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Abstract 

 

The work presented in this thesis is centred on the generation of superimposed optical fields 

which each carry orbital angular momentum (OAM) and the development of OAM 

measurement techniques. Optical fields which carry OAM have found applications ranging 

from optical tweezing to quantum cryptography. Due to the fact that they offer a potentially 

infinite-dimensional state space, much interest has been generated in the measurement of OAM 

in optical fields, in order for higher-dimensional quantum information processing to be realised. 

In this study we generate superpositions of higher-order Bessel beams and show that even 

though we can create a field which carries no overall OAM, we can still witness an angular 

rotation in the intensity profile of the beam. We also develop two new OAM measurement 

techniques: (1) a robust odd-even-OAM interferometer and (2) a method to measure the OAM 

density of an optical field by means of a single spatial light modulator (SLM).  

 

In the first chapter we give an overview of the literature regarding optical OAM, followed by 

the derivation of the Helmholtz wave equation from Maxwell’s equations. We illustrate that 

helically-phased beams, having a phase factor of exp(ilθ), possess a well-defined OAM. 

Definitions for the fundamental Gaussian mode, as well as two OAM-carrying modes: 

Laguerre-Gaussian (LG) and Bessel-Gaussian (BG) modes are also given. Since a majority of 

this thesis involves generating superimposed OAM fields as well as the measurement of OAM, 

chapter 2 contains detailed discussions on the optical components used to generate and measure 

OAM. In section 2.9 we present one of our contributions to the field of OAM-measurement, 

which involves a stable Dove-prism embedded Mach-Zehnder interferometer, capable of sorting 

41 OAM states into odd and even ports with a contrast ranging from 92% to 61%.  

 

 We implement the Dove prism embedded Mach-Zehnder interferometer to mimic an amplitude 

damping channel for OAM states in chapter 3. Our device is useful in modelling a ‘lossy’ 

environment for OAM states. In chapter 4 we develop a new technique for the generation of 

superimposed Bessel beams through the use of a single digital hologram and theoretically and 

experimentally show that even though the superimposed Bessel beams can be constructed to 

produce no overall OAM, a rotation in the beam’s intensity profile is still present, as the field 

propagates. This rotation is due to the differing longitudinal wave-vectors present in the field 

and we make quantitative, experimental measurements of the angular rotation rates, which are 

in very good agreement with our theoretical predictions. We also show that the far-field of these 

superimposed Bessel beams, exhibit no rotation in their intensity profile and we offer a 
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theoretical explanation for this occurrence. In chapter 5, we adapt our technique for generating 

superimposed Bessel beams to create non-diffracting speckle fields, which are known to possess 

optical vortices, and show that by controlling the standard deviation of the phase distribution 

within the digital hologram, we are able to control the evolution of the non-diffracting speckle 

field into a non-diffracting zero-order Bessel beam. Our final chapter contains a novel technique 

for the measurement of the OAM density of optical fields, by implementing two optical 

components: an SLM and a lens.            
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Fig. 4.4.3.7. (a) The experimentally recorded field at plane P1 for a ring-slit consisting of the 

following azimuthal phases: linner = +3 and louter = -3. The theoretical prediction is given as an 
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insert. The red, dashed ring marks the line for which the intensity profile is plotted (b). (b) The 

solid black curve is the experimental intensity profile and the red dashed curve is the theoretical 
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Fig. 4.4.3.8. Experimental intensity profiles of the field captured at evenly spaced intervals from 
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Fig.4.4.3.9 First column: The ring-slit hologram applied to LCD1. Second column: The 

corresponding optical fields for the ring-slits. The white arrows mark the locations of the 

singularities. Third column: The Fourier transform of the ring-slit hologram. Fourth column: 

The corresponding field, produced at plane P2. The white arrow marks the handedness of the 

spokes. Theoretical predictions are accompanied as inserts.  

 

Fig. 5.2.1. The experimental design for generating non-diffracting speckle. The physical ring-

slit (RS) which can be introduced into the optical setup when needed is denoted inside the red 

border. (L: lens (f1 = 25 mm; f2 = 150 mm; f3 = 50 mm; f4 = 50 mm; f5 = 200 mm); M: mirror; 

SLM: spatial light modulator; O: objective; CCD: CCD camera). 

 

Fig. 5.2.2. Column 1: Random holograms which were illuminated with a ring field, denoted in 

red. Column 2: The corresponding experimentally measured Fourier transform. Column 3: The 

same random holograms as those in column 1, but with the checkerboard encoded. Column 4: 

The experimentally measured Fourier transform of column 3. 

 

Fig. 5.2.3. (a) The ring-slit hologram applied to the SLM. (b) The corresponding experimentally 

produced field in the Fourier plane and (c) the theoretically calculated field at the Fourier plane.  

 

Fig. 5.3.1. Column 1: Ring-slit holograms, where the phase modulation within the ring-slit is 

described by a continuous uniform distribution (the frequency of the phase modulation increases 

with each row, (a) and (c) 10 pixels; (e) and (g) 50 pixels; (i) and (k) 100 pixels). The red ring 

denotes the ring-slit. Column 2: The corresponding experimentally recorded field at the Fourier 

plane. Column 3: Ring-slit holograms, where the phase modulation within the ring-slit is 

described by a binary uniform distribution (the frequency of the phase modulation increases 
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with each row). The red ring denotes the ring-slit. Column 4: The corresponding experimentally 

recorded field at the Fourier plane. 

 

Fig. 5.3.2. Column 1: Ring-slit holograms, where the phase modulation within the ring-slit is 

described by a continuous normal distribution (the frequency of the phase modulation increases 

with each row, (a) and (c) 10 pixels; (e) and (g) 50 pixels; (i) and (k) 100 pixels). The red ring 

denotes the ring-slit. Column 2: The corresponding experimentally recorded field in the Fourier 

plane. Column 3: Ring-slit holograms, where the phase modulation within the ring-slit is 

described by a binary normal distribution (the frequency of the phase modulation increases with 

each row). The red ring denotes the ring-slit. Column 4: The corresponding experimentally 

recorded field in the Fourier plane. 

 

Fig. 5.3.3. Graph of the standard deviation for each of the four distributions as a function of the 

frequency of the phase modulation (or correlation radius).  

 

Fig. 5.3.4. Simulated images for the non-diffracting speckle field, for each of the four 

corresponding distributions. Row 1: continuous uniform. Row 2: binary uniform. Row 3: 

continuous normal. Row 4: binary normal. The standard deviation increases from left to right. 

The values for the standard deviation are given in the bottom right corner of each image. 

 

Fig. 6.2.1. (a) A schematic of the generation of the optical field and the decomposition of its 

OAM spectrum. (b) The Gaussian beam used to illuminate the hologram, (c), for the generation 

of the optical field, (d), defined by u(r,θ,z). The hologram, having a transmission function of 

t(r,θ), in (e) together with the lens L2 performs the decomposition (Eq. (6.2.10)), producing the 

inner-product, P, represented in (f) and mathematically defined by u(ρ,φ,z). (SLM: spatial light 

modulator and O: objective – used to magnify the optical field (d)). 

 

Fig. 6.3.1. A schematic of the experimental setup for measuring the OAM density as a function 

of the radial position, R.  L: Lens (f1 = 25 mm; f2 = 150 mm; f3 = 200 mm and f4 = 200 mm); M: 

Mirror; LCD: Liquid Crystal Display; O: Objective; PM: Pop-up Mirror; CCD: CCD Camera. 

The objective, O2, was placed at the Fourier plane of lens, L4. The corresponding optical fields 

and holograms appear at the appropriate planes. 

 

Fig. 6.3.2. The initial optical field was divided radially into individual ring-slits. The phase 

within the annular ring was varied azimuthally for various values of l.  The rest of the LCD was 
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programmed with a checkerboard pattern so as to restrict the transmission function to the ring 

alone. The ten rings have the following radii: r1 = 600 µm, r2 = 880 µm, r3 = 1160 µm, r4 = 1440 

µm, r5 = 1720 µm, r6 = 2000 µm, r7 = 2280 µm, r8 = 2560 µm, r9 = 2840 µm and r10 = 3120 µm.  

The black and white images in rows 2 and 4 are grey-scale experimental images of the first 

optical field that we tested. 

 

Fig. 6.4.1. First column: Holograms and the corresponding experimentally produced fields in 

the Fourier plane (second column) accompanied with theoretically calculated fields (third 

column). The white dots in (c) denoted the radial positions of each of the ten ring-slits used as 

the match-filters. 

 

Fig. 6.4.2. The measured OAM spectrum of the field given in Fig. 6.4.1 (b), as a 

function of the radial ring (or radial position), given by numbers 1 to 10, for azimuthal 

phase values of m = –4 to 4. The height of each bar represents the measured coefficients 

|am|2. 

 

Fig. 6.4.3. (a) A density plot of the OAM density for the field given in Fig. 6.4.1 (b). Red 

denotes negative OAM and blue denotes positive. Light to dark blue denotes an increase in 

positive OAM and light to dark red denotes an increase in negative OAM. (b), (c) and (e) the 

OAM density for the fields in Fig. 6.4.1.(b), (e) and (h), respectively. The blue curve denotes 

the theoretical OAM density and the red points the experimentally measured OAM density. 

Inserts for density plots of the OAM density for (c) and (e) are given as inserts, (d) and (f), 

respectively.        

 

Fig. 6.4.4. (a) The hologram used to generate the experimental field in (b). The theoretically 

calculated field is given in (c). A magnification of the ring-slit is given as an insert in (a). (d) 

The theoretical (blue curve) and experimentally measured (red points) OAM density. (e) A 

density plot of the OAM density. Red denotes negative OAM and blue denotes positive. Light 

to dark blue denotes an increase in positive OAM and light to dark red denotes an increase in 

negative OAM. 

   

Fig. 6.4.5. (a) The hologram used to generate the experimental field given in (b) of which the 

theoretical field is represented in (c). A magnification of the ring-slit is given as an insert in (a). 

(d) The theoretical (blue curve) and experimentally measured (red points) OAM density. (e) A 

density plot of the OAM density. Red denotes negative OAM and blue denotes positive. Light 
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to dark blue denotes an increase in positive OAM and light to dark red denotes an increase in 

negative OAM. 

 

Fig. 6.4.6. (a) The hologram used to generate the experimental field given in (b) of which the 

theoretical field is represented in (c). A magnification of the ring-slit is given as an insert in (a). 

(d) The theoretical (blue curve) and experimentally measured (red points) OAM density. (e) A 

density plot of the OAM density. Red denotes negative OAM and blue denotes positive. Light 

to dark blue denotes an increase in positive OAM and light to dark red denotes an increase in 

negative OAM. 

 

Fig. A1.1. A schematic of the calibration experiment.  

 

Fig. A1.2. Summary on how a phase shift in one of the beams is directly proportional to a shift 

in the interference pattern. 

 

Fig. A1.3. Illustration of how a change in grey-level shifts the interference pattern. 

 

Fig. A1.4. A plot of the 1 D intensity profile of the interference pattern for a particular grey-

level. 

 

Fig. A1.5. A plot of the intensity minima pixel position as a function of the grey-level. 

 

Fig. A1.6. Example of calculating the phase shift. 

 

Fig. A1.7. Plot of the measured phase shift (red) and the desired phase shift (yellow). 

 

Fig. A1.8. Plot of the measured phase shift (red) after the voltages have been adjusted 

appropriately. 

 

Fig. A1.9. Illustration for how the “2 hole mask” should be illuminated. 

 

Fig. A1.10. Illustration for a correct and incorrect interference pattern.  

 

Fig. A1.11. Illustration of how to position the two spots on the SLM.   
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List of Symbols 

 

θ: azimuthal angle 

l: azimuthal mode index 

m: azimuthal mode index 

n: azimuthal mode index 

p: radial mode index 

�m: charge of fork hologram 

n: diffraction order 

θB: blazed angle 

ħ: Plank’s constant 

E
v

: electric field 

B
v

: magnetic field  

ε0: permittivity of free space 

�0: permeability of free space 

c: speed of light 

z: propagation axis 

k: wave-number 

kz: longitudinal wave-number 

kr: radial wave-number 

ω0: beam waist 

zR: Rayleigh range 

u: complex-valued amplitude 

A: complex-valued amplitude 

I: intensity 

Jl: Bessel function of order l 

α: cone angle 

φ: angle on complex plane 

A: vector on complex plane 

φ: phase modulation 

t: transmission function 
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�φ: phase difference 

β: relative angle between Dove prisms 

A, B: output ports 

ψ : initial quantum state 

ρS: final quantum state 

M0, M1: Krauss operators 

P: probability 

γ1: weighting of Gaussian mode 

γ2: weighting of vortex mode 
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CHAPTER ONE 

 

 

Orbital Angular Momentum of Light 

 

 

1.1.  Overview 

 

The behaviour of a light beam is governed by Maxwell’s equations, which form the foundation 

for the derivation of the Helmholtz wave equation [1]. Maxwell’s formulation of 

electromagnetic theory also illustrates that an optical field can have an induced polarization, due 

to the field’s electric flux density. The polarization of an optical field is associated with the 

field’s spin angular momentum (SAM) and was predicted by Poynting, who introduced the 

analogy between circular polarization (a component of SAM) and a rotating object [2]. The first 

experimental demonstration of a circularly-polarized light beam transferring SAM to a quarter-

wave plate, was performed by Beth in 1936 [3]. The orbital component of optical angular 

momentum, not associated with the polarization of an optical field but rather with its wavefront, 

was only discovered nearly 60 years later by Allen et al. They showed that Laguerre-Gaussian 

(LG) laser modes, having an azimuthal phase dependence, possess a well-defined orbital 

angular momentum (OAM) [4]. LG beams contain a phase singularity, around which the phase 

(or wavefront) of the field increases azimuthally, exp(ilθ), thus forming an optical vortex. Here l 

indicates the azimuthal mode index (or topological charge of the optical vortex) and θ is the 

azimuthal angle. The intensity profile of a LG beam appears as a ‘ring’ or ‘donut’, because the 

intensity vanishes at the point of the singularity (where the phase or wavefront is undefined), 

resulting in a dark core in the centre of the beam. 

 

The discovery made by Allen et al. was not the first study into helically-phased beams and in 

fact they had been investigated for quite some time. Prior to 1992, no correlation to the beam’s 

orbital angular momentum was made, but what was of interest to most, was that these helically-

phased beams required a phase singularity (or optical vortex) to propagate as a dark core along 

the axis of the beam. Since the centre of the optical vortex possesses zero intensity, it makes 

sense that no one noted any angular momentum while studying only the phase singularity. If 

they had studied the light surrounding the singularity, they would have noted that it possesses 

OAM.   
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Investigations into singularities present in electromagnetic fields started in the 1970s with Nye 

and Berry. They first discovered that sound waves scattered off a rough surface produced 

intensity nulls around which the phase varied from 0 to 2π [5]. Later Nye and Berry discovered 

that phase singularities could also be produced by interfering multiple light beams [6]. Currently 

it is known that optical fields can be produced to contain multiple singularities, whose 

trajectories can form complex 3D shapes. Even though many investigations had been made into 

the formation and dynamics of optical vortices none noted that these optical vortices give rise to 

an angular momentum within the optical field (independent of the photon spin, associated with 

circular polarization).       

 

Since the discovery that LG beams carry OAM of lħ per photon [4, 7], numerous techniques for 

generating helically-phased beams have been realized. One of the earlier methods involved a 

diffractive optical element consisting of a diffraction grating with a fork dislocation [8]. When a 

fundamental Gaussian mode is centred on the fork dislocation, a helically-phased beam is 

produced as the output. Recently this diffractive optic has been encoded onto the liquid crystal 

display of a spatial light modulator (SLM) [9]. Although this method was available at the time 

of Allen et al.’s work, they made use of a telescope consisting of cylindrical lenses which 

transforms Hermite-Gaussian modes to LG modes [7]. Another approach which seems quite 

intuitive, is to pass a plane wave through an optical component which has a helical profile, so as 

to impart a helical structure into the phase profile of the beam. An optical element which is 

capable of such a transformation is a spiral phase plate (SPP) [10]. All of these methods will be 

discussed in chapter 2.  

 

Helically-phased beams in the form of LG modes have opened up many new research areas in 

the field of optical angular momentum. Just as Beth was able to witness the transfer of SAM to 

a suspended quarter-wave plate, so a similar observation with the transfer of OAM to matter 

should also be noted. In a similar fashion to the quarter-wave plate, which is used to generate 

circularly polarized light, one would expect to witness a transfer of OAM to the cylindrical lens 

mode converter, however this has proved too technically challenging. Alternatively, the transfer 

of OAM to matter was demonstrated with the use of an optical tweezer, which involved a 

micrometer-sized graphite particle illuminated by a tightly focused LG beam [11]. Since this 

demonstration, the field of optical trapping and tweezing has expanded from investigating how 

a trapped birefringent particle changes the SAM of a beam, but leaves the OAM component 

unchanged [12] to changing the sign of the angular momentum in order to develop optically 

driven micro-machines [13].   
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Helically-phased modes, which possess OAM at the single photon level, have offered a 

quantum optical system with a multi-dimensional Hilbert space for the investigations of 

quantum entanglement. Quantum entanglement, which is realized through the use of parametric 

down conversion, involves measuring a parameter of one of the down converted photons 

providing information about the parameter of its entangled photon pair, even though the two 

photons are spatially separated. This is not only a natural consequence of conservation of 

momentum or energy, but also a demonstration of the Einstein, Podolosky, Rosen (EPR) 

paradox [14]. If one were to measure the position of the two entangled photons there would be 

strong quantum correlations between the measurements as the two photons are created at the 

same lateral position. If one wanted to measure the momentum of each photon, there too would 

be strong correlations between the measurements due to the conservation of momentum during 

the down conversion process. However, if the decision to measure either the position or 

momentum is made at the last minute, this requires that the other entangled photon has a well-

defined position and momentum, which violates the uncertainty principle and validates the 

nonlocality of quantum mechanics. This has been demonstrated experimentally with position 

and momentum [15] and time and energy [16] and recently OAM [17]. Here it was shown that 

strong correlations are present in the OAM states of entangled photon pairs due to the 

conservation of momentum during the down conversion process. However, to demonstrate the 

EPR paradox they also showed strong correlations with a complementary basis: a superposition 

of LG and Gaussian modes.   

 

Since these fields offer an infinite-dimensional state space they provide a larger bandwidth for 

quantum cryptography [18-20] leading to many publications being dedicated to the 

measurement of OAM in order for higher-dimensional quantum information processing to be a 

success. Just as the fork dislocation, when illuminated with a fundamental Gaussian mode, will 

produce a helically-phased beam, so the process also works in reverse: a helically-phased beam 

illuminating a fork dislocation will produce a Gaussian mode, which when coupled into a single 

mode fibre allows for detection [17].  Adaptations to the fork dislocation have been made so as 

to produce 2D detection grids [21, 22]. A recent measurement technique has involved 

transforming the azimuthal position in an input beam to a transverse position in the output beam 

which is then focused to a lateral position [23]. A device which maintains the helical structure 

of the beam is a Dove prism embedded Mach-Zehnder interferometer [24 -26]. By setting the 

angle between the two Dove prisms appropriately all the odd values of l will constructively 
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interfere at one output port, while all the even l values appear at other output. Some of these 

measurement techniques will be discussed in detail in chapter 2.  

 

In this chapter, Maxwell’s equations will be given, leading to the derivation of the paraxial 

approximation of the Helmholtz wave equation (section 1.2.). The paraxial approximation of the 

Helmholtz wave equation will be used as the basis for investigating phase-structured 

electromagnetic waves (section 1.3.). Once the link between optical wavefront and OAM has 

been made, particular solutions of the paraxial approximation of the Helmholtz wave equation 

will be discussed. We will first discuss Gaussian beams (section 1.4.) as this is the output of the 

laser system used in this work. They have a flat wavefront, corresponding to an OAM value of l 

= 0, and are often used as the initial beam in most optical setups for generating beams which 

carry OAM. Two other modes which will be discussed are LG (section 1.5.) and Bessel beams 

(section 1.6.), as they each carry an OAM of lħ per photon and are the two modes implemented 

in this thesis. Other beams which have an azimuthal angular dependence of exp(ilθ) do exist, 

such as Mathieu and Airy beams, but as we have not applied them in this work, they will not be 

considered here.   

 

1.2.  Maxwell’s equations and the paraxial approximation of 

the Helmholtz wave equation 

 
The derivation of the paraxial Helmholtz wave equation begins with Maxwell’s equations in a 

vacuum, defined as  

 

,0=⋅∇ E
v

                                                         (1.2.1) 

,0=⋅∇ B
v

                                                         (1.2.2) 
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t
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∂
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                                                    (1.2.3) 
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v
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µε                                                   (1.2.4) 

 

ε0 and �0 are the permittivity and the permeability of free space, respectively and are related to 

the speed of light in a vacuum, c, as follows 001 εµ=c .  
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The wave equation is obtained by taking the curl of Faraday’s law of induction (Eq. (1.2.3)) and 

making use of the vector identity ( ) EEE
vvv

2)( ∇−⋅∇∇=×∇×∇ , 
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                      (1.2.5) 

 

Substituting Eqs (1.2.1) and (1.2.4) into the above equation, yields the wave equation 
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                                                 (1.2.7) 

 

The Helmholtz wave equation, which is the time-independent form of the wave equation (Eq. 

(1.2.7)), is obtained by performing separation of variables on the electric field, so as to remove 

the time-dependent component. The electric field (or wave function) ),,,( tzyxE
v

, can be 

separated into spatial (A(x,y,z)) and time (T(t)) domains 

 

).(),,(),,,( tTzyxAtzyxE =                                           (1.2.8) 

 

Substituting Eq. (1.2.8) into Eq. (1.2.7) results in  
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In order for the above equation to hold true, both sides, left and right, need to be equal to the 

same constant, -k2 (chosen only for convenience in the resulting solution)  
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and 
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                                             (1.2.12) 

 

Rearranging Eq. (1.2.11) results in 

 

( ) ,0),,(),,(),,( 2222 =+∇=+∇ zyxAkzyxAkzyxA                         (1.2.13) 

 

which is the Helmholtz wave equation, where k is the wave-vector and is defined as k = ω/c or k 

= 2π/λ.   

 

Within the paraxial approximation, the complex magnitude of the electric field becomes  

 

),exp(),,(),,( ikzzyxuzyxE =                                            (1.2.14) 

 

where u is the complex-valued amplitude which modulates the sinusoidal plane, exp(ikz), and z 

is the axis of propagation. Substituting the above form for the electric field (Eq. (1.2.14)) into 

the Helmholtz wave equation (Eq. 1.2.13)), yields  
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Equation (1.2.15) is the Helmholtz equation, without the paraxial approximation. To 

approximate the above equation in the paraxial regime, the following condition which defines 

the paraxial approximation is implemented 
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The paraxial approximation, described mathematically above, states that the longitudinal 

variation in the amplitude, u(x,y,z), is small in comparison to the wavelength of the beam (k = 

2π/λ). Or that the rate of change of the field in the z direction is small compared to the transverse 

direction. Therefore the third term in Eq. (1.2.15) is neglected, resulting in 
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which is termed the paraxial approximation of the Helmholtz wave equation.  

 

The paraxial approximation is used to describe laser beam propagation as the divergence angle 

of the beam is considered to be small. There exist many solutions to the paraxial Helmholtz 

wave equation (Eq. (1.2.17)), whose amplitude distribution, u(x,y,z), is described by either a 

Gaussian, LG, Bessel, Airy (all having cylindrical symmetry) or Mathieu (having elliptic-

cylindrical symmetry) functions. However, we will not discuss all of these solutions; instead we 

will focus on the solutions which have been implemented in this thesis, namely: Gaussian 

(section 1.4), Laguerre-Gaussian (section 1.5) and Bessel solutions (section 1.6).    

 

1.3.  Azimuthal phase dependent beams and their orbital 

angular momentum 

 

Since this thesis is dedicated to individual fields carrying OAM and superpositions of these 

fields, we will (for the benefit of the reader) illustrate that light, having an amplitude 

distribution of the form u(r,φ,z) = u0(r,z)exp(ilθ), will possess OAM. Determining the total 

angular momentum density for an optical field has been implemented previously in many 

publications [27-35]. In this derivation, we proceed in a similar fashion, by first calculating the 

Poynting vector for the beam to illustrate that the OAM density is proportional to l, the 

azimuthal mode index.    

 

In order to obtain the Poynting vector, we will start with a vector potential in the Lorentz gauge. 

Since we are not concerned with SAM, we will consider only linearly polarized light and in 
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particular, we will consider the vector potential to be linearly polarized along the x̂  direction 

[34] 

 

.ˆ))(exp(),,(),,( xtkzizyxuzyxA ω−=
v

                                   (1.3.1) 

 

From the vector potential, the components of the electric and magnetic fields in terms of the 

complex amplitude distribution, u, can be obtained 
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The derivatives of the field in the z direction have been neglected, as we are considering the 

paraxial limit.   

 

The time-average Poynting vector, which gives the directional energy flux density, is 

determined as  

 

,
2

0 realrealreal BEcSS
rrrr

×== ε                                          (1.3.4) 

 

where the real components of the electric and magnetic fields are found to be 
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and 
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respectively. By substituting Eqs (1.3.2), (1.3.3), (1.3.5) and (1.3.6) into the equation for the 

time-averaged Poynting vector (Eq. (1.3.4)), the following result is obtained 

 

( )BEBE
c
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rrrrrrr
×+×=×= **

2
02

0
4
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ε                                (1.3.7)  
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c

S
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ωε

                                      (1.3.8) 

 

The gradient in the above expression only applies in the transverse directions, x and y.  

 

The result for the Poynting vector, as described in Eq. (1.3.8), is now applied to a field 

(described in cylindrical coordinates) having an amplitude distribution of u(r,θ,z) = 

u0(r,z)exp(ilθ), resulting in each component of the Poynting vector being expressed as 

 

,0=rS                                                                   (1.3.9) 

,
2

2
00

r

ul
S

ωε
θ =                                                           (1.3.10) 

.2
00 ukS z ωε=                                                           (1.3.11) 

 

Here the radial component of the Poynting vector vanishes for the nondiffracting case, but is 

non-zero for a more general diffracting field. By implementing the following expression for the 

total angular momentum density 

 

( ) ,
1
2 zz Sr

c
L ×=                                                        (1.3.12) 

 

and substituting in the components for the Poynting vector, as given in Eqs (1.3.9) to (1.3.11), 

we obtain the total angular momentum density to be 

 

.
2

2

2
00

c

ul
Lz

ωε
=                                                           (1.3.13) 

 

Since, by definition the field has no SAM, the only angular momentum present in the field is 

OAM. From Eq. (1.3.13), we see that the OAM density of the beam is well-defined and 
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proportional to the integer l, which arises from the azimuthal phase dependence, exp(ilθ), of the 

amplitude distribution.   

 

1.4. Gaussian beams 

 

The first solution to the paraxial Helmholtz wave equation, that we will consider, is the 

Gaussian beam. This is the fundamental mode that we will use in the laboratory to generate 

beams having an azimuthal phase dependence in their amplitude distribution. The complete 

expression for the amplitude of the Gaussian beam is  
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where ω0 is the minimum beam radius and the expressions for the radius of curvature, R(z), 

beam radius, ω(z), and Gouy phase Φ(z) are given as 
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λ

πω 2
0=Rz  is termed the Rayleigh range and gives a measure as to how quickly a beam will 

diverge. If zR is short, the beam will diverge quickly and if it is long, the beam will diverge 

slowly.  

 

The optical intensity can be found by making use of the following relationship I(r,z) = |u(r,z)|
2
,  
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The intensity has a Gaussian distribution, with the peak occurring at r = 0 and decreasing 

monotonically with an increase in r, evident in Fig. 1.4.1 (a).  

 

 

Fig. 1.4.1. (a) Cross-sectional profile and (b) transverse profile of the intensity of a Gaussian 

beam.   

 

1.5.  Laguerre-Gaussian beams 

 

The previously discussed Gaussian mode is not the only solution to the paraxial approximation 

of the Helmholtz wave equation and in fact there exist many other solutions, such as the 

Laguerre-Gaussian (LG) mode, whose amplitude distribution is 
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where Φ(p,l,z) is the Gouy phase for the LG mode and is given by 
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The other parameters, such as R(z) and ω(z), are defined as for the Gaussian beam, in Eqs 

(1.4.2) and (1.4.3), respectively. The LG modes are appropriately given their name as the 

expression is a mixture of a Laguerre polynomial and Gaussian parameters. A LG mode is 

described by the indices, l and p. If the indices are set to zero, l = p = 0, then the mode 

simplifies to a Gaussian mode.  

 

A series of transverse intensity profiles for various values of l and p is depicted in Fig. 1.5.1. 

When l ≠ 0 the intensity profile is described by a central null, whose radius increases with 

increasing |l| and the radial index, p, denotes the number of concentric rings, given by p + 1. The 

cross-sectional intensity profile for two LG modes having the following indices p = 0, l = 1 and 

p = 0, l = 2 are given in Figs 1.5.2. and 1.5.3, respectively, to illustrate that the radius of the 

annular ring increases with |l|.  

 

 

Fig. 1.5.1. Transverse intensity profiles of LGl,p modes. The corresponding indices, l and p, are 

given as inserts.   
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Fig. 1.5.2. (a) Cross-sectional profile and (b) transverse profile of the intensity of a LG1,0 beam.   

 

 

Fig. 1.5.3. (a) Cross-sectional profile and (b) transverse profile of the intensity of a LG2,0 beam.   

 

In this work, we choose to alter only the phase component of our initial Gaussian beam with a 

spatial light modulator (this technique will be discussed in detail in chapter 2), and so we are 

unable to generate true LG modes, such as that described in Eq. (1.5.1), and instead we generate 

an approximation, mathematically described as  

 

).exp()(),( 0 θθ ilruru =                                                   (1.5.3) 
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u is the amplitude distribution of the approximated LG mode, often termed an optical vortex; u0 

is the initial Gaussian amplitude distribution and exp(ilθ) is the azimuthally-varying phase 

factor, which gives rise to the OAM carried in the optical vortex.  

 

When the mode index l = 0, no azimuthally-varying phase is imparted to the initial Gaussian 

beam, u0, resulting in the beam remaining in its initial Gaussian state, having a spherical 

wavefront. As |l| increases so the azimuthally-varying phase factor, exp(ilθ), converts the 

spherical wavefront, of the Gaussian beam, into a helical wavefront, where the number of 

spirals in the wavefront is given by |l|. The sign of l denotes the handedness of the spiral. A 

clockwise rotation can be assigned to a positive l and an anticlockwise rotation to a negative l.  

 

The first row, in Fig. 1.5.4, contains a surface plot of the wavefront of different vortex modes. 

This too can be viewed as the phase profile, exp(ilθ), imparted to the initial Gaussian beam. A 

wavefront maps out a surface of points, in the wave, all possessing the same phase. The values 

for |l| increase from left to right and are given as inserts in the first row. At the centre of each 

phase profile, it is evident that the phase is undefined. This manifests as a null in the intensity of 

the mode, which is evident in the middle row. The intensity profiles, given in the middle row, 

are calculated by implementing Eq. (1.5.3). Corresponding 3D plots of the wavefronts, for each 

mode, are given in the bottom row, illustrating that the mode index |l| assigns the number of 

spirals in the wavefront and the sign of l its handedness.  
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Fig. 1.5.4. Top row: Phase profiles for various vortex modes. The red arrow denotes the rotation 

in the phase profile. Middle row: Corresponding transverse intensity profiles for the various 

vortex modes. Bottom row:  Corresponding wavefronts for the various vortex modes, courtesy 

of [36].  

 

1.6.  Bessel beams    

 

Another solution to the Helmholtz wave equation, which we are interested in, for their non-

diffracting nature and ability to carry OAM, are Bessel beams. It was Durnin [37] who first 

discovered a set of solutions for the free-space Helmholtz equation which are propagation-

invariant and are mathematically described by Bessel functions. Mathematically, these solutions 

consist of an infinite number of concentric rings, existing over an infinite area, resulting in the 

beam carrying an infinite amount of power. Since this is not physically possible, the Bessel 

beam that is generated in the laboratory is an approximation – a Bessel-Gauss beam, whose 

field is described as  
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A is an amplitude factor, Jl is the  l
th
-order Bessel function, rk  is the radial wave-vector and ω0 

is the initial beam waist. The parameters ω(z), zR, R(z) and Φ(z) have the same definition as for 

those presented in section 1.4. When the propagation distance, z, is zero, the field simplifies to a 

Bessel function enveloped by a Gaussian beam   
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Both the zero-order and higher-order Bessel beams propagate over an extended distance in a 

diffraction free manner. To illustrate the visual distinction between a zero-order and a higher-

order Bessel beam, an example of their cross-sectional and transverse intensity profiles appear 

in Figs 1.6.1 and 1.6.2, respectively. 

    

 

Fig. 1.6.1. (a) Cross-sectional profile and (b) transverse profile of the intensity of a zero-order 

Bessel beam.   
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Fig. 1.6.2. (a) Cross-sectional profile and (b) transverse profile of the intensity of a higher-order 

(l = 3) Bessel beam.   

 

The original method for generating zero-order Bessel beams was introduced by Durnin [38], 

when he illuminated a ring-slit aperture in the back focal plane of a lens with a plane wave. 

Since then, refractive optical elements, such as axicons [39-41] and diffractive optical elements 

such as computer generated holograms [42-47], have been used to generate both zero and 

higher-order Bessel beams. In chapter 3 we will illustrate how we generate superpositions of 

higher-order Bessel beams.  

 

Another interesting property of these beams, apart from being non-diffracting, is they are self-

reconstructing [48, 49], meaning they are able to reconstruct after encountering an obstacle. The 

light rays, forming a Bessel beam, propagate on a cone, so placing an obstacle in the path of the 

beam will cause some of the light to be obstructed but the light rays that are not blocked, will 

reconstruct to reform the Bessel beam.  

 

1.7.  Conclusion  

 

We started the chapter with a literature review of optical OAM (section 1.1), followed by 

implementing Maxwell’s equations to derive the paraxial approximation of the Helmholtz wave 

equation (section 1.2.). Since beams carrying a phase factor of exp(ilθ) are of particular 

importance in this thesis, due to the fact that they possess a well-defined OAM, it was shown in 

section 1.3 that this phase factor gives rise to OAM in the beam. Some solutions to the 
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Helmholtz wave equation, which are implemented in this thesis, such as Gaussian beams 

(section 1.4), LG beams (section 1.5) and Bessel beams (section 1.6) were defined.   
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CHAPTER TWO 

 

 

Components to Manipulate Orbital Angular Momentum 

 

 

2.1.  Introduction 

 

Since the discovery that photons in helically-phased light beams have a quantized OAM [1, 2], 

researchers have developed techniques to efficiently generate light beams which carry OAM, be 

it either a true LG mode or an optical vortex. The generation of such modes has advanced from 

cylindrical lens mode converters [1] to spiral phase plates (SPP) [3] and the widely-used fork 

hologram [4]. The fork holograms, previously only generated in the form of computer generated 

holograms, printed on transparent-film, are now reproduced with a liquid crystal device: a 

spatial light modulator (SLM) [5].  

 

Apart from being able to generate beams which carry OAM, there is also a great need to be able 

to measure the amount of OAM present in an optical field. The need for measurement 

techniques has arisen as a means for higher-dimensional quantum information processing, for 

example quantum cryptography [6 – 8], to be a success. Currently, many techniques exist in the 

area of measuring OAM, ranging from computer-generated holograms [9-12] to interferometers 

[13-15]. The fork hologram, which when illuminated with the output mode from a laser, or 

single-mode fiber, produces the required OAM state in the first-diffraction order. This can also 

be used in reverse to couple light of a particular OAM state into a single-mode fibre [9]. 

However, taking advantage of the large state-space offered by OAM requires that at any given 

time one must test for all possible states, and in the case of the fork hologram, one can only test 

for the OAM state that is encoded in the fork hologram. Attempts to develop more complicated 

holograms which test multiple states have been made [10, 11], however their efficiency is 

inversely proportional to the number of states being tested. Recently it has been shown that two 

SLMs in conjunction with a lens can be used to convert the OAM state of light to a specific 

lateral position [12]. Even though this approach proved effective for the separation of eleven 

OAM states, it is limited in that the resulting spots slightly overlap. Other techniques have 

involved de-multiplexing free-space OAM beams [16], as well as investigating the diffraction 

patterns of beams carrying OAM [17].  In all of the previously mentioned measurement 
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techniques, the OAM mode is altered during the measurement procedure. An alternative setup 

which does not alter the OAM state during the measurement procedure, is a Mach-Zehnder 

interferometer with two Dove prisms in each arm [13], which sorts odd and even OAM states 

into two separate ports.  

 

All of the above mentioned techniques to generate optical OAM will be discussed in this 

chapter. We will first look at how holograms, and in particular digital holograms, are used to 

generate, as well as detect, vortex modes. Due to the fact that one can easily compute the digital 

hologram one wishes to create, this is the only technique that we implement in this work. The 

other two methods for generating vortex modes, SPPs and cylindrical lens mode converters, 

although not executed experimentally in this work, will be outlined in sections 2.6 and 2.7, 

respectively. The only other technique for measuring OAM modes that will be discussed in this 

chapter is the Dove-prism embedded Mach-Zehnder interferometer. The concept behind this 

device will be outlined in section 2.8. This interferometer is known to be very unstable and in 

section 2.9, we present a new arrangement for a robust “odd-even OAM sorter” [14]. In the 

following chapter, chapter 3, we will implement the Dove-prism embedded Mach-Zehnder 

interferometer to mimic an amplitude damping channel for OAM modes [18].  

 

2.2.  Digital holography  

 

Before discussing the technique of digital holography, it makes sense to first introduce the 

principle behind conventional holography. A schematic illustrating the process behind 

conventional holography is given in Fig. 2.2.1. Conventional holography involves creating a 

hologram by illuminating an object with a laser beam [19]. The interference pattern that is 

obtained between the object beam and the reference beam is recorded onto photographic film 

and is termed a hologram. By reversing the process and illuminating the hologram (or 

interference pattern) with the initial reference beam (at the same angle of incidence as when 

producing the hologram), the object beam is reconstructed.   
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Fig. 2.2.1. Schematic illustrating the principle behind how (a) a hologram is constructed and (b) 

then used to form the desired object beam.   

 

In the case of digital holography one does not need the object beam to physically exist. If the 

interference pattern between the reference beam and the object we wish to reconstruct can be 

mathematically formulated, the interference pattern can be computed and is often referred to as 

a computer-generated hologram. The computer-generated hologram can then be printed onto 

photographic film, thus resorting back to the early holography techniques. However, with the 

innovation of liquid crystal devices, these computer-generated holograms can be implemented 

digitally. The advantage in this technology is that no physical printing of the hologram is 

required. Instead a calculated hologram is electronically addressed to a liquid-crystal display 

(much like displaying an image on a computer screen), which allows a single liquid crystal 

display to be re-used for many different holograms, resulting in no re-alignment of the optical 

setup when a hologram is changed.  
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2.3.  Spatial light modulators 

 

A device which implements liquid crystal technology for the construction of digital holograms 

is a spatial light modulator (SLM). It is suitably given its name because it modulates the phase 

(and in some cases the amplitude) of an incident beam. The SLM that we utilize in this work is 

a HoloEye PLUTO VIS SLM. It is a phase-only device and we use it to alter only the phase 

structure of our reference beam. This device can also be used to perform amplitude modulation, 

which will be discussed in chapter 4.  

 

A photograph of one of our SLMs appears in Fig. 2.3.1. It consists of a liquid crystal display 

which is programmed and addressed by a circuit board via a flex-cable. Mathematically, a grey-

scale interference pattern between our reference beam and the object beam that we wish to 

reconstruct is computed and programmed onto the SLM, where we are able to modulate the 

phase of our reference beam.  The phase of the reference beam is altered according to the shade 

of grey present at each pixel of the computer-generated hologram.  

 

 

Fig. 2.3.1. Photograph of a HoloEye SLM, marking the circuit board, flex-cable and liquid 

crystal display (of which an enlarged view is contained as an insert in the bottom right corner).  

 

The liquid crystal display is the crucial component of the SLM and (in our case) it consists of 

1920 × 1080 pixels each having a dimension of 8 �m. The mechanism of the display is based on 

electrically controlled birefringence. Each pixel is addressed by two electrodes and the 

molecules making up the pixels are aligned parallel to the electrodes, as in Fig. 2.3.2. When the 

electrodes are applied with an electric field, the molecules are forced to tilt in the direction of 

the electric field.   
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Fig. 2.3.2. Representation of an individual pixel in the liquid crystal display.  

 

The grey-scale holograms are represented with 256 grey levels and the voltages across each 

pixel are adjusted appropriately according to the shade of grey present at each pixel in the 

hologram. This is depicted in Fig. 2.3.3, where black, representing no phase modulation, 

requires no voltage to be addressed to the electrodes. Increasing the phase modulation (or grey-

level) involves increasing the voltage applied across the pixels. When no voltage is applied 

across the pixel, the molecules remain aligned parallel to the electrodes. As the voltage 

increases the molecules tilt further away from their initial orientation. 

 

The incident light needs to be linearly polarized, parallel to the axis of the liquid crystal 

molecules (i.e. vertically polarized). When the molecules tilt in the direction of the applied 

electric field, the refractive index seen by the light changes accordingly and consequently so 

does its phase, evident from the following relationship 

 

.
2

dn
λ

π
δ =                                                         (2.3.1) 

 

δ represents the phase-shift experienced by the beam; λ is the wavelength of the incident beam; 

d is the optical path length in the liquid crystal pixel and n is the refractive index of the liquid 

crystal pixel, which is proportional to the voltage applied across the electrodes.   
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Fig. 2.3.3. A schematic, illustrating that the grey value present in the hologram is translated into 

an electric field applied across an array of liquid crystal molecules. This results in the molecules 

tilting in the direction of the applied electric field, thus changing the refractive index of the 

liquid crystal pixel and consequently the phase of the incident wave.  

 

From Eq. (2.3.1) it is evident that the phase modulation is dependent on the wavelength of the 

incident light. For example, if one requires a grey-level of 128 to represent a 1π phase shift, then 

the voltage required to produce this phase shift for a wavelength of 633 nm will differ from that 

required for 534 nm. It is for this reason that the user needs to adapt the electro-optical response 

of the SLM when switching between different laser sources. The calibration procedure for 

optimizing the SLM at a particular wavelength is outlined in appendix A1.  

 

Although SLMs are extremely versatile, they are not free of efficiency problems. The major 

concern is that not all of the incident light is diffracted to produce the desired object beam. This 

is due to (1) the structure of the liquid crystal display and (2) the diffraction efficiency of the 

device.  

 

The liquid crystal display consists of a 2D array of pixels, where the spacing between the pixels 

cause the device to operate as a 2D grating, resulting in the light being diffracted into many 

orders. Figure 2.3.4 contains a photograph of the SLM, while it is not addressed with a 

computer-generated hologram, illustrating how the grid structure of the pixels produces many 

diffraction orders. This is also evident in the intensity profile of the field reflected from the 

SLM (contained as an insert in Fig. 2.3.4). The other orders, surrounding the bright central spot 

are additional diffraction spots from the 2D grating structure. When the incoming light is 

incident on a non-pixel (i.e. a space between pixels) the light is lost and not reflected. This is 

referred to as the ‘fill factor’, which means that a certain portion of the area of the liquid crystal 
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display is covered by pixels while the remaining area by non pixels. This also contributes to the 

efficiency problems.  

 

 

Fig. 2.3.4. Photograph of the SLM, illustrating the diffraction orders due to the pixelation of the 

device. An intensity profile of the field, reflected from the liquid crystal display, is shown as an 

insert.   

 

The second issue is that the liquid crystal device is unable to diffract the entire incident beam 

into the required object beam. These devices are known to have a less than perfect diffraction 

efficiency, and in the case of the HoloEye SLM, it has a diffraction efficiency of 80%. This 

means that 80% of the incident beam will be diffracted into the required object mode, while the 

remaining 20% will consist of the undiffracted incident beam. The field reflected from the 

liquid crystal display will consist of a superposition of diffracted object beam and undiffracted 

reference beam, which will give rise to a reduction in the quality of the required mode. To 

overcome this issue, a grating is placed on top of the computer-generated hologram so as to 

separate the diffracted object beam (the first order) from undiffracted reference beam (the zero 

order).     

 

To illustrate this, first ignore all the other orders which are introduced due to the pixelation of 

the display and consider only the centre on-axis order. Figure 2.3.5 contains an example where a 

computer-generated hologram is used to generate our institute’s logo (NLC), when it is 

illuminated by a Gaussian beam.  When the display contains only the computer-generated 

hologram, a Gaussian spot appears in the centre of the object beam. This is the portion of the 

incident reference Gaussian beam which has not been diffracted. To separate the diffracted and 
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undiffracted components a grating is placed over the computer-generated hologram. This is 

illustrated in columns 2 to 5 of Fig. 2.3.5. By decreasing the grating spacing, the diffracted and 

undiffracted components are separated farther apart. It is the diffracted component (the NLC 

logo) that moves farther away from the undiffracted stationary Gaussian component.  

 

 

Fig. 2.3.5. (a) The computer-generated hologram addressed to the SLM so as to produce the 

NLC logo (f). (b) – (e) the grating which is placed over (a) so as to separate the first diffraction 

order from the zero diffraction order, illustrated in (g) – (j). The red arrow marks the 

undiffracted Gaussian spot.  

 

Since a basic understanding of how a SLM works has been given we will move onto the 

computer-generated holograms that are produced, so as to realize vortex modes in the 

laboratory. The two types of holograms that will be discussed are termed spiral and fork 

holograms and the choice for their names will become evident in sections 2.4 and 2.5. 

 

2.4.  Spiral holograms 

 

The mode which we are interested in creating is a vortex mode, whose amplitude distribution is 

mathematically described by Eq. (1.5.3). Therefore since we use a Gaussian beam as our initial 

reference beam, we need only generate a hologram which represents the following transmission 

function 

 

).exp()( θθ ilt =                                                  (2.4.1) 

 

A variety of spiral holograms are given in Fig. 2.4.1, accompanied with experimentally 

produced vortex modes. As the number of times that the phase in the spiral hologram varies 

from 0 (black) to 2π (white), so the topological charge carried by the vortex mode increases.  
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Fig. 2.4.1. Top row: A series of computer-generated holograms, with increasing l (from left to 

right), with accompanying experimentally recorded vortex modes (bottom row). For the 

recording of the experimentally produced modes (bottom row) a blazed grating was used (this 

will be discussed in section 2.4.2).   

 

However, as with most computer-generated holograms, if a grating has not been introduced the 

vortex mode produced will consist of a mixture of the undiffracted Gaussian beam and the 

diffracted vortex mode. This results in l individual vortices (or singularities) each of a 

topological charge of one, existing in the final mode. This effect is illustrated in Fig. 2.4.2 (c). 

To overcome this problem, a grating is added to the hologram so as to spatially separate the 

undiffracted and diffracted components. In particular a blazed grating is used, which is 

discussed in section 2.4.2.  

 

 

Fig. 2.4.2 Top row: illustrates the mode (c) that is produced when a Gaussian beam (a) 

illuminates a spiral hologram (b). Adding a grating to the spiral hologram, as in the insert of (e), 

the undiffracted and diffracted components separate, as in the insert of (f).  
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2.4.1.  Off-axis spiral holograms 

 

The spiral hologram, as given in Eq. (2.4.1), will only form the required vortex mode as long as 

the reference Gaussian mode illuminates the centre of the hologram. In other words, the 

propagation axis of the Gaussian beam needs to be collinear with the singularity in the spiral 

hologram. Any displacement of the initial Gaussian beam off of the singularity in the hologram 

produces a superposition of a Gaussian and a vortex mode. This has been noted in Ref. [20].  

 

By measuring the ratio between the maximum and minimum intensities in the annular ring 

(illustrated in Fig. 2.4.1.1), the percentages of Gaussian and vortex modes present in the field 

can be determined. Figure 2.4.1.1 contains a theoretically plotted intensity profile for a mode 

produced by a displaced spiral hologram, where l = 1, as well as the cross-sectional intensity 

profile. The ratio of I1 to I2 gives the ratio of Gaussian to vortex mode present in the field. The 

next two rows contain experimentally recorded and theoretically calculated intensity profiles for 

spiral holograms displaced by a distance of 0 mm, 0.04 mm and 0.08 mm. The graph in the 

bottom row contains a plot of the vortex percentage present in the superposition, as a function of 

the displacement of the singularity in the hologram. The red points are measured results and the 

green curve is the theoretical calculation, illustrating very good agreement.  
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Fig. 2.4.1.1. Top row: A mode produced by a displaced spiral hologram accompanied with a 

cross-sectional intensity profile (taken across the white dotted line). Middle row: 

Experimentally recorded (top) and theoretically calculated (bottom) intensity profiles for 

holograms displaced at a distance of 0.0 mm, 0.04 mm and 0.08 mm. Bottom row: Plot of the 

percentage of vortex mode present in the superposition, as a function of the displacement 

distance. The green curve is the theoretical result and the red dots are the measured data.   

 

2.4.2.  Blazed spiral holograms 

 

A blazed grating, unlike a standard grating which consists of a series of sinusoidal grooves, is 

constructed in such a way that the grooves have a triangular profile [21] (refer to Fig. 2.4.2.1). 

Unlike sinusoidal gratings, which produce a diffraction pattern whose intensity profile is 
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described by a Gaussian function around the first diffraction order, a blazed grating transfers 

most of the incident light solely to the first diffraction order. The efficiency for the blazed 

grating to transmit the light into the first diffraction order is dependent on the blaze angle θB 

(given in Fig. 2.4.2.1).  

 

 

Fig. 2.4.2.1. Left: A blazed grating. Right: A cross-sectional profile of the blazed grating (taken 

across the red dotted line on the left).  

 

The expression for a spiral hologram (Eq. 2.4.2) superimposed with a blazed grating is given as 

[22] 
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where Λ is the grating spacing. Examples of holograms (computed with the use of Eq. (2.4.2.1)) 

are given in Fig. 2.4.2.2, for a set grating spacing of Λ = 23 pixels. As the value of l increases so 

the number of dislocations (or fork prongs) increases. The sign of l denotes whether the prongs 

point up (positive) or down (negative).  

 

 

Fig. 2.4.2.2. A series of blazed spiral holograms for l = -3 to 3.  

 

There is a limit to the dimension of the grating spacing, Λ, which can be written to the SLM. If 

it is too small, then unwanted dislocations may appear in the hologram, as in the case of Fig. 

2.4.2.3 (b) - (d). This will result in unwanted singularities (or vortices) appearing in the desired 

mode, where the number of additional vortices is related to the number of unwanted 
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dislocations. An example of this is given as an insert in Fig. 2.4.2.3 (d). These interference 

patterns (b) – (d) that are formed are termed Moiré patterns [23].  

 

 

Fig. 2.4.2.3 Blazed spiral holograms having the following grating spacings (a) 50 pixels; (b) 9 

pixels; (c) 7 pixels; and (d) 4 pixels. An insert of the required vortex mode produced by 

hologram (a) is given. The mode produced by hologram (d) is also given as an insert.  

 

To detect an OAM mode of charge l, a blazed spiral hologram can be used when it is assigned 

the complex conjugate of the mode of interest (i.e. (exp(ilθ))* = exp(-ilθ)). For example, if one 

requires to detect photons having an OAM of l = 2, then a blazed spiral hologram of �m = -2 is 

encoded onto the SLM and a single mode fibre is placed at the first diffraction order to couple 

in the Gaussian mode.  

 

Figure 2.4.2.4 contains a photograph of the experimental setup, which we used to detect 

incoming vortex modes with the use of a blazed spiral hologram. SLM 1 was used to generate 

the vortex mode (the hologram is depicted alongside SLM 1), which was then imaged with a 4f 

system to the plane of SLM 2. A 4f lens system was used, as opposed to a 2f system (which 

merely images the amplitude), as we wanted to image both the amplitude and phase. The 

hologram encoded onto SLM 2 is the complex conjugate of that which was programmed onto 

SLM 1 and appears next to SLM 2. After SLM 2, we monitor the two diffraction orders, n = 0 

and n = 1, and noted that a Gaussian mode was produced in the 0
th
 diffraction order, resulting in 

light being coupled into the single mode fibre. A vortex mode was produced in the first 

diffraction order, resulting in minimal light (due to a misalignment in the system) being coupled 

into the single mode fibre.       
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Fig. 2.4.2.4. A photograph, with accompanying labels, illustrating the detection of a l = 1 vortex 

mode. The red arrows mark the direction of the beam, as well as the two diffraction orders after 

SLM 2. The prism (P) speeds up the diffraction of the two orders.  

 

2.5.  Fork holograms 

 

The next form of hologram that is used to generate vortex modes is a fork hologram. It is very 

similar to the blazed spiral hologram, in its appearance, however instead of producing a single 

vortex mode in the first diffraction order, vortex modes are produced in all the other diffraction 

orders.  

 

The transmission function for a fork hologram, as with all computer-generated holograms, is 

produced by determining the interference pattern between a reference beam, in this case a plane 

wave, and an optical vortex, resulting in the following transmittance function [24] 
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where Λ is the grating spacing. Examples of holograms (computed using Eq. (2.5.1)) are given 

in Fig. 2.5.1, for a set grating spacing of Λ = 21 pixels. As the value of l increases so the 
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number of fork prongs increases and the sign of l denotes whether the prongs point up (positive) 

or down (negative), just as in the case of the blazed spiral holograms.   

 

 

Fig. 2.5.1. A series of fork holograms for l = -3 to 3. 

 

The grating used in the fork hologram is a sinusoidal grating and a cross-section of the grating is 

given in Fig. 2.5.2.  

  

 

Fig. 2.5.2. Left: A sinusoidal grating. Right: A cross-sectional profile of the sinusoidal grating 

(taken across the red dotted line on the left).  

 

In using the fork hologram, which has a sinusoidal grating, to generate vortex modes, -n to n 

diffraction orders are produced. The topological charge of the vortex at each diffraction order is 

dependent on the diffraction order, n, and the charge of the fork hologram, �m, as follows [9] 

 

.mnl ∆=                                                         (2.5.2) 

 

A particular scenario is given in Fig. 2.5.3, when a Gaussian beam (having a topological charge 

of l = 0) illuminates the centre of the fork hologram, �m = 1, and the topological charges of the 

vortices at each diffraction order is given by Eq. (2.5.2), i.e. l-2 = -2, l-1 = -1, l0 = 0, l1 = 1and l2 = 

2. Diffraction orders on either side of n = -2 and n = 2, do exist, but have been omitted for 

simplicity. As in the case of the blazed spiral hologram, the incident beam needs to be centred 

on the singularity in the fork hologram in order for a pure vortex mode to be produced. 
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Fig. 2.5.3. A schematic illustrating the diffraction orders that are produced when a Gaussian 

beam, l = 0, illuminates a fork hologram, having a charge of �m = 1. 

 

As well as being used for the generation of vortex beams, the fork hologram can also be used in 

reverse to measure topological charges of vortex beams.  

 

In Ref [9], it is stated that: “Reversing this process, a photon with angular momentum �mħ 

before the grating can be detected by the mono-mode fibre detector placed in the first 

diffraction order”.  This means that an incident vortex mode, having a charge equal to the 

charge of the “fork” hologram, will produce a Gaussian beam in the first diffraction order. The 

corresponding charge of the vortex mode present at each of the n
th diffraction orders is 

determined as follows 

 

,in lmnl +∆=                                                       (2.5.3) 

 

where ln denotes the charge in the n
th
 diffraction order and li is the initial charge in the beam, 

incident on the fork hologram.  

 

An example is given in Fig. 2.5.4. If a vortex mode having a charge of li = 2, illuminates a fork 

hologram having a charge of �m = -2, then a Gaussian beam will form in the first diffraction 

order. Intuitively, this makes sense as we are multiplying the vortex mode u0exp(ilθ) by its 

complex conjugate, exp(-ilθ), and so the Gaussian component, u0, is produced. A single-mode 

fibre, which couples in only the Gaussian mode, is placed at the first diffraction order so as to 
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detect single photons possessing an OAM of –�m (in this case an OAM value of 2ħ). The 

disadvantage to this technique is that only the photons possessing an OAM of –�m are detected.  

 

 

Fig. 2.5.4. A schematic illustrating how a fork hologram can be used to detect a vortex mode of 

charge –�m. 

 

2.6.  Spiral phase plates 

 

A spiral phase plate (SPP) [3], also referred to as a vortex lens, is constructed from a piece of 

transparent material (such as fused silica) which has a gradually increasing, spiralling thickness. 

This imposes a vortex structure on the incident beam by linearly varying the optical path length 

and thus inducing a phase shift in the beam. An example of a SPP is given in Fig. 2.6.1.  

 

 

Fig. 2.6.1. (a) A photograph of a SPP courtesy of [25]. (b) Schematic of the mechanism of a 

SPP courtesy of [26].  
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When etching or micro-machining the spiral surface into the transparent material, the pitch 

(given as �d in Fig. 2.6.1) is related to the wavelength, λ, the desired charge, �m and the 

refractive indices of the material, nm, and its surroundings, ns, [27] 
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� is termed the pitch multiplicity and is given by the number of pitch edges (or dislocations) in 

the SPP.  

 

The number of spirals etched into the SPP can be increased, similar to the spiral hologram. 

However, the spiral surface needs to be ‘smooth’ in order for the SPP to be efficient at 

diffracting the light, so increasing the number of spirals will decrease the diffraction efficiency. 

Another disadvantage of SPPs is that each one is applicable to one wavelength and one 

topological charge. The charge, �m, offered by the SPP can be changed to –�m, by flipping the 

SPP.  

 

2.7.  Cylindrical lens mode converters 

 

The next method that we will mention is that of cylindrical lenses which are used to convert 

Hermite-Gaussian (HG) modes into LG modes and was first used by Allen et al. [2]. Our 

discussion of cylindrical lenses will not be very detailed, as this technique is not used in this 

work and HG modes are not discussed in this thesis.  

 

A cylindrical lens mode converter, also termed an astigmatic mode converter, is based on 

cylindrical lenses which convert HG modes of all orders to corresponding LG modes. In order 

for this to be realized, two steps need to take place. Firstly, the HG mode needs to be rotated by 

45° so that it forms a diagonal HG (DHG) mode, which is a superposition of two HG modes. 

The mathematical representation of this, for the first-order case, is 

 

                                                        ( ).
2

1
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The second step involves introducing a relative phase shift of 90° between the two HG modes as 

this will represent a LG mode 
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In order for the two HG modes to be out of phase by 90°, a pair of cylindrical lenses is used to 

alter the Gouy phase of the HG modes depending on their mode indices, thus introducing a 

relative phase shift between them.  

 

The Gouy phase of the HG mode is altered by changing the Rayleigh range of the mode, 

without changing the position of the beam waist. By placing a lens into the HG mode, which has 

a Rayleigh range of zA, the focal length is selected such that the Rayleigh range changes to zB, 

while leaving the position of the beam waist unaltered. Aligning the lens in the x direction will 

result in the Rayleigh range in the y - z plane being affected; resulting in the Rayleigh ranges, zBx 

and zBy, no longer being equal. This differing in the Rayleigh ranges, in the x – y and y – z 

planes, means that the HG10 and HG 01 mode pair will be out of phase. The mode is then 

elliptical, or astigmatic. A second cylindrical lens is introduced and aligned along the same axis 

so that the Rayleigh ranges, zBx and zBy, are once again equal.   

 

2.8.  Dove prism embedded Mach-Zehnder interferometer 

 

The next device that we will discuss is a Mach-Zehnder interferometer, with a Dove prism 

inserted in each of its arms, which is used to sort odd and even vortex modes [13]. A Mach-

Zehnder interferometer can be aligned appropriately so that constructive and destructive 

interference occurs simultaneously in the two output ports. In the case of the ‘odd-even OAM 

sorter’, depicted in Fig. 2.8.1, which is based on the Mach-Zehnder interferometer, a Dove 

prism, which flips the transverse cross-section of a transmitted beam [28] (illustrated in Fig. 

2.8.1 (a)), is placed in each arm of the interferometer.   

 

Rotating the cross-sectional phase profile of the transmitted vortex beam, introduces a relative 

phase difference between the two arms of the interferometer. The phase difference, ∆ϕ, is 

proportional to the state, l, of the transmitted vortex beam and the relative angle, β, between the 

two Dove prisms and is defined as ∆ϕ = 2lβ. When the two Dove prisms are rotated with respect 

to each other by an angle of 90º, the transmitted vortex beam is rotated by an angle of 180º and 

the relative phase difference between the two arms of the interferometer is ∆ϕ = lπ. By 

appropriately adjusting the path length of the interferometer, constructive interference will occur 
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in one of the two output ports for even l-valued states and in the opposite port for odd l-valued 

states. 

       

 

Fig. 2.8.1. (a) The effect a single Dove prism has on the phase profile of a beam. (b) Schematic 

of the ‘odd-even OAM sorter’ (BS: beam-splitter, M: mirror, DP: Dove prism).  

 

The additional phase acquired by the beam (exiting in port A) from each of the optical 

components, in propagating through the arms, A1 and A2, is given by    
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respectively. d1 and d2 are the path lengths of the two arms, A1 and A2, respectively and t is the 

optical path length of the beam-splitter. For the beam exiting in port B, the additional phase 

incurred by the optical components is given by 
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and 
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Since the two arms of the interferometer are equal, d1 = d2, the phase difference in output port A 

is determined as  

 

                                                                       βϕ lA 2=∆                                                    (2.8.5) 

 

and that in port B as  

 

                                                                 βπϕ lB 2+=∆                                               (2.8.6) 

 

The additional phase shift of π, in Eq. (2.8.6), is due to the reflection in the first beam-splitter.  

 

In the case where the relative angle, β, between the two Dove prisms is set to 90°, the phase 

difference in each output port reduces to the following 

 

                                                                       π
π

ϕ llA ==∆
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2                                           (2.8.7)                                                          

.)1(
2

2 π
π

πϕ +=+=∆ llB                                    (2.8.8) 

 

From the above equations it is evident that when l is even, constructive interference occurs in 

port A and destructive interference occurs in port B and vice versa for the case of l being odd. 

Therefore this device has been termed an ‘odd-even OAM sorter’. Examples of vortex modes 

being sorted into odd (A) and even ports (B) is given in Fig. 2.8.2.   

 

 

Fig. 2.8.2. Experimental results of the interferometer sorting various vortex modes. The even 

vortex modes (l = 0, 2 and 4) exit in port A and odd vortex modes exit in port B. 
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In the following section we adapt this device to produce a robust version of the ‘odd-even OAM 

sorter’  

 

2.9. Robust Dove prism embedded Mach-Zehnder 

interferometer 

 

2.9.1.  Introduction 

 

The implementation of the ‘odd-even OAM sorter’ has been reported in numerous publications, 

some of which include introducing a binary amplitude grating to further detect OAM states [29], 

developing an amplitude damping channel for OAM [18] and developing a linear optical CNOT 

gate for OAM [30]. The implementation of such an interferometer to sort odd and even l-states, 

especially in the case of developing a cascade of N-1interferometers to measure N l-states, can 

prove technically challenging. To date, the only attempt to make such a device more stable has 

involved incorporating a Sagnac interferometer [31, 32], as opposed to a Mach-Zehnder 

interferometer, which is known to be phase-stable. Such an approach does, however, require 

additional polarization optics to further sort the OAM states. Even though many publications 

have been dedicated to the implementation of the Dove prism embedded Mach-Zehnder 

interferometer, none, to the best of our knowledge, have attempted to make the device more 

stable.   

 

In this section we develop a robust Dove prism embedded Mach-Zehnder interferometer 

(requiring no internal degrees of freedom) capable of sorting odd and even OAM states of light 

[14]. We demonstrate its efficiency by sorting a maximum of forty-one OAM states (l = -20 to l 

= 20), producing a contrast between constructive and destructive interference which ranges over 

the tested OAM states from 92% to 61%. The development of a robust interferometer has 

implications in quantum cryptography and high density information transfer. 

 

2.9.2. Concept 

 

The main point to remember is that by appropriately adjusting the path length of the 

interferometer and setting the relative angle between the two Dove prisms to 90º, constructive 

interference will occur in one of the two output ports for even l-valued states and in the opposite 
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port for odd l-valued states. The relative phase difference between the two arms of the 

interferometer is ∆ϕ = lπ. In this section we will discuss the principle behind our improved, 

robust interferometer.  

 

In setting up each optical component of the ‘odd-even OAM sorter’, many degrees of freedom 

play a role in ensuring the correct outcome. The alignment of the beam-splitters, Dove prisms 

and mirrors within the interferometer, as well as the path length, need to be adjusted. In this 

work, we make use of a prism (illustrated in Fig. 2.9.2.1 (a) and (b)), similar to a Dove prism, in 

that it rotates the transverse cross-section of a transmitted beam, but its entry and exit faces are 

perpendicular to the optical axis. This construction of a phase-rotating prism having parallel 

sides, first noted in Ref. [33], allows one to easily mount it on either side of a beam-splitter. 

Introducing right-angled prisms, as opposed to mirrors, we are able to glue all the optical 

components into a single compact housing, depicted in the photograph in Fig 2.9.2.1 (c). By 

leaving the second right-angled prism free-standing, the optical path length of the interferometer 

can be finely adjusted.  

 

In studying Fig. 2.9.2.1 (a), it is evident that a displacement of the incoming beam in the y-

direction will have no effect on the functioning of the Dove prism, provided the optical axis of 

incoming beam is perpendicular to the optic axis of the Dove prism. Rotating the orientation of 

the Dove prism, as given in Fig. 2.9.2.1 (a), by 90º, so as to produce that in Fig. 2.9.2.1 (b), the 

Dove prism is insensitive to a displacement of the incident beam in the x-direction. The fact that 

the ‘odd-even OAM sorter’ requires that the two Dove prisms be rotated with respect to each 

other by an angle of 90º, aids the alignment of the interferometer. One of the paths will be 

insensitive to a horizontal displacement of the transmitted beam, while the other is insensitive to 

a vertical displacement of the transmitted beam. The only constraint is that perfect overlap of 

the two paths in the two exiting ports, A and B, be achieved, which is easily possible by 

adjusting the position and tilt of the incoming beam with the use of two mirrors. 
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Fig. 2.9.2.1 (a) and (b) The phase-rotating prism, illustrating how its orientation can make it 

either insensitive to a vertical or horizontal displacement, respectively. (c) A photograph of the 

robust ‘odd-even OAM sorter’. The white arrows denote the direction of the beam.  

 

2.9.3. Experimental methodology and results 

 

A photograph of the device that was developed appears in Fig. 2.9.2.1 (c) and a schematic, 

labelling each of the components is presented in Fig. 2.9.3.1.  

 

 

Fig. 2.9.3.1. Schematic of the robust ‘odd-even OAM sorter’ (M: mirror, BS: beam-splitter, RP: 

right-angled prism, A: output port A, B: output port B). 

 

The various vortex modes (l = -20 to 20) that we wished to sort with our interferometer, were 

prepared by illuminating blazed, l-charged spiral holograms, encoded on a Hamamtsu SLM, 

with a HeNe laser (λ ∼ 633 nm). Two mirrors, M1 and M2 (in Fig. 2.9.3.1), were placed in front 

of the interferometer, so as to steer the incoming vortex mode through the interferometer. The 

optical components of the interferometer (two beam-splitters, two Dove prisms and a right-

angled prism) were all glued together and clamped onto a flat stage. A piezoelectric mount was 

attached to the second right-angled prism, RP2, so that accurate selection of the interferometer 

path length could be obtained. The sorting of odd and even l-valued vortex modes into the 
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output ports A and B, respectively, was obtained by accurately overlapping the near- and far-

field planes of the two fields exiting in each output port through the use of a mere four degrees 

of freedom: the two mirrors positioned before the interferometer, M1 and M2, as well as 

correctly setting the path length of the interferometer.  

 

To test the effectiveness of the interferometer in separating odd and even l-valued vortex modes, 

the intensity of the interference pattern in one of the output ports was monitored with a photo-

diode, while the path length of the interferometer oscillated back and forth between constructive 

and destructive interference by the use of a piezoelectric mount and a function generator. The 

fringe contrast, (vmax – vmin)/(vmax + vmin), where vmax and vmin are the maximum and minimum 

voltages from the photodiode, was calculated for various incoming vortex modes and is 

depicted graphically in Fig. 2.9.3.2 (a). Some of the odd and even vortex modes existing in their 

appropriate ports are given in Fig. 2.9.3.2 (b).  

 

 

Fig. 2.9.3.2. (a). The measured fringe contrast as a function of l. (b) Some experimental results 

of the interferometer sorting various vortex modes. The even vortex modes (l = 0, 6 and 12) exit 

in port B and odd vortex modes (l = 3, 9 and 15) exit in port A. 

 

Since the SLMs are not free of aberrations, they do pose a limitation on the purity of the vortex 

mode that is created. Even though the flattest of our SLMs was used and careful alignment of 

the optics was undertaken, the aberrations present, lead to a degradation in the performance of 

the interferometer, especially at high l-valued vortex modes. When an aberration is added to a 

beam carrying OAM, the beam becomes a superposition of different l-valued modes. At the 

lowest integer value of l, l = 0, the fringe contrast is at a maximum (at 92.2%), illustrating that 

constructive and destructive interference for the case of a low l-valued OAM state is notably 
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distinctive. As the magnitude of l increases, so the contrast decreases, illustrating that 

constructive and destructive interference for higher |l|-valued OAM states becomes less obvious. 

Across twenty-one OAM states (from l = -10 to l = 10) the contrast drops from 92.2% to 85.3%, 

indicating that our setup is extremely robust at sorting OAM states. Special mention should be 

made that no adjustment of the four degrees of freedom (external to the interferometer) needed 

to be made during the course of collecting the measurements in Fig. 2.9.3.2. Previously to 

obtain such results, one would have to adjust all the degrees of freedom for each optical 

component within the interferometer, whereas our setup has reduced the interferometer to 

having no degrees of freedom. Since we are able to produce high contrast over twenty-one 

OAM states (from l = -10 to l = 10) we suggest this setup to be suitable in quantum optics 

experiments such as quantum cryptography.  

 

It should, however, be noted that due to the fact that the Dove prism can invert the polarization 

of a passing beam the ‘odd-even-sorting’ nature of the interferometer no longer works for an 

incoming polarization that is neither horizontal nor vertical. We tested this by rotating the 

polarization of the incident beam from horizontal to linear with the use of a half-wave plate and 

noticed that the interference fringes in ports A and B disappeared.   

 

2.10.  Conclusion 

 

In this chapter we have introduced experimental techniques which are used to either generate or 

measure fields carrying OAM. We discussed how digital holography can be used to implement 

a computer generated hologram (which can be used to either create or measure an optical OAM 

field) through the use of SLMs. In sections 2.4 and 2.5 we explained how the spiral and fork 

holograms, respectively can be used to generate optical vortices as well as how the fork 

hologram is used to detect OAM, by producing a Gaussian beam in the desired diffraction order 

which is then coupled into a single mode fibre. We also examined two other optical components 

which can be used to manipulate OAM: SPPs (2.6), which impart a helical structure to the 

transmitted beam, thus increasing or decreasing its OAM appropriately, and cylindrical lens 

(2.7). The last device that we discussed is a Dove-prism embedded Mach-Zehnder 

interferometer which is used to sort odd and even OAM modes.   

 

We presented our experimentally developed, robust ‘odd-even OAM sorting’ interferometer, 

which has no degrees of freedom and instead the alignment is simply restricted to only four 

degrees of freedom via two mirrors external to the interferometer, and correct setting of the path 
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length [14]. We showed that this device is capable of separating twenty-one OAM states of 

light, having a contrast higher than 85.3%, sufficient in the detection of single photons for 

quantum information processing. The construction of a less technically-demanding 

interferometer will prove useful in the cascading of interferometers and the insertion into other 

sorting methods [12] for the detection of an increased OAM state-space. The ability to 

efficiently measure a large number of OAM states has applications in quantum cryptography [6-

8] and quantum computation [34].   
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CHAPTER THREE 

 

 

Amplitude Damping Channel for Orbital Angular 

Momentum 

 

 

3.1.  Introduction 

 

We implement the Dove prism embedded Mach-Zehnder interferometer to mimic an amplitude 

damping channel for vortex modes [1]. The principle behind amplitude damping will be 

presented in section 3.2.1. followed by the concept as to how the Dove prism embedded Mach-

Zehnder interferometer can be used to form an amplitude damping channel for vortex modes in 

section 3.2.2. We test our channel on a vortex mode, having an azimuthal index of l = 1, and 

demonstrate that it decays to a Gaussian mode in good agreement with the theoretical model in 

section 3.2.3. The reason behind developing this channel is since we are able to characterize the 

action of such a channel on OAM states, we propose using it to investigate the dynamics of 

entanglement.  

 

3.2.  Amplitude damping of orbital angular momentum states 

 

Storing and processing information in the OAM states of photons offers high storage and 

increased computation capacity per photon and since many of the tasks in quantum information 

processing depend upon entanglement, the evolution of entanglement needs to be examined [2]. 

Studies into how the entanglement of OAM states decoheres through a turbulent medium are 

currently being pursued [3]. The amplitude damping channel that we present here is important 

for studying how entanglement will decay through a ‘lossy’ system. 

 

3.2.1. Amplitude damping 

 

Before presenting the channel that we have developed to perform amplitude damping, it makes 

sense to first discuss the process of amplitude damping. Amplitude damping is a quantum 
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operation which describes energy dissipation from excited systems, such as atoms or spin 

systems, to an environment [4]. Furthermore, it can also comprise the dissipation of momentum 

(angular momentum, OAM or any other measurable quantity) due to an interaction with the 

environment. The action of amplitude damping results in the ground state, |0〉, being left 

invariant, while the excited state, |1〉, remains either invariant or decays to the ground state, by 

losing a quantum of energy to the environment. The amplitude damping channel, representing 

the state change for a two-level system, can be defined by the following transformation 
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P is the probability that the excited state decays to the ground state.  Since the amplitude 

damping is given for a two-level system, we will consider the initial state of the system (in 

terms of OAM) to be represented as follows 

 

,10 21 =+== ll γγψ                                           (3.2.1.4)              

            

which is an arbitrary superposition of the states 0=l  (the ground state) and 1=l  (the excited 

state). 1
2

2

2

1 =+ γγ , while 0=l  and 1=l  represent vortex modes of charges l = 0 and l 

=1 respectively. 

 

By substituting the Kraus operators (Eqs (3.2.1.2) and (3.2.1.3)), along with the initial state (Eq. 

(3.2.1.4)), into Eq. (3.2.1.1), the final state of the system, ρs, can be found 

  



53 

 

44 344 2144 344 21
2

*
11

1

*
00

TermTerm

s MMMM ψψψψψψρ +→=  

( ) ( )[ ]

( )










−−

−
=










−
+
















+
















−
=

PP

P
Term

PP
Term

11

1
1

10

01
00

0

010

01
1

*

222

*

1

*

21

*

11

*

2

*

1

2

1

γγγγ

γγγγ

γγ
γ

γ

 

( ) ( )[ ]











=











+
















+

















=

00

0
2

00

0
00

0

000

0
2

*

22

*

2

*

1

2

1

P
Term

PP
Term

γγ

γγ
γ

γ

 

( ) 









+










−−

−
→=

00

0

11

1
*

22

*

222

*

1

*

21

*

11 P

PP

P
s

γγ

γγγγ

γγγγ
ψψρ  

( )
.

11

1
2

22

*

1

*

21

2

2

2

1












−−

−+
=

PP

Pp
s

γγγ

γγγγ
ρ                                   (3.2.1.5) 

 

Coupling the system appropriately to an environment with two orthogonal states 
E

K 0= and 

E
K 1= , the unitary time evolution operator, USE, of the system, S,  and the environment, E, 

produces the following transformation of the amplitude damping channel and can be described 

mathematically as  
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Here K represents an element in the environment, such as a path along which the photon 

propagates. If 1=l  represents the excitation of the system and 1=K  the excitation of the 

environment, then consequently 0=l  and 0=K  represent the ground state of the system 

and the environment respectively.  Equations (3.2.1.6) and (3.2.1.7) illustrate that the 

probability that the excited state remains unchanged or that it decays to the ground state is given 

by 1 - P and P, respectively and hence the amplitude of the excited state has been ‘damped’.  

 

In the next step we need to verify that the transformations defined in Eqs (3.2.1.6) and (3.2.1.7) 

result in the final state presented in Eq. (3.2.1.5). Firstly, the state of the system and the 

environment is determined as  
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In order to determine the state of only the system, ρs, the environment is traced out   
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and by substituting in Eq. (3.2.1.8) and taking into account that 
E

K 0= and 
E

K 1=  are an 

orthonormal basis, the state of the system can be simplified to 
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which is Eq. (3.2.1.5).  

 

Therefore, we need a channel that is going to perform the transforms defined in Eqs (3.2.1.6) 

and (3.2.1.7). By setting K, an element of the environment, to a path in the optical system, the 

overall action of the channel on the state (given in Eq. (3.2.1.4)) can be denoted as  

 

( ),011010 2121

BAAAA
lPlPlll =+=−+=→=+= γγγγ         (3.2.1.11) 

 

where A and B are paths in the optical setup.   

 

The system which performs the transformation given in Eq. (3.2.1.11) is discussed in the 

following section. 

 

 

 

 

 



55 

 

3.2.2. Concept  

 

Figure 3.2.2.1 contains the schematic of the optical system, which performs the action of 

amplitude damping on the state given in Eq. (3.2.1.4) and is mathematically described in Eq. 

(3.2.1.11).  

 

 

Fig. 3.2.2.1. Schematic of the OAM amplitude damping channel. (BS: beam-splitter, M: mirror, 

DP: Dove prism, PM: phase mask). The labels A and B denote the optical path and are 

associated as the ground state of the environment 0=K and the excited state of the 

environment 1=K , respectively.   

 

Our channel is based on the ‘odd-even OAM sorter’ presented in section 2.8, where we showed 

that the relative phase difference, ∆ϕ , is proportional to the charge l of the incoming vortex 

mode and the relative angle β, between the two Dove prisms: ∆ϕ = 2lβ.  The relative angle, β,  

between the two Dove prisms can be varied resulting in the vortex mode exiting solely in port A 

or port B, or in a weighted superposition of both ports A and B. This allows us to control how 

much of the initial vortex mode will exit into the two environments, A (the ground state of the 

environment) and B (the excited state of the environment). By introducing a hologram, which 

decreases the azimuthal mode index by 1, in port B, the ‘excited’ vortex mode (l = 1) will decay 

to an ‘unexcited’ Gaussian mode, thus performing the action of amplitude damping. To 

illustrate that our channel, presented in Fig. 3.2.2.1, performs the required transformation given 

in Eq. 3.2.1.11, we pass each of the states ( 0=l  and 1=l ) through our channel.   
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•  CASE 1: Incoming Gaussian mode (l = 0) 

 

When a Gaussian mode (l = 0) enters the device, the relative phase shift is ∆ϕ = 2lβ = 0, 

independent of the relative angle, β, between the two Dove prisms. Therefore there will always 

be constructive interference in port A and destructive interference in port B, for the Gaussian 

mode. The transformation for this case can be written mathematically as  

 

.00
AA

ll =→=                                               (3.2.2.1) 

 

•  CASE 2: Incoming vortex mode (l = 1) 

 

For a vortex mode having a charge of l = 1 there is a non-vanishing relative phase shift of ∆ϕ = 

2lβ = 2β. This phase shift leads to partially constructive and destructive interference in both 

ports A and B, dependent on the relative angle, β, between the two Dove prisms. Only the state l 

= 1 can exit in port B and the hologram in this port maps this to a Gaussian (l = 0) state.  The 

amplitudes of the fields emerging from the second beam-splitter in ports A and B are described 

as 
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and 
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where U denotes the amplitude of the field. Only one of the reflected fields incurs a π phase 

shift due to the manner in which the beamsplitters are constructed.  

 

It is then evident that the amplitude in port A, for an input vortex mode of l = 1, is proportional 

to cosβ and consequently the power 

 

                                                          .cos2 β∝AP                                                      (3.2.2.4) 
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The amplitude in port B, for an input vortex mode of l = 1, is proportional to sinβ and its power  

 

                                                            .sin 2 β∝BP                                                     (3.2.2.5) 

 

The state emerging from ports A and B, for an incoming vortex mode (l = 1), can be written in a 

general form as  

 

                      ,0110sin1cos1
BABAA

lPlPlll =+=−==+=→= ββ       (3.2.2.6) 

 

where βcos1 =− P  and βsin=P .  

 

Including the result from case 1 above the general transformation of the device is given as 

 

                     ( ),0sin1cos010 2121

BAAAA
lllll =+=+=→=+= ββγγγγ       (3.2.2.7) 

 

which is a form of the required amplitude damping transformation described in Eq. (3.2.1.11) 

 

3.2.3.  Experimental methodology and results 

 

A photograph of the experimental setup to test the concept of our amplitude damping channel 

appears in Fig. 3.2.3.1. The interferometer used here is the one described in section 2.8, as 

opposed to our new robust interferometer in section 2.9, as we needed the Dove prisms to be 

free-standing so that we could rotate them and set the relative angle, β. 
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Fig. 3.2.3.1. Photograph of the interferometer used in the OAM amplitude damping channel. 

(BS: beam-splitter, M: mirror, DP: Dove prism). The labels A and B denote the optical path. 

 

A HeNe laser operating at a wavelength of 633 nm was directed onto a SLM (HoloEye PLUTO 

VIS SLM with 1920×1080 pixels of pitch 8 µm and calibrated for a 2π phase shift at λ =632.8 

nm), where a blazed spiral hologram was used to initialise the vortex mode, before entering the 

interferometer. The two exiting ports of the interferometer, A and B, were monitored with a 

CCD camera, while the relative angle, β, between the two Dove prisms was varied. 

 

The relative angle between the Dove prisms was set to β = 90°, so as to check the interferometer 

functioned correctly [5] (i.e. even modes exist in port A and odd modes in port B). The results 

are given in Fig. 2.8.2. When a Gaussian mode enters the interferometer, it only exits in port A 

(Fig. 3.2.3.2). The results presented in Fig. 3.2.3.2 are instructive when considering the errors in 

the system due to imperfect alignment and environmental fluctuations.  We should expect 100% 

transmission in port A, and no transmission in port B, however the variance in the data is given 

as 0.88 ± 0.06 and 0.15 ± 0.08 for ports A and B, respectively.  
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Fig. 3.2.3.2. Plot of the power of the beam in port A (light blue points) and port B (light green 

points) for various values of β. The dark blue line (dark green line) is the mean of all the 

measured powers in port A (port B). 

 

To test the amplitude damping channel concept, the incoming mode was then set to a vortex 

mode (of l = 1) and the angle between the two Dove prisms varied from 0o to 360o, in 

increments of 10°. The data is shown in Fig. 3.2.3.3 for port A and Fig. 3.2.3.4 for port B. In 

performing these measurements, for each rotation of the Dove prism, constructive and 

destructive interference was first achieved in port A and B, respectively, for the case of an 

incoming Gaussian beam, so as to ensure the interferometer is correctly aligned before passing 

through the vortex mode. From Fig. 3.2.3.3 it is evident that when the relative angle between the 

two Dove prisms is an even multiple of 90o, maximum transmission of the vortex mode occurs, 

which is in agreement with the ‘odd-even OAM sorting’ nature of the device. At an even 

multiple of 90o, the reverse occurs in port B (Fig. 3.2.3.4), where minimum transmission of the 

vortex mode occurs. At odd multiples of 90°, minimum transmission of the vortex mode occurs 

in port A and maximum transmission in port B. As the angle increases from 0o to 90o (and any 

multiple of these angles) the transmission of the vortex mode in port A decreases, but 

consequently increases in port B.   

 

Our theoretical model, given in Eq. (3.2.2.7), restricts the probability that the vortex exists in 

ports A and B by cos
2
β and sin

2
β, respectively. This is evident in Figs 3.2.3.3 and 3.2.3.4, where 
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our measured data are in very good agreement with the predicted model.  The errors given in the 

measurements in Figs 3.2.3.3 and 3.2.3.4 are the standard deviations of the measurements in 

Fig. 3.2.3.2, for ports A (0.06) and B (0.08). 

 

 

Fig. 3.2.3.3. Plot of the power of the beam recorded in port A (orange) for various values of β. 

The results follow the trend of that given in Eq. (3.2.2.4), PA~cos2β. (red). 

 

 

Fig. 3.2.3.4. Plot of the power of the beam recorded in port B (grey) for various values of β. The 

results follow the trend of that given in Eq. (3.2.2.5), PB~sin2
 β. (black). 



61 

 

 

3.3. Conclusion  

 

In this section we have presented an optical system, comprising an interferometer with Dove 

prisms in both arms, that acts as an amplitude damping channel for a two-level OAM system, 

and have verified its action experimentally using the vortex mode (l = 1) and a Gaussian mode 

[1]. This device is significant in that amplitude damping is a fundamental tool in classifying the 

behaviour of many quantum systems that incur the loss of energy. It can be used to describe the 

evolution of an atom that spontaneously emits a photon as well as how the state of a photon 

evolves in an optical system due to scattering and attenuation. The interferometer portion of this 

device can also be used for the classical superposition of vortex modes [6]. As well as to 

separate an incoming vortex mode into two different ports, where one has control over the 

weighting of the vortex mode assigned to each port. The advantage of this particular concept is 

that in entanglement decay experiments, this device can also be used to predict analytically the 

entanglement decay in OAM states when passing through such a channel. The concurrence of 

the entanglement will be measured both before and after the channel with standard state 

tomography techniques, thus allowing for a quantitative comparison of theory and experiment in 

the decoherence of entanglement due to interactions with a noisy environment. 
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CHAPTER FOUR 

 

 

Superpositions of Higher-Order Bessel Beams 

 

 

4.1.  Introduction 

 

Laguerre-Gaussian beams are not the only optical field which carry OAM. Any optical field 

which has a helical phase structure, such as higher-order Bessel beams, also carry OAM. In 

section 1.6, it was shown that zero-order Bessel beams have a bright central maximum, while 

the higher-orders have a dark central core (or vortex). Both of these forms of Bessel beams 

propagate in a diffraction-free manner. Durnin [1] first illustrated that a zero-order Bessel beam 

can be generated by illuminating a ring-slit aperture, placed in the back focal plane of a lens, 

with a plane wave. Other techniques, to generate both zero and higher-order Bessel beams, 

include axicons [2-4] and computer generated holograms [5-10]. Another approach creates a 

superposition of higher-order Bessel beams by illuminating an axicon with a superposition of 

LG modes [11].    

 

In this chapter we extend Durnin’s ring-slit experiment to produce superpositions of higher-

order Bessel beams, by introducing multiple azimuthal phase components at various radial 

distances within the physical ring-slit aperture [12]. This concept is illustrated in Fig. 4.1.1, 

where two azimuthal phase factors, exp(ilθ) and exp(imθ), programmed at different radial 

positions, produces a superposition of  an lth order and mth order Bessel beam. We illustrate how 

the physical ring-slit aperture and hologram can be replaced by a single hologram [13].  
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Fig. 4.1.1. An adaptation of Durnin’s ring slit experiment [1]. (b) and (c): Illuminating the 

physical ring-slit aperture, with a beam whose angular spectrum carries an azimuthally varying 

phase, generates higher-order, and superpositions of higher-order, Bessel beams. 

 

Theoretical studies into the rotation of superimposed Bessel beams have been made [12, 14], 

however the experimental determination of their rotation rates has not yet, to the best of our 

knowledge, been investigated.  In this chapter we also experimentally measure the rotation rates 

of superpositions of  higher-order Bessel beams [13].  We show that by varying the parameters 

of the ring-slit hologram (in terms of the width and the azimuthal order, l), we can control the 

rotation rates of the intensity profile. Therefore, it is an ideal tool for the controlled rotation of 

trapped particles [11]. The theoretical description for superimposed Bessel beams, along with its 

angular rotation, is presented in section 4.2. We also investigate, both theoretically and 

experimentally, the field produced at the ring-slit aperture and investigate its transition to the 

far-field (i.e. the field consisting of superimposed higher-order Bessel beams). We show that 

due to the fact that the longitudinal wave-vectors all propagate in the same direction (and do not 

overlap one another) in the near-field, no rotation is evident in the intensity profile. The area of 

the field which experiences the rotation increases as the field propagates to the far-field because 

the wave-vectors start to overlap one another to a greater degree.    

 

4.2. Theory 

 

In this work we implement Durnin’s ring-slit aperture experiment [1] and encode a digital ring-

slit hologram onto a SLM and illuminate it with an expanded Gaussian beam. We divide the 

ring-slit aperture into two ring-slits and encode each with an azimuthally varying phase. A 

schematic of the setup is given in Fig. 4.2.1, where the regions of interest, propagating after the 
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ring-slit aperture, are planes P1 (the near-field), the region P2 (the transition region from near- to 

far-field) and region P3 (the far-field).  

 

 

Fig. 4.2.1. A schematic of the generation of the annular field, propagating from near- (P1) to far-

field (P3). The green (red) rays denote the rays originating from the outer (inner) ring-slit. The 

three rings (at the bottom of the schematic) aid the illustration, as to how the annular fields 

overlap and become completely indistinguishable as the propagation from the aperture 

increases.  

 

The ring-slit aperture has the following transmission function  
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and apart from being illustrated in Fig. 4.2.1, is also represented in Fig. 4.2.2. R1 and R2 are the 

radii of each of the two ring-slits, respectively and � is the width of each ring-slit (here we have 
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chosen the widths of the two ring-slits to be equal). θ is the azimuthal angle and l is the 

azimuthal mode index.   

 

 

Fig 4.2.2. The transmission function described in Eq. (4.2.1) for an azimuthal mode index of l = 

3.  

 

Since the field illuminating the ring-slit aperture is an expanded Gaussian beam and the ring-

slits are extremely thin (of the order of micro-meters), the field produced at the ring-slit aperture 

(i.e. at the plane P1 where z = z0), is represented as  
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k1z and k2z are the longitudinal wave-numbers, defined as k1z = kcosα1 and k2z = kcosα2, where k = 

2π/λ and α is the opening angle of the cone on which the wave-vectors (produced by each ring-

slit) propagate.  

 

A simple annular field, containing no azimuthally-varying phase factors, may be expressed as 
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and is depicted graphically in Fig. 4.2.3. R0 denotes the radius of the ring-slit; � is the width of 

the ring-slit; and n assigns the steepness (or gradient) of the edges of the ring-slit. 
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Fig. 4.2.3. (a) A density plot and (b) a cross-sectional plot of the ring-slit aperture described in 

Eq. (4.2.3) for the following parameters: ring-slit radius, R0 = 2, ring-slit width, � = 0.5 and 

gradient, n = 10 (the units are arbitrary).   

 

The ring-slit aperture that we are considering consists of two ring-slits of differing radii, and by 

taking into account that the optical field is a linear system, the two annular fields are additive, 

resulting in the overall ring-slit field, which in the near-field (P1), has been written as 
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Since the two ring-slits are arbitrarily thin and close to one another, we can assume their radii to 

be equivalent, i.e. R1 ≈  R2 ≈ R0, resulting in the field simplifying to 
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The intensity of the ring-slit field is determined as 
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The intensity profile for the ring-slit field, given above in Eq. (4.2.6), illustrates that it is 

modulated in the azimuthal co-ordinate, θ, by the function cos
2
(lθ). Therefore, the number of 

intensity maxima and minima, arranged on the circumference of the ring-slit, is twice the 

azimuthal mode index, l.  

 

The angular rotation, experienced by the intensity profile, as the ring-slit field propagates in the 

near-field (P1) along the z-axis, is then given by 
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During the propagation of the ring-slit field, the longitudinal wave-vectors, k1z and k2z, both 

propagate in the same direction, parallel to the z-axis, which is illustrated in Fig. 4.2.1. This 

results in no angular rotation existing, as the ring-slit field propagates, 
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In determining the field in the region P2, the region in which the field transitions from near- to 

far-field, the Fresnel diffraction integral of the field at the ring-slit aperture (Eq. (4.2.4)) can be 

calculated to be 
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and is known to produce the Bessel-Gauss[15, 16] and Bessel functions. Each of the two ring-

slits (the inner having an azimuthal mode index of l and the outer, -l) will contribute to a Bessel 

Gauss beam and the resulting superposition of the field in region P2 can be described as 
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The functions ω(z), R(z) and Φ(z) denote the beam size, radius of curvature and Gouy phase, 

respectively and take on the standard Gaussian beam propagation form. Jl is the l
th
 order Bessel 

function and kr denotes the transverse wave-number, associated with each of the two Bessel 

beams, namely 1 and 2, and is determined as follows: kr = ksinα.  

 

Similarly the intensity in the region of P2 can be determined by combining the relationship I = 

AA* with the angular rotation, which results in  
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The wave-vectors in this region do not point in the same direction resulting in a non-zero 

rotation rate. However the only section of the field which experiences this angular rotation is the 

section which consists of the contributions from both ring-slits, which visually means: the 

sections which consist of both green and red rays. As the field propagates further towards the 

far-field (P3), the overlap in the field, which consists of both ring-slit contributions, increases, 

resulting in the angular rotation becoming more evident. 

 

To determine the far-field of the ring-slit aperture (P3), whose transmission function t(r,θ) is 

given in Eq. (4.2.1), the Kirchoff-Huygens diffraction integral is used: 
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The contribution resulting from the inner and the outer ring-slits produces the following 

superposition, which describes the far-field of the ring-slit aperture [12] 

 

∫ 















−+−







−
=

∆

∆

+

−
21

21
11

2
1

2

2
11 1

2
exp)exp(),,(

R

R l
l

l drr
f

z

f

ikrr

f

krr
Jili

f

ik
zrA

ω
θθ       (4.2.13) 

∫ 















−+−








−

−
=

∆

∆

+

− −
−

−
22

22
11

2
1

2

2
11 1

2
exp)exp(),,(

R

R l
l

l drr
f

z

f

ikrr

f

krr
Jili

f

ik
zrA

ω
θθ     (4.2.14)  

 

),exp()exp()()exp()exp()(),,( 2211 zikilrkJzikilrkJzrA zrlzrl θθθ −+= −           (4.2.15) 

 

where the following approximation  
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has been used. The intensity of the superimposed Bessel field is determined as 
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Since the annular rings generating the superimposed Bessel beams are arbitrarily thin and close 

to one another, we can assume the transverse wave-numbers to be equivalent (i.e. k1r  ∼ k2r = kr), 

resulting in Jl(k1rr) ∼ Jl(k2rr) = Jl(krr). By implementing the Bessel function identity, J-l(k2rr) = (-

1)lJl(k2rr), the intensity in Eq. (4.2.17) can be simplified to produce 
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The intensity profile for the superimposed Bessel beams, given above in Eq. (4.2.18), illustrates 

that it is modulated in the azimuthal co-ordinate, θ, by the function cos2(lθ). Therefore, the 

number of intensity maxima is twice the order l of the two Bessel beams, resulting in a 

superposition of a lth order Bessel beam, with its mirror image, producing an intensity pattern 

having 2|l| intensity maxima, or petals, arranged on the circumference of the set of Bessel rings. 

This intensity profile experiences an angular rotation, as the field propagates along the z-axis. 

The rotation angle is 
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and the rotation rate is given by 
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Since the longitudinal wave-vectors all propagate in different directions in the far-field and the 

field contributions from the two ring-slits completely overlap (evident in Fig. 4.2.1), the angular 

rotation is non-zero and the near-diffraction-limited beam at P3 experiences the rotation.       
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4.3.  Generating superpositions of higher-order Bessel beams 

with a physical ring-slit aperture and a hologram 

 

In this section we will outline how we make use of a physical ring-slit aperture and a SLM to 

generate superpositions of higher-order Bessel beams. In section 4.4, we will then show how 

our technique can be reproduced into a simpler single hologram. 

 

The setup to generate superpositions of higher-order Bessel beams is given as a schematic in 

Fig. 4.1.1 above. A detailed diagram of our experimental setup is given in Fig. 4.3.1. A HeNe 

laser (λ ∼ 633 nm) was expanded through a 15 × telescope before illuminating a physical ring-

slit aperture (R = 3 mm and � = 150 µm).  The ring field produced at the plane of the ring-slit 

aperture was relay imaged to the plane of the liquid crystal display with a 0.75 × telescope.  A 

Holoeye HEO1080P SLM with 1920 × 1080 pixels of pitch 8 µm and calibrated for a 2π phase 

shift at ∼ 633 nm was used to impart the azimuthal phase variation to the ring field. The field 

produced in the Fourier plane after lens, L5, was magnified with a 10 × objective and detected 

on a CCD camera (Spiricon, USB L130). The objective and CCD camera were both positioned 

on a translation stage in order to investigate the propagation of the resulting field. An 

interferometer, denoted by the red overlay, was introduced in the experimental setup so as to 

interfere a plane wave with the superposition field to reveal the fork interference patterns [17]. 

The beam size of the Gaussian beam was large in comparison to the Bessel field in the Fourier 

plane so the wavefront of the Gaussian field can be assumed to be flat, similar to a plane wave. 
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Fig. 4.3.1. The experimental setup for generating a superposition of higher-order Bessel beams, 

by using a physical ring-slit aperture and a hologram. The interferometer used to interfere the 

field produced at the Fourier plane with a plane wave is denoted in the red overlay. (M: mirror; 

BS: beam-splitter; L: lens and D: diaphragm). (f1 = 10 mm, f2 = 150 mm, f3=100 mm, f4=75mm 

and f5 = 200 mm).  

 

In this system the alignment of the ring field onto the hologram programmed on the SLM, was 

critical. The liquid crystal display was placed on a standard micro-meter translation stage, so as 

to carefully position it in the centre of the ring field. It should also be pointed out that this 

approach was not optimized for energy transmission; the loss through the ring-slit aperture was 

very high. Results for this experimental setup are given in the next section.  

 

4.3.1.  Results 

 

The results obtained with the setup described in Fig. 4.3.1 appear in Fig. 4.3.1.1. 
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Fig. 4.3.1.1. First column: Holograms applied to the SLM. Second column: The observed 

intensity pattern observed in the Fourier plane. Third column: The theoretical prediction 

of the superposition field. Fourth column: The interference pattern of the superposition 

field and a plane wave. Data is shown for (a) – (d): A0, (e) – (h): A3, (i) – (l): A4,-4, (m) – 

(p): A2,-4, and (q) – (t): A4,-2.  The ring field is shown as a red overlay on the hologram. 

 

When the ring field illuminates a hologram which has no azimuthally varying phase, Fig. 

4.3.1.1 (a), it produces the well known zero-order Bessel beam. In conducting the experiment, a 

blazed grating was added to the holograms (appearing in the first column of Fig. 4.3.1.1), we 

have neglected to include them here as we want to highlight the azimuthal components. In the 

case of a single azimuthal component ((e)) a higher-order Bessel beam is produced ((f)).  The 

fields are interfered with a plane wave to reveal the vortex nature of the fields. In the case that a 

third-order Bessel beam interferes with a plane wave, three dislocations are noted in the fork 

interference pattern ((h)). By increasing the number of azimuthal components ((i), (m) and (q)), 

the field in the Fourier plane becomes more complex ((j), (n) and (r)), however, the theoretical 

predications ((k), (o) and (s)) are in very good agreement with the measured field. When the two 

azimuthal phases are equal, but of opposite handedness (i), a petal pattern is produced (j), as 

described in Eq. (4.2.18). Due to the azimuthally varying phase which is imparted to the ring 
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field, the resulting fields possess vortices. The orientation of these vortices is not very intuitive 

and has recently been investigated [18]. For the superposition of two higher-order Bessel beams, 

the interference patterns contain two overlapping forks. The number of dislocations or spaces 

between the fork prongs conveys the order of the Bessel fields involved in the superposition and 

the direction of the fork prongs communicates the sign of the Bessel beams.  

  

Even though we have illustrated the concept with only two Bessel beams, it is possible to extend 

this to any number of azimuthal components.  The result in Fig. 4.3.1.2 is for a three-component 

superposition, where the azimuthal indices are as follows -3, 0 and 3 (labeled from the outer 

ring to the inner ring). Good agreement between experimentally recorded and theoretically 

predicted fields is obtained. 

  

 

Fig. 4.3.1.2. (a) Hologram applied to the liquid crystal display. The red overlay denotes the 

section of the hologram which was illuminated by the ring field. (b) The experimental beam 

cross-section of the field produced at the Fourier plane and the theoretically calculated field (c).  

 

The propagation of the fields generated with this technique was also investigated and 

experimental images of the intensity profile, recorded at intervals along its propagation, appear 

in Fig. 4.3.1.3. In studying the experimental images contained in Fig. 4.3.1.3, it is evident that 

the intensity profile containing the highest amount of energy occurs half way along the field’s 

propagation. This occurs at the focal length of the Fourier transforming lens. It is also evident 

that the field is quasi-non-diffracting as it maintains its intensity profile for a set portion of its 

propagation. The non-diffracting nature of certain fields has been investigated in great detail 

[19-27] and can be explained by the fact that the fields are derived from the annular structure of 

the ring-slit aperture and the azimuthal phase is only an additional degree of freedom. The field 

also appears to rotate as it propagates, evident in the images contained in Fig. 4.3.1.3.  
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Fig. 4.3.1.3. Images of the intensity profile of the experimentally produced field A3,-3 

captured at intervals along its propagation. The grey area denotes the region in 

which the Bessel field exists. 

 

4.4.  Generating superpositions of higher-order Bessel beams 

with a single hologram 

 

In this section we will introduce a technique that has allowed us to remove the physical ring-slit 

in our previous setup (Fig. 4.3.1) and instead make use of a single hologram to produce the 

superposition fields in Fig. 4.3.1.1. The technique involves addressing alternating sets of pixels 

on the liquid crystal display with phase values that are out of phase by π, resulting in the light 

reflected from the LCD being scattered from its initial propagation axis [28]. By being able to 

control the amplitude that is transmitted along the propagation axis, we were able to operate our 

phase-only SLM in both amplitude and phase mode. We are therefore able to encode Durnin’s 

ring-slit [1] into a single hologram, as well as have control over the phase within the ring-slits. 

This technique which involves addressing alternating sets of pixels with phase values that are 

out of phase by π, so as to produce a checkerboard pattern,  is discussed in section 4.4.1. after 

which the experimental realization is presented in section 4.4.2.  
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4.4.1. Checkerboard approach 

 

Ideally if we wanted to encode the ring-slit aperture onto the SLM, we would need a SLM that 

is capable of controlling both phase and the amplitude. A hologram, such as that in Fig. 4.4.1.1 

(a), if encoded on a phase and amplitude SLM, would transmit light within the ring-slit and not 

transmit light in the surrounding black areas.  

 

Even though we do not have a phase and amplitude SLM, we can still use our phase-only SLM 

by addressing the sections, in which we do not want to transmit any light, with a checkerboard 

pattern. An example of such a hologram is given in Fig. 4.4.1.1 (b) accompanied with a 

zoomed-in section of the checkerboard pattern. 

 

 

Fig. 4.4.1.1. In order to reproduce Durnin’s ring-slit experiment [1] either (a) the light can be 

suitably apertured by a physical ring-slit aperture; or (b) complex amplitude modulation can be 

used on a phase-only SLM to execute both the amplitude and phase transformations in one step. 

The inset in (b) shows the checkerboard pattern used to modulate the amplitude. 

 

To understand why  a pattern consisting of alternating sets of pixels, that are assigned phase 

values that are out of phase by π, can be used to mimic an amplitude mask, the schematic in Fig. 

4.4.1.2 needs to be introduced. This figure represents phase values on a complex plane. In the 

checkerboard pattern the weighting of each of the phase values, 0 and π,  is uniform (or equal), 

which in the complex plane approach translates to each vector (A1 and A2) having the same 

amplitude, but pointing in opposite directions along the x-axis. This leads to the resultant, A3, 

having no amplitude (or DC component) and is positioned at the origin of the complex plane. 

The fact that the resultant has no amplitude means that the average amplitude of the field at the 

checkerboard hologram is zero. This results in a zero in the intensity on the propagation axis in 

the Fourier plane, with the light shifted away from the origin due to the high spatial frequency 

of the checkerboard, as illustrated in Fig. 4.4.1.2 (c). When the SLM is addressed with a single 
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uniform grey-level (Fig. 4.4.1.2 (d)), the resultant vector in the complex plane, A3, has an 

amplitude, lying along the positive x-axis, meaning the average amplitude at this phase-mask is 

non-zero, giving rise to an on-axis intensity in the Fourier plane, evident in Fig. 4.4.1.2 (e). 

Experimentally, through ‘trial-and-error’, it was found that the checkerboard pattern diffracted 

the on-axis intensity the best, when each checker was assigned to an area of 5 × 5 pixels on the 

SLM.  

 

 

Fig. 4.4.1.2. (a) The complex plane representation; the angles, ϕ1 and ϕ2, for each vector, A1 and 

A2, represents a phase value in the hologram. The resultant amplitude, A3, is denoted by the blue 

vector. (b) The checkerboard hologram and (c) the corresponding Fourier plane, illustrating that 

the light is distributed off of its propagation axis. (d) A plain black hologram. (e) The Fourier 

transform of the hologram in (d) illustrating an on-axis intensity component. 

 

4.4.2.  Experimental methodology 

 

The experimental setup for implementing the single ring-slit hologram is very similar to that 

described in section 4.3, but with the physical ring-slit aperture removed as well as the imaging 

optics associated with it. The setup that we implement is depicted in Fig. 4.4.2.1 and entails a 

He-Ne laser being expanded through a 6 × telescope and directed onto the liquid crystal display 

of a SLM.  Due to the dynamic programming of SLMs, the azimuthal phase within each of the 

ring-slits can easily be varied. Some of the ring-slit holograms that are encoded onto the SLM 

appear in the top row of Fig. 4.4.3.1. A blazed grating was added to these holograms, so as to 

separate the undiffracted and diffracted components reflected from the SLM. The Fourier 

transform of the field at the ring-slit hologram was obtained with the use of lens L3. The field 

was then magnified with a 10 × objective and captured on a CCD camera. The objective and 



77 

 

CCD camera were positioned on a translation stage on an optical rail in order to investigate the 

propagation of the resulting field. 

 

Apart from positioning a 10 × objective and a CCD camera at the Fourier plane, P3, of lens L3, 

to record the non-diffracting superimposed Bessel beam, a second lens, L4, was placed a focal 

length away from the Fourier plane of lens, L3, to relay the field at LCD1 to plane P1. This 

allowed us to investigate the structure of the ring-slit field (evident at P1) which produces a petal 

structure in the far-field (illustrated at P3). The propagation of the ring-slit field, relayed to 

plane, P1, was investigated by positioning a CCD camera on a rail and recording the field from 

plane P1 to plane P2 (a distance of two focal lengths from lens, L4).      

 

 

Fig. 4.4.2.1. A schematic of the experimental setup for investigating the field formed by a ring-

slit hologram, as well as the propagation and Fourier transform of such a field. L: Lens (f1 = 25 

mm; f2 = 75 mm; f3 = 100 mm and f4 = 100 mm); M: Mirror; LCD: Liquid Crystal Display; D: 

Diaphragm; CCD: CCD Camera. The planes of interest are marked P1, P2 and P3. P3 is the 

Fourier plane of the ring-slit hologram; P1 is the relayed-field (in both phase and amplitude) at 

the ring-slit hologram; and P2 occurs a distance of 2f after L4. 

 

4.4.3.  Results 

 

All the digital ring-slit holograms, used in the experiment (depicted in Fig. 4.4.2.1), are given in 

the first row of Fig. 4.4.3.1. The first ring-slit hologram, Fig. 4.4.3.1 (1a), consists of a single 

ring-slit containing an azimuthal phase of l = +3 and has the following dimensions (in pixels): 

R1 = 180, � = 20. The next five ring-slit holograms, Fig. 4.4.3.1 (1b) – (1f), all consist of two 

ring-slits, having oppositely varying azimuthal phases, varying in azimuthal order from linner = 

+1 to +5 (louter = -1 to -5), respectively. The ring-slit holograms in Figs 4.4.3.1 (1b) – (1f) each 

have the following dimensions (in pixels): R1 = 180, R2 = 190, � = 10. The last two ring-slit 

holograms (Fig. 4.4.3.1 (1g) and (1h)) are divided into three and four ring-slits, respectively, 

having the following azimuthal orders: linner = -3, lmiddle = 2, louter = 1, and linner = -2, lmiddle1 = -1, 
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lmiddle2 = 2, louter = 1. The dimensions (in pixels) of the ring-slits in Fig. 4.4.3.1 (1g) and (1h) are: 

R1 = 180, R2 = 190, R3 = 200, � = 10 and R1 = 168, R2 = 176, R3 = 184, R4 = 192, � = 8. 

 

 

Fig. 4.4.3.1. First row: The ring-slit holograms addressed to LCD1. A zoomed-in section of 

three and four ring-slits are depicted as inserts ((1g) and (1h)). Second and third rows: The 

experimentally produced and theoretically calculated fields produced in the Fourier plane (i.e. 

plane P3), respectively. Fourth and fifth rows: The experimental and theoretical fields, 

respectively, produced at plane P1. The white “X” marks the singularities. Sixth and seventh 

rows: The experimental and theoretical fields, respectively, produced at plane P2. 

 

The far-fields of the ring-slit holograms, presented in the first row of Fig. 4.4.3.1, are shown in 

the second row of Fig. 4.4.3.1, accompanied with their theoretical predictions in the third row 

(calculated with the use of Eq. (4.2.15)). For a single ring-slit, containing an azimuthal index of 

l = +3, the field produced in the Fourier plane, P3, is a third order Bessel beam. In the case that 

the ring-slit hologram consists of  two ring-slits, where the orders of the two azimuthal phases 

are of equal but opposite handedness, a petal structure is produced, where the number of petals 
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is denoted by 2|l|, as expected from theory [8]. It is interesting, to note from previous 

investigations [4, 8], that even though these fields have a global OAM of zero, their cross-

sectional intensity distribution rotates as the petal field propagates, due to the differing radial 

wave-vectors. Their rotation rate, which is dependent on the differing radial wave-vectors and 

the azimuthal index, l, is given in Eq. (4.2.20). The fields produced in the Fourier plane, P3, for 

the ring-slit holograms, contained in Figs 4.4.3.1 (1g) and (1h) are given in Figs 4.4.3.1 (2g) and 

(2h), respectively. These two ring-slit holograms consist of three and four ring-slits, 

respectively, and produce a non-symmetric superposition of higher-order Bessel beams. Even 

though it is difficult to intuitively predict how the field will manifest in the Fourier plane for 

these two cases, our experimentally recorded fields (Figs 4.4.3.1 (2g) and (2h)) are in very good 

agreement with the theoretically calculated fields (Figs 4.4.3.1 (3g) and (3h)). These two fields 

are calculated by extending the amplitude distribution, given in Eq. (4.2.15), to represent a 

superposition of three and four Bessel beams, respectively.  

 

The intensity profiles of the superimposed non-diffracting fields were captured at discrete 

distances along their propagation (one example is given in Fig. 4.4.3.2). In Fig. 4.4.3.2 the petal 

structure appears at the beginning of its propagation with low intensity, reaching a maximum 

mid-way through, and then decreasing again as the conical waves separate out again back to an 

annular ring structure.  It is also evident from this figure that the intensity appears to rotate 

about the propagation axis.  From such images the angular position of a selected petal was 

calculated and plotted as a function of the propagation distance (one example is given in Fig 

4.4.3.3). The rotation rate of the intensity profile as it propagates was then determined from the 

slope of the straight line which best fits the measured angular positions, as a function of the 

propagation distance.  The slope of the linear fit, in Fig. 4.4.3.3, was calculated to be 9.6 rad/m, 

which is within 13% of the theoretically calculated result of 11.1 rad/m.  
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Fig. 4.4.3.2. (a) - (k) Images of the intensity profiles of the experimentally produced field, for |l|  

= 3, captured at intervals along its propagation. The yellow ‘X’ denotes a selected petal. 

Monitoring its change in position illustrates a rotation in the field as it propagates. (l) The initial 

Gaussian beam which illuminated the SLM. 

 

The error between the experimentally measured and theoretically calculated rotation rates was 

attributed to the technique we implemented to calculate the angular position of the petal.  Since 

the coordinate for the centroid of the petal was obtained by manually selecting this pixel in the 

CCD image, error analysis in the angular positions needed to be performed. The standard 

deviation in the angular position was obtained by assuming that the manually selected 

coordinate lies within a one-sixth range of the petal’s diameter from the true centroid,  
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D is the diameter of the petal and R is the distance from the propagation axis to the centroid of 

the petal.  In Fig. 4.4.3.1 it is evident that the radius, R, increases with the Bessel beam order |l|, 

which results in the standard deviation of the petal position, which is scaled as a function of R, 

to be scaled as a function of |l|.  

 

Figure 4.4.3.3 below contains the measured angular positions as a function of the propagation 

distance, for the case when the azimuthal order was |l| = 3 and the difference between the two 
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radial wave-vectors was ∆k ~ 66 m–1.The standard deviation in the angular position is 80 mrad 

and the error in the propagation distance is 1mm; as this is the smallest increment on the optical 

rail on which the detection system was mounted.   

 

 

Fig. 4.4.3.3. Graph of the angular position of a selected petal as a function of the propagation 

axis z. (|l| = 3 and ∆k = 66 m–1) 

 

Similar graphs, as that presented in Fig. 4.4.3.3, were obtained for various values of |l| and ∆k, 

from which the rotation rates were calculated from the slopes of their linear fits. Figures 4.4.3.4 

and 3.4.3.5 contain plots of the measured rotation rates as a function of the azimuthal order, |l|, 

and the difference between the two radial wave-vectors, ∆k, respectively. The theoretical 

predictions, taken from Eq. (4.2.20), are given as dashed lines.  Figure 4.4.3.4 is a plot of the 

measured rotation rate, for six different sets of radial wave-vectors, plotted as a function of the 

azimuthal order |l|, illustrating that as the magnitude of |l| increases, so there is a hyperbolic 

decrease in the rotation rate. The rotation rates were also plotted as a function of the difference 

between the two radial wave-vectors, for various azimuthal orders, |l|, and are depicted in Fig. 

4.4.3.5. By increasing the distance between the two radial wave-vectors (achieved by increasing 

the width of the inner and outer ring-slits in the holograms), the rotation rate of the petals are 

increased, evident in Fig. 4.4.3.4. There is very good agreement in our measured rotation rates 

and the theoretical model (dashed curves).   
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Since the rotation rates are dependent on the angular position of the petal, the standard deviation 

was determined by the standard deviation in the slope of the graph of the petal position, as a 

function of the propagation distance, by the following relationship 
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θσ is the standard deviation in the angular position of the petal given by Eq. (4.4.3.1) and z is the 

median of the  propagation intervals at which the field is captured. The standard deviation for 

the rotation rate (Eq. (4.4.3.2)), for the case when |l| = 3, was found to be  ∼ 0.5 rad/m. Since the 

radius of each ring-slit could be accurately measured to within a single pixel, the absolute error 

for the difference between the two wave-vectors, and hence the error in the x axis, was 

calculated to be ~ 6 m–1. 

 

 

Fig. 4.4.3.4. Graphs of the rotation rates, for various differences between the two radial wave-

vectors, as a function of the azimuthal order, |l|. 
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Fig. 4.4.3.5. Graphs of the rotation rates, for various azimuthal orders |l|, as a function of the 

difference, ∆k, between the two radial wave-vectors. 

 

In all of the measurements given so far (Figs 4.4.3.3, 4.4.3.4 and 4.4.3.5), the azimuthal phase 

within the outer ring-slit varied from black to white in a clockwise direction and that in the inner 

ring-slit in an anticlockwise direction.  By inverting the handedness of the two ring-slits, the 

field will rotate with the same rate, but in the opposite direction. An example of this is given in 

the video slides of Fig. 4.4.3.6.  

 

 

Fig. 4.4.3.6. Video clips containing experimental images, captured at intervals along the beam’s 

propagation, for fields generated from holograms having the following parameters (a) linner = +3; 

louter = –3 and (b) linner = –3; louter = +3. In the electronic version of this thesis the videos may be 

viewed at the following links: (a) Media1 and (b) Media2.   

 

The optical field produced at the plane of the ring-slit hologram (i.e. at the plane of LCD1) was 

relayed to plane P1, where all the other diffraction orders had been removed (at plane P3) 
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through the use of the diaphragm, D, and experimental images are shown in the fourth row of 

Fig. 4.4.3.1. It is interesting to note that when the ring-slit is addressed with a single azimuthally 

varying phase, no singularities appear in the ring-slit field. However, by introducing a second 

ring-slit (having a different radial wave-vector) singularities appear in the ring-slit field, where 

the number of singularities is denoted by 2|l| (the same for the number of petals). The 

experimental fields (Fig. 4.4.3.1 (4a) – (4f)), produced at plane P1, are in good agreement with 

those predicted theoretically, using Eq. (4.2.10) (with n = 2) and depicted in the fifth row of Fig. 

4.4.3.1 (Fig. 4.4.3.1 (5a) – (5f)). By increasing the number of ring-slits to either three or four, it 

becomes very difficult to individually locate each of the singularities in the field as some of 

them start to overlap. This is evident, experimentally, within the yellow rings in Figs 4.4.3.1 

(4g) and (4h) and theoretically in Figs 4.4.3.1 (5g) and (5h). Since it is difficult to locate the 

singularities in the “singularity”-field, when the number of ring-slits is increased, we suggest 

using interferometric techniques to aid the categorizing of the singularities [17].     

 

It is well-known that the intensity of the petal field is dependent on the function cos2(lθ), 

evident in Eq. (4.2.18). This cosine behaviour, as a function of the azimuthal angle, of the 

intensity profile is also present in the near-field. This is evident in Fig. 4.4.3.7 where the 

intensity profile, as a function of the angular position in the field, is plotted for the case of linner = 

+3 and louter = -3. It agrees well with the intensity profile plotted for the theoretically predicted 

field, given in Eq. (4.2.10), illustrating that the intensity maxima of the near- and far-field both 

depend on the function cos
2
(lθ).  

 

 

Fig. 4.4.3.7. (a) The experimentally recorded field at plane P1 for a ring-slit consisting of the 

following azimuthal phases: linner = +3 and louter = -3. The theoretical prediction is given as an 

insert. The red, dashed ring marks the line for which the intensity profile is plotted (b). (b) The 

solid black curve is the experimental intensity profile and the red dashed curve is the theoretical 

intensity profile, cos2(lθ). 
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Propagating the field a distance of one focal length from plane P1 to plane P2, we see that the 

annular structure containing singularities transforms into spirals. The experimental fields 

produced at plane P2 for each of the eight ring-slit holograms are given in the sixth row of Fig. 

4.4.3.1 and accompanied with theoretical predictions in the seventh row. In the case of a single 

ring-slit, having a non-zero azimuthal mode index, the field appears as a diverging version of 

the field at P1. For the five holograms, each consisting of two ring-slits, having opposite 

azimuthal orders, there are 2|l| spokes, evident in Figs 4.4.3.1 (6b) – (6f). Introducing more ring-

slits into the hologram results in the spokes merging, making it difficult to resolve individual 

spokes (evident within the yellow rings in Figs 4.4.3.1 (6g), (6h), (7g) and (7h)).        

 

The propagation of the field at plane P1 to the field at P2 was recorded and selected experimental 

images of the field at intervals along its propagation are given in Fig. 4.4.3.8. It is interesting to 

note that even though a rotation in the intensity profile for the petal field (in the vicinity of plane 

P3, i.e. the far-field) exists as the petal field propagates, no rotation in the fields at P1 

propagating to P2 exists as the field propagates. This is in accordance with the theoretical 

prediction given in Eqs (4.2.8) and (4.2.11), where the rotation rate for such a field is 

determined to be non-existent, but becomes more evident the closer the field propagates to the 

far-field.   

 

 

Fig. 4.4.3.8. Experimental intensity profiles of the field captured at evenly spaced intervals from 

plane P1 to plane P2. The distances from plane P1 are given as (a) 0 mm, (b) 10 mm, (c) 20 mm, 

(d) 30 mm, (e) 40 mm, (f) 50 mm (g) 60 mm and (h) 70 mm. The white arrows illustrate the 

movement of a selected singularity. Inserts are given for the theoretical predictions.  
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Switching the handedness of the azimuthal phases in the two ring-slits, is known to cause the 

petal field, produced in the Fourier plane, P3, to rotate in the opposite direction [13]. Even 

though the spiral field, produced at plane P2, does not rotate as it propagates, swapping the 

handedness of the azimuthal phases (within the two ring-slits), results in the direction of the 

spokes to switch from clockwise to anti-clockwise (and vice versa). This is evident in the last 

column of Fig. 4.4.3.9 and is in good agreement with the theoretical prediction.   

 

 

Fig. 4.4.3.9 First column: The ring-slit hologram applied to LCD1. Second column: The 

corresponding optical fields for the ring-slits. The white arrows mark the locations of the 

singularities. Third column: The Fourier transform of the ring-slit hologram. Fourth column: 

The corresponding field, produced at plane P2. The white arrow marks the handedness of the 

spokes. Theoretical predictions are accompanied as inserts.  

 

4.5.  Conclusion 

 

We have presented two techniques to experimentally realize the superposition of higher-order 

Bessel beams [12, 13]. Our first technique involved a physical ring-slit aperture and an 

azimuthally varying hologram [12], whereas our second technique was a simplified version, 

involving only one hologram [13]. Both techniques produced fields which agreed very well with 

the theoretical prediction. The existence of higher-order vortices were revealed by interfering 

the field with a plane wave. These fields have aided the understanding of certain resonator 

modes [29].  
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In this chapter we have also illustrated that we are able to control the rotation rates of 

superimposed Bessel beams, by varying the parameters in the ring-slit hologram, namely the 

azimuthal order |l| and the difference, �k, between the two radial wave-vectors [13].  The 

different radial wave-vectors lead to different longitudinal wave-vectors which produce the self-

imaging phenomenon and the rotation is then a manifestation of the continuous change of the 

intensity pattern. Our experimentally measured rotation rates are in very good agreement with 

those predicted theoretically. This technique is an ideal tool for the controlled rotation of 

trapped particles in optical trapping experiments.   

 

We also showed that a ring-slit field transforms from an annular structure (embedded with 

singularities) to a spiral structure, consisting of spokes situated around a ring, which shows no 

rotation in its intensity profile [30]. Since Bessel beams, and especially superpositions of Bessel 

beams, are widely used in optical tweezing, understanding the structure of the field at planes 

other than the Fourier plane is necessary. The ring-slit field, embedded with singularities, can be 

used to trap low-index particles at set distances on the circumference of a circle.  

 

4.6.  References 

 

[1]. J. Durnin, J.J. Miceli, and J.H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 

1499-1501 (1987).  

[2]. R.M. Herman and T.A. Wiggins, “Production and uses of diffractionless beams,” J. Opt. 

Soc. Am. A 8(6), 932-942 (1991).  

[3]. J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. 

Commun. 177(1-6), 297-301 (2000).  

[4]. J.H. McLeod, “The axicon: a new type of optical element,” J. Opt. Soc. Am. 44(8), 592-597 

(1954). 

[5]. J. Turunen, A. Vasara, and A.T. Friberg, “Holographic generation of diffraction-free 

beams,” Appl. Opt. 27(19), 3959-3962 (1988).  

[6]. A. Vasara, J. Turunen and A.T. Friberg, “Realization of general nondiffracting beams with 

computer-generated holograms,” J. Opt. Soc. Am. A 6(11), 1748-1754 (1989).  

[7]. J.A. Davis, E. Carcole, and D.M. Cottrell, “Nondiffracting interference patterns generated 

with programmable spatial light modulators,” Appl. Opt. 35(4), 599-602 (1996). 

[8]. J.A. Davis, E. Carcole, and D.M. Cottrell, “Intensity and phase measurements of 

nondiffracting beams generated with a magneto-optic spatial light modulator,” Appl. Opt. 

35(4), 593-598 (1996). 



88 

 

[9]. C. Paterson and R. Smith, “Higher-order Bessel waves produced by axicon-type computer-

generated holograms,” Opt. Commun. 124(1-2), 121-130 (1996). 

[10]. D. McGloin, G.C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-

dimensional arrays of optical bottles,” Opt. Commun. 225(4-6), 215-222 (2003). 

[11]. D. McGloin, V. Garces-Chavez, and K. Dholakia, “Interfering Bessel beams for optical 

micro-manipulation, ” Opt. Lett. 28(8), 657-659 (2003). 

[12]. R. Vasilyeu, A. Dudley, N. Khilo, and A. Forbes, “Generating superpositions of higher-

order Bessel beams,” Opt. Express 17(26), 23389-23395 (2009). 

[13]. R. Rop, A. Dudley, C. López-Mariscal, and A. Forbes, “Measuring the rotation 

rates of superpositions of higher-order Bessel beams,” J. Mod. Opt. 59(3), 259-267 (2012). 

[14]. V.V. Kotlyar, S.N. Khonina, R.V. Skidanov, and V.A. Soifer, “Rotation of laser beams 

with zero of the orbital angular momentum,” Opt. Commun. 274(1), 8-14 (2007). 

[15]. R. H. Jordan and D. G. Hall, “Free-space azimuthal paraxial wave equation: the azimuthal 

Bessel Gauss beam solution” Opt. Lett. 19(7), 427-429 (1994). 

[16]. F. Gori, G. Guattari, and C. Padovani, “Bessel-Gauss beams,” Opt. Commun. 64(6), 491-

495 (1987). 

[17]. T.A. King, W. Hogervorst, N.S. Kazak, N.A. Khilo, and A.A. Ryzhevich, “Formation of 

higher-order Bessel light beams in biaxial crystals,” Opt. Commun. 187(4-6), 407-414 (2001). 

[18]. T. Ando, N. Matsumoto, Y. Ohtake, Y. Takiguchi, and T. Inoue, “Structure of optical 

singularities in coaxial superpositions of Laguerre–Gaussian modes,” J. Opt. Soc. Am. A 

27(12), 2602-2612 (2010). 

[19]. J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, and S.Chávez-Cerda, “Alternative formulation 

for invariant optical fields: Mathieu beams,” Opt. Lett. 25(20), 1493-1495 (2000). 

[20]. J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, E. Tepichin, G. Ramírez, R. M. Rodríguez-

Dagnino, and S. Chávez-Cerda, “New Member in the Family of Propagation Invariant Optical 

Fields: Mathieu beams,” Opt. and Phot. News 11(12), 35-36 (2000). 

[21]. S. Chávez-Cerda, M.J. Padgett, I. Allison, G.H.C. New, Julio C. Gutiérrez-Vega, A.T. 

O’Neil, I. MacVicar, and J. Courtial, “Holographic generation and orbital angular momentum of 

high-order Mathieu beams,” J. Opt. B: Quantum Semiclass. Opt. 4, S52-S57 (2002). 

[22]. J. C. Gutiérrez-Vega, Rodolfo Rodríguez-Masegosa, and S. Chávez-Cerda , “Focusing 

evolution of Generalized Propagation Invariant Optical Fields ,” J. Opt. A: Pure Appl. Opt. 5, 

276-282 (2003). 

[23]. M. A. Bandres, J. C. Gutiérrez-Vega, and S. Chávez-Cerda, “Parabolic nondiffracting 

optical wavefields,” Opt. Lett. 29(1), 44-46, (2004). 



89 

 

[24]. C. López-Mariscal, J. C. Gutiérrez-Vega, and S. Chávez-Cerda, “Production of high--order 

Bessel beams with a Mach--Zehnder interferometer,” Appl. Opt. 43(26), 5060-5063 (2004). 

[25]. C. López-Mariscal, M. A. Bandrés, S. Chávez-Cerda, and J. C. Gutiérrez-Vega, 

“Observation of Parabolic nondiffracting wave fields,” Opt. Express 13(7), 2364-2369 (2005). 

[26]. C. López-Mariscal and J. C. Gutiérrez-Vega ,  “The generation of nondiffracting beams 

using unexpensive computer-generated holograms,” Am. J. Phys 75(1), 36-42 (2007) 

[27]. J. C. Gutiérrez-Vega and C. López-Mariscal, “Nondiffracting vortex beams with 

continuous orbital angular momentum order dependence,” J. Opt. A: Pure Appl. Opt. 10(1), 

015009, (2008). 

[28]. D.W.K. Wong, and G. Chen, “Redistribution of the zero order by the use of a phase 

checkerboard pattern in computer generated holograms,”Appl. Optics 47(4), 602-610 (2008). 

[29]. D. Naidoo, K. Aït-Ameur, M. Brunel and A. Forbes, “Intra-cavity generation of 

superpositions of Laguerre–Gaussian Beams,” Appl. Phys B. doi: 10.1007/s00340-011-4775-x 

[30]. A. Dudley and A. Forbes, “From stationary annular rings to rotating Bessel beams,” J. 

Opt. Soc. Am. A 29(4), 567-573 (2012). 

  

 

 

 

 

 

 

 

 



90 

 

CHAPTER FIVE 

 

 

Non-diffracting Speckle Fields 

 

 

5.1.  Introduction 

 

Any field that has an annular spatial spectrum falls into the family of non-diffracting fields. 

Their ability to maintain their intensity profile during propagation has interested many 

researchers, resulting in many publications being dedicated to their formation, some of which 

are mentioned in section 4.1.  

 

In this chapter, we turn our attention to random non-diffracting fields (also termed non-

diffracting speckle fields). The first attempt to create a non-diffracting speckle field involved 

illuminating a weakly scattering diffuser (produced by spraying finishing mist on a flat glass 

plate) with a thin ring field [1]. Simpler and more efficient methods of generating non-

diffracting speckle fields have been realized with the use of a single SLM [2]. This is a 

computational approach, equivalent to the experimental setup of Ref. [1], where the computer-

generated hologram applied to the SLM is the Fourier transform of a ring-slit containing a 

random binary pattern.   

 

Even though investigations into generating non-diffracting speckle fields have been made, none, 

to the best of our knowledge, show agreement between a theoretically calculated speckle field 

and an experimentally measured field. The major reason for this is that illuminating a diffuser 

with a ring field (as described in Ref. [1]) makes it virtually impossible to mathematically 

formulate the transmission function within the ring-slit in order to compute a theoretical 

prediction. We make use of a single SLM and implement the checkerboard pattern which allows 

us to operate our phase-only SLM in both phase and amplitude mode. This allows us to define 

the transmission function of the ring-slit and so a theoretical calculation of the resulting speckle 

can be made.  

 

In this chapter we will outline the experimental setup used to generate non-diffracting speckle 

and illustrate the benefit of the checkerboard pattern [3]. Since speckle plagues many optical 
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systems, an understanding of speckle formation is imperative for the development of tools for 

its removal [4, 5]. Speckle is also proving useful in metrological techniques [6-10] and non-

diffracting speckle is of particular interest in the non-destructive testing of materials [11], all of 

which benefit from a knowledge of speckle formation. Current investigations considered the 

effect the dimensions and the geometry of the ring-slit have on the longitudinal correlation [12] 

and the clustering (or snake-like patterns) of the speckles [13, 14], respectively. The structure of 

the random hologram or diffuser also has an influence on the formation of speckle clustering 

[14, 15]. In section 5.3, we make further investigations into the formation of speckle by 

studying the effect binary and continuous phase modulations within the ring-slit, for both the 

uniform and normal distribution, have on the structure of the speckle [3]. Our experimental 

results are accompanied by a theoretical explanation to validate what we experimentally 

witness.  

 

5.2.  Experimental methodology 

 

The experimental setup used to generate non-diffracting speckle fields is very similar to that 

presented in Fig. 4.4.2, for the generation of non-diffracting Bessel beams, and is presented 

below in Fig. 5.2.1. A HeNe laser was expanded through a 6 × telescope before illuminating a 

ring-slit hologram, encoded with a random phase modulation. In our previous attempts, a 

physical ring-slit aperture was imaged onto the SLM and the phase modulation within the ring 

field would be modified. However, with this approach, in the case of non-diffracting speckle 

fields, one cannot define the transmission function of the ring field and this is why we 

implemented the checkerboard pattern, so as to reproduce the entire transmission function onto 

a single hologram. The dynamic addressing of SLMs allows the radius and width of the ring-

slit, the frequency of the phase modulation, the number of grey-levels used to represent the 

phase modulation, and the distribution used to describe the phase modulation to be varied 

appropriately. The plane at the SLM (P1) was relay imaged with a 1 × telescope to plane P2 

(denoted in Fig. 5.2.1). A physical ring-slit, contained within the red border in Fig. 5.2.1, was 

placed at P2 when needed, to allow for comparison between the results obtained with the ring-

slit hologram and the physical ring-slit in conjunction with the random hologram. The field at 

plane P2 was Fourier transformed, with the use of lens L5, before being magnified by a 10 × 

objective and detected on a CCD camera. The non-diffracting nature of the produced speckle 

field is illustrated in Fig. 5.2.1 (i) - (ii), illustrating that the intensity profile of the field remains 

invariant as the field propagates.  
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Fig. 5.2.1. The experimental design for generating non-diffracting speckle. The physical ring-

slit (RS) which can be introduced into the optical setup when needed is denoted inside the red 

border. (L: lens (f1 = 25 mm; f2 = 150 mm; f3 = 50 mm; f4 = 50 mm; f5 = 200 mm); M: mirror; 

SLM: spatial light modulator; O: objective; CCD: CCD camera). (i) – (iii) The intensity profile 

of the non-diffracting speckle field recorded at intervals along its propagation.  

 

Figure 5.2.2 contains the results obtained with the physical ring-slit and a random hologram 

(column 2) and the hologram which incorporates the checkerboard pattern (column 4).  These 

results were first obtained by illuminating the SLM when it was addressed by the holograms 

given in column 3 of Fig. 5.2.2. The SLM was then addressed with the same random holograms 

as those in column 3, but with the checkerboard pattern removed (i.e. those in column 1), and 

the field at the SLM was then imaged onto a physical ring-slit (R = 3 mm and � = 150 µm). The 

alignment of the physical ring-slit was adjusted until the field in the Fourier plane resembled 

that which was obtained with the checkerboard pattern. Both methods produced identical results 

(evident in comparing columns 2 and 4), illustrating that this technique is extremely effective in 

mimicking an amplitude mask. By being able to encode the transmission function into a single 

hologram and with the dynamic addressing of SLMs, the parameters which describe the ring-

slit, such as radius, width and phase modulation can all be easily adjusted. 
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Fig. 5.2.2. Column 1: Random holograms which were illuminated with a ring field, denoted in 

red. Column 2: The corresponding experimentally measured Fourier transform. Column 3: The 

same random holograms as those in column 1, but with the checkerboard encoded. Column 4: 

The experimentally measured Fourier transform of column 3. 

 

Since the phase modulation within the ring-slit can be mathematically defined, we can compute 

a theoretical prediction for the resulting speckle field. An example is given in Fig. 5.2.3, 

illustrating that the experimentally produced non-diffracting speckle field is in very good 

agreement with the theoretical prediction. This approach, for the first time, allows for 

quantitative studies in the dynamics of speckle formation, and is implemented with a single 

device – a SLM.  

 

 

Fig. 5.2.3. (a) The ring-slit hologram applied to the SLM. (b) The corresponding experimentally 

produced field in the Fourier plane and (c) the theoretically calculated field at the Fourier plane.  
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5.3.  Results and discussion  

 

In our experimental investigations we test four different forms of phase modulation within the 

ring-slit, described by the following distributions: (i) continuous uniform, (ii) binary uniform, 

(iii) continuous normal and (iv) binary normal.  

 

• (i) and (ii): continuous uniform and binary uniform distributions 

 

In the case where the phase modulation is described by a continuous uniform distribution, the 

phase values exist in the range {0, 2π}, and the phase modulation is defined as 

 

                                                          ),(2),( yxUyx ×= πφ ,                                             (5.3.1) 

 

where U(x,y) is a uniform random number in the range {0,1}.  

 

For the case that the phase modulation within the ring-slit is described by a binary uniform 

distribution, there is an equal probability that the phase values will be assigned either a value of 

0 or π, which is mathematically described as  
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Figure 5.3.1 contains the ring-slit holograms and the corresponding fields in the Fourier plane 

for the continuous uniform and binary uniform distributions. The frequency of the phase 

modulation within the ring-slit increases for each row (i.e. the phase modulation becomes more 

complicated). The amplitude mask has been removed in Fig 5.3.1, so as to highlight the phase-

modulation within the ring-slit. 
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Fig. 5.3.1. Column 1: Ring-slit holograms, where the phase modulation within the ring-slit is 

described by a continuous uniform distribution (the frequency of the phase modulation increases 

with each row, (a) and (c) 10 pixels; (e) and (g) 50 pixels; (i) and (k) 100 pixels). The red ring 

denotes the ring-slit. Column 2: The corresponding experimentally recorded field at the Fourier 

plane. Column 3: Ring-slit holograms, where the phase modulation within the ring-slit is 

described by a binary uniform distribution (the frequency of the phase modulation increases 

with each row). The red ring denotes the ring-slit. Column 4: The corresponding experimentally 

recorded field at the Fourier plane. 

 

In column 2 of Fig 5.3.1, it is evident that the zero-order Bessel beam starts to reconstruct as the 

frequency of the phase modulation increases. However, this is not the case with the binary 

uniform distribution and instead as the frequency of the phase modulation increases, so the 

speckle becomes more chaotic (evident in column 4).  

 

To understand why different distributions produce different forms of non-diffracting speckle, 

the complex plane approach (first introduced in section 4.4.1) can be used. The amplitude 

modulation (introduced in section 4.4.1) is just a specific form of phase modulation where the 

two vectors, A1 and A2, are weighted and positioned on the complex plane in such a way that 

they produce a resultant having zero amplitude, thus completely suppressing the on-axis 

intensity in the Fourier plane.  
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In the case of the continuous uniform phase modulation the vectors on the complex plane, A1 to 

A256, all have the same amplitude and emanate from the origin of the complex plane from 0 to 

2π. This produces a resultant, having the same amplitude as each of the 256 vectors, and 

pointing along the negative x-axis (i.e. ϕ = π). The average amplitude of the field at the plane of 

these holograms, is non-zero and due to the ring-slit geometry restricting this phase modulation, 

a zero-order Bessel beam manifests in the Fourier plane, evident in the three images in column 2 

of Fig 5.3.1. In order to verify if the DC-offset experiences an increase or a decrease with an 

increase in the frequency of the phase modulation, we analysed the standard deviation within 

the ring-slit and this will be presented later for all four distributions.  

 

For the binary uniform case, there is an equal probability that either a value of 0 or π will be 

selected to represent the phase modulation within the ring-slit and so the two vectors on the 

complex plane each have the same amplitude, but point in opposite directions (ϕ1 = 0, ϕ2 = π).  

The amplitude of the resultant is zero, so the DC component of the field at the ring-slit is zero, 

resulting in no zero-order Bessel beam forming in the Fourier plane. However, as the frequency 

of the phase modulation increases, the ‘noise’ around the DC-component increases and the 

nondiffracting speckle becomes more chaotic, evident in column 4 of Fig. 5.3.1.  

 

• (iii) and (iv): continuous normal and binary normal distributions 

 

When the phase values, within the ring-slit, are described by a normal distribution, having a 

mean of zero and a standard deviation of 1, the phase values are defined as  

 

                                                    ),,(2),( yxNyx ×= πφ                                                  (5.3.3) 

 

where N(x,y) is a normal random number. The probability density function for our continuous 

normal distribution is 
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where µ and σ are the mean and standard deviation, respectively.  
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The last case that we consider is the binary normal case. Here phase values within the ring-slit 

are assigned a value of either 0 or π, where the probability of selecting either value is bounded 

by a Gaussian envelope,   
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The results obtained with these two distributions appear below in Fig. 5.3.2. The holograms 

containing phase modulations described by a continuous normal distribution and a binary 

normal distribution are given in column 1 and 3 of Fig. 5.3.2. The non-diffracting speckle fields 

produced by the holograms (described in columns 1 and 3) are shown in columns 2 and 4, 

respectively. It is evident that in the case of both distributions, the non-diffracting speckle starts 

to evolve into a zero-order Bessel beam as the frequency of the phase modulation increases. 

   

 

Fig. 5.3.2. Column 1: Ring-slit holograms, where the phase modulation within the ring-slit is 

described by a continuous normal distribution (the frequency of the phase modulation increases 

with each row, (a) and (c) 10 pixels; (e) and (g) 50 pixels; (i) and (k) 100 pixels). The red ring 

denotes the ring-slit. Column 2: The corresponding experimentally recorded field in the Fourier 

plane. Column 3: Ring-slit holograms, where the phase modulation within the ring-slit is 

described by a binary normal distribution (the frequency of the phase modulation increases with 
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each row). The red ring denotes the ring-slit. Column 4: The corresponding experimentally 

recorded field in the Fourier plane. 

 

Once again the effects noted in Fig. 5.3.2 can be explained by visualizing a complex plane to 

represent the phase values in the hologram. For the continuous normal distribution, the vectors 

on the complex plane are weighted by a normal distribution. This results in the resultant vector 

having a non-zero amplitude and consequently an average amplitude of the field exists at the 

ring-slit producing a zero-order Bessel beam in the Fourier plane. This is evident experimentally 

in column 2 of Fig. 5.3.2.  

 

When the phase modulation is described by a binary normal distribution a similar effect is noted 

(column 4 of Fig. 5.3.2). This is due to the fact that the probability of selecting either a phase 

value of 0 or a phase value of π, is bounded by a normal distribution; giving rise to the 

amplitudes of the two vectors in the complex plane being unequal . The resultant vector 

therefore has a non-zero amplitude and so a mean amplitude exists within the ring-slit giving 

rise to a zero-order Bessel beam in the Fourier plane.  

 

For all of the above four cases, the transition of the speckle field, as the frequency modulation 

increases, can be understood by investigating the effect the standard deviation of the distribution 

has on the complex plane analogy. A graph illustrating how the standard deviation for each of 

the four distributions varies as a function of the frequency of the phase modulation is given in 

Fig. 5.3.3. The x-axis represents an increase in the correlation radius of the phase modulation 

within the ring-slit. The correlation radius is defined as the distance over which a 2π phase shift 

occurs in the phase modulation. Therefore a small correlation radius indicates that the frequency 

of the phase modulation is high, while a large correlation radius means the frequency of the 

phase modulation is low. The y-axis denotes the standard deviation of the distribution.  

 

For the case of the continuous uniform distribution, the standard deviation for the continuous 

uniform distribution decreases as the frequency of the phase modulation decreases. In terms of 

the complex plane, this means that the range in which the 256 vectors exist on the complex 

plane becomes smaller. If all 256 vectors on the complex plane are restricted to a segment 

which has a small opening angle, then the amplitude of the resultant vector will increase, 

resulting in the zero-order Bessel beam becoming more predominant in the Fourier plane, as 

illustrated in column 2 of Fig. 5.3.1. 
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Fig. 5.3.3. Graph of the standard deviation for each of the four distributions as a function of the 

frequency of the phase modulation (or correlation radius).  

 

From Fig. 5.3.3, it is evident that the standard deviation for the uniform binary distribution does 

not vary as the frequency of the phase modulation increases. This would then explain why the 

amplitude of the two vectors in the complex plane remains unchanged as the frequency of the 

phase modulation increases. This results in no change occurring in the DC-offset and 

consequently no zero-order Bessel beam forms in the Fourier plane, evident in column 4 of Fig. 

5.3.1. 

 

In the continuous normal distribution, an increase in the frequency of the phase modulation has 

no effect on the standard deviation (evident in Fig. 5.3.3). Instead the standard deviation 

remains fairly constant. This results in no fluctuations in the average amplitude of the field 

within the ring-slit taking place. In this case, as the frequency of the phase modulation increases 

not much change is noted in the intensity of the zero-order Bessel beam in the Fourier plane, as 

is the case in column 2 of Fig. 5.3.2. 

 

From fig. 5.3.3, one can see that as the frequency of the phase modulation increases, the 

standard deviation decreases ever so slightly, resulting in a slight increase in the amplitude of 

the resultant vector. Consequently, the zero-order Bessel beam starts to appear as the frequency 

of the phase modulation increases. 
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In conclusion, we see that by engineering the frequency of the phase modulation, there is not 

much of a transition from non-diffracting speckle to a zero-order Bessel beam. Only one of the 

distributions (the binary normal distribution) shows a transition from chaotic speckle to a zero-

order Bessel beam. This is also evident in comparing Figs 5.3.1 and 5.3.2, where the binary 

normal distribution (column 4, Fig. 5.3.2) displays the development from fully-developed 

speckle to a zero-order Bessel beam. The two continuous cases on the other hand, do not seem 

to start off as chaotic speckle; instead we see Bessel-like clusters. The binary uniform 

distribution is the polar opposite. Increasing the frequency of the phase modulation does not 

result in the field attaining a quasi-zero-order Bessel beam state and instead the field develops 

into more chaotic speckle (evident in Fig. 5.3.3 and in the intensity profiles in column 4 of Fig. 

5.3.1). By decreasing the standard deviation of all four distributions, this restricts the two 

vectors to a smaller area on the complex plane and so the zero-order Bessel beam becomes more 

predominated in the Fourier plane. Some simulated results are given in Fig. 5.3.4 (row 1: 

continuous uniform, row 2: binary uniform, row 3: continuous normal, and row 4: binary 

normal). By varying the standard deviation, one can control where in the ‘speckle to zero-order 

Bessel beam’ spectrum the field can exist.  

 

 

Fig. 5.3.4. Simulated images for the non-diffracting speckle field, for each of the four 

corresponding distributions. Row 1: continuous uniform. Row 2: binary uniform. Row 3: 
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continuous normal. Row 4: binary normal. The standard deviation increases from left to right. 

The values for the standard deviation are given in the bottom right corner of each image. 

 

5.4.  Conclusion 

 

Modulating the amplitude in the ring-slit holograms, allows us to obtain good agreement 

between our experimentally produced non-diffracting speckle fields and theoretical predictions. 

We investigated the effect that binary and continuous phase modulations for two different 

distributions, (uniform and normal), have on the structure of the speckle field [3]. We 

discovered that we can control the evolution of the fully-developed non-diffracting speckle into 

a zero-order Bessel beam by adjusting the standard deviation of the distribution, which can be 

explained by analysing the DC component of the Fourier series.  Having a ‘dial’ to select 

between either a zero-order Bessel beam, fully-developed non-diffracting speckle, or any 

mixture in-between, one can develop fields that are ‘tailor-made’ for specific functions. For 

example in the case of the non-destructive testing of materials, fields can be designed so as to 

optimise the assessment of materials and solutions. Non-diffracting fields are also widely used 

in optical tweezers. By being able to switch between a zero-order Bessel beam and non-

diffracting speckle, one can randomly disperse particles, accumulated in the column of the 

Bessel beam, in a predetermined area of a cell or sample. 
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CHAPTER SIX 

 

 

Measuring the Orbital Angular Momentum Density of an 

Optical Field 

 

 

6.1.  Introduction 

 

In chapter 2, various methods of measuring OAM are mentioned, however, even though these 

techniques are efficient at sorting modes (and even in some cases single photons) carrying 

OAM, they do not allow one to obtain a quantitative measurement for the OAM density. They 

merely measure the global OAM – the average value across the entire field. Some publications, 

however, have demonstrated the transfer of local OAM to trapped particles [1-3] and shown that 

the rotation rates of a particle trapped at different radial positions is proportional to r
-3 

[1], or 

that a particle trapped at different radial positions in an optical field (produced by interfering 

two vortex beams with unequal charges) rotate in opposite directions [3]. Attempts to make 

quantitative measurements of the OAM carried in an optical field have been made by measuring 

these rotation rates [4, 5].  This is not only an indirect measurement, but also a difficult 

experiment to conduct. These measurements only show that the rotation rates increase linearly 

with laser power [4] and that the rotation rates of low-index particles are not affected by beam 

imperfections [5]. An even more complicated method involves using the Doppler shift of a 

rotating detector [6, 7].  

 

In this chapter we investigate theoretically (in section 6.2) the OAM density for superpositions 

of higher-order Bessel beams from first principles, by calculating the Poynting vector of the 

field, from which we can deduce both the linear and angular momentum components [8, 9]. We 

then use the Fresnel diffraction integral to form an experimental expression for the OAM 

density, from which we can make a direct comparison between theory and experiment. In 

section 6.3, we develop a simple method for measuring the OAM density in optical fields, using 

only a SLM and a Fourier transforming lens. Since there is interest in the superposition of OAM 

carrying fields, at both the classical [10-12] and quantum levels [13], we test the approach on 

superimposed non-diffracting higher-order Bessel beams. We obtain quantitative measurements 
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for the OAM density as a function of the radial position, for both symmetric and non-symmetric 

superpositions. We obtain good agreement with the theoretical prediction which is presented in 

section 6.4. The results indicate that the magnitude and direction of the OAM in the optical field 

is dependent on the location within the field’s spatial distribution. In other words, different parts 

of the field carry different amounts of OAM. Being able to determine the OAM distribution is 

significant in optical trapping and tweezing.  

 

6.2.  Theory 

 

In obtaining the theoretical result for the OAM density for a coherent superposition of two 

Bessel beams, we follow the same procedure as that presented in section 1.3. The same steps 

taken in formulating Eqs (1.3.1) to (1.3.13) (although it contains the case for a single field, 

possessing the phase factor exp(ilθ)) are applied here.    

 

This problem, of formulating the Poynting vector, has been tackled previously by others [4, 14 - 

19].  We first take the general result for the Poynting vector, presented in Eq. (1.3.8), which we 

will then apply to our specific problem of coherent superpositions of non-diffracting Bessel 

beams. 

 

• CASE 1: Symmetric superposition 

 

The form for a symmetric superposition of two Bessel beams having differing cone angles and 

opposite azimuthal phases is  

 

)],exp()exp()()exp()exp()([),,( 2010 θαθθ ilkzirqJilkzirqJAzru ll
I −∆−+∆= −      (6.2.1) 

 

where Jl is the Bessel function of order l. A0  is the energy contained within the first Bessel 

beam, Jl, 

 

∫ −=
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ring

rdrrA ω                                           (6.2.2) 

 

and the energy contained within the second Bessel beam, J-l, is denoted as α0A0, where 

 



105 
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rdrrrdrr ωωα                           (6.2.3) 

 

with ring1 and ring2 denoting the bounds of the inner and outer radii for the inner and outer 

rings, respectively and ω the radius of the Gaussian beam illuminating the ring-slit. The cone 

angles, γ1 and γ2, differ as a result of the generation process (outlined in chapter 4). As a result of 

the differing cone angles, both the radial and longitudinal wave numbers differ for the two 

beams. The radial wave numbers become qi = ksinγi, while the longitudinal wave numbers, 

given by ki = kcosγi differ from the central z-dependent wave number (k) by ±�k. The subscripts 

i refer to the first (second) beam in the superposition.  Each of the components of the Poynting 

vector, (Sr, Sθ and Sz) for the field given in Eq. (6.2.1) can be determined by substituting the 

amplitude of the field (Eq. (6.2.1)) into Eq. (1.3.8) 
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The total OAM density (along the direction of propagation, z) is defined as 

 

( ) .
1
2 zz Sr

c
L ×=                                                     (6.2.7) 

 

Here, the units of S are the conventional W/m
2
 and the OAM density (Lz) is consequently 

expressed as the angular momentum per unit volume, or Ns/m2. By substituting in each 

component of the Poynting vector (given in Eqs (6.2.4) to (6.2.6)) into the expression for the 

total OAM density (Eq. (6.2.7)) and taking only the z-component, the OAM density for the field 

described in Eq. (6.1.1) is 
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An illustration which describes the experimental measurement is given in Fig. 6.2.1 (a). The 

figure is divided into two parts: (1) the generation of the optical field for which we wish to 

measure the OAM density and (2) the measurement of the OAM density, which is achieved by 

performing the inner-product.  

 

 

Fig. 6.2.1. (a) A schematic of the generation of the optical field and the decomposition of its 

OAM spectrum. (b) The Gaussian beam used to illuminate the hologram, (c), for the generation 

of the optical field, (d), defined by uI(r,θ,z). The hologram, having a transmission function of 

t(r,θ), in (e) together with the lens L2 performs the decomposition, producing the inner-product, 

P, represented in (f) and mathematically defined by uP(ρ,φ,z). (SLM: spatial light modulator and 

O: objective – used to magnify the optical field (d)). 

 

The optical field, u
I
(r,θ z) is directed onto the match-filter t(r,θ), where the Fourier transform is 

taken so as to form an experimental measurement. The match-filter is a function of r, allowing 

one to select a specific radial position within the optical field, u
I
(r,θ z). The azimuthal phase 

within the match-filter can also be varied, resulting in different azimuthal weightings at different 

radial positions in the optical field being measured. It is not only restricted to our case of 

superimposed Bessel beams, but can be implemented with any OAM-carrying optical field. 

 

First we need to relate a measurable quantity (such as the intensity of the inner-product) to the 

OAM spectrum, so as to form an experimental expression for Eq. (6.2.8), the OAM density. We 

first start by defining the field of the inner-product, by making use of the Fresnel diffraction 
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integral, so as to propagate the initial field, uI(r,θ,z), multiplied by the match-filter, t(r,θ), to the 

plane of the inner-product, P 
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f is the focal length of the lens used in the modal decomposition.   

 

The field is evaluated at the origin, ρ = 0, so as to return the desired inner-product between the 

field u
I(r,θ,z) and the match filter t(r,θ). We also only need to consider the cases when the 

azimuthal mode of the match-filter is either l or –l (i.e. n = l and –l), because the weighting of 

the azimuthal mode, an, will be non-zero when the match-filter possesses an azimuthal mode of 

the complex conjugate of one of the azimuthal modes present in the initial field, u
I
(r,θ,z). 

 

By substituting the initial field, Eq. (6.2.1) into Eq. (6.2.9), and considering only the signal at 

the origin, uP(0,φ,z), for both cases of m = l and m = -l, we find that  
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and 
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where R1 and R2 are the inner and outer radii of the ring-slit used in the match-filter.  

 

The ring-slit in the match-filter is thin, resulting in Eqs (6.2.9) and (6.2.10) being simplified by 

noting that the ring-slit may be assumed to be at a single radial position, R  ≈  R1 ≈ R2, of width 

2�R (where R is the radius of the ring-slit) 
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and 
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Since the intensity of an optical field is defined as Il = ε0c(ul ul*), the measured intensity at the 

origin of the inner-product, I(0), and the theoretical Bessel function can be related as 
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for the two cases, where the azimuthal mode index of the match-filter is either l or –l, 

respectively. Substituting these two equations (Eqs (6.2.14) and (6.2.15)) into the theoretical 

result for the OAM density (Eq. (6.2.8)), the following experimental form for the OAM density 

is obtained 
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η is a factor for the optical efficiency of the experimental setup and SRing is the area (4π�R.R) of 

the match-filter’s ring-slit and is a function of its radius, R.  

 

We will now generalize the expressions for the theoretical (Eq. (6.2.8)) and experimental (Eq. 

(6.2.16)) OAM densities, for a generalized symmetric superposition of Bessel beams, described 

as  
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where αl and α-l denote the energy contained in each of the ring-slits, with respect to the energy 

contained in the first ring-slit. Since the θ-component of the Poynting vector, Sθ, is a linear 

operator (this proof is included in Appendix A2), the generalized experimental and theoretical 

OAM density is obtained by extending the results given in Eqs (6.2.8) and (6.2.16) 
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and 
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respectively.  

 

• CASE 2: Non-symmetric superposition 

 

The amplitude for a non-symmetric superposition of two Bessel beams, is defined as  
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where the azimuthal indices are of different orders, l ≠ m. By following the same procedure for 

determining the Poynting vector and consequently the OAM density, as described in the 

symmetric case, the theoretical OAM density is  
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Unlike the symmetric case (Eq. (6.2.8)) this form for the OAM density is a function of the 

azimuthal angle, θ, in the plane of the inner-product and is evaluated by summing over the 

OAM density values for a range of angles varying from 0 to 2π. It is also a function of �kz, 

however since this only produces a constant phase-shift (i.e. a rotation in the intensity profile of 

the optical field), it is neglected.   
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The on-axis intensity in the inner-product plane is related to the Bessel function by following 

the same steps outlined in Eqs (6.2.9) to (6.2.15) and remembering that the match-filter must be 

set to both l and m, resulting in 
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and 
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Substituting Eqs (6.2.22) and (6.2.23) into Eq. (6.2.21) produces the expression for the 

experimental measurement of the OAM density  
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No measurement for the angle θ can be made, as there exists only one measurement for the on-

axis intensity in the inner-product plane. Instead the experimental equation for the OAM density 

is integrated over θ, resulting in the average OAM density  
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where the term �kz can be neglected. As this result has no angular dependence, the 

measurement does not pertain to a specific radial direction, but instead is an average 

measurement across the field.  

 

The amplitude distribution of the non-symmetric superposition can be generalised in the 

following form 
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Since the θ-component of the Poynting vector, Sθ, is a linear operator, the theoretical and 

experimental results for the OAM density is determined by extending the simple form in Eqs 

(6.2.21) and (6.2.25). However, the equations become very cumbersome and have been 

neglected. In verifying our results for a generalized non-symmetric superposition, the OAM 

density is calculated by substituting the amplitude distribution (Eq. (6.2.26)) into Eq. (6.2.8) to 

determine the Poynting vector for calculating the theoretical OAM density.  

 

We conduct the experiment on six different optical fields, which will appear in section 6.4. The 

first three fields consist of a superposition of two Bessel beams, of orders l = 3 and -3, where the 

energy in the two Bessel beams are (1) equal; (2) the l = -3 order Bessel beam is heavily 

weighted; and (3) the l = +3 order Bessel beam is heavily weighted. The theoretical and 

experimental OAM densities are calculated using Eqs (6.2.8) and (6.2.16). We also measure the 

OAM density for a non-symmetric superposition of two Bessel beams, l = 3 and m = -4, using 

Eqs (6.2.21) and (6.2.26). The fifth optical field is a superposition of three Bessel beams and 

even though the OAM density is not explicitly given in this thesis, it is easily calculated by 

substituting the amplitude of the optical field into Eqs (1.3.8) and (6.2.7). Similarly, we use Eqs 

(1.3.8) and (6.2.7) to measure the OAM density of the last optical field, a non-symmetric 

superposition of four Bessel beams. 

 

6.3. Experimental methodology 

 

The experimental setup for measuring the OAM density for symmetric and non-symmetric 

superpositions of Bessel beams is denoted in Fig. 6.3.1. A HeNe laser (λ ~ 633 nm) was 

expanded through a 6 × telescope and directed onto the liquid crystal display (LCD) of a SLM, 

labelled LCD1 so as to generate the six optical fields for which we wish to measure the OAM 

density. The fields were generated using the holograms presented in section 4.4. 
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Fig. 6.3.1. A schematic of the experimental setup for measuring the OAM density as a function 

of the radial position, R.  L: Lens (f1 = 25 mm; f2 = 150 mm; f3 = 200 mm and f4 = 200 mm); M: 

Mirror; LCD: Liquid Crystal Display; O: Objective; PM: Pop-up Mirror; CCD: CCD Camera. 

The objective, O2, was placed at the Fourier plane of lens, L4. The corresponding optical fields 

and holograms appear at the appropriate planes. 

 

Some of the ring-slit holograms, programmed onto LCD1, for the creation of superimposed 

Bessel beams can be found in the next section, section 6.4. The area surrounding the ring-slit, 

where we do not want to transmit any light, is encoded with a checkerboard pattern so as to 

mimic an amplitude mask. This checkerboard technique was explained in section 4.4.1. The 

resulting images of our non-diffracting superposition field, formed at the focal plane of L3, was 

magnified with a 10× objective, O1, and directed to the LCD of the second SLM, LCD2. A pop-

up mirror, PM1, was used to direct the field at the plane of LCD2 so as to be recorded on CCD1. 

This allowed us to quantitatively measure the radial positions within the initial optical field.   

 

The modal decomposition was achieved by executing an inner product of the incoming field 

with the match filter and a Fourier transforming lens, L4. Since the match-filter was 

programmed digitally the phase factor, exp(-imθ), was easily varied for various m values, and 

for particular radial (r) positions. The coefficient am, at set radial positions, was found by 

assigning the match-filter to a narrow ring-slit having a radius, R, and a width of 20 pixels. This 

allows us to find the local OAM density rather than the global OAM density.  

 

 The image presented in Fig. 6.3.2, illustrates the concept of the match-filter: the experimental 

field (second and fourth row of Fig. 6.3.2) was subdivided into 10 ring-slits. In this work, the 

match-filters consist of ring-slits having ten different radii (r1 = 75; r2= 110; r3 = 145; r4 = 180; 

r5 = 215; r6 = 250; r7 = 285; r8 = 320; r9 = 355 and r10 = 390 (given in pixels), each consisting of 
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a width of 20 pixels). The azimuthal phase within each ring-slit was varied according to the 

complex conjugate of the azimuthal modes present in the initial amplitude distribution. The 

dynamical aspect of SLMs allows us to radially locate where in the optical field we wish to 

make a measurement of the OAM density. Due to the fact that LCD2 was orientated as the 

mirror image of LCD1 in our experimental setup, the complex conjugate of the azimuthal mode 

index, m, on LCD1 is equivalent to m on LCD2. If the experimental setup were orientated 

differently, such that the two SLMs have the same orientation, the complex conjugate of the 

azimuthal mode index, m, on LCD1 is then equivalent to -m on LCD2. The OAM density for a 

particular radial position can then be obtained by measuring the on-axis intensity of the inner-

product on CCD2. 

 

 

Fig. 6.3.2. The initial optical field was divided radially into individual ring-slits. The phase 

within the annular ring was varied azimuthally for various values of l.  The rest of the LCD was 

programmed with a checkerboard pattern so as to restrict the transmission function to the ring 

alone. The ten rings have the following radii: r1 = 600 µm, r2 = 880 µm, r3 = 1160 µm, r4 = 1440 

µm, r5 = 1720 µm, r6 = 2000 µm, r7 = 2280 µm, r8 = 2560 µm, r9 = 2840 µm and r10 = 3120 µm.  

The black and white images in rows 2 and 4 are grey-scale experimental images of the first 

optical field that we tested. 

 

In the next section we will present our results for the six optical fields that we tested using our 

OAM density measurement setup, described in Fig. 6.3.1.  
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6.4.  Results and discussion 

 

• Optical field #s 1, 2 and 3 - symmetric superposition of two Bessel beams 

 

The holograms for the first test of our OAM measurement technique, described in section 6.4, 

are given in the first column of Fig. 6.4.1. They consist of a ring-slit separated into two ring-

slits, each possessing an azimuthal phase of equal order but opposite handedness, (i.e. linner = 3 

and louter = -3). The widths of the two ring-slits differ in Figs 6.4.1 (d) and (g). This allowed us 

to adjust the energy present in each of the two Bessel beams and subsequently set the values of 

A0 and α0 in Eq. (6.2.11). The ring-slit dimensions are: (a) r1 = 173, r2 = 188, �r1, �r2 = 15; (d) 

r1 = 173, r2 = 188, �r1 = 7, �r2 = 23; (g) r1 = 173, r2 = 188, �r1 = 23, �r2 = 7 (all given in 

pixels). When the orders, |l|, of the two azimuthal phases are of equal order, but of opposite 

handedness, a petal structure is produced, where the number of petals is denoted by 2|l| as 

expected from theory [20]. This is evident in Fig. 6.4.1 (b) and (c).    

  

In the other two cases (Fig. 6.4.1 (d) and (g)) the two ring-slits cover slightly different areas, 

producing Bessel beams containing differing energies.  The l = -3 order Bessel beams is heavily 

weighted by increasing the area of the outer ring-slit (evident in Fig. 6.4.3 (d)), resulting in a 

smearing of the petals as the l = -3 order Bessel beam is favoured in the optical field (evident in 

Fig. 6.4.1 (e) and (f)). In Fig. 6.4.1 (g) the l = 3 order Bessel beam is heavily weighted by 

increasing the area of the inner ring-slit, resulting in a similar smearing of the petals.  
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Fig. 6.4.1. First column: Holograms and the corresponding experimentally produced fields in 

the Fourier plane (second column) accompanied with theoretically calculated fields (third 

column). The white dots in (c) denoted the radial positions of each of the ten ring-slits used as 

the match-filters. 

 

The OAM spectrum of the first optical field, given in the first row of Fig. 6.4.1, was obtained by 

measuring the intensity at the origin of the inner-product field, at plane P, with a CCD camera, 

CCD2, for each of the ten match-filters whose azimuthal phase varied from l = -4 to 4. This 

measured OAM spectrum is shown in Fig. 6.4.2, illustrating that the only components of the 

OAM spectrum, that are present in the field, are l = -3 and 3, which are the complex conjugates 

of the azimuthal modes present in the initial amplitude distribution.   
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Fig. 6.4.2. The measured OAM spectrum of the field given in Fig. 6.4.1 (b), as a 

function of the radial ring (or radial position), given by numbers 1 to 10, for azimuthal 

phase values of m = –4 to 4. The height of each bar represents the measured coefficients 

|am|
2
. 

 

The OAM density for each of the fields, denoted experimentally in the second column of Fig. 

6.4.1, was determined by measuring the intensity at the origin of the inner-product field at the 

Fourier plane of L4 for each of the match-filters and substituted into Eq. (6.2.16) or (6.2.25). 

Figure 6.4.3 contains the measured OAM densities as a function of the radial position for the 

first three optical fields.   
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Fig. 6.4.3. (a) A density plot of the OAM density for the field given in Fig. 6.4.1 (b). Red 

denotes negative OAM and blue denotes positive. Light to dark blue denotes an increase in 

positive OAM and light to dark red denotes an increase in negative OAM. (b), (c) and (e) the 

OAM density for the fields in Fig. 6.4.1.(b), (e) and (h), respectively. The blue curve denotes 

the theoretical OAM density and the red points the experimentally measured OAM density. 

Inserts for density plots of the OAM density for (c) and (e) are given as inserts, (d) and (f), 

respectively.        

 

Since the incoming optical field in Fig. 6.4.1 (b), consists of an equal weighting of linner = 3 and 

louter = -3 order Bessel beams, the OAM density represented as a density plot in the x - y plane 

consists of evenly-sized concentric rings of positive and negative OAM. Figure 6.4.3.(b), which 

contains the radial cross-sectional profile of the OAM density, also depicts this behaviour, as 

the OAM density oscillates evenly around a value of zero.  In the next two cases, where linner = -

3 (+3) is heavily weighted, the OAM is predominantly negative (positive) and is evident in Fig. 

6.4.3 (d) ((f)). The cross-sectional profile of the OAM density exists predominantly in the 

negative (positive) quadrant of the graph, evident in Fig. 6.4.3 (c) ((e)).   
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The error analysis for these measurements first involved calculating a theoretical error band for 

the OAM density, by determining the minimum and maximum values when the inner and outer 

radii of the ring-slit in the match-filters were displaced by half the width of the ring-slit (i.e. 10 

pixels). Since this error is miniscule, the error bands lie on top of one another and are not 

evident in the graphs. Displacing the ring-slit in the match-filter by half of its width, the 

experimental absolute x-error is 80 �m (10 pixels × 8um). In experimentally measuring the on-

axis intensity of the inner-product, we pin-pointed the errors to be dependent on three factors: 

(1) human error in reading the on-axis intensity of the inner-product on CCD2; (2) the 

positioning of CCD2 in the Fourier plane of L4; and (3) an adjustment of the ring-slit (by half of 

its width) in the match-filter on LCD2. For the first factor, a 10 pixel diameter aperture on the 

CCD camera was positioned around the on-axis intensity on CCD2 and the percentage error for 

the total energy when the aperture was moved 7 pixels off of its centre, was determined and 

included into the experimental error for the OAM density. The second factor entailed measuring 

the percentage error for the on-axis intensity when CCD2 was positioned 1 mm before and 1 mm 

after the Fourier plane of L4. The last error measurement required the percentage error in the 

measured intensity, due to an increase or decrease (by half the width) of the radius of ring-slit 

on LCD2, to be determined. All of these factors were included into all the measurements for the 

OAM density. 

   

• Optical field # 4 - non-symmetric superposition of two Bessel beams 

 

Figure 6.4.4 (a) contains the hologram, which consists of two ring-slits having azimuthal phases 

linner = 3 and louter = -4, used to generate the fourth optical field presented in Fig. 6.4.4 (b).  The 

dimensions of the ring-slits are: r1 = 173, r2 = 188, �r1, �r2 = 15 (all given in pixels). The field 

obtained at the Fourier plane (Fig. 6.4.4 (b)) is in good agreement with the theoretically 

calculated field (Fig. 6.4.4 (c)) and consists of a petal structure, where the number of petals is 

given by |linner|+| louter|, (i.e. 7 petals). For this non-symmetric superposition, described 

mathematically by Eq. (6.2.20), the field has a global OAM of -1ħ (3ħ + -4ħ), resulting in the 

OAM density being mostly negative radially across the field, evident in both Figs 6.4.4 (d) and 

(e). Since the OAM density is not symmetric and consequently not uniform in all radial 

directions, the OAM density plotted in Fig. 6.4.4 (d) is not for a particular angular point, but 

instead an average over all angular points, given by Eq. (6.2.25). 
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Fig. 6.4.4. (a) The hologram used to generate the experimental field in (b). The theoretically 

calculated field is given in (c). A magnification of the ring-slit is given as an insert in (a). (d) 

The theoretical (blue curve) and experimentally measured (red points) OAM density. (e) A 

density plot of the OAM density. Red denotes negative OAM and blue denotes positive. Light 

to dark blue denotes an increase in positive OAM and light to dark red denotes an increase in 

negative OAM. 

   

• Optical field # 5 - non-symmetric superposition of three Bessel beams 

 

The fifth field was generated by encoding LCD1with the hologram presented in Fig. 6.4.5 (a). 

This hologram is divided into three ring-slits, having the following azimuthal phase variations: 

linner = -3, lmiddle = 2, louter = 1, thus producing a non-symmetric superposition of three Bessel 

beams in the Fourier plane. The dimensions of the ring-slits in Fig. 6.4.5 (a) are: r1 = 170, r2 = 

180, r3 = 190, �r1, �r2, �r3 = 10 (all given in pixels). Although one cannot intuitively predict 

how the field will manifest in the Fourier plane, our experimental field (Fig. 6.4.5 (b)) is in very 

good agreement with the theoretically calculated field (Fig. 6.4.5 (c)). Here the global OAM is 

zero, as the three ring-slits are equally weighted and the azimuthal mode indices of each of the 

ring-slits sums to zero. Therefore the OAM density exists equally in both the negative and 

positive quadrants (evident in Fig. 6.4.5 (d)).  Since the OAM density is not uniform in all radial 

directions of the optical field (evident in Fig. 6.4.5 (e)), the OAM density plotted in Fig. 6.4.5 

(d) is an average over all angular points. 
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Fig. 6.4.5. (a) The hologram used to generate the experimental field given in (b) of which the 

theoretical field is represented in (c). A magnification of the ring-slit is given as an insert in (a). 

(d) The theoretical (blue curve) and experimentally measured (red points) OAM density. (e) A 

density plot of the OAM density. Red denotes negative OAM and blue denotes positive. Light 

to dark blue denotes an increase in positive OAM and light to dark red denotes an increase in 

negative OAM. 

 

• Optical field # 6 - non-symmetric superposition of four Bessel beams 

 

The ring-slits for that last hologram (Fig. 6.4.6 (a)) have the following azimuthal mode indices: 

linner = -2, lmiddle1 = -1, lmiddle2 = 2, louter = 1, and the physical dimensions (in pixels) are: r1 = 169, 

r2 = 176, r3 = 183, r4 = 190, �r1, �r2, �r3, �r4 = 7. Since the global OAM is also zero (as in the 

case above), the OAM density exists equally in both the negative and positive quadrants, 

evident in Figs 6.4.6 (d) and (e). As this is also a non-symmetric superposition, the OAM 

density is not uniform in all radial directions of the optical field (evident in Fig. 6.4.6 (e)) and so 

the OAM density plotted in Fig. 6.4.6 (d) is an average over all angular positions. 
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Fig. 6.4.6. (a) The hologram used to generate the experimental field given in (b) of which the 

theoretical field is represented in (c). A magnification of the ring-slit is given as an insert in (a). 

(d) The theoretical (blue curve) and experimentally measured (red points) OAM density. (e) A 

density plot of the OAM density. Red denotes negative OAM and blue denotes positive. Light 

to dark blue denotes an increase in positive OAM and light to dark red denotes an increase in 

negative OAM. 

 

For each of the six optical fields, the on-axis intensity recorded at CCD2 for each of the match-

filters (varying in ring-slit radius and azimuthal order) was measured and implemented using 

Eqs (1.3.8) and (6.2.7). It is evident that in all our tests, there is very good agreement between 

the experimentally measured OAM density values and those calculated theoretically. By our 

extremely simple technique, we are able, for the first time, to make quantitative measurements 

of the OAM density, measured in units of the angular momentum per unit volume, Ns/m2. 

 

6.5.  Conclusion 

 

In this chapter we have we have derived experimental and theoretical expressions for the OAM 

density for both symmetric and non-symmetric superpositions of Bessel beams and tested the 

agreement [8, 9]. Our measurement technique can be used on any optical field carrying OAM. 

Even though the global OAM is zero, the OAM density can be made to oscillate from positive 

to negative by appropriately adjusting the widths of the ring-slits or the azimuthal orders within 

the ring-slits, making it an ideal tool in the field of optical trapping and tweezing. Previous 

studies to obtain the OAM density have involved the rotation of trapped particles, which is not 

only an indirect measurement, but also a very difficult experiment to execute. The technique we 
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present, requires only an SLM and a lens, and is therefore easy to implement. Measuring the 

OAM spectrum of fields has direct relevance in the optical control of flow in micro-fluidic 

devices and in constructing optically-driven micro-machines. Being able to determine the local 

OAM is important for imaging [21] and optical funnels [22]. 
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CHAPTER SEVEN 

 

 

Conclusions and future study 

 

 

7.1.  Conclusions 

 

In chapter one a literature review of optical OAM was given and it was shown that beams 

carrying a phase factor of exp(ilθ) possess a well-defined OAM.  Definitions for some of the 

solutions to the Helmholtz wave equation, which are utilized in this thesis, such as Gaussian 

beams, LG beams and Bessel beams were also given.  

 

Experimental techniques for generating or detecting fields carrying OAM were presented and 

discussed in the second chapter of this thesis. Two types of digital holograms were examined: 

the spiral and fork holograms, for the production and measurement of OAM. Other OAM tools 

discussed were spiral phase plates, which could be used to increase or decrease the OAM of a 

transmitted beam, and cylindrical lenses, which convert HG modes into LG modes. Another 

device which was used to sort odd and even OAM modes, for which we have developed a 

robust adaptation [1], is a Dove-prism embedded Mach-Zehnder interferometer [2]. Our 

interferometer has no degrees of freedom and correct functioning of the device was achieved 

with two mirrors external to the interferometer. Our device sorted twenty-one OAM states of 

light with a contrast higher than 85.3%.  

 

In chapter three we extended the Dove prism embedded Mach-Zehnder interferometer to 

produce an optical system that acted as an amplitude damping channel for a two-level OAM 

system [3]. We tested the concept of our device using the vortex mode (l = 1) and a Gaussian 

mode and illustrated that it agrees well with the theoretical model. Such an optical system could 

be used to represent the dynamics of a quantum system that incurs the loss of energy.  

 

The forth chapter contained two techniques which we developed for the generation of 

superimposed higher-order Bessel beams [4, 5]. In our first approach we illuminated a physical 

ring-slit aperture with a beam that has an azimuthally varying phase [4]. Later, we simplified 

our technique with a single hologram [5]. In both cases very good agreement between the 
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experimentally produced fields and the theoretical predictions was obtained.  We also revealed 

the existence of higher-order vortices in the produced field by interfering it with a plane wave. 

The rotation rates of the produced superimposed Bessel beams could be controlled by varying 

the azimuthal order |l| and the difference, �k, between the two radial wave-vectors [5].  We 

were able to show very good agreement between the experimentally measured and theoretically 

predicted rotation rates, illustrating that these fields are an ideal tool for the controlled rotation 

of trapped particles. We also studied the near-field of the superimposed higher-order Bessel 

beams and showed that the ring-slit field, which exhibited no rotation in its intensity profile, 

transformed from an annular structure (embedded with singularities) to a petal structure [6].  

 

Instead of encoding the phase within the ring-slit with an azimuthally varying phase with a 

random phase modulation, non-diffracting speckle fields were obtained. In chapter five we 

investigated the generation of non-diffracting speckle fields with a single ring-slit hologram and 

illustrated good agreement between our experimentally produced non-diffracting speckle fields 

and theoretical predictions. The phase modulation within the ring-slit hologram was described 

by either a binary or a continuous phase modulation for two different distributions, namely 

uniform and normal, and we examined the effect these distributions have on the structure of the 

speckle field [7]. By adjusting the standard deviation of the distribution one could control the 

evolution of the non-diffracting chaotic speckle into a non-diffracting zero-order Bessel beam. 

This allows one to ‘tailor-make’ a non-diffracting speckle field for specific optical functions, 

such as non-destructive testing of materials.  

  

In chapter six we derived experimental and theoretical expressions for the OAM density for 

both symmetric and non-symmetric superpositions of Bessel beams and presented a simple 

measurement technique to obtain the OAM density [8, 9]. We tested our experimental technique 

on both symmetric and non-symmetric superpositions of Bessel beams and obtained very good 

agreement with our theoretical predictions. OAM density measurements are relevant in 

controlling the flow in micro-fluidic devices and in constructing optically-driven micro-

machines.  

 

7.2.  Future study 

 

Since our robust interferometer, presented at the end of chapter two, has proved to be very 

efficient at separating odd and even OAM modes, one could introduce such a device into a 

quantum entanglement setup for the detection of odd and even OAM states of photon pairs. 



126 

 

Currently OAM states in quantum entanglement experiments are detected with the fork 

hologram which produces a Gaussian beam in the desired diffraction order that is then coupled 

into a single mode fibre [10]. The fork hologram can be replaced with the robust ‘odd even 

OAM sorter’ so as to simultaneously detect odd and even OAM states as opposed to detecting 

one OAM state at a time. This device represents the OAM analogy to the polarizing beam-

splitter and so this robust device can be incorporated into quantum optic experiments to perform 

similar tomography measurements on OAM states that are made with polarization (in the case 

that the OAM state-space is restricted to a two state-space: odd and even). One could also use 

this device to sort odd and even OAM states before they are further sorted into their individual 

ports by incorporating a technique which converts the OAM state of light to a specific lateral 

position [11]. Since the detection spots marking the different lateral positions slightly overlap 

[11], first separating the odd and even OAM states into separate ports will reduce the 

overlapping of the detection spots and allow for the detection of an increased OAM state-space.  

 

With the amplitude damping channel that we discussed in chapter three, one could incorporate 

this device into a quantum entanglement setup so as to mimic a lossy environment for one of the 

entangled photon pairs. One could then predict analytically the entanglement decay in OAM 

states when one of the entangled photon pairs is passed through such a channel. Experimentally 

this will be achieved by introducing the OAM amplitude damping channel into one of the arms 

of a quantum entanglement system (where a photon in the one arm possesses an entangled 

photon in the other arm). The concurrence of the entanglement is measured before the OAM 

amplitude damping channel is introduced and then after the channel has been incorporated 

which will result in a quantitative comparison of the decoherence of entanglement due to 

interactions with a noisy environment. 

 

Even though we investigated the dynamics from chaotic non-diffracting speckle to a structured 

non-diffracting zero-order Bessel beam by varying the standard deviation of different 

distributions describing the phase modulation, there are other structural attributes of the speckle 

field that still need to be investigate. Further investigations into how the geometry and the 

dimensions of the ring-slit have on the clustering (or snake-like patterns) of the speckles could 

be made.  

 

Finally, with the experimental technique that we developed for the measurement of the OAM 

density of optical fields, presented in chapter six, a method to extract the entire OAM spectrum 

of an optical field (at a specific radial position) in a single measurement could be developed. 
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This could be achieved by combining the hologram used to represent the required match filter 

with the transforming element implemented in Ref. [11] so that not only can one extract the 

entire OAM spectrum by measuring the weightings (or intensities) present at the different lateral 

positions, but one can select the radial position within the optical field.   
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APPENDIX 

 

 

A1: Procedure for Calibrating a Spatial Light Modulator 

 

The purpose of performing the calibration is to verify that for your working wavelength a phase 

shift from 0 to 2π is achieved over all the 256 grey-levels. If the phase shift for the assigned 

grey-levels does not fall in the range from 0 to 2π then the voltages applied to the electrodes of 

the pixels need to be adjusted appropriately so as to achieve the correct phase modulation. So 

the first step in calibrating the SLM, for a particular wavelength, is to measure the phase 

modulation over the 256 grey-levels. This is achieved by interfering two beams which are 

reflected off of the SLM (where one of the beams undergoes a phase modulation over all 256 

grey-levels) and so causes a shift in the interference pattern. The experimental setup to perform 

such a measurement can be represented as follows. 

 

 

Fig. A1.1. A schematic of the calibration experiment.  

 

An expanded laser beam is passed through a “double hole” mask. Each of the two beams is 

directed to the display of the SLM. The beams, reflected from the SLM, interfere in the focal 

plane of a lens and this interference pattern is enlarged and imaged onto a camera.  
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By considering the interference of two plane waves and introducing a phase shift in one of the 

waves, a shift in the position of the interference pattern is observed. The complex amplitudes of 

two identical plane waves can be written as follows: 

 

)exp(

)exp(
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iu
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                                                         (A1.1) 

 

In determining the intensity profile of the addition of these two fields the following term gives 

rise to the interference pattern. 

 

 ( )2

1

2

21 cosφ≈+= uuI                                                 (A1.2) 

 

Introducing a phase shift in one of the beams, results in the following term describing the 

interference pattern: 
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By varying the phase of one of the beams, the position of the interference pattern shifts. It is this 

principle that is used to measure the phase shift over all 256 grey-levels.  
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Fig. A1.2. Summary on how a phase shift in one of the beams is directly proportional to a shift 

in the interference pattern. 

 

In the experimental setup, where the two beams are reflected off of the SLM display, one half of 

the display is addressed with a constant grey-level while the other half is addressed with a grey-

level varying from 0 to 255. As the grey-level of the one half of the screen changes so the 

interference pattern shifts and this shift in the interference pattern is directly proportional to the 

phase shift experience by the beam. 

 

 

Fig. A1.3. Illustration of how a change in grey-level shifts the interference pattern. 
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After the one half of the screen has been addressed with all 256 grey-levels, the software that we 

use in the calibration of the SLM plots the 1D intensity profile of the interference pattern for 

each grey-level.  

 

              

Fig. A1.4. A plot of the 1 D intensity profile of the interference pattern for a particular grey-

level. 

 

The above plot consists of 256 rows each containing the 1D intensity profile of the interference 

pattern for that particular grey-level. The red dots mark the intensity minima of the interference 

pattern for each grey-level. From these measurement points the pixel position of the intensity 

minima can be plotted as a function of the grey-level to produce the following plot. 

 

                       

Fig. A1.5. A plot of the intensity minima pixel position as a function of the grey-level. 

 

By comparing the red measurement points (in Fig. A1.4) and the plot of the pixel position as a 

function of the grey-level (Fig. A1.5) you will notice that the discontinuity in the measurement 
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points doesn’t appear. The program knows the period of the intensity minima, the pixel distance 

from minimum to minimum, and so adjusts the measurement points to remove the discontinuity 

in the plot. The reason that the range of the x-axis (in Fig. A1.5) varies from 0 to 1024 (and not 

0 to 255) is due to the way in which the device is configured. The device needs to be 

programmed with 1024 values; so the first of every four values is the measured value.   

 

The shift in the minima of the interference pattern is directly proportional to the phase 

modulation and the information below illustrates how the phase modulation is determined. The 

phase shift induced by a particular grey-level can be determined by performing the following 

calculation. 

 

( )

cedispixelperiod

pixelstartingXlevelgreyforpixel

tan
2

1

## −−
                      (A1.4.) 

 

The difference between the pixel position for a particular grey-level and the pixel position for a 

grey-level of 0 (for no phase modulation) is determined and divided by half of the period. 

Below is an example of the calculated phase shift when calibrating the SLM. 

 

 

 

Fig. A1.6. Example of calculating the phase shift. 

 

By substituting in the appropriate values, it is calculated that a grey-level of 255 induces a phase 

shift of about 2.8π. This illustrates that for this particular wavelength the device is not correctly 

calibrated. The voltages which address the individual pixels, need to be adjusted appropriately 

so as to produce the required 2π phase shift over all 256 grey-levels. 
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Fig. A1.7. Plot of the measured phase shift (red) and the desired phase shift (yellow). 

 

After the calibration has been performed and the voltages have been adjusted appropriately, 

repeating the previously described measurements should produce a 2π phase shift over all grey-

levels. 

 

                                    

Fig. A1.8. Plot of the measured phase shift (red) after the voltages have been adjusted 

appropriately. 

 

Some general issues regarding the calibration procedure are listed below: 

 

1.  

Since the calibration relies on measuring the phase shift in the interference pattern, a good 

interference pattern needs to be obtained so as to obtain accurate measurements. It is essential to 

check that the intensity distribution of the beam on the “2 hole mask” is uniform. In other 

words, check that equal intensity is passing through the two holes.  
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Fig. A1.9. Illustration for how the “2 hole mask” should be illuminated. 

 

2. 

Make sure that the two spots are superimposed exactly on top of each other in the focal plane. 

Below is an image of a good, crisp interference pattern and an interference pattern where the 

two spots are not perfectly superimposed. 

 

 

Fig. A1.10. Illustration for a correct and incorrect interference pattern.  

 

3. 

Another factor which could lead to incorrect measurements is if the two beams are not 

positioned on the SLM correctly, resulting in the one beam not experiencing the correct phase 

modulation. 

 

 

Fig. A1.11. Illustration of how to position the two spots on the SLM.   

 

4. 

When performing the calibration and recording the measurements, do this with the lights off. 

Any additional light sources (even light emitted from a computer screen) may affect your 

measurements.   
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A2: Showing that the operator Sθ is linear 

 

 

The equation for Sθ, is defined as  
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where u is the amplitude distribution of the optical field. u
*
 can then be written in terms of u as 

follows: 
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where for convenience we have marked the terms not involving u as X.  

 

Substituting u*
 into Eq. A2.1, results in 
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 This is a linear operator, i.e., Sθ(u1 + u2) = Sθ(u1)  + Sθ(u2), and the linear momentum (in the 

azimuthal co-ordinate) from the Poynting vector for a sum of fields is equal to the sum of the 

linear momentum of each individual field. 
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