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Abstract

Longitudinal data tend to be correlated and hence posing a challenge in the analysis
since the correlation has to be accounted for to obtain valid inference. We study
various statistical methods for such correlated longitudinal binary responses. These
models can be grouped into five model families, namely, marginal, subject-specific,
transition, joint and semi-parametric models. Each one of the models has its own
strengths and weaknesses. Application of these models is carried out by analyzing
data on patient’s adherence status to highly active antiretroviral therapy (HAART).
One other complicating issue with the HAART adherence data is missingness.
Although some of the models are flexible in handling missing data, they make certain
assumptions about missing data mechanisms, the most restrictive being missing
completely at random (MCAR). The test for MCAR revealed that dropout did not
depend on the previous outcome.

A logistic regression model was used to identify predictors for the patients’ first
month’s adherence status. A marginal model was then fitted using generalized
estimating equations (GEE) to identify predictors of long-term HAART adherence.
This provided marginal population-based estimates, which are important for public
health perspective. We further explored the subject’s specific effects that are unique
to a particular individual by fitting a generalized linear mixed model (GLMM). The
GLMM was also used to assess the association structure of the data. To assess
whether the current optimal adherence status of a patient depended on the previous
adherence measurements (history) in addition to the explanatory variables, a
transition model was fitted. Moreover, a joint modeling approach was used to
investigate the joint effect of the predictor variables on both HAART adherence
status of patients and duration between successive visits. Assessing the association
between the two outcomes was also of interest.  Furthermore, longitudinal
trajectories of observed data may be very complex especially when dealing with
practical applications and as such, parametric statistical models may not be flexible
enough to capture the main features of the longitudinal profiles, and so a semi-
parametric approach was adopted. Specifically, generalized additive mixed models
were used to model the effect of time as well as interactions associated with time

non-parametrically.
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Chapter 1
Introduction

Highly active antiretroviral therapy (HAART) has dramatically reduced morbidity and
mortality among HIV-infected individuals (Kalichman, Ramachandran & Catz, 1999;
Berg et al., 2004; Gill et al., 2005), and requires strict adherence to attain optimal
clinical and survival benefits (Paterson et al., 2000). Patients who take 95% or more
of their prescribed medication benefit more from treatment than those who take less
than 95% (Paterson et al., 2000). Identifying and overcoming factors that reduce
adherence to HAART is therefore critical if optimal clinical and survival benefits are
to be attained. Optimal adherence to HAART is often influenced by a variety of
factors, comprising of social, demographic, economic and behavioural issues
(Chesney, 2000; Ferguson et al., 2002). There have however been inconsistent
findings regarding the association between adherence, demographic and economic
factors. For instance, some studies have shown an association between adherence
and age (Penedo et al., 2003; Murphy et al., 2004), while others did not find such a
relationship (Roca, Lapuebla & Vidal-Tegedor, 2005). Income has also been
associated with HAART adherence in some studies (Kleeberger et al., 2001; Laniece
et al., 2003) while others have concluded that there was no link between the
adherence and income (Mohammed et al., 2004). Social factors that include family
support have been reported to have an association with adherence (Ammassari et
al., 2002). The fact that an association between adherence and demographic and
economic factors are observed inconsistently, highlights the need for an evaluation
and understanding of how these factors interact among themselves, and how they

interact with other social, clinical and behavioural factors.

Moreover, adherence to medication generally is problematic when therapeutic
regimens are employed for prolonged periods (Godin et al.,, 2005; Mehta et al.,
1997). Adherence to antiretroviral medication is no exception; patients are required
to take several pills each day for an undefined period of time (Godin et al., 2005).
Therefore, not only high levels of adherence at a point in time are required, but also
sustained adherence to antiretroviral medication is critical. This necessitates
evaluating determinants of optimal HAART adherence over time, which gives rise to

1



a longitudinal study, in this case with a binary response defined by whether a patient
is or is not optimally adherent to medication.

In a longitudinal study, individuals are observed over a period of time, and for each
individual, data are collected at multiple time points. That is, the defining feature of a
longitudinal study is that multiple or repeated measurements of the same variables
are made for each individual in the study over a period of time. For example, with
the HAART adherence study, information related to each patient’s adherence is
recorded at every (monthly) visit to the clinic until the patient ceases to visit the clinic.
A key characteristic of longitudinal data is that observations within the same
individual may be correlated, and this motivates most of the statistical methods for
the analysis of longitudinal data (Diggle, et al., 2002; Fitzmaurice, Laird and Ware,
2004). Note that longitudinal data sets differ from time series data sets in that
longitudinal data usually consists of a large number of short series of time points
whereas time series data sets consist of a single, long series of time points (Diggle,
et al., 2002). Longitudinal studies allow the direct study of change over time and the
factors that influence this change, as well as assessing within-subject changes
(Lindsey, 1999; Twisk, 2003; Fitzmaurice et al., 2004). Moreover, longitudinal data
can also provide information about individual change. Statistical estimates of
individual trends can be used to better understand heterogeneity in the population,
the determinants of growth and change at the individual level. Furthermore, in some
longitudinal studies, although one time-varying outcome may be of primary interest,
several related processes may also be measured, and the association between a
primary outcome and another related outcome can reveal a great deal of insight

about the mechanism of behavioural change.

Despite the strengths of a longitudinal study, there are challenges in the analysis that
need to be addressed accordingly. The set of measurements on one subject tends
to be correlated, measurements on the same subject close in time tend to be more
highly correlated than measurements far apart in time, and the variances of
longitudinal data often change with time (Diggle et al., 2002; Fitzmaurice et al.,
2004). These potential patterns of correlation and variation may combine to produce
a complicated covariance structure. Accordingly, this covariance structure must be

taken into account in order to draw reliable conclusions from the data Thus, unlike
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in the classical setting where there exists a single source of variation between
subjects, the heterogeneity between clusters introduces an additional source of
variation and complicates the analysis. That is, the analysis is complicated by the
presence of the within subject correlation among the repeated observations on the
same subject. Therefore, standard regression models may produce invalid results
because two of the parametric assumptions (independent observation and equal
variances) may not be valid. More complex statistical models have to be used to
account for the dependence in the data. This leads to parameter estimation that can
be computationally intensive. Sometimes there is a lack of available computer
software for the application of these more complex statistical models, or the level of
statistical sophistication required of the user is beyond the typical level of the
practitioner (Hedeker and Gibbons, 2006).

Note that if observations are positively correlated, which often occurs with
longitudinal data (Crowder and Hand, 1990; Davis, 2002), then variances of time
independent variables (variables that estimate group effect or between-subject
effect) are underestimated if the data are analyzed as though the observations are
independent. That is the Type | error rate (rejecting the null hypothesis which is true,
i.e. a false positive) is inflated for these variables (Dunlop, 1994). For time-
dependent predictor variables (variables that measure the time effect or within-
subject effect), ignoring positive correlation leads to a variance estimate that is too
large. That is, the Type Il error rate (failing to reject the null hypothesis when it is
false, i.e. a false negative) is inflated for these variables (Dunlop, 1994). Because
the variances of the group effects will be underestimated and the variance of the
time effects will be overestimated if positive correlation is ignored, it is again evident
that correlated outcomes must be accounted for to obtain valid analyses.

Missing data are a common problem in longitudinal studies. Study participants do
not always appear for a scheduled observation or simply leave the study before its
completion. When some observations are missing, data are necessarily unbalanced
over time since not all individuals have the same number of repeated measurements
obtained at a common set of occasions. One of the consequences of lack of
balance and/or missing data is that it requires some care to recover within-individual

change (Fitzmaurice et al., 2004). For instance, when data are missing, especially
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when there is attrition of subjects whose responses are different from those who
remain in the study, then the mean response over time can be misleading; changes
over time may reflect the pattern of missingness or attrition, and not within-individual
change. Thus with missing data, one will need to examine assumptions about the
reasons for missingness and the appropriateness of the analysis to determine the
validity inferences.  Also the data may be unbalanced due to mistimed
measurements, as a result, models used for analysis must be able to handle data

which are unbalanced.

One other thing to consider is that the longitudinal trajectories of observed data may
be very complex especially when dealing with practical applications. Although the
parametric regression models provide a powerful tool for modeling the relationship
between a response variable and the covariates in longitudinal studies, they suffer
from inflexibility in modeling complicated relationships between the response and
covariates in various applications of practical longitudinal data. Consequently, semi-
parametric or nonparametric statistical models become an attractive alternative for
many applications. However, the presence of the within-subject correlation among
repeated measures over time presents major challenges in developing

nonparametric regression methods for longitudinal data.

Although many approaches to the analysis of longitudinal data have been studied,
most are restricted to the setting in which the response variable is normally
distributed. Methods for continuous normal data are the best developed and the
linear mixed model (Laird and Ware, 1982) has played a prominent role in extending
the general linear model to handle correlated continuous data. Many of the earlier
linear models for analysis of longitudinal data were based on the analysis of variance
(ANOVA) techniques (Fitzmaurice et al., 2004; Longford, 1993). These included the
univariate ‘Mixed Model’ ANOVA (univariate repeated-measures ANOVA) and the
Multivariate Analysis of Variance (MANOVA) for repeated measures. These
methods had drawbacks that restricted their effectiveness in many applications. The
univariate repeated measures ANOVA assumes a compound symmetry form for the
covariance structure, i.e. that variances are constant across time and the correlation
between any pair of measurements is the same regardless of the time interval

between measurements. Repeated measures ANOVA also assume sphericity,
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which is a more general form of compound symmetry. It relates to the equality of the
variances of the differences between the levels of the repeated measures factor
(Anderson, 1958) and Mauchly’s test is commonly used to test this assumption.
Moreover, measurements should be made at a common set of occasions for all
individuals, all covariates must be discrete factors and data must be complete. Even
though the repeated MANOVA does not make restrictive assumptions on the
covariance among the longitudinal responses on the same individual, it cannot be
used when the design is unbalanced over time (Hedeker and Gibbons, 2006). Both
these procedures focus on the estimation of group trends over time but provide little
help in understanding how specific individuals change over time (Hedeker and
Gibbons, 2006).

Due to the above mentioned limitations and other reasons, linear mixed models have
recently provided an alternative for analysis of longitudinal data. With these models,
the inclusion of random subject effects in the model account for the influence on
individuals on their repeated observations. In addition, linear mixed models are even
more appealing in the analysis of longitudinal data because individuals are not
assumed to be measured on the same number of time-points; as a result, individuals
with incomplete data across time are included in the analysis. Again, since time is
treated as a continuous variable, individuals do not have to be measured at the
same time-points. Both time-invariant and time-varying covariates can be included
in the model (Hedeker and Gibbons, 2006). Owing to the elegant properties of the
multivariate normal distribution, linear mixed models’ theory and implementation are
greatly simplified. Software programs, such as SAS use the procedure MIXED
(Littell et al., 2006) to fit this kind of model.

One other attractive feature of mixed models is that they have a close connection
with smoothing splines. Because linear mixed models are so well developed,
researchers have exploited the connection with splines by incorporating a
nonparametric time function in linear mixed models (Zeger and Diggle, 1994; Zhang

et al., 1998; Verbyla et al., 1999) to capture more complex longitudinal trajectories.

In contrast, when the longitudinal response is discrete (e.g. binary), the issue that

arises is the lack of discrete analogue to the multivariate normal distribution.
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Complete specification of the joint distribution of the response vector becomes more
problematic and fully likelihood-based methods are generally awkward. Also
modeling time non-parametrically for non-Gaussian outcomes has been a challenge.
Consequently, the main of objective of this study is to critically assess the binary
longitudinal methodologies and apply these methods to identify the causal factors for
optimal HAART adherence among HIV positive adults who are on treatment.
Specifically, the study seeks to survey statistical methods for longitudinal binary
responses with a view to highlighting issues that arise at implementation and employ
these methods to determine predictors of long-term optimal HAART adherence, and
assess whether factors affecting baseline adherence also influence long-term
HAART adherence.

Since many longitudinal measurements in health sciences and other fields that
include social sciences are discrete (binary, count etc), and unsuitable for linear
modeling, the results from this study can assist data analysts in choosing alternative
appropriate models that are within reach. Moreover, the use of most statistical
models is usually illustrated using simple and ‘convenient’ datasets, e.g. balanced
data with a small number of subjects and a few covariates. In practice, researchers
face ‘messy’ data that have a large number of subjects together with a large number
of covariates (to control for potential confounders) in addition to unbalancedness,
irregularly spaced observations and missing values. In such instances, the choice of
the statistical procedure as well as its implementation may be far from obvious.
Demonstrating analyses and implementation of the longitudinal statistical methods
for binary data using practical data with all features mentioned will highlight important
issues that a data analyst should be aware off. To this end, the results of our study
can help clarify the substantive questions which data analysts can address with each
approach while at the same time being fully conscious of the merits and limitations of
each method of analysis.

With application of the surveyed statistical methods for analysis of longitudinal binary
data, predictors of HAART adherence will be identified. The knowledge and
understanding of such factors is particularly important if increased enrolments to
treatment are to be maintained in therapy, as well as aiding in the avoidance of

starting patients with the 2" line regimen, which is not affordable to governments in
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developing countries. In addition, the findings will be useful in developing tools to
assist clinicians in the identification of factors related to poor adherence prior to
initiating treatment as well as during therapy. That is, HAART programmes would
need to take the identified factors into account in the design and implementation of
short- and long-term adherence strategies. The findings can also help identify
specific groups or sub-populations of patients at risk of less than optimal adherence

and they can be targeted with long-term adherence boosting sessions.

The rest of the thesis is organized as follows. In Chapter 2, we give a full description
of the HAART adherence data. We further undertake the exploratory work where
adherence trend and data dependence are assessed. Moreover, the issue of
missing data is dealt with in detail. Chapter 3 presents the exploration of factors
affecting initial optimal HAART adherence using the generalized linear models. In
Chapter 4, we present marginal models for longitudinal data where the emphasis is
on the generalized estimating equations (GEEs) method and application of this
method to optimal HAART adherence. Chapter 5 presents a comprehensive review
of the generalized linear mixed models (GLMMSs) as a special case of random effects
models. Moreover, GLMMs are fitted to the HAART adherence data to explore
subject specific effects of long-term optimal adherence. In Chapter 6, a review and
fitting of transition models to HAART adherence data is presented. Review and
fitting of joint modeling of adherence and visit interval is presented in Chapter 7.
Chapter 8 presents the semi-parametric approaches to longitudinal data, specifically
generalized additive mixed models (GAMMSs). Finally, in Chapter 9, the discussions
and conclusions as well as implications and avenues for future research are

presented.



Chapter 2
The data

The data used in this study are secondary data from the Centre for the AIDS
Programme of Research in South Africa (CAPRISA). CAPRISA started a HAART
rollout programme in 2004. The CAPRISA AIDS Treatment (CAT) Programme offers
HIV care services at two sites in KwaZulu-Natal, South Africa, namely the eThekwini
Clinical Research site located adjacent to the Prince Cyril Zulu Communicable
Disease Clinic in the center of Durban, and the Vulindlela Clinical Research site,
located in a rural area outside the town of Howick, approximately 95 km from
Durban. The programme started providing free HAART through a President’s
Emergency Plan for AIDS Relief (PEPfAR) grant at a time when access to HAART in
the public sector was limited. Adult patients with a CD4+ count below 200 cells/pL,
or patients with World Health Organisation (WHO) stage 4 of the HIV disease, were
eligible for HAART initiation.

During the first month, patients visited the clinic once a week for the first two weeks
and again two weeks later for intensive clinical monitoring. Thereafter, patients
visited the treatment sites monthly to collect their treatment and to undergo a clinical
examination. Prior to HAART initiation, all patients received three sessions of
adherence education, motivation and preparedness training. All patients were on
regimens containing two nucleoside reverse transcriptase inhibitors and one non-
nucleoside reverse transcriptase inhibitor. Patients in the urban clinic received
Efavirenz (EFV), Lamivudine (3TC) and Didanosine (ddl or ddI-EC). This regimen
was chosen as it can be co-administered with anti-tuberculosis (TB) medication. The
regimen in the rural clinic consisted of EFV, 3TC and Stavudine (d4T), which is
recommended according to the South African HIV treatment guidelines (South
African National Department of Health, 2004). A few pregnant patients (3.8%)
received Nevirapine (NVP) rather than EFV.

Patient information was recorded on data collection sheets at the clinics; it

underwent two levels of quality control, and was faxed to a central data management



centre. Approval for the data collection and analysis was obtained from the
University of KwaZulu-Natal Biomedical Research Ethics Committee.

The variables used for analyses in this study include optimal HAART adherence
status of the patients, which is the outcome variable. Optimal adherence has been
measured using the pill counts data. Adherence at every visit for all the drugs is
calculated as the total number of drugs dispensed, minus the total number of drugs
returned, divided by the total number of days between clinic visits, times the daily
dose. Patients are then classified as optimally adherent if they took at least 95% of
the prescribed drugs in a given regimen (Paterson et al., 2000), otherwise they are
considered to be non-adherent. At each visit, the response variable is binary,
indicating whether a patient is optimally adherent or not.

Independent covariates comprise of baseline demographic and socio-economic
variables that include age (in years); gender (1 = female, 0 = male); educational
status (2 = no schooling, 1 = primary and 0 = secondary and higher); treatment site
(1 = urban, 0 = rural); whether or not a patient lived with a partner (1 = living with a
partner, 0 = not living with a partner); whether or not the patient was the source of
household income (1 = source of household income, 0 = not a source of household
income); access to tap water (1 = yes, 0 = no) and electricity (1 = yes, 0 = no), and
whether a patient owned a cell phone (1 = yes, 0 = no). Other variables recorded at
baseline and included in the analysis were World Health Organisation (WHO) HIV
stages (3 = stage 1, 2 = stage 2, 1 = stage 3 and 0 = stage 4), CD4+ cell count
(cells/uL), and patient’s weight (in kilograms). Patients were asked why they did an
HIV test and their responses included being unwell, testing for no specific reason,
testing because a partner died of HIV, being ill and unfaithfulness. Reason for
testing was therefore classified as follows: (2 = possible exposure to HIV, 1 = no

specific reason and 0 = unwell).

Since adherence has been monitored very closely after initiation of HAART,
compared to subsequent visits, the baseline optimal adherence (first month optimal
adherence) was treated as a covariate in the longitudinal analyses. One of the
advantages of including a baseline response as a covariate in a longitudinal study is

that it permits the use of each subject as their own control to assess the effect of

9



treatment over time (Milliken and Johnson, 2002; Littell et al., 2006). Consequently,
baseline adherence was classified as follows: (1 = optimally adherent at baseline; 0

= not optimally adherent at baseline).

Time-varying covariates included time, which was measured as a continuous
variable representing monthly follow-up visits to the treatment site. The variable time
starts with the value 1 for the first follow-up visit, 2 for the second visit, up to 17 for
the seventeenth follow-up visit. Weight (kg) was measured at every follow-up visit

and was thus modeled as a time-varying covariate.

2.1. Baseline characteristics of study population

The data analyzed consisted of a retrospective review of patients’ records in the CAT
programme between June 2004 and September 2006. Only patients with pill count
data for the initial visit, and at least one other clinic visit for the defined study period,
were included in the analysis. During the said period, 1,184 patients were enrolled in
the CAT programme, 411 (35%) at the urban site, and 773 (65%) at the rural site. A
total of 688 patients, 369 (54%) from the urban site and 319 (46%) from the rural site
were included in the analysis. There were no differences between those included in
the study and those excluded with regard to age (mean: included=34.1 years,
excluded=34.0 years; t-value=0.13, p=0.90), gender (males: included=30.0%,
excluded=31.8%; chi-square-value = 0.43, p=0.51) and baseline CD4+ cell count
(mean: included=107.6 cells/uL, excluded=111.5 cells/uL; t-value=0.72, p=0.47).
Furthermore, power calculations were performed for the available sample size (688
patients) to detect a difference in proportion of adherent patients between the first
follow-up visit and the final follow-up visit of 0.27. With a sample size of 600, this
gave more than 90% power when a test of proportions was done. The baseline
socio-demographic and clinical characteristics of patients included in the analysis are
presented in Table 2.1.
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Table 2. 1: Baseline socio-demographic and clinical characteristics of the HAART patients (n
= 688)

Characteristic Median (Q1-Q3) n (%)
Age (years) 32.5 (28-38)
Gender:
Men 206 (30%)
Women 482 (70%)
Education:
No schooling 74 (12%)
Primary school 116 (19%)
Secondary school or higher 429 (69%)
Treatment site:
Urban 369 (54%)
Rural 319 (46%)
Living with or without a partner:
Living with a partner 168 (25%)
Living without a partner 510 (75%)
Contribution to household income:
Source of income 186 (28%)
Not source of income 489 (72%)
WHO stage of HIV disease:
Stage 1 71 (10%)
Stage 2 121 (16%)
Stage 3 438 (64%)
Stage 4 58 (8%)
Baseline CD4+ count (cells/pL) 108 (52-159)
Baseline weight (kg) 60 (53-69)
Reason for taking HIV test:
Unwell 374 (56%)
No specific reason 170 (26%)
Possible exposure to HIV 121 (18%)
Household access to tap water:
Yes 611 (91%)
No 59 (9%)
Household access to electricity:
Yes 607 (91%)
No 63 (9%)
Cell phone ownership:
Yes 281 (42%)
No 389 (58%)
First-month optimal HAART adherence:
Optimally adherent 546 (79%)
Not optimally adherent 142 (21%)

Table 2.1 shows that the median age of patients was 32.5 years (lower (Q1) and
upper (Q3) quartiles were 28 and 38 years respectively), 30% were male and 75%
were not living with a partner. Over two thirds of the patients had attained secondary
or higher level of education (69%), and 28% of patients were classified as sources of
their household income. Over 90% of the patients stayed in households that had
access to tap water and electricity, while 42% of the households had cell phones. At
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enrolment, the median weight was 60kg (Q1 and Q3 were 53 and 69kgs
respectively), median CD4+ cell count was 108 cells/uL (Q1 and Q3 were 52 and
159 cells/ pL respectively) and 64% of patients were classified as WHO stage 3.
Over half of the patients (56%) reported to have taken an HIV test as they were not
well, while 26% reported no specific reason for testing and 18% took an HIV test as
they were concerned that they had been exposed to HIV. In the initial month of
treatment, 79% of the patients were at least 95% adherent to HAART.

2.2 Exploring HAART adherence over time
The optimal HAART adherence and non-adherence rates over the follow-up visits

are presented in Figure 2.1.

Figure 2. 1: Optimal HAART adherence and non-adherence rates over the follow-up visits
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It is indicated that in general, optimal adherence has been increasing over the follow-
up visits. To this end, Figure 2.1 shows that the proportion of patients who were at
least 95% adherent (optimally adherent) to HAART increased from 58% at the first
follow-up visit to 86% at the last follow-up visit. This observed trend of optimal
adherence over the follow-up visits was tested using the Cochran-Armitage test for
trend (Agresti, 2002) and the results provide a strong evidence of an increasing

optimal HAART adherence rate over time (Z-statistic=17.52 with p-value<0.0001).
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Moreover, Figure 2.2 presents optimal adherence over the follow-up visits classified
by some of the explanatory variables that include treatment site, gender, cell phone
ownership, living with/without a partner as well as educational attainment and
reasons for taking an HIV test. We again observe an increasing trend in optimal
adherence over time although the rate of increase seems to differ for the different

groups.
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Figure 2. 2:

Optimal adherence over time classified by some of the explanatory variables

(a) Optimal adherence classified by treatment site

(b) Optimal adherence classified by gender
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(c) Optimal adherence classified by cell phone ownership

(d) Optimal adherence classified by partner
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Optimal adherence classified by education status

(f) Optimal adherence classified by reason for testing
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2.3. Exploring the dependence of HAART adherence data

As was mentioned earlier, in a longitudinal study, repeated responses are obtained
on the same individuals over time; as a result, responses from the same individual
tend to be correlated. Although in most longitudinal studies, the main interest is in
the changes in the mean response over time and how these changes depend upon
covariates, correlation among the repeated responses cannot be ignored. Failure to
adequately account for the correlation among repeated measures leads to
misleading inferences. For instance, suppose we are to estimate the change in the
mean response over time considering only two responses from the same individual.
The estimate of the change in the mean response over time is given by

8=, ~ iy,

where
N 1 &
=y 2

In order to obtain the standard errors, we need to estimate the variability of this
estimate of change in the mean response and is given by
var(5)= var{%jzl(yiz - yil)} = %(0'12 +0'22 —20'12).

The inclusion of the last term accounts for the correlation among the two repeated
measures. If we assume that the two repeated measures are uncorrelated, when in
fact, there is a strong positive correlation among them, we would obtain incorrect
estimates of the variance. This would lead to overestimation of the variability of the
estimate of change in the mean response. This shows that in general, failure to
account for the correlation among repeated measures, specifically for contrasts,
leads to incorrect standard errors, that is, standard errors that are too large. With
incorrect standard errors, test statistics and p-values will also be incorrect, which
leads to incorrect inferences about the regression parameters (Fitzmaurice et al.,
2004; Weiss, 2005). Thus, accounting for the correlation among the repeated
measures increases the efficiency or precision with which the regression parameters
can be estimated. It is therefore important to model the covariance structure as
accurately as possible. Accordingly, exploring dependence among outcomes in the
same subject might be a useful guide for selecting an appropriate covariance
structure to be used for further analysis. In order to explore the degree of
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association in the longitudinal data, the effects of explanatory variables are usually

removed by first regressing the response, y,, on the explanatory variables, x, to

ij J

obtain residuals, r, =y, —x, 3 (Diggle et al., 2002).

With continuous outcomes, association can be explored in terms of correlations

using a scatterplot matrix in which r; is plotted against r, forall j<k=1,...,n when

observations are made at equally spaced times (Diggle et al., 2002). Alternatively, a
sample variogram can be used to describe the association among repeated values
for unequally spaced observations (Diggle et al., 2002). In this case, the residuals
are extracted from the model for all points i; the observed half-squared differences

between pairs of residuals from the relevant regression model at time ; and k
(where j < k) are calculated

1

Vik = E(rij T )2

and the corresponding time intervals are obtained as

Uy =1 =Ly

For a binary outcome, a correlation-based approach is not feasible as the range of
correlation is constrained by the means. However, association between binary
variables can be modelled using the pairwise odds ratio ¥, which are not
constrained (Diggle et al., 2002; Fitzmaurice et al., 2004). For two binary outcomes,

say y, and y,, the odds ratio is given by

‘P(y y )=|:P1‘(y1 =1y, =1)Pr(y1 =0,y, =0):|.
oo Pr(ylzl,yz=O)Pr(y1=0,y2=1)

The advantage of the odds ratio is that they are strictly positive and unbounded. The
logarithm of the odds ratio is taken to yield the entire real line as the range of

possible outcomes. For a longitudinal sequence y,,,...,y, With measurement times
1.1, , Heagerty and Zeger (1998) proposed using the marginal pairwise log-odds

ratio to describe the serial dependence for binary responses where they define a

‘Lorelogram’ as
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LOR@ﬁJ%)ZIqudyUﬂ%k)
To explore dependence in the adherence data, the crude odds ratios from 2x2 tables
with different time lags were calculated and the results are presented in Figure 2.3.
The pattern of the crude odds ratio (Figure 2.3) suggests a decreasing association

between measurements as the time separation increases.

Figure 2. 3:  Crude odds ratios from 2x2 tables for all patients
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Moreover, a Lorelogram was drawn using the adherence data and is presented in
Figure 2.4. The x-axis (index) is the time lag between two measurements. From
Figure 2.4, the log odds ratio also appears to decrease with increasing lag between
repeated responses. Thus the First-Order Autoregressive (AR-1) correlation
structure may be appropriate for describing the relationship between adherence
scores at different visits.
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Figure 2. 4:  Lorelogram for the optimal HAART adherence data over the follow-up visits
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2.4 Missingness

The problem of dealing with missing values is a challenge in any analysis of data,
and is almost always present in the analysis of longitudinal data. Although
investigators may devote substantial effort to minimize the number of missing values,
some amount of missing data is inevitable when studies are designed to collect data
on every individual in the sample at each time of follow-up period. Missing data are
characterized by missing data patterns and mechanisms. There are different
missingness patterns and they can be classified into three categories, namely,
monotone (dropout), intermittent and mixed. Monotone (dropout) missingness
occurs when the data are available at every assessment until a time the patient
drops out and provides no further assessment. This is the most frequently
encountered pattern of missingness in longitudinal data (Fitzmaurice et al., 2004).
Intermittent missingness occurs if there is a missing observation in between
assessments. A mixed pattern occurs when a period of intermittent missingness is

followed by monotone missingness.
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With regard to adherence data, the number of follow-up visits differed per patient,
because some patients started treatment earlier and therefore had more visits.
Further, the adherence data like most repeated measurements data had missing
data. Figure 2.5 indicates that the missingness pattern of adherence was
characterized by dropout, i.e where a patient never came back to the clinic for the

monthly review (at least in the period of study).

Figure 2. 5: Total number of patients expected at every visit classified by the
number of patients who actually attended the clinic (non-dropouts) and
those who dropped out
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It is shown in Figure 2.5 that the proportion of patients who dropped out increased
gradually over the follow-up period. That is, the proportion of dropout increased from

8% at follow-up visit 2 to 24% in the 17" follow-up visit.

Fitzmaurice et al., (2004) argue that missing data have three important implications
for longitudinal analysis. First, when longitudinal data are missing, the data set is
necessarily unbalanced over time since not all individuals have the same number of
repeated measurements at a common set of occasions. As a result, methods of
analysis that require balanced data cannot be used when data are missing. Second,
when data are missing, there is also some loss of information. That is, missing data

cause a reduction in efficiency or drop in the precision with which changes in the
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mean response over time can be estimated. Third, under certain circumstances,
missing data can introduce bias and thereby led to misleading inferences about
changes in the mean response. Consequently, the reasons for any missing data,
often referred to as the ‘missingness mechanism’, must be carefully considered. In
fact, reasons for missing data may or may not be related to the outcome of interest.
When it is unrelated to the outcome of interest, the impact of missing data is
relatively mild and does not complicate the analysis. When it is related to the
outcome, greater care is required because there is potential for bias when individuals

with missing data differ in important ways from those with complete data.

The missing data mechanism characterizes the reasons for missing data. That is,
the mechanism addresses the basic question of why the data are missing. In order
to obtain valid inferences from incomplete longitudinal data, the nature of missing
data mechanism should be considered. Since missing data mechanism is not under
the control of the investigators and is often not well understood, assumptions are
made about the missing data mechanism and the validity of the analysis depends on
whether these assumptions hold (Fitzmaurice et al., 2004; Hedeker and Gibbons,
2006). Rubin (1976) and Little and Rubin (2002) give important distinctions between
different missing data mechanisms. These are missing completely at random
(MCAR), which refers to missingness if the missing values are independent of both
unobserved and observed data. There is also missing at random (MAR) and occurs
if conditional on observed data, the missingness is independent of the unobserved
measurements. The other mechanism of missingness is referred to as missing not
at random (MNAR). In this case the missing data process is neither MCAR nor MAR

but is non-random.

Looking at these three missing data mechanisms further, assume that for subject i

in the study, a sequence of measurements y, is designed to be measured at

occasions j=1,...,n,. Then the outcomes can be grouped into a vector

y, = (y,.l,...,ymi) . Furthermore, for each occasion j, the missing data indicators can

be defined as follows:
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r; =

{1 if y, is observed

0 otherwise
(2.1).

The indicators can also be grouped into a vector r, which is of the same length as
y,. The vector y, can be partitioned into two sub-vectors such that y/ is the vector

containing those y, for which r, =1 and y;" contains the remaining components.

When the data are incomplete, statistical modeling begins by considering the full
data density
f(yi’ri IX,"Z,"W,'»B’\V)!

where X., Z, and W, are design matrices for fixed effects, random effects and

1

missing data process respectively; and 6 and y are vectors that parameterize the

’

joint distribution. Let 8 =(8",a’) (fixed effects and covariance parameters) and v

describe the measurement and missingness process respectively.

The classification of missingness mechanism by Rubin (1976) and Little and Rubin
(2002) is based on the selection modeling framework where factorization equals
fly,r1X,,Z,,W,,0,y)=f(y,1X,,Z,,0)f(r,ly,,W,,y) (2.2).
The first factor is the marginal density of the measurement process and the second
one is the density of the missingness process, conditional on the outcomes. The
second factor describes one’s self-selection mechanism to either continue or leave
the study. The differences in the missing data mechanism is specified through the
second factor of (2.2), that is
£ Ty, Wow)= £l 1yly! W),
Under MCAR mechanism, the probability of an observation being missing is
independent of responses:
flely, Wow)=f(r 1 W, v),
and therefore (2.2) simplifies to
Fyor X2, W, 0,y)= £y, 1X,,Z,,0)f(r, I W,,y),
implying that both components are independent. The implication is that the joint

distribution of y; and r, becomes
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Flyer 1X,,2,,W..0,y)= £y’ 1X,.Z.,0)f(r, IW,,y).
In this case, the processes of generating missing values can be ignored regardless
of whether the data are analyzed using a frequentist, likelihood or Bayesian

procedure. It should be noted that the above definition is conditional on covariates.

Under MAR mechanism, the probability of an observation being missing is
conditionally independent of the unobserved outcomes, given the values of the

observed outcomes:
£l Ty Wow)= £l 1y Wow).
Again, the joint distribution of the observed data can be partitioned:
For X2, W 0,w) = £y, 1X,,Z,,0)F (x, 1y), W, w),
and hence at the observed data level:
Py 1 X2 W 0w)= £y 1X0Z0)7 1y Waw).

In the MNAR case, neither MCAR nor MAR holds. Under the MNAR, the probability
of a measurement being missing depends on unobserved outcomes. The joint

distribution of measurements and the missingness process is written as
Fyi e 1 X, Z, W 0.y)=[ £y, 1X,.Z,.0)£ (r, 1y, W,.y)dy,

and no simplification of this joint distribution is possible.

Implications for analysis of longitudinal data when the missing data mechanism is
MCAR, is that individuals with missing data are a random subset of the sample. In
this case the observed values of the responses are a random subsample of all
values of the responses and no bias will arise with almost any method of analysis of
the data (Fitzmaurice et al.,, 2004). When the missing data mechanism is MAR,
individuals with missing data are no longer a random subset of the sample.
Likewise, the observed values are not necessarily a random subsample of all
responses. This implies that analysis restricted to data from completers will yield
biased estimates. In fact, when data are MAR, not MCAR, complete case methods
yield biased estimates. In contrast, likelihood-based methods that correctly specify
the entire distribution of the responses yield valid estimates when missing data are
MAR. Molenberghs and Verbeke (2005) show through consideration of the
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likelihood that under MAR, much of the missing value problem tends to disappear.

That is, the full data likelihood contribution for unit i takes the form:
LOylX,Z, W,y,r)e< fly,r1X,,Z,,W,.0,y).
Since inference has to be based on what is observed, the full data likelihood L
needs to be replaced by the observed data likelihood L :
LO.wIX,,Z W,y .r)e< fly'.r, 1X,,Z,,W..0,y),
with
Flyim10.0w)=[fy,.x 1X,.Z,. W,.0,y)y”

= [ b7y 1X,,2,,0)F (6 1yl Wow iy
Under an MAR process, we obtain
Fre10.w)=[flyryr 1X,2,,0)7 (e 1y, W, why!

:f(yz(') |Xi’Zi’9)f(ri |Y?’Wi’\|’)'
The likelihood factors into two components of the same functional form as the

general factorization (2.2) of the complete data. If further, 8 and y are disjoint in

the sense that the parameter space of the full vector (8”,y’) is the product of the
parameter spaces of 6 and vy, then inferences can be based solely on the marginal

observed data density. This requirement is referred to as separability condition. In
essence, under the assumption of MAR and the mild separability condition, likelihood
based analysis is valid, provided all available data are analyzed (Molenberghs and
Kenward, 2007). On the other hand, since the standard GEE is not a likelihood-
based method, the MAR mechanism will not generally hold for the observed data,
compromising the validity of the analysis. Nonetheless, Robins, Rotnitzky and Zhao
(1995) have proposed a class of weighted estimating equations to allow for MAR,
extending GEE. The basic idea of weighted generalized estimating equations
(WGEE) is to weight each subject’s contribution in the GEEs by the inverse
probability that a subject drops out at the time he dropped out. For more details refer
to Molenberghs and Verbeke, 2005; Jansen et al., 2006). Furthermore, when
missing data are NMAR, multiple imputation techniques with pattern mixture models
can be used, among others.

23



Testing MCAR assumption

Since any method of analysis will yield valid inferences when missing data are
MCAR, it would be quite useful to test the validity of MCAR assumption in HAART
adherence data. The distinction between MCAR and MAR is that with MCAR,

missingness cannot depend on the observed values of the dependent variable, y?
but it can with MAR. As a result, tests of whether MCAR is reasonable or not can

therefore be based on analyses involving y; .

There have been a number of tests proposed to test the MCAR assumption when a
missingness pattern is characterized by dropout and these include tests proposed by
Little (1988) and Diggle (1989). The basic idea behind these tests is that if dropout
happens completely at random at each time point, the group of subjects who dropout
represent the random sample selected from the set of all subjects still in the study at
that time. To illustrate these tests, consider an example with two data points for
each subject and all subjects have data at time 1, but some are missing at time 2.
Let us define r, =1 for subjects with data at both time-points and r, =0 for those that
only have data for the first time-point. Then a simple t-test can be used to compare
the y,, means between the two groups (that is, r, =1 versus r, =0). If the missing
data are MCAR, the means for the two groups will not differ. More generally,
because MCAR allows missingness to depend on covariates, the following
regression can be performed (Hedeker and Gibbons, 2006)
=B, +Br +B.x, +€,
where £, is the vector of regression coefficients for the set of covariates included in
x,. We can also form interactions of the dropout variable with the covariates to yield
v, =B+ B+ B.X, + B, (r; Xx,) + €,

where S, is the vector of regression coefficients for the interactions of dropout with
covariates. In this model MCAR would specify that g, = 5, =0, which means that

dropout does not depend on the observed response.

Ridout (1991) noted that it is helpful to turn this question around and to specifically
model dropout in terms of logistic regression. The model could be given as
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P(r, =0)
IOg m =, +ay, +a,X,; +6¥3(in XXi),
where «, and «, represent vectors of regression coefficients for the set of
covariates x, and their interaction with y,. MCAR would specify that a, =a, =0.

This logistic regression model can be generalized to more than two time points.

Assume that dropout probability at occasion j depends on the previous outcome

y;1 inplace of y, . This leads to the following model:

P(r.=0ly.
10( (r; =01y,

I_P(rzj =0|yl)J ¢0 ¢1ylj_l ¢2 i ¢3(yl]—l z)

where the missing data indicators for each j occasion has been defined in (2.1) as

T

_|1if y; isobserved
|0 otherwise

The probability P(r, =0ly,) is the conditional probability of subject i dropping out at
time j. Again, here ¢, and ¢, represent vectors of regression coefficients for the
set of covariates x; and their interaction with y, . Here ¢, = ¢, =0 indicates MCAR,

i.e. that dropout does not depend on the previous outcome.

In order to assess whether dropout depends on the previous outcome for adherence
data, a logistic regression model for the dropout indicator proposed by Ridout (1991)
and illustrated by Hedeker and Gibbons (2006) is adapted. The logistic regression
model is built in terms of the previous response adjusting for baseline age and
gender as well as treatment site and time. That is, we consider a dropout model at
occasion j as follows:

. { P(r, =01y,)

1-Plr, =01y,

):l =p, +ﬂlyzj—l +B,A + B,G, + B,S, +ﬁ5tij’

Lif y, is observed

0 otherwise

with 7, ={

where y, , is the previous outcome at which the js» measurement is taken for the
ith subject, A, is the baseline age for subject i, G, is the indicator for gender (male,

female) for subject i, S, is the indicator of the treatment site (urban, rural) for subject
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i and ¢, is the time point at which the jth measurement is taken for the izh subject.

MCAR would dictate that 5, =0.

In addition to all the main effects in the model, 2-way interactions of the previous
outcome with the other covariates were added to the model one at a time and their
significance assessed. None of the interactions were significant at 5% level and

therefore we present the results for the main effects only in Table 2.2.

Table 2. 2: Parameter estimates (standard errors) for a logistic
regression model to describe dropout.

Standard
Parameter Estimate error p-values

Intercept -3.480 0.446 <.0001
Previous outcome (ref=not adherent)

Adherent 0.0664 0.208 0.7482
Gender (ref=female)

Male -0.0366 0.199 0.8543
Treatment site (ref=rural)

Urban 0.0733 0.182 0.6867
Age -0.0059 0.011 0.6028
Time -0.0398 0.021 0.0577

The results in Table 2.2 show that after controlling for gender, site, age and time,
previous outcome is not significant. This implies that there is no evidence against
MCAR in favor of MAR. It thus, can be concluded that MCAR assumption holds for
missingness in adherence data, and as a result, any method of analysis for
longitudinal data will yield valid estimates.

2.5 Summary

The exploratory data analysis suggests that overall, optimal HAART adherence is
increasing over time, even though the rate at which it is increasing might be different
for the different sub-populations. Moreover, the exploration of the dependence
structure suggests that AR-1 might be the appropriate covariance structure for these
data. Further, it has also been established that the adherence data is characterized
by dropout and the evaluation of the impact of dropout indicated that the data are
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MCAR. This result paves the way for longitudinal models that will be used in
subsequent chapters for analyses of adherence data.

Since the commonly used longitudinal methods for discrete (e.g binary) data are a
direct extension of generalized linear models for independent observations to the
context of correlated data, a review of these models is provided in the next chapter
to lay a foundation for longitudinal models to be considered in later chapters. At the
same time, these models will be fitted to the adherence data to identify factors that
affect initial (one month after initiation of HAART) optimal HAART adherence, as the
need for strict HAART adherence is required from the onset of treatment in order to

maintain prolonged clinical benefits.
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Chapter 3

Initial adherence assessment using generalized linear
models

3.1 Introduction
The generalized linear model (GLM) is a generalization of the linear model
(Nelder and Wedderburn, 1972; McCullagh and Nelder, 1989). In its simplest
form, a linear model specifies the linear relationship between a response variable
and a set of predictor (independent) variables. Consider a linear model of the
form

y=Xf+e¢, (3.1)
where y is an (nx1) vector of values of the response variable, X is an (nx p)
matrix of the known explanatory variables generally including a column of ones, g is
a (px1) vector of unknown parameters to be estimated and & is an nx1 vector of
independent variables assumed to be normally distributed with mean zero and

constant variance o’I. Despite the fact that linear models (3.1) have a number of
advantages, including computational simplicity, they make a set of restrictive
assumptions. These models assume that (a) observations are independent, (b) the
mean of the observations is a linear function of explanatory variables and
parameters, and (c) the observations are normally distributed with a constant
variance (Jiang, 2007). GLMs relax the assumptions (b) and (c). These models
allow response variables that have distributions other than the normal distribution;
they may even be categorical rather than continuous (Lindsey, 1997; Fahrmeir and
Tutz, 1994). In fact, one of the advances in statistical theory has been the
recognition that many of the ’nice’ properties of the normal distribution are shared by
a wider class of distributions known as the exponential family of distributions
(Dobson, 2001). Thus GLMs involve a variety of distributions selected from the
exponential family of distributions. In addition, the variance of observations is no
longer constant but is a function of the mean. Moreover, the relationship between
the mean of the observations and explanatory variables need not be of the simple
linear form in GLMs. They involve the transformation of the mean, through what is

called a ‘link function’, linking the regression part to the mean of one of the
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distributions from the exponential family (Nelder and Wedderburn, 1972; McCullagh
and Nelder, 1989).

Since one of the objectives is to explore determinants of HAART adherence after the
first month (baseline) of initiation into therapy, data analysis using GLMs seems to
be appropriate. This is because we are not only faced with a binary outcome but we
also have one datum point at baseline (response) for each patient (cross-sectional

data) where we assume that their responses are independent.

3.2 Generalized linear models
A complete specification of a generalized linear model y,,...,y, involves three

components, namely:

a. the distribution (belonging to the exponential family of distributions) of the
responses,

b. the systematic component, as well as

C. link function

and they are discussed below.

a) The exponential family of distributions

A probability distribution is said to be a member of the exponential family if its

probability density function can be written in the form

1= 10100 =expf 2 (.0 2)

where w() and c(.,) are specific functions; & and ¢ are unknown parameters

commonly known as a natural location parameter and a scale or dispersion

parameter respectively. The mean and variance of this distribution is derived by

making use of the property jf(y 16,¢)dy =1 and taking the first- and second-order

derivatives with respect to 8 from both sides of the equation (3.2) so that we obtain
[b-v®lrv16.9)d =0,

I{¢“ y-w' @ - l/f”(ﬁ)}f( y16,¢)dy=0.
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It therefore follows that the mean, u=E(y) is equal to ¥’'(d) and the variance
o’ =var(y) is given by ¢y”(6). This implies that in general, the mean and variance

are related through 02:¢yf”[y/"1(ﬂ)]:¢v(ﬂ) for an appropriate function ov(u)

known as the variance function (Molenberghs and Verbeke, 2005).

In some cases, a quasi-likelihood approach is used. Even though we have seen that
the relation between the mean and variance immediately follows from the density
(8.2), in the quasi-likelihood perspective, one starts from specifying a mean and a
variance function,
E(y)=u,
var(y) = gu(u) .

The variance function v(u) is chosen in accordance with a particular member of the
exponential family.  Since the distributional assumptions are not specified,
parameters cannot be estimated using maximum likelihood principles. Instead, a set
of estimating equations needs to be specified, the solution of which is referred to as
the quasi-likelihood estimates (Molenberghs and Verbeke, 2005). One such
approach is the method of generalized estimating equations (GEE) which is
discussed in detail in Chapter 4.

b) Systematic component

The systematic component of the generalized linear model specifies the effects of
the explanatory variables, on the mean through a linear predictor. Associated

with each response y, is a vector x; = (x,,x,,,---,x,,)" of values of p explanatory

variables, then the distribution of the response variable y, depends on x, through

the linear predictor 7, where
;= Bix, + Brxi, +"'+ﬂpxip
=2 %B;
i
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and f=(p,...p,) is a vector of fixed but unknown parameters describing the

dependence of y, on x,. This shows that a linear predictor is simply a linear

combination of the unknown regression parameters and the explanatory
variables. It describes how the location of the response distribution changes with
the explanatory variables (McCullagh and Nelder, 1989; Dobson, 2001; Fahrmeir
and Tutz 1994).

c) The link function

For specifying the pattern of dependence of the response variable on the
explanatory variables, GLMs take a suitable transformation of the mean response
and relate the transformed mean response to the explanatory variables. The link

between the distribution of y, and the linear predictor 7, is provided by the link
function g(.) such that, #,=g(u,), i =1, --,n where u, =E(y,), i =1, -, n.
As a result, the dependence of the distribution of the response on the explanatory
variables is given by

g )=n=xp i=1, ..,n.
This shows that the link function describes the relation between ., the mean of
y, and the linear predictor »,. That is, the use of the link function in GLMs allows

the model parameters to be included in the model linearly just as in the ordinary
linear models (Brown and Prescott, 2006; Collett, 2003). Moreover, Fitzmaurice
et al., (2004) show that the primary motivation for considering link functions other
than the identity is to ensure that the linear predictor produces predictions of the
mean response that are within the allowable range. Generally, any function g(.)

can be chosen to link the mean of y, to the linear predictor. However, every

distribution that belongs to the exponential family has a special link function
called the canonical link function. The canonical link function is defined as
g(u,)=0,, where 0, is the natural location parameter in (3.2). Thus, the
canonical link function is that function which transforms the mean to a canonical
location parameter of the exponential family of distributions. Although other links

are possible, the canonical links are the most commonly used in practice.
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3.2.1. Logistic regression for binary data

The logistic regression model is a member of the generalized linear models that are
used to model binary data. Binary data can be specified either as a series of zeros
and ones (Bernoulli form) or aggregated as frequencies of successes out of a certain
number of trials (Binomial form). We will illustrate generalized linear model
formulation and interpretation using the logistic regression model because of its

relevance to HAART adherence data used in this study.

Let y be Bernoulli distributed with success probability P(y =1)= u, then the density

takes the form:

F= CXP(yln( = J+ ln(l—ﬂ)j-
1—pu

This is in the form of (3.2), which follows that the Bernoulli distribution belongs to the

y7i

exponential family with the natural parameter 49:1n1 , scale parameter ¢ =1 and

with mean, E(y)=u and variance function v(u)=u(l—u). The canonical link

function is the logistic or logit link function and this gives the logistic regression

model as follows
) _ uo) o,
logit(u) = log[l—j =X/, (3.3)
—H

where y, ~ Bernoulli(;), x; (i=1,...,n) is the irh row of the covariates matrix X
and B is a vector of unknown parameters associated with X. The logit
transformation ensures that the probabilities lie within the interval (0, 1) for any
values of x’ from —e to . If we solve for u in (3.3), the result is
_ exp(xf)
I+exp(x/f3)’
which indicates the marginal mean as a function of the covariates. The function
exp(.)/1+exp(.)is the inverse link function, that is, the inverse logit. The other link

functions (non-canonical) for binary data not considered here are probit and

complementary log-log functions.
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Next we consider the interpretation of the logistic model coefficients. Let us consider
a model given by

log(ﬁj =B, +Bx. (3.4)

The logistic regression intercept, £, has interpretation as the log odds of success
(y=1) when x=0 and p, represents the logistic regression slope. Suppose a
predictor variable, x is a dichotomous variable taking values of 0 and 1, the logistic
regression coefficient S, associated with x compares the log odds of success when

x =1 to the log odds of success when x=0. Thatis
logit(ulx=1)—logit(u !l x=0)=(B, + B,(1))— (B, + 5,(0) =5, .

Thus exp(f,) has interpretation as the odds ratio of the response for two possible
values of the covariates. This is obtained by converting the log odds model to the
odds model by taking the anti-log of log:“; as follows. The odds that y=1 for x=1
is exp(B,+ B,) and the odds that y=1 for x=0 is exp(5,). So the model is,

odds(y =11x) =exp(f, + B,x) . If we construct a ratio of these odds, we obtain

_odds(x=1) _exp(f8, +5,) _
OR = odds(x =0) B exp(f,) =exp(A)-

That is, the odds ratio (OR) depends only on model parameter f5,. Note that when
there is no group effect, B, =0 and OR =1. When subjects in group 1 (x=1) have
increased odds of the event of interest (y=1), then OR>1 and S >0. Likewise,
when group 1 subjects have less odds of the event of interest (y=1) then OR<1

and g, <0.

For a continuous predictor variable x, the logistic regression coefficient p,,
associated with x has interpretation as the change in the log of odds of success for
a unit change in x. The relationship between the response and predictor can again
be expressed as a ratio of odds

R = 09ds(X =x+1) _exp(By +f,(x+1) _
odds(X = x) exp(f, + B,x)

exp(f,) -
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Clearly when g, >0 there is increasing odds as x increases, when S, <0 there is
decreasing odds as x increases, and when f, =0 there is no relationship between

the predictor x and the response.

If we extend model (3.4) by including another predictor variable such that the logistic

regression model is written as

log(ij =B+ Bix, + Brx,,
1—u

where x, and x, are dichotomous predictor variables both taking only values 0 and
1., can be interpreted as the change in the log odds ratio as x, changes from 0 to
1 while holding x, constant. Likewise S, can be interpreted as the change in the log
odds ratio as x, changes from 0 to 1 while holding x, constant. Using the odds, the
logistic regression model is of the form: odds(y =1) = exp(f, + B,x, + B,x,). The odds

ratio for x, when x, is fixed is given as

_odds(x =Lxy) _expB+ [D+Bx) gy

OR =
odds(x, =0,x,) exp(f, +B,(0)+ f,x,)

Note that the odds ratio for x, does not depend on the value of x,. If we include an
x, x, interaction term in the model, we obtain a logistic regression model of the form
odds(y =1) =exp(f, + B,x, + B,x, + B,x,x,). In this case the odds ratio for x, is given
as

R = odds(x, =1,x,) _ exp(B, + B, () + B,x, + By x,)
odds(x, =0,x,) exp(f, + 5,(0) + B,x,)

Contrary to when there is no interaction term between the two predictor variables,

=exp(f, + B:x,) .

the odds ratio for x, is a function of x, and thus the relationship between x, and the
response depends on the level of x,. The results can be generalized to cases

where predictor variables have more than two categories and where there are

continuous predictor variables.
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3.3 Parameter estimation and inference
The method of maximum likelihood estimation is usually used for estimating the
parameters of the generalized linear models. The following derivation follows
that of Molenberghs and Verbeke (2005). Assuming independence of the
observations, the log-likelihood can be expressed as follows
1 N
E(ﬂ7¢):g2[yi0i _l//(ei)]+zc(yi7¢)'
i=1 i
The score equations obtained from equating the first order derivatives of the log-
likelihood to zero take the form
00, ,
SiB)=> —[y.-w'(6,)]=0.

(8) Zaﬂ[y, v'(6)]

Since u, =y’(6,) and v, =v(u,) =y"(6,), we have that

ou, , .06, 00.
Rt B 6)—=p —,
AT Y,
which implies the following score equations
oy, _
S(ﬁ):zaiﬁ’vil(yi—lui):()_ (35)

These score equations are solved iteratively. That is, an initial solution of the

equations B is guessed and then updated until iterative algorithm converges to

the solution A, called the maximum likelihood estimate of #. The two most

popular and widely used iterative algorithms for the maximum likelihood
estimation are the Fisher’s scoring and Newton-Raphson. The Fisher’s scoring
method is equivalent to the iterative reweighted least squares (Schabenberger
and Pierce, 2002; Kutner et al., 2005). The Newton-Raphson method solves
maximum likelihood estimates iteratively using the standard least-squares
methods (McCullagh and Nelder, 1989). These iterative algorithms are available

in most statistical packages, such as SAS, STATA, GenStat etc.

Once the maximum likelihood estimates have been obtained, classical inference
based on asymptotic likelihood theory becomes available, including Wald-type
tests, likelihood ratio tests and the score tests, all asymptotically equivalent
(Molenberghs and Verbeke, 2005). Moreover, with some models such as the

logistic regression model, ¢ is a known constant. In other models, such as the
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linear normal model, estimation of ¢ may be required to estimate the standard
errors of the elements in . There are several ways of estimating ¢, one of
which is given by

A 1 2
= —f ) Ju.(a
¢ N_ p l (yl l) l( l)

where N is the total number of observations and p is the number of parameters

in the model.

3.4 Model selection and diagnostics

Model Selection

Since there can be a number of models that describe a given data set, it is
important to select the simplest reasonable model that adequately describes such
data (Lindsey, 1997). There are three procedures that are commonly used for
the selection of variables that enter the model and these are the backward,
forward and stepwise methods. Backward selection starts with a saturated model
(a model with all explanatory variables) and drops one explanatory variable at a
time while forward selection starts with the null model (no explanatory variables)
and enters one explanatory variable at a time. The stepwise selection procedure
uses the same approach as the forward selection, but has the advantage over
the forward selection in that the variables already in the model are considered for
exclusion each time another variable enters the model. Consequently, when
there are many variables under consideration, the stepwise is mostly preferred
because it has an advantage of minimizing the chances of keeping redundant

variables and leaving out important variables in the model.

With all the procedures, a variable that leads to a significant change in the
deviance (measure of goodness-of-fit described subsequently) when added to or
dropped from the model is retained, otherwise it is dropped. The contribution of
each variable to the deviance reduction is given by the type 1 and type 3
analyses of effects. The type 1 analysis of effects depends on the sequence in
which variables enter the model, whilst type 3 considers the overall model and
assesses the contribution of each variable to the deviance reduction irrespective
of the sequence in which variables enter the model. This method of model
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selection is referred to as deviance analysis and is used to test the model for
goodness-of-fit.

Model Checking
The main tools used for assessing the goodness-of-fit of a fitted generalized

linear model are the log-likelihood ratio (deviance) and the Pearson’s chi-square
statistics (Jiang, 2001; Kutner et al., 2005). They measure the discrepancy of fit
between the maximum log-likelihood achievable and the achieved log-likelihood
by the fitted model. The deviance is presented below to illustrate the use of
these measures. It is given by
D(y. ) =2{t(y:y) — (&)},

where /(y;y) is the log-likelihood under the maximum achievable (saturated)
model and /(f;y) is the log-likelihood under the current model. The aim is to
minimize D (i.e. D(y,f)) by maximizing /(i;y). The hypothesis about the
goodness-of-fit of the model is given by

H,: model is adequate  vs H, :model is not adequate.

2
n—-p,a’

H, will be rejected if D > where n is the number of observations, p is the

number of parameters and « is the given level of significance. Note that the
deviance D cannot be used as a measure of goodness-of-fit for ungrouped
binary data (Collett, 2003). However, it can still be used to identify important
predictors as discussed earlier. The appropriate test in this case is the Hosmer-
Lemeshow goodness-of-fit test. For this test, firstly, the predicted probabilities
(4,'s,i=1,...,n) obtained using the current model being checked are used to
form g groups with approximately n/g subjects. One grouping strategy is the
percentile strategy and it is given as (Hosmer and Lemeshow, 2000):

i) Group 1 subjects are approximately n/g subjects whose f,'s are less

than or equal to the 12#h percentile of all the 4,'s.

ii) Group 10 subjects are approximately n/g subjects whose 4,'s are

more than (1—§)><100th percentile of all the 4,'s.
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iii) For j=2,3,...,g—1, group j subjects are approximately n/g whose
4.'s are greater than the %xloom percentile and less than or equal to
the £x100h percentile of all the 4,'s.

For large n (number of subjects), the frequently recommended g is 10 (Hosmer

and Lemeshow, 2000; Dobson, 2001; and Vittinghoff et al., 2005) in order for the

different analysts to get consistent conclusions.

Secondly, for each group the observed and expected frequencies of the

responses y=0 and y=1 are determined as follows (Hosmer and Lemeshow,
2000). Forthe j=12,...,¢g,

i) The respective observed frequencies of the responses y=1and y=0
are O,;= number of subjects with responses y=1 and
0,;=nlg-0,;.

i) The respective expected frequencies of the responses y=1 and y=0

are E,. =n/gxaverage of f.'s ingroup j and E,. =n/g—-E,,
1j ﬂz 0j 1j

Consequently, the Hosmer-Lemoshow statistic X, for testing the goodness-of-fit

of the model is given by

The X, has a chi-square distribution with g—2 degrees of freedom. As a
result, the statistic X, is compared with the critical value of the chi-square
distribution with g —2 degrees of freedom ( ;(fg,zm) for checking goodness-of-fit

of the model. Thus, if the X, is statistically significant, then it indicates lack-of-

fit of the model, whereas a non-significant one indicates goodness-of-fit of the

model.

The appropriateness of the link function can be assessed by refitting the model
with the linear predictor obtained from the original model and the square of the

linear predictor as explanatory variables (Vittinghoff et al., 2005). If the linear
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predictor is statistically significant and the squared linear predictor term is
insignificant, then the link function is appropriate. This means that, prediction
given by the linear predictor is not improved by adding the squared linear
predictor term which is basically used to evaluate the null hypothesis that the
model is adequate. Alternatively, the original model can be estimated with an
extra constructed variable, where for an adequate model the extra variable will be
statistically insignificant (Williams, 1987). Moreover, the appropriateness of the
link function can also be checked graphically by plotting the residuals against the
fitted values and for an appropriate link, the plot should not exhibit any systematic
pattern (Collett, 2003).

Ouitliers, influential and high-leverage points also have to be assessed. An outlier
is a datum point that differs from the general trend of the data and is not
necessarily influential (Lindsey, 1997). With an influential point, a slight change
or omission of such an observation leads to a substantial effect on parameter
estimates of the model. The magnitude of influence is measured by the leverage
(denoted by &, ), which is the ith diagonal element of the hat-matrix (H) (Kutner
et al., 2005; Lindsey, 1997). For generalized linear models, the hat-matrix is
given by
H=W X(XWX)X'W 7,

where X is the design matrix of the known covariates and W is a diagonal

weight matrix with irh diagonal element given by

w;, = ! 5 7 -
Var(yi)[g (ﬂl)]

The commonly used measure for detection of influential data points is the Cook’s

distance, which is approximated by

2 2
", hii _ " hii

C = - ,
(l_h,‘[) (l_hii)

where r, =(1-h,)y, is the Pearson’s residual and r, = s the standardized

NS

Pearson’s residual (Moeti, 2007). A large C, implies that the irh observation has

undue influence on the set of parameter estimates. The most widely used cut-off

value for C, is 1, however, some authors (Rousseeuw and Leroy, 2003; Skovgaard
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and Ritz, 2007) suggest considering the data points that depart from the rest as

influential when examining the index plot of C,.

3.5 Fitting the logistic regression model to adherence data
Let the response y, =1 if the ith patient (i =1,...,688) has been optimally adherent
to HAART and y, =0 otherwise. Then the fitted logistic regression model (3.3) is

given as

logit(u,) = 1og[LJ =xf,
l_ﬂi

where u, =E(y,)=P(y,=1), x; is a vector of appropriately coded values of the

explanatory variables and g is a vector of unknown parameters. The 13 baseline

variables presented in Chapter 2 were used together with their interaction terms as
explanatory variables in the model. The deviance analysis was used for model
selection. To control for potential confounding, all the main effects were retained in
the model. It was then assessed as to whether any interaction terms needed to be
incorporated into the model. This was examined by fitting each of the product terms
formed from all the predictor variables, one at a time, to the model that had all the 13

variables.

Three interactions reduced the deviance by a relatively large amount: age*cell phone
ownership led to a deviance reduction of 6.79 on 1 degree of freedom and a
corresponding p-value of 0.009, gender*reported reason for taking an HIV test and
treatment site*source of household income reduced the deviance by 11.08 (p-value
= 0.004) and 8.38 (p-value = 0.004) on 2 and 1 degrees of freedom respectively. To
see if all three could be retained in the model, they were all fitted at the same time
and they reduced the deviance by 25.5 on 4 degrees of freedom (p-value = <0.001).
Since the reduction in the deviance is significant, all the three interactions were then
retained in the model. Consequently, the final model included all the main effects
and the three interaction terms. The results from type 3 analysis of the effects for
this model are presented in Table 3.1.
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Table 3. 1: Type 3 analysis of effects for the logistic model

Effect DF | Wald Chi-square | p-values
Age 1 2.8226 0.0929
Gender 1 4.6331 0.0314
Educational attainment 2 4.0392 0.1327
Treatment site 1 19.339 <.0001
Living with/without partner 1 0.1218 0.7271
Contribution to household income 1 6.0316 0.0141
WHO staging of disease 3 2.1298 0.5459
Baseline CD4+ count (cells/uL) 1 5.4553 0.0195
Baseline weight (kg) 1 0.0440 0.8338
Reason for taking HIV test 2 4.2281 0.1207
Household access to tap-water 1 0.0975 0.7548
Household access to electricity 1 0.0021 0.9632
Cell-phone ownership 1 6.1334 0.0133
Age*cell-phone ownership 1 5.4662 0.0194
Gender*reason for taking the test 2 8.5540 0.0139
Treatment site*household income 1 7.5991 0.0058

Before the final model was accepted, diagnostics were performed to see whether it
fits the data well. The goodness-of-fit was assessed using the Hosmer-Lemeshow
test. The observed and expected frequencies are given in Table 3.2. The
goodness-of-fit statistic was 6.45 with 8 degrees of freedom and the corresponding
p-value of 0.597. The very large p-value for this test shows that the model fits the

data well (i.e. the predicted probabilities correspond with the observed values).

Table 3. 2: Partition for the Hosmer-Lemeshow Goodness-of-Fit test

Group Total Event = adherent Non-event = non adherent
Observed | Expected Observed Expected
1 54 23 25.27 31 28.73
2 54 34 34.56 20 19.44
3 54 40 39.39 14 14.61
4 54 46 42.82 8 11.18
5 54 44 44.65 10 9.35
6 54 49 46.01 5 7.99
7 54 46 47.73 8 6.27
8 54 47 49.04 7 4.96
9 54 52 50.02 2 3.98
10 54 53 54.52 4 2.48
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The appropriateness of the link function was tested by refitting the model with a
linear predictor and its square (i.e. the squared linear predictor) as independent
variables and the results are given in Table 3.3.

Table 3. 3: The Logit link function test

Variable DF | Chi-square | p-value
Constant 1 0.0104 0.919

Linear predictor 1 67.609 <.0001
Squared linear predictor 1 0.0643 0.800

The very small p-value for the linear predictor and a very large p-value for the
squared linear predictor variables in Table 3.3 suggest that the link is appropriate,

and this confirms the goodness-of-fit test that the model fits the data well.

Influential observations were assessed by plotting the Cook’s distance statistic
against the observations and this index plot is presented in Figure 3.1.

Figure 3. 1: Index plot of the Cook’s distance for the fitted model
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Note: ‘Cookd’ = Cook’s distance and ‘obs’ = observation number
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The plot indicates that none of the Cook’s distance values for the fitted model are
greater than 1, which suggests that there are no observations with undue influence
on parameter estimates. To confirm this result, the three observations with the
largest Cook’s distance values were further investigated by re-fitting the model with
each one of them deleted one at the time (referred to as a single-case deletion).
These observations were numbers 32, 158 and 305 with Cook’s distance values of
0.0359257227, 0.0894773227 and 0.0449326732 respectively.  When these
numbers were deleted one at a time, the results were the same as those obtained
from fitting the model to the full data set. This reaffirms that these three observations
with the largest Cook’s distance values do not have undue influence on the

parameter estimates of the model.

The final chosen model is as follows:

logit [P(yl. =1lx, )= By + Biage, + B,gender , + Bieduc _no, + B,educ _ p, + Bssite,

+ B¢ partner ; + S,income , + B,WHOstage 1, + B, WHOstage 2, + fB,,2WHOstage 3,

+ B base _cd 4, + B,baseweight , + 8 ,reason _no, + B, reason _ risk ,
+ B stapwater ; + B electricit 'y, + B, cellphone , + B, age ,cellphone ,

i

+ B, gender ,reason _no, + B, gender reason _ risk , + B, site jincome

i

The parameter estimates and the corresponding confidence limits for the above
model are presented in Table 3.4. Gender, treatment site, source of income, cell
phone ownership and baseline CD4+ cell count are all found to be significant main
effects. There are three significant interaction terms: between age and cell phone
ownership; between gender and reported reason for taking an HIV test; and between
treatment site and source of household income. All significant main effects, except
baseline CD4+ cell count, were involved in significant interaction terms (Table 3.4).
For a unit (cells/uL) increase in CD4+ cell count, the odds of HAART adherence

decreased by 5% (adjusted Odds ratio [aOR = 0.995 (¢*), p=0.019]).
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Table 3. 4: Parameter estimates for the chosen logistic regression model

Effect Estimates Std errors p-value 95% C.1.
Lower Upper

Intercept -0.862 1.150 0.454 -3.116 1.392
Age 0.046 0.028 0.093 -0.008 0.101
Gender (ref=male)

female 0.712 0.331 0.031 0.064 1.361
Education (ref=sec & higher)

No schooling -0.520 0.390 0.182 -1.284 0.243

Primary 0.394 0.365 0.280 -0.321 1.110
Treatment site (ref=rural)

Urban 1.470 0.334 <.0001 0.826 2.125
Living with partner (ref=no)

Yes -0.096 0.275 0.727 -0.635 0.443
Income (ref=not source)

Source of income 1.342 0.547 0.014 0.271 2.414
WHO staging (ref=stage4)

Stagel 0.454 0.655 0.488 -0.829 1.737

Stage2 -0.187 0.562 0.739 -1.289 0.915

Stage3 -0.151 0.506 0.766 -1.143 0.842
Baseline CD4+ count -0.005 0.002 0.019 -0.008 -0.001
Baseline weight 0.002 0.010 0.834 -0.018 0.022
Reason for testing (ref=unwell)

No specific reason -0.488 0.417 0.242 -1.304 0.329

Exposed to the risk 1.200 0.830 0.148 -0.427 2.826
Access to tapwater (ref=yes)

No 0.141 0.455 0.755 -0.755 1.037
Househld with electricity (ref=yes)

No -0.019 0.408 0.963 -0.819 0.781
Cell phone ownership (ref=yes)

No 2.744 1.108 0.0133 0.572 4.915
Age*cell-phone (ref=yes)

No cell phone -0.076 0.033 0.019 -0.140 -0.012
Gender*reason (ref=male & unwell)

Female*no specific reason 0.879 0.584 0.132 -2.266 2.024

Female*exposed to the risk -1.921 0.895 0.0318 -3.674 -0.160
Site*income (ref=rural & not source)

Urban*source of income -1.756 0.637 0.0058 -3.004 -0.507

The interaction effects are presented below. It should be noted that for the
interaction terms that involve two categorical variables, the meaningful odds ratios
for comparison need to be further calculated from the parameter estimates in Table
3.4. Thus post-hoc effects of interactions between gender and reported reason for
taking an HIV test as well as between treatment site and source of household
income are reported in Tables 3.5 and 3.6 respectively.

a) Interaction between patient age and cell phone ownership

As age of patients increased, optimal HAART adherence was less likely for patients

without cell phones than those with cell phones [aOR = 0.927 ("), p-
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value=0.019] (Table 3.4). More specifically, optimal HAART adherence rate
increased with age for patients with cell phones whereas it decreased as age
increased for patients without cell phones (Figure 3.2). Figure 3.2 further shows that
the gap in optimal adherence between patients with and without cell phones widened
with increasing age.

Figure 3. 2: Log odds ratio associated with optimal HAART adherence and age for patients
with and without cell phones
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b) Interaction between gender and the reported reason for taking an HIV test

Optimal HAART adherence was significantly higher for females than males with
patients who reported no specific reason for taking an HIV test [aOR = 4.911, p-
value=0.001] as well as those who reported to have tested because they were not
well [aOR = 2.039, p-value=0.031] (Table 3.5). There was however, no significant
difference in optimal HAART adherence between females and males who reported to
have tested for HIV because they felt exposed to the risk of contracting the disease
[aOR = 0.299, p-value=0.145] (Table 3.5). It is also shown that for males, HAART
adherence was significantly lower for patients who reported no specific reason for
taking an HIV test than those who tested because they felt exposed to risk of
contracting the HIV disease [aOR = 0.185, p-value=0.049] (Table 3.5). These
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results confirm the observed proportions of optimal HAART adherence for gender
classified by reported reason for taking an HIV test depicted in Figure 3.3.

Table 3. 5: Post-hoc effects of the interaction between gender and reported reason for taking
an HIV test (adjusted odds ratio [AOR] with 95% confidence interval [Cl])

Interaction effect estimate aOR p- 95% CI (OR)

value | lower | Upper

Women versus men

No specific reason 1.5915 4911 | <.0001 | 1.892 | 12.75

Risk of exposure -1.2073 | 0.299 | 0.145 | 0.059 | 1.519

Unwell 0.7125 2.039 | 0.031 | 1.066 | 3.900

Men

No specific reason versus risk of exposure to HIV 1.6874 0.185 | 0.0429 | 0.035 | 0.993

No specific reason versus unwell -0.4878 0.614 | 0.242 | 0.271 1.389

Risk of exposure to HIV versus unwell 1.1997 3.319 | 0.148 | 0.653 | 16.88

Women

No specific reason versus risk of exposure to HIV -0.8871 0.446 | 0.383 | 0.073 | 2.739

No specific reason versus unwell 0.3914 1.479 | 0.345 | 0.657 | 3.330

Risk of exposure to HIV versus unwell 1.1997 3.319 | 0.148 | 3.319 | 16.88

Figure 3.3: Percentage adherence associated with gender and reported reason for taking an
HIV test (based on observed proportions of optimal HAART adherence)
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C) Interaction between treatment site and whether patient is a source of

household income

Optimal HAART adherence was significantly higher in the urban treatment site than
in the rural treatment site for patients who were not sources of household income
[aOR = 4.347, p-value=<0.001] (Table 3.6), whereas, with patients who were
sources of household income, there was no difference between treatment sites [aOR
= 0.751, p-value=0.628] (Table 3.6). For the rural treatment site, optimal HAART
adherence was significantly higher for patients who were a source of household
income than those who were not a source of household income [aOR = 3.828, p-
value=0.014] (Table 3.6). These results confirm the observed proportions of optimal
HAART adherence for treatment site classified by contribution to household income
depicted in Figure 3.4.

Table 3. 6: Post-hoc effects of the interaction between HAART treatment site and patient’s
contribution to household income (adjusted odds ratio [aOR] with 95% confidence interval

[CI)

p- 95% CI (OR)
Interaction effect estimate | aOR | value | lower | Upper
Urban vs rural treatment site
Source of household income -0.2863 | 0.751 | 0.628 | 0.237 | 2.385
Not source of household income 1.4694 4.347 | <.001 | 2.258 | 8.369
Source vs not source of household income
Urban treatment site -0.4125 | 0.662 | 0.219 | 0.342 | 1.278
Rural treatment site 1.3423 3.828 | 0.014 | 3.828 | 11.17
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Figure 3. 4: Percentage adherence associated with treatment site and whether a patient is a
source of household income (based on observed proportions of optimal HAART adherence)
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3.6 Summary

The generalized linear models using logistic regression provided a tool for assessing
factors that affect initial HAART adherence. The results, revealed three significant
two-way interaction terms between a) age and cell phone ownership, b) gender and
reported reason for taking an HIV test, as well as c) treatment site and household
source of income. The baseline CD4+ count was also shown to be negatively
associated with optimal HAART adherence. Maqutu et al., (2010a) provides a full
discussion of these results (attached in the Appendix A). The next step leads us to
survey statistical longitudinal approaches for binary responses to be used for the
evaluation of adherence data in order to gain greater insight into the long-term
predictors of optimal HAART adherence. Specifically, we begin by reviewing
marginal models for longitudinal settings and use them to evaluate the explanatory
variables of long-term optimal HAART adherence in Chapter 4.
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Chapter 4
Marginal models application to treatment adherence

4.1 Introduction

One of the aims of this study is to identify predictors of long-term optimal HAART
adherence, and assess whether factors affecting initial adherence also influence
long-term HAART adherence. The result is that a longitudinal study and a straight
forward application of GLMs is no longer appropriate because of a lack of
independence among observations obtained from the same subject. It is therefore,
necessary to extend these models in order to account for correlated observations.
For the generalized outcomes in a longitudinal study, one must distinguish between
three broad model families, namely, marginal models, subject-specific models and
transition models. A marginal model is one in which marginal probabilities of the
response are directly modeled. That is, responses are modeled marginalized over
all other responses, and the association structure is typically captured using a set of
association parameters, such as correlations, odds ratios, etc. These models are
also called population-averaged models because the parameters characterize the
marginal expectation. The marginal models include an extensive range of
possibilities, especially, those that use methods based on likelihood such as the
Bahadur model, or log-linear models (Molenberghs and Verbeke, 2005). In this
thesis, we will focus on marginal models in which the dependence between
observations within each individual is modeled using correlation structure matrices,
and generalized estimating equations (GEE) to obtain estimates. Their theoretical
aspects and characteristics as well as their application to HAART adherence are the
focus of this chapter.

4.2 Marginal models for longitudinal data

When inferences based on the mean parameters or population-average are of
interest, a marginal model is adequate to analyze the data originating from a
longitudinal study. A marginal model specifies the mean of the response variable, or
marginal expectation and the association structure separately. The specification of a
marginal model can be summarized as follows (Diggle et al., 2002; Fitzmaurice et
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al., 2004). Consider the outcome, y, for the i" subject in the "

measurement.
The general form of the model relating to the response and its mean can be defined
as
Vi = Myt &
Then, a marginal model can be formulated as follows:
a) The marginal expectation of the response variable u, = E(y;) and a linear
combination of the covariates are related by means of
glu;)=glEG)1=x,8,
where

y; is the response for subject i at time j,

x; is a px1 vector of covariates associated with subject i at time j,
B is a px1 vector of unknown regression coefficients, and
g() is a known link function.

b) The marginal variance of y, is described as a function of the mean

var(y;)=ov(L;) ,
where

v(-) is the variance function,

¢ is the dispersion parameter

c) The correlation between observations on the same subject,

corr(y;,y;) = p(H; .M, ;) depends on the marginal means, and on a
parameter vector «. This correlation is modeled using a correlation structure
matrix called a ‘working correlation matrix’ R;(a) for each y,. It is assumed
that the correlation matrix R,(a) depends on a vector of association

parameters, « and is also assumed to be the same for all subjects.

The first two components of the marginal model specification correspond to the GLM
for independent data discussed in Chapter 3 but without distributional assumptions
about the responses. The extension of longitudinal data is represented by the third
component which incorporates the correlation among the repeated responses. Note
that full distributional assumptions about the vector of the responses can still be
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made with marginal models such that the likelihood can be specified and the method
of maximum likelihood can be applied for estimation and inference. The association
parameters from such models are however constrained by the marginal probability,
and are dependent on high order associations that are usually not of interest
(Pendergast et al., 1996). That is, unlike a continuous response that has a
multivariate normal distribution where the joint distribution of responses is fully
specified by the mean, variance and the correlations; this is not the case with
discrete data. Instead, the joint distribution requires the specification of the mean
vector, two-way associations, as well as three- and higher- way associations among
repeated responses (Fitzmaurice et al., 2004; Molenberghs and Verbeke, 2005). As
a result, the number of association parameters increases as the number of
responses increase which will often far exceed the number of subjects enrolled in the

study. For instance, suppose y, is a vector of binary responses with n, =10, the
joint distribution of y, has 1, 013 (2'-10-1) two-way, three-way, four-way and

higher-way association parameters. In general, specification of joint distribution for
discrete longitudinal data is difficult, even in cases where it might be possible to
specify the joint distribution, the likelihood can be too complicated to evaluate.

Alternatively, the distributional assumptions about the vector of responses can be
avoided and a marginal model based only on the mean response, the variances and
pairwise associations can be specified. This leads to the method of generalized

estimating equations.

4.3 Generalized Estimating Equations (GEE)

When interest is in the first-order marginal parameters, McCullagh and Nelder (1989)
have shown that a full likelihood procedure can be replaced by quasi-likelihood
based methods. Wedderburn (1974) shows that the likelihood and quasi-likelihood
theories coincide for exponential families and that the quasi-likelihood estimating
equations provide consistent estimates of regression parameters £ in any
generalized linear model, even for choices of link and variance functions that do not
correspond to exponential families. Consequently, Liang and Zeger (1986) proposed
the method of generalized estimating equations (GEE) as an extension of GLM to

accommodate correlated data using quasi-likelihood approach. Rather than
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assuming a particular distribution for the response, GEE method requires a correct
specification of the mean as well as how the variance depends on the mean. One of
the desirable properties of the GEE method is that it yields consistent and
asymptotically normal solutions even with the misspecification of the covariance
structure (Liang and Zeger, 1986; Zeger and Liang, 1986; Davis, 2002). The

covariance structure is treated as a nuisance.

For the ith subject, let A; be the n xn, diagonal matrix with v(x;) as the jth
diagonal element. Also let R, () be the n,xn, ‘working’ correlation matrix for the
ith subject. Then the working variance-covariance matrix of y, is given by

V. =6A, (B R (@A, (B)". (4.1)
Then GEE estimate of g is the solution of

ZD;(Vi )_1 (yi _:ui)

0, (4.2)

where D, =du, /df. Note that (4.2) is an extension of the estimating equations for
B in GLM, which is given by (3.5) where the variance-covariance matrix of y, can be
re-written in the form
V. =gA. (BT, A(B). (4.3).

That is, an extension of (3.5) that would account for the correlation is obtained by
replacing the identity matrix I, in (4.3) by a correlation matrix R, («) to obtain (4.1).
Note that although A,(f5) follows directly from the marginal mean model, A
commonly contains absolutely no information about R, hence the reason why R,
had to be parameterized by an additional parameter vector: R, =R, («). Thus while

the first moment completely specifies the second and higher order moments, this is
only partially so in the correlated data setting, variances are still specified by the
marginal means but the correlations are not. This demonstrates the key difference
between the correlated data and their univariate counterparts in a generalized linear

model setting.

Recall that our aim is to restrict model specification to the first moments only but we

are faced with the second moments. If we would model the second moments, we
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would have to address the third and fourth moment as well. This then leads to the
full specification of the joint distribution which we have been trying to avoid. In order
to overcome this problem, Liang and Zeger (1986) suggest that while still

acknowledging the need for R, () in V, (4.1), one is allowed to specify an incorrect

structure or the so called 'working correlation’ matrix.

The estimating equations given by (4.2) depends on unknown parameters S, a and
¢. Liang and Zeger (1986) propose moment-based estimates for ¢ and ¢. These

are estimated using functions of standardized Pearson residuals

_ Vi T Hy

eij \/m

Some of the popular choices for the working correlations and their moment based

(4.4)

estimators are presented in Table 4.1. Similarly, the dispersion parameter can be
estimated by

=131 45)
N Tn S !
Table 4. 1: Popular choices of working correlation assumptions in standard GEE and
moment based estimators
Structure Corr(y;,yy) Estimator
Independence 0 -
Exchangeable a a==+ Zzlﬁ Z#k €€y
ik A N
AR(1) 't 0= D T e G
A N
Unstructured a, Qa=5> €ex

Some of the commonly used matrices of R,(«) under each covariance structure are
illustrated by considering a study with 4 measurements (n, =4) taken through time.

The R, () for each subject i are given by the following:
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Independence structure:

1000
0100

R, =
0010
0001

The independence model adopts the working assumption that repeated observations
for a subject are independent. In this case the GEE simplifies to the GLM estimating
equations in (3.5).

Exchangeable or Compound Symmetry structure:

a o o

R. =

4

a o
1 «af
o 1

SN

1

o
o
o

The exchangeable working correlation specification assumes a constant correlation
between any two measurements within a subject, regardless of the time interval
between the measurements. This structure may not be appropriate in a longitudinal
study where the correlations are expected to decay with increasing separation in
time (Fitzmaurice et al.,, 2004). The exchangeable structure may be more
appropriate with data sets that have clustered observations such that there may be
no logical ordering of observations within a cluster (Horton and Lipsitz, 1999).

First-order auto-regressive (AR-1) structure:

1 a o &
a 1 a o
R, =|
o o 1 o
o afF a 1

The AR-1 correlation structure depends on the distance between the measures. The
correlations decline over time as the separation between pairs of repeated measures
increases. This structure assumes that the measurement occasions are equally
spaced (Molenberghs and Verbeke, 2005; Fitzmaurice et al., 2004).
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m -dependent structure:

1 o o 0
o 1 «a 0
R, =
a, o 1 a
0 o a 1

With the m -dependent structure, the correlations depend on the distances between
measures; eventually they diminish to zero for t > m. With mistimed measurements,
this structure may be reasonable to consider since the correlation is a function of the
time between observations (Stokes, Davis and Koch, 2000; Horton and Lipsitz,
1999).

Unstructured:

_| % I oy ay
4

o Gy I a,
Oy Qp Oy 1

When the correlation matrix is completely unspecified, there are n.(n, —1)/2
parameters to be estimated. It provides the most efficient estimator for S but is

useful only when the number of observation times is relatively few (Stokes et al.,
2000). One of the disadvantages of assuming the unstructured covariance is that
the number of parameters to be estimated increases with the number of
measurement occasions. Consequently, the estimates tend to be unstable when the
number of covariance parameters to be estimated is large relative to the sample size
(Fitzmaurice et al., 2004). That is, with too many covariance parameters to be
estimated from the limited amount of data available affects negatively the precision
with which the regression parameters of interest will be estimated. Moreover, when
there are missing data and/or irregularly measured occasions, an estimation of a
complete correlation structure may result in a non-positive definite matrix and

parameter estimation may not proceed (Stokes et al., 2000).

In order to estimate B from the score equations in (4.2), estimates of @« and ¢ are

required whereas, the moment based estimates for a (Table 4.1) and the
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expression (4.5) for ¢ depend on g (since e, =e;(f) through u, =u,(f) and
therefore also through v(4,;)). In order to overcome this circularity stumbling block,

an iterative procedure is used for estimation. Therefore, Liang and Zeger (1986)
suggest computing the GEE estimates using a standard iterative procedure as
follows:

i. Compute initial estimates for g using a univariate GLM, that is, assuming
independence among the n, responses for subject i.

ii. Compute standardized residuals e, using (4.4).

iii. Compute estimates for & (some examples are given in Table 4.1).

iv. Compute an estimate of ¢ using (4.5).

v. Compute R,(a) under a given assumption of the correlation structure.

vi. Compute V.(8,a.,¢)=¢A.(8) R.(0)A.(B)".

vii. Update the estimate for g:

i=1

,B(Hl) :'B(z) _{iDivi—lD} XZD’V_I H;

viii. Repeat 2 — 7 until convergence is reached.

Currently, there are many statistical software packages for fitting GEE models for
longitudinal data, such as SAS PROC GENMOD procedure, gee and geepack R
libraries, STATA, SPSS and others.

Let £ be the solution to the generalized estimating equations (4.2), then 3 has the
following properties:
a). [ is a consistent estimator of . That is, with very high probability, £ is
close to the population regression parameters S in large samples (Fitzmaurice et
al., 2004). Note that B has a very appealing robustness property of producing a
consistent estimate of £ even if the working correlation matrix is specified as

long as the model for the mean response has been correctly specified.
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b). The estimator S is asymptotically normally distributed with mean £ and

asymptotic variance-covariance matrix:

var(ﬁ)z{iD'V{lDij {ﬁDZV{lvar(yi)Vi"lDiJ(iD'Vi‘lDiJ , (4.6)

i=1 i=1
which can be presented notationally as follows
var() =M;'M,M;'.

The var(y,) in (4.6) is typically replaced by (y,—u)(y,—4,) . The variance

estimator, var(,B) expressed by (4.6) is commonly referred to as the sandwich or

empirical or robust estimator. Regardless of whether or not the working correlation
structure is correct, the point estimates and standard errors based on (4.6) are

asymptotically correct (Molenberghs and Verbeke, 2005). If the variance matrix R,

is correctly specified, then the variance-covariance matrix var(3) reduces to

-1
var(f) = (i D’V;‘D,.j =M, (4.7)
i=1
and is usually referred to as a ‘model-based’ estimator. With the misspecification of
the covariance structure, the standard errors based on the model based estimator
(4.7) are not valid and therefore cannot be used. In fact, Molenberghs and Verbeke
(2005), suggest that model based standard errors can be used as an indication of
the ‘distance’ between the working assumptions for the correlation and the true
structure. When both standard errors are far apart, this can be seen as an indication

of a poor choice of working correlation assumptions.

4.4 Model selection

Model selection is an essential part of any practical data analysis. A common
challenge encountered by many researchers dealing with regression is the selection
of variables to be included in the model. That is, faced with a large number of
covariates that include higher order terms, the challenge is selecting a subset to be
included in the regression model. For instance, in observational studies, excluding
some important risk factors (i.e. confounders) may result in misleading estimates of

the effects of other risk factors while on the other hand, including all covariates as
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well as higher order terms may lead to a too complex model which would be difficult
to interpret and with less precise parameter estimates (Pan, 2001).

With repeated measures data, model selection becomes even more complicated
because one does not only deal with variable selection but also a selection of a
covariance structure among many available structures to account for the fact that
data might be correlated. For instance, it has been noted earlier that the GEE
method offers asymptotically consistent parameter estimates even if the covariance
structure of repeated measurements is not correctly specified (Liang and Zeger,
1986; Fitzmaurice et al, 2004). However, if the working correlation matrix is correctly
specified, the resulting parameter estimates are efficient (Hardin and Hilbe; 2003).
In other words, a poor working correlation assumption is not wrong but may hinder
efficiency of the obtained estimators, thus there is a need to choose a working
correlation that approximates as much as possible the true structure. This clearly
poses a model-selection challenge in selecting the working correlation structure for
GEE models.

There are a number of techniques available to compare models based on the
likelihood and asymptotic properties of maximum likelihood estimator (MLE). These
include the likelihood ratio test (LRT) and Akaike’s Information Criterion (AIC)
(Akaike, 1974) for nested and non-nested models respectively. Since the GEE
method is based on quasi-likelihood procedures, there is no associated likelihood
underlying the model and thus LRT and AIC are not directly applicable. To
overcome this problem, a selection criterion termed ‘quasi-likelihood under the
independence model criterion’ (QIC) was proposed by Pan (2001) to select the best
fitting model in the GEE analysis. The QIC is an extension of AIC measure to GEE.
Since in general, the GEE estimator has different asymptotic properties from those of

the MLE, a modification to the penalty term in the usual AIC is necessary.

The following summarizes QIC (Pan, 2001) starting with a brief review of the quasi-

likelihood approach. Given a generalized linear model, g(u)=x,4, the quasi-

likelihood takes the following form (McCullagh and Nelder, 1989)
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where u=E(y) and var(y)=¢v(u) with ¢ being the dispersion parameter.
Examples of the variance function v(u) for the commonly used distributions and the

quasi-likelihood Q(u) that follows are presented in Table 4.2.

Table 4.2: The variance function and quasi-likelihood of commonly used
distributions in the exponential family

Distribution V(W) 1,01073)

Normal 1 —%(y—/z)2

Bernoulli wu(1— ) yIn[u/(1- 1)]+1In(1 - p)
Poisson Y7, yin(u)—u

The Akaike information criterion may be calculated based on (ML or REML) log-
likelihood, LL of a fitted model as follows
AIC =-2LL+2p),
where p is the total number of parameters being estimated in the model. The AIC
penalizes the fit of a model for the number of parameters being estimated by adding
2p to the log-likelihood. The QIC is a modification to AIC for the GEE method in
that the likelihood function value of the AIC is replaced by the quasi-likelihood
function value obtained under independence correlation structure and the penalty
term is adjusted. It is defined as
0IC =20 (i:1)+ 2 trace (Q;'V, ), (4.8)

where I represents the independent correlation structure and R is the specified
working correlation structure (Pan, 2001). The p -dimensional matrices Q;' and V,
are variance estimators of the regression coefficients under the correlation
structures T and R respectively. The QIC value is computed based on the quasi-
likelihood estimate 2. Here Q () is the quasi-likelihood function and examples from

different distributions are presented in Table 4.2. To calculate the QIC value, one
needs to run the GEE model twice, one with the independent correlation structure I

and the other with the correlation structure R in order to obtain the generalized least

59



squares estimator Q;' and the empirical variance estimator V, (Cui and Feng,
2009; Cui and Qian; 2007).

The QIC value in (4.8) can be used to select the best fitting correlation structure as
well as the best model in terms of the subset of variables to be included in the
model. The best correlation is usually selected first and is done based on the full
model with all the explanatory variables (Hardin and Hilbe, 2003). The correlation
structure with the smallest QIC value is selected as the most optimal correlation
structure. Then, based on the chosen correlation structure, the mean response
model with the smallest value of QIC is regarded as the most appropriate GEE
model.

Note that in general, the choice of the correlation structure should be guided by the
subject matter, for instance, there are time dependent correlation structures (e.g
autoregressive) and those that are not (e.g exchangeable). Then, if there are
competing correlation structures, the QIC measure can be used to determine the
appropriate one (Hardin and Hilbe, 2003).

Also of note is the fact that although the QIC method was published in 2001 and
included in the book by Hardin and Hilbe (2003), few applications of this method
have been published. One possible reason is that the issue of model selection in
GEE has been largely neglected (Pan, 2001; Cantoni, Flemming and Ronchetti,
2005). The other possible reason is that perhaps no commercial software such as
SAS, Stata, SPSS or SPLUS had a program to calculate the QIC value at the time
when Pan’s (2001) article was published (Cui and Qian, 2007). Nonetheless, in
recent years there seem to be an increasing use of QIC for selection of the best
model in GEE. Examples include Kuchibhatla and Fillenbaum (2003), Ballinger
(2004), Martus et al (2004), Hwang and Takane (2005), Cui and Qian (2007), Lin
and Chen (2009) and Cui and Feng (2009). Again in most commercial software that

includes SAS and Stata, calculation of the QIC has been implemented.

The generalized Wald tests can be used to compare models with different subsets of

the regression parameters. That is, one can use the generalized Wald tests to test
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the joint null hypothesis that a set of regression parameters fs are equal to zero

(Hedeker and Gibbons 2006). In general, for any matrix L a test for hypothesis can

be written as follows
H,:Lg=0 versus H,:LB=#0,

where L is a ¢x p indicator matrix of ones and zeros. Here, p is equal to the
number of regressors in the full model (including the intercept) and ¢ equals the

number of parameters in the generalized Wald test (that is, the difference in
regressors between the full and reduced models). The Wald statistic is a quadratic
form defined as follows

W2 = BL/(Lvar(B)L’) ' LA, (4.9)

and is distributed as x> with ¢ degrees of freedom under the null hypothesis. With
a single regression coefficient to be tested, the dimension of matrix L is 1x p thus
the equation (4.9) reduces to
A 2
W2 — ﬂ
SE‘,B)

with one degree of freedom.

4.5 Evaluation of HAART adherence predictors using the GEE
method

The aim is to determine the predictors of long-term optimal adherence, and evaluate
whether factors affecting first month (initial) adherence also influence long-term

HAART adherence. Letting y, =1 if the irh patient is classified adherent to
medication at the jrn follow-up visit, and y, =0 otherwise, we assume that the
marginal probability of adherence at each visit follows the logistic model

logit(u;) = X;ﬁ,

where u, =E(y;)=P(y; =1), x|

y

is a vector of explanatory variables and S is a

vector of unknown parameters. In addition to the 13 baseline variables used for the
evaluation of initial HAART adherence (Chapter 3), optimal HAART adherence
status at baseline was now used as a covariate. Moreover, the other additional
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variables included weight at every visit and time (follow-up visits). They have all
been described in Chapter 2. This specifies the first component of the marginal

model, the model for the mean response. Next we assume that
Var(yij)zﬂij(l—ﬂij),
which specifies the second component, the variance function and known scale

parameter (¢, =1,j=1,...,17). Moreover, an assumed correlation structure between

observations on the same subject has to be chosen.

Since model selection criteria for the mean response depend upon the correct
specification of the model for the covariance, the first step is to choose a suitable
model for the covariance. Because the observations are measured repeatedly on
the same subject over time, the choice of the working correlation is based on the
correlation structures that have time dependence. For this reason, the m-dependent
structure and the Autoregressive (AR-1) structure were used. The two correlation
structures were also contrasted with the independence structure where the
assumption is made that the repeated observations for a subject are independent.
The different correlation structures were fitted using the same mean structure
composed of all the main effects. Then QIC (Pan 2001) was used to select the
model with the best fitting correlation structure and the results are as follows:

Correlations QlC

Independent 22328.3090
AR-1 22312.3316
1-dependent 22318.9656
2-dependent 22317.1215
3-dependent 22318.6152

The QIC measure leads to the selection of AR-1 correlation structure since it has the
smallest QIC value.

The next step is to evaluate the mean structure. In order to check whether factors
that affect baseline adherence are still important when adherence is studied over
time, a model with all the main effects was compared with a model that contained all
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the main effects plus the three two-way interactions that were significant in the
analysis of baseline adherence in Section 3.4. The two-way interaction terms were
between age and cell phone ownership, gender and patient’s reported reason for
taking an HIV test as well as treatment site and whether or not a patient is the source
of household income. The generalized Wald test was used to test the joint null
hypothesis that the three interaction terms are equal to zero. The test produced a
Wald statistic of 4.78 with 4 degrees of freedom (p-value=0.3105) and is not
significant. Additionally, none of the two-way interactions of the three variables were
significant (age*cell phone: p-value=0.6613; gender*reason: p-value=0.4434;
treatment site*income: p-value=0.0710).

A new model was then built by fitting all the main effects and then each of the two-
way interaction terms formed from the predictor variables were added to the model
one at a time. The significance of each interaction term was assessed using the
Wald test. Only five of the two-way interactions were significant, of which three of
the two-way interactions involved time. Three variables which interact with time
were treatment site, gender and reason for taking an HIV test. The other two
interaction terms involved age with gender and with education. Then the generalized
Wald test was used to test the joint null hypothesis that the five interaction terms are
equal to zero. The test produced a Wald statistic of 45.38 with 7 degrees of freedom
(p-value = <.0001), which is significant. We further checked if higher order
interactions were significant. However, the Wald test has never favoured three-way
and higher interaction terms. Consequently, the final model contained five two-way
interaction terms and all the main effects. The results from the type 3 analysis of

effects for this model are presented in Table 4.3.
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Table 4. 3 : Type 3 analysis of effects for the GEE model

Effect DF | Wald Chi-square | p-values
Age 1 3.93 0.0474
Gender 1 12.28 0.0005
Educational attainment 2 10.03 0.0066
Treatment site 1 52.7 <.0001
Living with/without partner 1 8.33 0.0039
Contribution to household income | 1 0.01 0.9338
WHO staging of disease 3 4.86 0.1825
Baseline CD4+ count (cells/uL) 1 0.39 0.5320
Baseline weight (kg) 1 0.34 0.5570
Reason for taking HIV test 2 7.89 0.0194
Household access to tap-water 1 0.52 0.4689
Household access to electricity 1 0.01 0.9751
Cell-phone ownership 1 6.64 0.0100
Baseline adherence 1 1.72 0.1903
Weight 1 0.02 0.8902
Time 1 145.59 <.0001
Time*gender 1 13.56 0.0002
Time*treatment site 1 8.18 0.0042
Time*reason for test 2 7.74 0.0209
Age*gender 1 6.68 0.0098
Age*educational attainment 2 6.58 0.0372

The final model was re-checked for the correlation structure choice and the model
re-affirmed the AR-1 structure. The final accepted model is given by
logit[P(y, =11 x,)]= B, + B,age, + B, gender, + B educ _no, + §,educ _no, + fB;site; + 5 partner,
+ B,income, + BWHOstagel, + B,WHOstage?2, + 3,,WHOstage3, + 3,base _cd4,
+ B,,baseweight;, + B,;reason _no, + B, reason _risk; + B, stapwater, + B, electricity,
+ By, cellphone; + B sadh _monthl, + B, weight . + B, time,; + B, time, gender,
+ B,,.time, site, + [B,.time ;reason _no, + B,,time,reason _risk, + p,sage, gender,

+ B,gageeduc _no, + B,,age.educ _ p, .
(4.10)

All the results are presented in Table 4.4. The significant main effects (that were not
involved in significant two-way interaction terms) were cell phone ownership and

living with a partner. The interpretation of results on all the significant main effects
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that are involved in significant interaction terms will be restricted to post-hoc probing

of the interaction effects.

95%

Table 4. 4:  Adjusted odds ratio (aOR) from the GEE model with associated
confidence intervals (Cl)
Parameter Estimates aOR p-value 95% C.I. (aOR)
Lower Upper
Intercept 0.589 1.802 0.146 0.832 3.903
Age -0.012 0.988 0.147 0.972 1.004
Gender (ref=male)

female -3.507 0.030 0.001 0.155 0.591
Education (ref=sec & higher)

No schooling 1.617 5.038 0.002 1.837 15.82

Primary 0.099 1.104 0.856 0.378 3.223
Treatment site (ref=rural)

Urban 1.173 3.233 <.001 2.355 4.438
Staying with partner (ref=no)

Yes 0.289 1.335 0.004 1.097 1.625
Income (ref=not source)

Source of income 0.008 1.008 0.934 0.828 1.229
WHO staging (ref=stage4)

Stage1 -0.334 0.716 0.091 0.486 1.054

Stage2 -0.251 0.778 0.147 0.554 1.092

Stage3 -0.108 0.898 0.492 0.660 1.221
Baseline CD4+ count 0.001 1.000 0.532 0.998 1.001
Baseline weight -0.004 0.996 0.557 0.981 1.010
Reason for testing (ref=unwell)

No specific reason -0.027 0.973 0.877 0.685 1.381

Exposed to the risk -0.486 0.615 0.007 0.431 0.877
Access to tapwater (ref=no)

Yes 0.108 1.114 0.469 0.831 1.494
Household with electricity (ref=no)

Yes 0.004 1.004 0.975 0.786 1.283
Cell phone ownership (ref=no)

Yes 0.231 1.260 0.010 1.056 1.503
Initial adherence (ref=not adherent)

Adherent -0.140 0.869 0.190 0.704 1.072
Weight at follow-up 0.001 1.001 0.890 0.987 1.015
Time 0.100 1.105 <.001 1.059 1.153
Time*gender (ref=male)

Female 0.071 1.074 <.001 1.034 1.116
Time*treatment site

Urban site -0.057 0.945 0.004 0.908 0.982
Time*reason (ref= unwell)

No specific reason -0.011 0.989 0.624 0.947 1.033

Exposed to the risk 0.056 1.058 0.018 1.010 1.108
age*gender (ref=male)

Female 0.024 1.024 0.010 1.006 1.043
Age*education (ref=secondary)

No schooling -0.033 0.968 0.012 0.943 0.993

Primary -0.002 0.998 0.875 0.972 1.025
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The results show that after controlling for other variables in the model, optimal
adherence was significantly higher when patients had cell phones than when they
did not have cell phones [aOR = 1.260, p-value= 0.010] and when they lived with a
partner compared to when they did not live with a partner [aOR = 1.335, p-value =
0.004] (Table 4.4).

The results further reveal that optimal HAART adherence increased on average over
time, however, the rate at which optimal adherence increased differed by treatment
site, gender and the patient’s reported reason for taking an HIV test. Age interacted
significantly with gender and education. The interaction effects are presented below.

a) Interaction between gender and time

Optimal HAART adherence increased over time for both males and females.
However, the rate of increase was not the same for males and females after
controlling for other covariates in the model. The rate of increase was 7.4% higher
for females than for males [aOR = 1.074, p-value<0.001] (Table 4.4). The estimated

probabilities for this interaction are presented in Figure 4.1.

Figure 4. 1:  Estimated probability of optimal adherence interaction between gender and
time
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It is shown in Figure 4.1 that the estimated probabilities of optimal adherence were
higher for males at the beginning of the follow-up visits, but by the end of the study

period (17" follow-up visit), they were similar for both groups.

b) Interaction between treatment site and time

The rate at which optimal adherence increased over time differed in the urban and
rural treatment sites. After controlling for other variables in the model, the rate of
increase in optimal adherence was 6% higher in the rural treatment site than in the
urban treatment site [aOR = 1.06, p-value=0.004] (Table 4.4). The estimated
probability of optimal adherence for this interaction is presented in Figure 4.2. 1t is
shown (Figure 4.2) that the estimated probability of optimal adherence at the first
follow-up visit was 66% at the rural site and 86% at the urban site. Since the rate of
increase was higher in the rural site relative to the rate of increase in the urban site,
the gap in adherence between the treatment sites gradually decreased over time
until, by the end of the study, the estimated optimal adherence probabilities were
similar (at 91% and 92%, respectively).

Figure 4. 2:  Estimated probability of optimal adherence interaction between treatment site
and time
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C) Interaction between reason for taking an HIV test and time

Optimal adherence increased over time, but the rate at which it increased differed
with the patient’s reported reason for taking an HIV test. The rate of increase in
optimal adherence was 5.8% higher over the study period for patients who tested
due to possible exposure to HIV, than for patients who tested because they were
unwell [aOR=1.058, p-value=0.016] (Table 4.4). There was however no significant
difference in the rate of change of optimal adherence between patients who tested
because they were unwell and those who reported no specific reason for taking an
HIV test [p-value=0.666] (Table 4.4). Further analysis revealed that the rate of
increase in optimal adherence over the study period was 7% higher for patients who
tested due to possible exposure to HIV, than for those who reported no specific
reason for taking an HIV test [aOR=1.069, 95% CI: (1.016, 1.126), p-value=0.0107).
Figure 4.3 presents the estimated probabilities for this interaction.

Figure 4. 3:  Estimated probability of optimal adherence interaction between reason for
taking an HIV test and time
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It is shown in Figure 4.3 that estimated probabilities of optimal adherence for patients
who tested because they were unwell, and those who reported no specific reason for
taking an HIV test, were similar throughout the study. It is again shown in Figure 4.3
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that at the beginning of the follow-up period, estimated probabilities of optimal
adherence for patients who tested due to possible exposure to HIV were less than
the estimated probabilities of patients who reported no specific reason for taking an
HIV test, as well as those who tested as they were unwell. However, during the
middle of the follow-up visits, estimated probabilities were similar for all the reported
reasons. Towards the end of the study, the probabilities of optimal adherence were
higher for patients who tested due to possible exposure to HIV than those who
reported no specific reason for testing for HIV, or those who tested as they were

unwell.

d) Interaction between age and gender

Optimal HAART adherence differed by age for males and females. As the age of
patients increased, females tend to adhere better to HAART than males [aOR:
1.024; p-value=0.010] and estimated probabilities are presented in Figure 4.4.

Figure 4. 4:  Estimated probability of optimal adherence between age and gender
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It is shown in Figure 4.4 that the estimated probabilities of optimal adherence were
higher with younger males than with younger females, whereas with older patients,
estimated probabilities were higher with females than males.
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e) Interaction between age and education

Optimal HAART adherence differed by age at different education levels. Among
older patients, those with no schooling were less likely to achieve optimal HAART
adherence than those with secondary and higher education [OR=0.97, p-
value=0.012] (Table 4.4). There was, however, no significant difference in optimal
HAART adherence between patients with secondary education and patients with
primary education, regardless of age [p-value=0.875)] (Table 4.4). Further analysis
revealed that as patients got older, those with primary education were more likely to
achieve optimal adherence than those with no schooling [aOR=1.03, 95% ClI: (1.002,
1.070); p-value=0.048]. The estimated probabilities are presented in Figure 4.5.

Figure 4. 5:  Estimated probability of optimal adherence interaction between age and
educational attainment
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Figure 4.5 indicates that the estimated probabilities of optimal adherence by patients
decreased with age. More specifically, the probability of optimal adherence for
patients with secondary and primary education was similar for all ages, whereas
probabilities of optimal adherence for those with no schooling were higher for
younger ages and lower for older ages, relative to those with primary and secondary
schooling.
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4.6 A note on GEE extensions

A number of extensions to the standard GEE or (GEE1) introduced by Liang and
Zeger (1986) have been proposed. We have seen that the standard GEE
methodology combines an estimating equation for regression (first-moment)
parameters with moment-based estimators for the association (second-moment)
parameters «. Prentice (1988) and Prentice and Zhao (1991) extends Liang and
Zeger's work by replacing the moment-based approach to estimating second-
moment parameters with an ‘ad-hoc’ estimating equations for these quantities. That
is, this method allows for estimation of both parameter vectors, g and « but

proposes estimating equations for both sets of parameters. Second order GEE
(GEE2) have been proposed by Zhao and Prentice (1990), using correlations, and
by Liang, Zeger and Qagqish (1992), using odds ratios. They consider an alternative

equation for simultaneous estimation of the regression parameters £ and
covariance parameters a. This requires modeling the third and fourth moments of

v, instead of just the mean and variance.

)

Lipsitz, Laird and Harrington (1991) proposed a different approach to modeling the
GEE1 association parameters. For binary outcomes, they used the odds ratio as the
measure of association instead of Pearson’s correlation coefficient. Liang et al.,
(1992) did the same for GEE2. Carey, Zeger and Diggle (1993) developed an
approach for binary repeated measurements similar to that of Lipsitz et al. (1991).
The alternating logistic regression (ALR) methodology Carey et al. (1993)
simultaneously regresses the response on explanatory variables as well as modeling
the association among responses in terms of pairwise odds ratios. The ALR
algorithm iterates between a logistic regression using first-order generalized
estimating equations to estimate regression coefficients and a logistic regression of
each response on others from the same subject using an appropriate offset to
update the odds-ratio parameters. The ALR algorithm is now implemented in the
SAS GENMOD procedure.

71



4.7 Summary

The GEE approach is appealing for analysis of binary (discrete) data because of its
computational simplicity compared to the maximum likelihood-based approaches.
The marginal GEE model for adherence data was fitted with ease using the SAS
GENMOD procedure. However, because there is no likelihood function, likelihood-
based methods are not available for testing fit, comparing models and conducting
inference about parameters. Instead inference can only use Wald statistics
constructed with asymptotic normality of the estimators together with their estimated
covariance matrix. Moreover, even though GEE estimates are consistent with
misspecification of the covariance structure, it is important to choose the covariance
structure that closely approximates the true underlying one for greater efficiency.
However, because of the lack of the likelihood function, tests such as AIC and
likelihood ratio test cannot be used to guide the selection of the appropriate form of
non-nested and nested covariance structures respectively. Nonetheless, the quasi-
likelihood information criterion (QIC) (Pan, 2001), has been advocated with the GEE
for choosing a reasonable working correlation structure. QIC is a modified AIC for
GEE, where the likelihood is replaced by the quasi-likelihood and the penalty also
takes a modified form. The QIC macro implemented within the GENMOD procedure
was used to select the best fitting covariance structure among the competing ones in
the adherence data.

Application of the GEE method to adherence data to evaluate long-term predictors of
optimal adherence revealed that five of the two-way interactions were significant.
These were between: time and treatment site, time and gender, time and reported
reason for taking an HIV test, age and gender as well as age and educational level.
Also, cell phone ownership and living with a partner were positively associated with
optimal adherence. A detailed discussion of these results can be found in Maqutu et
al., (2010b) attached in Appendix B. Next, in Chapter 5 we explore subject-specific
effects that are associated with optimal adherence by reviewing and fitting

generalized linear mixed models.

Note that GEEs are flexible in handling missing data in the sense that there are no

restrictions on the number of observations per individual; subjects who are missing
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at a given assessment are not excluded from the analysis. However, these models
make a very restrictive assumption about the missing data mechanism, i.e., that data
are missing completely at random (MCAR). Evaluation of the impact of dropout in
the adherence data suggests that there is no evidence against MCAR, and we

therefore conclude that the GEE estimates are valid.
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Chapter 5

Generalized linear mixed models

5.1 Introduction

In the previous chapter, we adopted a GEE modeling approach for analysis of
adherence data. This entailed a population-averaged modeling formulation that
provided population average estimates of overall trends in adherence. In this
chapter, the goal of the analyses is to determine subject specific changes in
medication adherence over time and explore factors that influence such adherence.
In addition, the association structure of data is of interest, that is, we seek to
examine the correlation structure among the repeated measures. Much as the GEE
method provided marginal population averaged evolutions, which are important from
the public health perspective, it cannot provide evolution of each subject separately.
Moreover, in the GEE approach, the correlation assumptions are allowed to be
incorrect, which does not affect the validity of the estimates but hinders formal
inferences about the correlation structure. Moreover, the GEEs by themselves do
not help separate out different sources of variation. It is often an advantage to be
able to attribute variation as being associated with different factors (McCulloch,
2003). In this chapter, we present an alternative approach using subject-level terms
in the model. The inclusion of subject-specific term leads us to random effects
models which have conditional interpretations (referred to as subject-specific), that
are a direct contrast with the GEE models which have population-averaged
interpretations.

Linear mixed models as a special case of random effects models are well
established. By contrast, only recently have random effects been used much in
models for discrete data (Molenberghs and Verbeke, 2005). In this chapter, we
extend generalized linear models (presented in Chapter 3) to include random effects.
This leads to the generalized linear mixed model (GLMM), which is a special case of
the random effects models and is the most frequently used model for analysis of
discrete data. The GLMMs are basically suitable for analysis of longitudinal data

where the objective is to study how subject specific effects change over time and
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what characteristics influence such changes. The advantages of GLMMs over GEEs
are that they are more robust in cases where there are missing data and where there

are unbalanced clusters. GLMMSs can also estimate variances at different levels.

5.2 Model formulation
Suppose y, is the jth response for subject i, i=1,...,N, j=1,..,n, and y, is the
n,-dimensional vector of all measurements available for subject i. Conditionally on
random effects b,, it is assumed that the elements of y, for y, are independent,
following a generalized linear model, but with the linear predictor appended with
subject-specific regression parameters b,. Specifically, it is assumed that all y,
have densities of the form

vy (6;)—w(6;)

¢

where u,, the conditional mean of y, is modeled through a linear predictor

£y, 1b,.8.0)= exp{ +c<y,»,.,¢>}, (5.1)

containing fixed regression parameters S as well as subject specific parameters b, ,
that is
g(u;)=glE(y; Ib)I=x;B+z}b,, (5.2)
where x; and z; are p-dimensional and ¢ -dimensional vectors of known covariate
values corresponding to the fixed and random effects S and b, respectively, through
a known link function g(.). Furthermore, conditionally on random effects b,, the
responses y, are independent and it is also assumed that the random effects b,,
are N(0,G). The variance of observations, y,, conditional on the random effects, b,
is given by
var(y; Ib, )= a, (@)oly, ),
where () is the variance function that relates the conditional means and variances,

and ¢ is a dispersion parameter.

It is important to note that the model specification in (5.1) and (5.2) is made

conditional on the value b,. The consequences of including the random effects in

the model can better be appreciated by studying the first two moments of the
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marginal distribution of y,. With linear mixed models, the marginal mean of y,

coincide with the conditional mean given that b, =0. However, this property is not

necessarily true in GLMMs. The marginal mean, variance and co-variances are

given (McCulloch and Searle, 2001) as follows.

The marginal mean of y, is given by
E(y,)=E|E(y, b, )]
= Elu, ]
=Elg(x;8+2p, )
which in general cannot be simplified due to the nonlinear function g™'. In a linear
mixed model, the induced marginal mean is reduced to E(y,)=x;/. The marginal
variance of y, induced by the random effects has the following expression
var(yl.j) = var(Elyij IbiJ)+ E(var[ylj Ibl.J)
= var(u, )+ Elpn ol )
=var(g™ [x; 8+ 2;b, )+ Elavlu, Jo~ (x; 8 +2p, )l
this again cannot be simplified in most cases without making specific assumptions
about the form of g(.) and/or the conditional distribution of y,. The induced marginal
variance in a linear mixed model is reduced to var(y,)=Z7Z,GZ;+R,. Finally,
assuming conditional independence of y., the marginal covariance is given by
cov(yij,yik)z cov(Elyij Ibl.J,E[yik Ibi])+ E[cov(yij,yik Ib,.)J
=corlg(x; B+2b,). g7 (X, B +2b,)]
Similarly, in a linear mixed model, the above equation is reduced to
cov(yl.j,yik):Gizijz;k. If the linear mixed model has only a random intercept, the
marginal covariance is Cov(yij,yik)=abz where o, is the variance of the random

intercept.

For illustration, we consider a Poisson GLMM with a random intercept distributed

normally with zero mean and variance o,. Suppose we have a log link so that
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g(u)=1log(u) and g~'(x)=exp{x}. Then the induced marginal mean of y; Is equal
to
E(y;) = Elexp{x;f +z;b}]
= exp{x; B} E[exp{z;b}]
= exp{x), Blexp{o7 [2}
and the marginal variance and covariance leads to
var(yij) = var(Elyij I'b, J)+ E(varlyl.j I'b, J)
= ELy; exp{x;; B}[exp{30, 12} - exp{o /2}]+1)
and
cov(yij,yl.k )zcov(E[yU Ibl.J,E[yl.k Ibl.])+ Elcov(ylj,yik Ibl.)J
= exp(x; B)exp(x;, B)(exp(20, ) — exp(0;))
respectively. This shows that although the conditional distribution of y, given b, is

Poisson, the marginal distribution cannot be. For instance, the term in parentheses
for the marginal variance is greater than 1, therefore, the variance is larger than the

mean. Thus, although y, Ib, follows a regular Poisson distribution, the marginal
distribution of y, is over-dispersed. Again, the marginal covariance expression

shows that due to random intercept, observations on the same subject are no longer
independent.

In general, it should be appreciated that the consequence of adding random effects
in a generalized linear model complicates the evaluation of the first two moments of

the marginal distribution.

The random intercept model

The random intercept model is the simplest case of a mixed effects model. In the
case of non-normal data, a random-intercept model is simply a generalized linear
model with randomly varying subject effect. In this model, each subject is assumed
to have an underlying level of response that persists over time. Assume that there

are i=1,---,N subjects and j=1,---,n, repeated observations for each subject. A
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random-intercept model augments the linear predictor with a single random effect for

subject i,
n; = X;ﬂ + bi
where b, is a random effect for each subject. These random effects represent the

influence of subject i on his/her repeated observations that is not captured by the
observed covariates. The random effects are commonly assumed to be normally

distributed with mean zero and constant variance o,. The parameter o, indicates

the variance in the population distribution and therefore the degree of heterogeneity

of subjects.

The generalized linear mixed model for a binary response is used here as an
illustration of a random intercepts model because of its relevance to the adherence

data in this study. Suppose that y, is a binary response, taking values of 0 or 1. A
logistic mixed effects model for y, is given as follows (Fitzmaurice et al., 2004):
a) Conditional on single random effects b,, the y, are independent and have a
Bernoulli distribution, with var(y, 1b,) = E(yj | b, ){I—E(yij Ibi} with ¢ =1.
b) The conditional mean of y, depends upon fixed and random effects via the
following linear predictor
n; :x;jﬂ+z;jbi :x;ﬂ+bi,
where z, =1 forall i=1,...,N, and j=1,...,n, with

lo —Pr(yij:llbi) =n,=x,8+b
& Pr(y, =015)| 7 77T

That is, the conditional mean of y, is related to the linear predictor by a logit

link function.

c) The single random effect b, is assumed to have a univariate normal

distribution, with zero mean and the variance, say g,, because in this case G

is of dimension 1x1.

This example illustrates a simple logistic regression model with randomly varying

intercepts. The model shows that there is a natural heterogeneity in individuals’
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propensity to respond positively that persists throughout all the binary responses
obtained on any individual.

The randomly varying intercepts and slopes model

The random intercepts model can be extended to include multiple random effects.

Denote z; as the rx1 vector of variables having random effects (a column of ones

is usually included for the random intercept). The vector of random effects b, is

assumed to follow a normal distribution with the mean vector 0 and the variance-
covariance matrix G. The linear predictor is now written as
n; :x;j,B+zjjbl.,

where now the conditional mean is specified in terms of the vector of random effects,
i.e E[y,.j |b,.,x,.j]. For instance, it is common to have a random subject intercept and
a random slope in longitudinal problems. Our earlier illustration of the random
intercepts model for binary data can be extended to incorporate random slopes as
follows:

a) Conditional on a vector of random effects b,, the y, are independent and are
assumed to have a Bernoulli distribution, with
var(y, 1b,)=E(y, Ib, {I- E(y, Ib, } with g =1.
b) The conditional mean of y, depends upon fixed and random effects via the
following linear predictor

0 :xlj,B+zijbl.,

’
ii

where x/ =z (l,tij ) forall i=1,...,N,and j=1,...,n, with

{Pr(yij=llbi)
O —_—

= .4:X,.4 +Z’..b.
Pr(yij:OIbi)} Ty =Xy P +2b,

=L, +,Blt,.j +b,, +b,t,

1i%ij
= (IBO +b()i)+ (131 +b1i)tij .
c) The random effects are assumed to have a bivariate normal distribution, with

zero mean and a 2x2 covariance matrix G.
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This example illustrates a logistic regression model with randomly varying intercepts
and slopes. The model shows that there is a natural heterogeneity among
individuals in both their baseline level and changes in the expected outcome over
time.

5.3 Interpretation of model parameters

Fixed part: conditional and marginal relationships

Although the introduction of random effects can simply be thought of as a means of
accounting for correlation among longitudinal responses, it has important
implications for the interpretation of the regression coefficients in generalized linear

mixed models (Fitzmaurice et al., 2004). The regression parameters, £, have

somewhat different interpretations than the regression parameters in the marginal
models considered in Chapter 4. Molenberghs and Verbeke (2005) also show that
the severe differences in results obtained from marginal and random effects follow
from the fact that parameters in both models have completely different
interpretations. To appreciate the nature of the difference between the two models
where we have a non-linear link function, let us consider an example using a binary
outcome variable and assume a random-intercepts logistic model with linear

predictor logith(yij =11b,)|= B, + B,t+b, where ¢ is the time covariate. The

conditional means E(yij Ibi), as a functions of ¢, are given by

Ely. 1b)= exp(B, + Bt +b,)
v 1+exp(ﬁ0+,51t+bl.)'

The model assumes that the conditional means all satisfy a logistic model, with the

same slope p, but with different intercepts S, +b, for all subjects. The marginal
average evolution is as follows
E(y,)=E|E(y, 1b,)]

exp(ﬁo + ﬂlt +b, ) exp(ﬂo + :Blt +b, )
1+exp(ﬂ0 +ﬁ1t+bi) 1+6Xp(,30 +ﬂ1[+bi)'

This shows that there is no straightforward relationship between estimated

parameters in both random effects models and marginal models.
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Consequently, parameter interpretation in generalized linear mixed models has
subject specific interpretations. That is, they represent the influence of covariates on
a specific subject’'s mean response. In particular, the regression coefficients are
interpreted in terms of the effects of covariates on changes in an individual's
transformed mean response, while holding the remaining covariates constant
(Fitzmaurice et al., 2004).

Random part:
(a)  Measures of heterogeneity

It has been suggested that one way of interpreting estimated standard deviations of
the random effects is to produce percentiles of the effects based on the normality
assumption (Hedeker and Gibbons, 2006; Rabe-Hesketh and Skrondal, 2008). For

instance, for a covariate with an estimated fixed coefficient f, and a random

coefficient b, , form the approximate 2.5 and 95.5" percentiles using 3, +1.96,/3,,
to express the range of effects that are likely to occur. In a random intercept model,

for instance, /3, £1.96,/3,, gives a range of intercepts which can be converted to a
range of conditional expectations x, (e.g probabilities for dichotomous responses)

by plugging particular covariate values into the linear predictor and applying the
inverse link function. The same approach can be used in random coefficient models

by using the standard deviation of zb, at particular values of z;,.

(b)  Measures of dependence

The introduction of random subject effect, can be seen to induce correlation (within-
subject dependence) among the repeated measures. For a random intercept model,
the between subject variance is often expressed in terms of an intraclass correlation.
Given that the covariance between any pair of repeated measurements is o,, the

correlation is

2
O-b

Corr(yij’yik)zm5
also known as the intra-class correlation. This can also be interpreted as the
proportion of the total residual variance that is due to unobserved between-subject

heterogeneity. In linear random coefficient models, the covariance matrix of the total
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residuals is a function of time and there is no simple measure. For instance, in the
model with randomly varying intercepts and slopes, the covariance between any pair
of repeated measurements depend on the measurements of time (Fitzmaurice et al.,
2004; Longford, 1993), that is

Corr(yij’yik ): 811 +(tzj +1, )g12 +1,0,8-
However, for GLMMs, the correlations Corr(yij,y,.k) generally depends on covariates

even if only a random intercept is included and are therefore not useful measures of
dependence. Fortunately, the correlations of latent responses in logit and probit

random intercept models are constant and obtained by simply substituting either 1

(probit) or z2/3 (logit) for o} (Rabe-Hesketh and Skrondal, 2008).

5.4 Estimation of model parameters

To fit a GLMM, it is possible to use two alternatives: Bayesian approach and
maximum likelihood estimation approach. In the Bayesian approach, it is necessary
to specify the prior densities for #, G and ¢ denoted by f(f8), f(G) and f(¢)
respectively. Once priors have been specified, the posterior distribution can be
found (Molenberghs and Verbeke, 2005). It is pointed out that an attractive feature
of Bayesian approach is its flexibility for full assessment of the uncertainty in the
estimated random effects and functions of model parameters, however, the potential
drawbacks include the intensive computations (which require fairly sophisticated
computer programs) and questions about when the sampling process has achieved
equilibrium (Breslow and Clayton, 1993; Agresti et al., 2000).

On the other hand, it has been argued that maximum likelihood is a well-established
and well-respected method of estimation that has a variety of optimality properties
and as such it is usually the default technique for estimating parameters (Searle,
Casella and McCulloch, 2006). Our focus will be on this method of estimation. We
have seen that the estimation method of fixed effects in GLMs is based on the well
defined log-likelihood and it is simple to construct an objective function based on the
independence of the data (Section 3.3). In linear mixed models, estimation of
parameters is based on the marginal likelihood of the data and can be evaluated
analytically (Verbeke and Molenberghs, 2000). With GLMMs, to obtain maximum
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likelihood estimates, one would maximize the marginal likelihood, obtained by
integrating over the random effects.

The complete likelihood function for GLMM can be obtained from the product of the
known distributions of yIb and b. The true likelihood function can be written as
follows (Demidenko, 2004)

L(y,b) = L(y Ib)L(b) (5.3)

If we assumed that b has a multivariate normal distribution N(0,G), then

L(y,b) < L(y Ib) |G |7 exp(—%b'Glbj. (5.4)

Based on (5.4), the marginal likelihood of y could be obtained by integrating over

the random effects b. However, this is not always possible because the resultant
integral of the right side of (5.4) does not always have an analytical solution, that is, it

must be solved using numerical methods.

5.4.1 Approximations to the likelihood function in GLMM

The GLMM can be fitted by maximizing the marginal likelihood obtained by
integrating over the random effects. The contribution of the itk subject to the
likelihood is given by (Molenberghs and Verbeke, 2005)

L= 10,15.6.0)= [T 1,0, 1b,.5.0) (b, 1G)ab, (55)

Thus, the likelihood function L can be written as:

L=INTL,. =f1 [T1,(, 16, 8.0)r (b, 1G)ab, (5.6)

i=1 i=1 j=1
where y, is the n, —dimensional vector containing all the measurements available
for the ith subject. Notice that (5.5) has the form of (5.3). This integration is done
over the g—dimensional distribution of b. In some cases, (5.6) can be worked out

analytically, for example probit-normal model (Molenberghs and Verbeke, 2005). In
other cases, such as the logistic mixed model, the integral in (5.6) cannot be

evaluated in closed form. Therefore, numerical approximation is necessary in order
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to evaluate the likelihood. The numerical approximations for the integral of the
marginal likelihood in (5.6) can be divided into those based on the approximation of
the integrand, those based on the approximation of the integral itself and those
based on an approximation of the data.

Approximation of the integrand: Laplace Approximation

Laplace approximation is a well known method to approximate integrals where the
exact likelihood is difficult to evaluate. To illustrate how Laplace approximation
works, let us suppose that we want to approximate integrals of the form
(Molenberghs and Verbeke, 2005)

I = Je_Q(b)db,
and that b is the value of b for which Q is minimized. Then, the second-order

Taylor expansion of Q(b) around b is of the form
0(b) = 0(b)+ (b-b)Q"(b)b-b) (5.7)

where Q’(b) is equal to the Hessian of Q, i.e the matrix of the second order
derivatives of Q, evaluated at b. The integral I can be approximated using (5.5),

thus

I =) Q”(B)‘_l/ze_Q(i’). (5.8)

In this case, it is considered that Q(.) is unimodal. When Q is bimodal, it is

necessary to use an improved Laplace approximation (Demidenko, 2004). In this
method, the approximation to the integral uses many different estimates of b as

necessary according to the different modes of the Q function. The integral in (5.6) is

proportional to an integral 7 in (5.8), for a Q(b) function given by
— i ’ ’ ’ 7 1 /7, -
Q(b) = (ai¢) IZ[yij (Xij:B+ Zijb)_W(Xij:B"i'Zijb)]_Eb G™,
j=1

such that Laplace’s method can be applied here.

Approximation to the integral: Gauss-Hermite quadrature

The Gauss-Hermite quadrature is often used for numerical integration in statistics,

because of its relation to Gaussian densities (Liu and Pierce, 1994). In a particular

84



context of random effects models, the Gauss-Hermite quadrature can be used for
performing maximum likelihood estimation. We will consider the classical Gaussian

and adaptive Gaussian quadratures, designed to approximate integrals of the form
j h(s)c(s) ds, (5.9)
for a known function Ai(s) and for c(s) the density of the univariate or multivariate

standard normal distribution. Thus, random effects have to be standardized such

that they get the identity covariance matrix. Let 6. be equal to &, =G™?b,. Then §.
is normally distributed with mean 0 and covariance I, and the linear predictor
becomes 6, =xjj,8+z;.G1/28,.. Consequently, the variance components in G are
now contained in the linear predictor. Then the likelihood contribution for subject i is

given by

£.6,15.6.0)= [T 1,00, 1b,.5.0)/ (b, 1G)ab,

1.6,16.6.0)= 14,0, 15,.8.0)6,1G)s,,  (5.10)

where the random effects b, are assumed to be normally distributed with mean 0

and covariance G. Expression (5.10) is the form of (5.9) as required to apply the
Gaussian quadratures (Molenberghs and Verbeke, 2005; Antonio and Beirlant,
2007).

Classical Gaussian quadrature approximates an integral of the form (5.9) by a

weighted sum, namely
0
J.h(s)c(s) dz = quh(sq) . (5.11)
g=1

where Q is the order of the approximation, the s, are solutions of the Qth order
Hermite polynomial and w, are corresponding weights. The nodes or quadrature
points s, and the weights w, are reported in Tables (e.g Abramowitz and Stegun,
1972). Alternatively, an algorithm to compute s, and w, for any value Q is given in

Press et al., (1992). The quadrature points used in (5.11) do not depend on A(s)

such that it is possible that only very few nodes lie in the region where most of the

mass of h(s) is, which would lead to poor approximations (Antonio and Beirlant,
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2007). However, if adaptive Gaussian quadrature rule is used, the nodes would be
rescaled and shifted such that the integrand is sampled in a suitable range. That is,

the quadrature points are rescaled as if the Ih(s)c(s) ds is a normal distribution with

the mean of this distribution being the mode % of In[i(s)c(s)] and the variance would

-1
szf}
12
l Sy
s=§

-1/2
} | c
w .
~ ‘ i q
s=S8 CSq

In this case, then the integral is approximated by
0
Ih(s)c(s)ds ~ Zw;h(s;'). (5.12)
g=1

(Molenberghs and Verbeke, 2005).

equal to

- 2]

s

Then the new quadrature points are given by

s, =5+ {— FYe In[A(s)e(s)]

S

with corresponding weights

w, = [—as—zln[h(s)c(s)]

It has been shown that when (5.12) is applied with only one node, the result is
equivalent to approximating the integrand using the Laplace approximation (Liu and
Pierce, 1994). Some simulation results suggest that in the classical Gaussian
quadrature, a larger number of quadrature points (100 or more) are necessary to
obtain high accuracy while the adaptive quadrature provides good accuracy with 20
or fewer quadrature points (Diggle et al., 2002). Nonetheless, the adaptive Gaussian
quadrature is much more time consuming than the classical Gaussian quadrature.
This is due to the fact that the adaptive Gaussian quadrature requires calculation of
s for each unit in the dataset, hence the numerical maximization of N functions of
the form (5.9) (Molenberghs and Verbeke, 2005). Moreover, since these functions

(5.9) depend on the unknown parameters £, G and ¢, the quadrature points as

well as the weights used in the adaptive Gaussian quadrature depend on those
parameters, and hence the need to be updated in every step of the iterative
procedure (Molenberghs and Verbeke, 2005).

86



Once the problem of the intractable integral is solved, the actual maximization of the
likelihood is carried out using algorithms such as Newton-Raphson and Fisher
scoring (Tuerlinckx et al., 2006). The numerical integration methods work relatively
well with GLMMs that have low-dimensional random effects distributions such as
single random effect or two or three nested random effects (Diggle et al., 2002).
However, none of the numerical methods have been made computationally practical

for models with random effects distributions with ¢ >5. This limitation makes

numerical integration using quadrature prohibitive for GLMMs that have serial
random effects for instance, which greatly limits its application to categorical

longitudinal data analysis (Diggle et al., 2002).

Approximation to the data: penalized and marginal quasi-likelihood

For GLMs, quasi-likelihood is attractive because of its ability to generate highly
efficient estimators without making precise distributional assumptions (McCulloch
and Searle, 2001). The quasi-likelihood does not specify a distribution, only the
mean and the variance (Agresti, 2002). For GLMMs, optimization of the quasi-
likelihood function (which involves the first- and second-order conditional moments)
is augmented with a penalty term on the random effects and therefore, it is called
Penalized Quasi-likelihood (PQL) (Molenberghs and Verbeke, 2005). PQL can be
considered as an approximated inference method in GLMM. There have been a
number of proposed versions of this approximate method. We will confine our
discussion to the widely used methods, namely, algorithms proposed by Breslow and
Clayton (1993), Schall (1991) and Wolfinger and O’Connell (1993). The similarities

and differences between these methods will be highlighted.

The method proposed by Breslow and Clayton (1993) can be summarized as follows
(Jiang, 2007). In the GLM context, and based on (5.3), for any type of GLMM, the
quasi-likelihood form is given by

OL(y,.b) = QL(y I b)L(b)
and the integrated quasi-likelihood function is given as

YAPRIRZ 1 & 1., .
L, < (27)"|g| jexp —2—¢Zd,-(y,-;,u,-)—§bG b |db (5.13)
i=1
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where the subscript Q indicates quasi-likelihood, and

(youy=—f"FiT" 4 5.14
(i) =2 (5.14)

1

is known as the (quasi-) deviance. If y is Gaussian and g~ is the identity, the

integral in (5.14) is normal and may be evaluated in closed form. If not, this

expression contains integrals that must be solved using numerical methods.

Expression (5.13) has the form ¢1G 7 Je‘Q(b)db , with a constant term ¢ and Q is a

function of b. Therefore the Laplace method can be used to approximate the

integral in (5.13). Using the result in (5.8), the logarithm of L,, denoted by [, is

given by

1 1., R
Iy = ¢~ loglG| ~logla(b)| - ().

where ¢(b) is defined as
1< .
q(b)=5(2d,<yi;ui>+bG 'bj.
i=1

Typically, b =b(5,6) is the solution to
i ~ n y. — M.
¢(b)=G'b- LT 7.=0
;ai(¢)v(ﬂi)g (luz)

that minimizes ¢(b). In addition, the second derivative of ¢ is given by

2o o e T

where the term r has expectation 0, Z is the matrix whose irh row is z; and W is

q"b)=G™ + +r=~Z'WZ+G™,

the NxN diagonal matrix with diagonal terms w, :{gzﬁaiv(ﬂl.)[g’([zi )]2}_1. Therefore,

the log quasi-likelihood is given by

1 1 1 1A A
I, =——1Gl-=1og| I+ Z'WZG | —— > d.(y,,[.)—=b'G™'b,

where b is chosen to maximize the last two terms, I is the identity matrix. This

expression leads to the PQL algorithm to estimate g and #. Differentiating with

respect to # and b, the score equations for the mean parameters are
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o (y,'_:ui)xi -0 515
2 o)~ (5:18)
and
C e
d S -G b=0. 5.16
2 oWl s ) (516

Breslow and Clayton (1993) propose an iterative procedure for solving (5.15) and
(5.16). The attractive feature of the proposed procedure is that it exploits a close
correspondence with well known mixed model equations (Henderson et al., 1959),

which leads to the best linear unbiased prediction (BLUP) in linear mixed models. If

we define the working vector y; with components y; =7, + g’(¢, )y, — ), and where

i

n, and u, are evaluated at the current estimators of # and b. Then the solution to

(5.15) and (5.16) using Fisher’s scoring may be expressed as the iterative solution to

XWX  X'WZ \(B) (XWy (5.17)
ZWX Z'WZ+G™' \b) (zZ'wy" ) '

the system

Expression (5.17) is the same as in the linear mixed models equations (see Verbeke
and Molenberghs, 2000). It should be noted that because W depends on S and b,
it has to updated at each iteration. Equivalently, the solution to (5.17) may be
expressed as follows:

B=(XV'X)'xXV'y’,

b=GZV'(y —XB),

where V=W ' +ZGZ'.

The other version of PQL algorithm was developed by Schall (1991) in the context of
longitudinal data. This method proposes to use a linearization of the conditional
mean as a function of fixed and random effects. This method is based on a
decomposition of the data into the conditional mean and an appropriate error term
with Taylor series expansion of the mean that is a non-linear function of the linear
predictor (Molenberghs and Verbeke, 2005). Consider the decomposition

Vi =My +E; = g_l(xl'.j,b’+ z;.bl.)+el.j (5.18)

outcome for the i"

th

where y, is the ;j subject. The var(y,)=gv(u,) for v(-)is the
variance function.
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Consider a linear Taylor expansion of (5.18) (summarized by Molenberghs and
Verbeke, 2005) around current estimates /3 and b. of the fixed effects and random

effects respectively. Thus,
y; = g (x;ﬁ+z;f)l)
B+ ab, (8- 5)
+(g‘1)’(x;,8+zjjf)i)z;j(bi —b, )+ &
=4, "‘v(ﬁly )X;(ﬂ_lg)"' v(ﬁlj )Z;j (bi _Bi)+€ij
where £, equals the current predictor g™ (xjjﬁ+z;.l§l.) for the conditional mean
E(y,b,). Rewriting the above expression in vector notation, it becomes
vy, =, +VX, (8- B)+V.Z,[b, -, )+,
For appropriate design matrices X, and Z,, and with V, equal to the diagonal matrix
with diagonal entries equal to v(ﬁij). Reordering the terms yields
v, =g @)y, - )+ X,B+Zb, ~X,B+1LDb, +¢£ , (5.19)

where V' =g’(2) and & =g’(u,)e,, with zero mean. Expression (5.19) can be
viewed as a linear mixed model for the pseudo data y; with fixed effects £, random

effects b, and the error terms ¢, . This result yields an algorithm for fitting a GLMM.
Given the starting values for the parameters £, G and ¢ in the marginal likelihood,
empirical Bayes estimates are calculated for b, and pseudo data y; are computed.

Then the approximate linear mixed model presented in (5.19) is fitted (for fitting of
linear mixed models, see Verbeke and Molenberghs, 2000), and then the estimates
of the parameters are updated. This process is iterated until convergence is
reached. The resulting estimates are called penalized quasi-likelihood estimates
because they are obtained from optimizing the quasi-likelihood function using
approximations of first and second order.

An alternative approximation is very similar to PQL method, but is based on a linear

Taylor expansion of the mean g, around the current estimates of B for the fixed
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effects and around b, =0 for the random effects. This produces similar expressions
to PQL but 2, takes the form g™ (xjﬁ) rather than g~ (xjﬁ+zjb) The pseudo

data are now of the form y: =g’(i,)(y, —i,)+X,3, and satisfy the approximate
linear mixed model

Yy, =X,f+Zb, +¢ .
The resulting estimates are called marginal quasi-likelihood estimates (MQL).
Similar to PQL estimates, MQL can be obtained by optimizing a quasi-likelihood
function which only involves first- and second-order moments, but now evaluated at

the linear predictor (xJ,B) rather than the conditional linear predictor (xjﬁ’+ z;jf)i).

A similar approximation method was proposed by Wolfinger and O’Connell (1993).
They introduced pseudo-likelihood (PL) and restricted pseudo-likelihood (REPL)
procedures for estimation. Their approach to PL/REPL is also based on a Gaussian
approximation and Taylor's linearization theorem, already discussed in Schall’s

(1991) approach. That is, the non-linearity of a GLMM is removed by applying a

first-order Taylor expansionto g™ (x;.,b’+ zjjb,.) about the current values of g and b,.

This results in a weighted linear mixed model (5.19) that can be estimated with the

standard linear mixed model methods. The estimates of f and b, are used to

update the pseudo-data and the process is repeated until convergence.

Wolfinger and O’Connell (1993) show that implementation of PQL and MQL
procedures by Breslow and Clayton (1993) may be achieved with their algorithm. In
fact Littell et al., (2006) argue that Breslow-Clayton and Wolfinger-O’'Connell‘s
procedures are similar in that they both use the generalized mixed model equations

(56.19) for solutions of B and b,. Nonetheless, one of the differences between the

two procedures is primarily based on the fact that Breslow and Clayton motivate their
estimation procedures from a quasi-likelihood viewpoint using approximations based
on Laplace’s method whereas Wolfinger and O’Connell‘'s approach to PL/REPL is
based on a Gaussian approximation and Taylor’s theorem (Wolfinger and O’Connell,
1993). Moreover, Littell et al., (2006) points out that the other difference between
what Breslow and Clayton (1993) term PQL and what Wolfinger and O’Connell
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(1993) term PL/REPL lies in the estimation of the parameter ¢. In the Breslow-
Clayton procedure, the scale parameter is fixed at ¢ =1, whereas in the Wolfinger-

O’Connell procedure, it is always estimated.

5.4.2 A note on modeling serial correlation in GLMM
Using the linearization approach to estimation (Schall, 1991; Wolfinger and

O’Connell, 1993) the linear mixed model for the pseudo data given in (5.19) is
Vi =& @)y, ~ )+ X p+Zb, ~X,f+LD, +¢
where & =g’(1)e,, which has mean zero. The E(y b )=X+Zb, and
var(y’ 1b,)=g’(2)E,g’(,) where I, =var(y,—f,). The variance function can be
expressed such that
var(g,) =@ AR,A/ D",
where & is the diagonal matrix with over dispersion parameters along the diagonal,
A, is a diagonal matrix containing the variances from the model specification of y,
given the random effects b, and R, is the correlation matrix. The distribution of &;
with a Gaussian distribution has approximately the same first two moments as the
distribution of ¢, (Wolfinger and O’Connell, 1993). In particular, it is assumed that
e is Gaussian with mean 0 and variance ®”A*R,A*®”*. Then the marginal
variance of the linear pseudo-model is defined as
varly' )=V =ZGZ' + ®*A'R A D"
That is, the pseudo response variable y* takes the form of a weighted linear mixed
model with the diagonal weight matrix W =A"[¢’(22)]™. Then an iterative algorithm
in which a linear mixed model is fitted to get estimates of f and b is used. The use
of this estimation algorithm allows the introduction of autocorrelation at the level of
the linear predictor in modeling the pseudo response variable y; at each step of the

iterative process. This takes the advantage of well-established correlation structures
used with linear mixed models, which include an AR-1 structure if measurements are
equally spaced (see Chapter 4) and spatial correlation models which are appropriate
when time points do not occur at pre-determined intervals (Brown and Prescott,
2006). With spatial correlation models, the correlation is specified as a continuous
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function of the absolute difference in times between two observations (Weiss, 2005).
There are a number of ways of defining covariances from the time interval. For

instance, the spatial power and spatial Gaussian correlations for four time points are

defined as
1 plt1 —t1,1 pltI —t51 pltl—t4|
1 Ity —t51 Ity —t41
COV(yi) = 0-2 '0 1 plt —t4l
p 3 4
1
and
[Irl—rzlz] {It1 —t3|2] {IrI —r4|7j
1 e 7 e’ et
[Itz—t3lzj (It2 —t4|2J
cov(yl.)zo'2 1 e’ e’

respectively.

Note that as much as the random effects and residual correlation enter the pseudo
data in (5.19) side by side, the residual error of the pseudo data is now a

transformed version of the original error ¢,. Therefore the autocorrelation parameter

obtained using this approach has to be considered only as an approximate of the
underlying correlation structure of its working variate (Molenberghs and Verbeke,
2005).

5.5 Model selection

The primary objective of model selection is to choose the simplest model that
provides the best fit to the data. West, Welch and Galecki; (2007) pointed out that
the process of building a model with both fixed and random effects given a set of
longitudinal or clustered data is an iterative one, a series of model fitting steps and
investigations are required, which include the selection of appropriate mean and
covariance structures for the observed data. Model building typically involves a
balance of statistical and subject matter considerations; there is no single strategy

that applies to every application (West et al., 2007). A generalized linear mixed
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model can be fitted with a variety of possible covariance structures for G and R,.

Unless robust inference is used, an appropriate covariance model is essential to
obtain valid inferences for the parameters in the mean structure, hence the need for
careful model building.

The recommended general guidelines for model building (Verbeke and Molenberghs,
2000) are as follows. First, a preliminary mean structure has to be selected by fitting
an over-elaborated model. This is to remove the systematic trends in the data that
cannot be explained by the covariance structure. Second, a preliminary random
effects structure is then selected. The hierarchical nature of random effects has to
be taken into account when a model is fitted. For instance, the design matrix of the
random effects should not contain a polynomial effect if not all hierarchically inferior
terms are included. Third, a residual covariance structure is then selected
conditional on the preliminary structure of the selected random effects. Accordingly,
based on the selected residual covariance structure, the need for random effects
should be re-assessed. With the selected covariance structure, tests for the fixed

effects can then be carried out.

In the process of model selection, one has to be wary of over-parameterization of the
model structure that would lead to inefficient estimation and potentially poor
assessment of standard errors for the estimates (Verbeke and Molenberghs, 2000).
As a result, a model reduction exercise of both the fixed and random parameters is
essential in order to achieve a parsimonious model. Model reduction is commonly
done by comparing tests of significance in different models. With model selection of
fixed effects, the likelihood ratio (LR) test is commonly used for comparison of two
models when one model is a special case of the other. That is, it compares two
models with different mean structure but with the same covariance structure. The LR
test for two nested models is constructed by comparing the maximized log-
likelihoods for the full and reduced models respectively and the test statistic is
defined as

(5.20)

L, 6
-2Ind, =-2 h{—m( Mm)}

LML (éML )
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where éML,O and éML are respective maximum likelihood estimates which maximize

the ML likelihood functions of the reduced and full models. The asymptotic null
distribution of the LR test statistic is a chi-square distribution with the degrees of
freedom equal to the difference between the number of parameters in the two

models. Small values of -21n A, are obtained when the reduced model is similar to

the full model, indicating that the reduced model is a good one.

Similarly, with hypothesis testing of variance components, the LR test can be derived
for comparing nested models with different covariance structures but with the same
mean. Also, the asymptotic null distribution of the LR test statistic is a chi-square
distribution with the degrees of freedom equal to the difference between the number
of parameters in the two models. However, the normal approximation fails if the
variance parameter to be tested takes values on the boundary of the parameter
space. Self and Liang (1987) and Stram and Lee (1994, 1995) show that the
asymptotic null distribution for the LR test statistic for testing the hypothesis of the
need for random effects is often a mixture of chi-squared distributions rather than the
classical single chi-squared distribution. This is derived under the assumption of
conditional independence assumption. The specific LR tests are presented as
follows (Verbeke and Molenberghs, 2000):

Case 1 - No random effects versus one random effect: For testing H,: G =0 versus
H,:G=g,, where g, Iis non-negative scalar that represents the variance
component of the random effect. Then the asymptotic null distribution of -21n A is
a mixture of »’ and y; with equal weights of 0.5. The y; distribution is the

distribution that gives probability mass 1 to value 0.

Case 2 - One versus two random effects: In the case where one wishes to test

0
HOZGZ 811 ,
0 O

for strictly positive g,,, versus H, that G is a (2x2) positive semi-definite matrix.
The asymptotic null distribution of -21n A4 is a mixture with equal weights of 0.5 for
¥, and /.
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Case 3- g versus g +1 random effects: In the case where one wishes to test

G, 0
H,:G=| |, ,
0 0

for which G,, is a (¢gxgq) positive definite matrix, versus H, that G is a general

((g+1)x(g+1)) positive semi-definite matrix. The large sample behaviour of the null

2
g+l

distribution of -21n 4, is a mixture of ., and y; again with equal weights of 0.5.

Case 4 - q versus g+k random effects: In this case, one wishes to test the H in

case 3 versus

Gll Gle

HA:Gz( ,
G12 G22

in which G is a general ((¢+k)x(q+k))positive semi-definite matrix. The null
distribution of -21n A, is a mixture of x> random variables formed by the lengths of

projections of multivariate normal random variables upon curved as well as flat

surfaces.

It should be noted that if the classical null distribution is used for the cases presented

above, then all the p-values would be overestimated. Consequently the null

hypothesis would be accepted too often, resulting in incorrectly simplifying the
covariance structure of the model, thus invalidating inferences (Altham, 1984). The
correction for the boundary parameter values under the null hypotheses therefore

reduces the p -values in order to protect against the use of an oversimplified or a too

parsimonious covariance structure.

A set of useful tools in model selection of non-nested models are usually referred to
as Information Criteria (IC). Recall that the idea behind the LR test for comparing
model A to a more extended model B is to select model A if the increase in likelihood
under model B is small compared to an increase in complexity. Likewise, with the
comparison of non-nested models, the model with the largest likelihood is selected
provided it is not too complicated. Under the IC method, the model with the highest

penalized log-likelihood [ -T'(#86) for some penalty function I'(.) dependent on the
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number of parameters, #6 is selected. That is, the IC provides a way to assess the
fit of the model based on its optimum log-likelihood value after applying a penalty for
the number of parameters that are estimated in the model (West et al.; 2007).

Different forms of I'(.) lead to different criteria and some commonly used functions

are presented in Table 5.1 (Verbeke and Molenberghs, 2000).

Table 5.1  Commonly used information criteria

Criteria Definition of I'(.)
Akaike (AIC) [#60)=#6

Schwarz (BIC) I#60)=#OInn*)/2
Hannan and Quinn (HQIC) ['(#6) =#01n(Inn*)
Bozdogan (CAIC) IF'#0)=#6(nn*+1)/2

n* is equal to the total number n=3¥n of observations or equal to »—p , depending on whether
ML or REML estimation was used in the calculations respectively.

Note from Table 5.1 that, except for the Akaike information criterion (AIC), the other
IC involve the sample size. This shows that differences in likelihood need to be
viewed, not only relative to the differences in the numbers of parameters but also
relative to the number of observations included in the analysis. As the sample size
increases, more severe increases in the likelihood are required before a complex
model will be preferred over a simple model. It should be emphasized that IC are
not formal testing procedures, they only provide rules of thumb to discriminate
between several statistical models (Verbeke and Molenberghs, 2000).

Note however, that with the linearization estimation techniques where parameters
are estimated by fitting linear mixed models to pseudo-data (e.g PQL, MQL), nested
as well as non-nested models cannot be compared using values based on the
likelihood computation (Molenberghs and Verbeke, 2005). This is because when
one changes the error structure, then the linearized response also changes. Since
the values for the likelihood ratio test and information criteria are based on the
likelihood, they cannot be used to compare models with the linearization estimation
techniques. One can only compare likelihood values across models when the
response variable for each model is the same. Nonetheless, tests that include
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approximate Wald tests can still be used to test hypotheses about both fixed effects
and random effects as discussed in the next section.

5.6 Inference for fixed and random effects

The ultimate goal in statistical analysis is to draw inferences about the parameters in
a model in order to generalize results obtained from a specific sample to the general
population from which the sample was drawn. Since fitting of GLMMs is based on
maximum likelihood principles, inferences for parameters are obtained from classical
maximum likelihood theory. Assuming that the fitted GLMM is appropriate, the
obtained estimators are asymptotically normally distributed with the correct values as
means, and with the inverse Fisher information matrix as covariance matrix
(Molenberghs and Verbeke, 2005). As a result, Wald-type tests can be performed
for comparing standardized estimates to the standard normal distribution. Also
composite hypotheses can be tested using the more general formulation of the Wald
statistic, which is a standardized quadratic form that is compared to the chi-squared
distribution. Alternatively, likelihood ratio and score test can be used.

As discussed in Section 5.4, the parameters in GLMMs are often estimated by fitting
linear mixed models to pseudo-data. Therefore, precision estimates for the fixed
effects and for the random effects are often calculated using linear mixed model
methodology (Molenberghs and Verbeke, 2005). Accordingly, tests for the fixed
effects include the approximate Wald test (also referred to as the Z-test) and the
approximate ¢-tests and F -tests and they are summarized by Verbeke and
Molenberghs (2000) as follows. For fixed effects, approximate Wald test (also
known as the Z-test) can be obtained from approximating the distribution of

(ﬁj-[}j)/s.e.(ﬁj) by a standard univariate normal distribution for each parameter
B;,j=1--,p. More generally, it may be of interest to construct confidence intervals

and tests of hypotheses about certain linear combinations of the components of 5.
For instance, given any known matrix L, a test for the hypothesis
H,:Lp=0 versus H,:Lf #0 (5.21)

follows from the fact that the distribution of

98



(/?-[f)'L{L[ﬁX;VJI(a)X] L} L5~ p)

follows a chi-squared distribution with rank (L) degrees of freedom. However, it
should be noted that the Wald test statistic is based on estimated standard errors
which underestimate the true variability of 3. This is because the variability
introduced by estimating the variance parameters is not taken into account. This
downward bias can be resolved by using approximate - and F -tests for testing the
hypothesis about g. For each parameter g, in vector g, j=1,-,p, an
approximate ttest and associated confidence interval can be obtained by
approximating the distribution of (ﬁj-ﬂj)/s.e.(ﬁj) by an appropriate ¢-distribution.
Testing general linear hypotheses of the form (5.21) is thus based on an F -

approximation to the distribution of

<ﬁ—ﬂ>’L’{L(ZX§V:‘<d>X,) L’} L(B-B)

F = ,
rank (L)

with the numerator degrees of freedom equal to rank(L), while the denominator
degrees have to be established from the data. There are several methods that are
available for estimating the denominator degrees of freedom; one of which is the
Satterthwaite approximation. Note that even though different methods for the

degrees of freedom may lead to severe differences in the resulting p -values, in the

context of longitudinal data, whatever estimation method used, lead to very similar

p-values. This is due to the fact that in a longitudinal setting, different subjects

contribute independent information, which results in numbers of degrees of freedom

which are typically large enough to lead to very similar p -values.

With regard to inference for variance components G, classical Wald, likelihood ratio
and score tests can be used, as long as the hypotheses to be tested are not on the
boundary of the parameter space (that is, testing the hypothesis that the variance of
the population distribution is zero). Because variances cannot be negative, zero is at
the boundary of the parameter space and as such, only a one-sided hypothesis test
can be carried out (Verbeke and Molenberghs, 2003). For instance, the classical
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Wald test (based on standard normal approximation) would no longer be valid if one

were to test whether the variance g,, of a single random effect is equal to zero, i.e
H,:g,=0 versus H,:g,,>0. Thus, under H, the Wald statistic is asymptotically
equivalent and #’ in 50% of the cases, and equal to zero in the other 50% of the
cases. Hence the null distribution is a mixture of the y; (with all probability mass at

zero) and y’, with equal probability 0.5 (Molenberghs and Verbeke, 2005).
Consequently, the p-value is obtained by halving the classical p-value that is

obtained when testing a hypothesis for a single parameter. Similar properties can be
obtained for the one-sided likelihood ratio test (Self and Liang, 1987; Stram and Lee,
1994) and the one-sided score test (Silvapulle and Silvapulle, 1995; Verbeke and
Molenberghs, 2003). Moreover, even with the information criteria, there are still
concerns about the boundary effects and estimation of degrees of freedom for
random effects (Vaida and Blanchard, 2005).

5.7 Evaluating adherence using GLMMs

The conditional independence model was fitted to the data first. The conditional
independence model refers to the context where it is assumed that the correlation
between measurements on the same subjects is modeled only by the random effects
while conditionally upon them, the repeated measurements are assumed to be
independent. This model has been presented in Section 5.2, expression (5.2). With
both fixed and random effects in the model, model selection requires a series of
model fitting steps and investigations on the appropriateness of mean and
covariance structure of the observed data. In fitting such a model, a preliminary
covariance structure of the random effects was evaluated using the preliminary
mean structure which includes all the main effects (fixed) in the data. All the main
effects were used in the preliminary structure in order to remove, as much as
possible, the systematic trends in the data that cannot be explained by the
covariance structure. Once the preliminary covariance structure was selected, the
mean structure was evaluated by carrying out tests for fixed effects. Then with the

selected mean structure, the need for random effects was re-assessed.

The results of fitting models to the adherence data using different maximum
likelihood estimation techniques as discussed in Section 5.4, are presented and
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compared. In particular, the models are fitted with penalized quasi likelihood (PQL),
with Laplace approximation as well as classical Gaussian and adaptive Gaussian
quadrature. The data is analyzed using SAS (version 9.1.3) procedures; GLIMMIX
and NLMIXED. PQL is an approximation method to the data and has been
implemented in the SAS procedure GLIMMIX. The classical Gaussian and adaptive
Gaussian quadrature, as approximations to the integral in the marginal likelihood
have been implemented in the SAS procedure NLMIXED. Model fitting based on the
Laplace approximation for the integrals in the marginal likelihood can be specified by
choosing adaptive Gaussian quadrature with one quadrature point. One advantage
of estimation methods implemented in NLMIXED is that they offer a true log-
likelihood whereas the methods implemented in GLIMMIX offer pseudo-likelihood.
The advantage of GLIMMIX on the other hand, is that it allows greater flexibility in
the types of models that can be estimated and the number of random effects that
can be specified. For instance, GLIMMIX is flexible enough to fit complex models
that accommodate serial correlation in addition to random effects, whereas
NLMIXED cannot accommodate such models.

Evaluation of random effects structure

For adherence data, the hypothesis of interest is that random intercepts and random
slopes for the linear time effect are needed in the model. We tested our hypothesis
by adding one random effect at a time to the mean model. The following models
(fixed effects only, fixed effects plus random intercepts and fixed effects, random
intercepts and random slopes) are considered:

y; I'b, ~ Bernoulli (x;,)

log(lﬂijl = B, + B, gender; + B,educ _no, + B,educ _ p, + B,site, + Bsincome, + B tapwater,
— 4,

+ B,electricity, + Bycellphone, + ByWHOstagel, + B,,WHOstage2, + 5, WHOstage3,
+ B, partner, + P ,reason _no, + B, reason _risk, + f,sadh _monthl, + B, age,

+ B,base _cd4, + B sbaseweight, + bgweight, + 5, time,,
(5.22)
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log[ ad j = B, + B,gender, + B,educ _no, + B,educ _ p, + B,site, + fsincome, + Sstapwater,
U

ij
+ B,electricity, + Pycellphone, + ByWHOstagel, + B,,WHOstage2, + 5, WHOstage3,
+ B, partner, + P;reason _no, + f,,reason _risk, + 3,sadh _monthl, + B, age,

+ B,base _cd4, + B sbaseweight, + B weight, + [, time, +b,,
(5.23)

log[llulj] = B, + B, gender, + B,educ _no, + B,educ _ p, + B,site, + Bsincome, + B tapwater,
Bt

+ B, electricity, + Pycellphone, + B, WHOstagel, + B,,WHOstage2, + 5, WHOstage3,
+ B, partner, + B, reason _no, + B, ,reason _risk, + 3,sadh _monthl, + 3 .age,

+ B,base _cd4, + B sbaseweight, + B weight; + 3, time, + b, + b, time,
(5.24)

where y, =1 if the ith (i=1,...,688) patient adheres to medication in the jtn time
(follow-visits) (j=1,...,17) and y, =0 otherwise. Fixed effects are represented by
the B.B,.....0,, b, represents random intercepts and b, represents random
slopes. In model (5.23), it is assumed that random intercepts b, are normally

distributed with mean zero and variance g,, whereas in model (5.24), it is assumed

’

that the random intercepts and slopes b, =(b,.b,) have a bivariate normal

distribution with zero mean and 2x2 covariance matrix G .

Results from integral approximation methods
We first present the results from fitting the models (5.22), (5.23) and (5.24) using the

classical Gaussian and adaptive Gaussian quadrature as well as the Laplace

approximation. Recall that with these methods, the likelihood obtained is based on
the numerical integration of the actual observed data; therefore the likelihood ratio
test can be used to compare the nested models. However, it should be noted that
with classical Gaussian and adaptive Gaussian quadrature, the obtained log-
likelihood value equals the maximum of the approximation to the model likelihood,

which implies that log-likelihoods corresponding to different quadrature points are not
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necessarily comparable. As a result, for model building purposes, we need to
assess the effect of the different numbers of quadrature points used on the estimates
with a view to selecting a specific number of quadrature points that provide good
accuracy in order to compare different nested models.

The impact of the number of quadrature points used in the estimates of a fitted
model when using classical Gaussian and adaptive Gaussian quadrature was
assessed by fitting a single model (5.23) for varying numbers of quadrature points,

Q0= 3, 5, 10 and 20. The different values for quadrature points, Q did not lead to

considerable differences in the parameter estimates nor the standard errors. As the

quadrature points, Q, were increased from 3 to 5, a minimal change in estimates

and their corresponding standard errors was observed with adaptive Gaussian
quadrature. However, the estimates and their standard errors were similar with 5, 10
and 20 quadrature points. On the other hand, with classical Gaussian quadrature,
there were slight differences in estimates when quadrature points were increased

from 3 to 5. For instance, the increase of Q0 from 3 to 5 increased the estimate for
the variance of the random intercepts, g,, from 0 to 0.2852. Nonetheless, the

estimates and their corresponding standard errors were similar for 10 and 20
quadrature points. Consequently, for model selection, 10 and 20 quadrature points
were then used for adaptive Gaussian and classical Gaussian quadrature
respectively.

As was discussed earlier, it is worth noting that our results confirm to a certain
degree the fact that with classical Gaussian quadrature, a larger number of
quadrature points are necessary to obtain high accuracy while the adaptive
Gaussian quadrature provides good accuracy with fewer quadrature points. On the
other hand, in fitting the model (5.23), there was a huge difference in terms of the
time taken by the two estimation methods to converge. The adaptive Gaussian
quadrature was much more time consuming than the classical Gaussian quadrature.
As the number of quadrature points were increased, the time consumed by adaptive
Gaussian quadrature escalated compared to classical Gaussian quadrature. This
was not surprising because as discussed in Section 5.4, the adaptive Gaussian
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quadrature requires calculation of the mode (5) for each unit in the dataset, hence

the numerical maximization of N functions of the form (5.9).

The different random effects models were fitted and their associated minus twice log-
likelihood values from Laplace approximation, adaptive and classical Gaussian
quadrature are presented in Table 5.2 whereas the likelihood ratio tests for the
different models are presented in Table 5.3. Since the log-likelihood values for
adaptive Guassian and classical Guassian quadrature are the same (Table 5.2), the
likelihood ratio test was computed using only one of them, which is the adaptive

Guassian quadrature.

Table 5. 2: Random effects models with associated value for the log-likelihood value for
Laplace, adaptive Gaussian and classical Gaussian quadrature estimation

techniques
-2 Log-likelihood values
Laplace Gaussian quadrature
Random effects approximations | Adaptive (Q =10) Classical (Q=20)
Model 5.22: __ 4542.3 4542.3 4542.3
Model 5.23: Intercepts 4504.2 4503.1 4503.1
Model 5.24: Intercepts, time 4650.5 4668.2 4668.2

Table 5. 3: Likelihood ratio statistics for comparing random effects models and the
associated null distribution (a mixture of chi-squared distribution) for Laplace
approximation and adaptive Gaussian quadrature

Likelihood ratio statistics
Hypothesis Null distribution Laplace Adaptive Gaussian
Model 5.22 vs Model 5.23 Tyi+iyt 38.1 (p<0.001) | 39.2 (p<0.001)
Model 5.23 vs Model 5.24 I 33.5 (p<0.001) | 34.9 (p<0.001)

The need for the random intercepts in the model was assessed by carrying out tests
that compare models 5.22 and 5.23. The likelihood ratio tests from Laplace and
adaptive Gaussian quadrature (computed from the minus twice log-likelihood values
in Table 5.2) yield values of 38.1 and 39.2 respectively (Table 5.3). These are highly

significant (p<0.0001) indicating that the random intercepts are needed in the model.
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Next, we evaluated whether in addition to the random intercepts, the inclusion of the
random slopes in the model is necessary, i.e model 5.23 versus model 5.24. The
likelihood ratio tests from Laplace and adaptive Gaussian quadrature yielded
statistics of 33.5 and 34.9 respectively (see Table 5.3). These are highly significant
(p<0.0001). The other half of the null distribution (Table 5.3) with this test has two
degrees of freedom because we are testing the null hypothesis that the slope
variance g,, and slope-intercept covariance g,, are jointly equal to zero. In this
case the null hypothesis is rejected, indicating that both random intercepts and

slopes are needed in the model.

Penalized quasi-likelihood results

With the PQL estimates, the approximate Wald test is used to test the significance or
otherwise of the variance components. In this instance, the likelihood ratio tests
cannot be used because the likelihood computation is based on the linear mixed
models for pseudo-data. To evaluate whether the random intercepts are necessary,

the hypothesis to be tested is H,:g,, =0 versus H,:g,, 20. The Wald statistic for

random intercepts is 29.6 (p<0.0001) which is significant, indicating that the random
effects are necessary. It should be noted that since the null hypothesis of the
variance component to be tested was on the boundary of the parameter space, a
mixture of chi-square distribution as illustrated in Table 5.3 (for Laplace and classical

Gaussian quadrature) was used to carry out this test.

Then, we evaluated whether in addition to the random intercepts, the inclusion of the
random slopes in the model is necessary, i.e model 5.23 versus model 5.24. More
specifically, the hypothesis to be tested is H,:g,, = g,, =0, which is still on the

boundary of the parameter space. The observed value for the Wald statistic equals

o A -1 .
A o var(g,,) cov(&,,85) 81
(812 gzz)

cov(g,,,8,) var(g,,) &n

0.000377 —0.00004 " ( —0.06628
(—0.06628 0.01131)
—0.00004 0.000006 0.01131

21.97
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which is significant when compared to a mixture of two chi-squared distributions with
1 and 2 degrees of freedom, with equal weights of 0.5 (p<0.0001).

All the estimation techniques suggest a similar preliminary conclusion, i.e that a

model with randomly varying intercepts and slopes fitted the data well.

Evaluation of the mean structure
The mean structure is examined by first, evaluating whether factors that affect initial
adherence are still important when adherence is studied over time at a subject
specific level. Recall that the final model for initial adherence (Section 3.4) contained
all the main effects as well as three two-way interaction terms, which were between
age and cell phone ownership, gender and patient’s reported reason for taking an
HIV test as well as treatment site and whether or not a patient is the source of
household income. To evaluate whether the three two-way interactions in the
baseline model are still significant, the following model was compared with model
(5.24).
log[ll_tl;} = f, + B, gender, + B,educ _no, + B,educ _ p, + B,site, + Bsincome, + Pitapwater,
ij

+ B, electricity, + Pycellphone, + B,WHOstagel, + 5,,\WHOstage?2, + 5, WHOstage3,

+ B, partner, + B;reason _no, + B, ,reason _risk, + f,sadh _monthl, + B cage,

+ f,base _cd4, + Bsbaseweight, + B weight; + B, time,; + [3, age,cellphone,

+ f3,,gender,reason _no, + p,,gender,reason _risk, + [3,,site,income, + by, + b, time,;

(5.25) /

Likelihood ratio tests were calculated using the Laplace approximation, classical

Gaussian and Adaptive Gaussian quadrature. Let model (5.24) be denoted by M,

and model (5.25), with additional interactions from the initial analysis model, be

denoted by M,. To compare the two models, the likelihood ratio test statistic is
computed by calculating the difference (-2/,)—(-2I,) where [, is the log-likelihood of
model M, and [, is the log-likelihood of model M,. In addition, the degrees of
freedom m, —m, are calculated where m, and m, are the respective number of
parameters in the models M, and M,. The likelihood ratio statistics is then

compared with the chi-squared value z, _, -
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The results showed that the likelihood ratio tests from all the estimation methods
were insignificant. The likelihood statistics with their corresponding p-values from
Laplace was 5.5 (p=0.103) whereas the likelihood statistics for adaptive Gaussian
and classical Gaussian quadrature was 5.6 (p=0.105) at 4 degrees of freedom.

Again the results from classical (Q =20) and adaptive (Q =10) Gaussian quadrature

were the same.

With the penalized quasi-likelihood estimation method, the multi-parameter or
generalized Wald test is computed to test the joint null hypothesis that the three
interaction terms are equal to zero. That is, to compare models (5.24) and (5.25),
the null hypothesis being tested is
H, = f, =By =Py = P =0.

In order to carry out the generalized Wald test, let us define a ¢x p indicator matrix
C of ones and zeros to select the parameters of interest. Here p equals the
number of regressors in model (5.25), i.e., the full model (including the intercept) and
g equals the number of parameters in the multi-parameter test (i.e., the difference in
regressors between model (5.25) and model (5.24). Each row of C contains a 1 in
only one location, and zeros elsewhere, in order to select one of the parameters that
comprise this test. In fact, there are ¢ rows in this matrix because each row is used
to uniquely select one of the ¢ parameters. For comparing models (5.25) and

(5.24), g=4, p =24 and the indicator matrix is given as

000O00O0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0O0O0ODO0OO0OT1®O0®Q0UOOQO0
C:OOOOOOOOOOOOOOOOOOOOO 1 00
000O00O0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0O0O0ODO0OO0OO0ODO0ODTIO
0 00O0O0O0O0OO0OOO0OO0OO0OO0OOO0OO0OO0OO0OOO0OO0OO0OO0OOQO0OT1

Then the generalized Wald test equals
X2 = B'C/(CVar(B)C) " CA,
which is distributed as y* with ¢ degrees of freedom under the null hypothesis. The

test produced a Wald statistic of 5.20 with 4 degrees of freedom (p=0.2653) and is
not significant. Additionally, none of the two-way interactions of the three variables
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were significant (age*cell phone: p=0.5841; gender*reason: p=0.2560; treatment
site*income: p=0.0880).

All the estimation techniques give similar results, that is, the additional two-way
interaction terms that were significant when adherence was modeled at month one of
initiation into therapy are no longer significant when adherence is modeled over time

and at a subject specific level.

We then proceeded to assess whether factors that determined adherence at the
population level using the GEE are still valuable when adherence is assessed over
time at a subject specific level. The results from the GEE model (4.10) includes all
the main effects and five two-way interaction terms. Three of the two-way interaction
terms involved time with gender, treatment site and patient’s reported reason for
taking an HIV test. The other two interactions were between age and gender as well
as age and educational level. A following random effects model was fitted with the

same mean structure from the marginal model results (GEE results):

lo . = B, + PB,gender, + B,educ _no, + B,educ _ p, + B,site, + Bsincome, + B tapwater,
g 0 18 i 2 i 3 i 451¢e, 5 i 6 i

ij
+ B, electricity, + Pycellphone, + B,WHOstagel, + B,,WHOstage2, + 5, WHOstage3,
+ B, partner, + Bsreason _no, + B, ,reason _risk, + 3,sadh _monthl, + B, age,
+ B,base _cd4, + B sbaseweight, + B weight; + B, time, + 3, time, gender,
+ B,.time, site, + [B,.time reason _no, + B, ,time, reason _risk, + f,sage ,educ _no,

+ B,ageeduc _ p, + B,,age,gender, + b, + b,;time,;
(5.26)

For evaluating whether factors that affect adherence at the population level still affect
adherence at a patient specific level, models (5.26) and (5.24) were compared using
results from the different estimation methods. With the Laplace approximation,
classical Gaussian and adaptive Gaussian quadrature, likelihood ratio tests
(computed in the same way as in the section above) were used to compare the
models (5.26) and (5.24). The likelihood ratio statistics from Laplace was 25
(p=0.0003) and adaptive Gaussian and classical Gaussian quadrature have the

same value of 26.4 (p=0.0004), all at 5 degrees of freedom. These likelihood ratio
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tests indicate that the additional interactions from the population average model are
significant.

With the penalized quasi-likelihood estimation method, the multi-parameter or
generalized Wald test (computed in the same manner as in the section above) is
used to test the joint null hypothesis that the five interaction terms are equal to zero.
That is, to compare models (5.24) and (5.26), the null hypothesis being tested is
Hy =y =Py =By =P =P =P =5 =0,

where the parameters are in model (5.5). The test produced a Wald statistic of
48.26 with 5 degrees of freedom (p<0.0001), which is significant. Further, the results
show that individual two-way interactions were significant (time*gender: p<0.0001;
time*site: p<0.0001; time*reason: p=0.0255; age*gender: p=0.0125) except for the
interaction between age and educational level (p=0.2555).

Consequently, the model with the GEE results (5.26) was the preferred model since
all the estimation techniques give similar results, that is, the additional two-way
interaction terms that were significant when adherence was modeled at the marginal
level are still significant when adherence is modeled over time and at a subject
specific level.

Re-assessment of the preliminary covariance structure

All the estimation techniques give similar results, indicating that the additional two-
way interactions in the GEE model are significant. Consequently, the model with the
GEE results was the preferred model. Then the preliminary covariance structure
(random intercepts and slopes) was re-assessed with the now confirmed mean
structure (GEE results). This was done by re-fitting model (5.26) but with the
randomly varying slopes using different estimation techniques. The likelihood ratio
tests from Laplace and adaptive Gaussian quadrature yielded statistics of 26.5 and
25.4 respectively. These were highly significant (p<0.0001), and therefore re-
affirmed the presence of the random intercepts and random slopes in the model
(5.26).
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With the PQL estimates, we evaluated whether in addition to the random intercept,
the inclusion of the random slopes in the model is necessary by testing the

hypothesis that H,:g,, = g,, =0, which is still on the boundary of the parameter

space. The observed value for the Wald statistic equals

o A -1 .
A o var(g,,) cov(&,5,85) 81
(812 gzz)

cov(g,,,8,) var(g,,) 8xn

0.000346  —0.00004 ) ( —0.05508
=(-0.05508 0.009395)
—0.00004 0.000005 0.009395

= 094
which is significant when compared to a mixture of two chi-squared distributions with
1 and 2 degrees of freedom, with equal weights of 0.5 (p=0.004).

All the estimation techniques suggest a similar finding, i.e that the GEE model with
randomly varying intercepts and slopes fits the data well.

Interpretation of the results

The results of the final model (fixed effects and covariance parameters) from three
estimation methods, Laplace approximations, adaptive Gaussian quadrature and
PQL are presented in Table 5.4. There was virtually no difference with the
parameter estimates between the numerical based methods, classical Gaussian
(0 =10) and adaptive Gaussian (¢ = 20) quadrature, therefore only the results of

adaptive Gaussian quadrature are presented. The estimation methods provided
similar results in terms of the significance or otherwise of the estimates. It is
however noted that generally PQL provided smaller estimates while adaptive
Gaussian quadrature has the largest estimates, even though the margin of the
difference is minimal. PQL and Laplace methods are known to perform poorly in
cases with a relatively small number of repeated binary observations available for all
subjects (Wolfinger, 1998). But in this case, both methods’ performance was not
relatively poor when compared to adaptive Gaussian quadrature. This might be due

to sufficiently large number of repeated measurements per patient. Nonetheless, the
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interpretation of the results will be done using estimates from an adaptive Gaussian
quadrature.

There are four (two-way) significant interaction terms and two significant main effects
(not involved in significant interaction). Three of the significant interactions involved
time, namely time and gender, time and treatment site as well as time and reason for
taking an HIV test. The other significant interaction is between age and gender. The
significant main effects are cell phone ownership and whether or not a patient stays

with a partner.

The results indicate that a typical patient (i.e. a patient with a random effect of zero)
with a cell phone tends to adhere to medication 1.25 (¢****) times more than a typical
patient without a cell phone. Again, it is shown that a typical patient who does not

stay with a partner is 0.45 (e™*)

times less likely to adhere to medication than a
typical patient who stays with a partner. The results also show that conditional on
random effects, adherence to medication is generally increasing, though the rate of
increase differs by gender, treatment site and the patient’s reported reason for taking

an HIV test. The interaction terms are summarized below.
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Table 5. 4:

Parameter estimates (standard errors) for conditional independence model on HAART adherence

Estimate (std error)

Laplace adaptive
Effect Parameter Approx Gaussian PQL
Intercept B 0.880 (0.301) 1.6064 (0.306) 0.852 (0.510)
Gender (ref = male)
Female B -1.563 (0.535) -1.555 (0.546) -1.269(.428)
Education (ref= sec+)
No schooling B, 1.692 (0.522)* 1.505 (0.534) 1.538 (.643)
Primary B, -0.112 (0.699) -0.108 (0.510) 0.064 (0.551)
Treatment Site (ref=rural)
Urban site B, 1.283 (0.201) 1.290 (0.204) 1.258 (.165)
Income (ref= not source of income)
Source of income B 0.053 (0.116) 0.053 (0.118) 0.038 (0.098)
Access to tap water (ref = No)
Yes B 0.089 (0.182) 0.089 (0.185) 0.044 (0.153)
Having electricity (ref = No)
Yes B, 0.053 (0.156) 0.055 (0.159) 0.001(0.139)
Cell phone ownership (ref = No)
Yes B 0.224 (0.104) 0.223 (0.106) 0.255 (.089)
WHO staging of disease (ref = stage 4)
Stage 1 B, -0.459 (0.256) -0.482 (0.280) -0.351(0.228)
Stage 2 B -0.359 (0.246) -0.361 (0.250) -0.250(0.199)
Stage 3 B -0.253 (0.229) -0.256 (0.232) -0.091(0.180)
Partner (ref = living with partner)
living without a partner B -0.023 (0.301) -0.5524 (0.306) -0.329(.102)
Reason for taking HIV test (ref = unwell)
VCT B -0.095 (0.215) -0.093 (0.221) -0.015(0.182)
Exposed to the virus B -0.534 (0.241)" -0.535 (0.245)" -0.485(.201)"
Initial adherence (ref = not adherent)
Adherent Bis -0.118 (0.123) -0.119 (0.125) -0.138(0.105)
Time (visit) B 0.133 (0.025)* 0.133 (0.025) 0.123 (.021)"
Age B -0.021 (0.014) -0.021 (0.014) -0.015(0.011)
Baseline CD4 Cell Count B -0.001 (0.001) -0.001 (0.001) -.0003(0.001)
Baseline weight B -0.008 (0.008) -0.008 (0.008) -0.006(0.006)
Weight at follow-up visit B 0.004 (0.005) 0.004 (0.005) 0.004 (0.006)

* significant at 5% level
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Table 5.4: (cont)

Parameter estimates for standard GLMM on HAART adherence

Estimate (std error)

Laplace adaptive
Effect Parameter Approx Gaussian PQL
Time*gender (ref = male)
Female B 0.053 (0.024) 0.055 (0.024) 0.069 (.020)
Time*treatment site (ref = rural)
Urban B -0.055 (0.023) -0.055 (0.023) -0.050(.020)
Time*reason for taking the test (ref = unwell)
VCT B -0.001 (0.026) -0.001 (0.025) -0.014(0.022)
Exposed to the risk of HIV B 0.065 (0.030)" 0.065 (0.030)" 0.056 (.025)°
Age*education (ref= sec+)
No schooling B s -0.035 (0.189) -0.036 (0.019) -0.030(0.015)
Primary Bos 0.002 (0.019) 0.002 (0.019) -0.001(0.015)

Age*gender (ref = male)
Female B

Random Effects

var(b,;) 811
var(b,;) 82
cov(b,,,b;) 812
corr(b,,;,b;)

0.035 (0.146)

0.680 (0.228)
0.010 (0.003)
-0.065 (0.024)

-0.810

0.035 (0.015)

0.565 (0.246)
0.011 (0.003)
-0.054 (0.036)

-0.810

*

0.026 (.011)

0.562 (0.150)
0.009 (0.002)
-0.055(0.018)

-0.553

* significant at 5% level
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a) Interaction between gender and time

The results show that the rate of increase in adherence is higher with females than
males conditional on the random effects (Table 5.4). This is illustrated graphically in
Figure 5.1. As time increases by one additional follow-up visit, the odds of

¢0%3) times more than the odds of

adherence for females increases by 1.06 (e
adherence for males. Therefore, the wide gap in adherence between males and
females observed at the beginning of the follow-up period narrows down as the

number of follow-up visits increases.

Figure 5. 1:  Log of odds of adherence to HAART between the interaction of gender and

time
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b) Interaction between treatment site and gender

Conditional on random effects, adherence is increasing both in the urban and rural
treatment site, but the rate of increase is higher in the rural treatment site than the
urban treatment site (Figure 5.2). With one additional follow-up visit, the odds of
adherence in the rural treatment site increases by 1.055 (¢”%**) times more than the
odds of adherence in the urban treatment site (Table 5.5). Therefore, as the number
of visits increases, the gap in adherence between both treatment sites narrows
down.
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Figure 5. 2:  Log odds of HAART adherence between the interaction of treatment site and

time
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C) Interaction between reported reason and time

Adherence has been increasing over time; however, the rate of increase is highest
with patients who reported to have tested for HIV because they felt exposed to the
risk of contracting the disease. With the patients who reported to have been
exposed to the risk of contracting HIV, the rate of increase in the odds of adherence
are 1.05 times more likely to adhere to medication than those who reported to have
tested because they were unwell and because they had taken an HIV test for no
specific reason. There is no significant difference in the odds of adherence between
patients who have reported to have tested because they were unwell and those who
have tested for no specific reason (see Figure 5.3). These are conditional on

random effects.

d) Interaction between age and gender

The results show that as age increases, the rate at which adherence increases

differs by gender. It is shown in Table 5.4 that with one additional year in age, the

rate of increase in the odds of adherence for females is 1.04 (¢°”7) times more likely

than the odds of adherence for males.
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Figure 5. 3:  Log odds of HAART adherence between the patient’s reported reason for
taking an HIV test and time
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Covariance parameters

The estimated covariance parameters and their standard errors are also presented
in Table 5.4. Although the overall estimates of the variance components are not
large, there is a noticeable individual heterogeneity in terms of both the intercepts
and slopes. For instance, the estimated individual random intercepts ranged from -
0.869 and 0.900, whereas the estimated individual random slopes indicated that
heterogeneity in the rate of adherence over time from patient-to-patient ranged from
-0.2182 and 0.1028. Moreover, the correlation between the random intercepts and
slopes is very strong, with a correlation coefficient of -0.81. The negative correlation
between the random intercepts and slopes suggests that there was a decline over
time in adherence rates of patients who had high levels of adherence at the baseline
follow-up visit and vice versa. The empirical Bayes estimates of the intercept and
slope for each patient are presented in Figure 5.4
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Figure 5. 4:  Empirical Bayes estimates for the intercept and slope

4+ slope
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Figure 5.4 reveals the nature of the negative covariance between the random
intercepts and slopes. That is, patients with more negative intercepts (less likely to
adhere to medication at the baseline follow-up visit) have more positive slopes (more
likely to adhere to medication over time).

Assessment of serial correlation

With the selected structure of random effects as well as the mean structure in model
(5.26), different residual covariance structures were fitted with the view to selecting
the best fitting one. There are many possible covariance structures that are
available. Unfortunately, apart from the information criteria, there are generally no
simple techniques available to compare all these models (Verbeke and
Molenberghs, 2000). The method of estimation used is PQL (with linearized pseudo-
data) because it accommodates models with serial correlation. As noted earlier, in
the case where parameters are estimated by the linearization method, the
information criteria is not applicable since the ‘pseudo-information’ criteria (e.g
pseudo-AIC) techniques cannot be used for selection of non-nested models. Since
there is no formal testing, the selection of the residual structure is based on roughly
observing how the parameter estimates and their corresponding standard errors
change as a consequence of the amount of variability explained by the introduction

of auto-correlated errors.
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Convergence difficulties were encountered when fitting the different residual
structures in addition to the random effects. These include structures such as
compound symmetry, unstructured, general toeplitz, spatial power as well as spatial
exponential. Molenberghs and Verbeke (2005) have shown that convergence
failures are relatively common when modeling of the covariance structure involves
joint specification of the random effects, serial correlation and measurement error,
simply because these components of variability cannot easily be disentangled.
Nonetheless, models that were fitted with random effects plus AR-1, toeplitz(2) and
toeplitz(3) as well as spatial Gaussian, converged successfully and the results are
presented in Table 5.5. With toeplitz structures, only toeplitz(3) is presented and
also the results from the conditional independence (PQL estimates in Table 5.4) are
presented for ease of reference.

The results (Table 5.5) in all the fitted models showed negligible presence of residual
serial correlation in addition to random effects. That is, all fitted models (random
effects with AR-1, toeplitz(3) and spatial Gaussian) indicate that correlation between
any two measurements one visit apart is roughly 0.03 (It should be noted that with

SAS parameterization, the correlation between two measurements one unit apart for

spatial Gaussian structure is obtained by pzp(l)zexp(—%j). Thus there is no

impact on the parameter estimates of the fixed effects. For instance, there is no
reduction in the standard errors when one compares the random effects model and
the other three models with residual serial correlation. There is a slight reduction in
the Toeplitz structure but it is not meaningful. One disadvantage of including
residual covariance in the GLMM-based approach is that the calculation of the
overall variance or the overall correlation is not straightforward because as noted
earlier, the random effects and the autocorrelation structure enter at different places
into the model irrespective of whether one consider the direct outcomes or the
pseudo data derived from them (Molenberghs and Verbeke, 2005). In this case the

conditional independence model presented is the preferred model.
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Table 5. 5: Parameter estimates (standard errors) for the random intercepts and slopes (RIAS) models with

different residual structures for the adherence to HAART data

RIAS + RIAS + RIAS +

Effect RIAS AR(1) toep(3) spatial Gaus
Intercept 0.852 (0.510) 0.823(0.515) 0.830(0.499) 0.824(0.515)
Gender (ref = male) . . . X
Female -1.269(0.428) -1.268(0.434) -1.255(0.418) -1.269(.433)

Education (ref= sec+) . X X X
No schooling 1.538 (0.643) 1.525(0.652) 1.526(0.625) 1.525(0.651)
Primary 0.064 (0.551) 0.088(0.559) 0.055(0.555) 0.085(0.558)

Treatment Site (ref=rural)

Urban site 1.258 (0.165)°

Income (ref= not source of income)
Source of income 0.038 (0.098)

Access to tap water (ref = No)
Yes 0.044 (0.153)

Having electricity (ref = No)
Yes 0.001(0.139)

Cell phone ownership (ref = No)
Yes 0.255 (.089)

*

WHO staging of disease (ref = stage 4)

Stage 1 -0.351(0.228)
Stage 2 -0.250(0.199)
Stage 3 -0.091(0.180)

Partner (ref = living with partner)
living without a partner

-0.329(.102)

Reason for taking HIV test (ref = unwell)

VCT

Exposed to the virus

-0.015(0.182).

-0.485(0.201)

Initial adherence (ref = not adherent)

Adherent -0.138(0.105)
Time (visit) 0.123 (0.021)’
Age -0.015(0.011)
Baseline CD4 Cell Count -.0003(0.001)
Baseline weight -0.006(0.006)
Weight at follow-up visit 0.004 (0.006)

Time*gender (ref = male)
Female 0.069 (.020)

*

Time*treatment site (ref = rural)
Urban -0.050(.020)

Time*reason for taking the test (ref = unwell)

VCT

Exposed to the risk of HIV

Age*education (ref= sec+)

No schooling
Primary

Age*gender (ref = male)

Female

-0.014(0.022)

0.056 (0.025)

-0.030(0.015)
-0.001(0.015)

0.026 (0.011)’

1.282(0.165)°
0.041(0.099)
0.035(0.156)

0.010(0.141)

*

0.260(0.090)

-0.360(0.230)
-0.254(0.201)
-0.090(0.181)

-0.335(0.103)°

-0.009(0.185)
-0.485(0.203)
-0.133(0.109)
0.130(0.022)*
-0.016(0.011)
-.0003(0.001)
-0.006(0.005)

0.004(0.006)

*

0.069(0.020)
-0.053(0.020)°

-0.015(0.023)
0.055(0.026)

-0.030(0.015)
-0.002(0.015)

0.025(0.012)

1.264(0.163)°
0.035(0.095)
0.041(0.149)

0.005(0.136)

*

0.255(0.086)

-0.354(0.222)
-0.252(0.194)
-0.093(0.156)

-0.329(0.099)

-0.010(0.181).
-0.482(0.199)

-0.134(0.104)
0.126(0.022)°
-0.015(0.011)
-.0003(.0005)
-0.006(0.005)

0.004(0.006)

*

0.069(0.020)
-0.051(0.019)°

-0.014(0.022)
0.055(0.026)

-0.030(0.016)
-0.002(0.014)

0.026(0.011)

1.281(0.165)
0.041(0.099)
0.034(0.156)
0.009(0.141)
0.260(0.090)"

-0.360(0.230)
-0.253(0.200)
-0.090(0.181)

-0.333(.103)

-0.010(0.184)
-0.486(\.203)

-0.132(0.108)
0.130(0.022)°
-0.016(0.011)
-.0003(0.001)
-0.006(0.005)

0.004(0.006)

*

0.069(0.020)

-0.053(.020)

-0.015(0.023)
0.055(0.026)

-0.030(0.015)
-0.002(0.015)

0.025(0.011)

* significant at 5% level
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Table 5.5(cont): Parameter estimates (standard errors) for the random intercepts and slopes (RIAS) models with

different residual structures for the adherence to HAART data

Effect

RIAS

RIAS +
AR(1)

RIAS +
toep(3)

RIAS +
spatial Gaus

Random Effects

var(b,,)
var(b,,)
cov(b,,,b;)

Residual

Autocorr. par. 8

Autocorr. 0

0.562 (0.150)
0.009 (0.002)
-0.055(0.018)

0.813(0.185)
0.012(0.003)
-0.059(0.020)

0.029(0.0158)

0.839(0.0150)

0.661(0.185)
0.011(0.003)
-0.068(0.020)

0.030(0.014)
0.019(0.014)

0.845(0.018)

0.802(0.185)
0.012(0.003)
-0.058(0.020)

0.541(0.035)

0.839(0.015)

* significant at 5% level
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5.8 Comparing marginal and random effects’ estimates

The random effects models are conditional models (subject specific), as both
within- and between-cluster effects apply conditional on the random effect value.
By contrast, the effects in the marginal models are averaged over all subjects
(i.e. population averaged), so those effects do not refer to a comparison at a
fixed value of a random effect (Agresti, 2002). For instance, a marginal gender
contrast compares the mean among men to that among women, while a
conditional gender contrast compares the mean among men to that among
women holding the same value of a random effect. With linear models, it is
possible to formulate the two regression approaches to have coefficients with the
same interpretation. That is, coefficients from random effects models can have
marginal interpretations as well. To develop this idea, briefly consider the linear
mixed model

Y, =X,8+ZDb, +¢, (5.27)

where 'y, =(yy.....y, ) X, =X,,....x,.) s Z,=(z z,) € =(&,..& ),

X, l ooy €,
and where E(b,)=0, cov(b,)=G, cov(e,)=0’1, and cov(b,,&,)=0. Note that
the subject-specific coefficient for the ith individual is f+b,. Since E(b,)=0, S
has interpretation as the typical subject-specific parameter. Alternatively, (5.27)
can be expressed as
Ey)=X,, cov(y,)=0’1+Z.GZ.

Here, S has the interpretation as the rate of change in the population-averaged
y with X. The random effects in the linear mixed model do not alter the
marginal expectation of y, the marginal covariance matrix. Hence, £ has both a

subject-specific and population-averaged interpretation.
With non-linear link functions such as the logit, the parameters from marginal and

random-effects models have completely different interpretations. To expand on

this point, recall an example in Section 5.2 of a binary outcome variable that
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assumes a random intercepts logistic model with a linear predictor

logit[ P(y; =11b,)]=x;, B +b,. The conditional means are given by

exp(x; B +b,)
l+exp(x;B+b,)

E(y,|b)=

The marginal average evolution is

exp(x; 3 +b,) :l

E(y.)=E[E(y, |b)]=E
(y;) [ECy; 1D,)] |:l+eXp(X;j,3+b;)

which does not have the form

exp(x; )
1+exp(x; ) ’

except when b, has a degenerate distribution, i.e. var(b,) =0 (Agresti, 2002).

Nonetheless, approximate relationships exist between the estimates from the
random effects and marginal models. Neuhaus, Kalbfleisch and Hauck (1991)

show that if var(b,)>0, then the elements of the marginal (4") and random
effects (8*") regression vector satisfy:
a) | B 1<I B 1, for all k.
b) Equality holds if and only if g* =0, or =0, where 7 is the
standard deviation of b, .
c) The discrepancy between (") and (8*°) increases with var(b,).
In particular, if b, is assumed to follow a Gaussian distribution with mean zero

and variance 7’ in a logistic model with random intercept, Zeger, Liang and
Albert (1988) showed that if

logitE(y,) = (c’7 +1) *x], B
where ¢ =16+/3/(157) so that

B =T+
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where ¢* =0.346. Since the effect in the marginal model multiplies that of the
conditional model by about d where d =(c’z*+1)”2, B"is typically smaller in

absolute value than A% and the discrepancy increases as 7> (Neuhaus et al.,

1991). That is, if the variance of the random effects is large, parameters from
fitting marginal models and random-effects model will be different, while equal
parameter values hold if the variance of the random effects is equal to zero
(Molenberghs and Verbeke, 2005). Thus, the use of marginal models can be
dangerous, even when marginal inferences are of interest if the data exhibits a
large degree of heterogeneity between subjects (Agresti, 2002).

With HAART adherence data, the ratio between the parameter estimates of the
GLMM (using the conditional independence model results from adaptive
Gaussian quadrature) and the GEE (Chapter 4, Table 4.4) were calculated and
are presented in Table 5.6. The overall trend of the observed ratio between the
two model estimates show that the GLMM estimates are slightly higher in
magnitude than the GEE estimates. The slight difference might be due to the
relatively small variance components estimates in the GLMM (Table 5.4).
However, there are a few cases where the differences in the size of the effects
were more pronounced (e.g. source of household income and households with
electricity). This suggests, for instance, that patients who are sources of
household income have more heterogeneity on adherence, thus their marginal
effect is smaller than that of patients who were not sources of household income.

There were also a few exceptions where the GEE estimates are slightly higher
than their GLMM counterparts. It is further noted that although the GLMM
estimates were generally larger, the statistical significance of the parameters (as
measured by the ratio of estimate to standard error) remained the same across
the analyses of the two models. Agresti (2002) argues that the choice of the
model is usually not crucial to inferential conclusions because if one effect seems
more important than another in a conditional model, the same is usually true with

the marginal model. This was also experienced with the analyses of HAART
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adherence data, the predictor variables that were important in the GEE model
were also found to be important in the GLMM model.
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Table 5. 6:

well as the ratio between the two sets of parameters on adherence data

Parameter estimates (standard errors) for GLMM (using adaptive Gaussian quadrature) and GEE as

Estimate (std error)

Effect Parameter GLMM GEE Ratio
Intercept B 1.606 (0.306) 0.597 (0.411) 2.69
Gender (ref = male)

Female B -1.555 (0.546) -1.194(.341) 1.30
Education (ref= sec+)

No schooling B, 1.707 (0.734) 1.617 (0.515) 1.06
Primary B, -0.108 (0.710) 0.099 (0.548) 1.09
Treatment Site (ref=rural)

Urban site B, 1.290 (0.204) 1.173 (0.162) 1.10
Income (ref= not source of income)

Source of income B 0.053 (0.118) 0.010 (0.101) 5.30
Access to tap water (ref = No)

Yes B 0.089 (0.185) 0.108 (0.150) 0.82
Having electricity (ref = No)

Yes B, 0.077 (0.159) 0.010(0.125) 7.70
Cell phone ownership (ref = No) ) )

Yes B 0.223 (0.106) 0.231 (.090) 0.97
WHO staging of disease (ref = stage 4)

Stage 1 Bs -0.482 (0.280) -0.334(0.197) 1.44
Stage 2 B -0.361 (0.250) -0.251(0.173) 1.44
Stage 3 B -0.256 (0.232) -0.108(0.157) 2.37
Partner (ref = living with partner)

living without a partner B -0.752 (0.306) -0.289(0.100) 2.60
Reason for taking HIV test (ref = unwell)

VCT B -0.093 (0.221) -0.028(0.179) 3.32
Exposed to the virus B -0.537 (0.245)" -0.486(0.181)° 1.11
Initial adherence (ref = not adherent)

Adherent Bis -0.119 (0.125) -0.141(0.108) 0.84
Time (visit) B 0.133 (0.027)’ 0.100 (.022)" 1.33
Age B -0.021 (0.014) -0.012(0.008) 1.75
Baseline CD4 Cell Count B -0.001 (0.001) -.0004(0.001) 2.50
Baseline weight B -0.008 (0.008) -0.004(0.008) 2.00
Weight at follow-up visit B 0.004 (0.007) 0.001 (0.007) 4.00

* significant at 5% level
ﬂ RE
ﬂM

Ratio=
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Table 5.6: Parameter estimates (standard errors) for GLMM (using adaptive Gaussian quadrature) and GEE as

well as the ratio between the two sets of parameters on adherence data

Estimate (std error)

Effect Parameter GLMM GEE Ratio
Time*gender (ref = male)

Female B 0.055 (0.024) 0.072 (.019) 0.76
Time*treatment site (ref = rural)

Urban B -0.055 (0.023) -0.057(0.020) 0.96
Time*reason for taking the test (ref = unwell)

VCT B -0.001 (0.027) -0.010(0.022) 0.10
Exposed to the risk of HIV B 0.067 (0.030)" 0.056 (0.024)" 1.20
Age*education (ref= sec+)

No schooling B -0.036 (0.019) -0.033(0.013) 1.09
Primary Bos 0.002 (0.019) -0.002(0.014) 1.00
Age*gender (ref = male) ) )

Female By 0.037 (0.015) 0.024 (0.010) 1.54

Random Effects

var(by;) 81
var(b,;) 8»
cov(b,,,b;) 812
corr(b,,,b;)

0.765 (0.246)
0.011 (0.003)
-0.074 (0.036)

-0.810

* significant at 5% level
ﬂ RE
ﬂ M

Ratio=
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5.9 Summary

GLMM is considered as a straight forward extension of the generalized linear
model by appending the random effects in the linear predictor. This achieves two
main goals of allowing responses to be non-normal and correlated. The GLMMs
have the ability to model subject-specific evolutions in addition to determining the
association structure of the data. However, the estimation procedures are more
complex with GLMM. For maximum likelihood, approximation methods are used
for parameter estimation with each method having its own strengths and
limitations. As a result, fitting data using GLMM was quite challenging.
Regardless of the embedded differences between the approximation methods
used to fit the adherence data, the results obtained from all methods largely
agree, which gives us more confidence in all the approximation methods. Note
that GLMM is more robust to missingness than GEE because it assumes that
data are missing at random (MAR).

Application of GLMM to the adherence data enabled us to model the
dependence among the repeated adherence observations in addition to
evaluating the influence of the predictor variables on a specific patient’'s mean
adherence response over time. The results showed that predictor variables
associated with  HAART adherence at the population level also have an
association with HAART adherence at the subject specific level. In addition, the
results revealed that patients with high adherence at the beginning of the follow-
up period tend to be less adherent over time. Similarly, patients who are non-
adherent at the beginning tend to improve their adherence over time. Next, is to
evaluate whether the patient’'s past adherence outcome influences his/her

current adherence outcome using transition models.
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Chapter 6

Transition models

6.1 Introduction

We have so far discussed extensively two approaches (including their results) of
modeling longitudinal data by extending generalized linear models (GLMs).
These are marginal models using the generalized estimating equations (GEES)
and generalized linear mixed models (GLMMs) as a special case of random
effects models. The third approach of handling longitudinal data and still
extending the GLMs involves modeling the mean and time dependence
simultaneously through conditioning an outcome on other outcomes or a subset
of other outcomes (Molenberghs and Verbeke, 2005). Such models are known
as transition models and they are considered as a very specific class of
conditional models. Transition models are appealing for longitudinal designs due
to the sequential nature of the data (Fitzmaurice and Molenberghs, 2008). In

transition models, the conditional distribution of each response y, is described
as an explicit function of previous outcomes or history h; =(y,,...,y,,) and the
covariates x,; (Diggle et al., 2002). That is, the past outcomes are treated as

additional predictor variables (Davis, 2002). The dependence among the
repeated measures is thought of as arising due to the past values influencing the
present observations. Specific classes of transition models are Markov models

for which the conditional distribution of y, given h, depends only on the g prior
observations y,,...,y, .. (Diggle et al., 2002; Molenberghs and Verbeke, 2005;

Ramroop, 2008). The order of a transition model is the number of previous
measurements (g) that is considered to influence the current one. Moreover, a
model is called stationary if the functional form of the dependence is the same
regardless of the actual time (Molenberghs and Verbeke, 2005; Ware, Lipsitz and
Speizer, 1988).
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There are several different schools of thought regarding the best approach to
analysis of correlated binary data. Unlike in the normal setting, marginal,
conditional (transition) and random effects approaches tend to give dissimilar
results (Molenberghs and Ryan, 1999). While each one of the model families
has advantages and disadvantages, model choice should primarily be based on
the specific goals of the analysis. In transition models, the expectation of the
response at a given occasion is modeled in terms of the responses at the other
occasions, whereas in marginal models the covariates are directly related to the
marginal expectations. Random-effects models differ from the other two by the
inclusion of parameters that are specific to the subject (Molenberghs and
Verbeke, 2005).

Due to the popularity of marginal (especially GEE) and random effects models for
correlated binary data, transition models have been given relatively little attention
(Molenberghs and Ryan, 1999). Diggle et al., (2002) criticized the transition
approach because the interpretation of a fixed effect parameter of one response
is conditional on other responses for the same subject, outcomes of other
subjects and the number of repeated measures. However, transition models are
likelihood based and one advantage is that efficiency can be gained over other
procedures such as GEE under correct model specification. Other advantages
include availability of inferential procedures such as likelihood ratio tests and
robustness of likelihood-based inference to certain dropout or missing data
mechanisms (Heagerty, 2002).

The rest of the chapter is organized as follows. Section 6.2 presents the
transition model formulation with illustrative examples from continuous, binary
and count responses. Estimation and fitting of transition models, with a particular
focus on transition models for binary data is presented in Section 6.3. In Section

6.4 the results from the fitted transition models to adherence data are presented.
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6.2 Model specification

A transition model specifies a GLM for the conditional distribution of y, given
past responses, h,;. The form of the conditional GLM is
Sy thy) =exp{ly;0; —w @)1/ ¢+c(y;.P)} (6.1)

for known functions w(6,) and c(y,.¢). The conditional mean and variance are

given by
1 =E(y, h,)=y'(8,)
and
v; =var(y; 'h,)=y"(6,)¢
respectively.

Then a transition model establishes the following assumptions:

a) The conditional expectation, denoted by s, is specified by

q
g(u;)=g(E(y; 1hy) =x;+3 f,(h;;@)
r=1
where f,,..., f, are functions of previous observations and, possibly, of

an unknown parameter vector o’ = (a,...a,); and g(-) is a known link

function.
b) The conditional variance satisfies the equation:
v; = Pv(iL;)
where v(-) is a known variance function and ¢ is an overdispersion
parameter.
This shows that the transition model expresses the conditional mean u; as a

function of both the covariates x,; and the past responses y,,...,y; ,. Thatis,

the linear predictor component of the model includes the original covariates as
well as additional covariates that are known functions of past responses (Diggle
et al., 2002; Davis, 2002). The transition model formulation is illustrated with

continuous, binary and count responses.
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For a continuous response, we consider the linear regression model with
autoregressive errors for Gaussian data (Diggle et al., 2002; Tsay, 1984) which is
a Markov model. It has the form

q
Vi ZX;,B-FZar(yij—r _XU—V'B)+ZU’
r=1

where Z are independent, and zero-mean Gaussian errors. This is a transition
model with

g(uy) =y, v(uy)=1and f,(h;a)=a,(y;, —x; . f).
It should be noted that the present observation y, is the linear function of x;, and
of the earlier deviations y, . —x;_ .8, r=1.....,q. This formulation of the transition
model within the linear regression model leads to E(yl.j)zxjj,B whatever the

value of the number of previous outcomes (¢) is.

For binary responses, we consider a logistic regression model that consists of a
first-order Markov chain (Diggle et al., 2002), which is given as
logit[Pr(y, =11h)]=x,S+ay,.,

where

c

c . c lLli' c c c
g(;uij) = lOgll(,Ulj) = log{l —;lc j ; v(luij ) = /’lzj (1 _/'lzj )
ij

and
fithgo=ay, ,r=q=1.
A simple extension to a model of order ¢ has the form
) = o) =X, B+ Ty,

The interpretation of the regression coefficients depends on the order ¢, that is

B=5,-
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For count responses, we consider a log-linear model discussed in Zeger and
Qagish (1988) with a first order Markov chain and it can be summarized as

follows
log[Pr(y, =11h;) =x; B +aflog(y; )~ X, B},

where

Yy =max(y,,d); 0<d <1,
which leads to

,U; = eXP(X;jﬂ)(#;;ﬁ)]
and

fi = aflog(y; ) —x; B}

The constant & prevents y, , =0 from being an absorbing state, otherwise
y; =0 compels all future responses to be zero. For @ <0, a response at time
t—1 greater than exp(x/_, ) decreases the expectation for the current response

and when a > 0, the opposite occurs.

It is worth noting that for outcomes of the general type (in this case logistic and

log-linear models), it is difficult to formulate models in such a way that g has the

same meaning for different assumptions about the time dependence. Thus,
when g is of scientific interest, evaluation of the sensitivity of the results to the

choice of time dependence model should be carried out.

6.3 Estimation and fitting of a transition model

Since the contribution of y, given the history h, leads to independent GLM
contributions, estimation in transition models is quite straight forward
(Molenberghs and Verbeke, 2005). The following derivation follows that of
Diggle et al., (2002). In the first-order Markov model the contribution to the

likelihood for the ith subject can be written as
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L, ooy ) = PO [ £ Gy 1)

In a Markov model of order ¢, the conditional distribution of y, is

f(yll |hl]):f(y1, |yu_1,,yu_q),

then the likelihood contribution for the irh subject becomes

O Vi) [T Vit Vi) -

Jj=q+1

The conditional GLM (6.1) only specifies the conditional distribution f(y, Ih,);

the likelihood of the first ¢ observation f(y,,...,y,) is not specified directly.

When y, given h; follows a Gaussian distribution and also y,,...,y, are also
multivariate Gaussian, the marginal distribution f(y,,...,y,) can be fully

determined from the conditional distribution model without additional unknown

parameters for a weakly stationary covariance structure of y,. Thus full

maximum likelihood estimation can be used to fit Gaussian autoregressive
models.

However, for models of the general type such as logistic and log-linear models,
f(Yiy»---»¥;,) is not determined from the GLM assumption about the conditional
model, and therefore the full likelihood is not available. In this case, f and «

can be estimated by maximizing the conditional likelihood

N N n;
1/ Guuieeos v Wiy ) =TT TS s 1hy) - (6.2)
i=1 i=l j=q+1

There are two distinct cases to consider when maximizing the above conditional
likelihood.
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Case 1: If f,(h;;a,8)=c,f.(h;) where f does not depend on the parameters

B, estimation proceeds as in GLMs for independent data. That is, the

q
conditional expectation, g(y;)zx;/ﬂaz]‘r (h;) is a linear function of both S

r=1

and o'=(e,,...,a,). We can simply regress y, on the (p+gq)-dimensional

vector of extended explanatory variables (x, f,(h;),.... f, (h;).

Case 2: When f, depends on both & and £, the conditional score function has

the form

c

aﬂlﬁ ¢! c
abfl)ij (y; —H;)=0, (6.3)

S@=> 3

i1 j=qtl
where 6" =(f’,a’). This equation is the conditional analogue of the GLM score
equation presented in Chapter 3. The derivative du, /dJ is analogous to x; but
it can depend on a and B. The iterative weighted least squares estimation
procedure is formulated as follows. Let y, be the (n, —¢g) vector of responses for

j=q+1,...,n;, and y; is its expectation given, h,. Let X: bean (n,—q)x(p+q)

iy

matrix with the kth row du, ., /00 and W, =diag(1/v;, k=1,...,n,—¢q) is an

iq+k ik+q
(n, —q)x(n, —q) diagonal weighting matrix. Finally, let z, =X 6+ (y, - &°).
Then an updated & can be obtained by iteratively regressing z on X" using

weights W.

It is worth noting that if ¢ is large, relative to n,, the use of transitional models

with conditional likelihood could be inefficient.

When the correct model is assumed for the conditional mean and variance, the

solution to § of (6.3) asymptotically follows a Gaussian distribution as N goes to

infinity, with mean equal to the true value, 6, and (p+¢)x(p+¢) variance matrix
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N , -1
\2 :(ZX‘;‘ wixjfj :

i=1
The variance V, depends on S and a and a consistent estimate, \75, is

obtained by replacing # and a by their estimates ,[3’ and &. However, when
the conditional mean is correctly specified and the conditional variance is not,
consistent inferences about & can still be obtained using the robust variance:
Vg = [i inwixjj_l(i Xj"wiviwixjj(i Xf/W[ij_l :
i=1 i=1 i=1

A consistent estimate of V, is obtained by replacing V. =var(y, lh;) by its

estimate (¥, _l[zic)(yi _:az(),

The robust variance will often give consistent confidence intervals for & even

when the Markov assumption is violated. In such a situation, however, the

interpretation of & is questionable since u;(S) is not the conditional mean of y,

given h,.

Fitting transition models in SAS is relatively straightforward. Since subsequent
measurements, given their previous history, are independent of each other,
standard GLM software can be used to fit these models. These include SAS
procedures that comprise GENMOD and LOGISTIC. However, one must ensure
that the data is organized in such way that previous measurements can be used
as covariates. Molenberghs and Verbeke (2005) describe how the DROPOUT
macro can be used to prepare previous responses as covariates in the
longitudinally organized data set (one record per measurement rather than per
subject). Besides the DROPOUT macro, the LAG function in SAS can also be

used to create previous measurements as additional covariates.

For binary outcomes observed at equally spaced intervals, a first-order Markov
chain is characterized by the transition matrix
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(2 2)
T, 7,

where 7, =Pr(y, =bly, =a), a,b=0,1. For instance, z, is the probability
that y, =1 when the previous response is y, , =0. That is, the probability of a
transition from y, =0 attime j-1to y, =1 attime j is 7, =Pr(y;, =11y, , =0).
Similarly, the probability of a transition from y, =1 attime j—1to y, =1 attime
jis @, =Pr(y, =11y, =1). With adherence data, =z, would represent the
probability that a patient adheres to medication (y, =1) when they were non-
adherent to medication in the previous visit (y, ,=0). Likewise, z,, would
represent the probability that a patient adheres to medication (y, =1) when they

were adherent to medication in the previous visit (y, , =0). It should be noted

that each row of a transition matrix sums to one since

Pr(yl.j =O|yij_1 =a)+Pr(yl.j =l|yij_1 =a)=1.

In general, a transition matrix records the probabilities of making each of the
possible transitions from one visit to the next (Diggle et al., 2002). It is worth
noting that the transition probabilities are conditional probabilities of going into
each state, given the immediately preceding state. In a first-order Markov chain,
there is dependence on the immediately preceding state but not on earlier
outcomes. Moreover, higher-order sequential dependence can be incorporated,
with dependence on more than an immediately preceding state (Fitzmaurice and
Molenberghs, 2008).

Transition probabilities can be modeled as functions of covariates

X;; = (1, x;,,%;,,....X;,) in a regression setting. For instance, Cox (1970, 1972)

iip
showed the link between the transition probabilities for a Markov chain and a
logistic regression. Korn and Whittemore (1979) applied the model to panel data
on the effects of air pollution. Thus, with the adherence data, we might assume
that the probability of adherence to medication for patient i at visit j has direct
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dependence on whether or not a patient adhered to medication at visit j—1 as
well as on the explanatory variables x, (age, gender, treatment site etc). A
logistic regression model can be formulated as

logitl P(y,; =11x,.,y, . B.))=x,f+y, «. (6.4)
This model is the stationary first order autoregressive model. The parameter
exp(e) is the ratio of the odds of adherence among patients who did and did not
adhere to medication at the previous follow-up visit. The parameter exp(f) can

be interpreted as the odds of adherence to medication having controlled for the
outcome (adherent/not adherent) in the previous follow-up visit.

Evaluating the logistic regression equation (6.4)to y, , =0 and y,, =1 produces
the following transition probabilities
N 0 )

1+exp(xzi,3)’ o 1+exp(x;; B)

~ 1 . _exp(x;f)
1+exp(x; S+ ) a 1+exp(x; B +a) '

72.00

7[10

In this model (6.4), the covariates have the same effect on the response

probability whether y, , =0 or y,, =1. In order to link covariate dependence

with transition probabilities so as to analyze factors associated with such
transitions, logistic regression models were employed by Muenz and Rubinstein
(1985) for first-order Markov models while generalizations to higher-order were
proposed by, amongst others, Islam and Crowdhury (2006). Thus, for assessing
covariate dependence on the previous response, model (6.4) can be extended to

include interaction of the previous response y,, and explanatory variables, x; .

That is, it can be assumed that the effects of explanatory variables will differ
depending on the previous response. In such a case, a very general model uses

separate logistic regressions for P(y, =11y,,=0) and P(y; =11y, =1). That

is
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logit[P(y; =11y, , =0,x,) =X/,
logit[P(y; =11y, , =1Lx;) =X/,
where if B, # f, indicates the possibility that the effects of explanatory variables

differ depending on the previous response. Diggle et al., (2002) show that the
two equations above can be combined to form the model
logitlP(y, =11X,,y,.f.0)]=x,; B+, X,&, (6.5).
where
pB=p,and a=p-5,.

Model (6.4) is a special case of (6.5). Since these models are nested, standard
statistical methods for nested models can be applied to test whether smaller
models can fit the data as equally well as saturated models. For instance,
likelihood ratio tests can be applied to test whether a limited number of
covariates interact with the previous outcome. Moreover, we can test whether a

smaller model (6.4) fit the data as equally well as the saturated model (6.5).

The covariate dependent higher order models can be fitted by extending the
model for the first order Markov chain (6.5). To illustrate the extension to higher
models, the second-order model is considered. The transition matrix for the

second-order model is of the form

Yij
Yij-2 Vi1 0 1
0 0 7000 Too1
0 1 To10 Ton
1 0 700 o1
1 1 Tiio 7

where 7z, =Pr(y, =cly,,=a,y, , =b); for example, 7z, is the probability that

y; =1given y., =0 and y, , =0. For ease of reference regarding the previous
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responses, lag 2 will be used to refer to y, , while lagl will refer to y,,. With

adherence data for example, z,, would indicate the probability that a patient
adhered to medication when he/she was non-adherent in lag 2 and lag 1 follow-
up visits (y, , =0,y,,=0). Similarly, z,, would indicate the probability that a
patient adhered to medication when they were not adherent in lag 2 (y, , =0)

follow-up visit but adherentinlag 1 (y, , =1) follow-up visit.

With the second-order transition models, four separate logistic regression models

can be fitted, one for each of the four possible histories (y, ,,y, ), which are
(0,0), (0,1), (1,0) and (1,1) with regression coefficients ., B,. B, and S,
respectively. It is more concise to write a single equation as follows:
logit[P(y; =11y, 5,y;,)]
=X B+ Yy X0+ ¥y X0 + ¥y 1Yy X0 (6.7)
By putting in the different values for y,, and y,,, we obtain g, =2,
Bn=p8+c,, B,=p+a, and B, =pF+a +a,+a,. The following transition

probabilities can be produced:
eXI/ﬁOO eX;jﬁ

ﬂm1=P0@=1U@2 Oyul—OX)z

1+e”%°_1+e%ﬁ,
eX:j/Bm eX:j(ﬂHll)
Zon =Py =11y =0,5;, :l’Xif):l_i_exf/ﬁm PRGN
eXI/ﬁIO ex;j(ﬁ+a2)
T =Py =y, =Ly;, =0,x;)= PR PV
ex:jﬂn eX;,'(/B‘Hl] +a,+az)
Ty =Py =1y, , =Ly, =Lx;)= 14 P 1+ex;-<ﬁ+al+az+a3> .

It should be noted that =x,,+7,, =1, 7,,+7,, =1, &,+7, =1 and

Ty + 7, =1.
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Tests can again be carried out to ascertain whether a parsimonious model could

fit the data well, that is, testing whether many of the components of the «; would

be equal to zero.

An important special case of (6.7) occurs when there are no interactions between

the past outcomes y, , and y, ,, and the explanatory variables, that is, when all

elements of «, are zero except the intercept term. In this case, the previous
responses affect the probability of a positive outcome, but the effects of the
explanatory variables are the same regardless of the history. Even in this
situation, we must still choose from Markov models of a different order. For
instance, we might start with a third-order model which can be written in the form
logit[P(y,; =11y, 3, ¥, ,¥;.)]
= X;jﬁ+ O Yy + Oy 5+ 0Ly, s+ QY Vi sV Vs + g Yis Va0V Vs
(6.8)
A second order model can be used if the data are consistent with
oy =05 =a, =a, =0; a first order model is implied if &, =0 for j=2,...,7. As
with any regression coefficients, the interpretation of the value of £ in (6.8)
depends on the other explanatory variables in the model, in particular on which
previous responses are included. When inference about £ are of scientific

interest, it is essential to check their sensitivity to the assumed order of the
Markov regression model (Diggle et al., 2002).

6.4 Evaluating adherence data using transition models

With the data from HIV positive adults who are on HAART, the overall scientific
interest has been to explore factors that affect HAART adherence over time
among these adults. In this chapter, the analyses use covariates identified using
the GEE model to address whether or not the patient’s adherence to medication
depends on the previous outcomes (history) in addition to the identified GEE
covariates. Moreover, it would be interesting to also assess whether the effects
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of explanatory variables are the same regardless of the history (no interactions
between the previous outcomes and explanatory variables) or the effects differ
depending on the history (interactions between previous responses and
explanatory variables exist).

Recall the GEE model for the adherence data (Chapter 4, section 4.6)

M .
log( " |=f, + P,age, + B, gender, + Bieduc _no, + f,educ _no, + Bsite, + B, partner,
i

+ B,income, + BWHOstagel, + B,WHOstage?2, + B,,WHOstage3, + , base _cd4,

+ B,baseweight. + B,reason _no, + B, ,reason _risk, + B,stapwater, + B, electricity,
+ B, cellphone; + Bisadh _monthl, + B, weight,; + [B,time,; + [3, time, gender,

+ B, time,site, + B,.time,reason _no, + fB,,time;reason _risk, + [,sage educ _no,

+ Bysage educ _ p, + f,,age, gender,

A series of transition models were fitted to this GEE model using ‘Proc Logistic’
and ‘Proc Genmod’ in SAS. First, we assessed whether there is a dependence

on (a) the previous response, y,,, (b) the response two occasions prior to the
current one (y,,,y,,) and (c) the response three occasions prior to the current
one (y,,, Y., ¥;3)- Thusthree models (first-, second- and third-order models)

were fitted, where the previous responses were included as additional
explanatory variables into the GEE model. The goodness-of-fit was tested using
the deviance analysis which is produced by the type 3 analysis of effects. Type 3
analysis of effects considers the overall model and assesses the contribution of
each variable to deviance reduction irrespective of the sequence in which the
variables enter the model. The results from type 3 analysis of the effects are
presented in Table 6.1.

The results show a very strong dependence on the previous outcome
measurement (p-value = <0.001) and on the measurement two occasions prior to
the current (p-value = <0.001). Three prior responses did not depend on the
current response (p-value = 0.167), and for further model assessments, the third-

order transition model was not considered.
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Table 6. 1:

Type 3 analysis of effects for first-, second- and third order models

Effects DF | First order Second order Third order

Wald Chi- | p-value Wald Chi- | p-value | Wald Chi- | p-value

square square square
Gender 1 2.9914 0.0837 2.2137 0.1368 | 1.9983 0.1575
Education 2 13.6998 0.0011 11.9152 0.0026 | 11.5297 0.0031
Treatment site 1 17.1163 <.0001 13.1546 0.0003 | 12.1355 0.0005
Income 1 0.1828 0.6690 0.1761 0.6747 0.1780 0.6731
Tapwater 1 0.9473 0.3304 0.8523 0.3559 | 0.8094 0.3683
Electricity 1 0.3083 0.5787 0.4145 0.5197 | 0.4548 0.5000
Cell phone 1 2.1826 0.1396 1.5157 0.2183 1.3948 0.2376
WHO staging 3 1.3976 0.7061 1.2082 0.7510 | 1.1675 0.7608
Partner 1 8.2366 0.0041 6.8889 0.0087 | 6.5753 0.0103
Reason 2 5.4967 0.0640 4.4073 0.1104 | 4.2353 0.1203
Baseline_adh 1 3.4725 0.0624 2.8261 0.0927 | 2.7130 0.0995
Time (visit) 1 16.0774 <.0001 13.6226 0.0002 12.7552 0.0004
Age 1 2.6288 0.1049 2.3056 0.1289 | 2.1968 0.1383
Baseline CD4+ 1 0.0706 0.7904 0.0491 0.8246 0.0474 0.8277
Baseline weight 1 0.1906 0.6624 0.1491 0.6994 | 0.1395 0.7088
Weight_follow-up | 1 0.1527 0.6960 0.1796 0.6717 | 0.1853 0.6668
Time*gender 1 9.2673 0.0023 8.2419 0.0041 7.9157 0.0049
Time*site 1 0.0512 3.8019 2.9202 0.0875 | 2.7032 0.1001
Time*reason 2 6.8689 0.0322 5.9122 0.0520 | 5.7521 0.0564
Age*gender 1 1.2757 0.2587 0.8763 0.3492 | 0.7833 0.3761
Age*education 1 10.5237 0.0052 9.3435 0.0094 | 9.0683 0.0107
Lagt ( ;) 1 59.3599 <.0001 47.9417 <.0001 | 46.0769 <.0001

1 25.8090 <.0001 | 24.0398 <.0001

Lag2 (¥;-2) 1 19190 | 0.1660
Lag3 (y;_3)

Second, we checked whether the effects of the explanatory variables differ

depending on the previous responses (history). That is, we assessed whether

any interaction terms (between the previous response and explanatory variables)

need to be incorporated into the second-order model.

To examine this, the

second-order model (in Table 6.1) was extended by fitting each of the two-way

interaction terms formed from the previous responses and explanatory variables.
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They were added to the model one at a time and their significance assessed.
Three interactions reduced the deviance by relatively large amounts: lag1*time
led to a deviance reduction of 6.48 on 1 degree of freedom and a corresponding
p-value of 0.011, lag2*baseline adherence and lag2*cell phone reduced the
deviance by 5.98 (p-value = 0.014) and 6.13 (p-value = 0.013) on 1 degree of
freedom respectively. To see if all the three interactions could be retained in the
model, they were fitted all at the same time and they reduced the deviance by
19.98 on 3 degrees of freedom and a corresponding p-value of <0.001. Finally,
the model was examined to see if any interactions from the GEE model could be
omitted. The interaction between age and gender increased the deviance by
2.185 on 1 degree of .freedom (p-value = 0.139) and was therefore dropped. As
a result, the selected model was the second-order model (Table 6.1) but
excluding the interaction term age*gender and including the three interaction
terms: lag1*time, lag2*baseline adherence and lag2*cell phone

The goodness-of-fit was tested using Hosmer-Lemeshow test. The observed

and expected frequencies are given in Table 6.2.

Table 6. 2: Partion for the Hosmer-Lemeshow Goodness-of-Fit test

Group Total Event = adherent Non-event = non adherent
Observed | Expected | Observed Expected

1 508 264 257.43 244 250.57

2 508 339 345.56 169 162.44

3 508 381 380.63 127 127.37

4 508 398 403.13 110 104.87

5 508 425 420.31 83 87.69

6 508 441 432.75 67 75.25

7 508 445 441.67 63 66.33

8 508 433 450.06 75 57.94

9 508 460 459.31 48 48.69

10 505 475 470.12 30 34.88
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The goodness-of-fit statistics is 9.0149 with 8 degrees of freedom, and the
corresponding p-value of 0.341. The very large p-value for this test shows that
the model fits the data well (i.e. the predicted probabilities correspond with the
observed values).

The appropriateness of the link function was tested by refitting the model using a
linear predictor and a squared linear predictor and the results are given in Table
6.3.

Table 6. 3 Logit link function test

Variable DF | Chi-square | p-value
Constant 1 0.0104 0.919
Linear predictor 1 67.609 <.0001
Squared linear predictor | 1 0.0643 0.800

The very small p-value for the linear predictor and a very large p-value for the
squared linear predictor variables in Table 6.3 suggest that the link is
appropriate, and thus agrees with the goodness-of-fit test that the model fits the
data well.

A simple check of the sensitivity of inferences about the regression coefficients to
the Markov assumption, which in this case is the 2" order, was carried out by
assessing whether the ordinary and robust standard errors were similar. This
was carried out using the GLIMMIX procedure (to fit a generalized linear model)
since it can provide empirical error estimates for the regression coefficients and
the results are presented Table 6.4. The results showed both standard errors to
be very similar, which suggests that the 2" order Markov assumption is valid,
thus the standard errors estimated by ordinary logistic regression are valid.
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Table 6. 4: Comparison of model based and empirical standard errors of the 2" Markov model

Effect Estimates Model based std errors | Empirical std errors
Std error Pvalue Std error Pvalue

Intercept -0.2143 0.4351 0.6223 0.4378 0.6245
Gender (ref=male)

female -0.4148 0.1979 0.0361 0.1990 0.0372
Education (ref=sec & higher)

No schooling 2.0950 0.5866 0.0004 0.6092 0.0006

Primary 0.2412 0.5086 0.6353 0.5180 0.6414
Treatment site (ref=rural)

Urban 1.0166 0.1997 <.0001 0.2015 <.0001
Income (ref=not source)

Source of income -0.0303 0.0897 0.7353 0.0901 0.7364
Access to tapwater (ref=no)

Yes 0.1602 0.1273 0.2082 0.1275 0.2089
Househld with electricity (ref=no)

Yes 0.0897 0.1178 0.4469 0.1161 0.4399
Cell phone ownership (ref=no)

Yes -0.1686 0.1403 0.2298 0.1397 0.2278
WHO staging (ref=stage4)

Stage1 -0.2706 0.2078 0.1929 0.2118 0.2015

Stage2 -0.1464 0.1884 0.4373 0.1937 0.4499

Stage 3 0.0581 0.1736 0.7375 0.1795 0.7459
Living with partner (ref=no)

Yes 0.2242 0.0942 0.0173 0.0929 0.0158
Reason for testing (ref=unwell)

No specific reason -0.2963 0.2209 0.1798 0.2197 0.1776

Exposed to the risk -0.5473 0.2504 0.0289 0.2512 0.0294
Baseline adherence (ref=no)

yes -0.5254 0.1696 0.0020 0.1669 0.0017
Time (visit)
Age 0.0877 0.0254 0.0006 0.0261 0.0008
Baseline CD4+ -0.0002 0.0007 0.7976 0.0007 0.7997
Baseline weight -0.0020 0.0058 0.7363 0.0063 0.7524
Weight at follow-up visits -0.0014 0.0053 0.7944 0.0058 0.8142
Time*gender (ref=male)

female 0.0719 0.0195 0.0002 0.0196 0.0003
Time*site (ref=rural)

urban -0.0508 0.0196 0.0094 0.0198 0.0102
Time*reason (ref=unwell)

No specific reason 0.0147 0.0219 0.5022 0.0223 0.5084

Exposed to the risk 0.0606 0.0260 0.0198 0.0260 0.0197
Age*education

No schooling -0.0439 0.0147 0.0029 0.0153 0.0042

Primary -0.0059 0.0131 0.6505 0.0134 0.6577
Previous1 (ref=no)

yes 1.1597 0.1986 <.0001 0.1990 <.0001
Previous2 (ref=no)

yes -0.1332 0.1941 0.4927 0.1888 0.4807
Previous1*time -0.0580 0.0213 0.0066 0.0214 0.0068
Previous2*cellphone (ref=no)

Yes 0.4122 0.1668 0.0135 0.1670 0.0136
Previous2*baseline adh (ref=no)

yes 0.4938 0.2013 0.0142 0.1996 0.0134
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The final selected model is as follows:
logit[P(yl.j =1y, 5, 0. X; )= B, + B,gender. + B,educ _no, + Byeduc _ p, + B,site, + Bsincome,
+ Bstapwater, + B, electricity, + Pgcellphone; + f,WHOstagel, + 3,,WHOstage?2,
+ B,\WHOstage3, + B,, partner, + B;reason _no, + 3, reason _risk,
+ Bisadh _monthl, + B age, + f,;base _cd4, + Psbaseweight, + ,,weight,;
+ Bytime; + B, time, gender, + f3,,time site, + B,;time reason _no,
+ B,stimereason _risk, + 3,sage,educ _no, + Bageeduc _ p, + &,y time;

+a,y; ,cellphone, + a,y,; ,adh _monthl,

The parameter estimates and the corresponding confidence limits for the above
model are presented in Table 6.5. The results show that there are three
interactions between the past responses and the explanatory variables and they
are lag1*time, lag2*cell phone ownership and lag2*baseline adherence.

Adherence is increasing over time but the rate of increase is different for patients
who were adherent and those who were not adherent in the previous follow-up
visits. With a unit increase in time (follow-up visit), the odds of adherence are
1.09 (¢"***) times more likely for the patients who were not adherent in both lag2

and lag1 follow-up visits (y, , =0 and y, , =0), whereas the odds of adherence

are 1.03 (¢"%”) times more likely for patients who were not adherent in lag2
follow-up visits (y, , =0) but adherent in lag1 follow-up visits (y, , =1). Thus the
rate of increase in adherence is significantly higher for patients who were not
adherent in two previous successive follow-up visits than for those who changed
from not being adherent to being adherent in two previous successive follow-up
visits (p=0.0086) (Table 6.5). Figure 6.1 depicts this interaction between the past

responses and time.
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Table 6. 5: Parameter estimates of the chosen 2™ order Markov model
Effect Estimates Std p-value 95% C.I.
errors

Intercept -0.1745 0.4399 0.6915 -1.0367 0.6876
Gender (ref=male)

female -0.3959 0.1995 0.0472 -0.7870 -0.0049
Education (ref=sec & higher)

No schooling 2.3686 0.5948 <.0001 1.2028 3.5344

Primary 0.3411 0.5319 0.5213 -0.7014 1.3837
Treatment site (ref=rural)

Urban 0.9974 0.2011 <.0001 0.6032 1.3915
Income (ref=not source)

Source of income -0.0238 0.0898 0.7906 -0.1999 0.1522
Access to tapwater (ref=no)

Yes 0.1716 0.1324 0.1951 -0.0880 0.4311
Househld with electricity (ref=no)

Yes 0.0952 0.1223 0.4362 -0.1445 0.3349
Cell phone ownership (ref=no)

Yes -0.1798 0.1407 0.2059 -0.4538 0.0978
WHO staging (ref=stage4)

Stage1 -0.2470 0.2106 0.2408 -0.6597 0.1657

Stage2 -0.1574 0.1887 0.4040 -0.5272 0.2123

Stage 3 -0.0860 0.1742 0.6217 -0.4274 0.2555
Living with partner (ref=no)

Yes 0.2374 0.0948 0.0123 0.0516 0.4232
Reason for testing (ref=unwell)

No specific reason -0.3035 0.2224 0.1724 -0.7395 0.1324

Exposed to the risk -0.6019 0.2516 0.0168 -1.0950 -0.1087
Baseline adherence (ref=no)

yes -0.5425 0.1702 0.0014 -0.8761 0.2088
Time (visit) 0.0842 0.0257 0.0011 0.0338 0.1346
Age 0.0050 0.0070 0.4710 -0.0087 0.0187
Baseline CD4+ -0.0003 0.0007 0.6878 -0.0016 0.0010
Baseline weight -0.0016 0.0059 0.7880 -0.0131 0.0099
Weight at follow-up visits -0.0018 0.0053 0.7395 -0.0121 0.0086
Time*gender (ref=male)

female 0.0727 0.0197 0.0002 0.0341 0.1112
Time*site (ref=rural)

urban -0.0484 0.0197 0.0143 -0.0484 -0.0097
Time*reason (ref=unwell)

No specific reason 0.0145 0.0221 0.5112 -0.0288 0.0579

Exposed to the risk 0.0659 0.0262 0.0119 0.0145 0.1173
Age*education

No schooling -0.0521 0.0150 0.0005 -0.0815 -0.0227

Primary -0.0080 0.0137 0.5613 -0.0347 0.0189
Previous1 (ref=no)

yes 1.1372 0.2000 <.0001 0.7453 1.5292
Previous2 (ref=no)

yes -0.1267 0.1948 0.5155 -0.5084 0.2551
Previous1*time -0.0565 0.0215 0.0086 -0.0565 -0.0144
Previous2*cellphone (ref=no)

Yes 0.4087 0.1674 0.0146 0.0805 0.7368
Previous2*baseline adh (ref=no)

yes 0.4920 0.2020 0.0149 0.0961 0.8879
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Figure 6. 1 Log odds of adherence for the interaction between time and previous
adherence responses
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The odds ratios and their confidence limits for the effects of the interaction
between the previous responses and cell phone ownership as well as previous
responses and baseline adherence are presented in Tables 6.6 and 6.7
respectively. The contrasts were derived from the estimated model coefficients
in Table 6.5.

Table 6. 6: Odds ratios and their confidence limits for the effects of the interaction
between outcomes at previous visits and cell phone ownership

Contrast Odds ratio 95% ClI of odds ratio
Cell phone vs no cell phone

(v:,=18&y,,=0) 1.2595 (1.0370,1.5282)

ij— ij—

(Vy2 = 0 & Vi = 0) 0.8369 (0.6352, 1.1027)
(Vi =18y, =0)vs(y;, =08 y,,=0)

Own a cell phone 1.3258 (0.8784, 2.0010)

Do not own a cell phone 0.8810 (0.6015, 1.2905)
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The results show that patients who owned a cell phone are 1.26 times (95% CI:
1.04, 1.5) (Table 6.6) more likely to adhere to medication than patients without
cell phones for patients who changed from being adherent in lag2 to being non-

adherent in lag1 follow-up visits (y, , =1 and y, , =0). There was no significant

difference in adherence between patients who owned cell phones and those
without cell phones if they were not adherent in both lag2 and lag1 follow-up

visits (y, , =0 and y,, =0) (Table 6.6). Furthermore, there was no significant

difference between the patients who were adherent in lag2 but not adherent in
lag1 and those who were not adherent in both lag2 and lag1 follow-up visits
regardless of whether or not they owned a cell phone (Table 6.6).

Table 6. 7: Odds ratios and their confidence limits for the effects of the interaction
between outcomes at previous visits and baseline adherence
Contrasts Odds ratio 95% CI of odds ratio

Adherent vs not adherent at baseline

(Vy2=18& y,,=0) 0.9508 (0.7569,1.1943)
0.5813 (0.4164, 0.8115)

(Y52 =08 y;,=0)
(Vo =1&y, ; =0)vs(y,, =08y, ,=0) | 14410 (1.1709, 1.7735)
Adherent at baseline 0.8810 (0.6015, 1.2905)

Non adherent at baseline

Patients who were adherent at baseline are less likely to adhere to medication
than patients who were not adherent at baseline [OR=0.58, 95% CI (0.42, 0.81)]
(Table 6.7) given that they were not adherent in both lag2 and lag1 follow-up
visits. Moreover, with patients that were adherent to medication at baseline, the
odds of adherence are 1.44 times (95% Cl: 1.17, 1.77) more likely for patients
who made a transition from being adherent in lag2 to not being adherent in lag1

follow-up visits (y, , =1 and y, , =0) compared to those who were not adherent

in both lag2 and lag1 follow-up visits (y, , =0 and y, , =0).
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From Table 6.5, there were four other significant interactions (that do not involve
a previous response) and one significant main effect that was not involved in an
interaction.  The interaction terms were visit*gender, visit*treatment site,
visit‘reason for test and age*education while the main effect was living
with/without a partner. The results show that after controlling for other variables
as well as the outcome (adherent/not adherent) at two prior successive follow-up
visits, adherence for patients who live with a partner are 1.27 (95% ClI: 1.05,
1.53) times higher than those who do not live with a partner (odds ratios derived
from Table 6.5).

Figure 6.2 depicts the effects of the interaction between time and gender.
Having controlled for other covariates in the model including the outcome at two
prior successive follow-up visits, it is shown in Figure 6.2 that adherence is
increasing over time but the rate of increase is different for males and females, it

was higher for females compared to males (p-value=0.0002).

Figure 6. 2:  Log odds of adherence for the interaction between time and gender
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Figure 6.3 depicts the effects of the interaction between time and treatment site.
It is shown in Figure 6.3 that adherence is increasing over time but the rate of
increase is different for the urban and rural treatment sites after controlling for the
outcome in the two prior successive follow-up visits and other covariates in the
model. The rate of increase in adherence is higher in rural than the urban
treatment sites (p=0.0143)(Table 6.4).

Figure 6. 3: Log odds of adherence for the interaction between time and treatment site
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With regard to the interaction between time and reason for taking an HIV test, it
is shown (Figure 6.4) that the rate of increase in adherence was higher for
patients who have reported to have been exposed to the risk of contracting the
HIV disease compared to those who reported to have taken the test because
they were unwell (p=0.0119). There was however, no significant difference in the
rate of adherence between patients who reported no specific reason and those
who reported to be unwell (p=0.5112). Further analysis revealed that the rate of

adherence between patients who reported no specific reason and those who
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reported to have been exposed to the risk is marginally insignificant (p=0.0811).
These results have been adjusted for the outcome at two prior successive follow-
up visits and other explanatory variables in the model.

Figure 6. 4: Log odds of adherence for the interaction between time and reason for
taking an HIV test
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Having controlled for adherence outcomes in the two prior successive follow-up
visits and other covariates in the model, the rate at which adherence is
decreasing with age was higher with patients that have no schooling compared to
patients with secondary level (p=0.0005), whilst there was no significant
difference in the rate of change in adherence with age between patients with
primary and secondary level of education (p=0.5613) (Table 6.5). Further
analysis revealed that the rate of decrease in adherence with age is more
pronounced with patients with no schooling than patients with the primary level of
education (p=0.0133). The log odds of adherence between age and gender is

depicted in Figure 6.5.
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Figure 6. 5:  Log odds of adherence for the interaction between age and education
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6.5 Summary

Transition models address dependency among repeated measurements by
treating previous outcomes as additional explanatory variables. Fitting transition
models is relatively straightforward because subsequent measurements, given
their previous history are considered to be independent; as a result, standard
GLM procedures can be employed. Also transition models are likelihood-based
methods, therefore inferential procedures such as a likelihood ratio test can be
used. Also, because they are likelihood-based, they tend to be robust to
missingness; they assume MAR. However, these models are usually criticized
because of the conditional interpretation of the parameters on other outcomes

and on the number repeated measures.
The findings of a transition model highlighted that in addition to the variables that

have been significant in the GEE and GLMM models, optimal HAART adherence
depends on the two previous outcome measurements. Furthermore, effects of
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some of the explanatory variables differ depending on the previous responses.
The negative relationship between baseline adherence and adherence over time
observed earlier is in some ways re-affrmed by the significant interaction
between previous adherence outcomes and baseline adherence where it is
shown that adherent patients at baseline were less likely to adhere to medication
that those who were not adherent at baseline given that they were not adherent

in two previous measurements.

With all the model families fitted, namely, marginal, random effects and transition
models; we had assumed that the time interval between successive follow-up
visits is equal. In the next chapter, we relax the equal interval assumption by
jointly modeling HAART adherence with duration between follow-up visits.
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Chapter 7

Joint modeling of HAART adherence and visit interval

7.1 Introduction

We have so far explored the factors affecting adherence to antiretroviral
medication over time. More specifically, we have intensively assessed the
evolution of adherence and the associated factors at the population level
(marginal model using GEE) and subject-specific level (random effects models
using GLMM). Moreover, we evaluated whether or not the past adherence
outcomes have any influence on the current response of adherence using
transition models. Nonetheless, in some longitudinal studies, although one time-
varying outcome may be of primary interest, several related processes are also
measured (Liu, Daniels and Marcus, 2009). The association between a primary
outcome and another related outcome can reveal a great deal of insight about
the mechanism of behavioural change. In the adherence study, a related
outcome to adherence is the time interval (duration) between successive visits,
which has been measured as the number of days taken by a patient between
clinic visits. In the previous chapters, the effect of predictor variables on
adherence status of patients over time was evaluated assuming equal interval
between successive visits. In this chapter we aim to further investigate the joint
effect of these predictor variables on both adherence status of patients and
duration between successive visits. More specifically, we seek to assess
whether the explanatory variables that were found to be significantly related to
adherence in the previous chapters would still have a significant effect on
adherence even when duration between successive visits was accounted for.
Assessing the association between the two outcomes (adherence and duration)
is also of interest. This can be best addressed within the framework of joint
modeling of the two outcomes of interest. Advantages of joint over separate
fitting of models include better control over type | error rates in multiple tests,
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possible gains in efficiency in the parameter estimates and the ability to answer
multivariate questions (Gueorguieva, 2001).

Difficulties analyzing longitudinal data arise because of correlations usually
present between observations on the same subject. In case of multiple
outcomes, two types of correlations must be taken into account: correlations
between measurements on different variables and correlations between
measurements on the same variable within a subject (Gueorguieva, 2001).
While joint models for longitudinal and time-to-event data are widely present in
the literature (Henderson, Diggle and Dobson, 2000, 2002; Guo and Carlin,
2004; Tsiatis and Davidian, 2004), joint models for two longitudinal outcomes of
similar or dissimilar nature are less widespread. Nonetheless, methods focusing
on models that jointly analyze discrete and continuous outcomes have been
explored (Fitzmaurice and Laird, 1995; Aerts et al., 2002; Molenberghs and
Verbeke, 2005; Faes, Geys and Catalono, 2008). The challenge has been the
lack of multivariate distributions for combining both types of outcomes; as a
result, specification of a joint distribution of the responses is not straightforward.
There are broadly two approaches adapted to joint modeling. A first approach
avoids direct specification of a joint distribution; it is based on a conditioning
argument that allows joint distribution to be factored in a marginal component
and a conditional component, where the conditioning can be done either on the
discrete or on the continuous outcome (Catalano and Ryan, 1992; Faes et al.,
2004). A disadvantage of mixed outcome models based on conditional models is
that they do not directly lead to marginal inferences (Verbeke and Davidian,
2008). Also the correlation among the two outcomes cannot be directly
estimated (Faes et al., 2008).

A second approach directly formulates a joint model for both outcomes. The
latent variable idea has been used to directly specify the joint distribution of the
discrete and continuous outcomes based on two methods (Regan and Catalano,
2002). The first method introduces a probit approach, where an underlying
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continuous variable is assumed for each binary outcome, following a normal
distribution. The second method is based on a Plackett-Dale approach,
assuming a Plackett latent variable to model bivariate outcomes in which one
component is continuous and the other is binary (Faes et al., 2004). The two
bivariate latent variable models are different in the way the association between
the two outcomes is described. The probit approach uses a correlation
coefficient, while the Plackett-Dale approach makes use of the odds ratio (Faes
et al., 2004).

Instead of using a latent variable approach, one can directly specify the joint
distribution for both outcomes through a mixed model, by specification of the
marginal distribution, conditional on the correlated random effect (Faes et al.,
2008). The generalized linear mixed model (GLMM) forms a very general class
of subject-specific models for discrete and continuous responses in the
exponential family and is used for univariate repeated measures (Fahrmeir and
Tutz, 1994). In this chapter, we aim to review how the GLMM approach can be
extended for multivariate longitudinal data by assuming separate random effects
for each outcome variable and then combining them by imposing a joint
multivariate distribution on the random effects. That is, the different response
processes are associated by imposing a joint multivariate distribution on the
random effects and an advantage of this approach is that additional correlation
emerging from the longitudinal data structure can be modeled within the same
framework (Fieuws and Verbeke, 2004; Gueorguieva, 2001).

This chapter is organized as follows. In Section 7.2, a multivariate generalized
linear mixed model for two longitudinal outcomes is presented. An in-depth
formulation of a joint model is demonstrated using longitudinal continuous and
binary outcomes in Section 7.3. Section 7.4 presents the results of a joint model

between optimal HAART adherence and duration between successive visits.

157



7.2 Multivariate GLMM formulation of a joint model

Joint outcomes can be measured repeatedly over time or might be observed
within a hierarchical context. The generalized linear mixed model introduced in
Chapter 5 can easily be adapted to situations where various outcomes of a
different nature are observed (Molenberghs and Verbeke, 2005). Let us consider
a conditional random effects model with a bivariate response. The following
exposition is given in Gueorguieva (2001). Denote the response vector for the

ith  subject by 'y, =(y,.y,), Wwhere y,=0,Ym->V,,) and
Yi2 = (Via1» Yiza o5 Vins, ) @re repeated measurements on the first and second
outcomes. Assume that y, ., j=1,...,n,, are conditionally independent given b,
with density f,() in the exponential family. Likewise, we assume that
Yi2;-J =L...,n,, are conditionally independent given b,, with density f,(.) in the
exponential family. Also, y, and y,, are conditionally independent given
b, =(b,,b,,)" and the responses on different subjects are independent. Let g,(.)
and g,(.) be appropriate link functions for f, and f,. Denote the conditional
means of y,. and y,,; by u,, and u,,, respectively. Let u, =(u,,,.... 4, )
and 4, = (f;y,..--M;, ) - At stage 1 of the mixed model specification, we
assume
Hy =80 (X B, +Zyb,) (7.1)

Hir = gz_l(XmBz +Z,b,,) (7.2)

1 1

where the components of the inverse link functions g, and g, are allowed to
change with the outcomes y, and y,, respectively. X, and X, are (n,Xp,)
and (n, x p,) design matrices for fixed effects, Z,, and Z, are (n,xgq,) and
(n,, xq,) design matrices for the random effects and B, and g, are p,— and

p, —vectors of unknown fixed regression coefficients respectively. At stage 2
_ bil - _ 0 G11 G12
b, = ~1.1.d.MVN(0,G) =MVN | ,
bi2 0 G12 G22
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where G, G,, and G,, are in general unknown positive-definite matrices. When
G, =0 then the above model is equivalent to two separate GLMM’s for two

outcome variables, that is, both outcomes are assumed to be completely
independent. If the two vectors of the random effects are perfectly correlated,

that is, if b,, =cb,,, where ¢ is a constant, then this model reduces to the shared-

parameter model (Molenberghs and Verbeke, 2005; Faes et al., 2008).

The marginal means and the variances of y,, and y,, for the model defined in

(7.1) and (7.2) are the same as those of the GLMM considering one variable at a

time (refer to Chapter 5 for details)
E(y,)=E[E(y, Ib,)]=Elu,]
E(y,)=E[E(y, b,)]=Elu,]
and
var(y, )=var(E(y,;, | g;)+ E(varly, b, )= var(,uil )+ E[qﬁaiv(,uil )]
var(y,) =var(E(y, | ;) + E(varly,, 1b,,) = var(u,, )+ Elga,0(u, )],
where v(y,,) and v(y,,) denote the variance functions corresponding to the
exponential family distributions for the two outcome variables. The marginal
covariance matrix between y, and y,, is found to be equal to the covariance
between u, and u,,, that is, cov(y,.y,,)=cov(u,,u,,). This property is a

consequence of the key assumption of conditional independence between the
two outcome variables, it is critical because it allows an extension of model fitting

methods from the univariate to the multivariate GLMM.

These joint models can be generalized to more than two outcomes as well as
random effects models with a correlated residual error structure and in models
with no random effects (marginal generalized linear model). These models are

demonstrated in the next section with continuous and binary endpoints.
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7.3 A joint model for continuous and binary longitudinal data

In this section, we describe joint models for the specific setting of a continuous
and a binary longitudinal outcome. More specifically, we formulate three possible
models to account for the longitudinal structure of a joint continuous and binary
outcome. These are a) a fully marginal model, b) a conditional independence
random-intercepts model and c) a random-intercepts model with a correlated
residual error structure. In order to demonstrate the formulation of these possible
models, it is useful to start from the formulation in Chapter 5, Section 5.4.2,
where both random effects and serial correlation have been allowed for. For a

bivariate response vector for subject i by y,=(y,.y,,) Wwhere
Yir = Vi Yizseeos Vi, ) and y,, = (Via1»Yia oo Yio, )" are repeated measurements

for continuous and binary outcomes respectively, we assume a general model of

the form:
Y. =1,(1,)+ € :g_l(XiIB+Zibi)+€i (73)
where y, is specified in terms of fixed and random effects and ¢, is the residual

error term. The model is written in its most general form, as a decomposition of
the mean and an appropriate error term, where both the mean and error term are

allowed to change with the nature of the outcomes. The components of the
inverse link function g~'(.) depend on the nature of outcomes in y.. X, and Z,
are (2n,xp) and (2n, xq)-dimensional matrices of the known covariate values
corresponding to subject i, and g is a p-dimensional vector of unknown fixed
regression coefficients.  Furthermore, b, ~ N(0,G) are the ¢g-dimensional
random effects. The components of the residual error structure & have the

appropriate distribution with the variance depending on the mean-variance
relationship of the various outcomes, and can contain in addition a correlation

matrix R,(«) and an overdispersion parameter ¢, .

A general first-order approximate expression for the variance-covariance matrix

of y, is given as follows (Molenberghs and Verbeke, 2005; Faes et al., 2008)
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var(y,)=AN,Z.GZ'A +V,

{5
a7,

V,=0lAR (@A),

1

with

b,=0

and

where A, is a diagonal matrix containing the variances following from the
generalized linear model specification of y, (k=1,2) given the random effects
b, =0, that is, with diagonal elements v(x, |b, =0). Likewise, @, is a diagonal
matrix with the overdispersion parameters along the diagonal. R,(«) is a

correlation matrix.

When an exponential family specification is used for all components, with a

canonical link, A, = A, the resulting GLMM has the variance-covariance matrix
of y, that takes the form (Molenberghs and Verbeke, 2005):

var(y,) = AZ,GZA, +D:A’R, (AP . (7.4)
When there are no residual correlations, that is, the matrix R, («) =1, this results

in a so-called conditional independence or a purely random effects model and

the variance-covariance matrix of y, in (7.4) reduces to

var(y,) = A,Z,GZA, + DA, | (7.5)
When there are no random effects in a model (7.3), a marginal model is obtained

and the variance-covariance of y, in (7.4) takes the form

var(y,) =V, =®:A’R,(Q)AD: . (7.6)

For a sequence of continuous and binary outcomes, the marginal generalized

linear model (MGLM), that is, a model with no random effects is of the form:
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v, o, +a, X, e

( J: exp(f, + B X)) +( J
Yo  \1+exp(B, +BX,)) ‘b
where the first component corresponds to the identity link function whilst the logit
link is in the second component. Both the association between the two outcomes
at each time point as well as the association emerging from the longitudinal
structure of the data are incorporated in the residual error structure. This is done
by specifying a correlation matrix R,(«) such as the unstructured correlation
structure in order to allow each pair of outcomes to have its own correlation
coefficient (Faes et al., 2008). While a marginal model with fully unstructured
2n, X2n, variance-covariance matrix is appealing because of its ease of
interpretation, it can become computationally intensive, especially when the
number of measurements per subject is large (Faes et al., 2008).

A conditional independence random-intercepts model for the continuous and
binary outcomes with a general variance-covariance matrix G and residual

correlation matrix R, (a) =1 can be written in the following form:

y. o, +a X, +b, c
( ”]: exp(f, + B X, +b,,) +( ”J (7.7)
Yo  \1+exp(B, + BX, +b,,)) ‘&

where b, and b,, are normally distributed as

bt ) e
bi, 0)\pr7, 23

and where ¢, and ¢,, are independent. The random effects b, and b,, are

used to accommodate the longitudinal structure in the data for the continuous
and binary outcomes respectively. Furthermore, the correlation among the
continuous and binary outcomes is induced by the incorporation of a correlation

p among the two random effects. The variance of y,, and y,, can be derived

from (7.5), in which
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where
Uy = My (by = 0)[1 =1, (b, = 0)], with g1, =exp(f, + £ X;) /1 +exp(B, + fX))]. As
a result, the approximate variance-covariance matrix of the two measurements

for subject i at time point j is equal to

2 2
B T, PT,T,0,, o~ 0
var(y,) = , L
IOTITZUiZ viZTZ 0 Uiz

(712"‘0-2 PTT,V, j
- 22 :
PTTV, VLT, +U,

The correlation p,, among the continuous and binary outcomes is induced by the
incorporation of a correlation p among the two random effects, and is
approximately equal to

_ PTT,V;,
P = 2 2 2 2 )
\/71 +0o \/0'272 +0,

Under the conditional independence of the two random effects (p=0), the
approximate marginal correlation function p,, is equal to zero. That is with
p =0, model (7.7) is equivalent to two separate GLMMs for the two outcomes.

When p =1, this model reduces to the shared parameter model.

The third approach involves a random-intercepts model for each outcome with a
correlated residual error structure to account for the association among the
continuous and binary outcomes. With this model, a random effect is introduced
at the level of the linear predictor after application of the link function, while the

correlation is introduced at the level of ¢,. The model is also of the form (7.7),

but where b, and b,, are independent and normally distributed with mean of zero
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and variance 7, and 7, respectively. The residual error is assumed to have a
variance-covariance matrix
o’ POV,
V, = — :
pO- viZ viZ

In this case p denotes the correlation between & and &,. The variance among
the continuous and binary outcomes at time point j, for subject i, is
approximately equal to

7 0 o’ po.vu,
var(y,) = , o |t
O 72 Ui2 IOGV vi2 vi2

(zi+0®  poyv,
po—\lviz 7’.221)1‘224_1)1‘2 .
As a result, the approximate correlation among the two outcomes is

pov,

P = :
\/712 +o’ \/U‘Zzz'z2 U,

l

Under the conditional independence (p =0), which in this case implies that there
is no correlation between ¢ and ¢g,, the approximate marginal correlation
function p,, is equal to zero. Further, the marginal correlation, p,, would be
reduced to p for the marginal generalized linear model, i.e. when there are no

random effects.

Other generalizations with random effects or residual error structures are
possible as well. Expression (7.4) can be used to obtained correlation structures
for each setting or specific forms, such as the ones presented by expressions
(7.5) and (7.6). It should be noted that although we have discussed in detail the
correlation among the continuous and binary outcomes, the correlation structure
among two outcomes of any nature can be derived in a similar way. For
instance, when sequences of outcomes are count and binary, a generalized

linear mixed model (GLMM), under conditional independence random-intercepts
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model with a general variance-covariance matrix G and residual correlation

matrix R,(a) =1 for subject i, can be written in the form:

y exp(a, + o, X, +b,, c
( “)Z exp(f, + B X; +b,,) +( “],

Yo  \1+exp(B, + BX, +b,) ) ‘&

where the random effects b,, and b,, are normally distributed as in (7.8), and ¢,
and ¢, are independent. It is assumed that v, =x,(b,=0)] and
v, =f,(b, =0)[1-x,(b,, =0)]. The approximate variance-covariance matrix
of the two binary measurements for subject i at time point j is equal to

2.2
| vati t U, PTT0,0;,
var(y;) = :

2 2
PTT,0 0, U,T, T,

and the approximate correlation among the two outcomes is approximately

PTT0,4U;,

P = \/vflrf +0, \/vfzrj +v, '
The parameters of these joint models can be estimated using the numerical
approximation methods discussed in Chapter 5, Section 5.4. These include
approximation to the integral using Gaussian quadratures or Laplace
approximation. The other estimation method is based on approximation of the
data using the pseudo-likelihood in which pseudo data are created based on a
linearization of the mean. More specifically, the pseudo-likelihood approach can
be used to estimate parameters in marginal models and random effects with or
without serial correlation, whilst quadratures or Laplace approximations can only
estimate parameters in the conditional independent random effects models. The
SAS procedure GLIMMIX can be used for parameter estimation using a pseudo-
likelihood approach whereas the NLIMIXED procedure can be used for

parameter estimation using Gaussian quadratures or Laplace approximation.
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7.4 Evaluation of HAART adherence data

In the adherence study, the patient’s adherence status (adherent/not adherent)
has been modeled as a binary variable that follows the Bernoulli distribution.
Before we jointly model adherence status and duration (days between
successive visits), we have to establish the theoretical framework that will inform
the choice of the appropriate distribution of duration variable.

Patients in the CAT programme are normally expected to make clinic visits on a
monthly (i.e 28 days) basis to collect their medication, undergo a physical
examination review, etc. That is, the expected time interval between two
successive clinic visits for patients is roughly 28 days. However, at times the
patients are unable to keep their scheduled clinic appointments for various
reasons/circumstances; they either make an early visit (less than 28 days) or a
late visit (more than 28 days) to the clinic. Since such visits are arbitrary, they
are considered to be random, which then changes the time interval between
successive visits from planned ones to random occurrences. It is therefore
useful to determine the probabilistic model which can be used to describe the
occurrences of these unpredictable events (clinic visits). Random occurrences of
events in time are often modeled as a Poisson process (Birnbaum, 1954;
Kingman, 1993; Skogvoll and Lindqvist, 1999). A Poisson process refers to a
continuous—time counting process {N(r),r >0} that possesses the following
properties (Kingman, 1993):

i) N(0O)=0

ii) the number of events in disjoint intervals are independent (‘independent

increments’) and the number of events in any given interval depends only

on the length of that interval (‘stationary increments’);

iii) events occur one at a time, that is, there are no simultaneous

occurrences.
Consequently, a Poisson process can be characterized in two simple alternative

and equivalent ways (Birnbaum, 1954)
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a) The ‘waiting times’ u between successive events are independently
distributed with the exponential density function
gw)=(@1/8)e™"? for u>0.
Here 6 is the mean of the waiting times:
E(u)=20.
b) Let x be the number of events observed, then the increments
y=x(t,)—x(t,) of x(r) on any interval of length d=t, -, has the Poisson

distribution

, y=0,,...

_ @A)
p(y)=e 2

and the increments of x(¢) on non-overlapping intervals are independent. Here

dA is the mean increment on an interval of length 4. Thus A is the mean rate of
occurrences, and A=1/6. Similar formulation in a disease modeling structure

has also been used by Ramroop (2008).

We can therefore model the time interval in days (duration) between successive
clinic visits using two approaches; the ‘waiting time’ approach and the ‘number of
occurrences’ approach. The ‘waiting time’ approach treats duration as the time
in days between two successive clinic visits, which is a continuous variable that
follows an exponential distribution. The ‘number of occurrences’ approach is
used if we count the number of days to the next clinic visit, which is a discrete
variable that follows a Poisson distribution. For purposes of this study, the
‘waiting time’ approach is more relevant and is therefore adopted.

For fitting of joint models with a binary and an exponential distribution, two
possible models were considered in each case, these were marginal models as
well as conditional independence random-effects models. Furthermore, the
linear predictor used for all the fitted models consists of the same variables that
have been identified in the GEE model.
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Recall the linear predictor in the GEE model for the adherence data (Chapter 4,
section 4.6)
X;,B = B, + B, gender, + B,educ _no, + B,educ _ p, + B,site, + Psincome, + B tapwater,
+ B,electricity, + Pycellphone, + ByWHOstagel, + 5,,\WHOstage?2, + 5, WHOstage3,
+ B, partner, + B, reason _no, + B, reason _risk, + p,sadh _monthl, + B, age,
+ B,base _cd4, + Bisbaseweight, + Bigweight,; + B,time; + f3, time, gender,
+ B, time,site, + f,;time reason _no, + f,,time reason _risk, + [,sage educ _no,

+ B,cage,educ _ p, + B,,age, gender, .

With a view that the duration outcome variable follows an exponential
distribution, a preliminary exploratory analysis for this outcome variable was
explored by fitting a generalized linear model with all the predictor variables using
SAS PROC GENMOD. The SCALE parameter used in PROC GENMOD is the
inverse of the gamma dispersion parameter, and is commonly referred to as the
gamma index parameter. A value of 1 for the index parameter corresponds to
the exponential distribution (SAS Institute Inc., 2004). With our data, the
estimated value of the scale parameter was 10.2381 with a 95% profile likelihood
confidence interval of (9.8843, 10.6004), which did not contain 1. The hypothesis
of an exponential distribution for the data was, therefore, rejected at 0.05 level
and hence the duration outcome was considered to follow a gamma distribution

in subsequent analyses.

The marginal model

We fitted the joint marginal model for both the binary (adherence status) and
Gamma (duration) outcomes using logit and log links respectively. The
linearization estimation method (discussed in Chapter 5, Section 5.4) was used
as an approximation method. The SAS procedure GLIMMIX was used to fit the
data; it allows us to jointly model outcomes with different distributions and/or
different link functions. We first fitted a joint marginal model with a fully
unstructured variance-covariance matrix in order to allow each pair of outcomes

to have its own correlation coefficient. However, due to the computational
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complexity, this model did not converge. Alternatively, because our main interest
is in assessing the joint effect of the predictor variables, we adopted the GEE
approach, where the association between the two outcomes at each time point
as well as the association emerging from the longitudinal structure of the data are
treated as a nuisance that has to be accounted for. The independence and AR-1
working assumptions were considered, AR-1 being the chosen structure in the
GEE model, Chapter 4. Comparing model-based and empirically corrected
standard errors, there was clear difference in the case of independence working
assumption, but less so in the AR-1 case. Thus a joint model with the AR-1

working structure was chosen.

The results are presented in Table 7.1 and they confirm the results from the
previous chapters. That is, even after accounting for the interval between
successive visits (duration), cell phone ownership and living with a partner
enhanced HAART adherence (Table 7.1). Moreover, the 2-way interaction
terms, namely, time*gender, time*site, time*reported reason, age*gender and
age*education are still significantly associated with HAART adherence (Table
7.1). In fact, the results indicate that the interaction between time and treatment
site has a joint effect on HAART adherence and duration between successive
visits. The rate at which optimal adherence increased over time in the rural site
was higher compared to the urban site. At the same time however, the interval
between successive visits was higher as the number of follow-up visits increased

in the rural than in the urban treatment site.
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Table 7. 1:

Parameter estimates and their corresponding empirical standard errors of

a joint marginal model for the adherence and duration outcomes with
AR(1) working covariance structure

Effect adherence Outcome duration outcome
Estimates | Std errors | p-value | Estimates | Std errors | p-value
Intercept 0.923 0.393 0.019 3.171 0.055 <0.001
Gender (ref=male)
female -1.164 0.334 0.0005 0.020 0.044 0.649
Education (ref=sec & higher)
No schooling 1.728 0.524 0.001 0.082 0.072 0.251
Primary 0.107 0.447 0.810 -0.013 0.064 0.845
Treatment site (ref=rural)
Urban 1.200 0.143 <0.001 -0.004 0.017 0.817
Income (ref=not source)
Source of income -0.008 0.078 0.921 0.013 0.010 0.209
Access to tapwater (ref=no)
Yes 0.120 0.118 0.309 0.016 0.107 0.948
Househld with electricity (ref=no)
Yes -0.007 0.107 0.948 0.020 0.017 0.238
Cell phone ownership (ref=no)
Yes 0.238 0.070 0.001 0.005 0.009 0.586
WHO staging (ref=stage4)
Stage1 -0.336 0.180 0.061 0.025 0.024 0.310
Stage2 -0.247 0.161 0.125 0.030 0.022 0.174
Stage 3 -0.117 0.148 0.426 0.023 0.0210 0.278
Living with partner (ref=no)
Yes 0.298 0.080 0.002 0.0003 0.010 0.975
Reason for testing (ref=unwell)
No specific reason -0.040 0.156 0.796 0.004 0.023 0.852
Exposed to the risk -0.444 0.175 0.011 -0.016 0.019 0.396
Baseline adherence (ref=no)
yes -0.153 0.085 0.070 0.012 0.011 0.251
Time (visit) 0.102 0.018 <0.001 0.013 0.002 <0.001
Age -0.011 0.008 0.161 0.001 0.001 0.466
Baseline CD4+ -0.0004 0.001 0.438 0.00004 0.0001 0.595
Baseline weight -0.001 0.006 0.795 -0.001 0.001 0.089
Weight at follow-up visits -0.002 0.005 0.665 0.002 0.007 0.450
Time*gender (ref=male)
female 0.071 0.016 <0.0001 0.001 0.002 0.760
Time*site (ref=rural)
Urban -0.061 0.016 0.0002 -0.007 0.002 0.0003
Time*reason (ref=unwell)
No specific reason -0.011 0.018 0.560 0.0001 0.002 0.9652
Exposed to the risk 0.045 0.021 0.032 0.0010 0.002 0.632
Age*gender
Female 0.023 0.009 0.008 -0.0001 0.001 0.914
Age*education
No schooling -0.036 0.014 0.009 -0.002 0.002 0.209
Primary -0.003 0.012 0.792 -0.0004 0.002 0.798
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The conditional independence random-effects model

The model considered was as follows:

ya; - jthadherence status on the ith patient,
yi»; - Jjthduration measurement on the ith patient,

ya; \b, ~indep. Binary with mean y,; and variance x,,;(1-u,;),

2

Yinj \b;, ~indep. Gamma with mean y,,, and variance u;,, /v,

J
logit(u,,;) = X:1j18+b51 ’

In(u;,;) = X;2jﬁ+ b,

2
b, :(bil,biz)/“'MVN(O,G),G:[ 0, p6102:|.

2
pO,0, 0,

This model shows how the GLMM approach can be extended for multivariate
longitudinal data by assuming separate random effects for each outcome
variable and then combining them by imposing a joint multivariate distribution on

the random effects.

The data were analyzed with SAS PROC NLMIXED using the general log-
likelihood option with Gaussian quadrature. The NLMIXED procedure using the
general log-likelihood function allows one to impose a joint multivariate
distribution on the random effects from two separate models. The results from
fitting a joint model for the two response variables with uncorrelated random
intercepts using the GLIMMIX procedure were used as initial parameter
estimates. Gaussian quadrature with 20 quadrature points was used and it took
roughly 6 hours to converge. The number of quadrature points was selected
among several possibilities (10, 15, 20, 25) based on the stability of parameter
estimates and standard errors. The results presented in Table 7.2 were the
same within the required precision with a larger number of quadrature points, i.e.

parameter estimates seemed to be stable from 15 quadrature points upwards.
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Table 7. 2: Parameter estimates and standard errors of the joint model for the conditional
independence random intercepts model with the adherence and duration outcomes

Effect adherence Outcome duration outcome
Estimates | Std errors | p-value | Estimates | Std errors | p-value
Intercept 1.590 0.299 <0.0001 9.066 0.039 <0.0001
Gender (ref=male)
female -1.471 0.516 0.007 -0.032 0.068 0.633
Education (ref=sec & higher)
No schooling 1.664 0.706 0.019 0.099 0.093 0.290
Primary -0.126 0.686 0.855 -0.011 0.089 0.897
Treatment site (ref=rural)
Urban 1.222 0.181 <0.0001 0.006 0.023 0.811
Income (ref=not source)
Source of income -0.028 0.113 0.801 -0.015 0.014 0.299
Access to tapwater (ref=no)
Yes 0.146 0.177 0.409 0.015 0.024 0.544
Househld with electricity (ref=no)
Yes 0.070 0.153 0.648 0.013 0.020 0.526
Cell phone ownership (ref=no)
Yes 0.244 0.102 0.017 0.004 0.013 0.772
WHO staging (ref=stage4)
Stage1 -0.487 0.272 0.073 0.033 0.035 0.343
Stage2 -0.361 0.242 0.137 0.026 0.030 0.383
Stage 3 -0.298 0.225 0.187 0.023 0.028 0.408
Living with partner (ref=no)
Yes 0.556 0.280 0.048 0.859 0.039 <0.0001
Reason for testing (ref=unwell)
No specific reason -0.090 0.194 0.641 -0.002 0.025 0.926
Exposed to the risk -0.428 0.215 0.0476 -0.018 0.027 0.518
Baseline adherence (ref=no)
yes -0.113 0.121 0.352 0.026 0.016 0.096
Time (visit) 0.119 0.021 <0.0001 0.013 0.002 <0.0001
Age -0.0197 0.013 0.142 0.001 0.002 0.779
Baseline CD4+ -0.001 0.001 0.326 0.0004 0.001 0.965
Baseline weight -0.003 0.007 0.728 -0.001 0.001 0.191
Weight at follow-up visits -0.003 0.006 0.618 0.001 0.001 0.191
Time*gender (ref=male)
female 0.056 0.019 0.004 0.003 0.002 0.146
Time*site (ref=rural)
urban -0.0486 0.018 0.008 -0.008 0.002 0.0002
Time*reason (ref=unwell)
No specific reason -0.001 0.021 0.963 0.001 0.002 0.648
Exposed to the risk 0.0438 0.022 0.047 0.003 0.003 0.217
Age*gender
Female 0.035 0.014 0.015 0.001 0.002 0.714
Age*education
No schooling -0.035 0.0175 0.047 -0.003 0.002 0.249
Primary 0.001 0.018 0.923 -0.001 0.002 0.824
Variance Components
estimate Standard error Pvalue
Var. R.I (adherence) 0.261 0.062 <0.0001
Var. R.I (duration) 0.005 0.001 <0.0001
Correlation between the R.I. -0.684 0.139 <0.0001
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The results show that cell phone ownership and living with a partner are
significantly associated with HAART adherence. In addition, all the 2-way
interaction terms (time*gender, time*site, time*reason to test, age*gender and
age*education) were also significantly associated with HAART adherence. Even
after accounting for duration between successive visits, these results reaffirm the
results that have been obtained in the GLMM (Chapter 5) regarding the fixed
effects.

The random effects for the two outcomes are significantly negatively associated
(Table 7.2). This translates into a negative correlation between HAART
adherence and duration. This means that increasing the number of days
between clinic visits tends to decrease the chances of being adherent to
medication. That is, the longer the duration between successive visits,
adherence to medication is likely to be compromised. We are however aware
that at times, the conditional independence assumption might be too restrictive
and tests for checking the validity of this assumption are not well established in
the statistical literature. We therefore attempted to relax the conditional
independence assumption by re-fitting the joint random intercepts model but now
allowing for correlated errors; the model failed to converge. Gueorguieva (2001)
introduced conditional dependence by including one response in the linear
predictor for the other response. In order to validate the observed correlation
between the two outcomes emerging from the association of the random
intercepts, we adopted Gueorguieva’s (2001) approach. We fitted a generalized
linear mixed model with HAART adherence as the outcome and included
duration in the linear predictor. The results are presented in Table 7.3 and they
show that HAART adherence is negatively associated with duration (p-
value=<0.0001) after controlling for the other variables. That is, overall, if the
number of days is increased between successive visits, the patients are less
likely to adhere to medication.
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Table 7. 3: Parameter estimates and standard errors of the HAART adherence

outcome that include duration in the linear predictor

Effect
Estimates Std errors p-value
Intercept 3.556 0.551 <0.0001
Gender (ref=male)
female -1.491 0.535 0.006
Education (ref=sec & higher)
No schooling 1.964 0.734 0.008
Primary -0.202 0.712 0.777
Treatment site (ref=rural)
Urban -1.222 0.185 <0.0001
Income (ref=not source)
Source of income -0.046 0.117 0.694
Access to tapwater (ref=no)
Yes 0.103 0.184 0.414
Househld with electricity (ref=no)
Yes 0.094 0.159 0.552
Cell phone ownership (ref=no)
Yes 0.224 0.105 0.034
WHO staging (ref=stage4)
Stage1 -0.447 0.280 0.112
Stage2 -0.342 0.250 0.171
Stage 3 -0.262 0.232 0.258
Living with partner (ref=no)
Yes 1.834 0.551 0.001
Reason for testing (ref=unwell)
No specific reason -0.1079 0.197 0.584
Exposed to the risk -0.540 0.221 0.015
Baseline adherence (ref=no)
yes -0.092 0.125 0.463
Time (visit) -0.042 0.044 0.337
Age -0.052 0.027 0.054
Baseline CD4+ -0.001 0.001 0.282
Baseline weight -0.007 0.008 0.358
Weight at follow-up visits 0.002 0.007 0.749
Duration -0.021 0.004 <0.0001
Time*gender (ref=male)
female 0.061 0.019 0.002
Time*site (ref=rural)
urban 0.052 0.019 0.006
Time*reason (ref=unwell)
No specific reason 0.003 0.021 0.876
Exposed to the risk 0.068 0.025 0.007
Age*gender
Female 0.034 0.015 0.020
Age*education
No schooling -0.042 0.019 0.029
Primary 0.004 0.019 0.832
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7.5 Summary

Joint modeling provides us with the ability to answer multivariate research
questions, in addition to the possible gains in efficiency of parameter estimates.
The results from fitting a joint model of adherence and time interval indicate that
optimal HAART adherence is negatively associated with time interval between
successive visits over time. That is, with shorter intervals between one visit to
the next, the patients tend to maintain optimal adherence. Notwithstanding the
negative association between optimal adherence and the time interval between
successive visits, the results further revealed that if the patient is well adapted to
the treatment program with a record of sustained optimal adherence, the gap
between successive clinic visits might be longer depending on the treatment site
the patient is enrolled with. The results reaffirm the significant determinants of
optimal adherence over time reported in the previous chapters. That is, after
accounting for the time interval measured in days between successive visits, cell
phone ownership, living with a partner, and two-way interaction terms that
involved time with gender, treatment site and reason for taking an HIV test, as
well as age with gender and educational level were still associated with optimal
adherence. Among other observations, an increasing linear effect on HAART
adherence was noted, though it differed by gender, treatment site and reported
reason for taking an HIV test. In the next chapter, to allow for more a flexible
trajectory of the observed data, a semi-parametric approach was used to model
the effect of time non-parametrically.
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Chapter 8

Generalized additive mixed models

8.1 Introduction

In the previous chapters, we reviewed and fitted adherence data using
parametric regression methods for longitudinal data. Specifically, the
generalized estimating equations (GEEs), generalized linear mixed models
(GLMMs) and transition models were used to fit the adherence data. These
models provide a powerful tool for modeling the relationship between a response
variable and covariates in longitudinal studies. Although these parametric mean
models enjoy simplicity, they suffer from inflexibility in modeling complicated
relationships between the response and covariates in various applications of
practical longitudinal data. That is, for many applications, parametric models
may be too restrictive or limited, and sometimes unavailable. This limitation has
placed a strong demand in recent years on developing nonparametric regression
methods for longitudinal data, where flexible functional forms can be estimated
from the data to capture possibly complicated relationships between longitudinal
outcomes and covariates (Lin and Carroll, 2008). The basic idea of the
nonparametric approaches is to let the data determine the most suitable form of
the functions. Wu and Zhang (2006) argue that nonparametric and parametric
regression methods should not be regarded as competitors, instead they
complement each other. At times, nonparametric techniques can be used to
validate or suggest a parametric model. A combination of both nonparametric
and parametric methods is more powerful than any single method in many

applications.
There exist many nonparametric regression and smoothing methods for

independent data in the literature. The most widely used methods include
kernels and splines. A survey of these methods can be found in Hardle (1990),
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Green and Silverman (1994), Wand and Jones (1995), Fan and Gijbels (1996)
and Ruppert, Wand and Carroll (2003) among others. Also the generalized
additive models of Hastie and Tibshirani (1990) are widely used for
nonparametric regression with independent data. However, very little effort has
been made to develop nonparametric regression methods for longitudinal data
analysis until recent years. The presence of the within-subject correlation among
the repeated measures over time presents a major challenge in developing
nonparametric techniques for longitudinal data analysis (Lin and Carroll, 2008).
As a result, limited work has been done on nonparametric regression when the
data are correlated, with the practical lagging behind even more so due to the
lack of readily accessible statistical software.

The limited work that has been done on nonparametric regression methods for
longitudinal data has been restricted to normally distributed outcomes, and their
connection to mixed models (Zhang et al., 1998; Verbyla et al., 1999). For non-
Gaussian longitudinal data, the developments in nonparametric regression
methods have been mostly restricted to single covariate models, and these
include local polynomial kernel GEEs (Lin and Carroll; 2000) and spline methods
(Wang, 1998; Liang, Wu and Carroll, 2003). Extensions of single-covariate
nonparametric models to multiple covariates pose a problem referred to as the
‘curse of dimensionality’, which means that the performance of nonparametric
smoothing techniques deteriorates as the dimensionality increases (Hastie and
Tibshirani, 1990; Fan, Heckman and Wand, 1995). One way of overcoming this
problem is by using generalized additive models (Hastie and Tibshirani, 1990).
To this end, for non-Gaussian longitudinal data, Berhane and Tibshirani (1998)
extended generalized additive models to generalized estimating equations (Liang
and Zeger, 1986). Moreover, modeling longitudinal data with non-Gaussian
outcomes non-parametrically within the mixed effects model framework, Lin and
Zhang (1999) proposed generalized additive mixed models (GAMMs), which are
additive extensions of GLMMs in the spirit of Hastie (1990).
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The aim of this chapter is to therefore review GAMMs and then fit them to
adherence data. Specifically, we seek to model the effect of time on the patients’
adherence status non-parametrically. In order to develop a better appreciation of
GAMMS, a brief overview of nonparametric regression methods using
generalized additive models (GAMs) for independent data is provided. This
chapter is organized as follows. An overview of generalized additive models for
independent data is presented in Sections 8.2. Section 8.3 reviews the
generalized additive mixed models (GAMMs) for longitudinal data. The GAMM

model is fitted to adherence data in Section 8.4.

8.2 Generalized Additive Models (GAMs)

Generalized additive models are presented by first introducing an additive model.
An additive model is a generalization of the linear regression model and is
defined by (Hastie and Tibshirani, 1990)

y=a+ifj(xj)+8, (8.1)

where y is the response variable, x; are covariates and and the ¢ are i.i.d

N(0,0°). The f,; are arbitrary univariate and smooth functions, one for each

predictor. Moreover, even though it is convenient to specify functions in additive
models as univariate and smooth, functions of two or more dimensions as well as
categorical variable terms and their interactions with continuous scale variables

can still be specified. It is also assumed that E{f;(x;)}=0, since otherwise

there will be free constants in each of the functions. An additive model retains an
important interpretive feature of the linear model; that the variation of the fitted
response surface holding all but one predictor fixed does not depend on the
values of the other predictor. This means that once the additive model is fitted to

the data, we can plot p coordinate functions separately to examine the roles of

the predictors in modeling the response.
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With additive models, it is necessary to represent the smooth functions in some
way and to choose how smooth they should be. Hastie and Tibshirani (1990)
suggest representing additive models using spline-like penalized regression
smoothers. Spline smoothing can be used to represent smooth functions in such
a way that model (8.1) becomes a linear model. This is done by specifying a set

of basis functions, b, for each function so that the smooth function can be

represented as (Wood, 2006)
9
f‘j(-xj):zlgjibji(x‘j)s (82)
j=1

where x; maybe a vector quantity and £, are coefficients of the smooth, which

will need to be estimated as part of model fitting. Examples of penalized
regression smoothers include natural cubic splines, cubic smoothing splines, thin
plate regression splines and tensor product bases (for more details, see Hastie
and Tibshirani, 1990; Wood, 2006).

Controlling the roughness of the estimated function is a variant of the bias-
variance tradeoff problem. Here, using too few basis functions may not allow the
fitted curve to accurately represent the shape of the function, leading to biased
estimation, while using too many will result in an overly close interpolation of the
data. One way to control the model's smoothness is by adding a smoothness
penalty to the least squares fitting objective. That is, rather than fitting a model
by minimizing (Wood, 2006)
(y-XB)(y-Xp),

it could be fitted by minimizing
(y=XB)(y-XB) +A[ 11" (x)Fdx,

where the integrated square of second derivative penalizes models that are too
smooth. The tradeoff between model fit and model smoothness is controlled by
the smoothing parameter, 4. When A — oo, this leads to a straight estimate of

f, while when 4 =0, the result is an un-penalized regression spline estimate.
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Because f is linear in the parameters, S,, the penalty can always be written as

a quadratic form in S,

AL 1 W)Pdy=BSB,
where S is a matrix of known coefficients. Therefore, the penalized regression
spline fitting problem is to minimize

y-XB)(y-Xp)+APSp

with respect to B. Thus the penalized least squares estimator of S given Ais
given by

B=(XX+18)"XYy.
The degree of smoothness for the model is obtained by estimating the smooth
parameter, A. Methods that include ordinary cross validation (OCV) and

generalized cross validation (GCV) are used to estimate 1.

A generalized additive model is a generalized linear model (GLM) with a linear
predictor involving a sum of smooth functions of covariates (Hastie and
Tibshirani, 1990). The model has the following general structure

g =X0+) f,(x), 8.3)

where u, = E(y,) and y, is the response variable from the exponential family of

distributions, g is a known, monotonic, twice differential link function, x; is the
ith row of a model matrix for any parametric components, @ is the corresponding
parameter vector, and the f, are smooth functions of the covariates, x;. The
GAMs’ representation is illustrated by using penalized regression smoothers

based on splines in (8.2) and the derivation of the model parameters follows that
of Wood (2006).

Whereas the additive model was estimated with penalized least squares, the
GAM is estimated by penalized likelihood maximization. Furthermore, GAM can

easily be represented as a GLM through re-parameterization of smooth terms
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and as such the ordinary GLM likelihood, I(f) can be used to estimate the

model coefficients. There is however a good chance of substantially over-fitting
the model with ordinary likelihood maximization and to guard against over-fitting,
GAMs are estimated by penalized likelihood maximization, where the penalties

are designed to suppress overly smooth estimates of the f, terms. The

penalized likelihood can be defined as
L,

where S =Zj/1jsj A

; are smoothing parameters and S; is a matrix of known

coefficients.

To fit the model in practice, the following penalized iteratively re-weighted least
squares (P-IRLS) scheme is iterated until convergence (Wood, 2006):

1. Given the current linear predictor estimate, n'"!, and corresponding
estimated mean response vector, u"*', calculate:
W. o< !
CVhg

where var(y,) =V (u""¢ and x, is the ith row of X.

and z, = g"(u"“)(y, — ) +x, ",

2. Minimize

VW@z-X8) VW z-XB))+ BSp
with respect to S to obtain A", and hence 7" =Xpg"".

W =diag[{gv(u,)g (1)’ }7'1.

The generalized cross validation (GCV) method can be used to estimate A in the
generalized case (Wood, 2006). The GCV score for smoothing parameter

selection can be obtained from the GAM fitting objective
WW@z-xp) NW@-XB)+> 4,85 5,
j=1

as
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_lWa-xp) WWa-xp)
¢ [n—tr(A)]’

where A is an influence matrix (Wood, 2006).

There are two possible numerical strategies for estimating smoothing parameters
using v, minimization:

* v, can be minimized and smoothing parameters selected for each

working penalized linear model of P-IRLS iteration. This is known as

performance iteration and its algorithm details can be obtained in Gu and
Wahba (1991) and Wood (2000, 2004).

e v, can be minimized directly, which means that the P-IRLS scheme must

be iterated to convergence for each trial set of smoothing parameters.
This is usually referred to as outer iteration and the algorithm details can
be found in Wood (2006).

8.3 Generalized additive mixed models

Generalized additive mixed models (Lin and Zhang, 1999) are an extension of
generalized linear mixed models (GLMMs) (Breslow and Clayton, 1993) to allow
the parametric fixed effects to be modeled non-parametrically using additive
smooth functions in a similar spirit to Hastie and Tibshirani (1990). Suppose,
there is an outcome variable y,, i=1,...,n and p covariates x, =(l,x,,...,x,)
associated with fixed effects and a ¢x1 vector of covariates z, associated with
random effects. Given a ¢x1 vector of b of random effects, the observations vy,
are assumed to be conditionally independent with means E(y,|b)=x, and
variances var(y, |b) = ¢v(y,), where v(:) is a specified variance function and ¢

is a scale parameter. Then a generalized additive mixed model is given by (Lin
and Zhang, 1999)

gu) =B+ filx)+...+ f,(x,)+zb, (8.4)
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where g() is a monotonic differential link function, f;() is a centred twice-

differentiable smooth function, the random effects are assumed to be distributed

as N{0,G(y)} and y is a c¢x1 vector of variance components. The additive

nonparametric functions are used to model covariate effects and random effects

are used to model correlation between observations.

The integrated log quasi-likelihood of {5, f,(),..., f,(), 7} is

1 & 1. ,._
exp[l{y;ﬁO’fl (')w“’fp ()’ 7}] ol G |_l/2 J-eXp{_2_¢Zdi (y,ﬂz)—ab G lb}db (85)
where
¥, = O ,) @nd & (yip0) o< =2[" (v, —u) lo(u)du

defines the conditional deviance function of {5, f,(),.... f,()} given b.

Statistical inference for GAMM involves inference on the nonparametric functions

f;(), which requires the estimation of smoothing parameters, 4, and inference

on variance components y. Because of the close connection between the

smoothing spline estimators and linear mixed models (Wang, 1998; Zhang et al.,
1998; Verbyla et al.,, 1999), we will first discuss the construction of these

estimators, specifically the natural cubic smoothing spline estimators of f;(-)

when A4 and y are known. The derivation of the natural cubic smoothing spline
follows that of Lin and Zhang (1999). Given the values of 4 and y, the natural
cubic smoothing spline estimators of f,() maximize the penalized log quasi-

likelihood

1 & Li w2 1 & p
U By Oneees Sy OV =S DA, [ FI 0 e = Uy 3y O Sy, O =5 DA
| (8.6)

where (s;,t;) defines the range of the jth covariate and l:(/il,...,/ip)’ is a

vector of smoothing parameters and controls the trade-off between goodness of
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fit and the smoothness of the estimated functions. Here f,() is an r;xI1
unknown vector of the values of f,(-) evaluated at the r; ordered distinct values
of the x;, (i=1....,n) and S, is the smoothing matrix (Green and Silverman,

1994).

The GAMM model in (8.4) can be re-written in matrix notation:
g(/’li)zlﬁo+N1fl+"'+prp+Zb! (8'7)

where g(u,)={g(u).....g(u,)}’, 1 is an nx1 vector of ones, N, is an nxr,

matrix such that the izh component of N, f, is f;(x,) and Z=(Z,.....Z,)".

The evaluation of expression (8.5) requires numerical integration (except for the
Gaussian outcomes) and it is often difficult to calculate full natural cubic

smoothing spline estimators of the f, by directly maximizing (8.6). Lin and

Zhang (1999) proposed an approximation using a double penalized quasi-
likelihood (DPQL) within the framework of generalized linear mixed models
(GLMM).

Double penalized quasi-likelihood estimation of nonparametric functions

The estimation of nonparametric functions f, can be obtained by representing

GAMM using the GLMM framework using double penalized quasi-likelihood
(DPQL). The derivation of DPQL follows that of Lin and Zhang (1999). Since f;

is a centred parameter vector, it can be re-parameterized in terms of 5, (scalar)
and a, ((r; —2)x1) through a one-to-one transformation as

fi=xB,+B.a,, (8.8)
where xj is an r; x1 vector containing the r, centred distinct values of the x;

i=1,...,n), and szLj(L’ij)‘1 and L; is an r;x(r; —2) full rank matrix
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satisfying S, =L L’ and L’x; =0. Using the identity /'S f, =a’a;, the double
penalized quasi-likelihood becomes

] & 1 1
= Nd(y:u)——bG'b——a'Aa, 8.9
2¢; Yip) = AN (8.9)

where a=(aj,....a,)" and A =diag(z]l,...,z,I) with 7, =1/1,. A small value of
rz(z'l,...,z'p)’ corresponds to over-smoothing.  Plugging (8.8) into (8.7),

expression (8.9) suggests that given y and 7z, the DPQL estimators fj can be

obtained by fitting the following GLMM using Breslow and Clayton’s (1993)
penalized quasi-likelihood approach:

g(uw)=XpB+Ba+7Zb, (8.10)
where X=(,Nx....Nx)), B=(NB,,...NB), B=(B...6) is a

(p+1)x1 vector of regression coefficients and a and b are independent random

effects with distributions a ~ N(0,A) and b~ N(0,G). The DPQL estimator fj is
calculated as fj = xjﬁj +B .a;, which is a linear combination of the Breslow and

Clayton (1993) penalized quasi-likelihood estimators of the fixed effect ,Bj and

the random effects a; in the working GLMM in (8.10).

Maximization of expression (8.9) with respect to (f,a,b) can proceed by using
the Fisher scoring algorithm to solve
X'WX X'WB X'WZ B X'Wy
B'WX BWB+A B'WZ a |=| B'Wy (8.11)
Z'WX 7'WB ZWZ+G' )b Z'Wy
where y is a working vector defined as

p
y=B1+) N, f, +Zb+A(y — )

Jj=1
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and A = diag[g'(u.)], W = diag[{gv(u,)g’(1;)*}']. Expression (8.11) shows that it

corresponds to the normal equation of best linear unbiased predictors (BLUPs) of
B and (a,b) under the linear mixed model

y=X8,+Ba+Zb+¢, (8.12)

where aand b are independent random effects with a ~ N(0,A) and b ~ N(0,G)

and £~ N(O,W™"). This suggests that the DPQL estimators fj and random

effect estimators b can be easily obtained using the BLUPs by iteratively fitting

model (8.12) to the working vector y.
To compute the covariance matrix of fj, it is more convenient to calculate S and

XR'X XR'B B) (XRy 8.43)
BR'X BR'B+A"')la) (BRy '

where R=W™' +ZGZ’. Denoting by H the coefficient matrix on the left-hand

a by using

side of equation (8.13) and H, =(X,B)’R'(X,B), the approximate covariance
matrix of 3 and a is

cov(f,a)=H'H,H".
It follows that the approximate covariance matrix of fj is
(x’.B)cov(B,.4,)(X,.B,), where cov(5,.4,) can be easily obtained from the

corresponding blocks of H'"H,H™'. Here we assume that the fj (-) are smooth

functions in calculating the co-variances of the f,

Estimation of smoothing parameters and variance components

In the previous section, we had assumed that the smoothing parameters 4 and

the variance components y are known when estimation was made on the
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nonparametric functions f,. However, they are usually estimated from the data.
Under the classical nonparametric regression model

y=f(X)+¢, (8.14)
where the ¢ are independent random errors following N(0,0°), Wahba (1985)

and Kohn, Ansley and Tharm (1991) proposed to estimate the smoothing
parameter A by maximizing a marginal likelihood. The marginal likelihood of

7=1/1 is constructed by assuming that f(X) has been prior specified in the
form of (8.8) with a ~ N(0,d)and a flat prior for g and integrating out a and S

as follows:
expi{l,, (y:7,0°)} o< T‘”ZJ-exp{l(y;,[J’,a, c?) —zia'a}da dp (8.15)
T

where [(y;f.a,0°) is the log-likelihood (normal) of f under model (8.14).
Speed (1991) and Thompson (1985) pointed out that the marginal likelihood
(8.15) of 7 is in fact the REML under the linear mixed model

y=18,+Xp, +Ba+¢

where a~ N(0,4) and £~ N(0,6°I) and B was defined earlier; 7 is regarded

as a variance component. Hence the marginal estimator of z is a REML
estimator. It has been shown that the maximum marginal likelihood estimator of
7 has similar and often better performance compared with the GCV estimator in

estimating the nonparametric function (Kohn et al., 1991).

Zhang et al., (1998) extended these result to estimate the smoothing parameter
A and variance component y jointly using REML for longitudinal data with

normally distributed outcomes and a nonparametric mean function. Their model
can be written as

y=f(X)+Zb+e¢ (8.16)
where f(X) denotes the values of the nonparametric function f(-) evaluated at

the design points of X(nx1), b~ N(0,G(y)) and &£~ N,V(y)). If f() is
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estimated using cubic smoothing spline (8.8), Zhang et al., (1998) rewrote model
(8.16) as a linear mixed model

y=18,+Xp, +Ba+Zb+¢ (8.17)
where a ~ N(0,) and distribution of b and ¢ are the same as those in model

(8.16). They hence proposed to treat z as an extra variance component in

addition to y in model (8.17) and to estimate z and y jointly by using REML.
This REML corresponds to the marginal likelihood of (z,y) constructed by
assuming that f takes the form of (8.8) with a ~ N(0,)and a flat prior for 8
and integrating out a and S as follows:

exp{l,, (y;7,7)} =l G I 772 J' exp{l(y; [3,a,b) —%b’G“b —Zia’a}db dadp, (8.18)
T

where [(y; 5,a,b) =I(y; f,b) is the conditional log-likelihood (normal) of f given
the random effects b under model (8.16). The marginal log-likelihood [, (y;7,7)

in (8.18) has a closed form.

Lin and Zhang (1999) proposed to extend the marginal likelihood approach to

GAMM in (8.4) and to estimate 7 and y jointly by maximizing a marginal quasi-

likelihood. Specifically, the GLMM representation of GAMM in (8.10) suggests
that 7 may be treated as extra variance components in addition to . Similar to

the REML (8.18), the marginal quasi-likelihood of (z,y) can be constructed under
the GAMM in (8.4) by assuming that f, takes the form (8.8) with a;, ~ N(0,7,I)

(j=1...,p) andintegrating a, and S out as follows:

exp{l,, (y:7,y)} <l AIT? Iexp{l(y;,b’,a, 7) —%a’A’la}dad,B
<|GIIAIT? .[exp Zn:—Ld.(y;,u.)—lb'Gb—la'Aa dbdadf3,
DY A 2
(8.19)
where I(y; 8,a,7) =1(y; By, fi.---» f,.¥) was defined in (8.5). Under the Gaussian

nonparametric mixed model (8.16), the marginal quasi-likelihood reduces to the
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REML (8.18). Unlike in the Gaussian situation, an evaluation of the marginal
quasi-likelihood (8.19) for non-Gaussian outcomes is hampered by often
intractable numerical integration. It is thus approximated using Laplace’s
method. Lin and Zhang (1999) showed that taking the quadratic expansion of
the exponent of the integrand of (8.19) about its mode before integration and
approximating the deviance statistic d,(y;x,) by the Pearson’s y”-statistic
(Breslow and Clayton, 1993), the approximate marginal log-quasi-likelihood is

given as
1, (y:7,7) = —%log [V —%log IX'V'X| —%(y ~XA)'Vi(y-Xp), (8.20)

where V=BAB'+ZGZ +W~'. Expression (8.20) corresponds to the REML log-

likelihood of the working vector y under the linear mixed model (8.12) with both
a and bas random effects and z and y as variance components. It follows that

7 and y can be estimated by iteratively fitting model (8.12) using REML.

Specifically, Lin and Zhang (1999) showed that differentiating (8.20) with respect

to J=(z,y), some calculation gives the estimating equations for z and y, which

are the REML equations under the working linear mixed model (8.12)

1 v ) 1 . oV .
——tr| P “(y=XAV ' — V' (y=X3) =0,
2r( az51J+2(y ) 20, (y - Xp)

which can be equivalently written in terms of the f, as

’

1 7 xv/ 1 P L - _ ’ ’ _ D Z a
—Etr(PNijBij)+§(y—1[J’0 —ZNkfkj R'N B B'N’'R l(y—l,b’o —ZNkka:O
k=1 k=1

’

1 (. oR) 1 s & oR s & s
P2 y-182 =S N. 7 | RTERY y-18 -Y'N. 7 |=0
2”( a%j+2(y i ; kfkj % [y i ; kfkj

l

where calculations of dV/d#, and JdR/dy; ignore the dependence of W and &

and
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P=V'-VXXV'X)"XV'=R"-R"(X,B)R™
is the projection matrix under the linear mixed model (8.12) and (,Bo,fl,...,fp) is

DPQL estimator.

The Fisher information matrix of the approximate marginal quasi-likelihood

estimators &= (#,7) can be approximated by

r, I

4 '

['(&) =(Fi’ F”], (8.21)

where the (j,k)th element of I'(¥) is Lo =0.5tr(PoV /08, PaV/dd,). It should

be noted that expression (8.21) is mainly used to construct an approximate

covariance matrix of 7.

8.4 Fitting adherence data using GAMMs

We had earlier (Chapter 5) fitted a parametric logistic-normal model (GLMM) and
assumed a linear time effect. Now our aim is to model the effect of time non-
parametrically while the other covariates remain parametric using GAMM. Recall
that the final GLMM model was

g(u;) = By + B gender, + B,educ _no, + Bieduc _ p, + B,site, + fsincome, + S tapwater,

+ B,electricity, + Pycellphone, + ByWHOstagel, + 5,,\WHOstage?2, + 5, WHOstage3,

+ B, partner, + B, ;reason _no, + B, reason _risk, + p,sadh _monthl, + B, age,
+ By,base _cd4, + fisbaseweight, + figweight, + [, time, + [3, time, gender,
+ By time;site, + fB,.time ;reason _no, + f3,,time ;reason _risk; + f,;age,educ _no,

+ B,cage,educ _ p, + B,,age, gender, +b,; + b,;time,; .
(8.22)

We now seek to fit a semi-parametric logistic regression model by re-fitting model

(8.22) but now with a nonparametric time effect including all interactions that

involved time as follows:
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g(u;) =B, + B, gender, + ,educ _no, + Bieduc _ p, + B,site; + Biincome, + Bstapwater,

+ B, electricity, + Pycellphone, + B,WHOstagel, + 3,,WHOstage2, + 3,, WHOstage3,

+ B, partner, + B ;reason _no, + B, ,reason _risk, + B,sadh _monthl, + B, age,

+ B;base _cd4, + Psbaseweight, + B weight,, + B,,age.educ _no, + f3, age educ _ p,

+ fage, gender, + f(time;) + f, (time ;) gender, + f,(time)site;, + f,(time, )reason _no,
+ f5(time;)reason _risk; + by, + b, time;

(8.23)

where g(-) is the logit link function, S are parametric regression coefficients, f,

are centred smooth functions and the random effects, b, ~ N(0,G(y)). It should

be noted that the semi-parametric logistic regression model (8.23) differs slightly

from the GAMM in (8.4) in the extra parametric part x; /3, which can be

incorporated in the fixed effects part of the working GLMM in (8.10). Therefore,
the estimation procedures discussed for fitting GAMMs in Section 8.3 can be
used to fit model (8.23) with trivial modifications. The R package mgcv was used
to fit the data; it has a number of options available for controlling the model

smoothness using splines.

Regarding model fitting, attempts were made to fit model (8.23) with several
different penalized regression smoothers but because of the computational
intensity entailed in fitting such a huge model with a large data set, the model
failed to converge. Then model (8.23) was reduced by removing the random

slope and the parametric interactions and the resulting model was as follows:

g(u,) =B, + B,gender, + B,educ _no, + B.educ _ p, + B,site, + Bsincome, + B tapwater,
+ B, electricity, + Pycellphone, + B,WHOstagel, + 3,,WHOstage2, + 3,,WHOstage3,
+ B, partner, + B;reason _no, + B, ,reason _risk, + B,sadh _monthl, + B, age,
+ f,base _cd4, + Psbaseweight, + B weight; + f,(time ) + f,(time,) gender,

+ fi(time; )site, + f, (time; )reason _no, + fs(time;)reason _risk; + b,

(8.24)

When the thin plate shrinkage smoothers were used to fit model (8.24),

convergence was reached. These smoothers have the advantage of avoiding
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the knot placement and can be constructed for smooths of any number of
predictor variables. In addition, the shrinkage smoothers are constructed in such
a way that smooth terms can be penalized away altogether making no
contribution to the model (Wood, 2006). The results of the parametric
coefficients and the approximate significance of the smooth terms are presented
in Table 8.1. From the parametric part model, the results indicate that gender,
treatment site, educational attainment, living with a partner and cell phone
ownership has a significant effect on optimal HAART adherence (Table 8.1).
Since gender and treatment site interact significantly with the nonparametric
effect of time, they will be interpreted with the smooth terms of the model.

Moreover, the results showed that patients who owned a cell phone were 1.30
(e**°) times more likely to adhere to medication than those without a cell phone.
Also, patients who stayed with a partner were 1.32 (¢**) times more likely to be
adherent to medication that those who were not staying with a partner. Contrary
to our expectation, the results reveal that patients with primary and secondary
levels of education were respectively 0.69 (¢*7) and 0.65 (¢**) times less

likely to adhere to medication than those with no schooling.

Follow up time has been fitted as a smooth function on its own and at different
levels of gender, treatment site and reason for taking an HIV test. The results in
Table 8.1 show that the follow-up time had a significant effect on optimal HAART
adherence. The smooth term for the follow-up time has been depicted in Figure
8.1 and it shows that on the overall, HAART adherence has been increasing over
the follow-up visits but the rate of increase was highest in the first five follow-up
visits after which the rate of increase declined.
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Table 8. 1: The parameter estimates of the fixed part of the GAMM model comprised of the
parametric coefficients and the approximate significance of the smooth terms

Standard
Parametric coefficients Estimate error tvalue pvalue
Intercept 1.9590 0.4346 4.508 <.0001*
Gender (ref = female)

Male -0.2584 0.0940 -2.749 0.0060*
Education (ref = secondary and higher)

No schooling -0.3742 0.1692 -2.212 0.0270*

Primary -0.4289 0.1565 -2.741 0.0062*
Treatment site (ref = rural)

Urban -0.6986 0.1021 -6.845 <.0001*
Source of household income (ref = not source)

Source of income 0.0311 0.0961 0.324 0.7459
Access to tap water (ref = no)

Yes 0.1065 0.1516 0.702 0.4825
Household with electricity (ref = no)

Yes 0.0448 0.1375 0.326 0.7446
Cell phone ownership (ref = no)

Yes 0.2596 0.0874 2.971 0.0030*
WHO staging of the disease (ref = stage4)

Stagef 0.0635 0.1600 0.397 0.6911

Stage2 0.2237 0.1497 1.494 0.1351

Stage3 0.3397 0.2251 1.509 0.1313
Living with a partner (ref = no)

Yes 0.2832 0.0100 2.846 0.0044*
Reason for testing (ref = unwell)

No specific reason -0.0822 0.1330 -0.618 0.5368

Exposed to the risk 0.0074 0.1170 0.063 0.9498
Baseline adherence (ref = adherent)

No adherent 0.1137 0.1059 1.074 0.2830
Age -0.0027 0.0061 -0.442 0.6588
Baseline CD4+ cell count -0.0006 0.0007 -0.789 0.4303
Baseline weight -0.0024 0.0064 -0.370 0.7113
Weight at follow-up visits -0.0002 0.0056 -0.039 0.9688

Approximate significance of smooth terms

Smooth terms edf’ Fvalue Pvalue
S(time) 2.461 4.873 0.0042*
S(time): gender (female) 1.043 11.09 0.0007*
S(time): gender (male) 0.044 0.037 -
S(time): treatment site (urban) 0.002 0.001 -
S(time): treatment site (rural) 1.019 14.99 <.0001*
S(time): reason for taking HIV test (exposed to the risk) 0.922 8.017 0.0057*
S(time): reason for taking HIV test (unwell) 0.000 0.000 -
S(time): reason for taking HIV test (no specific reason) 0.000 0.000 -

3

estimated degrees of freedom
significant at 5% level

*
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Figure 8. 1:  Smooth function of the follow-up time with the 95% confidence limits
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Moreover, the results further revealed that the effect of the follow-up time differed
by gender, treatment site and the reason for taking an HIV test. It is shown
(Table 8.1) that the follow-up time had a significant effect on HAART adherence
for females whereas the follow-up time had no significant effect on adherence for
males. The smooth function for the follow-up time by gender is depicted in Figure
8.2. Figure 8.2(a) shows that HAART adherence increased over the follow-up
visits for female patients whereas Figure 8.2(b) highlights the result that optimal

adherence has remained almost constant for the follow-up period.
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Figure 8. 2: Smooth functions of the follow-up time by gender with the 95%
confidence limits

a) Smooth function of follow-up time for females b) Smooth function of follow-up time for males
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Also, the follow-up time had a significant effect on HAART adherence for patients
in the rural treatment site while the follow-up time had no significant effect on
adherence for patients in the urban treatment site. Figure 8.3 presents the

smooth function of the follow-up time for the urban and rural patients.

195




Figure 8. 3:
confidence limits

Smooth functions of the follow-up time by treatment site with the 95%

a) Smooth function of follow-up time for urban patients

b) Smooth function of follow-up time for rural
patients
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Figure 8.3a shows that HAART adherence remained constant for the urban

patients over the follow-up period while the rural patients experienced an

increase in HAART adherence over the same period (Figure 8.3b).

Regarding the reason that patients reported for taking an HIV test, the follow-up

time had a significant effect on adherence for the patients who reported to have

been exposed to the risk of contracting HIV while there was no significant effect

for patients who reported being tested for HIV for no specific reason or because

they were not well. The smooth functions are depicted in Figure 8.4.
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Figure 8. 4

Smooth functions of the follow-up time by reason for taking an HIV

test with the 95% confidence limits

a) Smooth function of follow-up time for patients who felt exposed to the risk of contracting HIV
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b)

Smooth function of follow-up time for unwell
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c) Smooth function of time for patients who
tested for no specific reason
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It is shown In Figure 8.4a that HAART adherence increased over the follow-up

for patients who felt exposed to the risk of contracting the HIV disease and

remained constant for those who were unwell (Figure 8.4b) and those who took

an HIV test for no specific reason (Figure 8.4c).

197




8.5 Summary

The results from the GAMM model with a nonparametric follow-up time validate
the results from previous models and generally gave more insight regarding the
trend of optimal HAART adherence. The results from the parametric part of the
model confirm that cell phone ownership and living with a partner tends to
enhance one’s adherence to medication. Moreover, the smooth term of follow-up
time confirmed that overall, HAART adherence is increasing over time but it
further revealed that the rate of increase has not been constant over the entire
follow-up period. In addition, it is revealed that HAART adherence increased
over the follow-up period for females while the adherence trend remained
constant for males. Likewise, the rural patients showed an increase in HAART
adherence over the follow-up period whereas adherence remained constant for
the urban patients. Moreover, adherence remained constant over the follow-up
time for patients who took the HIV test for no specific reason and those who took
the test because they were unwell. However, adherence increased for those
who tested because they felt they have been exposed to the risk of contracting
the HIV disease.
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Chapter 9

Discussions and Conclusions

This work has focused on statistical methods aimed at modeling the data that are
correlated. More specifically, we have been concerned with statistical methods
for longitudinal binary data, which is frequently encountered in applied statistics.
Although many approaches to the analysis of longitudinal data have been
studied, most are restricted to the setting in which the response variable is
normally distributed. While the development of methods for analysis of
longitudinal data with discrete outcomes has received substantially less attention
in the past, this has more recently become an important area of research. Still,
the methodology is not nearly as well-developed as for normally distributed
outcomes. The practical application of methods for repeated discrete outcomes
also lags behind that for normal-theory methods because among other reasons,
the development of readily accessible software lags behind. Even with recent
software developments, data analysts still face the challenge of choosing the
appropriate method of analysis to address their research questions adequately.
The other challenge relates to the estimation procedure; a method will often have
more than one estimation procedure to choose from, and in choosing an
estimation procedure, one has to be aware of the fact that the chosen estimation
method will have a direct bearing on which tests will be available for inference.
In this thesis, we attempt to give more insight into the different longitudinal
approaches when one has a binary outcome. These methodologies have been
demonstrated with in-depth analyses of a practical data set with a binary
outcome. The data relates to HAART adherence over time among HIV positive

adults who are on treatment.
With the advent of HAART, morbidity and mortality among HIV-infected

individuals have been dramatically reduced. However, HAART requires strict
adherence, thus identifying and overcoming factors that reduce adherence is
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critical if optimal clinical and survival benefits are to be attained and maintained
over time. Determining the predictors of optimal long-term HAART adherence
status of patients, and whether factors affecting initial (first month) adherence
status also influence long-term HAART adherence status was the focus for the
application of longitudinal methods. Patients were considered optimally adherent
if they took at least 95% of their prescribed medication; otherwise they were
classified as non-adherent. Optimal HAART adherence status therefore was
considered as a binary response variable (adherent and non adherent) that
follows a Bernoulli distribution. Consequently, generalized linear models (GLMs)
and its extensions to correlated data become relevant models for analysis.

Because of the importance of HAART adherence at the onset of treatment, the
study began by identifying factors affecting initial (one month) adherence status
of patients. The appropriate methods for analysis would be those for
independent data as we have one datum point for each patient and a logistic
regression model was used. The results revealed that baseline CD4+ cell count
and two-way interaction terms between gender and reason for taking an HIV test,
age and cell phone ownership as well as treatment site and income were
important. That is, optimal HAART adherence was negatively associated with a
higher baseline CD4+ cell count. Female patients had better adherence if they
voluntarily attended testing and counseling or if they had taken an HIV test
because they were unwell, while male patients had higher adherence if they were
tested due to perceived risk of HIV infection. Optimal HAART adherence was
positively associated with higher age amongst patients who possessed cell
phones and amongst patients who provided a source of income in the urban
setting, but not in the rural setting.

Although factors associated with optimal adherence at the initial stages of
therapy give important information, factors that affect long-term optimal
adherence may be more relevant, as lifetime adherence to HAART is required.

Consequently, evaluation of determinants of long-term optimal HAART
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adherence entailed data with a longitudinal structure. Longitudinal data tend to
be correlated and this poses a challenge in the analysis because the correlation
has to be accounted for to obtain valid inference. It was therefore important to
explore the dependence among outcomes in order to inform further analysis.
With a binary outcome, a correlation-based approach for exploring the
association structure is not feasible as the range of correlation is constrained by
the means. Thus a Lorelogram, which measures the association between the
repeated binary outcomes with odds ratios (Heagerty and Zeger, 1998), was
used in this study. The correlation appeared to decrease with increasing lag
between repeated responses indicating that an AR-1 correlation structure may be
appropriate for describing the relationship between follow-up visits with regard to
optimal HAART adherence.

Missing data are almost always present in the analysis of longitudinal data and
as a result, the data becomes unbalanced over time. Therefore, methods that
require balanced data cannot be used. Because at times missing data can
introduce bias, thereby leading to misleading inferences about changes in the
mean, one must consider the reasons for missingness (missing data
mechanisms). These are missing completely at random (MCAR), which refers to
missingness if the missing values are independent of both unobserved and
observed data. In this case the observed values of the responses are a random
subsample of all values of the responses and no bias will arise with almost any
method of analysis. There is also missing at random (MAR) and occurs if
conditional on observed data, the missingness is independent of the unobserved
measurements. In this case, analysis restricted to data from completers will yield
biased estimates because observed values are not necessarily a random
subsample of all responses. The other mechanism of missingness is referred to
as missing not at random (MNAR). In this case the missing data process is
neither MCAR nor MAR but is non-random.
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The adherence data was mainly characterized by dropout. We began by testing
the most restrictive assumption of missingness, i.e. MCAR, with adherence data
and logistic regression was used to carry out the test. The results revealed that
dropout did not depend on the previous outcome. This implied that there was no
evidence against MCAR in favour of MAR. It was therefore concluded that
MCAR assumption holds for the adherence data and as a result, methods of
longitudinal data analysis will yield valid estimates.

For identifying long-term predictors of optimal HAART adherence, generalized
linear models for longitudinal data were employed. These include several broad
model families that include marginal, subject-specific, transition, joint and semi-
parametric additive models. While these models can be viewed as direct
extensions of generalized linear models for independent observations to the
context of correlated data, there are differences in the way they address the
dependency in the data. All the models were used to assess the determinants of
long-term optimal adherence and each one of the methods has its own strengths

and weaknesses.

We began by fitting a marginal model to adherence data. With marginal models,
the marginal probabilities of the response are directly modeled. In general the
specification of a joint distribution for discrete longitudinal data is difficult, even in
cases where it might be possible to specify the joint distribution, the likelihood
can be too complicated to evaluate. Consequently, marginal models were fitted
using the method of generalized estimating equations (GEE) (Liang and Zeger,
1986). The GEE method is an extension of GLM to accommodate correlated
data using a quasi-likelihood approach. It requires the correct specification of
mean and variance, but not the specification of a distribution for the response.
The GEE method is appealing because of its computational simplicity compared
to the maximum likelihood approaches for discrete data. In addition, it is robust
to misspecification of the correlation structure for large samples. However, since,
it does not completely specify the joint distribution, it does not have a likelihood
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function, thus, likelihood-based methods are not available for testing fit,
comparing models and conducting inference about parameters. Thus, the
generalized Wald test was used for model comparison for fixed effects while
quasi-likelihood under the independence model criterion (QIC) was used for the
selection of the best fitting correlation structure. Note that although the GEE
estimates are consistent with misspecification of the covariance structures; care
must be taken in choosing such a structure because a poor choice of the working
correlation may hamper the efficiency of the estimates.

With adherence data, the QIC results indicated AR-1 as the best fitting
correlation structure among the competing ones. Moreover, the results showed
that cell phone ownership and living with a partner enhanced optimal HAART
adherence. Further, five 2-way interaction terms, namely, time*gender, time*site,
time*reported reason, age*gender and age*education were significantly
associated with optimal HAART adherence. That is, with the two-way
interactions that involve time, the results showed that optimal HAART adherence
increased on average over time, however, the rate of increase differed by (a)
gender in favour of females; (b) treatment site in favour of the rural treatment site
and (c) reason for taking an HIV test where the rate of increase in optimal
adherence was higher for patients who tested due to possible exposure to HIV,
than for patients who tested because they were unwell. Further analysis
revealed that the rate of increase in optimal adherence was higher for patients
who tested due to possible exposure to HIV, than for those who reported no
specific reason for taking an HIV test. Age also interacted significantly with
gender and education. As the age of patients increased, females tended to
adhere better to HAART than males. Among older patients, those with no
schooling were less likely to achieve optimal HAART adherence than those with
secondary and higher education. To this end, analysis revealed that as patients
get older, those with primary education were more likely to achieve optimal
adherence than those with no schooling.
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In addition to exploring the population effects associated with optimal HAART
adherence through the GEE method, we further explored the subject’s specific
effects that are unique to a particular individual by fitting a generalized linear
mixed model (GLMM). GLMMSs are considered as straight forward extensions of
generalized linear models by appending the random effects in the linear
predictor, which gives them the ability to model subject-specific evolutions in
addition to determining the association structure of the data. However, the
estimation procedures are more complex with GLMMs. For maximum likelihood,
different approximation methods are used for parameter estimation with each
method having its own strengths and limitations. These include approximation
methods based on numerical integration techniques (e.g. quadrature methods)

and model approximation (linearization).

Integral approximation methods approximate the log likelihood function of the
GLMM and the approximated function is numerically optimized. These methods
provide an actual objective function for optimization and thus likelihood-based
methods can be used for inferential procedures such as likelihood ratio tests.
Because of the computational complexity entailed in these methods, they are not
able to accommodate a large number of random effects as well as models that
contain both random effects and serial correlation. With model approximation
methods, algorithms are expressed in terms of Taylor series to linearize the
response and the resulting model can be viewed as a linear mixed model for
pseudo-data. Then the algorithm for fitting the linear mixed model is employed
and the resulting estimates are used to update the pseudo-data and this whole
scheme is iterated until convergence is reached. The linearization estimation
technique can also incorporate models that have both the random effects and the
different residual covariance structures. However, likelihood based methods
cannot be used because the likelihood is not based on the observed data but
rather the likelihood corresponds to the linear mixed models for pseudo-data.
This is because when one changes the error structure, then the linearized
response also changes and likelihood values can only be compared across
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models when the response variable for each model is the same. Approximate
Wald tests can be used to test hypotheses about fixed effects as well as variance
components. For both methods, care has been taken when the null-hypothesis

is on the boundary of the parameter space.

Consequently, fitting data using GLMM was quite challenging. Regardless of the
embedded differences between the approximation methods, the results obtained
from all methods largely agree, which gives us more confidence in all the
approximation methods. The results showed that there was considerable
variability from patient to patient; however, all the factors that were important at
the population level were still important even at the subject-specific level. In
addition, the association structure revealed a strong negative correlation between
the random intercepts and slopes indicating that there was a decline over time in
adherence rates of patients who had high levels of adherence at the beginning of

follow-up visits and vice versa.

To assess whether the current optimal adherence status of a patient depended
on the previous adherence measurements in addition to the explanatory
variables, a transition model was fitted. That is, the transition model was used to
predict optimal HAART adherence status on the basis of explanatory variables
and all available information of the previous adherence status. In this model, the
correlation of repeated observations is dealt with by treating previous outcomes
as additional explanatory variables. Fitting transition models is relatively
straightforward because subsequent measurements, given their previous history,
are considered to be independent; as a result, standard GLM procedures can be
employed. Also transition models are likelihood-based methods, therefore

inferential procedures such as likelihood ratio tests can be used.
The results revealed that the current adherence status had a very strong

dependence on the two previous measurements of adherence status. In addition

there were three significant interactions between the previous responses and
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explanatory variables. These were lag1*time, lag2*cell phone ownership and
lag2*baseline adherence where lagl and lag2 represents adherence
measurements lagged by 1 and 2 follow-up visits respectively. Patients who
were adherent in lag1 follow-up visits were more likely to be adherent to
medication than those who were not adherent in the same lag follow-up visits.
Moreover, patients who owned a cell phone were more likely to adhere to
medication than those without a cell phone provided they were adherent in lag2
follow-up visits. Furthermore, patients who were adherent at baseline were less
likely to adhere to medication than those who were not adherent given that they
failed to adhere to medication in two consecutive visits (both lag2 and lag1

follow-up visits).

With all the analyses using the different models for longitudinal data, we
assumed that the time interval (duration) between one clinic visit to the next is
the same across all follow-up visits. In reality, however, this assumption of equal
interval between successive visits might not necessarily hold because at times
patients are unable to keep their scheduled clinic appointments for various
reasons/circumstances; they either make an early or a late visit to the clinic. A
joint modeling approach was used to further investigate the joint effect of the
predictor variables on both optimal HAART adherence status of patients and
duration between successive visits. More specifically, we assessed whether the
explanatory variables that were found to be significantly related with optimal
HAART adherence in the marginal and random effects models would still have a
significant effect on long-term optimal adherence even when duration between
successive visits was accounted for. Also assessing the association between the
two outcomes (optimal adherence and duration) was of interest.

Advantages of joint over separate fitting of models include better control over
type | error rates in multiple tests, possible gains in efficiency in the parameter
estimates and the ability to answer multivariate questions (Gueorguieva, 2001).
The difficulties in analyzing longitudinal data arise because of correlations usually
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present between observations on the same subject. In case of multiple
outcomes, two types of correlations must be taken into account: correlations
between measurements on different variables and correlations between
measurements on the same variable within a subject. While joint models for
longitudinal and time-to-event data are widely used, joint models for two
longitudinal outcomes of similar or dissimilar nature are less widespread. For
models that jointly analyze discrete and continuous outcomes, the challenge has
been the lack of multivariate distributions for combining both types of outcomes;
as a result, specification of a joint distribution of the responses is not

straightforward.

Broadly, there are two approaches adapted to joint modeling. A first approach
avoids direct specification of a joint distribution; it is based on a conditioning
argument that allows joint distribution to be factored in a marginal component
and a conditional component, where the conditioning can be done either on the
discrete or on the continuous outcome (Catalano and Ryan, 1992; Faes et al.,
2004). A disadvantage of mixed outcome models based on conditional models is
that they do not directly lead to marginal inferences (Verbeke and Davidian,
2008). Also the correlation among the two outcomes cannot be directly
estimated (Faes et al., 2008). A second approach directly formulates a joint
model for both outcomes. The latent variable idea has been used to directly
specify the joint distribution of the discrete and continuous outcomes based on
two methods (Regan and Catalano, 2002). Instead of using a latent variable
approach, one can directly specify the joint distribution for both outcomes through
a mixed model, by specification of the marginal distribution, conditional on the
correlated random effect (Faes et al., 2008). The latter approach was adopted
for fitting adherence data.

A joint marginal model and a joint random effects model were fitted to assess the

joint effects of the predictor variables at the population level and at the subject
specific level respectively. The joint random effects model was also used to
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assess the correlation between the two outcomes, which is induced by the
association between the random effects of the two outcomes. The results from
the joint models showed that even after accounting for the interval between
successive visits, the GEE and GLMM results remained the same. Moreover,
the results indicated a negative correlation between optimal HAART adherence
and duration between successive visits. That is, on the overall, the association
between optimal HAART adherence and duration was negative, however, the
joint effect of the time and treatment site interaction on both outcomes revealed
that as the number of follow-up visits increased, the interval between successive
visits also increased while at the same time high levels of optimal adherence

were maintained in the rural treatment site

Since the parametric statistical models employed for the analysis of adherence
data may not have been flexible enough to capture the main features of the
longitudinal profiles, a semi-parametric approach was adopted. Specifically,
generalized additive mixed models were used to model the effect of time as well
as interactions associated with time non-parametrically. The results showed that
the smooth term of follow-up time confirmed that overall, HAART adherence is
increasing over time but it further revealed that the rate of increase has not been
constant over the entire follow-up period. In addition, it was revealed that
HAART adherence increased over the follow-up period for females while the
adherence trend remained constant for males. Likewise, the rural patients
showed an increase in HAART adherence over the follow-up period whereas
adherence remained constant for urban patients. Moreover, adherence
remained constant over the follow-up time for patients who took the HIV test for
no specific reason and those who took the test because they were unwell while
adherence increased for those who tested because they felt they had been
exposed to the risk of contracting the HIV disease.

This work demonstrates that with appropriate statistical modeling of real life data,
taking into account the nature of such data and scientific settings, a useful
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contribution to the knowledge/literature in areas of specific application can be
made. For instance, the findings from this study identified specific groups of high
risk patients for whom adherence counseling should be targeted and tailored.
For example first month HAART adherence can be improved by targeting
patients initiated on treatment with high CD4+ cell counts. With the long-term
adherence, the findings helped identify sub-populations, such as the urban and
male population, that required vigorous ongoing adherence counseling. This
work highlighted the reality that the longer the duration between successive clinic
visits, the more compromised optimal HAART adherence is likely to be.
However, with the scaling-up of HIV-treatment, given the human resource
constraints in Sub-Saharan Africa, the gap between successive visits might be
increased for patients well adapted to the treatment programme and with a good
record of sustained optimal adherence to reduce the burden in the health
facilities.

There are avenues for further work in this research. One of the most important
steps in the process of data modeling is to check various features of the fitted
model. This usually involves checking goodness-of-fit of the model, checking
model assumptions and detecting possibly influential observations. Little work
has been done on model checking and diagnostics in GEE, GLMM and
multivariate generalized joint modeling and this deserves further research. In
addition, the difficulty in evaluating the likelihood for models with discrete
correlated data has been a limiting feature and was noticeable in the
computational aspects of fitting GLMM where intensive computing times were
experienced with the very large adherence data set. The computing intensity
became even worse with multivariate generalized random effects models (joint
modeling). For instance, with joint modeling we were unable to fit models that
contained both random intercepts and slopes because that required powerful
computational resources that we did not have. This therefore highlights the need
to further investigate the performance of simplified computational methods which

would not require powerful computational resources. Moreover, the alternative
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method of estimation that uses the pseudo-likelihood from the pseudo-data is not
computationally intense but still requires further investigation in many respects.
Since pseudo-likelihood is essentially composed of likelihoods, we might be
inclined to believe that it is more robust to missing data mechanism than other
methods based purely on estimating equations (such as GEE). It would however
be useful to evaluate the robustness of this method to missing data. Further,
model selection tools are lacking with this estimation method; a lack most keenly
felt when a best fitting residual covariance structure has to be selected. This is
because the usual likelihood based methods such as AIC cannot be used,
therefore it is also a fertile area for further research.

There exist many nonparametric regression and smoothing methods for
independent data in the literature. The presence of the within-subject correlation
among the repeated measures over time presents a major challenge in
developing nonparametric techniques for longitudinal data analysis. Most of
these developments focus on nonparametric population mean models and
mixed-effects models for normal longitudinal data. Limited work has been done
on developing these nonparametric models for non-normal longitudinal data.
Moreover, the practical application of nonparametric methods for longitudinal
outcomes (normal and non-normal) is lagging behind due to a lack of readily

accessible statistical software. Further research is needed in this area.

With evaluation of the determinants of optimal HAART adherence, multilevel
modeling can be considered for future research to address questions about
individual effects while adjusting for facility location (urban/rural), staffing issues,
and equipment availability among other things. Furthermore, future research
should aim at exploring determinants of optimal HAART adherence with an
optimal adherence outcome measured using patient’s self report in addition to

the pill count method which were used in this study.
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In summary, five families of models were reviewed and applied to HAART
adherence data. All the analyses demonstrated that these families of models are
useful in the study of binary longitudinal responses. Furthermore the thesis
highlighted the direction and development of longitudinal binary data analyses.
Highly complicated longitudinal binary data arising in practice are challenging,
but they also provide for great opportunities and the advancement of this
important area of research. One of the future directions of this thesis is to
compare the different families of methods using simulations. The other possible

direction of the study is to develop diagnostic tools for each of the models.
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This study explores the influence of baseline factors on first-month adherence to highly active antiretroviral
therapy (HAART) among adults. The study design involved a review of routinely collected patient information in
the CAPRISA AIDS Treatment (CAT) programme, at a rural and an urban clinic in KwaZulu-Natal Province, South
Africa. The records of 688 patients enrolled in the CAT programme between June 2004 and September 2006 were
analysed. Adherence was calculated from pharmacy records (pill counts) and patients were considered adherent if
they had taken at least 95% of their prescribed drugs. Logistic regression was used to analyse the data and account
for confounding factors. During the first month of therapy, 79% of the patients were adherent to HAART. HAART
adherence was negatively associated with a higher baseline CD4 count. Women had better adherence if they
attended voluntarily testing and counselling or if they had taken an HIV test because they were unwell, while men
had higher adherence if they were tested due to perceived risk of HIV infection. HAART adherence was positively
associated with higher age among patients who possessed cell phones and among patients who provided a source
of income in the urban setting, but not in the rural setting. Though long-term data from this cohort is required to
fully evaluate the impact of non-adherence in the first month of treatment, this study identifies specific groups of
patients at higher risk for whom adherence counselling should be targeted and tailored. For example, first-month

HAART adherence can be improved by targeting patients initiated on treatment with a high CD4 count.

Keywords: baseline survey, CD4 count, compliance, HAART, health information, pill counts, statistical analysis

Introduction

Advances in highly active antiretroviral therapy (HAART)
have dramatically reduced morbidity and mortality due to
AIDS (Kalichman, Ramachandran & Catz, 1999; Berg,
Demas, Howard, Schoenbaum, Gourevitch & Arnsten,
2004; Gill, Hamer, Simon, Thea & Sabin, 2005). However,
HAART includes complex drug regimens, which require
strict adherence to complicated schedules for the attain-
ment of optimal long-term clinical and survival benefits. At
least 95% adherence is required for adequate virological and
immunological response (Paterson, Swindells, Mohr, Brester,
Vergis, Squier et al., 2000). Strict adherence to all the
antiretroviral (ARV) drugs prescribed is required for optimal
management of HIV infection (Chen, Hoy & Lewin, 2007).
This strict adherence is one of the most critical behavioural
challenges in the treatment of HIV infections (Ferguson,
Stewart, Funkhouser, Tolson, Westfall & Saag, 2002).
Adherence appears to be the strongest predictor of both the
durability of ARV medication (Esch, Klem, Kuhman, Hewitt &
Morse, 2002) and the rate of cycling of the HAART regimen.
Hence, it is imperative to evaluate the effect of adherence
comprehensively.

Recent studies on the impact of HAART adherence on
treatment outcomes in sub-Saharan Africa (in an era of

treatment rollout) indicate improved immunologic response
and clinical outcomes among patients with optimal
adherence (Abaasa, Todd, Ekoru, Kalyango, Levin,
Odeke & Karamagi, 2008; Chi, Cantrell, Zulu, Mulenga,
Levy, Tambatamba et al., 2009). Even after one month of
therapy, patients with optimal adherence demonstrate a
significant increase in CD4 count, viral suppression and
significant weight gain (Brechtl, Breitbart, Galietta, Krivo
& Rosenfeld, 2001). Moreover, it is shown that optimal
initial adherence is positively associated with improved
long-term treatment outcomes (Carrieri, Raffi, Lewden,
Sobel, Michelet, Cailleton et al., 2003). These studies
highlight the need for strict adherence from the beginning
of treatment in order to maintain prolonged clinical
benefits. However, clinicians are not able to accurately
predict individuals at risk of suboptimal HAART adherence
at the beginning of treatment (Bangsberg, Hetch, Clague,
Charlebois, Ciccarone, Chesney & Moss, 2002). Since
these individuals do not have a prior adherence track
record, patient-related factors (such as such as age,

_ gender, income) and factors related to the disease charac-

teristics at baseline might prove to be informative predic-
tors of initial and future HAART adherence (Chesney,
2000; Reynolds, Testa, Marc, Chesney, Neidig, Smith et
al., 2004).
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There is limited data regarding factors that predict initial
optimal HAART adherence to ARV medication. In partic-
ular, there are no studies that examine how patient-related
factors relate to each other (interact) and their subsequent
influence on initial optimal HAART adherence. The purpose
of this study is to identify whether specific clinical and socio-
demographic factors present at baseline (and their respec-
tive possible interactions) influenced first-month optimal
adherence to HAART among HIV-positive adults. The
knowledge and understanding of such factors is particularly
important given the increasing number of patients enrolled on
HAART who are to be maintained in therapy. Improved first-
month adherence could also help to avoid switching patients
to more costly second-line regimens. The findings will be
useful in developing tools to assist clinicians in the identifi-
cation of factors related to poor adherence prior to initiating
therapy. The results can be further used to shape communi-
cation and counselling strategies, prior to treatment initiation.

Materials and methods

Study design

The Centre for the AIDS Programme of Research in South
Africa’s (CAPRISA) AIDS Treatment (CAT) programme is
an ongoing rollout programme for ART services that was
started in 2004. The objective is to describe the profile of
patients presenting at the CAT programme with respect
to their social characteristics, clinical status, and clinical
course during care, ‘including HAART regime, HAART
adherence and clinical outcomes. Adult patients who
met HAART eligibility criteria were enrolled into the CAT
programme. Eligibility criteria included a CD4 count below
200 cells/uL or patients with World Health Organization
(WHO) stage 4 of HIV disease, regardless of CD4 count.
The accrual of patients had been evenly distributed over
time since initiation of the programme. All patients received
three sessions of adherence education and motivation and
preparedness training prior to HAART initiation. These
adherence counseliing sessions were held one week
prior to starting treatment. The first two sessions were
held the day the decision was taken to start the patient
on treatment, and the third session was held two or three
days subsequent to the first two sessions. All the sessions
lasted 15 to 60 minutes, depending on the patient who is
counselled. The CAT programme offers HIV-care services
at two different sites in KwaZulu-Natal Province, namely
the eThekwini Clinical Research Site located in an urban
area and the Vulindlela Clinical Research Site located in a
rural area (see <http://www.caprisa.org>). The programme
started providing free HAART through a grant from the US
President’s Emergency Plan for AIDS Relief (PEPFAR) at a
time when access to HAART was limited.

All patients were on a regimen containing two nucleoside
reverse transcriptase inhibitors and one non-nucleoside
reverse transcriptase inhibitor. Patients in the urban clinic
received efavirenz (EFV), lamivudine (3TC) and didanosine
(dd! or ddI-EC). These regimens were chosen because they
can be co-administered with anti-tuberculosis (TB) medica-
tion. The regimen dispensed at the rural clinic consisted
of EFV, 3TC and stavudine (d,T), which is the standard

227

government regimen in South Africa. A few patients (3.8%)
received nevirapine (NVP) rather than EFV because they
were pregnant.

All information for the CAT programme was recorded on
data-collection sheets (administered at the treatment sites)
which underwent two levels of quality control and were
subsequently faxed to a data-management centre. The data
used for analysis in this study consisted of a retrospective
review of the records of patients in the CAT programme
between June 2004 and September 2006. Only patient
records with data on pill-count information for the defined
study period were included in the analysis. Analysis of this
data was approved by the University of KwaZulu-Natal's
biomedical research ethics committee (ref. E 248/05).

Variables of interest

Response variable — The outcome of interest is optimal
adherence to HAART. Pharmacy records that contained
the detailed pill-count information were used to calculate
adherence rates. Patients were then classified as optimally
adherent if they took at least 95% of their prescribed
drugs in a given regimen; otherwise, they were consid-
ered non-adherent. Thus, the response variable is binary,
indicating whether a patient was optimally adherent or not
adherent.

Independent variables — Baseline socio-demographic
variables included in the analysis were age (years), gender,
educational status, treatment site, whether or not a patient
lived with a partner, whether or not the patient was the
source of household income, the patient's access to tap
water and electricity, as well as whether or not a patient
owned a cell phone. The variables used to characterise
the health status of the patients at baseline included World
Health Organization (WHO) stage of HIV disease, CD4
count (cells/uL), and weight (kg). Information about why
the HIV test was done was sought from the patients, and
their responses included being unwell, attending voluntary
counselling and testing (VCT), and various ‘other’ reasons.
Other reasons included a partner having died of the
disease, being ill or being unfaithful; thus they were classi-
fied as at risk of having been exposed to HIV.

Data analysis :

The socio-demographic and clinical characteristics of the
study population were summarised using the median with
the inter-quartile range (IQR) for continuous variabies and
using proportions for the categorical variables.

The data were analysed by fitting a multivariate logistic
regression model. The deviance was used to compare
alternative models during model selection. Change in the
deviance was used to measure the extent to which the fit
of the model improved when additional variables were
included. The main effects and possible combinations of
two-way interaction terms were fitted, while attention was
given to the hierarchic principle in statistical modelling. The
selected model was the one with the smallest deviance.

The selected model was assessed for goodness of fit
using the Hosmer-Lemeshow statistic (see Hosmer &
Lemeshow, 1989; Collett, 2002). Influential observations
were identified by plotting the Cook’s distance statistic
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against the observations (see Collett, 2002). The appropri-
ateness of the link function was assessed by regressing the
linear predictor and its square on the dependent variable.
The link function is appropriate if the linear predictor is
significant and its square is insignificant Vittinghoff, Gliden,
Shiboski & McCulloch, 2005).

Results

Study population

The CAT programme enrolled 1 184 patients between
June 2004 and September 2006. Pill-count records were
only available for 688 of these patients and all 688 were
included in this study. We studied relatively equal numbers
of patients from each of the treatment sites, 54% from the
urban treatment site and 46% from the rural treatment
site. There were no differences in the baseline charac-
teristics between those included in the study and those
excluded with regard to age (means: included = 34.1 years,
excluded = 34 years; p = 0.90), gender (men: included =
30%, excluded = 31.8%; p = 0.51) and baseline CD4 count
(means: included = 107.6 cells/pL, excluded = 111.5 cells/
uL; p = 0.47).

Baseline socio-demographic and clinical characteristics
of the patients

The baseline socio-demographic and clinical character-
istics of the patients included in the analysis are presented
in Table 1. The median age of the patients was 32.5 years
(inter-quartile range [IQR]: 28-38 years), 70% were women,
and 69% had attained a secondary-school or higher level
of education. A large portion of the patients were not living
with a partner (75%). Only 28% were classified as a source
of their household's income. At the time of enrolment, 64% of
the patients were classified as WHO stage 3 of HIV disease;
the sampie’'s median weight was 60 kg (IQR: 53-69 kg)
and the median CD4 count was 108 cells/uL (IQR: 52—-159
cells/uL). Over half (56%) reported that they had decided
to take an HIV test because they were not well, while 26%
reported having done so because they attended VCT. The
remaining 18% said they had taken an HiV test because they
felt exposed to the risk of contracting HIV. Over 90% of the
patients stayed in households that had access to tap water
and electricity, while only 42% of the patients owned cell
phones. In the first month post-HAART initiation, 79% of the
patients were at least 95% adherent to HAART.

Results of multivariate logistic regression

From a set of alternative models, a model with all the
main effects and three interaction terms had the smallest
deviance and thus was selected. Goodness-of-fit of the
model was found to be satisfactory (Hosmer-Lemeshow
statistic = 6.45; p = 0.60). The index plot of the Cook’s
distance statistic indicated that there were no influen-
tial observations. The link function was appropriate since
the linear predictor was significant (p < 0.001) while the
square of it was insignificant (p = 0.50). The adjusted odds
ratios (AOR) and their corresponding 95% confidence
intervals (95% CI) for the selected model are presented in
Table 2.
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Gender, treatment site, contribution to household income,
cell phone ownership, and baseline CD4 count were all
found to be significant main effects (Table 2). There were
three significant interaction terms: between age and cell
phone ownership; between gender and reported reason for
taking an HIV test; and between treatment site and source
of household income. All significant main effects, except
baseline CD4 count, were involved in significant interac-
tion terms (Table 2). For a unit increase in CD4 count
(celis/uL), the odds of HAART adherence decreased by
5% (AOR = 0.995 [0.992-0.999]; p = 0.02) (Table 2). The
interaction effects are presented in the next sections. It
should be noted that for the interaction terms that involved
two categorical variables, the meaningful odds ratios for
comparison needed to be further calculated from the table
of results (i.e. Table 2). The post-hoc effects of the interac-
tions between gender and reported reason for taking an
HIV test as well as between treatment site and the patient’s
contribution to household income are reported in Tables 3
and 4, respectively.

Interactions between patient's age and cell phone
ownership

As age increased, optimal HAART adherence was less
likely for patients without cell phone ownership than those
with cell phone ownership (AOR = 0.927 [0.869-0.987}; p
= 0.019) (Table 2). More specifically, the rate of change in
optimal HAART adherence increased with age for patients
with cell phones, whereas it decreased as age increased
for patients without cell phones (Figure 1). Figure 1 shows
that the gap in optimal HAART adherence between groups
of patients with and without cell phone ownership widened
with increasing age.

Interactions between gender and patient's reason for taking
an HIV test

Optimal HAART adherence was significantly higher for
women than for men among patients who reported having
attended VCT as a reason for taking an HIV test (AOR =
4.911 [1.892-12.75]; p < 0.001) as well as those who
reported having tested because they were not well (AOR
= 2.039 [1.066-3.900]; p = 0.031) (Table 3). There was,
however, no significant difference in optimal HAART
adherence between women and men who reported having
tested for HIV because they felt exposed to the risk of
contracting HIV (AOR = 0.299 [0.059—-1.519]; p = 0.145)

(Table 3). It is also shown that for men, HAART adherence .

was significantly lower for patients who reported VCT as
a reason for taking an HIV test than for those who tested
because they felt exposed to the risk of contracting HIV
[AOR = 0.185 [0.035-0.993]; p = 0.049) (Table 3). These
results confirm the observed proportions of optimal HAART
adherence for gender classified by reported reason for
taking an HiV test as depicted in Figure 2.

Interactions between treatment site and patient’s
contribution to household income

For patients who were not sources of their household’s
income, optimal HAART adherence was significantly higher
for patients at the urban treatment site than at the rural



120

Magqutu, Zewotir, North, Naidoo and Grobler

Table 1: Baseline socio-demographic and clinical characteristics of the HAART patients (n = 688)

Characteristics Median (inter-quartile range) n (%)
Age (years) 32.5 (28-38)
Gender:
Men 206 (30)
Women 482 (70)
Education:
No schooling 74 (12)
Primary school 116 (19)
Secondary school or higher 429 (69)
Treatment site:
Urban 369 (54)
Rural 319 (46)
Living with or without a partner:
Living with a partner 168 (25)
Living without a partner 510 (75)
Contribution to household income:
Source of income 186 (28)
Not source of income 489 (72)
WHO stage of HIV disease: !
Stage 1 71 (10)
Stage 2 121 (16)
Stage 3 438 (64)
Stage 4 58 (8)
Baseline CD4 count (cells/uL) 108 (52—-159)
Baseline weight (kg) 60 (53-69)
Reason for taking HIV test:
Unwell 374 (56)
Attended VCT 170 (26)
Risk of exposure to HIV 121 (18)
Household access to tap water:
Yes 611 (91)
No 59 (9)
Household access to electricity:
Yes 607 (91)
No 63 (9)
Cell phone ownership:
Yes 281 (42)
No 389 (58)
First-month optimal HAART adherence:
Optimally adherent 546 (79)
142 (21)

Not optimally adherent

treatment site [AOR = 4.347 [2.258-8.369]; p < 0.001) (Table
4), whereas there was no difference between treatment sites
in regard to patients who were sources of household income
[AOR = 0.751 [0.237-2.385]; p = 0.628) (Table 4). For the
rural treatment site, optimal HAART adherence was signif-
icantly higher for patients who were a source of household
income than those who were not a source of household
income (AOR = 3.828 [1.311-11.17]; p = 0.014) (Table 4;
Figure 3).

Discussion and conclusions

First-month adherence to HAART decreased with
increasing baseline CD4 count. It has been previously
established that healthier patients tend to have signifi-
cantly greater rates of missing appointments than immuno-
compromised patients (Esch et al., 2002). Patients with a
higher CD4 count may not have experienced debilitating
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opportunistic infections (despite laboratory evidence of
the need to start HAART) at the time they start HAART,
and this seems to have an adverse effect on adherence
(Sarna, Pujari, Sengar, Garg, Gupta & Dam, 2008). Lack
of experience of severe opportunistic infections may
influence the patient's perceptions about the severity
of the disease and the need to maintain a high level of
adherence.

Forgetfulness has been found to be the most frequently
mentioned reason for missed doses among patients
on HAART (e.g. Chesney, 2000; Bartlett, 2002; Barfod,
Sorensen, Nielsen, Rodkjaer & Obel, 2006). As a result,
many interventions consist of providing memory aids for
dosing times. These include the use of new technologies
such as reminders through cell phones (Bartlett, 2002;
Ickovics & Meade, 2002; Abel & Painter, 2003; Osterberg
& Blaschke, 2005). Our results seem to indicate that
older patients who have cell phones use them effectively
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Table 2: Adjusted odds ratios (AOR) (95% confidence interval [CI]) for the multivariate logistic regression model on optimal HAART

adherence (ref. = reference category)

Parameter AOR (95% Cl) p-value
Intercept 0.422 (0.044-4.024) 0.454
Age (years) 1.047 (0.992-1.106) 0.093
Gender (ref. =men)
Women 2.039 (1.066-3.900) 0.031
Education (ref. = secondary school and above)
No schooling 0.594 (0.277-1.276) 0.182
Primary school 1.483 (0.725-3.033) 0.280
Treatment site (ref. = rural site)
Urban site 4.347 (2.258-8.369) <0.001
Contribution to household income (ref. = not source of income)
Source of income 3.828 (1.311-11.17) 0.014
Partner (ref. = living with a partner)
Living without a partner 0.908 (0.530-1.557) 0.727
WHO stage of HIV disease (ref. = stage 4)
Stage 1 1.575 (0.437-5.679) 0.488
Stage 2 0.829 (0.275-2.497) 0.739
Stage 3 0.860 (0.319-2.320) 0.766
Baseline CD4 count (cells uL) 0.995 (0.992-0.999) 0.020
Baseline weight (kg) 1.002 (0.983-1.022) 0.834
Reason for taking HIV test (ref. = unwell)
Attended VCT 0.614 (0.271-1.389) 0.242
Risk of exposure to HIV 3.319 (0.653-16.88) 0.143
Household access to tap water (ref. = yes)
No 1.163 (0.473-2.811) 0.755
Household has electricity (ref. = yes)
No 0.981 (0.441-2.184) 0.963
Cell phone ownership (ref. = yes)
No 15.55 (1.773-136.4) 0.013
Age * cell phone ownership (ref. = own cell phone)
Age * no cell phone ownership 0.927 (0.869-0.987) 0.019
Gender * reason for testing (ref. = men * unwell)
Women * attended VCT 2.409 (0.767-7.566) 0.132
Women * risk of exposure to HIV 0.147 (0.025-0.846) 0.032
Site * household income (ref. = rural site * not source of income)
Urban site * source of income 0.173 (0.050-0.602) 0.006

Table 3: Post-hoc effects of the interaction between gender and reported reason for taking an HIV test (adjusted odds ratio [AOR] with 95%

confidence interval [CI])

AOR (95% Cl)

Interaction effect p-value
Women versus men:
Attended VCT 4.911 (1.892-12.75) <0.001
Risk of exposure to HIV p 0.299 (0.059-1.519) 0.145
Unwell 2.039 (1.066—3.900) 0.031
Men:
Attended VCT versus risk of exposure to HIV 0.185(0.035-0.993) 0.049
Attended VCT versus unwell 0.614 (0.271-1.389) 0.242
Risk of exposure of HIV versus unwell 3.319 (0.653—16.88) 0.148
Women:
Attended VCT versus risk of exposure to HIV 0.446 (0.073-2.739) 0.383
Attended VCT versus unwell 1.479 (0.657-3.330) 0.345
Risk of exposure to HIV versus unwell 3.319 (0.653-16.88) 0.148 -

as reminders to pre-empt forgetfulness and thus will have
higher adherence than older patients without cell phones.
Women who had sought VCT were more likely to have
adhered to their medication than were their male counter-
parts. The expectation is that patients in a VCT setting
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are ready for behaviour change, therefore better compli-
ance can be expected. Lower adherence levels for men
than women who attended VCT might be attributed to
the suggestion that men are less likely to adopt positive
behaviour change (Laforge, Velicer & Owen, 1999).
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Table 4: Post-hoc effects of the interaction between HAART treatment site and patient’s contribution to household income (adjusted odds

ratio [AOR] with 95% confidence intervat [CI])

Interaction effect AOR (95% Cl) p-value
Urban versus rural treatment site:
Source of household income 0.751 (0.237-2.385) 0.628
Not source of household income 4.347 (2.258-8.369) <0.001
Source versus not source of household income:
Urban site 0.662 (0.342-1.278) 0.219
Rural site 3.828 (1.311-11.17) 0.014
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Figure 1: Log odds ratio associated with optimal HAART
adherence and age for patients with and without cell phones
(based on estimates of the coefficients from the fitted multivariate
logistic regression model)

Men who tested for HIV because there were compelling
reasons to take an HIV test tended to adhere to medica-
tion significantly better than those who had attended VCT.
In view of the general reluctance of men to seek healthcare
(Macintyre, Hunt & Sweeting, 1996; Laforge et al., 1999),
the attitudes and behaviour of the men who admitted that
they had been exposed to the risk of HIV and consequently
sought healthcare might have led to higher adherence than
would be expected generally.

A major challenge facing rural communities is food
insecurity, which has a negative relationship with income
(Laforge et al., 1999; Nord & Winicki, 2000). In the rural
setting we found that adherence was significantly lower
among patients who were not sources of their household’s
income as compared to patients who were sources
of income. Lack of food and hunger following HAART
introduction and has been a regularly cited reason for
non-adherence to HAART among patients (Marston & De
Cock, 2004).

It has been shown that demographic factors are not
consistently associated with adherence to HAART (e.g.
Haubrich, Little, Currier, Forthal, Kemper, Beall et al., 1999;
Fong, Ho, Fung, Lee, Tse, Yuen et al., 2003). The results
from this study demonstrate that age, gender, baseline CD4
count, and contribution to household income have an effect
on first-month HAART adherence through significantly
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interacting with other variables, which include cell phone
ownership, reasons given by patients for taking an HIV test,
and whether a patient resides in an urban or a rural setting.
We found urban versus rural differences with regard to
some of the factors that might affect first-month adherence.
Due attention should be paid to address the specific needs
in each setting. It has been established that non-adherence
to treatment is associated with faster disease progres-
sion, even for those who start HAART at a relatively high
baseline CD4 count (Wood & Hogg, 2003). This, combined
with lower adherence among patients with higher CD4
counts, implies that pre-treatment counselling interventions
should also be targeted at people initiated on HAART with
a relatively high CD4 count, and should be tailored to the
specific needs of these patients.

Owing to the considerable amount of information
collected from the patients at the two treatment sites for the
CAT programme, as well as the quality-control measures
undertaken before the data was faxed to the data manage-
ment centre, the pill-count information was available
for 688 out of 1 184 patients enrolled at the time of the
analysis. However, we established that there were no major
demographic differences between those included and those
excluded in the analysis, thus not biasing the results.

One limitation of this study is that the interactions
between variables were identified using the data and model
fit techniques. The interactions were not pre-specified
or expected during data collection. Therefore, detailed
information on why these interactions influenced HAART
adherence were not collected and the reason for some of
these findings cannot be explained. For example, we can
only speculate about why older, but not younger, patients
who claimed cell phone ownership were found to adhere
better.

Furthermore, this study focused on first-month
HAART adherence and there was no evidence that first-
month HAART adherence was indicative of longer-term
adherence in this cohort. Early non-adherence to HAART
has been associated with initial attrition of patients from
HIV-treatment programmes (Mocroft, Youle, Moore, Sabin,
Madge, Lepri et al., 2001; O'Brien, Clark, Besch, Myers &
Kissinger, 2003) and is therefore important to understand.
An understanding of underlying factors that may contribute
to non-adherence has the potential to improve the effective
scaling up of HAART programmes. The researchers intend
to further study the factors influencing long-term adherence
to HAART. it would also be interesting to see whether
factors that influence first-month adherence would also
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Figure 2: Percentage of HAART adherence associated with gender
and reported reason for taking an HIV test, namely: attended
voluntary counseling and testing (VCT), felt unwell or exposed to
risk of HIV infection (based on observed proportions of optimal
HAART adherence)
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Figure 3: Percentage of HAART adherence associated with urban
or rural treatment site and whether or not a patient was a source
of household income (based on observed proportions of optimal
adherence)

influence adherence over a longer period of time using the
same dataset.

The power of this study lies in the fact that it suggests
possible interactions between certain characteristics of the
patients, which merit further research. In addition, it identi-
fies specific groups of patients at higher risk for whom ARV
adherence counselling should be targeted and tailored.
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Abstract Highly active antiretroviral therapy (HAART)
requires strict adherence to achieve optimal clinical and
survival benefits. A study was done to explore the factors
affecting HAART adherence among HIV positive adults by
reviewing routinely collected patient information in the
Centre for the AIDS Programme of Research in South
Africa’s (CAPRISA) AIDS Treatment Programme.
Records of 688 patients enrolled between 2004 and 2006
were analysed. Patients were considered adherent if
they had taken at least 95% of their prescribed druggmcx
Generalized estimating equations were used to analyse bd e
data. The results showed that HAART adherence increfsed
over time, however, the rate of increase differed by gpme of

the socio-demographic and behavioural characteri: of }
the patients. For instance, HAART adherence Micteast

ol

' matically educed

viral therapy (HAART) has dra-
orbidity and mortality among HIV-
infeucﬁ&é“}ﬁ“’ duals [1-3], and requires strict adherence to
attaiff opti inical and survival benefits [4—6]. Patients
<€i'93% or more of their prescribed medication

5e from treatment than those who take less than

;"] dentifying and overcoming factors that reduce
adhergfice to HAART is therefore critical if optimal clin-

Introduction

Highly active antit

idcal and survival benefits are to be attained. Optimal

ghgrence to HAART is often influenced by a variety of
factors, including social, demographic, economic and
behavioural {7, 8]. There have, however, been inconsistent
findings regarding the association between adherence,

both urban and rural treatment sites over time€; byMheizate  demographic and economic factors. For instance, some
of increase was higher in the rural site. Thi elfié%?iggﬂtify studies have shown an association between adherence and
sub-populations, such as the urban popul4t - that required  age [9, 10], while others did not find such a relationship
ongoing adherence counseling. S [11]. Income has also been associated with HAART
i adherence in some studies [12, 13], while others have
Keywords Adherence HAAR - concluded that there was no link between the two [14].
Generalized estimating equations GEE) - Social factors that include family support have been con-
Longitudinal study - Pill coutitpproach sistently associated with adherence [15]. The fact that
- associations between adherence and demographic and
economic factors are observed inconsistently highlights the
need for an evaluation and understanding of how these
factors interact among themselves, and how they interact

with other social, clinical and behavioural factors.
D. Maqutu - T2 D. North In Sub-Saharan Affica‘n, studies have be@n conducted in
School of Statisties and Actuarial Science, countries such as Ethiopia [16], Uganda [17, 18], Uganda
Private Bag X01, Scattsville 3209, South Africa and Zimbabwe [19], South Africa [3, 20], Senegal [12, 21,
S 22], Nigeria [23] and Botswana [24], to identify factors
g Ar}:?;;‘" ‘Eﬁ)&gyNﬁdxv;Z: ]uG;?SZr Pietermaritzburg, affef:ting adherx?ncc to HAART. Some studies. were cross-
Private Bag X01, Scottsville 3209, South Africa sectional and did not assess adherence over time. A limi-
e-mail: 206521995 @ukzn.ac.za tation in some studies was the lack of multivariate analyses
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(EFV), Lamivudine (3TC) and Didanosine (ddI or ddI-EC),
This regimen was chosen as it can be co-administered with
anti-tuberculosis (TB) medication. The regimen in the rural
clinic consisted of EFV, 3TC and Stavudine (d4T), which is
recommended according to the South African HIV treat-
ment guidelines [26]. A few pregnant patients (3.8%)
received Nevirapine (NVP) rather than EFV.

Patient information was recorded om#data collection
sheets at the clinics; it underwent twé,levels of quality
control, and was faxed to a central d ta‘m agement cen-
Onsisted of a retro-
CAT programme
. Only patients

that included an evaluation of interaction terms between
demographic, social and economic factors to control for
potential confounding variables.

The cross-sectional work on the analysis of social,
demographic, behavioural, economic and clinical factors
influencing initial adherence for this cohort revealed that
two-way interaction terms between age and cell phone
ownership, gender and reason for taking an HIV test, as
well as treatment site and income were important [25].
Although factors associated with optimal adherence at the
initial stages of therapy give important information, factors  tre. The data analysed in this sty
that affect long-term optimal adherence may be more rel-  spective review of patients’ recor
evant, as lifetime adherence to HAART is required. It is between June 2004 and Septem””;’ Ly
therefore important to identify factors influencing adher-  with pill count data for ﬁ ttial visit, and at least one

in

ence over time, as well as the relationships (interactions)  other clinic visit for the ned smdy period, were inclu-
between these factors. Studies that evaluate relationships  ded in the analysis. The follow-up visits differed
between factors influencing adherence are limited in the  per patient, as som% ents s%arted treatment earlier and
literature, hence the motivation for this study. The aim of  therefore had more’ﬁv : some patients dropped out
this study was to determine the predictors of optimal long-  of the treatmen 1 premamrely. Approval for the
term adherence, and whether factors affecting initial  data collectioff®

adherence also influence long-term HAART adherence. versity of KwaZ
Committee. b4

Methods - Mo
S,

Study Design @e outinely collected at the treatment sites included
the pati ’ demographic details, medical history, CD4-+

“cell ‘cofint and viral load, pill counts, clinical status and a
“]laboratory safety assessment. For this analysis, the outcome
Wik measured using the pill counts data, and the covariates
were selected from the various aspects of the collected
data. The covariates can be classified as time-independent

The Centre for the AIDS Programme of Research in Sout
Africa’s (CAPRISA) started a HAART rollout progran‘n
2004. The CAPRISA AIDS Treatment (CAT) Progr e
offers HIV care services at two sites in KwaZuly-Natal, }

South Africa, namely the eThekwini Clinical Rese. ";\,‘,h site

located adjacent to the Prince Cyril Zulu Comir unicablé®  and time-varying. Measurement and coding of the outcome
Disease Clinic in the center of Durban, amd,g-m i and covariates is described below.

Clinical Research site, located in a rura{ | area K
town of Howick, approximately 95
programme started providing free °
President’s Emergency Plan for
grant at a time when access to :

was limited. Adult patients

200 cells/pl, or patients wit
(WHO) stage 4 of the %Y disease, were eligible for

HAART initiation. .

Adherence Measurement

Relief (PEPfAR)  Adherence to HAART was measured using pill counts
T in.the public sector  conducted by pharmacists at the treatment sites. Patients
‘ were provided with more medication than required, i.e,
tablets were usually dispensed in multiples of 30, whereas
visits were booked in multiples of 28 days. Patients were
asked to bring all medication bottles and unused pills to
each clinic visit, but were not told that the returns were to
be counted. Adherence at every visit (monthly, i.e.
28 days) for all the drugs was calculated as the total
number of drugs dispensed, minus the total number of
drugs returned, divided by the total number of days
between clinic visits, times the daily dose. This method
takes into account the date of the clinic visits and adjusts
ining two nucleoside reverse transcriptase  for late return to the clinic (meaning pills would have been
one non-nucleoside reverse transcriptase  missed) and early return to clinic (meaning pills would still

inhibitor. Patients in the urban clinic received Efavirenz  be available for return).

intensive clinical

the treatment g
undergo a chmcal examination. Prior to HAART initiation,

all patients racelved three sessions of adherence education,
motxvatmn and preparedncss training. All patients were on
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Outcome Variable

The outcome was optimal adherence to HAART, and
patients were classified as optimally adherent if they took
at least 95% of the prescribed drugs in a given regimen [4],
otherwise, they were considered non-adherent. At each
visit, the response variable was binary, indicating whether
a patient was optimally adherent or not (1 = adherence
score of 95% and above, i.e. the patient was optimally
adherent; 0 = adherence score less than 95%, i.e. the
patient was not optimally adherent).

Time Independent Covariates

As adherence was monitored very closely for the first month
after initiation of HAART (three visits), compared to sub-
sequent visits, the adherence for the first month (initial
adherence) was treated as a covariate in the analysis. It has
been argued that the use of a baseline response as a
covariate in a longitudinal study permits the use of each
subject as their own control to assess the effect of treatment
over time [27, 28]. Initial adherence was calculated as the
sum of drugs dispensed in the first month, minus the sum of
drugs returned in the first month (over the three visits),
divided by the number of days between the first and fourth
visit multiplied by the daily dose. Those who took 95% of
the prescribed dose were considered adherent (1 = optimal ;

initial adherence; 0 = not optimal initial adherence). ,,g{
Baseline demographic and socio-economic vanal%e
included in this analysis were age (in years); gefider

(1 = female, 0 = male); educational status (2 = nogchool-
ing, 1 = primary and 0 = secondary and higher); t
site (1 = urban, 0 = rural); whether or not a gatient |
with a partner (1 = living with a partner, | ﬁ%&h‘%ﬂng

o
s

with a partner); whether or not the patient was the sou:«ge of
%old _income,

household income (1 = source of hbuse

0 = not a source of household mcome),”‘v“@cé
(1 = yes, 0 = no) and electricity fdme= yes, 0= no) and
whether a patient owned a cell @gon
Other variables recorded at baseline and mcluded were
WHO HIV stage (3 = stage 12 = stage 2,1 = stage 3 and
0 = stage 4), CD4+ cell @um (ce 1s/pl), weight (in kilo-
grams). Patients were a§ked why they did an HIV test and
their responses 1ncludéd being unwell, testing for no specific
reason, testing becausq a partﬁer died of HIV, being ill and
unfaithfulness. Réason f«te.stmg was therefore classified as
.exposure to HIV, 1 = no specific

Time Varying Cavariates

sured as a continuous variable representing
monthly follow-up visits to the treatment site. The variable

time starts with the value 1 for the first follow-up visit, 2
for the second visit, up to 17 for the seventeenth follow-up
visit. Weight was measured at every follow-up visit and
was modeled as a time-varying covariate.

Data Analysis

Differences in the baseline characteristics#of CAT patients

excluded and included in the analysis %’ pared using
the chi-squared test for categorical varia ]es and the t—teSt

for the contmuous variables. Soci@®demni

ables. The trend of optim

using the Cochran-Armitage
ﬁ’“ urements of each patient

To account for
(correlated data), aa% Towi1l patients, regardless of the
number of v1sxtc§¢fé ‘be iriclpded in the analysis, generalized
estimating equatxo (G Es) [30] were used to assess

odel criterion (QIC) [31] was used to select the

; % best fitting correlation structure. Model
n;;ionwi@as,, done by first including all predictor variables
h the m mgdel and then evaluating whether any interaction
negded to be incorporated into the model. This was
determ ned by fitting each of the product terms formed

_‘from the predictor variables, one at a time, and keeping the

§1gn1ﬁcant terms in the model. As GEE parameters are
estimated using quasi-likelihood procedures, there is no
associated likelihood underlying the model. Therefore, the
usual likelihood ratio tests could not be applied to compare
models. However, the generalized Wald test was used for
model comparison [32]. ]

The GEE method accommodates missing data, however,
it yields valid estimates if missing data can be assumed to
be ‘missing completely at random’ (MCAR). This means
that missing values do not depend on the observed
(previous) or unobserved outcomes [33, 34). A logistic
regression model was used to assess whether dropout in
this study is independent of the previous outcome, i.e.
whether the missing data mechanism is MCAR. All sta-
tistical tests were conducted at a 5% level of significance
and analyses were done using SAS (version 9.1.3).

Results

Study Population

Between June 2004 and September 2006, 1,184 patients
were enrolled in the CAT programme, 411 (35%) at the
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259  urban site, and 773 (65%) at the rural site. A total of 688  Table 1 Baseline socio-demographic and clinical characteristics of
260  patients, 369 (54%) from the urban site and 319 (46%) from  the patients

261  the rural site were included in the analysis. Only patientS  Characteristics Value
262 with pill count data for the initial and at least one other

263 clinic visit were included in the analysis. There were no  A8&¢ (years)

264  differences between those included in the study and those Median (IQR) 32.5(28, 38)
265  excluded with regard to age (mean: included = 34.1 years, ~ Cender, n (%)

266  excluded = 34.0 years; t-value = (.13, P = 0.90), gender Male ‘ 3 A 206 (30)
267  (males: included = 30.0%, excluded = 31.8%; chi-square- Female .y, 82(70)
268  value = 043, P=0.51) and baseline CD4+ cell count Education, n (%) .

269  (mean: included = 107.6 cells/ul, excluded = 111.5 cells/ No schooling r 74 (12)

116 (19)

270 pl; t-value = 0.72, P = 0.47). Furthermore, power calcu- Primary
271  lations were performed for the available sample size (688 Secondary and higher 429 (69)
b= 272 patients) to detect a difference in proportion of adherent  Treatment site, n (%)
M 273 patients between the first follow-up visit and the final fol- Urban site 369 (54)
"':’_‘: 274 low-up-visit of 0.27. With a sample size of 600, this gave Rural site 319 (46)
_g 275  more than 90% power when a test of proportions was done.
5 186 (28)
il 276 Baseline Socio-Demographic and Clinical 489 (72)
277  Characteristics of Patients
Living with a partne 168 (25)
278  The baseline socio-demographic and clinical characteris- Living without a par%( 510 (75)
279 tics of patients included in the analysis are presented in Tk
280  Table 1. The median age of patients was 32.5 years (IQR: 607 (91)
281  28-38 years), 70% were male and 75% were not living 63 (9)
282  with a partner. Over two-thirds of the patients had attained
283  secondary or higher level of education (69%), and 28% of e 611 (91)
284  patients were classified as breadwinners. Over 90% of tha’i 59 (9)
285  patients stayed in households that had access to tap waj
286 and electricity, while 42% of the households ha 281 (42)

288  53-69 kg), median CD4+ cell count was 108 ‘¢ As/ul 7 who stage of HIV disease, (%)

#1 €S
287  phones. At enrolment, the median weight was 60 kf (IQR: @j No : 389 (58)

289 (IQR: 52-159 cells/ul) and 64% of patients Wpfe%lasmﬁé Stage 1 7110

290  as WHO stage 3. Over half of the patients (3 ‘7§ \ oxted Stage 2 121 (16)

291  to have taken an HIV test as they were no while26% Stage 3 438 (64)

292  reported no specific reason for tesnrl{iﬁm% took an Stage 4 58 @

293 HIV test as they were concerned Ahat theMad been Reason for taking HIV test, r (%)

294 exposed to HIV. In the initial mondyof weatimént, 79% of v v g ’ 374 56

295  the patients were at least 95% a ‘erentvto HAART. Possible exposure to HIV N 170 @6)

296  Overall Optimal Adherence-tids] olloyfﬁp Visits : NO Spec’ﬁcl reason, 121.(8)
1 Initial (baseline) optimal adherence, n (%)

297  The number of follow-up ﬂged between 2 and 17 gp timal.]y T]ihe‘::t : f:g (79)
'8 (IQR 5.1 2) Figure 1 ot optimally adherent 21

298  per patient, with the’ median
299  presents the total num ber of patlents expected at each visit,
300  the number of patlents whe-actually attended the visit and

at each visit. The proportion of  (Z=17.52 and P < 0.0001) provides strong evidence of 308

301

302 ut gradually increased over the an increasing adherence rate over time. 309
303  follow-up penod g B

304 The, proportion of patients who were at least 95% ~ Selection of the Multivariate Model 310

305  adherent (Optlmally adherent) to HAART increased from
306  58% at the first follow-up visit to 86% at the last follow-up
307  visit (Fig.2). The Cochran-Armitage statistic [29]

Using the QIC [31], the correlation structure that fitted the 311
data well was First-Order Autoregressive (AR1) structure, 312
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time, reported reason for taking an HIV test and time, age

800
~dropout . .
@ 7007 and gender, as well as age and educational attainment
§ soo-E a H (Table 2).
T s001ll AU Y
,E' 400 4 1 W ¥ 4 <7 7 Table 2 Adjusted odds ratio (aOR) from the GEE model with

S ﬁ ? ‘N : ﬁ associated 95% confidence intervals (CI)

2 3004/ V] Wl B 4 &

2 LlHAign 7 g g Parameter aOR (95% CI) P-value

S 100 HEE 77 Foy

S adB Y % 5 z Intercept 1.802 (0.83 ) 0.146

ol U4 ﬂ izazN7070707 07070 Age 0.988 (0.972 41,004 0.147
12 3 456 7 8 9 1011 12 13 14 15 16 17 Gender (ref = male) '
follow-up visits Female 0.03 @ 0.001
Fig. 1 Total number of patients expected at every visit classified by Education (ref = secondary and above ?
the number of patients who actually attended the clinic (non- No schooling S:038 1.83 0.002
dropouts) and those who dropped out Primary 1.104:(0.378, 3.223) 0.856
Treatment site (ref = rural site}
Urban site (2.355, 4.438) <0.001
1;8‘ ‘ Source of household i e (réwource)
50 | B non-adherent 1.008 (0.828, 1.229) 0.934
70 4 .
£ 60, . 7 B B f 'é 7 1.114 (0.831, 1.494) 0.469
g 504 [ ? é § g z g Household with electr.city (ref = no)
g 404 AR indd 1.004 (0.786, 1.283) 0.975
30 ‘ ; ' 4 %
=i ' (NN 1.260 (1056, 1.503 0
ol 5 _ 260 (1.056, 1.503) 010
0 j 4 ] 2 - g taking an HIV test (ref = unwell)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 fic reason 0.973 (0.685, 1.381) 0.877
Follow-up visits Poss; ‘Ié exposure to HIV 0.615 (0.431, 0.877) 0.007
HeStayl i f =
Fig. 2 Optimal adherence and non-adherence rates over the follow- aying with a partner (ef = no)
up visits 1.335 (1.097, 1.625) 0.004
%A WHO staging of HIV disease (ref = stage 4)
} Stage 1 0.716 (0.486, 1.054) 0.091
which reinforces the assumption of equally gﬁ% ced Stage 2 0.778 (0.554, 1.092) 0.147
surement occasions, Stage 3 0.898 (0.660, 1.221) 0.492

Cross sectional analysis of predictors of initial ,primal Baseline CD4+ cell count 1.000 (0.998, 1.001) 0.532
adherence showed that two-way mteraggﬂ n termgjﬁetween Initial optimal adherence (ref = not adherent)
age and cell phone ownership, genderandrgason for taking Adherent 0.869 (0.704, 1.072) 0.190
an HIV test, and treatment site and ingome weré significant Time (visit) 1.105 (1.059, 1.153) <0.001
[25]. Using the same data set, W, ated whether these  Bageline weight « 0.996 (0.981, 1.010) 0.557
predictors of initial adherence also predicted long-term Weight at follow-up visits 1.001 (0.987, 1.015) 0.890
adherence using the GEE niéthod. The results were not  Time x gender (ref = male)
significant (Wald statistic,= 4.78.:with four degrees of Female 1.074 (1.034, 1.116) <0.001
freedom, P = 0.31), indicAting po association between Time x treatment site (ref = rural site)
long-term optimal adherence and the interaction terms Urban site 0.945 (0.908, 0.982) 0.004
associated with mma{ adher(?ﬂce Time x reason for taking the test (ref = unwell)

To further examine. the-s€lationship between long-term No specific reason 0.989 (0.947, 1.033) 0.624
optimal adherence,, an ther variables, a model was built Possible exposure to HIV 1.058 (1.010, 1.108) 0.018
?};lﬁttmg ball the predictor va?abl};es h(l1sted in Table 1), Age x gender (ref = male)
ollowed by an as§essment o w ether any interaction Female 1,024 (1,006, 1.043) 0010
terms néed to be incorporated into the model. Conse- .

dy. the final del tained five t int . Age x education (ref = secondary and above)

n e finalFmodel conta 0-way interaction
?"e Y, ) © H[; Oe e ig e o ve TV}V] t ay miera ) No schooling 0.968 (0.943, 0.993) 0012
erms and all the predictor variables. The two-way inter-

. p . y Primary 0.998 (0.972, 1.025) 0.875
actions were between gender and time, treatment site and
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Predictors of Optimal Adherence

After controlling for other variables in the model, optimal
adherence was significantly higher when patients had cell
phones than when they did not have cell phones [adjusted
odds ratio (aOR) = 1.260, 95% confidence interval (CI):
(1.056, 1.503), P = 0.010] and when they lived with a
partner compared to when they did not live with a partner
[aOR = 1335, 95% CIL (1.097, 1.625), P = 0.004]
(Table 2).

Optimal HAART adherence increased on average over
time, however, since interactions with time were significant,
the rate at which optimal adherence increased differed by
treatment site, gender and the patient’s reported reason for
taking an HIV test. Age interacted significantly with gender
and education. The interaction effects are presented below.

Interaction Between Gender and Time

Optimal HAART adherence increased over time for both
males and females. However, since there was a significant
interaction between gender and time, the rate of increase was
not the same for males and females after controlling for other
covariates in the model. The rate of increase was 7.4% higher
for females than for males [aOR = 1.074, 95% CI: (1.034,

1.116); P <0.001] (Table 2). Estimated probabilities of

optimal adherence was 5.8% higher over the study period
for patients who tested due to possible exposure to HIV,
than for patients who tested as they were unwell
[aOR = 1.058, 95% CI: (1.010, 1.108); P =0.01¢6]
(Table 2). There was, however, no significant difference in
the rate of change of optimal adherence between patients
who tested because they were unwell and those who
reported no specific reason for taking af=HIV test [Z =
—0.43, P = 0.666] (Table 2). Furthegf.analysis revealed
that the rate of increase in optimal adherence over the study
period was 7% higher for patients who e ed'due to pos-
sible exposure to HIV, than fi those ' who reported no
specific reason for taking an [aOR = 1.069, 95%
CI: (1.016, 1.126), P = 0.0t e

Figure 3c indicates th%e estimated probabilities of
optimal adherence for pati€nts vgho tested as they were
unwell, and those Preported no specific reason for
taking an HIV tese@®ere sififar throughout the study.

It is again sh@‘é@n in Figg3c that at the beginning of the
follow-up pg‘ estimated probabilities of optimal
adherence for patients who tested due to possible exposure
to HIV were lessJthan the estimated probabilities of
patlents?*who reported no specific reason for taking an HIV
as those who tested as they were unwell.
er, durrng the middle of the follow-up visits, esti-
lﬁblhtles were similar for all the reported rea-
ards the end of the study, the probabilities of

optimal adherence were higher for males at the beginning o /,m opmm adherence were higher for patients who tested due

the follow-up visits, but by the end of the study period (17th
follow-up visit), they were similar for both groups (F1g.,.

in optimal adherence was 6% higher i
site than in the urban treatment si
(1.002, 1.100); P = 0.004] (Tab}
ability of optimal adherence at
66% at the mral site and 8«

first follow-up visit was
Lthe urban sxte (Fig. 3b)

until, by the end of the study,the estimated optimal adher-
ence probabilitieswere similar (at 91 and 92%, respectively).

Interaction Bei A
d Ti o
an me B

Optlmal%crerﬁze increased over time, but the rate at
which it increased differed with the patient’s reported
reason for taking an HIV test. The rate of increase in

't0 possible exposure to HIV than those who reported no
yécific reason for testing for HIV, or those who tested as
they were unwell.

Interaction Between Age and Gender

Optimal HAART adherence differed by age for males and
females. As the age of patients increased, females tend to
adhere better to HAART than males [aOR: 1.024; 95% CI:
(1.006, 1.043), P = 0.010]. It is shown in Fig. 3d that the
estimated probabilities of optimal adherence were higher
with younger males than with younger females, whereas
with older patients, estimated probabilities were higher
with females than males.

Interaction Between Age and Education

Optimal HAART adherence differed by age at different
education levels. Among older patients, those with no
schooling were less likely to achieve optimal HAART
adherence than those with secondary and higher education
[OR = 0.97; 95% CI: (0.94, 0.99); P = 0.012] (Table 2).
There was, however, no significant difference in optimal
HAART adherence between patients with secondary edu-
cation and patients with primary education, regardless of
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Fig. 3 All the two-way interaction terms in the final model of optimal adherence
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age [Z = —0.16, P = 0.875)] (Table 2). Further analysis
revealed that as patients got older, those with primary
education were more likely to achieve optimal adherence
than those with no schooling [aOR = 1.03, 95% CI:
(1.002, 1.070); P = 0.048]. Figure 3¢ indicates that the
estimated probabilities of optimal adherence by patients
decreased with age. More specifically, the probability of
optimal adherence for patients with secondary and primary
education was similar for all ages, whereas probabilities of
optimal adherence for those with no schooling were higher
for younger ages and lower for older ages, relative to those
with primary and secondary schooling.

Impact of Dropout on the Analysis

The analysis revealed that dropout did not depend on
previous outcome (Chi-squared-value = 0.103 with one
degree of freedom; P = 0.748). It can therefore be con-
cluded that MCAR holds and as a result, GEE method
yielded valid estimates.

Discussion

Consistent with results from recent longitudinal studies in
Sub-Saharan Africa [16, 19], the findings showed that -

that programmatic interventions conducted during the CA'
programme may have had a positive impact on adhergn@e
These interventions included patients being exposed to on-
going peer education when queuing for services wighin the

clinic, and through one-on-one session with a peer edt ator
at the end of the clinic visit after the pills wgyé Collecte

Every 6 months, patients received individual edufation. on
adherence maintenance. This highlights imp ftapge of
prioritising adherence counseling wheﬁ ing #Mp new
HAART clinics. These results reinforée fhe i%gt‘: that it
is possible to achieve and sustain_high lev%s;éfbf HAART

adherence [35, 36]. H@w s, the results from this study
demonstrate that deihographlc factors predict HAART
adherence through i gractiorj:s among themselves or with
other variables. B aneé, an interaction between age
and educational, attainment predict HAART adherence.
More spec1ﬁcéﬁy, as patients get older, adherence decrea-
ses over time, and: «the decrease is more pronounced with
patientsswho have no schooling and in male patients.
HAART: dhye:rence increased over time but at different
rates in males and females. Males had higher adherence at
the beginning of the follow-up period but by the end of the

@ Springer

optimal HAART adherence increased with time, mdlcatm?&; that’

study period, adherence was similar between males and
females. This might be explained by social and behavioural
factors associated with HAART adherence being different
in males and females [37]. For instance, women are gen-
erally responsible for care-giving duties which might
hamper adherence at the beginning of treatment, until they
get used to the new routine of taking their own medication
[37, 38]. A,

HAART adherence has been higher j# ban clinics than
in rural clinics, which has been attributed to;t‘hé latter being
less well resourced [39]. However, thg rafe at which
adherence increases with time isghigher in the rural clinic
than in the urban clinic. Studies hdve shéwn that in rural
settings, optimal adherencs”‘ms t6”ncrease over time
[40]. Since rural populatigns hveﬁx.m a more communal
setting, the positive i ~ T on HIV positive-
patients might be @MOTE: vxslble, which may positively

; {8 HAART.

a partner adhered better to
@ef who'lived with no partner. Lack of
social support has been associated with a decrease in
adherence [41] andv%vmg with a partner has been associ-

ated %f%criased social support and optimal adherence

[42]; Furthertfore, cell phone ownership enhanced long-

op m’ak T adherence. This reinforces proposed
v teiwen as of providing memory aids for dosing times
lncl e the use of new technologies such as reminders
through cell phones [43—47], and verbal or text messaging
r check—up reminders and general adherence messages
[48]

Three shortcomings are acknowledged in our research.
Firstly, adherence was assessed only through pill counts.
Pill counts method is attractive due to its simplicity and
empirical nature; however, it has disadvantages that
include patients switching medicines between bottles or
discarding pills before visits [47]. Despite these problems,
it has been shown that pill counts method has a strong
linear relationship with viral load [49].

Secondly, interactions between variables were identified
using the data and model fit techniques. The interactions
were not pre-specified or expected during data collection.
Detailed information on why these interactions influenced
adherence was therefore not collected, and the reasons for
some of these findings cannot be explained.

Thirdly, an equal interval (monthly) between successive
follow-up visits by all patients was assumed. In reality,
some patients visited the clinic a number of days earlier or
later than scheduled appointments. However, the impact of
this assumption on the analysis is negligible for a number
of reasons. The patients in the CAT programme have
shown excellent clinic attendance with scheduled
appointment. In addition, patients were given 2-day buffer
stock with each supply to cover appointment delays and
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this was accounted for in calculating the adherence rate.
Generally, when we say monthly data, we do not expect an
equal number of days in every month. Furthermore, the
effect of unequally spaced interval correlation structures
was tested using QIC and was found to be insignificant,
which reinforces the assumption of equal interval between
clinic visits,

The study showed that HAART adherence increased
over time on average, however, the rate at which it
increased differed by treatment site, gender and the
patient’s reported reason for taking an HIV test. Conse-
quently, due attention should be paid to address the specific
needs of each group of patients, specifically with respect to
urban-rural and gender differentials. HAART adherence
over time increased for patients with cell phones and
patients living with a partner, and decreased as age of
patients” with no schooling increased. HAART programs
need to take these factors into account in the design and
implementation of long-term adherence strategies. Specific
groups of patients at risk for less than optimal adherence
should be targeted with long-term adherence boosting
sessions tailored to their specific needs.
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