≈ , 
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where 346.02 ≈c .  Since the effect in the marginal model multiplies that of the 

conditional model by about d  where 2
1

)1( 22 −+= τcd , Mβ is typically smaller in 

absolute value than REβ  and the discrepancy increases as 2τ  (Neuhaus et al., 

1991).  That is, if the variance of the random effects is large, parameters from 

fitting marginal models and random-effects model will be different, while equal 

parameter values hold if the variance of the random effects is equal to zero 

(Molenberghs and Verbeke, 2005).  Thus, the use of marginal models can be 

dangerous, even when marginal inferences are of interest if the data exhibits a 

large degree of heterogeneity between subjects (Agresti, 2002). 

 

With HAART adherence data, the ratio between the parameter estimates of the 

GLMM (using the conditional independence model results from adaptive 

Gaussian quadrature) and the GEE (Chapter 4, Table 4.4) were calculated and 

are presented in Table 5.6.  The overall trend of the observed ratio between the 

two model estimates show that the GLMM estimates are slightly higher in 

magnitude than the GEE estimates.  The slight difference might be due to the 

relatively small variance components estimates in the GLMM (Table 5.4).  

However, there are a few cases where the differences in the size of the effects 

were more pronounced (e.g. source of household income and households with 

electricity).  This suggests, for instance, that patients who are sources of 

household income have more heterogeneity on adherence, thus their marginal 

effect is smaller than that of patients who were not sources of household income.   

 

There were also a few exceptions where the GEE estimates are slightly higher 

than their GLMM counterparts.  It is further noted that although the GLMM 

estimates were generally larger, the statistical significance of the parameters (as 

measured by the ratio of estimate to standard error) remained the same across 

the analyses of the two models.  Agresti (2002) argues that the choice of the 

model is usually not crucial to inferential conclusions because if one effect seems 

more important than another in a conditional model, the same is usually true with 

the marginal model.  This was also experienced with the analyses of HAART 
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adherence data, the predictor variables that were important in the GEE model 

were also found to be important in the GLMM model.  
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Table 5. 6: Parameter estimates (standard errors) for GLMM (using adaptive Gaussian quadrature) and GEE as 
well as the ratio between the two sets of parameters on adherence data 

         Estimate (std error) 
 
Effect     Parameter GLMM   GEE   Ratio 

Intercept    0β   1.606 (0.306)  0.597 (0.411)  2.69 

Gender (ref = male) 
Female      1β   -1.555 (0.546)*  -1.194(.341)*  1.30 
 
Education (ref= sec+) 
No schooling    2β   1.707 (0.734)*  1.617 (0.515)*  1.06 

Primary     3β   -0.108 (0.710)  0.099 (0.548)  1.09 

 
Treatment Site (ref=rural) 
Urban site    4β   1.290 (0.204)*  1.173 (0.162)*  1.10 
 
Income (ref= not source of income) 
Source of income    5β   0.053 (0.118)  0.010 (0.101)  5.30 

 
Access to tap water (ref = No) 
Yes     6β   0.089 (0.185)  0.108 (0.150)  0.82 

 
Having electricity (ref = No) 
Yes     7β   0.077 (0.159)  0.010(0.125)  7.70 

 
Cell phone ownership (ref = No) 
Yes     8β   0.223 (0.106)*  0.231 (.090)*  0.97 

 
WHO staging of disease (ref = stage 4) 
Stage 1     9β   -0.482 (0.280)  -0.334(0.197)  1.44 

Stage 2     10β   -0.361 (0.250)  -0.251(0.173)  1.44 

Stage 3     11β   -0.256 (0.232)  -0.108(0.157)  2.37 
 
Partner (ref = living with partner) 
living without a  partner   12β   -0.752 (0.306)*  -0.289(0.100)*  2.60 
 
Reason for taking HIV test (ref = unwell) 
VCT     13β   -0.093 (0.221)  -0.028(0.179)  3.32 

Exposed to the virus   14β   -0.537 (0.245)*  -0.486(0.181)*  1.11 
 
Initial adherence (ref = not adherent) 
Adherent    15β   -0.119 (0.125)  -0.141(0.108)  0.84 

 
Time (visit)    16β   0.133 (0.027)*  0.100 (.022)*  1.33 

 
Age     17β   -0.021 (0.014)  -0.012(0.008)  1.75 

 
Baseline CD4 Cell Count   18β   -0.001 (0.001)  -.0004(0.001)  2.50 

 
Baseline weight    19β   -0.008 (0.008)  -0.004(0.008)  2.00 

 
Weight at follow-up visit   20β   0.004 (0.007)  0.001 (0.007)  4.00 

 
* significant at 5% level 

Ratio=
M

RE

β
β  
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Table 5.6: Parameter estimates (standard errors) for GLMM (using adaptive Gaussian quadrature) and GEE as 
well as the ratio between the two sets of parameters on adherence data 

         Estimate (std error) 
 
Effect     Parameter GLMM   GEE   Ratio 
Time*gender (ref = male) 
Female     21β   0.055 (0.024)*  0.072 (.019)*  0.76 
 
Time*treatment site (ref = rural) 
Urban     22β   -0.055 (0.023)*  -0.057(0.020)*  0.96 
 
Time*reason for taking the test (ref = unwell) 
VCT     23β   -0.001 (0.027)  -0.010(0.022)  0.10 

Exposed to the risk of HIV   24β   0.067 (0.030)*  0.056 (0.024)*  1.20 
 
Age*education (ref= sec+) 
No schooling    25β   -0.036 (0.019)  -0.033(0.013)  1.09 

Primary     26β   0.002 (0.019)  -0.002(0.014)  1.00 

 
Age*gender (ref = male)   
Female     27β   0.037 (0.015)*  0.024 (0.010)*  1.54 

 
Random Effects 

)( 0ibvar     11g   0.765 (0.246)   

)( 1ibvar     22g   0.011 (0.003)   

),( 10 ii bbcov     12g   -0.074 (0.036)   

 

),( 10 ii bbcorr       -0.810    

 
* significant at 5% level 

Ratio=
M

RE

β
β  

 
 



 127

5.9 Summary 

GLMM is considered as a straight forward extension of the generalized linear 

model by appending the random effects in the linear predictor.  This achieves two 

main goals of allowing responses to be non-normal and correlated.  The GLMMs 

have the ability to model subject-specific evolutions in addition to determining the 

association structure of the data.  However, the estimation procedures are more 

complex with GLMM.  For maximum likelihood, approximation methods are used 

for parameter estimation with each method having its own strengths and 

limitations.  As a result, fitting data using GLMM was quite challenging.  

Regardless of the embedded differences between the approximation methods 

used to fit the adherence data, the results obtained from all methods largely 

agree, which gives us more confidence in all the approximation methods.  Note 

that GLMM is more robust to missingness than GEE because it assumes that 

data are missing at random (MAR).   

 

Application of GLMM to the adherence data enabled us to model the 

dependence among the repeated adherence observations in addition to 

evaluating the influence of the predictor variables on a specific patient’s mean 

adherence response over time.  The results showed that predictor variables 

associated with HAART adherence at the population level also have an 

association with HAART adherence at the subject specific level.  In addition, the 

results revealed that patients with high adherence at the beginning of the follow-

up period tend to be less adherent over time.  Similarly, patients who are non-

adherent at the beginning tend to improve their adherence over time.  Next, is to 

evaluate whether the patient’s past adherence outcome influences his/her 

current adherence outcome using transition models. 
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Chapter 6 

Transition models 
 

6.1 Introduction 

We have so far discussed extensively two approaches (including their results) of 

modeling longitudinal data by extending generalized linear models (GLMs).  

These are marginal models using the generalized estimating equations (GEEs) 

and generalized linear mixed models (GLMMs) as a special case of random 

effects models.  The third approach of handling longitudinal data and still 

extending the GLMs involves modeling the mean and time dependence 

simultaneously through conditioning an outcome on other outcomes or a subset 

of other outcomes (Molenberghs and Verbeke, 2005).  Such models are known 

as transition models and they are considered as a very specific class of 

conditional models.  Transition models are appealing for longitudinal designs due 

to the sequential nature of the data (Fitzmaurice and Molenberghs, 2008).  In 

transition models, the conditional distribution of each response ijy  is described 

as an explicit function of previous outcomes or history ),,( 11 −= ijiij yy �h  and the 

covariates ijx  (Diggle et al., 2002). That is, the past outcomes are treated as 

additional predictor variables (Davis, 2002).  The dependence among the 

repeated measures is thought of as arising due to the past values influencing the 

present observations.  Specific classes of transition models are Markov models 

for which the conditional distribution of ijy  given ijh  depends only on the q  prior 

observations qiji yy −,,1 � . (Diggle et al., 2002; Molenberghs and Verbeke, 2005; 

Ramroop, 2008).  The order of a transition model is the number of previous 

measurements ( q ) that is considered to influence the current one.  Moreover, a 

model is called stationary if the functional form of the dependence is the same 

regardless of the actual time (Molenberghs and Verbeke, 2005; Ware, Lipsitz and 

Speizer, 1988). 

 



 129

There are several different schools of thought regarding the best approach to 

analysis of correlated binary data.  Unlike in the normal setting, marginal, 

conditional (transition) and random effects approaches tend to give dissimilar 

results (Molenberghs and Ryan, 1999).  While each one of the model families 

has advantages and disadvantages, model choice should primarily be based on 

the specific goals of the analysis.  In transition models, the expectation of the 

response at a given occasion is modeled in terms of the responses at the other 

occasions, whereas in marginal models the covariates are directly related to the 

marginal expectations.  Random-effects models differ from the other two by the 

inclusion of parameters that are specific to the subject (Molenberghs and 

Verbeke, 2005).   

 

Due to the popularity of marginal (especially GEE) and random effects models for 

correlated binary data, transition models have been given relatively little attention 

(Molenberghs and Ryan, 1999).  Diggle et al., (2002) criticized the transition 

approach because the interpretation of a fixed effect parameter of one response 

is conditional on other responses for the same subject, outcomes of other 

subjects and the number of repeated measures.  However, transition models are 

likelihood based and one advantage is that efficiency can be gained over other 

procedures such as GEE under correct model specification.  Other advantages 

include availability of inferential procedures such as likelihood ratio tests and 

robustness of likelihood-based inference to certain dropout or missing data 

mechanisms (Heagerty, 2002).   

 

The rest of the chapter is organized as follows.  Section 6.2 presents the 

transition model formulation with illustrative examples from continuous, binary 

and count responses.  Estimation and fitting of transition models, with a particular 

focus on transition models for binary data is presented in Section 6.3.  In Section 

6.4 the results from the fitted transition models to adherence data are presented. 
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6.2 Model specification 

A transition model specifies a GLM for the conditional distribution of ijy  given 

past responses, ijh .  The form of the conditional GLM is  

)},(/)](exp{[)|( φφθψθ ijijijijijij ycyyf +−=h   (6.1) 

for known functions )( ijθψ  and ),( φijyc .  The conditional mean and variance are  

 given by  

)()|( ijijij
c
ij yE θψµ ′== h  

and  

φθψυ )()|( ijijij
c
ij yvar ′′== h  

respectively.   

 

Then a transition model establishes the following assumptions: 

a) The conditional expectation, denoted by c
ijµ , is specified by 

�
=

+′==
q

r
ijrijijij

c
ij fyEgg

1

);()|(()( αβµ hxh  

where qff ,,1 �  are functions of previous observations and, possibly, of 

an unknown parameter vector ),( 1 qααα �=′ ; and )(⋅g  is a known link 

function. 

b) The conditional variance satisfies the equation: 

)( c
ij

c
ij µφυυ =  

 where )(⋅υ  is a known variance function and φ  is an overdispersion 

parameter. 

This shows that the transition model expresses the conditional mean c
ijµ  as a 

function of both the covariates ijx  and the past responses qiji yy −,,1 � .  That is, 

the linear predictor component of the model includes the original covariates as 

well as additional covariates that are known functions of past responses (Diggle 

et al., 2002; Davis, 2002).  The transition model formulation is illustrated with 

continuous, binary and count responses. 
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For a continuous response, we consider the linear regression model with 

autoregressive errors for Gaussian data (Diggle et al., 2002; Tsay, 1984) which is 

a Markov model.  It has the form 

�
=

−− +′−+′=
q

r
ijrijrijrijij yy

1

)( Zxx βαβ , 

where ijZ  are independent, and zero-mean Gaussian errors.  This is a transition 

model with  
c
ij

c
ijg µµ =)( , 1)( =c

ijµυ  and )();( βαα rijrijrijr yf −− ′−= xh . 

It should be noted that the present observation ijy  is the linear function of ijx′  and 

of the earlier deviations βrijrijy −− ′− x , qr ,,1�= .  This formulation of the transition 

model within the linear regression model leads to βijijyE x′=)(  whatever the 

value of the number of previous outcomes ( q ) is. 

 

For binary responses, we consider a logistic regression model that consists of a 

first-order Markov chain (Diggle et al., 2002), which is given as 

1)]|1[Pr( −+′== ijijijij yylogit αβxh , 

where  

�
�

�

�

�
�

�

�

−
==

c
ij

c
ijc

ij
c
ij logitg

µ
µ

µµ
1

log)()( , )1()( c
ij

c
ij

c
ij µµµυ −=  

and  

rijrijr yf −= αα );(h , 1== qr . 

A simple extension to a model of order q  has the form 

�
=

−+′==
q

r
rijrij

c
ij

c
ij ylogitg

1

)()( αβµµ x . 

The interpretation of the regression coefficients depends on the order q , that is 

qββ = . 
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For count responses, we consider a log-linear model discussed in Zeger and 

Qaqish (1988) with a first order Markov chain and it can be summarized as 

follows 

}){log()|1[Pr( 1
*

1 βαβ −− ′−+′== ijijijijij yylog xxh , 

where 

),max(*
1 dyy ijij =− ; 10 << d , 

which leads to 
α

β
βµ

�
�

�

�

�
�

�

�

′
′=

−

−

)exp(
)exp(

1

*
1

ij

ij
ij

c
ij

y

x
x  

and  

}){log( 1
*

11 βα −− ′−= ijijyf x . 

The constant d  prevents 01 =−ijy  from being an absorbing state, otherwise 

01 =−ijy  compels all future responses to be zero.  For 0<α , a response at time 

1−t  greater than )exp( 1β−′tx  decreases the expectation for the current response 

and when 0>α , the opposite occurs. 

 

It is worth noting that for outcomes of the general type (in this case logistic and 

log-linear models), it is difficult to formulate models in such a way that β  has the 

same meaning for different assumptions about the time dependence.  Thus, 

when β  is of scientific interest, evaluation of the sensitivity of the results to the 

choice of time dependence model should be carried out. 

 

6.3 Estimation and fitting of a transition model 

Since the contribution of ijy  given the history ijh  leads to independent GLM 

contributions, estimation in transition models is quite straight forward 

(Molenberghs and Verbeke, 2005).  The following derivation follows that of 

Diggle et al., (2002).  In the first-order Markov model the contribution to the 

likelihood for the thi subject can be written as 



 133

)|()(),,(
2

11 ∏
=

=
i

i

n

j
ijijiinii yfyfyyL h� . 

In a Markov model of order q , the conditional distribution of ijy  is  

),,|()|( 1 qijijijijij yyyfyf −−= �h , 

then the likelihood contribution for the ith  subject becomes 

∏
+=

−−

in

qj
qijijijiqi yyyfyyf

1
11 ),,|(),,( �� . 

 

The conditional GLM (6.1) only specifies the conditional distribution )|( ijijyf h ; 

the likelihood of the first q  observation ),,( 1 iqi yyf �  is not specified directly. 

 

When ijy  given ijh  follows a Gaussian distribution and also iqi yy ,,1 �  are also 

multivariate Gaussian, the marginal distribution ),,( 1 iqi yyf �  can be fully 

determined from the conditional distribution model without additional unknown 

parameters for a weakly stationary covariance structure of ijy .  Thus full 

maximum likelihood estimation can be used to fit Gaussian autoregressive 

models. 

 

However, for models of the general type such as logistic and log-linear models,  

),,( 1 iqi yyf �  is not determined from the GLM assumption about the conditional 

model, and therefore the full likelihood is not available.  In this case, β  and α  

can be estimated by maximizing the conditional likelihood 

)|(),,|,,(
1 11

11 ∏ ∏∏
= +==

+ =
N

i

n

qj
ijij

N

i
iqiiniq

i

i
yfyyyyf h�� .  (6.2) 

There are two distinct cases to consider when maximizing the above conditional 

likelihood. 
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Case 1: If )(),;( ijrrijr ff hh αβα =  where rf  does not depend on the parameters 

β , estimation proceeds as in GLMs for independent data.  That is, the 

conditional expectation, �
=

+′=
q

r
ijrij

c
ij fg

1

)()( hx αβµ  is a linear function of both β  

and ),,( 1 qααα �=′ .  We can simply regress ijy  on the )( qp + -dimensional 

vector of extended explanatory variables )(,),(,( 1 ijqijij ff hhx � . 

 

Case 2:  When rf  depends on both α  and β , the conditional score function has 

the form 

0)()(
1

1 1

=−
∂
∂

=
−

� �
= +=

c
ijij

c
ij

N

i

n

qj

c
ijc y

i

µυ
δ
µ

δS ,   (6.3) 

where ),( αβδ ′′=′ .  This equation is the conditional analogue of the GLM score 

equation presented in Chapter 3.  The derivative δµ ∂∂ /ij  is analogous to ijx  but 

it can depend on α  and β .  The iterative weighted least squares estimation 

procedure is formulated as follows.  Let iy  be the )( qni −  vector of responses for 

inqj ,,1 �+=  and c
ijµ  is its expectation given, ijh .  Let *

iX  be an )()( qpqni +×−  

matrix with the kth  row δµ ∂∂ + /kiq  and ),,1,/1( qnkdiag i
c

qiki −== + �υW  is an 

)()( qnqn ii −×−  diagonal weighting matrix.  Finally, let )ˆ(ˆ* c
iiii µδ −+= yXz .  

Then an updated δ̂  can be obtained by iteratively regressing z  on *X  using 

weights W . 

 

It is worth noting that if q  is large, relative to in , the use of transitional models 

with conditional likelihood could be inefficient.   

 

When the correct model is assumed for the conditional mean and variance, the 

solution to δ̂  of (6.3) asymptotically follows a Gaussian distribution as N  goes to 

infinity, with mean equal to the true value, δ , and )()( qpqp +×+  variance matrix 
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The variance δ̂V  depends on β  and α  and a consistent estimate, δ̂V̂ , is 

obtained by replacing β  and α  by their estimates β̂  and α̂ .  However, when 

the conditional mean is correctly specified and the conditional variance is not, 

consistent inferences about δ  can still be obtained using the robust variance: 
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A consistent estimate of RV̂  is obtained by replacing )|( ijiji var hyV =  by its 

estimate )ˆ)(ˆ( ′−− c
ii

c
ii µµ yy . 

 

The robust variance will often give consistent confidence intervals for δ̂  even 

when the Markov assumption is violated.  In such a situation, however, the 

interpretation of δ̂  is questionable since )ˆ(δµ c
ij  is not the conditional mean of ijy  

given ijh . 

 

Fitting transition models in SAS is relatively straightforward.  Since subsequent 

measurements, given their previous history, are independent of each other, 

standard GLM software can be used to fit these models.  These include SAS 

procedures that comprise GENMOD and LOGISTIC.  However, one must ensure 

that the data is organized in such way that previous measurements can be used 

as covariates.  Molenberghs and Verbeke (2005) describe how the DROPOUT 

macro can be used to prepare previous responses as covariates in the 

longitudinally organized data set (one record per measurement rather than per 

subject).  Besides the DROPOUT macro, the LAG function in SAS can also be 

used to create previous measurements as additional covariates.  

 

For binary outcomes observed at equally spaced intervals, a first-order Markov 

chain is characterized by the transition matrix 
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ππ
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where )|Pr( 1 ayby ijijab === −π , 1,0, =ba .  For instance, 01π  is the probability 

that 1=ijy  when the previous response is 01 =−ijy .  That is, the probability of a 

transition from 0=ijy  at time 1−j  to 1=ijy  at time j  is )0|1Pr( 101 === −ijij yyπ .  

Similarly, the probability of a transition from 1=ijy  at time 1−j  to 1=ijy  at time 

j  is )1|1Pr( 111 === −ijij yyπ .  With adherence data, 01π  would represent the 

probability that a patient adheres to medication ( 1=ijy ) when they were non-

adherent to medication in the previous visit ( 01 =−ijy ).  Likewise, 11π  would 

represent the probability that a patient adheres to medication ( 1=ijy ) when they 

were adherent to medication in the previous visit ( 01 =−ijy ).  It should be noted 

that each row of a transition matrix sums to one since  

1)|1Pr()|0Pr( 11 ===+== −− ayyayy ijijijij . 

In general, a transition matrix records the probabilities of making each of the 

possible transitions from one visit to the next (Diggle et al., 2002).  It is worth 

noting that the transition probabilities are conditional probabilities of going into 

each state, given the immediately preceding state.  In a first-order Markov chain, 

there is dependence on the immediately preceding state but not on earlier 

outcomes.  Moreover, higher-order sequential dependence can be incorporated, 

with dependence on more than an immediately preceding state (Fitzmaurice and 

Molenberghs, 2008). 

 

Transition probabilities can be modeled as functions of covariates 

),,,,1( 21 ijpijijij xxx �=′x  in a regression setting.  For instance, Cox (1970, 1972) 

showed the link between the transition probabilities for a Markov chain and a 

logistic regression.  Korn and Whittemore (1979) applied the model to panel data 

on the effects of air pollution.  Thus, with the adherence data, we might assume 

that the probability of adherence to medication for patient i  at visit j  has direct 
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dependence on whether or not a patient adhered to medication at visit 1−j  as 

well as on the explanatory variables ijx  (age, gender, treatment site etc).  A 

logistic regression model can be formulated as  

αβαβ 11 )],,,|1([ −− +′== ijijijijij yyyPlogit xx .  (6.4) 

This model is the stationary first order autoregressive model.  The parameter 

)exp(α  is the ratio of the odds of adherence among patients who did and did not 

adhere to medication at the previous follow-up visit.  The parameter )exp(β  can 

be interpreted as the odds of adherence to medication having controlled for the 

outcome (adherent/not adherent) in the previous follow-up visit. 

 

Evaluating the logistic regression equation (6.4) to 01 =−ijy  and 11 =−ijy  produces 

the following transition probabilities  

)exp(1
1

00 β
π
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In this model (6.4), the covariates have the same effect on the response 

probability whether 01 =−ijy  or 11 =−ijy .  In order to link covariate dependence 

with transition probabilities so as to analyze factors associated with such 

transitions, logistic regression models were employed by Muenz and Rubinstein 

(1985) for first-order Markov models while generalizations to higher-order were 

proposed by, amongst others, Islam and Crowdhury (2006).  Thus, for assessing 

covariate dependence on the previous response, model (6.4) can be extended to 

include interaction of the previous response 1−ijy  and explanatory variables, ijx .  

That is, it can be assumed that the effects of explanatory variables will differ 

depending on the previous response.  In such a case, a very general model uses 

separate logistic regressions for )0|1( 1 == −ijij yyP  and )1|1( 1 == −ijij yyP .  That 

is  
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01 ),0|1([ βijijijij yyPlogit xx ′=== − , 

11 ),1|1([ βijijijij yyPlogit xx ′=== − , 

where if 10 ββ ≠  indicates the possibility that the effects of explanatory variables 

differ depending on the previous response.  Diggle et al., (2002) show that the 

two equations above can be combined to form the model 

αβαβ ijijijijijij yyyPlogit xxx ′+′== −− 11 )],,,|1([ ,  (6.5). 

where 

0ββ =  and 01 ββα −= . 

Model (6.4) is a special case of (6.5).  Since these models are nested, standard 

statistical methods for nested models can be applied to test whether smaller 

models can fit the data as equally well as saturated models.  For instance, 

likelihood ratio tests can be applied to test whether a limited number of 

covariates interact with the previous outcome.  Moreover, we can test whether a 

smaller model (6.4) fit the data as equally well as the saturated model (6.5). 

 

The covariate dependent higher order models can be fitted by extending the 

model for the first order Markov chain (6.5).  To illustrate the extension to higher 

models, the second-order model is considered.  The transition matrix for the 

second-order model is of the form 

 ijy  

   2−ijy   1−ijy   0  1 

   0  0  000π   001π  

   0  1  010π   011π  

   1  0  100π   101π  

   1  1  110π   111π  

 

where ),|Pr( 12 byaycy ijijijabc ==== −−π ; for example, 001π  is the probability that 

1=ijy  given 02 =−ijy  and 01 =−ijy .  For ease of reference regarding the previous 
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responses, lag 2 will be used to refer to 2−ijy  while lag1 will refer to 1−ijy .  With 

adherence data for example, 001π  would indicate the probability that a patient 

adhered to medication when he/she was non-adherent in lag 2 and lag 1 follow-

up visits ( 02 =−ijy , 01 =−ijy ).  Similarly, 011π  would indicate the probability that a 

patient adhered to medication when they were not adherent in lag 2 ( 02 =−ijy ) 

follow-up visit but adherent in lag 1 ( 11 =−ijy ) follow-up visit. 

 

With the second-order transition models, four separate logistic regression models 

can be fitted, one for each of the four possible histories ( 2−ijy , 1−ijy ), which are 

(0,0), (0,1), (1,0) and (1,1) with regression coefficients 00β , 01β , 10β  and 11β  

respectively.  It is more concise to write a single equation as follows: 

    )],|1([ 12 −−= ijijij yyyPlogit  

3212211 αααβ ijijijijijijijij yyyy xxxx ′+′+′+′= −−−−   (6.7) 

By putting in the different values for 2−ijy  and 1−ijy , we obtain ββ =00 , 

101 αββ += , 210 αββ +=  and 32111 αααββ +++= .  The following transition 

probabilities can be produced: 
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It should be noted that 1001000 =+ ππ , 1011010 =+ ππ , 1101100 =+ ππ  and 

1111110 =+ ππ . 
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Tests can again be carried out to ascertain whether a parsimonious model could 

fit the data well, that is, testing whether many of the components of the iα  would 

be equal to zero. 

 

An important special case of (6.7) occurs when there are no interactions between 

the past outcomes 2−ijy  and 1−ijy , and the explanatory variables,  that is, when all 

elements of iα  are zero except the intercept term.  In this case, the previous 

responses affect the probability of a positive outcome, but the effects of the 

explanatory variables are the same regardless of the history.  Even in this 

situation, we must still choose from Markov models of a different order.  For 

instance, we might start with a third-order model which can be written in the form  

317326315214332211

123 )],,|1([

−−−−−−−−−−−

−−−

++++++′=

=

ijijijijijijijijijijijij

ijijijij

yyyyyyyyyyy

yyyyPlogit

αααααααβx
 

        (6.8) 

A second order model can be used if the data are consistent with 

07653 ==== αααα ; a first order model is implied if 0=jα  for 7,,2 �=j .  As 

with any regression coefficients, the interpretation of the value of β  in (6.8) 

depends on the other explanatory variables in the model, in particular on which 

previous responses are included.  When inference about β  are of scientific 

interest, it is essential to check their sensitivity to the assumed order of the 

Markov regression model (Diggle et al., 2002). 

 

6.4 Evaluating adherence data using transition models 

With the data from HIV positive adults who are on HAART, the overall scientific 

interest has been to explore factors that affect HAART adherence over time 

among these adults.  In this chapter, the analyses use covariates identified using 

the GEE model to address whether or not the patient’s adherence to medication 

depends on the previous outcomes (history) in addition to the identified GEE 

covariates.  Moreover, it would be interesting to also assess whether the effects 
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of explanatory variables are the same regardless of the history (no interactions 

between the previous outcomes and explanatory variables) or the effects differ 

depending on the history (interactions between previous responses and 

explanatory variables exist).  
 

Recall the GEE model for the adherence data (Chapter 4, section 4.6) 
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A series of transition models were fitted to this GEE model using ‘Proc Logistic’ 

and ‘Proc Genmod’ in SAS.  First, we assessed whether there is a dependence 

on (a) the previous response, 1−ijy , (b) the response two occasions prior to the 

current one ( 1−ijy , 2−ijy ) and (c) the response three occasions prior to the current 

one ( 1−ijy , 2−ijy , 3−ijy ).  Thus three models (first-, second- and third-order models) 

were fitted, where the previous responses were included as additional 

explanatory variables into the GEE model.  The goodness-of-fit was tested using 

the deviance analysis which is produced by the type 3 analysis of effects.  Type 3 

analysis of effects considers the overall model and assesses the contribution of 

each variable to deviance reduction irrespective of the sequence in which the 

variables enter the model.  The results from type 3 analysis of the effects are 

presented in Table 6.1.   
 

The results show a very strong dependence on the previous outcome 

measurement (p-value = <0.001) and on the measurement two occasions prior to 

the current (p-value = <0.001).  Three prior responses did not depend on the 

current response (p-value = 0.167), and for further model assessments, the third-

order transition model was not considered. 
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Table 6. 1: Type 3 analysis of effects for first-, second- and third order models 
Effects DF First order Second order Third order 

Wald Chi-

square 

p-value Wald Chi-

square 

p-value Wald Chi-

square 

p-value 

Gender 

Education 

Treatment site 

Income 

Tapwater 

Electricity 

Cell phone 

WHO staging  

Partner 

Reason 

Baseline_adh 

Time (visit) 

Age 

Baseline CD4+  

Baseline weight 

Weight_follow-up 

Time*gender 

Time*site 

Time*reason 

Age*gender 

Age*education 

Lag1 ( 1−ijy ) 

Lag2 ( 2−ijy ) 

Lag3 ( 3−ijy ) 

1 

2 

1 

1 

1 

1 

1 

3 

1 

2 

1 

1 

1 

1 

1 

1 

1 

1 

2 

1  

1 

1 

1 

1 

 

2.9914 

13.6998 

17.1163 

0.1828 

0.9473 

0.3083 

2.1826 

1.3976 

8.2366 

5.4967 

3.4725 

16.0774 

2.6288 

0.0706 

0.1906 

0.1527 

9.2673 

0.0512 

6.8689 

1.2757                              

10.5237 

59.3599 

0.0837 

0.0011 

<.0001 

0.6690 

0.3304 

0.5787 

0.1396 

0.7061 

0.0041 

0.0640 

0.0624 

<.0001 

0.1049 

0.7904 

0.6624 

0.6960 

0.0023 

3.8019 

0.0322 

0.2587 

0.0052 

<.0001 

2.2137 

11.9152 

13.1546 

0.1761 

0.8523 

0.4145 

1.5157 

1.2082 

6.8889 

4.4073 

2.8261 

13.6226 

2.3056 

0.0491 

0.1491 

0.1796 

8.2419 

2.9202 

5.9122 

0.8763           

9.3435 

47.9417 

25.8090 

0.1368 

0.0026 

0.0003 

0.6747 

0.3559 

0.5197 

0.2183 

0.7510 

0.0087 

0.1104 

0.0927 

0.0002 

0.1289 

0.8246 

0.6994 

0.6717 

0.0041 

0.0875 

0.0520 

0.3492 

0.0094 

<.0001 

<.0001 

1.9983 

11.5297 

12.1355 

0.1780 

0.8094 

0.4548 

1.3948 

1.1675 

6.5753 

4.2353 

2.7130 

12.7552 

2.1968 

0.0474 

0.1395 

0.1853 

7.9157 

2.7032 

5.7521                              

0.7833                              

9.0683                              

46.0769 

24.0398 

1.9190 

0.1575 

0.0031 

0.0005 

0.6731 

0.3683 

0.5000 

0.2376 

0.7608 

0.0103 

0.1203 

0.0995 

0.0004 

0.1383 

0.8277 

0.7088 

0.6668 

0.0049 

0.1001 

0.0564 

0.3761 

0.0107 

<.0001 

<.0001 

0.1660 

 

Second, we checked whether the effects of the explanatory variables differ 

depending on the previous responses (history).  That is, we assessed whether 

any interaction terms (between the previous response and explanatory variables) 

need to be incorporated into the second-order model.  To examine this, the 

second-order model (in Table 6.1) was extended by fitting each of the two-way 

interaction terms formed from the previous responses and explanatory variables. 
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They were added to the model one at a time and their significance assessed.  

Three interactions reduced the deviance by relatively large amounts: lag1*time 

led to a deviance reduction of 6.48 on 1 degree of freedom and a corresponding 

p-value of 0.011, lag2*baseline adherence and lag2*cell phone reduced the 

deviance by 5.98 (p-value = 0.014) and 6.13 (p-value = 0.013) on 1 degree of 

freedom respectively.  To see if all the three interactions could be retained in the 

model, they were fitted all at the same time and they reduced the deviance by 

19.98 on 3 degrees of freedom and a corresponding p-value of <0.001.  Finally, 

the model was examined to see if any interactions from the GEE model could be 

omitted.  The interaction between age and gender increased the deviance by 

2.185 on 1 degree of .freedom (p-value = 0.139) and was therefore dropped. As 

a result, the selected model was the second-order model (Table 6.1) but 

excluding the interaction term age*gender and including the three interaction 

terms: lag1*time, lag2*baseline adherence and lag2*cell phone 

 

The goodness-of-fit was tested using Hosmer-Lemeshow test.  The observed 

and expected frequencies are given in Table 6.2.   

 

Table 6. 2:  Partion for the Hosmer-Lemeshow Goodness-of-Fit test 
Group Total Event = adherent Non-event = non adherent 

Observed Expected Observed Expected 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

508 

508 

508 

508 

508 

508 

508 

508 

508 

505 

264 

339 

381 

398 

425 

441 

445 

433 

460 

475 

257.43 

345.56 

380.63 

403.13 

420.31 

432.75 

441.67 

450.06 

459.31 

470.12 

244 

169 

127 

110 

83 

67 

63 

75 

48 

30 

250.57 

162.44 

127.37 

104.87 

87.69 

75.25 

66.33 

57.94 

48.69 

34.88 
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The goodness-of-fit statistics is 9.0149 with 8 degrees of freedom, and the 

corresponding p-value of 0.341.  The very large p-value for this test shows that 

the model fits the data well (i.e. the predicted probabilities correspond with the 

observed values). 

 

The appropriateness of the link function was tested by refitting the model using a 

linear predictor and a squared linear predictor and the results are given in Table 

6.3. 

Table 6. 3 Logit link function test 
Variable DF Chi-square p-value 

Constant 

Linear predictor 

Squared linear predictor 

1 

1 

1 

0.0104 

67.609 

0.0643 

0.919 

<.0001 

0.800 

 

The very small p-value for the linear predictor and a very large p-value for the 

squared linear predictor variables in Table 6.3 suggest that the link is 

appropriate, and thus agrees with the goodness-of-fit test that the model fits the 

data well. 

 

A simple check of the sensitivity of inferences about the regression coefficients to 

the Markov assumption, which in this case is the 2nd order, was carried out by 

assessing whether the ordinary and robust standard errors were similar.  This 

was carried out using the GLIMMIX procedure (to fit a generalized linear model) 

since it can provide empirical error estimates for the regression coefficients and 

the results are presented Table 6.4.  The results showed both standard errors to 

be very similar, which suggests that the 2nd order Markov assumption is valid, 

thus the standard errors estimated by ordinary logistic regression are valid. 
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Table 6. 4:  Comparison of model based and empirical standard errors of the 2nd Markov model 
Effect Estimates Model based std errors Empirical std errors 

Std error Pvalue Std error Pvalue 
Intercept 
Gender (ref=male) 

female 
Education (ref=sec & higher) 

No schooling 
Primary 

Treatment site (ref=rural) 
Urban 

Income (ref=not source) 
Source of income 

Access to tapwater (ref=no) 
Yes 

Househld with electricity (ref=no) 
Yes 

Cell phone ownership (ref=no) 
Yes 

WHO staging (ref=stage4) 
Stage1 
Stage2 
Stage 3 

Living with partner (ref=no) 
Yes 

Reason for testing (ref=unwell) 
No specific reason 
Exposed to the risk 

Baseline adherence (ref=no) 
yes 

Time (visit) 
Age 
Baseline CD4+  
Baseline weight 
Weight at follow-up visits 
Time*gender (ref=male) 

female 
Time*site (ref=rural) 

urban 
Time*reason (ref=unwell) 

No specific reason 
Exposed to the risk 

Age*education 
No schooling 
Primary 

Previous1 (ref=no) 
yes 

Previous2 (ref=no) 
yes 

Previous1*time 
Previous2*cellphone (ref=no) 

Yes 
Previous2*baseline adh (ref=no) 

yes  

-0.2143 
 
-0.4148 
 
2.0950 
0.2412 
 
1.0166 
 
-0.0303 
 
0.1602 
 
0.0897 
 
-0.1686 
 
-0.2706 
-0.1464 
  0.0581 
 
0.2242 
 
-0.2963 
-0.5473 
 
-0.5254 
 
0.0877 
-0.0002 
-0.0020 
-0.0014 
 
0.0719 
 
-0.0508 
 
0.0147 
0.0606 
 
-0.0439 
-0.0059 
 
1.1597 
 
-0.1332 
-0.0580 
 
0.4122 
 
0.4938 

0.4351 
 
0.1979 
 
0.5866 
0.5086 
 
0.1997 
 
0.0897 
 
0.1273 
 
0.1178 
 
0.1403 
 
0.2078 
0.1884 
0.1736 
 
0.0942 
 
0.2209 
0.2504 
 
0.1696 
 
0.0254 
0.0007 
0.0058 
0.0053 
 
0.0195 
 
0.0196 
 
0.0219 
0.0260 
 
0.0147 
0.0131 
 
0.1986 
 
0.1941 
0.0213 
 
0.1668 
 
0.2013 

0.6223 
 
0.0361 
 
0.0004 
0.6353 
 
<.0001 
 
0.7353 
 
0.2082 
 
0.4469 
 
0.2298 
 
0.1929 
0.4373 
0.7375 
 
0.0173 
 
0.1798 
0.0289 
 
0.0020 
 
0.0006 
0.7976 
0.7363 
0.7944 
 
0.0002 
 
0.0094 
 
0.5022 
0.0198 
 
0.0029 
0.6505 
 
<.0001 
 
0.4927 
0.0066 
 
0.0135 
 
0.0142 

0.4378 
 
0.1990 
 
0.6092 
0.5180 
 
0.2015 
 
0.0901 
 
0.1275 
 
0.1161 
 
0.1397 
 
0.2118 
0.1937 
0.1795 
 
0.0929 
 
0.2197 
0.2512 
 
0.1669 
 
0.0261 
0.0007 
0.0063 
0.0058 
 
0.0196 
 
0.0198 
 
0.0223 
0.0260 
 
0.0153 
0.0134 
 
0.1990 
 
0.1888 
0.0214 
 
0.1670 
 
0.1996 

0.6245 
 
0.0372 
 
0.0006 
0.6414 
 
<.0001 
 
0.7364 
 
0.2089 
 
0.4399 
 
0.2278 
 
0.2015 
0.4499 
0.7459 
 
0.0158 
 
0.1776 
0.0294 
 
0.0017 
 
0.0008 
0.7997 
0.7524 
0.8142 
 
0.0003 
 
0.0102 
 
0.5084 
0.0197 
 
0.0042 
0.6577 
 
<.0001 
 
0.4807 
0.0068 
 
0.0136 
 
0.0134 
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The final selected model is as follows: 
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The parameter estimates and the corresponding confidence limits for the above 

model are presented in Table 6.5.  The results show that there are three 

interactions between the past responses and the explanatory variables and they 

are lag1*time, lag2*cell phone ownership and lag2*baseline adherence. 

 

Adherence is increasing over time but the rate of increase is different for patients 

who were adherent and those who were not adherent in the previous follow-up 

visits.  With a unit increase in time (follow-up visit), the odds of adherence are 

1.09 ( 0842.0e ) times more likely for the patients who were not adherent in both lag2 

and lag1 follow-up visits ( 02 =−ijy  and 01 =−ijy ), whereas the odds of adherence 

are 1.03 ( 0277.0e ) times more likely for patients who were not adherent in lag2 

follow-up visits ( 02 =−ijy ) but adherent in lag1 follow-up visits ( )11 =−ijy .  Thus the 

rate of increase in adherence is significantly higher for patients who were not 

adherent in two previous successive follow-up visits than for those who changed 

from not being adherent to being adherent in two previous successive follow-up 

visits (p=0.0086) (Table 6.5).  Figure 6.1 depicts this interaction between the past 

responses and time.   
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Table 6. 5: Parameter estimates of the chosen 2nd order Markov model 
Effect Estimates Std 

errors 
p-value 95% C.I. 

Intercept 
Gender (ref=male) 

female 
Education (ref=sec & higher) 

No schooling 
Primary 

Treatment site (ref=rural) 
Urban 

Income (ref=not source) 
Source of income 

Access to tapwater (ref=no) 
Yes 

Househld with electricity (ref=no) 
Yes 

Cell phone ownership (ref=no) 
Yes 

WHO staging (ref=stage4) 
Stage1 
Stage2 
Stage 3 

Living with partner (ref=no) 
Yes 

Reason for testing (ref=unwell) 
No specific reason 
Exposed to the risk 

Baseline adherence (ref=no) 
yes 

Time (visit) 
Age 
Baseline CD4+  
Baseline weight 
Weight at follow-up visits 
Time*gender (ref=male) 

female 
Time*site (ref=rural) 

urban 
Time*reason (ref=unwell) 

No specific reason 
Exposed to the risk 

Age*education 
No schooling 
Primary 

Previous1 (ref=no) 
yes 

Previous2 (ref=no) 
yes 

Previous1*time 
Previous2*cellphone (ref=no) 

Yes 
Previous2*baseline adh (ref=no) 

yes  

-0.1745 
 
-0.3959 
 
2.3686 
0.3411 
 
0.9974 
 
-0.0238 
 
0.1716 
 
0.0952 
 
-0.1798 
 
-0.2470 
-0.1574 
-0.0860 
 
0.2374 
 
-0.3035 
-0.6019 
 
-0.5425 
0.0842 
0.0050 
-0.0003 
-0.0016 
-0.0018 
 
0.0727 
 
-0.0484 
 
0.0145 
0.0659 
 
-0.0521 
-0.0080 
 
1.1372 
 
-0.1267 
-0.0565 
 
0.4087 
 
0.4920 

0.4399 
 
0.1995 
 
0.5948 
0.5319 
 
0.2011 
 
0.0898 
 
0.1324 
 
0.1223 
 
0.1407 
 
0.2106 
0.1887 
0.1742 
 
0.0948 
 
0.2224 
0.2516 
 
0.1702 
0.0257 
0.0070 
0.0007 
0.0059 
0.0053 
 
0.0197 
 
0.0197 
 
0.0221 
0.0262 
 
0.0150 
0.0137 
 
0.2000 
 
0.1948 
0.0215 
 
0.1674 
 
0.2020 

0.6915 
 
0.0472 
 
<.0001 
0.5213 
 
<.0001 
 
0.7906 
 
0.1951 
 
0.4362 
 
0.2059 
 
0.2408 
0.4040 
0.6217 
 
0.0123 
 
0.1724 
0.0168 
 
0.0014 
0.0011 
0.4710 
0.6878 
0.7880 
0.7395 
 
0.0002 
 
0.0143 
 
0.5112 
0.0119 
 
0.0005 
0.5613 
 
<.0001 
 
0.5155 
0.0086 
 
0.0146 
 
0.0149 

-1.0367 
 
-0.7870 
 
1.2028 
-0.7014 
 
0.6032 
 
-0.1999 
 
-0.0880 
 
-0.1445 
 
-0.4538 
 
-0.6597 
-0.5272 
-0.4274 
 
0.0516 
 
-0.7395 
-1.0950 
 
-0.8761 
0.0338 
-0.0087 
-0.0016 
-0.0131 
-0.0121 
 
0.0341 
 
-0.0484 
 
-0.0288 
0.0145 
 
-0.0815 
-0.0347 
 
0.7453 
 
-0.5084 
-0.0565 
 
0.0805 
 
0.0961 

0.6876 
 
-0.0049 
 
3.5344 
1.3837 
 
1.3915 
 
0.1522 
 
0.4311 
 
0.3349 
 
0.0978 
 
0.1657 
0.2123 
0.2555 
 
0.4232 
 
0.1324 
-0.1087 
 
0.2088 
0.1346 
0.0187 
0.0010 
0.0099 
0.0086 
 
0.1112 
 
-0.0097 
 
0.0579 
0.1173 
 
-0.0227 
0.0189 
 
1.5292 
 
0.2551 
-0.0144 
 
0.7368 
 
0.8879 
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Figure 6. 1 Log odds of adherence for the interaction between time and previous 
adherence responses 
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The odds ratios and their confidence limits for the effects of the interaction 

between the previous responses and cell phone ownership as well as previous 

responses and baseline adherence are presented in Tables 6.6 and 6.7 

respectively.  The contrasts were derived from the estimated model coefficients 

in Table 6.5.   

 

Table 6. 6: Odds ratios and their confidence limits for the effects of the interaction 
between outcomes at previous visits and cell phone ownership 

Contrast Odds ratio 95% CI of odds ratio 
Cell phone vs no cell phone 

( 12 =−ijy  & 01 =−ijy )  

( 02 =−ijy  & 01 =−ijy )  

( 12 =−ijy  & 01 =−ijy ) vs ( 02 =−ijy  & 01 =−ijy )  

Own a cell phone 

Do not own a cell phone 

 
1.2595 

0.8369 

 
 
1.3258 

0.8810 

 
(1.0370,1.5282) 

(0.6352, 1.1027) 

 
 
(0.8784, 2.0010) 

(0.6015, 1.2905) 
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The results show that patients who owned a cell phone are 1.26 times (95% CI: 

1.04, 1.5) (Table 6.6) more likely to adhere to medication than patients without 

cell phones for patients who changed from being adherent in lag2 to being non- 

adherent in lag1 follow-up visits ( 12 =−ijy  and 01 =−ijy ).  There was no significant 

difference in adherence between patients who owned cell phones and those 

without cell phones if they were not adherent in both lag2 and lag1 follow-up 

visits ( 02 =−ijy  and 01 =−ijy ) (Table 6.6).  Furthermore, there was no significant 

difference between the patients who were adherent in lag2 but not adherent in 

lag1 and those who were not adherent in both lag2 and lag1 follow-up visits 

regardless of whether or not they owned a cell phone (Table 6.6). 

 

Table 6. 7: Odds ratios and their confidence limits for the effects of the interaction 
between outcomes at previous visits and baseline adherence 

Contrasts Odds ratio 95% CI of odds ratio 

Adherent vs not adherent at baseline 

( 12 =−ijy  & 01 =−ijy )  

( 02 =−ijy  & 01 =−ijy )  

( 12 =−ijy  & 01 =−ijy ) vs ( 02 =−ijy  & 01 =−ijy )  

Adherent at baseline 

Non adherent at baseline 

 

0.9508 

0.5813 

 

1.4410 

0.8810 

 

(0.7569,1.1943) 

(0.4164, 0.8115) 

 

(1.1709, 1.7735) 

(0.6015, 1.2905) 

 

Patients who were adherent at baseline are less likely to adhere to medication 

than patients who were not adherent at baseline [OR=0.58, 95% CI (0.42, 0.81)] 

(Table 6.7) given that they were not adherent in both lag2 and lag1 follow-up 

visits.  Moreover, with patients that were adherent to medication at baseline, the 

odds of adherence are 1.44 times (95% CI: 1.17, 1.77) more likely for patients 

who made a transition from being adherent in lag2 to not being adherent in lag1 

follow-up visits ( 12 =−ijy  and 01 =−ijy ) compared to those who were not adherent 

in both lag2 and lag1 follow-up visits ( 02 =−ijy  and 01 =−ijy ). 
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From Table 6.5, there were four other significant interactions (that do not involve 

a previous response) and one significant main effect that was not involved in an 

interaction.  The interaction terms were visit*gender, visit*treatment site, 

visit*reason for test and age*education while the main effect was living 

with/without a partner.  The results show that after controlling for other variables 

as well as the outcome (adherent/not adherent) at two prior successive follow-up 

visits, adherence for patients who live with a partner are 1.27 (95% CI: 1.05, 

1.53) times higher than those who do not live with a partner  (odds ratios derived 

from Table 6.5).   
 

Figure 6.2 depicts the effects of the interaction between time and gender.  

Having controlled for other covariates in the model including the outcome at two 

prior successive follow-up visits, it is shown in Figure 6.2 that adherence is 

increasing over time but the rate of increase is different for males and females, it 

was higher for females compared to males (p-value=0.0002). 
 

Figure 6. 2: Log odds of adherence for the interaction between time and gender 
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Figure 6.3 depicts the effects of the interaction between time and treatment site.  

It is shown in Figure 6.3 that adherence is increasing over time but the rate of 

increase is different for the urban and rural treatment sites after controlling for the 

outcome in the two prior successive follow-up visits and other covariates in the 

model.  The rate of increase in adherence is higher in rural than the urban 

treatment sites (p=0.0143)(Table 6.4). 

 

Figure 6. 3:  Log odds of adherence for the interaction between time and treatment site 

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

follow-up time

lo
g

it(
ad

he
re

n
ce

)

rural urban

logit(adherence) = 0.8229 +0.0358time

logit(adherence) = -0.1745 +0.0842time

 
 

With regard to the interaction between time and reason for taking an HIV test, it 

is shown (Figure 6.4) that the rate of increase in adherence was higher for 

patients who have reported to have been exposed to the risk of contracting the 

HIV disease compared to those who reported to have taken the test because 

they were unwell (p=0.0119).  There was however, no significant difference in the 

rate of adherence between patients who reported no specific reason and those 

who reported to be unwell (p=0.5112).  Further analysis revealed that the rate of 

adherence between patients who reported no specific reason and those who 
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reported to have been exposed to the risk is marginally insignificant (p=0.0811).  

These results have been adjusted for the outcome at two prior successive follow-

up visits and other explanatory variables in the model. 

 

Figure 6. 4: Log odds of adherence for the interaction between time and reason for 
taking an HIV test 
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Having controlled for adherence outcomes in the two prior successive follow-up 

visits and other covariates in the model, the rate at which adherence is 

decreasing with age was higher with patients that have no schooling compared to 

patients with secondary level (p=0.0005), whilst there was no significant 

difference in the rate of change in adherence with age between patients with 

primary and secondary level of education (p=0.5613) (Table 6.5).  Further 

analysis revealed that the rate of decrease in adherence with age is more 

pronounced with patients with no schooling than patients with the primary level of 

education (p=0.0133).  The log odds of adherence between age and gender is 

depicted in Figure 6.5. 
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Figure 6. 5: Log odds of adherence for the interaction between age and education 
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6.5 Summary 

Transition models address dependency among repeated measurements by 

treating previous outcomes as additional explanatory variables.  Fitting transition 

models is relatively straightforward because subsequent measurements, given 

their previous history are considered to be independent; as a result, standard 

GLM procedures can be employed.  Also transition models are likelihood-based 

methods, therefore inferential procedures such as a likelihood ratio test can be 

used.  Also, because they are likelihood-based, they tend to be robust to 

missingness; they assume MAR.  However, these models are usually criticized 

because of the conditional interpretation of the parameters on other outcomes 

and on the number repeated measures. 

 

The findings of a transition model highlighted that in addition to the variables that 

have been significant in the GEE and GLMM models, optimal HAART adherence 

depends on the two previous outcome measurements.  Furthermore, effects of 
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some of the explanatory variables differ depending on the previous responses.  

The negative relationship between baseline adherence and adherence over time 

observed earlier is in some ways re-affirmed by the significant interaction 

between previous adherence outcomes and baseline adherence where it is 

shown that adherent patients at baseline were less likely to adhere to medication 

that those who were not adherent at baseline given that they were not adherent 

in two previous measurements. 

 

With all the model families fitted, namely, marginal, random effects and transition 

models; we had assumed that the time interval between successive follow-up 

visits is equal.  In the next chapter, we relax the equal interval assumption by 

jointly modeling HAART adherence with duration between follow-up visits. 



 155

 

Chapter 7 

Joint modeling of HAART adherence and visit interval 
 

7.1 Introduction 

We have so far explored the factors affecting adherence to antiretroviral 

medication over time.  More specifically, we have intensively assessed the 

evolution of adherence and the associated factors at the population level 

(marginal model using GEE) and subject-specific level (random effects models 

using GLMM).  Moreover, we evaluated whether or not the past adherence 

outcomes have any influence on the current response of adherence using 

transition models.  Nonetheless, in some longitudinal studies, although one time-

varying outcome may be of primary interest, several related processes are also 

measured (Liu, Daniels and Marcus, 2009).  The association between a primary 

outcome and another related outcome can reveal a great deal of insight about 

the mechanism of behavioural change.  In the adherence study, a related 

outcome to adherence is the time interval (duration) between successive visits, 

which has been measured as the number of days taken by a patient between 

clinic visits.  In the previous chapters, the effect of predictor variables on 

adherence status of patients over time was evaluated assuming equal interval 

between successive visits.  In this chapter we aim to further investigate the joint 

effect of these predictor variables on both adherence status of patients and 

duration between successive visits.  More specifically, we seek to assess 

whether the explanatory variables that were found to be significantly related to 

adherence in the previous chapters would still have a significant effect on 

adherence even when duration between successive visits was accounted for.  

Assessing the association between the two outcomes (adherence and duration) 

is also of interest.  This can be best addressed within the framework of joint 

modeling of the two outcomes of interest.  Advantages of joint over separate 

fitting of models include better control over type I error rates in multiple tests, 
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possible gains in efficiency in the parameter estimates and the ability to answer 

multivariate questions (Gueorguieva, 2001). 

 

Difficulties analyzing longitudinal data arise because of correlations usually 

present between observations on the same subject.  In case of multiple 

outcomes, two types of correlations must be taken into account: correlations 

between measurements on different variables and correlations between 

measurements on the same variable within a subject (Gueorguieva, 2001).  

While joint models for longitudinal and time-to-event data are widely present in 

the literature (Henderson, Diggle and Dobson, 2000, 2002; Guo and Carlin, 

2004; Tsiatis and Davidian, 2004), joint models for two longitudinal outcomes of 

similar or dissimilar nature are less widespread.  Nonetheless, methods focusing 

on models that jointly analyze discrete and continuous outcomes have been 

explored (Fitzmaurice and Laird, 1995; Aerts et al., 2002; Molenberghs and 

Verbeke, 2005; Faes, Geys and Catalono, 2008).  The challenge has been the 

lack of multivariate distributions for combining both types of outcomes; as a 

result, specification of a joint distribution of the responses is not straightforward.  

There are broadly two approaches adapted to joint modeling.  A first approach 

avoids direct specification of a joint distribution; it is based on a conditioning 

argument that allows joint distribution to be factored in a marginal component 

and a conditional component, where the conditioning can be done either on the 

discrete or on the continuous outcome (Catalano and Ryan, 1992; Faes et al., 

2004).  A disadvantage of mixed outcome models based on conditional models is 

that they do not directly lead to marginal inferences (Verbeke and Davidian, 

2008).  Also the correlation among the two outcomes cannot be directly 

estimated (Faes et al., 2008).   

 

A second approach directly formulates a joint model for both outcomes.  The 

latent variable idea has been used to directly specify the joint distribution of the 

discrete and continuous outcomes based on two methods (Regan and Catalano, 

2002).  The first method introduces a probit approach, where an underlying 
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continuous variable is assumed for each binary outcome, following a normal 

distribution.  The second method is based on a Plackett-Dale approach, 

assuming a Plackett latent variable to model bivariate outcomes in which one 

component is continuous and the other is binary (Faes et al., 2004).  The two 

bivariate latent variable models are different in the way the association between 

the two outcomes is described.  The probit approach uses a correlation 

coefficient, while the Plackett-Dale approach makes use of the odds ratio (Faes 

et al., 2004).   

 

Instead of using a latent variable approach, one can directly specify the joint 

distribution for both outcomes through a mixed model, by specification of the 

marginal distribution, conditional on the correlated random effect (Faes et al., 

2008).  The generalized linear mixed model (GLMM) forms a very general class 

of subject-specific models for discrete and continuous responses in the 

exponential family and is used for univariate repeated measures (Fahrmeir and 

Tutz, 1994).  In this chapter, we aim to review how the GLMM approach can be 

extended for multivariate longitudinal data by assuming separate random effects 

for each outcome variable and then combining them by imposing a joint 

multivariate distribution on the random effects.  That is, the different response 

processes are associated by imposing a joint multivariate distribution on the 

random effects and an advantage of this approach is that additional correlation 

emerging from the longitudinal data structure can be modeled within the same 

framework (Fieuws and Verbeke, 2004; Gueorguieva, 2001).   

 

This chapter is organized as follows.  In Section 7.2, a multivariate generalized 

linear mixed model for two longitudinal outcomes is presented.  An in-depth 

formulation of a joint model is demonstrated using longitudinal continuous and 

binary outcomes in Section 7.3.  Section 7.4 presents the results of a joint model 

between optimal HAART adherence and duration between successive visits. 
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7.2 Multivariate GLMM formulation of a joint model 

Joint outcomes can be measured repeatedly over time or might be observed 

within a hierarchical context.  The generalized linear mixed model introduced in 

Chapter 5 can easily be adapted to situations where various outcomes of a 

different nature are observed (Molenberghs and Verbeke, 2005).  Let us consider 

a conditional random effects model with a bivariate response.  The following 

exposition is given in Gueorguieva (2001).  Denote the response vector for the 

ith  subject by ),( 21 ′′′= iii yyy , where ),,,(
1112111 ′=

iniiii yyy �y  and 

),,,(
2222212 ′=

iniiii yyy �y  are repeated measurements on the first and second 

outcomes.  Assume that 11 ,,1, iji nj �=y , are conditionally independent given 1ib  

with density (.)1f  in the exponential family.  Likewise, we assume that 

22 ,,1, iji nj �=y , are conditionally independent given 2ib  with density (.)2f  in the 

exponential family.  Also, 1iy  and 2iy  are conditionally independent given 

),( 21 ′= iii bbb  and the responses on different subjects are independent.  Let (.)1g  

and (.)2g  be appropriate link functions for 1f  and 2f .  Denote the conditional 

means of ji1y  and ji 2y  by ji1µ  and ji 2µ  respectively.  Let ),,(
11111 ′=

iniii µµµ �  

and ),,(
12212 ′=

iniii µµµ � .  At stage 1 of the mixed model specification, we 

assume 

)( 1111
1

11 iiii g bZX += − βµ    (7.1) 

)( 2222
1

22 iiii g bZX += − βµ    (7.2) 

where the components of the inverse link functions 1
1
−g  and 1

2
−g  are allowed to 

change with the outcomes 1iy  and 2iy  respectively.  1iX  and 2iX  are )( 11 pni ×  

and )( 21 pni ×  design matrices for fixed effects, 1iZ  and 2iZ  are )( 11 qni ×  and 

)( 21 qni ×  design matrices for the random effects and 1β  and 2β  are −1p  and 

−2p vectors of unknown fixed regression coefficients respectively.  At stage 2 
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where G , 11G  and 22G  are in general unknown positive-definite matrices.  When 

0G =12  then the above model is equivalent to two separate GLMM’s for two 

outcome variables, that is, both outcomes are assumed to be completely 

independent.  If the two vectors of the random effects are perfectly correlated, 

that is, if 21 ii cbb = , where c  is a constant, then this model reduces to the shared-

parameter model (Molenberghs and Verbeke, 2005; Faes et al., 2008).   

 

The marginal means and the variances of 1iy  and 2iy  for the model defined in 

(7.1) and (7.2) are the same as those of the GLMM considering one variable at a 

time (refer to Chapter 5 for details) 

( )[ ] [ ]1111 | )( iiii EEEE µ== byy  

( )[ ] [ ]2222 | )( iiii EEEE µ== byy  

and 

( ) ( )[ ]1111111 )|[()|(()( iiiiiiii aEvarvarEEvarvar µυφµµ +=+= byyy  

( ) ( )[ ]2222222 )|[()|(()( iiiiiiii aEvarvarEEvarvar µυφµµ +=+= byyy , 

where )( 1iµυ  and )( 2iµυ  denote the variance functions corresponding to the 

exponential family distributions for the two outcome variables.  The marginal 

covariance matrix between 1iy  and 2iy  is found to be equal to the covariance 

between 1iµ  and 2iµ , that is, ),(),( 2121 iiii covcov µµ=yy .  This property is a 

consequence of the key assumption of conditional independence between the 

two outcome variables, it is critical because it allows an extension of model fitting 

methods from the univariate to the multivariate GLMM. 

 

These joint models can be generalized to more than two outcomes as well as 

random effects models with a correlated residual error structure and in models 

with no random effects (marginal generalized linear model).  These models are 

demonstrated in the next section with continuous and binary endpoints. 
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7.3 A joint model for continuous and binary longitudinal data 

In this section, we describe joint models for the specific setting of a continuous 

and a binary longitudinal outcome.  More specifically, we formulate three possible 

models to account for the longitudinal structure of a joint continuous and binary 

outcome.  These are a) a fully marginal model, b) a conditional independence 

random-intercepts model and c) a random-intercepts model with a correlated 

residual error structure.  In order to demonstrate the formulation of these possible 

models, it is useful to start from the formulation in Chapter 5, Section 5.4.2, 

where both random effects and serial correlation have been allowed for.  For a 

bivariate response vector for subject i  by ),( 21 ′′′= iii yyy  where 

),,,( 112111 ′=
iniiii yyy �y  and ),,,( 222212 ′=

iniiii yyy �y  are repeated measurements 

for continuous and binary outcomes respectively, we assume a general model of 

the form: 

iiiiiiii g εβεηµ ++=+= − )()( 1 bZXy    (7.3) 

where iµ  is specified in terms of fixed and random effects and iε  is the residual 

error term.  The model is written in its most general form, as a decomposition of 

the mean and an appropriate error term, where both the mean and error term are 

allowed to change with the nature of the outcomes.  The components of the 

inverse link function (.)1−g  depend on the nature of outcomes in iy .  iX  and iZ  

are )2( pni ×  and )2( qni × -dimensional matrices of the known covariate values 

corresponding to subject i , and β  is a p -dimensional vector of unknown fixed 

regression coefficients.  Furthermore, ),(~ G0b Ni  are the q -dimensional 

random effects.  The components of the residual error structure iε  have the 

appropriate distribution with the variance depending on the mean-variance 

relationship of the various outcomes, and can contain in addition a correlation 

matrix )(αiR  and an overdispersion parameter iφ . 

 

A general first-order approximate expression for the variance-covariance matrix 

of iy  is given as follows (Molenberghs and Verbeke, 2005; Faes et al., 2008) 
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)( iiiiii ΦΦ= ARAV α , 

where iA  is a diagonal matrix containing the variances following from the 

generalized linear model specification of )2,1( =kiky  given the random effects 

0b =i , that is, with diagonal elements )|( 0b =iikµυ .  Likewise, iΦ  is a diagonal 

matrix with the overdispersion parameters along the diagonal.  )(αiR  is a 

correlation matrix. 

 

When an exponential family specification is used for all components, with a 

canonical link, ii A� = , the resulting GLMM has the variance-covariance matrix 

of iy  that takes the form (Molenberghs and Verbeke, 2005): 

2
1

2
1

2
1

2
1

)()( iiiiiiiiiivar ΦΦ+′′= �R��ZGZ�y α .   (7.4) 

When there are no residual correlations, that is, the matrix IR =)(αi , this results 

in a so-called conditional independence or a purely random effects model and 

the variance-covariance matrix of iy  in (7.4) reduces to 

2
1

2
1

)( iiiiiiiivar ΦΦ+′′= ��ZGZ�y .    (7.5) 

When there are no random effects in a model (7.3), a marginal model is obtained 

and the variance-covariance of iy  in (7.4) takes the form 

2
1

2
1

2
1

2
1

)()( iiiiiiivar ΦΦ== �R�Vy α .    (7.6) 

 

For a sequence of continuous and binary outcomes, the marginal generalized 

linear model (MGLM), that is, a model with no random effects is of the form: 
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where the first component corresponds to the identity link function whilst the logit 

link is in the second component.  Both the association between the two outcomes 

at each time point as well as the association emerging from the longitudinal 

structure of the data are incorporated in the residual error structure.  This is done 

by specifying a correlation matrix )(αiR  such as the unstructured correlation 

structure in order to allow each pair of outcomes to have its own correlation 

coefficient (Faes et al., 2008).  While a marginal model with fully unstructured 

ii nn 22 ×  variance-covariance matrix is appealing because of its ease of 

interpretation, it can become computationally intensive, especially when the 

number of measurements per subject is large (Faes et al., 2008).   

 

A conditional independence random-intercepts model for the continuous and 

binary outcomes with a general variance-covariance matrix G  and residual 

correlation matrix IR =)(αi  can be written in the following form: 
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  (7.7) 

where 1ib  and 2ib  are normally distributed as 
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and where 1iε  and 2iε  are independent.  The random effects 1ib  and 2ib  are 

used to accommodate the longitudinal structure in the data for the continuous 

and binary outcomes respectively.  Furthermore, the correlation among the 

continuous and binary outcomes is induced by the incorporation of a correlation 

ρ  among the two random effects.  The variance of 1iy  and 2iy  can be derived 

from (7.5), in which 
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where 

)](1)[( 22222 0b0b =−== iii µµυ , with )]exp(1/[)exp( 10102 iii XX ββββµ +++= . As 

a result, the approximate variance-covariance matrix of the two measurements 

for subject i  at time point j  is equal to 
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The correlation 12ρ  among the continuous and binary outcomes is induced by the 

incorporation of a correlation ρ  among the two random effects, and is 

approximately equal to 
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Under the conditional independence of the two random effects )0( ≡ρ , the 

approximate marginal correlation function 12ρ  is equal to zero.  That is with 

0≡ρ , model (7.7) is equivalent to two separate GLMMs for the two outcomes.  

When 1≡ρ , this model reduces to the shared parameter model.   

 

The third approach involves a random-intercepts model for each outcome with a 

correlated residual error structure to account for the association among the 

continuous and binary outcomes.  With this model, a random effect is introduced 

at the level of the linear predictor after application of the link function, while the 

correlation is introduced at the level of iε .  The model is also of the form (7.7), 

but where 1ib  and 2ib  are independent and normally distributed with mean of zero 
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and variance 1τ  and 2τ  respectively.  The residual error is assumed to have a 

variance-covariance matrix  

�
�

�

�

�
�

�

�
=

22

2
2

ii

i
i υυρσ

υρσσ
V . 

In this case ρ  denotes the correlation between 1ε  and 2ε .  The variance among 

the continuous and binary outcomes at time point j , for subject i , is 

approximately equal to 
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As a result, the approximate correlation among the two outcomes is 
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Under the conditional independence )0( ≡ρ , which in this case implies that there 

is no correlation between 1ε  and 2ε , the approximate marginal correlation 

function 12ρ  is equal to zero.  Further, the marginal correlation, 12ρ  would be 

reduced to ρ  for the marginal generalized linear model, i.e. when there are no 

random effects. 

 

Other generalizations with random effects or residual error structures are 

possible as well.  Expression (7.4) can be used to obtained correlation structures 

for each setting or specific forms, such as the ones presented by expressions 

(7.5) and (7.6).  It should be noted that although we have discussed in detail the 

correlation among the continuous and binary outcomes, the correlation structure 

among two outcomes of any nature can be derived in a similar way.  For 

instance, when sequences of outcomes are count and binary, a generalized 

linear mixed model (GLMM), under conditional independence random-intercepts 
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model with a general variance-covariance matrix G  and residual correlation 

matrix IR =)(αi  for subject i , can be written in the form: 
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where the random effects 1ib  and 2ib  are normally distributed as in (7.8), and 1iε  

and 2iε  are independent.  It is assumed that )]( 111 0b == iii µυ  and 

)](1)[( 22222 0b0b =−== iiiii µµυ .  The approximate variance-covariance matrix 

of the two binary measurements for subject i  at time point j  is equal to 
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and the approximate correlation among the two outcomes is approximately 
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The parameters of these joint models can be estimated using the numerical 

approximation methods discussed in Chapter 5, Section 5.4.  These include 

approximation to the integral using Gaussian quadratures or Laplace 

approximation.  The other estimation method is based on approximation of the 

data using the pseudo-likelihood in which pseudo data are created based on a 

linearization of the mean.  More specifically, the pseudo-likelihood approach can 

be used to estimate parameters in marginal models and random effects with or 

without serial correlation, whilst quadratures or Laplace approximations can only 

estimate parameters in the conditional independent random effects models.  The 

SAS procedure GLIMMIX can be used for parameter estimation using a pseudo-

likelihood approach whereas the NLIMIXED procedure can be used for 

parameter estimation using Gaussian quadratures or Laplace approximation. 
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7.4 Evaluation of HAART adherence data 

In the adherence study, the patient’s adherence status (adherent/not adherent) 

has been modeled as a binary variable that follows the Bernoulli distribution.  

Before we jointly model adherence status and duration (days between 

successive visits), we have to establish the theoretical framework that will inform 

the choice of the appropriate distribution of duration variable. 

 

Patients in the CAT programme are normally expected to make clinic visits on a 

monthly (i.e 28 days) basis to collect their medication, undergo a physical 

examination review, etc.  That is, the expected time interval between two 

successive clinic visits for patients is roughly 28 days.  However, at times the 

patients are unable to keep their scheduled clinic appointments for various 

reasons/circumstances; they either make an early visit (less than 28 days) or a 

late visit (more than 28 days) to the clinic.  Since such visits are arbitrary, they 

are considered to be random, which then changes the time interval between 

successive visits from planned ones to random occurrences.  It is therefore 

useful to determine the probabilistic model which can be used to describe the 

occurrences of these unpredictable events (clinic visits).  Random occurrences of 

events in time are often modeled as a Poisson process (Birnbaum, 1954; 

Kingman, 1993; Skogvoll and Lindqvist, 1999).  A Poisson process refers to a 

continuous–time counting process { }0 ),( ≥ttN  that possesses the following 

properties (Kingman, 1993): 

i) 0)0( =N  

ii) the number of events in disjoint intervals are independent (‘independent 

increments’) and the number of events in any given interval depends only 

on the length of that interval (‘stationary increments’); 

iii) events occur one at a time, that is, there are no simultaneous 

occurrences. 

Consequently, a Poisson process can be characterized in two simple alternative 

and equivalent ways (Birnbaum, 1954) 
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a) The ‘waiting times’ u  between successive events are independently 

distributed with the exponential density function 
θθ /)/1()( ueug −=   for .0≥u  

Here θ  is the mean of the waiting times: 

θ=)(uE . 

b) Let x  be the number of events observed, then the increments 

)()( 12 txtxy −=  of )(tx  on any interval of length 12 ttd −=  has the Poisson 

distribution 

,
!
)(

)(
y

d
eyp

y
d λλ−=   �,1,0=y  

and the increments of )(tx  on non-overlapping intervals are independent.  Here 

λd  is the mean increment on an interval of length d .  Thus λ  is the mean rate of 

occurrences, and θλ /1= .  Similar formulation in a disease modeling structure 

has also been used by Ramroop (2008). 

 

We can therefore model the time interval in days (duration) between successive 

clinic visits using two approaches; the ‘waiting time’ approach and the ‘number of 

occurrences’ approach.  The ‘waiting time’ approach treats duration as the time 

in days between two successive clinic visits, which is a continuous variable that 

follows an exponential distribution.  The ‘number of occurrences’ approach is 

used if we count the number of days to the next clinic visit, which is a discrete 

variable that follows a Poisson distribution.  For purposes of this study, the 

‘waiting time’ approach is more relevant and is therefore adopted. 

 

For fitting of joint models with a binary and an exponential distribution, two 

possible models were considered in each case, these were marginal models as 

well as conditional independence random-effects models.  Furthermore, the 

linear predictor used for all the fitted models consists of the same variables that 

have been identified in the GEE model.   
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Recall the linear predictor in the GEE model for the adherence data (Chapter 4, 

section 4.6) 
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With a view that the duration outcome variable follows an exponential 

distribution, a preliminary exploratory analysis for this outcome variable was 

explored by fitting a generalized linear model with all the predictor variables using 

SAS PROC GENMOD.  The SCALE parameter used in PROC GENMOD is the 

inverse of the gamma dispersion parameter, and is commonly referred to as the 

gamma index parameter.  A value of 1 for the index parameter corresponds to 

the exponential distribution (SAS Institute Inc., 2004).  With our data, the 

estimated value of the scale parameter was 10.2381 with a 95% profile likelihood 

confidence interval of (9.8843, 10.6004), which did not contain 1. The hypothesis 

of an exponential distribution for the data was, therefore, rejected at 0.05 level 

and hence the duration outcome was considered to follow a gamma distribution 

in subsequent analyses.  

 

The marginal model 

We fitted the joint marginal model for both the binary (adherence status) and 

Gamma (duration) outcomes using logit and log links respectively.  The 

linearization estimation method (discussed in Chapter 5, Section 5.4) was used 

as an approximation method.  The SAS procedure GLIMMIX was used to fit the 

data; it allows us to jointly model outcomes with different distributions and/or 

different link functions.  We first fitted a joint marginal model with a fully 

unstructured variance-covariance matrix in order to allow each pair of outcomes 

to have its own correlation coefficient.  However, due to the computational 
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complexity, this model did not converge.  Alternatively, because our main interest 

is in assessing the joint effect of the predictor variables, we adopted the GEE 

approach, where the association between the two outcomes at each time point 

as well as the association emerging from the longitudinal structure of the data are 

treated as a nuisance that has to be accounted for.  The independence and AR-1 

working assumptions were considered, AR-1 being the chosen structure in the 

GEE model, Chapter 4.  Comparing model-based and empirically corrected 

standard errors, there was clear difference in the case of independence working 

assumption, but less so in the AR-1 case. Thus a joint model with the AR-1 

working structure was chosen.   

 

The results are presented in Table 7.1 and they confirm the results from the 

previous chapters.  That is, even after accounting for the interval between 

successive visits (duration), cell phone ownership and living with a partner 

enhanced HAART adherence (Table 7.1).  Moreover, the 2-way interaction 

terms, namely, time*gender, time*site, time*reported reason, age*gender and 

age*education are still significantly associated with HAART adherence (Table 

7.1).  In fact, the results indicate that the interaction between time and treatment 

site has a joint effect on HAART adherence and duration between successive 

visits.  The rate at which optimal adherence increased over time in the rural site 

was higher compared to the urban site.  At the same time however, the interval 

between successive visits was higher as the number of follow-up visits increased 

in the rural than in the urban treatment site. 
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Table 7. 1: Parameter estimates and their corresponding empirical standard errors of 
a joint marginal model for the adherence and duration outcomes with 
AR(1) working covariance structure 

Effect adherence Outcome duration outcome 
Estimates Std errors p-value Estimates Std errors p-value 

Intercept 
Gender (ref=male) 

female 
Education (ref=sec & higher) 

No schooling 
Primary 

Treatment site (ref=rural) 
Urban 

Income (ref=not source) 
Source of income 

Access to tapwater (ref=no) 
Yes 

Househld with electricity (ref=no) 
Yes 

Cell phone ownership (ref=no) 
Yes 

WHO staging (ref=stage4) 
Stage1 
Stage2 
Stage 3 

Living with partner (ref=no) 
Yes 

Reason for testing (ref=unwell) 
No specific reason 
Exposed to the risk 

Baseline adherence (ref=no) 
yes 

Time (visit) 
Age 
Baseline CD4+  
Baseline weight 
Weight at follow-up visits 
Time*gender (ref=male) 

female 
Time*site (ref=rural) 

Urban 
Time*reason (ref=unwell) 

No specific reason 
Exposed to the risk 

Age*gender 
 Female 

Age*education 
No schooling 
Primary  

0.923 
 

-1.164 
 

1.728 
0.107 

 
1.200 

 
-0.008 

 
0.120 

 
-0.007 

 
0.238 

 
-0.336 
-0.247 
-0.117 

 
0.298 

 
-0.040 
-0.444 

 
-0.153 
0.102 
-0.011 

-0.0004 
-0.001 
-0.002 

 
0.071 

 
-0.061 

 
-0.011 
0.045 

 
0.023 

 
-0.036 
-0.003 

0.393 
 

0.334 
 

0.524 
0.447 

 
0.143 

 
0.078 

 
0.118 

 
0.107 

 
0.070 

 
0.180 
0.161 
0.148 

 
0.080 

 
0.156 
0.175 

 
0.085 
0.018 
0.008 
0.001 
0.006 
0.005 

 
0.016 

 
0.016 

 
0.018 
0.021 

 
0.009 

 
0.014 
0.012 

0.019 
 

0.0005 
 

0.001 
0.810 

 
<0.001 

 
0.921 

 
0.309 

 
0.948 

 
0.001 

 
0.061 
0.125 
0.426 

 
0.002 

 
0.796 
0.011 

 
0.070 

<0.001 
0.161 
0.438 
0.795 
0.665 

 
<0.0001 

 
0.0002 

 
0.560 
0.032 

 
0.008 

 
0.009 
0.792 

3.171 
 

0.020 
 

0.082 
-0.013 

 
-0.004 

 
0.013 

 
0.016 

 
0.020 

 
0.005 

 
0.025 
0.030 
0.023 

 
0.0003 

 
0.004 
-0.016 

 
0.012 
0.013 
0.001 

0.00004 
-0.001 
0.002 

 
0.001 

 
-0.007 

 
0.0001 
0.0010 

 
-0.0001 

 
-0.002 

-0.0004 

0.055 
 

0.044 
 

0.072 
0.064 

 
0.017 

 
0.010 

 
0.107 

 
0.017 

 
0.009 

 
0.024 
0.022 
0.0210 

 
0.010 

 
0.023 
0.019 

 
0.011 
0.002 
0.001 
0.0001 
0.001 
0.007 

 
0.002 

 
0.002 

 
0.002 
0.002 

 
0.001 

 
0.002 
0.002 

<0.001 
 

0.649 
 

0.251 
0.845 

 
0.817 

 
0.209 

 
0.948 

 
0.238 

 
0.586 

 
0.310 
0.174 
0.278 

 
0.975 

 
0.852 
0.396 

 
0.251 

<0.001 
0.466 
0.595 
0.089 
0.450 

 
0.760 

 
0.0003 

 
0.9652 
0.632 

 
0.914 

 
0.209 
0.798 
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The conditional independence random-effects model 

The model considered was as follows: 

jiy 1   - j th adherence status on the i th patient, 

jiy 2   - j th duration measurement on the i th patient, 

11 \ iji by ~indep. Binary with mean ji1µ  and variance )1( 11 jiji µµ − , 

22 \ iji by ~indep. Gamma with mean ji2µ  and variance νµ /2
2 ji , 

111 )( ijiji blogit +′= βµ x , 

222 )( ijiji bln +′= βµ x , 

�
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=′=
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221

21
2
1

21 ),,(~),(
σσρσ

σρσσ
GG0b MVNbb iii . 

 

This model shows how the GLMM approach can be extended for multivariate 

longitudinal data by assuming separate random effects for each outcome 

variable and then combining them by imposing a joint multivariate distribution on 

the random effects. 

 

The data were analyzed with SAS PROC NLMIXED using the general log-

likelihood option with Gaussian quadrature.  The NLMIXED procedure using the 

general log-likelihood function allows one to impose a joint multivariate 

distribution on the random effects from two separate models.  The results from 

fitting a joint model for the two response variables with uncorrelated random 

intercepts using the GLIMMIX procedure were used as initial parameter 

estimates.  Gaussian quadrature with 20 quadrature points was used and it took 

roughly 6 hours to converge.  The number of quadrature points was selected 

among several possibilities (10, 15, 20, 25) based on the stability of parameter 

estimates and standard errors.  The results presented in Table 7.2 were the 

same within the required precision with a larger number of quadrature points, i.e. 

parameter estimates seemed to be stable from 15 quadrature points upwards.   
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Table 7. 2:  Parameter estimates and standard errors of the joint model for the conditional 
independence random intercepts model with the adherence and duration outcomes  

Effect adherence Outcome duration outcome 
Estimates Std errors p-value Estimates Std errors p-value 

Intercept 
Gender (ref=male) 

female 
Education (ref=sec & higher) 

No schooling 
Primary 

Treatment site (ref=rural) 
Urban 

Income (ref=not source) 
Source of income 

Access to tapwater (ref=no) 
Yes 

Househld with electricity (ref=no) 
Yes 

Cell phone ownership (ref=no) 
Yes 

WHO staging (ref=stage4) 
Stage1 
Stage2 
Stage 3 

Living with partner (ref=no) 
Yes 

Reason for testing (ref=unwell) 
No specific reason 
Exposed to the risk 

Baseline adherence (ref=no) 
yes 

Time (visit) 
Age 
Baseline CD4+  
Baseline weight 
Weight at follow-up visits 
Time*gender (ref=male) 

female 
Time*site (ref=rural) 

urban 
Time*reason (ref=unwell) 

No specific reason 
Exposed to the risk 

Age*gender 
Female 

Age*education 
No schooling 
Primary  

1.590 
 

-1.471 
 

1.664 
-0.126 

 
1.222 

 
-0.028 

 
0.146 

 
0.070 

 
0.244 

 
-0.487 
-0.361 
-0.298 

 
0.556 

 
-0.090 
-0.428 

 
-0.113 
0.119 

-0.0197 
-0.001 
-0.003 
-0.003 

 
0.056 

 
-0.0486 

 
-0.001 
0.0438 

 
0.035 

 
-0.035 
0.001 

0.299 
 

0.516 
 

0.706 
0.686 

 
0.181 

 
0.113 

 
0.177 

 
0.153 

 
0.102 

 
0.272 
0.242 
0.225 

 
0.280 

 
0.194 
0.215 

 
0.121 
0.021 
0.013 
0.001 
0.007 
0.006 

 
0.019 

 
0.018 

 
0.021 
0.022 

 
0.014 

 
0.0175 
0.018 

<0.0001 
 

0.007 
 

0.019 
0.855 

 
<0.0001 

 
0.801 

 
0.409 

 
0.648 

 
0.017 

 
0.073 
0.137 
0.187 

 
0.048 

 
0.641 
0.0476 

 
0.352 

<0.0001 
0.142 
0.326 
0.728 
0.618 

 
0.004 

 
0.008 

 
0.963 
0.047 

 
0.015 

 
0.047 
0.923 

9.066 
 

-0.032 
 

0.099 
-0.011 

 
0.006 

 
-0.015 

 
0.015 

 
0.013 

 
0.004 

 
0.033 
0.026 
0.023 

 
0.859 

 
-0.002 
-0.018 

 
0.026 
0.013 
0.001 
0.0004 
-0.001 
0.001 

 
0.003 

 
-0.008 

 
0.001 
0.003 

 
0.001 

 
-0.003 
-0.001 

0.039 
 

0.068 
 

0.093 
0.089 

 
0.023 

 
0.014 

 
0.024 

 
0.020 

 
0.013 

 
0.035 
0.030 
0.028 

 
0.039 

 
0.025 
0.027 

 
0.016 
0.002 
0.002 
0.001 
0.001 
0.001 

 
0.002 

 
0.002 

 
0.002 
0.003 

 
0.002 

 
0.002 
0.002 

<0.0001 
 

0.633 
 

0.290 
0.897 

 
0.811 

 
0.299 

 
0.544 

 
0.526 

 
0.772 

 
0.343 
0.383 
0.408 

 
<0.0001 

 
0.926 
0.518 

 
0.096 

<0.0001 
0.779 
0.965 
0.191 
0.191 

 
0.146 

 
0.0002 

 
0.648 
0.217 

 
0.714 

 
0.249 
0.824 

                                                  Variance Components 
 estimate Standard error Pvalue 
Var. R.I (adherence) 
Var. R.I (duration) 
Correlation between the R.I. 

0.261 
0.005 
-0.684 

0.062 
0.001 
0.139 

<0.0001 
<0.0001 
<0.0001 
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The results show that cell phone ownership and living with a partner are 

significantly associated with HAART adherence.  In addition, all the 2-way 

interaction terms (time*gender, time*site, time*reason to test, age*gender and 

age*education) were also significantly associated with HAART adherence.  Even 

after accounting for duration between successive visits, these results reaffirm the 

results that have been obtained in the GLMM (Chapter 5) regarding the fixed 

effects. 

 

The random effects for the two outcomes are significantly negatively associated 

(Table 7.2).  This translates into a negative correlation between HAART 

adherence and duration.  This means that increasing the number of days 

between clinic visits tends to decrease the chances of being adherent to 

medication.  That is, the longer the duration between successive visits, 

adherence to medication is likely to be compromised.  We are however aware 

that at times, the conditional independence assumption might be too restrictive 

and tests for checking the validity of this assumption are not well established in 

the statistical literature.  We therefore attempted to relax the conditional 

independence assumption by re-fitting the joint random intercepts model but now 

allowing for correlated errors; the model failed to converge.  Gueorguieva (2001) 

introduced conditional dependence by including one response in the linear 

predictor for the other response.  In order to validate the observed correlation 

between the two outcomes emerging from the association of the random 

intercepts, we adopted Gueorguieva’s (2001) approach.  We fitted a generalized 

linear mixed model with HAART adherence as the outcome and included 

duration in the linear predictor.  The results are presented in Table 7.3 and they 

show that HAART adherence is negatively associated with duration (p-

value=<0.0001) after controlling for the other variables.  That is, overall, if the 

number of days is increased between successive visits, the patients are less 

likely to adhere to medication. 
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Table 7. 3: Parameter estimates and standard errors of the HAART adherence 
outcome that include duration in the linear predictor 
Effect  

Estimates Std errors p-value 
Intercept 
Gender (ref=male) 

female 
Education (ref=sec & higher) 

No schooling 
Primary 

Treatment site (ref=rural) 
Urban 

Income (ref=not source) 
Source of income 

Access to tapwater (ref=no) 
Yes 

Househld with electricity (ref=no) 
Yes 

Cell phone ownership (ref=no) 
Yes 

WHO staging (ref=stage4) 
Stage1 
Stage2 
Stage 3 

Living with partner (ref=no) 
Yes 

Reason for testing (ref=unwell) 
No specific reason 
Exposed to the risk 

Baseline adherence (ref=no) 
yes 

Time (visit) 
Age 
Baseline CD4+  
Baseline weight 
Weight at follow-up visits 
Duration 
Time*gender (ref=male) 

female 
Time*site (ref=rural) 

urban 
Time*reason (ref=unwell) 

No specific reason 
Exposed to the risk 

Age*gender 
Female 

Age*education 
No schooling 
Primary  

3.556 
 

-1.491 
 

1.964 
-0.202 

 
-1.222 

 
-0.046 

 
0.103 

 
0.094 

 
0.224 

 
-0.447 
-0.342 
-0.262 

 
1.834 

 
-0.1079 
-0.540 

 
-0.092 
-0.042 
-0.052 
-0.001 
-0.007 
0.002 
-0.021 

 
0.061 

 
0.052 

 
0.003 
0.068 

 
0.034 

 
-0.042 
0.004 

0.551 
 

0.535 
 

0.734 
0.712 

 
0.185 

 
0.117 

 
0.184 

 
0.159 

 
0.105 

 
0.280 
0.250 
0.232 

 
0.551 

 
0.197 
0.221 

 
0.125 
0.044 
0.027 
0.001 
0.008 
0.007 
0.004 

 
0.019 

 
0.019 

 
0.021 
0.025 

 
0.015 

 
0.019 
0.019 

<0.0001 
 

0.006 
 

0.008 
0.777 

 
<0.0001 

 
0.694 

 
0.414 

 
0.552 

 
0.034 

 
0.112 
0.171 
0.258 

 
0.001 

 
0.584 
0.015 

 
0.463 
0.337 
0.054 
0.282 
0.358 
0.749 

<0.0001 
 

0.002 
 

0.006 
 

0.876 
0.007 

 
0.020 

 
0.029 
0.832 
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7.5 Summary 

Joint modeling provides us with the ability to answer multivariate research 

questions, in addition to the possible gains in efficiency of parameter estimates.  

The results from fitting a joint model of adherence and time interval indicate that 

optimal HAART adherence is negatively associated with time interval between 

successive visits over time.  That is, with shorter intervals between one visit to 

the next, the patients tend to maintain optimal adherence.  Notwithstanding the 

negative association between optimal adherence and the time interval between 

successive visits, the results further revealed that if the patient is well adapted to 

the treatment program with a record of sustained optimal adherence, the gap 

between successive clinic visits might be longer depending on the treatment site 

the patient is enrolled with.  The results reaffirm the significant determinants of 

optimal adherence over time reported in the previous chapters.  That is, after 

accounting for the time interval measured in days between successive visits, cell 

phone ownership, living with a partner, and two-way interaction terms that 

involved time with gender, treatment site and reason for taking an HIV test, as 

well as age with gender and educational level were still associated with optimal 

adherence.  Among other observations, an increasing linear effect on HAART 

adherence was noted, though it differed by gender, treatment site and reported 

reason for taking an HIV test.  In the next chapter, to allow for more a flexible 

trajectory of the observed data, a semi-parametric approach was used to model 

the effect of time non-parametrically. 
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Chapter 8 

Generalized additive mixed models 
 

8.1 Introduction 

In the previous chapters, we reviewed and fitted adherence data using 

parametric regression methods for longitudinal data.  Specifically, the 

generalized estimating equations (GEEs), generalized linear mixed models 

(GLMMs) and transition models were used to fit the adherence data.  These 

models provide a powerful tool for modeling the relationship between a response 

variable and covariates in longitudinal studies.  Although these parametric mean 

models enjoy simplicity, they suffer from inflexibility in modeling complicated 

relationships between the response and covariates in various applications of 

practical longitudinal data.  That is, for many applications, parametric models 

may be too restrictive or limited, and sometimes unavailable.  This limitation has 

placed a strong demand in recent years on developing nonparametric regression 

methods for longitudinal data, where flexible functional forms can be estimated 

from the data to capture possibly complicated relationships between longitudinal 

outcomes and covariates (Lin and Carroll, 2008).  The basic idea of the 

nonparametric approaches is to let the data determine the most suitable form of 

the functions.  Wu and Zhang (2006) argue that nonparametric and parametric 

regression methods should not be regarded as competitors, instead they 

complement each other.  At times, nonparametric techniques can be used to 

validate or suggest a parametric model.  A combination of both nonparametric 

and parametric methods is more powerful than any single method in many 

applications.   

 

There exist many nonparametric regression and smoothing methods for 

independent data in the literature.  The most widely used methods include 

kernels and splines.  A survey of these methods can be found in Hardle (1990), 
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Green and Silverman (1994), Wand and Jones (1995), Fan and Gijbels (1996) 

and Ruppert, Wand and Carroll (2003) among others.  Also the generalized 

additive models of Hastie and Tibshirani (1990) are widely used for 

nonparametric regression with independent data.  However, very little effort has 

been made to develop nonparametric regression methods for longitudinal data 

analysis until recent years.  The presence of the within-subject correlation among 

the repeated measures over time presents a major challenge in developing 

nonparametric techniques for longitudinal data analysis (Lin and Carroll, 2008).  

As a result, limited work has been done on nonparametric regression when the 

data are correlated, with the practical lagging behind even more so due to the 

lack of readily accessible statistical software. 

 

The limited work that has been done on nonparametric regression methods for 

longitudinal data has been restricted to normally distributed outcomes, and their 

connection to mixed models (Zhang et al., 1998; Verbyla et al., 1999).  For non-

Gaussian longitudinal data, the developments in nonparametric regression 

methods have been mostly restricted to single covariate models, and these 

include local polynomial kernel GEEs (Lin and Carroll; 2000) and spline methods 

(Wang, 1998; Liang, Wu and Carroll, 2003).  Extensions of single-covariate 

nonparametric models to multiple covariates pose a problem referred to as the 

‘curse of dimensionality’, which means that the performance of nonparametric 

smoothing techniques deteriorates as the dimensionality increases (Hastie and 

Tibshirani, 1990; Fan, Heckman and Wand, 1995).  One way of overcoming this 

problem is by using generalized additive models (Hastie and Tibshirani, 1990).  

To this end, for non-Gaussian longitudinal data, Berhane and Tibshirani (1998) 

extended generalized additive models to generalized estimating equations (Liang 

and Zeger, 1986).  Moreover, modeling longitudinal data with non-Gaussian 

outcomes non-parametrically within the mixed effects model framework, Lin and 

Zhang (1999) proposed generalized additive mixed models (GAMMs), which are 

additive extensions of GLMMs in the spirit of Hastie (1990).   
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The aim of this chapter is to therefore review GAMMs and then fit them to 

adherence data.  Specifically, we seek to model the effect of time on the patients’ 

adherence status non-parametrically.  In order to develop a better appreciation of 

GAMMS, a brief overview of nonparametric regression methods using 

generalized additive models (GAMs) for independent data is provided.  This 

chapter is organized as follows.  An overview of generalized additive models for 

independent data is presented in Sections 8.2.  Section 8.3 reviews the 

generalized additive mixed models (GAMMs) for longitudinal data.  The GAMM 

model is fitted to adherence data in Section 8.4. 

 

8.2 Generalized Additive Models (GAMs) 

Generalized additive models are presented by first introducing an additive model.  

An additive model is a generalization of the linear regression model and is 

defined by (Hastie and Tibshirani, 1990) 

�
=

++=
p

j
jjf

1

)( εα xy ,   (8.1) 

where y  is the response variable, jx  are covariates and and the ε  are i.i.d 

),0( 2σN .  The jf  are arbitrary univariate and smooth functions, one for each 

predictor.  Moreover, even though it is convenient to specify functions in additive 

models as univariate and smooth, functions of two or more dimensions as well as 

categorical variable terms and their interactions with continuous scale variables 

can still be specified.  It is also assumed that 0)}({ =jjfE x , since otherwise 

there will be free constants in each of the functions.  An additive model retains an 

important interpretive feature of the linear model; that the variation of the fitted 

response surface holding all but one predictor fixed does not depend on the 

values of the other predictor.  This means that once the additive model is fitted to 

the data, we can plot p  coordinate functions separately to examine the roles of 

the predictors in modeling the response. 
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With additive models, it is necessary to represent the smooth functions in some 

way and to choose how smooth they should be.  Hastie and Tibshirani (1990) 

suggest representing additive models using spline-like penalized regression 

smoothers.  Spline smoothing can be used to represent smooth functions in such 

a way that model (8.1) becomes a linear model.  This is done by specifying a set 

of basis functions, jib  for each function so that the smooth function can be 

represented as (Wood, 2006) 

�
=

=
jq

j
jjijijj xbxf

1

)()( β ,   (8.2) 

where jx  maybe a vector quantity and jiβ  are coefficients of the smooth, which 

will need to be estimated as part of model fitting.  Examples of penalized 

regression smoothers include natural cubic splines, cubic smoothing splines, thin 

plate regression splines and tensor product bases (for more details, see Hastie 

and Tibshirani, 1990; Wood, 2006).   

 

Controlling the roughness of the estimated function is a variant of the bias-

variance tradeoff problem.  Here, using too few basis functions may not allow the 

fitted curve to accurately represent the shape of the function, leading to biased 

estimation, while using too many will result in an overly close interpolation of the 

data.  One way to control the model’s smoothness is by adding a smoothness 

penalty to the least squares fitting objective.  That is, rather than fitting a model 

by minimizing (Wood, 2006) 

)()( ββ XyXy −′− , 

it could be fitted by minimizing  

dxxf� ′′+−′−
1

0

2)]([)()( λββ XyXy , 

where the integrated square of second derivative penalizes models that are too 

smooth.  The tradeoff between model fit and model smoothness is controlled by 

the smoothing parameter, λ .  When ∞→λ , this leads to a straight estimate of 

f , while when 0=λ , the result is an un-penalized regression spline estimate. 
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Because f  is linear in the parameters, jβ , the penalty can always be written as 

a quadratic form in β , 

ββλ S′=′′� dxxf
1

0

2)]([ , 

where S  is a matrix of known coefficients.  Therefore, the penalized regression 

spline fitting problem is to minimize 

ββλββ SXyXy ′+−′− )()(  

with respect to β .  Thus the penalized least squares estimator of β  given λ is 

given by 

yXSXX ′+′= −1)(ˆ λβ . 

The degree of smoothness for the model is obtained by estimating the smooth 

parameter, λ .  Methods that include ordinary cross validation (OCV) and 

generalized cross validation (GCV) are used to estimate λ . 

 

A generalized additive model is a generalized linear model (GLM) with a linear 

predictor involving a sum of smooth functions of covariates (Hastie and 

Tibshirani, 1990).  The model has the following general structure 

�
=

+=
p

j
jjii xfg

1

* )()( θµ x ,   (8.3) 

where )( ii E y=µ  and iy  is the response variable from the exponential family of 

distributions, g  is a known, monotonic, twice differential link function, *
ix  is the 

ith  row of a model matrix for any parametric components, θ  is the corresponding 

parameter vector, and the jf  are smooth functions of the covariates, jx .  The 

GAMs’ representation is illustrated by using penalized regression smoothers 

based on splines in (8.2) and the derivation of the model parameters follows that 

of Wood (2006).   

 

Whereas the additive model was estimated with penalized least squares, the 

GAM is estimated by penalized likelihood maximization.  Furthermore, GAM can 

easily be represented as a GLM through re-parameterization of smooth terms 
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and as such the ordinary GLM likelihood, )(βl  can be used to estimate the 

model coefficients.  There is however a good chance of substantially over-fitting 

the model with ordinary likelihood maximization and to guard against over-fitting, 

GAMs are estimated by penalized likelihood maximization, where the penalties 

are designed to suppress overly smooth estimates of the jf  terms.  The 

penalized likelihood can be defined as 

ββββ S′−=
2
1

)()( ll p , 

where �=
j jjSS λ .  jλ  are smoothing parameters and jS  is a matrix of known 

coefficients. 

 

To fit the model in practice, the following penalized iteratively re-weighted least 

squares (P-IRLS) scheme is iterated until convergence (Wood, 2006): 

1. Given the current linear predictor estimate, ][kη , and corresponding 

estimated mean response vector, ][kµ , calculate: 

2][][ )()(
1
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k
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i gV
w

µµ ′
∝  and ][][][ ))(( k
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ii
k

ii ygz βµµ x+−′= , 

where φµ )()( ][k
i Vvar =y  and ix  is the ith  row of X . 

2. Minimize 

( ) ( ) ββββ SXzWXzW ′+−
′

− )()(  

with respect to β  to obtain ]1[ +kβ , and hence .]1[]1[ ++ = kk βη X   

]})()([{ 12 −′= ii gdiag µµφυW . 

 

The generalized cross validation (GCV) method can be used to estimate λ  in the 

generalized case (Wood, 2006).  The GCV score for smoothing parameter 

selection can be obtained from the GAM fitting objective  

( ) ( ) �
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′+−
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j
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)()( ββλββ SXzWXzW , 

as 
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( ) ( )
2)]([
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−= ββ
, 

where A  is an influence matrix (Wood, 2006). 

 

There are two possible numerical strategies for estimating smoothing parameters 

using gν  minimization: 

• gν  can be minimized and smoothing parameters selected for each 

working penalized linear model of P-IRLS iteration.  This is known as 

performance iteration and its algorithm details can be obtained in Gu and 

Wahba (1991) and Wood (2000, 2004). 

 

• gν  can be minimized directly, which means that the P-IRLS scheme must 

be iterated to convergence for each trial set of smoothing parameters.  

This is usually referred to as outer iteration and the algorithm details can 

be found in Wood (2006). 

 

8.3 Generalized additive mixed models 

Generalized additive mixed models (Lin and Zhang, 1999) are an extension of 

generalized linear mixed models (GLMMs) (Breslow and Clayton, 1993) to allow 

the parametric fixed effects to be modeled non-parametrically using additive 

smooth functions in a similar spirit to Hastie and Tibshirani (1990).  Suppose, 

there is an outcome variable iy , ni ,,1 �=  and p  covariates ),,,1( 1 ′= ipii xx �x  

associated with fixed effects and a 1×q  vector of covariates iz  associated with 

random effects.  Given a 1×q  vector of b  of random effects, the observations iy  

are assumed to be conditionally independent with means iiE µ=)|( by  and 

variances )()|( iivar µφυ=by , where )(⋅υ  is a specified variance function and φ  

is a scale parameter.  Then a generalized additive mixed model is given by (Lin 

and Zhang, 1999) 

bz iippii xfxfg ++++= )()()( 110 �βµ ,   (8.4) 
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where )(⋅g  is a monotonic differential link function, )(⋅jf  is a centred twice-

differentiable smooth function, the random effects are assumed to be distributed 

as )}(,{ γG0N  and γ  is a 1×c  vector of variance components.  The additive 

nonparametric functions are used to model covariate effects and random effects 

are used to model correlation between observations. 

 

The integrated log quasi-likelihood of }),(,),(,{ 10 γβ ⋅⋅ pff �  is 
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where 

),,( 1 ′= ni yy �y  and duuud
i

i
ii )(/)(2);( υµ

µ

� −−∝
y

yy  

defines the conditional deviance function of )}(,),(,{ 10 ⋅⋅ pff �β  given b . 

 

Statistical inference for GAMM involves inference on the nonparametric functions 

)(⋅jf , which requires the estimation of smoothing parameters, λ , and inference 

on variance components γ .  Because of the close connection between the 

smoothing spline estimators and linear mixed models (Wang, 1998; Zhang et al., 

1998; Verbyla et al., 1999), we will first discuss the construction of these 

estimators, specifically the natural cubic smoothing spline estimators of )(⋅jf  

when λ  and γ  are known.  The derivation of the natural cubic smoothing spline 

follows that of Lin and Zhang (1999).  Given the values of λ  and γ , the natural 

cubic smoothing spline estimators of )(⋅jf  maximize the penalized log quasi-

likelihood 
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           (8.6) 

where ),( jj ts  defines the range of the jth  covariate and ),,( 1 ′= pλλλ �  is a 

vector of smoothing parameters and controls the trade-off between goodness of 
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fit and the smoothness of the estimated functions.  Here )(⋅jf  is an 1×jr  

unknown vector of the values of )(⋅jf  evaluated at the jr  ordered distinct values 

of the ijx  ),,1( ni �=  and jS  is the smoothing matrix (Green and Silverman, 

1994). 

 

The GAMM model in (8.4) can be re-written in matrix notation: 

ZbNN1 ++++= ppi ffg �110)( βµ ,  (8.7) 

where })(,),({)( 1 ′= ni ggg µµµ � , 1  is an 1×n  vector of ones, jN  is an jrn ×  

matrix such that the ith  component of jj fN  is )( ijj xf  and ),,( 1 ′= nZZ �Z . 

 

The evaluation of expression (8.5) requires numerical integration (except for the 

Gaussian outcomes) and it is often difficult to calculate full natural cubic 

smoothing spline estimators of the jf  by directly maximizing (8.6).  Lin and 

Zhang (1999) proposed an approximation using a double penalized quasi-

likelihood (DPQL) within the framework of generalized linear mixed models 

(GLMM).  

 

Double penalized quasi-likelihood estimation of nonparametric functions 

The estimation of nonparametric functions jf  can be obtained by representing 

GAMM using the GLMM framework using double penalized quasi-likelihood 

(DPQL).  The derivation of DPQL follows that of Lin and Zhang (1999).  Since jf  

is a centred parameter vector, it can be re-parameterized in terms of jβ  (scalar) 

and )1)2(( ×−jj ra  through a one-to-one transformation as 

jjjjjf aBx += β* ,    (8.8) 

where *
jx  is an 1×jr  vector containing the jr  centred distinct values of the ijx  

),,1( ni �= , and 1)( −′= jjjj LLLB  and jL  is an )2( −× jj rr  full rank matrix 
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satisfying jjj LLS ′=  and 0xL =′ *
jj .  Using the identity jjjjj ff aaS ′=′ , the double 

penalized quasi-likelihood becomes 

aabGby 1

1

1

2
1

2
1

);(
2
1 −

=

− Λ′−′−− �
n

i
iid µ

φ
,   (8.9) 

where ),,( 1 ′′′= paa �a  and ),,( 1 II pdiag ττ �=Λ  with jj λτ /1= .  A small value of 

),,( 1 ′= pτττ �  corresponds to over-smoothing.  Plugging (8.8) into (8.7), 

expression (8.9) suggests that given γ  and τ , the DPQL estimators jf̂  can be 

obtained by fitting the following GLMM using Breslow and Clayton’s (1993) 

penalized quasi-likelihood approach: 

ZbBaX ++= βµ)(g ,   (8.10) 

where ),,,( **
11 pp xNxN1X �= , ),,( 11 ppBNBNB �= , ),,( 0 ′= pβββ �  is a 

1)1( ×+p  vector of regression coefficients and a  and b  are independent random 

effects with distributions ),(~ Λ0a N  and ),(~ G0b N .  The DPQL estimator jf̂  is 

calculated as jjjjjf aBx ˆˆˆ * += β , which is a linear combination of the Breslow and 

Clayton (1993) penalized quasi-likelihood estimators of the fixed effect jβ̂  and 

the random effects jâ  in the working GLMM in (8.10). 

 

Maximization of expression (8.9) with respect to ),,( baβ  can proceed by using 

the Fisher scoring algorithm to solve 
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where y  is a working vector defined as  
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and )]([ igdiag µ′=∆ , ]})()([{ 12 −′= ii gdiag µµφυW .  Expression (8.11) shows that it 

corresponds to the normal equation of best linear unbiased predictors (BLUPs) of 

β  and ),( ba  under the linear mixed model 

εβ +++= ZbBaXy 0 ,   (8.12) 

where a and b  are independent random effects with ),(~ Λ0a N  and ),(~ G0b N  

and ),(~ 1−W0Nε .  This suggests that the DPQL estimators jf̂  and random 

effect estimators b̂  can be easily obtained using the BLUPs by iteratively fitting 

model (8.12) to the working vector y . 

 

To compute the covariance matrix of jf̂ , it is more convenient to calculate β  and 

a  by using  
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where ZZGWR ′+= −1 .  Denoting by H  the coefficient matrix on the left-hand 

side of equation (8.13) and ),(),( 1
0 BXRBXH −′= , the approximate covariance 

matrix of β̂  and â  is  

1
0

1)ˆ,ˆ( −−= HHHaβcov . 

It follows that the approximate covariance matrix of jf̂  is 

),)(ˆ,ˆ(),( * ′jjjjjj cov BXaBx β , where )ˆ,ˆ( jjcov aβ  can be easily obtained from the 

corresponding blocks of 1
0

1 −− HHH .  Here we assume that the )(ˆ ⋅jf  are smooth 

functions in calculating the co-variances of the jf̂ . 

 

Estimation of smoothing parameters and variance components 

In the previous section, we had assumed that the smoothing parameters λ  and 

the variance components γ  are known when estimation was made on the 
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nonparametric functions jf .  However, they are usually estimated from the data. 

Under the classical nonparametric regression model 

ε+= )(Xy f ,     (8.14) 

where the ε  are independent random errors following ),0( 2σN , Wahba (1985) 

and Kohn, Ansley and Tharm (1991) proposed to estimate the smoothing 

parameter λ  by maximizing a marginal likelihood.  The marginal likelihood of 

λτ /1=  is constructed by assuming that )(Xf  has been prior specified in the 

form of (8.8) with ),(~ I0a τN and a flat prior for β  and integrating out a  and β  

as follows: 
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where ),,;( 2σβ ayl  is the log-likelihood (normal) of f  under model (8.14).  

Speed (1991) and Thompson (1985) pointed out that the marginal likelihood 

(8.15) of τ  is in fact the REML under the linear mixed model 

εββ +++= BaX1y 10  

where ),(~ I0a τN  and ),(~ 2I0 σε N  and B  was defined earlier; τ  is regarded 

as a variance component.  Hence the marginal estimator of τ  is a REML 

estimator.  It has been shown that the maximum marginal likelihood estimator of 

τ  has similar and often better performance compared with the GCV estimator in 

estimating the nonparametric function (Kohn et al., 1991). 

 

Zhang et al., (1998) extended these result to estimate the smoothing parameter 

λ  and variance component γ  jointly using REML for longitudinal data with 

normally distributed outcomes and a nonparametric mean function.  Their model 

can be written as 

ε++= ZbXy )(f     (8.16) 

where )(Xf  denotes the values of the nonparametric function )(⋅f  evaluated at 

the design points of )1( ×nX , ))(,(~ γG0b N  and ))(,(~ γε V0N .  If )(⋅f  is 
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estimated using cubic smoothing spline (8.8), Zhang et al., (1998) rewrote model 

(8.16) as a linear mixed model 

εββ ++++= ZbBaX1y 10     (8.17) 

where ),(~ I0a τN  and distribution of b  and ε  are the same as those in model 

(8.16).  They hence proposed to treat τ  as an extra variance component in 

addition to γ  in model (8.17) and to estimate τ  and γ  jointly by using REML.  

This REML corresponds to the marginal likelihood of ),( γτ  constructed by 

assuming that f  takes the form of (8.8) with ),(~ I0a τN and a flat prior for β  

and integrating out a  and β  as follows: 
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where ),;(),,;( bybay fll =β  is the conditional log-likelihood (normal) of f  given 

the random effects b  under model (8.16).  The marginal log-likelihood ),;( γτyMl  

in (8.18) has a closed form. 

 

Lin and Zhang (1999) proposed to extend the marginal likelihood approach to 

GAMM in (8.4) and to estimate τ  and γ  jointly by maximizing a marginal quasi-

likelihood.  Specifically, the GLMM representation of GAMM in (8.10) suggests 

that τ  may be treated as extra variance components in addition to γ .  Similar to 

the REML (8.18), the marginal quasi-likelihood of ),( γτ  can be constructed under 

the GAMM in (8.4) by assuming that jf  takes the form (8.8) with ),(~ I0a jj N τ  

),,1( pj �=  and integrating ja  and β  out as follows: 
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           (8.19) 

where ),,,,;(),,;( 10 γβγβ pffll �yay =  was defined in (8.5).  Under the Gaussian 

nonparametric mixed model (8.16), the marginal quasi-likelihood reduces to the 
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REML (8.18).  Unlike in the Gaussian situation, an evaluation of the marginal 

quasi-likelihood (8.19) for non-Gaussian outcomes is hampered by often 

intractable numerical integration.  It is thus approximated using Laplace’s 

method.  Lin and Zhang (1999) showed that taking the quadratic expansion of 

the exponent of the integrand of (8.19) about its mode before integration and 

approximating the deviance statistic );( iid µy  by the Pearson’s 2χ -statistic 

(Breslow and Clayton, 1993), the approximate marginal log-quasi-likelihood is 

given as 
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2
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2
1

),;( 11 ββγτ XyVXyXVXVy −′−−′−−≈ −−
Ml ,  (8.20) 

where 1−+′+′Λ= WZZGBBV .  Expression (8.20) corresponds to the REML log-

likelihood of the working vector y  under the linear mixed model (8.12) with both 

a  and b as random effects and τ  and γ  as variance components.  It follows that 

τ  and γ  can be estimated by iteratively fitting model (8.12) using REML. 

 

Specifically, Lin and Zhang (1999) showed that differentiating (8.20) with respect 

to ),( γτϑ = , some calculation gives the estimating equations for τ  and γ , which 

are the REML equations under the working linear mixed model (8.12) 
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where calculations of kϑ∂∂ /V  and jγ∂∂ /R  ignore the dependence of W  and ϑ  

and 
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11111111 ),()( −−−−−−−− ′−=′′−= RBXRRVXXVXXVVP  

is the projection matrix under the linear mixed model (8.12) and )ˆ,,ˆ,ˆ( 10 pff �β  is 

DPQL estimator. 

 

The Fisher information matrix of the approximate marginal quasi-likelihood 

estimators )ˆ,ˆ(ˆ γτϑ =  can be approximated by 
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where the thkj ),(  element of )(ϑΓ  is )//(5.0 kjtr
kj

ϑϑϑϑ ∂∂∂∂=Γ VPVP .  It should 

be noted that expression (8.21) is mainly used to construct an approximate 

covariance matrix of γ̂ . 

 

8.4 Fitting adherence data using GAMMs 

We had earlier (Chapter 5) fitted a parametric logistic-normal model (GLMM) and 

assumed a linear time effect.  Now our aim is to model the effect of time non-

parametrically while the other covariates remain parametric using GAMM.  Recall 

that the final GLMM model was 
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           (8.22) 

 

We now seek to fit a semi-parametric logistic regression model by re-fitting model 

(8.22) but now with a nonparametric time effect including all interactions that 

involved time as follows: 
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where )(⋅g  is the logit link function, β  are parametric regression coefficients, jf  

are centred smooth functions and the random effects, ))(,(~ γG0b Ni .  It should 

be noted that the semi-parametric logistic regression model (8.23) differs slightly 

from the GAMM in (8.4) in the extra parametric part βijx′ , which can be 

incorporated in the fixed effects part of the working GLMM in (8.10).  Therefore, 

the estimation procedures discussed for fitting GAMMs in Section 8.3 can be 

used to fit model (8.23) with trivial modifications.  The R package mgcv was used 

to fit the data; it has a number of options available for controlling the model 

smoothness using splines. 

 

Regarding model fitting, attempts were made to fit model (8.23) with several 

different penalized regression smoothers but because of the computational 

intensity entailed in fitting such a huge model with a large data set, the model 

failed to converge.  Then model (8.23) was reduced by removing the random 

slope and the parametric interactions and the resulting model was as follows: 
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When the thin plate shrinkage smoothers were used to fit model (8.24), 

convergence was reached.  These smoothers have the advantage of avoiding 
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the knot placement and can be constructed for smooths of any number of 

predictor variables.  In addition, the shrinkage smoothers are constructed in such 

a way that smooth terms can be penalized away altogether making no 

contribution to the model (Wood, 2006).  The results of the parametric 

coefficients and the approximate significance of the smooth terms are presented 

in Table 8.1.  From the parametric part model, the results indicate that gender, 

treatment site, educational attainment, living with a partner and cell phone 

ownership has a significant effect on optimal HAART adherence (Table 8.1).  

Since gender and treatment site interact significantly with the nonparametric 

effect of time, they will be interpreted with the smooth terms of the model.   

 
Moreover, the results showed that patients who owned a cell phone were 1.30 

( 26.0e ) times more likely to adhere to medication than those without a cell phone.  

Also, patients who stayed with a partner were 1.32 ( 28.0e ) times more likely to be 

adherent to medication that those who were not staying with a partner.  Contrary 

to our expectation, the results reveal that patients with primary and secondary 

levels of education were respectively 0.69 ( 37.0−e ) and 0.65 ( 43.0−e ) times less 

likely to adhere to medication than those with no schooling.   

 

Follow up time has been fitted as a smooth function on its own and at different 

levels of gender, treatment site and reason for taking an HIV test.  The results in 

Table 8.1 show that the follow-up time had a significant effect on optimal HAART 

adherence.  The smooth term for the follow-up time has been depicted in Figure 

8.1 and it shows that on the overall, HAART adherence has been increasing over 

the follow-up visits but the rate of increase was highest in the first five follow-up 

visits after which the rate of increase declined. 
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Table 8. 1: The parameter estimates of the fixed part of the GAMM model comprised of the 
parametric coefficients and the approximate significance of the smooth terms 

 
Parametric coefficients 

 
Estimate 

Standard 
error 

 
tvalue 

 
pvalue 

Intercept 
Gender (ref = female) 

Male 
Education (ref = secondary and higher) 

No schooling 
Primary 

Treatment site (ref = rural) 
Urban 

Source of household income (ref = not source) 
Source of income 

Access to tap water (ref = no) 
Yes 

Household with electricity (ref = no) 
Yes 

Cell phone ownership (ref = no) 
Yes 

WHO staging of the disease (ref = stage4) 
Stage1 
Stage2 
Stage3 

Living with a partner (ref = no) 
Yes 

Reason for testing (ref = unwell) 
No specific reason 
Exposed to the risk 

Baseline adherence (ref = adherent) 
No adherent 

Age 
Baseline CD4+ cell count 
Baseline weight 
Weight at follow-up visits 

1.9590 

 
-0.2584 

 
-0.3742 
-0.4289 

 
-0.6986 

 
0.0311 

 
0.1065 

 
0.0448 

 
0.2596 

 
0.0635 
0.2237 
0.3397 

 
0.2832 

 
-0.0822 
  0.0074 

 
  0.1137 
-0.0027 
-0.0006 
-0.0024 
-0.0002 

0.4346 
 

0.0940 
 

0.1692 
0.1565 

 
0.1021 

 
0.0961 

 
0.1516 

 
0.1375 

 
0.0874 

 
0.1600 
0.1497 
0.2251 

 
0.0100 

 
0.1330 
0.1170 

 
0.1059 
0.0061 
0.0007 
0.0064 
0.0056 

4.508 
 

-2.749 
 

-2.212 
-2.741 

 
-6.845 

 
0.324 

 
0.702 

 
0.326 

 
2.971 

 
0.397 
1.494 
1.509 

 
2.846 

 
-0.618 
  0.063 

 
  1.074 
-0.442 
-0.789 
-0.370 
-0.039 

<.0001* 
 

0.0060* 
 

0.0270* 
0.0062* 

 
<.0001* 

 
0.7459 

 
0.4825 

 
0.7446 

 
0.0030* 

 
0.6911 
0.1351 
0.1313 

 
0.0044* 

 
0.5368 
0.9498 

 
0.2830 
0.6588 
0.4303 
0.7113 
0.9688 

Approximate significance of smooth terms 

Smooth terms edf# Fvalue Pvalue 
S(time) 
S(time): gender (female) 
S(time): gender (male) 
S(time): treatment site (urban) 
S(time): treatment site (rural) 
S(time): reason for taking HIV test (exposed to the risk) 
S(time): reason for taking HIV test (unwell) 
S(time): reason for taking HIV test (no specific reason) 

2.461 
1.043 
0.044 
0.002 
1.019 
0.922 
0.000 
0.000 

4.873 
11.09 
0.037 
0.001 
14.99 
8.017 
0.000 
0.000 

0.0042* 
0.0007* 

- 
- 

<.0001* 
0.0057* 

- 
- 

#estimated degrees of freedom 
*significant at 5% level 
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Figure 8. 1: Smooth function of the follow-up time with the 95% confidence limits 
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Moreover, the results further revealed that the effect of the follow-up time differed 

by gender, treatment site and the reason for taking an HIV test.  It is shown 

(Table 8.1) that the follow-up time had a significant effect on HAART adherence 

for females whereas the follow-up time had no significant effect on adherence for 

males. The smooth function for the follow-up time by gender is depicted in Figure 

8.2.  Figure 8.2(a) shows that HAART adherence increased over the follow-up 

visits for female patients whereas Figure 8.2(b) highlights the result that optimal 

adherence has remained almost constant for the follow-up period.  
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Figure 8. 2: Smooth functions of the follow-up time by gender with the 95% 
confidence limits 

a) Smooth function of follow-up time for females b) Smooth function of follow-up time for males 
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Also, the follow-up time had a significant effect on HAART adherence for patients 

in the rural treatment site while the follow-up time had no significant effect on 

adherence for patients in the urban treatment site.  Figure 8.3 presents the 

smooth function of the follow-up time for the urban and rural patients. 

 

 

 

 

 

 

 



 196

Figure 8. 3: Smooth functions of the follow-up time by treatment site with the 95% 
confidence limits 

a) Smooth function of follow-up time for urban patients b) Smooth function of follow-up time for rural 
patients 
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Figure 8.3a shows that HAART adherence remained constant for the urban 

patients over the follow-up period while the rural patients experienced an 

increase in HAART adherence over the same period (Figure 8.3b).  

 

Regarding the reason that patients reported for taking an HIV test, the follow-up 

time had a significant effect on adherence for the patients who reported to have 

been exposed to the risk of contracting HIV while there was no significant effect 

for patients who reported being tested for HIV for no specific reason or because 

they were not well.  The smooth functions are depicted in Figure 8.4. 
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Figure 8. 4 Smooth functions of the follow-up time by reason for taking an HIV 
test with the 95% confidence limits 

a) Smooth function of follow-up time for patients who felt exposed to the risk of contracting HIV 
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b) Smooth function of follow-up time for unwell 

patients 
c) Smooth function of time for patients who 

tested for no specific reason 
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It is shown In Figure 8.4a that HAART adherence increased over the follow-up 

for patients who felt exposed to the risk of contracting the HIV disease and 

remained constant for those who were unwell (Figure 8.4b) and those who took 

an HIV test for no specific reason (Figure 8.4c). 
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8.5 Summary 

The results from the GAMM model with a nonparametric follow-up time validate 

the results from previous models and generally gave more insight regarding the 

trend of optimal HAART adherence.  The results from the parametric part of the 

model confirm that cell phone ownership and living with a partner tends to 

enhance one’s adherence to medication.  Moreover, the smooth term of follow-up 

time confirmed that overall, HAART adherence is increasing over time but it 

further revealed that the rate of increase has not been constant over the entire 

follow-up period.  In addition, it is revealed that HAART adherence increased 

over the follow-up period for females while the adherence trend remained 

constant for males.  Likewise, the rural patients showed an increase in HAART 

adherence over the follow-up period whereas adherence remained constant for 

the urban patients.  Moreover, adherence remained constant over the follow-up 

time for patients who took the HIV test for no specific reason and those who took 

the test because they were unwell.  However, adherence increased for those 

who tested because they felt they have been exposed to the risk of contracting 

the HIV disease. 
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Chapter 9 

Discussions and Conclusions 
 

This work has focused on statistical methods aimed at modeling the data that are 

correlated.  More specifically, we have been concerned with statistical methods 

for longitudinal binary data, which is frequently encountered in applied statistics.  

Although many approaches to the analysis of longitudinal data have been 

studied, most are restricted to the setting in which the response variable is 

normally distributed.  While the development of methods for analysis of 

longitudinal data with discrete outcomes has received substantially less attention 

in the past, this has more recently become an important area of research.  Still, 

the methodology is not nearly as well-developed as for normally distributed 

outcomes.  The practical application of methods for repeated discrete outcomes 

also lags behind that for normal-theory methods because among other reasons, 

the development of readily accessible software lags behind.  Even with recent 

software developments, data analysts still face the challenge of choosing the 

appropriate method of analysis to address their research questions adequately.  

The other challenge relates to the estimation procedure; a method will often have 

more than one estimation procedure to choose from, and in choosing an 

estimation procedure, one has to be aware of the fact that the chosen estimation 

method will have a direct bearing on which tests will be available for inference.  

In this thesis, we attempt to give more insight into the different longitudinal 

approaches when one has a binary outcome.  These methodologies have been 

demonstrated with in-depth analyses of a practical data set with a binary 

outcome.  The data relates to HAART adherence over time among HIV positive 

adults who are on treatment.   

 

With the advent of HAART, morbidity and mortality among HIV-infected 

individuals have been dramatically reduced.  However, HAART requires strict 

adherence, thus identifying and overcoming factors that reduce adherence is 
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critical if optimal clinical and survival benefits are to be attained and maintained 

over time.  Determining the predictors of optimal long-term HAART adherence 

status of patients, and whether factors affecting initial (first month) adherence 

status also influence long-term HAART adherence status was the focus for the 

application of longitudinal methods.  Patients were considered optimally adherent 

if they took at least 95% of their prescribed medication; otherwise they were 

classified as non-adherent.  Optimal HAART adherence status therefore was 

considered as a binary response variable (adherent and non adherent) that 

follows a Bernoulli distribution.  Consequently, generalized linear models (GLMs) 

and its extensions to correlated data become relevant models for analysis. 

 

Because of the importance of HAART adherence at the onset of treatment, the 

study began by identifying factors affecting initial (one month) adherence status 

of patients.  The appropriate methods for analysis would be those for 

independent data as we have one datum point for each patient and a logistic 

regression model was used.  The results revealed that baseline CD4+ cell count 

and two-way interaction terms between gender and reason for taking an HIV test, 

age and cell phone ownership as well as treatment site and income were 

important.  That is, optimal HAART adherence was negatively associated with a 

higher baseline CD4+ cell count.  Female patients had better adherence if they 

voluntarily attended testing and counseling or if they had taken an HIV test 

because they were unwell, while male patients had higher adherence if they were 

tested due to perceived risk of HIV infection.  Optimal HAART adherence was 

positively associated with higher age amongst patients who possessed cell 

phones and amongst patients who provided a source of income in the urban 

setting, but not in the rural setting.   

 

Although factors associated with optimal adherence at the initial stages of 

therapy give important information, factors that affect long-term optimal 

adherence may be more relevant, as lifetime adherence to HAART is required.  

Consequently, evaluation of determinants of long-term optimal HAART 



 201

adherence entailed data with a longitudinal structure.  Longitudinal data tend to 

be correlated and this poses a challenge in the analysis because the correlation 

has to be accounted for to obtain valid inference.  It was therefore important to 

explore the dependence among outcomes in order to inform further analysis.  

With a binary outcome, a correlation-based approach for exploring the 

association structure is not feasible as the range of correlation is constrained by 

the means.  Thus a Lorelogram, which measures the association between the 

repeated binary outcomes with odds ratios (Heagerty and Zeger, 1998), was 

used in this study.  The correlation appeared to decrease with increasing lag 

between repeated responses indicating that an AR-1 correlation structure may be 

appropriate for describing the relationship between follow-up visits with regard to 

optimal HAART adherence. 

 

Missing data are almost always present in the analysis of longitudinal data and 

as a result, the data becomes unbalanced over time.  Therefore, methods that 

require balanced data cannot be used.  Because at times missing data can 

introduce bias, thereby leading to misleading inferences about changes in the 

mean, one must consider the reasons for missingness (missing data 

mechanisms).  These are missing completely at random (MCAR), which refers to 

missingness if the missing values are independent of both unobserved and 

observed data.  In this case the observed values of the responses are a random 

subsample of all values of the responses and no bias will arise with almost any 

method of analysis.  There is also missing at random (MAR) and occurs if 

conditional on observed data, the missingness is independent of the unobserved 

measurements.  In this case, analysis restricted to data from completers will yield 

biased estimates because observed values are not necessarily a random 

subsample of all responses.  The other mechanism of missingness is referred to 

as missing not at random (MNAR).  In this case the missing data process is 

neither MCAR nor MAR but is non-random. 
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The adherence data was mainly characterized by dropout.  We began by testing 

the most restrictive assumption of missingness, i.e. MCAR, with adherence data 

and logistic regression was used to carry out the test.  The results revealed that 

dropout did not depend on the previous outcome.  This implied that there was no 

evidence against MCAR in favour of MAR.  It was therefore concluded that 

MCAR assumption holds for the adherence data and as a result, methods of 

longitudinal data analysis will yield valid estimates.   

 

For identifying long-term predictors of optimal HAART adherence, generalized 

linear models for longitudinal data were employed.  These include several broad 

model families that include marginal, subject-specific, transition, joint and semi-

parametric additive models.  While these models can be viewed as direct 

extensions of generalized linear models for independent observations to the 

context of correlated data, there are differences in the way they address the 

dependency in the data.  All the models were used to assess the determinants of 

long-term optimal adherence and each one of the methods has its own strengths 

and weaknesses. 

 

We began by fitting a marginal model to adherence data.  With marginal models, 

the marginal probabilities of the response are directly modeled.  In general the 

specification of a joint distribution for discrete longitudinal data is difficult, even in 

cases where it might be possible to specify the joint distribution, the likelihood 

can be too complicated to evaluate.  Consequently, marginal models were fitted 

using the method of generalized estimating equations (GEE) (Liang and Zeger, 

1986).  The GEE method is an extension of GLM to accommodate correlated 

data using a quasi-likelihood approach.  It requires the correct specification of 

mean and variance, but not the specification of a distribution for the response. 

The GEE method is appealing because of its computational simplicity compared 

to the maximum likelihood approaches for discrete data.  In addition, it is robust 

to misspecification of the correlation structure for large samples.  However, since, 

it does not completely specify the joint distribution, it does not have a likelihood 
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function, thus, likelihood-based methods are not available for testing fit, 

comparing models and conducting inference about parameters.  Thus, the 

generalized Wald test was used for model comparison for fixed effects while 

quasi-likelihood under the independence model criterion (QIC) was used for the 

selection of the best fitting correlation structure.  Note that although the GEE 

estimates are consistent with misspecification of the covariance structures; care 

must be taken in choosing such a structure because a poor choice of the working 

correlation may hamper the efficiency of the estimates.   

 

With adherence data, the QIC results indicated AR-1 as the best fitting 

correlation structure among the competing ones.  Moreover, the results showed 

that cell phone ownership and living with a partner enhanced optimal HAART 

adherence.  Further, five 2-way interaction terms, namely, time*gender, time*site, 

time*reported reason, age*gender and age*education were significantly 

associated with optimal HAART adherence.  That is, with the two-way 

interactions that involve time, the results showed that optimal HAART adherence 

increased on average over time, however, the rate of increase differed by (a) 

gender in favour of females; (b) treatment site in favour of the rural treatment site 

and (c) reason for taking an HIV test where the rate of increase in optimal 

adherence was higher for patients who tested due to possible exposure to HIV, 

than for patients who tested because they were unwell.  Further analysis 

revealed that the rate of increase in optimal adherence was higher for patients 

who tested due to possible exposure to HIV, than for those who reported no 

specific reason for taking an HIV test.  Age also interacted significantly with 

gender and education.  As the age of patients increased, females tended to 

adhere better to HAART than males.  Among older patients, those with no 

schooling were less likely to achieve optimal HAART adherence than those with 

secondary and higher education.  To this end, analysis revealed that as patients 

get older, those with primary education were more likely to achieve optimal 

adherence than those with no schooling.   
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In addition to exploring the population effects associated with optimal HAART 

adherence through the GEE method, we further explored the subject’s specific 

effects that are unique to a particular individual by fitting a generalized linear 

mixed model (GLMM).  GLMMs are considered as straight forward extensions of 

generalized linear models by appending the random effects in the linear 

predictor, which gives them the ability to model subject-specific evolutions in 

addition to determining the association structure of the data.  However, the 

estimation procedures are more complex with GLMMs.  For maximum likelihood, 

different approximation methods are used for parameter estimation with each 

method having its own strengths and limitations.  These include approximation 

methods based on numerical integration techniques (e.g. quadrature methods) 

and model approximation (linearization). 

 

Integral approximation methods approximate the log likelihood function of the 

GLMM and the approximated function is numerically optimized.  These methods 

provide an actual objective function for optimization and thus likelihood-based 

methods can be used for inferential procedures such as likelihood ratio tests.  

Because of the computational complexity entailed in these methods, they are not 

able to accommodate a large number of random effects as well as models that 

contain both random effects and serial correlation.  With model approximation 

methods, algorithms are expressed in terms of Taylor series to linearize the 

response and the resulting model can be viewed as a linear mixed model for 

pseudo-data.  Then the algorithm for fitting the linear mixed model is employed 

and the resulting estimates are used to update the pseudo-data and this whole 

scheme is iterated until convergence is reached.  The linearization estimation 

technique can also incorporate models that have both the random effects and the 

different residual covariance structures.  However, likelihood based methods 

cannot be used because the likelihood is not based on the observed data but 

rather the likelihood corresponds to the linear mixed models for pseudo-data.  

This is because when one changes the error structure, then the linearized 

response also changes and likelihood values can only be compared across 
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models when the response variable for each model is the same.  Approximate 

Wald tests can be used to test hypotheses about fixed effects as well as variance 

components.  For both methods, care has been taken when the null-hypothesis 

is on the boundary of the parameter space. 

 

Consequently, fitting data using GLMM was quite challenging.  Regardless of the 

embedded differences between the approximation methods, the results obtained 

from all methods largely agree, which gives us more confidence in all the 

approximation methods.  The results showed that there was considerable 

variability from patient to patient; however, all the factors that were important at 

the population level were still important even at the subject-specific level.  In 

addition, the association structure revealed a strong negative correlation between 

the random intercepts and slopes indicating that there was a decline over time in 

adherence rates of patients who had high levels of adherence at the beginning of 

follow-up visits and vice versa.   

 

To assess whether the current optimal adherence status of a patient depended 

on the previous adherence measurements in addition to the explanatory 

variables, a transition model was fitted.  That is, the transition model was used to 

predict optimal HAART adherence status on the basis of explanatory variables 

and all available information of the previous adherence status.  In this model, the 

correlation of repeated observations is dealt with by treating previous outcomes 

as additional explanatory variables.  Fitting transition models is relatively 

straightforward because subsequent measurements, given their previous history, 

are considered to be independent; as a result, standard GLM procedures can be 

employed.  Also transition models are likelihood-based methods, therefore 

inferential procedures such as likelihood ratio tests can be used. 

 

The results revealed that the current adherence status had a very strong 

dependence on the two previous measurements of adherence status.  In addition 

there were three significant interactions between the previous responses and 
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explanatory variables.  These were lag1*time, lag2*cell phone ownership and 

lag2*baseline adherence where lag1 and lag2 represents adherence 

measurements lagged by 1 and 2 follow-up visits respectively.  Patients who 

were adherent in lag1 follow-up visits were more likely to be adherent to 

medication than those who were not adherent in the same lag follow-up visits.  

Moreover, patients who owned a cell phone were more likely to adhere to 

medication than those without a cell phone provided they were adherent in lag2 

follow-up visits.  Furthermore, patients who were adherent at baseline were less 

likely to adhere to medication than those who were not adherent given that they 

failed to adhere to medication in two consecutive visits (both lag2 and lag1 

follow-up visits). 

 

With all the analyses using the different models for longitudinal data, we 

assumed that the time interval (duration) between one clinic visit to the next is 

the same across all follow-up visits.  In reality, however, this assumption of equal 

interval between successive visits might not necessarily hold because at times 

patients are unable to keep their scheduled clinic appointments for various 

reasons/circumstances; they either make an early or a late visit to the clinic.  A 

joint modeling approach was used to further investigate the joint effect of the 

predictor variables on both optimal HAART adherence status of patients and 

duration between successive visits.  More specifically, we assessed whether the 

explanatory variables that were found to be significantly related with optimal 

HAART adherence in the marginal and random effects models would still have a 

significant effect on long-term optimal adherence even when duration between 

successive visits was accounted for.  Also assessing the association between the 

two outcomes (optimal adherence and duration) was of interest.   

 

Advantages of joint over separate fitting of models include better control over 

type I error rates in multiple tests, possible gains in efficiency in the parameter 

estimates and the ability to answer multivariate questions (Gueorguieva, 2001).  

The difficulties in analyzing longitudinal data arise because of correlations usually 
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present between observations on the same subject.  In case of multiple 

outcomes, two types of correlations must be taken into account: correlations 

between measurements on different variables and correlations between 

measurements on the same variable within a subject.  While joint models for 

longitudinal and time-to-event data are widely used, joint models for two 

longitudinal outcomes of similar or dissimilar nature are less widespread.  For 

models that jointly analyze discrete and continuous outcomes, the challenge has 

been the lack of multivariate distributions for combining both types of outcomes; 

as a result, specification of a joint distribution of the responses is not 

straightforward.   

 

Broadly, there are two approaches adapted to joint modeling.  A first approach 

avoids direct specification of a joint distribution; it is based on a conditioning 

argument that allows joint distribution to be factored in a marginal component 

and a conditional component, where the conditioning can be done either on the 

discrete or on the continuous outcome (Catalano and Ryan, 1992; Faes et al., 

2004).  A disadvantage of mixed outcome models based on conditional models is 

that they do not directly lead to marginal inferences (Verbeke and Davidian, 

2008).  Also the correlation among the two outcomes cannot be directly 

estimated (Faes et al., 2008).  A second approach directly formulates a joint 

model for both outcomes.  The latent variable idea has been used to directly 

specify the joint distribution of the discrete and continuous outcomes based on 

two methods (Regan and Catalano, 2002).  Instead of using a latent variable 

approach, one can directly specify the joint distribution for both outcomes through 

a mixed model, by specification of the marginal distribution, conditional on the 

correlated random effect (Faes et al., 2008).  The latter approach was adopted 

for fitting adherence data. 

 

A joint marginal model and a joint random effects model were fitted to assess the 

joint effects of the predictor variables at the population level and at the subject 

specific level respectively.  The joint random effects model was also used to 
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assess the correlation between the two outcomes, which is induced by the 

association between the random effects of the two outcomes.  The results from 

the joint models showed that even after accounting for the interval between 

successive visits, the GEE and GLMM results remained the same.  Moreover, 

the results indicated a negative correlation between optimal HAART adherence 

and duration between successive visits.  That is, on the overall, the association 

between optimal HAART adherence and duration was negative, however, the 

joint effect of the time and treatment site interaction on both outcomes revealed 

that as the number of follow-up visits increased, the interval between successive 

visits also increased while at the same time high levels of optimal adherence 

were maintained in the rural treatment site 

 

Since the parametric statistical models employed for the analysis of adherence 

data may not have been flexible enough to capture the main features of the 

longitudinal profiles, a semi-parametric approach was adopted.  Specifically, 

generalized additive mixed models were used to model the effect of time as well 

as interactions associated with time non-parametrically.  The results showed that 

the smooth term of follow-up time confirmed that overall, HAART adherence is 

increasing over time but it further revealed that the rate of increase has not been 

constant over the entire follow-up period.  In addition, it was revealed that 

HAART adherence increased over the follow-up period for females while the 

adherence trend remained constant for males.  Likewise, the rural patients 

showed an increase in HAART adherence over the follow-up period whereas 

adherence remained constant for urban patients.  Moreover, adherence 

remained constant over the follow-up time for patients who took the HIV test for 

no specific reason and those who took the test because they were unwell while 

adherence increased for those who tested because they felt they had been 

exposed to the risk of contracting the HIV disease. 

 

This work demonstrates that with appropriate statistical modeling of real life data, 

taking into account the nature of such data and scientific settings, a useful 
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contribution to the knowledge/literature in areas of specific application can be 

made.  For instance, the findings from this study identified specific groups of high 

risk patients for whom adherence counseling should be targeted and tailored.  

For example first month HAART adherence can be improved by targeting 

patients initiated on treatment with high CD4+ cell counts.  With the long-term 

adherence, the findings helped identify sub-populations, such as the urban and 

male population, that required vigorous ongoing adherence counseling.  This 

work highlighted the reality that the longer the duration between successive clinic 

visits, the more compromised optimal HAART adherence is likely to be.  

However, with the scaling-up of HIV-treatment, given the human resource 

constraints in Sub-Saharan Africa, the gap between successive visits might be 

increased for patients well adapted to the treatment programme and with a good 

record of sustained optimal adherence to reduce the burden in the health 

facilities.  

 

There are avenues for further work in this research.  One of the most important 

steps in the process of data modeling is to check various features of the fitted 

model.  This usually involves checking goodness-of-fit of the model, checking 

model assumptions and detecting possibly influential observations.  Little work 

has been done on model checking and diagnostics in GEE, GLMM and 

multivariate generalized joint modeling and this deserves further research.  In 

addition, the difficulty in evaluating the likelihood for models with discrete 

correlated data has been a limiting feature and was noticeable in the 

computational aspects of fitting GLMM where intensive computing times were 

experienced with the very large adherence data set.  The computing intensity 

became even worse with multivariate generalized random effects models (joint 

modeling).  For instance, with joint modeling we were unable to fit models that 

contained both random intercepts and slopes because that required powerful 

computational resources that we did not have.  This therefore highlights the need 

to further investigate the performance of simplified computational methods which 

would not require powerful computational resources.  Moreover, the alternative 
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method of estimation that uses the pseudo-likelihood from the pseudo-data is not 

computationally intense but still requires further investigation in many respects.  

Since pseudo-likelihood is essentially composed of likelihoods, we might be 

inclined to believe that it is more robust to missing data mechanism than other 

methods based purely on estimating equations (such as GEE).  It would however 

be useful to evaluate the robustness of this method to missing data.  Further, 

model selection tools are lacking with this estimation method; a lack most keenly 

felt when a best fitting residual covariance structure has to be selected.  This is 

because the usual likelihood based methods such as AIC cannot be used, 

therefore it is also a fertile area for further research. 

 

There exist many nonparametric regression and smoothing methods for 

independent data in the literature.  The presence of the within-subject correlation 

among the repeated measures over time presents a major challenge in 

developing nonparametric techniques for longitudinal data analysis.  Most of 

these developments focus on nonparametric population mean models and 

mixed-effects models for normal longitudinal data.  Limited work has been done 

on developing these nonparametric models for non-normal longitudinal data.  

Moreover, the practical application of nonparametric methods for longitudinal 

outcomes (normal and non-normal) is lagging behind due to a lack of readily 

accessible statistical software.  Further research is needed in this area. 

 

With evaluation of the determinants of optimal HAART adherence, multilevel 

modeling can be considered for future research to address questions about 

individual effects while adjusting for facility location (urban/rural), staffing issues, 

and equipment availability among other things.  Furthermore, future research 

should aim at exploring determinants of optimal HAART adherence with an 

optimal adherence outcome measured using patient’s self report in addition to 

the pill count method which were used in this study. 
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In summary, five families of models were reviewed and applied to HAART 

adherence data.  All the analyses demonstrated that these families of models are 

useful in the study of binary longitudinal responses.  Furthermore the thesis 

highlighted the direction and development of longitudinal binary data analyses.  

Highly complicated longitudinal binary data arising in practice are challenging, 

but they also provide for great opportunities and the advancement of this 

important area of research.  One of the future directions of this thesis is to 

compare the different families of methods using simulations.  The other possible 

direction of the study is to develop diagnostic tools for each of the models. 
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