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Abstract

In the case of longitudinal studies, measurements are taken repeatedly over a sequence of

time points on the same experimental unit. The key property intrinsic to repeated measures

data is that observations within an individual or unit of measurement are correlated. This

correlation structure must be taken into account when modeling such data. But in cross

sectional survey studies, measurements are recorded once for each unit, but we can still

have correlated data for example measurements on individuals from the same household,

students within a class in a school, patients within a hospital and many more. In both

cross-sectional and longitudinal studies, missingness may occur in either covariates or out-

come variable or both. The use of standard regression, analysis of variance and multivariate

analysis of variance techniques may produce biased results because these methods entail

some mathematical assumptions that do not hold for repeated measurements data. How-

ever, some appropriate methods that are capable of dealing with the incomplete nature of

the data with the possibility of identifying the reasons for incomplete data in the analysis

are used. This thesis studies and compares the performance of several methods for missing

data that can be used under specific underlying assumptions and data types both discrete

and continuous. These assumptions covers ignorability and non-ignorability but we focus

more on former which comprises missing completely at random (MCAR)and missing at

random (MAR).

Actually the objective is to handle data with either missing covariate or response or both.

The thesis begins with the case of data with incomplete outcome. In Chapter 2, the thesis

compares the performance of three different enhancements of the generalized estimating

equations (GEE); the weighted GEE, multiple imputation (MI) based GEE and doubly

viii



robust (DR) based GEE. Chapter 3 compares and reveals the strengths of MI (fully condi-

tional specification) against the inverse probability weighting method with a real data and

simulation studies. In Chapter 4, the thesis presents the use of MI to handle ordinal lon-

gitudinal data with missing observations in both the predictor and response variables. The

MI strategies are multivariate normal imputation (MVNI), fully conditional specification

(FCS) and Expectation maximization (EM) which are compared in both application and

simulation studies. We used ordinal negative binomial count model in the analysis and ap-

plied the model in the ordinal simulation study. Chapter 5 presents the conclusion derived

from each chapter of this thesis and the possible areas of further research.
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Chapter 1

Introduction

1.1 Introduction

The word termed missing or incomplete data are indications that certain types of informa-

tion are missing concerning a particular interest in the analysis, this shows that not all the

needed information were recorded. This occurs in studies on individuals which is the case

of longitudinal studies, but not limited to animals, plants or groups of individuals. In addi-

tion, the occurrence of missing data is very common in statistical and design analysis, but

not of interest in any fields of research as frequently encountered by the statisticians. Miss-

ing data may be seen as a nuisance, create problems when it has to do with the analyses of

incomplete data because most softwares and standard statistical techniques are designed to

assume complete data for the variable(s) included in the analysis. The importance of the

statistical analysis is to produce valid and efficient results about the population of interest.

It is achievable with or without incomplete data, but the process may be complicated in

the presence of missing data. Adequate planning should be given to the study in order to

reduce or avoid missing data and make the study scientifically sound. However, irrespec-

tive of the efforts involved in the planning design and collection of data; missing data is

unavoidable in data-based research (Allison [1], Carter [2], Regoeczi and Ridel [3], Rudas

[4], Stumpf [5]). As detailed in (McKnight et al., [6]), the problems of incomplete data are
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classified under three categories which affects either complete individuals or specific items,

namely cases, variables and occasions. The first category happens when the individuals in

the planned study fail to give data for a study. The second, missing variables, the missing

data happen when individuals provide part information but not all variables. In the third

category, missing occasions (i.e., follow-up data), this is when participants are available

for some but not all of the data collection periods in a study. Other contributory factors

to incomplete data apart from human and study design errors are: (1) when the questions

raised poses no significant importance to such individual; (2) when the questionnaire is

lengthy an individual may not attempt all the sections; and (3) illness or other uncomfort-

able conditions of the participants. In addition, missingness may be experienced regardless

of the study field due to data entry errors or omission of data. This may occur when the

interviewer fails to ask a particular question in a way that the respondent would have un-

derstood. This happens especially when the interviewer have inadequate training.

Explaining the effects of missing data can be in terms of the amounts, the patterns of miss-

ing data and also the techniques applied to handle it which also have implication on the

interpretation of the statistical study of the analysis. Almost all the reasons of missing-

ness can be identified with three obvious challenges. The first is associated with loss of

information, efficiency or power. Second is handling of data problems, computation and

analysis as a result of discrepancies in the data patterns and non-applicability of standard

software. According to (Barnard and Meng, [7]), the third is marked biased when there are

differences between the observed and unobserved data. Alternatively, it may mean that the

data is insufficient to obtain any meaningful inference from the study. Furthermore, it is

also difficult to specify the impact missing data might have displayed in the study analysis

statistically. The extent of the impact of missing data on study inferences depend on:

• The amount of incomplete data: The impact is in relation to the study inferences.

When there is greater amount of missing data; it has a great impact on the statistical

results. In other words, the power of the statistical tests can be compromised (De
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Leeuw et al., [8]).

• The mechanisms of missing data: The process that causes missing data may affect the

validity of the statistical inferences. If the process depends on causal effects factors,

the missing data can have dramatic impact on the validity of the results.

• The methods or techniques the statistician or data analyst will apply to handle these

incomplete data (Musil et al., [9], Streiner [10]).

Missing data are an important issue to address in many disciplines of science including

medical and epidemiological studies, psychometry, econometrics and surveys (Friedman et

al., [11], Green et al., [12], Piantadosi [13]) and epidemiological studies (Kahn and Sempos

[14], Clayton and Hills [15], Lilienfeld and Stolley [16], Selvin [17]). As detailed in studies

conducted by (Schafer et al., [18], Rubin [19], Rubin et al., [20]) to mention but few.

Apart from these, there are other examples in the context of observational and experimental

data in non-human life settings such as environmental, agricultural and biological studies.

The focus in the current thesis is on both longitudinal and cross-sectional data. There are

several earlier studies on the problem of missing data largely concerned with algorithmic

and computational solutions to the induced lack of balance or deviations from the intended

study design (Molenberghs and Verbeke, [21]). Foremost research on missing data included

the work by (Affifi and Elashoff, [22]) and (Hartley and Hocking, [23]). Thereafter, we

have in literature other applications such as Expectation Maximization (EM) introduced

by (Dempster et al., [24]), data imputation and augmentation (see, Rubin [19]; Tanner and

Wong [25]) which has strong combination of computing resources of solving the difficulties

associated with computation. These and other studies ushered in a revolution to the idea of

handling missing data in statistical analysis.
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1.1.1 Patterns of missing data

The pattern of missing data means the description and explanation of the totality of the

dataset; where the values are observed and where values are missing respectively. The

techniques to handle missing data are varied. There are those that are robust in handling

any missing data pattern and some which are limited to specific missing data patterns. In

addition, having identified the variables that define the pattern, a suitable analysis procedure

may be proposed. In order to investigate the missing data pattern, it is of necessity to

identify the cases and variable that contribute to the missing data (Schafer and Graham,

[26], Allison, [27]). In a standard approach, let Y = (yi j) be an (n×K) rectangular dataset

containing incomplete data, with ith row yi = (yi1, ...,yik), where yi j denotes a value of

variable Yj for individual i. Furthermore, when missing data are present, we define the

missing data indicator matrix, R. In addition, R is defined as follows: R equal 1 if, yi j is

observed, and 0 otherwise. The missing data pattern may simply be defined by the matrix

R whose (i, j)th element is Ri j. The matrix R is two-dimensional by individual and variable

but for repeated measurements we have a third dimension denoting time. Thus typically

the notation would be yi jt the value if Yj for individual i at time t.

1.1.2 Missing data mechanisms

Reasons while data are missing are unknown and also out of control of the analysts/statisticians,

but the assumptions about the approach that generates the data and its implications for sta-

tistical inferences are necessary. In the analysis of incomplete data, missing data mech-

anisms which inform the methodologies to be employed are necessary to explain the de-

pendencies between unobserved data and the missingness process. (De Leeuw [28], Little

and Rubin, [29]). Dropout mechanism is used in relation to when participants drop out

of a clinical trial study prematurely, especially when it is longitudinal studies. Many re-

searchers misuse the term “dropout” in trials even when missingness occurs not because
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a subject chooses to dropout, but because the protocol is not written to follow-up partici-

pants after treatment discontinuation. Some of the reasons that may warrant discontinua-

tion can range from adverse effects to lack of efficiency, or both. As described in (Rubin

[30], Little and Rubin, [31]), missing data mechanisms can be broadly classified into three

categories. First, data is Missing Completely at Random (MCAR) when the mechanism

that generates the missing observations is a truly random process unrelated to any mea-

sured or unmeasured features of the study participants. Missing at Random (MAR) is the

second category, when the missingness mechanism is random meaning conditional on the

observed measured characteristics, the missingness mechanism is independent of the un-

observed measurements. The final category, Missing Not at Random (MNAR) is when the

missingness process depends on unobserved measurements and possibly on the observed

measurement features of the study trial. Each mechanisms refer to the probability of miss-

ingness, given information about the variable(s) with the missing data, associated variables

and a hypothetical mechanism underlying the missing data. The classifications described

by (Rubin, [30]) are in relation to the bias level that missingness may have on statistical

analysis where it is stated that the potential impact of MCAR is negligible and MNAR po-

tential is of greatest impact. Moreover, it is a bit difficult to differentiate which categories

of missingness are in focus, unless one understands the rationale for participant’s dropping

out. This complexity was addressed in (Molenberghs et al., [32]) where it is reported that

there is no formal-based distinction between MAR and MNAR. This is because for any

MNAR model there exists a MAR counterpart that fits the data rightly, but their difference

is in the prediction of what is unobserved. Furthermore, the role of the MNAR model is in

sensitivity analysis which suggests that there are changes in assumptions, the conclusions

from the primary (typically MAR) analysis are also changed. Accordingly (Molenberghs

and Verbeke, [33] and Molenberghs and Kenward, [34]), defined sensitivity analysis as an

analysis in which several statistical models are simultaneously considered under different

missing data scenarios.
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1.1.3 Ignorable approach

In addition to fully understanding the different missing data mechanisms broadly speaking

there are two classes of incomplete data as described by (Rubin, [30]): these are ignorable

and non-ignorable missing data. Under the assumption that missing data happen under

either MCAR or MAR mechanism, the problem is termed ignorable, and the missingness

process need no explicit modeling. When data are ignorable, the likelihood-based approach

and Bayesian frameworks allow to ignore the missingness process since they use only ob-

served data conditional on the model being correctly specified (Little and Rubin, [31])

On the other hand, if the data are MNAR; the missingness process needs to be modeled

(Little and Rubin, [35]). When applying incomplete data classifications, it is important to

point out that ignorability applies to the missingness mechanism and should be construed

to mean that the analyst should ignore the missing values. This implies that the factors that

cause missingness are unrelated or weakly related to the estimated intervention effect. In

a restricted sense, the term refers to whether missingness mechanisms must be modeled

as part of the parameter estimation process or not (Allison, [27]). Moreover, ignorability

becomes useful when the need arises to evaluate the impact of incomplete data in the anal-

ysis and its inferences. Because the way they are missing is random, MCAR data would

not have had systematic effect between the complete and incomplete observations on re-

sults. However, a systematic process underlying the missingness is experienced in the case

of MAR data, but this effect can be modeled using the observed data (McKnight et al.,

[6]). For explanation, assume that x is the auxiliary variable observed for the sample, y is

the study variable subject to missingness and r is the response missingness of the status

variable, and that interest is to find the best prediction model for y in terms of x. In pre-

dicting the incomplete data a prediction model can be used especially when the response

missing data mechanism is ignorable, which means the relationship between y and x in the

respondents hold for the non-responding part of the sample. Intuitively, an incomplete data

is ignorable when the study variable y is independent of the value of the status variable r
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given the auxiliary variable x. But when the missing mechanism is non-ignorable it means

the probability of y being missing depends on y itself, despite controlling of x thereafter.

Thus, it should be noted that MNAR mechanism violates the principle of ignorability and

requires adequate measures to account for the effects of data that is MNAR which is known

as non-ignorable case. Furthermore, because the effect of non-ignorable mechanism is un-

known this implies inadequate information from the dataset used in the analysis to allow

the statistician to model and study the approach in which the data are missing. In fact,

handling of non-ignorable missingness must be with caution because it is a bit difficult

than ignorable missing data. As detailed in Thijs et al., [36], making a satisfactory analysis

of data under the non-ignorable is impossible. In research, many authors have studied the

role of non-ignorable missingness in different applications, see (Belin et al., [37], Wachtar

[38], Little and Rubin, [35], Demirtas and Schafer [39]). As described in (Verbeke and

Molenberghs, [40]), to investigate the impact of deviations from the ignorable missingness

on the inferences, there is need to apply sensitivity analysis in which models for the non-

ignorable mechanism process play an important role. This thesis deals with models under

the ignorability mechanism assumption.

1.1.4 Methods of handling missing data

Having to look at the challenges that can come up when there are incomplete data, the

following question is forced upon analysts. What techniques can be used to solve these

potential problems? The goal is to use techniques that generate unbiased inferences.

Several techniques have been raised in handling the incomplete data. A holistic review of

some of these techniques is given by (Schafer and Graham, [26]) which range from ad hoc

methods to the model-based methods which include multiple imputation and augmentation

techniques. Thus, an important discussion regarding the technical details of handling in-

complete data is provided by (Schafer and Olsen, [41]). In addition, (Rubin, ([19], Van

der Laan and Robins, [42], Molenberghs and Verbeke, [21], Tsiatis, [43] and Molenberghs
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and Kenward, [34]) have all conducted thorough studies on methods that can be used to

handle incomplete data. Some techniques adopt different approaches to addressing miss-

ing covariates and outcomes. Although the incomplete data problem is ubiquitous, there

is still no firm decision on what statistical processes should be applied for the analysis or

the circumstances under which they should be used. In literature, we have several meth-

ods that can be applied to handle incomplete data, as stated before ranging from simple

ad hoc to model-based methods. There is need to understand these methods and appro-

priately applied in relation to missing data and should be proved theoretically before use

in practical terms. Moreover, the use of each method depends on the specific missingness

mechanism, but it should be noted that it is difficult to identify the missingness data mecha-

nism. Before 1970’s, incomplete data were handled through editing (Schafer and Graham,

[26]). Until the mid 1970’s, the major techniques that were applied to deal with missing

data included case deletion, single imputation and maximum likelihood estimation. Right

from the mid 70’s to the 1980’s, other techniques like expectation maximization (EM) al-

gorithm and multiple imputation using maximum likelihood estimation were developed

to solve wide range of problems. During this time, a framework of inference from in-

complete data was developed by (Rubin, [30]). Thus, the expectation maximization (EM)

procedure was propounded by (Dempster et al., [24]) as a famous instrument for making

full use of maximum likelihood (ML) for handling the missing data analysis. A break-

through initiative of multiple imputation was formulated by (Rubin, [44] and Little and

Rubin, [19]), but many challenges were identified in relation to creation of multiple impu-

tations in terms of computational facilities and capabilities available (Schafer and Olsen,

[41]). In 1980’s, a lot of developmental resources were available in solving this difficulty

such as improved computer technology and new methods for Bayesian simulation (Schafer,

[45]). The setbacks associated with single imputation and case deletion were documented

by (Little and Rubin, [19]). Solutions to problems present in using maximum likelihood

estimation were advanced in the 1990’s. At that time the EM algorithm was extended to

different forms, such stochastic EM algorithm (SEM), stochastic expectation conditional
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maximization algorithm (SECM). Also at the same time, Bayes simulation methods such

as Markov Chain Monte Carlo (MCMC) and data augmentation were developed. In re-

cent times, analysts concentrate on more modern methods that avoid the specification of

a full parametric models (Robins et al., [46]). Right from 1995, several approaches have

been discussed and developed for dealing with incomplete data with diverse applications.

Recently, other methods have been proposed to assess the sensitivity of the inferences to

the distribution of missing data mechanisms (Verbeke and Molenberghs, [47]). In view

of non-ignorability mechanism setting, the main interest has been dropout in longitudinal

clinical trials data where subjects may drop out of the study for reasons closely related to

the responses being measured (Diggle and Kenward, [48], Little, [49]; Verbeke and Molen-

berghs, [47]; Molenberghs and Verbeke, [33]; Molenberghs and Kenward, [34]). Next we

briefly discuss method commonly used to deal with missing data and review the existing

literature in which the effectiveness of these techniques are examined in the analysis of

missing data.

1.1.5 Deletion methods

It is obvious that there are many ways to deal with missing data. Without loss of gener-

ality we refer to the case of longitudinal data. One of these ways is to discard individuals

with incomplete sequences, and then only the complete data are analyzed. (Nie et al.,

[50]).This technique is what is termed as the deletion methods. Under this technique, there

is no replacement or imputation of missing observations and adjustments to account for the

incomplete values. The method however suffers from some of the obvious inefficiencies

such as losing data for statistical power, although of different degrees and failure to give the

missing data mechanism proper attention. The advantage of the method is that it is simple

and easy to use with many of the standard statistical softwares. Thus, (Brown [51]) states

that some the of deletion methods are good options, but only when used under specific

circumstances (i.e., when the amount of missing data is small and the data are MCAR, for
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example, the complete case discussed below and the available case which uses all available

case and discards data only at the level of the variable, not at observation level). In other

words, these circumstances are not common. (McKnight et al., [6]) suggest that deletion

methods should be avoided when possible. In addition, no recommendation for the use of

any deletion methods except in rare cases where the amount of missing data is small (Lit-

tle and Rubin, [35]). Hence, we briefly describe the complete case as a deletion method,

giving explanation of its usefulness, strengths and weaknesses.

Complete case analysis

Complete case or list-wise deletion analysis is a simple deletion procedure in which the

analysis uses only those individuals with full recorded information. Concerning the vari-

ables in context, complete case relies on the available observations. In fact, this method

has several advantages. To start with, it is simple to use because the method is effective and

may be satisfactory when the amount of missing data is limited. However, in such situation

it becomes pertinent that the deleted cases are not unduly influential (Schafer and Graham,

[26]). Another advantage is that its conduct is easy. In most statistical softwares, it is used

as default but details of implementations vary.

The disadvantages of this method are as follows: (1) it is capable of producing biased es-

timates because of the loss of statistical power especially when drawing conclusions for

sub-populations; and (2) when data are not MCAR, technique can lead to serious biased

inferences. However, the validity of the method relies on MCAR data (Little and Rubin,

[35]), but even when MCAR holds, it can still be inefficient (Schafer and Graham, [26]).

Thus, (McKnight et al., [6]) state that one should give careful consideration before the use

of this method regardless of its ease of use. In addition, one can easily conclude that com-

plete case can be misleading. Thus, examples were presented by (Kenward et al., [52]) and

(Wang-Clow et al., [53]) where complete case led to misleading inferences.
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1.1.6 Imputation-based techniques

In contrast to methods highlighted above, the focus is on the techniques that produce pos-

sible values for the incomplete data. These options fall under imputation methods, where

one “fills-in” (imputes) the missing data to obtain a full dataset, which is then analyzed by

standard statistical techniques without concern as if the set represented the true and com-

plete dataset (Rubin ,[19], (Little and Rubin, [35]). This gives the main idea behind the

frequently used approaches for imputation which includes: single and multiple imputation

(Little and Rubin, [35]). For the purpose of the appropriate evaluation of imputation uncer-

tainty; multiple imputation fills in more than one value for each missing observation (Ru-

bin, [19], Little and Rubin, [35]). The difference between multiple and single imputation is

that; single imputation procedure substitutes only one value for every missing observation

in the dataset (Little and Rubin [35], [29]). In this section, we outline a number of single

imputation techniques whose validity lies under the assumption of ignorable missing data

mechanism (Rubin, [19], Allison, [27], Schafer and Graham, [26]).

There are several single imputation methods which include: (1) mean imputation; where

the missing items are replaced with the estimated mean of the dataset for that variable; (2)

last observation carried forward (LOCF) is where the last observed value in longitudinal

or repeated measures context is used to replace or impute the missing observation; (3)

regression imputation, where the missing data are imputed using the prediction taken from

a multiple regression analysis; (4) hot Deck imputation, in which the missing data can be

replaced with the observed data taken from a matched data from the variables that contain

non-missing data; and (5) stochastic regression imputation, where the missing observations

are replaced by a value that is predicted using regression imputation plus a residual that is

drawn to reflect uncertainty in the predicted value. The procedure of single imputation

techniques are flexible in dealing with incomplete data and its implementation is fast in

several statistical software packages (such as SAS, R, SPSS, Winbugs and others). On

the other hand, to reproduce accurately known population inferences (parameter estimates
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and standard errors), each of these methods have been found to be marred by a number

of deficiencies (Schafer and Graham, [26]). The problems associated with these methods

are as follows: (1) these techniques perform poorly even when the ignorable missing data

mechanism (MCAR or MAR) holds, a situation where the usability is limited to restricted

set of assumptions (Allison, [27]); (2) capable of producing biased results that may or

may not be predictable; (3) When these methods are used, the standard errors and standard

deviations are capable of being underestimated, and the possibility committing type-I error

is higher (See, Allison, [27]).The variability of the estimators is also underestimated since

imputed data are treated as observed data; and (4) these methods have high chances of

producing inconsistent point estimates even when data are MCAR.

1.1.7 Data augmentation methods

In data augmentation methods the shortcoming associated with the deletions techniques are

avoided. These methods obtain parameter estimates from the available data as well as from

either the probability model or an underlying distribution. As opposed to the single impu-

tation techniques, no replacement of missing observations in data augmentation methods

is done. During parameter estimation, missing values are taking into account in this algo-

rithm as follows, observed data and the relationships between observed data and several

underlying ensure that parameter estimates from the observed data are augmented with the

additional information provided by the proposed probability model or underlying distribu-

tion. In view of incomplete data, Maximum Likelihood (ML), Expectation Maximization

(EM), Markov Chain Monte Carlo (MCMC) and weighting methods are considered to be

augmentation methods. In contrast to this, (McKnight et al., [6]) argued that the classifi-

cation of many of the augmentation methods are not clear-cut especially the MCMC, ML

and EM methods. In addition, (Allison, [27]) describes the MCMC method as an augmen-

tation method within the use of multiple imputation. According to (Little and Rubin, [35]),

the ML and EM techniques are described as model-based techniques, while (Schafer, [45])

12



also describes these approaches as data augmentation methods. Thus, we briefly discuss a

few of these techniques which include ML, EM and weighting methods.

Maximum likelihood (ML)

The use of or by definition the ML is not designed to deal with missing data as for example,

the LOCF or multiple imputation. ML is an estimation algorithm that estimates parameters

under different models or distributional assumptions such as structural equation models

(SEM) and ordinary least squares (OLS) regression. Generalized linear models (GLMs)

assuming exponential family of distributions also fall under ML estimation. Thus we give

a brief explanation on the ML as a technique for handling incomplete data. First, (Little

and Rubin, [29]) are among the early researchers to give examples where ML is applied to

missing data problems. In addition, in many diverse ways ML is seen to be an excellent

procedure for dealing missing data. The only caveat is the likelihood formulation should

be capable of accommodating both complete and incomplete data sequences or structures.

ML performs well and gives unbiased estimates especially when missing data are ignorable

(MCAR or MAR) (Arbuckle, [54]). Therefore, the description of ML under this assump-

tion is fairly easy. When this assumption is met, the ML estimators for incomplete data give

estimates that have the following properties: unbiased estimates even when the samples are

large, asymptotically efficient (small standard errors) and asymptotic normality is satisfied

which mean the estimates approximate a normal distribution which may be applied to ex-

ploit a normal approximation for statistical results, such as obtaining confidence interval

and p-values (Mcknight et al., [6]). The implementation of ML in most statistical software

packages is possible.

Expectation maximization (EM)

The EM algorithm was developed by (Dempster et al., [24]). This process calculates and

imputes a value for each missing observation based on the best prediction model. The
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EM algorithm is a very general iterative algorithm for ML estimation in incomplete data

problems (Little and Rubin, [31]). This algorithm also falls under the less restrictive MAR

assumption. The rationale behind the use of ML is to deal with missing variable issue

in a more inclusive manner, and the complications associated with ML estimation when

trying to solve smaller complete data problems. The EM algorithm deals with missing

items using the following procedures: (1) fill-in the observations for missing variables by

using the estimated values generated by ML; (2) estimate parameters based on data in step

1; (3) re-estimate parameters based on the parameter estimates from step 2; and (4) re-

estimate parameters based on the re-estimated data from step 3, and so on, continue the

iterative process until the last procedure converges on a result that negligibly differs from

the previous result. There are only two steps on each iteration of the EM algorithm, namely:

the expectation and maximization steps (Little and Rubin, [31]). Each step is completed in

one iteration within each algorithm cycle; and this process is repeated until a convergence

criterion is satisfied. These steps were justified in theory; as shown by (Dempster et al.,

[24] and Little and Rubin, [31]). In accordance to (Dempster et al., [24]), the inferences

obtain from the fitted parameters (on convergence) are the same with the local maximum

of a likelihood function which is the maximum likelihood estimate in the case of a unique

maximum. The disadvantages of the EM algorithm are two: first, it takes time to converge,

and second, it does not provide direct measure of precision for the maximum likelihood

estimates. Many researchers have proposed alternatives to overcome these setbacks, and

we make reference to the methods as provided by (Louis, [55], McLachlan and Krishnan,

[56], Rubin, [57] and Baker, [58]).

Weighting methods

Weighting methods are based on the observed values as developed by (Flanders and Green-

land, [59], and Zhao and Lipsitz, [60]). In view of this, when all the missing items in

the analysis are ignored, the remaining observed values are weighted with respect to how

their distribution approximates the full sample or population. The use of these methods
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help correct for either the standard errors present in the parameters or the population vari-

able. In order to obtain an appropriate weights, the predicted probability of each response

is estimated from the data for the variable with incomplete values. Furthermore, weight-

ing methods stand as a better alternative under certain circumstances, especially when the

pattern of missing data is monotone or is under univariate analysis.

In the view of survey data, (Rubin, [19]) describes many techniques for applying and es-

timating weights. Under an appropriate joint model of outcome and covariates, weighting

methods are in some situations expected to have inferences that are the same with those

of multiple imputation (Schafer and Graham, [26]). In biostatistics study, a weighting re-

gression model was developed by (Rubin et al., [20]) which needs an explicit model for

missingness but relaxes parts of the parametric assumptions in the data model. The exten-

sion of the generalized estimating equations (GEE) developed by (Liang and Zeger, [61])

was the new weighting technique. This new technique is termed weighted generalized esti-

mating equations (WGEE). The validity of the classical GEE method is only when data are

MCAR, but the WGEE method can accommodate missing data if they are MAR, as long

as the model for the missing data with respect to the observed outcomes or covariates is

correctly specified (Rubin et al., [20]). In addition, (Rubin et al., [20]) discusses and ex-

tends this method and also (Robins et al., [62]). We give elaborate detail of this in Chapter

1. In fact, several statistical software packages can perform weighting methods. A wide

range of researchers have conducted studies on the weighting methods, such as (Schluchter

and Jackson, [63], Ibrahim [64], (Lipsitz and Ibrahim, [65] [66], (Horton and Laird [67],

Carpenter et al., [68] and (Seaman and White, [69]).

1.1.8 Non-ignorability models in longitudinal data

All of the methods fail to give an optimal solution to the challenge of non-ignorable miss-

ing mechanism. This type of missingness creates a challenge especially in the area of

longitudinal data setting. In longitudinal studies, there is correlation in the observations
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that are repeatedly measured over time and part may be lost due to dropout from the trial.

Missingness happens due to dropout (premature withdrawal) or attrition, which indicates a

unique situation coming up from the longitudinal studies where subjects do not complete

the trial for whatever reasons. Dropout is a special case of monotone missing data pattern

(Diggle and Kenward, [48], Little, [49], Molenberghs et al., [70], Michiels et al., [71]). In

literature, many applications indicate that it is pertinent to accommodate dropouts in the

modeling process especially (Diggle and Kenward, [48], Little [72], [73], [49], Verbeke

and Molenberghs [47] and Molenberghs et al., [74]). On the other hand, it is suggested that

modeling of measurement process jointly with dropout may be considered more appropri-

ate. However, in the area of non-ignorable dropout, a totally satisfactory statistical analysis

of the data used in the study is not feasible, and one needs to be careful when handling the

non-ignorable case.

In the situation of non-ignorable missingness, advanced modeling strategies have been de-

veloped to model the joint distribution of the dropout indicators pattern and the measure-

ments process (observed and missing measurements included). Summaries as provided by

(Little, [49], Verbeke and Molenberghs, [47] and Molenberghs and Kenward, [34]), the

possibility of modeling the joint distribution of the measurements and dropout indicators

rely on at least three factorizations. First, there is outcome-dependence factorization, where

the dropout indicators are conditioned on the measurements. In the case of continuous lon-

gitudinal data, the adoption of the technique was given by (Diggle and Kenward, [48]).

The second is pattern-dependence factorization, where the distribution of the measure-

ments is a mixture of the distribution for individuals of distinct sub-groups determined by

their dropout patterns. Lastly, is the parameter-dependence factorization which is condi-

tional on the group of parameters shared by the two components so that the measurements

process and dropout indicators are conditional independent. In relation and based on the

above-stated factorizations, there are three types of modeling strategies: selection models,

pattern-mixture models and shared pattern models. In accordance to (Vach and Blettber,

[75], Molenberghs et al., [76], and Verbeke et al., [77]), the limitation to any of these model
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factorizations is that they are sensitive to the assumptions made on the measurements model

and the dropout mechanisms. Thus, the different analysis models may have a unique effect

on the inferences obtained from the same study.

1.1.9 Research objectives

The aim of this thesis is to investigate the different methods of handling longitudinal and

cross sectional missing data, with major focus on the non-Gaussian setting. In clinical

trials, categorical (binary and ordinal) and counts data with missing covariates, responses

or both are very frequent but the methods of dealing such data are less standard, due to

non-availability fo a simple analogue to the normal distribution. However, we begin with

the non-Gaussian case. The specific objectives are:

1. To compare three different enhancements of the generalized estimating equations,

namely the weighted generalized estimating equations, multiple imputation based

generalized estimating equations and doubly robust based generalized estimating

equations in dealing with incomplete binary responses subject to MAR dropouts.

2. To investigate the difference between the multiple imputation and inverse probability

weighting methods when applied on incomplete outcomes subject to MAR dropouts.

3. To investigate various multiple imputation strategies to handle ordinal responses with

monotone dropout patterns.

4. To demonstrate and contrast the application of two families of MNAR-based models,

namely selection and pattern mixture models for investigating the potential influence

that dropout might exert on the dependent measurement of the considered data as

modeling frameworks that could be used for sensitivity analysis.

17



1.1.10 Thesis outline

This thesis has a collection of 3 research papers which have been submitted for publication

in international accredited journals. Out of these papers, one has been published and one

has been accepted for publication while the remain are still in review. The papers start from

Chapters 2 to 5 in which each chapter presented as a stand alone and not as a continuation

of the existing one. On the other hand, the general concepts in these chapters are somehow

interconnected as a way to achieve the total goal of the thesis. In Chapter 1, the introduc-

tion and general ideas to the thesis is provided. The remaining parts of the thesis is outlined

as follows. As earlier stated, the objective was to handle discrete data, therefore the thesis

began with the case of binary outcome. In Chapter 2, the thesis presents a comparative

study of three different enhancements of the generalized estimating equations methods in

handling incomplete longitudinal binary outcome. A simulation study was conducted to

study the performance of these techniques. In Chapter 3, the thesis compared two methods

of handling incomplete data. These are multiple imputation and inverse probability weight-

ing to handle a survey data with non-response. A simulation study is conducted to study

the efficiency of the methods. Chapter 4 deals with multiple imputation and likelihood-

based approach in handling ordinal longitudinal responses with monotone dropouts. The

multiple imputation and likelihood-based strategies involved are multivariate normal im-

putation, fully conditional specification and expectation maximization which are compared

in both simulation studies and real data application. In the application, the dataset is on

patients with HIV-Lung health concerns (HIV-lung data). In chapter 5, the focus is on the

conclusion and areas of further research.
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Chapter 2

A comparison of three different enhance-

ments of the generalized estimating equa-

tions method in handling incomplete lon-

gitudinal binary outcome

Abstract

This paper compares the performance of three techniques of analyzing incomplete longi-

tudinal binary outcome data when the missingness is due to dropout. It is assumed the

response data are missing at random. We consider three modifications of the generalized

estimating equations (GEE) based on inverse probability weighting (IPW) and multiple

imputation (MI). In the weighted GEE (WGEE), observations are weighted by the inverse

of the probability of being observed. The multiple imputation (MI) combined with GEE

analysis is commonly known as MI-GEE. In this approach, the missing observations are

filled multiple times with the predicted values from the imputation model followed by a

GEE analysis. The so-called doubly-robust (DR) technique combines the multiply imputed

binary responses with IPW and then applying GEE to the completed data sets. A simulation

study is first used to compare the performance of the methods followed by an application

to a clinical trial data on Amenorrhea. The simulation and empirical example results re-

vealed better performance for DR-GEE compared to WGEE and MI-GEE, but MI-GEE

19



was evidently superior than WGEE and quite close to DR-GEE.

2.1 Introduction

In a longitudinal study, each individual or unit is measured at several time points which

provides the opportunity to study changes over time for the variable(s) and effects of in-

terest. In several areas of biomedical research the response variable is binary or in general

non-Gaussian, for instance, the presence or absence of an ailment in an individual included

in a clinical trial to compare two or more treatments or interventions. The most widely used

approach for handling binary longitudinal responses is the generalized linear mixed model

(GLMM) (Fitzmaurice et al., [78] and Molenberghs and Verbeke, [33]). In the presence

of missing data this model imply complex and hard to manipulate likelihoods for mod-

erate and large sequences of repeated measurements. Generalized estimating equations

(GEE) are on alternative modeling technique (Liang and Zeger, [61]), but needs some en-

hancements to deal with incomplete longitudinal data where missing completely at random

(MCAR) is ruled out. The essence of this technique is that, it allows confining attention to

the mean structure given that there is a willingness to adopt a working assumption about

the association structure for the repeated measurements.

Thus, the main difference is that the GLMM is a conditional or random effects likelihood

based model while the former namely the GEE is a marginal model. The strength of the

GLMM is that it is likelihood based and hence in the presence of missing data the less

stricter missing at random (MAR) assumption can be used instead of the restrictive MCAR

assumption.

In the presence of incomplete data, GEE suffers from its frequentist nature where its valid-

ity is restricted to the MCAR assumption, meaning the missingness is independent of both

unobserved and observed responses (Rubin, [30]). To overcome this defficiency, another

member of the GEE technique was introduced by (Robins et al., [79]). This is the WGEE

because it allows for the weaker MAR assumption, where the missingness is independent
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of the unobserved data given the observed data (Bang and Robins [80], Rubin [30]). Under

WGEE, the technique uses the inverse of the individual’s probability of being observed as

a weight to the estimating equations in order to reduce bias in the regression parameter

estimates. In addition, weights can be at the subject level or observation level. In our study,

we adopt the weight at subject level.

The GEE method is one of the most common techniques for the analysis of non-Gaussian

correlated data. It is advantageous when one specifies the mean structure correctly for the

parameter estimates to be consistent and asymptotically normal. In deriving the method, the

association parameter(s) among the repeated measures are taken as nuisance parameters.

The GEE technique is attractive because it helps avoid dealing with complex and some-

times intractable likelihoods and it naturally gives rise to population-averaged parameters

that are of interests in most studies. When longitudinal data is incomplete, the non-response

can occur at any time from the beginning of the study. There are three possible patterns

of missing data that can be observed for the response: first, dropout is when an individual

leaves the study prematurely for reasons known or not known to the investigator and does

not return. This generally falls under the monotone pattern of non-response. Second, inter-

mittent non-response occurs when an individual leaves and returns to the study after some

period of non-response, and possibly a repeat of the same once, twice or more times and

lastly a pattern that may be monotone at earlier times and a dropout later. Missing data is

also possible in the covariates, but our focus in this paper is on missing data in the outcome

variable. In the presence of incomplete data, three challenges are of concern. First, be-

tween the observed and missing data there can be potential serious bias due to systematic

differences. Secondly, handling incomplete data and statistical inference can be complex

and lastly, the loss of efficiency can be substantial. Furthermore, in order to have inferences

that are valid; it is pertinent to have a good knowledge of the missing data mechanism that

could have generated the non-response and properly accounting for it in the analysis.

Doubly robust estimators (DR-GEE) are seen as an appealing modification, or extension
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of the ordinary GEE to handle data that are subject to MAR mechanism. The doubly ro-

bust (DR) estimating equations method has been developed as an extension of the WGEE

method, where the idea is to integrate the weights with the use of a predictive imputation

model for the missing data given the observed data. In effect, the DR estimation method

produces parameter estimates that are consistently correct given correct specification of ei-

ther the weights or the predictive imputation model, but not necessarily both.

DR techniques have widely received attention in the literature in the last decade (Bang and

Robins [80], Carpenter et al., [81], Jolani et al., [82], Jose et al., [83], Tsiatis and Davidian

[84]). More importantly, the inclusion of the inverse of the propensity score into the impu-

tation model gives an increasing robustness to the imputations against misspecification of

the imputation model. The uniqueness of this technique is that it gives analysts two routes

to validate inferences, instead of only one. However, the method lacks generalization to

intermittent missing observations, where the individuals return to the study after skipping

one or more visits. Multiple imputation (MI) is one of the alternative approaches (Mehrotra

et al., [85]) which relies on the MAR assumption. Under this approach missing values are

imputed several times, and the resulting completed datasets are analyzed using a standard

technique like GEE. Several authors like (Beunckens et al., [86]) have worked on the com-

bination of MI and GEE, such that missing data are multiply imputed, and then inferences

are obtained based on GEE. These inferences are combined into a single summary using

Rubin’s pooling rules and hence the method has become commonly known as MI-GEE.

Moreover, the important requirement in this method are just like any other technique for

imputation, namely the imputation model needs to be specified correctly. That the model

should include all important covariates; including auxiliary ones to make it rich in inform-

ing the missing values predictive distribution. By its very nature MI-GEE does not suffer

from the intermittent missing data problem.

A study conducted by (Satty et al., [87]), compared the two types of GEE (WGEE and

MI-GEE) to the likelihood-based GLMM for analyzing longitudinal binary outcomes with

dropout. The use of extended or enhanced GEEs to other categorical outcomes has and
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is also gaining popularity. For example, authors in (Toledano and Gatsonis, [88]) used a

WGEE method to accommodate arbitrary patterns of a missing responses and missingness

in key covariates. A recent paper from Donneau et al., [89], compared through a simula-

tion study two multiple imputation methods (multivariate normal imputation and ordinal

imputation regression) for longitudinal ordinal data subject to dropout. In another paper,

the same authors compared joint modeling and fully conditional specification approaches

for non-monotone missingness patterns (Donneau et al., [89]). Single robust versions of

GEE are used in the two papers mentioned above and they treated only missing covariates

and response respectively. In a recent paper, Jose et al., [83] proposed a doubly robust

approach for the analysis of longitudinal ordinal data with intermittently missing response

and covariates under MAR.

In this paper, we re-visit the incomplete binary data problem. Our interest is thus on the

combination of the DR and GEE for incomplete longitudinal binary data when the missing

data pattern is monotone. This method involves multiply imputing binary responses us-

ing the DR approach and then applying GEE to the complete data sets. However, we also

introduce a novel idea to find out whether using different working correlation structures,

namely; compound symmetry (CS), first order autoregressive AR(1) and TOEP for estima-

tion would affect the parameter estimates and standard errors under the specified methods.

This paper is organized as follows. Section 2.2 defines the GEE notations and an overview

of the GEE method. Section 2.3 outlines the WGEE, MI-GEE and DR-GEE approaches.

A simulation study is presented in section 2.4. Data on Amenorrhea from clinical trial con-

tracepting women is openly available online https://content.sph.harvard.edu is analyzed in

section 2.4.4. The paper ends with a discussion and conclusion in section 2.5.
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2.2 The generalized estimating equation (GEE)

In the situation where population-averaged effects are of interest, the most widely used

model to analyzing discrete longitudinal data are the GEE which falls among the popular

marginal models. The GEE technique was proposed by (Liang and Zeger, [61]), as an ex-

tension of the generalized linear model (GLM) to the case of correlated data in the context

of longitudinal studies and correlated data in general.

Suppose yi j, j = 1, ...,ni, i = 1, ...,N, represents the jth response at time ti j for the ith in-

dividual with a vector of covariates xi j. Thus ni are the measurements on individual i, and

let n be the maximum number of measurements per individual, i.e. n = maxi{ni} if all

the planned repeated measurements were obtained. This is the most general setting but if

ti j = t j and ni = n for all i, then we have the most balanced design with no missing values.

We assume that the responses on the ith individual are held in the vector Yi = [yi1, ...,yini]
′

and the corresponding vector of means is µi = [µi1, ...,µini]
′. Under the generalized linear

model formulation, the marginal mean µi j of the response yi j is related to a linear pre-

dictor through a link function g(µi j) = x
′
i jβ or as others may prefer µi j = h(x

′
i jβ) where

h = g−1, and the variance of yi j depends on the mean through a variance function v(µi j),

since var(yi j) = a(φ)v(µi j) given a(φ) is the additional overdispersion parameter in the ex-

ponential family formulation. However, since we have repeated measurements the GLM

has to be modified to account for the correlation of observations within an individual. This

leads to a modified estimating equation for the model parameters. The generalized esti-

mating equation, used to estimate the parameters of interest in the vector β in the marginal

model is given by

S(β) =
N

∑
i=1

∂µ′i
∂β

V−1
i (Yi−µi(β)) = 0 (2.1)

where Vi is the covariance matrix of Yi which is specified through the working correlation

matrix Ri(α) as

Vi = φA1/2
i Ri(α)A

1/2
i (2.2)
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Here, Ai is an ni× ni diagonal matrix whose jth diagonal element is v(µi j), the variance

function at µi j, from the assumed linear exponential family distribution. If Ri(α) is the true

correlation matrix of Yi, then Vi will be the true covariance matrix of Yi and in this case

the resulting standard errors of parameters are referred to as model based standard errors.

Otherwise, it is suffices to use the empirical robust standard errors because in reality it is

hard to discern the true covariance structure.

In the GEE estimation technique, the only requirements are the specification of the mean

model and correlation structure of the vector Yi; such that the specification of the full joint

distribution of the correlated responses is not needed. The joint marginal distribution is

complex to specify because often for non-Gaussian longitudinal responses, the joint distri-

bution involves high-order associations and integration. However, the regression parameter

estimates from the GEE are consistent even when the working covariance specification

through Ri(α) is incorrect. When the marginal effects are of interest and the responses are

not continuous, the GEE is a very common choice. Nevertheless, the GEE approach can

lead to biased estimates when the underlying missingness mechanism is not MCAR. One

of the methods that can produce unbiased estimates is the WGEE and is briefly described

in the following section.

2.3 Methods for handling incomplete data

The weighted generalized estimating equations and multiple imputation are the two com-

monly used methods for missing data under the MAR mechanism. The missingness mech-

anism can be described via a statistical model for the probability of observing a missing

value. A reasonable assumption about the mechanism is important for methods that are

used to handle missing data. In general, missingness mechanisms are classified into three

types: missing completely at random (MCAR), missing at random (MAR), and missing not

at random (MNAR) (Rubin, [30]). The three mechanisms are briefly discussed below in the

25



contest of longitudinal data. We confine attention to dropout as the missing data pattern.

First for each potential outcome Yi j define a binary indicator variable Ri j which takes the

value ri j = 0 if Yi j is missing and ri j = 1 if Yi j is observed.

• A missingness mechanism is said to be MCAR if the probability of a missing re-

sponse is independent of its past, current and future responses conditional on the

covariates. That is P(ri j = 0|Yi,Xi) = P(ri j = 0|Xi).

• A missing mechanism is said to be MAR if the probability of a missing response

is independent of its current and future responses conditional on the observed past

responses and the covariates. That is

P(ri j = 0|ri j−1 = 1,Xi,Yi) = P(ri j = 0|ri j−1 = 1,Xi,yi1, ...,yi j−1)

MAR is a weaker assumption than MCAR. In fact, MCAR is a special case of MAR,

thus an analyst is better of working with the superior MAR than the MCAR assump-

tion.

• A missing mechanism is said to be MNAR if the probability of a missing response

depends on the unobserved responses. MNAR is the most general and the most

complex missing data mechanism to deal with. Thus, there is no further reduction to

P(ri j = 0|ri j−1 = 1,Xi,Yi).

Sections 3.1 to 3.3 present a brief discussion of the missing data methods considered in the

current paper.

2.3.1 The weighted generalized estimating equation (WGEE)

Currently, there are two weighting methods that can be used to construct the WGEE for

estimating the regression parameters β, when dropout is the missing data pattern. There

are two possible weights; observation-specific weights and subject-specific weights ver-

sions as outlined in (Lin and Rodriguez, [90]). The weighting methods produce parameter
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estimates that are consistent provided the data are MAR.

WGEE based on observation-specific weights

The weight ωi j for yi j is defined as the inverse probability of observing yi j. In other words,

ωi j = P(ri j = 1|Xi,hi j)
−1 where hi j = (yi1, ...,yi j−1) denotes the observed response history.

Let Wi be a ni× ni diagonal matrix whose jth diagonal is ri jωi j. Then the weighted gen-

eralized estimating equation (Preisser et al., [91], Robins and Rotnitzky, [92]) is given by

Sow(β) =
N

∑
i=1

∂µ′i
∂β

V−1
i Wi(Yi−µi(β)) = 0 (2.3)

Unlike the standard GEE, the weighted estimating equation is unbiased when observations

are appropriately weighted, leading to consistent parameter estimates of β. Practically, the

weights ωi j are unknown and they have to be estimated using an appropriate model for ri j,

such as the logistic regression model under the MAR assumption. Specifically, suppose

λi j = P(ri j = 1|ri j−1,Xi,hi j) denote the probability of observing the response yi j given pre-

vious observed responses, under the MAR assumption. Using the observed data, λi j can

be predicted from the logistic regression model, logit (λi j) = z′i jα, where zi j are predictors

that usually include the covariates xi j, the past responses and indicators for visit times and

α is a vector of parameters. The dropout process implies that the estimated probability of

observing yi j can be expressed as a cumulative product of conditional probabilities given

by

P̂(ri j = 1|Xi,hi j) = λi1(α̂)× ...×λi j(α̂)

With the estimated weights ω̂i j = P̂(ri j = 1|Xi,hi j)
−1, we solve the estimating equation

Sow(β), from which the regression parameters β are estimated. There is a similarity in the

algorithm for solving the WGEE and standard GEE.

When the dropout process is MAR; the following algorithm fits marginal models by using
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the observation-specific WGEE method. The steps are:

S1. Fit a logistic regression with data (ri j,zi j) to obtain an estimate of α and

estimate the weights, ω̂i j = P̂(ri j = 1|Xi,hi j)
−1 = [λi1(α̂)× ...×λi j(α̂)]

−1,

where λi j(α̂) is the predicted probability obtained from the logistic regression.

S2. Compute an initial estimate of β by using an ordinary generalized linear mo-

del, assuming independence of the responses.

S3. Compute the working correlation matrix R based on the standardized resi-

duals, the current estimate of β and the specified structure of R.

S4. Compute the ni× ni estimated covariance matrix: Vi = φA1/2
i R̂i(α)A

1/2
i

S5. Update β̂:

β̂r+1 = β̂r +

[ N

∑
i=1

(
∂µi

∂β

)
V−1

i

(
∂µi

∂β

)′]−1[ N

∑
i=1

∂µ′i
∂β

V−1
i Wi(Yi−µi)

]

S6. Steps S3-S5 are repeated until convergence.

In SAS, to estimate the probabilities for dropout as well as to pass the weights (predicted

probabilities) to be used for WGEE, the “dropout" and “dropwgt" macros introduced by

(Molenberghs and Verbeke, [33]) are used for this purpose and the macros need no mod-

ification. The variables “dropout” and “previous” are constructed through the use of the

dropout macro. The dropout outcome variable is discrete indicating an individual drops
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out of the study before the end of follow-up, whereas, the previous variable refers to the

outcome at previous occasions. Second, the dropwgt macro is used to pass the weights to

the individual observations in the WGEE. Such weights are calculated as the inverse of the

cumulative product of conditional probabilities, estimated as ω̂i j = 1/(λ̂i1× ...× λ̂i j). This

simply means the use of the predicted probabilities from the fitted missingness model to

calculate the weights. Lastly, once the earlier two steps are executed appropriately, the last

step is implemented by specifying the weights, by means of the weight statement in SAS

procedure GENMOD. In specifying the working correlation matrix, there are a number of

choices but in our case the first order autoregressive AR(1), TOEP and compound symme-

try (CS) are chosen. However, there are two features to note about procedure GENMOD:

• This procedure is more appropriate for an independence working correlation ma-

trix structure. In the GENMOD procedure, the weight statement procedure does not

properly include weights when other correlation structures are used.

• The GENMOD procedure regards the weights as fixed. Consequently, the standard

errors of the regression parameters from the two-step approach are conservative,

which leads to narrower confidence intervals and conservative inference (Fitzmau-

rice et al., [78].

In SAS/STAT 9.4, the above deficiencies are better handled with the new GEE procedure

which also provides appropriate standard errors. Furthermore, PROC GEE also handles a

variety of working correlation structures. Thus in our case, we use PROC GEE in order to

exploit this flexibility
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WGEE based on subject-specific weights

The subject-specific weighted method is quite different from the observation-specific weighted

method because it assigns a single weight for all observations within an individual. This

means all the observations from an individual receive the same weight. Using this tech-

nique, one obtains the regression parameter estimates from the subject-specific weighted

generalized estimating equation given by

Ssw(β) =
N

∑
i=1

∂µ′i
∂β

V−1
i wi(Yi−µi(β)) = 0 (2.4)

where the weight wi for individual i happens to be the inverse probability of an individual

i dropping at the observed time (Fitzmaurice et al., [93], Preisser et al., [91]). Remem-

ber wi is a scalar, as opposed to the weight matrix Wi in the observation-specific WGEE.

The estimating equation from the subject-specific weighted method is unbiased after the

observations have been weighted properly, and this produces consistent estimates for the

regression parameters β.

However, the weight wi needs to be estimated because they are unknown. Assume that mi

is a dropout indicator for the individual i, where mi =
ni

∑
j=1

ri j +1. The first visit observation

yi1 is assumed to be always observed with ri1 = 1. Thus, the values of mi are 2,...,ni. Note

that mi = n+1 indicates that individual i completes all the n visits, which were set aprior

by design.

The definition of the weight wi is as follows: if an individual i drops out before completing

the last visit (i.e. mi < n+ 1), then wi = P(rimi = 0,rimi−1 = 1|Xi,hi j)
−1. Otherwise, the

individual completes all the n visits (i.e. mi = n+1), and wi = P(rini = 1|Xi,hi j)
−1

As with observation-specific weights, the dropout process implies that subject-specific

weights can be estimated as a cumulative product of conditional probabilities:

• ŵi = P(rimi = 0,rimi−1 = 1|Xi,Yi)
−1 = [λi1(α̂)× ...×λimi−1× (1−λimi−1(α̂))]

−1, if

mi < n+1
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• ŵi = P(rini = 1|Xi,Yi)
−1 = [λi1(α̂)× ...×λin(α̂))]

−1, if mi = n+1

After the estimation of λi j by using the appropriate logistic regression for the dropout pro-

cess, the subject-specific weights ŵi can be obtained. There is a clear similarity in the algo-

rithm that fits the marginal models for subject-specific WGEE technique and observation-

specific WGEE technique, thus the fitting algorithm is not repeated here. Thus, the same

SAS macro can be adapted to fit the subject-specific WGEE model.

2.3.2 Multiple imputation based GEE (MI-GEE) approach

Multiple imputation is a simulation-based approach for filling in the missing values multi-

ple times which leads to multiple complete data sets. It is assumed that the model for the

vector of repeated measurements Yi is described by the parameter vector β. In the impu-

tation stage, the objective is to impute the missing values with draws from the conditional

distribution f (ym
i |y0

i ,β). However, β is not known hence an estimate for it denoted by β̂,

has to be obtained from the data, after which f (ym
i |y0

i , β̂) is used to fill the missing obser-

vations. In the process, it means that we generate draws from the distribution of β̂, which

requires that we take into account the sampling uncertainty of estimating β. Another alter-

native is the Bayesian method, where the uncertainty about β is incorporated by means of

using some prior distribution for β. However, after the formulation of the posterior distri-

bution of β, the following imputation algorithm can be adopted: a random β̂ is drawn first

from the posterior distribution of β. The posterior distribution is approximated by the nor-

mal distribution. Then a random Ỹ m
i is selected from f (ym

i |y0
i , β̂). The so-imputed missing

values are next augmented to the observed data, producing complete data, Yi = (Y 0
i ,

˜Y m
i ).

These are used to obtain β̂ and its variance, V = ˆVar(β̂). The steps mentioned above are

independent and repeated a number of times, say M times, to generate β̂m and V̂ m , for

m = 1, ...,M. Moreover, the last step as stated above is when the results of the analysis
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from the M completed (imputed) data are combined into a single inference. The overall

estimated parameter for β and V are as follows:

¯̂
β =

1
M

M

∑
m=1

β̂
m, (2.5)

and

V =W +

(
M+1

M

)
B (2.6)

where

W =
M

∑
m=1

V̂ m

M
(2.7)

and

B =
M

∑
m=1

(β̂m− ¯̂
β)(β̂m− ¯̂

β)′

M−1
(2.8)

The within-imputation variance and between-imputation variance are denoted by W and B

respectively (Rubin and Little, [94]). With the description of MI above, this gives an insight

to another method of handling missingness when the MAR-based MI is combined with a

GEE analysis as the substantive analysis model. MAR-based MI hinges on the flexibility

of the MI procedure hence the need to understand the idea on uncongenial imputation.

Uncongeniality was introduced by (Meng, [95]) for an inconsistent imputation model in

relation to the substantive analysis model. As stated by (Meng, [95]), one of the greatest

strength of MI is that these two models (substantive and imputation) can be inconsistent

in the sense that the two models need not be derived from the same overall model for

the complete data. This method has become known as the MI-GEE technique, where M

multiple data sets are subjected to the GEE analysis before the combination or pooling step.

This serves as an alternative to likelihood and WGEE inference.
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2.3.3 Doubly robust based GEE (DR-GEE)

The doubly robust DR method is an alternative approach that uses the inverse probability

weights (IPW) to refine estimates of the model parameters (Bang and Robin, [80]), within a

GEE analysis. In this technique, there is a requirement for the specification of two models:

the first model is on the distribution of the complete data which include the outcome and

covariates, and secondly a model for the missingness mechanism. The parameter estimates

would be asymptotically unbiased when one of the models is correctly specified. On the

other hand, the methods can be unstable in practice, especially when both models are mis-

specified (Tsiatis and Davidian, [84]), and can be disastrous when the propensity score (i.e.

the probability of being observed) are close to zero (Tsiatis and Davidian, [84], Vanstee-

landt et al., [96]). In the current application, we combine IPW with MI and the GEE as the

analysis model to construct DR-GEE. The robustness of the imputation model is enhanced

by ensuring adequate information is included in the model, while avoidance of bias from

the final inference is the target.

The main idea of the DR-GEE estimation; is to estimate the propensities for each incom-

plete variable conditional on the other variables, and impute the missing values on that

variable by the inclusion of the propensity functions (i.e. IPW) into the imputation model.

The results of the analysis from M completed (imputed) data are combined into a single in-

ference with the GEE. The expectation of this method is to be readily robust, and by design

it is aimed at handling incomplete data with any pattern of missingness.

Doubly robust estimation

As a caricature of the analyses, it helps to consider the estimation of a population mean

outcome in the presence of incomplete data. This problem shows fundamental challenges

involving inverse probability weighting. Consider a study design that aims to obtain in-

dependent and identical distributed data. Let {(Yi,Xi), i = 1, ...,n}, with Yi as the outcome
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and Xi a set of auxiliary covariates for individual i. In the presence of missing data, the

estimation of the mean E(Y ) is complicated by the fact that Yi is not available for all in-

dividuals. Let Ri denote the missingness indicator, coded as Ri = 1 when Yi is observed

and Ri = 0 if Yi is missing. The observed data can then be described as the random sample

{Zi(RiYi,Ri,Xi), i = 1, ...,n} as illustrated in (Vermeulen and Vansteelandt, [97]). Assume

that the covariates Xi contain sufficient information to explain missingness so that the miss-

ing at random assumption, Yi⊥Ri|Xi (Tsiatis, [43]), holds. Let µ represent its (unknown)

population value; in particular, E(Y ) = µ. When the outcome data are missing, consistent

estimation of µ requires specification of at least one of the two following working models as

stated by (Robins et al., [46]). The probability of observing the data which is referred to as

the propensity score (PS), is the first working model. This is taken as P(R= 1|X) = π(X ;γ),

for which we assume π(X ;γ)> 0 with probability one, where π(X ;γ) is a known function,

smooth in γ which is an unknown p−dimensional parameter; for example, a logistic regres-

sion model π(X ;γ)=expit(γ1 + γT
2 X). This model is denoted as M(γ) = {π(X ;γ) : γ ∈ℜP}.

The second working model is for the conditional mean outcome E(Y |X) = m(X ;β), where

m(X ;β) is a known function, smooth in β which is an unknown q-dimensional parameter;

for example, a linear model m(X ;β) = β1 +βT
2 X for a continuous outcome Y . This model

is denoted as M(β) = {m(X ;β) : β ∈ℜq}. As outlined in (Scharfstein et al., [98]), the DR

estimator of µ, is Ẽn(U) = n−1
∑

n
i=1Ui , can be obtained as

µ̂DR(γ̂, β̂) = Ẽn

[
RY

π(X , γ̂)
− R−π(X , γ̂)

π(X , γ̂)
m(X , β̂)

]
(2.9)

for root−n consistent and asymptotically normal estimators γ̂ and β̂ for the parameters γ

and β (Tsiatis, [43]). This estimator is consistent for µ under the union model M(γ)∪M(β)

as long as one but not necessarily both working models are correctly specified. If the in-

tersection model M(γ)∩M(β) holds, that is, both working models are correctly specified,

the DR estimator in equation (9), is locally efficient (Tsiatis, [43]) under model M(γ). It

then has the smallest asymptotic variance within the class of all estimators that are consis-

tent and asymptotically normal under M(γ), provided that also M(β) is correctly specified,
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with more explanation in (Vermeulen and Vansteelandt, [97]). Note that if Ri = 0 in equa-

tion (9) then the contribution in the summation is m(Xi, β̂). If on the other hand Ri = 1

and 0 < π(Xi, γ̂) = ui < 1 such that u−1
i = K then the contribution in the summation is

KYi− (K−1)m(Xi, β̂). However, as a caution it is important that π(Xi;γ) is bounded away

from zero in the sense that π(Xi;γ) ≥ δ0 > 0, otherwise one may be faced with undefined

terms in the summation.

2.4 Simulation study

2.4.1 Data generation

We simulated data in order to mimic the non-Gaussian longitudinal clinical trial data. In

the simulation, 1000 random samples of sizes N = 100, 250 and 500 individuals were

drawn. The individuals were assumed to have been assigned to two treatment arms (Higher

dose=1 and Mild dose=0). The measurements were taken at four time points ( j = 1,2,3,4).

Yi j is the response variable measurement from individual i, at time j. The two levels of

the response take the values 1 or 0 representing the event or non-event respectively. We

modeled the event probability as a function of the explanatory variables. A marginal model

for each binary response variable Yi j is the focus and we assumed the logistic regression

model. We thus generated the longitudinal binary outcome according to the following

marginal model

logit P(yi j = 1) = β0 +β1dosei +β2timei +β3dosei× timei j (2.10)

where the model parameters are β, where β = (β0,β1,β2,β3). In the model, the fixed

categorical effects are treatment (dose), time (t) and the treatment-by-time interaction

(dose× t). However, time was taken as a continuous variable. We fixed β0 = 0.50,β1 =

1.00,β2 = 0.70,β3 =−1.25. We used AR(1) as the working correlation matrix, with com-

mon correlation ρ=0.70. Dropouts were created on the complete simulated datasets using
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different settings of missingness rate on the response. The dropouts were imposed on the

response variable Yi j. For the MAR mechanism to be achieved, after simulating a data set

without missing data, we adopted the following strategy. We assume that dropout can oc-

cur after the first time point. Thus in this study, four dropout patterns are possible. That is,

dropout at second, third, fourth time points or no dropout. According to Satty et al., [87],

the data generated at time j and the subsequent times were assumed to be dependent on

the values of outcome measured at time j− 1. In our study, we retained the criterion that

if the dependent variable (Yi j) was positive (i.e.Yi j = 1), then the individual dropped out at

the next time point, is j+1. We generated dropouts of approximately 10%, 20% and 30%

on each sample size respectively. We considered a monotone missing data pattern in our

simulation where the only source of dropout was an individual’s withdrawal.

2.4.2 Measures of performance of the techniques

The performance of the different techniques were assessed using two criteria criteria: the

relative bias (RB) and root mean square error (RMSE). SAS/STAT 9.4 was used to perform

the statistical analyses and to produce the results. In each case, the covariance structure

used in the enhanced GEE is the compound symmetry to account for correlation in the

data. The performance criteria used are briefly discussed below.

Relative bias

The relative bias (RB) is defined as the fractional difference between the averaged estimate

and the true value. It is expressed as RB =
¯̂
β−β

β
, where β is the true parameter value of

interest. If number of simulations performed is represented as S then ¯̂
β =

s

∑
i=1

β̂i

S
. The

estimate of interest within each of the i = 1, ...,S simulation is β̂i. In addition, ¯̂
β is simply

the estimate averaged over all simulations.
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Root mean squared error

The mean squared error (MSE) is defined as the averaged squared difference between the

parameter estimates and its corresponding true value. MSE is equal to the sum of the

variance and squared bias of the parameter estimates. The RMSE is defined as the square

root of MSE. This is calculated as

RMSE =

[
(
¯̂
β−β)2 +Var( ¯̂

β)

]1/2

, where Var( ¯̂
β) =

S

∑
s=1

(β̂i−
¯̂
β)2

(S−1)
, where S is the number of

replications. The importance of RMSE is that it measures the overall precision or accuracy,

therefore it is used to evaluate the performance of estimation methods. In general, the more

effective technique would have a smaller RMSE (Huang and Carriere, [99]).

2.4.3 The analysis

In this section, we discuss the results of the simulation study that compares the three tech-

niques, namely the WGEE, MI-GEE and DR-GEE under different dropout settings. The

imputation model for the MI-GEE and DR-GEE methods are specified accordingly while

WGEE requires no imputation. The simulation study also considers the correct specified

model for the imputation model for both the MI-GEE and DR-GEE. The measurement at

first time point is assumed to be observed for each individual. The incomplete data set were

multiply imputed and analyzed by MI-GEE and DR-GEE techniques respectively. We in-

corporate weights to analyze the WGEE. In the case of MI-GEE, dose and response status

at other time points were included as covariates in the imputation model. The logistic re-

gression was used to estimate the propensity scores for the DR-GEE approach, which in

turn were used in the imputation model. We set the number of imputations to 50.

From Table 2.1, under the sample size of 100; it can be observed that the relative bias

was smaller under the DR-GEE method showing better asymptotically unbiased parameter

estimates, except for β3 under 20% dropout setting when compare with WGEE. In addition,

MI-GEE performs better than WGEE in terms of relative bias, except for (β0 and β2) under
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30% dropout. It is also observed that the RMSE based on the DR-GEE was marginally

smaller than the MI-GEE except for β3 under 20%. The RMSE are slightly smaller in

MI-GEE, except for (β0 and β2) under 30% dropout. However, the results obtain for the

MI-GEE under the sample size of 250 performs closely to DR-GEE in terms of RB than

WGEE, except for (β2) and (β3) under 10%, (β0, β2 and β3) under 20% and β3 under 30%

dropout settings respectively. It is observed that the RMSE based on the MI-GEE is close

to DR-GEE than WGEE,except for (β2) and (β3) under 10%, (β0, β2 and β3) under 20%

and β3 under 30% dropout settings. In addition, the results obtain from the sample size of

500 clearly shows that the performance of DR-GEE and MI-GEE in terms of relative bias

and RMSE are better than WGEE, except for β1 and β3 under 10%, β0 and β3 under 20%

and 30% dropout respectively. But small and high sample sizes produce efficient results

under the DR-GEE which is better in performance than WGEE. This points to the greater

efficiency of the estimators of the DR-GEE method.

2.4.4 The application

The data used in this paper show the application of the three modifications to the GEE

procedure when dealing with longitudinal data with missing observations. The data set

used is from a longitudinal clinical trial study of women that used contraception during

the four consecutive months Out of the 1,151 women available for the study each of them

were randomly assigned to one of two treatments available: 100 mg or 150 mg of depot-

medroxyprogesterone acetate (DPMA) representing the low and high dose of the drug re-

spectively. The Amenorrhea status in each of the four months was measured as the response

variable. The research question was on the effect of treatment on the rate of the Amenor-

rhea over time.

Let yi j denote the Amenorrhea status of the ith woman at the jth visit, j=1,...,4, and sup-

pose µi j = P(yi j = 1|xi j) denote the probability of a positive Amenorrhea status at visit j to
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Table 2.1: Simulation study: relative bias (RB) and root mean squared error (RMSE) values

for the different parameters under the three models; WGEE, MI-GEE and DR-GEE under MAR

mechanism over 1000 samples: N=100, 250 and 500 individuals, for monotone dropout.
Sample Drp Par WGEE MI-GEE DR-GEE

RB RMSE RB RMSE RB RMSE

100 10% β0 0.1984 0.0909 0.0722 0.0888 0.0722 0.0888

β1 0.0844 0.2617 0.0644 0.0699 0.0244 0.0365

β2 0.0933 0.0849 0.0864 0.0613 0.0866 0.0614

β3 -0.4444 0.4253 -0.2995 0.3746 -0.3114 0.3895

20% β0 0.1908 0.2046 0.1610 0.1715 0.1542 0.981

β1 0.2312 0.3427 0.0135 0.0301 0.0250 0.0367

β2 0.1247 0.1212 0.0837 0.0593 0.0806 0.0572

β3 -0.1217 0.1959 -0.5338 0.6674 -0.5363 0.6705

30% β0 0.4098 0.2827 0.5682 0.2858 0.5372 0.2705

β1 0.2535 0.3019 0.2441 0.2458 0.2443 0.3455

β2 0.1927 0.1652 0.2917 0.2045 0.2757 0.1934

β3 -0.1294 0.2330 -0.0673 0.0852 -0.0757 0.0956

250 10% β0 0.6270 0.3663 0.5576 0.2797 0.5532 0.2775

β1 0.2044 0.3288 0.1760 0.1782 0.1114 0.1148

β2 0.1886 0.1569 0.1993 0.1398 0.1973 0.1384

β3 -0.0885 0.1584 -0.2609 0.3263 -0.2639 0.3300

20% β0 0.6878 0.3890 0.8144 0.4078 0.8176 0.4094

β1 0.2382 0.3556 0.1753 0.1774 0.1015 0.0111

β2 0.2441 0.1897 0.3196 0.2239 0.3211 0.2250

β3 -0.1394 0.2152 -0.5231 0.6440 -0.5369 0.6712

30% β0 0.8926 0.4851 0.8876 0.4443 0.8590 0.4300

β1 0.1953 0.3716 0.1765 0.1787 0.1011 0.1049

β2 0.3339 0.2500 0.3150 0.2207 0.3010 0.2109

β3 -0.1555 0.2591 -0.7172 0.8966 -0.7184 0.8981

500 10% β0 0.1674 0.2111 0.0524 0.0347 0.0554 0.0359

β1 0.0212 0.2543 0.4239 0.4248 0.4300 0.4309

β2 0.0767 0.1075 0.0674 0.0484 0.0021 0.0107

β3 -0.1768 0.1191 -0.2158 0.2576 -0.2094 0.2521

20% β0 0.2564 0.2271 0.3484 0.6963 0.3704 0.1866

β1 0.1150 0.2863 0.1009 0.1046 0.0178 0.0328

β2 0.1854 0.1084 0.1419 0.0998 0.1527 0.1073

β3 -0.1039 0.1837 -0.4410 0.5514 -0.4524 0.5656

30% β0 0.6442 0.3748 0.4500 0.2201 0.4262 0.2143

β1 0.0658 0.3085 0.0545 0.0611 0.0325 0.0428

β2 0.2201 0.1818 0.1967 0.1380 0.1859 0.1305

β3 -0.0159 0.1692 -0.6423 0.8030 -0.6392 0.7991
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individual i given covariates information xi j. In order to determine the effect of treatment

on the rate of Amenorrhea over time, we consider the following marginal model:

logit (µi j) = β0 +β1timei j +β2dosei +β3time2
i j +β4dosei× timei j +β5dosei× time2

i j

Of the 1,151 women in this study, 576 are from the low-dose group, and 575 are from the

high-dose group. For the low-dose group, 62.67% of the women completed the trial; for

the high-dose group, 61.39% of the women completed this trial. Thus, both groups have

substantial dropouts.

We considered the following logistic regression model for the missingness mechanism to

obtain the weights for the wGEE:

logit p(ri j = 1|ri j−1 = 1,dosei, timei j,yi j−1) =α0 +α1I(timei j = 2)+α2I(timei j = 3)

+α3dosei +α4yi j−1 +α5dosei× yi j−1

(2.11)

Equation (2.11), is the logistic regression for the missingness model where the second and

third terms are the copy of time used as a class or factor variable. The fifth term is to relate

the probability that a participant will dropout to previous Amenorrhea status. The last term

relates the probability that a participant will dropout to the interaction of dose and previous

Amenorrhea status.

The large fraction of missing observations pose a challenge in this trial study, where the

pattern of missingness is a monotone dropout. Using standard GEE may produce biased

estimates because it is near impossible to justify an MCAR assumption. Furthermore,

complete case analysis would result to a heavy loss of data due to a large fraction of missing

values. WGEE is possible with a monotone missingness pattern and difficult when the

pattern of missingness is intermittent. Imputation strategy also gives consistent parameter

estimates of interest.

The results from the three modifications of the GEE procedure are shown in Table 2.2. The

first one is the weighted method (WGEE) using observation-specific weights model; the
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Table 2.2: Parameter estimates (Est), standard errors (SE), p-value obtained from the Amenorrhea

data under the methods of (WGEE), MI-GEE and DR-GEE under MAR mechanism using different

working correlation structure.

WGEE MI-GEE DR-GEE

Cor str Par Est SE Pr > |t| Est SE Pr > |t| Est SE Pr > |t|

β0 -2.2057 0.1391 <.0001 -1.9573 0.2340 <.0001 -1.7523 0.2411 <.0001

β1 0.3672 0.1691 0.0298 0.4578 0.1825 0.0121 0.2496 0.1971 0.2054

CS β2 -0.4233 0.2068 0.0407 -0.3923 0.3340 0.2401 -0.2958 0.3417 0.3867

β3 0.0857 0.0500 0.0868 0.0097 0.0332 0.7712 0.0125 0.0363 0.7299

β4 0.5850 0.2536 0.0211 0.5726 0.2607 0.0280 0.5071 0.2793 0.0189

β5 -0.1530 0.0743 0.0395 -0.1095 0.0473 0.0207 -0.1042 0.0512 0.0418

β0 -2.2039 0.1392 <.0001 -1.9502 0.2347 <.0001 -1.7435 0.2417 <.0001

β1 0.3659 0.1689 0.0302 0.4555 0.1827 0.0127 0.2461 0.1975 0.2126

β2 -0.4156 0.2064 0.0440 -0.3340 0.3329 0.3158 -0.2760 0.3427 0.4207

AR(1) β3 0.0860 0.0501 0.0858 0.0097 0.0332 0.7746 0.0123 0.0363 0.7340

β4 0.5851 0.2527 0.0206 0.5596 0.2600 0.0314 0.5043 0.2795 0.0712

β5 -0.1547 0.0743 0.0374 -0.1078 0.0471 0.0220 -0.1036 0.0510 0.0422

β0 -2.2012 0.1418 <.0001 -1.9425 0.2362 <.0001 -1.7270 0.2439 <.0001

β1 0.3644 0.1687 0.0308 0.4532 0.1830 0.0133 0.2404 0.1979 0.2243

TOEP β2 -0.4004 0.2087 0.0551 -0.3279 0.3351 0.3278 -0.2790 0.3469 0.4212

β3 0.0861 0.0501 0.0855 0.0093 0.0331 0.7791 0.0121 0.0362 0.7378

β4 0.5809 0.2512 0.0207 0.5571 0.2605 0.0325 0.5051 0.2805 0.0718

β5 -0.1565 0.0743 0.0391 -0.1078 0.0469 0.0217 -0.1035 0.0509 0.0419
Notes: The missing value is on the response variable and are approximately 62.67% and

61.39% on low-dose and high-dose groups respectively.
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second is the multiple imputation using multiple imputation in SAS/STAT 9.4 before GEE;

and the third is the doubly robust technique using inverse probability weighting and impu-

tation models, respectively. Three different working correlation structures were adopted.

However, we briefly explain the result obtain using compound symmetry (CS) because the

result is similar to other results. Thereafter, we compare the results of the three methods

used. Furthermore, it is also noted that the p-value for β3 i.e quadratic time effect is not

significant under all the three techniques. All the techniques provided the same conclusion

for the effect of dose (β2). The negative effect of dose indicates that the rate of change

of log odds probability of Amenorrhea over time is lower in the group receiving 150 mg

compared to the reference group receiving 100 mg of depot-medroxyprogesterone acetate

(DMPA). Then β5 i.e. dose and quadratic time effect shows negative effect which indicates

that the rate of change of log odds Amenorrhea over quadratic time depends on the dose,

and is non-linear.

For purpose of comparison, under the WGEE TOEP produces the lowest parameter esti-

mates except for β3, β4 and β5 under the CS. In the case of MI-GEE, TOEP records the best

values without any exceptions, but under the DR-GEE the situation is different as TOEP

gives parameter estimates that are smaller than other methods, except for AR(1) where β2

and β4 produce the lowest values. Furthermore, the standard errors produced are small and

closer to one another. This study has given an insight that the use of an appropriate corre-

lation structure could produce better parameter estimates. Furthermore, different p-values

were observed between WGEE and (MI-GEE and DR-GEE). Somehow, there is close sim-

ilarity between WGEE, MI-GEE and DR-GEE, but the common feature between MI-GEE

and DR-GEE is the imputation component and seems to give them an edge over WGEE

despite all being valid under MAR.

These results show that the two techniques perform better than the WGEE. Combining

these results and the relative performance for the simulation study suggests that both MI-

GEE and DR-GEE which are imputation based are quite strong methods. The WGEE had
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smaller standard errors but this did not change the overall inference and conclusion. The ap-

pealing feature in using the DR-GEE method is its doubly robust property. Quite different

p-values especially between WGEE and (MI-GEE and DR-GEE). There is close similarity

between (MI-GEE and DR-GEE) and WGEE. The common feature between MI-GEE and

DR-GEE is the imputation component and seems to give them an edge over WGEE despite

all being valid under MAR.

2.5 Discussion and conclusion

In this paper, the focus was on the performance of three different techniques for handling

longitudinal binary data, under the MAR assumption with monotone dropout as the pat-

tern of missingness. In addition, we prioritize the use of different working correlation

structures to find out whether it would affect the parameter estimates and standard errors

substantially. Therefore, we presented three stand alone enhancements to the generalized

estimating equations for incomplete binary longitudinal data under MAR. Three method-

ologies were used namely multiple imputation, inverse probability weighting and its doubly

robustness counterpart. The main focus was on DR-GEE technique for handling incomplete

binary measurement because it combines both the weighting and imputation remedies to

handle incompleteness. Furthermore, another attraction to this method is that it needs only

the correct specification of at least one of the models, but not necessarily the two. How-

ever, in the simulation results when one of the missingness or outcome models is correct;

the doubly robust estimators are consistent and present small-sample bias when compare

with the single robust alternatives WGEE and MI-GEE. But DR-GEE has smallest standard

errors than WGEE and MI-GEE especially when the sample size is small. In real applica-

tion, the predictive model was not misspecified and this made the doubly estimators had a

great potential of reducing the bias when the MAR assumption is correct.

In our study, we adopted different working correlation structures and observed differen-

tials in the parameter estimates under the different methods used. We observed smaller
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estimates under TOEP than we have under AR(1) and CS which is an indication that pa-

rameter estimates under TOEP consistent and better that AR(1) ans CS. On the comparison

between WGEE and MI-GEE (Beunckens et al., [86] and Clayton et al., [100]) among oth-

ers provided evidence of preference of MI-GEE over WGEE in longitudinal binary data.

In addition, in the study conducted (Molenberghs and Verbeke, [33]) assumed independent

working correlation space, but in our study different correlation structures were used which

serve as an extensions.
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Chapter 3

The use of fully conditional specification

of multiple imputation and inverse prob-

ability weighting to model the pulmonary

disease occurrence in survey data with non-

response

Abstract

Incomplete data is a frequent occurrence in many research areas especially cross sectional

survey data in epidemiology, health and social sciences research. In this paper, the effect

of missing observations were accounted for by using multiple imputation (MI) and inverse

probability weighting (IPW) methods. Generally, multiple imputation has the ability to

draw multiple values from plausible predictive distrirbution for the missing values. How-

ever, under the inverse probability weieghting procedure the weights are the inverse of the

predicted probabilities of response estimated from the missingness models of incomplete

variables. A simulation study is conducted to compare methods and the use of the methods

to mitigate bias induced by missing data in a cross-sectional survey data. The application

and simulation results show the benefit of the IPW compared with the MI. The former

performs well but not as the latter.
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3.1 Introduction

Non-response in population surveys are becoming a great challenge especially to the health

sector. However, the common and earliest technique to handle such problem is the use of

complete case analysis which most statistical software applications have capabilities to do.

This technique is called listwise deletion and many statisticians and clinicians adopt the ap-

proach simply because it is easy to use and readily available in almost all analysis software.

This approach is valid when the missingness assumption is that of missing completely at

random (MCAR) and the details of this method and others are detailed in (Rubin, [19]).

However, justifying this approach in real applications may not be attainable and is almost

impossible. In fact, there are many ad hoc methods that handle the missing observations

especially where missing values are substituted plausibly, such as last observation carried

forward (LOCF), the mean and regression predictions (single imputation) that can be re-

sorted to rather than complete case. However, even these seemingly better methods than the

CC method have their own shortcomings. One of the major difficulties of these methods is

when there is high percentage of incomplete observations as explained by (Rubin, [19] and

Sterne et al., [101]). Biased parameter estimates and loss of relationship among variable

may be possible especially when the complete data does not give a true representative of

the target population, and in such situation the MCAR assumption is violated. Accord-

ing to (Sterne et al., [101]), the single imputation method and other related methods may

produce unrealistic small standard errors because uncertainty about the imputation values

are not emphasized. The purpose why survey data have incomplete data are many, (Ru-

bin, [19], Sterne et al., [101], Baraldi and Enders, [102], Kalton and Brick, [103], Rubin

and Little, [94]). Incomplete information arise when an element in the planned population

is mistakenly excluded on the survey’s sampling frame, and this results to what is called

non-coverage. Many researchers among them (Rubin, [19], Rubin and Little, [94], Lohr

[104]) state that some elements may have zero probabilities of being included in the sam-

ple population. Thus, total/unit non-response is defined as when a sampled person fails to
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take part in the survey. However, the occurrence of total non-response may occur when

a participant refuses to be recorded or when an individual fails to actively participate in

the survey due to some reasons ranging from the sensitivity of the questions, language of

communication to non-availability on the day of the interview as stated by (Chinomona and

Mwambi, [105]). For household surveys the availability of a person to be interviewed on

the scheduled day of the interview is essential but other forms other than physical presence

can be done such telephonic interviews, on line questionnaires among others. The failure

of the selected individual to provide an accurate response(s) to one or many question(s)

is called item non-response. Thus partial non-response is simply defined as when a non-

response falls between unit and item non-response. This can occur as for example when a

respondent cuts off the phone conversation in the middle of the interview or in a multiphase

survey, the respondent provides data for some but not all phases of data collection (Rubin

[19], Kalton and Brick, [103], Lohr [104]).

Before one starts to deal or handle missing data in a statistical analysis it is important to

understand the different missing data mechanisms. Missing data mechanisms are broadly

classified into three namely: missing completely at random (MCAR), missing at random

(MAR) and missing not at random (MNAR). Different techniques have been developed

that handle non-response in a survey data. But the form of remedial measures depends

on the mechanism that generated the missing data. Many of these techniques that han-

dle non-response range from the traditional methods like deletion, weighting adjustments

to current novel methods that use multiple imputation combined with powerful analysis

methods which may also integrate weighting at the observation or unit of measurement

level such as the doubly robust GEE analysis. For total non-response and non-coverage;

weight adjustments are mostly appropriate. Individuals with complete data receives greater

weights, so as to compensate for inadequacies coming from non-respondents. In the situ-

ation of non-coverage, the use of weighting adjustments become imperative at is handles

external data sources especially when there is no complete information from the sampled
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individual. In item non-response, one of the appropriate ways to compensate for miss-

ing data is through multiple imputation. Incomplete observations are filled plausibly with

imputed values. The two techniques just stated are used to compensate for partial non-

response. In this research study, we embraced the use of multiple imputation and inverse

probability weighting methods to handle the incomplete observations, for the purpose of

obtaining estimates that are unbiased in modeling the prevalence of chronic obstructive

pulmonary disease in three countries from Southern America, namely Argentina, Chile and

Uruguay. We used socio-demographic risk factors and illnesses variables as covariates in

the analysis.

Multiple imputation is a Monte Carlo technique that utilizes a Bayesian inference paradigm

as indicated by (Rubin and Little, [94]). The complete datasets are then analyzed providing

combined estimates of effects that are consistent with true values. Furthermore, unbiased

parameter estimates and confidence interval are obtained from m complete datasets that

incorporate missing data uncertainty. The parameter estimates and their variances that ac-

count for both the within-imputation and across-imputation variability; are derived from

the mean of multiple imputed estimates obtained from the multiple analyses (Baraldi and

Enders, [102], Heeringa et al., [106], Pigott [107], Schafer [45], Schafer and Olsen [41]).

However, correct specification of the imputation model based on the MAR assumption

is is important and necessary. In addition, to account for variability due to the missing

observations multiple imputation accounts for this in the variance formula. One version

of the Bayesian approach is that which employs the fully conditional specification (FCS)

method to impute observations; from the posterior distribution of the missing data given

the observed data as utilized by (Berglund, [108]).

Inverse probability weighting (IPW) is one of the methods that can also reduce the es-

timation bias. An additional advantage of inverse probability weighting is in its ability to

correct for unequal sampling fractions. When a survey is conducted, the sample is expected

to be representative, that is, everyone is equally likely to be sampled, but practically few

or no individuals with rare or unusual characteristics will be chosen (Seaman and White,

48



[109]). However, interest may be on such individuals. In order to ensure that adequate

number of individuals are sampled, sampling weights are employed. In the population, ev-

ery individual is given a sampling weight and the probability that such individual is chosen

is proportional to this weight. As outlined in (Seaman and White, [109]), in such an ap-

proach the sample estimates of population parameters may be biased, because the sample

is slightly different from the population.

In our study, we check that underestimation of the occurrence of chronic obstructive pul-

monary disease may likely occur due to dependent-item non-response. Therefore, the in-

complete data were adjusted and the occurrence of the disease in the survey data was also

re-estimated. Using IPW method adjusts for non-response by specifying a regression model

for the missingness mechanism given fully-observed covariates. To obtain valid inferences,

this method relies on two assumptions: it assumes that the missingness process is indepen-

dent of the fully-observed covariates; and relies on a correct specified regression model for

the missingness process. In order to harness the strength of the second assumption; we

compare it with the correct-specification of MI (FCS). When both models are correct, the

advantage of MI (FCS) is that it has better efficiency than IPW because the former uses the

entire sample while the latter uses the complete cases only.

The paper is organized as follows. Section 3.2 discusses the material used for the analysis.

Section 3.3 gives a brief discussion of the missing data mechanisms and methods. In sec-

tion 3.4, we presented the results of the simulation study. The analysis results of the chronic

obstructive pulmonary disease data as reported in (Bardach et al., [110]) are presented in

section 3.5. The paper ends with a discussion and conclusion in section 3.6.
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3.2 Material

3.2.1 Data

We used the research data obtained from “ de Excelencia en Salud Cardiovascular para el

Cono Sur" center for excellence in cardiovascular health for the southern cone (CESCAS).

It is a country-level population-based household survey. The study was designed with the

goal of examining the occurrence, as well as the prevalence of cardiovascular and chronic

obstructive pulmonary diseases in the general population including determination of risk

factors for the diease.

The study was based on a sample of 8,000 non-institutionalized adult men and women

between the ages of 35 and 74 years old (2000 per site) coming from Bariloche and Mar-

cos Paz (Argentina), Temuco (Chile) and Canelones (Uruguay). In the study, specially

trained interviewers conducted a household survey to uncover information about lifestyle

(diet, physical activity, quality of life, smoking, alcohol consumption), socio-demographic

data (age, sex, occupation, conditions of life), access to and utilization of health services

(consultations, laboratory analysis, hospitalizations, etc.), risk factors and illnesses (high

blood pressure, diabetes mellitus, cardiovascular and pulmonary problems, among others).

Once the questionnaire was finished, the interviewers invited the participants to visit the

assigned health centers to complete baseline evaluations (physical examination, blood test,

electrocardiogram and spirometry). Two years from the initial visit participants were re-

quired to visit the clinic in the assigned health centers. During the clinical visit, a number of

measurements were taken including; taking laboratory blood sample measurements (lipids

total cholesterol, HDL-cholesterol, LDL-cholesterol and triglycerides, glucose and plasma

creatinine), physical measurements (arterial tension, height, weight, waist and hip circum-

ference) and electrocardiogram (ECG) readings. Between 5% and 10% of the samples

selected at random were repeated with the purpose quantifying the variability among the

samples. The study employed an electrocardiogram with 12 derivations that is standardized
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at 25 mm/sec and at 1 mV of amplitude.

However, spirometry was repeated to assess changes in lung function over time and the

development of pulmonary disease on the basis of the established criteria. Spirometry is

the most frequently used pulmonary function test and enables health professionals to make

an objective measurement of airflow obstruction and assess the degree to which it is re-

versible. As a diagnostic test for chronic obstructive pulmonary disease, it is a reliable,

simple, non-invasive, safe and inexpensive procedure. Participants did up to 8 forced ex-

piratory maneuvers to obtain 3 American Thoracic Society (ATS) acceptable maneuvers,

with forced vital capacity (FVC) and forced expiratory volume (FEV1) in the first second

reproducible within 150 mL, according to the ATS recommendations. Then, albuterol 200

µg was administered by inhalation and the test was repeated 15 minutes later. Participants

with any of the following conditions were excluded from the performance of spirometry.

These included pregnant women, participants with active tuberculosis and all the individ-

uals that underwent Eye surgery or retinal detachment, thoracic or abdominal surgery and

Myocardial infarction within the last three months.

Under the 2010 CESCAS data, a stratified three-stage sampling design was used to ob-

tain the data using 2010 population census figures as the sampling frame. The first stage

consisted of randomly sampling the census radii of each location, which are stratified by

socio-economic level. The second stage was conducted at the level of households contained

in each radius. In the third stage, individuals between the ages of 35 and 74 were selected.

In this study, the disease status is the outcome variable which ia a binary response with

indication either a respondent’s status of chronic bronchitis is positive, negative or missing.

Two classes of variables namely - demographic and lifestyle (were used as covariates with

missing observations) were included as potential factors that can cause chronic obstructive

pulmonary disease status. These risk factors included gender, marital status, age group,

religion, blood cholesterol and the status (presence) of asthma, chronic bronchitis, pneu-

monia and severe wheezing. In Table 1, we display the response and covariates used and

their percentages of missing observations. The range of the incomplete observations are
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quite variable from 0% to 87.80%.

Table 3.1: Frequencies and percentages of missing values in each variable

variable frequency of missing values % of missing values

COPD 40 0.53

Gender 0 0.00

Marital Status 5 0.07

Agegroup 0 0.00

Religion 4 0.05

Blood Cholesterol 5 0.07

Asthma 36 0.48

Chronic Bronchitis 51 0.68

Pneumonia 63 0.84

Severe Wheezing 6612 87.8
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3.3 Missing data mechanisms and methods

3.3.1 Types of missing data mechanisms

Based on the theory of missing values as discussed in (Rubin, [19]), we introduce briefly the

concept of missing data mechanisms. Suppose Y = {Yobs,Ymis}, is the complete data where

we let the observed data be Yobs and unobserved data be Ymis respectively. Let M represents

the missing data indicator matrix of the same dimension as Y such that value in row i and

column j M(i, j) is equal to 0 if the value in Y is missing and 1 if it is observed. Data are

MCAR if P(M|Y ) = P(M) for all Y that is, the fact that data are missing is not dependent

on any observed or unobserved values for any of the variables (Chinomona and Mwambi,

[105]). That is the probability that a respondent does not report an item value is completely

independent of the true underlying values of all the observed and unobserved variables (Ru-

bin and Little, [94]). Missing observations are not systemic and the observed values can be

expressed as a random sub-sample of the complete data (Chinomona and Mwambi, [105]).

Under MCAR it is assumed that the observed data is a true representation of the complete

sample and possibly the target population, thus inference on parameters of interest can be

made, based on the complete case.

MAR mechanism operates when missingness is related to other measured or observed vari-

ables in the data, but not to the underlying unobserved values of the incomplete variable,

that is the hypothetical values that would have resulted had the data been all observed

(Baraldi Enders, [102]). Then under MAR P(M|Y ) = P(M|Yobs) for all Y . In the context of

estimation of parameter in the measurement and missingness model both MCAR and MAR

fall under the ignorable missingness. The MNAR holds if missing data is neither MCAR

nor MAR. The MNAR operates when the missingness depends on both the unobserved

and possibly observed values of Y , that is P(M|Y ) = P(M|Yobs,Ymis) which has no further

simplification. The MNAR mechanism in contrast to MCAR and MAR mechanisms fall

under non-ignorable missingness mechanism.
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In this research, we focus on the MAR ignorability assumption. Missing data were recorded

in some variables which may possibly result from inconsistencies in the responses given

for the measured variables or during data computation.

3.3.2 Methods

Multiple imputation

The population quantity to be estimated is represented by θ. The statistic that would be used

to estimate θ if complete data were available is denoted by θ̂= θ̂(Yobs,Ymis) and the variance

is represented by U =U(Yobs,Y
(l)
mis). When Ymis is accounted for we suppose to have m≥ 2

independent imputations, Y (l)
mis, ...,Y

(m)
mis and the estimates from the imputed datasets are cal-

culated as θ̂(l) = θ̂(Yobs,Y
(l)
mis) and the estimated variances U (l) =U(Yobs,Y

(l)
mis), l = 1, ...,m.

The overall estimate of θ as an average is computed as follows

θ̄ =
1
m

m

∑
l=1

θ̂
(l). (3.1)

In addition, we obtained the standard error of θ̄ as the square root of the total estimated

variance given by

T = (1+m−1)B+Ū , (3.2)

where B is the between-imputation variance given by

B =

m

∑
l=1

( ˆ
θ(l)− θ̄)2

m−1
,

and the within-imputation variance (Ū) is given by

Ū =

m

∑
l=1

U (l)

m
.
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The confidence interval (CI) for the population quantity, θ from the combined multiple

imputed estimate is computed using its standard error of θ̄ and critical value from the

student’s t-distribution as CI(θ) = θ̄± tṽmi,
α

2
where ṽmi, are the required degrees of freedom

as detailed in (Rubin,[19]).

Inverse probability weighting

The IPW also adjusts for item non-response by creating from the complete cases the so

called pseudo-population. In this case individual weights are obtained by the inverse of

the conditional probability of being observed given fully observed predictors. In the result-

ing pseudo-population, the participants’ responses with complete data represent themselves

and those with the same features who had incomplete information on the variable of choice,

(Wirth et al.,[111]). In other words, under correct model specification and under the miss-

ing at random assumption, missing data information in the pseudo-population is a chance

mechanism unrelated to the observed or unobserved information, as stated by (Hernan et

al.,[112]). In the complex sampling framework, the inverse probability weights are mod-

ified to adjust simultaneously for item non-response and the probability of being chosen

into the study population respectively (Wirth et al.,[111]). As earlier stated by (Moore et

al., [113] in the missing covariate context, the final weight W ∗i for each individual i is con-

structed by multiplying the inverse probability weight W̄i =
1

πi(M̃i,α̂)
by the survey weight

Wi,s. The maximum likelihood estimate predicting the probability that the outcome is ob-

served is represented by πi(M̃i, α̂). That is W ∗i,s = W̄ ∗i Wi,s. According to (Wirth et al.,[111]),

the resulting inverse probability weighted regression estimator is given by the weighted

sample average.

µ̂IPW =

N

∑
i=1

(W ∗i,s,Yi)

N

∑
i=1

W ∗i,s

.

When longitudinal data is considered, the corresponding IPW for the longitudinal data

model is outlined in (Seaman and White, [109]). The model is basically a generalized
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linear model for regression of a scalar response Y on covariates X as the analysis model.

In longitudinal observations, Yi and Xi represent the values of Y and X for individual i(i =

1, ...,n) and θ be the model parameters. Let Ri = 1 if Yi and Xi are observed and Ri = 0

otherwise.

Using the IPW procedure discussed in (Seaman and White, [109]), the analysis model is

also fitted only to the complete cases, but some complete cases receive more weight than

the other. The solution of the IPW score equation of the estimator θ̂ is given as:

n

∑
i=1

RiwiUi(θ) = 0. (3.3)

where wi is the weight given to individual i, Ri is the missing value indicator, Ui is the first

derivative of the log likelihood function with respect to θ for the ith observation. The weight

wi is derived as the inverse of the probability that individual i is a complete case which

equals P(R = 1|X ,Y,H) or an estimate thereof. The weight wi is unknown and has to be

estimated. A logistic regression model also known as the missingness model is fitted to the

missing data indicator variable R where predictors are drawn from the set X ,Y,H. Here, H

denotes additionally known predictors that are informative about the missingness process.

Thus the missingness model may include more predictors than there are the analysis model.

The wi are then the inverse of the fitted probabilities of being complete. The missingness

model is a generalized linear model for

P(R = 1|X ,Y,H). (3.4)

which may reduce P(R = 1|H). The idea is to include sufficient variables that are credible.

Two things are necessary, first the predictors H need to be informative about the missing-

ness process and secondly, we should correctly model the relation between these predictors

and the probability of being a complete case. The initial step is to consider the predictors

to include, assuming (unrealistically) that we have an idea of the model relation between

the predictors and the probability of being a complete case.
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3.3.3 The analysis model

Since we are dealing with complex survey data the survey logistic regression model, which

is a generalized linear model (GLM) as the analysis model for both the IPW and m mul-

tiple imputed data sets. The GLM was introduced for the first time by (McCullagh and

Nelder, [114]) and expanded later by (McCullagh and Nelder, [115]) as a unified regres-

sion technique that explains the variations in both normal and non-normal (such as binary)

response variables using a set of covariates. For example, to formulate a GLM for a binary

response variable Yi one can assume it satisfies the binomial model properties, meaning

that Yi ∼ Bin(ni,πi) and the predictor vector variables xi relates to Yi through a link func-

tion g(µi) where µi = E(Yi) for i = 1, ...,n. Based on the concept of GLM, the ensuing

regression model gives information about the variation in the probabilities πi using the set

of predictors based on the equation given by

πi(xi) = g−1(x′iβ), (3.5)

where the parameters to be estimated from the data are contained in the vector β which is

(p+ 1)-dimensional where p is the number of covariates in the model. Specifically for a

logistic regression GLM, the logit link model is given by

logit(π(xi)) = log
(

π(xi)

1−π(xi)

)
= x′iβ. (3.6)

Other link functions such as the probit link can be used for a binary response. In the

complex sampling design, the parameters are estimated via a pseudo-likelihood estimation

method rather than the maximum likelihood which is applicable under the classical GLM

as outlined in (McCullagh and Nelder, [114]). In our case we use the survey logistic re-

gression. The null hypothesis about β j, where j = 1, ..., p can be preferred using the Wald

design-based test statistics that β j = 0 and design-based confidence intervals that give in-

formation on the likelihood and uncertainty associated with the estimates of each β j.
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3.3.4 Statistical analyses

To estimate the effects of risk factors for the prevalence of pulmonary disease adjusted for

the item non-response in the survey data, we use two approaches to correct for non-response

namely multiple imputation and inverse probability weighting methods. The multiple im-

putation method described in sub-section 3.2.1 was used to produce multiple complete

data sets for analysis that accounts for the variability about the missing observations. In

SAS/STAT 9.4, we used “proc mi" to carry out the imputation. This approach specifies the

conditional distributions of variables with missing observations conditioned on the other

variables in the survey data and the algorithm for imputation iterates in sequential order

through the variables to impute the missing observations using the specified models. This

approach is termed the fully conditional specification (FCS) method. As stated by (Schafer

and Olsen, [41]), the procedure for multiple imputation is performed using the markov

chain monte carlo (MCMC) technique making use of an iterative data augmentation ap-

proach. Furthermore, (Berglund and Heering, [116]) described the implementation of MI

following a framework for estimation and inference based upon a three step process: the

first step is the formulation of the imputation model and imputation of missing data us-

ing PROC MI with FCS as the selected method. The analysis of complete data sets using

standard SAS procedures such as the simple logistic regression (that assume the data are

identically and independently distributed or from a simple random sample) or SURVEY

procedures for analysis of data from a complex sample design is the second step. In this

step, we performed design-based logistic regression using PROC SURVEYLOGISTIC.

The PROC SURVEYMEANS and PROC SURVEYFREQ allow to give correct means and

produce predicted frequencies of the datasets. Lastly, the results of the output from the pre-

vious 2nd step are combined using the PROC MIANALYZE. A key assumption made in

the MI and MIANALYZE procedures is that the missing data are missing at random (MAR)

or in other words, the probability that an observation is missing depends on observed data

Yobs but not missing Ymis (Rubin, [19]).
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It is pertinent to guarantee correct incorporation of the complex sample design features

and weights into the MI framework. For these to be captured in the imputation model, it

is recommended that a categorical variable be created in the ‘data step’ which combines

the stratum and cluster codes provided by the data analyst. As outlined in (Greenland and

Finkle, [117]), inverse probability weighting adjusts for non-response by weighting the

outcomes of participants with non-missing information; by the inverse of the probability

of having complete data (obtained by specifying a regression model for the missingness

mechanism given fully observed covariates). In our approach, this procedure is adopted. In

order to produce valid inference, two assumptions are considered. First, we assume that the

missingness process is within the levels of the fully-observed covariates; which means, the

data is missing at random. In addition, the regression model for the missingness process

for inverse probability weighting should be specified correctly.

3.4 Simulation study

In this study, we conduct simulation studies and later apply the real data. The importance

of the simulation study is to examine the techniques to handle incomplete observations, and

explore the performance of such methods under different missing data conditions. In this

study, the focus is on the intermittent missing data pattern.

3.4.1 Data generation, simulation designs and analysis of the simu-

lated data

We simulated cross sectional binary datasets to mimic the original dataset and introduced

different missing rates. For each of these different cases, we simulated 1000 datasets based

on a logistic regression model scheme of the form (3.7) for sample sizes N= 100, 200,

500. The cross sectional binary outcomes were generated following a model with a linear
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combination of the predictor as shown in the model below:

logit[P(Yi j = 1)] = β0 +β1x1 +β2x2 +β3(x1 ∗ x2). (3.7)

where we assume an underlying binary response variable as is the case with the real ap-

plication study. The null model effect is β0, while β1 and β2 are the main effects for

the variables x1 and x2 respectively for individual i with their interaction effect captured

by β3. Thus, x1 is binary and x2 is continuous respectively. We simulated two differ-

ent covariates: x2 from Bernoulli distribution with probability of success equals to 0.5, x1

from Uniform distribution. For the purpose of simulation study, we used the parameters,

β0 =−1,β1 = 1,β2 = 0.07 and β3 =−0.25. Thus the simulation model is explicitly written

as

logit[P(Yi j = 1)] = β0 +(1)x1 +0.07x2 +(−0.25)(x1 ∗ x2). (3.8)

When the logit link function is inverted it leads to conditional binary logistic regression

which is the probability of the event occurring as a function of covariates, thus equation (7)

can be written equivalently as

P[P(Yi j = 1)] =
β0 +β1x1 +β2x2 +β3(x1 ∗ x2)

1+ exp(β0 +β1x1 +β2x2 +β3(x1 ∗ x2))
. (3.9)

We first generated a data set without any missing values followed by creation of incomplete

data at different missingness rates. We assumed a MAR mechanism for the missingness

model. The missingness problem was handled using the two approaches introduced in

Sections 3.2.1 and 3.2.2 respectively namely IPW and multiple imputation.

For purposes of comparison, a larger number of imputations were necessary (Wood et al.,

[118]). Nevertheless, sufficient accuracy is possible even when M can be set to 3 6 M 6

5. However, there is a caution that pegging on this range is risky (Schafer, [45]). On the

other hand, the efficiency increments diminish as rapidly after the first M=2 imputations

for a small fraction of missing information and after the first M=5 imputations for a larger

fraction of missing information (Molenberghs and Verbeke, [33]). Furthermore, a rule of
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thumb for choosing M is suggested (see White et al., [119]). Their suggestion is that M

should be at least equal to the percentage of incomplete cases. The reason for the larger

number of imputations is to render the final analysis reproducible, which is not always

the case for a small number of imputations as also corroborated by (Van Buuren, [120]

and White et al., [119]). A number of imputations say M=20 is readily possible given the

current available computational power. This is necessary because if one wants to repeat the

analysis for the same M then essentially the same results will be generated (Ivanova et al..

[121]). In our study, we performed M=20 imputations. This moderate value was chosen to

account for the relatively large fraction of missing data and to limit the loss of power for

testing any associations of interest (Kombo et al., [122]).

In order to compare the performance of the methods, we used bias and mean squared error

(MSE). Bias is defined as the absolute difference between the average parameter estimate

from a given number of replications.

3.4.2 Simulation results

Table 3.2 shows the outcome of the simulation study (based on 1000 simulated datasets

and 20 imputations) to compare the MI and IPW missing data methods in terms of bias

and MSEs, under N=100, 200 and 500 sample sizes. The missing rates of 10%, 30% and

50% represent low, moderate and high missing entries. In the table, large bias and MSE are

shown in bold. Starting from N = 100 sample size we observe that for low and moderate

missing rates MI produced less biased estimates than the IPW. In the case of MSEs, both

methods were comparable, except for β3 in MI that produced high values for all levels of

missing rates. Furthermore, under the sample size of 200; with low missing rate the MI

yielded more unbiased estimates than the IPW, except for the moderate missing rate. The

performance of the MSEs were closer to each other. However, under the sample size of

500 for all levels of missing rates the MI produced more unbiased estimates, except for β3

for each case. As we increased the sample size and the missing rate, it is observed that the
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values for the MSEs also reduced. The findings reveal that the MI performs better than the

IPW. The results also mean that studies should be carefully planned and designed putting

remedial measures to reduce the rate of missing values.

Table 3.2: Bias and mean squared error (MSE) estimates for multiple imputation and inverse prob-

ability weighting methods, under MAR mechanism over 1000 samples: N=100,200 and 500 indi-

viduals.
Sample size Missing rate Parameter MI IPW

bias MSE bias MSE

100 10% β0 -0.1557 0.1184 0.1634 0.1215

β1 -2.0161 6.4840 -2.1418 6.4843

β2 -0.0030 0.0020 -0.0031 0.0020

β3 0.0856 0.0634 0.0443 0.0466

30% β0 -0.0171 0.0787 0.0913 0.1152

β1 -2.1133 6.4499 -1.6610 5.4304

β2 0.0006 0.0016 -0.0015 0.0020

β3 0.0962 0.0570 0.0301 0.0647

50% β0 0.1358 0.1448 0.1436 0.1465

β1 -2.7397 10.3119 -3.3642 13.7106

β2 -0.0030 0.0028 -0.0030 0.0028

β3 0.1387 0.0818 0.0708 0.0594

200 10% β0 -0.0254 0.0685 -0.0887 0.0759

β1 -1.2168 3.6496 -1.6535 4.4260

β2 0.0009 0.0014 0.0021 0.0014

β3 0.0244 0.0538 0.0014 0.0413

30% β0 0.0214 0.0746 -0.0736 0.0821

β1 -1.7036 4.4089 -1.6581 4.2745

β2 -0.0001 0.0015 0.0018 0.0016

β3 0.1065 0.0152 0.0021 0.0370

50% β0 -0.0123 0.0957 0.0160 0.0905

β1 -1.0318 2.6379 -1.0534 3.2890

β2 0.0008 0.0020 -0.0003 0.0019

β3 0.1568 0.0582 0.0300 0.0529

500 10% β0 -0.0482 0.0446 -0.0489 0.0454

β1 -1.0479 2.3600 0.0541 1.1093

β2 0.0013 0.0009 0.0012 0.0009

β3 0.0457 0.0299 -0.0041 0.0272

30% β0 -0.0405 0.0520 -0.0934 0.0575

β1 -1.5439 1.1148 0.7541 1.9190

β2 0.0012 0.0011 0.0022 0.0010

β3 0.1035 0.0345 -0.0249 0.0042

50% β0 -0.1410 0.0714 -0.1590 0.0831

β1 -1.5502 1.1141 2.4613 1.6264

β2 0.0033 0.0011 0.0032 0.0012

β3 0.1430 0.0447 -0.6437 0.0439
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3.5 Application results

3.5.1 Results from the application analysis

We present weighted and design-consistent estimates results for the risk factor of pul-

monary disease prevalence obtained for multiple imputation and inverse probability weight-

ing methods. In the case of multiple imputation, the analysis accounted for both the com-

plex sampling design and the imputation process. The variability that is introduced by the

imputation process and the variability that is accounted for in the complex sampling design

are reflected by the variance estimates. For inverse probability weighting individuals are

weighted by the inverse of the conditional probability of complete data given the fully ob-

served covariates.

In Table 3.3, we present the results from each method. The overall estimates from the mul-

tiple imputation and inverse probability weighting methods are not very different, but the

former produces smaller standard errors than the latter for all covariates. This displays the

superior efficiency in the multiple imputation method over the inverse probability weighting

method in real application. At the 5% level, covariates associated with single marital sta-

tus and living with a partner/divorced/widowed are non-significant under the two methods,

whereas the covariates associate with asthma, chronic bronchitis pneumonia and severe

wheezing are significant under the multiple imputation method, but chronic bronchitis and

severe wheezing are non-significant under the inverse probability weighting method.

3.5.2 Discussion of results

The results of the survey logistic regression (as the analysis model) with the parameter

estimates and their standard errors pooled from the multiply imputed datasets and inverse

probability weighting using the methods outlined in Sections 3.2.1 and 3.2.2 are presented

respectively. The survey logistic regression model the variation in the pulmonary disease
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Table 3.3: Overall and subgroup estimates, standard errors and Pr > |t| of chronic obstruc-

tive pulmonary disease prevalence for (a) multiple imputation and (b) inverse probability

weighting
Variable (a)Multiple Imputations Analysis (b)Inverse Probability Weighting

Estimate S.E Pr > |t| Estimate S.E Pr > |t|

Overall -0.1802 0.4512 0.6897 -0.6980 0.6519 0.2846

Gender

Male Ref

Female 0.3131 0.2000 0.1174 0.3772 0.3550 0.2883

Marital Status

Single -0.4595 0.3297 0.1635 -0.2322 0.4691 0.6207

Married -0.6671 0.2322 0.0035 -0.7781 0.3822 0.0421

Separated Ref

Living with a partner/

divorced/widowed -0.3850 0.3270 0.2399 -0.3003 0.5333 0.5735

Agegroup

34-44 Ref

45-54 0.2832 0.3000 0.3452 0.4192 0.4953 0.3076

55-64 0.6101 0.3001 0.0421 0.5523 0.4622 0.2324

65-74 0.6734 0.3184 0.0346 0.7258 0.5103 0.1553

Belief

Religion Ref

No Religion -0.1021 0.3292 0.7565 0.3643 0.5394 0.4996

Blood Cholesterol

Yes Ref

No -0.3015 0.2031 0.1375 -0.3331 0.3048 0.2747

Asthma

Yes Ref

No -0.6993 0.2271 0.0021 -0.5549 0.3198 0.0831

Chronic Bronchitis

Yes Ref

No -1.5337 0.2188 <.0001 -1.5904 0.3338 <.0001

Pneumonia

Yes Ref

No -1.4732 0.1988 <.0001 -1.0454 0.3220 0.0012

Severe Wheezing

Yes Ref

No -0.7438 0.2929 0.0137 -0.7487 0.4080 0.0668

prevalence, as a function of socio-demographic and illnesses variables which accounted for

the complex sampling design. In Table 4, we display the adjusted odds ratio estimates of

the logistic regression models for the two methods. The purpose of reference level was

to ensure estimation and interpretation. Furthermore, the odds ratios helps to observe the

multiplicative effect of each level and the possibility of having pulmonary disease as a

predictor in relation to reference level that controls for the effect of the predictors in the

model. The results show that the risk factors pulmonary disease is slightly lower among
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singles (OR=0.595, 95% CI=0.312-1.134) under the MI than (OR=0.793, 95% CI=0.316-

1.994) under the IPW. However, the effect is not significant, and the two approaches agree.

It is also less statistically significantly among the married (OR = 0.462, 95% CI = 0.293-

0.729) under the MI and (OR= 0.459, 95% CI=0.217-0.927) under the IPW. The odds of

pulmonary disease is low among those living with a partner (OR=0.635 95% CI=0.338-

1,195) under the MI and under the IPW (OR=0.741 95% CI=0.260-2.109). However this

partner effect is not significant for the single marital status but significant for the married.

The odds of pulmonary disease is significantly lower among those married compared to

those who are separated. The results from the MI model show that those with and without

asthma are not significantly different in the odds of pulmonary disease (OR=0.574, 95%

CI = 0.306 - 1.075) but significantly different under the IPW analysis (OR=0.517, 95%

CI = 0.335 - 0.797). Both methods show that religion is not significantly associated with

pulmonary disease.

For both methods not having bronchitis is associated with lower odds of pulmonary disease

(OR= 0.194, 95% CI = 0.127 - 0.295) under MI and (OR=0.204, 95% CI 0.106 - 0.393).

Under both methods cholesterol status is not significantly associated with pulmonary dis-

ease. Likewise both methods show that age is not significantly associated with pulmonary

disease. Age was also found not be significantly associated with pulmonary disease under

both methods.

3.6 Discussion and conclusion

Missing data pose potential problems in the cross-sectional survey data, which quite often

is composed of high rate of missing values due to a number of reasons. Complete case anal-

ysis is one of the methods used to deal with data with missing observations. This method

excludes cases with missing values in the analysis, but the major concerns with this method

is that such an approach can lead to substantially reduced power due to loss of information

and can also lead to seriously biased estimates if the deleted sub-sample is significantly
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Table 3.4: Adjusted odds ratio estimates for the survey logistic regression model under (a) multiple

imputation analysis (b) inverse probability weighting
(a)Multiple Imputations Analysis (b)Inverse Probability Weighting

Variable OR 95%CL OR 95%CL

Gender

Male Ref

Female 1.315 (0.898,1.926) 1.458 (0.727,2.927)

Marital Status

Single 0.595 (0.312,1.134) 0.793 (0.316,1.994)

Married 0.462 (0.293,0.729) 0.459 (0.217,0.972)

Separated Ref

Living with a partner

/divorced/widowed 0.635 (0.338,1.195) 0.741 (0.260,2.109)

Agegroup

34-44 Ref

45-54 1.274 (0.717,2.263) 1.521 (0.575,4.020)

55-64 1.726 (0.977,3.050) 1.737 (0.701,4.302)

65-74 1.856 (1.020,3.378) 2.066 (0.759,5.626)

Belief

Religion Ref

No Religion 0.968 (0.518,1.809) 1.439 (0.499,4.149)

Blood Cholesterol

Yes Ref

No 0.752 (0.507,1.115) 0.717 (0.394,1.304)

Asthma

Yes Ref

No 0.517 (0.335,0.797) 0.574 (0.306,1.075)

Chronic Bronchitis

Yes Ref

No 0.194 (0.127,0.295) 0.204 (0.106,0.393)

Pneumonia

Yes Ref

No 0.253 (0.173,0.370) 0.352 (0.187,1.066)

Severe Wheezing

Yes Ref

No 0.485 (0.311,0.757) 0.473 (0.212,1.053)

different to that remaining. Alternatively, ad hoc methods can be used which are based on

substituting the missing observations with plausible ones such as last observation carried

forward, the mean and regression predictions (single imputation). However, the results ob-

tained from such methods suffer potential loss of distributional relationships amongst the

predictors and fail to produce measures of uncertainty introduced by the imputation pro-

cedure. For this reason, multiple imputation has emerged as one of the most powerful and

reliable method of dealing with incomplete data such as the 2010 CESCAS data. Unbi-

ased estimates of pulmonary disease prevalence are obtained that also accounted for the

uncertainty about the missing observations themselves. We estimated the design-consistent
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estimates of intercept and subgroup of pulmonary disease prevalence using multiple impu-

tation and inverse probability weighting. The survey logistic regression model was fitted

and results obtained show and results obtain show dissimilarity in the parameter estimates

in the methods used. Nevertheless, multiple imputation may be preferred to inverse prob-

ability weighting. The results reveal that the IPW performs so closely to the MI using

FCS. The strength of this research lies on the use of the MI method for imputing miss-

ing values in chronic obstructive pulmonary disease study. Missing data are unavoidable,

pervasive and if not handled properly could give biased estimates. The use of an appropri-

ate statistical techniques to estimate model parameters of interest and their variability are

necessary for reliable inference. The key to an informative analysis for evidence based re-

search lies in the design of the study generating the data for analysis. As much as possible

the study design should such that it minimizes the occurrence of missing data. In particular

for cross-sectional survey data there are many sources that may cause data to be missing at

the individual and variable level. All effort needs to be put in places to control against such

causes of missingness. In fact, none of these setbacks downplay the uniqueness a study

designed by qualified statisticians with professional expertise in the survey methodology,

to collect population-based information. A possible area of extension is the use of sensi-

tivity analysis to analyze binary cross sectional survey data. It assesses the robustness of

the results across different model assumptions, with the aim of identifying results that are

most dependent on questionable or unsupported assumptions. In addition, further research

should consider when one or both model of MI (FCS) and IPW are misspecified.
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Chapter 4

Statistical methodologies for handling or-

dinal longitudinal responses with mono-

tone dropout patterns using multiple im-

putation

Abstract

Missing data are common challenge in any longitudinal study such as clinical trials. Mul-

tiple imputation is one of the modern powerful methods of handling incomplete data. This

approach is applicable to different missing data patterns but sometimes faced with com-

plexity of the type of variables to be imputed and the mechanism underlying the missing

values. In this study, we compare the performance of three methods under multiple im-

putation, namely expectation maximization, fully conditional specification and multivari-

ate normal imputation in the presence of ordinal responses with monotone dropout. We

demonstrated the usefulness of the ordinal negative binomial distribution for ordinal data

generation through simulation studies and implementation. However, the real dataset ap-

plication and simulation studies reveal that the three methods perform equally well, thus

we conclude that any of the methods can handle ordinal outcomes with missing values.
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4.1 Introduction

In longitudinal studies ordered categorical (ordinal) data are a common feature in health re-

search particularly clinical trials and follow-up observational studies with multiple health

outcomes. In most cases researchers are faced with data where the disease or health con-

dition may fall into more than 2 levels of increasing disease severity. This gives rise to a

typical ordinal outcome defining the different disease levels. From a clinical and diagnosis

point of view it is important that an individual at any time of follow is classified into the

correct disease category. For the sake of clarity, the ordinal data property requires that there

is a clear order of the response outcome categories, but no existence of underlying inter-

val scale between them. The methods developed for categorical data can be applied to the

analysis of ordered categorical data, but such methods may result to loss of information.

One of the advantages of using models and methods explicitly developed for ordinal data

is that they take into account the natural ordering of the categories. In particular, models

for ordered categorical data tend to be more parsimonious than their unordered counter-

parts, thus resulting in more efficient inferences with a clear interpretation of parameters as

stated by (Ursino and Gasparini, [123]). There are two general areas of statistical inference

that are of importance in modeling ordinal data. These are association and regression as

stated by (Agresti, [124]). The development of logistic regression and loglinear models

for categorical data occurred as far back as in the 1960s and 1970s. In those years ordinal

data received some attention as in (Bock and Jones, [125] and Snell, [126]), but a stronger

focus was inspired later by articles written by (McCullagh, [127]) on logit modeling of

cumulative probabilities and (Goodman, [128]) on loglinear modeling of the odds ratios.

The approaches for defining logits for an ordinal response are numerous, but there are three

types that are prominent in biostatistics literature. These are the adjacent-categories logits,

the continuation-ratio logits and the cumulative logits by (McCullagh, [127]) which is the

most popular.
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The methods for modeling ordinal data are based on the distribution of the ordered cat-

egories of the ordinal outcome normally represented by the first few integers 0,1, ...,n,

interpreted simply as codes for the ordered categories without reference to odds ratios or

their logarithms. It is essential that within these methods the metric properties of 1, ...,n

play no dominant role in the interpretation of the results, since 1, ...,n are simply conve-

nient labels for the ordered levels. The use of these methods range from a simple binomial

distribution to more flexible distributions which allow for overdispersion, such as the beta-

binomial (see for example Muniz-Terrera et al., [129] in which generalized additive models

for location scale models are used to analyze cognitive test data), including the approach

of (D’Elia and Piccolo, [130]) who proposed the use of a mixture of a binomial and a

discrete uniform distribution. According to the study by (D’Elia and Piccolo, [130]), the

psychometric point of view was taken into account in which the response is the result of

the combination of feeling and uncertainty components which can be modeled using two

parameters, obtaining nonetheless various possible shapes and behaviours of the response

distribution. However, another area in which there has been a lot of research activity in

recent times is the analysis of repeated measures data in the form of ordered categorical

responses. Such data arise, from longitudinal studies, crossover experiments, studies of

familial characteristics or kinship which all exhibit some sort of clustering. However, there

are other well-developed statistical methods of analyzing count data which includes the

Poisson, negative binomial (NB), hurdle and zero-inflated models. However, according to

a study by (Dawson, [131]) the outcomes are measured using ordinal scales for reasons

such as the need to reduce participant burden and limit error in cognitive recall. If counts

are assessed as binned ordinal responses; this has advantage from the perspective of mea-

surement (e.g., ease of burden and improved call) but introduces significant complexities

in statistical modeling. The linear models and proportional odds mixed models (POMM)

are commonly fitted to ordinal data.

When dealing with incomplete observations from a discrete variable (e.g. ordinal), the first
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appealing method may be to treat the variable as continuous for the purpose of imputa-

tion, and then round off the imputed values to the nearest valid discrete value before going

to fit the substantive model (Carpenter and Kenward, [132]). The intuition behind multi-

ple imputation (MI) is to draw valid and efficient inferences by fitting an analysis model

to the multiply imputed data. The imputed values should bear the structure of the data,

and uncertainly about the structure and be sensitive to the process that led to missing ob-

servations as pointed out by (van Buuren, [133]). The approach of creating the imputed

datasets depends on the missing data pattern. For the monotone dropout patterns, the para-

metric regression method that assumes multivariate normality or a nonparametric approach

that employs propensity scores may be used (Molenberghs and Vebeke, [33]). Also the

methods that assume normality have been successfully used by the authors (Choi et al.,

[134], Demirtas and Hedeker [135], Seitzman et al., [136]). On the other hand, imputa-

tions may be generated by performing a series of univariate regressions, instead of just a

single large model (it becomes easier to estimate), and without assuming normality of the

variables. However, researchers advised against handling ordinal response as a continuous

or dichotomized variable for a number of purposes. These purposes include efficiency loss

due to information loss, reduced statistical power and decreased generality of the analytic

conclusions (Gameroff, [137]). Ideally, continuous models may produce predicted values

outside the range of the ordinal variable and finally, and further a continuous model may

yield correlated residuals and regressors when used for ordinal response and does not ac-

count for the ceiling and floor effects of the ordinal response. This may lead to biased

estimates of the regression coefficients (Bauer and Sterba, [138]). There is still ongoing

debate on the issue among researchers.

In our study, we simulated the ordinal variable from a discrete distribution namely the

negative binomial distribution. In other words, we explicitly link the ordinal responses to

an appropriate count distribution through known cut-points. The points are known simply

because they are values that define the range of counts within each ordinal outcome. There-

after, we introduced the concept of missing values through the monotone dropout pattern.
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We also present the analysis of a real application. Finally, we discuss the results and the

contributions of the proposed ordinal count model.

The paper is organized as follows. In Section 4.2, we give details of the ordinal count

generation models. Section 4.3 gives a description of the imputation model followed by a

simulation study and a real application in Section 4.4. The paper ends with a discussion in

Section 4.5.

4.2 Ordinal negative binomial model (ONB)

In the ordinal outcomes study, the goal is generally to predict some underlying discrete

outcome (e.g., classification of disease) as a function of a set of covariates. However, these

discrete outcomes are measured with ordinal scores which collapse the counts from the par-

ent discrete distribution into a series of response categories with known-cut points. From

this procedure, we can assume that underlying the ordinal responses is a discrete count

generated from the NB distribution. After generating the values we transform the outcome

to ordinal scale with the use of cut-off chosen appropriately. (McGinley et al., [139]). Next,

we discuss the procedure of linking the ordinal responses to the underlying count distribu-

tion.

In order to model the ordinal response as a function of an underlying NB distribution, we

assume that underlying the ordinal response, Yi for individual i(i = 1, ...,n), is an unob-

served count latent variable, at four study visits, j = 1, ...,4, Y ∗i j. In our study, the simula-

tion of the ordinal outcome is from a latent NB random variable. Thus, we assume four

repeated measurements per subject. Also at the each time point ti j the observed outcome is

yi j based on the underlying NB variable Y ∗i j. The probability mass function (PMF) for the

NB distribution in terms of Y ∗i j conditional on covariates, xi, is

f (y∗i j) = P(Y ∗i j = y∗i j|xi) =
Γ(y∗i j +α−1)

Γ(α−1)Γ(y∗i j +1)
(αµ1)

y∗i j(1+αµi)
−(y∗i j+α−1),y∗i j = 0,1,2, ...

(4.1)
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where E(Y ∗i j) = µi, Var(Y ∗i j) = µi +αµ2
i , and α is the dispersion parameter. We adopt the

use of the log link function to link the linear predictor to the mean of Y ∗i j as

log(µi j) = x
′
i jβ (4.2)

where xi is a p×1 vector of covariates (this includes ‘1’ as the first element for the intercept)

and β is a p×1 vector of regression coefficients.

The cumulative distribution function (CDF) for the NB distribution is simply the sum of

the PMFs such that

F(y∗i j) =

y∗i j

∑
v=0

f (v), (4.3)

where the cumulative probability is evaluated at y∗i j.

The next step is linking the ordinal response, Yi j, to the unobserved latent variable, Y ∗i j. This

is achieved by the use of a fixed set of cut-points to generate the categories of the ordinal

response where

Yi j = c i f kc−1 < Y ∗i j ≤ kc (4.4)

and the threshold kc defines the upper bound of ordinal response category c (c = 1,2, ...M).

The probability of observing an outcome in category c can be expressed as a function of

the cumulative probabilities of the underlying Y ∗i j distribution, that is

P(Yi j = c|xi) = P((kc−1 < Y ∗i j ≤ kc)|xi) = F(kc)−F(kc−1). (4.5)

In this case, F(kc) and F(kc−1) designate the CDFs evaluated at the two consecutive cut-

points c and c−1 for a NB distribution with a mean of µi and dispersion of α. The likeli-

hood function over all individuals and categories for the ordinal data following underlying

count distribution can be expressed as

LONB =
n

∏
i=1

[
M

∏
c=1

[
F(kc)−F(kc−1)

]yic

]
. (4.6)

Our proposed approach is different from the current practice of the proportional odds mixed

models (POMM) because we use the ordinal responses of the underlying NB CDF as
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against the logistic CDF. In the proposed ONB approach, we study the effect of covari-

ates as if it were modeling the latent count responses directly, but the POMM handles the

effect of covariates over the cumulative odds across response categories.

4.3 Imputation methods

When the pattern of missingness of a dataset is monotone, the variables with missing values

are imputed sequentially with covariates obtained from their corresponding sets of preced-

ing variables. Regression, predictive mean matching or propensity score methods are some

of the various methods used to impute continuous variables. A logistic regression method

may be used for binary or ordinal variables. On the other hand, a discriminant function

for nominal or binary variables can be used. Using simulated and real incomplete ordinal

datasets, we compared three multiple imputation procedures: the fully conditional specifi-

cation (FCS) via chained equations (Van Buuren [133], Van Buuren [140], the multivariate

normal imputation (MVNI) Schafer [45] and expectation maximum (EM)). The procedures

for these methods are based on different theoretical assumptions and involve different com-

putational techniques as pointed out by (Lee and Carlin, [141]).

4.3.1 Multivariate normal imputation (MVNI)

The methods of imputing multivariate data have been developed, for example, (Rubin and

Schafer, [142]) gave approaches to effectively generate multivariate multiple imputations.

This approach is based on Bayesian simulation algorithm draws from the posterior predic-

tive distribution of the unobserved data given the observed data. The procedure assumes

that the data are multivariate normally distributed and missing at random. This approach

has been used by (Schafer, [45]) and derived imputation algorithms for multivariate nu-

merical, categorical and mixed variable type data. The methodology describes the data by

using a multivariate model to derive a posterior distribution and then draws imputations

74



based on the Gibbs sampling algorithm (hereafter referred to as data augmentation rather

than the Gibbs sampler). The Markov chain Monte Carlo (MCMC) approach is used to

draw imputed values from the estimated multivariate normal distribution.

Thus, data augmentation approach relies on Bayesian inference where missing data imputa-

tion is based on iterating between an imputation step (I-step) and Posterior step (P-step),as

pointed out by (Tanner and Wong, [25]). The I- and P- steps are briefly outlined below

assuming the ordinal response is multivariate normal that is Y ∼ N (µ,Σ)

• The imputation step - With some estimated initial values for the mean vector µ and

covariance matrix Σ, the I-step simulates values for missing data Ym by randomly

drawing it from the conditional predictive distribution of Ym, that is, from a current

estimate (rth iteration) θ(r), of the parameter, a value Y r+1
m of the missing data is

drawn from the conditional distribution of Ym given Yo:

Y r+1
m ∼ P(Ym|Yo,θr), θ = (µ, Σ) (4.7)

• The posterior step - This step draws a value of the parameter θ from a complete-data

posterior distribution:

θ
(r+1) ∼ P(θ|Yo, Y (r+1)

m ) (4.8)

The new parameter θ is then used to update the I-step and the processes runs between the I

and P step sequentially.

When Equations (4.7) and (4.8) are iterated from initial value θ(0) the stochastic sequence

{(θ(r), Y (r)
m ); r = 1,2, ...}is produced. The two steps are iterated for a sufficiently long

time until the distribution of the estimates becomes stationary (Schafer, [45]). There is

usually dependency across the steps because each current step depends on the previous one.

Theoretically, the approach is good but may not be always realistic because of distributional

assumptions (e.g. assuming normality for binary, ordinal and other non-normal variables).

In the case of categorical variables, the MVNI methods draws imputations under the MVN
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model and to accommodate the categorical nature of the data, one needs to round off the

imputations to the nearest integer. However, there is need for caution as detailed in (Allison,

[143]) about rounding off (binary case is cited) as such imputed values may lead to biased

parameter estimates. Nonetheless, an argument was further raised by (Schafer, [45]) that

inference from MVNI may be reasonable, even if multivariate normality does not hold

especially for the cases of binary and categorical variables. For a detailed account of this

procedure, see reference (Schafer, [45]).

4.3.2 Fully conditional specification (FCS)

Another option that is useful in the multivariate data is the fully conditional specification

(FCS). The FCS approach is flexible and specifies the multivariate model by a series of uni-

variate conditional models for each of the incomplete variables. The FCS does not depend

on the multivariate normality assumption, and the univariate regression models can be uti-

lized for the ordered logistic regression for ordinal variables if it is appropriately adopted.

when Bayesian approach used, imputations are conducted in stepwise order starting with

the variable with the smallest amount of missing observations and progresses sequentially

until the variable with the largest missing value is finally captured. The imputations involve

three stages: the imputation, analyses and pooling stages. In the first stage; the missing val-

ues are filled-in M times to generate M complete dataset. The second stage analyses each of

the M complete dataset, and third stage combines estimates from the analyses from stage to

provide single estimate. FCS deals with all different types of variable with missing values

in a data set. Some continuous and some discrete including ordinal outcomes.

When the ordinal response variable Y has the features of a vector of unknown parameters

θ = (µ, Σ); with µ mean vector and covariance matrix Σ. Assume the complete data can

be partitioned as, Y = (Yo, Ym) where Yo and Ym are the observed complete incomplete

components of the data respectively. As outlined in (Van Buuren et al., [144]) and also in

(Van Buuren and Groothuis-Oudshoorn, [145]), multiple imputation via FCS proceeds as
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follows:

• Calculate the posterior distribution of θ given the observed data, that is, P(θ|Yo);

• Then θ∗ is drawn from P(θ|Yo);

• Then a value y∗ from the conditional posterior distribution of ym given θ = θ∗:

y∗ ∼ P(ym|yo,θ = θ
∗). (4.9)

The second and third steps are repeated depending on the number of imputations. These

make the results to reliably simulate an approximately independent draws of the missing

observations for an imputed dataset.

4.3.3 Expectation maximization (EM)

The expectation maximization (EM) algorithm by (Dempster et al., [24]), is a sound, gen-

eral and iterative procedure for the maximum likelihood estimate (MLE) of a parametric

distribution underlying some given data, where the data could be incomplete or has miss-

ing values. The EM algorithm handles incomplete data and the complications of estimates

related to the MLE by attempting to solve smaller complete data problems which lead to

parameter estimates for the entire dataset (incomplete and complete data). The EM algo-

rithm deals with missing values using the following two steps: first, the missing data are

imputed using the estimated values generated by MLE and secondly, the parameter esti-

mates from the first step are re-estimated; this procedure is iteratively repeated until the

final convergence step or when the current solution differs negligibly from the previous

one. Each iteration of the EM algorithm consists of two steps - the expectation step and

maximization step (Little and Rubin, [94]). Each step is completed once within each al-

gorithm cycle, which means cycles are repeated until a suitable convergence criterion is

satisfied. For more theoretical justification see (Dempster et al., [24], Little and Rubin
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[94]). The fitted parameters (on convergence) are equal to a local maximum of a likelihood

function which is the MLE in the case of a unique maximum as detailed in (Dempster et al.

[24]). The EM algorithm has two disadvantages: first, it is slow to converge and second, it

has no direct provision of a measure of precision for the MLEs. In order to overcome these

challenges several techniques have been developed as detailed in (Louis [55], Baker [58],

McLachlan and Krishnan [146]).

4.3.4 Software considerations

Valid inferences can be produced through a likelihood-based analysis without modeling

the dropout process, especially when MAR is assumed. In this approach, the generalized

linear mixed model is used as the analysis model. The implementation of this procedure

may be done using the SAS procedures NLMIXED and GLIMMIX. If we must impute

missing observations, describing of missing data pattern and multiple imputation is per-

formed using the procedure PROC MI as pointed out by (Kombo et al., [122]). All types of

variables may be considered. The procedure provides many techniques for imputation but

rely on weather the variable is categorical or continuous. Here, our interest is to compare

three different methods, EM, FCS and MVNI as implemented in PROC MI. To implement

FCS, the fcs statement is specified in PROC MI. In order to run MVNI and EM, both meth-

ods require the use of the Markov Chain Monte Carlo (MCMC) simulation approach to

draw the imputed values from the estimated multivariate normal distribution. In PROC

MI, we specify the number of datasets to be imputed and the imputation model to use.

After imputation, statistical algorithms are specified for the running of the analysis model

of interest separately for each imputed dataset using the by _Imputation_ statement, and

the results are stored in an output file. In conclusion, a procedure called, PROC MIANA-

LYZE, combines the estimates obtained from the analyses of the multiply imputed datasets

to produce valid statistical inferences as also in the work by (Kombo et al., [122]). How-

ever, non-normal data analyses especially for categorical data, additional manipulations are
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needed before PROC MIANALYZE is used (Ratitch et al., [147]). This is because Rubin

rules (Rubin, [19]) for combining results assume that the statistics estimated are normally

distributed. The estimates are regression coefficients and means which are approximately

normally distributed, while others like the odds ratios, correlation coefficients and relative

risks are non-normal.

4.4 Simulation study

Before the real data is analyzed, we conduct simulation studies to evaluate the properties

and effectiveness of the methods of handling incomplete data. The importance of this is

to investigate and explore the performance of such methods under different missing data

conditions. In this study, the focus is on the monotone dropout.

4.4.1 Data generation, simulation designs and analysis of the simu-

lated data

We conducted a simulation study to evaluate the performance of FCS, MNVI and EM.

The ordinal simulated datasets are generated from an NB distribution using the approach

described in Section 4.2 which are collapsed into ordinal responses with C categories gen-

erated at four study occasions, j = 1, ...4. We repeated the simulation for three different

settings where C=3,4,5. We examined sample sizes of N=100,300 and 500. For NB dis-

tribution, we simulated 1000 datasets based on the generalised linear mixed model of the

form (10). Furthermore, the model for longitudinal ordinal outcomes were based on the

logit link function and the linear predictor below:

logit[P(Y ∗i j ≤ c)] = β0 + x′β+bi, bi ∼ N(0,d), i = 1, ...,N. (4.10)

The underlying latent variable (y∗) is assumed to be related to the observed response

through the ‘threshold concept’ as indicated by the ordinal regression model. The response
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is given based on the underlying unobserved categorical endpoint that follows a linear re-

gression model which incorporates random effects and a predefined set of cut-off values

(threshold values) αC. Four different covariates were simulated: x1 normally distributed

with mean equals to 2 and σ set to 0.7, x2 from Bernoulli distribution with probability of

success equals to 0.5, x3 from a uniform distribution and x4 is a four-point assessment time.

We used the following parameters for the purpose of simulation: β1 = 0.75, β2 = 0.20

β3 = 0.90 and β4 = 0.40. In our study, we did not use any interaction terms. The pro-

portional odds logistic regression with random intercept for the response can be written as

follows:

logit[P(Y ∗i j ≤ c)] = β0 +0.75x1 +0.20x2 +0.90x3 +0.40x4 +bi. i = 1, ...,N; j = 1,2,3,4.

(4.11)

When the logit link function is inverted it leads to the conditional ordinal logistic regression

model whose equation can be written as

P(Y ∗i j ≤ c) =
exp(β0 + x′β+bi)

1+ exp(β0 + x′β+bi)
. (4.12)

Let φi jc = P(Y ∗i j ≤ c), then ordinal outcome Yi j (e.g., for C = 4) was obtained by setting the

observation rule defined as

Y =



0, if φi j ≤ τ1,

1, if τ1 < φi j ≤ τ2,

2, if τ2 < φi j ≤ τ3,

3, if φi j > τ3.

(4.13)

We imposed missing values on the full datasets, after which parameter estimates and stan-

dard errors were estimated by a likelihood based approach. Each estimate is a mean of 1000

estimates from the different simulated datasets. Here, we assumed the MAR mechanism in

the missingness model, we adopted the approach of (Kombo et al., [122]) where individu-

als whose outcome was greater than some cut-off would miss at post baseline time points

2,3 and 4, that is, let dropout= yi j−yi j−1, j = 2,3,4, producing values between 0 and 96; 0
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and 107; 0 and 135 for the different choices of the categories of the ordinal outcome, that is

C= 3,4 and 5 categories respectively. We ensured that approximately 30% of the outcome

were missing and the correlation is 0.2. The probability of a value dropping depended on

the immediate past history. Using the PROC MI approach, we imputed the missing en-

tries using the EM, FCS and MVNI methods. The imputation of ordinal values were on

continuous scale and rounded off to the specified categories under the MVNI method. We

specified the maximum and minimum values necessary so as not create imputation values

out of values. In the FCS procedure the fcs statement in PROC MI is used. The ordinal

response was imputed using the ordinal logistic regression model as incorporated in the

FCS approach. For each of this study, default for MCMC and FCS specification were used

in the simulations. The algorithms converged to the correct posterior distributions and we

had confidence that the imputed values in the various datasets were statistically indepen-

dent. All the covariates were used to ensure that our imputation model was rich enough

to try and satisfy the congeniality requirement under the MAR assumption. A larger num-

ber of imputations are needed for comparison of methods (Wood et al., [118]). Here, we

performed m = 20 imputations. We chose the value to account for the missing values we

generated and limit the loss of power for testing any associations of interest. Nonetheless,

experts argue that m can be set to 3≤ m≤ 5 and still obtain accurate estimates. However,

caution was raised that pegging on this range may be unnecessary (Schafer, [45]. In addi-

tion, (Molenberghs and Verbeke, [33]) showed that efficiency increments diminish rapidly

after the first m = 2 imputations for a small fraction of missing information and after the

first m = 5 imputations for larger fractions of missing information. The rule of choosing m

was suggested by (White et al., [119]) where it is recommended that m should be at least

equal to the percentage of the subject with missing values.

To asses the performance of the methods, we used standard errors (Std err), bias and mean

squared error (MSE) of the estimates. Bias is defined as the absolute difference between

the average parameter estimate from the analysis procedures (based on the 1000 simulated

datasets) and the true value (i.e Bias= | ¯̂
β−β |).
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4.4.2 Simulation results

We present the results of the simulation study in three Tables. Thus, Tables 4.1, 4.2 and

4.3 display results when the ordinal response variable has three, four and five levels respec-

tively. In each Table, we compare and contrast the performance of the three methods; EM,

FCS and MVNI under standard errors, bias and mean squared errors using different sample

sizes. The sample sizes are N=100 300 and 500 respectively. The estimates with worst

performance are shown in bold.

From Table 4.1, when the sample size is 100, MVNI performed better than EM and FCS

in terms of standard errors. Specifically, errors were large in the estimates of EM and FCS

than MVNI. In EM and FCS, lager errors were seen in the estimates (β0 to β4) and (β1

and β3) respectively. Bias was smallest in the estimates of FCS than EM and MVNI. In

particular, the worst performance of EM and MVNI on bias pervaded through the estimates

(β1, β2 and β4) and (β0 and β3) which indicated a difference between average and true pa-

rameter. In terms of MSE, FCS outperformed EM and MVNI because it displayed smallest

estimates. Under EM and MVNI, the worst MSE were on estimates (β1, β2 and β4) and

(β0 and β3) respectively.

Considering the sample size 300, under standard errors, FCS and MVNI performed better

than EM. In details, the worst performance of EM on standard errors were obvious through

the estimates (β0 to β4). In terms of bias, EM performed better than FCS and MVNI. The

worst performance of FCS and MVNI on bias displayed through the estimates (β1 and β2)

and (β0 and β3), and except β4 for EM. Thus, FCS and MVNI performed better than EM

in terms of MSE criterion because they were associated with smaller estimates. The worst

performance of EM pervaded through the estimates (β2 to β4), except β1 and β0 for FCS

and MVNI.

For sample size 500, based on standard errors, MVNI performed better than EM and FCS

because MVNI produced the smallest estimates. The worst performance of EM and FCS

on errors obvious through the estimates (β0, β1 and β3) and (β1, β2 and β4) respectively.
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The estimates associated with EM and FCS were less biased than MVNI. Thus, MVNI

estimates showed most bias in (β0 to β4), except β4 and β1 for EM and FCS. With respect

to MSE, FCS estimates performed better than EM and MVNI. In particular, the worst per-

formance were seen the estimates (β2 and β4) and (β0 and β3) for EM and MVNI, except

β1 for FCS.

In Table 4.2, under the sample size 100, estimates for standard errors were large in FCS and

MVNI than EM. In details, the worst performance of FCS and MVNI on standard errors

permeated through the estimates (β3 and β4) and (β1 and β2), except β0 for EM. In terms

of bias, EM and MVNI performed better than FCS. In particular, the worst performance

of FCS on bias observed through the estimates (β0 to β4). The performance of EM was

better than FCS and MVNI in terms of MSE. The worse performance were evident on the

estimates (β0, β3 and β4) and (β1 and β2) for FCS and MVNI respectively.

For sample size 300, EM and FCS performed better than MVNI in terms of standard errors.

Specifically, the worst errors associated with MVNI through the estimates (β0 to β3), except

β3 for EM and β4 for FCS. Bias were smaller in the estimates of EM and MVNI than FCS.

In particular, the worst performance of FCS on bias were shown in the estimates (β0, β3

and β4), except β1 for EM and β2 for MVNI respectively. In terms of MSE, EM and MVNI

performed better than FCS. Particularly, the worst performance of EM recorded through

the estimates (β0, β3 and β4), and except (β1) and (β2) for EM and MVNI respectively

For sample size 500, the standard errors recorded for EM and FCS were smaller than

MVNI. This indicated that EM and FCS performed better than MVNI. In details, the worst

performance of MVNI on standard errors observed through the estimates (β2, β3 and β4),

and except β0 and β1 for EM and FCS respectively. In terms of bias, MVNI performed

better than EM and FCS. In particular, the worse performance of EM and FCS permeated

through the estimates (β0, β2 and β3) and (β1 and β4) respectively. Under MSE, FCS and

MVNI performed better than EM. The worst performance of EM on MSE pervaded through

the estimates (β0, β2 and β3), except β1 and β4 for FCS and MVNI respectively.
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Table 4.1: Standard errors (Std Err), bias and mean squared error (MSE) estimates from

Expectation maximization (EM), fully conditional specification (FCS) and multivariate

normal (MVN), under MAR mechanism over 1000 samples: N=100, 300 and 500 indi-

viduals, for a 3-category ordinal outcome.

Sample Par Std Err Bias MSE

EM FCS MVNI EM FCS MVNI EM FCS MVNI

100 β0 0.0787 0.0761 0.0432 0.1316 0.0856 0.2594 0.0960 0.0834 0.1105

β1 0.0111 0.0111 0.0074 -0.7522 -0.7520 -0.7496 0.5769 0.5766 0.5693

β2 0.0161 0.0154 0.0102 -0.2039 -0.2017 -0.2003 0.0577 0.0561 0.0503

β3 0.0029 0.0029 0.0016 -0.9007 -0.8999 -0.9016 0.8142 0.8127 0.8145

β4 0.0076 0.0074 0.0045 -0.4832 -0.4703 -0.4694 0.2411 0.2286 0.2248

300 β0 0.0790 0.0743 0.0439 0.1411 0.0065 0.2609 0.0989 0.0743 0.1120

β1 0.0120 0.0112 0.0071 -0.7520 -0.7537 -0.7416 0.5775 0.5793 0.5571

β2 0.0171 0.0152 0.0097 -0.1969 -0.2025 -0.1937 0.0559 0.0562 0.0472

β3 0.0030 0.0027 0.0016 -0.9011 -0.9008 -0.9018 0.8150 0.8141 0.8148

β4 0.0075 0.0070 0.0043 -0.4847 -0.4720 -0.4739 0.2424 0.2298 0.2289

500 β0 0.0852 0.0765 0.0435 0.0833 0.0653 0.2482 0.0921 0.0808 0.1051

β1 0.0124 0.0124 0.0069 -0.7373 -0.7398 -0.7398 0.5560 0.5597 0.5542

β2 0.0124 0.0166 0.0094 -0.2063 -0.2032 -0.2108 0.0593 0.0579 0.0538

β3 0.0030 0.0028 0.0015 -0.9000 -0.9001 -0.9013 0.8130 0.8130 0.8138

β4 0.0072 0.0074 0.0041 -0.4815 -0.4687 -0.4728 0.2390 0.2271 0.2276
Notes: The missing values are approximately (30%) on the outcome variable; MAR mechanism.

In Table 4.3, considering the sample size 100, EM and MVNI performed better than FCS in

terms of standard errors. The worst performance of FCS on standard errors filtered through

the estimates (β0, β2 and β4), except β3 and β1 for EM and MVNI respectively. Bias were

smaller in the estimates of EM and MVNI than FCS. Specifically,the worst performance of

FCS on bias run through the estimates (β0, β2 and β4), and except β3 and β1 for EM and
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Table 4.2: Standard errors (Std Err), Bias and mean squared error (MSE) estimates from

Expectation maximization (EM), fully conditional specification (FCS) and multivariate

normal (MVN), under MAR mechanism over 1000 samples: N=100, 300 and 500 indi-

viduals, for a 4-category ordinal outcome.

Sample Par Std Err Bias MSE

EM FCS MVNI EM FCS MVNI EM FCS MVNI

100 β0 0.1584 0.1540 0.1449 0.4584 0.4932 0.4276 0.3685 0.3972 0.3277

β1 0.0221 0.0216 0.0250 -0.7160 -0.7208 -0.7186 0.5348 0.5412 0.5414

β2 0.0328 0.0301 0.0344 -0.2425 -0.2463 -0.2426 0.0916 0.0908 0.0933

β3 0.0061 0.0545 0.0052 -0.8984 -0.8985 -0.8967 0.8132 0.8618 0.8093

β4 0.0139 0.0163 0.0146 -0.3156 -0.3270 -0.3179 0.1135 0.1232 0.1157

300 β0 0.1538 0.1510 0.1607 0.4730 0.5134 0.4887 0.3775 0.4146 0.3995

β1 0.0213 0.0231 0.0241 -0.7604 -0.7568 -0.7568 0.5995 0.5958 0.5968

β2 0.0309 0.0320 0.0352 -0.2084 -0.1946 -0.2156 0.0743 0.0699 0.0817

β3 0.0059 0.0057 0.0059 -0.8954 -0.8965 -0.8959 0.8076 0.8094 0.8085

β4 0.0134 0.0167 0.0136 -0.3221 -0.3375 -0.3267 0.1171 0.1306 0.1203

500 β0 0.1556 0.1513 0.1520 0.4961 0.4860 0.4662 0.4017 0.3875 0.3693

β1 0.0220 0.0231 0.0210 -0.7353 -0.7364 -0.7362 0.5627 0.5654 0.5630

β2 0.0307 0.0299 0.0316 -0.2293 -0.2241 -0.2240 0.0833 0.0801 0.0818

β3 0.0056 0.0054 0.0057 -0.8992 -0.8980 -0.8978 0.8142 0.8118 0.8117

β4 0.0144 0.0140 0.0157 -0.3079 -0.3195 -0.3123 0.1092 0.1161 0.1132
Notes: The missing values are approximately (30%) on the outcome variable; MAR mechanism.

MVNI. In the case of MSE, EM and MVNI performed better than FCS. The worst perfor-

mance of FCS on MSE imbued through the estimates (β0, β2 and β4), and except β3 and

β1 for EM and MVNI.

For sample size 300, in terms of standard errors; EM performance was better than FCS

and MVNI. In particular, the worse performance of FCS and MVNI on the standard errors
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Table 4.3: Standard errors (Std Err), Bias and mean squared error (MSE) estimates from

Expectation maximization (EM), fully conditional specification (FCS) and multivariate

normal (MVN), under MAR mechanism over 1000 samples: N=100, 300 and 500 indi-

viduals, for a 5-category ordinal outcome.

Sample Par Std Err Bias MSE

EM FCS MVNI EM FCS MVNI EM FCS MVNI

100 β0 0.2006 0.2032 0.1835 0.5981 0.6306 0.5592 0.5583 0.6009 0.4962

β1 0.0280 0.0316 0.0317 -0.7013 -0.7040 -0.7046 0.5198 0.5272 0.5282

β2 0.0415 0.0456 0.0435 -0.2589 -0.2615 -0.2590 0.1085 0.1140 0.1106

β3 0.0077 0.0073 0.0066 -0.9005 -0.9004 -0.8983 0.8186 0.8180 0.8135

β4 0.0175 0.0188 0.0185 -0.2964 -0.3114 -0.2992 0.1054 0.1158 0.1080

300 β0 0.1956 0.1938 0.2040 0.5402 0.5551 0.5602 0.4870 0.5019 0.5178

β1 0.0270 0.0321 0.0306 -0.7515 -0.7523 -0.7469 0.5918 0.5981 0.5885

β2 0.0392 0.0415 0.0447 -0.1960 -0.1927 -0.2051 0.0776 0.0786 0.0868

β3 0.0075 0.0076 0.0075 -0.8940 -0.8935 -0.8947 0.8067 0.8059 0.8080

β4 0.0169 0.0210 0.0173 -0.3086 -0.3261 -0.3144 0.1121 0.1273 0.1161

500 β0 0.1967 0.2055 0.1922 0.6657 0.6967 0.6278 0.6399 0.6909 0.5863

β1 0.0278 0.0284 0.0265 -0.7280 -0.7304 -0.7291 0.5578 0.5619 0.5581

β2 0.0389 0.0448 0.0400 -0.2471 -0.2393 -0.2404 0.1000 0.1021 0.0978

β3 0.0071 0.0075 0.0072 -0.9018 -0.9016 -0.9001 0.8203 0.8204 0.8174

β4 0.0182 0.0182 0.0199 -0.2895 -0.3087 -0.2951 0.1020 0.1135 0.1070
Notes: The missing values are approximately (30%) on the outcome variable; MAR mechanism.

were indicative through estimates (β1, β3 and β4) and (β0 and β2) respectively. EM per-

formed better than FCS and MVNI in terms of bias. Specifically, the worse performance

of FCS and MVNI were obvious through the estimates (β1 and β4) and (β0, β2 and β3).

Under MSE, the performance of FCS and MVNI were worse compared to EM. In details,

the worse performance on FCS and MVNI on MSE indicated through the estimates (β0 and

β4) and (β0, β2 and β3).
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For sample size 500, EM and MVNI performed better than FCS in terms of standard er-

rors. In details, the worst performance of FCS on standard errors permeated through the

estimates (β0 to β3), and except β4 for MVNI. In the case of bias, EM and FCS performed

lower than MVNI. Specifically, the worse performance of EM and FCS on bias run through

the estimates (β2 and β3) and (β0, β1 and β4). In terms of MSE, EM and MVNI performed

better than FCS. In particular, the worst performance of FCS on MSE permeated through

estimates (β0 to β4).

4.4.3 Example: Lung HIV data

Data

The dataset used is from the national heart, lung and blood institute (NHBLI) longitudinal

studies of HIV associated lung infections and complications (Lung HIV), Bruce et al.,

[148]. The cohorts study were conducted across eight different clinical centers. Before

the study, a written consent of the participants were sought. The data are on 4760 patients

(2889 males and 1871 females) and 12 patients were missing. The ages are between 17

and 77. The patients were followed up for 24 months (in 5 visits) and the axial emphysema

distribution assessed was graded from 0 to 4, with high indicating worse. About 47% of

the description of the axial distribution emphysema variable were missing. Some of the

descriptive statistics of the dataset are summarized in Table 4.4.

The proportional odds assumption

Before the interpretation of the model results, it is essential to test the proportional odds

assumption. This simply tests whether the parameters are the same across logits, simulta-

neously for all predictors. The assumption can be examined in STATA using Brant test or

SAS using the score test. We conducted the test in SAS. A significant result indicates that

proportional odds does not hold and suggests that separate parameters are needed across
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Table 4.4: Descriptive statistics of the incomplete Lung HIV data

Lung HIV data Description Range % miss Freq

Baseline variables

Sex 1=Male, 2=Female 1/2 0.25

Age Age patient at enrollment 19-77 0

Time Number of patients visits 1-5 0 823

Pulmonary disease Pulmonary artery enlargement (0=No, Yes=1) 0 0

Response variable

Axi_emph Best description of the axial distribution of emphysema 0-4 47.02 387
Note: Data missing on both the dependent and independent variables.

the logits for at least one predictor. The part of assumption results is presented in Table 4.5.

The model of interest of the study was the main effects model. First, we analyzed the

data without any alterations or attempts to impute the missing observations. This method is

termed the direct likelihood (DL) approach. The parameter estimates from DL were chosen

as reference for the real application dataset to check the relative performance of EM, FCS

and MVNI when considering MI. This is because DL is valid under the same properties as

multiple imputation. Thereafter, we conducted multiple imputations under the EM, FCS

and MVNI and upon completion a similar marginal model was fitted to analyze the task.

Finally, the SAS procedure MIANALYZE was employed to pool the results from multiple

datasets.

Table 4.5: Score test for the proportional odds assumption

Chi-Square df Pr>Chisq

52.5569 12 <.0001
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Table 4.6: Parameter estimates (Est), standard errors (SE), confidence limits (CL) obtained

from the lung HIV data under the methods of direct likelihood (DL), expectation maxi-

mization (EM), fully conditional specification (FCS) and multivariate normal (MVNI) under

MAR mechanism.
DL EM FCS MVNI

Param Est SE Pr > |t| Est SE Pr > |t| Est SE Pr > |t| Est SE Pr > |t|

Intercept 1.2650 0.4655 0.0069 0.8912 0.2276 0.0008 0.8951 0.2080 0.0003 0.9678 0.2182 0.0002

Time 0.1333 0.1454 0.4131 0.0267 0.0349 0.4542 0.0360 0.0336 0.2963 0.0329 0.0472 0.4943

Pulm-disease -0.7698 0.1741 < .0001 0.6493 0.2299 0.0106 0.6717 0.1804 0.0013 0.6970 0.1973 0.0021

Sex 0.0223 0.1066 0.8345 -0.0236 0.1397 0.8677 -0.0226 0.0798 0.7799 -0.0540 0.0887 0.5493

Age 0.2660 0.4412 0.5484 -0.0255 0.0531 0.6359 -0.0254 0.0447 0.5758 -0.0482 0.0489 0.3365

Notes: The missing values on both covariate and response variable are approximately

0.3% and 47% respectively.

Results

Table 4.6 shows the parameter estimates, standard errors and confidence limit of fixed

effect using the imputation and likelihood methods. In application, EM, FCS and MVNI

performed better than DL in terms of estimates, except for pulmonary disease. In the case of

standard errors, DL displayed lager errors compared to EM, FCS and MVNI. In particular,

the worst performance of DL on standard errors pervaded through (intercept, time and age),

except pulmonary disease and sex for EM. Pulmonary disease is the only parameter that

was significant under all the methods. This affirmed that pulmonary disease was common

among the individuals that participated in the HIV-lung infection study.

4.5 Discussion

In our research, we have introduced a novel idea in the area of methodology where we sim-

ulated a discrete variable from the NB distribution and linked with the underlying ordinal

responses, through the cumulative probabilities. This distribution is useful in analyzing
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categorical data and has many response categories which represent the ranges of under-

lying count. In real application, it is common for analysts to be faced with both dropout

and nonmissingness missing datasets, like the Lung-HIV data where the amount of dropout

was high, while that of nonmissingness is much small. It is important to include all in the

analyses as noted by (Molenberghs and Verbeke, [33]). One can opt for direct likelihood

analysis or standard generalized estimating equations (GEE; Molenberghs and Verbeke

[33], Diggle et al., [149], Liang and Zeger [61]). Weighted generalized estimating equa-

tions (WGEE; Robins et al., [79]) are possible but one has to find appropriate weights.

On the other hand, one may make the missing patterns monotone by multiple imputation

and go ahead to do the WGEE (Kombo et al., [122]). This study was to investigate and

explore the performance of the EM, FCS and MVNI as MI methods. Each of the approach

follows different theoretical assumptions, which involves different computational methods.

In MVNI and EM, the specification of the imputation model is easy to use. But FCS re-

quires an additional effort in model specification, and separate regression models must be

fitted for each variable in the imputation model (Van Burren [144]). But in our situation,

the conditional regressions were automatically specified because of the small number of

variables involved and just two variables had missing values. The advantage of FCS is that

it can handle ordinal variables naturally.

In this paper, missingness was on covariate and response variable, which were analyzed

under three approaches of the MI methods. This study shows that FCS performs slightly

fair than the other imputation methods used. This study stands as an extension to a study

conducted by (Kombo et al., [122]) where missingness is on the outcome variable. Fur-

thermore, in the study conducted in (Mcginley et al., [139]) missing data and different

cut-points selections were not included. However, in our study we introduced missing data

in the simulation studies and methods of handling it. Thus, we also introduced different cut-

points selections. The approaches are extension to the study conducted in Mcginley et al.

[139]. Actually, this does not limit the findings of this research; but further research should
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be conducted to investigate the performance of ordinal-count models under misspecifica-

tion of the latent response variable distribution, and alternative generating distributions.
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Chapter 5

Conclusion and possible areas of further

research

5.1 Conclusion

The focus of this research is to analyze both longitudinal and cross- sectional data, with

interest on incomplete data. The study comprised both simulation and real data applica-

tions. In the real applications, different datasets are used; chronic obstructive pulmonary

disease (COPD) dataset - a primary binary response dataset available in Excellence in Car-

diovascular Health for the Southern America (CESCAS), United States of America 2010.

Furthermore, HIV associated lung infection and complications (Lung-HIV) dataset - a clin-

ical study trial provided by the national heart, lung and blood institute (NHBLI) 2013. Both

data sets exhibit both monotone and non-monotone missing data patterns. One modeling

framework: the marginal model was used due to the nature of the datasets.

In the analysis of incomplete longitudinal data, non-Gaussian data can be adopted to some

extent under the less strict missing at random (MAR) assumption using standard statistical

software packages. Thus, likelihood based approaches such as linear mixed models and

generalized linear mixed models can be adopted for a Gaussian and non-Gaussian data re-

spectively. Weighted generalized estimating equations can be used as an alternative. This

is valid under MAR because of weighting. Furthermore, other methods can be used that do

not need an explicit joint model for the missing data and the substantive analysis model, like
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the expectation-maximization algorithm and multiple imputation (MI) and its extensions,

MI-GEE and DR-GEE. All of these techniques can be implemented using SAS and other

statistical packages. In SAS, the GLIMMIX macro and GLIMMIX procedure together with

the GENMOD and GEE procedures are suitable for the generalized estimating equations.

The NLIMIXED procedure also with the GLIMMIX can be used for the generalized linear

mixed model. The application of these techniques and its strategies leave no reason for

the use of ad hoc methods which are highly restrictive, such as complete case analysis,

last observation carried forward, baseline observation carried forward, simple imputation

techniques - it is actually simple and easy to implement. In this thesis, we are interested on

investigating and comparing the performance of the analysis methods for incomplete data.

This research was basically on how to deal with missing observations in either the covari-

ates/outcome or both. This thesis started in Chapter 2, with an incomplete binary longi-

tudinal outcome. Using a simulation study and life data application, the analysis methods

compared the weighted generalized estimating equation (WGEE), generalized estimating

equations based multiple imputation (MI-GEE) and generalized estimating equations based

Doubly robust (DR-GEE), under different independent working correlation structures, such

as exchangeable compound symmetry (CS), first order autoregressive (AR1) and toeplitz

(TOEP). Furthermore, DR-GEE performed better than the other methods especially under

TOEP correlation structure. In the simulation study, DR-GEE estimators are consistent

and present small sample bias and smallest standard errors compared to the other tech-

niques used..

Chapter 3 evaluated the performance of inverse probability weighting (IPW) and multiple

imputation using fully conditional specification MI (FCS). These methods were assessed

through a simulation study and a real data application. In the simulation study, datasets

of different sample sizes (N = 100,200,500) were generated. This gave insights to the

strength of the methods and what to expect when using real data. In the real life data ap-

plication, the two methods performed creditably well, but MI (FCS) gave more reliable

inferences.
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Chapter 4 compared the performance of multiple imputation strategies, namely, multivari-

ate normal imputation, fully specification condition and expectation-maximization algo-

rithm applied to a discrete ordinal data. These methods were evaluated via simulation stud-

ies and a real data application example. In the simulation study, we explicitly used ordinal

responses to a suitable underlying count distribution through NB. Furthermore, datasets

of different sample sizes (N = 100,300,500) were generated from negative binomial dis-

tribution which were collapsed into ordinal responses with different cut-points selections

(C = 3,4,5). The real application involved the HIV-Lung dataset. Incomplete data were

present on both the covariate and outcome variable. The results showed that FCS displayed

estimates that were slightly smaller than other methods.

5.2 Possible areas of further research

In the study design for data collection, a statistician should be among the designers to de-

velop strategies that reduce missing data since the collection of data plays a prominent role

in the problem of incomplete data for a specific study. This indicates that strategic plan-

ning can minimize the frequency of missing data; although there is no specified condition

concerning the amount of incomplete data that can be acceptable. In the context of missing

data, knowing the reasons leading to the incompleteness plays a pertinent role in choosing

the appropriate statistical approach to handle the data. In fact, there is no general procedure

for handling the incomplete data scenarios. However, proper study design and understand-

ing the possible causes of missing data mechanism can assist to a considerable extent.

In this research, we investigated various modeling techniques with both monotone and non-

monotone missingness pattern respectively. However, there are still some areas that need

to be researched in the missing data scenario. These areas could serve as areas of further

research. A research could still be conducted to investigate sensitivity analysis since it is of
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importance to model MNAR incomplete longitudinal data. In this context, various sensi-

tivity analysis frameworks can be compared. But our current study did not focus of shared

parameter models and local and global influence which are other alternative techniques. In

using identifying restrictions, our focus is limited on the continuous data setting. Research

on the extension of this needed especially on the categorical data.

Finally, we acknowledge that not all the areas in missing data were covered. Other areas

that need further research include the identifiability issues for local and global influence

techniques, multiple imputation for recurrent event data and sensitivity of inference to data

transformations. Furthermore, sensitivity analysis should be conducted on the latent-class

mixture models which are an extension of the shared parameter mixture. This can also be

used as another technique for sensitivity analysis.
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Appendices

Codes for Chapter 2

SAS macro code for WGEE

/****Macro code for dropout****/

%macro dropout(data=,id=,time=,response=,out=);

%if %bquote(&data)=%then %let data=&syslast;

proc freq data=&data noprint;

tables &id /out=freqid;

tables &time /out=freqtime;

run;

proc iml;

reset noprint;

use freqid;

read all var &id;

nsub = nrow(&id);

use freqtime;

read all var &time;

ntime = nrow(&time);

time=&time;

use &data;

read all var &id &time &response;

n = nrow(&response);

dropout =j(n,1,0);

ind = 1;
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do while (ind <= nsub);

j=1;

if (&response[(ind-1)*ntime+j]=.)then print"First measurement is missing";

i f (&response[(ind−1)∗ntime+ j]ˆ = .)then

do;

j=ntime;

do until (j=1);

if (&response[(ind-1)*ntime+j]=.)then do;

dropout [(ind-1)*ntime+j]=1;

j=j-1;

end;

else j=1;

end;

end;

ind=ind+1;

end;

prev=j(n,1,1);

prev[2:n] = &response[1:n-1];

i=1;

do while(i<=n);

if &time[i]=time[1] then prev [i]=.; i=i+1; end;

create help var &id &time &response dropout prev;

append;

quit;

data &out;

merge &data help;

run;

%mend;
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%dropout(data=forgenmod,id=id,time=time,response=y,out=wgee1);

/*** %dropout creates two variable***/

/*(1) "dropout":indicates missing or observed */

/*(2) "prev":previous observed measurement */

/*Step One: fit a logistic regression model for missingness to predict probabilities */

ods select ParameterEstimates;

proc genmod data=wgee1;

class ctime;

model dropout=ctime prev dose dose*prev/dist=bin;

output out=datapred pred=pred;

run;

ods select all;

/***** macro code for dropweight *****/

%macro dropwgt(data=,id=,time=,pred=,dropout=,out=);

%if %bquote(&data)= %then %let data=&syslast;

proc freq data=&data noprint;

tables &id /out=freqid;

tables &time /out=freqtime;

run;

proc iml;

reset noprint;

use freqid;

read all var &id;

nsub = nrow(&id);

use freqtime;
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read all var &time;

ntime = nrow(&time);

time=&time;

use &data;

read all var &id &time &pred &dropout;

n = nrow(&pred);

wi=j(n,1,1);

ind = 1;

do while (ind <= nsub);

wihlp=1;

stay = 1;

/*first measurement*/

if (&dropout[(ind-1)*ntime+2]=1) then do;

wihlp=pred[(ind-1)*ntime+2];

stay=0;

end;

else if (&dropout[(ind-1)*ntime+2]=0) then wihlp = 1-pred[(ind-1)*ntime+2];

/*second to penultimate measurement*/

j=2;

do while ((j <= ntime-1) & stay);

if (&dropout[(ind-1)*ntime+j+1]=1) then do;

wihlp = wihlp*pred[(ind-1)*ntime+j+1];

stay=0;

end;

else if(&dropout[(ind-1)*ntime+j+1]=0) then wihlp = wihlp*(1-pred[(ind-1)*ntime+j+1]);

j=j+1;

end;

j=1;
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do while (j <= ntime);

wi[(ind-1)*ntime+j]=wihlp;

j=j+1;

end;

ind=ind+1;

end;

create help var &id &time &pred &dropout wi;

append;

quit;

data &out;

merge &data help;

data &out;

set &out;

wi=1/wi;

run;

%mend;

%dropwgt(data=datapred,id=id,time=time,pred=pred,dropout=dropout,out=wgee2);

/* Step two: use predicted probabilities of the fitted missingness model to calculate the

weights(WI) */

/* Step three:WGEE analysis by specifying WI in weight statement*/

proc genmod data=wgee2 descending;

weight wi;

class id ctime;

model y=time dose time*time dose*time dose*time*time/dist=bin;

repeated subject=id/within=ctime type=AR(1) corrw;

run;
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/*** Multiple Imputation (MI-GEE) ***/

proc mi data=amenorrhea out=amenorrhea_mi seed=123 nimpute=10;

class y;

var dose time y;

monotone logistic;

run;

proc print data= amenorrhea_mi;run;

/* fit the MI-GEE */ proc genmod data=amenorrhea_mi descending;

class id;

model y=time dose time*time dose*time dose*time*time/dist=bin;

repeated subject=id / type=AR(1) modelse; *modelse;*covb corrw;

run;

/** DR-GEE **/

/** Obtaining propensity score **/

proc logistic descending data = amenorrhea;

title ‘Propensity Score Estimation’;

model dose = time/lackfit outroc = ps_r;

output out= ps_data XBETA=ps_xb STDXBETA= ps_sdxb PREDICTED = ps_pred;

run;

/*** IPTW ***/

data ps_weight;

set ps_data;
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if dose=1 then ps_weight=1/ps_pred;

else ps_weight=1/(1-ps_pred);

run;

proc print data=ps_weight; run;

/** Multiple Imputation **/

proc mi data=ps_weight out=ps_weight2 seed=127 nimpute=10;

class y;

var id time y;

monotone logistic;

run;

proc print data=ps_weight2(obs=5); run;

/** fit the GEE **/

proc genmod data=ps_weight2 descending;

class id;

model y=time dose time*time dose*time dose*time*time/dist=bin;

repeated subject=id/type=AR(1) modelse;

run;

Codes for Chapter 3

/* Complete data model*/

proc surveylogistic data= quad1;

*weight weight;

class trt (ref=’1’) /param=ref;
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model y (event=’1’) = trt Age trt*Age;

output out=pred predicted=mhat;

run;

proc sort data=pred;

by id;

run;

/* missingness model*/

proc surveylogistic data= quad1;

*weight weight;

class trt (ref=’1’) /param=ref;

model y (event=’1’) = trt Age trt*Age;

output out=y_pred predicted=mhat;

run;

proc sort data=y_pred;

by id;

run;

/*create inverse probability weights and pseudo-outcomes*/

data quad1_final;

merge pred y_pred;

by id;

/*total population weights*/;

w=1/phat;

*w2=w*weight;

run;

proc print data=quad1_final(firstobs=1 obs=50);
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run;

/*inverse probability weighting*/

proc surveylogistic data=quad1_final;

*weight w;

model y (event=’1’) = trt Age trt*Age;

run;

/* Mutiple imputation- MI(FCS)*/

proc mi nimpute=0 data=quad; run;

proc mi data=quad seed=234 nimpute=20 out=outfcs;

class trt y;

fcs nbiter=40 logistic (y/details);

var trt Age y;

run;

proc freq data=outfcs;

tables _imputation_ *y_imp / missing;

run;

proc surveylogistic data=outfcs;

class trt (ref=’0’) / param=ref;

model y (event=’1’)= trt Age trt*Age;

by _imputation_;

ods output parameterestimates=outparm;

run;

proc print data=outparm;
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run;

proc mianalyze parms (classvar=classval)=outparm;

class trt;

modeleffects intercept trt Age trt*Age;

run;

Codes for Chapter 4

*****MI using multivariate normal distribution (MVN)****;

proc mi data=long nimpute=20 out=mi_mvn seed=368;

var x1 trt age time y_res;

run;

proc glm data=mi_mvn;

model y_res= x1 trt age time;

by _imputation_;

ods output ParameterEstimates=a_mvn;

run;

quit;

proc mianalyze parms=a_mvn;

modeleffects intercept x1 trt age time;

run;

*****MI using fully conditional specification (FCS)*****;

proc mi data= long nimpute=5 out=long_fcs;

class y_res;
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*fcs plots=trace(mean std);

var x1 trt age time y_res;

fcs discrim(y_res /classeffects=include) nbiter =10;

run;

proc genmod data=long_fcs;

class y_res;

model y_res(event=’1’)=x1 trt age time /dist=normal;

by _imputation_;

ods output ParameterEstimates=gm_fcs;

run;

PROC MIANALYZE parms(classvar=level)=gm_fcs;

class y_res;

MODELEFFECTS INTERCEPT x1 trt age time;

RUN;

* Proportional odds test*;

proc logistic data=trial;

class AXI_EMPH / param=ref order=data;

model AXI_EMPH(descending)=Time PULM_ART SEX age;

output out=log predprobs=(c i);

run;

****** Direct Likelihood (DL) Analysis ********

proc mixed data=new;
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class USUBJID AXI_EMPH Time PULM_ART;

model AXI_EMPH= Time age SEX PULM_ART /solution ddfm=kr;

parms/ols;

repeated Time/subject=USUBJID type=CS;

run;

********* EM (expectation maximum - MLE) ****** proc mi data=new nimpute=0; var

Time PULM_ART SEX age AXI_EMPH;

run;

proc mi data=new nimpute=4 seed=12 out=new1;

em;

var Time PULM_ART SEX age AXI_EMPH;

run;

proc reg data=new1 outest=regem covout noprint;

model AXI_EMPH=Time PULM_ART SEX age;

by _imputation_;

run;

proc print data=regem(obs=8);

var _Imputation_ _Type_ _Name_

Intercept time PULM_ART SEX age;

run;

proc mianalyze data=regem;

modeleffects intercept time PULM_ART SEX age;
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run;

Simulation study of ordinal response with monotone dropout using Negative Binomial dis-

tribution

*Trial version*;

%let size=1000;

%let rep=500;

%let seed1=1;

%let seed2=2;

data countsim;

call streaminit(357);

do id=1 to &size;

do d=1 to &rep;

do time=1 to 4;

b0=1;

b1=0.75; b2=0.20; b3=0.90; b4=0.40; g0=0.1;

g1=-1.5; g2=0.80; g3=1; g4=-0.50; alpha=2;

*Simulating count data*;

bi=rand("Normal", 8, .5);

x1=rand("Normal", 2, .7);

trt=rand("Bernoulli", .5); *trt*;

age=ceil(20+10*ranuni(&seed2));

y=(b0+b1*x1+b2*trt+b3*age+b4*time+bi);

parm=1/(1+y*alpha);

res=rand(’NEGB’,parm,1/alpha);

pzero=cdf(’LOGISTIC’,g0+g1*x1+g2*trt+g3*age+g4*time+bi);

if ranuni(3299)<pzero then do;

y_zinb=res;
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end;

else do;

y_zinb=0;

end;

output;end;

end;

end;

drop b0 b1 b2 b3 b4 g0 g1 g2 g3 g4 alpha bi;

run;

proc print data=countsim(obs=50);run;

data ordinal;set countsim;

if res=0 then y_res=0;

if 1 le res le 7 then y_res=1;

if 8 le res le 100 then y_res=2;

*if 81 le res le 140 then y_res=3;

if res ge 101 then y_res=3;

run;

proc print data=ordinal(obs=12);run;

data create;set ordinal;

by id d;

retain x11-x14 trt1-trt4 d1-d4 y_res1-y_res4 parm1-parm4;

array x1s(4) x11-x14;

array trts(4) trt1-trt4;

array sample(4) d1-d4;

array lin(4) parm1-parm4;

array resp(4) y_res1-y_res4;

if first.id then do;

do i=1 to 4;
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x1s[i]=.;

trts[i]=.;

sample[i]=.;

lin[i]=.;

resp[i]=.;

end;

end;

x1s(time)=x1;

trts(time)=trt;

sample(time)=d;

lin(time)=parm;

resp(time)=y_res;

if last.id then output;

drop time i x1 trt d parm y_res;

run;

proc print data=create(obs=6);run;

data dropouts;set create; drop j miss;

array var4 y_res1-y_res4;

array lin4 y_res1-y_res4;

miss=0;

do j=2 to 4;

if linj eq 1 then miss=1; *generates approx 30%*;

if miss=1 then varj=.;

end;

run;

proc print data=dropouts(obs=15);run;

data long;set dropouts;

array myvariables1(4) x11-x14;
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array myvariables2(4) trt1-trt4;

array myvariables3(4) d1-d4;

array myvariables4(4) parm1-parm4;

array myvariables5(4) y_res1-y_res4;

do time=1 to 4;

x1=myvariables1[time];

trt=myvariables2[time];

d=myvariables3[time];

parm=myvariables4[time];

y_res=myvariables5[time];

output;

end;

drop x11-x14;

drop trt1-trt4;

drop d1-d4;

drop parm1-parm4;

drop y_res1-y_res4;

run;

proc print data=long(obs=7);run;

proc sql;

create table percents as select nmiss(y_res) / count(*) as miss_y_pct from long;

quit; proc print; run;
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