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Abstract

The work presented in this thesis is centred on the generation of superimposed optical fields
which each carry orbital angular momentum (OAM) and the development of OAM
measurement techniques. Optical fields which carry OAM have found applications ranging
from optical tweezing to quantum cryptography. Due to the fact that they offer a potentially
infinite-dimensional state space, much interest has been generated in the measurement of OAM
in optical fields, in order for higher-dimensional quantum information processing to be realised.
In this study we generate superpositions of higher-order Bessel beams and show that even
though we can create a field which carries no overall OAM, we can still witness an angular
rotation in the intensity profile of the beam. We also develop two new OAM measurement
techniques: (1) a robust odd-even-OAM interferometer and (2) a method to measure the OAM
density of an optical field by means of a single spatial light modulator (SLM).

In the first chapter we give an overview of the literature regarding optical OAM, followed by
the derivation of the Helmholtz wave equation from Maxwell’s equations. We illustrate that
helically-phased beams, having a phase factor of exp(ilf), possess a well-defined OAM.
Definitions for the fundamental Gaussian mode, as well as two OAM-carrying modes:
Laguerre-Gaussian (LG) and Bessel-Gaussian (BG) modes are also given. Since a majority of
this thesis involves generating superimposed OAM fields as well as the measurement of OAM,
chapter 2 contains detailed discussions on the optical components used to generate and measure
OAM. In section 2.9 we present one of our contributions to the field of OAM-measurement,
which involves a stable Dove-prism embedded Mach-Zehnder interferometer, capable of sorting

41 OAM states into odd and even ports with a contrast ranging from 92% to 61%.

We implement the Dove prism embedded Mach-Zehnder interferometer to mimic an amplitude
damping channel for OAM states in chapter 3. Our device is useful in modelling a ‘lossy’
environment for OAM states. In chapter 4 we develop a new technique for the generation of
superimposed Bessel beams through the use of a single digital hologram and theoretically and
experimentally show that even though the superimposed Bessel beams can be constructed to
produce no overall OAM, a rotation in the beam’s intensity profile is still present, as the field
propagates. This rotation is due to the differing longitudinal wave-vectors present in the field
and we make quantitative, experimental measurements of the angular rotation rates, which are
in very good agreement with our theoretical predictions. We also show that the far-field of these

superimposed Bessel beams, exhibit no rotation in their intensity profile and we offer a
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theoretical explanation for this occurrence. In chapter 5, we adapt our technique for generating
superimposed Bessel beams to create non-diffracting speckle fields, which are known to possess
optical vortices, and show that by controlling the standard deviation of the phase distribution
within the digital hologram, we are able to control the evolution of the non-diffracting speckle
field into a non-diffracting zero-order Bessel beam. Our final chapter contains a novel technique
for the measurement of the OAM density of optical fields, by implementing two optical

components: an SLM and a lens.
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List of Figures

Fig. 1.4.1. (a) Cross-sectional profile and (b) transverse profile of the intensity of a Gaussian

beam.

Fig. 1.5.1. Transverse intensity profiles of LG,, modes. The corresponding indices, / and p, are

given as inserts.

Fig. 1.5.2. (a) Cross-sectional profile and (b) transverse profile of the intensity of a LG, beam.
Fig. 1.5.3. (a) Cross-sectional profile and (b) transverse profile of the intensity of a LG, beam.
Fig. 1.5.4. Top row: Phase profiles for various vortex modes. The red arrow denotes the rotation
in the phase profile. Middle row: Corresponding transverse intensity profiles for the various
vortex modes. Bottom row: Corresponding wavefronts for the various vortex modes, courtesy

of [36].

Fig. 1.6.1. (a) Cross-sectional profile and (b) transverse profile of the intensity of a zero-order

Bessel beam.

Fig. 1.6.2. (a) Cross-sectional profile and (b) transverse profile of the intensity of a higher-order

(I =3) Bessel beam.

Fig. 2.2.1. Schematic illustrating the principle behind how (a) a hologram is constructed and (b)

then used to form the desired object beam.

Fig. 2.3.1. Photograph of a HoloEye SLM, marking the circuit board, flex-cable and liquid

crystal display (of which an enlarged view is contained as an insert in the bottom right corner).
Fig. 2.3.2. Representation of an individual pixel in the liquid crystal display.

Fig. 2.3.3. A schematic, illustrating that the grey value present in the hologram is translated into

an electric field applied across an array of liquid crystal molecules. This results in the molecules
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tilting in the direction of the applied electric field, thus changing the refractive index of the

liquid crystal pixel and consequently the phase of the incident wave.

Fig. 2.3.4. Photograph of the SLM, illustrating the diffraction orders due to the pixelation of the
device. An intensity profile of the field, reflected from the liquid crystal display, is shown as an

insert.

Fig. 2.3.5. (a) The computer-generated hologram addressed to the SLM so as to produce the
NLC logo (f). (b) — (e) the grating which is placed over (a) so as to separate the first diffraction
order from the zero diffraction order, illustrated in (g) — (j). The red arrow marks the

undiffracted Gaussian spot.

Fig. 2.4.1. Top row: A series of computer-generated holograms, with increasing / (from left to
right), with accompanying experimentally recorded vortex modes (bottom row). For the
recording of the experimentally produced modes (bottom row) a blazed grating was used (this

will be discussed in section 2.4.2).

Fig. 2.4.2 Top row: illustrates the mode (c) that is produced when a Gaussian beam (a)
illuminates a spiral hologram (b). Adding a grating to the spiral hologram, as in the insert of (e),

the undiffracted and diffracted components separate, as in the insert of (f).

Fig. 2.4.1.1. Top row: A mode produced by a displaced spiral hologram accompanied with a
cross-sectional intensity profile (taken across the white dotted line). Middle row:
Experimentally recorded (fop) and theoretically calculated (botfom) intensity profiles for
holograms displaced at a distance of 0.0 mm, 0.04 mm and 0.08 mm. Bottom row: Plot of the
percentage of vortex mode present in the superposition, as a function of the displacement

distance. The green curve is the theoretical result and the red dots are the measured data.

Fig. 2.4.2.1. Left: A blazed grating. Right: A cross-sectional profile of the blazed grating (taken

across the red dotted line on the left).

Fig. 2.4.2.2. A series of blazed spiral holograms for [ =-3 to 3.
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Fig. 2.4.2.3 Blazed spiral holograms having the following grating spacings (a) 50 pixels; (b) 9
pixels; (c) 7 pixels; and (d) 4 pixels. An insert of the required vortex mode produced by

hologram (a) is given. The mode produced by hologram (d) is also given as an insert.

Fig. 2.4.2.4. A photograph, with accompanying labels, illustrating the detection of a / = 1 vortex
mode. The red arrows mark the direction of the beam, as well as the two diffraction orders after

SLM 2. The prism (P) speeds up the diffraction of the two orders.

Fig. 2.5.1. A series of fork holograms for [ = -3 to 3.

Fig. 2.5.2. Left: A sinusoidal grating. Right: A cross-sectional profile of the sinusoidal grating

(taken across the red dotted line on the left).

Fig. 2.5.3. A schematic illustrating the diffraction orders that are produced when a Gaussian

beam, / = 0, illuminates a fork hologram, having a charge of Am = 1.

Fig. 2.5.4. A schematic illustrating how a fork hologram can be used to detect a vortex mode of

charge —Am.

Fig. 2.6.1. (a) A photograph of a SPP courtesy of [25]. (b) Schematic of the mechanism of a
SPP courtesy of [26].

Fig. 2.8.1. (a) The effect a single Dove prism has on the phase profile of a beam. (b) Schematic
of the ‘odd-even OAM sorter’ (BS: beam-splitter, M: mirror, DP: Dove prism).

Fig. 2.8.2. Experimental results of the interferometer sorting various vortex modes. The even
vortex modes (/ = 0, 2 and 4) exit in port A and odd vortex modes exit in port B as expected

[13].

Fig. 2.9.2.1 (a) and (b) The phase-rotating prism, illustrating how its orientation can make it
either insensitive to a vertical or horizontal displacement, respectively. (c) A photograph of the

robust ‘odd-even OAM sorter’. The white arrows denote the direction of the beam.

Fig. 2.9.3.1. Schematic of the robust ‘odd-even OAM sorter’ (M: mirror, BS: beam-splitter, RP:
right-angled prism, A: output port A, B: output port B).
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Fig. 2.9.3.2. (a). The measured fringe contrast as a function of /. (b) Some experimental results
of the interferometer sorting various vortex modes. The even vortex modes (I = 0, 6 and 12) exit

in port B and odd vortex modes (/ = 3, 9 and 15) exit in port A.

Fig. 3.2.2.1. Schematic of the OAM amplitude damping channel. (BS: beam-splitter, M: mirror,
DP: Dove prism, PM: phase mask). The labels A and B denote the optical path and are

associated as the ground state of the environment|K :0> and the excited state of the

environment| K= 1> , respectively.

Fig. 3.2.3.1. Photograph of the interferometer used in the OAM amplitude damping channel.
(BS: beam-splitter, M: mirror, DP: Dove prism). The labels A and B denote the optical path.

Fig. 3.2.3.2. Plot of the power of the beam in port A (light blue points) and port B (light green
points) for various values of f. The dark blue line (dark green line) is the mean of all the

measured powers in port A (port B).

Fig. 3.2.3.3. Plot of the power of the beam recorded in port A (orange) for various values of S.

The results follow the trend of that given in Eq. (3.2.2.4), PA~coszﬁ. (red).

Fig. 3.2.3.4. Plot of the power of the beam recorded in port B (grey) for various values of 5. The
results follow the trend of that given in Eq. (3.2.2.5), Py~sin’ p. (black).

Fig. 4.1.1. An adaptation of Durnin’s ring slit experiment [1]. (b) and (c): [lluminating the
physical ring-slit aperture, with a beam whose angular spectrum carries an azimuthally varying

phase, generates higher-order and superpositions of higher-order Bessel beams.

Fig. 4.2.1. A schematic of the generation of the annular field, propagating from near- (P,) to far-
field (P;). The green (red) rays denote the rays originating from the outer (inner) ring-slit. The
three rings (at the bottom of the schematic) aid the illustration, as to how the annular fields
overlap and become completely indistinguishable as the propagation from the aperture

increases.

Fig 4.2.2. The transmission function described in Eq. (4.2.1) for an azimuthal mode index of / =

3.
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Fig. 4.2.3. (a) A density plot and (b) a cross-sectional plot of the ring-slit aperture described in
Eq. (4.2.3) for the following parameters: ring-slit radius, Ry = 2, ring-slit width, A = 0.5 and

gradient, n = 10 (the units are arbitrary).

Fig. 4.3.1. The experimental setup for generating a superposition of higher-order Bessel beams,
by using a physical ring-slit aperture and a hologram. The interferometer used to interfere the
field produced at the Fourier plane with a plane wave is denoted in the red overlay. (M: mirror;
BS: beam-splitter; L: lens and D: diaphragm). (f; = 10 mm, f; = 150 mm, f3,=100 mm, f,=75mm
and f5 = 200 mm).

Fig. 4.3.1.1. First column: Holograms applied to the SLM. Second column: The observed
intensity pattern observed in the Fourier plane. Third column: The theoretical prediction
of the superposition field. Fourth column: The interference pattern of the superposition
field and a plane wave. Data is shown for (a) — (d): Ao, (e) — (h): As, (i) — (I): A4 4, (m) —
(p): Az 4, and (q) — (t): A4,. The ring field is shown as a red overlay on the hologram.

Fig. 4.3.1.2. (a) Hologram applied to the liquid crystal display. The red overlay denotes the
section of the hologram which was illuminated by the ring field. (b) The experimental beam

cross-section of the field produced at the Fourier plane and the theoretically calculated field (c).

Fig. 4.3.1.3. Images of the intensity profile of the experimentally produced field A; 3
captured at intervals along its propagation. The grey area denotes the region in

which the Bessel field exists.

Fig. 4.4.1.1. In order to reproduce Durnin’s ring-slit experiment [1] either (a) the light can be
suitably apertured by a physical ring-slit aperture; or (b) complex amplitude modulation can be
used on a phase-only SLM to execute both the amplitude and phase transformations in one step.

The inset in (b) shows the checkerboard pattern used to modulate the amplitude.

Fig. 4.4.1.2. (a) The complex plane representation; the angles, ¢, and ¢,, for each vector, A; and
A,, represents a phase value in the hologram. The resultant amplitude, A, is denoted by the blue
vector. (b) The checkerboard hologram and (c) the corresponding Fourier plane, illustrating that
the light is distributed off of its propagation axis. (d) A plain black hologram. (e) The Fourier

transform of the hologram in (d) illustrating an on-axis intensity component.
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Fig. 4.4.2.1. A schematic of the experimental setup for investigating the field formed by a ring-
slit hologram, as well as the propagation and Fourier transform of such a field. L: Lens (f; = 25
mm; f, = 75 mm; 3 = 100 mm and f; = 100 mm); M: Mirror; LCD: Liquid Crystal Display; D:
Diaphragm; CCD: CCD Camera. The planes of interest are marked P, P, and P;. P; is the
Fourier plane of the ring-slit hologram; P, is the relayed-field (in both phase and amplitude) at

the ring-slit hologram; and P, occurs a distance of 2f after L,.

Fig. 4.4.3.1. First row: The ring-slit holograms addressed to LCD,. A zoomed-in section of
three and four ring-slits are depicted as inserts ((1g) and (1h)). Second and third rows: The
experimentally produced and theoretically calculated fields produced in the Fourier plane (i.e.
plane P;), respectively. Fourth and fifth rows: The experimental and theoretical fields,
respectively, produced at plane P;. The white “X” marks the singularities. Sixth and seventh

rows: The experimental and theoretical fields, respectively, produced at plane P,.

Fig. 4.4.3.2. (a) - (k) Images of the intensity profiles of the experimentally produced field, for l/|
= 3, captured at intervals along its propagation. The yellow ‘X’ denotes a selected petal.
Monitoring its change in position illustrates a rotation in the field as it propagates. (1) The initial

Gaussian beam which illuminated the SLM.

Fig. 4.4.3.3. Graph of the angular position of a selected petal as a function of the propagation
axis z. (Ill= 3 and Ak = 66 m™)

Fig. 4.4.3.4. Graphs of the rotation rates, for various differences between the two radial wave-

vectors, as a function of the azimuthal order, l/I.

Fig. 4.4.3.5. Graphs of the rotation rates, for various azimuthal orders lIl, as a function of the

difference, Ak, between the two radial wave-vectors.

Fig. 4.4.3.6. Video clips containing experimental images, captured at intervals along the beam’s
propagation, for fields generated from holograms having the following parameters (a) lipner = +3;
Lower = =3 and (b) Liner = —3; Lower = +3. In the electronic version of this thesis the videos may be

viewed at the following links: (a) Medial and (b) Media2.

Fig. 4.4.3.7. (a) The experimentally recorded field at plane P, for a ring-slit consisting of the

following azimuthal phases: [, = +3 and Iy = -3. The theoretical prediction is given as an
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insert. The red, dashed ring marks the line for which the intensity profile is plotted (b). (b) The
solid black curve is the experimental intensity profile and the red dashed curve is the theoretical

intensity profile, cos(210).

Fig. 4.4.3.8. Experimental intensity profiles of the field captured at evenly spaced intervals from
plane P, to plane P,. The distances from plane P, are given as (a) O mm, (b) 10 mm, (c) 20 mm,
(d) 30 mm, (e) 40 mm, (f) 50 mm (g) 60 mm and (h) 70 mm. The white arrows illustrate the

movement of a selected singularity. Inserts are given for the theoretical predictions.

Fig.4.4.3.9 First column: The ring-slit hologram applied to LCD,. Second column: The
corresponding optical fields for the ring-slits. The white arrows mark the locations of the
singularities. Third column: The Fourier transform of the ring-slit hologram. Fourth column:
The corresponding field, produced at plane P,. The white arrow marks the handedness of the

spokes. Theoretical predictions are accompanied as inserts.

Fig. 5.2.1. The experimental design for generating non-diffracting speckle. The physical ring-
slit (RS) which can be introduced into the optical setup when needed is denoted inside the red
border. (L: lens (f; = 25 mm; f, = 150 mm; f; = 50 mm; f; = 50 mm; f5s = 200 mm); M: mirror;

SLM: spatial light modulator; O: objective; CCD: CCD camera).

Fig. 5.2.2. Column I: Random holograms which were illuminated with a ring field, denoted in
red. Column 2: The corresponding experimentally measured Fourier transform. Column 3: The
same random holograms as those in column 1, but with the checkerboard encoded. Column 4:

The experimentally measured Fourier transform of column 3.

Fig. 5.2.3. (a) The ring-slit hologram applied to the SLM. (b) The corresponding experimentally

produced field in the Fourier plane and (c) the theoretically calculated field at the Fourier plane.

Fig. 5.3.1. Column I: Ring-slit holograms, where the phase modulation within the ring-slit is
described by a continuous uniform distribution (the frequency of the phase modulation increases
with each row, (a) and (c) 10 pixels; (e) and (g) 50 pixels; (i) and (k) 100 pixels). The red ring
denotes the ring-slit. Column 2: The corresponding experimentally recorded field at the Fourier
plane. Column 3: Ring-slit holograms, where the phase modulation within the ring-slit is

described by a binary uniform distribution (the frequency of the phase modulation increases



Xviii

with each row). The red ring denotes the ring-slit. Column 4: The corresponding experimentally

recorded field at the Fourier plane.

Fig. 5.3.2. Column I: Ring-slit holograms, where the phase modulation within the ring-slit is
described by a continuous normal distribution (the frequency of the phase modulation increases
with each row, (a) and (c) 10 pixels; (e) and (g) 50 pixels; (i) and (k) 100 pixels). The red ring
denotes the ring-slit. Column 2: The corresponding experimentally recorded field in the Fourier
plane. Column 3: Ring-slit holograms, where the phase modulation within the ring-slit is
described by a binary normal distribution (the frequency of the phase modulation increases with
each row). The red ring denotes the ring-slit. Column 4: The corresponding experimentally

recorded field in the Fourier plane.

Fig. 5.3.3. Graph of the standard deviation for each of the four distributions as a function of the

frequency of the phase modulation (or correlation radius).

Fig. 5.3.4. Simulated images for the non-diffracting speckle field, for each of the four
corresponding distributions. Row I: continuous uniform. Row 2: binary uniform. Row 3:
continuous normal. Row 4: binary normal. The standard deviation increases from left to right.

The values for the standard deviation are given in the bottom right corner of each image.

Fig. 6.2.1. (a) A schematic of the generation of the optical field and the decomposition of its
OAM spectrum. (b) The Gaussian beam used to illuminate the hologram, (c), for the generation
of the optical field, (d), defined by u(r,6,z). The hologram, having a transmission function of
t(r,0), in (e) together with the lens L, performs the decomposition (Eq. (6.2.10)), producing the
inner-product, P, represented in (f) and mathematically defined by u(p,,z). (SLM: spatial light
modulator and O: objective — used to magnify the optical field (d)).

Fig. 6.3.1. A schematic of the experimental setup for measuring the OAM density as a function
of the radial position, R. L: Lens (f; = 25 mm; f, = 150 mm; f3 = 200 mm and f; = 200 mm); M:
Mirror; LCD: Liquid Crystal Display; O: Objective; PM: Pop-up Mirror; CCD: CCD Camera.
The objective, O,, was placed at the Fourier plane of lens, L4. The corresponding optical fields

and holograms appear at the appropriate planes.

Fig. 6.3.2. The initial optical field was divided radially into individual ring-slits. The phase

within the annular ring was varied azimuthally for various values of /. The rest of the LCD was
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programmed with a checkerboard pattern so as to restrict the transmission function to the ring
alone. The ten rings have the following radii: r; = 600 um, r, = 880 um, r3= 1160 um, r,= 1440
pum, rs= 1720 um, rg= 2000 um, r; = 2280 um, rg= 2560 pm, ro= 2840 pm and r;p= 3120 um.
The black and white images in rows 2 and 4 are grey-scale experimental images of the first

optical field that we tested.

Fig. 6.4.1. First column: Holograms and the corresponding experimentally produced fields in
the Fourier plane (second column) accompanied with theoretically calculated fields (third
column). The white dots in (c) denoted the radial positions of each of the ten ring-slits used as

the match-filters.

Fig. 6.4.2. The measured OAM spectrum of the field given in Fig. 6.4.1 (b), as a
function of the radial ring (or radial position), given by numbers 1 to 10, for azimuthal
phase values of m = —4 to 4. The height of each bar represents the measured coefficients
la,, .

Fig. 6.4.3. (a) A density plot of the OAM density for the field given in Fig. 6.4.1 (b). Red
denotes negative OAM and blue denotes positive. Light to dark blue denotes an increase in
positive OAM and light to dark red denotes an increase in negative OAM. (b), (c) and (e) the
OAM density for the fields in Fig. 6.4.1.(b), (e) and (h), respectively. The blue curve denotes
the theoretical OAM density and the red points the experimentally measured OAM density.
Inserts for density plots of the OAM density for (c) and (e) are given as inserts, (d) and (f),

respectively.

Fig. 6.4.4. (a) The hologram used to generate the experimental field in (b). The theoretically
calculated field is given in (c). A magnification of the ring-slit is given as an insert in (a). (d)
The theoretical (blue curve) and experimentally measured (red points) OAM density. (e) A
density plot of the OAM density. Red denotes negative OAM and blue denotes positive. Light
to dark blue denotes an increase in positive OAM and light to dark red denotes an increase in

negative OAM.

Fig. 6.4.5. (a) The hologram used to generate the experimental field given in (b) of which the
theoretical field is represented in (c). A magnification of the ring-slit is given as an insert in (a).
(d) The theoretical (blue curve) and experimentally measured (red points) OAM density. (e) A
density plot of the OAM density. Red denotes negative OAM and blue denotes positive. Light
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to dark blue denotes an increase in positive OAM and light to dark red denotes an increase in

negative OAM.

Fig. 6.4.6. (a) The hologram used to generate the experimental field given in (b) of which the
theoretical field is represented in (c). A magnification of the ring-slit is given as an insert in (a).
(d) The theoretical (blue curve) and experimentally measured (red points) OAM density. (e) A
density plot of the OAM density. Red denotes negative OAM and blue denotes positive. Light
to dark blue denotes an increase in positive OAM and light to dark red denotes an increase in
negative OAM.

Fig. Al.1. A schematic of the calibration experiment.

Fig. A1.2. Summary on how a phase shift in one of the beams is directly proportional to a shift

in the interference pattern.

Fig. A1.3. Illustration of how a change in grey-level shifts the interference pattern.

Fig. A1.4. A plot of the 1 D intensity profile of the interference pattern for a particular grey-

level.

Fig. A1.5. A plot of the intensity minima pixel position as a function of the grey-level.

Fig. A1.6. Example of calculating the phase shift.

Fig. A1.7. Plot of the measured phase shift (red) and the desired phase shift (yellow).

Fig. A1.8. Plot of the measured phase shift (red) after the voltages have been adjusted
appropriately.

Fig. A1.9. Illustration for how the “2 hole mask” should be illuminated.

Fig. A1.10. Ilustration for a correct and incorrect interference pattern.

Fig. A1.11. Illustration of how to position the two spots on the SLM.



List of Symbols

0: azimuthal angle

[: azimuthal mode index

m: azimuthal mode index

n: azimuthal mode index

p: radial mode index

Am: charge of fork hologram
n: diffraction order

Op: blazed angle

h: Plank’s constant

E : electric field

B : magnetic field

&o: permittivity of free space
Lo: permeability of free space
c: speed of light

Z: propagation axis

k: wave-number

k;: longitudinal wave-number
k,: radial wave-number

o: beam waist

zr: Rayleigh range

u: complex-valued amplitude
A: complex-valued amplitude
I: intensity

J;: Bessel function of order /
a: cone angle

@: angle on complex plane
A: vector on complex plane
¢: phase modulation

t: transmission function

xxi



XXii

Ag: phase difference

p: relative angle between Dove prisms
A, B: output ports

|w): initial quantum state

ps: final quantum state

My, M,: Krauss operators

P: probability

y1: weighting of Gaussian mode

y2: weighting of vortex mode



xxiii

Acknowledgements

I wish to express my sincere gratitude and appreciation to everyone who assisted and supported
me throughout the course of this work. I would like to make special mention of the following

people:

My supervisor, Prof. Andrew Forbes, for all the time and effort he spent in assisting me in my
work. Thank you for being an inspirational mentor and for motivating me to pursue relevant
research. During the course of my PhD, you have taught me to be a more methodical
experimental researcher; an improved scientific writer; a better presenter of my work to a varied

audience; as well as encouraging me to form networks with other researchers in my field.

I am very grateful to the CSIR National Laser Centre for allowing me the opportunity to
conduct this research and for sourcing funding for me to visit laboratories overseas and gain

invaluable experience.

This work has led me to work with many interesting researchers. At the CSIR National Laser
Centre, [ would like to thank Dr F. S. Roux for always assisting and guiding me with theoretical
problems that I encountered. To Prof. Thomas Konrad, my co-supervisor, and Michael Nock, at
the University of KwaZulu-Natal, thank you for all your input and fruitful discussions regarding
the OAM amplitude damping channel. As well as a special thank you to Prof. Konrad for
proofreading my thesis. To our collaborators in Minsk, Ruslan Vasilyeu, Prof. Vladimir Belyi,
Prof. Nikolai Khilo and Dr Piotr Ropot, thank you for all your time and effort in making our
joint work a success. I am very grateful to Prof. Miles Padgett for providing me the opportunity
to spend some time with his group at the University of Glasgow and to Martin Lavery for our

successful work on the robust interferometer.

To my fellow colleagues, Melanie, Darryl and Yaseera, thank you for all your help in the

laboratory and for making the journey through my PhD less daunting and more entertaining.

I am so grateful to my family for their support and for encouraging me to further my studies. To
my parents for teaching me to work diligently and with integrity. Finally, my husband,
Jonathan, thank you for always taking an interest in my research and for providing endless

support while I pursue my goals.



CHAPTER ONE

Orbital Angular Momentum of Light

1.1. Overview

The behaviour of a light beam is governed by Maxwell’s equations, which form the foundation
for the derivation of the Helmholtz wave equation [1]. Maxwell’s formulation of
electromagnetic theory also illustrates that an optical field can have an induced polarization, due
to the field’s electric flux density. The polarization of an optical field is associated with the
field’s spin angular momentum (SAM) and was predicted by Poynting, who introduced the
analogy between circular polarization (a component of SAM) and a rotating object [2]. The first
experimental demonstration of a circularly-polarized light beam transferring SAM to a quarter-
wave plate, was performed by Beth in 1936 [3]. The orbital component of optical angular
momentum, not associated with the polarization of an optical field but rather with its wavefront,
was only discovered nearly 60 years later by Allen et al. They showed that Laguerre-Gaussian
(LG) laser modes, having an azimuthal phase dependence, possess a well-defined orbital
angular momentum (OAM) [4]. LG beams contain a phase singularity, around which the phase
(or wavefront) of the field increases azimuthally, exp(ilf), thus forming an optical vortex. Here [
indicates the azimuthal mode index (or topological charge of the optical vortex) and @ is the
azimuthal angle. The intensity profile of a LG beam appears as a ‘ring’ or ‘donut’, because the
intensity vanishes at the point of the singularity (where the phase or wavefront is undefined),

resulting in a dark core in the centre of the beam.

The discovery made by Allen ef al. was not the first study into helically-phased beams and in
fact they had been investigated for quite some time. Prior to 1992, no correlation to the beam’s
orbital angular momentum was made, but what was of interest to most, was that these helically-
phased beams required a phase singularity (or optical vortex) to propagate as a dark core along
the axis of the beam. Since the centre of the optical vortex possesses zero intensity, it makes
sense that no one noted any angular momentum while studying only the phase singularity. If
they had studied the light surrounding the singularity, they would have noted that it possesses
OAM.



Investigations into singularities present in electromagnetic fields started in the 1970s with Nye
and Berry. They first discovered that sound waves scattered off a rough surface produced
intensity nulls around which the phase varied from O to 2z [5]. Later Nye and Berry discovered
that phase singularities could also be produced by interfering multiple light beams [6]. Currently
it is known that optical fields can be produced to contain multiple singularities, whose
trajectories can form complex 3D shapes. Even though many investigations had been made into
the formation and dynamics of optical vortices none noted that these optical vortices give rise to
an angular momentum within the optical field (independent of the photon spin, associated with

circular polarization).

Since the discovery that LG beams carry OAM of //i per photon [4, 7], numerous techniques for
generating helically-phased beams have been realized. One of the earlier methods involved a
diffractive optical element consisting of a diffraction grating with a fork dislocation [8]. When a
fundamental Gaussian mode is centred on the fork dislocation, a helically-phased beam is
produced as the output. Recently this diffractive optic has been encoded onto the liquid crystal
display of a spatial light modulator (SLM) [9]. Although this method was available at the time
of Allen et al.’s work, they made use of a telescope consisting of cylindrical lenses which
transforms Hermite-Gaussian modes to LG modes [7]. Another approach which seems quite
intuitive, is to pass a plane wave through an optical component which has a helical profile, so as
to impart a helical structure into the phase profile of the beam. An optical element which is
capable of such a transformation is a spiral phase plate (SPP) [10]. All of these methods will be

discussed in chapter 2.

Helically-phased beams in the form of LG modes have opened up many new research areas in
the field of optical angular momentum. Just as Beth was able to witness the transfer of SAM to
a suspended quarter-wave plate, so a similar observation with the transfer of OAM to matter
should also be noted. In a similar fashion to the quarter-wave plate, which is used to generate
circularly polarized light, one would expect to witness a transfer of OAM to the cylindrical lens
mode converter, however this has proved too technically challenging. Alternatively, the transfer
of OAM to matter was demonstrated with the use of an optical tweezer, which involved a
micrometer-sized graphite particle illuminated by a tightly focused LG beam [11]. Since this
demonstration, the field of optical trapping and tweezing has expanded from investigating how
a trapped birefringent particle changes the SAM of a beam, but leaves the OAM component
unchanged [12] to changing the sign of the angular momentum in order to develop optically

driven micro-machines [13].



Helically-phased modes, which possess OAM at the single photon level, have offered a
quantum optical system with a multi-dimensional Hilbert space for the investigations of
quantum entanglement. Quantum entanglement, which is realized through the use of parametric
down conversion, involves measuring a parameter of one of the down converted photons
providing information about the parameter of its entangled photon pair, even though the two
photons are spatially separated. This is not only a natural consequence of conservation of
momentum or energy, but also a demonstration of the Einstein, Podolosky, Rosen (EPR)
paradox [14]. If one were to measure the position of the two entangled photons there would be
strong quantum correlations between the measurements as the two photons are created at the
same lateral position. If one wanted to measure the momentum of each photon, there too would
be strong correlations between the measurements due to the conservation of momentum during
the down conversion process. However, if the decision to measure either the position or
momentum is made at the last minute, this requires that the other entangled photon has a well-
defined position and momentum, which violates the uncertainty principle and validates the
nonlocality of quantum mechanics. This has been demonstrated experimentally with position
and momentum [15] and time and energy [16] and recently OAM [17]. Here it was shown that
strong correlations are present in the OAM states of entangled photon pairs due to the
conservation of momentum during the down conversion process. However, to demonstrate the
EPR paradox they also showed strong correlations with a complementary basis: a superposition

of LG and Gaussian modes.

Since these fields offer an infinite-dimensional state space they provide a larger bandwidth for
quantum cryptography [18-20] leading to many publications being dedicated to the
measurement of OAM in order for higher-dimensional quantum information processing to be a
success. Just as the fork dislocation, when illuminated with a fundamental Gaussian mode, will
produce a helically-phased beam, so the process also works in reverse: a helically-phased beam
illuminating a fork dislocation will produce a Gaussian mode, which when coupled into a single
mode fibre allows for detection [17]. Adaptations to the fork dislocation have been made so as
to produce 2D detection grids [21, 22]. A recent measurement technique has involved
transforming the azimuthal position in an input beam to a transverse position in the output beam
which is then focused to a lateral position [23]. A device which maintains the helical structure
of the beam is a Dove prism embedded Mach-Zehnder interferometer [24 -26]. By setting the

angle between the two Dove prisms appropriately all the odd values of [ will constructively



interfere at one output port, while all the even [ values appear at other output. Some of these

measurement techniques will be discussed in detail in chapter 2.

In this chapter, Maxwell’s equations will be given, leading to the derivation of the paraxial
approximation of the Helmholtz wave equation (section 1.2.). The paraxial approximation of the
Helmholtz wave equation will be used as the basis for investigating phase-structured
electromagnetic waves (section 1.3.). Once the link between optical wavefront and OAM has
been made, particular solutions of the paraxial approximation of the Helmholtz wave equation
will be discussed. We will first discuss Gaussian beams (section 1.4.) as this is the output of the
laser system used in this work. They have a flat wavefront, corresponding to an OAM value of /
= 0, and are often used as the initial beam in most optical setups for generating beams which
carry OAM. Two other modes which will be discussed are LG (section 1.5.) and Bessel beams
(section 1.6.), as they each carry an OAM of /7 per photon and are the two modes implemented
in this thesis. Other beams which have an azimuthal angular dependence of exp(ilf) do exist,
such as Mathieu and Airy beams, but as we have not applied them in this work, they will not be

considered here.

1.2. Maxwell’s equations and the paraxial approximation of

the Helmholtz wave equation

The derivation of the paraxial Helmholtz wave equation begins with Maxwell’s equations in a

vacuum, defined as

V-E=0, (1.2.1)
V-B=0, (1.2.2)
VxE=—a—B, (1.2.3)
ot
VxB:gOyOaa—f. (1.2.4)

&0 and g are the permittivity and the permeability of free space, respectively and are related to

the speed of light in a vacuum, ¢, as follows ¢ = 1/ NE, -



The wave equation is obtained by taking the curl of Faraday’s law of induction (Eq. (1.2.3)) and

making use of the vector identity V x (V X E) =V(V-E)-V’E,

VX(VxE)=—a(VXB) v(v E)—V2E=—3(VXB) (1.2.5)
ot ot
Substituting Eqs (1.2.1) and (1.2.4) into the above equation, yields the wave equation
oE

8(80/‘0 ] 25
-V’E=- = V’E = g,u, (1.2.6)

ot t?

,- 1 9%E
VE-——=0. 1.2.7)
c¢” ot

The Helmholtz wave equation, which is the time-independent form of the wave equation (Eq.

(1.2.7)), is obtained by performing separation of variables on the electric field, so as to remove
the time-dependent component. The electric field (or wave function) E(x, y,2Z,t), can be

separated into spatial (A(x,y,z)) and time (7(¢)) domains
E(x,y,z,t) = A(x,y, )T (@). (1.2.8)
Substituting Eq. (1.2.8) into Eq. (1.2.7) results in

1 9°(Ax,y, 9T (1)) A(x,y,2) 0°T(1) _

Vz(A(X,y,Z)T(t))_C_z at2 :T(t)V2A(x,y,Z)— C2 atz 0 (129)
A(x,y,2) 9°T(1) _ VAx,y,2) _ 1 9°T() ;
T(HOV>A(x,y,2) = -
Oy Ay ) = o ™ TAy o T@) o
2 2
VAxy.s) 1 9°TM) (1.2.10)

Ax,y,2)  T@4) of

In order for the above equation to hold true, both sides, left and right, need to be equal to the

same constant, -k> (chosen only for convenience in the resulting solution)

VAMLY.2) _ o

1.2.11
A(x,y,2) ( )



and

2
1 9TW _ s (1.2.12)
cT@) o

Rearranging Eq. (1.2.11) results in
V2A(x, y.2) +k2A(x, y.2) = (V2 + k2 )A(x, y.2) =0, (1.2.13)

which is the Helmholtz wave equation, where k is the wave-vector and is defined as k = w/c or k

= 27/A.

Within the paraxial approximation, the complex magnitude of the electric field becomes
E(x,y,2)=u(x,y, z7)exp(ikz), (1.2.14)

where u is the complex-valued amplitude which modulates the sinusoidal plane, exp(ikz), and z

is the axis of propagation. Substituting the above form for the electric field (Eq. (1.2.14)) into
the Helmholtz wave equation (Eq. 1.2.13)), yields

V2 (u(x, y, z)exp(ikz)) + k*u(x, y, 2) exp(ikz) = 0

2 2 2 .
exp(iks) J u(x,zy, 2) +8 u(x,zy, 2) +3 u(x,y,zzeXP(lkz) K 2u(x, v, 2)explikz) =0
ox dy 0z
92 9° 9> 0
exp(ikz) ax_2+ay_2 u(x, v, z7) + exp(ikz) az—2+2ika—z—k2 u(x,y,z) +k*u(x,y, z)exp(ikz) =0
9’ 92 92 0
(a—x—2+ay—2Ju(x,y,Z)+(az—2+2lka—z—k2ju(x,y,Z)+k2u(x,y,Z):O
9> 9* 9?7 ou(x,y,z)
= |u(x, y, 2k —22 22 =), 1.2.15
(axz + 5 + aZZJu(x y,2)+2i . ( )

Equation (1.2.15) is the Helmholtz equation, without the paraxial approximation. To
approximate the above equation in the paraxial regime, the following condition which defines

the paraxial approximation is implemented



|E)2u(x, Y, z)| - k|8u(x, Y Z)|.
| 0z’ | | oz

(1.2.16)

The paraxial approximation, described mathematically above, states that the longitudinal
variation in the amplitude, u(x,y,z), is small in comparison to the wavelength of the beam (k =
27/A). Or that the rate of change of the field in the z direction is small compared to the transverse

direction. Therefore the third term in Eq. (1.2.15) is neglected, resulting in

20° 9’ . ou(x, y,2)
(8)6—24'8))—2Ju(x, y, Z)+2lka—Z=0, (1217)

which is termed the paraxial approximation of the Helmholtz wave equation.

The paraxial approximation is used to describe laser beam propagation as the divergence angle
of the beam is considered to be small. There exist many solutions to the paraxial Helmholtz
wave equation (Eq. (1.2.17)), whose amplitude distribution, u(x,y,z), is described by either a
Gaussian, LG, Bessel, Airy (all having cylindrical symmetry) or Mathieu (having elliptic-
cylindrical symmetry) functions. However, we will not discuss all of these solutions; instead we
will focus on the solutions which have been implemented in this thesis, namely: Gaussian

(section 1.4), Laguerre-Gaussian (section 1.5) and Bessel solutions (section 1.6).

1.3. Azimuthal phase dependent beams and their orbital

angular momentum

Since this thesis is dedicated to individual fields carrying OAM and superpositions of these
fields, we will (for the benefit of the reader) illustrate that light, having an amplitude
distribution of the form u(r,p,z) = ug(r,z)exp(ild), will possess OAM. Determining the total
angular momentum density for an optical field has been implemented previously in many
publications [27-35]. In this derivation, we proceed in a similar fashion, by first calculating the
Poynting vector for the beam to illustrate that the OAM density is proportional to I, the

azimuthal mode index.

In order to obtain the Poynting vector, we will start with a vector potential in the Lorentz gauge.

Since we are not concerned with SAM, we will consider only linearly polarized light and in



particular, we will consider the vector potential to be linearly polarized along the x direction

[34]

A(x, v,2) =u(x,y,z)exp(i(kz — ax))x. (L.3.1)

From the vector potential, the components of the electric and magnetic fields in terms of the

complex amplitude distribution, «, can be obtained

Blx.y.9)=VxAx.y.2)= ik exp(i(kz—wr))(u(x, o)y 44 2D 2] (132)
Y
and
— ic? —~ . . _ i du(x,y,2) -
E(x,y,z)=;V><B(x,y,z)=za)exp(z(kz—a)t)) u(x,y,z)x+za—z . (1.3.3)
X

The derivatives of the field in the z direction have been neglected, as we are considering the

paraxial limit.

The time-average Poynting vector, which gives the directional energy flux density, is

determined as

S= <§,> = 8062<Em, xém,>, (1.3.4)

where the real components of the electric and magnetic fields are found to be

E,,=Y(E+E" (1.3.5)
and

B . =L(B+B"), (1.3.6)

real — 2



respectively. By substituting Eqs (1.3.2), (1.3.3), (1.3.5) and (1.3.6) into the equation for the
time-averaged Poynting vector (Eq. (1.3.4)), the following result is obtained

2

§ = 64¢*(E,p % By ) =~ (Ex B+ E"xB) (1.3.7)
N0l A 2
S = 04 (z(uVu —u Vu)+ 2k|u| z) (1.3.8)

The gradient in the above expression only applies in the transverse directions, x and y.

The result for the Poynting vector, as described in Eq. (1.3.8), is now applied to a field
(described in cylindrical coordinates) having an amplitude distribution of u(r,6,z7) =

uo(r,z)exp(ild), resulting in each component of the Poynting vector being expressed as

S, =0, (1.3.9)
l 2
5, =2tk (1.3.10)
2r
S, =keyaug. (1.3.11)

Here the radial component of the Poynting vector vanishes for the nondiffracting case, but is
non-zero for a more general diffracting field. By implementing the following expression for the

total angular momentum density

€

c2

L =—(rxs),, (1.3.12)

and substituting in the components for the Poynting vector, as given in Eqs (1.3.9) to (1.3.11),

we obtain the total angular momentum density to be

2
_ lweyu,

L,
- 2¢?

(1.3.13)

Since, by definition the field has no SAM, the only angular momentum present in the field is

OAM. From Eq. (1.3.13), we see that the OAM density of the beam is well-defined and
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proportional to the integer /, which arises from the azimuthal phase dependence, exp(ilf), of the

amplitude distribution.

1.4. Gaussian beams

The first solution to the paraxial Helmholtz wave equation, that we will consider, is the
Gaussian beam. This is the fundamental mode that we will use in the laboratory to generate
beams having an azimuthal phase dependence in their amplitude distribution. The complete

expression for the amplitude of the Gaussian beam is

_ @ = g
u(r,z)= v exp( wz(Z)Jexp( ik 2RG) qu(Z)J, (4.1

where @ is the minimum beam radius and the expressions for the radius of curvature, R(z),

beam radius, w(z), and Gouy phase ®(z) are given as

R(z)= z(l +i—’§j (1.4.2)
0’ (z) = wg[ué} (1.4.3)
2R
and
®(z)=tan"! [%R] (1.4.4)

2

g = /10 is termed the Rayleigh range and gives a measure as to how quickly a beam will

diverge. If zg is short, the beam will diverge quickly and if it is long, the beam will diverge

slowly.

The optical intensity can be found by making use of the following relationship 1(r,z) = lu(r,2)P%,
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2
w, -2r?
I(r,2) = 0 — 1.4.5
(r,2) [a)(z)] eXP( 2(z)] ( )

The intensity has a Gaussian distribution, with the peak occurring at » = 0 and decreasing

monotonically with an increase in r, evident in Fig. 1.4.1 (a).

(a) I(a.u) (b)

O

rw

1 2

Fig. 1.4.1. (a) Cross-sectional profile and (b) transverse profile of the intensity of a Gaussian

beam.
1.5. Laguerre-Gaussian beams

The previously discussed Gaussian mode is not the only solution to the paraxial approximation
of the Helmholtz wave equation and in fact there exist many other solutions, such as the

Laguerre-Gaussian (LG) mode, whose amplitude distribution is

I
1 / 2p! J2r —r? I 2r? ikr? . .
u,’p(r,0,z)—w(z) ﬂ'(|l|+p)!(a)(z)j exp(w(z)]Lp 2 exp 2RG) exp(il0) exp(—idP(p,l, 2)),

(1.5.1)

where @(p,/,z) is the Gouy phase for the LG mode and is given by
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D(p.l,2)=(2p +l+1)arctan(ij. (1.5.2)
<R

The other parameters, such as R(z) and w(z), are defined as for the Gaussian beam, in Eqs
(1.4.2) and (1.4.3), respectively. The LG modes are appropriately given their name as the
expression is a mixture of a Laguerre polynomial and Gaussian parameters. A LG mode is
described by the indices, [ and p. If the indices are set to zero, [ = p = 0, then the mode

simplifies to a Gaussian mode.

A series of transverse intensity profiles for various values of / and p is depicted in Fig. 1.5.1.
When [ # 0 the intensity profile is described by a central null, whose radius increases with
increasing |/l and the radial index, p, denotes the number of concentric rings, given by p + 1. The
cross-sectional intensity profile for two LG modes having the following indices p =0, / = 1 and
p =0, =2 are given in Figs 1.5.2. and 1.5.3, respectively, to illustrate that the radius of the

annular ring increases with /1.

Fig. 1.5.1. Transverse intensity profiles of LG;, modes. The corresponding indices, / and p, are

given as inserts.
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Fig. 1.5.2. (a) Cross-sectional profile and (b) transverse profile of the intensity of a LG, ¢ beam.

(a) I (a.u.) (b)

0.15¢

-2 -1 1 2

Fig. 1.5.3. (a) Cross-sectional profile and (b) transverse profile of the intensity of a LG, beam.

In this work, we choose to alter only the phase component of our initial Gaussian beam with a
spatial light modulator (this technique will be discussed in detail in chapter 2), and so we are
unable to generate true LG modes, such as that described in Eq. (1.5.1), and instead we generate

an approximation, mathematically described as

u(r,0)=u,(r)exp(il6). (1.5.3)
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u is the amplitude distribution of the approximated LG mode, often termed an optical vortex; uy
is the initial Gaussian amplitude distribution and exp(ilf) is the azimuthally-varying phase

factor, which gives rise to the OAM carried in the optical vortex.

When the mode index / = 0, no azimuthally-varying phase is imparted to the initial Gaussian
beam, uy, resulting in the beam remaining in its initial Gaussian state, having a spherical
wavefront. As lll increases so the azimuthally-varying phase factor, exp(ilf), converts the
spherical wavefront, of the Gaussian beam, into a helical wavefront, where the number of
spirals in the wavefront is given by l/l. The sign of / denotes the handedness of the spiral. A

clockwise rotation can be assigned to a positive / and an anticlockwise rotation to a negative /.

The first row, in Fig. 1.5.4, contains a surface plot of the wavefront of different vortex modes.
This too can be viewed as the phase profile, exp(ilf)), imparted to the initial Gaussian beam. A
wavefront maps out a surface of points, in the wave, all possessing the same phase. The values
for Ill increase from left to right and are given as inserts in the first row. At the centre of each
phase profile, it is evident that the phase is undefined. This manifests as a null in the intensity of
the mode, which is evident in the middle row. The intensity profiles, given in the middle row,
are calculated by implementing Eq. (1.5.3). Corresponding 3D plots of the wavefronts, for each
mode, are given in the bottom row, illustrating that the mode index |/l assigns the number of

spirals in the wavefront and the sign of / its handedness.
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Fig. 1.5.4. Top row: Phase profiles for various vortex modes. The red arrow denotes the rotation
in the phase profile. Middle row: Corresponding transverse intensity profiles for the various
vortex modes. Bottom row: Corresponding wavefronts for the various vortex modes, courtesy

of [36].
1.6. Bessel beams

Another solution to the Helmholtz wave equation, which we are interested in, for their non-
diffracting nature and ability to carry OAM, are Bessel beams. It was Durnin [37] who first
discovered a set of solutions for the free-space Helmholtz equation which are propagation-
invariant and are mathematically described by Bessel functions. Mathematically, these solutions
consist of an infinite number of concentric rings, existing over an infinite area, resulting in the
beam carrying an infinite amount of power. Since this is not physically possible, the Bessel
beam that is generated in the laboratory is an approximation — a Bessel-Gauss beam, whose

field is described as

ulr,0,z]=A % exp| i k—k—’2 2—i®(2)+il0 |J,(k,r (iz/ zg))xexp 1 + ik r2+k’222
T o(2) 2k o N @*(z) 2R(z) K2

(1.6.1)
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A is an amplitude factor, J; is the ™_order Bessel function, k, is the radial wave-vector and @,
is the initial beam waist. The parameters w(z), zz, R(z) and ®(z) have the same definition as for
those presented in section 1.4. When the propagation distance, z, is zero, the field simplifies to a

Bessel function enveloped by a Gaussian beam
2
u(r,6,0) = AJ, (k,r) exp[— [LJ + ize}. (1.6.2)
@y

Both the zero-order and higher-order Bessel beams propagate over an extended distance in a
diffraction free manner. To illustrate the visual distinction between a zero-order and a higher-
order Bessel beam, an example of their cross-sectional and transverse intensity profiles appear

in Figs 1.6.1 and 1.6.2, respectively.

(a)

1 2

Fig. 1.6.1. (a) Cross-sectional profile and (b) transverse profile of the intensity of a zero-order

Bessel beam.
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(a) I(a.u.)

.30}

0.1
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Fig. 1.6.2. (a) Cross-sectional profile and (b) transverse profile of the intensity of a higher-order

(I =3) Bessel beam.

The original method for generating zero-order Bessel beams was introduced by Durnin [38],
when he illuminated a ring-slit aperture in the back focal plane of a lens with a plane wave.
Since then, refractive optical elements, such as axicons [39-41] and diffractive optical elements
such as computer generated holograms [42-47], have been used to generate both zero and
higher-order Bessel beams. In chapter 3 we will illustrate how we generate superpositions of

higher-order Bessel beams.

Another interesting property of these beams, apart from being non-diffracting, is they are self-
reconstructing [48, 49], meaning they are able to reconstruct after encountering an obstacle. The
light rays, forming a Bessel beam, propagate on a cone, so placing an obstacle in the path of the
beam will cause some of the light to be obstructed but the light rays that are not blocked, will

reconstruct to reform the Bessel beam.

1.7. Conclusion

We started the chapter with a literature review of optical OAM (section 1.1), followed by
implementing Maxwell’s equations to derive the paraxial approximation of the Helmholtz wave
equation (section 1.2.). Since beams carrying a phase factor of exp(ilf) are of particular
importance in this thesis, due to the fact that they possess a well-defined OAM, it was shown in

section 1.3 that this phase factor gives rise to OAM in the beam. Some solutions to the
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Helmholtz wave equation, which are implemented in this thesis, such as Gaussian beams

(section 1.4), LG beams (section 1.5) and Bessel beams (section 1.6) were defined.
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CHAPTER TWO

Components to Manipulate Orbital Angular Momentum

2.1. Introduction

Since the discovery that photons in helically-phased light beams have a quantized OAM [1, 2],
researchers have developed techniques to efficiently generate light beams which carry OAM, be
it either a true LG mode or an optical vortex. The generation of such modes has advanced from
cylindrical lens mode converters [1] to spiral phase plates (SPP) [3] and the widely-used fork
hologram [4]. The fork holograms, previously only generated in the form of computer generated
holograms, printed on transparent-film, are now reproduced with a liquid crystal device: a

spatial light modulator (SLM) [5].

Apart from being able to generate beams which carry OAM, there is also a great need to be able
to measure the amount of OAM present in an optical field. The need for measurement
techniques has arisen as a means for higher-dimensional quantum information processing, for
example quantum cryptography [6 — 8], to be a success. Currently, many techniques exist in the
area of measuring OAM, ranging from computer-generated holograms [9-12] to interferometers
[13-15]. The fork hologram, which when illuminated with the output mode from a laser, or
single-mode fiber, produces the required OAM state in the first-diffraction order. This can also
be used in reverse to couple light of a particular OAM state into a single-mode fibre [9].
However, taking advantage of the large state-space offered by OAM requires that at any given
time one must test for all possible states, and in the case of the fork hologram, one can only test
for the OAM state that is encoded in the fork hologram. Attempts to develop more complicated
holograms which test multiple states have been made [10, 11], however their efficiency is
inversely proportional to the number of states being tested. Recently it has been shown that two
SLMs in conjunction with a lens can be used to convert the OAM state of light to a specific
lateral position [12]. Even though this approach proved effective for the separation of eleven
OAM states, it is limited in that the resulting spots slightly overlap. Other techniques have
involved de-multiplexing free-space OAM beams [16], as well as investigating the diffraction

patterns of beams carrying OAM [17]. In all of the previously mentioned measurement
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techniques, the OAM mode is altered during the measurement procedure. An alternative setup
which does not alter the OAM state during the measurement procedure, is a Mach-Zehnder
interferometer with two Dove prisms in each arm [13], which sorts odd and even OAM states

into two separate ports.

All of the above mentioned techniques to generate optical OAM will be discussed in this
chapter. We will first look at how holograms, and in particular digital holograms, are used to
generate, as well as detect, vortex modes. Due to the fact that one can easily compute the digital
hologram one wishes to create, this is the only technique that we implement in this work. The
other two methods for generating vortex modes, SPPs and cylindrical lens mode converters,
although not executed experimentally in this work, will be outlined in sections 2.6 and 2.7,
respectively. The only other technique for measuring OAM modes that will be discussed in this
chapter is the Dove-prism embedded Mach-Zehnder interferometer. The concept behind this
device will be outlined in section 2.8. This interferometer is known to be very unstable and in
section 2.9, we present a new arrangement for a robust “odd-even OAM sorter” [14]. In the
following chapter, chapter 3, we will implement the Dove-prism embedded Mach-Zehnder

interferometer to mimic an amplitude damping channel for OAM modes [18].
2.2. Digital holography

Before discussing the technique of digital holography, it makes sense to first introduce the
principle behind conventional holography. A schematic illustrating the process behind
conventional holography is given in Fig. 2.2.1. Conventional holography involves creating a
hologram by illuminating an object with a laser beam [19]. The interference pattern that is
obtained between the object beam and the reference beam is recorded onto photographic film
and is termed a hologram. By reversing the process and illuminating the hologram (or
interference pattern) with the initial reference beam (at the same angle of incidence as when

producing the hologram), the object beam is reconstructed.
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Fig. 2.2.1. Schematic illustrating the principle behind how (a) a hologram is constructed and (b)

then used to form the desired object beam.

In the case of digital holography one does not need the object beam to physically exist. If the
interference pattern between the reference beam and the object we wish to reconstruct can be
mathematically formulated, the interference pattern can be computed and is often referred to as
a computer-generated hologram. The computer-generated hologram can then be printed onto
photographic film, thus resorting back to the early holography techniques. However, with the
innovation of liquid crystal devices, these computer-generated holograms can be implemented
digitally. The advantage in this technology is that no physical printing of the hologram is
required. Instead a calculated hologram is electronically addressed to a liquid-crystal display
(much like displaying an image on a computer screen), which allows a single liquid crystal
display to be re-used for many different holograms, resulting in no re-alignment of the optical

setup when a hologram is changed.
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2.3. Spatial light modulators

A device which implements liquid crystal technology for the construction of digital holograms
is a spatial light modulator (SLM). It is suitably given its name because it modulates the phase
(and in some cases the amplitude) of an incident beam. The SLM that we utilize in this work is
a HoloEye PLUTO VIS SLM. It is a phase-only device and we use it to alter only the phase
structure of our reference beam. This device can also be used to perform amplitude modulation,

which will be discussed in chapter 4.

A photograph of one of our SLMs appears in Fig. 2.3.1. It consists of a liquid crystal display
which is programmed and addressed by a circuit board via a flex-cable. Mathematically, a grey-
scale interference pattern between our reference beam and the object beam that we wish to
reconstruct is computed and programmed onto the SLM, where we are able to modulate the
phase of our reference beam. The phase of the reference beam is altered according to the shade

of grey present at each pixel of the computer-generated hologram.

Circuitboard

; 4 =

-~

Fig. 2.3.1. Photograph of a HoloEye SLM, marking the circuit board, flex-cable and liquid

crystal display (of which an enlarged view is contained as an insert in the bottom right corner).

The liquid crystal display is the crucial component of the SLM and (in our case) it consists of
1920 x 1080 pixels each having a dimension of 8§ um. The mechanism of the display is based on
electrically controlled birefringence. Each pixel is addressed by two electrodes and the
molecules making up the pixels are aligned parallel to the electrodes, as in Fig. 2.3.2. When the
electrodes are applied with an electric field, the molecules are forced to tilt in the direction of

the electric field.
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Fig. 2.3.2. Representation of an individual pixel in the liquid crystal display.

The grey-scale holograms are represented with 256 grey levels and the voltages across each
pixel are adjusted appropriately according to the shade of grey present at each pixel in the
hologram. This is depicted in Fig. 2.3.3, where black, representing no phase modulation,
requires no voltage to be addressed to the electrodes. Increasing the phase modulation (or grey-
level) involves increasing the voltage applied across the pixels. When no voltage is applied
across the pixel, the molecules remain aligned parallel to the electrodes. As the voltage

increases the molecules tilt further away from their initial orientation.

The incident light needs to be linearly polarized, parallel to the axis of the liquid crystal
molecules (i.e. vertically polarized). When the molecules tilt in the direction of the applied
electric field, the refractive index seen by the light changes accordingly and consequently so

does its phase, evident from the following relationship

5:277[6111. 2.3.1)

o0 represents the phase-shift experienced by the beam; 4 is the wavelength of the incident beam;
d is the optical path length in the liquid crystal pixel and 7 is the refractive index of the liquid

crystal pixel, which is proportional to the voltage applied across the electrodes.
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Fig. 2.3.3. A schematic, illustrating that the grey value present in the hologram is translated into
an electric field applied across an array of liquid crystal molecules. This results in the molecules
tilting in the direction of the applied electric field, thus changing the refractive index of the

liquid crystal pixel and consequently the phase of the incident wave.

From Eq. (2.3.1) it is evident that the phase modulation is dependent on the wavelength of the
incident light. For example, if one requires a grey-level of 128 to represent a 1x phase shift, then
the voltage required to produce this phase shift for a wavelength of 633 nm will differ from that
required for 534 nm. It is for this reason that the user needs to adapt the electro-optical response
of the SLM when switching between different laser sources. The calibration procedure for

optimizing the SLM at a particular wavelength is outlined in appendix Al.

Although SLMs are extremely versatile, they are not free of efficiency problems. The major
concern is that not all of the incident light is diffracted to produce the desired object beam. This
is due to (1) the structure of the liquid crystal display and (2) the diffraction efficiency of the

device.

The liquid crystal display consists of a 2D array of pixels, where the spacing between the pixels
cause the device to operate as a 2D grating, resulting in the light being diffracted into many
orders. Figure 2.3.4 contains a photograph of the SLM, while it is not addressed with a
computer-generated hologram, illustrating how the grid structure of the pixels produces many
diffraction orders. This is also evident in the intensity profile of the field reflected from the
SLM (contained as an insert in Fig. 2.3.4). The other orders, surrounding the bright central spot
are additional diffraction spots from the 2D grating structure. When the incoming light is
incident on a non-pixel (i.e. a space between pixels) the light is lost and not reflected. This is

referred to as the ‘fill factor’, which means that a certain portion of the area of the liquid crystal
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display is covered by pixels while the remaining area by non pixels. This also contributes to the

efficiency problems.

Fig. 2.3.4. Photograph of the SLM, illustrating the diffraction orders due to the pixelation of the
device. An intensity profile of the field, reflected from the liquid crystal display, is shown as an

insert.

The second issue is that the liquid crystal device is unable to diffract the entire incident beam
into the required object beam. These devices are known to have a less than perfect diffraction
efficiency, and in the case of the HoloEye SLM, it has a diffraction efficiency of 80%. This
means that 80% of the incident beam will be diffracted into the required object mode, while the
remaining 20% will consist of the undiffracted incident beam. The field reflected from the
liquid crystal display will consist of a superposition of diffracted object beam and undiffracted
reference beam, which will give rise to a reduction in the quality of the required mode. To
overcome this issue, a grating is placed on top of the computer-generated hologram so as to
separate the diffracted object beam (the first order) from undiffracted reference beam (the zero

order).

To illustrate this, first ignore all the other orders which are introduced due to the pixelation of
the display and consider only the centre on-axis order. Figure 2.3.5 contains an example where a
computer-generated hologram is used to generate our institute’s logo (NLC), when it is
illuminated by a Gaussian beam. When the display contains only the computer-generated
hologram, a Gaussian spot appears in the centre of the object beam. This is the portion of the

incident reference Gaussian beam which has not been diffracted. To separate the diffracted and



29

undiffracted components a grating is placed over the computer-generated hologram. This is
illustrated in columns 2 to 5 of Fig. 2.3.5. By decreasing the grating spacing, the diffracted and
undiffracted components are separated farther apart. It is the diffracted component (the NLC

logo) that moves farther away from the undiffracted stationary Gaussian component.

1l L1

G) ) ) 0) 0)

Fig. 2.3.5. (a) The computer-generated hologram addressed to the SLM so as to produce the
NLC logo (f). (b) — (e) the grating which is placed over (a) so as to separate the first diffraction
order from the zero diffraction order, illustrated in (g) — (j). The red arrow marks the

undiffracted Gaussian spot.

Since a basic understanding of how a SLM works has been given we will move onto the
computer-generated holograms that are produced, so as to realize vortex modes in the
laboratory. The two types of holograms that will be discussed are termed spiral and fork

holograms and the choice for their names will become evident in sections 2.4 and 2.5.
2.4. Spiral holograms

The mode which we are interested in creating is a vortex mode, whose amplitude distribution is
mathematically described by Eq. (1.5.3). Therefore since we use a Gaussian beam as our initial
reference beam, we need only generate a hologram which represents the following transmission

function
1(0) =exp(ilb). 24.1)

A variety of spiral holograms are given in Fig. 2.4.1, accompanied with experimentally
produced vortex modes. As the number of times that the phase in the spiral hologram varies

from 0 (black) to 2z (white), so the topological charge carried by the vortex mode increases.
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Fig. 2.4.1. Top row: A series of computer-generated holograms, with increasing / (from left to

right), with accompanying experimentally recorded vortex modes (bottom row). For the
recording of the experimentally produced modes (bottom row) a blazed grating was used (this

will be discussed in section 2.4.2).

However, as with most computer-generated holograms, if a grating has not been introduced the
vortex mode produced will consist of a mixture of the undiffracted Gaussian beam and the
diffracted vortex mode. This results in [/ individual vortices (or singularities) each of a
topological charge of one, existing in the final mode. This effect is illustrated in Fig. 2.4.2 (c).
To overcome this problem, a grating is added to the hologram so as to spatially separate the
undiffracted and diffracted components. In particular a blazed grating is used, which is

discussed in section 2.4.2.

!

|

|

Fig. 2.4.2 Top row: illustrates the mode (c) that is produced when a Gaussian beam (a)

——
———

illuminates a spiral hologram (b). Adding a grating to the spiral hologram, as in the insert of (e),

the undiffracted and diffracted components separate, as in the insert of (f).
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24.1. Off-axis spiral holograms

The spiral hologram, as given in Eq. (2.4.1), will only form the required vortex mode as long as
the reference Gaussian mode illuminates the centre of the hologram. In other words, the
propagation axis of the Gaussian beam needs to be collinear with the singularity in the spiral
hologram. Any displacement of the initial Gaussian beam off of the singularity in the hologram

produces a superposition of a Gaussian and a vortex mode. This has been noted in Ref. [20].

By measuring the ratio between the maximum and minimum intensities in the annular ring
(illustrated in Fig. 2.4.1.1), the percentages of Gaussian and vortex modes present in the field
can be determined. Figure 2.4.1.1 contains a theoretically plotted intensity profile for a mode
produced by a displaced spiral hologram, where [ = 1, as well as the cross-sectional intensity
profile. The ratio of I, to I, gives the ratio of Gaussian to vortex mode present in the field. The
next two rows contain experimentally recorded and theoretically calculated intensity profiles for
spiral holograms displaced by a distance of 0 mm, 0.04 mm and 0.08 mm. The graph in the
bottom row contains a plot of the vortex percentage present in the superposition, as a function of
the displacement of the singularity in the hologram. The red points are measured results and the

green curve is the theoretical calculation, illustrating very good agreement.
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Fig. 2.4.1.1. Top row: A mode produced by a displaced spiral hologram accompanied with a
cross-sectional intensity profile (taken across the white dotted line). Middle row:
Experimentally recorded (fop) and theoretically calculated (bottom) intensity profiles for
holograms displaced at a distance of 0.0 mm, 0.04 mm and 0.08 mm. Bottom row: Plot of the
percentage of vortex mode present in the superposition, as a function of the displacement

distance. The green curve is the theoretical result and the red dots are the measured data.

2.4.2. Blazed spiral holograms

A blazed grating, unlike a standard grating which consists of a series of sinusoidal grooves, is
constructed in such a way that the grooves have a triangular profile [21] (refer to Fig. 2.4.2.1).

Unlike sinusoidal gratings, which produce a diffraction pattern whose intensity profile is
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described by a Gaussian function around the first diffraction order, a blazed grating transfers
most of the incident light solely to the first diffraction order. The efficiency for the blazed
grating to transmit the light into the first diffraction order is dependent on the blaze angle 6y

(given in Fig. 2.4.2.1).

Fig. 2.4.2.1. Left: A blazed grating. Right: A cross-sectional profile of the blazed grating (taken

O

across the red dotted line on the left).

The expression for a spiral hologram (Eq. 2.4.2) superimposed with a blazed grating is given as

[22]
27
t(r,0)= mod[lﬁ — 7 rcos g, 271'], 24.2.1)

where A is the grating spacing. Examples of holograms (computed with the use of Eq. (2.4.2.1))
are given in Fig. 2.4.2.2, for a set grating spacing of A = 23 pixels. As the value of / increases so
the number of dislocations (or fork prongs) increases. The sign of / denotes whether the prongs

point up (positive) or down (negative).

LS AL

Fig. 2.4.2.2. A series of blazed spiral holograms for / = -3 to 3.

U

There is a limit to the dimension of the grating spacing, A, which can be written to the SLM. If
it is too small, then unwanted dislocations may appear in the hologram, as in the case of Fig.
2.4.2.3 (b) - (d). This will result in unwanted singularities (or vortices) appearing in the desired

mode, where the number of additional vortices is related to the number of unwanted
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dislocations. An example of this is given as an insert in Fig. 2.4.2.3 (d). These interference

patterns (b) — (d) that are formed are termed Moiré patterns [23].

Fig. 2.4.2.3 Blazed spiral holograms having the following grating spacings (a) 50 pixels; (b) 9
pixels; (c) 7 pixels; and (d) 4 pixels. An insert of the required vortex mode produced by

hologram (a) is given. The mode produced by hologram (d) is also given as an insert.

To detect an OAM mode of charge /, a blazed spiral hologram can be used when it is assigned
the complex conjugate of the mode of interest (i.e. (exp(il0))* = exp(-il0)). For example, if one
requires to detect photons having an OAM of [ = 2, then a blazed spiral hologram of Am = -2 is
encoded onto the SLM and a single mode fibre is placed at the first diffraction order to couple

in the Gaussian mode.

Figure 2.4.2.4 contains a photograph of the experimental setup, which we used to detect
incoming vortex modes with the use of a blazed spiral hologram. SLM 1 was used to generate
the vortex mode (the hologram is depicted alongside SLM 1), which was then imaged with a 4f
system to the plane of SLM 2. A 4f lens system was used, as opposed to a 2f system (which
merely images the amplitude), as we wanted to image both the amplitude and phase. The
hologram encoded onto SLM 2 is the complex conjugate of that which was programmed onto
SLM 1 and appears next to SLM 2. After SLM 2, we monitor the two diffraction orders, n = 0
and n = 1, and noted that a Gaussian mode was produced in the 0" diffraction order, resulting in
light being coupled into the single mode fibre. A vortex mode was produced in the first
diffraction order, resulting in minimal light (due to a misalignment in the system) being coupled

into the single mode fibre.
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Fig. 2.4.2.4. A photograph, with accompanying labels, illustrating the detection of a / = 1 vortex
mode. The red arrows mark the direction of the beam, as well as the two diffraction orders after

SLM 2. The prism (P) speeds up the diffraction of the two orders.
2.5. Fork holograms

The next form of hologram that is used to generate vortex modes is a fork hologram. It is very
similar to the blazed spiral hologram, in its appearance, however instead of producing a single
vortex mode in the first diffraction order, vortex modes are produced in all the other diffraction

orders.
The transmission function for a fork hologram, as with all computer-generated holograms, is

produced by determining the interference pattern between a reference beam, in this case a plane

wave, and an optical vortex, resulting in the following transmittance function [24]
; 2
t(r,6)=exp| icos lﬁ—xrcosé’ , (2.5.1)

where A is the grating spacing. Examples of holograms (computed using Eq. (2.5.1)) are given

in Fig. 2.5.1, for a set grating spacing of A = 21 pixels. As the value of [ increases so the
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number of fork prongs increases and the sign of / denotes whether the prongs point up (positive)

or down (negative), just as in the case of the blazed spiral holograms.

T

Fig. 2.5.1. A series of fork holograms for [ = -3 to 3.

The grating used in the fork hologram is a sinusoidal grating and a cross-section of the grating is

given in Fig. 2.5.2.

Fig. 2.5.2. Left: A sinusoidal grating. Right: A cross-sectional profile of the sinusoidal grating
(taken across the red dotted line on the left).

In using the fork hologram, which has a sinusoidal grating, to generate vortex modes, -n to n
diffraction orders are produced. The topological charge of the vortex at each diffraction order is

dependent on the diffraction order, n, and the charge of the fork hologram, Am, as follows [9]

[ =nAm. (2.5.2)

A particular scenario is given in Fig. 2.5.3, when a Gaussian beam (having a topological charge
of [ = 0) illuminates the centre of the fork hologram, Am = 1, and the topological charges of the
vortices at each diffraction order is given by Eq. (2.5.2),1.e. [, =-2,1,=-1,1y=0,/,=land [, =
2. Diffraction orders on either side of n = -2 and n = 2, do exist, but have been omitted for
simplicity. As in the case of the blazed spiral hologram, the incident beam needs to be centred

on the singularity in the fork hologram in order for a pure vortex mode to be produced.
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Fig. 2.5.3. A schematic illustrating the diffraction orders that are produced when a Gaussian

beam, / = 0, illuminates a fork hologram, having a charge of Am = 1.

As well as being used for the generation of vortex beams, the fork hologram can also be used in

reverse to measure topological charges of vortex beams.

In Ref [9], it is stated that: “Reversing this process, a photon with angular momentum Amh
before the grating can be detected by the mono-mode fibre detector placed in the first
diffraction order”. This means that an incident vortex mode, having a charge equal to the
charge of the “fork” hologram, will produce a Gaussian beam in the first diffraction order. The
corresponding charge of the vortex mode present at each of the n™ diffraction orders is

determined as follows

1, =nAm+1,, (2.5.3)

where [, denotes the charge in the n™ diffraction order and /; is the initial charge in the beam,

incident on the fork hologram.

An example is given in Fig. 2.5.4. If a vortex mode having a charge of /; = 2, illuminates a fork
hologram having a charge of Am = -2, then a Gaussian beam will form in the first diffraction
order. Intuitively, this makes sense as we are multiplying the vortex mode uyexp(ilf) by its
complex conjugate, exp(-i/f), and so the Gaussian component, uy, is produced. A single-mode

fibre, which couples in only the Gaussian mode, is placed at the first diffraction order so as to
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detect single photons possessing an OAM of —Am (in this case an OAM value of 27%). The

disadvantage to this technique is that only the photons possessing an OAM of —Am are detected.

SLM

il

Am=-2

Fig. 2.5.4. A schematic illustrating how a fork hologram can be used to detect a vortex mode of

charge —Am.
2.6. Spiral phase plates

A spiral phase plate (SPP) [3], also referred to as a vortex lens, is constructed from a piece of
transparent material (such as fused silica) which has a gradually increasing, spiralling thickness.
This imposes a vortex structure on the incident beam by linearly varying the optical path length

and thus inducing a phase shift in the beam. An example of a SPP is given in Fig. 2.6.1.

Fig. 2.6.1. (a) A photograph of a SPP courtesy of [25]. (b) Schematic of the mechanism of a
SPP courtesy of [26].
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When etching or micro-machining the spiral surface into the transparent material, the pitch
(given as Ad in Fig. 2.6.1) is related to the wavelength, A, the desired charge, Am and the
refractive indices of the material, n,,, and its surroundings, n,, [27]
A
Ad = ﬂ(
U

n, —n,). (2.6.1)

u is termed the pitch multiplicity and is given by the number of pitch edges (or dislocations) in

the SPP.

The number of spirals etched into the SPP can be increased, similar to the spiral hologram.
However, the spiral surface needs to be ‘smooth’ in order for the SPP to be efficient at
diffracting the light, so increasing the number of spirals will decrease the diffraction efficiency.
Another disadvantage of SPPs is that each one is applicable to one wavelength and one
topological charge. The charge, Am, offered by the SPP can be changed to —Am, by flipping the
SPP.

2.7. Cylindrical lens mode converters

The next method that we will mention is that of cylindrical lenses which are used to convert
Hermite-Gaussian (HG) modes into LG modes and was first used by Allen et al. [2]. Our
discussion of cylindrical lenses will not be very detailed, as this technique is not used in this

work and HG modes are not discussed in this thesis.

A cylindrical lens mode converter, also termed an astigmatic mode converter, is based on
cylindrical lenses which convert HG modes of all orders to corresponding LG modes. In order
for this to be realized, two steps need to take place. Firstly, the HG mode needs to be rotated by
45° so that it forms a diagonal HG (DHG) mode, which is a superposition of two HG modes.

The mathematical representation of this, for the first-order case, is

DHG,, =—(HG,, + HG,,). (2.7.1)

1
V2

The second step involves introducing a relative phase shift of 90° between the two HG modes as

this will represent a LG mode
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LG, = (HG10 +iHG, ) (2.7.2)

1
V2
In order for the two HG modes to be out of phase by 90°, a pair of cylindrical lenses is used to

alter the Gouy phase of the HG modes depending on their mode indices, thus introducing a

relative phase shift between them.

The Gouy phase of the HG mode is altered by changing the Rayleigh range of the mode,
without changing the position of the beam waist. By placing a lens into the HG mode, which has
a Rayleigh range of z,, the focal length is selected such that the Rayleigh range changes to zz,
while leaving the position of the beam waist unaltered. Aligning the lens in the x direction will
result in the Rayleigh range in the y - z plane being affected; resulting in the Rayleigh ranges, z,
and zp,, no longer being equal. This differing in the Rayleigh ranges, in the x — y and y — z
planes, means that the HG;y and HG (; mode pair will be out of phase. The mode is then
elliptical, or astigmatic. A second cylindrical lens is introduced and aligned along the same axis

so that the Rayleigh ranges, zz, and z3,, are once again equal.
2.8. Dove prism embedded Mach-Zehnder interferometer

The next device that we will discuss is a Mach-Zehnder interferometer, with a Dove prism
inserted in each of its arms, which is used to sort odd and even vortex modes [13]. A Mach-
Zehnder interferometer can be aligned appropriately so that constructive and destructive
interference occurs simultaneously in the two output ports. In the case of the ‘odd-even OAM
sorter’, depicted in Fig. 2.8.1, which is based on the Mach-Zehnder interferometer, a Dove
prism, which flips the transverse cross-section of a transmitted beam [28] (illustrated in Fig.

2.8.1 (a)), is placed in each arm of the interferometer.

Rotating the cross-sectional phase profile of the transmitted vortex beam, introduces a relative
phase difference between the two arms of the interferometer. The phase difference, Ag, is
proportional to the state, /, of the transmitted vortex beam and the relative angle, 5, between the
two Dove prisms and is defined as A@ = 2If. When the two Dove prisms are rotated with respect
to each other by an angle of 90°, the transmitted vortex beam is rotated by an angle of 180° and
the relative phase difference between the two arms of the interferometer is A@ = [z By

appropriately adjusting the path length of the interferometer, constructive interference will occur
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in one of the two output ports for even /-valued states and in the opposite port for odd [-valued

states.

. (b) . A1 A 3
F / DP2 o
-. A1 A2
; M A A2 /
5‘ BS1 DP1 M2

Fig. 2.8.1. (a) The effect a single Dove prism has on the phase profile of a beam. (b) Schematic
of the ‘odd-even OAM sorter’ (BS: beam-splitter, M: mirror, DP: Dove prism).

The additional phase acquired by the beam (exiting in port A) from each of the optical

components, in propagating through the arms, Al and A2, is given by

Pusa =8+ X +21ﬁ+2_ﬂt+2_ﬂd1 (2.8.1)
1 w1 o A A
B2
and
Parsa =2_7[t+ L+ +2_ﬂ-d2, (2.8.2)

l -
M2 BS2
BS1

respectively. d; and d, are the path lengths of the two arms, Al and A2, respectively and ¢ is the
optical path length of the beam-splitter. For the beam exiting in port B, the additional phase

incurred by the optical components is given by

Qup = Zg+{£+2lﬂ+27ﬂt+27ﬂt+2—ﬂdl (2.8.3)

BS1 M1 DP2 2’
BS2

and
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L L (2.8.4)
A =TT
—— ——
BS1 BS2

Since the two arms of the interferometer are equal, d| = ds, the phase difference in output port A

is determined as
Ap, =218 (2.8.5)
and that in port B as

Ap, =7 +2If (2.8.6)

The additional phase shift of 7z, in Eq. (2.8.6), is due to the reflection in the first beam-splitter.

In the case where the relative angle, f, between the two Dove prisms is set to 90°, the phase

difference in each output port reduces to the following

Ap, = 21% -y 2.8.7)

A, :7r+21%:(l+1)7r. (2.8.8)

From the above equations it is evident that when [ is even, constructive interference occurs in
port A and destructive interference occurs in port B and vice versa for the case of / being odd.
Therefore this device has been termed an ‘odd-even OAM sorter’. Examples of vortex modes

being sorted into odd (A) and even ports (B) is given in Fig. 2.8.2.

PORT:

Fig. 2.8.2. Experimental results of the interferometer sorting various vortex modes. The even

vortex modes (I = 0, 2 and 4) exit in port A and odd vortex modes exit in port B.
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In the following section we adapt this device to produce a robust version of the ‘odd-even OAM

sorter’

2.9. Robust Dove prism embedded Mach-Zehnder

interferometer

2.9.1. Introduction

The implementation of the ‘odd-even OAM sorter’ has been reported in numerous publications,
some of which include introducing a binary amplitude grating to further detect OAM states [29],
developing an amplitude damping channel for OAM [18] and developing a linear optical CNOT
gate for OAM [30]. The implementation of such an interferometer to sort odd and even [-states,
especially in the case of developing a cascade of N-linterferometers to measure N /-states, can
prove technically challenging. To date, the only attempt to make such a device more stable has
involved incorporating a Sagnac interferometer [31, 32], as opposed to a Mach-Zehnder
interferometer, which is known to be phase-stable. Such an approach does, however, require
additional polarization optics to further sort the OAM states. Even though many publications
have been dedicated to the implementation of the Dove prism embedded Mach-Zehnder
interferometer, none, to the best of our knowledge, have attempted to make the device more

stable.

In this section we develop a robust Dove prism embedded Mach-Zehnder interferometer
(requiring no internal degrees of freedom) capable of sorting odd and even OAM states of light
[14]. We demonstrate its efficiency by sorting a maximum of forty-one OAM states (I = -20 to /
= 20), producing a contrast between constructive and destructive interference which ranges over
the tested OAM states from 92% to 61%. The development of a robust interferometer has

implications in quantum cryptography and high density information transfer.

2.9.2. Concept

The main point to remember is that by appropriately adjusting the path length of the
interferometer and setting the relative angle between the two Dove prisms to 90° constructive

interference will occur in one of the two output ports for even /-valued states and in the opposite
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port for odd [-valued states. The relative phase difference between the two arms of the
interferometer is A@ = [z In this section we will discuss the principle behind our improved,

robust interferometer.

In setting up each optical component of the ‘odd-even OAM sorter’, many degrees of freedom
play a role in ensuring the correct outcome. The alignment of the beam-splitters, Dove prisms
and mirrors within the interferometer, as well as the path length, need to be adjusted. In this
work, we make use of a prism (illustrated in Fig. 2.9.2.1 (a) and (b)), similar to a Dove prism, in
that it rotates the transverse cross-section of a transmitted beam, but its entry and exit faces are
perpendicular to the optical axis. This construction of a phase-rotating prism having parallel
sides, first noted in Ref. [33], allows one to easily mount it on either side of a beam-splitter.
Introducing right-angled prisms, as opposed to mirrors, we are able to glue all the optical
components into a single compact housing, depicted in the photograph in Fig 2.9.2.1 (c). By
leaving the second right-angled prism free-standing, the optical path length of the interferometer

can be finely adjusted.

In studying Fig. 2.9.2.1 (a), it is evident that a displacement of the incoming beam in the y-
direction will have no effect on the functioning of the Dove prism, provided the optical axis of
incoming beam is perpendicular to the optic axis of the Dove prism. Rotating the orientation of
the Dove prism, as given in Fig. 2.9.2.1 (a), by 90°, so as to produce that in Fig. 2.9.2.1 (b), the
Dove prism is insensitive to a displacement of the incident beam in the x-direction. The fact that
the ‘odd-even OAM sorter’ requires that the two Dove prisms be rotated with respect to each
other by an angle of 90° aids the alignment of the interferometer. One of the paths will be
insensitive to a horizontal displacement of the transmitted beam, while the other is insensitive to
a vertical displacement of the transmitted beam. The only constraint is that perfect overlap of
the two paths in the two exiting ports, A and B, be achieved, which is easily possible by

adjusting the position and tilt of the incoming beam with the use of two mirrors.
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Fig. 2.9.2.1 (a) and (b) The phase-rotating prism, illustrating how its orientation can make it

either insensitive to a vertical or horizontal displacement, respectively. (c) A photograph of the

robust ‘odd-even OAM sorter’. The white arrows denote the direction of the beam.
2.9.3. Experimental methodology and results

A photograph of the device that was developed appears in Fig. 2.9.2.1 (¢) and a schematic,

labelling each of the components is presented in Fig. 2.9.3.1.

Phase-rotating ) )
BS1 prism Piezo-electric

2/ o
/

M
3 LI | B
m1 RP1 Phase-rotating L

prism A BS2

Fig. 2.9.3.1. Schematic of the robust ‘odd-even OAM sorter’ (M: mirror, BS: beam-splitter, RP:
right-angled prism, A: output port A, B: output port B).

The various vortex modes (I = -20 to 20) that we wished to sort with our interferometer, were
prepared by illuminating blazed, [-charged spiral holograms, encoded on a Hamamtsu SLM,
with a HeNe laser (A ~ 633 nm). Two mirrors, M1 and M2 (in Fig. 2.9.3.1), were placed in front
of the interferometer, so as to steer the incoming vortex mode through the interferometer. The
optical components of the interferometer (two beam-splitters, two Dove prisms and a right-
angled prism) were all glued together and clamped onto a flat stage. A piezoelectric mount was
attached to the second right-angled prism, RP2, so that accurate selection of the interferometer

path length could be obtained. The sorting of odd and even [-valued vortex modes into the
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output ports A and B, respectively, was obtained by accurately overlapping the near- and far-
field planes of the two fields exiting in each output port through the use of a mere four degrees
of freedom: the two mirrors positioned before the interferometer, M1 and M2, as well as

correctly setting the path length of the interferometer.

To test the effectiveness of the interferometer in separating odd and even /-valued vortex modes,
the intensity of the interference pattern in one of the output ports was monitored with a photo-
diode, while the path length of the interferometer oscillated back and forth between constructive
and destructive interference by the use of a piezoelectric mount and a function generator. The
fringe contrast, (Ve — Viin)/ (Vimax + Vi), Where v, and v,,;, are the maximum and minimum
voltages from the photodiode, was calculated for various incoming vortex modes and is
depicted graphically in Fig. 2.9.3.2 (a). Some of the odd and even vortex modes existing in their

appropriate ports are given in Fig. 2.9.3.2 (b).

1007 (5)
BOE o
60

40

20

Fringe contrast (%)

20 -10 0
I(h)

Fig. 2.9.3.2. (a). The measured fringe contrast as a function of /. (b) Some experimental results
of the interferometer sorting various vortex modes. The even vortex modes (I = 0, 6 and 12) exit

in port B and odd vortex modes (/ = 3, 9 and 15) exit in port A.

Since the SLMs are not free of aberrations, they do pose a limitation on the purity of the vortex
mode that is created. Even though the flattest of our SLMs was used and careful alignment of
the optics was undertaken, the aberrations present, lead to a degradation in the performance of
the interferometer, especially at high /-valued vortex modes. When an aberration is added to a
beam carrying OAM, the beam becomes a superposition of different /-valued modes. At the
lowest integer value of /, [ = 0, the fringe contrast is at a maximum (at 92.2%), illustrating that

constructive and destructive interference for the case of a low /-valued OAM state is notably
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distinctive. As the magnitude of [ increases, so the contrast decreases, illustrating that
constructive and destructive interference for higher l/l-valued OAM states becomes less obvious.
Across twenty-one OAM states (from / = -10 to [ = 10) the contrast drops from 92.2% to 85.3%,
indicating that our setup is extremely robust at sorting OAM states. Special mention should be
made that no adjustment of the four degrees of freedom (external to the interferometer) needed
to be made during the course of collecting the measurements in Fig. 2.9.3.2. Previously to
obtain such results, one would have to adjust all the degrees of freedom for each optical
component within the interferometer, whereas our setup has reduced the interferometer to
having no degrees of freedom. Since we are able to produce high contrast over twenty-one
OAM states (from [ = -10 to [ = 10) we suggest this setup to be suitable in quantum optics

experiments such as quantum cryptography.

It should, however, be noted that due to the fact that the Dove prism can invert the polarization
of a passing beam the ‘odd-even-sorting’ nature of the interferometer no longer works for an
incoming polarization that is neither horizontal nor vertical. We tested this by rotating the
polarization of the incident beam from horizontal to linear with the use of a half-wave plate and

noticed that the interference fringes in ports A and B disappeared.

2.10. Conclusion

In this chapter we have introduced experimental techniques which are used to either generate or
measure fields carrying OAM. We discussed how digital holography can be used to implement
a computer generated hologram (which can be used to either create or measure an optical OAM
field) through the use of SLMs. In sections 2.4 and 2.5 we explained how the spiral and fork
holograms, respectively can be used to generate optical vortices as well as how the fork
hologram is used to detect OAM, by producing a Gaussian beam in the desired diffraction order
which is then coupled into a single mode fibre. We also examined two other optical components
which can be used to manipulate OAM: SPPs (2.6), which impart a helical structure to the
transmitted beam, thus increasing or decreasing its OAM appropriately, and cylindrical lens
(2.7). The last device that we discussed is a Dove-prism embedded Mach-Zehnder

interferometer which is used to sort odd and even OAM modes.

We presented our experimentally developed, robust ‘odd-even OAM sorting’ interferometer,
which has no degrees of freedom and instead the alignment is simply restricted to only four

degrees of freedom via two mirrors external to the interferometer, and correct setting of the path
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length [14]. We showed that this device is capable of separating twenty-one OAM states of
light, having a contrast higher than 85.3%, sufficient in the detection of single photons for
quantum information processing. The construction of a less technically-demanding
interferometer will prove useful in the cascading of interferometers and the insertion into other
sorting methods [12] for the detection of an increased OAM state-space. The ability to
efficiently measure a large number of OAM states has applications in quantum cryptography [6-

8] and quantum computation [34].
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CHAPTER THREE

Amplitude Damping Channel for Orbital Angular

Momentum

3.1. Introduction

We implement the Dove prism embedded Mach-Zehnder interferometer to mimic an amplitude
damping channel for vortex modes [1]. The principle behind amplitude damping will be
presented in section 3.2.1. followed by the concept as to how the Dove prism embedded Mach-
Zehnder interferometer can be used to form an amplitude damping channel for vortex modes in
section 3.2.2. We test our channel on a vortex mode, having an azimuthal index of / = 1, and
demonstrate that it decays to a Gaussian mode in good agreement with the theoretical model in
section 3.2.3. The reason behind developing this channel is since we are able to characterize the
action of such a channel on OAM states, we propose using it to investigate the dynamics of

entanglement.
3.2. Amplitude damping of orbital angular momentum states

Storing and processing information in the OAM states of photons offers high storage and
increased computation capacity per photon and since many of the tasks in quantum information
processing depend upon entanglement, the evolution of entanglement needs to be examined [2].
Studies into how the entanglement of OAM states decoheres through a turbulent medium are
currently being pursued [3]. The amplitude damping channel that we present here is important

for studying how entanglement will decay through a ‘lossy’ system.
3.2.1. Amplitude damping

Before presenting the channel that we have developed to perform amplitude damping, it makes

sense to first discuss the process of amplitude damping. Amplitude damping is a quantum
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operation which describes energy dissipation from excited systems, such as atoms or spin
systems, to an environment [4]. Furthermore, it can also comprise the dissipation of momentum
(angular momentum, OAM or any other measurable quantity) due to an interaction with the
environment. The action of amplitude damping results in the ground state, 0), being left
invariant, while the excited state, |1), remains either invariant or decays to the ground state, by
losing a quantum of energy to the environment. The amplitude damping channel, representing

the state change for a two-level system, can be defined by the following transformation

P, =|w)w| = M|y )y Mo+ M, |y)w M/, (32.1.1)

where the Kraus operators are [4]

1 0
M, :[O m] (3.2.1.2)

and

M, =(0 ‘/F} (3.2.1.3)
0 0

P is the probability that the excited state decays to the ground state. Since the amplitude
damping is given for a two-level system, we will consider the initial state of the system (in

terms of OAM) to be represented as follows
lW)=y|1=0)+7,|l=1), (3.2.1.4)

which is an arbitrary superposition of the states |l = O> (the ground state) and |l = 1> (the excited

state). |}/1|2 +|}/2|2 =1, while |l = 0> and |l = 1> represent vortex modes of charges [ = 0 and /

=1 respectively.

By substituting the Kraus operators (Eqs (3.2.1.2) and (3.2.1.3)), along with the initial state (Eq.
(3.2.1.4)), into Eq. (3.2.1.1), the final state of the system, p;, can be found
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Coupling the system appropriately to an environment with two orthogonal states |K = 0> ,and

|K =1> i the unitary time evolution operator, Ugg, of the system, S, and the environment, E,

produces the following transformation of the amplitude damping channel and can be described

mathematically as

USE
|1=0)|K=0),—>|l=0)|K=0), (3.2.1.6)
Usg
1=1) |K=0), —P|i=0)|K=1), +~1-P|i=1) |K=0),. (3.2.1.7)

Here K represents an element in the environment, such as a path along which the photon

propagates. If |l: 1> represents the excitation of the system and |K :1> the excitation of the

environment, then consequently |l=0> and |K =O> represent the ground state of the system

and the environment respectively. Equations (3.2.1.6) and (3.2.1.7) illustrate that the
probability that the excited state remains unchanged or that it decays to the ground state is given

by 1 - P and P, respectively and hence the amplitude of the excited state has been ‘damped’.

In the next step we need to verify that the transformations defined in Eqgs (3.2.1.6) and (3.2.1.7)
result in the final state presented in Eq. (3.2.1.5). Firstly, the state of the system and the

environment is determined as
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Pse :USE(IV/>S|K:0>E s<V/|E<K:0|)USTE

ps = 1=0) |K=0), +72(JF|1=0>S|K=1>E +\/1—P|l=1>S|K=O>E))><
. i (3.2.1.8)
(st =0 (K =0+ 7" WP s (1=0| (K =1|+JT= P s (1=1] (K =0])
In order to determine the state of only the system, p;, the environment is traced out
1
Py =TrE[pSE]=Kz:0E(K|pSE|K>E (32.1.9)

and by substituting in Eq. (3.2.1.8) and taking into account that |K = 0> pand |K = 1> , are an

orthonormal basis, the state of the system can be simplified to

(3.2.1.10)

p _[ 1 +7,"P 717{"\/1—PJ
N * 5
71 VoN1=P 722(1_P)

which is Eq. (3.2.1.5).
Therefore, we need a channel that is going to perform the transforms defined in Eqs (3.2.1.6)

and (3.2.1.7). By setting K, an element of the environment, to a path in the optical system, the

overall action of the channel on the state (given in Eq. (3.2.1.4)) can be denoted as
nli=0" +y,|1=1)" 5 yli=0)" + 72(\/1—P|l =1)" +P|i =0>Bl (3.2.1.11)

where A and B are paths in the optical setup.

The system which performs the transformation given in Eq. (3.2.1.11) is discussed in the

following section.
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3.2.2. Concept

Figure 3.2.2.1 contains the schematic of the optical system, which performs the action of
amplitude damping on the state given in Eq. (3.2.1.4) and is mathematically described in Eq.
(3.2.1.11).

Relative angle

between Dove A PM
M1 prisms, f3
B
BS2
DP2
Al=-1
A
BS1 DP1 M2

Fig. 3.2.2.1. Schematic of the OAM amplitude damping channel. (BS: beam-splitter, M: mirror,
DP: Dove prism, PM: phase mask). The labels A and B denote the optical path and are

associated as the ground state of the environment|K =0> and the excited state of the

environment| K= 1> , respectively.

Our channel is based on the ‘odd-even OAM sorter’ presented in section 2.8, where we showed
that the relative phase difference, A , is proportional to the charge / of the incoming vortex
mode and the relative angle S, between the two Dove prisms: A@ = 2/f. The relative angle, f,
between the two Dove prisms can be varied resulting in the vortex mode exiting solely in port A
or port B, or in a weighted superposition of both ports A and B. This allows us to control how
much of the initial vortex mode will exit into the two environments, A (the ground state of the
environment) and B (the excited state of the environment). By introducing a hologram, which
decreases the azimuthal mode index by 1, in port B, the ‘excited’ vortex mode (I = 1) will decay
to an ‘unexcited’ Gaussian mode, thus performing the action of amplitude damping. To

illustrate that our channel, presented in Fig. 3.2.2.1, performs the required transformation given

in Eq. 3.2.1.11, we pass each of the states (|l = O> and|l = 1>) through our channel.
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e CASE 1: Incoming Gaussian mode (/ = 0)

When a Gaussian mode (I = 0) enters the device, the relative phase shift is A = 2/ = 0,
independent of the relative angle, S5, between the two Dove prisms. Therefore there will always
be constructive interference in port A and destructive interference in port B, for the Gaussian

mode. The transformation for this case can be written mathematically as
[1=0)" >[1=0)". (3.2.2.1)
e CASE 2: Incoming vortex mode (I = 1)

For a vortex mode having a charge of / = 1 there is a non-vanishing relative phase shift of Ag =
21 = 2p. This phase shift leads to partially constructive and destructive interference in both
ports A and B, dependent on the relative angle, f, between the two Dove prisms. Only the state /
= 1 can exit in port B and the hologram in this port maps this to a Gaussian (/ = 0) state. The
amplitudes of the fields emerging from the second beam-splitter in ports A and B are described

as

1 U i i i0 i
UAafterBSZ :E UAbefareBSZ + UBheforeBSZ :_O(e @+25) +e 6):U0€ 66 4 COSﬂ (3222)

reflected @ BS2  transmitted @ BS2

and

B 1 A B U() i(6+2 i0 0 if. :
U2 ierss2 =% U porensz +—U B pgomensa | =—2 (/P — )= e ePisin B, (3.2.2.3)
transmitted @ BS?2 reflected @ BS2

where U denotes the amplitude of the field. Only one of the reflected fields incurs a T phase

shift due to the manner in which the beamsplitters are constructed.

It is then evident that the amplitude in port A, for an input vortex mode of / = 1, is proportional

to cosf and consequently the power

P, o< cos® B. (3.2.2.4)
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The amplitude in port B, for an input vortex mode of [ = 1, is proportional to sinf and its power
P, o< sin” B. (3.2.2.5)

The state emerging from ports A and B, for an incoming vortex mode (/ = 1), can be written in a

general form as
[1=1)" —cos fli=1)" +sin f1=0)" =1-P|1=1)" +VP|1=0)",  (3.22.6)
where \/ﬁ:cosﬁ and \/F=sinﬁ.
Including the result from case 1 above the general transformation of the device is given as
H1=0)" + ml1=1" = 1[1=0Y" + 7, cos Bl =1)" +sin f1=0)")  (3.2.27)
which is a form of the required amplitude damping transformation described in Eq. (3.2.1.11)
3.2.3. Experimental methodology and results

A photograph of the experimental setup to test the concept of our amplitude damping channel
appears in Fig. 3.2.3.1. The interferometer used here is the one described in section 2.8, as
opposed to our new robust interferometer in section 2.9, as we needed the Dove prisms to be

free-standing so that we could rotate them and set the relative angle, £.
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Fig. 3.2.3.1. Photograph of the interferometer used in the OAM amplitude damping channel.
(BS: beam-splitter, M: mirror, DP: Dove prism). The labels A and B denote the optical path.

A HeNe laser operating at a wavelength of 633 nm was directed onto a SLM (HoloEye PLUTO
VIS SLM with 1920x1080 pixels of pitch 8 um and calibrated for a 27 phase shift at A =632.8
nm), where a blazed spiral hologram was used to initialise the vortex mode, before entering the
interferometer. The two exiting ports of the interferometer, A and B, were monitored with a

CCD camera, while the relative angle, 8, between the two Dove prisms was varied.

The relative angle between the Dove prisms was set to = 90°, so as to check the interferometer
functioned correctly [5] (i.e. even modes exist in port A and odd modes in port B). The results
are given in Fig. 2.8.2. When a Gaussian mode enters the interferometer, it only exits in port A
(Fig. 3.2.3.2). The results presented in Fig. 3.2.3.2 are instructive when considering the errors in
the system due to imperfect alignment and environmental fluctuations. We should expect 100%
transmission in port A, and no transmission in port B, however the variance in the data is given

as 0.88 £ 0.06 and 0.15 + 0.08 for ports A and B, respectively.
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Fig. 3.2.3.2. Plot of the power of the beam in port A (light blue points) and port B (light green
points) for various values of . The dark blue line (dark green line) is the mean of all the

measured powers in port A (port B).

To test the amplitude damping channel concept, the incoming mode was then set to a vortex
mode (of [ = 1) and the angle between the two Dove prisms varied from 0° to 360° in
increments of 10°. The data is shown in Fig. 3.2.3.3 for port A and Fig. 3.2.3.4 for port B. In
performing these measurements, for each rotation of the Dove prism, constructive and
destructive interference was first achieved in port A and B, respectively, for the case of an
incoming Gaussian beam, so as to ensure the interferometer is correctly aligned before passing
through the vortex mode. From Fig. 3.2.3.3 it is evident that when the relative angle between the
two Dove prisms is an even multiple of 90°, maximum transmission of the vortex mode occurs,
which is in agreement with the ‘odd-even OAM sorting’ nature of the device. At an even
multiple of 90°, the reverse occurs in port B (Fig. 3.2.3.4), where minimum transmission of the
vortex mode occurs. At odd multiples of 90°, minimum transmission of the vortex mode occurs
in port A and maximum transmission in port B. As the angle increases from 0° to 90° (and any
multiple of these angles) the transmission of the vortex mode in port A decreases, but

consequently increases in port B.

Our theoretical model, given in Eq. (3.2.2.7), restricts the probability that the vortex exists in
ports A and B by coszﬁ and sinzﬁ, respectively. This is evident in Figs 3.2.3.3 and 3.2.3.4, where



60

our measured data are in very good agreement with the predicted model. The errors given in the
measurements in Figs 3.2.3.3 and 3.2.3.4 are the standard deviations of the measurements in

Fig. 3.2.3.2, for ports A (0.06) and B (0.08).
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Fig. 3.2.3.3. Plot of the power of the beam recorded in port A (orange) for various values of S.
The results follow the trend of that given in Eq. (3.2.2.4), PA~c0s2ﬁ. (red).
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Fig. 3.2.3.4. Plot of the power of the beam recorded in port B (grey) for various values of . The
results follow the trend of that given in Eq. (3.2.2.5), Ppy~sin’ p. (black).
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3.3. Conclusion

In this section we have presented an optical system, comprising an interferometer with Dove
prisms in both arms, that acts as an amplitude damping channel for a two-level OAM system,
and have verified its action experimentally using the vortex mode (/ = 1) and a Gaussian mode
[1]. This device is significant in that amplitude damping is a fundamental tool in classifying the
behaviour of many quantum systems that incur the loss of energy. It can be used to describe the
evolution of an atom that spontaneously emits a photon as well as how the state of a photon
evolves in an optical system due to scattering and attenuation. The interferometer portion of this
device can also be used for the classical superposition of vortex modes [6]. As well as to
separate an incoming vortex mode into two different ports, where one has control over the
weighting of the vortex mode assigned to each port. The advantage of this particular concept is
that in entanglement decay experiments, this device can also be used to predict analytically the
entanglement decay in OAM states when passing through such a channel. The concurrence of
the entanglement will be measured both before and after the channel with standard state
tomography techniques, thus allowing for a quantitative comparison of theory and experiment in

the decoherence of entanglement due to interactions with a noisy environment.
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CHAPTER FOUR

Superpositions of Higher-Order Bessel Beams

4.1. Introduction

Laguerre-Gaussian beams are not the only optical field which carry OAM. Any optical field
which has a helical phase structure, such as higher-order Bessel beams, also carry OAM. In
section 1.6, it was shown that zero-order Bessel beams have a bright central maximum, while
the higher-orders have a dark central core (or vortex). Both of these forms of Bessel beams
propagate in a diffraction-free manner. Durnin [1] first illustrated that a zero-order Bessel beam
can be generated by illuminating a ring-slit aperture, placed in the back focal plane of a lens,
with a plane wave. Other techniques, to generate both zero and higher-order Bessel beams,
include axicons [2-4] and computer generated holograms [5-10]. Another approach creates a
superposition of higher-order Bessel beams by illuminating an axicon with a superposition of

LG modes [11].

In this chapter we extend Durnin’s ring-slit experiment to produce superpositions of higher-
order Bessel beams, by introducing multiple azimuthal phase components at various radial
distances within the physical ring-slit aperture [12]. This concept is illustrated in Fig. 4.1.1,
where two azimuthal phase factors, exp(ilf) and exp(imf), programmed at different radial

llh

positions, produces a superposition of an [ order and m™ order Bessel beam. We illustrate how

the physical ring-slit aperture and hologram can be replaced by a single hologram [13].
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Fig. 4.1.1. An adaptation of Durnin’s ring slit experiment [1]. (b) and (c): [lluminating the
physical ring-slit aperture, with a beam whose angular spectrum carries an azimuthally varying

phase, generates higher-order, and superpositions of higher-order, Bessel beams.

Theoretical studies into the rotation of superimposed Bessel beams have been made [12, 14],
however the experimental determination of their rotation rates has not yet, to the best of our
knowledge, been investigated. In this chapter we also experimentally measure the rotation rates
of superpositions of higher-order Bessel beams [13]. We show that by varying the parameters
of the ring-slit hologram (in terms of the width and the azimuthal order, /), we can control the
rotation rates of the intensity profile. Therefore, it is an ideal tool for the controlled rotation of
trapped particles [11]. The theoretical description for superimposed Bessel beams, along with its
angular rotation, is presented in section 4.2. We also investigate, both theoretically and
experimentally, the field produced at the ring-slit aperture and investigate its transition to the
far-field (i.e. the field consisting of superimposed higher-order Bessel beams). We show that
due to the fact that the longitudinal wave-vectors all propagate in the same direction (and do not
overlap one another) in the near-field, no rotation is evident in the intensity profile. The area of
the field which experiences the rotation increases as the field propagates to the far-field because

the wave-vectors start to overlap one another to a greater degree.
4.2. Theory

In this work we implement Durnin’s ring-slit aperture experiment [1] and encode a digital ring-
slit hologram onto a SLM and illuminate it with an expanded Gaussian beam. We divide the
ring-slit aperture into two ring-slits and encode each with an azimuthally varying phase. A

schematic of the setup is given in Fig. 4.2.1, where the regions of interest, propagating after the
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ring-slit aperture, are planes P, (the near-field), the region P, (the transition region from near- to

far-field) and region P; (the far-field).

P1

O O

Fig. 4.2.1. A schematic of the generation of the annular field, propagating from near- (P,) to far-
field (P;). The green (red) rays denote the rays originating from the outer (inner) ring-slit. The
three rings (at the bottom of the schematic) aid the illustration, as to how the annular fields
overlap and become completely indistinguishable as the propagation from the aperture

increases.

The ring-slit aperture has the following transmission function

exp(ilf) R, —éSrSR1 +é
2 2
. A A
t(r,0)=vexp(=ilf) R, _E <r<R, + E’ “4.2.1)
0 elsewhere

and apart from being illustrated in Fig. 4.2.1, is also represented in Fig. 4.2.2. R, and R, are the

radii of each of the two ring-slits, respectively and A is the width of each ring-slit (here we have
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chosen the widths of the two ring-slits to be equal). 8 is the azimuthal angle and [ is the

azimuthal mode index.

Fig 4.2.2. The transmission function described in Eq. (4.2.1) for an azimuthal mode index of [ =

3.

Since the field illuminating the ring-slit aperture is an expanded Gaussian beam and the ring-
slits are extremely thin (of the order of micro-meters), the field produced at the ring-slit aperture

(i.e. at the plane P; where z = zj), is represented as

exp(il@)exp(ik,,zy) R, —% <r<R, +%

A(r,8,z,) =1exp(-il@)exp(ik,.zy) R, — % <r<R, + % “4.2.2)

0 elsewhere

ki, and k; are the longitudinal wave-numbers, defined as k;, = kcosa, and k,, = kcosa,, where k =
27/ and « is the opening angle of the cone on which the wave-vectors (produced by each ring-

slit) propagate.

A simple annular field, containing no azimuthally-varying phase factors, may be expressed as

(4.23)

and is depicted graphically in Fig. 4.2.3. Ry denotes the radius of the ring-slit; A is the width of

the ring-slit; and » assigns the steepness (or gradient) of the edges of the ring-slit.
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Fig. 4.2.3. (a) A density plot and (b) a cross-sectional plot of the ring-slit aperture described in
Eq. (4.2.3) for the following parameters: ring-slit radius, Ry = 2, ring-slit width, A = 0.5 and

gradient, n = 10 (the units are arbitrary).

The ring-slit aperture that we are considering consists of two ring-slits of differing radii, and by
taking into account that the optical field is a linear system, the two annular fields are additive,

resulting in the overall ring-slit field, which in the near-field (P,), has been written as

A(r,0,zy) = A (r)exp(il @) exp(ik,, 7o) + A, (r)exp(=il @) exp(ik,, z)

=exp —r=R) exp(il@) exp(ik,_ z,) + exp —r=Ry)
" %
2

g

exp(—il@)exp(ik,,z,).

(4.24)

Since the two ring-slits are arbitrarily thin and close to one another, we can assume their radii to

be equivalent, i.e. R; = R, = Ry, resulting in the field simplifying to

n

A(r,8,z,) =exp (exp(il @) exp(ik,, z,) + exp(—il @) exp(ik,. z,)) (4.2.5)

—(r—Ry)
%

The intensity of the ring-slit field is determined as

2n
k -k 2160 2(r—R, 2(r—R
I(r,0,zy)= 4cos2( 1z %0 ZZZZO hl J(cosh(%} - sinh[%]] . (4.2.6)
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The intensity profile for the ring-slit field, given above in Eq. (4.2.6), illustrates that it is
modulated in the azimuthal co-ordinate, 6, by the function 0032(10). Therefore, the number of
intensity maxima and minima, arranged on the circumference of the ring-slit, is twice the

azimuthal mode index, /.

The angular rotation, experienced by the intensity profile, as the ring-slit field propagates in the

near-field (P,) along the z-axis, is then given by

40 _ky, —ki. 4.2.7)
dz, 21

During the propagation of the ring-slit field, the longitudinal wave-vectors, ki, and k,, both
propagate in the same direction, parallel to the z-axis, which is illustrated in Fig. 4.2.1. This

results in no angular rotation existing, as the ring-slit field propagates,

a9 _

0. (4.2.8)
dz,,

In determining the field in the region P,, the region in which the field transitions from near- to

far-field, the Fresnel diffraction integral of the field at the ring-slit aperture (Eq. (4.2.4)) can be

calculated to be

R -4

2

ikz A
A(r,0,7)= 67 TR A, 6, zo)exp(izi (r,> +r% =2rr, cos(6, — 9)]r1dr1d91, (4.2.9)
12474 Z

and is known to produce the Bessel-Gauss[15, 16] and Bessel functions. Each of the two ring-
slits (the inner having an azimuthal mode index of / and the outer, -/) will contribute to a Bessel

Gauss beam and the resulting superposition of the field in region P, can be described as

A(r,0,2)=Ap; | (1,0,2) + Ap; , (r,v,2) =

i 2 : 2
exp| il ke =K% _ o) |- 21 __k r%[ﬁj vikz+ilo |7 —er
X 2k @*(z) 2R(z) k 1+i(z/z,)

: Y ky 2z 1 ik kyz )
< | k=22 % P ) O LS 2r k. 7 —il@|J
1+(Z,J exp l[ Z % (Z)j (a)z(z) 2R(Z)J[r +[ P ] ]+l 2.2~ ] _,(

(4.2.10)

ky,r

1+i(z/z,)

|
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The functions w(z), R(z) and ®(z) denote the beam size, radius of curvature and Gouy phase,
respectively and take on the standard Gaussian beam propagation form. J; is the I"™ order Bessel
function and k, denotes the transverse wave-number, associated with each of the two Bessel

beams, namely 1 and 2, and is determined as follows: k, = ksina.

Similarly the intensity in the region of P, can be determined by combining the relationship 7/ =

AA* with the angular rotation, which results in

49 _ky. —k, 42.11)
dz 21

The wave-vectors in this region do not point in the same direction resulting in a non-zero
rotation rate. However the only section of the field which experiences this angular rotation is the
section which consists of the contributions from both ring-slits, which visually means: the
sections which consist of both green and red rays. As the field propagates further towards the
far-field (P;), the overlap in the field, which consists of both ring-slit contributions, increases,

resulting in the angular rotation becoming more evident.

To determine the far-field of the ring-slit aperture (P;), whose transmission function #(r,0) is

given in Eq. (4.2.1), the Kirchoff-Huygens diffraction integral is used:

—1i 27 R, +2 . k < 2 -krrl
A(r,0,2) =— 2t(r,6,)e —1-= exp| —i——cos(@, — 0) \rdr,df,. (4.2.12
(r,6,7) ot IRI_? (r,6,) xp{z Zf( fjrl } xp[ i 7 (6, ):|r1 rd,. ( )

The contribution resulting from the inner and the outer ring-slits produces the following

superposition, which describes the far-field of the ring-slit aperture [12]

_—ik R+ .1 . krrl 7'12 ikrlz <
A[(}’,e, Z)_TJR a3 exp(zle)J,[T exp —;4— 1—7 rldrl 4.2.13)

_A
177

. 2 . 2
A (r,0,2)= T’k J52i exp(-il)J [%] exp{— Iy hr_ [1 - iﬂrldrl 4.2.14)
27, w

A(r,0,2)=J,(k, r)exp(il@)exp(ik,,z) + J_ (k,,r)exp(—=il @) exp(ik,,2), (4.2.15)

where the following approximation
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. _ R kR
k, =ksina=ksin—=— (4.2.16)

has been used. The intensity of the superimposed Bessel field is determined as
1(r,8,2) o< J [ (ky, 1)+ T2, (ky, 1) + 20 (ky 1) (ky 7Y c0s(ky 2 — Ky 2 +218). (4.2.17)

Since the annular rings generating the superimposed Bessel beams are arbitrarily thin and close
to one another, we can assume the transverse wave-numbers to be equivalent (i.e. k;, ~ k, = k,),
resulting in J(k,7) ~ J/(ko,7) = J/(k,7). By implementing the Bessel function identity, J (ka,7) = (-
)T (ko,7), the intensity in Eq. (4.2.17) can be simplified to produce

1(r,6,2) < 20 2k, (=)' +1+2(=1)' cos(k,.z — k,.z +216)) (4.2.18)

The intensity profile for the superimposed Bessel beams, given above in Eq. (4.2.18), illustrates
that it is modulated in the azimuthal co-ordinate, 8, by the function cosz(lﬁ). Therefore, the
number of intensity maxima is twice the order / of the two Bessel beams, resulting in a
superposition of a I™ order Bessel beam, with its mirror image, producing an intensity pattern
having 2/l intensity maxima, or petals, arranged on the circumference of the set of Bessel rings.
This intensity profile experiences an angular rotation, as the field propagates along the z-axis.

The rotation angle is

ky, —k
p=a "l )2 (4.2.19)
21
and the rotation rate is given by
48 _ky —hy (4.2.20)
dz 21

Since the longitudinal wave-vectors all propagate in different directions in the far-field and the
field contributions from the two ring-slits completely overlap (evident in Fig. 4.2.1), the angular

rotation is non-zero and the near-diffraction-limited beam at P; experiences the rotation.
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4.3. Generating superpositions of higher-order Bessel beams

with a physical ring-slit aperture and a hologram

In this section we will outline how we make use of a physical ring-slit aperture and a SLM to
generate superpositions of higher-order Bessel beams. In section 4.4, we will then show how

our technique can be reproduced into a simpler single hologram.

The setup to generate superpositions of higher-order Bessel beams is given as a schematic in
Fig. 4.1.1 above. A detailed diagram of our experimental setup is given in Fig. 4.3.1. A HeNe
laser (4 ~ 633 nm) was expanded through a 15 X telescope before illuminating a physical ring-
slit aperture (R = 3 mm and A = 150 wm). The ring field produced at the plane of the ring-slit
aperture was relay imaged to the plane of the liquid crystal display with a 0.75 X telescope. A
Holoeye HEO1080P SLM with 1920 x 1080 pixels of pitch 8 um and calibrated for a 21 phase
shift at ~ 633 nm was used to impart the azimuthal phase variation to the ring field. The field
produced in the Fourier plane after lens, LS, was magnified with a 10 X objective and detected
on a CCD camera (Spiricon, USB L130). The objective and CCD camera were both positioned
on a translation stage in order to investigate the propagation of the resulting field. An
interferometer, denoted by the red overlay, was introduced in the experimental setup so as to
interfere a plane wave with the superposition field to reveal the fork interference patterns [17].
The beam size of the Gaussian beam was large in comparison to the Bessel field in the Fourier

plane so the wavefront of the Gaussian field can be assumed to be flat, similar to a plane wave.
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Fig. 4.3.1. The experimental setup for generating a superposition of higher-order Bessel beams,
by using a physical ring-slit aperture and a hologram. The interferometer used to interfere the
field produced at the Fourier plane with a plane wave is denoted in the red overlay. (M: mirror;
BS: beam-splitter; L: lens and D: diaphragm). (f; = 10 mm, f, = 150 mm, f;=100 mm, f;=75mm
and fs = 200 mm).

In this system the alignment of the ring field onto the hologram programmed on the SLM, was
critical. The liquid crystal display was placed on a standard micro-meter translation stage, so as
to carefully position it in the centre of the ring field. It should also be pointed out that this
approach was not optimized for energy transmission; the loss through the ring-slit aperture was

very high. Results for this experimental setup are given in the next section.

4.3.1. Results

The results obtained with the setup described in Fig. 4.3.1 appear in Fig. 4.3.1.1.
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Fig. 4.3.1.1. First column: Holograms applied to the SLM. Second column: The observed
intensity pattern observed in the Fourier plane. Third column: The theoretical prediction
of the superposition field. Fourth column: The interference pattern of the superposition
field and a plane wave. Data is shown for (a) — (d): Ao, (e) — (h): A;, (i) — (I): A4 4, (m) —
(p): Az4, and (@) — (t): Ay. The ring field is shown as a red overlay on the hologram.

When the ring field illuminates a hologram which has no azimuthally varying phase, Fig.
4.3.1.1 (a), it produces the well known zero-order Bessel beam. In conducting the experiment, a
blazed grating was added to the holograms (appearing in the first column of Fig. 4.3.1.1), we
have neglected to include them here as we want to highlight the azimuthal components. In the
case of a single azimuthal component ((e)) a higher-order Bessel beam is produced ((f)). The
fields are interfered with a plane wave to reveal the vortex nature of the fields. In the case that a
third-order Bessel beam interferes with a plane wave, three dislocations are noted in the fork
interference pattern ((h)). By increasing the number of azimuthal components ((i), (m) and (q)),
the field in the Fourier plane becomes more complex ((j), (n) and (r)), however, the theoretical
predications ((k), (0) and (s)) are in very good agreement with the measured field. When the two
azimuthal phases are equal, but of opposite handedness (i), a petal pattern is produced (j), as

described in Eq. (4.2.18). Due to the azimuthally varying phase which is imparted to the ring
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field, the resulting fields possess vortices. The orientation of these vortices is not very intuitive
and has recently been investigated [18]. For the superposition of two higher-order Bessel beams,
the interference patterns contain two overlapping forks. The number of dislocations or spaces
between the fork prongs conveys the order of the Bessel fields involved in the superposition and

the direction of the fork prongs communicates the sign of the Bessel beams.

Even though we have illustrated the concept with only two Bessel beams, it is possible to extend
this to any number of azimuthal components. The result in Fig. 4.3.1.2 is for a three-component
superposition, where the azimuthal indices are as follows -3, 0 and 3 (labeled from the outer
ring to the inner ring). Good agreement between experimentally recorded and theoretically

predicted fields is obtained.

(a)

Fig. 4.3.1.2. (a) Hologram applied to the liquid crystal display. The red overlay denotes the
section of the hologram which was illuminated by the ring field. (b) The experimental beam

cross-section of the field produced at the Fourier plane and the theoretically calculated field (c).

The propagation of the fields generated with this technique was also investigated and
experimental images of the intensity profile, recorded at intervals along its propagation, appear
in Fig. 4.3.1.3. In studying the experimental images contained in Fig. 4.3.1.3, it is evident that
the intensity profile containing the highest amount of energy occurs half way along the field’s
propagation. This occurs at the focal length of the Fourier transforming lens. It is also evident
that the field is quasi-non-diffracting as it maintains its intensity profile for a set portion of its
propagation. The non-diffracting nature of certain fields has been investigated in great detail
[19-27] and can be explained by the fact that the fields are derived from the annular structure of
the ring-slit aperture and the azimuthal phase is only an additional degree of freedom. The field

also appears to rotate as it propagates, evident in the images contained in Fig. 4.3.1.3.
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Fig. 4.3.1.3. Images of the intensity profile of the experimentally produced field A;_;
captured at intervals along its propagation. The grey area denotes the region in

which the Bessel field exists.

4.4. Generating superpositions of higher-order Bessel beams

with a single hologram

In this section we will introduce a technique that has allowed us to remove the physical ring-slit
in our previous setup (Fig. 4.3.1) and instead make use of a single hologram to produce the
superposition fields in Fig. 4.3.1.1. The technique involves addressing alternating sets of pixels
on the liquid crystal display with phase values that are out of phase by 7, resulting in the light
reflected from the LCD being scattered from its initial propagation axis [28]. By being able to
control the amplitude that is transmitted along the propagation axis, we were able to operate our
phase-only SLM in both amplitude and phase mode. We are therefore able to encode Durnin’s
ring-slit [1] into a single hologram, as well as have control over the phase within the ring-slits.
This technique which involves addressing alternating sets of pixels with phase values that are
out of phase by T, so as to produce a checkerboard pattern, is discussed in section 4.4.1. after

which the experimental realization is presented in section 4.4.2.
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4.4.1. Checkerboard approach

Ideally if we wanted to encode the ring-slit aperture onto the SLM, we would need a SLM that
is capable of controlling both phase and the amplitude. A hologram, such as that in Fig. 4.4.1.1
(a), if encoded on a phase and amplitude SLM, would transmit light within the ring-slit and not

transmit light in the surrounding black areas.

Even though we do not have a phase and amplitude SLM, we can still use our phase-only SLM
by addressing the sections, in which we do not want to transmit any light, with a checkerboard
pattern. An example of such a hologram is given in Fig. 4.4.1.1 (b) accompanied with a

zoomed-in section of the checkerboard pattern.

(a)

Fig. 4.4.1.1. In order to reproduce Durnin’s ring-slit experiment [1] either (a) the light can be
suitably apertured by a physical ring-slit aperture; or (b) complex amplitude modulation can be
used on a phase-only SLM to execute both the amplitude and phase transformations in one step.

The inset in (b) shows the checkerboard pattern used to modulate the amplitude.

To understand why a pattern consisting of alternating sets of pixels, that are assigned phase
values that are out of phase by 7, can be used to mimic an amplitude mask, the schematic in Fig.
4.4.1.2 needs to be introduced. This figure represents phase values on a complex plane. In the
checkerboard pattern the weighting of each of the phase values, 0 and 7, is uniform (or equal),
which in the complex plane approach translates to each vector (A; and A,) having the same
amplitude, but pointing in opposite directions along the x-axis. This leads to the resultant, A,
having no amplitude (or DC component) and is positioned at the origin of the complex plane.
The fact that the resultant has no amplitude means that the average amplitude of the field at the
checkerboard hologram is zero. This results in a zero in the intensity on the propagation axis in
the Fourier plane, with the light shifted away from the origin due to the high spatial frequency
of the checkerboard, as illustrated in Fig. 4.4.1.2 (c). When the SLM is addressed with a single
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uniform grey-level (Fig. 4.4.1.2 (d)), the resultant vector in the complex plane, Az, has an
amplitude, lying along the positive x-axis, meaning the average amplitude at this phase-mask is
non-zero, giving rise to an on-axis intensity in the Fourier plane, evident in Fig. 4.4.1.2 (e).
Experimentally, through ‘trial-and-error’, it was found that the checkerboard pattern diffracted
the on-axis intensity the best, when each checker was assigned to an area of 5 X 5 pixels on the

SLM.

(a)

Fig. 4.4.1.2. (a) The complex plane representation; the angles, ¢, and ¢, for each vector, A; and
A,, represents a phase value in the hologram. The resultant amplitude, A;, is denoted by the blue
vector. (b) The checkerboard hologram and (c) the corresponding Fourier plane, illustrating that
the light is distributed off of its propagation axis. (d) A plain black hologram. (e¢) The Fourier

transform of the hologram in (d) illustrating an on-axis intensity component.
4.4.2. Experimental methodology

The experimental setup for implementing the single ring-slit hologram is very similar to that
described in section 4.3, but with the physical ring-slit aperture removed as well as the imaging
optics associated with it. The setup that we implement is depicted in Fig. 4.4.2.1 and entails a
He-Ne laser being expanded through a 6 X telescope and directed onto the liquid crystal display
of a SLM. Due to the dynamic programming of SLMs, the azimuthal phase within each of the
ring-slits can easily be varied. Some of the ring-slit holograms that are encoded onto the SLM
appear in the top row of Fig. 4.4.3.1. A blazed grating was added to these holograms, so as to
separate the undiffracted and diffracted components reflected from the SLM. The Fourier
transform of the field at the ring-slit hologram was obtained with the use of lens L;. The field

was then magnified with a 10 X objective and captured on a CCD camera. The objective and
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CCD camera were positioned on a translation stage on an optical rail in order to investigate the

propagation of the resulting field.

Apart from positioning a 10 x objective and a CCD camera at the Fourier plane, P, of lens L,
to record the non-diffracting superimposed Bessel beam, a second lens, L4, was placed a focal
length away from the Fourier plane of lens, Ls, to relay the field at LCD; to plane P,. This
allowed us to investigate the structure of the ring-slit field (evident at P;) which produces a petal
structure in the far-field (illustrated at P;). The propagation of the ring-slit field, relayed to
plane, P;, was investigated by positioning a CCD camera on a rail and recording the field from

plane P, to plane P, (a distance of two focal lengths from lens, Ly).

Fig. 4.4.2.1. A schematic of the experimental setup for investigating the field formed by a ring-
slit hologram, as well as the propagation and Fourier transform of such a field. L: Lens (f; = 25
mm; f, = 75 mm; f; = 100 mm and f; = 100 mm); M: Mirror; LCD: Liquid Crystal Display; D:
Diaphragm; CCD: CCD Camera. The planes of interest are marked P,, P, and P;. P; is the
Fourier plane of the ring-slit hologram; P, is the relayed-field (in both phase and amplitude) at

the ring-slit hologram; and P, occurs a distance of 2f after L,.

4.4.3. Results

All the digital ring-slit holograms, used in the experiment (depicted in Fig. 4.4.2.1), are given in
the first row of Fig. 4.4.3.1. The first ring-slit hologram, Fig. 4.4.3.1 (1a), consists of a single
ring-slit containing an azimuthal phase of / = +3 and has the following dimensions (in pixels):
R, =180, A = 20. The next five ring-slit holograms, Fig. 4.4.3.1 (1b) — (1f), all consist of two
ring-slits, having oppositely varying azimuthal phases, varying in azimuthal order from /e =
+1 to +5 (loyer = -1 to -5), respectively. The ring-slit holograms in Figs 4.4.3.1 (1b) — (1f) each
have the following dimensions (in pixels): R; = 180, R, = 190, A = 10. The last two ring-slit
holograms (Fig. 4.4.3.1 (1g) and (1h)) are divided into three and four ring-slits, respectively,

having the following azimuthal orders: [ = -3, Inigdle = 2, lowter = 1, and lipper = -2, Iniggier = -1,
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Imiddie2 = 2, Louer = 1. The dimensions (in pixels) of the ring-slits in Fig. 4.4.3.1 (1g) and (1h) are:
R, =180,R, =190, R; =200, A=10and R, = 168, R, =176, R; = 184, R, =192, A= 8.

(2b) (2c) (2d)

>

(00) (o)

(3b) (3¢) (3d) (3e) GH ° « (39) (3h)
o a%s a%

"0
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(4c), ) (4d) « (4e). . (4f), « x (49) , ' (4h)

N

6 6f
B By

Fig. 4.4.3.1. First row: The ring-slit holograms addressed to LCD;. A zoomed-in section of
three and four ring-slits are depicted as inserts ((1g) and (1h)). Second and third rows: The
experimentally produced and theoretically calculated fields produced in the Fourier plane (i.e.
plane P;), respectively. Fourth and fifth rows: The experimental and theoretical fields,
respectively, produced at plane P,. The white “X” marks the singularities. Sixth and seventh

rows: The experimental and theoretical fields, respectively, produced at plane P,.

The far-fields of the ring-slit holograms, presented in the first row of Fig. 4.4.3.1, are shown in
the second row of Fig. 4.4.3.1, accompanied with their theoretical predictions in the third row
(calculated with the use of Eq. (4.2.15)). For a single ring-slit, containing an azimuthal index of
[ = 43, the field produced in the Fourier plane, Ps, is a third order Bessel beam. In the case that
the ring-slit hologram consists of two ring-slits, where the orders of the two azimuthal phases

are of equal but opposite handedness, a petal structure is produced, where the number of petals
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is denoted by 2lll, as expected from theory [8]. It is interesting, to note from previous
investigations [4, 8], that even though these fields have a global OAM of zero, their cross-
sectional intensity distribution rotates as the petal field propagates, due to the differing radial
wave-vectors. Their rotation rate, which is dependent on the differing radial wave-vectors and
the azimuthal index, [, is given in Eq. (4.2.20). The fields produced in the Fourier plane, P;, for
the ring-slit holograms, contained in Figs 4.4.3.1 (1g) and (1h) are given in Figs 4.4.3.1 (2g) and
(2h), respectively. These two ring-slit holograms consist of three and four ring-slits,
respectively, and produce a non-symmetric superposition of higher-order Bessel beams. Even
though it is difficult to intuitively predict how the field will manifest in the Fourier plane for
these two cases, our experimentally recorded fields (Figs 4.4.3.1 (2g) and (2h)) are in very good
agreement with the theoretically calculated fields (Figs 4.4.3.1 (3g) and (3h)). These two fields
are calculated by extending the amplitude distribution, given in Eq. (4.2.15), to represent a

superposition of three and four Bessel beams, respectively.

The intensity profiles of the superimposed non-diffracting fields were captured at discrete
distances along their propagation (one example is given in Fig. 4.4.3.2). In Fig. 4.4.3.2 the petal
structure appears at the beginning of its propagation with low intensity, reaching a maximum
mid-way through, and then decreasing again as the conical waves separate out again back to an
annular ring structure. It is also evident from this figure that the intensity appears to rotate
about the propagation axis. From such images the angular position of a selected petal was
calculated and plotted as a function of the propagation distance (one example is given in Fig
4.4.3.3). The rotation rate of the intensity profile as it propagates was then determined from the
slope of the straight line which best fits the measured angular positions, as a function of the
propagation distance. The slope of the linear fit, in Fig. 4.4.3.3, was calculated to be 9.6 rad/m,

which is within 13% of the theoretically calculated result of 11.1 rad/m.
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Fig. 4.4.3.2. (a) - (k) Images of the intensity profiles of the experimentally produced field, for I/l
= 3, captured at intervals along its propagation. The yellow ‘X’ denotes a selected petal.
Monitoring its change in position illustrates a rotation in the field as it propagates. (1) The initial

Gaussian beam which illuminated the SLM.

The error between the experimentally measured and theoretically calculated rotation rates was
attributed to the technique we implemented to calculate the angular position of the petal. Since
the coordinate for the centroid of the petal was obtained by manually selecting this pixel in the
CCD image, error analysis in the angular positions needed to be performed. The standard
deviation in the angular position was obtained by assuming that the manually selected

coordinate lies within a one-sixth range of the petal’s diameter from the true centroid,
6, = arctan g\ arctan D . 4.4.3.1)
R 18R

D is the diameter of the petal and R is the distance from the propagation axis to the centroid of
the petal. In Fig. 4.4.3.1 it is evident that the radius, R, increases with the Bessel beam order I,
which results in the standard deviation of the petal position, which is scaled as a function of R,

to be scaled as a function of /I

Figure 4.4.3.3 below contains the measured angular positions as a function of the propagation

distance, for the case when the azimuthal order was lll = 3 and the difference between the two
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radial wave-vectors was Ak ~ 66 m'.The standard deviation in the angular position is 80 mrad
and the error in the propagation distance is 1mm; as this is the smallest increment on the optical
rail on which the detection system was mounted.

1.2 5
1.0 4
0.8 +
0.6
0.4

0.2 S

Petal position, 6 (in rad)

0.0 = Experiment, m=+3 and -3, 24k=66m"
Linear fit

0.2 ——
0.12 0.14 0.16

0.18 020 022 024
Propagation distance, z (in m)
Fig. 4.4.3.3. Graph of the angular position of a selected petal as a function of the propagation

axis z. (Il = 3 and Ak = 66 m™)

Similar graphs, as that presented in Fig. 4.4.3.3, were obtained for various values of |/l and 4k,
from which the rotation rates were calculated from the slopes of their linear fits. Figures 4.4.3.4
and 3.4.3.5 contain plots of the measured rotation rates as a function of the azimuthal order, /I,
and the difference between the two radial wave-vectors, 4k, respectively. The theoretical
predictions, taken from Eq. (4.2.20), are given as dashed lines. Figure 4.4.3.4 is a plot of the
measured rotation rate, for six different sets of radial wave-vectors, plotted as a function of the
azimuthal order l/l, illustrating that as the magnitude of I/l increases, so there is a hyperbolic
decrease in the rotation rate. The rotation rates were also plotted as a function of the difference
between the two radial wave-vectors, for various azimuthal orders, l/l, and are depicted in Fig.
4.4.3.5. By increasing the distance between the two radial wave-vectors (achieved by increasing
the width of the inner and outer ring-slits in the holograms), the rotation rate of the petals are
increased, evident in Fig. 4.4.3.4. There is very good agreement in our measured rotation rates

and the theoretical model (dashed curves).
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Since the rotation rates are dependent on the angular position of the petal, the standard deviation
was determined by the standard deviation in the slope of the graph of the petal position, as a

function of the propagation distance, by the following relationship

0,-nz, 6

6 = slopex z — slope, = +—% ==, (4.4.3.2)
z z

6, is the standard deviation in the angular position of the petal given by Eq. (4.4.3.1) and z is the
median of the propagation intervals at which the field is captured. The standard deviation for
the rotation rate (Eq. (4.4.3.2)), for the case when I/l = 3, was found to be ~ 0.5 rad/m. Since the
radius of each ring-slit could be accurately measured to within a single pixel, the absolute error
for the difference between the two wave-vectors, and hence the error in the x axis, was

calculated to be ~ 6 m™"

65

o]l i

] \

%70\ . . ak=21m’
£ 50+ = ak=41m’
T 45 \ \\ Ak=66m”’
S - -
c 4l b . Ak=83mj

1 \ = 3

Esd L i

= J n Ak= m

s 30—\ \ i\

o) 1\ ~ N

= 25 . AN S

iy L NS ~

c 20 % £ -

ke ] s NN Tl

® 154 N - R e

5 1 ~ S r\"'*s_ ;i“‘--i‘

x 104 o TEL L TmssoLo T -
] TheelE . T TTWe—_ o T =--SIITEEEess
> ERREE =lIIiTziizizooio-
0 I ' I ! I ' I ! I 1

1 2 3 4 5 6
Order, m

Fig. 4.4.3.4. Graphs of the rotation rates, for various differences between the two radial wave-

vectors, as a function of the azimuthal order, /.
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Fig. 4.4.3.5. Graphs of the rotation rates, for various azimuthal orders I/l, as a function of the

difference, A4k, between the two radial wave-vectors.

In all of the measurements given so far (Figs 4.4.3.3, 4.4.3.4 and 4.4.3.5), the azimuthal phase
within the outer ring-slit varied from black to white in a clockwise direction and that in the inner
ring-slit in an anticlockwise direction. By inverting the handedness of the two ring-slits, the
field will rotate with the same rate, but in the opposite direction. An example of this is given in

the video slides of Fig. 4.4.3.6.

Fig. 4.4.3.6. Video clips containing experimental images, captured at intervals along the beam’s
propagation, for fields generated from holograms having the following parameters (a) lijyper = +3;
Louer = =3 and (b) Liner = —3; Lower = +3. In the electronic version of this thesis the videos may be

viewed at the following links: (a) Medial and (b) Media2.

The optical field produced at the plane of the ring-slit hologram (i.e. at the plane of LCD;) was

relayed to plane P, where all the other diffraction orders had been removed (at plane P;)
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through the use of the diaphragm, D, and experimental images are shown in the fourth row of
Fig. 4.4.3.1. It is interesting to note that when the ring-slit is addressed with a single azimuthally
varying phase, no singularities appear in the ring-slit field. However, by introducing a second
ring-slit (having a different radial wave-vector) singularities appear in the ring-slit field, where
the number of singularities is denoted by 2l/l (the same for the number of petals). The
experimental fields (Fig. 4.4.3.1 (4a) — (4f)), produced at plane P;, are in good agreement with
those predicted theoretically, using Eq. (4.2.10) (with n = 2) and depicted in the fifth row of Fig.
4.4.3.1 (Fig. 4.4.3.1 (5a) — (5f)). By increasing the number of ring-slits to either three or four, it
becomes very difficult to individually locate each of the singularities in the field as some of
them start to overlap. This is evident, experimentally, within the yellow rings in Figs 4.4.3.1
(4g) and (4h) and theoretically in Figs 4.4.3.1 (5g) and (Sh). Since it is difficult to locate the
singularities in the “singularity”-field, when the number of ring-slits is increased, we suggest

using interferometric techniques to aid the categorizing of the singularities [17].

It is well-known that the intensity of the petal field is dependent on the function cos(6),
evident in Eq. (4.2.18). This cosine behaviour, as a function of the azimuthal angle, of the
intensity profile is also present in the near-field. This is evident in Fig. 4.4.3.7 where the
intensity profile, as a function of the angular position in the field, is plotted for the case of lier =
+3 and l e = -3. It agrees well with the intensity profile plotted for the theoretically predicted
field, given in Eq. (4.2.10), illustrating that the intensity maxima of the near- and far-field both

depend on the function cos*(/6).

996

Fig. 4.4.3.7. (a) The experimentally recorded field at plane P, for a ring-slit consisting of the
following azimuthal phases: i, = +3 and e, = -3. The theoretical prediction is given as an
insert. The red, dashed ring marks the line for which the intensity profile is plotted (b). (b) The
solid black curve is the experimental intensity profile and the red dashed curve is the theoretical

intensity profile, cos*(16).
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Propagating the field a distance of one focal length from plane P, to plane P,, we see that the
annular structure containing singularities transforms into spirals. The experimental fields
produced at plane P, for each of the eight ring-slit holograms are given in the sixth row of Fig.
4.4.3.1 and accompanied with theoretical predictions in the seventh row. In the case of a single
ring-slit, having a non-zero azimuthal mode index, the field appears as a diverging version of
the field at P,. For the five holograms, each consisting of two ring-slits, having opposite
azimuthal orders, there are 2/l spokes, evident in Figs 4.4.3.1 (6b) — (6f). Introducing more ring-
slits into the hologram results in the spokes merging, making it difficult to resolve individual

spokes (evident within the yellow rings in Figs 4.4.3.1 (6g), (6h), (7g) and (7h)).

The propagation of the field at plane P, to the field at P, was recorded and selected experimental
images of the field at intervals along its propagation are given in Fig. 4.4.3.8. It is interesting to
note that even though a rotation in the intensity profile for the petal field (in the vicinity of plane
P;, i.e. the far-field) exists as the petal field propagates, no rotation in the fields at P,
propagating to P, exists as the field propagates. This is in accordance with the theoretical
prediction given in Eqgs (4.2.8) and (4.2.11), where the rotation rate for such a field is
determined to be non-existent, but becomes more evident the closer the field propagates to the

far-field.

Fig. 4.4.3.8. Experimental intensity profiles of the field captured at evenly spaced intervals from
plane P, to plane P,. The distances from plane P, are given as (a) O mm, (b) 10 mm, (c) 20 mm,
(d) 30 mm, (e) 40 mm, (f) 50 mm (g) 60 mm and (h) 70 mm. The white arrows illustrate the

movement of a selected singularity. Inserts are given for the theoretical predictions.
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Switching the handedness of the azimuthal phases in the two ring-slits, is known to cause the
petal field, produced in the Fourier plane, P;, to rotate in the opposite direction [13]. Even
though the spiral field, produced at plane P,, does not rotate as it propagates, swapping the
handedness of the azimuthal phases (within the two ring-slits), results in the direction of the

spokes to switch from clockwise to anti-clockwise (and vice versa). This is evident in the last

column of Fig. 4.4.3.9 and is in good agreement with the theoretical prediction.

Fig. 4.43.9 First column: The ring-slit hologram applied to LCD,. Second column: The
corresponding optical fields for the ring-slits. The white arrows mark the locations of the
singularities. Third column: The Fourier transform of the ring-slit hologram. Fourth column:
The corresponding field, produced at plane P,. The white arrow marks the handedness of the

spokes. Theoretical predictions are accompanied as inserts.

4.5. Conclusion

We have presented two techniques to experimentally realize the superposition of higher-order
Bessel beams [12, 13]. Our first technique involved a physical ring-slit aperture and an
azimuthally varying hologram [12], whereas our second technique was a simplified version,
involving only one hologram [13]. Both techniques produced fields which agreed very well with
the theoretical prediction. The existence of higher-order vortices were revealed by interfering
the field with a plane wave. These fields have aided the understanding of certain resonator

modes [29].
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In this chapter we have also illustrated that we are able to control the rotation rates of
superimposed Bessel beams, by varying the parameters in the ring-slit hologram, namely the
azimuthal order |/l and the difference, Ak, between the two radial wave-vectors [13]. The
different radial wave-vectors lead to different longitudinal wave-vectors which produce the self-
imaging phenomenon and the rotation is then a manifestation of the continuous change of the
intensity pattern. Our experimentally measured rotation rates are in very good agreement with
those predicted theoretically. This technique is an ideal tool for the controlled rotation of

trapped particles in optical trapping experiments.

We also showed that a ring-slit field transforms from an annular structure (embedded with
singularities) to a spiral structure, consisting of spokes situated around a ring, which shows no
rotation in its intensity profile [30]. Since Bessel beams, and especially superpositions of Bessel
beams, are widely used in optical tweezing, understanding the structure of the field at planes
other than the Fourier plane is necessary. The ring-slit field, embedded with singularities, can be

used to trap low-index particles at set distances on the circumference of a circle.
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CHAPTER FIVE

Non-diffracting Speckle Fields

5.1. Introduction

Any field that has an annular spatial spectrum falls into the family of non-diffracting fields.
Their ability to maintain their intensity profile during propagation has interested many
researchers, resulting in many publications being dedicated to their formation, some of which

are mentioned in section 4.1.

In this chapter, we turn our attention to random non-diffracting fields (also termed non-
diffracting speckle fields). The first attempt to create a non-diffracting speckle field involved
illuminating a weakly scattering diffuser (produced by spraying finishing mist on a flat glass
plate) with a thin ring field [1]. Simpler and more efficient methods of generating non-
diffracting speckle fields have been realized with the use of a single SLM [2]. This is a
computational approach, equivalent to the experimental setup of Ref. [1], where the computer-
generated hologram applied to the SLM is the Fourier transform of a ring-slit containing a

random binary pattern.

Even though investigations into generating non-diffracting speckle fields have been made, none,
to the best of our knowledge, show agreement between a theoretically calculated speckle field
and an experimentally measured field. The major reason for this is that illuminating a diffuser
with a ring field (as described in Ref. [1]) makes it virtually impossible to mathematically
formulate the transmission function within the ring-slit in order to compute a theoretical
prediction. We make use of a single SLM and implement the checkerboard pattern which allows
us to operate our phase-only SLM in both phase and amplitude mode. This allows us to define
the transmission function of the ring-slit and so a theoretical calculation of the resulting speckle

can be made.

In this chapter we will outline the experimental setup used to generate non-diffracting speckle

and illustrate the benefit of the checkerboard pattern [3]. Since speckle plagues many optical



91

systems, an understanding of speckle formation is imperative for the development of tools for
its removal [4, 5]. Speckle is also proving useful in metrological techniques [6-10] and non-
diffracting speckle is of particular interest in the non-destructive testing of materials [11], all of
which benefit from a knowledge of speckle formation. Current investigations considered the
effect the dimensions and the geometry of the ring-slit have on the longitudinal correlation [12]
and the clustering (or snake-like patterns) of the speckles [13, 14], respectively. The structure of
the random hologram or diffuser also has an influence on the formation of speckle clustering
[14, 15]. In section 5.3, we make further investigations into the formation of speckle by
studying the effect binary and continuous phase modulations within the ring-slit, for both the
uniform and normal distribution, have on the structure of the speckle [3]. Our experimental
results are accompanied by a theoretical explanation to validate what we experimentally

witness.
5.2. Experimental methodology

The experimental setup used to generate non-diffracting speckle fields is very similar to that
presented in Fig. 4.4.2, for the generation of non-diffracting Bessel beams, and is presented
below in Fig. 5.2.1. A HeNe laser was expanded through a 6 X telescope before illuminating a
ring-slit hologram, encoded with a random phase modulation. In our previous attempts, a
physical ring-slit aperture was imaged onto the SLM and the phase modulation within the ring
field would be modified. However, with this approach, in the case of non-diffracting speckle
fields, one cannot define the transmission function of the ring field and this is why we
implemented the checkerboard pattern, so as to reproduce the entire transmission function onto
a single hologram. The dynamic addressing of SLMs allows the radius and width of the ring-
slit, the frequency of the phase modulation, the number of grey-levels used to represent the
phase modulation, and the distribution used to describe the phase modulation to be varied
appropriately. The plane at the SLM (P1) was relay imaged with a 1 X telescope to plane P2
(denoted in Fig. 5.2.1). A physical ring-slit, contained within the red border in Fig. 5.2.1, was
placed at P2 when needed, to allow for comparison between the results obtained with the ring-
slit hologram and the physical ring-slit in conjunction with the random hologram. The field at
plane P2 was Fourier transformed, with the use of lens LS, before being magnified by a 10 x
objective and detected on a CCD camera. The non-diffracting nature of the produced speckle
field is illustrated in Fig. 5.2.1 (i) - (ii), illustrating that the intensity profile of the field remains

invariant as the field propagates.
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HeNe Laser

< or

Fig. 5.2.1. The experimental design for generating non-diffracting speckle. The physical ring-
slit (RS) which can be introduced into the optical setup when needed is denoted inside the red
border. (L: lens (f; = 25 mm; f, = 150 mm; f; = 50 mm; f; = 50 mm; f5 = 200 mm); M: mirror;
SLM: spatial light modulator; O: objective; CCD: CCD camera). (i) — (iii) The intensity profile

of the non-diffracting speckle field recorded at intervals along its propagation.

Figure 5.2.2 contains the results obtained with the physical ring-slit and a random hologram
(column 2) and the hologram which incorporates the checkerboard pattern (column 4). These
results were first obtained by illuminating the SLM when it was addressed by the holograms
given in column 3 of Fig. 5.2.2. The SLM was then addressed with the same random holograms
as those in column 3, but with the checkerboard pattern removed (i.e. those in column 1), and
the field at the SLM was then imaged onto a physical ring-slit (R =3 mm and A = 150 wm). The
alignment of the physical ring-slit was adjusted until the field in the Fourier plane resembled
that which was obtained with the checkerboard pattern. Both methods produced identical results
(evident in comparing columns 2 and 4), illustrating that this technique is extremely effective in
mimicking an amplitude mask. By being able to encode the transmission function into a single
hologram and with the dynamic addressing of SLMs, the parameters which describe the ring-

slit, such as radius, width and phase modulation can all be easily adjusted.



93

Fig. 5.2.2. Column I: Random holograms which were illuminated with a ring field, denoted in
red. Column 2: The corresponding experimentally measured Fourier transform. Column 3: The
same random holograms as those in column 1, but with the checkerboard encoded. Column 4:

The experimentally measured Fourier transform of column 3.

Since the phase modulation within the ring-slit can be mathematically defined, we can compute
a theoretical prediction for the resulting speckle field. An example is given in Fig. 5.2.3,
illustrating that the experimentally produced non-diffracting speckle field is in very good
agreement with the theoretical prediction. This approach, for the first time, allows for
quantitative studies in the dynamics of speckle formation, and is implemented with a single

device —a SLM.

Fig. 5.2.3. (a) The ring-slit hologram applied to the SLM. (b) The corresponding experimentally

produced field in the Fourier plane and (c) the theoretically calculated field at the Fourier plane.
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5.3. Results and discussion

In our experimental investigations we test four different forms of phase modulation within the
ring-slit, described by the following distributions: (i) continuous uniform, (ii) binary uniform,

(iii) continuous normal and (iv) binary normal.

e (i) and (ii): continuous uniform and binary uniform distributions

In the case where the phase modulation is described by a continuous uniform distribution, the

phase values exist in the range {0, 27}, and the phase modulation is defined as
P(x,y) =22 xU(x,y), (5.3.1)

where U(x,y) is a uniform random number in the range {0,1}.

For the case that the phase modulation within the ring-slit is described by a binary uniform
distribution, there is an equal probability that the phase values will be assigned either a value of

0 or 7z, which is mathematically described as

P(x,y) = {0’ Ulx.»=05 (5.3.2)

z, U(x,y)>05"

Figure 5.3.1 contains the ring-slit holograms and the corresponding fields in the Fourier plane
for the continuous uniform and binary uniform distributions. The frequency of the phase
modulation within the ring-slit increases for each row (i.e. the phase modulation becomes more
complicated). The amplitude mask has been removed in Fig 5.3.1, so as to highlight the phase-

modulation within the ring-slit.
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Fig. 5.3.1. Column I: Ring-slit holograms, where the phase modulation within the ring-slit is
described by a continuous uniform distribution (the frequency of the phase modulation increases
with each row, (a) and (c) 10 pixels; (e) and (g) 50 pixels; (i) and (k) 100 pixels). The red ring
denotes the ring-slit. Column 2: The corresponding experimentally recorded field at the Fourier
plane. Column 3: Ring-slit holograms, where the phase modulation within the ring-slit is
described by a binary uniform distribution (the frequency of the phase modulation increases
with each row). The red ring denotes the ring-slit. Column 4: The corresponding experimentally

recorded field at the Fourier plane.

In column 2 of Fig 5.3.1, it is evident that the zero-order Bessel beam starts to reconstruct as the
frequency of the phase modulation increases. However, this is not the case with the binary
uniform distribution and instead as the frequency of the phase modulation increases, so the

speckle becomes more chaotic (evident in column 4).

To understand why different distributions produce different forms of non-diffracting speckle,
the complex plane approach (first introduced in section 4.4.1) can be used. The amplitude
modulation (introduced in section 4.4.1) is just a specific form of phase modulation where the
two vectors, A; and A,, are weighted and positioned on the complex plane in such a way that
they produce a resultant having zero amplitude, thus completely suppressing the on-axis

intensity in the Fourier plane.
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In the case of the continuous uniform phase modulation the vectors on the complex plane, A; to
Ajse, all have the same amplitude and emanate from the origin of the complex plane from 0 to
27 This produces a resultant, having the same amplitude as each of the 256 vectors, and
pointing along the negative x-axis (i.e. ¢ = 7). The average amplitude of the field at the plane of
these holograms, is non-zero and due to the ring-slit geometry restricting this phase modulation,
a zero-order Bessel beam manifests in the Fourier plane, evident in the three images in column 2
of Fig 5.3.1. In order to verify if the DC-offset experiences an increase or a decrease with an
increase in the frequency of the phase modulation, we analysed the standard deviation within

the ring-slit and this will be presented later for all four distributions.

For the binary uniform case, there is an equal probability that either a value of 0 or 7 will be
selected to represent the phase modulation within the ring-slit and so the two vectors on the
complex plane each have the same amplitude, but point in opposite directions (¢, = 0, ¢ = 7).
The amplitude of the resultant is zero, so the DC component of the field at the ring-slit is zero,
resulting in no zero-order Bessel beam forming in the Fourier plane. However, as the frequency
of the phase modulation increases, the ‘noise’ around the DC-component increases and the

nondiffracting speckle becomes more chaotic, evident in column 4 of Fig. 5.3.1.

e (iii) and (iv): continuous normal and binary normal distributions

When the phase values, within the ring-slit, are described by a normal distribution, having a

mean of zero and a standard deviation of 1, the phase values are defined as

P(x,y)=27xN(x,y), (5.3.3)

where N(x,y) is a normal random number. The probability density function for our continuous

normal distribution is

—(x—p)°
, 5.3.4
exp( pys ) ( )

fx)=
J27c?

where 1 and oare the mean and standard deviation, respectively.
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The last case that we consider is the binary normal case. Here phase values within the ring-slit
are assigned a value of either O or 7, where the probability of selecting either value is bounded

by a Gaussian envelope,

P(x, )={0’ N y) 0.5 (5.3.5)

7z, N(x,y)>0.5

The results obtained with these two distributions appear below in Fig. 5.3.2. The holograms
containing phase modulations described by a continuous normal distribution and a binary
normal distribution are given in column 1 and 3 of Fig. 5.3.2. The non-diffracting speckle fields
produced by the holograms (described in columns 1 and 3) are shown in columns 2 and 4,
respectively. It is evident that in the case of both distributions, the non-diffracting speckle starts

to evolve into a zero-order Bessel beam as the frequency of the phase modulation increases.

Fig. 5.3.2. Column I: Ring-slit holograms, where the phase modulation within the ring-slit is
described by a continuous normal distribution (the frequency of the phase modulation increases
with each row, (a) and (c) 10 pixels; (e) and (g) 50 pixels; (i) and (k) 100 pixels). The red ring
denotes the ring-slit. Column 2: The corresponding experimentally recorded field in the Fourier
plane. Column 3: Ring-slit holograms, where the phase modulation within the ring-slit is

described by a binary normal distribution (the frequency of the phase modulation increases with
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each row). The red ring denotes the ring-slit. Column 4: The corresponding experimentally

recorded field in the Fourier plane.

Once again the effects noted in Fig. 5.3.2 can be explained by visualizing a complex plane to
represent the phase values in the hologram. For the continuous normal distribution, the vectors
on the complex plane are weighted by a normal distribution. This results in the resultant vector
having a non-zero amplitude and consequently an average amplitude of the field exists at the
ring-slit producing a zero-order Bessel beam in the Fourier plane. This is evident experimentally

in column 2 of Fig. 5.3.2.

When the phase modulation is described by a binary normal distribution a similar effect is noted
(column 4 of Fig. 5.3.2). This is due to the fact that the probability of selecting either a phase
value of O or a phase value of 7 is bounded by a normal distribution; giving rise to the
amplitudes of the two vectors in the complex plane being unequal . The resultant vector
therefore has a non-zero amplitude and so a mean amplitude exists within the ring-slit giving

rise to a zero-order Bessel beam in the Fourier plane.

For all of the above four cases, the transition of the speckle field, as the frequency modulation
increases, can be understood by investigating the effect the standard deviation of the distribution
has on the complex plane analogy. A graph illustrating how the standard deviation for each of
the four distributions varies as a function of the frequency of the phase modulation is given in
Fig. 5.3.3. The x-axis represents an increase in the correlation radius of the phase modulation
within the ring-slit. The correlation radius is defined as the distance over which a 27 phase shift
occurs in the phase modulation. Therefore a small correlation radius indicates that the frequency
of the phase modulation is high, while a large correlation radius means the frequency of the

phase modulation is low. The y-axis denotes the standard deviation of the distribution.

For the case of the continuous uniform distribution, the standard deviation for the continuous
uniform distribution decreases as the frequency of the phase modulation decreases. In terms of
the complex plane, this means that the range in which the 256 vectors exist on the complex
plane becomes smaller. If all 256 vectors on the complex plane are restricted to a segment
which has a small opening angle, then the amplitude of the resultant vector will increase,
resulting in the zero-order Bessel beam becoming more predominant in the Fourier plane, as

illustrated in column 2 of Fig. 5.3.1.
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Fig. 5.3.3. Graph of the standard deviation for each of the four distributions as a function of the

frequency of the phase modulation (or correlation radius).

From Fig. 5.3.3, it is evident that the standard deviation for the uniform binary distribution does
not vary as the frequency of the phase modulation increases. This would then explain why the
amplitude of the two vectors in the complex plane remains unchanged as the frequency of the
phase modulation increases. This results in no change occurring in the DC-offset and
consequently no zero-order Bessel beam forms in the Fourier plane, evident in column 4 of Fig.

5.3.1

In the continuous normal distribution, an increase in the frequency of the phase modulation has
no effect on the standard deviation (evident in Fig. 5.3.3). Instead the standard deviation
remains fairly constant. This results in no fluctuations in the average amplitude of the field
within the ring-slit taking place. In this case, as the frequency of the phase modulation increases
not much change is noted in the intensity of the zero-order Bessel beam in the Fourier plane, as

is the case in column 2 of Fig. 5.3.2.

From fig. 5.3.3, one can see that as the frequency of the phase modulation increases, the
standard deviation decreases ever so slightly, resulting in a slight increase in the amplitude of
the resultant vector. Consequently, the zero-order Bessel beam starts to appear as the frequency

of the phase modulation increases.
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In conclusion, we see that by engineering the frequency of the phase modulation, there is not
much of a transition from non-diffracting speckle to a zero-order Bessel beam. Only one of the
distributions (the binary normal distribution) shows a transition from chaotic speckle to a zero-
order Bessel beam. This is also evident in comparing Figs 5.3.1 and 5.3.2, where the binary
normal distribution (column 4, Fig. 5.3.2) displays the development from fully-developed
speckle to a zero-order Bessel beam. The two continuous cases on the other hand, do not seem
to start off as chaotic speckle; instead we see Bessel-like clusters. The binary uniform
distribution is the polar opposite. Increasing the frequency of the phase modulation does not
result in the field attaining a quasi-zero-order Bessel beam state and instead the field develops
into more chaotic speckle (evident in Fig. 5.3.3 and in the intensity profiles in column 4 of Fig.
5.3.1). By decreasing the standard deviation of all four distributions, this restricts the two
vectors to a smaller area on the complex plane and so the zero-order Bessel beam becomes more
predominated in the Fourier plane. Some simulated results are given in Fig. 5.3.4 (row 1:
continuous uniform, row 2: binary uniform, row 3: continuous normal, and row 4: binary
normal). By varying the standard deviation, one can control where in the ‘speckle to zero-order

Bessel beam’ spectrum the field can exist.

Fig. 5.3.4. Simulated images for the non-diffracting speckle field, for each of the four

corresponding distributions. Row [I: continuous uniform. Row 2: binary uniform. Row 3:
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continuous normal. Row 4: binary normal. The standard deviation increases from left to right.

The values for the standard deviation are given in the bottom right corner of each image.

5.4. Conclusion

Modulating the amplitude in the ring-slit holograms, allows us to obtain good agreement
between our experimentally produced non-diffracting speckle fields and theoretical predictions.
We investigated the effect that binary and continuous phase modulations for two different
distributions, (uniform and normal), have on the structure of the speckle field [3]. We
discovered that we can control the evolution of the fully-developed non-diffracting speckle into
a zero-order Bessel beam by adjusting the standard deviation of the distribution, which can be
explained by analysing the DC component of the Fourier series. Having a ‘dial’ to select
between either a zero-order Bessel beam, fully-developed non-diffracting speckle, or any
mixture in-between, one can develop fields that are ‘tailor-made’ for specific functions. For
example in the case of the non-destructive testing of materials, fields can be designed so as to
optimise the assessment of materials and solutions. Non-diffracting fields are also widely used
in optical tweezers. By being able to switch between a zero-order Bessel beam and non-
diffracting speckle, one can randomly disperse particles, accumulated in the column of the

Bessel beam, in a predetermined area of a cell or sample.
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CHAPTER SIX

Measuring the Orbital Angular Momentum Density of an

Optical Field

6.1. Introduction

In chapter 2, various methods of measuring OAM are mentioned, however, even though these
techniques are efficient at sorting modes (and even in some cases single photons) carrying
OAM, they do not allow one to obtain a quantitative measurement for the OAM density. They
merely measure the global OAM - the average value across the entire field. Some publications,
however, have demonstrated the transfer of local OAM to trapped particles [1-3] and shown that
the rotation rates of a particle trapped at different radial positions is proportional to > [1], or
that a particle trapped at different radial positions in an optical field (produced by interfering
two vortex beams with unequal charges) rotate in opposite directions [3]. Attempts to make
quantitative measurements of the OAM carried in an optical field have been made by measuring
these rotation rates [4, 5]. This is not only an indirect measurement, but also a difficult
experiment to conduct. These measurements only show that the rotation rates increase linearly
with laser power [4] and that the rotation rates of low-index particles are not affected by beam
imperfections [5]. An even more complicated method involves using the Doppler shift of a

rotating detector [6, 7].

In this chapter we investigate theoretically (in section 6.2) the OAM density for superpositions
of higher-order Bessel beams from first principles, by calculating the Poynting vector of the
field, from which we can deduce both the linear and angular momentum components [8, 9]. We
then use the Fresnel diffraction integral to form an experimental expression for the OAM
density, from which we can make a direct comparison between theory and experiment. In
section 6.3, we develop a simple method for measuring the OAM density in optical fields, using
only a SLM and a Fourier transforming lens. Since there is interest in the superposition of OAM
carrying fields, at both the classical [10-12] and quantum levels [13], we test the approach on

superimposed non-diffracting higher-order Bessel beams. We obtain quantitative measurements
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for the OAM density as a function of the radial position, for both symmetric and non-symmetric
superpositions. We obtain good agreement with the theoretical prediction which is presented in
section 6.4. The results indicate that the magnitude and direction of the OAM in the optical field
is dependent on the location within the field’s spatial distribution. In other words, different parts
of the field carry different amounts of OAM. Being able to determine the OAM distribution is

significant in optical trapping and tweezing.
6.2. Theory

In obtaining the theoretical result for the OAM density for a coherent superposition of two
Bessel beams, we follow the same procedure as that presented in section 1.3. The same steps
taken in formulating Eqs (1.3.1) to (1.3.13) (although it contains the case for a single field,
possessing the phase factor exp(il)) are applied here.

This problem, of formulating the Poynting vector, has been tackled previously by others [4, 14 -
19]. We first take the general result for the Poynting vector, presented in Eq. (1.3.8), which we
will then apply to our specific problem of coherent superpositions of non-diffracting Bessel
beams.

e CASE 1: Symmetric superposition

The form for a symmetric superposition of two Bessel beams having differing cone angles and

opposite azimuthal phases is
u' (r,0,z) = A,[J, (q,r)exp(iAkz) exp(il@) + ayJ _, (q,r) exp(=iAkz)exp(=ilB)],  (6.2.1)

where J; is the Bessel function of order /. A, is the energy contained within the first Bessel

beam, J,,

A, =\/ [exp(=2(r/ @)* )rdr (6.2.2)

ringl

and the energy contained within the second Bessel beam, J;, is denoted as aA,, where



105

o = \/ [exp(=2(r/ @)*)rdr / [exp(=2(r/ ®)* )rdr (6.2.3)

ring?2 ringl

with ringl and ring2 denoting the bounds of the inner and outer radii for the inner and outer
rings, respectively and o the radius of the Gaussian beam illuminating the ring-slit. The cone
angles, y; and y,, differ as a result of the generation process (outlined in chapter 4). As a result of
the differing cone angles, both the radial and longitudinal wave numbers differ for the two
beams. The radial wave numbers become ¢; = ksiny;, while the longitudinal wave numbers,
given by k; = kcosy; differ from the central z-dependent wave number (k) by +4k. The subscripts
i refer to the first (second) beam in the superposition. Each of the components of the Poynting
vector, (S,, Sp and S;) for the field given in Eq. (6.2.1) can be determined by substituting the
amplitude of the field (Eq. (6.2.1)) into Eq. (1.3.8)

2 2
5, =~ DOE (1 (@)@ + aud o (Gar) T ()sin(216+ Ak])]  (6.2.4)

' 2
Alleyax? |, -
So=T Ui @n-ais’ia.n) (6.2.5)
Ale,ack (5 -
S == (12(g,m) + @272 (q,r) + 200, (q,7) T, (qyr)cos(2[10+ Akz]))  (6.2.6)

The total OAM density (along the direction of propagation, z) is defined as

1

2
C

L =—(rxsS).. (6.2.7)

Here, the units of S are the conventional W/m” and the OAM density (L.) is consequently
expressed as the angular momentum per unit volume, or Ns/m’. By substituting in each
component of the Poynting vector (given in Egs (6.2.4) to (6.2.6)) into the expression for the
total OAM density (Eq. (6.2.7)) and taking only the z-component, the OAM density for the field
described in Eq. (6.1.1) is

le,wA?
L.(r) :%(Jf (@) + 2T (gor)) (6.2.8)
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An illustration which describes the experimental measurement is given in Fig. 6.2.1 (a). The
figure is divided into two parts: (1) the generation of the optical field for which we wish to
measure the OAM density and (2) the measurement of the OAM density, which is achieved by

performing the inner-product.

@) SLM 1 ® o SLM2 b

SETUP 1: Generation SETUP 2: Decomposition

Fig. 6.2.1. (a) A schematic of the generation of the optical field and the decomposition of its
OAM spectrum. (b) The Gaussian beam used to illuminate the hologram, (c), for the generation
of the optical field, (d), defined by u'(1,6,z). The hologram, having a transmission function of
t(r,0), in (e) together with the lens L, performs the decomposition, producing the inner-product,
P, represented in (f) and mathematically defined by u”(p,¢,z). (SLM: spatial light modulator and
O: objective — used to magnify the optical field (d)).

The optical field, u’(r,0 z) is directed onto the match-filter #(r,6), where the Fourier transform is
taken so as to form an experimental measurement. The match-filter is a function of r, allowing
one to select a specific radial position within the optical field, u'(r,6 z). The azimuthal phase
within the match-filter can also be varied, resulting in different azimuthal weightings at different
radial positions in the optical field being measured. It is not only restricted to our case of

superimposed Bessel beams, but can be implemented with any OAM-carrying optical field.

First we need to relate a measurable quantity (such as the intensity of the inner-product) to the
OAM spectrum, so as to form an experimental expression for Eq. (6.2.8), the OAM density. We

first start by defining the field of the inner-product, by making use of the Fresnel diffraction
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integral, so as to propagate the initial field, u’(r, 6,z), multiplied by the match-filter, #(r,6), to the

plane of the inner-product, P

u” (0.6, 2) =R T 9.6, 2) exp[— iX 1o cos(o- ¢)errd6’. (6.2.9)
A oo f

f1is the focal length of the lens used in the modal decomposition.

The field is evaluated at the origin, p = 0, so as to return the desired inner-product between the
field u'(r,0,z) and the match filter #(r,6). We also only need to consider the cases when the
azimuthal mode of the match-filter is either / or -/ (i.e. n = [ and —I), because the weighting of
the azimuthal mode, a,, will be non-zero when the match-filter possesses an azimuthal mode of

the complex conjugate of one of the azimuthal modes present in the initial field, u/(r,6,2).

By substituting the initial field, Eq. (6.2.1) into Eq. (6.2.9), and considering only the signal at

the origin, u’ (0,¢,2), for both cases of m =1 and m = -/, we find that

. %
u (p=0,2)=PU2KD) 5 4 T (q,ryexplinke)yrr (6.2.10)
l/lf R,
and
. N
u’(p=0,7)= %;kf) 27,y | I, (q,r)exp(—iAkz)rdr, (6.2.11)
1 R,

where R; and R, are the inner and outer radii of the ring-slit used in the match-filter.

The ring-slit in the match-filter is thin, resulting in Eqs (6.2.9) and (6.2.10) being simplified by
noting that the ring-slit may be assumed to be at a single radial position, R = R; = R,, of width
2AR (where R is the radius of the ring-slit)

P, _exp(i2kf)
u, (p_()’Z)_ l/lf

27A,2AR - RJ, (q,R) exp(iAkz) (6.2.12)

and
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exp(i2kf)

ul (p=0,2)= o

27,0 2AR - RJ_, (q, R) exp(—iAkz). (6.2.13)

Since the intensity of an optical field is defined as I; = gyc(u; u;*), the measured intensity at the

origin of the inner-product, /(0), and the theoretical Bessel function can be related as

2
1,(0) fA 5
=J; (q,R 6.2.14
£y (47TAR-RA0] r @R (6.2.14)
and
Lo @ Y
—l 242
£C (47[ARRAOJ =% J5(4:R), (6.2.15)

for the two cases, where the azimuthal mode index of the match-filter is either [ or —I,
respectively. Substituting these two equations (Egs (6.2.14) and (6.2.15)) into the theoretical
result for the OAM density (Eq. (6.2.8)), the following experimental form for the OAM density

is obtained

2
LZ<R)=I—“’( Z ] (1,000 1_,(0)). (6.2.16)
267] SRing

n is a factor for the optical efficiency of the experimental setup and Sg;,, is the area (47AR.R) of

the match-filter’s ring-slit and is a function of its radius, R.

We will now generalize the expressions for the theoretical (Eq. (6.2.8)) and experimental (Eq.
(6.2.16)) OAM densities, for a generalized symmetric superposition of Bessel beams, described

as

N
u' (r,0,2)= A, 2 a,J,(q,r)exp(iAk,z)exp(il@) + a_,J_(q_,r)exp(—iAk_; z) exp(—il ).
I=N

(6.2.17)
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where o, and a.; denote the energy contained in each of the ring-slits, with respect to the energy
contained in the first ring-slit. Since the #-component of the Poynting vector, Sy, is a linear
operator (this proof is included in Appendix A2), the generalized experimental and theoretical

OAM density is obtained by extending the results given in Eqs (6.2.8) and (6.2.16)

2

E WA N
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and
/1 2
[0} N
Ln="22 | Si1,0-1,0) (6.2.19)
2C77 SRing =N
respectively.

e CASE 2: Non-symmetric superposition

The amplitude for a non-symmetric superposition of two Bessel beams, is defined as

u' (r,0,2)= A, (J,(q,r) exp(irkz) exp(il ) + ayJ , (q,r) exp(—iAkz) exp(imB)),  (6.2.20)

where the azimuthal indices are of different orders, [ # m. By following the same procedure for
determining the Poynting vector and consequently the OAM density, as described in the

symmetric case, the theoretical OAM density is

£,0A;

L.(r0.2)= (72 () + ma2 g2 (qur) + (1 + myay cos(( —m)B + 28k2) (g,r)] , (g57)

6.2.21)

Unlike the symmetric case (Eq. (6.2.8)) this form for the OAM density is a function of the
azimuthal angle, 0, in the plane of the inner-product and is evaluated by summing over the
OAM density values for a range of angles varying from O to 2z. It is also a function of Akz,
however since this only produces a constant phase-shift (i.e. a rotation in the intensity profile of

the optical field), it is neglected.
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The on-axis intensity in the inner-product plane is related to the Bessel function by following
the same steps outlined in Eqs (6.2.9) to (6.2.15) and remembering that the match-filter must be

set to both / and m, resulting in

2
1,(0) A 2
—J2(qR 6.2.22
£yc (47IAR~RAJ Hak) (0222
and

Lo Y
m =alJ2(q,R). 2.2
“ ( - j @} 72 (4;R) (62.23)

Substituting Eqs (6.2.22) and (6.2.23) into Eq. (6.2.21) produces the expression for the

experimental measurement of the OAM density

2
L.(R.6,2)= %{ A J (17, (0) + m1, (0) + (1 + m)cos((d — m)6 + 28k YT, )T, (0) )

Cﬂ Ring

(6.2.24)

No measurement for the angle 6 can be made, as there exists only one measurement for the on-
axis intensity in the inner-product plane. Instead the experimental equation for the OAM density

is integrated over 6, resulting in the average OAM density

2
LZ(R)=i[ A ] (I1,(0) + mI,, (0)). (6.2.25)

Ring

where the term Akz can be neglected. As this result has no angular dependence, the
measurement does not pertain to a specific radial direction, but instead is an average

measurement across the field.

The amplitude distribution of the non-symmetric superposition can be generalised in the

following form
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N N
u'(r,0,2)= A, X Yo J(qr)exp(idk,z)exp(ild) +«,, ], (q, 1) exp(iAk, z) exp(imB).
N

[=—N m=—

(6.2.26)

Since the f-component of the Poynting vector, Sy, is a linear operator, the theoretical and
experimental results for the OAM density is determined by extending the simple form in Eqs
(6.2.21) and (6.2.25). However, the equations become very cumbersome and have been
neglected. In verifying our results for a generalized non-symmetric superposition, the OAM
density is calculated by substituting the amplitude distribution (Eq. (6.2.26)) into Eq. (6.2.8) to

determine the Poynting vector for calculating the theoretical OAM density.

We conduct the experiment on six different optical fields, which will appear in section 6.4. The
first three fields consist of a superposition of two Bessel beams, of orders / = 3 and -3, where the
energy in the two Bessel beams are (1) equal; (2) the / = -3 order Bessel beam is heavily
weighted; and (3) the [ = +3 order Bessel beam is heavily weighted. The theoretical and
experimental OAM densities are calculated using Eqs (6.2.8) and (6.2.16). We also measure the
OAM density for a non-symmetric superposition of two Bessel beams, / = 3 and m = -4, using
Eqs (6.2.21) and (6.2.26). The fifth optical field is a superposition of three Bessel beams and
even though the OAM density is not explicitly given in this thesis, it is easily calculated by
substituting the amplitude of the optical field into Eqs (1.3.8) and (6.2.7). Similarly, we use Eqs
(1.3.8) and (6.2.7) to measure the OAM density of the last optical field, a non-symmetric

superposition of four Bessel beams.
6.3. Experimental methodology

The experimental setup for measuring the OAM density for symmetric and non-symmetric
superpositions of Bessel beams is denoted in Fig. 6.3.1. A HeNe laser (A ~ 633 nm) was
expanded through a 6 x telescope and directed onto the liquid crystal display (LCD) of a SLM,
labelled LCD; so as to generate the six optical fields for which we wish to measure the OAM

density. The fields were generated using the holograms presented in section 4.4.
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Fig. 6.3.1. A schematic of the experimental setup for measuring the OAM density as a function
of the radial position, R. L: Lens (f; = 25 mm; f, = 150 mm; f3 = 200 mm and f; = 200 mm); M:
Mirror; LCD: Liquid Crystal Display; O: Objective; PM: Pop-up Mirror; CCD: CCD Camera.
The objective, O,, was placed at the Fourier plane of lens, L,. The corresponding optical fields

and holograms appear at the appropriate planes.

Some of the ring-slit holograms, programmed onto LCD, for the creation of superimposed
Bessel beams can be found in the next section, section 6.4. The area surrounding the ring-slit,
where we do not want to transmit any light, is encoded with a checkerboard pattern so as to
mimic an amplitude mask. This checkerboard technique was explained in section 4.4.1. The
resulting images of our non-diffracting superposition field, formed at the focal plane of L;, was
magnified with a 10x objective, O, and directed to the LCD of the second SLM, LCD,. A pop-
up mirror, PM;, was used to direct the field at the plane of LCD; so as to be recorded on CCD;.

This allowed us to quantitatively measure the radial positions within the initial optical field.

The modal decomposition was achieved by executing an inner product of the incoming field
with the match filter and a Fourier transforming lens, L,. Since the match-filter was
programmed digitally the phase factor, exp(-im#), was easily varied for various m values, and
for particular radial (r) positions. The coefficient a,, at set radial positions, was found by
assigning the match-filter to a narrow ring-slit having a radius, R, and a width of 20 pixels. This

allows us to find the local OAM density rather than the global OAM density.

The image presented in Fig. 6.3.2, illustrates the concept of the match-filter: the experimental
field (second and fourth row of Fig. 6.3.2) was subdivided into 10 ring-slits. In this work, the
match-filters consist of ring-slits having ten different radii (r; = 75; r,= 110; r; = 145; ry, = 180;

rs =215; r¢ = 250; r; = 285; rg = 320; ro = 355 and ryo = 390 (given in pixels), each consisting of
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a width of 20 pixels). The azimuthal phase within each ring-slit was varied according to the
complex conjugate of the azimuthal modes present in the initial amplitude distribution. The
dynamical aspect of SLMs allows us to radially locate where in the optical field we wish to
make a measurement of the OAM density. Due to the fact that LCD, was orientated as the
mirror image of LCD; in our experimental setup, the complex conjugate of the azimuthal mode
index, m, on LCD; is equivalent to m on LCD,. If the experimental setup were orientated
differently, such that the two SLMs have the same orientation, the complex conjugate of the
azimuthal mode index, m, on LCD; is then equivalent to -m on LCD,. The OAM density for a
particular radial position can then be obtained by measuring the on-axis intensity of the inner-

product on CCD,.

Fig. 6.3.2. The initial optical field was divided radially into individual ring-slits. The phase
within the annular ring was varied azimuthally for various values of /. The rest of the LCD was
programmed with a checkerboard pattern so as to restrict the transmission function to the ring
alone. The ten rings have the following radii: r; = 600 um, r, = 880 um, r;= 1160 pm, ry= 1440
um, rs= 1720 pm, rg= 2000 um, r; = 2280 um, rg= 2560 um, ry = 2840 um and r;p= 3120 pm.
The black and white images in rows 2 and 4 are grey-scale experimental images of the first

optical field that we tested.

In the next section we will present our results for the six optical fields that we tested using our

OAM density measurement setup, described in Fig. 6.3.1.
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6.4. Results and discussion

e Optical field #s 1, 2 and 3 - symmetric superposition of two Bessel beams

The holograms for the first test of our OAM measurement technique, described in section 6.4,
are given in the first column of Fig. 6.4.1. They consist of a ring-slit separated into two ring-
slits, each possessing an azimuthal phase of equal order but opposite handedness, (i.e. lpner = 3
and l,yer = -3). The widths of the two ring-slits differ in Figs 6.4.1 (d) and (g). This allowed us
to adjust the energy present in each of the two Bessel beams and subsequently set the values of
Ap and ayin Eq. (6.2.11). The ring-slit dimensions are: (a) r; = 173, r, = 188, Ary, Ar, = 15; (d)
r =173, r, = 188, Ary =7, Ar, = 23; (g) r = 173, r, = 188, Ar; = 23, Ar, =7 (all given in
pixels). When the orders, lll, of the two azimuthal phases are of equal order, but of opposite
handedness, a petal structure is produced, where the number of petals is denoted by 2lIl as

expected from theory [20]. This is evident in Fig. 6.4.1 (b) and (c).

In the other two cases (Fig. 6.4.1 (d) and (g)) the two ring-slits cover slightly different areas,
producing Bessel beams containing differing energies. The / = -3 order Bessel beams is heavily
weighted by increasing the area of the outer ring-slit (evident in Fig. 6.4.3 (d)), resulting in a
smearing of the petals as the [ = -3 order Bessel beam is favoured in the optical field (evident in
Fig. 6.4.1 (e) and (f)). In Fig. 6.4.1 (g) the [ = 3 order Bessel beam is heavily weighted by

increasing the area of the inner ring-slit, resulting in a similar smearing of the petals.
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Fig. 6.4.1. First column: Holograms and the corresponding experimentally produced fields in
the Fourier plane (second column) accompanied with theoretically calculated fields (third
column). The white dots in (c) denoted the radial positions of each of the ten ring-slits used as

the match-filters.

The OAM spectrum of the first optical field, given in the first row of Fig. 6.4.1, was obtained by
measuring the intensity at the origin of the inner-product field, at plane P, with a CCD camera,
CCD,, for each of the ten match-filters whose azimuthal phase varied from [/ = -4 to 4. This
measured OAM spectrum is shown in Fig. 6.4.2, illustrating that the only components of the
OAM spectrum, that are present in the field, are / = -3 and 3, which are the complex conjugates

of the azimuthal modes present in the initial amplitude distribution.
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Index

Fig. 6.4.2. The measured OAM spectrum of the field given in Fig. 6.4.1 (b), as a
function of the radial ring (or radial position), given by numbers 1 to 10, for azimuthal
phase values of m = —4 to 4. The height of each bar represents the measured coefficients
la,f’.

The OAM density for each of the fields, denoted experimentally in the second column of Fig.
6.4.1, was determined by measuring the intensity at the origin of the inner-product field at the
Fourier plane of L, for each of the match-filters and substituted into Eq. (6.2.16) or (6.2.25).
Figure 6.4.3 contains the measured OAM densities as a function of the radial position for the

first three optical fields.
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Fig. 6.4.3. (a) A density plot of the OAM density for the field given in Fig. 6.4.1 (b). Red
denotes negative OAM and blue denotes positive. Light to dark blue denotes an increase in
positive OAM and light to dark red denotes an increase in negative OAM. (b), (c) and (e) the
OAM density for the fields in Fig. 6.4.1.(b), (e) and (h), respectively. The blue curve denotes
the theoretical OAM density and the red points the experimentally measured OAM density.
Inserts for density plots of the OAM density for (c) and (e) are given as inserts, (d) and (f),

respectively.

Since the incoming optical field in Fig. 6.4.1 (b), consists of an equal weighting of /;,,; = 3 and
louer = -3 order Bessel beams, the OAM density represented as a density plot in the x - y plane
consists of evenly-sized concentric rings of positive and negative OAM. Figure 6.4.3.(b), which
contains the radial cross-sectional profile of the OAM density, also depicts this behaviour, as
the OAM density oscillates evenly around a value of zero. In the next two cases, where /e, = -
3 (+3) is heavily weighted, the OAM is predominantly negative (positive) and is evident in Fig.
6.4.3 (d) ((f)). The cross-sectional profile of the OAM density exists predominantly in the
negative (positive) quadrant of the graph, evident in Fig. 6.4.3 (¢) ((e)).
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The error analysis for these measurements first involved calculating a theoretical error band for
the OAM density, by determining the minimum and maximum values when the inner and outer
radii of the ring-slit in the match-filters were displaced by half the width of the ring-slit (i.e. 10
pixels). Since this error is miniscule, the error bands lie on top of one another and are not
evident in the graphs. Displacing the ring-slit in the match-filter by half of its width, the
experimental absolute x-error is 80 pm (10 pixels x 8um). In experimentally measuring the on-
axis intensity of the inner-product, we pin-pointed the errors to be dependent on three factors:
(1) human error in reading the on-axis intensity of the inner-product on CCD,; (2) the
positioning of CCD, in the Fourier plane of Ly; and (3) an adjustment of the ring-slit (by half of
its width) in the match-filter on LCD,. For the first factor, a 10 pixel diameter aperture on the
CCD camera was positioned around the on-axis intensity on CCD, and the percentage error for
the total energy when the aperture was moved 7 pixels off of its centre, was determined and
included into the experimental error for the OAM density. The second factor entailed measuring
the percentage error for the on-axis intensity when CCD, was positioned 1 mm before and 1 mm
after the Fourier plane of L,. The last error measurement required the percentage error in the
measured intensity, due to an increase or decrease (by half the width) of the radius of ring-slit
on LCD,, to be determined. All of these factors were included into all the measurements for the

OAM density.

e Optical field # 4 - non-symmetric superposition of two Bessel beams

Figure 6.4.4 (a) contains the hologram, which consists of two ring-slits having azimuthal phases
Liner = 3 and Loy = -4, used to generate the fourth optical field presented in Fig. 6.4.4 (b). The
dimensions of the ring-slits are: r; = 173, r, = 188, Ar, Ar, = 15 (all given in pixels). The field
obtained at the Fourier plane (Fig. 6.4.4 (b)) is in good agreement with the theoretically
calculated field (Fig. 6.4.4 (c)) and consists of a petal structure, where the number of petals is
given by e+ loued, (i.e. 7 petals). For this non-symmetric superposition, described
mathematically by Eq. (6.2.20), the field has a global OAM of -1/ (3% + -4#), resulting in the
OAM density being mostly negative radially across the field, evident in both Figs 6.4.4 (d) and
(e). Since the OAM density is not symmetric and consequently not uniform in all radial
directions, the OAM density plotted in Fig. 6.4.4 (d) is not for a particular angular point, but

instead an average over all angular points, given by Eq. (6.2.25).
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Fig. 6.4.4. (a) The hologram used to generate the experimental field in (b). The theoretically
calculated field is given in (c). A magnification of the ring-slit is given as an insert in (a). (d)
The theoretical (blue curve) and experimentally measured (red points) OAM density. (e) A
density plot of the OAM density. Red denotes negative OAM and blue denotes positive. Light
to dark blue denotes an increase in positive OAM and light to dark red denotes an increase in

negative OAM.

e Optical field # 5 - non-symmetric superposition of three Bessel beams

The fifth field was generated by encoding LCD;with the hologram presented in Fig. 6.4.5 (a).
This hologram is divided into three ring-slits, having the following azimuthal phase variations:
Liner = -3, lnigdte = 2, lower = 1, thus producing a non-symmetric superposition of three Bessel
beams in the Fourier plane. The dimensions of the ring-slits in Fig. 6.4.5 (a) are: r, = 170, r, =
180, ;3 = 190, Ary, Ar,, Ar; = 10 (all given in pixels). Although one cannot intuitively predict
how the field will manifest in the Fourier plane, our experimental field (Fig. 6.4.5 (b)) is in very
good agreement with the theoretically calculated field (Fig. 6.4.5 (c)). Here the global OAM is
zero, as the three ring-slits are equally weighted and the azimuthal mode indices of each of the
ring-slits sums to zero. Therefore the OAM density exists equally in both the negative and
positive quadrants (evident in Fig. 6.4.5 (d)). Since the OAM density is not uniform in all radial
directions of the optical field (evident in Fig. 6.4.5 (e)), the OAM density plotted in Fig. 6.4.5

(d) is an average over all angular points.
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Fig. 6.4.5. (a) The hologram used to generate the experimental field given in (b) of which the
theoretical field is represented in (c). A magnification of the ring-slit is given as an insert in (a).
(d) The theoretical (blue curve) and experimentally measured (red points) OAM density. (e) A
density plot of the OAM density. Red denotes negative OAM and blue denotes positive. Light
to dark blue denotes an increase in positive OAM and light to dark red denotes an increase in

negative OAM.

e Optical field # 6 - non-symmetric superposition of four Bessel beams

The ring-slits for that last hologram (Fig. 6.4.6 (a)) have the following azimuthal mode indices:
Linner = -2, Imiadier = -1, Imigaie2 = 2, lower = 1, and the physical dimensions (in pixels) are: r; = 169,
r, =176, r; = 183, ry = 190, Ary, Ary, Ar;, Ar, = 7. Since the global OAM is also zero (as in the
case above), the OAM density exists equally in both the negative and positive quadrants,
evident in Figs 6.4.6 (d) and (e). As this is also a non-symmetric superposition, the OAM
density is not uniform in all radial directions of the optical field (evident in Fig. 6.4.6 (e)) and so

the OAM density plotted in Fig. 6.4.6 (d) is an average over all angular positions.
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Fig. 6.4.6. (a) The hologram used to generate the experimental field given in (b) of which the
theoretical field is represented in (c). A magnification of the ring-slit is given as an insert in (a).
(d) The theoretical (blue curve) and experimentally measured (red points) OAM density. (e) A
density plot of the OAM density. Red denotes negative OAM and blue denotes positive. Light

to dark blue denotes an increase in positive OAM and light to dark red denotes an increase in

negative OAM.

For each of the six optical fields, the on-axis intensity recorded at CCD, for each of the match-
filters (varying in ring-slit radius and azimuthal order) was measured and implemented using
Eqgs (1.3.8) and (6.2.7). It is evident that in all our tests, there is very good agreement between
the experimentally measured OAM density values and those calculated theoretically. By our
extremely simple technique, we are able, for the first time, to make quantitative measurements

of the OAM density, measured in units of the angular momentum per unit volume, Ns/m®.

6.5. Conclusion

In this chapter we have we have derived experimental and theoretical expressions for the OAM
density for both symmetric and non-symmetric superpositions of Bessel beams and tested the
agreement [8, 9]. Our measurement technique can be used on any optical field carrying OAM.
Even though the global OAM is zero, the OAM density can be made to oscillate from positive
to negative by appropriately adjusting the widths of the ring-slits or the azimuthal orders within
the ring-slits, making it an ideal tool in the field of optical trapping and tweezing. Previous
studies to obtain the OAM density have involved the rotation of trapped particles, which is not

only an indirect measurement, but also a very difficult experiment to execute. The technique we



122

present, requires only an SLM and a lens, and is therefore easy to implement. Measuring the
OAM spectrum of fields has direct relevance in the optical control of flow in micro-fluidic
devices and in constructing optically-driven micro-machines. Being able to determine the local

OAM is important for imaging [21] and optical funnels [22].
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CHAPTER SEVEN

Conclusions and future study

7.1. Conclusions

In chapter one a literature review of optical OAM was given and it was shown that beams
carrying a phase factor of exp(ilf)) possess a well-defined OAM. Definitions for some of the
solutions to the Helmholtz wave equation, which are utilized in this thesis, such as Gaussian

beams, LG beams and Bessel beams were also given.

Experimental techniques for generating or detecting fields carrying OAM were presented and
discussed in the second chapter of this thesis. Two types of digital holograms were examined:
the spiral and fork holograms, for the production and measurement of OAM. Other OAM tools
discussed were spiral phase plates, which could be used to increase or decrease the OAM of a
transmitted beam, and cylindrical lenses, which convert HG modes into LG modes. Another
device which was used to sort odd and even OAM modes, for which we have developed a
robust adaptation [1], is a Dove-prism embedded Mach-Zehnder interferometer [2]. Our
interferometer has no degrees of freedom and correct functioning of the device was achieved
with two mirrors external to the interferometer. Our device sorted twenty-one OAM states of

light with a contrast higher than 85.3%.

In chapter three we extended the Dove prism embedded Mach-Zehnder interferometer to
produce an optical system that acted as an amplitude damping channel for a two-level OAM
system [3]. We tested the concept of our device using the vortex mode (/ = 1) and a Gaussian
mode and illustrated that it agrees well with the theoretical model. Such an optical system could

be used to represent the dynamics of a quantum system that incurs the loss of energy.

The forth chapter contained two techniques which we developed for the generation of
superimposed higher-order Bessel beams [4, 5]. In our first approach we illuminated a physical
ring-slit aperture with a beam that has an azimuthally varying phase [4]. Later, we simplified

our technique with a single hologram [5]. In both cases very good agreement between the
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experimentally produced fields and the theoretical predictions was obtained. We also revealed
the existence of higher-order vortices in the produced field by interfering it with a plane wave.
The rotation rates of the produced superimposed Bessel beams could be controlled by varying
the azimuthal order |/l and the difference, Ak, between the two radial wave-vectors [5]. We
were able to show very good agreement between the experimentally measured and theoretically
predicted rotation rates, illustrating that these fields are an ideal tool for the controlled rotation
of trapped particles. We also studied the near-field of the superimposed higher-order Bessel
beams and showed that the ring-slit field, which exhibited no rotation in its intensity profile,

transformed from an annular structure (embedded with singularities) to a petal structure [6].

Instead of encoding the phase within the ring-slit with an azimuthally varying phase with a
random phase modulation, non-diffracting speckle fields were obtained. In chapter five we
investigated the generation of non-diffracting speckle fields with a single ring-slit hologram and
illustrated good agreement between our experimentally produced non-diffracting speckle fields
and theoretical predictions. The phase modulation within the ring-slit hologram was described
by either a binary or a continuous phase modulation for two different distributions, namely
uniform and normal, and we examined the effect these distributions have on the structure of the
speckle field [7]. By adjusting the standard deviation of the distribution one could control the
evolution of the non-diffracting chaotic speckle into a non-diffracting zero-order Bessel beam.
This allows one to ‘tailor-make’ a non-diffracting speckle field for specific optical functions,

such as non-destructive testing of materials.

In chapter six we derived experimental and theoretical expressions for the OAM density for
both symmetric and non-symmetric superpositions of Bessel beams and presented a simple
measurement technique to obtain the OAM density [8, 9]. We tested our experimental technique
on both symmetric and non-symmetric superpositions of Bessel beams and obtained very good
agreement with our theoretical predictions. OAM density measurements are relevant in
controlling the flow in micro-fluidic devices and in constructing optically-driven micro-

machines.

7.2. Future study

Since our robust interferometer, presented at the end of chapter two, has proved to be very
efficient at separating odd and even OAM modes, one could introduce such a device into a

quantum entanglement setup for the detection of odd and even OAM states of photon pairs.
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Currently OAM states in quantum entanglement experiments are detected with the fork
hologram which produces a Gaussian beam in the desired diffraction order that is then coupled
into a single mode fibre [10]. The fork hologram can be replaced with the robust ‘odd even
OAM sorter’ so as to simultaneously detect odd and even OAM states as opposed to detecting
one OAM state at a time. This device represents the OAM analogy to the polarizing beam-
splitter and so this robust device can be incorporated into quantum optic experiments to perform
similar tomography measurements on OAM states that are made with polarization (in the case
that the OAM state-space is restricted to a two state-space: odd and even). One could also use
this device to sort odd and even OAM states before they are further sorted into their individual
ports by incorporating a technique which converts the OAM state of light to a specific lateral
position [11]. Since the detection spots marking the different lateral positions slightly overlap
[11], first separating the odd and even OAM states into separate ports will reduce the

overlapping of the detection spots and allow for the detection of an increased OAM state-space.

With the amplitude damping channel that we discussed in chapter three, one could incorporate
this device into a quantum entanglement setup so as to mimic a lossy environment for one of the
entangled photon pairs. One could then predict analytically the entanglement decay in OAM
states when one of the entangled photon pairs is passed through such a channel. Experimentally
this will be achieved by introducing the OAM amplitude damping channel into one of the arms
of a quantum entanglement system (where a photon in the one arm possesses an entangled
photon in the other arm). The concurrence of the entanglement is measured before the OAM
amplitude damping channel is introduced and then after the channel has been incorporated
which will result in a quantitative comparison of the decoherence of entanglement due to

interactions with a noisy environment.

Even though we investigated the dynamics from chaotic non-diffracting speckle to a structured
non-diffracting zero-order Bessel beam by varying the standard deviation of different
distributions describing the phase modulation, there are other structural attributes of the speckle
field that still need to be investigate. Further investigations into how the geometry and the
dimensions of the ring-slit have on the clustering (or snake-like patterns) of the speckles could

be made.

Finally, with the experimental technique that we developed for the measurement of the OAM
density of optical fields, presented in chapter six, a method to extract the entire OAM spectrum

of an optical field (at a specific radial position) in a single measurement could be developed.
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This could be achieved by combining the hologram used to represent the required match filter
with the transforming element implemented in Ref. [11] so that not only can one extract the
entire OAM spectrum by measuring the weightings (or intensities) present at the different lateral

positions, but one can select the radial position within the optical field.
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APPENDIX

Al: Procedure for Calibrating a Spatial Light Modulator

The purpose of performing the calibration is to verify that for your working wavelength a phase
shift from O to 2x is achieved over all the 256 grey-levels. If the phase shift for the assigned
grey-levels does not fall in the range from 0 to 2z then the voltages applied to the electrodes of
the pixels need to be adjusted appropriately so as to achieve the correct phase modulation. So
the first step in calibrating the SLM, for a particular wavelength, is to measure the phase
modulation over the 256 grey-levels. This is achieved by interfering two beams which are
reflected off of the SLM (where one of the beams undergoes a phase modulation over all 256
grey-levels) and so causes a shift in the interference pattern. The experimental setup to perform

such a measurement can be represented as follows.

D
kJ

.

Fig. A1.1. A schematic of the calibration experiment.

SLM

Ob ective
N
8y ccp

An expanded laser beam is passed through a “double hole” mask. Each of the two beams is
directed to the display of the SLM. The beams, reflected from the SLM, interfere in the focal

plane of a lens and this interference pattern is enlarged and imaged onto a camera.
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By considering the interference of two plane waves and introducing a phase shift in one of the
waves, a shift in the position of the interference pattern is observed. The complex amplitudes of

two identical plane waves can be written as follows:

u, =exp(ig,)

Al.l
u, =exp(ig,) ( )

In determining the intensity profile of the addition of these two fields the following term gives

rise to the interference pattern.
2 2
I=lu; +u,|” = (cosg,) (A12)

Introducing a phase shift in one of the beams, results in the following term describing the

interference pattern:

u, =exp(ig,)
u, =exp(i(¢, +9))

I=|u, +u,|* = (cosg, +cos(g, +6)) (A1.3)

By varying the phase of one of the beams, the position of the interference pattern shifts. It is this

principle that is used to measure the phase shift over all 256 grey-levels.
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Fig. A1.2. Summary on how a phase shift in one of the beams is directly proportional to a shift

in the interference pattern.

In the experimental setup, where the two beams are reflected off of the SLM display, one half of
the display is addressed with a constant grey-level while the other half is addressed with a grey-
level varying from O to 255. As the grey-level of the one half of the screen changes so the
interference pattern shifts and this shift in the interference pattern is directly proportional to the

phase shift experience by the beam.

0 128 255

(=] B

Fig. A1.3. Illustration of how a change in grey-level shifts the interference pattern.
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After the one half of the screen has been addressed with all 256 grey-levels, the software that we
use in the calibration of the SLM plots the 1D intensity profile of the interference pattern for

each grey-level.

1D Intensiry
Profile

rmak

[INTENSITY!]
o 8 &8 B 8 838 8 8 B B

Grey-Level:

Tal T BT §I.§:I§III;
" [PIXEL NUMBER:|

255 v

'

Pixel Number:

Fig. A1.4. A plot of the 1 D intensity profile of the interference pattern for a particular grey-

level.

The above plot consists of 256 rows each containing the 1D intensity profile of the interference
pattern for that particular grey-level. The red dots mark the intensity minima of the interference
pattern for each grey-level. From these measurement points the pixel position of the intensity

minima can be plotted as a function of the grey-level to produce the following plot.

Measured Pixel-Shift
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\\“\
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S~
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120 .
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60 —
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-176 24 224 424 624 824 1024

Grev-Level:

Pixel Number:

Fig. A1.5. A plot of the intensity minima pixel position as a function of the grey-level.

By comparing the red measurement points (in Fig. A1.4) and the plot of the pixel position as a

function of the grey-level (Fig. A1.5) you will notice that the discontinuity in the measurement
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points doesn’t appear. The program knows the period of the intensity minima, the pixel distance
from minimum to minimum, and so adjusts the measurement points to remove the discontinuity
in the plot. The reason that the range of the x-axis (in Fig. A1.5) varies from 0 to 1024 (and not
0 to 255) is due to the way in which the device is configured. The device needs to be

programmed with 1024 values; so the first of every four values is the measured value.

The shift in the minima of the interference pattern is directly proportional to the phase
modulation and the information below illustrates how the phase modulation is determined. The
phase shift induced by a particular grey-level can be determined by performing the following

calculation.

(pixel # for grey—level X —starting pixel #)

1 (Al1.4)
E period pixel distance

The difference between the pixel position for a particular grey-level and the pixel position for a
grey-level of O (for no phase modulation) is determined and divided by half of the period.

Below is an example of the calculated phase shift when calibrating the SLM.

Measured Pixel-Shift

120
100 S
0  Pixel #: 52

A A
Py
232 @) Pixel distance: 121

R e+ 219 N

5

FE 160

gl 140

=

3

A

(pixel # for grey-level X —starting pixel #)

60
40 ;l period pixel distance
-176 24 224 424 624 824 1024
Grev-Level:
‘52 -2 19‘
=2.76
121

Fig. A1.6. Example of calculating the phase shift.

By substituting in the appropriate values, it is calculated that a grey-level of 255 induces a phase
shift of about 2.8w. This illustrates that for this particular wavelength the device is not correctly
calibrated. The voltages which address the individual pixels, need to be adjusted appropriately

so as to produce the required 2n phase shift over all 256 grey-levels.



133

Measured & Wanted Phaseshift
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Fig. A1.7. Plot of the measured phase shift (red) and the desired phase shift (yellow).

After the calibration has been performed and the voltages have been adjusted appropriately,
repeating the previously described measurements should produce a 2x phase shift over all grey-

levels.

Measured and Desired Phase Shift

2.00 r/Q
1.50 //

1.00 //
0.50
—— Measured phaseshift/Pl
YWant this phaseshift

0.00 7 T T T T ]
-176 24 224 424 624 824 1024

Greyv-Level:

Phase Shift/m

Fig. A1.8. Plot of the measured phase shift (red) after the voltages have been adjusted

appropriately.
Some general issues regarding the calibration procedure are listed below:

1.

Since the calibration relies on measuring the phase shift in the interference pattern, a good
interference pattern needs to be obtained so as to obtain accurate measurements. It is essential to
check that the intensity distribution of the beam on the “2 hole mask” is uniform. In other

words, check that equal intensity is passing through the two holes.
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X

Fig. A1.9. Illustration for how the “2 hole mask” should be illuminated.

2.
Make sure that the two spots are superimposed exactly on top of each other in the focal plane.
Below is an image of a good, crisp interference pattern and an interference pattern where the

two spots are not perfectly superimposed.

X

Fig. A1.10. Ilustration for a correct and incorrect interference pattern.

3.
Another factor which could lead to incorrect measurements is if the two beams are not
positioned on the SLM correctly, resulting in the one beam not experiencing the correct phase

modulation.

X

Fig. A1.11. lllustration of how to position the two spots on the SLM.

4,
When performing the calibration and recording the measurements, do this with the lights off.
Any additional light sources (even light emitted from a computer screen) may affect your

measurements.
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A2: Showing that the operator Sy is linear

The equation for Sy, is defined as

2.
S, = 802’6 YuVu" —u'Vu) (A2.1.)

where u is the amplitude distribution of the optical field. u" can then be written in terms of u as

follows:
u+u’ = Ay(J, exp(idkz) exp(il@) + oy J _, exp(—iAkz) exp(—il @)
+ A, (J, exp(—iAkz) exp(=il @) + aryJ _, exp(iAkz)exp(il6))

u+u" =(AyJ, + Ayar,J _, 2cos(Akz +16) (A22)
—u" =2A,(J, +a,J_,)cos(Akz +18) —u,
X
where for convenience we have marked the terms not involving u as X.
Substituting 1" into Eq. A2.1, results in
Sy ocuVu' —u'Vu
< uV(X —u)—(X —
uV(X —u)— (X —u)Vu (A23)
o< yVX —uVu — XVu +uVu
< uVX — XVu.

This is a linear operator, i.e., Sg(u; + uy) = Sp(u1) + S¢(up), and the linear momentum (in the

azimuthal co-ordinate) from the Poynting vector for a sum of fields is equal to the sum of the

linear momentum of each individual field.
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L Introduction

There is an extensive body of literature on generating zero order and higher-order Bessel
beams. Dumin [1] first discovered a set of solutions for the free-space Helmholtz equation
which are propagation-invariant and are mathematically described by Bessel functions. Even
though it is not possible to experimentally generate an ideal Bessel beam, as it contains an
infinite number of rings over an infinite area resulting in the beam carrying infinite energy, an
approximation can be realized in the form of Bessel-Gauss beams that propagate diffraction-
free over a finite distance [2-11].

Zero-order Bessel beams possess a bright central maximum, while the higher-orders have
a dark central vorex, which propagates over an extended distance in a diffraction-free
manner. Fero order Bessel beams can be generated by illuminating a ring slit aperture, placed
in the back focal plane of & lens, with a plane wave [2]. Refractive optical elements, such as
axicons [3,4,12] and diffractive optical elements such as computer generated holograms
[5,6,9-11,13], have been used to generate both zero and higher-order Hessel beams. In
particular it has been shown that it istpussi:h to create a superposition of high-order Bessal
beams by extending the results in et [4]. to illuminate an axicon with a superposition of
Laguerre-Gauss (LG) beams [14]. This overcomes the problem of creating a Bessel beam
interferometer, but requires tha creation of high order LG beams on demand in the laboratory.

In this paper we extend Durnin's original experiment to create a ring slit aperture in the
Fourier plane with multiple azimathal phase components at varying radial distances, thereby
producing a superposition of higher-order Bessel beams as the output. The concept is
illustrated graphically in Fig. 1, where two saparable arimuthal phase components, namely
exp{ime) and expling), ae combined to produce a superposition of an m® order and A ordar
Bassal beam

i R mal
Ve A e ol -
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i
Ea el S
1
]
1
I
i

Fig. 1. Fxiesedion of Durmin’s ring slit experiment [2]. {I:l}_ltl:]: I.h'rm.ni.ngﬂtl:mljﬁ
aperiur: with a beam whose angular spectrum camies an @
higher crder and suparpositions of bigher- crder Bessel basms

L Theory

An ideal Bessel beam (in cylindrical coordinates, (r,@.z)) is characerized by a transvers
component of the electrical field:

E(r,# 2) =gy (k,r)exp[i(k, + mg)], m

whem J, is the s order Bessal fonction, while &, and &, am the longitudinal and transvers
wave numbers rspectively, with k, = kgsina, k, = kpose, and ky = Zn'l; 4 is the wavelength
and & is the opening angle of the cone on which the waves traverse. It is seen from Eg. (1)
that higher—order Bassel beams (l > 1) have an azimuthal phase dependence, explimg), on
the beam axis and hence have a nondiffracting dark core.
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Consider the ideal case where an incident Gaussian beam is transformed to a ring field,
with radius K and width 24, by a ring slit aperture. If the ring slit aperure is divided equally
in the radial direction to yield two azimuthal phase components, denoted by arimuthal mode
index m and » in the inper and outer rings respectively, then the resolting superposition is
calculated from the Kirchoff-Huygens diffraction integral

A (e _11‘; [, ﬂup[a';—}[l—ﬂr.’]ap[—:‘**’%ms{q —#}]r,dr:ﬂ'ﬂ @
with the transmission function of the ring slit apertume given by:

explimg), BZr2(K-A)

rir. #) - [exp(mﬂ. REr<(R+Ay G)

The total field may be dacomposed inio the contribution msulting from the innar ring
(aximuthal mode index m) and the outer ring (arimuthal mode index n), given respectively as:

A0 =[] " expimg), [%]ap[—j—} Lo [l—%ﬂndﬁ, @

7
Al d o) - 'J'f [ expling), [*f ]exp[—:—,ﬁ;; [t-%]]r. dr, (5)
50 that the resulting field may be expressed as a superposition of the form:
Apalr g 2) = AL (r, f D+ A (r 2). {6}

Specifically, the superposition of an m® order Bessel beam with its mimor image
{—m™ order Bessel beam), results in a spatial inensity pattern of Zm spots amanged on the
circumference of a ring (with an angular offset depending on whether m is evensodd):

Av o (r gt ) = Tk, r) sind g expiik, z). T

Such a field carries no orbital angular momentum {OAM), although we will show later
that them is a rotation in the field structure when it is crested with a two-component ring
structure as described by Eq. (3.

A Experimental methodology and resulis

Our experimental stup is shown in Fig. 2. A HeMe laser (1 -633 nm) was expanded through
a 15 = telescope (i = 10 mm, 3 = 150 mm) before illuminating a suitable ring slit aperture
(R =73 mm and 24 = 150 pm). The msulting field was relay imaged to the plane of the liquid
crystal display with a 0.75 = telescope (&= 100 mm, f; = 75 mm). The liguid crystal on
silicon device used for imparting the azimuthal phase variation on the field was a spatial light
modulator (SLM) (Holoeye, HEQ1080F) with 1920 x 1080 pixels of pitch 8 ym and
calibrated for a 2x phase shift at ~633 nm. The angle of incidence on the SLM was kept as
low as possible, typically < 10° in the experiment. Larger angles would canse a phase emor as
a result of the increased path length in the liguid crystal medium. The Fourier transform field
(after the fz = 200 mm lens) was magnified with a 10 = ohjective and detected on a CCD
camera {Spiricon, USE L130) both the objective and camera were positioned on a translation
stage in order to investigate the propagation of the resulting field An interferometer, denoted
by the shaded box, was introduced in the experimental setup 2= needed to reveal the phase
dislocations in the superposition fields [15].
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Fig. 1 The experimental design for pemerating a ssperposition of o higher-onder Bessel
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wave is demoled in the shaded overley. (M: mimor BS beam-splitier; 1 lens and Dx
diaphragm). Mok the distances and angles an: not to scale.

In such a system alignment of the ring field and the phase patiem is of course important.
Careful alignment using standard micrometer adjustable translation stages was done prior to
the mimuthally varying patterns loaded onto the SLM. Thereafter the scaling of the image
relative to the SLM was sufficient to maintain the alignment for the experiments to follow.
Results of our superposition fields, as viewed in the far fizld, are shown in Fig, 3.

{1

In:.llbmhm:mhﬂmr.ﬂimpmﬂmﬂep}mpﬂa-wdhhhqmdw
dissplay of the SLM, the ohserved intensity distrbution of the superposition, the: theoretical
prediction, and interiereace patiem of the superposition feld md a plane wave, especiively.
Diata is shown for (a) — (4 As 20— (i A, G- (0 A (m)- (pE Ao o and ig) - (L Ay
The illuminzied ring sk is shown 2 a shaded overlay on the phase pattern.

‘With no azimuthally varying phase (Fig. 3{a)) the resulting pattern (Fig. 3{b)} is the well
known zeroth order Bessal beam, while with a single arimuthal component to the phase
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(Fig. }e)) the comesponding higher-order Bessel beam is eproduced (Fig. 3(f)). The vorex
nature of this field is confirmed in the interferogram of Fig. 3(h) where three dislocations are
noted in the fork-like pattern. When more than one azimuthal component is introdoced to the
SLM, the resulting pattern becomes momr complex. Mevertheless, in all cases the theometical
prediction is in excellent agreement with that measured experimentally, as is easily noted by
comparison of columns two and three in Fig. 3 for any given row. As noted earlier in the
theory = ction, when the orders of the two azimuthal phases are equal but opposite in sign, a
petal-like pattern is produced. This is evident in Figs. 3(j) and 3(k) for both the measured and
calculated fields respectively. Note also that the phase patterns used for a given azimuthal
component are not required to extend to the origin Due to the azimuthally varying phase
which is imparted to the angular spectrum of the ring field, the resulting fields possess
vortices which can be investigated by interference with the Gaussian source [15]. Since the
beam size of the Gaussian beam is larpe in comparison to the Basse] field in the Fourier
plane, the wavefront of the Gaussian field can be assumed to be flat, similar to a plane wave.
The interference patierns obtained contain two overlapping forks, illustrating the presence of
two higher-order Bessel fields The number of dislocations or spaces between the “fork-
prongs’ conveys the order of the Bessel fields involved in the superposition. The direction of
the ‘fork-prongs' illustrates that the two higher-order Bessel fields ame of opposie
handedness.

‘Whila we have demonsirated the concept here with the superposition of two Bassel fields,
it is possible in principle to extend this to any number of arimuthal components.
Figure 4 shows a three-component superposition, with azimuthal mode indices (owier to inner
radii) of -3, 0 and 3 respectively. As expecied, the theoretical predictions are in excellent
agreement with experiment. However, superpositions of more than three highe -order Bessel
beams were not attempted due to the restricting dimensions of the ring slit aperture and the
resolution of cur SLM.

L ek e e
ion of the fiekl produced o the Fourier plane. (c) & is in pood agmement with the
caloubaied fledd
Apart from investigating the field produced at the Fourier plane, the propagation of these
fields was also considered. Fxperimeantal images of the intensity profile of the produced field
weme captured along its propagation. A schematic of this is illustrated in Fig. 5. In studying
these images, some of which am presented as video clips in Fig. 6, it is evident that the
intensity profile containing the highest amount of energy occurs half way along the field's
propagation. For our experimental setop this occors at approximately 205 mm after L5,
This is in close agreement with the theoretical prediction that the intensity profile containing
the highest amount of energy ocours at the focal length of the Fourier transforming lens
(fi = 200 mmi.

E
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Fig. 5. Images of the imessity profile of the experimemtally prodemd fGeld Ay » captured &
mtervals alomg itx propagation. The grey area demcdes the region in which the Besse] field
exisls.

In the video clips in Fig. 6 one also notes a rotation of the field as it propagates. This s a
surprising phenomenon as in both cases an m™ order Besse] beam is superimposed with 3 —m'™
order Bessel beam, resulting in the field carying no orbital angular momentum (as seen from
Eq. (7)). However, one witnesses a rofation in the cross-section intensity distribution of the
beam.

Figira g brd

Fg_ & Video clips containing ex prrimental images for felds (leftr Ay (media 1) and (dght}
As4{media 1) which wew captumd 2l intervals alomg the beam's propagation.

In generating a superposition of two higher-order Bessel fields using our set-up, the ring
slit aperture is divided equally in the radial direction to yield two ring slits. The Besse] field
produced by each ring slit propagates with slightly differing wave vectors, and hence the
superposition field is made up of modes with differing phase velocities In such a situation
one would expect the interference pattern of the modes to change during propagation. To see
that this interference leads to a rotation of the field, consider the following superposition:

A _o(r,8,2)= T (,ryexplilk, z +mg))+ J_, (ks explilh, z—mg))  (8)

where the wavevectors differ by an amount Ak = kz. — ki.. The expression in Eq. (&) may be
written in the form:

A, (rd 2~ J_(k r)exp(it, z+mg)(1+explilAkz—Lmg)]), L]
from which we note that the intensity of the superposition is given by the following
proportionality:

I _olr i 2hoe J2 0k r) 1+ cos{Akz — 2mg) ). (1
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Such a field experiences a rotation of its intensity pattern during propagation at a constant
angular velocity, and at a rate along the propagation axis given by:
d¢ Ak

== (n

Figure 7 shows animations of rotating fields based on Eq. (10). The experimental
observation of the rotation of the field, despite the absence of any OAM in the final field, is in
agreement with that predicted theomtically [16].

Fg. 7. Video clips containing theonstically caloalated images for the rotation of Gelds (ki)
Ay3 {mediz 3) and (right A4 {media 1)

By analyzing the experimental images recorded afier the Fourier transforming lens, we
can deduce the experimental propagation distance of the produced fields: 330 mm, 360 mm
and 370 mm for the fields A3 3, Ay and Az 4 respectively; this is found to be in very good
agrement with theory (~375 mm). The non-diffracting nature of the superposition fields can
be understood from the fact that they are derived from the annuolar structure of the ring
aperture, with the azimuthal phase only an additional degree of freedom We report sans
results that changing the dimensions of the ring slit aperture, as well as the focal length of the
Fourier transforming lens, results in fields of differing non-diffracting propagation distances,
&= one might reasonably expect.

4. Conclusion

We have presnted a technique to experimentally realize the superposition of higher-order
Bessel beams, and demonstrated the superposition of both two and three highe rorder Bessel
beams, with the measured results in good agreement with the calculated fields. The
propagation of these superposition fields was investigaed, illustrating that these fields ae
propagation-invariant in accordance with prediction. The wavefront dislocations present in
the higher-order Bessel beams weme mvealed by inkerferometric means, confirming the
existence of higher-order vortices. These fields may aid the understanding of mesonant
transvarse mexdes observed in cerizin laser msonators [17], and in optical trapping and
mweezing for the control of micro-sized particles In particular, in the cas of generating a
superposition of two higherorder Bessel beams which possess equal orders of azimuthal
phase but of differing sign, the produced field carries no orbital angular momentum. Despite
this, these beams are likely to be able to trap a particle in their inensity distribution and canse
it to rotate owver a spiral path slong the beam's optical axis

Finally, we would like to point out that the approach cuilined here has not been optimized
for energy transmission; the loss through the ring slit aperture is very high as may be
expected. If this approach is to be followed in an application, then it would require a minor
adjustment in set-up, for example, replacing the ring slit with a double axicon sysiem to
creata the initial ring field.
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Abstract: We present an amplimde dsmping chesnmel for Lagmerre-
Gamssisn modes. Our channel is tested experimentslly for a Lagmerre-
Ganssian mode. having an azinmthal index ! = 1, illustrating that it decays
1o 2 Gaussian mode in good apreement with the theoretical model for
amplitude damping Since we are able to characterize the action of such a
channel on orbital angulsr momentum states, we propose using it to
investigate the dynamics of entanglement.
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1. Infroduction

Amplimde dsmping is 3 quantom operation which describes the energy dissipation from an
excited system, such = an atom or 2 spin system, to an environment [1]. Under the action of
an amplimude damping channel the ground state, {0}, is left invariant, tat the excited state, 1),
will either remain imwvariant or it will decay to the ground state, by losing a quanium of ensTgy
to the environment. The probahbility that the excited state remsins unchanzed or that it decays
to the ground state is given by 1-p and p, respectively, illustrating that the amplinde of the
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excited state has been “damped’. This quantom operation is 8 findamental tool in classifying
the behaviour of many quanmm systems that inour the loss of enerpy, fom describing the
evolotion of an atom that spontaneously emits 3 photon to how the state of a photon evolves
in an optical system due to scatering and attenuation. The amplimde damping channe] is an
elementary quaniom operation which is used to model quanium noise in understanding the
dynamics of open quanfum systems [1].

For the case of a two-level system the state change under the action of amplitude
damping is defined by the following transformation

|whir] = A, lwhiw| Mg +0, fwiw| 7, m
where W), and A4 are the Erauss operators defined as

el 2 .
=
and
H,-[l ﬂ} -
oz
The initial state of the two-level system is written as
lv} = |0+ 2]}, &

mrﬂ}mdﬂ}rq:mmﬁegmmdmemdmmofﬁemmﬂymda
mﬂ,ﬁdﬁuﬂt&cﬂmlamhm{iﬁmld +||.’|| =1

By making use of the Kraus operators, Ay and M), and coupling the system appropriately
manmmtmﬂ:murﬂwgwﬂmlﬁ 0 amd |K = lh-,ﬂlemmytnmemlunm
operator, [N, of the system 5, and the environment E, prodoces the following
transformations

|n}s |‘K -ﬂ}w:}lﬂ}x |K = u}w’ 3]

1), [ =03, =B |0, | K =1}, « T B 1}, | £ =0}, ®

where K represents an enviromment observable, such as a path along which a photon
Prapagaes.

Equation (5) illustrates that the ground stste of the system remsins imvarisnt snd an
excitaion of the system is not absorbed by the environment and comsequently the
environment foo remains i the ground state. In the transformation given in Egq. (§), an
excitation of the system transforms info an excitation shared in 8 superposition betwreen the
system and the environment The excitstion of the system either decays to the ground state or
it remains a5 an excitation with probsbiliies p and 1-p, respectively, resulting in the
environment either acquiring an excitstion or remaining in the ground state with probabilities
pand 1-p, respectively.

Euntngqs (ﬂ[S)M(ﬁ}mdadapmgﬂﬂnfmﬂmcmofam-lwelmu
systermn, the overall mansformation for such a chanmel is described as

a0 +Bl1=1" s ali-o} + (Ji-p|1-1" +fp ) -0}"). @
[F=10) and I = 1} are state vectors representing 3 single photon in the LG mode (ground state)
and LG mode {(excited state), respectively, and the upper indices 4 and B refer to the two
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states of the environment, the ground and excited states, respectively. Later it will be
hosmated that the o envilonments are represented == two optical paths. Discarding the
environment leaves the system in 3 statistical mixture of being excited with probability p or
de-excited with probability 1-p, which is the characteristic trait of amplimde damping.
Itumwﬂhuwnﬂulthugmﬁwsmﬂ.ﬁgmmmm@lhpx

photon [2,3]. Since the OAM is determined omly by the =z phase dependence,
explile), of these modes, we peglect the radial index p for the rest of the paper. The
generation of LG, beams (a variety of which are depicted in Fig 1(a) - 1(d)) has advanced

from cylindrical lens mode comverters [2] to spiral phase plates (SPF) [4] and the most
frequently nsed “fork” holograms [5]. Fecently these ‘fork’ holograms hawve been realized
with the use of spatial light modulators (SLM) [§]. Since the discowvery of light beams
camying OAM many new research aress have emerged i the field of optical angular
momentum, from transferring OAM fo matter in optical tweezers [7] to investigating the
conservation and entanglement of OAM in parametric down comversion [B]. lnmmga‘ung
the dynamics of entangled CAM states one requires components that manipulate and

OAM states. The “fork’ bhgmﬁmmhensedmgmsmﬂ&l\{mﬂtm
diffraction orders [5] were also used by Mair e af to sort and infer OAM states [B].

But how o implement amplimde damping for the OAM states of Lght? Fecently it has
been showm that LG, beams of odd and even orders of / could be sorted in 3 Mach-Zehnder
interferometer incorporating Dove prisms in each arm [9]. In this paper we show that by
adapting this device it may be used for a new application: an amplimde dsmping channel for
the azimmithal modes of LG, beams.

D to the fact that photons with QAN represent mmiltiple-level systems, storing and
processing information in OAM states of photons promise high storage and parallel
Ccomputation capacity per photon. However, many tasks in quanmm informstion processing
depend upon entanglement, resulting in the need to investizate the evolution of entanglement
due to inferactions with an environment [10]. For example, examining howr the entanglament
of OAM states decoheres through a nrbulent mediom has already been porsmaed [11], but
there is value in outlining how to execute “text-book™ quantum channels for the OAM states
of light in part due to the ability to analytically caloolate the expected conourence of the
system afier the channel Fecently a controlled-not gate [12] has been reslized throngh the
use of suitable optical elements, and here we show for the first time how an amplitede
2 Concept of the channel
The diagrammeatic sefup for the amplitnde damping channel for LG, modes, which is depicted
in Fig. 1{g), is based on a Mach-Zshnder interferometer with a Dove prism in each arm. Such
an optical system has already been shown to be nseful for the sorting of modes [9] as well as
determining the infrinsic versus extrinsic nature of OAM in arbitrary beams [13]. Here we
outline how this versatile device may also be used for a new application (amplimde damping)
as yet unreported in the literatore For the benefit of the reader, we outline the principle of the
device and highlight its use a5 an amplimde damping chanmnel.
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A Mbach-Fehnder interferometer can be aligmed appropriately so that constuctive
mterference will scoor i either output paths 4 or B, where 4 and B represent the two states of
the emvironment, the ground and excited states, respectively. By placing a Dove prism, which
flips the transverse cross section of a trapsmitted beam [14], in each arm of the
interferometer, a relative phase shift between the two amms is introduced. More specifically,
this relative phase shift, Ag is proportional to both the helicity, [, of the incoming LG, beam
and the relative angle, 8, between the two Dove prisms: Ag= 218 In varying the relative
anple &, between the two Dove prisms, the LGy beam will either exit solely in path .4 or path
B or in a weighted superposition of both paths 4 and B. One is able to control how nmch of
the initial LG; mode will exit into the two enviromments, 4 (the gpround state of the
environment) and B (the excited state of the environment). A phase mask which decresses
the azimmthal mode index by 1, is placed in path B resulting in the ‘excited’ LG; mode
decaying to an “unewcited’ LG, ; mode, thus performing the action of amplimde damping.

In following the LG, mode throngh amms 41 and 42 of the interferometer to outpat path 4
the additional phase picked up by the beam from each of the components is given by

2 iz
PP ) Pt M | @&
a/own o2 x’
HET
and
iz Ix
p‘r_._M—Tr+x+z+sz, [

w2 mE2
=

respectively. 41 and 42 are the path lengths of the toro arms, 41 and 42, respectively and fis
the optical path lengzth of the beam-splitter The phase difference in oufput path 4 is
consequently given by
Ap, =28, a0
since the inferferometer is constructed such that the path lengths of the two arms are equoal.
Similarly, it can be shown that the phase difference in output path B is

Ap, - w28, an
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where the sdditional phase shift of » is due to the reflection in the first beam-splitter. The
amplimde of the field for a LGy mode emerging afier the second beam-splitter in path 4 and
path B is described as

U4 _%(pﬂ*“ur“] -U e cosld [y

e _D_;:{amm -e") = U, eMe™isinlt, [yES)

respectively. I denotes the smplinde of the Seld and the negative sign in Eq. (13) for the
field emerging in path B from amm 42 is doe to an additional phase shift of x, evident in Eq.
(11).

In the case of propagating a LG, mode through the imterferometer there is 8 non-vanishing
relafive phase difference (Ag¢ = 26) bervesn the two amms of the interferometer, leading to
partially constmoctive and destructive interference of the LG, mode in both paths 4 and B

[t=1}" = cos 8| =" +sme|r =1)", (19

As we are only imterested in the intensity of the field, as this gives the probability of the
mg]ﬂphrmnsmtgwehwemglemdﬁephasecmm“ﬂlhmﬁnﬂnrsmfﬂn
papEr. mmtyﬂftheLG.mndeungmﬂlempams,iandB,lspmpmmmlw
m'sﬂmdnnﬁ' respectively and consequently the probabilifes of the LG, mode existing in
the two paths follow the same trend. The incoming LG mode exits in a superposition of paths
4 and B with probabilities cos’s and sin’¥, respectively and a phase mask in path B,
decreases the szimuthal mode index, ! by 1, converting the ‘exited’ LG mode to an
“mnexcited” Gaussisn mode

[t =1§" — cos 8| =1)" +sin 8|l - 0)". (15

When a LG, mode enters the device there is no azimuthal phase dependence in soch a
made, the field is unaffected by the Dove prisms and no phase difference ocomrs betwesn the
two arms; the resolt is that the Gaussisn mode exits in path 4. The transformation of the
Ganssian mode through the interferometer is denoted as

[t=o" —[r=a)". (16)

Combining Egs. (15) and (16), the general equation for the smplitude damping of OAM,
given in Eq. (7), is obtained, where \ﬁ—p—ﬁ:sﬂard q';_r-stnﬂ‘

a=0)" + g1 =1} » a|i- 0} + f[coss| -1y + g1 -0} ). (a7
imwvariant while the excited state decays to the ground state with a probability p, it is sofficient

to experimentally investigate each case mdividually in order to verify the actiom of our
amplitede damping chanmel

3. Experimental methodology and resalts

A HeMe laser (= 6328 nm) was directed omto a phase-only SLM (HoloEye PLUTO VIS
5LM with 1920 = 1080 pixels of pitch 8 pm and calibrated for a 2x phase chift at L = 632.8
mm). The mode of the field was prepared before it entered the channel by programming an
appropriate phase pattern The two exiting paths of the interferometer were monitored for
warions angles, &, between the two Dove prisms using a COCD camera (Spiricon LW130).

#133212 - §13.00 UED Racarved 10 Ang J010; revised 4 Ot 2010 accepted 5 Oct 2010; published 13 Oct 2010
(C) X010 O5A 25 Ociober 2010 / Vol 18, No. 22/ OPTICS EXPRESS 22793

147



To confirm the comrect operation of the interferometer, we first repeated the sorting
experiment of Fef [9]. When the relative angle betwesn the Diove prisms was set to § =12,
the interferometer sorted the incoming field into even LG; modas (path ) and odd LG modes
(path B). We can confirm this result for incoming LGy modes having indices [ =0 to 4, as
shomm in Fig. 2{a). In the special case that ! = 0 (Gaussian mode) the interferometer only
produces an output in path 4 (Fig. 2(b)). This experiment is instractive when considering the
emrors in the system due to imperfect alirnment snd environmental foctestions. The variance
in the data set of Fig. 2(b) for path 4 (where we should expect 100% ransmission) and for
path B {where we should expect no fransmission) is given as 088 = 0.06 and 0.15 = 008,
respectively. In performing the messurements depicted in Fig. 3, for each ocommence for
which the Dowve prism was rotated, constuctive snd destructive imberference was first
achieved in paths 4 and B, respectively, for the case of an incoming Ganssian beam This
ensured that the imterferometer was comectly alipmed before the LG, mode entered the
chanme]l

B eon 1

! A H

Powar jarh iz

14 23 {2 150 am < oD =0 A
Aage bitween Dowe Bisms o es)
* Powed it gain b ot 120 @ Powerinpalr 31w -0

Fig 2. (a) The interferometer “sorting” vazious LG; modes. The even LG, modes (7 =10, 2 and
4) axit in path A and the odd LG, modes xit in path F as axpected [9]. (b) Plot of the powsr of
tha boam in path A (hight bins points) md path F (light gress points) for various vakses of o,
Tha dark bius bne (dark grean 1) is the mean of all the measmmed powers. i path 4 (path ).

To test the amplinde damping channel concept, the incoming mode was set to LGy and
the angle between the tore Dove prisms varied from 0° through to 360°. The results are shown
graphically in Fig. 3. In Fig. 3(a) it is evident that when the relative angle betwesn the two
Dove prisms is sn even nmifiple of 90°, maximom transmission of the LG mode ocours,
which is in agreement with the LG, sorting’ natre of this device. At an angle of an even
multiple of 907, the reverse ocoors in path B (shown in Fig. 3(b)), where minimum
ansmission of the LG, mode occurs. When the relative angle between the two Dove prisms
i= an odd mmiltiple of P0°, minimum ransmission of the LG, mode oCouwrs in path 4 and
maximum fransmission in path B. For angles varying between 0° and 90 (and omitiples of
these angles) the LG, mode exits in both paths 4 and B. As the angle increases from 0° to 907
the ransmission of the LG, mode in path 4 decreases, but consequently increases in path B.
EMMMMMMMMLG.mmmMAMBEgmmw
mﬂandm‘ﬂ‘ respectively (depicted in Eq. (17)) and it is evident from Figs. 3(g) and 3{k)
that our measured data are in very good agreement with the predicted model. The ermmors given
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in the measurements in Fig. 3 are the standard deviations of the measurements in Fig. 2(b),
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Fig. 3. Plot of the powar of the beam in path A {[l}qmpnﬂ:}mdpﬂk{[h::w
for various values of §. The measemed meults follow R{{:}:md
crwe) and Pg-sin’ ({5, black curve).
4. Conclusion

We have outlined how the concept of “amplimde dampins™ in quantum systems may be
implemented for the QAM states of light using a standard optical system comprising an
imterferometer with Dove prisms in both arms, and have verified this experimentally wsing the
LGy and LG, laser modes. We have shown excellent apreement between theory and
experiment, and believe this is the first time such a concept has been outlined in the literature.
With this idea, one is able to mimic the well known quanfum operation where an excitation
(or in this case QAM) is lost to the emvironment, & key testing bed for the interaction of
entangled states with an environmment. The advantaze of this particular concept — amplitude
damping — is that the entanzlement decay can be predicted anabytically, while the conoumence
of the entanglement may easily be measured both before and afier the cheanmel with standard
state tomopraphy technigues, thms allowing for a quanfitstive comparizon of theory and
experiment in the decoberence of entanzlement due to interactions with a noisy environment.
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Abstract. We have developed an interferometer requiring only minimal
angular alignment for the routing of beams carrying orbital angular momentum.
The Mach—Zehnder interferometer contains a Dove prism in each arm where
each has a mirmor plane around which the transverse phase profile is inverted.
One consequence of the inversions is that the interferometer needs no alignment.
Instead the interferometer defines a unique axis about which the input beam must
be coupled. Experimental results are presented for the fringe contrast, reaching
a maximum value of 93 £ 1%.

The orbital angular momentum (OAM) carried by light is an extremely wseful optical
characteristic, with applications in many areas of optics. It was Allen ef al who recognized
that a helically phased light beam with a phase cross section of exp(i£¢) carries an OAM
of £t per photon [1, 2]. An example is Laguerre—Gaussian (LG) beams which have a helical
phase structure. The integer £ is unbounded, giving a larpe state space in which to encode
information [3—5].

The use of diffractive elements containing an f£-fold fork dislocation has become
commonplace for the generation of helically-phased beams [6, 7]. The fork diffraction grating,
when illuminated with a Gaussian beam, for example from a single-mode fibre, produces the
helical mode in the first diffraction order. This grating can also be used in reverse to couple
light with a helical phase into a single-mode fibre [8]. Sequentially changing the dislocation
in the fork allows a range of £ values to be measwred, but checking for N states requires
at least N photons [B]. Recently it has been shown that two diffractive optical elements can
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Figure 1. (a) Schematic of the robust odd—even OAM router (M, mirror; BS,
beam-splitter; RP, right-angled prism; IP, inverting prism; PL, piezoelectric;
A, output port A; B, output port B and PD, photo-diode). (b) and (c) illustrate the
effect of the prisms on their own. It can be seen that the beams behind the two
prisms are rotated by 180° with respect to each other. An inverting prism, like a
Dove prism, has a mirror plane, indicated in green, around which any transmitted
beam is fipped.

be used to transform OAM states into transverse momentum states. A lens can then separate
the resulting states into a specified lateral position, allowing for the efficient measurement of
multiple states simultaneowsly [9, 10]. In both of the above systems, however, the nature of
a mode transformation means that the OAM of the light is changed during the measurement
process.

A method to route OAM at the single-photon level was outlined by Leach et ai. It is based
on a Mach—Zehnder interferometer with a Dove prism in each arm [11]. When the two Dove
prisms are orientated with respect to each other by an angle of &, there is a relative phase
difference between the two arms in the interferometer of AW = 2£8 (figure 1(a)). In the specific
case of & =90°, constructive interference will occur at one of the two output ports for all
even £-valped states and then for odd £-valued states in the other output port. In principle,
this routing can be achieved with 100% efficiency and with no loss of the input beam’s helical
phase structure. Simultaneously maintaining the alignment of many such interferometers has
proved technically challenging.

Preserving the structure of the input beam is important for many experiments, for
example to demonstrate amplitude damping of Laguerre—Gaussian laser modes [12] and in the
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Figure 2. Photo of the robust interferometer sketch in figure 1(a).

development of a linear optical CNOT gate for OAM [13, 14]. In each of these experiments
interferometers similar to that outlined by Leach er al were used. Attempting to make
this interferometric technique more robust, Slussarenko ef al reconfigure the Mach—Zehnder
interferometer as a Sagnac interferometer [15]. This approach reduces the number of degrees of
freedom within the interferometer, but requires additional polarization optics.

In this paper we present a compact, robust interferometer, removing many of the previously
required degrees of freedom. The technique outlined by Leach ef al requires that the beams
transmitted through the two Dove prisms are co-linear at the outpuot of the interferometer (55,
in figure 1(a)). This alignment was previously achieved by the accurate positioning of the Dove
prisms, mirrors and beam splitters with the interferometer [11, 12, 14]. A Dove prism has a
mirror plane, around which the transverse cross section of any transmitted beam is inverted
(figure 1(b)). Considering these mirmor planes, a different approach to alignment can be taken.
The intersection of the mirror plane in each Dove prism defines the path an input beam is
required to take for the two beams to be co-linear at the output ports. Hence, by controlling
the direction of the input beam, the interferometer can be aligned without precise alignment of
any of the constituent components. The requirement is that the whole beam is always contained
within the aperture of the prisms. An additional fine control for the path length is required such
that the integer £ states completely constructively, or destructively, interfere at the output ports
of the interferometer.

In our approach we use specially manufactured inverting prisms, previously discussed by
Leach et al [16]. The beam enters and exits each inverting prism at an optical face perpendicular
to the optical axis. This allows for the introduction of right-angled prisms, as opposed to mirrors,
meaning all optical surfaces can be bonded into a single, robust unit, shown in figure 2.

We demonstrate the case of o = 90¢, for the routing of states with even and odd £ values.
The intersection of the mirror planes of the prisms 1P, and IP; (see figures 1(b) and (c)) was
found through the use of external coupling mirrors, My and M5 in figure 1(a).

In our experimental implementation of the compact interferometer, we use a linearly
polarized Gaussian beam with a complex phase profile expii£¢) as our basis set of OAM.
These modes were prepared by expanding a HeMNe laser beam to illuminate an £-fold fork
diffraction grating, encoded with only phase information on a spatial light modulator (SLM)

Mew Journal of Physics 13 (2011) 093014 (httpfwww.niporg/)
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Figure 3. The interferometer routing odd and even helically-phased light beams
into ports A and B, respectively. For demonstration purposes we also encode
intensity information to the hologram pattern to generate the LG modes shown
above.

as this gives a high diffraction efficiency over all exp(i £¢) modes. To allow the precise control
of constructive and destructive interference in the interferometer, the second right-angled prism,
RP,, was attached to a pieroelectric mount, giving fine control over the path difference within
the interferometer. When the input mode is correctly aligned, the routing of odd and even
£-valued LG modes into the output ports A and B, respectively, is achieved. Experimental
results are shown in figures 3 and 4. The large number of degrees of freedom previously
required has been reduced to five degrees of freedom, position (x, y) and tilt (o, ) of the
input beam, and a small adjustment of the path length difference in the interferometer.

To test the performance of the interferometer in separating odd and even £-valued exp(i £¢0)
maxdes, the intensity of the interference pattern in one of the output ports was monitored with a
photodiode, while the path length of the interferometer was oscillated back and forth between
constructive and destructive interference by driving the piezoelectric stage. The ability of the
router to separate the input modes can be characterized by the fringe contrast [17]. The contrast
is defined a8 (Vpay — Vmin}/ (Vma + Umin )}y, Where vpg, and v, are the measured maximuom and
minimum voltages from the photodiode.

In our assessment of the performance of our interferometer we recognize that a potential
limitation is imposed by the purity with which exp(i £¢) modes can be produced by the SLM
and associated optics. SLMs are themselves a source of aberration in the optical system since
their flatness is typically specified at one or two optical wavelengths. In this experiment we use
the central region of an optically-addressed SLM, which is typically flatter than the alternative
technology, normally liquid crystal on silicon. Despite using the flattest of cur SLMs and careful
alignment of the associated optics it is likely that residual aberrations will lead to a degradation
in the performance of the interferometer, especially at high values of £.
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Figure 4. The contrast measured over the OAM mode range of £ = —40
to £ =40, (a) without and (b} with, additional aberrations. The ermor in the
measured contrast ratio is determined by considering the standard deviation of
the voltage received when no light is incident on the photodiode. In (b) and (c)
the effect of aberration on the contrast is shown for astigmatism and trefoil,
respectively. The magnitude of aberration was determined by the total phase
height variation across the diameter of the beam incident on the SLM. The same
magnitude of aberration was applied in the form of astigmatism and trefoil, with
an approximate value of 1734, 1/34, 2/34, A, 5/3% and 4/3), where A is the
wavelength of the incident light.

To investigate the effect of aberrations we scan the input modes over the range of £ = 340
for various degrees of additional astigmatism and trefoil aberrations which we encode on the
SLM. For no additional aberrations, we observe that for low values of £ the contrast is in the
region of 90%, falling to around 75% at £ = £40 (see figure 4). At these higher values of £
we note that trefoil aberration (figure 4(c)) has significantly more impact on the contrast than
astigmatism (figure 4(b)). When an aberration is added to a beam carrying OAM, the beam
is no longer a single £ valued mode and is instead a superposition of different £ valued modes,
centred about the original value. As astipmatism is two-fold rotationally symmetric, the result in
a superposition containing further modes with Af = £2, resulting in no observable degradation
of the contrast obtained from the even/odd separation (see figure 4(b)). In comparison, trefoil
aberrations are three-fold rotationally symmetric, resulting in superposition containing further
modes with Af =43, and hence causing a noticeable degradation in the contrast of the
even,/odd separation.

In summary, we have developed a robust odd-even OAM router with a reduction in the
number of degrees of freedom to simply that of the input light beam. A change in the orientation
angle ¢ allows the routing of beams with different £ values into the two output ports [11].
Cascading multiple interferometers, with coupling mirrors between each stage, would allow the
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routing of a beam into one of many cutput ports where each corresponds to a different £ value of
the imput beam [11]. The routing of an OAM beam with the preservation of the helical structure
is useful for data processes and transfer, as multiple gates can be used sequentially to carmry out
maore complex operations on a input beam.
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callly. We are able o produce very gond Tetwy il ded and theoresically
cloulated fields by using iex amp litude modulats ma.ﬂ'malyq:lullﬂltrrmﬁlmmmﬂb-
ment illed ring-shit experi fior the generation of nondiffracting s pedde fields The strudure of
l:mﬂrzm;qnﬁ:ﬂ:mhuquﬂi—'— phass fior both a and a normal
distribastion & imvestigated We find that we are able to snginesr whether the nondifiracting field will appear
& speckle or 2 structured zzro-order Bese beam by adjusting the standard dewiation in the dismibution.
Hawing the ahility to contral where in the specrum, from fully-developed nond iffracting s pedde to 2 sym-
medric zro-order Bessel beam, the nondiffoding fisdd will exist @an prove to be 2 useful resoune in the

mnon-destructive testing of matenials.

© 2011 Blsevier BV, All rights reserved.

1. Introduction

Mool Mrcting fhelds have interested resesnchers due tothe T that
their intensity profile remsin unchanged during propagation. Since
Dhernin |1 ] first disaovered 2 st ol solutions for the lree-space Helm-
haltz equation, which are propagation-i v ariant and sre rmathemstical-
Ty deseribeed by Bessel Rindtions, there his been exie nive research into
i Wrcting fhelda, These nond Fracting Besel beams, both 2ro- and
higher-orders, can be generated with the use of computer-gener sied
halograms |2-4] and sxicons |5-7]. Later, these compimer-gener sied
halograms were exsily reproduced with the e of sparisl light
madulstons [SUMS) |8] Zero-order Bese ] beams have sdvieved mudh
interest due to their sbility to reconstrua sfter an obstacle [9.10] and
itheeir bong nondi Fracing region affered in the form of 2-
dependent Besellike beams | 11]. A superpasition of highe -order Bes-
Sl beans has abo been advieved by illuminating an axicon with 4
superposition of Leguerne-Gausion baums |12] or by illuminating a
ring fleld oni two separable arimuthal phase varstion on a SLM
|13 | Propagation-im arisnt spot arrays | 14], o5 well 2 arbitrary arrays
aof nondifl soing beams |15] have been genersted by insering a dif-
fracive element into Durnin's ring-shit |16]. Recently, nondiflr scing
e s with arbitrary intemsity profils have bee n produced by cakoulst-
ing their mmmesponding comples spectra and wsing the constraints of
Hedritvol tr-Ganess. beams | 17].

* Conrespenading sevhor oo Schel of Plyabos, Undesrsing of Kwc Pl Moz, P
By, X 540000, Diosmaocam, 40000, Sviarche A
E-mad adimss aforkbe s Whcsironza (A Fodbess).

408 - see Hrom mumer @ 2001 Buevier BV AR righs nesereed.
oz 10,1006 copearioam 204 1 05006

T e area of nomnd Frecting besms, we are particul arly interested
in nondiffr soing speckle fields. One of dee firstate mps agenerating
nondilfrating speckle fields was schieved by illuminating a weakly
sgattering diffuser [produced by spraying finishing mist on a flar
glass plate) with & thin ring field 18] Recently, simpler and mone
effident methods of generating nondiffracting speckle fields have
been reslised with the ise of 2 single SUM |19 This i 2 cmputations]
approsch, equivalent to fue e xperimental senp of Rel | 18] where the
computer-generated pattern applied to e SLM is the Fourier
trandorm of & ring-slit with 2 random binay patem within the
weiddth af the ring-sh.

Even though numerous publications have been dedicated to the
generation of nondiffracting speckle fields, to the bat ol our knowl-
edge none have shown sgreement between theoretically alculited
ane experimentily mexsured fiekds This is beanse by iluminating 2
diffuser with & ring field | 18] © experimentally produce speckle, it i
virtually im possible to define the transmission fundion matematical-
Iy [either in terms of phase or smplitude ) within the ring field with the
sccuracy required for a predidion, & this is extremely sensitiveto Liser
beam alignment. In this report we sttempt i resolve this issue. We too
make wse of 2 single SUM, similer 0o that in Rel |19 ], however we im-
plement & chedered board phase-musk allwing us to operse our
phase-only SLM in both phase and amplitule mode. Having contral
over both the phase snd smplitude when addressing the SLM offers
the possibility to define the rammision funaion of the rng-sit and
304 theoreticd calculyBon of the resul ting speckle cn be made.

Much sttention has been paid 1o the formation of speckle, & an
understanding in how speckle is formed & imperative in the
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development of toals for the removal of speckle in optical fields
|20:21). Even though the presence of spedkle in optical beams may
it e clesirabile, speckle is proving use ful for metrological techniques
|22-26 ) and nondiffracting s pedile i of particul ar intenetin the non-
desructive testing of materials [27) all of which benefit from &
knowiedge of speckie formation.

Imvestigations into the frmaton of speckle have considensd the
effea the dimensions and the geometry of the ring-shit have on the
longitudinsl comelation |28) and the distering (or snake-like
patterns) of the speckles |2930|, respectively. The structure of the
ramdoim prhase-mask oo has an influence on the lomation of speckle
chustering [303 1)L If the diffeser i weak, radial speckle chaing are
produced and & the diffuser bemmes sronger 3o spedile chsters
turn i isotropic winding chains [30]. The fransl srudwre of $peckle
patierns has sko been investigabed by ill uminsting & diffuser with a
fractal object |32). We have stempted to make further invest gations
into e formation of speckle by studying the effea that binary and
omntinupis phise modulitions, within the ring-sliti, have on the
atructure af the speckle.

In this paper we experimentally generate nondiffracting speckle
fields by complex amplitude modulstion on our phase-only spatisl
light madilstar. We firat discuss the principle behind the complex
amplitude modulstion, which in ow crse takes the form of 2
checkered basrd pattern |33), and illustrate its benefit in the study
of nondiff sating beama. Subsequently, we experimentally investigate
the effect binary and continume phase modulstions, for both the
wiiform anel normal distribution, have on the structire of the speckle
anel i parti cular investigate te stamdsnd desdation, of a8 the St sti-
cal varishle for the distributions. A theoretical explanation, which
buikls on from the chedersd board phae-mask, i given, proving
the validity of what we exper mentally witness.

2. Checkered board pluse-mask
2.1, Thearatical description

Inarder toencode 3 SLM with a ring-slit for the generation of non-
diffracting fiekls, one would require 3 5LM that can @ntral both
phase and amplitude. A phase -musk, such 25 hat in Fig. 1{a), would
be enmded anto 3 phise and amplitude ST, whe re the regionwithin
the ring-slit would modify the phase of the incident light and the
lack regions, surrounding the ring-shit, would net transmit the inci-
dent light. With our phase-only SLM. we encode the sections o the
phase- mask, in which we do nol want 1o transmit any light, with a
checkered board pattern. An example of such a phase-mask is given
in Fig 1[h).

Toesplxin winy 2 checkered bodrd, comisting of slternating sets of
pixels that are a8 gred phase v ahoes that are out of phase by, an be
used o mimic an amplitude mask, one should visualise 4 amplex
plane (Fig 2(a)) to represent such phate vahies The checkered
board i3 described by a binary uniform distdbution, where the
weighting of esch phase vahee, 0 2nd 11, i equal In the mmplex
plane representation this translstes 1 esch vector having the same
amplitude, but pointing in oppdasite diredions along the ¥-ai. The
resultant, therefre, has no smplitude and is located st the argin of
the complex plane The fact that the resultint has no amplitude
means that the sversge amplitsde of the field st the dheckered
board phase-mask is rera The amplitude of the resultant vector in
the avmples plane i often referned to 2 the DC-olBet |34) Sain
this case there 8 no DC-offset at the checkened bosrd phase- mask.
The ot that the serage amplinsde of the feld at the deeckened
basrd phase-mask i Tern, resulis in & Zero in the intensity on the
propagation 2xis in the Fouwrier plane, with the light shifted sway
from the ongin due to the high spatisl fequency of the dheckered
baard, a4 illustrated in Fig 2(e)] For the eme where 3 phase-only
SIM is addressed with a single unibrm grey-level [Fig 2({d)L the
resultant vector in the complex plane does have an implitude
[wihich lies sl ang the podi tive ¥-a4)_ e sning the sversge xm plitude
at this phase-mask i3 non-2éno, gving rise 10 In on-263 intensity
[Fig. 2(&) ) in the Fourier plans.

2.2 Experimantal methedology and resuls

The experimentsl setup is densted in Fig. 3 A HeMe laser
(k=633 nm) was expanded through a6 telesonpe before i luminak-
ing 2 HoloEye, HEDTOS0P SLM, having 1920 1080 pixels of pitch
Bpm and calibrated for 3 27 phase shift ot -633 nm Previously in
ouwr work, a physical aperture in the fom of 2 ring-slit would be
imaged onto the S5LM and the phase modulstion within the ring
field would be modified [13] However, with this spprasch, in the
case of nondifracting speckle fields, one cannot define the transmis-
Sion fundtion of the ring field. With the checkensd baard 2 pproschon
the other hand. 3 single phase-mask, which generaes both the ring
field and the plase modulstion within the ring fiekl, was encoded
onto the SIM. The dynamic sddresing of SUMs allows the radius
and width of the ring-slit, the fequency of the phase modultion,
the numbeer of grey-levels used to represent the phase modulstion,
and the distribution sed 10 desoribe he phase modulation © be
vared sppropristely. Expermentlly. through “trialand-emrord, it
wrd found that the chediered board patern produced the best results
when eschchecker was xssigned toan ares of 5= 5 pixels on the S1M.
Phase-masks mnssting of 3 ring-shit surrounded by 3 checksred

Fig 1 In order oy o prosdiscs Dearsdies risg-diir [ 15 oo | v S addison of a phe ool s bde s ring ), sider ) e gt can be selobdy apermarsd by o plhysbcal
ring amad e macbalaed or (B complen ampdinade Sk Son can B wmed on 2 phose-coly S o onanee boc e “amplinede ™ 3 nd “phoe” 16 R Som by one s p. The

limciex fim (B sheoves e checkerad Board parmers wed [ modislae Se 2 mglinade
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baard of various checker aresd [varying from 3 =3 o 9= 9pixels)
wiere generated and med o generae i third-onder Besgel beam. The
phase-mask which dilfracted the on-axis intensity sway [rom the
vortex in the middle of the third-order Besel beam the bedt, con-
sigted] of 3 chedker area of 5x5 pixels The plane at the SLM (F1)
was relay imeged with a 1< telescope to plne P2 (demnoted in
Fig_ 3). A physical ring-slit, denoted within the red border, was iniro-
dured into the &xperimental setup at P2 when needed, to allow for
comparison between the results obtyined with the ring-slit phase-
mask and the physical ring-slit in conjunction with the random
phase-mask. The field ot plane P2 was Fourer transformed, with the
use of lens LS, before being magnified by a 10« objectiveand deteced
an & 00D eamers

A comparison betwesn the resulls obtxined with the physical
ring-slit and & random phase-mask (oolumn 1 Fig 4) and the phase-
mask which inmmporates the chedoered baard pattern (colemn 3
Fig. 4), was made and & illistrated in Fig. 4 Results were first
obtyined by illuminating the 5LM when it was addressed by the
phase-masks given in column 3 of Fig 4 The SIM was then sddressed
with the iame random phase-masls & those in column 3, but with

CCl

Bl

the checkersd basrd pattern removed [Le those in cohemn 1), and
the fiekd at the SIM was then imaged onto 2 physial ring-slit
[R=3mm and 24 =150pm | The alignment of the physical ring-
alit was sdjimted wntil the field in the Fourier pline resembled rthar
which was obtxined with the checkered board phase-musk Bath ap-
prosdes produce identical resuls, illustrating that the checkered
board pattern is exwemely efective in mimicking an am plitude
mask The résults imply that the physical ring-slit can be replaced
by a single phise-mask offering the passibilicy of dymanmically
sddressing the parameers which describe the ring-shit, such &8 radi-
us, width and phase modul stion.

By implementing the checkered board approach, we are able 1o
define the phase modulstion within the ring-slit with very high res-
olution, 30 & (o compute theoreticsl predictions of the resulting
speckle fields. An example is shawn in Fig. 5, illustrating that the
experimentally produced nondilfracting speckle field & in very
good rgreement with the thesretical predidion This approach, for
the first time, allows for quantitative studies in the dynamics of
apecile formation, snd requires only & spatisl light modulator to
EXaCe

Herha Lazar
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3. Nondiffracting speckle fHelds
3.1, Experimenial resulrs

Within the ring-slit we investigate four different forms of phase
modul stion, described by the following distributions: [i) oontinuus
wniform, [ii) binary uniform, (idi) continuds normal and (iv) binary
T Tl

The phase distribution within the ring-shit can be described by a
oontinuous undform distribution, where the phase values s in
the range {0, 2}, and s defined a5

$lxy) = 2meliey), m

where xy) is & unilorm random number in the range {1}

In the cxse that the phase value s within the rng-slit are described
Iy & vinary undlorm distribution, there is an equal probasbility that the
phase values will be xssigned either 2 value of 0o,

0, Ux, =05

By - {1:. U, =05 - 2

For the continuous normal distribution, phase vales within the
ring-slit are seleged from 2 nommal distribution having 3 mean of
reraand & standard devistion of 1 and are defined a5

%, ¥} = 21N, ), 3}

Fig 5.(a) The phome-onadr applied o e S8 (B The cosnenponaiiteg g nolly profeced feld b e Foobe r plane and {c) e rheseerically calosloed Seid o7 e Fosrisr
planat.
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where N[xy) i3 2 normal random mimber. The prohability dendiry
Tumection for our continuous nofmal dstrbution i

T PP |
11~ orenn( ). @

wihere pand o are the mean and standard deviation, respedively. For
the final case, the binary normal cse, phase values within the ring-
alit are xsigned 3 value of either O or o, where the probability of
28 lecting sither value is bounded by a3 Caussimn envelap,

0, N[x =05 .
et {'I'I!. Nxyils - =

Fig. & contains the phase-masks and ooresponding fields in the
Fenirier plane for the continuwous wniform and binsry uniform disri-
bationg The phase-masks and the e ponding fields in the Fourier
plane lor the contimeous normal and binary normal distrbutions ane
given in Fig 7 The frequency of the phise modulition within the
rimg-slif increxses for exch row in Figs. 6 and 7. For the phase- masks
in Figa & and 7, the checkered board patterns have been removed,
40 4% 1o highlight the phase-madul s on within the ring-slit

It is evident, from alumn 2 of Fig & that in the cxse of the contin-
ufis uniform distribution (where 256 grey-level represent the
transition from white, 0. 1o bleck, 2m) the rero-order Bessel beam
SATTS 10 remnstruct a5 the fequency of the phise modul stion
increxies However, this i not the cxse with the binary unikem

digtribition snd instesd a5 fe frequend of the phise madil stion in-
crexdes, 50 the spedile become s more chaotic [ @vident incolumn 4 of
Fig. &) For the matinuois normal (column 2, Fig. 7) and binary nor-
mual [eohimn 4, Fig 7) distrbutions, the nondill sding speckle stars
Lo evolve inio & rero-orde r Bessel baam a5 the raquency of the phase
midul dtion increxses

32, Theoranical descripdon using the complex plane approach

321, Continuoirs undlo rm di stribution

The effect that the desdription of the phase modulstion within te
ring-slit has on the formation of the resulting field, can slo be
explxined by the complex plane approasch. The dhecke red board pat-
tern is a specilic brm of phase modulation where the two vecors,
Ay and Ag, are weighted and positioned on the @mplex plane in
such 3 way that they produce 3 resultant having 2ero amplitude,
thus @mpletely suppressing the on-ixis intensity in the Fourer
plane. For the continuous uniform phase modulition, 256 vedors
[Aq 10 Agmi), 3l having the same amplitude and emanating from the
origin ol the complex plane from 0o 2, produce a resultant, having
the wme smplitude 35 esch of the 256 vectors, and pai nting slong the
negative x-a063 (L& @=m). Therefore the sverage amplitude of the
field at the plane of 2 phase-mask, having a continus undlrm
phate modulstion, & non-réero and due o the ring-3lit geometry
restridting this plase moduls on, & 2ero-onder Bessel beam maniks1s
inthe Fourier plane, evident in the furee imagesin alumn 2 of Fig 6.

g 6. oo 12 Plhuis- oo, vl o8 chett Pl il s vl i oot sy S0 s ot aorilbe of By 3 CoimSimincnees: onoifonrons cfibuoribuchons | it Erjpassnary off oot [zt vl o ncrea s
v e ol v, (e i 0 s ) el ) 50 e ) el i 0 O i) T ] g, oot e g ol G 2 Tt caree spaoandiing, o spersriove svsallly recordid Forier
et Cooihonmys 3:: Pluizias- mrcles, vallo o St |piurs ivadollam o vaficloin The ring - i b denossd By 2 sy wnlznm dig oo | e Sraquescy of e plurs il Som inon o 5 with
ol ). T ] e oS ol - S0 (ool 2 Whelt OO ool o a0 2 Mriitil] oty |pilaied.
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2ach mow). The ned singy desmooes the Singg- <l Codamn 4 The comespomdiing  sperimenclly reooeds d Fousske 1 plae.

In order po verily il the DC-offsel experiendes an incredse or distributions. A graph illustrating how the sandand deviation for
decrexie with an incresse in the frequency ol the phise madulation, exth distribiion varies a3 & hnction of the frequendy of he phase

we analysed the standard deviation within the ring-slit for a1l four maodulstion & given in Fig 8. The x-a63 in Fig 8 représents an
spackle
4
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incresse in the el stion radis of the phase modulsfon within the
ring-slit The memelation radius denoes the distane over which a 2
phase shilt oacurs in the phase modulstion. A small correlation radius
therefore means the frequendy of the phese modulstion i high
whilst 2 large comelation radivs means the frequency of the phase
il stion i low, The y-axis denotes the stndard devistion af the
distribution. As the fequency of he phise modulstion decresies,
the standard devistion for the @atinubus uniform distribation de-
creades, meaning that the range in which the 256 vectors exist on
the compilex plane bemme smaller_11 51 256 vectors on the com plex
plane sre restricied to & segment which has 2 small opening angle,
then the amplitide of the resultant vector will increase, resulting in
the rerg-arder Bemel beam becoming more predominant in the
Fourier plane.

322, Binary unifarm distribution

In the binary uniform phase madulstion thene i an equal proba-
Rility that either & vatue of 0 of mwill be selected and 20 fe o vec-
tors on the complex plane esch have the same smplitude, bt point in
oppasite diredions (¢, =0 @,=) This is the sxme scenario 8 with
the chediened baard phase- mask. The smplitude of the resultant is
zern, 50 the mexn of the amplitude of the field within the ring-slit is
zem and 50 no zero-order Bessel besm develops in the Fourier
plane. Instesd & the frequency of the phase modulstion increies,
50 the noise” around the DC-alket incresses and the nondifrscting
speckle bemmes more chaotic, evident in column 4 of Fig. & From
Fig. B it is evident that the standerd devistion for the wniform binary
distribation does not vary x5 the frequendy of the phase modul stion
increxies Therelone the amplitude of the two vedors in the complex
plane remain unchangsd 5 the fequency of the phase modul stion
incresses and 50 no change occurs in the DC-offet and no Pera-
o dler Bessse] beam forms in the Fourier plane.

plane by 256 vectors, whise amplitules are weighted by 2 normal
distribagion. resulting in the resultant vecinr having 2 non-zero
amplitude. Sinee the C-olTset (an average amplitude of the feld)
exists at the ring-slit a rero-order Bessel beam becomes visible in
the Fourier plane This i evident experimentslly in eohemn 2 of
Fig- 7. For the continuows normal distribution, &8 the frequendy of
the phase modulstion ine ses the $tandand devistion reming iy
constant (evident in Fig 8) and 30 not much change is noted in e
averzge amplitude of the field within the ring-sit In this cxse, x5 the
frequency of the phase modulstion inmesxes not much change is
mosted in the intensin of the pero-onder Bessel baam in the Fourer pline.

324, Binary normal distri bition

The Lt case which we condidered was a binary normal distribu-
g Dhse 1o the B that the probability of selecting either 2 phase
value of 0or 3 phase valie of @, is bounded by 2 normal & strbution
the ampditudes of the two vectons in the comple s plins are not equal
This leads 1o the resultant vector having & non-zern amplitude and
50 2 mean amplitude exists within the ring-slit giving rise to 2 rero-
order Bessel beam in the Fouwrier plane, evident in column 4 of
Fig. 7. As the frequency of the phase modulstion ingesses, the
stamdand devistion decrexies ever so slightly, evident in Rg & This
means that there i & slight increxse in the smplitude of the resul
vector [of the mesn amplitude within the ring-slit) and so the zem-
arder Bessel beam appears a5 the frequency of the phase modul ation
incremses

4. Discission

From Fig. 8 it is evident that by engineering the frequency of
the phase modulition we do not see much of a transition from

o iffr sting speckle i 3 Pero-order Bessel beam, 25 only one distri-
bation [the binary normal distibution) shows 2 transition from
chaotic speckle to 2 rero-order Bessel beam This i in greement
with what we experimentally witnes_ In evmparing Figa 5 and 7,
thee: binary normal distribution [column 4, Fig 7) displays the devel
apment from fully-developed spadile 1o & Pero-order Besmel beam.
The twio continuos cries do nol seem to sitxin the state of chaotic
apedle, ko evident in the intensity profiles in column 2 of Figa &
andl 7. Inatesd of chaotic speckie we see Begsel-like clusters, ie the
cheste risation of the speckle aaurs a1 the centre of the feld, coincid-
img with the centre of the 2ero-onder Besel baxm. The binary unikem
distribution however is the polar oppasite, in that inoressing the fre-
quendy af the phise modul stion, does not result in the field snsining
2 quasi-zerg-order Bessel beam state (evident in Fig. 8 and in the
intengity profiles in ahmn 4 of Fig 6).

Even though varying the frequendy of the phase modul stion does
nat show much promise for three of the four distributions, we slso
varied the standard devistion for all four cses This restrias the
twio vectors i & smaller ares on the complex plane snd so the 2en-
ofder Bessel beam beavmes more predominated in the Fourer
plane = the standerd devistion decresses. Simulsted results ane
given in Fig 9 (row 1: continuwous uniform, row 2 binary uniform,
row 3 continuous normal, and row 4: binary normall It is evident
that by varying the stnderd devistion, the field an develop from
chaotic speckle toa rer-order Besel besm. Therefore for any distri-
bagion, one can select where in the “spedide (o rero-order Bessel
beam specrum the fisld can exist by & single parameter — the
atandard devistion

Often nondiffracting fields are used in the non-destrudive tes ting of
iateri b 17 ane has & disl swhich can be used to Sdact sither & e
ornder Bessel bexm, or fullp-developed nondiffracting speckle, or amy
mixture in-between, one can develop felds that are Tailor-made” o
optimise the msesment of materials and sohtions Mondifracing
Thelds are slowidely sed in optical twesrers. By being abde to switch
betvesen & rero-order Bessel beam and nond Tracing s pedd e, one can
randamily disperse particles, scammmilsted in the column of the Begssl
beam, in & predetermined ares of 4 cell or sxmple. In studying the
phate modulstions in solutons, one can imege a ring field onto 2 solu
i andd by taking the Fowrier transform; the structure of the resulting
Theld can be studied As v have investigated theeffea of the frequency
of the phuse modulstion, within the ring-slit, has on the structre of
the resulting field one cin e this spprosch (o snahse the phise
madulations within chemicd soluions.

5. Conchesion

I this wark we illustrate o technique which allows one to operate
2 prhuse-only SLM in both phase snd smplitude mode, resulting in the
generation of nondillr sding speckle fields with 2 single SIM. Our re-
aults obvixined with this technique are in very good sgreement with
an alresdy knoven approsch using Durmndn's sing-slit | 16). This ap-
proad allows one to have contral over the dimemions of the ring-
sllit aned the phase modul ation within the ring-slit. Ouwr ex perimentlly
produced speckle fields wing the checkered board spprosch are in
gond sgreement with the theoretical predictiona The effects of binary
and antinueis phase modulstions for two diflerent distributions,
[umiform and nommal) on the struchre of the spedile field wene
imvestigated. It ws noted that we can @ntral the evolution of the
Tuly-developed nondifracting speckle into 2 rero-order Bessel
bexm by sdjusting the standard devistion of the distribution The
effea of both distributions, [continwous and binary), i explained by
analysing the DC companent of the Fourier s ries. Having the shility
1o contral the development of nondiffacting spedile into 2 2en-
ornder Besmel beam is & uselul tool in the non-destructive testing of
mua erials and in optical tweering.
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Poynting vector and orbital angular momentum
density of superpositions of Bessel beams
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Abstract: We study theoretically the orbital angular momentum (OA M)
density in arbitrary scalar optical fields, and outline a simple approach
using only a spatial light modulator o measure this density. We
demonstrate the theory in the laboratory by creating superpositions of non-
diffracting Besse] beams with digital holograms, and find that the OAM
distribution in the superposition field matches the predicted values
Knowledge of the OAM distribation has mlevance in optical trapping and
tweezing, and quantum information processing,
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L Introduction

It has been well known for some time now that photons carry spin angular momentum of + &
{-R) per photon for left (right) circolarly polarised light, and that the transfer of this
momentum can be measured in the laboratory when the light passes through a birefringent
plate [1]. Mom mcantly [2,3] it has been malised that light may also camy an extrinsic
componant of angular momentum, orbital angular momentum {OAM), when the electric field
or mode has an azimuthal angular dependence of exp(ilp), where [ is the azimuthal mode
indax. Such fields carry OAM of  per photon, and may be found as beams expressed in
several basis functions, including Laguare-Gaussian beams [2], Bessel-Gaussian beams [4]
and Airy beams [3] to name but a few. Since the discovery of light beams camying OAM
many new research aras have emerged, from transferring OAM to matier in optical tweezers
[6] to investigating the conservation and entanglement of OAM in parametric down
conversion for quantum information processing [7-11]. One of the problems has been the
measurement of OAM, with various attempts at the efficient sorting of modes camying OAM
using interferometers and computer genarated holograms [12-16]. Stodies into the angular
momentum of combined beams during free space propagation have also been made [17]. In
general, one is ineresied in the superposition of OAM carrying fields, both at the classical
[18—20] and quantum levels [7].

In this paper we consider the problem of calculating and then measuring the orbital
angular momentum density of a coherent superposition of non-diffracting beams. We derive
simple equations for the OAM density from first principles by calculating the Poynting vector
of tha field, and from this deduce both the linear and angular momenium components. Tha
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results indicate that while the intemsity pattern of the field is rotating at a fixed angular
velocity (dependent on the relative phase velocities of the component fields), the OAM
magnitude and direction is dapendant on the location within the spatial distribution of the
field That is to say, different parts of the field carry different amounts of QAM, and of
various sign. We verify the msults by outlining and then executing a new technique for the
direct measurement of the OAM density in the laboratory. We show how this approach
alIuF's for a quantitative measurement of the OAM spectrum as a function of position within
the field

L Theory

We wish to consider the OAM density for a general complex scalar field, aix¥,z), which
wvaries in time (in complex motation) as exp(ier). This problem has been addressed by others
previously [5,21-26], but with some inconsistencies in notation and derivation. For this
reason, and for the benefit of the reader, we briefly outline the approach for defining OAM
density, starting from the Poynting vector, before applying the result to the specific problem
of coherent superpositions of non-diffracting Bessel beams. We start by defining a vector
potential in the Lomentz gauge as a representation of our linearly polarized (in the r direction)
laser mode as [27]:

Alx, ¥, 7y =iz, ¥, Zdexplik: — ax )T (8]
from which we can easily calculate the electric and magpetic field components of our
complex scalar field:

Bix, v, )= V= Alx, ¥, 2)
" i@ = @
E(x,y,z) -;VIB[I. ¥, zh

where E and # are the electric and magnetic fields of the laser mode, respectively, and all
other erms have their usual meaning. Equations {2} can readily be solved to find the two
fields as functions of the laser mode itself (our complex scalar field):

B(x, y) = ikexp(ikz - ax))| u(x, ¥, ;_}ﬂ%%g)
: 3
E(x, ¥) = iwexp{ifkz - ::l}{lr[I. »oii +%@E]

Here we have applied the paraxial limit and assumed that the rate of change of the field in
the r direction is small compared to the transverse directions to remove derivatives of the
field in the 7 direction. We are now in a position to calculate the time average of the Poynting
vector:

{5 m 6 s % B . @
where for brevity we will drop the arguments of the functions. The subscript real indicates
that we are required to consider only the real part of the fields (cosikz=—car)), easily found to
be:

Ey =HE+E")
B = LB+ E"),

By substitution of Egs. (3) and (5) into (4), and after removing all the oscillating ermms
since they average to zero (over time ), one can show that

13}
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§-sc{ExE)
S (ExF ) ®
- %[f{i’?ﬂ‘ —H"Fn}+ U |£|: E}.

wheme it is understood that the gradient applies only in the transverse directions. We now
wish to apply Eq. (6) to the problem of a superposition of OAM carrying fields, and we start
with the problem of a coherent supe rposition of two such fields, of opposite handedness (ie.,
opposite azimuthal phase), expressed in cylindrical co-ordinaies as

uir, @, £ =y ir, Dexplip(r, ) (explilg)+ o expl—ilg)), T}

with the parameter @y representing the amplitude difference of the two fields (Le., how the
fields are weighted). The amplitude (sy) and phase (g} of the complex scalar field is
delermined from the characteristics of the mode under study, and will be defined for Bessal
and Bessel-Gauss beams a little later in this saction. Substitution of Eg. (7) into Eq. {6) and
solving for each component of the Poynting vector, we find that:

5, - S OV i af + 2 concatg)
_I'E':"—a'l!;[af - l}

Sy -—5

()

22
5, -WTH'“[]+G,1+EBIMG(H¢)]

In the casz of a sum of Bessel and Bassel-Gaussian beams, the parameter a; = agi— 1),
whereas for Laguerme-Gaussian beams it takes the form & = a5 here oy is the constant
amplitude weighting of the fields. From these equations we may readily calculate the total
angular momentum density of the field, and since by definition owr field has a zero spin
component, we have the total OAM density (along the direction of propagation, ) as:

L = (rxs).. ®

In this expression, the units of § are the conventional Wim’, while the OAM density (L)
is now expressed as the angolar momentum per umit volome, or Ms/m” With these
fundamentals in place, we are ready to calculate the OAM density for superposition fields.

2 1 Superposivion of Bessel beams

Consider the general case of the superposition of two Bessel beams (BBs) of differing cone
angles and opposite azimuthal phase; then Eg. (7) becomes

uir, f, z) = Ag[J (g iexplidkz)ex plild) + apd _ (gyriexpi—idkzjexp{—ilg)]. (10)

where J; is the Bessel function of order /. Similar expressions can be found in references [28]
and [29]. The cone angles, ; and j, differ as a result of the generation process (see later), bat
can be set to be equal if so required. As a result of the slightly different cone angles, both the
radial and longitudinal wave numbers also differ for the two beams: the radial wave numbers
become g; = ksiny, while the longitudinal wave numbers, given by &, = kcosy, differ from the
central >-dependant wave number (k) by + Ak (the subscripts i here refers to the first (sacond)
beam in the superposition). We have maintained a normalization constant Ap in onder to later
compare the theomrtical results to expariment Thos the Poynting vector becomes:
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2 2
5y =~ 20T flor s 1 garMstair) + 1T +(gar M (g s k]

g o’
5, _*ﬂTﬂp g —alilig,n) (11

¥ 2,
5. = 250 (12 0g) + 0307, g2) + 2y ) 3o cos{2l g + k)

The time average Poynting vector, in both the r and ; directions, has an additional term
Ak which is responsible for the slow rotation of the intensity distribution during its
propagation. This behavior has been noted previously [30] and we can see that this is a result
of the detuning of the radial wave numbers for the superposition of two or more beams. From
the equation for §,, a single non-diffracting beam has no 5, component Howaver, in the cas
of a superposition of two non-diffracting beams, the resulting beam has a non-zero S,
component This results in 2 small rodation in the ¢ direction, thus changing the intensity
distribution of the superposition at a particular radial coordinate. We may easily then computa
the OAM density to be:

2
L) =22 (17 (qur) - ad i gur) a2

2 2 Superposiion of Bexzel-Gauss beams

Following a similar approach to that of section 2.1, we can find the OAM density for a
superposition of two Bessel-Gauss beams (BGBs) of differing cone angles and opposie
azimuthal phase, defined as

1 & 1 -4 2.2
"”’LF)-"-JH(:F:,): ]E‘P[[E:(H{z-fz;)*]_ Wg{l+(z-fz;)1} +rz ]I]

gar

s 2 —BT Nexpiit srexpi _
[J'[H:‘{;_.r;_, ]]axp-[m:ujexp{:w)+¢u1_..[] it b}}ﬂp{ﬂxt‘v_}am—#‘}]mﬂ

where we assume both fields are modulated by the same Gaussian beam of width we
resulting in a Gaussian Rayleigh range of z, and for brevity we have collapsd the phase
terms related to the piston and Gouy phase shifts into the function yiz). We may easily then
compute the OAM density to be:

(13

legm

A+l 2, )]

14
exdd _2 eyt _;[ qir l_ai [ Ll T
wa (el 2 || titarz | [ it 2)

These results are consistent with what might be expected uvsing the more general
formalism of ref [24], and by extension of the veciorial results in ref [21]. Indeed, our results
here are the special case of these two approaches for scalar fields (linear polarized) and where
the superposition is due to interference of the two modes. It emains then to define a method
of actually measuring this quantity in the laboratory, a subject that has not been adequately
addressed to date.

24

Lir,z)=
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23 Meazuring the OAM denxiry

Much attention has been paid to the measurement of OAM ecently [12-16]. It is well known
that since the angular harmonics, explig), are orthogonal over the azimuthal plane, we may
express our superposition field in terms of such harmonics:

1

uir, g, zh=- Egﬂ;{hz}ﬂﬁﬂﬂ- (15)
with
ar, z}—J;_IT!ru[r,w,z}up(—Hp}dp. (16}

The mlative weighting of the power contained in each srimuthal mode can then he
defined as [5]:

H'{E}-um—l.
‘r‘»_,"nail[r,z]{ rdr
o
From the definition of Eq. (16), one can easily show that the weighting of each harmonic
fior the case of a superposition of BBs is related to the OAM density through the rlation

{7

s, 4 b
L) -2 af(r)-aX(n). (18)

‘We will show, for the first time, how this quantity may be measured in the laboratory in
an easy to implement procedure with a phase-only spatial light modulator (SLM), thus
allowing a direct measurement of the OAM density of the light

3. Experimental methodology

A HeNe laser (L -633 nm) was expanded through a 6 = telescope and directed onto the liguid
crystal display (LCD) of a SLM (HoloEye, PLUTO-VIS, with 1920 1080 pixels of pitch &
um and calibrated for a 2x phase shift at -633 nm) depicted in Fig. 1. The first SLM {denoted
as LCD 1) was programmed to produce various superposition fields using the concept of
Durnin's ring-skit [31], but implementad digitally [29]. Other technigues to experimentally
generale superpositions of helically-phased fields using a single LCD exist and have been
implemented by others [32]. By addressing altemating sets of pixels on the SLM with phase
values that are out of phase by =, resulting in the light reflected from the L.CD being scatterad
from its initial propagation axis, we are able to make use of our phase-only SLM to represant
the ring-slit (which would usually require an amplitude device or mask).

To creake a superposition of two non-diffracting beams of opposite handadnass, the ring-
slit was programmed with two opposie azimuthal phases, and the resulfing field Fourier
transformed at the focal plane afier L3, to produce the field described by Eqg. (10). The phase
patiern in the annular region was separated into two ring-slits, each possessing an arimuthal
phas of equal order but opposite handedness (Fig. 2{a)). When the orders, W, of the two
azimuthal phases were of equal but of opposite handedness, a “petal’-structure was produced,
wheme the number of *petals” is denoted by 2¥1 (Fig. 2(b) and (c)), as expected from theory
[30]. The slight difference in radius of the two rings resulted in cone angles (defined as Rif
with & the ring radius) of 7, = L0069 rad and 7, = 0.0075 rad, so that At —42 8801 m™.
Another consequence of the slightly differing ring areas {see Fig. 2{a)) is that the emergy
contained in the two Bessel heams is not equal Since the illuminating Gaossian beam was
measured to be of radius w = 13.29 mm on LCD 1, the energy contained in each ring could be
compated, and the weighting coefficients found:
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@ -J Jexp(=2(r{ w)* wrdr / Jexpi—2ir{ w) rdr. (19
Fing I rimgZ

The resulting images of our non-diffracting superposition field were captured on a CCD
camera (Spiricon, LBA-PW-S300R-T350115), and the objective and camera could be
positioned on translation stages with an optical rail in order to investigate the propagation of
the msulting fiald. Once mcordad, the resulting superposition field was then magnified with a
10 x objective and directed to the second SLM (LCD 2) for executing the meodal
decomposition of Eg. (16). This was accomplished by executing an inner product of the
incoming field with the maich filter set to exp{ilg), for various | valoes, and for particular
radial (r) positions on the field. There are two important aspects of this experiment: firstly,
the datection is restricted to the origin of the resulting field afler the Fourier transforming lens
L4, and secondly, the r dependence of the coefficient ay is found by implementing the maich
filter in the form of a narmow (20 pixels) annular ring of radius r.

L1 L2
Il"". o

‘ HeMe Laser }——1 B I| . __\nm
i —i-;.._-..--"'.

£

coD

i

Fg 1. A schematic of the experimental sstop for detecting the OAM dessity of our
ition modes ax a function of r. L2 Lens (7l = 25 mmg 12 = 150 mng 3 = 200 mm amd
# = 00 mmj; Mz Mirror, LOD: Liguid Crystal Display; @ Objectiv; OC0: OCT) Camera,
The objective, (12, was placed & the fooss (or Fourier plane) of lens, L4
The latter requirement is necessary in order that we find the local OAM density rather
than the global OAM density. Figure 3 illustrates the concept: the experimental field (Fig. 3;
sacond and forth row) was subdivided radially into 10 sections, with each section saquentially
apertured by an annular ring of width 20 pixels. The phase within the annular ring was varied
according to the conjugate of the azimuthal modes in Eq. (15), ie., the azimuthal integrand of
Eqg. {16}, from —4 to + 4 in ! index. Thuos the decomposition of oor field to find the weighting
coefficients could be executed as a function of radial co-ordinate and arimuthal mode. This is
the first time such a technigue has been demonstrated experimentally, and allows for the
DAM density to be measured directly: the OAM spectrum, afr,z) can be found at any radial
position across the beam (and of course any : plang). The weighting parameter {ay) of the
superposition field was set by a suitable choice of the width of the two rings in the phase
pattern on LCD 1: ag = 0.96 (nearly equal weighting).
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Fg. 1 (a) Anmular ring programmed omio the SLM with two arimuthal phese patterns: in this
example, + 3 and -3 [ valeex (b)) ohserved ﬂpﬂ'rrr:-.ll saperpsition (intensity) with &
peizk, and (o) the theomtically expecied infessity patiem. The intensity showm in (h) is an
atiemmated experimental lnlrwlh-bl.l:-y[l.hecnhrlmi.! =0 as mof In saturste the camerm,
while that in ic) shows a false color plot sormalized to 1 in peak valse for visual comparison.

Fig. 3. The ssperposition feld was divided radially, and an asslar ring was progmmmed oot
the second S1M im onder to execuie the innes product & oaly this radius. The phase within the
anmalar ring was varied in the orimuthal angle for vanous values of L The esi of the SLM was
pmpmnnémlhlchdﬂhndpﬁtmmnmnsmdlhemnmﬁmmwmhmg
alone. The ien rings applied to LCT) 2 have the following madit 5y =600 pm, ry = E80 pm, ry=
V160 e, iy 1440 prmg, ey o 1720 e, g o OO0 oo, oy e FERD pum, irg o 25680 pum, g = 2B800
pm and rig = 312} pm The blaxk =nd whie @mages im rows 2 and 4 am gray-scak
experimesial images of the beam, with the afesuation sel 50 as not fo ssfunie the amem
Them{on: the intessity unils an: arbitrary.
Becaws of the mamner in which the experiment was executed, by a Fourier transform
evaluated at the origin to after the second SLM, the actual measumed quantities ame related to
the OAM density by

_‘_@izf 0} —1_, {0 0
L, qc[S, ][,n () (
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wherne 130} and /_3(00) are the measured signals on the CCD detector (see Fig. 1), fis the focal
length of the final Fourier transforming lens, and 3,4, is the area of the annular ring on the
2nd SLM. The coefficient 7 is o account for the losses in the optical system, e.p., the
efficiency of the SI.M and attenuators prior to the camera, which in our experiments was
bypically (L0032 (or 0.32%).

4. Resulis and discussion

Applying Eq. (12}, we calculate the dependence of the OAM density of a superposition of
BEs, where the two components differ in their radial wave numbers. In Fig. 4(a) we =e the
results for the case of a 633 nm lasar beam in a superposition of + 3 and -3 BBs, where the
cone angle of the + 3 beam is fixed at 0.5 {line A on the graph) and that of the -3 BB is
varied from 0.4° to 0L6°, Two results are evident firstly, if the cone angles of the two BBs
differ, so that their radial wave nombers differ, then the OAM density changes sign as ona
moves radially across the field. Secondly, the oscillation in the OAM density can be made to
change value (magnitude and sign) by changing the mlative difference in the cone angles (see
line B of Fig. 4(a)). This is due to the oscillating nature of the Bessel function, wher the
period of the oscillation depends on the radial wave number, and in this particolar case we
have a superposition of two oppositely oscillating functions having opposite signs for their
angular momentum. This can be seen by considering line B on the graph (varying cone
anglas), where the OAM density changes from a large positive valua to & large negative valoe
as one considers a single ring in the field (single radial position), passing through a zero value
in between. In the case that the two cone angles are equal and the amplitude of the two Bessel
heams ame equal, the resulting superposition carmies oo angular momentum (e line A of Fig

4(a)).

Foslied coaningie il

hEE & i FE;
s gl Deliren ) Bugeaeni ol Saoein

Fg. 4 Caloulsied :hmf im the bocal OAM whea (a) the cone angle of the tero modes differ,
é{b_l'lru the weighting of the two modes differ.

Similarly for BGBs, Eq. {14), we calculate the dependence of the OAM density of a
superposition of BGBs, where the two components differ in their weighting. In Fig. 4(b) we
see the results for the case of a 633 nm laser beam in a superposition of + 5 and -5 BGBs,
both having a cone angle of 0.5 °, but with various weightings of the two beams. Clearly even
with equal phase velocities (At = ) the OAM density can be engineerad to be non-zero as
long as the weighting of the two fields differ: the larger the difference, the greater the OAM
density. By considering line I} on the graph (varying weighting by varying the input Gaussian
beam width), the OAM density changes from a large positive value to a large negative value
as one considers a single ring in the field (single radial position), passing through a zero value
in between. However for a given weighting of the two fields, as one moves radially across the
field, so the DAM density remains either positive or negative (passing through nolls between
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the rings), but does not oscillale in sign as in the case of Fig 4(a). The variations in the
angular momentum, both in terms of sign and magnitude, results from the variations in the
amplitude and cone angles of the superimposed Bessel beams (refer to Fig. 6(a) and (b)) The

n of the angular momentum can be implemented efficiently by the method
described above and is & useful tood for the controlling of optical foroes [33].

ml

L) [ITET)

Fg. 5. The measured (WM spectnam {for [ values of —4 1o + 4) as a fimction of the rdizl ring
on the beam {equivalest o the radial position om the beam), ffom 1 to 10 given by: r; = 600
e, ry= BB pm, ey = 1160 prmy, ry = 1480 pm, ey = 1720 pm, g = 2000 pm, ey = 2280 pm, ny
_TWMEF-Mpu-inD- X pm The height of each bar mpesenls the mesomed
coefficients kaf.

The predicted OAM density was measured in the laboratory by measuring directly the
coefficients given by Eqs. (16) and (17), with the OAM density calculated from Eqg. {20). The
measured OAM spectrum for the equally weighted superposition beam is shown in Fig. 5

From the spectrum in Fig. 5, the OAM density could be inferred directly and compared to
theory, with the results shown in Fig. 6. In Fig. 6 () and (b) we see a density plot of the two
fields (for + 3 and —3), and the slight shift in rings is evidant dus to the slightly different
radial wave numbers of the two fields The superposition field is shown in Fig. 6 (). In all
three plots the measured radial positions (ry through rig) are overlaid as vertical lines. The
core mesult is Fig. & (d), where the analytical OAM density prediction (solid curve) as a
function of the radial position on the superposition field is shown with the measured OAM
density (red bars). It is very clear that there is excellent quantitative agreement between the
wo (with the exception of the first measurement radius which to have a large ermor).
This agreement can also be noted by considering Fig. 6 (e) and (f), where the theomtical and
experimental data are shown for the ko, and h_alfrnueff'lcﬂnls as a function of the radial
position on the beam.

It should be noted that this is the first direct measorement of the OAM density, or OAM
spectrum, to date. The importance of measuring the spectrum has been pointed out by others,
wheme knowledge of the spectrum or local OAM is critical for imaging [34] and optical
funnels [35], but the few measurements of the OAM either only consider the global OAM
using an optical trapping set-up [36,37], or are unduly complicated by making use of Doppler
shifts in due to a rotating detector [16]. In the method proposad here, the same principles (and
optical alements) applied in creating the superposition fields can be wed to decompose them.
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given in the fird and thind rows of Fig. % (f) conesponding experime nial data.

It is interesting to consider the role of the Gouy phase shift in such me asuremants, since in
general this is a function of the arimuthal order of the field This is not the case for a
superposition of Bessal beams, as reporied here, and 50 may be neglected. However, in the
case of Laguere-Gaussian modes (which are used extensively in quantom information
studies) the Gouy phase shift would be identical for fields of opposie handedness,
proportional to 2p + W + 1, whemr p is the radial order. This means that modes of + ! and a -/
will have the same phase shift, so again it can be considered as a constant phase offset (bat
dependent on 7). However, while the OAM arises from the azimuthal phase variation, the
rotation of the Poynting vector is equal to arctan{z’z) when considering the radius of
maximum field of p = 0, [ = 0 modes {since such modes are a single ring of light), ie., the
rotation Jooks like the Gouy phase shift of a Gaussian mode. The salient point is that the
Poynting vector rotation is proportional to arctan{z’z ), and that the maximum rotation is
fixed, in the case of a p= 0 mode, to &2 either side of the beam waist. Ax the radial order is
increased, so the maximum rotation of the field also increases [22,23). It is however
interesting to consider what happens to the OAM density if non-zero radial modes are
excited, as will surely be the case for the typical laboratory practices of generating such
modes by multiplication of a Gaussian with a purely azimuthal phase function. This case has
not yet been treated fully in the literature. The esult would, most likely, be a superposition
not oaly in { but also in p, resolting in an OAM spectrum with weighting coefficients different
to that of a purely azimuthal superposition, with a larger contribution from the ap term in Eg.
(16) due to the azimuthal symmetry of the radial orders,
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5. Conclusion

We have used the Poynting vector approach to study the OAM density within fields that are
superpositions of non-diffracting Bessel and Bessel-Gauss beams. We find that while the
global OAM is zern, the local OAM spectrum changes radially across the beam, and can be
made to oscillate from positive to negative values by a suitable choice of the parameters
making up the superposition (e.g., relative phase velocity of the two component beams). The
implication is also that in applications such as optical trapping with so-called bottle beams
and optical funnels, the rotating intensity distribution may also carry QAM that varies across
the beam in & predictable but non-negligible manner. We have demonstrated the theory by
creating such superposition beams in the laboratory with a phase-only spatial light modulator,
and have implemented a new technique for the direct measurement of the OAM density.
Previous studies of such fields either emained purely theoretical, or have attempied to show
the OAM component by demonstrating rodation within an optical trapping and tweezing
system. Meedless to say, the later is not only an indirect measurement, but also a very
difficult experiment to execute. The technique we outline here requires only an SLM and a
lens, and is therefore easy to implement in the laboratory {anyone who is able to create the
original fields is also now able with the same approach to measure the OAM density ). Both
the generation of the superposition fields, and the measuremeant of the OAM spectrum, have
direct relevance in quantum studies of OAM entanglement, and classical studies of OAM
transfer in optical trapping and tweezing systems.
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Expermental measunements ane reporied of the mmmﬁﬁwmuﬂ‘hgﬂwﬂnﬂﬂ' Besiael beams.

Digtally generated phase mails of two Jar rings, wens

d om & spatial ght modutator and wed 1o

ohm:umﬁﬂmdw&mdbmnnﬂﬂumumbmufwmwm Sucha
superposation ekl carres on average 2em orbital angulsr momentum, yel exhibils 2 rotation m the miensity
pattern: the resultant feld miates a1 3 constant e abowl the oplical axs a3 il propagates. The mdation rates
of the generated fiekls were mesiunsd for different orders and for vadows values of the difference heiween the
waveveclors of the superimposmg besms, and ane shown to be i good agreement with that predicted

theoretically.
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L. Tntroduction

Bessel beams have received increased attention in
recent years owing to their interesting properties {e.g.
non-diffracting and selif-reconstructing) [1] and poten-
tial applications in optical micro-manipulation [2,3].
These berams are a clss of propagation-invariant
optical beams that are non-singular scalar solutions
to the froe-space Helmholtz wave equation and are
described mathematically by Besse]l functions [,5].
Zero-order Bessel beams have an intensity meaxinmy
at the centre while higher-order Bessel beams (HOBBs)
have a dark central spot — intensity mull — due to a
phase singularity at that point, surrounded by alternate
bright and dark rings [1]. In addition, HOBBs carry
orbital angular momentum (OAM) owing to ther
azimuthal phase variation. Besse]l beams have found a
variety of applications, especially in optical trapping.
For instance, the ring structure of Bessel beams makes
it posible to trap simultansowsly both low- and high-
index particles [5] while the slf-reconstruction prop-
erty has enabled the simukaneous trapping of particles
that are spatially sepamted [2]. & has also been
demornstrated that the OAM and spin angular mommsen-
tum (SAM) of Besel beams can be transferred to
micro-particles and cold atoms [8]. The trapped
micro-particles have been shown to rotate, owing to
the tramsferred OAM and SAM, and their rotation
rates have boen measured [9,10].

Bessel beams, and in general non-diffracting beams
{MDBz), can be generated experimentally using refrac-
tive or diffractive optical elements. Dumin et al. [3]
reported the firs experimental realization of a mero-
order Besmel beam by illuminating an annular skt
placed at the hack focal plane of a positive lens. The
axicon, also called a conical lens and first constructed
and demonstrated by McLeod [11] has been widely
used to generate WD Bs [12,13] and to convert LGBs
into higher-onder Bessel beams with high conversion
efficiencies of close to 100% [14,15]. Similarly,
diffractive axicons implemented with compater-gener-
ated holograms (CGHs) [16,17] and axicon-type CGHs
programmed on a spatial light modulator (SLM)
[18,19] have been used to generate Besel beams and
their superpostions. Inm [19] it was shown that the
intensity of the superposition appearsd as a circular
pattern with a radius which depended on the order, &,
of the Bessel function and that the intensity is
azimuthally modulated resulting in 2r spots arranged
on a circle. Similar intensity patterns were obtained by
Vasilyeun et al. [M)] by wusing a SLM and a ring shit
aperture. The tramsverse intensity patterns of the
superimposad beams depicted an intemesting feature:
the pattem rotated about the propagation axis as the
beams propagated along the axis [20].

Such rotating optical beams have been theometically
and experimentally realized as superpositions of
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higher-order modes of Bessel beams [M-24], Laguerre—
Gauss beams (LGBs) [2225] and multi-mode hyper-
geometric beams [22], with the theoretical conditions
necessary for the rotation to occur well understood
[20,2223 26 27]. In 21] it was shown that the super-
position of HOBBs mesults in a periodically mecon-
structing beam with rotating and spiral wave featunes.
Several types of rotating optical beams have been
reported. Helicon beams have an intensity pattern
which rotates at a constant rate about the optical axis
bt iz otherwise unchanged and consists of ;uperpos-
tions of HOBBs of different onrders [23]. Spiralling
heams are a special case of Helicon beams and have an
intensity pattern that is laterally displaced with respect
to the optical axis and rotates a5 4 whole around the
axis as the beams propagates along it [21,28-30].
Spiral-type beams hawe been demonstrated, theoreti-
cally [30,31] and experimentally [29], and as modes of a
ring resonator with a beam rotator [32] and shown to
correspond to the quantum-mechanical ground states
of a charged particle in a uniform magnetic field [33].
Optical twisters [34] have both their phase and ampli-
tude describing a helical profile as the beam propagates
in free space whil optical propellers [35] are optical
heams with rotating intensity blades and exhibit self-
trapping features. Arlt [36] has also experimentally
demonstrated the chamcteristic rotation of the inten-
sity profile of a partially obstructed optical vortex
beam. The intensity cross-section and the geometrical
shadow just behind the obstacle rotated in the sense of
the beam's handedness.

Despite this extensive body of work on rotating
optical fields, a comprehensive experimental study of
the observed rotation rates has not yet been done;
indeed, no study to date has systematically varied the
rotation rate of the beam thmough control of the
parameters predicted by theory. The limited exper-
mental work that does exist has considered only one
rotating field, with no parameter control, smply due to
the rather complicated manner of genemting the
rotating beams: fabricated diffractive optical elements
with owrlapping diffraction orders [23,26]. Such an
implementation method makes a full sdy time
consuming and expensive, since each experiment
requires a new mask to be fabricated. In this paper
we report on the first quantitative, experimental study
of the mtation rates of superpositions of HOBBs with
rotating intensity profiles. We implement a method
that uses a phase-only SLM to modulate the complex
amplitude of light to generate rotating Bessel beams by
means of digitally generated annular slits. The method
has enablad us to measure, quantitatively, the rotation
rates of the resultant intensity profiles for any combi-
nation of orders and radial wave-vectors — the two
parameters prodicted by theory to affect the rate

of mtation. We show that by digitally varying the
dimensons of the ring-slits programmed on the SLM
and the order of the superimposing HOBBs, it is
possible to control the rotation rates of the intensity
profile, thus making such rotating fields an ideal tool
for controlled rotation of trapped particles.

2. Theory
The theory of Bessel beams, as scalar and vector fields,
has been studied and reported by many investigators
since the seminal work of Durnin et al. [4,5] They
showed that Bessel fields are free-space, beam-like,
exact solutions of the scalar wave equation that do not
experence transverse spreading; although they hawve
finite energy density, they have infinite energy. Chavez-
Cerda et al. 21] used 2 more general formulation to
describe these beams by employing linear combina-
tions of Meumann and Bessel functions hased on
traveling wave solutions of the non paraxial wawve
equation. They showed that HOBBs, described by
higher-order Hankel waves, have a functional depen-
dence on the azimuth coordinate and hence carry
OAM. Tervo and Turunen [37] extended the concept of
rotating scalar optical fields (Bessel fields in particular)
to the case of electromagnetic fields with propagation-
invarant states of polarisation and showed that the
conditions for rotation ame different for scalar and
electromagnetic fields. Yu and Dwou [38] analysed in
detail the vectorial properties of Bessel fields using
Hertz potentiak, while Hacyan and Jauregui [39] have
made a relativistic study of Besse] fields usng the same
potentiak. For a linearly polarised elactromagnetic
field, a scalar treatment i adequate under certain
conditions [40] but detailed electromagnetic behaviour
of Bessel fields can only be determined wsing the
wectorial wave equation [41]. In this saction we wish to
congider the resultant intensity of the coherent super-
position of HOBBs. We start by reviewing, for the
benefit of the reader, key concepts of the scalar theory
of Besae] fields since this i adequate to capture the key
aspects of our study.

An ideal Bessel beam is described mathematically
by the transverse component of the eectric field, in
cylindrical coordinates, as

Elr,8,2) = EnJmir) exp{i k-2 + m#)], 0

where J. i the mth order Bessel function of the first
kind and k,=ksin ¢ and k: =k cose are the radial and
longitudinal wavenumbers, respectively, & is the mag-
nitude of the wave-vector, and ¢ is the semi-angle of
the cone formed by the wave-vectors in frequency
space. The angular spectrum of the beram lies on a
zsingle ring (thus a single radial wave-vector), the
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tmnsmision function of which defines the phase of the
field: it iz understood that the phase within the angular
spactrum may be treated as a degree of freedom in
creating non-diffracting  light fields of arbitrary
shapes 2], Zero-order Bessel beams (m=0 are
created by encoding a constant phase value within
the ring, while HOBBs, |#|=> 1, require an azimuthal
phase dependence within the ring and hence have a
non-diffracting dark come due to the resulting phase
singularity at the origin, its topological charge is given
by m. The size (radius) of the dark central spot
increases with the order s of the Bessel beam.

The phase of a HOBB varies continuously from 0
to 2 atotal of m times in one azimuthal revolution. Tt
iz this continuous, periodic variation of the transverse
phase with the azrimuthal coordinate that makes it
possible to generate a rotating Bessel field with
propagation-invariant fieatures [43].

21 Superpositions of kigher-order Besel beams

Bessel beams can be considered as a set of plane waves
propagating on a cone, such that each plane wawve
undergoes the same phase shift kA= over a given
propagating distance Az [2]. The angular spectrum of a
Bessel field iz a ring in E-space and hence a Fourier
transform of the ring results in a Bessel beam in
configuration space. This & the basis of the first
experimenta]l generation of Bessel beams by Durnn
et al. [5]. The half-angle ¢ of the cone deseribed by the
plane waves is e—= tan~'(kJk.) [2] where k. and k. are
as defined earlier. The superpostion of two Bessel
fields can therefore be considered as the interference of
two sets of waves, with each traversing a cone of half-
anglk whos magnitude iz determined by the radial and
longitudinal wawve-vectors of the propagating wawves.
Figure 1 shows the digitally generated anmular rings

used to superimpose the Bessel fields and the geomet-
rical ilhstration of the interaction of the two interfier-
ing Bessel beams.

Conzider the superpoziton of two HOBBs of
orders aqual in magnitude but of opposite topological
charge, that is, of orders m and —m, respectively. If the
two beams propagate with slightly differing wawve-
wectors, the resultant field may be expressed as

By .8, 2) = Sl r) expli B, 2+ mif)]

+ Sy r)expliin = —md)], (2)
where ky,, ky and k., k. are, respectively, the radial
and longitudinal wave-vectors of the two beams The
intensity of the superposition is obtained directly from
Equation (2) as

T o S (ki) + P K]
+ Mk AT k2 r) cos{Adez — 2, {3

where

o) ()

in which ry and r; ame the radii of the inner and outer
annular rings, nespectively.

Ome can simplify Equation (3) by approximating
Ep~ky and hence Jalkir)~Jnlkar)=Jx(kr) and
applying the Bessel function identity J_f Exr)={—1)"
ke wr), the intensity of the superposition fm - is
proportional to

Pk + cosihks — 28], )

where &, is the average radial wave-vector of the two
fields. If the longitudinal wave-vectors of the super-
imposing beams are equal, Ak =10 and hence

T o0 2 (er) s (mt). {8)

. @

Fruriar plang

Figure 1. Giemetncal idlustration of the interadion of two supermpoded HOBBs. The grey regmon demcts whene the
superpodion ekl extts. The ned aned Hue rays denote the mys from the owler and mner mngs, nespectively. (The color verson o

thas figune i3 included m the online version of the jowrnal )



Downloaded by [CSIR Information Services] at 06:43 01 Movember 2011

179

4 R. Rop et d.

This approximation allows one to more readily
note, from Bquation (6), that the intensity of the
superposition field is modulated in the amimuthal co-
ordinate by the function cos™{m. From the properties
of the cosine function, we note that the mumber of
intensity maxima is twice the order m of the berams.
Thus, the superposition of an mth order Bessel beam
with its mirmor image {—mth order Bessel beam)
produces a resultant intensity pattern having 2|m|
lobes, or *petals’, armnged on the cicumference of the
set of rings defined by the enveloping Bessel function
{radial only).

The intersity profile of the mesultant field rotates
about the azimuthal coordinate as the beam propa-
gates along the z direction. To see how the rotation
arises, consider Equation (§): the term in square
brackets determines the angular position of the resul-
tant lobes along the cinumference of the circle. Since
for any two superimposed beams Ak and order s are
consgants, the azimuthal coordimate which gives
the angular position of the petals changes with the
propagation distance of the beam and hence the entire
intensity profile rotates about the common centroid,
the centre of the dark core. The angle of rotation has
bheen predicted [20,23] to be given by #=Aks/2m, and
the rate of rotation of the intersity profile given by
dffdz =Akf2m is constant. The motation rate, in
radians per meter, vafes linearly with the difference
between the longitudinal wave-vectors of the super-
imposing beams but inversely with the order |m| of the
beams. Thus, by appropriately measuring the angle of
rotation of the intensity pattern at various propagation
distances, it is possible to determine the rotation rate of
the intensity profile and to investigate the effect of
changing the values of Ak and order m on the rotation
rate. We outline later (see Section 3) a method by
which to execute such a study and hence verifying the
theory.

L1, Gemeration of rotating Bessel beams

Rotating Bessel beams can be realized by super-
imposing two HOBBs of the same or different orders,
or by interfering a HOBB with a reference wavefront
{e.g. a plane or & spherical wave). Rotating Bessel
beams have been experimentally generated sing
diffractive optical elements such as an axicon with a
phase hologram [23, 28 29] or using an annular ring and
a phase hologram programmed on an SLM [20] A
Mach-Zehnder type interferometer in which the
HOBB is split into two beams has also been
applied [43]. The handedness of the beam in one arm
of the interferometer is then inverted before recombin-
ing it with the other beam to form a superposition of

HOBBs. Spiral-type beams have been generated as
modes of a ring resonator with a beam motator [32]

Although the efficiencies of some of these methods
are melatively high, the ability to dynamically control
the pammeters, such as the phase velocity and order of
the superimposing HOBBs, which affect the properties
of the resultant beam, iz mited. This Imitation can be
overcome by using an SLM onto which digitally
generated annular rdngs are encoded, each ring of
equal width but differing radial wave-vectors (see
Figure 1). The field emanating from each annular ring
propagates with a particular phase velocity determined
by the radial wave-vector of the field, which can be
caontrollad by simply altering the average radius of the
ring {k;, and k, in Figure 1). Appropriate modulation
of the phase within each ring, thus defining the angular
spectrum of the resulting fields, allows one to generate
superpositions of two HOBBs. The number of ‘petak’,
the radius of the circular array and rate of rotation of
the resultant intensity profile can easily be varied by
changing the defining parameters of the phase mask
programmed onto the SIM. Figure 1 shows the
geometrical evolution of the superposition of the two
HOBBs: each field generates its own propagation
invarance region {where the conical waves overlap)
while the superpozition of the HOBBs oocurs in the
region of overlap between the two propagation invan-
ant regions.

3. Experimental methodology amd results

The experimental setup is depicted in Figume 2. A
lineady polarised He-Ne laser beam (A= 6328 nm and
beam radivs of about 0.5 mm) was expanded through a
6 xtelescope and directed onto the hquid crystal
display (LCD) of a SLM (HoloEye PLUTO-VIS,

Figure 2. The experimental desgn for generaling mlaimg
pelal modes. (L: lens (N=25mm; 2=150mm;
(3=200mm); MI1: mirror; LOD: bguid erystal display; O
objective; C: OCD camera; P1: plane of the nng-sit; P2
plane of the Besel feld). The darker mad denotes the regon
in which the Bewel feld exsis. (The color verdm of ths
figure & included m the onbine versom of the jowmal )
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with 19202 1080 pixels (each pixel being of width
Bpm) over an active sensor area of approwimately
15 %9 mm”, with a fill factor of ~90%, and calibrated
for & 2% phase shift at 632.8nm). In a past experiment
[20] a physical ring-slit was illuminated by the
expandad beam and relay imaged onto the plane of
the LCD whem the azimuthal phase variation was
impartad to the ring field. In this setup we have
implemented a technique which allowed us to remove
the physical ring-slit from the setup and instead make
use of our phase-only SLM to represent the ring-slit.
The technique involves addressing alternating sets of
piels on the LCD with phase values that are out of
phase by &, resulting in the light reflected from the
LCD being scattered from its initial propagation
axis [4]. This emabled us to create digital holograms
that mimic pure amplitude functions, which we wsed to
encode anmilar ring trarsmission functions of full
widths 56pm, 108 pm, 180 pm, Z30pm, 264pm and
344 pm for each of the experiments, respectively. Each
annular ring ‘amplitude’ transmission function was
subdivided into two ring slits of egual width, with
each encoded with an azimuthal ‘phase’ transmission
function, of opposite handedness, from azimuthal
order m=1 to m==6. This approach allowed us to
operate our phase-only SLM in both amplitude and
phase mode, permitting the reproduction of Durnin's
ring-slit [3] but with control over the phase within the
anmlar ings

Examples of phase patterns addmessed to the SLM
are given in the top row of Figure 3. Mot shown in
Figure 3 is a blazed grating of 13 pixels per period,
added to the phase patterns to separate the

non-diffracted and diffracted components reflacted
from the SLM (the diffmction efficiency of our SLM
is more than 80%). The Fourier transform field, at the
focal plane after L3, was magnified with a 10x
objective and captured on a OCD camera (Spiricon,
LBA-FW-SCOR-T7350115). The objective and camera
were positionsd on transation stages on an optical
rail in order to investigate the propagation of the
resulting field.

In the phase patterns (top row, Figure 3) the ring-
slit is separated into two annular rings each posesing
an azimuthal phase of aqual order but opposite
handednes. The resulting fields for various values of
order |m|, observed in the Fourier plane, as intensity
patterns, are depicted in the middle row of Figumre 3.
The images wem approximately 02 mm x> 0.2mm in
the Bessel zone. When the orders, |m|, of the two
azimuthal phases wemre equal but of opposite handed-
ness, a ‘petal structure was produced, where the
number of *petals’ iz denoted by 2|m|. The agreement
between experiment (Figures 3 gHHl)) and theory
{Figures 3{mHr)) is excellent, demonstrating that this
simple method is highly accurate for such experiments.

Images of the intemsity profiles of thes non-
diffracting fields were captured at discrete distances,
measurad from the Fourier lens, along the propagation
axis (an example is given in Figure 4) and the angular
position of a selected ‘petal’ was calculated for each
frame. The angular position for a particular ‘petal’ was
plotted asa function of the propagation distance of the
field {see Figure 5), and the rotation rate of the field
was determined from the slope of the straight line
which best fits the measured data. Using the example

Figure 3. The lop row nepredents the phase pattens applied to the LCD of the SLM for the following values of [m]: {a) 1, (B) 2,
{ch 3, () 4, () 5 and () 6. The correponding expenmentally obssrved intensty profiles, for the fekls m the Founer plane, are
shown i the middle row and the theorstical predictions m the bottom mow. (The color version of thes fgune 3 mcludsd in the

omlme verson of the joumal)
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Figure 4. {a)-{k) Images of the intensty prodiles of the expenmentally prodced fekl, for jm| =3, capluned a1 miervak of 10mm
akmg the propagation axs. The yellow X' denotes a selected ‘petal’. Monitoring the changs in position of this petal il usirates a
ratation in the fiekl a3t propagates. () The inibial Gasaan beam which illummated the SLM. (The color versdon of this figuns

included in the online version of the journal )
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Figure 5. Ciraph of the angular posibon of a “petal’, for the
fiekl where jm|=3 and Ak=66m", as a fundion of the
propagation distance z. (The caor verdon of ths fgure =
included in the online version of the journal )

in Figure 3, the slope of the linear fit was calculatad to
be 9.6rad/m, within 13% of the theoretically calkw
lated result of 11.1radm. The error between the
experimentally measured and theoretically calculated
rotation rates is attributed to the technigque we imple-
mented to calculate the angular position of the ‘petal”.

The coordinate for the centroid of the petal was
obtained by mamually selecting the pixel at which the
peak value of the ‘petal’ intensity occurs. In order to
determine the standard deviation in the angular
position, we assumed that the manpally selected
coordinate es within a one-sixth range of the petal's
diameter from the true centroid,

&, =arctan (%:] = aman(%). M

where [} is the diameter of the ‘petal’ and R is the
distance from the centre of the field to the centroid of
the petal. Since the standard deviation in the “petal’
position is zcaled as a function of R and it is evident
from Figure 3 that R increases with the order, |m], s0
the standard deviation ako scales as a function of the
order, |#|. For the example plotted in Figumre 3, the
standard deviation in the abscissa & #Dmrad.
The smallest increment on the optical rail on which
the detection system was mounted, and which i equal
to the absolite error in the abscissa, was Imm.
Figure 5 shows the measurement result for the angular
position as a function of the propagation distance for
the case where the order of the mrimuthal phase
variation was [m|=13 and the difference between the
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Figure 6. Citaphs of the rodation rates, for felds generated
T variows difTerences between the longtudinal wave-vectors
of the two beams, # a function of the order, jm|, of the
beams (The colr version of ths figure & meluded in the
omlne verson of the joumal)

two wave-vectors was Ak~ 66m~', caleulated using
Equation {4).

Note in Figure 4 that, as expected, the petal
structure appears at the beginning of the propagation
imvariance regon with low intensity, reaches a maxi-
mum mid-way through this region, and then decreases
again as the conical waves sepamte out again hack to
an anmular ring structure. However, while the scale of
the pattern is invariant, the intensity rotates about the
propagation axis. This angular shift as a function of
propagation distance can be deduced for the petal
structure, with an example of the Figure 4 data shown
in Figum 5.

Similar graphs were obtained for various values of
|| and Ak and the corresponding experimental rota-
tion rates wene deduced from the sopes of their linear
fits {not shown here due to space restrictions). Figures &
and T show the plots of thess experimental rotation
rates asa function of the onder of the azimuthal phase
variation, ||, and the difference between the two wave-
vectors, Ak, respectively. Overlaid with the experimen-
tal data are the theoretical predictions, shown with
dashed lines. By increasing the magnitude of |m|, there
iz a hyperbolic decrease in the motation rate, evident in
Figure & where measured motation mtes, for
six different values of Ak, are plotted as a function of
the order [#] of the superimposing heams.

The measured data was ako interpreted by plotting
the rotation rate as a function of the difference between
the two longitudinal wavevectors as depicted in
Figure 7. Increasing the difference between the two
wave-vectos, which was achieved by increasing the
width of the inner and outer anmular rings, increasad

Figure 7. Ciraphs of the rotalion mtes for beams of varous
ordens |m a3 a function of the difference Ak between the twa
longd tudinal wave-vectors. (The color verdon of thes fgune =
included m the onkine verson of the journal )

the rotation rate of the ‘petal’ structure. Figures &
and 7 both show good agreement between the mea-
sured data {solid points) and the theoretical predictions
{dashed curves).

The standard deviation in the rotation rate was
determined by the standard deviation in the sope of
the graph of the ‘petal’ position, & asa function of the
propagation distance, z, by making use of the follow-
ing relationshipy;

f=slope x z — shp:,:a—“ z""":%_ (8)
& is the standard deviation in the angular position of
the petal determined by Bguation (§) and = is the
median of the propagation intervals at which the field is
captured. The standard deviation for the rotation rate,
for the case when |m|=3, was found to be ~0.5 rad/m.
The radivs of each ring-slit could be accurately mea-
sured to within a single pixel. Taking this absolute error
for the radii of the two ring-slits into accounts, the
absolute error for the difference between the two wave-
wectors (the abscisza of Figure T) was ~6m~". For all
the results shown thus far, the azimuthal phase within
the outer ring-slit varied from black to white in a
clockwise direction and that in the inner ring-slit in an
anticlockwize direction. Inverting the handedness of the
two ring-slits resulted in the field otating with the zame
rate, but in the opposite direction. This is observed in
the video slides in Figure 8.

4. Conclusion

We have demonstrated an experimental technigue to
produce rotating superpositions of Bessel brams using
digital implementations of their respective angular
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Figure 8. Video clips cmiaining expermmental images, caplursd at miervals along the beam s propagation, for fekls generated
from phase patterns having the following parameers: Ak = 66m ™" and (a) m,= +3; my =-3 (Video 1) and () m, =—3 m, =+3
(Vadeo 2y (Videos are available in the onlne verdon of this journal ) (The cobor version of this fgure 8 included m the onling

version of the jowmal )

spectra on & SLM. We have quantified several physical
observables such as the angular displacement of the
transverse intensity patterns as a function of the beam
propagation distance, beam motation mtes as a func-
tion of azimuthal omders for beams with different
spatial bandwidths and the dependency of rotation rate
with spactral content for superpositions with diffierent
azimuthal indexes, all found to be in excellent agree-
ment with theoretical predictions. We have shown that
by varying the extent of the anmilar shaped spectra
and the order of the beams imprinted on the SLM,
arbitrarily fine control over the rotation mates of the
intensity profile can be achieved, thus making these
rotating fields an ideal tool for controlled rotation of
trapped particles in optical trapping experiments.
Finally, it should be noted that overall optical
efficiency was nmot a consideration in this study;
however, by iluminating the digital holograms with
an anmular field from a conical telescope {two nward
facing axicons, suitably separated), the efficiency of
the system can be made close to the efficiency of the
SLM used.
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In this work we derfve expressions for the orhital angolar moementom (OAM) density of Eght, fr hath
symmetric and nonsymmetric optical fields, that allow a direst comparisen betwsen theory and experi-
ment. We present a simple methed for measuring the OAM density in optical felds and tesithe approach
an superi mposed nondiffracting higherorder Bessel beams. The measrement technigue makes nse of a
sngle spatial Eght medulator and a Fourier transfrming lens to measire the OAM spectrom of the
optical field. Quantitative values fr the DAM density as o finction of the radin] pesition in the eptical
field are ohtained for hboth symmetric and nonsymmetric superpositions, dlstrating good agreement
with the theoetieal predidion. © 3012 Optical Soriety of Amerioa

OCTS eodex

1. Introducton
Since the discovery of optical fields carrying orhbital
angular momentum (OAM) [1], many new avenues
in the field of dl assical and quantum optics have been
initiated, ranging from the transfer of OAM to parti-
cles in optical tweezers [Z] to the entanglement of
OAM in parametric downconversion [3]. Fields that
carry OAM of Ifi per photon, some of which include
Laguerre—(iaussian beams [4], Bessel-Gaussian
beams (5], and Airy beams [6], have an azimuthal an-
gularﬁpemhm:enfup{ﬂaj [L4], where [ is the
unbounded azimuthal mode in, a.udﬁlathea.n—
muthal angle Since these fields poasesaing OAM
offer an unbounded state space, they provide a larger
'tnmim.dthﬁn'qlm.ntumcrjpmgmphy[_—g] leuimg
to many publications being dedicated to
gurement of OAM in order for hl,gherhd.l.menm.onal
quantum information processing to be a success.
Many techniques exist in the area of measur-
ing OAM, from computer generated holograms

1550 12800127 0RE S 1115 00/
2012 Optical Soristy of America

090 19495, 130 4570, 07006130, 0703185, 050 L4865,

Eﬁﬂ—lﬂ to interferometers [13-15. Even though

tioned techniques are efficient at sort-
ing modes (and even in some cases single photons)
carrying OAM, they do not allow one to obtain a
quantitative measurement for the OAM density
and instead only messure the global OAM—the aver-
age value across the entire field In the last year,
more techniques that messure the global OAM
have asppeared, from demultiplexing free-apace
(A M-carrying beams [16] to studying the diffraction

pattemns of helical beama [17]. Many publications de-
monstrate the transfer of OAM to trapped par-
ticlea [18-20] by illustrating that the rotation rates

of a particle trapped at different radial positions in
a multiringed beam are proportional to r—= [18], or
by illustrating that particles trapped at different ra-
dial positions in an optical field {(produced by inter-
fering two vortex beams with unequal charges)
rotate in opposite directions [20]. The only attempts,
to the best of our kmowledge, to make quantitative
messurements of the OAM carried in an optical field
have been made by merely measuring these rotation
ratea [21,22]. Measuring OAM by demonstrating ro-
tation within an optical tweezsing system is not only

1 March 2012 7 Wal. §1, Na. 7 F APPUED OPTICS w0



an indirect measurement but also a difficult experi-
ment to conduct, The results of these findings enly
illustrate that the rotation rates reveal that the
tranaferred momentum increases linearly
with laser power [21] and that the rotation rates
of low-index particles, which locate themselvea in
the dark regions of optical fields, are not impeded
by beam imperfections [22]. Another, even more com-
to a rotating detector [23,24], which allows for the re-
conatruction of the OAM spectrum of an optical field
of different azimuthal orders [23].

In thia paper we present & technique for a simple
and direct t of the OAM density that re-
quires only a apatial light modulator (SLM) and a
lens. Having a teol to perform a quantitative mes-
surement of the OAM density will prove useful not
onlyin quantum information but alse in determining
the loess in angular momentum as optical vortices
breakup during nonlinear propagation [25]. We for-
mulate the theoretical equation for the OAM density
for both symmetric and nonsymmetric fields and use
the Fresnel diffraction integral to formulate an ex-
perimental form for the OAM density, allowing for
the first time (to our knowledge) a quantitative mea-
surement of the OAM density of the field, We imple-
ment this simple experimental technique to obtain
quantitative measurements for the OAM density
for both symmetric and nonsymmetric superposi-
tions of nondiffracting higher-order Beasel beams,
2. Concept of the OAM Density Measurement
In this section we inveatigate how the OAM density
of an optical field can be measured. An illustration
that will aid the theoretical description, as well as
the experimental measurement, of the OAM density
ia given in Fig. lia). Figure 1l(a), which denotes a

{a) HLA 1 L, Pe

e g Il

186

achematic of the experimental setup for the OAM
density messurement, is separated into two parts:
(1) the generation of the optical field and (2) the mea-
gurement of the OAM density, which is achieved by

i a modal decompesition of the opti-
cal field

A. Symmetric Superpositon of Two Bessd Beama

In this paper, we use Beasel beams as a basis set for
OAM-carrying fields and classify the superpositions
of nondiffracting higher-order Bessel beams into
aymmetric and nonsymmetrie. In our derivation of
both the theoretical and experimental OAM densi-
ties, we will start with the symmetric case and later
develop the argument for the nonsymmetric case,
Consider the amplitude for a symmetric superposi-
tion of two Bessel beams, of opposite azimuthal order,
a3 given by

= Aglf flgr) expliflez) explild)
+ apel_ylgor) exp—iAkr) exp(—ild)), (L)

whereJ; and J_; denote the Bessel functions of order
[ and I, reapectively, g, and g; denote the radial wa-
venumbers of the two fields, and Ak denctes the dif-
ference between the longitudinal wavenumbers. We
gtart with this special case, as the theoretical OAM
To experimentally create such a field, Dumin's
rj.nga]it meﬂmdmumd,hnwwerthermgsht
itally [28] onte an SLM. By dividing
then.ugahtmbntmrmgshmandenmdmgtheu-
muthal phase within the ring alits to vary azimuth-
ally in opposite directions, a superposition of two
oppositely handed Bessel beams can be generated.
For the example given in Fig. lic), the phase within
the inner ring alit varies three times in a dockwise

uir,d, z)

B L,

Wi, o)

HE VI 1- dianersheon

HE L2 1rrr.r|rr\ﬁ|l|1r

Fig. 1 (Color enline){a) Schematic of the cmoespt for generating the optical field snd decomposing it s OAM spectrom. (b The Ganssisn
heam used to dlminate {ch the digital ring skt hologram fr the construdion of id) the optical field, mathematioaly defined by wir, 4, z)
i)} The hologram, having a transmission fonetion of #(r, #), together with the kns L, performs the desom pesition, which produoes ) the
inner product at plane P, mathem stically defined by w0, ¢z} SLM, spatial Eght medulater; 0, shjective—nsed to magnifiy the optical
field ()
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direction {{ = 3), and three times in a counterclock-
wige direction (! = -3) in the outer ring slit, thus
ints a superposition of two Bessel beams, of orders
=3 and -3, dencted by the “petal” structure
Fig. 1d)).

The widths of the twoe ring slits can be adjusted,
consequently increasing or decressing the energy
present in the two Bessel beamsa The energy con-
tained within the first Bessel beam, of;, is denoted
by Ay in Eq. (1), and the energy contained within
the second Bessel beam, J_y, is denoted by aydg, with
the constants determined as

Ag= J fﬂ] exp(-2(r fw)®rdr, (@

=Jf __ew(-2efwfirir/ [ esp(-2tr/ayrar,
Fang® FiEgl

(3)
where ring] and ring? denote the bounds of the inner

and outer radii for the inner and outer ringa, reapec-
tively, and wis the radius of the Gaussian beam illu-
minating the ring alit.

In determining a theoretical equation for the OAM
density, the Poynting vector for the optical field
[Eq. (1)] needs to be solved:

§=2

e
5 (FuVer —u Vi) +2 klul2), 4

where £y is the permittivity of free space, ¢ is the
apeed of light, k is the wavenumber, and u is the am-
plitude of the field described in Eq. (1) The OAM
denasity, L,, can then be determined from the Poynt-
ing wector by the following rel ationship:

L =$[;x§j,: )

reaulting in [26]

I 2
LR ) _ SR8 (R qr) + a2 e, (6)

thaﬁlmhmldﬂﬁpﬁmnftheﬂmdmaityﬁrthe
superpoaition described in Eq. (1),

Omce the optical field is generated, a quantitative
messurement of the OAM density, given theoreti-
cally in Eqg. (6], can be made by messuring the
mghhngnfemhamuthalmn&mhntheup
tical field, which is done by performing the
inner product [depicted in the decompoaition section
of Fig. 1ia)):

1
[, 2) =E]:'HEP= 8,23t (r, )d8. Lo

187

a, ia the weighting of the azimuthal mode of order n
present in the optical field wir 8, z), described by
Eq. (1}, and #(r, ), which is the tranamission function
of SLM 2in Fig. 1{a) and istermed the match filter, is
given by the azimuthal mode, expi—in#), within the
bounds B, < r < Ra Themm:q:t of using a match fil-
ter to detect predetermined signals within a noisy
background was firat thmqmatmbednearly&ﬂm
agoe [29]. This involved impl ting cormpl

halﬁl_bamrmdednmbuﬁlmbnldenhﬁgemm
shapes, letters, and signals within random noise.
The inner product is executed experimentally by di-
recting the optical field, wir, 8.2), onto & match filter
[encoded on an SLM and denoted in Fig. lie)] and
viewing the Fourier tranaform [depicted in Fig. 1(f)].
The match filter, an example of which iz given in
Fig. lie), conaists of a ring slit placed at a particular
radial pogition (£, which allows one to select the ra-
dial pesition within the optical field. The azimuthal
phase within the ring slit varies as exp(—in#). For
this particular example [Fig. lie]l, the weighting of
the azimuthal mode, n =3 (i.e, az), is being mea-
sured By adjusting the azimuthal phase within the
ring slit and the radius of the ring slit, various az-
muthal weightings at different radial poaitions in the
optical field can be measured, This technique is not
restricted to superpositions of Bessel beams but can
be used on any OAM-carrying optical field.

To relate the weighting of the azimuthal moede toa
quantitative laboratory messurement, we require
the inner product of & and ¢ to be determined. The
inner product [located at plane Pin Fig. 1{a) and de-
fined a3 uf (0, 4, 2] ia determined by ing use of
the Freanel diffraction integral to propagate the field
from SLM 2 [the initial field, w(r, 8, 2), multiplied by
the tranamission function, f(r,8), of the match filter]
to plane P (the plane of the inner product):

uFip .21 = up{ﬂmrﬁ:[rﬂjn[rﬂz;

® EHIJ[—I'FI‘P cos(8 — ) rdrdd, (E:!

where f i the focal length of the lens used in the de-
COmpEition.

If Eq. (8) is evaluated at the origin, o = 0, then we
return the desired inner product between the field
wir,8,z) and the match filter #(r,#). We also know
that when the match filter consista of the complex
conjugate of one of the agmuthal modes present in
the initial field, the weighting of the azimuthal mode,
a,, lor the on-axis intensity of the inner product,
I{p = 0)] will be nonzero; therefore, we need on 1y con-
gider the cases when the azimuthal mode of the
match filteris either! or—i{i.e, n = land-I). Bysub-
gtituting Eq. UmbnEq (8], and considering the sig-
nal at the origin, uf(0,4,z), for cases when the
azimuthal mode index of the match filter iz either
I or -1, we find, respectively,

1 March 2012 7 Wal. §1, Na. 7 F APPUED OPTICS w0



i2
up =0,2) = 220 mzm f" Jil@n)

&
® m[iﬁh}fﬂ':
o%
whip=0,2)= “Pf} LLESP f J_iqzr)
® exp(—iAks)rdr. (1

R, and K5 are the inner and outer radii of the ring alit
representing the mateh filter [Fig. lie)]. Since the
ring slit in the match filter can be arbitrarily
thin, Egs. (9) and (10) can be simplified by noting
that the ring alit may be assumed to be at & radial
position K = By = By and of width 2AR, resulting in

expli2kf)
o o TasABAR

<l (g ) explidkes),

wp=0zr=R) =

(11

%ﬁﬂkﬂﬂmﬂu

R _ylgaR)exp(—iAksz). (12)

The Bessel function is evaluated at B, which ia the
radius of the ring slit, represented in the mateh filter,

Since the intensity of an optical field is defined
a8 [ = gpe{uuy), the following relationships be-
tween the measured intensity at the origin of the in-
ner product, I(0) ifor the two cases where the
azimuthal mode index of the match filter is either
[ or [}, and the theoretical Bessel functions can be

wilp=02r=

1,00} fa 2

_(u.-:m mo) = Ji(@:R), (13
I_4(0) f—j = .

£ (hﬂ.ﬂ HAQ) = gl 7y (gall). (14)

Substituting the above two equations, Eqgs. (13) and
{14, for the Bessel functions, o} and J _, into the the-
oretical result for the OAM density, Eq. (6), results in
the following equation:

e
LEw(R) ——( - ) @(0)-140), (15

2 e\ S

which is used to calculate quantitative messure-
ments of the OAM density. ::maﬁcbucrﬁrﬁlenp‘hml
efficiency of the experimental setup, and S,
arealdrAR- Rlnct'thermgahtmthemabchh%er

is a function of its radial position, K.

28
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B. Generslized Symmetric Superposition

The optical field for which we wish to measure the
A M denasity, as described in Eq. (1), can be extended
to a generalized form:

N
uir6.2) =Ag 3 aylilqir) explilkyz) exp(ilé)
=N

+a_pl (g ) expi—idk_yz) exp(—ild),
(16)

where a; and «_, denote the energy contained in each
of the ring slits with respect to the energy contained
in the innermost ring slit. Because of the fact that
the g-component of the Poynting vector, S is a
h.nearnpembucr{thepmnfmmtunadmtk‘mlm

Appendix A), the OAM density for the generalized
field deacri in Eqg. (18) can be described both

theoretically and experimentally by extending the
reaults given in Ega. (6) and (15) as, respectively,

a3 N
Lpmonr(r) = 2220 Y 1o qur) - a0,
[ )
(17
EXF,
Lo = 2 (2L ) 3 - L. a8

C. MNonsymmetric Supempositon of Two Besasl Beams
The other case that is investigated in this paper is
that of nonsymmetric superpositions of Bessel
beamas, and in the fol lowin g equations we will sutline
the theoretical analysis for obtaining the OAM den-
gity. The amplitude of 2 nonsymmetric superpesition
of two Bessel beams can be described as

uir.8,z) = A (Jy(qrr) expiils ke ) explild)

+ el o (@=r) expi—i Akz) explimd)), (19)

wheretheanmuthnlmﬂ:mmnfd:fﬁenmtmdem,

[ 2 m. Following the same procedure in

the Poynting vector and consequently the OAM den-

gity previously described for the symmetric case

EEqa:HanEd@J],theDAMdmaityia&berminedﬁa—
¥ by

“M" L} igar) + magly, (gar)
t1+m;no coa((l —mh

+ 2Ake ), (g el (g2r))- 20

Since the above eguation is a functon of the

azimuthal angle, ¢, in the plane of the inner product,

it ia evaluated by summing the OAM density va-
lues for a range of angles varying from 0 to 2r.

LR (r.2) =
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Equation (20), unlike the OAM density for the sym-
metric case, is a function of Akz, and given that its
effect on the optical field is only a constant phase
ghift {a rotation in the intenaity profile of the optical
field), it can be ignored,

To relate a quantifiable messurement to the theo-
retical OAM density [Eq. (20]], the same procedure
a3 described in Egs. (8-(L4) 1a followed, and the final
regults, which relate the cn-axis intensity in the in-
ner product plane P to the theoretical Beasel fune-
tiona, are

LT

17AR FA, y

=lgal). (22)

(o fa 2
e (hd.R Mo)
Here in the theoretical analysis of the nonsymmetric
case, the azimuthal mode index, n, of the match filter
iz set to both ! and m.

Bubatituting the above two equations, Ega. (21)
and (22), into Eq. (20), the form for obtaining an ex-
perimental messurement of the OAM density is

s o (if
LR $.2) = M(K) (UdﬂJ +md ()
+ (! +m) coa({l — mp

+ 2Ak2) /T, (0) ,.-"I_[ﬂj).

(23

This result is also a function of the angle, ¢, in the
plane of the inner product, and since only a single
messurement of the on-axis intensity in the inner
product plane can be made, no measurement for
the angle ¢ can be obtained. To resclve this issue, the
experimental equation for the OAM density is inte-
grated over ¢, resulting in the average OAM density

T (R = %)ztmma +mi (), (24)

@
E(s
where the term Aks can be neglected. Since the
above experimental messurement, Eq. (24), has no
angular dependence on the optical field, the mes-
surement does not pertain to a apecific radial direc-
tion but is in fact merely an average measurement
acroas the field

D. Generalized Nonaymmetric Supenposition

Similarly, a3 in the symmetric case, the amplitude of
the nonsymmetric superposition can be extended to
consist of many Bessel beams, as in the following
form:

189

N

N
w(r,8,2) =Aq 3 ) anlilqir)exp(ilhyz)exp(ilé)

t= N =N
+ el (T ) explidk z) explims). (25

Even ﬂ:n‘u,ghtheé-mmpmmtnct‘tba Poynting vector,
&;, i3 a linear operator and the theoretical and ex-
perimental (OAM densities can be extracted by ex-
tending the simple form in Egs. (20) and (23), the
equations become very cumbersome and have thus
been neglected in this paper However, if the reader
wishea to caleulate the OAM density for such fields,
this can be easily achieved by substi tuting the ampli-
tude of the field inte Eq. (4) to determine the
QA M density,

In this paper we experimentally test the results gi-
ven above by messuring the OAM density for six se-
parate optical fields. The first three fields consist of a
superpeaition of two Bessel beams, of orders 3 and
—3, where (1) the energy in the two ring slits (used to
generate the optical fields) ia equal, (2) that in the
outer ring slit is heavily weighted, and (3) that in
the inner ring slit is heavily weighted. The theoreti-
cal and experimental OAM denasities are caleulated
through the use of Eqs. (6) and (15). The fourth op-
tical field is a nonsymmetric superposition of two
Beasel beams, where | = 3 and m = —4, and the re-
quired results are obtained the use of
Eqgs. (20) and (24). The fifth involves a superposition
of three Besse and even though the OAM
density is not explicitly given in the paper, it is easily
calenlated by substituting the amplitude of the opti-
cal field into Eqa. (4) and (5). This ia also the case
with the last optical field, a nonaymmetric superpo-
gition of four Bessel beama,

The experimental setup for measuring the OAM
density of the optical fields, discussed above, is given
in the following section, accompanied with the theo-
retical and experimental results,

3. Experimental Methodology and Results

The experimental setup for the messurement of the
(OAM spectrum at specific radial pesitions for the co-
herent superposition of Bessel beams is denoted in
Fig. 2. To generate the various superimposed Bessel
beamas, for which we intend to caleculate the OAM
density, a HeNe laser (1~ 633 nm) was expanded
through a 6x telescope and directed onto the liguid-
crystal display (LCDY of an SLM labeled LCDY. The
fields consisting of superpositions of higher-order
Bessel beams were genersted in a similar approach
to Durnin's ving alit method, except the ring alits
were implemented digitally [28] onto LCD, (Ho-
loEye, PLUTO-VIS, with 1920 = 1080 pixels of pitch
B ym and calibrated for a 2r phase shift at ~833 nm).

Some of the digital ring slit holograms pro-
grammed onte LCDy for the creation of superim-
posed Bessel beams are given in the first column
of Fig. 3. To create an amplitude ring alit digitally
on & phase-only SLM, the area surrounding the ring

1 March 2012 7 Wal. §1, Na. 7 F APPUED OPTICS w7



190

Fig.2. {Colorenline) Schematic of the experimental setup for messuring the OAM density of symmetric and nonsymmetric superposi-

tions of Bessel heams a5 a funetion of the radial pesition, K. L, lens (f) =25 mm, f; =

150 mm, fp = 200 mm, and §; =200 mm); M,

mirmr; LI, Equid-arystal display; O, ehjective; PM, popap mirrar, OCD, OCD camera. The oljective, 0, wos placed ot the foms
for Fenrier plame) of lems 1., The eormsponding aptieal fields or hologmms ane represented st the appmoprists planes

alit, which we do not want to transmit any light, is
encoded with a “checkerboard”™ pattern. By assigning
alternating sets of pixels on LCDy with phase values
that are out of phase by =, the light reflected from the
LCD is scattered from its initial propagation axis
@22l
A, Symmetric Superpoaiton of Two Bessd Beams
The first three digital holograms, represented in the
firat column of Fig. 3, consist of a ring alit separated
into two ring slits possessing azimuthal phases of
equal order but epposite handedness (ie., [, =3
and 4. = —31. However, the widths of the two ring
alits differ in Figs. 3(d) and 3(g). This allowed us to
control the weighting of the two Bessel beams and
mhmqu.enﬂyaetthevalumnct'ﬁgandaomhq (1.
The dimensions (in pixels) of the ring slits in
Fig. 3 are (a) ry =173, r» =188, Ar;, Ary = 15

(d) rm=178 r,=188 Ar, =7 Ar,=125
(glry =173, r: = 188, Ar; = 23 Ars = 7. Inthe case
that LOD, was encoded with two ring alits where the
orders of the two azirm thal phases were of equal but
opposite handedness, a “petal” structure was pro-
duced, where the number of “petals™ is denoted by
2|l| [Figs. 3ib and;ﬂﬂ], a3 expected from theory
[28]. In the two cases [Figs, 3(d) and 3 ]
the two ring alits had alightly different areas,
mgmthemergymtnm.edmihetwnﬂeamlhm
being of slightly different weightings. In Figs.
and 3if], the ! = -3 order Bessel beam iz heavily
i ghted by increasing the area of the outer ring slit,
giving rise to a “smearing” of the “petals™ as the | =
—3 order Bessel beam dominants the optical field. Si-
milarly, this is also evident in the case of Figs. 3(h)
and 3(i), where the | = 3 order Bessel beam isheavily
ighted by increasing the area of the inner ring slit.

Fig. 3. (Color online) Digital ring slits first coluomn—{a), (d), (g} and the crmesponding experimentally produesd fields in the Fourier
plome pseond enlumneih), (&), (h] scenmpenied by theoretieally ealenlated fields [third eolnmne(z]), (f} (] The ten whites dots in (ch
denote the mdial positions of each of the ten ring slits used in the match filbers.
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The resulting superposition field, formed at the fo-
cal plane of Lz, was magnified with a 10= chjective,
Oy, and directed to the LCD of the second SLM,
LCI. A pop-up mirror, PM,, was used to direct the
field at the plane of LCIy s0 as to be recorded on
©CD, (Spiricon, LBA-FW.SCOR-7350115), so that
the radial positions within the optical field could
be gquantitatively messured. LCDs, programmed
with a match filter, exp{—ind), together with lens L,
was used to perform the inner product of the incom-
ing field with the match filter given in Eg. (7). The
match filter, alao programmed as a digital hologram,
consists of & single ring alit which also makes use of
the “checkerboard” pattern. Since the match filter is
programmed digitally, the radius of the ring slit, as
well as the azimuthal phase within the ring alit, can
be easily varied. This dynamical aspect of the SLM
allows us to radially locate where in the optical field
we wigh to make a messurement of the OAM denasity,
In this paper, the match filters consist of ring slits
having 10 different radii [y = 75, re =110, g =
145, r, =180, rg =215, rg =250, ry =285, rg=
320, ry = 355, andrm_:iﬁﬂtmmmpuela], each
consisting of a width of 20 pixels], where the phase
within the ringa, n, varied as the complex conjugate
of the azimuthal modes present in the incoming op-
tical field. The location of the ten radial positions in
the optical field iz illustrated in Fig. 3(c). Becanse
in our experimental setup, the complex conjugate
of the azimuthal mode index, n, on LD, is equiva-
lent to n on LCDs, If the reader wishes to orientate
the experimental setup differently, such that the two
SLMs have the same orientation (i.e., are not mirror
imagea of each other), the complex conjugate of the
azimuthal mode index, n, on LCD, is then equivalent
to—n on LCDy. The OAM density for a particular ra-
dial position can then be measured directly from
Eqgs. (15) and by measuring the on-axis intensity
of the inner et

In determining the OAM density for the first three
optical fields, denoted experimentally in the second

plane of Ly was measured
mﬂlaDGDcma,DCD,,ﬁxrmrhnfthembchﬁl—
ters and substituted inte Eq. (15) or (24), The mes-
sured OAM densities as a function of the radial
position for the first three optical fields are given
in Fig. 4.
l.nlﬁgi{_l,mmthemm.ngnphmlﬁeldm
giats of an equal weighting of [, =3 and [0 =
—3 order Bessel beams [Fig. 3(bjl, the OAM density
represented in the x—y plane consists of evenly sized
concentric rings of positive and negative OAM. This
iz alao evident in the radial cross-sectional profile of
the OAM density in Fig, 4(b). The OAM density os-
cillates evenly around a value of zero. In the follow-
ing two cases, where L. =-3(+3) iz heavily

weighted, the OAM is tly negative {posi-
tive) and is evident in Fig. 4{d) [{f)]. This is alao evi-
dent in Fig. 4(c) [(e]], where AM density exista

191

predominantly in the negative { poaitive) quadrant of
A theoretical error band for the OAM density was
obtained by determining the minimum and masx-
mum values for the OAM density when the inner
and outer radii of the ring slit in the match filters
were displaced by half the width of the ring slit
(i.e, 10 pixels). The error is a0 amall that the error
bands lie on top of one another and are not evident
in the graphs. The experimental x error bar is given
by a displacement of the ring slit in the match filter
by half of its width, and so the absolute x error is
80 um {10 pixels = 8 um). We narrowed the error in
experimentally measuring the on-axis intensity of
the inner product to three factors: (1) human error
in selecting the on-axisintensity of the inner product
on OCDy, (2) the positioning of CCDy in the Fourier
pane of Ly, and (3) an adjustment of the ring slit (by
half of its width) in the match filter on LCD,. An
aperture having a diameter of 10 pixels was posi-
tioned around the on-axis intensity on CCDy, and
the percentage error for the total energy within the
aperture when it was moved 7 pixels from the center
was included in the experimental error for the OAM
density. The second error measurement involwved
messuring the percentage error for the on-axizinten-
gity when CCD; was positioned 1 mm before and
1 mm after the Fourier plane of Ly. Finally, the last
error measurement in the OAM density involwed
messuring the percentage error in the measured in-
tengity when the radius of the ring slit on LCD; was
either decreased or increased by half of the ring alit
width. All of these sforementioned errors were mes-
gured and included in all the messurementa.

B. MNomsymmetric Superposition of Two Beasel Beams

The fourth digital ring slit (Fig. Sa]l consista of two
ring alits having azimuthal phases [...=3 and
s = —4, which is an example of a nonaymmetric
auperpoaition [deacribed mathematicallyin Eq. (18)].
The dimensions (in pixels) of the ringalits in Fig. 5la)
are ry = 173, rg—lﬂﬂ Ary, and Ary = 15. The field

produced [Fig. 5(bl] is in good agreement with the
theoretically ated field [Fig. and congists
of & “petal” structure, where the number of “petals™

ia given by [l | + Fmterh(ie, 7 petals, for thiscase),
The field has a global OAM of -1k (3R + —4f), and
therefore the OAM density is mostly negative ra-
dially across the field, as is evident in both Figs. 5d)
and el In a nonsymmetric superpoaition, the (AM
density i3 not symmetric in the optical field, as is
evident in Fig. He). Since the OAM density is not
the OAM density plotted in Fig. 5(d) ia not for a par-
ticular angular point in the optical field, but instead
C. N S of Thres Bessel Beams

The fifth digital holngram [Fig. Gla)] is divided
into three ring slits having the following azimuthal
phase variations: hee = -3, lusn =2, L =1,
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Fig.4. (Calor online} {a} Density plot of the OAM density for the field given in Fig. 3(h) Red denotes negative OAM, and bioe denotes
positive. Light to dark blue denotes an inaease in positive OAM, and lght to dark med denotes an increase in negative OAML (b, (<), (e),
The theoretical (blue curve) snd ex perimen tal by mea sured (red ponts) OAM density fr the corresponding fields in Figs 3th), Sie), and 3},
respectively (d), (f, Plote of the DAM density £r @) and i), mepedtively, ghven as insets.

Irndu_d.ng a nonsymmetric superposition, The di-  Ary = 10, Even though one cannotintitively predict

mengions (in pixels) of the ring alits in Fig. how the field will manifest in the Fourier plane,
are ry=1T0, ro =180, ry =180, Ar, Ar, our experimental field [Fig. 6(b] is in very good
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Fig.5 (Color online){a} Digital hologram used to generate (h) the expenimental field; () the theoretical field. A magnification of the ring
slit is given as aninset in (a).(d) The theoretioal (blne corve)and experimentaly messuned (ned points) OAM density (o) A plotof the OAM
denaity. Rd demotes negative DAM, and blne denotes pasitive. Light to derk blue dsnotes an inersass in positive OAM, and light to dark
md demotes an ineresse in negative OAM
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ag'mmant with the theoretically caleulated field

[Fig. . Since the ring slits are equally weighted
and ammuthalm.udemd:mnfthermgahm
[Fig. sum tozere, the global OAM is zero, giving
rige to the OAM density existing equally in both the

negative and positive quadrants for the OAM density
acroas the radial direction of the field, asisevident in
Figs, and Gle). The OAM density is not uniform
in all radial directions of the optical field [evident in
Fig. Ble]], and so the OAM density plotted in Fig, 6(d)
iz an average over all angular positiona.

0. MNonsymmetric Supepoaition of Four Beasel Beams
A gimilar behavior is noted in the last optical field,
whose digital hologram iz depicted in Fig. Ta.
The ring slits have the following azimuthal

dices: Lo =2, luptiia = -1, Loganaz = 2, :bd.h'—l
whmhbuna:mbomm,amithephmald:mmm
{in pixels) are ry = 169, ry = 176, rz; = 183, ry = 190,
Ary, Arg, Arg, and Ary = 7. Since the global OAM is
zere, the OAM density exists equally in both the
negative and positive quadrants, as is evident in

bm&m ﬂ_l Omnce again, the OAM density is
radial directions of the optical field
[evident in Fig. Tle)], and so the OAM density plotted
in Fig, is an average over all angular positions,
For 3ix cases presented above, the on-axis in-
tengity recorded at OC Dy for each of the match filters
(varyingin ring slit radius and azimuthsl order) was
messured and analyzed using the results obtained
from Eqa. (4) and (5). From all six plots, it is evident
that there is very good agreement between the ex-
perimentally messured OAM density walues and
those calculated theoretically. For the first time, to
the beat of our knowledge, the OAM density has been
messured asa quantitative value and represented as
the angular momentaom per unit volume, Ma/m?, by
implementing an extremely simple measurement
technigque,
4. Conclusion

‘We have derived expressions for the OAM density for
aymmetric and nonsymmetric optical fields theoreti-
cally and made a direct comparison experimentally,
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A gimple technique for making such messurements
of the OAM density in optical fields is tested on
superimposed nondiffracting  higher-order Bessel
beama, However, the presented messurement techni-
que can be used on any optical field carrying OAM.
‘We obtain quantitative measurements, expressed as
the angular momentum per unit velume, Na /m?, for
the OAM density as a function of the radial position
in both symmetric and nonaymmetric optical fields,
illustrating good agreement with the theoretical pre-
diction. We find that the OAM density can be made to
pacillate from positive to negative by appropristely
adjusting the widths of the ring slita or the azimuthal
orders within the ring alita, making it an ideal tool in
the field of optical trapping and tweezing. Measuring
the OAM spectrum of fields has direct relevance in
the optical control of flow in microfluidic devices
and in constructing eptically driven micromachines
and parallel molecular or cell asaays.

Appendbx A

The following proof illustrates that the g-component

of the Poynting vector, 85, is a linear operator. We
sta:twiththeequaﬁmﬁfrﬂi:

mw_'::

8= Ve —u"Vu), (AL)

where u is the optical field described in Eq. (1)
u" can be written in terms of u as followa:
u+ u* = Agle; explidkz) explild)
+ agel_y expl—ilks) expi—ilf))
+Aglfy exp(—ilks)exp(—ilf)
+ agel_y expli Akez) expiil 8])

U+ ut = (Al +Agael )2 coaiAks +18)
2450y + mpel ) coa{Akz 4-18)

—u" = X —u, (A%

where for convenience we have left the terms not
involving u as X,
Substituting u” into Eq. (Al) results in

SgocuVu - Ve oViX —u)- X —u)Vu
oV —uVu-XVe+ Vo x VX -XVu,
(AZ)

which is a linear operator, ie, Su; +uz)=
S‘[u]_]+ Iﬂufj Thus, the linesr momentum (in
coordinate) from the Poynting vector
nfaaumnfﬁeldaiaequalbntheaumnd‘ihe]jm
momentums of each individual field.
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In this work we usa a phase-only spatial light modulainr [SLM] to mimic a ring-slitaparture, containing mulipla
azimuthally varying phases at diffarent radial positions. Tha optical Fouriar transform of such an aparture is
currenily known and it intemsity profila has besn shown o rotats along its propagation axds. Hare wa investi-
gain tha nearfiald of tha ringslit aparture and show, both experimentally and theorstically, that although tha
nearfiald posseses similar atiribuies 0 i Fourer transform, it inemsity profile edhibits no oation as it

propagaims. @ 2012 Optical Society of Amarica
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1. INTRODUCTION

Currently, there is a large amount of lieraiure dedicated o
Mekds carnying orbital angular momentum (OAM) This mnges
acnoss Laguerne-G messian beams (1], Bessel-Gaws beams|2]
andl Airy beams 3], all of which carry an OAM of ih per photon
al have an azivwthal angular dependence of explilgd
| LA-6], where [ s the unbounded aeimuthal mode e and
o i thee apdinmuthal angle. Fieds camying OAM ofTer vemsabile
applications. Some of e appdicsations range Trom wsing such
&mmMWMMMMMWWHQM
ithe entanglement of OAM in paametrc down-convension |6
Theee Gt theat Suey offer an unbounded state space provides a
larger bandwidih for quantum oy plography [7.5]

We are mainly interested in higher-order non-diMTac ting
Bessel beams as a form of oplical Deld possessing OAM
andl of partoular inerest is e generation of superingosed
higher-onfer Hesse beams One can superimpose higher
omber HBessel beams ao a8 to pooduce a Beld which either has
of does nol have a global OAM In the case of generating a
superingsosed higheronder Besse] beam, soch that there is
00 glotal OAM, a rotation in the Bekis intensity profile as it
propagaies is evident [9-11]. Such superposilions can be gen
erated by Dhominating Durnin's ring-lit aperture [12] with
mnllipde scimuthal plase components al varying radial dis-
Lameress (9], or by encoding aspatial Hgu modulator (SLM) with
a gingle ring&lit hologmm (L0), or by ileminating an axicon
with a superposition of Lagserre-Gawsian beams [13]

In this paper we, theoretically and experimentally, investi
gte both the near- and farfeld intensiy profiles of the
ringalit aperure Sinee supe s lons of Besse] bea Tre

in the near-fekd, due to e fact that the longituding wave
vedtorsall propagate inthe sme direction (and do noloverlap
ot another) in Uy near ek, but indifTering diredions | over
lapping one anotler) in e Tar-Gekd

2. THEORY

In this work we inplament Dumin's ring-slit aperiure experi-
mummmamgwﬂgﬂm@gﬂmam
aneld i i with an exy . Wee divide
e ring-&lit aperune into two ﬂrgd!s and encoide each with
an azmuthally varying phase A sclematic of the selup is gi
ven in Fig. 1, where the regions of interest, propagating aller
e Fing-slit aperiure, areplanes P, (ihe near Gekd), the reglon
P (the transition region fom near to Gar-Ned) and region Py
(il far-fekd).

The rdngslt aperiure, hes the folowing iransmisson
Tumertioa

explilg) B -3<roh, +%
o, ) {eq:-[vi'.ﬁ Ba-gsrske +3 (1)
] elzewlwre

anwd apart from being ilestratedin Fig 1, bs also represented in
Fig 2 B, and K, are the radii of each o the two fingslis,
respeciively, and A is the widih of each ringsli (we have
dmnu&mmaru»lwﬂngdnmneeqﬂ] § i the
| amgle snd ! i the asivthal mode indes

quently usedinoplical iwessers, knowledge of e sirucure of
ihee: Beddd at planes, other than iis Fourier plane, s imperative
We show it even teough the intensity maxima, present inithe
Lar-fiekd as 2 petals, " arranged on the cirom femanee of 2 ring
(2], are also present in the near-ring elit Geld, the angular rota
tiom ofthe intensity profile, however, doesnol exist in bothihe
mear and farfiedd regions It & well laown that the farfisld
intensity profile rotates as il propagates [9-11] and we show,
Ity iveredically smd experimentally, that this is not e case

DS T R OSET 0TS 15 0070

Since ihe Geld Duminating the fngslit aperiure is an ex-
peamneibed Gianssian beam and fue ring-slits are exremely thin
{of the onder of micrometers), the optical Beld within the
ngealii can be described by a planewave, exp (ifkz-
el Kk s the longitwding] wavenumber, = is the poogeagation
axcis anad e me varying comgonent, of, can be negected as
e planewave Geld b uniform aomss the entire ¢ - i plane, at
any instani in time. The feld produced ai the ring sl aperiune
(e, at e plane P where 2 = 2], & represented a2

© 2012 Opéical Society of America
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L2l

Fig. L (Color online) Schematic of the generasion of the anmlar
field, propagating from nears (P, ) to fardfield (P} The green {ned)
rays denote the rays ongnasng from the onter (nner) rngsht
The: ghres rings {at the bosom of the schematic) aid she il nsation,
asto how the arnolar Selds overlap and become completely indistin-
guishahle as the propagasion from the aperinne ncreases.

explil)esp(ik =) m—“srﬂw}‘-
AP .m) = | eup{ il exp(ikpzo) Bo-Ssrsk +4,
0 akewlne

LEJ]
kir &l ko, are the longitsding]l warenumbers, delined as
ki, =k 08 oy and Ky, = & 008 oy, where & =21 o o
i the opening angle of the cone on which the wave vectors
{produred by each of the two ringliis) propagate.

A gimple annular field, containing no arimuthally varying
plese factors, is expressed as

o((G2)) o

Fig L (Color online) Demsity plot of the tamsmisson function
deseribed in Eq. (1) dor an arimuthal mode ndex of § = 3
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andl & depicied graphically in Fig 3B, denotes the mdius of
the ringshit, A b the width of e fAngel, and n assims e
slespress (or gradient) of the edges of e ring-slic

The ringslif aperfure that we are considering, cmsists of
twis ringr-alitis of ifferng radii and by taling into aecomt tat
e oplical Medd iz a Inear system, the two annular Dedds ane
abdifive, resul ling in e overall dng-slit Geld, in the neacOeld
Py ), een wrillen &

AP (1, b, 3) = AR () explilgh) expliky)
+ AR ) exp(-ilg) explikuzy)

i E‘P((T‘i__ [";R':')-) explilg) wgplik )
+exp( (L)) evicih expiiin.

(4)

Sinee the two dngslie are arbitmry thin and close o one
aoileer, we can assume Uwir radii o e él]_!.lh'ﬂ]éll‘.. Le,
By = By = By, resulling in the Neld simplifying to

APy, 2g) = exp((_[l;},;ﬂ)-)[e‘p[ﬂﬂ explikin)

+expl-ilg) explifan)). ()

The intensity of the rngslit Deld is deermined with the
Tollowing relalionship: f = A4", resulling in

™ r,,,,a)=.maz(*m§-+=a%)

(e (552) )

The intensity profile for e rngslit Geld, gven above in
Eq (§), ilusiaies tat il & modulated in the asnihal oo
ondinate, g, by the function cos? (26¢). Therefore, e number
of infensity maxima and minimsa, amanged on the cirqmler
ence of the dngslit, & twice the azimmithal mode indes, L

The angular mtation, experienced by the intensity poofile,
a5 the ring-slit feld propagates in the near-Geld (F)) alongthe
z-axis, & then given by

AR “:I}
r} n il

=2

AL

1 I
-4 -z H A
[
Fig. i (Colorontine) {a) Denssy plot and (b)) cross-aectionad plot of
the ringslit aperture described m Eq () for the Sollowing param-
eters: mingalit mdis, B =2 ingslht widéh, A = 05 and gradient,
n = 10 {the onits ane arhitrary)
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During the propagation of the ringlit field, the longsdinsl
wave veclors, kg, and k., both propagate in the same direc
tioa, parallel o the savis, which is Dhestrated in Fig. 1. This

s in o dar rotalion existing, as the Angslit Geld

propaties,

e _
= (#

Indbetermining the Geld in the region Py, the regon in which
the fiedd iransitions from near- o B feld, the Freael diffrac

tion integral of (e Bekd af the fngshit aperiure (Eq (4) can
b caleulated

e e [mik
P’ = — Pl
Air 4.2 HJ: Jrn-+’! .69
alc1}1:',|:|(‘i:;a_[ﬂ‘ﬂ,_'i'ir'2 - LWL"ﬂ)ﬁdﬂﬁ'L )]

and is known Lo produce the Bessel-Gawss function [14 15]
Each of the two fing-slits { the inmer having an simmthal mode
e ol § amad the outer, -0) will contribule & a Bessel-Gauss
e sl B Pesul ting supserposition of the Teld in region Py
can be described as

Al g2 = A% r o) + A" r G2

1 exp

The Tundions ofz), B(z) and $z) denote the beam sive,
raifies of curvabure and Gouy plase, mespecthely, and take
on the standand G e propag; Torm. J; is the
Al order Besse] fundction and & denobes e fransvemse wae
numlser, sssociabed with each of the two Hessel beams
namely 1 and 2, and i determined as follows: &, = & Sin o

Similardy the ntensity in the regon o Py can be delermined
by the following mlaionshipe § = 44° (which hes been
neglected here, as the equalion is very cumberaome) and
ithe angular potation resulis in

(=4 2

o by -k a1

Tt wiave vecbors in this region all point in opgsosite directons
resuliing in a non-een rotation rate. However the only section
of the Geld which experiences his angular miaion i the sec
tion which consists of G contributions Irom both dngslie,
which visually means: the sections which consist of Doth
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green and red rays. As the Neld propagates furiler owards
the Eur-Geld (Py), G overlap in the Gekd, which consise of
st ringelit contributions, increases, resulling in e angular
rotation becoming more evident

To delermine G farbeld of te ringslit aperture (Fy),
whose (ransmission function fr, @) & given in Eq. (1), the
KircholT-Huygens i Mraction integral is used

ABGr2) = f' f:::[r.ﬁ) éﬂl‘-‘[i%(l _;),.3]

xem[-ﬂ—”;‘ cosiy 'ﬂ]mlﬁdﬁ- az)

T comitribution resulling from e nner and the outer dng
glits produces the following supemposition, which describes
the: far-field of the ring-slit aperture @]
Aair, b.2) = Julkir) explild) expiikiz)
+ gl ) expl-ilg) explikez).  (19)
The indensify of e superingosed Bessel Geld & delermined
with the Exllowing relationshipe § = AA", resulling in
1oir g, =) oe S ey )+ .7
+ 2Ry Pl ) 0T - KT + 2.
(14)

_ 7[ [ﬁ[&z-iﬂi-m[ﬂ]'[ﬁ'ﬂ%}[f+[¥]2]+ﬂuz+ﬂ a(ﬁhh)_ 5
1II|1+ l’,,_)ﬂ eq‘.-f{h-—-f"m[ﬂ]-[;1[;7-3':—,5)(#1-(!11]2].,_%,1“ -‘[ﬁﬁ)

e e anmutar fings wene ming te spedmposed Bessel
e are arbitrarily thin and dose (o one another, we can
asume e ransverse wavenumbers (o be equivalent (e,
Kir ~ Ky = ke), resulling in Siikir) ~Jolker) = Je(ker). By
implementing the Hessel fumetion identity, J_ k) =
(-1} kv, the infensily in Bq. (14) can be simplified (o
produce

1P b, 2) ox 2k, r)(=1F + 1
+2(-1)F conlky,z - ke + Bg)).  (15)

The intensity profile for the superdmposed Bessel beams, gi
ven abave in Eg (15), ilustraies that it & modutated in e
ancimomthal oosomlinate, g, by Guwe Tunction oos{ g Therelre,
thee mvumm et O ety masin is twioe e order Lol the two
Bessesiee] et rves, ressul fingg ina sugserposi tion of a h order Besse
beam, with ils mirror image, producng an intensiy patien
having 2| intensily maxima or “petak”, aranged on the
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circumilerencs of U sed of Bessel rings. This intensily profile
experences an angular rolation, as the Deld propagates along
e z-axis, ghven by

%:%_ (16

Since the longitudin| wave vetors all propagate in dilTer
enl directions in the far-Geld and et e Geld ot bt ons
from the two dng-slits completely overlap (evident in Fig. 1),
the angular mtation is non-sers and e entire Deld a Py
experiences the miaion

3. EXPERIMENTAL METHODOLOGY

The experimental setup wsed (o generate supemositions of
higheronder non-diffracting Bessel beams, for ihe nvestiga
tion of the nearGeld ringslil aperiure, & denoted in Fig 4
Superimposed Bessel beams were generated by iluminsting
a ring-alit hologram (@ example & given next o LOD) in
Fig 4) with an expanded Gavssian lser beam (1 ~ 532 nm)
Thee: (3 gan beam was expanded throegh a 3 < elescops
anel direcied onto e lquid crystal display (LOCD) of aSLM
(HoloEye, PLUTOVE, with 1920 1080 pixels of pitch
4 pm and calibrated for a 22 plase slift at ~532 nm) labeled
LoDy
The: LOD wias addressed with a hobogram, similar to D
nin's ringslii aperiure [12], however since a plase-only
SLM was used, an amplibude ring-slit was created digitally
by encoding the ares surrounding the ring-slit {ihe area which
st nol transmil any Gght) with a “checkerboand” pattern
By assiging alemating sels of pxels n the ringelit hoks-
gram with phase values thai are out of phase by =, the light
refected from LODY b seattered from it inilial propagation
s (1617}

Sinwre thee “cheechoerboard™ allows o by mimie an amplituds
mask with a plese-only SLM, ihe azimuiial plase within the
ringalit can be adbressed sinml aneowsy ina single hol ogram.
Assiging asinge ringslit with an arimuthal plase that varies
Trom e b0 2w times, & nth onder Bessel beam will fomm in
e far-Beld IF e ring-slit is divided into two ring-<litz, when
ithe seimmthal phose in each dng-&lit vares n opposite diree
tions (simdlar to that in Figs 1 and ) asuperposition of twao
oo bl - hamded Bessel beams will be generated. This is ik
hestrated at the Fourier plane, 2, of the fingalit hologram gi
venin Fig 4. Here, e phase within the inner ring slit varies
three dmes in a clockwise direction {f,, =3 and ihres
times in a counterd ockwise direcion (e, = =51 in the outer

= L-
o 1}
= S|
[ ——

13 i

-
-
== -____.,l

Fig. 4 (Coloroniine) Schematic of the expenmental setp for imess gasing the field formed by a ring-slit hok
Foumier tramsdorm of such a feld Lo lens ) = Z5mmg fp = T8 mm; fy = 100 mng and f; = 100 mm); M- mimor, LCT: B

Py

: Y
] n:
— E N
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ringalit, thies transforming e nitial Gassan beam into a
supserpaeition of two Bessel beams, of onders § = 3 ad -3,
dented by e “petal structure (P in Fig. 4)

More examples of ring-slit holograms are gven in the Lo
row of Fig 5. It & not shown in the holograms, presented in
Figs dand 5, but in conducting the experinent, ablased grat-
g was added o the halograms o separate the undiTracded
i dfiTrae ted oompsonents pefected from LOD, - A diapleagm,
D, was placed at the focal plane after lens Ly 1o select only the
frst diffaction order and neglect all the other unwanted
dilfraction onlers.

Agart Irom positioning a 10« objective and a COD camera at
ithe Fourier plane, Py, of lens La, b record e noe e ting
superingosed Bessel beam, a second lens, Ly, wasplaced a fo-
cal lengih away from (e Fourier plane of lens, Ly, to relay the
Deld at LODy o plane Py This allowed ws o investigate the
structure of the dng it feld {evident at P, ) which produces
a “petal® sirecture in the far-fGeld (ilesiraied at P, The pro-
pagation of the fngslit fekl, redayed o plane, P, was inves-
tigabed by prositiondng a COD came s on & rail and recording the
fiekd from plane B to plane B (a distance of two focal lagths
from lens, L)

I U “pesults” seotion of this paper, we will investigate U
fiekls produced at the three different planes (P, Py, ad By)
for variouws ringslit hologrames, as well as study ihe evolution
ol ithe Geld from plane ) bo plane Py, Tor a particular cing-slit
hologram For convenience we will refer to the Fourier trans-
form of the fngslii hologram (e, te Geld formed s plae
By as a petal-Oeld The Geld at the ring st hologram (Le,
e fiedd at plane P, we will e the “singulardiiy®-Hekd and
theat formed at plane P (2 distanee of 27 Tom lens L) will be
termed a8 e “spiral®Hekl

4. RESULTS AND DISCUSSION

AN the digital Fing-elit bl ogranes, used in e experiment (e
picted in Fig 4), are given in the first row of Fig. & The first
Aingslit hologram, Fig. 5{1a), consists of a single ring-sit oon-
faining an aeinuthal phase of § = +3 and has the following
dimensions (in pieelr &, = 180 A = 20, The next fve dng
slit holograms, Fig 5(1F5(10), all comsist of two dngslits,
having oppositely varying adnmihal phases, varying in azi-
msthal omber from b = =110 =5 (o = +1 0 +5), re
speciively. The fngslit holograms in Fige 51b-5(10) each
e thee ol ovwingg dli mensions (inpixels’s By = 180, &y = 194,
A = 10 The last two dng-slit ol ogrames [Fig. 5 g and 5 1h]
are divided into three and four ring-slits, respeciively, having
the following ainuthel ordes I = -3, Log. =2
b = 1, 800 gy = =2, bitibat = =1, ikttt = 2 fpugur = L

aswell as the propagaton and
qued erysial display, [

diaphragm; OCTe CCDveamera. The planes of mierest are marked Py, P and Py_ F; is the Founer plane of the ring-slit hologram P, is the nelayed-
field {in hoth phase and amplinde) at the ingslit hologram; and P, oooors a distance of 3 after L



A Dmdley and A Forbes

200

Vol 28, No 4 / Aprl 2012/ J. Opt Soc. Am_ A ET1

Fig & (Color online) First row: ning-slit holograms addressed to LCDY . A spomedin section of oee and fourring slits ane depicied as nserns (1g)
and {1h} Second and third rows: experimentally prodoced and sheonetically caloolated fields prodoced in the Foorier plane (Le, plane Pyl ne-

specively. Fouréh and ffth rows: experimental and theoregeal fields,

. produced at plane P, (e, the “singulan iy fiekds). The white "X~

marks the sngularisies. Sivéh and seventh rows: experimental and theoretical fields, respectively, prodoced at plane Ps (the “spiralfields).

The dimensios (in pixels) of the ringslits in Fig 51g) and
G(1h) are: B = 180, By =180, By =200, A =10, aml
By=168 By =176 Ry =184 R, =102 A=8

The far-felds of the Angslt hologrames, presented in the
frst row of FIE 5, are shown in e second roow of Fig 5, ac
oo panded with their theonedical prediciions in the third row
[caleulaied with the wse of Eq. (19)]. For asingle ring lit, con-
i gy s enatha | inwbese o § = 3, thee Dedd posdhoced in the
Fourier plane, Py, is a thind-onder Besse] eam In e case thal
e Fingslit hologram consists of two fng-sliis, where the o
ders of e two arinutlal plases are of equal bul opposite
hendedness, a “petal-strocture & produced, where the nume
ber of “petaks” i denoted by 2], as expecied from theory [2]
It is inferesting, (o note fom previous investigations [3,11]
ithest even though Swese Gelds have a gobal OAM of 2ero, their
irpessectional intensity distibotion mlates & the “petal™

(b}

PIEE:]

field propagstes, due to the differing mdial wave vedors
Theeir mtation rate, which i dependent on the differing radial
wiave veclors and the azinnsthal indesx, L & given in Eg (16)
The felds produced in the Fourier plane, Py, for the ringlit
holograms, contsined n Fige 51 and (1) ae gven in
Fige 5020 and (2h), respeciively. These two ring-alil holo-
grams consist of three and bur fngslits, respectively, amd
produce 3 non-symmettc superposition of higherorder Bes-
el b, Even Uhouwgh il is dMcull o intwitively predict how
Ithee Gieded will mamiiTesst i e Fourier plane for Dwese bvo cases,
our experimentally reconded Gelds (Fige 52g) and 5(2h) )are
i very good agresment with Use Bveoretcally caloulated Gelds
(Figa 503 md 50307). These two fGelds are calculated by
extending the anplitude distribation, gven in Eq. (13), to

p i a superposition of three and four Bessel beams,
respectively.

=y il

Lpanr et

o penatAr

Fimtanae [meels) ke

Fig & (Color online) (2) Experimentally reconded field at plane P, for a ringsht consisting of the fllowing asmuthal phases: {, . = 3 and

e = = Th

earetical prediction is ghven as an imsert. The red, dashed ring marks ghe ne for which the mtensity profile is plotied. (h) The solid

hiack curve is the experimenial intensity profile and the red dashed corve &s the theoretical ntensity profile, cos(2#).
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Fig.7. (Coloroniine) Experimentalintensity profiles of she field cap-
tnned at evenly spared imdervals from plane Py to plane Py The dis-
tances from plane Py are given as (2) O mm, (b) 10 mm, () 20 mm,
) 30 mram, () 40 mm, ()50 mm, {g) 80mm, and (k) 70 mm. The white
arTows the movement of a selected singnlariy. Insers are
gven for the sheonetical predics ons.

Thee optical Geld produced at the plane of the ringlit holo-
v | Le, abithee plame of LOD, ) was melayediio plane Py, when
all thee otheer dilTraction orders had been removed throwgh the
e o e diaplisagi, O, and e scoperin ental i e shownin
Ithe fourth row of Fig a.nisilmglalmﬂ‘ﬂ wilven iUhe
ringalit i abdressed with a single azimuthally varying phose,
ey i uibariti es appeesr in e ring-alit Deld. However, by intm-
ducinga second ring-<lit (having a different mdial wavevector)
singulariiies appear in the ringelit Geld, where the number of
singularities i denoded by 2| (e same Gor e nummber o™ pe
tals"). The espefmental ‘singuladty®-Gelds (Figs 5{42)-5(40)),
produced i plane P, are in goud agreement with tose pre-
dicied theoretically, wsing Eq_ (4) (with & = 2) and depicted
in the [fth mw of Fig. 5 (Figs 5(5a)-5(50] By nwcreasing
thee nammmbser of Fng-slils to eitler three or Tour, it beoomes very
diMcull to ndividually locate each of the singularities in the
“singutarity™-Held a5 some of Uwem start W ovedap. This is evie
dent, experimentally, within the yellow ringsin Figs. 540) and
5{4h) and theoretically in Fige 5(5g) and 5(5h). Snce it is
dificult to locaie e singulariies in e “Singulariy®-Ged,
when the number of ring-slils i increased, we suggest wsing
interferometic ecniques to ad the caterofzing of the
singularities [18]

i is well-known that the intensity of the “petal®Geld is
dependent on the mction cos(2$), evident in Eq. (15). This
onsine belaviour, &2 a lmddion of he azimuthal angle, of the

Fig & (Color online) First colomn ringsht halogram applied o
LTy, Second colomn comesponding uplﬂl fiedds for the mng-slis.
The: white ammows mark the § Third oal-
ummn Fourier tramsdnmm of the mg-lhhdng:m. Fourth colmmn: cor-
mesponading “spiral -feld, prodoced at plane ;. white amow marks e
|ham desdness of the “spoles." Theonetical predicSons: ane accompaned
2% marnts

201
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Fig. & (Color online) Video clip contining experimental images for
the field oconming before and after the Fooner plane for an incoming
“spiralfield prodoced at plane Py (Media 1)

inlensity profle i also present in e *singulariiy®-Geld. This
is evident in Fig §where the intensity profile, a5 a funcion of
ihe amgrular pasition in the feld, i ploded for e * singulariy ™
Deld, for the case ol = +3and . = -3 I agress well
with the intensity profile ploted for the theordically pre
dicted “singularity”-field, gven in Eq (), Qhestrating that
ithe intensity mosdima of fe near- ad feGekd both depend
oy Uve Turse tion ¢os] g8

Propagating the feld a distance of one focal length from
plane P, io plane Py, we see thal the annular sinsciure contain-
g singularities ransforms into “spiralk” The experimental
fekds produced af plane Py e each of e gt ring-slit holo-
gramsare giveninthe siath row of Fig 5and accompanied with
thenredical predictions in the seventh row. In the case ol a sin-
e ring-slit, having a nonvoe o s nsthal mode ivde, e *spin
al ™ Bed e as a diverging version of the “singulad ty™ -Hekd.
For the fve halogrames, sach consising of two ingslits, having
opposite axinuthal orders, there are 2| “spokes™ inthe “spie
alfeldd, evident in Figs S{f —@. Initrostucing mone g
aliis inky the hologram resulis in ie *spokes® in e “spiral®
fiedd iy merge, making it difTieull bo resolve individual “gpokes”
(evident within the yellow ringsin Figs. 5{6g), 5(6h), 5(7g), and
i)Y

The: propagation of e *singultarity®-Deld af plane Py bo the
“spiral “-Held (at plane Py ) was reconded and seleded experi-
mental images of the Beld af intervals along its propagation
are given in Fig T It is ineresting to note that even though
arotation in the intensity profle forithe “pedal “eld (in e vi
cinity of plane P, Lo the farfeld) exists as the “petal*fedd
propagaies, no miation o the “singularity™-Neld or “spiral®
feld (ie, near-feld) exisls as the Deld propagaies. This isin
accordance with the theoretical prediction given in Eq (8],
wiere e mtation rate for sucha Gedd i determined tobe non-
exizient, bul becomes more evident the closer e Nedd
propagaies o the frfed

Switching the handedness of the aimuthal plases in e
two ring-slits, i koown (o cause e *peial Oekd, produced in
ihe Fourier plane, Py, o mdaie in the opposite direction (101
Even thowgh e “spiral-feld, produced st plase Py, does not
mia as i propagales, swapping ihe handedness of e
aripmthal phases (within the iwo ringalils), resulis in e
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alirection of U *spaobkes™ Lo swilch Trom dockowise o comber
lockowise (and vice versa). This i evident in the last comn
of Fig § and is in good agreement with e theoretical
prediction

Apart from investigaling G appearance of the Beld poo-
duced by the ringelit hologram at different poopagation
planes, ihe farfiekds of the ‘spiral® feld {plane P,) was also
investigated and is presented a a media clip in Fig. 8. No ro-
tation in the intensity distribation of te Geld befre and after
the existence of the non-dilTracing “petal™Geld is evident
Thee “sgeiskoes™ compresses lowanks he propagation axis, over
tapping and Torming & non-diTmoting *petal ™ Geld, which ex-
hibits & rotation in itz intensity distribution as il propagates,
Dot il the “spobkes™ espand outwands reconstrecting the
“singularity”-Nekd

5. CONCLUSION

Tnthis woork we lave presented a ass of beames which exhibit
a motation in their intensity profle in the BurGeld, bui exhibit
e Potation in e near-feld These eams ane supseringosed
higher-onfer Bessel beams which ane posduced by encoding
mmltiple azimuthally varying phases sl dilferen radial posi
tiomes within a ring-elit aperure. We studied the Geld prodeced
al the plane of the ringalit aperure, as well as al vabous
planes propagating fom te ringslil apenure and wilnessed
et 1 e ded ramesfiorm s from anannular stme e (embedded
with singularities) to a “spiral® strudure, consisging of
“apokes” situated amund a ring. The Delds poodwced at the
plane of the fngdil aperiure and ai a distance of § fom
e vingelit agserture are in good agreement with those calow
tated Bueoretically Since Bessel beams, and especially super
positions of Bessel beames, are widely used inoptical iweezing,
umeleratanding the struchure of the Geld ot planes ollver than
the Fourer plane b necessary. The dng-alit Geld, embedded
with singularities, can be used 1o irap low-index paricles ai
e, alistanoes on e ciroum Erence ofa cinele. By adjesting the
onder, §, of the superdmposed Bessel beams, one can contml
leivw My singularities are present inothe dngslit ek, wsed
by gy dow-indbex particles The ring slit aperiure o mensions
can also be adjusted s 25 0 condrol the size of e ring-shi
arel the distance between the singularities.
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Azimuthal decomposition with digital holograms
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Abstract: We demonstraie a simple approach, using digital holograms, o
perform a complete arimothal decomposition of an optical field.
Importantly, we use a st of basis functions that ar not scale dependent so
that unlike other methods, no knowledge of the initial field is required for
the decomposition. We illusirate the power of the method by decomposing
two examples: superpositions of Bessel beams and Hermite-Gaussian
beams (offaxis vorex). From the measured decomposition we show
reconstruction of the amplitude, phase and orbital angular momentum
density of the field with a high degme of accuracy.

©2012 Optical Society of America

OIS codess (07 06120) Spatial light modulatons; {120.3540) Metrology; (09L1995) Digital
holography; (120 5060 Phase modulation.
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L Introduction

Techniques to decompose light by use of Fourier optics have been known for a long time,
and have been extensively reviewed to date [1]. Historically, these technigues have been
appliad to pattern recognition problems, and subsequently to the problem of studying the
structure and propagation characteristics of laser beams [2-5]. Despite the appropristeness of
the echnigues, the experiments were nevertheless rather complex. Recently this subject has
been mvisited by employing computer generated holograms in a2 mode multiplexing scheme
for the modal decomposition of laser beams from fibres [6-10], and for the real-time
measurement of the beam quality factor of a laser beam [11]. While these techniques have
significant merit, they require a prefabricated diffractive optical element. This implies that
information on the modal basis to be used, and the scale parameters of this basis, are known.
To date this has baen achieved by first modelling the source under study.

In this paper we consider the problem of the arimuthal decomposition of an arbitrary
laser source, without any knowledge of the mode structure, the mode phases, or the scale of
the amplitude distribution. We make use of a basis comprising the angular harmonics, which
are independent of spatial scale, and express the spatial distribution in terms of spatially
dependent coefficients in this basis. The msult, as we will show, is that the complete
decomposition can be achieved without any scale information We use this to infer directly
from measurements of the intensity of the superposition field, its phase, and its orbital
angular momentum (OAM) density distribution. In fact, it is clear that since the entire field is
known, all physical quantities associated with the field can be inferred. We illustrate the
concept by executing a full azimuthal decomposition of. (i) a superposition of two OAM
carrying Bessel beams, with relative phase differences and (i) an off-axis voriex mode. A
comparison of our experimental measurements to the predicted theory shows excellent
Agreement.

X Concept and theory

The comre idea is to expand our unknown field, wir, ¢, into a basis that is not dependent on
scale. Such a basis is the angular harmonics, expdilg), that are orthogonal over the arimuothal
plane. To illustrate that the azimuthal decomposition that we employ in this work is
completely general, we consider, for example, the Laguerre-Gaunssian (LG) basis as our
OAM basis. An expansion of an arbitrary optical field in terms of this LG basis is given by

ulr, @) =3 cp Ry, (rhexplild), ]
Al
whare ¢',; denotes the complex coefficients and R, (r) is the radial part of the LG mode,
which only depends on r. One can now combine, and sum over the part of the expression that
contains a p-index
HUJ}-Z[ZELR,;{!)]E&P(W}- Tailryexplilgd), 4]
1 ] T
whem
o (r) =5 c, K ir)=airjexp[iag,r]. (3
If the original expansion in terms of the LG modes is completely general, then by
implication, so is the azimuthal expansion with the r-dependent coefficients. The coefficients
are given by

&)= [ uir, expi=i)ds. @)
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The coefficient of the azimuthal modes contains information on the spatial distribution of the
field Each coefficient contains an arbitrary phase, Af, relative to some reference, which we
may take to be an external source or for convenience the first mode in the saries, [ =0 at a
specific value of r. To describe w(r,¢ completely, we ar required to determine the phase
shift between modes and the magnitude of the coefficients. The coefficients may be found by
an inner product calculation and a suitable match filier, as shown in Eg. (4). To implement
this calculation in a physically reslzable manner, consider the signal at the origin of the
Fourier plane after a lens (for wavenumber & and focal length f) after the field has been
modulated by a transmission function given by rdr, &

U, - %?”! J .t . )

Since we wish to implement Eg. (4), it is clear that the transmission function has two
mquirements: (1) it should have an azimuothal phase variation opposite to the mode being
analyzed, (i) to select the information as a function of r it should consist of an annular skt
centered at r = K and of megligible thicknass, AR These conditions are satisfied if the
transmission function is defined as

axpi—ilf) R—ARIZ<r <R+AR(Z

Ir'[hi')-[ 0 ouberwise (6)

The subscript [ i, and I refer to slecting the I mode in the expansion of Eq. (2). So that

0,R.0 =2 1 i gnatr, gordrdg

iAf
L m
» XEPUI) AR,
i
By re-arranging the final result in Eq. (7), we find that
i -
R - pRrexpzyy R O @)

Firstly, we note that 3 measurement of the intensity of the signal, I,(R,0), at the origin in the
Fourier plane retumns exactly our desired magnitude of the coefficients, since

() = e () = L TR ®)

Secondly, we note that if we interfere our selected { mode with a reference wave and consider
the inner product signal, then the unknown phase of the coefficient, A&, can be found. If
lglexplia) represents the complex amplitude of the reference wave of the origin then the
intensity, at the origin, as a function of the phase delay is given by

a8 = | R+ gf*
- a7 (R)+|g[" +2a,(R)|g|cosl A6, (R) - a].

It is a simple task to invert Eq. (10) to find the unknown phase delay between the modes.
With the complete azimuthal decomposition of the field achieved, as in Eq. {2), it is possible
to calculate the intensity of the field, luir, ¢i", the phase of the field, argluir, ], the Poynting
wector [12],

(10
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2

S= S"T [i[n‘?n' —n'?x}l+ 2k Mz E], (1)

and finally the MM density [13}

g-j_l[ms]l. (12)

The pertinent point here is that at o stage has any assumption been made on the scale of
the basis functions. This is becanse we have elecied to scan the field with an annular slit,
thersby storing the scale information in the coafficiant of a scale invariant basis The scale of
any OAM basis function is set by the radial coordinate. Since the radial coordinate becomes a
part of the coefficient functions, the scale parameter is emoved from the basis functions,
resulting in the emaining azimuthal component becoming independent of scale. We will
now show how to implement the technigue with a phase-only spatial light modulator (SLM}),
thus allowing a full azimuthal decomposition of the field with digital holograms.

3. Experimental methodology

The experimental realization of the technique comprises two parts: the generation and then
decomposition of the field, and is shown schematically in Fig. 1(g). The first SLM (denoted
as SLM;) was programmed to produce various figlds. The two casas that we considered were
(i) a superposition of two OAM carrying Bessal beams [14] and (i) an off-axis voriex mode.
A Gaussian beam from a HeMe laser [Fig. 1(b)] was expanded through a 5 = telescope and
directad onto the liquid crystal display of SLM, (HoloEye, PLUTO-VIS, with 1920 = 1080
pixels of pitch 8 pm and calibrated for a 2n phase shift at 3~633 nm) wheme the hologram
used to generate the field of interest was programmed. For the case wher a superposition of
two OAM camying Bessel beams wem studied, two annular rings modulated in their
mzimuthal phase [see Fig. 1(c)] were encoded onto SLM,. The amplitude transmission of O
everywheme outside the annular ring and 1 inside the ring was programmed wsing complex
amplitude modulation for amplitude only effects on a phase-only device. The hologram takes
the form of a high frequency grating that oscillaies between phase values of 0 and &, and it
has been shown that this resalts in the required amplitude transmission of Eg. (6) [15]. Wa
shall refer to this &= the checkerboard pattern: see zoomed in section of Fig. 1(c). The result
is non-diffracting petal-like modes [Fig. 1(d)] that rotale as they propagate, and have been
studied in detail elsswhere [15,16].

These fields were then magnified with a 10 x objective and directed to the sacond SLM
(SLM;) for executing the azimuthal decomposition. This was accomplished by executing an
inner product of the incoming field with the maich filter set to exp(ilg, for varions [ values,
and for particular radial (r) positions on the field, as given by Eq. (6) and illustrated in Fig
lig}. The typical width of the ring in the experiments was AR = 80 pm. The width of the ring,
as well as the arimuthal index (f) encoded within the ring, are limited by the resolution of the
SLM. The field at the Fourier plane is shown in Fig. 1(f) — note that we only require tha
intensity at the origin of this plane.
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Fig. 1. (2 A schematic of the experimental sstup for performing the modal decompasition. [

Lens (f = 15 mmx f;=T5 mom; &= 100 mm and f; = 20 mm); M: Mirror; SLM: Light

Muodulaior, O Objective; OCTE OCTY Camera. The objective, Oh, was placed at the focus (or

Fourier plane) of lens, Ls. Less Ly and Ly perioon a Fourier transform of S1M; and SLM3

respectively, m a 1foysiem Objectives Oy and (0 ame e kscopes which imapge and magnify

both the phase and amplitude of the fields & plases P and P 1o planes Py and Py mspectively.

{b) The Gaussian beam used Lo illuminaie S1M ;. (c) The digital bologram used 1o geseraie the

optical field of interest (d) and the digilal hologram {e) used to extrac the weightings of the

maodes from the inner product (7. The digital holograms for geserating () and decomposing

(i) the field, io siract I of the field at the of

\;].M:ﬁrmdc'mulh:hhuhmﬁ‘dzdm.mﬂ :hu-mnmimlgﬁ

In order to measure the phase delay between the modes, we switch off the checkerboard

pattern in the centre of both SL.Ms. This resulis in a portion of the initial Ganssian beam
passing through the entire optical system, without “sseing” the phase holograms. Because it
follows the zame path as the modes that we wish to study, we can use the central peak of the
beam as our reference beam, lglexpiia). Figure 1(g) shows the initial generating step but with
a consiant phase in the centra of the hologram (black disk), the msulting mixing with tha
non-diffracting petals [Fig. 1(h)] and afier passing through the second SLM [Fig. 1(i)] the
resulting interference of the waves [Fig. 1(j)]. The constant phase of the reference could be
changed across several values to provide information on the quadrant of the cosine function
in Eq. (10). Mote that switching between the intensity measorement [Figs. 1(c}-1(f)] and the
phase measuement [Figs. 1(gk-1(j)], we require only a change in the holograms loaded onto
SLMs 1 and 2. This switching barween holograms can be done at 60 Hz, ie., practically real-
time acquisition of the necessary data

4. Resulis and discussion
4.1. Superposiion af two OAM carrying Bessel beams

To test the accuracy of the method, we first created a supe rposition of two Besse| beams with
opposite handedness, ie., m= 3 and n =-3 and defined generally a=

uir, @) = A (kr)explimmg)+ A1, (kr)expling) exp(iA ). (13

The phase delay, AR, in Eq. {13) was then varied betwean 0 and 2w, esulting in a rotation of
the iniensity pattern, which can easily be measured by observing the angular displacement of
any one of the petals. This measured rotation is directly relaed to A8 thus allowing the
measured phase shift to be compared to the programmed value. The programmed phase shift
and resolting petal rotation are shown in Fig. 2{a), and compared to the theoretical rotation.
The resulis of this calibration test are shown in Fig. 2(b), wham it is clear that the agreement
between measured and actual is very good (slope difference of 0.1%). The emor bars were
determined through a range of intensity values in the finite region (few pixels) around the
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origin of the Fourier plane. These results confirm that the setup was working comectly
without spurious efiects.
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Fig. 2 (a) I the phase is shified in one of the modes in the initial fiedd (top row), then the
measumed peisl stnachme of the superposition fekd (middle row) is seen (o e, & predicied
by theory (boflom row); (b) compariscs of the messsmed phase shifi to the acimal phase shift;
{c) imterference of the modes with a e femnce wave resuks in changing iniessity Iilh.-vmg'm
af the Fourier plane, which can be-mdln-i«hph:dnﬁprmﬁ-:ﬂmm
the measured phase shifi (o the aciual phase shifi (see Media | and Media 2y

Mext, the programmed phase shift A was measured using the interference technique and
analyzed using Eg. { 10). The phase shift in the n = -3 beam was scanned through O to 2t and
the interference monitored, as shown in Fig. 2(c) By removing the offsat phase of the
reference beam (comesponding to the maximum in the interference signal), the measured
phase conld be compared to the programmed phase. The results are also shown in Fig. 2(d),
and again the agreement is good {slope difference of 3%), but with some uncertainty near a
programmed phase shift of 0.60x and 1.60x these discontinuities occur at maxima and
minima in the interference intensity [Fig. 2(c)], and are due to the flatness of the change in
the measured intensity for a change in phase value (three values were used to uniguely
delermine the phas) To illostrate further that the tachmique works, we constructed a
superposition field with m= + 3 and n = -2, to deliberately break the symmetry of the field.
The annular ring on SLMg, of width 80 pum, was scanned through 28 radial positions
{maximum mumber to scan our field) and the azimuothal phase varied actoss [=[-10, 10]. The
only non-zero components (>0.5% of the modal power) were those comesponding to f= + 3
and { = -2, which contained -95% of the modal power. With all the unknown terms in Eq.
(4) measured experimentally, we were able to reconsiruct the infensity and phase of the
initial field, and compam it to the theoretical prediction (based on our own hologram function
on SLM;). The results for the intensity of the field are shown in Figs. 3(a) and 3(d) while that
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of the phase of the field is given in Figs. 3(b) and 3(e). There is very good agreement
between the theometically predicted field and the field reconstructed from the arimuthal
decomposition.
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Fg. 3. A comparison of the theomtical {lop row) and the experimentally moonstnacied
{botiom row) images of the (a, d) imtensity, (b, e phase, and (c, £y OAM density of the Hght
An interesting application of this technique is the determination of the compleie OAM

dansity of the field. It has been known for some time now that photons camy orbital angular
momentum ([17] and references themin), yet it emains a challenge to measure the local and
global OAM of a field in a manner that is quantitative. Previously we have atempted such
measurements without the phase information, and found success for particolar structures of
optical fields [12,13]. With a full azimuihal decomposition of the field, including the phase
delays, we can infer the OAM density of any fiald directly from oor measurement The
theoretical and experimental e sults of this ar shown in Figs. 3(c) and 3(f), respectively, and
are in agreement.

4.2 Off-axiz varrex mode

Maxt we apply our decomposition technigue to the example of 2 Gaussian beam with an off-
axis vortex. The resulls are presenied in Fig. 4.

Fig. 4. A comparzon of the experimentally recomded intensity (2) and the mecomstnacied
intensity (b for the of faxis voriex case, creaied from 2 superposition of Hermike-Gaussian
modes.
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The same measurement procedure, as that discussed sbove, was implemented on the
fizld, whose experimentally recorded intensity profile is given in Fig. 4(a). The reconstructad
field is shown in Fig 4(b) illustrating that this technique is successful in the rconstruction of
optical fields which possess an on-axis intensity. The problem in this case is that there is no
dark come in the centre of the field under investigation where we could pass a Gaussian
reference beam through, for the implementation of the phas measurements. In this case we
use a section of the field under investigation as our reference (assuming no singularities, a
single pinel site mgion will have a uniform phase).

4.3 Alipnmens seasiriviry

Although one can represent the beam in terms of expansions with respect to any beam-axis,
the coefficients in the expansions are sensitive to a shifi of the beam-axis. Here, our concem
is the fidelity of the reproduced beam rather than the fidelity of the expansion coefficients.
Maturally we do not want the beam-axis to be too far off, because that would increase the
higher-order coefficients and reduce the fidelity of the rconstructed beam, but small shifts in
the beam axis does not pose a serious problem and this is illusirated in Fig. 5(a). The
hologram on SLM; was displaced with respects in the propagation axis of the field under
investigation for step sizes of a single pixel (ie. & pm) and the fluctuation in the on-axis
inensity of the imner product, from which the unknown field i reconstructed, shows very
little variation (the percentage error is roughly 0.5% per pixel shift). It is fairly easy to get the
alignment of our system within such distances from the actual beam axis. If the displacement
is much greater (10 times greater) then the alignment does pose a problem and the on-axis
intensity of the inner product varies significantly, evident in Fig, 5{b).
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Fig. 5. Graph of the messsed on-axis infensity of the inner product ax a function of 2 laersl
i of the hologram om S1LM; for a displacement rnge of (a) —20 to 210 pixels (—160
wm o 160 pm) and (b) =200 10 200 pixels (—1&00 pm o 1600 pmi
For the experimenial measurements presented here we aligned each SLM to a common
propagation axis by initially centering each SLM on a Gaussian mode that propagated
through the system. Mome general alignment technigues, as used by other decomposition
methods, coold also be employed [6,7].

5. Conclusion

We have outlined an improved method for the azimuthal decomposition of an arbitrary field
that mquires no scale information of the basis functions, and allows for the phases to be
easily measured. It is significant to mote that using only minor changes to the digital
holograms, we can switch the setup between measuring azimuthal weights to arimuthal
phase delays — no optical re-alipnment is mecessary, and no path length adjustment is
mquired for the phase measurements. Morover, even though our system is not automated
and a scan of all measurements would take 4 hours, in an sutomated system the holograms
can be displayed at fast refresh rates (60 Hz), so that the measuement per radial position
takes about 1 5. Using superpositions of OAM carrying Bess] beams as an example, we have
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shown excellent econstroction of both the inensity and phase of the field, as well as the
OAM density everywhere in the field We have also shown sccurate econstruction of an off-
axis voriex beam, illustrating the versatility of the method This technique will surely be of
mlevance to those working in QAM, both at the classical and quantum level, as well as o the
emerging field of mode multiplexing for future telecommunications ([18], and references
therain), where mode generation and decomposition are necessary tools

#164070- 81500 USD  Riacaind 5 ar 2012 rovised 33 Apr 2012; acceptad 74 Agr T012: publishod 26 Ape 2012
{C) 2012 08A 7 May 2012/ Vol 30, Ne. 10/ OFTICS EXPRESS 11004



