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Abstract
It is well known that analytical solutions to large complex problems are not tractable. Computational
or numerical simulations of these types of systems allow one to investigate regimes where analytical
methods fail. In this thesis the dynamics of an open quantum system which does not have an exact
analytical solution is calculated numerically. The model investigated is a two-level system coupled
to a non-trivial structured environment. There are two regimes of interaction between the system
and environment, which is of interest in this thesis, namely the weak and strong coupling regimes.
These different regimes are obtained by tuning the interaction strength parameter in the model that
also define whether the model is Markovian or non-Markovian. Other parameters of the model are
also varied in order to gauge thermalization and relaxation rates during interaction. Computational or
numerical simulations can become a long tedious process when one is running simulations on a single
core or even a dual core machine, since these simulations can run for days and in all cases require
multiple runs to obtain statistics. With the development of clusters which contain thousands of cores
and parallel computing software, running simulations is now very efficient and not a tedious process
as before since parts of the code can be run over multiple cores. In this thesis the code is written in
Python and uses the parallel computing software library called Message-Passing Interface (MPI).
In the first chapter two types of quantum systems, namely closed and open quantum systems, are
introduced. The standard equations generally used for these two types of systems are presented and
the differences in the treatment of these systems are pointed out. The Heisenberg and interaction
pictures are also described in this chapter. The model is then discussed in depth in chapter two where
the Hamiltonian of the total system is introduced and the interaction picture Hamiltonian is derived.
An overview of approximate analytical solutions to the model is discussed. Chapter three discusses
parallel coding specifically MPI and the code for the simulations are presented and explained. In
chapter four plots are done simulating the model and discussing the effects and outcome of changing
parameters which govern the interaction and thermalization of the system and the environment.
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Chapter 1

Introduction to Quantum Systems

1.1 Closed Quantum Systems

The typical study of a quantum system is that of a closed quantum system [1–3]. Figure 1.1 illustrates
an example of such a system. This figure has a closed system S which is embedded in an environment
E. Here HS denotes the Hilbert space of the closed system S and HE denotes the Hilbert space of the
environment E. The closed system is completely insulated from any and all outside influences. There
is absolutely no interaction between the system and the environment, this is an important feature of
a closed system. It is generally impossible to isolate a quantum system in which we are interested in
completely from its surroundings but it is useful to build models of closed systems which involve a
number of photons or even just one particle, for practical purposes.

Consider a closed quantum system that can be described by a pure state | (t)i, where | i is a ket
vector using Dirac’s bra-ket notation [4]. According to quantum mechanics the state vector | (t)i
evolves in time according to the Schrödinger equation,

ih̄
d

dt
| (t)i = H(t) | (t)i , (1.1)

where H(t) is the time-dependent Hamiltonian of the system and h̄ is Planck’s constant divided by 2⇡
which shall henceforth be set to 1 therefore natural units are used. In order to solve the Schrödinger
equation, a unitary time-evolution operator U(t, t0) is introduced which evolves the state | (t0)i at
some initial time t0 to the state | (t)i at time t,

| (t)i = U(t, t0) | (t0)i , (1.2)

with
U(t0, t0) = I (1.3)

and
U †(t, t0)U(t, t0) = U(t, t0)U

†(t, t0) ⌘ I. (1.4)

Upon substituting (1.2) into the Schrödinger equation (1.1), an operator equation for the time evolution

1



Chapter 1. Introduction to Quantum Systems

Environment

Closed System

HS

The system is completely
isolated from the environment

HE

Figure 1.1: A closed quantum system in an environment, the system is completely isolated from the environ-
ment.

operator U(t, t0) is obtained,

i
@

@t
U(t, t0) = H(t)U(t, t0). (1.5)

For the case when the Hamiltonian is time-independent the solution to (1.5) is

U(t, t0) = exp[�iH(t� t0)]. (1.6)

If one encounters the situation in which the system being considered is driven by external classical
fields, example electromagnetic fields, and the dynamics of the system can still be formulated in terms
of a time-dependent Hamiltonian generator H(t), the system will again said to be closed while the
term isolated is reserved to mean that the Hamiltonian of the system is time-independent. For time-
dependent Hamiltonians that commute at different times, the solution of equation (1.5) subjected to
the initial condition (1.3) is given by

U(t, t0) = exp


�i

Z t

t0

H(t0)dt0
�

, (1.7)

and for time-dependent Hamiltonians that do not commute at different times, the solution may be
represented as a time-ordered exponential,

U(t, t0) = T exp


�i

Z t

t0

H(t0)dt0
�

, (1.8)

where T is the chronological time-ordering operator which orders products of time-dependent oper-

2



Chapter 1. Introduction to Quantum Systems

ators such that their time-arguments increase from right to left as indicated by the arrow [5].

If the system is in a mixed state, it is represented by a statistical operator called the density matrix ⇢.
The density matrix of a mixed state of a closed system at some initial time t0 is defined as

⇢(t0) ⌘
X

↵

w↵ | ↵(t0)i h ↵(t0)| , (1.9)

where w↵ are positive probability weights, and {| ↵(t0)i} are pure normalized state vectors which
evolve in time according to the Schrödinger equation (1.1). The probability weights sum to unity

X

↵

w↵ = 1, (1.10)

and can be time-dependent for probabilistic (non-trace preserving) quantum channels such as filters.
It is also a requirement that the density matrix is a positive hermitian operator, and the trace of the
density matrix is 1,

⇢(t) � 0 (1.11)

⇢(t) = ⇢†(t) (1.12)

Tr{⇢(t)} = 1. (1.13)

In the same way that the dynamics of a system’s state vector is studied, a set of equations to model the
dynamics of a system’s density matrix can be derived. The state of the system at time t will therefore
be given by

⇢(t) =
X

↵

w↵U(t, t0) | ↵(t0)i h ↵(t0)|U †(t, t0), (1.14)

which can be written as
⇢(t) = U(t, t0)⇢(t0)U

†(t, t0), (1.15)

using equation (1.9). Differentiating this equation and using equation (1.5), an equation of motion for
the density matrix can be obtained:

d

dt
⇢(t) =

d

dt

X

↵

w↵U(t, t0) | ↵(t0)i h ↵(t0)|U †(t, t0)

=
X

↵

w↵
@

@t
U(t, t0) | ↵(t0)i h ↵(t0)|U †(t, t0)

+
X

↵

w↵U(t, t0) | ↵(t0)i h ↵(t0)|
@

@t
U †(t, t0)

=
@

@t
U(t, t0)⇢(t0)U

†(t, t0) + U(t, t0)⇢(t0)
@

@t
U †(t, t0)

= �iH(t)U(t, t0)⇢(t0)U
†(t, t0) + iU(t, t0)⇢(t0)U

†(t, t0)H(t)

= �iH(t)⇢(t) + i⇢(t)H(t)

(1.16)

3



Chapter 1. Introduction to Quantum Systems

which may be written more concisely as

d

dt
⇢(t) = �i[H(t), ⇢(t)], (1.17)

where the square brackets represent the commutator [A,B] = AB �BA. Equation (1.17) is referred
to as the von Neumann equation, and is the master equation for a closed quantum system with a time-
dependent Hamiltonian. Equation (1.17) is often written in a form analogous to the classical Liouville
equation,

d

dt
⇢(t) = L(t)⇢(t). (1.18)

Here L, (the Liouville operator or Liouvillean) is defined as the commutator brackets such that

L(t)X(t) = �i[H(t), X(t)]. (1.19)

L is often called a (Liouville) super-operator since it acts on an operator to yield another operator.
Equation (1.18) is a first order differential equation governing the dynamics of the density matrix,
and hence the time evolution of the probability of the system to occupy a set of states. Analogous to
equation (1.8) the Liouville equation (1.18) leads to the expression

⇢(t) = T exp


Z t

t0

L(t0)dt0
�

⇢(t0). (1.20)

For the case when the Hamiltonian is time-independent, the Liouville super-operator is also time-
independent and the equation (1.18) can be integrated yielding

⇢(t) = exp[L(t� t0)]⇢(t0). (1.21)

1.2 Heisenberg and Interaction Picture

So far all operators were described in what is called the Schrödinger picture. The time dependance of
the density matrix ⇢(t) in the Schrödinger picture is governed by the Liouville-von Neumann equation
(1.18). In the Heisenberg picture the time dependance from the density matrix is transferred to the
operators in the Hilbert space H . Assume that at some fixed initial time t0

⇢(t0) = ⇢H(t0), (1.22)

that is the quantum states in both pictures coincide, where the subscript H denotes the Heisenberg
picture operators. Schrödinger and Heisenberg picture operators are related through the transformation

AH(t) = U †(t, t0)A(t)U(t, t0), (1.23)

where the Schrödinger picture operator A(t) depends explicitly on time. At time t0 Schrödinger and
Heisenberg picture operators coincide,

AH(t0) = A(t0). (1.24)

4



Chapter 1. Introduction to Quantum Systems

The quantum expectation values are determined through the fixed density matrix ⇢H(t0) in the Heisen-
berg picture. The fact that the expectation value of an observable A(t) is the same in both pictures

hA(t)i = Tr{A(t)⇢(t)} = Tr{AH(t)⇢H(t0)}, (1.25)

shows that the two pictures are equivalent. By differentiating both sides of the transformation law
(1.23) with respect to time, one can derive an equation of motion for the Heisenberg operator AH(t):

d

dt
AH(t) =

@U †(t, t0)

@t
A(t)U(t, t0) + U †(t, t0)

@A(t)

@t
U(t, t0) + U †(t, t0)A(t)

@U(t, t0)

@t

= �1

i
U †(t, t0)H(t)U(t, t0)U

†(t, t0)A(t)U(t, t0)

+ U †(t, t0)
@A(t)

@t
U(t, t0)

+
1

i
U †(t, t0)A(t)U(t, t0)U

†(t, t0)H(t)U(t, t0)

= i[U †(t, t0)H(t)U(t, t0), AH(t)] + U †(t, t0)
@A(t)

@t
U(t, t0)

= i[HH(t), AH(t)] +
@AH(t)

@t
,

(1.26)

using (from (1.5))

@U(t, t0)

@t
=

1

i
H(t)U(t, t0) and

@U †(t, t0)

@t
= �1

i
U †(t, t0)H(t). (1.27)

In equation (1.26) d/dt denotes the total time derivative and @/@t denotes the partial time derivative
of the Heisenberg picture operator. If dAH(t)/dt = 0 then AH is a constant of motion. If A is chosen
to be the Hamiltonian of the system, then for an isolated system

@H(t)

@t
= 0, (1.28)

and the time-evolution operator has the form of (1.6). Hence the Hamiltonian commutes with the time-
evolution operator U(t, t0) and the Heisenberg picture Hamiltonian HH(t) is a constant of motion

d

dt
HH(t) = 0. (1.29)

If the system is isolated and the Schrödinger picture operator A has no explicit time dependence, the
Heisenberg equation of motion (1.26) reduces to the form

d

dt
AH(t) = i[H(t), AH(t)]. (1.30)
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In equation (1.30) H(t) appears and not HH(t), it is all right to write the Heisenberg equation of
motion in this way since U(t, t0) is given by (1.6), U(t, t0) and H(t) commute,

U †(t, t0)H(t)U(t, t0) = H(t). (1.31)

Now differentiating equation (1.25) with respect to time and using the Heisenberg equation of motion
(1.26) one obtains

d

dt
hA(t)i =

⌧

d

dt
AH(t)

�

= Tr
⇢✓

i[HH(t), AH(t)] +
@AH(t)

@t

◆

⇢H(t0)

�

, (1.32)

which is the equation of motion for the expectation value of an arbitrary Schrödinger observable A(t)
which depends explicitly on time. The above equation is known as the Ehrenfest equation which states
that the time variation of the expectation value of an observable A(t) is equal to the expectation value
of the time derivative of the corresponding Heisenberg observable AH(t).

The Schrödinger and Heisenberg pictures are the limiting cases of a more general picture called the
interaction picture. The Hamiltonian of the total system can be written as a sum of two parts

H(t) = H0 + ĤI(t), (1.33)

where, in general, H0 is assumed to be the time-independant Hamiltonian representing the total energy
of two systems when the interation between the systems is ignored and ĤI(t) is the Hamiltonian
representing the interaction between the systems. From equation (1.25) the expectation value of a
Schrödinger observable A(t) at time t is given by

hA(t)i = Tr{A(t)U(t, t0)⇢(t0)U
†(t, t0)}, (1.34)

where ⇢(t0) is the state of the system at time t0. Introducing the unitary time-evolution operators

U0(t, t0) ⌘ exp[�iH0(t� t0)] (1.35)

with
UI(t, t0) ⌘ U †

0(t, t0)U(t, t0), (1.36)

equation (1.34) may be written as

hA(t)i = Tr
n

U †
0(t, t0)A(t)U0(t, t0)UI(t)⇢(t0)U

†
I (t, t0)

o

⌘ Tr{AI(t)⇢I(t)},
(1.37)

where
AI(t) ⌘ U †

0(t, t0)A(t)U0(t, t0) (1.38)

and
⇢I(t) ⌘ UI(t, t0)⇢(t0)U

†
I (t, t0) (1.39)
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Chapter 1. Introduction to Quantum Systems

are introduced as the interaction picture operator and the interaction picture density matrix respec-
tively. Note that the time evolution of interaction picture operators is generated by only the free part
of the Hamiltonian H0 and not by the full Hamiltonian H . In the case of a vanishing interaction
Hamiltonian, ĤI = 0, then

U0(t, t0) = U(t, t0) and UI(t, t0) = I, (1.40)

such that the interaction picture is identical to the Heisenberg picture. In the case of a vanishing free
Hamiltonian, H0 = 0, then ĤI(t) = H(t) such that

UI(t, t0) = U(t, t0) and U0(t, t0) = I, (1.41)

regaining the Schrödinger picture. With the initial condition UI(t0, t0) = I the interaction picture
time-evolution operator is the solution of the differential equation

i
@

@t
UI(t, t0) = HI(t)UI(t, t0). (1.42)

The interaction Hamiltonian in the interaction picture is denoted by

HI(t) ⌘ U †
0(t, t0)ĤI(t)U0(t, t0). (1.43)

The von Neumann equation in the interaction picture is of the form

d

dt
⇢I(t) = �i[HI(t), ⇢I(t)]. (1.44)

The integral form of the von Neumann equation in the interation picture is given by

⇢I(t) = ⇢I(t0)� i

Z t

t0

dt0[HI(t
0), ⇢I(t

0)], (1.45)

and may be used as a starting point of a perturbative approach to the construction of approximate
solutions.

1.3 Open Quantum Systems

Much research over the years have been conducted on advancing the theory of quantum mechanics,
and recently a lot of attention has been payed to what is known as "open quantum system" [5,6]. For a
closed quantum system one would expect the system to be completely isolated from the environment,
however this idea almost never occurs in reality. There is at least some interaction with the environ-
ment and it is this interaction which is of interest in this study. Due to the interaction of devices based
on quantum mechanics with the environment, difficulties arise in realising practical implementations
of these devices. For example, information which is stored in some quantum system may leak out to
the environment through some coupling which may not be unavoidable or perhaps may have not been
taken into consideration. More advanced implementations of quantum technologies could be realised

7



Chapter 1. Introduction to Quantum Systems

Environment

Open System

HS

The system is interacting
with the environment

HE

ĤI(t)

Figure 1.2: An open quantum system in an environment, the system is interacting with the environment. The
interaction is described by the interaction Hamiltonian ĤI(t).

if this process of information loss, or quantum decoherence [7], can be more fully understood. This
is due to the fact that quantum devices make use of the coherent properties of quantum states in su-
perposition. A loss of data or an error in communication occurs due to loss of coherence. The state
of the open system decoheres through some interaction with the environment, where some part of
the quantum state "leaks" into the environment in a thermodynamically irreversible way. The master
equation of the Liouville form equation (1.18), is no longer sufficient to describe the time evolution
of the system and the effects of dissipation and decoherence, in the case of an open quantum system.
In general, an open system is a quantum system S which is coupled to another quantum system E
called the environment. In most cases it is assumed that the combined total system S + E is closed,
following Hamiltonian dynamics. However the state of the subsystem S will change as a consequence
of the interaction with the surrounding and of it’s internal dynamics. In general, the resulting state
changes of S can no longer be represented in terms of unitary Hamiltonian dynamics due to the in-
teraction which leads to certain system-environment correlations. Let HS denote the Hilbert space of
the system S and HE denote the Hilbert space of the environment E. The Hilbert space of the total
system S + E is denoted by the tensor product space H = HS ⌦ HE . The total Hamiltonian H(t)
of the total system is of the form

H(t) = HS ⌦ IE + IS ⌦HE + ĤI(t), (1.46)

where HS is the free Hamiltonian of the open system S, HE is the free Hamiltonian of the environment
E, and ĤI(t) is the Hamiltonian describing the interaction between the system and the environment.
Figure 1.2 illustrates an example of such a system. All observations of interest refer to the open system
S. If A is an operator acting on the Hilbert space HS and IE denotes the identity in the Hilbert space

8
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HE then the observables referring to S are all of the form

A⌦ IE . (1.47)

If the state of the total system is described by some density matrix ⇢, then the expectation values of all
observables acting on the open system’s Hilbert space are given by

hAi = TrS{A⇢S}, (1.48)

where
⇢S = TrE{⇢} (1.49)

is the reduced density matrix of the open system S. In the above two equations TrS denotes the trace
over the open system’s Hilbert space and TrE denotes the partial trace over the degrees of freedom of
the environment E. The reduced density matrix ⇢S(t) of the open quantum system S at time t can be
calculated from the density matrix ⇢(t) of the total system by taking the partial trace over the degrees
of freedom of the environment E

⇢S(t) = TrE{⇢(t)} = TrE{U(t, t0)⇢(t0)U
†(t, t0)}, (1.50)

where
⇢S(t) 2 HS (1.51)

and U(t, t0) is the time-evolution operator of the total system since the total density matrix evolves
unitarily. The initial state of the total system S + E is given by the tensor product of the initial state
of the open system and some reference state of the environment

⇢(0) = ⇢S(0)⌦ ⇢E . (1.52)

This can be interpreted as a requirement that at the initial time t = 0, the open system is not entangled
with it’s environment. The decoherence time is the time taken for quantum information to "leak" into
the environment, or the time taken for an open system to decohere. See reference [7] for a detailed
description of the phenomenon of decoherence. The decoherence time is of practical importance
when trying to realise quantum devices for real world applications. Understanding decoherence and
dissipation processes are of great importance since these give rise to problems when trying to store
quantum information. This is since the information stored as quantum states exist only as long as
the quantum states themselves do not decohere. It is this coherence time that should be as long as
possible, long enough to process in a useful way. The transformation describing the state change of
the open system from initial time t = 0 to some time t > 0 is given by

⇢S(0) ! ⇢S(t) = V (t)⇢S(0) ⌘ TrE{U(t, 0)[⇢S(0)⌦ ⇢E ]U
†(t, 0)}. (1.53)

If the reference state ⇢E and the final time t is fixed, a map from the space S(HS) of density matrices
of the open system into itself is defined,

V (t) : S{HS} ! S{HS}. (1.54)

9
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This map is called a dynamical map and it describes the state change of the open system over time t.
The dynamical map V (t) is useful to construct a master equation describing the dynamics of the re-
duced density matrix ⇢S(t). The dynamical map consists of operators within the open system’s Hilbert
space HS . The most general form of the master equation for an open system is found through a gen-
erator of the dynamical semigroup [8], a linear map L, which allows the semigroup to be represented
in exponential form,

V (t) = exp(Lt), (1.55)

which gives a first-order differential equation for the reduced density matrix of the open system,

d

dt
⇢S(t) = L⇢S(t), (1.56)

and this equation is known as the Markovian quantum master equation and describes the dynamics of
the system for the case when the environmental correlation time is very much less than the relaxation
time of the reduced system. In other words, when the correlations of the environment decay much
faster than the system relaxes. Following the details found in [5] the diagonal form of the generator is
given by

L⇢S(t) = �i[H(t), ⇢S(t)] +
N2�1
X

k=1

�k

✓

Ak⇢S(t)A
†
k �

1

2
A†

kAk⇢S(t)�
1

2
⇢S(t)A

†
kAk

◆

. (1.57)

The first term of the generator represents the unitary part of the dynamics generated by the Hamiltonian
H(t). From equations (1.56) and (1.57),

d

dt
⇢S(t) = �i[H(t), ⇢S(t)] +

N2�1
X

k=1

�k

✓

Ak⇢S(t)A
†
k �

1

2
A†

kAk⇢S(t)�
1

2
⇢S(t)A

†
kAk

◆

, (1.58)

and this equation is known as the Gorini-Kossakowski-Sudarshan-Lindblad master equation [8, 9]. In
the above equation the operators Ak are known as Lindblad operators which are taken to be linear
combinations of a complete set of orthonormal basis vectors of the Liouville space, having dimension
N2 which corresponds to the open system’s Hilbert space HS of dimension N . These Lindblad
operators are dimensionless and the relaxation rates �k have units of inverse time. The Lindblad
equation is an extension of the Liouville equation seen in section 1.1. The Lindblad equation, in
contrast to the Liouville equation, contains dissipative terms which account for the decoherence and
dissipation of the open system. The Lindblad equation may also be written in the form

d

dt
⇢S(t) = �i[H(t), ⇢S(t)] +D(⇢S(t)), (1.59)

where D(⇢S(t)) is referred to as the dissipator and represents the dissipative terms given in equation
(1.58). This master equation for Markovian open quantum systems models the dynamics of an open
system including decoherence effects. If the Lindblad operators are time-dependent, Ak ! Ak(t), the
Lindblad master equation is said to be non-stationary and the dynamics of the open quantum system is
called semi-Markovian. This method of modelling the dynamics of a density matrix is not particularly
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useful for numerical simulations, but is used to analytically solve equations of motion.

It should be noted that the dynamics of an open quantum system is called non-Markovian if the time
evolution of its reduced density matrix ⇢S can not be satisfactorily described by a master equation
given in the form of equation (1.58). Such cases arise when the system-environment couplings are
very strong, when initial states are classically correlated or entangled. Various methods have been
developed to describe these systems. These methods are beyond the scope of this thesis.
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Chapter 2

The System-Environment Model

2.1 The Model

The model of interest is a two-level system S with state space HS coupled to a non-trivial structured
environment E with state space HE [10]. The environment consists of two energy bands each of
spectral width �✏ and a finite number of levels containing N1 equidistant energy levels in the lower
band and N2 equidistant energy levels in the upper band [11–13]. Figure 2.1 illustrates the energy
scheme of this model. The spacing between the energy levels in the lower and upper bands is given by

�E1 =
�✏

N1
and �E2 =

�✏

N2
(2.1)

respectively. There are two principle differences between this finite environment level scheme and
the level scheme of a standard oscillator bath. Firstly the total number of levels within a band can
be finite. Secondly, even more important, there are infintely many resonant transitions to the excited
states from the ground state of a standard bath, but from all of those the reverse transitions lead to only
one ground state. Thus the bands of any infinte bath consists of infinitely many states in the upper
band and only one state in the lower band, whereas a finite bath may consist of arbitrary numbers of
states in both bands. This model can be viewed as a spin coupled to a single molecule, a one-particle
quantum dot, an atom or a single harmonic oscillator. Note that the transition of the two-state system
is in resonance with the energy distance �E between the bands and not with the environments level
spacing (Figure 2.2). This model has recently been studied by several authors [14–16] due to the fact
that it exhibits strong non-Markovian features, refer to [10, 17] for details.

In this thesis, the two-level system is taken to be a qubit with ground state |0i and first excited state
|1i. If, for example, an evolution is considered where the initial state of the system is in the ground
state |0i and the environment in the upper band N2, the only other set of states the total system can
evolve into is the set with the system in the excited state |1i and the environment in the lower band
N1, and this is due to energy conservation. The Hilbert space of the composite system is given by
the tensor product H = HS ⌦ HE . The dynamics of the total density matrix ⇢(t) of the composite
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⌦
                            

V�E

�✏

�✏

N1

N2

|1i

|0i

Figure 2.1: A two-state system, with level distance �E, coupled to an environment consisting of two energy
bands, each with a finite number of equidistant energy levels N1 and N2. �✏ is the width of the bands and V is
the system-environment interaction potential.

system is governed by some Hamiltonian of the form

H = HS +HE + V, (2.2)

where HS is the free system Hamiltonian, HE is the free Hamiltonian of the environment and V
describes the system-environment interaction. The total Hamiltonian of the model in the Schrödinger
picture is given by

H =
1

2
�E�z +

X

n1

�✏

N1
n1 |n1i hn1|+

X

n2

✓

�E +
�✏

N2
n2

◆

|n2i hn2|+ V (n1, n2), (2.3)

where
HS =

1

2
�E�z, (2.4)

HE =
X

n1

�✏

N1
n1 |n1i hn1|+

X

n2

✓

�E +
�✏

N2
n2

◆

|n2i hn2| (2.5)

and
V = �

X

n1,n2

c(n1, n2)�+ |n1i hn2|+ H.c, (2.6)

where �z and �+ are the Pauli operators:

�z =

✓

1 0
0 �1

◆

, �+ =

✓

0 1
0 0

◆

. (2.7)

The coupling parmeter � describes the overall strength of the interaction, which will be further dis-
cussed in Chapter 4, and c(n1, n2) are coupling constants. The coupling constants are taken to be
independent and identically distributed complex Gaussian random variables with zero mean and unit
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Figure 2.2: Energy distance �E between the bands is in resonance with the transition of the two-state system.

variance:
hc(n1, n2)i = 0, (2.8)

hc(n1, n2)c(n
0
1, n
0
2)i = 0, (2.9)

hc(n1, n2)c
⇤(n01, n

0
2)i = �n1,n0

1
�n2,n0

2
. (2.10)

H.c means the corresponding Hermitian conjugate. The index n1 labels the levels of the lower energy
band and n2 labels the levels of the upper energy band.

2.2 The Interaction Picture Hamiltonian

In deriving an expression for the interaction picture Hamiltonian, the interaction potential in equation
(2.6) is expressed as

V = V1 + V2, (2.11)

where
V1 = �

X

n1,n2

c(n1, n2)�+ |n1i hn2| , (2.12)

and its hermitian conjugate
V2 = �

X

n1,n2

c⇤(n1, n2)�� |n2i hn1| , (2.13)

and converting into the interaction picture (section 1.2) one obtains

VI(t) = ei(HS+HE)tV e�i(HS+HE)t

= V 1
I + V 2

I ,
(2.14)
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where

V 1
I = �

X

n1,n2

c(n1, n2)e
i(HS+HE)t�+ |n1i hn2| e�i(HS+HE)t

= �
X

n1,n2

c(n1, n2)e
itHS�+e

�itHSeitHE |n1i hn2| e�itHE ,
(2.15)

and its hermitian conjugate

V 2
I = �

X

n1,n2

c⇤(n1, n2)e
i(HS+HE)t�� |n2i hn1| e�i(HS+HE)t

= �
X

n1,n2

c⇤(n1, n2)e
itHS��e

�itHSeitHE |n2i hn1| e�itHE .
(2.16)

Using the Baker-Campbell-Hausdorf formula [18]

e↵ABe�↵A = B + ↵[A,B] +
↵2

2!
[A, [A,B]] +

↵3

3!
[A, [A, [A,B]]] + ..., (2.17)

where A and B are operators, in equation (2.15) one obtains,

eitHS�+e
�itHS = �+ + it[HS ,�+] +

(it)2

2!
[HS , [HS ,�+]] + .... (2.18)

Solving for the first commutator in the above equation gives

[HS ,�+] =
1

2
�E[�z,�+] =

1

2
�E(2�+) = �E�+. (2.19)

Substituting equation (2.19) into equation (2.18),

eitHS�+e
�itHS = �+ + (it�E)�+ +

(it)2(�E)2

2!
�+ + ...

= �+

⇢

1 + (it�E) +
(it�E)2

2!
+ ...

�

= �+e
it�E .

(2.20)

Again using equation (2.17),

eitHE |n1i hn2| e�itHE = |n1i hn2|+ it[HE , |n1i hn2|] +
(it)2

2!
[HE , [HE , |n1i hn2|]] + .... (2.21)

The first commutator in the above equation is given by

[HE , |n1i hn2|] =
"

X

n1

�✏

N1
n1 |n1i hn1|+

X

n2

✓

�E +
�✏

N2
n2

◆

|n2i hn2| , |n1i hn2|
#

. (2.22)
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Using the following commutator relation

[A+B,C] = [A,C] + [B,C], (2.23)

the commutator becomes

[HE , |n1i hn2|] =
"

X

n1

�✏

N1
n1 |n1i hn1| , |n1i hn2|

#

+

"

X

n2

✓

�E +
�✏

N2
n2

◆

|n2i hn2| , |n1i hn2|
#

.

(2.24)
Taking note that

hni|nji = �ij =

(

1, if i = j

0, if i 6= j,
(2.25)

the first commutator in equation (2.24) gives

X

m1

�✏

N1
m1 [|m1i hm1| , |n1i hn2|] =

X

m1

�✏

N1
m1 |m1i hn2| �m1n1 =

�✏

N1
n1 |n1i hn2| , (2.26)

and the second commutator in equation (2.24) gives

X

m2

✓

�E +
�✏

N2
m2

◆

[|m2i hm2| , |n1i hn2|] = �
X

m2

✓

�E +
�✏

N2
m2

◆

|n1i hm2| �n2m2

= �
✓

�E +
�✏

N2
n2

◆

|n1i hn2| .
(2.27)

Substituting equations (2.26) and (2.27) into equation (2.24) the commutator is reduced to

[HE , |n1i hn2|] =
✓

�✏

N1
n1 ��E � �✏

N2
n2

◆

|n1i hn2| . (2.28)

Now substituting equation (2.28) into equation (2.21) gives

eitHE |n1i hn2| e�itHE = |n1i hn2|+ it

✓

�✏

N1
n1 ��E � �✏

N2
n2

◆

|n1i hn2|

+
(it)2

2!

✓

�✏

N1
n1 ��E � �✏

N2
n2

◆2

|n1i hn2|+ ...

= |n1i hn2|
⇢

1 + it

✓

�✏

N1
n1 ��E � �✏

N2
n2

◆

+ ...

�

= |n1i hn2| e
it
⇣

�✏
N1

n1��E� �✏
N2

n2

⌘

.

(2.29)
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Substituting equations (2.20) and (2.29) into equation (2.15) gives

V 1
I = �

X

n1,n2

c(n1, n2)�+e
it�E |n1i hn2| e

it
⇣

�✏
N1

n1��E� �✏
N2

n2

⌘

= �
X

n1,n2

c(n1, n2)�+e
�i!(n1,n2)t |n1i hn2| ,

(2.30)

where
!(n1, n2) = �✏

✓

n2

N2
� n1

N1

◆

. (2.31)

Similarly for equation (2.16)

V 2
I = �

X

n1,n2

c⇤(n1, n2)��e
i!(n1,n2)t |n2i hn1| . (2.32)

Introducing variables B(t) and B†(t) as

B(t) = �
X

n1,n2

c(n1, n2)e
�i!(n1,n2)t |n1i hn2| (2.33)

and
B†(t) = �

X

n1,n2

c⇤(n1, n2)e
i!(n1,n2)t |n2i hn1| , (2.34)

the interaction picture Hamiltonian, equation (2.14), can be written as [14, 19]

VI(t) = �+B(t) + ��B
†(t). (2.35)

2.3 Overview of the Approximate Analytical Solution

Approximate analytical solutions to this model have been worked out by Breuer et al [14]. They used a
correlated projection superoperator approach, employing the interaction picture Hamiltonian, derived
in the previous section, to examine both the weak and strong coupling regimes. In what follows,
their results are stated without going into the details. The second order time-convolutionless (TCL2)
expansion [5], which uses correlated projection superoperators, produced the following equations of
motion for the model:

d

dt
⇢1 =

Z t

0
dt1h(t� t1)[2�1�+⇢2�� � �2{�+��, ⇢1}], (2.36)

d

dt
⇢2 =

Z t

0
dt1h(t� t1)[2�2��⇢1�+ � �1{���+, ⇢2}], (2.37)
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d

dt
!11

!1"!t" = "1!00
!2"!t" − "2!11

!1"!t" . !4.44"

From Eqs. !4.44" and !4.41", we see that the quantity
!11

!1"!t"+!00
!2"!t" is constant. With the help of the initial condi-

tion !4.42", we, thus, have

!00
!2"!t" = !11

!1"!0" − !11
!1"!t" . !4.45"

Substituting this into Eq. !4.44", we find

d

dt
!11

!1"!t" = − !"1 + "2"!11
!1"!t" + "1!11

!1"!0" . !4.46"

Since !11!t"#!11
!1"!t" because of Eq. !4.43", we finally arrive

at the equation of motion for the populations

d

dt
!11!t" = − !"1 + "2"!11!t" + "1!11!0" . !4.47"

In a similar manner, one is led to the equation of motion for
the coherences

d
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The dynamics of the reduced density matrix is thus
determined by Eqs. !4.47" and !4.48". These are time-local
first-order differential equations with constant coefficients.
They are identical to the equations of motion obtained using
HAM. In particular, the solution of Eq. !4.47" is given by
the expression !4.21". Hence, we conclude that the lowest
order of the TCL expansion with the projection superopera-
tor introduced in Eq. !4.32", indeed, reproduces the HAM
prediction.

We observe that the dynamics of the population !11!t" is
strongly non-Markovian because of the presence of the ini-
tial condition !11!0" on the right-hand side of Eq. !4.47".
This term expresses a pronounced memory effect; namely, it
implies that the dynamics of the populations never forgets its
initial data. Note also that the dynamics of the reduced den-
sity matrix is not in Lindblad form and does not even repre-
sent a semigroup. It does, however, lead to a positive dy-
namical map, as can easily be verified.

In the transition from Eq. !4.36" to Eqs. !4.37" and !4.38",
we have assumed for simplicity that the times t considered
satisfy the condition #$t%1. Without this condition, the
master equations !4.37" and !4.38" must be replaced by

d
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These equations describe the full time dependence as it is
predicted by the TCL expansion in second order. They lead
to the following populations of the upper level:

!11!t" = !11!0") "1

"1 + "2
+

"2

"1 + "2
e−'!t"* , !4.51"

where

'!t" = 2!"1 + "2"$
0

t

dt1$
0

t1
dt2h!t1 − t2" , !4.52"

and the function h!(" is given by Eq. !4.17".
In Figs. 3–5, we compare the result given by Eq. !4.51" to

the prediction of HAM and to numerical simulations of the
Schrödinger equation. The figures clearly show that already
the lowest order of the TCL expansion with our projection

FIG. 3. Comparison of the second-order TCL approximation
using the new projection superoperator %Eq. !4.51"(, of the approxi-
mation given by HAM %Eq. !4.21"( and of the numerical solution of
the Schrödinger equation. Parameters: N1=N2=500, #$=0.5, and
)=0.001.

FIG. 4. The same as Fig. 3 for )=0.003.

FIG. 5. The same as Fig. 3 for )=0.01.
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Figure 2.3: For the weak coupling regime,
TCL2 overlaps the exact numerical solution
to the Schrödinger equation.

d

dt
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From Eqs. !4.44" and !4.41", we see that the quantity
!11

!1"!t"+!00
!2"!t" is constant. With the help of the initial condi-

tion !4.42", we, thus, have

!00
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Substituting this into Eq. !4.44", we find

d

dt
!11

!1"!t" = − !"1 + "2"!11
!1"!t" + "1!11

!1"!0" . !4.46"

Since !11!t"#!11
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at the equation of motion for the populations
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dt
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In a similar manner, one is led to the equation of motion for
the coherences
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The dynamics of the reduced density matrix is thus
determined by Eqs. !4.47" and !4.48". These are time-local
first-order differential equations with constant coefficients.
They are identical to the equations of motion obtained using
HAM. In particular, the solution of Eq. !4.47" is given by
the expression !4.21". Hence, we conclude that the lowest
order of the TCL expansion with the projection superopera-
tor introduced in Eq. !4.32", indeed, reproduces the HAM
prediction.

We observe that the dynamics of the population !11!t" is
strongly non-Markovian because of the presence of the ini-
tial condition !11!0" on the right-hand side of Eq. !4.47".
This term expresses a pronounced memory effect; namely, it
implies that the dynamics of the populations never forgets its
initial data. Note also that the dynamics of the reduced den-
sity matrix is not in Lindblad form and does not even repre-
sent a semigroup. It does, however, lead to a positive dy-
namical map, as can easily be verified.

In the transition from Eq. !4.36" to Eqs. !4.37" and !4.38",
we have assumed for simplicity that the times t considered
satisfy the condition #$t%1. Without this condition, the
master equations !4.37" and !4.38" must be replaced by
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These equations describe the full time dependence as it is
predicted by the TCL expansion in second order. They lead
to the following populations of the upper level:

!11!t" = !11!0") "1
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+
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e−'!t"* , !4.51"

where

'!t" = 2!"1 + "2"$
0

t
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0
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dt2h!t1 − t2" , !4.52"

and the function h!(" is given by Eq. !4.17".
In Figs. 3–5, we compare the result given by Eq. !4.51" to

the prediction of HAM and to numerical simulations of the
Schrödinger equation. The figures clearly show that already
the lowest order of the TCL expansion with our projection

FIG. 3. Comparison of the second-order TCL approximation
using the new projection superoperator %Eq. !4.51"(, of the approxi-
mation given by HAM %Eq. !4.21"( and of the numerical solution of
the Schrödinger equation. Parameters: N1=N2=500, #$=0.5, and
)=0.001.

FIG. 4. The same as Fig. 3 for )=0.003.

FIG. 5. The same as Fig. 3 for )=0.01.
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Figure 2.4: For the strong coupling regime,
clearly a difference between TCL2 and the
exact numerical solution to the Schrödinger
equation.

where �1 and �2 are relaxation rates. The function h(t) is given by

h(t) =
�✏

2⇡

sin2(�✏t/2)
(�✏t/2)2

. (2.38)

For the case where the relaxation rates are equal: �1 = �2 = 2⇡�2N
�✏ (for N1 = N2 = N ), the

population of the upper level is given by

⇢11 = ⇢11(0)



1

2
+

1

2
e��(t)

�

, (2.39)

where

�(t) = 4�

Z t

0
dt1

Z t1

0
dt2h(t1 � t2). (2.40)

In this terminology, if the condition � ⌧ �✏ is satisfied, the model is Markovian and non-Markovian
when this condition is not satisfied. Also if the condition �✏t � 1 is satisfied, the coupling is weak and
strong when this condition is not satsified. Note that for weak coupling the model exhibits Markovian
behaviour and for strong coupling non-Markovian behaviour.
Figure 2.3 shows their plots for the weak coupling case, � = 0.001 where N1 = N2 = 500. Here
the TCL2 overlaps the exact numerical solution to the Schrödinger equation. Figure 2.4 shows their
plots for the strong coupling case, � = 0.01 with all other parameters the same. Here clearly there
is a difference between TCL2 and the exact numerical solution to the Schrödinger equation. In both
figures the approximated analytical solution using the Hilbert space average (HAM) method is also
seen [14, 15] which is not discussed in this work. Since the approximated analytical solutions do not
coincide with the exact numerical solution to the Schrödinger equation, which is seen clearly in Figure
2.4, the numerical solution to the Schrödinger equation for this model is performed to investigate
different parameter spaces.
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Chapter 3

Parallel Computing using MPI

3.1 What is MPI?

Message-Passing Interface (MPI) is a library specification for message-passing, it is a standard Ap-
plication Programming Interface (API) which was designed to create parallel programs for high per-
formace computing on clusters and on machines with many cores [20–22]. MPI exchanges messages
between multiple computers or cores running a parallel program across distributed memory. In par-
allel computing, multiple computers in a cluster or multiple processors on one computer are called
nodes. Each node in this parallel setup typically works on one part of the problem and passes its
data to another node. MPI defines a set of functions which allow for exchange of data between nodes
and it provides control and command over the entire parallel cluster. The MPI library is available for
C, C++, Fortran and Python. MPI has commands which can display information such as how many
processors are available, name of the processor a process is running on and also the number of the
processor. Each processor has a number called a rank which starts from 0. Rank 0 is the master pro-
cessor and is usually the one which collects and sends data to all other processors. There are two main
ways the processors communicate with each other namely collective and point to point. Collective
communication is when one processor (generally rank 0) exchanges data with all other processors at
the same time and point-to-point communication is when any one processor (including rank 0) ex-
changes data with only one other processor or specified processors. Some basic collective commands
for gathering and spreading data include broadcast, scatter, gather and reduce. Broadcast sends the
same data from one processor to all other processors and scatter sends individual data from one pro-
cessor to each processor. Gather collects individual data from all processors to one processor and
reduce collects data from all processors and computes some overall value like a sum or maximum and
sends the result to one processor. Figure 3.1 illustrates how basic collective communication works.
There are also advanced collective commands available such as Allgather, Allreduce. Allgather col-
lects individual data from all processors and leaves the result in all processors and Allreduce collects
data from all processors and computes some overall value like a sum or maximum and leaves the
result in all processors. Sometimes the need to use all-to-all commucation might arise where every
processor brodcasts or scatters data to every other processor but this type of communication is rarely
needed. Another command used when working with multiple proccesors is the barrier command
which is used to sychronize processors. Each processor waits at the barrier until all processors reach
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Figure 3.1: MPI basic collective communication

the barrier. Since some processors run faster than others the barrier can be used to get all processors
synchronized so the next part of the process can be executed since the data from one processor might
be needed for the overall process to continue. Again this is another type of command which is rarely
used. Point-to-point communication works on two basic commands, send and receive. One processor
sends data and the other receives the data. Also included in the send command is a destination so the
processor knows where to send the data to and in the same way the receive command has included a
source so the processor knows where to receive the data from. If, for example, rank 0 is sending data
to rank 1, then the send command in rank 0 will include ‘destination=1’ and the corresponding receive
command in rank 1 will include ‘source=0’. Figure 3.2 illustrates how point-to-point communication
works. The send and receive commands are not restricted to just two processors, if there are eight
processors data can be sent from one processor to just three others while the other four would not
receive the data provided the three processors have the corresponding receive command. In the same
manner three processors can send data to just one processor while the other four would not send any
data provided the one processor has the corresponding receive commands to receive data from all three
processors. Every send must have a corresponding receive and if a processor does not have a receive it
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Figure 3.2: MPI point-to-point communication

won’t receive the data. One downfall of the point-to-point send and receive is that they are ‘blocking’
operations, the process ‘blocks’ (waits) until the operation is done. This means that a send command
on one processor cannot complete until the receive command on the other processor executes. This is
inefficent since the processor sending data sits idle until the other processor is ready to receive the data.
The way to solve this is to use the Isend and Ireceive commands which are non-blocking operations.
These commands declare that ‘this data needs to be sent’ or ‘this data is expected’ and then waits for
them collectively to finish in any order. If many processors are sending and receiving data to and from
each other, instead of using seperate send and receive commands, the sendrecv command can be used
which will allow processors to send and receive data simultaneously instead of first sending data then
receiving data or vice versa which will improve efficiency.

3.2 Simulation Code using MPI

The simulation code for the model in this thesis was written using a Python package called QuTiP
[23–25] (Appendix A) and MPI. It uses point-to-point communication instead of collective communi-
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cation. This is because the parallel part of the code is implemented when each processor does a time
evolution of the system and then sends its data to the master processor where an average of all the
results, together with errors are calculated. A send command is added to the code which tells each of
the processors doing the time evolution to send its data to the master processor and a corresponding
receive command is added to the code which tells the master processor to receive the incoming data
from each of the processors. The code is shown below and each section of the code is explained.

from mpi4py import MPI
from qutip import*
from scipy import*
from pylab import*
from numpy import*
from time import*
from os.path import*

This preamble to the code calls all the modules needed. The first line imports the MPI module. The
qutip module is used to define quantum objects and perform quantum mechanical operations. The
other three are standard Python modules, the time module records the time taken for the simulation to
run and the path module specifies the path where data needs to be written to.

save_path=‘/home/nirav/python/parallel_coding/data’
name_file=‘de_50_0.5_0001_p1_2_r11.txt’
name=os.path.join(save_path, name_file)
f=open(name,"w")

This opens and saves the file, consisting of the output data in a specified location with a specified
name.

comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()

Here the communicator, rank and size are defined. These can display information about what pro-
cessor is being used and the total number of processors.

start_time=time()
N0=50
N1=N0
N2=N0
d_ep=0.5
D_E=1
lam=0.001
I_s=qeye(2)
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I_ee=qeye(N1+N2)
tmax=1000
n_time=50
m_ax=100
iter=m_ax/size

This part is where the programme timer starts when the code is executed and also where the inital
values and parameters of the model are defined.

tlist=linspace(0,tmax,n_time)
T1=0.5*D_E*tensor(sigmaz(),I_ee)

T2=0
for k in range (0,N1):

kk=k+1
n1=basis(N1+N2,k+N1)
T2=T2+kk*(n1*n1.dag())

T2=(d_ep/N1)*tensor(I_s,T2)

T3=0
T3_1=0
for k in range (0,N2):

kk=k+1
n2=basis(N1+N2,k)
T3=T3+kk*(n2*n2.dag())
T3_1=T3_1+n2*n2.dag()

T3=(d_ep/N2)*tensor(I_s,T3)
T3_1=D_E*tensor(I_s,T3_1)
T3=T3+T3_1

rhoo=zeros((1,n_time))

Here a time step array is created. The Hamiltonians of the system (T1) and environment (T2, T3)
are defined.

for mc in range (0,iter):
jj=10+rank
seed(jj)
V1=0

for l in range (0,N1):
for m in range (0,N2):

nn1=basis(N1+N2,l+N1)
nn2=basis(N1+N2,m)
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Tp=nn1*nn2.dag()
a1=randn()
b1=randn()
V1=V1+complex(a1,b1)*tensor(sigmap(),Tp)

V=lam*V1+lam*V1.dag()
H=T1+T2+T3+V

es=basis(2,1) # pure state |0i
#es=basis(2,0) # pure state |1i
#es=(basis(2,1)+basis(2,0))/sqrt(2) # superposition state 1p

2
(|0i+ |1i)

chi=0

for p in range (0,N1):
n1n=basis(N1+N2,p+N1) # lower band populated
#n1n=basis(N1+N2,p) # upper band populated
chi=chi+randn()*n1n

wfn=tensor(es,chi)
wfn_n=wfn.unit()
result=mesolve(H,wfn_n,tlist,[],[])

rho_11=[]
for k in range (0,n_time):

rho_10=basis(2,0).dag()*(result.states[k]*result.states[k].dag()).ptrace(0)*basis(2,0)
rho_100=rho_10.full()
rho_11.append(rho_100)

a=array(rho_11)
b=reshape(a,n_time)
for kk in range (0,n_time):

rhoo[0,kk]=b[kk]
comm.send(rhoo, dest=0)

This is the main loop of the code where the time evolution takes place and this part is done in parallel.
The loop runs from 0 to iter, where iter was defined as m_ax divided by size. This tells the programme
that each iteration of the loop must be done on a seperate processor. The potential (V) is then defined
together with the total Hamiltonian (H), which is a sum of the system and environment Hamiltonians
and the potential. The state of the system is chosen from the three available states, in the next loop
the population of either the lower or the upper band in the environment is chosen. The initial wave
function is then defined as a tensor product of the intial states of the system and environment and
the time evolution is done with the mesolve command. Mesolve (master equation sovler) which is
a QuTiP routine calculates the time evolution provided it has as inputs the total Hamiltonian, initial
wave function and the time step array. The output of the mesolve command is the total density matrix
of the system and in the next loop the trace over the system is taken to obtain the reduced density
matrix. In the last line the data from each processor is sent to the master processor (rank 0).
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if rank==0:
rhoo_list=[]
for j in range(1,size):

rhoo=comm.recv(source=j)
rhoo_flat=[y for x in rhoo for y in x]
rhoo_list.append(rhoo_flat)

rhoo_total=array(rhoo_list)

time_t=zeros([n_time])
rho_t=zeros([n_time])
rho_m=zeros([n_time])
err=zeros([n_time])
error=zeros([n_time])

for tt in range (0,n_time):
time_t[tt]=time_t[tt]+tlist[tt]
for l in range (0,m_ax-1):

rho_t[tt]=rho_t[tt]+rhoo_total[l,tt]
rho_m[tt]=rho_t[tt]/(m_ax-1)
for m in range (0,m_ax-1):

err[tt]=err[tt]+(rhoo_total[m,tt]-rho_m[tt])**2
error[tt]=sqrt(err[tt]/((m_ax-1)*(m_ax-2)))
f.write(str(time_t[tt])+"\t"+str(rho_m[tt])+"\t"+str(error[tt])+"\n")

Here the ‘if’ statement tells the program that this part of the code must be done on the master pro-
cessor. The master processor collects the data from each processor via the receive command which
loops through all the processors (loop runs from 1 to size). Next the averaging of all the data from all
the processors is done and the error is calculated. The last line writes the data to the output file. The
whole block of code above is executed on the master processor.

elapsed_time=time()-start_time
if elapsed_time < 60 and elapsed_time < 3600:

print(‘ seconds’.format(elapsed_time))
f.write(‘\n’)
f.write(‘#{} seconds’.format(elapsed_time))

else:
t_min=elapsed_time/60
print(‘{} minutes’.format(t_min))
f.write(‘\n’)
f.write(‘#{} minutes’.format(t_min))

if elapsed_time == 3600 or elapsed_time > 3600:
t_hr=elapsed_time/3600
print(‘{} hours’.format(t_hr))
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f.write(‘\n’)
f.write(‘#{} hours’.format(t_hr))

f.close()
show()

This last part of the code also runs on the master processor since it is important to display only the
total time the simulation ran for in seconds, minutes or hours. The time is printed to screen when the
simulation has completed and also written to the file where the data is stored to record the time taken
for the simulation to run. At the end of the code the file is closed and the show() command tells the
program to display the simulation time on the screen once it is completed.

The simulations for this model were done on the UKZN hippo cluster, which consists of 50 nodes
each with 20 cores and 64 gigabytes of memory. Using MPI and running the code over multiple
processors made the simulation time extremely efficient. For a simulation of N = 150 which was
averaged over 100 runs (one run per core), the time taken for the code to run was 188.71 minutes
without using MPI whereas the time taken was 2.31 minutes using MPI. This is a speed up of 81 times
using MPI.
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Results and Discussion

In this chapter numerical solutions based on the model of the full Schrödinger equation corresponding
to the Hamiltonian given in equation (2.3) are performed. These simulations were done for both the
weak and strong coupling regimes. For both regimes the environment bands are taken to have equal
number of energy levels N1 = N2 = N and equal relaxtion rates �1 = �2 = �. For all the simulations
of each regime �E is set to unity and values of N = 150, N = 250 and N = 500 will be plotted for
different band widths �✏. The values of � for weak and strong coupling were chosen to be � = 0.001
and � = 0.01 respectively. There are two conditions that will be of importance in this study, the first
condtion is for weak or strong coupling and is given by �✏t � 1 which comes from the TCL2 method
as derived in [12]. If this condition is satisfied the coupling is weak. The second condition is for
Markovian or non-Markovian and is given by � ⌧ �✏ [14]. If this condition is satisfied the model is
Markovian. For N = 150 the ratio �/�✏ = 0.015, for � = 0.001 and �/�✏ = 1.5, for � = 0.01. As
can be seen the relaxtion rates differ by a factor of 100 for these two considered cases. Calculation of
the relaxation rates for the values N = 150, N = 250 and N = 500 with different band widths �✏ are
shown in Appendix B for both weak and strong coupling respectively.

4.1 Initial States

Six different initial states of the total system where used to do the simulations, three of these states are
given by

|0i ⌦ |�i , |1i ⌦ |�i , 1p
2
(|0i+ |1i)⌦ |�i , (4.1)

where |0i and |1i are the ground and excited states of the system respectively and the environmental
state |�i is of the form

h�| = (d1, · · · , dN2 ,

N1
z }| {

0, · · · , 0) (4.2)

and this is referred to as the upper band populated. The other three states are the same except the
environmental state |�i is of the form

h�| = (

N2
z }| {

0, · · · , 0, d1, · · · , dN1) (4.3)
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and this is referred to as the lower band populated. d1, .., dN1 and d1, .., dN2 are Gaussian random
variables with zero mean and variance equal to one. All simulations plotted display ⇢11 against t,
where ⇢11 is the population of the excited state or the probability of the system being in the excited
state |1i and t is the time of evolution of the system as it interacts with the environment. There is no
units for time since h̄ = 1. It should be noted that the corresponding graphs for ⇢00 (the population
of the ground state) can be obtained by performing a reflection about the thermalization or stationary
distribution axis.

4.2 Weak Coupling (� = 0.001)

Figures 4.1-4.4 display different values of N , the number of levels in the lower and upper bands, plot-
ted with different values of �✏ when the system is initially in the ground state |0i and the upper band
of the environment is populated. In each case, the system starts in the ground state and through its
interaction with the environment converges to the stationary population ⇢stat11 = 1

2 . From the plots it
can be seen that as N increases, the quicker the system reaches its stationary state or thermalizes. An-
other important observation is that as �✏ increases (shown successfully by Figures 4.1-4.4), the longer
the system takes to thermalize which implies the smaller the distance between the levels in the band,
the faster the system thermalizes and relaxes after interaction. Figure 4.5 displays N = 500 plotted
with �✏ = 1.0 with the system initially in the ground state |0i and the lower band of the environment
populated. Here ⇢11(t) stays at zero for all times and this indicates that there is not enough energy
in the environment to cause any change in the system when the upper band is unpopulated. Hence
the system stays in the ground state throughout the process and ⇢11(t) = 0. This behaviour is also
apparent for N = 150 and N = 250, as well as for the different values of �✏. The strange behaviour
of ⇢11 for the case of N = 150 and �✏ = 1.0 is investigated later.
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Figure 4.1: Different values of N with system (qubit) in intial state |0i, �✏ = 0.25 and the upper band populated.
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Figure 4.2: Different values of N with system (qubit) in intial state |0i, �✏ = 0.5 and the upper band populated.
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Figure 4.3: Different values of N with system (qubit) in intial state |0i, �✏ = 0.75 and the upper band populated.
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Figure 4.4: Different values of N with system (qubit) in intial state |0i, �✏ = 1.0 and the upper band populated.
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Figure 4.5: N = 500 with system (qubit) in intial state |0i, �✏ = 1.0 and the lower band populated.

Figures 4.6-4.9 display different values of N plotted with different values of �✏ where the system is
initially in the excited state |1i and the lower band of the environment is populated. In each case, the
system starts in the excited state and through its interaction with the environment converges to the
stationary population ⇢stat11 = 1

2 . As before it can be seen that as N increases, the quicker the system
reaches the stationary population. Again as before it can be observed that as �✏ increases, the longer
the system takes to thermalize which implies the smaller the distance between the levels in the band,
the faster the system thermalizes and relaxes after interaction. Figure 4.10 displays N = 500 plotted
with �✏ = 1.0 with the system initially in the excited state |1i and the upper band of the environment
populated. Here ⇢11(t) stays at one for all times and this indicates that there is not enough energy
in the environment to cause any change in the system when the lower band is unpopulated. Hence
the system stays in the excited state throughout the process and ⇢11(t) = 1. This behaviour is also
apparant for N = 150 and N = 250, as well as for the different values of �✏. This is the exact opposite
to the case when the system was initially in the ground state with the lower band populated.
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Figure 4.6: Different values of N with system (qubit) in intial state |1i, �✏ = 0.25 and the lower band populated.
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Figure 4.7: Different values of N with system (qubit) in intial state |1i, �✏ = 0.5 and the lower band populated.
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Figure 4.8: Different values of N with system (qubit) in intial state |1i, �✏ = 0.75 and the lower band populated.
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Figure 4.9: Different values of N with system (qubit) in intial state |1i, �✏ = 1.0 and the lower band populated.
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Figure 4.10: N = 500 with system (qubit) in intial state |1i, �✏ = 1.0 and the upper band populated.

Figures 4.11-4.18 display different values of N plotted with different values of �✏ where the system
is initially in a superpositon state 1p

2
(|0i+ |1i), when the upper and then the lower bands of the envi-

ronment are populated respectively. The system starts in the superposition state and after interacting
with the environment it has a 0.75 probability of being in the excited state with a 0.25 probability of
being in the ground state when the upper band is populated (Figures 4.11-4.14) and a 0.25 probability
of being in the excited state with a 0.75 probability of being in the ground state when the lower band
is populated (Figures 4.15-4.18). As in the previous cases of pure initial system states one can see
that as N increases, the faster the system thermalizes and as �✏ increases the longer the system takes
to thermalize, which can be seen when comparing the plots for �✏ = 0.25 (Figures 4.11,4.15) and
�✏ = 1.0 (Figures 4.14,4.18) for the upper and lower bands respectively. Since the system is initially
in a superposition state it always interacts with the environmnent whether the lower or upper band
is initially populated unlike the cases where the initial system state is either in the ground or excited
state.
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Figure 4.11: Different values of N with system (qubit) in intial state 1p
2
(|0i + |1i), �✏ = 0.25 and the upper

band populated.
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Figure 4.12: Different values of N with system (qubit) in intial state 1p
2
(|0i + |1i), �✏ = 0.5 and the upper

band populated.
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Figure 4.13: Different values of N with system (qubit) in intial state 1p
2
(|0i + |1i), �✏ = 0.75 and the upper

band populated.
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Figure 4.14: Different values of N with system (qubit) in intial state 1p
2
(|0i + |1i), �✏ = 1.0 and the upper

band populated.
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Figure 4.15: Different values of N with system (qubit) in intial state 1p
2
(|0i + |1i), �✏ = 0.25 and the lower

band populated.
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Figure 4.16: Different values of N with system (qubit) in intial state 1p
2
(|0i + |1i), �✏ = 0.5 and the lower

band populated.
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Figure 4.17: Different values of N with system (qubit) in intial state 1p
2
(|0i + |1i), �✏ = 0.75 and the lower

band populated.
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Figure 4.18: Different values of N with system (qubit) in intial state 1p
2
(|0i + |1i), �✏ = 1.0 and the lower

band populated.
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4.3 Strong Coupling (� = 0.01)

Figures 4.19-4.36 all display simulations done for the strong coupling case. In all the plots same as
for the weak coupling case, different values of N are plotted with different values of �✏. Once again
the considered cases are: the system initially in the ground state |0i with the upper band of the en-
vironment populated (Figures 4.19-4.22), the system initially in the excited state |1i with the lower
band of the environment populated (Figures 4.24-4.27). Also the system initially in the superposition
state 1p

2
(|0i + |1i) with the upper band of the environment populated (Figures 4.29-4.32), and the

lower band of the environment populated (Figures 4.33-4.36) is investigated. As before the plots for
the system initially in the ground state |0i with the lower band of the environment populated (Figure
4.23) and the system initially in the excited state |1i with the upper band of the environment populated
(Figure 4.28) are shown. The same observations are made as for the weak coupling, it can be seen as
N increases the system thermalizes quicker and also as �✏ increases the system takes longer to ther-
malize. As �✏ increases, apart from the fact that the system takes longer to reach its stationary state,
one can observe that the number of oscillations decrease before reaching the stationary state. The os-
cillatory behaviour for small �✏ could be explained as a coherent evolution as opposed to decoherence
by the coupling to the environment. This analysis is beyond the scope of this thesis. Note that for the
strong coupling case the system does not exponentially decay to the stationary state as was seen for the
weak coupling. The strange behaviour of ⇢11 for the case of N = 150 and �✏ = 1.0 is not observed in
the strong coupling regime. In fact for certain times, the system has a greater probability of being in
the excited state if initially starting in the ground state or vice versa if initially starting in the excited
state. It should be noted that this behaviour is not predicted by the TCL2 method of Breuer.
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Figure 4.19: Different values of N with system (qubit) in intial state |0i, �✏ = 0.25 and the upper band
populated.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  5  10  15  20  25

ρ
1
1
(t

)

t

N=150
N=250
N=500

Figure 4.20: Different values of N with system (qubit) in intial state |0i, �✏ = 0.5 and the upper band populated.
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Figure 4.21: Different values of N with system (qubit) in intial state |0i, �✏ = 0.75 and the upper band
populated.
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Figure 4.22: Different values of N with system (qubit) in intial state |0i, �✏ = 1.0 and the upper band populated.
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Figure 4.23: N = 500 with system (qubit) in intial state |0i, �✏ = 1.0 and the lower band populated.
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Figure 4.24: Different values of N with system (qubit) in intial state |1i, �✏ = 0.25 and the lower band
populated.
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Figure 4.25: Different values of N with system (qubit) in intial state |1i, �✏ = 0.5 and the lower band populated.
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Figure 4.26: Different values of N with system (qubit) in intial state |1i, �✏ = 0.75 and the lower band
populated.
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Figure 4.27: Different values of N with system (qubit) in intial state |1i, �✏ = 1.0 and the lower band populated.
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Figure 4.28: N = 500 with system (qubit) in intial state |1i, �✏ = 1.0 and the upper band populated.
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Figure 4.29: Different values of N with system (qubit) in intial state 1p
2
(|0i + |1i), �✏ = 0.25 and the upper

band populated.
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Figure 4.30: Different values of N with system (qubit) in intial state 1p
2
(|0i + |1i), �✏ = 0.5 and the upper

band populated.
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Figure 4.31: Different values of N with system (qubit) in intial state 1p
2
(|0i + |1i), �✏ = 0.75 and the upper

band populated.
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Figure 4.32: Different values of N with system (qubit) in intial state 1p
2
(|0i + |1i), �✏ = 1.0 and the upper

band populated.
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Figure 4.33: Different values of N with system (qubit) in intial state 1p
2
(|0i + |1i), �✏ = 0.25 and the lower

band populated.
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Figure 4.34: Different values of N with system (qubit) in intial state 1p
2
(|0i + |1i), �✏ = 0.5 and the lower

band populated.

47



Chapter 4. Results and Discussion

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0  5  10  15  20  25

ρ
1
1
(t

)

t

N=150
N=250
N=500

Figure 4.35: Different values of N with system (qubit) in intial state 1p
2
(|0i + |1i), �✏ = 0.75 and the lower

band populated.
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Figure 4.36: Different values of N with system (qubit) in intial state 1p
2
(|0i + |1i), �✏ = 1.0 and the lower

band populated.
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4.4 Discussion

From the graphs above, one can see that the condition which describes the weak and strong cou-
pling regimes is satisfied. For Figures 4.1-4.18, the condition describing weak coupling is satisfied,
�✏t � 1, and for Figures 4.19-4.36 this condition is not satisfied hence strong coupling. An important
observation is that when the calculated value of �✏t is closer to 1, the quicker the system thermalizes
and relaxes (or the stronger the coupling is). This can be seen in the figures above when the value
of �✏ is 0.25 as compared to when �✏ is 1.0. When looking at the graphs for �✏ = 1.0 in the weak
coupling regime, a bump which goes below 0.5 is seen for the N = 150 case only. The obvious
question would be, why is this not happening for N = 250 and N = 500? Numerical investigations
were performed and it was seen that for every value of N there is a certain value of �✏ where the
bump appears, the larger N the larger the value of �✏ needed to start seeing the bump appear. Since
N = 250 and N = 500 are much larger than N = 150 the bump is not visible as a larger �✏ is needed
to see the bump for these values of N . Figures 4.37 and 4.38 show N = 150 plotted with increasing
values of �✏, it can be seen that as �✏ increases, the more defined the bump is. This also indicates that
the system can be forced such that there is a greater probability for it to be in the ground state than in
the excited state for a certain time interval. From the shape of the graph in Figure 4.38 with a large
value of �✏, one would assume that now the model changed from being Markovian to non-Markovian
for the weak coupling regime, but this is not the case. Although this plot looks identical to the non-
Markovian strong coupling case, especially the non-exponential decay behaviour for very small times,
it is still Markovian since it still satisfies the Markovian condition � ⌧ �✏. From this extensive study
of the model, the results clearly show that the outcome of this interaction, between the qubit and the
many band environment, can be controlled in some manner by varying N , �✏ and by also specifying
which band is populated. For example using the initial system state 1p

2
(|0i + |1i), one can predict

that the system will have a greater probability of being in the excited (ground) state after interaction if
the upper (lower) band is initially populated. Or by setting �✏ to a small value and N to a large value,
which corresponds to very small level spacing between the levels in the bands, the relaxtion rate of
the system can be controlled.
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Figure 4.37: Different values of �✏ for N = 150 with system (qubit) in intial state |1i, � = 0.001 and the lower
band populated.
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Figure 4.38: Different values of �✏ for N = 150 with system (qubit) in intial state |1i, � = 0.001 and the lower
band populated.
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Conclusion

Numerical solutions allow to investigate regimes of the model where analytical solutions do not pre-
dict the right results. In this thesis a numerical study of the dynamics of a two-level system coupled to
a structured environment was studied. The code used to simulate the time evolution of the two-level
system when interacting with the finite level structured environment was written in Python using the
quantum package QuTiP and optimised to run in parallel using MPI. By tracing over the degrees of
freedom of the structured environment, the density matrix of the two-level system was obtained. The
probability of the system being in the excited state after interaction (⇢11) was plotted against time.
Plots were made using both levels of the two-level system, ground and excited, and also a superpo-
sition state. The parameters of the enviroment were also varied such as the number of levels in the
bands, which band is initially populated and as well as the width of the bands (�✏). These plots also
consists of the two types of interactions between the two-level system and the structured environment,
weak and strong coupling.

In the weak coupling case the model was observed to be Markovian and in the strong coupling case
non-Markovian behaviour was observed. Increasing the number of levels in the bands strongly in-
fluenced the time taken for the system to relax and thermalize, as the number of levels increased the
time taken for the system to thermalize decreased. It was observed that the width of the bands also
influenced the time taken for the system to thermalize, as the band width increased the time taken
for the system to thermalize increased. It was then observed that the total system can be controlled
in some manner, by varying the parameters and choosing which band is populated one can predict
the evolution of the two-level system after interaction with the structured environment. From the fact
that ⇢11 stayed at zero and at one, it can be seen that the system can be forced to remain in either the
ground or excited state depending on which of the two environment bands are populated. The reason
for this behaviour of ⇢11 is energy conservation as mentioned in section 2.1. Also observed was that if
the system is initially in a superposition state, it can be forced to have a greater probability of being in
either the ground or excited state depending on which of the two bands of the environment is initially
populated. This is clearly controllability of the time evolution of the system under specific conditions.
Another important observation was that, for the weak coupling case, increasing the band width will
result in the plots looking like the strong coupling non-Markovian case but this is not so, since it still
satifies the Markovian condition. The studies done in this thesis correspond to both bands having the
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same number of levels. Areas of future investigation one can conduct on this model include using
different numbers of levels on each band or if in the strong coupling case, can the system initially in
the excited state be driven down to the ground state or vice versa?
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Appendix A

Quantum Toolbox in Python (QuTiP)

QuTiP is a very useful Python package for the purpose of simulating the dynamics of open quantum
systems. It is ideal for exploring quantum mechanics and provides efficient numerical solutions for
a variety of time-independant and time-dependant Hamiltonians. QuTiP is free open-source software
and available for use on all major platforms such as Linux, Mac OSX and Windows. Two papers have
been published so far about the features of the QuTiP library and its uses [23, 24]. In quantum me-
chanics one uses operators instead of numbers as variables, and because of this a data structure which
is capable of encapsulating the properties of a quantum operator and ket/bra vectors is needed. This is
accomplised by the quantum object class, qutip.Qobj, which uses matrix representation. For example
a blank Qobj:
In [1]: Qobj()

Out [1]:
Quantum object: dims = [[1], [1]], shape = [1, 1], type = oper, ish-

erm = True

Qobj data =

[[ 0.]]

The dimension, shape, type and data of the blank Qobj object is displayed. Here the data corre-
sponds to a 1x1 dimensional matrix consisting of a single zero entry. A Qobj can also be created with
a specific data set or even with an array of data:
In [1]: Qobj([1,2,3,4,5])

Out [1]:
Quantum object: dims = [[1], [5]], shape = [1, 5], type = bra

Qobj data =

[[ 1. 2. 3. 4. 5.]]

In [2]: x = array([[1],[2],[3],[4],[5]])

In [3]: Qobj(x)

Out [3]:
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket
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Qobj data =

[[ 1.]

[ 2.]

[ 3.]

[ 4.]

[ 5.]]

In [4]: z = array([[1,2],[3,4],[5,6]])

In [5]: Qobj(z)

Out [5]:
Quantum object: dims = [[3], [2]], shape = [3, 2], type = other

Qobj data =

[[ 1. 2.]

[ 3. 4.]

[ 5. 6.]]

In [6]: r = rand(3, 3)

In [7]: Qobj(r)

Out [7]:
Quantum object: dims = [[3], [3]], shape = [3, 3], type = oper, ish-

erm = False

Qobj data =

[[ 0.89383496 0.28955641 0.68182144]

[ 0.31716633 0.82915623 0.52893312]

[ 0.44864855 0.62795681 0.20921074]]

Here again the dimension, shape, type and data of the Qobj object is displayed. Here the data cor-
responds to a 1x5 dimensional bra vector, a 5x1 dimensional ket vector, a 3x2 dimensional matrix
and a 3x3 dimensional matrix consisting of random numbers. QuTiP includes predefined objects for
a variety of states and operators shown in the table below [25]:

Table A.1: QuTiP’s predefined objects for states and operators.

States Command (#
optional) Inputs

Fock state ket vector basis(N,#m) /
fock(N,#m)

N = number of levels in Hilbert space, m = level
containing excitation (0 if no m given)

Fock density matrix
(outer product of basis) fock_dm(N,#p) same as basis(N,m) / fock(N,m)

Coherent state coherent(N,alpha) alpha = complex number (eigenvalue) for
requested coherent state

Coherent density matrix
(outer product)

coher-
ent_dm(N,alpha) same as coherent(N,alpha)

Thermal density matrix
(for n particles) thermal_dm(N,n) n = particle number expectation value
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Operators Command (#
optional) Inputs

Identity qeye(N) N = number of levels in Hilbert space
Lowering (destruction)
operator destroy(N) same as above

Raising (creation)
operator create(N) same as above

Number operator num(N) same as above
Single-mode
displacement operator displace(N,alpha) N=number of levels in Hilbert space, alpha =

complex displacement amplitude
Single-mode squeezing
operator squeez(N,sp) N=number of levels in Hilbert space, sp =

squeezing parameter
Sigma-X sigmax()
Sigma-Y sigmay()
Sigma-Z sigmaz()
Sigma plus sigmap()
Sigma minus sigmam()

Higher spin operators jmat(j,#s) j = integer or half-integer representing spin, s =
’x’, ’y’, ’z’, ’+’ or ’-’

As an example, here are the outputs for a few of these states and operators:
In [1]: basis(2,1)

Out [1]:
Quantum object: dims = [[2], [1]], shape = [2, 1], type = ket

Qobj data =

[[ 0.]

[ 1.]]

In [2]: coherent(5,0.5-0.5j)

Out [2]:
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket

Qobj data =

[[ 0.77880170+0.j ]

[ 0.38939142-0.38939142j]

[ 0.00000000-0.27545895j]

[-0.07898617-0.07898617j]

[-0.04314271+0.j ]]

In [3]: destroy(4)

Out [3]:
Quantum object: dims = [[4], [4]], shape = [4, 4], type = oper, ish-

erm = False

Qobj data =

[[ 0. 1. 0. 0. ]

[ 0. 0. 1.41421356 0. ]
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[ 0. 0. 0. 1.73205081]

[ 0. 0. 0. 0. ]]

In [4]: sigmaz()

Out [4]:
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, ish-

erm = True

Qobj data =

[[ 1. 0.]

[ 0. -1.]]

Mathematical operations can be performed on Qobj’s, the rules that govern these operations are simi-
lar to standard matrix arithmetic:
In [1]: x = sigmax()

In [2]: x * x

Out [2]:
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, ish-

erm = True

Qobj data =

[[ 1. 0.]

[ 0. 1.]]

In [3]: 5+x

Out [3]:
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, ish-

erm = True

Qobj data =

[[ 5. 1.]

[ 1. 5.]]

In [4]: x/sqrt(2)

Out [4]:
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, ish-

erm = True

Qobj data =

[[ 0. 0.70710678]

[ 0.70710678 0. ]]

The logic operators ’is equal’ (==) and ’is not equal’ (!=) are also supported. The quantum object
class has defined functions (methods) that operate on Qobj class instances. For a general quantum
object Q [25]:
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Table A.2: QuTiP’s defined functions that operate on quantum objects.
Function Command Description
Conjugate Q.conj() Conjugate of quantum object.
Dagger (adjoint) Q.dag() Returns adjoint (dagger) of object.
Diagonal Q.diag() Returns the diagonal elements.
Eigenenergies Q.eigenenergies() Eigenenergies (values) of operator.
Eigenstates Q.eigenstates() Returns eigenvalues and eigenvectors.
Exponential Q.expm() Matrix exponential of operator.
Full Q.full() Returns full (not sparse) array of Q’s data.
Groundstate Q.groundstate() Eigenval and eigket of Qobj groundstate.
Matrix Element Q.matrix_element(bra,ket) Matrix element <bra|Q|ket>

Norm Q.norm() Returns L2 norm for states, trace norm for
operators.

Partial Trace Q.ptrace(sel) Partial trace returning components selected
using ’sel’ parameter.

Sqrt Q.sqrtm() Matrix sqrt of operator.
Tidyup Q.tidyup() Removes small elements from Qobj.
Trace Q.tr() Returns trace of quantum object.

Transform Q.transform(inpt) A basis transformation defined by matrix or list
of kets ’inpt’.

Transpose Q.trans() Transpose of quantum object.
Unit Q.unit() Returns normalized (unit) vector Q/Q.norm().

As an example, here are the outputs for a few of these functions:
In [1]: basis(5, 3)

Out [1]:
Quantum object: dims = [[5], [1]], shape = [5, 1], type = ket

Qobj data =

[[ 0.]

[ 0.]

[ 0.]

[ 1.]

[ 0.]]

In [2]: basis(5, 3).dag()

Out [2]:
Quantum object: dims = [[1], [5]], shape = [1, 5], type = bra

Qobj data =

[[ 0. 0. 0. 1. 0.]]

In [3]: (basis(4, 2) + basis(4, 1)).unit()

Out [3]:
Quantum object: dims = [[4], [1]], shape = [4, 1], type = ket
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Qobj data =

[[ 0. ]

[ 0.70710678]

[ 0.70710678]

[ 0. ]]

In [4]: coherent_dm(5, 1)

Out [4]:
Quantum object: dims = [[5], [5]], shape = [5, 5], type = oper, ish-

erm = True

Qobj data =

[[ 0.36791117 0.36774407 0.26105441 0.14620658 0.08826704]

[ 0.36774407 0.36757705 0.26093584 0.14614018 0.08822695]

[ 0.26105441 0.26093584 0.18523331 0.10374209 0.06263061]

[ 0.14620658 0.14614018 0.10374209 0.05810197 0.035077 ]

[ 0.08826704 0.08822695 0.06263061 0.035077 0.0211765 ]]

In [5]: coherent_dm(5, 1).diag()

Out [5]:
array([ 0.36791117, 0.36757705, 0.18523331, 0.05810197, 0.0211765 ])

In [6]: coherent_dm(5, 1).norm()

Out [6]:
1.0

In [7]: coherent_dm(5, 1).tr()

Out [7]:
1.0

This is just an introduction to some of the features and capabilities of QuTiP. One can see that QuTiP is
a very powerful and useful package for anyone performing quantum mechanical opeartions and simu-
lating the dynamics of open quantum systems. These notes were taken from the QuTiP documentation.
The documentation can be downloaded at http://qutip.org/index.html [25].
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Appendix B

Calculation of Relaxation Rates �/�✏

N1 = N2 = 150, �✏ = 0.25

Weak coupling:
�

�✏
=

2⇡�2N

�✏2
=

2⇡(0.001)2(150)

(0.25)2
= 0.015

Strong coupling:
�

�✏
=

2⇡�2N

�✏2
=

2⇡(0.01)2(150)

(0.25)2
= 1.5

N1 = N2 = 250, �✏ = 0.25

Weak coupling:
�

�✏
=

2⇡�2N

�✏2
=

2⇡(0.001)2(250)

(0.25)2
= 0.025

Strong coupling:
�

�✏
=

2⇡�2N

�✏2
=

2⇡(0.01)2(250)

(0.25)2
= 2.5

N1 = N2 = 500, �✏ = 0.25

Weak coupling:
�

�✏
=

2⇡�2N

�✏2
=

2⇡(0.001)2(500)

(0.25)2
= 0.05

Strong coupling:
�

�✏
=

2⇡�2N

�✏2
=

2⇡(0.01)2(500)

(0.25)2
= 5
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N1 = N2 = 150, �✏ = 0.5

Weak coupling:
�

�✏
=

2⇡�2N

�✏2
=

2⇡(0.001)2(150)

(0.5)2
= 0.0038

Strong coupling:
�

�✏
=

2⇡�2N

�✏2
=

2⇡(0.01)2(150)

(0.5)2
= 0.38

N1 = N2 = 250, �✏ = 0.5

Weak coupling:
�

�✏
=

2⇡�2N

�✏2
=

2⇡(0.001)2(250)

(0.5)2
= 0.0063

Strong coupling:
�

�✏
=

2⇡�2N

�✏2
=

2⇡(0.01)2(250)

(0.5)2
= 0.63

N1 = N2 = 500, �✏ = 0.5

Weak coupling:
�

�✏
=

2⇡�2N

�✏2
=

2⇡(0.001)2(500)

(0.5)2
= 0.013

Strong coupling:
�

�✏
=

2⇡�2N

�✏2
=

2⇡(0.01)2(500)

(0.5)2
= 1.3

N1 = N2 = 150, �✏ = 0.75

Weak coupling:
�

�✏
=

2⇡�2N

�✏2
=

2⇡(0.001)2(150)

(0.75)2
= 0.0017

Strong coupling:
�

�✏
=

2⇡�2N

�✏2
=

2⇡(0.01)2(150)

(0.75)2
= 0.17

N1 = N2 = 250, �✏ = 0.75

Weak coupling:
�

�✏
=

2⇡�2N

�✏2
=

2⇡(0.001)2(250)

(0.75)2
= 0.0028
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Strong coupling:
�

�✏
=

2⇡�2N

�✏2
=

2⇡(0.01)2(250)

(0.75)2
= 0.28

N1 = N2 = 500, �✏ = 0.75

Weak coupling:
�

�✏
=

2⇡�2N

�✏2
=

2⇡(0.001)2(500)

(0.75)2
= 0.0056

Strong coupling:
�

�✏
=

2⇡�2N

�✏2
=

2⇡(0.01)2(500)

(0.75)2
= 0.56

N1 = N2 = 150, �✏ = 1.0

Weak coupling:
�

�✏
=

2⇡�2N

�✏2
=

2⇡(0.001)2(150)

(1.0)2
= 0.00094

Strong coupling:
�

�✏
=

2⇡�2N

�✏2
=

2⇡(0.01)2(150)

(1.0)2
= 0.094

N1 = N2 = 250, �✏ = 1.0

Weak coupling:
�

�✏
=

2⇡�2N

�✏2
=

2⇡(0.001)2(250)

(1.0)2
= 0.0016

Strong coupling:
�

�✏
=

2⇡�2N

�✏2
=

2⇡(0.01)2(250)

(1.0)2
= 0.16

N1 = N2 = 500, �✏ = 1.0

Weak coupling:
�

�✏
=

2⇡�2N

�✏2
=

2⇡(0.001)2(500)

(1.0)2
= 0.0031

Strong coupling:
�

�✏
=

2⇡�2N

�✏2
=

2⇡(0.01)2(500)

(1.0)2
= 0.31
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