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Abstract

A group G is said to be 2-generated if G = (x, y), for some non-trivial elements

x, y E G. In this thesis we investigate three special types of 2-generations of the

sporadic simple groups.

A group G is a (l, rn, n )-generated group if G is a quotient group of the triangle

group T(l, rn, n) = (x, y, zlx1 = ym = zn = xyz = la). Given divisors l, rn, n of the

order of a sporadic simple group G, we ask the question: Is G a (l, rn, n)-generated

group? Since we are dealing with simple groups, we may assume that III + l/rn +
l/n < 1. Until recently interest in this type of generation had been limited to the

role it played in genus actions of finite groups. The problem of determining the genus

of a finite simple group is tantamount to maximizing the expression III + l/rn + Iln

for which the group is (l,rn,n)-generated.

Secondly, we investigate the nX-complementary generations of the finite sim­

ple groups. A finite group G is said to be nX-complementary generated if, given

an arbitrary non-trivial element x E G, there exists an element y E nX such

that G = (x, y). Our interest in this type of generation is motivated by a conjec­

ture (Brenner-Guralnick-Wiegold [18]) that every finite simple group can be gen­

erated by an arbitrary non-trivial element together with another suitable element.

It was recently proved by Woldar [181] that every sporadic simple group G is pA­

complementary generated, where p is the largest prime divisor of IGI. In an attempt·

to further the theory of nX-complementary generations of the finite simple groups,

we pose the following problem. Which conjugacy classes nX of the sporadic simple

groups are nX-complementary generated conjugacy classes. In this thesis we provide

a complete solution to this problem for the sporadic simple groups H S, McL, C03,

Co2 , Jt , J2 , J3 , J4 and Fi 22 · We partially answer the question on (l, rn, n)-generation

for the said sporadic groups.
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A finite non-abelian group G is said to have spread r iffor every set {Xl, X2, ' , "x r }

of r non-trivial distinct elements, thpre is an element y E G such that G = (Xi, y),

for all i. Our interest in this type of 2-generation comes from a problem by Brenner­

Wiegold [19] to find all finite non-abelian groups with spread 1, but not spread 2.

Every sporadic simple group has spread 1 (Woldar [181]) and we show that every

sporadic simple group has spread 2.
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Chapter 1

Introduction

A group G is said to be 2-generated if it can be generated by two suitable elements. It

is well-known that every finite simple group is 2-generated. This has been known for

a long time (cf. Miller [126]) in the case of the alternating groups. Explicit generators

for the alternating groups An' with n 2: 5 (cf. Aschbacher-Guralnick, [4]) are:

a=(1,2)(n-1,n) and b=(1,2, ... ,n-1), ifn IS even

a=(1,n)(2,n-1) and b=(1,2, ... ,n-2), if n is odd.

For the groups of Lie type, Steinberg [155] provided a unified treatment for the 2­

generation of the Chevalley groups and the Twisted groups. Steinberg's construction

of a generating pair exploits the basic structure of a group of Lie type. Before this

the 2-generation of certain families of Lie-groups were known (eg. PSL(n, F) and

Sp(n, F)). For the sporadic simple groups we have the following result.

Theorem 1.0.1 (Aschbacher-Guralnick!4J) Every sporadic simple group can be gen-

erated by an involution and another suitable element. D

Aschbacher and Guralnick were primarily concerned with applications to coho­

mology. They prove: Let G be a finite group acting faithfully and irreducibly on a

vector space V over the prime field GF(p). Then IH 1(G, V)I < IV/, where H1(G. \/)

is the first cohomology group of G on V. The 2-generation of the simple groups come

3



4 CHAPTER 1. INTRODUCTION

into play in the following way. First it is proved that if G is generated by d elements

then, IH 1(G, V)\ < IVld- l , then a reduction to the case G simple is accomplished and

2-generation gives the required result.

In view of applications (as noted above), it is often important to exhibit generating

pairs of some special kind, such as:

• generators carrying a geometric meaning,

• generators of some prescribed order,

• generators that offer an economical presentation of the group.

For this purpose, more subtle and detailed techniques are required. We now examine

such instances.

1. Genus action: A group G IS said to be (nl,"" nh)-generated if G IS a

quotient of the group

In the case where h = 3,4 we call f a triangular group T( nI, n2, n3) and quadrangular

group Q(nl"'" n4), respectively. The genus g(G) of a finite group G is defined to be

the smallest integer 9 such that some Cayley graph of G is embedded on a Riemann

surface 5g with genus g. The action of groups on Riemann surfaces seeks a geometric

representation theory of finite groups as automorphism groups of Riemann surfaces.

The genus action plays the role of an irreducible representations in this theory.

Let f be a (nI, ... ,nh)-generated finite group and let H 2 be the hyperbolic plane.

If G is a homomorphic image of f, then the short exact sequence

gIves rise to an orbit space 5g = H 2I6. in the natural way of the structure of a

Riemann surface on which G acts faithfully as a group of conformal mappings. More­

over, the regular branch covering H 216.-+ H 2If has branch point orders nl,' .. ,nh.
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The genus of 1{2I6., hence of G, can be calculated from the genus of 'H2If by the

well-known Riemann-Hurwitz formula

g('H216.) = 1 + lQl[g('H2If) - 2+t(1 -1/nd]
2 [=1

We now restrict ourselves to finite simple groups. It is conjectured that every finite

non-abelian finite simple group can be generated by an involution and another suitable

element, that is, (2, s, t)-generated. The validity of this conjecture will simplify the

calculation of the genus of finite simple groups as follows.

Proposition 1.0.2 (Woldar [177J) Let G be a finite non-abelian (2, s, t)-generated

group and S a Riemann surface of least genus on which G acts. Then S / G = 52

(the 2-sphere) and the branch covering 'iT" : S ~ S/G has either 3 or 4 branch points.

o

Thus the genus action of the (2, s, t)-generated finite groups arise from the short

exact sequence 1Delta ~ 6. ~ r ~ G ~ le, where r is either a triangular group or a

quadrangular group. As a consequence of the Riemann-Hurwitz equation the genus

of a (2, s, t )-generated group G is given by

g(G) = 1 + I~I lVI,

where AI = 1 - 1/1- l/m - l/n or M = 2 - l/u - l/v - l/w - l/x , depending,

respectively, on whether r = T(l,m,n) or Q(u,v,w,x) in the genus action. Thus the

genus problem of the these groups is reduced to a problem on generations. With this

in mind Moori [131] posed the following problem.

(1) Let G be a finite simple group such that I, m, n are divisors oflGI with 1/1+1/m+

l/n < 1. Is G a (l, m, n)-generated group?

2. Spread: Let r be any positive integer. A finite non-abelian group G is said

to have spread r I if for every set {Xl, X2, ... , xr } of distinct non-trivial elements of

G, there exists a complementary y E G such that G = (Xi, y) for all i. It is conjec­

tured by Brenner-Guralnick-Wiegold [18] that every finite simple group has spread 1.



6 CHAPTER 1. INTRODUCTION

Woldar [181] proved the conjecture for all sporadic simple groups using the following

definition. Let G be a finite group and nX a conjugacy class of G. The group G is

called nX -compLementary generated if, given an arbitrary x E G, complementary y

can always be chosen from the conjugacy class nX. Woldar proved that every spo­

radic simple group G is pA-complementary generated, where p is the largest prime

divisor of IGI. In an attempt to further the theory on nX-complementary generations

we pose the following problem.

(2) Find aLL conjugacy classes nX of a finite simpLe group G such that G is nX­

compLementary generated.

We say G has exact spread r if G has spread r but not r + 1. An interesting

question posed by Brenner-Wiegold [19] is to find all finite non-abelian groups with

exact spread 1.

3. Presentations: For most group theorists studying generations, the main aim

is not just to give generators, but to offer economical presentations for the groups in

question. For the finite non-abelian simple groups 2-generations is an ideal starting

point. Solutions to the two problems posed above will provide us with a pool of

generations pairs (together with some relations) which may in time be extended to

(abstract) presentations of the groups.

In this thesis we will focus on problems (1) and (2) with G one of the following

sporadic simple groups: the Higman-Sims group HS; the McLaughlin group McL;
the Conway groups Co3 , Co2 ; the Janko groups )1, )2, )3, )4; and the Fischer group

Fi 22 . In the case of problem (1), we will restrict ourselves to the cases were l, rn, n

are distinct primes and some other triples (l, rn, n) needed to solve problem (2). We

will provide a complete answer to problem (2) for these groups.

In Chapter 2 we give a detailed account of certain types of 2-generations, their

historical setting and survey known results as well as open problems associated with

each type of 2-generation. The 2-generations we will consider are those that serve as
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a motivation for studying problems (1) and (2). Every finite 2-generated group is a

homomorphic image of some triangular group and in the first section we introduce the

triangular groups. There are three kinds of triangular group T(l, m, n), depending on

the sign of l'v[ = 1 - 1/L- l/m - l/n. The simple groups are homomorphic images

of the triangular groups with A1 > O. In the second section we discuss the genus

action of a finite group. We start with maps and orientable surfaces and derive the

equation for calculating the genus of a finite group first using combinatorial methods

and then from a topological point of view. We then proceed to reduce the genus

problem to one on generations. The smallest possible value of M is obtained when

G is a (2,3, 7)-generated group. In this case G is called a Hurwitz group. We study

some properties of Hurwitz group in the second section. In the third section we

introduce 2-generations with the generators having prescribed orders. We end this

section by developing some theory on nX-complementary generations of the finite

simple groups.

In Chapter 3 we develop a general theory that will be useful in resolving gener­

ation type questions of the finite simple groups. In this chapter we also set up the

notational conventions to be used throughout the thesis. In the first section we focus

on the important role between character theory and 2-generations. Given any three

conjugacy classes lX, mY and nZ of a finite group G, with a fixed element z E nZ.

the number of ordered pairs (x, y) E LX x mY such that xy = z is given by the struc­

ture constant 6.G (lX, mY, nZ). This value is easily calculated if the character table

of G is known. We discuss techniques that will, under certain conditions, establish

(l, m, n )-generation of G using the structure constant. We also look at the question

of finding other generating pairs from a given pair. In the second section we consider

2-generated permutation groups. If we view the group G as a permutation group on n

symbols, then Ree's theorem [140] gives a necessary condition for 2-generation of G.

This result involves the number of Cj cles of the generating set. In the third section

we derive Scott's theorem, a generalization of Ree's theorem to arbitrary modules.

We also provide an easy method for applying Scott's theorem. In the last section we

discuss the role of computer calculations in 2-generations. We identify two ways that

the algebra packages GAP and MAGMA are useful in resolving 2-generations.
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In Chapters 4 to 10 we apply the methods which Were developed in Chapter 3

to nine of the sporadic simple groups, namely HS, McL, C03 , Co2 , Jt , J2 , J3 , J4

and Fi 22 . We introduce each chapter with a summary of important properties of

the particular group. We then continue to find all the (p, q, r )-generations, where

p < q < r are primes, and nX-complementary generations of these groups. The

methods we used were more or less ad hoc and depend on the particular group's local

structure. Some of the results appeared in Ganief-Moori [66], [67], [68], [69] and [70].

In Chapter 11 we return to the spread of the finite simple groups. In this chapter

we are concerned with the question by Brenner-Wiegold to find all finite non-abelian

groups with exact spread 1. The definition of the spread of a finite group G is not

very useful for computational purposes. We refine this definition by showing that

G has spread r if and only if for every set {Xl,"" x n } of distinct elements of prime

order, there exists an element y E G such that G = (Xi, y) for all i. Using this

alternate definition we show that none of the sporadic simple groups has exact spread

1. vVoldar [181] showed that every sporadic simple group has spread 1 and our main

result in this chapter proves that every sporadic simple group has spread 2.

All groups under consideration will assumed to be finite non-abelian groups, unless

otherwise stated. Computations were carried out with the aid of GAP [147] running

on a SUN OS computer.



Chapter 2

Historical· Overview

The aim of this chapter is to motivate and introduce the problems we will deal with

in this thesis. We first introduce the triangular groups as the groups we will be

considering are homomorphic images of the triangular groups.

2.1 Triangular Groups

We shall be concerned with the action of groups on several topological spaces. An

action of a finite group G on a topological space X is given by an isomorphism of the

group onto a subgroup of Aut(X), the grolip of all conformal homeomorphisms on

X. We will consider groups acting on the euclldean complex plane £2, the spherical

plane 52 and the hyperbolic plane 1i2 with the standard topology. The groups acting

on these planes can be derived from the projective special linear group PS £(2, C) by

forming subgroups a.nd quotient groups. The proofs of the results in this section are

out of the scope of this treatise and interested readers are referred to Coxeter-Moser

[44], Magnus [118] and Jones-Singerman [9.5].

The special linear group 5 £(2, C) is defined as the group of all 2 x 2 matrices

ad-bc=l, a,b,c,dEC.

The center of 5 £(2, C) consist of the matrices ±/2 , where 12 denotes the 2 x 2 identity

9
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matrix. The quotient group of S L(2, C) with respect to the center is the projective

special linear group PS£(2, C). Consider the transformations of the complex plane

defined by

a, b, c, dE C.ad - be =f:. 0,( )
_ az +b

T z - d'cz +
Note that T does not define the coefficients a, b, c, d uniquely. If A E C - {O}, then

the coefficients Aa, Ab, AC, Ad correspond to the same transformation T. Thus we can

always choose coefficients a, b, c, d such that ad - be = 1. Transformations of the

above type are known as linear fractionals or Mobius transformations. The Mobius

transformations form a group 9 under composition.

There is a strong connection between Mobius transformations and matrices. If T

is expressed in the above form, and

[ acdb]i'vly =

the corresponding matrix, then there exists an onto homomorphism B : 5 L(2. C) -+ 9
mapping 1\;1 t--+ MT with the kernel K = KerB = {±I2 }. Therefore 9 ~ PSL(2,C).

The group PSL(2, C) is an example of a topological group.

Definition 2,1.1 A topological group G is a topological space G which is also a group

in which the group multiplication and taking of inverses are continuous maps. }fore

precisely, the maps

m: G x G -+ G,

i: G -+ G,

defined by m(g, h) = gh,

defined by i(g) = g-I ,

are continuous.

For example, consider the group PGL(n, C) = GL(n, C)jZ(GL(n, C)). We ob­

tain a topology on this group by considering the n x n matrix (Aaij) to be the points

(,\aII,Aa12, ... ,Aaln,Aa21, ... ,Aa2n, ...,Aann) in C
n2

(with the standard topology).

Similarly PGL(n, IR) is a topological group.

We define a discrete subgroup H of a topological group G to be a subgroup with

the properties that there is a neighbourhood U of the identity element le of G such
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that un H = {lG}. It follows that H is a discrete subgroup of S£(2, C) if and only

if there is a sequence of matrices {An} such that An -t 12 implies that An = 12 for

almost all n. In general, it is difficult to describe the discrete subgroups H of an

arbitrary topological group G. However, the discrete subgroups of PS £(2, IR) are

those subgroups that meet each compact subset of PS£(2, R) in only finitely many

points. Also, in a compact topological space, every discrete subgroup is finite.

Let G be a group of homeomorphisms of a topological space X onto itself. Then

we say G acts discontinuously on X if every x E X has a neighbourhood V such that

V n g(V) = 0, for all non-identity 9 E G. Assume G acts discontinuously on X. It is

well-known that if a subgroup G of PS £(2. C) acts discontinuously in some non-empty

open subset of C, then G is discrete and contains countably many points. However,

it is possible that a discrete subgroup of PS£(2, C) does not act discontinuously on

any open subset of C (cf. Beardon [7], pg 96). It is a difficult problem to decide

whether a given discrete subgroup of PS £(2, C) acts discontinuously. Under the

following conditions discrete subgroups of the two-dimensional groups of motion act

discontinuously.

Theorem 2.1.2 Let G be a discrete subgroup of PS£(2, C).

(i) If D is a non-empty open G-invariant proper subset of C, then G acts

discontinuously on D.

(ii) If D is a non-empty open set such that g( D) n D = °for all non-indentity

9 E G, then G acts discontinuously on UgEG g( D).

Proof. See Beardon [7], page 102. 0

We call F a fundamental region of a 5rouP G if F is a closed subset such that

(i) UgEG g(F) = X,

(ii) ;:0 n g(;:O) = 0, for all 9 E G - {l G }, where;:O is the interior of F.

\Ve define a tessellation of a plane as a division of the plane into non-overlapping closed

regions, which we shall always assume are bounded by finite congruent polygons.

Each individual polygon will be called a tile. The concept of congruent tiles implies

the existence of a group of transformations in the plane, which allows us to define

polygons of the same shape and size in different parts of the plane. By Theorem
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2.1.2(ii) it follows that this group acts continuously on the plane if we choose D the

interior of the tile. We now construct the discontinuous group of tessellations with a

tile of triangular shape as a fundamental region.

Definition 2.1.3 Let l,m,n be integers greater than l} let

<5 = III + I/m + Iln - 1 (2.1 )

and let 6. be a triangle with angles 'Trll, 7r/m} 1rln. If <5 > 0, then 6. is a spherical

triangle. If <5 = 0, then 6. is euclidean, and if <5 < 0, then 6. is a hyperbolic (non­

euclidean) triangle. Let 6.(l), 6.(mL 6.(n) be, respectively, the sides of 6. opposite to

the angles of size -;rll, 'TrIm, 7rln and let L, M, N, respectively, be the reflections of

the particular plane in the straight lines (great circles in the spherical case) on which

the sides 6.(lL 6.(mL 6.(n) lie. The group generated by L} M, N shall be denoted by

T*(l, m, n) and called the full triangular group. The subgroup ofT*(l, m, n) consisting

of words of even length in the generators L, M, N shall be denoted by TU, m, n) and

called the triangular group.

The group T(l, m, n) consists of the orientation preserving isometries in T-(l, m, n)

and is of index 2 in T*(l, m, n). vVe call 6. the basic triangle of the group T-(l, m, n).

Note that the groups T*(l, m, n) and T(l, m, n) are independent of the order in which

l, m, n are listed. Now define a local relation as a relation in which all images of the

fundamental region have one point in common. All relations associated with a chain

of images of the fundamental region whose members do not have a point in common

are called global relations. The important fact which we wish to establish is that the

local relations define the triangular group.

Lemma 2.1.4 (Afagnus [118}) The only (unordered) triplets I, rn, n of positive in­

tegers greater than 1 for which the quantity <5 of (2.1) satisfy the condition <5 = 0

are (2,3,6L (2,4,4) and (3,3,3). The triplets for which <5 > 0 are (2,2,n), n 2:: 2.

(2,3,3L (2,3,4) and (2,3,5). 0

2.1.1 Euclidean Triangular groups

First consider the euclidean case (<5 = 0). Let us consider the individual cases.
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Case 1: The group T(2, 3, 6). The group T = T(6, 3, 2) is generated by the elements

u = LM and v = NL, which, as euclidean motions, are represented by

u(z) = f.Z and v(z) - 1 = f.2(Z - 1).

The relations

(2.2)

(2.3)

are the defining relations for T(6,3,2) = T(2,3,6).

Case 2: The group T(3, 3, 3). This is a subgroup of index 2 in T(2, 3, 6). The

generating elements u and v can be represented respectively by the rigid motions

(rotations)

and (2.4 )

Case 3: The group T(2, 4, 4). This situation is close to the chessboard tessellation

and the generating elements u and v of can be represented by

u(z)=1-z and v(z) = i:Z. (2.5)

Thus for the euclidean tessellation we have the following result.

Theorem 2.1.5 For d = 0, the full triangular group T* = T*(l, rn, n) is defined by

the local relations

L2 _ M 2 = N 2

(LMt - (MN/=(NL)m = 1r-.

(2.6)

(2.7)

The triangular group T = T(l, rn, n) of index 2 in T*(l, rn, n), consisting of the

orientation-preserving euclidean motions, is defined by two generators u, v. which

are rotations with two of the vertices of 6. as center, and the relations

(2.8 )

where u = LA1 and v = N L.

Proof See Theorem 2.5, Magnus [118], page 68. 0
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2.1.2 Spherical Triangular groups

We now turn to the cases listed in Lemma 2.1.4, where 0 > O. Details of the structure

of the group of reflections L, M, N in the sides of a spherical triangle will be described

in Cases 4 to 7.

Case 4: The dihedral group T(2, 2, n). Let c = ei-rr/n. We choose the original triangle

6 on the sphere with one vertex at the south pole and the vertices z = 1 and

z = c on the equator. Stereographic projection maps the south pole onto z = O.

Reflection of 6 in the real axis produces the triangle 6', which, together with 6,

forms a fundamental region for T = T(2, 2, n). The motions u and v can be defined

respectively by the matrices

un = y2 = [-1 0]o -1 .
(2.9)

The matrix U defines a rotation witll Z = 0 as a fixed point and with 2rr jn as the

angle of rotation. This will be a generator u of T(2, 2, n). The other generator v is

defined by Y, or alternatively v(z) = ij(iz). It is of order 2 and represents a rotation

of the sphere with Z = 1 as a fixed point. Thus we have

'n 2 ( )2 1u = v = uv = T, (2.10)

where uv has the points ±c as fixed points.. The group generated by u and v with

defining relations (2.10) is of order 2n, and every element can be expressed uniquely

in the form ukv l (k = 0, ... n - 1; l = 0,1). Thus T(2, 2, n) is isomorphic to the

dihedral group D2n .

Case 5: The tetrahedral group T(2, 3, 3). A tessellation of the sphere with triangles

congruent to 6 (with given angles) arises if we inscribe a regular tetrahedron in a

sphere and mark the vertices together with the projections of the centers of the faces

and the midpoints of the edges on the sphere, the center of projection being the

center of the sphere. Repeated reflection of the sphere in the sides of the triangle 6

produces the group T* = T*(2, 3, 3) with generators L, M, N and defining relations

and (2.11)
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This group is isomorphic to 54, the symmetric group on four symbols. The group

T = T(2, 3, 3) is generated by u = LM and v = !vIN with defining relations

(2.12)

This is the tetrahedral group, isomorphic with A4 , the alternating group on four

symbols. The rotations u, v of T(2, 3, 3) may be presented as unitary matrices U, \/

defined by

[

1.(1 -i) 1.(1 - i) ]U _ 2 2

- t(-l-i) t(1+i) ,

uv

[

1.(1 - i)
\/= 2

t(1 - i)

H-1-i)],

t(1 + i)

(2.13)

Case 6: The octahedral group T(2,3,4). The spherical triangle 6 with angles rr/4,

rr /3, rr /2 produces, under repeated reflections in its sides, a tessellation of the sphere

by 48 congruent replicas of 6. The reflections L, lVI, N in the sides of 6 generates

a group T* = T*(2, 3, 4) with the defining relations

and (2.14)

It has a subgroup T = T(2, 3,4) genp-rated by the elements u = Llvf and v = AI N

with defining relations

(2.15)

where u and v are rotations of the sphere with corresponding, respectively, to Mobius

transformations with matrices [}, \/ defined by

u = [ (1 - i)/ V2 0 ] ,

o (1 + i)/V2 [

1.(1-i) 1.(1-i)]V = 2 2

t(-1-i) ~(1+i)
(2.16)

The matrices U, \/ generate a non-splitting central extension of order 48 of the group

T(4,3.2). The group T(2, 3, 4) is isomorphic to S4 and is called the octahedral group
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because the rotations u, v generate the group of all rotations which carry a regular

octahedron, inscribed in the unit sphere, into itself.

Case 7: The icosahedral group T(2, 3, 5). Let E = e2i7r
/
5

• A tessellation of the sphere

with triangles congruent to 6, with angles IT /5, IT /3, IT /2, arises if we inscribe a

regular icosahedron in a sphere. Define the matrices U, V by

[

_E3

U= o
(2.17)

Then U, V define, respectively, fractional linear substitutions u, v which may be

interpreted as rotations on the unit sphere. The group generated by u, v is a faithful

representation of T = T(2, 3, 5). It is defined by the local relations

• 3 2u;)=v =(uv) =IT. (2.18)

The group generated by the matrices U, V itself is a non-splitting central extension

of T(2, 3, 5). Its center is of order 2 and generated by U5 = V 3
. It follows from

elementary geometric arguments that T(2, 3, 5) is of order 60 and is isomorphic to

A5 .

We summarize the general result as:

Theorem 2.1. 6 The reflections L, M, N in the sides of a spherical triangle (8 > 0)

6 generate a group T* = T*( I, rn, n) for which 6 is a canonical fundamental region.

The local relations

J'vf2 = N 2

(lvIN)/ = (NL)m = 1p.

(2.19)

(2.20)

define the group. The group T = T(l, rn, n) is finite and is generated by u, v, which

are rotations with two of the vertices of 6 as center, and the relations

(2.21 )

where u = LM and v = N L.

Proof. See Theorem 2.6, Magnus [1l8], page 71. 0
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Recall that a hyperbolic triangle with angles 0', f3 and, exists provided that 0'+.8+....1 <
71". We shall consider triangles with angles 'Tr/l, IT/m, 'Tr/n, where I, m, n are positive

integers. The general results are given in the following result.

Theorem 2.1.7 Let L, lvI, N be the reflections in the sides of a hyperbolic triangle

6, with angles IT/I} 'Tr/m, if/no The images of6 under the action of the distinct

elements of the group T* = T-(l, m, n) generated by L, M} N fill the hyperbolic plane

without gaps and overlapping. The group T-(l, m, n) is defined by the local relations

(2.22)

Proof. See Theorem 2.8, rvlagnus [118], page 81. 0

Theorem 2.1.8 Let T(l, m, n) be the subgroup of index 2 in the full triangular group

T-( l, m, n) which consists of the orientation-preserving isometries of the hyperbolic

plane. Then T = T( l, m, n) is generated by u = LM and v = M N with relations

defined by

(2.23)

Furthermore} the non-identity elements of finite order in T(l, m, n) are conjugates of

powers ofu, v} or uv.

Proof. See Theorem 2.10, Magnus [118], page 87. 0

Although it can be shown in general that a non-euclidean triangle with angles 0',

/3, , exists and is uniquely determined if 0', {3, , are non-negative and 0' + {3 + I <
'Tr, we shall give an explicit construction of a right-angle triangle and an explicit

representation of the subgroup of proper non-euclidean motions of the group generated

by reflections in the sides of the triangle. We use the unit disk as a model for non­

euclidean geometry.

Theorem 2.1.9 Let 0' > 0 and {3 ?: 0 be angles such that 0' + {3 < IT /2. Let 0, Q} P

be three points in the unit disk Izl < I} defined respectively by their coordinates

=0 = 0, =Q = XQ, Zp = xp + iyp,
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where

XQ = (cos (3 - sin 0:)/p,
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Xp = (coso:cos(o: + (3))/p,

and

yp = (sino:cos(o: +(3))/p

Then 0, Q, P are vertices of a non-euclidean triangle with angles 0:, if/2, {3, respec­

tively, at 0 IQ, P. The sides OQ and 0 P are respectively parts of the real axis and

the straight euclidean line joining 0 and P. The side Q P is part of the circle with

center at z = xc, where Xc = (cos (3)/ p, and with radius r = (sin 0:)/ p.

Let L, M, N denote, respectively, the reflections in the sides OQ, QP, PO of the

triangle. Then they generate a group T* which has a subgroup T of index 2 consisting

of orientation-preserving non-euclidean motions and is generated by tL = L,1I[ and

v = LN. To tL and v there correspond respectively matrices U and V of Mobius

transformations which are given by

U = _.i_ [ cos {3 p ]
smo: -p -cos{3 ,

(2.24)

and which map the unit circle onto itself. If 0: = 1i / m and (3 = if / l, where land

m are integers, then U and Y define a group T of Mobius transformations with the

defining relations

U2 = y m = (UV)/ = IT. (2.25)

Proof. See Theorem 2.11, Magnus [118], page 88. 0

Corollary 2.1.10 The triangular group TU, m, n) is finite if and only if J > 0: that

is, the triangle £::,. is spherical.

Proof This is an immediate consequence of Theorems 2.1.5, 2.1.6 and 2.1.8. 0
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2.1.4 Fuchsian groups
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All of the orientation-preserving discontinuous group of two-dimensional isometries

discussed in the above sections are very special cases of the Fuchsian groups, which

can be defined both geometrically awl algebraically as follows.

Geometrically, a Fuchsian group F is defined as a finitely generated discontinuous

group of orientation-preserving isometries, or equivalently, as a discontinuous group

ofMobius transformations which map a circular disk onto itself. The Fuchsian groups

are exactly the discrete subgroups of the group PS L(2, R). Fuchsian groups were first

studied systematically by Poincare in 1880, although some particular examples such

as the modular group and the triangular groups were investigated earlier. Poincare

was led to the Fuchsian groups after reading a paper by L. Fuchs on differential

equations. The following important and difficult theorem defines the Fuchsian group

algebraically. It was first established by Fricke [64] and proved with a different method

by Heins [79].

Theorem 2.1.11 (Fricke) A Fuchsian group F can be characleri::ed by a sequence

of exponents mj (j = L ... , t) where mj are integers with mj ~ 2, and an integer 9

(the genus). The group F has t + 2g generators Yj, ai, bi (i = 1, ... ,gunless 9 = 0)
and defining relations

m J 1Yj = F, (2.26)

We call the combination of the mj and 9 the signature of F and denote the group F

by F(g; mj) or, explicitly, (if the mj are given numerically) by

F(g; ml,···, md.

The choice of the mj and the 9 is arbitrary provided that

t

fL(F) = 2g - 2 + 2:(1- l/mj) > O.
j==1

(2.27)

(2.28)

The number fL( F) is called the measure of F. The area of the fundamental region

of F is irp( F). In a representation of F as a group of 1\1obius transformations, the

generators Yj are represented by elliptic transformations. The generators ai, bi are

always represented by hyperbolic transformations. 0



20 CHAPTER 2. HISTORICAL OVERVIEW

Fuchsian groups without elliptic transformations will be denoted by F(g; -). The

spherical triangular groups T(l, rn, n) discussed in the previous sections are Fuchsian

groups F(O; l, rn, n). Like the free groups, the Fuchsian groups (as abstract groups)

form a class of groups in which certain subgroups theorems holds. For instance, every

subgroup of finite index in a Fuchsian group is again a Fuchsian group. If F is a

Fuchsian group and S a subgroups of F with finite index rn, then

p,(S) = rnp,(F). (2.29)

A finitely generated normal subgroup of a Fuchsian group is also of finite index (cf.

Greenberg [74]). Furthermore, Hoare et al. [80] proved the relation (2.29) for the

Fuchsian groups and their subgroups purely group theoretically, defining a Fuchsian

group by a presentation of type (2.26). Also Curran [45], using the methods of

homological algebra, showed that p,( F) > 0 is a necessary and sufficient condition for

F to be infinite. A remarkable new result on the Fuchsian groups (using the abstract

definition) was proved algebraically by Hoare et al., [81]. It states that a subgroup of

infinite index in a Fuchsian group defined by (2.26) is a free product of cyclic groups.

2.2 Genus actions of the finite simple groups

An action of a finite group G on a Riemann surface is called a genus action provided

G acts effectively and analytically on S but does not so act on any other Riemann

surface of lesser genus (notation to be defined later). A natural question to ask is:

Why are we interested in genus actions of finite simple groups'?

One answer is that we seek a geometric representation theory of finite simple

groups as automorphism groups on Riemann surfaces. The genus action play the role

of irreducible representations in this theory. 'When these genus actions give rise to

full automorphism groups of the related surface, our representation theory has a more

natural form. This geometrical representation theory in turn has a faithful image in

the ordinary integral representation theory of the group by means of the induced

homological representation. We seek to relate these integral representations to the

"number theory" of finite simple groups. The genus homology representations are

minimal integral representations and as such should have a special status.
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Although genus actions arise in a topological context, we will develop it using

combinatorial arguments as well. We now continue to discuss graphs realised by a

set of points and lines on a closed orientable surface.

2.2.1 Maps and Orientable surfaces

Maps on surfaces have been studied for two main reasons. Geometers have been

interested in symmetric properties of maps, and this led to the investigation of regular

maps, those possessing the greatest possible symmetry. Combinatorialists, on the

other hand, have concentrated on map colourings and the graph embeddings. In this

section we will concentrate on graph embeddings.

Definition 2.2.1 A surface 5 is a compact topological space which has two special

properties:

(i) it is locally homeomorphic to triangles;

(ii) it is orientable.

A surface is orientable if it is possible to choose a consistent sense of orientation

(clockwise or anti-clockwise) at every point on the surface. A decomposition of a sur­

face into triangles is called a triangulation. We may think of a surface as a connected

compact 2-manifold without boundary points, that is, all surfaces here are closed.

The simplest example is the sphere, decomposed into four (spherical) triangles by

projection on an inscribed tetrahedron. The next simple surface is the torus, ob­

tained by identifying opposite sides of the euclidean 2-space, formed by two euclidean

triangles. The Klein bottle is not allowed, since it is not orientable.

Definition 2.2.2 A graph f is a pair (V, E), where V is a finite set whose members

are called vertices, and E is a subset of V(2), the set of unordered pairs of vertices.

The members of E are called edges. If {v, w} is an edge of f, then we say that v and

ware adjacent.

A walk of length r is a sequence (vo, VI, ... , vr ) such that {Vi-I, vd is an edge for

1 ~ i ~ r - 1. The graph f is said to be connected if any two vertices can be joined
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by a walk. A circuit is an ordered set of distinct vertices (a, b, ... ,1) such that {a, b},

{b, c}, ... ,{f, a} are edges of the graph r.

An embedding of a graph r = (V, E) in a surface S is a representation of the

surface by the set V and lines E' on the surface, in such a way that the lines intersect

only at the points representing their end vertices, that is, a line (v, w) in E' is an edge

{v, w} in E. The lines divide the surface into connected regions, called faces, and the

resulting configuration is a map. Thus a map has points (vertices), lines (edges) and

faces (regions). An embedding of the graph r in a surface S is cellular if each face is

homeomorphic to an open disc. We will assume all embeddings of r in S are cellular.

At each vertex v, the neighbourhood of v is locally like a plane, and so the vertices

adjacent to v have a cyclic ordering Pv corresponding to the arrangement of the edges

joining them to v on the surface. We are now ready to present the formal definition

of a map.

Definition 2.2.3 A rotation of a graph r = (V, E) embedded in a surface S is a set

p = {Pv }vEV J where Pv is a cyclic permutation of the vertices adjacent to v in r. A

map is a pair (r, p), where r is a connected graph and p is a rotation on r.

For example, a rotation on the complete graph Kn is the set of all (n - 1)-cycles

in the symmetric group Sn' We turn to the formal definition of the faces of a graph

embedding. Let sr denote the set of sides of r:

sr = {(v,w)l{v,w} is an edge of r}. (2.30)

Thus each edge {v,w} gives rise to two sides (v,w) and (w,v). A rotation p on r
induces a permutation on sr given by

p(v,w) = (v,Pv(w)). (2.31 )

This corresponds to rotating the sides pointing away from v in the order prescribed

by Pv· The cycles of p on S are in one-to-one correspondence with the vertices of r.
Define a permutation p* on 5 as follows:

p*(v,w) = (w,Pw(v)) = p(w,v). (2.32)
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Definition 2.2.4 Let (f, p) be a map and suppose p* is defined above. A face of

(f, p) is a cyclic sequence of vertices occurring in a cycle of p* on S.

One of the oldest results in the theory of maps concerns a relationship linking the

numbers of vertices, edges and faces. In order to obtain this result by combinatorial

means we need some elementary lemmas.

Lemma 2.2.5 Given any connected graph f = (V, E) we can find a subset T of E

such that the graph (V, T) is connected and has no circuits. Furthermore, ITI = lVI-I.

Proof We use induction on n = IVI. The result is trivial if n = 2. Suppose that

the result is true for n - 1 vertices, and let f be a connected graph with IVI = n.

Choose v E V and let El denote the set of edges not incident with v. The graph

f' = (V - {v}, Ed is the union of disjoint connected graphs f.\ = (V.\, E.\), and by the

induction hypothesis, each E.\ contains a subset T.\ such that (V.\, T.\) is connected

and has no circuits. Also, since f is connected, there is an edge e.\ joining v to some

vertex v,\ E V.\. Let T be the union of all the edges e.\ and all the edges in the sets

T.\. We have

ITI L IT.\ U {e.\}1
.\

L IV.\I (by induction)
.\

jV-{v}l= lVI-I.

Thus T is the required subset of E. 0

The set T, or the graph (V, T), is called a spanning tree for r. Suppose that

D ~ E, and TD is the permutation of sr defined by

( ) {
(w,v) if {v,w} E D;

TD v, W =
(v, w) otherwise.

(2.33)

Then TD is the composition of transpositions Te (e E D), where Te switches the two

sides corresponding to the edge e and fixes every other side. The number of cycles of

a permutation (j will be denoted by c( (j). If (j is any permutation and T = (v w) is a
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transposition, then it is easy to check that c( (i) is related to C( (iT) as follows:

{
C( (i) + 1, if v and ware in the same cycle of (i

C( (iT) =
C( (i) - 1, otherwise.

Lemma 2.2.6 If (r, p) is a map and T is a spanning tree for r, then pTT has just

one cycle on sr.

Proof Let T = {el, ... ,en-d, where n is the number of vertices of r. By its

definition, TT is the composition of n - 1 transpositions Ti that switches the sides

corresponding to ei. Thus PTT = PTl T2' . ·Tn-t. Since the two sides of et are in different

cycles of p acting on sr, we have C(pTr) = c(p) - 1 = n - 1. Now we may proceed

inductively: suppose that c(pTt" 'Tm ) = n - m, for some value m (1 :S m :S n - 1),

then c(pTt' . 'Tm+r) = n - m ± 1.

If the plus sign holds, the two sides of em+t must be in the same cycle of PTJ' . 'Tm on

sr. This means that there is a chain of edges selected from {el,' .. , em} joining the

two end vertices of em+l, in other words, we have a circuit in T. Thus the minus sign

must hold, and the induction step is complete. It follows that

C(pTT) = C(pTl" 'Tn-r) = n - (n -1) = 1. 0

Theorem 2.2.7 Let r = (V, E) be a connected graph and p a rotation on r. Let F

denote the set of faces of the map (r, p) on a surface S. Then there is a non-negative

integer g such that

IVI- IEI + IFI = 2 - 2g. (2.34)

Proof Let T be a spanning tree of r, and let U = E - T. Then p* = PTE, since

pTE(V,W) = p(w,v) = (w,Pw(v)) = p*(v,w).

Now IFI is, by definition, the number of cycles of p*, and so

IFI = c(p*) = C(pTE) = C(pTTTU).

We have established in Lemma 2.2.6 that C(pTT) = 1. To obtain p* from PTT we form

the composition with the transposition Pe (e E U). As each transposition is added,
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the number of cycles either increases or decreases by unity. Suppose that it increases

h times and decreases 9 times. vVe have

h+g

l+h-g

Eliminating h gives

as required. 0

IUI = lE - TI = IEI-IVI + 1,

c(p") = IFI.

IVI - IEI + IFI = 2 - 2g,

Definition 2.2.8 The non-negative integer 9 = g(5) occurring in Theorem 2.2.7 is

called the genus of the surface 5 with respect to the map (r ,p).

2.2.2 Finite group actions on surfaces and Cayley graph em­

beddings

\Ne have defined the genus of a surface in a purely combinatorial way. \Ve will now

discuss the action of a finite group on a closed surface from a topological point of

view and show that when a group acts on an orientable surface then a Cayley graph

of the group embeds in the surface.

Recall an action of a finite group G on a topological space X is given by an

isomorphism of the group G onto a subgroup of the group of all homeomorphisms

on X. We will not differentiate between the abstract group G and the subgroup of

homeomorphisms; if a E G we will refer to the homeomorphism a. The stabilizer of

x E X is a subgroup of G defined by

and

Gx={aEGla(x)=x}

Fix G = {x E X I Gx =1= 1G }.

(2.35 )

(2.36)

An action of a group G on X is free if Fix G is empty and pseudo-free if Fix G is

non-empty but discrete. If we assume G is finite and X is a surface, then Fix G must

be finite if the action is pseudo-free (cf. Tucker [163]).
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Given an action of the group G on the space X, the orbit of a point x E X is the

[x] = {y E X I y = a(x) for some a E G}. (2.37)

The quotient space X/G is the set of all orbits with the topology that U C X/G is

open if and only if p-l(U) is open, where p : X :-+ X/G is the natural projection

p(x) = [x].

Suppose G is a finite group actinl?; pseudo-freely on a surface S. Then S / G is a

surface and the natural projection p : S --t 5/G is a branched covering, that is, a local

homeomorphism except at the points in Fix G (cf. Jones-Singerman [95], page 248).

The set p(Fix G) is called a branched set. If x E Fix G, then p is locally IGxl-to-one

in a neighbourhood of x. If y E p(Fix G), then IGxl is the same for any x E p-l(y).

The common number is called the order of the branch point y and denoted by my. It

follows that Ip-l(y)1 = IGI/my •

We define the Euler characteristic of a surface 5 as X( 5) = 0'0 - 0'1 + 0'2, where

0'0 is the number of vertices, 0'1 the number of edges and 0'2 the number of triangles

in the triangulation of the surface 5. The Euler characteristic of 5 can easily be

computed from the Euler characteristic of 5/C and the order of the branch points.

We triangulate 5/G so that every branch point is a vertex of the triangulation 6..

Then p-1(6.) is a triangulation of 5. Since Ip-1(t)1 = ICI, if t is an edge, triangle or

non-branch point vertex of 6., we have

X(5) = IG!(X(5/G) - L(1- limy)),
y

(2.38)

(2.39)

where the sum is taken over the branch set (cf. Farkas-Kra [58], Section 1.2.7). The

Euler characteristic of 5 is also related to the genus of 5.

Proposition 2.2.9 (Jones-5ingerman [95)} The Euler characteristic of a compact,

connected and orientable surface 5 of genus g( 5) is given by X( 5) = 2 - 2g( 5). 0

The combinatorial equivalence of this proposition is given by Theorem 2.2.7. Now

from (2.38) we obtain

g(5) = 1 + I~I [2g(5/C) - 2 + L(1 - limy)].
- y
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This equation is called the Riemann-Hurwirtz equation. A surface with genus 9

may be considered topologically as a sphere with 9 handles. A surface of genus 0 is

topologically a 2-sphere and a surface of genus 1 is topologically a torus.

Proposition 2.2.10 (5cherrer [146)} Let 5 be an orientable surface and h : 5 --t 5

a homeomorphism of finite order. Then one of the following occur:

(a) h has a finite number of fixed points,

(b) h is an orientation reversing involution and 5 = 51 U 52, where 51 lS

connected, h(5d = 52, and 51 n 52 is a finite collection of disjoint simple

closed curves, at least one of which is left point-wise fixed by h. 0

It follows from Proposition 2.2.10 that any finite group acting on an orientable

surface 5 acts pseudo-freely unless the action has a reflection. In particular, if GO

denotes the subgroup of orientation preserving homeomorphisms of an action of G on

an orientable surface, then GO always acts pseudo-freely.

Definition 2.2.11 Let G be a finite group, with X ~ G such that:

(i) X generates G,

(ii) le rf. X

(iii) x E X implies X-I EX,

Then the Cayley graph C(C, X) has vertex-set G and, for g, h E G, {g, h} is an edge

of C(G, X) if and only if gh- l EX.

For example, the complete graph K n is a Cayley graph C(G, X) for any group G

of order n, where X E G-{le}. Condition (i) of the definition implies that a Cayley

graph is always connected. Condition (ii) ensures that no vertex is adjacent to itself,

while condition (iii) guarantees that the edges are unordered pairs.

Proposition 2.2.12 (Biggs- White [9j) The graph r is a Cayley graph C(G, X) of a

group G if and only if G acts transitively on the vertices of r such that no vertex of r
is left fixed by a non-identity element of G. Edges in the same orbit of G correspond

to the same generator in X. 0
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We will show that if a group acts on an orientable surface, then a Cayley graph

of the group embeds in the surface. Along the way we will also give necessary and

sufficient conditions that are satisfied by some presentation of the group in order

that it acts on the given surface in a given fashion. To quell any uprisings from

the many subscripts needed, we introduce some notational conveniences. In listing

generators for a presentation of a Fuchsian group F, we indicate the range of a

subscript in the subscript; thus ah means aI, a2,"" ah. In giving relations, we only list

a representative relation for each subscript; for example, if Yt is given in a generating
mt m, 1 'f ... hset, then ym = IF means Yl = ... = Yt = F, or 1 rZs(r)+l IS gIven In t e

generating set, then (ZjZj+l )q) means [CZj )(iZj+r)]q) = IF for all j = 1, ... , s( i) + 1

and all i = 1, . .. ,r. Finally, I1y = YIY2·· ·Yt and I1[a,b] = I1?=l[ai,b;j.

Theorem 2.2.13 (Tucker [163)} Let G be a finite group acting 'without reflections

on the orientable surface S. Let n = 2 - x(SIG) = 2 - 2h and let p : S -+ SIG

have t branch points of order ml,"" mt. Then there is a Cayley graph C(G, X) that

embeds cellularly in S, where X is the generating set in one of the following partial

presentations of G:

(2.40)

(2.41 )

Moreover, in case (2.41), GO contains Yt but not en' 0

The situation is somewhat more complicated when G contains reflections. Then

GIGO acts on the surface So = 51Go as a single reflection T. 'vVe seek a 2-vertex

graph r that cellularly embeds in S° so that every face contains at most one branch

point and such that the reflection leaves r invariant (h(r) = r) but interchanges the

two vertices of r. The idea is to construct r', half of r, and then reflect this half to

get the other half of r. If 5~ represents half of the surface So under the reflection,

then r' must take into account the genus of 5~, the boundary components Cl, ... , Cn

of S~ (the fixed circles of T), the branch points of GO lying inside 5?, and the branch

points of GO lying on the fixed circles of T. We summarize:
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Theorem 2.2.14 (Tucker [163]) Let G act on an orientable surface S with reflec­

tions. Then GIGo acts on SIGo as a single reflection. Let Cl,"" Cr be the fixed cir­

cles of the reflection and S? a half of the reflection. Let GO have t branch points in the

interior of S? of orders ml,.·., mt} and s(i) branch points of order iqj} 1 ::; j ::; s(i),

on the circle Ci , 1 ::; i ::; r. Then there is a Cayley graph C (G, X) that cellularly

embedded in S, where X is the generating set for the partial presentation:

~2 - le
~ - ,

-1 1
'tU.:;1w '=s(i)+1 = e,

Aforeover, GO contains ah, bh ,Yt, lL'r but not rZs(i)+I'

(=j=j+d
q

, = le,

ll[a, b]llynw = le, . .. )

o

Observe that in the case that SI GO is a sphere, there are no ai's or bi's and since

there can be only one fixed circle, the iZ/S need not be doubly subscripted. The

partial presentation is then not so unwieldy. The presentation in the above theorem

is a quotient of a non-euclidean space group. It should also be noted that the Cayley

graph embedding in each of the Theorems 2.2.13 and 2.2.14 is invariant under the

action of the group G on the surface S. There are converses for these theorems as

well.

Theorem 2.2.15 (Tucker [163]) Let G be a finite group having a partial presentation

of type (2.40) or (2.41) in Theorem 2.2.13. Then G acts pseudo-freely on a surface

5 of Euler characteristic

t

x(S) = IG!(x(SIG) - 2:)1 - I/mk)).
k=1

If the representation is of type (2·40), then 5 is orientable and the action of G is

orientation preserving. If the representation is of type (2.41) and there is a subgroup

of index 2 in G containing Yt but not cn , then 5 is orientable but the action is not

orientation preserving. Otherwise, S is non-orientable. 0

Theorem 2.2.16 (Tucker [163]) Let G be a finite group having a partial presentation

given in Theorem 2.2.14, such that there is a subgroup H of index 2 in G containing
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ah, b/;l' Yt and W r but not rZs(i)+l. Then G acts with reflections on an orientable

surface S of Euler characteristic

x(S) = IG1(2 - 2h - r - I:(1- l/rnk) - I:(l - 1/iqj)/2).
k IJ

o

2.2.3. Reduction of the genus problem for finite simple groups

Definition 2.2.17 The genus 9 = g(G) of a finite group G is the smallest integer 9

such that some Cayley graph of G is embedded on an orientable, compact surface with

genus g.

Equivalently, the genus of a group G can be defined as the smallest integer such

that G acts effectively and analytically on a compact surface with genus g. An old

question, usually referred to as Nielsen Realization Problem, is whether every finite

subgroup of the group of isotopy classes of diffeomorphisms 7roDiff(U) (U a closed

hyperbolic surface) arises as a group of isometries of some hyperbolic surface. This

question was answered in the affirmative by Kerckhoff.

Proposition 2.2.18 (J\erckhoff [lOO)) Every finite subgroup G of 7roDiff(U) can be

realized as a group of isometries of a hyperbolic surface. 0

As a consequence of this result, no generality is lost if we require the action of

G on S to be conformal, that is, analytic in some complex structure of S. Thus the

surface in question can be assumed to be a Riemann surface which admit an effective

conformal action by G. 'Ne illustrate presently how the class of hyperbolic triangular

groups of such surfaces arise.

Let 1{2 be the hyperbolic plane and T = T( I, rn, n) be the hyperbolic triangular

group acting on the triangle I::::. with angles 'ifII, 'if Im, 7r In.

Proposition 2.2.19 (Jones-Singerman [95}) Let F be a Fuchsian group action on

1{2. Then the quotient space 1{2 / F is a connected Riemann surface and 7r : 1{2 -+

1{2/ F is a holomorphic map. 0
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"Ve may choose the region 6 as fundamental region for the group T. From

Theorem 2.1.11 the area of 6 is

rrJ.L(T) = 7r[2g - 2 + (1- 1/l) + (1 - l/m) + (1 - l/n)]

rr[2g + 1 - l/l - l/m - l/n]'

where 9 is the genus of t{2/T. However, the area of a hyperbolic triangle with angles

0', (3" is rr - (0' +(3 +,) (cf. Beardon [7], page 150). Thus

11"[2g + 1 - 1/1 - l/m - l/n] = rr[l - 1/1 -l/m - l/n]'

and hence the genus of t{2 IT is 0 and t{2 IT = 52, a 2-sphere.

Proposition 2.2.20 (Tucker [163}) Let G be a group acting on an ortientable

surface S. Let N be a normal subgroup of G. Then GIN acts on SIN so that

(SIN)/(GIN) = SIG. If N ~ GO, then SIN is an orientable surface. 0

Definition 2.2.21 A group G is said to be (nl,"" n r )-generated if, G can be gener­

ated by Xl,' ,., Xr , such that

X?' = lc, for i = 1, ... , r, and XIX2" 'X r = lc,

Ifr = 3, then G is a quotient group of the triangular group T(nl,n2,n3) and ifr = 4,

then G is a quotient group of a quadrangular group Q(nl,"" n4)'

Now suppose G is a finite (l, m, n)-generated group. Consider the short exact

sequence

le. -+ 6 -+ T(l,m,n) -+ G -+ lc. (2.42)

Using Proposition 2.2.19 the group G ~ T16 acts orientably on the closed Riemann

surface t{2 /6, and the branch covering t{2 /6 -+ (1{ 2 /6)/(TI6) = t{21T has 3

branch points of respective orders l, m, and n. By the Riemann-Hurwitz formula. we

compute

2 IGI
g(t{ 16) = 1 + 2(1 - III - I/m - I/n). (2.43)
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Thus, if we further assume G is (2, m, n)-generated, then

IGI
9 ::; 1 +2(1/2 - l/m - l/n), (2.44)

where 9 is the least genus of any surface which admits an effective and analytic action

by G.

Theorem 2.2.22 (Woldar [111J) Let G be a finite non-abelian (2. m, n )-generated

group and let 5 be a Riemann surface of least genus on which G acts. Then 5/G = 52

and 7!" : 5 --t 5/G has either 3 or 4 branch points.

Proof From relation (2.44) and the Riemann-Hurwitz equation, we have

b

2h - 2 + L(1 - l/ni) :S 1/2 - l/m - l/n,
i=1

(2.45 )

where h is the genus of 5/G and ni denotes the order of the branch point Xi of 5

(1 ::; i ::; b). Since l/m+ l/n < 1/2, it follows from (2.45) that 0 < L~=1(1-1/ni) ::;

5/2 - 2h, and therefore h :S 1. If h = 1, then ni 2: 2 implies that b = 0, whence G

acts fixed point free on 5 with orbit space the torus, a contradiction. Thus h = 0 and

b

-2 + b - L l/ni ::; 1/2 - (l/m + l/n) < 1/2,
i=1

b

b ::; 2 +L l/ni < 5/2 + b/2,
i=l

:::} b < 5.

(ni 2: 2)

As G cannot act as a transformation group for the regular unbranched covering 5 ­
7!"-l(Xi) --t {;, we have b 2: 3 and the result follows. 0

Let us consider the case where G is a sporadic simple group.

Proposition 2.2.23 (Woldar [116)} Every sporadic simple group is (2, m, n)-gene­

rated, for some integers m and n. AIoreover, all sporadic simple except Alll , .vEn ,

1\123 and l\1cL are (2, 3, n)-generated, for some n. 0



2.2. GENUS ACTIONS OF THE FINITE SIMPLE GROUPS 33

The techniques used in the proof of the above theorem will be discussed at length

in the next chapter and examples will be provided in subsequent chapters. From the

foregoing discussions it is clear that in the minimal genus action for a sporadic simple

group G, the surface S = H 2 / 6. covers the 2-sphere H 2 /T(l, rn, n) = 52 and S arises

from a short exact sequence

16. --t 6. --t r --t G --t le, (2.46)

where r is either a triangular group T(l, rn, n) or a quadrangular group, Q(u, v, w, x).

The Riemann-Hurwitz equation gives

IGI
g(G) = 1 + TJ\If, (2.47)

where IV{ = 1 - l/l - l/rn - l/n or .M = 2 - l/u - l/v - l/w - l/x depending,

respectively, on whether r is triangular or quadrangular in the minimal genus action.

Thus a general methodology for determining the genus of a sporadic simple group

IS to minimize the quantity J\If over all triples (l, rn, n) and quadruples (u, v. w, x)

for which G has (l, rn, n)- or (u, v, w, x)-generated. Thus the genus problem for the

sporadic groups is reduced to one of generation, a decisive improvement as it enables

us to bring to bear on the genus problem powerful techniques from group theory and

character theory. The genus problem has been solved for 24 of the 26 sporadic simple

groups and are listed in Table 2.1. The problem is as yet unresolved for the Fischer

group Fi 23 and the Fischer Monster M.

The requirement in Theorem 2.2.22 that G is (2, rn, n )-generated is far less re­

strictive for the finite simple groups than it would appear at first. Indeed it is a

longstanding conjecture that every finite non-abelian simple group is so generated.

In particular the conjecture has been verified for the families of alternating, sporadic

and a number of classes of groups of Lie type. We will discuss this problem in the

next section. The group r in (2.46) appears with overwhelming frequency to be a

triangular group. Indeed, there is no known example of a finite simple group in which

r is non-triangular in its genus action.

TABLE 2.1

Genus of the sporadic simple groups
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G genus of G (l,m,n) Proof

Mu 631 (2,4,11) Woldar [178], Conder [36]

M l2 3IG9 (2,3,10) Woldar [178], Conder [36]

J\ 2091 (2,3,7) Sah [144]

M22 34849 (2.5,7) Woldar [178], Conder [36]

h 7201 (2,3,7) Finkelstein-Rudvalis [62]

M23 1053361 (2,4,23) Conder [36],

HS 1680001 (2,3,11) Woldar [180]

h 1255825 (2,4,5) Conder et al. [39]

M24 10200961 (3,3,4) Conder [36]

MeL 78586201 (2,5,8) Conder et al. [39]

He 47980801 (2,3,7) Woldar [176]

Ru 1737216001 (2,3,7) \Voldar [176]

Su= 11208637441 (2,4,5) Conder et al. [39]

Q'N 9600323041 (2,3,8) Conder et al. [39]

C03 5901984001 (2,3,7) Worboys [183], Woldar [176]

CO2 1602478080001 (2,3,11) Conder et al. [39]

Fin 768592281621 (2,3,7) Woldar [179]

HN 3250368000001 (2,3,7) Woldar [176]

Ly 616252131000001 (2,3,7) Woldar [176]

Th 1080308855808001 (2,3,7) Linton [110]

COl 86620350136320001 (2,3,8) Conder et al. [39]

J4 1033042512453304321 (2,3,7) Woldar [179]

Fi~4 14942925109412639539201 (2,3,7) Linton-Wilson [111]

B 86557947525550545649532928000001 (2.3, 7) Wilson [173]

2.2.4 Hurwitz groups

The automorphism group of the Riemann sphere, the unique Riemann surface of

genus 0, is isomorphic to the group PS£(2, C). The Riemann surface with genus 1

is a torus. Let n = {mw\ + nW2lm, n E Z} be a discrete subgroup of C for some
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fixed Wl, W2 E C, where Wl =f. 0 =f. W2 and wdW2 tf. R. Then C/0, is a model for the

torus. Now the automorphism group of the torus CIn is the set of all transformations

fa,b : [z] t-+ [az + b] such that a, bEe and an = n. Thus for Riemann surfaces with

genus 0 and 1, the automorphism groups are infinite. However this is not the c,ase for

9 ? 2.

Suppose G is a (nl"'" n r )-generated subgroup of the Fuchsian group F with

signature F(g; nl, .. .n r ), where 9 ? 2. Consider the short exact sequence

16 -7 6. -7 F -7 G -7 le.

The group 6. is a Fuchsian group without elliptic elements, and thus has signature

6.(g; -). Furthermore, f.L(6.) = 29 - 2. The branched covering H 2 /6. -7 H 2 / F

is continuous and as H 2 /6. is compact it follows that H 2
/ F is compact. Thus the

fundamental region of F is compact in H 2 and so f.L( F) is finite (cf. Jones-Singerman

[95], page 254). The group of automorphisms of H 2 /6. is isomorphic to F/6. (cf.

Jones-Singerman [95], page 252) and by (2.29) we have

f.L(6.) 2
IF/6.1 = f.L(F) = IAut(H /6.)1·

It follows easily from (2.28) that f.L(F) ? 1/42. Thus we conclude:

Proposition 2.2.24 Let S be a compact Riemann surface of genus 9 > 2. Then

jAut(S)1 :::; 84(g - 1). 0

The finiteness of the automorphism group of a compact Riemann surface was first

proved by Schwarz in 1878 and the upperbound given was proved by Hurwitz in 1893.

\Ve now investigate briefly the question of when the upperbound of Theorem 2.2.24

is attained. A group of 84(g - 1) automorphisms of a compact Riemann surface of

genus 9 ? 2 is called a Hurwitz group.

Theorem 2.2.25 A finite group H is a Hurwitz group if and only if H is non-trivial

and is (2,3, 7)-generated, that is, it has two generators x, y obeying the relations

2 3 ( )7
X = Y = xy = 1H.
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Proof. Let H be a Hurwitz group. Then the measure Il( H) = 1/42 and hence

H = T(2, 3, 7)/6., and 6. has signature 6.(g; -) for some integer 9 2: 2. Let X and Y

be the two generators of T(2, 3,7) obeying the relations X 2 = y 3 = (Xy)', so that

if () : T(2, 3, 7) -+ H is the canonical homomorphism, then x = O(X) and y = O(Y)

generate H and obey the relations x 2 = y3 = (xy)' = 1H.

Conversely, let H be a non-trivial finite group with two generators x, y obeying the

relations x2 = y3 = (xy)7 = 1H. Then there is a homomorphism 0 : T(2, 3, 7) -+ H

such that O(X) = x and O(Y) = y. Let 6. = K erO. Now every elliptic element

of T(2, 3, 7) is congruent to a power of X, Y or XY, so that if 6. contains elliptic

elements, then it must contain X, Y or XY. Suppose that X E 6.. Then x = IH and

hence y3 = y7 = IH so that y = IH and H is trivial. Similarly, if 6 contains Y or XY,

then H is trivial. Thus 6 contains no elliptic elements. Since T(2, 3, 7)contains no

parabolic elements, 6 contains no parabolic elements and so 6 has signature 6.(g; -),

for some integer 9 2: 2 by the Riemann-Hurwitz equation. Hence T(2, 3, nl6 is the

group of automorphisms of the compact Riemann surface tt 2 /6, of genus 9 2: 2 and

by (2.29) we have

2g - 2
jT(2, 3, 7)/61 = 1/42 = 84(g - 1). 0

The generators x, y in the above theorem will be called Hurwitz generators of H.

Proposition 2.2.26 Let H be a Hurwitz group and let HI be a non-trivial homo­

morphic image of H. Then H l is a Hurwitz group.

Proof. Suppose H is generated by x, y with relations x2 = y3 = (xy)' = 1H.

Let cP be the homomorphism from H to HI' If cb(x) = Xl and cP(y) = YI, then

xi = yr = (X1Yl)' = IH!. 0

Corollary 2.2.27 A Hurwitz group of smallest order is simple.

Proof. Let H be a Hurwitz group of smallest order. If H is not simple, then it

contains a non-trivial normal subgroup N such that HIN is a Hurwitz group and

IHINI < IHI. a contradiction. 0
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Proposition 2.2.28

(i) There is no Hurwitz group of order 84.

(ii) The group P 5 £(2,7) is a Hurwitz group of order 168.

Proof (i) There is no simple group of order 84.

(ii) Let A, BE 5£(2,7) be defined by

A = (0 1) B = (0 -1).
-1 0 1 1

37

Let x, y be the images of A, B respectively under the canonical homomorphism from

5L(2,7) to P5L(2,7). Then x, y are Hurwitz generators for PSL(2,7). 0

Thus the Hurwitz bound is not attained when 9 = 2 but is attained when 9 = 3. It

is known that this bound is attained for infinitely many values of 9 and not attained

for infinitely many values. The precise value of 9 for which the Hurwitz bound IS

attained are unknown; the first four values are 9 = 3,7,14,17.
Quotients of the Hurwitz groups have importance also in the study of regular

maps. A regular map of type {p, q} on a surface 5 of Euler characteristic X < 0 is

essentially a map whose automorphism group acts regularly on a set of ordered edges,

so that every face of the map is surrounded by p edges, and every vertex is incident

with q edges. If such a map has n vertices, then it has nq/2 edges and nqlp faces.

and therefore X = n - nql2 + nqlp = IGI(llq - 1/2 + lip). Hence the map with

the largest possible number of automorphisms on a given surface occur only when

the quantity 1/q + lip takes its largest value less than 1/2, namely 10/21, that is,

when {p, q} = {3, 7}. Correspondingly, G can be generated by an element of order 2

(reflection any chosen edge), and one of order 3 (permuting the edges around either a

face or a vertex), such that their product is 7; in other words, G is a Hurwitz group.

A group G is called perfect if G and its commutator subgroup G' coincide. The

Hurwitz groups are contained in the collection of perfect groups.

Proposition 2.2.29 Suppose H is a Hurwitz group. Then H is perfect. Further­

more, H contains a maximal normal subgroup [{ such that HI [{ is a non-abelian

simple Hurwit:: group.
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Proof. Let x, y be Hurwitz generators for H. If H' is trivial, then H is abelian and

therefore x2 = 1H and y3 = 1H implies (xy)6 = 1H. However, this contradicts the

fact that (xyr = 1H. Consider the natural map <P : H -+ HI H'. Let x, y be the

respective images of x, y under cP. Since HI H' is abelian (xy)6 = 1H/ H 1 • Furthermore,

(xy)7 = 1H/H', so that x = y = 1H/H" Thus HI H' is trivial and hence H = H'.

If [{ is any maximal normal subgroup of H, then HI [{ is simple and being also a

non-trivial quotient of H, it must also be a Hurwitz group. 0

These properties makes it clear that a sensible way to begin any search for Hurwitz

groups is to look at finite simple groups (and in particular, those with order divisible

by 84).

Relatively few non-abelian simple groups are known to be Hurwitz groups. ~Iany

small possibilities can be eliminated using ad hoc methods together with the proper­

ties outlined above, but more a sophisticated approach is likely to be required for the

majority of the remaining cases. However, three infinite families of simple groups are

known to be Hurwitz groups:

(1) The alternating group An is a Hurwitz group, for all but finitely many positive

integers n. This was first proved by Higman, using coset diagrams for T(2, 3, 7). The

first publication on the topic was by Conder [31], showing that A.n is a Hurwitz group

for all n ~ 168, and for all but 64 integers n in the range 3 ::; n ::; 167. The exceptional

values of n are those values of n which fail to satisfy [nI2] +2[nI3] +6[nI7] ~ 2n - 2,

together with 7, 8, 9, 14, 16,24, 30,44 and 60.

(2) The group PSL(2,q) is a Hurwitz group when q = 7, and when q = p for any

prime p = ± 1 (mod 7), and when q = p3 for any prime p =±2 (mod 7) or ±3 (mod 7),

and for no other values of q. This result is due to MacBeath [115], who showed in

fact that PSL(2, q) has a Hurwitz subgroup whenever its order is divisible by 7, but

all such subgroups are mutually isomorphic.

(3) The simple Ree group 2G2 (3 P ) is a Hurwitz group for every odd prime p > :3.

The proof of this result is due to Sah [144].

Apart from these infinite families, twelve of the sporadic simple groups are known

to be Hurwitz: the first Janko group J1 ; the Hall-Janko group J2 ; the smallest

Conway group C03 ; the Held group He: the Rudvalis group Ru; the Harada-Norton



2.3. SPECIAL TYPES OF 2-GENERATIONS 39

group HN; the Lyons group Ly; the Fischer group Fi;4; the Thompson group T h;

the Fischer group Fi 22 ; the fourth Janko group J4 ; and the Baby Monster B (cf.

Table 2.1). Of the remaining sporadic simple groups, all but the Fischer Monster lVl

(whose maximal subgroups are not yet classified) have been shown to have no Hurwitz

generating pairs.

2.3 Special types of 2-Generations

In the previous section we considered generating pairs carrying a geometric meaning.

In this section we will discuss various generating pairs of the finite simple groups with

generating elements of a prescribed order.

2.3.1 (2, s)-Generations

A finite non-abelian group is said to be (2, s )-generated if it can be generated by

an involution x and another suitable element y (of order s). If o(xy) = t, we also

say G is (2, s, t) -generated. Historically, interest in such kind of generations have a

geometrical motivation, namely the study of regular· maps on surfaces (defined in

Section 2.2.4) and their automorphisms. Brahana [13] proved that a necessary and

sufficient condition for a group G to 1:-e the automorphism group of a regular map on

a surface is that G is generated by two elements of which one is of order 2. This led to

the conjecture: If G is a finite non-abelian simple group, then there exist non-trivial

elements a, bEG such that G = (a, b) and a2 = bS = le, for some s 2: 3.

This conjecture is true whenever G is a sporadic simple group (cf. Proposition

2.2.23). If G is an alternating group we have the following result.

Proposition 2.3.1 For every n 2: 5 the alternating group An can be generated by an

involution and another suitable element.

Proof. Let G = (a,b) where a = (1,2)(n -l,n), b = (l,2, ... ,n -1) if n is even,

and a = (1, n)(2, n - 1), b = (1,2, ... ,n - 2) if n is odd. Clearly G is transitive on

X = {I, 2, ... , n}. In fact, we will show that G is 2-transitive. This is clear if n is
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even, since the point stabilizer G[n] is transitive on the remaining points. Assume

n is odd and G is not 2-transitive. Then G[nj is not transitive on X - {n}. Since

bE G[n,n-l] ~ G[nJ, it follows that G[n] = G[n,n-lj' The permutation (ba)2 is an-cycle

mapping n to n - 1 so that (ba)2 E NG(G[nj)\G[nj. Hence Fix(G[n]) = {n - 1, n} is

an orbit for NG(G[nJ) and therefore a block for G. Thus lFix( G[n]) I = 2 divide n.

But this is impossible since n is odd. Now the commutator [a, b] is a cycle of length

5. However, any primitive group G of degree n = p +h (p prime, h 2: 3) containing a

cycle of length p, does contain An (cf. Wielandt [166]). Thus it follows that G = An

for all n > 7. Direct inspection shows that the result holds for n = 5,6,7. 0

The short proof given above can be found in Aschbacher-Guralnick [4]. In fact,

Miller [129] showed that, if An contains an element of order s 2: :3, then An is generated

by an involution and a suitable element of order s. Moreover, Miller [126] had already

proved that An can be generated by an involution and an element of order 3 except for

n = :3,6, 7, 8. However, Miller does not give explicit generators and such generators

can be found in Dey-Wiegold [49] or Tamburini [158].

Brahana [15] also proved the conjecture for the simple groups of order less than

106 known at the time. We now survey simple groups of Lie type that are known to

be (2, s )-generated.

(i) G is a group of Lie type of rank 1, that is, G = A1(q); 2B2(q); 2A2(q2), q =J:. 2;

2G2 (q), q =J:. 3 (cf. Aschbacher-Guralnick [4]).

(ii) G a group of type An(q) (cf. Albert-Thompson [1]).

(iii) G a group of type Cn(q) (cf. Room [141], Room-Smith [142], Stanek [154]).

(iv) G a groups of type Bn(q), Dn(q), 2An(q) in characteristic 2. (cf. Weigel [16.5]).

(v) G is of type Bn(q), q is odd (cf. WaIter [164]). This together with (iv) settle the

conjecture for all the groups of type Bn (q), n 2: 3.

A difficult but important problem is to determine which finite simple groups are

are (2,3)-generated, that is, it can be generated by an involution and an element of

order 3. This does not happen for all simple groups, for example, PSU(:3, 32 ) and
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McL are not (2, 3)-generated. The problem amounts to determining the homomorphic

images of the group

This is the famous modular group PSL(2, Z), which admits such a presentation by

letting x and y be the projective images of the respective matrices

[_~ ~] and [ 0-1].
-1 1

There are many examples of such groups, in fact, from results of Schupp [148] and

Mason-Pride [124], it follows that there are 2Ho isomorphism classes of simple (2,3)­

generated groups. Indeed, every countable group can be imbedded in a simple (2,3)­

generated group.

Recently this problem received a considerable amount of attention. A (2,3)­

generated group is close to being perfect, and prefect groups, in particular, simple

groups have been the main objects under investigation. To our knowledge the follow­

ing groups are (2, 3)-generated.

(i) The alternating groups An, n :I h, 7, 8 (cf. Miller [126]).

(ii) The projective special linear group PSL(2,q), q:l 9 (cf. Macbeath [115]).

(iii) The projective special linear group PSL(3,q), q:l 4 (cf. Garbe [71] and Cohen

[30])

(iv) The special linear group SL(4,q)' q> 4 (cf. Tamburini-Vassello [159]).

(v) The special linear group SL(n,q), q:l 9, n 2: 5 (cf. DiMartino-Vavilov [53)).

(vi) The projective symplectic groups PSp(4,q), q = pm, p:l 2,3 (cf. Cazzola­

DiMartino [29]).

(vii) The Chevalley groups G2(q) of type G2 and the twisted groups 2G2(q) (cf.

Malle [120], [121]).

(viii) The twisted groups 3 D4 (q) and 2 F4 (22n+l)' (cf. Malle [122]).
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(ix) All sporadic simple groups, with the exception of kIll, j\l[22 , M23 and A'fcL (cf.

Woldar [176]).

The proofs of these results suggest that, while a uniform treatment should be at hand

for all classical groups when the Lie rank is large enough, the small dimensional cases

require a somewhat different choice for the generators, and therefore special ad hoc

analysis. It is conjectured that all finite simple groups of Lie type are (2, 3)-generated,

except for some groups of low rank in characteristic 2 and 3. Recently Liebeck-Shalev

[106), [lOS}, [109] have presented some new probabilistic, non-constructive, methods

regarding 2-generations of finite simple groups. In the context of (2,3)-generations

they show that all finite classical groups are (2,3)-generated, with the exception of

PSp( 4, 2k ) and PSp(4, 3k
) and finitely many other groups.

The problem of generating a group by a set of involutions of minimal size are

closely related to the (2, s )-generation of the group. Let G be a finite group gen­

erated by a set of involutions and let i( G) = min{X}, where X runs over the set

of involutions generating G. Of course, i(G) :::; 2 implies G is cyclic or dihedral.

The problem of determining those G for which i(G) = 3 is much more intricate. It

amounts to determining the normal subgroups of finite index of the full triangular

group T-(l, m, n). In fact, it is reasonable to conjecture that almost all finite simple

groups are so generated.

If G = (a, b, c) where a2 = b2 = c2
, then N = (ab, ca) is a normal subgroup of G

such that N a = Nb = N c, hence of index at most 2 in G. Now if G is prefect, then

G is 2-generated.

Proposition 2.3.2 If G is a perfect (2, s)-generated group, then G is generated by

s conjugate involutions. Moreover, if G = (a, x) where a is an involution and there.

exist an involution b such that (b, x) is dihedral and xb = c is an involution, then

G=(a,b,c).

Proof Let G = (a,x) where o(a) = 2 and o(x) = s. Let N = (a,a X ,ax2
, ••• ,ax

·-
l

) be

a normal subgroup of G and G/ N is generated by {aN, xN}. Since (aN, xN) = (xN),

the group G/ N is an abelian group. Thus N :::: G J and since G is perfect N = G.

Therefore G is generated by s conjugate involutions.



2.3. SPECIAL TYPES OF 2-GENERATIONS 43

For the second part, it is easy to see that x = (ca)( ab) E (a, b, c), and the result

follows. 0

The proof of Proposition 2.2.2 for the special case s = 3 can be found in DiMartino­

Tamburini [52]. Thus for a (2,3)-generated groups G, we have i( G) = 3. In fact,

Dalla Volta [48] proved that every sporadic simple group can be generated by three

involutions. The unitary group G = P5U(3, 32
) is the only known non-abelian finite

simple group for which i(G) =1= 3. In fact, for this group i(G) = 4 (cf. DiMartino

[51]).

The (2, 3)-generation and the generation by three involution of finite simple groups

seems to be intrinsically related. We have already observed that if G is a (2,3)­

generated simple group, then G is generated by three (conjugate) involutions. A

partial converse of this is the following:

Proposition 2.3.3 Let G be a simple group generated by three involutions. Then

one of the following groups are (2,3)-generated:

(i) G/3, the wreath product of G ?y a cyclic group of order 3.

(ii) [G](O") J the extension of the holomorph of G by an automorphism 0" E Aut(G)

of order 3. 0

The above result can be found in Ito [85]. It was motivated by graph theoretic

applications, namely the study of certain connected symmetric trivalent graphs arising

from the wreath product G/3 and the automorphism group of G/3.

2.3.2 n.Y-Complementary generation of a finite group

Definition 2.3.4 A finite non-abelian group G is said to be 3/2-generated, if for

every non-trivial element x of GJ there exists an element y E G such that G = (x, y).

Let r I denote the collection of all finite non-abelian 3/2-generated groups. The

structure of groups of this sort is very restricted. We recall that a group is subdireetly

irreducible if the intersection of all non-trivial normal subgroups is non-trivial. This

intersection is called the monolith and is the unique minimal normal subgroup.
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Lemma 2.3.5 [i9} Let G be any finite non-abelian group. If G is 3/2-generated,

then G is subdirectly irreducible. The commutator subgroup G I is the monolith and

GIG I is cyclic.

Proof If G is simple, then G = G I and the proof is obvious. Otherwise, let H be any

non-trivial normal subgroup of G and x a non-trivial element of H. Then (x, y) = G

for some y E G, whence GI H = (yH) is cyclic. Therefore G' C H. Since G is

non-ab~lian, G I =I- {le} and the result follows. 0

The definition of 3/2-generation is not very useful for computational purposes.

The next result will significantly refine this definition.

Lemma 2.3.6 A finite non-abelian group G is 3/2-generated if and only if for every

x of prime order in G, there exists an element y E G such that G = (x, y).

Proof The sufficiency condition is trivial. Conversely, let z be any non-trivial element

of G. Then there exists positive integer m such that zm = x and o(x) = p, where p

is a prime. Thus by assumption there exists y E G such that G = (x, y) = (zm, y) ~

(z, y) ~ G. Thus G = (z, y), proving the result. 0

Brenner-Guralnick-Wiegold [18] conjectured that every finite simple group is 3/2­

generated. They prove that the conjecture holds for the for the alternating groups A.n

and the projective special linear groups PS L(2, q). Note that a complete verification

of this conjecture would settle in the affirmative the long-standing (2, s )-conjecture,

discussed in the previous section. Woldar [181] proved this conjecture for the sporadic

simple groups using the following definition.

Definition 2.3.7 Let G be a finite non-abelian group and nX a conjugacy class of

G. We say G is nX-complementary generated if, given an arbitrary x E G, there

exits an element y E nX such that G = (x, y). We refer to y as complementary.

Lemma 2.3.8 A group G is nX-complementary generated if and only if for every

conjugacy class pY of G, p prime, there exists a conjugacy class tpYZ, depending on

pY, such that the group G is (pY, nX, tpY Z)-generated. Moreover, if G is a finite

simple group, then G is not 2X -complementary generated, for any conjugacy class of

involutions.
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Proof The first part of the result follows immediately from Lemma 2.3.6. For any

positive integer n, the triangular group T(2, 2, n) ~ D2n , the dihedral group of order

2n. Thus if G is a finite group not isomorphic to the dihedral group, then G is not

(2X, 2X, nY)-generated, for any classes of involutions and for any conjugacy class

nY. Thus by the first part it follows that G is not 2X-complementary generated.

o
Consider the conjugacy classes rX and sY of G, with (rX)n = sY, for some

integer n. If G is not r X-complementary generated, then there exits an element x of

prime order such that (x,y) < G, for all y E rX. Since x,yn E (x,y), it follows that

(x, yn) ::; (x, y) < G, for all yn E sY. Thus we have proved the following result.

Lemma 2.3.9 If G is sY-complementary generated and (r.XY = sY, then G tS

r X -complementary generated. 0

Woldar [181] proved that every sporadic simple group G is pA-complementary

generated where p is the largest prime dividing the order of G. It is reasonable to

conjecture that every finite simple group is nX-complementary generated for some

conjugacy class nX. In an attempt to further the theory on nX-complementary

generation we pose the problem.

Problem 1: Given a finite non-abelian simple group G, find all conjugacy classes

nX of G such that G is nX -complementary generated.

It is clear that if s > 2 is a fixed integer and the group G is not (2X, sY, tZ)­
generated for any t, then G is not sY-complementary generated. Let ri2

) be the

collection of all finite non-abeian groups with the property that G E ri2
) if and only

if every non-trivial element of G together with an element of order 2 generate the

group G. Again, using arguments similar to that in Lemma 2.3.6, it follows that·

G E ri2
) if and only if for every element of prime order p > 2 there exits an element

of order t p (depending on p) such that G is (2,p, tp)-generated. This together with

the problems motivated in the previous sections led Moori [131] to the question.

Problem 2: Given a non-abelian finite simple group Gand I, rn, n divisors of IGI
such that l/l + l/rn + l/n < 1. Is G a (l, rn, n)-generated group?

In this treatise we will focus on solutions to Problems 1 and 2 with G one of the
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following sporadic simple group: the Janko groups 11, 12 , h, 14 ; the Higman-Sims

group H S; the McLaughlin group 1'v1cL; the Conway groups C03, CO2 and the Fischer

group Yi 22 • \Ve will provide a complete answer to Problem 1 for these groups. With

regard to Problem 2, we will restrict ourselves to the cases were l, rn, n are distinct

primes and some other triples (l, rn, n) needed to solve Problem 1. 'vVe believe the

remaining cases can be dealt with in a similar way.

Let r be any positive integer. A finite non-abelian group G is said to have spread

r, if for every set {Xl, X2, ... , x r } of distinct non-trivial elements of G, there exists an

element y E G such that G = (Xi, y) for all i. We say G has exact spread t if G has

spread t but not t + 1. An interesting question posed by Brenner-Wiegold [19] is to

find all finite simple groups with exact spread 1. In Chapter 11 we will show that

none of the sporadic simple groups have exact spread 1.



Chapter 3

General Theory

The aim of this chapter is twofold, being in the first place to set up the notational

conventions to be used throughout this thesis, and secondly, to provide in readily

usable form a selection of results and techniques that will be useful in resolving

generation type questions of finite simple groups.

Suppose that G is a (l, m, n)-generated group, that is, G = (x, y) such that o(x) =

l, o(y) = m and o(xy) = n. This is equivalent to saying that G = (x,y,=) with

o(x) = l, o(y) = m, o(z) = nand xyz = la. If lX, mY and nZ are conjugacy classes

of G that contain x, y and z, respectively, then we also say that G is (lX, mY', nZ)­

generated and (lX, mY, nZ) is called a generating triple of G.

3.1 Characters and 2-Generation

The first technique we discuss to resolve 2-generation type problems is due to \Voldar .

[178]. Let G be a finite non-abelian group and z E nZ be a fixed element. Let

6a(lX, mY, nZ) be the cardinality ot the set

A = {(x,y) E lX x mYlxy = z}. (3.1 )

The next classical result provides an explicit formula for 0.a(lX, mY, nZ) in terms of

the ordinary irreducible characters XI, X2,' .. , Xr of G.

47
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Theorem 3.1.1 (Bumside, 1911) With the above notation,

A (LX Y Z) = ILXllmYI ~ Xi(X)Xi(y)XJ0
ua ,m, n IGI L.J ,(1) ,

'1=1 Xl a

where {Xl, \'2, ... , Xr} is the set of ordinary irreducible characters of G.

(3.2)

The non-negative integer 6.a (LX, mY, nZ) is called the structure constant and it

is independent of the choice of representative z in nZ. Clearly any pair (x, y) E A

generates G or a proper subgroup of G. Thus by computing the relevant structure

constants in appropriate subgroups of G, we can determine an upper bound for the

number of pairs in A that generate proper subgroups of G. For the implementation

of the procedure outlined above, it is necessary to have a great many character tables.

For this purpose we use the character tables in the ATLAS and those stored in the

GAP library. In addition, sufficient measures must be taken to ensure that pairs

are not counted more than once. Thus it is important to make a judious choice

of subgroups at the outset, which will prove manageable from both the character

theoretic as well as group theoretic point of view. This requires a rather in-depth

study of at least part of the subgroup lattice of the underlying group. "Ve now

proceed to discuss this procedure in more detail.

Let 6.'G(lX, mY, nZ) denote the number of pairs (x, y) E A which generate the

entire group G. Clearly G admits a (l, m, n )-generation if and only if there exists

conjugacy classes lX, mY, nZ for which 6.c(lX, mY, nZ) > O. In most instances

it will be clear from the context to which conjugacy classes lX, mY, nZ we are

referring. Thus we shall often suppress the conjugacy classes, using 6.( G) and 6.. (G)

as abbreviated notation for 6.a (lX, mY, nZ) and 6.'G(lX, mY, nZ), respectively.

For H any subgroup of G containing the fixed element z, let 'E.( H) denote the,

number of pairs in (x, y) E A such that (x, y) ~ H. We differentiate the conjugacy

classes of the subgroup H from that of G by writing nx for a general conjugacy

class of H with elements of order n. Now the role of L: in the notation ::,( H) is to

express the fundamental fact that L:( H) is obtain by summing the structure constants

6. H (lx, my, nz) of H over all the H-conjugacy classes lx and my satisfying lx ~ HnlX

and my ~ H n mY. Thus in order to computeL:(H) we need the fusion map from

H into G. Note that L:(H) is not G invariant: indeed there may be several H-classes
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. nz into which z can fall. vVhen the need arises, we shall write f-(H; nz) in place of

f-(H) to emphasize the conjugacy class nz of H to which z belongs. Finally, for any

family {HI, H 2 , ... , Hr} of subgroups of G, we denote by f-(HI U' .. U Hr) the number

of pairs in A which generate a subgroup of some Hi, where i = 1, ... , r. To ensure

that pairs are not counted more than once in f-( HI U H2 ) we use the formula

Similar formulae can be obtained for r > 2. We now observe that 6'" (G) satisfy the

simple relation

6"'(G) = 6(G) - f-(M I U '" U Md, (3.3)

where {I'VII, ]\"£2,"" Md is the family of all maximal subgroups of G which contain z.

This formula is particularly useful when i is small, that is, when the intersections of

maximal subgroups are manageable.

We now derive an alternative formula for 6"'(G) which will be useful under cer­

tain conditions. Let {HI ,H2 , ... ,Hk} be a full set of non-conjugate (lX,mY,nZ)­

generated proper subgroups of G. Let f-*(H) be the number of pairs (x, y) E A such

that H = (x, y). Then

k

6*(G) = 6(G) - Lhif-"'(Hi ),
i=1

(3.4 )

where hi is the number of distinct conjugates of Hi containing z. Without loss of

generality, assume that H1, ... ,Hj-I are subgroups of Hj , where j::; k. Now if

(x, y) = H!, for some g E G and i < j, then (x, y) ::; HJ. Thus from the definition of

f-( Hj ) it follows that

k k

2:. hiL.*(Hi ) ~ hjf-(Hj ) + L hiL.*(Hd·
i=1 i=j+l

Thus an understanding of the subgroup lattice of G will simplify the task of finding an

lower bound for 6"'(G) in equation (3.4). The following results allow us to compute

hi.

Theorem 3.1. 2 (Finkelsiein [61J) Let K be a proper subgroup of H where H is a

proper subgroup of G. The set of all conjugates of K in G which are also subgroups of
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H falls into r conjugacy classes of subgroups of H. Let K l , K2 , ... , Kr be representa­

tives of these r conjugacy classes of subgroups of H. Then the number of conjugates

of H in G to which K belongs is given by

r

[Nc(H) : Hrl 'L)Nc(K) : NH(I()].
i=l

(3.5)

Proof The number of conjugates of H in G is evidently [G : Nc(H)]. Each conjugate

of H in G contains I:i=l[H : NH(I()] of conjugates of f{ in G. If we list the G­

conjugates of K for each conjugate of H in G, then we obtain all the conjugates of

. f{ in G, each conjugate of f{ repeated a fixed number of times. This number is the

multiplicity a fixed G-conjugate of f{ appearing as a subgroup of a conjugate of H in

G. It follows therefore that the product of [G: Nc(H)] and Li=l[H: NH(I()] is the

number of conjugates of f{ in G multiplied with h, where h the number of conjugates

of H in G to which K belongs. Thus

h = [G: Nc(H)] r ? INc(K)1 r IHI
[G: lVc(K)] ~[H: NH(K;)] = INc(H)1 ~ INH(Ki)1

r

[Nc(H) : Hr l L:[Nc(K) : NH(I{i)]. 0
i=l

If H is a self normalizing subgroup of G (for instance if H is a maximal subgroup

of a simple group G), then the above reduces to

r

L:[Nc(K) : NH(I{i)].
i=l

On the other hand, if H has only one conjugacy class of subgroups isomorphic to K,

or more generally if r = 1, which happens for instance if K is a Sylow p-subgroup of

H for some prime p, then the above becomes

[Nc(K) : NH(K)]
[Nc(H) : H]

Finally, if both of these situations occur simultaneously, that is, H is self normalizing

in G and r = 1, then it reduces to



3.1. CHARACTERS AND 2-GENERATION 51

Corollary 3.1.3 Let G be a finite group and H a subgroup of G containing a fixed

element x. Then the number h of conjugates of H in G containing x is given by

r -l~ ICe(x)1
h = [!'ve(H) : H] ~ ICH(Xi)1 '

where Xl,' .. , Xm are representatives of the H -conjugacy classes that fuse to the G­

class [x]e.

Proof. The number of conjugates of x in G and H are respectively [G : Ce(x)]

and [H : CH(x)]. Moreover, H contains L~=I[H : CH(Xi)] G-conjugates of x, where

Xl, .. " Xr are representatives of the conjugacy classes of H that fuse to the G-class

[x]e containing x. The result now follows immediately from the previous theorem.

o

Theorem 3.1.4 Let G be a finite group and H a subgroup of G containing a fixed

element X such that gcd(o(x), [Ne(H):H]) = 1. Then the number h of conjugates

of H in G containing x is XH( x), where XH is the permutation character of G with

action on the conjugates of H. In particular,

where Xl ... Xm are representatives of the Nc(H)-conjugacy classes that fuse to the

G-class [x]e.

Proof. Let n be the set of all conjugates of the subgroup H in G. Then G acts (by

conjugation) transitively on n and the point stabilizer GH equals to Ne(H). Thus

the permutation character of G with this action on n is XH = (xd e , where Xl is the

identity character of Ne(H). By definition

is the number of fix points of x on n. Let x be the image of x under the natural

homomorphism Ne (H9) --1- Ne (H9)/ H9. Since (o(x), [Ne (H9):H9]) = 1, it follows

that o(x) = 1 and hence x E H9. Therefore XH(X) = I{H9 1 x E H9}1. On the other

hand,
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Whenever the permutation character of G on the conjugates of H is not known

explicitly in terms of the irreducible characters of G, we use the fusion map of Nc (H)

into G to determine its value on the conjugacy classes of G. The centralizer of the

fixed element z E nZ plays an important role in (l, m, n)-generations. We shall often

write the centralizer of z E nZ as Gc(nZ).

Lemma 3.1.5 (Finkelstein-Rudvalis [62}) If Gc(z) acts transitively on the set A

defined by (3.1), then the set

s = {(a, 6) Ia E lX, 6 E m Y, ab E n Z} (3.6)

is a conjugacy class of subgroups of G. Also, if H = (a, b) is an element in S such

that ab = z, then Gc(H) is the stabilizer of (a, b) in the action of Gc(z) on A.

Proof. We show that an arbitrary element HI = (aI, 61) of S is conjugate to H. Now

albl = Z9, for some 9 E G by the definition of S. If y = g-l, then Hi = (at, bi) is

a conjugate of HI with aibi = z, that is (ai, bi) E A. By the transitivity of Gc(z)

on A, Hi is conjugate to H so that HI is conjugate to H as claimed. The element

x E G stabilizes (a, b) if and only if x centralizes both a and b and thus H = (a, b) as

well. 0

Theorem 3.1.6 (Finkelstein-Rudvalis [62}) If Gc(z) has m orbits on A, then the

set S defined by (3.6) is the union of at most m conjugacy classes of subgroups of

G. Also if(a,b) is an element of the i-th orbit Ai, then Gc((a,b)) is the stabilizer of

(a, b) in the action of Gc(z) on Ai.

Proof. Let (ai, b;) be a representative for the orbit Ai in the action of Gc (z) on A

and Hi = (ai, bi)' Then as proved in the above lemma, any subgroup K in 5 will be

conjugate to Hi, for some 1 ::; i ::; m. Since Hi may be conjugate to Hj for distinct

i, j ::; m, the set 5 is the union of at most m conjugacy classes of subgroups of G.

The second part follows from the above lemma as Gc (z) acts transitively on Ai. 0

The following results give useful criterion for non-generation.
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Lemma 3.1.7 (Woldar [178J) Let G be a finite centerless group and suppose IX,

mY, nZ are G-conjugacy classes for which 6:(G) = 6 c(lX, mY, nZ) < ICG(nZ)I·

Then ~"(G) = 0 and therefore G is not (IX,mY,nZ)-generated.

Proof Suppose that G is a (IX, mY, nZ)-generated group, that is, G = (x, y) with

x E IX, y E mY and xy = z E nZ. Then for any c E CG(z), we have G = (XC, yC)

with XCyc = z. Now if (xa,ya) = (xb,yb) for a,b E CG(z), then ab- 1 E CG(x,y) =

Z( G) = {lG}, whence a = b. This proves that 6 "(lX, mY, nZ) 2: ICc(z )1, and a

contradiction is reached. 0

Lemma 3.1.8 (Woldar [178J) Let G be a finite group and x,y E G. Suppose that

6(G) < ICG(xy)L where ~(G) = 6 G(lX, mY, nZ) with x E IX, y E mY and xy E

nZ. Then CG((x,y)) is non-trivial.

Proof Suppose that CG((x:y)) = {lG}. Then for all c E CG(xy), we have XCyc = xv:

and moreover (x a, ya) = (xb, l) if and only if a = b. Thus from the structure constants

we obtain

~(U (x, y)9) 2: ICG(xy)l·
gEG

But this contradicts our assumption as certainly

~(U (x, y)9j :S 6(G) :S ICG(xy)l·
gEG

o
Define the symmetric structure constant of a finite group by

~ (LX mY nZ) = IGI L X(x)x(y)x(z)
G " ICG(x)IICG(y)IICG(z)1 x x(lG) ,

where the sum is taken over all irreducible characters of G.

Corollary 3.1.9 Let G be a centerless group. Then 6 G(LX, mY, nZ) < ICc(nZ)lif

and only if ~(G) = ~G(LX,mY,(nZ)-l) < 1. /v[oreover, G is not (IX,mY,(nZt 1 )­

generated if ~(G) < 1.
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Proof. The proof is immediate from Lemma 3.1.7 and the definitions of ~(G) and

~(G). 0

Lemma 3.1.10 (Moori [131]) Let G be a (L m, n)-generated group with l, m, n pair­

wise coprime. Then G is perfect and hence has no soluble quotient.

Proof. Assume that G = (a,b) with o(a) = l, o(b) = m and o(ab) = n. Let G' be

the commutator subgroup of G. Then GIG' = (a,b), where a and b are the images

of a and b, respectively under the natural homomor.phism. Since GIG' is abelian,

we have o(ab)llm and o(ab)lo(ab). But gcd(lm,n) = 1, and therefore ab = lc/cl.
--I -

Thus a = b . Since gcd(l,m) = 1 we must have gcd(o(a),o(b)) = 1, and therefore

a = b= lc/c'. This proves that G is perfect.

If G has a soluble quotient, then it also has a non-trivial abelian quotient GIN. But

then G' eN, contradicting the fact that G is perfect. 0

We now turn our attention to the question: Suppose G is (I, m, n )-generated. Can

we deduce other generating sets, in particular generating pairs, for G? The structure

constant ~c(lX,mY, nZ) plays a cental role in (l, m, n)-generation and for this reason

we first study some of its properties.

Let G be a finite group with exponent s, that is, s is the least common multiple of

the orders of elements in G. Let Cs be a primitive s-th root of unity over Q and Z:
the multiplicative group of integers relatively prime to s. The map Cs 1--+ c~, t E Z:,
defines an automorphism of Q(cs) over Q. \Ve adopt the following notation: given

complex ni-th roots of unity cn, (1 :s i :s k), we put Q(Cn!' ... , Cnk) = Qnl ,... ,nk'

Definition 3.1.11 Let X be a character of G and (j E Gal(QsIQ). The Galois

conjugate x'" of X is the character of G defined by

x"'(g) = O'(x(g)),

for all 9 E G.

There is a Galois extension E / Q such that E is the splitting field of G (cf.

Karpilovsky [98], Theorem 11.1.7.(ii)). Adjoining Cs to E, if necessary, we may as­

sume Cs E E. Observe that QsIQ is a normal extension and hence the restriction
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map

Gal(EIQ) -t Gal(QslQ)

CY f-+ cylQs
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is surjective. Since X(g) E Qs for all 9 E G, we may replace Gal(EIQ) by Gal(QsIQ),

in treating Galois conjugates of X. The proof of the following elementary properties

of Galois conjugates can be found in Karpilovsky [99].

Lemma 3.1.12 Let Cl, C2, ... , Cr and Xl, X2, ... , Xr be the conjugacy classes and the

ordinary irreducible characters of G, respectively.

(i) The group Gal( Qsi Q) acts on {Xl, X2, ... , Xr} with CY E Gal( Qsi Q) and CY(cs) =

er;, sending Xi to xi given by

for all 9 E G.

(ii) The group Gal(QsIQ) acts on {C1,C2 , ... ,Cr} with CY as in (i) sending Ci to

Cr = Cr = {gU I9 E Ci }, where u is the inverse of m in 7L;.

(iii) For each CY E Gal( QslQ) and for all i, j E {l, ... , r Lwe have Xi( Cj ) = xi( Cn.

(iv) Xi is Q -valued if and only if Xi(g) = Xi(gm), for all 9 E G and m E Z:.

(v) If Gal(QslQ) is cyclic, then the number of Q-valued characters in Jrr(G) ~s

equal to the number of conjugacy classes Ci of G for which cim = Ci , where

Cs >--+ cr; is a generator for Gal( Qsi Q). 0

The next lemma is a well-known result in Galois theory and the proof can be

found in Karpilovsky [99], pg 901.

Lemma 3.1.13 If m and n are positive integers with gcd( m, n) = d, then Q m nQ n =

Qd' 0
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Suppose that l, m and n are integers that are pairwise coprime and divide the

exponent s of the group. Let a E Gal(QsIQ)· Then QI,m,n ~ Qs and aIQI,m,n E

Gal( QI,m,nl Q). It easily follows from the above lemma that

Gal(QlmnIQ) =Gal(QtJQ) x Gal(Qm/Q) x Gal(QnIQ)·, ,

Thus aIQl,m,n is completely determined by the primitive roots of unity Cl, Cm and Cn'

Theorem 3.1.14 Let G be a finite group and let l, m and n be integers that are

pairwise coprime. Then for any integer t coprime to n, we have

6.(lX, mY, n7) = 6.(lX, mY, (nZ)t).

M~oreover, G is (lX, mY, nZ)-generated if and only if G is (lX, mY, (nZ)t)-generated.

Proof Let s be the exponent of G and choose a E Gal (Q si Q) such that

(aIQl,m,n)(Cl)

(aIQI,m,n)(Cm)

kIQI,m,n)(Cn)

Since Xi(nZ) is a sum of n-th roots of unity, we have

Now from Lemma 3.1.12 we have

L
XiElrr(C)

Xi( lX)xi(mY)xi( (nZ)t)

Xi(lc)

=

L
XiElrr(C)

L
XiElrr(G)

Xi( lX)Xi(mY)xi (nZ)

Xi(lG)

X'[( lXd)xi( mYd )xi (nZ)

xi(lb)

As Gal( QsI Q) acts on Irr( G), it follows that a permutes the irreducible characters

of G. As the sum ranges over all irreducible characters, we have

L
XiElrr(G)

Xi( lX)X i(m Y)Xi( (nZ)t)
=

Xi(l G) XiElrr(G)

Xi(lXd )Xi(mY<7 )xi(nZ)

Xi(lG)
(3.7)
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Now Xi(lXCT) = X«I (lX) (cf. Lemma 3.1.12) and Xi(lX) = cfl + cf2 + ... + cfk,

where k = Xi(lG). Hence

[a(cI)]"1 + [a(cI)]"2 +... + [a(cl)]crk

cfl +cf2 +... +cfk = Xi(lX) ,

for all Xi E Irr(G). Thus Xi(lX) is a fixed point of a-I. Similarly xi-l(mY)

Xi(mY) and from (3.7) it follows that

IlXllmY\ L
IGI XiElrr(G)

IlXllmY\ L
IGI XiElrr(G)

6. G (lX, mY, nZ).

Xi( lXhi(m Y)Xi( (nZ)t)

Xi(lG)

Xi(lX)Xi(m Y)Xi(nZ)

Xi(lG)

Let H < G containing a fixed element z in nZ. Then by the above argument

6.H(lx, my, nz) = 6. H(lx, my, (nz)t), for all conjugacy classes lx, my, nz of H that

fuse to lX, mY, nZ, respectively. Therefore L.H(lX, mY, nZ) = L,H(lX, mY, (nZ)t).

Since 6.*(G) is completely determined by the subgroups containing z, it follows that

6.c(lX, mY, nZ) > 0 if and only if 6.c(lX, mY, (nZ)t) > 0, proving the result. 0

The condition that l, m and n are pairwise coprime is necessary. Consider the

simple Ree group R(27) (cf. Atlas [43]). The conjugacy classes 26B = (26A)3 and

the structure constants

6. R(27)(6B, 13B, 26A) = 7183566 and 6. R(27)(6B, 13B, 26B) = 7193043.

Further useful results that we shall use are:

Lemma 3.1.15 (Gander et al. [39]) Let G be a simple (2X, mY, nZ)-generated
group. Then G is (mY, mY, (nZ)2)-generated.

Proof Suppose that G = (x, y) with x E 2X, y E mY and xy = z E nZ. Clearly,

(yX, y) is a normal subgroup of G and since G is simple, (yX, y) = G. Finally, yX y =

xyxy = z2 and hence the result. 0
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Corollary 3.1.16 Let G be a (2X, 3Y, tZ)-generated simple group_ Then G is

(2X, 2X, 2X, (tZ)3)-generated.

Proof. . Let x E 2X, y E 3Y with G = (x, y) such that z = xy E tZ. Then

(x,xY ,xy2
) is a non-trivial normal subgroup of G, whence G = (x,xY ,x

y2
). Also,

xxY x y2 = (xy)3 = z3, proving the result. 0

3·.2 . 2-Generated permutation groups

In this section we discuss a necessary condition on the generating set of a finite

permutation groups that involving the number of cycles of the generators. Specifically,

we prove the following important result, first proved by Ree [140], using the formula

for the genus of a Riemann surface. The alternative proof given below is due to

Conder-McKay [38].

Theorem 3.2.1 (Ree [140J) Suppose G is a group of permutations of a set D of size

n, and G is generated by Xl, X2, ... , xs, with product XlX2' . -X s = le- If the generator

Xi has exactly Ci disjoint cycles on D (Jor 1 ::; i ::; s) and G is transitive on D, then

Cl + C2 + ... + Cs ~ n(s - 2) + 2.

Proof. Let r be the directed graph with vertex set D and each point 0' E D is joined

by a directed edge labelled Xi to the corresponding p~int xi(a), for 1 ::; i ::; s. Then

every vertex of r has out-degree (number of edges directed away from the vertex) s

and in-degree (number of edges directed towards the vertex) s. Since G is transitive

on D, the graph r is connected.

We now embed the graph r into an orientable surface S, by defining a rotation

p = {Po}, where po is the cycle (Xl(O')' X2(0'),"" xs(O')). We next calculate the

Euler characteristic X = IVI- IEI - IFI of the surface S, where V, E and F denote

respectively the set of vertices, edges and faces of the embedded graph. Clearly

IVI = IDI = nand IEI = ns, so it remains for us to determine IFI.
By our choice of rotation of edges at each vertex, it is clear that there are precisely

n distinct faces bounded by a directed edge sequence of the form (X\,X2,""X s )'
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Further, each cycle of each permutation Xi corresponds to a face of the embedded

graph, with the elements of the cycle coinciding with the vertices of the face. That

is, there are Ci faces bounded only by edges labelled Xi, for 1 ::; i ::; s. Together these

faces accounts for all the edges of r, hence IFI = n +=:=1 Ci·

If, is the genus of the surface 5, then 2 - 2, = X = n - ns + n + =:=1 Ci, so that

s

n(s - 2) - L Ci + 2 = 2, 2: 0 ,
;=1

and the result follows. 0

Naturally we assume s ;:::: 2. The hypothesis XIX2" 'X s = 1G simply requires

that X s is the inverse of the product of the first s - 1 generators. The generators

Xl, ... , x s -l in fact generate G. A permutation Xi on n with c; disjoint cycles is even

if and only if Ci == n (mod2). Further, the product XIX2" 'X s of the generators of G

is the identity, and therefore all but and even number of the generators will be even

permutations. Without loss of generality, let Xl, ... , X2t be the be odd permutations.

Then (Cj + 1) == n(mod2), for each j =1, .. . ,2t. Therefore

2t s

L(Cj + 1) + L Cj == n(2t)(mod2) + n(s - 2t)(mod2)
j=l 2t+l

2t s

=} L Cj + 2t + L Cj == n(2t)(mod2) + n(s - 2t)(mod2)
j=l 2t+l

2t s

=} L Cj + L Cj == ns(mod2)
j=1 2t+l

It therefore follows that 2::=1 Ci == ns (mod 2) and hence

s

n(s - 2) - I: Ci + 2
;=1

will have even parity independent of the transitivity of G on n. More importantly

Ree's theorem place an obvious restriction on the cycle structure of possible generators

in any known transitive permutation representation for the group G. We note that

the inequality can still be satisfied by the permutations which generates a proper,

imprimitive, or even intransitive subgroup of the image group, in which case other

means may be required to eliminate the associated type of possible generating set.
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Corollary 3.2.2 Suppose G is a group of permutations of a set ,0 of size n} and G

is generated by Xl, X2,"" XS} with product XlX2" 'X s 1G . If Ci is the number of

disjoint cycles of Xi (for 1 :S i :S s)} then

Cl + C2 +... + Cs :S n(s - 2) + 2t ,

where t is the number of orbits ofn under the action of G.

Proof Let nl , ... , nt be the orbits of n under the action of G, ni be the size of

ni, where 1 :S i :S t, and C}i) the number of disjoint cycles of Xj on nj . Then

nl + .,.+ nt = n and by Theorem 3.2.1 we have

s t s

for all i = 1, ... , t. Since L Cj = L(L cy)), we have
j= I i=l j=l

s t

L Cj :S L[ni(s - 2) + 2] = n(s - 2) +2t,
j=l i=l

proving the result. 0

Corollary 3.2.3 Suppose G is a group of permutations of a set n of size n, and G

is generated by Xl, X2,.··, XS ' If Ci is the number of disjoint cycles of Xi on n (for

1 :S i :S s) and G is transitive on n, then

Cl + C2 +.. ,+Cs :S n(s - 1) + 1 .

Proof Let Xs+l (XlX2"·X s t 1
• Then G is generated by Xl,X2"",X s+l and

s s+l

XlX2' . 'Xs+l = IG· Since L Ci + 1 :::; L Ci, it follows from Theorem 3.2.1 that
i=l i=l

s s+l

L Ci + 1 :::; L Ci :::; n(s - 1) + 2,
i=l i=l

and the result follows. 0
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For a trivial but perhaps illuminating application, suppose that s = 2 in Theorem

3.2.1. Then Xl = X2
1

, so that Cl = C2 and G = (XII X2) = (Xl)' and the theorem

gives Cl + C2 :::; 2, therefore Cl = C2 = 1. In other words, the cyclic group (Xl) acts

transitively on n if and only if Xl is a single n-cycle.

Similarly, when s = 3 we obtain Cl + C2 + C3 :::; n + 2. In this case an interesting

result is the following corollary.

Corollary 3~2.4 Let p, q, r be primes. If the group (x, y, z Ix P = yq = zr = xyz = 1)

has a transitive permutation representation of degree n, then

n n n
(p - 1) - + (q - 1) - + (r - 1) - 2: 2n - 2.

p q r

Proof The element X can decomposed only into fixed points (I-cycles) and p-cycles.

Thus if Cl is the number of disjoint cycles of x, then

n n n
Cl 2: (n - p -) + - = n - (p - 1) - .

P P P

Similarly

n n
C2 2: (n - q -) + - =

q q
n n

C3 .2: (n - r -) + - =
r r

n
n-(q-1) -,

q
n

n-(r-1) -,
r

where C2 and C3 are the number of disjoint cycles of y and z, respectively. Therefore

n n n
3n - (p - 1) - - (q - 1) - - (r - 1) - :::; Cl + C2 + C3 :::; n(3 - 2) + 2.

p q r

Rearranging this relation gives the required result. 0

3.3 2-Generated matrix groups

The theorem by Ree discussed in the previous section can be used as a device for

proving the existence of conjectured proper subgroups of a given group. Under certain

circumstances it can also be used to prove a given group is not (l, rn, n )-generated.

In this section we will generalize Ree's theorem to matrices.
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Let G be a group acting linearly on a finite dimensional vector space V over an

arbitrary field F. The group G may be infinite, and we do not insist that the action

is faithful on V. For X a subgroup of G, let d(X) denote the codimension of the

fixed-point space Cv(X) of X on V, that is,

d(X) = dim(VjCv(X)) = dimlY) - dim(Cv(X)).

The vector space V is a FG-module. \Ve make V·, the dual space of V, into a

FG-module by defining the action of G on V* by

(gf)( v) = f(gv),

where g E G, f E V* and v E V. Also we write d*(X) for the codimension of the

fixed-point space of X on V·.

Lemma 3.3.1 Let G be a group generated by Xl, X2,' .. , Xn with XIX2' . 'Xn = le· [f

G acts on the vector space V over a field F, then

is the smallest FG-submodule of V with trivial action on the quotient space VI N.

Furthermore, dim(N) = d*(G).

Proof. Let Al = (le-xdV +(le-x2)V+.. ·+(le-xn)V, Then;'vI is a subspace V.

For any m E JV! and 1 ::; i ::; n, we have (le - x,)m E 1\1 so that x,m E m + M = AI.

Since G is generated by Xl, ... , X n , M is a FG-submodule of V. Define an action of

G on VIJVI by g(v + 1\1) = gv + lvl. This action is well-defined as M is a submodule

of V. For i = 1, ... , n and for all v E V, we know that (le - x;)v E i'vl and hence

Xi(V + I'v!) = XiV + AI = v + :VI. Since Xl, ... , Xn generate G, the action of G on Fliv!

is trivial. Let K be any submodule of V such that G acts trivially on VI 1-\..'. Then

g(v+K) = v+K, for all v E V and g E G. In particular, (le-Xi)V E K, for all v E 'l,

and hence A1 ~ K. Thus M is the smallest submodule of V such that G acts trivially

on its quotient. Let iV = (le - xdV +xI(le - X2)V + ... + XlX2" ·xn-d1e - xn)V.

Then N is a subspace of V. By definition, (le - x;) V ~ M, for all 1 ::; i ::; n.

Thus XlX2" 'Xi-l(le - Xi)V ~ XlX2" 'Xi_I1'vl = M and hence iV ~ M. Conversely,

(le - xdV ~ N. For any n' E iV, we have XIX2"'Xi-l(le - xi)n' E N, so that
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XI X2" 'Xi-ln' +N = XIX2" 'Xin' +N. If i = 1, then it follows that xlN ~ N. On the

other hand, (lG - Xl )xlln' E N and therefore xlln' E N so that N ~ xtlV. Thus

xlN = N.

Now xl(lG - X2)V ~ N, implies that (lG - X2)V ~ xII N = N. Furthermore,

XIX2n' + N = Xln' + N = N implies that X2n' E xII N = N. Since this is true for all

n' E N we have X2N ~ N. Also Xl (lG - X2)X2"1 xlln' E N so that XIX2"1 xl1n' E N.

But then x2"l(x l
1n') E xII N = N. As n' ranges over all elements of N so to does

xl1n' and therefore x2"1 N ~ N. Thus X2N = N. Now XIX2(lG-X3)V ~ N and hence

(lG - X3)V ~ x2"l xl
lN = N. Continuing this way it follows that (le - Xi)V ~ N

and XiN = N. for all i = 1, ... , n. Therefore N = LVI, the smallest submodule of V

with trivial action on V/ N.

We show that dim(iVf) = d*(G). Let f E Cv-(G). Then (IG - xi)f = 0, that

is, f((lG - Xi)V) = 0, for all 1 S i S n. Therefore, f(M) = O. Conversely,

if f E V* with f(A1) = 0, then f((IG - x;)V) = 0, for all 1 S i S n. Thus

Cv-{G) = {f E V* I f{M) = O}. Define a map F : V* ~ AI" by F(f) = flo\I.

Then F is a linear map and K er F = Cv- (G). Therefore V· / Cv- (G) ~ 1\,J- and

d"'(G) = dim(V"'/Cv.(G)) = dim(M*) = dim(M) = dim(N), proving the result.

o

Theorem 3.3.2 (Scott [149}) Let G be a group generated by XI,X2, .. ',X n with

XIX2" 'Xn = IG· If G acts on the vector space V over a field F, then

(3.8 )

where di = d( (Xi)), for all 1 S i S n.

Proof Let C be the F space of n-tuples (VI, V2, ... , Vn) with Vi E {IG - Xi)V. Define

a linear map {3 : V ~ C by

{3{u) = {{lG - XI)V, {lG - X2)V"", (le - xn)v).

Also define <5 : C ~ V bv
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and hence Im{3 ~ K era. Now the image of a is

(le - Xl)V + xl(le - X2)V +... + X1 X2" ,xn-1(le - xn)V.

By the previous lemma Ima = (le - xdV + (le - X2)V + ... + (le - xn)V and

Gj K era has dimension d* (G).

On the other hand, if v E K er{3, then (le - Xi)V = 0, that is, XiV = v, for all

1:::; i:::; n. Since G is generated by X1,""Xn, we have Ker{3 = Cv(G) and by the

first isomorphism theorem VjGv(G) =Imp. Thus dim(ImfJ) = d(G). Finally, the

map F: V -t (le-xi)V given by V 1---+ (le-xi)v is an onto linear map with Ker F =
GV((Xi))' Thus dim((le - Xi)V) = d((Xi)) = di, and hence dim(G) = 2:7:1 di. Thus

n

:L di dim( G) = dim( Im(3) + dim( K era j Im(3) +dim( Gj K era)
i=l

> dim(Im(3) + dim( Gj K era) = d( G) + d* (G).

o
Ree's theorem is obtained immediately by taking G to be the group of permutation

matrices. Let A be a permutation matrix of degree n, a E S'n the permutation asso­

ciate with the columns of A. If X = (Zl"'" zn) E V, then Ax = (Zcr(l)' Zcr(2}1" ., =cr(n))'

Furthermore, let a = a1a2" 'a s be a decomposition of a into disjoint cycles ai, with

ai of length ni· Then Ax = x if and only ifzcrJ(k) = Zcr;(k) = ... = zcr;J(k)' for all

j = 1, ... , sand k a point in the orbit aj. Thus the dimension of the Cv(A) equals

the number of orbits of a. Similarly, the codimension d(X) for a subgroup X of G is

just the degree minus the number of orbits of X.

Scott's theorem can be use with fields of characteristic p. The left hand side of

relation (3.8) is computable in terms of the Brauer characters if Xl, X2, . .. , Xn are all

p'-elements. Indeed, Scott's theorem gives a necessary condition that a given class

function be the Brauer character of an irreducible module.

Corollary 3.3.3 (Gonder et al. [39j) Let Xl, X2, ... ,Xn be elements generating a

group G with Xl X2' . 'Xn = le J and 1\1 be an irreducible module for G of dimension
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n 2: 2. If di is the codimension of the fixed-point space CM((Xi)) of (Xi) on 1\1, then

Proof "Ve may, without loss of generality, replace the vector space V in Scott's

theorem with a module M. Since M is irreducible CM (G) and CM -( G) are zero

modules and hence d( G) = d* (G) = n. The result now follows from Scott's theorem.

o
We now proceed to discuss methods to calculate the di's in Corollary 3.3.3. Let

X be an ordinary irreducible character of the group G. Then X is afforded by an

irreducible module 1\1 of dimension x(1G) over C.

We think of each representation matrix Xi in its diagonal form over C. If o( Xi) =
ni, then every eigenvalue of Xi is an ni-th root of unity and the character value is

nothing but the sum of eigenvalues. Thus

where the Wi is an ni-th roots of unity, 1 ~ i ~ k -1, and al + a2 +... +ak = X(lG).

Now CM ( (Xi)) = {m E M IXim = m} is the 1-eigenspace of Xi. Thus the dimension

of CM ( (Xi)) is precisely the number al (that is, the number of 1's on the diagonal of

xd. Thus the space MjC,V/((Xi)) has dimension

(3.9)

If we further assume that

(i) the conjugacy class containing Xi consist of elements of prime order p and

(ii) the character value of this class is an integer,

then

where W f- 1 is a p-th root of unity. Now since we assume that X(Xi) E 7L, it follows

that a2 = a3 = ... = ap . Also 1 +W+... +wp - 1 = 0, and therefore
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di
Now at +a2+" ·+ap = at +(p-l)a2 = x(1c) and x(1c) = di-al, we get a2 = --.

p-I
Hence using (3.9) once more we get

Now assume that the field F has characteristic p and Xi is p-regular. If the characteris­

tic of the field is zero, then we do not need the restrictions. Recall that the dimension

of CM((Xi)) is the number of 1'5 on the diagonal of Xi, when Xi is in diagonal form.

Also x(x1) = X-!-(x;}(xiL for all I ~ j ~ o(xd and the irreducible characters of (Xi) are

all of degree 1. Thus the number of I's on the diagonal of Xi is the multiplicity ()t (the

identity character of (Xi)) in X-!-(x;) which is given by the inner product (X-!-(x;) , el)'
Therefore

di dim(A1) - dim(CM((xi)))

dim( M) - (X -!-(Xi) , ()l),
1 o(xi)-l .

X(lc) - I(Xi)1 f; X(xi).

Theorem 3.3.4 (Brauer) Let X be a character of G with the inner product (x , Xl) =

0] where Xl is the identity character of G. Let A and B be proper subgroups of G and

suppose

(X-!-A' Xl-!-A) + (X-!-B , Xl-!-B) > (X-!-(AnB) , Xl-!-(AnB)) .

Then A and B generate a proper subgroup of G.

Proof Let i'v! be the C G-module that affords X. Then the fixed-points spaces GM (A)

and GM(B) are subspaces of Gu(A n B) and

dim(C,\1(A)) + dim(GM(B)) = (X-!-A' XI-!-A) + (X-!-B' XI-!-B)

> (X-!-(AnB) ' Xl-!-(AnB)) = dim(GM(A n B)).

It therefore follows that c'\-l(A) n GM(B) of {O}. Let 0 of m E GM(A) n Gu(B).

Then gm = m, for all g E (A, B), so that (A, B) fixes a non-trivial point of M. Since

(X, Xl) = 0, the group G fixes only the trivial element 0 of J\!! and we conclude that

(A,B) < G. 0
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3.4 2-Generations by computer
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Analysis of the structure of a given finite group can often be performed with the aid

of a computer. The algebra packages Cayley, and Gap together with its userpack­

ages such as MeatAxe (developed by Richard Parker) and Smash, are at times very

effective in this analysis, provided the group has a concrete representation either as

a permutation group, or as a matrix group or in terms of generators and relations.

Certain questions can often be answered using a mixture of theoretical and computa­

tioI}al techniques. Even when representation is large, successful approaches to some

quite difficult problems may be found. One such approach involves the use of random

element generation, in the case where the production and storage of large classes of

elements is restricted by the resources available.

The procedure for finding 2-generations for a group discussed in Section 3.1 re­

quires some extreme local analysis and may be of little use when the subgroup lattice

is large, or has a complicated structure that is not well-known. One way around this

problem, especially suitable in the case of groups which have a permutation represen­

tation of small degree, involves the use of a. computer. The following procedure was

first described by Conder [35] using the Cayley package.

Using the concrete representation of the group, Cayley (or Gap) allows us to

create a list of representatives of conjugacy classes for possible generating triples

(lx, mY, nZ). For instance, if the elements of the class lX can be enumerated, then

for any fixed z E nZ, each element x inLX can be checked to see whether X-I z E mY,

and the set of all such x can be partitioned into equivalence classes under conjugation

by GG(z) (cf. Lemmas 3.15 and 3.1.6). Alternatively, random conjugates for a chosen

representative of LX can be checked in the same way, until all the triples (with a fixed

element z E nZ) are accounted for. Either way, the subgroup generated by each triple

can be analysed, to find its order and other properties.

An alternative approached for finding generating triples involves the use of the

MeatAxe or Smash userpackages incorporated in Gap. These packages are equip to

deal with algebras over finite fields and hence are particularly useful in the case of

groups with matrix representations over finite fields.

Concrete matrix representations over finite field for the sporadic simple groups
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were found by Robert Wilson el al. [174] and Suleiman et al. [157]. For instance,

Aut(F22 ), the automorphism group of F22 , has a 78-dimensional irreducible module

over G F(2) (cf. Jansen el al. [91]). This representation can be used to show that

Aut(F22 ) = (a,b), where a and bare 78 x 78 matrices over GF(2) of order 2 and

18, respectively. From the generators a and b of Aut( F22 ) we can find the "standard

generators" of F22 . The standard generators for the sporadic simple groups was

introduced as a device for improving reproducibility of computational results and for

avoiding duplication of work. These generators were chosen so that they are easy to

reconstruct in (as far as possible) any representation.

Given a matrix representation of a group G over a finite field, the first step in

the process for finding generating triple~ (lX, mY, nZ) is to find representatives for

the conjugacy classes of G. Random generation of word (in terms of the generating

matrices) will produce elements of various orders. Using ad hoc methods, such as

power maps or the codimension of the fixed point space and the nullity of matrices,

we can find representatives for the conjugacy classes. Suppose we have found x E LX,

y E mY such that xy E nZ. Then MeatAxe allows us to generate the group generated

by x and y. From the properties of the group G and its subgroups, such as the

existence of prime order elements, we may be able to deduce whether (x, y) = G.

Once again we have to stress that these are ad hoc procedures and depend to a large

extent on the group under consideration as well as the conjugacy classes in the triple.



Chapter 4

The Higman-Sims Group

4.1 Introduction

The Higman-Sims simple group can be constructed from the Higman-Sims graph g.
Let 9 = (n, E) be a graph of valency 22 on the set n of 100 points such that any given

vertex has 22 neighbours (adjacent points) and each of the remaining 77 vertices are

joined to 6 of these points and may be labelled by the corresponding hexad. Two of the

77 vertices are joined only if the corresponding hexads are disjoint. The 22 points and

77 hexads (blocks) form a Steiner system S(3, 6, 22). The Higman-Sims simple group

H5 is the subgroup of the even permutations of Aut(Q) ~ H5:2, the automorphism

group of H5. The point stabilizer of Aut(Q) on n is Aut(5(3, 6, 22)) ~ 1'vf22 :2 and

the order of the Higman-Sims group HS is 44352000 = 29 ·32 ·53 ·7·1l.

The action of H 5 on n yields a unique primitive rank-3 representation of degree

100, in which the point stabilizer is the Mathieu group 1"1122 , and the orbits have

length L 22 and 77. The group H 5 has two inequivalent representations of degree

176, which are doubly transitive, and the point stabilizer is isomorphic to U3 (5):2.

The two conjugacy classes of U3 (5):2 are fused in H5:2. Also, H5 has two primitive

inequivalent representations of degree llOO, one on the set of edges of 9 with point

stabilizer isomorphic to L3 ( 4):2 1 and the other with point stabilizer isomorphic to

58. The subgroup 58 is also the set stabilizer of a fixed outer automorphism of H 5.

The group H 5 acts primitively on both of its conjugacy classes of involutions 2A and

69
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2B. The centralizer CHs(2A) is the split extension of a group K ~ 4.24 of known

structure by 5 s and CHs(2B) ~ 2 x A6 ·22
. The set stabilizer of a nonedge of 9 is

maximal in H 5 and is isomorphic to 24 .56 , and contains the holomorph of 24
•

We quote from Magliveras [117] the fact that the proper non-abelian simple sub­

groups of H5 are, up to isomorphisms, As, A6 , A7 , AB, £2(7), £2(11), £3(4), U3(5),

Mu and 1\;[22' There are only one class of each of M22 , AB, £3(4), and £2(11), while

there are two classes of U3 (5) and Mu, interchanged by the outer automorphism.

Any As, A6 , A7 or £2(7) with trivial centralizer is contained in M22 or U3(5).

Theorem 4.1.1 (lvlagliveras [116}) The Higman-5ims group H5 has exactly 12 con­

jugacy classes of maximal subgroups, as follows:

M22

£3(4):2 1

24 .56

Mu (2 classes)

2 x A6 ·22

U3 (5):2 (2 classes)

58
43:£3(2)
4.24 :55

5:4 X As· 0

We will use the maximal subgroups of H 5 listed in the theorem above extensively,

especially those with order divisible by 7 or 11. We list in Table 4.1 the maximal

subgroups and some of their properties. For any maximal subgroup M of a simple

group C, the action of C on the right (or left) cosets of M is equivalent to the action

of C on the conjugates of i\![. The permutation characters of H5 on the right cosets

(hence on the conjugates) of the maximal subgroups isomorphic to 43:£3(2) and Mu,

in terms of irreducible characters of H5, are not given in the ATLAS [43]. We list in

Table 4.II partial fusion maps of these maximal subgroups into H 5 (obtained from

GAP) that will enable us to evaluate the permutation characters on the relevant

conjugacy classes of elements of H5 (cf. Theorem 3.1.4).

4.2 (p, q, r )-Generations of HS

As we stated earlier, the group H 5 acts primitively as a rank-3 group of degree 100 on

n. The point stabilizer under this action is isomorphic to l\l[22 and the permutation
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TABLE 4.1

Maximal subgroups of H5

M jMI Orbit Type XM =(Xl-!'M )HS

M 22 27 .3 2 .5.7.11 [1,22,77] la+22a+77a

U3 (5):2 25 .32 .53.7 [502
] la + 175a

U3 (5):2 25 .32 .53.7 [502
] 1Q + 175a

£3(4):2 1 27 .32 .5.7 [2,42,56] la + 22a + T7a + USa + 825a

58 27 .32 .5.7 [30,70] la + 77a + 154a + 175a + 693a

24 .56 28 .32 .5 [2,6,32,60]

43:£3(2) 29 .3.7 [8,28,64]

M 11 24 .32 .5.11 [12,22,66]

Mll 24 .32 .5.11 [12,22,66]

4.24 :55 29 .3.5 [20,80]

2 x A6 ·22 26 .32 .5 [40,60]

5:4 x.As 24 .3.52 [205
]

character of HS on the conjugates of M22 is given by XMn = la+22a+77a. vVe apply

Ree's transitivity condition (cf. Theorem 3.2.1) to this action. Now XM22(2A) = 20

and therefore an element in the class 2A, as a permutation on il, has 20 fixed points.

Since permutations of order 2 consist of only fixed points and two cycles, the elements

in class 2A have cycle structure 120240 . Similarly, we can find the cycle structure of

elements in the other conjugacy classes of H S. We list in Table 4.II1 the cycle

structure of the conjugacy classes that are relevant in our investigations.

If HS is (pX, qY, r Z)-generated and the elements of H are expressed as permuta­

tions on 100 points, then by Ree's theorem Cl +C2 + C3 ~ 102, where Cl, C2, C3 are the'

number of disjoint cycles of a representative in pX, qY, rZ, respectively.

Lemma 4.2.1 The group HS is not

(i) (2A, 2A, tX)- or (2A, 2B, tX)-generated, for any integer t,

(ii) (2B, 2B, pX)- or (2A, 3A, pX)-generated, for any prime p,

(iii) (2B, 3A, 7A)-generated.
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TABLE 4.II
Partial fusion maps into H 5

43 :L3 (2)-class 2a 2b 2c 2d 3a 3b . 5a 7a

IC43:L 3(2)(nx)1 384 192 1440 96 360 36 30 7

-+ HS 2A 2A 2B 2B 3A 3A 5A 7A:

M l1 -class 2a 3a 4a 5a 6a 8a 8b lla lIb

ICMu (nx)1 48 18 8 5 6 8 8 11 11

-+ HS 2A 3A 4A 5C 6A 8B 8B llA lIB

TABLE 4.III
Cycle type of a representative in pX

H S-class 2A 2B 3A 7A llA lIB

XM 2,(pX) 20 0 10 2 1 1

Cycle type 120240 250 110330 12714 11 11 9 1111 9

Proof Consider the triple (2A, 2A, tX), where tX is any conjugacy class of HS.
Since the number of cycles of a representative of class 2A is 20 + 40 = 60, we have

Cl = 60 = C2. Thus Cl + C2 + C3 = 120 + C3 > 102, where C3 is the number of disjoint

cycles of a class representative of tX. This violates Ree's transitivity condition and

we conclude that H S is not (2A, 2A, tX)-generated, for any conjugacy class tX of

HS.

Similarly, an application of Ree's transitivity condition to a representative of the

conjugacy classes in Table 4.III shows that all the triples in the statement of the

lemma are not generating triples for H S. 0

Lemma 4.2.2 The group HS is not (2A,5X,7A)-generated, where X E {A,B,C}.

Proof For the triple (2A, 5A, 7A), non-generation follows immediately from the struc­

ture constant D.Hs(2A, 5A, 7A) = O.

The group H 5 acts on a 22-dimensional irreducible complex module V. We apply
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Scott's theorem (cf. Theorem 3.3.2) to the module V and compute

d2A = dim(V/Cv(2A)) = (22 - 6)/2 =8

. d5B = dim(V/Cv (5B)) = 4(22 - 2)/5 = 16

dsc = dim(V/Cv (5C)) = 4(22 - 2)/5 = 16

d7A = dim(V/Cv (7 A)) =6(22-1)/7 = 18.
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Now if H5 is (2A, 5Y, 7A), where Y = B or C, then by Scott's theorem we must have

d2A + dsy + d7A ~ 2 x 22. However, 8 + 16 + 18 < 44, and non-generation of H5 by

these triples follows. 0

Lemma 4.2.3 The group H5 is (2B, 5X, 7A)-generated, where X E {A, B, Cl.

Proof Any maximal subgroup of H5 with order divisible by 2 x 5 x 7, that IS

containing elements of order 2,5, and 7, is isomorphic to either i'vf22 , U3(5):2, £3(4):2 1

or 58' We first show that no maximal subgroup, and hence no proper subgroup, of

H 5 is (2B, 5X, 7A)-generated, where X E {A, B, Cl· Now XMn (2B) = 0 and hence,

then 2Bnlvf22 = 0. Therefore, M22 and its subgroups are not (2B, 5X, 7A)-generated.

Similarly, the permutation character values XL 3 (4):2 1 (5A) = 0 = XL3 (4):2
J
(5B) and

XS8(5A) = 0 = XS8(5C). As 2: L3 (4):21(2B,5C,7A) = 0 and "f,s8(2B,5B,7A) = 0,

it follows that £3(4):2 1 and 58 are not (2B,5X,7A)-generated. Also any U3 (5):2

subgroup of HS is not (2B,5X,7A)-generated since 2:(U3 (5):2) = 0, for all X E

{A, B, Cl.
Thus we conclude that no proper subgroup of H5 is (2B, 5X, 7A)-generated, and

hence 6:(HS) = D..(H5). The result now follows from D..Hs(2B,5A,7A) = 42 =

6HS(2B,5B, 7A) and 6 HS(2B,5C, 7A) = 490. 0

Lemma 4.2.4 The group HS is (3A, 5X, 7A)-generated, where X E {A, B, C}.

Proof We first prove that HS is (3A,5A, 7A)-generated. Vie calculate XMn(5A) =
XL3 (4):21(5A) = XS8(5A) = 0 and 2:(U3 (5):2) = 21, and it follows from Table 4.1

that the proper subgroups of H5 that admit (3A, 5A, 7A)-generated subgroups are

contained in U3 (5):2. Now a fixed element of order 7 in U ~ U3 (5):2 is contained
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in Xu(7 A) = 1 conjugate subgroup of U. The group HS contains two non-conjugate

classes of U3(5):2 subgroups. Let U1 and U2 be non-conjugate subgroups of HS

isomorphic to U3 (5):2. Then

f:::.*(HS) f:::.(HS) - ~(Ud - E(U2 ) + ~(U1 n U2 )

> f:::.(HS) - 2I:(Ud = 126 - 42 = 84 > O.

Next, we show that H5 is (3A, 5B, 7A)-generated. We calculate XM22 (5B) = 0 =
XL

3
(4):21 (5B), E(58 ) = 0 and I:(U3(5):2) = 140. Therefore, up to isomorphisms,

U3 (5):2 is the only maximal subgroups of H5 that admit (3A, 5B, 7A)-generated

subgroups. Furthermore, we calculate 6.(H5) = 560, and hence 6,*(H5) 2: 560 ­

2(140) = 280.

Finally we consider the triple (3A, 5C, 7A). Amongst the maximal subgroups of H5

with order divisible by 3 x 5 x 7, the only subgroups having empty intersection with a

conjugacy class in this triple are isomorphic to 58 (XS8 (5C) = 0). From the structure

constants we calculate ~(M22) = 2464, ~(U3(5):2) = 280 and ::(L3(4):2d = 882.

Also a fixed element of order 7 is contained in XM22 (iA.) = 2 conjugates of M22 and

XL
3
(4):2\(7A) = 1 conjugate of L3 (4). Furthermore, 6.(H5) = 6720, and hence

f:::.*(HS) 2: 6720 - 2(2464) - 2(280) - 882 = 350 > 0,

proving the result. 0

Lemma 4.2.5 The group H5 is (2B, 3A, 11Z)-, (2A, 5Y, 11Z)-, (2B, 5X1 , 11Z)-.

(2B, 7A, 11Z)-, (3A, 5Y, 11Z)-, (5Y, 7A, 11Z)-, (5X1 , 5X2 , 11Z)-generated. for dis­

tinct X 1 ,X2 E {A,B,C} and all Y,Z E {A,B}.

Proof From the list of maximal subgroups of H5 we observe that, up to isomor­

phisms, 1\.-122 and M 11 are the only maximal subgroups of H 5 with order divisible by .

11. However, Xlv!n(2B) = XM22 (5A) = XM22 (5B) = 0 so that the conjugacy classes

2B, SA. and 5B have empty intersection with any 1\;[22 subgroups of HS. Similarly,

it follows from Table 4.11 that any M 11 subgroup of H 5 does not meet the conjugacy

classes 2B, SA and 5B. Since all the triples in the statement of the lemma involve

either a 2B-, 5A- or 5B-conjugacy class, we conclude that no proper subgroup of H5
is generated by these triples and hence f:::.-(HS) = 6.(H5). From Table 4.1V we note

that f:::.(H5) > 0 for all these triples, proving the result. 0
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TABLE 4.IV
Structure Constants of H5

pX 3A 5A 5B 5e 7A

~Hs(2AlpX, 11Z) 11 11 11 231 825

~Hs(2B,pX, 11Z) 33 33 33 605 2211

~Hs(3A, pX, 11Z) 308 242 363 4950 17622

~Hs(5A,PX, 11Z) 242 176 297 3564 12672

~Hs(5BlpX,llZ) 363 297 418 5907 21153

Lemma 4.2.6 The group HS is (2A, 5C, 11X)- and (3A, 5C, 11X)-generated, where

XE{A,B}.

Proof. We first show that HS is (2A, 5C, 11X)-generated. Let N ::; HS with N ~

j\111' The subgroup N acts on D, the set of conjugates of A'!' ~ M22 in HS, with

orbits of length 12, 22 and 66 (cf. Table 4.1). Let r be the orbit of length 12 with

AI E rand NM be the stabilizer of M in N. Then [N : NM ] = 12 and since £2(11)

is the only subgroup of N with index 12, up to isomorphisms, we have NM ~ £2(11).

However, NM = {g E Njl\19 = M} = {g E Nlg E NHS(AtJ) = M} = N n M. We

calc~late!::::.(HS) = 231, ~(1\122) = 176, I:(Mll ) = 33 and I:(£2(11)) = 22. Also if we

fix an element of order 11 in N or M, then it is contained in no other conj ugate of

N or M, respectively. Thus .6.*(HS) = !::::.(HS) - ~(M u NI U N2 ), where NI and N2

are non-conjugate subgroups of H S isomorphic to 1\111 , Hence

!::::.*(HS) 2 231 - 176 - 2(33) + 2(22) = 33 > 0,

and the (2A, 5C, 11X)-generation of HS follows.

Next we show the (3A, 5C, 11X)-generation ofHS. vVe calculate 6.( H S) = 4950, .

~(M22) = 2112 and ~(jVfll) = 99. Thus

!::::.*(HS) 24950 - 2112 - 2(99) = 2640,

and the result follows. 0

Lemma 4.2.7 The group HS is (2A, 7A, 11X)-, (3A, 7A, 11X)-, and (5C, 7A, 11X)­
generated, where X E {A, B}.
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Proof. The only maximal subgroups of H5 that may contain (pX, 7A, 11X)-generated

subgroups, p a prime, are isomorphic to M22 (cf. Table 4.1). We easily calculate the

structure constants 6.HS ( 2A, 7A, llX) = 825, 6.HS ( 3A, 7A, llX) = 17622,

6.Hs(5C, 7A, llX) = 253440, L: M22 (2A. 7A, llX) = 352, L: 1'v122 (3A, 7A, llX) = 3520

and L: M22 (5C, 7A, llX) = 25344. In all cases, 6.*(HS) = 6.(HS) - ~(A122) > 0,

proving the result. 0

We now summarize the above results in the following theorems.

Theorem 4.2.8 The Higman-Sims group H S is (p, q, r )-generated for all p, q, r E

{2, 3, 5, 7, ll} with p < q < r, except when (p, q, r) = (2,3,5) or (2,3,7).

Proof. This follows from Lemmas 4.2.1 to 4.2.7 and the fact that the triangular group

T(2,3,5) is isomorphic to A5• 0

Corollary 4.2.9 The group H5 is (pX, pX, qY)- generated, with p < q, for all pX E

{5A, 5B, 5C, 7A}, qY E {7A, llA, lIB} and (p,p, q) = (3,3,11).

Proof. The result follows immediately from an application of Lemma 3.1.15 to Lem­

mas 4.2.3 and 4.2.5. 0

4.3 nX-Complementary generations of H S

We will now apply the techniques for finding nX-complementary generations, dis­

cussed in Section 2.3.2, to the Higman-Sims simple group. In particular, we will con­

sider the triangular presentations of HS that allow us to deduce its nX-complementary

generations (cf. Lemma 2.3.8). For the case where n is prime, the triangular genera- ­

tions in the previous section will suffice.

Lemma 4.3.1 The group HS is not nX-complementary generated, where nX E

{3A,4A,4B}.

Proof For the conjugacy class 3A we use a theorem by Brauer (cf. Theorem

3.3.4). Let X = 22a E Irr(HS), A = (x) and B = (y), where x E 2A and
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TABLE 4.V
Structure Constants of H S

tX 5A 5B 5C 6A 6B 7A 8A

LlHS(2A, 4A, tX) 0 0 0 15 0 0 2

LlHS(2A,4B, tX) 0 0 75 27 48 35 46

jCHS(tX)! 500 300 25 36 24 7 16

tX SBC lOA lOB 11AB 12A 15A 20AB

LlHS(2A, 4A, tX) 0 0 10 0 0 0 4

LlHS(2A, 4B, tX) 0 0 10 22 18 15 0

ICHS(tX)\ 16 20 20 11 12 15 20

y E 3A. Then (X, XI) = 0 and A n B = {l G }. Moreover,(xtA, XltA) = 14.

(XtBl XltB) = 10 and (Xt(AnB)l Xlt(.4nBj) = 22, and hence (x, y) < H S. Thus

HS' is not (2A, 3A, tX)-generated, for any t, and it follows from Lemma 2.3.8 that

H 5 is not 3A-complementary generated.

It is evident from Table 4.V and Lemma 3.1.7 that HS is not (2A, 4A, On-generated,

for any t, and hence not 4A-complementary generated.

To prove that H5 is not 4B-complementary generated it suffices to show that H 5

is not (2A, 4B, tX)-generated, for any conjugacy class tX with ~Hs(2A,4B.tX) 2:
ICHS(tX)!. \Ne first consider the case (2A,4B,5C). The cycle structure of elements

in the conjugacy classes 2A and se, as permutations on 100 points, are 12°240 and

15S19
, respectively. The conjugacy class (4B)2 = 2A. As a permutation on 100 points,.

an element y E 4B has 8 fixed points, whilst y2 has 20 fixed points. Thus y has 8 two

cycles and consequently 20 four cycles, that is, y has cycle structure 18 28 420 . It now

follows from Ree's theorem that H 5 is not (2A, 4B, 5C)-generated.

Next we consider the triple (2A, 4B, 7A). Let 1'v[ be a maximal subgroup of H 5

isomorphic to 1\;[22 and x E M be a fixed element of order 7. Then x is contained in

2 conjugates of M, say N[ and 1'V[9. \Ve calculate ~(Mn) = 28 and thus
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Now M n M9 is a two point stabilizer on the set n of 100 points. The action of 1\1 on

n gives orbits of size 1, 22 and 77. Thus [M:1\1 n M9] = 22 or 77. Since x E 1\1 n 1'1119,

it must follows that [1\1:1\1nM9] = 22, and hence Mnlv19 ~ £3(4), the only subgroup

of 1\122 with index 22, up to isomorphisms. Further we calculateL:(£3(4)) = 21 and

therefore 6..* (H5) = 0, proving non-generation.

Next we calculate 6.. Hs(2A,4B,6B) = 48 and L:M22 (2A,4B,6B) = 36. Therefore

6..*(HS) ::; 12 < ICHS (6B)1 and non-generation follows from Lemma 2.3.8. The

same argument can be applied for the triple (2A, 4B, 8A) since 6..( H S) = 46 and

L::( !v122 ) = 44. Furthermore, we calculate

6..Hs(2A,4B,l1X) = 22 = L:: Mn (2A,4B,l1X)

6..Hs(2A,4B,12A) = 18 = L: s8 (2A,4B,12A)

6 Hs(2A,4B,15A) = 15 = L: s8 (2A,4B,I.SA).

Non-generation by these triples follows once more from Lemma 2.3.8. Thus we con-

clude that HS is not 4B-complementary generated, completing the proof. D

Table 4.VI
Structu;e Constants of H5

pX 2A 2B 3A 5A 5B 5C iA llAB

D.HS(pX, 4C, llA) 66 198 1i82 1386 2112 27i20 90000 64152

~HS(pX, 6A, llA) 132 396 3234 2442 3894 49390 1i5890 111914/114664

D.HS(pX, 6B, llA) 242 638 5148 3696 6160 i3920 264000 16i904

tlHS(pX, 8A, llA) 396 1012 i920 5544 9504 110880 396000 2502i2

Lemma 4.3.2 The group H 5 lS nX -complementary generated, where nX E

{4C,6A,6B,8A}.

Proof Recall that the maximal subgroups of H S with order divisible by 11 are, up to

isomorphims, M 11 (two non-conjugate classes) and lv122 . Also a fixed element of order

11 is contained in a unique conjugate of a subgroup isomorphic to 1\111 (respectively,

1\122 ) in H S. "Ve deal separately with each conjugacy class.
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Table 4.VII
Structure Constants of M22

pX 2a 3a 5a 7ab llab

~M22 (pX, 4a, lla) 22 319 2640 1936 1364

~M22(pX,4b, lla) 44 638 5280 3872 2728

~M22 (pX, 6a, lla) 121 1155 7744 5280 3256/3124

~M22 (pX 1 8a, lla) 198 1760 11616 8096 4576

'fable 4.VIII
Structure Constants of lV[11

pX

~Mll (pX, 4a, lla)

~Mll (pX, 6a, lla)

2a

11

44

3a

44

66

5a

198

264

llab

110

132

First we consider the class 4C. We calculate .6.Hs (2A, 4C, 20A) = 60. If K is a

maximal subgroup of H 5 with non-empty intersection with each of the conjugacy

classes 2A, 4C and 20A, then K ~ U3 (5):2, 4.24 :55 or 5:4xA5 • However, 2:.(I{) = 0 for

all these subgroups and therefore .6.* (H5) = 60, proving the (2A, 4C, 20A)-generation

of H5. The fusion maps into H5 give iV!22 n4C = 4b and M11 n4C = 4a. Now for all

conjugacy classes pX, with prime order representatives, other than 2A, we observe

from Tables 4. VI, 4. VII and 4. VIII that

.6.HS (pX, 4C, 11A) 2: .6.HS (pX, 4C, 11A) - l:M22 (pX, 4C, 11A)

-2L:Mll (pX, 4C, 11A) > 0 ,

and hence H5 is (pX,4C, 11A)-generated. We therefore conclude that H5 is 4C­
cornplementary generated.

The conjugacy class 6A does not meet any subgroup isomorphic to lV!l1 or ?Vf22 and

hence no proper subgroup of H5 is (iX, 6A, 11A )-generated, for any i. From the

structure constants in Table 4. VI, we conclude that H S is 6A-complementary gener­

ated. The class 6B has non-empty intersection with all subgroups isomorphic to J;[l1

and Af22 · It is clear from Tables 4.VI, 4.VII and 4.VIII that .6.'Hs(pX, 6B, 11A) > 0
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and 6B-complementary generation of H S follows.

Finally, Mll n 8A = 0 and 1'\122 n 8A = 8a. Thus from the above tables we get

6.HS (pX, 8A, 11A) = 6.HS(pX, 8A, 11A) - ~M22 (pX, 48A, 11A) > 0 ,

proving 8A-complementary generation of HS. This completes the result. 0

We are now ready to prove the main result in this section.

Theorem 4.3.3 The group H Sis nX -complementary generated if and only if nX =

4C or n "2:: 5.

Proof From Lemma 2.3.8 it follows that H S is not 2X-complementary generated. We

proved in the previous section that the group HS is (2X, 5A, 11Z)-, (3A, 5A, 11Z)-,

(SA, 5Y, 11Z)-, (5A, iA, 11Z)-generated, X, Z E {A, B} and Y E {A, B, C}. Thus we

have shown that H S is (pX, 5A, 11A)-generated, for all conjugacy classes pX with

representatives of prime order. It therefore follows from Lemma 2.3.8 that H S is

SA-complementary generated.

Similar arguments will show that H S is 5B-, 5C-, 7A- and 11X-complementary

generated, for X E {A, B}. Furthermore, we have (8B)2 = 4C = (8C)2, (10A)2 = 5A,

(10B)2 = 5B and (20A)2 = lOA = (20B)2. The result now follows from Lemma 4.3.1

and an application of Lemma 2.3.9 to Lemma 4.3.2. 0
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The McLaughlin Group

5.1 Intoduction

It was shown by McLaughlin [125] that there exists a regular graph 9 = (n, E) with

275 vertices possessing a transitive automorphism group Aut(9) == IHcL:2, with M cL

a new simple group of order 27 .36 .53 .7.11. The McLaughlin graph 9 is a rank 3 graph

of valency 112 on 275 points in which the point stabilizer U is a maximal subgroup

isomorphic to U4 (3). The orbits under this action are {x}, <I> and IlJ with orders 1,

112 and 162, respectively. The action of U on <I> is equivalent to the representation

of U4 (3) on the set of totally singular lines of the 4-dimensional unitary space V

over the Galois field GF(9) with the stabilizer of a point having the form 34 :A6 and

orbits of orders 1, ;30 and 81, respectively. The action of U on IlJ is equivalent to

the representation of U4 (3) on the left cosets of a subgroup isomorphic to L3 (4) with

the stabilizer of a point having orbits of orders 1, 56 and 105, respectively. Thus the

two point stabilizers of iUcL on n are isomorphic to either 34 :.16 or L3 (4). From this

we conclude that Un U9 == 34 :A6 or L3 (4), for any two distinct conjugate subgroups

isomorphic to U4 (3).

The group 1\-'1cL has precisely one conjugacy class of involutions and the centralizer

of an involution in M cL is isomorphic to 2· A8 , the unique perfect central extension of

the alternating group A8 by a group of order 2. Finkelstein [60] showed that the proper

non-abelian simple subgroups of AIcL are isomorphic to A5 , .16 , .17 , L2 (7), U4 (2),

81
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U3 (3), L3 ( 4), U3(5), U4(3), IV!ll and Ivf22 . There are two classes of Ivf22 subgroups,

interchanged by the outer automorphism.

Theorem 5.1.1 (Finkelstein [60j) The McLaughlin simple group has precisely twelve

conjugacy classes of maximal subgroups. The isomorphism types in these classes are

as follows:

(i) two groups of classical type, namely, U4 (3) and U3 (·5);

(ii) four groups of iVlathieu type, namely, Mu, M22 (two classes) and L3 (4):2 2 ,

the stabilizer the 253-dimensional representation of i'V[23;

(iii) six p-local subgroups, namely, 24
:,47 (two classes), 2.:18 , 34 :MlO , 3~+4:2.S5

and 5~+2:3:8. 0

In Table 5.1 we list some of the properties of the maximal subgroups of tv[cL

with order divisible by 7 or 11 (the other maximal subgroups are irrelevant in this

study). The permutation characters of McL on the cosets (or conjugates) of the

maximal subgroups U4(3), j\;[22 and U3(5) are given in the ATLAS. In Table .s.Il we

list partial fusion maps, obtained from GAP, of the maximal subgroups of iV!cL (with

order divisible by 7 or 11) for which the permutation character are not given in the

ATLAS.

TABLE 5.1

Maximal subgroups of M cL

Atl l1'vll

U4 (3) 27 .36 ·5·7

M22 27 .32 .5.7.11

AI22 27 .3 2 .5.7.11

U3 (5) 24 .32 .53 .7

L3 (4):2 2 27 .32 .5.7

2·A8 27 .32 .5.7

24 :.47 27 .3 2 .5.7

24 :A7 27 .32 .5.7

M 11 24 .3 2 .5.11

Orbit Type

[1,112,162]

[22, 77, 176]

[22,77,176]

[50 2
, 175]

[2,56,112,105]

[7,16,112,140]

[7,16,112,140]

[11,12,110,132]

la + 22a + 252a

la + 22a + 252a + 1750a

la + 22a + 252a + 1750a

la + na +252a + 1750a + 5103a
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Table 5.1I

Partial fusion maps into M cL

L3 (4):2 2-class 2a 2b 3a 5a 7a 7b

ICL3(4):2~(nx)1 128 336 18 5 14 14

-+ McL 2A 2A 3B 5B 7A 7B

2·As-class 2a 2b 3a 3b 5a 7a 7b

IC2 .A.(nx)! 40320 192 360 36 30 14 14

-+ McL 2A 2,4, 3A 3B 5A 7A 7B

24 :A7-class 2a 2b 3a 3b 5a 7a ib

IC24:A,(nx)1 2688 96 36 36 5 14 14

-+ McL 2A 2A 3B 3B 5B iA 7B

M11-class 2a 3a 4a 5a 6A 8a 8b lla lIb

ICM 1 ! (nx)l 48 18 8 5 6 8 8 11 11

-+ McL 2,4, 3B 4A 5B 6B 8A 8A 11A lIB

TABLE 5.III

Structure constants for M cL

tX 7AB 8A 9AB lOA 1lAB 12A 14AB 15AB 30.4B

.6.McL(2A, 3A, tX) 0 0 0 0 0 3 0 0 6

ICMcL(tX)1 14 8 27 30 11 12 14 30 30

5.2 (p, q, r )-Generations of M cL

Lemma 5.2.1 (Woldar [176}) The group MeL is not (2A, 3X, tY)-generated, for any

integer t, where X E {A, B}.

Proof From an application of Lemma 3.1.7 to the triples in Table 5.III it immediately

follows that A1cL is not (2A, 3A, tY)-generated, for any integer t.

Let A = (x) and B = (y), where x E 2A and y E 3B. If Xl and X are the irre­

ducible characters of lv! cL of degree 1 and 22, respectively, then the inner product

(XJ.A,XIJ. A) = 14, (XJ.B,XtJ.B) = 10 and (XJ.(AnB),XIJ.(AnB») = 22. Thus by the result
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of Brauer (cf. Lemma 3.3.4), we have (x, y) < M cL, and the result follows. 0

Lemma 5.2.2 The group l'V[ cL is not (2A, 5X, 7Y)-generated, where X, Y E {A, B}.

Proof Let H ~ !VIcL with H ~ 24 :A7 . We then calculateI:H(2A, 5A, 7Y) = 7 =

LlMcL(2A, 5A, 7Y) and thus M cL is not (2A, 5A, 7Y)-generated.

The irreducible character 22a of 1'1/[cL affords a 22-dimensional complex irreducible

module V. vVe calculate the co-dimensions dim(VjCv (2A)) = 8, dim(VjCv(5B)) =

16 and dim(VjCv(7Y)) = 18. But 8 + 16 + 18 = 42 < 44, contradicting Scott's

theorem and therefore M cL is not (2A, 5B, 7Y)-generated. 0

Lemma 5.2.3 The group AIcL is (34, 5X, 7Y)-generated, where X, Y E {A, B}.

Proof The maximal subgroups of McL with non-empty intersection with the conju­

gacy class 3A are, up to isomorphisms, U ~ U4 (3) and H ~ 2·Ag . A fixed element

of order 7 is contained in xu(7Y) = 2 conjugate subgroups of U and in a unique

conjugate subgroup of H (cf. Table 5.11). Also Xu(5A) = 0 and 5B n H = 0, thus

.6. McL (3A, 5A, 7Y) > .6.McL(3A, 5A, 7Y) - I:H (3A, 5A, 7Y)

63 - 7> 0,

.6.McL (3A, 5B, 7Y) > LlMcL(3A, 5B, 7Y) - 2~u(3A, 5B, 7Y)

644 - 2(112) > 0 ,

and the result follows. 0

Lemma 5.2.4 The group I'WcL is (3E,5X, 7Y)-generated, where X, YE {A, E}.

Proof We first prove the (3E, 5A, 7Y)-generation of M cL. The maximal subgroups

with non-empty intersection with the classes 5A and 7Y are isomorphic to U3 ( 5) and

2·Ag . We calculate 6.(fvfcL) = 595, I:(U3 (5)) = 21 = I:(2·Ag ). Further, a fixed

element of order 7 is contained in 2 conjugates of a U3 (5) subgroup and in a unique

conjugagate of a 2·Ag subgroup. Thus Ll*(McL) 2: 595 - 2(21) - 21 = 532 which

implies the (3B, 5A, 7Y)-generation of McL.
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Next we consider the case (3B,5B, 7Y). The only maximal subgroups of McL with

order divisible by 7 and empty intersection with either class 3B or 5B are isomorphic

to 2·A8 • For the remaining maximal subgroups lvf we list below 2:(M) and the number

h of conjugates of M containing a fixed element z of order 7.

M h I:(M) hI:(M)

U4 (3) 2 9408 18816

Mn 2 2464 4928

Mn 2 2464 4928

U3 (5) 2 420 840

£3(4):22 1 882 882

24
:.47 1 336 336

24 :..<h 1 336 336

Thus the total number of pairs (x, y) E 3B x 5B with xy = z E 7Y, is at most 31066.

The result follows since t::..( At[cL) = 50400. 0

Lemma 5.2.5 The group McL is (2A, 5A, 11Y)-, (3A, 5X, 11Y)-, (3B, 5.1,11Y)-,

(3.1,7 X, 11Y)-, (5A, 5B, 11Y)- and (.lA, 7X, 11Y)- generated, where X, Y E {A, B}.

Proof. The maximal subgroups of M cL with order divisible by 11 are isomorphic

to either M 11 or M 22 • However, XMn (3A) = XM22 (5A) = 0 and from Table 5.Il

we conclude that 3A n M11 = 0 = .5A n M11 . Therefore no proper subgroup of

McL is (7r(3A), rr(pX), rr(11Y))- or (7r(pX), 7r(5A), 7r(llY))-generated, for any prime

p and 7r E 53. Thus for all the triples in the statement of the lemma we have

6..*(McL) = 6..(McL) and the result follows from Table 5.IV. 0

Lemma 5.2.6 The group iVIcL is (2A, 5B, 11X)- and (3B, 5B, llX)-generated,
where X E {A, B}.

Proof. "Ve calculate 6.. McL(2A, 5B, 11X) = 715 and 6.. Mc L(3B, 5B, 11X) = 34485.

Now a fixed element of order 11 is contained in a unique conjugate of M11 and AtJ22 sub­

groups of iVIcL, respectively. Also, :EMu (2A, 5B, 11X) = 33, :E Mn (2A, 5B, 11X) =
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TABLE 5.IV
Structure Constants of McL

pX

AMcL(2A,pX,l1Y)

AMcL(3A,pX,l1Y)

AMcL(3B,pX,l1Y)

AMcL(5A,pX,l1Y)

5A

22

44

1122

1540

5B

715

1100

34485

47410

7X

1584

2178

66132

85536

176, ~Ml1 (3B, 5B, 11X) = 99 and ~M22 (3B, 5B, 11X) = 2112. Since AfcL con­

tains two non-conjugate classes of 1V[22 subgroups, we obtain ~Mcd2A,5B, 11X) 2::
715 - 33 - 2(176) = 330 > 0 and similarly ~McL(2A,5B, 11X) 2:: 30162 > 0, proving

the result. 0

Lemma 5.2.7 The group M cL is(2A, 7X, 11 Y)-, (3B, 7X, 11Y)- and (5B, 7X, 11Y)­

generated, where X, YE {A, B}.

Proof The maximal subgroups of M cL with order divisible by 7x 11 are isomorphic to

M22 . We easily calculate ~Mcd2A,7X, 11Y) = 1584, ~Mcd3B, 7X, 11Y) = 66132,

~McL (5B, 7X, 11Y) = 2566080, 2: M22 (2A, 7X, 11Y) = 176, 2: M22 (3B, 7X, 11Y) =

1760, ~M22(5B, 7X, 11Y) = 12672. In all cases, ~~(!v[cL) = ~(McL) - 2:(AtJ22 ) > 0,

proving the result. 0

\Ve are now ready to prove the main results of this section.

Theorem 5.2.8 The McLaughlin group N[cL is (p,q,r)-generated for all p,q,r E

{2, 3, 5, 7, 11} with p < q < r, except when (p, q, r) = (2,3,5), (2,3,7) or (2,3,11).

Proof The proof follows from Lemmas 5.2.1 to 5.2.7 and the fact that the triangular .

group T(2, 3, 5) ~ As. 0

Corollary 5.2.9 The group i\!IcL is (pX, pX, qY)-generated, with p < q, for all pX E

{5A, 5B, 7A, 7B} and qY E {lA, 7B, 11A, 11B}.

Proof. This follows immediately from an application of Lemma 3.1.15 to Lemmas

5.2.2,5.2.5 and 5.2.7. 0
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5.3 nX-Complementary generations of McL

87

We proceed as in Section 4.3. The maximal subgroups of JVfcL with order divisible

by 11, that is, containing all possible (pX, nY, 11A)-generated proper subgroups of

N[cL are, up to isomorphisms, jV!1l or 1\1[22'

TABLE 5.V
Structure Constants of M cL

pX 2A 3A 3B .SA .SB 7AB llAB

.6.McL(pX, 4A, llA) 143 286 8316 12056 362780 667656 866228

.6.McL(pX, 6A, llA) 44 88 2354 3300 99000 178002 227304

.6.McL(pX, 6B~ llA) 572 814 24992 33000 990000 1782398 2277i92

.6.McL(pX, 9A, llA) 759 1188 33561 44154 1332045 2376000 3037419

Lemma 5.3.1 The group k[cL lS nX-complementary generated, where nX E

{4A, 6A, 68, 9A}.

Proof The fusion maps of the maximal subgroups into M cL give M ll n 4A = 4a,

k[ll n 6B = 6a, 1\1[22 n 4A = 4a U 4b and k[22 n 6B = 6a. For nX E {4A, 68}, we

have

8.McL(pY, nX, 11A) > LlMcdpY, nX, 11A) - LM22 (pY, nX, 11A)

- 2L:Mll (pY, nX, llA) > 0 ,

for all conjugacy classes pY with prime order representatives (cf. Tables 4.VII, 4.VIII

and 5.V). This show that M cL is 4A- and 5B-complementary generated.

The class 6A does not meet any subgro,up of M cL isomorphic to M ll or M 22 . Also

the groups kIll and M22 contain no elements of order 9. Thus if nX E {6A,9A},

then LlN1cL(pY, nX, 11A) = 8.McdpY, nX, llA), and the 6A- and 9A-complementary

generation follows from Table 5.V. 0

Theorem 5.3.2 The group i'v[cL is nX-complementary generated if and only if

n ~ 4.
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Proof The group M cL is not 2A-complementary generated (cf. Lemma 2.3.8). Si~ce

11;[cL is not (2A, 3X, tY)-generated for any integers t (cf. Lemma 5.2.1)' it is not

3A- or 3B-complementary generated. We proved in the previous section that for

any pX E {5A, 5B, 7AB, llAB}, the group McL is (qY, pX, llA)-generated, for all

conjugacy classes qY with elements of prime order. Therefore the group 1\1cL is

pX-complementary generated.

The result now follows from an application of Lemma 2.3.9 to the conjugacy classes

with prime order representatives and the classes in Lemma 5.3.1. 0
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The Smallest Conway Group

6.1 Introduction

The Leech lattice is a certain 24-dimensional Z-submodule of the 24-dimensional

Euclidean space 1R 24 discovered by John Leech. John Conway showed that the auto­

morph ism group of the Leech lattice modulo its central factor group is the Conway

group COl. The Conway groups CO2 and C 03 are stabilizers of sublattices of the Leech

lattice. We give a brief description of the construction of these groups, omitting detail.

A comprehensive study is given by Aschbacher [2].

Let lvl = M24 and (X,C) be the Steiner system 5(24,8,5) for AI. Let V be

the permutation module over GF(2) of M with·the basis X and VC the Golay code

submodule. Let IR 24 be the permutation module over the reals for M with basis X

and let ( , ) be the symmetric bilinear form on IR 24 for which X is an orthogonal basis.

Thus IR. 24 together with ( , ) is just the 24-dimensional Euclidean space admitting

the action of AI. Now for Lx axx and Lx bxx in IR 24, we have

For v E R 24 define q(v) = (v,v)/16. Thus q is a positive definite quadratic form on

1R 24
. Given Y ~ X, define ey = LYEYY E R,24. For x E X let Ax = ex -4x.

The Leech lattice is the set A of vectors v = Lx axx E IR 24 such that:

89
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(AI) ax E Z for all x E X.

CHAPTER 6. THE SMALLEST CONWAY GROUP

(A3) ax == m(v)(mod 2) for all x E X.

(A4) C(v) = {x E X lax "t m(v)(mod 4)} E Vc.

The Leech lattice A is a Z-submodule of IR24. Let AD denote the set of vectors

v E 1\ such that m(v) == O(mod 4). Then AD is a Z-submodule spanned by the

set {2eB I B CC}. Further, A as a Z-submodule is generated by AD and >'xo' for

Xo EX. Write O( IR24) for the subgroup of GL( !R 24) preserving the bilinear form

( , ), or equivalently preserving the quadratic form q. Let G be the subgroup of

O( !R24) acting on A. The group G is the automorphism group of the Leech lattice.

For Y eX, write ~y for the element of GL( !R24) such that

()
{

-x, if x E Y,
~y x =

x ,if x rf. Y.

Let Q = {~y lYE \Ic}. Then N = M·Q :::; G. Given any positive integer n, write An

for the set of all vectors v in A with q(v) = n. Then A = UnAn. For v = l:x axx E A

and i a non-negative integer, let

and define the shape of v to be (ono , 1nl , ...), where ni = lSi(v)1. Let A~ be the set of

all vectors in 1\ of shape (28 , 016
), A~ the set of vectors in A of shape (3,1 23

), and i\~

the set vectors in A of shape (42 ,022 ). Then A~, 2 :::; i :::; 4, are the orbits of N on 1\2,

with 11\~1 = 27 .7594, IA~I = 212 .24 and IA~I = 22
• ( 22

4
). Moreover, 11\2\ = 24 .33 .5.7.13

and N = Na (1\i). Using this information it can be shown that G acts transitively

on 1\2, 1\3, and 1\4, Also N is a maximal subgroup of G of order 222·39·54·72·11·13·23.

Notice that ~x is the scalar map on IR 24 determined by -1, and hence is in the center

of G. Denote by COl the factor group G/ (~x). Denote by CO2 the stabilizer in G of

a vector in 1\2 and denote by C03 the stabilizer in G of a vector in 1\3, The groups

COl, CO2 and C03 are the simple Conway groups, with ICo2 1 = 218 .36 .53 .7.11.23 and

\Co3 1 = 210 .37 .53 .7.11.23.
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For v E A, let An(v,i) denote the set of all u E An such that (v, u) = Si. Let

2A = {2v I v E A}. Then 2A is a G-invariant Z-submodule of A, so G acts on the

factor module 1\ = /\./2A. The module A is the Leech lattice mod 2. For v E A let

v = v + 2A and for S ~ A let S = {s I s E S}. By construction 2v = 0 for all v E A,

so A is an elementary abelian group which we may view as a G F(2)G-module. Also

~x is trivial on A, so A is also a G F(2)-module for G = G/ (~x) ~ COl'

Let Xl, X2 EX, and let

Then VI E A~, V2 E A~ and V3 E A3 . Thus CO (V3) == C03 , the stabilizer of a vector in

1\3' Also A2 ( V3, 3) is an orbit under Go(V3) of length 2x 276, with

a system of imprimitivity of order 276. The set

is the set of lines of A through V3 generated by elements of A2 . There are 276 such

lines and they form an orbit under CO (V3). Furthermore, CO (V3) ~ C03 is 2-transitive

on the set [, of lines of A through V3 generated by the points of }\2' Also, [, is of

order 276 and the stabilizer in Co (V3) of a member of [, is isomorhpic to ill!c£:2.

L. Finkelstein [60J showed that the simple subgroups of C 03 are, up to isomor­

phisms, As, .46, A7 , As, £2(7), £2(8), £2(11), £3(4), U4(2), U3(3), U3(5), U4(3), ";fll,

A112 , 1\122 ,1\123 , HS and iv1cL.

Theorem 6.1.1 (Finkelstein [60J) The Gonway simple group G03 has precisely Jour­

teen conjugacy classes oJ maximal subgroups. The isomorphism types in these classes

are as Jollows:

(i) Jour groups oJ classical type, namely, U4 (3):2 2
, U3(5):S3, L3 (4):D 12 and

S3 x L2 (8):3;

(ii) one group oJ Mathieu type, namely, M 23 ;
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(iii) two sporadic groups; namely, H5 and lV!cL:2;

(iv) seven p-local subgroups, namely, ')4. A A4 X 55; 31+4 -4 5 22 .[2/.32].53_. 8; . + .. 6,

35 :(2 X Mll ), 2.56 (2) and 2 x M12 . 0

If G is a quotient group of the triangular group T(p, q, r), then by the definition of

the triangular group, G is also (iT(p), iT(q), iT(r))-generated, for any iT E 5(p, q, r) ~ 53.

We may therefore assume p ~ q ~ r. As a consequence, we only need to consider the

cases r = 7,1 L 23 for the group C 03. We deal separately with each case in Sections

2, 3 and 4. The nX-complementary generations of the group C 03 will be discussed in

section 5. The partial fusion maps (including all conjugacy classes with prime order

representatives) of the maximal subgroups into C03 are given in Table 6.!. This allow

us to calcula.te h, the number of conjugates of the maximal subgroup containing a

fixed element of given order.

TABLE 6.1

Partial fusion maps into C03

Al eL:2-class 2a 2b 3a 3b Sa 5b 7a 11a 11b
-r C03 2A 2B 3A 3B SA 5B 7.4 11A 11B

h 3 1 1

H 5-class 2a 2b 3a Sa 5b 5e 7a 11a 11b
-r C03 2A 2B 3B 5A 5B 5B 7A 11.4 11B

h 6 2 2
U4 (3):2 2-class 2a 2b 2e 2d 2e 3a 3b 3e ·)a ia

-r C03 2,..1 2A 2B 2B 2B 3A 3B 3B 5B 7A
h 3

AI23-class 2a 3a Sa 7a 7b 11a 11b 23a 23b
-r C03 2A 3B 5B 7A 7A 11A 11B 23A 23B

h 3 3 2 2 1 1

35 :(2xMll )-class 2a 2b 2e 3a 3b 3e 3d Sa 11a 11b
-r C03 2A 2B 2B 3A 3B 3B 3C 5B 11.4. 11B

h 1 1

2.56 (2)-class 2a 2b 2c 3a 3b 3c 5a 7a
-r C03 2A 2A 2B 3A 3A 3B 5A 7A

h 3

U3(5):53-class 2a 2b 3a 3b 3c 5a 5b 7a
-r C03 2A 2B 3B 3A 3C 5A 5B 7A

h 2
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TABLE 6.1 (Continue)

24 ·A8-class 2a 2b 2c 3a 3b Sa 7a 7b
-+ C03 2A 2B 2A 3B 3B 5B 7A 7A

h 3 3

L 3 (4): D\ 2-class 2a 2b 2c 2d 3a 3b 3c 5a 7a

-+ C03 2A 2B 2A 2B 3B 3B 3C 5B 7A
h 1

2 x M\2-class 2a 2b 2c 2d 2e 3a 3b Sa lla lIb
-+ C03 2B 2A 2B 2B 2B 3B 3C 5B llA lIB

h 1 1

6.2 (p, q, 7)-Generations of C03

The group C03 acts as a transitive rank-2 group on a set n of 276 points. The

point stabilizer of this action is isomorphic to the group IV[cL:2 and the resulting

permutation character is XMcL:2 = la +275a. The value of XA./cL:2 on the conjugacy

class pX, p a prime, will enable us to deduce the cycle type of elements in pX as a

permutation of degree 276.

Lemma 6.2.1 The group C03 is (2X, 3Y, 7A)-generated, for X E {A, B} and Y E

{A. B, C}, if and only if the ordered pair (X, Y) = (B, C).

TABLE 6.II
Cycle structure of a representative in pX

Co3-class 2A 2B 3A 3B 3C 7A. llA.B

XMcL:2(pX) 36 12 6 15 0 3

Cycle type 1362'20 1'22'32 16390 1\5387 392 13739 1'11 25

Proof If the group C03 is (pX, qY, rZ)-generated, then an application of Ree's the­

orem to C03 as a permutation group on 276 points, implies that Cl + C2 + C3 ::; 278,

where Cl, C2 and C3 are the number of disjoint cycles of representatives in pX, qY and
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r Z, respectively. From Table 6.II we conclude that Ree's theorem is violated for all

triples (2X, 3Y, 7A), except when X = Band Y = C.

For the triple (2B, 3C, 7A) we observe from the fusion maps into C03 that if M is a

maximal subgroup with non-empty intersection with the classes in this triple, then

M is isomophic to either, U3 (5):53 , L3(4):D12 or 53 x L2(8):3. However, we easily

calculate 2:(1\1) = 0 for all the above subgroups and hence 6.*(C03 ) = 6.(C03 ) = 504,

proving the result. 0

Lemma 6.2.2 The group C03 is (2X, 5Y, 7A)-generated, for X, Y E {A, B}, if and

only if the ordered pair (X, Y) E {(B, A) ,(B, Bn·
Proof We calculate 6.c03 (2A, 5A, 7A) = 21 < ICc03 (7A) I= 42 and non-generation of

C 03 by this triple follows from Lamma 3.1.7. The group C 03 acts on a 23-dimensional

irreducible complex module V with

dim(VjCv (2A)) = 8, dim(VjCv(5B)) = 16 and dim(VjCv(7A)) = 18.

But 8+16+18 < 46, and hence, by Scott's theorem, (2A,5B, 7.4.) is a non-generating

triple of C 03.

Next we consider the triple (2B,5A, 7A). The maximal subgroups of C03 with order

divisible by 7 and non-empty intersection with the classes 2B and 5A are isomorphic

to 1\1cL:2, H5, 2.56 (2) and [13(5):53, We calculate 6.(C03 ) = 1512, f.(;VfcL:2) =

o = l:(U3 (5):53 ), 2:(H5) = 48 and 2:(2.56 (2)) = 98. A fixed element of order 7

is contained in 6 conjugate copies of H5 and in 3 conjugate copies of 2.56 (2) (cf.

Table 6.1). Thus 6.*(C03 ) ::::: 1512 - 6(48) - 3(98) > 0 and therefore (2B, 5A, 7A) is a

generating triple for C03 .

Finally, we show that C03 is (2B, 5B, 7A)-generated. The maximal subgroups with

non-empty intersection with the classes 2B, 5B and 7A are, up to isomorphisms,

lvfcL:2, H5, U4 (3):2 2
, U3 (5):53 , 24 ·A8 and L3(4):D 12 . We calculate .6.(C03 ) =

7560, ~(H5) = 532, I:(24 ·A8 ) = 56 and I:(M) = 0 for the remaining subgroups in

the above list. Also a fixed element of order 7 is contained in 3 conjugate copies of

24 ·A8 . Thus 6.*(C03 ) ::::: 7560 - 6(532) - 3(56) = 4200, and the result follows. 0

The group C 03 acts transitively on the set n the set of conjugates of the subgroup

M ~ M cL. In Finkelstein [60] the lengths of the orbits of subgroups of C 03 acting
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on n are determined. We shall use these orbit lengths to obtain information on the

subgroup lattice of Co3 •

Lemma 6.2.3 The group C03 is (3X,5Y, 7A)-generated, for all X E {A, B, C} and

YE{A,B}.

Proof. vVe will treat each triple separately.

Case (3A, SA, 7A): The maximal subgroups of C03 that have non-empty intersec­

tion with the classes 3.1, SA and 7A are, up to isomorphisms, iVIeL:2, 2.56 (2) and

U3 (5):53 . vVe calculate 6(Co3 ) = 1680, ~(lVleL:2) = 63. Z:(2·S6 (2)) = 70 and

L:(U3 (5):53 ) = O. From Table 6.1 it follows that 6-(Co3 ) :::: 1680 - 3(63) - 3(70) =
1281, and hence C03 is (3A, SA, 7A)-generated.

Case (3A, 5B, 7.1): The maximal subgroups with non-empty intersection with the

classes in this triple are isomorphic to McL:2, [1,t(3):22 and U3(5):53 . We calculate

~(MeL:2)

L:( U4 (3):2 2
)

L:(U3(5):53 )

"['(McL) = 6Mcd3a,5b, 7x) = 644, x E {a,b},

L:(U4(3)) = .6. u4 (3)(3a,5a, 7a) = 112,

O.

Clearly any (3A,5B, 7A)-generated proper subgroup of C03 is contained in either

I'vlcL or U4 (3). From the list of maximal subgroups of U4 (3) (cf. ATLAS [43])

we observe that, up to isomorphisms, only L3 (4) and Ai have order divisible by

3 x 5 x 7. However, L:L
3
(4)(3a,5a, 7a) = 0 = L: A7 (3a,5a, 7a) and hence L:-(U4(3)) =

.6.u4 (3)(3a, 5a, 7a) = 112.

From Lemma 5.2.3 and the above argument it is clear that, up to isomorphisms.

U4 (3) is the only subgroup that contains (3a, 5b, 7x )-generated subgroups of M cL.

Furthermore, L: u4 (3)(3a,5b,7x) = 6 U4 (3)(3a,5a,7a) = 112 (the first part of the

equality involves MeL-classes and the second U4 (3)-classes). Therefore 2:,-(McL) =
644 - 2( 112) = 420 (cf. Lemma 5.2.3). vVe therefore conclude that IvleL and U.t (3) are

the only (3A, 5B, 7A)-generated proper subgroups of Co3 . It was shown by Finkel­

stein [60] that C 03 contains a unique conjugate class of subgroups isomorphic to At{cL
and U4 (3), respectively. Therefore

.6.(Co3) - 3L:-(iVleL) - 3L:-(U4(3))

1680 - 3(420) - 3(112) = 84,
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proving generation of C 03 by this triple.

Case (3B,5B,7A): We calculate the structure constant 6(C03 ) = 175518. From the

fusion maps of the maximal subgroups into C03 we note that MeL:2, HS, U4(3):2 2
,

1\123 , U3(5):S3, 24 ·As and L3(4):D 12 are, up to isomorphisms, all the maximal

subgroups that may contain (3B, 5B, 7A)-generated subgroups. We calculate

f.(MeL:2) f.(MeL) 50400, f.(HS) 7280,

f.( U4(3):22) ~(U4(3) ) 9408, f.(M23 ) 5124,

f.(U3(5):S3) f.(U3(5)) 420, 2:(24
. As) 420,

f.(L3 (4):D12 ) ~(L3(4)) = 882.

Thus any (3B, 5B, 7A)-generated proper subgroup of C03 is contained in a subgroup

isomorphic to MeL, HS, U4 (3), M23 , U3(5), 24 ·As or L3 (4). By investigating

the maximal subgroups of these groups and their fusions into C 03, we find that the

(3B, 5B, 7A)-generated proper subgroups of the above list are, up to isomorphisms,

1\122 , 24 :A7 , As, Ai and (if possible) subgroups of 24 ·.1s, other than 24 :A7 and Ai.

We list in Table 6.II1 the lengths of the orbits of the above subgroups acting on n. If

H is any subgroup of C03 fixing at least one point M' E n, then H :::; GM' ~ MeL:2.

Thus it follows from Table 6.III that any MeL, U4 (3), M22 , U3 (5) (one fix point on

n), 24 :A7 , L3 (4) (both classes) and A7 (both classes) subgroup of C03 is contained

in some AIeL:2 subgroup of C 03. Finkelstein [60] showed that C 03 contains a unique

conjugate class for each of the remaining subgroups in the Table 6.111.

It therefore follows from Theorem 3.1.4 that the number of pairs (x,y) E 3B x 5B,

with xy = z a fixed element in 7A and (x, y) < C03 , is at most

'Ne now proceed by finding an upperbound for the above equation. The groups Ai
and L3 ( 4) contains no proper subgroups with order divisible by 3 x 5 x 7 and hence'

2:·(A7) = ~(A7) = 63 and r,·(L3(4)) = ~(L3(4)) = 882. Up to isomorphisms,

A 7 is the only subgroup of A8 that admits (3B, 5B, 7A)-generation. Also a fixed

element of order 7 is contained in a unique conjugate of a A7 subgroup in A8 . Thus

2:-(A8 ) = 2:(A8 ) - 2;-(A7 ) = 84 - 63 = 2l.

For the group U3(5) we have

I:(U3 (5)) = 6U3(5)(3a, 5b, 7x) + 6U3(5)(3a, 5e, 7x) + 6U3(5)(3a, 5d, 7x) ,
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TABLE 6.III

Action of H on n

H Length of n-orits NCo3 (H)

MeL [1,275] MeL:2

H5 [100,176] H5

U4 (3) [1 2,112,162] U4 (3):2 2

M23 [23,25J] k/23

U3(5) . [503 ,126] U3(5):53
U3(5) [1,502,175] U3(5):2

/1-122 [1,22,77,176] Mn
24 ·A8 [8,128,140] 24 ·A8

24 :A7 [1,7,16,112,140]

L3(4) [1 3 ,563 ,105] L3 (4):D 12
L3(4) [1 2 ,21 2 ,562 ,120]

A8 [8,15 2,70,168] 58
A7 [1,7,15 2 ,352 ,42,126] 57
A7 [1 2 ,7,15,35,42,70,105] A7

where x E {a,b}. We calculate Ll U3 (5)(3a,5y, 7x) = 140, where yE {b,c,d}. Also the

maximal subgroups of U3 (5) with order divisible by :3 x 5 x 7 are isomorphic to A7

(three non-conjugate types, say (i), (ii) and (iii)). The fusion map of ..h into U3 (.5)

yields

3a ~ 3a 3b ~ 3a Sa ~ 5y 7a ~ 7a 7b ~ ib ,

where y = b, c, d if A7 is of conjugate type (i), (ii), (iii), respectively. Also a

fixed element of order 7 is contained in a unique A7 subgroup of U3 (5). Thus

LlU3 (5)(3a,5y, 7x) = 77 and hence I;*(U3(5)) = 231.

Next we consider the groups M12 and M23 . vVe noteI:(M22 ) = ~M22(3a,5a, 7x),

x E {a,b}. The (3a,5a, 7x)-generated subgroups of 1\;[12 are isomorphic to L3 (4)

and A7 (two non-congugate copies). Using Theorem 3.1.4 we obtain L:*(Af12 ) =

2464 - 882 - 2(63) = 1456. The (3B, 5B, 7A)-generated maximal subgroups of M23

are isomorphic to M22 , L3 ( 4):22 , 24 :A7 and As. From the p~evious arguments

it follows that if H is a (3B, 5B, 7A)-generated proper subgroup of 1'vf23 , then H

is isomorphic to either A7 , As, 24 :A7 , L3 ( 4), Mn or H ::; 24 :A7 . We calculate

I;(24 :A7 ) = 336. Now 24 :A7 contains a subgroup isomorphic to A7 , and from Theorem
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~*(M23) < ~(M23) - 2~"(M22) - 2~"(L3(4)) - 2~"(A8) - ~(24:Ai)

- 70.

For the group HS we have ~(HS) = 6.Hs(3a, 5b, 7a) +6.Hs(3a, 5e, 7a). From Lemma

4.2.4, it follows immediately that

6.Hs (3a, 5b, 7a) < 560 - 2(77) - 2(63) = 260 ,

6.Hs(3a, 5e, 7a) < 6720 - 2(1456) - 2(77) - 882 - 2(63) = 2646

and hence ~*(HS) ~ 2906.

Thus an upper bound for equation (6.1) is 170694. The (38,58,7A)-generation of

C03 follows from 6.(C03) = 175518 > 170694.

Case (3C, 5A, 7A): vVe calculate 6.(C03) = 85428. Up to isomorphisms, U3(5):S3 is

the only maximal subgroup of C 03 with non-empty intersection with the classes of

this triple. However, ~(U3(5):S3) = 0 so that (3C, 5A, 7A) is a generating triple for

C03 .

Case (3C, 5B, 7A): The maximal subgroups of C03 that contain possible (3C, 58, 7A)­

generated subgroups are isomorphic to U3(5):S3 and L3(4):D12 . However, we calculate

~(U3(5):S3) = 0 = ~(L3(4):D12) and hence 6.*(C03) = 6.(C03) = 296136, proving

the (3C,5B, 7A)-generation of C03 . 0

6.3 (p, q, 11)-Generations of C03

In this section we need only to consider the maximal subgroups of C03 with order

divisible by 11. They are, up to isomorphisms, MeL:2, HS, M23 , 35 :(2 X A111 ) and

2 x M12 .

Lemma 6.3.1 The group C03 is (2X, 3Y, llZ)-generated, for X, Z E {A, B} and

Y E {A, B, Cl, if and only if the ordered pair (X, Y) = (B, C).

Proof An application of Ree's theorem to the representatives of the classes 2A, 3B

and llZ (cf. Table 6.II) establishes that C03 is not (2A, 3B, llZ)-generated. The
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action of C03 on the 23-dimensional irreducible complex module V yields

dim(VjCv(2A)) = 8 , dim(VjCv(2B)) = 12 , dim(VjCv(3B)) = 18,

dim(VjCv(3C)) = 12 and dim(VjCv(l1Z)) = 20 .
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Thus the triples (2A, 3C, 11 Z) and (2B, 3B, 11 Z) violate Scott's theorem, resulting in

the non-generation of C 03 by these triples. Next we calculate the structure constants

.6.co3 (2A, 3A, l1Z) = 0 = .6.co:. (2B, 3A, 11Z) and non-generation by these triples is

immediate.

Finally, we calculate .6. co3 (2B, 3C, 11Z) = 671. The maximal subgroups of C03 that

may contain (2B,3C,11Z)-generated subgroups are isomophic to 35 :(2 x M11 ) and

2 x l\!112' Also 2::(35 :(2 X 1\!l1l)) = 0 and 2::(2 x M12 ) = 11. From Table 6.1 we conclude

.6.*(C03) = ~(C03) - 2::(2 x A112 ) = 660, proving the result. 0

Lemma 6.3.2 The group C03 is (2X, 5Y, 11Z)-generated, for all X, Y, Z E {A, B},

except when (2X, 5Y, 11Z) = (2A, 5A, 11Z).

Proof. We treat the four cases separately.

Case (2A, 5A, 11Z): The structure constant .6.(C03) = 44. From the fusion maps into

C03 we note that the (2A. 5A, 11Z)-generated proper subgroups are contained in the

maximal subgroups isomorphic to McL:2 or HS. Also 'f,(AfcL:2) = 'f,(McL) = 22

and 2::( H 5) = 11. It follows from Lemmas 4.2.5 and 5.2.5 that no proper subgroup

of McL or H5 is (2A, 5A, 11 Z)-generated. Thus from the fusion maps we have

proving non-generation of C 03 by this triple.

Case (2A, 5B, 11Z): Every maximal subgroup with order divisible by 11 has non­

empty intersection with each of the classes 2A, 5B and 112. From the structure

constants we calculate

"f,U\;fcL:2)="f,(McL)=715 , 'f.(HS)=242 , ~(,lf23)=235,
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Using the ATLAS [43] and subgroup fusions into C03 , we identify all the possible

(2A, 5B, 11Z)-generated proper subgroups of C03 , up to isomophisms. They are

MeL, HS, M23 , M22 , M12 , iVI11 , L2 (11) and subgroups of 35:(2 X iVIll ).

Finkelstein [60] showed that C03 has one conjugate class of subgroups isomorphic to

1\123, M22 , jvI12 , Mll and L2 (11), respectively. Furthermore, since 35 :(2 X M11 )

contains subgroups isomorphic to M 11 and L2(11), it follows that every M 11 and

L2 (11) subgroup of C03 is contained in some conjugate copy of a 35 :(2 x 1\111)

subgroup. From Theorem 3.1.4, it follows that the number of pairs (x,y) E 2A x 5B,

with xy = z a fixed element of 11Z and (x, y) < C03 , is at most

No subgroup of L2 (11) has order divisible by 2 x 5 x 11 and hence E*(L2(11)) =

2:(L2 (11)) = 22. Up to isomorphisms, L2(11) is the only proper subgroup of 1\111 that

is (2A, 5B, 11 Z)-generated and a fixed element of order 11 is contained in a unique

L2 (11) subgroup of Mll . Thus E*(M1d = E(Mll ) - 2:*(£2(11)) = 11. Similarly,

2::*(iVI22 ) = E(M22 ) - 2::*(L2(11)) = 176 - 22 = 154.

The only (2A, 5B, 11Z)-generated proper subgroups of each of the groups McL, HS
and 1\123 are isomorphic to 1\tf22 , . M 11 and L2 (11). A fixed element of order 11

(in M 23 ) is contained in a unique conjugate of a M22 , M 11 and L2 ( 11) subgroup,

respectively. Thus E*(M23 ) = 253 - 154 - 11 - 22 = 66. From Lemmas 4.2.5

and 5.2.5 it follows immediately that 2:*(HS) = 50 and 2:*(McL) = 374. Thus

from the equation (6.2) an upper bound for the number of pairs from 2A x 5B that

produce (2A, 5B, 11Z)-generated proper subgroups of C03 is 762. The (2A, 5B, 11Z)­

generation of C03 follows since ~(C03) = 1023 > 762.

Case (2B, 5A, llZ): \Ve calculate 6.(Co3) = 2068. Any maximal subgroup with non­

empty intersection with the classes 2B, 5A and llZ are isomorphic to McL:2 or HS.

Furthermore, f,(1\1eL:2) = 0, "f,(HS) = 33 and therefore 6.*(Co3 ) 2: 2068-2(33) =
2002, proving the generation of C 03 by this triple.

Case (28, 5B, llZ): The structure constant ~(C03) = 7513. We observe from Table

6.1 that the groups isomorphic to McL:2, H5, 35 :(2 X M11 ) and 2 x 1\112 are the

maximal subgroups of C03 that may contain (28, 5B, llZ)-generated subgroups. We

calculate '[,(lvlcL:2) = 0, E(H5) = 638, '[,(35:(2 X 1Y[11)) = °and '[,(2 x 1'V[12) = 33.
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Thus 6.*(C03) ~ 7513 - 2(638) - 33 > 0, proving that (2B, 5B, llZ) is a generating

triple of C 03· 0

Lemma 6.3.3 The group C03 is (2X, 7A, llY)-generated, for all X, Y E {A, B}.

Proof. Case (2A, 7A, 11Y): The structure constant .6.(C 03) = 6622. The proper

subgroups of C03 that admit (2A, 7A, 11 Y)-generation are contained in the maximal

subgroups isomorphic to iUcL:2, HSand 1\123' We also calculateI:( AIcL:2) =

3168, r-(HS) = 825 and I:(M23 ) = 616. From Table 6.1 we conclude

6.-(C03) ~ 6622 - 3168- 2(825) - 2(616) > 0 ,

and generation of C 03 by this triple follows.

Case (2B, 7.1, 11Y): Up to isomorphisms, McL:2 and HS are the only maximal

subgroups that may admit (2B, 7A, 11 Y)-generated subgroups. Also .6.( C 03) =
57266, L.(iUcL:2) = 0, r,(HS) = 2211 and hence .6.-(C03) ~ 52844, proving the

result. 0

Lemma 6.3.4 The group C03 is (3X, 5Y, 11Z)-generated, for all X E {A, B, C} and

Y, Z E {A, B}.

Proof. Case (3A, 5Y, 11Z): The maximal subgroups of C03 with order divisible by

11 and non-empty intersection with the class 3A are isomorphic to M cL:2 and

35 :(2 x M ll ). Furthermore, a 35 :(2 x M 11 ) subgroup does not meet the class 5A and

hence

~C03 (3A, 5A, 11Z) > .6. c03 (3A, 5A, 11Z) - L.McL:2(3A, 5A, 11Z)

= 1496 - 44,

6 C03 (3A, 5B, 11Z) > 6 C03 (3A, 5B, 11Z) - l:McL:2(3A, 5B, 11Z)

- l:35 :(2XMIl )(3A, 5B, 11Z) = 1232 ,

proving generation of C03 by these triples.

Case (3B, 5A, 11Z): The (3B, 5A, 11Z)-generated proper subgroups of C03 are con­

tained in the maximal subgroups isomorphic to McL:2 and HS. We calculate
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6.(C03 ) = 6380, r.(McL:2) = 1122, r.(HS) = 244 and hence .6."(C03 ) :::: 4770,

proving generation.

Case (3B, 5B, 11Z): All maximal subgroups with order divisible by 11 have non­

empty intersection with all the classes in the triple. Our calculations yield

6."(C03 ) :::: 92070 - 34485 - 2(5313) - 2(3795) - 891 - 198 = 38280 ,

proving generation of C03 by the triple (3B, 5B, 11Z).

Case (3C, 5Y, 11Z): The maximal subgroups of C03 with order divisible by 11 and

non-empty intersection with the class 3C are, up to isomorphism, 35 :(2 x Mlr) and

2 x M12 . However, the class 5A does not meet either of these subgroups. Since the

structure constant 6. c03 (3C, 5A, 11Z) = 76472, the (3C, 5A, 11Z)-generation of C03

is immediate. Next, 6.c03 (3C, 5B, 11Z) = 323081, r. 35:(2XM1tl(3C, 5B, 11Z) = 1782,

r.2xM12 (3C, 5B, 11Z) = 253. Thus .6.;:;'03 (3C, 5B, 11Z) :::: 321046 and the generation

of C 03 by this tri pie follows. 0

Lemma 6.3.5 The group C03 is (3X, 7A, 11Y)-generated, for all X E {A, B, C} and

YE {A, B}.

Proof. The maximal subgroups of C03 with order divisible by 3 x 7 x 11 are, up to

isomorhpisms, A1cL:2, HSand M23 • The subgroups HSand i'v123 have empty

intersection with the class 3A and therefore

.6.003 (3A, 7A, 11Y)

Next we calculate

6.C03 (3A, 7A, 11Y) - r. McL :2(3A, 7A, 11Y)

220UO - 4356 > 0 .

L:.C03(3B, 7A, 11Y) = 580800 , r. McL :2(3B, 7A, 11Y) = 132264 ,

L:Hs(3B, 7A, 11Y) = 17622 , r. M23 (3B, 7A, 11 Y) = 8272 ,

so that .6.coJ3B, 7A, 11Y) 2: 396648. Finally, the maximal subgroups isomorphic to

McL:2, HSand M23 do not intersect the class 3C and hence .6. "c (3C 7A 11Y) =
°3 ' ,

L:.C03 (3C, 7A, 11 Y) = 2374614, proving the result. 0
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Lemma 6.3.6 The group C03 is (5X, 7A, 11Y)-generated, for all X, Y E {A, B}.

Proof. The maximal subgroups that may contain (5,7, 11)-generated subgroups are

isomorphic to 1\1cL:2, HSand M23 . For the triple (5A, 7.4, 11Y) we have 5A n
i'vf23 = 0, 6.(Co3 ) = 6498712, E(McL:2) = 171072 and E( HS) = 12672 so that

6.*(Co3 ) 2: 6302296. For the remaining case (5B, 7A, 11Y), we calculate6.(Co3 ) =
49618756, 'f,(McL:2) = 5132160, E(HS) = 274593 and E(M23 ) = 97192 and hence

6.*(Co~) > 0, and the result follows. 0

6.4 (p~ q, 23)-Generations of C03 and the main re­

sults

The maximal subgroups of C 03 containing elements of order 23 are isomophic to

M 23 . It is evident from Table 6.1 that a fixed element of order 23 is contained in a

unique conjugate of M23 and such a subgroup has empty intersection with the classes

2B, 3A, 3C and SA. Thus whenever a triple (pX, qY, 23Z) includes at least one of

these classes then 6.*(C03 ) = 6(C03 ). Moreover, if this triple contains none of these

classes, then 6.'"'(C03 ) = 6.(C03 ) - E(M23 ).

Table 6.IV
Structure Constants of C03

pX 3A 3B 3C 5A 5B 7A llAB

6.co,(2A,pX,23y) 0 0 46 115 276 3197 7i28
6.co,(2B,pX,23Y) 0 46 736 1955 6716 56971 120796
6.co,(3A,pX, 23Y) 22 418 1380 3818 33350 66700
6.co, (3B, pX, 23Y) 2981 10166 44160 361284 769350
6.co,(3C,pX, 23Y) 70219 376372 2635317 4926278
~co, (5A, pX, 23Y) 817476 7893692 14954232
6.co,(5B,pX,23y) 37913246 75202410
6.co,(7A,pX,23Y) 536538388

Lemma 6.4.1 The group C03 is (pX, qY, 23Z)-generated, for primes p ~ q

and pX =I qY, if and only if the ordered pair (pX,qY) rf: {(2A,3A),(2A,3B),
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TABLE 6.V

Structure Constants E(M23 )

pX

EM1,(2A,pX.23Y)

EM1 ,(3B,pX,23Y)

EMn (58,pX,23Y)

EMn (7X,pX,23Y)

(2B,3An·

58

138
2438

7X

368
6624

88320

l1X

391
5129

61893
135424

Proof The result is immediate from the above remarks and Tables 6.IV and 6.V.

o
We summarize the main results in the following theorems and corollary.

Theorem 6.4.2 The Conway group C03 is (p, q, r)-generated for all p, q, l' E {2, 3, 5,

7,ll,23} with p < q < 1', except when (p,q,r) = (2,3,5).

Proof This follows from the above Lemma 6.2.1 to 6.2.3, 6.3.1 to 6.3.6 and 6.4.1 and

the fact that the triangular group T(2, 3, 5) =As. 0

Corollary 6.4.3 The Conway group C03 is (pX,pX,qY)-generated, for all pX E

{3C, SA, 5B, 7A, llA, llB} and qY E {7A, llA, llB, 23A, 23B} with p < q as well

as (pX,pX,qY) = (3B,3B,23X).

Proof· The result follows immediately from an application of Lemma 3.1.15 to Lem-

mas 6.2.1, 6.2.2, 6.3.1, 6.3.2, 6.3.3 and 6.4.1. 0

6.5 nX-Complementary generations of C03

In order to prove a group G is not nX-complementary generated it suffices to show

that there is a conjugacy class pY, p a prime, such that G is not (pY, nX, tZ)­

generated for all conjugacy classes tZ with lip + 1/n + lit < 1.
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Lemma 6.5.1 The group C03 is not nX-complementary generated for all nX E

{2A, 2B, 3A, 3B, 4A, 4B}.

Proof. The result for the conjugacy classes 2A and 2B is a consequence of Lemma

2.3.8. Let X = 23a E [rr(C03 ), A = (x) and B = (y), where x E 2.4. and y E 3B.

Then (X~A' XI-!'A) = 15, (X~B' Xl~B) = 11 and (X~(AnB)'Xl~(AnB)) = 23. However,

15 +11 = 26 > 23 and by Brauer's theorem (x, y) < C03 . Similarly, if C = (z), where

z E 4B, then (xIC, Xl!C) = 9 and Brauer's theorem yields (x, z) < C03 . Thus C03 is

not 3B- or 4B-complementary generated.

We now consider the conjugacy class 3A. We list below the non-zero structure con­

stants ~C03 (2A, 3A, tX), where t ;:: 7.

tX

~C03 (2A, 3A, tX)

1?AB

3

24A

4

30A

6

In all these cases 6.c03 (2A, 3.4., tX) < ICc03(tX)! and we conclude that C03 is not

3A-complementary generated.

Finally, consider the class 4A. Now 1/2 + 1/4 + l/t < 1 if and only if t ;:: 5. The

non-zero structure constants 6. c03 (2A, 4A, tX) are:

tX

~C03 (2A, 4A, tX)

ICco 3 (tX)!

6E 8B 8C

63 260 2

72 192 192

lOB 12A 12B 20AB 22AB 24A 24B

30 120 8 4 11 24 8

20 144 48 20 22 24 24

From Lemma 3.1.7 we need only consider the conjugacy classes tX for which the

structure constant LlC03(2A, 4A, tX) 2 ICC03 (tX)I. For the class 8B we calculate.

2: McL:2(2A,4A,8B) = 164 and therefore 6.-(C03 ) :s; 260 -164 < jCc0
3
(8B)I. Thus

C03 is not (2A, 4A, 8B)-generated. Similarly,

6.C03 (2.4., 4A, lOB) < 6.c03 (2A, 4A, lOB) - LMcL:2(2.4., 4A, lOB)

30 - 25 < ICco3 (10B)J,

6.c03 (2A, 4A, 24A) < 6.c03 (2A, 4A, 24A) - l:McL:2(2A, 4A, 24.4)

24 - 24 < ICco3 (24A)I.
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Thus C03 is not 4A-complementary generated, proving the result. 0

We now proceed to show that C03 is nX-complementary generated if and only

if nX tJ. {2A,2B,3A,3B,4A,4B}. We will that show for every conjugacy class pY

with prime order representatives, C03 is (pY, nX, 23A)-generated. Recall that, up to

isomorhpisms, iVf23 is the only maximal subgroup of C03 containing elements of order

23.

Lemma 6.5.2 The group C03 is nX-complementary generated, for all nX E {3C, 6A,

6B, 6C, 6D, 8A,8B, 8C, 9A, 9B}.

Proof The conjugacy classes 6C and 8A have non-empty intersection with the maxi­

mal subgroup j\;[23' In particular, 6C n 1'vf23 = 6a and 8A n M23 = 8a. For these cases

we have

~-(C03) = 6(C03) -1::(M23 ).

It follows from Table 6.VI that 6*(C03) > 0, and therefore C03 is 6C- and 8A­

complementary generated.

Each of remaining conjugacy classes nX in the statement of the lemma have empty in­

tersection with M23. Therefore we observe from Table 6.VI that 6 C03 (pY, nX, 23A) =

6 003 (pY, nX, 23A) > 0, for all conjugacy classes pY with prime order elements. The

result now follows from Lemma 2.3.8. 0

Theorem 6.5.3 The group C03 is nX -complementary generated if and only if nX =

3C or n > 4.

Proof Let p 2 5 be a prime. We proved in the previous sections that for all

conjugacy classes qY with elements of prime order representatives, the group C03

is (qY,pX,23A)-generated. Thus from Lemma 2.3.8 we conclude that C03 is pX­

complementary generated for every conjugacy class pX, where p 2 5.

The power maps of C03 yields (6E)2 = 3C, (10A)2 = 5A, (10B)2 = 5B, (12A)2 =

6A = (12B)2, (12C)2 = 6C, (14A)2 = 7A, (1.SA)3 = 5A, (15B? = 5B, (18.4.)3 = 6B,

(20A)4 = 5A = (20B)4, (21A)3 = 7A, (22A)2 = llB, (22B)2 = 11A, (24A)4 =

6A = (24B)4 and (30A)6 = 5A. An application of Lemma 2.3.9 to Lemma 6.5.2 gives

complementary generation of these classes. The result now follows from Lemma 6.5.!.

o
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TABLE 6.VI
Structure constants

pX ~C03 (pX, 3C, 23A) ~C03 (pX, 6A, 23A) ~co3(pX,6B, 23,4) ~C03 (pX, 6C, 23,4)

2A 46 23 92 506
2B 736 483 2162 11316
3,4 529 322 897 5911
3B 3542 2921 14168 71714
3C 22126 26220 80592 503976
5A 70219 77142 250010 1521450
58 376372 348588 1295544 ,372512
7A 2635317 2639250 9132840 53791020
llAB 4926278 5216400 17388000 104328000
23A 4683260 5071500 16763136 101004408
23B 4603772 5071500 16524672 100289016

pX ~C03 (pX, 6D, 23A) ~C03 (pX, 8A, 23A) .6.co,(pX, 8B, 23A) .6.co3(pX. 8C, 23A)

2A 1196 644 460 4692
2B 23736 13294 10810 77740
3A 14536 7383 6509 43654
3B 138644 81880 68264 503976
3C 988356 570584 580520 3429392
5A 3005640 1729002 1713822 10328472
5B 14812092 8425728 7849440 50703408
7A 107706240 61029856 59241376 366195328
1L4B 208190250 117372864 117372864 ,04206272
23A 199892448 113007648 114246336 675213024
23B 200369376 112202832 114514608 676822656

pX .6.Co, (pX, 9A, 23A) .6.co3 (pX, 9B, 23A) ~M1J (pX, 6C, 23A) ~M13(pX, 8A, 23A)

2A 1173 1472 322 368
2B 15387 30912 0 0
3A 7498 17572 0 0
3B 112700 188048 4324 7084
3C 691173 1330872 0 0
5A 2070828 4032360 0 0
5B 10340478 19704744 56672 83904
7A 73352520 143525520 121440 178112
llAB 139414500 277897500 77280 121072
23A 132908904 267934176 37536 52256
23B 133544808 267298272 36432 52256
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Chapt.er 7

The Second Conway Group

7.1 Introduction

The construction of the Conway group CO2 were discussed in the previous chapter.

The subgroup structure of this group are discussed in Wilson [168], using the following

information. The group CO2 contains a 23-dimensional indecomposable representation

over GF(2) obtained from the complex representation of degree 23 by reducing to

modulo 2 and factoring out the fixed vectors. The action of CO2 on the vectors in

this GF(2)-representation produces eight orbits, with point stabilizers isomorphic to

Co2 , U6 (2):2, 210 :M22 :2, McL, HS:2, U4 (3).Dg, 2~+8:Sg and M23 , respectively. In the

following we give a complete list of non-abelian proper simple subgroups of Co2 , up

to isomorphisms.

£2(7), £2(8), £2(11);

U3 (3), L3 (4), U4(3), U3(5);

U4 (2), [15(2), [16(2), 56(2);

Any subgroup of CO2 isomorphic to one of these groups fixes a vector in the complex

23-dimensional representation. We therefore conclude that any proper non-abelian

simple subgroup must also fix a non-zero vector in the reduction modulo 2 of the

109
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23-dimensional complex representation, and so must be contained in one of the non­

trivial stabilizers above.

Theorem 7.1.1 (Wilson [168J) The second Conway simple group CO2 has exactly

eleven conjugacy classes of maximal subgroups, as follows:

(A) Five classes of non-local subgroups:

U6 (2):2, AIcL, H 5:2, U4 (3).Ds, and M23 •

(B) 5ix classes of local subgroups:

210 :M22 :2, 2~+8:56(2), (2~+6 x 24 ).As, 24+1°.(55 x 53), 3~+4:2~+4.S5 and

5~+2:454' 0

The permutation character of CO2 on the cosets of U6 (2):2 is XU6 (2):2 = la + 275a +
2024a. For the remaining maximal subgroups with order divisible by 7, 11 or 23 we

provide partial fusion maps into CO2 in Table 7.1.

7.2 (p, q, 7)-Generations of CO2

The group CO2 acts on a 23-dimensional irreducible complex module V. Let dnx =

dim(VjCv(nX)), the co-dimension of the fix space (in V) of a representative in

nX. Using the character table of CO2 we list in Table 7.Il the values of dpx , for all

conjugacy classes with prime order representatives.

TABLE 7.11

The co-dimensions dnx = dim(V/Cv (nX))

dS8

16 8 12 18 12 20 16 18 20 22

Lemma 7.2.1 The group CO2 is not (2X, 3Y, 7A)-generated) for any X E {A, E, C}

and Y E {A, B}.

Proof If the group CO2 is (pX, qY, rZ)-generated, then by Scott's theorem dpx +
dqy + drz 2: 46. It is clear from Table 7.11 that the triples (2B, 3A, 7A), (28, 3B, iA)

and (2C, 3B, 7A) violate Scott's theorem and are therefore not generating triples for

Co2 ,
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TABLE 7.1

Partial fusion maps into CO2

21O:1Itf22 :2-class 2a 2b 2e 2d 2e 2f 2g 2h 2i 3a 5a

-+ CO2 2A 2B 2C 2B 2C 2A 2C 2B 2C 3B 5B

21O:M22 :2-class ia ib Ha

-+ CO2 7A 7.'1 HA

h 4 4 1

McL-class 2a 3a 3b 5a 5b 7a ib Ha lIb

-+ CO2 2B 3,1 3B 5.'1 5B iA 7A HA HA

h 8 8 3 2

2~+S:S6(2)-class 2a 2b 2e . 2d 2e 2f 2g 2h 2i 2j 3a

-+ CO2 2.4 2B 2C 2B 2.'1 2B 2C 2A 2C 2C 3A

2~+S:S6 (2)-class 3b 3e 5a 7a

-+ CO2 3B 3B 5B 7.'1
h 1

HS:2-class 2a 2b 2e 2d 3a Lla 5b 5e 7a lla

-+ CO2 2B 2C 2A 2C 3B 5.'1 5B 5B 7A 11A
h 4 1

(2~+6 x 24 ).,1s-class 2a 2b 2e 2d 2e 2f 2g 2h 2i 2j 2k
-+ CO2 2B 2B 2A 2A 2B 2C 2B 2C 2C 2C 2A

(2~+6 x 24 ) .As-class 2l 2m 2n 3a 3b 5a ia 7b
-+ CO2 2B 2C 2C 3A 3B 5.'1 7.'1 7.'1

h 4 4

U4(3) .Ds-class 2a 2b 2e 2d 2e 2f 3a 3b 3e 5a ia
-+ CO2 2B 2.'1 2C 2A 2C 2C 3A 3B 3B 5B 7..1.

h 2

A12rclass 2a 3a 5a 7a 7b lla lIb 23a 23b
-+ CO2 2B 3B 5B 7.'1 7A HA llA 23A 23B

h 8 8 2 2 1 1

The group CO2 acts transitively on a set n of conjugates of U6 (2) in CO2 of size

2300. The point stabilizer of this action is isomorphic to the group U6 (2):2 and the

resulting permutation character is XU6 (2):2 = 1a+275a+2024a. Using this permutation

character we can determine the cycle structure of the elements of CO2 as permutations

on 2300 points. The elements in the conjugacy classes 2A, 3A, 3B and 7A have cycle

structure 128421008, 153765 , 1413753 and 147328 , respectively. If CO2 is (pX, qY, rZ)-
generated, then by Ree's theorem Cl + C2 + C3 ::; 2302, where Cl, C2 and C3 are the

number of disjoint cycles of representatives in pX, qY and rZ, respectively. However,
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~ ·Co (2A, 5A, 7A) <
2r

this condition is violated by the triples (2.4, 3A, 7A.) and (2.4, 3B, 7A.) and hence they

do not generate Co2 .

Finally, we calculate ~C02 (2C, 3.4, 7A) = 28 < ICco2 (7.4)1 = 56 and non-generation

of CO2 by this triple follows from Lamma 3.1.7. This completes the proof. 0

Lemma 7.2.2 The group CO2 is (2X, 5Y, 7A)-generated: for X E {A, B, C} and

YE {A, B}, if and only if the ordered pair (X, Y) E {(C, A), (C, B)}.

Proof. The structure constant 6.co2 (2A, 5B, 7A) = 0 and non-generation of CO2 by

this triple follows. Next we calculate

~(C02 ) - ~((2~+6 X 24 ).A8 )

56 - 14 < ICC02(7.4)1 = 56,

< ~(C02) - ::'(l'v1cL)

56 - 7 < ICco2 (7A)! = 56.

Thus non-generation of CO2 by these triple follows from Lamma 3.1. 7. From Table

7.11 and Scott's theorem we conclude that CO2 is not (2B, 5B, 7A)-generated.

We now consider the triple (2C, 5A, 7A). The maximal subgroups of CO2 with order

divisible by 7 and non-empty intersection with the classes 2C and 5A are isomorphic

to H5:2 and (2~+6 x 24 ).A8 . We calculate ~(C02) = 9576, ~(H5:2) = 42 and

~((2~+6 x 24 ).A8 ) = 308. A fixed element of order 7 is contained in 4 conjugate

subgroups of H5:2 and 4 conjugate copies of (2~+6 x 24 ).A8 (cf. Table 7.1). Thus

6."'(C02 ) 2: 9576 -4(42) -4(308) > 0 and whence (2B,5A, 7A) is a generating triple

for Co2 .

Finally, we show that CO2 is (2C, 5B, 7A)-generated. The maximal subgroups with

non-empty intersection with the classes 2C, 5B and 7A are, up to isomorphisms,

U6 (2):2, 210:iV!22:2, 2~+8:56(2), H5:2, and U4 (3):D8 . We calculate 6.(C02) = 48580,

while

::'(U6 (2):2) = 6804, ~(210:lv[22:2) = 2184, ~(2~+8:56(2)) = 1876,

'f,(H5:2) = 552 and ~(U4(3).D8)= o.
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From Table 7.1 we calculate

6.*(C02 ) 2: 48580 - 4(6804) - 4(2184) - 1876 - 4(532) > 0,

and the result follows. 0

Lemma 7.2.3 The group CO2 is (3X, 5Y, 7A)-generated, for' all X, Y E {A, B}.

113

Proof. \Ve will treat each triple separately.

Case (3.1,5.1,7.1): The maximal subgroups of CO2 that have non-empty intersection

with the classes 3.1, 5.1 and 7.1 are, up to isomorphisms, i'v[cL, and (2~+6 x 24
) . .18 ,

We calculate ~(C02) = 55664, f,(McL) = 63, and f,((2~+6 x 24 ).A8 ) = 112. From

Table 7.1 it follows that ~-(C02) 2: 55664 - 8(63) - 4(112) = ,54712, and hence CO2
is (3A, 5.1, 7A)-generated.

Case (3.1, 5B, 7.1): The only maximal subgroups that may contain (3A, 5B, 7.4)­

generated subgroups are isomorphic to U6(2):2, k!cL, 2~+8:S6(2) and U4 (3).D8. \Ve

calculate

4L:(U6(2):2) + 8L:(iV!cL) + L:(2~+8:56(2)) + 2L:(U4 (3).D8)

= 4(3591) + 8(644) + 1848 + 2(112) = 21588.

since 6.(C02) = 44296, we have 6.-(Co2) > 22708. This proves generation by this

triple.

Case (3B, 5A, 7A): We calculate the structure constant 6.(Co2) = 27048. The maxi­

mal subgroups of CO2 with non-empty intersection with the classes in this triple are,

up to isomorphisms, M cL, H 5:2 and (2~+6 x 24
) . .18 and our calculations gives

6.*(C02) > 6.(Co2) - 8r.Uv[cL) - 4r.(H5:2) - 4r.((2~+6 x 24
) . .18 )

27048 - 8(595) - 4( 126) - 4(308) = 20552,

and therefore CO2 is (3B, 5A, 7A)-generated.

Case (3B, 5B, 7.1): From the fusion maps of the maximal subgroups into CO2 we note

that U6 (2):2, 210 :M22 :2, 1\.1cL, 2~+8:56(2), H5:2, U4 (3).D8 and M23 have non-empty
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intersection with all the conjugacy classes in this triple. We calculate

E(U6 (2):2) = 881496,

E(McL) = 50400,

E(HS:2) = 7280,

E(U4 (3).Ds) = E(U4 (3)) = 9408.

E(2 10:M22 :2) = 53536,

~(2~+S:S6(2)) = 6300,

E(M23 ) = 5124,

The group CO2 acts transitively on the set of conjugates of U6 (2). The point stabilizer

. of this action is isomorphic to U6 (2):2. The action of the maximal subgroup McL on

n produce two orbits nl and rh of length 275 and 2025, respectively. Let U E nl .

Then the point stabilizer l'vIcLu is isomorphic to U4 (3). Furthermore, .

l\1cLu {g E ivIcLIUq = U} = {g E McLlg E NC02 (U)}

~ LVIcL n U6 (2):2.

Therefore every conjugate of a U4 (3) subgroup is contained in a conjugate of a

McL subgroup and a conjugate of a U6 (2):2 subgroup. Consequently, E*(U6 (2):2) :s:
E(U6 (2):2) - E(U4 (3)) = 211966 and similarly ~·(McL) :s: 40992.

Thus the number of pairs (x, y) E 3B x 5B with xy = Z, where z is a fixed element

in 7A, that generate a proper subgroup of CO2 is at most

4E*(U6 (2):2) +4E(2 10:M22 :2) + 8'['.*(McL) + '['.(2~+s:S6(2)) + 'f.(HS:2)

+ '['.(1\123 ) + '['.(U4 (3))

:s: 4(211966) + 4(53536) + 8(40966) + 6300 + 4(7280) +8(5124) + 2(9408)

= 1454429

The (38, 5B, 7A)-generation of CO2 follows from ~(C02) = 1463476 > 1454429. O.

7.3 (p, q, 11)-Generations of CO2

For the (p, q, II )-generation we need only to consider maximal subgroups of CO2 with

order divisible by 11. They are, up to isomorphisms, U6 (2):2, 210 :LVf22 :2, 1\1cL, HS:2
and M 23 •
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Lemma 7.3.1 The group CO2 is (2X,3Y,llA)-generated, for X E {A,B,C} and

Y E {A, B}, if and only if the ordered pair (X, Y) = (C, A).

Proof. We calculate the structure constants ~C02 (2A, 3A, 11A) = ~C02 (2A, 3B, llA) =
~co)2B, 3A, 11A) = 0 and non-generation by these triples is immediate. It follows

from Table 7.n that the triples (2B, 3B, llA) and (2C, 3B, 11A) violate Scott's the­

orem and are therefore not generating triples for Co2 ,

The only maximal subgroups of CO2 that may contain (2B, 3A, 11A)-generated sub­

groups are isomophic to U6 (2):2. However, 2::(U6 (2):2) = 0 and generation by this

triple follows since ~*(C02) = ~(C02) = 55, proving the result. D

Lemma 7.3.2 The group CO2 is (2X, 5Y, llA)-generated, for all X E {A, B, C} and

Y E {A, B}, except for (X, Y) = (A, B) or (B, B).

Proof. The structure constant ~C02 (2A, 5B, 11A) = 11 = 2:(U6 (2):2) and conse­

quently .6.*(C02) = O. An application of Scott's theorem shows that CO2 is not

(2B, 5B, 11 A)-generated.

The only maximal subgroups that may contain (2A, 5A, 11A)-generated subgroups

are isomorhic to H5:2. However, 2::(H5:2) = 0 and generation by this triple follows

since .6.*(C02) = 6(C02) = 33.

Next we consider the triple (2B, 5A, llA). The maximal subgroups with non-empty

intersection with each of the classes in this triple are, up to isomorphisms, M cL and

H 5:2. From the structure constants we calculate

6*(C02) 2:: 6(C02) - 2"f-(McL) - 2::(H5:2) = 132 - 2(22) - 11 = 99,

proving the generation.

The subgroup isomorphic to H 5:2 is the only possible (2C, 5A, llA)-generated maxi­

mal subgroup of Co2, We calculate 6(C02) = 10428 and 2:(H5:2) = 33 and therefore

6 *(Co2 ) 2:: 10395, proving the generation of CO2 by this triple.

Finally we consider the triple (2C, 5B, llA). The structure constant 6(C02) = 41712.

vVe observe from Table 7.1 that the groups isomorphic to U6 (2):2, 21O :M22 :2, and

H5:2 are the maximal subgroups of CO2 that may contain (2B, 5B, llZ)-generated
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subgroups. We calculateI:(U6 (2):2) = 7524, I:(2 1O :M22 :2) = 2112 and I:(HS:2) =

638. Thus ~*(C02) 2: 41712 -7524 - 2112 - 638> 0, proving that (2C,5B, 11A) is

a generating triple of Co2 . This completes the proof. 0

Lemma 7.3.3 The group CO2 is (2X, 7A, 11A)-generated, for all X E {A, B, C}.

Proof. Case (2A, 7A, 11A): The structure constant ~(C02) = 264. The (2A, 7A, 11A)­

generated proper subgroups of CO2 are contained in the maximal subgroups iso­

morphic to U6 (2):2, 210 :1\122 :2 or HS:2. We further calculateI:(U6 (2):2) = 99,

I:(2 10:M22 :2) = 0 = I:(HS:2). From Table 7.1 we conclude that .6.*(C02) 2: 264-99 >

oand the generation of CO2 by this triple follows.

Case (2B, 7A, 11A): Every maximal subgroup of CO2 with order divisible by 11 has

non-empty intersection with all the classes in this triple. vVe calculate .6.( Co2 ) =
30008, while

I:(U6(2):2) = 8910, I:(2 10:i\.tJ22 :2) = 2816, 'f.( McL) = 3168,

"f-( H 5:2) = 825 and I:( M23 ) = 5124.

It follows from Table 7.1 that ~*(C02) 2: 9889, proving the generation by this triple.

Case (2C, 7A, 11A): Up to isomorphisms, U6 (2):2, 21°:1\122 :2 and H5:2 are the only

maximal subgroups that admit (2C, 7A, 11A)-generation. vVe calculate

~*(C02) > ~(C02) - I:(U6 (2):2) - I:(210:1\122 :2) - 'f.(HS:2)

472384 - 35640 - 8448 - 2211

426085,

and the result follows. 0

Lemma 7.3.4 The group CO2 is (3X, 5Y, 11A)-generated, for all X, Y E {A, B}.

Proof· Case (3A, 5Y, 11.1): The maximal subgroups of CO2 with order divisible by 11

and non-empty intersection with the class 3A are isomorphic to U6 (2):2 and M cL.
Further, U6 (2):2 n 5.1 = 0 and hence
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40755 - 2(44) > 0,

~co2(3A, 5B, 11A) > ~(C02) - ~(U6(2):2) - 2~(AfcL)

77055 - 6105 - 2(1100) > 0,
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proving the generation of CO2 by these triples.

Case (3B,5A, 11Z): The (3B,5A, 11A)-generated proper subgroups of CO2 are con­

tained in the maximal subgroups isomorphic to M cL and H5:2. 'Ne calculate

~{C02) = 51513, ~(iV[cL) = 1122, '£(H5:2) = 244 and hence ~*(C02) 2: 4,027,

proving the generation.

Case (3B,5B, 11A): Every maximal subgroup of CO2 with order divisible by 11 has

non-empty intersection with all the classes in this triple. We calculate

L:(U6 (2):2) = 149820, '£(2 10 :M22 :2) = 33792, L:(McL) = 34485,

'f.( H 5:2) = 5313 and '£( M23 ) = 3795.

Moreover, ~(C02) = 733117 and therefore ~·(C02) 2: 265485, proving the generation

by this triple. This completes the proof. 0

Lemma 7.3.5 The group CO2 is (3X, 7A, 11A)-generated, for all X E {A, B}.

Proof Case (3A, 7A., 11A): We calculate the structure constant ~(C02) = 1063040.

The (3A, 7A. 11A)-generated proper subgroups of CO2 are contained in the maximal

subgroups isomorphic to U6 (2):2 or M cL. We also calculate '£(U6 (2):2) = 28215 and

'E(i\tIcL) = 4356. From Table 7.1 we conclude that ~*(Co2 ) 2: 1026113 > 0 and the

generation of CO2 by this triple follows.

Case (3B, 7.4, 11A): Every maximal subgroup of CO2 with order divisible by 11 has

non-empty intersection with all the classes in this triple. We calculate

'£(U6 (2):2) = 692604, '£(2 10 :lvI22 :2) = 112640, '£(McL) = 132264,

f,( H 5:2) = 17622 and '£( M23 ) = 8272 .

Furthermore, .6.(C02) = 6972416 and therefore 6*(C02) > 5868478, proving the

result. 0

Lemma 7.3.6 The group CO2 is (5X, 7A, 11A)-generated, for all X E {A, B}.
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Proof The maximal subgroups that may contain (5A, 7A, 11 A)-generated subgroups

are isomorphic to MeL and HS:2. We calculate D.(C02) = 208023552, 'f.(MeL) =

171072 and E(HS:2) = 12672, so that D.*(C02) ~ 207666736.

Every maximal subgroup of CO2 with order divisible by 11 has non-empty intersection

with all the classes in the triple (5B, 7A, HA). We calculate

'f.(U6 (2):2) = 43797105, 'f.(2 10:M22 :2) = 3244032, 'f.(!vfeL) = 5132160,

L(HS:2) = 274593 and 'f.(M2J ) = 97134.

Furthermore, D.( Co2 )

follows. 0

1587536896 and therefore D.-(C02) > 0, and the result

7.4 (P: q, 23)-Generations of CO2 and the main result

The conjugacy class (23Bt 1 = 23A and the results obtained by replacing one of

these classes with the other are the same. Let 23Z denote the class 23A or 23B.

The maximal subgroups of CO2 containing elements of order 23 are isomophic to

M23 . It is evident from Table 7.1 that M23 does not meet the conjugacy classes 2A,

2C, 3A, and 5A. Thus whenever a triple (pX, qV, 23Z) involves one of these classes

then D.-(C02) = D.(C02). Moreover, if the triple (pX, qV, 23Z) contains none of these

classes, then from Table 7.1 we conclude that D.*(C02) = ~(C02) - ~(M23)'

Lemma 7.4.1 The group CO2 is (pX, qV, 23Z)-generated, for primes p :::; q and

pX i= qY, if and only if the ordered pair (pX, qV) tt {(2A, 3A), (2A, 3B), (2B, 3A)

(2B,3B)}.

Proof The result is immediate from the above remarks and Tables 7.111 and 7.IV.

o
We now summarize the results in the following theorem.

Theorem 7.4.2 The Conway group CO2 is (p, q, r)-generated for all p, q, r E {2, 3, 5,

7,11,23} with p < q < r, except when (p, q, r) = (2,3,5) or (2,3,7).
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Table 7.IV
Structure Constants of CO2

pX 3A 3B 5A 5B 7A 11A

~Co2(2A,pX, 23Z) 0 0 23 23 644 5129

~co2(2B,pX, 23Z) 0 0 322 782 13524 93794

~C02 (2C, pX, 23Z) 69 69 9200 37720 471960 2605624

~co2(3A,pX, 23Z) 437 31027 137471 1560320 8242625

~co2(3B,pX, 23Z) 90137 344701 4363008 24727875

~co2(5A,pX, 23Z) 4678959 23489003 251817984 1281988053

~co2(5B,pX, 23Z) - 106987927 1213304832 6409940265
~co2(7 A, pX, 23Z) - 13293737984 68679139328

Table 7.V
Structure Constants ~(M23)

pX

~M~J (2B, pX. 23Y)

L.M23 (3B,pX, 23Y)

~M2J(5B, pX, 23Y)

~Mn (7A, pX, 23Y)

5B
138

2438
37582

7A

368
6624

88320
211968

11.4

782
10258

123786
270848

Proof This follows from the lemmas in Sections 7.2 and 7.3, Lemma 7.4.1 and the

fact that the triangular T(2, 3, 5) is isomorphic to As. 0

Corollary 7.4.3 The Conway group CO2 is (pX, pX, qY)-generated, JOT all pX E

{5A, 5B, 7A, 11A} and qY E {7A, 11A, 23A, 23B} with p < q as well as (3B, 3B, 11A)­

J (3A, 3A, 23Y)- and (3B, 3B, 23Y)-generated.

Proof The result follows immediately from an application of Lemma 3.1.15 to Lem-

mas 7.2.2, 7.3.1, 7.3.2, 7.3.3 and 7.4.1. 0

7.5 nX-Complementary generations of CO2

In this section we prove the following result.



120 CHAPTER 7. THE SECOND CONWAY GROUP

Theorem 7.5.1 The group CO2 is nX -complementary generated if and only if nX E

{4G,5.4.,5B,6.4.,6B,6E,6F} or n ~ 7.

Before we prove this result, we first prove some useful lemmas. From Lemma 3.1.7

we only need to search for generating triples from amongst the triples (lX, mY, nZ)

satisfying the ~elation 6.c02 (lX,mY,nZ) ~ \Cc02(nZ)!.

Lemma 7.5.2 The group CO2 is not 3X -complementary generated.

Proof We have 6C02(2A, 3.4., tX) < ICc02 (tX)1 for all t ~ 7. Therefore CO2 is not

2-generated by any pair of elements (x, y) E 2A x 3.4.. From Lemma 2.3.8 we conclude

that CO2 is not 3A-complementary generated.

Let X = 23a E Irr(C02 ) and A = (x) and B = (y), where x E 2B and y E 3B. Then

(xtA,XltA) = 15, (XtB' XltB) = 11 and (Xt(AnB)' Xd(AnB)) = 23. Thus by Lemma

3.3.4 we obtain (x, y) < CO2 and therefore CO2 is not 3B-complementary generated.

o

Lemma 7.5.3 The group CO2 is 4X -complementary generated if and only if X = G.

Proof Let X E {A,B,D}. Then 6.c':>2(2.4.,4X,tY) < ICC02(tY)I, for all t such that

1/2 + 1/4 + l/t < 1. Thus from Lemma 3.1.7 and Lemma 2.3.8 it follows that CO2 is

not 4A-, 4B- or 4D-complementary generated.

Let A = (x) and B = (y), where x E 2B and y E 4C U 4E. Then (xtB,XltB) = 9.

Again applying Lemma 3.3.4 we get (x, y) < Co2 . Therefore CO2 is not 4C- or

4E-complementary generated.

We now consider the class 4F. The only conjugacy classes tY with 6C02 (2A, 4F, tY) ~

ICc02(tY)1 are llA and 18A. However, we calculate

6C02(2A,4F,11A) = 11 = 2:(U6 (2):2),

6c02(2A,4F,18A) = 18 = 2:(U6 (2):2).

Thus CO2 is not 4F-complementary generated.



7.5. N X -COMPLEMENTARY GENERATIONS OF CO2 121

The conjugacy class 4G has empty intersection with the maximal subgroup kf23 . For

every conjugacy class pY, where p is a prime, we observe from Table 7.VII that

Thus from Lemma 2.3.8 it follows that CO2 is 4G-complementary generated, proving

the result. 0

Lemma 7.5.4 The group CO2 is pX -complementary generated, where p is a prime,

if and only if p 2: 5.

Proof It is immediate from Lemma 7.4.1 and Corollary 1.4.3 that, for p 2: 5 and qY

any conjugacy class with prime order representatives, CO2 is (qY, pX, 23A)-generated.

Thus CO2 is pX-complementary generated for all p 2: .5. The result now follows from

Lemma 2.3.8 and Lemma 7.5.2. 0

Lemma 7.5.5 The group CO2 is not 6C- or 6D-complementary generated.

Proof We first consider the conjugacy class 6C. We calculate

6.co2(2A, 6C, 14A) = 84,

6.co2 (2A, 6C, 16B) = 32,

6.co2(2A, 6C, 18A) = 24,

6.CO2 (2A, 6C. 24A) = 36,

6.co2(2A, 6C, 24A) = 50,

I:(U6 (2):2) 2: 42,

1:(U6 (2):2) = 32,

L::(U6 (2):2) ~ 15,

1:(U6 (2):2) 2: 24,

I:(U6 (2):2) 2: 35.

In all cases 6.c02 (2A,6C,tX) ~ 6.(C02 ) - I:(U6 (2):2) < ICC02(tX)! and the non­

generation of CO2 by these triples follows. For the remaining triples of the form

(2A,6C.tX), it follows from Lemma 3.1.7 that 6.(C02 ) < ICco2(tX)! and the non­

generation of CO2 by these triples follows.
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Next we consider the class 6D. The only triples of the form (2A, 6D, tX) that we need

to consider are those for which tX E {7A, 9.4., lOB, HA, 16.4., 18A}. We calculate

6 C02 (2.4., 6D, 7.4.) = 147,

6 C02 (2.4., 6D, 9.4.) = 57,

6 C02 (2.4., 6D, lOB) = 100,

6 c02 (2A, 6D, H.4.) = 33,

6 C02 (2.4., 6D, 16A) = 32,

6 C02 (2A, 6D, 18.4.) = 24,

~(U6(2):2) = 105,

~(U6(2):2) = 57,

~(U6(2):2) ~ iO,

~(U6(2):2) = 33,

~(U6(2):2) = 32,

~(U6(2):2) = 24.

Again it follows Lemma 3.1.7 that these are not generating triples for CO2 and hence

CO2 is not 6D-complementary generated. This completes the proof. 0

Lemma 7.5.6 The group CO2 is nX -complementary generated for all nX E {6A,6B,

6£, 6F, 12C} or n E {8, 9}.

Proof For all conjugacy classes pY, where p is a prime, we have

6 C02 (pY, nX, 23A) = 6(C02) - E(iVl23 ).

It follows from Tables 7.VI and 7.VII that 6 C02 (pY, nX, 23.4.) > 0, for all the con­

jugacy classes pY and nX in the statement of the lemma, with the exception of the

triple (2A, 6A, 23A).

'liVe calculate 6 C02 (2.4., 6A, 30B) = 30 = ICC02(30B)I. The only maximal subgroups,

up to isomorphisms, with non-empty intersection with all the classes in this triple

are (2~+6 x 24).A8 and 5~+2:4S4' However, we calculate ~((2~+6 x 24).A8 ) = 0 =
~(5~+2:4S4)' Thus CO2 is (2.4., 6A, 30B)-generated.

Thus from Lemma 2.3.8 it follows that CO2 is nX-complementary generated, for all

the above mentioned classes. 0

Proof of Theorem 7.5.1 The power maps of CO2 yield (12A)2 = 6B, (12B)2 = 6A,

(12D)2 = 6£, (12£)2 = 6B, (12F)2 = 6£, (12G)2 = 6A, (12H)2 = 6£, (14A)2 = iA,

(14B)2 = 7A, (14C)2 = 7A, (15A)3 = 5B, (15B)3 = 5A, (15C)3 = 5A, (16A)2 = 3D,

(16B)2 = 8C, (18A)2 = 9A, (20A)2 = lOA, (20B)2 = 10C, (24A)2 = 12C, (24B)2 =

12B, (28A)4 = 7A, (30A)2 = 15A, (30B)2 = 15B and (30C)2 = 15C. An application

of Lemma 2.3.9 to Lemmas 7.5.6 gives complementary generation of these classes.

The theorem now follows from Lemmas 7.5.2 to 7.5.6. 0
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TABLE 7.VI
Structure constants of CO2

pX .6.co~(pX,4G, 23A) .6.Co~(pX, 6A, 23A) .6.Co~(pX, 6B, 23A) .6.co~ (pX, 6£, 23A)

2A 69 0 23 69
2B 805 69 253 1219

2C 22586 4071 5888 46184

3A 72496 14076 18952 149776
3B 221168 35328 60352 422096
5A 10969344 2455296 2696704 24488192
5B 56024320 11128320 14343168 117895424
7A 594552576 126385920 148907520 1292474880
11A 3004316672 G67699200 741888000 6676992000
23A 1439286272 325317888 352114176 3228249088
23B 1422116864 325317888 348722688 3205356544
pX .6.co~ (pX, 6F, 23A) ~CO~ (pX, 8A, 23A) .6.co,(pX, 8B, 23A) .6.co,(pX, 8C, 23A)

2A 138 23 23 69
2B 2438 759 575 1265
2C 92368 34086 29854 48622
3A 299552 109296 105248 167624
38 844192 298816 269008 452824
5A 48976384 18417664 18370560 27511680
5B 235790848 86765568 83568384 130251392
7A 2584949760 962134528 947956224 1443334272
llA 13353984000 5008073728 5007414272 7511451136
23A 6456498176 2425220096 2448536576 3635757568
23B 6410713088 2419496960 2431367168 3627172864
pX .6.co~(pX,8D, 23A) ~co,(pX, 8E, 23A) .6.co,(pX, 8F, 23A) ~co,(pX, 9A, 23A)

2A 92 207 598 713
2B 2484 3335 13662 13938
2C 59064 104926 435252 489624
3A 179768 354752 1389568 1610897
38 559176 1004272 4014144 4526515
5A 27617664 54935040 220588032 261146853
5B 140278656 270300416 1081248768 1258253433
7A 1486387328 2929468416 11717850112 13786398720
llA 7510791680 15023561728 60094246912 71221170375
23A 3568728576 7197420544 28812103680 34352492283
23B 3594482688 7214589952 28880781312 34271096571
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TABLE 7.VI
Structure constants of CO2 and M23

pX

2A

2B
2C

3A

3B
5A

5B

7A

11A

23A

23B

230
4370

108376
327520

1032608
48976384

253596160
2661258240

13353984000
6331860992
6347122688

o
322

o
o

4324
o

56672
121480
154560
37536
36432

o
368

o
o

7084
o

83904
178112
242144
52256
52256



Chapter 8

The First Three Janko Groups

8.1 Introduction

The (p, q, r)-generations of the first two Janko groups J1 and J2 , where p, q and rare

prime divisors of the respective groups, were discussed by J. Moori [131]. Our interest

in these two groups will be their nX-complementary generation. For detail on the

construction and properties of these groups the reader is referred to Janko [86], [87],

[88], Gagen [65] and Moori [131]. We now give a brief description of the third Janko

group J3 .

In 1968, Z. Janko [89] announced the discovery of the two simple groups J2 and

J3 . More precisely, he proved the following result.

Let G be a finite non-abelian simple group with the following properties:

(a) The centre Z(S) of a Sylow 2-subgroup S of G is cyclic.

(b) If z is an involution in Z(S), then the centralizer of z in G is an extension of .

an extraspecial group E of order 25 by A5 .

Then we have the following two possibilities: If all the involutions in G are conjugates,

then G is a new simple group of order 50232960 and has a uniquely determined

character table. If G has more than one conjugacy classes of involutions, then G is a

new simple group of order 604800 and G itself is uniquely determined.

J anko left open the existence and uniqueness of the simple group of order 50232960.

125
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Higman-McKay [82] showed that a simple group G satisfying (a) and (b) with an

unique conjugacy class of involutions does exist, and has the following additional

property:

G has a subgroup H which is the extension of £2(16) by an involutory outer

automorphism of £2(16).

S. K. Wong [182] proved the following result: Let G be a non-abelian simple group

of order50232960. Then G has properties (a) and (b). Thus the group constructed

in this way is essentially the unique simple group of order 502329604 = 2;.35 .5.17.19,

known as the third Janko group J3 .

The subgroup structure of J3 is discussed in Finkelstein-Rudvalis [62]. It follows

from the character table of J3 that J3 has no subgroups of index less than 170, and

any proper simple subgroup of h must have order less than one million. It follows

from M. Hall's partial classification of simple groups of order less than one million,

Hall [78], that a simple proper subgroup of J3 must be isomorphic to one of As, As,

£2(17), £2(19), £2(16) or U4 (2). Only the last possibility is ruled out by the fact that

all elements of order 5 are conjugate in U2(4) while there are two conjugacy classes

of elements of order 5 in h, with one class a power of the other.

Theorem 8.1.1 (Finkelstein-Rudvalis [52}) The Janko simple group J3 has exactly

nine conjugacy classes of maximal subgroups:

(i) Four groups of classical type, namely, £2(17), £2(19) (two classes) and

£2( 16):2;

(ii) Five p-local groups, namely, 24 :(3 x A~), 2~+4:A5, 22+4:(3 x 53), (3 X As):22

and 32 .(3 x 32):8. 0

8.2 (2, 3, t )-Generations for J3

In this section we investigate the (2,3, t )-generations for the J anko group J3 . Since

we may assume 1/2 + 1/3 + l/t < 1, it follows that t E {8, 9,10,12,15,17, 19}. It

is well-known that if a simple group G = (x,y), where o(x) = 2 and o(y) = 3, then

G = (x, xY
, x

y2
). However, the order of their product xxY x y2 is not known in general.
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Table 8.1
Partial fusion maps of H into h

24:(3 x As)-class 2a 2b 3a 3b 3c 3d 3e 15a 15b 15c 15d

\GH(nx)1 192 48 180 180 36 36 9 15 15 15 15

-th 2A 2A 3£1 3A 3A 3A 3B 15A 15A 15B 15B

L2 (17)-class la 2a 3a 4a 8a 8b 9a 9b 9c 17a 17b

\GH(nx)\ 2448 16 9 8 8 8 9 9 9 17 17

-th lA 2A 3B 4A 8A 8B 9A 9B 9G 17A 17B

(3 X A6 ):22-class 2a 2b 3a 3b 3c 3d 8a 8b lOa lOb 15a 15b

IGH(nx)1 48 20 1080 27 27 27 8 8 10 10 15 15

-th 2A 2A 3A 3B 3A 3A 8A 8A lOB lOA 15A 15£1

22+4:(3 x S3)-class 2a 2b 2c 3a 3b 3c 3d 3e 12a 12b

IGH(nx)\ 384 48 48 72 72 9 36 36 12 12

-th 2A 2A 2A 3A 3A 3B 3A 3A 12A 12A

We will also investigate the (2,2,2, p)-generations of h, where p is a prime divisor of

IJ3 1·

Lemma 8.2.1 Let H be a maximal subgroup of J3 , with H ~ (3 X ...16 ):22 and g E G

such that Hand H9 are distinct and 8A n (H n H9) i= 0. Then H n H9 is not

(2A,3A,8A)-generated.

Proof We shall show that the conjugacy class 3...1 does not meet H n H9. First

observe that H = Nh (z), for some z E 3...1, and the fusion map of H into J3 yields

3...1 n H = 3a U 3cU 3d. Now 3a = {z, z-l} and if z E H n H9, then .:;9- 1 E H. Also

Ch(z) = (z) X ...16 and H - Ch(z) has no element of order 3. Thus zg-1 E Ch(z)

and consequently z E Ch(z) n Ch (Z9) = ((z) n (Z9)) X (046n A~). If (z) = (Z9), then

9 E Nh(z) and hence H = H9, a contradiction. Therefore:: E ...16 n A~, contrary to

the fact that (z) n ...16 = {I}. 'Ne therefore conclude that 3a n (H n H9) = 0.
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If yE (3e U 3d) n (H n Hg), then y E CJs(z) n CJs(zg) = A6 n A~, since H - CJs(z)

contains no element of order 3. From the fusion map of CJs (z) into H, we observe

that (3e U 3d) n A6 = 0 and therefore y = zib, for some i = 1,2 and b E A6 • But this

is contrary to y E A6 n A~. We therefore conclude that H n Hg is not (2A, 3A, 8A)­

generated. 0

Lemma 8.2.2 The group J3 is not (2A, 3X, 8A)-generated, where X E {A, B}.

Proof (Also see Conder et al. [39]) We first prove that J3 is not (2A, 3A, 8A)­

generated. Let x E 8A be a fixed element in the maximal subgroup H ~ (3 X A6 ):22

of h. Since ICh(x)1 = 8, it follows from Theorem 3.1.4 and Table 8.1 that x is

contained in exactly 2 conjugates of H, say Hand Hg. We easily calculate that

'f.(H) = 'f.(Hg) = 16 and by the previous lemma 'L,(H n Hg) = O. But then 6.*(J3 ) ~

6.(J3 ) - 'L,(H U Hg) = 36 - 32 = 4 < ICh(x)\ = 8. From Lemma 3.1.7 it follows that

6.*(J3 ) = 0 and J3 is not (2A,3A,8A)-generated.

We apply Scott's theorem to prove that J3 is not (2A, 3B, 8A)-generated. The group

J3 acts on a 85-dimensional complex irreducible module V and

dim(VjCv (2A)) = 40, dim(VjCv (3A)) = 54 and dim(VjCv (8A)) = 74.

However, 40 + 54 + 74 = 168 < 170, violating the conditions of Scott's theorem and

the result follows. 0

Lemma 8.2.3 The group J3 is not (2A, 3X, 9Y)-generated, where X E {A, B} and

YE {A,B,C}.

Proof. Let Y E {A, B, Cl. From our calculations, we get 6. h (2A, 3A, 9Y) = 0 and

hence J3 is not (2A, 3A, 9Y)-generated.

The maximal subgroups of J3 containing elements of order 9 are, up to isomorphisms,

£2( 19), two non-conjugate copies, £2(17) and 32.(3 X 32):8. The subgroups isomorphic

to 32.(3 X 32):8 do not contribute to 6.(J3 ) = 6.h (2A, 3B, 9Y) since 'f.(32.(3 X 32):8) =
O. The permutation character of J3 on the conjugates of £2(19) is given by

XL2 (19) = la + 85ab + 1140aa + 1215ab + 1615a + 1902abc +2432a
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and therefore a fixed element of order 9 in £2(19) is contained in XL2 (19)(9Y) = 3

conjugate copies of £2(19). Using Table 8.1, a fixed element of order 9 in £2(17) is

contained in 3 conjugate copies of £2(17). Further, the only maximal subgroups of

£2(19) and £2(17) with order divisible by 2 x 9 are isomorphic to D18 which is not

(2,3,9)-generated. Therefore 'f,(H n K) = 0 for all maximal subgroups Hand K of

£2(19) or £2(17).

We calculate 'f,(£2(19)) = 2:(£2(17)) = 18. Thus each non-conjugate copy of £2(19)

and its conjugates contribute 3 x 18 to 6.(Ja). Also £2(17) and its conjugates con­

tribute 3 x 18 to 6.(Ja). Thus

6.*(la) 6.(Ja) - (2 x 3)2:(£2(19)) - 32:(£2(17))

162 - (2 x 3 x 18) - (3 x 18) = 0 ,

and the result follows. 0

Corollary 8.2.4 If H is a (2A, 3X, 9Y)-generated subgroup of Ja, where X E {A, B}

and Y E {A, B, C}, then H ~ £2(19) or £2(17).

Proof This is an immediate consequence of the previous lemma. 0

Lemma 8.2.5 The group la is (2A, 3X, 10Y)-generated, where X, Y E {A, B}, if

and only if X = B.

Proof 'vVe first consider the triple (2A, 3A, laY). Let x be a fixed element of Ja of

order 10 such that x E £, where £ ~ £2(19). Then 2:(£2(19)) = 20 and 6.*(Ja) ~

6.(Ja) - 2:(£) = 25 - 20 = 5 < ICJ3 (x)1 = la. Now the non-generation of Ja by this

triple follows from Lemma 3.1.7.

Next, we consider (2A, 3B, laY). The maximal subgroups of la with elements of order.

la and nontrivial intersection with the class 3B are, up to isomorphisms, £2(19) (two

non-conjugate copies) and (3 x A6 ):22 . Further, if we fix an element of order la in

£2(19) (respectively, (3 x A6 ):22 ), then it is contained in no other conjugate of £2(19)

(respectively, (3 x A6 ):22 ).

\Ve easily calculate 2:(£2(19)) = 20 and 'f,((3 x A6 ):22 ) = la. Thus

6.*(Ja) ~ 6.(Ja) - 22:(£2(19)) - 2:((3 x A6 ):22 ) = 70> 0
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and hence J3 is (2A, 3B, lOX)-generated. D

The (2A, 3B, 10Y)-generation of J3 was first proved by Woldar [176] who investi­

gated the (2,3)-generated of the sporadic simple.groups.

Lemma 8.2.6 The group J3 is (2A, 3X, 12A)-generated, where X E {A, B}, if and

only if X = B.

Proof. For the case X = A, observe that 6.*(J3 ) S 6.(h) = 11 < ICh (12A)! = 12.

Therefore by Lemma 3.1. 7 the group J3 is not (2A, 3A, 12A)-generated.

The maximal subgroups of h with elements of order 12 that have non-empty intersec­

tion with the conjugacy class 3B are, up to isomorphisms, (3 X A6 ):22 , 32.(3 x 32):8 and

22+4:(3x53). We calculate 2:( (3 x A6 ):22 ) = 2:(32.(3x32):8) = 0 and 2:(22+4:(3 x 53)) =
16. Further, a fixed element of 22+4:(3 x 53) of order 12 is contained in 2 conjugate

copies of 22+4:(3 x 53). Hence 22+4:(3 x 53) and its conjugate contribute at most

2 x 16 to 6.(J3 ). Since 6.(J3 ) = 144 > 32, we have 6.*(J3 ) ~ 112. Therefore J3 is

(2A, 3B, 12A)-generated. D

Lemma 8.2.7 The group h is (2A, 3X, 15Y)-generated, where X, Y E {A, B}, if

and only if X = B.

Proof. Consider the triple (2A, 3A, 15Y). Let x be a fixed element of J3 of order 15

and x E £, where £ ~ £2(16):2. Then we have 2:(£) = 15 such that

Now since IGh(x)1 = 15, non-generation follows from Lamma 3.1.7.

Next we consider the triple (2A, 3B, 15Y). The maximal subgroups of h with ele- .

ments of order 15 are, up to isomorphisms, £2(16):2, 24:(3 X A5 ) and (3 x A6 ):22 . We

observe that the conjugacy class 3B fails to meet £2(16):2. Now since 2:(24 :(3xA5 )) =

2:( (3 x A6 ):22 ) = 0, we have 6.*(J3 ) = 6.(h) = 90. Thus J3 is (2A, 3B, 15Y)-generated

and the result follows. D

Lemma 8.2.8 The group J3 is (2A, 3X, 17Y)-generated, where X, Y E {A. B}, if

and only if X = B.
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Proof. We first consider the case X = A. The only maximal subgroups of J3 with

order divisible by 17 are, up to isomorphims, £2(16):2 and £2(17). Let H, K ::; J3

such that H s= £2(16):2 and K s= £2(17). Then

XH = la +323ab + 324a + 1140a + 1215ab + 1615a.

It follows from Table 8.1 that XK(3A) = 0 and hence r.(K) = O. A fixed element of

order 17 is contained in XH(3A) = 2 distinct conjugate copies of H, namely Hand

Hg. Thus

6:(J3) = 6.(h) - 2r.(H) + "i.(H n Hg).

We easily calculate t:::.(J3 ) = 34 and r.(H) = 17, so t:::.*(J3 ) = "f.(H n Hg).

We will now show that r.(H n Hg) = O. The only maximal subgroup of H with

order divisible by 3 x 17 is isomorphic to £2(16). If H n Hg = £, where L ~ £2(16),

then £ is a normal subgroup of Hand Hg, since it has index 2 in these groups.

Therefore H, Hg ~ Nh (£) ~ h. Since J3 is simple, and Hand Hg are maximal in

J3 , so NJ3 (L) = H = Hg, contrary to the assumption that Hand Hg are distinct.

Therefore "f.(H n Hg) = 0 and hence t:::.*(J3 ) = 0, proving that (2A, 3A, 17Y) is not a

generating triple for J3 .

Next we consider X = B. Now XH(3B) =0 and consequently r.(H) = O. Further, a

fixed element of order 17 is contained precisely in one conjugate copy of K. Thus

and hence h is (2A, 3B, 17X)-generated. 0

Corollary 8.2.9 If £ is a (2A, 3A, 17X)-generated subgroup of J3 , where X E {A, B},

then £ ~ £2(16).

Proof. It is evident from the above lemma that if £ is a (2A, 3A, 17X)-generated

subgroup of J3 , then £ ~ H, where H ~ £2(16):2. Since H has a soluble quo­

tient isomorphic to the cyclic group 2, it is not (2A, 3A, 17X)-generated (cf., Lemma

3.1.10). Moreover, 'L,(H) = 'L,(L2(16)) = 17 and L2(16) contains no maximal sub­

group of order divisible by 3 x 17. Thus L ~ £2(16). 0

Lemma 8.2.10 The group J3 is (2.4, 3X, 19Y)-generated, where X, Y E {A, B}.
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Proof. The maximal subgroups of J3 with order divisible by 19 are, up to iso­

morphisms, L2(19), two non-conjugate copies. If L ~ J3 with £ = L2(19), then

Xd3A) = O. Thus ~d2A,3A, 19Y) = 0 and J3 is (2A, 3A, 19Y)-generated because

Ll(h) = 38.

Next we show J3 is (2A, 3B, 19Y)-generated. A fixed element of order 19 is contained

in exactly one conjugate copy of £2(19). Thus each non-conjugate copy of L2 (19)

contributes ~(L2(19)) = 19 to Ll(J3). Since Ll(J3) = 95, we have Ll*(J3) ~ Ll(J3)­

2~(L2(19)) = 57 > 0, and the result follows. 0

Theorem 8.2.11 The group J3 is (2A, 3A, tX)-generated if and only if t = 19.

Furthermore, J3 is (2A, 3B, tX)-generated iJand only if t E {10, 12, 15, 17, 19}.

Proof This follows from the lemmas proved above. 0

A group G is said to be a (u, v, w, x)-generated group if it is a quotient of the

quadrangle group Q(u,v,w,x) = (a,b,e,d I ati = bV = C
W = dX = abed = 1). If kW,

LX, mY and nZ are conjugacy classes of a finite group G, and d a fixed representative

of nZ, then Llc(kW, lX, mY, nZ) gives the number of distinct ordered triples (a, b. c)

with a E kW, bE lX, c E mY such that abe = d. This number can be calculated by

the formula

Llc(kW, lX, mY, nZ) = IkWIIL~llmYI L
I I xelrr(C)

x( a)X(b)X(e)X(d)
(X(I))2

The notations Ll* (G) and ~(H) have analogous meaning as in the case of triples.

There is a close relationship between (2,3, t)-generation of a finite simple group and

generation of a finite simple group by a set of three involutions as outlined in Section

2.3.1. A useful results that we shall use is:

Corollary 8.2.12 Let G be a (2X, 3Y, tZ)-generated finite simple group. Then G is
(2X, 2X, 2X, (tZ)3)-generated.

Proof The result is a special case of Proposition 2.3.2. 0

Lemma 8.2.13 The group J3 is (2A, 2A, 2A, 3B)-generated.
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Proof. The full list of non-conjugate maximal subgroups of J3 containing a fixed
element x E 3B are, up to isomorphisms, two non-conjugate copies of £2(19), 24:(3 x

As), £2(17), (3 x A6 ):22 , 32.(3 x 32):8 and 22+4:(3 X 53)' We list the values of h =
XH(3B) and E(H) in the table below.

H h E(H) hE(H)
£2(19) 27 1458 39366

£2 (19) 27 1458 39366

24:(3 x As) 27 351 9477

£2(17) 27 1458 39366

(3 x .16 ):2 2 9 1458 13 122

32.(3 x 32):8 1 0 0
22+4:(3 x 53) 27 243 6561

Our calculations show that the total number of triples of involutions with product

x that generate a proper subgroup of J3 is at most 147782. The result follows since

6.( J3 ) = 406782. 0

Remark 8.2.14 Since (9A)3 = (9B)3 = (9C)3 = 3B, Lemmas 8.2.4 and 8.2.13 show

the converse of Corollary 8.2.12 is false in general.

Theorem 8.2.15 The group J3 is (2,2,2, p)-generated, where p is a prime, if and

only if p E {3, 5,17, 19}.

Proof "Ve use Scott's theorem to show that p =J. 2. The group J3 acts on a 85­

dimensional irreducible module V and d = dim(VjCv(2A)) = 40. If the group J3 .

is (2A, 2A, 2A, 2A)-generated, then by Scott's theorem we have 4d 2: 2 x 85, that is

160 2: 170, which is a contradiction.

Now (15A)3 = 5B, (15B)3 = 5A, (17A)3 = 17B, (17B)3 = 17A, (19A)3 = 19B

and (19B)3 = 19A. Applying Corollary 8.2.12 to Lemmas 8.2.7, 8.2.8 and 8.2.10

we deduce that J3 is (2A, 2A, 2A, 5X)-, (2A, 2A, 2A, 17X)- and (2A, 2A, 2A, 19X)­
generated, X E {A, B}. 0
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8.3 (p, q, r )-Generations of J3

In this section we investigate the (p, q, r )-generationsof the Janko group J3 and it

consequences, where p, q and r are distinct primes satisfying the relation p < q < r.

Since we may assume l/p +1/q+ l/r < 1 it follows that r = 17 or 19. The maximal

subgroups of J3 with order divisible by 17 are, up to isomorphisms, £2(16):2 and

£2(17). The subgroups isomorphic to £2(19) (contained in two non-conjugate classes)

are the only maximal subgroups of J3 , with order divisible by 19. Throughout this

section H, K, £1 and £2 will denote subgroups of J3 with H ~ £2(16):2, K ~

£2(17), £1 ~ £2(19) s::: £2 and £1 # £~, for all 9 E J3 . In the previous section we

dealt with the triples (2.4, 3X, 17Y) and (2.4, 3X, 19Y), where X, Y E {.4, B}.

Table 8.11
Structure constants for h

pX

6.J3 (2.4, 5A, pX)

6.h(2A, 5B, pX)

6.J,(2A,17A,pX)

.6.J3 (2A, 17B, pX)

6.J3 (3A, 5A, pX)

6.J3 (3A, 5B, pX)

6.h (3B,5A,pX)

6.J3 (3B, 5B, pX)

6.h (3A, 17A, pX)

6.J3 (3A,17B,pX)

6.J3 (3B, 17A,pX)

6.J3 (3B,17B,pX)

6.J,(5A,17A,pX)

.6.J, (SA, 17B, pX)

6.J3 (5B, l7A,pX)

6.J3 (5B, 17B,pX)

17A

867
867

1496
1496
6902
6902

l7B

867
867

1496
1496
6902
6902

19A

874
874

1577
1577
1501
1501
6840
6840
2812
2812

12103
12103
98192
98192

98192
98192

19B

874
874

1577
1577
1501
1501
6840
6840
2812
2812

12103
12103
98192
98192

98192
98192

Lemma 8.3.1 The group h is (2A,5X,17Y)-gen~rated, where X,Y E {A,E}.

Proof The only maximal subgroups of J3 with order divisible by 17 are, up to

isomorphisms, Hand K. Since IKI is not divisible by 5, K and its subgroups are not
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(2A, 5X, 17Y)-generated. Now a fixed element x of order 17 is contained in XH(X) = 2

conjugate copies of H. We calculate 'f,(H) =17 and consequently t.:(J3 ) ~ 61(J3 )­

2'f,(H) = 833 > 0 and therefore h is (2A, 5X, 17Y)-generated. 0

Lemma 8.3.2 The group J3 is (2A,5X, 19Y)-generated, where X, YE {A, B}.

Proof A fixed element x of order 19 in £1 is contained in XLI (x) = 1 conjugate copy

of £1. We easily calculate that 2:(£1) = 19 and 61(J3 ) = 874. Since £1 and £2 are

the only maximal subgroups of J3 that may contain x and since XLI = XL2 , we have

61-(J3 ) ~ 61(J3 ) - 'f,(£d - 2:(£2) = 836> 0 and the result follows. 0

Lemma 8.3.3 The group J3 is (3X, 5Y, 17Z)-generated, where X, Y, Z E {A, B}.

Proof The order of the subgroup K is not divisible by 5 and therefore H is the only

maximal subgroup of J3 , up to isomorphisms, that contains (3X, 5Y, 17Z)-generated

subgroups. We will first show that J3 is (3A, 5Y, 17Z)-generated. In this case 'f,( H) =

17 and a fixed element of order 17 in H is contained in exactly two conjugate copies

of H. Thus 61-(J3 ) ~ 61(J3 )-2"f,(H) = 1496-34 > 0 and hence J3 is (3A,5Y,17Z)­

generated.

Next we show that the group h is (3B,5Y,17Z)-generated. 'Ne easily calculate

XH(3B) = 0 and hence 'f,(H) = o. Therefore 61-(J3 ) = 61(J3 ) = 6902 and the result

follows. 0

Corollary 8.3.4 If j\1 is a proper (3A, 5Y, 17Z)-generated subgroup of J3 , where

Y, Z E {A, B}, then M -;= £2(16).

Proof. It is clear from the previous result that if M is (3A, 5Y, 17Z)-generated, then

N! :::; H9, for some 9 E G. Since H9 -;= H ~ £2(16):2, H9 has a soluble quotient

isomorphic to the cyclic group 2. Thus H9 is not (3A, 5Y, 17Z)-generated (cf. Lemma

3.1.10). Further, E(H) = E(£2(16)) = 17 and £2(16) contains no maximal subgroup

of order divisible by 3 x' 5 x 17. Thus M ~ £2(16). 0

Lemma 8.3.5 The group J3 is (3X, 5Y, 19Z)-generated, where X, Y, Z E {A, B}.
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Proof The subgroups £1 and £2 have empty intersection with the class 3A since

XL2(19)(3A) = O. Thus the (3A, 5Y, 19Z)-generation of J3 follows from the fact that

~"'(h) = ~(h) = 1501.

We now show that J3 is (3B, 5Y, 19Z)-generated. A fixed element of order 19 in £1

is contained in exactly one copy of £1. Hence each non-conjugate copy of £2(19)

contributes 2:(£d = 38 to ~(J3) = 6840. Since £1 and £2 are the only maximal

subgroups that contain elements of order 19, it follows that ~*(h) 2: 6840 - 2 x 38 =

6764 > 0 and the result follows. 0

Lemma 8.3.6 The group J3 is (2A, 17X, 19Y)-, (3X, 17Y, 19Z)-, (5X, 17Y, 19Z)-,

(17X, 17Y, 19Z)- and (17X, 19Y, 19Z)-generated, where X, Y, Z E {A, B}.

Proof We calculate ~J3 (17X, 17Y, 19Z) = 175769 and ~h (17X, 19Y, 19Z)

155629. Using these and the structure constants listed in Table 8.11, and the fact

that the group J3 has no maximal subgroup of order divisible by 17 x 19, we deduce

that .6.( J3 ) = 6."'( J3 ) > 0 in all cases mentioned in the statement of the lemma. Hence

the result follows. D

We now summarize the above lemmas in the following theorem.

Theorem 8.3.7 The group J3 is (p,q,r)-generatedjorp,q,r E {2,3,5,17,19} with

p < q < r, except when (p,q,r) = (2,3,5).

Proof The triangle group T(2, 3, 5) is isomorphic to As. The result follows from the

above lemmas. 0

Corollary 8.3.8 The group J3 is (pX,pX, qY)-generated, with p < q, for all pX E

{3A,3B,5A,5B,17A,17B} and qY E {17A,17B, 19A,19B}.

Proof The structure constant ~h (3A, 3A, 17Y) = 68. The subgroup £2( 17) fails to

meet the conjugacy class 3A and l:(£2(16):2) = 17. Therefore .6."'(J3 ) = 68 - 17 > 0

and J3 is (3A, 3A, 17Y)-'generated. The result follows immediately from the Lemma

3.1.15, Lemmas 8.2.8, 8.2.9, 8.3.1, 8.3.2, 8.3.6 and the fact that (17A)2 = 17A,

(17 B)2 = 17B, (19A)2 = 19B and (19B)2 = 19A. 0
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8.4 nX-Complementary generations of J1
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In order to apply Lemma 2.3.8 we will first find the triangular presentations of J1

that will allow us to deduce its nX-complementary generation. The conjugacy classes

of J1 with elements of prime order are 2A, 3A, 5A, 5B, 7A, llA,19A, 19B and 19C.

Lemma 8.4.1' (Woldar [179}) The group J1 is (2A,3A,7A)-generated. 0

Lemma 8.4.2 (Moori [131}) The group J1 is(2, 5,7)-, (2, 5,19)-, (2, 7, 11)-, (2, 7,19)-,

(2,11,19)-, (5,7,11)-, (5,7,19)-, (5,11. 19)-, (3,5,7)-, (3,5,19)-, (3.7,11)-, (3,7,19)-,

(3,11,19)- and (7,11, 19)-generated. 0

In Moori [131], the above result was proved for the conjugacy classes 5A and 19A

(where applicable). If we replace 5A by 5B = (5At 1
, and 19A by 19B = (19.1)2

or 19C = (19.1)4, then the corresponding structure constants are unchanged. This

is indeed a consequence of Theorem 3.1.14. Thus the result mentioned above is true

for all conjugacy classes with elements of appropriate order (eg., the group J1 is

(2.1, 5X, 19Y)-generated, for X E {A, B} and Y E {A, B, C}).

Corollary 8.4.3 The group J1 is (3A,3A,7A)-, (5A,5A.7.4)-, (5B,5B,7A)-,

(7A, 7A, llA)-, (I1A, 11.1, 19A)-, (19A, 19A, 11.1)-, (19B, 19B, llA)-,

(19C, 19C, llA)-generated.

Proof The proof follows from an application of Lemma 3.1.15 to the results obtained

in Lemmas 8.4.1 and 8.4.2. 0

Lemma 8.4.4 The group J1 is (5A, 5B, 19A)- and (19A, 19B, 19C)-generated.

Proof As argued in Moori [131], the group J1 contains no maximal subgroup that is

(p, q, 19)-generated, where p and q are primes. Thus for these cases 6.*(Jd = 6.(Jd.

We calculate 6.J1(5A, 5B, 19A) = 228 and .6.J1 (19A, 19B, 19C) = 573 and the result

follows. 0

We are now ready to prove the main result of this section.
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Theorem 8.4.5 The group J1 is nX-complementary generated if and only if n > 2.

Proof. It follows from Lemma 2.3.8 that J 1 is not 2A-complementary generated.

We now show J 1 is SA-complementary generated. It is proved above (Lemmas 8.4.2

and 8.4.4, Corollary 8.4.3) that 11 is (2A, 5A, 7Ab (3A, SA, 19B)-, (SA, 5A, 7A)-,

(SA, 5B, 19A)-, (SA, 7A, 11A)-, (SA, 11A, 19C)-generated. Rearranging these trian­

gular presentations, we in fact showed that for every conjugacy class pX, the group

11 is (pX, 5A, qpX Y)-generated for some conjugacy class qpx Y. So by Lemma 2.3.8

the group 11 is SA-complementary generated.

Using similar arguments we can show that 11 is 3.1-, 5B-, 7A-, l1A-, 19.1-, 19B­

and 19C-complementary generated. Also (6A)2 = 3A, (10A)2 = 5B, (10B)2 = SA,

(15A)5 = 3A = (15B)5 and the result follows from Lemma 2.3.9. 0

8.5 nX-Complemenary generations of J2

The conjugacy classes of 12 with elements of prime order are 2A, 2B, 3A, 3B, SA,

5B, 5C, 5D and 7A.

Lemma 8.5.1 The group 12 is not nX -complementary generated, where nX E {3A.

3B, 4A, SA, 5B}.

Proof. If the group 12 is nX-complementary generated, then it must be (2A, nX, tY)­

generated for some t with 1/2 + l/n + l/t ~ 1. The appropriate structure constants

of 12 are listed in Table 8.III.

It is shown in Finkelstein-Rudvalis [62] and .Moori [131] that J2 is not (2A, 38, 7' A)­

generated. Let H be a maximal subgroup of J2 with H ~ 22+4:(3 x 53)' Then we

calculateL:H(2A, 3B, 8A) = 16 and hence

6.j)2A, 3B, 8A) ~ .6.h (2A, 3B, 8A) - L:H (2A, 3B, 8A) = 16 - 16 = O.

Thus 12 is not (2A, 3B, 8A)-generated. Let K be a maximal subgroup of 12 such

that [{ ~ 52 :DI2 . Then L: K (2A, 3B, 10X) = 10, for X E {C, D} and consequently
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Table 8.III
Structure constants of h

tX 4A 5A 5B 5CD 6A 6B 7A 8A lOAB 10C 10D 12A 15A 15B

~h(2A, 3A, tX) 0 0 0 0 0 0 0 0

~h(2A, 3B, tX) 7 16 0 10 10 8 10 10

~h (2A, 4A, tX) 0 0 0 0 0 7 4 0 0 0 8 5 5
~h (2A, 5A, tX) 0 0 25 0 0 0 0 0 0 0 2 4 5 0
~J2(2A.,5B,tX) 0 25 0 0 0 0 0 0 0 2 0 4 0 5

ICJ,(tX)! 96 300 300 50 24 24 7 8 20 10 10 12 15 15

6*(2A, 38, 10X) = 0, proving that J2 is not (2A, 38, 10X)-generated. Further­

more, if U = U3(3) is a maximal subgroup of J2 , then 6 h (2A,4A,7A) = 7 =
~u(2A, 4A, 7A) and non-generation of J2 by this triple follows.

For the remaining triples in Table 8.III, we have 6 h (2A, nX, tY) < ICh(tX)[, and

non-generation by these triples follows from Lemma 3.1.7. Thus for every nX E

{3A, 38, 4A, 5A, 58} and for any t, the group J2 is not (2A, nX, tY)-generated. The

result now follows immediately from Lemma 2.3.8. 0

Table 8.IV
Structure constants of h

pX 2A 2B 3A 3B 5A 5B 5C 5D 7A

~J, (pX, 5C, 7A) 7 49 14 343 35 35 252 252 1764
~J,(pX,5D,7A) 7 49 14 343 35 35 252 252 1764
~J,(pX, 6A., 7A) 14 98 28 700 70 70 518 518 3752
~J2(pX, 6B, 7A) 28 203 42 1358 175 175 1001 1001 7238
t::.. J2(pX, 8A, 7A) 42 308 70 2072 252 252 1512 1512 10752
~h(pX, lOA, 7A) 14 119 28 854 91 91 609 609 4326
~J, (pX, lOB, 7A) 14 119 28 854 91 91 609 609 4326
~J2(pX, 15A, 7A) 21 175 28 1113 161 161 784 784 5572
~h(pX, 15B, 7A) 21 175 28 1113 161 161 784 784 5572

Lemma 8.5.2 The group J2 is 6X-complementary generated, where X E {A, 8}.
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Proof We will first consider the case X = A. We calculate the structure constant

~J2 (2A, 6A, 10C) = 10. The maximal subgroups of J2 with non-empty intersection

with the classes 2A, 6A and 10C are, up to isomorphisms, 21+4:A5 and A5 x DlO •

However, we calculate 2:M(2A, 6A, 10C) = 0, where M =21+4:A5 or A5 x D lO . Thus

~j2 (2A, 6A, 10C) = 10, and J2 is (2A, 6A, 10C)-generated.

The only maximal subgroups with non-empty intersection with the classes 6A and

7A are isomorphic to U3(3). Furthermore, if pY E {2B, 5A, 5B, 5C, 5D}, then pY n
U3(3) = 0 and therefore ~j2 (pY, 6A, 7A) = ~h (pY, 6A, 7A) > 0 (cf Table 8.1V),

proving that J2 is generated by these triples. Also a fixed element of order 7 is

contained in 2 conjugates of a U3 (3) subgroup of J2 . Thus

Similarly, 6j2(3B,6A,7A)?:: 700-2(56) = 588 and ~j2(7A,6A,7A)?:: 3756­

2(168) > O. The 6A-complementary generation of J2 now follows from Lemma 2.3.8.

Next we consider the case X = B. The (pX, 6B, 7A)-generated proper subgroups

of J2 are contained in the maximal subgroups isomorphic to £3(2):2. Also a fixed

element of order 7 is contained in a unique conjugate of a £3(2):2 subgroup. Thus

For any pY E {3A, 5A, 5B, 5C, 5D}, we have pY n £3(2):2 = 0 and consequently

~j2(pY,6B,7A) = ~h(pY,6B, 7A) > 0 (cf. Table 8.rY). For the remaining triples

we calculate ~j2(2A,6B,7A) = 28, ~j2(2B,6B, 7A) = 196, 6j2(3B,6B, 7A) = 1358

and ~j2(7A, 6B, 7A) = 7238, proving that J2 is 6B-complementary generated. 0

Lemma 8.5.3 The group J2 is 8A-complementary generated.

Proof. The only maximal subgroups of J2 that have non-empty intersection with the

classes 7A and 8A are, up to isomorphisms, U3 (3) and £3(2):2. Since.5 does not

divide the order of these groups and 6 h (5X, 8A, 7A) > 0 (cf. Table 8.1Y), the group

J2 is (5X, SA, 7A)-generated, for all X E {A, B, C, D}. Furthermore,

~j2 (2A, 8A, 7A) > ~h(2A, 8A, 7A) - 22: U3 (3)(2A, 8A, 7A) - L:L3 (2):2(2A, 8A, 71'1)

42-2(14)-0>0.
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Similarly, ~j2(2B,8A,7A) ~ 294, ~j2(3A,8A,7A) ~ 42, ~j2(3B,8A,7A) ~ 1736

and ~j2 (7A, 8A, 7A) ~ 10304. Thus we have shown that J2 is (pX, 8A, 7A)-generated,

. for all classes pX with prime order representatives. Hence the result. 0

Lemma 8.5.4 The group J2 is nX-complementary generated) where nX E {5C,5D,

lOA, lOB, 15A, 15B}.

Proof. The subgroups U3 (3) and £3(2):2 do not contain elements of order 5, 10 or

15. Since these are the only maximal subgroups of J2 , up to isomorphisms, with

order divisible by 7, it follows that 6j2(pY,nX, 7A) = 6 h (pY,nX, 7A), for all n E

{5, 10, IS} and all primes p dividing IJ2 1. The result follows immediately from Lemma

2.3.8 and Table 8.1V. 0

'liVe now summarize the above results in the following theorem.

Theorem 8.5.5 The group J2 is nX -complementary generated if and only if nX E

{5C,5D} or n ~ 6.

Proof. It is proved in Woldar [179] that Jl, is7A-complementary generated. The result

follows from Lemmas 8.5.1, 8.5.2, 8.5.3 and 8.5.4 and the fact that (lOC)2 = 5D,

(lOD)2 = 5C and (12A)2 = 6A. 0

8.6 nX-Complementary generations of J3

Before we prove the main theorem of this section, we need the following result.

Lemma 8.6.1 The group J3 is (3A, 3B, 19X)- and (5A, 5E, 19X)-generated) where·
XE{A,E}.

Proof. The proof is similar to that of Lemma 8.3.5 with I: L1 (3A, 3B, 19X) = 0,

I: L1 (5A,5E,19X) = 38, ~h(3A,3B,19X) = 228 and ~h(5A,5B,19X) = 55898.

o

Theorem 8.6.2 The group J3 is nX-complementary generated if and only if n > 2.
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pX

2A

3A

3B

5A

5B
l7A
17B
19A

19B
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Table 8.Y

Structure constants of h

~J3 (pX, 4A, 19A)

247
570

2052
17214
17214
31236
31236
31236
25080

Proof We proved in Section 8.2 the group h is (2A, 3B, 19Y)-, (3X, 3X, 19Y)-,

(5X, 5X, 19Y)-, (17X, 17X, 19Y)- and (liX, 19Y, 19Z)-generated, where X,Y,Z E

{A, B}. Indeed, we have showed that J3 is (pX, 19Y, qpX Z)-generated, for all conju­

gacy classes pX with elements of prime order. It therefore -follows from Lemma 2.3.8

that J3 is 19Y-complementary generated, where Y E {A, B}. Similar arguments

will show that J3 is 3X-, 5X- and 17X-complementary generated, for X E {A, B}.

Furthermore, J3 is not 2A-complementary generated.

\Ne show next J3 is 4A-complementary generated. The group £2(19) contains no

elements of order 4 and therefore 6j3 (pX, 4A, 19A) = .6.h (pX, 4A, 19A) > 0 (cf.

Table 8. V), for all classes pX with prime order representatives, proving that J3 is

4A-complementary generated.

The result now follows from Lemma 2.3.9 since (6A)2 = 3A, (8A)2 = 4A, (9A)3 =

(9B)3 = (9C)3 = 3A, (10A)2 = SA, (10B)2 = SA, (12A)2 = 6A, (1SA)3 = SB and

(15B)3 = 5A. 0



Chapter 9

The Fourth Janko Group

9.1 Introduction

In 1976, Z. Janko [90] described the properties of the fourth Janko simple group

of order 221 .33 .5.7.113 .23.29.31.37.43, denoted by J4 . Let E be an extra-special 2­

subgroup of a finite group G. We say that E is "large" in G if Cc( E) ~ E and

E = 02(CG(E')) (where 02(CG(E')) is the normal subgroup generated by all normal

2-subgroups of CG(E')). The majority of the 26 sporadic simple groups possess such

large extra-special 2-subgroups. In the process of determining finite simple groups

with large extra-special 2-subgroups, Janko discovered the sporadic simple group J4 .

More precisely, he proved the following theorem.

Theorem 9.1.1 (Janko [90}) Let G be a non-abelian finite simple group which pos­

sesses an involution z such that H = CG ( z) satisfies the following conditions.

(i) The subgroup E = O2 (H) is an extra-special2-group of order 213 and CH (E) ~ E.

(ii) A Sylow 3-subgroup P of 02,3( H) (the normal subgroup generated by all normal

2- and 3-subgroups of H) has order 3 and CE(P) = Z(E) = (z).

Then the group G has the following properties.

143
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(1) The order of the group G is 221 .33 .5.7.113 .23.29.31.37.43.

(2) The subgroup GH(P) is isomorphic to the full covering group of M22 (that is,

the perfect central extension of a cyclic group of order 6 by M22 ). Moreover,

NH(P) = Na(P) = 6·M22 :2 and the group G has exactly one conjugacy class of

elements of order 3.

(3) Let R be a Sylow 3-subgroup of H. Then R is an extra-special group of order 27

and exponent 3 and we have that Na(R) = NH(R) = (2 x 3~+2:8):2.

(4) Let T be a Sylow 2-subgroup of G. Then T possesses exactly one elementary

abelian subgroup V of order 211 . We have Ga(V) ~ V and Na(V) = V:[{,

where f{ is isomorphic to M24 . The orbits of K on V have lengths 1, 7·11·23

(with representative Zl) and 4·3·23 (with representative t). Here Zl is conjugate

in G to z and t is not conjugate to z in G.

(5) The group G has presicely two conjugacy classes of involutions with the repre­

sentatives z and t. The centralizer Ga(t) is a split extension of an elementary

abelian group of order 211 by Aut(M22 ). Also, Ga(t) acts indecomposably on

02(Ga(t)).

(6) The group G possesses exactly one conjugacy class of self-centrali::ing elementary

abelian group of order 210 and if A is one of them, then we have Na(A) = A:B,

where B ~ L5 (2) and B acts irreducibly on A. The orbits of B on A have

lengths 1, 5·31 and 4·7·31.

(7) Let Q be a Sylow 5-subgroup of H. Then Q is also a Sylow 5-subgroup of G,

and Ga (Q) = Q x J, where J is isomorphic to the non-split extension of an

elementary abelian group of order 8 by L3 (2). Also Na(Q) contains a Frobenius .

subgroup of order 20 . Hence a Sylow 5-normalizer in G has order 28 ·3·5· 7.

(8) Let 5 be a Sylow 7-subgroup of H. Then 5 is also a 5ylow 7-subgroup of G,

and Ga(5) = 5 x I, where I ~ 55, and INa(5)1 = 3·IGa(5)!. Hence the 5ylow

7-normalizer in G has order 23 .32 ·5·7.

(9) The group G possesses a special2-subgroup L of order 215 with IZ(L)I = 23 so

that Na(L)/ L ~ 55 x L3 (2). Also, Na(L) contains subgroups isomorphic to 55
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and L3 (2), and it contains both a Sylow 5-normalizer and a Sylow 7-normalizer

ofG.

(10) A Sylow 11-normalizer in G has order 24 .3.5.113 and contains a subgroup iso­

morphic to GL2 (3). A Sylow 11-subgroup ofG is extra-special of order 113 and

exponent 11. The group G has exactly two conjugacy classes of elements of

order 11.

(11) .4 Sylow p-subgroup is self-centralizing in G for p = 23, 29, 31, 37 and 43. A

Sylow p-normalizer has order 23·22,29·28,31·10,37·12 and 43·14, respectively.

(12) The group G possesses PG L(2, 23) as a subgroup.

(13) The group G has exactly 62 conjugacy classes of elements. The character table

of G is unique and was computed by J. Conway, S. Norton, J. G Thompson

and D. Hunt (cf. ATLAS). 0

The group was constructed in 1980 by D. Benson, J. Conway, S. P. Norton,

R. A. Parker and J. Thackray (cf. [8] and [137]) as a group of 112 x 112 matri­

ces over GF(2). The subgroup structure of J4 are discussed by Kleidman-Wilson

[102]. The only non-abelian characteristically simple subgroups of J4 are A5 , A6 , A;,

A8 , £2(7), L2 (11), L2(23), L2(32), L3(4), U3(3), U3(11), £5(2), M11 , M12 , J\!!n, L'V!23

and M24 .

Theorem 9.1.2 (Kleidman- Wilson [102j) The fourth Janko simple group J4 has ex­

actly thirteen conjugacy classes of maximal subgroups, as follows:

(A) Five classes of non-local subgroups:

U3 (1l):2, M22 :2, £2(32):5, £2(23):2, and U3 (3).

(B) Eight classes of lacal subgroups:

211 :A124 , 21°:£5(2), 2~+12·3·M22:2, 23+12.(35 x £3(2)), 1l~+2:(5 X 234 ),

29:28, 37:12 and 43:14. 0

The (p, q, r )-generations of J4 with r = 7, 11 and r > 11 will be discussed in

Sections 9.2, 9.3 and 9.4, respectively. The nX-complementary generation of J4 will

be considered in Section 9.5.
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9.2 (p, q, 7)-Generations of J4

Lemma 9.2.1 The group J4 is (2X, 3A, 7Y)-generated, for X, Y E {A, B}, if and

only if X = B.

Proof. We first consider the triple (2A, 3A, 7Y). Let £ ~ £2(7) be contained in

the conjugacy class of subgroups with non-empty intersection with the class 2A and

NJ4 (£) = £ (cf. Kleidman-\Vilson [102], Proposition 5.4.2). Further, let x E £ a

fixed element of order 7. Then the fusion map of £ into J4 yields

2a -r 2A, 3a -r 3A, 7a-r7A, 7b-r7B.

Since ICdx)1 = 7 and ICJ4 (x)1 = 840, it follows from Theorem 3.1.4 that x is contained

in exactly 120 conjugates of L. 'vVe note that no maximal subgroup of £2(7) has

order divisible by 2 x 3 x 7 and hence no proper subgroup of £ is (2,3, 7)-generated.

Therefore

6.*(J4 ) < 6.(J4 ) - 1202:(£2(7))

1435 -120(7) = 595 < ICJ4 (x)l.

Thus by Lemma 3.1.7 we conclude that J4 is not (2A, 3A, 7Y)-generated.

Next we consider the triple (2B, 3A, 7Y). We calculate the structure constant ~(J4) =

14889. The maximal subgroups of J4 with non-empty intersection with all the conju­

gacy classes in this triple are, up to isomorphisms, 211 :M24 , 2~+12·3·A'122:2, 21°:£5(2)

and 23+12 .(55 x £3(2)). Our calculations give

~*(J4) ~ ~(J4) - 52:(211:lvI24) -102:(21°:£5(2)) -102:(2~+12·3.M22:2)

- 2:(23+12 .(55 x £3(2)))

14889 - 5(385) - 10(189) - 10(217) - 154 = 6139,

and therefore J4 is (2B, 3A, 7Y)-generated. 0

The (2B, 3A, 7Y)-generation of J4 was first proved by Woldar [179], in order show

that J4 is a Hurwitz group. The original proof is quite extensive and the above is an

alternative proof.
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Lemma 9.2.2 The group J4 is (2X, 5A, 7Y)-generated, for all X, Y E {A, B}.

Proof. We treat the two cases X = A and X = B separately.

147

Case (2A, 5A, 7Y): The maximal subgroups of J4 with order divisible by 7 and non­

empty intersection with the conjugacy classes 2A and 5A are isomorphic to 211 :1\';[24,

2~+12·3·iv[22:2, 21°:£5(2), 23+12.(55 x £3(2)) and J'v!22:2. We calculate

L~,:(J4) ~ 6.(J4) - 5I:(211 :1'v!24) - 10I:(2~+12·3·M22:2) - 1OI:(2 1O:£5(2))

- I:(23+12 .(55 x £3(2))) - 602:(M22 :2)

517440 - 5(3360) - 10(252) - 10(2688) - 0 - 60(224) = 457800,

and therefore J4 is (2A, 5A, 7Y)-generated.

Case (2B, 5A, 7Y): The maximal subgroups of J4 with non-empty intersection with all

the conjugacy classes in this triple are isomorphic to 211 :i\!f24 , 21°:£5(2), 2~+12·3·M22:2

and 23+12.(55 x £3(2)). We calculate

6.~(J4) ~ 6.(J4) - 52:(2 11 :M24 ) - 102:(2~+12.3.M22:2) -10I:(210:£5(2))

- 2:(23+12 .(55 x £3(2)))

= 7415800 - 5(9744) - 10(488) - 10(6720) - 0 > 0,

and generation of J4 by this triple follows. This completes the proof. 0

Lemma 9.2.3 The group J4 is (3A,5A, 7Y)-generated, for all YE {A, B}.

Proof. Up to isomorphisms, 211 ;M24 , 210:£5(2), 2~+12·3·M22;2, 23+12.(55 x £3(2)) .

and J'V[22:2 are the only maximal subgroups that may contain (3A, 5A, 7Y)-generated

proper subgroups. Now

2::(2 11 ;M24 ) = 274176, 2:(2~+12·3·M22:2) = 19712, 2::(21°:£5(2)) = 84672,

I:(23+12.(S5 x £3(2))) = 0 and I:(M22 :2) = 2464.

The (3A,5A, 7Y)-generation of J4 now follows since 6.(J4) = 4753175840. 0
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9.3 (p, q, 11)-Generations of J4

The investigation of the (p, q, II )-generation of J4 will require knowledge of all the

maximal subgroups of J4 with order divisible by 11. They are, up to isomorphisms,

211 :A124 , 2~+12·3·M22:2, U3 (1l):2, 1l~+2:(5 X 254), L2(32):5, L2(23):2 and M22 :2.

Lemma 9.3.1 The group J4 is (2X, 3A, llY)-generated, for X, Y E {A, B}, if and

only if the ordered pair (X, Y) = (B, B).

Proof We treat each case separately.

Case (2A, 3A, llA): We calculate .6(J4 ) = 3993 < IC)4 (llA)1 = 31944. Thus from

Lemma 3.1.7 it follows that J4 is not (2A, 3A, llA)-generated.

Case (2B,3A,llA): The structure constant 6.(J4) = 33275 and l::(L2 (32)) = 33.

Let H :S J 4 with H ~ L2 (32). If x E H is a fixed element of order 11, then x is

contained in 968 conjugates of H. The maximal subgroups of H with order divisible

by 2 x 3 x 11 are isomorphic to the dihedral group D66 . Futhermore, l::( D66 ) = 0 and

therefore 2:*(L2 (32)) = 33. Thus

and non-generation of J4 by this triple follows.

Case (2A, 3A, llB): As stated earlier the group. J4 possesses a 112-dimensional ir­

reducible representation V over GF(2). From this representation we can generate

J4 by two 112 x 112 matrices a and b (over GF(2)), where o(a) = 2, o(b) = 4 and

o(ab) = 37. Using MeatAxe and GAP we calculate

. dim(VjCv (2A)) = 50, dim(VjCv(3A)) = 72, dim(VjCv(llB) = 100.

Since 50 + 72 + 100 = 222 < 224, it follows from Scott's theorem that J4 is not

(2A, 3A, 11 B)-generated.

Case (2B, 3A, lIB): The maximal subgroups of J4 with non-empty intersection with

the classes 2B, 3A and lIB are isomorphic to 211 :M24 , U3 (11):2, 11~+2:(5 x 254)

and L2(23):2. We calculate 6.(J4 ) = 18755, l::(21 1:AI24 ) = 715 and 2:(U3 (11):2) =

2:(11~+2:(5 x 254)) = 2:(L2 (23):2) = O. Moreover, a fixed element of order 11 is
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contained in exactly 11 conjugate of a 211 :1\-124 subgroup. Thus .6:(14 ) ;::: 18755 ­

11(715) > 0 and whence (2B, 3A, lIB) is a generating triple for 14 • This completes

the proof. 0

Lemma 9.3.2 The group 14 is (2X, 5A, 11 Y)-generated, for all X, Y E {A, B}.

Proof. Case (2X, 5A, llA): The maximal subgroups of 14 with non-empty intersec­

tion with all the classes in this triple are, up to isomorphisms, 2~+12·3·lVl22:2, U3(11):2,

11~+2:(5 x 254 ) and L2(32):5. We calculate ~(U3(11):2) = ~(11~+2:(5 X 254 ))

L:(L2 (32):5) = O. Therefore

.6.j4(2A, 5A, llA) > .6.(14 ) - 121 ~(2~+12.3·iV[22:2)

= 742698 - 121(66) = 734712,

.6.j4 (2B, 5A, llA) > .6.(14 ) - 121 I:(2~+12·3·l\122:2)

= 5337310 - 121(22) = 5334648,

and generation by these triples follows.

Case (2X, 5A, lIB): The only maximal subgroups that may contain (2X, 5A, llB)­

generated proper subgroups are isomorphic to 211 :M24 , U3(11):2, 1l~+2:(5 x 254 ) and

M22 :2. Moreover, I:(11~+2:(5 X 254)) = 0 and therefore

.6.j4 (2A, 5A, lIB) > .6.(14 ) - II I: (211 :M24 ) - 3 I:(U3 (11):2) - 22 I:(iVl22 :2)

916696 - 11(2552) - 3(726) - 22(176) > 0,

.6.j4 (2B, 5A, 11 B) > .6.(14 ) - 11 L:(211 :A124 ) - 3 I:( U3 (11) :2) - 22 L:( iVl22 :2)

6340884 - 11(6424) - 0 - 0 > O.

Thus 14 is (2X, 5A, 11 B)-generated, and the result follows. 0

Lemma 9.3.3 The group 14 is (3A, 5A, 11Y)-generated, for all X, Y E {A., B}.

Proof Case (3A, 5A., 11A): The maximal subgroups with non-empty intersection with

all these classes are, up to isomophisms, 2~+12·3·M22:2, U3(11):2, 11~+2:(5 X 254 ) and

L2 (32):5. We calculateL:(11~+2:(5 X 254)) = L:(L2 (32):5) = 0 and

121 ~(2~+12·3·M22:2) +3L:(U3(11):2)

= 121(19712) +3(2662) = 2393138.
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Since 6.(J4 ) = 5139555344, it follows that 6.*(J4 ) > 0 and therefore J4 is (3A, 5A, llA)­

generated.

Case (3A, 5A, llB): The maximal subgroups with non-empty intersection with the

classes 3A, 5A and llB are isomorphic to 211 :M24 , U3 (1l):2, 1l~+2:(5 X 254 ) and

1\122 :2. Also ~(1l~+2:(5 X 254 )) = 0, and

6.*(J4) > 6.(J4) -ll L:(211 :M24 ) - 3 L:(U3(1l):2) - 22 I:(M22 :2)

- 5285060264 - 1l(284944) - 3(26620) - 22(2144) = 5281798852,

and the result folows. 0

Lemma 9.3.4 The group J4 is (2X, 7Y, llZh (3A, 7Y, llZ)- and (5A, 7Y, 11Z)­

generated, for all X, Y, Z E {A, B}.

Proof The maximal subgroups of J4 with order divisible by 7 x 11 are isomorphic

to 211 :1\-124 , 2~+12·3·Nfn:2 and Mn :2. Also 211 :1\124 n llA = 0 = M22 :2 n llA,

2~+12·3·M22:2n lIB = 0 and N122 :2 n 2B = 0. Therefore

6.j4 (2A, 7Y, HA) > 4557344 - 121(3608) = 4120776,

6.j4 (2A, 7Y, lIB) > 4365196 - 11(6600) - 22(176) = 4288724,

6.j4 (2B, 7Y, llA) > 57925120 - 121(6952) = 57083928

6.j4 (2B, 7Y, lIB) > 57792020 - 11(17688) - 0 = 57597452

6.j4 (3A, 7Y, 11A) > 38254060480 - 121(223168)- = 38227057152

6.j4 (3A, 7Y, llB) > 38232329344 - 11(749056) - 22(1760) = 38224051008,

6.j4 (5A, 7Y, llA) > 15300853706336 - 121(538208) = 15300788583168,

6.j4 (5A, 7Y, llB) > 15303576037904 - 11(7834112) - 22(12672)

- 15303489583888.

Therefore these triples generate J4 , proving the result. 0
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Table 9.1
Structure Constants

qY ~J.(2A, qY, 23A) ~J. (2B, qY, 23A) ~J. (3A, qY, 23A)

3A 621 18055

5A 451030 7461476 4638610928

7Y 4915606 56620618 39137221728

lIA 108445 1510226 987224032

lIB 13917277 203065896 130650349632

qY ~211M,.(2A,qY, 23A) ~211:M24 (2B, qY, 23A) L211M24 (3A, qY, 23A)

3A 161 437

5A 2070 4002 286304

7Y 7820 13892 1750208

llA 0 0 0

lIB 48576 110400 5581824

qY ~L,(23):2(2A,qY, 23A) I:L,(23)2(2B, qY, 23A) LLo(23):2(3A, qY. 23A)

3A 23 0

5A 0 0 0
7Y 0 0 0

llA 0 0 0
lIB 115 0 230

qY ~J. (5A, qY, 23A) ~J.(7X, qY, 23A) uJ. (llA, qY, 23A)

7Y 15406480371640

llA 400689589224 3239401364064

lIB 52881475189488 427529654927936 11156081945921

qY I:21lM24 (5A, qY, 23A) I:211M,. (7X, qY, 23A) I:21lM,.(llA. qY, 23A)

7Y 6217728
lIA 0 0
11B 47857664 138674176 0
qY I: L,(23):2(5A, qY, 23A) LL,(23)d7X, qY, 23A) LLo(23):2(llA, qY, 23A)

7Y 0

llA 0 0

lIB 0 0 0
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9.4 (p, q, r)-Generations of J4

In this section we consider the (p, q, r )-generation of J4 , where r > 11 is a prime

divisor of IJ4 1.

Lemma 9.4.1 The group J4 is (pX, qY, 23A)-generated, for all distinct conJugacy

classes pX and qY, where p ::; q are primes and q > 2.

Proof Let pX and qY be any two distinct conjugacy classes, where p ::; q are odd

primes. The maximal subgroups of J4 containing elements of order 23 are isomorphic

to 211 :1\1[24 or L2(23):2. Therefore

It now follows from this relation and Table 9.1 that 6.j4 (pX, qY, 23A) > 0, for all

distinct classes pX and qY containing prime order elements and q > 2. Thus 14 is

(pX, qY, 23A)-generated. 0

Table 9.11

Structure Constants

qY

3A

5A

7Y

llA
lIB

23A

qY

7Y
11A

lIB
23A

qY

23A

D.J, (2A, qY, 29A)

348
458026

4906916
105473

13921943
187115511

D.J, (5A, qY, 29A)

15407517421568
400522116224

52878769081600
563967038373888

D.J,(l1B, qY,29A)

15637110781392837

D.J,(2B,qY,29A)

19314
7470342

56470540
1538624

203382916
2039767316

D.J, (7X, qY, 29A)

3238688151040
427512922845184

4488114677481472

D.J, (3A, qY, 29A)

4638228912
39112667488

989959776
130697077504

1439185637376
6.J, (l1A, qY, 29A)

11158290168703
118462964398447

Lemma 9.4.2 The group 14 is (pX, qY, 29A)-generated, for all distinct conjugacy

classes pX and qY, where p ::; q are primes and q > 2.
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Proof The only maximal subgroups of J4 with order divisible by 29 are isomor­

phic to 29:28. Since 29:28 has a soluble quotient, it follows from Lemma 3.1.10

that 29:28 is not (pX, qY, 29A)-generated and hence 2:(29:28) = 0 for all conjugacy

classes pX and qY containing prime order elements. Therefore 6.j4 (pX, qY, 29A) =

6.J4 (pX,qY,29A) > 0 (cf. Table 9.II), for all the triples in the statement of the

lemma, and the result follows. 0

Table 9.III
Structure Constants

qY AJ. (2A, qY, 31Z) AJ. (2B, qY, 31Z) Al. (3A qY, 31Z)

3A 1240 17856

5A 585218 7101976 4850352008
7Y 4731158 56863114 38817663328
11.4 123659 1496246 1020640032
lIB 16370387 197346248 134723982272
23A 173062739 2039767316 1417768290752
29A 137252283 2076797880 1124436888576
qY ~210L.(2)(2A,qY, 31Z) L: 210L.(2)(2B, qY, 31Z) L: 210L.(2)(3A, qY, 31Z)

3A 62 186
5A 2232 5704 80352
7Y 744 2232 51584
llA 0 0 0
lIB 0 0 0
23A 0 0 0
29A 0 0 0
qY L:L,(32)S(2A, qY, 31Z) L:L,(32):s(2B, qY, 31Z) L:L,(32):s(3A, qY, 31Z)

3A 0 31
5A 0 0 0
7Y 0 0 0
llA 0 155 155
lIB 0 0 0
23A 0 0 0
29A 0 0 0

Lemma 9.4.3 The group J4 is (pX, qY, 31Z)-generated, for all distinct conjugacy

classes pX and qY, where p ::; q are primes.
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Proof. The maximal subgroups of J4 containing elements of order 31 are, up to

isomorphisms, 21°:£5(2) and £2(32):5. Therefore for all these triples we have

It is evident from Table 9.III that 6.*(J4 ) > 0, for all these triples, proving generation

of J4 by these triples. 0

Table 9.III (Cont.)

qY t::.Ji (5A, qY, 31Z) t::.J i (7X, qY, 31Z)

7Y 15372586954808

11A 404233356328 3233911632480

11B 53358910283888 426876352051776

23A 561436150052976 4491489176657472

29A 445276930754048 3562215560183808

qY ~210:L.(2)(5A,qY, 31Z) I:210L.(2)(7X, qY, 31Z)

7Y 2027648
11A 0 0

lIB 0 0
23A 0 0
29A 0 0

qY EL,(32):s(5A, qY,31Z) EL,(32):s(7X, qY, 31Z)

7Y 0
11A 0 0
lIB 0 0
23A 0 0
29A 0 0
qY t::.J i (l1B,qY, 31Z) t::.Ji (23A, qY, 31Z)

23A 15590293070834757
29A 12364715158080241 130098307677359105
qY L;210:L.(2)(llB, qY, 31Z) L;210:L.(2)(23A, qY, 31Z)

23A 0
29A 0 0
qY I: L,(32):s(l1B, qY, 31Z) EL,(32):d23A, qY, 31Z)

23A 0
29A 0 0

t::.J i (l1A, qY, 31Z)

11225110434879
118108285918767
93672090722931

~210L.(2)(l1A, qY, 31Z)

o
o
o

o
o
o

Lemma 9.4.4 The group J4 is (pX, qY, 37Z)-generated) for all distinct conJugacy

classes pX and qY, where p :S q are primes and q > 2.
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Proof The maximal subgroups of J4 containing elements of order 37 are~ up to

isomorphisms, U3(11):2 and 37:12. Similar to our discussion in Lemma 9.4.2, we have

~(37:12) = 0 and therefore for all these triples

We calculate ~J4 (31X, 31 Y, 37Z) = 90297160343250377, for all X, Y E {A, B, C}

and I:(U3(11):2) = O. It now follows from Table 9.IV that t:,-(J4) > 0, for all these

triples, proving generation of J4 by these triples. 0

Table 9.IV
St.ructure Constants

qY 6.J, (2A, qY, 37Z) ~J,(2B,qY,37Z)

3A 2775 15577
5A 742516 6790686
7Y 4534720 57289024
llA 144633 1447884
llB 19176915 191320932
23A 159229315 2110989860
29A 126424375 1674630804
31Y 128404837 1540858044

qY ~U3(11):2(2A, qY, 37Z) EU,(11):2(2B, qY, 37Z)

3A 111 0
5A 666 0
7Y 0 0
11A 0 0
llB 333 0
23A 0 0
29A 0 0
31Y 0 0

qY 6. J, (5A, qY, 37Z) 6.J,(7X. qY, 37Z)

7Y 15337964134400
llA 407886901248 3229054205952
llB 53841070964736 426235155185664
23A 558909157900288 4494857809690264
29A 443272697708544 3564887889936384
31Y 416549400182784 3332395201462272

;).J, (3A, qY, 37Z)

5072686976
38526261248

1051593280
138814310144

1396493919744
1107572629504
1051892424704

~U,(11):2(3A, qY, 37Z)

24642
o

222
12210

o
o
o

6.J, (l1A, qY. 37Z)

11292643980331
117753848433883
93391057407791
87628725367117
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Table 9.IV (Cont.)

qY L:U3 (1l):2 (5A, qY, 37Z) L:U3 (1l):2(7X, qY, 37Z) L:U3 (1l):2(lIA, qY, 37Z)

7Y

lIA
llB

23A

29A

31Y

qY

23A

29A

31Y

qY

23A

29A

31Y

o
666

87912
o
o
o

D.J. (llB, qY, 37Z)

15543510806981993
12327611758700293
11566991620054607 .

L: U3 (1l):2(lIB, qY, 37Z)

o
o
o

o
o
o
o
o

t:..J. (23A, qY, 37Z)

130293503609950549
121704868165906751

L: U3 (11):2(23A, qY,37Z)

o
o

333
o
o
o

D.J. (29A, qY, 37Z) .

96524550711750403

L: U3 (1l):2(29A, qY,37Z)

o

Lemma 9.4.5 The group J4 is (pX, qY, 43Z)-generated, for all distinct conJugacy

classes pX and qY, where p ~ q are primes and q > 2.

Proof. The only maximal subgroups of J4 with order divisible by 43 are isomorphic

to 43:14. Since 43:14 has a soluble quotient, it follows from Lemma 3.1.10 that

I:(43:14) = 0 for all conjugacy classes pX and qY containing prime order elements.

vVe note from Table 9.V that 6.j4(pX,qY,43A) = 6. J.(pX, qY, 43A.) > 0, for all the

triples in the statement of the lemma, and the result follows. 0

We are now ready to state one of the main result in this chapter.

Theorem 9.4.6 The Janko group J4 is (p,q,r)-generated for all p,q,r E {2,3,5,

7,11,23} with p < q < r, except wheT' (p, q, r) = (2,3,5).

Proof. The proof follows from the lemmas proved in this chapters and the fact that

the triangular group T(2, 3, 5) ~ As. 0

Corollary 9.4.7 The group J4 is (pX,pX,qY)-generated for all odd primes p < q.

Proof. This follows immediately from an application of Lemma 3.1.15 to the results

in sections 9.2 to 9.4. 0
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Table 9.V

Strusture Constants
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qY C::.J. (2A, qY, 43Z) C::.J. (2B, qY, 43Z) C::.J. (3A, qY, 43Z)

3A

5A

7Y

llA

llB

23A

29A

31Y

37Y

qY

7Y

llA

llB

23A

29A

31Y

37Y

qY

23A
29A

31Y

37Y

qY

31Y

37Y

1118
586004

4733956
124055

16385881
173311113
137395621
128604271
107623969

15373194571776
404128866304

53356774293504
561447296270336
445276945022976
416551275241472
349000783986688

C::.J. (I1B, qY,43Z)

15590084680075323
12364777698047247
11567011172473581
9691263229674499
C::.J. (31X, qY, 43Z)

90297109693149531
75654377508536629

19608
7071436

56776684
1511880

197575884
2073590892
1646083516
1540975318
1290981260

C::.J. (7X, qY, 43Z)

3233159261696
426859549343744

4491550031872000
3562200556896265
3332397088145408
2792007308935168
C::.J. (23A, qY, 43Z)

130098307218469887
121704868043084733
101968950013794867

C::.J. (37X, qY, 43Z)

63386103646837684

4845943136
38801707040

1023541728
134774400512

1417341820928
1124351483904
1051951119360
881315274752

11227855342721
118098018600593
93674297355661
87628875437031
73418660015849

~J. (29A, qY, 43Z)

96524550809160969
80871920784987431

9.5 nX-Complementary generations of J4

We immediately prove the main result in this section.

Theorem 9.5.1 The .1anko group .14 is nX-complementary generated if and only if

n> 2.
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Table 9.VI
Structure Constants

pX L\J, (pX, 4A, 37A) 6.J, (pX, 4E, 37A) 6.J, (pX,4C, 37A)

2A 185 60828 66896

2E 10767 460576 1154400

3A 5062932 357396172 723809392

5A 2271440064 134347811632 296192040064

7X 19262751744 1046886709504 2407377074176

11A 485932544 28051642944 62591705344

11E 64150420032 3702833982144 8262358917120

23A 709326976320 38091608783552 88119142599680
29A 562575925824 30210548153280 69887878849536

31X 517728302784 28475056653120 65085843778560
37X 426665984256 24037623515392 54285945874432
43X 373243698240 20528464402880 46922413491200

Proof Let p be any fixed odd prime dividing 114 1. Then we showed in the previous

sections that if qY is any conjugacy class of 14 with prime order elements, then 14 is

(pX, qY, 43A)-generated. Thus by Lemma 2.3.8 we have that 14 is pX-complementary

generated, p a prime, if and only if p is an odd prime divisor of 114 1.

The group 14 contains no maximal (hence proper) subgroup with element of order

4 and 37. Therefore for any conjugacy class ,qY of 14 with prime order elements

6.j.(qY, 4X, 37A) = 6.(14 ), where X E {A,B,C}. From Table 9.VI we observe that

this value is positive for all cases and therefore 14 is 4X-complementary generated.

It is clear (ef. ATLAS) that if nX is any of the remaining conjugacy classes of 14 ,

then there is a positive integer m such that (nX)m is a class with elements of order

4 or p, where p is an odd prime. Thus the result follows from Lemma 2.3.9. 0



Chapter 10

The Smallest Fischer Group

10.1 Introduction

The sporadic simple group Fi 22 of order 217.39 .52 .(.11.13 was discovered by Fischer

[63] in "Finite Groups Generated by Transpositions. I". It is generated by a conjugacy

class D of involutions, called 3-transpositions, any non-commuting pair of which has

product of order 3. The Fischer group Fin is closely related to the Mathieu group

1\122 and Conway [41] used this relation to construct Fi 22 .

For almost all purposes, M 22 is best studied as a subgroup of M 24 . The Matieu

group M 24 is a 5-transitive group on a set n of 24 letters. Defining the sum of two

subsets of n as their symmetric difference, we obtain a 24-dimensional vector space

over GF(2), in which M24 leaves invariant a 12-dimensional subspace C (the Golay

24-code) of C-sets, namely 0 and n, together with 759 octads (8-element sets) and

their complements, and 2576 dodecads (12-element sets).

We obtain the subgroup lv122 by fixing the two points 0 and 00 of n. There are only

77 special hexads (6-element sets) each of which together with {O, oo} from an octad

and anyone hexad is disjoint from just 16 others. Two disjoint special hexads defines

a partition of n as 2 + 6 + 6 + 10 in such a way that the union of any two parts is a

C-set, and the stabilizer of this partition in M 24 is a group 56. In the group 56, which

permutes 6 letters i, j, k, l, rn, n, there are exactly 12 subgroups of index 6, namely

the 6 subgroups 5s fixing one letter each, and 6 further subgroups which permutes

159
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{i, j, k, l, rn, n} in the way that PGL2 (5) permutes the symbols {oo, 0,1,2,3,4,}, by

linear fractional transformations. The group PGL2 (5) in which i, j, k, l, m, n play the

respective roles of 00,0,1,2,3,4 will be denoted by G(iljklmn), where the last five

letters is a 5-cycle which can be rotated or replaced by its powers. The group 56
has an automorphism which interchanges the 6 subgroups 55 with the 6 subgroups

PGL2 (5).

Now partition the set n as 2 + 6 +6 + 10 so that the union of any two parts is a

C-set, and let the 2-element part be {O,oo} and 6 element parts {i,j,k,l,m,n} and

{u,v,w,x,y,z}. Then the subgroup 56 of M24 which fixes the partition acts on n as

follows:

(i) Even permutations of 56 fix 0 and 00; odd permutations interchange them.

(ii) The stabilizer of any of u, v, w, x, y, z is one of the 6 groups like G(ilJklmn).

(iii) There are 10 different 3+3 partitions of {i, j, k, l, m, n}. The stabilizer of any of

the remaining 10 points of n fixes one of the 3 +3 partitions of {i, j, k, l, m, n}.

A maximal commuting set of transpositions of D contains 22 elements, generating

a group of order 210 which is self-centralizing in Fi 22 . We call such a maximal set of

involutions the basic set of transpositions. The normalizer in Fi 22 of the group they

generate is a split extension 210 :1\.122 , whose orbits on the conjugacy class Dare:

(i) A = the 22 basic transpositions,

(ii) B = the set of 25 .77 transpositions each commuting with just 6 basic transposi­

tions forming a hexad,

(iii) C = the set of 210 transpositions commuting with no one of the 22 basic trans­

positions.

The group Fi 22 is generated by the 22 basic transpositions, denoted as i, j, k, ...

(typical element t), together with a further transposition s from the orbit C. Thus the

action of s and the typical basic transposition on the entire set of 3510 transpositions

in D will be suffice to define Fin The element s is fixed by a group M 22 and we now

describe the orbits of M22 on the elements in D in more detail.
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If i is a basic transposition, then the action of s yields the conjugate si and i is

fixed under the action of a typical basic transposition t. The transpositions of the

orbit C can be written as conjugates of s by products of the basic transpositions. We

never need more than three basic transpositions in the product because a product

of 4 distinct basic transpositions can be written as a product of either 2 or 3 basic

transpositions. If i, j, k are three of the basic transpositions, we have ijk = lmn for

only one un-ordered triple {l,m,n}, since {oo,O,i,j,k} defines a unique octad. So

the involution sijk = slmn has only two names of this form, where {i, j, k, l, m, n} is a

special hexad. Thus the orbit C splits into four orbits under the action of M22 with

orbit lengths 1,22,231, 770. Representatives of the respective orbits are s, si, si j ,

sijk = slmn.

Next we consider the action of i\!f22 on the orbit B. Now if {i,j,k,l,m,n} is a

special hexad, then there are exactly 02 transpositions in B which commute just with

i,j, k, l, m, n. These are:

(i) 10 involutions (ijkllmn), the transform of sijk = slmn by s.

(ii) 16 involutions (ijklmnluvwxyz), say, which transform by s into involutions com­

muting with the members of the disjoint special hexad {u, v, w, x, y, z}. These

correspond one for one with the 16 such hexads disjoint from {i,j,k,l,m,n}.

(iii) 6 involutions (iljklmn), say, corresponding one for one with the 6 subgroups

G(iljklmn) of the S6 on {i,j,k,l,m,n}.

Thus the action of Mn on the orbit B of 210 :M22 yields 3 orbits with representatives

as above and respective orbit lengths 10·77, 16·77 and 6·77.

The action of s on the orbit representatives s, Si, Sij , sijk = slmn are respectively, .

s, i si
j

, (ijkllmn) and the action of t on the respective representatives are st, Sit,

sijt, sijkt = slmnt (some of these may have shorter names). Using symmetry and the

assertion that s fixes jusL 693 other transpositions, we conclude that the action of

s on the orbits with representatives (ijkllmn), (i\jklmn) and (ijklmnluvwxyz) are

respectively sijk = slmn, (iljklmn) and (uvwxyzlijklmn). Moreover, we know the

action of a typical basic transposition t on all the points except those of the form

(ijkllmn) or (iljklmn) or (ijklmnluvwxyz), when t rt. {i,j,k,l,m,n}. Symmetry



162 CHAPTER 10. THE SMALLEST FISCHER GROUP

considerations now forces a unique action, which is best described by considering the

various transforms of (ijklmnluvwxyz).

(i) If t is one of i,J, k, I, m, n, then (ijklmnluvwxyz) is fixed by t.

(ii) 1ft is one ofu,v,w,x,y,z, the transform is (iljklmn), where G(iljklmn) is the

subgroup. fixing t.

(iii) Otherwise, the transform is (ijkjlmn), where {i,j,k}, {l,m,n} is the partition

3 + 3 of {i, j, k, l, m, n} which is fixed by the stabilizer of t in 1\;[22'

This observation produces the action of t on the respective orbits

(ijkllmn) -t (ijkllmn) or (ijklmnluvwxyz)

(iljklmn) -t (iljklmn) or (ijklmnluvwxyz)

(ijklmnluvwxyz) -t (ijklmnluvwxyz) or (ijkllmn) or (iljklmn).

This completes the construction of Fi 22 . Enright [55] gives an alternate construction

for Fi 22 using the subgroup 510' Names are assigned to all the transpositions in D

which suggest how this 510 acts on them. It is then determine which transpositions

commute with one another, and for any two that do not commute the conjugate of

one by the other is found. This gives a complete transform table for Fin, that is, a

table it, for all i, t E D.

Theorem 10.1.1 (Kleidman- Wilson [lOl}) The simple group Fi 22 has exactly 14

conjugacy classes of maximal subgroups, as follows:

2·U6 (2)

Ot(2):53

26 :S6 (2)

53 x U4 (3):2
25+8:(53 x A6 )

5 10 (two classes)

0 7 (3) (two classes)

21°:1\122

(2 x 2~+8:U4(2)):2

2 F4 (2)'

3~+6 :23+4 :32 :2

1\;[12. c=J

We will use the maximal subgroups and the permutation characters of Fin on the

conjugates (right cosets) of the maximal subgroups listed in the Table 10.1 extensively,
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TABLE 10.1

Permutation Characters
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2·U6 (2)
0 7 (3)

0 7 (3)

Ot(2):53
2IO :Mn
26 :56 (2)

la + 429a + 3080a

1Q. + 429a + 13650a

1Q. + 429a + 13650a

1Q. + 3080a + 13650a + 45045a

1Q. + 78a + 429a + 1430a + 3080a + 30030a + 32032a + 75075a

la + 429a + 1430a + 3080a + 13650a + 30030a + 45045a + 75075a + 205920a + 320320a

especially those with order divisible by 7, 11 or 13. The permutation character of Fi 22

on the conjugates of the maximal subgroup 26 :56 (2) is given in Moori-Mpono [136].

The permutation characters of Fi 22 on the conjugates of the maximal subgroups

isomorphic to 2 F4 (2)', 5 10 and i'VI12 , in terms of the irreducible characters of Fin

are not given in the ATLAS. In Table 10.n we list the partial fusion maps of these

maximal subgroups into Fi 22 (obtained from' GAP) that will enable us to evaluate

the corresponding permutation characters on the different classes.

TABLE 10.11

Partial fusion maps into Fin

2 F4 (2)'-class 2a 2b 3a 5a 13a 13b

-+ Fi 22 2B 2C 3D 5A 13A 13B

h 1 1
SlO-class 2a 2b 2c 2d 2e 3a 3b 3c 5a 5b 7a

-+ Fin 2A 2B 2C ~C 2B 3A 3C 3D 5A 5A 7A

h 1
M 12-class 2a 2b 3a 3b 5a lla lIb

-+ Fi 22 2B 2C 3D 3C 5A llA llB

h 2 2
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10.2
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(p, q, 7)-Generations of Fi22

The maximal subgroups lvh of Fin with order divisible by 7 are isomorphic to

2·U6 (2), 0 7 (3) (two non-conjugate classes), Ot(2):53 , 21°:1\122 , 26 :56 (2), 53 x
U4 (3):2 and 510 (two non-conjugate classes). The number h, of conjugates of j\![,

containing a fixed element of order 7 is given in Table 10.IlL

Lemma 10.2.1 (Moori [133]) The group Fi 22 is (2X, 3Y, 7A)-generated if and only

if the ordered pair (X, Y) = (C, D). 0

Lemma 10.2.2 The group Fi 22 is (2X, 5A, 7A)-generated if and only if X E {B, C}.

Proof The structure constant .0.F'22 (2A, 5A, 7A) = 0 and therefore non-generation of

Fi 22 by this triple follows.

We now consider the triple (2B, SA, 7A). The group Aut( Fi 22 ) has a 78-dimensional

irreducible representation over GF(2). We can use this representation and generate

Aut(Fi22 ) = (a, b), where a and bare 78 x 78 matrices over GF(2) with orders 2 and

18, respectively. Let x = (bab2)6, y = (ab9)2 and c = ba. Using MeatAxe and GAP

we proved a E 2A, b E 18E, x E 5A, y E 2B and o(c) = 42. Now, if t = c19 yc23 ,

then t E 2B and tx E 7A. Let H be a subgroup generated by t and x. Then we

showed that H ::; Fin and there exist elements of order 7, 11 and 13 in H. Since Fi 22

contains no proper subgroup with order divisible by 7 x 11 x 13, we have H = Fin,

and therefore Fin is (2B, 5A, 7A)-generated.

From Table lO.III we conclude that the number of pairs (x, y) E 2C x 5A with xy = z,

where z is a fixed element in 7A and (x, y) < Fi 22 is at most

3L:(2·U6 (2)) + 3L:(07(3)) + ... + L:(51O ) = 58422.

The result follows since .0. Fi22 (2C, 5A, 7A) = 72828. 0

Lemma 10.2.3 The group Fin is (3X, 5A, 7A)-generated fOT all X E {A, ... , D}.

Proof We first consider the case (3A. 5A, 7A). As in the previous lemma we use the

generation of Aut( Fi22 ) by the 78-dimensional matrices a and b. Then we showed
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that bZ E 2D, z = (ab)14 E 3A and x = (ab2)6 E 5A. Let q = (ba)lOx3(ba)32. Then

q E 5A and o(zq) = 7. Let H = (z, q). Then H ::; Fi z2 and H contains elements of

order 7, 11 and 13. Therefore H = Fi 22 and (3A, 5A, 7A) is a generating triple for

Fi2z ·

"Ve calculate the structure constant 6.Fin (3E,5A,7A) = 48181, 6.Fi22 (3C,5A, 7A) =

1298871 and 6.Fi22 (3D, 5A, 7A) = 5050836. It is clear from Table 10.IlI that the

number of pairs (x, y) E 3X x 5A with xy = z, a fixed element in 7A, that generates

proper subgroups of Fi 22 is less th2.n 6.Fin(3X,5A,7A), for all X E {E,C,D},

proving the result. 0

TABLE 10.Ill
Structure constants L:(Md

Mi hi L:M. (2C, SA, 7A) L:M. (3B, SA, 7A) L:M, (3C, 5A, 7A) L:M. (3D, SA, 7A)

2·U6 (2) 3 8218 1911 111531 0
0 7(3) 3 2548 1988 16464 12208

07(3) 3 2548 1988 16464 12208
Ot(2):53 1 588 903 2709 0
21O :M22 6 2688 0 39424 0
26 :56 (2) 6 245 0 1764 1232
53 x U4 (3):2 1 0 112 8736 0
5 10 1 147 0 245 966
510 1 147 0 245 966

10.3 (p, q, 11)-Generatons of Fi22

The maximal subgroups of Fi 22 containing elements of order 11 are, up to isomor- .

phism, 2·U6 (2), 210:M22 and M12 • If we fix an element of order 11 in a subgroup

2·U6 (2), 210 :M22 and M12 , then it is contained in 1,2,2 conjugates of this subgroup,

respectively. Since (11 Et 1 = llA, the results obtained by replacing one of these

classes with the other are the same. Let 11Z denote the class llA or llB.

Lemma 10.3.1 (Moori [133}) The group Fi 22 is (2X, 3Y, llZ)-generated if and

only if the ordered pair (X, Y) = (C, D). 0
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Lemma 10.3.2 The group Fi 22 is (2X, SA, llZ)-generated if and only if X E {B, C}.

Proof. The structure constant tlFi22 (2A, SA, llZ) = 0 and non-generation of Fi 22 by

this triple follows.

We calculate the structure constant tlFi22 (2B, SA, 11Z) = 3025, ~(2·U6(2)) = 935,

~(210:M22) = 704 and 2::(A112 ) = 33. Using Theorem 3.1.4 we obtain

tl*(Fin ) 2: tl(Fi22 ) - (935 + 2(704) + 2(33)) = 616.

Therefore Fin is (2B, 5A, llZ)-generated.

Similarly we obtain tl Fi22 (2C,5A, llZ) = 56364, ~(2,U6(2)) = 8184, ~(210:M22) =

2112, ~(M12) = 55 and therefore tl*(Fin ) 2: 43846, proving the result. 0

Lemma 10.3.3 The group Fi 22 is (2X, 7A, 11Z)-generated if and only if X E {B, C}.

Proof. The order of the group M12 is not divisible by 7. The structure constant

tlFi22 (2A, 7A, llZ) = 44 = 2::(2·U6(2)), and hence tl*(Fi 22 ) = 0, proving non­

generation of Fi 22 by this triple. We also calculate tl Fi22 (2B, 7A, llZ) = 34199,

~(2,U6(2)) = 4565 and ~(210:iv[n) = 2816. Therefore tl*(Fi22 ) 2: 24002 and Fi 22
is (2B, 7A, 11Z)-generated. Similarly, we calculate tlFi22 (2C, 7A, 11Z) = 846560,

2::(2·U6(2)) = 40040 and L:(2 10 :i\122 ) = 8448 and consequently D:(Fi22 ) 2: 789624,

proving the result. 0

Lemma 10.3.4 The group Fi 22 is (3X, 5A, llZ)-generated for all X E {A, ..., D}.

Proof. 'Ne calculate .6. Fi22 (3A, 5A, 11Z) = 8437 and .6.Fi22 (3B, 5A, 11Z) = 38049.

Now for Y E {A, B}, we have X210:M22(3Y) = 0 and hence 3Y n 21O:M22 = 0. Also'

from Table 10.11 we have 3Y n i\112 = 0. Therefore

tl(Fin ) - 2:(2·U6(2))

8437 - 2167 > 0 ,

tl( Fi 22 ) - 2:(2· U6 (2))

38049 - 3157 > 0 ,
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proving generation of Fi 22 by these triples.

Next we calculate 6 Fi22 (3C, 5A, llZ) = 942183, ~(2·U6(2)) = 75933, ~(210:A122) =

33792 and ~(M12) = 253. Thus 6"'(Fi 22 ) ~ 798160 and Fi 22 is (3C, 5A, llZ)­

generated.

The conjugacy class 3D has empty intersections with the maximal subgroups 2·U6 (2)

and 210:A122 . Since 6 Fi22 (3D,5A, llZ) = 5445198 and ~(Al12) = 198, we obtain

6"'(Fi 22 ) ~ 5444802, proving the result. 0

Lemma 10.3.5 The group Fi 22 is (3X, 7A, llZ)-generated for all X E {A, ... , D}.

Proof. For these triples we only need to consider the maximal subgroups isomorphic

to 2·U6 (2) and 21O:M22 . The classes 3A and 3B have empty intersections with the

subgroup 210:A122 . Therefore, for the triple (3A, 7A, llZ), we calculate

6"'(Fi 22 ) = 6(Fi 22 ) - ~(2,U6(2)) = 93643 - 8569 = 85074,

and Fi 22 is (3A, 7A, llZ)-generated. Similarly for the triple (3B, 7A, llZ) we have

~"'(Fi22) = 586575 - 14135 > 0, and generation by this triple follows.

We calculate the structure constants .6Fin (3C, 7A, llZ) = 11828025, ~(2·U6(2)) =
337755, ~(210:M22) = 112640 and therefore .6"'(Fi22 ) ~ 11264990 so that Fin is

(3C, 7A, llZ)-generated. Finally, .6Fi22 (3D, 7A, llZ) = 84481650 and the maximal

subgroups 2,Ud2) and 210 :M22 have empty intersections with the class 3D. Thus

.6"'(Fin ) = 6(Fi 22 ), and the result follows. 0

Lemma 10.3.6 The group Fi 22 is (5A, 7A, llZ)-generated.

Proof. From the structure constants 6 Fin (5A, 7A, llZ) = 2660517805, ~(2·U6(2)) =

21902705, ~(210:JV[22) = 3244032 we obtain that 6."'( Fi 22 ) ~ 2632127036, proving the

result. 0

10.4 (p, q, 13)- and (p, q, r)-Generations of Fi22

The only maximal subgroups of Fi 22 with order divisible by 13 are, up to isomor­

phisms, 0 7 (3) (two non-conjugate copies) and 2 F4 (2)'. Again (13B)-1 = 13A and

13Z will denote the conjugacy class 13A or 13B.
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Lemma 10.4.1 (Moori [133}) The group Fi 22 is (2X, 3Y, 13Z)-generated if and

only if the ordered pair (X, Y) = (C, C) or (C, D). 0

Lemma 10.4.2 The group Fin is (2X, 5A, 13Z)-generated if and only if X E {B, C}.

Proof The structure constant 6.Fi22 (2A, 5A, 13Z) = 0 and non-generation of Fi 22 by

this triple follows.

Next we calculate 6. Fi22 (2B, 5A, 13Z) = 1625, 2:(07(3)) = 104 and Ee F4(2)') = 13.

Since Fi 22 contains two non-conjugate classes of 0 7(3) subgroups,

6.*(Fi22 ) ~ 6.(Fin ) - (2(104) + 13) = 1404.

Therefore Fi 22 is (2B, 5A, 13Z)-generated.

Similarly 6.Fin (2C, 5A, 13Z) = 57044, 2:(07(3)) = 2366, 2::e F4(2)') = 338 and there­

fore 6.*(Fi 22 ) ~ 51974, proving the result. 0

Lemma 10.4.3 The group Fi 22 is (3X, 5A, 13Z)-generated for all X E {A, ... , D}.

Proof The subgroup 2 F4 (2)' has empty intersection with each of the classes 3A, 3B

and 3C (cf. Table 10.11). We calculate 6.Fin (3A, 5A, 13Z) = 4550 and 2::(07(3)) =
156. Thus 6.*(Fi 22 ) ~ 4238. Similarly, 6. Fi22 (3B,5A, 13Z) ~ 42419 - 2(2002) > 0

and .6.p.i22 (3C, 5A, 13Z) ~ 743535 - 2(11856) > O..

For the triple (3D, 5A, 13Z) we calculate 6.(Fi 22 ) = 6130449, E(07(3)) = 14300,

2:e F4 (2)') = 3341 and therefore 6.*(Fi22 ) ~ 6098508, proving the result. 0

Lemma 10.4.4 The group Fi 22 is (2X, 7A, 13Z)-, (3Y, 7A, 13Z)- and (SA, 7A, 13Z)­

generated for all X E {A, B, C} and Y E {A, ... , D}.

Proof The order of the subgroup 2 F4 (2)' is not divisible by 7. Thus for any triple

(pX1 , 7A, 13Z) in the hypothesis of this lemma, the (pX1 , 7A, 13Z)-generated proper

subgroups will be contained in a maximal subgroup isomorphic to 0 7(3). From Table

10.lV we have 6.*(Fin ) ~ 6.(Fin ) - 2 E(07(3)) > 0, for all these triples. The result

follows. 0
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Lemma 1004.5 The group Fi22 tS (2XI , 11X3 , 13Z)-, (3X2 , 11X3 , 13Z)-,

(5A, 11X3 , 13Z)- and (7A, 11X3 , 13Z)-generated, for all Xl E {A, B, C},

X 2 E {A, ... , D} and X3 E {A, B}.

Proof. The group Fin does not contain subgroups with order divisible by 11 x 13.

Thus for all the triples under consideration 6.-(Fi 22 ) = t:.( Fi 22 ). The result follows

from Table 10.IV. 0

It is obvious that if a group G is (l, rn, n)-generated, then it is (rr(l), rr(rn), rr(n))­

generated, for any permutation rr E 5{I,m,n} === 53. vVe now summarize all the above

results together with the results in Section 10.2 and 10.3 in the following theorem.

Theorem 10.4.6 The Fischer group Fi 22 is (p, q, r)-generated for all distinct

p,q,r E {2,3,5, 7,11,13}, except when {p,q,r} ={2,3,5}.

Proof. The triangular group T(2, 3, 5) ~ As. The theorem now follows from the

lemmas in Sections 10.2, 10.3 and lOA. 0

Table 10.IV
Structure constants 6.(Fid and I:(07(3))

pY

2.4

28
2C

3A

38

3C
3D

5A

7A

26
1586

23660
1872

19240
114660
243360

2728960

6.Pi1 ] (pY, 7A, 132)

78
28717

867490
77974

610675
10983375
87858225

2561905905

156
55224

1658124
149760

1164384
20966400

167731200
4891041792

69872025600

10.5 nX-Complementary generations of Fi 22

The main theorem that we will prove in this section is:
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Theorem 10.5.1 The group Fi 22 is nX -complementary generated if and only if

nX E {6K, 8C, 8D, gC, 12E, ... , 12K} or n E {7, 10, 11, 13, ... , 3D}.

The proof of this theorem will follow from the lemmas proved below. As in

the previous chapters, we will use Lemma 3.1.7 extensively in proving. the non­

complementary generations of Fi 22 . From this result it suffices to consider only the

triples for which 6.G(lX, nY, nZ) 2: \CG(nZ)!. Recall that if G is a simple group then

G is no~ 2X-complementary generated, for any class of involutions.

Lemma 10.5.2 The group Fi 22 is not 3X -complementary generated for any X E

{A, ...,D}.

Proof vVe will show that Fi 22 can not be 2-generated by elements from the classes

28 and 3A. Let X = 78a E Irr(Fin ). Let A = (x) and B = (y), where x E 2B

and y E 3A. Then A n B = {lG}' Also (xtA, XltA) = 46, (xtB, XltB) = 36 and

(Xt(AnB)' Xlt(AnB)) = 78. Furthermore, 46 + 36 = 82 > 78 and the result of Brauer

(cf. Theorem 3.3.4) yields (x, y) < Fi 22 • Thus by Lemma 2.3.8, it follows that Fin

is not 3A-complementary generated.

For X E {B,C,D}, the structure constants 6. Fi22 (2A,3X,tY) < jCFi22 (tY)1, for all

conj ugacy classes tY of Fi 22 . Thus Fi 22 is not 3X-complementary generated, proving

the result. 0

Lemma 10.5.3 The group Fi 22 is not 4X -complementary generated for any X E

{A, ... ,E}.

Proof Once more, the structure constant 6. Fi22 (2A,4X,tY) < ICFi22 (tY)I, for all

conjugacy classes tY of Fin, proving the result. 0

Lemma 10.5.4 The group Fin is not 5A-complementary generated.

Proof We will show Fi 22 is not (2A, 5A, tY)-generated for any class tY. Applying

Lemma 3.1.7, the only triple we need to consider is (2,1, 5A, 30,1). The structure

constant 6. Fi22 (2A, 5A, 30A) = 36. However, L:(2·U6 (2)) = 30 and hence 6.-(Fi 22 ) ::;

36 - 30 < ICFin (30,1)! = 30, proving the non-generation of Fi 22 by this triple. The
result follows. 0
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Lemma 10.5.5 The group Fizz is not 6X -complementary generated for any X E

{A, ... , J}.

Proof For X E {A, ... ,!} we calculate .6.Fi22 (2A,6X,tI') < ICFi22 (tI')1, for all

conjugacy classes tI' of Fizz, proving non-complementary generation by these classes.

For the class 6J we calculate

.6. Fi22 (2A, 6J, 14A) = 14 = ~(2·U6(2)),

.6.Fin (2A, 6J, 21A) = 21 = ~(Ot(2):53),

.6. Fin (2A, 6J, 24A) = 24 = L:(Ot(2):53).

The other triples of the form (2A, 6J, tI') we eliminate using Lemma 3.1.7. This

proves the result. 0

Lemma 10.5.6 The group Fizz is (2A, 6K, tY)-generated if and only if tY = 22Z,

where Z E {A, E}. Furthermore, Fizz is 6K -complementary generated.

Proof We calculate the structure constant .6. Fi22 (2A, 6K, 8D) = 32 = ICFin (8D)I.

Also ~(07(3)) = 16, so that .6.*(Fizz ) ::; 16 < ICFi22 (8D)1, and non-generation

follows. Next we calculate .6. Fin (2A, 6K, 13Z) = 26 and L:( 0;(3)) = 13. Let 0\

and Oz be subgroups of Fizz isomorphic to 0 7 (3) from different conjugate classes.

Then 0\ n Oz =35 :U4(2):2, Gz(3) or 59 (cf. Wilson [170]). Since 2A n Gz(3) = 0
and 13 does not divide 135 :U4 (2):21 and 159 1, we have L:(0\ n Oz) = 0 and therefore

.6.*(Fizz ) = .6.(Fizz ) - 2 L:(07(3)) = 0 and non-generation follows. Furthermore,

the structure constant .6.Fi22 (2A, 6K, 14A) = 14 = L:(Ot(2):53), proving the non­

generation by this triple.

We calculate the structure constant .6.Fi22 (2A, 6K, 20A) = 60. Also I:(07(3)) = 20

and I:(ot (2):53 ) = 20. For 0\, Oz non-conjugate copies of 0 7 (3) in Fi z2 with·

0\ n Oz n 20A =I 0, we have 0\ n Oz =59 as neither 35 :U4 (2):2 nor Gz(3) contains

elements of order 20. But then 0\ n Oz embeds in ot (2) :53 (cf. Moori [133]), so also

in Ot(2):2. As Ot(2):2 n 6K = 0, we have L:(O\ n O2 ) = O. Moreover, since Ot(2):2

is the only maximal subgroup of ot (2):53 which contains elements of order 20, we

have that 2:*(Ot(2):53) = 20 and l:(07(3) n Ot(2):53) = O. Thus

.6.*(Fizz ) = .6.(Fi2z ) - 2 L:(07(3)) - 2:(Ot(2):53) = 0 .
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The structure constant 6.Fin (2A,6K,22Z) = 22 = ICFi22 (22Z)I· Now the only max­

imal subgroups of Fi 2z containing elements of order 22 are isomorphic to 2·U6 (2).

However, 6K n 2·U6 (2) = 0 and therefore 6.*(Fi 22 ) = 6.(Fin ) = 22. Thus Fi 22

is (2A, 6K, 22A)-generated. Finally, 6. Fi22 (2A, 6K, 30A) = 30 = I:(at (2):53 ), The

non-generation by the other triples follows from Lemma 3.1.7.

From 6K n 2·U6 (2) = 0 it follows that none of the proper subgroups of Fi 22 is

(pY, 6K, 22A)-generated, for all classes pY with prime order representatives. Since

the structure constants are positive for all these triples (cf. Table 10.V), it follows

from Lemma 2.3.8 that Fi 22 is 6K-complementary generated. This proves the result.

o
We have now proved that Fi 22 is (2A, nX, tY)-generated and hence (2A, tY, nX)­

generated, for n ::; 6, if and only if (2A, nX, tY) = (2A, 6K, 22Z). Thus to show

that Fi 2z is not (2A, nX, tY)-generated, for n 2 7, n -; 22, we only need to consider

classes tY for t 2 7.

Lemma 10.5.7 The group Fi 22 is pX-complementary generated, where p is a prime,

if and only if pE {7, 11, 13}.

Proof The cases for the primes p ::; 5 were discussed above. We showed in the

previous sections that Fi 22 is (pX, 7A, 13Z)-generated for classes pX, where the prime

p ::; 5. Furthermore, the (2A, 7A, 13Z)- and (7A, llZ, 13A)-generations of Fi 22 also

imply (13Z, 7A, 2A)-, (llZ, 7A, 13A)- and (7A, 7A, 13Z)-generation of Fizz. Thus we

have proved that Fi 22 is 7A-complementary generated.

\Ve calculate the structure constants 6.Fi22 (llA, llB, l3Z) = 133391950848 and

6. Fi22 (13A, 13B, 22A) = 382022479872. Since no proper subgroup of Fi 22 has or­

der divisible by 11 X 13, these triples generate Fi 22 • Arguments similar to the case

p = 7 will show that Fi 22 is llZ- and 13Z-complementary generated, proving the

result. 0

Lemma 10.5.8 The group Fi 22 is 8X -complementary generated if and only if X E

{C,D}.

Proof We first consider the class 8A. The structure constant 6. Fi22 (2A, 8A, lOB) = 45

and I:(2·U6(2)) = 25. Therefore 6.*(Fi 22 ) ::; 45 - 25 < ICFi22 (10B)1 = 40, prov-
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ing non-generation. Next we calculate ~Fi22(2A, 8A, 12K) = 36 = ICFi22 (12K)I·

However, I:(0;(2):S3) = 12 and non-generation follows. Similarly, we calculate

~Fi22(2A,8A, 18D) = 36 = ICFin (18D)1 and L:(2·U6 (2)) = 18, proving non-generation.

Furthermore, ~Fin (2A, 8A, 22A) = 22 = I:(2·U6 (2)). The remaining triples are elim­

inated by Lemma 3.1.7. Thus Fi 22 is not 8A-complementary generated.

For the class 8B the only triples of the form (2A, 8B, tY) that we need to consider

are those for which tY E {llA, llB, 14A, 21A.}. Our calculations yield

6.Fi22 (2A, 8B, llZ) = 22 = I:(2·U6 (2)) ,

6.Fi22 (2A.,8B,14A) = 14 = I:(2·U6 (2)),

6.Fin (2A,8B,21A) = 21 = L:(ot(2):S3)'

Therefore Fi 22 is not SB-complementary generated.

For the classes SC and 8D it is immediate from Tables 10.V and 10.VI that

YE {C,D}

for every class pX with elements of prime order. This proves the result. 0

Lemma 10.5.9 The group Fi 22 is 9X -complementary generated if and only if

X = C.

Proof. We calculate 6. Fi22 (2A, 9A, 20A) = 20 and L:(07(3)) = 10. Non-generation of

Fi 22 by this triple follows since 6.*(Fin ) ::; 20 -' 10 < ICFin (20A)I. Furthermore,

6.Fi22 (2A,9A,22A) = 22 = I:(2·U6 (2)). We also calculate 6.Fi22 (2A,9A,24B) = 48 =

ICFin (24B)I. However, I:(0;(2):53) = 24 and non-generation follows. Next we

calculate 6.Fin (2A,9A,30A) = 70, l:(2·U6 (2)) = 40 and E(Ot(2):S3) = 30. Now the

only maximal subgroups of 0;(2):53 containing elements of order 30 are isomorphic

to 0;(2):2. However, 9A. n 0;(2):2 = (/) and therefore I:*(0;(2):53 ) = 30 and

L:(2·U6 (2) n 0;(2):53 ) = O. Therefore 6.*(Fi 22 ) = 0, proving non-generation. The

fact that Fi 22 is not 9A-complementary generated now follows from Lemma 3.1.7.

vVe now consider the class 9B. The structure constant 6.Fin (2A, SD, 9B) = 324 and

ICFi22 (X)1 = 162, where x E 9B. Consider the subgroup 5 ~ 59 with 5 < 0 7 (3).

Then we calculateI:(5) = 6.s(2a, 8a, 9a) = 9. For any maximal subgroup Ms of 5 (cf.
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ATLAS), the permutation character of 8 on the conjugates of 1\15 gives XMs(nx) = 0,

for nx E {2a, 8a, 9a}. Thus no subgroup of 8 is (2a, 8a, 9a)-generated and hence

I:*(S) = 9. Let N = NFi22 (S). Then S ~ N ~ M, for some maximal subgroup

1\1 of Fi 22 . From the fusion map of the group S9 into the maximal subgroups of

Fi 22 we conclude that M =0;(3), Ot(2):83 or 810 . Now 9B n Ot(2):83 = 0 and

consequently 1\1 =F Ot(2):83 . On the other hand, the S9 subgroups of 0;(3) and 810

are maximal in those groups, respectively. Since 8 is not normal in either 0;(3) or

8 10 , it follows that IV = 8. From Theorem 3.1.4 we conclude that a fixed element

x E 9B is contained in 18 conjugate copies of 8. Since 5 1:. 2.U6 (2) we obtain

6.Pin (2A, 8D, 9B) < 6.(Fi22 ) - L:(2.U6 (2)) - 18L:*(S)

324 - 54 - (18 x 9)

108 < ICFi22 (X)I.

Thus Fi 22 is not (2A, SD, 9B)-generated and hence not (2A. 9B, SD)-generated.

Next we calculate 6.Fin (2A. 9B, 7A) = 42 = ICFi22 (7A)I and I::(2·U6 (2)) = 14 from

which non-generation by this triple follows. Let 0 1 and O2 be subgroups isomorphic

to 0;(3) from different conjugate classes. 'vVe calculate 6. Fi22 (2A, 9B, 13Z) = 26,

I:( 0;(3)) = 13 and L:( 0 1 n O2 ) = 0 (cf. Lemma 10.5.7), proving non-generation.

For the triple (2A, 9B, 9C) we use MeatAxe and GAP on the representation of

Aut(Fi22 ) given by the 78-dimensional matrices a and b (cf. Lemma 10.2.2). We

calculate 6.Fi22 (2A, 9B, 9C) = 54 and

Let y = (bab2a)2, and x = a=7, where z = ay4ay y. Then o(y) = 9 and Cv(y) = 8, where

V is the irreducible module for Fi 22 of dimension 78 over the field GF(2). Now since.

b2 E 9A and CV (b 2
) = 10, it follows that y E 9BU9C. Let w = bab- 1 . Then o(xy) = 9

and o(wxy) = 13. Furthermore, if we let K = (w,xy), then K:::; Fin and K contains

elements of order 11 and 13. Since no proper subgroup of Fi 22 contains elements of

order 11 and 13, we have K =Fi 22 . Now Cv(xy) = 8 so that xy E 9B U 9C. But

Fin is not (2A, 9B,13Z)-generated and consequently xy E 9C. ~/loreover, if yE 9C,

then xy = yh, for some h E Fin, and hence 6. Fin (2A, 9C, 9C) > O. However,

we calculate 6. Fi22 (2A, 9C, 9C) = 0 and therefore (x, y) E 2A x 9B with xy E 9C.
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Let H = (x, y). Then H < Fi 22 and H ~ 0 7 (3), since H contains elements of

order 5, 7, and 13, whereas no proper subgroup of 0 7 (3) contains elements with

these orders. Therefore ~* (07 (3)) = ~(07 (3)) and hence no proper subgroup of

0 7 (3) is (2a, 9d, 9c)-generated. In particular, ~(01 n O2 ) = 0, and consequently

6 Pi22 (2A, 9B, 9C) = 0 and non-generation follows.

vVe also calculate

6Fi22 (2A, 9B, llZ) = 22 = ~(2·U6(2)),

6Fi22 (2A, 9B, 15A) = 30 = ~(2·U6(2)),

6Fin (2A,9B,20A) =20= 2:(07 (3)).

Moreover,

6Fi22 (2A, 9B, lOA) - 2:(2·U6 (2)) = 70 - 30 < ICFi22 (10A)1 = 60,

~Fin(2A,9B, 12I) - 2:(2·U6 (2)) = 96 - 48 < ICFin (12I)1 = 96 ,

~Fin(2A, 9B, 14A) - 2:(07 (3)) = 21 - 14 < ICFin (14A)1 = 14.

The non-generation of the remaining triples follows from Lemma 3.1. T. Thus Fi 22 is

not gB-complementary generated.

Using the permutation character of Fi 22 on the conjugates of 2·U6 (2) we deduce that

9C n 2·U6 (2) = 0. Therefore ~Pin (pX, 9C, 22A) = t:l(Fi22 ), for all classes pX. The

9C-complementary generation of Fi 22 follows from Table 10.V. This proves the result.

o

Lemma 10.5.10 The group Fi 22 is 10X-complementary generated for all X E {A, B}.

Proof It is immediate from Table 10.V and 10.VI that

for all classes pY with elements of prime order. The result follows. 0

Lemma 10.5.11 The group Fi 22 is 12X-complementary generated if and only if X E

{E, .. .,!{}.
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Proof The structure constant D.Fin (2A, 12A, tY) < ICFi22 (tY)I, for all conjugacy

classes tY with t 2: 7, and therefore Fi 22 is not 12A-complementary generated.

We now consider the class 12B. Applying Lemma 3.1.7 we are left with the classes

tY E {20A,30A}. Our calculations give

D.Fi22 (2A,12B,20A) - ~(ot(2):S3) = 25 - 20 < ICFin (20A)1 = 20,

D.Fi22 (2A, 12B, 30A) - ~(ot(2):S3) = 50 - 30 < ICFin (30A)1 = 30 .

Thus Fi 22 is not 12B-complementary generated.

For the class 12C we calculate D.Fin (2A, 12C, 14A) = 14 = ~(ot(2):S3)' Also

D.Fi22 (2A, 12C, 18C) = 54 = ICFi22 (18C)I· However, ~(ot(2):S3) = 18 and non­

generation follows. The fact that Fi 22 is not 12C-complementary generated now

follows from Lemma 3.1.7.

Next we consider the class 12D. Vile calculate

D.Fin (2A, 12D, 7A) - ~(2,U6(2)) = 49 - 35 < jCFin (7A)I = 42 ,

D.Fi22 (2A, 12D,8C) - ~(2·U6(2)) = 128 - 64 < ICFi22 (30A)1 = 128.

Also

D.Fi22 (2A, 12D, llZ) = 22 = ~(2·U6(2)),

D.Fin (2A, 12D, 14A) = 28 = l:(2·U6(2)),

D.Fi22 (2A, 12D, 18C) = 54 = l:(2·U6(2)) ,

D.Fi22 (2A, 12D, 21A) = 21 = ~(ot(2):S3)'

The other triples are immediately eliminated by Lemma 3.1.7. Thus Fi 22 is not
12D-complementary generated.

Let X E {E, F}. Then 12X n 210 :M22 = 0 and 12X n M12 = 0. Therefore

for every class pY.

For X E {G, J}, we have 12X n 2·U6(2) = 0. Therefore D.Fin (pY, 12X, 22..1)
D.(Fi 22 ), for every class pY.
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For X E {H, I} we have

6.Fi
2

2 (pY, l2X, 22A) = 6.(Fi 22 ) - E(2·U6 (2)) .

The power map yields (12K)2 = 6K and from Lemma 2.3.9 we deduce that Fi 22 is

l2K-complementary generated. The result follows from Tables lQ.V and lQ.VI. 0

Lemma 10.5.12 The group Fi 22 is l5A-complementary generated.

Proof It is clear from Table lQ.V and 1Q.VI that

6. Fi22 (pX, 15A, 22A) = 6.(Fi 22 ) - E(2·U6 (2)) > 0 ,

for all classes pX with elements of prime order. The result follows. 0

Lemma 10.5.13 The group Fin is 18X -complementary generated for all X E

{A, ... ,D}.

Proof The subgroups 210 :M22 and kI12 contain no elements of order 18 and therefore

6.Fi
22

(pX, 18A, llA) = 6.(Fi 22 ) - E(2·U6 (2)) ,

for all classes pX. Since (18B)-1 = 18A, the above relation holds if we replace

18A by 18B. The intersection of the class 18C with the maximal subgroup 2·U6 (2) is

empty and therefore 6. 'Fin (pX, l8C, 22A) = 6.(Fi 22 ). For the class lSD, the following

relation holds;

6. Fi22 (pX, 18D, 22A) = 6.(Fi22 ) - E(2·U6 (2)) ,

for all classes pX. The result now follows from Table IQ. V and 10. VI. 0

Lemma 10.5.14 The group Fi 22 is 24X -complementary generated for all X E{A, B}.

Proof The subgroup 2·U6 (2) does net contain elements of order 24 and from Table

IV we obtain 6.Fin (pX, 24X, 22A) = .6.(Fi22 ) > 0, for all classes pX with elements

of prime order. The result follows. 0

Proof of Theorem 5.1. The power maps of Fi 22 yield (14A)2 = 7A, (16A)2 = 8C =
(16B)2, (20A)2 = lOB, (21A)3 = 7A, (22A)2= llB, (22B)2 = 11A and (30A)2 =

15A. An application of Lemma 2.3.9 to Lemmas 10.5.8, 10.5.9, 10.5.11 and 10.5.13

gives complementary generation of these classes. The theorem now follows from

Lemma 10.5.3 to 10.5.15. 0
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TABLE 10.V
Structure constants of Fi22

pX t::..Pi" (pX, 6K, 22A) t::..Pi 22 (pX, 8C, 22A) t::..Pi 22 (pX, 8D, 2204) t::..Pi 22 (pX, 9C, 2204)

2A 22 55 88 132
2B 4224 6446 36784 45144
2C 169290 304403 1121208 1350756
3A 11704 16280 101376 121968
3B 120340 219208 786368 948816
3C 1951840 3066624 14344704 17081856
3D 17691168 31109760 115061760 136667520
5A 478887552 775988224 3362596864 3985293312
7A 7025356800 11701352960 48037017600 56932761600
11A 13415124096 22335548928 91720521728 108690937344
11B 13416093504 22335548928 91720521728 108688884480
13AB 22992076800 38799129600 155196518400 183936614400
pX t::..Pi 22 (pX, lOA, 22A) t::..Pi,,(pX, lOB, 22A) t::..Pi,,(pX, 12EF, 11A) t::..Pi,,(pX, 12G, 22A)

2A 88 44 33 44
2B 16555 36168 6798 5280
2C 624140 888140 257697 264132
3A 43879 98912 18304 13904
3B 444235 615120 183172 189992
3C 7086717 12431232 2949232 2703008
3D 63873018 88691328 26583744 27570048
5A 1724212545 2793824000 718502400 689762304
7A 25291363999 38922270464 10538035200 10401177600
11.'1 48284361983 74304378368 20119435776 19858037760
11B 48284361983 74304378368 20119663872 19858493952
13AB 82771476480 124157214720 34488115200 34488115200
pX t::..Pi,,(pX, 12H, 22A) t::..Pi,,(pX, 12/, 22A) t::..Pi 2 , (pX, 121,22.4) t::..Pi 2,(pX, 15A, 11A)
2A 55 44 44 121
2B 10560 10340 16632 40216
2C 392733 386408 502524 1217260
3A 27984 27808 45408 108944
3B 279378 274428 352704 855360
3C 4447080 4428864 6390912 15358464
3D 39960096 39869280 51194880 123019776
5A 1077753600 10i7888064 1494484992 3586373120
7A 15807052800 15807077440 21349785600 51239564288
11A 30174629760 30178665088 40761667584 97823154176
11B 30174971904 30178665088 40761667584 97823154176
13AB 51732248832 51732172800 68976230400 165542952960



10.5. N X -COMPLEMENTARY GENERATIONS OF F h2 179

TABLE 10.V (Cont.)

pX LlFi,,(pX, 18AB, l1A) t:.Fi" (pX, 18C, 22A) t:.Fi" (pX, 18D, 22A)

2A 55 110 66
2B 9504 14355 39600

2C 352242 703890 987822

3A 24816 37587 108240

3B 250932 506055 685212
3C 3957888 7214889 13782912
3D 35560800 73504530 98572320
5A 957889152 1839600477 3103588224
7A 14050713600 27736495875 43247001600
l1A 26821010304 52954704099 82565163648
l1B 26820497088 52953677667 82563624000
13AB 45984153600 91968307200 137952460800

pX t:.Fi,,(pX, 24A, 22A) D.Fi,,(pX, 24B, 22A)

2A 88 44
2B 20680 29216
2C 772816 734756
3A 55616 80608
3B 548856 509256
3C 8857728 10315008
3D 79738560 73846080
5A 2155776128 2327678848
7A 31614154880 32435201920
l1AB 60357330176 61927672576
13AB 103464345600 1034643465600

TABLE 10.VI
Structure constants L:(2·U6 (2))

pX L:2U6(2)(pX, 8C, 22A) ~2.U.(2)(pX, 8D, 22A) L:2.U6 (2)(pX, lOA, 22A)

2A 11 44 44
2B 990 3960 3619
2C 8767 35068 36608
3A 1848 7392 7007
3B 3080 12320 12705
3C 73920 295680 303501
3D 0 0 0
5A 4790016 19160064 20177927
7A 20528640 82114560 87585905
llA 13060608 53242432 55337051
lIB 13066240 53264960 55337051
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TABLE 10.VI (Cont.)
Structure constants L:(2·U6 (2))

pX I:2.U6(2)(pX, lOB, 22A) I: 2U6 (2)(pX, 12EF, llA) I:2.U6 (2)(pX, 12H, 22A)

2A 22 11 33
2B 3520 1166 1936
2C 27610 11055 17523
3A 7040 2376 3080
3B 10252 3960 5786
3C 244464 95040 145376
3D 0 0 0
5A 15601696 6336000 9491328
7A 65700096 27371520 41057280
llA 42550464 17487360 25844544
11B 42550464 17487360 25844544

pX L: 2U6 (2)(pX, 15A, 22A) L: 2U6 (2)(pX, 18AB, 11A) L: 2.U6 (2)(pX, 18D, 22A)

2A 33 33 44
2B 2024 2200 3608
2C 19976 5016 30492
3A 3344 3872 6336
3B 6600 7040 10560
3C 157344 171776 261888
3D 0 0 0
5A 10121408 11252736 17031168
7A 43788800 48660480 72990720
llA 27251840 30716928 46531584
llB 27251840 30716928 46531584



Chapter 11

The Spread of the Sporadic Simple

Groups

It is shown by Binder in [10] and [11] that for any two non-trivial elements Xl and

X2 of the symmetric group Sn, n > 4, there exists a third element y such that

Sn = (Xl, y) = (X2' y). This work inspired the following definition by Brenner-vViegold

[19] .

Definition 11.0.1 Let r be any positive integer. A finite non-abelian group G is said

to have spread r, if for every set {Xl, X2, .•. , xr } of distinct non-trivial elements of G,

there exists ayE G such that G = (Xi, y) for all i. We say that G has exact spread t

if G has spread t but not t + 1.

The element y in the definition we will refer to as complementary. Let [r denote

the collection of all non-abelian finite groups having spread r. Clearly r r+l ~ rr

for each r. We may therefore conclude from Lemma 2.3.6 that if G E f r , then G is

subdirectly irreducible and G j G I is cyclic.

The content of Binder's cited work shows that the symmetric groups S2n E [2 \f3,

while S2n+l E [3\f4, apart from a few exceptions. The spread of the alternating

groups are radically different to that of the symmetric groups. Brenner-Wiegold [19],
[20] proved that the alternating groups A2n E [4 \[5, n ~ 4, and A2n+1 E [3, n ~ 4.

Furthermore, the group A19 has spread r = 17!j(34 6!) -1, but not spread r +4. This

181
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suggests that the spread of A2n+1 tends to infinity with n. It is also proved that for

q a prime-power (q 2: 11, if q is odd and q 2: 4, otherwise) the group PS L(2, q) has

exact spread

q -1 if q == 1 (mod4),

q-4 if q == 3 (mod4),

q-2 if q is a power 2.

The following result refines the definition of the spread of a finite group. A special

case of this result can be found in Woldar [181].

Lemma 11.0.15 A finite non-abelian group G has spread r if and only if for every

set {Xl, X2, ... , x r } of distinct elements of prime order in G, there exists an element

y E G such that G = (Xi, y) for all i.

Proof The sufficiency condition is trivial. Conversely, let {Zl' Z2, ... , zr} be any set of

distinct non-trivial elements of G. Then there exists positive integers mi (i = 1, ... , r)

such that z;n' = Xi and o( Xi) = Pi, where Pi is prime. Thus by assumption there exists

y E G such that G = (Xi, y) = (zi', y) ~ (Zi' y) ~ G. Thus G = (Zi' y) for all i. 0

11.1 Main Result

We now restrict ourselves to the finite simple groups of spread 1 and 2. Let r~k) be

the collection of all finite non-abelian groups with the property that G E r~k) if and

only if every non-trivial element of G together with an element of order k generate

the group G. If k > 2 and G is kX-complementary generated, then G E r~k). If G

contains a unique conjugacy class with elements of order k and G E r~k), then G is

kX-complementary generated. However, this is not the case where k = 2. Brenner­

Wiegold [19] proved that

PSL(2,q) E r(2) except when q = 2,3,9,I ,

PSL(n,q) rj. r(2) q odd and n > 2, orI ,

q arbitrary and n > 3,

PS L(3, 23
)

E r(2) if and only if s = 1.I ,
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Moreover, they proved that every solvable group of spread 1 is already of spread 3.

This led Brenner-Wiegold [19] to pose the following problems concerning the spread.

Problem 3: Which groups lie in f 1\f 2 (that is, exact spread 1)? In particular, is

this set perhaps finite?

Problem 4: Are almost all finite simple non-abelian groups in f~2) projective special

linear groups?

Suppose G E f 2 , H is a normal subgroup of G, and {xH,yH} be a set of non­

trivial distinct elements in G/ H. Let z E G such that G = (x, z) = (y, z). Then zH

together with xH or yH generate the G/ H. If K is a maximal normal subgroup of

G, then G/ K is a simple group with spread 2. Thus every group of spread 2 is an

extension of a simple group of spread 2. Therefore in order to solve Problem 3, we

need to find all finite non-abelian simple groups of spread 1 and 2. As noted earlier,

the symmetric group Sn, the alternating group An and the linear group PS L(2, q) do

not have exact spread 1. Woldar [181] proved that the sporadic simple groups have

spread 1 and we will now show that the sporadic simple groups do not have exact

spread 1.

Theorem 11.1.1 Every sporadic simple group has spread 2.

"Ve first set up the tools needed to prove this theorem. Let G be a sporadic

simple group, and {x, y} c G any two-element set of prime order elements. We hope

to establish the existence of an element z E nX such that z lies outside every maximal

(so every proper) subgroup of G which contains x or y. Clearly any such z will be

complementary, whence G has spread 2.

For a E G, define

nX(a) = {z E nX IG = (a, z)}.

Clearly, if

InX(x)1 + InX(y)j > InXI, (11.1)

then there exists z E nX such that G = (x, z) = (y, z). If this is true for every pair

of elements {x, y} of prime order, then G has spread 2. Thus our aim is to find lower

bounds for InX(x)l, for every prime order element.
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Let x E qY, where q is a prime, and let {M1 , •.• , i\!Is } denote a complete set

of pairwise non-conjugate maximal subgroups of G which contain x, and set Yi =

IMi n nX I. Let hi be the number of conjugates of Af; containing x. Then l: hiYi
is an upper bound for the number of elements of nX which lie in some maximal

subgroup of G which contain x. That is, InX - nX(x)1 :::; l:hiYi. Hence

s

InX(x)l?:: InXI-l:hiYi.
i=1

The values of hi and Yi are easily computed by the formulae

(11.2)

!lV[i!
and Yi = l: IC (')1 '

j M; YIJ

where {XlI, XI2, ... } are representatives of the conjugacy classes of elements of 1\1i that

fuse to qY and {Yll' Y12, ...} are representatives of the conjugacy classes of elements

of l'vli that fuse to nX. Note that the lower bound for jnX (x) I given by (11.2) is the

same for all elements belonging to the conjugacy class qY. Thus to establish that G

has spread 2 we only need to verify the relation (11.1) for one representative from

each conjugacy class with prime order elements.

Proof of Theorem 11.1.1: Let G is a sporadic simple group, other than M12 and the

Monster, and choose nX in relation (11.1) to be the conjugacy class pA, where p

is the largest prime divisor of IGI. Then it is easy to check from Tables 11.1 and

l1.II that the relation (11.1) holds for any two representatives {x,y} belonging to

conjugacy classes with prime order elements. Thus G has spread 2. For the group

M12 we choose nX to be the conjugacy class lOA. Then it follows from relation (11.1)

and Tables 11.1 and l1.II that M 12 has spread 2.

For the Monster M we choose nX to be the conjugacy class 71A. The existence of .

the subgroup £2(71) in the Monster NI is a difficult open problem. First suppose that

£2(71) is not a subgroup of lvI. In this case the conjugates of the Sylow normalizer

N lvf ( (y)) ~ 71:35, where Y E 71A, from the unique conjugacy class of maximal

subgroups of M that contains elements of order 71. Then it is easy to show (similar

to the argument used for the Baby Monster B) that ivI has spread 2.
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G nX

M ll 11A

M12 lOA

J1 19A

M22 11A

h 7A

M23 23A

HS HA

h 19A

M24 23A

MeL HA

He 17A

Ru 29A

SuZ 13A

Q'N 31A

C03 23A

CO2 23A

Fin 13A

HN 19A

Th 31.'1

Ly 67A

Fin 23A

COl 23A

J4 43A

Fi24 29A

B 47A

M 71A

185

TABLE 11.1

Order of conjugacy classes of the sporadics

InXI
720

9504

9240

40320

86400

443520

4032000

2643840

10644480

81648000

237081600

5031936000

34488115200

14865016320

21555072000

1839366144000

4962885888000

14370048000000

2927288512512000

772614612000000

177803064056217600

180772904632320000

2018036535955292160

43282955489333162803200

88399605983540982791012352000000

11380527109781871491358590210728320521207808000000000

On the other hand, assume £2(71) is a subgroup of i\![. Then £2(71) is a maximal

subgroup of M and by the ATLAS 71:35 S; £2(71). Now ICL2 (71)(y)1 = 71 and

therefore Y = IM n 71.4.1 = 352800. Let x E qY be an arbitrary element of prime
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order. Then
h = L ICM(x)1 < IC (x)!

k ICL2 (71)(Xik)! - M ,

where {Xll, X12""} of representatives of the conjugacy classes of elements of £2(71)

that fuse to qY. Now it follows easily from the ATLAS that hY ~ IC...,t{x)IY < ~171AI

for all conjugacy classes qY with prime order representatives. From this observation

relation (11.1) easily follows, whence j\;[ has spread 2. This completes the proof. 0

TABLE l1.II

G qY Mi hi Yi LhiY;

M11 2A L2 (11) 4 60 240

3A L2 (11) 3 60 180

5A L2 (11) 2 60 120

11AB L2 (11) 1 60 60

M12 2A /vll0 :2 6 144 2592
M10 :2 6 144'
2 x 55 36 24

2B MlO :2 10 144 3168
MlO :2 10 144
2 x 55 12 24

3A /vl I0 :2 3 144 864
MlO :2 3 144

3B 2 x 55 3 24 72

5A MlO :2 1 144 312
MlO :2 1 144
2 x 55 1 24

11AB 0 0 0 0

J l 2A 19:6 20 6 120

3A 19:6 10 6 60

5AB 0 0 0 0

7A 0 0 0 0

11A 0 0 0 0

19ABC 19:6 1 6 6
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TABLE l1.II (Cont.)

G qY M i hi Y; LhiY;

M 22 2A £2 (11) 32 60 1920

3A £2 (11) 6 60 360

5A £2 (11) 2 60 120

7A 0 0 0 0

11A.B £2 (11) 1 60 60

h 2A U3 (3) 20 864 23040
£3(2):2 120 48

2B £3(2):2 20 48 960

3A U3 (3) 10 864 8640

3B U3 (3) 4 864 3744
£3 (2):2 6 48

5AB 0 0 0 0

5eD 0 0 0 0

7A U3 (3) 2 864 1176
£3(2):2 1 48

M23 2A 0 0 0 0

3A 0 0 0 0

5A 0 0 0 0

7AB 0 0 0 0

11AB 23:11 5 11 55

23AB 23:11 1 11 11

HS 2A M 22 20 40320 1036800
Mu 160 720
Mu 160 720

2B 0 0 0 0

3A Mn 10 40320 432000
lv[u 20 720
M 11 20 720
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TABLE 11.1I (Cont.)

G qY M; h; Y; Lh;Y;

HS 5A 0 0 0 0

5B 0 0 0 0

5C M22 5 40320 208800
M 1l 5 720
M 1l 5 720

7,1 M22 2 40320 80640

11AB M22 1 40320 41760
lvl11 1 720

Mu 1 720

h 2,1 £2 (19) 96 180 34560
£2 (19) 96 180

3,1 0 0 0 0

3B £2 (19) 27 180 9720
£2 (19) 27 180

5AB £2(19) 3 180 1080
£2(19) 3 180

17AB 0 0 0 0

19AB £2 (19) 1 180 360
£2(19) 1 180

M24 2A M23 8 443520 3548160

2B £2 (23) 320 264 84480

3A M23 6 443520 2661120

3B £2 (23) 42 264 11088

5A M23 4 443520 1174080

7AB M23 3 443520 1330560

11A M23 2 443520 888360
£2(23) 5 264

23AB M23 1 443520 443784
£2(23) 1 264
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TABLE 11.II (Cont.)

G qY Mi hi Yi Lh;Yi
MeL 2A Mll 840 720 9072000

M,!.2 105 40320
Mn 105 40320

3A 0 0 0 0

3B Mll 54 720 2216160
Mn 27 40320
1\·In 27 40320

5A 0 0 0 0

5B Mll 5 720 406800
Mn 5 40320
M22 5 40320

7AB M22 2 40320 161280
;'v1n 2 40320

llAB MII 1 720 81360
Mn 1 40320
M22 1 40320

He 2A 54 (2):2 154 115200 17740800

2B 54 (2):2 42 115200 4838400

3A 54 (2):2 42 115200 4838400

3B 0 0 0 0

5A 54 (2):2 8 115200 921600

7A 0 0 0 0

7B 0 0 0 0

7e 0 0 0 0

7D 0 0 0 0

7E 0 0 0 0

17AB 54 (2):2 1 115200 115200

Ru 2A 0 0 0 0

2B L2 (29) 4160 420 1747200
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TABLE I1.II (Cont.)

G qY Mi hi Y; LhiY;

Ru 3A £2(29) 144 420 60480

5A 0 0 0 0

5B £2(29) 40 420 16800

7A £2(29) 6 420 2520

13A 0 0 0 0

29AB £2(29) 1 420 420

Suz 2A G2 (4) 54 19353600 1104814080
£3(3):2 34560 864
£3(3):2 34560 864

2B G2 (4) 42 19353600 830753280
£2 (25) 6720 1800
£3(3):2 3360 864
£3(3):2 3369 864

3A G2 (4) 162 19353600 3135283200
3B £3(3):2 324 864 559872

£3(3):2 324 864

3C G2 (4) 18 19353600 349161840
£2 (25) 270 1800
£3(3) :2 180 864
£3(3):2 180 864

5A G2 (4) 12 . 19353600 232372800
£2(25) 72 1800

5B G2 (4) 2 19353600 38728800
£2(25) 12 1800

7A G2 (4) 4 19353600 77414400
11A 0 0 0 0

13AB G2 (4) 1 19353600 19360728
£2(25) 3 1800
£3(3):2 1 864
£3(3):2 1 864
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TABLE 11.II (Cont.)

G qY Mi hi Y; LhiY;

D'N 2A £2(31) 5040 480 4838400
£2(31) 5040 480

3A £2(31) 216 480 207360
£2 (31) 216 480

5A £2(31) 24 480 23040
£2 (31) 24 480

7A 0 0 0 0

7B 0 0 0 0

llA 0 0 0 0

19ABC 0 0 0 0

31AB £2 (31) 1 480 690
£2(31) 1 480

C03 2A M23 1080 443520 479001600

2B 0 0 0 0

3A 0 0 0 0

3B M23 162 443520 71850240

3C 0 0 0 0

5A 0 0 0 0

5B M23 20 443520 8870400

7.4 M23 6 443520 2661120

llAB M23 2 443520 887040

23AB M23 1 443520 443520

CO 2 2A 0 0 0 0

2B M23 15360 443520 6812467200

2C 0 0 0 0

3A 0 0 0 0
3B 1\123 864 443520 383201280

5A 0 0 0 0
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TABLE 11.II (Cont.)

G qY M; hi Y; :L h; Y;

CO2 5B M23 40 443520 17740800

7A M23 4 443520 1774080

llA M23 2 443520 887040

23AB M23 1 443520 443520

Fin 2A 0 7(3) 1408 352719360 993257717760
0 7(3) 1408 352719360

2B 2 F4 (2)' 5184 1382400 187758673920
0 7(3) 256 352719360
0 7(3) 256 352719360

2C 2 F4 (2)' 1152 1382400 91888680960
0 7(3) 128 352719360
0 7(3) 128 352719360

3A 0 7(3) 112 352719360 79009136640
0 7(3) 112 352719360

3B 0 7(3) 148 352719360 104404930560
07(3) 148 352719360

3C 0 7(3) 49 352719360 34566497280
0 7(3) 49 352719360

3D 2 F4 (2)' 162 1382400 9394652160
0 7(3) 13 352719360
07(3) 13 352719360

5A 2 F4 (2)' 12 1382400 3543782400
0 7(3) 5 352719360
0 7(3) 5 352719360

7A 07(3) 3 352719360 2116316160
0 7(3) 3 352719360

11AB 0 0 0 0

13AB 2 F4 (2)' 1 1382400 706821120
0 7(3) 1 352719360
0 7(3) 1 352719360
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TABLE 11.II (Cont.)

G qY M; h· Y j l: hi Y;•
HN 2A 0 0 0 0

2B U3(8):3 800 870912 696729600

3A U3(8):3 1500 870912 1306368000

3B U3(8):3 210 870912 182891520

5A 0 0 0 0

5B 0 0 0 0

5C 0 0 0 0

5D 0 0 0 0

5E 0 0 0 0

7A U3(8):3 20 870912 17418240

llA 0 0 0 0

19AB U3(8):3 1 870912 870912

Ly 2A 67:22 181440 22 39916800

3A 0 0 0 0

3B 0 0 0 0

5A 0 0 0 0

5B 0 0 0 0

7A 0 0 0 0

llAB 67:22 15 22 330

31A 0 0 0 0

31B 0 0 0 0

31C 0 0 0 0

31D 0 0 0 0

31E 0 0 0 0

37AB 0 0 0 0

67ABe 67:22 1 22 22
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TABLE 11.II (Cont.)

G qY M; hi Y; I:h;Y;

Th 2A 25 :£5 (2) 2169 30965760 67164733440

3A 25:£5(2) 3159 30965760 97820835840

3B 0 0 0 0

3C 25:£5(2) 486 30965760 15049709280
31:15 23328 15

5A 25:£5(2) 100 30965760 3096588000
31:15 800 15

7A 25:£5 (2) 42 30965760 1300561920

13A 0 0 0 0

19A 0 0 0 0

31AB 25:£5 (2) 3 30965760 92897295
31:15 1 15

Fi23 2A 211 ·M23 142152 908328960 129120778321920

2B 211 ·M23 214731 908328960 195046385909760

2C 211 ·M23 6507 908328960 5914000097280
£2(23) 13271040 264

3A 0 0 0 0

3B 0 0 0 0

3C 211 ·M23 6561 908328960 5959546306560

3D £2 (23) 3149280 264 831409920

5A 211 ·M23 210 908328960 190749081600

7A 211 ·M23 30 908328960 27249868800

11A 211 ·M23 4 908328960 3633321120
£2 (23) 20 264

13AB 0 0 0 0

17A 0 0 0 0

23AB 211 ·M23 1 908328960 908329224
£2(23) 1 264
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TABLE 11.II (Cont.)

G qY M; hi 1'; Lhi 1';

COl 2A CO2 2280 1839366144000 5565186205286400
C03 30720 21555072000
M24 32535 21799895040

2B M24 4095 21799895040 89270570188800

2C CO2 264 1839366144000 568606662328320
C03 2048 21555072000
Af24 1783 21799895040

3A 0 0 0 0

3B CO2 378 1839366144000 775817049047040
C03 2016 21555072000
M24 1701 21799895040

3C CO2 27 1839366144000 50438868480000
C03 36 21555072000

3D C03 120 21555072000 5529594470400
M24 135 21799895040

5A 0 0 0 0
5B CO2 12 1839366144000 26293994496000

C03 120 21555072000
i\!l 24 75 21799895040

5C CO2 25 1839366144000 46199704320000
C03 10 21555072000

7A 0 0 0 0
7B CO2 21 1839366144000 39535429570560

C03 28 21555072000
M24 14 21799895040

11A CO2 6 1839366144000 11230926981120
C03 6 21555072000
M 24 3 21799895040

13A 0 0 0 0
23AB CO2 1 1839366144000 1882721111040

C03 1 21555072000
M24 1 21799895040
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TABLE l1.II (Cont.)

G qY Mi hi Y; LhiY;

J4 2A 0 0 0 0

'2B 43:14 129761280 14 1816657920

3A 0 0 0 0

5A 0 0 0 0

7AB 43:14 180 14 11760

l1AB 0 0 0 0

23A 0 0 0 0

29A 0 0 0 0

31ABC 0 0 0 0

37ABC 0 0 0 0

43AB 43:14 1 14 14

Fi~4 2A 0 0 0 0

2B 29:14 11466178560 14 160526499840

3A 0 0 0 0

3B 0 0 0 0

3C 0 0 0 0

3D 0 0 0 0

3£ 0 0 0 0

5A 0 0 0 0

7A 0 0 0 0

7B 29:14 882 14 12348

l1A 0 0 0 0

13A 0 0 0 0

17A 0 0 0 0

23AB 0 0 0 0

29AB 29:14 1 14 14
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TABLE 11.II (Cont.)

G qY M; h; Y; Lh;Y;

B 2ABCD 0 0 0 0

3AB 0 0 0 0

5AB 0 0 0 0

7A 0 0 0 0

HA 0 0 0 0

13A 0 0 0 0

17A 0 0 0 0

19A 0 0 0 0

23AB 47:23 22 23 506

31A 0 0 0 0

47AB 47:23 1 23 23
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Notation and conventions

Throughout this thesis all groups will be assumed to be finite non-abe1ian groups,

unless otherwise stated. We will use the notation and terminology from the ATLAS

[43].

IN

Z

Q rational numbers

R real numbers

C complex numbers

G, H, M groups

la identity element of G

H ::; G H is a subgroup of G

H < G H is a proper subgroup of G

H 3:: G H isomorphic to G

(x, y) the subgroup generated by x and y

G:H split extention of G by H

G· H non-split extent ion of G by H

H9 conjugate of the subgroup H in G

nX a general conjugacy class of G with representatives of

order n

nXYZ a the conjugacy class nX or nY or nZ

)



nx

A

.6.(G) = .6.a(lX, mY, nZ)

.6.*(G)

'L,(H1 U. ... U Hr)

'L,*(H)

o(x)
Ca(x), Ca(nX)

Na(H)

f, n

If\

I rr( G)

XH

(Xi,Xj)

dim(VjCv(nX))
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a general conjugacy class of a subgroup H of

G with representatives of order n

{(x, y) E lX x mYI xy = z}, where z is a fixed

element of the class nZ

the structure constant of G

the number of pairs in the set A that generate G

the number of pairs in A that generate subgroups of

Hi

the number of pairs in A that generate H

order of x E G

the centralizer of x E nX in G

the normalizer of the subgroup H in G

sets

the cardinality of the set f

cycle structure of a permutation

the set of irreducible characters of G

the permutation character of G on the conjugates of the

subgroup H

the restriction of the character X of G to the subgroup H

an irreducible character of G of degree n

the innerproduct of the characters Xi and Xj

the co-dimension of the centralizer of nX in the module V

diheral group of order 2n
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