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SYNOPSIS 

A theoretical account of investigating the growth dynamics 10 heterogeneously 

distributed populations is presented. The study presents the derivation of analytical 

solutions to the problem of growth of populations in space and in time. It has applications 

in a variety of fields, from microbial cell growth in Microbiology and Biochemistry, via 

animal population and vegetation growth in Ecology, and eventually in human cell 

growth of normal and abnormal (such as benign and malignant cells) tissues. The 

analytical solutions are compared to numerical solutions obtained via standard 

differential equations solvers showing a very good match within the parameter windows 

where the analytical solutions are expected to be valid. The novelty of this work focuses 

on four aspects: (i) expanding the application of a Neoclassical Model derived originally 

to deal with growth that is spatially homogeneous within the spatially heterogeneous 

problem, (ii) undertaking a linear stability analysis of the stationary points corresponding 

to the Neoclassical Model as applied to the heterogeneous problem, (iii) providing an 

analytical weak nonlinear solution to the spatially homogeneous problem and comparing 

the results to a numerical solution, and (iv) deriving a weak nonlinear solution to the 

spatially heterogeneous problem and comparing the results to a numerical solution. The 

Neoclassical Model applied to the spatially homogeneous problem was shown to capture 

all qualitative features that appear in growth experiments and a large number of 

quantitative results were shown to match very well their corresponding experiments. This 

work presents the first application of this model to the spatially heterogeneous problem 

providing linear stability analyses and analytical solutions by using the weak nonlinear 

method of solution. 

KEY W 0 R D S: Microbial Growth, Population Dynamics, Turing Instabilities, 

Spatially Heterogeneous Growth, Neoclassical Theory. 

S h 0 r t Tit 1 e: Growth Dynamics in Heterogeneous Populations 
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CHAPTER! 

INTRODUCTION 

1.1 Motivation and Background 

Growth dynamics is a topic that has a wide variety of applications in different fields, 

from microbial cell growth in Microbiology and Biochemistry, via animal population 

and vegetation growth in Ecology, and eventually even in human cell growth (benign 

as well as malignant cells). Therefore, there are a variety of industries and services 

that are substantially impacted by the advancement of knowledge in this field . The 

food and beverage industries use this knowledge to control their processes. In the 

food industry the potential ability to control the Lag phase of microbial growth has 

the direct implication of increasing the shelf time of food products, leading to 

substantial financial savings, reduced prices of products and increasing the safety 

levels in consuming these products. In the beverage industry, e.g. wine production, 

different strains of yeast (Saccharomyces cerevisiae) are being used in the 

fermentation process. A better understanding of the yeast growth dynamics may 

improve the relevant processes, increase their efficiency, leading eventually to a better 

and cheaper product. In Ecology, it is paramount to understand the natural processes 

of population dynamics in order to reach correct conclusions regarding possible 

threats of extinction of a particular species and consequent requirements of otherwise 

undesirable human intervention. The latter is sometimes necessary in order to keep 

ecological balance. In particular, the fish industry in oceans and seas is extremely 

vulnerable to abnormal demands that may adversely impact the availability of fish in 

the years that follow such demands. In Medicine, the ability to understand, predict, 

and eventually control malignant cell growth might hold potentially the solution to 

cure or efficient treatment of a large number of diseases. All the examples given 

above have one common factor namely they all are related to population growth. The 

objective is to find the population number at all future times, given an initial 

population number (and possibly its initial growth rate) and the environmental factors 

1 



such as nutrient availability, pH, ambient temperature, etc., assuming that the spatial 

distribution of the population is uniform. The latter uniformity can be accomplished 

by forcing a well-mixed environment or can naturally occur under certain 

circumstances. 

Since the early works of Malthus (1798), Pearl (1927) and Verhulst (1838) a large 

amount of work has been done in order to address the understanding of the problem of 

population dynamics and growth. Nevertheless, there is still disagreement in the 

scientific community regarding the lack of one universal law of nature that governs 

population growth as well as regarding the relevant mechanisms that control the latter. 

While the topic of growth dynamics in homogeneously distributed populations has 

been dealt with since the nineteenth century, the corresponding problem of growth in 

heterogeneously distributed populations started receiving the required attention only 

in the second half of the twentieth century with the seminal work of Turing, (1952). 

The objective in this type of problem is to find the population number and its spatial 

distribution at all future times, given an initial spatial distribution of the population 

(and possibly its initial growth rate distribution), boundary conditions, and 

environmental factors. 
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1.2 Literature Survey 

1.2.1 Growth Dynamics in Homogeneously Distributed Populations 

Thomas Robert Malthus (1798) suggested the first theory of population growth in his 

essay "An essay on the principle of population". His theory can be represented by the 

following equation 

dU={3u 
dt 

(1-1) 

where u is the population number that yields an exponential solution of the form 

u = uoef31, where Uo is the initial population number and {3 is the Malthusian specific 

growth rate. The exponential, unlimited, growth was a concern as it is natural to 

expect any population to arrive eventually at some finite population number. This 

problem was resolved by Pearl (1927). He suggested a very simple theory for 

population growth and applied it for a wide variety of experimental data indicating in 

some cases an outstanding fit. The Logistic Growth Model (LGM) suggested 

independently by Pearl (1927) was derived earlier by Verhulst (1838) but was 

practically forgotten and overlooked for almost ninety years. It essentially suggests 

that the concentration of a particular population be governed by the following 

equation 

(1-2) 

where u is the population number or the viable cell concentration, 8 is the carrying 

capacity of the environment, and J.1 is the maximum specific growth rate. It can be 

observed that eq.(1-2) reduces to Malthus's equation (1-1) when (u/8)« 1 and 

J.1 = {3. The distinction between the two constants J.1 and {3 will be discussed later in 

the context of the Neoclassical Theory. Equation (1-2) can be presented also in the 

following equivalent form proposed by Edelstein-Keshet (1988). 

3 



1.2 

0.8 

u:::;, 
........ 0.6 
~ 

0.4 

0.2 

0 

(a) 

0 

-I 
,--.... 

c.o 

--- -2 
;::s 

"-' 

..s 
-3 

-4 

-5 

(b) 

Pearl (1927) after data from Carlson (1913) 
(here redrawn from published data) 

.- . - .- . - .- .~ .- .- .- .- .-~- .- - '-" -"' :.I.~--

0 

0 

5 10 

time [ hours] 

... -_ ... : .................. ---.--

15 

based on Pearl (1927) after data from Carlson (1913) 
(here redrawn from published data) 

-.--.- ........ .. ~ ... .......... ---. -...... .;- .......... _ .. 

iNa Lip 
No Logarithmic Inflection Point! 

5 10 IS 

time [ hours] 

20 

20 

Figure 1.1: Comparison of the LGM solution with experimental results for yeast cells 

based on Pearl (1927), after data from Carlson (1913) (here redrawn using the 

tabulated data from Pearl, 1927) . (a) Cell concentration (normalized and 

dimensionless) versus time; (b) the in curve of the cell concentration versus time. 

4 



du 2 
-=f.1U-VU 
dt 

(1-3) 

where V= f.118 . From the equation presented in this form, (1-3), it can be observed 

that the first term contributes to Malthusian growth, while the second term, v u
2

, 

contributes to inhibiting growth and is proportional to the number of encounters 

between each pair of individuals in the population. It reflects the effect of crowding 

and intra-specific competition on the population growth. The analytical solution to 

equation (1-2) expressed in the form, 

(1-4) 

where U
o 

is the initial population or cell concentration, yields the familiar "S" shaped 

logistic curve leading asymptotically towards the stationary point u = 8. The trivial 

stationary value u = 0 is unstable for f.1 > O. Pearl (1927) showed an excellent match 

between the LGM solution expressed by eq. (1-4) and experimental results for yeast 

cells reported by Carlson (1913). Pearl's tabulated data have been redrawn here and 

they are presented in Figure l.la clearly confirming his claim of an excellent match. 

In addition, plotting the natural logarithm of the cell concentration versus time yields 

the graphical result presented in Figure l.lb. From this figure it is clearly observed 

that the regular inflection point (Rip) that was recovered in Figure 1.1 a at u = 0.58 

disappears when presenting the result in terms of 1n( x) versus time. The LGM cannot 

recover a logarithmic inflection point (Lip). It is important to observe the solution on 

a phase diagram in terms of the specific growth rate ill u versus u, which can be 

simply drawn by using equation (1-2). This phase diagram is presented in Figure 1.2a, 

showing that the LGM solution lies on a straight line in this plane. 

On the other hand there is substantial experimental evidence that the shape of the 

solution on the same phase diagram deviates significantly from the linear curve, e.g. 

Smith (1963). Concave as well as convex shapes, some of them indicating a 

maximum, were identified experimentally, as presented in Fig.l.2a by the gray 

curves. Additional models were developed in an attempt to describe the new 

experimental results. Gompertz model (Gompertz, 1825) and alternatively a model 

developed by Smith (1963) were proposed in order to recover the concave shapes, 
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while the convex curves and their possible maximum were explained among others in 

terms of the Alee effect (Alee, 1931). Some researchers were unhappy with the fact 

that Gompertz' s model as well as models recovering the Alee effect do not produce a 

stationary point identical to the one obtained from the LGM. The argument was that if 

8 is indeed the carrying capacity of the environment it should depend on the 

environment only and all solutions in the same environment should eventually 

stabilize to the same value 8. As a result, Richards family of growth curves 

(Richards, 1959) was proposed to address this problem. They constitute a slight 

modification of the LGM in the form 

(1-5) 

where K is a positive constant parameter that controls the concavity/convexity of the 

specific growth curve on the phase diagram, i.e. for K> 1 the curves are convex, while 

for K < 1 they are concave with the LGM recovered when K = 1 (see Figure 1.2b). 

Despite their different curvature all Richards' growth curves cross the u axis at u = 8 

and the (ill u) axis at (itl u) = j1, identically to the LGM. 

In addition, substantial evidence accumulated from other, more recent, experimental 

results indicating that an inflection point is recovered on the logarithm of the cell 

concentration curve (see Baranyi and Roberts 1993, 1994, for a discussion on this 

topic) . While it is obvious that there is a link between this logarithmic inflection point 

(Lip) and the existence of a Lag Phase, this link does not necessarily go both ways. 

This means that when a Lag Phase exists, a logarithmic inflection point (Lip) is to be 

obviously expected; however if a logarithmic inflection point (Lip) is recovered it 

does not necessarily mean that a Lag Phase must exist. One way to incorporate a 

"Lag Phase" in a Logistic Growth Model was proposed by Hutchinson (1948) and 

Wangersky and Cunningham (1957). Hutchinson's model was developed in an 

attempt to correct the fact that in equation (1-2) the concentration dependent 

regulatory mechanism represented by the factor [1- u18] operates instantaneously. 

By considering that these regulatory effects are likely to operate with some built-in 

time lag, whose characteristic magnitude may be denoted by to' one can incorporate 

explicitly such time delays in the LGM equation. More realistically, the regulatory 
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term is likely to depend not on the population at the time exactly to earlier, but rather 

on some smooth average over past populations (e.g. May, 1973). There is a major 

objection to using the proposed delay-model. This objection comes from the fact that 

even with such a delay the model recovers a lag in the inhibition stage and not during 

the growth stage as the experiments suggest. It is therefore more plausible to expect 

from any model to capture a lag without an explicitly imposed time delay which 

might indeed be present in some cases in addition to a non-autonomous natural 

response. 

Other formulations of growth models were proposed as variations of the LGM 

equation (1-2) by considering different forms of the specific growth rate. In general 

this can be presented in the form 

du = uJ1f(u) 
dt 

(1-6) 

where J1f(u) is the specific growth rate and different forms of the function f(u) 

have been proposed. Edelstein-Keshet (1988) proposes for a sufficiently smooth 

function to consider its Taylor series form f(u) = a, + a2u + a3u2 + a4 u3 + ... . Baranyi 

and Roberts (1994), for example, preferred to use a Richards' family of growth curves 

(Richards, 1959) as presented in eq. (1-5) . 

Baranyi and Roberts (1994) suggested a new model originally proposed by 

Baranyi, Roberts and McClure (1993) to resolve the problem of lack of recovery of a 

Lag Phase and an inflection point in the logarithm of the cell concentration curve by 

the LGM and its different variations. They realized that the only way that a recovery 

of both the Lag Phase and the logarithmic inflection point (Lip) can be accomplished, 

while leading to the LGM stationary point, is via a non-autonomous model. They, 

therefore, suggested including a time dependent adjustment function a(t) in the form 

~; = uJ1a(t)f(u) (1-7) 
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where j(u) takes one of the forms of the Richards' family of growth curves 

(Richards, 1959) discussed above. They present different forms of the adjustment 

function, a(t) which recover different forms of previously proposed models as well as 

the Lag Phase and the logarithmic inflection point (Lip). The major limitation of this 

proposed model is the fact that it is non-autonomous, i.e. it requires for each 

experiment to evaluate an adjustment function, which depends on time explicitly. 

Non-autonomous models are indeed acceptable in natural environments where daily 

or other time variations of temperature, pH as well as other medium parameters occur, 

therefore imposing on the growth parameters a time dependence. However the 

motivation provided by Baranyi and Roberts (1994) for suggesting a non-autonomous 

model was for recovering the microbial growth in a well controlled batch culture 

experiment for a constant environment, and in particular in recovering the "Lag 

Phase". Their argument is that the "Lag Phase" is a result of cell history from 

growing previously in another environment, prior to being inoculated and grown in 

the actual environment. This is indeed the process that typical batch experiments 

follow. However, other explanations for the existence of the "Lag Phase" support the 

view that it is essentially linked to the time delay needed for the cells to transfer 

available nutrition from the medium into the cell before they can use it for growth and 

cell division. 

Traditional and modern theories of growth of populations essentially associate 

the LAG, LIP as well as oscillations to delay effects (as previously presented) and 

more specifically to structured phenomena, such as age structure in populations. 

While age-structured (or other structurally distributed) models are basically correct, 

they cannot capture correctly the LAG Phase effect because the latter occurs at the 

early growth phases while the former models may produce a delay at the final growth 

phases. In addition the age-structured models require as input a LIFE TABLE that 

includes explicitly the birth rate and the death rate at any given time. However, if we 

know the birth rates ub and the death rates ud then by definition we know the growth 

rate U = ub - ud • The growth rate can be simply integrated to yield the total population 

number at all times given some initial popUlation value u
o

' in the form 

u = Uo + f (ub - ud ) d t. The major difficulty is however that one has no way to know 

the growth rate, let alone knowing the birth and death rates. Therefore, structured 
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models are useful when the size of each structured component is required, e.g. the age 

distribution of a population versus time as well as the size of a population at different 

age groups. However, the growth of the total population as a whole is needed as an 

input to the latter models. 

Another way of incorporating cell history effects in such models while keeping 

them autonomous was proposed via an inertial mechanism by Ginzburg (1986) and 

Akc;akaya et al. (1988). 

One is faced with substantial experimental evidence that shows excellent 

qualitative and quantitative match with the solution of the LGM on one hand. On the 

other hand, other experimental results indicate substantial qualitative and quantitative 

discrepancies between the LGM solution and the experimental data. These are, for 

example, the lack of recovery of a Lag Phase and logarithmic inflection point (Lip), 

as well as the inability of the LGM and its modified versions to recover overshooting 

and oscillations. 

1.2.2 The Neoclassical Model 

Earlier versions of the Neoclassical Model were used to investigate the growth of 

populations sharing and competing over a common ecological niche (Vadasz, 2000, 

Vadasz et aI., 2001, 2002a,b, 2003). The computational results were compared to 

experiments and the experimental results were used to improve the model and place 

the theory on a sound basis. Different strains of yeast were used for this purpose in 

isolation (pure culture) as well as in mixtures. The typical colonies grew on 

differential medium (WLN) (Figures 1.3 and 1.4, respectively). Some strains of yeast, 

called "killer" (K), secrete into the growth medium toxins, which are lethal to other 

yeast strains, called "sensitive" (S) (Vadasz et aI. , 2000) . The toxin as well as the 

immunity to it is coded by a viral double stranded RNA (dsRNA), which inhabits the 

killer-yeast cells. Therefore, the killer-yeast is immune against the toxin that it 

produces and releases. The early version of the Neoclassical Model of competition 

was applied to the interaction between a killer and a sensitive strain of yeast growing 

in a mixed culture and in pure water. The sensitive wine yeast Y217 was challenged 
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with the K2 killer yeast T206 at a killer: sensitive (K/S) cell ratio of approximately 

1:100 and 1:1, respectively. The pure cultures were used as the controls of the mixed 

ones in order to differentiate the relative survival of each strain in the mixed cultures, 

while growing in the exact set of conditions. Filtration aimed to wash out spores. The 

major two conclusions from these experiments were that: (i) Coexistence of both 

strains as well as extinction of one of them was recovered experimentally as well as 

computationally; some results seem to depend on initial conditions. (ii) Oscillations in 

the cell count of both, the individual cell concentration as well as in the total viable 

cell count, were recovered experimentally as well as computationally (Figures 1.11 

and 1.12). 

Genetic alteration of the viral double - stranded RNA that inhabits a K2 killer yeast, 

was induced by cycloheximide treatment in order to delete the ability of the killer 

strain to produce its viral killer toxin, and therefore used as a killer control (Vadasz, 

2000). This allowed to compare the competition capabilities between the killer-yeast 

and its cured strain. The success of the curing process was regularly tested on 

methylene blue agar plates of sensitive cells challenged by both killer and killer­

cured, (Figure 1.5). Also, nucleic acids (DNA and RNA) from both killer and killer 

cured strains were isolated by modifying the method of Fried and Fink (1978). 

Agarose gel electrophoresis analyses supported the curing (Figure 1.6). 

These results indicate spectacular potential in integrating biological and 

particularly genome-related methods with computational, modeling, and engineering 

approaches for investigating the mechanisms underlying the growth of micro­

organisms and their interaction with the environment. As an example, one of the 

results obtained by growing individual strains (pure cultures) of yeast cells under 

nutritional stress, such as in pure water, showed that the yeast populations can 

produce growth curves qualitatively similar to those obtained while growing in 

environments enriched by nutrients. These results were somewhat surprising, as it was 

difficult to explain how cells can grow without nutrition. Following the levels of 

metabolites cells secrete into the medium, such as ethanol, and examinations of these 

cells under the Scanning Electron Microscope (SEM) and the Transmission Electron 

Microscope (TEM) (Figures 1.7 and 1.10) support some possible explanations . 
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Materials are released into the medium by the viable cells and from damaged and 

dead cells are potential nutrients (such as ethanol) orland toxins (Figures 1.9 - 1.10). 

Cells growing under sever nutritional limitations show typical phenotypic changes 

(cell elongation, bipolar budding, invasive growth, pseudohyphy formation, 

aggregation and mucoid matrix formation as well as sporulation, Figures 1.7 - 1.8). 
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T206 T206q 

VIN7 Y217 

Figure 1.3: Typical colonies of Saccharomyces cerevisiae strains T206, T206q, VIN? 

and Y217, respectively, growing on the differentiation medium WLN, used as the 

control group (A.S. Vadasz, 2000). 
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The mathematical model that was developed by Vadasz, P., Vadasz, A.S. (2002 

a,b) is expressed in the form 

du [ dt = f.l 1-

dv 
= y -

dt 

~ + (v-f.l) ] 
8 f.l(1 + r,,,u) u 

(a) 

(I-8) 

(b) 

where u is the population number, and v represents the nutrient (or resource) 

consumption/utilization rate. The denominator in the third term of eg . (I-8a) 

represents the net average biomass, hence the third term is a representation of the 

excess nutrient consumption/utilization per unit of biomass in the population. (see 

Vadasz, P., Vadasz, A.S. 2002 a,b for details) . The other symbols represent: k is the 

cell or organism' s nutrient storage capacity, mo is linked to the net average biomass 

(see next paragraph and Figures 1.13 and 1.14), Y is the nutrient 

consumption/utilization acceleration, f.l is the maximum specific growth rate of the 

Logistic Growth Model (Pearl, 1927, Verhulst, 1838), and 8 is the carrying capacity 

of the environment. 

Evaluation of the net average body mass, m( u): The conceptual derivation of 

the net average body mass (or net viable cell's biomass, in case of cells) was 

presented by Vadasz, P., Vadasz, A.S. (2002a,b). It's results show that the total 

population net body mass, M, is related to the population number by the following 

linear relationship 

(1-9) 

where mo and m
J 

are constants. Note that mo has units of [kg] (or [kg/m 3
] for cells) 

in SI units, while mJ has units of [kg/individual] (or [kg/Cell] in case of cells), in SI 

units. The net average body mass (or net viable cell's biomass, in case of cells), m( u) , 

is obtained by dividing the total population net body mass, M , by the population 

number, u , in the form 
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m(u) = M(u) = ma + m1 U = ma + m
1 

= ma (1 + ~Ilu) 
u U U U 

(1-10) 

where r = m 1m and the units of rare [individuaC
1

] (or [(Cell/m
3t] in case of 

m I 0 ' m 

cells), in SI units. The most important result from this relationship is the fact that the 

constant ma is generally not zero. For large populations in number, i.e. if u» mal m1 

the impact of ma on the net average body mass is small, while for small numbers of 

population, i.e . if u« mal m1 ' the contribution of m1 becomes negligible. In addition 

one needs to be aware that m( u) is the net average body mass which means that this is 

the gross average body mass less the amount of mass stored in the body, either as 

potential life, i.e. during pregnancy, or as nutrient storage. 

There is experimental evidence from Vadasz (2000) that the linear approximation 

for the total viable cell biomass in the case of yeast cells does indeed apply. The main 

problem is that in experiments one cannot distinguish between the total gross viable 

cell biomass and the total net biomass, i.e. deducting the biomass stored either as 

nutrient storage or as "potential life" storage from the measured quantity . 

Nevertheless relationships are presented in Figures 1.13 and 1.14 between the 

measured total viable cells' biomass and the viable cells' concentration corresponding 

to the T206 strain of Saccharomyces cerevisiae grown in a 5% grape juice medium as 

well as in a nutrient rich environment, respectively. It is evident from Figures 1.13 

and 1.14 that the linear relationship approximately holds, except for the very end of 

the curve. There, at high concentration levels, the relationship occasionally shows a 

multiplicity result that may be related to the storage effect, which becomes more 

pronounced at high population numbers, as indicated above. The most important 

result, however, from these figures is the fact that both show the existence of m 1= 0 
a ' 

i.e. the curve, whether linear or not, does not cross the u axis at M = 0 (see detail in 
g 

Figure 1.14b presenting the rich medium results, zoomed into the region close to the 

origin). While, the linear relationship may very well represent a first order 

approximation of some more complex relationship, the constant non-zero term m is 
, 0 ' 

genenc. 

The linear relationship presented in eq. (1-9) was used in the derivations of the 

Neoclassical Theory, leading eventually to the derivation of equation (1-8). 
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Figure 1.13: Experimental results of the total viable cell biomass as a function of cell 

concentration for the T206 strain of yeast grown in 5% grape juice medium 

(1 MCell = 106 Cells), (Vadasz, P., Vadasz, A.S. 2002 a,b) . 
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Figure 1.14: Experimental results of the total viable cell biomass as a function of cell 

concentration for the T206 strain of yeast grown in a rich medium. (a) Experimental 

results over the whole domain. (b) Detail around the origin (1 MCell = 106 Cells), 

(Vadasz, P., Vadasz, A.S. 2002 a,b). 
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The explicit definition of v, corresponding to the specific form of m(u) used from eq. 

(1-10) to obtain eq. (1-8), is 

v =!l + (1 + r,,,u) [ ~ +!l (~-1)] (1-11) 

Units and Dimensions: When dealing with population dynamics as a general 

phenomenon it covers a wide range of scales, starting with the size of the individual 

in the population where the size scale ranges from 1 J.l m in case of cells and up to 

more than 1 m in case of animals and humans. The corresponding time scales also 

vary substantially from an order of magnitude of 1 hour in case of cells up to 

60 years and even more in case of animals and humans. Each particular field dealing 

with one kind of population uses the most convenient technical units that fit best the 

typical scales of the population concerned. Hence, it is difficult in a study that deals 

generally with all types of populations to adopt a unified scale that fits all these fields . 

In this study the SI units were adopted to identify the units corresponding to different 

terms in the equations in general, but the technical units particular to a specific field 

are being used whenever experimental data relevant to such a specific field are 

presented. It sounds indeed ridiculous to speak about cells in kg and m (meters), 

however for the purpose of unifying the units as relevant to the equations that were 

derived the SI units were found appropriate. Nevertheless, when dealing with specific 

populations their corresponding technical units were selected as the most appropriate 

ones. With this in mind, the units of the population number u are [individual] , or its 

corresponding concentration if the system deals with concentration of popUlations, the 

units of m are [kg/individual] and kin [N/(m·individual)]. 

Monotonic Growth with LGM as a Particular Case: A particular special case 

is obtained from these equations when y = 0 and k = 0, or when both y as well as k 

are very small compared to the other terms in eq. (1-8). Subject to these conditions, 

equation (l-8b) yields v = v = constant. The value of this integration constant v o 0 
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corresponds to the value of v at t = 0 and can be established explicitly by using the 

definition of v from equation (1-11), in the form 

(1-12) 

where ua is the initial population number at t = 0, and Uo = (d u/ d t) / =0 is the initial 

growth rate at t=O. Note that va has units of specific growth rate, i.e. [S- I] in S1 

units, identical to the units of f.l. Then, with v = va' the system of two first order 

differential equations (1-8a) and (1-8b) reduces to one first order differential equation 

obtained by substituting eq. (1-12) into (1-8a), to yield 

du [ u (Vo-f.l)] --f.l 1- -+ u 
d t - 8 f.l (1 + "" u ) 

(1-13) 

Equation (1-13) represents the equation governing all types of monotonic growth. 

It is obvious that when Uo = f.l equation (1-13) collapses to the special case of the 

LGM, eq. (1-2). However, for this to happen, a particular relationship on the initial 

conditions needs to be imposed, i.e. 

(1-14) 

as can be observed from eq. (1-12). 

A new equation for monotonic growth was obtained, eq. (1-13), as a special, 

mathematically degenerated, case of the more general equation governing population 

growth. 

Analysis and Solution of the Equation Governing Monotonic Growth: 

Monotonic growth is regularly obtained in laboratory experiments, whether in batch 

or continuous environments and is also observed in nature. Overshooting and 

oscillations, or growth followed eventually by decay, are also phenomena that were 

captured experimentally in the lab or in nature. However, it seems that there are 

sufficient circumstances when at least the initial growth phases are monotonic, 

followed sometimes at a slower (i.e. longer) time scale by non-monotonic behaviour 
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such as overshooting and decay. For monotonic growth, one first order equation was 

derived, i.e. eq. (1-13), which was obtained from the second order equation (1-8) as a 

mathematically degenerated case. As a result, the only memory that this equation has 

that it originated from a second order system of differential equations is the term v 0 

(defined in eq. (1-12)), which depends on two initial conditions, i.e. on the initial 

population number Uo as well as on the initial growth rate ito. The first stage in 

understanding the monotonic growth behaviour according to eq. (1-13) is to plot the 

solution on a phase diagram, in terms of the specific growth rate (itl u) versus the 

population number u by using eq. (1-13). There are a variety of regimes, linked to the 

behaviour of the solution, that depend on different ranges of the parameters, r,1I ' v 0 ' J.1 

and O. The analysis can nevertheless be simplified by presenting equation (1-13) in a 

dimensionless form. Using 8 as a characteristic value for the population number, J.1 -1 

as a characteristic time, and J.1 as a characteristic value for the specific growth rate we 

can transform the dimensional variables and parameters into their following 

corresponding dimensionless form 

u=!!:.. o r=J.1t v = V o 
o J.1 R=r,1I 0 (1-15) 

where U is the dimensionless population number, r is the dimensionless time, while 

Vo and R are the dimensionless counterparts of v 0 and r,1I' respectively. Transforming 

equation (1-13) into a dimensionless form by using the dimensionless variables 

defined in eq. (1-15) yields 

dU [ (Vo-l) ] -- l-U+ U 
dr - (I+RU) (1-16) 

while transforming the definition of va In eq .(1-12) into its corresponding 

dimensionless form produces 

(1-17) 

where the initial dimensionless growth rate is defined as U 0 = (d U I d r), =0 . Equation 

(1-16), due to its dimensionless form reduced the number of parameters from 4 to 2. 

By using eq. (1-16) the analysis simplifies substantially. A thorough and complete 

analysis of equation (41) covering all possible regimes is being presented elsewhere 
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(see Vadasz, P. and Vadasz, A., 2002a,b). The main relevant aspects of this analysis 

are presented here briefly. In general, one can separate the parameter domain into two 

distinct regimes, namely R < 1 and R> 1. This can be observed by presenting eg. 0-

16) in the form 

v [ - R V 2 + (R - 1) V + Vo ] 

= 
V (I+RV) 

(1-18) 

where (; = (d V / d 1:). The case when R = 1 is a degenerated case of eg. (1-18), which 

leads to the non-trivial stationary point V 2S = ~VjR . While the possibility of 

negative R values is not excluded, only positive values of R are considered here. 

However, the value of Vo may certainly be negative as well. Nevertheless, for this 

particular degenerated case, when R = 1, only positive Vo values lead to a non-trivial 

stationary solution. If Vo < 0 in this case, the solution tends to extinction, i.e. to 

VI S = 0, which becomes the only stationary point and is globally stable. 

The solution for R < 1 and R> 1 produces a rich variety of curves on the phase 

diagram. The presentation here is restricted to the regime corresponding to R > 1. The 

growth regime corresponding to R> 1 is presented on phase diagrams in Figure 1.15 

in terms of the specific growth rate ((; / V) versus the population number V. The 

positive V axis consists of a continuous distribution of stationary points, which are 

globally stable. Any point on the phase plane represents a possible initial condition. 

Once such a point is set (i.e. an initial condition for both V 0 as well as (;0)' the 

solution follows the corresponding curve that passes through that point towards a 

stationary point in the direction indicated by the arrows. 

A maxima on any curve in the ((; / V) versus V phase diagram, indicates the 

existence of a logarithmic inflection point (Lip) and possibly a Lag. For a Lip to exist, 

the following condition has to apply [d2(lnV)/d1:2
] . =0 at the logarithmic 

lip 

inflection point. This, however, implies 
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that holds only if [d(6/v)/dVL
p 

=0, i.e. when (6/v) has a maximum on the 

( 6/ V) versus V phase diagram, unless 6 = 0 the latter identifying a stationary point 

rather than a Lip. 

The straight line corresponding to the LGM solution, which occurs when Vo = 1 

and divides the phase plane into two regions, can be observed in Figure 1.15. 

Actually, the location of this line corresponding to the LGM is invariant to any 

changes in the value of R . Its location on the phase plane is therefore constant. This is 

an important property of the LGM. From Figure 1.15 it is evident that the region 

corresponding to Va > 1 the curves are concave. However, the region corresponding to 

V < 1 can be further divided into four important zones, as follows: 
a 

(i) Zone I: 
(R-l) V 1 

< a < 
R 

(ii) Zone II: 
(R-l) 

O<V <..L.-~ 
a R 

(iii) Zone III: 
(R 1)2 
l..----'-_ < V < 0 

a 4R 

(iv) Zone IV: V < _ ..L( R_-_l!-.) 
2 

a 4R 

In Zone I the curves are convex but there is no possibility of a logarithmic inflection 

point, as the curves have no maxima in the non-negative V domain. In Zone II a 

logarithmic inflection point exists but no Lag is possible. In Zone III both a Lip as 

well as a Lag become possible. In Zone IV (not shown in the figure) the solution leads 

always to extinction, i.e. the trivial stationary point VI s = 0 becomes the only globally 

stable solution. The reason for the possibility of a Lag in Zone III is the existence of 

additional positive but unstable stationary points in this Zone to the left of point A in 

Figure 1.15. When the initial conditions are sufficiently close to one of these unstable 

stationary points which can be described mathematically as "ghosts", the solution 

spends a relatively long time to escape from its neighbourhood. This implies that if 
. . 

0< Vo« 1, i.e. Vo is positive but sufficiently small, and Ua < UA , then a Lag exists. 

The value of V A is given by VA = (R -1) /2R. It is this type of "ghost" -like behaviour 
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(see Strogatz (1994) for a discussion on "ghosts") that causes a Lag to exist. The 

location of the logarithmic inflection point was evaluated by using the condition 

derived in eq. (1-19) with eq. (1-18) and is presented in the form 

(1-20) 

The locus of all logarithmic inflection points in Zones II and III was found to lie on 

the straight line 

(UJ =-2V . +(R-1) 
V IIp R 

lip 

(1-21) 

as indicated on Figure 1.15. 

Equation (1-16) has a closed form solution that can be obtained by direct 

integration in terms of its corresponding stationary points. The first stationary point is 

the trivial one V's = O. The non-trivial stationary points are obtained by solving 

equation (1-16) for steady state, i.e. (U Iv) = 0, leading to the following algebraic 

equation for these stationary points, V2S and V 3S . 

(1-22) 

The roots of equation (1-22) are 

_ 1 [(1 -R) fA] 
V 2,3S - 2 R ± -yf...o (1-23) 

where V 2S :2: V 3S and the discriminant ,10 was found to be 

(1-24) 

While the negative stationary points are of no interest to population growth (there is 

no meaning to negative population number) their importance here is in the sense that 

they affect mathematically the transient solution. The closed form solution to equation 

(1-16) can be finally presented by defining the following parameter 

30 



[1 + R ( 2 Va - 1)] 
a-

- R~ 
(1-25) 

Then, the solution can be expressed in terms of V 2S I V 3S and a in the form 

V V -V3S 

[ 
I I(a - 1)/2 ] 

(1-26) 

where C
I 

is an integration constant that is related to the initial conditions by the 

following relationship 

Va a 3S 

[ 
Iv - V l(a-I)/2] 

(1-27) 

Equation (1-26) represents the closed form solution to eq. (1-16) for monotonic 

growth. However, it is presented in implicit form and it is not possible to derive an 

explicit equation for V as a function of r. Nevertheless, this is in no way a problem 

because one can use the property of the solution being monotonic and evaluate r as a 

function of V by using equation (1-26) for values of Va :5 V :5 V 2S when V 2S is the 

stable positive stationary point, or for values of 0:5 V:5 Va when VI S = 0 is the stable 

stationary point. Note that when V 3S is non-negative (the points on the V axis to the 

left of VA in Figure 1.15) it is always globally unstable as can be observed from 

Figure 1.15. The monotonic behaviour of the solution guaranties that for each value of 

V there is one and only one value of r. By using this procedure one can vary the 

values of V within the range indicated above and obtain the corresponding values of 

r, producing therefore the numerical values needed for plotting the resulting solution 

of V as a function of r . 

The analytical closed form solution linked with the computational procedure 

described above was used to produce results that demonstrate the recovery of 

solutions that exhibit a logarithmic inflection point (Lip) and a Lag phase. The impact 

of the initial conditions Va' U a and of the parameter R on the Lag duration A, and on 

the Lip location in time, r lip ' was also investigated from these solutions. There is no 

problem to evaluate the value of rlip by substituting eq. (1-20) into eq. (1-26), 

however it is more difficult to evaluate the Lag duration A because of the subjective 

definition of the Lag. While different Lag definitions were proposed in the 
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professional literature, e.g. Pirt (1975) , Baranyi and Roberts (1994), the definition 

used here is one that is consistent with the findings that the Lag is essentially related 

to the existence of unstable stationary points. The Lag duration A is therefore defined 

as the amount of time that elapses until the solution reaches a value, which is by a 

certain percentage above the corresponding unstable stationary point V 3S · This 

implies that V /I = bV
3S

' where b> 1 is a constant that specifies by how far V /I is from 

V
3S

• We define the dimensionless Lag duration, A, as the time needed for the 

solution to reach the value V /I for any predetermined value of b. This definition is 

very similar to the way one defines the time needed for a monotonic solution to reach 

steady state. 

In the computation results presented in Figure 1.16 a value of 2.5% above V 3S was 

used as the Lag threshold, i.e. b = 1.025 . The corresponding dimensional definition of 

Lag duration, A, is naturally converted by using eq. (1-15) for time scaling, i.e . 

A = AI f.1. Therefore, as a natural consequence of the adopted scaling, this dimensional 

definition of Lag duration is inversely proportional to the maximum specific growth 

rate f.1, as discussed by Baranyi and Roberts (1994). The results of the solution in the 

time domain, obtained by using eq. (1-26) subject to initial conditions of Vo = 0.1 and 

different small values of Vo ranging from 10-7 and up to 5.10-3 are presented in 

Figure 1.16 corresponding to a value of R = 2. The figure shows the effect of the 

initial growth rate on the Lip as well as the Lag. The accurate evaluated location of 

the Lag and Lip is presented in the figure by the indicated points. As indeed expected, 

the smaller the initial growth rate V 0 the longer the Lag duration A and the larger the 

value of 'flip. For the curves corresponding to (;0 = 10-3 and (;0 = 5 .10-3 there is no 

Lag, although the Lip exists. 

The Neoclassical Theory (Vadasz, P. , Vadasz, A.S. 2002 a,b) was shown to 

capture all experimentally observed features, from Pearl's Logistic Growth Model 

(Pearl, 1927), Malthusian growth (Malthus, 1798), the existence of a LIP and possibly 

a LA G (under certain conditions), the Alee effect (Alee, 1931), concave and convex 

curves on the phase diagram, Gizburg's law of biological inertia (Ginzburg, 1986, 

Ak~akaya et al., 1988), and even the Gompertz model (Gompertz, 1825) which is 

commonly used in modeling tumor growth. In addition the theory captures effects of 
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Figure 1.15: Phase diagram for the solution of monotonic growth corresponding to 

R> 1, in terms of the specific growth rate U Iv versus the population number V, for 

R = 5 (Vadasz, P., Vadasz, A.S. 2002 a,b) . 
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InC U The effect of Ua on Lip and Lag 
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Figure 1.16: The effect of the initial growth rate on Lip and Lag. Analytical results in 

the time domain based on the Neoclassical Theory (Vadasz, P., Vadasz, A.S. 2002 

a,b) for R = 2, subject to initial conditions of V a = 0.1 and different small values of 

34 



oscillations observed experimentally among others by Boiteux and Hess (1978), 

Davey et al. (1996) and Haken (1979), as well as growth followed by decay that was 

experimentally reported by Pearl (1927) and is a well known textbook case in 

Microbiology. Nevertheless the latter is not covered in the best population dynamics 

textbooks and reviews (see Edelstein-Keshet, 1988, Krebs, 1978, May, 1973, 1978, 

1981, 1995 and Pielou, 1969). 

Non-Monotonic Growth: Pearl (1927) compared his proposed LGM to 

experimental results of growth of yeast cells based on Carlson (1913), and the growth 

of the fly Drosophila melanogaster that he performed in his lab. In the second case, 

for the fly Drosophila, he repeated his experiment in three different types of 

environmental conditions. The first was applied to an isolated environment of finite 

size (bottles) with an initial finite amount of non-renewable nutrition. The second was 

similar to the first but additional nutrition was provided when the original amount was 

used up, a condition that Pearl identifies as a sub-optimal nutritional level. The third 

type consisted of a very carefully designed and controlled environment in order to 

create optimal nutritional levels. In the first type of experiment an initial growth was 

observed followed by a decline in population levels as the food supply diminished, 

leading to extinction. Nevertheless, the LGM equation (1-2) and solution (1-4) can 

not recover a solution that initially grows and eventually decays without a 

discontinuity in the growth rate. The only way the LGM can describe growth 

followed by decay is by switching the value of the parameter fJ, from positive to 

negative at some point in time. The first problem with such an approach is that it is 

difficult to even contemplate how to establish this value of td where the growth stops 

and the decay starts. The solution of the LGM corresponding to such a sudden change 

in the value of fJ, is presented in Figure 1.17, where a "cusp" is evident from the 

graph. Even when the solution of the growth part (part "G" in Figure 1.17) reaches 

almost the stationary point and the graph then may look smoother this "cusp" still 

exists. The existence of this cusp is because just prior to the decay the growth rate is 

positive, it > 0, even if it is very small, while immediately after the decay started the 

growth rate is negative it < 0. The growth rate does not vanish identically anywhere, 
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Figure 1.17: The solution to Growth followed by Decay according to the Logistic 

Growth Model (LGM). Initial conditions: Uo = 0.050. The growth switches to decay 

at (u/0)=0.5. 
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not even at the transition point, as would have been expected on a smooth transition 

from growth to decay. Note that it:t 0 at any finite time value according to the LGM. 

Furthermore, any curve representing monotonic growth will produce similar results 

and therefore only a non-monotonic solution is able to produce a smooth transition 

from growth to decay. Growth followed by decay according to the computational 

results using the Neoclassical Model represented by eq. (1-8) are compared with 

corresponding experimental results presented by Pearl (1927) in Figure 1.18 showing 

an excellent match. 

In the second type of experiment Pearl succeeded to reproduce the LGM curve. It 

is however the third type which is of interest as Pearl (1927) reports that in this 

carefully controlled experiment " ... the population first grows up to a maximum or 

asymptotic level, just as in the second type of experiment ... . But in this case the 

population can be kept at this asymptotic level as long as the experimenter desires. A 

striking result, however, is that during the growth period and thereafter there are 

violent oscillations of the populations in size, about its mean position given by the 

fitted curve. In fact these waves in the size of the population, produced by oscillations 

in the birth and death rates, are perhaps the most characteristic feature of population 

experiments of this particular type. It has not been so far possible to devise any 

method of holding these populations in a steady state at the level of the asymptote, 

when there is at all times an abundance offreshfood ... ". 

More recent experimental results reconfirm the existence of overshooting and 

oscillations either in spatially homogeneous yeast growth media (Davey et al., 1996) 

as well as in spatio-temporal experiments of Boiteaux and Hess (1978) , Haken 

(1979). The latter are also features that were recovered qualitatively as well as 

quantitatively by the Neoclassical Model (see Vadasz, P., Vadasz, A.S. 2002 a,b). 
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Growth followed by Decay 

Numerical: Neoclassical Theory 
• Experimental: Pearl (1927) 
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Figure 1.18: Numerical results of the Neoclassical Model (Vadasz, P., Vadasz, A.S. 

2002 a,b) applied to the case of growth followed by decay, compared with 

experimental data from Pearl (1927) . The parameter values for the numerical solution 

are uo =2, uo =1.5, v=-O.04 , ,u=-1.2 , rm =O.035, (k/m
o
)=8.1Q-s, b=l2 and 

y = -1.6 .103 in units consistent with Pearl (1927). 
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1.2.3 Growth Dynamics in Heterogeneously Distributed Populations 

At least two interacting chemicals, or a microorganism interacting with one chemical 

are needed for spatial pattern formation to occur. Diffusion in a chemical system can 

actually have a destabilizing influence. The latter is contrary to intuition since 

diffusion usually has a smoothing effect on spatial variations of a concentration field 

and would therefore be considered stabilizing. The instability caused by diffusion can 

promote growth of structure at a particular wavelength. This provides a mechanism 

for producing patterns. Pattern formation in a chemical system will not occur unless 

the diffusion coefficients differ substantially. The difficulty of satisfying this 

condition for chemicals in solution partially explains why nearly 40 years have lapsed 

after Turing's paper (Turing, 1952) before the experimental confirmation of his 

theoretical predictions was undertaken successfully, although initial findings were 

available as early as 1978 (see Fig. 1.19, Haken, 1979, after Boiteux & Hess, 1978). 

Figure 1.19: " Snapshot after mixing an oscillating yeast extract to homogeneity. 

Reduced purine nucleotides yield dark structures. It is the first experimental 

demonstration that a biochemical system in homogeneous phase might break spatial 

homogeneity and evolve to spatial-temporal order" (reproduced from Haken, 1979, 

after Boiteux & Hess, 1978). 
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Most of the studies of Turing instabilities (Turing, 1952) deal with linear stability 

analysis identifying the conditions for occurrence of such instabilities and direct 

numerical solution to the governing equations. These studies deal with the theory of 

pattern formation via diffusion-driven instabilities as applied in biology (Meinhardt, 

1982, Murray, 1989), chemistry (Epstein and Showalter 1996), and physics (Cross 

and Hohenberg, 1993). A mechanism for the morphogenetic development of pattern 

and form from a homogeneous mass of cells is provided in developmental biology 

(e.g. Murray, 1989). In ecology it is also used to explain the spatial structure in 

populations and communities (Segel and Jackson, 1975, Allen, 1975, Levin and Segel 

1976, Mimura and Murray, 1978, Kot, 1989, Neubert Kot and Lewis, 1995, Rohani 

and Ruxton, 1999, Wilson et ai. , 1999). Turing instabilities have been recovered 

experimentally in chemical systems (Castets et ai., 1990), claimed in insect host­

parasitoid systems (Maron and Harrison, 1997) and semiarid vegetation (Klausmeir, 

1999) as well as in yeast populations by Boiteaux and Hess (1978), Haken (1979) as 

presented in Figure 1.19. Among the most recent studies the work of Neubert, 

Caswell and Murray (2002) suggests that "reactivity" is necessary for Turing 

instabilities (Turing, 1952). "Reactivity" is defined by the authors mathematically as 

the maximum amplification rate, over all initial perturbations, immediately following 

the perturbation. It is related to the transient initial growth of a perturbation prior to its 

eventual decay. 

The existing analytical work on Turing instabilities does not go as far as obtaining 

a complete analytical solution to the problem and therefore is limited to producing 

stability conditions only. Complete analytical results even when their accuracy is 

limited to a narrow parameter range can provide a tool for validation of numerical 

solutions and can identify the conditions for occurrence or prevention of Turing 

instability, a tool much needed in planning experiments. 

The general problem formulation for Turing instability is represented by the 

following equations 
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au. 2 ( ) - = D.V.u. + J.. u., v. at. (a) 

0-28) 

av. 2 ( ) - = a.V.v. + 12 u.,v. at. (b) 

where u.(x.,y.,z.,t.) is the population number, and v.(x.,y. ,z. ,t.) represents the 

nutrient (or resource) consumption/utilization rate; both are functions of time as well 

as spatial coordinates x., y. and z •. The asterisk subscript, *, stands to indicate 

dimensional quantities . Eventually the equations will be rendered dimensionless and 

hence dropping the latter subscript. The functions J.. (u., v.) and 12 (u., v.) are 

typically nonlinear, however stability analyses are by definition linear and therefore in 

linear stability analyses these functions take the specific form 

0-29) 

12 ( u. , v. ) = a21 u. + a22 v • 

Nevertheless, the distinction between different models as far as the linear stability 

analysis is concerned is the fact that the coefficients all'~ 2 fa2 1 and a22 in eq. (1-29) 

are functions of the constant stationary (or equilibrium) solutions that are obtained 

from the solution of the typically nonlinear algebraic equations J.. (u., v.) = 0 and 

12 ( U. , v. ) = O. 

Linear Stability Analysis: The objective of the linear stability analysis is to 

identify the conditions of stability of stationary solutions u's and v.s that are obtained 

by setting the nonlinear functions J.. (u., v.) and 12 (u., v.) equal to zero, i.e. 

(1-30) 

These stationary solutions may be stable to all small perturbations, unstable to 

Spatially Homogeneous Perturbations (SHoP) or unstable to Spatially Heterogeneous 

Perturbations (SHeP). Assuming small perturbations (u." v.
l
) around these stationary 

solutions in the form 

(1-31) 
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where £« 1 stands only to indicate that the perturbations are very small. Substituting 

(1-31) into equation (1 -28) and linearizing the resulting equations yields 

(a) 

(1-32) 

(b) 

where ~ I' ~2 ' a21 , and a22 are the coefficients resulting from the linearization of the 

functions t; ( U. I v.) and 12 ( U. I V. ), defined in the form 

at; ( U. I V. ) 

all = a ' u. 

at; ( U. I V 0 ) 

~2 = avo 
(1-33) 

The solution to equations (1-32) for a two dimensional case (in the X " y. directions in 

space) has the form 

(1-34) 

Substituting these solutions (1-34) into equations (1-32) leads to the following 

equations 

(a) 

(1-35) 

(b) 

or 

I 
(Ao + ld Do - ~ I) uOI - ~ 2 v' l = 0 

- a21uol + (Ao + K:ao - a22)vOI = 0 

(a) 

(1-36) 

(b) 

where Ie; = K; + 1(:. The eigenvalue problem represented by the system of equations 

(1-36) can be expressed in the form 
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(1-37) 

where the perturbation vector w./ and the matrix ~ are defined in the form 

(1-38) 

and where 

a,2J (D. ; OJ and Ddc = 
a

22 
0; a. 

(1-39) 

It produces the characteristic quadratic equation for the eigenvalues A. , in the form 

(1-40) 

or 

(1-41) 

where 

(1-42) 

and 

(1-43) 

The solution to the characteristic equation (1-41) is 

A. =IflA< [l± 1_4~A< l 
1,2 2 1fl 2 

A< 
(1-44) 

For the perturbations to grow resulting in destabilizing the stationary solution at least 

one of the eigenvalues must have a positive real part. From eq. (18) the following 

condition can be derived identifying when the real parts of both eigenvalues are 

negative (meaning that the perturbations decay and the stationary solution is stable) 

(1-45) 

(1-46) 

Inequality (1-46) enforces the condition that the square-root in eq. (1-44) is real and 

less than 1 (or imaginary) causing the square brackets to be positive, while inequality 
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(1-45) causes the eignevalues to be negative. To have spatial heterogeneity while 

diffusion is present one assumes that a stable stationary state is present in the absence 

of diffusion. By setting D. = 0 and a. = 0 in inequalities (1-45) and (1-46) yields the 

linear stability conditions to small Spatially Homogeneous Perturbations (SHoP) in 

the form 

1J! A = trace( A) = ~ I + a22 < 0 (1-47) 

(1-48) 

Since all + a 22 < 0 and the diffusion coefficients are both positive by definition in the 

spatially heterogeneous case, i.e. D. > 0 and a. > 0, inequality (1-45) is automatically 

satisfied. Then, Turing instability occurs when for some wavenumber K . 

(1-49) 

This condition is being investigated further in Chapters 4 and 6, and especially for the 

particular system considered in this study. 
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1.3 Summary of Unanswered Questions and Problems 

Since the spatially homogeneous population growth problem seems to be better 

represented by the Neoclassical Model and because the linear stability of the 

corresponding spatially heterogeneous problem is substantially affected by the 

stationary points it becomes appealing in using the Neoclassical Model in the context 

of the heterogeneous system. The latter allows the investigation of Turing instabilities 

in terms of the stationary points corresponding to the Neoclassical Model. 

Furthermore, the linear stability analysis is only a partial tool in understanding the 

growth dynamics in both the spatially homogeneous as well as the spatially 

heterogeneous problems. Therefore, using an expanded analytical tool in the form of 

the weak nonlinear method of solution is anticipated to produce analytical solutions to 

these nonlinear problems and thus providing a higher level of insight into the 

mechanisms controlling the growth dynamics. The work presented here will focus on 

these four major developments, namely 

(i) using the Neoclassical Model within the spatially heterogeneous problem, 

(ii) undertaking a linear stability analysis of the stationary points corresponding to the 

Neoclassical Model as applied to the heterogeneous problem, 

(iii) providing an analytical weak nonlinear solution to the spatially homogeneous 

problem and comparing the results to a numerical solution, and 

(iv) deriving a weak nonlinear solution to the spatially heterogeneous problem and 

comparing the results to a numerical solution. 
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CHAPTER 2 

PROBLEM FORMULATION 

2.1 Governing Equations and Boundary Conditions 

The objective in the spatially heterogeneous problem is to find the population number 

and its spatial distribution at all future times, given an initial spatial distribution of the 

population, its initial growth rate distribution, boundary conditions, and 

environmental factors. Since the aim in the present study is to take the theoretical 

understanding of the spatially heterogeneous problem beyond just linear stability, the 

precise form of the non-linear functions ~(U,V) and f 2(U ,V) in equation (1-28) are 

essential beyond the establishment of the stationary solutions. The proposed system 

here is an extension of the corresponding homogeneous case represented by eq. (1-8) 

and takes the form 

d u. 2 [ U. ( v. - ,u. ) 
'::It. = D. V. u. + ,u. 1 - 5:. + ( ) 
o u ,u. 1 + r;/I ' u, 

(a) 

(2-1) 

dv. 2 k. 
--;- = a .V .v. + y. - - u. + CPo'v. 
ot. m o' 

(b) 

where u. (t" X" Y', z.) is the viable population number (cell concentration), D. is the 

diffusivity of this population in the growth medium, v.(t.IX.,y.,z. ) is the excess 

consumption/utilization rate of an abiotic resource (e.g. nutrient), a. is the nutrient 

diffusivity in the growth medium, k. is the cell or organism's nutrient storage 

capacity, m.o is linked to the net average biomass (see eqs. (1-9) and (1-10) and 

Figures 1.13 and 1.14), y. is the nutrient consumption/utilization acceleration, 11. is 

the maximum specific growth rate of the Logistic Growth Model (Pearl, 1927; 

Verhulst, 1838), and o. is the carrying capacity of the environment. Equation (2-1) is 

presented in a dimensional form and the asterisks linked to its variables and 
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parameters stand to indicate dimensional quantities. The symbol 

V; == a2/ax: + a2/ay: + a2/a z: stands for the dimensional Laplacian operator. 

The corresponding units for the variables and parameters presented in eq. (2-1) are as 

follows 

Cell Cell Cell N . m kg · m 
[] [] [( J

-I] [ 3] [ 3 ] 
u. ---7 m3 I 8. ---7 m 3 I r; /l' ---7 m3 I k. ---7 m. Cell = S2 . Cell I 

(2-2) 

While the problem as formulated in eg. (2-1) deals with a three-dimensional 

medium, the reduction to a two dimensional one (2-D) is desirable, possible and 

realistic, if considering for example growth of populations over particular surfaces, or 

growth of cells in a very shallow layer of medium. Then the Laplacian operator 

considered will become two-dimensional and be defined in the form 

V; == a2 lax: + a2 lay:. A two dimensional rectangular domain that is considered here 

is presented in Figure 2.1. 

· .. . . .. . . ....... ..... . .... .. . · .. ... . . .. ....... ....... . .. . · .... . .. .. ..... .... . ... .. ... . · ... .. ............ .. ....... . . . 
· . ... . . .... ..... ...... . . · .... . ........... . . ... . ... . . . · . . .. .. . . .. ....... . .... . · ...... . ...... .............. . · ..... .. .. ... . ...... ... . · .............. . .. . · . .................. ... . ..... . 

· . ... ... .......... . · . . .... .. .. .......... . . . .... . . . . . . . . . . . . . . 
~------------------~~----~~~--~x* 

Figure 2.1: Dimensional representation of the problem formulation for growth 

dynamics in spatially heterogeneous populations. 
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The boundary conditions considered in this study are of total isolation of the 

domain from its surroundings. Since the population and nutrient flux assumes the 

form of Fick's law of diffusion, i.e. i '
lI 

== -D.'l.u. and i .v == -a.V.v., the isolation 

boundary conditions take the form 

( au. J = ( au. J = 0 
ax. x.=O,L. ay. y.=O, H. 

(a) 

(2-3) 

( av. J = ( av. J = 0 
ax. x.= O,L. ay. y. =O, H. 

(b) 

Equations (2-1) and the boundary conditions (2-3) consist of the mathematical 

representation of the problem considered in this study. 
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2.2 Transforming the Equations into a Dimensionless Form 

The objective of this section is to transform eq. (2-1) into a dimensionless form. The 

reason for the latter is the advantage obtained from such a transformation, which is 

threefold. First, it reduces the number of constant parameters and simplifies the 

following analysis . Second, it reveals the dimensionless groups that control the 

physical and biological aspects of the problem. Third, it may, subject to certain 

conditions, normalize at least some of the variables of the problem. 

By using the dimensions of the parameters and variables listed in eq. (2-2) one 

may select the following way to transform the dependent and independent variables in 

eq. (2-1) into their dimensionless form 

u. v. 
u = o. ' v = J.1. ' t = J.1. t. , 

(2-4) 

_ 0 - CfJ o' _ y. ( u. ) 
R-~Il'" CfJo --' Y---2-

J.1. J.1. 

where symbols without an asterisk stand to indicate dimensionless variables and 

parameters. By using eq. (2-4) one can replace the variables and parameters in eq. (2-

1) in the form 

t u. = o.u, v. = J.1.V, t. =-, 
J.1. 

x. = H.x, y. = H.y, z. = H .z, L = H.L (2-5) 

R 
r =-
m * 8,.. ' 

Substituting eq. (2-4) into eq. (2-1) yields 
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au D.8. 2 [ u8. {l. (v - 1) 
{l.8. - = --2 '\1 u + {l. 1 - ~ + ( 5:) 

at H. u. {l. I+r,II'u ,u 
]80 U (a) 

(2-6) 

2 av a.{l. 2 2 k.8. 2 
{l. - = - 2- '\1 V + {l. y - - u + {l. qJ 0 v 

at H. m o' 

(b) 

Dividing now eq. (2-6a) by ({l.8. ) and eq. (2-6b) by {l?:, substituting R= r,1I .8., and 

canceling alike terms produces the following equation 

-=--'\1u+ 1- u+ u a u D. 2 [ ( v-I) J 
at {l.H: (I+RU) 

(a) 

(2-7) 

av a. 2 k.8. 
-=--'\1 v+y---u+ m v 
::I H 2 2 't' o 
U t {l. • {l. m o' 

(b) 

The only dimensional parameters (symbols with asterisks) appear grouped together as 

coefficients to different terms . It can be verified by using their units from eq. (2-2) 

that each combined group is dimensionless as well. One can therefore define the 

following dimensionless numbers to represent these dimensionless groups in the form 

Gn = {l.H: 
D. I 

Rn = {l.H: Sn = k.8. 
I 2 

a. {l. m o' 
(2-8) 

where Gn represents a Growth Number, Rn is a Resource Number, and Sn is a 

Storage Number. Substituting these dimensionless groups into eq. (2-7) leads to the 

dimensionless form of these equations, which is fully equivalent to eq. (2-1), in the 

form 

au =_1 '\1 2u+[ 1 _ u + (v-I) Ju 
at Gn (I+RU) 

(a) 

(2-9) 

dV 1 2 
-;- = - '\1 v + Y - Sn u + qJ v 
ut Rn 0 

(b) 

where R = r,1I ' 8. is a Biomass Number. 

The rectangular geometry of the dimensionless domain in 2-D is presented in 

Figure 2.2. 
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1 
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· .. .. ... . . ... . . . . . . . . . . . . . . . . . . 
~'_'_' _' _' _'_' _' _' '_'_'_' ____ '_'_'_'_'_'_'_'_'_' -' -' '~--+X 

L ~I 

Figure 2.2: Dimensionless representation of the problem formulation for growth 

dynamics in spatially heterogeneous populations, 

The dimensionless boundary conditions take the form 

(au) =(au) = 0 
ax x= O,L ay y=O,1 

(a) 

(2-10) 

( av) = ( av) = 0 
ax x=O, L ay y=O,1 

(b) 

Now one can test the accomplishment of the first objective in transforming the 

equations into a dimensionless form by comparing the number of parameters 

controlling the dimensional and dimensionless problems, respectively, If one assumes 

that y. is constant, the dimensional problem is controlled by 9 parameters in eq, (2-1), 

namely D.,j.l.,b.,r;II.,a. ,Y.,k. ,mo. ,({Jo" and 2 geometrical parameters in the boundary 

conditions eq, (2-3), namely H . and L., a total number of 11 parameters, In contrast, 

the dimensionless problem is controlled by 6 parameters in eq, (2-9), namely 

Gn,R,Rn,y,Sn,({Jo' and one parameter in the boundary conditions eq, (2-10), namely 

L, a total number of 7 parameters, This transformation resulted in a significant 

reduction of the total number of parameters from 11 to 7, In this study y is assumed 
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to be a function of the population number u , and in the absence of accurate data a 

linear relationship is assumed in the form 

(2-11 ) 

Substituting eq. (2-11) into eq. (2-9) one obtains 

~Ut = G1nv2u+[ 1 - u + (v-I) Ju 
v (I+Ru) 

(a) 

(2-12) 

(b) 

and using the notation 

(2-13) 

leads to the final dimensionless form of the equations governing the spatio-temporal 

dynamics of heterogeneously distributed populations in the form 

~Ut = G1nv2u+[ 1 - u + (v-I) Ju 
v (I+Ru) 

(a) 

(2-14) 

av 1 2 -=-v v+y -f3 u+ rn v at Rn 0 0 't' o 
(b) 

Equation (2-14) and the boundary conditions (2-10) subject to a selected form of 

initial conditions, e .g. (u) = u. (x,y), (v) = v. (x,y) constitute the final 
1=0 III 1=0 III 

formulation of the problem considered in this study. 
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CHAPTER 3 

STATIONARY SOLUTIONS, 

MULTIPLICITY AND PARAMETER 

CONTROL 

3.1 Stationary Solutions 

3.1.1 Derivation of Stationary Solutions 

To obtain the stationary (i.e. time independent) solutions one substitutes in eq. (2-14) 

the condition that the stationary solution is time independent, i.e. (au/at) = 0 and 

(av/at) = 0 to obtain for a 2-D domain 

a2
u a2

u _ [ (V-I) ] -a 2 + -2 - - Gn 1 - u + ( ) u 
x ~ I+Ru 

(a) 

(3-1) 

(b) 

One possible set of solutions to eq. (3-1) is 

u = Us = constant & V = v s = constant (3-2) 

The set of solutions consistent with (3-2) are not only time independent but also 

spatially uniform. They are obtained from eq.(3-l) by setting a2u/ax2 = a2u/al = 0 

and a2v/ax2 = a2v/al = 0 that yields 

(a) 

(3-3) 

(b) 

that can be presented in the following alternative forms 
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(a) 

(3-4) 

(b) 

and 

(a) 

(3-5) 

(b) 

The different solutions to the nonlinear algebraic eqs. (3-5) are the following three 

solutions. 

First Solution: the Trivial Solution (usa I V so ) 

(3-6) 

Second and Third Solutions: the Non Trivial Solutions (US1,2 1 VS1,2 ) 

From eq. (3-5a) one gets 

(3-7) 

which upon substituting into eq. (3-5b) leads to a quadratic algebraic equation for Us 

in the form 

(3-8) 

The solution to eq. (3-8) has the form 

(3-9) 

For simplicity of using this solution in the following derivations the following 

notation is used 

S = 1 (3-10) 

Then the stationary solutions (3-9) and (3-7) become 
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(3-11) 

(3-12) 

(3-13) 

(3-14) 

Not the whole parameter domain is consistent with these solutions. While the value of 

Vs can be allowed to be negative, the value of Us must be non-negative because there 

is no biological meaning to negative population values. The next step is to derive the 

conditions for the stationary solutions of us1and uS2 to be non-negative. 

3.1.2 Conditions for US1 to be biologically meaningful, i.e. non-negative 
(US1 ~ 0) 

Imposing the constraint that US1 ~ 0 and using eq. (3-11) leads to 

(3-15) 

Since R > 0 an d S ~ 0 by definition, the condition (3-15) is reduced to 

(3-16) 

The latter condition implies 

{

f3o ~ ({Jo(l- R) 

{3o ~ (-({Jo)(R-1) 

(a) 

(3-17) 

(b) 

Conditions (3-16) or its alternative form (3-17) indicate the parameter window when 

US1 ~ O. 
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3.1.3 Conditions for U
S 2 

to be biologically meaningful, i.e. non-negative 

(US 2 ~ 0) 

Similarly, for US 2 ~ 0 and using eq.(3-13) leads to 

_1 [f3o +(R-1)](1-5)~0 
2R CfJo 

(3-18) 

and using the fact that R > 0 an d 5 ~ 0 by definition, the condition (3-18) is reduced 

to 

f30 +(R-l)~O and (1-5»0 
CfJo 

(3-19) 

or 

(3-20) 

The latter implies 

f30 ~(I-R) \i 5 < 1 (a) 
CfJo 

(3-21) 

f3° ~(I_R) \i 5> 1 (b) 
CfJo 

Conditions (3-21) indicate the parameter window when US 2 ~ O. The interesting result 

from eq. (3-16) and (3-21) indicates that for 5> 1 when the stationary solution US1 

becomes biologically meaningless the other solution US2 just becomes meaningful. 

3.1.4 Additional Stationary Solutions 

One may expect additional solutions that are functions of x and y leading to spatial 

heterogeneity . Identifying these solutions and their stability is the objective of this 

study. 
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3.2 Multiplicity of Solutions 

The stationary constant solutions presented in section 3.1 are regular solutions. Some 

limiting cases that cause the governing equations to degenerate may yield additional 

special solutions that have been consistently captured experimentally. One such 

example is the widespread occurrence of monotonic solutions as evidenced by the 

large number of experiments that capture this type of monotonic growth. From the 

problem formulated in this study monotonic growth is a mathematically degenerated 

case when Yo = Y1 = 0, Sn = CPo = ° and Rn --7 00 (in reality this means Rn» 1 

implying for example a very small resource diffusivity in the medium), or when 

YOI Y11 Sn and CPo are very small and Rn is very large compared to the other terms in 

eq. (2-14b). Subject to these conditions, equation (2-14b) yields v = vo = constant. 

The value of this integration constant v 0 corresponds to the value of v at t = ° and 

can be established explicitly by using the definition of v from equation (1-11) and its 

dimensionless transformation eq. (2-4), in the form 

(3-22) 

where Uo is the initial population number at t = 0, and ito = (d u/ d t) 1=0 is the initial 

growth rate at t = 0. Then, with v = v 0' the system of two first order partial 

differential equations (2-14a) and (2-14b) reduces to one first order partial differential 

equation obtained by substituting eq. (3-22) into (2-14a), to yield 

-=-\7u+ 1- u+ 0 u a u 1 2 [ (v - 1) ] 
at Gn (l+Ru) ' (3-23) 

The constant stationary solutions of eq. (3-23) correspond to the stationary solutions 

of the degenerated monotonic form linked to the Neoclassical Model, i.e. 

U1NCS = ° 
l[(l-R) ~] U =- + /!t.. 

2,3NCS 2 R - 0 ' 

(3-24) 

where u2S ~ u3S and the discriminant ,10 is 
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(3-25) 

The latter solutions represent one example of degenerated forms of the governing 

equations that may lead to special constant stationary solutions that at least in the 

context of the homogeneous problem represent results that are captured frequently in 

experiments. The objective of the present study is to focus on the general problem as 

is anticipated to occur in spatially heterogeneous populations without special 

emphasis on the degenerated special cases. Nevertheless, one should be fully aware of 

the further possibilities due to the multiplicity of constant stationary solutions, some 

of them being degenerated special cases. 

3.3 Stability Criteria and Parameter Control 

There are a considerable number of possibilities concerning the ultimate solution that 

materializes under different circumstances. One of the multiple constant stationary 

solutions may turnout to be stable to both Spatially Homogeneous Perturbations 

(SHoP) as well as to Spatially Heterogeneous Perturbations (SHeP). Some of these 

stationary solutions may turnout to be linearly unstable to Spatially Homogeneous 

Perturbations (SHoP) but stable to Spatially Heterogeneous Perturbations (SHeP) in 

which case another type of time dependent (usually oscillatory) but spatially uniform 

solution takes over. Alternatively, one of these stationary solutions may be unstable to 

both Spatially Homogeneous Perturbations (SHoP) as well as to Spatially 

Heterogeneous Perturbations (SHeP). In the latter case it is difficult to establish which 

solution is to materialize and why. It may very well depend on the initial conditions 

although there is no method available to indicate how to distinguish and establish 

which initial conditions lead to what solution. 

In order to make sure that the latter possibility does not complicate the analysis 

presented in this study, the work here will be focused on the pre-condition that the 

constant stationary solutions (uso,vso ), (us"vs,) and (US2 ,VS2 ) are stable to SHoP 

when their stability to SHeP is investigated. This means that small Spatially 

Homogeneous Perturbations (SHoP) around these stationary solutions decay while 
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small Spatially Heterogeneous Perturbations (SheP) around these solutions may very 

well grow into a spatial pattern leading to a Turing type of instability. 

The first step in this analysis is therefore to identify the conditions for stability of 

the constant stationary solutions (uso ' v so ), (USI , V SI) and (US2' V S2 ) to SHoP. Then a 

weak nonlinear method of solution will demonstrate the qualitative as well as 

quantitative form of spatially homogeneous solutions that are obtained when the 

stability conditions are not fulfilled. The analytical weak nonlinear results are 

compared with a standard numerical solution in order to identify quantitatively the 

domain of validity of the weak nonlinear solution. Then the linear stability analysis to 

SHep is undertaken to identify the conditions when Turing instabilities eventually 

materialize. In contrast with the other available stability analyses that produce the 

simple stability conditions in terms of the parameters of the linearized equations, the 

present analysis focuses much attention to convert these conditions into a form that 

depends exclusively on the primitive parameters of the o~iginal system of governing 

equations. It is obvious that the stability conditions presented in section 1.2.3, eqs. (1-

45) and (1-46) depend on the parameters of the linearized system (1-32) . However, 

their link to the primitive parameters of the original nonlinear problem is not 

explicitly given by the conditions expressed in eqs. (1-45) and (1-46). The latter are 

being developed in this study considering the specific nonlinear problem formulated 

in eq. (2-14). It turns-out that the connection between these two types of parameters 

occurs via the dependence of the parameters in the linearized equations on the 

stationary solutions. 
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The latter dependence appears via different complicated algebraic functions that 

for simplicity are represented in the following notation that is being used throughout 

the following chapters. This useful notation is presented in the form 

(a) 

(b) 

{33 = (R - 2R Us - 1) = [ R (1- 2us ) - 1] (c) 

(d) 

(3-26) 

{3s = {33 - R Us = (R - 3R Us -1) = [R(l- 3us) -1] (e) 

{36 = (3R Us - R + 1) = [R( 3 Us -1) + 1] = -{3s (f) 

(g) 

(h) 

where Us represents any of the constant stationary solutions that their stability is 

being investigated. 

60 



CHAPTER 4 

LINEAR STABILITY ANALYSIS TO 

SPATIALLY HOMOGENEOUS 

PERTURBATIONS (SHoP) 

4.1 Linear Stability of the Nontrivial Stationary Solutions (US1 ,2 f VS1,2) 

For undertaking the linear stability of the stationary solutions (US1,2 f V SI,2 ) to small 

Spatially Homogeneous Perturbations (SHoP) one considers the system of equations 

(2-14) corresponding to conditions of very large values of Gn and Rn, i.e . 

mathematically meaning Gn --7 00 and Rn --7 00. This transforms eq. (2-14) into the 

following spatially homogeneous form 

du [ (V-I) ] 
di= 1- U+ (I+Ru) u 

dv 
-=Yo-/3o u+qJov 
dt 

(a) 

(4-1) 

(b) 

Equation (4-1) can be presented in the following equivalent form that is more 

convenient for the following derivations 

(I+Ru)du=[(l_ u)(I+Ru) + v-l]u 
dt 

which expands further into 
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(a) 

(4-3) 

dv 
-=Y -{3 u+ rn v dt 0 0 't' o 

(b) 

By introducing small perturbations (E~/EVI) around the stationary solutions (US1Vs) 

in the form 

U = Us + E ~ and v = v s + EVI (4-4) 

where E« I stands only to indicate that the perturbations are very small, and 

substituting (4-4) into (4-3) yields 

(a) 

(4-5) 

(b) 

Expanding the expressions in eg. (4-5) taking into account that the stationary 

solutions (US1Vs) are time independent and therefore dus/dt=O and dvs/dt=O, 

leads to 

(a) 

E[(R -1- 2Rus)uI + v\]us - E2Rus~2 } + 

{t:[(R-l)us -Ru; +vs]u\ +t:2 [(R-1-2Rus)~ +v\ ]u\ -RE3U?} (4-6) 

(b) 

Obviously, from egs. (3-5) and (3-7) the stationary solutions (US\'21 v S\,2) satisfy the 

following conditions 

(4-7) 

(4-8) 
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which when introduced into eq. (4-6) yields 

8(l+Rus )d~ + 82Ru, du, =8[(R-l-2Rus )us ~ +usv,]+ 
dt dt 

(a) 

82{[(R -1- 2Rus) ~ + v,]u, - RUS~2 } - 8
3 RU,3 

(4-9) 

(b) 

The linearization applied in any linear stability analysis assumes small perturbations, 

expressed by the fact that 8« 1. Therefore one can neglect in eq. (4-9) terms that are 

0(82
) or smaller, e.g. 0(83

). This approximation transforms eq. (4-9) into the 

following linearized form 

(a) 

(4-10) 

(b) 

Dividing eq. (4-10) by (1 + Rus) yields 

(a) 

(4-11) 

(b) 

From the notation (3-26a,b) one recognizes in eq. (4-11) the terms for /3, and /32. 
Replacing this notation leads to the linear stability equations 

or in the equivalent vector/matrix form 

dw, 
-=Aw 
dt I 
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(a) 

(4-12) 

(b) 

(4-13) 



where WI = [UI f vJ, and the matrix A stands for 

The linear system (4-12) has solutions of the following form 

B A t 
U = e I 

v - CeAt 
1-

(a) 

(b) 

which upon substitution into eq. (4-12) produces the following equations 

(a) 

(b) 

or 

(a) 

(b) 

(4-14) 

(4-15) 

(4-16) 

(4-17) 

One way to solve this system is to express C in terms of B from eq. (4-17a) in the 

form 

(4-18) 

and substituting this value of C into eq. (4-17b) in the form 

(4-19) 

which upon expansion produces the following characteristic equation for the 

eigenvalues of the linear problem 

(4-20) 

It can be recognized that the coefficient terms appearing in eq. (4-20) represent the 

trace, If! A' and the determinant, ~A' of the coefficient matrix A as follows 

(4-21) 

(4-22) 

Equation (4-20) can therefore be represented in terms of the trace If! A and the 

determinant ~A of the coefficient matrix A as follows 
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)} - III A + fl. = 0 
't' A A 

Its solution for the eigenvalues is 

The solution to the linear system takes therefore the final form 

(a) 

(b) 

When A is complex, i.e. A = Ar ± iA; the solution takes the form 

U, = i ' t( Be;A; t + B'e-;A; t) = eA, t[ B, sin(A;f) + B2 COS(A; t)] 

(4-23) 

(4-24) 

(4-25) 

(a) 

(4-26) 

(b) 

where B' represents the constant complex conjugate of B, and C' represents the 

constant complex conjugate of C. 

The eigenvalues (4-24) combined with the form of the solutions (4-25) and (4-26) 

provide the conditions for small perturbations cS (u, I VI) around the stationary solutions 

(USI,2 1VSI,2 ) to grow or decay . When A is real and negative or complex with a 

negative real part the perturbations decay and the corresponding stationary solution 

(uw V SI) or (US2 I v S2) is stable, while if A is real and positive or complex with a 

positive real part the perturbations grow exponentially and the corresponding 

stationary solution is unstable. The linear stability analysis can not provide an answer 

regarding what solution will eventually materialize when the stationary solution is 

unstable. Naturally, the unlimited exponential growth is not typically an acceptable 

realistic solution. The weak nonlinear method of solution will provide the answers to 

thi s question in chapter 5. From eq. (4-23) it is obvious that for stability of the 

stationary solutions (USI,2 I V SI,2) to SHoP one needs to impose the conditions 

& fl.A > 0 (4-27) 

The latter guarantees that the eigenvalues A are real and negative or complex 

conjugates with a negative real part. 
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One can summarize these results by describing the different qualitative solutions 

obtained from the linear stability analysis in the form 

(i) (USI,2 /V SI,2 ) are stable to SHoP if: 

lfIA < 0 & ~A >0 (4-28) 

Within this regime that satisfies inequalities (4-28) one can identify the following 

qualitatively different sub-regimes: 

2 4~ 
(a) If 0 < ~A < lfI A (which is equivalent to 0 < -f- < 1 ) 

4 lfI A 

(4-29) 

then Al and A 2 are real and negative, conditions identified as overdamped 

oscillations. Their qualitative graphical representation is presented in Fig. 4.1. 

(b) If 0 < ~A = lfI~ (which is equivalent to 0 < 4~A = 1 ) 
4 lfIA 

(4-30) 

then Al = A 2 < 0 (i.e. real, equal and negative), conditions identified as 

critically damped oscillations. The solution for this case of equal eigenvalues 

has the form 

U = (B + B t)eA1 
I = (B + B t)eA2 I I I 2 I 2 (a) 

(4-31) 

(b) 

Their qualitative graphical representation is presented in Fig. 4.2. 

2 

(c) If ~A > lfIA >0 (which is equivalentto 4~A >1>0) 
4 lfIA 

(4-32) 

then Al and ..1.2 are a pair of complex conjugate eigenvalues in the form 

(4-33) 

with 

k= lfIA <0 and A= lfIA r4~A - 1 
I 2 I 2 ~ lfI~ (4-34) 

conditions identified as underdamped oscillations. Their qualitative graphical 

representation is presented in Fig. 4.3. 
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(ii) (US1 ,2 1 V SI,2) are neutrally stable to SHoP if: 

IfIA =O & ~A > 0 

For this regime the eigenvalues equation has the form 

~? + ~A = 0 

leading to the following eigenvalues solution 

V ~A >0 

(4-35) 

(4-36) 

(4-37) 

conditions identified as neutrally stable oscillations because the real part of the 

eigenvalues is zero and therefore perturbations neither decay nor grow. Their 

qualitative graphical representation is presented in Fig. 4.4. 
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Overdamped Oscillations 

1.1 

1.05 

~ 

en 
en 
Il) 

-a 0.95 
0 ••• 

0 
'r.;; 
Q 
Il) 

8 0.9 
~ 

;:s 
0.85 

0.8 

0.75 
0 5 10 15 20 25 30 

t [dimensionless] 

Figure 4.1: Qualitative description of overdamped conditions identified to be 

applicable for 0 < ~A < lfI~ /4. 
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Figure 4.2: Qualitative description of critically damped conditions identified to be 

applicable for 0 < ~A = lfI~ /4. 
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Underdamped Oscillations 
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Figure 4.3: Qualitative description of underdamped conditions identified to be 

applicable for ~A > lfI~ /4> O. 

Neutrally Stable Oscillations 
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Figure 4.4: Qualitative description of neutrally stable conditions identified to be 

applicable for lfIA = 0 and ~A > O. 
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(iii) (USI ,2 1 V SI ,2) are unstable to SHoP if: 

lfIA<O & ~A <0 

For this regime the eigenvalues solution has the form 

A = lfI A [1 + ~1- 4 ~A ] = lfI A [1 + 
I 2 lfI~ 2 

1+ 41~AI]<0 
lfI~ 

(4-38) 

V ~A <0 (4-39) 

V ~A <0 (4-40) 

leading to a monotonically diverging solution because both eigenvalues are real, 

one negative (AI < 0) and one positive 0"2> 0), the latter causing the perturbation 

to diverge and grow exponentially. These conditions are identified as unstable 

monotonically diverging. 

(iv) (US\,2 1 V SI ,2) are neutrally stable to SHoP if: 

& ~ =0 A (4-41) 

For this regime the eigenvalues are 

(4-42) 

(4-43) 

leading to a monotonically neutrally stable solution, because the perturbations 

decay due to AI < 0 but neither decay nor grow due to 1\.2 = o. These conditions are 

identified as monotonically neutrally stable. 

(v) (USI,2 1 V SI ,2) are unstable to SHoP if: 

& ~A >0 (4-44) 

Within this regime that satisfies inequalities (4-44) one can identify the following 

qualitatively different sub-regimes: 
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2 4~ 
(a) If 0 < ~A < 1fI A (which is equivalent to 0 < ~ < 1 ) 

4 1fI A 

(4-45) 

then AI and A2 are real and positive, conditions identified as monotonically 

diverging . Their qualitative graphical representation is presented in Fig. 4.5 . 

2 4~ 
(b) If 0 < ~A = lfIA (which is equivalent to 0 < ~ = 1 ) 

4 1fI A 

(4-46) 

then the eigenvalues AI = A2 > 0 are real, equal and positive, conditions 

identified as monotonically diverging as well. Their qualitative graphical 

representation is presented in Fig. 4.6. 

(c) If ~A > 1fI; > 0 ( which is equivalent to 4~2A > 1> 0 ) 
4 1fI A 

(4-47) 

then AI and A2 are a pair of complex conjugate eigenvalues in the form 

(4-48) 

with 

(4-49) 

conditions identified as oscillatory diverging. Their qualitative graphical 

representation is presented in Fig. 4.7. 

(vi) A degenerated case is obtained if: 

1fI -0 A - & ~ -0 A - (4-50) 

(vii) (USI,2 /V SI,2 ) are unstable to SHoP if: 

& ~A =0 (4-51 ) 

then AI and A2 are real, and 

(4-52) 
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Monotonically Unstable 
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Figure 4.5: Qualitative description of monotonically unstable conditions identified to 

be applicable for lJI A > 0 and 0 < ~A < lJI; /4. 
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Figure 4.6: Qualitative description of monotonically unstable conditions identified to 

be applicable for lJI A > 0 and 0 < ~A = lJI; /4. 
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Oscillatory Unstable 
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Figure 4.7: Qualitative description of monotonically unstable conditions identified to 

be applicable for If! A > 0 and ~A > If!~ /4> O. 
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(viii) (US), 2 1 VS ),2 ) are unstable to SHoP if: 

lfIA =O & ~A <0 (4-53) 

then A) and A2 are real, and equal to 

(4-54) 

(ix) (US),2 1 VS),2 ) are unstable to SHoP if: 

& ~A <0 (4-55) 

then A) and A2 are real, and equal to 

\j ~A < 0 (4-56) 

\j ~A < 0 (4-57) 

The linear stability results presented in the previous 9 different combinations of 

positive, negative and zero values of lfIA and ~A are summarized in the Stability 

Table 4.1 
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Table 4.1: Stability Table and type of qualitative regimes 

lJIA<O lJIA=O lJIA>O 

STABLE NEUTRALLY UNSTABLE 

2 2 2 STABLE 2 2 2 

II < lJIA II = lJIA II > lJIA II <lJIA II = lJIA II > lJIA 
A 4 A 4 A 4 A 4 A 4 A 4 

AI & A2 AI & A2 AI & A2 AI & A2 AI & A2 AI & A2 
llA > 0 

real real pair ,.1,,1 2 = real real paIr 
of ±i~ of 

AI < 0 & AI = A2 < 0 complex AI> 0 & AI = A2 > 0 complex 
conjugates conjugates 

A2 < 0 
A1 2 = A2 > 0 A1,2 = 

overdamped 
critically 

A,. ± iAj A,. ± iA j 
damped monotonica lly 

& Ar < 0 monotonically 
diverging & Ar > 0 

(sink) (sink) 
(source) diverging (diverging (converging 

(source) 
spiral) spiral) 

Neutrally Stable Degenerated Unstable 
Case 

II - 0 A - AI & A2 real AI & A2 real 

AI = lJIA < 0, A2 = 0 AI = 0, 
AI = lJI A > 0 , A - 0 2-

A2 = 0 (Source) 

Unstable Monotonically Unstable Unstable Monotonically 

Diverging Monotonically 
Diverging 

llA < 0 Diverging 

AI & A2 real 
AI & A2 real 

AI & A2 real 

AI <0, A2 > 0 
,.1,,1 ,2 = 

AI >0, ,1.2 <0 

(Source) ±#J (Source) 

AI> 0, 

A2 < 0 

(Source) 
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4.2 Linear Stability of the Trivial Stationary Solution (USa = 0, V so ) 

The linear stability of the trivial stationary solution 

USa = 0 & V So = - Yo 
CPo 

(4-58) 

is undertaken in this section. The method is identical to the one applied for the 

nontrivial stationary solutions except that the values of usa = O,VSo = -Yo/CPo replace 

the ones for (USI ,2 ,VSI,2) in the definitions of {3I,{32,{33,{34,f35 and {36 in eq. (3-26). 

Because usa = 0 one obtains {31 = 0 and {32 = O. By introducing small perturbations 

around the stationary solutions (usa' V so ) in the form 

(4-59) 

where E« 1 stands only to indicate that the perturbations are very small and 

substituting (4-58) and (4-59) into (4-3) yields the following linearized equations for 

the perturbations 

dUI _ Yo 
----v 
dt CPo I 

or in the equivalent vector/matrix form 

dW I -=Aw 
dt I 

(a) 

(b) 

where WI = [ UI ' vJ, and the matrix A in this case stands for 

0 _ Yo 

A= CPo 

-{30 , CPo 

The characteristic equation for the eigenvalues takes the form 
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(4-60) 

(4-61) 

(4-62) 



(4-63) 

It can be recognized that the coefficient terms appearing in eq. (4-63) represent the 

trace lfI A and the determinant ~A of the coefficient matrix A as follows 

lfIA = trace(A) = CPo 

~A = det(A) = - (J~o 

The solution to eq. (4-63) for the eigenvalues is 

It = lfI A [I ± ~I - 4~, 1 = CPo [1 ± 
1,2 2 lfI~ 2 

1 + 4 {JoY a 1 
cP~ 

For stability of usa ' vSo' the following conditions need to be enforced 

lfIA< O => CPo < 0 

and 

~A > 0 => _ {JoYo = {JoYo > 0 
CPo (-CPo) 

=> (JoYo>O 
'---..r--' 

>0 
eq. 

(4-67) 

One can conclude that the trivial solution uso,vso is stable to SHoP if 

and uSa ' V So is unstable to SHoP if 
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(4-64) 

(4-65) 

(4-66) 

(4-67) 

(4-68) 

(4-69) 

(4-70) 



4.3 Explicit Stability Conditions to Spatially Homogeneous 
Perturbations (SHoP) 

4.3.1 General Derivation 

The linear stability conditions (4-69) that were obtained for the trivial solution USo ' v So 

are expressed in terms of the primitive parameters of the original system, i.e. 

([Jo ,f3o and Y o ' On the other hand the linear stability conditions (4-27) (lflA < 0 

&!:::"A > 0) for the nontrivial solutions US1,2 ' v SI,2 are not expressed explicitly in terms 

of the primitive parameters of the original system. Even when one replaces into (4-27) 

the expressions for lfl A and !:::..A it yields 

(4-71) 

While these conditions depend explicitly on f3
0 

and CPo they also depend on these 

parameters and other primitive parameters of the original system (4-1) via the 

coefficients f31 and f32• The latter are defined in eq. (3-26). The objective of this 

section is to derive the stability conditions for US1 2'VS12' (4-71) explicitly in terms of 

the primitive parameters of the original system (4-1), or at least to find the necessary 

conditions for stability explicitly in terms of these primitive parameters. 

One possibility that the first condition in (4-71) is fulfilled can be enforced by 

requiring f31 and CPo to have opposite signs, i.e. 

(4-72) 

This is however a necessary condition (if the possibility of f31 < 0 & CPo < 0 does not 

apply) but certainly not a sufficient condition to guarantee that lflA < O. It is however 

a very useful condition to use in deriving a procedure to identify the parameter 

window for linear stability of US1,2' VS1,2 to SHoP. On the other hand, by using the fact 

that f32 > 0, because US1 ,2 > 0 and by using the definition of f32 from (3-26b), the 

second condition from (4-71) implies 

(4-73) 

One needs to consider first, two separate cases that are consistent with (4-72), i.e. (i) 

f31 > 0 & CPo < 0, and (ii) f31 < 0 & CPo > O. 
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4.3.2 The case corresponding to: /31 > 0 & qJo < 0 

Deriving the explicit condition for (4-72): Since for this case fJ1 > 0 one needs 

to express this latter condition explicitly in terms of the system's primitive parameters 

and combine it with the derivation of (4-73) expressed also in terms of the system's 

primitive parameters. By using the definition of fJ1 from eq. (3-26a) one obtains from 

fJ1 > 0 the condition 

(4-74) 

By substituting into (4-74) the explicit expression for US 1,2 from eqs. (3-11) and 

(3-13) it yields 

(4-75) 

expansion leads to 

(4-76) 

or 

(4-77) 

By indicating explicitly in (4-77) the fact that qJo < 0 in the form 

(4-78) 

or 

-(!o ) (1 ± s) ± (R-1) S < 0 ( equivalent to: fJ
1 
> 0 ) 

qJo 
(4-79) 

yields a result that can be separated into a condition for u and another one for u 
SI S2 ' 

as represented by the ± sign in (4-79). It is important to notice that S depends on Yo 

in addition to qJ 0 / f30 and R, while Yo does not affect the other terms. Therefore the 

value of S can be controlled via Yo for any choice of qJo/fJo and R. 
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Deriving the explicit condition for (4-73): The condition (4-79) that is 

equivalent to f3, > 0 needs combining with f30 > - f3, qJo/ f32 (4-73). One can evaluate 

the ratio f3,/ f32 by using the definitions given in eq. (3-26a,b) in the form 

(4-80) 

Substituting this result (4-80) into the right hand side of (4-73) yields 

(4-81) 

leading to inequality (4-73) in the form 

(4-82) 

or alternatively for qJo < 0 

(4-83) 

(4-84) 

By substituting into (4-83) the explicit expression for USI,2 from eqs. (3-11) and 

(3-13) and expanding it yields 

±[~-(R-l)]S <0 
( -qJo) 
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(i) Stability condition/or uSl : 

Inequality (4-79) for us, is represented by accounting for the positive sign instead of 

the ± sign in the form 

-(!;J (1 + s) + (R -1) S < 0 ( 4-86) 

Since S > 0 by definition, this expression leads to 

( equivalent to: f3, > 0 ) (4-87) 

representing the explicit condition for us, that is equivalent to f3, > o. 

Inequality (4-85) for us, is represented by accounting for the positive sign instead 

of the ± sign in the form 

[~-(R-1)]S <0 
( -CPo) 

Since S > 0 by definition, this expression leads to 

or 

~«R-1) 
( -CPo) 

(4-88) 

(4-89) 

(4-90) 

that can be expressed in the following alternative form which occasionally may 

turnout more convenient 

(4-91) 

representing the explicit condition for us, that is equivalent to f3
0 
> - f3,cPj f3

2
. 

Conditions (4-87) and (4-91) are fully consistent with the requirement that us, be non­

negative (us, ~ 0) in order to have a biologically meaningful solution, eq. (3-17). 
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Combining now condition (4-87) with (4-90) yields 

(R-l)( S )«f30 )«R_l) 
1 + S - CPo '---v-----' 

(4-92) 

, J 

/3o>-il'Po//32 /3 1 >0 

(ii) Stability condition for US2 : 

Inequality (4-79) for u
S2 

is represented by accounting for the negative sign instead of 

the ± sign in the form 

-~(l-S)-(R-l)S<O 
(-CPo) 

leading to 

~(S-l) «R-l)S 
(-CPo) 

(4-93) 

( equivalent to: f3, > 0 ) (4-94) 

Using Yo> 0, which implies S> 1 (see definition of S in eqo (3-10) with Yo> 0 and 

CPo < 0) the latter condition can be expressed also in the form 

( equivalent to: f3, > 0 ) \j S> 1 (or Yo > 0) (4-95) 

representing the explicit condition for US2 ' that is equivalent to f3, > 00 It should be 

noted that for S > 1 the following ratio in eqo (4-95) applies 

(4-96) 

Inequality (4-85) for US 2 is represented by accounting for the negative sign instead 

of the ± sign in the form 

(4-97) 

Since S> 0 by definition, this expression leads to 

(4-98) 
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or 

(4-99) 

that can be expressed in the following alternative form which occasionally may 

turnout more convenient 

(4-100) 

representing the explicit condition for US2 that is equivalent to !3o > - !3/pj!32' From 

(4-99) expressed in the form !3o/qJo < 1- R, combined with the condition for US2 to be 

non-negative, i.e. US2 ~ 0 presented in eq. (3-21), one concludes that the only 

possibility for a non-negative value of US2 to be stable to SHoP is S> 1 implying 

and supporting the assumption that Yo> O. 

Combining now condition (4-95) with (4-99) yields 

(4-101) 
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4.3.3 The case corresponding to: f31 < 0 & qJo > 0 

Deriving the explicit condition for (4-72): Since for this case f31 < 0 one needs 

to express this latter condition explicitly in terms of the system's primitive parameters 

and combine it with the derivation of (4-73) expressed also in terms of the system' s 

primitive parameters. By using the definition of f31 from eq. (3-26a) one obtains from 

f31 < 0 the condition 

(4-102) 

By substituting into (4-102) the explicit expression for USI ,2 from eqs . (3-11) and 

(3-13) it yields 

( equivalent to: f31 < 0 ) (4-103) 

presents a result that can be separated into a condition for US I and another one for US2 ' 

as represented by the ± sign in (4-103). Note that S depends on Yo in addition to 

qJOff30 and R, while Yo does not affect the other terms. Therefore the value of Scan 

be controlled via Yo for any choice of qJ 0 f f3 0 and R. 

Deriving the explicit condition for (4-73): The condition (4-103) that is 

equivalent to f31 < 0 needs combining with f3
0 

> -f31 qJo/f32 (4-73). Substituting (4-80) 

into the right hand side of (4-73) yields 

(4-104) 

leading to inequality (4-73) in the form 

(4-105) 

or alternatively for qJo > 0 

(4-106) 
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130 + R -1- 2Rus > 0 . 
qJo 

(4-107) 

By substituting into (4-107) the explicit expression for US1,2 from eqs. (3-11) and 

(3-13) and expanding it yields 

(4-108) 

(i) Stability condition for Us 1 : 

Inequality (4-103) for US1 is represented by accounting for the positive sign instead of 

the ± sign in the form 

(4-109) 

Since S > 0 by definition, this expression leads to 

(4-110) 

representing the explicit condition for US1 that is equivalent to 131 < o. 

Inequality (4-108) for US1 is represented by accounting for the positive sign instead 

of the ± sign in the form 

(4-111) 

Since S > 0 by definition, this expression leads to 

(4-112) 

or 

(4-113) 

that can be expressed in the following alternative form which occasionally may 

turnout more convenient 
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( equivalent to: f30 > - f3/p j f32 ) (4-114) 

representing the explicit condition for USJ that is equivalent to f3() > - f3JqJj f32. 

Condition (4-114) violates the requirement that USJ be non-negative in order to 

be biologically meaningful, as expressed by eq. (3-17a) applicable to this case 

when qJ 0 > o. Therefore, one concludes that any biologically meaningful stationary 

solution USJ is unstable to SHoP if qJ 0 > o. 

(ii) Stability condition for uS2 : 

Inequality (4-103) for uS2 is represented by accounting for the negative sign instead 

of the ± sign in the form 

(4-115) 

leading to 

( equivalent to: f3J < 0 ) (4-116) 

Using Yo> 0, which implies S < 1 (see definition of S in eq. (3-10) with Yo> 0 and 

qJo > 0) the latter condition can be expressed also in the form 

( equivalent to: f3J < 0 ) (4-117) 

or 

( equivalent to: f3J < 0 ) 

representing the explicit condition for US2 ' that is equivalent to f3
J 

< o. 

Inequality (4-108) for US2 is represented by accounting for the negative sign 

instead of the ± sign in the form 

(4-119) 
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Since 5 > 0 by definition, this expression leads to 

(4-120) 

or 

(4-121) 

that can be expressed in the following alternative form which occasionally may 

turnout more convenient 

(4-122) 

representing the explicit condition for uS2 that is equivalent to f30 > - f3/pj f32. From 

(4-121) combined with the condition for US2 to be non-negative, i.e. US2 ~ 0 presented 

in eq. (3-21), one concludes that the only possibility for a non-negative value of US2 

to be stable to SHoP is 5 < 1 implying and supporting the assumption that Yo> o. 

Combining now condition (4-121) with (4-117) in the form 

\:;f 5<1 (4-123) 

needs the evaluation of the right hand sides of both conditions which produce the 

following inequalities 

5 
(R-1) >-(R-1) (1- 5) \:;f R>1 & 0<S<1 , (a) 

(4-124) 
S 

(R-1) <-(R-1) (1- 5) \:;f R<1 & 0<5<1 (b) 

The latter inequalities (4-124) applied to (4-123) yield 

f30«R_1) S 
CPo (1- S) 

\ J 

\:;f R> 1 (a) 

\:;f 5<1 (i.e. \:;f f3o>O) (4-125) 

\:;f R < 1 (b) 
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4.3.4 The case corresponding to: f31 > 0 & CfJo > 0 

For this parameter regime it is obvious that the stability condition (4-71) 

lfI A = /3, + CfJ 0 < 0 is violated and therefore for these parameters, /3, > 0 & CfJ 0 > 0, 

the stationary solutions US,,2' VS1 ,2 are unstable to SHoP. One is still interested to 

identify explicitly these conditions in terms of the primitive system parameters in 

order to identify explicitly the instability regime. 

Deriving the explicit condition for f31 > 0 & CfJo > 0: Since for this case 

/3, > 0 & CfJo > 0 one needs to express this latter condition explicitly in terms of the 

system's primitive parameters. By using the definition of /3, from eq. (3-26a) one 

obtains for /31 > 0 the condition 

( equivalent to: /3, > 0 ) (4-126) 

presents a result that can be separated into a condition for us, and another one for U
S2

' 

as represented by the ± sign in (4-126). Note that S depends on Yo in addition to 

CfJ 0' /30 and R, while Yo does not affect the other terms. Therefore the value of Scan 

be controlled via Yo for any choice of CfJo,/3o and R. 

(i) Condition for uSl : 

Inequality (4-126) for us, is represented by accounting for the positive sign instead of 

the ± sign in the form 

(4-127) 

Since S > 0 by definition, this expression leads to 

(4-128) 
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representing the explicit condition for US1 that is equivalent to f31 > O. Combining this 

condition with the requirement for a biological meaningful solution, US1 ~ 0, from eq. 

(3-17a) corresponding to CPo> 0, expressed in the form f301 CPo ~ (1- R) I 'v' CPo > 0 

yields 

f30 ) 5 -(R-l)~-<-(R-l ( ) 
CPo 1 + 5 

(4-129) 

or 

5 
- (R -1) CPo ~ f30 < -(R -1) CPo (1 + 5) (4-130) 

(ii) Condition for uS2 : 

Inequality (4-126) for US2 is represented by accounting for the negative sign instead 

of the ± sign in the form 

(4-131) 

Since 5 > 0 by definition, this expression leads to 

(4-132) 

or 

f30 «R_l) 5 
CPo (l-S) 'v' 5<1 

(4-133) 

'v' 5>1 

representing the explicit condition for US2 that is equivalent to f3
1 
> O. Combining this 

condition with the requirement for a biological meaningful solution, U
S2 
~ 0, from eq. 

(3-21) yields 
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'1/ S<1 

-(R-l) S < f30 <- (R-l) '1/ S>1 
(S-1) CPo 

or 

'-----v--' >, 

V S<1 

V S>1 

4.3.5 The case corresponding to: f31 < 0 & CfJo < 0 

(a) 

(4-134) 

(b) 

(a) 

(4-135) 

(b) 

For this parameter regime it is obvious that the stability condition (4-71) 

IJI A = f3, + CPo < 0 is fulfilled unconditionally and therefore for these parameters, 

f3, < 0 & CPo < 0 , the conditions that need to be imposed are the stability condition 

(4-71): f30 > -f3,CPo/f32' combined with f3, < 0 , which can be presented in the from 

(4-136) 

and 

(4-137) 

Equations (4-136) and (4-137) present results that can be separated into a condition 

for us, and another one for US2 ' as represented by the ± sign in (4-136) and (4-137). 
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(i) Condition for uS1 : 

Inequalities (4-136) and (4-137) for USl are represented by accounting for the positive 

sign instead of the ± sign in the form 

[~-(R-l)]S<O ( -qJo) 

and 

for 

Since S > 0 by definition, these expressions lead to 

~«R-1) 
( -qJo) 

and 

for 

(4-138) 

(4-139) 

(4-140) 

(4-141) 

representing the explicit conditions for USl that are equivalent to f3l < 0 and 

f30 > - f3lqJoI f32' in the form 

(4-142) 

This condition violates the requirement for a biological meaningful solution, USl ~ 0, 

from eq . (3-17b) corresponding to qJo < 0, expressed in the form 

(3) (-qJo) ~ (R -1) , \;j qJo < O. The explicit parameter domain corresponding to 

qJo < 0, f3l < 0 and USl ~ 0 is an empty space. Therefore, any biologically meaningful 

stationary solution USl does not exist if qJ 0 < 0 and f3l < O. 

(ii) Condition for US2 : 

Inequalities (4-136) and (4-137) for US2 are represented by accounting for the 

negative sign instead of the ± sign in the form 

for ( 4-143) 
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and 

13°(1-5)-(R-1)5<0 
({Jo 

Since 5 > ° by definition, these expressions lead to 

130 ( ) 5 
( -({J 0) < R - 1 (5 - 1) 

'-v-' >, 

130 ( ) 5 -( -» R-1 ( ) -({Jo 5-1 
'-v-' 

< 0 

for 

V 5>1 

V 5<1 

(4-144) 

(4-145) 

(4-146) 

representing the explicit conditions for uS2 that are equivalent to 13, < ° and 

130> -13,({Jo/I32' in the form 

~>(R-1) 
( -((Jo) 

(
130»(R_1)( 5 ) -({Jo 5-1 

'-v-' 
< 0 

V 5>1 & R>l 

V 5>1 & R<l 

V 5<1 & R>l 

V 5<1 & R<l 

(a) 

(b) 

(4-147) 

(c) 

(d) 

These conditions combined with the requirement for a biologically meaningful 

solution, US2 ;::: 0, from eq. (3-17b) corresponding to ({Jo < 0, expressed in the form 

l301(-({Jo)~(R-1) I V 5<1 and 130/(-({Jo);:::(R-1) I V 5>1 yield the stability 

condition 
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~o ( ) s (R-1)<-( -)< R-1 ( ) 
-CPo S-1 

'-v-----' 
> 1 

V S>1 & R>1 (4-148) 

eliminating the possibilities of S < 1 and R < 1 as being inconsistent with a 

biologically meaningful solution, US2 ~ o. One may conclude that for ~I < 0 and 

CPo < 0 a biologically meaningful solution u S2 ~ 0 exists only if S > I and it is 

stable to SHoP only if R> 1 and condition (4-148) is fulfilled. 

4.3.6 Summary of Stability Conditions to SHoP 

The Linear Stability Conditions of ( u So' v so) and (US1 ,2 ' v SI,2) to SHoP derived in this 

chapter and expressed explicitly in terms of the primitive system's parameters are 

being summarized in Table 4.2 for uSo ' vSo ' in Table 4.3 for us!' VSi' and in Table 4.4 

Table 4.2: Explicit Stability Table for uSo ' VSo 

CPo < 0 CPo >0 

~oYo > 0 ( USo f v so) stable to SHoP ( USo f v so ) unstable to SHoP 

f3oYo < 0 ( USa f V So) unstable to SHoP (USO f v so ) unstable to SHoP 

93 



Table 4.3: Explicit Stability Table for U Sl'VSI 

Explicitly 
CPo <0 

Equivalent to: CPo >0 

f3 l > 0 
f3 S 

USI is unstable to SHoP USI ,2 is stable to SHoP if: 
_0 <-(R-l)-) 
qJo (l+S 

(R-l)n < (f3" )«R-l) I+S -<Po ~ 
~ fJ,>O fJ,,>-fJ,'fJ,,/fJ, 

Any biologically Any biologically 

f3 l < 0 f30 >_(R_l)_S_ meaningful stationary meaningful stationary 
<Po (I+S) 

solution USI is unstable to solution USI does not 

SHoP exist if CfJo < 0 and f31 < 0 

Table 4.4: Explicit Stability Table for US2 ' v S2 

Explicitly Equivalent to: CPo >0 CPo <0 

f30 «R_l)_S_ I V S<1 
US2 IS U SI,2 is stable to SHoP if: 

<Po (I-S) unstable to 
(R_l) « f3o )« R- l)n' V S>1 

f3J > 0 SHoP ~ -<Po S-1 
'---r------' fJ, >0 fJ,,>-fJ,'fJ"/fJ, 

f30 >(R_l)_S_ I V S>1 
<Po (I-S) Any biologically meaningful 

stationary solution uS2 is 

unstable to SHoP if: S > 1 

Any 

biologically A biologically meaningful 

meaningful solution US2 ~ 0 exists only if 

f3 l <0 f30 >(R_l)_S_ I V S<1 stationary S > 1 and it is stable to SHoP <Po (I-S) 
solution USI only if R > 1 and if: 

is unstable f30 S 'li S > 1 
(R-l)<-( -) « R-l)-( - ) I 

to SHoP -<Po S- I V R> 
'--v---' 

>1 
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4.3.7 Procedure to Identify Windows of Parameter Values that Provide 

Necessary Conditions for Linear Stability to SHoP 

The following Procedure Sequence is useful in identifying windows of parameter 

values which provide necessary conditions for linear stability to SHoP. This 

Procedure Sequence applies to the parameter regime CfJ 0 < 0 and PI > o. 

Procedure Sequence 

(1). Choose values of R > 0 and CfJo < o. 

(2). Choose a value of S. 

(3). Choose Po,b < Po < Po,r' where 

(4). Check the value of lfIA = PI + CfJo to establish if the stability condition 

lfI A = PI + CfJ 0 < 0 is satisfied. If it is satisfied go to next step. If it is not satisfied 

go back to (3) to choose a different value of Po. The closer the value of Po is to 

f3o,b the closer f31 is to O. 

(5) . Evaluate Yo consistent with the value of S selected in step (2) by using the 

following relationship derived from the definition of S , eq. (3-10), 
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Example: 

(1). Choose values of R> 0 and CPo < 0: R = 10, CPo = -0.4 

(2). Choose a value of S: S = 2 

(3). 

Choose: 2.4 < f30 < 3.6 

(4). 

The stability condition lJIA =.f31 + CPo =0.31154-0.4=-0.08846<0 IS 

satisfied. 

(5). Evaluate Yo consistent with the value of S selected in step (2) 

This set of primitive parameter values: R = 10, CPo = -0.4, S = 2, f30 = 3, Yo = 0.0675 

is an example of a choice that guarantees stability of (us!, v Sl) to SHoP. Different 

other choices can be obtained by applying the Procedure Sequence listed above. 
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CHAPTERS 

WEAK NONLINEAR SOLUTION FOR 

THE SPATIALLY HOMOGENEOUS 

PROBLEM 

5.1 Governing Equations for the Spatially Homogeneous Problem 

As in the case of the linear stability analysis , here one needs to impose the condition 

that the stationary solution in the absence of diffusion is stable, for the heterogeneous 

solution to be at all possible. Since the interest in this study is to obtain a complete 

analytical solution to the non-linear problem and not only the linear stability, 

imposing the latter condition implies solving the following homogeneous problem, 

eq. (4-3), prior to attempting the solution to the heterogeneous case 

(a) 

(5-1) 

(b) 

The objective of the present chapter is to analyze the solution as the values of the 

parameters vary in such a way that for ~A > ° ,lfIA changes from negative when the 

stationary solution is stable via lfI A = ° to lfI A > 0, when the stationary solution looses 

stability and another solution takes over. The analytical solution to eq. (5-1) is 

obtained by applying the weak nonlinear method of solution. It consists of expanding 

the dependent variables u and v in terms of a small parameter representing its 

distance from a critical value that is established by the linear stability analysis as 

shown in what follows. The special case when qJo = 0 is particularly interesting and 

therefore is considered as a demonstration of the validity of the weak nonlinear 

method of solution. For this particular case when qJo = 0 eq. (5-1) takes the form 
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(a) 

(5-2) 

dv 
-=Y -f3 U dt 0 0 

(b) 

It produces one non-trivial stationary solution (( du/ dt) = 0, (dv / dt) = 0) in the form 

(5-3) 

where £ = f3 of Yo' The particular conditions Yo> ° and consequently f3 0 > 0, the latter 

being necessary for dealing with a biologically meaningful stationary solution Us > 0, 

are being considered. 
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5.2 Asymptotic Expansion, Scales and Parameters 

Using f30 as the control parameter for the asymptotic expansion and its critical value 

f3o,cr' that is obtained from the linear stability solution corresponding to neutral 

stability, i.e. eq. (4-35) applied to the conditions when CPo = 0 in the form 

& ~A >0 (5-4) 

yields explicitly upon substituting the expression for f31 from (3-26a) 

(R-l) 
Us = 

2R 
for neutrally stable conditions (5-5) 

which combined with eq. (5-3) leads to the critical value of f30 in the form 

or (5-6) 

One can now define the small expansion parameter £« 1 in terms of the relative 

distance of f30 from its critical value f3o,cr as follows 

(5-7) 

The expansion of the dependent variables u and v has therefore the form 

(5-8) 

(5-9) 

Also the parameter f30 can be expanded by using the finite series obtained from eq. 

(5-7) in the form 

(5-10) 

Introducing a slow time scale and hence replacing t with t --7 t + 't , where 't = £ 2t 

represents the slow time scale, and substituting the expansions (5-8) and (5-9) into the 

equations (5-2) yields a hierarchy of differential equations at the different orders. The 

latter is obtained by grouping terms of like powers of £. At the leading order one 

obtains the equations for the stationary solution, at order £ the equations are very 
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similar to the linear stability analysis equations and its solutions can be obtained up to 

the value of an unknown amplitude which is time dependent. At order £2 the solutions 

produce a homogeneous and a particular solution. Finally, at order £ 3 a solvability 

condition obtained by imposing the requirement for a finite amplitude solution 

provides an equation for the time evolution of the 0(£) amplitude as well as for the 

frequency correction. The latter amplitude equation has a closed form solution that 

yields a complete analytical result to the problem, however its accuracy is very high 

only in the neighborhood of the critical value of Po' i.e. around Po "" Po,cr' such that 

£« 1 ( see eq. (5-7) ) and not too far away from the stationary solution. As one 

moves away from Po "" Po,cr' or when the amplitude becomes large so the solution 

moves quite far from the stationary point, the accuracy of the analytical solution 

obtained via the weak nonlinear method is gradually compromised. Nevertheless, the 

advantage of having a completely analytical solution to the nonlinear problem, even 

when it is limited in terms of accuracy around Po "" Po,cr and small amplitudes, is of 

great value. It allows to identify what solutions may occur under different conditions 

and not only to identify the linear stability conditions. 

The following example shows the major difference between the linear stability 

results and the weak nonlinear solution, as well as a comparison of the weak nonlinear 

results with a direct numerical solution of equations (5-2). The latter was obtained by 

using a standard Runge-Kutta solver to double precision from the IMSL Library 

(1991) (DIVPRK) up to a desired tolerance for error control specified by the 

parameter tal . This comparison demonstrates the very high accuracy of the weak 

nonlinear method in the neighborhood of f3
0 

"" f3o,cr and small amplitudes, and the loss 

of accuracy as the parameter value departs from f3
0 

"" f3o,cr or when high amplitude 

oscillations occur. 

Substituting expansions (5-8) and (5-9) as well as (5-10) and replacing t with 

t -7 t + r, where r = £2 t , into the equations (5-2) yields 

, T04Q09 7 
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(5-11) 

~ 2 dV2 3[dV3 ~] - (-f3 )-E + E + E + - roo cr Us 
dt dt dt dr ' 

(5-12) 

where f33 and f3s are defined in eq. (3-26). 

By grouping now the terms containing like powers of E and requiring that they 

balance each other in each of the equations (5-11) and (5-12) yields separate 

equations at the different orders. 
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5.3 Leading Order Solution at 0(1) 

By using the leading order, 0(1), terms in eqs (5-11) and (5-12) respectively, leads to 

Yo-f3ocr US =O 

producing the stationary solutions at the leading order in the form 

Yo us=-
/3olcr 

(5-13) 

(5-14) 

(5-15) 

(5-16) 

By substituting (5-6) into (5-16) yields the stationary solution in the following form 

(5-17) 

v =_ (R-lr 
S 4R (5-18) 
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5.4 Solution at Order o( E) 

At order 0(8) one collects the terms in eqs (5-11) and (5-12) that correspond to the 

power of 8' leading to 

(5-19) 

dv, f3 dt = - o,er~ (b) 

Dividing eq. (5-19a) by (1+R us) and using the definition of f3, and f32 form eq. 

(3-26a,b) produces the linear set of equations 

(a) 

(5-20) 

(b) 

Since at neutral stability conditions applicable to these equations f3, = 0 according to 

eq. (5-4) and therefore by using eq. (3-26a) it implies also f33 = 0, eq. (5-20) can be 

presented in the equivalent form 

d~ --f3v =0 dt 2 , 

dv, f3 -+ -0 dt o,er ~ -

(a) 

(5-21) 

(b) 

The 0(8) solutions to equations (5-21) have to account for the fact that they are 

evaluated at neutral stability and hence the real part of the eignevalues vanishes, i.e. 

for ..1., ,2 = Ar ± iAi : Ar = 0 and Ai = ~, where ~A = f30 f32. Otherwise at slightly 

supercritical values of f3
0 

the solution will grow indefinitely, a result that one would 

like to avoid. It is for this reason that the amplitudes of the solutions at this order are 

allowed to vary over the slow time scale 1:, while the value of Ar = 0 is used at this 

order. With this latter argument applied, the solution to eq. (5-21) has the form 
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ia I B' -ia lb' ( ) b ( ) ul = Ble 0 + Ie 0 = 115m a ot + 12 COS a ot (a) 

(5-22) 

C ia I C' -ia I • () () VI = Ie 0 + le o = CII sm a 0 t + CI2 cos a 0 t (b) 

where the following notation replaces Ai 

(5-23) 

being the basic frequency of the oscillations, and where Blr) and B;(r), 

CI(r) and C;(r) are complex conjugate amplitudes of U, and VI respectively. They 

depend on the slow time scale r and their values are to be established from this weak 

nonlinear solution. To establish the value of the basic frequency a o explicitly one 

may use the definition of /32 from eq. (3-26b) in connection with the stationary 

solution of Us = Yo/ /3o,cr = (R -1)/2R from eqs. (5-16) and (5-18) in the form 

(5-24) 

into the defini tion of a 0 to yield 

(5-25) 

Substituting the solution (5-22) into the equations at this order (5-21) reconfirms the 

result for /3o,cr from (5-6), which was obtained from the linear stability analysis. 

The expression for the basic frequency is occasionally presented in terms of a~ , i.e. 

(5-26) 

In addition, substituting the solution (5-22) into the equations (5-21) produces 

relationships between the o( c) coefficients in the form 

(5-27) 

(5-28) 
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(5-29) 

The ratio (J aI f32 ' which appears in eqs. (5-27), (5-28) and (5-29) is evaluated to be 

(5-30) 
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5.5 Solution at Order 0(£2) 

At order 0(£2) one collects the terms in eqs (5-11) and (5-12) that correspond to the 

power of £ 2 leading to 

(a) 

(5-31) 

(b) 

Dividing eq. (5-31a) by (1 + R us) and using the definitions of f31 = f32 f33' f32 = Us / f34 

and f34 = (1 + R us) from eqs. (3-26 a,b,d), and the relationship f3o,cr Us = Yo from eq. 

(5-16) transforms equation (5-31) into the form 

(5-32) 

(b) 

Equation (5-32) can then be presented in the form 

[~-f3 Ju -f3 v = f3s 
112 +_1 uv -~ Il . dUI (a) 

dt I 2 2 2 f34 ·' f34 I I f34 ·' dt 

(5-33) 

(b) 

By using now the fact that at neutral stability conditions applicable to these equations 

f31 = 0 ( eq. (5-4) ) and f33 = 0 ( eq.(3-26a) ) transforms eqs. (5-33) into the following 

reduced form 

dU2 -f3v = 
dt 2 2 

(a) 

(5-34) 
dV 2 - + f3 0 cr u2 = - Yo 
dt ' 

(b) 
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where use was made of the fact that according to eqs. (3-26) with f33 = 0 one obtains 

the relationship f3s/ f34 = -Rf32· 

Equations (5-34) form a coupled linear system. From eq. (5-34) it is easy to observe 

that the left-hand-side operator of the equations is identical to the one that appears in 

eq. (5-21) at order 0(8) and operates on ul and VI. The major difference is in the form 

of the right-hand-side terms. While at order 0(8) the right-hand-side terms are zero 

and the equations are homogeneous, the 0(82
) equations (5-34) contain terms on their 

right-hand-side, which depend on the solution at 0(8). Since the solution at order 

0(8) is known and given by eq. (5-22) it becomes possible to derive the analytical 

solution to eq. (5-34) at order 0(82
). It consists of the superposition between a 

homogeneous and a particular solution in the form 

(a) 

(5-35) 

(b) 

where (U2H ' V 2H ) is the homogeneous part of the solution and (u2P ' v2P ) represents the 

particular solution. The homogeneous part of the solution satisfies the system of 

equations 

(a) 

(5-36) 
dV 2H --+f3 U = 0 dt o, er 2 H (b) 

while the particular solution satisfies the equations 

(a) 

(5-37) 

(b) 

Since the homogeneous part of the system (5-34) is identical to the equations solved 

at order 0(8), the homogenous solution should also have an identical form as 

eq. (5-22), i.e. 
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ia I B' -ia lb' ( ) b (t) U2 H = B2e 0 + 2e 0 = 21 sm a 0 t + 22 cos a 0 (a) 

(5-38) 

(b) 

where the relationship between the coefficients is similar to eq. (5-27) at order 0(£) 

in the form 

(5-39) 

To derive the particular solution one needs to decouple the equations (5-37a) and 

(5-37b) in order to obtain one equation for u2P only, and another equation for v2P 

only . Decoupling the equations is accomplished by using (5-37a) to express v2P in 

terms of the other variables in the form 

(5-40) 

and substitute it into eq. (5-37b) to yield 

(5-41) 

where the relationship a~ = f3J3o,cr from eq. (5-23) was substituted in (5-41). 

Applying the same process on eq. (5-37b) to isolate u2P yields 

f3 n,er 

(5-42) 

which upon substitution into (5-37a) produces 

(5-43) 

Equations (5-41) and (5-43) represent the decoupled form corresponding to the 

system (5-37). The explicit and tedious evaluation of the terms on the right-hand-side 

of eq. (5-41) is presented in Appendix 1, and the right-hand-side of eq. (5-43) is 

presented in Appendix 2. These terms act as forcing functions and they impact 
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directly on the form of the solutions u2P and v2P ' The results from Appendices 1 and 

2 are 

(5-44) 

[ 
i a f3 (R f3 - 1) ] . RHS(5 - 43) = R 2 + 0 o,er 2 B 2 e ,2u o t + 

a 0 f32f34 1 

(5-45) 

These forcing functions suggest particular solutions of the form 

(a) 

(5-46) 

C i2u o t C -i2u o t C 
v2P = 2 1 e + 22 e + 20 (b) 

Substituting the particular solution (5-46a) and the RHS expressions (5-44) into 

(5-41) yields 

(5-47) 

Equating the terms on the left-hand-side with these on the right-hand-side of (5-47) 

yields the values of the coefficients of the particular solution in the form 

(5-48) 
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= [ 2(1- f32R) _ i 2f32R] B'2 
B22 3u 30" I 

s 0 

(5-49) 

(5-50) 

where use was made of eq. (3-26h) , i.e. f32f34 = us' 

Substituting the particular solutions (5-46b) and the RHS expressions (5-45) into 

(5-43) yields 

(5-51) 

Equating the terms on the left-hand-side with these on the right-hand-side of (5-51) 

yields the values of the coefficients of the particular solution in the form 

(5-52) 

(5-53) 

(5-54) 

The complete solution at this order becomes 

u = B eiao( + B' e-iao( + B ei2ao( + B e-i2ao( + B 
2 2 2 21 22 20 (a) 

(5-55) 
v = C eiao( + C' e-iao( + C ei2aot + C e-i2ao( + C 

2 2 2 21 22 20 (b) 

where the values of the coefficients are defined in eqs.(5-48), (5-49), (5-50), (5-52), 

(5-53) and (5-54), and the relationship between the 0(£2) coefficients of the 

homogeneous solution is given by eq. (5-39) . 
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5.6 Solvability Condition at Order 0(£3) 

At order 0(£3) one collects the terms in eqs (5-11) and (5-12) that correspond to the 

power of £ 3 leading to 

(5-56) 

dU2 du, ( ) du, 
R'L--Ru -- I+Ru -

--I dt 2 dt s dr 

dV3 f3 dv , -+ u -- --dt f3o,cr 3 - o,er ~ dr (5-57) 

By using now the fact that at neutral stability conditions applicable to these equations 

f31 = 0 ( eq . (5-4) ) and f33 = 0 ( eq. (3-26a) ), and dividing eq. (5-58) by (1 + R us) 

and using the definitions of f31 = f32 f33, f32 = Us / f34 and f34 = (1 + R us), f3s = - R Us 

from eqs. (3-26), and the relationship f3o,cr Us = Yo from eq. (5-16), transforms eq. (5-

56) into the following reduced form 

R dU2 R du, d~ 
-u---u---
f34 I dt f34 2 dt dr 

Equations (5-58) and (5-57) can then be presented in the following form 

d u3 _ f3 v = RHSI 
dt 2 3 

(a) 

dV3 
- + f3

0 
c u3 = RHS2 dt ' r 

(b) 

(5-58) 

(5-59) 

where RHS1 and RHS2 are terms on the right-hand-side of eqs.(5-59a,b), which 

depend on known solution from previous orders 0(£) and 0(£2), and are defined 

from eqs. (5-58) and (5-57) in the form 
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dV I RHS2=-f3 u--
o,er I d1: (5-61) 

Equations (5-59) form a coupled linear system, From eq. (5-59) it is easy to observe 

that the left-hand-side operator of the equations is identical to the one that appears in 

eq. (5-21) at order O(c) and operates on (~, VI)' and in eq.(5-34) at order 0(£2). The 

major difference is in the form of the right-hand-side terms. Since the solutions at 

orders 0(£) and 0(£2) are known and given by eq. (5-22) and (5-55) it becomes 

possible to derive the analytical solution to eq. (5-59) at order 0(£3), provided the 

forcing terms on the right-hand-side do not have a functional form identical to the 

homogeneous solution. When some of the forcing terms on the right hand sides of 

eqs. (5-59) have functional forms identical to the homogeneous solution, i.e. eiUo 
I or 

e- iU o l they force particular solutions of the form te iU o l or te- iUol
( or equivalently 

tSin(aot), tcos(aot) ) that are not bounded and grow indefinitely. These are 

conditions recognized as resonance. In order for the solution to be finite one needs to 

impose the condition that the coefficients of these resonant terms vanish. As a first 

step the decoupling of equations (5-59a) and (5-59b) is required. 

Decoupling equations (5-59a) and (5-59b) is accomplished by expressing V3 from 

(5-59a) in the form 

1 dU3 1 
V3 =-----RHS1 

f32 dt f32 
(5-62) 

and substituting it into (5-59b) to yield 

(5-63) 

Substituting into eq. (5-63) the relationship a~ = f32 f3o, cr from eq. (5-23) yields 

d2 u d(RHS1) 
_ 3 + 0'2 U = + f3 (RHS2) dt 2 

0 3 dt 2 (5-64) 
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Alternatively, expressing u3 from (5-59b) in the form 

1 dV3 1 
u

3 
=-----+--RHS2 

f3o,cr dt f3o,cr 
(5-65) 

and substituting it into (5-59a) yields 

d2V3 2 = _ d(RHS2) _ f3 (RHSI) 
2 + (j 0 V 3 ocr 

dt dt ' 
(5-66) 

The interest in these derivations is to obtain the condition that guarantees a finite 

solution at this order, and not necessarily to derive this solution. Therefore the aim is 

to evaluate only the resonant terms in the right-hand-side of eq. (5-64) or (5-66). The 

explicit and tedious evaluation of the terms on the right-hand-side of eq. (5-64) is 

presented in Appendix 3. The results are 

(5-67) 

C.C . + n.r.t. 

where c.c. stands for "complex conjugate" terms, and n.r.t. stands for "non-resonant 

terms", Substituting the relationships for the coefficients defined in eqs. (5-27), (5-

39), (5-48), (5-50), (5-52) and (5-54) into (5-67) and equating these resonant terms to 

zero produces the following equation 

(5-68) 

Equation (5-68), obtained as a solvability condition of the equations at order 0(£3), 

represents an equation for the time evolution of the amplitude of the solution at order 

0(£). 
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5.7 Amplitude Equation, Bifurcation Structure and Solution 

The amplitude equation (5-68) can be presented in the simplified form 

(5-69) 

by introducing the notation 

(5-70) 

(5-71) 

A further simplification is accomplished by multiplying eq. (5-69) by £ 3 and 

reintroducing the original time scale by back-substitution of r = £ 2t , to obtain 

(5-72) 

By introducing the notation 

B=£B, and B*=£B: (5-73) 

into eq. (5-72) yields 

(5-74) 

or the alternative form 

(5-75) 

To analyze and solve the amplitude equation (5-75) it is more convenient to 

introduce the polar representation of complex variables in the form 

B = re I I B = re- I 
I B B = r I r = B ·e * ·e * 2 I I (5-76) 
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Correspondingly, the values of the complex constants HI and H 2 are also separated 

into real and imaginary parts by using the following notation 

H2 =X+is (5-77) 

where X, 1], P and s are real constants defined from explicit simplifications of 

(5-70) and (5-71) in the form 

(5-78) 

(5-79) 

(5-80) 

(5-81) 

By substituting (5-76), (5-77) , (5-78), (5-79), (5-80) and (5-81) into (5-75) yields two 

equations, one for the absolute value of the amplitude, r , and the second for the phase 

angle e, in the form 

d r ( 2 2) -=X1]E-r r 
dt 

(5-82) 

de 2 2 
-=pE -sr 
dt 

(5-83) 

Equation (5-83) represents also an expression for the frequency correction to the basic 

. 2 2 
frequency (j 0 ' i.e. e = p E - sr . 

The steady state solution to the amplitude equation (5-82) corresponding to the 

post-transient solution to ul and VI is obtained by setting the time derivative term in 

(5-82) equal to zero, in the form 

(5-84) 
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The solutions to (5-84) are 

~O) = 0 

corresponding to the case when the stationary solutions are stable, and 

r2 = £2 TJ 

or 

(5-85) 

(5-86) 

(5-87) 

corresponding to the case when the stationary solutions loose stability in the linear 

sense. Replacing the definition of £ in eq. (5-87) transforms the steady state solution 

to the form that is explicitly expressed in terms of f30 

/3o,cr 
(5-88) 

TJ (f3o - f3o,cr) 

The graphical description of the amplitude r following (5-88) is presented in Figure 

5.1 representing a bifurcation diagram. Clearly, for f30 2:: f3o,cr the expression under the 

square root is non-negative as long as TJ> O. From equation (5-78) it is obvious that 

TJ> 0 and therefore the bifurcation is forward. The fact that the amplitude r 

represents the coefficients of a solution that oscillates in time identifies this type of 

bifurcation as a Hopf bifurcation. The frequency correction at steady state is obtained 

by substituting (5-86) into (5-83) 

(5-89) 

The transient solution to eq. (5-82) is obtained by direct integration starting in 

representing the equation as 

(5-90) 

producing after integration of both sides 

(5-91) 

where Co is the integration constant. Eq. (5-91 ) is further presented in the form 
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Bifurcation Diagram 
r Hop! Bifurcation 

1.2 .---------r-----+---------,---~ 

0.8 1 ~ ;; I ,mm 

0.4 ----- .................. . 

:.... 0 1----,;;:..;-----+-----1 

-0.4 

-0.8 

-1.2 "---------'------'---------'---------' 

-1 -0.5 o 0.5 

Figure 5.1: Bifurcation diagram identifying a forward Hopf bifurcation. 
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(5-92) 

where b
o 

is the amended integration constant. From eq. (5-92) the transient solution 

of r can be derived algebraically in the form 

2 17£2 

r = [1+( '1r:' -1)eXP(-ZX'l £2t)] 
(5-93) 

where ro represents the initial conditions of r. The corresponding transient solution to 

the frequency correction 8, is obtained by substituting (5-93) into (5-83) 

(5-94) 

and the phase angle 8, by integrating (5-94) 

(5-95) 

leading to the solution 

(5-96) 

where 80 represents the initial conditions for the phase angle. 
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5.8 Complete Weak Nonlinear Solution and Numerical Method of 
Solution 

The complete weak nonlinear solution is obtained by replacing eqs. (5-76) and 

(5-27) into the 0(8) solutions, eq. (5-22), in the form 

(5-97) 

(5-98) 

= 

and using the amplitude solution for rand e, from (5-93) and (5-96). Then, 

substituting these solutions into the expansions of U and v, (5-8) and (5-9), up to 

order 0(8) yields 

(R-l) 
U = Us + 8 U\ = ( 2) + 2 r cos( a 0 t + e) 

2R 1+8 
(5-99) 

(5-100) 

Since the initial conditions are given in terms of uo' v 0 and in eqs. (5-99) and 

(5-100) the initial conditions are required in terms of rand e, a conversion is o 0 

necessary. The objective of this conversion is formulated in the following form: 

"given u
O

' V o ----j find ro, eo" . The equivalent initial conditions are being derived by 

using (5-99) and (5-100) at t = 0 in the form 

(R-l) 
Uo = ( 2) +2 ro cos(eJ 

2R 1 + 8 7 

(5-101) 
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(5-102) 

Then the solution to the algebraic system yields the expressions of ro and 80 in the 

form 

(5-103) 

(5-104) 

For any initial conditions of u
O

' v 0 one can use eqs. (5-103) and (5-104) to establish 

their equivalent initial conditions in terms of ro and 8
0

, to be used in the weak 

nonlinear solution (5-99) and (5-100). The latter solution is analytically expressed and 

it is expected to be valid for values of f« 1, meaning that f30 is in the neighborhood 

of f3o,cr . The next section provides examples of results obtained by using this weak 

nonlinear solution compared with numerical results. 
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5.9 Results and Discussion 

5.9.1 - An Example Demonstrating the Comparison between the Weak 

Nonlinear Method with the Linear Stability Analysis using a 

Numerical Solution for Benchmarking 

The linear stability analysis, which is the most widely used tool for analytical 

prediction, produces criteria for stability. As an example, for Yo = 1 and R = 5 the 

critical value of f3
0 

following eq. (5-6) is f3o,cr = 2.5. The linear stability analysis 

anticipates that all small perturbations to the stationary solution (5-17), (5-18) decay if 

the value of f3 is smaller than f3 and grow via oscillations that their amplitude o o,er 

diverges when f3 > f3 . The latter occurs because the linear stability solutions o o,er 

(4-26) have the form 

UI = eA,t [Blsin(AJ) + B2 coS(AJ)] (a) 

(5-105) 

VI = eA
, t[ CI Sin(A;t) + C2 COS(A;t)] (b) 

with Ar = lfI A /2 . For Yo = 1 and R = 5, f3o,cr = 2.5. Therefore for f30 > 2.5 

Ar = lfI A /2> 0 and the amplitude of the oscillations increases exponentially and 

diverges . The following numerical solution presented in Figure 5.2 demonstrates this 

anticipation based on the linear stability analysis by applying a direct numerical 

method of solution to equations (5-2). The latter was obtained by using a standard 

Runge-Kutta solver to double precision from the IMSL Library (1991) (DIVPRK) up 

to a desired tolerance for error control. 

However, in reality, if the numerical solution is obtained for a sufficiently long 

time range the exponential divergence of the amplitude can be shown to be limited 

leading eventually to a finite amplitude as presented in Figure 5.3. From Figure 5.3 it 

is obvious that the amplitude does not diverge but rather stabilizes and the solution 

shows large amplitude oscillations at post-transient conditions which can be better 

observed by zooming within the post-transient time range 1500 < t < 1680 as 

presented in Figure 5.4. 
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u supercritical 
0.5 

0.45 .... .. ~ . .. ---.... ........ ~ --. -.. -.......... ~ . . . . . -.. --....... ; .. . ...... ~. . _. ~ . -

0.4 

0.35 

0.3 
o 100 200 300 400 500 600 700 800 

time 

Figure 5.2: Numerical solution showing the apparent exponential divergence of the 

amplitude for Yo = 1 and R = 5, /30 = 2.56 > /3o,cr = 2.5. Short term results. 

supercritical conditions 
0.7 

u 
0.6 -- -- -- -- - ._ .. -.................. ........... ------.--.- .. . 

0.5 .................. _-_.. . ............... _-_ .. -.. -... . 
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0.3 

0.2 

0.1 
o 200 400 600 800 1000 1200 14bo 1600 

time 

Figure 5.3: Numerical solution showing the finite amplitude results for Yo = 1 and 

R = 5, /30 = 2.56> /3o,cr = 2.5 . Long term results . 
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supercritical conditions 

0.7 

------- -------- -----
r ·1 \ ! 

0.6 ~- ------- r ---- ------- ------- -- ----- ------ ------- ~---+ - ------

1\ 
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0.5 - .---- -- -;--- - ----- ------ - ---- ----- ------ - ------- T - ----- - ----- -- ----- - --- -- ----- -

I: \ 

0.4 --- -- --- ---- --- --- -- --- --- ---- T --- --- ---- --- --- -- iT --- ---- --- --- --- --- -- -- ---- ----- -- -

\ \ 
0.3 ---- -- --- -- -- ---- - ---- -- ---- -- -\- -- ---- -- ---- - -- -- ----- -- ---- -- ----- -- - ---- -- ----- -- ---- -

\ 

0.2 
_______ LL-

0.1 i i 

1520 1560 

_ ... _ ... . __ ..... __ ._. __ .. _l __ .. _. '_ ... . ~ .. -.. J -------

i 

1600 

time 

1640 1680 

Figure 5.4: Numerical solution showing the post-transient results 1500 < t < 1680, for 

yo=1and R=5, {3o=2.56>{3o,cr=2.5. 
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5.9.2 - A Comparison between the Weak Nonlinear Results and a 

Numerical Solution for Benchmarking 

On the other hand the weak nonlinear method produces results based on eqs.(5-99) 

and (5-100) that are presented in Figure 5.5 in comparison to the accurate numerical 

results. Although the post-transient oscillations have large amplitudes (hence the 

weak nonlinear method is not so accurate in this parameter range) the comparison 

shows an excellent qualitative match, both solutions leading to finite amplitude 

oscillations at the post-transient state. It is difficult to observe the oscillations in Fig. 

5.5, but the envelo'pe of the solution is evident. 

0.7 

0.6 

supercritical conditions 

u numerical 

u analytical ........... __ .:--- ............. _-

0.5 ---- --.- ............... -----.-- .......... -- ... --- .. . 

0.4 

0.3 

0.2 

0.1 
o 

. . . .. .... : [ ·r ....... . 

200 400 600 800 

time 
1000 1200 1400 1600 

Figure 5.5: Numerical results compared to the weak nonlinear solution for Yo = I and 

R = 5, f30 = 2.56 > f3 = 2.5. o,er 
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In addition, the quantitative comparison (Figures 5.6 and 5.7) shows also that the 

weak nonlinear solution is not far from the accurate numerical results. Obviously, the 

further away the value of f30 is from its critical value, f3o,cr = 2.5 and the larger the 

amplitude of the oscillations, the less accurate the weak nonlinear solution becomes. 

However, for small amplitudes and in the neighborhood of f3o,cr = 2.5, the weak 

nonlinear results are expected to produce the only reliable analytical solution. Figures 

5.7 and 5.8 show a comparison between the weak nonlinear results and numerical 

results obtained at f30 = f3o,cr = 2.5 . Numerical values of u differ by less than 10-4 on 

average from the weak nonlinear ones. 

The sample of results presented so far show the strength (and limitations) of using 

the weak nonlinear method of solution to obtain analytical results that can provide 

guidance of the parameter regimes where accurate numerical results or experiments 

are desirable. 
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supercritical conditions 
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Figure 5.6: Numerical results compared to the weak nonlinear solution for Yo = 1 and J 

R = 5, f30 = 2.56> f3o,cr = 2.5. Quantitative comparison shows a very good match for 

time range 0 < t < 250. For small times, i.e. small amplitudes the match looks better 

than for longer times. 
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Figure 5.7: Numerical results compared to the weak nonlinear solution for Yo = I and 

R = 5, f30 = 2.56> f3o,cr = 2.5. Quantitative comparison shows a quantitative 

deterioration in accuracy for time range 1500 < t < 1680. For long times, i.e. large 0 

amplitudes the accuracy of the weak nonlinear results is somewhat compromised in 

both the frequency of oscillations as well as the amplitude value. 
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Figure 5.8: Numerical results compared to the weak nonlinear solution for Yo = 1 and 

R = 5, f30 = f3o,cr = 2.5. 
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Figure 5.9: Numerical results compared to the weak nonlinear solution for Yo = 1 and 

R = 5, /30 = /3o,cr = 2.5. Inset into the post-transient time range 350 < t < 420. 
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CHAPTER 6 

LINEAR STABILITY ANALYSIS TO 

SPATIALLY HETEROGENEOUS 

PERTURBATIONS (SHeP) 

6.1 Linear Stability of the Nontrivial Stationary Solutions (US\ ,2 1 VS\,J 

The equations considered in the spatially heterogeneous case are eqs. (2-14) in the 

form 

~ U
t 

= GIn "\12 
U + [ 1 - U + ( v-I) 1 U 

u (l+Ru) 
(a) 

(6-1) 

av 1 2 
-=-"\1 v+y -[3 u+rn v at Rn 0 0 't' o 

(b) 

where the dimensionless groups appearing in (6-1) are defined as 

Gn = f.1.H: Rn = f.1.H: S _ k.8. 
D. I 

I n - 2 ' 
£X. f.1. mo' 

R=r;" . 8. , y = Yo +y\ U,' 
(6-2) 

[30 = Sn - y\ 

where Gn represents a Growth Number, Rn is a Resource Number, Sn is a Storage 

Number and R = r;" . 8. is a Biomass Number. It is convenient for the following 

derivations to represent eqs. (6-1) in the equivalent form obtained by multiplying 

(6-1a) by (1 + R u) leading to 

( )aU (l+ R u) [ 
l+Ru -= "\1 2u+ (R-1)u-Ru 2 +v Ju at Gn (a) 

(6-3) 
av 1 2 
-;-=-"\1v+y -[3 u+rnv 
ut Rn 0 0 't' o (b) 
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The boundary conditions applied to this system are represented by (2-10) in the 

following form 

( au) = (au) = 0 
ax x=O,L ay y=O,1 

(a) 

(6-4) 

( av) = ( av) = 0 
ax x=O,L ay y=O,1 

(b) 

By introducing small, spatially dependent, perturbations (SU1fSV1) around the 

stationary solutions (us f V s), u and v take the form 

u= Us +S~(XfYft) (a) 

(6-5) 
(b) 

where s« 1 stands only to indicate that the perturbations are very small. Substituting 

(6-5) into (6-3) and neglecting terms that are 0(S2) or smaller, yields the linear form 

of the equations for the perturbations 

(6-6) 

(b) 

Dividing eq. (6-6a) by (1 + R us) using the equations for the stationary solution (3-5) 

and introducing the definitions of {31 and {32 from (3-26a,b) yields 

(a) 

(6-7) 

(b) 

Similarly, the same procedure applied to the boundary conditions (6-4) leads to 

( a~) (au,) - - - -0 ax x=O, L - ay y= o,l-
(a) 

(6-8) 
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(avlJ = (avlJ = 0 
ax x =O ,L ay y=O,1 

(b) 

The linear equations (6-7) can be presented in the following matrix form 

dW I -=Bw 
dt I 

where WI = [ UI1 VI r, and the matrix B stands for 

B= 
Un V' +/l,J 

The linear system (6-7) has solutions of the following form 

~ = Al COS(KxX) COS(KyY) eAr (a) 

(b) 

(6-9) 

(6-10) 

(6-11) 

The fact that only combinations of cosine functions appear in the linear solution is a 

result of imposing the boundary conditions (6-8). Substituting these solutions into the 

equations (6-7) produces the following equation for the eigenvalues 

where 

(6-13) 

defines the wave number. The following notation is recognized from the linear 

stability analysis to spatially homogeneous perturbations (SHoP) 

(6-14) 

(6-15) 

In addition it can be recognized that the coefficient terms appearing in eq. (6-12) 

represent the trace, lfI B' and the determinant, !1 B , of the coefficient matrix B applied 

on the solutions (~I V I) as follows 
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(Gn + Rn) 2 
IfIB=trace(B)=IfIA- 1( 

GnRn 
(6-16) 

(6-17) 

transforming eq. (6-12) into the following form 

(6-18) 

The solution for the eigenvalues is 

A = IfI B [1 ± ~1 - 4t., 1 
),2 2 1fI ~ 

(6-19) 

The eigenvalues (6-19) combined with the form of the solutions (6-11) provide the 

conditions for small perturbations c ~ (x, Y I t) I cv) (x, Y I t) around the stationary 

solutions (US),2 /V S),2 ) to grow or decay. When A is real and negative or complex with 

a negative real part the perturbations decay and the corresponding stationary solution 

(US)I v S)) or (US2 1 v S2) is stable to Spatially Heterogeneous Perturbations (SHeP), while 

if A is real and positive or complex with a positive real part the perturbations grow 

exponentially and the corresponding stationary solution is unstable. From eq. (6-19) it 

is obvious that for stability of the stationary solutions (US),2 1 v S),2 ) to SHeP one needs 

to impose the conditions 

IfIB<O & (6-20) 

The latter guarantees that the eigenvalues A are real and negative or complex 

conjugates with a negative real part. Presenting inequalities (6-20) explicitly by using 

(6-16) and (6-17) yields 

(Gn + Rn) 2 
IfIA - 1( <0 

GnRn 
(6-21 ) 

and 

(6-22) 
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Since an assumption is made that the stationary solutions are stable to SHoP implying 

that lJI A < 0 and since Gn> 0, Rn > 0, and the 1(2 is positive by definition, the first 

condition, (6-21), for stability of the stationary solutions to SHeP is unconditionally 

satisfied. The second condition (6-22) can be presented in the form 

(6-23) 

Further expansion of (6-23) leads to 

(6-24) 

Inequality (6-24) implies 

(6-25) 

and 

(6-26) 

as stability conditions to SHeP. For neutral stability A = 0, i.e. Al = lJI 8 < 0 and 

A2 = !18 = 0 one can define the characteristic (or neutral) value of Gn = Gne in the 

form 

(6-27) 

This value is a function of the wave number and it has an asymptote at a wave number 

value of 

(6-28) 

where the denominator of (6-27) becomes zero. The minimum value of Gne in (6-27) 

as function of 1(2 occurs at some wave number, 1(er' and can be obtained by 

evaluating a Gnja1(2 and equating it to zero. This minimum value represents the 

critical value of Gn, i.e. Gncr , and 1(er is the corresponding critical wave number. 

This yields 
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= (2K2 - Rn ({Jo)(f3, K2 - Rn ~A) - 13, (K4 - Rn({J}(2) = 0 

(f3,K2-Rn~A r 
(6-29) 

From eq. (6-29) one obtains an equation for the critical wave number in the form 

(6-30) 

The solution to the quadratic equation (6-30) is 

(6-31) 

where S8 is defined in the form 

(6-32) 

The critical value of Gn is obtained by substituting (6-31) into (6-27) leading to 

G =Rn~A[l ± ~1 _ fJI"', ]2=Rn~A(1±S)2 
ncr 132 ~ 132 8 

, A' 

(6-33) 

An alternative way to present the stability condition is by using (6-33) to define a 

critical value of the ratio Gn/ Rn in the form. 

(6-34) 

Then the stability condition is expressed by 

(6-35) 

where the substitution of the definitions of Gn and Rn from eq. (2-8) produced the 

stability condition in terms of the diffusivity ratio Rg = a. / D • . Since ~A > 0 because 

the stationary solutions are stable to SHoP it is clear from eq. (6-33) that the critical 

value of Gn is always non-negative, i.e. Gncr ;:::: O. While one may wonder about the 

double solution for Gncr and for this purpose also for K~r' the latter should not be of 

concern because some minima (or possibly maxima) of Gnc(K2) may occur at 
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negative values of 1(;r and should be discarded because there is no physical meaning 

to negative values of 1(2. To observe this feature and additional functional forms of 

Gnc (1(2), and in particular the critical values Gncr and 1(;r ' one can evaluate Gne (1(2) 

based on (6-27) for different values of 1(2 and plot it. 

This evaluation was undertaken here for different values of f3" Rn CPo 

(corresponding to CPo < 0, CPo = 0 and CPo> 0) and Rn ~A' The results are presented in 

Figures 6.1-6.8. The stability and instability regions are presented in each Figure. The 

location of all relevant parameters, e.g. the asymptotic value of 1(2, (1(2t, = 2, its 

corresponding critical wave number, 1(;r = 4.828 and the critical value of Gn, i.e. 

Gner = 5.828, that is applicable to CPo < 0 is evident from Figure 6.1. Figure 6.2 

presents the neutral curves for conditions applicable to CPo = 0, showing a reduction in 

the value of Gncr ' Figure 6.3 shows the curves for conditions when 0 < Rn CPo < 1(;" 

where a further reduction in Gncr is observed. Figure 6.4 applies to 0 < Rncpo = 1(;" 

quite a degenerated case, resulting from the fact that Rncpo = 1(;s leading to 

Gnc = 1(2(1(2 -1(;s ) / (1(2 - 1(;s ) f3, = 1(2/ f3" a clear linear function of 1(2. Figure 6.5 

corresponds to 0 < 1(;s < Rncpo' showing a substantial qualitative change. All the 

figures so far considered the indicated parameter values while f3, = 2 > O. In contrast, 

Figure 6.6 deals with the case when f3, < 0 and CPo> 0, while Figures 6.7 and 6.8 

show the neutral curves as applicable to f3, < 0 and CPo < O. The latter clearly show 

that in the whole physical domain represented by the first quadrant, i.e. Gner ~ 0 and 

1(2 ~ 0, the stationary solution is stable to SHeP, except for a very narrow domain of 

low wave numbers and small values of Gnc in Fig. 6.6, where instability may occur. 

One needs to establish at this stage whether oscillatory instability is possible in 

connection with SHeP. If it is then the possibility of standing and/or travelling waves 

should be considered. For the latter to occur the eigenvalues have to be complex. 

From eq. (6-19) it is clear that the condition for complex eigenvalues is 

(6-36) 

which can be expressed in the form 
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(6-37) 

Then the eigenvalues in eg. (6-19) take the form 

A = IIIB [1 ± i ~4tJ., -1 ] 
1,2 2 III; 

(6-38) 

However, in such circumstances III B < 0 because III A < 0, Gn> 0, Rn> 0, K2 > 0, and 

therefore IIIB = iliA -(Gn+Rn)K2jGnRn<0. One may conclude that the stationary 

solution (Us, v s) is stable to small oscillatory Spatially Heterogeneous Perturbations, 

because III B < 0, and according to (6-38) oscillatory perturbations decay. 
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6.2 Summary of Stability Conditions 

The linear stability conditions identified particularly the domain when /3, > 0 and 

({Jo < 0 as a clear window of parameters when it is obvious that Turing instabilities 

may occur if 

Gn> Gncr (6-37) 

The critical values are given by 

] ( ' ) = RnL\, [1 + ~1 /3,({Jo 
Kef, /3, /}.A 

(6-38) 

1 ( ' ) = RnL\, [1 ~1 /3,({Jo 
- -

Kcr 2 /3, /}.A 
(6-39) 

and 

J RnL\, [ ~1 /3,({Jo 
Gncr,' = /3,2 I + -

/}.A 
(6-40) 

J RnL\, [ ~1 /3,({Jo 
Gncr ,2 = /3,2 1 - -

/}.A 
(6-41) 

The linear stability analysis also provided the conclusion that oscillatory instability 

is not possible in connection to SHeP. 

Finally, an additional subtle result can be established from the linear stability 

analysis to SHeP. The results show that it is not possible to distinguish in terms of 

linear stability between the wave numbers in the x and y directions. While solutions 

that include Kx and Ky were explicitly considered in eq. (6-11), the results turned out 

to depend only on the combination K2 = K; + K~. This degeneracy occurs frequently in 

this type of problems. It is indeed difficult to indicate a physical or biological reason 

of why the solution should prefer a particular direction. Therefore, based on this 

conclusion that no preferred direction can be established, it is appropriate to present 

the solution as one-dimensional in space, in the form 
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UI = AI COS(KxX ) eAt 

VI = BI COS(KxX ) eAt 

(a) 

(b) 
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6.3 Conditions for Occurrence of Turing Instability 

In this section the interest is focused to formulate the conditions for occurrence of 

Turing instability. These conditions are just the opposite to the conditions developed 

for stability of (Us I V s ) to small Spatially Heterogeneous Perturbations. When the 

stationary solution is stable to SHoP but unstable to SHeP it is expected to obtain 

Turing instabilities. For this to occur, from eq. (6-20) it implies that the condition for 

Turing instability to occur at least one of the following conditions has to be satisfied 

lfIB>O or (6-43) 

This implies 

(Gn + Rn) 2 
lfIA - I( >0 

GnRn 
(6-44) 

or 

(Gn f3\ + RncpJ 2 1(4 
~A - I( + < 0 

GnRn GnRn 
(6-45) 

It was already established that the first condition, (6-44) is not satisfied (see text 

following eq. (6-22) ) and therefore Turing instability may occur only if (6-45) is 

satisfied. This implies 

(6-46) 

where the values of Gncr are given by eqs. (6-40) and (6-41). 

148 



CHAPTER 7 

WEAK NONLINEAR SOLUTION FOR 

THE SPATIALLY HETEROGENEOUS 

PROBLEM 

7.1 Governing Equations for the Spatially Heterogeneous Problem 

The governing equations considered in this chapter are these corresponding to the 

spatially heterogeneous case in the form derived in section 6.1 and represented by eqs. 

(6-3). For convenience of the derivations in what follows they can be expanded 

further into the form 

(7-1) 

av 1 2 
-=-V'v+y -f3 u+mv at Rn 0 0 't' 0 

(b) 

By applying now the conclusion regarding the lack of a preferred spatial direction, 

from the linear stability analysis (section 6.2), implying that it is appropriate to treat 

this problem as one dimensional in space, say in the x direction only, in absence of a 

criterion of preference, eq. (7-1) transforms into 

( ) au ( ) a2u Gn l+R u -a = l+R u --2 +Gn(R-l)u2 -GnRu3 +Gnuv 
t ax (a) 

(7-2) 

(b) 

representing the one dimensional problem in space for heterogeneously distributed 

populations. These are typical diffusion equations with nonlinear source/sink terms 

representing the interaction between the population and nutrient i.e. the rate of 

nutrient consumption! utilization. 
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7.2 Asymptotic Expansion, Scales and Parameters 

By introducing the definition of the small expansion parameter £« 1 in terms of the 

relative distance of Gn from its critical value Gncr as follows 

2 Gn-Gncr £ ==---=-
Gncr 

one can expand the dependent variables u(x ,t) and v(x,t) in the form 

(7-3) 

(7-4) 

(7-5) 

and express the growth number Gn as a finite expansion resulting directly from 

eq (7-3) in the form 

(7-6) 

A slow time scale is introduced by replacing t with t ---7 r (it was established in 

section 6.2 that oscillatory instability should be excluded as a possibility), where 

(7-7) 

represents the slow time scale. Substituting the expansions (7-4) and (7-5) into the 

equations (7-2) yields a hierarchy of differential equations at the different orders. The 

latter is obtained by grouping terms of like powers of £. At the leading order one 

obtains the equations for the stationary solution, at order £ the equations are very 

similar to the linear stability analysis equations, and its solutions can be obtained up 

to the value of an unknown amplitude, which changes in time over the slow time scale 

r only. At order £ 2 the solutions produce a homogeneous and a particular solution . 

Finally, at order £ 3 a solvability condition obtained by imposing the requirement of a 

finite amplitude solution, provides an equation for the time evolution of the 0(£) 

amplitude. The latter amplitude equation has a closed form solution that yields a 

complete analytical result to the problem, however its accuracy is very high only in 

the neighborhood of the critical value of Gn , i.e. around Gn z Gn , such that £« I cr 

( see eq . (7-3) ) and not too far away from the stationary solution. As one moves away 

from Gn z Gncr , or when the amplitude becomes large so the solution moves quite far 
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away from the stationary point the accuracy of the analytical solution obtained via the 

weak nonlinear method is gradually compromised. 

Substituting expansions (7-4) and (7 -5) as well as (7-6) and replacing t with T, by 

using eq. (7-7) in the form t = T/ £ 2 , into the equations (7-2) yields the governing 

equations in terms of the asymptotic expansion variables. By grouping now the terms 

containing like powers of £ and requiring that they balance each other, produces a set 

of separate equations at the different orders. 
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7.3 Solution at Leading Order 0(1) 

The stationary state equations representing terms that are 0(1) can be presented in the 

form 

(a) 

(7-8) 

(b) 

where us{x) and vs(x) are allowed in general to be functions of x . However, the 

particular interest in this study is to consider development of spatial patterns from a 

stable spatially homogeneous state. Therefore, the basic stationary state is taken as 

represented by the constant stationary solution, Us = canst. and Vs = canst. derived in 

section 3.1 and expressed by eqs . (3-11) , (3-12), (3-13) and (3-14) . They satisfy the 

stationary state equations 

{ 

(R ~ 1) u; -R u; + ~s v s = 0 

Yo f30 Us + CfJovs - 0 

(a) 

(7-9) 

(b) 
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7.4 Solution at Order 0(£) 

At order 0(£) one collects the terms in the expanded equations that correspond to the 

power of £1 leading to 

(7-10) 

(b) 

Dividing eqo (7-10a) by (1 + R us) and using the definitions from eqo (3-26) yields 

(a) 

(b) 

The solution to the linear system (7-11) takes the form 

u1 = A/r) cos( /( crx ) 

VI = Blr) cos( /( crx ) 

(a) 

(b) 

(7-11) 

(7-12) 

By substituting eqo (7-12) into (7-11) produces an equation for the wave number 

similar to the equation, which was derived by the linear stability analysis, in the form 

(7 -13) 

leading to the critical values as obtained from linear stability 

(7-14) 

(7-15) 

where 

(7-16) 
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A particularly useful relationship in the following derivations is obtained from (7-14) 

and (7-15) in the form 

(7-17) 

In addition, the substitution of (7-12) into (7-11) leads to the following relationship 

between the coefficients A, (1:) and B, (1:) in the form 

B, (1:) = - j3{J, ( S B ) A, ( T) 
2 1 + S8 

(7 -18) 
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7.5 Solution at Order 0(82
) 

Collecting the terms in the expanded equations that correspond to the power of 8
2 

leads to the equations at order 0(82
) in the form 

(7-19) 

(b) 

Equations (7-19a,b) form a coupled linear system. Comparing with eq. (7-11) it is 

easy to observe that the left-hand-side operator of (7-19a,b) is identical to the one that 

appears in eq. (7-11) at order 0(8). The major difference is in the form of the right-

hand-side terms. While at order 0(8) the right-hand-side terms are zero and the 

equations are homogeneous, the 0(82
) equations (7-19) contain terms on their right­

hand-side, which depend on the solution at 0(8). Since the solution at order 0(8) is 

known and given by eq. (7-12) it becomes possible to derive the analytical solution to 

eq. (7-19) at order 0(82
). It consists of the superposition between a homogeneous and 

a particular solution in the form 

(a) 

(7-20) 

(b) 

where (U2H , v2H ) is the homogeneous part of the solution and (u2P ' v2P ) represents the 

particular solution. The homogeneous part of the solution satisfies the system of 

equations 

(a) 

(7-21) 

-[3 u + - - + rn V = 0 ( 
1 d

2 J 
02 Rnd x 2 '1' 0 2 

(b) 

while the particular solution satisfies the equations 
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(7-22) 

( 
1 d

2 J -(30 u2P + ---2 + qJo v2P = 0 
Rn dx 

(b) 

Since the homogeneous part of the system (7-19) is identical to the equations solved 

at order 0(£), the homogenous solution should also have an identical form as 

eq. (7-12), i.e. 

u2 = A 2 ( r) cos( 1( crX ) (a) 

(7-23) 

V 2 = B 2 ( r) cos( 1( crX ) (b) 

where the relationship between the coefficients is similar to eq. (7-18) at order 0(£) 

in the form 

(7-24) 

To derive the particular solution one needs to decouple equations (7-22a) and 

(7-22b) in order to obtain one equation for u2P only, and one equation for v2P only. 

Decoupling the equations is accomplished by using (7-22a) to express v 2P in terms of 

the other variables in the form 

(7-25) 

and substitute it into eq. (7-22b) to yield 

(7-26) 

It is convenient to introduce the operator notation 

(7-27) 
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(
1 d

2 J .£2 = ---2 + CfJo 
Rn dx 

(7-28) 

and therefore eq. (7-26) takes the form 

(7-29) 

Applying the same process on eq. (7-22b) to isolate u2P yields 

(7-30) 

which upon substitution into (7-22a) produces 

(7-31) 

Equations (7-29) and (7-31) represent the decoupled form corresponding to the 

system (7-22). The explicit evaluation of the terms on the right-hand-side of eq. 

(7-29) is presented in Appendix 4, and the right-hand-side of eq. (7-31) is presented in 

Appendix 5. These terms act as forcing functions and they impact directly on the form 

of the solutions u2P and v2P . The results from Appendices 4 and 5 are 

RHS(7-29) = PI(CfJo _ 21(~rJcos(21(crX)+ PICfJo 
2 Rn 2 

(7-32) 

RHS(7-31)= f3a;1 cos(21(crx) + f3a;1 (7-33) 

where 

(7-34) 

These forcing functions suggest particular solutions of the form 

u2P = A20 cos(21(cr x) + C20 (a) 

V 2P = B20 cos( 21(cr x) + E20 (b) 

(7-35) 

Substituting the particular solution (7-35a) and the RHS expressions (7-32) into 

(7-29) yields 
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(7-36) 

Equating the terms on the left-hand-side with these on the right-hand-side of (7-36) 

yields the values of the coefficients of the particular solution in the form 

(7-37) 

(7-38) 

Similarly, substituting the particular solution (7-35b) and the RHS expressions (7-33) 

into the (7-31) yields 

[
16K:,. 4( f3pn crJ 2 A G]B (2 ) AGE -Rn - CfJo + Rn Kcr + D.A ncr 20 COS KcrX + D.A ncr 20-

(7-39) 

f30PI COS(2K .x) + f30PI 
2 C1 2 

Equating the terms on the left-hand-side with these on the right-hand-side of (7-39) 

yields the values of the coefficients of the particular solution in the form 

B = f30 Rn PI 
20 2[16K:r - 4 (RnCfJo + Gncr (31)K;r + RnGncr!!'J.A] 

(7-40) 

(7-41) 

The complete solution at this order becomes 

(7-42) 

where the coefficients A2Ql C20, B20 , E 20 , are given by (7-37), (7-38) , (7-40) and 

(7-41) , the relationship between B2 and A2 is represented by (7-24) , and PI(AI,BI) is 

defined in eq. (7-34) . 
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7.6 Solvability Condition at Order 0(£3) 

At order 0(£3) one collects the terms in the expanded equations that correspond to the 

power of £3 leading to 

(a) 

(7-43) 

( 
I d

2 J -[3 U3 + --2 + q\ V 3 = RHS32 
o Rn dx 

(b) 

where the right-hand-sides of these equations, RHS31 and RHS32 , take the form 

(7-44) 

av . ( ) RHS32 = a; = B, cos Kcr X (7-45) 

Equations (7-43) form a coupled linear system. From eq. (7-43) it is easy to 

observe that the left-hand-side operator of the equations is identical to the one that 

appears in eq. (7-11) at order 0(£) and in eq.(7-19) at order 0(£2). The major 

difference is in the form of the right-hand-side terms . Since the solutions at orders 

0(£) and 0(£2) are known and given by eq. (7-12) and (7-42) it becomes possible to 

derive the analytical solution to eq. (7-43) at order 0(£3), provided the forcing terms 

on the right-hand-side do not have a functional form identical to the homogeneous 

solution. When some of the forcing terms on the right hand sides of eqs. (7-43) have 

functional forms identical to the homogeneous solution, i.e. cos( K crx), they force 

particular solutions of the form x cos( K crx) that are not bounded as the horizontal 

direction increases, i.e. as L ~ 00. These are conditions recognized as similar to 

resonance. In order for the solution to be finite one needs to impose the condition that 
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the coefficients of these "resonant" terms vanish. As a first step, the decoupling of 

equations (7 -43a) and (7 ~43b) is required. 

Decoupling equations (7-43a) and (7-43b) by expressing V3 from (7-43a) in the 

form 

(7-46) 

and substituting it into (7 -43b) yields 

(7-47) 

Similarly, isolating u3 from (7-43b) and substituting it into (7-43a) yields 

(7 -48) 

The interest in these derivations is to obtain the condition that guarantees a finite 

solution at this order, and not necessarily to derive this solution. Therefore the aim is 

to evaluate only the "resonant" terms on the right-hand-side of eq. (7-47) or (7-48). 

The evaluation of these terms is long and tedious and therefore only their final form is 

presented as follows 

(7 -49) 

where n.r.t. stands for "non-resonant terms". Substituting the relationships for the 

coefficients defined in eqs . (7-37), (7-38), (7-40), (7-41) and (7-24) and equating 

these "resonant" terms to zero produces the following equation 
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where 

(7-51) 

(7-52) 

(7-53) 

(7-54) 

By introducing now the following notation 

(7-55) 

(7-56) 

into eq. (7-50) one obtains the amplitude equation in the form 

(7-57) 

where A) = dA) / dr. 
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7.7 Amplitude Equation, Bifurcation Structure and Solution 

The amplitude equation (7-57) can be presented in the form 

(7-58) 

A further simplification is accomplished by multiplying eq. (7-58) by £ 3 and 

reintroducing the original time scale by back-substitution of r == £ 2t , to obtain 

(7-59) 

By introducing the notation 

(7-60) 

into eq. (7-59) it yields 

d A [ 2 3] -==X£A-sA 
dt 

(7-61) 

or the alternative form 

d A [ 2 2] - == X £ - sA A 
dt 

(7-62) 

The steady state solution to the amplitude equation (7-62) corresponding to the post­

transient solution of u, and v" is obtained by setting the time derivative term in (7-62) 

equal to zero, in the form 

(7-63) 

The solution to (7-63) is 

~o) == 0 (7-64) 

corresponding to the case when the stationary solutions are stable, and 

(7 -65) 

or 

(7-66) 
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corresponding to the case when the stationary solutions loose stability in the linear 

sense. Replacing the definition of c from eq. (7-3) into eq. (7-66) transforms the 

steady state solution to the form that is explicitly expressed in terms of Gn 

A -+ 1,2 --

(Gn-GnJ 

s Gncr 
(7-67) 

The graphical description of the amplitude A based on (7-67) is presented in Figure 

7.1 representing a bifurcation diagram. From eq. (7-67) it is evident that for 

Gn;::: Gncr the expression under the square root is non-negative as long as s> O. For 

the values of parameters used in the following calculations s > 0 and therefore for this 

parameter selection the bifurcation is forward. From the bifurcation diagram 

presented in Figure 7.1 one identifies this type of bifurcation as a pitchfork 

bifurcation. 

From eq. (7-62) the transient solution of A can be derived by direct integration in 

the form 

(7-68) 

where Ao represents the initial condition of A. 
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Figure 7.1: Bifurcation diagram identifying a forward pitchfork bifurcation. 
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7.8 Complete Weak Nonlinear Solution 

The complete weak nonlinear solution is obtained by replacing egs. (7-68), (7-18) and 

(7-60) into the O(c) solutions, eg. (7-12), in the form 

c~ = (a) 

(7-69) 

Then, substituting these solutions into the expansions of u and v, (7-4) and (7-5), up 

to order O( c) yields 

(7 -70) 

(7 -71) 

At steady state these complete weak nonlinear solutions take the form 

(7-72) 

(7-73) 
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7.9 Numerical Method of Solution 

The governing equations, in one dimension, to be solved numerically are identical to 

(7-2) and are presented in the form 

au=_1 ~+[ 1- u + (v-I) Ju 
at Gn a X2 (1 + R u) 

(a) 

(7-74) 

(b) 

The objective of the numerical solution is to use a standard method that provides 

sufficiently accurate results to compare the weak nonlinear solution to them. 

Numerical efficiency is not an objective. Therefore, a simple explicit method of 

solution is used for this purpose. A numerical stability condition on the time step is 

applied in order to ensure that the results are numerically stable. Since the non­

linearity appears in the algebraic terms there is no need for special treatment of this 

non-linearity. A graphical representation of the numerical grid used in the numerical 

solution is presented in Figure 7.2. The numerical scheme based on the explicit 

method for tj = j !1t and X i = i!1x, where !1t is the time step and !1x is the step size 

in the X direction, takes the form 

I ,j Ij = _ 1+ , j Ij 1- ,j + 1-u. ·+1 - u . 1 u. I . - 2u .. + u. I · [ 

!1t Gn !1x 2 

(Vii -1) 
(1 + R uij ) 

(7-75) 

(7-76) 

By using (7-75) and (7-76) the values of u . . I and v .. I at the next time step (J' + 1) 
I , j+ I , j + 

are expressed explicitly in terms of known values from the previous time step j , in 

the form 
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(V ij -I) 
(1 + R uij ) (7-77) 

(7-78) 



where 't:. = !1t/ /1x 2
. The numerical scheme (7-77) and (7-78) applies to all values of 

j=I,2,3, ...... and to values of Xi' \j i=I,2, .... ,N-l. Since the explicit 

boundary values are not known because the boundary conditions are of the form 

(au] = 0 and 
ax x= O,L 

(av] = 0 
ax x=O,L 

(7 -79) 

the following conditions are obtained by introducing "imaginary" grid-points at 

x_I =-!1x \j i=-1 and at xN +, =(N+l)!1x=L+!1x \j i=N+I, (see Figure 

7.2) and discretizing eg. (7-79), in the form 

1L , - U I ' 
-'l,j - , j = 0 

!1x ' 

UNI , -UNI ' 
+ ,j - ,j = 0 

!1x ' 
VI ' -v I ' 

, j -,j =0 
!1x ' 

V N I , - vN I ' 
+ , j - ,j = 0 

!1x 
(7-80) 

leading to 

U_I,j = ~ , j' UN+ I,j = UN_I,j , V _I , j = VI , j , VN +I,j = V N_I,j (7-81) 

With these derivations the numerical scheme (7-77) and (7-78) can be applied to 

values of Xi' \j i = 1,2, .... ,N -1, while the boundary values are being evaluated 

using (7-81) in (7-77) and (7-78) in the form 

Uo '+1 = uo' + 2,t:. (~ - Uo ,) +!1t [ 1 - uO' + 
,j j Gn ,j j j 

(VOj -1) 
(I+Ruoj ) 

(7 -82) 

(7-83) 

(7-84) 

(7-85) 

The value of L was selected to be consistent with the critical wave number that 

was evaluated via the linear stability analysis and weak nonlinear solution, i.e. 

K ef' L = mn \j m = 1,2,3, ... L _ mn _ n 2n 3n 
----,-,-, .... 

Kcr Kcr Kcr Kcr 
(7-86) 
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Figure 7.2: Graphical representation of the numerical grid used in the numerical 

solution. 
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7.10 Results and Discussion 

In all numerical computations a grid size of 201 grid points (N = 200) in the x 

direction was used. The following parameter values were applied to all computations: 

Rn = 1, R = 10, r 0 = 0.0675, f30 = 3 and CPo = -0.4. They correspond to conditions 

identified in section 4.3 .7 as sufficient to guarantee linear stability of the stationary 

solutions to SHoP. The corresponding values of Kcr = 0.82964, Gncr = 5.70269, 

Us = 0.225 v s = -1.51875, 1jI A = -0.08846 < 0 and ~A = 0.083077 > 0 are consistent 

with these parameters. The value of L selected to be consistent with the critical wave 

number was evaluated to be L = 3.7867. Therefore the grid size in terms of the size of 

the increment in the x direction was taken as ~x = 0.0189335 and the time step was 

taken as ~t = 10-5 in all computations. Accordingly, the ratio rll = ~t/ ~X2 was 

evaluated to be rll = ~t/ ~X2 = 2.7896.10-2
• The latter is a sufficiently small value to 

guarantee numerical stability over the whole range of values of Gn considered. The 

value of the parameter Gn was varied gradually from a sub-critical value of 

Gn = 5 < Gncr = 5.70269 and up to a large supercritical value of 

Gn = 25 > Gncr = 5.70269. The computations were allowed to run for sufficiently 

long time until no more changes (to seven significant digits) in the values of U and v 

occurred. This identified the conditions of steady state. The weak nonlinear solution 

derived in the previous sections was used to evaluate the analytical values of u and v, 

which were compared to the numerical results. 

The results of this comparison are presented in Figures 7.3-7.22. Initially, a sub­

critical value of Gn, i.e. Gn = 5 < Gncr = 5.70269, was used. The results 

corresponding to this value of Gn are presented in Fig. 7.3 for u( x), in Fig. 7.4 for 

v( x) and the graphical representation of v vs. u on the phase plane is presented in 

Fig. 7.5. It is evident from these figures that the solution stabilizes at the stationary 

solution Us = 0.225, v s = -1.51875, as expected for this sub-critical case. The results 

corresponding to a slightly super-critical value of Gn, Gn = 5.71> Gncr = 5.70269, 

are presented in Fig. 7.6 for u(x), in Fig. 7.7 for v(x) and the graphical representation 

of v vs. u on the phase plane is presented in Fig. 7.8. The comparison between the 

weak nonlinear solution and the numerical results show an excellent match. The 

difference between the two solutions was evaluated and plotted in Figure 7.9 
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expressed in terms of !:1u (x). From the figure it is observed that this difference is less 

than ±2 .10-3 , an average relative difference of less than 1 %. An even larger super­

critical value of Gn was used to present the results for Gn = 7> Gncr = 5.70269. 

These results are presented in Fig. 7.10 for u(x), in Fig. 7.11 for v(x) and the 

graphical representation of v vs. u on the phase plane is presented in Fig. 7.12. The 

comparison between the weak nonlinear solution and the numerical results show 

again an excellent match. The difference between the two solutions was evaluated and 

plotted in Figure 7.13, expressed in terms of !:1u(x). From the figure it can be 

observed that this difference is less than ± 8.10-3
. The results corresponding to a 

large super-critical value of Gn, i.e. Gn = 15 > Gncr = 5.70269, are presented in Fig. 

7.14 for u( x), in Fig. 7.15 for v( x) and the graphical representation of v vs. u on the 

phase plane is presented in Fig. 7.16. The loss of accuracy of the weak nonlinear 

solution is evident at this value of Gn, which is quite far away from the critical one. 

Actually, the corresponding value of c is c = ~( Gn - GnJ/Gncr = 1.2768, which 

certainly violates the asymptotic expansion condition that c« 1. At even larger 

values of Gn, e.g Gn = 20> Gncr = 5.70269, the solution starts showing signs of 

qualitative change as presented based on numerical results only, in Fig. 7.17 for u(x), 

in Fig. 7.18 for v(x) and in Fig. 7.19 for the graphical representation of v vs. u on 

the phase plane. At a value of Gn = 25 the numerical solution provides evidence of 

the appearance of the second Fourier mode, i.e. the weak nonlinear solution takes the 

form 

u= Us +cu1 = Us + A(2) cos(2Kcr X) 

v = Vs + cV1 = Vs + B(2) cos(2Kcr x) 

(7 -87) 

(7-88) 

The results corresponding to this large super-critical value of Gn, i.e. 

Gn = 25 > Gncr = 5.70269, are presented in Fig. 7.20 for u(x), in Fig. 7.21 for v(x) 

and the graphical representation of v vs. u on the phase plane is presented in Fig. 

7.22, where eqs. (7-87) and (7-88) were used for evaluating the weak nonlinear 

solution. The second Fourier mode in the solution is evident and is captured also by 

the weak nonlinear solution although the accuracy of the latter suffers due to the large 

distance from Gn . cr 
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Figure 7.3: Graphical representation of the steady state weak nonlinear solution u( x) 

compared to the numerical results for a sub-critical value of Gn, i.e. 

Gn = 5 < Gncr = 5.70269. The solution stabilizes at the stationary solution 

Us =0.225. 
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Figure 7.4: Graphical representation of the steady state weak nonlinear solution v(x) 

compared to the numerical results for a sub-critical value of Gn, i.e. 

Gn = 5 < Gncr = 5.70269 . The solution stabilizes at the stationary sol ution 

vs = -1.51875. 
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Figure 7.5: Graphical representation of the steady state weak nonlinear solution v vs. 

U on the phase plane compared to the numerical results for a sub-critical value of en , 
i.e. en = 5 < ener = 5.70269 . The solution stabilizes at the stationary solution 

Us =0.225, Vs =-1.51875. 
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Figure 7.6: Graphical representation of the steady state weak nonlinear solution u( x) 

compared to the numerical results for a slightly super-critical value of Gn, i.e. 

Gn = 5.71> Gncr = 5.70269 . 
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Figure 7,7: Graphical representation of the steady state weak nonlinear solution v( x) 

compared to the numerical results for a slightly super-critical value of Gn , i.e . 

Gn = 5.71 > Gncr = 5.70269. 
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Figure 7.8: Graphical representation of the steady state weak nonlinear solution v vs. 

u on the phase plane compared to the numerical results for a slightly super-critical 

value of Gn, i.e. Gn = 5.71 > Gncr = 5.70269. 
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nonlinear solution and to the numerical results expressed by ~u (x), for a slightly 

super-critical value of Gn, i.e . Gn = 5.71 > Gncr = 5.70269 . The difference is less 

than ±2 .10-3
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Figure 7.10: Graphical representation of the steady state weak nonlinear solution 

u(x) compared to the numerical results for a super-critical value of Gn, i .e. 

Gn = 7> Gncr = 5.70269. 
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Figure 7.11: Graphical representation of the steady state weak nonlinear solution 

v( x) compared to the numerical results for a super-critical value of Gn, i.e. 

Gn = 7> Gncr = 5.70269. 
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Figure 7.12: Graphical representation of the steady state weak nonlinear solution v 

vs. u on the phase plane compared to the numerical results for a super-critical value 

of Gn, i.e. Gn = 7> Gncr = 5.70269. 
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Figure 7.13: Graphical representation of the difference between the steady state weak 

nonlinear solution and to the numerical results expressed by t1u (x), for a super-

critical value of Gn, i.e. Gn = 7> Gncr = 5.70269 . The difference is less than 
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Figure 7.14: Graphical representation of the steady state weak nonlinear solution 

u( x) compared to the numerical results for a large super-critical value of Gn, i.e. 

Gn = 15 > Gncr = 5.70269. The breakdown of the accuracy of the weak nonlinear 

solution is evident. 
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Figure 7.15: Graphical representation of the steady state weak nonlinear solution 

v( x) compared to the numerical results for a large super-critical value of Gn, i.e. 

Gn = 15 > Gncr = 5.70269. The breakdown of the accuracy of the weak nonlinear 

solution is less evident in the solution for v( x). 
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Figure 7.16: Graphical representation of the steady state weak nonlinear solution v 

vs. u on the phase plane compared to the numerical results for a large super-critical 

value of Gn, i.e. Gn = 15 > Gncr = 5.70269. The breakdown of the accuracy of the 

weak nonlinear solution is evident. 
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Figure 7.17: Graphical representation of the steady state numerical results of u( x) for 

a large super-critical value of Gn, i.e. Gn = 20 > Gncr = 5.70269. 
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Figure 7.18: Graphical representation of the steady state numerical results of v( x) for 

a large super-critical value of Gn, i.e. Gn = 20> Gner = 5.70269. 
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Figure 7.19: Graphical representation of the steady state numerical results v vs. u on 

the phase plane for a large super-critical value of Gn, i.e. Gn = 20> Gncr = 5.70269. 
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Figure 7.20: Graphical representation of the steady state weak nonlinear solution 

u(x) compared to the numerical results for a super-critical value of Gn, i.e. 

Gn = 25 > Gncr = 5.70269. The second Fourier mode in the solution is evident and is 

captured also by the weak nonlinear solution although its accuracy suffers due to the 

large distance from Gncr. 
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Figure 7.21: Graphical representation of the steady state weak nonlinear solution 

v( x) compared to the numerical results for a super-critical value of Gn, i.e. 
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Figure 7.22: Graphical representation of the steady state weak nonlinear solution v 

vs. u on the phase plane compared to the numerical results for a large super-critical 

value of Gn = 25 > Gncr = 5.70269. 
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CHAPTERS 

DISCUSSION AND CONCLUSIONS 

A theoretical account of investigating the growth dynamics in heterogeneously 

distributed populations was presented. In particular the problem of the occurrence of 

Turing instabilities and spatial pattern formation was considered. Derivation of 

analytical solutions to the problem of growth of populations in space and in time was 

performed. 

The existing analytical work on Turing instabilities does not go as far as obtaining 

a complete analytical solution to the problem and therefore is limited to producing 

stability conditions only. 

Complete analytical results even when their accuracy is limited to a narrow 

parameter range can provide a tool for validation of numerical solutions and can 

identify the conditions for occurrence or prevention of Turing instability, a tool much 

needed in planning experiments. 

The analytical solutions derived in this study were accomplished by using linear 

stability analyses and the weak nonlinear method of solution. The analytical solutions 

were compared to numerical results obtained via standard differential equations 

solvers showing a very good match within the parameter windows where the 

analytical solutions are expected to be valid. 

This work presents the first application of the Neoclassical Model to the spatially 

heterogeneous problem. It was demonstrated that the linear stability analysis produce 

results that might prompt misleading interpretations. The weak nonlinear results 

provide the complete solution to the nonlinear problem, which are accurate in the 

neighborhood of the critical value of the controlling parameter and for small 

amplitudes . The results also show that solutions, which are oscillatory in time, cannot 

develop spatial heterogeneity, i.e. they are uniform in space. 
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APPENDICES 

Appendix 1: Derivation of the Right-Hand-Side of eq. (5-41) 

This Appendix is dedicated to evaluating the derivation of the terms on the right-hand 

side of eq. (5-41). 

( ) (
dU,2) 1 d(~v,) R d ( d~) RHS 5-41 =-R f3 - +- --- IL- -f3 Y 2 dt f34 dt f34 dt --I dt 2 0 

(AI-I) 

Evaluating initially the terms ~2, (u,v,), and u,(d~/dt) by using the O(E) solution 

(5-22) yields 

Therefore taking the time derivatives of (Al-2), (Al-3) and (Al-4) yields 

d(u, vJ = i2a (B C ei2ao' _ B' C' -i2ao') dt 0 J , , J e 

Substituting these terms into eq. (A 1-1) produces the result 

RHS(5 - 41) = - i2 a oR f32 (BJ2ei2aol - B:2e-i2aol)+ 

i 2 a ( '2 • ' ) __ 0 B C e' ao, - B C' -,2aol 
f34 'J , ,e + 
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(Al-2) 

(Al-3) 

(Al-4) 

(Al-5) 

(Al-6) 

(Al-7) 

(Al-8) 



By grouping likewise terms in eg. (AI-8) yields 

(A 1-9) 

By substituting the relationships between B, and C" and between B; and C; from 

eqs. (5-27) in the form 

(5-27) 

produces the result 

(A1-1O) 

Equation (Al-lO) represents the explicit form of the right hand side of eg. (5-41). 
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Appendix 2: Derivation of the Right-Hand-Side of eq. (5-43) 

This Appendix is dedicated to evaluating the derivation of the terms on the right-hand 

side of eg. (5-43). 

(A2-I) 

The terms u~, (ulvJ, and ul (d ui / dt) were evaluated explicitly in Appendix 1 in the 

form 

(A2-2) 

(A2-3) 

(A2-4) 

Substituting these terms into eg. (A2-I) produces the result 

fJo,cr (B C ei2oo1 +B' C' e-i2oo1 +B'C +BC' )+ 
fJ4 I I I I I I I I (A2-5) 

By grouping likewise terms in eg. (A2-5) yields 

(A2-6) 

By substituting the relationships between BI and C
I
' BI' and C

I
' , and f B C or I i' 

BI' CI' , BI C; and BI' CI from egs. (5-27), (5-28) and (5-29) in the form 
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(5-27) 

(5-28) 

(5-29) 

produces the result 

[ 
ia f3 . (R f3 -1)] . RHS(5 - 43) = R (52 + 0 o,er 2 B 2 12u o ( + 

o f32f34 I e 

(A2-7) 

Equation (A2-7) represents the explicit form of the right hand side of eq. (5-43). 
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Appendix 3: Derivation of the Resonant Terms on the Right-Hand­
Side of eq. (5-64) 

This Appendix is dedicated to evaluating the derivation of the resonant terms on the 

right-hand side of eg. (5-64). 

(A3-1) 

Evaluating initially the resonant part of the terms u,U2 , 11,3, U,V2 , U2v, , U" 

u,(du2/ dt), u2(duJdt), (du,/dr) and (d v,/dr) by using the 0(£) and 0(£2) 
solutions (5-22) and (5-55) yields for RHSI 

(A3-2) 

where c.c. stands for identifying "complex conjugate" terms, and n.r.t. stands for 

"non-resonant terms". Similarly for RHS2 

RHS2=- dv, -/3 11 =(- dC, -/3 BJeiUo1 dr o,er -'1 dr o,er ' (A3-3) 

Taking the time derivative of RHSI and mUltiplying RHS2 by /3
2 

produces the final 

form of the right-hand side of eg. (5-64) as follows 
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(A3-4) 

C.C . + n.r.t. 

Equation (A3-4) represents the explicit form of the right hand side of eq. (5-64). 
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Appendix 4: Derivation of the Right-Hand-Side of eq. (7-29) 

This Appendix is dedicated to evaluating the derivation of the terms on the right-hand 

side of eq. (7-29). 

By using the solutions at order O(c) 

UI = AI ( r) cos( K erx ) 

VI = Blr) COS(KerX) 

one evaluates 

d
2 

~ 2 ( ) d x 2 = -Ker AI cos Ker x 

d
2 

~ 2 A 2 2( ) 
~ d x 2 = - K cr I cos K cr x 

which substituted into (A4-1) to yield 

(a) 

(b) 

RHS(7 - 29) = £ {[ K;rR A 2 _ GnJ3s A 2 _ Gnu A B] 2( )}_ 
2 f3

4 
I f34 I f3

4 
I I cos K er x -

(A4-1) 

(A4-2) 

(A4-3) 

(A4-4) 

(A4-5) 

(A4-6) 

(A4-7) 

By substituting the operator £ 2 from eq. (7-28) as well as the trigonometric 

relationship 

cos 
2 (K cr x) = ± cos ( 2 K er x) + ± (A4-8) 

produces 
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2 PI K cr d [ ( ) . ()] 2 ( ) - COS Ker X sm Kcr X + PI ({Jo COS Kcr X = 
Rn dx 

(A4-9) 

PI K .. d[sin(2Kcr X )] PI({J ( ) PI({J 
___ C/ +_o COS2K X +_0 = 

Rn dx 2 er 2 

2 K2 ({J ({J 
- PI cr COS(2K x) +~COS(2K x) + ~ 

Rn cr 2 cr 2 

leading to the final result 

RHS(7 - 29) = PI (((J() - 2 K~rJ COS(2K x) + PI ({Jo 
2 Rn er 2 

(A4-10) 
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Appendix 5: Derivation of the Right-Hand-Side of eq. (7-31) 

This Appendix is dedicated to evaluating the derivation of the terms on the right-hand 

side of eg. (7-31 ). 

By using the solutions at order 0(8) 

UI = AI ( r) cos( K: crx ) 

VI = BI(r) cos(K:crx) 

one evaluates 

d
2 

UI 2 ( ) --2 = -K:cr AI cos K:cr x 
dx 

d
2 
~ 2 A2 2( ) UI --2 = -K:cr I cos K:cr x 

dx 

(a) 

(b) 

which substituted into (AS-I) and using the trigonometric relationship 

COS
2

(K:cr x) = ~COS(2K:cr x) + ~ 

produces 

RHS(7-31)=f30[Rf3K:4~r A2-f3 Gncrf35 A2_ Gncrf30 AB] 2( )_ I 0 f3
4 

I f34 I I cos K:cr x -

f3 P COs2(K: . x) = f30PI cos(2K: x) + f30PI 
o I cr 2 cr 2 

leading to the final form 

RHS(7 - 31) = f3~1 cos(2K:cr x) + f3~1 

20S 

(AS-I) 

(AS-2) 

(AS-3) 

(AS-4) 

(AS-S) 

(AS-6) 

(AS-7) 

(AS-8) 

(AS-9) 
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