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GENERAL ABSTRACT 
 

Water scarcity is a major limitation to crop production in sub–Saharan Africa (SSA). Under 

these conditions, determining and predicting crop yield response to water in rainfed agriculture 

is useful for improving water productivity and food security. This study aimed to determine 

water use characteristics and water use efficiency of different sorghum genotypes as well as to 

model water use of such sorghum genotypes for extrapolation to other rainfed agro–ecologies. 

A review of water use of major cereal crops was conducted to gain insight into strategies to 

improve water productivity under arid and semi–arid agro–ecologies. To quantify water use 

and determine water use efficiency (WUE) of sorghum under different environmental 

conditions three sorghum genotypes, namely, PAN8816 (hybrid), Macia (open–pollinated) and 

Ujiba (landrace) were planted at two sites (Ukulinga and Mbumbulu) under rainfed conditions 

in 2013/2014 and 2014/15 seasons. Furthermore, PAN8816, Macia, Ujiba and IsiZulu 

(landrace) genotypes were planted at Ukulinga under early, optimal and late planting dates to 

determine sorghum water use characteristics (morphological, physiological, phonological and 

yield). Field trials planted at Ukulinga in 2013/14 were used to calibrate the AquaCrop model 

for PAN8816, Macia and Ujiba. Model testing was conducted using observations from three 

planting dates at Ukulinga during the 2014/15 season. Thereafter, PAN8816 and Ujiba crop 

files were used to use AquaCrop to extrapolate to other rainfed agro–ecologies in South Africa 

(Deepdale, Richard’s Bay and Ukulinga) and develop best management recommendations for 

rainfed sorghum production. During the 2013/14 season, WUE was significantly lower at 

Mbumbulu (7.49 kg ha-1 mm-1) relative to Ukulinga (11.01 kg ha-1 mm-1). This was attributed 

to low total available water at Mbumbulu. Macia had higher WUE (10.51 kg ha-1 mm-1) relative 

to PAN8816 (9.34 kg ha-1 mm-1) and Ujiba (7.90 kg ha-1 mm-1), however differences were not 

significant. During the 2014/15 season, sorghum genotypes adapted to low water availability 

through reduced canopy size and duration, low chlorophyll content index and stomatal 

conductance, as well as hastening phenological development. The AquaCrop model 

satisfactorily predicted yield response to water for the studied sorghum genotypes during 

calibration and testing. When applied for scenario analysis, the model performed well for the 

range of agro–ecologies considered. This study confirmed drought tolerance and high WUE of 

sorghum and it is concluded that sorghum is uniquely suitable and adapted to production under 

semi– and arid agroecologies of SSA. Furthermore, the study confirmed the use of the 

AquaCrop model as a cost–effective, relatively accurate tool to predict sorghum yield response 

to water.   
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CHAPTER 1 

GENERAL INTRODUCTION 
 

1.1 Background and Introduction 

Water availability is a major limitation to crop production in rainfed agricultural systems. Sub–

Saharan Africa (SSA) comprises 43% arid and semi–arid area (FAO, 2008), which is projected 

to increase due to climate change. Small-scale, rainfed agriculture is the main livelihood source 

in arid and semi–arid areas of SSA. Since rainfed agriculture constitutes more than 95% of 

agricultural land use in SSA (Singh et al., 2011), water scarcity is a major limitation to crop 

production. Even in areas receiving adequate rainfall for crop production, rainfall can be highly 

erratic, unevenly distributed, with highly unpredictable onset and cessation of rainfall season 

(Chauvin et al., 2012). This makes crop water stress a common feature negatively impacting 

yields under rainfed farming. In SSA, challenges of water scarcity and food insecurity exist 

together. Increasing population, coupled with increasing competing demands for water by 

domestic and industrial sectors exerts added pressure on a resource that is already scarce. The 

fact that water is scarce means that increases in agricultural productivity have to be met without 

increases in water use. Under rainfed agriculture, this implies improving water use efficiency 

(crop output per given amount of water); this can be achieved by promoting cultivation of crop 

species that are water use efficient. 

Agricultural systems in SSA are mainly cereal based, as such, cereal production constitutes 

a major portion of agricultural water use. Strategies to conserve water and improve crop water 

productivity in cereal production should seek to adapt cropping systems to low water 

availability. Inclusion and promotion of drought–tolerant cereal crops in rainfed cropping 

systems could potentially improve water productivity and contribute positively to food security. 

Sorghum uniquely fits production in such regions, due to its high and stable water use efficiency 

(WUE), drought tolerance, high germplasm variability, comparative nutritional value, and 

existing food value chain in SSA.  

The challenge is to increase cereal crop water productivity under limited water resources. 

Sorghum, being a drought–tolerant cereal crop, has potential to address the twin challenges of 

increasing crop water productivity and contributing to food security in semi– and arid areas. 

Under rainfed agriculture, WUE is an accepted measure of crop water use. However, knowledge 

of sorghum WUE and water use characteristics is limited for SSA conditions and genotypes 

that are used by smallholders such as landraces. This knowledge would be valuable in fitting 
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sorghum production into rainfed agro–ecologies and for developing recommendations for best 

production practices for farmers.  

Examining yield response to rainfall amount and distribution under rainfed environments is 

both laborious and expensive. In consideration of such limitations, the use of crop models is a 

valuable prediction tool for yield response to water availability where environments, soils, 

genotypes and climatic conditions vary. One such predictive tool is AquaCrop. AquaCrop is a 

crop water productivity model developed by the Land and Water Division of FAO that 

simulates crop yield response to water (Steduto et al., 2009; Raes et al., 2009). It requires a 

relatively low number of parameters and input data to simulate yield response to water of most 

major field and vegetable crops. Its parameters are explicit and mostly intuitive and the model 

maintains sufficient balance between accuracy, simplicity and robustness (Steduto et al., 2009; 

Raes et al., 2009). AquaCrop predicts crop water productivity and water use efficiency of a 

wide variety of crops including cereals, and is particularly suited to address conditions where 

water is a key limiting factor in crop production.  

 

1.2 Aims and objectives 

This study aimed to determine water use characteristics and water use efficiency of different 

sorghum genotypes as well as to model water use of such sorghum genotypes for extrapolation 

to similar rainfed agro–ecologies. To address study aims, the following objectives were 

formulated: 

(i) to conduct a comprehensive review on water use of cereal crops, 

(ii) to quantify water use and determine water use efficiency of sorghum under different 

environmental conditions,  

(iii) to determine water use characteristics (morphological, physiological, phenological, 

yield) of sorghum, 

(iv) to calibrate and test AquaCrop for three sorghum genotypes, and 

(v) to use AquaCrop to extrapolate to other rainfed agro–ecologies and develop best 

management recommendations for rainfed sorghum production. 
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1.3 Thesis Outline 

 

In order to achieve the objectives of the study, a series of field and modelling studies were 

conducted. The separate studies are presented as individual manuscripts. In cases where the 

manuscripts have already been submitted to journals and are under review, the information is 

provided on the title page. An overview of the manuscripts that comprise this thesis is provided 

below:  

Chapter 2: The chapter provides a review on water use of cereals in SSA. Key areas reviewed 

included production statistics, distribution, water use characteristics, WUE and projected 

impact of climate change. The review of literature provides justification for promotion and 

inclusion of sorghum as a drought–tolerant cereal in semi–arid and arid SSA regions and 

addresses objective (i) of the study.  

Chapter 3: Reports on experimental trials to determine water use and WUE of landrace, open–

pollinated variety and hybrid sorghum under rainfed conditions. This experimental chapter is 

linked to objective (ii) of the study. Crop parameters obtained from these field trials were used 

in calibrating the AquaCrop model (chapter 5).   

Chapter 4: Sorghum genotypes were planted at different planting dates to determine water use 

characteristics of sorghum under variable rainfall conditions. This study investigated 

morphological, physiological, phenological, yield and water use responses of sorghum 

genotypes in response to varying planting dates. This experimental chapter is linked to objective 

(iii) of the study. Crop data obtained from these field trials were used to test the AquaCrop 

model (chapter 5).  

Chapter 5: This chapter aimed to calibrate and test the AquaCrop for selected sorghum 

genotypes described in chapter 3 and 4. It addressed objective (iv) of the study. This was to 

evaluate model performance against observations under field conditions, and develop 

confidence in model application for application in later scenario analysis (chapter 6).  

Chapter 6: following from successful calibration and testing of the model, AquaCrop was 

applied for extrapolating sorghum production to other rainfed agro–ecologies. This was meant 

to address objective (v) of the study. 

Chapter 7: The last chapter provides a general discussion of the entire study by integrating the 

highlights of the separate manuscripts and addressing the overall study aim. It also provides 

recommendations for future studies.  
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Abstract 

Sub–Saharan Africa (SSA) faces twin challenges of water stress and food insecurity - 

challenges that are already pressing and are projected to grow. Sub–Saharan Africa comprises 

43% arid and semi–arid area, which is projected to increase due to climate change. Small-scale, 

rainfed agriculture is the main livelihood source in arid and semi–arid areas of SSA. Since 

rainfed agriculture constitutes more than 95% of agricultural land use, water scarcity is a major 

limitation to production. Crop production, specifically staple cereal crop production will have 

to adapt to water scarcity and improved water productivity to meet food requirements. We 

propose inclusion and promotion of drought–tolerant cereal crops in arid and semi–arid agro–

ecological zones of SSA where water scarcity is a major limitation to cereal production. 

Sorghum uniquely fits production in such regions, due to its high and stable water use 

efficiency, drought tolerance, high germplasm variability, comparative nutritional value, and 

existing food value chain in SSA. However, sorghum is socio–economically and geographically 

underutilized in SSA. Sorghum inclusion and/or promotion in arid and semi–arid areas of SSA, 

especially among subsistence farmers, will improve water productivity and food security. 

Keywords: rainfed agriculture, water stress, small-scale farmers, water productivity, sorghum. 

 

Introduction 

Sub-Saharan Africa (SSA) has the highest percentage of food insecurity globally (Clover, 2003; 

FAO et al., 2014). Almost two out of every three people in SSA live in rural areas, relying 

principally on small-scale, rain-fed agriculture for their livelihood (FAO, 2013). In rural 

households, most food is produced and consumed locally (Garrity et al., 2010), making 

household agricultural productivity critical to improving food security (Schmidhuber and 

Tubiello, 2007). Rural poverty accounts for 83% of the total extreme poverty in SSA, and about 

85% of the poor depend on agriculture for their livelihoods (Byerlee et al., 2005). Small-scale 

rainfed agriculture is the main livelihood source in arid and semi–arid areas of SSA. The yield 

levels in such farming systems are very low, especially during years of severe drought 

(Mavhura et al., 2015). 

Sub-Saharan Africa comprises 43% of the area classified to an extent as arid (FAO, 2008). 

Under these conditions, water becomes the single most limiting factor to successful crop 

production. Climate change predictions for SSA suggest rainfall reduction, variable distribution 

pattern, increased erratic rainfall, intra–seasonal dry spells, and incidences of flooding, high 

temperatures, corresponding increased evaporative demand and higher frequency of droughts 

(Ringler et al., 2010; Schulze, 2011). This causes SSA crop production to be vulnerable because 
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rainfed agriculture constitutes more than 95% of agricultural land use (Singh et al., 2011). This 

will effectively compound the existing challenges to crop production and food security hence 

underscoring the need for improving effective use of water in rainfed agriculture as well as 

adoption of resilient crops (Alemayehu et al., 2012).  

Cereal crops are a major source of dietary energy in the diets of people in SSA (Chauvin et 

al., 2012). In principle, producing cereal crops is water intensive. Past and current agricultural 

interventions have been focused on increasing production of high energy crops in order to 

improve food availability and access. The approaches have also assumed that improved 

availability would lead to stability (less price volatility) and guarantee sustainable access. These 

efforts have mainly focused on a few energy rich cereal crops. While this has led to huge 

improvements in terms of crop production, it has also resulted in some of the cereal crops being 

cultivated in less suitable areas while suitable cereal crops have been relegated. This success 

has to be matched by matching cereal crops to suitable agro–ecologies and maximizing on their 

genetic potential (Sebastian, 2009); this could have greater impacts on food security. To ensure 

and improve food security, crop production, especially for staple food crops, should be modeled 

on water conservation and improved water productivity.  

Cereals are an important food source for human consumption and food security (FAO, 

2014) and SSA cropping systems among rural subsistence farmers are largely cereal–based. 

The most widely cultivated cereal crops in SSA are maize (Zea mays L.), sorghum (Sorghum 

bicolor L. Moench), millet (Pennisetum glaucum L.), and rice (Oryza sativa L.) (Edmonds et 

al., 2009). Other cereals under production include: wheat (Triticum spp.), barley (Hordeum 

vulgare L.), oats (Avena sativa), buckwheat (Fagopyrum esculentum) and teff (Eragrostis tef 

Zucc.). Of these, maize has high water requirements whilst wheat, barley and rice suffer high 

yield losses and crop failure under water stress and during drought periods. Millet and sorghum 

are indigenous crops to SSA renowned for their drought and heat tolerance. However, sorghum 

has a wider production distribution range, is produced on a larger area and has higher yield 

output than millet. Sorghum can tolerate temporal waterlogging which confers an advantage in 

flooding situations. Sorghum’s drought, heat and flooding tolerance as well as adoption by 

farmers makes sorghum an ideal crop for production in SSA.  

This review proposes sorghum as an alternative cereal crop for cultivation in SSA to 

enhance crop production and improve food security, especially in regions threatened by water 

scarcity. This article reviews water use of cereal crops produced in SSA and motivates for 

sorghum inclusion and/or promotion in arid areas of the region. This is done by reviewing cereal 

crop production in SSA, identifying agro-ecological zones (AEZs) and distribution thereof, 
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identifying regions where inclusion and/or promotion of sorghum would benefit cereal 

production, and reviewing sorghum attributes which make it uniquely poised as a niche crop in 

such regions.  

 

Water use of cereals 

Distribution of agro–ecological zones and comparative advantage of cereals 

Land and water resources and the way they are used are central to the challenge of improving 

food security across the world (FAO, 2011). Agriculture in SSA is 95% rainfed (Singh et al., 

2011) with very limited use of external inputs such as fertilizers. This means that the land’s 

agricultural production of cereals depends almost solely on the agro–ecological potential 

(Sebastian, 2009). Agro-ecological zones are geographical areas exhibiting similar climatic 

conditions that determine their ability to support rainfed agriculture. Sub–Saharan Africa can 

be divided into six AEZs, differentiated by the length of the potential growing period for rainfed 

agriculture. Within these AEZs, rainfall ranges dramatically, from over 2000 mm/year in central 

Africa to less than 400 mm/year in arid areas (Bationo et al. 2006; Ringler et al. 2010). These 

AEZs are: deserts, arid, semi-arid, humid, sub-humid and highland regions. Sub–Saharan 

Africa comprises 17% arid area, 17% semi-arid and 9% dry sub-humid, totaling 43% of the 

continent classified to an extent as arid (FAO, 2008). About 60% of SSA is vulnerable to 

drought, with 30% of it considered as highly vulnerable (Mavhura et al., 2015).  

Production of cereal crops in suitable AEZs with a comparative advantage can potentially 

increase water productivity under rainfed cropping systems. This could increase crop yields 

without a corresponding increase in water use. Agriculture has seen a shift from increasing 

production through increasing area under cultivation to focusing on water conservation and 

increasing water productivity (Machethe et al., 2004; Fanadzo et al., 2010). Despite this, cereal 

production systems and trends in SSA remain largely unchanged and dominated by maize 

production, even in arid regions. Cereal crop production increases have been due to 

improvements in breeding and increased production area rather than improved water 

productivity. 

 

Cereal crop production in SSA 

Sub–Saharan Africa’s rural economy remains strongly agro–based relative to other regions 

(Livingston et al., 2011). As such, economic growth focused on agriculture has a 

disproportionately positive impact in reducing food insecurity. In SSA, cereals are a staple food 
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for, and mostly produced by, resource-poor farmers. Cereals and cereal products are an 

important source of energy, carbohydrate, protein and fibre, as well as containing a range of 

micronutrients such as vitamin E, some of the B vitamins, magnesium and zinc (McKevith, 

2004). Land under cereal production in SSA in 2008 was 92 132 298 hectares (World Bank, 

2008). Cereal crops under production included: wheat, rice, maize, barley, oats, rye, millet, 

sorghum, buckwheat, teff and mixed grains (Haque et al., 1986; World Bank, 2008). The most 

widely cultivated cereal crops in SSA are maize, sorghum, millet and rice, respectively 

(Edmonds et al., 2009). Being the largest crop produced, maize has cultural, economic, and 

political significance in SSA and is the dominant staple food for much of eastern and southern 

Africa while greater dependence on millet, rice, and sorghum is found in western Africa 

(Doward et al., 2004).  

Among the staple cereal crops, rice and maize have high water requirements (Table 1); 

hence production of cereal crops with low water requirements provides a comparative 

advantage in water scarce areas (Table 2). In large parts of SSA maize is the principal staple 

crop, covering a total of approximately 27 Mha. Maize accounts for 30% of the total area under 

cereal production in this region: 19% in West Africa, 61% in Central Africa, 29% in Eastern 

Africa and 65% in Southern Africa (FAO, 2010; Cairns et al., 2013). In Southern Africa, maize 

is particularly important, accounting for over 30% of the total calories and protein consumed 

(FAO, 2010). Among SSA AEZs, the sub-humid zone constitutes 38% of the total land area in 

SSA and has favourable rainfall (700-200 mm per annum) for maize production (Zingore, 

2011). Maize yields have stagnated and in some areas declined in SSA. One of the primary 

reasons is lack of use of drought ameliorative measures (Fischer et al., 2014). This AEZ land 

area and rainfall is sufficient for production of maize and other high water requirement cereals 

lacking drought and heat tolerance. Rice lies fourth in area SSA area under production. In the 

decade, the growth of rice yield has dropped below 1% per year worldwide and low yield 

constitutes one of the main challenges of rice production in SSA. Rice production is 

increasingly constrained by water limitation and increasing pressure to reduce water use in 

irrigated production as a consequence of global water crisis (Zhang et al., 2012). Breeding 

attempts have resulted in Rice for Africa (NERICA) initiative, which has led to the release of 

upland NERICA varieties with relatively less water use compared to traditional lowland rice 

(Akinbile et al., 2007). However, even the NERICA varieties still have significantly higher 

water requirement and are still subject to extensive testing and drought evaluation (Matsumoto 

et al., 2014). Heat and drought stress usually occur concurrently (Rizhsky et al., 2002), hence 

lack of heat stress in NERICA rice remains a concern for production in arid and semi–arid SSA.  
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Table 1: Growing conditions, production statistics and water use characteristics of major 

cereals in SSA. 

Water 
use 

class 
of 

cereal 
Cereal 
type 

Water use 
(mm) per 
growing 
season 1 

Average 
growing 
period 
(days) 1 

Stress 
tolerances 

Water 
productivity 

*(WP) (kg m-3) 

Water use 
efficiency *(WUE) 

(kg ha-1 mm-1) 

High 
water 
use 

Maize 500–800 125–180 – 1.1–2.7 5 7.6–10.4 14 

Rice 
(paddy) 450–940 11 90–150 Waterlogging 

and flooding 0.6–1.6 5 4.5–10.9 11 

Low 
water 
use 

Sorghum 450–650 3,6 115–130 

Heat, drought, 
temporal 

waterlogging 
and salinity 

0.6–2.7 8 12.4–13.4 4 

Wheat 450–650 120–150 – 0.6–2.0 5,16 9.7–11.0 2 

Barley 450–650 120–150 – 0.7–1.5 7 7.7–9.7 15 

Millet 450–650 105–140 Heat and 
drought 0.4–1.0 12 5.1–10.4 4,10 

Teff 450–550 150–165 Drought and 
waterlogging 0.6–1.2 9 4.2–11.2 13 

*WP and WUE values were quoted for grain yields where water use was above minimum crop water requirements. 
However, rainfall distribution was disregarded (Sources: FAO, 1991 1; Zhang et al., 1998 2; Hensley et al., 2000 
3; Maman et al., 2003 4; Zwart and Bastiaanssen, 2004 5; Jewitt et al., 2009 6; Araya et al., 2011b 7; Mativavarira 
et al., 2011 8; Abdul-Ganiyu et al., 2012 9; Ismail, 2012 10; Zhang et al., 2012 11; Mokh et al., 2013 12; Yihun et 
al., 2013 13; Ofori et al., 2014 14; Barati et al., 2015 15; Virupakshagowda et al., 2015 16). 
 



10 
 

Table 2: Agro–ecological zones, their distribution in SSA and cereal crops with comparative 

advantage in each region. 

Agro–
ecological 

zone 1 

Length 
of 

growing 
period 
(days) 1 

Average 
annual 
rainfall 
(mm) 1 

Land 
area 

(% of 
SSA) 

1,3 
*Main soil types 

1  

Main cereal 
crops produced 

1,2 

Cereal crops with 
comparative 
advantage 

Arid < 90 0–600 17 Lithosols, 
xerosols 

Maize, sorghum, 
millet 

Sorghum, millet 

Semi-arid 90–179 600–1400 17 Lixisols, vertisols 
arenosols 

Maize, sorghum, 
millet 

Sorghum, millet 

Sub-
humid 

180–269 1400–
3000 

38 3 Ferralsols, 
lixisols, acrisols 

Maize, sorghum, 
millet 

Maize, wheat, 
barley 

Humid > 270 3000–
4500 

20 Ferralsols, 
acrisols 

Maize and rice Maize, rice 

Highlands 180–270 1400–
4500 

3 Vertisols, 
cambisols 

Wheat and barley Rice 

*soil forms have been simplified for purposes of this review. (Sources: Livingston et al., 2011 1; FAOSTAT, 2013 
2; Zingore, 2013 3). 

 

Wheat and barley have lower water requirements in comparison to maize and rice which 

makes them suitable for cultivation in low rainfall areas. However, these crops are still 

susceptible to drought and heat stress and suffer high yield losses under water stress. Teff, millet 

and sorghum have low water requirements befitting rainfall ranges in arid and semi–arid 

regions. Additionally, these three crops exhibit drought and heat stress tolerance. Sorghum and 

millet are highly drought–tolerant whilst teff exhibits a moderately sensitive and linear response 

to water stress (Araya et al., 2011a). Sorghum, among the three cereals, is particularly suited 

for arid and semi–arid AEZs in SSA as it is uniquely tolerant to temporal waterlogging. 

Temporal waterlogging tolerance is important under conditions of extreme, erratic rainfall 

which is experienced by crops in SSA.  

It has previously been suggested that increasing productivity of cereals will improve food 

security in the region (Romney et al., 2003). However, it is not about ‘any’ but rather about 

improving the production of cereal crops that are suited to SSA’s AEZs. Cereal crops that have 

desirable water use characteristics are currently being overshadowed by the major crops in 

terms of production area, consumption trends and research attention. This ‘business–as–usual’ 

approach to cereal production has resulted in declining yields for major crops such as maize 

(Fischer et al., 2014) and general neglect of alternative cereal crops with potential to contribute 

to food security in marginal AEZs. Since water is the predominant limiting factor in crop 

production within SSA, a starting step would be reviewing the water use of the different cereal 
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crops. This would allow fitting them into specific AEZs where each cereal crop possesses a 

comparative advantage. 

 

Water use characteristics of cereal production in SSA 

To improve cereal yield in arid and semi–arid AEZs, it is important to understand their crop 

water use. Under rainfed agriculture, water use efficiency (WUE) of major cereal crops 

becomes a key factor in increasing yield under water scarcity (Blum, 2005). Water use 

efficiency is defined and crop output (biomass and/or yield) obtained per given water use 

(evapotranspiration). Water use efficiency is a function of several factors, including crop 

physiological and morphological characteristics, genotype, planting population, soil 

characteristics such as soil water holding capacity, meteorological conditions and agronomic 

practices. In order to optimize yield under water limiting conditions, an ideal cereal crop should 

have a long and dense root structure, stay–green characteristics, high harvest index and maintain 

high WUE under stress. To improve WUE, integrative measures should aim to optimize cultivar 

selection and agronomic practices (Azizian and Sepaskhah, 2014).  

Among the agronomic practices for improving WUE is crop selection. Multiple approaches 

have been proposed to improve cereal production in arid and semi–arid environments of SSA 

e.g. supplementary irrigation and breeding for drought tolerance in major crops (Ortiz et al., 

2007; Edmeades et al., 2009; Kijne et al., 2009; Cairns et al., 2013). In this review, we propose 

production, promotion and inclusion of suitable drought–tolerant cereal crops to improve water 

use efficiency under arid and semi–arid AEZs of SSA. In comparison to teff and millet, 

sorghum has higher WUE (Table 1). Additionally, sorghum has the highest tonnage and number 

of SSA countries producing it. Lowest annual rainfall is experienced in arid and semi–arid 

AEZs of SSA. The situation is exacerbated by that received annual rainfall generally is not 

available throughout a crop’s growing season (Table 2). Therefore, actual rainfall received 

during a growing season is often lower than quoted figures and also highly irregular. This makes 

sorghum production in arid and semi–arid regions of SSA a viable alternative (Table 2) for 

increasing water productivity in the region.  

Climate change and variability impacts in SSA will mainly be felt through water i.e., 

increased frequency of rainfall extremes such as droughts and floods (Schulze, 2011). 

Increasing rainfall variability will also expose crops to episodes of intermittent water stress 

(Chivenge et al., 2015). In addition, the percentage semi- and arid area of SSA is predicted to 

increase thus suggesting an increase in marginal agricultural production areas. Therefore, we 

can no longer afford to side–line the production of drought and heat stress tolerant cereals. 
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Impacts of climate change on cereal crop production 

Cereal crop production in SSA is projected (based on IFPRI IMPACT modelling) to decline by 

a net 3.2% by 2050 as a result of climate change. This will largely be due to projected increased 

incidence of drought and temperatures warming above global average. The largest negative 

yield impacts are projected for wheat (–22%), maize (–5%) and rice (–2%), respectively. 

Increasing the area under cereal crop production by 2.1% will partially compensate for overall 

yield growth decline. On the contrary, millet and sorghum yields are projected to increase 

slightly under climate change given their drought and heat stress tolerance (Ringler et al., 2010). 

This highlights that the major cereals’ (maize, rice and wheat) capacity to meet the food 

requirements of a growing population will be negatively impacted. As such, current research 

efforts for major cereal crops is targeted at breeding drought and heat stress tolerant cultivars 

that will be able to produce under these conditions.  

On a positive note, these simulations suggest that under conditions of increasing water 

scarcity and high temperature, millet, sorghum and other drought and heat tolerant crops may 

become future cereal crops for production in SSA. However, current trends show that, in terms 

of land area under cereal production, sorghum and millet still lag behind maize even in arid 

regions of SSA. This implies that potential of sorghum is currently underutilized in the region. 

There is a need to promote sorghum as a possible future crop. In order to do this, there is need 

for empirical data describing its morphological, phenological and physiological characteristics 

that make it suited for production in water scarce regions. This knowledge will be important in 

exploiting the potential of sorghum in arid and semi–arid regions of SSA. 

 

Sorghum adaptation to water stress 

The effect of drought stress depends on the plant developmental stage at the onset of stress. 

Under field conditions, drought stress can occur at any stage of crop growth ranging from 

seedling establishment, vegetative, panicle development and post-flowering, and the period 

between grain filling and physiological maturity (Rosenow and Clark, 1995; Rosenow et al., 

1996). Sorghum is reputed for its ability to tolerate water stress, both intermittent and terminal 

stress. This is mostly attributed to its dense and prolific root system, ability to maintain 

relatively high levels of stomatal conductance, maintenance of internal tissue water potential 

through osmotic adjustment and phenological plasticity (Tsuji et al., 2003). Water stress 

responses in sorghum can be of physiological, morphological and phenological in nature. 

Sorghum genotypes differ in their degree of drought tolerance, especially with respect to the 

timing of stress. Sorghum genotypes that exhibit good tolerance during one developmental 
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stage may be susceptible to drought during other growth stages (Akram et al., 2011). Such 

genotypic variation with respect to responses to water stress allow for farmers to select varieties 

which best suit local farming conditions and hence making sorghum suitable to a range of 

conditions.  

 

Physiological adaptation 

Ability to maintain key physiological processes, such as photosynthesis, during drought stress 

is indicative of the potential to sustain productivity under water deficit. Sorghum exhibits 

physiological responses that allow continued growth under water stress (Dugas et al., 2011). 

Delayed senescence, high chlorophyll content and chlorophyll fluorescence ratio as well as low 

canopy temperature and high transpiration efficiency are physiological traits that confer drought 

tolerance to sorghum (Harris et al., 2006; Kapanigowda et al., 2013). From a crop improvement 

perspective, manipulating these traits can increase drought tolerance in sorghum. 

Crop species reduce photosynthesis through modification of photosynthetic apparatus under 

water stress. Reduction in chlorophyll content forms part of that modification (Kapanigowda et 

al., 2013) to water stress. Chlorophyll content is genotype dependent, and varies according to 

plant stage (van Oosterom et al., 2010; Wang et al., 2014). Delayed senescence or ‘stay green’ 

is the ability of the plant to retain greenness during grain filling under water limited conditions 

(Borrell et al., 2014). Delayed leaf senescence in sorghum allows continued photosynthesis 

under drought conditions which can result in normal grain fill and larger yields compared with 

senescent cultivars (Tolk et al., 2013).  

Stomatal conductance mediates the exchanges of water vapour and carbon dioxide between 

leaves and the atmosphere. Sensitivity of sorghum stomatal conductance to soil water 

availability and vapor pressure deficit varies between genotypes. Sorghum closes stomata, rolls 

leaves and has a narrow leaf angle in response to water and heat stress, effectively reducing 

transpiration and exposure area to solar radiation. Under intermittent water stress, partial 

closure of stomata is used to sustain reduced photosynthetic activity, which ultimately results 

in high and stable WUE in sorghum compared to other drought susceptible cereals (Takele and 

Farrant, 2013).  

Osmotic adjustment is conservation of cellular water content. In sorghum, osmotic 

adjustment is associated with sustained biomass yield under water-limited conditions across 

different cultivars (Blum, 2005). Osmotic adjustment helps maintain higher leaf relative water 

content at low leaf water potential under water stress; this sustains growth while the plant is 

meeting transpirational demand by reducing its leaf water potential (Blum, 2005). The osmotic 
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potential is adjusted through changes in the accumulation of proline, inorganic ions, and other 

osmotic solutes (Sonobe et al., 2010). Increased deep soil water capture has also been found to 

be a major contribution of osmotic adjustment in sorghum (Blum, 2005). Typically in sorghum, 

older leaves are selectively senesced under stress, while the remaining young leaves retain 

turgor, stomatal conductance, and assimilation as a result of high osmotic adjustment in the 

younger leaves (Blum and Arkin, 1984). This ensures photosynthetic activity by keeping top 

leaves green, and reduced transpiration water losses by older shaded leaves under water stress. 

In addition, sorghum has an effective transpiration ratio of 1:310, as the plant uses only 310 

parts of water to produce one part of dry matter, compared to a ratio of 1:400 for maize (Du 

Plesis, 2008). Hence production of sorghum in water scarce regions as an alternative to maize 

will conserve water and increase water productivity.  

 

Morphological adaptation  

Drought tolerance in sorghum is consistent with its evolution in Africa where domestication 

occurred in arid and semi–arid areas parts of northern Africa (Morris et al., 2013). This resulted 

in the development of heritable morphological and anatomical characteristics (Duvas et al., 

2011). These attributes minimize yield losses associated with water stress. 

The root system is the plant organ in charge of capturing water and nutrients, besides 

anchoring the plant into the ground. It is naturally viewed as a critical organ to improve crop 

adaptation to water stress (Vadez, 2014). Under water limiting conditions, water extraction by 

a dryland crop is limited by root system depth and by the rate of degree of extraction (Robertson 

et al., 1993). Sorghum has long roots with high root density at deeper depths (Schittenhelm and 

Schroetter, 2014) with roots that can reach up to 2 m (Robertson et al., 1993) in the absence of 

impeding soil layers. This allows sorghum to access water lower down the soil profile during 

water scarce periods. Water stress can be detrimental at vegetative stage if it inhibits root growth 

(Niakan et al., 2013). However, this is seldom the case as under water stress dry matter 

partitioning will often favour root growth at the expense of vegetative growth (Mabhaudhi, 

2009). Maximum rooting depth usually occurs after anthesis (Robertson et al., 1993). Drought 

tolerance and water extraction efficiency in sorghum are associated with maintaining high root 

length density, number of nodal roots and late metaxylem vessels per nodal root under water 

scarcity (Tsuji et al., 2005). For optimal root development, it is important that pre–flowering 

water stress is avoided.  

Long, narrow, pointy leaves reduce the contact surface area with direct sunlight during high 

temperatures hence preventing desiccation. Sorghum leaves and stem are covered by a waxy 

cuticle and epicuticular wax (Saneoka and Ogata, 1987) preventing excessive water loss during 



15 
 

water stress. This suggests that cuticle and epicuticular wax enhances WUE in sorghum during 

water stress. 

Tillering ability is commonly associated with sorghum in regions with limited rainfall. 

Tillering is generally recognized as one of the most plastic traits affecting biomass 

accumulation and ultimately grain yield in many field crops (Kim et al., 2010). Genetic 

variation in tillering affects the dynamics of canopy development and hence the timing and 

nature of crop water limitation (Hammer et al., 2006). Simulation studies on sorghum (Hammer 

et al., 1996) indicated significant yield advantage of high-tillering types in high-yielding 

seasons when water was plentiful, whereas such types incurred a significant disadvantage in 

lower yielding water-limited circumstances. However, tillering has been bred out of 

commercial cereal cultivars to ensure maximum biomass partitioning to the yield portion. 

Nonetheless, tillering is a prominent feature in sorghum landraces cultivated by subsistence 

farmers (Pandravada et al., 2013) as these have not been the subject of deliberate crop 

improvement. Whether tillering in landraces is beneficial in arid and semi–arid SSA remains 

unclear; however, the fact that landraces still tiller may suggest that subsistence farmers find an 

advantage to this trait. It may be that such farmers associate tillering with yield compensation 

under stressful conditions. Studies done by Lafarge et al. (2002) could not associate tillering 

with either yield or drought tolerance. However, it is likely that emergence of tillers is 

genetically controlled and partly serves as a survival mechanism under water stress conditions. 

Hence, the selection of the best genotype is confounded by genotype-by-environment 

interactions for tillering (Hammer et al., 2005).   

 

Phenological adaptation 

Sorghum utilises quiescence adaptive mechanisms to allow for extreme drought tolerance 

(Dugas et al., 2011). It can remain dormant during drought conditions, resuming growth once 

conditions are favorable (Assefa et al., 2010) ensuring crop survival and yield under terminal 

stress. Water stress affects sorghum at both pre– and post–flowering stages of development. 

Pre-flowering drought stress response occurs when plants are under significant water stress 

prior to flowering, particularly at or close to panicle differentiation and until flowering (Kebede 

et al., 2001). The most adverse effect of water stress on yield occurs during and after anthesis 

(Blum, 2004). Post-flowering drought stress significantly reduces the number and size of the 

seeds per plant (Rosenow and Clark, 1995) which are the main causes for lower grain yield in 

sorghum (Assefa et al., 2010). Phenological plasticity of sorghum allows for shorter or delayed 

seasons in sorghum to minimize effect of water stress on yield. 
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Water use efficiency  

Water use efficiency captures the yield response of physiological, morphological and 

phenological adaptations to water stress. When water is scarce, understanding the magnitude of 

water consumption is important. In most cases, evaluation for decision-making requires 

information about efficiency – when water is being used, is it being used effectively. Water use 

efficiency in sorghum is variety specific. During water stress, reduction in sorghum biomass 

production is minimized while water use is significantly lowered. Hence, maximal water use 

efficiency (WUE) is attained under water scarcity conditions, while lowest WUE values are 

obtained when environmental conditions are optimal for crop growth (Abdel-Montagally, 

2010).  

Sorghum daily water-requirements vary according to crop growth stage (Boyer, 1982; 

Abdel-Montagally, 2010), with maximal water requirement occurring from booting until after 

anthesis. Consequently, at this stage sorghum is most sensitive to water stress. During the grain 

filling stage, physiological maturity and senescence, water requirements decrease gradually. 

Maximum sorghum yield requires 450 to 650 mm of water distributed evenly over the growing 

season (Doorenbos and Hassam, 1979; Assefa et al., 2010). Sorghum grain yields are 

comparable to maize, and higher than those of other major cereals under optimal water 

availability (Table 2). Under water stress, sorghum produces more yield than other major 

cereals due to a superior WUE (Table 2). This reaffirms the fact that sorghum is a drought–

tolerant crop capable of producing reasonable yields under water stress. Therefore, sorghum is 

uniquely poised as a niche crop in semi–arid and arid regions of SSA. 

 

Sorghum nutritional value and utilization 

Nutritional responses to water stress 

Cereal grains are an optimal source of energy, carbohydrates, protein, fibre, and macronutrients, 

especially magnesium and zinc (Kowieska et al., 2011). Water stress negatively affects grain 

nutritional content in cereals. A reduction in nutritional value of grains is most pronounced 

when water stress occurs during grain filling (Zhao et al., 2009). Knowledge of the extent to 

which water stress affects grain nutritional content in sorghum is lacking. Nutritional water 

productivity (NWP) is an emerging concept that combines information of nutritional value with 

that of crop water productivity. The result is an index that includes nutritional value-based 

output per unit of water use. This concept is important in addressing food security issues, 

especially in arid and semi–arid regions where malnutrition remains high. The review of 



17 
 

literature showed that no NWP values have been developed for major cereals, including 

sorghum. This complicates assessment of which cereals crops have nutritional advantage in 

water scarce regions of SSA. Since sorghum exhibits superior drought tolerance to major 

cereals, it is expected that reduction in nutrient content is minimized under water stress. 

However, studies need to be conduct to ascertain the effect of water stress on the nutritional 

value of sorghum. 

 

Utilization, nutrition and health 

Sorghum is used in a variety of food products across SSA. Food type and preparation varies by 

country and cultural practices. Sorghum is part of diets of many people in SSA and is consumed 

as traditional foods or commercial products. These include: bouillie (thin porridge), tô (stiff 

porridge prepared by cooking slurry of sorghum flour), couscous (steamed and granulated 

traditional food), injera (fermented pancake-like bread prepared from sorghum in Ethiopia), 

nasha and ogi (traditional fermented sorghum foods used as weaning food), kisra (traditional 

bread prepared from fermented dough of sorghum), baked products and traditional beers (dolo, 

tchapallo, pito, burukutu) (Mahgoub et al., 1999; Yetneberk et al., 2004; Achi, 2005; Dicko et 

al., 2005). Pre-cooked sorghum flour mixed with vitamins and exogenous sources of proteins 

are commercially available in many African countries for the preparation of instant soft 

porridge for infants. Sorghum can also be puffed, popped, shredded and flaked to produce 

ready-to-eat breakfast cereals (Dicko et al., 2006).  

Sorghum nutritional composition is comparable to other major cereals (FAO, 1995; Ragaee 

et al., 2006), which makes promotion and inclusion of sorghum in water scarce regions of SSA 

a good alternative from a nutrition standpoint. The average energy value of whole sorghum 

grain flour is 356 kcal per 100 g, which is comparable to other cereals (Table 3). Starch is the 

main component of sorghum grain, followed by proteins, non-starch polysaccharides and fat. 

The protein content in whole sorghum grain is in the range of 7–15% (Dicko et al., 2006). The 

fat content, present mainly in the germ of the sorghum grain, is rich in polyunsaturated fatty 

acids, with a similar composition to maize fat. Sorghum is a good source of vitamins, mainly 

the B vitamins and the liposoluble vitamins A, D, E and K, and is a good source of more than 

20 minerals including phosphorus, potassium, iron and zinc (Anglani, 1998; Glew et al., 1997). 

Sorghum is important for human health in other respects. It is rich in fibre, bioactive compounds 

and antioxidant rich phytochemicals that are desirable in human health (Awika and Rooney, 

2004; Dicko et al., 2005; Dykes et al., 2005; Rooney, 2007). Decreasing human consumption 

of sorghum in SSA (Sheorain et al., 2000; Adegbola et al., 2013) indicates that sorghum maybe 

underutilised in SSA despite comparable nutritional composition to major cereals. 
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Table 3: Grain nutrient composition (per 100 g at 12 percent moisture) of cereals.  

Cereals 

Protein Fat Ash 
Crude 
fibre 

Carbo–
hydrate Energy  Calcium Iron Thiamin Riboflavin Niacin 

––––––––––– (g) ––––––––––––– (kcal) ––––––––––––––– (g) –––––––––––––––– 
Rice  7.9 2.7 1.3 1.0 76.0 362 33 1.8 0.41 0.04 4.3 
Wheat 11.6 2.0 1.6 2.0 71.0 348 30 3.5 0.41 0.10 5.1 
Maize 9.2 4.6 1.2 2.8 73.0 358 26 2.7 0.38 0.20 3.6 
Sorghum 10.4 3.1 1.6 2.0 70.7 356 25 5.4 0.38 0.15 4.3 
Millet 7.7 1.5 2.6 3.6 72.6 336 350 3.9 0.42 0.19 1.1 
(Sources: FAO, 1995; Dicko et al., 2006). 

 

Aspects of sorghum underutilization of in SSA 

Whether sorghum in SSA is underutilized is a highly debated topic. This stems from the absence 

of a consensus definition for neglected and underutilized crop species (NUS). Neglected and 

underutilized crop species are generally referred to as those species whose potential to improve 

people’s livelihoods, as well as food security and sovereignty, is not being fully realized 

because of their limited competitiveness with commodity crops in mainstream agriculture 

(Padulosi et al., 2011). Some NUS are highly adapted to marginal, complex, and difficult 

environments and contribute significantly to diversification and resilience of agro–ecologies 

(Chivenge et al., 2015). This means they are of considerable interest for future adaptation of 

agriculture to climate change and variability. It has been established that sorghum is adapted to 

water stress, and has comparable nutritional value and superior water use characteristics to 

major cereals. This makes it highly suited for current and future production in SSA to mitigate 

food security requirements in arid and semi–arid areas. However, it is vital to establish whether 

sorghum can be categorized as underutilized in SSA. If underutilized, then which aspects are 

underutilized and how can these be improved. This information will assist unlock the potential 

of sorghum for production is SSA. 

A number of studies have described the typical features of NUS and the overriding issues 

affecting the conservation and use of their genetic resources (Padulosi et al., 1999; Williams 

and Haq, 2002; Padulosi et al., 2008; Galluzi and Lopez Noriega, 2014). Features commonly 

associated with NUS are: limited research efforts devoted to the species, limited representation 

of the species in globally available ex situ collections, limited representation of the species in 

national ex situ collections, limited efforts in germplasm characterization, limited knowledge 

of the species’ distribution and production levels and lack of plant breeding efforts and 

commercial varieties of the crop species (Galluzi and Lopez Noriega, 2014).  



19 
 

Regarding typical features of NUS and the overriding issues affecting the conservation and 

use of their genetic resources, sorghum in SSA can be excluded from classification as 

underutilised. The existence of International Crops Research Institute for the Semi-Arid Tropics 

(ICRISAT), large collections of germplasm collections and large scale production throughout 

the region disqualify sorghum on basis of such features. An estimate of 168,500 accessions 

(most of which are duplicates of the ICRISAT 36 774 world collection accessions) is contained 

in sorghum germplasm collections globally at multiple sorghum genetic resources conservation 

sites. The major organizations/countries which maintain sorghum genetic resources are the 

International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 

Andhra Pradesh, India, the National Plant Germplasm System (NPGS) in USA, Ethiopia, 

Sudan, South Africa, India and China, primarily because they have large crop improvement 

programs (Rosenow and Dahlberg, 2000). Information on exact accession numbers held by 

these major organizations/countries is lacking, with the exception of ICRISAT. ICRISAT is a 

major repository for world sorghum germplasm with a total of over 36774 accessions from 91 

countries. The collection is estimated to represent about 80% of the variability present in 

sorghum (Eberhart et al. 1997).  

Landraces constitute 85.3%, breeding material 13.2%, wild species accessions 1.2% and 

named cultivars 0.3% of the total collection. Landraces and obsolete cultivars can be considered 

as a valuable portion of the gene pool because they represent the broad intra–specific genetic 

diversity of crops, therefore provides valuable characteristics important for breeding (Hermuth 

et al., 2010). This presents a breeding advantage over major cereals like maize, wheat and 

barley where the breeding material is below 10%. Tolerance to local stresses and the resulting 

good yield stability are also often referred to in landraces. The germplasm maintained at 

ICRISAT consists of five basic races: bicolor, guinea, caudatum, kafir and durra and their 10 

hybrid races. Despite lagging behind many other commodity-based research programs, such as 

maize, sorghum research in SSA has been successful in diffusing a large number of new 

cultivars onto farmers’ fields. The last two decades of research have resulted in the release of 

over 40 sorghum cultivars (Olembo et al., 2010). However, rural–poor farmers who are the 

main constituency of sorghum farming in SSA still prefer landraces and may not have access 

to the diffused cultivars. 

Advanced features used in determining whether a crop is underutilised are geographical 

distribution and socio–economic status. With regard to geographical distribution, a species 

could be underutilized in some regions but not in others. Regarding the socio–economic 

implication of the term, many species represent an important component of the daily diet of 

millions of peoples but their poor marketing conditions make them largely underutilized in 
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economic terms. As such a crop can be widely cultivated across a region and still be 

underutilized. 

Area under production of sorghum has increased in SSA. However sorghum yields in SSA 

have stagnated because production is being pushed into more marginal areas and poorer soils, 

even in areas that are already drought-prone (FAO and ICRISAT, 1996; Olembo et al., 2010). 

Even in arid regions, maize remains the main crop under production (Table 4) when sorghum 

production confers a comparative advantage. Human consumption is decreasing with enhanced 

socio–economic status of population and easy availability of much preferred cereals in 

abundance and at affordable prices (Sheorain et al., 2000; Adegbola et al., 2013). The grain 

stands to contribute more to food security than at present, especially for in arid and semi–arid 

SSA (Adegbola et al., 2013) if promoted and included more in the cereal food value chain. 

Sorghum usage and food products are well established in the region (Berenji and Dahlberg, 

2004), which should ease promotion of existing and development of new products. Sorghum in 

SSA is therefore socio–economically and geographical underutilized. High number and 

variation in germplasm, and existing food value chains eases promotion of sorghum as an 

alternative cereal crop under arid and semi–arid regions. 
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Table 4: Cereal production statistics in countries with arid and semi-arid AEZs in SSA. 

Country 

Country 
area 1,2 

Agricultu
ral area 1 

Cereal 
production 

area 1 Ranking of 5 main cereals and area under production (1000 ha)1 

(1000 ha)   
1 2 3 4 5 

Crop Area Crop Area Crop Area Crop Area Crop Area 

Botswana 58 173 25 920 146 A 870 B 500 C 580 – – – – 

B. Faso 27 422 11 770 4 210 B 1 807 C 1 327 A 9 136 D 139 – – 
Chad 128 400 49 932 2 542 B 850 C 800 A 300 C 205 E 17 

Cameroon 47 544 9 750 – A 832 B 800 D 167 C 70 E 1 
Eritrea 11 760 7 592 440 B 250 C 55 F 45 E 25 A 20 

Ethiopia 110 430 36 325 10 243 A 2 069 B 1 847 E 1 706 F 1 048 C 432 
Kenya 58 037 27 430 2 494 A 2 028 B 189 E 313 C 88 D 30 
Malawi 11 848 5 585 1 881 A 1 677 B 89 D 65 C 49 E 1 

Mali 124 019 41 651 3 661 C 1 437 B 938 A 641 D 605 E 7 
Namibia 82 429 38 809 276 C 230 A 28 B 16 E 2 – – 

Niger 126 700 44 482 10 242 C 7 100 B 3 100 A 15 D 13 E 2 
Nigeria 92 377 71 000 17 545 B 5 500 A 5 200 C 4 000 D 2 600 E 80 
Senegal 19 671 9 015 1 117 C 714 A 152 B 140 D 108 – – 

Somalia 63 766 44 129 398 B 270 A 124 E 3 D 1 – – 
S. Africa 121 909 96 374 3 993 A 3 250 E 520 F 80 B 60 G 27 

Sudan 112 702 108 678 10 088 B 7 136 C 2 782 E 136 A 27 D 8 
Tanzania 93 300 – – A – D – B – C – E – 
Zambia 75 261 23 636 1 145 A 998 E 42 D 39 C 34 B 23 

Zimbabwe 39 076 16 400 1 379 A 900 C 230 B 230 E 10 F < 1 
Total    A 4 907 B 4 125 C 2 687 D 1 175 E 1 159 
Africa    A 34 903 B 26 518 C 21 122 D 10 894 E 9 917 

A= Maize, B = Sorghum, C = Rice, D = Wheat, E = Oats, and F = Barley.   

(Sources: FAOSTAT, 2013 1; WDI, 2015 2). Note: Ranking of 5 main cereals and area under production in Eritrea and Ethiopia according FAOSTAT (2013) excludes teff, 
which is the main grain cereal under production (Yihun et al., 2013). 
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Conclusion 

Sorghum is socio–economically and geographically underutilized in SSA. Sorghum production 

still lags behind maize even in arid and semi–arid AEZs where sorghum confers a comparative 

advantage. High WUE, adaptation to water stress, high germplasm variability, comparative 

nutritional value, and existing food value chain makes sorghum uniquely suited to improving 

cereal water productivity under water scarcity. How sorghum grain nutrients compare to that of 

other major cereals under water stress is unclear due to lack of NWP values for grain cereals. 

Rainfed cultivation of sorghum as an alternative to major cereals in arid, semi–arid and drought 

prone AEZs of SSA, and promotion of sorghum traditional and commercial food products can 

potentially improve food security in the region.  
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Abstract 

Water use efficiency (WUE) is becoming a key issue in understanding the relationship between 

water availability and rainfed sorghum yields in rainfed agricultural systems across sub–

Saharan Africa (SSA). The objective of this study was to determine water use of three sorghum 

varieties under different environmental conditions. Three sorghum varieties, a hybrid 

(PAN8816), a commercial open-pollinated variety (Macia) and a landrace (Ujiba) were planted 

at two sites (Ukulinga and Mbumbulu) during 2013/14 and 2014/15. Mbumbulu was 

characterized by low soil water availability. This resulted in significantly (P<0.05) low plant 

growth [leaf number, plant height and canopy cover (CC)] and physiology [chlorophyll content 

index (CCI) and stomatal conductance (SC)] relative to Ukulinga. Biomass and yield were also 

low under low soil water availability (Mbumbulu) relative to Ukulinga. Sorghum phenological 

development was hastened in Ujiba and PAN8816 under low soil water availability. Stay–green 

characteristics in Macia delayed phenological development. Macia and PAN8816 varieties 

demonstrated a delay in grain filling until conditions were favorable. Consequently, total and 

panicle WUE were, respectively, lower at Mbumbulu (14.93 and 7.49 kg ha-1 mm-1) relative to 

Ukulinga (21.49 and 11.01 kg ha-1 mm-1). Results showed that Macia had higher (P<0.05) WUE 

(10.51 kg ha-1 mm-1) relative to PAN8816 (9.34 kg ha-1 mm-1) and Ujiba (7.90 kg ha-1 mm-1), 

respectively. Under low soil water availability, sorghum showed adaptation through leaf 

number, CCI, SC, and phenological plasticity. Lack of significant genotypic differences in yield 

and WUE efficiency highlights that all three varieties are equally suitable for production under 

sub–optimal conditions. 

 

Keywords: water use efficiency, management practices, agro–ecologies, cereal crops 

Abbreviations: SSA (Sub–Saharan Africa); WUE (water use efficiency); PAW (plant 

available water); CC (canopy cover); CCI (chlorophyll content index); SC (stomatal 

conductance). 
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INTRODUCTION 

Sub–Saharan Africa (SSA) faces twin challenges of water scarcity and food insecurity and these 

challenges are projected to increase. Within the region, rainfed agriculture constitutes more than 

95% of agricultural land use (Singh et al., 2011), making water availability the single most 

important factor in crop production. Neither of these challenges can be addressed in isolation 

(Postel, 2003; Rosegrant et al., 2009). Strategies to produce ‘more food per drop of water’ 

(Molden et al., 2010) have been considered in a variety of ways. These have included 

identifying areas of water availability, water stress (Brauman et al., 2013), impacts of water use 

and projections of future water scarcity (Ringler et al., 2011; Murray et al., 2012). Any 

improvement in crop water productivity will have a positive effect on either food production or 

water savings (Brauman et al., 2013). Therefore, strategies to increase food productivity while 

conserving water have become increasingly important (Giovannucci et al., 2012). Among these 

strategies is selection of drought and heat tolerant crops, and screening of varieties for high 

water use efficiency (WUE). Water use efficiency is defined and crop output (biomass and/or 

yield) obtained per given water use (evapotranspiration). 

Drought stress is one of the most limiting factors for cereal crop yield. Drought and heat 

tolerance make sorghum unique among major cereal crops, suited for cultivation as staples in 

arid agro-ecological regions of SSA (Hattori et al., 2005; Staggenborg et al., 2008). It is the 

second most cultivated cereal crop in SSA and ranks first in the semi–arid Sahel (FAOSTAT, 

2011). Although sorghum originated in SSA, where compared to major cereal crops, striking 

drought tolerance and superior WUE have evolved in the species, there is a need to harness 

these traits to positively contribute to food production, especially in arid and semi–arid regions. 

The available genetic resources in sorghum are still relatively under-exploited (Rosenow and 

Dahlberg, 2000; Kapanigowda et al., 2013). Rainfed sorghum farming systems differ in SSA. 

Sorghum is cultivated by both well-resourced commercial farmers, and resource-constrained 

smallholder farmers. The management practices under these two farming systems markedly 

differ, with high management practices by commercial farmers and low crop management by 

smallholder farmers. Crop management has implications on crop yield, hence WUE.   

Crop production in SSA, specifically staple cereal crop production, needs to adapt to water 

scarcity and improve water productivity to meet food requirements. Sorghum’s drought, heat 

and flood tolerance as well as high and stable WUE make it an ideal crop for production in 

SSA. However, studies of sorghum WUE and response of secondary traits associated with 

drought tolerance to water availability in rainfed agro-ecologies in SSA are lacking. This study 

investigated genotype-by-environment and water use characteristics of sorghum varieties. 
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Specific objectives were to: (i) determine morpho-physiological and phenological responses of 

three sorghum varieties to different agro-ecologies and management practices, (ii) determine 

yield responses of three sorghum varieties to different agro-ecologies, and (iii) to determine 

WUE responses for the three sorghum cultivars to different agro-ecologies and management 

practices. 

 

MATERIALS AND METHODS 

Plant material 

Three genotypes, a hybrid, an open-pollinated variety and a landrace, were selected for this 

study. This reflected the range of germplasm typically used by farmers for sorghum production 

in Southern Africa. The hybrid was PAN8816, which represented the preferred seed variety by 

commercial sorghum farmers. PAN8816 was supplied by from Pannar Seeds®. It is a bronze-

grained, medium to late maturing, low tannin sorghum hybrid. Flowering occurs at 

approximately 71 days after sowing. It is renowned for good leaf disease and head smut 

resistance.  

Macia is a popular low tannin, open-pollinated variety developed by the International Crop 

Research Institute for the Semi–Arid Tropics (ICRISAT). It is grown in most sorghum growing 

regions across SSA (Takele and Farrant, 2013; Charyulu et al., 2015). It is an early to medium 

maturing (60–65 days to heading and 115–120 days to maturity), semi–dwarf (1.3–1.5 m tall 

with thick stem) variety. It has a wide growing rainfall range (250–750 mm) during the growing 

season, with stay green characteristics extending beyond harvest. Grain yield potential is 3000 

– 6000 kg ha-1 of dry matter.  

Ujiba is a high tannin landrace representing a popular seed choice among subsistence 

farmers. It was sourced locally from smallholder farmers in Tugela Ferry (28°44'S, 30°27'E), 

South Africa. For the landrace, phenological, morphological and physiological information 

were lacking. 

Site description 

Field trials were planted at two locations – Ukulinga (30°24'S, 29°24'E, 805 m a.s.l) and 

Mbumbulu (29°59'S, 30°42'E, 548 m a.s.l), South Africa, in 2013/14 and 2014/15. Ukulinga is 

a well-equipped agricultural research farm, whilst Mbumbulu is a resource–constrained rural 

setting. In addition, these two locations also offered two different micro-climates despite being 

classified under the same bioresource group (Table 1). Bioresource groups (BRGs), are defined 

as specific vegetation types characterized by an interplay of climate, altitude and soil factors. 
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Table 1: Bio–resource group classification, climate, and soil physical and hydraulic properties of Mbumbulu and Ukulinga planting sites.  

Site 

Annual 

rainfall 

Average 

temperature 

Soil 

classification 

Clay 

content 

Field 

capacity 

Permanent 

wilting point 
Saturation 

Soil profile 

depth 

Saturated 

hydraulic 

conductivity 

(mm) (˚C)  ––––––––––––––––––––(%)––––––––––––––––––––– (m) (mm m-1 day-1 ) 

Ukulinga 694 17.0 Vertisols < 29 40.6 23 48.1 0.6 25.0 

Mbumbulu 1009 17.9 Oxisols > 60 45.1 34.5 51 1.5 79.7 
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Soil physical and hydraulic properties were obtained from classification and 

characterization of experimental site soils by Mabhaudhi (2012). These include: volumetric 

water content at field capacity (FC), at permanent wilting point (PWP), and at saturation (SAT), 

measured saturated hydraulic conductivity (Ksat), and soil depth (Table 1). 

 

Trial layout and design 

Field trials were conducted in the two above mentioned planting sites and seasons, totalling 

four experiments. At each site, the experimental design used was a randomized complete block 

design with three replicates. The trials comprised the three above referred sorghum genotypes. 

The trials measured 310 m2, with individual plot size of 6 m * 4.5 m (18 m2), with 1 m wide 

interplot spacing between the plots. Inter-row spacing was 0.75 m with 0.30 m intra-row 

spacing, corresponding to 4.4 plants per m2, and to 21 plants per row. Each individual plot had 

seven rows with the three inner most rows as the experimental plants, and the second and fifth 

rows reserved for destructive sampling. Planting rows were dug ≈25 mm deep, seeds were sown 

closely and thinned to the desired crop density at crop establishment. 

 

Data Collection 

At both locations, daily meteorological data including minimum and maximum temperature, 

rainfall, maximum and minimum relative humidity, wind speed and direction, solar radiation 

and reference evapotranspiration were collected. At Ukulinga, data were obtained from an on–

station (within 100 m radius) automatic weather station (AWS), courtesy of the Agricultural 

Research Council–Institute for Soil, Climate and Water (ARC–ISCW). For Mbumbulu, 

meteorological data was obtained from an AWS (within 6 km radius), courtesy of the South 

African Sugar Research Institute (SASRI) (http://sasri.sasa.org.za/irricane/tables/).  

Observations of crop physiology, morphology and phenology were taken weekly at 

Ukulinga and fortnightly in Mbumbulu. Seedling emergence was considered as coleoptile 

protrusion above soil surface. Emergence was scored from sowing until establishment (90% 

emergence). Plant height was measured from establishment using a tape measure as distance 

from soil surface to the tip of the youngest developing leaf (before floral initiation) or tip of the 

growing panicle thereafter. Leaf number was counted for fully expanded and photosynthetically 

active (50% green leaf area) leaves from establishment (Mabhaudhi and Modi, 2013). A fully 

formed leaf was defined as when the leaf collar was visible without dissecting the plant. The 

flag-leaf was counted as the first leaf upon full formation. Canopy cover (CC) was measured 

using the LAI2200 canopy analyzer (Li–Cor®, USA) fortnightly after crop establishment until 

physiological maturity. A single measurement was taken above the canopy, and four 

http://sasri.sasa.org.za/irricane/tables/
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measurements were taken below the canopy in a one–meter diagonal distance. The four below 

canopy readings were taken at different positions, namely: between the row, next to the row, in 

the middle of the rows, and further away from the row. A 90° view cap was used for 

measurements. Three canopy measurements were done per replicate (plot) and mean values 

were taken as representative of the plot. Values describing the diffuse non-intercepted radiation 

(DIFN) which is the amount of light visible below the canopy were taken and converted to 

percentage canopy cover as described by Mabhaudhi et al. (2014):  

CC = (1 – DIFN) x 100%      Equation 1 

Chlorophyll content index (CCI) was measured using a SPAD-502 Plus chlorophyll meter 

(Konica Minolta, Osaka, Japan) on the adaxial surface of the first fully expanded, fully exposed 

leaf at midday (1200–1400 hrs.) fortnightly after crop establishment until physiological 

maturity. Stomatal conductance (SC) was measured at midday using a SC–1 leaf porometer 

(Decagon Devices®, Pullman, WA, USA) from the abaxial surface of the first fully expanded, 

fully exposed leaf at midday (1200–1400 hrs.) fortnightly after crop establishment until 

physiological maturity. Data on SC was only collected for the second season due to 

unavailability of equipment in the first season. For measurements of CCI and SC, three plants 

were tagged per plot at crop establishment from which measurements were conducted 

throughout the growing season. This resulted in sampling of three leaves per plot. The SC–1 

leaf porometer was calibrated as per manual instructions. In the field, each measurement was 

taken once equilibrium had been achieved between the atmosphere and the porometer.   

Biomass accumulation was determined destructively by sampling aboveground shoot mass 

fortnightly after crop establishment (90% emergence) and oven–drying plant material (80°C 

for 72 hrs.). Upon flowering (complete panicle exposure), panicle mass (Y) and total above 

ground above biomass (B) were weighed separately to enable determination of build-up of 

harvest index (HI). Final harvest index was taken as harvest index at physiological maturity. 

Harvest index was calculated as follows: 

HI = Y/B        Equation 2 

where: Y = panicle mass, and 

 B = total above ground biomass     

Time taken to reach a phenological stage was recorded in calendar days and later converted 

to thermal time (growing degree days, GDD) using method 2, as described by McMaster and 

Wilhelm (1997):  

GDD = [(Tmax + Tmin) / 2] - Tbase     Equation 3 

where: Tmax = maximum daily temperature,  
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Tmin = minimum daily temperature, and  

Tbase = base temperature below which sorghum growth ceases set at 7 °C (Du Plesis, 2008).  

Phenological data were collected weekly at Ukulinga and fortnightly in Mbumbulu. Time 

taken to reach a phenological stage was observed as time taken for 50% of experimental plant 

population to exhibit stage diagnostic signals. End of juvenile phase was calculated as the 

difference between sowing time and flag leaf formation. Floral initiation was marked by a 

bulging of the plant stem. Flowering was marked by panicle bloom. Full pollen shed by the 

panicle marked anthesis. Formation of soft, milky grains after anthesis was observed as start of 

grain filling. Appearance of a dark spot on the opposite side of the kernel from the embryo 

signaled completion of dry matter accumulation, hence physiological maturity. 

 

Crop water use 

Soil water content (SWC) was measured every week using a PR2/6 profile probe (Delta–T, 

Cambridge, UK) up to 1 m soil depth. In Mbumbulu, SWC was calculated to 1 m soil depth . 

Whereas at Ukulinga, SWC was calculated to 0.6 m due to presence of an impeding layer. 

Weekly measurements of SWC were then used to compute a soil water balance (Zhao et al., 

2004) from sowing to physiological maturity as follows: 

ET = I + P + C – D – R ± ΔSWC     Equation 4 

where: ET = evapotranspiration 

I = irrigation added (mm),  

P = rainfall (mm),  

C = capillary rise (mm),  

D = drainage (mm),  

R = run-off, and  

ΔSWC = change in soil water content. 

Since trials were wholly rainfed, there was no irrigation (I) to be considered. Capillary rise 

(C) and drainage (D) were considered negligible (Ridolfi et al., 2008). Runoff (R) was also 

considered negligible in the soil water balance equation, due to sorghum rows orientated across 

the slope limiting runoff to negligible proportions. Therefore, Equation 4 was simplified to: 

ET = P – ΔSWC       Equation 5 
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Water-use efficiency refers to the ratio of water used in plant metabolism to water lost by 

the plant through transpiration and soil evaporation (evapotranspiration). Water use efficiency 

was calculated for crops at physiological maturity using the following formula (Kuslu et al., 

2010):  

WUE = B / ET       Equation 6 

where: B = dry aboveground biomass (kg ha-1), and  

ET = actual field evapotranspiration (mm) obtained from Equation 5. 

 

Agronomic practices 

At Ukulinga, land that had been lying fallow was mechanically ploughed, disked and rotovated 

before planting. At Mbumbulu, land that had been lying fallow was mechanically ploughed 

before planting; there was no disking and rotovation and seedbed preparation was done using 

hand hoes.  

Soil samples were collected and analyzed for fertility before land preparation in both sites 

during both seasons prior to planting. A deficit of rainfed sorghum soil fertility requirements 

(112 kg ha-1) as outlined in Smith, (2006) was applied at both sites using Gromor Accelerator® 

(30 g kg-1 N, 15 g kg-1 P and 15 g kg-1 K) slow release organic fertilizer, 14 days after sowing 

(DAS). At Ukulinga, 45 kg ha-1 and 48 kg ha-1 of fertilizer was applied; at Mbumbulu, 37 kg 

ha-1 and 34 kg ha-1 of fertilizer was applied for the first and second season, respectively. This 

was to meet nitrogen requirements of the soil, as this nutrient was observed as most deficient 

from soil sample analysis.   

Planting lines were opened by hand 25 mm deep and seeds were hand–sown in the ground. 

Planting was conducted by drilling sorghum seeds, thereafter, seedlings were thinned to 

required spacing at crop establishment (14 days after planting). At Mbumbulu, the first and 

second season field trials were planted on 19 December 2013 and 23 September 2014, 

respectively. At Ukulinga, trails were planted on 17 January 2014 and 17 November 2014 for 

first and second seasons, respectively. Rainfall attributes are a major factor in determining time 

of sowing under rainfed agriculture, since rainfall is a sole water input source into the 

agriculture system. Differences in onset of rainfall between planting seasons and sites 

accounted largely for time of sowing. Onset of rainfall was relatively earlier in Mbumbulu 

compared to Ukulinga in both seasons, and earlier in the 2014/15 season compared to 2013/14 

season.  

Harvesting was conducted at physiological maturity to measure biomass, yield and calculate 

WUE values; and at harvest maturity to measure thousand seed mass. Harvest maturity was 
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observed as when seeds had ≤12.5 % seed moisture content measured using a grain moisture 

metre (Nunes Instruments, Coimbatore, Tamil Nadu). Length of growing seasons differed 

according to when this was observed for each site and season. 

Round-up® was applied to control weeds two weeks before planting. Weeds, pests, and 

diseases were hand-removed weekly. Cypermethrin was applied to control insect pests one 

month after planting. 

 

Data analyses 

Measured crop parameters were subjected to analysis of variance (ANOVA) using GenStat® 

16th edition (VSN International, Hemel Hemstead, UK). Tests for normality and homogeneity 

between planting seasons data were carried on Genstat to see if data should be analysed 

separately or in combination. Data was both normal and homogenous, meaning it could be 

analysed in combination. This allowed for comparison between data sets from two separate 

seasons. A general ANOVA was conducted, with the treatment structure of planting season by 

planting site by genotype. Means were separated using Fischer’s protected least significant 

differences (LSD) at a probability level of 5%. Data analysis was not separated for each date 

but analysed as seasonal data. 

 

RESULTS AND DISCUSSION 

Seasonal and agro-ecological climate 

Sorghum upper and lower temperature thresholds differ according to growth stage and agro–

ecological region from which a cultivar is adapted. Upper (38°C) and lower (7°C) temperature 

thresholds for experimental varieties in this study were set according to local conditions (Huda 

et al., 1984; Du Plesis, 2008). Minimum and maximum temperatures did not exceed nor go 

below sorghum growing temperature thresholds at both planting sites in both seasons (Figure 

1). This implies that crops did not experience heat or cold stress during both growing season at 

the two planting sites.   

In descending order, rainfall received during the growing season (Table 2) was: second season 

in Mbumbulu (500.5 mm), second season at Ukulinga (401.25 mm), first season in Mbumbulu 

(294.90 mm), and first season at Ukulinga (226.09 mm). Seasonal rainfall was relatively higher 

at Mbumbulu than Ukulinga. However, the soil clay content at Mbumbulu exceeded 60%, and 

Ukulinga soils had less than 29% clay (Table 1). Root growth is limited by increased clay 

content in soils resulting in less soil water extraction by crops. Even worse, plant-extractable 

moisture in clay soils is somewhat less than the soil’s physical properties alone would imply 
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(Whitmore and Whalley, 2009). This implies plant available water was relatively less than 

received rainfall in Mbumbulu compared to Ukulinga. 

 

Table 2: Water use efficiency (WUE) water use characteristics at physiological maturity of 
three sorghum varieties planted at two planting sites over two growing seasons. 

Season Site Variety 

Rainfall 
received 

Water 
use  

Final 
biomass 

Panicle 
yield 

Harvest 
index 

Biomass 
WUE Panicle WUE 

––––––––(mm)–––– –––––––––(kg ha-1)–––––––  ––––––(kg ha-1 mm-1)––––– 

First 

U
kulinga 

PAN8816 226.09 257.69 4600.00 ab 2480.00 abc 0.54 bcd 11.78 abcd 6.35 bcd 

Macia 226.09 257.69 4177.78 ab 2160.00 ab 0.52 abc 10.55 abc 5.46 abcd 

Ujiba 226.09 257.69 4982.22 ab 2435.56 abc  0.48 ab 12.58 cde 6.15 abcd 

Mean 226.09 257.69 4586.67 2358.52 0.51 11.64  5.99 

M
bum

bulu 

PAN8816 294.90 293.70 3062.22 a 1671.11 a 0.55 bcd 10.42 a 5.69 ab 

Macia 294.90 293.70 4093.33 ab 2564.44 abc 0.63 d 13.93 ab 8.73 abcd 

Ujiba 294.90 293.70 3137.33 a  1475.56 a 0.47 ab 10.68 abc 5.02 a 

Mean 294.90 293.70 3430.96 1903.70 0.55 11.68 6.48 

Second 

U
kulinga 

PAN8816 389.32 364.46 8946.67 c 4524.44 d 0.51 abc 24.55 de 12.41 cd 

Macia 401.25 389.56 12031.11 c 6160.00 e 0.60 cd 26.27 e 15.81 e 

Ujiba 389.32 364.46 9008.89 c 3773.33 cd 0.42 a 24.72 de 10.35 de 

Mean 393.30 372.83 9995.56 4819.26 0.51 26.72 12.86 

M
bum

bulu 

PAN8816 500.50 347.80 6306.67 b 3351.11 bcd 0.53 bcd 18.14 bcd 9.64 bcd 

Macia 500.50 347.80 6066.67 b 3173.33 bc 0.52 bc 17.44 bcd 9.12 abcd 

Ujiba 500.50 347.80 5128.89 ab  2355.56 ab 0.46 ab 14.75 abc 6.77 abc 

Mean 500.5 347.80 5834.08 2960.00 0.50 16.77 8.51 

LSD   2060.89 1228.89 0.09 6.73 4.00 

%cv   5.3 7.7 5.4 6.0 8.5 

Note: Values sharing the same letter are similar at LSD = 0.05 

 

During the first growing season, rainfall became irregular and low (Figure 1) at both 

Ukulinga (post 70 DAS) and Whitmore Mbumbulu (post 105 DAS), which resulted in declining 

soil water content (Figure 2). This could have predisposed the crop to post–anthesis water stress, 

which has detrimental effects on grain filling and grain yield. Regular rainfall at both planting 

sites during the second season resulted in consistently high soil water content (Figure 2). While 

the soil water balance equation used in this experiment assumed negligible runoff, storm events 

at Ukulinga resulted in recorded rainfall events above the Ksat value (Table 1). This possibly 

resulted in run-off water losses and intermittent water logging of soils. In future, runoff curve 

numbers should be incorporated into the soil water balance to account for runoff. At Ukulinga, 
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storms occurred 38 DAS in the first season and 104 DAS in the second season. Sorghum is 

tolerant to waterlogging (Promkhambut et al., 2011) hence intermittent waterlogging did not 

affect crop growth and development. 

 

 

Figure 1: Daily rainfall, reference evapotranspiration (ETo), minimum (Tmin) and maximum 
(Tmax) temperature at Ukulinga and Mbumbulu during 2013/14 and 2014/15 growing seasons. 

 

 

Figure 2: Biweekly soil water content measurements at Ukulinga and Mbumbulu during 
2013/14 and 2014/15 growing seasons. 
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Crop morphology and physiology  

The interaction between seasons, planting sites and varieties significantly (P<0.05) affected leaf 

number (Figure 3). Leaf number was affected (P<0.001) by season and site interaction. However, 

leaf number was statistically similar (P>0.05) among varieties. Mitosis and leaf appearance rate 

are turgor driven processes that are sensitive to plant available water. Despite relatively high 

rainfall at Mbumbulu compared to Ukulinga during each of the growing seasons, leaf number was 

lower in Mbumbulu. High soil water retention by the clayey soils at Mbumbulu decreased plant 

available water (PAW) and affected growth and development for all sorghum varieties. Under 

water stress, sorghum favors root growth at the expense of shoot and leaf growth (Hsiao and Xu, 

2000) to increase soil water capture. Low plant available water at Mbumbulu therefore resulted in 

decreased leaf number. At both planting sites, seasons with low rainfall resulted in less leaf 

numbers. 

Significant (P<0.001) genotypic variations were observed for plant height. With respect to 

maximum plant height, Ujiba was tallest (≈160 cm); Macia and PAN8816 were significantly 

shorter (≈120 cm) (Figure 4). PAN8816 and Macia have been bred as dwarf varieties; therefore, 

maximum height is genetically predetermined. The tall, Ujiba landrace was susceptible to lodging. 

Short varieties (Macia and PAN8816) were susceptible to panicle destruction by large birds (e.g. 

guinea fowls) as the head was within reach. Plant height of sorghum varieties differed significantly 

(P<0.001) between seasons and planting sites. Consistent with observations of leaf number, low 

soil water availability at Mbumbulu resulted in stunted plant growth. Cell division and 

expansion/elongation are both turgor driven processes hence the observed stunted growth at 

Mbumbulu (Farooq et al., 2009; Silva et al., 2014).  

Achieving high canopy cover is important in reducing soil evaporation water losses and 

improving biomass production via maximizing transpiration (Mabhaudhi et al., 2013). Since 

transpiration is directly correlated to biomass, a larger canopy will translate to higher biomass and 

subsequently yield (Mabhaudhi et al., 2013). Canopy cover varied highly significantly (P<0.001) 

between seasons, planting sites and genotypes. Based on means of genotypes across seasons, high 

CC was observed at Ukulinga (57%) compared to Mbumbulu (32%) (Figure 5). This was consistent 

with low water availability and the stunted plant growth (leaf number and plant height) observed 

at Mbumbulu relative to Ukulinga. Based on means of genotypes for the two planting sites and 

seasons, CC was significantly higher (P<0.001) during the 2014/15 relative to 2013/14 planting 

season. This was attributed to conditions (temperature, rainfall and soil water availability) having 
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been more favorable during the 2014/15 relative to the 2013/14 planting season. Canopy cover is 

a representation of plant canopy size (plant height, leaf number, leaf size and angle to the stem). In 

this instance, differences in leaf number accounted for differences in CC between seasons and 

planting sites. Based on means of planting sites and seasons, Macia had the lowest CC (41%) while 

PAN8816 (46%) and Ujiba (46%) had similar CC. This could be attributed to genotypic 

differences. PAN8816 is a hybrid and generally showed more vigorous growth. Ujiba had the same 

leaf number, taller plants but similar CC compared to PAN8816, hence it could be argued that 

Ujiba had smaller leaf size even though measurements of leaf size were not conducted.   

Primary response of stomatal opening/ closure is to availability of soil water (Tombesi et al., 

2015). Stomatal conductance was recorded for only the 2014/15 season. Results of SC in this study 

therefore have limited applicability. Sorghum varieties exhibited statistically similar (P>0.05) 

stomatal conductance across planting sites. However, SC was significantly lower (P<0.01) at 

Mbumbulu (189.6 mmol.m-2.s-1) than Ukulinga (291.7 mmol.m-2.s-1) (Figure 7). Primary response 

of stomata is to soil water availability. Under water stress, sorghum partially closes stomata to 

sustain reduced photosynthetic activity. Despite higher rainfall, low PAW in Mbumbulu compared 

to Ukulinga resulted in lower SC in Mbumbulu.  

Chlorophyll content index was not significantly affected by the interaction of sites, seasons and 

varieties. However, CCI varied highly significantly (P<0.001) for planting sites and seasons. 

Chlorophyll content index was similar (P>0.05) among varieties. Mean values of planting sites 

across varieties showed that CCI for the two planting seasons were higher at Ukulinga (44.25 and 

51.22) relative to Mbumbulu (34.98 and 41.67) (Figure 6). At each planting site, CCI increased 

with time. Variations in CCI between planting sites and seasons were consistent with observations 

that Ukulinga experienced less water stress than Mbumbulu, while 2014/15 was the more optimum 

season than 2013/14. In general, CCI is sensitive to water stress and will decline under water stress 

(Kapanigowda et al., 2013).  
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Figure 3: Leaf number in PAN8816, Macia and Ujiba sorghum varieties planted at Ukulinga (A 
and C) and Mbumbulu (B and D) during 2013/14 and 2014/15 growing seasons respectively. Note: 
SS.ST.V refers to the interaction between growing season (SS), planting site (ST) and sorghum 
varieties (V). SS refers to growing season, ST refers to planting site, while V refers variety. Means 
were separated by least significant values (LSD) at P= 0.05. 

 

  

Figure 4: Plant height progressions in PAN8816, Macia and Ujiba sorghum varieties planted at 
Ukulinga (A and C) and Mbumbulu (B and D) during 2013/14 and 2014/15 growing seasons 
respectively. Note: SS.ST.V refers to the interaction between growing season (SS), planting site 
(ST) and sorghum varieties (V). SS refers to growing season, ST refers to planting site, while V 
refers variety. Means were separated by least significant values (LSD) at P= 0.05. 
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Figure 5: Canopy cover in PAN8816, Macia and Ujiba sorghum varieties planted at Ukulinga (A 
and C) and Mbumbulu (B and D) during 2013/14 and 2014/15 growing seasons respectively. Note: 
SS.ST.V refers to the interaction between growing season (SS), planting site (ST) and sorghum 
varieties (V). SS refers to growing season, ST refers to planting site, while V refers variety. Means 
were separated by least significant values (LSD) at P= 0.05. 

 

 

Figure 6: Chlorophyll content index in PAN8816, Macia and Ujiba sorghum varieties planted at 
Ukulinga (A and C) and Mbumbulu (B and D) during 2013/14 and 2014/15 growing seasons 
respectively. Note: SS.ST.V refers to the interaction between growing season (SS), planting site 
(ST) and sorghum varieties (V). SS refers to growing season, ST refers to planting site, while V 
refers variety. Means were separated by least significant values (LSD) at P= 0.05. 
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Figure 7: Stomatal conductance PAN8816, Macia and Ujiba sorghum varieties planted at Ukulinga 
(A) and Mbumbulu (B) during 2014/15 growing season. Note: ST.V refers to the interaction 
between planting site (ST) and sorghum varieties (V). ST refers to planting site, while V refers 
variety. Means were separated by least significant values (LSD) at P= 0.05. 

 

Crop phenology  

Results for phenological development are reported separately for Ukulinga and Mbumbulu, due to 

non–homogeneity of results (Table 3 and 4). At Ukulinga, on average, pre–anthesis phenological 

development occurred earlier for all varieties during 2013/14 compared to 2014/15 planting season 

(Table 3). This was because 2013/14 planting was associated with less rainfall and low soil water 

availability compared to the 2014/15 planting season which could be described as more favorable. 

Under low soil water availability, crop plants will often exhibit a shorter growth cycle as they try 

to escape drought (Mabhaudhi and Modi, 2013). Such drought escape and shortened growth cycle 

is also associated with low leaf number and reduced periods of canopy duration owing to early 

onset of canopy senescence (Mabhaudhi and Modi, 2013).  
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Table 5: Phenological development of three sorghum genotypes planted at Ukulinga during the first and second season. 

Season Genotype 

Time taken to reach phenological stage, in days (growing degree days) 
Crop 

establishment End of Juvenile Floral Initiation Flowering Anthesis Start of grain filling 

Physiological 

maturity 

First 

PAN8816 14.0 (230.7) a 56.0 (883.3) a 63.0 (983.6) a 70.0 (1095.8) a 84.0 (1275.2) a 105.0 (1524.0)  133.0 (1841.7)  

Macia 14.0 (230.7) a 63.0 (983.6) b 70.0 (1095.8) b 77.0 (1194.6) b 91.0 (1360.4) b 112.0 (1609.1)  140.0 (1921.3)  

Ujiba 14.0 (230.7) a 65.3 (1016.0) b 72.3 (1135.9) b 79.3 (1216.3) b 93.3 (1389.5) c 112.0 (1609.1)  133.0 (1841.7)  

Mean 14.0 (230.7) 61.3 (849.6) 67.7 (929.7) 75.3 (1008.8) 89.3 (1157.4) 109.7 (1356.9) 135.3 (1587.6) 

Second 

PAN8816 14.0 (176.1) a 77.0 (1081.0) c 84.0 (1090.1) c 91.0 (1298.1) c 98.0 (1390.3) d 105.0 (1483.2)  126.0 (1811.2)  

Macia 18.7 (257.9) b 91.0 (1298.0) e 98.0 (1390.3) e 105.0 (1483.2) e 112.0 (1584.4) f 119.0 (1703.6)  140.0 (1999.5)  

Ujiba 28.0 (357.1) c 84.0 (1190.1) d 91.0 (1298.1) d 98.0 (1390.3) d 105.0 (1483.2) e 112.0 (1584.4)  126.0 (1811.2)  

Mean 20.0 (246.7) 81.7 (1154.7) 91.0 (1298.1) 98.0 (1390.3) 105.0 (1483.2) 112.0 (1584.4) 131.3 
LSD 3.0 3.0 3.0 3.0 3.0 – – 
CV% 3.9 0.9 0.8 0.7 0.7 0.0 0.0 

Note: Values sharing the same letter are similar at LSD = 0.05.
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Table 6: Phenological development of three sorghum genotypes planted at Mbumbulu during the first and second season. 

Season Genotype 

Time taken to reach phenological stage, in days (growing degree days) 

Crop establishment End of Juvenile Floral Initiation Flowering Anthesis Start of grain filling 

Physiological 

maturity 

First 

PAN8816 14.0 (202.6) 70.0  (1029.4) 70.0  (1029.4) 84.0 (1224.6) 98.0 (1426.5) 112.0 (1592.5) 140.0 (1911.4) 

Macia 14.0 (202.6) 84.0 (1224.6) 84.0 (1224.6) 98.0 (1426.5) 112.0 (1592.5) 112.0 (1592.5) 140.0 (1911.4) 

Ujiba 14.0 (202.6) 84.0 (1224.6) 84.0 (1224.6) 98.0 (1426.5) 112.0 (1592.5) 112.0 (1592.5) 140.0 (1911.4) 

Mean 14.0 (202.6) 79.3 (1163.4) 79.3 (1163.4) 93.3 (1360.4) 107.3 (1539.5) 112.0 (1592.5) 140.0 (1911.4) 

Second 

PAN8816 14.0 (134.6) 84.0 (888.1) 84.0 (888.1) 98.0 (1092.2) 112.0 (1297) 126.0 (1501.2) 140.0 (1696.4) 

Macia 14.0 (134.6) 84.0 (888.1) 84.0 (888.1) 98.0 (1092.2) 112.0 (1297) 126.0 (1501.2) 140.0 (1696.4) 

Ujiba 14.0 (134.6) 84.0 (888.1) 84.0 (888.1) 98.0 (1092.2) 112.0 (1297) 126.0 (1501.2) 140.0 (1696.4) 

Mean 14.0 (134.6) 84.0 (888.1) 84.0 (888.1) 98.0 (1092.2) 112.0 (1297) 126.0 (1501.2) 140.0 (1696.4) 

LSD – - – – – – – 
CV% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Post-anthesis development and physiological maturity were delayed in all varieties in first 

season compared to the second season (Table 3). Low, irregular rainfall, and a consistent decrease 

in soil water content (Figure 2) potentially resulted in increased water stress. Sorghum utilises 

quiescence adaptive mechanisms to allow for extreme drought tolerance (Dugas et al., 2011), 

remaining dormant during drought conditions and only resuming growth once conditions are 

deemed favorable (Assefa et al., 2010). This is an important plant adaptation mechanism that 

ensures crop survival and yield under terminal stress thus almost assuring farmers of ‘some’ yield 

even under adverse conditions when other crops would fail. This could explain post–anthesis delays 

in time to reaching physiological maturity as a response to irregular and low rainfall. Despite early 

pre-anthesis development in PAN8816 compared to Ujiba, they both reached physiological 

maturity at similar times (133 DAS for first season, and 126 DAS during the second season), 

resulting in shorter grain filling period in Ujiba. Longer grain filling period can allow for increases 

in yield (Richards, 2000). Shorter grain filling period assures the crop of ‘some’ yield under water 

stress. Physiological maturity was latest in Macia, this led to extended grain filling period similar 

to that of PAN8816. Stay–green characteristics in Macia and PAN8816 allowed for delayed 

senescence and maturity even under irregular and low rainfall. Ujiba however hastened grain filling 

under water scarcity. 

At Mbumbulu, all varieties reached crop establishment 14 DAS during both planting seasons. 

Pre–anthesis development occurred earlier in PAN8816 compared to Ujiba and Macia during the 

2013/14 planting season (Table 4). However, all varieties reached physiological maturity at 140 

DAS. Phenological development was similar for all varieties during the 2014/15 planting season.  

Genotypic responses in dry biomass accumulation (Figure 8) and final biomass (Table 2) were 

not statistically different, also resulting in insignificant variations with respect to the interaction of 

planting sites, seasons and varieties. Sorghum has exceptional drought tolerance (i.e., ability to 

maintain high water tissue water status) which would have allowed for reduced but maintained 

photosynthesis under water stress (Blum, 2005). All sorghum varieties reduced leaf, number, CCI 

and SC in response to low water availability (Xu et al., 2010) in Mbumbulu.  Mbumbulu dry 

biomass accumulation and final biomass was significantly lower than Ukulinga as a result, which 

highlights sorghum’s adaptive mechanisms under conditions of low soil water availability. This 

also supported by its deep rooting which allows for enhance soil water capture. Biomass 

partitioning can be sensitive to water availability through phenological plasticity, manipulation of 
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harvest index, and physiological adaption to water stress. This results in yield and biomass 

differences under different water availability conditions. 

 

 

Figure 8: Destructively sampled dry aboveground biomass of PAN8816, Macia and Ujiba sorghum 
varieties planted at Ukulinga (A and C) and Mbumbulu (B and D) during 2013/14 and 2014/15 
growing seasons respectively. Note: SS.ST.V refers to the interaction between growing season 
(SS), planting site (ST) and sorghum varieties (V). SS refers to growing season, ST refers to 
planting site, while V refers variety. Means were separated by least significant values (LSD) at P= 
0.05.  

 

Yield, water use and yield related components 

Total panicle yield did not show significant interactions between sites, seasons and varieties. 

Panicle yield reduced in response to low water availability, resulting in significantly low panicle 

yield in Mbumbulu than Ukulinga site. Relatively low panicle yield was achieved in Ujiba landrace 

(2511.11 kg.ha-1) compared to PAN8816 (3004.44 kg.ha-1) and Macia (3515.56 kg.ha-1), which 

highlights the advantage of breeding attempts in hybrids and OPVs. This was attributed to hastened 

grain filling stage in Ujiba in response to soil plant available water. Macia and PAN8816 seem to 

employ tolerance strategies towards post–anthesis water stress, whilst Ujiba employed escape 

strategies to ensure yield production under water stress.   

Sorghum water requirements range from 450-650 mm (FAO, 1991; Hensley et al., 2000; Jewitt 

et al., 2009). Measured crop water use was below reported water requirements for all seasons, 

varieties and planting sites (Table 2). This was directly linked to low rainfall (Table 2), implying 

that water was limiting to crop production. Under sub–tropical, rainfed agriculture, optimal 

sorghum WUE is reported to be 12.4 – 13.4 kg ha-1 mm-1 (Maman et al., 2003). In this study, sub-

optimal plant water availability resulted in sub–optimal WUE. On the contrary, Abdel-Montagally 
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(2010) found maximal WUE under sub–optimal water availability due to sustained biomass 

production under significantly low plant available water. Findings of the present study are in 

agreement with Tres et al., (2010), who reported low WUE under sub-optimal water availability in 

wheat, rice, maize and sorghum. Differences in genotypes used, duration and extent of water 

scarcity accounted for disagreement of results in this study with those of Abdel-Montagally (2010). 

Total and panicle WUE were respectively lower (P<0.05) at Mbumbulu (14.93 and 7.49 kg ha-1 

mm-1) relative to Ukulinga (21.49 and 11.01 kg ha-1 mm-1). Macia had higher (P>0.05) WUE (10.51 

kg ha-1 mm-1) relative to PAN8816 (9.34 kg ha-1 mm-1) and Ujiba (7.90 kg ha-1 mm-1), respectively. 

Smallholder farmers can afford to continue cultivating Ujiba as the yield disadvantage is minimal 

under rainfed agriculture.  Results were inconclusive towards yield and WUE genotypic responses 

at optimal water availability. This would assist genotype selection under a range of water 

availability. 

 

CONCLUSION 

This study showed significant differences between genotypes as well as environments. Mbumbulu 

was characterized by low soil water availability. This resulted in significantly (P<0.05) low plant 

growth [leaf number, plant height and canopy cover (CC)] and physiology [chlorophyll content 

index (CCI) and stomatal conductance (SC)] relative to Ukulinga. Biomass and yield were also low 

under low soil water availability (Mbumbulu) relative to Ukulinga. Sorghum phenology was 

hastened in Ujiba and PAN8816 under low soil water availability. Stay–green characteristics in 

Macia delayed phenological development. Macia and PAN8816 varieties demonstrated dormancy 

in terms of delaying grain filling until conditions were favorable. Consequently, total and panicle 

WUE were respectively lower at Mbumbulu (14.93 and 7.49 kg ha-1 mm-1) relative to Ukulinga 

(21.49 and 11.01 kg ha-1 mm-1). Despite insignificant genotypic differences in WUE, Macia had 

higher (P>0.05) panicle WUE (10.51 kg ha-1 mm-1) relative to PAN8816 (9.34 kg ha-1 mm-1) and 

Ujiba (7.90 kg ha-1 mm-1), respectively. Under low soil water availability, sorghum showed 

adaptation through leaf number, CCI, SC, and phenological plasticity. Lack of significant 

genotypic differences in yield and WUE efficiency highlights that all three varieties are equally 

suitable for production under sub–optimal conditions. Studies using multiple rainfed agro–

ecologies of SSA are required to conclude on water use, yield and WUE of sorghum varieties across 

SSA. Long term weather data and analysis of rainfall distribution in relation to crop water use 

requirements at different growth stages would be valuable for knowledge of how water availability 
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affects yield and WUE in rainfed sorghum. Due to feasibility constraints, the use of crop models 

to extrapolate water use and yield potential of sorghum genotypes under rainfed agriculture is 

imperative. 
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ABSTRACT 

It is vital to understand how rainfall onset, amount and distribution between planting dates affect 

sorghum yield and water use in order to aid planting date and cultivar selection. This study 

investigated morphological, physiological, phenological, yield and water use characteristics of 

different sorghum genotypes in response to different planting dates. Four genotypes [PAN8816 

(hybrid), Macia (open–pollinated variety, OPV), Ujiba and IsiZulu (both landraces) were planted 

at three planting dates (early, optimal, and late) in a split–plot design, with planting dates as the 

major factor. Low soil water at the optimal planting date was associated with delayed crop 

establishment and low final emergence. Sorghum genotypes adapted to low and irregular rainfall 

at the late planting date through low leaf number, canopy cover, chlorophyll content index and 

stomatal conductance, and hastening phenological development. This resulted in low biomass and 

yield. Landraces exhibited panicle yield stability across planting dates, whilst OPV and hybrid 

genotypes significantly reduced panicle yield in response to low water availability when planted 

late. This resulted in significantly higher yield in landraces compared to OPV and hybrid genotypes 

at the late planting date. Biomass and yield water use efficiency (WUE) were highest at optimal 

planting (30.5 and 12.2 kg ha-1 mm-1), relative to late (23.1 and 11.8 kg ha-1 mm-1), and early 

planting dates (25.2 and 10.9 kg ha-1 mm-1). For the hybrid and OPV, biomass and yield WUE 

decreased in response to low soil water content, and irregular and disproportionate rainfall 

experienced during the late planting date. By contrast, biomass and yield WUE for the landraces 

improved with decreasing rainfall. Hybrids are recommended when planting under low soil water 

availability to maximize crop stand. Cultivation of OPVs is recommended under optimal 

conditions. Landraces are recommended for low rainfall areas with highly variable rainfall. 

Abbreviations: SSA (sub–Saharan Africa); OPV (open–pollinated variety); CC (canopy cover); 

CCI (chlorophyll content index); SC (stomatal conductance); WUE (water use efficiency), HI 

(harvest index); TAW (total available water); and SWC (soil water content).  

Keywords: planting dates, water use efficiency, rainfall variability, water use, cultivar selection. 
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INTRODUCTION 

Sub-optimal availability of water for unrestricted plant growth and transpiration, i.e., drought, is a 

major limitation to agricultural production (Delmer, 2005). Rainfall can be erratic and irregular in 

sub–Saharan Africa (Chauvin et al., 2012) where climate variability mainly impacts resource-poor 

farmers, whose livelihoods depend mainly on rainfed agriculture (Tadross et al., 2005). The 

inability of this group of farmers to adapt to changing or variable weather patterns makes them 

increasingly vulnerable and prone to repeated episodes of crop failure and food insecurity. For 

farmers relying on rainfed agriculture, the ability to adapt to changing weather patterns on a season-

to-season basis is thus a prerequisite to successful crop production. There are various strategic and 

tactical decisions that can allow for farmers to adapt to changing and variable weather patterns. On 

a tactical level, these include crop or cultivar choice and planting date selection.  

Traditionally, farmers use the onset of the rainy season as the criteria for setting planting dates. 

Multiple planting dates can occur in a single rainy season depending on onset and longevity of 

rainfall season, and crop growing period. The instability in rainfed production is largely credited 

to availability of rainwater, which itself shows wide variability in both total amounts and seasonal 

quality (Rockström and Barron, 2007). False planting dates can result in crop failure, usually 

requiring replanting or reduced yield as a consequence of unmet water requirements. Crops adapt 

to diverse environments through considerable plasticity of phenology, morphology and physiology, 

the main determinant of which is rainfall (Udungwu and Summerfield, 1985). One of the ways of 

manipulating the climatic factor is adequate knowledge of optimal planting dates so as to accurately 

synchronize rainfall incidences with the agricultural calendar of crops (Adetayo et al., 2008).     

Sorghum is an ideal crop with high tolerance to many types of stresses, including temperature, 

water and salt stresses (Ejeta and Knoll, 2007). The Department of Agriculture and Forestry 

(DAFF, 2010) recommends optimal planting time of sorghum from start of November until end of 

December in South Africa, with dates falling on either side of the recommended times regarded as 

early and late planting, respectively. The first sowing date can be defined as the first rainfall event 

capable of supporting germination (Keatinge et al., 1995). Delays in onset of rainfall, drought 

seasons, unpredictable periodic dry spells and lengthened rainfall season have shifted traditionally 

recommended sorghum planting dates. Knowledge of cultivar performance under different planting 

dates in SSA is lacking for mitigation and production plasticity under different planting date 

scenarios. Characterising crop water use responses for sorghum as an alternative staple cereal crop 

in dryland farming under different planting dates therefore has positive implications for food 
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security. This study investigated morphological, physiological, phenological, yield and water use 

characteristics of different sorghum genotypes in response to different planting dates under dryland 

farming. It was hypothesised that crop water use responses of different sorghum genotypes would 

not differ given different planting dates. 

 

MATERIALS AND METHODS 

Plant Material 

Four genotypes of sorghum were used, namely PAN8816, Macia, Ujiba and IsiZulu (imbewu 

yesiZulu). PAN8816 was sourced from Pannar Seeds. It is a bronze–grained, medium to late 

maturing, low–tannin hybrid renowned for leaf disease and head smut resistance. Flowering occurs 

approximately 71 days after sowing. Macia is an early to medium maturing (60–65 days to floral 

initiation and 115–120 days to maturity), semi dwarf (1.3–1.5 m tall with thick stem), low–tannin 

open–pollinated variety. It has good drought tolerance (250–750 mm rainfall range during the 

growing season), with stay green characteristics extending beyond harvest. Yield potential is 3–6 t 

ha-1. Ujiba is a reddish-brown seeded, tall growing (>1.5 m), high–tannin landrace genotype 

sourced locally from smallholder farmers in Tugela Ferry (28°44'S, 30°27'E). IsiZulu is a dark-

brown seeded, tall growing (> 1.5 m), high–tannin landrace genotype sourced locally from 

smallholder farmers at Nkandla (28°50'S, 31°06'E). For landraces, phenological, morphological 

and physiological information was lacking. 

 

Site Description 

Field trials were planted at Ukulinga Research Farm (30°24'S, 29°24'E, 805 m a.s.l) on 03 

November 2014, 17 November 2014, and 26 January 2015. The farm is situated in Mkhondeni, in 

Pietermaritzburg in the subtropical hinterland of KwaZulu-Natal province. Ukulinga represents a 

semi-arid environment and is characterised by clay-loam soils (USDA taxonomic system). Rain 

falls mostly in summer, between September and April. Rainfall distribution varies during the 

growing season (Swemmer et al., 2007) with the bulk of rain falling in November, December and 

early January. Occasionally light to moderate frost occurs in winter (May – July).  
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Trial Layout and Design 

The experimental design was a split–plot design with planting date as the main factor and 

genotypes as the sub–factor laid out in randomised complete blocks with three replicates. The 

planting (03 November 2014, 17 November 2014, and 26 January 2015) represented early, optimal 

and late planting dates for sorghum. Early planting reflected onset of rainfall season at Ukulinga. 

Optimal planting date was based on DAFF (2010) recommendations and historical weather data at 

Ukulinga. Late planting date represented latest planting from which seasonal rainfall can sustain 

120–140 day growing season. The trials comprised four sorghum cultivars, namely: PAN8816, 

Macia, Ujiba and IsiZulu. Main plot size was 310 m2. Sub–plot size was 6 m * 4.5 m (18 m2), with 

1 m interplot spacing between the plots. Inter-row spacing was 0.75 m with 0.30 m intra-row 

spacing, amounting to 21 plants per row and 63 experimental plants per plot. Each individual plot 

had seven rows with the three inner most rows as the experimental plants, and the remaining rows 

reserved for destructive sampling. Planting rows were dug ≈25 mm deep, seeds were sown closely 

and thinned to the desired crop density after establishment. 

 

Data Collection 

Atmospheric data 

Daily data for meteorological parameters was obtained from an on–station (within 100 m radius) 

automatic weather station courtesy of the Agricultural Research Council – Institute for Soil, 

Climate and Water (ARC–ISCW). Data collected included minimum and maximum temperature, 

rainfall, maximum and minimum relative humidity, wind speed and direction, solar radiation and 

reference evapotranspiration.  

Soil characterisation 

The soil textural class was described as clay (USDA Taxonomic System). Soil physical and 

hydraulic properties were obtained from classification and characterisation of experimental site 

soils by Mabhaudhi (2012). These included volumetric water content at field capacity (FC), 

permanent wilting point (PWP), and saturation (SAT), as well as saturated hydraulic conductivity 

(Ksat), total available water (TAW) and soil thickness (Table 1).  

  



64 
 

Table 1: Soil physical and hydraulic properties from Ukulinga experimental site (Mabhaudhi, 
2012). 

Texture 

Bulk 

density 

Permanent 

wilting point 

Field 

capacity 

Total available 

water 
Saturation 

Saturated 

hydraulic 

conductivity 

(g.m-3) –––––––––––––––––––––––––(mm.m-1)––––––––––––––––––––– (mm.m-1.day-1) 
Clay 1.20 283.00 406.00 123.00 481.00 25.00 

 

Crop data 

Seedling emergence was considered as coleoptile protrusion above soil surface. Weekly emergence 

was scored from sowing until establishment (90% emergence). Plant height was measured weekly 

from establishment using a tape measure as distance from soil surface to the tip of the youngest 

developing leaf (before floral initiation) or tip of the growing panicle thereafter. Leaf number was 

counted for fully expanded and photosynthetically active (50% green leaf area) leaves from 

establishment (Mabhaudhi and Modi, 2013). A fully formed leaf was defined as when the leaf 

collar was visible without dissecting the plant. The flag-leaf was counted as the first leaf upon full 

formation. Canopy cover (CC) was measured using the LAI2200 canopy analyser (Li–Cor®, USA). 

Values describing the diffuse non-intercepted radiation (DIFN) which is the amount of light visible 

below were taken and converted to percentage canopy cover as described by Mabhaudhi et al. 

(2014):  

CC = (1 – DIFN) x 100%       Equation 7 

Chlorophyll content index (CCI) was measured using a SPAD-502 Plus chlorophyll meter 

(Konica Minolta, Osaka, Japan) on the adaxial surface of the first fully expanded, fully exposed 

leaf weekly at midday. Stomatal conductance (SC) was measured weekly at midday using a SC-1 

leaf porometer (Decagon Devices®, USA) from the abaxial surface of the first fully expanded, 

fully exposed leaf.  

Yield and yield related parameters 

Aboveground dry mass was recorded as the average of two destructively sampled plants per plot. 

Biomass was recorded as sorghum dry shoot and fruit mass (aboveground marketable biomass) 

weekly after crop establishment (90% emergence). Starting at flowering (complete panicle 

exposure), panicle mass and total above ground above biomass were weighed separately to enable 

calculations of build-up of harvest index (HI). After which, harvest index was calculated as follows: 
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HI = Y / B        Equation 8 

where: Y = panicle mass, and 

 B = total above ground biomass 

Total biomass, yield and HI were measured at physiological maturity. Thousand seed mass was 

measured from a random sample of a thousand, dry (<12.5% moisture content) seeds per genotype 

at harvest.    

Phenology 

Time taken to reach a phenological stage was recorded in calendar days and later converted to 

thermal time (growing degree days, GDD) using method two, as described by McMaster and 

Wilhelm (1997):  

GDD = [(Tmax + Tmin) / 2] - Tbase     Equation 9 

where: Tmax = maximum daily temperature,  

Tmin = minimum daily temperature, and  

Tbase = base temperature below which sorghum growth ceases set at 7°C.  

Time taken to reach a phenological stage was observed as time taken for 50% of experimental 

plant population to exhibit stage diagnostic signals. End of juvenile phase was calculated as the 

difference between sowing time and flag leaf formation. Floral initiation was marked by a bulging 

of the plant stem. Flowering was marked by panicle bloom. Full pollen shed by panicle marked 

anthesis. Duration of flowering was calculated as the time difference from flowering and anthesis. 

Formation of soft, milky grains after anthesis was observed as start of grain filling. Appearance of 

a dark spot on the opposite side of the kernel from the embryo signals completion of dry matter 

accumulation, hence physiological maturity. 

 

Crop Water Use 

Soil water content (SWC) was measured every week using a PR2/6 profile probe (Delta–T, UK). 

Weekly measurements of SWC were then used to compute a soil water balance (Zhao et al., 2004) 

as follows: 

ETa = I + P + C – D – R ± ΔSWC     Equation 10 

where: I = irrigation added (mm),  

P = rainfall (mm),  
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C = capillary rise (mm),  

D = drainage (mm),  

R = run-off, and  

ΔSWC = change in soil water content. 

Since trials were wholly rainfed, there was no irrigation (I) to be considered. Capillary rise (C) 

and drainage (D) were considered negligible (Ridolfi et al., 2008; Gregory and Northcliff, 2012). 

Runoff (R) was also considered negligible in the soil water balance equation, due to sorghum rows 

orientated across the slope limiting runoff to negligible proportions. Therefore, Equation 4 was 

simplified to: 

ET = P – ΔSWC       Equation 11 

Water-use efficiency refers to the ratio of water used in plant metabolism to water lost by the 

plant through transpiration and soil evaporation (evapotranspiration). Water use efficiency was 

calculated for crops at physiological maturity using the following formulae (Kuslu et al., 2010):  

WUE = B / ET       Equation 12 

where: B = dry aboveground biomass (kg ha-1), and  

ET = actual field evapotranspiration (mm) obtained from Equation 5. 

Growth stages (initial, development and mid–season) were defined according to FAO (1986), 

and were used to calculate cumulative rainfall received during each stage. Rainfall received for the 

late season was not considered as crop development was observed from sowing to physiological 

maturity instead of until harvest maturity. 

 

Agronomic Practices 

Soil samples were collected and analysed for fertility before land preparation. Before planting, 

fallow land was mechanically ploughed, disked and rotovated. A pre-emergence herbicide, Round-

up® (10 mℓ per 1ℓ of water) of which glyphosphate is the active ingredient, was applied to control 

weeds two weeks before planting. A deficit of fertilizer requirements (Smith, 2006) as per soil 

analysis observation prior to planting was applied using Gromor Accelerator® (30 g kg-1 N, 15 g 

kg-1 P and 15 g kg-1 K), a slow release organic fertilizer at 14 days after sowing (DAS). Planting 

rows were opened by hand 25 mm deep and seeds were hand-sown in the ground. Planting was 

conducted by drilling sorghum seeds. Thereafter, at crop establishment (14 DAS), seedlings were 
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thinned to the required spacing. Scouting for pests and diseases was done weekly. Cypermethrin® 

(15 mℓ per 10 ℓ knapsack) was applied to control insect pests one month after planting. Weeding 

was done using hand-hoes at frequent intervals. 

 

Data Analyses 

Recorded crop parameters were subjected to analyses of variance (ANOVA) using GenStat® 16th 

edition (VSN International, UK). Means were separated using least significant differences (LSD) 

at a probability level of 5%. Multiple comparisons between means were conducted using Fisher’s 

protected LSDs. Data analysis was not separated for each date but analysed as seasonal data. 

 

RESULTS AND DISCUSSION 

Crop responses to rainfall, temperature and evapotranspiration  

In South Africa, Du Plesis (2008) reported that, for sorghum, the lower temperature threshold limit 

was 7°C while the upper temperature threshold limit for sorghum grown in semi-arid tropics has 

been reported as 38°C (Huda et al., 1984). Hence 38°C and 7°C upper and lower temperature 

thresholds, respectively, were adopted for experimental genotypes in this study. Minimum and 

maximum temperatures neither exceed nor went below sorghum growing temperature thresholds 

during the growing season for the early and optimal planting dates. This implies that crops did not 

experience heat or cold stress (Figure 1). This was confirmed by lack of heat stress symptoms such 

as scorching of leaves and stems, premature leaf abscission and senescence, shoot growth inhibition 

or fruit damage (Vollenweider and Günthardt-Goerg, 2005). For late planted sorghum, minimum 

temperatures dipped below minimum thresholds at 130 DAS (Figure 1). However, such cold stress 

coincided with physiological maturity in sorghum, making the effect on plant growth negligible. 

Temperatures were relatively low for late planting compared to early and optimal.    



68 
 

 

Figure 1: Daily reference evapotranspiration (ETo), minimum temperature (Tn), maximum 

temperature (Tx), and rainfall during the growing seasons of early (A), mid (B), and late (C) planted 

sorghum genotypes. 

  

Early planted sorghum received 407.09 – 418.05 mm, optimal planting received 389.32 – 

401.25 mm while late planted sorghum received 266.63 – 267.13 mm of rainfall (Table 2). The 

rainfall ranges depict total rainfall as received by different genotypes due to variations in time to 

physiological maturity. For all planting dates, recorded rainfall was less than sorghum water 

requirement. The observed onset of rainfall (November) occurred later relative to suggestions by 

historical data (September). This highlighted climate variability and vulnerability of rainfed 

agriculture in the region. In this regard, climate forecasts rather than historical data should be 

recommended to formulate planting dates to synchronize rainfall with growing period. Use of 

DAFF (2010) guidelines could be misleading as they lack sensitivity to rainfall variability between 

seasons and assume homogeneity of bio–resource groups (BRGs). The use of crop models is 

advantageous in forecasting planting dates across BRGs in SSA, however availability of soil and 

climate data for all BRGs remains a challenge to this effect.  
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Table 2: Water use efficiency (WUE) and water use characteristics at physiological maturity, and 
seed mass at harvest of four sorghum genotypes across three planting dates.  

Planting 
date Genotype 

Rainfall 
received 

Water 
use 

Total 
yield 

Panicle 
yield 

Total 
WUE 

Panicle 
WUE Harvest 

index 

1000 
seed 
mass 

–––––(mm)–––– ––––––(kg ha-1)––––– ––(kg ha-1 mm-1)–– (g) 

Early 

PAN8816 407.09 390.5 9933.33a 4822.22a 25.437a 12.349a 0.485a 42.47g 

Macia 418.05 395.9 10613.33a 5791.11ab 26.808a 14.628ab 0.546ab 35.13e 

Ujiba 418.05 395.9 8884.44a 3688.89bc 22.441a 9.318bc 0.415bc 31.13d 

IsiZulu 418.05 395.9 10400.00a 2915.56c 26.269a 7.364c 0.280c 29.07c 

Mean 415.31 394.55 9957.78 4304.44 25.239 10.915 0.432 34.45 

O
ptim

al 

PAN8816 389.32 364.46 8946.67a 4524.44a 24.548a 12.414a 0.506a 38.07f 

Macia 401.25 389.56 12031.11a 6160.00a 30.884a 15.813a 0.512a 35.33e 

Ujiba 389.32 364.46 9008.89ab 3773.33a 24.718ab 10.353a 0.419a 28.20bc 

IsiZulu 393.12 364.66 15262.22b 3697.78b 41.853b 10.140b 0.242b 28.13bc 

Mean 393.25 370.79 11312.22 4538.89 30.501 12.180 0.420 34.43 

Late 

PAN8816 266.63 237.61 4533.33a 2462.22a 19.079a 10.362a 0.543a 31.27d 

Macia 266.88 237.86 5746.67a 2960.00a 24.185a 12.457a 0.515a 26.83ab 

Ujiba 266.63 237.61 6293.33a 3173.33a 26.486a 13.355a 0.504a 25.40a 

IsiZulu 266.63 237.61 5417.78a 2613.33a 22.801a 10.998a 0.482a 26.17a 

Mean 266.69 237.61 5497.78 2802.22 23.138 11.794 0.511 27.42 

LSD 185.29 79.47 2.834 0.977 0.028 1.92 

%CV 12.5 12.1 8.7 6.9 7.4 3.6 
a Values sharing similar alphabets represent statistically yields and water use characteristics, whilst different alphabets 
represent significant different yields and water use characteristics across interaction of planting dates and genotypes. 
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Table 3: Rainfall received at three key developmental stages when planted at three planting dates. 

Planting dates Rainfall (mm) received during each growth stage Total 
Initial Development Mid–season 

Early 79.47 151.11 187.43 418.05 
Optimal 78.71 173.20 174.46 401.25 
Late 204.19 40.86 22.08 267.13 
‡Crop co–efficient (Kc) 0.45 0.83 1.18 2.46 

‡Obtained from Shenkut et al. (2013). 

 

Combining the seasonal rainfall prediction with crop water requirement and soil water information 

is the core component to successful agriculture. Sorghum water requirement ranges from 450–650 

mm (Hensley et al., 2000; Jewitt et al., 2009) for optimal yield, assuming a growing season of 120–

130 days. Even under sub–optimal seasonal rainfall, effective crop water use is attained when 

rainfall distribution between stages is proportionate with crop coefficient (Kc) for water 

requirements. The synergy between rainfall received per growth stage and Kc was least 

proportionate (Table 3) for late planted sorghum, where the least rainfall received was during mid–

season stage when crop water requirements are maximum and most rain fell during initiation stage 

when crop water requirements are low. On the contrary, early planted sorghum received rainfall 

proportionate to Kc at different growth stages. 

 

Final Emergence and Crop Establishment  

The interaction between planting date and genotype was highly significant (P<0.001) with respect 

to final emergence (Table 4; Figure 3). Full emergence (100%) was achieved for all genotypes 

when sorghum was planted late. Consequently, crop establishment was fastest for the late planting 

date. Early establishment and high seedling emergence for all genotypes for late planted sorghum 

were attributed to high cumulative rainfall 7 days after sowing and high initial soil water content 

at sowing. At least 25 mm of rainfall should fall within a 7 day period after sowing (Raes et al., 

2004; Mhizha et al., 2014) for early and optimal emergence. Final emergence was significantly low 

for Macia (57.6%), whilst other genotypes attained full establishment in response to early planting. 

Low initial SWC at sowing (Figure 2) resulted in delayed crop establishment for early planted 

sorghum for all genotypes compared to optimal and late planting dates. For all three planting dates, 

PAN8816 achieved full emergence, although there were variations in times to emergence. This was 

attributed to high seedling vigour in hybrids compared to landraces and OPVs. Emergence was 
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shown to be significantly (P<0.001) slower and lower for the optimal planting date (Table 4); this 

trend was clearer for Macia (31.2% emergence 21 DAS) relative to other sorghum genotypes 

(Figure 3).  

 

Table 4: Time taken for four sorghum genotypes planted at three different planting dates to reach 
a particular phenological stage. 

Stage Planting 
date 

Time taken to reach phenological stage in days (growing degree days) 
LSD %cv Ujiba Macia PAN8816 IsiZulu Mean 

C
E 

Early 21 (257.1)c 21 (257.1)c 14 (173.6)b 14 (173.6)b 17.5 
1.98 2.1 Optimal 28 (357.1)d 21 (257.9)c 14 (176.1)a 28 (357.1)d 22.2 

Late 7  (107)a 14 (215.9)b 7 (107)a 7 (107)a 8.8 

EJ 

Early 91 (1246.0)e 91 (1246.0)e 77 (1048.1)c 91 (1246.0)e 87.5 
1.98 0.4 Optimal 84 (1190.1)d 91 (1298.1)e 77 (1081.0)c 91 (1298.1)e 82.3 

Late 63 (933.7) a 70 (1025.3)b 63 (933.7)a 63 (933.7)a 67.7 

FI 

Early 98 (1355.2)b 98 (1355.2)b 84 (1158.9)a 98 (1355.2)b 94.5 
2.03 0.6 Optimal 91 (1298.1)b 98 (1390.3)c 84 (1190.1)a 98 (1390.3)c 92.8 

Late 70 (1025.3)a 77 (1104.4)b 70 (1025.3)a 70 (1025.3)a 75.3 

F 

Early 105 (1463.1)e 105 (1463.1)e 91 (1246.3)e 105 (1463.1)e 101.5 
1.98 0.3 Optimal 98 (1390.3)d 105 (1483.2)c 91 (1298.1)c 105 (1483.2)c 99.8 

Late 84 (1170.3)b 84 (1170.3)b 77 (1104.4)a 84 (1170.3)b 82.3 

FD
 

Early 7 (92.4)a 7 (92.4)a 7 (108.9)a 7 (92.4)a 7 
– – Optimal 7 (92.9)a 7 (101.2)a 7 (92.2)a 7 (101.2)a 7 

Late 7 (85.3)a 7 (85.3)a 7 (65.9)a 7 (85.3)a 7 

A
 

Early 112 (1555.4)b 112 (1555.4)b 98 (1355.2)b 112 (1555.5)b 108.5 
2.00 0.6 Optimal 105 (1483.2)b 112 (1584.4)b 98 (1390.3)b 112 (1584.4)b 106.8 

Late 91 (1256.2)b 91 (1256.2)b 84 (1170.3)a 91 (1256.2)b 89.3 

G
F 

Early 119 (1648.2)b 119 (1648.2)b 105 (1463.1)a 119 (1648.2)b 115.5 
1.98 0.6 Optimal 112 (1584.4)b 119 (1703.6)c 105 (1483.2)a 119 (1703.6)c 113.8 

Late 98 (1351.2)b 98 (1351.2)b 91 (1256.2)a 98 (1351.2)b 96.3 

PM
 

Early 140 (1976.3)b 140 (1976.3)b 133 (1868.6)a 140 (1976.3)b 138.3 
1.76 0.4 Optimal 126 (1811.2)a 140 (1999.5)c 126 (1811.2)a 133 (1907.9)b 131.3 

Late 126 (1697.9)a 133 (1756.5)c 126 (1697.9)a 126 (1697.9)b 127.8 
CE (crop establishment); EJ (end of juvenile); FI (floral initiation); F (flowering); FD (flowering duration); A 
(anthesis); GF (start of grain filling); PM (physiological maturity). 
 a Values sharing similar alphabets represent statistically yields and water use characteristics, whilst different alphabets 
represent significant different yields and water use characteristics at each planting date. 

 



72 
 

 

Figure 2: Soil hydraulic properties over time during the growing seasons of early, optimal, and 
late planted sorghum. Note: FC = Field capacity; PWP = Permanent wilting point; SWC = Soil 
water content; TAW = total available water; SAT = saturation point. 

 

 

Figure 3: Final percentage emergence of sorghum genotypes (A) PAN8816, (B) Macia, (C) Ujiba, 
and (D) IsiZulu] planted at Ukulinga on three planting dates. Note: PD*V refers to the interaction 
between planting dates (PD) and sorghum genotypes (V), respectively. Values sharing the same 
letter are similar at LSD (PD*V) = 0.05. 

 

Crop Morphology and Physiology  

Late planted sorghum genotypes exhibited low (P<0.001) leaf number, CCI and SC (5.8; 47.22; 

273.3 mmol.m-2.s-1) compared to early (7.7; 50.57; 298.7 mmol.m-2.s-1) and optimal (7.3; 51.74; 

323.0 mmol.m-2.s-1) planting respectively. This was due to low SWC and TAW experienced during 

the late planting date (Saddam et al., 2014). This was more pronounced post floral initiation due to 

low and irregular rainfall during mid–season stage. Leaf number and CCI were statistically similar 

between early and optimal planting dates (Figure 4). This was attributed to similarities in climate 

due to closeness between the two planting dates, which highlights the need to use area specific 

climate forecasting instead of historical data and countrywide recommendations for planting date 

selections. Sorghum genotypes maintained statistically similar (P>0.05) CCI (Figure 7) and 
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stomatal conductance (Figure 8) across planting dates. However, leaf number varied significantly 

among genotypes (P<0.001; Figure 4). Highest leaf number was observed for PAN8816 (7.4) 

followed by Macia (7.2). Leaf numbers were lowest and statistically similar for IsiZulu (6.6) and 

Ujiba (6.5) landraces. Leaf number variations across genotypes were attributed to genotypic 

differences. Chlorophyll content index increased and plateaued after floral initiation with peak CCI 

measurements ranging between 50 and 61; these results were similar to observations by van 

Oosterom et al. (2010). Stomatal conductance in landraces was less sensitive to differences in TAW 

compared to the OPV and hybrid genotypes. Results of leaf number, CCI and SC suggested that 

sorghum was subjected to significant water stress, especially when planted late. This was consistent 

with observations of soil water content (Figure 2) and rainfall (Table 2) across the different sites 

which showed that soil water availability and rainfall were limiting during the late planting date. 

Growth indicators of plant height and leaf number increased gradually until flowering and end 

of vegetative stage, respectively. Increase in plant height in sorghum occurred mostly during the 

vegetative stage, and full panicle formation coincided with attainment of maximum plant height 

(Figure 5). Planting dates and varietal differences significantly (P<0.05) affected plant height. Late 

planted sorghum grew tallest for all genotypes, albeit with fewer leaves relative to the other 

planting dates. An exception was IsiZulu landrace, where plant height reduced at late planting 

resulting in decreased biomass and marked improved HI. Longer but thinner shoots were associated 

with a lower biomass accumulation under severe water stress for the late planting date. This 

suggests that plant height, stem diameter and leaf number form key adaptations of shoot growth to 

water stress in sorghum.  

Canopy cover largely relies on crop density and plant leaf material. Increases in CC limit water 

loss from soil by evaporation, whilst improving water portion allocated to crop biomass production 

via transpiration (Mabhaudhi et al., 2013). Variations in measured CC were significant for both 

planting dates (P<0.001) and genotypes (P<0.05). Canopy cover for the early planted crop 

benefitted from good crop stand and high leaf number. Low CC for the late planted crop was 

associated with low leaf number. Canopy cover was lowest at optimal planting date due to low 

crop stand. Decreased crop stand in landrace and OPV genotypes and delayed emergence 

contributed mostly to observed low CC (Figure 7). It may also be that, the low canopy cover at the 

late planting date allowed for more soil evaporation to occur. This may have inadvertently 

worsened the situation of low SWC and TAW as less soil water was available for productive water 

loss (transpiration). 
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Figure 4: Leaf number progressions observed after establishment in PAN8816 (A), Macia (B), 

Ujiba (C) and IsiZulu (D) sorghum genotypes planted on different planting dates. Note: PD*V 

refers to the interaction between planting dates (PD) and sorghum genotypes (V), respectively. 

 

 

Figure 5: Plant height observed after establishment in PAN8816 (A), Macia (B), Ujiba (C) and 

IsiZulu (D) sorghum genotypes planted on different planting dates. Note: PD*V refers to the 

interaction between planting dates (PD) and sorghum genotypes (V), respectively. 

  



75 
 

 

Figure 6: Percent canopy cover in PAN8816 (A), Macia (B), Ujiba (C) and IsiZulu (D) sorghum 

genotypes planted on different planting dates. Note: PD*V refers to the interaction between 

planting dates (PD) and sorghum genotypes (V), respectively. 

 

 

Figure 7: Chlorophyll content index in PAN8816 (A), Macia (B), Ujiba (C) and IsiZulu (D) 

sorghum genotypes planted on different planting dates from establishment until maturity. Note: 

PD*V refers to the interaction between planting dates (PD) and sorghum genotypes (V), 

respectively. 

 

 

Figure 8: Stomatal conductance in PAN8816 (A), Macia (B), Ujiba (C) and IsiZulu (D) sorghum 
genotypes planted on different planting dates from establishment until maturity. Note: PD*V refers 
to the interaction between planting dates (PD) and sorghum genotypes (V), respectively. 
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Phenological Development and Yield  

Early planting generally resulted in delayed phenological development and maturity, resulting in a 

longer (Table 4) but slower grain filling duration as depicted by harvest index accumulation. 

Hybrid and landrace genotypes had a significantly (P<0.05) shorter growing season relative to the 

OPV for all planting dates. It could be argued that Macia employs quiescence strategies to a greater 

degree relative to the hybrid and landrace genotypes to adapt to irregular rainfall and water scarcity, 

hence delays in time to physiological maturity. Genotypes that employ quiescence are expected to 

delay rather than hasten physiological maturity under severe water stress, and low, irregular 

rainfall. However, observed shortening of growing cycle for late planting date under severe water 

stress for the late planting date suggests that Macia is a late maturing genotype. Which explains 

consistently longer growing cycle in Macia compared to the hybrid and landrace genotypes. 

Phenological development hastened for all genotypes under late planting in order to escape both 

pre– and post–anthesis water stress. This resulted in early flowering, decreased panicle mass and 

total biomass at late planting. Water stress potentially resulted in decreased head size at floral 

initiation, flower abortion at flowering, and few assimilates for grain filling. This resulted in 

reduced seed mass and panicle yield in late planted sorghum (Table 2). Early planted sorghum had 

significantly (P<0.001) higher seed mass (34.5 g) compared to optimal (32.4 g) and late (27.4). 

Seed mass was linked to water availability at mid–season stage (Table 3), which directly affected 

photosynthesis and yield accumulation at grain filling stage.  

Tall growing genotypes consistently had high dry biomass accumulation (Figure 9) and, in 

comparison, small source to sink biomass partitioning (Figure 10), resulting in lower harvest index 

(Figure 11). In general, build–up of harvest index (Figure 11) and final harvest index (Table 2) 

improved with decreasing rainfall, reinforcing sorghum as an exemplar drought–tolerant cereal for 

production in arid and semi–arid regions. The improvement in HI under stress highlights that water 

stress has a positive effect on HI of sorghum. This implies that, when subjected to stress, the crop 

will partition more of its assimilates to the yield component which is a desirable characteristic 

under rainfed conditions. The isiZulu landrace decreased shoot (plant height) growth to increase 

source to sink biomass partitioning under severe water stress at late planting. This resulted in two–

fold increases in HI, highlighting high adaptation of the landrace to low and irregular rainfall. At 

early and optimal planting, highest panicle yield (Figure 10) and harvest index (Figure 11) were 

observed in Macia, due to extended grain filling period and late maturity. This shows adaptation 

of Macia OPV to sub–optimal rainfall regions and the benefit of deliberate breeding for drought 
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tolerance in sorghum. However, late planting significantly reduced Macia yield by more than two–

fold implying that further breeding for severe water stress and periodic rainfall need to be 

conducted for OPVs. Low sorghum biomass and panicle yields at late planting were attributed to 

low leaf number, CCI, SC and CC in response to low and disproportionate rainfall. This was 

exacerbated by flowering coinciding with declining rainfall and temperatures as winter set in. 

Comparison between expected time to maturity were done using days to maturity instead of thermal 

time, as this is how genotypes are described by seed manufacturers. PAN8816 matured within 

(126–133 DAS) expected time since it is medium–late maturing genotype (120–130). Compared 

to expected time to flowering (60–65 DAS) and maturity (115–120 DAS), Macia flowering (77–

84 DAS) and physiological maturity (133–140 DAS) was delayed. A more accurate comparison 

between expected and observed phenological development would have been the use of thermal 

time, as this method accounts for temperature differences between agro–ecologies.   

Landraces showed panicle yield stability across planting dates, whilst the OPV and hybrid 

genotypes had significantly less panicle yield in response to decreased water availability and erratic 

rainfall distribution at late planting. This suggests that landraces have greater environmental 

plasticity compared to the OPV and hybrid. Ujiba and IsiZulu landraces therefore have yield 

advantages under sever water stress and uneven rainfall distribution; however, at relatively low 

water stress, the hybrid and OPV genotypes confer a yield advantage. Continued landrace 

cultivation in semi–arid, rainfed conditions by small–scale farmers makes landraces particularly 

suited for production under low rainfall areas, and a valuable germplasm resource in breeding for 

drought tolerance. 

 

 

Figure 9: Destructively sampled dry aboveground biomass of PAN8816 (A), Macia (B), Ujiba (C) 
and IsiZulu (D) sorghum genotypes planted on three different planting dates. Note: PD*V refers to 
the interaction between planting dates (PD) and sorghum genotypes (V), respectively. 
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Figure 10: Destructively sampled pinnacle mass of PAN8816 (A), Macia (B), Ujiba (C) and 
IsiZulu (D) sorghum genotypes planted on three different planting dates. Note: PD*V refers to the 
interaction between planting dates (PD) and sorghum genotypes (V), respectively. 

 

 

Figure 11: Build–up of harvest indices in PAN8816 (A), Macia (B), Ujiba (C) and IsiZulu (D) 
sorghum genotypes planted on three different planting dates. Note: PD*V refers to the interaction 
between planting dates (PD) and sorghum genotypes (V), respectively. 

 

Water Use and WUE  

Water use was sub–optimal for all planting dates; this was associated with below average rainfall 

received. Measured crop water use was exceptionally low, confirming severe water stress 

experienced by genotypes for the late planting date. The interaction of planting dates and genotypes 

was significant (P<0.001) for biomass and yield WUE. Biomass and yield WUE were highest at 

optimal planting (30.5 and 12.2 kg ha-1 mm-1), relative to late (23.1 and 11.8 kg ha-1 mm-1), and 

early planting dates (25.2 and 10.9 kg ha-1 mm-1). For the hybrid and OPV, biomass and yield WUE 

decreased in response to low TAW, and irregular and disproportionate rainfall experienced during 

the late planting date. By contrast, biomass and yield WUE for the landraces improved with 
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decreasing rainfall (Table 2). This reinforces findings in this study that landraces are highly suitable 

for production under severe water stress, as more ‘food per drop’ is produced with less rainfall. 

 

CONCLUSIONS 

Rainfall received for all planting dates was sub–optimal. Rainfall for the late planting was relatively 

low, highly irregular and disproportionate to crop water requirements at key growth stages. Low 

TAW at planting was associated with delayed crop establishment and low final emergence. The 

exception was PAN8816 hybrid were full emergence was achieved for all planting dates. 

Genotypes adapted to low and irregular rainfall by decreasing CC, CCI and SC, and hastened 

phenological development. This resulted in low biomass and yield for late planted sorghum. 

Landraces showed panicle yield stability across planting dates, whilst the OPV and hybrid 

genotypes had significantly lower panicle yield under low soil water availability and uneven 

rainfall distribution experience for the late planting date. Biomass and yield WUE were highest for 

the optimal planting date relative to the late and lowest at early planting dates. Hybrid and OPV 

biomass and yield WUE decreased in response to low TAW, and irregular and disproportionate 

rainfall at late planting. Whereas biomass and yield WUE in landraces improved with decreasing 

rainfall. This suggests that hybrid genotypes can be cropped to increase crop stand under low soil 

water availability, OPVs can be cropped at optimal planting to benefit from high yield and HI, 

whereas landraces are a valuable germplasm resources under severe low rainfall conditions. 

Breeding for improved seedling vigour, yield, HI and low tannins in landrace genotypes can 

potentially assist farmers improve yield quality and quantity under high rainfall conditions, whilst 

benefiting from relatively high drought tolerance under low and irregular rainfall. Delayed onset 

of rainfall and high variability in rainfall during the growing seasons suggests that use of climate 

forecast in place of historical data recommended be used in selecting planting dates. In this regard, 

crop models can be useful. This study was only presented with data from a single site and year, and 

further data needs to be collected to verify the results observed in this study.  
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Abstract 

Predicting yield response to water is important in rainfed agriculture. The objective of this study 

was to calibrate and test AquaCrop for three sorghum genotypes (PAN8816, a hybrid; Macia, an 

open–pollinated variety; and Ujiba, a landrace) during 2013/14 and 2014/15 planting seasons 

(early, optimal and late planting dates). Variables considered during model evaluation included 

canopy cover (CC), biomass (B) and yield (Y). The model was able to simulate CC (R2 ≥ 0.710; 

RMSE ≤ 22.73%; d ≥ 0.998), biomass accumulation (R2 ≥ 0.900; RMSE≤ 10.45%; d≥ 0.850), 

harvest index (R2 ≥ 0.902; RMSE ≤ 7.17%; d ≥ 0.987) and yield (R2 ≥ 0.945; RMSE ≤ 3.53%; d ≥ 

0.783) well for all genotypes and planting dates. AquaCrop overestimated biomass and crop yield. 

This was attributed to default values used to describe canopy sensitivity to water stress and water 

stress coefficients. While these values provided satisfactory simulations, confirming model 

robustness, there is a need to develop genotype specific parameters to improve model goodness of 

fit. The model confirmed sorghum drought tolerance and its viability for production under water 

limited conditions. The relatively good simulations produced by the ten step calibration confirm 

AquaCrop’s simplicity and suitability for use in places where extensive data sets may be 

unavailable.Biomass and yield overestimation resulting from the use of the ten step calibration 

procedure suggests that other parameters (canopy sensitivity to water stress and water stress 

coefficient) are required to improve canopy and yield predictions for sorghum genotypes.  

 

Keywords: modelling, parameterization, sorghum, water availability.  

 

Introduction 

High seasonal rainfall variability, delays in onset and irregular distribution of rainfall, and 

occasional dry spells within seasons negatively impact cereal yields and household livelihoods in 

sub–Saharan Africa (SSA) (Fjelde & von Uexkull, 2012). The impact is exacerbated under rainfed 

agriculture, where rainfall is the sole water input into the agriculture system. Variability in rainfall 

affects timing and location of planting, as onset, cessation and amount of rainfall affect farmers’ 

planting decisions. Cereal crops are a major contributor to food security and economy in arid and 

semi–arid regions. In SSA, a region where 95% of agriculture is rainfed (Singh, Wani, Pathak, 

Sahrawat, & Singh, 2011), and arid and semi–arid areas account for 43% of total area (Food and 

Agriculture Organization [FAO], 2008), rainfall is a major limitation to cereal yields. Sorghum is 
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predominantly grown in semi–arid and arid agro–ecologies of SSA, under rainfed conditions. This 

makes sorghum production highly susceptible to rainfall amount and distribution. 

Examining yield response to rainfall amount and distribution under rainfed environments is 

both laborious and expensive. In consideration of such limitations, the use of crop models is useful. 

Crop models are valuable prediction tools where environments, soils, genotypes and climatic 

conditions vary. For increased accuracy of model predictions, models have to be parameterized, 

calibrated and tested before use. For model calibration, one changes model parameters and even 

coding in order to obtain accurate prediction versus observed data. On the other hand, testing is the 

process whereby the model is run against independent data, without any modification of model 

parameters or code. AquaCrop is a crop water productivity model developed by the Land and Water 

Division of FAO that simulates crop yield response to water (Raes, Steduto, Hsiao, & Fereres, 

2009b; Steduto, Hsiao, Raes, & Fereres, 2009). AquaCrop predicts crop productivity, water 

requirement, and water use efficiency and is particularly suited to address conditions where water 

is a key limiting factor in crop production.  

Genotypic and environmental differences impact sorghum adaptation and ultimately yield and 

water use (Karunaratne et al., 2011). AquaCrop has been parameterized and tested for a wide range 

of crops (Farahani, Izzi, & Oweis, 2009; Geerts et al., 2009; Hsiao et al 2009; Karunaratne et al., 

2011; Steduto et al., 2009) under different environmental conditions illustrating that the model 

could accurately simulate yield response to water. AquaCrop has already been parameterized for 

sorghum. However, there is a need to perform a local calibration for sorghum genotypes under 

production in SSA. This study aimed to calibrate and test AquaCrop for hybrid, open–pollinated 

and landrace sorghum genotypes. A major selling point of AquaCrop is its simplicity, the ability 

to use minimal inputs during calibration to produce reliable estimates of crop yield response to 

water under testing scenarios. In this study, a ten step calibration procedure was used to calibrate 

sorghum genotypes, and subsequently test model performance under variable climatic conditions. 

In part, this study aimed to investigate whether minimal calibration (ten step calibration procedure) 

proposed for non–research AqauCrop users was sufficient in predictions of sorghum yield response 

to water. The choice of genotypes used is explained in the materials and methods section. 

Materials and Methods 

Model Description  

The Food and Agriculture Organization’s (FAO) AquaCrop crop model is a water-driven 

simulation model (generic crop water productivity model) (Steduto et al., 2009; Raes et al., 2009). 
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It requires a relatively low number of parameters and input data to simulate yield response to water 

of most major field and vegetable crops. Its parameters are explicit and mostly intuitive and the 

model maintains sufficient balance between accuracy, simplicity and robustness (Steduto et al., 

2009; Raes et al., 2009).  

The particular features that distinguish AquaCrop from other crop models is its focus on water, 

the use of ground canopy cover instead of leaf area index, and the use of water productivity values 

normalized for climate (atmospheric evaporative demand and of carbon dioxide concentration). 

This confers the model an extended extrapolation capacity to diverse locations and seasons 

(Steduto et al., 2007), including future climate scenarios. The model uses canopy ground cover 

(CC) instead of leaf area index (LAI) as the basis to calculate transpiration and to separate soil 

evaporation from transpiration. Biomass is then calculated as the product of transpiration and a 

water productivity parameter (Equation 1). 

𝐁 = 𝐖𝐏 𝐱 ∑ 𝐓𝐫      Equation 1 

where:  B = aboveground biomass (ton/ha), 

  WP = water productivity (biomass per unit of cumulative transpiration), and 

  Tr = crop transpiration.  

Crop yield is then calculated as the product of above-ground dry biomass and harvest index (HI):  

𝐘 = 𝐁 𝐱 𝐇𝐈       Equation 2 

where: Y = crop yield, 

  HI = harvest index. 

Although the model is simple, it gives particular attention to the fundamental processes 

involved in crop productivity and in the responses to water, from a physiological and agronomic 

perspective (Raes et al., 2009). The FAO AquaCrop model predicts crop productivity, water 

requirement, and water use efficiency under water-limiting conditions (Raes et al., 2009). 

AquaCrop considers the soil, with its water balance; the plant, with its development, growth and 

yield processes; and the atmosphere, with its thermal regime, rainfall, evaporative demand and 

carbon dioxide concentration. In this study, user defined model inputs were used to describe soil 

physical and hydraulic properties, daily weather, and 10 user–specific crop parameters for each 

sorghum genotype obtained from field trials. Additionally, the model also considers some 

management aspects such as irrigation and fertility, as they affect the soil water balance, crop 
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development and therefore final yield. Pests, diseases, and weeds are not considered (Raes et al., 

2009a).  

 

Plant material 

Three sorghum genotypes, a hybrid (PAN8816), an open-pollinated variety (Macia) and a landrace 

(Ujiba), were selected for this study. This reflected the range of germplasm typically used by 

farmers for sorghum production in southern Africa. The hybrid PAN8816, represented the 

preferred seed source by commercial sorghum farmers. PAN8816 was sourced from Pannar 

Seeds®. Macia is a popular low tannin, open-pollinated variety developed by the International Crop 

Research Institute for the Semi–Arid Tropics (ICRISAT), under production in most sorghum 

growing regions across SSA (Takele and Farrant, 2013; Charyulu et al., 2015 Ujiba is a high tannin 

landrace representing a popular seed choice among subsistence farmers in rural KwaZulu Natal, 

South Africa. It was sourced locally from smallholder farmers in Tugela Ferry, South Africa 

(28°44'S, 30°27'E).  

 

Site description 

Field trials were planted at Ukulinga Research Farm (30°24'S, 29°24'E, 805 m a.s.l) on 03 

November 2014, 17 November 2014, and 26 January 2015. The farm is situated in Pietermaritzburg 

in the subtropical hinterland of KwaZulu-Natal province. Ukulinga represents a semi-arid 

environment and is characterized by clay-loam soils (USDA taxonomic system). Rain falls mostly 

in summer, between September and April. Rainfall distribution varies during the growing season 

(Swemmer et al., 2007) with the bulk of rain falling in November, December and early January. 

Occasionally light to moderate frost occurs in winter (May – July). 

 

Trial layout and design 

Field trials planted at Ukulinga on 17 January during the 2013/14 were used to parameterize each 

of the three sorghum genotypes. The experimental design used was a randomized complete block 

design with three replications. Independent field trials planted in the 2014/15 season were used to 

test model performance. The experimental design was a split–plot design with planting date as the 

main factor and genotypes as the sub–factor laid out in randomised complete blocks with three 
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replications. The planting (03 November 2014, 17 November 2014, and 26 January 2015) 

represented early, optimal and late planting dates for sorghum. Early planting reflected onset of 

rainfall at Ukulinga in 2014/15 season. Optimal planting date was based on DAFF (2010) 

recommendations and historical weather data at Ukulinga. Late planting date represented latest 

planting from which seasonal rainfall can sustain 120–140 day growing season (Table 2). All trials 

comprised three sorghum cultivars, namely: PAN8816, Macia and Ujiba. The trials measured 310 

m2, with individual plot size of 6 m * 4.5 m (18 m2), with 1 m interplot spacing between the plots. 

Final inter-row spacing was 0.75 m with 0.30 m intra-row spacing, amounting to 21 plants per row 

and 63 experimental plants per plot. Each individual plot had seven rows with the three inner most 

rows as the experimental plants, and the remaining rows reserved for destructive sampling. Planting 

rows were dug ≈25 mm deep, seeds were sown closely and thinned to the desired crop density after 

establishment. 

 

Table 7: Experiments at Ukulinga experimental site used to develop model parameters to calibrate 

and test AquaCrop.  

Purpose Experiments Planting date 

Parameterization Rainfed 17 January 2014 

Testing 

Early planting date – rainfed 03 November 2014 

Optimal planting date – rainfed 17 November 2014 

Late planting date – rainfed 26 January 2015 

 

Agronomic practices 

Soil samples were collected and analysed for fertility before land preparation. Before planting, 

fallow land was mechanically ploughed, disked and rotovated. A pre-emergence herbicide, Round-

up® (glyphosate at 10 ml per litre of water) was applied to control weeds two weeks before planting. 

A deficit of fertilizer requirements (Smith, 2006) was applied using Gromor Accelerator® (30 g kg-

1 N, 15 g kg-1 P and 15 g kg-1 K), a slow release organic fertilizer at 14 days after sowing (DAS). 

Planting rows were opened by hand 25 mm deep and seeds were hand-sown in the ground. Planting 

was conducted by drilling sorghum seeds. Thereafter, at crop establishment (14 DAS), seedlings 

were thinned to the required spacing. Scouting for pests and diseases was done weekly. 

Cypermethrin® (15 mℓ per 10 ℓ knapsack) was applied to control insect pests one month after 

planting. Weeding was done using hand-hoes at frequent intervals. 
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Input Data  

Soil  

Important soil input parameters required by AquaCrop model are: soil texture, volumetric water 

content at field capacity (FC), at permanent wilting point (PWP), and at saturation (SAT), saturated 

hydraulic conductivity (Ksat), and soil thickness (depth of soil profile) (Table 2). The soil textural 

class was described as clay (USDA Taxonomic System). Soil physical and hydraulic properties 

were obtained from classification and characterisation of experimental site soils by Mabhaudhi 

(2012). Soil hydraulic and physical properties were used to develop a soil (.SOL) file in the model.  

 

Table 2: Soil characteristics from the experimental site at Ukulinga Research Farm. 

Parameter Texture 
Thickness PWP FC SAT TAW Ksat 

(m) –––––––(volume %)––––– (mm.m-1) (mm.d-1) 

Value Clay 0.6 28.3 40.6 48.1 123.0 25.0 

 

Meteorological data 

The climate file in AquaCrop is defined using maximum temperature (°C), minimum temperature 

(°C), rainfall (mm) and reference evapotranspiration (mm). Meteorological data for Ukulinga was 

obtained from an automatic weather station (within 100 m radius) courtesy of the Agricultural 

Research Council – Institute for Soil, Climate and Water (ARC–ISCW). Reference 

evapotranspiration was obtained from the weather station and was based on the FAO Penman-

Monteith equation. Carbon dioxide concentration was obtained from AquaCrop’s default 

Maunalua file. Meteorological data was used to develop the climate (CLI) file in the model. 

Crop growth and development parameters  

Ten crop parameters were used to calibrate AquaCrop’s default sorghum file (Raes, Steduto, Hsiao, 

& Fereres, 2012) for the three sorghum genotypes as part of the ten step calibration procedure. The 

ten step procedure includes providing input data for the following: planting date, planting density, 

time to crop establishment, time to flowering, flowering duration, maximum canopy cover, time to 

maximum canopy cover, time to senescence, time to physiological maturity, and harvest index 
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(Table 3). The ten step procedure includes rooting depth. However, in this study, we used the 

default depth in the default sorghum file. 

Date of planting was recorded as actual day when seeds were sown in the soil. Planting density 

was calculated as number of plants per given area based on row spacing and plant spacing. Area 

measurements were converted from m2 to hectares and planting density was reported in plants/ ha. 

Time taken to reach phenological stages was recorded in days as when ≥50% of planting population 

exhibited diagnostic signs of that particular stage. Highest recorded canopy cover values from 

recorded data were taken as maximum canopy cover achieved by the crop for each genotype. To 

quantify effective rooting depth, an area around a plant root zone was dug out 1 m deep and 0.5 m 

from the main stem at physiological maturity. After which, the soil around the roots was brushed 

off, and root length was measured from exposed roots. The model is capable of simulating the 

presence of an impeding layer. Soil profiling at the experimental site revealed that the effective 

rooting depth of the soil was 0.6 m which was then input into the soil file. While for the crop it was 

maintained as the default 2 m. during model runs, root growth will be limited by the depth of the 

soil profile, while the value of 2 m represents the crop’s potential in the absence of an impeding 

layer or a shallow soil. This feature allows then for the same crop file to be used for different soils 

without the need to change the crops’ effective rooting depth whenever the soil file is changed. 

Flowering was observed as time taken for 50% of experimental plant population to panicle 

bloom. Duration of flowering was recorded as time taken from flowering to when 50% of 

experimental population exhibited anthesis. Physiological maturity was observed when a dark spot 

appeared on the opposite side of the kernel from the embryo signaling completion of dry matter 

accumulation. However, physiological maturity in model simulations was observed as when dry 

matter accumulation (biomass and yield) ceased. Reference harvest index was calculated as the 

ratio of yield over total biomass at physiological maturity (Equation 2). Crop growth and 

development parameters were as inputs in genotype crop (.CRO) in the model.  
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Table 8: User–specific crop parameters used in parameterization of three sorghum genotypes 

(PAN8816, Ujiba and Macia) plus the original Aquacrop default sorghum crop file values. 

 

Parameter 

Genotype 

PAN8816 Ujiba Macia Default 
sorghum crop 

file 

Planting density (plants/ ha) 44 444 44 444 44 444 44 444 

Time to crop establishment (days) 14 14 14 14 

Maximum canopy cover (%) 89.1 80.3 80.3 89 

Time to maximum canopy cover 
(%) 

70 77 84 84 

Time to flowering (days) 70 77 79 70 

Duration of flowering (days) 14 14 14 27 

Time to canopy senescence (days) 126 126 126 98 

Time to physiological maturity 
(days) 

140 140 140 140 

Harvest index (%) 54 48 52 45 

 

 

Model calibration 

Field trials planted at Ukulinga on 17 January during the 2013/14 were used to calibrate each of 

the three sorghum genotypes. Simulations were performed with the AquaCrop model (Version 4.0) 

as described by Raes et al. (2009a) and Steduto et al. (2009). Key inputs in the model included: 

climate file, soil file, and crop file. Calibration of the model was conducted using 2013/14 data 

from rainfed trials conducted at Ukulinga. Initial calibration involved matching the observed to the 

simulated canopy cover, since AquaCrop is a canopy level model. Subsequent to this, the model 

was calibrated by comparing observed and simulated biomass, yield and harvest index. Data used 

for calibration were not used for testing. 

 

Model testing 

Testing is an important step of model verification. It involves a comparison between independent 

field measurements (data) and simulated output created by the model. Testing confirms whether or 

not results obtained from the model can be relied on and if they compare well with experimental 

obtained results. Model testing in this study was done by comparing canopy cover, biomass, yield 
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and harvest index simulated by the model and those from the observed field experiments planted 

at different planting dates during the 2014/15 season (Table 1). Trials planted in the 2014/15 season 

were used to test the model.  

 

Statistical analysis 

Different statistical indices including coefficient of determination (R2), root mean square error 

(RMSE) and its systematic (RMSES) and unsystematic components (RMSEU) as well as the index 

of agreement (d–index) were used for comparison of simulated against observed data. Systematic 

RMSE was calculated (Loague et al., 1991) as follows: 

𝐑𝐌𝐒𝐄 = [
𝟏

𝑰𝑱
∑ ∑ (𝑷𝒋

𝒊𝑰
𝒊=𝟏 − 𝑶𝒋

𝒊)𝟐
𝑱

𝒋=𝟏
]

𝟎.𝟓

  Equation 3 

where: n is the number of observations, Pi and Oi refer to simulated and observed values of the 

study variables, respectively. The RMSE is a good overall measure of model performance. It 

indicates the absolute fit of a model to observed field data, and evaluate closeness between the two 

values. The RMSE was normalized by expressing it as a percentage of data range to remove scale 

dependency. The simulation is considered excellent with a normalized RMSE is less than 10%, 

good if the normalized RMSE is greater than 10% and less than 20%, fair if normalized RMSE is 

greater than 20 and less than 30%, and poor if the normalized RMSE is greater than 30% (Jamieson 

et al., 1991). 

Systematic Root Mean Square Error (RMSES) was calculated as the square root of the mean 

squared difference in regressed prediction-observation pairings within a given analysis region and 

for a given time period (Loague et al., 1991). 

𝐑𝐌𝐒𝐄𝐬 = [
𝟏

𝑰𝑱
∑ ∑ (𝑷̂𝒋

𝒊𝑰
𝒊=𝟏 − 𝑶𝒋

𝒊)𝟐
𝑱

𝒋=𝟏
]

𝟎.𝟓

   Equation 4 

where: Pij is the individual predicted quantity at site i and time j, P^ is the least square aggression, 

Oij is the individual quantity at site i and time j, and the summations are over all sites (I) and over 

time periods (J). And the least square aggression (P^) is: 

𝑷̂ = 𝒂 + 𝒃 𝑶𝒋
𝒊       Equation 5 

where: a is the y-intercept, and b is the slope of the resulting straight line fit.  
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The RMSES estimates the model's linear (or systematic) error; hence, the better the regression 

between predictions and observations, the smaller the systematic error. 

Unsystematic Root Mean Square Error (RMSEU) was calculated as the square root of the mean 

squared difference in prediction-regressed prediction pairings within a given analysis region and 

for a given time period.  

𝐑𝐌𝐒𝐄𝐔 = [
𝟏

𝑰𝑱
∑ ∑ (𝑷𝒋

𝒊𝑰
𝒊=𝟏 − 𝑷̂𝒋

𝒊)𝟐
𝑱

𝒋=𝟏
]

𝟎.𝟓

   Equation 6 

The unsystematic difference is a measure of how much of the discrepancy between estimates 

and observations is due to random processes or influences outside the legitimate range of the model. 

The index of agreement (d–index) proposed by Willmott et al. (1985) was estimated (Equation 

7). The d-index condenses all the differences between model estimates and observations within a 

given analysis region and for a given time period (hourly and daily) into one statistical quantity. It 

is the ratio of the total RMSE to the sum of two differences – between each prediction and the 

observed mean, and each observation and the observed mean. Viewed from another perspective, 

the index of agreement is a measure of the match between the departure of each prediction from 

the observed mean and the departure of each observation from the observed mean. Thus, the 

correspondence between predicted and observed values across the domain at a given time may be 

quantified in a single metric and displayed as a time series. The index of agreement has a theoretical 

range of 0 to 1. According to the d-index, the closer the index value is to one, the better the 

agreement between the two variables that are being compared and vice versa. 

𝒅 = 𝟏 − [
∑ (𝑷𝒊−𝑶𝒊)𝟐

𝒏

𝒊=𝟎

∑ (|𝑷𝒊|−|𝑶𝒊|)𝟐𝒏

𝒊=𝟎

]    Equation 7 

where: n is the number of observations, Pi the predicted observation, Oi is a measured observation, 

ΙPiΙ = Pi − M and ΙOiΙ= Oi −M (M is the mean of the observed variable). The simulated model 

results were compared statistically to observe experimental measurements using Microsoft Excel. 

 

Results and Discussion 

Calibration  

AquaCrop is canopy level model (Mabhaudhi, Modi & Beletse, 2014). As such, the canopy through 

its expansion, ageing, conductance and senescence, is central to the model as it determines the 
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amount of water transpired, which in turn determines the amount of biomass produced (Raes et al., 

2009b). AquaCrop simulated canopy cover (R2 ≥ 0.659; RMSE ≤ 14.35%; d ≥ 0.999), biomass (R2 

≥ 0.79; RMSE ≤ 10.14%; d ≥ 0.908), harvest index (R2 ≥ 0.967; RMSE ≤ 3.55%; d ≥ 0.998) and 

yield (R2 ≥ 0.923; RMSE ≤ 3.82%; d ≥ 0.770) satisfactorily for all three genotypes during 

calibration (Figure 1). Root mean-square error was low, good goodness of fit (n = 16) and 

Willmot’s d–index values were close to 1 implying that model predicted values were close to 

observed values. This gave confidence in calibration of the model and allowed model testing using 

independent data. 
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Figure 9: Simulated vs. observed canopy cover, biomass, yield, and harvest index for PAN8816, 
Macia and Ujiba sorghum genotypes for the calibration model run using 2013/14 Ukulinga growing 
season data. 
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Testing 

There was a good agreement (R2 ≥ 0.710; RMSE ≤ 22.73%; d ≥ 0.998) between observed and 

simulated crop canopy cover for all genotypes and planting dates. This showed that the model was 

capable of simulating canopy cover under different environments (Figure 2). This confirmed model 

robustness and consistency across environments. Once canopy senescence was triggered, the model 

simulated rapid canopy decline whereas in reality sorghum’s canopy decline was moderate. This 

is because sorghum genotypes evaluated in the study employed osmotic adjustment and quiescence 

strategies which allowed for moderate canopy decline. The limitations of the model in capturing 

this aspect of sorghum resulted in a low goodness of fit between model simulated and observed 

values, especially under water stress.  

With respect to the planting dates, the model simulated canopy cover well for early planting 

(R2 ≥ 0.843; RMSE ≤ 13.91%; d ≥ 0.999) and late planting (R2 ≥ 0.873; RMSE ≤ 12.07%; d ≥ 

0.999) (Figure 2). Model performance was satisfactory (R2 ≥ 0.710; RMSE ≤ 22.73%; d ≥ 0.998) 

for the optimal planting. Model performance for the optimal planting date was affected by observed 

low emergence at optimal planting due to low soil water availability during and shortly after 

sowing. This resulted in observed low canopy cover compared to model simulated canopy cover 

(Figure 2). In this instance, the model could be used to assess gaps between actual and potential 

canopy cover under field conditions. 

In field trials, time to physiological maturity was observed when a dark spot appeared on the 

opposite side of the kernel from the embryo signalling completion of dry matter accumulation 

(Eastin, Hultquist, & Sullivan, 1973). However, physiological maturity in model simulations was 

observed as when dry matter accumulation ceased. Under field conditions, physiological maturity 

occurred when canopy cover was relatively high while for model simulations it coincided with 

relatively low or zero canopy cover. This resulted in a slight overestimation (≤ 7.8%) of time to 

physiological maturity in the model (Table 4). Since AquaCrop uses canopy cover to estimate 

transpiration and calculate biomass accumulation, this potentially led to a carry-over error in 

simulated biomass and yield. This would account for the over–estimation of the two parameters. 

Adjusting canopy sensitivity to water stress (canopy expansion, stomatal closure, early senescence 

and harvest index) could potentially improve model simulation, especially during canopy 

senescence where model simulations were less than satisfactory. However, the relative satisfactory 

of the model with minimum calibration confirms model simplicity and robustness and its suitability 

for use in areas with limited data sets. 
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AquaCrop separates the yield is separated into biomass and harvest index (Raes et al., 2009b), 

where harvest index is the ratio of economic yield over total aboveground biomass. Biomass 

accumulation is calculated as a product of WP and transpiration. Thereafter, biomass partitioning 

into yield is a function of harvest index. Prediction of biomass (R2 ≥ 0.900; RMSE ≤ 10.45%; d ≥ 

0.850) and yield (R2 ≥ 0.886; RMSE ≤ 5.571%; d ≥ 0.918) was very good (Figures 3 and 4). 

However, the model significantly over–estimated both biomass and yield to generally be twice the 

observed values. On average, total biomass simulated by the model was 24.04, 20.68 and 20.70 

ton/ha, whereas observed biomass was 10.82, 10.36 and 6.09 ton/ha for early, optimal and late 

planting dates respectively. Total yield simulated by AquaCrop was 12.24, 9.8 and 10.79 ton/ha, 

whereas observed yield was 5.25, 5.31 and 3.16 ton/ha for early, optimal and late planting dates 

respectively (Table 4). Expected sorghum yields are 3–8 ton/ha for genotypes used in the study. 

This implies that observed biomass and yield were within expected yields, whilst confirming that 

the model simulations over–estimated. Good canopy simulation by the model resulted in 

confidence in transpiration predictions used in biomass calculation. Model simulations exhibited 

differential water stress levels across planting dates, with highest water stress levels during the late 

planting date for all genotypes. This implies that water stress played a major role in biomass and 

yield determination. Determining the genotype–specific water stress co–efficients (Ks) could 

potentially improve yield model simulations. A default sorghum WP parameter (33.3 g/m2) was 

used in simulations. This potentially did not contribute as a source of error in calculating biomass 

and subsequently yield since WP for c4 cereal crops is accepted to be 30–35 g/m2 (Raes, Steduto, 

Hsiao & Fereres, 2010).  

Trials used for calibration were planted late and not under an optimal planting date scenario, 

and this resulted in low and irregular rainfall more especially at grain filling stage as winter season 

approached. A heavy hailstorm in early January 2014 destroyed the initial trials designed for 

calibration. Thereafter, a late planting date trial was planted to develop calibration parameters. This 

potentially resulted in relatively lower maximum canopy cover, and distorted observations of time 

to maximum canopy cover, biomass, yield and reference harvest index observation. Despite this, 

canopy cover for three genotypes during calibration trials achieved at late planting (80–89%) 

suggest that reduction and distortions in observed measurements were not significant. This is 

because sorghum is not expected to achieve full canopy cover even under optimal conditions. 

Developing calibration parameters under optimal planting time (November– early December) 

could potentially improve model simulation of biomass and yield, albeit not significantly. 
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For the interest of comparison with previous work, simulations obtained from experimental 

sorghum genotypes were compared to those obtained from simulations using the AquaCrop default 

sorghum file. In comparison, simulations using the default file instead of three study genotypes 

exhibited excellent predictions of yield (R2 ≥ 0.816; RMSE ≤ 1.90%; d ≥ 0.900) with relatively low 

overestimation error (23.0–109.2%). Yield overestimation error was low (23.0% and 27.2%) for 

early and optimal planting date respectively, where rainfall was relatively high and well distributed 

across planting season. For late planting date when relatively low, highly irregularly distributed 

rainfall was observed, yield overestimation was high (109.2%). Canopy cover was poorly 

simulated (R2 ≥ 0.11; RMSE ≤ 41.03%; d ≥ 0.995) suggesting that canopy characteristics of local 

genotypes differ significantly from those of the AquaCrop default crop file. This highlights the 

need to perform additional experiments to determine canopy sensitivity to water stress for 

calibration of the three genotypes used. Since AquaCrop is a canopy level, yield response to water 

model, it is primarily important to predict accurately canopy cover in order to predict biomass and 

yield.  
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Table 9: AquaCrop simulated (Sim.) and experimentally observed (Obs.) time to physiological 

maturity in three sorghum genotypes planted at different planting dates.  MOM stands for model 

overestimation margin. 

Planting 
date Genotype 

Time to physiological 
maturity Biomass Yield 

Obs. 
(days) 

Sim. 
(days) 

MOM 
(%) 

Obs. 
(ton/ha) 

Sim. 
(ton/ha) 

MOM 
(%) 

Obs. 
(ton/ha) 

Sim. 
(ton/ha) 

MOM 
(%) 

Early 

PAN8816 133 140 5.3 10.95 25.14 129.6 5.31 13.28 150.1 

Macia 140 140 0 11.70 23.47 100.6 6.38 12.35 93.57 

Ujiba 140 140 0 9.80 23.50 139.8 4.07 11.08 172.23 

Mean 138 140 1.8 10.82 24.04 122.2 5.25 12.24 132.9 

Default sorghum file    10.82 19.54 80.6 5.25 6.68 27.2 

O
ptim

al 

PAN8816 126 133 5.6 9.87 21.54 118.2 4.99 10.33 107.0 

Macia 140 134 –4.3 11.28 20.19 79.0 6.79 10.2 50.22 

Ujiba 126 135 7.1 9.93 20.30 104.4 4.16 8.88 113.5 

Mean 131 134 6.35 10.36 20.68 99.6 5.31 9.80 84.50 

Default sorghum file    10.36 18.67 80.2 5.31 6.53 23.0 

Late 

PAN8816 126 135 7.1 5.00 20.44 308.8 2.71 10.75 296.7 

Macia 133 140 5.3 6.33 20.27 220.2 3.26 10.99 237.1 

Ujiba 126 140 11.1 6.93 21.38 208.51 3.50 10.64 204.0 

Mean 128 138 7.8 6.09 20.70 240.0 3.16 10.79 241.92 

Default sorghum file    6.09 18.67 206.6 3.16 6.61 109.2 

 

  



101 
 

 

Figure 10: AquaCrop simulated and field observed canopy cover for PAN8816, Macia and Ujiba 
sorghum genotypes planted at three different planting dates (early, optimal and late) within the 
2014/15 growing season at Ukulinga. 
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Figure 11: AquaCrop simulated and field observed aboveground dry biomass for PAN8816, Macia 
and Ujiba sorghum genotypes planted at three different planting dates (early, optimal and late) 
within the 2014/15 growing season at Ukulinga. 
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Figure 12: AquaCrop simulated and field observed panicle yield for PAN8816, Macia and Ujiba 
sorghum genotypes planted at three different planting dates (early, optimal and late) within the 
2014/15 growing season at Ukulinga. 
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Figure 13: AquaCrop simulated and field observed harvest indices for PAN8816, Macia and Ujiba 
sorghum genotypes planted at three different planting dates (early, optimal and late) within the 
2014/15 growing season at Ukulinga.  
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Despite the limitations in calculating biomass, the model was able to capture build–up of 

harvest index very well ((R2 ≥ 0.774; RMSE ≤ 10.120%; d ≥ 0.999; Figure 5). This implies that the 

contribution of harvest index as a source of error in over–estimation of yield was minimal. Model 

over-estimation of biomass and yield increased for late planted sorghum genotypes, where water 

stress was observed to be relatively high in comparison to other planting dates under experimental 

field trials and simulations. This suggests that canopy sensitivity to water stress should also be 

accurately described when calibrating the model for local sorghum genotypes. Developing 

genotype specific Ks values for the sorghum genotypes used in this study could improve model 

simulations of biomass and yield.  Overall, canopy cover, biomass, harvest index and yield model 

simulations were very good for all genotypes and planting date environments. 

 

Conclusion 

The model was able to simulate canopy cover, biomass accumulation, harvest index and yield 

relatively well for all sorghum genotypes and planting dates. The model did not accurately capture 

sorghum canopy decline as it did not consider sorghum’s quiescence growth habit which allows 

for delayed canopy senescence under water–limited conditions. Studies to develop parameters for 

canopy sensitivity to water stress could improve canopy simulations. The model over–estimated 

biomass and yield, especially for the late planting date when severe water stress was observed 

under field conditions. Over–estimation of biomass, and consequently yield, was attributed to the 

default Ks parameter which may not be representative of sorghum genotypes used in this study. 

Therefore, future studies should develop Ks values for local genotypes. Furthermore, developing 

calibration parameters under optimal planting time scenarios could potentially improve model 

simulation. Despite the limitations in model performance, the model confirmed sorghum drought 

tolerance and its viability for production under water limited conditions. The relatively good 

simulations produced by the ten step calibration confirm AquaCrop’s simplicity and suitability for 

use in places where extensive data sets may be unavailable. Biomass and yield overestimation 

resulting from the use of the ten step calibration procedure suggests that other parameters (canopy 

sensitivity to water stress, planting time for calibration trials, and Ks) are required to improve 

canopy and yield predictions for sorghum genotypes. However, the ten step calibration procedure 

is sufficient for predicting sorghum yield response water if limitations discussed in this study are 

considered. 
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Abstract 

Water–driven crop models are useful tools for predicting yield response to water availability, 

particularly under water limited conditions. The objective was to apply a well–calibrated and tested 

model to formulate best management recommendations for rainfed sorghum production in three 

different agro–ecologies of KwaZulu–Natal, South Africa (Ukulinga, Deepdale, and Richards 

Bay). The FAO AquaCrop model was used to generate planting dates for the different agro–

ecologies based on onset of rainfall. Ten planting dates were selected for model simulations. Crop 

files for two sorghum genotypes Ujiba (landrace) and PAN8816 (hybrid) were considered for 

model simulations. Soil and climate files for each agro–ecology were developed from observed 

data. Climate files considered 10 year historical data. Simulations considered biomass, yield, water 

use and harvest index. Differences in biomass, yield, harvest index and water productivity were 

highly significant (P<0.001) between agro-ecologies. The model was able to simulate satisfactorily 

sorghum yield and water use at all three agro–ecologies. Seasonal rainfall, run–off, amount of soil 

evaporation, crop transpired water, and ground canopy cover were identified as key parameters 

influencing sorghum yield and water use. Tactical, strategic and operation management decisions 

were recommended to improve sorghum water use. Rainwater harvesting and its use in 

supplementary irrigation was suggested to improve agricultural water supply. Increasing planting 

population, applying mulching, intercropping with low water requirement crop as live mulch were 

recommended to improve ground cover, transpiration, and decrease runoff. Low tillage farming 

practices are suggested to conserve soil moisture and increase soil cover. Contour farming, ridge 

and mound tillage, strip farming and terrace farming are options that are suggested to reduce run-

off during extreme rainfall events. Extent at which each strategy is used largely depends on rainfall 

per growing season and evaporation, which differ per agro-ecology and planting date. 

Keywords: agro–ecologies, evapotranspiration, transpiration, evaporation, water productivity. 



110 
 

Introduction 

About 95% of agriculture in sub–Saharan Africa is primarily rainfed (Singh et al., 2011) with about 

70% of the population relying on agriculture for food and livelihoods (Livingston et al., 2011). 

Under these conditions, unfavourable weather conditions due to climate change and variability 

(Tsheko, 2003) increase the incidence of food insecurity. This negatively impacts resource–poor 

farmers whose livelihoods depend mainly on agriculture (Tadross et al., 2005). In addition, the 

inability of this group of farmers to adapt to changing or variable weather patterns makes them 

increasingly vulnerable and prone to repeated episodes of crop failure and food insecurity. For 

farmers relying on rainfed agriculture, the ability to adapt to changing and/or variable weather 

patterns on a season–to–season basis is a prerequisite to successful crop production. There are 

various strategic and tactical decisions that can allow for farmers to adapt to changing and variable 

weather patterns. On a tactical level, these include crop or cultivar choice and planting date 

selection. 

Traditionally, farmers use the onset of the rainy season as the criteria for setting planting dates. 

However, there is much variation as to how resource–poor farmers define this criterion. This often 

results in farmers experiencing mixed fortunes and also making them inflexible as their criteria 

seldom changes from season to season. Onset of rainy season has become unpredictable and mostly 

delayed over the past decades (Leary et al., 2008; Loo et al., 2014; Patwardhan et al. 2014). Onset 

of rainfall is one of the most important occurrences for the farmer. Early onset allows farmers to 

plough the land and plant early and benefit from low evaporative demand, while late onset can 

result in crop sensitive stages coinciding with unfavourable periods (Moeletsi et al., 2011). The 

start and end of the rainy season define the length of the rainy season which strongly determines 

the success or failure of rainfed crops. In addition, the quality of the growing season, as indicated 

by the length and severity of within–season dry spells, will also influence the yield gap and can 

often cause total crop failure (Geerts et al., 2006).  

It is therefore important to determine, at a reasonable accuracy, the probability levels of the 

onset of rains, cessation of rains and length of rainy period, as well as their inter-relationships, in 

order to assist in planning of dryland farming activities (Moeletsi and Walker, 2012). Informed 

decision making for optimum management practices such as cultivar choice, planting dates and 

fertiliser application rates can contribute to increased yields under rainfed conditions. Optimum 

management practices can be evaluated using validated models as within–season and seasonal 

decision support tools (Boote et al., 1996; Kang et al., 2009; Lobell and Burke, 2010). In the current 
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study, an established water–driven model, AquaCrop (Steduto et al., 2009; Raes et al., 2009), was 

applied for a range of agro–ecologies across KwaZulu–Natal to assist with generating best practice 

management recommendations for cultivar choice and planting date selection. 

 

Materials and Methods 

Study Site Descriptions 

Three agro-ecologies (Deepdale, Richards Bay and Ukulinga) across KwaZulu–Natal province were 

selected based on access to and differences in long–term meteorological data and soil information 

(Table 1). Daily data for Ukulinga meteorological parameters was obtained from an on–farm 

(within 100 m radius) automatic weather station courtesy of Agricultural Research Council – 

Institute for Soil, Climate and Water (ARC–ISCW). Daily meteorological data for Deepdale and 

Richards Bay were obtained courtesy of the South African Sugar Research Institute (SASRI) 

weather station located within a 10 km radius from field trial agro-ecologies. Weather data obtained 

were minimum and maximum temperature, rainfall, and reference evapotranspiration. Weather 

parameters obtained were used to create climate files and input into AquaCrop. 

 

Model Parameterisation 

Simulations were performed using AquaCrop (Version 4.1). Climate files for each of the selected 

agro–ecologies were developed using daily weather data for maximum and minimum temperatures, 

rainfall and reference evapotranspiration. Long–term weather data for each of the agro–ecologies 

were obtained via the ARC–ISCW and SASRI network of automatic weather stations. These were 

then used to develop separate temperature (.TMP), rainfall (.PLU) and reference evapotranspiration 

(.ETO) files in AquaCrop. For CO2, AquaCrop’s default CO2 file measured at Mauna Luau was 

used; thereafter, climate files (.CLI) were developed for each agro–ecology and input into the 

model. 
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Table 10: Soil and climate descriptions for the three agro–ecological zones. 

 Deepdale Richards Bay Ukulinga 

Geographical location 28o01’S; 28o99’E 28°19’S; 32°06E 29o37’S; 30o16’E 

Altitude (m a.s.l.) 998 30 775 

Bio-resource group Coast hinterland thornveld Moist coast forest, 
thorn and palmveld 

Moist coast hinterland and 
ngongoni veld 

Annual rainfall 750 – 850 mm 820 – 1423 mm 694 mm 

Average temperature 18.4°C 22°C 17°C 

Frost occurrence Moderate None Light and occasional 

Soil texture class Clay Sand Clay 

Clay content 53% ˂ 5% < 29% 

Soil type Jonkersberg form (Jb) Inhoek form (Ik) Chromic luvisols 

Field capacity (%) 46.2 10.9 46.3 

Permanent wilting point (%) 34.7 6.2 23 

Saturation (%) 50 47.1 46.7 

Soil profile depth (m) >1 >1 0.6 

 

AquaCrop already has a default sorghum crop file. For the current study, the default file was 

fine–tuned to develop two separate sorghum crop files (.CRO) for PAN8816 and Ujiba sorghum. 

Fine–tuning was done using data derived from field trials conducted during 2013/14 season at 

Ukulinga Research Station. Briefly, Ujiba is a landrace of which they are usually preferred by rural 

farmers for production because they do not have to repurchase seed every year. PAN8816 is a 

hybrid variety preferred for production by commercial farmers. Details of model parameterisation 

and testing were reported in Chapter 5. Thereafter, the crop files were input into the AquaCrop 

database. 

Similar to other established models, AquaCrop requires a detailed soil file for the selected 

location. Soil files (.SOL) for each of the selected agro–ecologies were developed using 

information described in Table 1 and input into AquaCrop. 
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Development of Planting Scenarios in AquaCrop  

AquaCrop was used to develop planting scenarios according to Mizha et al. (2014). First sorghum 

planting occurs around the first week of September in KwaZulu–Natal, soon after the first spring 

rains. Latest planting usually occurs by end of January (Mlambo 2014; Nkala 2014 Personal 

communication). The Department of Agriculture, Forestry and Fisheries (DAFF, 2010) 

recommends optimal planting time for sorghum from start of November until end of December in 

South Africa, with dates falling on either side of the recommended times regarded as early and late 

planting, respectively. The first planting date can be defined as the first rainfall event capable of 

supporting germination (Keatinge et al., 1995). All simulation runs were started on the first day of 

September in each season, before the start of the rainfall season and assuming a bare soil. In this 

study the first planting date of the season was defined according to the Agricultural Research and 

Extension (AREX) criterion (Raes et al., 2004) which defines a planting date as the occurrence of 

25 mm rainfall in 7 days after the initial search date, the first planting date in this case (Mizha et 

al., 2014). This ensures there is enough soil water, not only for germination but also to sustain the 

crop through the early development stage (Moeletsi and Walker, 2012).  

As a result of variability in rainfall amount, distribution and subsequently onset of rainfall 

season, the number and spread of planting days generated by AquaCrop varied across agro-

ecologies. For purposes of the current study, at most ten planting dates per site with an average two 

planting dates per month, were used for model scenario analyses (Table 2). 

 

Model Simulations 

Climate, crop and soil files were input into AquaCrop Version 4.1. Management file was set to run 

for rainfed crop production. Planting dates were varied based on times generated by the model 

using user defined criteria as described in above. Thereafter, model runs were performed. 

 

Model Evaluation 

Model inputs for weather and model outputs were analysed using GenStat® (Version 16, VSN 

International, UK) as well as using descriptive statistics and Box and whisker plots computed using 

Microsoft Excel®.  
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Table 11: AquaCrop simulated planting dates using AREX criteria for three different agro–

ecologies. 

Planting date 
number Deepdale Richards Bay Ukulinga 

1 29 October 15 September 7 September 

2 19 November 29 September 26 September 

3 1 December 18 October 22 October 

4 7 December 18 November 27 October 

5 12 December 23 November 11 November 

6 21 December 29 November 24 November 

7 25 December 23 December 10 December 

8 1 January 2 January 20 December 

9 3 January 3 January 10 January 

10 11 January 30 January 15 January 

 

Results and Discussion 

Fitting sorghum into different agro-ecologies  

Rainfall received during the growing period, as simulated by AquaCrop, varied significantly 

(P<0.001) between planting dates across different agro-ecologies. For the simulated agro–

ecologies, Ukulinga received high rainfall for all simulated planting dates followed by Deepdale 

and Richards Bay, respectively (Table 3). Differences in biomass, yield, harvest index and water 

productivity were highly significant (P<0.001) between individual agro-ecologies. AquaCrop 

separates water use [evapotranspiration (ET)] into transpiration (T) and soil evaporation (E). In 

terms of plant growth and biomass production, transpiration is productive water loss as it is directly 

exchanged for biomass, while evaporation represents unproductive water loss (Mabhaudhi et al., 

2014). Water losses to soil evaporation at Ukulinga (154 – 224.6 mm) and Richards Bay (136.6 – 

210.1 mm) were higher than water transpired (130.9 – 209.4 and 36.7 – 88.8 mm). The opposite 

was true for Deepdale where transpiration (Table 5) was higher than evaporative water losses 

(Table 4); this translated to significantly (P<0.001) higher biomass and yield compared to Ukulinga 

and Richards Bay, respectively. High variability in rainfall, soil evaporation and transpiration at 

Richards Bay resulted in low and irregular yields as well as low water productivity (Figure 1). 
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Consequently, there was a higher frequency of crop failure for Richards Bay compared to Ukulinga 

and Deepdale agro–ecologies were there was no crop failure (Figure 3 and 4).  

From the results of this study, production of sorghum is suited for Deepdale and Ukulinga agro-

ecologies. There is adequate rainfall received during the growing period in Richards Bay (372.3 

mm) for production of sorghum, however high evaporation losses (183.3 mm) resulted in low yield 

and crop failure (Figure 3 and 6.4) making Richards Bay unsuitable for sorghum production. High 

losses due to evaporation at all agro-ecologies can be significantly reduced using water retention, 

capture and storage strategies. Soil water retention strategies such as low tillage and mulching 

farming practices are recommended to reduce soil evaporation. Transpired water (<265 mm) in all 

agro-ecologies was a far cry from sorghum crop water requirements of 450–650 mm (FAO, 1991; 

Hensley et al., 2000; Jewitt et al., 2009)  indicating that considerable and significant sorghum yield 

improvement can be achieved through effective irrigation using soil and rain water.  Investing in 

rainwater harvesting infrastructure is a key element for all agro-ecologies to capture excess 

rainwater, especially for sorghum farming in Richards Bay where transpiration is low.  
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Figure 14: Mean simulated biomass and yield (A), percentage harvest index (B) and water 

productivity (C) for 10 planting dates at each of 3 agro-ecologies. 
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Table 12: Mean rainfall received during the growing season over a ten year period (2003–2013) 

for the three agro–ecologies. Rainfall is based on modelled output for rainfall received during the 

growing season. 

Variety 
Planting 

date 

Ukulinga  Richards Bay  Deepdale  

Mean  *SD  Mean  SD  Mean  SD  

––––––––––––––––––––––(mm)––––––––––––––––––––– 

PAN8816 

1 507.1 88.2 269.6 98.7 543.0 67.7 
2 540.0 78.4 331.9 102.9 523.3 63.2 
3 535.7 85.5 335.7 130.6 478.6 73.0 
4 539.3 95.6 357.3 113.9 458.9 74.9 
5 525.0 229.2 364.2 124.2 433.2 71.5 
6 491.9 94.4 367.4 131.0 406.4 59.7 
7 445.3 115.3 421.3 199.5 394.1 66.6 
8 418.9 104.7 419.4 180.1 369.6 69.6 
9 335.7 103.3 450.2 184.7 343.9 61.2 
10 327.6 104.0 469.0 158.1 323.0 72.2 

Ujiba 

1 528.6 91.1 269.6 98.6 534.7 66.6 
2 559.5 77.5 302.2 106.2 517.1 62.7 
3 552.9 96.1 313.9 162.7 474.0 75.3 
4 548.0 96.5 313.9 113.9 456.2 72.8 
5 534.9 89.3 364.2 124.2 429.0 67.8 
6 500.3 105.7 367.4 131.0 403.9 60.8 
7 447.1 118.0 421.3 189.7 386.5 66.8 
8 420.7 103.8 419.4 180.1 357.9 68.8 
9 342.2 106.6 419.3 180.9 350.2 66.4 
10 312.1 100.8 469.0 158.1 317.4 64.7 

*SD = standard deviation 
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Table 13: Simulated mean soil evaporation for PAN8816 and Ujiba sorghum varieties over a ten 

year period (2003–2013) for three agro–ecologies.  

Variety 
Planting 

date 

Ukulinga  Richards Bay  Deepdale  

Mean  *SD  Mean (m) SD  Mean  SD  

 ––––––––––––––––––––––(mm)––––––––––––––––––––– 

PAN8816 

1 225.6 33.8 136.3 20.5 223.6 15.9 
2 227.7 15.4 169.1 25.2 221.7 27.5 
3 231.4 12.9 173.2 28.7 214.4 26.1 
4 230.3 16.1 186.4 47.0 208.3 27.8 
5 229.2 21.9 186.9 49.2 194.6 29.6 
6 238.2 59.0 186.2 53.7 192.0 26.7 
7 204.3 14.0 194.7 60.7 185.0 20.8 
8 191.4 13.0 199.1 62.8 180.0 18.2 
9 166.9 14.3 205.8 66.6 167.7 17.1 

10 160.1 11.4 210.1 39.0 156.1 196.0 

Ujiba 

1 224.2 39.6 136.3 20.5 233.1 14.9 
2 220.5 20.30 155.5 24.8 230.1 27.7 
3 222.6 13.2 162.7 27.3 223.2 26.3 
4 222.2 16.6 186.4 31.2 218.6 27.0 
5 221.4 24.0 186.9 49.2 213.6 30.8 
6 232.1 64.5 186.2 53.7 200.8 27.1 
7 195.0 15.0 194.7 60.7 192.0 22.1 
8 182.9 12.9 199.1 62.8 172.0 18.6 
9 169.4 18.3 199.9 61.9 175.4 19.3 

10 154.0 26.2 210.1 39.0 153.4 15.3 
*SD = standard deviation 
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Table 14: Simulated mean crop transpiration for PAN8816 and Ujiba sorghum varieties over a ten 

year period (2003–2013) for three agro–ecologies.  

Variety 
Planting 

date 

Ukulinga  Richards Bay  Deepdale  
Mean  *SD  Mean  

SD Mean SD  

––––––––––––––––––––––(mm)––––––––––––––––––––– 
PAN8816 1 174.1 48.2 42.9 37.1 261.6 19.7 

2 190.9 32.5 46.5 37.4 237.7 32.3 

3 193.8 16.2 36.7 25.4 233.5 38.4 

4 194.8 16.1 53.6 54.4 218.6 35.9 

5 188.7 20.6 62.2 59.2 214.7 36.1 

6 162.0 59.7 70.3 62.8 209.6 25.2 

7 168.1 18.8 87.2 79.3 209.1 25.2 

8 163.9 17.2 86.4 81.8 195.1 14.5 

9 131.2 27.5 88.8 85.4 202.1 18.2 

10 125.5 23.9 80.6 77.1 196.0 20.7 

Ujiba 1 188.4 54.6 42.9 37.1 243.5 18.1 

2 206.7 40.0 46.5 37.4 221.8 29.1 

3 209.3 17.5 36.8 24.9 208.2 34.7 

4 209.4 17.6 36.8 33.2 203.0 34.1 

5 200.9 22.6 62.2 59.2 198.9 34.4 

6 174.2 64.3 70.3 62.8 196.9 27.1 

7 179.9 22.0 87.2 79.3 197.2 22.4 

8 174.9 19.1 86.4 81.7 202.6 18.6 

9 142.8 29.7 85.9 81.2 190.0 17.3 

10 130.9 26.2 80.6 77.1 188.5 16.4 

*SD = standard deviation 
 
 

Effect of planting date selection on water use, biomass and yield of sorghum 

Evaporation and transpiration significant (P<0.001) varied between planting dates which resulted 

in considerable differences (P<0.001) all four yield related parameters between individual planting 

dates in all agro-ecologies. Uneven and erratic rainfall distribution (Table 3) across planting dates 

accounted for differences in evaporation and transpiration.  



120 
 

Optimal planting dates at Ukulinga are between 7 September and 24 November as highest, 

stable yields (Figure 2 and 3) are achieved during the period. Planting later than these dates 

decreased biomass, yield and water productivity (Figure 1) and stability (Figure 2, 3 and 5) thereof. 

However, reasonable biomass (> 14 ton.ha-1) and yields (> 3 ton.ha-1) were achieved when planting 

later than optimal planting dates. Despite low observed yield and water use traits at Richards Bay, 

optimal sorghum yields were achieved when planting between 23 December and 3 January. Yields 

were unstable throughout planting dates at Richards Bay with high crop failure frequency, due to 

low irregular rainfall, high evaporation and low transpiration experienced by crops. In Deepdale, 

optimal planting time was achieved throughout simulated planting time, as yield and biomass were 

high and stable. Yield and water productivity were most stable when planting between 21 

December and 3 January in Deepdale. Challenges of irregular and erratic rainfall on all planting 

dates can be mitigated by using long– and short–term water capture and storage strategies to 

capture and better use excess rainfall from storm events. Rainfall must be retained by techniques 

that reduce storm-water runoff, improve infiltration and increase the water storage capacity of the 

soil. Strategies that can help reduce runoff through improved infiltration capacity and soil 

transmission characteristics are: mulch farming, soil conditioning, and ploughing methods that 

keep the upper soil layers porous at least for a short time especially in compact soils that restrict 

root development and infiltration. On planting dates where yields are highly unstable and where a 

deficit exists in crop water requirements, supplementary irrigation using harvested rainwater and 

other external water sources should be explored to mitigate the challenge of insufficient transpired 

water.  
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Figure 15: Biomass distribution for PAN8816 (A) and Ujiba (B) sorghum varieties simulated using AquaCrop for 10 planting dates at 

each of 3 agro-ecologies (i) Ukulinga, (ii) Richards Bay and (iii) Deepdale. Boxes delimit the inter-quartile range (25–75 percentiles) 

and whiskers show the high and low extreme values. 

Figure 16: Yield distribution for PAN8816 (A) and Ujiba (B) sorghum varieties simulated using AquaCrop for 10 planting dates at each 

of 3 agro-ecologies (i) Ukulinga, (ii) Richards Bay and (iii) Deepdale. Boxes delimit the inter-quartile range (25–75 percentiles) and 

whiskers show the high and low extreme values. 
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Figure 17: Harvest index distribution for PAN8816 (A) and Ujiba (B) sorghum varieties simulated using AquaCrop for 10 planting 

dates at each of 3 agro-ecologies (i) Ukulinga, (ii) Richards Bay and (iii) Deepdale. Boxes delimit the inter-quartile range (25–75 

percentiles) and whiskers show the high and low extreme values. 

Figure 18: Water productivity (WPet) distribution for PAN8816 (A) and Ujiba (B) sorghum varieties simulated using AquaCrop for 10 

planting dates at each of 3 agro-ecologies (i) Ukulinga, (ii) Richards Bay and (iii) Deepdale. Boxes delimit the inter-quartile range (25–

75 percentiles) and whiskers show the high and low extreme values. 
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Yield and water use responses of sorghum varieties to agro-ecologies and planting dates.  

Evaporation and transpiration were similar (P>0.05) between PAN8816 and Ujiba sorghum 

varieties. This resulted in similar (P>0.05) biomass, yield, harvest index and water productivity 

in both varieties across planting dates and agro-ecologies. PAN8816 benefitted marginally from 

early emergence, high canopy cover and delayed senescence; this translated to higher biomass, 

yield, harvest index and water productivity (Figure 1) compared to Ujiba. Affording farmers 

can plant PAN8816 to benefit from higher yields, while resource–constrained farmers are 

recommended to grow Ujiba as yield losses are not significant when planting Ujiba as an 

alternative.  

 

Possible Management Practices and Conclusions 

 Transpired water (<265 mm) in all planting dates and production site scenarios was a 

far cry from sorghum crop water requirements (450 – 600 mm) which indicates that 

considerable yield improvement can be achieved through effective capture, storage, 

supplementary irrigation and reuse of rainfall water. Rainwater water harvesting can be 

used to capture rainfall during and outside the growing season. Richards Bay sorghum 

farmers would benefit most from such strategies as transpiration was low throughout 

planting dates, water scarcity linked crop failure occurred frequently and the agro-

ecology has a longer rainfall season.   

 Sorghum farmers in Deepdale and Ukulinga can explore increasing planting population 

to exploit high evaporated water. Increasing planting population however increases 

demand of soil nutrients and minerals, therefore appropriate soil fertilisation 

mechanisms are recommended with this strategy. In Richards Bay, farmers need not 

consider this strategy but focus on strategies that increase transpiration. Intercropping 

sorghum with a legume is recommended to effectively use evaporative water in all three 

agro-ecologies. Ideally, the legume of choice should have low water requirements and 

a short growing (≈90 days) season.    

 Different levels of mulching and low tillage farming practices are suggested to conserve 

soil moisture and increase soil cover. Extent at which each strategy is used largely 

depends on rainfall per growing season and evaporation, which differ per agro-ecology 

and planting date. This strategy is especially recommended when farming sorghum 

outside optimal planting dates discussed in this study. 

 Rainfall must be retained by techniques that reduce storm-water runoff, improve 

infiltration and increase the water storage capacity of the soil. Strategies that can help 
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reduce runoff through improved infiltration capacity and soil transmission 

characteristics are: mulch farming, soil conditioning, and ploughing methods that keep 

the upper soil layers porous at least for a short time especially in compact soils that 

restrict root development and infiltration  

 Contour farming, ridge and mound tillage, strip farming and terrace farming are options 

that are suggested to reduce run-off during extreme rainfall events. 
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CHAPTER 7 

GENERAL DISCUSSION 
 

7.1 Findings and Implications 

Local cereal crops that have desirable water use characteristics are currently being 

overshadowed by the exotic crops in terms of production area, consumption trends and research 

attention. This has led to declining cereal yields in sub–Saharan Africa (SSA). Increasing 

research attention on drought–tolerant cereals such as sorghum assists in providing knowledge 

valuable in increasing cereal crop water productivity under arid and semi–arid regions of SSA. 

This study aimed to determine water use and water use efficiency of different sorghum 

genotypes as well as to model water use of such sorghum genotypes for extrapolation to similar 

rainfed agro–ecologies. 

One critical question central to the study was the need to conduct a review of available 

knowledge on water use of cereals. The review found that of the range of cereals cultivated in 

SSA, sorghum was uniquely suited to production in arid and semi–arid regions. This was 

attributed to its high and stable water use efficiency, drought and heat tolerance, high 

germplasm variability, comparative nutritional value, and existing food value chain across SSA. 

Despite this, the review found that sorghum was socio–economically and geographically 

underutilized across much of SSA, especially in semi–arid and arid agro–ecologies where 

production it was most suited. The review concluded that sorghum inclusion and promotion in 

arid and semi–arid areas of SSA, especially among subsistence farmers, could improve water 

productivity and food security. However, its inclusion and promotion would require the 

availability of robust empirical information describing the water use (WU) and water use 

efficiency (WUE) of locally adapted varieties; this was shown to be lacking. 

To this end, a series of field trials were conducted to determine WU and WUE across 

different environments (spatial and temporal). Measurement of WU and WUE from two 

contrasting sites environments (Ukulinga and Mbumbulu) showed that WU and WUE varied 

significantly between the two environments. This was attributed, in part, to differences in soil 

physical and hydraulic properties. Ukulinga is characterised by clay loam (< 29% clay content) 

soils while Mbumbulu soils are clayey (> 60% clay). This resulted in higher WUE at Ukulinga 

(11.01 kg ha-1 mm-1) than Mbumbulu (7.49 kg ha-1 mm-1). The fact that clay soils have poor 

drainage characteristics relative to loamy soils is well established in the literature. The fact that 
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environments differ suggests the need for site–specific management practices that will 

maximise on WUE. 

Measured water use efficiency was sub–optimal. Rainfall received and crop water use was 

below sorghum water requirements reported by Jewitt et al. (2009). It is also important to note 

that not all rainfall is taken up by the plant in exchange for biomass production. Water losses 

through soil evaporation, and possible runoff during storm events possibly resulted in 

unproductive water losses. Under such circumstances, strategies that minimise evaporative 

water loss, conserve soil water and maximise crop transpiration are recommended to optimize 

yield and WUE. Such strategies include intercropping and conservation agriculture which have 

been reported to improve WUE of dryland cropping systems (Chimonyo et al., 2015). Again, 

the use of site–specific management practices would be encouraged. However, despite the low 

rainfall, the fact that sorghum was capable of producing some yield, as opposed to crop failure, 

confirms its drought tolerance and suitability for production low rainfall agro–ecologies.  

Another challenge in rainfed agriculture relates to selection of planting dates. Farmers either 

plant too early, exposing the crop to water stress during early establishment, or plant late, 

exposing the crop to stress during critical reproductive growth stages (Mabhaudhi and Modi, 

2011). This also tends to affect crop water use and WUE as the two are linked to length of 

growing season and soil water availability. To this end, this study evaluated sorghum WU and 

WUE in response to different planting dates. The results confirmed that planting date selection 

remains a key tool for managing water stress under field conditions. Planting early resulted in 

more favourable WU and WUE relative to recommended optimal dates. This was due to longer 

season duration relative to the optimum and late planted crop whereby the rains petered out 

early, triggering a hastening of the crop cycle. Consequently, a shorter season duration resulted 

in lower biomass and yield. However, even under these circumstances, sorghum was still 

capable of producing reasonable yields. While these may appear low, they would be a 

significant contribution to household food security. 

Sorghum genotypes adapted to low water availability through reduced canopy size and 

duration, low chlorophyll content index and stomatal conductance, and hastening phenological 

development. Low water availability was associated with low yields and WUE. Differential 

responses were observed in sorghum genotypes with respect to water availability. For PAN8816 

and Macia, WUE decreased in response to low soil water content. By contrast, WUE for the 

Ujiba and IsiZulu landraces improved under low water availability. This re-affirms reports that 

landraces are suited to harsh environmental conditions (Mabhaudhi and Modi, 2015). Landraces 

therefore are a valuable germplasm resource for breeding for drought tolerance in sorghum.  
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Water use efficiency values for PAN8816 (5.69 – 12.41 kg ha-1 mm-1), Macia (5.46 – 15.81 

kg ha-1 mm-1), Ujiba (5.02 – 13.36 kg ha-1 mm-1) and IsiZulu (7.36 – 11.00 kg ha-1 mm-1) 

genotypes obtained in the current study were higher than that of other major cereal crops 

(Chapter 2). This highlights the advantage of sorghum cultivation as an alternative cereal crop 

in improving water productivity in semi–arid and arid areas. It also suggests the possibility of 

improving WUE beyond the reported optimal values of 12.4 – 13.4 kg ha-1 mm-1 (Maman et al., 

2003). This could be achieved through adoption of management practices that allow for 

increased biomass accumulation through increasing transpired water use in crops (Mabhaudhi 

and Modi, 2015). Sorghum is uniquely suited to address issues of water productivity and food 

security in rainfed agro–ecologies. Consistent with other observations, site specific 

management decisions to improve crop transpiration, water conservation, reduce run–off, 

improve plant available water and increase ground canopy cover could improve sorghum yield 

and water productivity. This could be achieved through modelling sorghum yield response to 

water and mapping sorghum water productivity for arid and semi–arid regions. 

The need to conduct multi-site evaluation trials increases cost and time in research. In this 

regard, the use of crop models is appropriate as they can be applied to consider such scenarios, 

thus saving on time and cost (Mabhaudhi et al., 2014). The AquaCrop model satisfactorily 

predicted yield response to water of sorghum genotypes. The model is a canopy level model, 

and AquaCrop predicted sorghum canopy cover satisfactorily for variable rainfall scenarios. 

This confirmed model use of explicit and intuitive parameters to predict yield response to water, 

while maintaining sufficient balance between accuracy, simplicity and robustness (Steduto et 

al., 2009; Raes et al., 2009). Sorghum farmers can use the model and genotype specific 

parameters developed in this study in making tactical, strategic and operational management 

decisions to optimize sorghum yield and water use. The ease of obtaining minimal crop data 

used in calibration is encouraging to smallholder farmers and extension services for prediction 

of sorghum water use in decision making, even using genotypes not considered in this study. 

A major aspect of the application crop models is their ability to be used to answer ‘what if’ 

and ‘when’ questions (Mabhaudhi et al., 2014). In this regard, following calibration and testing 

of the model, AquaCrop was applied to evaluate planting date scenarios across three different 

agro–ecologies. The model performed well for the range of agro–ecologies considered. Model 

simulations confirmed sorghum’s suitability for rainfed agriculture in a range of environments. 

The ability of the model to simulate yield response to water of sorghum varieties also confirmed 

its robustness (Steduto et al., 2009) and suitability for extrapolation to rainfed agro–ecologies. 

This implies that the model can be used to extrapolate sorghum water productivity to agro–
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ecologies other than that of initial calibration. Therefore, for semi–arid and arid agro–ecologies 

of SSA where soil and weather data are available, the use of crop modelling is recommended 

as a cost–effective, relatively accurate tool to predict sorghum yield response to water. 

Separation of water use into transpiration and evaporation was particularly useful in developing 

best management practices to optimize transpiration (productive water loss). The model did not 

accurately capture sorghum canopy decline as it did not consider sorghum’s quiescence growth 

habit which allows for delayed canopy senescence under water–limited conditions. The model 

over–estimated biomass and yield, especially for the late planting date when severe water stress 

was observed under field conditions. Over–estimation of biomass, and consequently yield, was 

attributed to the default conservative WP parameter which may not be representative of 

sorghum genotypes used in this study. Therefore, genotype calibrations done in this study have 

to be used with the discussed limitations in mind. Adjustments for biomass and yield over–

estimation are recommended during application to reflect close approximation to actual field 

conditions.   

Seasonal rainfall, run–off, amount of soil evaporation, crop transpired water, and ground 

canopy cover were identified as key parameters influencing sorghum yield and water use. 

Tactical, strategic and operation management decisions to improve sorghum water use. 

Rainwater harvesting and its use in supplementary irrigation was suggested to improve 

agricultural water supply. Increasing planting population, mulching and intercropping with low 

water requirement crops as a live mulch were recommended to improve ground cover, 

transpiration, and reduce runoff. Minimum tillage farming practices are suggested to conserve 

soil water and increase soil cover. Contour farming, ridge and mound tillage, strip farming and 

terrace farming are options that are suggested to reduce run-off during in regions that experience 

flash floods.  

 

7.2 Conclusions  

This study set to determine water use characteristics and water use efficiency of different 

sorghum genotypes as well as to model water use of such sorghum genotypes for extrapolation 

to similar rainfed agro–ecologies. Sorghum genotypes were cultivated under sub–optimal 

rainfall and/or marginal soils, and managed WUE and yield relatively higher that of other major 

cereals. This confirms sorghum suitability to improve cereal water productivity in semi– and 

arid regions of SSA. Sorghum adaptation to marginal environmental conditions was attributed 

to adaptation through crop morphology, physiology and phenology. The observed differences 

between sorghum genotypes used in this study confirms the importance of cultivar selection as 
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a tactical decision. AquaCrop simulated sorghum yield response to water satisfactorily for 

rainfed ecologies other than that of initial calibration. This implies that AquaCrop can be used 

to assess production options for sorghum with minimum input requirement. This study 

concluded that sorghum is uniquely suited for production under semi– and arid, rainfed 

agriculture systems.  

 

7.3 Recommendations 

This study highlighted the need to develop parameters for canopy sensitivity to water stress to 

improve model canopy simulations in local genotypes. Further experiments are also suggested 

to develop genotype specific water productivity parameters to improve model simulation of 

biomass and yield for local genotypes. Studies on nutritional value of sorghum are 

recommended in order to determine nutritional water productivity (NWP) of sorghum. This 

would determine how water limitation under rainfed production affects end–use of sorghum. 

There is a need to calibrate and test AquaCrop for other sorghum genotypes grown in SSA. An 

easily accessible database for genotype–specific calibration parameters database should be 

developed. This will allow for improved model calibration, testing and application for 

developing recommendations to assist farmers. 
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